
CONTRIBUTORS

CLAUDE BERGE

N. G. de BRUIJN

D. D. COWAN

J. R. FIKSEL

SOLOMON W. GOLOMB

C. C. GOTLIEB

FRANK HARARY

B. R. HEAP

A. HOLLIGER

JOEL D. ISAACSON

L. O. JAMES

C. A. KING

D. E. KNUTH

W. A.

W. KUICH

W. F. LUNNON

GEORGE MARBLE

DAVID W. MATULA

JOHN F. MEYER

RONALD C. READ

S. O. RICE

DONALD J. ROSE

P. ROSENSTIEHL

B. ROY

A L L E N J. S C H W E N K

R. G. STANTON

W. T. TUTTE

W. A. WALKER

GRAPH THEORY AND COMPUTING

Edited by RONALD C. READ

Department of Combinatorics and Optimization

University of Waterloo

Waterloo, Ontario, Canada

ACADEMIC PRESS New York and London 1972

COPYRIGHT © 1972, BY ACADEMIC PRESS, INC.

ALL RIGHTS RESERVED.
NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR
TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC
OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY
INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT
PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC.
Il l Fifth Avenue, New York, New York 10003

United Kingdom Edition published by
ACADEMIC PRESS, INC. (LONDON) LTD.
24/28 Oval Road, London NW1

LIBRARY OF CONGRESS CATALOG CARD NUMBER: 74-187228

PRINTED IN THE UNITED STATES OF AMERICA

LIST OF CONTRIBUTORS

Numbers in parentheses indicate the pages on which the authors' contributions begin.

CLAUDE BERGE (1), Faculté des Sciences, Paris, France

N. G. DE BRUIJN (15), Technological University, Eindhoven, The Netherlands

D. D. COWAN (285), Applied Analysis and Computer Science Department,
University of Waterloo, Waterloo, Ontario

J. R. FIKSEL (219), Institut de Programmation, Paris, France

SOLOMON W. GOLOMB (23), University of Southern California, University
Park, Los Angeles, California

C. C. GOTLIEB (303), Department of Computer Science, University of
Toronto, Toronto, Ontario, Canada

FRANK HARARY (39), Research Center for Group Dynamics, Institute for
Social Research, The University of Michigan, Ann Arbor, Michigan

B. R. HEAP (47), Division of Numerical Analysis and Computing, National
Laboratories, Teddington, Middlesex, England

A. HOLLIGER (219), École Polytechnique, Paris, France

JOEL D. ISAACSON (109), Department of Mathematical Studies, Southern
Illinois University at Edwardsville, Edwardsville, Illinois

xi

XII List of Contributors

L. O. JAMES (285), Department of Computer Science, University of Manitoba,
Winnipeg, Manitoba, Canada

C. A. KING, (63), University of the West Indies, Kingston, Jamaica

D. E. KNUTH (15), Stanford University, Stanford, California

W. KUICH* (77), IBM Laboratory, Vienna, Austria

W. F. LuNNONf (87, 101), Atlas Computer Laboratory, Chilton, Didcot,
Berkshire, England

GEORGE MARBLE (109), Department of Applied Mathematics and Computer
Science, Washington University, St. Louis, Missouri

DAVID W. MATULA (109), Department of Applied Mathematics and Com
puter Science, Washington University, St. Louis, Missouri

JOHN F. MEYER (123), Department of Electrical and Computer Engineering,
The University of Michigan, Ann Arbor, Michigan

RONALD C. READ (153), Department of Combinatorics and Optimization,
University of Waterloo, Waterloo, Ontario, Canada

S. O. RICE (15), Bell Telephone Laboratories, Inc., Murray Hill, New Jersey

DONALD J. ROSEJ (183), Department of Mathematics, University of Denver,
Denver, Colorado

P. ROSENSTIEHL (219), École Pratique des Hautes Études, Paris, France

B. ROY (267), Groupe METRA, Université Paris-Dauphine, Paris, France

ALLEN J. SCHWENK (39), Research Center for Group Dynamics, Institute
for Social Research, The University of Michigan, Ann Arbor, Michigan

R. G. STANTON (285), Department of Computer Science, University of
Manitoba, Winnipeg, Manitoba, Canada

W. T. TUTTE (295), Faculty of Combinatorics and Optimization, University
of Waterloo, Waterloo, Ontario, Canada

W. A. WALKER§ (303), Department of Computer Science, University of
Toronto, Toronto, Ontario, Canada

* Present address: Technische Hochschule Wien, Vienna, Austria.
t Present address: Department of Computing in Mathematics, University College,

Cardiff, Wales.
Î Present address: Aiken Computation Laboratory, Harvard University, Cambridge,

Massachusetts.
§ Present address: Ontario Hydro, Toronto, Ontario, Canada.

PREFACE

It has become more and more clear in recent years that the two disciplines
of graph theory and computer science have much in common, and that each
is capable of assisting significantly in the development of the other. Thus,
graph theorists are increasingly finding that many of their problems can be
solved, or their research furthered by the use of computing techniques;
while computer scientists are realizing that the language of graph theory is a
convenient one in which to express many of the concepts with which they
have to deal, and that standard results in graph theory are often very relevant
to the problems that concern them. Despite this, the number of publications
in which this interdependence of the two subjects is explicitly recognized is
still quite small.

The purpose of this book is largely to draw attention to some of the prob
lems and applications which straddle these two disciplines. It is a collection
of invited papers in which computing techniques are applied to graph-
theoretical problems, or in which problems in computing are treated by
graph-theoretical methods. Thus, mathematicians from several different
fields of research will discover within these pages material that is of interest
to them. The "pure" graph theorist, the computer scientist who is interested
in the study of algorithms, and the researcher into the theory of automata
will all find papers relating to these theoretical topics, while mathematicians
engaged in operations research, and other practical applications of graph
theory and computing, will discover that they have not been forgotten.

Some of the papers in this book were presented at an International Con
ference held in January 1969 at the University of the West Indies in Kingston,

xiii

xiv Preface

Jamaica; some others represent later development of work that was discussed
at that conference. Most of them, however, were invited for inclusion in this
volume with the aim of giving the reader a representative sample of topics
in this joint field of research, whose nature is indicated by the title—which
was also the name of the conference—Graph Theory and Computing.

ALTERNATING CHAIN METHODS: A SURVEY

Claude Berge

Faculté des Sciences

Paris, France

1. Historical Background 1
2. The Maximum Matching Problem 2
3. The Maximum c-Matching Problem 4
4. The Maximum Stable Set Problem 8

References 13

1. Historical Background

Consider a graph, and partition the set of all its edges into two classes, the
heavy edges and the light edges. An alternating chain is a chain whose edges
are alternately light and heavy. This concept was introduced in 1891 by
Petersen to prove that, in some cubic graphs, any linear factor can be modified
in order to use a given edge of the graph.

By 1957, when many people were trying to solve new classes of linear
programming problems in integers, I considered two new optimization
problems of this type:

(1) Maximum Matching Problem: given a family S of subsets of a given
set X, what is the largest number of members of S which are pair-wise disjoint;

I

2 Claude Berge

(2) Minimum Covering Problem : what is the smallest number of members
of S whose union covers Xe!

When Xis the set of vertices of a graph, and ê is the set of its edges, a simple
way to solve these problems is offered by the concept of an alternating chain.
This was discovered nearly simultaneously by us [4], for the maximum
matching problem, and by Norman and Rabin [15], for the minimum covering
problem. The extension of these methods to the most general matching
problems was found independently by Edmonds [9] and Ray-Chaudhuri [16].

The proofs given in the above papers were often unnecessarily complicated.
In this didactical paper, we shall only give some simpler proofs of these results,
and discuss the computational procedures suggested by them, as well as
possible extensions of the method.

2. The Maximum Matching Problem

We shall consider here a simple graph G = (X, E), that is, undirected,
without loops or multiple edges; the set of its vertices is denoted by X, and
the set of its edges by E. A matching £ 0 c is is a set of edges such that no two
meet at the same vertex. The problem is to find a maximum matching.

A vertex x is saturated in E0 if there exists an edge of E0 incident to .v. An
alternating chain is a simple chain whose edges are alternately in E0 and in
E-E0.

LEMMA 1. If E0 and El are two matchings of G, a connected component
of the partial graph (X,(EQ — EX) u (E1—E0)) is of one of the three following
types :

Type 1: isolated vertex;
Type 2: even elementary cycle, whose edges are alternately in E0 and in Ex ;
Type 3: elementary chain, whose edges are alternately in E0 and in Eu

and whose extremities are unsaturated for one of the two matchings, E0 or Ex.

The proof is a straightforward verification.

THEOREM 1. A matching E0 is maximum, if and only if there exists no
alternating chain connecting two distinct unsaturated vertices.

Proof: (1) If E0 is a matching with such an alternating chain, we can
interchange the heavy lines and the light lines along this chain. We obtain a
new matching El9 and \EX\ = |2?0| + 1. Therefore, E0 is not a maximum
matching.

Alternating Chain Methods: A Survey 3

(2) If E0 is a matching without such an alternating chain, consider a
maximum matching El. By (1), Εγ is a matching without such an alternating
chain, and by Lemma 1 we have

\E0-EX\ = |£ i -£o | ,

since the connected components of {Χ,(β0 — Ε^) u (El — E0)) of Type 3 are
even chains. This shows that \E0\ = | E11, and that E0 is a maximum matching.

According to this theorem, the maximum matching problem can be solved
by searching for all alternating chains from each unsaturated vertex. However
Edmonds [10] showed that it was not necessary to develop all alternating
chains. He described a procedure, more economical, that involved shrinking of
parts of the graph. His algorithm was experimented with by Witzgall. Although
helpful to one's intuitive understanding, shrinking is difficult to implement
on an electronic computer. For that reason, Witzgall and Zahn [18] presented
a modification of Edmond's maximum matching algorithm, which displayed
a tree-like arrangement of alternating chains using all the vertices reachable
by alternating chains issuing from a given unsaturated vertex.

The existence of such a tree is of great interest for the theory, but its con
struction, as described by Witzgall and Zahn [18], is not simple. Therefore,
it is often advisable to return to a suitable fanning-out algorithm. For a better
understanding of the procedure, consider, instead of G, a labeled graph H,
obtained from G as follows. If the n vertices of G are a,b,..., draw n points
denoted by a, b,.... If in G we have [x, >>] eE—E0 and [y, z] e E0, draw a path
of length 2 going from the point x to the point z, and passing through an addi
tional point that we mark with the symbol y. If a is an unsaturated vertex of G,
and if B denotes the set of vertices of G adjacent to an unsaturated vertex differ
ent from a, we join by an arc the points of H in B to an additional point z (see
Fig. 1). At the end, we mark the n points a,b,..., by the symbols ä, 5,

An alternating chain in G joining a to another unsaturated vertex is, in H,
a path from a to z whose vertices are all marked differently, and conversely.
The problem is to find such a path, which we call admissible.

Denote by s(x) the symbol attached to a vertex x of H. We shall construct
a sequence μΐ9μ2,..., of admissible paths, by a labeling procedure (inspired
by Tremaux; see [7]), with the following rules:

Rule 1: denote by xx the initial vertex with s&J = ä; set μ0 = [jq], a
path of length 0.

Rule 2: if μ; = [χι], and if there exists an unlabeled arc (xi,x2), set
μί+ι = [*i, x2]· Label arc (*l5 x2) with a +. If such a vertex x2 does not exist,
stop the procedure.

Rule 3: if μ{ = [χΐ9χ2> .·.,**], k> 1, we shall consider two cases:

4 Claude Berge

Fig. 1. In graph G, the heavy lines represent the edges of E0 , a matching which is to be

improved. In H, the heavy lines represent an admissible path going from a to z.

Case 3.1: if s(xk)^s(xi),s(x2)9^.,s(xk^i)9 and if there exists a vertex
xk+l such that (xk9xk+l) is an unlabeled arc, set μΙ+1 = [xl9xl9 ···>■**>■**+il·
Also, label with a + the new arc (xk9xk+i).

Case 3.2: Otherwise, set μΙ+1 = _xì9xl9 . . . ,* f c _i] ; also, remove the labels
of all the labeled arcs (xk, v), but not of the arc (xk_ i9 xk). We stop the procedure
as soon as μ,- is a path leading to z.

If vertex z has not been reached, then every possible admissible path has
been encountered exactly twice. The proof is identical to the Tremaux proof.
In the classical Tremaux procedure, the number of steps is bounded by twice
the number of arcs, but this is not true for the above algorithm. Though no
practical tests were done to compare it to Edmond's algorithm, some experi
ments conducted in 1965, while we were at the International Computation
Center in Rome, show only that the above procedure leads rapidly to a solution
for a medium-size problem.

3. The Maximum c-Matching Problem

The maximum matching problem can be generalized. Consider a multigraph
G9 with multiple edges but no loops, whose vertices are xl9x29 ···,*„, and an
«-tuple c = (cl9c29...,cn)9 where cf is a nonnegative integer less than or equal
to dG (Xi), the degree of vertex Xi. A set E0 a E is said to be a c-matching if the
set E0 (xt) of all the edges incident to *,· verifies

\Eo(xd\ < ci> i = 1,2,...,«.

Alternating Chain Methods: A Survey 5

The problem we shall consider now is to find a c-matching of maximum
cardinality. I proved [5] the following theorem :

If the edges of a omatching are denoted by heavy lines, and if we add a new
vertex x0, linked to xf by |£ 0 (*,·)! light edges and ci—\E0(xi)\ heavy edges, E0

is maximum, if and only if no alternating chain leaves x0 by a heavy edge
and comes back to x0 by a heavy edge.

An alternating chain is not permitted to use the same edge more than once,
but may visit the same vertex several times. For that reason the procedures
described by Dantzig et al [8] or Witzgall and Zahn [18] are not valid, as
was noticed by Witzgall and Zahn [18].

However, we shall now show that, by constructing a new graph G, this new
problem can be reduced to the problem considered in Section 2. A simple
graph G is obtained from G. For every vertex xt- of G, construct two disjoint
sets of points

At = {a{\ e e E(Xi)} and Bt = {bt
k\ l ^ k ^ dG(Xi) - c j .

The set of vertices of G will be X = (\J A^) u ((J 2?,·). For every /, link every
element af e Ai to all the elements of Bit For every edge e = [χί9χ/\ of G,
link the elements a? e At and a/ e Aj by an edge denoted e (see Fig. 2).

THEOREM 2. A maximum matching E0 of G which saturates all the vertices
of [jiBh induces in G a maximum omatching E0 of G, and vice versa.

Proof: (1) Let E0 be a maximum matching of G. We can assume that it
saturates every element of [J Bt. If not, we interchange the heavy and light
lines along alternating chains of length 2. E0 induces in G a set E0a E with

\E0(xd\ < 4 W - \Bi\ = dG(xd - Idoixd-cJ = ct.

Fig. 2

6 Claude Berge

E0 is thus a c-matching of G, and we have

\E0\ = \E0\ - f \Bt\.
/ = 1

(2) Let Ex be a maximum omatching of G. It gives in G a matching £ t

which saturates all the elements of (J Bt, and we have

|£ιΙ = |£ιΙ + ΣΙ^Ι·
ι=1

As we have \E0\ < l /s j , we obtain

|£il = l^il + Σ \Bi\ > l£ol + Σ \B,\ = |£ol·
/ = 1 / = 1

Since £ 0 is a maximum matching of G, this implies |£j | = |£0 | , and therefore
l^i I = l^ol- This proves that E0 is a maximum c-matching of G.

This theorem shows immediately how to find a maximum c-matching by
using alternating chain methods.

There are other optimization problems that one can solve by these methods.
Consider a multigraph G = (X9E) and a «-tuple d=(dl9d2,...,dn). A set
F0 <= E is said to be a d-cover if we have

l*o(*i)l > 4> ' = 1,2,...,«.

If df = 1 for all /, F0 is a awcr of the vertices of G. Norman and Rabin [15]
found that the minimum cover problem reduces to the maximum matching
problem. We noticed [5] that the problem of the minimum c cover reduces
also to the maximum matching problem. More precisely, we have

THEOREM 3. Consider a multigraph G = (X, E) without loops, and consider
integers ci9 df, with cf + df = dG (xf) for / = 1,2,..., n. A set F0 <= E is a minimum
d-cover, if and only if E—F0 is a maximum c-matching.

Proof: First, note that if we set E0 = E—F0, then |F0 (*,·)! ^ df is equiv
alent to

\Eo(xd\ < doixù-di = c,.

If F0 is a minimum d-cover, then is0 = E—F0 is a c-matching. If £\ is a maxi
mum c-matching, then Fl=E—El is a d-cover. Hence, |£Ί| ^ |£ 0 | and
l̂ oI ^ l^iI· On the other hand, we have

\FX\ = \E-EX\ = \E\ - \EX\ ^ \E\ - \E0\ = |F0 | ^ |Λ | .

Therefore, we have |Fj | = \F0\ and |is0| = |£Ί|. This shows that F^ is a
minimum d-cover, and that E0 is a maximum c-matching.

Alternating Chain Methods: A Survey 7

A generalization of Theorem 1 is due to Balinski [2]. Suppose we are given
a graph in which every edge is assigned a weight w(e) > 0, and we want a
c-matching E0 for which w(E0) = Σβε£0

 w(e) *s maximum. If ct = 1 for all /',
we have the problem of the maximum weighted matching. Define an augmenting
chain μ relative to E0, as an alternating cycle, or alternating chain, such that
no edge of E0 — μ is incident to a vertex of μ, and such that

Σ
 w(e) > Σ w>(e).

e εμ e 6μ
e$E0 eeE0

THEOREM 4. A matching E0 of G is a maximum weighted matching, if and
only if there is no augmenting chain.

Proof: (1) If E0 is a matching with an augmenting chain, it is not a
maximum weighted matching. This is obvious, as in Theorem 1.

(2) If E0 is a matching without an augmenting chain, and if El is a maximum
weighted matching, consider the partial graph G' = (X,(E0 — Ei) u (El—E0)).
If w(E0) < νν(£Ί), there exists in G' a connected component H9 with

Σ He)< Σ *(*)·
e e / / eeH

eeEo — Ei esE^ — Eo

By Lemma 1, H is in G an augmenting chain relative to E0, which yields the
contradiction.

COROLLARY. If G is a weighted multigraph, a c-matching E0 is of maximum
weight, if and only if the graph G obtained as in Theorem 2, with w(e) = w(e)
for every e e E, has no augmenting chain relative to E0.

The proof is the same as that for Theorem 4.

Note that when the weight of each edge is equal to 1, Theorem 4 reduces
to Theorem 1.

Another variation, discussed by Glover [11], is to find amongst all the
maximum matchings, a matching of minimum weight. Define a reducing
chain, relative to a maximum matching E0, as an alternating cycle, or alter
nating even chain issuing from an unsaturated vertex μ, such that

Σ He) < Σ »>(*).
eΕμ eeß

eiE0 eeE0

THEOREM 5. A maximum matching E0 is of minimum weight, if and only
if there is no reducing chain.

Proof: (1) If E0 is a maximum matching with a reducing chain, it is not
of minimum weight. This is obvious.

(2) If E0 is a maximum matching without a reducing chain, and if Ex is a

8 Claude Berge

maximum matching of minimum weight, then each connected component of
G' = {X,{E0 — E{) u (El-E0)) is an alternating cycle, or an even alternating
chain with one extremity unsaturated in E0 and the other extremity unsaturated
in Ei9 by Lemma 1. If w(E0) > w{Ex), one of these connected components is
a reducing chain, relative to E0, which contradicts the assumption made
about E0.

This theorem permits us to show how this new problem can be reduced to
the well-known problem of the shortest elementary path in a graph with a
length 1(e), positive or negative, assigned to each edge e.

Let G = (X9 E) be a graph, and let E0 a E be a maximum matching. Assume
that all the unsaturated vertices are contracted into one single vertex a.
Construct as in Section 2 an oriented graph H associated with G. If in G we
have [x,y] = ele E—E0 and \y,z\ = e1eEÇ), we shall assign the lengths
/(x, y) = w(ex) — w(e2) and l(y9 z) = 0 to the two corresponding arcs (x, y) and
(y,z)ofH.

In G, E0 is a maximum matching of minimum weight, if and only if in H
there is no circuit, and no path issuing from ä with a negative length and all
its vertices marked differently. *

4. The Maximum Stable Set Problem

In a graph G, a set B of vertices is said to be stable (or independent) if no
two vertices in B are adjacent. We now seek a maximum stable set.

This problem is equivalent to the general matching problem with a family
of sets, if we consider the representing graph of this family of sets. Several
methods of solution are known for this problem, [see 13, 14, 16], and one
can always use the tool provided by the theory of alternating chains. The
following result, often used in the theory of hypergraphs, is in fact a special
case of Ray-Chaudhuri [16] and a consequence of Edmonds [9]. Denote by
TG(x) the set of all the vertices adjacent to x. Define an alternating sequence

t There exist in the literature several algorithms to determine for every x the shortest
elementary path from ä to Jc, or to detect at least one negative circuit. They easily can be
adapted to our matching problem. For the general case, see Dantzig et al. [8] and Roy [17].

It should be noticed that, if we want a fast procedure, we must not claim to obtain all the
shortest elementary paths of H, since this would solve, as it is well-known, the traveling
salesman problem. The claim is only to find a negative circuit in a graph H if one exists, or
if none exists, then to find all the shortest paths from the given vertex a.

The inductive method developed by Dantzig et al. [8], is especially easy to adapt to the
matching problems. It gives, for the number of additions to perform, an upper bound equal
to m+ n(n+1) A/2, where m is the number of arcs of //, n the number of vertices, and h the
maximum out degree.

Alternating Chain Methods: A Survey 9

relative to a stable set B as a sequence (al9bi9a2, bl9 a3,...) of distinct vertices
of G, belonging alternately to A = X— B and to B, with

(1) axeA\

(2) bi is chosen in B-{bl9b29 ...,£,·_!} so that

rG(bi)n {aua2,...,ai} Φ 0 ;

(3) ai+l is chosen in A — {al9a29 ...,af} so that

TG(ai+1)n{bl9b29...9bt} Φ 0 ,

r G (ö i + i) n {έϊι,έϊ2,...,έΐ,} = 0 .

To extend the alternating chain theorem we need two lemmas.
LEMMA 2. If G is a tree, and if (A9B) is a bicoloring of its vertices with

\B\ ^ \A\, then G has at least one pendant vertex in B.

Proof: A bicoloring (A9B) is a partition of X into two stable sets.
Suppose that the set of all pendant vertices of G is a set Αγ a A. We shall show
that this leads to a contradiction. In the tree Gx_Al9 the set of all pendant
vertices is Βγ c B; in Gx-Al-Bi, the set of pendant vertices is A2cz A; etc.
We have \AX\ ̂ \Βγ\, since every pendent vertex of Gx_Al, can be mapped
into one of its neighbors in Αγ by an injection.

Thus, we have for some q ̂ 1

Mil > l*il ^ Mil > *i\ > - ^ \Bq\ >\Aq+1\9

Bq Φ 0 , and Bq+i = 0 .

If Aq+1 Φ 09 we have

Ml > Σ Mil > Σ l̂ il = 1*1.
/ = 1 / = 1

which contradicts the assumption that \A\ ^ \B\.
If Aq+1 = 0 , the set Bq reduces to a single vertex, which is not pendant in

GAqvBq- Therefore \Aq\ > \Bq\9 and

Ml = Σ Mil > Σ l-e*l = \B\.
1=1 1=1

In both cases, we find a contradiction.

LEMMA 3. If G is a tree of order n9 and if (A9B) is a bicoloring of its
vertices with \A\ = \B\ or \A\ = \B\ + 1, then there exists an alternating sequence
(al9bl9a29b29...) using once and only once every vertex of G.

Proof: (1) For n = 1 or « = 2, this is obvious.
(2) If the statement is true for n = 2/:, let us show that it is true for a tree

IO Claude Berge

G of order n = 2k+\. As \A\ = \B\ + l> \B\, there exists by Lemma 2 a
pendant vertex ak+1 e A. For Gx_[ak+i} there exists an alternating sequence
(al9bl9 ...,£*) using all its vertices, by the induction hypothesis, and
(al9bl9 ...,bk9ak+1) is the desired alternating sequence of G.

(3) If the statement is true for n = 2k+\, then it is true for n — 2k+ 2.
This is obvious from part (2) of the proof.

THEOREM 6. A stable set B is maximum, if and only if there is no maximal
alternating sequence of odd length.

Proof: (1) If such an alternating sequence σ existed, then B would not
be a maximum stable set, since B' = (B—σ) u (σ — B) is a stable set with a
greater cardinality.

(2) Let A be a maximum stable set, and let Bbe a stable set with \B\ < \A\.
Let us show the existence of a maximal alternating sequence of odd length
relative to 2?. Set B0 = B-A and A0 = A-B. Thus, \BQ\ < \A0\. In the sub
graph GAQKJBQ9 let Ax u 2?1?Λ2 u 2?2, -..,Ak u 2?fc be the different components,
where A{ c A0 and 2?f c B0 for / = 1,2, ...,&. We have

Σ141 = \B0\ < Moi = i Mil-
i= 1 /= 1

Thus, there exists an index, let us say / = 1, with |2?J < \AX\.
(3) If 12?!| +1 = \AX\9 a spanning tree of the subgraph GAiKjBi, which is

connected, admits (Al,B1) as a bicoloring. By Lemma 3, its vertices con
stitute a maximal odd alternating sequence σ, relative to Bx. This sequence σ
is also for G an alternating sequence relative to B. Also, σ is a maximal alter
nating sequence. If b e B — σ, we have either b e B—A = 2?0, and è is adjacent
to no at e σ, or b e B n A, and b is adjacent to no a{ e σ, since A is a stable set.

If |2?i| + l < l^xl, one can remove from the spanning tree of GAiuBl as
many pendant vertices in Al as necessary, to obtain | ^ i | +1 = Mil- This is
always possible by Lemma 2, and the theorem follows.

There is an interesting application of Theorem 6. Denote by OL(G) the
stability number of G = (X, E), that is, the maximum cardinality of a stable
set. G is said to be ^critical if for every edge e e E, the partial graph G — e,
obtained from G by deleting edge e, vérifies a (G — e) = a(G)+ 1. The structure
of a-critical graphs has been extensively studied in the literature. One of the
main results was obtained by Beineke et al. [3], who proved that in an a-
critical graph, through any two adjacent edges, there passes an odd cycle.
Andrasfai [1] proved that through a nonisolated edge of G there passes an
odd cycle without a chord. I proved [6] a generalization of these two results
by showing: in an a-critical graph, through two adjacent edges there passes an
odd elementary cycle without a chord. We shall give now a simple proof of
this result by using Theorem 6.

Alternating Chain Methods: A Survey 11

THEOREM 7. In an a-critical graph G, with a(G) = k, for any two adjacent
edges [a,b~] and [è,x], there exists an odd elementary cycle without a chord
that uses these two edges.

Proof: (1) If we remove edge [£, x] , we create a stable set Sbx of cardin
ality k+ 1 with b,x e Sbx. Let B = 5fcx— {b}. Then 5 is a maximum stable set.
We have a,b $ B and x e B. Also, b is linked with B by only one edge [£, *] .

(2) In the partial graph G—[a,b]9 the stable set B is not maximum. By
Theorem 6, there exists in G— _a, b~] a maximal alternating sequence
σ = (al,bl,a2,b2, ...,aq) with a^X—B and 64 e B for all /. In G — [a,ò],
the set Τ=(Β — σ)ν(σ — Β) is a maximum stable set. Therefore, a9beT.
Hence, a,bea — B. The subgraph of G —[a,U] induced by σ is connected,
and has (σ η 2?,σ — 5) as a bicoloring. Let μ be the shortest chain connecting
a and b. As a,be σ — Β9 this chain μ, together with the edge [tf,o], is in G
an odd elementary cycle without a chord. This cycle uses [a,b~\ and [6,x],
since b is linked to σ η 5 only by this edge.

From a computational viewpoint, the search for all alternating sequences
is more difficult to implement than the search for alternating chains, though
the principle is similar. To simplify the problem, one can use a subprocedure,
involving the algorithm described in Section 2 [4], that we shall discuss now.
Suppose that we have obtained a maximum matching E0, and that there
exists at least one unsaturated vertex.f

(1) If a vertex x is unsaturated, or if x can be reached only by an alternating
chain issuing from an unsaturated vertex and terminating in a heavy edge
incident to x, we shall say that x is a heavy vertex.

(2) If x can be reached only by an alternating chain issuing from an
unsaturated vertex and terminating in a light edge incident to x, we shall say
that x is a light vertex.

(3) If x can be reached by both an alternating chain terminating in a
light edge and an alternating chain terminating in a heavy edge, we shall say
that x is a mixed vertex.

(4) If x cannot be reached by an alternating chain issuing from an un
saturated vertex, we shall say that x is an inaccessible vertex.

The set H of all the heavy vertices, the set L of all the light vertices, the set M
of all the mixed vertices, and the set / of all the inaccessible vertices, verify
HKJLKJ MKJ I=X.

LEMMA 4. If H u L = X, then H is a maximum stable set of G. Also the
maximum stable set is unique.

t If there exists no unsaturated vertex, we shall add an additional vertex *0 that we link
by a light edge to a given vertex Xi of G. The procedure will give a stable set of G, to
which XL does not belong, and which is maximum under these assumptions.

12 Claude Berge

Proof: (1) Define a covering C as a set of vertices such that every edge
of G has at least one extremity in C. If E0 is a matching and C is a covering,
then we always have |is0| ̂ \C\. Therefore, if a given matching E0 and a given
covering C satisfy \E0\ = |C|, then C is necessarily a minimum covering, and
X— C is a maximum stable set.

(2) If / / u L = X, the set L is a covering, since two heavy vertices cannot
be adjacent, and every light vertex is the terminal of one heavy edge leading
into H. Thus, \L\ = \E0\, and H= X—L is a maximum stable set.

(3) Let us show the uniqueness of the maximum stable set that is, if h e //,
then every maximum stable set contains h. That is, if he H, then H— {h} is
a maximum stable set of the subgraph Gx-{h). As the subgraph Gx_{h) admits
L as a covering, we have only to show that L is a minimum covering. If h is
an unsaturated vertex of G, then EQ is a maximum matching of Gx_{h} with
\E0\ = \L\. Therefore, L is a minimum covering of Gx_h.

If h is a saturated vertex of G, it is incident to a heavy edge e = [/?, x], and
there exists in Gx-{h} an alternating chain between the unsaturated vertex x
and another unsaturated vertex. By Theorem 1, E0 — e is not a maximum
matching, and there exists in Gx_{h} a maximum matching El with \El\ =
\E0\. As \L\ = \E0\ = | £ \] , this shows L is a minimum covering of Gx_{/|}.

LEMMA 5. If ̂ is a connected component of the subgraph Gx induced by
the inaccessible vertices, then every vertex adjacent to Ix is a light vertex,
attached to 7\ by a light edge.

The proof is obvious.

LEMMA 6. If Ml is a connected component of the subgraph GM induced
by the mixed vertices, then every vertex adjacent to Mί is a light vertex. Also,
there is one and only one heavy edge going out from Ml.

This is the Petersen-Gallai Lemma. For a proof see Berge [7, Theorem 9,
Chapter 8].

THEOREM 8. Let Nfu ...,Mp be the p connected components of GM, let
/ l 5 / 2 , . . . , / , be the q connected components of Gn and let S(A) denote a
maximum stable set of GA for A Œ X. The set S=Hu [|Jf=1 S(A/f)] u
_\Jj=i S(Ij)] is a stable set of G, and if p ^ 1, it is a maximum stable set.

Proof: It is obvious that S is a stable set by Lemmas 4, 5, and 6.

(1) If p=0, remove all the light edges going out from the sets Ik. We
obtain a graph G, having S as a maximum stable set, by Lemmas 4 and 5. We
have

\S\ = a(G') ̂ «(G) > |S| .

Therefore, |S| = a(G), and S is a maximum stable set of G.

Alternating Chain Methods: A Survey 13

(2) If p = 1, we obtain a graph G" by contracting the unique component
M1 into a single vertex zl and by removing the sets Ik. It is obvious the E0

induces again a maximum matching, by Theorem 1, and G" has only heavy
and light vertices. As H" = H u { z j is the unique maximum stable set of G",
by Lemma 4, H is a maximum stable set of G£_Zl, and, equivalently, of the
graph G' obtained from G by removing Mx and the sets Ik. Again we see as
before that 5 is a maximum stable set of G.

For constructing the classes //, L, M, and / the procedure described in
Section 2 can be applied without modifications. Thus, Theorem 8 permits us
to simplify the maximum stable set problem if the number of connected
components of GM is 0 or 1. A simple backtracing procedure can permit us
to attack the other cases.

References

1. Andrâsfai, B., On critical graphs, in 'Théorie des graphes, Rome ICC" (P. Rosenstiehl,
ed.), p. 9. Dunod, Paris, 1967.

2. Balinski, M., On maximum matching, minimum covering and their connections,
J. Combinatorial Theory (in press).

3. Beineke, W., Harary, F., and Plummer, M. D., On the critical lines of a graph, Pacific
J. Math. 21, 205-212 (1967).

4. Berge, C , Two theorems in graph theory, Proc. Nat. Acad. Sci. U.S.A. 43, 842 (1957).
5. Berge, C , Sur le couplage maximum d'un graphe C. R. Acad Sci. Paris 247, 258-259

(1958).
6. Berge, C , Sur une propriété des graphes ^-stables critiques, in "Combinat. Structures"

(R. K. Guy, H. Hanani, N. Sauer, and J. Schonheim, eds.), p. 7-11. Gordon & Breach,
New York, 1970.

7. Berge, C , "Graphes et hypergraphes." Dunod, Paris, 1970.
8. Dantzig, G. B., Blattner, W. O., and Rao, M. R., All the shortest routes from a fixed

origin in a graph, in "Théorie des graphes, Rome ICC," pp. 85-92. Dunod, Paris, 1967.
9. Edmonds, J., Covers and packings in a family of sets, Bull. Amer. Math. Soc. 68,

494-499 (1962).
10. Edmonds, J., Paths, trees and flowers, Canad. J. Math. 17, 449-467 (1965).
11. Glover, F., "Shortest Alternating Paths in a Graph with Negative Edges but with No

Negative Alternating Cycles." University of Texas, 1969 (unpublished).
12. Johnson, E., "Programming in Networks and Graphs." Op. Res. Center, Berkeley, 1965.
13. Lawler, E. L., Covering problems, SIAM J. Appi Math. 14, No. 5, (1966).
14. Maghout, K., Sur la détermination des nombres de stabilité et du nombre chromatique

d'un graphe, C. R. Acad. Sci. Paris 248, 3522-3523 (1959).
15. Norman, R. Z., and Rabin, M. O., An algorithm for a minimum cover of a graph,

Proc. Amer. Math. Soc. 10, 315-319 (1959).

16. Ray-Chaudhuri, D. K. An algorithm for a minimum cover of an abstract complex,
Canad. J. Math. 15, 11-24 (1963).

17. Roy, B., "Algebra moderne et théorie des graphes," Vol. 2, Chapter 6, Section A,
pp. 2 19. Dunod, Paris, 1970.

18. Witzgall C , and Zahn, C. T., Modification of Edmonds' maximum matching algorithm,
/ . Res. Nat. Bur. Standards Sect. B 69, 91-98 (1965).

THE AVERAGE HEIGHT OF
PLANTED PLANE TREES

N. G. de Bruijn D. E. Knuth* S. 0. Rice

Technological University Stanford University Bell Telephone Laboratories, Inc.

Eindhoven, The Netherlands Stanford, California Murray Hill, New Jersey

A planted plane tree, sometimes called an ordered tree, is a rooted tree
which has been embedded in the plane so that the relative order of subtrees
at each branch is part of its structure. In this paper we shall say simply tree
instead of planted plane tree, following the custom of computer scientists.

The height of a tree is the number of nodes on a maximal simple path
starting at the root. For example, there are exactly five trees with five nodes
and height 4, namely

i ι M
t This research was supported in part by the National Science Foundation, under grant

number GJ-992, and the Office of Naval Research under grant number N-00014-67-A-0112-
0057 NR 044-402. Reproduction in whole or in part is permitted for any purpose of the
United States Government.

Λ Λ

A

15

16 N. G. de Bruijn, D. E. Knuth, S. O. Rice

0

1

2

3

4

Fig. 1. A tree as a random walk.

The height of a tree is of interest in computing because it represents the maxi
mum size of a stack used in algorithms that traverse the tree [3, pp. 317-318].
Our goal in this paper is to study the average height of a tree with n nodes,
assuming that all «-node trees are equally likely. The corresponding problem
for oriented, that is, rooted, unordered, trees has been solved by Rényi and
Szekeres [6]. Our principal results are stated in Eqs. (32) and (34).

Trees appear in many disguises, and in particular there is a natural corre
spondence between trees of height less than or equal to h and discrete random
walks in a straight line, with absorbing barriers at 0 and h + 1. If we wander
around a tree with n nodes, as shown by the dotted lines in Fig. 1, the vertical
component of successive positions describes a path of length In — 1 from 1 to
0. For example, the path in Fig. 1 is

1,2,3,2,1,2,3,2,3,4,3,4,3,4,3,2,1,2,3,2,3,2,1,0.

This is one way a gambler can lose $1 before winning $5. This construction,
suggested by Harris [2] in 1952, is clearly reversible.

The height of trees plays a similar role in the classical ballot problem. How
many ways are there to arrange n ballots for candidate A and n for candidate
B in such a way that the number of votes for A never lags behind the number
for B, as the ballots are counted, but A is never more than h votes ahead?
The answer is the number of trees with n+ 1 nodes and height less than or
equal to h + 1, again by the construction indicated in Fig. 1. The ballot sequence
corresponding to that tree is AABBAABAABABABBBAABABB.

We shall begin our study of the asymptotic properties of height by reviewing
some known results. Let Ann be the number of trees with n nodes and height
less than or equal to A, and let

(1) Ah{z) = YJAahz«

be the corresponding generating function. We obtain all trees with height less
than or equal to h + 1 by taking a root node and attaching zero or more subtrees
each of which has height less than or equal to h. Therefore,

(2) Ak+1(z) = z(l + Ah(z) + Ah(z)2 + Ak(zf +)

= z/(l-A00), A>0.

I
I
I

The Average Height of Planted Plane Trees 17

Clearly A0(z) = 0. This relation yields a simple recurrence for the numbers Anh9

(3) Anh+l = An-ih+iAih -f An^2th+l^2,h + " · + ^ Ι , Λ + Ι ^ Λ - Ι , Λ ?

n ^ 2, A ^ 0,

from which the first few values are easily calculated, as shown in Table I.

TABLE I

\ ^

h = 1
2
3
4
5
6

« = 1 2

0

3

0
1
2
2
2
2

4

0
1
4
5
5
5

5

0
1
8
13
14
14

6

0
1
16
34
41
42

7 8

0 0
1 1
32 64
89 233
122 365
131 417

Since no tree with n nodes can have a height greater than n, we have

[2n-2\ i
(4) A„h — Ann —

n-\ n
h> n,

which is the well-known formula for the total number of trees with n nodes
[3, p. 389].

Iteration of (2) yields a continued fraction representation of Ah(z). For
example,

(5) At(z) =

1--
1--

1-z

This suggests expressing the generating function as a quotient of polynomials

(6) Ak (z) = zph (z)lph + ! (z),

where

(7) p0{z) = 0, ptiz) = 1, ph+i(z) = ph(z) - zpi-^z).

The solution to this recurrence is

- (1 - 4z)'/A'1 / l - (1 - 4ζ(ι/2\"\
(8) A « _ (1 - * Γ . ((1 ± ί ! ^) ^ (ί ^ ! ^ ,

18 N. G. de Bruijn, D. E. Knuth, S. O. Rice

and the form of this solution suggests setting z = 1/(4 cos2 0). We obtain

(9) /?ft(4cos20)-1 = sin/tf/isinO^cos©)''-1),

^ (4 c o s 2 0) _ 1 = sinA0/(2cos0sin(A+l)0).

Incidentally it is easy to verify that/?Ä(-1) is the Fibonacci number Fh, and
that

(10) ph(z)= 2 lh~l~k)(-z)\ A>1.
0^k<h\ k]

This leads to another recurrence for the Anh.
Since ph(z)2 —ph+i(z)Ph-i(z) = zh~1^ there is a simple generating function

for the number of trees with n nodes and height exactly A,

(11) Ah(z) - Ah_x(z) = zh/ph+i(z)ph(z).

This formula was recently derived by Kreweras [4, p. 37].
Since ph is a polynomial of degree [(A — 1)/2J, the roots of ph{z) = 0 are

(4cos2O*7r//0)~\ for 1 <y<A/2. We obtain a partial fraction expansion of
the generating function

where

0Jh=jn/(h+l),

and

(13) a2m = -m, b2m = 0,

<*2m+i = - w (2 w + l) / 6 (m + l) , b2m+i = (m+1)"1 , m ^ 1.

This leads immediately to the explicit formula

(14) Anh = (h+\yx Σ 4Msin2(MA+l))cos2 n-2(MA+l)) , n > 2.

It is rather remarkable that this formula gives a constant value for fixed n
and all h ^ n. It is perhaps even more remarkable that Lagrange derived a
formula in 1775 which essentially includes this as a special case, see Lagrange
[5, p. 247]. Feller [1, p. 322] observes that the formula has been rediscovered
many times, although it appears in many texts on probability in connection
with the equivalent gambler's ruin problem. As a special case of (14) we have
the asymptotic formula

(15) Anh - (47(A+l))tan2(^(A+l))cos2n(^(A+l)), fixed A, n - oo.

The Average Height of Planted Plane Trees 19

Another interesting expression for Anh can be derived by applying complex
variable theory. We have

(16)

where

(17)

f(0+) dz
AKh = (2m)-1\ -^iAh(z)

= (27t /) -
1

u =

f(o+)jz ι_„*
—„(!+");—irr·
Zn /

1 - Μ
Λ + 1

1 - (l - 4 z) 1 / 2

l + (l - 4 z) 1 / 2 '

by (6) and (8). Since

(18) z = W/(l+W)2,

we have u « z when |z| <̂ 1. Hence, we may change variables in (16) to obtain

(19) Anh = (2πί)-1
(0+)</M 1-«*

In other words Λ„Α is the coefficient of w""1 in (1 - w) (l +w) 2"~ 2 (l - * /) /
(1 —1/ + 1) . Some simplification now occurs when we consider the number of
trees with height greater than h,

(20) Bfih — Ann — Anh

f(o+) du jf + i

= (2-r1j ^τθ-")2α+«)2η-2ΐ^Απ

(21) *„+,.,_, = T ((7 l) - 2 (
2« \ / 2«

+

It follows that

■kh) \n-\-khj

The average height of a tree with n nodes is Sn/A„„, where 5„ is the finite sum

(22) Sn= Σ Α (Λ » - Λ , » - ι)

= (2π/) '1
(0 +)

 i /« - ^ M*

4,(1-^(1+«)—2rS «"H

f(0+) i/w ^

= (2π/~
1
) - π (1-«)

2
(1+»)

2
''-

2
2^)«*·

file:///n-/-khj

20 N. G. de Bruijn, D. E. Knuth, S. O. Rice

As usual, d(k) denotes the number of positive divisors of k. Therefore,

(23) S,+ 1 = 2 </(*)((
2» \ I 2n\ I 2n

+ l-kj \n-kj \n-\-k

We shall now proceed to obtain an asymptotic series for the sum

(24) / » = 2 (("a_ J / (J I
 d<®' fixed a> n -* °°'

and this will lead to an asymptotic series for Sn.
Let x = (k — a)/n. By Stirling's approximation we have

- 1 (Χ 2 + * 4 + . . .) + 0 (* 2 Α Γ 3)) ,
6n

when — \ < x < -J-, and

In \ \l2ri
f = 0(exp(-«2*))

Αΐ + ύτ — À:/ / \n '

when / :^« 1 / 2 + ε + α, for all fixed ε > 0. Therefore the sum of all terms for
k^ η1/2+ε + α in (24) is negligible, being 0(n~m) for all m > 0, and we may
takejc = 0(fl-1/2+£)in(25).

We now turn to the asymptotic behavior of the function

(26) gb(n) = X kbd(k)exp(-k2/n), fixed b, n -> oo.

Again the terms for k ^ w1/2+£ are negligible, so we can use (25) to express/in
terms of g:

(27) fa(n) = g0(n) + —gi(n) - —g0(n) + ^ 2 g2(/?) - 71^4(«)
2Λ , λ a2

 ί λ 4a2 + l / N 1

« rt 2« on

2ö3 + ö _ 4Û 3 + 5Û , x a
2 EM + —z-r-gA") - ^gs(n) + O(n-2 + Eg0(n)).

n 3n 3n

In principle such an expansion could be carried out as far as we like. Hence,
the problem of obtaining an asymptotic expansion ïox fa{n) reduces to the
analogous problem for gb(n).

file:///n-kj
file:///n-/-k
file:///l2ri

The Average Height of Planted Plane Trees 21

The behavior of gb(n) can be derived by starting with the well-known formula

/•c+i'oo

(28) e~x = (2π/)_1 Τ(ζ)χ-Ζάζ, c> 0, x > 1,
Jc-ioo

obtained, for example, by Fourier inversion of T(c + 2nit). Then since
C0O2 = Z ^ i ^) / ^ w e f i n d

Pc + ioo

(29) gb(n) = Σ (2 π 0 _ 1 n*r(z)kb-2*d(k)dz
k>l Jc-ioo

f c+ioo

= (Ini)'1 nzT(z)C(2z-b)2dz,
Jc-ioo

where now c > ^(6+1). Let q be a fixed positive number. When Rc(s) ^ — q,
C(s) = 0(\s\q+l6) as s->co. Since nzT(z) gets small on vertical lines we can
shift the line of integration to the left as far as we please if we only take the
residues into account. There is a double pole at z = ^ (£+l) , and possibly
some simple poles at z = 0, — 1, —2,.... Let w = z — \(b+ 1), we have

nzT(z)C(2z-b)2 = n(b+i)/2T(i(b+l))(l + win« + 0{w2))

x (1 + wi//(Ub+1)) + 0(w2))((2wy2 + y/w + 0(1)),

where φ(ζ) = Γ'(ζ)/Γ(ζ), hence the residue at the double pole is

(30) « , /2(b+1)r(KZ>+ l))(±ln/i + W(i(b+l)) + y).

The residue at z = — fc is

(31) n-*(-l)*C(-2Â:-o)2/Â:! = «-*(-l)k52\+1>+1/(2Â:+è+l)2A:!

which is almost always zero when b is even. The sum of (30) and (31) for all
k ^ 0 gives an asymptotic series for gb(n). Hence, we have, for all m > 0,

g0(n) = i(7T/!)*ln/! + Gy-iln2)0u/i)tt + i + O ^ " ") ;

(32) g l(/i) = i«lnA2 + iyn + (y ^) - (TTTÖÖ)"" 1 + 0(AZ~2);

g2(/,) = (n/S)(nn)1/2\nn + a + ty-iln2)«(7™)1/2 + 0(/T m) ;

etc. These formulas have been verified by computer calculation. For example,
when/? =10,^0(«) = 3.96042andi^)1 / 2 ln« + (| 7 - i l n 2) ^) 1 / 2 + i =3.96041.

Returning to our original problem about trees, we have

(33) Sn+1/(n+l)An+Un+l = / 1 (/ I) - 2 / O (/ I) + / _ ! (/ !)

= (-2/n)g0(n) + (4/n2)g2(n) + 0 (J T % log/i)

by (4), (23), (24), and (27), and this equals ^ / i) " ^ - i « " 1 + 0(Ai"%log/i).We
have proved the following result.

22 N. G. de Bruijn, D. E. Knuth, S. O. Rice

THEOREM. The average height of a planted plane tree with n nodes, con
sidering all such trees to be equally likely, is

(34) (πη)ί/2 - \ + 0(>T1/2logrt).

The same method can be used to obtain as many further terms of the ex
pansion as desired. The factor log n in the error term turns out to be
unnecessary.

References1

1. Feller, W., "An Introduction to Probability Theory and its Applications," Vol. 1,2nd ed.
Wiley, New York, 1957.

2. Harris, T. E., First passage and recurrence distributions, Trans. Amer. Math. Soc. 73,
471-486 (1952).

3. Knuth, D. E., "The Art of Computer Programming," Vol. 1. Addison-Wesley, Reading,
Massachusetts, 1968.

4. Kreweras, G., Sur les éventails de segments, Cahiers du Bureau Universitaire de Recherche
Operationelle 15, 1-41 (1970).

5. Lagrange, J. L., Recherches sur les suites récurrentes, in "Oeuvres de Lagrange," Vol. 4,
pp. 149-251. Paris, 1869.

6. Rényi, A., and Szekeres, G., On the height of trees, Austral. J. Math. 7, 497-507 (1967).
7. Riordan, J., The Enumeration of Trees By Height and Diameter, IBM J. Res. Develop.

4, 473^78 (1960).
8. Riordan, J., Ballots and trees, J. Combinatorial Theory 6, 408-411 (1969).

t We wish to thank Prof. John Riordan for pointing out references [2] and [4].

H O W TO NUMBER A GRAPH*

Solomon W. Golomb

University of Southern California

University Park

Los Angeles, California

1. A Statement of the Problem 23
2. A Context for the Problem 24
3. A History of Subproblems 25
4. Necessary Conditions for Graceful Graphs 25
5. Classes of Graceful Graphs 29
6. Some General Questions 32
7. Euclidean Models and Complete Graphs 33
8. Numbered Graphs and Difference Sets 35
9. Summary of Unsolved Problems 36

10. Postscript 36

// is a Tree of Life to them that grasp it,
.. .and all its Paths are Peace.

Proverbs III
1. A Statement of the Problem

Let Γ be a graph, with n nodes and e edges. By the term graph, we under
stand a connected, undirected graph without loops or double connections.

t This research was supported in part by the United States Air Force under Grant
AFOSR-68-1555.

23

24 Solomon W . Golomb

I

^ / (|) N. Fig. 1. The graph K4, successfully numbered.

0 ^ — - © - - — ^ 4

We wish to associate n distinct nonnegative integers to the n nodes of Γ in
such a way that the e edges receive e distinct positive integers by the assignment
of |fl/ —ö/l to a given edge, where ai and a} are the numbers assigned to its
end points. Moreover, we wish to minimize the value of the largest integer
assigned to any node of Γ. We will call this minimized value G(V). The prob
lem of numbering a graph is to assign integers to the nodes so as to
achieve G(T).

In Fig. 1 we see the complete graph on four nodes, K4, with the nodes
numbered {0,1,4,6}, and the edges numbered {1,2,3,4,5,6}. Since the edge
numbers must be distinct positive integers, and K4 has six edges, this number
ing must be optimum and G(K4) = 6. Thus, we also have the general lower
bound G(V)^ e for all graphs Γ. The principal questions which arise in
the theory of numbering the nodes of graphs revolve around the relation
ship between G(V) and e, for example, identifying classes of graphs for which
G(T) = e and other classes for which G(T) > e and looking for bounds on
G{Y) — e. A graph for which G(T) = e will be called a graceful graph, and
the numbering which achieves G(T) = e, a graceful numbering.

2. A Context for the Problem

Think of the graph Γ as a communication network with n terminals and
e interconnections between terminals. We wish to assign a distinct identifying
number to each terminal, in such a way that each interconnection is then
uniquely identified by the absolute value of the difference between the numbers
assigned to its two end terminals. For economy, the largest number assigned
to any node is to be minimized. This is clearly the same problem as in the
preceding section.

Suppose we require that the minimum number assigned to any node be
at least a0. The resulting problem is trivially isomorphic to the problem in
Section 1, since all the node numbers may be increased by a constant amount
a0, with no effect whatever on the edge numbers \at — aj\. The chief advantage
of setting a0 = 0 is that the relation G(T) = e for graceful graphs then refers
to both the number of edges, the highest edge number, and the highest node
number.

How to Number a Graph 25

3. A History of Subproblems

Several years ago it was conjectured1" that every tree can have its n nodes
numbered from 1 to n in such a way that each of the n — 1 edges gets a distinct
number from 1 to n — 1 as the absolute difference of the numbers at its end
points. In our terminology, this conjecture asserts that every tree is a graceful
graph. This conjecture is still unproved in 1971, although it has been proved
for special types of trees called caterpillars, and for other assorted flora
and fauna.

In 1968, I generalized the tree problem to that of characterizing those
graphs Γ for which G{T) = e.\ presented some results at the January, 1969,
conference on graph theory and computing at the University of the West
Indies in Kingston, Jamaica. Those results, previously unpublished, constitute
a significant portion of the present article.

There is a classical combinatorial problem involving the notching of a
metal bar of length k at integer points in such a way that all the distances
between two notches, or between a notch and an end point, are distinct. If
there are « — 2 notches and two end points, then there are (£) lengths which
must be distinct. This problem is isomorphic to numbering the nodes of the
complete graph K„, and the smallest k for which the notch problem has a
so^tion is equal to Γ(Κη).

4. Necessary Conditions for Graceful Graphs

THEOREM 1. Let Γ be a graph with n nodes and e edges. A necessary
condition for Γ to be graceful is that it be possible to partition the nodes into
two sets S and Θ, such that the number of edges connecting nodes in ê with
nodes in Θ is exactly [_{e+1)/2].

Proof: If Γ is graceful, the n nodes can be partitioned into two sets having
respectively even ($) and odd (Θ) node numbers. The e edges end up numbered
from 1 to e, and [(e+l)/2] of these edge numbers are odd. However, an
odd-numbered edge must have one even end point and one odd end point.

DEFINITION. A successful partitioning of the nodes of Γ into sets ê and 0
with [(e+ l)/2] interconnecting edges is called a binary labeling of Γ.

Example: The complete graph Kn on n nodes has (5) = n(n— l)/2 edges.
If we assign m nodes to class S there will ben —m nodes in class Θ, and m(n — m)
even-odd interconnections. For K„, we have [0 + l)/2] = [{n1 — w + 2)/4],

t An unpublished but widely circulated conjecture, attributed to Gerhard Ringel.

26 Solomon W . Golomb

and Kn has a binary labeling if and only if there is a choice of m for which
m(n — m) = [(« 2 -« + 2)/4]. Such a choice exists for n = 2,3,4,6,9,11,16,...,
but fails to exist for n = 5,7,8,10,12,13,14,15,17,.... While this enables us to
prove that many graphs Kn are not graceful, a stronger result is given in
Theorem 4.

THEOREM 2. Suppose that integers, not necessarily distinct, are assigned
to the nodes of a graph Γ, and that each edge of Γ is given an edge number
equal to the absolute difference of the node numbers at its end points. Then
the sum of the edge numbers around any circuit of Γ is even.

Proof: Let the consecutive node numbers around a circuit be ax, a2,..., ar.
Then the consecutive edge numbers are

\<*\-<*ι\> |α2 —α3|,..., |tf r-i-tfr|, k - f l i l ,

and their sum satisfies

r r

Σ k-* i+ i l = Σ (ai~ai+i) = ° m o d 2

i = l / = 1

as asserted.

THEOREM 3. Let Γ be an Eulerian graph, that is, with an even number of
edges at each node, with e edges. A necessary condition for Γ to be graceful is
that [(e+ l)/2] be even. That is, if e = 1 mod4, or e = 2mod4, then Γ cannot
be graceful. In fact, Γ cannot be binary labeled.

Proof: An Eulerian graph may be regarded as a union of edge-disjoint
circuits, or in fact as one big circuit involving each edge once. By Theorem 2,
the sum of the edge numbers around each circuit must be even, and hence the
sum of all the edge numbers must be even. For a graceful graph, there will be
[(e+ l)/2] odd edges. Thus, if Γ is Eulerian and [_(e+ l)/2] is an odd number,
then Γ cannot be graceful. In fact, in this case no labeling of the nodes of Γ
as even and odd can lead to [(e+l)/2] odd edges. Whence, Γ cannot be
binary labeled.

Examples: (1) There are three graphs having 5 nodes which cannot be
binary labeled, by Theorem 3. It happens that these are the only nongraceful
graphs with fewer than 6 nodes. In Fig. 2, we see these three graphs, each
numbered so as to verify GÇT) = e+ 1.

(2) There are also non-Eulerian graphs which cannot be binary labeled,
such as K8, Κί0, Κί2, and AT14 (see the example following Theorem 1).

(3) There are Eulerian graphs which cannot be binary labeled even though
[(e + l)/2] is even, for example K17. The graph Kn is Eulerian if and only if
n > 1 is odd. In the case of K17, there are e = (^7) = 136 edges, and [(e+ l)/2]

How to Number a Graph 27

Fig. 2. The three nongraceful graphs with 5 nodes, numbered to illustrate G (f) = e + 1 .

= 68 is even. Since there is no choice of m, 0 ^ m < 17, for which m (17 — m)
= 68, we see that Kl7 cannot be binary labeled.

(4) There are graphs which are neither Eulerian nor complete which
cannot be binary labeled. For example, if one edge is removed from Kl0,
the resulting graph H is neither Eulerian nor complete. There are (^0)— 1 = 44
edges in //, and _(e+ l)/2] = 22. If we label m nodes in Has odd and the other
10 —m as even, the number of odd edges will be either m (10 — m) or
m(10 — m) — 1, depending on whether the deleted edge of Kl0 would be even
or odd. But there is no choice of w , 0 ^ r a ^ 10, for which either m (10 — m) = 22
or m(10-m) = 23.

THEOREM 4. If n > 4, the complete graph Kn cannot be graceful.

Proof: For n > 4, the graph Kn has e = (n
2) ^ 10 edges. If Kn were graceful,

we could assign a subset of the numbers {0, l,2,...,e} to the nodes in such a
way that the edges receive each of the numbers {1,2,..., e). We shall show that
the assumption that this is possible leads to a contradiction.

In order for Kn to have an edge numbered e, both 0 and e must be node
numbers. For there to be an edge numbered e—\, either 1 or e— 1 must also
be a node number. In any graceful graph Γ with e edges, the replacement of
every node number at by e — cii leaves all edge numbers unchanged, and is the
equivalent inverse node numbering. Hence, we may pick the node number 1
for Kn, instead of e— 1, with no loss of generality.

Next, to obtain an edge numbered e — 2, we must adjoin the node number
e — 2. If we adjoined e— 1 to get e — 2 as the difference of e— 1 and 1, we would
have two edges numbered 1, namely, between nodes 0 and 1, and between
nodes e— 1 and e. If we adjoined 2 to get e — 2 as the difference of e and 2, we
would again have two edges numbered 1, namely, between nodes 0 and 1,
and between nodes 1 and 2.

With nodes numbered 0, 1, e — 2, and e, we have edges numbered 1, 2, e — 3,
e — 2, e—l, and e. To get an edge numbered e — 4, we must adjoin the node
number 4. All other choices are quickly ruled out, as above.

With nodes numbered 0, 1, 4, e — 2, and e, we have edge numbers 1, 2, 3, 4,
e — 6, e — 4, e — 3, e — 2, e—\, and e. Note that for K4, with e = 6, this gives us
the numbering of K4 shown in Fig. 1. There is now no way to obtain an edge

28 Solomon W . Golomb

numbered e — 5, because each of the ways to obtain e — 5 as a difference of two
numbers contains at least one impossible node number. The reader may
quickly verify that the following circled numbers are not possible choices as
node numbers:

e, ®

Θ- "
e-29 (3)

θ· '
Q, o.

This contradicts the assumption that Kn is graceful for all cases in which
e — 5 > 4, which corresponds to n ^ 5.

Remarks: (1) If a metal bar of length 6 is notched at the points 1 and 4,
then each of the lengths 1,2,3,4,5,6 can be obtained in one and only one way
as the distance between two notches, including end points as notches. It is a
classical combinatorial result, equivalent to Theorem 4, that no bar of length
(2) for n > 4 can be similarly notched.

(2) If we require all distances between notches to be distinct, and ask for
the shortest bar with n notches, still counting end points as notches, we
have the problem of determining G(Kn). In Fig. 3, we see the optimum

Fig. 3. Numberings of the graphs Kn which achieve C(Kn) for 2 < n ̂ 6.

How to Number a Graph 29

Fig. 4. Numbering of complete bipartite graphs.

numberings for K2,K39K4,K5, and K6. Note that G(Kn) = (n
2) for n = 2,3,4,

while GCK5) = (!)+1 and G(K6) = (6
2) + 2. It follows from the proof of

Theorem 4 that there is no node numbering of Kn, n > 4, for which all edge
numbers are distinct and for which the edge numbers g, g—l, g — 2, g — 3,
g — 4, g — 5 all occur, where g is the largest node number used. In the number
ings shown for both K5 and K6 in Fig. 3, the edge number # — 5 fails to occur.

(3) Theorem 4 can be extended to show that graphs which are nearly
complete cannot be graceful. That is, if a graph on n nodes has more than
(n

2) — a(«) edges, it does not have a graceful numbering, where <x(n) appears to
grow rapidly in n. It would be interesting to determine the function oc(n)
precisely.

5. Classes of Graceful Graphs

The complete bipartite graph Kab is the graph with n = a + b nodes and
e = ab edges, obtained by connecting each of a nodes with each of b nodes in
all possible ways. For this class of graphs we have the following result.

THEOREM 5. For all positive integers a and b9 the complete bipartite graph
Katb is graceful.

Proof: It suffices to exhibit a numbering. Consider the two sets of nodes,
A and B, containing a and b elements, respectively. Assign the nodes in set A
the numbers 0,1,2,...,a— 1, and assign the nodes in set B the numbers
a,2a,3a,...,ba. In this way, every integer from 1 to ab has a unique repre
sentation as a difference between a number in B and a number in A. Examples
of this numbering are shown in Fig. 4.

30 Solomon W . Golomb

■ < E ^ ,

,—<α>—^—©—ο ° · ^ - — & ■

'ο^^β

Fig. 5. The graceful graphs with n ^ 5 modes.

How to Number a Graph 31

Fig. 6. Graphs of the five Platonic solids. Are they all graceful?

u o

p5 3 · ' 7

Fig. 7. Other examples of graceful graphs.

Note: Since K3 3 and K5 are the two irreducible examples of nonplanar
graphs, and since K3 3 is graceful while K5 is not, we may conclude that
planarity is unnecessary and insufficient for gracefulness.

As previously mentioned, all graphs with n < 5 nodes are graceful except
for the three graphs shown in Fig. 2. This is verified by the numberings given
in Fig. 5. Among other graphs which have been shown to be graceful are the
graphs of three of the five Platonic solids (see Fig. 6), the 10-node Petersen
graph, and a great many miscellaneous examples (see Fig. 7).

32 Solomon W . Golomb

6. Some General Questions

Although numerous examples of infinite families of graceful graphs are
known (see Theorem 5 and Fig. 8a), a general necessary and sufficient con
dition for gracefulness has not been found. In particular, the 7-node graph in
Fig. 8b does not have a graceful numbering, although it is not covered by any
of the theorems mentioned thus far.

> 1> "
9

(a)

Fig. 8.

(a) Another infinite family of grace

ful graphs.

(b) An isolated example of an un

graceful graph.
(b)

A particularly interesting unsolved problem is to determine, asymptotically,
as «->oo, the percentage of graphs on n nodes which are graceful. At the
present time, it has not been shown that this limit exists, nor, if it does, that any
value on [0,1] is excluded. It is likewise possible to consider the percentage
of graphs with e edges which are graceful. It is reasonable to conjecture that
the limit of this percentage, as e -> oo, is the same as the corresponding limit
taken nodewise.

If graceful graphs could be characterized, the question of whether all trees
are graceful graphs would be settled. In the absence of such a result, it is
interesting to note the following theorem (first proved by A. Lempel).

THEOREM 6. Let T be a tree with n nodes and e = n—l edges. Then there
exists a binary labeling of T for which [n/2] of the nodes are odd (set Θ) and
[(«+1)/2] of the nodes are even (set $).

Proof: We may observe from Fig. 5 that this is at least true for all trees
with 5 or fewer nodes. To complete the proof by induction, suppose that T0 is
a tree which does not satisfy the theorem, and for which the number of nodes
n0 > 5 is a minimum. Such a tree has at least one of the following two features :
either a pair of terminal nodes joined to the same preterminal node (Case A),
or a terminal node joined to a preterminal node which connects to only one

M

How to Number a Graph 33

other node (case B). This is proved by taking a maximum-length path through
the tree, from one terminal point X to another terminal point Y, and looking
at the preterminal point Z to which Y connects. By maximality of the path
from X to Y, the node Z connects only (1) to a node leading back toward X,
(2) directly to F, and (3) possibly directly to other terminal nodes. These two
cases are illustrated in Fig. 9. At least one of these two cases occurs in every
tree with n ^ 3 nodes.

CASE A CASE B

Fig. 9

In Case A, we consider the tree T0' with n0 — 2 nodes, from which Y and
W and the edges connecting them to Z have been dropped. By the inductive
hypothesis, T0' can be labeled satisfying all conditions of the theorem. We then
adjoin Y and W with opposite parities to one another, to complete a valid
labeling of T0.

In Case B, we consider the tree T0" with n0 — 2 nodes, from which Fand Z
and the edges connecting Y to Z and Z to some interior point P, have been
dropped. We label T0" by the inductive hypothesis, and suppose that P has
been assigned a parity p, even or odd. We then assign parity p to Z, and the
complementary parity p to Y9 to complete a satisfactory binary labeling
o f r 0 .

7. Euclidean Models and Complete Graphs

DEFINITION. By the Euclidean model of a numbered graph, we mean the
result of placing the numbered nodes on the corresponding positions along
the real axis and connecting them as in the original graph.

Examples of such Euclidean models are shown in Fig. 10. The Euclidean
model is the same basic idea as the notched metal bar previously mentioned.
The Euclidean model of a graceful graph Γ with e edges consists of e line
segments, of respective lengths 1 through e, and joined at end points to be
isomorphic to Γ. This viewpoint may facilitate the computation of a
significant upper bound to the number of graceful graphs.

The Euclidean model is frequently a convenient tool in visualizing or
simplifying problems involving numbering of graphs. We shall consider

34 Solomon W . Golomb

Â
Fig. 10. Some Euclidean models of graphs.

specifically the case of assigning numbers to the nodes of the complete graph
Kn so as to achieve G(Kn). We note that the numbering assigned to a com
plete graph is completely specified by the consecutive distances along the real
axis in the Euclidean model. Thus, we see in Fig. 10 that the numbering for
K3 is specified by the sequence of lengths 1,2; and the numbering for K4 by
1,3,2. The best sequences known for Kn, 2 ^n < 10, are shown in Fig. 11.

n

2

3
4

5

6
7
8
9

10

(2)
1

3

6
10

15

21
28
36

45

GOLOMB'S TRIANGLE

1 2

1 3 2
1 3 5 2

1 3 6 5 2
1 3 6 8 5 2
1 3 6 II 8 5 2
1 3 6 12 II 8 5 2
1 3 6 12 16 II 8 5 2

G(Kn)?

1

3
6
II

17

25
36
48
64

Fig. 11. Best known numberings
for the complete graphs Kn.

The semiempirical numerical triangle which arises in this context has many
remarkable and mysterious properties. The test for validity of a row is to
consider all possible sums of consecutive terms, and verify that the (n

2) numbers
which result are all distinct. The verifications for n = 4, n = 6, and n = 9 are
shown in Fig. 12. The bottom number is the sum of the entire row, and is thus
the conjectured value for G(Kn). Every partial sum is the number assigned to
some edge of the complete graph. Representing Kn as a regular n-gon with all
diagonals drawn in, the perimeter edges receive the consecutive numbers of
the top row of Fig. 12, which is simply the row of Fig. 11, with the remaining
outside edge receiving the number identified as G(Kn)l, the sum of the entries
in this row.

How to Number a Graph 35

1 3 2 1 3 6 5 2 I 3 6 I 2 I I 8 5 2

4 5 4 9 II 7 4 9 18 23 19 13 7

6 10 14 13 10 21 29 31 24 15

15 16 22 32 37 36 26

17 33 4 0 42 38

41 45 44

4 6 47

4 8

Fig. 12. Verification of the numberings for n = 4, 6, and 9.

The following problems all remain unsolved:

(1) specify the precise rules for the formation of Golomb's triangle;
(2) prove or disprove that the corresponding numbering of Kn is optimal;
(3) determine G(Kn), either precisely or between suitable bounds.

It is easy to produce examples of the unfortunate phenomenon that a sub
graph of a graceful graph need not be graceful. For example, the ungraceful
regular pentagon is a subgraph of several of the graceful graphs in Fig. 5.
More convenient is Theorem 7.

THEOREM 7. If Γ is any graph, and if H is a subgraph of Γ, then
G(H) < G(T).

Proof: We need never do worse than assign the same node numbers to H
that were used in Γ.

From this we have the immediate corollary, Theorem 8.

THEOREM 8. If Γ is any graph with n nodes, then G(T) < G(Kn). This
result adds further importance to the study of G(Kn), which is thus the least
upper bound on G for all graphs on n nodes.

8. Numbered Graphs and Difference Sets

The numberings previously exhibited (see Fig. 5) for K3 and Κ4 can be
interpreted as the constructions for the finite projective planes with v = 7 and
v= 13, respectively. Thus, for K3, the node numbers 0,1,3 have as signed
differences the numbers —3, —2, — 1,1,2,3, while for AT4, the node numbers
0,1,4,6 have as (signed) differences the numbers — 6, — 5, — 4, — 3, — 2, — 1,
1,2,3,4,5,6.

The complete graph Kn has n nodes and e = (n
2) edges. If we set v = 2e+1 =

n2 — n+l, k = n, and λ=1, then the corresponding difference set with

36 Solomon W. Golomb

parameters (v9 k, λ) may be visualized as an assignment of n distinct integers
to the nodes of Kn in such a way that the set of all n(n-1) signed differences
represent all the nonzero residue classes modulo v.

This relationship suggests several directions for further investigation. For
example, the class of graphs which are graceful modulo m, in particular when
w = 2e+l, seems worthy of study, and is clearly larger than the class of
graceful graphs previously treated, namely, the modulo 0 case. Another
possibility is that new kinds of finite geometries may be suggested by graph-
numbering problems, in analogy with the connection between finite planes
and the numbering of complete graphs.

9. Summary of Unsolved Problems

1. Characterize the class of graceful graphs. In particular, are all trees
graceful?

2. Determine G(Kn) for all n.

3. Determine the function a(«) of Section 4.

4. Determine the asymptotic percentage of graphs on n nodes, and/or of
graphs on e edges, which are graceful.

5. Investigate the numerical triangle (Fig. 11).

6. G(T) is defined as the highest node number which must be used in
numbering the graph Γ. Prove or disprove, that for every graph Γ, there is an
edge numbered GÇT).

10. Postscript

The following unpublished asymptotic results have recently been obtained
by P. Erdös :

1. G(Kn)~n2.

2. a(n)~cn2, where probably c = \.

3. 0% of all graphs are graceful.

Moreover, the numerical triangle (Fig. 11) has been superseded for all rows
beyond n = 7. The revised triangle exhibits no discernable regularity.

How to Number a Graph 37

Acknowledgments

Helpful suggestions were received from several colleagues and from members of the
various audiences to whom I have presented portions of this material. I wish specifically
to thank F. Harary, A. Lempel, L. Welch, and especially R. C. Read for suggestions, help,
and encouragement.

EVOLUTION OF THE
PATH NUMBER OF A GRAPH:
COVERING AND PACKING IN GRAPHS, IV

Frank Harary

Allen J. Schwenk

Research Center for Group Dynamics

Institute for Social Research

The University of Michigan

Ann Arbor, Michigan

1. History 39
2. Results on the Path Number 40
3. The Unrestricted Path Number 42
4. Unsolved Problems 44

References 45

1. History

The development of the path number of a graph or digraph was a direct
result of our attending the FILE 68 conference in November 1968, in
Helsingor. There we met David Hsiao and held extensive conversations which

t This research was supported in part by a grant to the Research Center for Group Dy
namics of the University of Michigan from the NIH Biomedicai Sciences Division.

39

40 Frank Harary and Allen J. Schwenk

led to our formal system [3] for information retrieval from files, in terms of
directed graphs (see Harary et al. [4]). In this context, the points of a digraph
D stand for records in a file structure and there is an arc (directed line) from u
to v whenever the record u points to the address of record v. It is then natural
to ask for the smallest number of record addresses needed to trace through
the entire file structure, that is, all the arcs of D. In terms of (ordinary, un
directed, Michigan) graphs (7, the path number of G, π((7), is the smallest
number of line-disjoint paths which cover all of G. Not surprisingly, we shall
follow the graph theoretic notation and terminology of the book [1].

When Ralph Stanton heard the talk in Kingston, Jamaica, on which this
article is based, he enjoyed the concept of the path number of a graph sufficiently
that in collaboration with Cowan and James, he calculated the path number
for certain classes of graphs including trees, cubic graphs, complete graphs,
and complete bipartite graphs. These results, delivered at a conference in
Louisiana [5], are summarized below, and alternate shorter proofs will
be offered.

The concepts of packing and covering were explored in a lecture [2] given
in New York City, as a generalization of path number, arboricity, and several
other graphical invariants. This approach suggested the definition of the
"linear arboricity" of a graph, which has an interpretation in file structures.

2. Results on the Path Number

We now present the principal results of Stanton, Cowan, and James. The
proof of Theorem 1 is both shorter and simpler than theirs in [5]. Let p0 be
the number of points of odd degree in a graph G.

THEOREM 1. The path number of a tree T is given by π(Τ) =ρ0β>

Proof. Since every point of odd degree must be the end point of at least
one path, we immediately see that π(Τ)^ρ0/2. We obtain the opposite
inequality by induction on p0. Form a forest 7" by deleting the lines of the
path joining any two end points of T. If no lines remain, we are finished.
Otherwise, T' has/?0 — 2 odd points. Thus, by induction, π(Τ') = (ρ0 — 2)/2
and consequently π(Τ) =ρ0β.

Let m = m (G) =q—p+l be the cycle rank of a connected graph G, and
l e t /= / (G) be the number of blocks which are not bridges.

THEOREM 2. If G is a connected graph with no end points and G is not a
cycle, then p0/2 ^ π ^ m +/— 1.

Evolution of the Path Number of a Graph 41

Sketch of Proof. The lower bound was already obtained in the proof of
Theorem 1. The upper bound is proved by induction o n / a n d hence is estab
lished when/(G) = 1. Let Tbe a spanning tree of G. Then the number of lines
in G — r i s m (G). Taking these as paths of length one in G, it can be demon
strated that sufficiently many of these can be extended to cover the lines of T,
completing the proof for/(G) = 1.

For the inductive step, the idea of the proof is to remove an endblock B
and the path in G joining a point of B with a point of degree at least 3 (such a
path is called a "tendril" by Stanton et al. [5]).

THEOREM 3. If G is cubic, then n(G) =p/2.

