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PREFACE 

It has become more and more clear in recent years that the two disciplines 
of graph theory and computer science have much in common, and that each 
is capable of assisting significantly in the development of the other. Thus, 
graph theorists are increasingly finding that many of their problems can be 
solved, or their research furthered by the use of computing techniques; 
while computer scientists are realizing that the language of graph theory is a 
convenient one in which to express many of the concepts with which they 
have to deal, and that standard results in graph theory are often very relevant 
to the problems that concern them. Despite this, the number of publications 
in which this interdependence of the two subjects is explicitly recognized is 
still quite small. 

The purpose of this book is largely to draw attention to some of the prob
lems and applications which straddle these two disciplines. It is a collection 
of invited papers in which computing techniques are applied to graph-
theoretical problems, or in which problems in computing are treated by 
graph-theoretical methods. Thus, mathematicians from several different 
fields of research will discover within these pages material that is of interest 
to them. The "pure" graph theorist, the computer scientist who is interested 
in the study of algorithms, and the researcher into the theory of automata 
will all find papers relating to these theoretical topics, while mathematicians 
engaged in operations research, and other practical applications of graph 
theory and computing, will discover that they have not been forgotten. 

Some of the papers in this book were presented at an International Con
ference held in January 1969 at the University of the West Indies in Kingston, 

xiii 
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Jamaica; some others represent later development of work that was discussed 
at that conference. Most of them, however, were invited for inclusion in this 
volume with the aim of giving the reader a representative sample of topics 
in this joint field of research, whose nature is indicated by the title—which 
was also the name of the conference—Graph Theory and Computing. 
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1. Historical Background 

Consider a graph, and partition the set of all its edges into two classes, the 
heavy edges and the light edges. An alternating chain is a chain whose edges 
are alternately light and heavy. This concept was introduced in 1891 by 
Petersen to prove that, in some cubic graphs, any linear factor can be modified 
in order to use a given edge of the graph. 

By 1957, when many people were trying to solve new classes of linear 
programming problems in integers, I considered two new optimization 
problems of this type: 

(1) Maximum Matching Problem: given a family S of subsets of a given 
set X, what is the largest number of members of S which are pair-wise disjoint; 

I 



2 Claude Berge 

(2) Minimum Covering Problem : what is the smallest number of members 
of S whose union covers Xe! 

When Xis the set of vertices of a graph, and ê is the set of its edges, a simple 
way to solve these problems is offered by the concept of an alternating chain. 
This was discovered nearly simultaneously by us [4], for the maximum 
matching problem, and by Norman and Rabin [15], for the minimum covering 
problem. The extension of these methods to the most general matching 
problems was found independently by Edmonds [9] and Ray-Chaudhuri [16]. 

The proofs given in the above papers were often unnecessarily complicated. 
In this didactical paper, we shall only give some simpler proofs of these results, 
and discuss the computational procedures suggested by them, as well as 
possible extensions of the method. 

2. The Maximum Matching Problem 

We shall consider here a simple graph G = (X, E), that is, undirected, 
without loops or multiple edges; the set of its vertices is denoted by X, and 
the set of its edges by E. A matching £ 0 c is is a set of edges such that no two 
meet at the same vertex. The problem is to find a maximum matching. 

A vertex x is saturated in E0 if there exists an edge of E0 incident to .v. An 
alternating chain is a simple chain whose edges are alternately in E0 and in 
E-E0. 

LEMMA 1. If E0 and El are two matchings of G, a connected component 
of the partial graph (X,(EQ — EX) u (E1—E0)) is of one of the three following 
types : 

Type 1: isolated vertex; 
Type 2: even elementary cycle, whose edges are alternately in E0 and in Ex ; 
Type 3: elementary chain, whose edges are alternately in E0 and in Eu 

and whose extremities are unsaturated for one of the two matchings, E0 or Ex. 

The proof is a straightforward verification. 

THEOREM 1. A matching E0 is maximum, if and only if there exists no 
alternating chain connecting two distinct unsaturated vertices. 

Proof: (1) If E0 is a matching with such an alternating chain, we can 
interchange the heavy lines and the light lines along this chain. We obtain a 
new matching El9 and \EX\ = |2?0| + 1. Therefore, E0 is not a maximum 
matching. 
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(2) If E0 is a matching without such an alternating chain, consider a 
maximum matching El. By (1), Εγ is a matching without such an alternating 
chain, and by Lemma 1 we have 

\E0-EX\ = |£ i -£o | , 

since the connected components of {Χ,(β0 — Ε^) u (El — E0)) of Type 3 are 
even chains. This shows that \E0\ = | E11, and that E0 is a maximum matching. 

According to this theorem, the maximum matching problem can be solved 
by searching for all alternating chains from each unsaturated vertex. However 
Edmonds [10] showed that it was not necessary to develop all alternating 
chains. He described a procedure, more economical, that involved shrinking of 
parts of the graph. His algorithm was experimented with by Witzgall. Although 
helpful to one's intuitive understanding, shrinking is difficult to implement 
on an electronic computer. For that reason, Witzgall and Zahn [18] presented 
a modification of Edmond's maximum matching algorithm, which displayed 
a tree-like arrangement of alternating chains using all the vertices reachable 
by alternating chains issuing from a given unsaturated vertex. 

The existence of such a tree is of great interest for the theory, but its con
struction, as described by Witzgall and Zahn [18], is not simple. Therefore, 
it is often advisable to return to a suitable fanning-out algorithm. For a better 
understanding of the procedure, consider, instead of G, a labeled graph H, 
obtained from G as follows. If the n vertices of G are a,b,..., draw n points 
denoted by a, b,.... If in G we have [x, >>] eE—E0 and [y, z] e E0, draw a path 
of length 2 going from the point x to the point z, and passing through an addi
tional point that we mark with the symbol y. If a is an unsaturated vertex of G, 
and if B denotes the set of vertices of G adjacent to an unsaturated vertex differ
ent from a, we join by an arc the points of H in B to an additional point z (see 
Fig. 1). At the end, we mark the n points a,b,..., by the symbols ä, 5, 

An alternating chain in G joining a to another unsaturated vertex is, in H, 
a path from a to z whose vertices are all marked differently, and conversely. 
The problem is to find such a path, which we call admissible. 

Denote by s(x) the symbol attached to a vertex x of H. We shall construct 
a sequence μΐ9μ2,..., of admissible paths, by a labeling procedure (inspired 
by Tremaux; see [7]), with the following rules: 

Rule 1: denote by xx the initial vertex with s&J = ä; set μ0 = [jq], a 
path of length 0. 

Rule 2: if μ; = [χι], and if there exists an unlabeled arc (xi,x2), set 
μί+ι = [*i, x2]· Label arc (*l5 x2) with a +. If such a vertex x2 does not exist, 
stop the procedure. 

Rule 3: if μ{ = [χΐ9χ2> .·.,**], k> 1, we shall consider two cases: 
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Fig. 1. In graph G, the heavy lines represent the edges of E0 , a matching which is to be 

improved. In H, the heavy lines represent an admissible path going from a to z. 

Case 3.1: if s(xk)^s(xi),s(x2)9^.,s(xk^i)9 and if there exists a vertex 
xk+l such that (xk9xk+l) is an unlabeled arc, set μΙ+1 = [xl9xl9 ···>■**>■**+il· 
Also, label with a + the new arc (xk9xk+i). 

Case 3.2: Otherwise, set μΙ+1 = \_xì9xl9 . . . ,* f c _i ] ; also, remove the labels 
of all the labeled arcs (xk, v), but not of the arc (xk_ i9 xk). We stop the procedure 
as soon as μ,- is a path leading to z. 

If vertex z has not been reached, then every possible admissible path has 
been encountered exactly twice. The proof is identical to the Tremaux proof. 
In the classical Tremaux procedure, the number of steps is bounded by twice 
the number of arcs, but this is not true for the above algorithm. Though no 
practical tests were done to compare it to Edmond's algorithm, some experi
ments conducted in 1965, while we were at the International Computation 
Center in Rome, show only that the above procedure leads rapidly to a solution 
for a medium-size problem. 

3. The Maximum c-Matching Problem 

The maximum matching problem can be generalized. Consider a multigraph 
G9 with multiple edges but no loops, whose vertices are xl9x29 ···,*„, and an 
«-tuple c = (cl9c29...,cn)9 where cf is a nonnegative integer less than or equal 
to dG (Xi), the degree of vertex Xi. A set E0 a E is said to be a c-matching if the 
set E0 (xt) of all the edges incident to *,· verifies 

\Eo(xd\ < ci> i = 1,2,...,«. 
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The problem we shall consider now is to find a c-matching of maximum 
cardinality. I proved [5] the following theorem : 

If the edges of a omatching are denoted by heavy lines, and if we add a new 
vertex x0, linked to xf by |£ 0 (*,·)! light edges and ci—\E0(xi)\ heavy edges, E0 

is maximum, if and only if no alternating chain leaves x0 by a heavy edge 
and comes back to x0 by a heavy edge. 

An alternating chain is not permitted to use the same edge more than once, 
but may visit the same vertex several times. For that reason the procedures 
described by Dantzig et al [8] or Witzgall and Zahn [18] are not valid, as 
was noticed by Witzgall and Zahn [18]. 

However, we shall now show that, by constructing a new graph G, this new 
problem can be reduced to the problem considered in Section 2. A simple 
graph G is obtained from G. For every vertex xt- of G, construct two disjoint 
sets of points 

At = {a{\ e e E(Xi)} and Bt = {bt
k\ l ^ k ^ dG(Xi) - c j . 

The set of vertices of G will be X = (\J A^) u ((J 2?,·). For every /, link every 
element af e Ai to all the elements of Bit For every edge e = [χί9χ/\ of G, 
link the elements a? e At and a/ e Aj by an edge denoted e (see Fig. 2). 

THEOREM 2. A maximum matching E0 of G which saturates all the vertices 
of [jiBh induces in G a maximum omatching E0 of G, and vice versa. 

Proof: (1) Let E0 be a maximum matching of G. We can assume that it 
saturates every element of [J Bt. If not, we interchange the heavy and light 
lines along alternating chains of length 2. E0 induces in G a set E0a E with 

\E0(xd\ < 4 W - \Bi\ = dG(xd - Idoixd-cJ = ct. 

Fig. 2 
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E0 is thus a c-matching of G, and we have 

\E0\ = \E0\ - f \Bt\. 
/ = 1 

(2) Let Ex be a maximum omatching of G. It gives in G a matching £ t 

which saturates all the elements of (J Bt, and we have 

|£ιΙ = |£ιΙ + ΣΙ^Ι· 
ι=1 

As we have \E0\ < l /s j , we obtain 

|£il = l^il + Σ \Bi\ > l£ol + Σ \B,\ = |£ol· 
/ = 1 / = 1 

Since £ 0 is a maximum matching of G, this implies |£j | = |£0 | , and therefore 
l^i I = l^ol- This proves that E0 is a maximum c-matching of G. 

This theorem shows immediately how to find a maximum c-matching by 
using alternating chain methods. 

There are other optimization problems that one can solve by these methods. 
Consider a multigraph G = (X9E) and a «-tuple d=(dl9d2,...,dn). A set 
F0 <= E is said to be a d-cover if we have 

l*o(*i)l > 4> ' = 1,2,...,«. 

If df = 1 for all /, F0 is a awcr of the vertices of G. Norman and Rabin [15] 
found that the minimum cover problem reduces to the maximum matching 
problem. We noticed [5] that the problem of the minimum c cover reduces 
also to the maximum matching problem. More precisely, we have 

THEOREM 3. Consider a multigraph G = (X, E) without loops, and consider 
integers ci9 df, with cf + df = dG (xf) for / = 1,2,..., n. A set F0 <= E is a minimum 
d-cover, if and only if E—F0 is a maximum c-matching. 

Proof: First, note that if we set E0 = E—F0, then |F0 (*,·)! ^ df is equiv
alent to 

\Eo(xd\ < doixù-di = c,. 

If F0 is a minimum d-cover, then is0 = E—F0 is a c-matching. If £\ is a maxi
mum c-matching, then Fl=E—El is a d-cover. Hence, |£Ί| ^ |£ 0 | and 
l̂ oI ^ l^iI· On the other hand, we have 

\FX\ = \E-EX\ = \E\ - \EX\ ^ \E\ - \E0\ = |F0 | ^ |Λ | . 

Therefore, we have |Fj | = \F0\ and |is0| = |£Ί|. This shows that F^ is a 
minimum d-cover, and that E0 is a maximum c-matching. 
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A generalization of Theorem 1 is due to Balinski [2]. Suppose we are given 
a graph in which every edge is assigned a weight w(e) > 0, and we want a 
c-matching E0 for which w(E0) = Σβε£0

 w(e) *s maximum. If ct = 1 for all /', 
we have the problem of the maximum weighted matching. Define an augmenting 
chain μ relative to E0, as an alternating cycle, or alternating chain, such that 
no edge of E0 — μ is incident to a vertex of μ, and such that 

Σ
 w(e) > Σ w>(e). 

e εμ e 6μ 
e$E0 eeE0 

THEOREM 4. A matching E0 of G is a maximum weighted matching, if and 
only if there is no augmenting chain. 

Proof: (1) If E0 is a matching with an augmenting chain, it is not a 
maximum weighted matching. This is obvious, as in Theorem 1. 

(2) If E0 is a matching without an augmenting chain, and if El is a maximum 
weighted matching, consider the partial graph G' = (X,(E0 — Ei) u (El—E0)). 
If w(E0) < νν(£Ί), there exists in G' a connected component H9 with 

Σ He)< Σ *(*)· 
e e / / eeH 

eeEo — Ei esE^ — Eo 

By Lemma 1, H is in G an augmenting chain relative to E0, which yields the 
contradiction. 

COROLLARY. If G is a weighted multigraph, a c-matching E0 is of maximum 
weight, if and only if the graph G obtained as in Theorem 2, with w(e) = w(e) 
for every e e E, has no augmenting chain relative to E0. 

The proof is the same as that for Theorem 4. 

Note that when the weight of each edge is equal to 1, Theorem 4 reduces 
to Theorem 1. 

Another variation, discussed by Glover [11], is to find amongst all the 
maximum matchings, a matching of minimum weight. Define a reducing 
chain, relative to a maximum matching E0, as an alternating cycle, or alter
nating even chain issuing from an unsaturated vertex μ, such that 

Σ He) < Σ »>(*). 
eΕμ eeß 

eiE0 eeE0 

THEOREM 5. A maximum matching E0 is of minimum weight, if and only 
if there is no reducing chain. 

Proof: (1) If E0 is a maximum matching with a reducing chain, it is not 
of minimum weight. This is obvious. 

(2) If E0 is a maximum matching without a reducing chain, and if Ex is a 
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maximum matching of minimum weight, then each connected component of 
G' = {X,{E0 — E{) u (El-E0)) is an alternating cycle, or an even alternating 
chain with one extremity unsaturated in E0 and the other extremity unsaturated 
in Ei9 by Lemma 1. If w(E0) > w{Ex), one of these connected components is 
a reducing chain, relative to E0, which contradicts the assumption made 
about E0. 

This theorem permits us to show how this new problem can be reduced to 
the well-known problem of the shortest elementary path in a graph with a 
length 1(e), positive or negative, assigned to each edge e. 

Let G = (X9 E) be a graph, and let E0 a E be a maximum matching. Assume 
that all the unsaturated vertices are contracted into one single vertex a. 
Construct as in Section 2 an oriented graph H associated with G. If in G we 
have [x,y] = ele E—E0 and \y,z\ = e1eEÇ), we shall assign the lengths 
/(x, y) = w(ex) — w(e2) and l(y9 z) = 0 to the two corresponding arcs (x, y) and 
(y,z)ofH. 

In G, E0 is a maximum matching of minimum weight, if and only if in H 
there is no circuit, and no path issuing from ä with a negative length and all 
its vertices marked differently. * 

4. The Maximum Stable Set Problem 

In a graph G, a set B of vertices is said to be stable (or independent) if no 
two vertices in B are adjacent. We now seek a maximum stable set. 

This problem is equivalent to the general matching problem with a family 
of sets, if we consider the representing graph of this family of sets. Several 
methods of solution are known for this problem, [see 13, 14, 16], and one 
can always use the tool provided by the theory of alternating chains. The 
following result, often used in the theory of hypergraphs, is in fact a special 
case of Ray-Chaudhuri [16] and a consequence of Edmonds [9]. Denote by 
TG(x) the set of all the vertices adjacent to x. Define an alternating sequence 

t There exist in the literature several algorithms to determine for every x the shortest 
elementary path from ä to Jc, or to detect at least one negative circuit. They easily can be 
adapted to our matching problem. For the general case, see Dantzig et al. [8] and Roy [17]. 

It should be noticed that, if we want a fast procedure, we must not claim to obtain all the 
shortest elementary paths of H, since this would solve, as it is well-known, the traveling 
salesman problem. The claim is only to find a negative circuit in a graph H if one exists, or 
if none exists, then to find all the shortest paths from the given vertex a. 

The inductive method developed by Dantzig et al. [8], is especially easy to adapt to the 
matching problems. It gives, for the number of additions to perform, an upper bound equal 
to m+ n(n+1) A/2, where m is the number of arcs of //, n the number of vertices, and h the 
maximum out degree. 
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relative to a stable set B as a sequence (al9bi9a2, bl9 a3,...) of distinct vertices 
of G, belonging alternately to A = X— B and to B, with 

(1) axeA\ 

(2) bi is chosen in B-{bl9b29 ...,£,·_!} so that 

rG(bi)n {aua2,...,ai} Φ 0 ; 

(3) ai+l is chosen in A — {al9a29 ...,af} so that 

TG(ai+1)n{bl9b29...9bt} Φ 0 , 

r G ( ö i + i ) n {έϊι,έϊ2,...,έΐ,} = 0 . 

To extend the alternating chain theorem we need two lemmas. 
LEMMA 2. If G is a tree, and if (A9B) is a bicoloring of its vertices with 

\B\ ^ \A\, then G has at least one pendant vertex in B. 

Proof: A bicoloring (A9B) is a partition of X into two stable sets. 
Suppose that the set of all pendant vertices of G is a set Αγ a A. We shall show 
that this leads to a contradiction. In the tree Gx_Al9 the set of all pendant 
vertices is Βγ c B; in Gx-Al-Bi, the set of pendant vertices is A2cz A; etc. 
We have \AX\ ̂  \Βγ\, since every pendent vertex of Gx_Al, can be mapped 
into one of its neighbors in Αγ by an injection. 

Thus, we have for some q ̂  1 

Mil > l*il ^ Mil > \*i\ > - ^ \Bq\ >\Aq+1\9 

Bq Φ 0 , and Bq+i = 0 . 

If Aq+1 Φ 09 we have 

Ml > Σ Mil > Σ l̂ il = 1*1. 
/ = 1 / = 1 

which contradicts the assumption that \A\ ^ \B\. 
If Aq+1 = 0 , the set Bq reduces to a single vertex, which is not pendant in 

GAqvBq- Therefore \Aq\ > \Bq\9 and 

Ml = Σ Mil > Σ l-e*l = \B\. 
1=1 1=1 

In both cases, we find a contradiction. 

LEMMA 3. If G is a tree of order n9 and if (A9B) is a bicoloring of its 
vertices with \A\ = \B\ or \A\ = \B\ + 1, then there exists an alternating sequence 
(al9bl9a29b29...) using once and only once every vertex of G. 

Proof: (1) For n = 1 or « = 2, this is obvious. 
(2) If the statement is true for n = 2/:, let us show that it is true for a tree 
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G of order n = 2k+\. As \A\ = \B\ + l> \B\, there exists by Lemma 2 a 
pendant vertex ak+1 e A. For Gx_[ak+i} there exists an alternating sequence 
(al9bl9 ...,£*) using all its vertices, by the induction hypothesis, and 
(al9bl9 ...,bk9ak+1) is the desired alternating sequence of G. 

(3) If the statement is true for n = 2k+\, then it is true for n — 2k+ 2. 
This is obvious from part (2) of the proof. 

THEOREM 6. A stable set B is maximum, if and only if there is no maximal 
alternating sequence of odd length. 

Proof: (1) If such an alternating sequence σ existed, then B would not 
be a maximum stable set, since B' = (B—σ) u (σ — B) is a stable set with a 
greater cardinality. 

(2) Let A be a maximum stable set, and let Bbe a stable set with \B\ < \A\. 
Let us show the existence of a maximal alternating sequence of odd length 
relative to 2?. Set B0 = B-A and A0 = A-B. Thus, \BQ\ < \A0\. In the sub
graph GAQKJBQ9 let Ax u 2?1?Λ2 u 2?2, -..,Ak u 2?fc be the different components, 
where A{ c A0 and 2?f c B0 for / = 1,2, ...,&. We have 

Σ141 = \B0\ < Moi = i Mil-
i= 1 /= 1 

Thus, there exists an index, let us say / = 1, with |2?J < \AX\. 
(3) If 12?!| +1 = \AX\9 a spanning tree of the subgraph GAiKjBi, which is 

connected, admits (Al,B1) as a bicoloring. By Lemma 3, its vertices con
stitute a maximal odd alternating sequence σ, relative to Bx. This sequence σ 
is also for G an alternating sequence relative to B. Also, σ is a maximal alter
nating sequence. If b e B — σ, we have either b e B—A = 2?0, and è is adjacent 
to no at e σ, or b e B n A, and b is adjacent to no a{ e σ, since A is a stable set. 

If |2?i| + l < l^xl, one can remove from the spanning tree of GAiuBl as 
many pendant vertices in Al as necessary, to obtain | ^ i | +1 = Mil- This is 
always possible by Lemma 2, and the theorem follows. 

There is an interesting application of Theorem 6. Denote by OL(G) the 
stability number of G = (X, E), that is, the maximum cardinality of a stable 
set. G is said to be ^critical if for every edge e e E, the partial graph G — e, 
obtained from G by deleting edge e, vérifies a (G — e) = a(G)+ 1. The structure 
of a-critical graphs has been extensively studied in the literature. One of the 
main results was obtained by Beineke et al. [3], who proved that in an a-
critical graph, through any two adjacent edges, there passes an odd cycle. 
Andrasfai [1] proved that through a nonisolated edge of G there passes an 
odd cycle without a chord. I proved [6] a generalization of these two results 
by showing: in an a-critical graph, through two adjacent edges there passes an 
odd elementary cycle without a chord. We shall give now a simple proof of 
this result by using Theorem 6. 
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THEOREM 7. In an a-critical graph G, with a(G) = k, for any two adjacent 
edges [a,b~] and [è,x], there exists an odd elementary cycle without a chord 
that uses these two edges. 

Proof: (1) If we remove edge [£, x] , we create a stable set Sbx of cardin
ality k+ 1 with b,x e Sbx. Let B = 5fcx— {b}. Then 5 is a maximum stable set. 
We have a,b $ B and x e B. Also, b is linked with B by only one edge [£, * ] . 

(2) In the partial graph G—[a,b]9 the stable set B is not maximum. By 
Theorem 6, there exists in G— \_a, b~] a maximal alternating sequence 
σ = (al,bl,a2,b2, ...,aq) with a^X—B and 64 e B for all /. In G — [a,ò], 
the set Τ=(Β — σ)ν(σ — Β) is a maximum stable set. Therefore, a9beT. 
Hence, a,bea — B. The subgraph of G —[a,U] induced by σ is connected, 
and has (σ η 2?,σ — 5) as a bicoloring. Let μ be the shortest chain connecting 
a and b. As a,be σ — Β9 this chain μ, together with the edge [tf,o], is in G 
an odd elementary cycle without a chord. This cycle uses [a,b~\ and [6,x], 
since b is linked to σ η 5 only by this edge. 

From a computational viewpoint, the search for all alternating sequences 
is more difficult to implement than the search for alternating chains, though 
the principle is similar. To simplify the problem, one can use a subprocedure, 
involving the algorithm described in Section 2 [4], that we shall discuss now. 
Suppose that we have obtained a maximum matching E0, and that there 
exists at least one unsaturated vertex.f 

(1) If a vertex x is unsaturated, or if x can be reached only by an alternating 
chain issuing from an unsaturated vertex and terminating in a heavy edge 
incident to x, we shall say that x is a heavy vertex. 

(2) If x can be reached only by an alternating chain issuing from an 
unsaturated vertex and terminating in a light edge incident to x, we shall say 
that x is a light vertex. 

(3) If x can be reached by both an alternating chain terminating in a 
light edge and an alternating chain terminating in a heavy edge, we shall say 
that x is a mixed vertex. 

(4) If x cannot be reached by an alternating chain issuing from an un
saturated vertex, we shall say that x is an inaccessible vertex. 

The set H of all the heavy vertices, the set L of all the light vertices, the set M 
of all the mixed vertices, and the set / of all the inaccessible vertices, verify 
HKJLKJ MKJ I=X. 

LEMMA 4. If H u L = X, then H is a maximum stable set of G. Also the 
maximum stable set is unique. 

t If there exists no unsaturated vertex, we shall add an additional vertex *0 that we link 
by a light edge to a given vertex Xi of G. The procedure will give a stable set of G, to 
which XL does not belong, and which is maximum under these assumptions. 
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Proof: (1) Define a covering C as a set of vertices such that every edge 
of G has at least one extremity in C. If E0 is a matching and C is a covering, 
then we always have |is0| ̂  \C\. Therefore, if a given matching E0 and a given 
covering C satisfy \E0\ = |C|, then C is necessarily a minimum covering, and 
X— C is a maximum stable set. 

(2) If / / u L = X, the set L is a covering, since two heavy vertices cannot 
be adjacent, and every light vertex is the terminal of one heavy edge leading 
into H. Thus, \L\ = \E0\, and H= X—L is a maximum stable set. 

(3) Let us show the uniqueness of the maximum stable set that is, if h e //, 
then every maximum stable set contains h. That is, if he H, then H— {h} is 
a maximum stable set of the subgraph Gx-{h). As the subgraph Gx_{h) admits 
L as a covering, we have only to show that L is a minimum covering. If h is 
an unsaturated vertex of G, then EQ is a maximum matching of Gx_{h} with 
\E0\ = \L\. Therefore, L is a minimum covering of Gx_h. 

If h is a saturated vertex of G, it is incident to a heavy edge e = [/?, x], and 
there exists in Gx-{h} an alternating chain between the unsaturated vertex x 
and another unsaturated vertex. By Theorem 1, E0 — e is not a maximum 
matching, and there exists in Gx_{h} a maximum matching El with \El\ = 
\E0\. As \L\ = \E0\ = | £ \ ] , this shows L is a minimum covering of Gx_{/|}. 

LEMMA 5. If ̂  is a connected component of the subgraph Gx induced by 
the inaccessible vertices, then every vertex adjacent to Ix is a light vertex, 
attached to 7\ by a light edge. 

The proof is obvious. 

LEMMA 6. If Ml is a connected component of the subgraph GM induced 
by the mixed vertices, then every vertex adjacent to Mί is a light vertex. Also, 
there is one and only one heavy edge going out from Ml. 

This is the Petersen-Gallai Lemma. For a proof see Berge [7, Theorem 9, 
Chapter 8]. 

THEOREM 8. Let Nfu ...,Mp be the p connected components of GM, let 
/ l 5 / 2 , . . . , / , be the q connected components of Gn and let S(A) denote a 
maximum stable set of GA for A Œ X. The set S=Hu [|Jf=1 S(A/f)] u 
\_\Jj=i S(Ij)] is a stable set of G, and if p ^ 1, it is a maximum stable set. 

Proof: It is obvious that S is a stable set by Lemmas 4, 5, and 6. 

(1) If p=0, remove all the light edges going out from the sets Ik. We 
obtain a graph G, having S as a maximum stable set, by Lemmas 4 and 5. We 
have 

\S\ = a(G') ̂  «(G) > |S| . 

Therefore, |S| = a(G), and S is a maximum stable set of G. 
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(2) If p = 1, we obtain a graph G" by contracting the unique component 
M1 into a single vertex zl and by removing the sets Ik. It is obvious the E0 

induces again a maximum matching, by Theorem 1, and G" has only heavy 
and light vertices. As H" = H u { z j is the unique maximum stable set of G", 
by Lemma 4, H is a maximum stable set of G£_Zl, and, equivalently, of the 
graph G' obtained from G by removing Mx and the sets Ik. Again we see as 
before that 5 is a maximum stable set of G. 

For constructing the classes //, L, M, and / the procedure described in 
Section 2 can be applied without modifications. Thus, Theorem 8 permits us 
to simplify the maximum stable set problem if the number of connected 
components of GM is 0 or 1. A simple backtracing procedure can permit us 
to attack the other cases. 
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A planted plane tree, sometimes called an ordered tree, is a rooted tree 
which has been embedded in the plane so that the relative order of subtrees 
at each branch is part of its structure. In this paper we shall say simply tree 
instead of planted plane tree, following the custom of computer scientists. 

The height of a tree is the number of nodes on a maximal simple path 
starting at the root. For example, there are exactly five trees with five nodes 
and height 4, namely 
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0 
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4 

Fig. 1. A tree as a random walk. 

The height of a tree is of interest in computing because it represents the maxi
mum size of a stack used in algorithms that traverse the tree [3, pp. 317-318]. 
Our goal in this paper is to study the average height of a tree with n nodes, 
assuming that all «-node trees are equally likely. The corresponding problem 
for oriented, that is, rooted, unordered, trees has been solved by Rényi and 
Szekeres [6]. Our principal results are stated in Eqs. (32) and (34). 

Trees appear in many disguises, and in particular there is a natural corre
spondence between trees of height less than or equal to h and discrete random 
walks in a straight line, with absorbing barriers at 0 and h + 1. If we wander 
around a tree with n nodes, as shown by the dotted lines in Fig. 1, the vertical 
component of successive positions describes a path of length In — 1 from 1 to 
0. For example, the path in Fig. 1 is 

1,2,3,2,1,2,3,2,3,4,3,4,3,4,3,2,1,2,3,2,3,2,1,0. 

This is one way a gambler can lose $1 before winning $5. This construction, 
suggested by Harris [2] in 1952, is clearly reversible. 

The height of trees plays a similar role in the classical ballot problem. How 
many ways are there to arrange n ballots for candidate A and n for candidate 
B in such a way that the number of votes for A never lags behind the number 
for B, as the ballots are counted, but A is never more than h votes ahead? 
The answer is the number of trees with n+ 1 nodes and height less than or 
equal to h + 1, again by the construction indicated in Fig. 1. The ballot sequence 
corresponding to that tree is AABBAABAABABABBBAABABB. 

We shall begin our study of the asymptotic properties of height by reviewing 
some known results. Let Ann be the number of trees with n nodes and height 
less than or equal to A, and let 

(1) Ah{z) = YJAahz« 

be the corresponding generating function. We obtain all trees with height less 
than or equal to h + 1 by taking a root node and attaching zero or more subtrees 
each of which has height less than or equal to h. Therefore, 

(2) Ak+1(z) = z(l + Ah(z) + Ah(z)2 + Ak(zf + ) 

= z/(l-A00), A>0. 

I 
I 
I 
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Clearly A0(z) = 0. This relation yields a simple recurrence for the numbers Anh9 

(3) Anh+l = An-ih+iAih -f An^2th+l^2,h + " · + ^ Ι , Λ + Ι ^ Λ - Ι , Λ ? 

n ^ 2, A ^ 0, 

from which the first few values are easily calculated, as shown in Table I. 

TABLE I 

\ ^ 

h = 1 
2 
3 
4 
5 
6 

« = 1 2 

0 

3 

0 
1 
2 
2 
2 
2 

4 

0 
1 
4 
5 
5 
5 

5 

0 
1 
8 
13 
14 
14 

6 

0 
1 
16 
34 
41 
42 

7 8 

0 0 
1 1 
32 64 
89 233 
122 365 
131 417 

Since no tree with n nodes can have a height greater than n, we have 

[2n-2\ i 
(4) A„h — Ann — 

n-\ n 
h> n, 

which is the well-known formula for the total number of trees with n nodes 
[3, p. 389]. 

Iteration of (2) yields a continued fraction representation of Ah(z). For 
example, 

(5) At(z) = 

1--
1--

1-z 

This suggests expressing the generating function as a quotient of polynomials 

(6) Ak (z) = zph (z)lph + ! (z), 

where 

(7) p0{z) = 0, ptiz) = 1, ph+i(z) = ph(z) - zpi-^z). 

The solution to this recurrence is 

- (1 - 4z)'/A'1 / l - (1 - 4ζ(ι/2\"\ 
(8) A « _ ( 1 - * Γ . ( ( 1 ± ί ! ^ ) ^ ( ί ^ ! ^ , 
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and the form of this solution suggests setting z = 1/(4 cos2 0). We obtain 

(9) /?ft(4cos20)-1 = sin/tf/isinO^cos©)''-1), 

^ ( 4 c o s 2 0 ) _ 1 = sinA0/(2cos0sin(A+l)0). 

Incidentally it is easy to verify that/?Ä(-1) is the Fibonacci number Fh, and 
that 

(10) ph(z)= 2 lh~l~k)(-z)\ A>1. 
0^k<h\ k ] 

This leads to another recurrence for the Anh. 
Since ph(z)2 —ph+i(z)Ph-i(z) = zh~1^ there is a simple generating function 

for the number of trees with n nodes and height exactly A, 

(11) Ah(z) - Ah_x(z) = zh/ph+i(z)ph(z). 

This formula was recently derived by Kreweras [4, p. 37]. 
Since ph is a polynomial of degree [(A — 1)/2J, the roots of ph{z) = 0 are 

(4cos2O*7r//0)~\ for 1 <y<A/2. We obtain a partial fraction expansion of 
the generating function 

where 

0Jh=jn/(h+l), 

and 

(13) a2m = -m, b2m = 0, 

<*2m+i = - w ( 2 w + l ) / 6 ( m + l ) , b2m+i = (m+1)"1 , m ^ 1. 

This leads immediately to the explicit formula 

(14) Anh = (h+\yx Σ 4Msin2(MA+l))cos2 n-2(MA+l)) , n > 2. 

It is rather remarkable that this formula gives a constant value for fixed n 
and all h ^ n. It is perhaps even more remarkable that Lagrange derived a 
formula in 1775 which essentially includes this as a special case, see Lagrange 
[5, p. 247]. Feller [1, p. 322] observes that the formula has been rediscovered 
many times, although it appears in many texts on probability in connection 
with the equivalent gambler's ruin problem. As a special case of (14) we have 
the asymptotic formula 

(15) Anh - (47(A+l))tan2(^(A+l))cos2n(^(A+l)), fixed A, n - oo. 
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Another interesting expression for Anh can be derived by applying complex 
variable theory. We have 

(16) 

where 

(17) 

f(0+) dz 
AKh = (2m)-1\ -^iAh(z) 

= (27t / ) -
1 

u = 

f(o+)jz ι_„* 
—„(!+");—irr· 
Zn /

1 - Μ
Λ + 1 

1 - ( l - 4 z ) 1 / 2 

l + ( l - 4 z ) 1 / 2 ' 

by (6) and (8). Since 

(18) z = W/(l+W)2, 

we have u « z when |z| <̂  1. Hence, we may change variables in (16) to obtain 

(19) Anh = (2πί)-1 
(0+)</M 1-«* 

In other words Λ„Α is the coefficient of w""1 in (1 - w ) ( l +w) 2"~ 2 ( l - * / ) / 
(1 —1/ + 1 ) . Some simplification now occurs when we consider the number of 
trees with height greater than h, 

(20) Bfih — Ann — Anh 

f(o+) du jf + i 

= (2-r1j ^τθ-")2α+«)2η-2ΐ^Απ 

(21) *„+,.,_, = T ( ( 7 l ) - 2 ( 
2« \ / 2« 

+ 

It follows that 

■kh) \n-\-khj 

The average height of a tree with n nodes is Sn/A„„, where 5„ is the finite sum 

(22) Sn= Σ Α ( Λ » - Λ , » - ι ) 

= (2π/) '1 
( 0 + )

 i /« - ^ M* 

4,(1-^(1+«)—2rS «"H 

f(0+) i/w ^ 

= (2π/~
1
) - π (1-«)

2
(1+»)

2
''-

2
2^)«*· 

file:///n-/-khj
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As usual, d(k) denotes the number of positive divisors of k. Therefore, 

(23) S,+ 1 = 2 </(*)(( 
2» \ I 2n\ I 2n 

+ l-kj \n-kj \n-\-k 

We shall now proceed to obtain an asymptotic series for the sum 

(24) / » = 2 (( "a_ J / ( J I
 d<®' fixed a> n -* °°' 

and this will lead to an asymptotic series for Sn. 
Let x = (k — a)/n. By Stirling's approximation we have 

- 1 ( Χ 2 + * 4 + . . . ) + 0 ( * 2 Α Γ 3 ) ) , 
6n 

when — \ < x < -J-, and 

In \ \l2ri 
f = 0(exp(-«2*)) 

Αΐ + ύτ — À:/ / \n ' 

when / :^« 1 / 2 + ε + α, for all fixed ε > 0. Therefore the sum of all terms for 
k^ η1/2+ε + α in (24) is negligible, being 0(n~m) for all m > 0, and we may 
takejc = 0(fl-1/2+£)in(25). 

We now turn to the asymptotic behavior of the function 

(26) gb(n) = X kbd(k)exp(-k2/n), fixed b, n -> oo. 

Again the terms for k ^ w1/2+£ are negligible, so we can use (25) to express/in 
terms of g: 

(27) fa(n) = g0(n) + —gi(n) - —g0(n) + ^ 2 g2(/?) - 71^4(«) 
2Λ , λ a2

 ί λ 4a2 + l / N 1 

« rt 2« on 

2ö3 + ö _ 4Û 3 + 5Û , x a 
2 EM + —z-r-gA") - ^gs(n) + O(n-2 + Eg0(n)). 

n 3n 3n 

In principle such an expansion could be carried out as far as we like. Hence, 
the problem of obtaining an asymptotic expansion ïox fa{n) reduces to the 
analogous problem for gb(n). 

file:///n-kj
file:///n-/-k
file:///l2ri
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The behavior of gb(n) can be derived by starting with the well-known formula 

/•c+i'oo 

(28) e~x = (2π/)_1 Τ(ζ)χ-Ζάζ, c> 0, x > 1, 
Jc-ioo 

obtained, for example, by Fourier inversion of T(c + 2nit). Then since 
C0O2 = Z ^ i ^ ) / ^ w e f i n d 

Pc + ioo 

(29) gb(n) = Σ ( 2 π 0 _ 1 n*r(z)kb-2*d(k)dz 
k>l Jc-ioo 

f c+ioo 

= (Ini)'1 nzT(z)C(2z-b)2dz, 
Jc-ioo 

where now c > ^(6+1). Let q be a fixed positive number. When Rc(s) ^ — q, 
C(s) = 0(\s\q+l6) as s->co. Since nzT(z) gets small on vertical lines we can 
shift the line of integration to the left as far as we please if we only take the 
residues into account. There is a double pole at z = ^ (£+l ) , and possibly 
some simple poles at z = 0, — 1, —2,.... Let w = z — \(b+ 1), we have 

nzT(z)C(2z-b)2 = n(b+i)/2T(i(b+l))(l + win« + 0{w2)) 

x (1 + wi//(Ub+1)) + 0(w2))((2wy2 + y/w + 0(1)), 

where φ(ζ) = Γ'(ζ)/Γ(ζ), hence the residue at the double pole is 

(30) « , /2(b+1)r(KZ>+ l))(±ln/i + W(i(b+l)) + y). 

The residue at z = — fc is 

(31) n-*(-l)*C(-2Â:-o)2/Â:! = «-*(-l)k52\+1>+1/(2Â:+è+l)2A:! 

which is almost always zero when b is even. The sum of (30) and (31) for all 
k ^ 0 gives an asymptotic series for gb(n). Hence, we have, for all m > 0, 

g0(n) = i(7T/!)*ln/! + Gy-iln2)0u/i)tt + i + O ^ " " ) ; 

(32) g l(/i) = i«lnA2 + iyn + ( y ^ ) - (TTTÖÖ)"" 1 + 0(AZ~2); 

g2(/,) = (n/S)(nn)1/2\nn + a + ty-iln2)«(7™)1/2 + 0( /T m ) ; 

etc. These formulas have been verified by computer calculation. For example, 
when/? =10,^0(«) = 3.96042andi^)1 / 2 ln« + ( | 7 - i l n 2 ) ^ ) 1 / 2 + i =3.96041. 

Returning to our original problem about trees, we have 

(33) Sn+1/(n+l)An+Un+l = / 1 ( / I ) - 2 / O ( / I ) + / _ ! ( / ! ) 

= (-2/n)g0(n) + (4/n2)g2(n) + 0 ( J T % log/i) 

by (4), (23), (24), and (27), and this equals ^ / i ) " ^ - i « " 1 + 0(Ai"%log/i).We 
have proved the following result. 
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THEOREM. The average height of a planted plane tree with n nodes, con
sidering all such trees to be equally likely, is 

(34) (πη)ί/2 - \ + 0(>T1/2logrt). 

The same method can be used to obtain as many further terms of the ex
pansion as desired. The factor log n in the error term turns out to be 
unnecessary. 
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// is a Tree of Life to them that grasp it, 
.. .and all its Paths are Peace. 

Proverbs III 
1. A Statement of the Problem 

Let Γ be a graph, with n nodes and e edges. By the term graph, we under
stand a connected, undirected graph without loops or double connections. 
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I 

^ / (|) N. Fig. 1. The graph K4, successfully numbered. 

0 ^ — - © - - — ^ 4 

We wish to associate n distinct nonnegative integers to the n nodes of Γ in 
such a way that the e edges receive e distinct positive integers by the assignment 
of |fl/ —ö/l to a given edge, where ai and a} are the numbers assigned to its 
end points. Moreover, we wish to minimize the value of the largest integer 
assigned to any node of Γ. We will call this minimized value G(V). The prob
lem of numbering a graph is to assign integers to the nodes so as to 
achieve G(T). 

In Fig. 1 we see the complete graph on four nodes, K4, with the nodes 
numbered {0,1,4,6}, and the edges numbered {1,2,3,4,5,6}. Since the edge 
numbers must be distinct positive integers, and K4 has six edges, this number
ing must be optimum and G(K4) = 6. Thus, we also have the general lower 
bound G(V)^ e for all graphs Γ. The principal questions which arise in 
the theory of numbering the nodes of graphs revolve around the relation
ship between G(V) and e, for example, identifying classes of graphs for which 
G(T) = e and other classes for which G(T) > e and looking for bounds on 
G{Y) — e. A graph for which G(T) = e will be called a graceful graph, and 
the numbering which achieves G(T) = e, a graceful numbering. 

2. A Context for the Problem 

Think of the graph Γ as a communication network with n terminals and 
e interconnections between terminals. We wish to assign a distinct identifying 
number to each terminal, in such a way that each interconnection is then 
uniquely identified by the absolute value of the difference between the numbers 
assigned to its two end terminals. For economy, the largest number assigned 
to any node is to be minimized. This is clearly the same problem as in the 
preceding section. 

Suppose we require that the minimum number assigned to any node be 
at least a0. The resulting problem is trivially isomorphic to the problem in 
Section 1, since all the node numbers may be increased by a constant amount 
a0, with no effect whatever on the edge numbers \at — aj\. The chief advantage 
of setting a0 = 0 is that the relation G(T) = e for graceful graphs then refers 
to both the number of edges, the highest edge number, and the highest node 
number. 
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3. A History of Subproblems 

Several years ago it was conjectured1" that every tree can have its n nodes 
numbered from 1 to n in such a way that each of the n — 1 edges gets a distinct 
number from 1 to n — 1 as the absolute difference of the numbers at its end 
points. In our terminology, this conjecture asserts that every tree is a graceful 
graph. This conjecture is still unproved in 1971, although it has been proved 
for special types of trees called caterpillars, and for other assorted flora 
and fauna. 

In 1968, I generalized the tree problem to that of characterizing those 
graphs Γ for which G{T) = e.\ presented some results at the January, 1969, 
conference on graph theory and computing at the University of the West 
Indies in Kingston, Jamaica. Those results, previously unpublished, constitute 
a significant portion of the present article. 

There is a classical combinatorial problem involving the notching of a 
metal bar of length k at integer points in such a way that all the distances 
between two notches, or between a notch and an end point, are distinct. If 
there are « — 2 notches and two end points, then there are (£) lengths which 
must be distinct. This problem is isomorphic to numbering the nodes of the 
complete graph K„, and the smallest k for which the notch problem has a 
so^tion is equal to Γ(Κη). 

4. Necessary Conditions for Graceful Graphs 

THEOREM 1. Let Γ be a graph with n nodes and e edges. A necessary 
condition for Γ to be graceful is that it be possible to partition the nodes into 
two sets S and Θ, such that the number of edges connecting nodes in ê with 
nodes in Θ is exactly [_{e+1)/2]. 

Proof: If Γ is graceful, the n nodes can be partitioned into two sets having 
respectively even ($) and odd (Θ) node numbers. The e edges end up numbered 
from 1 to e, and [(e+l)/2] of these edge numbers are odd. However, an 
odd-numbered edge must have one even end point and one odd end point. 

DEFINITION. A successful partitioning of the nodes of Γ into sets ê and 0 
with [(e+ l)/2] interconnecting edges is called a binary labeling of Γ. 

Example: The complete graph Kn on n nodes has (5) = n(n— l)/2 edges. 
If we assign m nodes to class S there will ben —m nodes in class Θ, and m(n — m) 
even-odd interconnections. For K„, we have [ 0 + l)/2] = [{n1 — w + 2)/4], 

t An unpublished but widely circulated conjecture, attributed to Gerhard Ringel. 
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and Kn has a binary labeling if and only if there is a choice of m for which 
m(n — m) = [ (« 2 -« + 2)/4]. Such a choice exists for n = 2,3,4,6,9,11,16,..., 
but fails to exist for n = 5,7,8,10,12,13,14,15,17,.... While this enables us to 
prove that many graphs Kn are not graceful, a stronger result is given in 
Theorem 4. 

THEOREM 2. Suppose that integers, not necessarily distinct, are assigned 
to the nodes of a graph Γ, and that each edge of Γ is given an edge number 
equal to the absolute difference of the node numbers at its end points. Then 
the sum of the edge numbers around any circuit of Γ is even. 

Proof: Let the consecutive node numbers around a circuit be ax, a2,..., ar. 
Then the consecutive edge numbers are 

\<*\-<*ι\> |α2 —α3|,..., |tf r-i-tfr|, k - f l i l , 

and their sum satisfies 

r r 

Σ k-* i+ i l = Σ (ai~ai+i) = ° m o d 2 

i = l / = 1 

as asserted. 

THEOREM 3. Let Γ be an Eulerian graph, that is, with an even number of 
edges at each node, with e edges. A necessary condition for Γ to be graceful is 
that [(e+ l)/2] be even. That is, if e = 1 mod4, or e = 2mod4, then Γ cannot 
be graceful. In fact, Γ cannot be binary labeled. 

Proof: An Eulerian graph may be regarded as a union of edge-disjoint 
circuits, or in fact as one big circuit involving each edge once. By Theorem 2, 
the sum of the edge numbers around each circuit must be even, and hence the 
sum of all the edge numbers must be even. For a graceful graph, there will be 
[(e+ l)/2] odd edges. Thus, if Γ is Eulerian and [_(e+ l)/2] is an odd number, 
then Γ cannot be graceful. In fact, in this case no labeling of the nodes of Γ 
as even and odd can lead to [(e+l)/2] odd edges. Whence, Γ cannot be 
binary labeled. 

Examples: (1) There are three graphs having 5 nodes which cannot be 
binary labeled, by Theorem 3. It happens that these are the only nongraceful 
graphs with fewer than 6 nodes. In Fig. 2, we see these three graphs, each 
numbered so as to verify GÇT) = e+ 1. 

(2) There are also non-Eulerian graphs which cannot be binary labeled, 
such as K8, Κί0, Κί2, and AT14 (see the example following Theorem 1). 

(3) There are Eulerian graphs which cannot be binary labeled even though 
[(e + l)/2] is even, for example K17. The graph Kn is Eulerian if and only if 
n > 1 is odd. In the case of K17, there are e = (^7) = 136 edges, and [(e+ l)/2] 
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Fig. 2. The three nongraceful graphs with 5 nodes, numbered to illustrate G ( f ) = e + 1 . 

= 68 is even. Since there is no choice of m, 0 ^ m < 17, for which m (17 — m) 
= 68, we see that Kl7 cannot be binary labeled. 

(4) There are graphs which are neither Eulerian nor complete which 
cannot be binary labeled. For example, if one edge is removed from Kl0, 
the resulting graph H is neither Eulerian nor complete. There are (^0)— 1 = 44 
edges in //, and \_(e+ l)/2] = 22. If we label m nodes in Has odd and the other 
10 —m as even, the number of odd edges will be either m (10 — m) or 
m(10 — m) — 1, depending on whether the deleted edge of Kl0 would be even 
or odd. But there is no choice of w , 0 ^ r a ^ 10, for which either m (10 — m) = 22 
or m(10-m) = 23. 

THEOREM 4. If n > 4, the complete graph Kn cannot be graceful. 

Proof: For n > 4, the graph Kn has e = (n
2) ^ 10 edges. If Kn were graceful, 

we could assign a subset of the numbers {0, l,2,...,e} to the nodes in such a 
way that the edges receive each of the numbers {1,2,..., e). We shall show that 
the assumption that this is possible leads to a contradiction. 

In order for Kn to have an edge numbered e, both 0 and e must be node 
numbers. For there to be an edge numbered e—\, either 1 or e— 1 must also 
be a node number. In any graceful graph Γ with e edges, the replacement of 
every node number at by e — cii leaves all edge numbers unchanged, and is the 
equivalent inverse node numbering. Hence, we may pick the node number 1 
for Kn, instead of e— 1, with no loss of generality. 

Next, to obtain an edge numbered e — 2, we must adjoin the node number 
e — 2. If we adjoined e— 1 to get e — 2 as the difference of e— 1 and 1, we would 
have two edges numbered 1, namely, between nodes 0 and 1, and between 
nodes e— 1 and e. If we adjoined 2 to get e — 2 as the difference of e and 2, we 
would again have two edges numbered 1, namely, between nodes 0 and 1, 
and between nodes 1 and 2. 

With nodes numbered 0, 1, e — 2, and e, we have edges numbered 1, 2, e — 3, 
e — 2, e—l, and e. To get an edge numbered e — 4, we must adjoin the node 
number 4. All other choices are quickly ruled out, as above. 

With nodes numbered 0, 1, 4, e — 2, and e, we have edge numbers 1, 2, 3, 4, 
e — 6, e — 4, e — 3, e — 2, e—\, and e. Note that for K4, with e = 6, this gives us 
the numbering of K4 shown in Fig. 1. There is now no way to obtain an edge 
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numbered e — 5, because each of the ways to obtain e — 5 as a difference of two 
numbers contains at least one impossible node number. The reader may 
quickly verify that the following circled numbers are not possible choices as 
node numbers: 

e, ® 

Θ- " 
e-29 (3) 

θ· ' 
Q, o. 

This contradicts the assumption that Kn is graceful for all cases in which 
e — 5 > 4, which corresponds to n ^ 5. 

Remarks: (1) If a metal bar of length 6 is notched at the points 1 and 4, 
then each of the lengths 1,2,3,4,5,6 can be obtained in one and only one way 
as the distance between two notches, including end points as notches. It is a 
classical combinatorial result, equivalent to Theorem 4, that no bar of length 
(2) for n > 4 can be similarly notched. 

(2) If we require all distances between notches to be distinct, and ask for 
the shortest bar with n notches, still counting end points as notches, we 
have the problem of determining G(Kn). In Fig. 3, we see the optimum 

Fig. 3. Numberings of the graphs Kn which achieve C(Kn) for 2 < n ̂  6. 
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Fig. 4. Numbering of complete bipartite graphs. 

numberings for K2,K39K4,K5, and K6. Note that G(Kn) = (n
2) for n = 2,3,4, 

while GCK5) = (!)+1 and G(K6) = (6
2) + 2. It follows from the proof of 

Theorem 4 that there is no node numbering of Kn, n > 4, for which all edge 
numbers are distinct and for which the edge numbers g, g—l, g — 2, g — 3, 
g — 4, g — 5 all occur, where g is the largest node number used. In the number
ings shown for both K5 and K6 in Fig. 3, the edge number # — 5 fails to occur. 

(3) Theorem 4 can be extended to show that graphs which are nearly 
complete cannot be graceful. That is, if a graph on n nodes has more than 
(n

2) — a(«) edges, it does not have a graceful numbering, where <x(n) appears to 
grow rapidly in n. It would be interesting to determine the function oc(n) 
precisely. 

5. Classes of Graceful Graphs 

The complete bipartite graph Kab is the graph with n = a + b nodes and 
e = ab edges, obtained by connecting each of a nodes with each of b nodes in 
all possible ways. For this class of graphs we have the following result. 

THEOREM 5. For all positive integers a and b9 the complete bipartite graph 
Katb is graceful. 

Proof: It suffices to exhibit a numbering. Consider the two sets of nodes, 
A and B, containing a and b elements, respectively. Assign the nodes in set A 
the numbers 0,1,2,...,a— 1, and assign the nodes in set B the numbers 
a,2a,3a,...,ba. In this way, every integer from 1 to ab has a unique repre
sentation as a difference between a number in B and a number in A. Examples 
of this numbering are shown in Fig. 4. 
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■ < E ^ , 

,—<α>—^—©—ο ° · ^ - — & ■ 

'ο^^β 

Fig. 5. The graceful graphs with n ^ 5 modes. 
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Fig. 6. Graphs of the five Platonic solids. Are they all graceful? 

u o 

p5 3 · ' 7 

Fig. 7. Other examples of graceful graphs. 

Note: Since K3 3 and K5 are the two irreducible examples of nonplanar 
graphs, and since K3 3 is graceful while K5 is not, we may conclude that 
planarity is unnecessary and insufficient for gracefulness. 

As previously mentioned, all graphs with n < 5 nodes are graceful except 
for the three graphs shown in Fig. 2. This is verified by the numberings given 
in Fig. 5. Among other graphs which have been shown to be graceful are the 
graphs of three of the five Platonic solids (see Fig. 6), the 10-node Petersen 
graph, and a great many miscellaneous examples (see Fig. 7). 
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6. Some General Questions 

Although numerous examples of infinite families of graceful graphs are 
known (see Theorem 5 and Fig. 8a), a general necessary and sufficient con
dition for gracefulness has not been found. In particular, the 7-node graph in 
Fig. 8b does not have a graceful numbering, although it is not covered by any 
of the theorems mentioned thus far. 

> 1> " 
9 

(a) 

Fig. 8. 

(a) Another infinite family of grace

ful graphs. 

(b) An isolated example of an un

graceful graph. 
(b) 

A particularly interesting unsolved problem is to determine, asymptotically, 
as «->oo, the percentage of graphs on n nodes which are graceful. At the 
present time, it has not been shown that this limit exists, nor, if it does, that any 
value on [0,1] is excluded. It is likewise possible to consider the percentage 
of graphs with e edges which are graceful. It is reasonable to conjecture that 
the limit of this percentage, as e -> oo, is the same as the corresponding limit 
taken nodewise. 

If graceful graphs could be characterized, the question of whether all trees 
are graceful graphs would be settled. In the absence of such a result, it is 
interesting to note the following theorem (first proved by A. Lempel). 

THEOREM 6. Let T be a tree with n nodes and e = n—l edges. Then there 
exists a binary labeling of T for which [n/2] of the nodes are odd (set Θ) and 
[(«+1)/2] of the nodes are even (set $). 

Proof: We may observe from Fig. 5 that this is at least true for all trees 
with 5 or fewer nodes. To complete the proof by induction, suppose that T0 is 
a tree which does not satisfy the theorem, and for which the number of nodes 
n0 > 5 is a minimum. Such a tree has at least one of the following two features : 
either a pair of terminal nodes joined to the same preterminal node (Case A), 
or a terminal node joined to a preterminal node which connects to only one 

M 
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other node (case B). This is proved by taking a maximum-length path through 
the tree, from one terminal point X to another terminal point Y, and looking 
at the preterminal point Z to which Y connects. By maximality of the path 
from X to Y, the node Z connects only (1) to a node leading back toward X, 
(2) directly to F, and (3) possibly directly to other terminal nodes. These two 
cases are illustrated in Fig. 9. At least one of these two cases occurs in every 
tree with n ^ 3 nodes. 

CASE A CASE B 

Fig. 9 

In Case A, we consider the tree T0' with n0 — 2 nodes, from which Y and 
W and the edges connecting them to Z have been dropped. By the inductive 
hypothesis, T0' can be labeled satisfying all conditions of the theorem. We then 
adjoin Y and W with opposite parities to one another, to complete a valid 
labeling of T0. 

In Case B, we consider the tree T0" with n0 — 2 nodes, from which Fand Z 
and the edges connecting Y to Z and Z to some interior point P, have been 
dropped. We label T0" by the inductive hypothesis, and suppose that P has 
been assigned a parity p, even or odd. We then assign parity p to Z, and the 
complementary parity p to Y9 to complete a satisfactory binary labeling 
o f r 0 . 

7. Euclidean Models and Complete Graphs 

DEFINITION. By the Euclidean model of a numbered graph, we mean the 
result of placing the numbered nodes on the corresponding positions along 
the real axis and connecting them as in the original graph. 

Examples of such Euclidean models are shown in Fig. 10. The Euclidean 
model is the same basic idea as the notched metal bar previously mentioned. 
The Euclidean model of a graceful graph Γ with e edges consists of e line 
segments, of respective lengths 1 through e, and joined at end points to be 
isomorphic to Γ. This viewpoint may facilitate the computation of a 
significant upper bound to the number of graceful graphs. 

The Euclidean model is frequently a convenient tool in visualizing or 
simplifying problems involving numbering of graphs. We shall consider 



34 Solomon W . Golomb 

Â 
Fig. 10. Some Euclidean models of graphs. 

specifically the case of assigning numbers to the nodes of the complete graph 
Kn so as to achieve G(Kn). We note that the numbering assigned to a com
plete graph is completely specified by the consecutive distances along the real 
axis in the Euclidean model. Thus, we see in Fig. 10 that the numbering for 
K3 is specified by the sequence of lengths 1,2; and the numbering for K4 by 
1,3,2. The best sequences known for Kn, 2 ^n < 10, are shown in Fig. 11. 

n 

2 

3 
4 

5 

6 
7 
8 
9 

10 

(2) 
1 

3 

6 
10 

15 

21 
28 
36 

45 

GOLOMB'S TRIANGLE 

1 2 

1 3 2 
1 3 5 2 

1 3 6 5 2 
1 3 6 8 5 2 
1 3 6 II 8 5 2 
1 3 6 12 II 8 5 2 
1 3 6 12 16 II 8 5 2 

G(Kn)? 

1 

3 
6 
II 

17 

25 
36 
48 
64 

Fig. 11. Best known numberings 
for the complete graphs Kn. 

The semiempirical numerical triangle which arises in this context has many 
remarkable and mysterious properties. The test for validity of a row is to 
consider all possible sums of consecutive terms, and verify that the (n

2) numbers 
which result are all distinct. The verifications for n = 4, n = 6, and n = 9 are 
shown in Fig. 12. The bottom number is the sum of the entire row, and is thus 
the conjectured value for G(Kn). Every partial sum is the number assigned to 
some edge of the complete graph. Representing Kn as a regular n-gon with all 
diagonals drawn in, the perimeter edges receive the consecutive numbers of 
the top row of Fig. 12, which is simply the row of Fig. 11, with the remaining 
outside edge receiving the number identified as G(Kn)l, the sum of the entries 
in this row. 



How to Number a Graph 35 

1 3 2 1 3 6 5 2 I 3 6 I 2 I I 8 5 2 

4 5 4 9 II 7 4 9 18 23 19 13 7 

6 10 14 13 10 21 29 31 24 15 

15 16 22 32 37 36 26 

17 33 4 0 42 38 

41 45 44 

4 6 47 

4 8 

Fig. 12. Verification of the numberings for n = 4, 6, and 9. 

The following problems all remain unsolved: 

(1) specify the precise rules for the formation of Golomb's triangle; 
(2) prove or disprove that the corresponding numbering of Kn is optimal; 
(3) determine G(Kn), either precisely or between suitable bounds. 

It is easy to produce examples of the unfortunate phenomenon that a sub
graph of a graceful graph need not be graceful. For example, the ungraceful 
regular pentagon is a subgraph of several of the graceful graphs in Fig. 5. 
More convenient is Theorem 7. 

THEOREM 7. If Γ is any graph, and if H is a subgraph of Γ, then 
G(H) < G(T). 

Proof: We need never do worse than assign the same node numbers to H 
that were used in Γ. 

From this we have the immediate corollary, Theorem 8. 

THEOREM 8. If Γ is any graph with n nodes, then G(T) < G(Kn). This 
result adds further importance to the study of G(Kn), which is thus the least 
upper bound on G for all graphs on n nodes. 

8. Numbered Graphs and Difference Sets 

The numberings previously exhibited (see Fig. 5) for K3 and Κ4 can be 
interpreted as the constructions for the finite projective planes with v = 7 and 
v= 13, respectively. Thus, for K3, the node numbers 0,1,3 have as signed 
differences the numbers —3, —2, — 1,1,2,3, while for AT4, the node numbers 
0,1,4,6 have as (signed) differences the numbers — 6, — 5, — 4, — 3, — 2, — 1, 
1,2,3,4,5,6. 

The complete graph Kn has n nodes and e = (n
2) edges. If we set v = 2e+1 = 

n2 — n+l, k = n, and λ=1, then the corresponding difference set with 
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parameters (v9 k, λ) may be visualized as an assignment of n distinct integers 
to the nodes of Kn in such a way that the set of all n(n-1) signed differences 
represent all the nonzero residue classes modulo v. 

This relationship suggests several directions for further investigation. For 
example, the class of graphs which are graceful modulo m, in particular when 
w = 2e+l, seems worthy of study, and is clearly larger than the class of 
graceful graphs previously treated, namely, the modulo 0 case. Another 
possibility is that new kinds of finite geometries may be suggested by graph-
numbering problems, in analogy with the connection between finite planes 
and the numbering of complete graphs. 

9. Summary of Unsolved Problems 

1. Characterize the class of graceful graphs. In particular, are all trees 
graceful? 

2. Determine G(Kn) for all n. 

3. Determine the function a(«) of Section 4. 

4. Determine the asymptotic percentage of graphs on n nodes, and/or of 
graphs on e edges, which are graceful. 

5. Investigate the numerical triangle (Fig. 11). 

6. G(T) is defined as the highest node number which must be used in 
numbering the graph Γ. Prove or disprove, that for every graph Γ, there is an 
edge numbered GÇT). 

10. Postscript 

The following unpublished asymptotic results have recently been obtained 
by P. Erdös : 

1. G(Kn)~n2. 

2. a(n)~cn2, where probably c = \. 

3. 0% of all graphs are graceful. 

Moreover, the numerical triangle (Fig. 11) has been superseded for all rows 
beyond n = 7. The revised triangle exhibits no discernable regularity. 



How to Number a Graph 37 

Acknowledgments 

Helpful suggestions were received from several colleagues and from members of the 
various audiences to whom I have presented portions of this material. I wish specifically 
to thank F. Harary, A. Lempel, L. Welch, and especially R. C. Read for suggestions, help, 
and encouragement. 



EVOLUTION OF THE 
PATH NUMBER OF A GRAPH: 
COVERING AND PACKING IN GRAPHS, IV 

Frank Harary 

Allen J. Schwenk 

Research Center for Group Dynamics 

Institute for Social Research 

The University of Michigan 

Ann Arbor, Michigan 

1. History 39 
2. Results on the Path Number 40 
3. The Unrestricted Path Number 42 
4. Unsolved Problems 44 

References 45 

1. History 

The development of the path number of a graph or digraph was a direct 
result of our attending the FILE 68 conference in November 1968, in 
Helsingor. There we met David Hsiao and held extensive conversations which 

t This research was supported in part by a grant to the Research Center for Group Dy
namics of the University of Michigan from the NIH Biomedicai Sciences Division. 
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led to our formal system [3] for information retrieval from files, in terms of 
directed graphs (see Harary et al. [4]). In this context, the points of a digraph 
D stand for records in a file structure and there is an arc (directed line) from u 
to v whenever the record u points to the address of record v. It is then natural 
to ask for the smallest number of record addresses needed to trace through 
the entire file structure, that is, all the arcs of D. In terms of (ordinary, un
directed, Michigan) graphs (7, the path number of G, π((7), is the smallest 
number of line-disjoint paths which cover all of G. Not surprisingly, we shall 
follow the graph theoretic notation and terminology of the book [1]. 

When Ralph Stanton heard the talk in Kingston, Jamaica, on which this 
article is based, he enjoyed the concept of the path number of a graph sufficiently 
that in collaboration with Cowan and James, he calculated the path number 
for certain classes of graphs including trees, cubic graphs, complete graphs, 
and complete bipartite graphs. These results, delivered at a conference in 
Louisiana [5], are summarized below, and alternate shorter proofs will 
be offered. 

The concepts of packing and covering were explored in a lecture [2] given 
in New York City, as a generalization of path number, arboricity, and several 
other graphical invariants. This approach suggested the definition of the 
"linear arboricity" of a graph, which has an interpretation in file structures. 

2. Results on the Path Number 

We now present the principal results of Stanton, Cowan, and James. The 
proof of Theorem 1 is both shorter and simpler than theirs in [5]. Let p0 be 
the number of points of odd degree in a graph G. 

THEOREM 1. The path number of a tree T is given by π(Τ) =ρ0β> 

Proof. Since every point of odd degree must be the end point of at least 
one path, we immediately see that π(Τ)^ρ0/2. We obtain the opposite 
inequality by induction on p0. Form a forest 7" by deleting the lines of the 
path joining any two end points of T. If no lines remain, we are finished. 
Otherwise, T' has/?0 — 2 odd points. Thus, by induction, π(Τ') = (ρ0 — 2)/2 
and consequently π(Τ) =ρ0β. 

Let m = m (G) =q—p+l be the cycle rank of a connected graph G, and 
l e t /= / (G) be the number of blocks which are not bridges. 

THEOREM 2. If G is a connected graph with no end points and G is not a 
cycle, then p0/2 ^ π ^ m +/— 1. 
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Sketch of Proof. The lower bound was already obtained in the proof of 
Theorem 1. The upper bound is proved by induction o n / a n d hence is estab
lished when/(G) = 1. Let Tbe a spanning tree of G. Then the number of lines 
in G — r i s m (G). Taking these as paths of length one in G, it can be demon
strated that sufficiently many of these can be extended to cover the lines of T, 
completing the proof for/(G) = 1. 

For the inductive step, the idea of the proof is to remove an endblock B 
and the path in G joining a point of B with a point of degree at least 3 (such a 
path is called a "tendril" by Stanton et al. [5]). 

THEOREM 3. If G is cubic, then n(G) =p/2. 

Sketch of Proof Since every point of G has degree 3, we see by Theorem 2 
that n(G) ^ρβ. The equality is attained when p = 4, because then G = ΑΓ4, 
which is the union of two spanning paths. The result now is obtained for all/? 
by induction, the basic approach being the deletion of a line followed by the 
suppression of the resulting two points of degree 2. The altered graph G' is 
cubic and has p — 2 points, so by induction, n{G') = (p — 2)/2. Now using the 
deleted line as an additional path, we have n(G) =p/2. This simple-minded 
argument, however, must be presented more carefully to be rigorous, since 
the deletion-suppression operation can create loops and multiple lines. 

The brace symbol {x} for a real number x is related to the maximum integer 
function [x~] by {x} = — [ — x~\. The proof of the next theorem is also neater 
than that of Stanton et al. [5]. 

THEOREM 4. The path number of the complete graph is given by n{Kp) = 

{pß}. 

Proof Since each path can cover at most p— 1 lines, we must have 
π(Κρ) ^ (Ρτ)Ι(ρ— 1) — ρβ> Since the path number is an integer, we strengthen 
this to read n{Kp) ^ {pß}. For even/?, Beineke [see 1, p. 91] constructed pß 
spanning paths covering Kp. For odd p = 2n+1, Kp is known [1, p. 89] to 
be the sum of n spanning cycles of the form Ci = wvivi+1'-vi_n+lvi+nw9 

where the subscripts are taken modulo 2n. From these cycles, we can construct 
a family of paths P{ = Ci — vt vi+ x for 1 ^ / ^ n and take P0 = vi v2 v3 ··· vn+ x 

to obtain n+\ paths covering AT2n+1, which completes the proof. The con
struction works because it is possible to omit one line from each cycle in such 
a way that the omitted lines induce the last path PQ. 

According to Stanton et al. [5], the proof of results giving the path number 
of any complete bipartite graph Kmn goes through twelve lemmas. Our main 
new contribution here is to state the result in recognizable closed form, rather 
than merely say, "The pattern is apparent." 
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THEOREM 5. Let m ^ n and consider the product mn. Then 

( m + n 

«(*„.„) = 
mn 

for mn odd 

for mn even, 
(In — ô(m,n) 

where ô(m9n) is the conventional Kronecker delta. 

Sketch of Proof. In the case that mn is odd, (m + n)/2 = p0/2 ^ n(Kmfn). 
In the even case, 2n — b(m,n) is the length of a longest path in Kmn. Hence, 
since there are mn lines to be covered, we may conclude that 

n{Km>n) > 
2n — ô(m,n) 

In both cases, equality is attained by a brutal construction, which we shall 
omit. 

3. The Unrestricted Path Number 

An alternative path-covering invariant of a graph can be defined as the 
minimum number of paths, unrestricted in that they are not necessarily 
line disjoint, needed to cover the lines of G. We proceed to relate this modified 
path number n*(G) to the original path number. 

THEOREM 6. The path numbers π and π* satisfy the inequalities, π* (G) ^ 
n(G) ίζ 2n*(G)— 1 +m(G), and the bounds are the best possible. 

Proof The first inequality is trivial because any line-disjoint covering is 
also one of the candidates for a minimal nondisjoint covering. 

We prove the second inequality by constructing a line-disjoint covering, the 
size of which does not exceed that given by the formula. We first describe the 
idea of the proof. Start with two paths in a nondisjoint path covering of G, 
and alter it to obtain a line-disjoint covering. We can take the first of these 
two paths as it is, but the second may overlap the first from time to time. 
Hence, we need to remove from the second path all the lines in their inter
section, thus forming additional line-disjoint paths. This procedure is formal
ized in the following argument. 

Let PUP2,...,P„ with n = n*(G) be a covering of G by paths. Define Gr to 
be the graph the point set of which is V(G) and the line set of which is X(Gr) = 
\Jr

i= 1 X(Pi). We let Q1 j = Px be the first path in our line-disjoint cover, and 
let Q2i, (?22>···> £?2*2 b e the k2 subpaths of P2 not already in G .̂ In general, 
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örii Qrii···> Qrkr
 a r e the kr subpaths of Pr not already in Gr.l. Evidently, the 

union of these Qu covers G with line-disjoint paths, so we need only count the 
number of Qf/s to get the desired upper bound. In fact, for each r we find 
n(Gr) < | {g i < / : /< r} |<2 r - l+ /w(G r ) . The result is obtained inductively, 
for in passing from Gr^x to Gr we add kr elements to the set of Qi/s. But 
m(Gr) exceeds m(Gr_ t) by at least kr — 2, and 2r exceeds 2(r— 1) by 2, so the 
right-hand side has also increased by kr. For r = n, this yields n(G)^ 
\{Qij:i<n}\^2n-\+m(G). But recalling that n = n*(G), we see that 
n(G) ^ 2n*(G)- \+m(G)9 completing the proof. 

The complete graphs Kp and the stars Kx n are simple examples of graphs 
attaining the lower bound n*(G) = n(G). The upper bound is attained for 
the following two infinite families of graphs. 

The first family is given by G, as illustrated in Fig. 1 for / = 4. Here G, has 
4/4-6 points and 5/+ 5 lines. Evidently n{G^ = 3 + / while π*(Gf) = 2 for all /. 
Since m(Gi) = /, we note that π ^ ) = 2n*(GÙ~ 1 +m(Gt) as claimed. 

The second family consists of the standard 2-branching trees T{ illustrated 
in Fig. 2. It is easy to see that π (rf) = 2l* - 1 while π* (Γ;) = ? ~l. Thus, π (Γ4) = 
2π*(Γ ί ) -1 , as desired. 

Let e be the number of end points of a tree. We may now determine π* 
for trees. 

THEOREM 7. The nondisjoint path number of a tree is given by π*(Γ) = 
{e/2}. 

Proof. Since each path in a minimal collection can cover at most two 
end lines, we immediately have π*(Τ)°^ {e/2}. We shall now show that 
equality is attained. Let vi9v2,...,ve be the end points of T, and letP^· denote 
the unique path joining vt and Vj. Consider a collection SP consisting of the 

Fig. 1. A representative of an infinite family of graphs attaining the upper bound in 

Theorem 6. 

Fig. 2. Trees that apply to Theorem 6. 
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paths Pkt [ e / 2 ] + k for k = 1,2,..., {e/2}. Suppose T has a line * that is not covered 
by &. Since all the end lines of T are covered, x is not an end line, and so 
T—x = T1 u Γ2, where neither component Ti is trivial. Consequently, there 
exist distinct endpoints vi9vj9vr9vs such that Pitj c Ti and Pr,s<^T2 and 
both these paths belong to Φ. Remove these two paths from 9 and replace 
them by Pir and PJS. The altered cover &' has the same number of paths as 
& and covers every line previously covered by 0>9 but in addition, line x is 
covered. Thus, if we repeat this procedure, in at most p — 1 iterations we will 
obtain a collection of {e/2} paths covering T. 

COROLLARY. For a tree T, π*(Γ) = π(Τ) if and only if T has at most one 
odd point which is not an end point. 

Proof. In the light of Theorems 1 and 7, this equivalence is obvious since 
{e/2} =Po/2 if and only if T has at most one odd point that is not an end point. 

4. Unsolved Problems 

1. Expressions for n(G) and 7r*(G) are not known for graphs other than 
trees. It is known that n(G) = n*(G) for those trees specified in the corollary, 
for all complete graphs Kp9 and for those complete bigraphs Kmn for which 
the product mn is even. However, it appears to be difficult to characterize the 
graphs for which n(G) = n*(G). 

2. The arboricity of a graph G is the minimum number of line-disjoint 
spanning subforests which cover G (see [1, p. 90]). Equivalently, it is the 
minimum number of spanning subtrees (not necessarily line-disjoint) which 
cover G. We have seen that for complete graphs Kp, the arboricity and the 
path number are equal. For which graphs does this hold? 

3. As defined in [2] the linear arboricity of a graph G is the smallest 
number of line-disjoint linear subforests (in which every component is a 
path) needed to cover G. Denoting as usual the arboricity by capital upsilon 
T, we write T for the linear arboricity of G. It is easy to see that for any graph, 
Y ^ T ^ π* ^ n. Thus, the preceding question asks when all four of these 
invariants are equal. The first question asked when π = π*. Hence, it remains 
to ask for which graphs is 

(a) T = π*? (b) Y = π*? (c) Ϋ = π? (d) Y = T? 

The smallest tree for which these four values are distinct has 8 points and 
is obtained from the 5-point path P5 by adding an end line at each of the 
three nonend points. For this tree T, the values are 1, 2, 3, and 4. 
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4. Still another covering invariant is the tree number of a graph obtained 
when the subgraphs are subtrees. We denote by x(G) the minimum number 
of line-disjoint subtrees that cover G. Similarly, let τ* be the corresponding 
number of subtrees, not necessarily line-disjoint, needed to cover G. Obviously 
Y = τ* <ζ τ ^ π, so that one can ask for the class of graphs satisfying additional 
equalities. 

5. We have discussed five different covering invariants of a graph : 

(a) π = path number, disjoint; 
(b) π* = path number, unrestricted; 
(c) Y = arboricity ; 
(d) T = linear arboricity; 
(e) τ = tree number, disjoint. 

To the best of our knowledge, there do not as yet exist effective and convenient 
computer algorithms for determining the values of these five invariants for a 
given graph. 
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1. Introduction 

Over the last few years a number of computer programs have been written 
at the National Physical Laboratory for the production of lists of graphs and 
for the enumeration of the number of different ways these graphs can be 
placed on crystal lattices (the lattice constants of the graphs). In this article 
we shall discuss a number of problems associated with the first of these two 
topics, namely the production of lists of graphs by computer. The actual 

47 
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enumeration of the lattice constants is performed by means of sophisticated 
programs produced by J. L. Martin (unpublished), these being extensions of 
his previous work on the exact enumeration of walks on crystal lattices [12]. 
This research work formed part of a now completed joint project of the 
National Physical Laboratory and King's College, University of London, 
for the systematic enumeration of lattice constants. 

Lattice constants are of considerable use in the calculation of exact series 
expansions for the physical properties of interacting systems and sophisticated 
extrapolation techniques have been developed for the prediction of the critical 
properties of such expansions. In many cases, the coefficients in the series 
expansions are equivalent to summations with appropriate weights over a 
restricted class of undirected graphs known as stars [17]. These graphs also 
occur widely in other physical problems, notably the Mayer theory of con
densation [18]. It was mainly with a view to the production of all star graphs 
having specified numbers of points and edges that the work described in this 
article was carried out, though the possession of a full set of seven-point 
graphs stored in a computer allowed Cameron [2] to investigate the existence 
and nonexistence of complete subgraphs in the graphs. 

Where graphs have only a small number of points, less than seven, they can 
readily be drawn and listed by hand. In fact, it has even been possible to 
produce drawings of the full set of seven-point graphs (D. W. Crowe and 
F. Harary, unpublished), though errors in this list of drawings only came to 
light after a full set of the graphs had been produced by computer. When the 
graphs are larger and more complex, the assistance of a computer is essential 
in order to avoid errors. We shall discuss the general problem of the repre
sentation and identification of graphs in a computer and describe how these 
difficulties were overcome in our programs. We shall also discuss three specific 
problems, namely the production of all simple graphs having specified numbers 
of points and edges and in particular the production of all eight-point simple 
graphs, the production of sets of star topologies (see Section 2) and the 
production of all simple stars having a specified number of points and a 
specified topology. Much of this work has been described in earlier pub
lications, [1, 4, 8, 9, 10, 11, 13, 17], some of which are not readily available. 
This contribution is meant to be a summary of these publications and readers 
requiring more detail should refer to the original articles. 

Graph theory has many roots and branches and as yet no uniform and 
standard terminology has been agreed. In a recent book, Harary [7] has 
attempted to produce a standard set of definitions and these will probably be 
familiar to many readers. However, workers in other fields are accustomed 
to different definitions and terminology. As the work described here was 
carried out in conjunction with theoretical physicists, we feel justified in using, 
instead of Harary's terminology, the terminology of Essam and Fisher [5], 
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who have also recently attempted to produce a standard set of definitions, 
albeit from a physicist's viewpoint. For those readers who are unfamiliar with 
these definitions, and for the sake of clarity, we shall briefly state the main 
graph-theoretical definitions in the next section. 

2. Definitions and Terminology 

A graph G consists of a set P of points, together with a set E of undirected 
edges or lines joining certain pairs of points. However, an edge may not join 
a point to itself (a loop). In a multigraph, a pair of points may be joined by 
more than one edge (multiple ov parallel edges), but in a simple graph a pair of 
points may be joined by at most one edge. For brevity, in this paper we shall 
use the term graph to refer to either multigraphs or simple graphs or both, 
only distinguishing between them where it is not clear from the context. 
A labeled graph is a graph the n points of which are labeled with the integers 
1,2,...,«, in some way. 

A graph is said to be disconnected if it is possible to divide the set of points P 
into two subsets, Pl and P2, such that there are no edges joining any point 
in P1 to any point in P2 ; otherwise the graph is said to be connected. A point 
belonging to a connected graph G the removal of which from G, together 
with the edges emanating from it, produces a disconnected graph is referred 
to as an articulation point or cut point. A connected graph containing an 
articulation point is separable. If a connected graph does not contain an 
articulation point, then it is nonseparable, or multiply connected. If it contains 
at least two points, then it is referred to as a star. Two graphs are said to be 
isomorphic if there is a one-to-one correspondence between their point sets 
that induces a one-to-one correspondence between their edge sets. Each 
graph is then said to be an isomorph of the other. 

The number of edges emanating from a point is known as the degree of 
that point. If a graph G contains a point A of degree two, which is joined to 
the two distinct points B and C, then a new graph can be formed, which has 
the same point set as G, apart from A, and the same edge set except that edges 
AB and AC are removed and an edge BC added. This process is known as the 
suppression of the point A. The reverse process of replacing an edge BC by a 
new point A and new edges AB and AC is known as the insertion of the point A 
on the edge BC. Two graphs are homeomorphic, and one is said to be a 
homeomorph of the other, if they can be made isomorphic by the insertion and 
suppression of points of degree two. Such graphs are said to have the same 
basic topology. A graph of a given basic topology which is homeomorphic to 
no graph with fewer points is said to represent faithfully the topological type 
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of all its homeomorphs. Such a graph is referred to as a basic topological type 
and, in this article, we shall usually abbreviate this as topology. In previous 
papers such a graph was referred to as homeomorphically irreducible. The 
cyclomatic number c of a connected graph containing n points and m lines is 
defined by 

c = m — n + 1. 

Since the process of inserting a point of degree two increases both the number 
of points and the number of edges in the graph by unity, it is clear that all 
homeomorphs have the same cyclomatic number. 

This completes the general graph definitions needed here. A number of 
other definitions concerned with the representation and identification of a 
graph in a computer are given in Section 4 when this topic is discussed. 

3. Problems 

We are now in a position to state in the graph-theoretical terms of Section 2 
the problems that we shall discuss. They are 

PROBLEM 1. The production by computer, in some representation or other, 
of one copy of each simple graph containing a specified number of points and 
edges, and in particular, one copy of each simple graph having eight points. 

PROBLEM 2. The production by computer, in some representation or other, 
of one copy of each star topology containing a specified number of points and 
edges. 

PROBLEM 3. The production by computer, in some representation or other, 
of each simple star having a specified topology and a specified number of 
points and edges. 

A vital need for all these problems is a method for the representation of 
both simple graphs and multigraphs in a computer and the identification of a 
graph in a list of possibly thousands of graphs. This will be considered in the 
next section. Problem 1 will be dealt with in Section 5, Problem 2 in Section 6, 
and Problem 3 in Section 7. 

4. Representation and Identification of Graphs in a Computer 

The representation and identification of a graph in a computer is possibly 
the most important problem associated with the automatic production of 
graphs. The methods and techniques that we describe in this section were 
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evolved to deal with specific problems. Since this research work was completed, 
Cornell and Gotlieb [3] have described a computer algorithm for testing 
whether or not two graphs are isomorphic. However, their method does not 
appear to have been applied to the case that we are mainly interested in, 
namely the identification of a graph in a list of many graphs. 

There is no difficulty in the representation of a graph in a computer if its 
points can be labeled with the integers 1,2,...,«, since the adjacency matrix 
of the graph can be used to represent it. The adjacency matrix is a n x n matrix 
the (/j)th element of which is the number of edges leading from point i to 
point j . For the graphs we are concerned with, the adjacency matrix is sym
metric, since the edges are undirected, and its diagonal terms are zero, since 
loops are forbidden. Thus, it is only necessary to actually store the upper 
triangular part of the matrix, which is a total of n(n— l)/2 elements. This does 
not necessarily mean that we must set aside this number of computer words 
to store a single graph. Since the elements of the matrix are small integers, 
several of them may be packed into one computer word and the storage 
requirements are reduced by a factor which depends on the maximum possible 
element and also on the length of the computer word. Of course, the routines 
dealing with individual elements of the matrix are then rather more complex, 
but those dealing with the matrix as a whole are often very much simpler. 

When n is large and the number of edges in the graph is not too large, other 
methods of storing the matrix can possibly use less storage space. Thus, a 
straight list of the nonzero elements of the matrix, each entry in the list consist
ing o f / j and the number of edges joining / toy can be used. This only uses 3k 
words, where k is the number of nonzero elements. This can also be sub
stantially reduced by packing as described above. For very large graphs even 
more economic storage methods can be evolved, but these are outside the scope 
of this article. 

For the graphs we are concerned with here, a labeling was produced (see 
below), and the adjacency matrix stored in one of two ways. As it was known 
from the outset, in the case of multigraphs, that the number of edges joining 
any two points would be small, certainly less than 15, and that the number of 
points in the graphs would be at most ten, four bits were assigned to each 
element of the adjacency matrix. As the computer word length was 48 bits, 
each row of the matrix occupied one word. The full matrix was stored, although 
as stated above, this was not strictly necessary. However, in this way, the 
program routines could be made somewhat simpler. An additional word was 
used to store the degrees of the points, packed as above. Another word was 
used to hold information about the graph, that is, the number of points, 
number of edges, and an identification number. Finally, a third additional 
word was used for addressing purposes, as will be explained later. Thus, n + 3 
words were needed to store a multigraph having n points. 
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For simple graphs, the same storage method could have been used, but 
because of the necessity to hold up to 1646 eight-point graphs in the main store 
of the computer at the same time, it was decided to use a more condensed 
storage method. As there could be at most one edge joining any two points in 
a simple graph, a single bit only was needed to say whether the edge was 
present or not. By restricting the matrix to its upper triangular part only 28 
bits were required for storing an eight-point graph, and this was easily 
accommodated in one computer word. An identification word and an address 
word were still needed as in the case of multigraphs so that three words were 
needed for the storage of each simple graph. 

However, the graphs with which we were dealing were unlabeled. In order 
to represent them by means of adjacency matrices, it was necessary to produce 
some method of labeling their points. Since we required the representation of 
a graph to be unique, this labeling had to be unique, apart from symmetry. 
Perhaps the simplest way of possibly distinguishing one point in a graph from 
another is by means of their degrees, since points must be different if they 
have different degrees. In addition, the degrees are readily available. Thus, 
the set of points of a graph was divided into subsets, all points belonging 
to each subset having the same degree. The subsets then were ordered accord
ing to the magnitude of the degrees so that if there were nx points with degree 
dl9 n2 with degree d2,...9nk with degree dk, then 

d1> d2> d3> ··· > dk, 

and the subsets contained ni,n2,n3,...,nk points, respectively. In the case of 
multigraphs these subsets were divided further. Consider a point with degree 
di for some /. The edges emanating from this point, consist, in general, of a 
collection of single edges, double edges, triple edges, and other multiple edges. 
We refer to this collection of edges as the degree sei of the point. Clearly two 
points can be distinguished if their degrees have different degree sets, even 
though their degrees are equal. If the point has dn single edges, di2 double 
edges, and so forth, so that 

di = Σ rdir> 
r= 1 

where t =di—l9 then we specify the degree set by means of a /-tuple degree 
specification 

(dit9...,diZ,di2,dn). 

Just as the degrees of the points were ordered in descending order of magnitude, 
we order the degree specifications, also in descending order of magnitude. 
To do this, we define an ordering of the /-tuples by saying that a /-tuple 
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A = (Al9A29A39...9At) is larger than /-tuple A', if there exists an r, 1 < r ^ t9 

such that As = As'9 1 ^s ^r-\,d.ndAr>Ar'. Thus, all points having a certain 
degree can be assigned to subsets according to their degree specifications. 
Two points are in the same subset if and only if they have the same degree 
specification. Unfortunately this method of further subdividing the degrees 
requires more storage since for each different degree set, a degree specification 
must be stored. This can conveniently be done in one word but a total of n 
words are required for the storage of the specifications of each subset. 

In this way the points of both simple graphs and multigraphs were divided 
into ordered subsets {SJ, each containing mx points, / = 1,2,...,/?. In the case 
of simple graphs St contained all points having degree di9 m^ = ni9 and p = k. 
For multigraphs, the designation was not as simple, and St contained all 
points having a specified degree and a specified degree set. Labels l929...9m1 

were now assigned to the ml points in Sl9 labels ml + l9m1+29...9mi+m2 to 
the points in S2, etc., and the adjacency matrix formed for each possible 
method of assignment. There were mx lm2\m3\ '-mp\ possible assignments 
and adjacency matrices. If au is the (ij)th element of the adjacency matrix 
for some labeling, then we define the canonical labeling of the graph as that 
labeling which makes the «2-tuple 

(ail9al29al39...9aln9a2l9...9ann) 

a maximum. This was the labeling that was applied to the graph. The 
appropriate adjacency matrix is referred to as the canonical matrix. 

It is clear from the above that in order to produce the canonical matrix, it 
might be necessary to consider a large number of possible labelings of the 
points of a graph. It is important that the minimum possible disturbance be 
made to the adjacency matrix in going from one labeling to another. This was 
achieved by a system of interchanging two labels according to a scheme which 
eventually produces all possible labelings. A simpler form of this scheme is 
described in Heap [8]. 

When identifying a graph in a list of possibly some hundreds of graphs, 
the canonical matrix was first produced and only compared with those of all 
graphs in the list which had the same degree subsets (simple graphs), or the 
same degree and degree specification subsets (multigraphs). This was done 
simply by storing separately an index of the different degree subsets and degree 
specification subsets, and with each one the address of the last graph in the 
list having these degrees and degree specifications, as well as the number of 
such graphs in the list. Then with each graph was stored the address of the 
previous graph having the same set of degrees and degree specifications. 
Thus, it was extremely easy to scan through only those graphs which could 
conceivably be the one we were identifying. 
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5. Production of Simple Graphs 

Simple graphs having a specified number of points n and edges m can be 
constructed easily from the full sets of those having either n points and m + 1 
edges or those having n points and m— 1 edges. In the former method, a graph 
having n points and m+ 1 edges is examined, a single edge removed, and the 
resultant graph, having n points and m edges, is identified and stored as 
described in the previous section. The process is repeated for each of the 
m +1 possible ways of removing a single edge from the original graph and is 
then repeated for each graph having n points and m+ 1 edges. It is clear that 
each graph with n points and m edges must be produced at least once by this 
process. Starting from the complete graph having each of its n(n— l)/2 distinct 
pairs of points joined by edges, the full set of «-point graphs can be pro
gressively built up. In the latter method, each graph with m — 1 edges is 
examined in turn, and new graphs are formed by adding an edge in all possible 
ways consistent with its remaining a simple graph, a total of n(n— l)/2 — m+1 
possible ways. The identification is carried out as before. This time we start 
with the graph containing n points and no edges and the full set of w-point 
graphs again is built up progressively. 

An alternative method of constructing the graphs with n points and m edges 
is to produce them from the full set of graphs having n— 1 points. In order to 
achieve this, we must consider all possible ways of adding one point and 
joining it toy of the original points of each graph having n— 1 points and m—j 
edges, y =p(l)q, where 

p = max(0,m - (n- \)(n-2)/2) 

and 

q = min (A — l,m). 

The efficiency of this method compared to that of the previous methods can be 
estimated by calculating the number of graphs that have to be constructed 
in order to produce the full set of eight-point graphs. It turns out that a total 
of 133,632 are formed using this last method as opposed to 172,845 for either of 
the other methods. Thus, this method is slightly more efficient. However, an 
advantage of the first method that we described is that, for each graph, a 
complete list of its partial graphs can be produced. A partial graph of a graph G 
is a graph produced from G by the removal of edges alone. This was important 
in the original problem for which the graphs were required [17], and is also 
useful in evaluating some of the properties of the graphs. For example, it is 
useful in deciding whether a graph is planar or not. From Kuratowski's 
theorem (see Harary [7] or Ore [14]), we know that a graph is nonplanar, 
if and only if it contains as a partial graph, any graph which is homeomorphic 



The Production of Graphs by Computer 55 

to the complete graph on five points, (K5), or the complete bipartite graph on 
six points (^3(3). In K3 3 the six points are divided into two subsets of three 
points each, and each point in one subset is joined to all the points in the 
other subset, but not to any of the other points in its own subset. It is a simple 
matter to produce by hand those graphs having eight points that are homeo-
morphic to K5 and K3 3 . By examining only the sets of immediate partial 
graphs, that is, those with only one edge removed, of all graphs, it is possible to 
build up a full list of nonplanar graphs. Details of the numbers of planar and 
nonplanar graphs having six, seven, and eight points do not appear to have 
been previously published and they are given in Tables I, II, and III. 

A knowledge of the partial graphs of a graph also allows us to decide whether 
it is connected or not, and whether it is separable or not, because a disconnected 
graph having eight points must be a partial graph of at least one of four 
disconnected graphs, which are easily constructed by hand. If Kn is the 
complete graph having n points, these graphs can be described by Κί-{-ΚΊ, 
K2 + K6, K3 + K5, and K4 + K4. Similarly, a separable graph having eight 
points must be a partial graph of at least one of three separable graphs. The 
numbers of connected and nonseparable (star) eight-point graphs are given 
in Table IV. 

As was stated in Section 1, a set of drawings of all seven-point graphs has 
been made by Crowe and Harary. The total number of eight-point graphs, 
12,346, prohibits any possibility of a similar scheme for their systematic 
representation as a set of drawings. However, it has been found possible to 
prepare a set of punched cards on which the full set of eight-point graphs are 
represented by their canonical matrices. This is achieved by using only one 
row of a punched card to store the matrix, in which a hole represents an edge. 
In this way 12 graphs can be stored on a single card and only 1044 cards are 
required to store the full set of 12,346 eight-point graphs. The graphs also are 
stored on magnetic tape for use in the computer. 

6. Production of Star Topologies 

In this section we restrict attention to stars and discuss Problem 2, which is 
the production of all star topologies having a specified number of points and 
edges. We note, from Section 2, that a useful means of classifying such a graph 
is by means of its cyclomatic number, denoted by c. For c = 2, there is only 
one such topology, a theta graph, consisting of two points joined by three 
edges. For c = 3, there are four topologies, usually described as alpha, beta, 
gamma, and delta graphs. For c = 4, there are 17 such graphs. All these graphs 
are illustrated in the paper by Essam and Sykes [6]. Diagrams can also be 
found in the full catalog [10]. 



56 B. R. Heap 

T A B L E I 

The Numbers of Planar P(m) and Nonplanar N(m) Simple Graphs Having 

Six Points and m Edges 

m P(m) N{m) m P(m) N(m) m P{m) N(m) 

11 
12 
13 
14 
15 

5 
2 
0 
0 
0 

4 
3 
2 
1 
1 

6 
7 
8 
9 
10 

21 
24 
24 
20 
13 

0 
0 
0 
1 
2 

0 
1 
2 
3 
4 
5 

1 
1 
2 
5 
9 
15 

0 
0 
0 
0 
0 
0 

T A B L E I I 

The Numbers of Planar P(m) and Nonplanar N(m) Simple Graphs Having 

Seven Points and m Edges 

m P(m) N(m) m P(m) N(m) m P(m) N(m) 

15 
16 
17 
18 
19 
20 
21 

5 
0 
0 
0 
0 
0 
0 

36 
21 
10 
5 
2 
1 
1 

0 
1 
2 
3 
4 
5 
6 
7 

1 
1 
2 
5 
10 
21 
41 
65 

0 
0 
0 
0 
0 
0 
0 
0 

8 
9 
10 
11 
12 
13 
14 

97 
130 
144 
135 
98 
51 
16 

0 
1 
4 
13 
33 
46 
49 

T A B L E I I I 

The Numbers of Planar P(m) and Nonplanar N(m) Simple Graphs Having 

Eight Points and m Edges 

m P{m) N{m) m P{m) N(m) m P(m) N(m) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

1 
1 
2 
5 
11 
24 
56 
115 
221 
401 

0 
0 
0 
0 
0 
0 
0 
0 
0 
1 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

658 
956 
1217 
1264 

1038 
619 
255 
56 
10 
0 

5 
24 
95 
293 
608 
938 
1057 

924 
653 
402 

20 
21 
22 
23 
24 
25 
26 
27 
28 

0 
0 
0 
0 
0 
0 
0 
0 
0 

221 
115 
56 
24 
11 
5 
2 
1 
1 
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TABLE IV 

The Numbers of Connected Graphs C(m) and Nonseparable (Star) Graphs N(m) Having 
Eight Points and m Edges 

m 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

C(m) 

0 
0 
0 
0 
0 
0 
0 
23 
89 
236 

N(m) 

0 
0 
0 
0 
0 
0 
0 
0 
1 
6 

m 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

C(m) 

486 
814 
1169 

1454 
1579 

1515 
1290 

970 
658 
400 

N(m) 

40 
161 
429 
780 
1076 
1197 

1114 

885 
622 
386 

m 

20 
21 
22 
23 
24 
25 
26 
27 
28 

C(m) 

220 
114 
56 
24 
11 
5 
2 
1 
1 

N(m) 

215 
112 
55 
24 
11 
5 
2 
1 
1 

These topologies were obtained using paper-and-pencil methods and it is 
not difficult to do this. However when we turn to the production of the star 
topologies with c = 5, such methods are prone to error, and more systematic 
methods are required. It is perhaps of interest that Nagle [13] made an 
attempt to produce these graphs by hand and quickly found a total of 116. 
However, our computer method had previously discovered that there were 118. 
For topologies with c > 5, it is totally impracticable to produce the graphs 
other than by computer. 