Sketch of Proof Since every point of G has degree 3, we see by Theorem 2
that n(G) ^ρβ. The equality is attained when p = 4, because then G = ΑΓ4,
which is the union of two spanning paths. The result now is obtained for all/?
by induction, the basic approach being the deletion of a line followed by the
suppression of the resulting two points of degree 2. The altered graph G' is
cubic and has p — 2 points, so by induction, n{G') = (p — 2)/2. Now using the
deleted line as an additional path, we have n(G) =p/2. This simple-minded
argument, however, must be presented more carefully to be rigorous, since
the deletion-suppression operation can create loops and multiple lines.

The brace symbol {x} for a real number x is related to the maximum integer
function [x~] by {x} = — [— x~\. The proof of the next theorem is also neater
than that of Stanton et al. [5].

THEOREM 4. The path number of the complete graph is given by n{Kp) =

{pß}.

Proof Since each path can cover at most p— 1 lines, we must have
π(Κρ) ^ (Ρτ)Ι(ρ— 1) — ρβ> Since the path number is an integer, we strengthen
this to read n{Kp) ^ {pß}. For even/?, Beineke [see 1, p. 91] constructed pß
spanning paths covering Kp. For odd p = 2n+1, Kp is known [1, p. 89] to
be the sum of n spanning cycles of the form Ci = wvivi+1'-vi_n+lvi+nw9

where the subscripts are taken modulo 2n. From these cycles, we can construct
a family of paths P{ = Ci — vt vi+ x for 1 ^ / ^ n and take P0 = vi v2 v3 ··· vn+ x

to obtain n+\ paths covering AT2n+1, which completes the proof. The con
struction works because it is possible to omit one line from each cycle in such
a way that the omitted lines induce the last path PQ.

According to Stanton et al. [5], the proof of results giving the path number
of any complete bipartite graph Kmn goes through twelve lemmas. Our main
new contribution here is to state the result in recognizable closed form, rather
than merely say, "The pattern is apparent."

42 Frank Harary and Allen J. Schwenk

THEOREM 5. Let m ^ n and consider the product mn. Then

(m + n

«(*„.„) =
mn

for mn odd

for mn even,
(In — ô(m,n)

where ô(m9n) is the conventional Kronecker delta.

Sketch of Proof. In the case that mn is odd, (m + n)/2 = p0/2 ^ n(Kmfn).
In the even case, 2n — b(m,n) is the length of a longest path in Kmn. Hence,
since there are mn lines to be covered, we may conclude that

n{Km>n) >
2n — ô(m,n)

In both cases, equality is attained by a brutal construction, which we shall
omit.

3. The Unrestricted Path Number

An alternative path-covering invariant of a graph can be defined as the
minimum number of paths, unrestricted in that they are not necessarily
line disjoint, needed to cover the lines of G. We proceed to relate this modified
path number n*(G) to the original path number.

THEOREM 6. The path numbers π and π* satisfy the inequalities, π* (G) ^
n(G) ίζ 2n*(G)— 1 +m(G), and the bounds are the best possible.

Proof The first inequality is trivial because any line-disjoint covering is
also one of the candidates for a minimal nondisjoint covering.

We prove the second inequality by constructing a line-disjoint covering, the
size of which does not exceed that given by the formula. We first describe the
idea of the proof. Start with two paths in a nondisjoint path covering of G,
and alter it to obtain a line-disjoint covering. We can take the first of these
two paths as it is, but the second may overlap the first from time to time.
Hence, we need to remove from the second path all the lines in their inter
section, thus forming additional line-disjoint paths. This procedure is formal
ized in the following argument.

Let PUP2,...,P„ with n = n*(G) be a covering of G by paths. Define Gr to
be the graph the point set of which is V(G) and the line set of which is X(Gr) =
\Jr

i= 1 X(Pi). We let Q1 j = Px be the first path in our line-disjoint cover, and
let Q2i, (?22>···> £?2*2 b e the k2 subpaths of P2 not already in G .̂ In general,

Evolution of the Path N u m b e r of a Graph 43

örii Qrii···> Qrkr
 a r e the kr subpaths of Pr not already in Gr.l. Evidently, the

union of these Qu covers G with line-disjoint paths, so we need only count the
number of Qf/s to get the desired upper bound. In fact, for each r we find
n(Gr) < | {g i < / : /< r} |<2 r - l+ /w(G r) . The result is obtained inductively,
for in passing from Gr^x to Gr we add kr elements to the set of Qi/s. But
m(Gr) exceeds m(Gr_ t) by at least kr — 2, and 2r exceeds 2(r— 1) by 2, so the
right-hand side has also increased by kr. For r = n, this yields n(G)^
\{Qij:i<n}\^2n-\+m(G). But recalling that n = n*(G), we see that
n(G) ^ 2n*(G)- \+m(G)9 completing the proof.

The complete graphs Kp and the stars Kx n are simple examples of graphs
attaining the lower bound n*(G) = n(G). The upper bound is attained for
the following two infinite families of graphs.

The first family is given by G, as illustrated in Fig. 1 for / = 4. Here G, has
4/4-6 points and 5/+ 5 lines. Evidently n{G^ = 3 + / while π*(Gf) = 2 for all /.
Since m(Gi) = /, we note that π ^) = 2n*(GÙ~ 1 +m(Gt) as claimed.

The second family consists of the standard 2-branching trees T{ illustrated
in Fig. 2. It is easy to see that π (rf) = 2l* - 1 while π* (Γ;) = ? ~l. Thus, π (Γ4) =
2π*(Γ ί) -1 , as desired.

Let e be the number of end points of a tree. We may now determine π*
for trees.

THEOREM 7. The nondisjoint path number of a tree is given by π*(Γ) =
{e/2}.

Proof. Since each path in a minimal collection can cover at most two
end lines, we immediately have π*(Τ)°^ {e/2}. We shall now show that
equality is attained. Let vi9v2,...,ve be the end points of T, and letP^· denote
the unique path joining vt and Vj. Consider a collection SP consisting of the

Fig. 1. A representative of an infinite family of graphs attaining the upper bound in

Theorem 6.

Fig. 2. Trees that apply to Theorem 6.

44 Frank Harary and Allen J. Schwenk

paths Pkt [e / 2] + k for k = 1,2,..., {e/2}. Suppose T has a line * that is not covered
by &. Since all the end lines of T are covered, x is not an end line, and so
T—x = T1 u Γ2, where neither component Ti is trivial. Consequently, there
exist distinct endpoints vi9vj9vr9vs such that Pitj c Ti and Pr,s<^T2 and
both these paths belong to Φ. Remove these two paths from 9 and replace
them by Pir and PJS. The altered cover &' has the same number of paths as
& and covers every line previously covered by 0>9 but in addition, line x is
covered. Thus, if we repeat this procedure, in at most p — 1 iterations we will
obtain a collection of {e/2} paths covering T.

COROLLARY. For a tree T, π*(Γ) = π(Τ) if and only if T has at most one
odd point which is not an end point.

Proof. In the light of Theorems 1 and 7, this equivalence is obvious since
{e/2} =Po/2 if and only if T has at most one odd point that is not an end point.

4. Unsolved Problems

1. Expressions for n(G) and 7r*(G) are not known for graphs other than
trees. It is known that n(G) = n*(G) for those trees specified in the corollary,
for all complete graphs Kp9 and for those complete bigraphs Kmn for which
the product mn is even. However, it appears to be difficult to characterize the
graphs for which n(G) = n*(G).

2. The arboricity of a graph G is the minimum number of line-disjoint
spanning subforests which cover G (see [1, p. 90]). Equivalently, it is the
minimum number of spanning subtrees (not necessarily line-disjoint) which
cover G. We have seen that for complete graphs Kp, the arboricity and the
path number are equal. For which graphs does this hold?

3. As defined in [2] the linear arboricity of a graph G is the smallest
number of line-disjoint linear subforests (in which every component is a
path) needed to cover G. Denoting as usual the arboricity by capital upsilon
T, we write T for the linear arboricity of G. It is easy to see that for any graph,
Y ^ T ^ π* ^ n. Thus, the preceding question asks when all four of these
invariants are equal. The first question asked when π = π*. Hence, it remains
to ask for which graphs is

(a) T = π*? (b) Y = π*? (c) Ϋ = π? (d) Y = T?

The smallest tree for which these four values are distinct has 8 points and
is obtained from the 5-point path P5 by adding an end line at each of the
three nonend points. For this tree T, the values are 1, 2, 3, and 4.

Evolution of the Path Number of a Graph 45

4. Still another covering invariant is the tree number of a graph obtained
when the subgraphs are subtrees. We denote by x(G) the minimum number
of line-disjoint subtrees that cover G. Similarly, let τ* be the corresponding
number of subtrees, not necessarily line-disjoint, needed to cover G. Obviously
Y = τ* <ζ τ ^ π, so that one can ask for the class of graphs satisfying additional
equalities.

5. We have discussed five different covering invariants of a graph :

(a) π = path number, disjoint;
(b) π* = path number, unrestricted;
(c) Y = arboricity ;
(d) T = linear arboricity;
(e) τ = tree number, disjoint.

To the best of our knowledge, there do not as yet exist effective and convenient
computer algorithms for determining the values of these five invariants for a
given graph.

References

1. Harary, F., "Graph Theory." Addison-Wesley, Reading, Massachusetts, 1969.
2. Harary, F., Covering and packing in graphs, I. Ann. N. Y. Acad. Sci. 175,198-205 (1970).
3. Harary, F., and Hsiao, D., A formal system for information retrieval from files. Comm.

ACM 13, 67-73 (1970).
4. Harary, F., Norman, R., and Cartwright, D., "Structural Models: An Introduction to

the Theory of Directed Graphs." Wiley, New York, 1965.
5. Stanton, R., Cowan, D. D., and James, L. O., Some results on path numbers, Proc.

Louisiana Conf. Combinatorics, Graph Theory and Computing, Baton Rouge, 1970,112-135.

THE PRODUCTION OF GRAPHS BY COMPUTER

ß. R. Heap

Division of Numerical Analysis and Computing

National Physical Laboratory

Teddington, Middlesex

England

1. Introduction 47
2. Definitions and Terminology 49
3. Problems 50
4. Representation and Identification of Graphs in a Computer 50
5. Production of Simple Graphs 54
6. Production of Star Topologies 55
7. Production of Stars Having a Given Topology 58

References 62

1. Introduction

Over the last few years a number of computer programs have been written
at the National Physical Laboratory for the production of lists of graphs and
for the enumeration of the number of different ways these graphs can be
placed on crystal lattices (the lattice constants of the graphs). In this article
we shall discuss a number of problems associated with the first of these two
topics, namely the production of lists of graphs by computer. The actual

47

48 B. R. Heap

enumeration of the lattice constants is performed by means of sophisticated
programs produced by J. L. Martin (unpublished), these being extensions of
his previous work on the exact enumeration of walks on crystal lattices [12].
This research work formed part of a now completed joint project of the
National Physical Laboratory and King's College, University of London,
for the systematic enumeration of lattice constants.

Lattice constants are of considerable use in the calculation of exact series
expansions for the physical properties of interacting systems and sophisticated
extrapolation techniques have been developed for the prediction of the critical
properties of such expansions. In many cases, the coefficients in the series
expansions are equivalent to summations with appropriate weights over a
restricted class of undirected graphs known as stars [17]. These graphs also
occur widely in other physical problems, notably the Mayer theory of con
densation [18]. It was mainly with a view to the production of all star graphs
having specified numbers of points and edges that the work described in this
article was carried out, though the possession of a full set of seven-point
graphs stored in a computer allowed Cameron [2] to investigate the existence
and nonexistence of complete subgraphs in the graphs.

Where graphs have only a small number of points, less than seven, they can
readily be drawn and listed by hand. In fact, it has even been possible to
produce drawings of the full set of seven-point graphs (D. W. Crowe and
F. Harary, unpublished), though errors in this list of drawings only came to
light after a full set of the graphs had been produced by computer. When the
graphs are larger and more complex, the assistance of a computer is essential
in order to avoid errors. We shall discuss the general problem of the repre
sentation and identification of graphs in a computer and describe how these
difficulties were overcome in our programs. We shall also discuss three specific
problems, namely the production of all simple graphs having specified numbers
of points and edges and in particular the production of all eight-point simple
graphs, the production of sets of star topologies (see Section 2) and the
production of all simple stars having a specified number of points and a
specified topology. Much of this work has been described in earlier pub
lications, [1, 4, 8, 9, 10, 11, 13, 17], some of which are not readily available.
This contribution is meant to be a summary of these publications and readers
requiring more detail should refer to the original articles.

Graph theory has many roots and branches and as yet no uniform and
standard terminology has been agreed. In a recent book, Harary [7] has
attempted to produce a standard set of definitions and these will probably be
familiar to many readers. However, workers in other fields are accustomed
to different definitions and terminology. As the work described here was
carried out in conjunction with theoretical physicists, we feel justified in using,
instead of Harary's terminology, the terminology of Essam and Fisher [5],

The Production of Graphs by Computer 49

who have also recently attempted to produce a standard set of definitions,
albeit from a physicist's viewpoint. For those readers who are unfamiliar with
these definitions, and for the sake of clarity, we shall briefly state the main
graph-theoretical definitions in the next section.

2. Definitions and Terminology

A graph G consists of a set P of points, together with a set E of undirected
edges or lines joining certain pairs of points. However, an edge may not join
a point to itself (a loop). In a multigraph, a pair of points may be joined by
more than one edge (multiple ov parallel edges), but in a simple graph a pair of
points may be joined by at most one edge. For brevity, in this paper we shall
use the term graph to refer to either multigraphs or simple graphs or both,
only distinguishing between them where it is not clear from the context.
A labeled graph is a graph the n points of which are labeled with the integers
1,2,...,«, in some way.

A graph is said to be disconnected if it is possible to divide the set of points P
into two subsets, Pl and P2, such that there are no edges joining any point
in P1 to any point in P2 ; otherwise the graph is said to be connected. A point
belonging to a connected graph G the removal of which from G, together
with the edges emanating from it, produces a disconnected graph is referred
to as an articulation point or cut point. A connected graph containing an
articulation point is separable. If a connected graph does not contain an
articulation point, then it is nonseparable, or multiply connected. If it contains
at least two points, then it is referred to as a star. Two graphs are said to be
isomorphic if there is a one-to-one correspondence between their point sets
that induces a one-to-one correspondence between their edge sets. Each
graph is then said to be an isomorph of the other.

The number of edges emanating from a point is known as the degree of
that point. If a graph G contains a point A of degree two, which is joined to
the two distinct points B and C, then a new graph can be formed, which has
the same point set as G, apart from A, and the same edge set except that edges
AB and AC are removed and an edge BC added. This process is known as the
suppression of the point A. The reverse process of replacing an edge BC by a
new point A and new edges AB and AC is known as the insertion of the point A
on the edge BC. Two graphs are homeomorphic, and one is said to be a
homeomorph of the other, if they can be made isomorphic by the insertion and
suppression of points of degree two. Such graphs are said to have the same
basic topology. A graph of a given basic topology which is homeomorphic to
no graph with fewer points is said to represent faithfully the topological type

50 B. R. Heap

of all its homeomorphs. Such a graph is referred to as a basic topological type
and, in this article, we shall usually abbreviate this as topology. In previous
papers such a graph was referred to as homeomorphically irreducible. The
cyclomatic number c of a connected graph containing n points and m lines is
defined by

c = m — n + 1.

Since the process of inserting a point of degree two increases both the number
of points and the number of edges in the graph by unity, it is clear that all
homeomorphs have the same cyclomatic number.

This completes the general graph definitions needed here. A number of
other definitions concerned with the representation and identification of a
graph in a computer are given in Section 4 when this topic is discussed.

3. Problems

We are now in a position to state in the graph-theoretical terms of Section 2
the problems that we shall discuss. They are

PROBLEM 1. The production by computer, in some representation or other,
of one copy of each simple graph containing a specified number of points and
edges, and in particular, one copy of each simple graph having eight points.

PROBLEM 2. The production by computer, in some representation or other,
of one copy of each star topology containing a specified number of points and
edges.

PROBLEM 3. The production by computer, in some representation or other,
of each simple star having a specified topology and a specified number of
points and edges.

A vital need for all these problems is a method for the representation of
both simple graphs and multigraphs in a computer and the identification of a
graph in a list of possibly thousands of graphs. This will be considered in the
next section. Problem 1 will be dealt with in Section 5, Problem 2 in Section 6,
and Problem 3 in Section 7.

4. Representation and Identification of Graphs in a Computer

The representation and identification of a graph in a computer is possibly
the most important problem associated with the automatic production of
graphs. The methods and techniques that we describe in this section were

The Production of Graphs by Computer 51

evolved to deal with specific problems. Since this research work was completed,
Cornell and Gotlieb [3] have described a computer algorithm for testing
whether or not two graphs are isomorphic. However, their method does not
appear to have been applied to the case that we are mainly interested in,
namely the identification of a graph in a list of many graphs.

There is no difficulty in the representation of a graph in a computer if its
points can be labeled with the integers 1,2,...,«, since the adjacency matrix
of the graph can be used to represent it. The adjacency matrix is a n x n matrix
the (/j)th element of which is the number of edges leading from point i to
point j . For the graphs we are concerned with, the adjacency matrix is sym
metric, since the edges are undirected, and its diagonal terms are zero, since
loops are forbidden. Thus, it is only necessary to actually store the upper
triangular part of the matrix, which is a total of n(n— l)/2 elements. This does
not necessarily mean that we must set aside this number of computer words
to store a single graph. Since the elements of the matrix are small integers,
several of them may be packed into one computer word and the storage
requirements are reduced by a factor which depends on the maximum possible
element and also on the length of the computer word. Of course, the routines
dealing with individual elements of the matrix are then rather more complex,
but those dealing with the matrix as a whole are often very much simpler.

When n is large and the number of edges in the graph is not too large, other
methods of storing the matrix can possibly use less storage space. Thus, a
straight list of the nonzero elements of the matrix, each entry in the list consist
ing o f / j and the number of edges joining / toy can be used. This only uses 3k
words, where k is the number of nonzero elements. This can also be sub
stantially reduced by packing as described above. For very large graphs even
more economic storage methods can be evolved, but these are outside the scope
of this article.

For the graphs we are concerned with here, a labeling was produced (see
below), and the adjacency matrix stored in one of two ways. As it was known
from the outset, in the case of multigraphs, that the number of edges joining
any two points would be small, certainly less than 15, and that the number of
points in the graphs would be at most ten, four bits were assigned to each
element of the adjacency matrix. As the computer word length was 48 bits,
each row of the matrix occupied one word. The full matrix was stored, although
as stated above, this was not strictly necessary. However, in this way, the
program routines could be made somewhat simpler. An additional word was
used to store the degrees of the points, packed as above. Another word was
used to hold information about the graph, that is, the number of points,
number of edges, and an identification number. Finally, a third additional
word was used for addressing purposes, as will be explained later. Thus, n + 3
words were needed to store a multigraph having n points.

52 B. R. Heap

For simple graphs, the same storage method could have been used, but
because of the necessity to hold up to 1646 eight-point graphs in the main store
of the computer at the same time, it was decided to use a more condensed
storage method. As there could be at most one edge joining any two points in
a simple graph, a single bit only was needed to say whether the edge was
present or not. By restricting the matrix to its upper triangular part only 28
bits were required for storing an eight-point graph, and this was easily
accommodated in one computer word. An identification word and an address
word were still needed as in the case of multigraphs so that three words were
needed for the storage of each simple graph.

However, the graphs with which we were dealing were unlabeled. In order
to represent them by means of adjacency matrices, it was necessary to produce
some method of labeling their points. Since we required the representation of
a graph to be unique, this labeling had to be unique, apart from symmetry.
Perhaps the simplest way of possibly distinguishing one point in a graph from
another is by means of their degrees, since points must be different if they
have different degrees. In addition, the degrees are readily available. Thus,
the set of points of a graph was divided into subsets, all points belonging
to each subset having the same degree. The subsets then were ordered accord
ing to the magnitude of the degrees so that if there were nx points with degree
dl9 n2 with degree d2,...9nk with degree dk, then

d1> d2> d3> ··· > dk,

and the subsets contained ni,n2,n3,...,nk points, respectively. In the case of
multigraphs these subsets were divided further. Consider a point with degree
di for some /. The edges emanating from this point, consist, in general, of a
collection of single edges, double edges, triple edges, and other multiple edges.
We refer to this collection of edges as the degree sei of the point. Clearly two
points can be distinguished if their degrees have different degree sets, even
though their degrees are equal. If the point has dn single edges, di2 double
edges, and so forth, so that

di = Σ rdir>
r= 1

where t =di—l9 then we specify the degree set by means of a /-tuple degree
specification

(dit9...,diZ,di2,dn).

Just as the degrees of the points were ordered in descending order of magnitude,
we order the degree specifications, also in descending order of magnitude.
To do this, we define an ordering of the /-tuples by saying that a /-tuple

The Production of Graphs by Computer 53

A = (Al9A29A39...9At) is larger than /-tuple A', if there exists an r, 1 < r ^ t9

such that As = As'9 1 ^s ^r-\,d.ndAr>Ar'. Thus, all points having a certain
degree can be assigned to subsets according to their degree specifications.
Two points are in the same subset if and only if they have the same degree
specification. Unfortunately this method of further subdividing the degrees
requires more storage since for each different degree set, a degree specification
must be stored. This can conveniently be done in one word but a total of n
words are required for the storage of the specifications of each subset.

In this way the points of both simple graphs and multigraphs were divided
into ordered subsets {SJ, each containing mx points, / = 1,2,...,/?. In the case
of simple graphs St contained all points having degree di9 m^ = ni9 and p = k.
For multigraphs, the designation was not as simple, and St contained all
points having a specified degree and a specified degree set. Labels l929...9m1

were now assigned to the ml points in Sl9 labels ml + l9m1+29...9mi+m2 to
the points in S2, etc., and the adjacency matrix formed for each possible
method of assignment. There were mx lm2\m3\ '-mp\ possible assignments
and adjacency matrices. If au is the (ij)th element of the adjacency matrix
for some labeling, then we define the canonical labeling of the graph as that
labeling which makes the «2-tuple

(ail9al29al39...9aln9a2l9...9ann)

a maximum. This was the labeling that was applied to the graph. The
appropriate adjacency matrix is referred to as the canonical matrix.

It is clear from the above that in order to produce the canonical matrix, it
might be necessary to consider a large number of possible labelings of the
points of a graph. It is important that the minimum possible disturbance be
made to the adjacency matrix in going from one labeling to another. This was
achieved by a system of interchanging two labels according to a scheme which
eventually produces all possible labelings. A simpler form of this scheme is
described in Heap [8].

When identifying a graph in a list of possibly some hundreds of graphs,
the canonical matrix was first produced and only compared with those of all
graphs in the list which had the same degree subsets (simple graphs), or the
same degree and degree specification subsets (multigraphs). This was done
simply by storing separately an index of the different degree subsets and degree
specification subsets, and with each one the address of the last graph in the
list having these degrees and degree specifications, as well as the number of
such graphs in the list. Then with each graph was stored the address of the
previous graph having the same set of degrees and degree specifications.
Thus, it was extremely easy to scan through only those graphs which could
conceivably be the one we were identifying.

54 B. R. Heap

5. Production of Simple Graphs

Simple graphs having a specified number of points n and edges m can be
constructed easily from the full sets of those having either n points and m + 1
edges or those having n points and m— 1 edges. In the former method, a graph
having n points and m+ 1 edges is examined, a single edge removed, and the
resultant graph, having n points and m edges, is identified and stored as
described in the previous section. The process is repeated for each of the
m +1 possible ways of removing a single edge from the original graph and is
then repeated for each graph having n points and m+ 1 edges. It is clear that
each graph with n points and m edges must be produced at least once by this
process. Starting from the complete graph having each of its n(n— l)/2 distinct
pairs of points joined by edges, the full set of «-point graphs can be pro
gressively built up. In the latter method, each graph with m — 1 edges is
examined in turn, and new graphs are formed by adding an edge in all possible
ways consistent with its remaining a simple graph, a total of n(n— l)/2 — m+1
possible ways. The identification is carried out as before. This time we start
with the graph containing n points and no edges and the full set of w-point
graphs again is built up progressively.

An alternative method of constructing the graphs with n points and m edges
is to produce them from the full set of graphs having n— 1 points. In order to
achieve this, we must consider all possible ways of adding one point and
joining it toy of the original points of each graph having n— 1 points and m—j
edges, y =p(l)q, where

p = max(0,m - (n- \)(n-2)/2)

and

q = min (A — l,m).

The efficiency of this method compared to that of the previous methods can be
estimated by calculating the number of graphs that have to be constructed
in order to produce the full set of eight-point graphs. It turns out that a total
of 133,632 are formed using this last method as opposed to 172,845 for either of
the other methods. Thus, this method is slightly more efficient. However, an
advantage of the first method that we described is that, for each graph, a
complete list of its partial graphs can be produced. A partial graph of a graph G
is a graph produced from G by the removal of edges alone. This was important
in the original problem for which the graphs were required [17], and is also
useful in evaluating some of the properties of the graphs. For example, it is
useful in deciding whether a graph is planar or not. From Kuratowski's
theorem (see Harary [7] or Ore [14]), we know that a graph is nonplanar,
if and only if it contains as a partial graph, any graph which is homeomorphic

The Production of Graphs by Computer 55

to the complete graph on five points, (K5), or the complete bipartite graph on
six points (^3(3). In K3 3 the six points are divided into two subsets of three
points each, and each point in one subset is joined to all the points in the
other subset, but not to any of the other points in its own subset. It is a simple
matter to produce by hand those graphs having eight points that are homeo-
morphic to K5 and K3 3 . By examining only the sets of immediate partial
graphs, that is, those with only one edge removed, of all graphs, it is possible to
build up a full list of nonplanar graphs. Details of the numbers of planar and
nonplanar graphs having six, seven, and eight points do not appear to have
been previously published and they are given in Tables I, II, and III.

A knowledge of the partial graphs of a graph also allows us to decide whether
it is connected or not, and whether it is separable or not, because a disconnected
graph having eight points must be a partial graph of at least one of four
disconnected graphs, which are easily constructed by hand. If Kn is the
complete graph having n points, these graphs can be described by Κί-{-ΚΊ,
K2 + K6, K3 + K5, and K4 + K4. Similarly, a separable graph having eight
points must be a partial graph of at least one of three separable graphs. The
numbers of connected and nonseparable (star) eight-point graphs are given
in Table IV.

As was stated in Section 1, a set of drawings of all seven-point graphs has
been made by Crowe and Harary. The total number of eight-point graphs,
12,346, prohibits any possibility of a similar scheme for their systematic
representation as a set of drawings. However, it has been found possible to
prepare a set of punched cards on which the full set of eight-point graphs are
represented by their canonical matrices. This is achieved by using only one
row of a punched card to store the matrix, in which a hole represents an edge.
In this way 12 graphs can be stored on a single card and only 1044 cards are
required to store the full set of 12,346 eight-point graphs. The graphs also are
stored on magnetic tape for use in the computer.

6. Production of Star Topologies

In this section we restrict attention to stars and discuss Problem 2, which is
the production of all star topologies having a specified number of points and
edges. We note, from Section 2, that a useful means of classifying such a graph
is by means of its cyclomatic number, denoted by c. For c = 2, there is only
one such topology, a theta graph, consisting of two points joined by three
edges. For c = 3, there are four topologies, usually described as alpha, beta,
gamma, and delta graphs. For c = 4, there are 17 such graphs. All these graphs
are illustrated in the paper by Essam and Sykes [6]. Diagrams can also be
found in the full catalog [10].

56 B. R. Heap

T A B L E I

The Numbers of Planar P(m) and Nonplanar N(m) Simple Graphs Having

Six Points and m Edges

m P(m) N{m) m P(m) N(m) m P{m) N(m)

11
12
13
14
15

5
2
0
0
0

4
3
2
1
1

6
7
8
9
10

21
24
24
20
13

0
0
0
1
2

0
1
2
3
4
5

1
1
2
5
9
15

0
0
0
0
0
0

T A B L E I I

The Numbers of Planar P(m) and Nonplanar N(m) Simple Graphs Having

Seven Points and m Edges

m P(m) N(m) m P(m) N(m) m P(m) N(m)

15
16
17
18
19
20
21

5
0
0
0
0
0
0

36
21
10
5
2
1
1

0
1
2
3
4
5
6
7

1
1
2
5
10
21
41
65

0
0
0
0
0
0
0
0

8
9
10
11
12
13
14

97
130
144
135
98
51
16

0
1
4
13
33
46
49

T A B L E I I I

The Numbers of Planar P(m) and Nonplanar N(m) Simple Graphs Having

Eight Points and m Edges

m P{m) N{m) m P{m) N(m) m P(m) N(m)

0
1
2
3
4
5
6
7
8
9

1
1
2
5
11
24
56
115
221
401

0
0
0
0
0
0
0
0
0
1

10
11
12
13
14
15
16
17
18
19

658
956
1217
1264

1038
619
255
56
10
0

5
24
95
293
608
938
1057

924
653
402

20
21
22
23
24
25
26
27
28

0
0
0
0
0
0
0
0
0

221
115
56
24
11
5
2
1
1

The Production of Graphs by Computer 57

TABLE IV

The Numbers of Connected Graphs C(m) and Nonseparable (Star) Graphs N(m) Having
Eight Points and m Edges

m

0
1
2
3
4
5
6
7
8
9

C(m)

0
0
0
0
0
0
0
23
89
236

N(m)

0
0
0
0
0
0
0
0
1
6

m

10
11
12
13
14
15
16
17
18
19

C(m)

486
814
1169

1454
1579

1515
1290

970
658
400

N(m)

40
161
429
780
1076
1197

1114

885
622
386

m

20
21
22
23
24
25
26
27
28

C(m)

220
114
56
24
11
5
2
1
1

N(m)

215
112
55
24
11
5
2
1
1

These topologies were obtained using paper-and-pencil methods and it is
not difficult to do this. However when we turn to the production of the star
topologies with c = 5, such methods are prone to error, and more systematic
methods are required. It is perhaps of interest that Nagle [13] made an
attempt to produce these graphs by hand and quickly found a total of 116.
However, our computer method had previously discovered that there were 118.
For topologies with c > 5, it is totally impracticable to produce the graphs
other than by computer.

There are three ways in which star topologies with n points and m edges,
and thus having c=m — « + 1 , can be produced from previously obtained
topologies having c=m — n. These are

1. by joining any two distinct points of a topology having n points and
m—\ edges;

2. by inserting a point of degree two on any edge of a topology having
n—\ points and m — 2 edges, and then joining this point to any other
point;

3. by inserting two points of degree two on any edge or edges of a topology
having « — 2 points and m — 3 edges, and then joining these two points.

A little thought shows that these are the only possible ways of constructing
star topologies, and a topology cannot exist that cannot be constructed in this
fashion. However it is necessary to consider all possible ways of performing
the operations in order to make absolutely certain that none are missed. The
star topologies having c = 5 were constructed using these methods. The
storage and identification are as described in Section 4.

The same general method was used to produce most of the star topologies

58 B. R. Heap

having c = 6. However some of these have as many as ten points and all of
these points have degree three. If all the degree specifications of the points are
the same, then they are computationally indistinguishable, as far as the method
of representation described in Section 4 is concerned. Therefore, for graphs
having more than eight points, special methods were derived for producing
the canonical matrices. We shall illustrate these by a consideration of the
production of all star topologies having ten points, each with degree three,
and each being joined to three distinct points. To produce the canonical
matrix for such a graph using the methods of Section 4 would have required
the consideration of 10! labelings and thus 10! = 3,628,800 adjacency matrices.
As this would have taken about 100 min for a single graph, the method was
out of the question.

However, in the canonical matrix, we note that point 1 must necessarily be
joined to points 2, 3, and 4 for such a graph. Thus, in finding the canonical
labeling we run through all possible ways of:

1. assigning label 1 to a point (10 possible ways);
2. assigning labels 2, 3, and 4 to the three points to which point 1 is

joined (3! = 6 possible ways);
3. assigning labels 5,6,..., 10 to the remaining points (6! = 720 possible

ways).

Thus, only 10 x 6 x 720 = 43,200 different labelings need to be considered.
This takes about 1 min and is a considerable reduction. A penalty is that a
special computer program is required.

Similar reductions in time, at the expense of specially written programs,
allowed all topologies having c = 6 with nine and ten points to be readily
obtained. A full description of these methods is too specialized for this article,
but can be found in the full catalog of the 1198 topologies with c = 6 [11].
In addition, drawings of all star topologies with c < 6 are available [9, 10].
The numbers of star topologies having c ^ 6, classified according to their
numbers of points and edges, are given in Table V.

7. Production of Stars Having a Given Topology

In the last section, we discussed the production of star topologies. These
may be either simple graphs or multigraphs. We now wish to take one of these
topologies and produce all simple star graphs having this topology, and a
specified number of points, by the simple expedient of the insertion of points
of degree two on the edges of the topology.

In fact, a formal method for this enumeration process can be derived using
the well-known methods of Pólya [15]. Detailed descriptions of Pólya's

The Production of Graphs by Computer 59

TABLE V

The Numbers Tc(m) of Star Topologies
n Points,

c

2
3
3
3
4
4
4
4
4
5
5
5
5

and m

n

2
2
3
4
2
3
4
5
6
2
3
4
5

= c + n-

m

3
4
5
6
5
6
7
8
9
6
7
8
9

-1 Edges

7Um)

1
1
1
2
1
2
5
4
5
1
3

13
24

Having

c

5
5
5
6
6
6
6
6
6
6
6
6

Cyclomatic

Λ

6
7
8
2
3
4
5
6
7
8
9

10

Number

m

10
11
12
7
8
9

10
11
12
13
14
15

c^6 ,

TM)

38
23
16

1
4

26
84

216
314
325
162
66

enumeration techniques can be found in Harary [7], Riordan [16] and
Uhlenbeck and Ford [18]. Let G be a star topology having m edges and let
TG(ti9t2, t3,..., tm) denote the cycle index of the group of permutations of the
edges of G. Now stars homeomorphic to G are produced by the insertion of
points of degree two on the edges of G. As any number of points may be
inserted on any edge, the enumerator for the process is

x + x2 + x3 + ··· = x/(l-x).

If UG(k) is the number of stars having k edges, homeomorphic to G, we
then have

TG(Yl9Y29Y39...9YJ = Σ VG(k)x\
k = m

where
Yr = jf + x2r + x3r + ··· = *7(1 -x").

These equations represent the formal technique for the calculation of UG(k).
However, since a knowledge of the cycle index of G is required, the method is
not in general practical. Note also that UG(k) enumerates both simple graphs
and multigraphs, if G is a multigraph. Some means of deleting the multi-
graphs is necessary, if they are not to be included in the enumeration.

An alternative enumeration method devised by Domb and described in
Domb and Heap [4] and Heap [10] is of more practical interest. For this we
introduce the concept of a colored graph, by which we mean a graph whose
edges carry identifying "colors." Two colored graphs are said to be the same
if they are both isomorphic and if corresponding edges carry the same color.

60 B. R. Heap

Now let mum2,m39...,mri ml^m2^m3^ ··· ^mr, be some partition of m
into r parts. We define a symmetry factor WG(ml,m29m3,...,mr) of G as the
number of different ways of coloring the edges of G to produce differently
colored graphs, with the proviso that ml of the edges are colored with color 1,
m2 of the edges are colored with color 2,..., and mr of the edges are colored
with color r. Let P(k;m1,m2,m3,...,mr) be the total number of partitions of k
into m parts such that ml are equal to some integer ku m2 are equal to some
different integer k2, etc. We now make a correspondence between a colored
edge of G and the number of points inserted on that edge in order to produce
a graph homeomorphic to G. It follows that

t /GW = YJP(k\mum2,m3,...,mr)WG{mum2,...imr),
(m)

where the summation extends over all partitions of m. Since the symmetry
factors are fairly easy to obtain by hand or can be derived from the cycle
index, and tables of P{k\m1,m2,m3i...,mr) are available [1], it is possible to
enumerate UG(k) when the topology is simple. However, multigraphs may
still be included in the enumeration and these have to be deleted. For further
details of how this is achieved the reader is referred to Domb and Heap
[4] or Heap [10]. Expressions for the numbers of simple stars homeomorphic
to the 22 star topologies having cyclomatic numbers less than five, together
with extensive tables, are given in Heap [10]. In addition, Domb's method
can also be used for the enumeration of star topologies themselves. Full
details, formulas, and tables are also given in Domb and Heap [4] and
Heap [10].

The methods of actually producing simple stars with a given topology are
akin to Domb's method of enumeration. Let a given topology G have n points
and m edges. Assume that we wish to produce all stars having k edges and the
topology of G. Normally, k is not much larger than m. This is achieved by
considering all partitions of k — m into m parts, not all parts being necessarily
nonzero, and all possible ways of inserting points on the edges of G consistent
with the partitions. For example, if a given topology has six edges and k = 9,
then we consider all possible ways of inserting three points on one of the edges,
all ways of inserting two points on one edge and one point on another edge,
and all ways of inserting one point on each of three different edges. For most
topologies this can be carried out by hand provided k — m is not too large and
the topology is fairly simple.

However, where k is fairly large and the topology is complex, usually when
the topology is fairly symmetric, the computer must be used. As an example,
consider the case where G contains no multiple edges, and so each nonzero
element in the adjacency matrix of G is equal to unity. We now insert points
on the edges of G according to the appropriate partition as described above.
However, instead of constructing a new adjacency matrix of size n + k — m from

The Production of Graphs by Computer 61

the adjacency matrix of G of size n, we construct a new n x n matrix in which
the (/j)th element is equal to 1 plus the number of points inserted on the
edge joining i to j . One way of describing this matrix is as a chain matrix,
for now the (/j)th element is equal to the length of the shortest chain from
i toy, with only the points of degree three or more being labeled. This matrix
is an alternative method of representing the graph and can be used exactly
like the adjacency matrix. If there are no points of degree two, it is identical
with the adjacency matrix. A canonical matrix can be defined and formed just
as before, and graphs can be stored and identified as described in Section 4.
The great advantage of this representation is that we are representing a graph
with n + k — m points by an n x n matrix. By running through all possible ways
of inserting the points consistent with the partition and then running through
all partitions, the full set of stars can be found.

If G has multiple edges, the above procedure cannot be used directly,
though it is sometimes possible to use a slightly amended method. Recently,
J. L. Martin (private communication) has produced a technique which deals
with both simple graphs and multigraphs, but in many cases it is rather time
consuming, especially where the topology has a high degree of symmetry. In
these cases, it is necessary to resort to special programs which take into
account the symmetry of the topology. As an example, consider the pro
duction of simple beta graphs. The basic topology of a beta graph is a graph
with four points, which are labeled 1, 2, 3, and 4, and six edges, (1,2), (1,2),
(3,4), (3,4), (1,3), and (2,4). If we denote by a, b, c, d, e, and/ the numbers of
points inserted on these edges respectively to produce a simple beta graph
having n points, then the graph can be specified uniquely by values of a, b, c,
d, e, and / satisfying the relations

a + b + c + d+e+f=n-4, a ^ 0;

b > a,

b ^ a,

d^ b,

d> c,

0 = 0,

αφ 0,

c = a,

c φ a,

c ^ a,

c ^ a;

f>e>0,

f^e^O.

The graphs can now be specified, as the reader may verify, by

e = 0 (l) [(/ t - 4) / 4] ,

f[(«-5)/2], a = 0)
c = a{\)

([(« - 4 - 2e)/2], a Φ 0

Π, e = 0 | [[(» - e - c - 4)/2], a = c

[a, a φ OJ [n — a — 2c — 4, a φ c

62 B. R. Heap

d = (\)n — a — b — c — 4,
(b9 a = ci

[c, a Φ c)

e = 0(l)l(n-a-b-c-d-4)/2].

f = n — a — b — c — d— e — 4.

where [x] denotes the largest integer less than or equal to x. A computer
program to run through all these possibilities is straightforward to produce.

References

1. Arrowsmith, J. M., and Heap, B. R., Partition symmetries, Nat. Phys. Lab., Div.
Numerical Appi. Math. Rep. Ma 64, (1966).

2. Cameron, J. B. Initial sieves for complete subgraphs, unpublished manuscript.
3. Cornell, D. G., and Gotlieb, C. C, An efficient algorithm for graph isomorphism,

J. Assoc. Comput. Mach. 17, 51-64 (1970).
4. Domb, C , and Heap, B. R., The classification and enumeration of multiply connected

graphs, Proc. Phys. Soc. London 90, 985-1001 (1967).
5. Essam, J. W., and Fisher, M. E., Some basic definitions in graph theory, Rev. Modem

Phys. Supp. 42, 271-288 (1970).
6. Essam, J. W., and Sykes, M. F., Percolation processes I. Low density Expansion for

the mean number of clusters in a random mixture, / . Mathematical Phys. 7, 1573-1581
(1966).

7. Harary, F., "Graph Theory." Addison-Wesley, Reading, Massachusetts, 1969.
8. Heap, B. R., Permutations by interchanges, Comput. J. 6, 293-294 (1963).
9. Heap, B. R., The enumeration of homeomorphically irreducible star graphs, J. Math

ematical Phys. 7, 1582-1587 (1966).
10. Heap, B. R., The Production and Use of Homeomorphically Irreducible Star Graphs,

Nat. Phys. Lab., Div. Numerical Appi. Math. Rep. Ma 57 (1967).
11. Heap, B. R., A Catalogue of homeomorphically irreducible star graphs with cyclo-

matic number six, Nat. Phys. Lab., Div. Numerical Appi. Math. Rep. Ma 82 (1969).
12. Martin, J. L., The exact enumeration of self-avoiding walks on a lattice, Proc. Cam

bridge Philos. Soc. 58, 92-101 (1962).
13. Nagle, J. F., On ordering and identifying undirected linear graphs, J. Mathematical

Phys. 7, 1588-1592(1966).
14. Ore, O., 'Theory of Graphs." Amer. Math. Soc, Providence, Rhode Island, 1962.
15. Pólya, G., Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische

Verbindungen, Acta. Math. 68,145-254 (1937).
16. Riordan, J., "An Introduction to Combinatorial Analysis." Wiley, New York, 1958.
17. Sykes, M. F., Essam, J. W., Heap, B. R., and Hiley, B. J., Lattice constant systems and

graph theory, / . Mathematical Phys. 7, 1557-1572 (1966).
18. Uhlenbeck, G. E., and Ford, G. W., The theory of linear graphs with application to

the virial development of the properties of gases, in "Studies in Statistical Mechanics"
(J. de Boer and G. E. Uhlenbeck, eds.), Vol. 1. North-Holland Pubi., Amsterdam, 1962.

A GRAPH-THEORETIC PROGRAMMING

LANGUAGE

C. A. King

University of the West Indies

Kingston, Jamaica

1. Introduction 63
2. Design Considerations 64
3. FORTRAN Characteristics of GTPL 64
4. The Graph-Theoretical Statements of GTPL 66
5. Notes on Graph Theory Algorithms 69

5.1. COMPNTS and NCOMPS 69
5.2. PLANAR 70
5.3. LABEL and ISOMOR 70

6. Sample Programs 71
6.1. Sample Program 1 71
6.2. Sample Program 2 72

7. Concluding Remarks 74
References 74

1. Introduction

The past few years have witnessed the development of a large number of
problem-oriented programming languages. In the field of mathematics, the
languages developed include ALPAK [2] and FORMAC [12] for algebraic

63

64 C. A. King

manipulation, a language for polynomial arithmetic [6], and the language
NAPSS [11] for numerical analysis, among others.

Many authors have presented algorithms for solving various problems in
graph theory, but it is only in very recent times that attempts have been made
to provide a programming facility which will enable the graph theorist to
state his problem in a programming language that is natural to the subject.
Wolf berg [13] has developed an interactive system for graphs which empha
sizes graphic display and Cresspi-Gregatti and Mortuga [3] have outlined an
extension of ALGOL for handling graphs.

In the present paper, we introduce and discuss a programming language
for graph theory, GTPL, which is an extension of FORTRAN for handling graphs.
A compiler has been written for GTPL, and implemented on an IBM 1620
computer with 20k storage and one disk drive.

2. Design Considerations

The types of algorithms required to solve graph-theoretical problems on
a computer resemble more the algorithms used in list processing and similar
non-numerical applications of computers. However, a certain amount of
numerical computation can be expected in most graph-theoretical problems.
In designing a language to meet both these objectives, we have taken an
existing language, FORTRAN, and added a number of extra statements, defini
tions, and the grammatical structure necessary to handle graph-theoretical
manipulations on a computer.

The Graph-Theoretic Programming Language (GTPL) we now describe is
thus a dialect of FORTRAN, and for simplicity Basic FORTRAN has been used.
In the following discussion, Basic FORTRAN is intended whenever reference is
made to FORTRAN. We first make a few general comments on the FORTRAN

characteristics of GTPL and then describe the graph-theoretical statements.
By way of examples, two programs, which have been compiled and executed
using the GTPL system, are included.

3. FORTRAN Characteristics of GTPL

We mentioned in the last section that GTPL uses FORTRAN as its host language.
There are however, a few departures from FORTRAN and these are set out below.

ASSIGNMENT STATEMENT. The arithmetic assignment statement of GTPL

is of the form
» = /,

A Graph-Theoretic Programming Language 65

where v is the symbolic name of a variable and / is a signed or unsigned ex
pression, consisting of at most one binary operator. Further, a statement may
contain parentheses only when referencing subscripted variables. In all other
respects, the assignment statement of GTPL is exactly like that of FORTRAN.

Although this version of the assignment statement may appear somewhat
restrictive, it has proved quite adequate for the purpose for which the language
has been designed.

IF STATEMENT. In addition to the IF statement of FORTRAN, there is a
logical IF statement which is used when testing for certain graph-theoretic
properties. The form of the logical IF statement and the properties which
may be tested are given in Section 4.

CHARACTER SET. A symbolic name that identifies a variable has a type
established by the first character of the name, and the only departure from
FORTRAN in this respect lies in the use of the letters G and H to identify graphs.
Also, in addition to the usual characters of FORTRAN, two special characters
@ and $ have been introduced. The character @ always precedes the label of
a graph, for example,

@GA,

which may generally be interpreted as of the graph G A.
An interesting feature of GTPL is the facility to handle collections of graphs.

The label which identifies a collection of graphs is prefixed by the character $,
and one may refer to the entire collection of graphs or to a particular member
of the collection. The character $ also has another use that will be described
in due course.

INPUT/OUTPUT STATEMENTS. The READ, PRINT, and TYPE state
ments of GTPL are not formatted. The READ statement has the form

READ, LIST

where LIST consists of any combination of simple or subscripted variables or
of labels of graphs. Data fields are separated by one or more blank columns.
The form of the PRINT and TYPE statements is similar to that of the READ
statement.

Alphameric information may be printed by bracketing the information to
be printed within a pair of @ signs as follows :

PRINT, ©MESSAGE®

The control statements DO, GO TO, CONTINUE, STOP, PAUSE, and
END are exactly as in FORTRAN.

66 C. A. King

4. The Graph-Theoretical Statements of GTPL

The most important difference between GTPL and FORTRAN lies in the
incorporation in GTPL of a number of graph-theoretical statements. These
statements will now be described, and for the purpose of discussion they have
been grouped into eight categories.

GROUP I. Statements for enumerating some characteristic of a given
graph are

NCOMPS @ G

NEDGES @ G

NNODES @ G

NNODES (N) @ G

VALENCE (I) @ G

MINVAL @ G

MAXVAL @ G

NCUTND @ G

NBLOCKS @ G

Sample Statement:

Form: K = NCOMPS @ G
Meaning: Find the number of components of the graph G and store the

result as an integer constant at K.

GROUP II. Statements for deriving a graph from a given graph are

COMPLEM @ G (find the complement of the graph G);
CENTER @ G (find the center or bicenter of the graph G, a tree) ;
SPANTREE @ G (find a graph which is a spanning tree of G) ;
SEQUENCE @ G (resequence the nodes of the graph G) ;
LABEL @ G (construct the canonical labeling1 for G and

relabel the nodes of G accordingly).

Sample Statement:

Form: GXYZ = COMPLEM @ G
Meaning: Find the complement of the graph G and store it as GXYZ.

GROUP III. Statements for deriving certain collections of graphs from a
given graph are

COMPNTS @ G (find the components of the graph G)\
BLOCKS @ G (find the blocks of the graph G).

t Canonical labeling is defined in Section 5.3.

(number of components of the graph G) ;
(number of edges of the graph G) ;
(number of nodes of the graph G);
(number of nodes of the graph G of valency TV) ;
(valency of node I of the graph G) ;
(minimum valency of nodes of the graph G) ;
(maximum valency of nodes of the graph G) ;
(number of cutnodes of the graph G) ;
(number of blocks of the graph G).

A Graph-Theoretic Programming Language 67

Sample Statement:

Form: $GX = COMPNTS @ G

Meaning: Find the components of the graph G, and store the result as a
collection of graphs. This collection is referenced by the label %GX, where
the initial character $ indicates a collection of graphs subsumed under a
common name.

GROUP IV. Below are statements for performing an operation on a given
graph so as to derive a modified graph. The derived graph replaces the original
graph in store.

INSERT (I,J) @ G,n
DELETE (I,J) @ G,n
DELETE (I) @ G,n
INNODE (I,J) @ G,n

(insert edge / , /) ;
(delete edge / , /) ;
(delete node / and incident edges) ;
(add a node valency 2 in edge / , /) .

The statement number n is a default transfer of control.

Sample Statement:

Form: DELETE (I,J) @ G,n
Meaning: Delete the edge (I,J) of the graph G. If there is no such edge,

transfer control to the statement labeled n.

GROUP V. Statements for defining certain special graphs are

$K(N)f (define the complete graph on N nodes);
$KBAR(N) (define the empty graph on N nodes);
$K(M, N) (define the complete bipartite graph on M, N nodes).

Sample Statement:

Form: GABC=$K(M,N)
Meaning: Define the complete bipartite graph on (M,N) nodes, and

store at G ABC.

GROUP VI. Below are the logical IF statements. These statements allow
us to test whether or not a graph exhibits some particular property and to
transfer control accordingly. The truth conditions are in parentheses.

IF (G, CONNEX) m,n (graph G is connected);
IF (G, REGULAR) m,n (graph G is regular);
IF (G, REGULAR (K)) m,n (graph G is K regular);
IF (G, TREE) m,n (graph G is a tree);
IF (G, FOREST) m,n (graph G is a forest);

t This is the other use for the $ sign.

68 C. A. King

IF (G, PLANAR) m,n (graph G is a planar);
IF (G, POLYGON) m,n (graph G is a polygon);
IF (G, COMPLETE) m,n (graph G is complete);
IF (G, EMPTY) m, n (graph G is empty).

Sample Statement:

Form : IF (G, PLANAR) m, n
Meaning: Test whether the graph G is planar. If it is, transfer control to

the statement labeled m. If it is not, transfer control to the statement labeled n.
In addition, there is the logical statement

IF (G, ISOMOR) m,n,

which tests whether or not the graph G is isomorphic to the graph currently in
working store.

Note that all graphs handled by GTPL are, in a sense, labeled graphs, since
a label, an integer, has to be associated with each node in order that the
graph can be input to the computer (see the remarks below on input format).
ISOMOR tests for isomorphism between labeled graphs, that is, for each pair
ij of nodes it checks that either an edge (/,/) exists in both graphs, or that it
exists in neither graph. We shall see in Section 5.3 how this routine can be
used to test for isomorphism between unlabeled graphs.

The following group of logical IF statements differs from those in Group VI
in that these statements refer to a subgraph of a given graph.

GROUP VII. The truth conditions are in parentheses.

IF (G, HASCUTND) m,n (graph G has a cut node);
IF (G, HASEDGE (I, J)) m,n (graph G has an edge joining node / to

node J).

GROUP VIII. Statements for the transfer of data on graphs are

GET, G (call graph G from backing store) ;
PUT, G (put graph G into backing store) ;
READ, G (read a graph G and store it in backing store) ;
PRINT, G (print the graph G).

Commentary on Statements in Group VIII: All graphs are read in node-
pair format as follows: nneee,xxyy,xxyy,...,xxyy, where nn is the number of
nodes, eee is the number of edges and xxyy is an edge incident with node xx
and node yy. This format allows for graphs on up to 99 nodes and 999 edges.
Graphs on up to 49 nodes can be accommodated by the program currently
written for GTPL.

A Graph-Theoretic Programming Language 69

Graphs normally are kept in the backing store of the computer and brought
into working store as required. The GTPL compiler keeps track of the name
of the graph currently in working store. When a new graph is required it is
brought in from the backing store. If, however, the next graph name which is
encountered in a statement is the same as that of the graph in working store,
this is not done. This has an important consequence.

The statements mentioned in Group IV modify a graph and leave the modi
fied graph in working store. If, after executing one of these statements, the
next graph referred to is currently in working store, then the operations are
performed on the modified graph. If, however, the operations are to be
performed on the original graph, then the statement

GET, G

which calls the graph G from backing store, should be used.
The statement

PUT, G

causes the graph currently in working store to be stored in backing store.
If a graph was previously stored in the area reserved for the graph G, then it
is overwritten.

5. Notes on Graph Theory Algorithms

We next describe two programs which illustrate some of the most important
features of GTPL. We first give a brief description of the algorithms used, and in
Section 6 we present listings of the actual programs together with some
explanatory notes.

For the functions NNODES, COMPLEM, and MAXVAL the description
given in Section 4 is adequate. We therefore restrict our discussion to

1. COMPNTS and NCOMPS ;
2. PLANAR;
3. LABEL and ISOMOR.

5.1. COMPNTS and NCOMPS

Our algorithm for finding the components of a graph G is as given by Read
[10], and derives from a procedure for constructing the spanning tree of a
graph. The method assigns the same label to each node of a connected com
ponent of the graph G. Hence, if G is not connected, each component of G is
determined by an equivalence class of labels of G. The number of distinct
labels of G gives the number of components of G.

70 C. A. King

5.2. PLANAR

The algorithm used to test whether or not a given graph G is planar is that
of Fisher and Wing [4] as modified by Read [9]. Briefly, the algorithm is as
follows :

1. Choose any circuit of the graph G; call this circuit K.
2. Of those edges not belonging to K, there may be transversals, that is,

edges with both end nodes on K; we insert a node in each transversal and
obtain graph G'. Clearly, G' is planar, if and only if G is planar.

3. Remove from G' all the edges of K together with all other edges of G'
that are incident with nodes of K; call these edges link edges. Then what is
left will be a number of connected components Fi9 which we shall call frag
ments. Each Fi is connected to K by a set L{ of link edges. Denote by Z/f the
subgraph of G' consisting of K, F, and Lx.

4. In G', shrink each Ft to a point, thus obtaining a reduced graph Gr.
5. Two fragments Ft and Fj are said to be incompatible if they cannot both

be placed inside, or both outside, of K without causing some link edges to in
tersect. If all fragments cannot be placed in such a way that all pairs of incom
patible fragments are differently placed, then Gr, and hence G, is nonplanar. If
the fragments Ft can be so placed, one then proceeds to apply the above test
for planarity to each of the subgraphs Hi9 and eventually a verdict is obtained.

The above is an oversimplification, and one is referred to Fisher and Wing
[4] for a detailed discussion of the algorithm, and to King [7] and Read [9]
for a discussion of the modification.

5.3. LABEL a/irfISOMOR

The method which we use to obtain a canonical labeling of a graph was
developed by Parris and Read [8], and derives from the construction of a
unique code for a given graph. By considering each node, its nearest neighbors,
that is, its neighbors of order 1, and its neighbors of orders 2, 3,..., one is able
to classify the nodes of a graph G in such a way that each class has exactly one
node. A problem arises when the graph has symmetries with respect to certain
of its nodes, but this problem is overcome by forcing these nodes to be in
different classes. An important consequence of this approach is that the classi
fication thus obtained is independent of the original, arbitrary manner in
which the nodes of the graph were labeled.

Since the canonical labeling is independent of the original labeling of the
graph, as determined by the nature of its input, it follows that two graphs Gì
and G2 are isomorphic as unlabeled graphs, if and only if, after both have
been relabeled by the LABEL routine, they are isomorphic as labeled graphs.
Thus a double use of LABEL, followed by ISOMOR, enables isomorphism
between unlabeled graphs to be tested.

A Graph-Theoretic Programming Language 71

The LABEL routine uses an inefficient, and therefore lengthy, algorithm;
necessarily so, since no efficient algorithm for this purpose is yet known. It is
therefore worthwhile to make a preliminary check for possible obvious
nonisomorphism of Gx and G2- This whole procedure is displayed more fully
in the second of the sample programs which follow.

6. Sample Programs

We now describe two programs that have been compiled and executed,
using the GTPL system.

6.1. Sample Program 1

CCCCC SAMPLE PROGRAM 1

c DETERMINE: WHICH COMPONENTS OF THE COMPLEMENT

C OF A GIVEN GRAPH ARE PLANAR· WHICH NONPLANAR

C

1 COLLECTION $GB«2G

2 READ · G

3 GA = COMPLEM <a G

4 *GB = COUNTS <? G A

5 K = NCOMPS i» GA

6 I = f

7 2 1 = 1 + 1

8 IF (£GB· I« PLANAR) 22%2*

9 C THIS COi*'PONFNT IS PLANAR· PRINT IT

10 22 PRINT· »PLANARE

11 PRINT· «EGB· I

12 GO TO 25

13 C THIS COMPONENT IS NONPLANAR· PRINT IT

14 24 PR I NT «<?NON-PLANARi»

15 PRINT· *G3·I

16 25 K = K - 1

17 IF (K) 26· 26· 2

18 '6 END

72 C. A. King

The lines are numbered for easy reference in the following discussion. The
line numbers are not part of the program.

Line 1: The declarative COLLECTION, not previously mentioned,
specifies that the set of graphs GB forms a collection of graphs, and may have
up to 20 members. In some respects this statement is similar to the DIMEN
SION statement of FORTRAN. The extent, 20, serves to inform the processor
that storage must be reserved, in backing store, for 20 graphs.

Line 2: The graph G is to be read. The processor reserves an area of store
for the graph G.

Line 3: The graph G is to be complemented and the complement stored
as graph G A.

Line 4: The components of the graph G A are to be found and stored as a
collection of graphs, indexed from 1 to N9 where N is the number of members
in the collection. In the above program, an error results if N exceeds 20, the
extent of GB as specified in Line 1.

Line 5: The number of components of G A is to be computed, and this
number stored as an integer variable K.

Line 8: This statement specifies that the 7th member of the collection
$GB should be tested for planarity. If the graph tested is planar, then control
is to be transferred to statement 22 (Line 10). If the graph is nonplanar, control
is to be transferred to statement 24 (Line 14).

Line 10: The PRINT and READ statements of GTPL are not formatted. A
blank delimiter is used for the input of numeric information, and the output
is according to the standard format F 16.8 or 15, according as the result is
real or integer. In place of the H FORMAT specifications of FORTRAN, a
pair of @ signs is used as quotation marks. The statement in Line 10 causes
the message PLANAR to be printed. Similarly, the statement in Line 14 causes
the message NONPLANAR to be printed.

Line 11: This statement causes the 7th member of the collection GB to be
printed. So does the statement of Line 15.

The other lines in the program are normal FORTRAN statements, and require
no special explanation.

6.2. Sample Program 2

Line 1: This is the DIMENSION statement of FORTRAN.

Line 2: This statement causes the graph G A to be read.
Line 3: The graph G A is to be stored in backing store.
Line 4: The maximum valency of the graph G A is to be found and stored

at MAXA.

A Graph-Theoretic Programming Language 73

CCCCC SAMPLE PROGRAM 2

C THIS IS A TEST FOR ISOMORPHISM BETu/f-tN TWO GRAPHS

C GA AND Gt. A PRELIMI NARY CHECK IS MADE TO SEE IF

C GA AND GB HAVE THE SAME VALENCY SEQUENCE. IF THEY

C HAVE« THEN EACH GRAPH IS GIVEN A CANONICAL LAPEL LING·

C USING THE -LABEL- STATEMENT· AND THE RESULTING

C LABELLED GRAPHS ARE TESTED FOR ISOMORPHISM USING THE

C - IF(ISO.VOR) - STATFMFNT.

C

1 DIMENSION NVA<20>· NVS<20)

2 READ*GA

3 PUT· GA

1+ ΜΛΧΑ = MAXWAL « GA

5 READ· GB

6 PUT· GR

7 MAXB = MAXVAL <? G3

8 DO 12 J = 1· MAXA

9 12 NVA (J) = NNODES(J) PGA

10 DO 14 J = 1· MAXB

11 14 NVU<J> = NNODES (J) a GB

12 DO 16 J = MIKA«MAXA

13 NDIFP = NVA (J) - NVR (J)

14 IF (NCIFF) 22· 16· 22

15 16 CONTINUE

16 C VALENCY SEQUENCE FAILS TO DISCRIMINATE HFTWEFN GRAPHS

17 GX = LABEL 9 GA

18 GC = LABEL <? GB

19 IF(GX· ISOMOR) 24·22

20 24 TYPE· ©ISOYiüRPHlC«?

21 GO TO 99

22 22 TYPE ·@Ν0Τ ISOMORPH IC?»

2 3 99 END

74 C. A. King

Lines 5, 6, and 7: These are similar to Lines 2, 3, and 4.
Line 8: This is the normal DO statement of FORTRAN.

Line 9: This statement specifies that for the graph G A, the number of
nodes of valency J is to be found and stored as the Jth element of the array
NVA. This statement, together with the DO statement in Line 8, causes the
valency sequence of the graph G A to be constructed.

Lines 10 and 11: These are similar to the statements in Lines 8 and 9.
Lines 12 to 16: These are ordinary FORTRAN statements.
Line 17: This statement causes the canonical labeling of the nodes of the

graph G A to be constructed and the resulting labeled graph to be stored as GX.
The statement in Line 18 is similar. In both cases, the labeled graph is also
available in a work area of store.

Line 19: This statement causes the labeled graph GX, now in backing
store, to be compared with the labeled graph GC which is still in store. The
graphs are isomorphic, if and only if they are equivalent as labeled graphs.

Line 20: This statement causes the message ISOMORPHIC to be printed.
Line 22 is similar.

Lines 21 and 23: These are normal FORTRAN statements.

7. Concluding Remarks

The operating system for the programming language that we have described,
consists of a compiler phase and an execution phase. The compiler phase
produces an object deck which must be loaded together with any data, so that
the program may be executed. The graph theory routines are kept in backing
store and are called into working store only when required. The same is true
of graphs, which normally reside in backing store.

An attempt has been made to include a wide variety of graph theory routines
in GTPL, but it is expected that use of the language will point to the need for
additional routines. For this reason, the system has been designed so as to
accommodate additional routines. A full description of the algorithms used
and of the design of the compiler and operating system is given by King [7].

References

1. Berge, C, "The Theory of Graphs and its Applications" (A. Doig, transi.). Wiley,
New York, 1962.

2. Brown, W. S., A language and system for symbolic algebra on a digital computer,
Proc. Sci. IBMSymp., 77-114 (1966).

3. Crespi-Reghizzi, S., and Morpurgo, R., A language for treating graphs, Comm. ACM
13, 319-323, (1970).

A Graph-Theoretic Programming Language 75

4. Fisher, G., and Wing, O., Computer recognition and extraction of planar graphs from
the incidence matrix, IEEE Trans. Circuit Theory CT-13, 2, 154-163 (1966).

5. Goldstein, A. J., An efficient and constructive algorithm for testing whether a graph can
be imbedded in a plane, Bell Telephone Labs., unpublished report.

6. Hartt, K., Some analytical procedures for computers and their applications to a class
of multidimensional integrals, J. Assoc. Comput. Mach. 11, 416-421 (1964).

7. King, C. A., A graph-theoretic programming language, Doctoral thesis, University of
the West Indies, 1970.

8. Parris, R., and Read, R. C , A coding procedure for graphs, Univ. of the West Indies
Comput. Center Sci. Rep. UWI/CC 10 (1969).

9. Read, R. C , Graph theory algorithms, in "Graph Theory and Its Applications" (B.
Harris, ed.), pp. 51-78. Academic Press, New York, 1970.

10. Read, R. C , Teaching graph theory to a computer, in "Recent Progress in Combin
atorics," (W. T. Tutte, ed.), pp. 161-173. Academic Press, New York, 1969.

11. Rice, T., and Rosen, S., NAPSS—A numerical analysis problem solving system, Proc.
21st Nat. Conf. ACM, 51-56 (1966).

12. Sammet, J. E., Formula manipulation by computer, Advan. Computers 8,47-102 (1967).
13. Wolf berg, M. S., An interactive graph theory system, Doctoral thesis, University of

Pennsylvania, 1969.

ENTROPY OF TRANSFORMED FINITE-STATE

AUTOMATA AND ASSOCIATED LANGUAGES

W. KuicV

IBM Laboratory

Vienna, Austria

1. Introduction 77
2. Preliminaries 78
3. S Transformation of Automata 81
4. Entropy of 5-Transformed Automata 82

References 85

1. Introduction

After a short review of the concepts involved in finite-state automata,
associated languages, directed multigraphs and nonnegative matrices, an S
transformation on automata is defined. This transformation replaces a
transition between two states of the original automaton by the transitions of
an automaton of simple structure. Speaking in terms of language theory, this
transformation is equivalent to a language-preserving function called substi
tution or homomorphism.

t Present address: Technische Hochschule Wien, Vienna, Austria.

77

78 W. Kuich

Defining the entropy of finite-state automata and associated languages, it
is then natural to ask for the change in the entropy caused by applying the
S transformation. The answer to this question is given in this paper for certain
types of automata. It generalizes several results achieved by Izbicki [4, 5].

2. Preliminaries

In this section we briefly review the concepts involved in finite-state auto
mata and associated finite-state languages, following essentially Ginsburg [3].

An alphabet is a finite nonempty set. A word of length k ^ 0 over an
alphabet Σ is a finite sequence xl,x2,...9xk of elements in Σ. The word of
length zero, called the empty word, is denoted by ε. The set of all words,
including ε, over an alphabet Σ is denoted by Σ*. Let U and V be subsets of
Σ*, then the complex product of U and V, written UV, is the set of words
{w = wx w2\ w1 in U9 w2 in V}.

A finite-state automaton is specified by a 5-tuple A = (K, Σ, δ,ρ0, F), where

(1) A' is a finite nonempty set of states;
(2) Σ is an alphabet of input symbols;
(3) δ is a function from a subset of K x Σ into K, the next state function ;
(4) pQ is a distinguished element of K, the start state;
(5) F is a subset of K, the set of final states.

The function δ is extended to a subset of K x Σ* by defining ö(q,s) = q and
<5(<7, * r · · Xu) = Ik > where q0 = q and qx = ô(qi_uxi\ l^i^k.

The behavior of the automaton is deterministic, that is, the next-state
function δ defines for each state q in K and each input symbol x at most one
next state ô(q,x). Each automaton A defines a subset T(A) of Σ*, the set of
generated or accepted words, given by

T(A) = {νν6Σ*|<5(Α),νν)ε,Ρ}.

A subset of Σ*, generated by some finite-state automaton, is called finite-state
language. T(A) is called the language generated by A.

Walk [8] defined the informational structure of an automaton A to be the
directed multigraph G(A) = (V(A),E(A)). The set V(A) of vertices coincides
with the set K of states. The set of edges is defined by

E{A) = {ex
Piq = (piq)\ö(p,x) = q\xeY}.

Loops and multiple edges between two vertices are allowed.
Associated with this informational structure is the adjacency matrix of the

graph, defined in the usual manner. Its (/, /) entry is a^ if a^ edges, rooted in
vertex pv are leading to vertex pj. The elements of this matrix are nonnegative,

Transformed Finite-State Automata 79

ß21

0

0

0 ·
^32 ·

0 ·

·· 0
·· 0

"· 5 n , n - l

0

0

0

and hence the powerful theory of nonnegative matrices, developed by Perron
and Frobenius, comes into play (see Wielandt [9]).

A matrix B is called irreducible if there exists no permutation matrix P
such that

P XBP =
\ 0 B21

with square blocks Blx and B22 and null matrix 0 . An irreducible matrix B
is said to be imprimitive of index h if there exists a permutation matrix P
such that

0 0 - 0 Bln\

P~lBP =

with square 0 ' s in the main diagonal. Otherwise it is called primitive.
The theorem of Perron-Frobenius states that a nonnegative irreducible

matrix B has a positive eigenvalue λ, which is the simple root of the character
istic equation. The modules of all other eigenvalues of B do not exceed λ.
λ is called maximal eigenvalue. In case B is imprimitive of index h, there exist
exactly h eigenvalues of modulus λ, which are roots of the equation
xh — Xh = 0. For primitive matrices, λ is the only eigenvalue of modulus λ.

For the sequel we need the following definitions :

1. An automaton is called strongly connected if and only if for every pair
(/?, q) of states there exists a word w such that δ(ρ, w) = q.

2. An automaton is said to be periodic of period h if and only if its set
of states can be partitioned into h sets K1,F2,...,FA such that δ(ρ,χ) is in
Vl only if p is in Vk and l—k = 1, modulo /?, x in Σ; otherwise the automaton
is called aperiodic.

3. An automaton that is strongly connected and aperiodic is called
ergodica

4. An automaton is said to be complete if and only if its next state function
δ is defined on the whole set ^ χ Σ .

The following statements are equivalent :

1. (a) An automaton is strongly connected;
(b) its informational structure is strongly connected ;
(c) its adjacency matrix is irreducible.

t Note that this definition, according to Shannon [7], differs slightly from that given
usually in the theory of Markov chains.

80 W. Kuich

4.

(a) An automaton is strongly connected and periodic of period A;
(b) its informational structure is strongly connected and cyclically

A-partite ;
(c) its adjacency matrix is imprimitive of index A.
(a) An automaton is ergodic;
(b) its adjacency matrix is primitive.
(a) An automaton is complete;
(b) its informational structure is out regular of degree n;
(c) its adjacency matrix has constant row sum n, where n is the cardinal

of the set of states K.

Let A be a strongly connected automaton and T(A) the language generated
by A. Let u(n) be the number of words of length n in T(A). Then the entropy
H of A respectively T(A) is defined to be the quantity

H = lim sup [log u(n)/ri].
Λ-+00

This definition covers the aperiodic and periodic case. In the aperiodic case,
the entropy usually is defined to be

H = lim [log u (Λ)//Ι],
«-♦00

according to the definition of the channel capacity by Shannon [7]. But if A
is a periodic automaton of period A, then this limit is to be taken only for those
residue classes, modulo A, for which the numbers u(n) are not identically
zero. Hence, in this case, the entropy H is defined by the limit superior.

The entropy is a measure for the amount of information that must be

k,(k-i)rk

Fig. I. The informational structure of Na

Transformed Finite-State Automata 81

provided on the average in order to specify a particular symbol of any word
of the language. This quantity also may be considered as a measure of the
uncertainty existing about a symbol in a word before its generation by the
automaton.

3. S Transformation of Automata

Given fixed nonnegative integers rl9r2,...,rk9 rk ^ 1 and an abstract symbol
a, the automaton Na = N(rl9...9rk;a) is defined to be the 5-tuple Na =

{Pii})> where

(1) KN = {pll9p12}u{Pij\l^i^k9l^j^(i-l)rt};

(2) i ; = (4 i u / a , i ^ y < / > , } ;
(3) δΝ is defined by

^siPiuAh) = Pi2>

M / > l l , * m , J =Pm,im,

VNvPm,(s-l)rm + im>Xm,srm + im) = Pm,srm + imi

^NyPm,(m-2)rm + im^Xm,(m-l)rm + im) ~ Ρ\2·>

I < it < rl9 2 < m ^ k9 1 ^ im < rm, 1 < s ^ m - 2.

Na is to agree with the definition of an automaton. Hence, all the symbols
xm,im> 1 < AW ^ A:, 1 ^ im < rk9 have to be different.

The language T(Na) = T(N(rl9...9rk\a)) consists of the rl+r2-\ Vrk

words

* ! ! , . . . , Λ ΐ Γ ι , Λ 2 1 ·*2, r 2 + l '
 X

2 , r 2
X

2 , 2 r 2 ' · · · >

x
fc, l -*fc,rk+l · · ·

 xk,(k-l)rk+l v >·**,!·*·**, 2 rk · · · ^,fcrk-

The informational structure is given by the graph G(AT), shown in Fig. 1.
Let M = (KM, ΣΜ, <5M, #M, FM) be an automaton and let

{Ν(Γΐ9...,ΓΗ;ά)\αΕΣΜ}

be a family of automata of the type described above, such that ΣΝ
α η ΣΝ

0 = 0
for a φ b in ΣΜ . Then the automaton Af(r lv.., /*fc) = (X, Σ, (5, #M, FM) is defined
by

(1) K=KMv{Pij(p9q9a)\l^i^k9l^j^(i-l)ri9ôM(p9a) = q};

(2) Σ = UaelM Σ Λ Λ

82 W. Kuich

(3) S(Pix
a
Ul) = q,

ö(p,xa
m,ij = pm,im(p,q,a)9

HPmAs-l)rm + lm(P>q>à), Xam,Srm + iJ = Pmtsrm + im(P,<l,à)9

^(Pm,(m-2)rm + im(P^^aXXm,(m-\)rm + iJ = 4,

I < ii < rl9 2 ^ m ^ k9 1 ^ im ^ rm9 1 < s *£ m - 2,

for each transition δΜ(ρ,α) = q; p9q in KM9 a in ΣΜ .

This transformation of the automaton Af is called an S transformation of M.
Intuitively speaking the automaton M(rl9r29...9rk) originates from M by
replacing each transition δΜ(ρ9α) = q of M by the transitions of the autom
aton N(rl9...9rk;a). This produces the following changes in the respective
informational structures. Each edge (p, q) in G(M) is replaced by the graph,
drawn in Fig. 1, such that p and q coincide with pxl and /?12, respectively.

To study the effect that an S transformation of an automaton M has on the
language generated by M9 we have to introduce the concept of substitution
(see Ginsburg [3]). For each element a in an alphabet Σ, let Σα be an alphabet
and τ(α) a subset of Σα*. Let τ(β) = {ε} and τ(χ1... xr) — τ(χ1)-" τ(χΓ) for
each word xt •••xr in Σ*. Then the function τ, mapping Σ* into the set of
subsets of (UaeiZa)* is called a substitution. In case τ(α) consists of a single
word wa in Σα* for each a in Σ, τ is regarded as a mapping of Σ* into
(ϋαεΐΣα)* anc* is called homomorphism.

The S transformation replaces each transition ôM(p9a) = q in M by a
transition <5(/?, wa) = qin M(rl9...9rk)9 where wa is in 2%/Va). Defining a substi
tution τΝ by τΝ(α) = T(Na) for each a in ΣΜ , we get the result

TN(r(Af)) = r(M(r1,...,rk)),

that is, the language T(M(rl9...9rk)) originates from the language T(M) by
application of the substitution τΝ on T(M).

4. Entropy of ^-Transformed Automata

In Section 2 we defined the entropy H of an automaton A to be the quantity

H = lim sup[logw («)/«],
Λ-»00

where w(«) is the number of words of length « generated by A. This definition
of the entropy differs slightly from that one given by Shannon [7], Chomsky
and Miller [1], or Walk [8] in order to cover the cases of ergodic and periodic
automata.

Transformed Finite-State Automata 83

Walk [8] proved the entropy of an ergodic automaton to equal the logarithm
of the maximal eigenvalue of the adjacency matrix associated with its in
formational structure. By applying his proof method to the definition of
entropy given above and including the periodic (hence nonergodic) automata
his result remains valid :

The entropy H of a strongly connected automaton equals the logarithm
of the maximal eigenvalue λ of the adjacency matrix associated with its
informational structure, that is,

H= log/I.

Given a strongly connected automaton M and nonnegative integers
ri,r29'",rk, rk^ 1, we want to evaluate the entropy of the S-transformed
automaton M(rl,...,rk). We can apply the result achieved before because
with M strongly connected and rk^\, where N(rl9...,rk;a) generates at
least one word of length k, M(rx,...,rk) remains strongly connected. Hence,
we have to find relations between the maximal eigenvalues of the matrices B
and C associated with the informational structures of M and M(rl9...,rk)9

respectively.
Let M=(KM^M9SM,qM,FM) and M(ri,...,rk) = (K^,ô,qM,FM). The set

K of states of M(ri9...9rk), and hence the set of vertices of its informational
structure, is equal to

K= KMKJ {pu(p9q9a)\ 1 < / < / : , 1 < y < (i - l) r „ ôM(p,a) = q}

To get a clearly arranged form of the adjacency matrix we proceed as
follows: We partition K into sets Vo,Vi,--.,Vk-i> which are defined by
V0 = KM and Vt = {s e K-KM\ ô(s,x) = t,teVi_uxe Σ}, 1 < i ^ k- 1. Hence

Vi = {P2A(P,q,al->P2,r2(P,<l,a),P3,r3 + 1(P>(l>a)>->

Pkxk-i)rk(P^^a)\ôM(P^) = q},

Κ-ι = {Pk,i(P><l>a\...,pktrk(p,q,ä)\oM{p,ä) = q).

We partition the adjacency matrix C of the informational structure of
M(r!,..., rk) into blocks Cij90 ^ i,j ^ k— 1, such that ClV covers the adjacencies
of the vertices of Kf to the vertices of Vj. The only blocks possibly unequal to
the null matrix 0 are C00,C0i

C has the form

Coi

C =

0 0

84 W . Kuich

We have now to find a relation between the maximal eigenvalues of the
matrices B and C. We have done this in the following two cases.

CASE 1. Consider M strongly connected, rl = ··· = rk_x = 0, rk = r^l.
In this case C00 = C01 = ··· = C0fc_2 = 0 , which indicates that M(0,...,0,r)
is a periodic automaton of period at least k. In case k = 1, C = C00 = rB.

To evaluate the maximal eigenvalue of C, we compute the kth power of C,

(Co,k-lCk.1,k.2'"Ci0 0 0 \

0 C10C0,k_i — C2l ··· 0 I 0 0 "· Cfc_ l fk_2 Ck_2,fc-3 "· Co,fc_l /

The entries of the left upper block C0) k_1Ck_1) J t_2
,-<C1 0 are equal to the

number of ways of length k from the vertices in V0 to vertices in V0. Since
two vertices of V0 are joined exactly by r ways of length k, and no shorter
ones, in the informational structure of M(0,...,0,r), if they are adjacent in
the informational structure of M,

Q),*-i Q- i ,k-2 ··· C10 = rB.
The maximal eigenvalues of all the diagonal blocks of C are equal to the

maximal eigenvalue of C0tk-i Cfc_lfc_2 ··· C1 0 , and hence to the maximal
eigenvalue of rB. Denoting the maximal eigenvalue of B by λ, that of rB and
hence Ck equals rX. This yields the maximal eigenvalue of C to be (rÀ)l/k.
Hence, the entropy HM(0 0>r) of M(0,...,0, r) has the value

#M(o o.o = & -1(logr + logyl).

Denoting the entropy of M by HM, we get the result

#M(o o.o = ^ _ 1 (logr + #M)·

This S transformation, transforming M into M(0,...,0,r) generalizes two
transformations introduced by Izbicki [4] ; r = 1 yields the r\k transformation,
while k = 1 yields the r[transformation.

In the case r = 1, each symbol a of a word in T(M) is replaced by a word
wfl of length k. In terms of language theory, this S transformation is a homo-
morphism τ(α) = \να, αβΣΜ. Hence, a homomorphism, mapping each
symbol on a word consisting of k symbols, diminishes the entropy HM of the
original language to the &th part, k~l HM.

CASE 2. Consider M complete and strongly connected, rk ̂ 1, k ^ 2. Let
the cardinal of ΣΜ be n. Since M is complete the informational structure is
out regular of degree n. Hence, its adjacency matrix B is generalized stochastic
with row sum n, yielding the maximal eigenvalue n. Thus

HM = log«.

Transformed Finite-State Automata 85

In the informational structure of M each edge is replaced by the graph
drawn in Fig. 1 to yield the informational structure of M(rl9...,rk). Since the
informational structure of M is out regular of degree n, in the informational
structure of M(rl,...,rk) there are exactly nri+l edges, rooted in any vertex
of the set V0 and leading to vertices in Vi9 0 ^ / < k— 1. That means that all
the blocks Coi, 0 < / < f c — 1 , have constant row sums ri+ln. From any
vertex in Vi+l exactly one edge leads to the vertices in Vi9 0^i^k — 2.
Consequently C i+ 1>f, 0 < ι <& —2, has constant row sum 1.

Hence, C is partitioned into blocks having constant row sums. Kuich and
Walk [6] called this type of matrix block stochastic and showed the equality
of the maximal eigenvalues of a block-stochastic matrix and the matrix
associated with it, having the row sums of the blocks as entries. The matrix
of the row sums is

1

0

ό

0

1

ό

0

0

ό
which is the companion matrix of the polynomial

xk — rlnxk~1 — "· — rkn.

Hence, the maximal eigenvalue λ of C is the greatest real root of

xk — rl nxk~l — · · · — rk n = 0,

which yields

#M(n....frk) = log'*·

Again this S transformation is a generalization of a transformation intro
duced by Izbicki [5]. Let k = 2, rl = r, and r2 = s, then it coincides with the
ξΓ s transformation of [5]. The entropy of the transformed automaton is in
this case

HM(r,s) = log[r/i + (r/i2 + 4ï/i)%/2],

a special case of the result achieved above.

References

1. Chomsky, N., and Miller, G. A., Finite state languages, Information and Control 1,
91-112(1958).

2. Ginsburg, S., "An Introduction to Mathematical Machine Theory." Addison-Wesley,
Reading, Massachusetts, 1962.

86 W . Kuich

3. Ginsburg, S., "The Mathematical Theory of Context-Free Languages." McGraw-Hill,
New York, 1966.

4. Izbicki, H., Die Entropie -̂transformierter gerichteter Graphen, Sitzungsber. Österr.
Akad. Wiss. Math. Naturwiss. Klasse Abt. II177, 227-235 (1969).

5. Izbicki, H., Die Entropie -̂transformierter gerichteter Graphen, Sitzungsber. Österr.
Akad. Wiss. Math. Naturwiss. Klasse Abt. II177, 215-225 (1969).

6. Kuich, W., and Walk, K., Block-stochastic matrices and associated finite-state languages,
Computing 1, 50-61 (1966).

7. Shannon, C. E., A mathematical theory of communication, Bell System Tech. J. 27,
379-423 (1948).

8. Walk, K., Entropy and testability of context-free languages, in "Formal Language
Description Languages for Computer Programming," (T. B. Steel, Jr., ed.), pp. 105-123.
North-Holland Pubi. Amsterdam, 1966.

9. Wieland, H., Unzerlegbare negative Matrizen, Math. Z. 52, 642-648 (1950).

COUNTING HEXAGONAL AND

TRIANGULAR POLYOMINOES

W. F. Lunnon*

Atlas Computer Laboratory

Chilton, Didcot

Berkshire, England

1. Introduction 87
2. Bounding Hexagons 89
3. Symmetries 92
4. Counting Algorithm 94
5. Performance, Results, and Omissions 96
6. Asymptotic Behavior 96

References 99

1. Introduction

We have discussed the problem of counting />-minos (polyominoes, animals)
on the square tessellation [1], Here we extend those methods to the hexagonal
and triangular tessellations. Our account will be self-contained, but less
discursive than before.

A hex (condii)Itri (angular) p-mino is an edge-connected configuration of p

t Present address : Department of Computing in Mathematics, University College,
Cardiff, Wales.

87

88 W . F. Lunnon

Fig. 1 Fig. 2

Fig. 3

x=0
z=0

Fig. 4

Fig. 5

cells from the appropriate plane tessellation. A fixedp-mino is an equivalence
class under translation ; a free p-mino is a class under all symmetries of the
lattice. Figure 1 shows a pair of distinct fixed 4-minos belonging to the same
free 4-mino, abbreviated in Fig. 2. We attempt to evaluate the totals HX(p),
HE(p), TX(p), TE{p) of fixed/free hex/tri/?-minos : our results are in Section 5.

Counting Hexagonal and Triangular Polyominoes 89

Working with these tessellations is facilitated by a sanitary system of co
ordinates, which we now develop.

Consider the solid tessellation of cubes with a cube center at each integer
point x = (x, y9 z), and a plane x+y+z = 0 cutting it. This plane intersects each
x+y+z = 0 cube in a hexagon, and each x+y + z = ± 1 cube in a triangle : the
whole tessellation meets the plane in the plane tessellation 6232 , of which
Fig. 3 is a fragment.

Let us obliterate the triangles and grow the hexagons into the vacancies as
shown. The result is the hex tessellation (see Fig. 4). These hexagons corre
spond one-to-one with the integer triples (x9y9z) such that x+y + z = 0.

Now Fig. 4 may be colored in a natural way with 3 colors, indicated by
— , , + , according as (x—y)(y—z){z—x) = x—y = - 1,0, +1 modulo 3.
Let us obliterate the color 0 cells and grow the remainder into the vacancies
as before. The result is the tri tessellation (see Fig. 5). A cell is colored — or +
according to whether it points up or down. Hence tri /7-minos are a subset
of hex /Miiinos :

STATEMENT 1. If p > 1, the tri /7-minos correspond to the hex /?-minos on
just two colors.

The six neighbors of a hex cell (x9y9z) are

(1) (* , ; ; + l , z - l) , (x-\9y,z+l), (x+l,y-l,z)9

(2) (*,>>-l ,z+l) , (x+l ,>>,z- l) , (x - l 9 y + l 9 z).

For a color 4-triangle, (1) are neighbors; for a color — triangle, (2) are
neighbors.

2. Bounding Hexagons

The bounding hexagon (bh) of a />-mino, hex or tri, is defined by the lines

x = a'9 x = a9 y = b'9 y = b9 z — c'9 z = c,

where a! is the minimum of x over all its cells, a is the maximum, and so forth
for y, b and z, c. Figure 6 shows a bh, together with the vertex coordinates and
the side lengths st: since x+y + z = 0, we use * to mean "minus the sum of the
other two."

For describing the shape of a bh we use these four independent intrinsic
parameters : the diameters

A = a — a'9 B = b — b\ C = c — c\

90 W. F. Lunnon

and the skew

K=a + b + c + a' + b' + c'

= s1 — s4 = difference between any pair of opposite sides.

The sides can be expressed in terms of these four as

(3) st=a' + b + c = $(K-A + B+C),

s4 = a + b' + c' = $(-K-A + B+C), etc.,

(4) st + s5 + s3 = \{K+ A + B+C), etc.

We now ask what values of A, B, C, and K are possible. Reflecting and
rotating the bh (see Section 3) corresponds to permuting A, B and C and
negating K. So we can always arrange, for example, that

(5) 0*ζΚ and C < B < A.

Furthermore, \K\ ̂ min(C,i?,,4): for Kis largest compared to C, let us say,
in a triangular bh like Fig. 7, and increasing K by 1 inevitably increases C by
1 as well.

Again, since sl9 etc. are nonnegative, by (3)

Α + Κ*ζ Β+ C, etc.;

and st +.55+^3 is an integer, so by (4) ,4 + i?+C+Ä^is even.
To sum up, for a bh of fixed orientation, it is necessary that

(6) O^K^C^B^A^B+C-K

with v4 + 2?+C-f jRTeven. We claim that these conditions are also sufficient.
We now ask what further restrictions a fixed value of/? entails. Tri/7-minos

can occupy only 2 colors, which makes the analysis difficult; so we restrict

(αΛ</)

(a'.b,·)

s,= (a'+b + c)

(a',*,c)

Fig. 6

Counting Hexagonal and Triangular Polyominoes 91

Fig. 8

ourselves to hex. For the upper bound on the bh, consider a stretched p-mino
like Fig. 8, where p = 14, K= 2, A = 9, B = 8, and C = 7. We find

p — 1 ^ minOu.sJ + minfo,^) + min(j3,J6) + 2\K\

= max^i,^) + ma,x(s2,s5) + max(53,^6) — \K\.

92 W . F. Lunnon

Adding,

2(/>-l) >Zst+\K\=A + B+C+ \K\,

or

(7) i(A + B+C+\K\)^p-l.

For the lower bound on the bh, we have p ^ Δ, the number of cells inside
and on the boundary. To evaluate Δ, extend 3 sides of the bh into a triangle
(see Fig. 8). Then

/S1 +S5+S3 \ Αΐ + 1\ (s2+ï\ / J 3 + l \

Using (3), (4), and some manipulation, eventually

(8) p < Δ = (AB+BC+CA-\)-mA + B+C-\)2 + K1 - 1].

Note that (7) and (8) are necessary and sufficient for a hex />-mino to exist
with bh parameters A, B, C, and K, if they satisfy (6) already.

3. Symmetries

Let Gi be the symmetry group of the hex tessellation, that is, the group of all
motions of the plane leaving the tessellation invariant, and let Gtbe the normal
subgroup of all translations in Gt. Gt is uninteresting because no finite con
figuration can be invariant under a translation, so we dispatch it in
defining a fixed /?-mino to be a class under Gt. A free /?-mino is a class under
all Gt. Under G = (/,/(/, a fixed /?-mino may transform into itself or into another
fixed /7-mino corresponding to the same free /?-mino: the subgroup of G
leaving it invariant is called its symmetry. Of course, conjugate subgroups of
G describe the same symmetry in different orientations : so we define a symmetry
type to be a conjugacy class of subgroups of G, and say that a free/?-mino has
such-and-such a symmetry type.

In the hex case G turns out to be Z>6, the dihedral group of order 12. This
is shown in Table I, with descriptions of the operations and suitable coordinate
transformations. Referred to the origin, the latter are very simple : for example,
a rotation through π/3 is simply x = (x9y,z)->(—y, — z, — x) =f(x). We
need to refer them to the bh, and so have to add a translation u determined
by requiring a specific corner x of the bh to transform into another specific
corner y, then solving for u in

y = u + f (x).

TABLE I

The Point Group G of the Hex Tessellation

lame

1
2
3
4
5
6
7
8
9

10
11
12

Effect

None
π/3 rotation
— π/3 rotation
2π/3 rotation
-2π/3 rotation
π rotation
x = 0 reflection
>> = 0 reflection
z = 0 reflection
jc-axis reflection
7-axis reflection
z-axis reflector

Transform (x, yy z)->

(x>y,z)
(a+b'—y, b + c' — z, c+a'—x)
(c + a' — z, a + b' — x, b + c'—y)
(a — c + z,b — a + x,c — b+y)
(a — b + y,b — c + z,c—a + x)
(a+a' — x,b + b'—y, c+c' — z)
(α + α'—x, b + c'—z, b + c' —y)
(c+a'—z,b + b'—y9c + a' — x)
{α + ν-γ,α + ν-χ,ο+ο'—ζ)
(x^b-c + ZtC-b+y)
(a — c + z,y,c — a + x)
(a-b+y,b-a + x,z)

Bh
symmetry

/
G
G
DD
DD
R2
SD
SD
SD
D
D
D

Bh
conditions

A = B=C,K=0
A = B=C,K=0
A = B=C
A = B=C
K=0
B=C,K=Q
A = C,K=0
A = B,K=Q
B=C
A = C
A = B

TABLE II

The Symmetry Types of Hexagonal p-minos

Type Index in G Groups Example

/ 12

R2 6

S 6

D 6

R3 4

SD 3

R 2

SS 2

DD 2

G 1

{1}

{1,6}

{1,7}{1,8}{1,9}

{1,10} {1,11} {1,12}

{1,4,5}

{1,6,7,10}{1,6,8,11} {1,6,9,12}

{1,2,3,4,5,6}

{1,4,5,7,8,9}

{1,4,5,10,11,12}

{ 1 - 1 2 }

* ^

C

*

Λ
<

94 W . F. Lunnon

Since we have referred a transformation to the bh, this must have sufficient
symmetry to remain invariant, whether or not the enclosed /7-mino does. So
in the final columns of Table I we give the minimum bh symmetry necessary
for the transformation to be performed at all, and the corresponding
numerical criterion.

Table II lists the various types of symmetry possible for /7-minos, which
include the types for bh's. We give a name, the set of conjugate subgroups of
G, and a hex example. The index of the subgroup in G equals the number of
fixed /7-minos corresponding to one free /7-mino of that type.

By Statement 1 in Section 1 everything above applies to tri /7-minos too,
except that the examples in Table II are inapplicable where they occupy one
(/? = 1) or three colors. The apparently simple case of a single cell behaves
rather oddly. Its symmetry type as a hex /7-mino is G, but as a tri /7-mino is
only SS. The trouble is that a hex symmetry is only a tri symmetry as well if
it maps the third color onto itself. This is only guaranteed provided p ^ 2,
when both + and — must be occupied and so the third color can't map onto
+ or — under a symmetry.

4. Counting Algorithm

This is similar to that of [1]. Here we shall concentrate on the additional
complications.

To start with, suppose we are to find HX(p) by enumerating all fixed hex
/7-minos. Translations are eliminated by restricting the configurations to the
triangular region x < 0, >> < 0, z^p (see Fig. 9) with a = b = 0,0 ^ (a, b) ^ —/?,

Fig. 9

Counting Hexagonal and Triangular Polyominoes 95

and 0 < c ' < c <, p. We insist on their touching the boundaries x = 0 and y — 0 :
that is, for the bh of a complete />-mino,

(9) a = b = 0 (when q=p, see below).

The choice algorithm is an elementary exercise in backtracking. At level
q— 1, 1 ^ q ^ /? , we have constructed some (q— l)-mino, and during level q we
attach to it in turn all cells connected to it but unused at previous levels.
From now on we shall take all the parameters a,b,... of the bh to apply to
this partial configuration as well. Now rather than simply discard completed
p-minos which fail to satisfy (9), we impose a further restriction on the choice
of a qth cell, known as a growth criterion. In this simple instance it is

(10) a = 0 and b^p-q;

that is, cell 1 is chosen on the x axis and subsequent cells are chosen close
enough to the y axis to reach it by the time q =p.

In practice we only enumerate all free /?-minos, computing HX(p) from
their symmetry types. First we fix the orientation of the bh, which may in
general be in any of 12 positions, by insisting that (5) be satisfied. This is
effected by the new growth criteria

(11) (B^A)-b^p-q

and

(12) (B^A) + (C^B)^p-q

and

(13) (mzx&A) ^ C) + (O^K) **p-q.

Here x —y = max(0,x—y).
These are derived by noticing that, if a bh fails to satisfy (5) and (9) in more

than one particular, the addition of a new cell can often only relieve one of
its shortcomings at a time (see Fig. 9). If in (11) b < 0 and B> A, then attaching
a new cell on the edge y = b' to decrease b' will also increase B, so cannot
decrease B—A. If in (12) B > A and C > B, a new cell can increase B — A or
C—B by 1 but not both. If in (13) B or C > A and K < 0, a new cell can increase
A by decreasing a', since a = 0, but cannot simultaneously increase ^ (the
length of side x = a') or K = sl —s^.

If the bh has no symmetry when q = p (the usual case ?) we are done. If not,
the /7-mino inside may have less symmetry than its bh, and we must define a
canonical orientation inside its bh. Let the cells of the bh be enumerated in
some fixed order, for example, in increasing order of x then y (see Fig. 10).

Let the weight of a fixed /?-mino be a number, the binary expansion of

96 W . F. Lunnon

Fig. IO. A 7-mino (shaded) inside its bh.

which has digit i equal to 1 if cell / is a cell of the/7-mino, and equal to 0 other
wise. Then a fixed /?-mino is in canonical form, and counts as a free one, if it
has weight at least as great as all its transforms by symmetries of the bh. In
Fig. 10, bh symmetry is DD, 7-mino symmetry is D, weight of self is
101011001011, and weights of transforms are 100111101001 and 001111101010,
respectively.

For tri/7-minos, p > 1, the colors of the first two cells chosen are noted and
future cells q > 2 chosen only from those two colors.

5. Performance, Results, and Omissions

An algorithm along the lines of Section 4 was written in ALGOL and run
background on the Chilton Atlas I for 6 hr each on tri and hex, reaching
p = 16 and 12, respectively. With machine code and 100-hr runs it should be
possible to reach p = 22 and 16. Time is proportional to the size of the answer,
and is exponential in p. The tri mode is slower per /?-mino counted because of
the increased depth of recursion with larger p.

Tables III-V show our results, with the square /Mnino totals for complete
ness. Table III corrects Klarner [3] and Read [7], who both (!) found
HE(6) = 83. HX(p) has been confirmed for/? < 10 by M. F. Sykes, by hand, in
a single afternoon (! !). Table IV gives TE(9) and TE(IQ) larger by 1 and 4 than
Read [7], because he is counting only simply connected objects.

Future computations ought to produce more detailed results, breaking
the totals down by symmetry and bh as in [1], by number of free edges (of
interest to theoretical physicists) or by connectivity (numbers of internal holes
and boundary loops).

6. Asymptotic Behavior

In Tables III-V, we have included the ratios of successive fixed totals. The
conjecture is irresistible that these approach limits, and the same for the free.

Counting Hexagonal and Triangular Polyominoes 97

TABLE III

Hex p-mino Totals, Free and Fixed

p HE(p) HX(p) Ratio p HE{p) HX(p) Ratio

1
2
3
4
5
6

1
1
3
7
22
82

1
3
11
44
186
814

1.0000
3.0000
3.6667
4.0000

4.2273
4.3763

7
8
9
10
11
12

333
1448
6572

30,490

143,552

683,101

3652
16,689
77,359

362,671

1,716,033

8,182,213

4.4865
4.5698
4.6353
4.6882
4.7317

4.7681

TABLE IV

Tri p-mino Totals, Free and Fixed

p TE(p) TX(p) Ratio p TE(p) TX(p) Ratio

1
2
3
4
5
6
7
8

1
1
1
3
4
12
24
66

2
3
6
14
36
94
250
675

1.0000
1.5000
2.0000

2.3333
2.5714
2.6111
2.6596

2.7000

9
10
11
12
13
14
15
16

160
448
1186

3334
9235

26,166

73,983
211,297

1838
5053

14,016
39,169
110,194

311,751
886,160

2,529,260

2.7230
2.7492

2.7738

2.7946
2.8133
2.8291
2.8425
2.8542

TABLE V

Square p-mino Totals, Free and Fixed

p PE(p) PX(p) Ratio p PE(p) PX(p) Ratio

1
2
3
4
5
6
7
8
9

1
1
2
5
12
35
108
369
1285

1
2
6
19
63
216
760

2725
9910

1.0000
2.0000
3.0000
3.1667
3.3158
3.4286
3.5185
3.5855
3.6367

10
11
12
13
14
15
16
17
18

4655
17,073
63,600

238,591
901,971

3,426,576

13,079,255
50,107,911
192,622,052

36,446
135,268
505,861

1,903,890

7,204,874
27,394,666
104,592,937
400,795,860

1,540,820,542

3.6777
3.7115
3.7397
3.7637
3.7843
3.8022
3.8180
3.8320
3.8444

98 W . F. Lunnon

Several authors, notably Klarner [3], have investigated this question theor
etically. All that has been proved is that, by subadditivity, there exists

(14) £ L = lim(FX(p))1/p,
p-KX)

where F stands for P, H, or T. If the fixed ratio limit exists, then the two are
equal:

FL = lim FX(p)/FX(p-1), if it exists.
p-¥O0

As to the free ratio, it is shown with some difficulty in [5] that, for square p-
minos, the proportion of/?-minos with any symmetry (other than /) approaches
zero (but rather weakly), whence PE and PX behave the same in the limit but
for a factor of 8. Following a general principle, the fixed totals are a little
more tractable theoretically and numerically, which is why we choose to work
with them.

The known bounds on the limits FL—or critical points, to borrow a sonorous
phrase from theoretical physics—are

4 < HL < 6.75,

(15) 2.13 < TL < 4,

3.72 < PL ^ 4.65.

These are mainly due to Eden [4] Klarner [3, 10] ; however, the upper bound
on HL seems to have escaped previous notice, so here is the proof.

Let each cell have r edges, r = 3,4,6. We shall construct an encoding
of fixed /?-minos ; suppose we are given a particular one. Starting from some
fixed edge (the root) of some fixed cell (cell 1) of the /?-mino, perform the
following process on cell / for / = 1,2,.... Make up a string of binary digits
ay = 1 if theyth edge from the root around the perimeter of cell / has an un
numbered cell of the /?-mino adjoining, otherwise du = 0. In the former case,
give the cell the next unused number, and mark the common edge as its root.
Omit the root edge of cell / > 1, since it must adjoin a numbered cell j <i.
This procedure maps the /?-minos one to one into the sequences with roughly
p ones and (r—2)p zeros. Hence

/ (r - l) /A
FX(p) ^ Ä ((r-iy-1/(r-2)r-2)p, by Stirling's approximation,

and

(16) FL<(r - l) r - 1 / (A*-2) r - 2 .

Counting Hexagonal and Triangular Polyominoes

Fig. I I

For hexagons we can omit not only the root edge but also the two adjacent,
since the cells a, b adjoining them also adjoin the root cell j , and must already
have been investigated (see Fig. 11). So now the string has length (r — 3)/?, and
instead of (16) we have

(17) HL < (6 - 3) 6 " 3 / (6 - 4) 6 - 4 = 6.75.

Our own investigation will be empirical. We assume that the functions can
be approximated by exponentials, and try to estimate the base y and index ß
in the relation

(18) FX(p) ~ yppß x constant.

Then of course y = FL. We hope shortly to describe our methods in a separate
paper [9]. Our values are

(19) HL = yH~ 5.181 ± 0.002,

ßH a* -0.98 ± 0.01,

TL = yT Ä 3.02 ± 0.05,

βτ ~ -0 .8 ± 0.5,

PL = yP~ 4.061 ± 0.001,

βΡ ~ -0.98 > 0.02.

The triangular data behaves rather badly, and not just because of the
small numbers involved. It is quite possible that actually β = — 1 in all cases
and there is an extra logarithmic factor. It is less likely that the y are integers;
γΗ is clearly not an integer.

References

1. Lunnon, W. F., Counting polynominoes, in "Computers in Number Theory" (A. O. L.
Atkin and B. J. Birch, eds.), pp. 347-372, Academic Press, London, 1971.

2. Golomb, S. W., "Polyominoes." Scribner, New York, 1965.
3; Klarner, D. A., Cell growth problems, Canad. J. Math. 19, 851-863 (1967).

100 W . F. Lunnon

4. Eden, M., A two dimensional growth process, Proc. Berkeley Symp. Math. Statistics
Probability, 4th, 223-239 (1961).

5. Lunnon, W. F., Three combinatorial problems, Doctoral thesis. University of Man
chester, 1969.

6. Coxeter, H. S. M., "Regular Polytopes," 2nd ed. Macmillan, New York, 1963.
7. Read, R. C, A census of triangular-celled animals, Sci. Rep. UWIjCC 12, United States

AFOSR Project 1026-66 (1968). (Obtainable from University of the West Indies.)
8. Harary, F., and Read, R. C, The enumeration of tree-like polyhexes, Proc. Edinburgh

Math. Soc. 17, 1-13 (1970).
9. Lunnon, W. F., Asymptotic estimates of exponential functions (to appear).

10. Klarner, D. A., and Rivest, R., A procedure for improving the upper bound for the
number of/z-ominoes, Canad. J. Math, in press (1972).

SYMMETRY OF CUBICAL AND

GENERAL POLYOMINOES

W. F. Lunnon*

Atlas Computer Laboratory

Chi I ton, Didcot

Berkshire, England

1. Hypercubic Polyominoes and Their Symmetry 101
2. The Hyperoctahedral Group Od 103
3. The existence of Models 106
4. Cubical Counts 107

References 108

1. Hypercubic Polyominoes and Their Symmetry

We have investigated square polyominoes [1], remarking that the symmetry
possessed by such an object is one of 8 types possible, which were cataloged.
Here we make some observations about symmetry of more general con
figurations, in particular of cubical polyominoes. The group theory we shall
use is mostly elementary and may be found in Ledermann [8] ; the application
of groups to symmetry is simply expounded by Weyl [9].

t Present address : Department of Computing in Mathematics, University College,
Cardiff, Wales.

101

s

EFF"

C.

C£,

110..

K.

SBC,

RIO

G,

DEE,.

CF,
AE.

COlO

EE. 0, ~ - ~~- FF.

•
CCC'O

All"

I .. -- 6
~

BF. - A" ~ -- EF,
F. BE. BB 10 B, :n,...

c:
Fig. f. Models of cubical symmetry types. :I

:I
0
:I

"

CK,

EEE,

Symmetry of Cubical and General Polyominoes 103

Suppose we are given a discrete tessellation in d-dimensional Euclidean
space. A Euclidean polyomino is a connected set of ^-dimensional cells of the
tessellation, where two cells are connected if they have at least an/-dimensional
cell in common, 0 < / < e ^ d, all fixed constants. For example, the tessel
lation of cubes in ordinary space with e = d,f= d— 1, and d= 3 yields poly
ominoes of cubes connected by their faces, of which some examples are shown
in Fig. 1. Similarly the hypercubic tessellation for arbitrary d yields hyper-
cubic polyominoes.

The tessellation has a symmetry group Gt and a normal subgroup Gt

comprising all translations. Fixed polyominoes are equivalence classes under
Gt\ free polyominoes are classes under the whole Gt. Let G = Gl/Gt9 the
special group of the tessellation. A fixed polyomino P will be invariant under
some subgroup H of G, its symmetry. Operating on P by an arbitrary member
of G will yield another fixed polyomino P', the symmetry group H' of which
is conjugate to H in G, and which corresponds to the same free polyomino
as P. So the symmetry of a free polyomino is described by a set of conjugate
subgroups of G ; we shall prove later that every such set is the symmetry type
of some polyomino.

Turning now to the hypercubic case, the group of the tessellation is what
Coxeter calls Rd+1 [3], and G is the group of the hypercube Od. To calculate
the symmetry types of hypercubic polyominoes we need to know something
about the latter group.

2. The Hyperoctahedral Group Od

The general element of Od, the symmetry of a hypercube drawn in the
natural orientation in Cartesian d space with its center at the origin, is a
combination of axis reversals and axis permutations. For example, a rotation
through π/2 about the z axis is

(1) (x,y,z) -> (+y, -x, +z).

Regarding the right-hand side as a signed permutation on the d symbols
x,y,z,..., we see an immediate analogy with ordinary permutations. Multi
plication is analogous, the signs being multiplied on the way. For example,
(1) repeated is a rotation through π about the z axis, or

(2) (+y-x + z) x (+y-x + z) = (-x-y + z).

Conjugacy is also analogous [7]: two elements are conjugate and
geometrically similar if their cycles correspond in pairs of the same type.
Two cycles are of the same type when they are of the same length and the

104 W . F. Lunnon

products (+) of their signs are the same. So, for example, breaking (1) into
cycles gives

(3) (+y-x + z) = (+ j ; - x) (+ z) ;

we say that its cycle type is — 2 + 1 , one negative 2 cycle and one positive
1 cycle. All six symmetries of this type will be found to rotate through + π/2
about some axis.

Every element of Od leaves some subspace fixed, called its center: for
example, the (d— l)-dimensional mirror of a reflection, or the (d—2)-
dimensional axis of a rotation. The dimension c of the center is simply the
number of positive cycles in the element. For each positive cycle, in the
subspace it spans, leaves fixed the line (+ /, + /,...), where + changes to —
once for every — in the cycle. Each negative cycle does the same but imposes
the condition t = —t, which leaves only the point (0,0,...). So each positive
cycle adds 1 to c and each negative cycle adds 0.

Elements for which d—c is odd are improper, that is, they interchange left
and right. For it is easily seen that an improper element factors into an odd
number of reflections, the primitive reflections being axis transpositions and
axis reversals, and a simple manipulation shows that this number is congruent
to d— c modulo 2. These are the analogs of odd permutations. For example, (3)
has one positive cycle. Its center is therefore a line, c = 1. Since d— c = 2 is
even, it is proper—as befits a rotation.

Table I lists the 10 conjugacy classes of 0 3 , showing their cycle types and
geometrical effect. Notice that the "symmetry types" of Slepian [7] are
conjugacy classes; we use the term to mean a set of conjugate subgroups of
Od. To catalog the latter we wrote an uninteresting and inefficient subgroup

TABLE I

Elements of 0 3 by Conjugacy Class: 48 Operations in 10 Classes

Name

/
A
B
C
D
E
F
H
J
K

Cycle
structure

+1+1+1
+ 1-2
+ 1 - 1 - 1
- 1 + 2
+ 3
- 1 + 1 + 1
+ 1+2
- 3
- 1 - 2
- 1 - 1 - 1

Order

1
4
2
2
3
2
2
6
4
2

No. of
conjugates

1
6
3
6
8
3
6
8
6
1

Description

No effect
π/2 rotation face axis
π rotation face axis
π rotation edge axis
2π/3 rotation vertex axis
Reflection in face plane
Reflection in edge plane
DxK
AxE
Reflection in center point

TABLE II

Subgroups of 0 3 by Conjugacy Class: 98 Subgroups in 33 Classes

Name

/
A
B
C
D
E
F
H
J
K

BB
BC
BE
BF
CE
CK
EE
CD
FF

Order

1
4
2
2
3
2
2
6
4
2

4
4
4
4
4
4
4
6
6

No. of
conjugates

1
3
3
6
4
3
6
4
3
1

1
3
3
3
6
6
3
4
4

Class structure

/
I+B+2A
I+B
I+C
I+2D
I+E
/ + F
I+K+2D + 2H
I+B+2J
I+K

7+35
I+B+2C
I+B+E+K
I+B+2F
I+C+E+F
I+C+F+K
I+B+2E
7+2D + 3C
7+2D + 3F

Name

AB
AE
BFF
CJ
EEE
EF
EFF

BD
CF
BBC
CCC
DEE
R
G

Order

8
8
8
8
8
8
8

12
12
16
24
24
24
48

No. of
conjugates

3
3
3
3
1
3
3

1
4
3
1
1
1
1

Class structure

I+2A + 2C+W
I+B+E+K+2A + 2J
7+2F+2/+35
7+5+2C+2E+2. /
7 + A : + 3 £ + 3 £
I+B+2A + 2E+2F
7 + £ + £ + Ä : + 2 C + 2 F

7+35+87)
7+#+27) + 277+3C+3F
7+#+2,4 + 2C+2F+2J+35+3F
7+3B+6F+6/+87)
I+K+3B+3E+8D + SH
7+35+6^ + 6C+87)
7+#+35+3F+6,4 + 6C+6F+6J r+87>+8#

106 W. F. Lunnon

program, which shall not be described. Cannon surveys appropriate methods
in his thesis [5], mentioning in particular the work of Neubüser (see Biilow
and Neubüser [6]).

We find that 0 3 has 98 subgroups falling into 33 conjugacy sets (symmetry
types), including the 8 square (d=2) types. Table II summarizes these sub
groups. As the subgroups themselves are of no particular interest, we just show
their breakdowns by conjugacy classes of their elements. For example, a type
BB polyomino is invariant under the identity, class /, and the three rotations
through π about an axis, class B. So the structure of type BB is shown as
7+35.

3. The Existence of Models

While we have shown that any symmetry type of a free polyomino is a set
of conjugate subgroups of the special group G of the tessellation, we have not
shown the converse, that every such set is the type of some polyomino. For
cubical polyominoes this is assured by our painful hand construction of
models of each symmetry type (see Fig. 1). Below each figure is its symmetry
type, defined by Table II, and the number of cubes composing it. Notice that
CD10 and DEE25 possess a hidden central cell whereas BD34 does not. They
are intended to be minimal in their number of cells, but it is quite possible
that some of them can be further reduced.

For one-dimensional polyominoes the converse is false, however. There are
two symmetry types, I (no symmetry) and G (reflection in the center point).
Polyominoes consist of connected segments of integral length, all of which
are clearly of type G.

Notice incidentally that we do not distinguish between various possible
positions of the center relative to the cells, where the center of a polyomino
with given symmetry is the intersection of the centers of its symmetries. So,
for example, if a cubical is invariant under a single reflection of class E, its
symmetry type is E whether the mirror lies on the faces of cubes or on the
midplanes of cubes.

That the converse is true provided d > 1 was suggested by the model R56

of Fig. 1. The idea is to construct a large enough shell P with full symmetry G,
then to reduce the symmetry to given H < G by sticking on an asymmetric
knob Q together with its images under H only. For R56, P is a skeletal 4 x 4 x 4
cube of edges and vertices only (32 cells), and Q is a cell projecting from its
edge. Q has 24 images under the group R of all rotations of the cube, and
32 + 24 = 56. Of course, such a model is not necessarily minimal.

THEOREM. Given a tessellation and d, e, and/, as in Section 1, with G, etc.
as defined there and d> Ì, then for any H<G there is a fixed Euclidean

Symmetry of Cubical and General Polyominoes 107

polyomino with precisely that symmetry. This implies the free converse
referred to above.

We need some facts about Euclidean tessellations, as discussed by Coxeter
[3]. The full symmetry group Gt is generated by reflections in finitely many
(d— l)-dimensional hyperplanes or primes, where 4 will do for the cubical case.
The primes that act as mirrors for the pure reflections of Gt fall into finitely
many families of equally spaced parallel primes, on which the center of any
symmetry not equal to / must lie. There exist points lying simultaneously on
one member of every family, 9 families for the cubical case with such points at
centers and vertices of cubes. Let S be such a point. Then G is generated by
reflections in the mirrors through S.

Define the k-ball to be the set of all cells whose distance is < k. The distance
of a cell adjacent to S is defined to be zero; and of a cell adjacent to a cell of
distance k— 1, but to no nearer cell, is defined to be k. The k ball possesses a
surface k-sphere, the cells of which are at distance k.

Let P be a fc-ball. Then P has order kd cells. Its surface has order kd~1
9 and

the mirrors through S contain order kd~2 of the latter. So for large enough k
there exists a cell g at distance k+l, adjacent to the surface, not lying on any
mirror through S. Attaching this to P shifts the center of gravity away from S
by a small length of order

(4) k/(l+kd) ~ kl~d

in a direction away from all the mirrors through S. Since uf>lwe can choose
k large enough to make (4) smaller than the distance between any two parallel
mirrors.

The symmetry of P u g is /, since its center of gravity lies on no mirror.
The symmetry of P on the other hand is G, since any element of G applied
about center S will move one cell into another of the same distance. Let us
now apply / / t o P u ß with center S (or containing S if it is not a point).
P remains invariant while g traces out a system of cells g ' , g",..., all distinct,
and of distance &+1, so attached to P. Clearly P u g u g ' u . . . has the
required symmetry H.

4. Cubical Counts

Having spent so much effort in discussing cubical polyominoes, we felt
constrained to sit down and enumerate them for small numbers p of cells.
This is really a job for a computer, and a program using the ideas of Lunnon
[1] and this paper would be straightforward. We present our hand-calculated
counts in Table III, together with parallel counts of square (d=2) poly
ominoes in Table IV for comparison, 1 ^ρ ^ 6.

108 W . F. Lunnon

TABLE III TABLE IV

Cubical Polyominoes Square Polyominoes

P

1
2
3
4
5
6

Free

1
1
2
7
23
112

Fixed

1
3
15
86
534
3481

Real

1
1
2
8
29
166

P

1
2
3
4
5
6

Free

1
1
2
5
12
35

Fixed

1
2
6
19
63
216

Real

1
1
2
7
18
60

Free polyominoes whose symmetry groups contain no improper elements
(classes E, F, H, / , and K for the cubical case) are enantiomorphic: that is,
if no rotations outside d space are permitted, they exist in distinct left and
right forms. (Reflections in dspace are rotations in (d+ 1) space.) Under "real"
we give the counts when each enantiomorphic is counted twice, as would be
natural for the cubical case in ordinary space.

A trivial branching argument shows that as p -► oo there are at least 4P

/7-celled cubical polyominoes. A method due to Eden [10, 11] shows that
there are at most(55/44)p ~ 12.2P. Extrapolating from our totally inadequate
data, we estimate that there are very roughly 8P.

References

1. Lunnon, W. F., Counting polyominoes, in "Computers in Number Theory" (A. O. L.
Atkin, and B. J. Birch, eds.), pp. 347-352. Academic Press, London, 1971.

2. Golomb, S. W., "Polyominoes." Scribner, New York, 1965.
3. Coxeter, H. S. M., "Regular Polytopes," 2nd ed., Chapter 11. Macmillan, New York,

1963.
4. Coxeter, H. S. M., and Moser, W. O. J., "Generators and Relations for Discrete Groups,"

2nd ed. Springer-Verlag, Berlin and New York, 1965.
5. Cannon, J. J., Computation in finite algebraic structures. Doctoral thesis, University of

Sydney, 1969.
6. Bülow, R., and Neubüser, J., On some applications of group-theoretical programs to the

derivation of the crystal classes of R4, in "Computational Problems in Abstract Algebra"
(J. Leech, ed.), pp. 131-135. Pergamon, Oxford, 1969.

7. Slepian, D., On the number of symmetry types of Boolean functions of n variables,
Canad. J. Math. 5, 185-193 (1953).

8. Ledermann, W., "Introduction to the Theory of Groups." Oliver & Boyd, Edinburgh,
1964.

9. Weyl, H., "Symmetry." Princeton Univ. Press, Princeton, New Jersey, 1952.
10. Lunnon, W. F., Counting hexagonal and triangular polyominoes, in "Graph Theory

and Computing" (R. Read, ed.). Academic Press, New York, 1972. (this volume).
11. Klarner, D. A., Cell growth problems, Canad. J. Math. 19, 851-863 (1967).
12. Klarner, D. A., Methods for the general cell growth problem, in "Combinatorial Theory

and Its Applications," pp. 705-720. Balatonfiired (Hungary), 1969.

GRAPH COLORING ALGORITHMS

David W. Matula George Marble Joel D. Isaacson

Department of Applied Mathematics

and Computer Science

Washington University

St. Louis, Missouri

Department of Mathematical Studies

Southern Illinois University

at Edwardsville

Edwardsville, Illinois

1. Introduction 109
2. Sequential Vertex Colorings 110
3. 5 Coloring Planar Graphs 117
4. Coloring Random Graphs 119

References 122

1. Introduction

Considerable literature in the field of graph theory has dealt with the
coloring of graphs, a fact which is quite apparent from Ore's extensive book
The Four-Color Problem [8]. The majority of this effort has been devoted to

t This research was supported in part by the Advanced Research Projects Agency of the
Department of Defense under contract SD-302 and by the National Science Foundation
under contract GJ-446.

109

MO D. W . Matula, G. Marble, J. D. Isaacson

the theory of graph coloring, and relatively little study has been directed
towards the design of efficient graph coloring procedures. Since numerous
proofs of properties relevant to graph coloring are constructive, many coloring
procedures are at least implicit in the theoretical development.

In this paper we focus attention on sequential vertex colorings, where
vertices are sequentially added to the portion of the graph already colored
and new colorings are determined to include each newly adjoined vertex. At
each step an attempt is made to keep the total number of colors necessitated
relatively small without an undue amount of computation being expended.

In Section 2 the concept of sequential colorings is formalized and certain
upper bounds on the minimum number of colors needed to color a graph, the
chromatic number x(G), are described. It is noted that while sequentially
coloring the vertices with highest degrees first appears reasonable and leads
to an upper bound on χ((7), the sequential coloring determined by recursively
adding vertices so that the last vertex added has minimum degree in the graph
so far colored leads to a tighter bound. The notion of a bichromatic inter
change is discussed, and efficient sequential coloring algorithms utilizing
bichromatic interchange are formulated.

Our main result occurs in Section 3, where it is shown that the recursive-
smallest-vertex-degree-last-ordering-with-interchange coloring algorithm will
color any planar graph in five or fewer colors. The algorithm is evidently
quite efficient even on large planar graphs.

The various algorithms have been programmed and applied to a selection
of random graphs. The computed bounds on x(G) and the number of colors
used in the effected colorings are tabulated and compared in Section 4. The
bounds are seen to vary considerably, with even the best bound being far
from tight. Practically, the addition of the bichromatic interchange step to the
sequential coloring procedure is shown to provide a significant improvement
in reducing the number of colors utilized closer to the chromatic number,
while still allowing for a reasonably fast computation time.

2. Sequential Vertex Colorings

A graph G = (V, E) with vertex set V and edge set E will herein be assumed
to have no loops or multiple edges. For A c V, the induced subgraph {A} =
{A, E') of G will be the subgraph of G, where E' contains all edges of E, both
end points of which are in A. Also (v1,v2,..-9vJy will denote {{vi,...,vJ}}. A
k coloring of G is an assignment of colors to the vertices of G using no more
than k colors and such that adjacent vertices have different colors. For an
ordering v1,v2,...,vn of the vertices V of G, a sequential coloring of G corre-

Graph Coloring Algorithms I I I

sponding to this order is a k coloring of G utilizing each of the colors 1,2,..., k
determined recursively as follows :

(1) vl is assigned color 1, thus 1 coloring (t ^) ;
(2) if (vi,v29...,vi_iy has been j colored, then vl,...,vi.l are assigned

the same colors in {vl,...,viy, and vt is assigned color m, where m ^ y + 1 is
the minimum positive integer not occurring on adjacent vertices in (vx,..., ^>.
Thus, <^!,..., Vi} is y colored for m <y, and (j+ 1) colored otherwise.

A complete graph G has an edge for every distinct pair of vertices, and a
complete k-partite graph G = (V, E) has a vertex partition Ax,A2,...,Ak, such
that each edge with an end point in At and Aj is in E for / Φ) and is not in
Efori=j.

THEOREM 1. Any sequential coloring of a complete Avpartite graph G is
a k coloring of G.

Proof: Let G = (V, E) be a complete /r-partite graph where all edges of E
have end points in different parts of the vertex partition Al,A2,...,Ak. For
ve Ai, weAj, ίφ), v and w must be colored different by any sequential
coloring since v and w are adjacent in G. Suppose vuv2,...,V\V(G)\ is any
particular ordering of the vertices of G, and let vi9 VjE Ap, i<j. Now in
(vu υ2,..., Vj}, Vj will have precisely the same neighbors as vt. So the minimum
color value m not occurring on its neighbors in (vi,v2,...,vj_iy must be the
color value of vi. Hence, vt and υ$ are assigned the same color by the sequential
coloring algorithm corresponding to the order ι>ι,ϋ2>···>ι;|κ(οι· Then all
vertices of each Ap, 1 ^p^k, will be assigned the same color, so G is A:
colored. Since the ordering of the vertices was arbitrary, the theorem is
proved.

For any graph G, the smallest k such that G can be k colored is termed the
chromatic number, x(G), of G. In general not all sequential colorings of a
graph G will yield x(G) colorings. For the graph of Fig. 1, the sequential

Fig.1

112 D. W . Mattila, G. Marble, J. D. Isaacson

coloring corresponding to vl9 v2, v3, v4, v5 utilizes 4 colors, whereas the order
v59 v4, v3, v2, vt yields a 3 coloring. In particular some sequential coloring
must yield a x(G) coloring. To see this let Λ(be the vertices colored / by a x(G)
coloring of G in the colors 1,2,...,/(G). Then for any ordering of the vertices
V(G), which has all members ofAi before any member of A} for 1 ^ / <j^x(G),
the corresponding sequential coloring will be a x(G) coloring.

It is not easy to determine in general if a particular sequential coloring is a
X(G) coloring of G. No efficient general procedure for determining x(G) is
known, and even the known bounds on x(G) are not always very sharp.
Let the degree ofv in the graph G, degG(y) (deg(y) when G is understood),
be the number of adjacent vertices of v in G. It is evident from the sequential
coloring procedure that #(G)< I +ma.xveViG){deg(v)}. Brooks [2] has im
proved upon this.

THEOREM 2 (BROOKS [2]). Let G be a connected graph with

max {deg(r)} ^ 3
veV(G)

where G is not a complete graph. Then

(1) x(G) ^ max {deg(i;)}.
veViG)

We shall term this inequality the max-degree bound on x(G).

For graphs with only a few vertices of large degree, it is evident from the
sequential coloring procedure that coloring these vertices first will generally
avoid the need for as many as maxyeK(G){deg(i;)} colors. By ordering the
vertices v1,v2,...,V\V{G)i such that deg(i;t·) ^ deg(i;/+1) for 1 ^ / < \V(G)\ and
considering the corresponding sequential coloring, the following bound of
Welsh and Powell [10] is obtained.

THEOREM 3. Let G be a graph with V(G) = {vl9 v2,..., vn}9 where deg(yf) ^
deg(t;i+1) for / = Ι , . , . , Λ — 1 . Then

(2) x(G) < max min{z, l + d e g ^) } .
i < / < «

Inequality (2) will be termed the truncated-max-degree bound on x(G). The
proof of Theorem 3 given by Welsh and Powell [10] is essentially the algorith
mic proof we have sketched. Bondy [1] has given a shorter existential proof.

An ordering of the vertices of a graph G such that deg(^) ^ deg(ui+1)
for 1 < / < | V(G)\ will be called a largest-first (LF) ordering of the vertices.
Determination of a sequential coloring corresponding to such an ordering will
be termed the largest-first algorithm (LF algorithm). The sequential coloring
corresponding to a given LF ordering will effect the same coloring as described
by the algorithm of Welsh and Powell [10] and will utilize no more than

Graph Coloring Algorithms 113

maxjminl/, 1 + deg(t,
i)} colors. Note that since the LF ordering of the vertices

is not necessarily unique, the number of colors utilized in the coloring pro
vided by the LF algorithm can vary depending on the particular LF ordering
chosen. Application of the LF algorithm will mean its application for a
particular largest-first ordering.

Cole [3] discusses a procedure for scheduling subject examinations utilizing
graph-coloring techniques. If each subject corresponds to a vertex and any
pair of subjects that must be taken by the same student corresponds to an
edge of a graph G, then /(G) is the minimum number of examination periods
needed to avoid scheduling conflicts. Cole [3] gives the subject incompati
bility data for 34 examination subjects to be offered for the First Year General
Degree at Leicester University for June 1963, which is reproduced in Fig. 2
as the adjacency matrix of a graph. There are further refinements in Cole's
model as some subjects require multiple papers that may need to be in se
quential periods.

Cole describes an algorithm ordering the 34 subjects in an LF ordering
with further subordering being determined on the basis of the multiple paper
conditions. He then generates a period assignment table utilizing 14 periods.
It is evident from Cole's solution that fewer periods would be needed if the
multiple papers were not required, and let us consider how many periods will
be needed in this case.

The graph G with the adjacency matrix of Fig. 2 must have χ(β) < 20
from the max-degree bound, and x(G) < 14 is confirmed by the truncated-
max-degree bound as cited by Welsh and Powell [10]. Actually the sequential
coloring utilizing the ordering vi9v2,...,v34 yields a coloring using only nine
colors. The LF ordering with subordering by label value yields an 8 coloring,
where #(G) = 8 can be verified since <i;7 ,v s ,v9 ,v269v21 ,v28 ,v299v30} is a
complete subgraph. The sequential coloring determined by this LF ordering
is indicated in Fig. 2.

The previous example suggests that sequential coloring algorithms may
perform considerably better than the two bounds (1) and (2) suggest. A closer
inspection of the sequential coloring procedure shows that for a given ordering
vi9 v29.. .9vn of the vertices of a graph G, the corresponding sequential coloring
algorithm could never require more than k colors where

(3) k = max {1 + deg <VltV2t...tVi>(Vi)}.

The determination of a vertex ordering minimizing k in (3) was derived
earlier by Matula [5], and can be found by the following procedure:

(1) for n = |K(G)|, let vn be chosen to have minimum degree in G;
(2) for / = n — 1, n — 2,..., 2,1, let vi be chosen to have minimum degree in

(V(G)-{vn9v„_l9...9vi+1}}.

114 D. W. Matula, G. Marble, J. D. Isaacson

1
2

3

4

5

6

7

8

9

10

1 1

12

13

14

15

16
17

18

19

20

21

22

23

24

25

26

27

28
29

30

31
32

33

34

1

T
Ί

1

Ί

Ί

Ί
Ί
1

Ί

Ί
Ί

Ί
j

Ί

j

j
j
j

|

2

T
Ì

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

3

T
1

2

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1 1

4

T

8

1

1

1

1

1

1

1
1

| |

5
i — i

1

1

4

1

1

1

1

1

1
1

1

6

T
1

1

1

3

1

1

1

1

1

7
i — i

1

1

1

4

1

1

1

1

1

1

1

1
1

1

8

T
1

1

5
1

1

1

1

|

9 10 11 12 13 14 15 16 17 18 19 202122 23 24 2526 27 282930 31 32 3334

τ τ " 1

1

1

1

1

1 1

1

1
5

1

1

1

1

1

1 1

1

1

1

1

1

1
1

1

1
1

1

, 1 . ■

1 1

1

1

1

1

1

7

1

1

1
1

1

| |

I 1

1

1

4

1

1

|

~
1

1

1

1

1

1

6

1

1

1

1 1

1 1

1

1

1

5

1
1

1

1

1

1

1

1

1

_, !

T
1

1

1

1

1

1

1

1

6
1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

3
1

T
1

1

1

1

1

1
1

1

1

1

7

1

1

1

1
1

1

| |

Ί 1

1

1

1

1

1

1

5

| |

1

1

1

2

1

1

1

I

i r

1

1

5

1

1

1 i

r

1

1

5

1

1

I

T
1

1

1

1

1

1

1
1

1

3

1

I

1

1

1

1

1

1

1

1

4

1

1
1

1

|

1

1

1

1

1

1

1

2

1

1

I

1

1

1

1

1

1

1

1

1

7
1

1

1
1

1 1

1

1

1

1

1

1

1

1

1

1

8
1
1

1

| |

T

1

1

1

1

1

1

6

1 1

r——r

2

I

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

3

1
1

ι 1

1
1

1

1

1

1

1

4
1

1 1

1
1

1

1

1

1
8

1

LL

I 1

1 il
1 il

1 i l

1 l]
2 i l

LLIJ

Fig. 2. The adjacency matrix for the subject incompatibility data for 34 examination subjects
offered for the First Year General Degree at Leicester University for June 1963 from Cole [3]. The
color values determined by the largest-first algorithm corresponding to the largest-first ordering
with subordering by subject number are given on the main diagonal.

For any vertex ordering vl,...,vn determined in this manner, we must have

(4) d e g ^ ^ . . . ^ ^) = min d e g ^ ^ ^ ^) , 1 < / < /i,

so that such an ordering will be termed a smallest-last (SL) vertex ordering.
The fact that any smallest-last vertex ordering minimizes k in (3) over the n !
possible orderings is shown by Matula [6].

Note that the determination of a smallest-last vertex ordering has a feature

Graph Coloring Algorithms 115

of recursiveness not shared by the largest-first ordering procedure. The degrees
of vertices computed in determining a smallest-last ordering are over sub
graphs, whereas determination of the largest-first ordering utilizes only the
degrees of vertices in the whole graph. Thus, the orderings are not necessarily
equivalent.

The procedure of determining a smallest-last ordering of the vertices and
then determining the corresponding sequential coloring will be termed the
smallest-last coloring algorithm (SL algorithm). It is evident from the con
struction that the SL algorithm will always determine a coloring requiring
no more than 1 +maxHmint;eK(H){deg//(V)| H & subgraph of G} colors. This
provides an alternate proof of the following bound on x(G) derived earlier
and independently by Szekeres and Wilf [9] from consideration of the eigen
values of the adjacency matrix of G.

THEOREM 4. For any graph G,

(5) x(G) ^ 1 + max min{degH(i>)| H a subgraph of G}.
H veV(H)

We shall refer to inequality (5) as the max-subgraph min-degree bound on
X(G). Szekeres and Wilf [9] give both an existential and a constructive (algor
ithmic) proof of Theorem 4. Their algorithmic proof yields an ordering of the
vertices, not necessarily an SL ordering, minimizing k in (3). Matula [6] has
shown that the bound (5) can be sharpened to

(6) x(G) < 1 + max{vl(//)| H a subgraph of G},
H

where λ(Η) ^ minveV(H){aQgH(v)} is the edge connectivity of H. However,
this improved bound does not pertain to sequential colorings and will not be
utilized herein.

It is evident that the max-subgraph min-degree bound (5) is always sharper
than or equal to the truncated-max degree bound (2). Applying the SL algo
rithm to the graph, G, with the adjacency matrix of Fig. 2 taken from Cole's
problem, the max-subgraph min-degree upper bound on x(G) is determined to
be 10 and again an 8 coloring is achieved. This bound compares favorably with
the truncated-max degree bound of 14 for this graph. Although not sharp, the
max-subgraph min-degree bound appears quite superior to the max-degree
and truncated-max-degree bounds for such graphs having a variety of vertex
degrees.

The SL algorithm does not always effect a x(G) coloring of G. Some in
stances of this will be discussed in Section 4. In attempting to improve the
sequential coloring procedure previously described note that when the vertex
Vi is adjoined to the (k — 1) colored subgraph (vl,v2,...,vi_iy, a A*th color is

116 D. W. Matula, G. Marble, J. D. Isaacson

needed only if vt is adjacent to vertices with colors 1,2,..., A*— 1. Now if a
complete graph on k — 1 vertices exists among the neighbors of vi9 then
X((vl9v2,...9vi)) = k and the new color is necessary. Otherwise, it may be
possible to change the colors on some neighbors of vv so as to preserve the
(k—\) coloring of <0ι,ι>2ΐ···>*>ΐ-ι> while leaving at most k — 2 colors on
neighbors of vi9 thus freeing a color for vit

Given a graph G with a k coloring in the colors 1,2,..., k, let At be the set of
vertices of G colored /. For / Φ}9 the ij bichromatic subgraph of G is the sub
graph {Ai u Aj}, and a component of <Λ,· u Aj} is an ij component. If the
distinct vertex colors i and j are interchanged on an ij component of the k
colored graph G, then another k coloring of G is obtained. This procedure is
termed an /<->y interchange on the k colored graph G. A bichromatic inter
change on the ^-colored graph G is an / +-*j interchange on G for some / Φ],

A search for bichromatic interchanges at critical points in the coloring
process is introduced in the following coloring algorithm.

For an ordering vi9v29...9vn of the vertices V of G, a sequential-with-
interchange coloring of G corresponding to this ordering is a k coloring of G
utilizing each of the colors 1,2,...,/: determined recursively as follows:

(1) vx is assigned color 1, thus 1 coloring <ί^>;
(2) if<i; iî v29..··>

 vi-1) has beeny colored using each of the colors l,2,...,y,
and if m is the minimum positive integer not occurring on vertices of
(vl9v29...9vi_iy adjacent to v in G9 then

(a) for ra^y, we assign each vertex of ζνί9...9ν^^ the same color in
<i>i,...,#,·>, and vt is assigned color m9 thusy' coloring <t;1,...,i;f>;

(b) for m =y+ 1, let Kcz {l,2,...,y} be the set of color values such that
OLE K implies exactly one vertex adjacent to vt in (ül9...,vty has color a in
{vl9...9vi-iy. If for some a,/? e K9 a Φ ß9 an (x9ß component of <^l9..., f̂-_ x >
has only one vertex adjacent to vt in (νί9...9ν^9 then perform one α9β inter
change on one such α9β component of <^i,...,t?i_1>. Now color the vertices
vl9...9vi-1 the same as in this new coloring of <i?1,...,t?/_1>, and vt with the
available color, either a or β9 and ay coloring of (νί9...9ν^ is obtained;
otherwise if no such interchange is possible, color vl9...9vi_l the same as in
<y1,...,yI_1>, and color v{ with colory+ 1, thus (y+ 1) coloring (νΐ9ν2,..·9ν^.

The Iargest-first-with-interchange coloring algorithm (LFI algorithm) will
refer to the sequential-with-interchange coloring algorithm applied to a
vertex sequence in largest-first order. The recursive-smallest-vertex-degree-
last-with-interchange coloring algorithm (SLI algorithm) will refer to the
sequential-with-interchange coloring algorithm applied to a vertex sequence
in smallest-last order. It should be noted that both of these algorithms depend
on the particular LF or SL ordering used and on the particular bichromatic

Graph Coloring Algorithms 117

interchange made in Step 2b when more than one suitable interchange is
available.

We shall now investigate some properties of the bounds developed and the
algorithms proposed, first on planar and then on random graphs.

3. 5 Coloring Planar Graphs

A tree having at least n vertices of degree n is easily constructed for any
n^ 1. A tree is a planar graph, so the max-degree (1) and truncated-max-
degree (2) bounds can give arbitrarily high bounds on x(G) for some planar
graphs G, while it is known [8, p. 84] that x(G)^ 5 for all planar graphs G.
We assume that planar graphs are defined to exclude loops and multiple
edges. Szekeres and Wilf [9] point out that the max-subgraph min-degree
bound (5) is always less than or equal to 6 for any planar graph. In this
section we shall show that the recursive-smallest-vertex-degree-last-ordering-
with-interchange coloring algorithm (SLI algorithm) will utilize at most five
colors in coloring any planar graph.

LEMMA 1. Let H be a planar graph where H—v is k colored for some
v e V{H) with deg(y) ^ 4. Then for any four vertices adjacent to v, either two
of these are of the same color or there exists a bichromatic interchange on
H—v which will yield two similarly colored vertices among the four.

Proof: Given the planar graph H with H— v0 k colored, where deg(i?0) ^ 4,
choose any four adjacent vertices of v0. If no two of these have the same color
then we may assume these four neighbors, vi9 v2, v3, and y4, occur in clockwise
order around v0 and have colors 1, 2, 3, and 4, respectively (see Fig. 3). Now
if vx and v3 are not in the same component of the 1,3 bichromatic subgraph,
then the l«->3 interchange on the 1,3 component containing vl will yield a
coloring that verifies the lemma in this case. Otherwise, consider the
2,4 bichormatic subgraph and assume v2 and v4 are in the same component.
Then there is a path in H from v2 to v4 and a disjoint path in H from vx to v3

since υγ and v3 are in the same 1,3 component. From the planarity of H and
the clockwise order of vu v2, v39 and v4 about v0 in H, it is evident that the
vertex v0 may be added to the graph H—v0 along with edges v0vu v0v2,
ô y3> ô v4> vi v2> v2 v3> v3 v4> v4vi> anc* the resulting graph H' will be planar

(see Fig. 3). But H' then has vertex disjoint paths between any two of the
vertices {v0,vl,v2,v3,v4.}, and by Kurtowski's theorem [8, p. 22], H' can
not be planar. Thus, v2 and v4 are not in the same 2,4 component, so the

118 D. W . Matt i la , G. Marble , J. D. Isaacson

Fig. 3. The planar graph H includes H—v0, the vertex v0, and the solid lines from v0 to

vertices of H—v0. The graph H ' includes H— v0, the vertex v0, and the dashed lines shown. It

is evident that H ' is also planar.

2 <-► 4 interchange on the 2,4 component containing v2 is an interchange
proving the lemma.

Now we show the main theorem.

THEOREM 5. The recursive - smallest - vertex - degree - last - ordering - with -
interchange coloring algorithm (SLI algorithm) will color any planar graph
in five or fewer colors.

Proof: Given the planar graph G, we may assume that the vertices are
ordered in a smallest-last ordering so that vt has minimum degree in
<i; 1 , i ; 2 , . . . , i ; i >, /=l ,2 , . . . , |K(G) | .

Proceeding by induction, (v^ is 1 colorable. Assume that {ν^.,.,ν^^ is 5
colored by SLI for some /. Now (t^ , . .,t;f> is planar so deg<t.lfl?2 Viy(Vi) < 5
[8, p. 51]. If fewer than five distinct colors occur on the vertices of (νλ,..., v{ _ 1 >
adjacent to i>f in {v1,...,vi}, then clearly vv will be colored by SLI without
resorting to a sixth color. If exactly five distinct colors appear, then by Lemma
1 some bichromatic interchange in <i;l5...,!;,·_!> including a vertex adjacent
to Vi in G exists which will cause fewer than five distinct colors to occur on the
neighbors of vx among vi,v2,..-,vi_l. Since the SLI algorithm searches for
all possible interchanges on the adjacent vertices of v{ in this case, an appropri
ate interchange will be made and vx will be colored by SLI without recourse
to a sixth color. Thus, <v1,...,üi> is 5 colored by SLI and by the induction
assumption G = (vl9v2,..-,^|K(G)|) ^S t n e n colored in five or fewer colors.

Graph Coloring Algorithms 119

If a graph G contains no subgraph of minimum degree five or greater, then
for a smallest-last ordering of the vertices,

deg <„,,...,*,>(Pd = min d e g ^ , , , . . . , , ^) < 4, / = 1,2,..., \V(G)\.

By methods analagous to the proof of Theorem 5 we can readily prove
Theorem 6.

THEOREM 6. Let G be a planar graph with no subgraph of minimum
degree five. Then the SLI algorithm will color G in four or fewer colors.

4. Coloring Random Graphs

The various sequential coloring algorithms were applied to a collection of
random graphs and the results are tabulated in Table I. The random graphs
were computer generated utilizing pseudo random number generators starting
with a fixed set of vertices and adding edges chosen uniformly from the
remaining possible edges until a specified average degree was obtained.

A total of twenty random graphs were investigated. Five of these graphs had
order twenty-five and average degree eight; fifteen had order one hundred,
five each having average degree ten, twenty, and forty. For each graph the
max-degree (1), truncated-max-degree (2), and max-subgraph min-degree (5)
upper bounds on the chromatic number were determined. For each of the
random graphs 1-15, the largest complete subgraph was determined, thus
providing a lower bound on the chromatic number. For random graphs on
100 edges with average degree 40, such as random graphs 16-20, it can be
estimated [7] that the probability that the largest complete subgraph is of
order nine or greater is only a few percent.

The graphs were each colored by each of the four previously described
algorithms, LF, LFI, SL, and SLI, via programs prepared in the PL/I language
and executed on an IBM 360/50. The execution time in seconds for each
coloring procedure is tabulated. In addition, for 10 of the 20 problems the
vertices were randomly ordered in five ways and the number of colors used in
the corresponding sequential vertex coloring was determined in each case.

Statistically, it is quite evident that the five graphs in each of the four blocks
(1-5, 6-10, 11-15, 16-20) exhibit only a small variation in each of the par
ameters measured. Regarding the number of colors utilized by the LF algor
ithm, other results on coloring random graphs having approximately the
same density and order, given by Wood [11], are in close agreement. This
suggests that global properties of random graphs such as we have measured
can be quite sharply determined (see also Holgate [4] and Matula [7]),
despite the variability in local structure inherent in random graphs, a result
akin to the situation in statistical thermodynamics.

T A B L E I

Some Results From the Application of the Coloring Algorithms to Several Random Graphs

Colorings

Largest first Smallest last
Random graphs Bounds on colorings with \vith

Largest first interchange Smallest last interchange Sequential colorings—Random orderings
Number Upper Lower

Graph of Average Colors Colors Colors Colors Colors Colors Colors Colors Colors
number vertices degree Uf U2

b U3
C Ld used Timee used Time* used Timee used Time* used used used used used

1
2
3
4
5

6
7
8
9
10

11
12
13
14
15

16
17
18
19
20

25
25
25
25
25

100
100
100
100
100

100
100
100
100
100

100
100
100
100
100

8
8
8
8
8

10
10
10
10
10

20
20
20
20
20

40
40
40
40
40

14
13
14
13
12

18
17
16
20
16

32
32
31
30
31

53
51
51
52
52

10
10
10
10
10

14
14
14
14
14

23
24
24
23
24

43
42
42
42
42

7
7
7
7
7

7
8
8
8
8

15
15
15
16
16

32
32
32
32
32

5
5
5
4
4

4
4
4
4
4

5
6
5
5
5

6
6
6
6
6

6
7
6
7
6

9
10
9
10
10

16
15
16
17
17

0.44
0.38
0.38
0.44
0.44

2.25
2.30
2.26
2.27
2.29

2.55
2.54
2.42
2.45
2.62

2.81
2.75
2.81
2.88
3.26

5
5
6
5
5

6
5
6
6
6

9
9
9
9
9

16
15
15
15
16

1.40
1.40
1.47
1.45
0.94

5.90
4.19
4.30
3.35
4.90

7.81
4.88
8.19
11.44
5.12

19.81
11.31
12.53
15.79
13.37

5
6
6
5
5

6
7
6
6
7

10
11
10
10
10

17
16
16
18
17

1.38
1.38
2.00
1.25
1.31

3.41
3.35
3.31
3.55
3.12

5.94
6.06
5.94
5.94
6.00

15.19
15.12
15.06
15.31
15.06

5
5
5
5
5

6
6
6
5
6

9
9
10
9
9

15
14
15
14
16

1.44
4.12
6.31
1.44
2.50

8.50
7.81
7.81
6.12
7.75

16.25
13.69
16.07
13.67
11.88

26.88
27.81
34.38
29.00
28.94

7
6
6
6
6

11
10
10
11
11

6
6
7
6
6

11
11
12
10
10

7
7
7
7
6

12
11
11
11
11

6
6
7
6
5

10
12
11
10
11

7
6
7
5
6

11
11
10
11
11

aUi =maxl,ev(G){deg(i;)}. CU3= l+maxHn\mV€V(H){aegH(v)\ H a subgraph of G}.
bU2 = maxj $ / < f I min{/, 1 + deg(f/)}, where degC^-O ^ deg(t>,·) for dL is the largest number of vertices in any complete subgraph of G.

2 ^ i < | V(G) |. e Time (sec) on an IBM 360/50.

118
D

. W
. M

a
ttila

, G
. M

a
rb

le
, J

. D
. Is

a
a

c
s

o

file:///vith

Graph Coloring Algorithms 121

A dramatic variation in the value of the upper bounds for x(G) is evident
in Table I, with the max-subgraph min-degree bound (U3) giving consistent
significant improvements over the truncated-max-degree (U2) and max-degree
(Ui) bounds. The C/3 bound still must be considered quite poor for random
graphs. Note that U3 gives a value at least twice the actual value of x(G) for
the larger denser graphs 16-20. It is significant that the colorings obtained by
the naïve sequential colorings, corresponding to the random orderings, gave
a coloring in a number of colors less than or equal to the best upper bound
(U3) in every case.

Practically, for a random graph G, it appears that the simple procedure of
sequentially coloring G gives a better upper bound on x(G) than the best
known upper bounds based on other graph theoretic properties of G. Despite
the superior bound attendant to the smallest-last ordering as compared to the
largest-first ordering, the colorings effected by the SL and LF algorithms were
almost equivalent for these random graphs. In addition the number of colors
needed by both the SL and LF algorithms tended to be only slightly less than
the average number of colors needed for sequential colorings based on
random orderings. The effect of adding the interchange step to the sequential
coloring algorithms was significantly beneficial. In 60% of the graphs in
Table I the interchange step gave a more efficient coloring for the largest-first
ordering, and in 70% of the graphs the interchange step improved the smallest-
last ordering. Thus the use of bichromatic interchange would seem to represent
an advancement in the state of the art for practical graph-coloring procedures.

Timing considerations show that the SL algorithm takes considerably more
time than the LF algorithm and the interchange step adds precipitously in
both cases. Yet the largest times indicated for the random graphs of order
100 with average degree 40, hence 2000 edges, still are only of the order of 0.5
min. Thus, considerably larger problems should be economically viable by any
of these algorithms.

The behavior of these sequential coloring algorithms in theory on planar
graphs and empirically on certain random graphs is hopefully indicative of
their general behavior. Yet acceptable performance of these algorithms on
other classes of structured graphs that might arise in practical applications
can not be predicted with any certainty. Investigations to further the under
standing of the performance of these graph-coloring algorithms on other
classes of graphs is to be encouraged.

Theoretically it would be helpful to know to what extent the number of
colors used in the smallest-last-with-interchange algorithm could exceed the
chromatic number for other classes of graphs, similar to the results established
here for planar graphs. A concurrent study into sharper lower bounds on x(G)
could be beneficial in this process.

122 D. W. Mattila, G. Marble, J. D. Isaacson

References

1. Bondy, J. A., Bounds for the chromatic number of a graph, / . Combinatorial Theory 7,
96-98 (1969).

2. Brooks, R. L., On coloring the nodes of a network, Proc. Cambridge Philos. Soc. 37,
194-197 (1941).

3. Cole, A. J., The preparation of examination time-tables using a small-store computer,
Comput.J. 7, 117-121 (1964).

4. Holgate, P., Majorants of the chromatic number of a random graph, J. Roy. Statist. Soc.
Ser. B 31, 303-309 (1969).

5. Matula, D. W., A min-max theorem for graphs with application to graph coloring,
SIAM Rev. 10, 481-482 (1968).

6. Matula, D. W., ^-components, clusters and slicings in graphs, SIAM J. Appi. Math.
22, 1972 (in press).

7. Matula, D. W., On the complete subgraphs of a random graph, Proc. Conf. Combina
torial Math, and Its Applications, 2nd, Chapel Hill, 356-369 (1970).

8. Ore, O., "The Four Color Problem." Academic Press, New York, 1967.
9. Szekeres, G., and Wilf, H. S., An inequality for the chromatic number of a graph,

J. Combinatorial Theory 4, 1-3 (1968).
10. Welsh, D. J. A., and Powell, M. B., An upper bound for the chromatic number of a

graph and its application to timetabling problems, Comput. J. 10, 85-86 (1967).
11. Wood, D. C , A Technique for coloring a graph applicable to large scale timetabling

problems, Comput. J. 12, 317-319 (1969).

ALGEBRAIC ISOMORPHISM INVARIANTS FOR

GRAPHS OF A U T O M A T A

John F. Meyer

Department of Electrical and Computer Engineering

The University of Michigan

Ann Arbor, Michigan

1. Introduction 123
2. Finite Automata and Transition Graphs 124
3. Algebraic Isomorphism Invariants 128
4. Disconnected Graphs and Elementary Divisors 133
5. Permutation Graphs 137
6. Forests 142
7. Arbitrary Transition Graphs 145

References 152

1. Introduction

Finite automata, which are mathematical models of discrete-time finite-
state systems, can be represented by a finite sequence of directed graphs
called transition graphs. In the discussion that follows, such graphs are studied
from an algebraic point of view in terms of a natural representation of the
graphs by linear transformations. The representation is natural in the sense
that its matrix equivalent coincides with the usual representation of graphs by

t This work was supported by the U.S. Air Force, Rome Air Development Center under
Contract AF30(602)-3546. It is derived from a disertation submitted in partial fulfillment
of the requirements for the degree of Doctor of Philosophy at The University of Michigan.