There are three ways in which star topologies with n points and m edges, 
and thus having c=m — « + 1 , can be produced from previously obtained 
topologies having c=m — n. These are 

1. by joining any two distinct points of a topology having n points and 
m—\ edges; 

2. by inserting a point of degree two on any edge of a topology having 
n—\ points and m — 2 edges, and then joining this point to any other 
point; 

3. by inserting two points of degree two on any edge or edges of a topology 
having « — 2 points and m — 3 edges, and then joining these two points. 

A little thought shows that these are the only possible ways of constructing 
star topologies, and a topology cannot exist that cannot be constructed in this 
fashion. However it is necessary to consider all possible ways of performing 
the operations in order to make absolutely certain that none are missed. The 
star topologies having c = 5 were constructed using these methods. The 
storage and identification are as described in Section 4. 

The same general method was used to produce most of the star topologies 
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having c = 6. However some of these have as many as ten points and all of 
these points have degree three. If all the degree specifications of the points are 
the same, then they are computationally indistinguishable, as far as the method 
of representation described in Section 4 is concerned. Therefore, for graphs 
having more than eight points, special methods were derived for producing 
the canonical matrices. We shall illustrate these by a consideration of the 
production of all star topologies having ten points, each with degree three, 
and each being joined to three distinct points. To produce the canonical 
matrix for such a graph using the methods of Section 4 would have required 
the consideration of 10! labelings and thus 10! = 3,628,800 adjacency matrices. 
As this would have taken about 100 min for a single graph, the method was 
out of the question. 

However, in the canonical matrix, we note that point 1 must necessarily be 
joined to points 2, 3, and 4 for such a graph. Thus, in finding the canonical 
labeling we run through all possible ways of: 

1. assigning label 1 to a point (10 possible ways); 
2. assigning labels 2, 3, and 4 to the three points to which point 1 is 

joined (3! = 6 possible ways); 
3. assigning labels 5,6,..., 10 to the remaining points (6! = 720 possible 

ways). 

Thus, only 10 x 6 x 720 = 43,200 different labelings need to be considered. 
This takes about 1 min and is a considerable reduction. A penalty is that a 
special computer program is required. 

Similar reductions in time, at the expense of specially written programs, 
allowed all topologies having c = 6 with nine and ten points to be readily 
obtained. A full description of these methods is too specialized for this article, 
but can be found in the full catalog of the 1198 topologies with c = 6 [11]. 
In addition, drawings of all star topologies with c < 6 are available [9, 10]. 
The numbers of star topologies having c ^ 6, classified according to their 
numbers of points and edges, are given in Table V. 

7. Production of Stars Having a Given Topology 

In the last section, we discussed the production of star topologies. These 
may be either simple graphs or multigraphs. We now wish to take one of these 
topologies and produce all simple star graphs having this topology, and a 
specified number of points, by the simple expedient of the insertion of points 
of degree two on the edges of the topology. 

In fact, a formal method for this enumeration process can be derived using 
the well-known methods of Pólya [15]. Detailed descriptions of Pólya's 
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TABLE V 

The Numbers Tc(m) of Star Topologies 
n Points, 

c 

2 
3 
3 
3 
4 
4 
4 
4 
4 
5 
5 
5 
5 

and m 

n 

2 
2 
3 
4 
2 
3 
4 
5 
6 
2 
3 
4 
5 

= c + n-

m 

3 
4 
5 
6 
5 
6 
7 
8 
9 
6 
7 
8 
9 

-1 Edges 

7Um) 

1 
1 
1 
2 
1 
2 
5 
4 
5 
1 
3 

13 
24 

Having 

c 

5 
5 
5 
6 
6 
6 
6 
6 
6 
6 
6 
6 

Cyclomatic 

Λ 

6 
7 
8 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Number 

m 

10 
11 
12 
7 
8 
9 

10 
11 
12 
13 
14 
15 

c^6 , 

TM) 

38 
23 
16 

1 
4 

26 
84 

216 
314 
325 
162 
66 

enumeration techniques can be found in Harary [7], Riordan [16] and 
Uhlenbeck and Ford [18]. Let G be a star topology having m edges and let 
TG(ti9t2, t3,..., tm) denote the cycle index of the group of permutations of the 
edges of G. Now stars homeomorphic to G are produced by the insertion of 
points of degree two on the edges of G. As any number of points may be 
inserted on any edge, the enumerator for the process is 

x + x2 + x3 + ··· = x/(l-x). 

If UG(k) is the number of stars having k edges, homeomorphic to G, we 
then have 

TG(Yl9Y29Y39...9YJ = Σ VG(k)x\ 
k = m 

where 
Yr = jf + x2r + x3r + ··· = *7(1 -x"). 

These equations represent the formal technique for the calculation of UG(k). 
However, since a knowledge of the cycle index of G is required, the method is 
not in general practical. Note also that UG(k) enumerates both simple graphs 
and multigraphs, if G is a multigraph. Some means of deleting the multi-
graphs is necessary, if they are not to be included in the enumeration. 

An alternative enumeration method devised by Domb and described in 
Domb and Heap [4] and Heap [10] is of more practical interest. For this we 
introduce the concept of a colored graph, by which we mean a graph whose 
edges carry identifying "colors." Two colored graphs are said to be the same 
if they are both isomorphic and if corresponding edges carry the same color. 
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Now let mum2,m39...,mri ml^m2^m3^ ··· ^mr, be some partition of m 
into r parts. We define a symmetry factor WG(ml,m29m3,...,mr) of G as the 
number of different ways of coloring the edges of G to produce differently 
colored graphs, with the proviso that ml of the edges are colored with color 1, 
m2 of the edges are colored with color 2,..., and mr of the edges are colored 
with color r. Let P(k;m1,m2,m3,...,mr) be the total number of partitions of k 
into m parts such that ml are equal to some integer ku m2 are equal to some 
different integer k2, etc. We now make a correspondence between a colored 
edge of G and the number of points inserted on that edge in order to produce 
a graph homeomorphic to G. It follows that 

t /GW = YJP(k\mum2,m3,...,mr)WG{mum2,...imr), 
(m) 

where the summation extends over all partitions of m. Since the symmetry 
factors are fairly easy to obtain by hand or can be derived from the cycle 
index, and tables of P{k\m1,m2,m3i...,mr) are available [1], it is possible to 
enumerate UG(k) when the topology is simple. However, multigraphs may 
still be included in the enumeration and these have to be deleted. For further 
details of how this is achieved the reader is referred to Domb and Heap 
[4] or Heap [10]. Expressions for the numbers of simple stars homeomorphic 
to the 22 star topologies having cyclomatic numbers less than five, together 
with extensive tables, are given in Heap [10]. In addition, Domb's method 
can also be used for the enumeration of star topologies themselves. Full 
details, formulas, and tables are also given in Domb and Heap [4] and 
Heap [10]. 

The methods of actually producing simple stars with a given topology are 
akin to Domb's method of enumeration. Let a given topology G have n points 
and m edges. Assume that we wish to produce all stars having k edges and the 
topology of G. Normally, k is not much larger than m. This is achieved by 
considering all partitions of k — m into m parts, not all parts being necessarily 
nonzero, and all possible ways of inserting points on the edges of G consistent 
with the partitions. For example, if a given topology has six edges and k = 9, 
then we consider all possible ways of inserting three points on one of the edges, 
all ways of inserting two points on one edge and one point on another edge, 
and all ways of inserting one point on each of three different edges. For most 
topologies this can be carried out by hand provided k — m is not too large and 
the topology is fairly simple. 

However, where k is fairly large and the topology is complex, usually when 
the topology is fairly symmetric, the computer must be used. As an example, 
consider the case where G contains no multiple edges, and so each nonzero 
element in the adjacency matrix of G is equal to unity. We now insert points 
on the edges of G according to the appropriate partition as described above. 
However, instead of constructing a new adjacency matrix of size n + k — m from 
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the adjacency matrix of G of size n, we construct a new n x n matrix in which 
the (/j)th element is equal to 1 plus the number of points inserted on the 
edge joining i to j . One way of describing this matrix is as a chain matrix, 
for now the (/j)th element is equal to the length of the shortest chain from 
i toy, with only the points of degree three or more being labeled. This matrix 
is an alternative method of representing the graph and can be used exactly 
like the adjacency matrix. If there are no points of degree two, it is identical 
with the adjacency matrix. A canonical matrix can be defined and formed just 
as before, and graphs can be stored and identified as described in Section 4. 
The great advantage of this representation is that we are representing a graph 
with n + k — m points by an n x n matrix. By running through all possible ways 
of inserting the points consistent with the partition and then running through 
all partitions, the full set of stars can be found. 

If G has multiple edges, the above procedure cannot be used directly, 
though it is sometimes possible to use a slightly amended method. Recently, 
J. L. Martin (private communication) has produced a technique which deals 
with both simple graphs and multigraphs, but in many cases it is rather time 
consuming, especially where the topology has a high degree of symmetry. In 
these cases, it is necessary to resort to special programs which take into 
account the symmetry of the topology. As an example, consider the pro
duction of simple beta graphs. The basic topology of a beta graph is a graph 
with four points, which are labeled 1, 2, 3, and 4, and six edges, (1,2), (1,2), 
(3,4), (3,4), (1,3), and (2,4). If we denote by a, b, c, d, e, and/ the numbers of 
points inserted on these edges respectively to produce a simple beta graph 
having n points, then the graph can be specified uniquely by values of a, b, c, 
d, e, and / satisfying the relations 

a + b + c + d+e+f=n-4, a ^ 0; 

b > a, 

b ^ a, 

d^ b, 

d> c, 

0 = 0, 

αφ 0, 

c = a, 

c φ a, 

c ^ a, 

c ^ a; 

f>e>0, 

f^e^O. 

The graphs can now be specified, as the reader may verify, by 

e = 0 ( l ) [ ( / t - 4 ) / 4 ] , 

f[(«-5)/2], a = 0) 
c = a{\) 

([(« - 4 - 2e)/2], a Φ 0 

Π, e = 0 | [[(» - e - c - 4)/2], a = c 

[a, a φ OJ [n — a — 2c — 4, a φ c 
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d = (\)n — a — b — c — 4, 
(b9 a = ci 

[c, a Φ c) 

e = 0(l)l(n-a-b-c-d-4)/2]. 

f = n — a — b — c — d— e — 4. 

where [x] denotes the largest integer less than or equal to x. A computer 
program to run through all these possibilities is straightforward to produce. 
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1. Introduction 

The past few years have witnessed the development of a large number of 
problem-oriented programming languages. In the field of mathematics, the 
languages developed include ALPAK [2] and FORMAC [12] for algebraic 

63 
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manipulation, a language for polynomial arithmetic [6], and the language 
NAPSS [11] for numerical analysis, among others. 

Many authors have presented algorithms for solving various problems in 
graph theory, but it is only in very recent times that attempts have been made 
to provide a programming facility which will enable the graph theorist to 
state his problem in a programming language that is natural to the subject. 
Wolf berg [13] has developed an interactive system for graphs which empha
sizes graphic display and Cresspi-Gregatti and Mortuga [3] have outlined an 
extension of ALGOL for handling graphs. 

In the present paper, we introduce and discuss a programming language 
for graph theory, GTPL, which is an extension of FORTRAN for handling graphs. 
A compiler has been written for GTPL, and implemented on an IBM 1620 
computer with 20k storage and one disk drive. 

2. Design Considerations 

The types of algorithms required to solve graph-theoretical problems on 
a computer resemble more the algorithms used in list processing and similar 
non-numerical applications of computers. However, a certain amount of 
numerical computation can be expected in most graph-theoretical problems. 
In designing a language to meet both these objectives, we have taken an 
existing language, FORTRAN, and added a number of extra statements, defini
tions, and the grammatical structure necessary to handle graph-theoretical 
manipulations on a computer. 

The Graph-Theoretic Programming Language (GTPL) we now describe is 
thus a dialect of FORTRAN, and for simplicity Basic FORTRAN has been used. 
In the following discussion, Basic FORTRAN is intended whenever reference is 
made to FORTRAN. We first make a few general comments on the FORTRAN 

characteristics of GTPL and then describe the graph-theoretical statements. 
By way of examples, two programs, which have been compiled and executed 
using the GTPL system, are included. 

3. FORTRAN Characteristics of GTPL 

We mentioned in the last section that GTPL uses FORTRAN as its host language. 
There are however, a few departures from FORTRAN and these are set out below. 

ASSIGNMENT STATEMENT. The arithmetic assignment statement of GTPL 

is of the form 
» = /, 
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where v is the symbolic name of a variable and / is a signed or unsigned ex
pression, consisting of at most one binary operator. Further, a statement may 
contain parentheses only when referencing subscripted variables. In all other 
respects, the assignment statement of GTPL is exactly like that of FORTRAN. 

Although this version of the assignment statement may appear somewhat 
restrictive, it has proved quite adequate for the purpose for which the language 
has been designed. 

IF STATEMENT. In addition to the IF statement of FORTRAN, there is a 
logical IF statement which is used when testing for certain graph-theoretic 
properties. The form of the logical IF statement and the properties which 
may be tested are given in Section 4. 

CHARACTER SET. A symbolic name that identifies a variable has a type 
established by the first character of the name, and the only departure from 
FORTRAN in this respect lies in the use of the letters G and H to identify graphs. 
Also, in addition to the usual characters of FORTRAN, two special characters 
@ and $ have been introduced. The character @ always precedes the label of 
a graph, for example, 

@GA, 

which may generally be interpreted as of the graph G A. 
An interesting feature of GTPL is the facility to handle collections of graphs. 

The label which identifies a collection of graphs is prefixed by the character $, 
and one may refer to the entire collection of graphs or to a particular member 
of the collection. The character $ also has another use that will be described 
in due course. 

INPUT/OUTPUT STATEMENTS. The READ, PRINT, and TYPE state
ments of GTPL are not formatted. The READ statement has the form 

READ, LIST 

where LIST consists of any combination of simple or subscripted variables or 
of labels of graphs. Data fields are separated by one or more blank columns. 
The form of the PRINT and TYPE statements is similar to that of the READ 
statement. 

Alphameric information may be printed by bracketing the information to 
be printed within a pair of @ signs as follows : 

PRINT, ©MESSAGE® 

The control statements DO, GO TO, CONTINUE, STOP, PAUSE, and 
END are exactly as in FORTRAN. 
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4. The Graph-Theoretical Statements of GTPL 

The most important difference between GTPL and FORTRAN lies in the 
incorporation in GTPL of a number of graph-theoretical statements. These 
statements will now be described, and for the purpose of discussion they have 
been grouped into eight categories. 

GROUP I. Statements for enumerating some characteristic of a given 
graph are 

NCOMPS @ G 

NEDGES @ G 

NNODES @ G 

NNODES (N) @ G 

VALENCE (I) @ G 

MINVAL @ G 

MAXVAL @ G 

NCUTND @ G 

NBLOCKS @ G 

Sample Statement: 

Form: K = NCOMPS @ G 
Meaning: Find the number of components of the graph G and store the 

result as an integer constant at K. 

GROUP II. Statements for deriving a graph from a given graph are 

COMPLEM @ G (find the complement of the graph G); 
CENTER @ G (find the center or bicenter of the graph G, a tree) ; 
SPANTREE @ G (find a graph which is a spanning tree of G) ; 
SEQUENCE @ G (resequence the nodes of the graph G) ; 
LABEL @ G (construct the canonical labeling1 for G and 

relabel the nodes of G accordingly). 

Sample Statement: 

Form: GXYZ = COMPLEM @ G 
Meaning: Find the complement of the graph G and store it as GXYZ. 

GROUP III. Statements for deriving certain collections of graphs from a 
given graph are 

COMPNTS @ G (find the components of the graph G)\ 
BLOCKS @ G (find the blocks of the graph G). 

t Canonical labeling is defined in Section 5.3. 

(number of components of the graph G) ; 
(number of edges of the graph G) ; 
(number of nodes of the graph G); 
(number of nodes of the graph G of valency TV) ; 
(valency of node I of the graph G) ; 
(minimum valency of nodes of the graph G) ; 
(maximum valency of nodes of the graph G) ; 
(number of cutnodes of the graph G) ; 
(number of blocks of the graph G). 
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Sample Statement: 

Form: $GX = COMPNTS @ G 

Meaning: Find the components of the graph G, and store the result as a 
collection of graphs. This collection is referenced by the label %GX, where 
the initial character $ indicates a collection of graphs subsumed under a 
common name. 

GROUP IV. Below are statements for performing an operation on a given 
graph so as to derive a modified graph. The derived graph replaces the original 
graph in store. 

INSERT (I,J) @ G,n 
DELETE (I,J) @ G,n 
DELETE (I) @ G,n 
INNODE (I,J) @ G,n 

(insert edge / , / ) ; 
(delete edge / , / ) ; 
(delete node / and incident edges) ; 
(add a node valency 2 in edge / , / ) . 

The statement number n is a default transfer of control. 

Sample Statement: 

Form: DELETE (I,J) @ G,n 
Meaning: Delete the edge (I,J) of the graph G. If there is no such edge, 

transfer control to the statement labeled n. 

GROUP V. Statements for defining certain special graphs are 

$K(N)f (define the complete graph on N nodes); 
$KBAR(N) (define the empty graph on N nodes); 
$K(M, N) (define the complete bipartite graph on M, N nodes). 

Sample Statement: 

Form: GABC=$K(M,N) 
Meaning: Define the complete bipartite graph on (M,N) nodes, and 

store at G ABC. 

GROUP VI. Below are the logical IF statements. These statements allow 
us to test whether or not a graph exhibits some particular property and to 
transfer control accordingly. The truth conditions are in parentheses. 

IF (G, CONNEX) m,n (graph G is connected); 
IF (G, REGULAR) m,n (graph G is regular); 
IF (G, REGULAR (K)) m,n (graph G is K regular); 
IF (G, TREE) m,n (graph G is a tree); 
IF (G, FOREST) m,n (graph G is a forest); 

t This is the other use for the $ sign. 
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IF (G, PLANAR) m,n (graph G is a planar); 
IF (G, POLYGON) m,n (graph G is a polygon); 
IF (G, COMPLETE) m,n (graph G is complete); 
IF (G, EMPTY) m, n (graph G is empty). 

Sample Statement: 

Form : IF (G, PLANAR) m, n 
Meaning: Test whether the graph G is planar. If it is, transfer control to 

the statement labeled m. If it is not, transfer control to the statement labeled n. 
In addition, there is the logical statement 

IF (G, ISOMOR) m,n, 

which tests whether or not the graph G is isomorphic to the graph currently in 
working store. 

Note that all graphs handled by GTPL are, in a sense, labeled graphs, since 
a label, an integer, has to be associated with each node in order that the 
graph can be input to the computer (see the remarks below on input format). 
ISOMOR tests for isomorphism between labeled graphs, that is, for each pair 
ij of nodes it checks that either an edge (/,/) exists in both graphs, or that it 
exists in neither graph. We shall see in Section 5.3 how this routine can be 
used to test for isomorphism between unlabeled graphs. 

The following group of logical IF statements differs from those in Group VI 
in that these statements refer to a subgraph of a given graph. 

GROUP VII. The truth conditions are in parentheses. 

IF (G, HASCUTND) m,n (graph G has a cut node); 
IF (G, HASEDGE (I, J)) m,n (graph G has an edge joining node / to 

node J). 

GROUP VIII. Statements for the transfer of data on graphs are 

GET, G (call graph G from backing store) ; 
PUT, G (put graph G into backing store) ; 
READ, G (read a graph G and store it in backing store) ; 
PRINT, G (print the graph G). 

Commentary on Statements in Group VIII: All graphs are read in node-
pair format as follows: nneee,xxyy,xxyy,...,xxyy, where nn is the number of 
nodes, eee is the number of edges and xxyy is an edge incident with node xx 
and node yy. This format allows for graphs on up to 99 nodes and 999 edges. 
Graphs on up to 49 nodes can be accommodated by the program currently 
written for GTPL. 
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Graphs normally are kept in the backing store of the computer and brought 
into working store as required. The GTPL compiler keeps track of the name 
of the graph currently in working store. When a new graph is required it is 
brought in from the backing store. If, however, the next graph name which is 
encountered in a statement is the same as that of the graph in working store, 
this is not done. This has an important consequence. 

The statements mentioned in Group IV modify a graph and leave the modi
fied graph in working store. If, after executing one of these statements, the 
next graph referred to is currently in working store, then the operations are 
performed on the modified graph. If, however, the operations are to be 
performed on the original graph, then the statement 

GET, G 

which calls the graph G from backing store, should be used. 
The statement 

PUT, G 

causes the graph currently in working store to be stored in backing store. 
If a graph was previously stored in the area reserved for the graph G, then it 
is overwritten. 

5. Notes on Graph Theory Algorithms 

We next describe two programs which illustrate some of the most important 
features of GTPL. We first give a brief description of the algorithms used, and in 
Section 6 we present listings of the actual programs together with some 
explanatory notes. 

For the functions NNODES, COMPLEM, and MAXVAL the description 
given in Section 4 is adequate. We therefore restrict our discussion to 

1. COMPNTS and NCOMPS ; 
2. PLANAR; 
3. LABEL and ISOMOR. 

5.1. COMPNTS and NCOMPS 

Our algorithm for finding the components of a graph G is as given by Read 
[10], and derives from a procedure for constructing the spanning tree of a 
graph. The method assigns the same label to each node of a connected com
ponent of the graph G. Hence, if G is not connected, each component of G is 
determined by an equivalence class of labels of G. The number of distinct 
labels of G gives the number of components of G. 
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5.2. PLANAR 

The algorithm used to test whether or not a given graph G is planar is that 
of Fisher and Wing [4] as modified by Read [9]. Briefly, the algorithm is as 
follows : 

1. Choose any circuit of the graph G; call this circuit K. 
2. Of those edges not belonging to K, there may be transversals, that is, 

edges with both end nodes on K; we insert a node in each transversal and 
obtain graph G'. Clearly, G' is planar, if and only if G is planar. 

3. Remove from G' all the edges of K together with all other edges of G' 
that are incident with nodes of K; call these edges link edges. Then what is 
left will be a number of connected components Fi9 which we shall call frag
ments. Each Fi is connected to K by a set L{ of link edges. Denote by Z/f the 
subgraph of G' consisting of K, F, and Lx. 

4. In G', shrink each Ft to a point, thus obtaining a reduced graph Gr. 
5. Two fragments Ft and Fj are said to be incompatible if they cannot both 

be placed inside, or both outside, of K without causing some link edges to in
tersect. If all fragments cannot be placed in such a way that all pairs of incom
patible fragments are differently placed, then Gr, and hence G, is nonplanar. If 
the fragments Ft can be so placed, one then proceeds to apply the above test 
for planarity to each of the subgraphs Hi9 and eventually a verdict is obtained. 

The above is an oversimplification, and one is referred to Fisher and Wing 
[4] for a detailed discussion of the algorithm, and to King [7] and Read [9] 
for a discussion of the modification. 

5.3. LABEL a/irfISOMOR 

The method which we use to obtain a canonical labeling of a graph was 
developed by Parris and Read [8], and derives from the construction of a 
unique code for a given graph. By considering each node, its nearest neighbors, 
that is, its neighbors of order 1, and its neighbors of orders 2, 3,..., one is able 
to classify the nodes of a graph G in such a way that each class has exactly one 
node. A problem arises when the graph has symmetries with respect to certain 
of its nodes, but this problem is overcome by forcing these nodes to be in 
different classes. An important consequence of this approach is that the classi
fication thus obtained is independent of the original, arbitrary manner in 
which the nodes of the graph were labeled. 

Since the canonical labeling is independent of the original labeling of the 
graph, as determined by the nature of its input, it follows that two graphs Gì 
and G2 are isomorphic as unlabeled graphs, if and only if, after both have 
been relabeled by the LABEL routine, they are isomorphic as labeled graphs. 
Thus a double use of LABEL, followed by ISOMOR, enables isomorphism 
between unlabeled graphs to be tested. 
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The LABEL routine uses an inefficient, and therefore lengthy, algorithm; 
necessarily so, since no efficient algorithm for this purpose is yet known. It is 
therefore worthwhile to make a preliminary check for possible obvious 
nonisomorphism of Gx and G2- This whole procedure is displayed more fully 
in the second of the sample programs which follow. 

6. Sample Programs 

We now describe two programs that have been compiled and executed, 
using the GTPL system. 

6.1. Sample Program 1 

CCCCC SAMPLE PROGRAM 1 

c DETERMINE: WHICH COMPONENTS OF THE COMPLEMENT 

C OF A GIVEN GRAPH ARE PLANAR· WHICH NONPLANAR 

C 

1 COLLECTION $GB«2G 

2 READ · G 

3 GA = COMPLEM <a G 

4 *GB = COUNTS <? G A 

5 K = NCOMPS i» GA 

6 I = f 

7 2 1 = 1 + 1 

8 IF ( £GB· I« PLANAR) 22%2* 

9 C THIS COi*'PONFNT IS PLANAR· PRINT IT 

10 22 PRINT· »PLANARE 

11 PRINT· «EGB· I 

12 GO TO 25 

13 C THIS COMPONENT IS NONPLANAR· PRINT IT 

14 24 PR I NT «<?NON-PLANARi» 

15 PRINT· *G3·I 

16 25 K = K - 1 

17 IF (K) 26· 26· 2 

18 '6 END 
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The lines are numbered for easy reference in the following discussion. The 
line numbers are not part of the program. 

Line 1: The declarative COLLECTION, not previously mentioned, 
specifies that the set of graphs GB forms a collection of graphs, and may have 
up to 20 members. In some respects this statement is similar to the DIMEN
SION statement of FORTRAN. The extent, 20, serves to inform the processor 
that storage must be reserved, in backing store, for 20 graphs. 

Line 2: The graph G is to be read. The processor reserves an area of store 
for the graph G. 

Line 3: The graph G is to be complemented and the complement stored 
as graph G A. 

Line 4: The components of the graph G A are to be found and stored as a 
collection of graphs, indexed from 1 to N9 where N is the number of members 
in the collection. In the above program, an error results if N exceeds 20, the 
extent of GB as specified in Line 1. 

Line 5: The number of components of G A is to be computed, and this 
number stored as an integer variable K. 

Line 8: This statement specifies that the 7th member of the collection 
$GB should be tested for planarity. If the graph tested is planar, then control 
is to be transferred to statement 22 (Line 10). If the graph is nonplanar, control 
is to be transferred to statement 24 (Line 14). 

Line 10: The PRINT and READ statements of GTPL are not formatted. A 
blank delimiter is used for the input of numeric information, and the output 
is according to the standard format F 16.8 or 15, according as the result is 
real or integer. In place of the H FORMAT specifications of FORTRAN, a 
pair of @ signs is used as quotation marks. The statement in Line 10 causes 
the message PLANAR to be printed. Similarly, the statement in Line 14 causes 
the message NONPLANAR to be printed. 

Line 11: This statement causes the 7th member of the collection GB to be 
printed. So does the statement of Line 15. 

The other lines in the program are normal FORTRAN statements, and require 
no special explanation. 

6.2. Sample Program 2 

Line 1: This is the DIMENSION statement of FORTRAN. 

Line 2: This statement causes the graph G A to be read. 
Line 3: The graph G A is to be stored in backing store. 
Line 4: The maximum valency of the graph G A is to be found and stored 

at MAXA. 
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CCCCC SAMPLE PROGRAM 2 

C THIS IS A TEST FOR ISOMORPHISM BETu/f-tN TWO GRAPHS 

C GA AND Gt. A PRELIMI NARY CHECK IS MADE TO SEE IF 

C GA AND GB HAVE THE SAME VALENCY SEQUENCE. IF THEY 

C HAVE« THEN EACH GRAPH IS GIVEN A CANONICAL LAPEL LING· 

C USING THE -LABEL- STATEMENT· AND THE RESULTING 

C LABELLED GRAPHS ARE TESTED FOR ISOMORPHISM USING THE 

C - IF(ISO.VOR) - STATFMFNT. 

C 

1 DIMENSION NVA<20>· NVS<20) 

2 READ*GA 

3 PUT· GA 

1+ ΜΛΧΑ = MAXWAL « GA 

5 READ· GB 

6 PUT· GR 

7 MAXB = MAXVAL <? G3 

8 DO 12 J = 1· MAXA 

9 12 NVA (J) = NNODES(J) PGA 

10 DO 14 J = 1· MAXB 

11 14 NVU<J> = NNODES (J) a GB 

12 DO 16 J = MIKA«MAXA 

13 NDIFP = NVA (J) - NVR (J) 

14 IF (NCIFF) 22· 16· 22 

15 16 CONTINUE 

16 C VALENCY SEQUENCE FAILS TO DISCRIMINATE HFTWEFN GRAPHS 

17 GX = LABEL 9 GA 

18 GC = LABEL <? GB 

19 IF( GX· ISOMOR ) 24·22 

20 24 TYPE· ©ISOYiüRPHlC«? 

21 GO TO 99 

22 22 TYPE ·@Ν0Τ ISOMORPH IC?» 

2 3 99 END 
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Lines 5, 6, and 7: These are similar to Lines 2, 3, and 4. 
Line 8: This is the normal DO statement of FORTRAN. 

Line 9: This statement specifies that for the graph G A, the number of 
nodes of valency J is to be found and stored as the Jth element of the array 
NVA. This statement, together with the DO statement in Line 8, causes the 
valency sequence of the graph G A to be constructed. 

Lines 10 and 11: These are similar to the statements in Lines 8 and 9. 
Lines 12 to 16: These are ordinary FORTRAN statements. 
Line 17: This statement causes the canonical labeling of the nodes of the 

graph G A to be constructed and the resulting labeled graph to be stored as GX. 
The statement in Line 18 is similar. In both cases, the labeled graph is also 
available in a work area of store. 

Line 19: This statement causes the labeled graph GX, now in backing 
store, to be compared with the labeled graph GC which is still in store. The 
graphs are isomorphic, if and only if they are equivalent as labeled graphs. 

Line 20: This statement causes the message ISOMORPHIC to be printed. 
Line 22 is similar. 

Lines 21 and 23: These are normal FORTRAN statements. 

7. Concluding Remarks 

The operating system for the programming language that we have described, 
consists of a compiler phase and an execution phase. The compiler phase 
produces an object deck which must be loaded together with any data, so that 
the program may be executed. The graph theory routines are kept in backing 
store and are called into working store only when required. The same is true 
of graphs, which normally reside in backing store. 

An attempt has been made to include a wide variety of graph theory routines 
in GTPL, but it is expected that use of the language will point to the need for 
additional routines. For this reason, the system has been designed so as to 
accommodate additional routines. A full description of the algorithms used 
and of the design of the compiler and operating system is given by King [7]. 
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1. Introduction 

After a short review of the concepts involved in finite-state automata, 
associated languages, directed multigraphs and nonnegative matrices, an S 
transformation on automata is defined. This transformation replaces a 
transition between two states of the original automaton by the transitions of 
an automaton of simple structure. Speaking in terms of language theory, this 
transformation is equivalent to a language-preserving function called substi
tution or homomorphism. 
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Defining the entropy of finite-state automata and associated languages, it 
is then natural to ask for the change in the entropy caused by applying the 
S transformation. The answer to this question is given in this paper for certain 
types of automata. It generalizes several results achieved by Izbicki [4, 5]. 

2. Preliminaries 

In this section we briefly review the concepts involved in finite-state auto
mata and associated finite-state languages, following essentially Ginsburg [3]. 

An alphabet is a finite nonempty set. A word of length k ^ 0 over an 
alphabet Σ is a finite sequence xl,x2,...9xk of elements in Σ. The word of 
length zero, called the empty word, is denoted by ε. The set of all words, 
including ε, over an alphabet Σ is denoted by Σ*. Let U and V be subsets of 
Σ*, then the complex product of U and V, written UV, is the set of words 
{w = wx w2\ w1 in U9 w2 in V}. 

A finite-state automaton is specified by a 5-tuple A = (K, Σ, δ,ρ0, F), where 

(1) A' is a finite nonempty set of states; 
(2) Σ is an alphabet of input symbols; 
(3) δ is a function from a subset of K x Σ into K, the next state function ; 
(4) pQ is a distinguished element of K, the start state; 
(5) F is a subset of K, the set of final states. 

The function δ is extended to a subset of K x Σ* by defining ö(q,s) = q and 
<5(<7, * r · · Xu) = Ik > where q0 = q and qx = ô(qi_uxi\ l^i^k. 

The behavior of the automaton is deterministic, that is, the next-state 
function δ defines for each state q in K and each input symbol x at most one 
next state ô(q,x). Each automaton A defines a subset T(A) of Σ*, the set of 
generated or accepted words, given by 

T(A) = {νν6Σ*|<5(Α),νν)ε,Ρ}. 

A subset of Σ*, generated by some finite-state automaton, is called finite-state 
language. T(A) is called the language generated by A. 

Walk [8] defined the informational structure of an automaton A to be the 
directed multigraph G(A) = (V(A),E(A)). The set V(A) of vertices coincides 
with the set K of states. The set of edges is defined by 

E{A) = {ex
Piq = (piq)\ö(p,x) = q\xeY}. 

Loops and multiple edges between two vertices are allowed. 
Associated with this informational structure is the adjacency matrix of the 

graph, defined in the usual manner. Its (/, /) entry is a^ if a^ edges, rooted in 
vertex pv are leading to vertex pj. The elements of this matrix are nonnegative, 
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and hence the powerful theory of nonnegative matrices, developed by Perron 
and Frobenius, comes into play (see Wielandt [9]). 

A matrix B is called irreducible if there exists no permutation matrix P 
such that 

P XBP = 
\ 0 B21 

with square blocks Blx and B22 and null matrix 0 . An irreducible matrix B 
is said to be imprimitive of index h if there exists a permutation matrix P 
such that 

0 0 - 0 Bln\ 

P~lBP = 

with square 0 ' s in the main diagonal. Otherwise it is called primitive. 
The theorem of Perron-Frobenius states that a nonnegative irreducible 

matrix B has a positive eigenvalue λ, which is the simple root of the character
istic equation. The modules of all other eigenvalues of B do not exceed λ. 
λ is called maximal eigenvalue. In case B is imprimitive of index h, there exist 
exactly h eigenvalues of modulus λ, which are roots of the equation 
xh — Xh = 0. For primitive matrices, λ is the only eigenvalue of modulus λ. 

For the sequel we need the following definitions : 

1. An automaton is called strongly connected if and only if for every pair 
(/?, q) of states there exists a word w such that δ(ρ, w) = q. 

2. An automaton is said to be periodic of period h if and only if its set 
of states can be partitioned into h sets K1,F2,...,FA such that δ(ρ,χ) is in 
Vl only if p is in Vk and l—k = 1, modulo /?, x in Σ; otherwise the automaton 
is called aperiodic. 

3. An automaton that is strongly connected and aperiodic is called 
ergodica 

4. An automaton is said to be complete if and only if its next state function 
δ is defined on the whole set ^ χ Σ . 

The following statements are equivalent : 

1. (a) An automaton is strongly connected; 
(b) its informational structure is strongly connected ; 
(c) its adjacency matrix is irreducible. 

t Note that this definition, according to Shannon [7], differs slightly from that given 
usually in the theory of Markov chains. 
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4. 

(a) An automaton is strongly connected and periodic of period A; 
(b) its informational structure is strongly connected and cyclically 

A-partite ; 
(c) its adjacency matrix is imprimitive of index A. 
(a) An automaton is ergodic; 
(b) its adjacency matrix is primitive. 
(a) An automaton is complete; 
(b) its informational structure is out regular of degree n; 
(c) its adjacency matrix has constant row sum n, where n is the cardinal 

of the set of states K. 

Let A be a strongly connected automaton and T(A) the language generated 
by A. Let u(n) be the number of words of length n in T(A). Then the entropy 
H of A respectively T(A) is defined to be the quantity 

H = lim sup [log u(n)/ri]. 
Λ-+00 

This definition covers the aperiodic and periodic case. In the aperiodic case, 
the entropy usually is defined to be 

H = lim [log u (Λ)//Ι], 
«-♦00 

according to the definition of the channel capacity by Shannon [7]. But if A 
is a periodic automaton of period A, then this limit is to be taken only for those 
residue classes, modulo A, for which the numbers u(n) are not identically 
zero. Hence, in this case, the entropy H is defined by the limit superior. 

The entropy is a measure for the amount of information that must be 

k,(k-i)rk 

Fig. I. The informational structure of Na 
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provided on the average in order to specify a particular symbol of any word 
of the language. This quantity also may be considered as a measure of the 
uncertainty existing about a symbol in a word before its generation by the 
automaton. 

3. S Transformation of Automata 

Given fixed nonnegative integers rl9r2,...,rk9 rk ^ 1 and an abstract symbol 
a, the automaton Na = N(rl9...9rk;a) is defined to be the 5-tuple Na = 

{Pii})> where 

(1) KN = {pll9p12}u{Pij\l^i^k9l^j^(i-l)rt}; 

(2) i ; = ( 4 i u / a , i ^ y < / > , } ; 
(3) δΝ is defined by 

^siPiuAh) = Pi2> 

M / > l l , * m , J =Pm,im, 

VNvPm,(s-l)rm + im>Xm,srm + im) = Pm,srm + imi 

^NyPm,(m-2)rm + im^Xm,(m-l)rm + im) ~ Ρ\2·> 

I < it < rl9 2 < m ^ k9 1 ^ im < rm, 1 < s ^ m - 2. 

Na is to agree with the definition of an automaton. Hence, all the symbols 
xm,im> 1 < AW ^ A:, 1 ^ im < rk9 have to be different. 

The language T(Na) = T(N(rl9...9rk\a)) consists of the rl+r2-\ Vrk 

words 

* ! ! , . . . , Λ ΐ Γ ι , Λ 2 1 ·*2, r 2 + l '
 X

2 , r 2
X

2 , 2 r 2 ' · · · > 

x
fc, l -*fc,rk+l · · ·

 xk,(k-l)rk+l v >·**,!·*·**, 2 rk · · · ^,fcrk-

The informational structure is given by the graph G(AT), shown in Fig. 1. 
Let M = (KM, ΣΜ, <5M, #M, FM) be an automaton and let 

{Ν(Γΐ9...,ΓΗ;ά)\αΕΣΜ} 

be a family of automata of the type described above, such that ΣΝ
α η ΣΝ

0 = 0 
for a φ b in ΣΜ . Then the automaton Af(r lv.., /*fc) = (X, Σ, (5, #M, FM) is defined 
by 

(1) K=KMv{Pij(p9q9a)\l^i^k9l^j^(i-l)ri9ôM(p9a) = q}; 

(2) Σ = UaelM Σ Λ Λ 
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(3) S(Pix
a
Ul) = q, 

ö(p,xa
m,ij = pm,im(p,q,a)9 

HPmAs-l)rm + lm(P>q>à), Xam,Srm + iJ = Pmtsrm + im(P,<l,à)9 

^(Pm,(m-2)rm + im(P^^aXXm,(m-\)rm + iJ = 4, 

I < ii < rl9 2 ^ m ^ k9 1 ^ im ^ rm9 1 < s *£ m - 2, 

for each transition δΜ(ρ,α) = q; p9q in KM9 a in ΣΜ . 

This transformation of the automaton Af is called an S transformation of M. 
Intuitively speaking the automaton M(rl9r29...9rk) originates from M by 
replacing each transition δΜ(ρ9α) = q of M by the transitions of the autom
aton N(rl9...9rk;a). This produces the following changes in the respective 
informational structures. Each edge (p, q) in G(M) is replaced by the graph, 
drawn in Fig. 1, such that p and q coincide with pxl and /?12, respectively. 

To study the effect that an S transformation of an automaton M has on the 
language generated by M9 we have to introduce the concept of substitution 
(see Ginsburg [3]). For each element a in an alphabet Σ, let Σα be an alphabet 
and τ(α) a subset of Σα*. Let τ(β) = {ε} and τ(χ1... xr) — τ(χ1)-" τ(χΓ) for 
each word xt •••xr in Σ*. Then the function τ, mapping Σ* into the set of 
subsets of (UaeiZa)* is called a substitution. In case τ(α) consists of a single 
word wa in Σα* for each a in Σ, τ is regarded as a mapping of Σ* into 
(ϋαεΐΣα)* anc* is called homomorphism. 

The S transformation replaces each transition ôM(p9a) = q in M by a 
transition <5(/?, wa) = qin M(rl9...9rk)9 where wa is in 2%/Va). Defining a substi
tution τΝ by τΝ(α) = T(Na) for each a in ΣΜ , we get the result 

TN(r(Af)) = r(M(r1,...,rk)), 

that is, the language T(M(rl9...9rk)) originates from the language T(M) by 
application of the substitution τΝ on T(M). 

4. Entropy of ^-Transformed Automata 

In Section 2 we defined the entropy H of an automaton A to be the quantity 

H = lim sup[logw («)/«], 
Λ-»00 

where w(«) is the number of words of length « generated by A. This definition 
of the entropy differs slightly from that one given by Shannon [7], Chomsky 
and Miller [1], or Walk [8] in order to cover the cases of ergodic and periodic 
automata. 
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Walk [8] proved the entropy of an ergodic automaton to equal the logarithm 
of the maximal eigenvalue of the adjacency matrix associated with its in
formational structure. By applying his proof method to the definition of 
entropy given above and including the periodic (hence nonergodic) automata 
his result remains valid : 

The entropy H of a strongly connected automaton equals the logarithm 
of the maximal eigenvalue λ of the adjacency matrix associated with its 
informational structure, that is, 

H= log/I. 

Given a strongly connected automaton M and nonnegative integers 
ri,r29'",rk, rk^ 1, we want to evaluate the entropy of the S-transformed 
automaton M(rl,...,rk). We can apply the result achieved before because 
with M strongly connected and rk^\, where N(rl9...,rk;a) generates at 
least one word of length k, M(rx,...,rk) remains strongly connected. Hence, 
we have to find relations between the maximal eigenvalues of the matrices B 
and C associated with the informational structures of M and M(rl9...,rk)9 

respectively. 
Let M=(KM^M9SM,qM,FM) and M(ri,...,rk) = (K^,ô,qM,FM). The set 

K of states of M(ri9...9rk), and hence the set of vertices of its informational 
structure, is equal to 

K= KMKJ {pu(p9q9a)\ 1 < / < / : , 1 < y < ( i - l ) r „ ôM(p,a) = q} 

To get a clearly arranged form of the adjacency matrix we proceed as 
follows: We partition K into sets Vo,Vi,--.,Vk-i> which are defined by 
V0 = KM and Vt = {s e K-KM\ ô(s,x) = t,teVi_uxe Σ}, 1 < i ^ k- 1. Hence 

Vi = {P2A(P,q,al->P2,r2(P,<l,a),P3,r3 + 1(P>(l>a)>-> 

Pkxk-i)rk(P^^a)\ôM(P^) = q}, 

Κ-ι = {Pk,i(P><l>a\...,pktrk(p,q,ä)\oM{p,ä) = q). 

We partition the adjacency matrix C of the informational structure of 
M(r!,..., rk) into blocks Cij90 ^ i,j ^ k— 1, such that ClV covers the adjacencies 
of the vertices of Kf to the vertices of Vj. The only blocks possibly unequal to 
the null matrix 0 are C00,C0i 

C has the form 

Coi 

C = 

0 0 
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We have now to find a relation between the maximal eigenvalues of the 
matrices B and C. We have done this in the following two cases. 

CASE 1. Consider M strongly connected, rl = ··· = rk_x = 0, rk = r^l. 
In this case C00 = C01 = ··· = C0fc_2 = 0 , which indicates that M(0,...,0,r) 
is a periodic automaton of period at least k. In case k = 1, C = C00 = rB. 

To evaluate the maximal eigenvalue of C, we compute the kth power of C, 

( Co,k-lCk.1,k.2'"Ci0 0 0 \ 

0 C10C0,k_i — C2l ··· 0 I 0 0 "· Cfc_ l fk_2 Ck_2,fc-3 "· Co,fc_l / 

The entries of the left upper block C0 ) k_1Ck_1 ) J t_2
,-<C1 0 are equal to the 

number of ways of length k from the vertices in V0 to vertices in V0. Since 
two vertices of V0 are joined exactly by r ways of length k, and no shorter 
ones, in the informational structure of M(0,...,0,r), if they are adjacent in 
the informational structure of M, 

Q),*-i Q- i ,k-2 ··· C10 = rB. 
The maximal eigenvalues of all the diagonal blocks of C are equal to the 

maximal eigenvalue of C0tk-i Cfc_lfc_2 ··· C1 0 , and hence to the maximal 
eigenvalue of rB. Denoting the maximal eigenvalue of B by λ, that of rB and 
hence Ck equals rX. This yields the maximal eigenvalue of C to be (rÀ)l/k. 
Hence, the entropy HM(0 0>r) of M(0,...,0, r) has the value 

#M(o o.o = & -1(logr + logyl). 

Denoting the entropy of M by HM, we get the result 

#M(o o.o = ^ _ 1 ( logr + #M)· 

This S transformation, transforming M into M(0,...,0,r) generalizes two 
transformations introduced by Izbicki [4] ; r = 1 yields the r\k transformation, 
while k = 1 yields the r[ transformation. 

In the case r = 1, each symbol a of a word in T(M) is replaced by a word 
wfl of length k. In terms of language theory, this S transformation is a homo-
morphism τ(α) = \να, αβΣΜ. Hence, a homomorphism, mapping each 
symbol on a word consisting of k symbols, diminishes the entropy HM of the 
original language to the &th part, k~l HM. 

CASE 2. Consider M complete and strongly connected, rk ̂  1, k ^ 2. Let 
the cardinal of ΣΜ be n. Since M is complete the informational structure is 
out regular of degree n. Hence, its adjacency matrix B is generalized stochastic 
with row sum n, yielding the maximal eigenvalue n. Thus 

HM = log«. 
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In the informational structure of M each edge is replaced by the graph 
drawn in Fig. 1 to yield the informational structure of M(rl9...,rk). Since the 
informational structure of M is out regular of degree n, in the informational 
structure of M(rl,...,rk) there are exactly nri+l edges, rooted in any vertex 
of the set V0 and leading to vertices in Vi9 0 ^ / < k— 1. That means that all 
the blocks Coi, 0 < / < f c — 1 , have constant row sums ri+ln. From any 
vertex in Vi+l exactly one edge leads to the vertices in Vi9 0^i^k — 2. 
Consequently C i+ 1>f, 0 < ι <& —2, has constant row sum 1. 

Hence, C is partitioned into blocks having constant row sums. Kuich and 
Walk [6] called this type of matrix block stochastic and showed the equality 
of the maximal eigenvalues of a block-stochastic matrix and the matrix 
associated with it, having the row sums of the blocks as entries. The matrix 
of the row sums is 

1 

0 

ό 

0 

1 

ό 

0 

0 

ό 
which is the companion matrix of the polynomial 

xk — rlnxk~1 — "· — rkn. 

Hence, the maximal eigenvalue λ of C is the greatest real root of 

xk — rl nxk~l — · · · — rk n = 0, 

which yields 

#M(n....frk) = log'*· 

Again this S transformation is a generalization of a transformation intro
duced by Izbicki [5]. Let k = 2, rl = r, and r2 = s, then it coincides with the 
ξΓ s transformation of [5]. The entropy of the transformed automaton is in 
this case 

HM(r,s) = log[r/i + (r/i2 + 4ï/i)%/2], 

a special case of the result achieved above. 
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1. Introduction 

We have discussed the problem of counting />-minos (polyominoes, animals) 
on the square tessellation [1], Here we extend those methods to the hexagonal 
and triangular tessellations. Our account will be self-contained, but less 
discursive than before. 

A hex (condii)Itri (angular) p-mino is an edge-connected configuration of p 
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Fig. 1 Fig. 2 

Fig. 3 

x=0 
z=0 

Fig. 4 

Fig. 5 

cells from the appropriate plane tessellation. A fixedp-mino is an equivalence 
class under translation ; a free p-mino is a class under all symmetries of the 
lattice. Figure 1 shows a pair of distinct fixed 4-minos belonging to the same 
free 4-mino, abbreviated in Fig. 2. We attempt to evaluate the totals HX(p), 
HE(p), TX(p), TE{p) of fixed/free hex/tri/?-minos : our results are in Section 5. 
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Working with these tessellations is facilitated by a sanitary system of co
ordinates, which we now develop. 

Consider the solid tessellation of cubes with a cube center at each integer 
point x = (x, y9 z), and a plane x+y+z = 0 cutting it. This plane intersects each 
x+y+z = 0 cube in a hexagon, and each x+y + z = ± 1 cube in a triangle : the 
whole tessellation meets the plane in the plane tessellation 6232 , of which 
Fig. 3 is a fragment. 

Let us obliterate the triangles and grow the hexagons into the vacancies as 
shown. The result is the hex tessellation (see Fig. 4). These hexagons corre
spond one-to-one with the integer triples (x9y9z) such that x+y + z = 0. 