123

124 John F. Meyer

adjacency matrices. Under this representation, the classical invariants of
linear transformation similarity become invariants of graphical isomorphism.
The principal objective of the investigation is to determine the extent to which
these algebraic invariants specify the structure (isomorphism class) of an
arbitrary transition graph.

In the past, efforts to relate similarity invariants to graphical structure
(for example, see Collatz and Sinogowitz [2] and Harary et al [8]) have
focused on a single invariant, namely, the characteristic polynomial of the
adjacency matrix or, equivalently, the eigenvalue spectrum, if the characteristic
polynomial has all its roots in the representation field. Since the characteristic
polynomial does not, in general, characterize similarity, this approach is
generalized in the present investigation by considering complete sets of
similarity invariants, such as, all the invariant factors or all the elementary
divisors of the representing transformation, or matrix.

It is shown first that such invariants still fall short of characterizing transition
graphs, up to isomorphism, by exhibiting two nonisomorphic transition
graphs having similar representations. The question remains, however, why
this is so or, more precisely, what structural invariants correspond to a
complete set of similarity invariants.

This problem is studied first for weakly connected transition graphs by
examining structural invariants that suffice to determine a complete set of
similarity invariants. This results in a procedure by which the invariant factors
of a representing linear transformation can be determined directly from the
structure of the corresponding graph. Moreover, the procedure is independent
of the choice of the representation field. Multicomponent graphs are then
considered. Here the problem decomposes rather naturally into a study of two
extreme cases : permutation graphs and forests. Regarding permutation graphs,
it is shown that the elementary divisors can be formulated in terms of the
cycle structure, where these formulas depend on the characteristic of the
representation field. Regarding forests, on the other hand, there is no such
dependence on the nature of the field. Based on the solution obtained for
connected graphs, it is shown that the elementary divisors can be formulated
in terms of the depths of the points of a forest. By combining these results and
solving for the graphical invariants in terms of the elementary divisors, one is
able to determine, for an arbitrary transition graph, the precise extent of the
structural information conveyed by these algebraic isomorphism invariants.

2. Finite Automata and Transition Graphs

Since several types of finite-state automata, alternatively referred to as
sequential machines, have been distinguished in the literature (for example,

Algebraic Isomorphism Invariants 125

see Arbib [1], Ginsburg [4], or Hartmanis and Steams [9]), we begin by
making precise the class under discussion here.

DEFINITION 1. A finite automaton is a system

M = (/,ß,<5)

where

(1) / is a finite, nonempty set of inputs',
(2) Q is a finite, nonempty set of states',
(3) δ is a partial function from Qxl into Q, where Q is the transition

function, or next-state function.

Since no output function is specified, automata of this type are sometimes
referred to as state machines [9]. Since δ is a partial function, if we let D(ô)
denote the domain of b, that is

D{ß) = {(^à)\ô(q9a) is defined},

then D(ô) is a subset of Q x /and need not include every state-input pair. Thus,
interpreting q e Q as the present state of M, and a e I as the present input to
M, if (q,a) e D(ô), then ô(q,a) is the next state of M. If (q,a) φ D(ô), then
the next state is unspecified. Consequently, such automata are usually qualified
as being incompletely specified, or simply incomplete [4]. As we have chosen
to dispense with this terminology in the above definition, we will say instead
that a finite automaton M = (/, Q, δ) is complete, if D{S) = Q x /.

Let us now consider a graphical representation of finite automata, hence
forth referred to simply as automata, that is conceptually the same as the usual
representation of automata by transition diagrams, or state graphs, but avoids
explicit labeling of the lines of the graph. We assume a familiarity with basic
concepts of graph theory and, in particular, directed graphs (for example, see
Harary et al. [6]). The graphical terminology used here will follow that of the
reference just cited, unless otherwise specified. We begin, however, with a
slightly more general notion of a directed graph by allowing loops, that is,
by defining a directed graph as an ordered pair

G = (X,y),

where Λ̂ is a finite, nonempty set of points of G, and y is a relation on X
(γ ^ Xx X), which is the directed lines of G. The class of graphs of interest
here is a special class of directed graphs defined as follows. The name is due
to Yoeli [13].

DEFINITION 2. A directed graph G is a transition graph if every point of G
has outdegree 0 or 1. Thus, in relational terms, a directed graph G = (X, y) is

126 John F. Meyer

Fîg. 1. A 17-point transition graph.

a transition graph, if and only if y is a single-valued relation (partial function)
on X (see Fig. 1)

Suppose now that M = (/, Q, δ) is an automaton, and for each a e I, let
δα be a relation on Q9 defined as follows :

(1) (q,r)eôa iff ô(q,a) = r.

Then for all a e lit is immediate from the definitions that (Ö, δα) is a transition
graph, thereby yielding the following graphical representation of M.

DEFINITION 3. If M = (I9Q,ô) is an automaton where / = {aua2,...,ak},
the graph sequence of M is the sequence of transition graphs

5(Μ) = ((ρ , ^) , (ρ , δ 0 2) , . . . , (ρ , ^)) .

The graph sequence of a 2-input, 4-state automaton is illustrated in Table I
and Fig. 2.

TABLE I

An Automaton M

\ a

\
Qo

Qi

Qi

Q3

Û1

<?2

—
<73

<7o

a2

q*
?3

—
<?2

S(M) =

Fig. 2. The graph sequence S(M) of automaton M.

Algebraic Isomorphism Invariants 127

To state the above representation in somewhat more general terms let

Ji{J) = {M\ M a finite automation with input set /}

and

0 = {G\ G a transition graph}.

Then the above representation can be regarded as a function

where

φ{Μ) = S(M).

From this viewpoint, it is easily verified that the representation is faithful in
the sense that φ is one-to-one. Moreover, the range of φ is obviously the set
of all sequences S E ^1 '1, such that all transition graphs in S have the same set
of points. Consequently, one can alternatively regard an automaton as a
finite sequence of transition graphs having a common set of points. Moreover,
if M = (/, Q, δ) and M' = (Y, Q'9 δ') are isomorphic, as automata, that is, there
is a one-to-one correspondence η between Q and g' , such that

(2) iq,a)eD{S) iff b(q)9a)eD(S')

and

(3) η(δ{ς,α)) = δ'(η(ς), a), (g,a) e D(ß),

then isomorphic automata can be characterized in terms of their sequence
graphs. If G and G' are directed graphs, and η is a graph isomorphism from
G to G'9 then let

G - G'
n

denote that G is isomorphic to G' under η. If there is no need to refer explicitly
to an isomorphism,

G - G'

will denote that G is isomorphic to G'.

THEOREM 1. If Μ,Μ' e Ji(l) with φ(Μ) = (Gl9G29...9Gk) and φ(Μ') =
(G/ , G2',..,Gk')9 then M is isomorphic to M' 9 if and only if there is a graph
isomorphism η such that

G f - G/, i = 1,2,...,*.
n

Proof: Since φ(Μ) is the graph sequence of M, the condition

Gf ~ G/, / = 1,2,...,*

128 John F. Meyer

holds, if and only if

n

for all a e I, ox equivalently, by definition of a graph isomorphism,

(4) (q,r)eôa iff (>/(?),/? (Ό) e δα\ a e I.

If η is a one-to-one correspondence between Q and Q\ it follows from the
definition of δα, see (1), that (4) is equivalent to (2) and (3). As the latter are
the defining conditions for an automaton isomorphism from M to M', the
theorem is proved.

In interpreting the conditions of Theorem 1, one should be careful not to
paraphrase the result by saying automata are isomorphic, if and only if
corresponding transition graphs in their graph sequences are pairwise iso
morphic. Being pairwise isomorphic means that

(5) <?,*(?, ' , i = 1,2,...,*,

and indeed, by Theorem 1, this is a necessary condition. On the other hand,
it is not sufficient when k> \. One requires, in addition, that among all the
isomorphisms existing between the various isomorphic pairs, at least one of
these is common to all pairs. However, Theorem 1 does have the following
important consequence. By the necessity of (5), any isomorphism invariant
determined for transition graphs immediately yields a set of k isomorphism
invariants for A>input automata. It is this observation that motivates the
following study of algebraic isomorphism invariants for transition graphs.

3. Algebraic Isomorphism Invariants

The algebraic invariants we wish to consider are induced by a natural linear
representation of directed graphs. It is natural in the sense that it is the linear
transformation equivalent of the usual representation of graphs by adjacency
matrices. To be more precise, let &n denote the set of all digraphs on points
N„ = {1,2,...,«}, and le t^„(F) denote the set of all linear transformations
on an «-dimensional vector space V over a field F. Then the natural repre
sentation of <&η relative to F and some basis sé for V, called the representation
field and representation basis, respectively, is the function

where, if G = (Nn,y), the representing transformation TG = p(G) is defined
as follows for all af e sé:

(6) TM=£<>ij«j>
= 1

Algebraic Isomorphism Invariants 129

where
(1, (ij)ey,

au =

{0, otherwise.
Since sé is a basis for K, it follows that TG is uniquely specified for each G e &„.
Moreover, it should be obvious from the definition that the matrix of TG

with respect to sé is simply the adjacency matrix of G regarded as a matrix
over the representation field F. Thus, we will sometimes refer to TG as the
adjacency transformation of G, relative to F and sé'. The reason for defining
a linear representation in terms of transformations rather than matrices is
that we find transformations to be more suggestive of structural interpretation.
However, all the results that are obtained concerning TG can be stated
equivalently in terms of the adjacency matrix AG.

In the terminology of the representation set &~„(F), an isomorphism is a
nonsingular linear transformation. Two linear transformations T, T' e$~n(F)
are linearly isomorphic if they are similar, that is, there exists a nonsingular
linear transformation S e^„(F) such that T= STS'1. A fundamental
observation regarding the natural representation is that it preserves iso
morphism in the sense that isomorphic graphs have similar adjacency trans
formations. As this fact has been previously observed for adjacency matrices
over the real numbers [5], we will simply state the result, without proof, in
terms of the natural representation.

THEOREM 2. If G, G' e <&„ and G is isomorphic to G'(G ~ G')9 then, under
the natural representation, relative to any choice of representation field F
and basis sé, TG is similar to TG,(TG ~ TG>).

Hence, by Theorem 2, every invariant of similarity for linear transformations
is, under the inverse of the natural representation, an invariant of isomorphism
for directed graphs. It is important to note, however, that a complete set of
similarity invariants does not yield a complete set of isomorphism invariants,
that is, the converse of Theorem 2 does not hold. This was first revealed by
Collatz and Sinogowitz [2] for undirected graphs represented by adjacency
matrices over the field of real numbers. In their tabulation of characteristic
polynomials for trees, the adjacency matrices of two nonisomorphic 8-point
trees are shown to have the same characteristic polynomial. Since these
adjacency matrices are symmetric (because the graphs are undirected) and real,
the adjacency matrices are therefore, similar.

Of interest here, of course, is whether the same is true for transition graphs.
In other words, can nonisomorphic transition graphs be represented by
similar linear transformations? Indeed, it would be fortunate if this were not
the case for then a complete set of similarity invariants would yield a complete
set of isomorphism invariants. However, transition graphs are no exception.

130 John F. Meyer

THEOREM 3. There exist nonisomorphic transition graphs G and G' such
that TG~TG,.

Proof: Consider the two transition graphs

S 1

and suppose that the representation field is the reals. On computing the
invariant factors of TG and TG. both have the nontrivial invariant factors
x3 — x2 and x and so TG ~ TG,. As G and G' are obviously nonisomorphic,
the theorem holds.

Thus, even for this relatively restricted class of graphs, a complete set of
similarity invariants for the representing linear transformations, for example,
•their invariant factors or elementary divisors, fails to yield a complete set of
isomorphism invariants. The investigation that follows is concerned with the
discovery of just why this is so, and more specifically, the extent to which this
is so. The main result is a graphical characterization of the structural in
formation conveyed by any complete set of similarity invariants.

In summarizing some terminology and results concerning the general
structure of transition graphs [14], we see that a weakly connected transition
graph G is

(1) Si flower if every point of G has out degree 1 ;
(2) an in tree [7] if exactly one point of G has out degree 0.

Since a connected transition graph can have at most one point with out
degree 0, it follows that every weak component of a transition graph is either a
flower or an in-tree, subsequently referred to as a tree. Also, transition graphs
are obviously unipathic, and, consequently, we can use the notation [x,j>]
to denote a path from x to y. l_x,y] will denote the length of path [x,>>].
A cycle point of a transition graph is any point that lies in a cycle. A tree point
is any point that is not a cycle point. The period of a flower G is the number of
cycle points of G, that is, the length of its unique cycle. The root of a tree G
is the unique point of G having out degree 0.

If G is a transition graph, and x is a point of G, let C(x) denote the unique
component of G containing x. Then the notion of height, as usually defined for
trees, can be extended to transition graphs.

Algebraic Isomorphism Invariants 131

DEFINITION 4. If G = (X, y) is a transition graph and x e X, then the
height h{x) of x is defined as follows:

(1) if C(x) is a flower, then h(x) = min{/[x,^] |^ a cycle point of C(x)};
(2) if C(x) is a tree, then h(x) = /[x, x 0] , where x0 is the root of C(x).

The Ae/g/tf A(G) ο/α transition graph G is the maximum height of any point
of G. Note that h(x) = 0, if and only if x is either a cycle point or a root.

For connected transition graphs, that is, trees and flowers, we find that the
invariant factors of the representing transformations are intimately related
to the heights of certain points in the corresponding graphs. This important
relationship can be expressed in the form of an algorithm for computing the
invariant polynomials of TG directly from the structure of G. If G = (X, γ) is
a transition graph, let R(G, x) denote the reachable set ofx9 that is

R(G,x) = {y\ |>,>>] a path of G}.

If Y is a proper subset of X, let G— Y denote the removal of Y from G, that is,
G — Y=G restricted to the set of points X—Y. Then, given any transition
graph G, we define a sequence of subgraphs

Gl9G29...9Gm

as follows:

(1) GX=G;
(2) if Xi is a point of maximum height in Gf = (Xh yf.) and

(7) R(Ghxt)*Xi9

then

G/+1 = Gi-RiGitXt).

Otherwise the sequence terminates, that is, Gm = Gf.

We say that such a sequence is derived from G and, although a derived
sequence is not necessarily unique, even up to isomorphism, we obtain an
important result.

THEOREM 4. If G is a connected transition graph, and Gl,G2,...9Gm is a
sequence of subgraphs derived from G, then the representing linear trans
formation TG, relative to any choice of representation field F and basis $4,
has m nontrivial invariant factors \\ί·χ (x), / = 1,2,..., m, which can be graphically
determined as follows :

(1) if G is a flower of period r, then

φ1(χ) = xh^+r-xh^G^.

132 John F. Meyer

If G is a tree, then

(2) i f w > l , t h e n

ψ^χ) = **(Gl)H

,() = ** c« , + 1 , i = 2,3,..., m.

The proof of the theorem is based on the classical decomposition of a vector
space V, relative to a linear transformation T on K, into cyclic subspaces
VuV2,...,Vm such that the minimum polynomial of V{ coincides with the /th
nontrivial invariant factor of T (see Gantmacher [3]). The process of forming
a derived sequence of subgraphs parallels this decomposition process where
points of maximum height correspond to vectors which generate the various
cyclic subspaces. The graph obtained on removing a maximum reachable set
R(Gi9Xi) corresponds to the linear transformation T induced by T on the
quotient space V\VX + V2-\ l· Kf. Therefore, although a somewhat lengthy
proof is required to take care of all the details (see Meyer [11]), the verification
is conceptually rather straightforward.

To illustrate the theorem, consider the following transition graph, which is
a flower of period 2 on 12 points:

Forming a derived sequence of subgraphs we have

Gt = G

Since h(3) = h(Gl), (we could have also chosen point 7), and R(G13 =
{1,2,3,4,5,6}, we have

12 11

10

Algebraic Isomorphism Invariants 133

SinceA(7) = A(G2)

3 10 12 11

Removing R(G3li)

6 < : io

and as R(G4,10) = {10}, the process terminates. Accordingly, TG has four
nontrivial invariant factors, namely

φ^χ) = x6 - x*, φ2(χ) = χ3, φ3(χ) = x2, ψ*(χ) = χ.

Thus, given any connected transition graph (7, that is, a flower or a tree,
the invariant factors of TG can be computed by inspection of the sequence
derived from G by peeling away points reachable from a point of maximum
height. This provides insight to how the structure of a connected transition
graph relates to the invariant factors of TG. Moreover, the observations made
by Theorem 4 are fundamental to solving the more general problem of
characterizing a complete set of similarity invariants for the class of all
transition graphs.

4. Disconnected Graphs and Elementary Divisors

If G is a disconnected transition graph, then, in general, the invariant
factors of the adjacency transformation TG cannot be determined by simply
applying Theorem 4 to each component of G. To illustrate, consider the
transition graph G of Fig. 3. Applying Theorem 4 to each of the components

•o ô Û
Fig. 3

C(l), C(3), and C(6), the invariant factors so determined would be x2 — 1,
x3 — 1, and x5 — 1. However, assuming a representation field of characteristic 0,
or as some prefer, oo, direct computation of the first invariant factor of TG9

for example, shows that

φ^χ) = x8 4- 2χη H- 2x6 + x5 - x3 - 2x2 - 2x - 1.

134 John F. Meyer

Moreover, we observe that, unlike the representation of connected transition
graphs, the invariant factors can depend on the nature of the representation
field. For example, if the representation field has characteristic 2, instead of 0
as assumed above, then the first invariant factor of TG for G of Fig. 3 is

φ^χ) = x8 + x5 + x3 + 1.

This dependency on the representation field F obviously complicates the pro
cess of relating algebraic invariants to graphical structure. For if the invariant
factors depend on F, then so must their graphical determination. It is apparent,
therefore, that some additional effort is required in order to appropriately
generalize the results of the previous section. In particular, given some
transition graph G, we want to be able to determine the values of a complete
set of similarity invariants for TG directly from the structure of G (compare
with Theorem 4). Furthermore, we want to be able to do this relative to any
given representation field F, where different fields, of course, may require
different procedures. This is the intent of the development that follows, and
we will find that such procedures can indeed be formulated.

We begin by considering a more refined description of the invariant factors
usually referred to as the elementary divisors of a linear transformation, or
matrix. To quickly review this well known concept, suppose that T is a linear
transformation on an «-dimensional vector space over F with invariant factors

φι(χ\φ2(χ),...,φη(χ).

Then each polynomial φι(χ) can be factored uniquely, except for order, as a
product of powers of monic, prime in F[x~] polynomials, that is

(8) φ^χ) = ΦΛ^ΦιΜ^^ΦΛ^, i = 1,2,...,«.

Here, for notational convenience, we assume that φί(χ),φ2(χ),'·',Φηι(χ) a r e

all the distinct prime factors of the invariant factors and, hence, some of the
integers lu may be equal to 0. Each of the factors

(9) Wf'i

for which

lu > 0, 1 < i < /i, 1 ^ j < m

is called an elementary divisor ofT. All such factors, including repetitions, are
collectively referred to as the elementary divisors of T. As each invariant
factor φί(χ) divides its predecessor, 1 < / < / ? , it is important to note that

ld+i)j < lu> Ì ^ i < n, 1 < y ^ m.

For this reason, not only do the invariant factors uniquely determine the
elementary divisors of Γ, but also, conversely, the elementary divisors uniquely

Algebraic Isomorphism Invariants 135

determine the invariant factors. However, elementary divisors have an impor
tant property not generally shared by invariant factors (see Gantmacher [3]).

LEMMA 1. If TeMn(F) and V=V1 + V2, the direct sum of Vl and K2,
where Vl and V2 are invariant subspaces of V, relative to Γ, then the elementary
divisors of T are obtained by combining the elementary divisors T restricted
to Kj with those of T restricted to V2.

To apply Lemma 1, we make use of what is usually meant by the direct
sum of two digraphs, that is, if G1 = (Χί9γι) and G2 = (Ar

2,y2) are disjoint
(Xl nX2 = 0) , their direct sum is the graph

(10) Gx + G2 = (XlvX2,yivy2).

Suppose now that G e &n is represented by the adjacency transformation

TG:V-V

under the natural representation, with representation basis sé = {α1? α2,..., α„},
and there exist subgraphs Gl = (Xl9yi) and G2 = (Χ2^ι) of G, such that

G = G Ì + G2.

Then one immediately obtains a corresponding direct sum decomposition of
V. If we let

(11) V1 = <{ay|ye ^ » and V2 = ({*j\j e X2})

where () denotes subspace spanned by, then obviously

v = v1 + v2,
since XlnX2 = 0 and Xl u X2 = Nn. Moreover, we observe that each of
these subspaces is invariant relative to the representing transformation TG.
In short,

(12) TG(Vl) = Vi and TG(V2)^V2.

To verify this for Vx, it suffices to show that TG (α,) e Vx for all ie Xx.
However, by the definition of the natural representation (6),

n

where, since G is the direct sum of Gx and G2, a^ = 1 implies y e X1. Thus,
rG(a,·) is a linear combination of the vectors {OLJ\J e Χλ} which, by (11), says
rG(a,·) G Vx. The same argument applies to V2, thereby proving (12).

Accordingly, if TGl and TGl denote the restrictions of T to Vx and V2,
respectively, then Lemma 1 applied to the above decomposition proves
Lemma 2.

136 John F. Meyer

LEMMA 2. If G e ^ „ and G = G1 + G2>
 t n e n the elementary divisors of

TGl and TG2, taken in their totality, are the elementary divisors of the adjacency
transformation TG.

Generalizing Lemma 2 to an arbitrary, finite number of summands, we
obtain Theorem 5.

THEOREM 5. If G e <#„ and G = Gx + G2 + · · · + Gs, then the elementary
divisors of TG are obtained by combining all the elementary divisors of the
transformations TGl,TG2,...9TGs, where TG. is the restriction to TG to Vi9

that is,

where

V^dtjlJeXi}), i= 1,2,...,*.

Proof: The proof is by induction on the number summands (s ̂ 1), using
Lemma 2 to verify the induction step.

In particular, Theorem 5 applies to a direct sum where the summands are
all the components of G. Thus, if we choose elementary divisors as the similarity
invariants we wish to interpret, it follows that disconnected transition graphs
can be analyzed in terms of their components, thereby simplifying the analysis.
This then is the point we adopt and, in the investigation that follows, we will
establish that the elementary divisors of TG both determine, and are deter
mined by, two particular sequences of numerical invariants of G.

The first of these sequences is a tabulation of the cycle lengths (periods) of
the flowers of G.

DEFINITION 5. If G is a transition graph with n points, the period sequence
of G is the sequence n(G) = Ο Ί , ^ , . - . , Ο , where r} equals the number of
components of G that are flowers of period j\j= 1,2,...,«.

The second sequence is a tabulation of the depths of tree points, where, if x
is a point of G, the depth d(x) of x is the length of the longest directed path
to x, that is

d(x) = max{/[.y,x]| [j>,x] a path of G}.

DEFINITION 6. If G is a transition graph with n points, the depth sequence
of G is the sequence

ô(G) = (d0idi,...,dn.ll

where dj equals the number of tree points x of G such that d(x) =j,
y = o,i , . . . ,«-i .

Algebraic Isomorphism Invariants 137

Fig. 4

To illustrate these concepts, if G is the transition graph of Fig. 4, then

n(G) = (0,1,0,0,0,0,0,0,0,0)

and

0(G) = (5,1,1,1,0,0,0,0,0,0).

To relate n(G) and δ (G) to the elementary divisors of TG, we first obtain
solutions for two special cases: permutation graphs and forests. These two
solutions will then be combined to obtain a general characterization.

5. Permutation Graphs

A directed graph G = (X, y) is a permutation graph if y is a permutation on X.
In terms of some other concepts defined earlier, it can easily be verified that the
following statements are equivalent for any transition graph G:

(13)

((1) G is a permutation graph;
(2) every component of G is a flower of height 0, that is, a cycle;
(3) TG is nonsingular;
(4) if n(G) = (rur29...9rn), then Σ"=υ'η = n\

1(5) 0(G) = (0,0,.. .,0).

In particular, if G is a permutation graph, note that its period sequence
n{G) is just the cycle structure of the corresponding permutation. In using
n(G) to determine the elementary divisions of TG, note also that our attention
can be restricted to prime fields. A field is prime if it contains no proper sub-
fields. This is possible, since TG is defined in terms of the scalars 0 and 1.
Consequently, if F is a representation field of characteristic k where k = 0 or
some prime p, TG is also over the prime subfield Fk of F. Since two linear
transformations are similar over Fk, if and only if they are similar over any

138 John F. Meyer

extension of Fk, that is, any field of characteristic k, no loss of generality will
result from such a restriction.

If Fk is a prime field of characteristic k, let Φβ(χ) denote the eth cyclotomic
polynomial (see Van der Waerden [12]), where e is any positive integer not
divisible by k. If k = 0, Φ6(χ) is defined for all e ^ 1. Φβ(χ), by definition, is
the polynomial whose roots are all the primitive eth roots of unity found in
any extension of Fk. Since every eth root of unity is a primitive dth root of
unity for some d such that d \ e, d divides e, we have the well-known identity

(14) xe - 1 = Π Φ-(*).
d*d\e

Based on (14), if G is a permutation graph, and we consider first the case
where F= F0 = Q, the rational numbers, the elementary divisors of TG can
be graphically determined.

THEOREM 6a. If G is a permutation graph with period sequence n(G) =
(r1,r2,...,rn), and the natural representation is over g, then for 1 ^ / < n the
*'th cyclotomic polynomial Φ,(χ) occurs exactly

"*i = Σ 0
73*17

times as an elementary divisor of TG. Moreover, when taken in their totality,
these are all the elementary divisors of TG.

Proof: If G is a permutation graph, G can be expressed as the sum

G = G^Gz+'+G^

where each subgraph Gt is a component of G (t = 1,2,..., s). If we let TGt denote
the restriction of TG to Vt, then, by Theorem 5, the elementary divisors of TG

are obtained by combining all the elementary divisors of the transformations
TGi9 rG2,..., TGs. Suppose then that Gt is a component of G. By (13), Gt is a
flower of height h(Gt) = 0, and if Gt has period j9 then, by Theorem 4,

(15) xj-l

is the only invariant factor of Gt. Accordingly, by (8) and (9), the elementary
divisors of TGt are the primary factors in Q_x~\ of xj — 1. Hence, by (14),

(16) xj-l= Π Φ* W·

Since cyclotomic polynomials are prime in g [x] , we conclude that

(17) Φ^χ) = an elementary divisor of TQ iff i\j(t),

Algebraic Isomorphism Invariants 139

where y(r) is the period of Gt. To simplify the remainder of the argument, let
ôitj denote the Kronecker delta function, and let

0, otherwise.

If as in the statement of the theorem, we let m{ denote the total number of
occurrences of Φ,(χ) as an elementary divisor of 7G , then, by (17) above and
Theorem 5, we have

s
mi = Σ fi,**)» ' = Ι»2 , . . . ,Λ .

t=\

Since £ij(t) can be rewritten as

tuo)

we have

s n

/ = U = 1

and changing the order of summation,
n I s

™i = Σ kj\ Σ ôjj(t)

However,

s

Σ ôjj(t)

is just the number of components of G having period j . Thus,

n
mi = Σ £ijrj> * = u2,...,/?,

7 = 1

thereby concluding the proof of Theorem 6a.

Thus, over the field of rational numbers, the elementary divisors of TG

can be determined directly from the period sequence of a permutation graph G.
That this can be done for fields of characteristic 0 is not too surprising, since
others (see Marcus and Mine [10]), have shown how to determine the
characteristic roots in the complex number field of a permutation matrix.
The merit of the present approach, however, is that it can be extended to fields
of prime characteristic.

Suppose Fk is a prime field with k equal to some prime integer p. Then, by

(18) kj

= Σ
y = i

àj,Kt)Çi,j>

■

140 John F. Meyer

(15), we must be able to determine the primary factors of polynomials of
the form

^ - l 6 F p [x] ,

where j is a positive integer. As j may be a multiple of/?, in which case there
are no roots of order y, let e{j) denote the exponent of the highest power of p
that divides j (if pjf j , s(j) = 0), that is,

j = epe{j\ where p)(e.

Then letting k = e(j),

xJ-l =(xeyk-l,

and since (apk — bpk) = (a — b)pk in any field of characteristic /?, we observe the
important fact that

(19) xj-l = (xe-l)pk.

Since pjfe, the roots of xe— 1 are eth roots of unity. By (14) and (19), we
conclude

(20) x > - l = Π Φ/W^.
Ì3Ì\JlP'U)

Therefore, using an argument similar to the proof of Theorem 6a with (20)
replacing (16), one obtains Theorem 6b.

THEOREM 6b. If G is a permutation graph with period sequence n(G) =
(r1,r2,...,rn)9 and the natural representation is over Fp9 where/? is a prime,
then for all / such that 1 ^ / ̂ n and pX /, and all k such that 0 ̂ k ^ [logp«]}

each primary factor of the polynomial Of(x)pk occurs exactly

mi,k = Σ Ôk,e(j)rj

times as an elementary divisor of TG. Moreover, when taken in their totality,
these are all the elementary divisors of TG.

Thus, by Theorems 6a and 6b, the elementary divisors of TG can be computed
directly from n(G) if G is a permutation graph. Conversely, given the elemen
tary divisors of rG , we find that π((7) is uniquely determined.

THEOREM 7. If G is a permutation graph and the natural representation is
over a prime field Fk, then the elementary divisors of TG uniquely determine
the period sequence 7r(G).

Proof: We will consider the case where k = 0, that is, the rational numbers.
The proof for k =p is similar. By Theorem 6a, if 7r(G) = (fl,r29...,r„), then

X rj = mi9 i = 1,2,...,«
J9l\j

Algebraic Isomorphism Invariants 141

or equivalently, in terms of the divisibility function ξ^, Eq. (18),

È É Ì J O = mi> i = 1 '2 ' ··> ,2>
y = i

where wf is the number of occurrences of the elementary divisor Of(x).

To prove, conversely, that the integers mum2,...,mn uniquely determine π((?),
the above system of equations can alternatively be expressed as the matrix
equation

Dr = m,

where

D = KvL*"' w i t h du = £ij> r = m =

[Wl 1

m2

[™n \
On closer examination of the matrix D, since

[1 , i divides j9
dij =

{ 0, otherwise,

D is upper triangular with all its diagonal elements equal to 1 and, therefore,
D is a nonsingular matrix. Consequently,

r = D~xm

and, as m and r describe the elementary divisors and period sequence,
respectively, we obtain the desired result.

Combining Theorems 6 and 7 with the fact that two linear transformations
are similar over Fk, iff they are similar over any extension of Fk9 we have
Theorem 8.

THEOREM 8. If G and G' are permutation graphs, then, under the natural
representation relative to any choice of representation field F and basis sé,
the adjacency transformations TG and TG> are similar, if and only if n(G) =

Since n(G) determines G up to isomorphism, we conclude that a complete
set of similarity invariants yields a complete set of isomorphism invariants
for permutation graphs.

COROLLARY 1. If G and G' are permutation graphs, then TG~TG. iff

142 John F. Meyer

Thus, the question of how similarity invariants relate to isomorphism
invariants is settled for permutation graphs relative to all possible repre
sentation fields. The fact that Corollary 1 holds for fields of prime characteristic
is rather surprising, since in this case it is possible for nonisomorphic permu
tation graphs to have adjacency transformations with the same characteristic
polynomial. For example,

<̂ >2 * 0 O
are both represented over F2 by transformations with the characteristic
polynomial x2 + l. Accordingly, it is only when we consider additional
similarity invariants that we are able to distinguish such graphs.

6. Forests

A directed graph G is a forest if G has no semicycles. In terms of other
concepts defined earlier, it can be verified that the following statements are
equivalent for any transition graph G :

(1) G is a forest;
(2) every component of G is an in-tree ;

(21)«{ (3) TG is nilpotent;
(4) if 0(G) = (d09dl9...9dH-t)9 then Σ"^ 4 = *\
(5) 7i(G) = (0,0,...,0).

Thus, in the context of transition graphs, we will take forest to mean a. forest
of in trees and, as earlier, tree will mean in tree.

Comparing the above characterizations with those given for permutation
graphs (13), forests are at the opposite extreme. This applies to their repre
sentations as well, and, unlike what was observed for permutation graphs,
we find that results obtained for connected graphs are more easily generalized.
This is due to the fundamental fact that the elementary divisors of a nilpotent
transformation coincide with its invariant factors. If T is nilpotent of index q9

Φι(χ) = xq. Hence, each nontrivial invariant factor of T has the form xk
9

where 1 ^ k ^ q. As x is prime over any field, these polynomials, by definition,
are the elementary divisors of T. Consequently, if G is a forest with com
ponents Gl9 G2 , . . , Gs, one can apply Theorem 4 to determine the elementary
divisors of TG. for each tree Gt where / = \929...9s. One thereby determines
the elementary divisors of TG9 as in Theorem 5. Moreover, using Theorem 4,
we find that the elementary divisors of TG can be related directly to the depth
sequence δ (G) by Definition 6, once we establish that depth is invariant under
removal of a reachable set R(G, x).

Algebraic Isomorphism Invariants 143

LEMMA 3. If y is a tree point of G' = G-R(G9x) then the depth of y in G'
is equal to the depth of y in G.

Proof: Let y be a tree point of G' = G — R (G, x)9 and suppose the conclusion
is false, that is,

d(y9G) Φ d(y9G')9

where d(y9 G) and d(y, G') denote the depths of point y in G and G', respec
tively. Then it must be the case that

d(y9G
f) < d(y9G)9

since, obviously, a tree point of G cannot have greater depth in a subgraph of G.
This says, in turn, that if x0 is a point of G such that

Ilxo>y] = d{y9G)9

then the sequence of points [xo^] = C*o>*i>···>>') cannot be a path of
G — R(G9x). In other words, for some point xk in [xo^ l · xk G R(G9x). Thus,
both [x, xfc] and [χΛ, >>] are paths of G which implies yeR(G9 x)9 and contra
dicts the assumption that y is a point of G'. Hence, d(y9 G) = âf(j>, G')9 thereby
proving the lemma.

In view of this fact, we can establish an important connection between the
depth sequence of a forest and the elementary divisors of its adjacency
transformation.

THEOREM 9. If G is a forest with depth sequence (5(G) = {d09dl9...9dn.l)9

then, under the natural representation relative to any choice of representation
field F and basis s49 dj is the number of elementary divisors of TG having
degree greater than j \ where j = 0,1,...,«— 1.

Proof: Without loss of generality, we can suppose G is connected, that is,
a tree. If the theorem holds for every component of a forest H, then, by
Theorem 5 and the definition of <5, it must hold for H. Suppose then that G
is a tree with derived sequence (7) G1,G2,...,Gm. Then

Gi = C;

G t+1 = Gi- R(Gi9Xi)9 i = l , 2 , . . . , w - 1,

where xt is a point of maximum height in Gf. By Theorem 4.

is the /th nontnvial invariant factor or, since TG is nilpotent, the /th elementary
divisor of TG. Thus, the degree of φι(χ) is greater than /, if and only if
h(Gt) ^j. To prove the theorem, therefore, it suffices to prove

(22) dj = \{i\h(Gd >j}\, j = 0,1,...,/i - 1.

144 John F. Meyer

To verify the above, consider now the collection of reachable sets

(23) {R(G1,x1),R(G2,x2),...,R(Gm,xJ},

where the first m— 1 sets are as above and the point xm has maximum height in
Gw, that is, R{Gm9 xm) is the set of points of Gm (otherwise the removal process
would not have terminated). Since G, is a forest, the component CC*,·) is a tree,
and if yx denotes to root of C (*,·), then R(GhXi) is just the set of points of
the path

[*ι,Λΐ = (z0,zu...9zù,

where

z0 = xi9 zl = y{ and / = A(xf) = h(G^).

Since the depth d(zj9 Gf) of Zj in G, is the length of the longest path of G, to zj9

and since z0 = xf is a point of maximum height in Gi9 we have

dizpGi) = l_z09zj] =j

for 7 = 0, l,...,A(Gf). Moreover, by Lemma 3, z} also has depth y in G^l9

if / > 1, and, by repeated applications of this fact, z} has depth j in Gx = G.
The result we seek is now immediate for, by its definition, the collection (23)

of reachable sets is obviously a partition of the points of G. Hence, for each
integer j , 0 <y < n9 the number of points of G of depth j is just the number of
sets R(Gi9Xi) such that /z(Gf) ^j. In short

dj= \{i\h(Gd>j}\,

which proves (22) and, therefore, concludes the proof of Theorem 9.

Thus, in case G is a forest, the elementary divisors of TG uniquely determine
the depth sequence S(G) of G. The relationship just established says even more,
for, turning it around, we find that the depth sequence of a forest is enough to
uniquely determine the elementary divisors of its adjacency transformation.
This important consequence can be precisely stated.

THEOREM 10. If G is a forest with depth sequence

0(G) = (d0, </!,..., 4,-X),

then, under the natural representation relative to any choice of representation
field F and basis s/, the polynomial

x\ i = 1,2,...,«

occurs exactly

mi = di.l -di9 dn = 0,

Algebraic Isomorphism Invariants 145

times as an elemental y divisor of TG. Moreover, when taken in their totality,
these are all the elementary divisors of TG.

Proof: Suppose G is a forest. Then TG is nilpotent, and any elementary
divisor of TG is of the form xk, 0 < k ^ n. In particular, if we let m{ denote the
number of occurrences of xl as an elementary divisor, then mf is just the
number of elementary divisors having degree equal to i. By Theorem 9,
therefore,

Σ mi = dj

or, equivalently
n

£ rrii = dj9 j = 0 , 1 , . . . , « - 1 .
1=7 + 1

Solving these equations for mh if / = n, then, by the last equation,

mn = dn-x.

If 1 < i < n, then
n n

mi = mi+ Σ mJ- Σ mj
7 = / + l 7 = / + l

n n

= l m j - Σ mi-
j=i j=i+l

Thus, m.x = rff_ ! — di9 thereby proving the theorem.

As elementary divisors are a complete set of similarity invariants, by
combining Theorems 9 and 10 we have proved Theorem 11.

THEOREM 11. If G and G' are forests, then, under the natural representation
relative to any choice of representation field F and basis s/, the adjacency
transformations TG and TG, are similar, if and only if (5(G) = S(G').

Thus, the question of how similarity invariants relate to isomorphism
invariants is settled for forests as well as permutation graphs (compare with
Theorem 8). We now show how these two special cases can be combined to
obtain a general solution.

7. Arbitrary Transition Graphs

The ability to graphically characterize similarity under the natural repre
sentation in case G is a permutation graph (see Theorem 8) or a forest (see
Theorem 11) is sufficiently general, as we now show. If G is an arbitrary

146 John F. Meyer

transition graph, then there exists a suitably derived graph G consisting of a
permutation graph, and/or a forest, such that TG is similar to Tö. More
precisely, if G = (X, y) is a transition graph, let XF and XP denote its cycle
points and tree points respectively. That is,

XP = {x\ x a cycle point of G}

and

XF = {x\ x a tree point of G},

where we observe that XPnXF = 0 and XPKJ XF = X. By removing the lines
of G that are from a tree point to a cycle point, we obtain a special subgraph
ofG.

DEFINITION 7. The reduction G of a transition graph G = (X, y) is the
transition graph G = (X, y), where y = y — {(x, j>)| ^ e l f and j> e A^}.

To obtain an alternative and, perhaps, more vivid description of the
reduction, if G = (X,y) and XP Φ 0 , let GP denote the restriction of G to XP9

that is,

GP = (XP,yP),

where yP = (XP x XP) n y. If XF φ 0, let

GF = (XF,yF),

where yf is similarly defined. Thus, if defined, GP is a permutation graph and
GF is a forest. We note also that GP(GF) is just the removal of XF(XP) from G,
that is,

(24) GP = G-XF and GF = G - XP.

From the definitions, it is immediate that the reduction of G can be
alternatively described as follows :

I
Gp, G is a permutation graph,

GF, G is a forest,
GP+ GF, otherwise.

The last case, of course, is the interesting one where, if G contains both tree
points and cycle points, its reduction can be expressed as the sum of a permu
tation graph and a forest. To illustrate, if G is the transition graph G, (a) of
Fig. 5, then XP = {1,2,...,6}, XF = {7,8,..., 18}, and G is obtained from G
be removing lines

{(7,1), (8,2), (9,2), (10,5), (11,5)}.

Algebraic Isomorphism Invariants 147

(a)

2 5

O O
4 6

(b)

,16 .17

10

Restricting G to XP, we have the permutation graph GP, (b) of Fig. 5, and
restricting G to XF, the forest GF, (c) of Fig. 5.

The justification of this reduction is complete once we observe the basic
property of Lemma 4.

LEMMA 4. If G is a transition graph and G is the reduction of G, then,
under the natural representation relative to any choice of representation field
F and basis sé, TG is similar to TG.

Proof: It suffices to prove the lemma for connected graphs, since G can
always be expressed as a sum G = Gl + G2-\ hGs of components where,
obviously, G = Gl+G2-\ hGs. Consequently, if the lemma holds for con
nected graphs, we have

ld TGi, i = 1,2,. ..,s.

Applying Theorem 5, we conclude that TG~ TG.
Suppose, therefore, that G is a connected transition graph with reduction G.

If G is a cycle or a tree we are through for in either case G =G. We can suppose
further, therefore, that G is a flower of period r and height h > 0. To determine
the elementary divisors of TG, let GuG2,..,Gm be a sequence derived from
G (7). Then, by Theorem 4, the first invariant factor of TG is

ψ^χ) = χΛ+Γ-χΑ = xh(xr-l).

148 John F. Meyer

If xx is the tree point chosen in deriving G2, assuming m > 1, that is,

(25) h(xuG) = h

and

(26) G2 = G-RiG^x,),

then the remaining invariant factors of TG are all the invariant factors of TG2.
Accordingly, the elementary divisors of TG are xh, the primary factors of xr — 1,
and, if m > 1, the elementary divisors of TGi.

If we now consider the reduction G = GP + GF, the elementary divisors of
TG are the elementary divisors of TGp along with those of TGF (see Theorem 5).
Since GP is a cycle of length r, the elementary divisors of TGp are just the
primary factors of xr- 1. As for GF, we note first that the height h(x9 GF) of
a point x in GF is exactly one less than its height in G. Suppose that [x, z] is the
shortest path in G to a cycle point z, and (y, z) e y, where y is a tree point,
then y precedes z in the path [x, z] and on removal of z and (j>, z) in forming
GF = G — XPi y has out degree 0 in GF. Thus, for all x e XF,

Hx,GF) = llx9yl = / | > , z] - l

= h(x,G)- 1.

In particular, for the point ^ (25), we have

h(xuGF) = h- 1,

and if we begin determination of the elementary divisors of TGF with the tree
CO*,), the first invariant factor of this component is

ψχ(χ) = χ("-1) + 1 = x\

Hence, xh is an elementary divisor of TGF. The remaining elementary divisors,
if m> 1, are determined by C{xx) — R{C{xl),xi) and the remaining com
ponents of GF, that is, the forest

GF - RiCix^x,) = GF - RiG^xJ.

However, by the choice of xl and the definition of G, this is just the second
graph G2 (26) in the sequence derived from G, that is,

GF - RiG^xJ = G - RiG^J = G2.

In summary, therefore, the elementary divisors of TG are the primary factors
of xr— 1, xh, and the elementary divisors of TG. As these coincide with the
elementary divisors of TG, we conclude that TG~ TG9 thereby proving the
lemma.

Algebraic Isomorphism Invariants 149

Combining this important observation with the characterizations of
similarity obtained earlier for permutation graphs and forests, we are now
prepared to establish the main result of the investigation.

THEOREM 12. If G and G' are transition graphs, then, under the natural
representation relative to any choice of representation field F and basis sf,
the adjacency transformations TG and TG. are similar, if and only if n(G) =
n(G') and Ô(G) = Ô(G').

Proof: By Lemma 4, TG ~ TG>, if and only if TG ~ TG.. Also, by definition
of the reduction, it should be obvious that period sequences and depth
sequences are preserved, that is, n(G) = n(G) and <5(G) = <5(G), for any
transition graph G. Thus, it suffices to prove

(27) Tö ~ Tö,9 iff n(G) = TT(G') and 0(G) = <5(G').

Suppose then that TG ~ TG where G = GP + GF and G' = GP' + G/ . Since TGp

and TGp, are both nonsingular, and TGp and TGp, are both nilpotent, the
elementary divisors of TGp must be those of TGp>. Similarly, the elementary
divisors of TGF must be those of TGp., that is

TGP ~ TGp. and TGF - TGp..

Conversely, the above implies TG ~ TG> and so

(28) TG - TG. iff TGF - TGF. and TGp - TGp,

If we now apply the characterizations obtained earlier for permutation graphs
and forests, by Theorem 8,

(29) TCp ~ TGp. iff π(σ,) = π((?Ρ')

and, by Theorem 11,

(30) TGF - TGF. iff Ô(GF) = Ô(GF')

Moreover, for any reduction G = GP-^GF with c cycle points and t tree points,
it follows from the definitions of π and δ that

TT(G) = (TT(GP), 0,0,...,0).
v" ■ '

t

and

^(G) = (^(GF),0,0,...,0).
v v '

c

150 John F. Meyer

Thus,

(31) n(GP) = n{GP') iff n(G) = n(G')

and

(32) S(GP) = S(GF') iff 0(G) = <5(G').

By linking (28)-(32), we establish (27) and thereby prove the theorem.

Thus, for the class of transition graphs, we have obtained a complete
characterization of what similarity invariants of adjacency transformations
or, equivalently adjacency matrices, have to say about graphical structure.
That is, two transition graphs on n points will have similar adjacency trans
formations, if and only if they agree both in the number of components that
are flowers of period j , 1 ^j^n and in the number of points that are tree
points of depth k, 0^k^n—l. Moreover, given the elementary divisors of
TG, those of TGF, that is, those of the form x\ can be used to compute ô(GF),
by Theorem 9, thereby determining <5(G) = (ô(GF), 0,0,...,0). Those of TGp,
that is, those which remain, can be used to compute n(GP), as in proof of
Theorem 7, thereby determining n(G) = (n(GP), 0,0,...,0). Conversely, given
ô(G) and 7r(G), the elementary divisors of TGF can be computed from ô(GF),
by Theorem 10, and the elementary divisors of TGp from n(GP), by Theorem 8,
thereby determining all the elementary divisors of TG.

Given this characterization of the graphical information that is conveyed
by a complete set of similarity invariants, one can now examine the reasons
for incompleteness (see Theorem 3) that is, the information that is not conveyed
by these invariants. Considering first the connected case, if G is a tree, then the
depth sequence, in general, fails to provide information as to where maximal
paths of G, that is, paths from points of depth 0 to the root of G, intersect.
Thus, for example, although the trees

G: G':

are represented by similar linear transformations, G and G' are obviously
not isomorphic. If we consider next the case where G is a flower such that
A(G)>0, then, relative to the tree points of G, we have the same kind of
information loss noted above. In addition, since G and its reduction G are

Algebraic Isomorphism Invariants 151

similarly represented, we lose information as to where tree points of height 1
attach to the cycle. Thus, for example, the flowers

1·- <r> - • 2

are similarly represented and yet nonisomorphic. Finally, if we consider
graphs that are not necessarily connected, then, in addition to what we have
just observed, n(G) and ô(G) fail to provide any information as to which tree
points belong to components that are flowers and which belong to components
that are trees, assuming of course that G is neither a transition graph or a
forest. Consequently, for example, each of the transition graphs

3*

o V'O

1·- €>· Ό

?°- >~o
has period sequence (1,0,0,0) and depth sequence (2,1,0,0) yet no one graph
is isomorphic to any of the others.

In conclusion, we remark that all that has been said in this investigation of
transition graphs applies dually to the directionally dual class of graphs

tf = G
G a digraph such that

every point of G has in degree 0 or 1

for if Gd is the dual (converse) of G, then TQd is the transpose TG
T of TG.

Thus, TG ~ TGa and, accordingly, the theorems established here for transition
graphs apply dually, for example, with out tree replacing in tree, height sequence
replacing depth sequence, etc., to the class Jf.

152 John F. Meyer

References

1. Arbib, M. A., "Theories of Abstract Automata." Prentice Hall, Englewood Cliffs,
New Jersey, 1969.

2. Collatz, L., and Sinogowitz, U., Spektren Endlicher Grafen, Abh. Math. Sem. Univ.
Hamburg 21, 63-77 (1957).

3. Gantmacher, F. R., "Matrix Theory," Vol. 1. Chelsea, Bronx, New York, 1959.
4. Ginsburg, S., "An Introduction to Mathematical Machine Theory." Addison-Wesley,

Reading, Massachusetts, 1962.
5. Harary, F., The determinant of the adjacency matrix of a graph, SIAM Rev. 202-210

(1962).
6. Harary, F., Norman, R. Z., and Cartwright, D., "Structural Models: An Introduction

to the Theory of Directed Graphs." Wiley, New York, 1965.
7. Harary, F., "Graph Theory." Addison-Wesley, Reading, Massachusetts, 1969.
8. Harary, F., King, C, and Read, R. C, Cospectral graphs and diagraphs, unpublished

manuscript.
9. Hartmanis, J., and Steams, R. E., "Algebraic Structure Theory of Sequential Machines."

Prentice-Hall, Englewood Cliffs, New Jersey, 1966.
10. Marcus, M., and Mine, H., "A Survey of Matrix Theory and Matrix Inequalities."

Allyn & Bacon, Rockleigh, New Jersey, 1964.
11. Meyer, J. F., Algebraic isomorphism invariants for transition graphs, Rome Air

Development Center Rep. RADC-TR-68-351 (1968).
12. Van der Waerden, B. L., "Modern Algebra," Vol. I. Ungar, New York, 1949. (Trans

lated from the second revised German edition, Springer-Verlag, Berlin and New York,
1940.)

13. Yoeli, M., and Ginzburg, A., On homomorphic images of transition graphs, / .
Franklin Inst. 278, 291-296 (1964).

14. Yoeli, M., and Ablow, C. M., Representations and products of transition graphs, Air
Force Cambridge Research Laboratories Rep. AFCRL-65-400 (1965).

THE CODING OF VARIOUS KINDS OF

UNLABELED TREES

Ronald C. Read

Department of Combinatorics and Optimization

University of Waterloo

Waterloo, Ontario

Canada

1. Introduction: Coding in General 153
2. Definitions 155
3. Binary Codes for Planted Plane Trees 157
4. Binary Codes for Plane Rooted Trees 159
5. Binary Codes for Rooted Trees 160
6. The Decoding Algorithm 161
7. Binary Codes for Unrooted Trees 163
8. A Streamlined Algorithm for Coding Unrooted Trees 164
9. Some Properties of Tree Codes 166

10. Canonical Labelings 170
11. Valency Codes 172
12. Unrooted Trees Again 179

References 181

1. Introduction: Coding in General

Let f be a collection of graphs of some specified kind, and let J b e a
specified set of objects. A coding procedure is a mapping c:&->X such that
two graphs in ^ map onto the same element of X, if and only if they are

153

154 Ronald C. Read

isomorphic. In practice the set X is usually the set of all strings of symbols of
some kind. The definition of isomorphic will depend on the kind of graphs
under discussion.

The image under c of a graph G in ^ will be called the code of G. For empha
sis, we may refer to an element of X as a valid code if it belongs to the image of c.
Clearly there is a one-to-one correspondence between the isomorphism classes
in ^ and the set of valid codes. Any process for obtaining from a valid code x
a graph whose code is x, that is, a representative of the corresponding iso
morphism class, will be called a decoding procedure.

It is worth remarking, in passing, that if our set of symbols has finite
cardinality m, we can interpret a string of these symbols as an integer in the
scale of m, using the symbols as the digits 0, l,...,m— 1. Thus, for theoretical
purposes, we can, without any loss of generality, take A'to be the set of positive
integers. We shall see later that, under certain circumstances, this is also a
practical procedure.

Isomorphic graphs have the same code, and conversely. Hence, the coding
problem—the problem of devising a coding procedure for a given set ^—is
effectively the same as the isomorphism problem, which is the problem of
devising an algorithm to test whether two graphs in ^ are isomorphic or not.
Both problems are notoriously intractable when ^ is the set of all unlabeled
graphs. We shall consider here only the somewhat easier problems that arise
when ^ is taken to be sets of trees of various kinds. Before we do this,however,it
will be worth while to look at the two problems just mentioned, while still in the
context of graphs in general.

If we have a one-shot problem of determining whether two graphs are
isomorphic or not, then a computer program that tests this directly, that is,
whose input is the pair of graphs and whose output is "yes" or "no," will be
quite satisfactory. The alternative of using a coding program, whose input is
a single graph and whose output is the code, on each of the graphs and then
comparing the two codes, might well be roundabout. If the task in hand is to
search a list of graphs to find if a particular graph is present in the list or not,
then, by coding the graphs, we can replace, let us say, N applications of the
isomorphism program by one application of the coding program and TV
comparisons between the codes in the list and the code of the given graph. If
the isomorphism and coding programs are of comparable complexity, as they
probably would be, then this will result in a great saving in time.

As an illustration of this point, consider the problem of constructing all
trees on a given number/? of nodes. A method that produces no duplicates has
been described [13], but is complicated. It is more straightforward to derive
these trees from those on p — 1 nodes, which we shall suppose we have con
structed already. To each of the trees on/?— 1 nodes we add, in every possible
way, an extra edge, one node of which is already in the tree, while the other is

Coding of Unlabeled Trees 155

a new node of valency 1. A node of valency 1 in a tree will be called an end
node. It is clear that we shall get all trees on/? nodes in this way, but that they
will be produced many times over. Thus, each time we produce a tree we must
look to see whether it is one that has occurred before, discard it if it has, and
add it to the list if it has not. This is precisely the kind of application in which a
coding procedure can be advantageously used. A catalog of all unlabeled trees
on up to 13 nodes has been produced in just this sort of way by Morris [9].

There are many kinds of trees that one might like to catalog, and, of course,
there are many other applications, other than mere cataloging, where similar
techniques could be employed. This paper will be a discursive survey of
several methods, some old and some new, for coding trees of various kinds.
We shall consider planted plane trees, rooted plane trees, rooted trees, and
plane trees, as well as common-or-garden trees, those which the computer
man calls "free" trees. All our trees will be given as unlabeled. We shall not
mention methods for coding labeled trees except in so far as they can be
subverted to serve our unlabeled purposes.

It is unlikely that readers of this book will need to be told that the study of
tree structures is of importance in the theory of computing. Knuth [7, Chapter
2.3] gives further enlightenment, should this be necessary. Accordingly, much
of the background of this paper, such as the concept of walking around, or
traversing, a tree, will be old hat to the computer man. Yet this paper is
not written from the computer man's viewpoint. These trees are not thought
of as related to, or arising from, computer problems, but are regarded as the
primary objects of study, and of interest in themselves, rather than as a means
to an end. Thus, this paper is basically theoretical. The only reason it gets in
on the "graph theory and computing" act at all is that the sort of applications
to which tree coding can be applied are liable to require the handling of a
great number of trees, possibly large ones. Thus, the computer's help is needed,
and it becomes necessary to consider questions of economical storage, efficient
algorithms, and various kinds of programming tricks from time to time.

2. Definitions

A tree is a connected graph with no circuits. Two trees are isomorphic if there
exists a one-to-one correspondence between their nodes which preserves
adjacency.

A rooted tree is a tree in which one node, the root, has been distinguished
from the others. Two rooted trees are isomorphic if there is a one-to-one
adjacency-preserving correspondence between them, which maps the root of
one on to the root of the other.

156 Ronald C. Read

Fig. 1 Fig. 2

A plane tree is one that has been imbedded in the plane.Two plane trees are
isomorphic if there is an orientation-preserving homeomorphism of the plane
onto itself, which maps one tree onto the other.

A planted plane tree is usually defined [5, 17] as a rooted plane tree for which
the root is an end node. This root is then the "pot" in which the tree has been
planted, and the edge incident with it is the "trunk" of the tree. It will be con
venient for our purposes not to regard this node and this edge as being part of
the tree, and we modify our definition accordingly. Moreover, we shall
disregard the howls of the botanists and give the name "root" to the node that is
adjacent to the pot, and hence incident with the trunk. Thus, instead of
regarding Fig. 1 as a planted plane tree on 17 nodes of which the pot P is the
root, we shall regard it as having only 16 nodes, and being rooted at R. The
function of the pot and the trunk is to prevent us from, for example, swiveling
the left-hand branch of the tree in Fig. 1 in a counter clockwise direction, as
indicated by the arrow, to obtain the tree in Fig. 2. This restriction can be
indicated just as well by reducing the pot and the edge PR to a short vertical
line, or simply by agreeing to draw the root at the bottom of the figure, as
will be done for all planted trees in this papera Using this convention we can
readily see that the planted plane trees of Fig. 1 and Fig. 2 are different, even
if we leave out the pot and the trunk. These can be added in a unique way if
considered necessary, but they will not form part of the tree, and, in particular,
they will not contribute to the node and edge counts of the tree.

Consider a tree T which is rooted at a node R, and consider a particular node
X of it. Consider the set of nodes A with the property that the unique path
from A to R contains the node X. This set of nodes, which includes X, defines
a subtree of T which we shall call the branch at X. Clearly the branch at R is
the whole rooted tree.

t Unlike Knuth [7, p. 307], I have not (yet) been converted to the bat's-eye view of graph
theory which requires trees to be drawn with their roots at the top of the page.

Coding of Un label ed Trees 157

3. Binary Codes for Planted Plane Trees

We shall first describe a method for coding planted plane trees, the code
being a string of O's and l's, which can, if we wish, be interpreted as a binary
integer. This coding procedure will be the prototype for several others that
will be discussed in this paper for different kinds of trees. The general idea of
this coding algorithm is not new. It has been described by Edmonds [1, p. 196],
and has been discovered independently by others [3, 16]. Indeed, the funda
mental idea on which the method rests was used by Cayley [2] in 1875 in his
study of trees of various kinds, and so has quite a venerable history. The
fundamental idea is that if we remove the root from a planted plane tree,
together with the incident edges, we obtain an ordered set of planted plane
trees. These trees will be the branches at the nodes that are adjacent to the
root of the original tree. We shall refer to them as the subtrees adjacent to the
root. Figure 3 illustrates their genesis.

(a) (b)

Fig. 3

The fact that these trees are ordered is a consequence of the fact that the
original tree was planted, and that the edges incident with the root therefore
occurred in a specific order, which could not be altered (by virtue of the remark
made earlier about not being able to swivel edges round the root). The fact that
they are planted trees follows from the fact that each edge incident with the
root of the original tree will be the "trunk" for the corresponding subtree.

Suppose we have defined a binary code for any planted plane tree on/? nodes
or less, and wish to define a code for a tree T on p+ 1 nodes. Removal of the
root gives a number, let us say k, of planted plane trees, each of which will
have a code, since it has p nodes or fewer. Let Ci9 C2,..., Ck be their binary
codes. We then define the code of T to be

0, C1? C2, , Ck, 1

where the commas denote catenation of the 0-1 strings.
To complete this recursive definition we specify the code of the planted

158 Ronald C. Read

0 0 1 0 1 1

T T
0 0 0 1 0 1 1 0 1 1

0 0 1 0 0 0 1 0 1 1 0 1 1 1

Fig. 4

plane tree on 1 node, necessarily the root. It is 01. Figure 4 shows how the
codes for the trees of Fig. 3b can be derived. From this we deduce that the code
for the tree of Fig. 3a is

00010001011011100101100010110111

It is easily proved by mathematical induction that the code of a planted
plane tree satisfies the following two conditions :

(1) the number of O's equals the number of l's;
(2) if the code is scanned from left to right, then at each stage the number

of O's is greater than the number of l's, except when the end of the code is
reached, when they are equal.

A string of O's and l's which satisfies these two conditions will be said to have
the level property, a term taken from de Bruijn and Morselt [3].

The recursive definition just given is the simplest way of defining the code,
but gives rise to computational difficulties. Starting at the root, we know how
to construct the code of the whole tree from those of the subtrees at the root,
but we do not yet know what these codes are. Thus, we need to work upward
from the root until we come to subtrees that are small enough to code, that is,
until we come to an end node.

This process can be systematized in an obvious way by defining the height of
a node, a term which is almost self-explanatory. The root is of height 1. All
nodes adjacent to the root are of height 2. All nodes adjacent to these, except
the root, are of height 3, and so on.1" This progressive manner of defining the

t The height is sometimes defined by letting the root be of height zero, thus giving h— 1
where we have h. Our definition has some advantages in the present context.

V

\

i

Coding of Un labeled Trees 159

0010010111 \ G H/01 01

000100101 11011 Q-^ 000101 1011
Q

R ̂ 00001001011101 100101 1000101101 11

Fig. 5

height of a node indicates an obvious algorithm for finding the heights of all
the nodes of a given rooted tree. In drawing planted trees, nodes of the same
height will be drawn on the same level, with higher nodes further up the page
than lower ones. This definition of height applies also to trees that are rooted
but not planted.

The maximum height h of the nodes of a rooted tree is called the height of
the tree. Having classified the nodes of a tree according to their height, we can
easily implement the coding procedure. We first code the branches on the
nodes of height A— 1, since the subtrees, if any, formed by the removal of these
nodes are single nodes. We then code the branches on nodes of height A —2,
and so on. This is illustrated in Fig. 5, where the code for the branch at each
node is indicated next to that node. These branches are coded in the alpha
betical order of the letters attached to the nodes.

4. Binary Codes for Plane Rooted Trees

The difference between a plane tree and a planted tree is that the swiveling
about the root mentioned in Section 2 is allowed. If the valency of the root is
k, then, as with planted plane trees, the removal of the root gives rise to k
subtrees, each of which is a planted plane tree. However, whereas with planted
trees we could recognize one of these subtrees as being the left-most and arrange
them from left to right uniquely, we can now only recognize a cyclic order in
which these branches occur around the root.

Thus, we can code each of the branches as before. However, when we attempt
to combine the codes into a code for the whole tree, we do not know where to
start. We can overcome this difficulty by taking each branch in turn, regarding

160 Ronald C. Read

it as the left-most and taking the others in cyclic order, thus treating the tree
as if it were a planted plane tree. This gives us k possible codes, which may not
be all distinct, from which we need to choose one, in some unique way, to be
the desired code for the tree. There are several ways in which one can do this,
and for the time being we shall mention the most straightforward of these.
We regard each of the k codes as being an integer expressed in binary notation,
and choose the code which gives the smallest such integer. It is easily seen
that two isomorphic plane rooted trees will give the same code, and conversely.

Another way of looking at this process is to observe that to any plane rooted
tree there correspond k planted plane trees, one for each of the k spaces
between the edges round the root in which a trunk for the planted tree can be
drawn. We choose the planted tree with minimum code to represent the plane
rooted tree.

5. Binary Codes for Rooted Trees

When we consider trees that are merely rooted, so that the manner in which
they are imbedded in the plane, if they are, is not important, we see that the
order of the subtrees at the root is immaterial. If we permute them in any way
we merely get another imbedding of the same, that is, an isomorphic, tree.
Moreover, the same remark applies to these subtrees, regarded as rooted trees,
and so on. Thus we must recast the recursive definition. Let CUC2,.. . . , Ck

be the codes of the branches at the nodes adjacent to the root. Let these codes
be written in some preferred order, to be defined, given by a permutation
0Ί>*2>*3»···>**) of the integers 1,2,3,...,/:. Then the code of the tree is defined
to be

0 C C C 1

As before, the code of the tree consisting of a single node is defined to be 01.
For practical computation of the code we can first determine the heights of

the nodes of the tree, and code the branches at the nodes in order of the
heights, with highest nodes first. The order in which we do this for the nodes of
the same height will not matter. These codes will be sorted when they are
incorporated into the codes of branches at lower nodes.

We have left unspecified the particular preferred order in which we will
take the codes Ci9C29 ,Ck. The most straightforward choice would be
to arrange these codes in nondescending order of the binary integers that they
represent. Thus, if the removal of the root resulted in trees the codes of which
were

00001111, 0001011011, 00000101101111,

Coding of Un labeled Trees 161

then we would take them in the order in which they have just been given, since
they correspond to the integers 15, 91, and 367 in decimal notation. This
method would certainly serve. In fact, any method of ordering the codes will
serve, provided it is unique.

There are some theoretical advantages, however, in using a rather less
direct method of ordering. Instead of regarding the codes as binary integers,
we shall regard them as binary fractions, following a binary point, which is the
binary analogue of the decimal point. Thus, we would take the above codes in
the order

00000101101111, 00001 111, 0001011011

by virtue of the inequalities

.00000101101111 < .00001111 < .0001011011

We shall see later the advantages of this method of ordering.

6. The Decoding Algorithm

In all the codes defined so far we have ended with what is, in effect, the code
of a planted plane tree. We have used an ordering procedure to establish a
preferred order for the subtrees rooted at any given node. The planted tree
whose code we obtain, therefore provides a canonical way of drawing the
given tree, be it rooted and plane or just rooted.

It follows that any method of decoding the code of a planted tree to obtain
a drawing of the tree, or other information from which we could draw the
tree, such as the adjacency matrix or a list of edges, will apply equally well to
all the kinds of trees so far considered.

The decoding procedure is straightforward. It is easily verified that the
symbols 0 and 1 appearing in the code of a tree behave like left and right
parentheses, respectively. Let us therefore write the code of the tree of Fig. 5,
using parentheses. We get

(((()(()()))())(()())((()())())) ·

Each left parenthesis has a matching right parenthesis. Let us regard each
such pair of parentheses as the left and right portions of a circle, or other
closed curve, and fill in the missing parts of this curve. We obtain Fig. 6.

If we now regard the circles as nodes, and define adjacency to mean im
mediate inclusion of one circle inside another, we arrive at the original planted
plane tree. The fact that this decoding procedure is effective can be proved by
mathematical induction. The removal of the first and last symbols of the code,
which correspond to the root, from a string of 0's and l's having the level

162 Ronald C. Read

Fig. 6

property results in a succession of substrings, each having that property. The
breaks between one substring and the next occur where the number of O's
equals the number of l's, reading from left to right. These substrings are the
codes of the subtrees that result when the root is removed. Thus, this procedure
simply reverses the coding procedure.

This geometric method of drawing circles, which has been rather loosely
described above, is equivalent to the following more formal algorithm, which
produces as its output a list of those pairs of nodes that make up the edges of
the tree. It also produces a canonical way of labeling the nodes of the tree
with any convenient ordered set of labels. We shall always take our set of
labels to be the integers 1,2,3,...,/?.

ALGORITHM 1. DECODING ALGORITHM.

Step 1: Associate a label with each 0 occurring in the code, by numbering
them, in order, from left to right.

Step 2: Scan the code from left to right until the configuration 001 is
found. Note the pair of labels associated with the two O's in this configuration,
and then delete the second 0 and the 1. Note that the two labels noted will
define an edge of the tree

Step 3: (1) If the resulting string has more than 2 symbols, repeat from
Step 2.

(2) Otherwise the string is just 01, the label associated with this 0 is that of
the root, and the algorithm terminates.

The connection between this algorithm and the geometrical approach can
be seen as follows. The sequence 01 occurring in a code gives the smallest size
circle and therefore represents an end node. It is adjacent only to the node
represented by the circle S which contains it. If it is left-most inside this circle,
then it will produce the configuration 001. If not, then it will eventually become
the left-most circle inside S when the other circles, also in S which lie to its
left, have been deleted. This decoding process is illustrated in Table I, which
gives the decoding of the string

00001001011101100101100010110111

Coding of Unlabeled Trees 163

In Table I the digits making up the 001 configuration have been underlined
in each line. The pairs of nodes that are the edges of the tree are written on the
right as they are found. The digits that are deleted at each stage of the algorithm
have not been physically deleted, but merely struck through. In implementing

TABLE I

Decoding of the String 00001001011101100101100010110111

1 2 3 4 5 6 7 8 9 10 11 121314 15 16 Edges

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 0. 0
0 0 0
o 0 Q
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1

I
I
I
I
I
I
t
}

4
;
4
I
I
\
\

0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
1

;
X
l
4
;
;
l
l
4
I
I
1
I
1

0
0
0

0 J
0)
0)
0 J
0)
0 j
0
0 j

0 j

0 J
0 j

0 J
0 i

1
1
1
1

I _
t
t
4
;

r ; /
4
;
; y

;
4
4

l 0

[0

l 0

l 0

L o
ί 0

f 0
f 0
I 0
I 0
I Q
ί 0
1 0
I 0
ί 0
ί 0

1
1
1
1
1
1

/
;
;
;
;

ι l
l
\
I

1
1
1
1
1
1
1

1
;
4
;
;
;
;
4
l

0
0
0
0

0
0
0
0
0

a
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1

;
;
;
4
;
4
I
I

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0

1
1
1
1
1
1
1
1
1

;
;

r
;
;
;
l

1
1
1
1
1
1
1
1
1
1

;
;
;
4
;
;

0
0
0
0
0
0
0
0
0
0
0
0
0.
0
0

0

0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0

1
1
1
1
1
1
1
1
1
1
1

;
;
I
t
;

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0

1
1
1
1
1
1
1
1
1
1
1
1

;
4
I
;

1 0 11
1 0 11
1 0 11
1 0 11
1 0 11
1 0 11
1 0 11
1 0 11
1 0 11
1 0 11
1 0 11
1 0 11
1 0 11

; o i i
1 0 1 1
19 11

(3, 4)

(5, 6)

(5, 7)

(3, 5)

(2, 3)

(2, 8)

(1 2)

(9, 10)

(9, 11)

I (1, 9)

I (13, 14)

I (13, 15)

I (12, 13)

1 (12, 16)

1 (1, 12)

1 end.

this algorithm on a computer, this is a possible way of coping with these dele
tions. Some kind of tag is assigned to each digit to show whether it has been
deleted or whether it has still to be considered. This has the disadvantage
that at each iteration one has to wade through a lot of garbage to find the
next 001 configuration. The alternative is to delete the digits literally and close
up the rest of the code, so that the code to be searched gets shorter as the
algorithm progresses. This could lead to problems of keeping track of the
labels of the 0's as they move around in storage. However, it is not, in fact,
necessary to label these 0's all at the beginning as, for simplicity, we have
stated above. It is sufficient to allocate labels only until we come to a 001
configuration, and resume the labeling after the appropriate deletions have
been made. In this way no 0 receives a label until it has reached its final resting
place from which, ultimately, it will be deleted.

7. Binary Codes for Unrooted Trees

The problem of coding unrooted trees can be reduced to that of coding
rooted trees by means of the center-bicenter theorem for trees, which we now
briefly review.

164 Ronald C. Read

Let 7\ be a tree. Note all the end nodes of Tx. If there are more than 2 of
them, simultaneously delete them all from Tx, together with their incident
edges. Call the resulting tree T2. In a similar way, form a new tree T3 from Γ2,
and so on. We obtain a sequence

Tl9T29T39...

of trees. Each of these trees has at least 2 nodes fewer than its predecessor
and, hence, this sequence must terminate. It will do so when a tree is reached
that has either one node, which is called the center of the original tree Tu or
two nodes and the edge joining them, called the bicenter of 7\.

If 7\ has a center, we can associate with it a unique rooted tree 7* by making
the center the root. Tt* can be coded by the method of Section 3, and we can
take this code to be the code of the unrooted tree Tx.

If Τλ has a bicenter, the removal of the bicentral edge will result in two
rooted trees. These can be coded as before. We then arrange these codes in
the preferred order, and insert the first code after the initial 0 of the second
code. Thus, if the codes, in the preferred order, are OAl and 02? 1, where A
and B are binary strings, the code of the tree becomes 00AÌBÌ. It will be seen
that this is the same as truncating each code by removing the initial 0, catenat
ing the two resulting strings, and placing 00 at the beginning. In terms of the
tree, the effect of this is to obtain the code of a rooted tree in which the second
of the two bicentral nodes is the root. Thus, in either case, the code obtained
is that for a planted plane tree, and it follows that it can be decoded by the
decoding algorithm already described.

We note that by a method essentially the same as that just described, the
coding of unrooted plane trees can be made to depend on the coding procedure
for rooted plane trees that was described in Section 4.

8. A Streamlined Algorithm for Coding Unrooted Trees

It will be clear from the last section that the algorithm described there for
coding unrooted trees requires three passes through the tree. First, we need
to work from the outside inward, deleting end nodes, in order to find the
center or bicenter. Then we must work outward from the center or bicenter
in order to find the heights of the nodes. Finally we work inward again, using
the coding algorithm on the branches at nodes of decreasing height.

The speed with which a tree could be coded would be increased if we could
replace this three-pass process by a single-pass process. It turns out that this
is possible. We combine the detection of the center or bicenter with the outside-
inward coding process, to form a sort of "code-as-you-go" algorithm. Since
we shall not know the heights of the nodes at any stage, and shall not be

Coding of Unlabeled Trees 165

aware of where the center or bicenter is until we come to it, it is clear that
this streamlined algorithm must differ in some ways from those already
considered. As it happens the differences are slight.

At each stage of the algorithm we shall consider a subtree of the tree Tl9

obtained from it by deletions of end nodes, as described at the beginning of
Section 8. In this subtree each end node will bear a tag, which is the binary
code of the branch at that node in the original tree. Initially each end node of
Tl bears the tag 01. The transition from one subtree to the next is effected in
the following way. Look at those nodes that are adjacent to an end node and
pick out those for which all but one of the adjacent nodes are end nodes. It
will be convenient to call such a node a ripe node. For each ripe node X, con
struct the code of the branch at X from the tags of the adjacent end nodes
as described in Section 5. Having done this, delete the end nodes adjacent to
X. When this has been done for all ripe nodes, we have a tree in which all the
end nodes, and only they, bear a tag. This is the next tree in the sequence, and
we repeat the process if possible. The algorithm ends when the resulting tree
has only one or two nodes. If it has one node, this will be the center of Tl9 and
its tag will be the code of the tree. If it has two nodes, these will be the bicentral
nodes of 7\. We form the code by catenating their tags in the preferred order,
having first dropped their initial zeros, and then inserting 00 in front, as
described in Section 7.

We now formally present this algorithm.

ALGORITHM 2. STREAMLINED CODING ALGORITHM. At each stage of this
algorithm the nodes will be partitioned into two sets. A is the set of tagged
nodes, and B is the set of untagged nodes. With each element of A there is
associated a tag, that is, a binary string. Initially A consists of the end nodes
of Tl9 each having the tag 01, and B contains all the other nodes of Tx.

Step 1: Construct the set R of those nodes of B that are adjacent to at
most one other node of B.

Step 2: For each node X e R consider the tags of the adjacent nodes that
are in A. By catenating these tags in the preferred order, and enclosing them
between a 0 and a 1, construct the tag for the node X.

Step 3: (1) If B has only one element X, then the tag of Zis the required
code for Tl9 and the algorithm terminates;

(2) if B has exactly two elements, then the code of Tx is obtained by
catenating the truncated tags of these two nodes in the preferred order, and
prefixing 00;

(3) otherwise put A=AuR9B = B — R9 and go back to Step 1.