Now Fig. 4 may be colored in a natural way with 3 colors, indicated by 
— , , + , according as (x—y)(y—z){z—x) = x—y = - 1,0, +1 modulo 3. 
Let us obliterate the color 0 cells and grow the remainder into the vacancies 
as before. The result is the tri tessellation (see Fig. 5). A cell is colored — or + 
according to whether it points up or down. Hence tri /7-minos are a subset 
of hex /Miiinos : 

STATEMENT 1. If p > 1, the tri /7-minos correspond to the hex /?-minos on 
just two colors. 

The six neighbors of a hex cell (x9y9z) are 

(1) ( * , ; ; + l , z - l ) , (x-\9y,z+l), (x+l,y-l,z)9 

(2) (*,>>-l ,z+l) , (x+l ,>>,z- l ) , ( x - l 9 y + l 9 z). 

For a color 4-triangle, (1) are neighbors; for a color — triangle, (2) are 
neighbors. 

2. Bounding Hexagons 

The bounding hexagon (bh) of a />-mino, hex or tri, is defined by the lines 

x = a'9 x = a9 y = b'9 y = b9 z — c'9 z = c, 

where a! is the minimum of x over all its cells, a is the maximum, and so forth 
for y, b and z, c. Figure 6 shows a bh, together with the vertex coordinates and 
the side lengths st: since x+y + z = 0, we use * to mean "minus the sum of the 
other two." 

For describing the shape of a bh we use these four independent intrinsic 
parameters : the diameters 

A = a — a'9 B = b — b\ C = c — c\ 
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and the skew 

K=a + b + c + a' + b' + c' 

= s1 — s4 = difference between any pair of opposite sides. 

The sides can be expressed in terms of these four as 

(3) st=a' + b + c = $(K-A + B+C), 

s4 = a + b' + c' = $(-K-A + B+C), etc., 

(4) st + s5 + s3 = \{K+ A + B+C), etc. 

We now ask what values of A, B, C, and K are possible. Reflecting and 
rotating the bh (see Section 3) corresponds to permuting A, B and C and 
negating K. So we can always arrange, for example, that 

(5) 0*ζΚ and C < B < A. 

Furthermore, \K\ ̂  min(C,i?,,4): for Kis largest compared to C, let us say, 
in a triangular bh like Fig. 7, and increasing K by 1 inevitably increases C by 
1 as well. 

Again, since sl9 etc. are nonnegative, by (3) 

Α + Κ*ζ Β+ C, etc.; 

and st +.55+^3 is an integer, so by (4) ,4 + i?+C+Ä^is even. 
To sum up, for a bh of fixed orientation, it is necessary that 

(6) O^K^C^B^A^B+C-K 

with v4 + 2?+C-f jRTeven. We claim that these conditions are also sufficient. 
We now ask what further restrictions a fixed value of/? entails. Tri/7-minos 

can occupy only 2 colors, which makes the analysis difficult; so we restrict 

(αΛ</) 

(a'.b,·) 

s,= (a'+b + c) 

(a',*,c) 

Fig. 6 
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Fig. 8 

ourselves to hex. For the upper bound on the bh, consider a stretched p-mino 
like Fig. 8, where p = 14, K= 2, A = 9, B = 8, and C = 7. We find 

p — 1 ^ minOu.sJ + minfo,^) + min(j3,J6) + 2\K\ 

= max^i,^) + ma,x(s2,s5) + max(53,^6) — \K\. 
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Adding, 

2(/>-l) >Zst+\K\=A + B+C+ \K\, 

or 

(7) i(A + B+C+\K\)^p-l. 

For the lower bound on the bh, we have p ^ Δ, the number of cells inside 
and on the boundary. To evaluate Δ, extend 3 sides of the bh into a triangle 
(see Fig. 8). Then 

/S1 +S5+S3 \ Αΐ + 1\ (s2+ï\ / J 3 + l \ 

Using (3), (4), and some manipulation, eventually 

(8) p < Δ = (AB+BC+CA-\)-mA + B+C-\)2 + K1 - 1]. 

Note that (7) and (8) are necessary and sufficient for a hex />-mino to exist 
with bh parameters A, B, C, and K, if they satisfy (6) already. 

3. Symmetries 

Let Gi be the symmetry group of the hex tessellation, that is, the group of all 
motions of the plane leaving the tessellation invariant, and let Gtbe the normal 
subgroup of all translations in Gt. Gt is uninteresting because no finite con
figuration can be invariant under a translation, so we dispatch it in 
defining a fixed /?-mino to be a class under Gt. A free /?-mino is a class under 
all Gt. Under G = (/,/(/, a fixed /?-mino may transform into itself or into another 
fixed /7-mino corresponding to the same free /?-mino: the subgroup of G 
leaving it invariant is called its symmetry. Of course, conjugate subgroups of 
G describe the same symmetry in different orientations : so we define a symmetry 
type to be a conjugacy class of subgroups of G, and say that a free/?-mino has 
such-and-such a symmetry type. 

In the hex case G turns out to be Z>6, the dihedral group of order 12. This 
is shown in Table I, with descriptions of the operations and suitable coordinate 
transformations. Referred to the origin, the latter are very simple : for example, 
a rotation through π/3 is simply x = (x9y,z)->(—y, — z, — x) =f(x). We 
need to refer them to the bh, and so have to add a translation u determined 
by requiring a specific corner x of the bh to transform into another specific 
corner y, then solving for u in 

y = u + f (x). 



TABLE I 

The Point Group G of the Hex Tessellation 

lame 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Effect 

None 
π/3 rotation 
— π/3 rotation 
2π/3 rotation 
-2π/3 rotation 
π rotation 
x = 0 reflection 
>> = 0 reflection 
z = 0 reflection 
jc-axis reflection 
7-axis reflection 
z-axis reflector 

Transform (x, yy z)-> 

(x>y,z) 
(a+b'—y, b + c' — z, c+a'—x) 
(c + a' — z, a + b' — x, b + c'—y) 
(a — c + z,b — a + x,c — b+y) 
(a — b + y,b — c + z,c—a + x) 
(a+a' — x,b + b'—y, c+c' — z) 
(α + α'—x, b + c'—z, b + c' —y) 
(c+a'—z,b + b'—y9c + a' — x) 
{α + ν-γ,α + ν-χ,ο+ο'—ζ) 
(x^b-c + ZtC-b+y) 
(a — c + z,y,c — a + x) 
(a-b+y,b-a + x,z) 

Bh 
symmetry 

/ 
G 
G 
DD 
DD 
R2 
SD 
SD 
SD 
D 
D 
D 

Bh 
conditions 

A = B=C,K=0 
A = B=C,K=0 
A = B=C 
A = B=C 
K=0 
B=C,K=Q 
A = C,K=0 
A = B,K=Q 
B=C 
A = C 
A = B 

TABLE II 

The Symmetry Types of Hexagonal p-minos 

Type Index in G Groups Example 

/ 12 

R2 6 

S 6 

D 6 

R3 4 

SD 3 

R 2 

SS 2 

DD 2 

G 1 

{1} 

{1,6} 

{1,7}{1,8}{1,9} 

{1,10} {1,11} {1,12} 

{1,4,5} 

{1,6,7,10}{1,6,8,11} {1,6,9,12} 

{1,2,3,4,5,6} 

{1,4,5,7,8,9} 

{1,4,5,10,11,12} 

{ 1 - 1 2 } 

* ^ 

C 

* 

Λ 
< 
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Since we have referred a transformation to the bh, this must have sufficient 
symmetry to remain invariant, whether or not the enclosed /7-mino does. So 
in the final columns of Table I we give the minimum bh symmetry necessary 
for the transformation to be performed at all, and the corresponding 
numerical criterion. 

Table II lists the various types of symmetry possible for /7-minos, which 
include the types for bh's. We give a name, the set of conjugate subgroups of 
G, and a hex example. The index of the subgroup in G equals the number of 
fixed /7-minos corresponding to one free /7-mino of that type. 

By Statement 1 in Section 1 everything above applies to tri /7-minos too, 
except that the examples in Table II are inapplicable where they occupy one 
(/? = 1) or three colors. The apparently simple case of a single cell behaves 
rather oddly. Its symmetry type as a hex /7-mino is G, but as a tri /7-mino is 
only SS. The trouble is that a hex symmetry is only a tri symmetry as well if 
it maps the third color onto itself. This is only guaranteed provided p ^ 2, 
when both + and — must be occupied and so the third color can't map onto 
+ or — under a symmetry. 

4. Counting Algorithm 

This is similar to that of [1]. Here we shall concentrate on the additional 
complications. 

To start with, suppose we are to find HX(p) by enumerating all fixed hex 
/7-minos. Translations are eliminated by restricting the configurations to the 
triangular region x < 0, >> < 0, z^p (see Fig. 9) with a = b = 0,0 ^ (a, b) ^ —/?, 

Fig. 9 
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and 0 < c ' < c <, p. We insist on their touching the boundaries x = 0 and y — 0 : 
that is, for the bh of a complete />-mino, 

(9) a = b = 0 (when q=p, see below). 

The choice algorithm is an elementary exercise in backtracking. At level 
q— 1, 1 ^ q ^ /? , we have constructed some (q— l)-mino, and during level q we 
attach to it in turn all cells connected to it but unused at previous levels. 
From now on we shall take all the parameters a,b,... of the bh to apply to 
this partial configuration as well. Now rather than simply discard completed 
p-minos which fail to satisfy (9), we impose a further restriction on the choice 
of a qth cell, known as a growth criterion. In this simple instance it is 

(10) a = 0 and b^p-q; 

that is, cell 1 is chosen on the x axis and subsequent cells are chosen close 
enough to the y axis to reach it by the time q =p. 

In practice we only enumerate all free /?-minos, computing HX(p) from 
their symmetry types. First we fix the orientation of the bh, which may in 
general be in any of 12 positions, by insisting that (5) be satisfied. This is 
effected by the new growth criteria 

(11) (B^A)-b^p-q 

and 

(12) (B^A) + (C^B)^p-q 

and 

(13) (mzx&A) ^ C) + (O^K) **p-q. 

Here x —y = max(0,x—y). 
These are derived by noticing that, if a bh fails to satisfy (5) and (9) in more 

than one particular, the addition of a new cell can often only relieve one of 
its shortcomings at a time (see Fig. 9). If in (11) b < 0 and B> A, then attaching 
a new cell on the edge y = b' to decrease b' will also increase B, so cannot 
decrease B—A. If in (12) B > A and C > B, a new cell can increase B — A or 
C—B by 1 but not both. If in (13) B or C > A and K < 0, a new cell can increase 
A by decreasing a', since a = 0, but cannot simultaneously increase ^ (the 
length of side x = a') or K = sl —s^. 

If the bh has no symmetry when q = p (the usual case ?) we are done. If not, 
the /7-mino inside may have less symmetry than its bh, and we must define a 
canonical orientation inside its bh. Let the cells of the bh be enumerated in 
some fixed order, for example, in increasing order of x then y (see Fig. 10). 

Let the weight of a fixed /?-mino be a number, the binary expansion of 
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Fig. IO. A 7-mino (shaded) inside its bh. 

which has digit i equal to 1 if cell / is a cell of the/7-mino, and equal to 0 other
wise. Then a fixed /?-mino is in canonical form, and counts as a free one, if it 
has weight at least as great as all its transforms by symmetries of the bh. In 
Fig. 10, bh symmetry is DD, 7-mino symmetry is D, weight of self is 
101011001011, and weights of transforms are 100111101001 and 001111101010, 
respectively. 

For tri/7-minos, p > 1, the colors of the first two cells chosen are noted and 
future cells q > 2 chosen only from those two colors. 

5. Performance, Results, and Omissions 

An algorithm along the lines of Section 4 was written in ALGOL and run 
background on the Chilton Atlas I for 6 hr each on tri and hex, reaching 
p = 16 and 12, respectively. With machine code and 100-hr runs it should be 
possible to reach p = 22 and 16. Time is proportional to the size of the answer, 
and is exponential in p. The tri mode is slower per /?-mino counted because of 
the increased depth of recursion with larger p. 

Tables III-V show our results, with the square /Mnino totals for complete
ness. Table III corrects Klarner [3] and Read [7], who both (!) found 
HE(6) = 83. HX(p) has been confirmed for/? < 10 by M. F. Sykes, by hand, in 
a single afternoon ( ! !). Table IV gives TE(9) and TE(IQ) larger by 1 and 4 than 
Read [7], because he is counting only simply connected objects. 

Future computations ought to produce more detailed results, breaking 
the totals down by symmetry and bh as in [1], by number of free edges (of 
interest to theoretical physicists) or by connectivity (numbers of internal holes 
and boundary loops). 

6. Asymptotic Behavior 

In Tables III-V, we have included the ratios of successive fixed totals. The 
conjecture is irresistible that these approach limits, and the same for the free. 
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TABLE III 

Hex p-mino Totals, Free and Fixed 

p HE(p) HX(p) Ratio p HE{p) HX(p) Ratio 

1 
2 
3 
4 
5 
6 

1 
1 
3 
7 
22 
82 

1 
3 
11 
44 
186 
814 

1.0000 
3.0000 
3.6667 
4.0000 

4.2273 
4.3763 

7 
8 
9 
10 
11 
12 

333 
1448 
6572 

30,490 

143,552 

683,101 

3652 
16,689 
77,359 

362,671 

1,716,033 

8,182,213 

4.4865 
4.5698 
4.6353 
4.6882 
4.7317 

4.7681 

TABLE IV 

Tri p-mino Totals, Free and Fixed 

p TE(p) TX(p) Ratio p TE(p) TX(p) Ratio 

1 
2 
3 
4 
5 
6 
7 
8 

1 
1 
1 
3 
4 
12 
24 
66 

2 
3 
6 
14 
36 
94 
250 
675 

1.0000 
1.5000 
2.0000 

2.3333 
2.5714 
2.6111 
2.6596 

2.7000 

9 
10 
11 
12 
13 
14 
15 
16 

160 
448 
1186 

3334 
9235 

26,166 

73,983 
211,297 

1838 
5053 

14,016 
39,169 
110,194 

311,751 
886,160 

2,529,260 

2.7230 
2.7492 

2.7738 

2.7946 
2.8133 
2.8291 
2.8425 
2.8542 

TABLE V 

Square p-mino Totals, Free and Fixed 

p PE(p) PX(p) Ratio p PE(p) PX(p) Ratio 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 
1 
2 
5 
12 
35 
108 
369 
1285 

1 
2 
6 
19 
63 
216 
760 

2725 
9910 

1.0000 
2.0000 
3.0000 
3.1667 
3.3158 
3.4286 
3.5185 
3.5855 
3.6367 

10 
11 
12 
13 
14 
15 
16 
17 
18 

4655 
17,073 
63,600 

238,591 
901,971 

3,426,576 

13,079,255 
50,107,911 
192,622,052 

36,446 
135,268 
505,861 

1,903,890 

7,204,874 
27,394,666 
104,592,937 
400,795,860 

1,540,820,542 

3.6777 
3.7115 
3.7397 
3.7637 
3.7843 
3.8022 
3.8180 
3.8320 
3.8444 
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Several authors, notably Klarner [3], have investigated this question theor
etically. All that has been proved is that, by subadditivity, there exists 

(14) £ L = lim(FX(p))1/p, 
p-KX) 

where F stands for P, H, or T. If the fixed ratio limit exists, then the two are 
equal: 

FL = lim FX(p)/FX(p-1), if it exists. 
p-¥O0 

As to the free ratio, it is shown with some difficulty in [5] that, for square p-
minos, the proportion of/?-minos with any symmetry (other than / ) approaches 
zero (but rather weakly), whence PE and PX behave the same in the limit but 
for a factor of 8. Following a general principle, the fixed totals are a little 
more tractable theoretically and numerically, which is why we choose to work 
with them. 

The known bounds on the limits FL—or critical points, to borrow a sonorous 
phrase from theoretical physics—are 

4 < HL < 6.75, 

(15) 2.13 < TL < 4, 

3.72 < PL ^ 4.65. 

These are mainly due to Eden [4] Klarner [3, 10] ; however, the upper bound 
on HL seems to have escaped previous notice, so here is the proof. 

Let each cell have r edges, r = 3,4,6. We shall construct an encoding 
of fixed /?-minos ; suppose we are given a particular one. Starting from some 
fixed edge (the root) of some fixed cell (cell 1) of the /?-mino, perform the 
following process on cell / for / = 1,2,.... Make up a string of binary digits 
ay = 1 if theyth edge from the root around the perimeter of cell / has an un
numbered cell of the /?-mino adjoining, otherwise du = 0. In the former case, 
give the cell the next unused number, and mark the common edge as its root. 
Omit the root edge of cell / > 1, since it must adjoin a numbered cell j <i. 
This procedure maps the /?-minos one to one into the sequences with roughly 
p ones and (r—2)p zeros. Hence 

/ ( r - l ) /A 
FX(p) ^ Ä ((r-iy-1/(r-2)r-2)p, by Stirling's approximation, 

and 

(16) FL<( r - l ) r - 1 / (A*-2 ) r - 2 . 



Counting Hexagonal and Triangular Polyominoes 

Fig. I I 

For hexagons we can omit not only the root edge but also the two adjacent, 
since the cells a, b adjoining them also adjoin the root cell j , and must already 
have been investigated (see Fig. 11). So now the string has length (r — 3)/?, and 
instead of (16) we have 

(17) HL < ( 6 - 3 ) 6 " 3 / ( 6 - 4 ) 6 - 4 = 6.75. 

Our own investigation will be empirical. We assume that the functions can 
be approximated by exponentials, and try to estimate the base y and index ß 
in the relation 

(18) FX(p) ~ yppß x constant. 

Then of course y = FL. We hope shortly to describe our methods in a separate 
paper [9]. Our values are 

(19) HL = yH~ 5.181 ± 0.002, 

ßH a* -0.98 ± 0.01, 

TL = yT Ä 3.02 ± 0.05, 

βτ ~ -0 .8 ± 0.5, 

PL = yP~ 4.061 ± 0.001, 

βΡ ~ -0.98 > 0.02. 

The triangular data behaves rather badly, and not just because of the 
small numbers involved. It is quite possible that actually β = — 1 in all cases 
and there is an extra logarithmic factor. It is less likely that the y are integers; 
γΗ is clearly not an integer. 
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1. Hypercubic Polyominoes and Their Symmetry 

We have investigated square polyominoes [1], remarking that the symmetry 
possessed by such an object is one of 8 types possible, which were cataloged. 
Here we make some observations about symmetry of more general con
figurations, in particular of cubical polyominoes. The group theory we shall 
use is mostly elementary and may be found in Ledermann [8] ; the application 
of groups to symmetry is simply expounded by Weyl [9]. 
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Suppose we are given a discrete tessellation in d-dimensional Euclidean 
space. A Euclidean polyomino is a connected set of ^-dimensional cells of the 
tessellation, where two cells are connected if they have at least an/-dimensional 
cell in common, 0 < / < e ^ d, all fixed constants. For example, the tessel
lation of cubes in ordinary space with e = d,f= d— 1, and d= 3 yields poly
ominoes of cubes connected by their faces, of which some examples are shown 
in Fig. 1. Similarly the hypercubic tessellation for arbitrary d yields hyper-
cubic polyominoes. 

The tessellation has a symmetry group Gt and a normal subgroup Gt 

comprising all translations. Fixed polyominoes are equivalence classes under 
Gt\ free polyominoes are classes under the whole Gt. Let G = Gl/Gt9 the 
special group of the tessellation. A fixed polyomino P will be invariant under 
some subgroup H of G, its symmetry. Operating on P by an arbitrary member 
of G will yield another fixed polyomino P', the symmetry group H' of which 
is conjugate to H in G, and which corresponds to the same free polyomino 
as P. So the symmetry of a free polyomino is described by a set of conjugate 
subgroups of G ; we shall prove later that every such set is the symmetry type 
of some polyomino. 

Turning now to the hypercubic case, the group of the tessellation is what 
Coxeter calls Rd+1 [3], and G is the group of the hypercube Od. To calculate 
the symmetry types of hypercubic polyominoes we need to know something 
about the latter group. 

2. The Hyperoctahedral Group Od 

The general element of Od, the symmetry of a hypercube drawn in the 
natural orientation in Cartesian d space with its center at the origin, is a 
combination of axis reversals and axis permutations. For example, a rotation 
through π/2 about the z axis is 

(1) (x,y,z) -> (+y, -x, +z). 

Regarding the right-hand side as a signed permutation on the d symbols 
x,y,z,..., we see an immediate analogy with ordinary permutations. Multi
plication is analogous, the signs being multiplied on the way. For example, 
(1) repeated is a rotation through π about the z axis, or 

(2) (+y-x + z) x (+y-x + z) = (-x-y + z). 

Conjugacy is also analogous [7]: two elements are conjugate and 
geometrically similar if their cycles correspond in pairs of the same type. 
Two cycles are of the same type when they are of the same length and the 
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products ( + ) of their signs are the same. So, for example, breaking (1) into 
cycles gives 

(3) (+y-x + z) = ( + j ; - x ) ( + z ) ; 

we say that its cycle type is — 2 + 1 , one negative 2 cycle and one positive 
1 cycle. All six symmetries of this type will be found to rotate through + π/2 
about some axis. 

Every element of Od leaves some subspace fixed, called its center: for 
example, the (d— l)-dimensional mirror of a reflection, or the (d—2)-
dimensional axis of a rotation. The dimension c of the center is simply the 
number of positive cycles in the element. For each positive cycle, in the 
subspace it spans, leaves fixed the line ( + /, + /,...), where + changes to — 
once for every — in the cycle. Each negative cycle does the same but imposes 
the condition t = —t, which leaves only the point (0,0,...). So each positive 
cycle adds 1 to c and each negative cycle adds 0. 

Elements for which d—c is odd are improper, that is, they interchange left 
and right. For it is easily seen that an improper element factors into an odd 
number of reflections, the primitive reflections being axis transpositions and 
axis reversals, and a simple manipulation shows that this number is congruent 
to d— c modulo 2. These are the analogs of odd permutations. For example, (3) 
has one positive cycle. Its center is therefore a line, c = 1. Since d— c = 2 is 
even, it is proper—as befits a rotation. 

Table I lists the 10 conjugacy classes of 0 3 , showing their cycle types and 
geometrical effect. Notice that the "symmetry types" of Slepian [7] are 
conjugacy classes; we use the term to mean a set of conjugate subgroups of 
Od. To catalog the latter we wrote an uninteresting and inefficient subgroup 

TABLE I 

Elements of 0 3 by Conjugacy Class: 48 Operations in 10 Classes 

Name 

/ 
A 
B 
C 
D 
E 
F 
H 
J 
K 

Cycle 
structure 

+1+1+1 
+ 1-2 
+ 1 - 1 - 1 
- 1 + 2 
+ 3 
- 1 + 1 + 1 
+ 1+2 
- 3 
- 1 - 2 
- 1 - 1 - 1 

Order 

1 
4 
2 
2 
3 
2 
2 
6 
4 
2 

No. of 
conjugates 

1 
6 
3 
6 
8 
3 
6 
8 
6 
1 

Description 

No effect 
π/2 rotation face axis 
π rotation face axis 
π rotation edge axis 
2π/3 rotation vertex axis 
Reflection in face plane 
Reflection in edge plane 
DxK 
AxE 
Reflection in center point 



TABLE II 

Subgroups of 0 3 by Conjugacy Class: 98 Subgroups in 33 Classes 

Name 

/ 
A 
B 
C 
D 
E 
F 
H 
J 
K 

BB 
BC 
BE 
BF 
CE 
CK 
EE 
CD 
FF 

Order 

1 
4 
2 
2 
3 
2 
2 
6 
4 
2 

4 
4 
4 
4 
4 
4 
4 
6 
6 

No. of 
conjugates 

1 
3 
3 
6 
4 
3 
6 
4 
3 
1 

1 
3 
3 
3 
6 
6 
3 
4 
4 

Class structure 

/ 
I+B+2A 
I+B 
I+C 
I+2D 
I+E 
/ + F 
I+K+2D + 2H 
I+B+2J 
I+K 

7+35 
I+B+2C 
I+B+E+K 
I+B+2F 
I+C+E+F 
I+C+F+K 
I+B+2E 
7+2D + 3C 
7+2D + 3F 

Name 

AB 
AE 
BFF 
CJ 
EEE 
EF 
EFF 

BD 
CF 
BBC 
CCC 
DEE 
R 
G 

Order 

8 
8 
8 
8 
8 
8 
8 

12 
12 
16 
24 
24 
24 
48 

No. of 
conjugates 

3 
3 
3 
3 
1 
3 
3 

1 
4 
3 
1 
1 
1 
1 

Class structure 

I+2A + 2C+W 
I+B+E+K+2A + 2J 
7+2F+2/+35 
7+5+2C+2E+2. / 
7 + A : + 3 £ + 3 £ 
I+B+2A + 2E+2F 
7 + £ + £ + Ä : + 2 C + 2 F 

7+35+87) 
7+#+27) + 277+3C+3F 
7+#+2,4 + 2C+2F+2J+35+3F 
7+3B+6F+6/+87) 
I+K+3B+3E+8D + SH 
7+35+6^ + 6C+87) 
7+#+35+3F+6,4 + 6C+6F+6J r+87>+8# 
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program, which shall not be described. Cannon surveys appropriate methods 
in his thesis [5], mentioning in particular the work of Neubüser (see Biilow 
and Neubüser [6]). 

We find that 0 3 has 98 subgroups falling into 33 conjugacy sets (symmetry 
types), including the 8 square (d=2) types. Table II summarizes these sub
groups. As the subgroups themselves are of no particular interest, we just show 
their breakdowns by conjugacy classes of their elements. For example, a type 
BB polyomino is invariant under the identity, class /, and the three rotations 
through π about an axis, class B. So the structure of type BB is shown as 
7+35. 

3. The Existence of Models 

While we have shown that any symmetry type of a free polyomino is a set 
of conjugate subgroups of the special group G of the tessellation, we have not 
shown the converse, that every such set is the type of some polyomino. For 
cubical polyominoes this is assured by our painful hand construction of 
models of each symmetry type (see Fig. 1). Below each figure is its symmetry 
type, defined by Table II, and the number of cubes composing it. Notice that 
CD10 and DEE25 possess a hidden central cell whereas BD34 does not. They 
are intended to be minimal in their number of cells, but it is quite possible 
that some of them can be further reduced. 

For one-dimensional polyominoes the converse is false, however. There are 
two symmetry types, I (no symmetry) and G (reflection in the center point). 
Polyominoes consist of connected segments of integral length, all of which 
are clearly of type G. 

Notice incidentally that we do not distinguish between various possible 
positions of the center relative to the cells, where the center of a polyomino 
with given symmetry is the intersection of the centers of its symmetries. So, 
for example, if a cubical is invariant under a single reflection of class E, its 
symmetry type is E whether the mirror lies on the faces of cubes or on the 
midplanes of cubes. 

That the converse is true provided d > 1 was suggested by the model R56 

of Fig. 1. The idea is to construct a large enough shell P with full symmetry G, 
then to reduce the symmetry to given H < G by sticking on an asymmetric 
knob Q together with its images under H only. For R56, P is a skeletal 4 x 4 x 4 
cube of edges and vertices only (32 cells), and Q is a cell projecting from its 
edge. Q has 24 images under the group R of all rotations of the cube, and 
32 + 24 = 56. Of course, such a model is not necessarily minimal. 

THEOREM. Given a tessellation and d, e, and/, as in Section 1, with G, etc. 
as defined there and d> Ì, then for any H<G there is a fixed Euclidean 



Symmetry of Cubical and General Polyominoes 107 

polyomino with precisely that symmetry. This implies the free converse 
referred to above. 

We need some facts about Euclidean tessellations, as discussed by Coxeter 
[3]. The full symmetry group Gt is generated by reflections in finitely many 
(d— l)-dimensional hyperplanes or primes, where 4 will do for the cubical case. 
The primes that act as mirrors for the pure reflections of Gt fall into finitely 
many families of equally spaced parallel primes, on which the center of any 
symmetry not equal to / must lie. There exist points lying simultaneously on 
one member of every family, 9 families for the cubical case with such points at 
centers and vertices of cubes. Let S be such a point. Then G is generated by 
reflections in the mirrors through S. 

Define the k-ball to be the set of all cells whose distance is < k. The distance 
of a cell adjacent to S is defined to be zero; and of a cell adjacent to a cell of 
distance k— 1, but to no nearer cell, is defined to be k. The k ball possesses a 
surface k-sphere, the cells of which are at distance k. 

Let P be a fc-ball. Then P has order kd cells. Its surface has order kd~1
9 and 

the mirrors through S contain order kd~2 of the latter. So for large enough k 
there exists a cell g at distance k+l, adjacent to the surface, not lying on any 
mirror through S. Attaching this to P shifts the center of gravity away from S 
by a small length of order 

(4) k/(l+kd) ~ kl~d 

in a direction away from all the mirrors through S. Since uf>lwe can choose 
k large enough to make (4) smaller than the distance between any two parallel 
mirrors. 

The symmetry of P u g is /, since its center of gravity lies on no mirror. 
The symmetry of P on the other hand is G, since any element of G applied 
about center S will move one cell into another of the same distance. Let us 
now apply / / t o P u ß with center S (or containing S if it is not a point). 
P remains invariant while g traces out a system of cells g ' , g",..., all distinct, 
and of distance &+1, so attached to P. Clearly P u g u g ' u . . . has the 
required symmetry H. 

4. Cubical Counts 

Having spent so much effort in discussing cubical polyominoes, we felt 
constrained to sit down and enumerate them for small numbers p of cells. 
This is really a job for a computer, and a program using the ideas of Lunnon 
[1] and this paper would be straightforward. We present our hand-calculated 
counts in Table III, together with parallel counts of square (d=2) poly
ominoes in Table IV for comparison, 1 ^ρ ^ 6. 
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TABLE III TABLE IV 

Cubical Polyominoes Square Polyominoes 

P 

1 
2 
3 
4 
5 
6 

Free 

1 
1 
2 
7 
23 
112 

Fixed 

1 
3 
15 
86 
534 
3481 

Real 

1 
1 
2 
8 
29 
166 

P 

1 
2 
3 
4 
5 
6 

Free 

1 
1 
2 
5 
12 
35 

Fixed 

1 
2 
6 
19 
63 
216 

Real 

1 
1 
2 
7 
18 
60 

Free polyominoes whose symmetry groups contain no improper elements 
(classes E, F, H, / , and K for the cubical case) are enantiomorphic: that is, 
if no rotations outside d space are permitted, they exist in distinct left and 
right forms. (Reflections in dspace are rotations in (d+ 1) space.) Under "real" 
we give the counts when each enantiomorphic is counted twice, as would be 
natural for the cubical case in ordinary space. 

A trivial branching argument shows that as p -► oo there are at least 4P 

/7-celled cubical polyominoes. A method due to Eden [10, 11] shows that 
there are at most(55/44)p ~ 12.2P. Extrapolating from our totally inadequate 
data, we estimate that there are very roughly 8P. 
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1. Introduction 

Considerable literature in the field of graph theory has dealt with the 
coloring of graphs, a fact which is quite apparent from Ore's extensive book 
The Four-Color Problem [8]. The majority of this effort has been devoted to 
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the theory of graph coloring, and relatively little study has been directed 
towards the design of efficient graph coloring procedures. Since numerous 
proofs of properties relevant to graph coloring are constructive, many coloring 
procedures are at least implicit in the theoretical development. 

In this paper we focus attention on sequential vertex colorings, where 
vertices are sequentially added to the portion of the graph already colored 
and new colorings are determined to include each newly adjoined vertex. At 
each step an attempt is made to keep the total number of colors necessitated 
relatively small without an undue amount of computation being expended. 

In Section 2 the concept of sequential colorings is formalized and certain 
upper bounds on the minimum number of colors needed to color a graph, the 
chromatic number x(G), are described. It is noted that while sequentially 
coloring the vertices with highest degrees first appears reasonable and leads 
to an upper bound on χ((7), the sequential coloring determined by recursively 
adding vertices so that the last vertex added has minimum degree in the graph 
so far colored leads to a tighter bound. The notion of a bichromatic inter
change is discussed, and efficient sequential coloring algorithms utilizing 
bichromatic interchange are formulated. 

Our main result occurs in Section 3, where it is shown that the recursive-
smallest-vertex-degree-last-ordering-with-interchange coloring algorithm will 
color any planar graph in five or fewer colors. The algorithm is evidently 
quite efficient even on large planar graphs. 

The various algorithms have been programmed and applied to a selection 
of random graphs. The computed bounds on x(G) and the number of colors 
used in the effected colorings are tabulated and compared in Section 4. The 
bounds are seen to vary considerably, with even the best bound being far 
from tight. Practically, the addition of the bichromatic interchange step to the 
sequential coloring procedure is shown to provide a significant improvement 
in reducing the number of colors utilized closer to the chromatic number, 
while still allowing for a reasonably fast computation time. 

2. Sequential Vertex Colorings 

A graph G = (V, E) with vertex set V and edge set E will herein be assumed 
to have no loops or multiple edges. For A c V, the induced subgraph {A} = 
{A, E') of G will be the subgraph of G, where E' contains all edges of E, both 
end points of which are in A. Also (v1,v2,..-9vJy will denote {{vi,...,vJ}}. A 
k coloring of G is an assignment of colors to the vertices of G using no more 
than k colors and such that adjacent vertices have different colors. For an 
ordering v1,v2,...,vn of the vertices V of G, a sequential coloring of G corre-



Graph Coloring Algorithms I I I 

sponding to this order is a k coloring of G utilizing each of the colors 1,2,..., k 
determined recursively as follows : 

(1) vl is assigned color 1, thus 1 coloring ( t ^ ) ; 
(2) if (vi,v29...,vi_iy has been j colored, then vl,...,vi.l are assigned 

the same colors in {vl,...,viy, and vt is assigned color m, where m ^ y + 1 is 
the minimum positive integer not occurring on adjacent vertices in (vx,..., ^>. 
Thus, <^!,..., Vi} is y colored for m <y, and (j+ 1) colored otherwise. 

A complete graph G has an edge for every distinct pair of vertices, and a 
complete k-partite graph G = (V, E) has a vertex partition Ax,A2,...,Ak, such 
that each edge with an end point in At and Aj is in E for / Φ) and is not in 
Efori=j. 

THEOREM 1. Any sequential coloring of a complete Avpartite graph G is 
a k coloring of G. 

Proof: Let G = (V, E) be a complete /r-partite graph where all edges of E 
have end points in different parts of the vertex partition Al,A2,...,Ak. For 
ve Ai, weAj, ίφ), v and w must be colored different by any sequential 
coloring since v and w are adjacent in G. Suppose vuv2,...,V\V(G)\ is any 
particular ordering of the vertices of G, and let vi9 VjE Ap, i<j. Now in 
(vu υ2,..., Vj}, Vj will have precisely the same neighbors as vt. So the minimum 
color value m not occurring on its neighbors in (vi,v2,...,vj_iy must be the 
color value of vi. Hence, vt and υ$ are assigned the same color by the sequential 
coloring algorithm corresponding to the order ι>ι,ϋ2>···>ι;|κ(οι· Then all 
vertices of each Ap, 1 ^p^k, will be assigned the same color, so G is A: 
colored. Since the ordering of the vertices was arbitrary, the theorem is 
proved. 

For any graph G, the smallest k such that G can be k colored is termed the 
chromatic number, x(G), of G. In general not all sequential colorings of a 
graph G will yield x(G) colorings. For the graph of Fig. 1, the sequential 

Fig.1 
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coloring corresponding to vl9 v2, v3, v4, v5 utilizes 4 colors, whereas the order 
v59 v4, v3, v2, vt yields a 3 coloring. In particular some sequential coloring 
must yield a x(G) coloring. To see this let Λ( be the vertices colored / by a x(G) 
coloring of G in the colors 1,2,...,/(G). Then for any ordering of the vertices 
V(G), which has all members ofAi before any member of A} for 1 ^ / <j^x(G), 
the corresponding sequential coloring will be a x(G) coloring. 

It is not easy to determine in general if a particular sequential coloring is a 
X(G) coloring of G. No efficient general procedure for determining x(G) is 
known, and even the known bounds on x(G) are not always very sharp. 
Let the degree ofv in the graph G, degG(y) (deg(y) when G is understood), 
be the number of adjacent vertices of v in G. It is evident from the sequential 
coloring procedure that #(G)< I +ma.xveViG){deg(v)}. Brooks [2] has im
proved upon this. 

THEOREM 2 (BROOKS [2]). Let G be a connected graph with 

max {deg(r)} ^ 3 
veV(G) 

where G is not a complete graph. Then 

(1) x(G) ^ max {deg(i;)}. 
veViG) 

We shall term this inequality the max-degree bound on x(G). 

For graphs with only a few vertices of large degree, it is evident from the 
sequential coloring procedure that coloring these vertices first will generally 
avoid the need for as many as maxyeK(G){deg(i;)} colors. By ordering the 
vertices v1,v2,...,V\V{G)i such that deg(i;t·) ^ deg(i;/+1) for 1 ^ / < \V(G)\ and 
considering the corresponding sequential coloring, the following bound of 
Welsh and Powell [10] is obtained. 

THEOREM 3. Let G be a graph with V(G) = {vl9 v2,..., vn}9 where deg(yf) ^ 
deg(t;i+1) for / = Ι , . , . , Λ — 1 . Then 

(2) x(G) < max min{z, l + d e g ^ ) } . 
i < / < « 

Inequality (2) will be termed the truncated-max-degree bound on x(G). The 
proof of Theorem 3 given by Welsh and Powell [10] is essentially the algorith
mic proof we have sketched. Bondy [1] has given a shorter existential proof. 

An ordering of the vertices of a graph G such that deg(^) ^ deg(ui+1) 
for 1 < / < | V(G)\ will be called a largest-first (LF) ordering of the vertices. 
Determination of a sequential coloring corresponding to such an ordering will 
be termed the largest-first algorithm (LF algorithm). The sequential coloring 
corresponding to a given LF ordering will effect the same coloring as described 
by the algorithm of Welsh and Powell [10] and will utilize no more than 
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maxjminl/, 1 + deg(t,
i)} colors. Note that since the LF ordering of the vertices 

is not necessarily unique, the number of colors utilized in the coloring pro
vided by the LF algorithm can vary depending on the particular LF ordering 
chosen. Application of the LF algorithm will mean its application for a 
particular largest-first ordering. 

Cole [3] discusses a procedure for scheduling subject examinations utilizing 
graph-coloring techniques. If each subject corresponds to a vertex and any 
pair of subjects that must be taken by the same student corresponds to an 
edge of a graph G, then /(G) is the minimum number of examination periods 
needed to avoid scheduling conflicts. Cole [3] gives the subject incompati
bility data for 34 examination subjects to be offered for the First Year General 
Degree at Leicester University for June 1963, which is reproduced in Fig. 2 
as the adjacency matrix of a graph. There are further refinements in Cole's 
model as some subjects require multiple papers that may need to be in se
quential periods. 

Cole describes an algorithm ordering the 34 subjects in an LF ordering 
with further subordering being determined on the basis of the multiple paper 
conditions. He then generates a period assignment table utilizing 14 periods. 
It is evident from Cole's solution that fewer periods would be needed if the 
multiple papers were not required, and let us consider how many periods will 
be needed in this case. 

The graph G with the adjacency matrix of Fig. 2 must have χ(β) < 20 
from the max-degree bound, and x(G) < 14 is confirmed by the truncated-
max-degree bound as cited by Welsh and Powell [10]. Actually the sequential 
coloring utilizing the ordering vi9v2,...,v34 yields a coloring using only nine 
colors. The LF ordering with subordering by label value yields an 8 coloring, 
where #(G) = 8 can be verified since <i;7 ,v s ,v9 ,v269v21 ,v28 ,v299v30} is a 
complete subgraph. The sequential coloring determined by this LF ordering 
is indicated in Fig. 2. 

The previous example suggests that sequential coloring algorithms may 
perform considerably better than the two bounds (1) and (2) suggest. A closer 
inspection of the sequential coloring procedure shows that for a given ordering 
vi9 v29.. .9vn of the vertices of a graph G, the corresponding sequential coloring 
algorithm could never require more than k colors where 

(3) k = max {1 + deg <VltV2t...tVi>(Vi)}. 

The determination of a vertex ordering minimizing k in (3) was derived 
earlier by Matula [5], and can be found by the following procedure: 

(1) for n = |K(G)|, let vn be chosen to have minimum degree in G; 
(2) for / = n — 1, n — 2,..., 2,1, let vi be chosen to have minimum degree in 

(V(G)-{vn9v„_l9...9vi+1}}. 
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Fig. 2. The adjacency matrix for the subject incompatibility data for 34 examination subjects 
offered for the First Year General Degree at Leicester University for June 1963 from Cole [3]. The 
color values determined by the largest-first algorithm corresponding to the largest-first ordering 
with subordering by subject number are given on the main diagonal. 

For any vertex ordering vl,...,vn determined in this manner, we must have 

(4) d e g ^ ^ . . . ^ ^ ) = min d e g ^ ^ ^ ^ ) , 1 < / < /i, 

so that such an ordering will be termed a smallest-last (SL) vertex ordering. 
The fact that any smallest-last vertex ordering minimizes k in (3) over the n ! 
possible orderings is shown by Matula [6]. 

Note that the determination of a smallest-last vertex ordering has a feature 
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of recursiveness not shared by the largest-first ordering procedure. The degrees 
of vertices computed in determining a smallest-last ordering are over sub
graphs, whereas determination of the largest-first ordering utilizes only the 
degrees of vertices in the whole graph. Thus, the orderings are not necessarily 
equivalent. 

The procedure of determining a smallest-last ordering of the vertices and 
then determining the corresponding sequential coloring will be termed the 
smallest-last coloring algorithm (SL algorithm). It is evident from the con
struction that the SL algorithm will always determine a coloring requiring 
no more than 1 +maxHmint;eK(H){deg//(V)| H & subgraph of G} colors. This 
provides an alternate proof of the following bound on x(G) derived earlier 
and independently by Szekeres and Wilf [9] from consideration of the eigen
values of the adjacency matrix of G. 

THEOREM 4. For any graph G, 

(5) x(G) ^ 1 + max min{degH(i>)| H a subgraph of G}. 
H veV(H) 

We shall refer to inequality (5) as the max-subgraph min-degree bound on 
X(G). Szekeres and Wilf [9] give both an existential and a constructive (algor
ithmic) proof of Theorem 4. Their algorithmic proof yields an ordering of the 
vertices, not necessarily an SL ordering, minimizing k in (3). Matula [6] has 
shown that the bound (5) can be sharpened to 

(6) x(G) < 1 + max{vl(//)| H a subgraph of G}, 
H 

where λ(Η) ^ minveV(H){aQgH(v)} is the edge connectivity of H. However, 
this improved bound does not pertain to sequential colorings and will not be 
utilized herein. 

It is evident that the max-subgraph min-degree bound (5) is always sharper 
than or equal to the truncated-max degree bound (2). Applying the SL algo
rithm to the graph, G, with the adjacency matrix of Fig. 2 taken from Cole's 
problem, the max-subgraph min-degree upper bound on x(G) is determined to 
be 10 and again an 8 coloring is achieved. This bound compares favorably with 
the truncated-max degree bound of 14 for this graph. Although not sharp, the 
max-subgraph min-degree bound appears quite superior to the max-degree 
and truncated-max-degree bounds for such graphs having a variety of vertex 
degrees. 

The SL algorithm does not always effect a x(G) coloring of G. Some in
stances of this will be discussed in Section 4. In attempting to improve the 
sequential coloring procedure previously described note that when the vertex 
Vi is adjoined to the (k — 1) colored subgraph (vl,v2,...,vi_iy, a A*th color is 
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needed only if vt is adjacent to vertices with colors 1,2,..., A*— 1. Now if a 
complete graph on k — 1 vertices exists among the neighbors of vi9 then 
X((vl9v2,...9vi)) = k and the new color is necessary. Otherwise, it may be 
possible to change the colors on some neighbors of vv so as to preserve the 
(k—\) coloring of <0ι,ι>2ΐ···>*>ΐ-ι> while leaving at most k — 2 colors on 
neighbors of vi9 thus freeing a color for vit 

Given a graph G with a k coloring in the colors 1,2,..., k, let At be the set of 
vertices of G colored /. For / Φ}9 the ij bichromatic subgraph of G is the sub
graph {Ai u Aj}, and a component of <Λ,· u Aj} is an ij component. If the 
distinct vertex colors i and j are interchanged on an ij component of the k 
colored graph G, then another k coloring of G is obtained. This procedure is 
termed an /<->y interchange on the k colored graph G. A bichromatic inter
change on the ^-colored graph G is an / +-*j interchange on G for some / Φ], 

A search for bichromatic interchanges at critical points in the coloring 
process is introduced in the following coloring algorithm. 

For an ordering vi9v29...9vn of the vertices V of G, a sequential-with-
interchange coloring of G corresponding to this ordering is a k coloring of G 
utilizing each of the colors 1,2,...,/: determined recursively as follows: 

(1) vx is assigned color 1, thus 1 coloring <ί^>; 
(2) if<i; iî v29..··>

 vi-1) has beeny colored using each of the colors l,2,...,y, 
and if m is the minimum positive integer not occurring on vertices of 
(vl9v29...9vi_iy adjacent to v in G9 then 

(a) for ra^y, we assign each vertex of ζνί9...9ν^^ the same color in 
<i>i,...,#,·>, and vt is assigned color m9 thusy' coloring <t;1,...,i;f>; 

(b) for m =y+ 1, let Kcz {l,2,...,y} be the set of color values such that 
OLE K implies exactly one vertex adjacent to vt in (ül9...,vty has color a in 
{vl9...9vi-iy. If for some a,/? e K9 a Φ ß9 an (x9ß component of <^l9..., f̂-_ x > 
has only one vertex adjacent to vt in (νί9...9ν^9 then perform one α9β inter
change on one such α9β component of <^i,...,t?i_1>. Now color the vertices 
vl9...9vi-1 the same as in this new coloring of <i?1,...,t?/_1>, and vt with the 
available color, either a or β9 and ay coloring of (νί9...9ν^ is obtained; 
otherwise if no such interchange is possible, color vl9...9vi_l the same as in 
<y1,...,yI_1>, and color v{ with colory+ 1, thus (y+ 1) coloring (νΐ9ν2,..·9ν^. 

The Iargest-first-with-interchange coloring algorithm (LFI algorithm) will 
refer to the sequential-with-interchange coloring algorithm applied to a 
vertex sequence in largest-first order. The recursive-smallest-vertex-degree-
last-with-interchange coloring algorithm (SLI algorithm) will refer to the 
sequential-with-interchange coloring algorithm applied to a vertex sequence 
in smallest-last order. It should be noted that both of these algorithms depend 
on the particular LF or SL ordering used and on the particular bichromatic 
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interchange made in Step 2b when more than one suitable interchange is 
available. 

We shall now investigate some properties of the bounds developed and the 
algorithms proposed, first on planar and then on random graphs. 

3. 5 Coloring Planar Graphs 

A tree having at least n vertices of degree n is easily constructed for any 
n^ 1. A tree is a planar graph, so the max-degree (1) and truncated-max-
degree (2) bounds can give arbitrarily high bounds on x(G) for some planar 
graphs G, while it is known [8, p. 84] that x(G)^ 5 for all planar graphs G. 
We assume that planar graphs are defined to exclude loops and multiple 
edges. Szekeres and Wilf [9] point out that the max-subgraph min-degree 
bound (5) is always less than or equal to 6 for any planar graph. In this 
section we shall show that the recursive-smallest-vertex-degree-last-ordering-
with-interchange coloring algorithm (SLI algorithm) will utilize at most five 
colors in coloring any planar graph. 

LEMMA 1. Let H be a planar graph where H—v is k colored for some 
v e V{H) with deg(y) ^ 4. Then for any four vertices adjacent to v, either two 
of these are of the same color or there exists a bichromatic interchange on 
H—v which will yield two similarly colored vertices among the four. 