Note that in this more formal algorithm we have made no provision for
deleting the end nodes from the tree, as we did in the informal presentation.

166 Ronald C. Read

This is not necessary, since once the tag of an end node P in 7\ has been
incorporated into the tag of an adjacent node, all nodes adjacent to P are
then tagged. Hence, P cannot subsequently be adjacent to a node X of a set
R, since X must be in B and, hence, is untagged. Thus, P plays no further
part in the algorithm and is as good as deleted. It follows that all we need to
know about a node is whether it is tagged, and if so, with what.

It is easily verified that if, in the above algorithm, we forget about the
nature of the tags and merely note which nodes are tagged and which are not,
then we obtain an algorithm for determining the center or bicenter of the
tree. It will differ from that described at the beginning of Section 7 only in the
timing of the deletions of the nodes. Thus, if we apply to the tree of Fig. 5 the
usual method for finding centers or bicenters, we would delete nodes A, B,
C, E, F, G, I, J, and Kin the first iteration. In the streamlined coding algorithm
only nodes A9 B,C, E, F, G, 7, and K would be deleted, since the nodes adjacent
to them are "ripe." On the other hand, node C, for example, would be ear
marked for deletion at this stage, but would not be actually deleted, in the
sense that its adjacent node H would become tagged, until a later iteration
when H became ripe. The same applies to node /. This clearly makes no
difference to the final result, and the node or nodes last tagged when the
streamlined algorithm terminates will be the center or bicenter of the tree, as
the case may be. Thus, the code that results is the same as that given in Section 7.

This algorithm will not work for a rooted tree, since it, so to speak, generates
its own root. However, by a species of low cunning, we can trick the algorithm
into coding rooted trees should the occasion arise. The natural way of determin
ing whether a node is ripe is to subtract the number of adjacent tagged nodes
from its valency. The node is ripe if the result, r say, is 1 or 0. However, note
that r = 0 only when the algorithm is about to terminate and the node in
question is the center of the tree. The valencies of the nodes can be computed
at the beginning of the algorithm. All we have to do then, is to fudge the initial
list of valencies by increasing the listed valency of the intended root by 1. This
will prevent the value of r for that node from ever being 1, except when all
other nodes have been tagged. It will then be exactly 1, instead of 0. In this
way, the algorithm is fooled into taking the required node to be what it fondly
imagines to be the center of the tree.

9. Some Properties of Tree Codes

In this section we discuss some of the properties of the binary codes so far
defined for trees.

(1) The code for a tree on p nodes consists of/? zeros and p ones having
the level property. This property of tree codes has already been discussed.

Coding of Unlabeled Trees 167

(2) The difference between the number of O's and l's in a portion of the
code, reading from left to right, up to, and including a particular zero, is the
height of the node associated with that zero in the manner of Algorithm 1.

The proof of this will be given in the next section.

The remaining properties are for trees not imbedded in the plane.

(3) The code of a rooted tree of height h starts with h zeros.

The proof is by mathematical induction. A rooted tree of height 2 is a star
in which the root is adjacent to each of the other nodes of the tree. Clearly
its code is

0010101-01011

and since this starts with 2 zeros, the result is true when h = 2. Assume that it
is true for trees of height 2,3,..., A— 1, and consider a tree of height h. The
code of such a tree is of the form

c(T) = 09c(Ti)ic(T2\...,c(Tk)9l

where at least one of the subtrees Τί9 Γ2,..., Tk is of height A— 1.
Now, since we are ordering the codes of these subtrees by nondescending

magnitude of the corresponding binary fraction, the codes with the most
leading zeros will come first. Thus, 7\ will certainly be of height A— 1, and
this means that the code c(T) of Twill start with h leading zeros. The result
then follows by mathematical induction.

(4) The code of an unrooted tree of diameter D starts with [(Z) + 3)/2] zeros.
The diameter of a tree is defined as the longest distance, counted by the

number of edges, between any two nodes. It is easily verified that if the tree
has a center, then D is even, and that there are at least two end nodes at
distance D/2 from the center and none at a greater distance. Therefore, when
the tree is rooted at the center, its height is D/2+ 1. The present result then
follows from property (3).

If the tree has a bicenter, then D is odd and the two rooted trees that are
joined by the bicentral edge, and whose codes make up the code of the tree,
are both of height (/)+1)/2. Since the code begins with a zero followed by
the code of one of these rooted trees, it will begin with (D + 3)/2 zeros, again
by property (3). Since D is odd, this agrees with the result given.

We see, in properties (3) and (4), the reason why the ordering for codes was
based on the interpretation of the codes as binary fractions rather than as
binary integers. This is also the reason why the code for the tree on just one
node was chosen to be 01, rather than 10, which is what has been used in some
other discussions of this topic [12, 16]. The whole object has been to concen
trate as many zeros on the left of the code as possible, thus making its integer

168 Ronald C. Read

or fractional equivalent as small as possible. It is of interest to ask how small
this can be.

When we are talking about single codes, or comparing codes of the same
length, it makes little difference whether we interpret the code as a fraction or
as an integer. In the rest of this section, we shall think of the code of a tree as
representing an integer, and call this the integer code of the tree. Clearly, we
lose no information by thus ignoring the leading zeros, since their number
can be deduced from the level property. We now consider the values between
which the integer codes of trees must lie.

It would be tedious to recount in detail how the maximum and minimum
integer codes were calculated for various kinds of trees. It will suffice to
summarize the results. For this purpose, we let i(T) denote the integer code
of a tree Γ.

(5) If T is a rooted tree, then

2 P _ 1 < i(T) ^ 1(22ρ_1-Ηΐ).

(6) If T is unrooted and is central, then

where

f(2k+\) = 23k + i -22k+l+2k+l - 1

and

f(2k) = 2 3 * - 1 + 2 3 / c - 2 + 2 2 *- 1 + 2k- 1.

(7) If T is unrooted and is bicentral, then

g(p) < i(T) < h(p)9

where

g{2k) = {2k-\)(22k-l + \\

g(2k+\) = g(2k) + 23k,

h(2k) = ±(22k-l + \)\

and

h(2k+\) = i(24A + 22*+l).

We give, in Table II, some actual values for these bounds between which
i(T) must lie.

It is of interest to note that, although these numbers increase exponentially
with /?, nevertheless, even for trees on what, for many applications, is a fairly
large number of nodes, p = 20 or so, these integer codes still lie within the

Coding of Unlabeled Trees

TABLE II

Bounds for i(T)

Rooted trees Unrooted central Unrooted bicentral

P

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

minimum

7

15

31

63

127

255

511

1023

2047

4095

8191

16383

32767

65535

131071

262143

524287

1048575

maximum

11

43

171

683

2731

10923

43691

174763

699051

2796203

11184811

44739243

178956971

715827883

2863311531

11453246123

45812984491

183251937963

minimum

11

43

103

359

911

2959

7711

24095

63551

194623

516223

1564799

4161791

12550399

33423871

100532735

267912191

804783103

maximum

11

43

171

683

2731

10923

43691

174763

699051

2796203

11184811

44739243

178956971

715827883

2863311531

11453246123

45812984491

183251937963

minimum

-
27

91

231

743

1935

6031

15903

48671

129087

391231

1040511

3137663

8356095

25133311

66978303

201196031

1536347647

maximum

-
27

91

363

1387

5547

21931

87723

349867

1399467

5593771

22375083

89483947

357935787

1431677611

5726710443

22906579627

91626318507

range of values which can be handled, as integers, by modern computers and
present-day programming languages. Thus, for example, the 16-digit integer
allowance in APL will enable us to handle, as integers, the codes of trees with
up to 27 nodes. Actually, the result will be a little better than this if we use
property (9) below.

This suggests that the coding algorithm could be carried out using integer
arithmetic instead of the manipulation of binary strings. At each stage of the
algorithm the tags would be integers, and each end node would initially bear
as its tag the integer 1. In Step 2 of the algorithm the tags Ni9N2,...,Nk would
be combined to give the tag

2 x ((••{((Nl2
l> + N2)2

h + N3)2
l4 + N4).-.)2l« + Nk) + 1

for the appropriate ripe node, where /, is the length of the string corresponding
to the integer Nt. Although these lengths can be deduced from the tags, this
would be time-consuming. They are best stored along with the tags.

Two further properties of tree codes are worth a brief mention. It is some
times of interest to know whether a tree code is that of a central or bicentral
tree, without going to the trouble of decoding the whole tree. This question
is settled by the following property.

(8) If a binary string is known to be the code of some unlabeled tree, then
this tree is central if and only if the first two substrings that result from the
deletion of the extreme 0 and 1 have the same number of leading zeros.

170 Ronald C. Read

Proof: If the tree is central, then at least two of the subtrees at the root
have the same maximal height. Hence, by property (3), their codes have the
same number of leading zeros. If the tree is bicentral, then the first substring
denotes a tree which contains the bicentral edge, and, hence, will be higher by
1 than any other tree at the root. Thus, this substring will have one more leading
zero than the second substring.

The other property enables us to shorten slightly the code of a tree.

(9) The binary code of a tree ends with at least two l's. The proof is
obvious.

This means that all integer codes are congruent to 3, modulo 4. It also means
that the binary code can be shortened, without any loss of information, by
dropping these two l's, all leading 0's, and the first 1. This will, in turn, give a
smaller integer code.

10. Canonical Labelings

Although the trees that we have been considering have all been unlabeled,
it is clear that if we have a means of drawing a tree in the plane in some standard
way (and Sections 6 and 7 provide such a way) then it is no problem to choose
a method for labeling the nodes of the tree in a manner which depends only on
the isomorphism class of the tree. There are many ways in which this choice
can be made, and a canonical labeling obtained. We shall consider two of
them. In this section and the next we shall be concerned entirely with planted
plane trees and shall, for convenience, refer to these as just trees.

(1) The bottom-up labeling: We shall allocate integers 1,2,3,...,/? to the
nodes, taking the nodes in the following order. Nodes of height r precede nodes

Fig. 7

Coding of Unlabeled Trees 171

Fig. 8

of height r + 1 , and among the nodes of the same height the ordering is from
left to right. This gives us a labeling like that of Fig. 7.

(2) The walk-around labeling: The notion of walking around, or through,
a tree is a very well-known one in computer applications of tree structures. A
fairly clear idea of what is meant can be gleaned from Fig. 8.

More formally, we can think of the walk, now strictly "on" the tree rather
than "around" it, as being determined by a sequence of nodes in the order in
which they are visited, starting at the root. This sequence is determined by the
following maze-threading rules :

Rule 1: each edge is to be traversed exactly once in either direction;
Rule 2: if, subject to Rule 1, we can go upwards from the node where we

are, we do so, and we take the left-most of the edges available to us;
Rule 3: if we cannot go up, we go down.

By walking around a given tree we can obtain a canonical labeling which is
different from that given in labeling (1). As we walk around the tree, we give
the next available label to a node when we meet it for the first time. This also
is shown in Fig. 8.

A simple induction argument shows that the canonical labeling thus
obtained is precisely that given by the decoding algorithm, Algorithm 1.
This suggests that the code for a tree could be derived from a walk around
the tree, and this is so. In fact, it. is exactly the way in which de Bruijn and
Morselt [3] derive a code that is essentially the same as that of Section 3. They
observe that a walk around a tree is specified uniquely by stating, for each of
the 2/7 — 2 steps of the walk, whether it goes up or down. The rule for taking
the left-most of the available edges then ensures uniqueness. Thus, if we
interpret 0 and 1 in the code to mean "up" and "down", respectively—

172 Ronald C. Read

de Bruijn and Morselt use U and D—then the code gives us a recipe for per
forming the walk, and, hence, drawing the tree. Since going up (down) means
going to a node of height greater (less) by 1, we immediately deduce Property
(2) of Section 9.

De Bruijn and Morselt used this code to establish a simple one-to-one
correspondence between the set of trees on p nodes and the set of binary trees
on 2/7-1 nodes. Harary et al. [5] had previously observed that these two
sets were equinumerous, and had established a one-to-one correspondence
between them. However it was a somewhat complicated one.

11. Valency Codes

We now consider a rather different type of code, to which the name "valency
code" is not inappropriate, though it is not the valency vt of each node that is
used but rather the number ut of edges that go upwards from that node. For
the root this is the same as the valency, while for every other node of the tree
Ui is one less than the valency. A valency code is simply a list of these integers
ut in some specific order.

It is well known that the set {w,·} will not, in general, determine the tree.
However, it so happens that if these numbers are listed in the order of one or
the other of the canonical labelings given in Section 10, then the tree is uniquely
determined. This statement requires proof, and we consider first the simpler
case.

(1) The bottom-up valency code {BVVcode) for a tree: This code consists
of a sequence {wt·}, where wf relates to the node labeled / in the bottom-up
labeling of the tree. Clearly, two isomorphic trees will give the same code.

To prove the converse we show how to draw the tree having a given BUV
code. The method is so straightforward that a specific example will suffice to
explain it. Consider the sequence

(1) 4,2,0,2,3,0,0,2,0,0,0,0,0,0

The first integer indicates that there are 4 edges going upwards from the
root. We draw the root and these edges. This gives us 4 nodes of height 2. The
next 4 terms 2, 0, 2, 3 give the numbers of edges going upwards from these
4 nodes, from left to right. We can therefore draw the tree up to and including
the nodes of height 3. There are 2 + 0 + 2 + 3 = 7 of these. The next 7 terms in
the code enable us to construct the tree up to the nodes of height 4. There
are two of these. They are end nodes, as the two remaining zeros in the code
testify. We obtain the graph of Fig. 9. The method is clearly quite general.

This valency code consists of/) integers. The number of consecutive zeros
at the end will be the number of nodes of maximum height h, necessarily

Coding of Unlabeled Trees 173

end nodes, plus the number of end nodes of height A — 1 to the right of the right
most node of height A— 1, not an end node. This number could be as small as
1, so the only simple way of reducing the length of the code would be to omit
the final zero. This gives a code consisting of p— 1 terms.

A code essentially of this type has been described by Klarner [6], who pays
particular attention to the special case of trees in which every node that is
not an end node has the same valency k + 1. Since Klarner includes the trunk
in his planted plane trees, this means that in our notation u{ = 0 or k for all /.
If it is understood that we are talking about trees of this kind, then it is not
necessary to record the values of the ut in the code. We need merely put a 1 in
the /th position if w, = k, and a 0 if wf = 0. In this way, we obtain a string of/?
binary digits. Some economy is possible here, for we must have ux = k, so we
can omit u{. Further, there must be at least k consecutive zeros at the end of
the sequence, and these can be omitted, too, without any loss of information.
This reduces the code to a sequence of p — k— 1 digits. It is easily proved that
p = kn + 1 for this kind of tree, where n is the number of nodes of valency
greater than 1. Hence, the length of the code is k(n— 1) binary digits. This is
a considerable saving over the 2p binary digits of the code of Section 3, but,
of course, these trees are very special indeed.

Returning to the BUV code for general planted plane trees, we consider
a way of expressing it in binary form. In place of each uh we write down a
string consisting of ux zeros followed by a one, and we catenate these to form
the required binary code. Thus, from (1) we get

000010011001000111001111111

Clearly, the sequence of wf's can be reconstructed from such a string. Each
1 signals the end of a substring for which the number, possibly 0, of 0's is the
corresponding «,·. Since node / accounts for w,+ 1 = vt digits of this code, for
/ > 1, and node 1 accounts for vl +1 digits, the total length of the code will be

fvi+l = 2 (/ > - l) + l

= 2 / 7 - 1 .

174 Ronald C. Read

There will, therefore, be p ones (or p— 1, if the economy of omitting the last
Ui is used) and, hence, p—\ zeros. Klarner used this device, with 0 and 1
interchanged, to obtain yet another one-to-one correspondence between the
two sets mentioned at the end of Section 10.

We note here, in passing, that the addition of a zero at the beginning of
this binary version of a BUV code gives a binary string which has the level
property. By regarding this as the binary code of a tree, as in Section 3, we can
define an interesting one-to-one mapping of the set of all trees on p nodes
onto itself.

(2) The walk-around valency code {WAV code) for a tree: The walk-
around valency code is defined exactly like the bottom-up valency code except
that the order of the nodes is taken to be that given by the walk-around labeling.
Thus, the tree of Fig. 9 has the WAV code

4,2,0,0,0,2,2,0,0,0,3,0,0,0.

Thus, the WAV code, like the BUV code, is a sequence of/? integers {wj.
We first demonstrate a property of WAV codes.

THEOREM. If the sequence {wj is the WAV code of a tree, then for every
r (= 1,2,...,/>)

(2) fu^r-l,
/ = l

where the equality holds, if and only if, r=p.

Proof: When we code the tree T whose code is {w,}, we start at the root
and walk around the tree, noting the integer wt· for each new node we pass.
Stop after noting the rth term. Some edges of 7 will have been traversed
twice, once in each direction, some once, and some not at all. Delete from 7
all edges not traversed at all, thus obtaining a subtree 7". Now complete the
walk around 7' . We can add no more w/s to the code, since we can reach a
new node only along a path not previously traversed, and these have been
eliminated. Thus, T' has r nodes.

In the special case when 7" = 7, that is, when every edge had been traversed
in at least one direction, we now have the code of 7. Thus, r=p and

(3) £«, = »!+£ (».-I)
/ = 1 1 = 2

= ίν,-{ρ-ί)
i= 1

= 2 (p - l) - G » - l)

= p-\

Coding of Unlabeled Trees 175

so that (2) holds. If 7 ' / 7, then the truncated code that we have is not the
code of 7 ' . Some of the w/s are too large because of the removal of edges.
The fact that 7 is connected ensures that the removal of an edge not traversed
at all must make at least one of the wf smaller for 7 ' than for 7. Hence,

/ = l / = l

= r- 1

by applying (3) to the tree 7' , where u/ is defined for the tree 7 ' . This proves
the theorem.

This theorem gives us a decoding algorithm for WAV codes. If we remove
the first term in the code, then the next so many terms will describe a walk
around the left-most of the subtrees joined to the root. How many terms are
required can be found by using (3). We take just so many as will make their
sum one less than the number of terms. Thus, to decode

3,3,0,2,0,0,0,0,2,0,2,0,0,

we remove the first 3, and find that we must take the next 6 terms before (3)
is satisfied, since 3 + 0 + 2 + 0 + 0 + 0 = 5. This defines the left-most tree, and
we delete these terms from the sequence. We now repeat this procedure with
the rest of the sequence, and so on. We find two more subtrees, defined by the
subsequences 0 and 2,0,2,0,0.

Thus, by removing the first term of the code, we can break up the remainder
into subsequences, each of which is the WAV code of a subtree joined to the
root. The number of subtrees thus obtained must be ul. It follows that this
term is redundant and could be dropped from the code, if we wished, without
loss of information.

As before, we can replace the term wf by a string of u-x zeros and a 1. We
catenate these strings to obtain a binary version of the WAV code. From (2)
we deduce that, by putting a zero in front of this code, we obtain a binary
string having the level property.

Before going further we give more formal algorithms for the decoding of
BUV codes and WAV codes. These are equivalent to the informal descriptions
given above, though we shall not take space to prove this.

ALGORITHM 3. ALGORITHM FOR DECODING BUV CODES. The terms of
the code are numbered 1,2,...,/? consecutively. There are two markers, a left
marker and a right marker, which both point to the first term of the code at
the start of the algorithm.

Step 1: If the right marker is pointing to the last term, the algorithm
terminates. Otherwise, move the right marker to point to the next term.

176 Ronald C. Read

Step 2: If the left marker points to a zero term, move it to the next nonzero
term.

Step 3: Reduce by 1 the term to which the left marker is pointing, and
note, as an edge of the tree, the pair of nodes corresponding to the present
positions of the two markers. Repeat from Step 1.

TABLE III

Decoding Process for a BUV Code

1 2 3

4 2 0

1 _2_ 0
2 2 0
1 2 0
0 2 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

4

2
2
2

2
2
2
2

I
0
0
0
0
0
0

5

3
3
3
3

2
3
3
3
3
2

1
0_
0
0

6

0
0
0
0
0
j)
0
0
0
0
0
0
0
0

7

0
0
0
0
0
0
0
0
0
0
0
0
0
0

8

2
2
2
2
2
2
2

2
2
2
2
2

I
0

9

0
0
0
0
0
0
0
0
0
0
0
0
0
0

10

0
0
0
0
0
0
0
0
0
0
0
0
0
0

11

0
0
0
0
0
0
0
0
0
0
0
0
0
0

12

0
0
0
0
0
0
0
0
0
0
0
0
0
0

13

0
0
0
0
0
0
0
0
0
0
0
0
0
0

14

0
0
0
0
0
0
0
0
0
0
0
0
0
0

Edge

(This is the code)

0,2)
0,3)
(1,4)

(1,5)
(2,6)
(2,7)
(4,8)
(4,9)
(5, 10)

(5,11)
(5, 12)
(8, 13)
(8, 14)

If the sequence was a valid code, then all the terms will have been reduced
to zero when the algorithm terminates. Table III gives an example of this
decoding process. The positions of the markers are indicated by underlining.

ALGORITHM 4. ALGORITHM TO DECODE A WAV CODE. We number the
terms of the WAV code from 1 to p. During the algorithm some terms will be
altered, or deleted altogether, but the numbering remains the same. There is
a marker, which initially points to the first term, and is moved around as the
algorithm progresses according to the following two rules:

Rule 1: if the marker points to a nonzero term, say ui9 move it to the next
term uj9 ignoring any deleted terms; note that nodes / and y form an edge of
the tree.

Fig. 10

Coding of Unlabeled Trees 177

TABLE

Decoding

1

Code 3
3
3
3
3
3
3
3
3
3
3
3
2
2

0.

IV

; Process for a

2

3
3
3
2
2
2
2
2
2

I
1

0

3

0
0
0

4

2
2
2
2
2
2

1
1

0

5

0
0
0
0
0
0

6

0
0
0
0
0
0
0
0.

WAV Code

7

0
0
0
0
0
0
0
0
0
0
0

8

0
0
0
0
0
0
0
0
0
0
0
0
0
0

9

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

0

10

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

11

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
0

12

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

13

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Edge

0,2)
(2,3)

(2 ,4)
(4,5)

(4,6)

(2,7)

(1 ,8)

(1,9)
(9, 10)

(9,11)
(11,12)

(11,13)

Rule 2: If the marker points to a zero term, delete this term, move the
marker back to the previous nondeleted term, which cannot be a zero, and
decrease this term by 1.

If the code is valid, this algorithm will terminate when all terms have been
deleted. The pairs of nodes noted under Rule 1 will give the edges of the tree.

A step-by-step example of this decoding procedure is given in Table IV. The
term to which the marker is pointing is underlined. This gives us the tree of
Fig. 10.

Returning to Table III, we see that the right-hand labels, in the pairs that
make up the edges of the tree, are simply the integers from 2 to 14 (in general,
2 to p) in order. This is because the right-hand marker is moved along one
place at each iteration of the algorithm. Since these integers can be supplied
automatically, all the information about the structure of the tree is given
by the left-hand labels of these pairs, namely,

1,1,1,1,2,2,4,4,5,5,5,8,8.

This sequence defines an even simpler code for a tree. We can call it a tree-
function code (TF code) since the function/(/), defined to be the /th term in the

178 Ronald C. Read

code, is a tree function as defined by, for example, Moon [8], Tt is also known
as a canonical representation, see [7]. This code hardly needs any decoding,
for we need only write down the integers 2 to p underneath its successive terms
to obtain the list of edges of the tree. For this reason a TF code is probably the
most convenient way to store an unlabeled tree in a computer. The tree will
be stored as a (p — l)-dimensional vector, say (a,·), and the edges will be all of
the form (ah i+ 1). If further economy is desired, the first term can be omitted,
since it must be 1.

The above is not the only tree-function code. Any labeling of a rooted tree
will give rise to a tree function. We put/(/) = /, if (ij) is the first edge of the
unique path from node / to the root. However, a tree function is of no use as a
code for planted plane trees, and will not be called a TF code, unless we
associate with it some convention that enables us to determine how the tree
was imbedded in the plane. This is true of the tree function related to the
bottom-up labeling since, with this labeling, the nodes at the same level are
labeled consecutively from left to right. We need not be as specific as this,
however. It is sufficient if the labels of the nodes at the same level increase
monotonically from left to right. It is easily verified that this is true of the
walk-around labeling. Hence, the walk-around labeling also gives rise to a TF
code. Clearly, there can be many others.

12. Unrooted Trees Again

We now return briefly to the problem of coding ordinary trees, that is, not
planted, plane, or even rooted, for which, so far, only the binary code of
Section 9 has been defined. Since it is often not convenient to work with
binary strings, and since the trick of using the integer codes is not easily
applicable if the trees are large, we need to have available some other kind of
coding procedure.

Now, although the valency codes were defined in the last section specifically
for planted plane trees, we can easily extend them to trees in general. The
decoding algorithm (Algorithm 1) associates with any tree a unique planted
plane tree, from which we can derive some canonical labeling. Once we have
this labeling, then any of the codes of Section 11 are available to us. Thus, to
construct a valency code for an unlabeled tree, we could first find its binary
code, then decode this to get a canonical labeling, and then construct a valency
code. This idea has two very obvious disadvantages.

(1) Although we will have avoided binary strings in the code itself, they
are still required in finding the binary code.

(2) The procedure of coding, decoding, and then recoding is, to say the
least, a bit devious. One could wish for a more direct method.

Coding of Unlabeled Trees 179

What we would like is a coding procedure which works with integer se
quences throughout, and which, like Algorithm 2, does the whole job in
just one pass through the tree, from the outside to the root. There seems to
be little hope of achieving this ideal for a BU V code. The bottom-up labeling
depends critically on the position of the root, and this would not be known
until the end of an algorithm of the type desired. It is quite otherwise with
the WAV code, however. The portions making up this code relate to the
branches at certain nodes, and these can be recognized, when the node becomes
ripe, even though it is not yet known which node will end up as the root. We
now describe a direct algorithm for finding the WAV code of an unrooted
tree. This algorithm is similar to Algorithm 2. The differences are

(1) The tags are strings of integers,
(2) The rule for the preferred ordering of tags will be different. It does not

matter much what it is, and for definiteness we can suppose that tags are
ordered first by increasing length, and that tags of the same length are ordered
lexicographically.

(3) The rule for the formation of the new tags is different.

ALGORITHM 5. DIRECT INTEGER ALGORITHM FOR WAV CODES. At each
stage of this algorithm the nodes will be partitioned into two sets : A, the set of
tagged nodes, and B, the set of untagged nodes. The tags are strings of integers.
Initially A consists of the end nodes of the tree, each having the tag 0.

Step 1: Construct the set R of those nodes of B that are adjacent to, at
most, one other node of B.

Step 2: For each node X e R, consider the tags of the adjacent nodes
that are in A. Catenate these tags in the preferred order, and prefix to the result
the number of tags that were catenated to produce it.

Step 3: (1) If B has only one element X, then the tag of X is the code
for the tree, and the algorithm terminates.

(2) If B has exactly two elements, determine which of the tags comes first
in the preferred ordering. Insert this tag after the first term of the other tag.
Then increase by 1 the first term in the resulting sequence. This last move is
necessary since, once one of the bicentral nodes has been chosen to be the root,
the bicentral edge will then go upwards from that node.

(3) Otherwise put A = A v R, B = B — R, and go back to Step 1.

This algorithm is illustrated in Fig. 11.
The fact that the binary code of a tree determines a canonical labeling of the

tree implies that we can use on an unlabeled tree any of the several algorithms
that are known for coding labeled trees. All we need do is to give the tree its
canonical labeling before using the coding algorithm in question. Algorithms
that can be used in this way include the Prüfer sequence, see [8], and the

180 Ronald C. Read

0 0 0

2,0,0

3,0,0,0" I I 12,0,0 A0 \

0V >/3,0,0,0

2 , o , i , o v V
Jf N2,2,0,0,2,0,(

3,0 ,0 ,0 / \

3,0,3,0,0,0,2,2,0,0,2,0,0 -

3,0,2,0,1,0,3,0,0,0

Fig. 11. Direct integer algorithm for WAV codes: the code is
4,3,0,2,0,1,0,30,0,0,0,3,0,0,0,2,2,0,0,2,0,0.

several variations on this as given by Neville [10]. It is doubtful whether
there is any advantage in using codes of this type for our present purpose. The
Prüfer sequence, for example, has p — 2 terms. Hence, it gives no saving in
length over the WAV code, abbreviated by omission of its first term. Moreover,
the process of obtaining the Prüfer sequence would be more complex, since
the canonical labeling would have to be found first.

A coding procedure for labeled trees which, at first sight, seems to offer
possible advantages is that described by Smolenskii [15]. If a tree has k end
nodes, then there are k(k—\)/2 distances between these nodes. Smolenskii
showed that if a set of integers is the set of distances between end nodes of
some tree, then this tree is unique. He did not give a method of telling whether
such a set belonged to a tree in this way, or of finding the tree if it did. Both
these questions were answered later by Zaretskii [18]. Thus, if the end nodes
are labeled 1,2,3,...,/: in some order, and d{ij) denotes the distance from
end node / to end node j , then the Smolenskii code is the sequence

</(l,2), rf(l,3),...,</(l,ifc), rf(2,3), 9d(k-l,k)

This sequence of integers could be quite short. For a path it consists of just
one term. It will be shorter than the WAV code if k(k— l)/2 <p — 2.

We naturally ask how likely this is to happen. In order to answer this
question, assuming that all trees on p nodes are equally likely, we would need
to know the number of trees that have at most K end nodes, where K is the
largest value of À: for which k(k— \)<(p — 2). The enumeration of unlabeled
trees by the number of end nodes is, I believe, still an open problem, though the
solution of the analogous problem for labeled trees is well known (see Moon

Coding of Unlabeled Trees 181

T A B L E V

The Proportional Numbers of Trees for Which the Smolenskii Code Gives a Saving in

Length Compared wi th the Abbreviated W A V Code

P-

Total:

k=2
k=3
k=4
k=5

K
k*ZK

Ratio

6

6

1
2
2
1

3
3

0.50

7

11

1
3
4
2

3
4

0.36

8

23

1
4
8
6

3
5

0.22

9

47

I

5
14
14

4
20

0.43

10

106

1
7
23
32

4
31

0.29

11

235

1
8
36
64

4
45

0.19

12

551

1
10
52
123

4
63

0.11

13

1301

1

12
76
219

5
308

0.24

14

3159

1

14
108
377

5
500

0.16

15

7741

1
16
148
616

5
781

0.10

16

19320

1
19
199
978

5
1196

0.062

17

48629

1
21
262
1496

5
1780

0.037

[8]). Thus, the exact answer cannot be given. However, the rough answer seems
to be, "not very likely."

Table V gives the total numbers of unlabeled trees on 4 to 17 nodes. These
numbers were taken from Riordan [14]. It also gives the subtotals of these
having 2 to 5 end nodes. These were calculated by using Pólya's Hauptsatz [11],
to add notes of valency 2 to the homeomorphically irreducible trees listed at
the end of [4]. From these numbers the fraction rp of those trees whose
Smolenskii code is shorter than the WAV code can be found, and is given in
Table V. It will be seen that rp is small, and seems generally to decrease as/? gets
larger. It is reasonable to conjecture that rp -* 0 as p -> oo.

Thus, the Smolenskii code does not seem to have any advantages in the
present context, except possibly for applications in which the trees that are
being handled tend to have few end nodes. One can remark also that, in any
case, the fact that trees with the same number of nodes may have Smolenskii
codes of different lengths is liable to be, for the programmer, an embarrassment
rather than an asset.

References

1. Busacker, R., and Saaty, T., "Finite Graphs and Networks." McGraw-Hill, New York,
1965.

2. Cayley, A., On the analytical forms called trees, with applications to the theory of
chemical combinations, Rep. Brit. Assoc. Advan. Sci. 257-305 (1875).

3. de Bruijn,N. G., and Morselt, B. J. M., A note on plane trees, J. Combinatorial Theory
2, 27-34 (1967).

4. Harary, F., and Prins, G., The number of homeomorphically irreducible trees and
other species, Acta Math. 101, 141-162 (1959).

182 Ronald C. Read

5. Harary, F., Prins, G., and Tutte, W. T., The number of plane trees, Nederl. Akad.
Wetensch. Proc. Ser. A 67 No. 3 {Nederl. Akad. Wetensch. Indag. Math. 26 No. 3),
319-329 (1964).

6. Klarner, D. A., Correspondences between plane trees and binary sequences, /.
Combinatorial Theory 9, 401-411 (1970).

7. Knuth, D. E., "The Art of Computer Programming," Vol. 1. Addison-Wesley, Reading,
Massachusetts, 1968.

8. Moon, J. W., Counting labelled trees: A survey of methods and results, Pubi. Dep.
of Math., Univ. of Alberta, undated.

9. Morris, P. A., A catalogue of trees on n nodes, «<14, Mathematical Observations,
Research and Other Notes, No. 1 StA, Department of Mathematics, University of the
West Indies (unpublished mimeograph).

10. Neville, E., The codifying of tree-structure, Proc. Cambridge Philos. Soc. 49,
381-385 (1953).

11. Pólya, G., Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und
chemische Verbindugen, Acta Math. 68, 145-254 (1938).

12. Parris, R., The coding problem for graphs, M.Se. thesis. University of the West Indies,
1968.

13. Read, R. C, How to grow trees, in "Combinatorial Structures and their Applications,"
pp. 343-347. Gordon & Breach, New York, 1970.

14. Riordan, J., "An Introduction to Combinatorial Analysis." Wiley, New York, 1958.
15. Smolenskii, Ye, A., A method for the linear recording of graphs, USSR Comput. Math

and Math. Phys. 2, 396-397 (1963).
16. Thalwitzer, K., Characterisierung eines Labyrinthes durch ein Wort über einem zweis

tellige Alphabet, in "Beiträge zur Graphentheorie" (H. Sachs, H.-J. Voss, and H.
Walther, eds.), pp. 157-161. Teubner, Leipzig, 1968.

17. Tutte, W. T., The number of planted plane trees with a given partition, Amer. Math.
Monthly 71, 272-277 (1964).

18. Zaretskii, K., Constructing a tree on the basis of a set of distances between the hanging
vertices, Uspehi Mat. Nauk 20, 90-92 (1965).

A GRAPH-THEORETIC STUDY OF T H E

NUMERICAL S O L U T I O N OF SPARSE

POSITIVE DEFINITE SYSTEMS

OF LINEAR E Q U A T I O N S

Donald J. Rose*

Department of Mathematics

University of Denver

Denver, Colorado

1. Introduction 184
2. The Elimination Process 186

2.1. Decompositions 187
2.2. The Combinatorial Elimination Process 190

3. Triagulated Graphs 192
3.1. Preliminaries 192
3.2. Main Results 194
3.3. Proofs and Corollaries 195
3.4. Examples 199

4. Optimal Ordering and Algorithms 202
4.1. Operation Counts and Practical Criteria 202
4.2. Criterion Functions 208
4.3. Bounds for Triangulations 212
4.4. Ordering Algorithms 213

References 216

t Present address : Aiken Computation Laboratory, Harvard University, Cambridge,
Massachusetts.

183

184 Donald J. Rose

1. Introduction

The necessity to solve linear systems

(1) Mx = b9

where M is an n x n sparse* symmetric positive-definite matrix, arises fre
quently in physical applications. These include classical electrical network
analysis, analysis of structural systems, and nonlinear hydraulic problems.
In such problems understanding and controlling sparsity is essential for
efficient computer solution, since, in general, many systems with the same
zero-nonzero structure will be solved.

To solve systems like (1) by elimination, it is standard procedure (Forsythe
and Moler [12] and Westlake [27]) to decompose, or factor, M as

(2) M = GGT or M = LDL1,

where G and L are lower triangular, L = (/0) with lu = 1, and D = (J(7) is
diagonal with dn > 0. Since M is symmetric and positive definite, we may
decompose M for any a priori ordering of the linear system, that is,

A = PMPT,

where P is an n x n permutation matrix. Experience and simple examples show
that the choice of ordering is an important consideration in obtaining an
efficient elimination scheme. Such considerations lead to the study of the
following basic question: what is the effect of the order of elimination upon
sparse positive-definite systems?

We have restricted our class of matrices to those M which are symmetric
positive definite, because this allows us to examine only the equivalence class
ΡΜΡτ rather than the class PMQ, P and Q being permutation matrices.
Equally important is the fact that the decompositions of (1), especially the
Cholesky M = GGT decomposition, are stable with respect to rounding error,
see Wilkinson [28, pp. 220, 231-232, 244], for any a priori ordering P.
Formally, our analysis extends to the more general class of matrices M, such
that PMPT can be decomposed as

PMPT = LDU = LU'

for any permutation matrix P, and such that mu Φ 0<->/Πμ φ 0. Here, of course,
both L and U must be stored.

We use the word "formally" above because the decomposition must be
computed in finite precision arithmetic. In the more general case of sparsity

t We leave sparse undefined formally, but informally we think of matrices M, many of
whose entries mi} are zero.

Sparse Systems of Linear Equations 185

symmetry above, and in the case where M is simply a nonsingular matrix row,
or a column, interchanges are usually effected (see Wilkinson [28, p. 205] or
Forsythe and Moler [12, p. 34]), to avoid zero pivot elements and to maintain
stability with respect to round-off error. Whereas the decomposition of
PMPT for any P is stable when M is positive definite, it is clear that in these
more general cases pivoting to control stability and pivoting to control
sparsity are not a priori compatible.

With M as in (1) we associate an undirected graph G. In Section 2 we
formulate the elimination process of decomposition (2) as vertex elimination
on this graph. We call this formulation the combinatorial elimination process.
In addition to formulating the elimination process as vertex elimination on a
graph, we seek a graph-theoretic description of those matrices M, such that
in the decomposition L or G has exactly the same zero-nonzero structure as
the lower triangular part of M. We call such graphs monotone transitive graphs.

The suggestion that graph theory might be a convenient way to study
elimination is due to Parter [17], although he does not pursue a detailed graph-
theoretical study. He analyzes the special case when the matrix M has a
graph-theoretic representation as a tree, and he shows that trees can be ordered
so that they are monotone transitive. A well-known example of the simple
elimination scheme which results from choosing a monotone transitive
ordering for such a graph, or matrix, is the case when M is tridiagonal.

There are two interesting implications of Parter's study which were not
pursued in the literature. First, since trees are without cycles and can be
ordered to be monotone transitive, we are led to investigate monotone
transitivity in more general graphs by studying their cycle structure. Second,
although a tridiagonal band matrix is represented by a special tree, Parter's
elimination scheme applies to any matrix represented by a tree. The elimin
ation process involved has absolutely nothing to do with the bandwidth of the
matrix M. This is significant given the recent activity in minimizing bandwidth
for sparse matrix calculations [1, 2, 9, 19].

Following the formulation of elimination as a combinatorial process, in
Section 3 we gain considerable insight into the elimination process by studying
the evolution of the cycle structure and the vertex-separator, or cut-set,
structure of a graph under elimination. We show that monotone transitive
graphs are triangulated graphs, and conversely, as defined by Berge [3].
This is a cycle characterization. In addition, we characterize monotone
transitive graphs by a property of their separators.

In Section 4 we study criteria from which we may define best or good
orderings. By counting the arithmetic operations necessary to effect the
decompositions, we relate these criteria for optimization to the computational
complexity of calculations involving the elimination process. We note that in
the literature the study of optimal ordering contains many subjective decisions

186 Donald J. Rose

and implicit assumptions which are not always clearly presented. One reason
for some of the confusion which exists is that for practical applications there
is an implicit constraint that any ordering algorithm to be used be reasonably
efficient. Otherwise, such an algorithm may become too time- or storage-
consuming to be feasible. Several authors (Tinney and Walker [26], Tinney
[29, p. 25], and Tewarson [29, p. 35]) have developed algorithms which have
been partially successful in producing good orderings but which do not, in
general, produce optimal orderings for the criterion they choose. Most of
this work has been experimental. In Section 4 we discuss these algorithms in
view of the results developed in Section 3 and the results of our generalized
study of criterion functions.

Another interesting graph-theoretic approach for dealing with sparse
systems with respect to Gaussian elimination is to attempt to find permutation
matrices P, Q such that

(3) A = PMQ

is block lower triangular, since in this case it is necessary only to decompose
the diagonal blocks of PMQ. Naturally such a transformation does not
preserve symmetry. Harary [13, 14] solves this problem algorithmically with
the restriction that Q = PT. His results have application to the algebraic
eigenvalue problem. Steward [21] and Dulmage and Mendelsohn [10, 11]
have solved the more general problem and have algorithms for producing
P and Q. These results are not applicable when M is symmetric positive
definite and irreducible, since the algorithm would then produce only one
diagonal block, M itself. Even when applicable, this theory does not differen
tiate between reorderings of the system within the diagonal blocks.

Our interest in sparse linear systems was motivated initially by its appli
cation to the potential flow network problem [18]. Several examples of sparse
linear systems arising in applications can also be found in [29]. Other theor
etical considerations on sparse linear systems and numerical linear algebra
are reported in Brayton et al. [6]. Finally, we wish to emphasize the im
portance of new approaches to data handling and efficient use of memory
hierarchy which are required for the successful machine implementation of
sparse matrix methods. While we do not discuss computer implementation
here, considerable progress on this aspect of sparse matrix research is reported
in Gustavson et al. [15].

2. The Elimination Process

In this section, we study the combinatorial nature of the elimination process
upon sparse symmetric positive-definite matrices. We will see that it is useful

Sparse Systems of Linear Equations 187

to regard elimination as vertex elimination on a graph. We first review the
well-known LDL1 decomposition theorem for positive-definite matrices
where L is a lower triangular matrix with unit diagonal elements, and D is a
diagonal matrix with positive nonzero entries.

Unfortunately, sparse matrices tend to fill in during elimination. That is to
say, in general, the number of nonzeros in L of the decomposition M = LDL7

is greater than the number of nonzeros in the lower triangular part of M.
In Section 2.2 we ask for the class of matrices so that we can find an ordering
(permutation P) such that no zeros are lost in the decomposition of PMPT.
Of course, this class of matrices is special, but we will see that, after elimination,
any matrix is transformed into a matrix of this special class. More precisely,
we will see that LT has this property. This question leads us to our notions of
elimination graph, monotone transitivity, and perfect elimination processes.

2.1. Decompositions

We begin by stating a well-known (Forsythe and Moler [12, pp. 27-29]),
theorem of numerical linear algebra. Let M be a real n x n matrix and let
Mk, k = 1,...,«— 1 denote the principal submatrices of M consisting of the
first k rows and columns of M.

THEOREM 1. Let M and Mk be as above, and assume det(Mk) ^ 0 , k =
1,2,...,A7— 1. Then there exist unique matrices L, D, U, such that

(4) M = LDU,

where L = (/0) and U = (wi7) are real n x n unit lower (//f = 1) and unit upper
(uu= 1) triangular matrices, respectively; and D is an nxn real diagonal
matrix.

If M is a real symmetric positive-definite matrix, PMPT satisfies the
hypothesis of the theorem for any permutation matrix P. Furthermore, by
uniqueness it follows that

(5) M = LDL},

In this case, D has positive diagonal entries. Also,

(6) M = GGT,

where G = LDVl. The factorization (6) is due to Cholesky [12, p. 114].
For sparse matrices M, it is significant that L, D, and G of (5) and (6) are

unique. This means that the zero-nonzero structure of M uniquely determines
the zero-nonzero structure of L or G, independent of the method used to
compute L, D, or G. Note also that since M is symmetric, the decomposition^
(5) or (6) are more efficient than the M = L'U' decomposition, where only

188 Donald J. Rose

L or U' is unit triangular, because for the decompositions (5) and (6) we need
only store the upper triangular part of M and either L and D of (5) or G of (6).

Since the symmetric Gaussian elimination scheme and Cholesky's method
are the two most generally accepted methods for obtaining (5) and (6)
respectively, we state them now in algorithmic form which we will need in
Section 2.2 and Section 4.

SYMMETRIC GAUSSIAN ELIMINATION

This method is also known as the method of congruent transformations (see
Westlake [27, p. 21]). To explain the algorithm, it suffices to exhibit the first
major step since the algorithm then proceeds recursively on lower order
principal submatrices. Let the n x n positive definite matrix

r T

a r
M (1) =

[r M

where a is 1 x 1, r is (n— 1) x 1, and M is (n— 1) x (Λ? — 1). Then

(7) M (1) =
1 0

L r/a I

a

a 0

= L,
0

0 M (2)

0 M-rrTla

1 r
T
/a

0 /

where M(2) = M — rrT/a and / i s the (n— 1) x (« — 1) identity matrix. Note that
M{2) is positive definite because

(-γ
τ
Γ/α\γ

τ
)Μ

(1)
(^^\> 0

for any («—1) vector y. We may compute LT and D which replace the strictly
upper triangular and diagonal parts of A/(1) respectively, by the algorithm

for /': = 1 step 1 until n— 1 do;

for j : = /+ 1 step 1 until n do;

begin ;

s: =M[_uniM [/ , /];

for I: =j step 1 until n do;

M\J,r\: = Μ [; , /] - ί χ Λ / [/ , /] ;

M[i,iï: =s;

(8)

end.

Sparse Systems of Linear Equations 189

To compute the Cholesky decomposition, note that (7) can be rewritten as

[yfa 0 1 [V a rT/Ja

[r/Ja G J [0 GT
M =

where GGT is the Cholesky factorization oiM — rrT/a and the algorithm (8) can
be changed appropriately. Usually, however, the elements of G are computed
column by column, which requires exactly the same operations executed in a
different order, as in the following algorithm from Forsythe and Moler
[12, p. 114]

for j = 1 step 1 until n do ;

begin G[j,fl: = sqrt ÎAf[yj] Σ GV,k]
k=\

')■■

(9) for 1 = 7 + 1 step 1 until n do ;

M[_i,n- I G [U] X G [/ ■ ■ «) / Gwy,
end.

Finally, to solve Mx = b by symmetric Gaussian elimination, we solve

(10) Lz = b,

(11) Dy = z,

(12) Ilx = y.

Since (10) and (11) involve triangular systems, this is merely back-solving.
Similarly for Cholesky's method, we compute

(13)

(14)

Gy = b,

GTx = y.

Let M = (WJJ) be an n x n symmetric positive-definite matrix with decompo
sition M = LDlJ. It is clear, because the unique decomposition can be
generated by (7), that the set of pairs {i,j} with ltJ = 0 is, in general, a subset
of the pairs with m^ = 0, that is, the triangular factor L cannot, in general, be
more sparse than the lower triangular part of M.

Given M, if there exists a permutation matrix P such that

A = ΡΜΡτ = LDL?

and

(15) fly = 0 hi = 0, i>J>

190 Donald J. Rose

then we say M is a perfect elimination matrix. It is straightforward from (7)
(see also Parter [17, Theorem 1]) that A has this property (property P) if,
and only if, for all 1 ^i<j<k^n

(16) au Φ 0 and aik Φ 0 => aJk Φ 0.

We give a graph theoretic interpretation of property P in the next section where
we introduce monotone transitive graphs and perfect elimination processes.

2.2. The Combinatorial Elimination Process

We now temporarily abandon the arithmetic aspects of the elimination
process in order to study its combinatorial nature. We begin by associating
with each symmetric positive definite matrix an ordered and an unordered
graph. First, some graph-theoretic terminology.

For our purposes, a graph will be a pair, G = (X, E), where X is a finite set
of |ΑΊ elements called vertices, and

E £ {{x,y}\x,yeX, x Φ y)

is a set of | E\ vertex pairs called edges. Given x e X, the set

adj(x) = {yeX\{x,y}eE}

is the set of vertices adjacent to X. For distinct vertices x,y E X a chain from
x to y of length / = n is an ordered set of distinct vertices

ß = LPuP2,-,Pn+il> Pi = x> Pn+i=y

such that pi+l e adj(/?,·), / = l,...,w. Similarly, a cycle of length l = n is an
ordered set of n distinct vertices

such that pi+l e adj(/?,·), /=1,.. . ,«—1 and /?! e adj(/?„). We will always
assume that the graph G is connected, that is, for each pair of distinct vertices
x,y e X, there is a chain from x to y.

For a graph G = (Z, E) with |ΛΊ = /i an ordering of |A"| is a bijection

a: {1,2,...,«} <-> X.

We sometimes indicate an ordering by the shorthand X= {xi}
n
i=l. If G =

(X, E) and X'\s ordered by a, then Ga = (X, E, a) is an ordered graph associated

Sparse Systems of Linear Equations 191

with G. Given an ordering a of X, the set of vertices monotonely adjacent to a
vertex x is denoted by M adj (x) and defined by

Madj(jc) = adj(jc) n {zeX\^\z) > (x~\x)}.

We associate with each n x n symmetric matrix M = (ml7) an ordered graph
Ga = (X, E, a) such that vertex *f corresponds to row i and {*,·, x7·} e £, if and
only if ntij Φ 0 and i <j. The unordered graph G = (X, E) then represents the
equivalence class of matrices PMPT, where P is any permutation matrix.
For convenience we assume that for no P can ΡΜΡΊ be represented as a
direct sum of lower-order matrices, that is, M is irreducible, so that G is
connected.

Consider again (7) which represents the first major step of elimination, the
elimination of xx. We proceed to interpret this step graph theoretically. Let
G = (X, E) be a graph and a be an ordering of X. The deficiency, D(x), is the
set of all distinct pairs of adj (x) which are not themselves adjacent, that is,

D(x) = {{j>,z}|.y,zeadj(x), y Φ z, ^^adj(z)}.

Similarly, the monotone deficiency, MD(x), is the set

MD(x) = {{^, Z } | J ; , Z G M adj (x), >> # z, y φ adj (z)}.

Finally, for a graph G = (X, E) and subset y4gZ, the section graph G (A) is
the subgraph

G(A) = (A,E(A))9

where £(Λ) = {{x,y} e E\ x,y G A}.
Given a vertex y of a graph G, the graph Gy obtained from G by

(1) deleting y and its incident edges;
(2) adding edges such that all vertices in the set adj (y) are pairwise adjacent

is the y-elimination graph of G (compare Parter [17, p. 120]). Thus

Gy = (X-{y},E(X-{y})yjD(y)).

For an ordered graph G = (X, E, a), the order sequence of elimination graphs
(?!,...,(/„_! is defined recursively by Gx = GXi andGf = (Gi_1)xi,i = 2,...,n— 1.

Since the graphs Gt determine the evolution of the process of vertex
elimination, we formally define the elimination process on a graph G = (X, E)
with ordering a as the ordered set

P(G;OL) = [G = G0 ,G1 , . . . ,Gn_1].

An elimination process P(G\ a) is perfect if

192 Donald J. Rose

DEFINITION.* The ordered graph G = (X, E, a) is monotone transitive when,
for all x e X, we have

y e M adj (x) and z e M adj (x) => >> e adj (z).

The significance of monotone transitivity is given in the following lemma
which merely summarizes our definitions and relates them to perfect elimin
ation matrices. It is immediate that monotone transitivity is the graph-
theoretic interpretation of the perfect elimination matrix condition of (16).

LEMMA 1. Let M be a symmetric positive definite matrix with unordered
graph G — (X, E). Then the following are equivalent:

(1) M is a perfect elimination matrix;
(2) there exists an ordering a such that Ga = (X, E, a) is monotone

transitive ;
(3) in Ga, MD{x) = 0 for all * e X\
(4) P(G;a) is a perfect elimination process.

Thus, in a monotone transitive graph, vertex elimination adds no edges.
Suppose, however, that Ga = (X, E, a) represents a matrix M which is not a
perfect elimination matrix. If elimination is carried out on M, vertex elimin
ation of Ga, then for each \=i<j<k such that mlj^0 and mlk^0 but
mjk = 0, a new nonzero element will be created in the (j, k) position of
M(2) = M — rrT/a, see (7). Clearly, the graph of M{2) is the elimination graph
Gl. Continuing inductively, we see that the study of monotone transitive
graphs is interesting even if Ga is not monotone transitive, because the
elimination process may be regarded as transforming the graph Ga, matrix M,
into its monotone transitive extension M TE (G; a), where

MTE(G;a) = IX9E\J Λ9 τ, = D(xt) in G ,^ .

and M TE (G; a) is the graph of LT.

3. Triangulated Graphs

3.1. Preliminaries

In Section 2 we studied the role of ordered monotone transitive graphs in
the elimination process. Here we shall characterize monotone transitive

t By way of motivation, a graph is transitive [8, p. 31] if y G adj(jt) and x e adj(z) implies
y G adj (z). Since we are dealing with undirected graphs, the adjacency relation is symmetric,
that is, x e adj (z)<=>z G adj(jt). It is easy to see that any connected transitive graph on n
vertices is the complete graph on n vertices, because then between any two vertices x and y

Sparse Systems of Linear Equations 193

graphs by their cycle structure and their separating sets of vertices. Monotone
transitive graphs are shown to be triangulated graphs as defined by Berge [3].
The theory developed in this section shows very clearly why sparse matrices
must fill in during elimination.

Recall that we are dealing only with connected graphs, and for a graph
G = (X, E) and subset A ^ X, the section graph G (A) is the subgraph

G{A) = (A,E(A)), E(A) = {{x,y} e E\ x,y e A}.

A separator of a graph G = (X, E) is a subset S a X such that the section graph
G{X— S) consists of two or more connected components, say Cf = (Kf, £,). The
section graphs G (Su Kf) are then the leaves of G with respect to S. A minimal
separator is a separator no subset of which is also a separator. Similarly, given
a,b E X with a φ adj (b), an a, b separator is a separator such that a and b are
in distinct components, say Ca and Cb, respectively. Note that (see the Example)
a minimal separator is a minimal a, b separator for some a,b e X, but a
minimal a, b separator is not, in general, a minimal separator. A clique C of a
graph is a subset of vertices which are pairwise adjacent. A separation clique
is a separator which is also a clique.

Fig. 1. Graph G=(X, £).

Example: Consider the graph G = (X, E) shown in Fig. 1. The set
S= {a,b,c} is a separator and G(X— S) consists of the three components
(@ , φ) , (<2),φ), and ((ζ),φ). The leaf containing @ is the clique on
{ @ , @ , @ , © } . Note that S is not minimal because S' = { @ , © } is
also a separator. S' is, however, minimal and it is a minimal x,y separator.
On the other hand, S is a minimal x,z separator. In addition, both S and S'
are separation cliques.

The following definition is due to Berge [3, p. 158].

DEFINITION. A graph G is triangulated, if for every cycle μ = _Ρι9..·,ρ„,Ρι']
of length« > 3, there is an edge of G joining two nonconsecutive vertices of μ.
Such edges are called chords of the cycle.

there exists a chain from x to y. Hence, a matrix represented by a transitive graph is a full
matrix. In Section 3 we will see how monotone transitive graphs are built up of smaller
intersecting complete graphs.

194 Donald J. Rose

Remark: Note that any section graph of a triangulated graph is triangu
lated because any cycle in G = (X— A) is a cycle in G itself, and the chord of
this cycle in G must be an edge in G(X—A).

3.2. Main Results

THEOREM 2.1" For a graph G = (X, E) the following statements are
equivalent:

(1) G is triangulated;
(2) every minimal a, b separator is a clique ;
(3) there exists an ordering a of X such that Ga = (X, E, a) is monotone

transitive.

Theorem 2 and Lemma 1 (Section 2) characterize monotone transitive
graphs and thus perfect elimination matrices. Statements (1) and (2) give the
structure of the unordered graph while statement (3) is a property of a corre
sponding ordered graph. Of the three equivalent properties above, statement
(3) is clearly the most algorithmic in the sense that its vérification is straight
forward. In fact Lemma 1, Section 2 shows how to test for monotone
transitivity, because in each successive elimination graph there must always
exist a vertex with empty deficiency.

THEOREM 3. Let G = (X,F) be triangulated with subgraph G = (X,E),
E^F. Then G is triangulated, if and only if for each e = {x,y} e F— E there
exists an x, y separation clique, Se, of G.

If G = (X, F) is triangulated, an arbitrary subgraph of G obtained by
removing a subset of edges need not remain triangulated. Theorem 3 gives a
necessary and sufficient condition that the subgraph be triangulated. It has an
important corollary which requires anticipating a notion of Section 4.

Suppose a graph G = (X, E) is not triangulated. Then for any ordering a of
X the set 7(a) of M TE (G; a) = (X, EKJ Τ(μ)) is a triangulation of G generated
by the ordering a. A minimum triangulation would be a triangulation, Γ(α),
such that

|Γ(4)| =min|7Xa)|
a

COROLLARY 1. Let G = (Ar, E) be a graph with separation clique S with
components C, and leaves Lt. Then any minimum triangulation T of G
contains only edges e= {x,y} e T with x and y in the same component Cj9

or edges e = {x,y} e T with x e Cj and y e S.

t For statements of parts of this theorem see Boland and Lekkerkerker [5a], Dirac [9a],
and Fulkerson and Gross [12a].

Sparse Systems of Linear Equations 195

Proof: If the triangulation T contains a nonempty subset of edges with
incident edges in C, and Ck J Φ k, these edges may be deleted, and by Theorem 3
the resulting set f is still a triangulation.

Thus, in a graph with a separation clique, the problem of finding a minimum
triangulation reduces to finding a minimum triangulation for each leaf.

THEOREM 4. Let G = (X, E) be triangulated, and a be a monotone transitive
ordering. If S is a minimal a, b separation clique of G, then S = M adjC*,·) for
some Xj e X. Conversely, for any xi e X, such that the vertices of the elimin
ation graph G, _ ! are not a clique, M adj (*,·) is a separation clique of G.

Hence, in a triangulated graph, all minimal a, b separators are generated in
the elimination process. Note that although the sets MadjC*,·) are separation
cliques, if Gi_l is not a clique, they need not be minimal a,b separation
cliques. For example, in G of Fig. 2 below, {(5), (4)} is the only minimal
a, b separator.

Remark: One interesting application of Theorem 4 is that in a non-
triangulated graph G = (X,E) with | X | = « , at most, n — μ minimal a,b
separators of G remain minimal a,b separators of G = (X, EuT), where T
is any triangulation of G and μ = max{|C|, C a clique of G}. This follows
because any clique in G is also a clique in G, and because, as we shall see in the
proof of Theorem 2 in the next section, a monotone transitive ordering for G
can be found which orders vertices in any clique last.

3.3. Proofs and Corollaries

We begin the proof of Theorem 2 by generalizing slightly Theorem 3 of
Berge [3, p. 160].

LEMMA 2. In a triangulated graph G = (X, E) every minimal a, b separator
is a clique.

Proof: Let S be a minimal a, b separator and Ca and Cb be the components
of G(X— S) containing a and b, respectively. Since S is minimal, each s e S

196 Donald J. Rose

is adjacent to some vertex in Ca and some vertex in Cb. Let x9y e S9 and let
μι be the shortest chains of the type

[*>cu,cif2,...,c/>Pl,j>l· i= 1,2, cUjeCa9 c2JeCb.

The cycle containing x and y formed by μί and μ2 has length / ^ 4, and the
only possible chord is {x,y}.

LEMMA 3. Let G = (X9 E) be a graph with separation clique S and leaves
Li9 i= 1,...,«. If S0 is a separator of some L/5 then S0 is a separator of G.
Furthermore, if S0 is a minimal α,Ζ? separator of Li9 then S0 is a minimal a,6
separator of G.

Proof: Let Dj9 j = l,...,m be the components of Lx with respect to 5 0 .
Since S is a clique, vertices in S can be in only one component, say Dk. Thus,
S0 is a separator of G9 because any chain from a vertex x e (Lj — S0) withy Φ i
to a vertex y e Dl9 l^k must contain a vertex of S0. This proves the first
statement.

For the second statement, note that S0 is a separator of G as we have just
shown. It must be an a,b separator, for the same a9b9 because Z ^ n S ^ φ
for at most one /. Finally, S0 must be minimal in G since any a9b separator
S0 c S0 in G must be an a9 b separator in Lt.

LEMMA 4. Let G = (X9 E) satisfy statement (2) of Theorem 2. Then either
X is a clique, or given any clique C c X, there exists a vertex * φ C such that
/>(*) = 0.

Proof: The proof is by induction on \X\ and the case |ΛΊ = 1 is clear.
Assuming any case with \X\^k9\et G = (X9 E) be such a graph with \X\ =
k + 1 and C be any clique. Either X is a clique or there exists by Lemma 2 some
a9 b separation clique of G9 say Cx. Let Da9 Db and La, L6 be the corresponding
components and leaves of G containing a and b respectively. Clearly, the
vertices in C—Cx can be in, at most, one component. Suppose such vertices
are in Da. Consider the leaf Lh. By Lemma 3 it inherits statement (2) of Theorem
2. Writing Lb = {W9F)9 we have \W\ ^k and, hence, by induction, either W
is a clique or there exists a vertex x φ C{ such that D(x) = 0 in Lb. In either
case then, since W must contain at least one vertex not in Cx, there exists
an χφϋ1 with D(x) = 0 in Lb. Finally, D(x) = 0 in G because x is not
adjacent to a vertex in any component other than Db. Clearly, χφ C, the
original clique.

Lemmas 3 and 4 yield the following two corollaries concerning the existence
of vertices with D{x) = 0. The first corollary will imply that the ordering a
guaranteed by statement (3) of Theorem 2 is not unique.

Sparse Systems of Linear Equations 197

COROLLARY 2. Let G be as in Lemma 4, and S be any separation clique
of G with components C, and leaves L t. Then for each component C,, there
exists a vertex ct e Cf with D{c^) = 0 in G.

Proof: By Lemma 3, each Lf has Property (2) of Theorem 2. Thus by
Lemma 4, for each Lf there exists a vertex cf £ S of Lx with /)(£;) = 0 in Lt and,
therefore, in G.

COROLLARY 3. Let G be as in Lemma 4. Then, for any l e i , one, and
only one, of the following statements is true:

(1) D(x) = 0;
(2) x e S, where S is a minimal a, b separation clique.

Proof: If (2) is true, clearly (1) must be false. We show by induction on
|X\ that (1) or (2) must be true. The case \X\ = 1 is clear, and we suppose the
case \X\ ^k. Note that if X is a clique, the result is immediate. Assuming
otherwise, let S be a minimal a, b separation clique of G. Let x e X. If x e S9

the proof ends, so let x e (La — S). By the induction hypothesis and Lemma 3,
either D(x) = 0 in La9 and hence in G, or x e S, where S is a minimal c9d
separation clique of La, and hence of G.

LEMMA 5. Let G = (X, E) be as in Lemma 4. Then there exists an ordering
a of X such that for all xeX,MD(x) = 0.

Proof: The proof is by induction on \X\. The case \X\ = 1 is clear, and
we suppose the case |X\ = k. If G is such a graph with k + 1 vertices, then, by
Corollary 2 above, there exists a vertex xl such that ΖΗχχ) = 0. Let Gx =
(XX,EX) be the jc^-elimination graph. Since a d j ^) is a separation clique,
if A'itself is not a clique, G{ satisfies the hypothesis of the lemma by Lemma 3,
and Gl has \XX \ = k. By induction there exists an ordering ctl of the vertices
of Gx such that

α ι (0 = *i+i> * = 1,.··»&> defining*,·

with Μ/)(ι,·) = 0. Finally, in G, choose the ordering

a(/) = xt-, / = Ι,.,.,Α: -f 1.

Then MD(Xi) = 0 with this ordering in G.

Note that the ordering a assured by Lemma 5 is not unique in view of
Corollary 2. This means that if G = (X, E) is not triangulated, any triangu
lation Γ(α) generated by an ordering a will also be generated by other
orderings α'. Also, note that another way of stating Lemma 5 is that there
exists an ordering a such that the order sequence of elimination graphs of G,

198 Donald J. Rose

that is, G = G0,Gi9...,Gn-1, has D(xi) = 0 in Gi_l. Finally, we shall call
any ordering guaranteed by Lemma 5 a monotone transitive ordering.

LEMMA 6. A monotone transitive graph is a triangulated graph.

Proof: Let a be the ordering and μ be any cycle with / > 3. Let p* e μ be
the vertex such that

a"1(/7*) = mina" ί(ρ)>
ρεμ

Since p* is adjacent to two nonconsecutive vertices by monotone transitivity,
μ has a chord.

Proof of Theorem 2: Statement (1) => statement (2) by Lemma 2, statement
(2) => statement (3) by Lemma 5, and statement (3) => statement (1) by Lemma 6
and Lemma 1.

The following corollary shows that in a triangulated graph a monotone
transitive ordering can be found such that any given clique is ordered last.

COROLLARY 4. Let G = (X,E) be triangulated with clique C g l Then
there exists a monotone transitive ordering a such that cc(j)eC for j =
k+\,k + 2,...,\X\9 where k = \X\- \C\.

Proof: The proof follows from Lemma 4 and the induction argument of
Lemma 5.

Corollary 4 has the following interesting interpretation. Suppose G = (X, E)
is not triangulated, and we wish to find an ordering which generates a tri
angulation Γ(α) with a specific property, for example, a minimum triangula
tion. Since any clique in G remains a clique in the triangulated graph G = (X,
Eu Γ(α)), the corollary implies the existence of other orderings a' such that
Γ(α) = Γ(α'), and such that a' orders the clique last. We will see in Section 4
that if only the unknowns represented by the vertices in the clique are desired,
ordering the clique last will reduce the number of backsolving operations
[see (12) and (14)].

We begin the proof of Theorem 3 with

LEMMA 7. Let G = (X, F) be triangulated with a subgraph G = (X, £) ,
E a F. Suppose S is a separation clique of G such that for each edge e =
{x,y} e F—E, x and y are in different components. Then G is triangulated.

Proof: Let μ be any cycle in G with / ^ 4. If μ is entirely with some leaf
of G, then μ contains a chord, because μ is also a cycle in G. If μ has vertices
in more than one component, then μ must contain at least two distinct vertices
of S. These vertices are adjacent; hence, μ has a chord.

Sparse S/stems of Linear Equations 199

Proof of Theorem 3: The "if" part of the theorem follows by successive
applications of Lemma 7. Given some Se, discard all edges in F—E with
incident vertices in different components. Se is then a separation clique of this
new graph G. By Lemma 7, G is triangulated. Continue for each edge in F—E
not already discarded. The converse is clear by Lemma 2, because for each
e = {a,b} e F—E, there exists a minimal a,b separator Se in 6, and Se is a
clique.

Proof of Theorem 4: To prove the first assertion, let Cx =(Vl,E1) and
C2 = (Vi,E2) be the components of G with respect to S containing a and b
respectively. For each Kf let vf be the vertex such that

a_1(y*) = maxa_1(y).
ve Vi

Choose v e {ι?ι*,^2*} s u c r i that

a - 1(£) = m i n i a - 1 ^ ! *) , « - 1 ^ *)) ·

Because S is minimal, each s e S is adjacent to some vertex in Ca and Cb.
Hence, if y = α~l (v) by monotone transitivity and the connectivity of Ca and
Cb, we have S = M adj (*,·).

To prove the second assertion, note first that M a d j ^) is a separation
clique of G, unless X is a clique. Also, the elimination graph Gl is a leaf of G,
which is triangulated, with respect to MadjC^), and Gl=(XiiEl) has
1^1 = 1̂ 1 — 1. The assertion then follows by induction on \X\ and Lemma 3.

3.4. Examples

As our first example, we will discuss in detail the ladder graph (see Fig. 3),
since it illustrates the notions of Section 2 and Corollary 1, as well as antici
pating some of the developments in the next section. The remaining examples
are classes of graphs which illustrate our theoretical results.

3.4.1. LADDER GRAPH

Figure 3a shows the ladder graph on In vertices with two ordering <χγ and
a2, written in the form ((xl (x), a2(x)) at each vertex x. Figure 3b shows the
zero-nonzero structure of the matrices corresponding to the two ordered
graphs. Finally, Fig. 3c shows the upper triangular factor LT [see (5)] for each
matrix. Clearly Mx and M2 are not perfect elimination matrices, because the
graph has nonchorded cycles.

Note that the decomposition using ocl requires 0(n2) cells of storage, while
the decomposition using a2 requires only 0(n) cells. We will see in Section 4,

200 Donald J. Rose

2n, 2 2 n - l , 4 2 n - 2 , 6

n - 1 , 2 n - 3

- - O —

Ò
n + 2 , 2 n - 2

n , 2 n - 1

-O

-ò
n + 1 , 2 n

(a)

M, M 2

* * 0

* 0

0

:< 0 * * *

* * * o
* 0 *

(b)

L? =

* * o o o
* * 0 0

* * 0

0 0 *

o * *
?|Ì ìji ì]t

L?

(e)

Fig. 3. (a) Ladder graph wi th two orderings. (b) Matrices corresponding to the two

orderings, where * indicates nonzero elements, (c) Upper triangular factors.

Theorem 5 that 0(n3) arithmetic operations are required to effect the de
composition with al9 while only 0(n) operations are needed with a2. The
difference is significant.

It follows from Corollary 1 that a2 generates a minimum triangulation of the
ladder graph. Since the pairs of vertices connected by each of the n — 2 inner
vertical rungs form separation cliques, the problem of finding a minimum
triangulation for the ladder reduces to finding a minimum triangulation of the
cycle on four vertices which requires only one edge. Thus, a minimum

Sparse Systems of Linear Equations 201

triangulation for the In vertex ladder requires n—\ edges, and one such
triangulation is generated by a2.

3.4.2. TREES AND k TREES

A tree is a connected graph which has no cycles. Equivalently a tree with
\X\ = n > 1 vertices is a connected graph with n—\ edges. Apparently Parter
[17] was the first to realize that the matrix M represented by a tree was a
perfect elimination matrix, although he does not use this term. Parter gives a
specialized algorithm [17] for Gaussian elimination on such a matrix.

Trees are clearly triangulated graphs, and any tree must have at least two
pendent vertices, that is, vertices adjacent to only one edge. Pendent vertices x
are the only vertices in a tree with D(x) = 0 , otherwise the tree would have a
cycle. A generalization of a tree is a k tree defined recursively as follows :
A k tree on k vertices is a clique on k vertices. Given any k tree Tk(n) on n
vertices, a k tree on n+\ vertices is obtained when the (/i+l)st vertex is
adjacent to the vertices of a clique on k vertices in Tk(n).

If we order the vertices * f, / = 1,2,...,« in the construction of a k tree on n
vertices as defined above, then clearly this graph is monotone transitive with
ordering cc(i) = xn+1-i9 i= 1,...,«. Then, k trees are triangulated graphs.
They also have the following property.

PROPOSITION 1. Every minimal separator S of a k tree Tk(n) has | 5 | = k.

Proof: Since Tk(n) has a monotone transitive ordering such as a above,
|Madj (a(/))| = k for / = 1,2,...,« —A:. By Theorem 4, S = Madj(X·) for some
such z, since neither the set W = {xjfr/ nor any subset of W is a separator.

3.4.3. THE CYCLE

Let C = (X, E) be the cycle on \X\ = n vertices. With respect to triangulating
C, we have

PROPOSITION 2. Let C = (X,E) be a cycle with |ΑΊ^3 vertices. Then a
minimum triangulation t of C has \f\ = |ΑΊ~3. Furthermore, if a is any
ordering and MTE(C;a) = (X,E u Γ(α)), then T(oc) is a minimum triangu
lation.

Proof: Both conclusions are proved easily by induction on \X\, and the
case |A"| = 3 is immediate. Let C = (X, E) with |ΑΊ = &+1 assuming these
assertions for such graphs with |A"|^A*. Let eef, where t is a minimum
triangulation of G. Clearly the vertices incident on e form a separation clique S
in C = (X, E u f), by Theorem 3. Hence, by the corollary Γ = Γ 1 υ Γ 2 υ Μ ,
where 7\ and T2 are minimum triangulations of the leaves of C with respect
to S, say Ly = (Kl5 Ex) and L2 = (V2, E2). Lx and L2 are cycles with |Kj| < k,

202 Donald J. Rose

i = 1,2, and l ^ i M ^ I = \X\+2. By induction, |Γ,| = |Κ, | -3 , / = 1,2, imply
ing |Γ | = 1^1-3. For the second statement, note that \D(x)\ = 1 for any
x e X, and that the elimination graph Cx = (Xl9El) is a cycle with \X\ = k
vertices. By induction, any ordering a on Xl gives a minimum triangulation
of Cx. The assertion now follows.

3.4.4. COMPLETE BIPARTITE GRAPHS

A graph G = (X9E) is bipartite if X = RuB with RnB = 0 , and for each
e = {x,y} e E either x e R, y e B or y e R, x e B. Equivalently, G is bipartite
if every cycle has even length [8, p. 86]. Because of the second condition,
trees are the only bipartite graphs which are triangulated.

Let G = (X,E) be a bipartite graph with X=B\jR and \R\ ^ \B\. If each
vertex xeR(xeB) is adjacent to each vertex y e B(ye R), the resulting
graph is a complete bipartite graph, denoted by Cnm (n = \R\, m = \B\).

By Theorem 2, in any triangulation of C„>m, there must exist a vertex with
£>(*) = 0 · Hence, to triangulate Cnm at least n(n— l)/2 edges are necessary.
However, this number of edges is clearly sufficient by taking the MTE
generated by the ordering (x(i) = bii /= l , . . . ,m , B={bi}T==i and a(i) = rf,
Ι = Λ + 1 , . . . , / Ι + / ΙΙ ,Α = { Γ Ι } Ϊ ; ; + 1 .

4. Optimal Ordering and Algorithms

In this section we examine carefully several criteria by which we may
evaluate "optimal," and we relate these criteria to the computational com
plexity of the elimination process on sparse matrices. We give, first, a count of
the number of operations needed to effect the decompositions and backsolving
operations associated with solving symmetric sparse linear systems Mx = b.
In Section 4.2 we discuss criterion functions in a general setting, and in
Section 4.3 we present some results which give bounds for triangulations T
of a nontriangulated graph. Finally in Section 4.4 we discuss ordering
algorithms.

4.1. Operation Counts and Practical Criteria

Let M be an n x n symmetric positive definite matrix with ordered graph
G = (X, E, a). Denote by d{a{i)) the degree of the vertex a(/) in the elimination
graph C/f-j, that is d(<x(i))= |adj(a(/))| in Gi-l. Where it causes no con
fusion, d(ct(i)) will be written dt. Using this notation we present the following:

Sparse Systems of Linear Equations 203

THEOREM 5. Let M and G be as above. Counting multiplications and
divisions as multiplications and operations, a 4-0, αφθ, which occur when
ever D(Xi) Φ 0 in G,_ l as additions, we have

(a) the LDÜ decomposition [see (8)] requires

n— 1

(17) X 4 (4 + 3)/2 multiplications
i = l

and
w - l

(18) £ 4 (4 + l) / 2 additions;
i = l

(b) the Cholesky decomposition M = GGT [see (9)] requires the same
number of multiplications and additions as in (a) and also n square roots;

(c) for a general «-vector b, the back-solving operations

0) Lz = b,
(2) Dy = z,
(3) LTx = y

require
w - l

(19) 2Σ di + n multiplications
/ = i

and
n-\

(20) 2 £ 4 additions.
7 = 1

(d) the back-solving operations Gy = b and GTx = y require n more multi
plications than (19) and the same number of additions as (20).