Proof: Given the planar graph H with H— v0 k colored, where deg(i?0) ^ 4, 
choose any four adjacent vertices of v0. If no two of these have the same color 
then we may assume these four neighbors, vi9 v2, v3, and y4, occur in clockwise 
order around v0 and have colors 1, 2, 3, and 4, respectively (see Fig. 3). Now 
if vx and v3 are not in the same component of the 1,3 bichromatic subgraph, 
then the l«->3 interchange on the 1,3 component containing vl will yield a 
coloring that verifies the lemma in this case. Otherwise, consider the 
2,4 bichormatic subgraph and assume v2 and v4 are in the same component. 
Then there is a path in H from v2 to v4 and a disjoint path in H from vx to v3 

since υγ and v3 are in the same 1,3 component. From the planarity of H and 
the clockwise order of vu v2, v39 and v4 about v0 in H, it is evident that the 
vertex v0 may be added to the graph H—v0 along with edges v0vu v0v2, 
ô y3> ô v4> vi v2> v2 v3> v3 v4> v4vi> anc* the resulting graph H' will be planar 

(see Fig. 3). But H' then has vertex disjoint paths between any two of the 
vertices {v0,vl,v2,v3,v4.}, and by Kurtowski's theorem [8, p. 22], H' can 
not be planar. Thus, v2 and v4 are not in the same 2,4 component, so the 
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Fig. 3. The planar graph H includes H—v0, the vertex v0, and the solid lines from v0 to 

vertices of H—v0. The graph H ' includes H— v0, the vertex v0, and the dashed lines shown. It 

is evident that H ' is also planar. 

2 <-► 4 interchange on the 2,4 component containing v2 is an interchange 
proving the lemma. 

Now we show the main theorem. 

THEOREM 5. The recursive - smallest - vertex - degree - last - ordering - with -
interchange coloring algorithm (SLI algorithm) will color any planar graph 
in five or fewer colors. 

Proof: Given the planar graph G, we may assume that the vertices are 
ordered in a smallest-last ordering so that vt has minimum degree in 
<i; 1 , i ; 2 , . . . , i ; i >, /=l ,2 , . . . , |K(G) | . 

Proceeding by induction, (v^ is 1 colorable. Assume that {ν^.,.,ν^^ is 5 
colored by SLI for some /. Now ( t^ , . .,t;f> is planar so deg<t.lfl?2 Viy(Vi) < 5 
[8, p. 51]. If fewer than five distinct colors occur on the vertices of (νλ,..., v{ _ 1 > 
adjacent to i>f in {v1,...,vi}, then clearly vv will be colored by SLI without 
resorting to a sixth color. If exactly five distinct colors appear, then by Lemma 
1 some bichromatic interchange in <i;l5...,!;,·_!> including a vertex adjacent 
to Vi in G exists which will cause fewer than five distinct colors to occur on the 
neighbors of vx among vi,v2,..-,vi_l. Since the SLI algorithm searches for 
all possible interchanges on the adjacent vertices of v{ in this case, an appropri
ate interchange will be made and vx will be colored by SLI without recourse 
to a sixth color. Thus, <v1,...,üi> is 5 colored by SLI and by the induction 
assumption G = (vl9v2,..-,^|K(G)|) ^S t n e n colored in five or fewer colors. 
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If a graph G contains no subgraph of minimum degree five or greater, then 
for a smallest-last ordering of the vertices, 

deg <„,,...,*,>(Pd = min d e g ^ , , , . . . , , ^ ) < 4, / = 1,2,..., \V(G)\. 

By methods analagous to the proof of Theorem 5 we can readily prove 
Theorem 6. 

THEOREM 6. Let G be a planar graph with no subgraph of minimum 
degree five. Then the SLI algorithm will color G in four or fewer colors. 

4. Coloring Random Graphs 

The various sequential coloring algorithms were applied to a collection of 
random graphs and the results are tabulated in Table I. The random graphs 
were computer generated utilizing pseudo random number generators starting 
with a fixed set of vertices and adding edges chosen uniformly from the 
remaining possible edges until a specified average degree was obtained. 

A total of twenty random graphs were investigated. Five of these graphs had 
order twenty-five and average degree eight; fifteen had order one hundred, 
five each having average degree ten, twenty, and forty. For each graph the 
max-degree (1), truncated-max-degree (2), and max-subgraph min-degree (5) 
upper bounds on the chromatic number were determined. For each of the 
random graphs 1-15, the largest complete subgraph was determined, thus 
providing a lower bound on the chromatic number. For random graphs on 
100 edges with average degree 40, such as random graphs 16-20, it can be 
estimated [7] that the probability that the largest complete subgraph is of 
order nine or greater is only a few percent. 

The graphs were each colored by each of the four previously described 
algorithms, LF, LFI, SL, and SLI, via programs prepared in the PL/I language 
and executed on an IBM 360/50. The execution time in seconds for each 
coloring procedure is tabulated. In addition, for 10 of the 20 problems the 
vertices were randomly ordered in five ways and the number of colors used in 
the corresponding sequential vertex coloring was determined in each case. 

Statistically, it is quite evident that the five graphs in each of the four blocks 
(1-5, 6-10, 11-15, 16-20) exhibit only a small variation in each of the par
ameters measured. Regarding the number of colors utilized by the LF algor
ithm, other results on coloring random graphs having approximately the 
same density and order, given by Wood [11], are in close agreement. This 
suggests that global properties of random graphs such as we have measured 
can be quite sharply determined (see also Holgate [4] and Matula [7]), 
despite the variability in local structure inherent in random graphs, a result 
akin to the situation in statistical thermodynamics. 
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Some Results From the Application of the Coloring Algorithms to Several Random Graphs 

Colorings 

Largest first Smallest last 
Random graphs Bounds on colorings with \vith 

Largest first interchange Smallest last interchange Sequential colorings—Random orderings 
Number Upper Lower 

Graph of Average Colors Colors Colors Colors Colors Colors Colors Colors Colors 
number vertices degree Uf U2
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5 
6 
5 
5 
5 

6 
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6 
6 
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6 
7 
6 
7 
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9 
10 
9 
10 
10 

16 
15 
16 
17 
17 

0.44 
0.38 
0.38 
0.44 
0.44 

2.25 
2.30 
2.26 
2.27 
2.29 

2.55 
2.54 
2.42 
2.45 
2.62 

2.81 
2.75 
2.81 
2.88 
3.26 

5 
5 
6 
5 
5 

6 
5 
6 
6 
6 

9 
9 
9 
9 
9 

16 
15 
15 
15 
16 

1.40 
1.40 
1.47 
1.45 
0.94 

5.90 
4.19 
4.30 
3.35 
4.90 

7.81 
4.88 
8.19 
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5.12 

19.81 
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15.79 
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5.94 
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11.88 
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5 
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11 

7 
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10 
11 
11 

aUi =maxl,ev(G){deg(i;)}. CU3= l+maxHn\mV€V(H){aegH(v)\ H a subgraph of G}. 
bU2 = maxj $ / < f I min{/, 1 + deg(f/)}, where degC^-O ^ deg(t>,·) for dL is the largest number of vertices in any complete subgraph of G. 

2 ^ i < | V(G) |. e Time (sec) on an IBM 360/50. 
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A dramatic variation in the value of the upper bounds for x(G) is evident 
in Table I, with the max-subgraph min-degree bound (U3) giving consistent 
significant improvements over the truncated-max-degree (U2) and max-degree 
(Ui) bounds. The C/3 bound still must be considered quite poor for random 
graphs. Note that U3 gives a value at least twice the actual value of x(G) for 
the larger denser graphs 16-20. It is significant that the colorings obtained by 
the naïve sequential colorings, corresponding to the random orderings, gave 
a coloring in a number of colors less than or equal to the best upper bound 
(U3) in every case. 

Practically, for a random graph G, it appears that the simple procedure of 
sequentially coloring G gives a better upper bound on x(G) than the best 
known upper bounds based on other graph theoretic properties of G. Despite 
the superior bound attendant to the smallest-last ordering as compared to the 
largest-first ordering, the colorings effected by the SL and LF algorithms were 
almost equivalent for these random graphs. In addition the number of colors 
needed by both the SL and LF algorithms tended to be only slightly less than 
the average number of colors needed for sequential colorings based on 
random orderings. The effect of adding the interchange step to the sequential 
coloring algorithms was significantly beneficial. In 60% of the graphs in 
Table I the interchange step gave a more efficient coloring for the largest-first 
ordering, and in 70% of the graphs the interchange step improved the smallest-
last ordering. Thus the use of bichromatic interchange would seem to represent 
an advancement in the state of the art for practical graph-coloring procedures. 

Timing considerations show that the SL algorithm takes considerably more 
time than the LF algorithm and the interchange step adds precipitously in 
both cases. Yet the largest times indicated for the random graphs of order 
100 with average degree 40, hence 2000 edges, still are only of the order of 0.5 
min. Thus, considerably larger problems should be economically viable by any 
of these algorithms. 

The behavior of these sequential coloring algorithms in theory on planar 
graphs and empirically on certain random graphs is hopefully indicative of 
their general behavior. Yet acceptable performance of these algorithms on 
other classes of structured graphs that might arise in practical applications 
can not be predicted with any certainty. Investigations to further the under
standing of the performance of these graph-coloring algorithms on other 
classes of graphs is to be encouraged. 

Theoretically it would be helpful to know to what extent the number of 
colors used in the smallest-last-with-interchange algorithm could exceed the 
chromatic number for other classes of graphs, similar to the results established 
here for planar graphs. A concurrent study into sharper lower bounds on x(G) 
could be beneficial in this process. 
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1. Introduction 

Finite automata, which are mathematical models of discrete-time finite-
state systems, can be represented by a finite sequence of directed graphs 
called transition graphs. In the discussion that follows, such graphs are studied 
from an algebraic point of view in terms of a natural representation of the 
graphs by linear transformations. The representation is natural in the sense 
that its matrix equivalent coincides with the usual representation of graphs by 
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adjacency matrices. Under this representation, the classical invariants of 
linear transformation similarity become invariants of graphical isomorphism. 
The principal objective of the investigation is to determine the extent to which 
these algebraic invariants specify the structure (isomorphism class) of an 
arbitrary transition graph. 

In the past, efforts to relate similarity invariants to graphical structure 
(for example, see Collatz and Sinogowitz [2] and Harary et al [8]) have 
focused on a single invariant, namely, the characteristic polynomial of the 
adjacency matrix or, equivalently, the eigenvalue spectrum, if the characteristic 
polynomial has all its roots in the representation field. Since the characteristic 
polynomial does not, in general, characterize similarity, this approach is 
generalized in the present investigation by considering complete sets of 
similarity invariants, such as, all the invariant factors or all the elementary 
divisors of the representing transformation, or matrix. 

It is shown first that such invariants still fall short of characterizing transition 
graphs, up to isomorphism, by exhibiting two nonisomorphic transition 
graphs having similar representations. The question remains, however, why 
this is so or, more precisely, what structural invariants correspond to a 
complete set of similarity invariants. 

This problem is studied first for weakly connected transition graphs by 
examining structural invariants that suffice to determine a complete set of 
similarity invariants. This results in a procedure by which the invariant factors 
of a representing linear transformation can be determined directly from the 
structure of the corresponding graph. Moreover, the procedure is independent 
of the choice of the representation field. Multicomponent graphs are then 
considered. Here the problem decomposes rather naturally into a study of two 
extreme cases : permutation graphs and forests. Regarding permutation graphs, 
it is shown that the elementary divisors can be formulated in terms of the 
cycle structure, where these formulas depend on the characteristic of the 
representation field. Regarding forests, on the other hand, there is no such 
dependence on the nature of the field. Based on the solution obtained for 
connected graphs, it is shown that the elementary divisors can be formulated 
in terms of the depths of the points of a forest. By combining these results and 
solving for the graphical invariants in terms of the elementary divisors, one is 
able to determine, for an arbitrary transition graph, the precise extent of the 
structural information conveyed by these algebraic isomorphism invariants. 

2. Finite Automata and Transition Graphs 

Since several types of finite-state automata, alternatively referred to as 
sequential machines, have been distinguished in the literature (for example, 
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see Arbib [1], Ginsburg [4], or Hartmanis and Steams [9]), we begin by 
making precise the class under discussion here. 

DEFINITION 1. A finite automaton is a system 

M = (/,ß,<5) 

where 

(1) / is a finite, nonempty set of inputs', 
(2) Q is a finite, nonempty set of states', 
(3) δ is a partial function from Qxl into Q, where Q is the transition 

function, or next-state function. 

Since no output function is specified, automata of this type are sometimes 
referred to as state machines [9]. Since δ is a partial function, if we let D(ô) 
denote the domain of b, that is 

D{ß) = {(^à)\ô(q9a) is defined}, 

then D(ô) is a subset of Q x /and need not include every state-input pair. Thus, 
interpreting q e Q as the present state of M, and a e I as the present input to 
M, if (q,a) e D(ô), then ô(q,a) is the next state of M. If (q,a) φ D(ô), then 
the next state is unspecified. Consequently, such automata are usually qualified 
as being incompletely specified, or simply incomplete [4]. As we have chosen 
to dispense with this terminology in the above definition, we will say instead 
that a finite automaton M = (/, Q, δ) is complete, if D{S) = Q x /. 

Let us now consider a graphical representation of finite automata, hence
forth referred to simply as automata, that is conceptually the same as the usual 
representation of automata by transition diagrams, or state graphs, but avoids 
explicit labeling of the lines of the graph. We assume a familiarity with basic 
concepts of graph theory and, in particular, directed graphs (for example, see 
Harary et al. [6]). The graphical terminology used here will follow that of the 
reference just cited, unless otherwise specified. We begin, however, with a 
slightly more general notion of a directed graph by allowing loops, that is, 
by defining a directed graph as an ordered pair 

G = (X,y), 

where Λ̂  is a finite, nonempty set of points of G, and y is a relation on X 
(γ ^ Xx X), which is the directed lines of G. The class of graphs of interest 
here is a special class of directed graphs defined as follows. The name is due 
to Yoeli [13]. 

DEFINITION 2. A directed graph G is a transition graph if every point of G 
has outdegree 0 or 1. Thus, in relational terms, a directed graph G = (X, y) is 
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Fîg. 1. A 17-point transition graph. 

a transition graph, if and only if y is a single-valued relation (partial function) 
on X (see Fig. 1) 

Suppose now that M = (/, Q, δ) is an automaton, and for each a e I, let 
δα be a relation on Q9 defined as follows : 

(1) (q,r)eôa iff ô(q,a) = r. 

Then for all a e lit is immediate from the definitions that (Ö, δα) is a transition 
graph, thereby yielding the following graphical representation of M. 

DEFINITION 3. If M = (I9Q,ô) is an automaton where / = {aua2,...,ak}, 
the graph sequence of M is the sequence of transition graphs 

5(Μ) = ( ( ρ , ^ ) , ( ρ , δ 0 2 ) , . . . , ( ρ , ^ ) ) . 

The graph sequence of a 2-input, 4-state automaton is illustrated in Table I 
and Fig. 2. 

TABLE I 

An Automaton M 

\ a 

\ 
Qo 

Qi 

Qi 

Q3 

Û1 

<?2 

— 
<73 

<7o 

a2 

q* 
?3 

— 
<?2 

S(M) = 

Fig. 2. The graph sequence S(M) of automaton M. 
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To state the above representation in somewhat more general terms let 

Ji{J) = {M\ M a finite automation with input set /} 

and 

0 = {G\ G a transition graph}. 

Then the above representation can be regarded as a function 

where 

φ{Μ) = S(M). 

From this viewpoint, it is easily verified that the representation is faithful in 
the sense that φ is one-to-one. Moreover, the range of φ is obviously the set 
of all sequences S E ^1 '1, such that all transition graphs in S have the same set 
of points. Consequently, one can alternatively regard an automaton as a 
finite sequence of transition graphs having a common set of points. Moreover, 
if M = (/, Q, δ) and M' = (Y, Q'9 δ') are isomorphic, as automata, that is, there 
is a one-to-one correspondence η between Q and g' , such that 

(2) iq,a)eD{S) iff b(q)9a)eD(S') 

and 

(3) η(δ{ς,α)) = δ'(η(ς), a), (g,a) e D(ß), 

then isomorphic automata can be characterized in terms of their sequence 
graphs. If G and G' are directed graphs, and η is a graph isomorphism from 
G to G'9 then let 

G - G' 
n 

denote that G is isomorphic to G' under η. If there is no need to refer explicitly 
to an isomorphism, 

G - G' 

will denote that G is isomorphic to G'. 

THEOREM 1. If Μ,Μ' e Ji(l) with φ(Μ) = (Gl9G29...9Gk) and φ(Μ') = 
(G/ , G2',..,Gk')9 then M is isomorphic to M' 9 if and only if there is a graph 
isomorphism η such that 

G f - G/, i = 1,2,...,*. 
n 

Proof: Since φ(Μ) is the graph sequence of M, the condition 

Gf ~ G/, / = 1,2,...,* 
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holds, if and only if 

n 

for all a e I, ox equivalently, by definition of a graph isomorphism, 

(4) (q,r)eôa iff (>/(?),/? (Ό) e δα\ a e I. 

If η is a one-to-one correspondence between Q and Q\ it follows from the 
definition of δα, see (1), that (4) is equivalent to (2) and (3). As the latter are 
the defining conditions for an automaton isomorphism from M to M', the 
theorem is proved. 

In interpreting the conditions of Theorem 1, one should be careful not to 
paraphrase the result by saying automata are isomorphic, if and only if 
corresponding transition graphs in their graph sequences are pairwise iso
morphic. Being pairwise isomorphic means that 

(5) <?,*(?, ' , i = 1,2,...,*, 

and indeed, by Theorem 1, this is a necessary condition. On the other hand, 
it is not sufficient when k> \. One requires, in addition, that among all the 
isomorphisms existing between the various isomorphic pairs, at least one of 
these is common to all pairs. However, Theorem 1 does have the following 
important consequence. By the necessity of (5), any isomorphism invariant 
determined for transition graphs immediately yields a set of k isomorphism 
invariants for A>input automata. It is this observation that motivates the 
following study of algebraic isomorphism invariants for transition graphs. 

3. Algebraic Isomorphism Invariants 

The algebraic invariants we wish to consider are induced by a natural linear 
representation of directed graphs. It is natural in the sense that it is the linear 
transformation equivalent of the usual representation of graphs by adjacency 
matrices. To be more precise, let &n denote the set of all digraphs on points 
N„ = {1,2,...,«}, and le t^„(F) denote the set of all linear transformations 
on an «-dimensional vector space V over a field F. Then the natural repre
sentation of <&η relative to F and some basis sé for V, called the representation 
field and representation basis, respectively, is the function 

where, if G = (Nn,y), the representing transformation TG = p(G) is defined 
as follows for all af e sé: 

(6) TM=£<>ij«j> 
= 1 
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where 
(1, (ij)ey, 

au = 

{0, otherwise. 
Since sé is a basis for K, it follows that TG is uniquely specified for each G e &„. 
Moreover, it should be obvious from the definition that the matrix of TG 

with respect to sé is simply the adjacency matrix of G regarded as a matrix 
over the representation field F. Thus, we will sometimes refer to TG as the 
adjacency transformation of G, relative to F and sé'. The reason for defining 
a linear representation in terms of transformations rather than matrices is 
that we find transformations to be more suggestive of structural interpretation. 
However, all the results that are obtained concerning TG can be stated 
equivalently in terms of the adjacency matrix AG. 

In the terminology of the representation set &~„(F), an isomorphism is a 
nonsingular linear transformation. Two linear transformations T, T' e$~n(F) 
are linearly isomorphic if they are similar, that is, there exists a nonsingular 
linear transformation S e^„(F) such that T= STS'1. A fundamental 
observation regarding the natural representation is that it preserves iso
morphism in the sense that isomorphic graphs have similar adjacency trans
formations. As this fact has been previously observed for adjacency matrices 
over the real numbers [5], we will simply state the result, without proof, in 
terms of the natural representation. 

THEOREM 2. If G, G' e <&„ and G is isomorphic to G'(G ~ G')9 then, under 
the natural representation, relative to any choice of representation field F 
and basis sé, TG is similar to TG,(TG ~ TG>). 

Hence, by Theorem 2, every invariant of similarity for linear transformations 
is, under the inverse of the natural representation, an invariant of isomorphism 
for directed graphs. It is important to note, however, that a complete set of 
similarity invariants does not yield a complete set of isomorphism invariants, 
that is, the converse of Theorem 2 does not hold. This was first revealed by 
Collatz and Sinogowitz [2] for undirected graphs represented by adjacency 
matrices over the field of real numbers. In their tabulation of characteristic 
polynomials for trees, the adjacency matrices of two nonisomorphic 8-point 
trees are shown to have the same characteristic polynomial. Since these 
adjacency matrices are symmetric (because the graphs are undirected) and real, 
the adjacency matrices are therefore, similar. 

Of interest here, of course, is whether the same is true for transition graphs. 
In other words, can nonisomorphic transition graphs be represented by 
similar linear transformations? Indeed, it would be fortunate if this were not 
the case for then a complete set of similarity invariants would yield a complete 
set of isomorphism invariants. However, transition graphs are no exception. 
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THEOREM 3. There exist nonisomorphic transition graphs G and G' such 
that TG~TG,. 

Proof: Consider the two transition graphs 

S 1 

and suppose that the representation field is the reals. On computing the 
invariant factors of TG and TG. both have the nontrivial invariant factors 
x3 — x2 and x and so TG ~ TG,. As G and G' are obviously nonisomorphic, 
the theorem holds. 

Thus, even for this relatively restricted class of graphs, a complete set of 
similarity invariants for the representing linear transformations, for example, 
•their invariant factors or elementary divisors, fails to yield a complete set of 
isomorphism invariants. The investigation that follows is concerned with the 
discovery of just why this is so, and more specifically, the extent to which this 
is so. The main result is a graphical characterization of the structural in
formation conveyed by any complete set of similarity invariants. 

In summarizing some terminology and results concerning the general 
structure of transition graphs [14], we see that a weakly connected transition 
graph G is 

(1) Si flower if every point of G has out degree 1 ; 
(2) an in tree [7] if exactly one point of G has out degree 0. 

Since a connected transition graph can have at most one point with out 
degree 0, it follows that every weak component of a transition graph is either a 
flower or an in-tree, subsequently referred to as a tree. Also, transition graphs 
are obviously unipathic, and, consequently, we can use the notation [x,j>] 
to denote a path from x to y. l\_x,y] will denote the length of path [x,>>]. 
A cycle point of a transition graph is any point that lies in a cycle. A tree point 
is any point that is not a cycle point. The period of a flower G is the number of 
cycle points of G, that is, the length of its unique cycle. The root of a tree G 
is the unique point of G having out degree 0. 

If G is a transition graph, and x is a point of G, let C(x) denote the unique 
component of G containing x. Then the notion of height, as usually defined for 
trees, can be extended to transition graphs. 
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DEFINITION 4. If G = (X, y) is a transition graph and x e X, then the 
height h{x) of x is defined as follows: 

(1) if C(x) is a flower, then h(x) = min{/[x,^] |^ a cycle point of C(x)}; 
(2) if C(x) is a tree, then h(x) = /[x, x 0 ] , where x0 is the root of C(x). 

The Ae/g/tf A(G) ο/α transition graph G is the maximum height of any point 
of G. Note that h(x) = 0, if and only if x is either a cycle point or a root. 

For connected transition graphs, that is, trees and flowers, we find that the 
invariant factors of the representing transformations are intimately related 
to the heights of certain points in the corresponding graphs. This important 
relationship can be expressed in the form of an algorithm for computing the 
invariant polynomials of TG directly from the structure of G. If G = (X, γ) is 
a transition graph, let R(G, x) denote the reachable set ofx9 that is 

R(G,x) = {y\ |>,>>] a path of G}. 

If Y is a proper subset of X, let G— Y denote the removal of Y from G, that is, 
G — Y=G restricted to the set of points X—Y. Then, given any transition 
graph G, we define a sequence of subgraphs 

Gl9G29...9Gm 

as follows: 

(1) GX=G; 
(2) if Xi is a point of maximum height in Gf = (Xh yf.) and 

(7) R(Ghxt)*Xi9 

then 

G/+1 = Gi-RiGitXt). 

Otherwise the sequence terminates, that is, Gm = Gf. 

We say that such a sequence is derived from G and, although a derived 
sequence is not necessarily unique, even up to isomorphism, we obtain an 
important result. 

THEOREM 4. If G is a connected transition graph, and Gl,G2,...9Gm is a 
sequence of subgraphs derived from G, then the representing linear trans
formation TG, relative to any choice of representation field F and basis $4, 
has m nontrivial invariant factors \\ί·χ (x), / = 1,2,..., m, which can be graphically 
determined as follows : 

(1) if G is a flower of period r, then 

φ1(χ) = xh^+r-xh^G^. 
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If G is a tree, then 

(2) i f w > l , t h e n 

ψ^χ) = **(Gl)H 

*,(*) = ** c« , + 1 , i = 2,3,..., m. 

The proof of the theorem is based on the classical decomposition of a vector 
space V, relative to a linear transformation T on K, into cyclic subspaces 
VuV2,...,Vm such that the minimum polynomial of V{ coincides with the /th 
nontrivial invariant factor of T (see Gantmacher [3]). The process of forming 
a derived sequence of subgraphs parallels this decomposition process where 
points of maximum height correspond to vectors which generate the various 
cyclic subspaces. The graph obtained on removing a maximum reachable set 
R(Gi9Xi) corresponds to the linear transformation T induced by T on the 
quotient space V\VX + V2-\ l· Kf. Therefore, although a somewhat lengthy 
proof is required to take care of all the details (see Meyer [11]), the verification 
is conceptually rather straightforward. 

To illustrate the theorem, consider the following transition graph, which is 
a flower of period 2 on 12 points: 

Forming a derived sequence of subgraphs we have 

Gt = G 

Since h(3) = h(Gl), (we could have also chosen point 7), and R(G13 = 
{1,2,3,4,5,6}, we have 

12 11 

10 
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SinceA(7) = A(G2) 

3 10 12 11 

Removing R(G3li) 

6 < : io 

and as R(G4,10) = {10}, the process terminates. Accordingly, TG has four 
nontrivial invariant factors, namely 

φ^χ) = x6 - x*, φ2(χ) = χ3, φ3(χ) = x2, ψ*(χ) = χ. 

Thus, given any connected transition graph (7, that is, a flower or a tree, 
the invariant factors of TG can be computed by inspection of the sequence 
derived from G by peeling away points reachable from a point of maximum 
height. This provides insight to how the structure of a connected transition 
graph relates to the invariant factors of TG. Moreover, the observations made 
by Theorem 4 are fundamental to solving the more general problem of 
characterizing a complete set of similarity invariants for the class of all 
transition graphs. 

4. Disconnected Graphs and Elementary Divisors 

If G is a disconnected transition graph, then, in general, the invariant 
factors of the adjacency transformation TG cannot be determined by simply 
applying Theorem 4 to each component of G. To illustrate, consider the 
transition graph G of Fig. 3. Applying Theorem 4 to each of the components 

•o ô Û 
Fig. 3 

C(l), C(3), and C(6), the invariant factors so determined would be x2 — 1, 
x3 — 1, and x5 — 1. However, assuming a representation field of characteristic 0, 
or as some prefer, oo, direct computation of the first invariant factor of TG9 

for example, shows that 

φ^χ) = x8 4- 2χη H- 2x6 + x5 - x3 - 2x2 - 2x - 1. 
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Moreover, we observe that, unlike the representation of connected transition 
graphs, the invariant factors can depend on the nature of the representation 
field. For example, if the representation field has characteristic 2, instead of 0 
as assumed above, then the first invariant factor of TG for G of Fig. 3 is 

φ^χ) = x8 + x5 + x3 + 1. 

This dependency on the representation field F obviously complicates the pro
cess of relating algebraic invariants to graphical structure. For if the invariant 
factors depend on F, then so must their graphical determination. It is apparent, 
therefore, that some additional effort is required in order to appropriately 
generalize the results of the previous section. In particular, given some 
transition graph G, we want to be able to determine the values of a complete 
set of similarity invariants for TG directly from the structure of G (compare 
with Theorem 4). Furthermore, we want to be able to do this relative to any 
given representation field F, where different fields, of course, may require 
different procedures. This is the intent of the development that follows, and 
we will find that such procedures can indeed be formulated. 

We begin by considering a more refined description of the invariant factors 
usually referred to as the elementary divisors of a linear transformation, or 
matrix. To quickly review this well known concept, suppose that T is a linear 
transformation on an «-dimensional vector space over F with invariant factors 

φι(χ\φ2(χ),...,φη(χ). 

Then each polynomial φι(χ) can be factored uniquely, except for order, as a 
product of powers of monic, prime in F[x~] polynomials, that is 

(8) φ^χ) = ΦΛ^ΦιΜ^^ΦΛ^, i = 1,2,...,«. 

Here, for notational convenience, we assume that φί(χ),φ2(χ),'·',Φηι(χ) a r e 

all the distinct prime factors of the invariant factors and, hence, some of the 
integers lu may be equal to 0. Each of the factors 

(9) Wf'i 

for which 

lu > 0, 1 < i < /i, 1 ^ j < m 

is called an elementary divisor ofT. All such factors, including repetitions, are 
collectively referred to as the elementary divisors of T. As each invariant 
factor φί(χ) divides its predecessor, 1 < / < / ? , it is important to note that 

ld+i)j < lu> Ì ^ i < n, 1 < y ^ m. 

For this reason, not only do the invariant factors uniquely determine the 
elementary divisors of Γ, but also, conversely, the elementary divisors uniquely 
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determine the invariant factors. However, elementary divisors have an impor
tant property not generally shared by invariant factors (see Gantmacher [3]). 

LEMMA 1. If TeMn(F) and V=V1 + V2, the direct sum of Vl and K2, 
where Vl and V2 are invariant subspaces of V, relative to Γ, then the elementary 
divisors of T are obtained by combining the elementary divisors T restricted 
to Kj with those of T restricted to V2. 

To apply Lemma 1, we make use of what is usually meant by the direct 
sum of two digraphs, that is, if G1 = (Χί9γι) and G2 = (Ar

2,y2) are disjoint 
(Xl nX2 = 0 ) , their direct sum is the graph 

(10) Gx + G2 = (XlvX2,yivy2). 

Suppose now that G e &n is represented by the adjacency transformation 

TG:V-V 

under the natural representation, with representation basis sé = {α1? α2,..., α„}, 
and there exist subgraphs Gl = (Xl9yi) and G2 = (Χ2^ι) of G, such that 

G = G Ì + G2. 

Then one immediately obtains a corresponding direct sum decomposition of 
V. If we let 

(11) V1 = <{ay|ye ^ » and V2 = ({*j\j e X2}) 

where ( ) denotes subspace spanned by, then obviously 

v = v1 + v2, 
since XlnX2 = 0 and Xl u X2 = Nn. Moreover, we observe that each of 
these subspaces is invariant relative to the representing transformation TG. 
In short, 

(12) TG(Vl) = Vi and TG(V2)^V2. 

To verify this for Vx, it suffices to show that TG (α,) e Vx for all ie Xx. 
However, by the definition of the natural representation (6), 

n 

where, since G is the direct sum of Gx and G2, a^ = 1 implies y e X1. Thus, 
rG(a,·) is a linear combination of the vectors {OLJ\J e Χλ} which, by (11), says 
rG(a,·) G Vx. The same argument applies to V2, thereby proving (12). 

Accordingly, if TGl and TGl denote the restrictions of T to Vx and V2, 
respectively, then Lemma 1 applied to the above decomposition proves 
Lemma 2. 
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LEMMA 2. If G e ^ „ and G = G1 + G2>
 t n e n the elementary divisors of 

TGl and TG2, taken in their totality, are the elementary divisors of the adjacency 
transformation TG. 

Generalizing Lemma 2 to an arbitrary, finite number of summands, we 
obtain Theorem 5. 

THEOREM 5. If G e <#„ and G = Gx + G2 + · · · + Gs, then the elementary 
divisors of TG are obtained by combining all the elementary divisors of the 
transformations TGl,TG2,...9TGs, where TG. is the restriction to TG to Vi9 

that is, 

where 

V^dtjlJeXi}), i= 1,2,...,*. 

Proof: The proof is by induction on the number summands (s ̂  1), using 
Lemma 2 to verify the induction step. 

In particular, Theorem 5 applies to a direct sum where the summands are 
all the components of G. Thus, if we choose elementary divisors as the similarity 
invariants we wish to interpret, it follows that disconnected transition graphs 
can be analyzed in terms of their components, thereby simplifying the analysis. 
This then is the point we adopt and, in the investigation that follows, we will 
establish that the elementary divisors of TG both determine, and are deter
mined by, two particular sequences of numerical invariants of G. 

The first of these sequences is a tabulation of the cycle lengths (periods) of 
the flowers of G. 

DEFINITION 5. If G is a transition graph with n points, the period sequence 
of G is the sequence n(G) = Ο Ί , ^ , . - . , Ο , where r} equals the number of 
components of G that are flowers of period j\j= 1,2,...,«. 

The second sequence is a tabulation of the depths of tree points, where, if x 
is a point of G, the depth d(x) of x is the length of the longest directed path 
to x, that is 

d(x) = max{/[.y,x]| [j>,x] a path of G}. 

DEFINITION 6. If G is a transition graph with n points, the depth sequence 
of G is the sequence 

ô(G) = (d0idi,...,dn.ll 

where dj equals the number of tree points x of G such that d(x) =j, 
y = o,i , . . . ,«-i . 
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Fig. 4 

To illustrate these concepts, if G is the transition graph of Fig. 4, then 

n(G) = (0,1,0,0,0,0,0,0,0,0) 

and 

0(G) = (5,1,1,1,0,0,0,0,0,0). 

To relate n(G) and δ (G) to the elementary divisors of TG, we first obtain 
solutions for two special cases: permutation graphs and forests. These two 
solutions will then be combined to obtain a general characterization. 

5. Permutation Graphs 

A directed graph G = (X, y) is a permutation graph if y is a permutation on X. 
In terms of some other concepts defined earlier, it can easily be verified that the 
following statements are equivalent for any transition graph G: 

(13) 

( (1) G is a permutation graph; 
(2) every component of G is a flower of height 0, that is, a cycle; 
(3) TG is nonsingular; 
(4) if n(G) = (rur29...9rn), then Σ"=υ'η = n\ 

1(5) 0(G) = (0,0,.. .,0). 

In particular, if G is a permutation graph, note that its period sequence 
n{G) is just the cycle structure of the corresponding permutation. In using 
n(G) to determine the elementary divisions of TG, note also that our attention 
can be restricted to prime fields. A field is prime if it contains no proper sub-
fields. This is possible, since TG is defined in terms of the scalars 0 and 1. 
Consequently, if F is a representation field of characteristic k where k = 0 or 
some prime p, TG is also over the prime subfield Fk of F. Since two linear 
transformations are similar over Fk, if and only if they are similar over any 
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extension of Fk, that is, any field of characteristic k, no loss of generality will 
result from such a restriction. 

If Fk is a prime field of characteristic k, let Φβ(χ) denote the eth cyclotomic 
polynomial (see Van der Waerden [12]), where e is any positive integer not 
divisible by k. If k = 0, Φ6(χ) is defined for all e ^ 1. Φβ(χ), by definition, is 
the polynomial whose roots are all the primitive eth roots of unity found in 
any extension of Fk. Since every eth root of unity is a primitive dth root of 
unity for some d such that d \ e, d divides e, we have the well-known identity 

(14) xe - 1 = Π Φ-(*). 
d*d\e 

Based on (14), if G is a permutation graph, and we consider first the case 
where F= F0 = Q, the rational numbers, the elementary divisors of TG can 
be graphically determined. 

THEOREM 6a. If G is a permutation graph with period sequence n(G) = 
(r1,r2,...,rn), and the natural representation is over g, then for 1 ^ / < n the 
*'th cyclotomic polynomial Φ,(χ) occurs exactly 

"*i = Σ 0 
73*17 

times as an elementary divisor of TG. Moreover, when taken in their totality, 
these are all the elementary divisors of TG. 

Proof: If G is a permutation graph, G can be expressed as the sum 

G = G^Gz+'+G^ 

where each subgraph Gt is a component of G (t = 1,2,..., s). If we let TGt denote 
the restriction of TG to Vt, then, by Theorem 5, the elementary divisors of TG 

are obtained by combining all the elementary divisors of the transformations 
TGi9 rG2,..., TGs. Suppose then that Gt is a component of G. By (13), Gt is a 
flower of height h(Gt) = 0, and if Gt has period j9 then, by Theorem 4, 

(15) xj-l 

is the only invariant factor of Gt. Accordingly, by (8) and (9), the elementary 
divisors of TGt are the primary factors in Q\_x~\ of xj — 1. Hence, by (14), 

(16) xj-l= Π Φ* W· 

Since cyclotomic polynomials are prime in g [ x ] , we conclude that 

(17) Φ^χ) = an elementary divisor of TQ iff i\j(t), 
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where y(r) is the period of Gt. To simplify the remainder of the argument, let 
ôitj denote the Kronecker delta function, and let 

0, otherwise. 

If as in the statement of the theorem, we let m{ denote the total number of 
occurrences of Φ,(χ) as an elementary divisor of 7G , then, by (17) above and 
Theorem 5, we have 

s 
mi = Σ fi,**)» ' = Ι»2 , . . . ,Λ . 

t=\ 

Since £ij(t) can be rewritten as 

tuo) 

we have 

s n 

/ = U = 1 

and changing the order of summation, 
n I s 

™i = Σ kj\ Σ ôjj(t) 

However, 

s 

Σ ôjj(t) 

is just the number of components of G having period j . Thus, 

n 
mi = Σ £ijrj> * = u2,...,/?, 

7 = 1 

thereby concluding the proof of Theorem 6a. 

Thus, over the field of rational numbers, the elementary divisors of TG 

can be determined directly from the period sequence of a permutation graph G. 
That this can be done for fields of characteristic 0 is not too surprising, since 
others (see Marcus and Mine [10]), have shown how to determine the 
characteristic roots in the complex number field of a permutation matrix. 
The merit of the present approach, however, is that it can be extended to fields 
of prime characteristic. 

Suppose Fk is a prime field with k equal to some prime integer p. Then, by 

(18) kj 

= Σ 
y = i 

àj,Kt)Çi,j> 

■ 
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(15), we must be able to determine the primary factors of polynomials of 
the form 

^ - l 6 F p [ x ] , 

where j is a positive integer. As j may be a multiple of/?, in which case there 
are no roots of order y, let e{j) denote the exponent of the highest power of p 
that divides j (if pjf j , s(j) = 0), that is, 

j = epe{j\ where p)( e. 

Then letting k = e(j), 

xJ-l =(xeyk-l, 

and since (apk — bpk) = (a — b)pk in any field of characteristic /?, we observe the 
important fact that 

(19) xj-l = (xe-l)pk. 

Since pjfe, the roots of xe— 1 are eth roots of unity. By (14) and (19), we 
conclude 

(20) x > - l = Π Φ/W^. 
Ì3Ì\JlP'U) 

Therefore, using an argument similar to the proof of Theorem 6a with (20) 
replacing (16), one obtains Theorem 6b. 

THEOREM 6b. If G is a permutation graph with period sequence n(G) = 
(r1,r2,...,rn)9 and the natural representation is over Fp9 where/? is a prime, 
then for all / such that 1 ^ / ̂  n and pX /, and all k such that 0 ̂  k ^ [logp«]} 

each primary factor of the polynomial Of(x)pk occurs exactly 

mi,k = Σ Ôk,e(j)rj 

times as an elementary divisor of TG. Moreover, when taken in their totality, 
these are all the elementary divisors of TG. 

Thus, by Theorems 6a and 6b, the elementary divisors of TG can be computed 
directly from n(G) if G is a permutation graph. Conversely, given the elemen
tary divisors of rG , we find that π((7) is uniquely determined. 

THEOREM 7. If G is a permutation graph and the natural representation is 
over a prime field Fk, then the elementary divisors of TG uniquely determine 
the period sequence 7r(G). 

Proof: We will consider the case where k = 0, that is, the rational numbers. 
The proof for k =p is similar. By Theorem 6a, if 7r(G) = (fl,r29...,r„), then 

X rj = mi9 i = 1,2,...,« 
J9l\j 
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or equivalently, in terms of the divisibility function ξ^, Eq. (18), 

È É Ì J O = mi> i = 1 '2 ' ··> ,2> 
y = i 

where wf is the number of occurrences of the elementary divisor Of(x). 

To prove, conversely, that the integers mum2,...,mn uniquely determine π((?), 
the above system of equations can alternatively be expressed as the matrix 
equation 

Dr = m, 

where 

D = KvL*"' w i t h du = £ij> r = m = 

[ Wl 1 

m2 

[ ™n \ 
On closer examination of the matrix D, since 

[ 1 , i divides j9 
dij = 

{ 0, otherwise, 

D is upper triangular with all its diagonal elements equal to 1 and, therefore, 
D is a nonsingular matrix. Consequently, 

r = D~xm 

and, as m and r describe the elementary divisors and period sequence, 
respectively, we obtain the desired result. 

Combining Theorems 6 and 7 with the fact that two linear transformations 
are similar over Fk, iff they are similar over any extension of Fk9 we have 
Theorem 8. 

THEOREM 8. If G and G' are permutation graphs, then, under the natural 
representation relative to any choice of representation field F and basis sé, 
the adjacency transformations TG and TG> are similar, if and only if n(G) = 

Since n(G) determines G up to isomorphism, we conclude that a complete 
set of similarity invariants yields a complete set of isomorphism invariants 
for permutation graphs. 

COROLLARY 1. If G and G' are permutation graphs, then TG~TG. iff 
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Thus, the question of how similarity invariants relate to isomorphism 
invariants is settled for permutation graphs relative to all possible repre
sentation fields. The fact that Corollary 1 holds for fields of prime characteristic 
is rather surprising, since in this case it is possible for nonisomorphic permu
tation graphs to have adjacency transformations with the same characteristic 
polynomial. For example, 

<̂ >2 * 0 O 
are both represented over F2 by transformations with the characteristic 
polynomial x2 + l. Accordingly, it is only when we consider additional 
similarity invariants that we are able to distinguish such graphs. 

6. Forests 

A directed graph G is a forest if G has no semicycles. In terms of other 
concepts defined earlier, it can be verified that the following statements are 
equivalent for any transition graph G : 

(1) G is a forest; 
(2) every component of G is an in-tree ; 

(21)«{ (3) TG is nilpotent; 
(4) if 0(G) = (d09dl9...9dH-t)9 then Σ"^ 4 = *\ 
(5) 7i(G) = (0,0,...,0). 

Thus, in the context of transition graphs, we will take forest to mean a. forest 
of in trees and, as earlier, tree will mean in tree. 

Comparing the above characterizations with those given for permutation 
graphs (13), forests are at the opposite extreme. This applies to their repre
sentations as well, and, unlike what was observed for permutation graphs, 
we find that results obtained for connected graphs are more easily generalized. 
This is due to the fundamental fact that the elementary divisors of a nilpotent 
transformation coincide with its invariant factors. If T is nilpotent of index q9 

Φι(χ) = xq. Hence, each nontrivial invariant factor of T has the form xk
9 

where 1 ^ k ^ q. As x is prime over any field, these polynomials, by definition, 
are the elementary divisors of T. Consequently, if G is a forest with com
ponents Gl9 G2 , . . , Gs, one can apply Theorem 4 to determine the elementary 
divisors of TG. for each tree Gt where / = \929...9s. One thereby determines 
the elementary divisors of TG9 as in Theorem 5. Moreover, using Theorem 4, 
we find that the elementary divisors of TG can be related directly to the depth 
sequence δ (G) by Definition 6, once we establish that depth is invariant under 
removal of a reachable set R(G, x). 



Algebraic Isomorphism Invariants 143 

LEMMA 3. If y is a tree point of G' = G-R(G9x) then the depth of y in G' 
is equal to the depth of y in G. 

Proof: Let y be a tree point of G' = G — R (G, x)9 and suppose the conclusion 
is false, that is, 

d(y9G) Φ d(y9G')9 

where d(y9 G) and d(y, G') denote the depths of point y in G and G', respec
tively. Then it must be the case that 

d(y9G
f) < d(y9G)9 

since, obviously, a tree point of G cannot have greater depth in a subgraph of G. 
This says, in turn, that if x0 is a point of G such that 

Ilxo>y] = d{y9G)9 

then the sequence of points [xo^] = C*o>*i>···>>') cannot be a path of 
G — R(G9x). In other words, for some point xk in [xo^ l · xk G R(G9x). Thus, 
both [x, xfc] and [χΛ, >>] are paths of G which implies yeR(G9 x)9 and contra
dicts the assumption that y is a point of G'. Hence, d(y9 G) = âf(j>, G')9 thereby 
proving the lemma. 

In view of this fact, we can establish an important connection between the 
depth sequence of a forest and the elementary divisors of its adjacency 
transformation. 

THEOREM 9. If G is a forest with depth sequence (5(G) = {d09dl9...9dn.l)9 

then, under the natural representation relative to any choice of representation 
field F and basis s49 dj is the number of elementary divisors of TG having 
degree greater than j \ where j = 0,1,...,«— 1. 

Proof: Without loss of generality, we can suppose G is connected, that is, 
a tree. If the theorem holds for every component of a forest H, then, by 
Theorem 5 and the definition of <5, it must hold for H. Suppose then that G 
is a tree with derived sequence (7) G1,G2,...,Gm. Then 

Gi = C; 

G t+1 = Gi- R(Gi9Xi)9 i = l , 2 , . . . , w - 1, 

where xt is a point of maximum height in Gf. By Theorem 4. 

is the /th nontnvial invariant factor or, since TG is nilpotent, the /th elementary 
divisor of TG. Thus, the degree of φι(χ) is greater than /, if and only if 
h(Gt) ^j. To prove the theorem, therefore, it suffices to prove 

(22) dj = \{i\h(Gd >j}\, j = 0,1,...,/i - 1. 
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To verify the above, consider now the collection of reachable sets 

(23) {R(G1,x1),R(G2,x2),...,R(Gm,xJ}, 

where the first m— 1 sets are as above and the point xm has maximum height in 
Gw, that is, R{Gm9 xm) is the set of points of Gm (otherwise the removal process 
would not have terminated). Since G, is a forest, the component CC*,·) is a tree, 
and if yx denotes to root of C (*,·), then R(GhXi) is just the set of points of 
the path 

[*ι,Λΐ = (z0,zu...9zù, 

where 

z0 = xi9 zl = y{ and / = A(xf) = h(G^). 

Since the depth d(zj9 Gf) of Zj in G, is the length of the longest path of G, to zj9 

and since z0 = xf is a point of maximum height in Gi9 we have 

dizpGi) = l\_z09zj] =j 

for 7 = 0, l,...,A(Gf). Moreover, by Lemma 3, z} also has depth y in G^l9 

if / > 1, and, by repeated applications of this fact, z} has depth j in Gx = G. 
The result we seek is now immediate for, by its definition, the collection (23) 

of reachable sets is obviously a partition of the points of G. Hence, for each 
integer j , 0 <y < n9 the number of points of G of depth j is just the number of 
sets R(Gi9Xi) such that /z(Gf) ^j. In short 

dj= \{i\h(Gd>j}\, 

which proves (22) and, therefore, concludes the proof of Theorem 9. 

Thus, in case G is a forest, the elementary divisors of TG uniquely determine 
the depth sequence S(G) of G. The relationship just established says even more, 
for, turning it around, we find that the depth sequence of a forest is enough to 
uniquely determine the elementary divisors of its adjacency transformation. 
This important consequence can be precisely stated. 

THEOREM 10. If G is a forest with depth sequence 

0(G) = (d0, </!,..., 4,-X), 

then, under the natural representation relative to any choice of representation 
field F and basis s/, the polynomial 

x\ i = 1,2,...,« 

occurs exactly 

mi = di.l -di9 dn = 0, 
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times as an elemental y divisor of TG. Moreover, when taken in their totality, 
these are all the elementary divisors of TG. 

Proof: Suppose G is a forest. Then TG is nilpotent, and any elementary 
divisor of TG is of the form xk, 0 < k ^ n. In particular, if we let m{ denote the 
number of occurrences of xl as an elementary divisor, then mf is just the 
number of elementary divisors having degree equal to i. By Theorem 9, 
therefore, 

Σ mi = dj 

or, equivalently 
n 

£ rrii = dj9 j = 0 , 1 , . . . , « - 1 . 
1=7 + 1 

Solving these equations for mh if / = n, then, by the last equation, 

mn = dn-x. 

If 1 < i < n, then 
n n 

mi = mi+ Σ mJ- Σ mj 
7 = / + l 7 = / + l 

n n 

= l m j - Σ mi-
j=i j=i+l 

Thus, m.x = rff_ ! — di9 thereby proving the theorem. 

As elementary divisors are a complete set of similarity invariants, by 
combining Theorems 9 and 10 we have proved Theorem 11. 

THEOREM 11. If G and G' are forests, then, under the natural representation 
relative to any choice of representation field F and basis s/, the adjacency 
transformations TG and TG, are similar, if and only if (5(G) = S(G'). 

Thus, the question of how similarity invariants relate to isomorphism 
invariants is settled for forests as well as permutation graphs (compare with 
Theorem 8). We now show how these two special cases can be combined to 
obtain a general solution. 

7. Arbitrary Transition Graphs 

The ability to graphically characterize similarity under the natural repre
sentation in case G is a permutation graph (see Theorem 8) or a forest (see 
Theorem 11) is sufficiently general, as we now show. If G is an arbitrary 
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transition graph, then there exists a suitably derived graph G consisting of a 
permutation graph, and/or a forest, such that TG is similar to Tö. More 
precisely, if G = (X, y) is a transition graph, let XF and XP denote its cycle 
points and tree points respectively. That is, 

XP = {x\ x a cycle point of G} 

and 

XF = {x\ x a tree point of G}, 

where we observe that XPnXF = 0 and XPKJ XF = X. By removing the lines 
of G that are from a tree point to a cycle point, we obtain a special subgraph 
ofG. 

DEFINITION 7. The reduction G of a transition graph G = (X, y) is the 
transition graph G = (X, y), where y = y — {(x, j>)| ^ e l f and j> e A^}. 

To obtain an alternative and, perhaps, more vivid description of the 
reduction, if G = (X,y) and XP Φ 0 , let GP denote the restriction of G to XP9 

that is, 

GP = (XP,yP), 

where yP = (XP x XP) n y. If XF φ 0, let 

GF = (XF,yF), 

where yf is similarly defined. Thus, if defined, GP is a permutation graph and 
GF is a forest. We note also that GP(GF) is just the removal of XF(XP) from G, 
that is, 

(24) GP = G-XF and GF = G - XP. 

From the definitions, it is immediate that the reduction of G can be 
alternatively described as follows : 

I
Gp, G is a permutation graph, 

GF, G is a forest, 
GP+ GF, otherwise. 

The last case, of course, is the interesting one where, if G contains both tree 
points and cycle points, its reduction can be expressed as the sum of a permu
tation graph and a forest. To illustrate, if G is the transition graph G, (a) of 
Fig. 5, then XP = {1,2,...,6}, XF = {7,8,..., 18}, and G is obtained from G 
be removing lines 

{(7,1), (8,2), (9,2), (10,5), (11,5)}. 



Algebraic Isomorphism Invariants 147 

(a) 

2 5 

O O 
4 6 

(b) 

,16 .17 

10 

Restricting G to XP, we have the permutation graph GP, (b) of Fig. 5, and 
restricting G to XF, the forest GF, (c) of Fig. 5. 

The justification of this reduction is complete once we observe the basic 
property of Lemma 4. 

LEMMA 4. If G is a transition graph and G is the reduction of G, then, 
under the natural representation relative to any choice of representation field 
F and basis sé, TG is similar to TG. 

Proof: It suffices to prove the lemma for connected graphs, since G can 
always be expressed as a sum G = Gl + G2-\ hGs of components where, 
obviously, G = Gl+G2-\ hGs. Consequently, if the lemma holds for con
nected graphs, we have 

ld TGi, i = 1,2,. ..,s. 

Applying Theorem 5, we conclude that TG~ TG. 
Suppose, therefore, that G is a connected transition graph with reduction G. 

If G is a cycle or a tree we are through for in either case G =G. We can suppose 
further, therefore, that G is a flower of period r and height h > 0. To determine 
the elementary divisors of TG, let GuG2,..,Gm be a sequence derived from 
G (7). Then, by Theorem 4, the first invariant factor of TG is 

ψ^χ) = χΛ+Γ-χΑ = xh(xr-l). 
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If xx is the tree point chosen in deriving G2, assuming m > 1, that is, 

(25) h(xuG) = h 

and 

(26) G2 = G-RiG^x,), 

then the remaining invariant factors of TG are all the invariant factors of TG2. 
Accordingly, the elementary divisors of TG are xh, the primary factors of xr — 1, 
and, if m > 1, the elementary divisors of TGi. 

If we now consider the reduction G = GP + GF, the elementary divisors of 
TG are the elementary divisors of TGp along with those of TGF (see Theorem 5). 
Since GP is a cycle of length r, the elementary divisors of TGp are just the 
primary factors of xr- 1. As for GF, we note first that the height h(x9 GF) of 
a point x in GF is exactly one less than its height in G. Suppose that [x, z] is the 
shortest path in G to a cycle point z, and (y, z) e y, where y is a tree point, 
then y precedes z in the path [x, z] and on removal of z and (j>, z) in forming 
GF = G — XPi y has out degree 0 in GF. Thus, for all x e XF, 

Hx,GF) = llx9yl = / | > , z ] - l 

= h(x,G)- 1. 

In particular, for the point ^ (25), we have 

h(xuGF) = h- 1, 

and if we begin determination of the elementary divisors of TGF with the tree 
CO*,), the first invariant factor of this component is 

ψχ(χ) = χ("-1) + 1 = x\ 

Hence, xh is an elementary divisor of TGF. The remaining elementary divisors, 
if m> 1, are determined by C{xx) — R{C{xl),xi) and the remaining com
ponents of GF, that is, the forest 

GF - RiCix^x,) = GF - RiG^xJ. 

However, by the choice of xl and the definition of G, this is just the second 
graph G2 (26) in the sequence derived from G, that is, 

GF - RiG^xJ = G - RiG^J = G2. 

In summary, therefore, the elementary divisors of TG are the primary factors 
of xr— 1, xh, and the elementary divisors of TG. As these coincide with the 
elementary divisors of TG, we conclude that TG~ TG9 thereby proving the 
lemma. 
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Combining this important observation with the characterizations of 
similarity obtained earlier for permutation graphs and forests, we are now 
prepared to establish the main result of the investigation. 

THEOREM 12. If G and G' are transition graphs, then, under the natural 
representation relative to any choice of representation field F and basis sf, 
the adjacency transformations TG and TG. are similar, if and only if n(G) = 
n(G') and Ô(G) = Ô(G'). 

Proof: By Lemma 4, TG ~ TG>, if and only if TG ~ TG.. Also, by definition 
of the reduction, it should be obvious that period sequences and depth 
sequences are preserved, that is, n(G) = n(G) and <5(G) = <5(G), for any 
transition graph G. Thus, it suffices to prove 

(27) Tö ~ Tö,9 iff n(G) = TT(G') and 0(G) = <5(G'). 

Suppose then that TG ~ TG where G = GP + GF and G' = GP' + G/ . Since TGp 

and TGp, are both nonsingular, and TGp and TGp, are both nilpotent, the 
elementary divisors of TGp must be those of TGp>. Similarly, the elementary 
divisors of TGF must be those of TGp., that is 

TGP ~ TGp. and TGF - TGp.. 

Conversely, the above implies TG ~ TG> and so 

(28) TG - TG. iff TGF - TGF. and TGp - TGp, 

If we now apply the characterizations obtained earlier for permutation graphs 
and forests, by Theorem 8, 

(29) TCp ~ TGp. iff π(σ,) = π((?Ρ') 

and, by Theorem 11, 

(30) TGF - TGF. iff Ô(GF) = Ô(GF') 

Moreover, for any reduction G = GP-^GF with c cycle points and t tree points, 
it follows from the definitions of π and δ that 

TT(G) = (TT(GP), 0,0,...,0). 
v" ■ ' 

t 

and 

^(G) = (^(GF),0,0,...,0). 
v v ' 

c 
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Thus, 

(31) n(GP) = n{GP') iff n(G) = n(G') 

and 

(32) S(GP) = S(GF') iff 0(G) = <5(G'). 

By linking (28)-(32), we establish (27) and thereby prove the theorem. 

Thus, for the class of transition graphs, we have obtained a complete 
characterization of what similarity invariants of adjacency transformations 
or, equivalently adjacency matrices, have to say about graphical structure. 
That is, two transition graphs on n points will have similar adjacency trans
formations, if and only if they agree both in the number of components that 
are flowers of period j , 1 ^j^n and in the number of points that are tree 
points of depth k, 0^k^n—l. Moreover, given the elementary divisors of 
TG, those of TGF, that is, those of the form x\ can be used to compute ô(GF), 
by Theorem 9, thereby determining <5(G) = (ô(GF), 0,0,...,0). Those of TGp, 
that is, those which remain, can be used to compute n(GP), as in proof of 
Theorem 7, thereby determining n(G) = (n(GP), 0,0,...,0). Conversely, given 
ô(G) and 7r(G), the elementary divisors of TGF can be computed from ô(GF), 
by Theorem 10, and the elementary divisors of TGp from n(GP), by Theorem 8, 
thereby determining all the elementary divisors of TG. 

Given this characterization of the graphical information that is conveyed 
by a complete set of similarity invariants, one can now examine the reasons 
for incompleteness (see Theorem 3) that is, the information that is not conveyed 
by these invariants. Considering first the connected case, if G is a tree, then the 
depth sequence, in general, fails to provide information as to where maximal 
paths of G, that is, paths from points of depth 0 to the root of G, intersect. 
Thus, for example, although the trees 

G: G': 

are represented by similar linear transformations, G and G' are obviously 
not isomorphic. If we consider next the case where G is a flower such that 
A(G)>0, then, relative to the tree points of G, we have the same kind of 
information loss noted above. In addition, since G and its reduction G are 
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similarly represented, we lose information as to where tree points of height 1 
attach to the cycle. Thus, for example, the flowers 

1·- <r> - • 2 

are similarly represented and yet nonisomorphic. Finally, if we consider 
graphs that are not necessarily connected, then, in addition to what we have 
just observed, n(G) and ô(G) fail to provide any information as to which tree 
points belong to components that are flowers and which belong to components 
that are trees, assuming of course that G is neither a transition graph or a 
forest. Consequently, for example, each of the transition graphs 

3* 

o V'O 

1·- €>· Ό 

?°- >~o 
has period sequence (1,0,0,0) and depth sequence (2,1,0,0) yet no one graph 
is isomorphic to any of the others. 

In conclusion, we remark that all that has been said in this investigation of 
transition graphs applies dually to the directionally dual class of graphs 

tf = G 
G a digraph such that 

every point of G has in degree 0 or 1 

for if Gd is the dual (converse) of G, then TQd is the transpose TG
T of TG. 

Thus, TG ~ TGa and, accordingly, the theorems established here for transition 
graphs apply dually, for example, with out tree replacing in tree, height sequence 
replacing depth sequence, etc., to the class Jf. 
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1. Introduction: Coding in General 

Let f be a collection of graphs of some specified kind, and let J b e a 
specified set of objects. A coding procedure is a mapping c:&->X such that 
two graphs in ^ map onto the same element of X, if and only if they are 

153 
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isomorphic. In practice the set X is usually the set of all strings of symbols of 
some kind. The definition of isomorphic will depend on the kind of graphs 
under discussion. 

The image under c of a graph G in ^ will be called the code of G. For empha
sis, we may refer to an element of X as a valid code if it belongs to the image of c. 
Clearly there is a one-to-one correspondence between the isomorphism classes 
in ^ and the set of valid codes. Any process for obtaining from a valid code x 
a graph whose code is x, that is, a representative of the corresponding iso
morphism class, will be called a decoding procedure. 

It is worth remarking, in passing, that if our set of symbols has finite 
cardinality m, we can interpret a string of these symbols as an integer in the 
scale of m, using the symbols as the digits 0, l,...,m— 1. Thus, for theoretical 
purposes, we can, without any loss of generality, take A'to be the set of positive 
integers. We shall see later that, under certain circumstances, this is also a 
practical procedure. 

Isomorphic graphs have the same code, and conversely. Hence, the coding 
problem—the problem of devising a coding procedure for a given set ^—is 
effectively the same as the isomorphism problem, which is the problem of 
devising an algorithm to test whether two graphs in ^ are isomorphic or not. 
Both problems are notoriously intractable when ^ is the set of all unlabeled 
graphs. We shall consider here only the somewhat easier problems that arise 
when ^ is taken to be sets of trees of various kinds. Before we do this,however,it 
will be worth while to look at the two problems just mentioned, while still in the 
context of graphs in general. 

If we have a one-shot problem of determining whether two graphs are 
isomorphic or not, then a computer program that tests this directly, that is, 
whose input is the pair of graphs and whose output is "yes" or "no," will be 
quite satisfactory. The alternative of using a coding program, whose input is 
a single graph and whose output is the code, on each of the graphs and then 
comparing the two codes, might well be roundabout. If the task in hand is to 
search a list of graphs to find if a particular graph is present in the list or not, 
then, by coding the graphs, we can replace, let us say, N applications of the 
isomorphism program by one application of the coding program and TV 
comparisons between the codes in the list and the code of the given graph. If 
the isomorphism and coding programs are of comparable complexity, as they 
probably would be, then this will result in a great saving in time. 

As an illustration of this point, consider the problem of constructing all 
trees on a given number/? of nodes. A method that produces no duplicates has 
been described [13], but is complicated. It is more straightforward to derive 
these trees from those on p — 1 nodes, which we shall suppose we have con
structed already. To each of the trees on/?— 1 nodes we add, in every possible 
way, an extra edge, one node of which is already in the tree, while the other is 



Coding of Unlabeled Trees 155 

a new node of valency 1. A node of valency 1 in a tree will be called an end 
node. It is clear that we shall get all trees on/? nodes in this way, but that they 
will be produced many times over. Thus, each time we produce a tree we must 
look to see whether it is one that has occurred before, discard it if it has, and 
add it to the list if it has not. This is precisely the kind of application in which a 
coding procedure can be advantageously used. A catalog of all unlabeled trees 
on up to 13 nodes has been produced in just this sort of way by Morris [9]. 

There are many kinds of trees that one might like to catalog, and, of course, 
there are many other applications, other than mere cataloging, where similar 
techniques could be employed. This paper will be a discursive survey of 
several methods, some old and some new, for coding trees of various kinds. 
We shall consider planted plane trees, rooted plane trees, rooted trees, and 
plane trees, as well as common-or-garden trees, those which the computer 
man calls "free" trees. All our trees will be given as unlabeled. We shall not 
mention methods for coding labeled trees except in so far as they can be 
subverted to serve our unlabeled purposes. 

It is unlikely that readers of this book will need to be told that the study of 
tree structures is of importance in the theory of computing. Knuth [7, Chapter 
2.3] gives further enlightenment, should this be necessary. Accordingly, much 
of the background of this paper, such as the concept of walking around, or 
traversing, a tree, will be old hat to the computer man. Yet this paper is 
not written from the computer man's viewpoint. These trees are not thought 
of as related to, or arising from, computer problems, but are regarded as the 
primary objects of study, and of interest in themselves, rather than as a means 
to an end. Thus, this paper is basically theoretical. The only reason it gets in 
on the "graph theory and computing" act at all is that the sort of applications 
to which tree coding can be applied are liable to require the handling of a 
great number of trees, possibly large ones. Thus, the computer's help is needed, 
and it becomes necessary to consider questions of economical storage, efficient 
algorithms, and various kinds of programming tricks from time to time. 

2. Definitions 

A tree is a connected graph with no circuits. Two trees are isomorphic if there 
exists a one-to-one correspondence between their nodes which preserves 
adjacency. 

A rooted tree is a tree in which one node, the root, has been distinguished 
from the others. Two rooted trees are isomorphic if there is a one-to-one 
adjacency-preserving correspondence between them, which maps the root of 
one on to the root of the other. 
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Fig. 1 Fig. 2 

A plane tree is one that has been imbedded in the plane.Two plane trees are 
isomorphic if there is an orientation-preserving homeomorphism of the plane 
onto itself, which maps one tree onto the other. 

A planted plane tree is usually defined [5, 17] as a rooted plane tree for which 
the root is an end node. This root is then the "pot" in which the tree has been 
planted, and the edge incident with it is the "trunk" of the tree. It will be con
venient for our purposes not to regard this node and this edge as being part of 
the tree, and we modify our definition accordingly. Moreover, we shall 
disregard the howls of the botanists and give the name "root" to the node that is 
adjacent to the pot, and hence incident with the trunk. Thus, instead of 
regarding Fig. 1 as a planted plane tree on 17 nodes of which the pot P is the 
root, we shall regard it as having only 16 nodes, and being rooted at R. The 
function of the pot and the trunk is to prevent us from, for example, swiveling 
the left-hand branch of the tree in Fig. 1 in a counter clockwise direction, as 
indicated by the arrow, to obtain the tree in Fig. 2. This restriction can be 
indicated just as well by reducing the pot and the edge PR to a short vertical 
line, or simply by agreeing to draw the root at the bottom of the figure, as 
will be done for all planted trees in this papera Using this convention we can 
readily see that the planted plane trees of Fig. 1 and Fig. 2 are different, even 
if we leave out the pot and the trunk. These can be added in a unique way if 
considered necessary, but they will not form part of the tree, and, in particular, 
they will not contribute to the node and edge counts of the tree. 

Consider a tree T which is rooted at a node R, and consider a particular node 
X of it. Consider the set of nodes A with the property that the unique path 
from A to R contains the node X. This set of nodes, which includes X, defines 
a subtree of T which we shall call the branch at X. Clearly the branch at R is 
the whole rooted tree. 

t Unlike Knuth [7, p. 307], I have not (yet) been converted to the bat's-eye view of graph 
theory which requires trees to be drawn with their roots at the top of the page. 
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3. Binary Codes for Planted Plane Trees 

We shall first describe a method for coding planted plane trees, the code 
being a string of O's and l's, which can, if we wish, be interpreted as a binary 
integer. This coding procedure will be the prototype for several others that 
will be discussed in this paper for different kinds of trees. The general idea of 
this coding algorithm is not new. It has been described by Edmonds [1, p. 196], 
and has been discovered independently by others [3, 16]. Indeed, the funda
mental idea on which the method rests was used by Cayley [2] in 1875 in his 
study of trees of various kinds, and so has quite a venerable history. The 
fundamental idea is that if we remove the root from a planted plane tree, 
together with the incident edges, we obtain an ordered set of planted plane 
trees. These trees will be the branches at the nodes that are adjacent to the 
root of the original tree. We shall refer to them as the subtrees adjacent to the 
root. Figure 3 illustrates their genesis. 

(a) (b) 

Fig. 3 

The fact that these trees are ordered is a consequence of the fact that the 
original tree was planted, and that the edges incident with the root therefore 
occurred in a specific order, which could not be altered (by virtue of the remark 
made earlier about not being able to swivel edges round the root). The fact that 
they are planted trees follows from the fact that each edge incident with the 
root of the original tree will be the "trunk" for the corresponding subtree. 

Suppose we have defined a binary code for any planted plane tree on/? nodes 
or less, and wish to define a code for a tree T on p+ 1 nodes. Removal of the 
root gives a number, let us say k, of planted plane trees, each of which will 
have a code, since it has p nodes or fewer. Let Ci9 C2,..., Ck be their binary 
codes. We then define the code of T to be 

0, C1? C2, , Ck, 1 

where the commas denote catenation of the 0-1 strings. 
To complete this recursive definition we specify the code of the planted 
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0 0 1 0 1 1 

T T 
0 0 0 1 0 1 1 0 1 1 

0 0 1 0 0 0 1 0 1 1 0 1 1 1 

Fig. 4 

plane tree on 1 node, necessarily the root. It is 01. Figure 4 shows how the 
codes for the trees of Fig. 3b can be derived. From this we deduce that the code 
for the tree of Fig. 3a is 

00010001011011100101100010110111 

It is easily proved by mathematical induction that the code of a planted 
plane tree satisfies the following two conditions : 

(1) the number of O's equals the number of l's; 
(2) if the code is scanned from left to right, then at each stage the number 

of O's is greater than the number of l's, except when the end of the code is 
reached, when they are equal. 

A string of O's and l's which satisfies these two conditions will be said to have 
the level property, a term taken from de Bruijn and Morselt [3]. 

The recursive definition just given is the simplest way of defining the code, 
but gives rise to computational difficulties. Starting at the root, we know how 
to construct the code of the whole tree from those of the subtrees at the root, 
but we do not yet know what these codes are. Thus, we need to work upward 
from the root until we come to subtrees that are small enough to code, that is, 
until we come to an end node. 

This process can be systematized in an obvious way by defining the height of 
a node, a term which is almost self-explanatory. The root is of height 1. All 
nodes adjacent to the root are of height 2. All nodes adjacent to these, except 
the root, are of height 3, and so on.1" This progressive manner of defining the 

t The height is sometimes defined by letting the root be of height zero, thus giving h— 1 
where we have h. Our definition has some advantages in the present context. 

V 

\ 

i 
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0010010111 \ G H/01 01 

000100101 11011 Q-^ 000101 1011 
Q 

R ̂  00001001011101 100101 1000101101 11 

Fig. 5 

height of a node indicates an obvious algorithm for finding the heights of all 
the nodes of a given rooted tree. In drawing planted trees, nodes of the same 
height will be drawn on the same level, with higher nodes further up the page 
than lower ones. This definition of height applies also to trees that are rooted 
but not planted. 

The maximum height h of the nodes of a rooted tree is called the height of 
the tree. Having classified the nodes of a tree according to their height, we can 
easily implement the coding procedure. We first code the branches on the 
nodes of height A— 1, since the subtrees, if any, formed by the removal of these 
nodes are single nodes. We then code the branches on nodes of height A —2, 
and so on. This is illustrated in Fig. 5, where the code for the branch at each 
node is indicated next to that node. These branches are coded in the alpha
betical order of the letters attached to the nodes. 

4. Binary Codes for Plane Rooted Trees 

The difference between a plane tree and a planted tree is that the swiveling 
about the root mentioned in Section 2 is allowed. If the valency of the root is 
k, then, as with planted plane trees, the removal of the root gives rise to k 
subtrees, each of which is a planted plane tree. However, whereas with planted 
trees we could recognize one of these subtrees as being the left-most and arrange 
them from left to right uniquely, we can now only recognize a cyclic order in 
which these branches occur around the root. 

Thus, we can code each of the branches as before. However, when we attempt 
to combine the codes into a code for the whole tree, we do not know where to 
start. We can overcome this difficulty by taking each branch in turn, regarding 
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it as the left-most and taking the others in cyclic order, thus treating the tree 
as if it were a planted plane tree. This gives us k possible codes, which may not 
be all distinct, from which we need to choose one, in some unique way, to be 
the desired code for the tree. There are several ways in which one can do this, 
and for the time being we shall mention the most straightforward of these. 
We regard each of the k codes as being an integer expressed in binary notation, 
and choose the code which gives the smallest such integer. It is easily seen 
that two isomorphic plane rooted trees will give the same code, and conversely. 

Another way of looking at this process is to observe that to any plane rooted 
tree there correspond k planted plane trees, one for each of the k spaces 
between the edges round the root in which a trunk for the planted tree can be 
drawn. We choose the planted tree with minimum code to represent the plane 
rooted tree. 

5. Binary Codes for Rooted Trees 

When we consider trees that are merely rooted, so that the manner in which 
they are imbedded in the plane, if they are, is not important, we see that the 
order of the subtrees at the root is immaterial. If we permute them in any way 
we merely get another imbedding of the same, that is, an isomorphic, tree. 
Moreover, the same remark applies to these subtrees, regarded as rooted trees, 
and so on. Thus we must recast the recursive definition. Let CUC2,.. . . , Ck 

be the codes of the branches at the nodes adjacent to the root. Let these codes 
be written in some preferred order, to be defined, given by a permutation 
0Ί>*2>*3»···>**) of the integers 1,2,3,...,/:. Then the code of the tree is defined 
to be 

0 C C C 1 

As before, the code of the tree consisting of a single node is defined to be 01. 
For practical computation of the code we can first determine the heights of 

the nodes of the tree, and code the branches at the nodes in order of the 
heights, with highest nodes first. The order in which we do this for the nodes of 
the same height will not matter. These codes will be sorted when they are 
incorporated into the codes of branches at lower nodes. 

We have left unspecified the particular preferred order in which we will 
take the codes Ci9C29 ,Ck. The most straightforward choice would be 
to arrange these codes in nondescending order of the binary integers that they 
represent. Thus, if the removal of the root resulted in trees the codes of which 
were 

00001111, 0001011011, 00000101101111, 
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then we would take them in the order in which they have just been given, since 
they correspond to the integers 15, 91, and 367 in decimal notation. This 
method would certainly serve. In fact, any method of ordering the codes will 
serve, provided it is unique. 

There are some theoretical advantages, however, in using a rather less 
direct method of ordering. Instead of regarding the codes as binary integers, 
we shall regard them as binary fractions, following a binary point, which is the 
binary analogue of the decimal point. Thus, we would take the above codes in 
the order 

00000101101111, 00001 111, 0001011011 

by virtue of the inequalities 

.00000101101111 < .00001111 < .0001011011 

We shall see later the advantages of this method of ordering. 

6. The Decoding Algorithm 

In all the codes defined so far we have ended with what is, in effect, the code 
of a planted plane tree. We have used an ordering procedure to establish a 
preferred order for the subtrees rooted at any given node. The planted tree 
whose code we obtain, therefore provides a canonical way of drawing the 
given tree, be it rooted and plane or just rooted. 

It follows that any method of decoding the code of a planted tree to obtain 
a drawing of the tree, or other information from which we could draw the 
tree, such as the adjacency matrix or a list of edges, will apply equally well to 
all the kinds of trees so far considered. 

The decoding procedure is straightforward. It is easily verified that the 
symbols 0 and 1 appearing in the code of a tree behave like left and right 
parentheses, respectively. Let us therefore write the code of the tree of Fig. 5, 
using parentheses. We get 

(((()(()()))())(()())((()())())) · 

Each left parenthesis has a matching right parenthesis. Let us regard each 
such pair of parentheses as the left and right portions of a circle, or other 
closed curve, and fill in the missing parts of this curve. We obtain Fig. 6. 

If we now regard the circles as nodes, and define adjacency to mean im
mediate inclusion of one circle inside another, we arrive at the original planted 
plane tree. The fact that this decoding procedure is effective can be proved by 
mathematical induction. The removal of the first and last symbols of the code, 
which correspond to the root, from a string of 0's and l's having the level 
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Fig. 6 

property results in a succession of substrings, each having that property. The 
breaks between one substring and the next occur where the number of O's 
equals the number of l's, reading from left to right. These substrings are the 
codes of the subtrees that result when the root is removed. Thus, this procedure 
simply reverses the coding procedure. 

This geometric method of drawing circles, which has been rather loosely 
described above, is equivalent to the following more formal algorithm, which 
produces as its output a list of those pairs of nodes that make up the edges of 
the tree. It also produces a canonical way of labeling the nodes of the tree 
with any convenient ordered set of labels. We shall always take our set of 
labels to be the integers 1,2,3,...,/?. 

ALGORITHM 1. DECODING ALGORITHM. 

Step 1: Associate a label with each 0 occurring in the code, by numbering 
them, in order, from left to right. 

Step 2: Scan the code from left to right until the configuration 001 is 
found. Note the pair of labels associated with the two O's in this configuration, 
and then delete the second 0 and the 1. Note that the two labels noted will 
define an edge of the tree 

Step 3: (1) If the resulting string has more than 2 symbols, repeat from 
Step 2. 

(2) Otherwise the string is just 01, the label associated with this 0 is that of 
the root, and the algorithm terminates. 

The connection between this algorithm and the geometrical approach can 
be seen as follows. The sequence 01 occurring in a code gives the smallest size 
circle and therefore represents an end node. It is adjacent only to the node 
represented by the circle S which contains it. If it is left-most inside this circle, 
then it will produce the configuration 001. If not, then it will eventually become 
the left-most circle inside S when the other circles, also in S which lie to its 
left, have been deleted. This decoding process is illustrated in Table I, which 
gives the decoding of the string 

00001001011101100101100010110111 
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In Table I the digits making up the 001 configuration have been underlined 
in each line. The pairs of nodes that are the edges of the tree are written on the 
right as they are found. The digits that are deleted at each stage of the algorithm 
have not been physically deleted, but merely struck through. In implementing 

TABLE I 

Decoding of the String 00001001011101100101100010110111 

1 2 3 4 5 6 7 8 9 10 11 121314 15 16 Edges 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

0 0 0 
0 0. 0 
0 0 0 
o 0 Q 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
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0 
0 
0 
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1 
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; 
; 
; 
4 
; 
4 
I 
I 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 

1 
1 
1 
1 
1 
1 
1 
1 
1 

; 
; 

r 
; 
; 
; 
l 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

; 
; 
; 
4 
; 
; 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0. 
0 
0 

0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

; 
; 
I 
t 
; 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

; 
4 
I 
; 

1 0 11 
1 0 11 
1 0 11 
1 0 11 
1 0 11 
1 0 11 
1 0 11 
1 0 11 
1 0 11 
1 0 11 
1 0 11 
1 0 11 
1 0 11 

; o i i 
1 0 1 1 
19 11 

(3, 4) 

(5, 6) 

(5, 7) 

(3, 5) 

(2, 3) 

(2, 8) 

(1 2) 

(9, 10) 

(9, 11) 

I (1, 9) 

I (13, 14) 

I (13, 15) 

I (12, 13) 

1 (12, 16) 

1 (1, 12) 

1 end. 

this algorithm on a computer, this is a possible way of coping with these dele
tions. Some kind of tag is assigned to each digit to show whether it has been 
deleted or whether it has still to be considered. This has the disadvantage 
that at each iteration one has to wade through a lot of garbage to find the 
next 001 configuration. The alternative is to delete the digits literally and close 
up the rest of the code, so that the code to be searched gets shorter as the 
algorithm progresses. This could lead to problems of keeping track of the 
labels of the 0's as they move around in storage. However, it is not, in fact, 
necessary to label these 0's all at the beginning as, for simplicity, we have 
stated above. It is sufficient to allocate labels only until we come to a 001 
configuration, and resume the labeling after the appropriate deletions have 
been made. In this way no 0 receives a label until it has reached its final resting 
place from which, ultimately, it will be deleted. 

7. Binary Codes for Unrooted Trees 

The problem of coding unrooted trees can be reduced to that of coding 
rooted trees by means of the center-bicenter theorem for trees, which we now 
briefly review. 
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Let 7\ be a tree. Note all the end nodes of Tx. If there are more than 2 of 
them, simultaneously delete them all from Tx, together with their incident 
edges. Call the resulting tree T2. In a similar way, form a new tree T3 from Γ2, 
and so on. We obtain a sequence 

Tl9T29T39... 

of trees. Each of these trees has at least 2 nodes fewer than its predecessor 
and, hence, this sequence must terminate. It will do so when a tree is reached 
that has either one node, which is called the center of the original tree Tu or 
two nodes and the edge joining them, called the bicenter of 7\. 

If 7\ has a center, we can associate with it a unique rooted tree 7\* by making 
the center the root. Tt* can be coded by the method of Section 3, and we can 
take this code to be the code of the unrooted tree Tx. 

If Τλ has a bicenter, the removal of the bicentral edge will result in two 
rooted trees. These can be coded as before. We then arrange these codes in 
the preferred order, and insert the first code after the initial 0 of the second 
code. Thus, if the codes, in the preferred order, are OAl and 02? 1, where A 
and B are binary strings, the code of the tree becomes 00AÌBÌ. It will be seen 
that this is the same as truncating each code by removing the initial 0, catenat
ing the two resulting strings, and placing 00 at the beginning. In terms of the 
tree, the effect of this is to obtain the code of a rooted tree in which the second 
of the two bicentral nodes is the root. Thus, in either case, the code obtained 
is that for a planted plane tree, and it follows that it can be decoded by the 
decoding algorithm already described. 

We note that by a method essentially the same as that just described, the 
coding of unrooted plane trees can be made to depend on the coding procedure 
for rooted plane trees that was described in Section 4. 

8. A Streamlined Algorithm for Coding Unrooted Trees 

It will be clear from the last section that the algorithm described there for 
coding unrooted trees requires three passes through the tree. First, we need 
to work from the outside inward, deleting end nodes, in order to find the 
center or bicenter. Then we must work outward from the center or bicenter 
in order to find the heights of the nodes. Finally we work inward again, using 
the coding algorithm on the branches at nodes of decreasing height. 

The speed with which a tree could be coded would be increased if we could 
replace this three-pass process by a single-pass process. It turns out that this 
is possible. We combine the detection of the center or bicenter with the outside-
inward coding process, to form a sort of "code-as-you-go" algorithm. Since 
we shall not know the heights of the nodes at any stage, and shall not be 
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aware of where the center or bicenter is until we come to it, it is clear that 
this streamlined algorithm must differ in some ways from those already 
considered. As it happens the differences are slight. 

At each stage of the algorithm we shall consider a subtree of the tree Tl9 

obtained from it by deletions of end nodes, as described at the beginning of 
Section 8. In this subtree each end node will bear a tag, which is the binary 
code of the branch at that node in the original tree. Initially each end node of 
Tl bears the tag 01. The transition from one subtree to the next is effected in 
the following way. Look at those nodes that are adjacent to an end node and 
pick out those for which all but one of the adjacent nodes are end nodes. It 
will be convenient to call such a node a ripe node. For each ripe node X, con
struct the code of the branch at X from the tags of the adjacent end nodes 
as described in Section 5. Having done this, delete the end nodes adjacent to 
X. When this has been done for all ripe nodes, we have a tree in which all the 
end nodes, and only they, bear a tag. This is the next tree in the sequence, and 
we repeat the process if possible. The algorithm ends when the resulting tree 
has only one or two nodes. If it has one node, this will be the center of Tl9 and 
its tag will be the code of the tree. If it has two nodes, these will be the bicentral 
nodes of 7\. We form the code by catenating their tags in the preferred order, 
having first dropped their initial zeros, and then inserting 00 in front, as 
described in Section 7. 

We now formally present this algorithm. 

ALGORITHM 2. STREAMLINED CODING ALGORITHM. At each stage of this 
algorithm the nodes will be partitioned into two sets. A is the set of tagged 
nodes, and B is the set of untagged nodes. With each element of A there is 
associated a tag, that is, a binary string. Initially A consists of the end nodes 
of Tl9 each having the tag 01, and B contains all the other nodes of Tx. 

Step 1: Construct the set R of those nodes of B that are adjacent to at 
most one other node of B. 

Step 2: For each node X e R consider the tags of the adjacent nodes that 
are in A. By catenating these tags in the preferred order, and enclosing them 
between a 0 and a 1, construct the tag for the node X. 

Step 3: (1) If B has only one element X, then the tag of Zis the required 
code for Tl9 and the algorithm terminates; 

(2) if B has exactly two elements, then the code of Tx is obtained by 
catenating the truncated tags of these two nodes in the preferred order, and 
prefixing 00; 

(3) otherwise put A=AuR9B = B — R9 and go back to Step 1. 

Note that in this more formal algorithm we have made no provision for 
deleting the end nodes from the tree, as we did in the informal presentation. 
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This is not necessary, since once the tag of an end node P in 7\ has been 
incorporated into the tag of an adjacent node, all nodes adjacent to P are 
then tagged. Hence, P cannot subsequently be adjacent to a node X of a set 
R, since X must be in B and, hence, is untagged. Thus, P plays no further 
part in the algorithm and is as good as deleted. It follows that all we need to 
know about a node is whether it is tagged, and if so, with what. 

It is easily verified that if, in the above algorithm, we forget about the 
nature of the tags and merely note which nodes are tagged and which are not, 
then we obtain an algorithm for determining the center or bicenter of the 
tree. It will differ from that described at the beginning of Section 7 only in the 
timing of the deletions of the nodes. Thus, if we apply to the tree of Fig. 5 the 
usual method for finding centers or bicenters, we would delete nodes A, B, 
C, E, F, G, I, J, and Kin the first iteration. In the streamlined coding algorithm 
only nodes A9 B,C, E, F, G, 7, and K would be deleted, since the nodes adjacent 
to them are "ripe." On the other hand, node C, for example, would be ear
marked for deletion at this stage, but would not be actually deleted, in the 
sense that its adjacent node H would become tagged, until a later iteration 
when H became ripe. The same applies to node /. This clearly makes no 
difference to the final result, and the node or nodes last tagged when the 
streamlined algorithm terminates will be the center or bicenter of the tree, as 
the case may be. Thus, the code that results is the same as that given in Section 7. 

This algorithm will not work for a rooted tree, since it, so to speak, generates 
its own root. However, by a species of low cunning, we can trick the algorithm 
into coding rooted trees should the occasion arise. The natural way of determin
ing whether a node is ripe is to subtract the number of adjacent tagged nodes 
from its valency. The node is ripe if the result, r say, is 1 or 0. However, note 
that r = 0 only when the algorithm is about to terminate and the node in 
question is the center of the tree. The valencies of the nodes can be computed 
at the beginning of the algorithm. All we have to do then, is to fudge the initial 
list of valencies by increasing the listed valency of the intended root by 1. This 
will prevent the value of r for that node from ever being 1, except when all 
other nodes have been tagged. It will then be exactly 1, instead of 0. In this 
way, the algorithm is fooled into taking the required node to be what it fondly 
imagines to be the center of the tree. 

9. Some Properties of Tree Codes 

In this section we discuss some of the properties of the binary codes so far 
defined for trees. 

(1) The code for a tree on p nodes consists of/? zeros and p ones having 
the level property. This property of tree codes has already been discussed. 
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(2) The difference between the number of O's and l's in a portion of the 
code, reading from left to right, up to, and including a particular zero, is the 
height of the node associated with that zero in the manner of Algorithm 1. 

The proof of this will be given in the next section. 

The remaining properties are for trees not imbedded in the plane. 

(3) The code of a rooted tree of height h starts with h zeros. 

The proof is by mathematical induction. A rooted tree of height 2 is a star 
in which the root is adjacent to each of the other nodes of the tree. Clearly 
its code is 

0010101-01011 

and since this starts with 2 zeros, the result is true when h = 2. Assume that it 
is true for trees of height 2,3,..., A— 1, and consider a tree of height h. The 
code of such a tree is of the form 

c(T) = 09c(Ti)ic(T2\...,c(Tk)9l 

where at least one of the subtrees Τί9 Γ2,..., Tk is of height A— 1. 
Now, since we are ordering the codes of these subtrees by nondescending 

magnitude of the corresponding binary fraction, the codes with the most 
leading zeros will come first. Thus, 7\ will certainly be of height A— 1, and 
this means that the code c(T) of Twill start with h leading zeros. The result 
then follows by mathematical induction. 

(4) The code of an unrooted tree of diameter D starts with [(Z) + 3)/2] zeros. 
The diameter of a tree is defined as the longest distance, counted by the 

number of edges, between any two nodes. It is easily verified that if the tree 
has a center, then D is even, and that there are at least two end nodes at 
distance D/2 from the center and none at a greater distance. Therefore, when 
the tree is rooted at the center, its height is D/2+ 1. The present result then 
follows from property (3). 

If the tree has a bicenter, then D is odd and the two rooted trees that are 
joined by the bicentral edge, and whose codes make up the code of the tree, 
are both of height (/)+1)/2. Since the code begins with a zero followed by 
the code of one of these rooted trees, it will begin with (D + 3)/2 zeros, again 
by property (3). Since D is odd, this agrees with the result given. 

We see, in properties (3) and (4), the reason why the ordering for codes was 
based on the interpretation of the codes as binary fractions rather than as 
binary integers. This is also the reason why the code for the tree on just one 
node was chosen to be 01, rather than 10, which is what has been used in some 
other discussions of this topic [12, 16]. The whole object has been to concen
trate as many zeros on the left of the code as possible, thus making its integer 
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or fractional equivalent as small as possible. It is of interest to ask how small 
this can be. 

When we are talking about single codes, or comparing codes of the same 
length, it makes little difference whether we interpret the code as a fraction or 
as an integer. In the rest of this section, we shall think of the code of a tree as 
representing an integer, and call this the integer code of the tree. Clearly, we 
lose no information by thus ignoring the leading zeros, since their number 
can be deduced from the level property. We now consider the values between 
which the integer codes of trees must lie. 

It would be tedious to recount in detail how the maximum and minimum 
integer codes were calculated for various kinds of trees. It will suffice to 
summarize the results. For this purpose, we let i(T) denote the integer code 
of a tree Γ. 

(5) If T is a rooted tree, then 

2 P _ 1 < i(T) ^ 1(22ρ_1-Ηΐ). 

(6) If T is unrooted and is central, then 

where 

f(2k+\) = 23k + i -22k+l+2k+l - 1 

and 

f(2k) = 2 3 * - 1 + 2 3 / c - 2 + 2 2 *- 1 + 2k- 1. 

(7) If T is unrooted and is bicentral, then 

g(p) < i(T) < h(p)9 

where 

g{2k) = {2k-\)(22k-l + \\ 

g(2k+\) = g(2k) + 23k, 

h(2k) = ±(22k-l + \)\ 

and 

h(2k+\) = i(24A + 22*+l). 

We give, in Table II, some actual values for these bounds between which 
i(T) must lie. 

It is of interest to note that, although these numbers increase exponentially 
with /?, nevertheless, even for trees on what, for many applications, is a fairly 
large number of nodes, p = 20 or so, these integer codes still lie within the 
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TABLE II 

Bounds for i(T) 

Rooted trees Unrooted central Unrooted bicentral 

P 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

minimum 

7 

15 

31 

63 

127 

255 

511 

1023 

2047 

4095 

8191 

16383 

32767 

65535 

131071 

262143 

524287 

1048575 

maximum 

11 

43 

171 

683 

2731 

10923 

43691 

174763 

699051 

2796203 

11184811 

44739243 

178956971 

715827883 

2863311531 

11453246123 

45812984491 

183251937963 

minimum 

11 

43 

103 

359 

911 

2959 

7711 

24095 

63551 

194623 

516223 

1564799 

4161791 

12550399 

33423871 

100532735 

267912191 

804783103 

maximum 

11 

43 

171 

683 

2731 

10923 

43691 

174763 

699051 

2796203 

11184811 

44739243 

178956971 

715827883 

2863311531 

11453246123 

45812984491 

183251937963 

minimum 

-
27 

91 

231 

743 

1935 

6031 

15903 

48671 

129087 

391231 

1040511 

3137663 

8356095 

25133311 

66978303 

201196031 

1536347647 

maximum 

-
27 

91 

363 

1387 

5547 

21931 

87723 

349867 

1399467 

5593771 

22375083 

89483947 

357935787 

1431677611 

5726710443 

22906579627 

91626318507 

range of values which can be handled, as integers, by modern computers and 
present-day programming languages. Thus, for example, the 16-digit integer 
allowance in APL will enable us to handle, as integers, the codes of trees with 
up to 27 nodes. Actually, the result will be a little better than this if we use 
property (9) below. 

This suggests that the coding algorithm could be carried out using integer 
arithmetic instead of the manipulation of binary strings. At each stage of the 
algorithm the tags would be integers, and each end node would initially bear 
as its tag the integer 1. In Step 2 of the algorithm the tags Ni9N2,...,Nk would 
be combined to give the tag 

2 x ((••{((Nl2
l> + N2)2

h + N3)2
l4 + N4).-.)2l« + Nk) + 1 

for the appropriate ripe node, where /, is the length of the string corresponding 
to the integer Nt. Although these lengths can be deduced from the tags, this 
would be time-consuming. They are best stored along with the tags. 

Two further properties of tree codes are worth a brief mention. It is some
times of interest to know whether a tree code is that of a central or bicentral 
tree, without going to the trouble of decoding the whole tree. This question 
is settled by the following property. 

(8) If a binary string is known to be the code of some unlabeled tree, then 
this tree is central if and only if the first two substrings that result from the 
deletion of the extreme 0 and 1 have the same number of leading zeros. 
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Proof: If the tree is central, then at least two of the subtrees at the root 
have the same maximal height. Hence, by property (3), their codes have the 
same number of leading zeros. If the tree is bicentral, then the first substring 
denotes a tree which contains the bicentral edge, and, hence, will be higher by 
1 than any other tree at the root. Thus, this substring will have one more leading 
zero than the second substring. 

The other property enables us to shorten slightly the code of a tree. 

(9) The binary code of a tree ends with at least two l's. The proof is 
obvious. 

This means that all integer codes are congruent to 3, modulo 4. It also means 
that the binary code can be shortened, without any loss of information, by 
dropping these two l's, all leading 0's, and the first 1. This will, in turn, give a 
smaller integer code. 

10. Canonical Labelings 

Although the trees that we have been considering have all been unlabeled, 
it is clear that if we have a means of drawing a tree in the plane in some standard 
way (and Sections 6 and 7 provide such a way) then it is no problem to choose 
a method for labeling the nodes of the tree in a manner which depends only on 
the isomorphism class of the tree. There are many ways in which this choice 
can be made, and a canonical labeling obtained. We shall consider two of 
them. In this section and the next we shall be concerned entirely with planted 
plane trees and shall, for convenience, refer to these as just trees. 

(1) The bottom-up labeling: We shall allocate integers 1,2,3,...,/? to the 
nodes, taking the nodes in the following order. Nodes of height r precede nodes 

Fig. 7 
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Fig. 8 

of height r + 1 , and among the nodes of the same height the ordering is from 
left to right. This gives us a labeling like that of Fig. 7. 

(2) The walk-around labeling: The notion of walking around, or through, 
a tree is a very well-known one in computer applications of tree structures. A 
fairly clear idea of what is meant can be gleaned from Fig. 8. 

More formally, we can think of the walk, now strictly "on" the tree rather 
than "around" it, as being determined by a sequence of nodes in the order in 
which they are visited, starting at the root. This sequence is determined by the 
following maze-threading rules : 

Rule 1: each edge is to be traversed exactly once in either direction; 
Rule 2: if, subject to Rule 1, we can go upwards from the node where we 

are, we do so, and we take the left-most of the edges available to us; 
Rule 3: if we cannot go up, we go down. 

By walking around a given tree we can obtain a canonical labeling which is 
different from that given in labeling (1). As we walk around the tree, we give 
the next available label to a node when we meet it for the first time. This also 
is shown in Fig. 8. 

A simple induction argument shows that the canonical labeling thus 
obtained is precisely that given by the decoding algorithm, Algorithm 1. 
This suggests that the code for a tree could be derived from a walk around 
the tree, and this is so. In fact, it. is exactly the way in which de Bruijn and 
Morselt [3] derive a code that is essentially the same as that of Section 3. They 
observe that a walk around a tree is specified uniquely by stating, for each of 
the 2/7 — 2 steps of the walk, whether it goes up or down. The rule for taking 
the left-most of the available edges then ensures uniqueness. Thus, if we 
interpret 0 and 1 in the code to mean "up" and "down", respectively— 
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de Bruijn and Morselt use U and D—then the code gives us a recipe for per
forming the walk, and, hence, drawing the tree. Since going up (down) means 
going to a node of height greater (less) by 1, we immediately deduce Property 
(2) of Section 9. 

De Bruijn and Morselt used this code to establish a simple one-to-one 
correspondence between the set of trees on p nodes and the set of binary trees 
on 2/7-1 nodes. Harary et al. [5] had previously observed that these two 
sets were equinumerous, and had established a one-to-one correspondence 
between them. However it was a somewhat complicated one. 

11. Valency Codes 

We now consider a rather different type of code, to which the name "valency 
code" is not inappropriate, though it is not the valency vt of each node that is 
used but rather the number ut of edges that go upwards from that node. For 
the root this is the same as the valency, while for every other node of the tree 
Ui is one less than the valency. A valency code is simply a list of these integers 
ut in some specific order. 

It is well known that the set {w,·} will not, in general, determine the tree. 
However, it so happens that if these numbers are listed in the order of one or 
the other of the canonical labelings given in Section 10, then the tree is uniquely 
determined. This statement requires proof, and we consider first the simpler 
case. 

(1) The bottom-up valency code {BVVcode) for a tree: This code consists 
of a sequence {wt·}, where wf relates to the node labeled / in the bottom-up 
labeling of the tree. Clearly, two isomorphic trees will give the same code. 

To prove the converse we show how to draw the tree having a given BUV 
code. The method is so straightforward that a specific example will suffice to 
explain it. Consider the sequence 

(1) 4,2,0,2,3,0,0,2,0,0,0,0,0,0 

The first integer indicates that there are 4 edges going upwards from the 
root. We draw the root and these edges. This gives us 4 nodes of height 2. The 
next 4 terms 2, 0, 2, 3 give the numbers of edges going upwards from these 
4 nodes, from left to right. We can therefore draw the tree up to and including 
the nodes of height 3. There are 2 + 0 + 2 + 3 = 7 of these. The next 7 terms in 
the code enable us to construct the tree up to the nodes of height 4. There 
are two of these. They are end nodes, as the two remaining zeros in the code 
testify. We obtain the graph of Fig. 9. The method is clearly quite general. 

This valency code consists of/) integers. The number of consecutive zeros 
at the end will be the number of nodes of maximum height h, necessarily 
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end nodes, plus the number of end nodes of height A — 1 to the right of the right
most node of height A— 1, not an end node. This number could be as small as 
1, so the only simple way of reducing the length of the code would be to omit 
the final zero. This gives a code consisting of p— 1 terms. 