Proof: By the discussion in Section 2.1 [see (7)-(9)] we see that (b) follows
easily from (a). The proof of (a) is by induction on n. The case n = 2 is im
mediate. Suppose the theorem is true for 2 < n = k— 1 and let G = (X, E, a)
have \X\ =k. Referring to (7) and (8), the first step of elimination requires
that we compute s = r/a and M—sr1 for all 1 =i^j^n. This requires dl

multiplications and d1 (dl + l)/2 multiplications and additions. Hence, in total
the first step of elimination requires

(21) dl(d1+ 3)/2 multiplications and di(d1-{-1)/2 additions.

Since the graph of M (2) is the elimination graph Gx, we have, by induction
that the decomposition of M{2) requires

n—1 n—1

(22) £ 4 (4 + 3)/2 multiplications and £ 4 (4 + l) / 2 additions.
i=2 i=2

Adding (21) and (22) gives (17) and (18).

204 Donald J. Rose

To verify (c), recall that the graph of LT is ΜΤΕ((/;α) = (Χ,Εντ^ and
note that one addition and one multiplication are required for each edge in
£ U T J in the operations (1) and (3). Since

I = 1

the result follows.
The Cholesky backsolving operations (d) require n more multiplications

than the total in (c) because G has, in general, a nonunit diagonal.

These counts show that for a sparse n x n matrix M as above, the importance
of n as a measure of computational complexity is relatively minor. For
example, for such an arbitrary irreducible matrix we know, a priori, only that
the number of multiplicative operations Θ for the decomposition A satisfies

We consider three practical criteria for optimal ordering of a symmetric
matrix M for elimination. While the minimum arithmetic criterion is suggested
naturally by the operation counts given above, the minimum "fill in" and
minimum bandwidth criteria are the two most commonly used.

4.1.1. MINIMUM ARITHMETIC

Let M be a symmetric matrix with ordered graph G = (X, E, a), \X\ =n.
Define

L(a) = "fi/(a(/)),
i=\

2(a) = "îV(a(/)),
1 = 1

and

J(p9q;oi) = pL(ot) + qQ(ct), p > 0, q > 0.

Then, criteria based on minimizing arithmetic operations counted by Theorem
5 can be formulated as attempting to find a such that

J(p,qi&) = min J(p,q; a)
a

for specific p and q. For example, to solve Mx = b using the LDÜ decompo
sition and backsolving requires

J(h ì Ia) + n multiplications and J($, | ; a) additions.

Sparse Systems of Linear Equations 205

To compute det(M), which is the product of the diagonal entries of (D)
requires

J(h 2 ; a) + (n - 1) multiplications and JQ, i ; a) additions.

The operation counts for these two specific computations above suggest a
difficulty with the minimum arithmetic criterion. To define "optimal" for
either of these computations requires a decision about the relative cost of
additions, multiplications, and storage. Furthermore, an optimal ordering
for solving Mx = b is not necessarily an optimal ordering for the problem of
computing det(M). Since both computations involve the decomposition
M = LDlJ, it may be unsatisfactory, from the viewpoint of having a general
sparse matrix package, to consider four different criteria in order to define
optimal ordering for these two very similar computations. Specifically, the
difficulty arises because a priori we cannot be assured that there exists an
ordering a which minimizes L(a) and Q(OL) simultaneously. In practice, it is
common to attempt to minimize the less stringent fill in criterion L(a). To
relate the L(a) criterion to the more general minimum arithmetic criterion,
the following bound is relevant.

PROPOSITION 3. Let G = (X, E9 a) be monotone transitive and

//(a) = max rf(a (/)).*
1 < i < n — 1

Then
Q(oc) ^ μΚα) - (μ-ί)μ(μ+ί)/6,

and there exist graphs for which this bound is sharp.

Proof: The elimination graph G(must contain a clique with μ vertices if
d((x(i)) = μ is the degree of the vertex α(ι) in (/,·_!, since G is monotone
transitive. Hence, for all integers 1 — μ—\,μ — 2,...,\ there exists an integer
kt>i mthd((x(kl)) = l.
Let

Pi = {jel\d(«(j)) = i}9 / = { 1 , 2 , . . . , * - 1 } .

Then

ρ(α) = "j>2(«(0) = Σ i2 + Σ (I Al - m2

/ = 1 1 = 1 ι = 1

< ί«·2 + μ£(ΐΑ|-1)ι·
i = 1 ι = 1

= / Σ 4 - Σ (μ-W = / Σ 4 - (μ-1)μ(μ+1)/6.
ι = 1 / = 1 ι = 1

Finally, the monotone transitive graph of Fig. 4 shows that equality is possible.

t Note that //-hi is the number of vertices in the largest clique of G.

206 Donald J. Rose

Fìg. 4. Monotone transitive graph, where

d(1) = d(2) = d(3) = 3, d(4) = 2, d(5) = 1.

4.1.2. MINIMUM FILL-IN

Let G = (X, E) be a graph with monotone transitive extention G =
(Χ,Ε υ Γ(α)). Then, since G is monotone transitive,

(23) L(a)= Σ*(«(0) = |£| + |Γ(«)|

because each edge in £ u Γ(α) is counted once, and only once, in some d(oc(i)).
Thus, by minimizing L(a) over all orderings, we minimize the fill in Γ(α)
caused by elimination. Then, T(a) is a minimum triangulation of the graph.

Various authors [20, 23, 25, 26, 29, p. 25] have taken the criterion of mini
mum fill in as the "appropriate" criterion for defining optimal orderings.
However, the effect of minimizing L (a) upon the count of necessary arithmetic
operations for certain computations seems to have been overlooked in the
literature. It is certainly not the case, as is evident from the discussion above,
that minimizing L(a) necessarily minimizes arithmetic. Note, however, that
for any a we must store Z, (a) +1 A" | nonzero numbers for D and L in the
decomposition of M corresponding to G. We call this primary storage, as
opposed to the secondary storage necessary to determine which elements of
L are nonzero.

We think the advantages of using L(a) as a criterion for optimal ordering
are as follows :

(1)
(2)

(3)

(4)

minimizing L(a) minimizes primary storage;
minimizing L(oc) minimizes the backsolving operations of Theorem
5(c);
for a graph in which μ(α) of Proposition 3 can be bounded indepen
dent of \X\ = «, a satisfactory bound on arithmetic operations can be
given which is minimized with L(a);
if L(a) is minimum, the triangulation Γ(α) of G is a minimum tri
angulation, that is, the function L{x) on a graph has graph-theoretic
significance.

Sparse Systems of Linear Equations 207

4.1.3. MINIMUM BANDWIDTH

For an n x n symmetric matrix M, it is natural to define M to have band
width k ^ 0 if

(24) k = max (y - /) ,
UJieA

where

Λ = {{Ui\\i <jand mi} φ 0}.

Thus, a symmetric tridiagonal matrix has bandwidth k=\. Equation (24) is
consistent with the recent paper of Cuthill and McKee [9], although other
authors count the diagonal and subdiagonals in their definition of band
width [12, p. 15]. If G = (X,E,ct) is the ordered graph of M, clearly M has
bandwidth k, if and only if

k = max max (a - 1 (>>) — /).
K / « S n - l ^eMadj(jC/)

Furthermore, since |adj(x)| = |Madj(x)| + \{y e X\ x e Madj(>>)}|, it follows
easily that

(25) *>max{[± |adj(x) |]} ,
xex

where [/?] is the least integer / ^ p.
Matrix bandwidth minimization has enjoyed considerable popularity in

matrix methods of structural analysis, see, for example, Livesley [16],
McCormick [29, p. 155], Cuthill and McKee [9], and Rosen [19]. By using
bandwidth methods, these authors attempt to limit fill in and arithmetic to a
level acceptable for their applications. The popularity of bandwidth methods
is partially justified by the following two properties of bandwidth analysis.
First, for a symmetric matrix M of bandwidth k and ordered graph G =
(X, E, a), all the fill in of M due to elimination is constrained within the band
width. That is, the graph MTE(G;a) also has bandwidth k* Second, the
special elimination scheme for a symmetric matrix of bandwidth k is relatively
easy to implement on a digital computer primarily because necessary data
handling and indexing is simplified (see the discussions in McCormick
[29, p. 155] and Cuthill and McKee [9, Section 1]).

Note, however, that the effectiveness of bandwidth implicitly presupposes
that the band width k of a symmetric nxn matrix M will be small relative to n.
Bandwidth analysis is crude, in general, because k need not be small relative
to |ΑΊ = Α7, and because this analysis takes no account of the zero-nonzero
structure within the band. To substantiate this claim, we appeal to Theorem 4

t This is clear since k ^ |Madj(;t)|, and making Madj(*) a clique does not increase k.

208 Donald J. Rose

and the corollary to Theorem 3. Theorem 4 states that the sets Madj(X) are
separation cliques in the extension graph MTE(G;a). Suppose that the
vertices are being ordered by some sequential scheme to attain a minimum, or
approximate minimum, bandwidth.f If, in the elimination graph Gi9 the set
S = M adj (Xi) is a separation clique breaking G into c ̂ 2 components,
Theorem 3 and Corollary 1 (Section 3) implies that in Gt the vertices in S
should be ordered after those in all but one component. Bandwidth mini
mization, however, will tend to order the vertices in S immediately. This
causes redundant edges in successive elimination graphs which may increase
the bound (25) in subsequent elimination graphs. * We illustrate this phenom
enon in the following example.

Example: The snowflake graph shown in Fig. 5 provides an example
where bandwidth ordering (Cuthill-McKee algorithm) orders separating sets
too early. Note also that for this graph, (25) gives the overly optimistic bound
k ^ 3. In fact, this ordering gives k = 6, wherek is not small relative to |Z | = 18.

4.2. Criterion Functions

Let G = (X, E9 a) be a monotone transitive graph with \X\ = n. Then

"Σ «*(«(o) = m
that is, the (n— 1) integers d((x(i)) form a.partition, or degree partition, of \E\.

For two ordered monotone transitive graphs Ga = (X9 E9 oc) and Gß =
(X9F9ß) with \X\ = n9 the partitions of \E\ and |F | generated by the d(oc(i))
and the d(ß(i))9 respectively, will be called equal, if there exists a permutation
π on the integers 1,2,...,«-1 such that

d(oL(i)) = d(ß(n(i)))9 i= 1 ,2 , . . . ,«-1.

Similarly, the partition generated by the d(oc(i)) dominates the partition
generated by the d(ß{i)\ if

d(*(i))>d(ß(n(i)))9 i = 1 ,2 , . . . ,« -1 .

t As, for example, the algorithm presented by Cuthill and McKee [9], which is probably
the best available for large order graphs (\X\ = 103-105). It can be combined with the
recent algorithm of Rosen [19] for further improvements (see Cuthill and McKee [9, p. 12]).
See Akyuz and Utku [1] and Alway and Martin [2] for other bandwidth algorithms.

t This analysis explains the results of Cuthill and McKee [9, p. 15] where it is reported that,
for several sets of graphs generated randomly with \X\ = 50 and 100^ \E\ ̂ 150, the
average bandwidth, after using the Cuthill-McKee algorithm or the Cuthill-McKee-Rosen
modification, ranged from k = 17 to k = 28.2. k is not found to be small relative to \X\ in
these experiments.

Sparse Systems of Linear Equations 209

Fig. 5. Snowflake graph wi th bandwidth ordering given by the Cuthi l l -McKee algorithm

[9], where k = 6. Vertices ® and © are ordered too early.

We consider a class of functions defined on the quantities d(a(i)) each of
which may represent a cost of elimination, or if the graph G = (X, E) is not
triangulated, these functions can be considered as criterion functions for
choosing an optimal ordering.

As criterion functions for the graph G = (X,E)(\X\ =n), we choose the
class of symmetric isotone functions, that is, real valued functions

F(aua2, . . . ,an_!), at integer
such that

(1) F(ai,a2,...,an_1) = E(a<Tii)9a<r(2),...9a(Tin-1)\ where σ is any permu
tation on {1,2,...,«—1};

(2) F(al,a2,-..,an-1) ^ F(bl,b2,...,bn_l) when a^ bi9 i= Ι , . , . , Η — 1 .

We now show, see Theorem 6, that if F is a criterion function for a tri
angulated graph G = (X, E) with distinct monotone transitive orderings a
and β, then

F(d{a{\% d(a(2)),...,d(a(n - 1))) = F(d(ß(l))9 d{ß{2%...,d{ß{n -1))).

Furthermore, by Theorem 7, if 7 is any nonmonotone transitive ordering of X,
then Ga = (I , £ , a) is a subgraph of MTE(G,; y) and we show

F(d(y(l)),d(y(2)),...,d(y(n-l))) > F(d(a(l)),d(«(2)),...,d(«(n-1))).

Thus, with respect to criterion functions on triangulated graphs, monotone
transitive orderings may be regarded as optimal.

THEOREM 6. Let G = (X9 E) be triangulated and let a and ß be two distinct
monotone transitive orderings of A". Then the two partitions of | £ | generated
by the d(a(i)) and the d(ß(i)) are equal.

210 Donald J. Rose

Proof: We use induction on |A"|. The case \X\ = 2 is clear. Suppose that,
in the case |A"| =k—\, we consider G with |Λ"| = k. If α(1) = ß(l) = x, the
result follows immediately from the induction hypothesis on the elimination
graph Gx. Suppose, then, that a(l) = y and ß(l) = z. Note that if y e adj(z)
then adj(j>)-{z} = adj(z)-{>>} by monotone transitivity and | adj (>»)| =
|adj(z)|. Consider the new monotone transitive orderings a and β defined by

a(l) = y, β(\) = z,

α(2) = z, β(2) = y,

â(i) = ß(i) = y(i —2), i = 3,...,«,

where y is any monotone transitive ordering of the triangulated section graph
G(X-{x,y}). By the first part of the proof, the partitions generated by
d(ot(i)) and d(oi(i)) are equal, as are those generated by d(ß(i)) and d(ß(i)).
It remains to show that the partitions generated by d(ot(i)) and d(ß(i)) are
equal. Now a yields the partition |adj(>>)|, |adj(z)|, d(y(i—2)\ i = 3,...,n, if
y φ adj(z) and |adj0>)|, |adj(z)| - 1, d{y(i-2% i = 3,...,n, iï y e adj(z). But β
gives an equal partition in each case because |adj(>>)| = |adj(z)| if y e adj(z).

LEMMA 8. Let G = (X, F) be triangulated with triangulated subgraph
G = (X, E), E ç F. If a is any monotone transitive ordering for both G and G,
then the degree partition of F dominates the degree partition of E.

Proof: Clearly, â(xx) < d{xx), and the elimination graphs G{ =
{X-{xx}9Ex) and Gl =(X-{x1},Fl) are triangulated with El^Fl. The
proof then follows by induction on \X\.

LEMMA 9. Let G = (X, E) be triangulated and x e X.
Then G = (X,ΕνΌ(χ)) is triangulated.

Proof: Assuming D(x) φ 0 , we need only show that cycles in G of the
form

μ = [* Ι , ; Ί » / Ί > · · . , Α Ρ * Ι] > n ^ 2

with {xuy\i e D(x) have a chord. These are two cases.

(1) if some pi e adj(x), then there is a chord {xl9Pi} (or {yupn}, if / = n)
in EuD(x);

(2) if no pi G adj(x),the cycle μ' = {.Xi,x,yi9Pi,...,pn,xì'] in G has a chord
i*i>/>/}> {yi>Pj}> o r {PhPj} in £> which is also in chord in G.

LEMMA 10. Let G = (X, E) and G = (X, F) be triangulated with strict
inclusion E a F. Then there exists a monotone transitive ordering a for G
such that in G, M TE(G ; a) = (X, Eu Γ(α)) with strict inclusion (Eu Γ(α)) c F.

Sparse Systems of Linear Equations 211

Proof: If X is a clique in G, the lemma is true for any a which is a monotone
transitive ordering for G. Hence, we assume X is not a clique in G and prove
the assertion by induction on \X\. One easily verifies the cases when \X\ = 4,
and, assuming the case \X\ =k— 1, we consider such graphs G and G with
\x\=k.

Let S = {y e X\ D(y) = 0 in G}. We first dispense with two cases.

(1) If for some y e S, [adj(j>)]öc [adj(y)]G, that is, there is an edge
e = {y, x} e F— E, then by choosing any monotone transitive ordering for G
with a(l) = y we have (Eu Γ(α)) c F.

(2) If some yeS with [adj(y)]ö = [adjO)]G has D(y) = 0 in G also,
then by choosing a(l) —y, the lemma follows by the induction hypothesis on
the elimination graph Gy and Gy.

These cases being dismissed, we may assume that for each y e S,
[adj(j>)]G = [adjO>)]G, and that the clique adj(>>) in G contains at least one
pair of vertices ey = {vl9 v2} e F—E. By Corollary 2 and Lemma 6 (Section 3),
since X in G is not a clique, there exists y,z e S with y $ adj(z). For such
vertices ey^ez, because if ey = ez = {vl9 v2}, the cycle μ = [>>, νί9ζ, v2,y\ has
no chord in E, so G could not be triangulated.

Hence, for some y e S, choose α(1)=>> and consider the y-elimination
graphs Gy = (X— {y}, Ex) and Gy = (X— {y}, F^. It is clear from the above that
strict inclusion El a Fl holds because there exists a z e S with y φ adj(z) and
such that ez e Fi, but ez£ Ei. Also, by Lemma 9, Gy is triangulated, as is Gy.
Hence, the lemma follows by using induction on the graphs Gy and Gy.

These lemmas give us Theorem 7.

THEOREM 7. Let G = (X, E) and G = (X, F) be triangulated with E^F.
Let a and β be monotone transitive orderings of G and G, respectively. Then
the degree partition of |F | dominates the degree partition of \E\.

Proof: We use induction of |F | . If |F | = \X\ — 1, that is, G is a tree, then
E= F, because both G and G are assumed connected, and the conclusion
follows from Theorem 6. Suppose the theorem is true whenever 1*1 — 1 <
|F | ^k— 1, and let G and G be as above with \F\=k. If the subgraph
G = (X, E) has E= F, then again the conclusion follows from Theorem 6.
Assume then £<= F (strict). By Lemma 10, there exists a monotone transitive
ordering â for G such that MTE(G;a) = (Ar,£u71(a)) and (£ u 7 (a)) c F
(strict). By the induction hypothesis, the degree partition of \EvT(&)\,
generated by ά in the triangulated graph MTE(G;a), dominates the degree
partition of \E\, and by Lemma 8 the degree partition of |F | generated by â
dominates the degree partition of \EvT(ot)\. By Theorem 6, the degree
partitions of |F | generated by β and a are equal.

212 Donald J. Rose

Theorem 7 has the following important implication: If Tis a triangulation
of a graph G = (X, E), the Tis minimal if no f c Tis also a triangulation of G.
Clearly, a minimum triangulation is minimal, but a minimal triangulation
need not be minimum. Theorem 7 implies that if T is a nonminimal triangu
lation of G, and t a T is also a triangulation, then the cost of elimination
with a monotone transitive ordering of Gx = (X,EuT) is greater than the
cost of elimination with a monotone transitive ordering of G2 = (X,Eu t)
for any criterion function.

4.3. Bounds for Triangulations

Since the size of a triangulation T of a nontriangulated graph G is one
indication of the computational complexity of G, that is, M, with respect to
elimination, we seek bounds on |Γ | which are related to the structure of G.
Corollary 5 below relates the size of a minimal triangulation to the size of
minimal a, b separators in G. Theorem 9 shows that if k edges of G can be
deleted to yield a triangulated graph, then G itself can be triangulated with
\T\^kn.

THEOREM 8. Let G = {X, E) be a graph with minimal triangulation T.
Then every minimal a, b separator of G = (X, Eu T) is a minimal a, b separator
ofG.

Proof: If S is an a,b separator of G, clearly it is an a,b separator of G.
Suppose S is minimal in G but not in G, that is, S' <= S is also an a, b separator
in G. Let C, be the components of G with respect to S'. Since some vertices
in S are in the C,, returning to G where S is minimal implies there must be
edges T0 c= T with vertices in different components Ct. S' is a clique in G,
and by removing edges in T0 the graph G = (X, Eu T— T0) is triangulated by
Theorem 3. Thus, T is not minimal, which contradicts our hypothesis.

COROLLARY 5. Let G = (X, E) be a graph, | Α Ί = Λ , such that every
minimal a,b separator S of G satisfies |5 | ̂ k. If Tis a minimal triangulation
of G, then

\T\ *:(η-μ)μμ+1)/2)

where

μ = max{|C|, C a clique of G}.

Proof: By the remark following the statement of Theorem 4, there are,
at most, n — μ minimal a,b separators in G = {X,EuT). The proof then
follows by the above theorem and the hypothesis | 5 | < k.

Sparse Systems of Linear Equations 213

THEOREM 9.f Let T= (X, E) be triangulated and G = (X, £ u f) . Let K g X
be a set of vertices covering F, that is, if / = {x, y} e F, then x e V or y e V.
If \X\ = n and |K| = m, G can be triangulated with, at most,

nm — (m(m+l)/2) edges.

Proof: Let H=(X,EvFvT), where Γ = {{y,x}| y e V, xe X, v # x } .
Note that \T\ = nm — (m(m + l)/2). We show / / i s triangulated. If μ is a cycle
of / / with length / ^ 4 and

(1) μ contains no vertex in V, then μ is a cycle of rand , hence, has a chord;
(2) μ contains a vertex v e V, then H contains the chord {vx} for any

x e μ not adjacent to v.

Note that the bound in Theorem 9 can be improved, if G has some separation
cliques which are also separation cliques of T.

4.4. Ordering Algorithms

4.4.1. DYNAMIC PROGRAMMING

Given any criterion function f a s defined in Section 4.2 and a graph G, it is
possible to find an ordering a which minimizes F by using the dynamic pro
gramming technique of Bertele, Brioschi, and Even [4, 5, 7], who consider the
specific criterion function

^(a) = max d(cc(i)).

However, for a graph with n vertices, the complexity of this algorithm and the
storage requirements increase as 2". Hence, this algorithm is not feasible for
large graphs, and no other general algorithm ensuring optimality is known.

In practice, it is tacitly agreed that a near optimal ordering is acceptable
if the ordering algorithm is efficient. For example, the complexity grows only
as np, p small. In the literature* it is assumed that the next two algorithms to
be discussed produce near optimal orderings. While some experimental results
reported by Tinney [29, p. 25], confirm this assumption, no detailed study of
these algorithms has been reported.

t From a private communication from A. Hoffman, IBM research, Yorktown Heights,
New York.

% See, for example, Sato and Tinney [20], Tinney and Walker [26], and the summary paper
by Tinney [29, p. 25], who use these algorithms for ordering sparse symmetric matrices. For
similar algorithms applied to the nonsymmetric case, see Tewarson [29, p. 35].

214 Donald J. Rose

4.4.2. MINIMUM DEGREE ALGORITHM

Let G0 = G = (X,E). The minimum degree algorithm orders X as follows:

(1) set i = l ;
(2) in the elimination graph Gt _ 1, choose x{ to be any vertex such that

ladjfo)! = min |adj(y)|

Gf-i = (JTf-i,^-!);
where

(3) set i = i + l ;
(4) i f / > | Z | , stop;
(5) go to Step (2).

The advantage of this algorithm is its speed. n(n+1)/2 vertices are tested,
and each test simply counts adjacent vertices. The disadvantages of the
algorithm are

(1) the algorithm does not, in general, produce a monotone transitive
ordering when the graph is triangulated (see Fig. 6)f ;

Fig. 6. Vertex (ïï) has minimum degree in the triangulated graph G. Since {a} is a separ

ation clique, ordering @ first leads to a nominimal triangulation.

(2) the algorithm does not, in general, produce a minimal triangulation
(again see Fig. 6);

(3) there exist examples when the triangulation produced by this ordering
is arbitrarily greater than a minimum triangulation (see following Example
and Fig. 7).

Example: Let n < m and Cm_1 be a clique o n w - 1 vertices. Each of the
vertices at is adjacent to each vertex of the clique Cm^l. Vertex x is adjacent
to each a{. Vertex x has minimum degree, |adj(x)| =n, and the elimination
graph Gx is the clique Cn+m_1. This triangulation obtained by ordering x
first requires n(n — l)/2 edges. However, the triangulation obtained by ordering
the Qi first (note that |adj(a£)| =m—\) requires only m—\ edges.

t It is easy to see that the algorithm will produce a monotone transitive ordering when
G is a A: tree.

Sparse Systems of Linear Equations 215

Fig. 8. Vertex (a) has \D(a)\ = 2 and is a minimum deficiency vertex. However, in the

elimination graph Ga, the edge {b,c} is redundant in a triangulation given edge {d, e} since

S = {a, d, e} is then a,b,c separation clique of Gg. Thus, given a deficiency set D(x), only some

subset of D(x) may be necessary in a minimal triangulation.

4.4.3. MINIMUM DEFICIENCY ALGORITHM

Letting G0 = G = (X, £) , the minimum deficiency algorithm orders X as
follows :

(1) s e t / = 1 ;
(2) in the elimination graph GI_1 choose xf to be any vertex such that

\D(xd\ = min \D(y)\,

where

(?,·_! =(Xi.uEi);

(3) set/ = i + l ;
(4) if / > \X\, stop;
(5) go to Step (2).

216 Donald J.Rose

The advantages of the minimum deficiency algorithm are

(1) only n(n+ l)/2 deficiency counts are needed to compute the ordering;
(2) the algorithm produces a monotone transitive ordering when the

graph is triangulated; also, in this case, ordering a vertex as soon as the
D(x) = 0 condition is recognized leads to fewer than η(η+\)β deficiency
counts.

The disadvantages are

(1) the algorithm is slower than the minimum degree algorithm, because
in addition counting, or listing, vertices in adj(x), pairs of vertices in adj(x)
must be edge tested ;

(2) the algorithm does not, in general, produce a minimal triangulation
(see Fig. 6, with edges {c,d}, {b9e}, {fi}, {g, h} deleted; see Fig. 8).

References

1. Akyuz, F. A. and Utku, S. An automatic relabeling scheme for bandwidth minimiz
ation of stiffness matrices, AI A A J. 6, 728-730 (1968).

2. Alway, G. and Martin, D., An algorithm for reducing the band width of a matrix of
symmetrical configuration, Comput. J. 8, 264-272 (1965).

3. Berge, C , Some classes of perfect graphs, "Graph Theory and Theoretical Physics"
(F. Harary, ed.), pp. 155-166. Academic Press, New York, 1967.

4. Bertele, U. and Brioschi, F., A new algorithm for the solution of the secondary
optimization problem in nonserial dynamic programming, J. Math. Anal. Appi. 27,
565-574(1969).

5. Bertele, U., and Brioschi, F., Contributions to nonserial dynamic programming,
J. Math. Anal. Appi. 28, 313-325 (1969).

5a. Boland J. and Lekkerkerker C , Representation of a finite graph by a set of intervals
on the real line, Fundam. Math. 51, 45-64 (1962).

6. Brayton, R. K., Gustavson, F. G., and Willoughby, R. A., Some results on sparse
matrices, Math. Comp. (on press).

7. Brioschi, E., and Even, S., Minimizing the number of operations in certain discreet
variable optimization problems, Tech. Rep. 567, Harvard University, Div. Eng. and
Applied Physics.

8. Busacker, R. G., and Saaty, T. L., "Finite Graphs and Networks." McGraw-Hill,
New York, 1965.

9. Cuthill, E., and McKee, J., Reducing the bandwidth of sparse symmetric matrices,
Proc. ACM 23rd National Conf. (1969).

9a. Dirac, G. A., On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25, 71-76
(1961).

10. Dulmage, A. L., and Mendelsohn, N. S., On the inversion of sparse matrices, Math.
Comp. 16, 494^196 (1962).

11. Dulmage, A. L., and Mendelsohn, N. S.,Two algorithms for bipar ite graphs, SIAM
J. Appi. Math. 11, 183-194 (1963).

Sparse Systems of Linear Equations 217

12. Forsythe, G. E., and Moler, C. B., "Computer solution of Linear Algebraic Systems."
Prentice-Hall, Englewood Cliffs, New Jersey, 1967.

12a. Fulkerson. D., and Gross, O., Incidence matrices and interval graphs, Pacific J. Math.
15, 835-855 (1965).

13. Harary, F., A graph theoretic method for the complete reduction of a matrix with a
view toward finding its eigenvalues, / . Math, and Phys. 38, 104-111 (1959).

14. Harary, F., A graph theoretic approach to matrix inversion by partitioning, Numer.
Math. 4, 128-135(1962).

15. Gustavson, F. G., Liniger, W., and Willoughby, R.,Symbolic generation of an optimal
Crout algorithm for sparse systems of linear equations, J. Assoc. Comput. Mach. 17,
87-109 (1970).

16. Livesley, R. K.,The analysis of large structural systems, Comput. J. 3, 34-39 (1960).
17. Parter, S., The use of linear graphs in Gauss elimination, SIAM Rev. 3, 119-130 (1961).
18. Rose, D. J., Symmetric elimination on sparse positive definite systems and the potential

flow network problem, Ph.D. Thesis, Harvard University (1970).
19. Rosen, R., Matrix bandwidth minimization, Proc. AC M 23rd National Conf. 585-595

(1968).
20. Sato, N., and Tinney, W. F., Techniques for exploiting the sparsity of the network

admittance matrix, IEEE, PAS, 944-950 (1963).
21. Steward, D. V., Partitioning and tearing systems of equations, SIAM J. Numer. Anal.

2, 345-365 (1965).
22. Tewarson, R. P., On the product form of inverses of sparse matrices, SIAM Rev. 8,

336-342 (1966).
23. Tewarson, R. P., The product form of inverses of sparse matrices and graph theory

SIAM Rev. 9, 91-99(1967).
24. Tewarson, R. P., Row-column permutation of sparse matrices, Comput. J. 10, 300-305

(1967).
25. Tewarson, R. P., Solution of a system of simultaneous linear equations with a sparse

coefficient matrix by elimination methods, BIT1, 226-239 (1967).
26. Tinney, W. F., and Walker, J. W., Direct solutions of sparse network equations by

optimally ordered triangular factorization, Proc. IEEE 55, 1801-1809 (1967).
27. Westlake, J. R., "A Handbook of Numerical Matrix Inversion and Solution of Linear

Equations." Wiley, New York, 1968.
28. Wilkinson, J. H., "The algebraic Eigenvalue Problem." Oxford Univ. Press (Clarendon),

London and New York, 1965.
29. Willoughby, R. A. (ed.), IBM sparse matrix proceedings, IBM Report RAI, No.

11707(1969).

INTELLIGENT GRAPHS:

NETWORKS OF FINITE AUTOMATA CAPABLE OF

SOLVING GRAPH PROBLEMS

P. Rosenstiehl J. R. Fiksel A. Holliger

École Pratique des Hautes Études Institut de Programmation École Polytechnique

Paris, France Paris, France Paris, France

1. Introduction to Myopie Algorithms 219
2. Finite Graphs and Finite Automata 222

2.1. Networks of Finite Automata 222
2.2. Graph Problems Solvable by Networks of Finite Automata 224
2.3. Self-Synchronizing Networks 228
2.4. Undecidable Connectivity 230

3. Elementary Problem-Solving Automata 235
3.1. Labyrinth Problems : The Tarry Automaton 235
3.2. Labyrinth Problems: The Recoil Automata 237
3.3. Stacked Automata 240
3.4. Eulerian Path and Edge Ordering 241
3.5. Rooted Tree of Minimal Paths 243
3.6. Vertex Ordering 246
3.7. The Network Firing Squad Problem 248
3.8. The Early Bird Problem 253

4. More Complex Problems 256
4.1. Block Decomposition 256
4.2. Hamiltonian Cycle 258
4.3. The Minimum Tree Problem 260
References 264

1. Introduction to Myopic Algorithms

The value of myopic algorithms is well known, but their exact nature is
poorly defined. Here we give an abstract formalization of the myopic property

219

220 P. Rosenstiehl, J. R. Fiksel, A. Holliger

in terms of finite automata. Intuitively, we say that an algorithm is myopic if,
for each of the elementary activities into which the computation is divided,
reference is made only to a restricted and well defined subset of the data on
which the algorithm operates.

By set of data we mean, on the one hand, a mathematical structure on
which computations are performed—in this chapter, a graph and various
modules and structures of order defined on the graph—and, on the other hand,
the partial results already obtained from previous computations. The myopic
property relies on the storage of the given data within the graph itself, at the
very places where those data were originally defined, or have been generated
during the process of the algorithm.

At each vertex of the graph we install an automaton which is the local
representative of the algorithm. It computes locally on data relating to that
vertex and to part of the data relating to those other vertices to which it is
directly connected. The graph itself is thus provided with means of compu
tation, the vertex automata, for solving problems concerning itself. Hence,
we obtain our title, intelligent graphs. The myopic property is often favorable
for parallelism in the computation. Many local elementary computations
whose order of execution matters little are conducted in parallel, each upon a
restricted subset of the total data.

The automata used here are state-output automata, abstractly described by
a 3-tuple M = (E,L, φ), where E is a set of states, L is a set of input letters,
φ:ΕχΣ-+Ε is the state-transition function, and the output of M is its state.
The automaton is said to be finite if Eis finite. We physically interpret such an
automaton as a discrete-time system which, if at time / it is in state e and
receives input letter /, then at time t+ 1 it will be in state φ^,Ι).

A myopic algorithm for graphs is formalized by a network of identical
finite automata. The input letter of automaton x consists of elements taken
from the state of each of the automata to which x is directly connected. This
formalization allows us to introduce such terms as computability by finite
automata (fa) for a given graph problem, the computation time necessary
for the automata to locally display a desired solution, and the number of
states of each identical automaton, which is a measure of the complexity of
the computation. The idea for this formalization of the myopic property in
graphs came to us [15]

(1) from the study of some admirable myopic algorithms, the labyrinth
algorithms of Tarry [19, 20];

(2) from the work of Moore in "The Shortest Path Through a Maze,"
where the number of states necessary per vertex is minimized
[13];

(3) finally from our generalization, to finite connected networks, of the

Intelligent Graphs 221

well-known "firing squad problem" [12], introduced into switching
and automata theory in its linear form by Myhill and Moore.

The class of fa-computable problems has proved to be larger than we first
anticipated. For example, an intelligent graph can not only decompose itself
into blocks, but also display its minimum tree for a given total ordering of the
edges. Berstel [5] has shown, in the same vein, that an intelligent graph can
solve certain graph problems such as the construction of a hamiltonian cycle.
Here we prove that this can be done with five colors.

Although our abstract formalization of myopic algorithms requires as
many automata as there are vertices of a graph, our results are interesting
for any type of programming methods using a single machine. In particular,
this is true of the following algorithms, which are dealt with in later
sections, and are new in the literature on theory of graphs and computer
science :

(1) recoil algorithms for mazes ;
(2) direct construction of an Eulerian path;
(3) edges-ordering compatible with 1-adjacency;
(4) vertices-ordering compatible with 2-adjacency ;
(5) block decomposition ;
(6) Hamiltonian cycle.

The algorithms listed above could be adapted efficiently to the push-down
methods for graphs developed by Dermiane and Pair [8].

The study of graph problems has led us to define three fundamental problems
specific to networks of automata, which are

(1) a self-synchronization process, which uses a three-position counter,
making the network completely autonomous ;

(2) various generalizations of the famous firing squad problem to any
network of automata ;

(3) a problem which appears to be just as important and basic as the firing
squad problem, which we call the "early bird problem," and which
opens the door to optimization computations.

We feel that it is not the purpose of this book to emphasize those aspects
of our subject related to the algebraic theory of automata. Thus, we have
stressed the algorithmic and computational aspects. Nevertheless, from the
algebraic viewpoint, the model of a cellular automaton which constructs its
input from the states of its neighbors is a rich and promising one, especially in
the light of our stacking form of composition in which elementary automata
may be combined to form more powerful ones.

In summary, the theory of networks of finite automata permits a measure
ment of the complexity of myopic computation, and, furthermore, offers an

222 P. Rosenstiehl, J. R. Fiksel, A. Holliger

attractive model for acentric systems, that is, organizations where all elements
are identical and none are indispensable. They are commonly observed in the
biological, sociological, and technological domains. In the art of computing
science, networks of automata are distinctly different from such structures
as iterative arrays and tessellation automata [24], are more flexible and
less vulnerable, and could represent a model for microprogramming
rather than for the actual computing hardware.

2. Finite Graphs and Finite Automata

2.1. Networks of Finite Automata

We shall use the term finite graph* to designate a triplet (X, U, a), where
X and U are two finite disjoint sets and a is a function with domain U, taking
values in the set of unordered pairs of elements of X not necessarily distinct.

J C G I Ì S called a vertex of the graph, u e U is called an edge of the graph,
a(w) = (a, b) consists of two vertices a and b, which are not necessarily distinct,
called the extremities of the edge u. The degree v(x) of a vertex x is the number
of times that x appears in the elements of Ima, the image of a. We shall say
that the degree d of the graph (X, U, a) is the maximum value of v(x) for all
xe X, d = maxxeXv(x).

We shall use the term finite automaton to designate a triplet (E,L, φ) where
E and L are two finite sets, φ is a function from ExL into E

φ:Ε x L -» E,

ee E is called a state of the automaton, and / e L is called an input letter of
the automaton, φ is called the state-transition function. 0(e,/) is the next state
taken by an automaton which finds itself in state e and reads the input letter /.
We shall agree that φ allows the automaton to change state from time t to
time / + 1 , for all / e N. We shall index e and / with the subscript t, and write

et+i = Φ(^1{).

In our network of automata, all the automata will be identical, and the
input letter of each one will consist of a function of the state of each of the
automata to which it is directly connected.

We shall use the term network of finite automata to designate a 5-tuple
(X, d, p, E, φ). Here X is a finite set whose elements may be called vertices or
automata, interchangeably, de N is called the valence of the network, or the
number of limbs of the automata of the network, where a limb of A" is a pair
(x, r) with x e l a n d r e [d~] = {l,2,...,rf}.p: Xx [i /] - > I x [d]isan involution.
If p(x,r) = (x,r), the limb (x,r) is said to be dead. If p (x, r) = (y, s) with

f In the terminology of Berge [2, 3] we should say, to be more exact, multigraph.

Intelligent Graphs 223

(x, r) φ (y, s), the two limbs (x, r) and (y, s) are joined (x may be equal to y);
we have by definition p(y,s) = (x,r). E is a finite nonempty set disjoint
from X, called the set of states. It is convenient to write E e Fd,
where F is a finite set called the set of limb states. The element ext of E, the
state of automaton x at time /, thus becomes a d-tuple the rth component of
which is written

er
Xit* rs[d]9 xeX, teN.

If (x, r) is a dead limb we shall say, by convention, that er
xt = ω for all teN.

Hence, ω e F. φ is the transition function of the network, ^ F ^ x F ^ f 1 . It
associates with each state-input letter pair (e, /) a new state. For automaton
x e X, this is written

where ext e E, and the input letter lxt e Fd, like ext. Its components are
written lxt with r e [</], x e X, t e N, and simply defined as follows:

lx,t = < r if P(*>r) = (y,s)

Let us denote by M(t) the state of the network at time /, which we interpret
a s a n l x [d~] matrix whose elements are the er

xU the time t being the same
for all the automata.

If we fix the values of ex0 for all x e X, that is M(0), we define a sequence
M{t) which necessarily becomes periodic, since Xh finite, and is stationary if
the period is 1. In this case, we say that the network has operated from an
initial state to a stationary state, with all the automata operating synchron
ously at each instant t.

IDLENESS CONVENTION. A special value of the components er
x,, denoting

idleness, is written /, / e F. A state vector, all of whose components are either
/ or ω, is called an idle, or quiescent state. The function φ, by convention, is
such that if A and B are quiescent states, we have

φ(Α,Β) = Α.

NETWORK, GRAPH, AUTOMATON. In a network of automata, R =
(Χ,α,ρ,Ε,φ), we distinguish a graph and an automaton. Let us first define
the graph G(R) of the network R, by the triplet

C(tf) = (*,£/, a),

where U is the set of couples of distinct elements of the matching p, and for
the edge ue Ucorresponding to the couple ((x,r),(y,s)),

oc(u) = (x9y),

which does not exclude the case x = y.

224 P. Rosenstiehl, J. R. Fiksel, A. Holliger

It is important to point out the following:

(a) The dead limbs of automata of R do not generate any elements of G(R).
(b) The degree of the graph G(R) is bounded by d, and is actually equal

to d if an automaton of the network has no dead limbs.
(c) In the case where a(w) = (x,x), u is a self-loop at the vertex x of the

graph G(R), The vertex x can have as many loops as its degree permits.

Now let us define the automaton Ot{R) of the network R, simply as

#(/*) = (£,L,0),
where L = Fd.

It is important to point out the following:

(a) One copy of the automaton OC{R) is associated with each element
x e X, and is also called x for convenience of notation. It takes state ex t at
time /, and rçads the letter lx t at time t.

(b) For a fixed degree d, the independence of (x, p) and (E, φ) permits
us to:

change the graph of a network of automata without changing the
automaton : if R = (X, d, p, E9 φ) and R' = (X\ d, p', E, </>), then G(R') Φ G(R)
and OC(R') = Cl{R), where G(R') may be any graph whose degree does not
exceed the given d;

change the automaton of a network of automata without changing the
graph : if R = (X, d, p, E, φ) and R' = (X, d, p, E\ φ), thenG(Zr) = G(R) and

Finally, then, we see that a network of finite automata R and its evolution,
that is, its sequence M(t) for / e N, are defined by the following:

(1) a graph G of degree at most d, in which for each vertex x we define a
one-to-one function from the edges incident to x into [J] ;

(2) an automaton OC which takes its states and input letters from the same
setFd;

(3) an initial state for each vertex automaton x.

2.2. Graphical Problems Solvable by Networks of Finite Automata

Let P be a simple or multiple property of graphs, for example, connectivity,
regularity, absence of cycles, bicoloration, etc. Let de N. Let <&(P,d) be the
family of finite graphs (X, U, a) with degree d or less, having the property P.
Let AT be a problem of the type that makes network R exhibit a stationary state
M(0), where stationary means that for all t> Θ, M(t) = Μ(Θ), meaningful
in terms of the elements of the graph G(R). For example

Intelligent Graphs 225

(1) Μ(θ) displays a configuration such as a hamiltonian cycle of the
graph, or the nonexistence ofthat configuration;

(2) M(Θ) displays all vertices of the graph in a special state for the first
time.

We say that a problem K is fa-computable by CC in &(P,d) for a class of
initial states JÎ(%) if there exists a finite automaton CC such that, for any
G e 0 (Λ d), the network R which has G(R) = G and CC{R) = CC, and its initial
state M(0)e Ji($) will, at a finite time 0, exhibit a stationary state Μ(Θ)
associated with K. The minimal value of Θ satisfying this definition is called
the computation time of CC for the problem K.

Notice that the automaton CC which solves the problem A îs independent of
the choice of G e ^ (P , d). In particular, we have card £ independent of card X.
Thus, though card X may be unbounded for G e &(P, d), card E is bounded
by a function of d.

Remarks: (1) In what follows, we will usually abbreviate a reference
to the above definition as follows : the problem K is fa-computable by OC.
Unless we explicitly state the property P, then this is understood to mean that
K is fa-computable in ^ (·, d), that is, for any finite graph of degree d or less.
The class of initial states Jf(&) will be defined by the description of the initial
state M(0) of the network.

(2) The state vector ex θ gives the local solution for vertex x, and Μ(θ)
gives the global solution to problem K.

The problem involved here is to show whether or not a problem K is
fa-computable, and, if so, to minimize the computation time 0, which in
general is a function not only of d, but also of card X, and finally for a given
Θ to minimize the number of states of the finite automaton CC which computes
K, that is, card E. For the latter problem, at our present stage of development,
it is more often a matter of reduction than of minimization.

We would point out that the vector notation used for the states e e E
(E a Fd) is convenient to work with, but its redundancy does not at all affect
the exact number of states required for the operation of CC. We may have
card E < (card F)d, and in particular, ifer = e\ for all r, s e [d~\, then card E =
card F.

Remark: One might think that the synchronization of the automata to
which we have referred until now considerably reduces the autonomy of the
network. This is not at all true. We shall see in Section 2.3 that by associating
with each automaton a 3-position counter, to count the transitions, modulo 3,
we can achieve an autosynchronization of the network. Hence, the only
external action upon the network's computation is the choice of M(0).

226 P. Rosenstiehl, J. R. Fiksel, A. Holliger

As an illustration for our notation, we shall define the boundary automaton,
which solves the rather easy problem of computing any boundary in a graph.
In a graph (X, ί/,α), the linear operator "boundary," written as d, associates
each edge with the sum of its two extremities

du = a + b if a(w) = (a,b).

The addition operation is commutative, and has the property z + z = 0. As
for the boundary of a sum of edges, it is equal to the sum of their extremities.
In other words, a vertex belongs to the boundary of a sum of edges if it has
an odd number of limbs in common with these edges. We shall attempt to
compute the boundary of a given sum L0 of edges, namely S0 = dL0.

Let us describe the boundary automaton.

(a) The states: The set F of possible limb states will be written F =
{ω, /, A}, with ω for a dead limb, / for a quiescent limb, and A for an
activated limb.

(b) The initial state of the network: Let the set of edges L0 be defined by
A 0 c l x [d~\ with

(x,r)eA0=>p(x,r)eA0.

At time t = 0, we have
ex,o = co or I for all (x, r) e X x [d~\

except

er
x°o0 = A for all (x0, r0) e A0.

(c) The possible cases for state transitions:

(1) <=>card{r e [d] | er
xt = A} is even for given xeX and,

given teN,
(1) =>ex':A*-I.

We define only the possible cases for change of state. In other cases, the
function φ leaves the state of the automaton limbs unchanged. The possible
cases are defined by propositions, such as (1) above and its complement (T).
Several propositions may be composed together (see the more complex
example).

((1) =>) is to be read as "if proposition (1) is true at time t, then. . ." In
the transition instructions, (ex

r) is to be read as "the change of state of limb
ex

r from time / to time t+1 i s . . . " (P*- Q) is to be read as "if the state is P,
then it is replaced by the state g ." (· <- Q) is to be read as "any element of
F is replaced by g ."

(d) Results: S0 is the sum of the elements of Γ0, where

Σ0 = {xeX\3re [d]\ex
r = A},

Intelligent Graphs 227

since the computation reaches a stationary state at time 1, we have 0 = 1 .
Card F= 3, card E= 3d

 9 and this is the minimum E.

THEOREM 1. The boundary of any set of edges of a graph is fa-computable.

Let us now define the coboundary automaton. In a graph (X, U, a) the
linear operator coboundary, written δ9 associates with each vertex the sum of
those edges having this vertex exactly once as an extremity

δχ = £ u9
ueC(x)

where C(x) = {ueU\ a(w) = (x, b), b Φ x}.
As for the coboundary of a sum of vertices, it is equal to the sum of their

coboundaries, a commutative sum for which z + z = 0. In other words, an
edge belongs to the coboundary of a sum of vertices if exactly one extremity
of this edge is a member of the sum. We shall attempt to compute the co-
boundary of a given sum Sx of vertices, namely Lv = òSì. Let us describe the
coboundary automaton.

(a) The states: F= {co9I9A9C}9 with ω for a dead limb, / for a quiescent
limb, A for an activated limb, and C for a limb, not dead, of an edge
belonging to the coboundary.

(b) The initial state of the network: Let Sl c X. er
x0=œ or /, except

for er
x\ 0 = A if xx e Si and (xu rx) is not dead.

(c) The possible cases for state transitions:

(1) o er
xt = I and es

yt = A

or

er
xt = A and es

ytt = /, p(x,r) = (y9s)9

(2) o er
xt = A and es

yt = A, p(x,r) = (y9s),

(\)^ex
r:- - C ,

(2) = > * / : · : / ·

(d) Results: Ll is the sum of the elements of the set Al9 where

Ai = {((x,r),(y9s))eU\ex' = C}.

Θ = 1 and card F= 4. Card £ = 3.2d —2 by inspecting the possible states ex9

and this is the minimum E.

THEOREM 2. The coboundary of any set of vertices of a graph is fa-cofn-
putable.

228 P. Rosenstiehl, J. R. Fiksel, A. Holliger

Let us finally define the marking automaton which associates with x0 e X
and U0 <= U the set X0 of vertices of the graph (X, U9 a) that are connected to
x0 in the partial graph (X, U0,OL\UQ).

(a) The states: F= {ω, Ι,Α,Α}, where / is the state of a limb which is
not the extremity of an edge of t/0, A is the state of a limb which is theextremity
of an edge of U0, and A is the state of a limb (x, r), which is the extremity of
an edge of U0, with x connected to x0 in the partial graph.

At time t = 0 we have

er
XOt0 = Ά for all r e [rf]Xo,

er
Xt0 = A if u(x,r) e U09 x Φ x0,

er
x0 = ω or / otherwise.

(b) The possible changes of state:

(i) o rXtt = Ä

for at least one r e [d],

which means every limb of x in state A changes to state Ä if a component of the
input letter is Ä.

(c) Results: the set X0 is defined by

X0 = {xe X\ eXQ = Ä for at least one re[d~\).

We have Θ less than the length in the subgraph of the longest path from Λ:0

that does not pass through the same vertex twice.

2.3. Self-Synchronizing Networks

Let us recall what is meant by the synchronization of the automata of a
network R = (X, d, p, E, φ). M(t), the state matrix of R at time / e N, consists
of elements all of which have the same associated time : er

xt with r e [d] and
x G X is the rth component of the state of automaton x after / transitions.

For each automaton x, the input letter at time / is composed of the states
of neighboring limbs also at time /. which we write

Γ = es

where

p(x,r) = (y,s).

Abstractly, the sequence M(t) for t e N is defined without reference to
time, duration of state changes, or spacing of transitions.

Intelligent Graphs 229

Intuitively now, to allow us to speak in temporal terms, which is certainly
legitimate if we wish to consider a physical realization of parallel computation,
we can imagine that the synchronization is performed by an external clock,
which causes a change in the states of all the network automata simultaneously,
and does this at discrete instants spaced conveniently according to the duration
of the state transitions and the readings of input letters. In fact, a connected
network of the type described above may perform its own self-synchroniz
ation, as we shall demonstrate, by having a 3-position counter affixed to
each automaton. The network with a given autonomous clock network,
thus freed from any external clock, completely autonomous, is called a
self-synchronized network.

Let us define a clock network H = (X, d, p, T, φ) for an arbitrary, finite,
connected graph G(H), and where T= {Ô,î,2}, a set on which addition is
taken to be mod 3. The state of x, written ext is a constant vector whose
transitions are written simply

ex,t+i = é,,i + î (mod3)

If the initial state of the network is

eXt0 = 0 for all x e X,

then

èxt = / (mod3) for xe X, teN.

The initial states are

exl = Ô, for x Φ x0.

We write |JC0JC| for the length of the shortest path between x0 and x in G(H).
Let us note that during the first |A*0X| —1 units of time, x undergoes
transitions which accomplish nothing. It remains in an inactive state. Here,
let τχ be the total number of effective transitions, undergone by x. We define
the age of x as

*x = 1*0*1 + T * ·

For the autonomous clock network the state of x at age tx is written extx,
which we shall also write as ex. Now we define an admissible state of the
network as a list of the states of the automata x satisfying the following rule
of compatibility : two neighboring automata, and two automata having the
same neighbor, which are in the same state, that is, reading the same number
on the 3-position clock, have the same age.

230 P. Rosenstiehl, J. R. Fiksel, A. Holliger

The autonomous clock network thus approximates the rule of synchro
nization for externally synchronized networks within one unit of time
between two neighboring automata.

The automata, though unable to store their age, can, nevertheless, maintain
this compatibility in the following manner. X undergoes a transition, that is,
êx<^êx + î, if and only if for each neighboring y, ey = (ex or ex+l)
and for x Φ x0 there is at least one neighbor z of x for which ez = ex+\
In effect, if the network is in an admissible state, then after x makes the above
transition, it is still in an admissible state.

We have exactly the following situation, x has gained a unit of age, to
equal the ages of his neighbors, z at the very least, who were one step ahead
of him. The ages of any two neighbors, with the same state, x and z for
example, will never differ by a multiple of 3, since |JC0*I

 a n d |*ozl cannot
differ by more than one unit, and τχ and τζ under the rule for compatibility
cannot differ by more than one unit. Incidentally, we have proved here that
3 is the minimum number of states for the clock automaton Œ(H).

Let R = (X, d9 p, E, φ) be a network, the graph G(R) of which is connected,
and let the autonomous clock network H described above be designed so that
G(H) = G(R). We see, without need of further formalism, that R can
become autonomous if it is superposed onto H, with the automaton OC(R)
at x undergoing transitions whenever the corresponding OC(H) does.

ÛC(R) reads its input letter component by component, reading the com
ponent associated with its neighbor y when y's clock is at the same position as
JC'S. This introduces no contradictions.

It is easy to show that the state of x at its tih transition in the externally
synchronized network is equal for all x e X and all t e N such that t > \x0x\,
to the state of automaton x with age / in the corresponding self-synchronized
network.

To properly understand the weaker type of synchronization that we have
introduced in R, consider two arbitrary vertices x and y. For a given state
of the self-synchronizing network, the age of y cannot exceed the age of x
by more than |JCJ>|. In the externally synchronized network, the tth transition
of x is independent of the \xy\ — 1 states which y took prior to /. We thus see
that the lead which y has on x in the self-synchronizing network does not
hamper the proper functioning of y.

2.4. Undecidable Connectivity

We shall define a type of symmetry in a network of finite automata which
permits the formulation of two fundamental problems of connectivity,
unsolvable by networks of automata.

Intelligent Graphs 231

DEFINITION. A reflection of a network R = (X, d, p, E, φ) is defined as
any matching

π = X x Id] -> X x [rf]

having the following properties for all p,q e Xx [d~] :

(1) πρ Φ p, no limb is its own image under π;
(2) (P1/? =Pl q)=>(P1 πρ =P) nq)? compatibility with vertex equivalence;
(3) P2p=P2 πρ, invariance of limb number;
(4) p(np) = πρ(ρ), compatible with the matching p.

Remarks: (i) P1 p Φ P1 up since πρ φ p by (1) and P2p = Ρ2πρ by (3);
(ii) if p is a dead limb then so is up by (4);

(iii) n(x,r) = (y,r) is always true for all re Id], by (3), which justifies
the notation nx = y.

If R admits a reflection π, R and G(R) are said to be symmetric according to π.
If a state M(t) of R is such that

er
xt = er

ytt for all (x,r) s ^ x [</], n(x,r) = (>^,r),

then M(0 is said to be symmetric according to π.

PROPOSITION 1 : Proposition of Symmetric Evolution. Let R be a sym
metric network according to the reflection π, and M(0) an initial state of R,
symmetric according to π. Then, for all t e N, M(t) is symmetric according to π.

In effect, let us suppose that M(t— 1) is symmetric according to ni then

ex,t-i = * W - i forall xeX

and hence

er
pXft_! = e r

n p x J - . l for all x e l

This yields

ex,t = e*x,t for all x e X.

The proposition now may be proved by induction on t e N.
An obvious example of a symmetric network is that of the union R of two

identical disjoint networks S1 and S2, written R = Sl + S2. R admits a natural
reflection from 5Ί onto S2.

We now define a transformation upon symmetric networks which leaves
their reflection π invariant. Let the network R = (X,d,p,E,(j)) be symmetric
according to the reflection π. Let ργ be a nondead limb of R, meaning that
PPi ΦΡι> s u c n t n a t ηρΡι ΦΡι- We can associate with pl three other distinct

f Pl signifies first projection of the pair of elements.

232 P. Rosenstiehl, J. R. Fiksel, A. Holliger

limbs: ppu npu and nppx = pnpx. Let us speak then of the quadruple of four
distinct limbs associated with/?!,

(PuPi'>Pi>Pi)

where

PPi = Pi' and pp2 = p2'9

nP\ = Pi and πΡι = Pi-

DEFINITION. The exchange on the quadruple of ργ is defined as the
operation upon R which generates the network

(plVR) = (X,d9p9E^)

different from R only for the quadruple associated with pu which becomes

(PDPI*PI>P\)

which means by our conventions that we now have

PPi = Pi and pp2 = px
f

πΡι = Pi and π/V = p2''.

We shall write pl V G to denote the graph G(pi V R).

From the above definition, we immediately deduce the proposition of
identical evolution for R and p1 V R.

PROPOSITION 2 : Proposition of Invariance under Exchange. Let R be sym-
(2) If Si is a network that remains connected when the edge (pl9pi) is

symmetric according to π, and has the same sequence of states M{t) as R,
provided that they both have the same initial state M(0) symmetric according
to π.

Remarks:

(1) pl V (p1 V R) = R and pl V R = p^ V R = p2 V R = p2 V R.

(2) If Sl is a network that remains connected when the edge (ρχ,Ρχ) is
removed, then the symmetric network R = Sl + S2, where S2 is identical to
Su is not connected, but px V R is connected.

We now give a criterion for problems which are not fa-computable.

PROPOSITION 3 : Proposition of Indiscernability. Let G, G' e ^ be two
finite graphs having the same set of vertices X. Let K be the problem of dis-

Intelligent Graphs 233

playing a graph configuration (for example, a Hamiltonian cycle) present in
G but not in G'. If for any pair of networks R and R such that

G(R) = G and G(R') = G',

a(R) = <#CR'),

M(0) = M'(0), where M(0) e M{$\

we have M(ί) = M '(t) for all t e N, then the problem K is not fa-computable
in ^ for ̂ (^) .

Proof: There is no finite 0 for which M(0) will display the configuration
while M'(0) displays its nonexistence, since Μ(θ) = M'(Θ) for all Θ e N.

Our first statement concerning undecidability is relative to an automaton
which cannot tell whether two of its own limbs are joined, or whether they are
in fact joined with two other limbs of a symmetric automaton.

THEOREM 1. Let K be the problem of displaying all the self-loops of a
graph. If for some G e ^ (- , i /) symmetric according to a reflection π, there
exists an M(0) e J(($), compatible with G and also symmetric according to
the reflecticj π, then the problem K is not f.a.-computable in ^(·,*/) for

Proof: Let G contain at least one nondead limb pY such that ρί Φ πρρ^
and P1Pi =Pl ppu that is, px forms self-loop with ρργ. Consider the net
works R and R\ where

G(R) = G and G(R') = p1 V Ô,

a(R) = a{K\

M(0) = M'(0) = M(0).

By Proposition 2, we have M(t) = M\t) for all / e N. But notice that px V G
does not have a self-loop between /^ and p/?l9 since

PlpPl = Ρ1πρρί = Ρίπρί Φ Ρ'ρ,.

Thus, by Proposition 3, the problem K is not fa-computable in &(',d) for

Our second statement of undecidability is relative to an automaton which
cannot determine whether one of its neighbors is connected to it by edges
which belong to a given subset of the edges of the graph.

Let us denote by U0 a set of nondead limbs such that

peU0oppeU0.

234 P. Rosenstiehl, J. R. Fiksel, A. Holliger

The notation U0 reminds us that U0 is identifiable with a subset of £/, and any
subset of U is identifiable with a U0.

U0 is said to be symmetric according to π if p e U0onpe U0. Let us define
an equivalence relation of connectivity in X associated with U0. For/? e ί/0,
let us denote the adjacency of P1p and P1 pp by

Pxp-Pxpp and P1 pp - P1 p.
o o

The transitive and reflexive closure of the relation — is denoted by <-►, and
x+-+y is read "x is connected to y by £/0."

o

THEOREM 2. Let K be the following problem: For a given graph, with a
given subset of limbs U0cz Xx [d] such that pe U0opp e U0, and a given
limb/?! φ U0 such that Ρίρί φΡ1 ρρί, to determine whether or not the relation
P1pl^P1ppl holds.

o

If for some G e # (·, d) which is symmetric according to a reflection π, there
exists an M(0) e Ji{&), compatible with G and also symmetric according to
the reflection π, then the problem K is not fa-computable in ^ (·, </) for M {&).

Proof: Let us construct the graph G as follows : 0 = Sl + S2, where
5j and S2 are two identical, disjoint, connected graphs. Let π be the natural
reflection from 5Ί onto S2. Let/?! and U0 satisfy the above hypotheses,
with UQ symmetric according to π, and with/?! in Sx such that P1 pl *-*Pl ppx.

o

Clearly, pt Φ πρρ1 since πρρ1 is in S2, so that px VG exists. Notice that in
/?! VG, P1ply>P1 ppl9 since p/?! = πρ/?ΐ9 ργ πρί φ U0, and pi and πρχ are the
only limbs of Sl connected to S2. Now consider the networks R and R,
where

G(R) = G and G(Ä') = px V G

M(0) = M'(0) = M(0).

By Proposition 2, we have M(t) = M\i) for all t e N. But in G the connectivity
relation holds, whereas in pl V ô it does not. Thus, by Proposition 3, K is
not fa-computable in &(',d) for Jt(&).

The two foregoing theorems show us that, to avoid problems of undecidable
connectivity when we do not know whether or not a graph is symmetric, we
must make certain that in our computation procedures we always choose
initial states M(0), being not symmetric according to any reflection π, for
example, with all states identical except one.

Intelligent Graphs 235

3. Elementary Problem-Solving Automata

3.1. Labyrinth Problems: The Tarry Automaton

Let us first define the complete words of a connected graph. For this we use
the convenient notation of limbs (x, r) e X x [d~\ and the matching p mX x [*/],
introduced in Section 2.1. We define the grammar of words of the graph G as
the set of words constructed from the alphabet

sé = { / e J r x [d] | p (/) * / }

and belonging to one of the following classes :

(1) Ax, where x e X, called null words of G;
(2) /, where l G sé, called one-letter words ;
(3) a = ll...lklk+l...lp9 where lkesé, for k = 1,...,/? and P1 p(lk) =

P1(lk+i), for k = 1,...,/? — 1, called p-letter words of G.

Intuitively we interpret the one-letter word l = (x,r) as the traversal of the
edge of G beginning with /, that is, a traversal from x to y of the edge
((x,r),(y,s)), if p(x,r) = (y,s); the ^-letter word σ as the traversal of a
sequence of/? edges beginning with ll9...Jp respectively.

The word σ' = p(/p)p(/p_ j) . . . p ^) is called the inverse word of σ.
A word σ = / t . . . /p is called çycn'c if P 1 (/j) = P 1 p(/p).
A word μ = / t . . . /2m of a graph G with m edges is called a complete word if it

contains each letter of the alphabet sé exactly once.
We showed [18] that every complete word is cyclic, and that for a graph to

possess a complete word, it is necessary and sufficient that the graph be
connected.

Let G be a connected graph. We define a tree of G rooted in a, where ae X,
as any subset V of sé with the properties

(1) the function : (x, r) -► P * p (x, r) restricted to V is a one to one mapping
of Konto X- {a};

(2) for all x e X, if x Φ a, there exists a word σ of G written in the restricted
alphabet K, say σ = lx... /p, such that P1(ll) = a and Plp(lp) — x.

Specifying

K' = { / G ^ | p (/) e F }

is clearly equivalent to specifying V. V is called the inverse tree of tree V.

We showed [18] that for every complete word μ = lY... l2m of a graph G,
the set

Κ(μ) = {/* e μ\ Plp(ìk) # P1 / , for h < k}

236 P. Rosenstiehl, J. R. Fiksel, A. Holliger

is a tree of G rooted in Pl (/J, called the entrance tree of the complete word μ.
The element lk e μ is called the entrance letter of μ at the vertex P1 p(lk).

We shall compute, using three types of finite automata, three types of
complete words, each having a specific application. In general, these automata
serve to induce, from the order defined by d at each vertex, circular orders on
the elements of the graph: limbs, edges, and vertices.

Let us describe the Tarry automaton ifT, which solves a labyrinth by
constructing in every finite graph a complete word beginning at a given point.

(a) Principles: Tarry's rule is extremely simple; construct a complete
word μ such that Υ(μ) = ν(μ'). In other words

(Tl) never use the same limb twice;
(T2) if/e V, p(/)isthe entrance limb at.Y = Plp(l), then pl is the exit limb.

It is only used at the last resort.

THEOREM. The choice of a complete word of a finite-connected graph is
fa-computable or, the choice of a circular permutation of the limbs of a finite-
connected graph is fa-computable.

(b) The states of &Ί: F= {ω,/, V, V, 1,2,...,</,î,2,...,<?}, where * is
the state of the last letter written in the complete word μ, that is, the position
of the signal which traces out μ, V indicates the entrance limb at x, and re[d~\
is a state of (x\s) which stores the directions for μ. The signal leaving x by
(*,s)had arrived there by (.v,r); in other words, (x,r) = p(lk) and (x,s) =
lk+l. At time / = 0, we have er

x0 =w or I except for er
x°o0 = r0.

(c) The possible changes of state:

(1) o lr
x\t = * the signal arrives at Cv,r);

(2) o er
xt = ω or /

for all r e \d\ the signal has never passed through
x\

(3) o ex\t = ω
for all r2 e [rf], r2 Φ rx, A* has no active limb other than

(x,ri);

(4)oeZ = I
with r2 e [rf], minimum, x has nondead but unused limbs of

which r2 is the smallest;

(5) <=> er
x
3

t = V (x, r3) is the entrance limb at .Y;
therefore, x φ χ0 ;

(6) o er
xt = î the signal arrives at p(x,r);

Intelligent Graphs 237

(7) o r4 = e\\t = e%
with r4 Φ rs

(1 2) = > # : / « - K

(1 3) = > # : / < - P

(134) = > # : / < - * !

(145)=>^ 3 :F<- K

(6) = > * / : * < - -

(1457) =><4 :r^ 4-ri

(d) Results: Θ = 2m, where m = card £/. In effect, the network is station
ary from the time 2m— 1 if p(x0, >*o) is the last letter of μ, and from the time 2m
if not. The automaton x0 knows that t = Θ as soon as it receives a signal and
finds that it has no more limbs in state /. .v0 has always remembered that it was
the initial automaton by the absence of a V among its limb states.

The complete word μ is stored locally at each vertex. In effect, each limb
(x, r), placed in the state s, is the successor of the limb p(x,s) in the word μ.
As for the set

V = {(x,r)eXxldl\er
x,e = V},

it represents the inverse of the entrance tree Κ(μ) of μ. Card F = (4 + 2d) and
c a r d £ < (4 + 2</)d.

In the case where we simply want to pass a signal along once, it is unnecessary
to store the directions, we set 1 = 2 = ··· = d= U and 1 = 2 = · · · = ^ = 0
which reduces the number of limb states to 6, F= {ω,/, U, Û, V, V}. If we
do not even wish to store the tree, we can set V= 0, leaving 5 states,
F= {ω, /, £/, 0 , V}. Finally, in the case of the traveler who marks his passage
by coloring the limbs, ω and / are superfluous. If U and V are two colors,
they are necessary and sufficient for traversing μ.

3.2. Labyrinth Problems: The Recoil Automata

Let us define the neutral words of a graph. The operation of reduction
performed on a word is defined as the removal of two consecutive inverse
letters / and /'. A word is called neutral if it can be reduced to a null word by a

we have in mind r4 = r0, at a
time when the signal returning

to (x0>
ro) n a s teft y i a (*o>*5);

r0 is now the state of (x0, r0) and

238 P. Rosenstiehl, J. R. Fiksel, A. Holliger

sequence of such reductions. We showed [18] that every finite connected
graph possesses complete neutral words.

Let us describe the minirecoil automaton ££mxn which solves a labyrinth,
by constructing in any finite graph a complete neutral word starting at a
given point.

(a) Principles: The minirecoil rule is even simpler than Tarry's rule.

(Rl) Give priority to limbs with / and p(l) unused.
(R2) When there are none, retract the existing word in the opposite

direction, without using the same limb twice.

We showed [18] that the minirecoil rule generates a complete neutral word,
having the property of Tarry's words.

THEOREM. The choice of a complete neutral word of a finite-connected
graph is fa-computable.

(b) The states of &min: F= {ω,1,1,2,...,</,1,2,...,<ΐ} where î is the
state of the last letter written. When (x,s) alone is in state r, p(x,r) and (x,s)
are used consecutively in the word. When (x,r) and (x,s), with s Φ r, are both
in state r, then (x, r) = (x0, r0).

At time / = 0, er
x0 = ω or /except for er

x°o0 = r0.
(c) Possible changes of state:

(!)<*/;:,= ·

(2) <>#, = £, = /
with r2 mini e [d~\

(3) o «£, = r3

(4) o e% = rA Φ r,
(5) o r s = ^ = e2,

with rs Φ r6

(\2)=>^:I^tx

(123) ^e^.I^P,

123 =>^ ' : I*-Îl

(12345) => e? : r , « - / - !

(Λ·, r2) is written, and is not a recoil
letter,

(.v, r3) is written, and is a recoil

letter;

(x, r,) is written just after p(x9rl);

we have in mind x = x0 and

^5 = ^ 0 ·

Intelligent Graphs 239

(d) Results: Θ = 2m. The complete neutral word of S£min and the asso
ciated entrance tree V are in a stationary state, displayed in the same way as
for if T.

In Section 3.4, we give two immediate applications of minirecoil words by
associating with if"11" other elementary automata, which we call stacked
automata.

Let us describe the maxirecoil automaton ifmax which solves a labyrinth,
by constructing in any finite graph a complete neutral word starting at a
given point.

(a) Principles: The maxirecoil algorithm differs from the minirecoil
algorithm in that it recoils as soon as possible instead of recoiling as late as
possible [18].

We mean below by "vertex x is used" that at least one limb of x is already
written. The maxirecoil rule is the following:

(51) if the letter / brings to a vertex which is used, then leave by p(/)
provided that p(l) has not yet been used;

(52) in all other cases, give priority to limbs / such that / and p(l) are
unused.

THEOREM. The choice of a complete neutral word of the maxirecoil type
of a finite-connected graph is fa-computable.

(b) The states of£>max: F= {ω,Ι, U, 0, V, Ϋ}.
This automaton will not store the traced complete neutral word μ, but

only its entrance tree. * is the state of the last letter written in μ, that is, the
position of the signal which traces μ. V indicates the entrance limb, and
U indicates a used limb.
At time / = 0 we have er

xJ) = ω or /except for ex°o0 = Û.
(c) The possible changes of state:

(!)<=>/;:,= ·

(2) <^ ex,t = ω or /
for all r e [Ì /]

(3) <=> er
XJ = ω
for all r e [e/], r Φ A*!,

the signal arrives at (x, r j ;

x is unused ;

x has no active limb other than

C ^ i) ;

(4)oeZ = 1
with r2 e [t/], minimum, x has nondead but unused

limbs of which (x, r2) is the
smallest;

240

(5)oeZ = V

(6) o < l t = f

(8) oe'x\t = I

(6) = > e / : * «- ■

(13)=><·: I+-V

(132) =>e;': 7*-K

(1324)=>e/ : /+- 0

(1328)=><': /<- 0

(13284)*«?: 7-^1/

(132845) =><£: K«- Pi

If (132845), the word is finished.
(d) Results: Θ = 2m. Card F = 6. Card F = 5 if we do not wish to store

the entrance tree (V =0). Card £ = 6d.

3.3. Stacked Automata

We say that the automaton !% is stacked upon the automaton OC if they
occupy the same vertex and satisfy the following conditions :

a = (ΕΑ,φΑ,ά), with EA<=FA",

α = (ΕΒ,φΒ,α), with EB^FB
d,

where

ΦΛ^/χ FA
d-> FA

d

and

φΒ: FB
d x FB

d x FA
d - F B

d

so that for (X
ex,t+l = ΨΑ\ ex,f> 'x,f)>

while for ^

ex,t+l = ΦΒ\ ex,t> 'x,f> ^χ,ί+ΐ)·

Thus, for its (/+l)th transition, $ takes into account the state of sé at
time /+ 1, the result of £Ts (/+ l)th transition. This is intuitively acceptable,
since the information for £Ts (7+l)th transition is already available from

P. Rosenstiehl, J. R. Fiksel, A. Holliger

(x,r3) is the entrance limb;
therefore, x Φ x0 ;

the signal arrives at p(x,r);

(x,rj is unused;

Intelligent Graphs 241

vertex x at time /. The scheme defined above is a particular case of the unique
transition function for OC and $ together, for which OC is independent of J1.

If (% is stacked upon OC, the composition of the two may be considered as
one automaton, which is written {OC*&).

3.4 Eulerian Path and Edge Ordering

We seek to compute for an Eulerian graph, that is, a connected graph with
all the vertices of even degree, an Eulerian word ε, that is, a word such that
if any letter is used, its inverse is not used, and vice versa. An Eulerian word
is thus cyclic.

We showed [18] that the sequence of letters in a minirecoil word which
appear after their inverse make up an Eulerian word of G, if and only if G is
Eulerian.

We shall design an automaton ££E which marks the recoil letters of the
word μ for concatenating them suitably.

The stacked automaton (ifmin * <£E) solves the Eulerian problem.

(a) Principles: The automaton ifE marks, for every recoil letter of μ
at x, the letter that precedes it in ε.

THEOREM. The choice of an eulerian word of a finite Eulerian graph is
fa-computable.

(b) The states of ifE: F={coJ,U,\,2,...,d}. We use the notation èj
and / / for the state and input letter of ifE. The initial state is

êr
x0 = I for xeX, r e [< /] .

For (x, r) the state s indicates that (x, r) follows p (x, s) in ε. If p (x, r) = (y, q)
and there is not yet a p such that êy

p = q, the state s indicates that (x, r) is the
last letter written in ε.

(c) Possible changes of state:

(I) o /£ Φ I
and ?Xtt Φ r5

for all r e [d~\ the word ε is interrupted at the
letter p(x,r5);

(H)o<£ f + i = *
and er

x]t+i = r6 or r6,
with r6, r7 e [d~\ (x,r6) is the letter written in μ

at time t+l and p(x,r6) is
already used for μ; thus,
(x,r6) is a recoil letter, the
letter of ε written at time

242 P. Rosenstiehl, J. R. Fiksel, A. Holliger

(III) o èr
x\t = r7 we have in mind x = x0 ; (x0, rn)

being the first recoil letter
of μ, then the first letter of ε;

(I, II) => êr
x
6 : I<- r5 (x, r6) follows p (x, r5) in ε ;

(Ϊ, II) => êr
x
6 : / <- r6 we have in mind x = x0 ; (x0, r6)

being the first letter of e;

(I, II, III) => ér
x
7 : r7 <r- r5 we have in mind x = x0 ; (x0, r7),

the first letter of e, must follow
p(x>r5Ì, the last letter of ε.

(d) Results: The stacking (j£?min * j£?E) is in a stationary state at time
Θ = 2w, as in the case of j£?mm. The desired eulerian word ε is a cyclic word,
locally stored by the stationary state of j£?E at each x. (è / = s)o(x,r)
follows p(x,s) in ε.

Another application of complete neutral words, such as minirecoil words,
is the computation of a circular permutation of the edges of G, such that every
edge and its image under the permutation are either adjacent or adjacent to
the same third edge. We shall construct a new stacking upon ifmin, namely

(a) Principles: We have seen that a complete word defines a circular
permutation ä of the limbs of the graph G(R), such that for each limb /,
/and ä(/) are adjacent. We showed [18] that the sequence of edges correspond
ing to the odd-numbered letters of a minirecoil word μ constitutes a circular
permutation β of the set U of edges of G, such that u and ß(u) are either
adjacent or adjacent to a same edge v. The automaton <£υ will copy all the
limb states of J?min of the form ê(ê = r or K), changing them into e if the limbs
are even-numbered in μ.