A code essentially of this type has been described by Klarner [6], who pays 
particular attention to the special case of trees in which every node that is 
not an end node has the same valency k + 1. Since Klarner includes the trunk 
in his planted plane trees, this means that in our notation u{ = 0 or k for all /. 
If it is understood that we are talking about trees of this kind, then it is not 
necessary to record the values of the ut in the code. We need merely put a 1 in 
the /th position if w, = k, and a 0 if wf = 0. In this way, we obtain a string of/? 
binary digits. Some economy is possible here, for we must have ux = k, so we 
can omit u{. Further, there must be at least k consecutive zeros at the end of 
the sequence, and these can be omitted, too, without any loss of information. 
This reduces the code to a sequence of p — k— 1 digits. It is easily proved that 
p = kn + 1 for this kind of tree, where n is the number of nodes of valency 
greater than 1. Hence, the length of the code is k(n— 1) binary digits. This is 
a considerable saving over the 2p binary digits of the code of Section 3, but, 
of course, these trees are very special indeed. 

Returning to the BUV code for general planted plane trees, we consider 
a way of expressing it in binary form. In place of each uh we write down a 
string consisting of ux zeros followed by a one, and we catenate these to form 
the required binary code. Thus, from (1) we get 

000010011001000111001111111 

Clearly, the sequence of wf's can be reconstructed from such a string. Each 
1 signals the end of a substring for which the number, possibly 0, of 0's is the 
corresponding «,·. Since node / accounts for w,+ 1 = vt digits of this code, for 
/ > 1, and node 1 accounts for vl +1 digits, the total length of the code will be 

fvi+l = 2 ( / > - l ) + l 

= 2 / 7 - 1 . 
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There will, therefore, be p ones (or p— 1, if the economy of omitting the last 
Ui is used) and, hence, p—\ zeros. Klarner used this device, with 0 and 1 
interchanged, to obtain yet another one-to-one correspondence between the 
two sets mentioned at the end of Section 10. 

We note here, in passing, that the addition of a zero at the beginning of 
this binary version of a BUV code gives a binary string which has the level 
property. By regarding this as the binary code of a tree, as in Section 3, we can 
define an interesting one-to-one mapping of the set of all trees on p nodes 
onto itself. 

(2) The walk-around valency code {WAV code) for a tree: The walk-
around valency code is defined exactly like the bottom-up valency code except 
that the order of the nodes is taken to be that given by the walk-around labeling. 
Thus, the tree of Fig. 9 has the WAV code 

4,2,0,0,0,2,2,0,0,0,3,0,0,0. 

Thus, the WAV code, like the BUV code, is a sequence of/? integers {wj. 
We first demonstrate a property of WAV codes. 

THEOREM. If the sequence {wj is the WAV code of a tree, then for every 
r ( = 1,2,...,/>) 

(2) fu^r-l, 
/ = l 

where the equality holds, if and only if, r=p. 

Proof: When we code the tree T whose code is {w,}, we start at the root 
and walk around the tree, noting the integer wt· for each new node we pass. 
Stop after noting the rth term. Some edges of 7 will have been traversed 
twice, once in each direction, some once, and some not at all. Delete from 7 
all edges not traversed at all, thus obtaining a subtree 7". Now complete the 
walk around 7' . We can add no more w/s to the code, since we can reach a 
new node only along a path not previously traversed, and these have been 
eliminated. Thus, T' has r nodes. 

In the special case when 7" = 7, that is, when every edge had been traversed 
in at least one direction, we now have the code of 7. Thus, r=p and 

(3) £«, = »!+£ (».-I) 
/ = 1 1 = 2 

= ίν,-{ρ-ί) 
i= 1 

= 2 ( p - l ) - G » - l ) 

= p-\ 
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so that (2) holds. If 7 ' / 7, then the truncated code that we have is not the 
code of 7 ' . Some of the w/s are too large because of the removal of edges. 
The fact that 7 is connected ensures that the removal of an edge not traversed 
at all must make at least one of the wf smaller for 7 ' than for 7. Hence, 

/ = l / = l 

= r- 1 

by applying (3) to the tree 7' , where u/ is defined for the tree 7 ' . This proves 
the theorem. 

This theorem gives us a decoding algorithm for WAV codes. If we remove 
the first term in the code, then the next so many terms will describe a walk 
around the left-most of the subtrees joined to the root. How many terms are 
required can be found by using (3). We take just so many as will make their 
sum one less than the number of terms. Thus, to decode 

3,3,0,2,0,0,0,0,2,0,2,0,0, 

we remove the first 3, and find that we must take the next 6 terms before (3) 
is satisfied, since 3 + 0 + 2 + 0 + 0 + 0 = 5. This defines the left-most tree, and 
we delete these terms from the sequence. We now repeat this procedure with 
the rest of the sequence, and so on. We find two more subtrees, defined by the 
subsequences 0 and 2,0,2,0,0. 

Thus, by removing the first term of the code, we can break up the remainder 
into subsequences, each of which is the WAV code of a subtree joined to the 
root. The number of subtrees thus obtained must be ul. It follows that this 
term is redundant and could be dropped from the code, if we wished, without 
loss of information. 

As before, we can replace the term wf by a string of u-x zeros and a 1. We 
catenate these strings to obtain a binary version of the WAV code. From (2) 
we deduce that, by putting a zero in front of this code, we obtain a binary 
string having the level property. 

Before going further we give more formal algorithms for the decoding of 
BUV codes and WAV codes. These are equivalent to the informal descriptions 
given above, though we shall not take space to prove this. 

ALGORITHM 3. ALGORITHM FOR DECODING BUV CODES. The terms of 
the code are numbered 1,2,...,/? consecutively. There are two markers, a left 
marker and a right marker, which both point to the first term of the code at 
the start of the algorithm. 

Step 1: If the right marker is pointing to the last term, the algorithm 
terminates. Otherwise, move the right marker to point to the next term. 
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Step 2: If the left marker points to a zero term, move it to the next nonzero 
term. 

Step 3: Reduce by 1 the term to which the left marker is pointing, and 
note, as an edge of the tree, the pair of nodes corresponding to the present 
positions of the two markers. Repeat from Step 1. 

TABLE III 

Decoding Process for a BUV Code 

1 2 3 

4 2 0 

1 _2_ 0 
2 2 0 
1 2 0 
0 2 0 
0 1 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

4 

2 
2 
2 

2 
2 
2 
2 

I 
0 
0 
0 
0 
0 
0 

5 

3 
3 
3 
3 

2 
3 
3 
3 
3 
2 

1 
0_ 
0 
0 

6 

0 
0 
0 
0 
0 
j) 
0 
0 
0 
0 
0 
0 
0 
0 

7 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

8 

2 
2 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 

I 
0 

9 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

10 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

11 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

12 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

13 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

14 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Edge 

(This is the code) 

0,2) 
0,3) 
(1,4) 

(1,5) 
(2,6) 
(2,7) 
(4,8) 
(4,9) 
(5, 10) 

(5,11) 
(5, 12) 
(8, 13) 
(8, 14) 

If the sequence was a valid code, then all the terms will have been reduced 
to zero when the algorithm terminates. Table III gives an example of this 
decoding process. The positions of the markers are indicated by underlining. 

ALGORITHM 4. ALGORITHM TO DECODE A WAV CODE. We number the 
terms of the WAV code from 1 to p. During the algorithm some terms will be 
altered, or deleted altogether, but the numbering remains the same. There is 
a marker, which initially points to the first term, and is moved around as the 
algorithm progresses according to the following two rules: 

Rule 1: if the marker points to a nonzero term, say ui9 move it to the next 
term uj9 ignoring any deleted terms; note that nodes / and y form an edge of 
the tree. 

Fig. 10 
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TABLE 

Decoding 

1 

Code 3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
2 
2 

0. 

IV 

; Process for a 

2 

3 
3 
3 
2 
2 
2 
2 
2 
2 

I 
1 

0 

3 

0 
0 
0 

4 

2 
2 
2 
2 
2 
2 

1 
1 

_0_ 

5 

0 
0 
0 
0 
0 
0 

6 

0 
0 
0 
0 
0 
0 
0 
0. 

WAV Code 

7 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

8 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

9 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

0 

10 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

11 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
1 
1 
0 

12 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

13 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Edge 

0,2) 
(2,3) 

(2 ,4) 
(4,5) 

(4,6) 

(2,7) 

(1 ,8) 

(1,9) 
(9, 10) 

(9,11) 
(11,12) 

(11,13) 

Rule 2: If the marker points to a zero term, delete this term, move the 
marker back to the previous nondeleted term, which cannot be a zero, and 
decrease this term by 1. 

If the code is valid, this algorithm will terminate when all terms have been 
deleted. The pairs of nodes noted under Rule 1 will give the edges of the tree. 

A step-by-step example of this decoding procedure is given in Table IV. The 
term to which the marker is pointing is underlined. This gives us the tree of 
Fig. 10. 

Returning to Table III, we see that the right-hand labels, in the pairs that 
make up the edges of the tree, are simply the integers from 2 to 14 (in general, 
2 to p) in order. This is because the right-hand marker is moved along one 
place at each iteration of the algorithm. Since these integers can be supplied 
automatically, all the information about the structure of the tree is given 
by the left-hand labels of these pairs, namely, 

1,1,1,1,2,2,4,4,5,5,5,8,8. 

This sequence defines an even simpler code for a tree. We can call it a tree-
function code (TF code) since the function/(/), defined to be the /th term in the 
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code, is a tree function as defined by, for example, Moon [8], Tt is also known 
as a canonical representation, see [7]. This code hardly needs any decoding, 
for we need only write down the integers 2 to p underneath its successive terms 
to obtain the list of edges of the tree. For this reason a TF code is probably the 
most convenient way to store an unlabeled tree in a computer. The tree will 
be stored as a (p — l)-dimensional vector, say (a,·), and the edges will be all of 
the form (ah i+ 1). If further economy is desired, the first term can be omitted, 
since it must be 1. 

The above is not the only tree-function code. Any labeling of a rooted tree 
will give rise to a tree function. We put/(/) = /, if (ij) is the first edge of the 
unique path from node / to the root. However, a tree function is of no use as a 
code for planted plane trees, and will not be called a TF code, unless we 
associate with it some convention that enables us to determine how the tree 
was imbedded in the plane. This is true of the tree function related to the 
bottom-up labeling since, with this labeling, the nodes at the same level are 
labeled consecutively from left to right. We need not be as specific as this, 
however. It is sufficient if the labels of the nodes at the same level increase 
monotonically from left to right. It is easily verified that this is true of the 
walk-around labeling. Hence, the walk-around labeling also gives rise to a TF 
code. Clearly, there can be many others. 

12. Unrooted Trees Again 

We now return briefly to the problem of coding ordinary trees, that is, not 
planted, plane, or even rooted, for which, so far, only the binary code of 
Section 9 has been defined. Since it is often not convenient to work with 
binary strings, and since the trick of using the integer codes is not easily 
applicable if the trees are large, we need to have available some other kind of 
coding procedure. 

Now, although the valency codes were defined in the last section specifically 
for planted plane trees, we can easily extend them to trees in general. The 
decoding algorithm (Algorithm 1) associates with any tree a unique planted 
plane tree, from which we can derive some canonical labeling. Once we have 
this labeling, then any of the codes of Section 11 are available to us. Thus, to 
construct a valency code for an unlabeled tree, we could first find its binary 
code, then decode this to get a canonical labeling, and then construct a valency 
code. This idea has two very obvious disadvantages. 

(1) Although we will have avoided binary strings in the code itself, they 
are still required in finding the binary code. 

(2) The procedure of coding, decoding, and then recoding is, to say the 
least, a bit devious. One could wish for a more direct method. 
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What we would like is a coding procedure which works with integer se
quences throughout, and which, like Algorithm 2, does the whole job in 
just one pass through the tree, from the outside to the root. There seems to 
be little hope of achieving this ideal for a BU V code. The bottom-up labeling 
depends critically on the position of the root, and this would not be known 
until the end of an algorithm of the type desired. It is quite otherwise with 
the WAV code, however. The portions making up this code relate to the 
branches at certain nodes, and these can be recognized, when the node becomes 
ripe, even though it is not yet known which node will end up as the root. We 
now describe a direct algorithm for finding the WAV code of an unrooted 
tree. This algorithm is similar to Algorithm 2. The differences are 

(1) The tags are strings of integers, 
(2) The rule for the preferred ordering of tags will be different. It does not 

matter much what it is, and for definiteness we can suppose that tags are 
ordered first by increasing length, and that tags of the same length are ordered 
lexicographically. 

(3) The rule for the formation of the new tags is different. 

ALGORITHM 5. DIRECT INTEGER ALGORITHM FOR WAV CODES. At each 
stage of this algorithm the nodes will be partitioned into two sets : A, the set of 
tagged nodes, and B, the set of untagged nodes. The tags are strings of integers. 
Initially A consists of the end nodes of the tree, each having the tag 0. 

Step 1: Construct the set R of those nodes of B that are adjacent to, at 
most, one other node of B. 

Step 2: For each node X e R, consider the tags of the adjacent nodes 
that are in A. Catenate these tags in the preferred order, and prefix to the result 
the number of tags that were catenated to produce it. 

Step 3: (1) If B has only one element X, then the tag of X is the code 
for the tree, and the algorithm terminates. 

(2) If B has exactly two elements, determine which of the tags comes first 
in the preferred ordering. Insert this tag after the first term of the other tag. 
Then increase by 1 the first term in the resulting sequence. This last move is 
necessary since, once one of the bicentral nodes has been chosen to be the root, 
the bicentral edge will then go upwards from that node. 

(3) Otherwise put A = A v R, B = B — R, and go back to Step 1. 

This algorithm is illustrated in Fig. 11. 
The fact that the binary code of a tree determines a canonical labeling of the 

tree implies that we can use on an unlabeled tree any of the several algorithms 
that are known for coding labeled trees. All we need do is to give the tree its 
canonical labeling before using the coding algorithm in question. Algorithms 
that can be used in this way include the Prüfer sequence, see [8], and the 
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0 0 0 

2,0,0 

3,0,0,0" I I 12,0,0 A0 \ 

0V >/3,0,0,0 

2 , o , i , o v V 
Jf N2,2,0,0,2,0,( 

3,0 ,0 ,0 / \ 

3,0,3,0,0,0,2,2,0,0,2,0,0 -

3,0,2,0,1,0,3,0,0,0 

Fig. 11. Direct integer algorithm for WAV codes: the code is 
4,3,0,2,0,1,0,30,0,0,0,3,0,0,0,2,2,0,0,2,0,0. 

several variations on this as given by Neville [10]. It is doubtful whether 
there is any advantage in using codes of this type for our present purpose. The 
Prüfer sequence, for example, has p — 2 terms. Hence, it gives no saving in 
length over the WAV code, abbreviated by omission of its first term. Moreover, 
the process of obtaining the Prüfer sequence would be more complex, since 
the canonical labeling would have to be found first. 

A coding procedure for labeled trees which, at first sight, seems to offer 
possible advantages is that described by Smolenskii [15]. If a tree has k end 
nodes, then there are k(k—\)/2 distances between these nodes. Smolenskii 
showed that if a set of integers is the set of distances between end nodes of 
some tree, then this tree is unique. He did not give a method of telling whether 
such a set belonged to a tree in this way, or of finding the tree if it did. Both 
these questions were answered later by Zaretskii [18]. Thus, if the end nodes 
are labeled 1,2,3,...,/: in some order, and d{ij) denotes the distance from 
end node / to end node j , then the Smolenskii code is the sequence 

</(l,2), rf(l,3),...,</(l,ifc), rf(2,3), 9d(k-l,k) 

This sequence of integers could be quite short. For a path it consists of just 
one term. It will be shorter than the WAV code if k(k— l)/2 <p — 2. 

We naturally ask how likely this is to happen. In order to answer this 
question, assuming that all trees on p nodes are equally likely, we would need 
to know the number of trees that have at most K end nodes, where K is the 
largest value of À: for which k(k— \)<(p — 2). The enumeration of unlabeled 
trees by the number of end nodes is, I believe, still an open problem, though the 
solution of the analogous problem for labeled trees is well known (see Moon 
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T A B L E V 

The Proportional Numbers of Trees for Which the Smolenskii Code Gives a Saving in 

Length Compared wi th the Abbreviated W A V Code 

P-

Total: 

k=2 
k=3 
k=4 
k=5 

K 
k*ZK 

Ratio 

6 

6 

1 
2 
2 
1 

3 
3 

0.50 

7 

11 

1 
3 
4 
2 

3 
4 

0.36 

8 

23 

1 
4 
8 
6 

3 
5 

0.22 

9 

47 

I 

5 
14 
14 

4 
20 

0.43 

10 

106 

1 
7 
23 
32 

4 
31 

0.29 

11 

235 

1 
8 
36 
64 

4 
45 

0.19 

12 

551 

1 
10 
52 
123 

4 
63 

0.11 

13 

1301 

1 

12 
76 
219 

5 
308 

0.24 

14 

3159 

1 

14 
108 
377 

5 
500 

0.16 

15 

7741 

1 
16 
148 
616 

5 
781 

0.10 

16 

19320 

1 
19 
199 
978 

5 
1196 

0.062 

17 

48629 

1 
21 
262 
1496 

5 
1780 

0.037 

[8]). Thus, the exact answer cannot be given. However, the rough answer seems 
to be, "not very likely." 

Table V gives the total numbers of unlabeled trees on 4 to 17 nodes. These 
numbers were taken from Riordan [14]. It also gives the subtotals of these 
having 2 to 5 end nodes. These were calculated by using Pólya's Hauptsatz [11], 
to add notes of valency 2 to the homeomorphically irreducible trees listed at 
the end of [4]. From these numbers the fraction rp of those trees whose 
Smolenskii code is shorter than the WAV code can be found, and is given in 
Table V. It will be seen that rp is small, and seems generally to decrease as/? gets 
larger. It is reasonable to conjecture that rp -* 0 as p -> oo. 

Thus, the Smolenskii code does not seem to have any advantages in the 
present context, except possibly for applications in which the trees that are 
being handled tend to have few end nodes. One can remark also that, in any 
case, the fact that trees with the same number of nodes may have Smolenskii 
codes of different lengths is liable to be, for the programmer, an embarrassment 
rather than an asset. 
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1. Introduction 

The necessity to solve linear systems 

(1) Mx = b9 

where M is an n x n sparse* symmetric positive-definite matrix, arises fre
quently in physical applications. These include classical electrical network 
analysis, analysis of structural systems, and nonlinear hydraulic problems. 
In such problems understanding and controlling sparsity is essential for 
efficient computer solution, since, in general, many systems with the same 
zero-nonzero structure will be solved. 

To solve systems like (1) by elimination, it is standard procedure (Forsythe 
and Moler [12] and Westlake [27]) to decompose, or factor, M as 

(2) M = GGT or M = LDL1, 

where G and L are lower triangular, L = (/0) with lu = 1, and D = (J(7) is 
diagonal with dn > 0. Since M is symmetric and positive definite, we may 
decompose M for any a priori ordering of the linear system, that is, 

A = PMPT, 

where P is an n x n permutation matrix. Experience and simple examples show 
that the choice of ordering is an important consideration in obtaining an 
efficient elimination scheme. Such considerations lead to the study of the 
following basic question: what is the effect of the order of elimination upon 
sparse positive-definite systems? 

We have restricted our class of matrices to those M which are symmetric 
positive definite, because this allows us to examine only the equivalence class 
ΡΜΡτ rather than the class PMQ, P and Q being permutation matrices. 
Equally important is the fact that the decompositions of (1), especially the 
Cholesky M = GGT decomposition, are stable with respect to rounding error, 
see Wilkinson [28, pp. 220, 231-232, 244], for any a priori ordering P. 
Formally, our analysis extends to the more general class of matrices M, such 
that PMPT can be decomposed as 

PMPT = LDU = LU' 

for any permutation matrix P, and such that mu Φ 0<->/Πμ φ 0. Here, of course, 
both L and U must be stored. 

We use the word "formally" above because the decomposition must be 
computed in finite precision arithmetic. In the more general case of sparsity 

t We leave sparse undefined formally, but informally we think of matrices M, many of 
whose entries mi} are zero. 
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symmetry above, and in the case where M is simply a nonsingular matrix row, 
or a column, interchanges are usually effected (see Wilkinson [28, p. 205] or 
Forsythe and Moler [12, p. 34]), to avoid zero pivot elements and to maintain 
stability with respect to round-off error. Whereas the decomposition of 
PMPT for any P is stable when M is positive definite, it is clear that in these 
more general cases pivoting to control stability and pivoting to control 
sparsity are not a priori compatible. 

With M as in (1) we associate an undirected graph G. In Section 2 we 
formulate the elimination process of decomposition (2) as vertex elimination 
on this graph. We call this formulation the combinatorial elimination process. 
In addition to formulating the elimination process as vertex elimination on a 
graph, we seek a graph-theoretic description of those matrices M, such that 
in the decomposition L or G has exactly the same zero-nonzero structure as 
the lower triangular part of M. We call such graphs monotone transitive graphs. 

The suggestion that graph theory might be a convenient way to study 
elimination is due to Parter [17], although he does not pursue a detailed graph-
theoretical study. He analyzes the special case when the matrix M has a 
graph-theoretic representation as a tree, and he shows that trees can be ordered 
so that they are monotone transitive. A well-known example of the simple 
elimination scheme which results from choosing a monotone transitive 
ordering for such a graph, or matrix, is the case when M is tridiagonal. 

There are two interesting implications of Parter's study which were not 
pursued in the literature. First, since trees are without cycles and can be 
ordered to be monotone transitive, we are led to investigate monotone 
transitivity in more general graphs by studying their cycle structure. Second, 
although a tridiagonal band matrix is represented by a special tree, Parter's 
elimination scheme applies to any matrix represented by a tree. The elimin
ation process involved has absolutely nothing to do with the bandwidth of the 
matrix M. This is significant given the recent activity in minimizing bandwidth 
for sparse matrix calculations [1, 2, 9, 19]. 

Following the formulation of elimination as a combinatorial process, in 
Section 3 we gain considerable insight into the elimination process by studying 
the evolution of the cycle structure and the vertex-separator, or cut-set, 
structure of a graph under elimination. We show that monotone transitive 
graphs are triangulated graphs, and conversely, as defined by Berge [3]. 
This is a cycle characterization. In addition, we characterize monotone 
transitive graphs by a property of their separators. 

In Section 4 we study criteria from which we may define best or good 
orderings. By counting the arithmetic operations necessary to effect the 
decompositions, we relate these criteria for optimization to the computational 
complexity of calculations involving the elimination process. We note that in 
the literature the study of optimal ordering contains many subjective decisions 
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and implicit assumptions which are not always clearly presented. One reason 
for some of the confusion which exists is that for practical applications there 
is an implicit constraint that any ordering algorithm to be used be reasonably 
efficient. Otherwise, such an algorithm may become too time- or storage-
consuming to be feasible. Several authors (Tinney and Walker [26], Tinney 
[29, p. 25], and Tewarson [29, p. 35]) have developed algorithms which have 
been partially successful in producing good orderings but which do not, in 
general, produce optimal orderings for the criterion they choose. Most of 
this work has been experimental. In Section 4 we discuss these algorithms in 
view of the results developed in Section 3 and the results of our generalized 
study of criterion functions. 

Another interesting graph-theoretic approach for dealing with sparse 
systems with respect to Gaussian elimination is to attempt to find permutation 
matrices P, Q such that 

(3) A = PMQ 

is block lower triangular, since in this case it is necessary only to decompose 
the diagonal blocks of PMQ. Naturally such a transformation does not 
preserve symmetry. Harary [13, 14] solves this problem algorithmically with 
the restriction that Q = PT. His results have application to the algebraic 
eigenvalue problem. Steward [21] and Dulmage and Mendelsohn [10, 11] 
have solved the more general problem and have algorithms for producing 
P and Q. These results are not applicable when M is symmetric positive 
definite and irreducible, since the algorithm would then produce only one 
diagonal block, M itself. Even when applicable, this theory does not differen
tiate between reorderings of the system within the diagonal blocks. 

Our interest in sparse linear systems was motivated initially by its appli
cation to the potential flow network problem [18]. Several examples of sparse 
linear systems arising in applications can also be found in [29]. Other theor
etical considerations on sparse linear systems and numerical linear algebra 
are reported in Brayton et al. [6]. Finally, we wish to emphasize the im
portance of new approaches to data handling and efficient use of memory 
hierarchy which are required for the successful machine implementation of 
sparse matrix methods. While we do not discuss computer implementation 
here, considerable progress on this aspect of sparse matrix research is reported 
in Gustavson et al. [15]. 

2. The Elimination Process 

In this section, we study the combinatorial nature of the elimination process 
upon sparse symmetric positive-definite matrices. We will see that it is useful 
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to regard elimination as vertex elimination on a graph. We first review the 
well-known LDL1 decomposition theorem for positive-definite matrices 
where L is a lower triangular matrix with unit diagonal elements, and D is a 
diagonal matrix with positive nonzero entries. 

Unfortunately, sparse matrices tend to fill in during elimination. That is to 
say, in general, the number of nonzeros in L of the decomposition M = LDL7 

is greater than the number of nonzeros in the lower triangular part of M. 
In Section 2.2 we ask for the class of matrices so that we can find an ordering 
(permutation P) such that no zeros are lost in the decomposition of PMPT. 
Of course, this class of matrices is special, but we will see that, after elimination, 
any matrix is transformed into a matrix of this special class. More precisely, 
we will see that LT has this property. This question leads us to our notions of 
elimination graph, monotone transitivity, and perfect elimination processes. 

2.1. Decompositions 

We begin by stating a well-known (Forsythe and Moler [12, pp. 27-29]), 
theorem of numerical linear algebra. Let M be a real n x n matrix and let 
Mk, k = 1,...,«— 1 denote the principal submatrices of M consisting of the 
first k rows and columns of M. 

THEOREM 1. Let M and Mk be as above, and assume det(Mk) ^ 0 , k = 
1,2,...,A7— 1. Then there exist unique matrices L, D, U, such that 

(4) M = LDU, 

where L = (/0) and U = (wi7) are real n x n unit lower (//f = 1) and unit upper 
(uu= 1) triangular matrices, respectively; and D is an nxn real diagonal 
matrix. 

If M is a real symmetric positive-definite matrix, PMPT satisfies the 
hypothesis of the theorem for any permutation matrix P. Furthermore, by 
uniqueness it follows that 

(5) M = LDL}, 

In this case, D has positive diagonal entries. Also, 

(6) M = GGT, 

where G = LDVl. The factorization (6) is due to Cholesky [12, p. 114]. 
For sparse matrices M, it is significant that L, D, and G of (5) and (6) are 

unique. This means that the zero-nonzero structure of M uniquely determines 
the zero-nonzero structure of L or G, independent of the method used to 
compute L, D, or G. Note also that since M is symmetric, the decomposition^ 
(5) or (6) are more efficient than the M = L'U' decomposition, where only 
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L or U' is unit triangular, because for the decompositions (5) and (6) we need 
only store the upper triangular part of M and either L and D of (5) or G of (6). 

Since the symmetric Gaussian elimination scheme and Cholesky's method 
are the two most generally accepted methods for obtaining (5) and (6) 
respectively, we state them now in algorithmic form which we will need in 
Section 2.2 and Section 4. 

SYMMETRIC GAUSSIAN ELIMINATION 

This method is also known as the method of congruent transformations (see 
Westlake [27, p. 21]). To explain the algorithm, it suffices to exhibit the first 
major step since the algorithm then proceeds recursively on lower order 
principal submatrices. Let the n x n positive definite matrix 

r T 

a r 
M ( 1 ) = 

[ r M 

where a is 1 x 1, r is (n— 1) x 1, and M is (n— 1) x (Λ? — 1). Then 

(7) M ( 1 ) = 
1 0 

L r/a I 

a 

a 0 

= L, 
0 

0 M ( 2 ) 

0 M-rrTla 

1 r
T
/a 

0 / 

where M(2) = M — rrT/a and / i s the (n— 1) x (« — 1) identity matrix. Note that 
M{2) is positive definite because 

(-γ
τ
Γ/α\γ

τ
)Μ

(1)
(^^\> 0 

for any («—1) vector y. We may compute LT and D which replace the strictly 
upper triangular and diagonal parts of A/(1) respectively, by the algorithm 

for /': = 1 step 1 until n— 1 do; 

for j : = /+ 1 step 1 until n do; 

begin ; 

s: =M[_uniM [/ , /]; 

for I: =j step 1 until n do; 

M\J,r\: = Μ [ ; , / ] - ί χ Λ / [ / , / ] ; 

M[i,iï: =s; 

(8) 

end. 



Sparse Systems of Linear Equations 189 

To compute the Cholesky decomposition, note that (7) can be rewritten as 

[ yfa 0 1 [ V a rT/Ja 

[ r/Ja G J [ 0 GT 
M = 

where GGT is the Cholesky factorization oiM — rrT/a and the algorithm (8) can 
be changed appropriately. Usually, however, the elements of G are computed 
column by column, which requires exactly the same operations executed in a 
different order, as in the following algorithm from Forsythe and Moler 
[12, p. 114] 

for j = 1 step 1 until n do ; 

begin G[j,fl: = sqrt ÎAf[yj] Σ GV,k] 
k=\ 

')■■ 

(9) for 1 = 7 + 1 step 1 until n do ; 

M[_i,n- I G [ U ] X G [ / ■ ■ « ) / Gwy, 
end. 

Finally, to solve Mx = b by symmetric Gaussian elimination, we solve 

(10) Lz = b, 

(11) Dy = z, 

(12) Ilx = y. 

Since (10) and (11) involve triangular systems, this is merely back-solving. 
Similarly for Cholesky's method, we compute 

(13) 

(14) 

Gy = b, 

GTx = y. 

Let M = (WJJ) be an n x n symmetric positive-definite matrix with decompo
sition M = LDlJ. It is clear, because the unique decomposition can be 
generated by (7), that the set of pairs {i,j} with ltJ = 0 is, in general, a subset 
of the pairs with m^ = 0, that is, the triangular factor L cannot, in general, be 
more sparse than the lower triangular part of M. 

Given M, if there exists a permutation matrix P such that 

A = ΡΜΡτ = LDL? 

and 

(15) fly = 0 hi = 0, i>J> 
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then we say M is a perfect elimination matrix. It is straightforward from (7) 
(see also Parter [17, Theorem 1]) that A has this property (property P) if, 
and only if, for all 1 ^i<j<k^n 

(16) au Φ 0 and aik Φ 0 => aJk Φ 0. 

We give a graph theoretic interpretation of property P in the next section where 
we introduce monotone transitive graphs and perfect elimination processes. 

2.2. The Combinatorial Elimination Process 

We now temporarily abandon the arithmetic aspects of the elimination 
process in order to study its combinatorial nature. We begin by associating 
with each symmetric positive definite matrix an ordered and an unordered 
graph. First, some graph-theoretic terminology. 

For our purposes, a graph will be a pair, G = (X, E), where X is a finite set 
of |ΑΊ elements called vertices, and 

E £ {{x,y}\x,yeX, x Φ y) 

is a set of | E\ vertex pairs called edges. Given x e X, the set 

adj(x) = {yeX\{x,y}eE} 

is the set of vertices adjacent to X. For distinct vertices x,y E X a chain from 
x to y of length / = n is an ordered set of distinct vertices 

ß = LPuP2,-,Pn+il> Pi = x> Pn+i=y 

such that pi+l e adj(/?,·), / = l,...,w. Similarly, a cycle of length l = n is an 
ordered set of n distinct vertices 

such that pi+l e adj(/?,·), /=1,.. . ,«—1 and /?! e adj(/?„). We will always 
assume that the graph G is connected, that is, for each pair of distinct vertices 
x,y e X, there is a chain from x to y. 

For a graph G = (Z, E) with |ΛΊ = /i an ordering of |A"| is a bijection 

a: {1,2,...,«} <-> X. 

We sometimes indicate an ordering by the shorthand X= {xi}
n
i=l. If G = 

(X, E) and X'\s ordered by a, then Ga = (X, E, a) is an ordered graph associated 
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with G. Given an ordering a of X, the set of vertices monotonely adjacent to a 
vertex x is denoted by M adj (x) and defined by 

Madj(jc) = adj(jc) n {zeX\^\z) > (x~\x)}. 

We associate with each n x n symmetric matrix M = (ml7) an ordered graph 
Ga = (X, E, a) such that vertex *f corresponds to row i and {*,·, x7·} e £, if and 
only if ntij Φ 0 and i <j. The unordered graph G = (X, E) then represents the 
equivalence class of matrices PMPT, where P is any permutation matrix. 
For convenience we assume that for no P can ΡΜΡΊ be represented as a 
direct sum of lower-order matrices, that is, M is irreducible, so that G is 
connected. 

Consider again (7) which represents the first major step of elimination, the 
elimination of xx. We proceed to interpret this step graph theoretically. Let 
G = (X, E) be a graph and a be an ordering of X. The deficiency, D(x), is the 
set of all distinct pairs of adj (x) which are not themselves adjacent, that is, 

D(x) = {{j>,z}|.y,zeadj(x), y Φ z, ^^adj(z)}. 

Similarly, the monotone deficiency, MD(x), is the set 

MD(x) = {{^, Z } | J ; , Z G M adj (x), >> # z, y φ adj (z)}. 

Finally, for a graph G = (X, E) and subset y4gZ, the section graph G (A) is 
the subgraph 

G(A) = (A,E(A))9 

where £(Λ) = {{x,y} e E\ x,y G A}. 
Given a vertex y of a graph G, the graph Gy obtained from G by 

(1) deleting y and its incident edges; 
(2) adding edges such that all vertices in the set adj (y) are pairwise adjacent 

is the y-elimination graph of G (compare Parter [17, p. 120]). Thus 

Gy = (X-{y},E(X-{y})yjD(y)). 

For an ordered graph G = (X, E, a), the order sequence of elimination graphs 
(?!,...,(/„_! is defined recursively by Gx = GXi andGf = (Gi_1)xi,i = 2,...,n— 1. 

Since the graphs Gt determine the evolution of the process of vertex 
elimination, we formally define the elimination process on a graph G = (X, E) 
with ordering a as the ordered set 

P(G;OL) = [G = G0 ,G1 , . . . ,Gn_1]. 

An elimination process P(G\ a) is perfect if 
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DEFINITION.* The ordered graph G = (X, E, a) is monotone transitive when, 
for all x e X, we have 

y e M adj (x) and z e M adj (x) => >> e adj (z). 

The significance of monotone transitivity is given in the following lemma 
which merely summarizes our definitions and relates them to perfect elimin
ation matrices. It is immediate that monotone transitivity is the graph-
theoretic interpretation of the perfect elimination matrix condition of (16). 

LEMMA 1. Let M be a symmetric positive definite matrix with unordered 
graph G — (X, E). Then the following are equivalent: 

(1) M is a perfect elimination matrix; 
(2) there exists an ordering a such that Ga = (X, E, a) is monotone 

transitive ; 
(3) in Ga, MD{x) = 0 for all * e X\ 
(4) P(G;a) is a perfect elimination process. 

Thus, in a monotone transitive graph, vertex elimination adds no edges. 
Suppose, however, that Ga = (X, E, a) represents a matrix M which is not a 
perfect elimination matrix. If elimination is carried out on M, vertex elimin
ation of Ga, then for each \=i<j<k such that mlj^0 and mlk^0 but 
mjk = 0, a new nonzero element will be created in the (j, k) position of 
M(2) = M — rrT/a, see (7). Clearly, the graph of M{2) is the elimination graph 
Gl. Continuing inductively, we see that the study of monotone transitive 
graphs is interesting even if Ga is not monotone transitive, because the 
elimination process may be regarded as transforming the graph Ga, matrix M, 
into its monotone transitive extension M TE (G; a), where 

MTE(G;a) = IX9E\J Λ9 τ, = D(xt) in G ,^ . 

and M TE (G; a) is the graph of LT. 

3. Triangulated Graphs 

3.1. Preliminaries 

In Section 2 we studied the role of ordered monotone transitive graphs in 
the elimination process. Here we shall characterize monotone transitive 

t By way of motivation, a graph is transitive [8, p. 31] if y G adj(jt) and x e adj(z) implies 
y G adj (z). Since we are dealing with undirected graphs, the adjacency relation is symmetric, 
that is, x e adj (z)<=>z G adj(jt). It is easy to see that any connected transitive graph on n 
vertices is the complete graph on n vertices, because then between any two vertices x and y 
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graphs by their cycle structure and their separating sets of vertices. Monotone 
transitive graphs are shown to be triangulated graphs as defined by Berge [3]. 
The theory developed in this section shows very clearly why sparse matrices 
must fill in during elimination. 

Recall that we are dealing only with connected graphs, and for a graph 
G = (X, E) and subset A ^ X, the section graph G (A) is the subgraph 

G{A) = (A,E(A)), E(A) = {{x,y} e E\ x,y e A}. 

A separator of a graph G = (X, E) is a subset S a X such that the section graph 
G{X— S) consists of two or more connected components, say Cf = (Kf, £,). The 
section graphs G (Su Kf) are then the leaves of G with respect to S. A minimal 
separator is a separator no subset of which is also a separator. Similarly, given 
a,b E X with a φ adj (b), an a, b separator is a separator such that a and b are 
in distinct components, say Ca and Cb, respectively. Note that (see the Example) 
a minimal separator is a minimal a, b separator for some a,b e X, but a 
minimal a, b separator is not, in general, a minimal separator. A clique C of a 
graph is a subset of vertices which are pairwise adjacent. A separation clique 
is a separator which is also a clique. 

Fig. 1. Graph G=(X, £). 

Example: Consider the graph G = (X, E) shown in Fig. 1. The set 
S= {a,b,c} is a separator and G(X— S) consists of the three components 
( @ , φ ) , (<2),φ), and ((ζ),φ). The leaf containing @ is the clique on 
{ @ , @ , @ , © } . Note that S is not minimal because S' = { @ , © } is 
also a separator. S' is, however, minimal and it is a minimal x,y separator. 
On the other hand, S is a minimal x,z separator. In addition, both S and S' 
are separation cliques. 

The following definition is due to Berge [3, p. 158]. 

DEFINITION. A graph G is triangulated, if for every cycle μ = \_Ρι9..·,ρ„,Ρι'] 
of length« > 3, there is an edge of G joining two nonconsecutive vertices of μ. 
Such edges are called chords of the cycle. 

there exists a chain from x to y. Hence, a matrix represented by a transitive graph is a full 
matrix. In Section 3 we will see how monotone transitive graphs are built up of smaller 
intersecting complete graphs. 
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Remark: Note that any section graph of a triangulated graph is triangu
lated because any cycle in G = (X— A) is a cycle in G itself, and the chord of 
this cycle in G must be an edge in G(X—A). 

3.2. Main Results 

THEOREM 2.1" For a graph G = (X, E) the following statements are 
equivalent: 

(1) G is triangulated; 
(2) every minimal a, b separator is a clique ; 
(3) there exists an ordering a of X such that Ga = (X, E, a) is monotone 

transitive. 

Theorem 2 and Lemma 1 (Section 2) characterize monotone transitive 
graphs and thus perfect elimination matrices. Statements (1) and (2) give the 
structure of the unordered graph while statement (3) is a property of a corre
sponding ordered graph. Of the three equivalent properties above, statement 
(3) is clearly the most algorithmic in the sense that its vérification is straight
forward. In fact Lemma 1, Section 2 shows how to test for monotone 
transitivity, because in each successive elimination graph there must always 
exist a vertex with empty deficiency. 

THEOREM 3. Let G = (X,F) be triangulated with subgraph G = (X,E), 
E^F. Then G is triangulated, if and only if for each e = {x,y} e F— E there 
exists an x, y separation clique, Se, of G. 

If G = (X, F) is triangulated, an arbitrary subgraph of G obtained by 
removing a subset of edges need not remain triangulated. Theorem 3 gives a 
necessary and sufficient condition that the subgraph be triangulated. It has an 
important corollary which requires anticipating a notion of Section 4. 

Suppose a graph G = (X, E) is not triangulated. Then for any ordering a of 
X the set 7(a) of M TE (G; a) = (X, EKJ Τ(μ)) is a triangulation of G generated 
by the ordering a. A minimum triangulation would be a triangulation, Γ(α), 
such that 

|Γ(4)| =min|7Xa)| 
a 

COROLLARY 1. Let G = (Ar, E) be a graph with separation clique S with 
components C, and leaves Lt. Then any minimum triangulation T of G 
contains only edges e= {x,y} e T with x and y in the same component Cj9 

or edges e = {x,y} e T with x e Cj and y e S. 

t For statements of parts of this theorem see Boland and Lekkerkerker [5a], Dirac [9a], 
and Fulkerson and Gross [12a]. 
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Proof: If the triangulation T contains a nonempty subset of edges with 
incident edges in C, and Ck J Φ k, these edges may be deleted, and by Theorem 3 
the resulting set f is still a triangulation. 

Thus, in a graph with a separation clique, the problem of finding a minimum 
triangulation reduces to finding a minimum triangulation for each leaf. 

THEOREM 4. Let G = (X, E) be triangulated, and a be a monotone transitive 
ordering. If S is a minimal a, b separation clique of G, then S = M adjC*,·) for 
some Xj e X. Conversely, for any xi e X, such that the vertices of the elimin
ation graph G, _ ! are not a clique, M adj (*,·) is a separation clique of G. 

Hence, in a triangulated graph, all minimal a, b separators are generated in 
the elimination process. Note that although the sets MadjC*,·) are separation 
cliques, if Gi_l is not a clique, they need not be minimal a,b separation 
cliques. For example, in G of Fig. 2 below, {(5), (4)} is the only minimal 
a, b separator. 

Remark: One interesting application of Theorem 4 is that in a non-
triangulated graph G = (X,E) with | X | = « , at most, n — μ minimal a,b 
separators of G remain minimal a,b separators of G = (X, EuT), where T 
is any triangulation of G and μ = max{|C|, C a clique of G}. This follows 
because any clique in G is also a clique in G, and because, as we shall see in the 
proof of Theorem 2 in the next section, a monotone transitive ordering for G 
can be found which orders vertices in any clique last. 

3.3. Proofs and Corollaries 

We begin the proof of Theorem 2 by generalizing slightly Theorem 3 of 
Berge [3, p. 160]. 

LEMMA 2. In a triangulated graph G = (X, E) every minimal a, b separator 
is a clique. 

Proof: Let S be a minimal a, b separator and Ca and Cb be the components 
of G(X— S) containing a and b, respectively. Since S is minimal, each s e S 
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is adjacent to some vertex in Ca and some vertex in Cb. Let x9y e S9 and let 
μι be the shortest chains of the type 

[*>cu,cif2,...,c/>Pl,j>l· i= 1,2, cUjeCa9 c2JeCb. 

The cycle containing x and y formed by μί and μ2 has length / ^ 4, and the 
only possible chord is {x,y}. 

LEMMA 3. Let G = (X9 E) be a graph with separation clique S and leaves 
Li9 i= 1,...,«. If S0 is a separator of some L/5 then S0 is a separator of G. 
Furthermore, if S0 is a minimal α,Ζ? separator of Li9 then S0 is a minimal a,6 
separator of G. 

Proof: Let Dj9 j = l,...,m be the components of Lx with respect to 5 0 . 
Since S is a clique, vertices in S can be in only one component, say Dk. Thus, 
S0 is a separator of G9 because any chain from a vertex x e (Lj — S0) withy Φ i 
to a vertex y e Dl9 l^k must contain a vertex of S0. This proves the first 
statement. 

For the second statement, note that S0 is a separator of G as we have just 
shown. It must be an a,b separator, for the same a9b9 because Z ^ n S ^ φ 
for at most one /. Finally, S0 must be minimal in G since any a9b separator 
S0 c S0 in G must be an a9 b separator in Lt. 

LEMMA 4. Let G = (X9 E) satisfy statement (2) of Theorem 2. Then either 
X is a clique, or given any clique C c X, there exists a vertex * φ C such that 
/>(*) = 0. 

Proof: The proof is by induction on \X\ and the case |ΛΊ = 1 is clear. 
Assuming any case with \X\^k9\et G = (X9 E) be such a graph with \X\ = 
k + 1 and C be any clique. Either X is a clique or there exists by Lemma 2 some 
a9 b separation clique of G9 say Cx. Let Da9 Db and La, L6 be the corresponding 
components and leaves of G containing a and b respectively. Clearly, the 
vertices in C—Cx can be in, at most, one component. Suppose such vertices 
are in Da. Consider the leaf Lh. By Lemma 3 it inherits statement (2) of Theorem 
2. Writing Lb = {W9F)9 we have \W\ ^k and, hence, by induction, either W 
is a clique or there exists a vertex x φ C{ such that D(x) = 0 in Lb. In either 
case then, since W must contain at least one vertex not in Cx, there exists 
an χφϋ1 with D(x) = 0 in Lb. Finally, D(x) = 0 in G because x is not 
adjacent to a vertex in any component other than Db. Clearly, χφ C, the 
original clique. 

Lemmas 3 and 4 yield the following two corollaries concerning the existence 
of vertices with D{x) = 0. The first corollary will imply that the ordering a 
guaranteed by statement (3) of Theorem 2 is not unique. 
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COROLLARY 2. Let G be as in Lemma 4, and S be any separation clique 
of G with components C, and leaves L t. Then for each component C,, there 
exists a vertex ct e Cf with D{c^) = 0 in G. 

Proof: By Lemma 3, each Lf has Property (2) of Theorem 2. Thus by 
Lemma 4, for each Lf there exists a vertex cf £ S of Lx with /)(£;) = 0 in Lt and, 
therefore, in G. 

COROLLARY 3. Let G be as in Lemma 4. Then, for any l e i , one, and 
only one, of the following statements is true: 

(1) D(x) = 0; 
(2) x e S, where S is a minimal a, b separation clique. 

Proof: If (2) is true, clearly (1) must be false. We show by induction on 
|X\ that (1) or (2) must be true. The case \X\ = 1 is clear, and we suppose the 
case \X\ ^k. Note that if X is a clique, the result is immediate. Assuming 
otherwise, let S be a minimal a, b separation clique of G. Let x e X. If x e S9 

the proof ends, so let x e (La — S). By the induction hypothesis and Lemma 3, 
either D(x) = 0 in La9 and hence in G, or x e S, where S is a minimal c9d 
separation clique of La, and hence of G. 

LEMMA 5. Let G = (X, E) be as in Lemma 4. Then there exists an ordering 
a of X such that for all xeX,MD(x) = 0. 

Proof: The proof is by induction on \X\. The case \X\ = 1 is clear, and 
we suppose the case |X\ = k. If G is such a graph with k + 1 vertices, then, by 
Corollary 2 above, there exists a vertex xl such that ΖΗχχ) = 0. Let Gx = 
(XX,EX) be the jc^-elimination graph. Since a d j ^ ) is a separation clique, 
if A'itself is not a clique, G{ satisfies the hypothesis of the lemma by Lemma 3, 
and Gl has \XX \ = k. By induction there exists an ordering ctl of the vertices 
of Gx such that 

α ι ( 0 = *i+i> * = 1,.··»&> defining*,· 

with Μ/)(ι,·) = 0. Finally, in G, choose the ordering 

a(/) = xt-, / = Ι,.,.,Α: -f 1. 

Then MD(Xi) = 0 with this ordering in G. 

Note that the ordering a assured by Lemma 5 is not unique in view of 
Corollary 2. This means that if G = (X, E) is not triangulated, any triangu
lation Γ(α) generated by an ordering a will also be generated by other 
orderings α'. Also, note that another way of stating Lemma 5 is that there 
exists an ordering a such that the order sequence of elimination graphs of G, 
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that is, G = G0,Gi9...,Gn-1, has D(xi) = 0 in Gi_l. Finally, we shall call 
any ordering guaranteed by Lemma 5 a monotone transitive ordering. 

LEMMA 6. A monotone transitive graph is a triangulated graph. 

Proof: Let a be the ordering and μ be any cycle with / > 3. Let p* e μ be 
the vertex such that 

a"1(/7*) = mina" ί(ρ)> 
ρεμ 

Since p* is adjacent to two nonconsecutive vertices by monotone transitivity, 
μ has a chord. 

Proof of Theorem 2: Statement (1) => statement (2) by Lemma 2, statement 
(2) => statement (3) by Lemma 5, and statement (3) => statement (1) by Lemma 6 
and Lemma 1. 

The following corollary shows that in a triangulated graph a monotone 
transitive ordering can be found such that any given clique is ordered last. 

COROLLARY 4. Let G = (X,E) be triangulated with clique C g l Then 
there exists a monotone transitive ordering a such that cc(j)eC for j = 
k+\,k + 2,...,\X\9 where k = \X\- \C\. 

Proof: The proof follows from Lemma 4 and the induction argument of 
Lemma 5. 