THEOREM. The choice of a circular permutation of the edges of a finite
connected graph, such that each edge and its image are either adjacent or
adjacent to the same third edge, is fa-computable.

(b) The states of 5£υ: F= {ω,/, 1,2,...,</,Î,2,...,5} where the state s,
for (x,r), indicates that the edge associated with (x,r), u(x,r), is the follower
in β of the edge associated with the limb which is followed by p(x,s) in ä, i.e.,

u(x9r) = ß(u(ä~1p(x9s))).

The state s, for (x, r), allows x to compute ä" 1(x, r), and allows automaton y,
where p(x, r) = (y, p), to know that (x,r) is even-numbered in the word μ.
We use the notation éx

r and / / for £?υ.
The initial state is êr

x
o
o = r0. As with ifmin, this state is not final.

éJ = ω or I elsewhere.

Intelligent Graphs 243

(c) The possible changes of state:

Ι ^ ^ , ί + 1 = *i

I I <s> er
Xtt+1 = Ϋ and ex

q Φ ri for all q e [</]

m o \rit = *

(I III) or (II III) => ê / : I+-rx

(IÎÏÏ) or (I I Ï Ï Ï) = > < ? / : / < - ^

(d) itow/te; 0 = 2m for J^min * if17, the same as for J^min. β is defined by
the following equivalence :

(ex' = E)o(ß-l(u(x,r)) = U(OL-\P(X9S))).

3.5. Rooted Tree of Minimal Paths

A path from b to a, see Section 3.1, where a, be X,b^a, is a word
lx l2 -lp such that Ρ ^ Λ) = * a n d ^V(/P) = «· We call p the length of the
path. All paths of minimal length from b to a, called minimal paths, have
their length written as p = \ba\.

The problem considered here is to find a tree of G, V, rooted at a, which for
any b e X contains a unique minimal path from b to a. Using this tree, we
should then be able to pass a signal along the shortest path from b to a.

(a) Principles: The principle of the rooted tree of minimal paths autom
aton, called ^", is defined in Moore [13].

We simply fan out from a, labeling each vertex with a number which counts
its distance from a, modulo 3. Thus, a is labeled 0, all unlabeled neighbors
of a are labeled 1, etc. At the tth step, where t = 3m+ q, m e N9 q e {0,1,2},
we label all unlabeled neighbors of labeled vertices with q. When no more
vertices can be labeled, the algorithm is terminated. It is easy to prove that,
for any b e X, labeled q9 the first limb of a minimal path from b to a is found
by choosing a neighbor^ of b that is labeled q—l, modulo 3, and letting (b9r)
be such that P1 p(b,r) = y, and r is minimum. Hence, a unique rooted tree of
minimal paths is induced by the labeling of the vertices and the local order
on [</].

THEOREM. The choice of a rooted tree of minimal paths of a finite-
connected graph is fa-computable.

(b) The states of ΖΓ: F = {ω, 7,0,1,2} where ω is a dead limb, I is a
quiescent limb and 0, 1, 2 are counting states, mod 3.

If (x,r) is dead, then er
xt = ω, for all t e N. For convenience, let

[</]» = { r e [i /] | e / , É a > } .

244 P. Rosenstiehl, J. R. Fiksel, A. Holliger

At time / = 0, we have er
Ot0 = 0 for all r e [d~\a and er

Xt0 = /for all x e X, x Φ a,
for all re [i /]x .

(c) The possible changes of state :

(l) < > e ro = / and rx° = q,r0eld]x;

(1) => ex
r: / <- 9 + 1 (mod3) for all r e _d~]x.

(d) Results: The tree is now uniquely determined. Let

A, = {r 6 [</],! / / = ? - ! (mod3)}.

Then

F = {(*, r j | x G Z, ^ f 0 = q,rx = min Δ,}.

ö=maxx e X |xö| , card F = 5 , and card£ = 4.2d.
3Γ has the property that all its active (nondead) limbs are always in the same

state q or /. Thus, for an automaton x with no possibility of dead limbs, that is,
with [i/]x = [d], card E is reduced to 4.

Now we define the minimal path automaton &, which traces out paths to a
in the tree, when stacked upon ΖΓ.

(a) Principles: Suppose that we wish to find that specific path in the
tree V which leads from b to a, where b e X, b^a. The first limb of the path
is that one with the minimum r which joins b to a vertex labeled one less than b,
and so on.

(b) The states: F= {ω,/,0,1,2,B, C) where ω,/,0,1,2 have the same
meanings here as the states of F. B is the selected initial vertex of a minimal
path, and C is the signal which traces the minimal path.

We shall denote the states of & as èr
xt and the input letters as lr

xt. At time
t = 0 we have

ér
bt0 = B for all re[d\b

and

ér
x0 = / for all xe X\x Φ b, for all r e _d~\x.

(c) The possible changes of state:

(2) o ér
Xtt = B for all r e [</],

(3)oér
x>t = I for all re\d\x

(4) o er
Xft+1 = q for all r e [</]x

(5) oAx={re IXLI / / = q-1 (mod3)} Φ 0

(6) o 3 r 1 e [r f] , | t ' = C

Intelligent Graphs 245

(3 4) = » ê / : / < - ?

(245) => èx
r: B *- C, r = minÀ^

(56) => éj: q <- C, r = minA*

(d) Results: £P follows the state changes of 3Γ until the vertex b is labeled.
Then the minimal path from b to a is immediately traced back.

The path is (xl,ri),...,(xk,rk), where

(1) * i = 6 ;
(2) (.X/,0 is such that ê .̂>0 = C, for i = 1,2,...,/:;
(3) />V(**,>*) = a.

There is no more possible change of state when Δχ = Δβ = φ. And so
e = 2\ba\-l, ca rdF= 10, and card £ = 4.2d + 3d.2d-1 +1 or, with no dead
limbs, card E = 5 + 3d. Furthermore, (^~*^) may subsequently be used to
find minimal paths to a from vertices other than b. The labeling of the vertices
preserves the tree, and it is only necessary to reinitialize the & automata in
order to begin another computation.

Let us define the connection automaton Ctf', which, when stacked upon &"
connects limbs with its neighbors in such a way that a complete neutral word
is induced in the subgraph V of G(R).

(a) Principles: The operation of Jf is extremely simple, and resembles
that of 0>, the minimal path automaton. As F labels the vertices, Jf merely
marks those limbs which belong to the rooted tree V. The complete word v
is induced by the circular order on [rf], as we shall see below.

(b) The states: F=(a>, /, Γ, T, f, V) where Γ, the limb, is a letter of v,
T, T are transient states used for making connections and V is the entrance
limb for the rooted tree. We shall denote the states and input letters of X
as êr

Xtt and lr
xt respectively.

The root a of V is initialized as follows : ér
Ot0 = T for all r e \d\ and ér

x0 = /
or ω otherwise.

(c) The possible changes of state:

(0 o eXtt+ ! = q, èr
Xft = I for all r e [_d~\x

and Âx = { r e [4 : i ; = f } # 0

(2)oéXit=T

(3) o l'Xtt = V
and éx: t <- T under any conditions

(1) => èx\ 1 <r- V, r = minÂx,
and éx

r: I *-t for all r e [ί/]Λ | r φ Αχ

246 P. Rosenstiehl, J. R. Fiksel, A. Holliger

(23)=>ê/: Γ « - T

(2 3) = > è / : T « - 7

(d) Results: By the above rules, έχθ = ΤοΙχθ = V, and all limbs of the
rooted tree V are marked with a T or a V, V denoting the entrance limb of
each vertex except a. Θ = k(a) + 2, where k(a) = max^^ \ax\.

The extra two time units are lost at the beginning, since before making its
connections Jf has to wait until &~ labels the successors of a. Card F = 6 and
card E < 6d. The complete word v may be found by the following rules,
where v = /1,...,/2n_2:

(1) /j is any limb of a marked with a T\
(2) if P1 p(li_l) = x, then /,· is the first limb of x, moving clockwise from

p(ii-i) on [rf], that is found marked with a i o r a K

Note that v', the inverse of v, may be found simply by beginning at /2„_2 and
changing the term clockwise to counterclockwise; among the limbs of a
marked with a T, lt and /2„_2 are adjacent; v and v' are cyclic words and v has
2tf — 2 letters, that is, twice the number of edges in a tree of« vertices.

In this section we have separated the edges of the graph G into two parts,
the tree V and its cotree W.

We may now construct, for each ueW, the cycle which meets W only at w,
by marking the edges of V that join the extremities of u. Such a computation
is done by an automaton derived easily from 3Γ * & of this section.

We may now construct, for any u e V, the coboundary which meets V only
at u. Such a computation is done by M * #, that is, by a marking automaton
Jt (see Section 2.2) where x0 is an extremity of u and U0 = V— {w}, on which
we stack a coboundary automaton.

3.6. Vertex Ordering

Let us recall that we have constructed a circular permutation ä of the limbs
of a connected graph, see the automaton ££T or j£fmin (Section 3.1 and 3.2),
and a circular permutation ß of the edges of a connected graph, see the
automaton £Ρυ (Section 3.3). We shall now construct a circular permutation
y of X in a connected graph, such that for all x e l , w e have \x, y (x)\ ^ 3.

We showed [18] that if we consider a complete neutral word v of a tree of G,
beginning at a vertex x0 , and the sequence of vertices consisting of x0 and,
for each even-numbered letter / of v, of the vertex P1 (/) if p(/) comes before
/ in v and of P1 p(l) if p(l) comes after / in v. Then this sequence is a
circular permutation y satisfying the above condition.

Intelligent Graphs 247

Now Jf (Section 3.5) defines the connections of a complete neutral word of
a tree VofG rooted at x0. y then can be constructed by the stacking ̂ ~* jf* «£?*,
with $£x defined as follows :

(a) Principles: <£x copies the complete neutral word v of Jf, replacing
the states T of odd-numbered limbs l2k-1 of v by S, then

(1) placing a hat (5 <- S) on the state of a limb l2k- ! if, according to the
labeling of ^~, l2k-1 joints its vertex to one of lesser value;

(2) placing a hat (T*-f) on the state of limb i2k if, according to the
labeling of &~, l2k-i joins its vertex to one of greater value.

As a result, at the end of the computation each automaton will have exactly
one limb in the state *.

(b) The states of <£x : F= {ω, I, T, f, S, S} ; T or f are even-numbered
limbs of v, and S or S are odd-numbered limbs of v. If * is the state of /,
and if k is the first limb in state * coming after / in v, then Pl(k) = y(pl(l)).

We use the notation ex, èx, ëx for the states of &~, Jf, and <£?*, respectively.
/ / is the input letter of S£x. Note that S£x does not depend directly upon ex

r.
Initially the network is idle, and ër

x0 = ω or /for all r and x.
(c) The possible changes of state:

(0)<>Ax = {re[</]K f + 1 = r} Φ0
and ér

xt+ì Φ V for all r e [i /] this condition occurs
only once at vertex
x0 at time t = 2

f

S

r2 is the first r after rl

in the circular order
such that <%,+1 = T
orV;

(0)=>e?:/«-S

(14)=>ë?: / < - S

(lì) = > # : / « - S

(23)=>ê?: I+-T

(l)o7; ; , = Γ or

(2)oi; ' , , = 5 or

(3) ~ £ , r + 1 = K

(4) o Ç , + > = r

248 P. Rosenstiehl, J. R. Fiksel, A. Holliger

(d) Results: Let x e X and let (x,r) be the limb of x such that ër
x>e = *.

Let (y,s) be the first letter after (x,r) in v such that ës
yj = *; then y(x) = y,

Θ = 2n, card F = 6, and card E ^ 6d.

THEOREM. The choice of a circular permutation y of the vertices of a
finite-connected graph, such that for each vertex x and its image y(x) we have
|ΛΓ, y(jc)| ^ 3, is fa-computable.

3.7. The Network Firing Squad Problem

The firing squad problem is one of the earliest problems dealt with in the
literature on arrays of finite automata [1, 12, 22]. It may be stated as follows:
Given a line of« automata, including a "general" at one end of the line who is
activated at time / = 0, we must design the automata so that at some future
date Θ they will all, simultaneously and for the first time, enter a special firing
state. A minimum-time 8-state solution for this linear problem, with Θ = In — 2
was given by Balzer [1].

We have formulated and solved a more general problem [15]. Given an
arbitrary connected network of automata, with any vertex-automaton acting
as general, we must have them all fire simultaneously at time Θ. Here we give
an alternate solution to this problem by stacking a generalized firing squad
automaton !F upon ΖΓ * Jf (see Section 3.5).

Surprisingly enough, we achieve a computation time of Θ = 2n, only two
time units more than for the much simpler linear version.

Let us now define the generalized firing squad automaton, J^, which, when
stacked upon ΖΓ * jf, uses the words v and v' to guide two linear firing squads
around the tree.

(a) Principles: If the valence of R is d, then 3F has 2d limbs, circularly
numbered \A,lB,...9dA,dB,in what we call the clockwise direction. Thus, [d~\
is understood to represent the set {1^, \B,...,dA,dB}. Limbs rA and rB occupy
the same edge of G(R), so that the matching p becomes p, defined by

p (x, r) = (y, s) o p (x, rA) = (y, sB) and p (x, rB) = (y, sA).

In this way, a circular path of limbs corresponding to the word v may be
found, simply by consulting Jf for the connections. A "double firing squad"
process may then be launched, beginning at a, the general, who sends out
signals in opposite directions which meet at the other side of the cyclic word v.

(b) The states: F will be the same set of limb states used for the linear
problem, with ω added.

Let us denote the states and input letters of & by e\t and Yxt respectively
and those of Jf by èr

xi and lr
xt, respectively.

Initially the network is idle, and ër
Xt0 = I or ω for all r and x.

Intelligent Graphs 249

(c) The possible changes of state: Here it is best to use a verbal explanation
rather than our conventional propositional notation. Now, in the linear firing
squad problem, we have d = 2 and the solution involves a transition function
Φ2: F2 x F2 -> F2. The automaton <F uses that same function to operate on
pairs of limbs which lie on the path of the complete word v. Those pairs are
chosen as follows : let

i ,= frV /*}c[f l x

be the ordered set of limbs satisfying èr
x\t+ì = T or Kfor / = 1,...,/?. We form

a set of/? pairs of elements of

Lx: Px = {{rB\rA
2\ (rB\rA\..., (r / , ^ 1) } .

Then, for every / such that Lx Φ φ, we can say that Φ, the transition function
for J*, is separable into p functions Φ2, each operating on a pair from Px.
lfp = 1, Px = {(i*1 ,^1)}. Thus, & may be thought of as an aggregation of/?
independent linear automata.

There are only two exceptions to the above transition rules.

(1) When at / = 2 the connections of a have been decided, that is, La Φ φ,
the condition that έΓ

αΛφΥ for all re[d~\ causes the following
transition :

ëa
r: I <- M for r — rp,rA

l.

Here M denotes the initial state of the general in the linear firing squad.
This launches two signals which will meet at b, where b = P1 p(/„_i),
the midpoint of v.

(2) We include an instruction which will cause the transition

ëb
r:I*-M for r = rB\rA

+\
where

Γ Β ^ Ρ 2 ^ / . - ,)) , Λ+ι=Ρ2(ϋ.

This establishes the ends of the two firing squads. From that point
on, their operation proceeds normally.

(d) Results: Since both firing squads consist of n linear automata, they
will fire simultaneously after In — 2 time units. With the two-unit time delay
caused by Jf, we have Θ = 2«, card F = 9, and card E < 9d.

We remark that J^ is dependent on jf, but ^f does not depend directly
on &~, so that the original definition of stacking is preserved.

THEOREM. The network firing squad problem is fa-computable by
er * j f * y.

Note: By using the "generalized firing squad" algorithm of Moore and
Langdon [14], where the general's position in the line is arbitrary, we may

250 P. Rosenstiehl, J. R. Fiksel, A. Holliger

Fig. 1. Star firing squad, 2 rays.

achieve a further reduction of the computation time for a network firing squad,
provided that/? > 1. Any two pairs of a act as the generals for two firing squads,
sending initial signals in both directions. For the linear case, Θ = 2n — 2 — k
where k is the general's distance from the nearer end of the line. Thus for the
network problem we obtain \n < θ < 2n.

We now solve the star graph firing squad problem. We shall consider a
network R whose graph G(R) = (X, U, oc) is a star graph with d rays, and with
the general at the center. For the case d = 2, see Fig. 1.

If d= 1, this problem reduces to the original linear firing squad problem.
If d= 2, we have the firing squad problem of Moore and Langdon discussed

above, in which the general is anywhere in the line. Let the general be x0 ,
and the ends of the two rays be a and b. Let \x0a\ = a, \x0b\ = β, and assume
α > β. Moore and Langdon show without difficulty that the minimum solution
time, which they achieve, is θ = 2<χ + β. (Note that w = a + /?+l, where
n = card X.) Here we give a solution that is also minimum time, but has a
much simpler set of transition rules.

Furthermore, we have generalized our solution of the Star Graph Firing
Squad Problem with 2 rays to the case with d rays where d is any finite number,
while maintaining the same solution time 2α + β, α and β being the lengths of
the longest and second longest rays of G.

Let us stack first the automaton «^2, which resolves the ordinary linear
firing squad problem, upon an automaton Sf2, which will coordinate the
firing squad in the star graph G with 2 rays. We describe the automaton Sf2.

(a) The states of Sf2: F= {ω, Ι,Α,Β, NUN2,G,H}9 where ω is a dead
limb, / is a quiescent limb, A is a freezing signal (speed 1), B is an unfreezing
signal (speed 1), N is a slow signal (speed \), G is a general, and H is a freezing

Intelligent Graphs 251

wall. We denote the states of «^2 and Sf1 by êr
Xft and er

Xtt respectively. Note
that [rf] = {1,2}.
At time t = 0, we have er

XOi0 = B9 re [</], and èr
XtQ = er

Xt0 = I or ω otherwise.
(b) The transition rules: 3F2 functions normally unless we specify other

wise. See Section 3.8 for an explanation of signal propagation.

(1) x0 immediately assumes the "general" state (er
XQ: B<r-G) as the two B

signals propagate toward the ends a and b of the two rays.
(2) The B signals are reflected at a and b9 but they cause the initiation of

two firing squads (éa
r, lb

r: /< -M) .
(3) When the general x0 transmits the first set of firing squad signals,

indicated by the arrival from b of a B signal, he abandons the state
G, changes the B signal to an A signal, and sends out an N signal in the
same direction.

(4) When the two firing squads meet, one with an accompanying A signal
and the other with a B signal, xl9 the automaton at which they meet
assumes the state H and causes a wall to be formed for both firing
squads

(eXi,t+i = H=>êXut+1 = M).

The B signal is not transmitted, but the A signal is, and causes the
shorter firing squad, emanating from b9 to be frozen, whatever its
state may be when the A signal makes contact with it.

(5) When the N signal arrives at ^ , in state H, xt sends a B signal in the
same direction to unfreeze the firing squad, so that it may terminate
normally.

(c) Results: It is easy to show that the shorter of the two firing squads is
frozen for exactly α — β time units, so that both firing squads will fire at time
0 = 2α + β. C a r d F = 8 for ^ 2 , card£ = 64, and cardE= 16 for #"2

(Waksman's solution [22]).

STAR GRAPH: GENERAL CASE

(a) Principles: To operate the firing squad on a star graph having d rays,
we basically use the same method as in the previous section for the two longest
rays, having frozen the other firing squads and having determined the appro
priate instants at which to unfreeze them. For the case d= 5, see Fig. 2.

(b) The states of ^d: F={œ9I9Nl9N29A9Rlp9R2p9R3p9Bp9Ep9G,H}9

where p e {1,2,...,*/}, Rìp9R2p,R^p are the slowest signals (speed £), and
Ep is the storage of timing for firing squads. Initial conditions are the same
as in the 2-rays star graph firing squad problem.

252 P. Rosenstiehl, J. R. Fiksel, A. Holliger

Fig. 2. Star graph firing squad, 5 rays.

(c) The transition rules:

(1) As above, a B signal is sent out on each ray, and x0 takes state G.
(2) As above, the reflected B signals initiate firing squads.
(3) For the second-to-last B signal that arrives at x0, the A and N signals

are created as above.
(4) For other B signal arrivals, x0 suppresses the B signal and sends out

an Rq signal, where q is the number of the corresponding ray, onto any
nonfrozen ray, and another A signal which freezes ray q.

(5) When an Rq signal meets a firing squad at an automaton x2,
pr · . <- F ex2- <-*V

(6) The intersection of the firing squads with A and B signals follows the
same rules as in the 2-rays star graph firing squad problem, with the
A signal freezing the shorter ray, and the N signal prompting an
unfreezing.
When Rq overtakes an A signal, Rq is destroyed.

(7) When a returning firing squad strikes an automaton in state Eq9 a Bq

signal is sent back toward x0.
(8) When x0 receives a Bp signal, it unfreezes the firing squad of ray q

using a B signal.

Intelligent Graphs 253

(d) Results: It is easy to show that the point Eq on ray p is midway
between the ends of rays p and q. Thus all the firing squads will fire simul
taneously, again with Θ = 2α + β, a and ß being the longest and second longest
lengths of rays. Notice that this time is considerably less than the computation
time for a network firing squad as described in Section 3.7. If d>2,
u + ß<n-\ so that 2a + ß < In, card F=5d+1, and card E < (5d+ l)d.

THEOREM. The star graph firing squad problem with d rays is fa-computable
by &d*&d.

3.8. The Early Bird Problem

We now address ourselves to a problem which is not, strictly speaking,
graph theoretical, but proves extremely important in the solution of certain
graph problems, such as the minimum-tree problem, see Section 4.3. The
early bird problem, as we call it [17] seems, in fact, to be a fundamental
problem in the study of networks of finite automata, and is closely related to
the problems of undecidability discussed in Section 2.4. It may be stated as

Fig. 3. Earl/ bird.

254 P. Rosenstiehl, J. R. Fiksel, A. Holliger

follows: given a network R with d= 2, whose graph G(R) is an elementary
cycle, and given that for some set A cz X9 each automaton x,x e A, is excited
by an external clock at a distinct time tx, tx^ 0, we must design the automata
in such a way that after a finite time 0, all the automata of X are in state /
except for the single automaton x0 who satisfies tXQ = min^^ tx, and is thus
the "early bird," signified by state E (see Fig. 3). Informally, we can say that
the automata must determine which one of them was excited first.

Let us describe the early bird automaton, ê2, which solves the problem
described above.

(a) Principles: The easiest way to explain the operation of S2 is to speak
of signals which are transmitted around the circle of automata at various
speeds. We say that a signal is transmitted from x to its neighbor^ if x assumes
a certain state S at time t and y changes to state S at time t + δ. We call 1/(5
the speed of the signal S. When one of the automata x is excited, it sends out
signals in each direction. If x = x0 then these signals will meet at the opposite
end of the circle, and will be reflected back to x0, informing it that it is the
early bird. If x φ χ0, its signals are destroyed before they meet, according to
the transition rules for S2.

(b) The states of ê2: F= {/,/,E, Ê, M, B, G,Ni9N2, RUR2, R3}, where
/ is a quiescent limb, unchanged since / = 0, / is a quiescent limb which has
transmitted a signal, E is an early bird, Ê is an excited automaton, M is a wall
created by intersection of black signals, B is a blue signal (speed = 1), G is a
green signal (speed = 1), Nl9 N2 are black signals (speed =\), and Ru R2, R3

are red signals (speed = J).
To demonstrate the transmission of signals, suppose that at time / a left-

traveling red signal is propagated through x and its left-hand neighbor y.
Their changes of state are shown in Table I.

Initially, at time t = 0, the network is quiescent. Each x G A is excited at
time tx, but x responds to the excitation only if it is still quiescent. In other
words, er

x0 = / for all x, r such that tx Φ 0; er
xtx — Ê for all x e A, and for all

r e [4 provided that when tx^0, and lr
Xttx-\ = er

x,tx-i
 = I- Notice that

\d~\ = {1,2}, and there are no dead limbs, since G(R) is a cycle.

TABLE I

Time

/right limb
*\left limb

fright limb
•^left limb

/

/
Ri

I
I

H-l

/
Ri

I
I

t+2

I
Rz
I
I

H-3

/
/
/
Ri

H-4

/
/
/

R2

Intelligent Graphs 255

(c) The transition rules for S2 : For convenience, we list the rules verbally ;
unless otherwise stated signals are always transmitted, see Fig. 3.

(1) If ext = £, then x sends one black and one red signal in each direction,
and then becomes quiescent.

(2) If x receives a black signal from both directions at once, then ex: -+-M
(x becomes a wall).

(3) If ext = M and x receives one red signal, then the wall disappears and
the red signal is destroyed.

(4) If ex t = M and x receives a blue signal then the wall disappears
(ex

r:M^I).
(5) If a black signal overtakes a red signal moving in the same direction,

the red signal is destroyed.
(6) When a red signal is destroyed at x, x sends a blue signal in the

direction that the red was following.
(7) If a blue signal overtakes a black signal moving in the same direction,

both are destroyed.
(8) If x receives a red signal from both directions at once it sends one

green signal in each direction. The red signals are destroyed.
(9) If a green signal overtakes a black signal moving in the same direction,

the black is destroyed.
(10) If x receives a green signal at once from both directions, then the

signals are destroyed, and x is the early bird x0, (ex: · <-E).

Note: Though we do not explicitly discuss the cases where signals meet at a
pair of automata, rather than at just one, such cases are easily provided for
in the transition function.

(d) Results: Under the above rules, the following assertions can be
proved readily :

(1) If tXi < tX2, then the automaton x3 which takes state M as a result of
the black signals sent by xi and x2 will receive the red signal of x2 before
that of x1? provided that the reds are not destroyed beforehand. In any
case, the red signal from x2 will never be transmitted beyond the wall,

(2) If tXi < tX2, the blue signal resulting from the destruction of x2 's red
signal will destroy x2 ' s black signal before it passes xl.

(3) The red signals sent by x0 cannot be destroyed.

The above statements imply that the only way green signals can be created
is by the intersection of the two reds originating from the automaton x0.
We point out that the strict order on the set {tx\ x e A} is a crucial premise.

256 P. Rosenstiehl, J. R. Fiksel, A. Holliger

Thus, assuming that txo = 0, we have exo θ = E and exQ = I for x Φ x0, at
Θ = In, where n = card X).

Card F = 12 and card£ = 4 + 82 = 68.

THEOREM. The early bird problem is fa-computable by S2.

Just as the firing squad problem was generalized from a line to a network,
the early bird problem may be generalized from a circle to a network R with
n vertices and degree d. The solution to the problem of finding the early bird
in the network could be obtained by stacking a generalized early bird automaton
Sd, similar in principle to J*, upon the automaton Jf, which induces a
complete cyclic word in the tree defined by 9~. The details of operation would
parallel those given for the network firing squad computation (see Section
3.2) with θ = 4η - 2 .

THEOREM. The network early bird problem is fa-computable by

3Γ * j f * gd.

Finally, we state and solve the flock of early birds problem. Given a con
nected network R, a complete cyclic word / iona spanning tree of G(R) which
induces a vertex ordering for the vertices of R, and a forest of disjoint sub
trees {Τι'. ie 1} of G(R), we must find the early bird within each tree Ti9

that is, the vertex xt e Tt such that x,· is minimal in the vertex ordering.
For the solution, we use the automaton j£?x operating on μ as the source of

excitations for the vertices (see Section 3.6) rather than an external clock.
Since the T{ are already defined, they each induce a complete cyclic word vf in
the subtree, according to the rules given in Section 3.5. Thus, we may use
êd to perform the early bird computations on each cyclic word vf. Note that
this problem could not be solved for a bounded number of states without the
early bird algorithm.

THEOREM. The flock of early birds problem is fa-computable by S£x * êd.

4. More Complex Problems

4.1. Block Decomposition

It is well known since Whitney [23] that the blocks and the articulation
points of a connected graph form the edges and the vertices, or the vertices
and the edges, of a hypergraph [3] without a cycle.

DEFINITION. We state the block decomposition problem as follows: For
each vertex x e X of a connected graph G = (X, U), determine a partition

Intelligent Graphs 257

of the edges incident to x such that each class will consist of edges which are
part of the same block, that is, which have an elementary cycle passing through
any two of them. If x is not an articulation point, then this partition will
contain only one class, which includes all the edges incident to x.

THEOREM. The block decomposition problem is fa-computable.

(a) Principles: Let us consider any vertex x0 of the graph, sending a
maxirecoil signal M l , as described in Section 3.2, through one of its limbs
(x0, r0). When the signal returns via that limb, it will have traversed all limbs
of x0 in the block containing (x0, r0), and no other limb of x0. In effect, the
maxirecoil signal returns to x0 via (x0, r) before (x0, r0), if and only if there
is an elementary cycle containing (x0, r0) and (x0, r). This is easily proved by
referring to the maxirecoil rules, see Section 3.2.

At the beginning, each vertex has only one class of nondead limbs.
A given vertex x0 begins alone the identification of its partitioning, class

after class, by sending out a maxirecoil signal M l . Each time a class of the
vertex x, x0 for example, is identified by the criteria given above, x sends out
a signal in every direction within that class to erase the maxirecoil word states
generated during the identification ofthat class. And at the same time x sends
out a maxirecoil signal Ml through one limb ofthat class. The first automaton
to receive signal Ml which has not yet completed its partitioning stops Ml
and recommences the partitioning process. Parallel computation is then
performed, with at most one partitioning in operation per block.

Notice that the erasing process cannot affect any active signal Ml or Ml
since the hypergraph of blocks has no cycle.

(b) The states of <$f™x: To solve the block decomposition problem, we
use a special automaton, J^Jax, of the same type as j£?max, see Section 3.2,
with some simple additional features stated below.

(1) j£?£ax can stop a maxirecoil word in process (Ml or Ml) under the
two conditions indicated above and send out at the same time a new
maxirecoil word (respectively, Ml or M l) ;

(2) j£?£ax can store a partitioning of its limbs ;
(3) J£?£ax can keep a maxirecoil signal in operation inside a given class of

limbs, the class of the departure limb being the class of the arrival limb;
(4) <£ £ax is able to send and transmit erasing signals inside a class of limbs.

As far as the partitioning activity is concerned, d states suffice to class the
limbs: Fi = {/, 1,...,*/}. As far as the maxirecoil activity is concerned, we
notice that there is no overlapping of signals M1 and M2 in the same limb
since two such signals cannot exist in the same block at once. Furthermore,
it is not necessary to record the word connections or the entrance tree.
Then three active states suffice for each signal: F2 = {I, Ul9 Ûl9 Vl9 U2, Û2, V2).

258 P. Rosenstiehl, J. R. Fiksel, A. Holliger

We have F = Fl x f 2 u {(ω,ω)}. Initially, at time t = 0, the maxirecoil part
of the state er

x°0Q, is set to 0, representing the launch of the first Ml signal.
Otherwise every limb is in the quiescent state.

(c) The transition rules for J?™x: The transition rules of ifmax are listed
in Section 3.2. It is unnecessary to explain any further the transition rules
governing the additional features stated in (b).

(d) Results: For a given vertex, all limbs with the same class number
1,2,...,*/— 1 or /, at time 0, belong to the same block.

Parallel computation in different blocks begins as soon as a first articulation
point has completed its partitioning. Nevertheless, Θ is difficult to estimate.
We have roughly Θ ^ card Xx card U. Card F= l(d+1)+ 1 and c a r d £ ^ ldd\.

Remark: We could easily supply j£?£ax with an additional feature so that
the block decomposition would include a labeling of all limbs in the same
block.

4.2. Hamiltonian Cycle

We seek to construct an automaton which tests any graph for the existence
of a Hamiltonian cycle, and displays such a cycle if one exists.

THEOREM. The Hamiltonian cycle problem is fa-computable.

Berstel [5] has already verified this theorem. Here we present an approach
which is simpler and more rapid than his solution, by profiting from certain
shortcuts in the enumeration of the cycles. Let us describe the automaton J«f
which solves this problem with 5 colors per limb.

(a) Principles: Consider the class of words σ originating at a given
vertex x0 e X,

σ = / i . . . / * / * + 1 . . . / p ,

such that

pri U = x0

and

Pr\ K 7e Ρ?ι 4 f° r h < k, k = 2,...,/?.

Notice that no vertex is repeated and that the word must terminate ifprί ρ (lp) =
prx lh for some h <p. It is clear that this class of words includes Hamiltonian
words, which pass through every vertex once. The order on the set [//] of
automaton limbs induces a lexicographic order on this class of words. Thus,
if we select any initial vertex x0 e X and construct these words one by one,

Intelligent Graphs 259

according to the lexicographic order, we must eventually discover a Hamil-
tonian cycle if one exists.

We follow a sequence of limbs from x0 until we arrive at a vertex which has
already been traversed. If this vertex is x0, and if no traversed vertex has a
neighbor that has not been traversed, a Hamiltonian cycle has been found.
To do so, if the word reaches x0, an 8 signal will retrace the word back
until it reaches an automaton with an untraversed neighbor. Then a new
word is tried by taking the first next limb met. It may be shown that none
of the words skipped by this procedure can be a Hamiltonian cycle. Thus,
we reduce the required number of computations significantly.

Note that to avoid confusion the vertices which have been retraced should
not be marked "untraversed" until after the new limb has been selected at xx.
In fact, they are marked "untraversed" only when they see the forward passage
of a new word through one of their neighbors.

(b) The states of 3tf: F= {ω,Ι,Ι,Ι,Α,Β,Β}, where ω is a dead limb,
/ is a quiescent limb of an untraversed vertex, / is a quiescent limb of a traversed
vertex, / is a quiescent limb of a retraced vertex, A is a word construction
signal, B is a retracing signal, and B is a retracing signal and also a transient
indicator of forward passage of A. At time / = 0, we have er

x°o = A where
r0 = min _d~\Xo, and ex

r = I or ω otherwise.
(c) The transition rules for #? : When x receives the A signal (// = A), then

when r is the minimal limb such that ex
r= I, I or B, then ex <r-A if / / = /

or /, and eJ^B if 1/ =B (not to be confused with a return of the word).
Also, in both cases, x places its other limbs except for r(ex :·<-/) in state
B for one unit of time, and then in state / (traversed vertex). The B
is a transient indicator of forward passage through x.

(1) If x cannot transmit the A signal as above, since r does not exist,
then it sends a B signal to retrace the word (if / / = A then ex: /*- B).

(2) If x receives a B signal (// = B), and (a) ex = B, then x treats the B
signal as if it were an A signal, (b) ex = I or /, then x transmits a B
signal if it has an untraversed neighbor, and a B signal if not.

(3) If a vertex is retraced (transmits a B or a B signal), then it places all
its limbs in state /, except for a limb transmitting a B signal, which
remains unchanged.

(4) If x has an untraversed neighbor, and receives a E signal, (Γχ
ι = B)

then it selects the first limb above r in the order if it exists, and
transmits an A signal along that limb, or else transmits B.

(5) If x has its limbs in state /, and sees a forward passage through one of
its neighbors (// = B), then x changes its limbs to state /.

(6) If x0 receives an A signal, x0 being the only vertex whose limbs are
in state / except for one in state A, then x0 retraces the word »by

260 P. Rosenstiehl, J. R. Fiksel, A. Holliger

transmitting a B (if x0 has no untraversed or retraced neighbors) or a B
(if x0 has a neighbor such that / / = / or /). This constitutes a test for
a Hamiltonian cycle. When x0 receives the signal B that it transmitted,
a Hamiltonian cycle has been found.

(7) If x is such that Fx
l = A = Γχ

2, rl Φ r2 and er
x
3 = A, e'J = /, then x does

as if Γχ
2 = I and ex = /, for all r Φ r3 (self-loop).

(d) Results: If a Hamiltonian cycle is found, it is marked by those limbs
of the graph which are in state B. If no such cycle exists, the procedure will
terminate when no new words can be formed. The computation time is
extremely difficult to calculate, but the efficiency of the algorithm has been
improved to a great extent by the omission of certain words which could not
lead to a Hamiltonian cycle. Card F = 7 , ca rd£<7 d , and cardJC =
2d(d- \) + 6d=2d2 + 4d if there are no dead limbs. Then a traveler in the
graph would solve the problem with 5 colors only.

4.3. The Minimum Tree Problem

The well-known minimum tree problem, as we showed [16], can be stated
as follows.

Given a total order* upon the set of edges of a graph, determine the spanning
tree which is first in the lexicographic order, when all the spanning trees are
written as lists of their branches put in the increasing order.

The algorithm that best fits our goal here is the one known as Sollin's
algorithm [3], which is a variation on the third algorithm of Kruskal [11].
It consists of

(1) choosing the minimal edge in the coboundary of each vertex, and
making it a branch of the minimal tree V;

(2) choosing the minimal edge in the nonempty coboundaries of sets of
vertices of each connected subtree of F already formed, and making it a
branch of the minimal tree V.

Instruction (2) is repeated as many times as possible. Notice that the algorithm
involves only local decisions and features parallel computation since all the
coboundaries are considered simultaneously. This makes it an ideal application
for computation by networks of finite automata.

Let us define the total order for the set of edges U in the framework of our
theory. As we did for the early bird problem, we may suppose an external
source of excitation acting on the edges in the prescribed order. More precisely,
an edge enumeration clock functions as follows: the clock contacts each of

t In [16] we extended the problem to a weak order, which we do not introduce here for
the sake of simplicity.

Intelligent Graphs 261

the edges to check whether they are all ready for an enumeration. This is done
in the prescribed order, the checking process being performed by repeated
circular inspections. As soon as the clock has contacted all the edges, and
found that they are in the ready state, it runs through the order once,
exciting each edge from the first to the last at a distinct instant of time, and then
continues its normal contacting procedure. Though we speak casually about
exciting or contacting edges, the clock actually interacts with vertex automata,
each edge being associated with a specific limb of one of the vertex automata
to which it is incident.

A second ordering is necessary due to an interesting undecidability problem
involved here which generalizes Theorems 1 and 2 of Section 2.4, namely,
that an automaton in a subtree Vx of G cannot tell whether an edge incident
to it and not belonging to Vi is a chord of Vx or an edge of the coboundary of
the vertices of V1, connecting V1 to another subtree V2. To resolve this problem
we must escape the risks of undecidable connectivity due to symmetry. It
can be shown that this is achieved by introducing a vertex enumeration clock,
which functions continuously, exciting each of the vertices of X according to
a circular order. We point out that no first vertex exists in the order. An
excitation consists of a vertex being made to enter a special excited state, not
accessible via its transition function.

It is understood, of course, that in addition to the two clocks mentioned
above, the network is synchronized in the usual way by a synchronization
clock, which prompts the state transitions of the automata at discrete intervals
of time. Notice that all three clocks operate at the same speed. In effect, the
two enumeration clocks can be regarded as synchronized by the synchronization
clock.

Remark: As explained before, the three external clocks mentioned here
may be incorporated into the network as follows:

(1) the synchronization clock can be replaced by the self-synchronization
automaton of Section 2.3;

(2) the continuous vertex enumeration clock can be replaced by the vertex-
ordering automaton of Section 3.6;

(3) the edge enumeration clock can be replaced by the edge-ordering
automaton of Section 3.4 with an additional feature for recognizing
the ready state.

On the basis of these definitions we can now prove the following theorem.

THEOREM. The minimal tree problem is fa-computable.

We define the minimum tree automaton SM, derived from the elementary
early bird automaton <f (see Section 3.8) for solving the minimum tree problem.

262 P. Rosenstiehl, J. R. Fiksel, A. Holliger

(a) Principles of SM: The algorithm will be performed using two types
of iterations : the first type, which we call labeling procedure, for identification
of boundaries, the second type, which we call minimization procedure, for
selecting the minimal edge in a coboundary.

The labeling procedure involves, for a given vertex x belonging to a subtree
Vi of V already determined, labeling among the edges incident to x and not
belonging to Vx those belonging to the coboundary of the vertices of Vt.

To effect this algorithm, we use a modification of the early bird algorithm,
see Section 3.8. When a vertex is excited by the vertex enumeration clock,
it becomes a leader, causing itself and each of its neighbors along edges not
belonging to its subtree Vx to begin sending independent early bird signals
within their own subtrees at the same time.

It is easy to show, due to the strict circular order of enumeration, that two
automata will simultaneously enter the early bird state if and only if they
began sending signals at the same instant along the same complete cyclic
word of their common subtree.

Thus, at least one leader in each subtree will be able to label each of its
edges as either chords or coboundary, according to whether the corresponding
neighbor becomes an early bird at the same time as it does. Since it may have
d neighbors, it must send out as many as d different sets of early bird signals.

We point out here that we have generalized the early bird problem to the case
where there may be one or two early birds in the circle, the first ones excited.
At the end of the computation, each early bird knows whether there were two
or one. Here the roles of early birds are played by leader and neighbor.

Problems of symmetry leading to undecidability are avoided by the vertex-
enumeration clock, which ensures that the state M(t) of the network is
asymmetric at each instant t.

Once a vertex has all its edges labeled, they are considered "ready" by the
edge-enumeration clock, and that vertex ignores all further excitations by the
vertex-enumeration clock. Thus, the labeling procedure continues until all
edges are ready, at which time the minimization procedure begins.

The minimization procedure involves selecting the minimal edge in the
coboundary of each subtree. This is done using the early bird algorithm in the
standard version. As the edge-enumeration clock excites each coboundary
edge, the corresponding vertex sends early bird signals along the complete
cyclic word of its subtree. Excitations of other edges are simply ignored.
Clearly, the early bird will be that vertex associated with the minimal edge,
since it was excited first according to the strict order on U. Each subtree thus
selects an edge which becomes a new branch of V, and the vertices of that
subtree immediately begin accepting leader excitations from the vertex-
enumeration clock, thus recommencing the labeling procedure.

We point out that, at this stage of the algorithm, there may be temporary

Intelligent Graphs 263

gaps in the cyclic word of a subtree. For example, if two subtrees Vi and V2

are to be joined by the minimal edge ιιγ of the coboundary of VY, to form a
new subtree K12, V1 may select ui before V2 has terminated the minimization
procedure. However, the vertices of Vx will immediately commence the
labeling procedure, as if the cyclic word of Vi2 already existed. In fact, there
will be a gap in the word at the limbs corresponding to ux until V2 is ready to
establish its connections with neighboring subtrees. We have proved that,
with very slight modifications to the early bird algorithm, the presence of such
a gap does not affect the proper functioning of the early bird signals, although
it may delay the labeling of edges in Vl.

(b) The states of SM: For the labeling procedure, we require 2d classes
of early bird signals, 1L,2u...,dL and \N,2N,...,dN, where kL signals are sent
out by leaders and kN signals by their neighbors. Excluding the state ω, there
are 11 states in the automaton ê (see Section 3.8), so that we require l l 2 d

limb states in all. In addition, we require the states K,C,T,S where % is
excited by the vertex enumeration clock, C is a limb corresponding to a chord
of the subtree, T is a limb corresponding to an edge of the coboundary, and
S is a limb belonging to the subtree.

For the minimization procedure we require only one set of early bird
signals, as well as the limb states where 0 is excited by the edge enumeration
clock and M is the minimal edge of a coboundary.

At time t = 0, the network is quiescent. The edge enumeration clock causes
the algorithm to be initiated by the labeling procedure, labeling for the first
step all the edges except the self-loops.

(c) The transition rules for S M: All early bird signals travel along cyclic
words whose connections are determined according to the rules given in
Section 3.5 with branches of the subtree being designated by the limb state S.

The labeling procedure is as follows:

(1) If an automaton x has no limbs in state S, then it places all its nondead
limbs in state T.

(2) If x has limbs in state S, and has other limbs that are unlabeled in
state / or /, then it assumes state X when excited. Otherwise, it ignores
the excitation of the vertex enumeration clock.

(3) If x is in state X, and has an unlabeled limb k, then it sends out early
bird signals of class kL. At the same time the neighbor prlp(x,k) sends
out early bird signals of class kN. Both vertices may subsequently be
reexcited, and will treat their still-quiescent limbs in the same way.

(4) If x is the early bird and receives green signals that are mixed, that is,
of both class kL and kN, then limb (x, k) is placed in state C.

(5) If x is the early bird and receives green signals that are pure, that is,
of either class kL or kN, then limb (x,k) is placed in state T.

264 P. Rosenstiehl, J. R. Fiksel, A. Holliger

(6) Edges that have both associated limbs in state T, S, or C are considered
ready by the edge enumeration clock.

(d) Minimization procedure: We shall say that (x, k) is excited if that
limb receives the excitation of the edge u with which it is associated.

(1) If all the nondead limbs of x are in state T, and (x, k) is excited by the
edge enumeration clock, then (x,k) assumes state M and all other
nondead limbs of x assume state /.

(2) If x has limbs in state S, and limb (x, k) is in state T when excited, and
no other limbs of x have been excited during the current iteration, then
(x,k) assumes state Û and x sends out early bird signals. Otherwise the
excitation of the edge enumeration clock is ignored.

(3) If x receives green signals indicating that it is the early bird, and has
limb (x9k) in state Û, then (x,k) assumes state M, and all limbs of x in
state T assume state /.

(4) If x transmits a single green signal, then all limbs of x formerly in
state T are placed in state /.

(5) If a limb in state M finds itself connected to another limb in state M
or state /, then both limbs assume state S.

(d) Results: The process terminates with all edges having both associated
limbs in either state S or state C. Those in state S constitute the required
minimal spanning tree.

Because of the parallel computation, with each subtree operating locally,
the computation time is relatively small. The labeling procedure can last at
most In2 time units, under very rare conditions, while the minimization
procedure can last at most In time units. The maximum possible number of
successive iterations of both procedures is log2 n. Thus we have the very rough
upper bound

Θ < (log2/i)2#i(/i+l).

C a r d F = l l 2 d + 3 + l l + 2 + l = l l 2 i , 4 - 1 7 a n d c a r d £ < l l 2 d + 1 7 d .

References

1. Balzer, R. M., An 8-state minimal time solution to the firing squad synchronization
problem, Information and Control 10, No. 1, 22^2 (1967).

2. Berge, C , and Ghouila-Houri, A.,'"Programming, Games and Transportation Net
works" (M. Merrington and C. Ramanujacharyulu, transi.). Wiley, New York, 1965.

3. Berge, C , "Graphes et hypergraphes." Dunòd, Paris, 1970.
4. Berstel, J., Résolution par un réseau d'automates du problème des arborescences dans

un graphe, C. R. Acad. Sci. 264, 388-390 (1967).

Intelligent Graphs 265

5. Berstel, J., Quelques applications des réseaux d'automates à des problèmes de la théorie
des graphes (Thèse 3° cycle), Paris, 1967.

6. Burks, A. W., "Essays on Cellular Automata." University of Illinois Press, Urbana, 1970.
7. Cole, S. N., Real time computation by iterative arrays of finite-state machines, Ph.D.

thesis. Harvard University, 1964.
8. Dermiane, J. C , and Pair, C , Problèmes de cheminements dans les graphes, in "Mono

graphies d'Informatique," No. 8. Dunod, Paris, 1971.
9. Gabrielian, A., The theory of interacting local automata, Information and Control 16,

360-377 (1970).
10. Hennie, F., "Iterative Arrays of Logical Circuits." M.I.T. Press, Cambridge, Massa

chusetts, 1962, and Wiley, New York, 1962.
11. Kruskal, J. B., Jr., On the shortest spanning subtree of a graph and the travelling salesman

problem, Proc. Amer. Math. Soc. 7, 48-50 (1956).
12. Moore, E. F., The firing squad synchronization problem, in "Sequential Machines

Selected Papers," pp. 213-214 Addison-Wesley, Reading, Massachusetts, 1964.
13. Moore, E. F., The shortest path through a maze in "Proceedings of International

Symposium in the Theory of Switching," p. II, pp. 285-292. Harvard Univ. Press,
Cambridge, Massachusetts, 1959.

14. Moore, F. R., and Langdon, G. G., A generalized firing squad problem, Information
and Control 12, 212-220 (1968).

15. Rosenstiehl, P., Existence d'automates finis capables de s'accorder bien qu'arbitrairement
connectés et nombreux, Internat. Comp. Centre 5, 245-261 (1966).

16. Rosenstiehl, P., L'arbre minimum d'un graphe, in "Theory of Graphs, International
Symposium," pp. 357-368. Gordon & Breach, New York, 1967.

17. Rosenstiehl, P., Graph problems solved by finite automata networks, Calgary Inter
national Conference on Combinatorial Structures and Their Applications (1969) (un
published).

18. Rosenstiehl, P., Labyrinthologiemathématique Math. Sci. Humaines33 (1971).
19. Tarry, G., Parcours d'un labyrinthe rentrant, Assoc. Francais pour VAvan. des Sciences

49-53(1886).
20. Tarry, G., Le problème des labyrinthes, Nouvelles Annales de Math. 14 (1895).
21. Varshavsky, V. J., Marakhovsky, V. B., and Peschansky, V. A., Synchronization of

interacting automata, in "Mathematical Systems Theory," Vol. 4, No. 3, pp. 212-230.
Springer-Verlag, Berlin and New York, 1970.

22. Waksman, A., An optimum solution to the firing squad synchronization problem,
Information and Control 9, 66-78 (1966).

23. Whitney, H., Non-separable and planar graphs, Trans. Amer. Math. Soc. 34, 339-362
(1932).

24. Yamada, H., and Amoroso, S., Tessellation automata, Information and Control 14,
299-317(1969).

25. Arbib, M. A., Self-reproducing automata—Some implications for theoretical biology,
in "Towards a Theoretical Biology" (C. M. Waddington ed.). Edinburgh University
Press, Edinburgh, 1969.

AN ALGORITHM FOR A GENERAL
CONSTRAINED SET COVERING PROBLEM

ß. Roy

Groupe METRA

Université Paris-Dauphine

Paris, France

1. The General Constrained Set Covering Problem 268
1.1. Statement of the Problem 268
1.2. Connections with Graph Theory 270
1.3. Examples of Φ Functions 272

2. Notation and Main Concepts 273
2.1. Separation Principle 273
2.2. Optimistic Evaluation 274
2.3. Forced Blocks 276

3. The Algorithm 278
3.1. The Basic Tree and Its Exploration 278
3.2. Description of the Algorithm 280
3.3. Remarks on the Algorithm 282
References 283

Let B = {bj\j e N, bj e E}, E being, for instance, the set of vertices of a given
graph H and the blocks bj being particular subsets of E (edges, paths, and
circuits of H). A cover is a family of blocks, the union of which is E. A con
figuration is a cover, which is an independent set of a graph G satisfying some
additional constraints.

267

268 B.Roy

This contribution concerns the search for an optimal configuration for a
broad class of objective functions and additional constraints.

A separation and evaluation procedure is proposed to solve this com
binatorial programming problem. The problem is described and illustrated in
Section 1. The main concepts are introduced in Section 2. Section 3 is devoted
to the description of the algorithm.

1. The General Constrained Set Covering Problem

1.1. Statement of the Problem

1.1.1. INTRODUCTION

Let us consider a set E of m elements, where

E={ei\ieM}9 M = { l , . . . , m } ,

and a family B of n subsets of £ called blocks, where

B={bj\bjŒE,jeN}9 N = {l,...,n}.

A cover C is a subfamily of B such that

(1) U bj = E.
bjeC

The classical set covering problem (CP) is to find a cover C which minimizes

(2) Σ Pj>
bjeC

wherepj is a nonnegative real number assigned to bj.
An important special case of the CP is the partitioning problem (PP) where C

cannot be just any cover, but must be a partition of E. Lemke, Salkin, and
Spielberg [7] have shown that, given any PP which has a feasible solution, the
CP defined with the same blocks but with new weights p/ such that

(3) Pj'=Pj+\bj\P: P= Σ Pj>
bjeB

has the same set of optimal solutions as the original PP.
Different algorithms have been proposed to solve the CP and the PP. Good

syntheses are presented in Garfinkel [5] and Thiriez [14]. For many practical
purposes we need

(i) to restrict the set of feasible solutions to covers which possess additional
properties, less specific than to be a partition;

(ii) to use a more general objective function than (2).

t \b\ = cardinality of b.

A General Constrained Set Covering Problem 269

This double generalization of the classical CP leads to the general constrained
set covering problem (CCP) formulated in Section 1.1.3. The end of this first
section will be devoted to making explicit this combinatorial programming
formulation, particularly in connection with graph theory.

In spite of the interest of this problem, it seems that it has been considered
only through applications or particular cases, for example, Salkin [13]. No
general algorithm seems to have been proposed yet. The purpose of this paper
is to present an algorithm which works without restricting too much the
possible analytical forms for the additional conditions and the objective
function.

This algorithm, described in Section 3, uses the approach introduced in
Roy [11, Chapter VI, Section A and B]. The general concepts and notations
are given in Section 2.

1.1.2. CONFIGURATIONS

Let us consider a subfamily C of B9 and denote by Xc its characteristic
vector. Xc is an n x 1 column vector (x1,...,xn) with Xj = 1 if bj e C, and Xj = 0
if bj$C. Conversely, for any binary n x 1 column vector X, the above relations
define a subfamily Cx of B.

All the additional properties of (1) we need to introduce may be expressed
by conditions of the type

(4) Φ,(Χ) ^φ,, k= 1,...,

where Φ*:{0, l}n->R and φκ e R. Various examples of such additional con
ditions are given in Section 1.3 together with the nature of the property they
are able to formalize.

Frequently, the presence of a given block bj in a cover C must be considered
as incompatible with the presence in C of some other blocks bh with bh e T(bj).

For example, each block bh having at least a elements of E in common with bj

may have to be excluded from any feasible cover to which bj belongs (a = 1
leads to PP). The importance of such a property will appear more clearly in
Section 1.2.

All such additional properties, which are required in a problem, instead of
being formalized by a series of conditions of type (4), can always be syn-
thetized in an incompatibility graph G

G = (B,D

in which two blocks are connected by an edge, if and only if they cannot occur
simultaneously in a feasible cover. To be feasible, a cover must therefore be an
independent set of G. By definition, a subset C of B is an independent set of G,

if and only if two elements of C are never connected by an edge of G.

270 B. Roy

Let a configuration be any cover which is an independent set of the incom
patibility graph G, and which satisfies conditions (4) imposed by the problem.

The general constrained set covering problem may then be stated as follows :
find one configuration which minimizes an objective function Φ0(^0, where
Φ0:{0,1}Λ->*.

1.1.3. COMBINATORIAL PROGRAMMING FORMULATION

.,«,

(5)

subject to

(6)

(7)

and

(8)t

(9)

Minimize Φ0(Χ)

Xj = Oor 1, j = 1,.

A ■ X > d,

XeIG,

ΦΚ(Χ) ^φ,, k=\

where rfisanmxl column vector of l's, A is an m xn matrix (A = {a^} with
au = 1 if e-x G bj and au = 0 if ei φ bj), and IG is the set of characteristic vectors of
the independent sets of G.

1.2. Connections with Graph Theory

Let us consider a directed graph H = (V, U), F being the set of vertices, and
UczVx Kbeing the set of arcs. Recall that, by definition, Wcz V is an external
ly stable set of / / , if and only if

Ί veV -W 3weW such that (u>, v) e U.

We will say that such a vertex w covers vertex v. This terminology emphasizes
the relationship between coverings and the externally stable property that
we shall now clarify.

Consider first the particular directed graph H = (F, E7) derived from a cover
ing problem by defining V

V = E u B u {z}, z is an additional vertex,

and Ü (see Fig. 1)

(z9bj)eU9 bjeB,

(bj,ei)eÜ, iff eiEbj.

t This constraint implicitly contains constraint (6), but we prefer to make the latter explicit.

A General Constrained Set Covering Problem 271

b6

Fig.1

Whatever the subset C<= B which covers E, see (1), Cu{z} is an externally
stable set of H. Conversely, any externally stable set W of H such that
Wr\ E = 0 contains z and a subset C c B which covers E.

Consider now any directed graph H, with a structure not necessarily similar
to that of H. Let

b(v) = {y\ y e V, (v,y) e U} V D G K .

Then each problem dealing with externally stable sets of H may be viewed as a
covering problem with E= Vana B= {b(v)\ ve F with b(v) Φ 0}.

An important particular case of externally stable sets is given by kernels.
Kcz V is a kernel of H, if K is both an externally stable set of H and an in
dependent set of the same graph H. Problems about kernels may be stated in
terms of configurations defined by conditions (7) and (8), in which E and B are
defined as explained above, and G is deduced from H by removing the
orientations.

Mathematicians have studied many other covering problems in graph
theory, see Berge [3], in which the blocks may be edges, paths, circuits, etc.
In operations research problems, the set of blocks is frequently generated from
a graph as particular subsets of vertices or arcs, see Bendahan and Fayein [2] or
Roy [11, Chapter VI, Section B]. In combining these blocks to obtain feasible
solutions to problems such as line balancing, truck dispatching, synthesis of
networks, air crew scheduling, etc, additional constraints of type (8) and (9)
naturally arise. It will be the purpose of another paper to develop these practical
aspects. We will only explain here, by some examples, what is the significance
of Φ constraints (9).

272 B. Roy

1.3. Examples ο/Φ Functions

The following examples deal with the <&k functions involved in constraints (9)
as well as in the objective function Φ0 . By y} and pj9 j = 1,...,«, we denote
respectively a real number without restriction on the sign, and a nonnegative
real number.

Example 1.3.1:

Φ(ΛΤ) = min y7· or maxy,·.
xj=l Xj=\

Example 13.2:
Φ(Χ) = max jj — min y,·.

Xj=i Xj=i

Such a quantity can be interpreted as a degree of homogeneity for the con

figuration Cx. It appears in various concrete problems : line balancing, political

districting, airline or bus crew scheduling, etc.

Example 1.3.3:

j

Such a general linear expression may be used on many occasions. We have

already met it as the objective function of the CP with y,· ^ 0, V/e N. Two other

particular cases frequently appear in applications.

(1) Some ei e E must be covered at least λ{ times and at most λ{' times.

(2) Some subsets Bt of B must contribute to a configuration with at least

λ/ blocks and at most Àt". If for a particular value of f, Bt = B, then λ/ and λ"
are lower and upper bounds for \C\.

Example 1.3.4:

* W = lpjyjxjfcpjxj'
j j

Such a quantity refers to a mean value per block in the configuration Cx. It

appears, for instance, in some delivery problems and in ship assignment or

crew scheduling problems.

Example 1.3.5:

Φ W = ΣΡ]χ] + Σ m i n LaijxjAu + 0 -*υ*;)Δ],
j i J

where Atj are given nonnegative real numbers, and Δ ^ Διν for all / e M and

j G N. Such a quantity may be interpreted as follows :

(1) pj is a fixed cost attached to block bj9 and the first sum is the total fixed

cost of configuration Cx ;

A General Constrained Set Covering Problem 273

(2) Au is a marginal cost for element e>x with respect to block bj, and the ith
term of the second sum gives the marginal cost of e{ with respect to configura
tion Cx, which is equal to the smallest Δ0· over all the blocks in Cx which
cover ev

This function may be used as the objective function in various problems
where each block is defined by the assignment of a definite machine, truck,
ship, etc., to perform a given subset of tasks or activities. When each subset of a
block also appears itself as a block, it allows us to reduce the size of the problem
by introducing in B only the maximal blocks. A maximal block is a block con
tained in no other block.

2. Notation and Main Concepts

The algorithm described in Section 3 belongs to the general family of what
we called separation and evaluation procedures, discussed in Roy [10]. In such
a procedure, the set of feasible solutions is divided into smaller and smaller
subsets on the basis of a separation principle (see Section 2.1). Each subset so
generated must be examined for emptiness and then for the possibility of
existence of an optimal solution. These examination rules extensively use the
concept of optimistic evaluation (see Section 2.2). To accelerate the exploration
of the set of all configurations, a third concept is introduced in Section 2.3, the
concept of forced blocks.

2.1. Separation Principle

2.1.1. PARTIAL SOLUTION

A partial solution ω is, by definition, a pair of disjoint subsets of B

ω = (Βω\Βω°), BJ c B, Βω° c B, Bj n Βω° = 0.

We will denote by Ω the set of all partial solutions.
Consider now the set ^ of all configurations, that is, of all subsets C of B,

with a characteristic vector Xc satisfying constraints (7), (8), and (9). To each
ω e Ω is associated the subset # ω of # defined by

(10) <$ω = {C\Ce V, BJ c C c Β-Βω
0}.

Let Βω* = Bj- U Βω°. The position of every block bj e Βω* with respect to
configurations of # ω is completely determined. On the contrary, a block
bj φ Βω* may be either in or out of a configuration C e ^ . Such a block will
be called a, free block in the partial solution ω.

274 B. Roy

2.1.2. VECTORS ASSOCIATED WITH A PARTIAL SOLUTION

The manipulations of partial solutions in the algorithm necessitate the
introduction of three n x 1 column vectors.

(11) Χω = {xj\ Xj = 1 if fy e B„l and 0 if not},

(12) Χω = {xj\ kj = 0 iffy e Βω° and 1 if not},

(13) Υω = Χω + Χω.

Notice that a n x 1 binary column vector A^can be the characteristic vector of a
configuration C e ^ w only if Χω ^ X< £ ω , with Z ^ F if and only if the in
equality holds for each component.

2.1.3. SEPARATION PRINCIPLE

Let ω be any partial solution and # ω the subset defined in (10). When a
particular free block bjto has been chosen by some rule, (€ω is partitioned into
two disjoint subsets <#ωι and #ω2 defined by

(14) ωχ = (Bj u tyj, V) , ω2 = (^ 1 , 5ω° u {bjj)

in which Z?Jto belongs to all the configurations of the first one and is excluded
from all the configurations of the second one. Equation (14) together with a
rule for the selection of the separating block bjco defines what we will call the
separation principle for the problem.

Different selection rules may be considered (see Roy [11, Chapter VI, p. 31,
first Remark]), but this aspect of the procedure will not be discussed in this
paper. A particular selection method for the choice of jœ has been adopted for
the algorithm of Section 3. To explain it, let us introduce the subset Εω° of the
elements of E, which do not belong to any block of Bj.

(15) Εω° = {e\eeE,e$b^beBiû
1}.

The separating block bjot is the first block, the smallest value of the index, such
that

(1) bj is a free block in ω, if Εω° = 0 ;
(2) bj is a free block containing the first element, the smallest index, of £ω°,

if this subset is not empty.

Obviously, other selection rules might be considered.

2.2. Optimistic Evaluation

2.2.1. DEFINITION

Consider one of the Φ functions either used for the objective function we
want to minimize, see (5), or entering into one of the inequalities (9). An

A General Constrained Set Covering Problem 275

optimistic evaluation for Φίί is a function vk of the two vectors Χω and %ω

associated with a given partial solution ω such that*

(16) ük(Xm9Xj^Ok(X) Vo)eQ,

for all the characteristic vectors Χοΐ a configuration of <βω, that is, for all X's
satisfying (6), (7), (8), (9), and

(17) Χω*ζΧ^Χω.

In the building of an optimistic evaluation, we must try to obtain as good an
approximation as possible of the exact value of the minimum of ΦΙί on # ω with
out increasing too much the complexity, that is, the computational time of this
evaluation. Nevertheless, it is more appropriate if the following coincidence
property is satisfied:

VkvXiD>Xio) = Φ*(^ω)» %ω = ^ ω ·

Before giving examples of how to make up optimistic evaluations (see
Section 2.2.3), we will show why such functions are considered in our problem.

2.2.2. ASSOCIATED TEST

Suppose such an optimistic evaluation for Φ^, k = !,..., q has been built. By
the test 6k we will refer to the comparison between νΙί(Χω,Χω) and φίί. The test
will be positive if and only if we obtain

(18) vk(X„9XJ^(t>k·

In effect, if this inequality does not hold, it is the proof that # ω is empty.
Consider now the case k = 0. Suppose an optimistic evaluation v0 has been

built. Denote by φ0 the value of the best configuration that is known. We can
do the test Θ0, and if (18) does not hold, it is proof that the configurations of (βω,
if ^ω Φ 0 , are worse than those already known.

2.2.3. EXAMPLES

If we go back to the examples of Section 1.3, we see that it is relatively easy to
obtain optimistic evaluation functions possessing the coincidence property.

The functions in Examples 1.3.1. and 1.3.2 are monotonie, that is, for all the
pairs of vectors Zand X' such that X ^ X' either Φ(Χ) ^ Φ(Χ') (nondecreas
ing function) or Φ(Α') ^Φ(Χ') (nonincreasing function). In such cases, the
optimistic evaluation may be ν(Χω9%ω) = Φ(Χω), if Φ is a nondecreasing
function, and ν(Χω, Χω) = Φ(Χω), if Φ is a nonincreasing function.

If we now consider the functions of Examples 1.3.3, 1.3.4, and 1.3.5, it is

t When we want to maximize, or when inequality (9) is in the reverse orientation, ^ must
be changed into ^ in (16) and (18).

276 B. Roy

easy to see that they are not monotonie. Nevertheless, as has been shown by
Bendahan and Fayein [2], it is possible to define, on the same basis as
before, an optimistic evaluation for those functions, and for many others as far
as they are quasi-monotonie in the following sense: A Φ function is quasi-
monotonie if it is possible to exhibit

(1) some monotonie functions pp(X),p = 1,... ;
(2) a function, ψ(ρί,...,ρρ,...), which is monotonie with respect to each

variable p p ,

such that

(19) Φ(Χ) = ψΙΡί(ΧΙ...,ρρ(Χ1...1

Then, if we substitute ρρ(Χω) or ρρ(£ω) for pp(X) in the right-hand side of
(19), according to the sense of variation of φ with regard to pp and of pp with
regard to X, we obtain an optimistic evaluation for Φ(Χ).

Another general approach, which is very useful in building an optimistic
evaluation, consists in relaxing some of the constraints defining (€ω so that
the exact value of the minimum of Φ may be easily computable on the broader
subset thus introduced. The relaxation, for instance, of constraint (6) together
with some appropriate transformations of (8) and (9) may allow the use of
classical linear programming to find the exact value of the minimum. Many
suggestions have been made in this direction, especially for function (2).
Rougerie and Viviant [9] give a very extensive list of possible optimistic
evaluations for this classical objective function of the CP.

2.3. Forced Blocks

2.3.1. DEFINITION

Let us consider a partial solution ω together with its associated subset ^ ω ,
see (10), and a block bjeB—Bœ*. For such a free block in ω, it may happen
that either

(20) bjEC V C e ^

or

(21) bj$C VCeVm.

We then say that bj is a. forced block in ω.

Suppose that, by studying constraints (7), (8), or (9), it has been possible to
exhibit

(1) a subset Βω
+ made of blocks for which (20) holds;

(2) a subset Βω~ made of blocks for which (21) holds.

A General Constrained Set Covering Problem 277

It is possible to assert that

(1) <£ω is empty if Βω
+ ηΒω~ Φ0\

(2) ^ ω = «^ , ω being defined by

Bm
l = Βω

ι υ Βω
+ and V = Βω° υ Βω".

The end of this section will be devoted to showing how, by elementary con
siderations dealing with covering constraints (7), graph constraints (8), and Φ
constraints (9), subsets like Βω

+ and Βω~ can easily be exhibited.

2.3.2. FORCED BLOCKS BY COVERING CONSTRAINTS

Consider the vector Υω defined in (13), and compute

Ζ = ΑΥω = {zt\ieM}.

Suppose that for some /', zf = 1. This is proof that the element ex can be covered
by one and only one free block. Such a block must be included in Βω

+.
The detection of such forced blocks by covering constraints is developed in

Step C of the algorithm in Section 3.

2.3.3. FORCED BLOCKS BY GRAPH CONSTRAINTS

From the definition of constraints (8), each free block of Γ(Βω
1) is obviously

an element of Βω~. Step G of the algorithm is based on this remark.

2.3.4. FORCED BLOCKS BY Φ CONSTRAINTS

The detection of such forced blocks depends on the nature of the particular
Φ* function considered. We will give here only two elementary examples. Let us
consider first the Φ function of Example 1.3.2. Since it is a monotonie non-
decreasing function, the optimistic evaluation associated with it can be

ν(Χω,Χω) = Φ(Χω) = γω
+ - γω~

with

γω
+ = max y,·, γω~ = min Vj .

Suppose for a given co we have

7ω+ — 7ω~ = Φ> Φ the right-hand side of (9).

Every block bj for which either y,· > γω
+ or yj <γω~ can be included in Βω~.

Consider now case (2) of Example 1.3.3. Let

Λ^/,ω) = \Bt n Bj\ and n(t,a>) = \Bt n (Β-Βω*)\.

278 B. Roy

Suppose ω is such that

ηγ(ί,ω) + η(ί,ω) = λ/,

then each block of Btn(B-Bœ*) belongs to Βω
+. If for another ω we have

nl (t, ω) = λ/', then each free block of Bt belongs to Βω~.
Whatever the ΦΛ function considered, the search for forced blocks involves

the difference

That is the reason why this search must be performed in the algorithm together
with the 6k tests in Step E.

3. The Algorithm

Since it represents a separation and evaluation, or branch and bound,
procedure, this algorithm consists of the exploration of a tree, the nodes of
which are subsets generated by iterating the separation principle. Two funda
mental types of exploration may be distinguished (see Roy [10]). With the first
one, called progressive or parallel, we iterate from subset to subset according to
the value of an optimistic evaluation for the objective function, so as to make it
monotonically nondecreasing. Though very good results have been obtained
with progressive separation and evaluation procedures in mixed integer
programming (see Roy et al. [12]), we will resort to the other type of explora
tion which seems yet more appropriate to our particular problem. This second
type of exploration, called sequential or serial, is related to implicit enumeration
methods (see Balas [1] or Geoffrion [6]). It uses a complete order associated
with the tree. Subsets generated are examined according to the corresponding
a priori definite sequence. For the classical PP (see Section 1.1.1), efficient
algorithms of this type have already been proposed by Pierce [8] and by
Garfinkel and Nemhauser [4]. The following algorithm differs mainly in the
role attributed to optimistic evaluations and in the introduction of the concept
of forced blocks.

3.1. The Basic Tree and Its Exploration

Let us consider any given ω and its #ω , its separating block bjoi and corre
sponding partial solutions ωι and ω2 defined by (14). Suppose that the con
siderations developed in Sections 2.3.2, 2.3.3, and 2.3.4 allow the exhibition of
some forced blocks in ωχ and in ω2. With the support of assertion (2) of
Section 2.3.1, it becomes possible to substitute new partial solutions ω' and ω"
respectively for col and ω2, such that <£„> = Ήωί and Ή^ = (£0)2.

A General Constrained Set Covering Problem 279

Fig. 2

If no forced blocks were found, ω' and ω" can always be defined by ω' = ωγ and
ω" = ω2.

Fig. 2 shows the elementary module used to build the basic tree T. We will
now complete its definition. Start with the partial solution ω 0 , the root of Γ,
defined by

< = 0> < = 0.
Define j œ o as explained in Section 2.1.3 and build the two corresponding partial
solutions ω' and ω" introduced above. Then restart from ω' (see Fig. 3), and

Fig. 3

iterate the separation process until each generated subset either has been
separated or cannot be separated because no separating blocks were found (no
free block remains in the partial solution considered). We obtain in that manner
a finite rooted binary tree T (see Fig. 3).

Let us introduce, for each pair of nodes with the same predecessor in Γ (see
Fig. 2), a transverse order and with this order, nodes derived from ω{ are
ranked before, on the left in Fig. 3 nodes derived from ω2 [see (14)]. With this
transverse order, the nodes of Tmay be completely ordered in a classical way:

280 B. Roy

I

Stop

Fig. 4

the Tarry order (see Roy [11, Chapter V, p. 345]). This order is given by the
natural order of integers on Fig. 3.

In the following algorithm, subsets ^ ω are examined according to the Tarry
order introduced above, but as in all branch and bound procedures, the tree
is not completely generated. In effect, tests 9k for k = 0, 1,..., q (see Section
2.2.2) and assertion (1) a of Section 2.3.1, allow us to avoid the separation of
many ^ ' s , because it is proved that they are empty, or that they do not
include any optimal solution.

3.2. Description of the Algorithm

A simplified flow chart is given in Fig. 4.

Step I. initialization: Introduce a stack which is empty at the beginning
of the algorithm. Let φ0 = + oo. Define ω by Βω

χ = 0 and Βω° = 0 and go
to Step E.

Step E. Evaluation (see Section 2.3.4) : Execute the following tests and go
to Step B as soon as one of them is negative.

0k: vk(X„,Xj < φ,, k = 0,1,...,?.

Let B+k and B~k be the two possibly empty subsets of forced blocks by con
straint ΦΛ, and

k=q k=q
Βω+ = U ^ω*' βω~ = (J B^'

/c = 0 k = 0

A General Constrained Set Covering Problem 281

If Βω
+ ηΒω~ Φ 0, go to Step B; if not, modifyt ω by

and

(1) if Βω
+ Φ 0 , go to Step G, Βω

+ being memorized for this next step;
(2) i f ^ + = 0 , g o t o S t e p C .

Step G. Graph exclusion (see Section 2.3.3): Determine B~ = Γ (5 ω
+) η

(Β-Βω*) with Γ(Βω
+) = [jbeBio+ Γ(*), and

(1) i f 5 - n ^ + ^ 0 , g o t o S t e p B ;
(2) if B~ n Βω

+ = 0 , go to Step C after having modified ω by

Step C. Covering (see Section 2.3.2) : Compute y4 · Γω = Ζ and

(1) if for one ie M, zt = 0, go to Step B ;
(2) if for all i ΕΜ,Ζ^ 2, go to Step S ;
(3) if Z > 0 and Μω

+ = {i\ ieM and zf = 1} # 0 , determine

ω
+ = {j\j eN,yj= 1, X au ^ 1}, yi theyth component of 7ω ,

and go back to Step G, Βω
+ being memorized for this next step.

Step S. Separation : Test B—Βω* = 0 . If the test is positive, go to Step T.
Otherwise, determine the smallest value ίω e M such that the corresponding
component of vector A · Χω equals 0, if there is one. Lety^ be the smallest value
jeN such that b}eB — Βω* and ai(oj = 1, if ίω is defined. Put on the top of the
stack the pair (Βω

ι,Βω° u {bjj) and go to Step E after having modified ω by

Bj «- Bj u {bjj, Bj «- Βω° u r(*,J.

S7e/> T. Terminal nodes: Execute the following tests, and go to Step B as
soon as one of them is negative :

0*(*ω, * ω) < </>*> k
 = °> !>· ·>?.

If all are positive, a better solution, characterized by Χω, has been found.
Memorize it. Modify φ0 by φ0 *-Φ0(Χω) and go to Step B.

Step B. Backtracking: If the stack is empty, let ω be the couple on its
top, take it out of the stack, and go to Step E. If it is empty, terminate:

(1) If φ0 = + oo, the problem has no solution.
(2) If 0o # + oo, it is the value of the optimal solution, which was found in

Step T.

t The symbol <- means that the left-hand side must be changed into the right-hand side.

282 B. Roy

33. Remarks on the Algorithm

(a) It is very easy to prove that this algorithm works the way announced in
Section 3.1. For this we have to remark that

(1) each modification of ω in Steps E, G, C, and S leads effectively to
another partial solution, the two subsets of the couple are disjoint;

(2) whatever the ω with which we start Step E, C, G, or S, the subset
Βω1 u W where b is any free block in ω, is an independent set of the incom
patibility graph G.

The assertions of Step B then become evident in the light of the standard
separation and evaluation procedures.

(b) In order to quickly unearth the forced blocks corresponding to cover
ing constraints, the rows of the matrix A may be renumbered so as to have

i < V iff £ au ^ £ aVJ.
jeN jeN

The columns may also be arranged so as to facilitate the construction of sets
like T(bjJ and Γ(Βω

+). For this purpose, the n blocks may be partitioned into
subsets L j , . . . , Lp,..., each Lp corresponding to a complete subgraph in G. Thus,
as soon as a block beLp must be included in Βω

ι, we know, without any search,
that all the others blocks of Lp will be incompatible. The column order used by
Pierce [8] and Garfinkel and Nemhauser [4] in their algorithm for the PP,
resorts to this idea, although no incompatibility graph is explicitly introduced
to formalize the partitioning constraint.

(c) In practice it may be useful to compute in Step S the value of v0 (Χω, $ω)
for the ω corresponding to the pair going on the stack, and to memorize this
value, say \ν(ω), together with the pair. In Step B, it is then easy to compute
w0 which equals the smallest value of H>(CO)'S which remains in the stack. Now
if Step T is modified in order to stop the algorithm as soon as

Φ0 (Χω) — w0 < ε, ε an 0 priori given number,

we may assert that, when the algorithm is interrupted by that additional rule,
the best solution found to date differs from the optimal solution by at most ε.

(d) Some better-hidden forced blocks may easily be introduced to acceler
ate the procedure, according to each particular problem studied. An important
practical situation must now be mentioned.

Suppose it is possible to prove that the optimal configuration is a minimum
cover. By minimum cover, we mean a cover C0 such that

C cz C0, C φ C0 => C does not cover E.

A General Constrained Set Covering Problem 283

This is obviously the case in the classical CP, and in many other more sophisti
cated real problems.

Let us now consider a partial solution ω such that ΛΧω ^ 1. It is clear that
each free block in ω, if there is any, can be considered as a forced block,
included in Βω~. Then, Step S may be modified as follows:

(1) drop out test Β-Βω* # 0 ;
(2) when ίω is not defined, go to Step T after having modified ω by

Moreover, it may be fruitful to include an additional test in Step E. Is there a
beBj which is included in the union of the other blocks of Βω

ιΊ If so, go to
Step B.

References

1. Balas, E., An additive algorithm for solving linear programs with zero-one variables,
Operations Res. 13, 517-546 (1965).

2. Bendahan, S., and Fayein, V., Problèmes périodiques d'affectation avec réemploi,
Thèse 3 Cycle, Université Paris-Dauphine, May 1971.

3. Berge, C , Alternating chain methods: A survey, in "Graph Theory and Computing"
(R. C. Read, ed.). Academic Press, New York, 1972.

4. Garfinkel, R. S., and Nemhauser, G. L., The set partitioning problem : Set covering with
equality constraints, Operations Res. 17, No. 5 (1969).

5. Garfinkel, R. S., and Nemhauser, G. L., Set Covering: A survey. Paper presented at
XVII International Conference of the Institute of Management Sciences, London,
July 1970.

6. Geoffrion, A. M., Integer programming by implicit enumeration and Balas' method,
SIAM Rev. 9, 178-190 (1967).

7. Lemke, C , Salkin, H. M. and Spielberg, K., Set covering by single branch enumeration
with linear programming subproblems, IBM New York Sci. Center Rep. No. 320-2979
(October, 1969).

8. Pierce, J. F., Application of combinatorial programming to a class of all-zero-one
integer programming problems, Management Sci. 15, No. 3 (1968).

9. Rougerie, A., and Viviant, J. P., P.S.E.S. et Partition, Thèse 3 cycle, Université Paris-
Dauphine, 1971.

10. Roy, B., Procédure d'exploration par séparation et évaluation (P.S.E.P. et P.S.E.S.),
Rev. Française Informat. Recherche Opérationnelle No. V-l (1969).

11. Roy, B., "Algèbre moderne et théorie des graphes orientées vers les sciences économiques
et sociales." Vol. 1, Dunod, Paris, 1969. Vol. 2, Dunod, Paris, 1970.

12. Roy, B., Benayoun, R., and Tergny, J., From S.E.P. procedure to the mixed Ophelie
program, in "Integer and Nonlinear Programming" (J. Abadie, ed.). North-Holland
Pubi., Amsterdam, 1970.

13. Salkin, H. M., An algorithm for the base constrained set covering problem. Comm.
TIMS, 11th American Meeting, Los Angeles, October 19-21 (1970).

14. Thiriez, H., The set covering problem: A group theoretic approach, Rev. Française
Informat. Recherche Opérationnelle No. V-3 (1971).

TRIPARTITE PATH NUMBERS

R. G. Stanton L 0. James D. D. Cowan

Department of Computer Science Applied Analysis

University of Manitoba and Computer Science Department

Winnipeg, Manitoba University of Waterloo

Canada Waterloo, Ontario

Canada

1. Introduction 285
2. Elementary Results 286
3. Extensions of Previous Algorithms 289
4. The Exceptional Case 289
5. The Complete /z-Partite Graph 293

Reference 294

1. Introduction

The path number pn(G) of a graph G was introduced by Harary at the
Jamaica conference on graph theory and computing. In view of this origin,
it goes without saying that G is assumed to be a finite undirected graph without
multiple joins and without loops. For such a graph G, we consider paths in G
and write

(1) (? = /)
1 u P 2 u - u i)

j *>
285

286 R. G. Stanton, D. D. Cowan, L. O. James

where Pir\Pj = 0 for ίφ}. Clearly, there are many ways of writing G as
such a union of disjoint paths. We define pn(G) to be the minimal value of A:,
the minimum being taken over all possible decompositions of the form (1).

The path number was studied by the authors [1], where various results
were obtained forpn{G) in the cases when (1) G is a tree, (2) G has at least one
circuit, and (3) G is regular. Algorithms were given to produce a minimal
path set for the complete graph Kn and for the complete bipartite graph
Kmn. The result for the latter graph, assuming m ^ n, is given by

pn{Km,in) = "> m < 2n> pn(Kmt2n+\) = " + 1, m even,

= n + l, m = 2n; = n + (m+1)/2, m odd.

In this paper, we consider the complete tripartite graph Kabc, and denote
its path number by k(a9b,c). This function k(a9b,c) is studied, and some
generalizations for the complete «-partite graph are suggested.

2. Elementary Results

We start by assuming that abc Φ 0. With this restriction two obvious lemmas
may be obtained.

LEMMA 1.

, / , x ab + be + ca
k(a9b,c) ^ -

a + b + c — 1

Proof: Kahc possesses ab + bc + ca edges. However, no path can contain
more than a + b + c-1 edges. The lemma follows.

LEMMA 2. For any a, b, c, we have

k(a,b,c)>(a+b)l2.

Proof: Let the a vertices form a set A, the b vertices form a set B, and the
c vertices a set C. The vertices of C have (a + b)c edges joined to them, and no
path may contain more than 2c of these edges. The result follows.

We now combine these results.

THEOREM 1. If a ^ b ̂ c, then

k(a,a,a) ^ a+ 1;

otherwise

k(a,b,c) ^ (a + b)/2.

Tripartite Path Numbers 287

Proof: We now compute the difference between the lower bounds of
Lemma 2 and Lemma 1 and find that

a + b ab + ac + bc a{a—\—c) + b(b—\—c)

2 α + ò + c - l - 2(a + b + c-l)

This expression is greater than or equal to zero, unless b = c and a = b or 6+ 1.
If a = b = c, we use Lemma 1 to obtain

k(a,a,a) ^ a + 1.

If a = 6+ 1, b = c, the results of Lemmas 1 and 2 are identical. In all other
cases, Lemma 2 is stronger. Thus, we have the theorem.

THEOREM 2. For a^b^l, we have fc(l,l,l) = 2 with k(a,c, 1) =
{(a + b)/2}9 where we use {x} to denote x if x is an integer. The least integer
above x if x is nonintegral.

Proof: Theorem 1 gives these results as lower bounds. Thus, one merely
needs to exhibit an algorithm attaining these bounds. The algorithm for
A: (1,1,1) is trivial. For k(a,b, 1), we display the algorithm diagrammatically.

The diagram shows three axes, and each cell indicates an edge joining the
vertices which coordinatize the cell. Thus, the shaded cell in Fig. 1 indicates

Fig. 1. Algorithm for k(a, b, 1): a odd, b odd, k = (b-1)/2, n = (a + />)/2, and s = n-k.

288 R. G. Stanton, D. D. Cowan, L. O . James

Fig. 2. A lgor i thm for k(a, b, 1): a even, b even, n = (a+b) /2 , k= (b/2) + 1, and s = n — k.

Fig. 3. Algor i thm for k(a, b, 1): a odd, b even, k= (b/2) + 1. n = i a + b +1) /2 , and s = n-k.

Tripartite Path Numbers 289

the edge joining point 4 in A to point 2 in B. Path number y is indicated by
writing y in all the cells which form part of the path. With this convention,
Figs. 1, 2, and 3, complete the proof of Theorem 2.

3. Extensions of Previous Algorithms

We establish three further lemmas.

LEMMA 3. If a > b + c9 b > c9 and any two of a, b, c9 are even, then

k(a9b9c) = {(a + b)/2}.

Proof: We consider the tripartite graph as being made up of an (a, b + c)
bipartite graph and a (b, c) bipartite graph. For a and b even, these graphs use
a/2 and b/2 paths. With Theorem 1, this proves the result. For a and c even,
these graphs employ a/2 + (b + l)/2 paths. Again, we have the result. Finally,
for b and c even, the 2 graphs employ (a+ l)/2 + b/2 paths. This completes the
lemma.

LEMMA 4. If a ^ b ̂ c, k(a, b9 c) = {(a + b)/2}9 and 2t > b + c, then

k(a + 2t,b,c) = {(a + b)/2} + c.

Proof: Decompose the graph into an (a9b9c) tripartite graph and a
(2t9b + c) bipartite graph. The result is then immediate.

LEMMA 5. If a ^ b ̂ c and k (a, b9 c) = {(a + b)/2} and 2t > a + c, then

k(a,b + 2t,c) = {(a + b)/2} + t.

Proof: Use a decomposition similar to that in Lemma 4.

We can now prove Theorem 3.

THEOREM 3. If a > c, then

k(a,a9c) = a.

Proof: From Theorem 1, k(a9a,c) ^ a. An algorithm for constructing a
covering of the graph with a paths is indicated in Figs. 4 and 5.

4. The Exceptional Case

We now consider the exceptional case a = b = c9 and determine k(a,a9a).
To do this, we divide our edges into 3a classes named d{i9j)9 where 1 < ι < 3
and 0 < y < a — 1 . The edge set d(JJ) is found as follows: name the vertices

290 R. G. Stanton, D. D. Cowan, L. O. James

Fig. 4. Algorithm for k(o,13,13), where a ̂ 12.

of A as (1,1), (1,2),...,(1,0), those of B as (2, l),(2,2),...,(2,a), and those of
C as (3,1), (3,2),..., (3, a). Then d(ij) joins vertex (/ + 1, a) to vertex (/+2, a +j),
as a ranges from 0 to a—l. Arithmetic in the first element of these pairs is
modulo 3, in the second element is modulo a. This gives 3a sets of a elements,
that is, all 3a2 elements of the edge set of G.

LEMMA 6. If a is odd, then the complete {a, a, a) tripartite graph may be
partitioned into a Hamiltonian circuits.

Proof: We merely display the circuits. Circuit / is given as the set
rf(l,i),rf(2,/),rf(3,l-2i).

LEMMA 7. If a = 0 modulo 4, the complete (a, a, a) tripartite graph can
be partitioned into a Hamiltonian circuits.

Tripartite Path Numbers 291

Fig. 5. Algorithm for k(o,12,12), where 0 ^ 1 1 .

Proof: There are three kinds of circuits. These are

έ/(1,ι), </(2,ι), rf(3,l-2i), 0 < / < f l / 2 ;

rf(l,i), rf(2,/+l), rf(3, - 2 /) , a/2 < i < a;

rf(l,0), rf(2,e/2+l), </(3,0).

We may now deduce Theorem 4.

THEOREM 4.

k(a9a,a) = a+ I.

Proof: If a fé 2 modulo 4, we use Lemmas 6 and 7. If a = 2 modulo 4,
a > 2, the solution is a variant of that used in Lemma 7, and has a pattern
indicated in Fig. 6 and Fig. 7. For a = 2, the result is trivial.

One can derive other similar results.

Fig. 6. Algorith m for k (a, a, σ) = ο+1 .

Fig. 7. Algorithm for k(10,10,10) = 11.

292

Tripartite Path Numbers 293

LEMMA 8.

*(β ,2 ,2)= 1 + {β/2},

and we conjecture that Theorem 1 gives an exact bound.

5. The Complete n-Partite Graph

Let v = (vl,v2,..-,vn) be a vector of integers in nonincreasing order. We
define k(v) to be the path number of the complete «-partite graph on
(v1,v2,...,vn) vertices, and find that many of the previous results generalize.
We indicate generalizations by an asterisk.

LEMMA 1*.

LEMMA 2*. For n even and all vt odd, we have

LEMMA 3*.

k(v) 5* Xi?i/2, i = 1,2, . . . ,«- 1.

Theorem 1 generalizes to Theorem 1*.

THEOREM 1 *. If Σ?= ì(vt-vn-l)Vi<0, then

i*J

otherwise

kip) > "t'vtß.

For n even and all v(odd, we have

k(v) > Σ "iß-

Proof: We use Lemmas 1*, 2*, and 3*, and denote Σ ^ by S and Σ ^ 2

by T. Then we need to prove

(1) S/2>(S2-T)/2(S-l);
(2) if Σ " - ί (» (- » . - 1) ο , < 0 , then (S2-T)I2(S-1)> (S-v„)/2;
(3) if ΣΓ-ι (» , - » , - !) » , ^ 0, then (S 2 - Γ) /2(5-1) < (S-v„)/2.

294 R. G. Stanton, D. D. Cowan, L. O. James

The first result is equivalent to Τ^ S, which is obvious. The second and third
follow from writing

"Σ(Ρ,-νη-1)ν, = (T-vn
2) - vn(S-vn) - (S-vJ

1 = 1

= T+vn-S(vn+l)

= (S-l)(S-v„)-(S2-T).

COROLLARY 1*. If v„ < vn„ ί, then Case 2 does not occur.

We can also state two further generalizations, which lend support to the
conjecture that the bounds of Theorem 1* are exact.

LEMMA 4*. Let k(v) = (S-vn)/2. If w is a vector and Σ wi = ^ι » a n d if
k(w,S) = SJ2, then

k(w,O) = (S+Si-Om)/2.

LEMMA 5*. If k(v) = (S-vn)/2 and r>k(v)9 and w = (0,0,...,2r,...,0),
where 2r may be in any position except the last, then

k(v + w) = k(v) + r.

Reference

1. Stanton, R. G., Cowan, D. D., and James, L. O., Some results on path numbers, Proc.
Louisiana Conference on Combinatorics, Graph Theory, and Computing, Baton Rouge,
112-135(1970).

NON-HAMILTONIAN PLANAR MAPS

W. T. Tutte

Faculty of Combinatorics and Optimization

University of Waterloo

Waterloo, Ontario

Canada

A planar map is a dissection of the sphere or closed plane into a finite
number of simply connected polygonal regions called faces or countries by
means of a graph drawn in the surface. It is assumed that this graph has no
loop or isthmus. In this paper we shall use the term map as an abbreviation
for planar map.

A Hamiltonian circuit in a map is a circuit in its graph passing through every
vertex. A map is called Hamiltonian or non-Hamiltonian according as it does or
does not have such a circuit. A map is said to be cyclically n connected if at
least n edges must be removed in order to decompose the graph into two
disjoint parts, each containing a circuit.

Special interest is attached to the trivalent or cubic maps, in which exactly
three edges meet at each vertex. These are studied in connection with the four
color conjecture, which asserts that the faces of a map can be colored in four
colors so that no two of the same color have a common edge. Let us use the
term 5 chromatic for the hypothetical maps that do not satisfy this conjecture,

295

296 W. T. Tutte

and let a minimal map be defined as a trivalent 5-chromatic map with the least
possible number of faces.

In the theory of the four-color problem it is shown that the conjecture is
true for all maps if it is true for all trivalent ones. Various properties of minimal
maps are determined. In particular it is shown that a minimal map must be
cyclically 5 connected.

There is a connection between the four-color problem and the theory of
Hamiltonian circuits. Let C be a Hamiltonian circuit in a map M, not neces
sarily trivalent. It separates the sphere into two regions that we may call the
inside and the outside of C. The faces inside C can be colored alternately red
and blue while those outside can be colored alternately green and yellow. Thus,
all Hamiltonian maps can be 4 colored.

This fact suggests the possibility of verifying the four-color conjecture by
showing that the established limitations on the structure of a minimal map
permit the construction of a Hamiltonian circuit. This possibility was explored
by Tait toward the end of the nineteenth century [2]. Tait observed that non-
Hamiltonian trivalent maps exist, for example, see the map of Fig. 1, but
conjectured that all cyclically 3-connected trivalent maps are Hamiltonian.
Tait's conjecture was eventually shown to be false. The cyclically 3-connected
non-Hamiltonian map of Fig. 2 was published in 1946 [3], and a cyclically
4-connected non-Hamiltonian trivalent map was exhibited in 1960 [4]. In
1965 H. Walther [5] published a cyclically 5-connected non-Hamiltonian
trivalent map. Walther's map has 83 faces, of which 67 are pentagons, 6 are
heptagons, 5 are octagons, and 4 are dodecagons. The remaining face has 21
sides.

The existence of Walther's map is of course discouraging to students of
Hamiltonian tetrachromatology. The known properties of minimal maps
no longer seem inconsistent with their non-Hamiltonian character. With
Walther's discovery our interest turns anew to the theory of non-Hamiltonian
trivalent maps. How can we best determine whether or not a given map is

Fig. 1

Non-Hamiltonian Planar Maps

Fig. 2

Hamiltonian? How would we set about constructing a non-Hamiltonian
trivalent map satisfying given conditions ? It must be admitted that even up to
this stage the progress of the theory seemed somewhat disappointing. By dint
of much hard work a few highly complicated examples of special interest had
been constructed, and that was all.

Soon after Walther's work a revolutionary discovery was made by two
Russian mathematicians, V. Kozyrev and E. Grinberg. It was reported by
Sachs in 1968 [1]. It shares one property with some other major advances:
once explained it seems trivial. Every combinatorialist interested in this aspect
of his discipline must cry, "Why didn't I think of this myself? How was it
possible for Tait, or even Hamilton, to miss it?" The work of Kozyrev and
Grinberg gives some useful sufficient conditions for a map to be non-Hamil
tonian, and makes it reasonably easy to construct non-Hamiltonian trivalent
maps, even cyclically 5-connected ones.

Suppose that we are given a map M, not necessarily trivalent, and that we
assume it to have a Hamiltonian circuit C. Then the edges of M fall naturally
into three sets, the edges of C, the diagonal edges crossing the inside of C,
and the diagonal edges crossing the outside of C. Let there be c edges in the
first set, d' in the second and d" in the third.

The d' diagonal edges crossing the inside of C decompose that Jordan

298 W. T. Tutte

Fig. 3

domain into d' +1 faces of the map. Similarly the outside of C is decomposed
into d"+\ faces by its d" diagonals. Let us denote the number of /-sided
faces of M by fi. We assume that// of these are inside C and//' are outside.

Let us sum the numbers of sides of the faces inside C. The result can be
obtained also by counting 1 for each edge of C and 2 for each diagonal edge
crossing the inside of C. Thus,

c + 2d'

€-2 + 2Σ//,
i=2

c - 2 .

The same reasoning applied to the outside of C gives us the equation

£(/-2)/y' = c-2.
i=2 Hence, by subtraction,

0) Σ0'-2)(/ί
' -fi') = o.

1 = 2

00

Σ'/ι'
1 = 2

Σ 0-2)/,'
1 = 2

Non-Hamiltonian Planar Maps 299

Kozyrev and Grinberg pointed out that for some finite sequences
(/2,/3,...,/J of nonnegative integers (1) must always be false however we
partition each/ into two non-negative integers/·' and//'. Suppose for example
that / = 0 whenever i—2 does not divide by 3, with the single exception that
fj=l for one particular y not congruent to 2 modulo 3. Then it is impossible
to make the expression on the left of (1) divide by 3, and hence (1) is necessarily
false. We conclude from this that any map corresponding to such a sequence
must be non-Hamiltonian. Such maps exist; Kozyrev and Grinberg gave the
trivalent and cyclically 5-connected example, Fig. 3. This has 25 faces, with
/ 5 = 21 , / 8 = 3, and/9 = 1. A slightly simpler example of a cyclically 5-con
nected non-Hamiltonian trivalent map was obtained at the Calgary Conference
in June 1969.1 was asked by H. V. Kronk if I knew of any Hamiltonian trivalent
map in which there was one edge not belonging to any Hamiltonian circuit.
I was able to reply in the affirmative, mentioning the map obtained from that
of Fig. 2 by contracting the triangle ABC and the faces inside it into a single
vertex. The resulting map is Hamiltonian but in it the edge OA belongs to no
Hamiltonian circuit. I tried however to use the theory of Kozyrev and Grinberg
to construct a more impressive example. Because of erroneous reasoning I
stumbled instead upon the cyclically 5-connected non-Hamiltonian map of
Fig. 4.

Fig. 4

300 W. T. Tutte

The map of Fig. 4 has 24 faces, with/5 = 18,/6 = 3, and/ 8 = 3. Now this
sequence of numbers f{ does not make (1) impossible. We observe however
that whenever that equation is satisfied one of the numbers fb' and/6" is 3 and
the other is 0. We deduce that for any Hamiltonian circuit of this map the
three hexagons must be on the same side of the circuit. But this is impossible
since any Hamiltonian circuit must pass through the common vertex of the
three hexagons.

One wonders how far the Kozyrev-Grinberg theory could be extended. Can
all the known non-Hamiltonian maps be simply explained by this theory or by
refinements of it ? It is amusing to note that the non-Hamiltonian character
of the map of Fig. 1 can be demonstrated by the same three-hexagon argument
that we have used for the map of Fig. 4. It does not seem that the map of Fig. 2
can be dealt with directly by the theory. However this map is obtained [3] by
a simple construction based on the map shown below in Fig. 5. The essential
fact is that no Hamiltonian circuit of the latter map passes through both of
the edges A and B. This can be regarded as a consequence of the Kozyrev-
Grinberg theory, as (1) can be satisfied only by a Hamiltonian circuit
separating one of the quadrilaterals from the other four.

Perhaps a converse form of the Kozyrev-Grinberg theory could be found.
One wonders for example about those trivalent maps in which the number
of sides of each face is congruent to 2 modulo 3. For these (1) is trivially true,

Fig. 5

Non-Hamiltonian Planar Maps 301

whatever the numbers// and// ' may be. Is Tait's conjecture valid for maps of
this kind?

In conclusion let us note that the Kozyrev-Grinberg theory can be expressed
in dual form as a theory of Hamiltonian bonds. A Hamiltonian bond in a
graph G is a set H of edges such that the rest of the graph consists of two
disjoint trees, and each edge of H has one end in each tree. Let us denote the
number of vertices of G of valency / by fi9 and suppose// of these to be in
the first tree and// ' in the second. Then we can establish (1), much as before.
This form of the theory applies to all graphs, planar or nonplanar.

References

1. Sachs, H., "Beiträge zur Graphentheorie," pp. 127-130. Barth, Leipzig, 1968.
2. Tait, P. G., Phil. Mag. (5) 17, 30-46 (1884); Scientific Papers, Vol. II, 85-98.
3. Tutte, W. T., On Hamiltonian circuits, / . London Math. Soc. 21, 98-101 (1946).
4. Tutte, W. T., A non-Hamilton planar graph, Acta Math. Acad. Sci. Hungar. 11, 371-375

(1960).
5. Walther, H., Ein kubischer, planarer, zyklisch fünffach zusammenhangender Graph,

der keinen Hamiltonkreis besitzt, Wiss. Z. Techn. Hochsch. Ilmenau 11,163-166 (1965).

A TOP-DOWN ALGORITHM
FOR CONSTRUCTING
NEARLY OPTIMAL LEXICOGRAPHIC TREES*

W. A. Walker*

C. C. Gotlieb
Department of Computer Science

University of Toronto

Toronto, Ontario

Canada

1. Introduction 303
2. An Application 305
3. Basis of a Top-Down Algorithm 307
4. Algorithm for Nearly Optimal Lexicographic Trees 309
5. Choosing Parameters of the Algorithm 310
6. Time to Construct the Nearly Optimal Tree 312
7. Tests of the Algorithm 315
8. Summary 323

References 323

1. Introduction

The binary search tree has been proposed as a data structure for lists of
names which must be both searched and updated frequently. A binary search
tree is a rooted, ordered tree such that the out-degree of every node is two for

t This research was supported in part by the National Research Council of Canada.
% Present address: Ontario Hydro, Toronto, Ontario, Canada.

303

304 W . A . W a l k e r and C. C. Gotl ieb

Leve I

1

Fig. I. A lexicographic tree.

an internal node or zero for a leaf. If there are N internal nodes, there are 2N
edges and N+ 1 leaves. Each internal node is associated with one name in a
set of lexicographically ordered names, Ax < A2< ··· <AN. If the internal
nodes are labeled with the associated names, the post-order listingt of the
internal nodes is Ai9A2,...9AN. Windley [8], Booth and Colin [1], Hibbard
[4], and Clampett [3] have given the average search time required to locate
names in binary trees if all the names are equally likely to be used in a search,
and are entered in the tree in a random order. When all the names are equally
likely, a best possible tree, that is, the one with minimum average search time,
is one in which the average path length from the root to a leaf is minimized.

A lexicographic tree is a binary search tree, such that:

(1) there is a set of N frequencies α ΐ5...,αΝ, α£ being associated with A>x\
(2) there is a set of 7V+ 1 frequencies β0,...,βΝ9 associated with the leaves,

ßi being the frequency of encountering names which lie between Ai and Ai+l,
ß0 being the frequency of names preceding A1, and ßN being the frequency of
names following AN ;

(3) the post-order listing of the lexicographic tree, with the nodes labeled
with the associated frequencies, is β0,αί,βί,...,αΝ,βΝ.

A special case of the lexicographic tree occurs when all the /?,· are zero. In this
case, only the names AUA29...9AN would be used to search the tree and all
searches would be successful, that is, terminate at an internal node.

Figure 1 illustrates a lexicographic tree with four names Ai,...,A4, and the
nine associated frequencies. The weighted path length P of a lexicographic
tree is given by

p= tu«d«,+ t^ßdßt,
/ = 1 i = 0

t The post-order listing for a binary tree is left subtree, root, right subtree; see Knuth [5].

Constructing Nearly Optimal Lexicographic Trees 305

where Lfe) is the level of the node with frequency af. For the tree shown in
Fig. 1,

P = 3j30 + 2a! + 30! + a2 + 4ß2 + 3a3 + 4ß3 + 2a4 + 3j84.

The weight W of the tree is the sum of all the frequencies. The average search
length is defined as the weighted path length divided by ^ a n d can be interpreted
as being the average time to search the tree for a name. It is therefore of
interest to construct a lexicographic tree with minimum weighted path length.

Knuth has given an algorithm for constructing an optimal lexicographic
tree [6]. It is not necessarily unique. The algorithm requires a time proportional
to N2 and storage proportional to TV2. It constructs the tree from the bottom
to top, that is, from the leaves to the root, and is practical when the number of
names is small. However, for large values of TV (in practice N>200) it will
require the use of secondary storage on all but the largest computers, and the
time will be prohibitive. If N is very large, say 100,000, it is clear that the
algorithm is impractical both with respect to time and space.

In this contribution, we will present a top-down algorithm which constructs
nearly optimal lexicographic trees. The algorithm chooses a root for the tree
and repeatedly chooses roots for the subtrees until a subtree is encountered
which contains N0 or fewer names, where N0 is a parameter of the-algorithm.
Knuth's "Algorithm K" is then used to construct an optimal subtree. In a
recent paper, Nievergelt and Wong [7] derive certain expressions for the
expected search times for optimal trees, for balanced trees, and for random
trees. From these they are led to suggest a heuristic method for constructing
a nearly optimal tree. Our method corresponds in part to this suggestion/

2. An Application

An application of a lexicographic search tree, where a large number of
nodes is needed, is the author index of a library catalog, where author surnames
are the nodes. In this case, the frequency associated with each name could be,
for example, the number of entries for each author in the catalog, or, more
usefully, the total number of references to an author's books in a given time
interval. The author index could be maintained on a computer and accessed
by librarians for updating and expanding the catalog, and by users for querying
the catalog in a read-only manner. In addition to the frequency associated
with each name, it would be possible to determine the frequencies for names
which lie between the names in the lexicographic tree. Although the index
would be continually updated, the frequency associated with most of the

f J. Bruno and E. G. Coffman, Jr., have also described a heuristic method for constructing
a nearly optimal tree [2].

306 W. A. Walker and C. C. Gotlieb

TABLE I

Average Search Length

1
2
3
4
5
6
7
8
9
10

Optimal
search
length

4.2944
6.6060
5.8749
6.0650
6.6424

5.9633
5.8250
6.2576
7.0856
7.3376

N o = 0

F=l

4.7271

7.6283
6.4392
6.7204
7.5619

7.0943
6.7102

7.8798
9.8991

8.2455

N o = 0
Root =

centroid

4.9253
7.0881

6.1205
6.4168

6.8175
6.5883
6.3265
6.8535
7.4352

7.5238

No = 1 5
F=4

4.3635
6.6809
5.9439
6.1591

6.7192
6.0404
5.8256
6.3669
7.2746

7.3675

No = 1 5
F=5

4.3708
6.6812
5.9454

6.1254
6.7201
6.0777
5.8280

6.3793
7.3114
7.3487

No = 1 5

F=6

4.4103
6.6812
5.9454
6.1473
6.8078
6.0777

5.8560
6.3780
7.3512

7.3954

No = 15
F = 1 0 6

4.4682

6.8741
5.9807
6.1640
6.7693
6.2380

5.9994
6.5602
7.2489

7.4175

1
2
3
4
5
6
7
8
9
10

4.6317
7.2555
6.2534

6.3976
7.0182
6.5382
6.4549

6.5810
7.1216

7.6958

5.0299

8.1425
6.7129
6.8927

7.7191
7.6647
7.2480
8.4312

9.6699
8.3864

5.6680
7.7977
6.8398

6.8801
7.2384
7.0262
6.9911
6.8701

7.3190

7.8933

4.7003
7.2602
6.2854

6.4308
7.0570
6.5632

6.4638
6.8593

7.4623
7.7384

4.6721

7.2685
6.3060
6.4539

7.0835
6.5793
6.4630

6.7082
7.4606

7.7054

4.7795
7.2685
6.3175
6.4661

7.0870
6.6808
6.4831
6.7288
7.4161
7.7054

4.7738

7.4535
6.3910

6.5360
7.0981
6.7689
6.6469

7.0154
7.3423
7.7128

1
2
3
4
5
6
7
8
9
10

4.0035
6.4230
5.5561

5.7628
6.2211
5.6524
5.5935
6.0850
7.0125
6.9738

4.7786
8.1525
6.6162
6.8180

7.2739
7.1084
7.1817
9.2180
11.1363
8.3983

4.5373
6.9852

5.8533
6.2072

6.3650
6.2465
6.0225
6.6197
7.2585

7.0934

4.0547
6.4747
5.5814

5.8182

6.2596
5.7149
5.7259
6.3225
7.2805
7.0482

4.0547
6.4759

5.5814
5.8089

6.2658
5.7569
5.7231
6.2860
7.2344
7.0626

4.1393
6.5035
5.6105
5.8098

6.2681
5.7656
5.7313
6.2445
7.2344
7.0385

4.0655
6.4868
5.7129

5.8764

6.3288
5.9927
5.7873
6.3284
7.2099

7.0921

1
2
3
4
5
6
7
8
9
10

5.0362

7.4164
6.5463

6.6505
7.2702
6.5494

6.7508
6.7320
7.1119
7.8730

5.9324
8.8770
7.4664

7.5831
8.4620
7.6391
8.4449
8.7564
10.4205
8.9113

5.8784
7.8493
6.9774
7.1837
7.4610
7.0804

7.1797
6.9632
7.3073
8.0264

5.0572
7.4609
6.5611
6.6667
7.3371
6.5627
6.7954
6.9473
7.3833
7.8765

5.0572
7.4606
6.5697
6.6758
7.3085
6.5627
6.8179
6.9595
7.3798
7.8863

5.1860
7.4908
6.5697
6.6758
7.3173
6.5892
6.7669
6.9377

7.3798
7.8802

5.1079

7.5341
6.6169
6.7062
7.3212
6.6194
6.9337
7.1285
7.3373
7.8880

Constructing Nearly Optimal Lexicographic Trees 307

TABLE I (continued)

Sei 5: 1
2
3
4
5
6
7
8
9

10

Optimal
search
length

4.1379
5.9726
5.7540
5.9979
6.6600
5.3331
5.4117
5.8119
6.9904
7.2693

Wo = 0
F = l

4.8235
7.2296
6.7917
7.0442
8.3690
6.5523
6.6474
7.2683

10.3917
8.7128

Wo = 0
Root =
centroid

5.3214
6.7504
6.2758
6.5053
6.9629
5.9711
6.3725
6.3579
7.2422
7.4147

W0=15
F = 4

4.1815
6.0523
5.7765
6.0469
6.8071
5.3672
5.4284
5.8935
7.2023
7.3624

M, = 15
F = 5

4.2028
6.1668
5.8456
6.0605
6.7324
5.3995
5.4284
5.9134
7.1713
7.2930

Wo =15
F = 6

4.2060
6.1718
5.8301
6.0479
6.7515
5.5638
5.4522
5.9896
7.1620
7.2949

Wo =15
F=10 6

4.2735
6.1478
5.8458
6.0706
6.8056
5.5449
5.7755
5.9578
7.1881
7.3149

names would not change greatly over a short period. For the case where
frequencies are determined by usage statistics, each access to the catalog
would be recorded. The search tree should be reconstructed periodically to
reflect the changing search patterns. The problem is to construct the binary
tree which minimizes the time required to locate an author's name, or to
ascertain that the name is not in the tree.

3. Basis of a Top-Down Algorithm

Knuth suggests two possible rules for structuring nearly optimal lexico
graphic trees, and points out that neither rule will produce an optimal tree in
all cases. The first rule is to choose the A{ with the largest af as the root of the
tree, then proceed similarly for the subtrees. A set of names whose ßi frequencies
are 0 and whose af satisfy

i - l

«i > Z a i ' * = 2,...,7V
y = i

will be structured into an optimal tree if we use this rule. Tests on this rule
were included with the tests on the algorithm described in Section 7. See
Table I, Column N0 = 0, F= 1, where the average search lengths obtained
by this method are compared with the optimal lengths. The poor results using
this rule are partially explained by noting that the ßi cannot influence the final
structure of the tree. In general, the larger the sum of the ßi9 compared to the
sum of the ocif the poorer is this rule. However, even the tests with all the

308 W . A . W a l k e r and C. C. Gotl ieb

8 12 16 20 24 28 32 36 4 0 4 4 4 8 52 56 60

Root Index

Fig. 2. Dependence of path length on root position.

I i - root index
i OIL

ΓΊ 4
2 19
3 3
4 3
5 1
6 1
7 28
8 4
9 4

10 S
11 1
12 1
13 1
14 35
15 13
16 27
17 11
18 32
19 1
20 50
21 2
22 1
23 1
24 27
25 2
26 31
27 2
28 3
29 1
30 2

ί a i

31 7
32 59
33 4
34 1
35 1
36 7
3 7 3
38 2
39 3
4 0 22
41 2
4 2 1
43 5 2
4 4 3
45 1
46 4
4 7 I
4 8 1
49 1
50 6
51 8
52 13
53 f
54 4
55 1
56 1
5 7 1
5 8 1
59 1
6 0 26

ßi equal to zero, Sets 1-5, Case 1, do not produce acceptable nearly optimal
trees.

The second rule suggested by Knuth is to choose as root a name whose left
and right subtrees are most nearly equal in weight. There will be one or two
such names. We will call the single name, or the lexicographically larger of
the two names, the centroid. Choosing the centroid as root will result in an
optimal tree when all the ô and ß-t are equal. This rule takes into account
both the OLI and /?,·. It nearly always is a significant improvement (see Table I,
Column N0 = 0, root = centroid) over choosing a name with largest af as the
root. Since this second rule does not consider the individual a,·, a node with
a very small oet· may be chosen as a root when there is an adjacent node with
αΐ+ι v e r y l a r ê e which may, in fact, be the actual root of the optimal tree.
Thus, neither of the rules suggested by Knuth is satisfactory for constructing
a nearly optimal tree.

If the a,· a n d ßi are not all equal, we can regard the centroid as a first choice,
and establish a rule for determining how far to move from this choice. To
determine how far to move, let us examine how the minimum path length of a
tree varies when different nodes are chosen as the root. From a set of names
Al9...,AN, construct trees Tl9...,TN by choosing At as the root of Ti9 and
constructing optimal binary subtrees for A{. As an example, Fig. 2 shows the
weighted path length of the Tt for the first 60 names of data Set 1, Case 6. See
Section 7 for a description of the test data. The minimum of this graph at 32
corresponds to the optimal tree.

Constructing Nearly Optimal Lexicographic Trees 309

Examining the weighted path length of many sets of Ti9 such as that shown
in Fig. 2, indicates that, in the majority of cases, the minimum weighted path
length occurs when the frequency of the root of Γ, is a local maximum, that is,
a i - i < ai > a i+i · We would expect this relation, since if we choose oii.l as
the root in place of a,·, the increase in the weighted path length of the right
subtree, due to adding oci, will usually be larger than the decrease in the weighted
path length of the left subtree, due to removing a , · ^ . In addition, if the
weighted path length of Ti9 denoted by Pi9 is a local minimum, that is,
P f_! >Pi<Pi+l9 it is usually true that the associated af is a local maximum.
In other words, a local minimum of Pt usually corresponds to a local maxi
mum for the af. This is true for the central portion of the graph, that is, values
of Pi for 10 < / < 50, in Fig. 2. The relation should not be expected to hold
when one of the subtrees contains very few nodes, since, in this case, the
structure and weighted path length of a subtree can be significantly changed
by the removal or addition of even a single name and its corresponding a,·
frequency.

Based on the preceding discussion, our algorithm chooses as the root a
name with the largest associated af in a neighborhood of the centroid. If this
maximum is not unique, the name whose af is closest to the centroid is taken,
enlarging if necessary the neighborhood which is being considered. The size
of the neighborhood is determined by a parameter of the algorithm. The
choice so determined may not be the root of the optimal tree, but it will usually
be a name corresponding to a local minimum of the curve in Fig. 2. In practice,
it is found that the value of the local minimum is not significantly larger than
the minimum weighted path length. This rule for determining how far to move
from the centroid does not consider the magnitude of the individual ßi9 thus,
for a small number of names, the tree can have a structure quite different
from, and an average search length larger than, the optimal tree. Since
Algorithm K is easily applied to small trees, it is used to determine the optimal
subtree for subtrees containing fewer than a specified number of names N0.

4. Algorithm for Nearly Optimal Lexicographic Trees

Given the ordered set {A} of names, such that Αγ < A2 < ··· < AN,
aj,...,aN, and β0,...,βΝ, the steps of the algorithm to structure a nearly
optimal lexicographic tree are as follows :

(1) If N^N0, structure an optimal binary tree using Algorithm K.
(2) If N> N0, let Wkukl be the weight of the subtree with frequencies

310 W . A. Walker and C. C. Gotlieb

ß k i , αΛι + 1,...,αΛ2, ßk2, F a parameter,* and Ac the centroid. Form the ordered
set of names {AF} = {AL} u Ac, where the members of the set {AL} satisfy

\^O,L-I-^L,N\ < WojilF, 1 < F < W0j}

(3) Find an index, max, such that amax = maximum,· af, where A{ e {AF}.
(4) If in the set {AF} there is at least one name preceding or equal to Ac

with associated frequency amax, let/? be the index such that Ap with ap = amax,
is lexicographically closest to Ac. If there is no such p, let {AQ} be the null
set and go to Step 6.

(5) If Ap is the first member of {AF} and <xp_lxxp, form the set
{AQ} = {Ap_uAp-2>-->Au}> w here <*„_,·_! > ap_,·, y = 0, . . . , /?-w-l and
a «- i < au o r w~/> = Llog2N; if Ap is not the first member of {AF}9 let {AQ}
be the null set.

(6) If in the set {AF} there is at least one name following or equal to Ac

with associated frequency amax let r be the index such that Ar with ar = amax

is lexicographically closest to Ac; if there is no such r, let {As} be the null set
and go to Step 8.

(7) If Ar is the last member of {AF} and ccr < αΓ+ j , form the set {As} =
{Ar+i9Ar+2,...,AO}> w h e r e a r + y < a r + i + 1 , y = 0 , l , . . . , i ; - r - l , and <xv>ocv+i

orv-r = Llog2 N. lfAr is not the last member of {AF}, let {As} be the null set.
(8) Find an index, root, such that aroot = maximum,·a,·, where A{ e {AQ} u

{AF}u{As} and |Wo,root-i~^rootjvl is minimized; choose Aroot as the root
of the tree.

(9) Go to Step 1 and repeat the algorithm for the subtrees Al,...,Aroot_l

and Aroot+i,-..9AN, where N is root— 1 and N-root for the two cases.

5. Choosing Parameters of the Algorithm

The algorithm defined in the preceding section has two parameters, 7V0

and F9 which are influenced by the computer on which the algorithm is executed,
the frequencies associated with the nodes, and the desired precision of the
average search length. The parameter N0 determines the maximum number
of names which will be structured into an optimal subtree using Algorithm K.
In practice, the available storage will usually determine an upper bound for
N0. The larger the value of N0, the closer the average search length of the nearly
optimal tree. We thus have a trade-off, which is examined further below,
between the value of 7V0 and the ratio of the average search length of the nearly
optimal tree to the average search length of the optimal tree.

t F determines the neighborhood of the set {AF}.
t Wo, N = W, the weight of the tree.

Constructing Near ly O p t i m a l Lexicographic Trees 31 I

8.4

8.2

8 °(
7.8

76

ί 7.4

5 7.2

7.0

υ 68
(0

LO 6.6

» 6 · 4

£ 6.2
>
< 6.0

5.6'

5.6

5.4

0 5 10 15 20 25 30 35

Number of Names in Optimal Subtrees (F=4)

Fig. 3. Dependence of search length on the parameter N 0 .

Let us examine Fig. 3 which shows 5 examples, from the tests described in
Section 7, of how the average search length for a nearly optimal tree depends
on N0. As Ν0 increases, the value of the average search length decreases.
However, for each example, there is a value of N0 beyond which the average
search length decreases very slowly or remains constant. This value is largely
determined by the sum of the ßt and the sum of the αί5 which we will refer to
as the β and a frequency respectively. In general, if the β frequency is less than
a few multiples of the a frequency, the value of N0 beyond which it does not
pay to go is small. In the examples shown, there is little advantage in choosing
N0 larger than 15. This is the value used in our tests described in Section 7.
If the β frequency is many times greater than the a frequency, N0 should be
increased, perhaps, to 25 or 30.

The second parameter which can be varied is F, which determines the size
of the neighborhood about the centroid from which the root will be chosen.
With F = 1, the neighborhood is the entire tree. The name with the largest
associated frequency becomes the new root.f Increasing F restricts the neigh-

* If N0 = 0, this corresponds to the first rule of Knuth.

Set 2 Case 6 (9fc=1.0)
1 · ·
Set2Case3 (9f r=1.0)

Set3Case6 (3&= .6)

312 W. A. Walker and C. C. Gotlieb

borhood. Choosing F = W0N restricts the neighborhood so that little searching
takes place, and a name near or equal to the centroid is chosen as the root.

The value of Falso depends on the ß frequency and the a frequency. Let us as
sume that the ß frequency is many times greater than the a frequency, and all the
a; are small compared to the smallest ßt. If the smallest ßt is sufficiently large,
the optimal binary tree will be the complete binary tree/ This tree is structured
by our algorithm when F= W0tN, that is, the centroid is chosen as the root.
In practice a set of frequencies satisfying the above conditions will not occur
often. However, it is found that having the ß frequency many times greater
than the a frequency is a sufficient condition for F= W0N to produce good
nearly optimal trees.

When the ß frequency is less than a few multiples of the a frequency, the
average search length of the nearly optimal tree is improved by increasing the
neighborhood of the centroid which is searched for the root, as discussed in
Section 3. If the ß frequency is a few multiples of the a frequency, it is found
that the choice of F is not critical and the average search length of the nearly
optimal tree is almost constant for F> 5. If the a and ß frequencies are nearly
equal, the minimum average search length occurs for F near 4. If the ß fre
quency is small compared to the a frequency, the individual af frequency will
determine the best value of F.

Fig. 4 shows 5 examples, from tests described in Section 7, of how the
average search length for a nearly optimal tree depends on F. Unless the ß
frequency is many times greater than the a frequency, a value of 4 for F seems
to be acceptable.

6. Time to Construct the Nearly Optimal Tree

Before considering general timing formulas, let us determine the time
required to construct a tree from N names with all frequencies uniform, that is,
with af = ßi = constant. As usual, the parameters of our algorithm will be
denoted by N0 and F. Our algorithm consists of two steps, one for locating
ATOOt in a subtree and the other for constructing an optimal subtree using
Algorithm K.

The subtree roots, Aroot, located by our algorithm will form the first L le
vels of the nearly optimal N name tree whenever N satisfies

(1) 2L"1(Wo+1) + 2L~l - 1 < N ^ 2L(N0) + 2L - 1

The time required to locate Aroot for a subtree with Nt names and weight
W1 is proportional to WJF or equivalently, since the weights are all equal,

t A complete binary tree has leaves only on level L or L+1 ; see Knuth [5].

Constructing Nearly Optimal Lexicographic Trees 313

3 4 5 6 7 8 9

F (No=15)

Fig. 4. Dependence of search length on the parameter F.

to N1/F. On any level Lx ^ L, there are 2Ll " * subtree roots to be located, each
requiring a time proportional to N/F(2Ll ~1). Hence, locating the subtree roots
on each level requires a time proportional to N/F. The total time will be
proportional to LN/F.

For any value of TV satisfying (1) for some L, 2L subtrees will be constructed
by Algorithm K. The average number of names in each subtree varies from
N0/2 to N0, as TV varies from the lower bound to the upper bound of (1).
If a subtree containing N0 names is constructed in time K(N0) by Algorithm K,
the total time required by our algorithm to construct the nearly optimal tree
when N is equal to the upper bound in (1) is given by

(2) Time = K'LN/F+ K(N0)2
L

, /N+l\N , JN+1\

314 W . A. Walker and C. C. Gotlieb

<o
~Ό
C

8
0) «o

ë

CO

ε co
Z
L.
Q)
ex
o>
E
i—
e
.g
o
3
t_

V>

o
o
cu
σ>
JO
CU

> «(

20

19

18

17

16

15

14

13

12

11

10

2 4 8 16 64 256 1j024 4,096 16384

Number of Names in the Tree

Fig. 5. Time to construct a nearly optimal tree.

Hence, the time required to construct this tree is given by an equation of the
form

(3) Time = Kx N log2 N + K2N.

Similarly, when TV equals the lower bound in (1) the time required to construct
the tree will be given by

(4) Time = Kt N log2 N+ K3N9

where K3 is determined by the time required by Algorithm K to construct an
optimal subtree with N0/2 names.

The average time per node required to construct the tree can be obtained
by dividing (3) and (4) by N. Figure 5 shows the time per node required by our
algorithm to construct the nearly optimal tree when the number of names in
the optimal subtrees is N0/2 and N0. In both cases, the form of our normalized
equation is verified, since the plotted times lie on a straight line on the semi-
logarithmic graph paper.

The nearly optimal trees of N names, with N not satisfying (1), have names
chosen as subtree roots accounting for the names on the first L levels and some
of the names on the L + 1 level. The time required to locate ATOOt in an N 0 + 1
name subtree, and construct two optimal subtrees of N0/2 names, is less than
the time required to construct an optimal N0 +1 name subtree. Hence, the

Parameters of the Algorithm

F = 4 N0=15

O Ì L A uniform

15 names in each
optimal subtree

0Li,&i random
numbers

CLi,Ê>i uniform
7or8 names in each
optimal subtree

Constructing Nearly Optimal Lexicographic Trees 315

time required to construct any N name nearly optimal tree with uniform
frequencies is given by the expression

K1Nlog2N+K4N9

where K3 < K^ ^ K2, and K^ is determined by the number of optimal sub
trees and the number of names in each optimal subtree.

The shape of the nearly optimal tree depends on the individual af and /f;
frequencies. In general, the subtree roots will not form the first L levels as in
the case of uniform frequencies. If most of the subtree roots occur on the first
L levels, an equation of the form (3) may be used to estimate the time required
to construct the tree. In practical applications, such as the library index, this
will usually be the case. For example, Fig. 5 shows the time per node required
to construct a tree in which the af and ßt frequencies are random numbers
between 1 and 200. The slopes of the straight lines fitted to the plotted con
struction times for the random and uniform frequencies are almost equal.
Since the expected average search lengths of the balanced tree and the optimal
tree satisfy (see Nievergelt and Wong [7]).

| expected average search length — log2Af| < constant,

we would expect the construction time per node of the nearly optimal trees
to differ by a constant. That is, the slopes of the lines in Fig. 5 would be
expected to be equal. The deviation of the construction times from the straight
line for random frequencies results from the dependence of the time on the
number of names in each optimal subtree. These numbers are determined by
the random af and j?f frequencies.

The times in Fig. 5 were obtained from an ALGOL implementation of our
algorithm executing on an IBM/360 Model 65, and should not be regarded as
a measure of the minimum time required to construct a tree of N names.
A much more efficient program could be written using assembler language
for some sections. However, the form of the equation estimating the time
should remain unchanged.

The algorithm requires AN words of storage for the data. From the nature
of our top down algorithm, it would be possible to use secondary storage for
the data, when constructing trees for large values of N, without greatly
increasing the running time beyond that achieved with a very large core store.

7. Tests of the Algorithm

Using a value of N = 200, the algorithm was tested for five sets of af

frequencies, and for 10 sets of ßt frequencies with each af set. The sets of
oil were chosen in the following manner; Sets 1, 2, and 3 were obtained by

316
W

. A
. W

alk
er and C

. C
. G

otlieb

11-

TABLE II

Test Dataa

Set I 4

2

2

33

128

1

1

2

10

1

Set 2 7

2

90

1

1

3

1

2

2

3

19 3 3 1 1 2 8 4

1 1 2 7 2 3 1 2 3

1 5 2 3 1 4 1 1

1 1 8 7 1 2 1

350 1 2 1 87 2 1

2 1 1 8 1 2 1

2 4 6 2 2 1 1 1

4 4 3 2 1 4 1 I

8 1 5 1 0 1 2 1 0

1 1 1 1 4 2 2

4 1 1 2 0 1 2 I

1 1 4 2 2 1 3

3 I 4 1 4 2 9 1

3 5 4 6 2 7 1 1

1 1 2 4 1 1 1 6

1 3 2 1 1 2 9 2

6 1 9 2 1 3 I 1

4 1 1 1 1 1 1

I 1 1 1 2 2 9 3

6 2 2 I 2 3 1 9

ai Frequencies
~ ~- ~

4 5 1 1 1 35 13 27 11 32 1 50

1 2 7 5 9 4 1 1 7 3 2 3 2 2

1 6 8 1 3 1 4 1 1 1 1 1 2 6

1 2 4 1 0 5 1 0 2 3 1 1 9 6 2

8 3 4 1 6 3 2 3 1 4 1 5 0 1 I 1

3 4 2 1 I 9 1 1 2 1 0 4 1 5 1

3 1 1 3 14 4 1 2 1 1 2 2

18 1 1 7 1 4 5 1 5 9 3 1 5 4

2 1 2 4 2 9 1 1 6 1 1 4 1 2 1

6 4 1 1 4 5 5 1 5 3 1 1 1 4

3 1 1 1 3 0 1 1 1 1 1 3 3 0

1 2 1 7 1 2 4 2 6 6 7 1

1 1 1 2 6 2 2 1 5 5 2 40

1 3 1 1 4 2 1 1 2 2 6 1 1

1 3 3 1 1 2 1 2 8 1 1 0 1 9 ~

1 0 0 1 5 1 2 7 1 1 1 1 0 3 1 2

1 4 1 2 0 1 1 3 3 6 2 1 3 ~

7 1 3 3 9 1 1 1 5 1 1 2 1 4 6

10 24 2 1 1 1 3 1 I 1 5 1

1 I 8 1 6 1 1 3 0 2 1 1 4 9 0

Constructing Nearly Optimal Lexicographic Trees 317

H r t H N i - H N ^ ^ O O O ^ H O S C O ^ O C N Ì N ^ T J - O ^ N M ^ T J - H T I - H H

^ m «O (N Tt τ^ <Ν

Μ Η Ι Λ Ν Ο \ Η Ι Λ ^ Η Η f f i f s r t r t i O H f f i y C H O l O ^ ^ - Η Ι Λ Η Ι Λ Μ Ο Ν Μ ^

^ H ^ H ^ ^ ^ f ^ ^ ^ t ^ ^ H ^ H V £) O f N ^ - H < S < N O N , ^ - ' - H IO<N

H \o H \θ <-ι ^H m i—ι © co » n ^ - n © © * — i c o c N ^ n " ^ ©

es
^ » - < i - H r - ^ H O N < N t ^ ^ T t

CN

CN ^ ^ CN

m ^Η Tj- τ^ oo Tt »n ^H

CN CN O H N H H H T t l O O \ ' - 1

^ ^ H H H H f n T J - M N

H ^ - H (N N H (S H ^H

r - l ^ f S ^ H f S r H f H r s ^ H r H M H C i ^ O ^ ^ H M O O

^ H ^ H « O C N © C N C O C N C N V O ^ C O C N ^ H C O « < f r C O ^ H T - ^ i - i

n H rt m ^ H o

CN i—I M N (S H M r t f O f S H F H F H F - I T f r

O N r t H r H H (S h O O H ^ c r i r - l f r) ^ H T - H r ^ T _ i O ' - i

CN

^HI—i m os »-I cn »—i l—i »-1

O O ^ M T H T t n ^ ^ r J - F H h N M r t M T t N M H N O H H H N N M ^ O O O
ON HN

CO to CO

318 W . A. Walker and C. C. Gotlieb

Η Η ΐ Ο ^ Μ Η Γ Ί \ 0 " Λ < η Ι Ο Ι Ο ^ Μ Η Η Η Ι Λ Ν Π

Ό Ν Η \ Ο Η Ν Ν Ο \ ^ Η

H v O r t ^ H H M H O f l n O ^ n H H V Û H y O H

(^ , - Ι , — I ^ O ^ ^ ^ O N ^ H ^ σ ν ΐ Ο Τ ΐ - ι - ΐ ί Ν ι - Ι ι - Ι ^ - Η ©

s:

< ^ ^ ο ^ « ^ ^ · Ή ^ Γ η ο ο o o r ^ ^ H ^ H T j - m ^ H O ^

< s » — i r o m ' — i T f c ^ i i - H ^ H ^ H , -Η^Η^ΗΓητΐ - tS '—icncn*—>

rt M N M n N N H

N N ^ T t r H f * i I ^ Û O r t (S N H M h M N N H T t H

1—t i -Hi—Hf i fOONi—H'—H*—I

H \ O H H ^ O \ H H (S T t T j - M - H ^ O ^ V O ^ ^ T t

n H N N h T j - N M H ^ T f C N ^ H m c S T j - c O ^ H i N C N r - T f

ιΰ a

319
Case8 2

128

2

10

90

1

8

4

1

1
4

Case 9 12

900

24

49

6

7

70

307

40

25

10

1 5 2 3 1

350 1 2 1

4 4 3 2 I

8 1 5 1 0

3 1 4 1

1 1 2 4 1

5 306 1 12

1 0 1 2 1

1 7 8 4 3

2 1 1 3 3

8 315 18 7

6 14 12 623

248 13 7 28

24 30 68 6

14 37 11 9

11 41 8 7

7 15 15 121

14 6 66 323

73 7 12 6

22 11 18 7

4 1

87 2

4 1

1 2

4 29

1 1

1 13

1 11

1 4 0

2 183

24 6

12 8

6 8

12 60

4 34

7 211

23 18

999 960

6 195

497 45

1

1

1

10

1

6

1

40

3

2

5

48

129

12

34

60

14

6

12

22 1

1

8

18

2

1

100

1

2

1
7

6

19

6

9

14

18

7

6

970

190

6

3

1

1

1

15

10

51

1

2

37

25

8

145

240

7

12

54

12

6

8

4

1

24

1

1

1

2

2

1

49

6

42

I83

6

14

6

4

43

30

13

1

7

29

2

2

2

1

3
4

78

479

6

6

6

49

25

1

2

72

1

63

1

1

6

7

2

11

1

I

6

12

570

97

5

31

63

1

7

6

4

2

45

16

2

1

2

54

84

15

23

19

94

8

145

930

7

468

25

5

1 1 1 1

3 14 150 1

1 5 9 3 1

1 1 4 1

2 1 5 5

1 1 1 0 3

3 2 2 1

227 227 1 1

7 37 30 1

173 1 1 2

6 8 1 0 6

8 4 9 0 0 7 6

56 18 13 30

9 27 7 13

8 8 7 4 3

7 75 7 98

315 7 7 66

24 18 6 540

1 90 970 6

6 37 49 78

n

z 1 26 R ~

z.
5 4 a
2 1 "

2 4 0 5
1 2 %

2 1 '

9 4 O
5 12 3.
4 4 Iy

.O

E 1 1

r

E.
156 720 8

0

6 18 ?

907 110 $

25 160
5

5 840 n

7 6
350 14

18 31

5 12

6 8

The a, and /3, vectors are arranged in the following matrices as

320 W . A. Walker and C. C. Gotlieb

examining three sections* of the University of Toronto Library author-title
catalog, and defining a name A{ to be a surname under which a card was filed.
The surname could be a main or added entry, an author or title, as long as the
card was filed under the surname. The frequency a,· associated with Av was
the number of cards on which the A{ appeared. If several copies of a book were
in various departmental libraries, each copy might have a separate card, and
each card was counted in determining the af. For each of the three sections,
an oti distribution was found. The fourth set of a,· was chosen by eliminating
the most frequently occurring names from Sets 1 and 2, and then selecting
200 names from those remaining. Set 5 was obtained by including all of the
larger frequencies found in Sets 1, 2, and 3 in the 200 frequencies.

For each set of af, 10 sets of ft, divided in 4 classes were obtained as follows:

Class 1 : the ft were all equal.

Case 1: ft = 0, O^i^N;
Case 2:' ft = 10, 0 ̂ ι ^ N.

Class 2: the ft were calculated as a function of neighboring a/} where
cii is taken as 0 for / < 0 or / > N.

Case 3: ft = (a£ + a, + 0/2, O^i^N;
Case 4: ft = (a i_1+a i + a i + 1 +a / + 2)/4, O^i^N;
Case 5: ft= |3a f + 1 -2a i + 3 | , O^i^N.

Class 3 : the ft were chosen so the sum of the ft would be equal to or less
than the sum of the af.

Case 6: ft chosen from Set 1, 2, and 3, Case 3 and 4;
Case 7: ft chosen from Set 1, 2, and 3, Case 3 and 4.

Class 4 : the ft were chosen so the sum of the ft would be larger than the
sum of the a,·.

Case 8: ft chosen from Sets 1, 2, and 3, Case 3 and 4;
Case 9: ft chosen randomly;
Case 10: ft= 1.5(αί_1+αΙ· + α / + 1 +α ί + 2) , O^i^N.

The 5 sets of af frequencies and Cases 6, 7, 8, and 9 of the ft frequencies are
listed in Table II. In Table I the average search length of the optimal tree is
compared with the results of our top down algorithm for different values of
N0 and F.

The best nearly optimal trees are obtained when the β frequency and the
a frequency are approximately equal in value. In these cases the difference

t The third section, for example, corresponds to surnames between Newstead and
Niedermayer.

Constructing Nearly Optimal Lexicographic Trees 321

between the average search length of the nearly optimal tree and the optimal
tree is usually less than 1%. When the ß frequency is many times greater than
the a frequency, the poorest nearly optimal trees are constructed. This is
expected, since the algorithm uses the j8f frequencies in choosing the centroid,
but does not consider them when choosing another name for the actual root.
Even for the poorest nearly optimal trees, the difference between the average
search length of the optimal and the nearly optimal tree is less than 3.5%.

The algorithm was also tested over a sequence of values of TV. The sets of
names used for this test were drawn from a list of 144,486 distinct surnames,
each having an associated frequency afc.

f The names were first ordered so
that tth ^ a-l2 ^ ·· ^ αίΐ44486· For each value of TV in the sequence, the TV most
frequently occurring names Ah9...,AiN were selected and reordered lexico
graphically, that is, so that Aix < ··· < AiN. The frequencies used to construct
the tree were as follows: a,· was the frequency associated with A^ and ßj was
the sum of the frequencies of names between At. and A{ . Note that as the
number of names in the tree increases, the a frequency increases by an amount
equal to the ß frequency decrease, that is, the total weight of the tree remains
constant. As previously, the sum of the a's is called the a frequency, and the
sum of the /Ts the ß frequency.

The results of the test are given in Table III and shown in Fig. 6. For TV < 150,
optimal trees could be easily constructed and the difference in the average
search length of the optimal and nearly optimal tree is always less than 2%.
For TV ^ 150, the ß frequency is several times the a frequency, and from
arguments given previously, the difference in the average search length of the
optimal and nearly optimal tree is expected to decrease as TV and oc/ß increases.
Thus, it is reasonable to expect that the dependence of the nearly optimal tree
on TV will be the same as that of the optimal tree. From Fig. 6, we observe that
for small values of TV, the average search length behaves approximately like
log2 TV. However, for large values of TV (> 6000), the average search length of
the nearly optimal tree is almost constant. This is in contrast to the average
search length of approximately log2 TV for an optimal tree of TV names, and
2TV+ 1 nodes, with uniform af and ßt frequencies.

The observed result is to be expected. When TV is small, the large /?f account
for most of the weight of the tree and the leaf nodes largely determine the
average search length. As TV increases, the /?f decrease, and the A(with largest
associated frequencies become nodes in the tree. Eventually the ßt become
small enough, and the levels on which they occur deep enough, so that the
contribution to the weighted path length of a subtree formed by splitting a
ßi into afc's and ßk's hardly changes. An interpretation of the above results is

f The original list consisted of over one million names, of which 144,486 were distinct.
The frequencies are the frequencies of occurrences in the original list.

322 W . A. Walker and C. C. Gotlieb

TABLE III

Average Search Length

N

5
15
25
50
100
150
200
500
1000
3000

6000
12,000
144,486

a Frequency

19,846

42,653
60,087

92,117

138,975
173,157
200,412
305,266

401,288
561,956

655,538
740,022

1002,343

ß Frequency

982,497
959,690
942,256

910,226
863,368
829,186

801,931
697,077

601,055
440,387

346,805
262,321

0

Optimal tree

3.4114

4.2864

5.0638
6.0483
7.0007

7.4885

Nearly optimal

tree

W 0 = 15,F=5

3.4114

4.2864
5.1033
6.1461
7.0437

7.5503

7.8795
8.9606
9.6490
10.6220
11.1177

11.1592

12

11

10

9

£T 8

.3
7

_c
υ
<σ 6

CO
5

v

u 4

>
< 3

2

1

Nearly optimal Tree

(y^~ Optimal Tree

2 4 8 16 64 256 1024 4,096

Number of Names in the Tree

Fig. 6. Dependence of search length on the number of names in the tree.

Constructing Nearly Optimal Lexicographic Trees 323

that, if we know all the names which could be used to search a binary tree,
and the frequencies with which they occur, then there is a value of N, 6000 in
our example, such that, if more than the N most frequently occurring names
are placed in the tree, the average search length will not be appreciably
increased.

8. Summary

Our top-down algorithm for constructing nearly optimal lexicographic trees
required a time proportional to N log2 N for all N name trees constructed,
and requires storage proportional to N. As the af and ß frequencies change
over a period of time, it would be necessary to completely restructure the tree
to keep it in a nearly optimal form. In a practical application such as the
library index discussed above, the frequencies associated with the nodes
would not change greatly over a short period of time. It would be feasible to
use our algorithm to occasionally restructure the tree. In addition, the ß
frequency would usually be less than the a frequency in such an application,
and the nearly optimal trees can be expected to have an average search length
within 1% ofthat of the optimal tree.

References

1. Booth, A. D., and Colin, A. J. T., On the efficiency of a new method of dictionary con
struction, Information and Control 3, 327-334 (1960).

2. Bruno, J., and Coffman, E. G., Jr., Nearly optimal binary search trees, IFIP Congress 71,
TA-2, 29-32 (1971).

3. Clampett, H. A., Jr., Randomized binary searching with tree structures, Comm. AC M 9,
163-165 (1964).

4. Hibbard, T. N., Some combinatorial properties of certain trees with applications to
searching and sorting, J. Assoc. Comput. Mach. 9, 13-28 (1962).

5. Knuth, D. E., "The Art of Computer Programming," Vol. 1. Addison-Wesley, Reading,
Massachusetts, 1968.

6. Knuth, D. E., Optimum binary search trees, Stanford Univ. Dept. Computer Sei. Tech.
Rep. CS 149(1910).

1. Nievergelt, J., and Wong, C. K., On binary search trees, IFIP Congress 71, TA-2, 23-28
(1971).

8. Windley, P. F., Trees, forests and rearranging, Comput. J. 3, 84-95 (1960).

INDEX

A

Adjacency transformation, 129
Algebraic isomorphism invariants, 12
Alternating chain, 1
Arboricity, 44
Asymptotic results for numbers

p-minos, 96
Augmenting chain, 7
Automaton, 78

boundary, 226
connection, 245
ergodic, 79
finite, 77, 123, 125, 222
minimal path, 244
periodic, 79
recoil, 237
stacked, 240
state-output, 220
5-transformation of, 81

strongly connected, 79
Tarry, 235

Average height of tree, see Trees
Average search length, 305

B
of

Ballot problem, 16
Bandwidth, 207
Basic topological type, 15
Bichromatic interchange, 116
Binary codes

for plane rooted trees, 159
for planted plane trees, 157
for rooted trees, 160
for unrooted trees, 163

Binary labeling, 25
Binary search tree, 303
Block decomposition, 256
Bottom-up labeling, 170

325

326

Bottom-up valency (BUV) code, 172
decoding algorithm for, 175, 176

Boundary automation, see Automaton
Bounds for triangulations, 212
Bounds on chromatic number, 112, 115
Brooks's theorem, 112
BUV code, see Bottom-up valency code

C

Canonical labeling, 53, 70, 170
Canonical matrix, 53
Caterpillar, 25
Centroid, 308
Chain matrix, 61
Chromatic number, 110

bounds on, 112, 115
Clique, 193
Code, 154
Coding problem, 154
Coding procedure, 153
Colored graph, 59
Coloring of algorithms, 112,

114, 116
Coloring of random graphs, 119

sequential, 110
Combinatorial elimination process, 185,

186, 190
Complete bipartite graph, 202

numbering of, 29
Complete «-partite graph, 293
Configuration, 267, 269, 270
Connection automation, see Automaton
Connectivity, undecidable, 230
Constrained set covering problem, 267,

269
Counting algorithm for p-minos, see

p-Minoes
Cover, 268
Criterion functions, 208
Cubic maps, 295
Cycle point, 130
Cyclically w-connected maps, 295
Cyclomatic number, 50

D

Decoding algorithm, 161, 162
for BUV codes, see Bottom-up valency

code

Index

for WAV codes, see Walk-around
valency code

Decoding procedure, 154
Decomposition, 187
Depth sequence, 136
Difference sets, 35
Diameter of tree, see Trees
Directed graph, 125
Direct integer algorithm for WAV codes,

see Walk-around valency code
Dynamic programming, 213

£

Early bird problem, 253
Elementary divisors, 133, 134
Elimination process, 186, 191
Enantiomorphic polyominoes, see Polyo-

minoes
Ergodic automaton, see Automaton
Euclidean models, 33
Euclidean polyominoes, see Polyominoes
Eulerian graph, labeling of, 26
Eulerian path, 221, 241

F

fa-Computable, 221
Finite automaton, 77, 123, 125, 222

and transition graphs, 124
Finite-state automaton, 77
Finite-state language, 78
Firing squad problem, 221, 248
5-Chromatic map, 295
5-Coloring planar graphs, 117
Fixed p-mino, see p-Minoes
Flower, 130
Forced blocks, 273, 276
Forests, 142
4-Color problem, 109
Free block, 273
Free p-mino, see p-Minoes

G

General constrained set covering prob
lem, 268

algorithm for, 278
description of, 280

Graceful graphs, 24, 25

Index

Graceful modulo m, 36
Graceful numbering, 24
GTPL, 64

H

Hamiltonian bond, 301
Hamiltonian circuit, 295
Hamiltonian cycle, 221, 258
Hamiltonian map, 295
Height of tree, see Trees
Height of transition graph, see Transi

tion graph
Hex p-mino, see p-minoes
Homeomorphic graphs, 49
Homeomorphically irreducible, 50
Hypercubical polyominoes, see Polyo-

minoes, 101

I

Idleness convention, 223
Incompatibility graph, 269
Independent set, 8
Indiscernibility, 232
Integer code of tree, see Trees
In-tree, 130
Invariant under exchange, 232
Isomorphism of automata, 127
Isomorphism of labeled and unlabeled

graphs, 68
Isomorphism problem, 154

K

£-Ball, 107
Kernel, 271

L

Labyrinth problems, 235, 237
Ladder graph, 199
Largest-first (LF) algorithm, 112
Largest-first-with-interchange (LFI)

coloring algorithm, 116
Lattice constants, 47
Leaves, 193
Level property, 158

327

Lexicographic tree, see Trees
Linear arboricity, 44

M

Map, 295
Max-degree bound, 112
Maximum c-matching problem, 4
Maximum matching problem, 1, 2
Maximum stable set problem, 8
Maximum weighted matching problem, 7
Max-subgraph min-degree bound, 115
Minimal map, 296
Minimal path automaton, see Automa

ton, 244
Minimal separator, 193
Minimum arithmetic, 204
Minimum covering problem, 2
Minimum deficiency algorithm, 215
Minimum degree algorithm, 214
Minimum fill-in, 206
Minimum tree problem, 260
Minimum triangulation, 194
Monotone deficiency, 191
Monotonely adjacent, 191
Monotone transitive extension, 192
Monotone transitive graphs, 185
Monotone transitive ordering, 198
Myopic algorithm, 219

N

Natural representation, 128
Nearly optimal lexical trees, 309
Nearly optimal tree, 312
Network firing squad problem, 248
Networks of finite automata, 222

graphical problems solvable by, 224
Nongraceful graphs, 27
Non-Hamiltonian maps, 295
Numbering of complete bipartite graph,

29
of graph, 24

O

Optimal ordering and algorithms, 202
Optimistic evaluation, 274
Ordering algorithms, 213
Out-tree, 151

328 Index

Packing and covering, 40
Parallel exploration, 278
Partial graph, 54
Partitioning problem, 268
Path number, 40, 285
Period of flower, 130
Periodic automaton, 79
Period sequence, 136
Permutation graphs, 137
Planar map, 295
Planarity algorithm, 70
Plane trees, see Trees
Plane rooted trees, see Trees
Planted plane trees, see Trees
p-Mino(es), 87

asymptotic results for number of, 96
counting algorithm for, 94
fixed, 88
free, 88
hex, 87
stretched, 91
tri, 87

Polyomino(es), 101
enantiomorphic, 108
Euclidean, 103
hypercubical, 101
symmetry of, 92
see also p-Minoes

Progressive exploration, 278

Quiescent state, 223

R

Section graph, 193
Self-synchronization of networks, 228
Separation clique, 193
Separation and evaluation procedures,

273
Separation principal, 273, 274
Separator, 193
Sequential coloring, 110
Sequential exploration, 278
Sequential-with-interchange coloring, 116
Serial exploration, 278
Set covering problem, 268
Smallest-last (SL) coloring algorithm,

114
Smolenskii code, 180
Stable set, 8
Stacked automaton, see Automaton
Star graph, 251
Stars, 48

with given topology, 58
State-output automaton, see Automaton
State-transition function, 222
^-Transformation of automaton, see

Automaton
s-Transformed automaton, entropy of, 82
Streamlined algorithm for coding un

rooted trees, 164, 165
Stretched p-Mino, see p-Minoes
Strongly connected automaton, see Au

tomaton
Symmetric evolution, 231
Symmetric Gaussian elimination, 188
Symmetries of tessellation, 92
Symmetry factor, 60
Symmetry of polyomino, see Polyominoes

Reachable set, 131
Recoil algorithms, 221
Recoil automaton, see Automaton
Recursive-smallest-vertex-degree-last-

with-interchange (SLI) coloring
algorithm, 116

Reducing chain, 7
Representation basis, 128
Representation field, 128
Root, 130
Rooled binary tree, see Trees
Rooted tree, see Trees

Tarry automaton, 235
Tarry order, 279
Top-down algorithm, 307
Topological type, 49
Topology, 50
Transition function, 125
Transition graph, 123, 124, 125

height of, 131
Tree(s), 15, 155

average height of, 19

Index 329

diameter of, 167
height of, 15, 159
integer code of, 168
and &-trees, 201
lexicographic, 304
plane, 156
plane rooted, 155

binary code for, 157
planted plain, 15, 155, 156

binary code for, 157
rooted, 155

binary code for, 160
of minimal paths, 243

unrooted, 163, 178
binary code for, 163

Tree codes, properties of, 166
Tree function, 178
Tree function code, 177
Tree point, 130
Triangulated graphs, 192, 193
Triangulations, 194

bounds for, 212
Tripartite graph, 286
Tri p-mino, see p-Minoes
Trivalent maps, 295

Truncated max-degree bound, 112

U

Undecidable connectivity, 230
Unrestricted path number, 42
Unrooted trees, see Trees
Unsolved problems on graph number-

ings, 36
Unsolved problems on path numbers, 44

Valency codes, 172
Vertex ordering, 246

W

Walk-around labeling, 171
Walk-around valency (WAV) code, 174

decoding algorithm for, 176, 177
direct-integer algorithm for, 179

WAV code, see Walk-around valency
code 174