Corollary 4 has the following interesting interpretation. Suppose G = (X, E) 
is not triangulated, and we wish to find an ordering which generates a tri
angulation Γ(α) with a specific property, for example, a minimum triangula
tion. Since any clique in G remains a clique in the triangulated graph G = (X, 
Eu Γ(α)), the corollary implies the existence of other orderings a' such that 
Γ(α) = Γ(α'), and such that a' orders the clique last. We will see in Section 4 
that if only the unknowns represented by the vertices in the clique are desired, 
ordering the clique last will reduce the number of backsolving operations 
[see (12) and (14)]. 

We begin the proof of Theorem 3 with 

LEMMA 7. Let G = (X, F) be triangulated with a subgraph G = (X, £) , 
E a F. Suppose S is a separation clique of G such that for each edge e = 
{x,y} e F—E, x and y are in different components. Then G is triangulated. 

Proof: Let μ be any cycle in G with / ^ 4. If μ is entirely with some leaf 
of G, then μ contains a chord, because μ is also a cycle in G. If μ has vertices 
in more than one component, then μ must contain at least two distinct vertices 
of S. These vertices are adjacent; hence, μ has a chord. 
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Proof of Theorem 3: The "if" part of the theorem follows by successive 
applications of Lemma 7. Given some Se, discard all edges in F—E with 
incident vertices in different components. Se is then a separation clique of this 
new graph G. By Lemma 7, G is triangulated. Continue for each edge in F—E 
not already discarded. The converse is clear by Lemma 2, because for each 
e = {a,b} e F—E, there exists a minimal a,b separator Se in 6, and Se is a 
clique. 

Proof of Theorem 4: To prove the first assertion, let Cx =(Vl,E1) and 
C2 = (Vi,E2) be the components of G with respect to S containing a and b 
respectively. For each Kf let vf be the vertex such that 

a_1(y*) = maxa_1(y). 
ve Vi 

Choose v e {ι?ι*,^2*} s u c r i that 

a - 1(£) = m i n i a - 1 ^ ! * ) , « - 1 ^ * ) ) · 

Because S is minimal, each s e S is adjacent to some vertex in Ca and Cb. 
Hence, if y = α~l (v) by monotone transitivity and the connectivity of Ca and 
Cb, we have S = M adj (*,·). 

To prove the second assertion, note first that M a d j ^ ) is a separation 
clique of G, unless X is a clique. Also, the elimination graph Gl is a leaf of G, 
which is triangulated, with respect to MadjC^), and Gl=(XiiEl) has 
1^1 = 1̂ 1 — 1. The assertion then follows by induction on \X\ and Lemma 3. 

3.4. Examples 

As our first example, we will discuss in detail the ladder graph (see Fig. 3), 
since it illustrates the notions of Section 2 and Corollary 1, as well as antici
pating some of the developments in the next section. The remaining examples 
are classes of graphs which illustrate our theoretical results. 

3.4.1. LADDER GRAPH 

Figure 3a shows the ladder graph on In vertices with two ordering <χγ and 
a2, written in the form ((xl (x), a2(x)) at each vertex x. Figure 3b shows the 
zero-nonzero structure of the matrices corresponding to the two ordered 
graphs. Finally, Fig. 3c shows the upper triangular factor LT [see (5)] for each 
matrix. Clearly Mx and M2 are not perfect elimination matrices, because the 
graph has nonchorded cycles. 

Note that the decomposition using ocl requires 0(n2) cells of storage, while 
the decomposition using a2 requires only 0(n) cells. We will see in Section 4, 
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Fig. 3. (a) Ladder graph wi th two orderings. (b) Matrices corresponding to the two 

orderings, where * indicates nonzero elements, (c) Upper triangular factors. 

Theorem 5 that 0(n3) arithmetic operations are required to effect the de
composition with al9 while only 0(n) operations are needed with a2. The 
difference is significant. 

It follows from Corollary 1 that a2 generates a minimum triangulation of the 
ladder graph. Since the pairs of vertices connected by each of the n — 2 inner 
vertical rungs form separation cliques, the problem of finding a minimum 
triangulation for the ladder reduces to finding a minimum triangulation of the 
cycle on four vertices which requires only one edge. Thus, a minimum 
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triangulation for the In vertex ladder requires n—\ edges, and one such 
triangulation is generated by a2. 

3.4.2. TREES AND k TREES 

A tree is a connected graph which has no cycles. Equivalently a tree with 
\X\ = n > 1 vertices is a connected graph with n—\ edges. Apparently Parter 
[17] was the first to realize that the matrix M represented by a tree was a 
perfect elimination matrix, although he does not use this term. Parter gives a 
specialized algorithm [17] for Gaussian elimination on such a matrix. 

Trees are clearly triangulated graphs, and any tree must have at least two 
pendent vertices, that is, vertices adjacent to only one edge. Pendent vertices x 
are the only vertices in a tree with D(x) = 0 , otherwise the tree would have a 
cycle. A generalization of a tree is a k tree defined recursively as follows : 
A k tree on k vertices is a clique on k vertices. Given any k tree Tk(n) on n 
vertices, a k tree on n+\ vertices is obtained when the (/i+l)st vertex is 
adjacent to the vertices of a clique on k vertices in Tk(n). 

If we order the vertices * f, / = 1,2,...,« in the construction of a k tree on n 
vertices as defined above, then clearly this graph is monotone transitive with 
ordering cc(i) = xn+1-i9 i= 1,...,«. Then, k trees are triangulated graphs. 
They also have the following property. 

PROPOSITION 1. Every minimal separator S of a k tree Tk(n) has | 5 | = k. 

Proof: Since Tk(n) has a monotone transitive ordering such as a above, 
|Madj (a(/))| = k for / = 1,2,...,« —A:. By Theorem 4, S = Madj(X·) for some 
such z, since neither the set W = {xjfr/ nor any subset of W is a separator. 

3.4.3. THE CYCLE 

Let C = (X, E) be the cycle on \X\ = n vertices. With respect to triangulating 
C, we have 

PROPOSITION 2. Let C = (X,E) be a cycle with |ΑΊ^3 vertices. Then a 
minimum triangulation t of C has \f\ = |ΑΊ~3. Furthermore, if a is any 
ordering and MTE(C;a) = (X,E u Γ(α)), then T(oc) is a minimum triangu
lation. 

Proof: Both conclusions are proved easily by induction on \X\, and the 
case |A"| = 3 is immediate. Let C = (X, E) with |ΑΊ = &+1 assuming these 
assertions for such graphs with |A"|^A*. Let eef, where t is a minimum 
triangulation of G. Clearly the vertices incident on e form a separation clique S 
in C = (X, E u f ), by Theorem 3. Hence, by the corollary Γ = Γ 1 υ Γ 2 υ Μ , 
where 7\ and T2 are minimum triangulations of the leaves of C with respect 
to S, say Ly = (Kl5 Ex) and L2 = (V2, E2). Lx and L2 are cycles with |Kj| < k, 
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i = 1,2, and l ^ i M ^ I = \X\+2. By induction, |Γ,| = |Κ, | -3 , / = 1,2, imply
ing |Γ | = 1^1-3. For the second statement, note that \D(x)\ = 1 for any 
x e X, and that the elimination graph Cx = (Xl9El) is a cycle with \X\ = k 
vertices. By induction, any ordering a on Xl gives a minimum triangulation 
of Cx. The assertion now follows. 

3.4.4. COMPLETE BIPARTITE GRAPHS 

A graph G = (X9E) is bipartite if X = RuB with RnB = 0 , and for each 
e = {x,y} e E either x e R, y e B or y e R, x e B. Equivalently, G is bipartite 
if every cycle has even length [8, p. 86]. Because of the second condition, 
trees are the only bipartite graphs which are triangulated. 

Let G = (X,E) be a bipartite graph with X=B\jR and \R\ ^ \B\. If each 
vertex xeR(xeB) is adjacent to each vertex y e B(ye R), the resulting 
graph is a complete bipartite graph, denoted by Cnm (n = \R\, m = \B\). 

By Theorem 2, in any triangulation of C„>m, there must exist a vertex with 
£>(*) = 0 · Hence, to triangulate Cnm at least n(n— l)/2 edges are necessary. 
However, this number of edges is clearly sufficient by taking the MTE 
generated by the ordering (x(i) = bii /= l , . . . ,m , B={bi}T==i and a(i) = rf, 
Ι = Λ + 1 , . . . , / Ι + / ΙΙ ,Α = { Γ Ι } Ϊ ; ; + 1 . 

4. Optimal Ordering and Algorithms 

In this section we examine carefully several criteria by which we may 
evaluate "optimal," and we relate these criteria to the computational com
plexity of the elimination process on sparse matrices. We give, first, a count of 
the number of operations needed to effect the decompositions and backsolving 
operations associated with solving symmetric sparse linear systems Mx = b. 
In Section 4.2 we discuss criterion functions in a general setting, and in 
Section 4.3 we present some results which give bounds for triangulations T 
of a nontriangulated graph. Finally in Section 4.4 we discuss ordering 
algorithms. 

4.1. Operation Counts and Practical Criteria 

Let M be an n x n symmetric positive definite matrix with ordered graph 
G = (X, E, a). Denote by d{a{i)) the degree of the vertex a(/) in the elimination 
graph C/f-j, that is d(<x(i))= |adj(a(/))| in Gi-l. Where it causes no con
fusion, d(ct(i)) will be written dt. Using this notation we present the following: 
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THEOREM 5. Let M and G be as above. Counting multiplications and 
divisions as multiplications and operations, a 4-0, αφθ, which occur when
ever D(Xi) Φ 0 in G,_ l as additions, we have 

(a) the LDÜ decomposition [see (8)] requires 

n— 1 

(17) X 4 ( 4 + 3)/2 multiplications 
i = l 

and 
w - l 

(18) £ 4 ( 4 + l ) / 2 additions; 
i = l 

(b) the Cholesky decomposition M = GGT [see (9)] requires the same 
number of multiplications and additions as in (a) and also n square roots; 

(c) for a general «-vector b, the back-solving operations 

0) Lz = b, 
(2) Dy = z, 
(3) LTx = y 

require 
w - l 

(19) 2Σ di + n multiplications 
/ = i 

and 
n-\ 

(20) 2 £ 4 additions. 
7 = 1 

(d) the back-solving operations Gy = b and GTx = y require n more multi
plications than (19) and the same number of additions as (20). 

Proof: By the discussion in Section 2.1 [see (7)-(9)] we see that (b) follows 
easily from (a). The proof of (a) is by induction on n. The case n = 2 is im
mediate. Suppose the theorem is true for 2 < n = k— 1 and let G = (X, E, a) 
have \X\ =k. Referring to (7) and (8), the first step of elimination requires 
that we compute s = r/a and M—sr1 for all 1 =i^j^n. This requires dl 

multiplications and d1 (dl + l)/2 multiplications and additions. Hence, in total 
the first step of elimination requires 

(21) dl(d1+ 3)/2 multiplications and di(d1-{-1)/2 additions. 

Since the graph of M (2) is the elimination graph Gx, we have, by induction 
that the decomposition of M{2) requires 

n—1 n—1 

(22) £ 4 ( 4 + 3)/2 multiplications and £ 4 ( 4 + l ) / 2 additions. 
i=2 i=2 

Adding (21) and (22) gives (17) and (18). 
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To verify (c), recall that the graph of LT is ΜΤΕ((/;α) = (Χ,Εντ^ and 
note that one addition and one multiplication are required for each edge in 
£ U T J in the operations (1) and (3). Since 

I = 1 

the result follows. 
The Cholesky backsolving operations (d) require n more multiplications 

than the total in (c) because G has, in general, a nonunit diagonal. 

These counts show that for a sparse n x n matrix M as above, the importance 
of n as a measure of computational complexity is relatively minor. For 
example, for such an arbitrary irreducible matrix we know, a priori, only that 
the number of multiplicative operations Θ for the decomposition A satisfies 

We consider three practical criteria for optimal ordering of a symmetric 
matrix M for elimination. While the minimum arithmetic criterion is suggested 
naturally by the operation counts given above, the minimum "fill in" and 
minimum bandwidth criteria are the two most commonly used. 

4.1.1. MINIMUM ARITHMETIC 

Let M be a symmetric matrix with ordered graph G = (X, E, a), \X\ =n. 
Define 

L(a) = "fi/(a(/)), 
i=\ 

2(a) = "îV(a(/)), 
1 = 1 

and 

J(p9q;oi) = pL(ot) + qQ(ct), p > 0, q > 0. 

Then, criteria based on minimizing arithmetic operations counted by Theorem 
5 can be formulated as attempting to find a such that 

J(p,qi&) = min J(p,q; a) 
a 

for specific p and q. For example, to solve Mx = b using the LDÜ decompo
sition and backsolving requires 

J(h ì Ia) + n multiplications and J($, | ; a) additions. 
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To compute det(M), which is the product of the diagonal entries of (D) 
requires 

J(h 2 ; a ) + (n - 1 ) multiplications and JQ, i ; a) additions. 

The operation counts for these two specific computations above suggest a 
difficulty with the minimum arithmetic criterion. To define "optimal" for 
either of these computations requires a decision about the relative cost of 
additions, multiplications, and storage. Furthermore, an optimal ordering 
for solving Mx = b is not necessarily an optimal ordering for the problem of 
computing det(M). Since both computations involve the decomposition 
M = LDlJ, it may be unsatisfactory, from the viewpoint of having a general 
sparse matrix package, to consider four different criteria in order to define 
optimal ordering for these two very similar computations. Specifically, the 
difficulty arises because a priori we cannot be assured that there exists an 
ordering a which minimizes L(a) and Q(OL) simultaneously. In practice, it is 
common to attempt to minimize the less stringent fill in criterion L(a). To 
relate the L(a) criterion to the more general minimum arithmetic criterion, 
the following bound is relevant. 

PROPOSITION 3. Let G = (X, E9 a) be monotone transitive and 

//(a) = max rf(a (/)).* 
1 < i < n — 1 

Then 
Q(oc) ^ μΚα) - (μ-ί)μ(μ+ί)/6, 

and there exist graphs for which this bound is sharp. 

Proof: The elimination graph G( must contain a clique with μ vertices if 
d((x(i)) = μ is the degree of the vertex α(ι) in (/,·_!, since G is monotone 
transitive. Hence, for all integers 1 — μ—\,μ — 2,...,\ there exists an integer 
kt>i mthd((x(kl)) = l. 
Let 

Pi = {jel\d(«(j)) = i}9 / = { 1 , 2 , . . . , * - 1 } . 

Then 

ρ(α) = "j>2(«(0) = Σ i2 + Σ (I Al - m2 

/ = 1 1 = 1 ι = 1 

< ί«·2 + μ£(ΐΑ|-1)ι· 
i = 1 ι = 1 

= / Σ 4 - Σ (μ-W = / Σ 4 - (μ-1)μ(μ+1)/6. 
ι = 1 / = 1 ι = 1 

Finally, the monotone transitive graph of Fig. 4 shows that equality is possible. 

t Note that //-hi is the number of vertices in the largest clique of G. 
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Fìg. 4. Monotone transitive graph, where 

d(1) = d(2) = d(3) = 3, d(4) = 2, d(5) = 1. 

4.1.2. MINIMUM FILL-IN 

Let G = (X, E) be a graph with monotone transitive extention G = 
(Χ,Ε υ Γ(α)). Then, since G is monotone transitive, 

(23) L(a)= Σ*(«(0) = |£| + |Γ(«)| 

because each edge in £ u Γ(α) is counted once, and only once, in some d(oc(i)). 
Thus, by minimizing L(a) over all orderings, we minimize the fill in Γ(α) 
caused by elimination. Then, T(a) is a minimum triangulation of the graph. 

Various authors [20, 23, 25, 26, 29, p. 25] have taken the criterion of mini
mum fill in as the "appropriate" criterion for defining optimal orderings. 
However, the effect of minimizing L (a) upon the count of necessary arithmetic 
operations for certain computations seems to have been overlooked in the 
literature. It is certainly not the case, as is evident from the discussion above, 
that minimizing L(a) necessarily minimizes arithmetic. Note, however, that 
for any a we must store Z, (a) +1 A" | nonzero numbers for D and L in the 
decomposition of M corresponding to G. We call this primary storage, as 
opposed to the secondary storage necessary to determine which elements of 
L are nonzero. 

We think the advantages of using L(a) as a criterion for optimal ordering 
are as follows : 

(1) 
(2) 

(3) 

(4) 

minimizing L(a) minimizes primary storage; 
minimizing L(oc) minimizes the backsolving operations of Theorem 
5(c); 
for a graph in which μ(α) of Proposition 3 can be bounded indepen
dent of \X\ = «, a satisfactory bound on arithmetic operations can be 
given which is minimized with L(a); 
if L(a) is minimum, the triangulation Γ(α) of G is a minimum tri
angulation, that is, the function L{x) on a graph has graph-theoretic 
significance. 
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4.1.3. MINIMUM BANDWIDTH 

For an n x n symmetric matrix M, it is natural to define M to have band
width k ^ 0 if 

(24) k = max (y - / ) , 
UJieA 

where 

Λ = {{Ui\\i <jand mi} φ 0}. 

Thus, a symmetric tridiagonal matrix has bandwidth k=\. Equation (24) is 
consistent with the recent paper of Cuthill and McKee [9], although other 
authors count the diagonal and subdiagonals in their definition of band
width [12, p. 15]. If G = (X,E,ct) is the ordered graph of M, clearly M has 
bandwidth k, if and only if 

k = max max ( a - 1 (>>) — /). 
K / « S n - l ^eMadj(jC/) 

Furthermore, since |adj(x)| = |Madj(x)| + \{y e X\ x e Madj(>>)}|, it follows 
easily that 

(25) *>max{[± |adj(x) | ]} , 
xex 

where [/?] is the least integer / ^ p. 
Matrix bandwidth minimization has enjoyed considerable popularity in 

matrix methods of structural analysis, see, for example, Livesley [16], 
McCormick [29, p. 155], Cuthill and McKee [9], and Rosen [19]. By using 
bandwidth methods, these authors attempt to limit fill in and arithmetic to a 
level acceptable for their applications. The popularity of bandwidth methods 
is partially justified by the following two properties of bandwidth analysis. 
First, for a symmetric matrix M of bandwidth k and ordered graph G = 
(X, E, a), all the fill in of M due to elimination is constrained within the band
width. That is, the graph MTE(G;a) also has bandwidth k* Second, the 
special elimination scheme for a symmetric matrix of bandwidth k is relatively 
easy to implement on a digital computer primarily because necessary data 
handling and indexing is simplified (see the discussions in McCormick 
[29, p. 155] and Cuthill and McKee [9, Section 1]). 

Note, however, that the effectiveness of bandwidth implicitly presupposes 
that the band width k of a symmetric nxn matrix M will be small relative to n. 
Bandwidth analysis is crude, in general, because k need not be small relative 
to |ΑΊ = Α7, and because this analysis takes no account of the zero-nonzero 
structure within the band. To substantiate this claim, we appeal to Theorem 4 

t This is clear since k ^ |Madj(;t)|, and making Madj(*) a clique does not increase k. 
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and the corollary to Theorem 3. Theorem 4 states that the sets Madj(X) are 
separation cliques in the extension graph MTE(G;a). Suppose that the 
vertices are being ordered by some sequential scheme to attain a minimum, or 
approximate minimum, bandwidth.f If, in the elimination graph Gi9 the set 
S = M adj (Xi) is a separation clique breaking G into c ̂  2 components, 
Theorem 3 and Corollary 1 (Section 3) implies that in Gt the vertices in S 
should be ordered after those in all but one component. Bandwidth mini
mization, however, will tend to order the vertices in S immediately. This 
causes redundant edges in successive elimination graphs which may increase 
the bound (25) in subsequent elimination graphs. * We illustrate this phenom
enon in the following example. 

Example: The snowflake graph shown in Fig. 5 provides an example 
where bandwidth ordering (Cuthill-McKee algorithm) orders separating sets 
too early. Note also that for this graph, (25) gives the overly optimistic bound 
k ^ 3. In fact, this ordering gives k = 6, wherek is not small relative to |Z | = 18. 

4.2. Criterion Functions 

Let G = (X, E9 a) be a monotone transitive graph with \X\ = n. Then 

"Σ «*(«(o) = m 
that is, the (n— 1) integers d((x(i)) form a.partition, or degree partition, of \E\. 

For two ordered monotone transitive graphs Ga = (X9 E9 oc) and Gß = 
(X9F9ß) with \X\ = n9 the partitions of \E\ and |F | generated by the d(oc(i)) 
and the d(ß(i))9 respectively, will be called equal, if there exists a permutation 
π on the integers 1,2,...,«-1 such that 

d(oL(i)) = d(ß(n(i)))9 i= 1 ,2 , . . . ,«-1. 

Similarly, the partition generated by the d(oc(i)) dominates the partition 
generated by the d(ß{i)\ if 

d(*(i))>d(ß(n(i)))9 i = 1 ,2 , . . . ,« -1 . 

t As, for example, the algorithm presented by Cuthill and McKee [9], which is probably 
the best available for large order graphs (\X\ = 103-105). It can be combined with the 
recent algorithm of Rosen [19] for further improvements (see Cuthill and McKee [9, p. 12]). 
See Akyuz and Utku [1] and Alway and Martin [2] for other bandwidth algorithms. 

t This analysis explains the results of Cuthill and McKee [9, p. 15] where it is reported that, 
for several sets of graphs generated randomly with \X\ = 50 and 100^ \E\ ̂  150, the 
average bandwidth, after using the Cuthill-McKee algorithm or the Cuthill-McKee-Rosen 
modification, ranged from k = 17 to k = 28.2. k is not found to be small relative to \X\ in 
these experiments. 
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Fig. 5. Snowflake graph wi th bandwidth ordering given by the Cuthi l l -McKee algorithm 

[9], where k = 6. Vertices ® and © are ordered too early. 

We consider a class of functions defined on the quantities d(a(i)) each of 
which may represent a cost of elimination, or if the graph G = (X, E) is not 
triangulated, these functions can be considered as criterion functions for 
choosing an optimal ordering. 

As criterion functions for the graph G = (X,E)(\X\ =n), we choose the 
class of symmetric isotone functions, that is, real valued functions 

F(aua2, . . . ,an_!), at integer 
such that 

(1) F(ai,a2,...,an_1) = E(a<Tii)9a<r(2),...9a(Tin-1)\ where σ is any permu
tation on {1,2,...,«—1}; 

(2) F(al,a2,-..,an-1) ^ F(bl,b2,...,bn_l) when a^ bi9 i= Ι , . , . , Η — 1 . 

We now show, see Theorem 6, that if F is a criterion function for a tri
angulated graph G = (X, E) with distinct monotone transitive orderings a 
and β, then 

F(d{a{\% d(a(2)),...,d(a(n - 1))) = F(d(ß(l))9 d{ß{2%...,d{ß{n -1))). 

Furthermore, by Theorem 7, if 7 is any nonmonotone transitive ordering of X, 
then Ga = ( I , £ , a) is a subgraph of MTE(G,; y) and we show 

F(d(y(l)),d(y(2)),...,d(y(n-l))) > F(d(a(l)),d(«(2)),...,d(«(n-1))). 

Thus, with respect to criterion functions on triangulated graphs, monotone 
transitive orderings may be regarded as optimal. 

THEOREM 6. Let G = (X9 E) be triangulated and let a and ß be two distinct 
monotone transitive orderings of A". Then the two partitions of | £ | generated 
by the d(a(i)) and the d(ß(i)) are equal. 
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Proof: We use induction on |A"|. The case \X\ = 2 is clear. Suppose that, 
in the case |A"| =k—\, we consider G with |Λ"| = k. If α(1) = ß(l) = x, the 
result follows immediately from the induction hypothesis on the elimination 
graph Gx. Suppose, then, that a(l) = y and ß(l) = z. Note that if y e adj(z) 
then adj(j>)-{z} = adj(z)-{>>} by monotone transitivity and | adj (>»)| = 
|adj(z)|. Consider the new monotone transitive orderings a and β defined by 

a(l) = y, β(\) = z, 

α(2) = z, β(2) = y, 

â(i) = ß(i) = y(i —2), i = 3,...,«, 

where y is any monotone transitive ordering of the triangulated section graph 
G(X-{x,y}). By the first part of the proof, the partitions generated by 
d(ot(i)) and d(oi(i)) are equal, as are those generated by d(ß(i)) and d(ß(i)). 
It remains to show that the partitions generated by d(ot(i)) and d(ß(i)) are 
equal. Now a yields the partition |adj(>>)|, |adj(z)|, d(y(i—2)\ i = 3,...,n, if 
y φ adj(z) and |adj0>)|, |adj(z)| - 1, d{y(i-2% i = 3,...,n, iï y e adj(z). But β 
gives an equal partition in each case because |adj(>>)| = |adj(z)| if y e adj(z). 

LEMMA 8. Let G = (X, F) be triangulated with triangulated subgraph 
G = (X, E), E ç F. If a is any monotone transitive ordering for both G and G, 
then the degree partition of F dominates the degree partition of E. 

Proof: Clearly, â(xx) < d{xx), and the elimination graphs G{ = 
{X-{xx}9Ex) and Gl =(X-{x1},Fl) are triangulated with El^Fl. The 
proof then follows by induction on \X\. 

LEMMA 9. Let G = (X, E) be triangulated and x e X. 
Then G = (X,ΕνΌ(χ)) is triangulated. 

Proof: Assuming D(x) φ 0 , we need only show that cycles in G of the 
form 

μ = [ * Ι , ; Ί » / Ί > · · . , Α Ρ * Ι ] > n ^ 2 

with {xuy\i e D(x) have a chord. These are two cases. 

(1) if some pi e adj(x), then there is a chord {xl9Pi} (or {yupn}, if / = n) 
in EuD(x); 

(2) if no pi G adj(x),the cycle μ' = {.Xi,x,yi9Pi,...,pn,xì'] in G has a chord 
i*i>/>/}> {yi>Pj}> o r {PhPj} in £> which is also in chord in G. 

LEMMA 10. Let G = (X, E) and G = (X, F) be triangulated with strict 
inclusion E a F. Then there exists a monotone transitive ordering a for G 
such that in G, M TE(G ; a) = (X, Eu Γ(α)) with strict inclusion (Eu Γ(α)) c F. 
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Proof: If X is a clique in G, the lemma is true for any a which is a monotone 
transitive ordering for G. Hence, we assume X is not a clique in G and prove 
the assertion by induction on \X\. One easily verifies the cases when \X\ = 4, 
and, assuming the case \X\ =k— 1, we consider such graphs G and G with 
\x\=k. 

Let S = {y e X\ D(y) = 0 in G}. We first dispense with two cases. 

(1) If for some y e S, [adj(j>)]öc [adj(y)]G, that is, there is an edge 
e = {y, x} e F— E, then by choosing any monotone transitive ordering for G 
with a(l) = y we have (Eu Γ(α)) c F. 

(2) If some yeS with [adj(y)]ö = [adjO)]G has D(y) = 0 in G also, 
then by choosing a(l) —y, the lemma follows by the induction hypothesis on 
the elimination graph Gy and Gy. 

These cases being dismissed, we may assume that for each y e S, 
[adj(j>)]G = [adjO>)]G, and that the clique adj(>>) in G contains at least one 
pair of vertices ey = {vl9 v2} e F—E. By Corollary 2 and Lemma 6 (Section 3), 
since X in G is not a clique, there exists y,z e S with y $ adj(z). For such 
vertices ey^ez, because if ey = ez = {vl9 v2}, the cycle μ = [>>, νί9ζ, v2,y\ has 
no chord in E, so G could not be triangulated. 

Hence, for some y e S, choose α(1)=>> and consider the y-elimination 
graphs Gy = (X— {y}, Ex) and Gy = (X— {y}, F^. It is clear from the above that 
strict inclusion El a Fl holds because there exists a z e S with y φ adj(z) and 
such that ez e Fi, but ez£ Ei. Also, by Lemma 9, Gy is triangulated, as is Gy. 
Hence, the lemma follows by using induction on the graphs Gy and Gy. 

These lemmas give us Theorem 7. 

THEOREM 7. Let G = (X, E) and G = (X, F) be triangulated with E^F. 
Let a and β be monotone transitive orderings of G and G, respectively. Then 
the degree partition of |F | dominates the degree partition of \E\. 

Proof: We use induction of |F | . If |F | = \X\ — 1, that is, G is a tree, then 
E= F, because both G and G are assumed connected, and the conclusion 
follows from Theorem 6. Suppose the theorem is true whenever 1*1 — 1 < 
|F | ^k— 1, and let G and G be as above with \F\=k. If the subgraph 
G = (X, E) has E= F, then again the conclusion follows from Theorem 6. 
Assume then £<= F (strict). By Lemma 10, there exists a monotone transitive 
ordering â for G such that MTE(G;a) = (Ar,£u71(a)) and ( £ u 7 ( a ) ) c F 
(strict). By the induction hypothesis, the degree partition of \EvT(&)\, 
generated by ά in the triangulated graph MTE(G;a), dominates the degree 
partition of \E\, and by Lemma 8 the degree partition of |F | generated by â 
dominates the degree partition of \EvT(ot)\. By Theorem 6, the degree 
partitions of |F | generated by β and a are equal. 
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Theorem 7 has the following important implication: If Tis a triangulation 
of a graph G = (X, E), the Tis minimal if no f c Tis also a triangulation of G. 
Clearly, a minimum triangulation is minimal, but a minimal triangulation 
need not be minimum. Theorem 7 implies that if T is a nonminimal triangu
lation of G, and t a T is also a triangulation, then the cost of elimination 
with a monotone transitive ordering of Gx = (X,EuT) is greater than the 
cost of elimination with a monotone transitive ordering of G2 = (X,Eu t) 
for any criterion function. 

4.3. Bounds for Triangulations 

Since the size of a triangulation T of a nontriangulated graph G is one 
indication of the computational complexity of G, that is, M, with respect to 
elimination, we seek bounds on |Γ | which are related to the structure of G. 
Corollary 5 below relates the size of a minimal triangulation to the size of 
minimal a, b separators in G. Theorem 9 shows that if k edges of G can be 
deleted to yield a triangulated graph, then G itself can be triangulated with 
\T\^kn. 

THEOREM 8. Let G = {X, E) be a graph with minimal triangulation T. 
Then every minimal a, b separator of G = (X, Eu T) is a minimal a, b separator 
ofG. 

Proof: If S is an a,b separator of G, clearly it is an a,b separator of G. 
Suppose S is minimal in G but not in G, that is, S' <= S is also an a, b separator 
in G. Let C, be the components of G with respect to S'. Since some vertices 
in S are in the C,, returning to G where S is minimal implies there must be 
edges T0 c= T with vertices in different components Ct. S' is a clique in G, 
and by removing edges in T0 the graph G = (X, Eu T— T0) is triangulated by 
Theorem 3. Thus, T is not minimal, which contradicts our hypothesis. 

COROLLARY 5. Let G = (X, E) be a graph, | Α Ί = Λ , such that every 
minimal a,b separator S of G satisfies |5 | ̂  k. If Tis a minimal triangulation 
of G, then 

\T\ *:(η-μ)μμ+1)/2) 

where 

μ = max{|C|, C a clique of G}. 

Proof: By the remark following the statement of Theorem 4, there are, 
at most, n — μ minimal a,b separators in G = {X,EuT). The proof then 
follows by the above theorem and the hypothesis | 5 | < k. 
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THEOREM 9.f Let T= (X, E) be triangulated and G = (X, £ u f ) . Let K g X 
be a set of vertices covering F, that is, if / = {x, y} e F, then x e V or y e V. 
If \X\ = n and |K| = m, G can be triangulated with, at most, 

nm — (m(m+l)/2) edges. 

Proof: Let H=(X,EvFvT), where Γ = {{y,x}| y e V, xe X, v # x } . 
Note that \T\ = nm — (m(m + l)/2). We show / / i s triangulated. If μ is a cycle 
of / / with length / ^ 4 and 

(1) μ contains no vertex in V, then μ is a cycle of rand , hence, has a chord; 
(2) μ contains a vertex v e V, then H contains the chord {vx} for any 

x e μ not adjacent to v. 

Note that the bound in Theorem 9 can be improved, if G has some separation 
cliques which are also separation cliques of T. 

4.4. Ordering Algorithms 

4.4.1. DYNAMIC PROGRAMMING 

Given any criterion function f a s defined in Section 4.2 and a graph G, it is 
possible to find an ordering a which minimizes F by using the dynamic pro
gramming technique of Bertele, Brioschi, and Even [4, 5, 7], who consider the 
specific criterion function 

^(a) = max d(cc(i)). 

However, for a graph with n vertices, the complexity of this algorithm and the 
storage requirements increase as 2". Hence, this algorithm is not feasible for 
large graphs, and no other general algorithm ensuring optimality is known. 

In practice, it is tacitly agreed that a near optimal ordering is acceptable 
if the ordering algorithm is efficient. For example, the complexity grows only 
as np, p small. In the literature* it is assumed that the next two algorithms to 
be discussed produce near optimal orderings. While some experimental results 
reported by Tinney [29, p. 25], confirm this assumption, no detailed study of 
these algorithms has been reported. 

t From a private communication from A. Hoffman, IBM research, Yorktown Heights, 
New York. 

% See, for example, Sato and Tinney [20], Tinney and Walker [26], and the summary paper 
by Tinney [29, p. 25], who use these algorithms for ordering sparse symmetric matrices. For 
similar algorithms applied to the nonsymmetric case, see Tewarson [29, p. 35]. 



214 Donald J. Rose 

4.4.2. MINIMUM DEGREE ALGORITHM 

Let G0 = G = (X,E). The minimum degree algorithm orders X as follows: 

(1) set i = l ; 
(2) in the elimination graph Gt _ 1, choose x{ to be any vertex such that 

ladjfo)! = min |adj(y)| 

Gf-i = (JTf-i,^-!); 
where 

(3) set i = i + l ; 
(4) i f / > | Z | , stop; 
(5) go to Step (2). 

The advantage of this algorithm is its speed. n(n+1)/2 vertices are tested, 
and each test simply counts adjacent vertices. The disadvantages of the 
algorithm are 

(1) the algorithm does not, in general, produce a monotone transitive 
ordering when the graph is triangulated (see Fig. 6)f ; 

Fig. 6. Vertex (ïï) has minimum degree in the triangulated graph G. Since {a} is a separ

ation clique, ordering @ first leads to a nominimal triangulation. 

(2) the algorithm does not, in general, produce a minimal triangulation 
(again see Fig. 6); 

(3) there exist examples when the triangulation produced by this ordering 
is arbitrarily greater than a minimum triangulation (see following Example 
and Fig. 7). 

Example: Let n < m and Cm_1 be a clique o n w - 1 vertices. Each of the 
vertices at is adjacent to each vertex of the clique Cm^l. Vertex x is adjacent 
to each a{. Vertex x has minimum degree, |adj(x)| =n, and the elimination 
graph Gx is the clique Cn+m_1. This triangulation obtained by ordering x 
first requires n(n — l)/2 edges. However, the triangulation obtained by ordering 
the Qi first (note that |adj(a£)| =m—\) requires only m—\ edges. 

t It is easy to see that the algorithm will produce a monotone transitive ordering when 
G is a A: tree. 
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Fig. 8. Vertex (a) has \D(a)\ = 2 and is a minimum deficiency vertex. However, in the 

elimination graph Ga, the edge {b,c} is redundant in a triangulation given edge {d, e} since 

S = {a, d, e} is then a,b,c separation clique of Gg. Thus, given a deficiency set D(x), only some 

subset of D(x) may be necessary in a minimal triangulation. 

4.4.3. MINIMUM DEFICIENCY ALGORITHM 

Letting G0 = G = (X, £) , the minimum deficiency algorithm orders X as 
follows : 

(1) s e t / = 1 ; 
(2) in the elimination graph GI_1 choose xf to be any vertex such that 

\D(xd\ = min \D(y)\, 

where 

(?,·_! =(Xi.uEi); 

(3) set/ = i + l ; 
(4) if / > \X\, stop; 
(5) go to Step (2). 
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The advantages of the minimum deficiency algorithm are 

(1) only n(n+ l)/2 deficiency counts are needed to compute the ordering; 
(2) the algorithm produces a monotone transitive ordering when the 

graph is triangulated; also, in this case, ordering a vertex as soon as the 
D(x) = 0 condition is recognized leads to fewer than η(η+\)β deficiency 
counts. 

The disadvantages are 

(1) the algorithm is slower than the minimum degree algorithm, because 
in addition counting, or listing, vertices in adj(x), pairs of vertices in adj(x) 
must be edge tested ; 

(2) the algorithm does not, in general, produce a minimal triangulation 
(see Fig. 6, with edges {c,d}, {b9e}, {fi}, {g, h} deleted; see Fig. 8). 
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1. Introduction to Myopic Algorithms 

The value of myopic algorithms is well known, but their exact nature is 
poorly defined. Here we give an abstract formalization of the myopic property 

219 
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in terms of finite automata. Intuitively, we say that an algorithm is myopic if, 
for each of the elementary activities into which the computation is divided, 
reference is made only to a restricted and well defined subset of the data on 
which the algorithm operates. 

By set of data we mean, on the one hand, a mathematical structure on 
which computations are performed—in this chapter, a graph and various 
modules and structures of order defined on the graph—and, on the other hand, 
the partial results already obtained from previous computations. The myopic 
property relies on the storage of the given data within the graph itself, at the 
very places where those data were originally defined, or have been generated 
during the process of the algorithm. 

At each vertex of the graph we install an automaton which is the local 
representative of the algorithm. It computes locally on data relating to that 
vertex and to part of the data relating to those other vertices to which it is 
directly connected. The graph itself is thus provided with means of compu
tation, the vertex automata, for solving problems concerning itself. Hence, 
we obtain our title, intelligent graphs. The myopic property is often favorable 
for parallelism in the computation. Many local elementary computations 
whose order of execution matters little are conducted in parallel, each upon a 
restricted subset of the total data. 

The automata used here are state-output automata, abstractly described by 
a 3-tuple M = (E,L, φ), where E is a set of states, L is a set of input letters, 
φ:ΕχΣ-+Ε is the state-transition function, and the output of M is its state. 
The automaton is said to be finite if Eis finite. We physically interpret such an 
automaton as a discrete-time system which, if at time / it is in state e and 
receives input letter /, then at time t+ 1 it will be in state φ^,Ι). 

A myopic algorithm for graphs is formalized by a network of identical 
finite automata. The input letter of automaton x consists of elements taken 
from the state of each of the automata to which x is directly connected. This 
formalization allows us to introduce such terms as computability by finite 
automata (fa) for a given graph problem, the computation time necessary 
for the automata to locally display a desired solution, and the number of 
states of each identical automaton, which is a measure of the complexity of 
the computation. The idea for this formalization of the myopic property in 
graphs came to us [15] 

(1) from the study of some admirable myopic algorithms, the labyrinth 
algorithms of Tarry [19, 20]; 

(2) from the work of Moore in "The Shortest Path Through a Maze," 
where the number of states necessary per vertex is minimized 
[13]; 

(3) finally from our generalization, to finite connected networks, of the 
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well-known "firing squad problem" [12], introduced into switching 
and automata theory in its linear form by Myhill and Moore. 

The class of fa-computable problems has proved to be larger than we first 
anticipated. For example, an intelligent graph can not only decompose itself 
into blocks, but also display its minimum tree for a given total ordering of the 
edges. Berstel [5] has shown, in the same vein, that an intelligent graph can 
solve certain graph problems such as the construction of a hamiltonian cycle. 
Here we prove that this can be done with five colors. 

Although our abstract formalization of myopic algorithms requires as 
many automata as there are vertices of a graph, our results are interesting 
for any type of programming methods using a single machine. In particular, 
this is true of the following algorithms, which are dealt with in later 
sections, and are new in the literature on theory of graphs and computer 
science : 

(1) recoil algorithms for mazes ; 
(2) direct construction of an Eulerian path; 
(3) edges-ordering compatible with 1-adjacency; 
(4) vertices-ordering compatible with 2-adjacency ; 
(5) block decomposition ; 
(6) Hamiltonian cycle. 

The algorithms listed above could be adapted efficiently to the push-down 
methods for graphs developed by Dermiane and Pair [8]. 

The study of graph problems has led us to define three fundamental problems 
specific to networks of automata, which are 

(1) a self-synchronization process, which uses a three-position counter, 
making the network completely autonomous ; 

(2) various generalizations of the famous firing squad problem to any 
network of automata ; 

(3) a problem which appears to be just as important and basic as the firing 
squad problem, which we call the "early bird problem," and which 
opens the door to optimization computations. 

We feel that it is not the purpose of this book to emphasize those aspects 
of our subject related to the algebraic theory of automata. Thus, we have 
stressed the algorithmic and computational aspects. Nevertheless, from the 
algebraic viewpoint, the model of a cellular automaton which constructs its 
input from the states of its neighbors is a rich and promising one, especially in 
the light of our stacking form of composition in which elementary automata 
may be combined to form more powerful ones. 

In summary, the theory of networks of finite automata permits a measure
ment of the complexity of myopic computation, and, furthermore, offers an 
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attractive model for acentric systems, that is, organizations where all elements 
are identical and none are indispensable. They are commonly observed in the 
biological, sociological, and technological domains. In the art of computing 
science, networks of automata are distinctly different from such structures 
as iterative arrays and tessellation automata [24], are more flexible and 
less vulnerable, and could represent a model for microprogramming 
rather than for the actual computing hardware. 

2. Finite Graphs and Finite Automata 

2.1. Networks of Finite Automata 

We shall use the term finite graph* to designate a triplet (X, U, a), where 
X and U are two finite disjoint sets and a is a function with domain U, taking 
values in the set of unordered pairs of elements of X not necessarily distinct. 

J C G I Ì S called a vertex of the graph, u e U is called an edge of the graph, 
a(w) = (a, b) consists of two vertices a and b, which are not necessarily distinct, 
called the extremities of the edge u. The degree v(x) of a vertex x is the number 
of times that x appears in the elements of Ima, the image of a. We shall say 
that the degree d of the graph (X, U, a) is the maximum value of v(x) for all 
xe X, d = maxxeXv(x). 

We shall use the term finite automaton to designate a triplet (E,L, φ) where 
E and L are two finite sets, φ is a function from ExL into E 

φ:Ε x L -» E, 

ee E is called a state of the automaton, and / e L is called an input letter of 
the automaton, φ is called the state-transition function. 0(e,/) is the next state 
taken by an automaton which finds itself in state e and reads the input letter /. 
We shall agree that φ allows the automaton to change state from time t to 
time / + 1 , for all / e N. We shall index e and / with the subscript t, and write 

et+i = Φ(^1{). 

In our network of automata, all the automata will be identical, and the 
input letter of each one will consist of a function of the state of each of the 
automata to which it is directly connected. 

We shall use the term network of finite automata to designate a 5-tuple 
(X, d, p, E, φ). Here X is a finite set whose elements may be called vertices or 
automata, interchangeably, de N is called the valence of the network, or the 
number of limbs of the automata of the network, where a limb of A" is a pair 
(x, r) with x e l a n d r e [d~] = {l,2,...,rf}.p: Xx [ i / ] - > I x [d]isan involution. 
If p(x,r) = (x,r), the limb (x,r) is said to be dead. If p (x, r) = (y, s) with 

f In the terminology of Berge [2, 3] we should say, to be more exact, multigraph. 



Intelligent Graphs 223 

(x, r) φ (y, s), the two limbs (x, r) and (y, s) are joined (x may be equal to y); 
we have by definition p(y,s) = (x,r). E is a finite nonempty set disjoint 
from X, called the set of states. It is convenient to write E e Fd, 
where F is a finite set called the set of limb states. The element ext of E, the 
state of automaton x at time /, thus becomes a d-tuple the rth component of 
which is written 

er
Xit* rs[d]9 xeX, teN. 

If (x, r) is a dead limb we shall say, by convention, that er
xt = ω for all teN. 

Hence, ω e F. φ is the transition function of the network, ^ F ^ x F ^ f 1 . It 
associates with each state-input letter pair (e, /) a new state. For automaton 
x e X, this is written 

where ext e E, and the input letter lxt e Fd, like ext. Its components are 
written lxt with r e [</], x e X, t e N, and simply defined as follows: 

lx,t = < r if P(*>r) = (y,s) 

Let us denote by M(t) the state of the network at time /, which we interpret 
a s a n l x [d~] matrix whose elements are the er

xU the time t being the same 
for all the automata. 

If we fix the values of ex0 for all x e X, that is M(0), we define a sequence 
M{t) which necessarily becomes periodic, since Xh finite, and is stationary if 
the period is 1. In this case, we say that the network has operated from an 
initial state to a stationary state, with all the automata operating synchron
ously at each instant t. 

IDLENESS CONVENTION. A special value of the components er
x,, denoting 

idleness, is written /, / e F. A state vector, all of whose components are either 
/ or ω, is called an idle, or quiescent state. The function φ, by convention, is 
such that if A and B are quiescent states, we have 

φ(Α,Β) = Α. 

NETWORK, GRAPH, AUTOMATON. In a network of automata, R = 
(Χ,α,ρ,Ε,φ), we distinguish a graph and an automaton. Let us first define 
the graph G(R) of the network R, by the triplet 

C(tf) = (*,£/, a), 

where U is the set of couples of distinct elements of the matching p, and for 
the edge ue Ucorresponding to the couple ((x,r),(y,s)), 

oc(u) = (x9y), 

which does not exclude the case x = y. 
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It is important to point out the following: 

(a) The dead limbs of automata of R do not generate any elements of G(R). 
(b) The degree of the graph G(R) is bounded by d, and is actually equal 

to d if an automaton of the network has no dead limbs. 
(c) In the case where a(w) = (x,x), u is a self-loop at the vertex x of the 

graph G(R), The vertex x can have as many loops as its degree permits. 

Now let us define the automaton Ot{R) of the network R, simply as 

#(/*) = (£,L,0), 
where L = Fd. 

It is important to point out the following: 

(a) One copy of the automaton OC{R) is associated with each element 
x e X, and is also called x for convenience of notation. It takes state ex t at 
time /, and rçads the letter lx t at time t. 

(b) For a fixed degree d, the independence of (x, p) and (E, φ) permits 
us to: 

change the graph of a network of automata without changing the 
automaton : if R = (X, d, p, E9 φ) and R' = (X\ d, p', E, </>), then G(R') Φ G(R) 
and OC(R') = Cl{R), where G(R') may be any graph whose degree does not 
exceed the given d; 

change the automaton of a network of automata without changing the 
graph : if R = (X, d, p, E, φ) and R' = (X, d, p, E\ φ), thenG(Zr) = G(R) and 

Finally, then, we see that a network of finite automata R and its evolution, 
that is, its sequence M(t) for / e N, are defined by the following: 

(1) a graph G of degree at most d, in which for each vertex x we define a 
one-to-one function from the edges incident to x into [J ] ; 

(2) an automaton OC which takes its states and input letters from the same 
setFd; 

(3) an initial state for each vertex automaton x. 

2.2. Graphical Problems Solvable by Networks of Finite Automata 

Let P be a simple or multiple property of graphs, for example, connectivity, 
regularity, absence of cycles, bicoloration, etc. Let de N. Let <&(P,d) be the 
family of finite graphs (X, U, a) with degree d or less, having the property P. 
Let AT be a problem of the type that makes network R exhibit a stationary state 
M(0), where stationary means that for all t> Θ, M(t) = Μ(Θ), meaningful 
in terms of the elements of the graph G(R). For example 
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(1) Μ(θ) displays a configuration such as a hamiltonian cycle of the 
graph, or the nonexistence ofthat configuration; 

(2) M(Θ) displays all vertices of the graph in a special state for the first 
time. 

We say that a problem K is fa-computable by CC in &(P,d) for a class of 
initial states JÎ(%) if there exists a finite automaton CC such that, for any 
G e 0 ( Λ d), the network R which has G(R) = G and CC{R) = CC, and its initial 
state M(0)e Ji($) will, at a finite time 0, exhibit a stationary state Μ(Θ) 
associated with K. The minimal value of Θ satisfying this definition is called 
the computation time of CC for the problem K. 

Notice that the automaton CC which solves the problem A îs independent of 
the choice of G e ^ (P , d). In particular, we have card £ independent of card X. 
Thus, though card X may be unbounded for G e &(P, d), card E is bounded 
by a function of d. 

Remarks: (1) In what follows, we will usually abbreviate a reference 
to the above definition as follows : the problem K is fa-computable by OC. 
Unless we explicitly state the property P, then this is understood to mean that 
K is fa-computable in ^ ( ·, d), that is, for any finite graph of degree d or less. 
The class of initial states Jf(&) will be defined by the description of the initial 
state M(0) of the network. 

(2) The state vector ex θ gives the local solution for vertex x, and Μ(θ) 
gives the global solution to problem K. 

The problem involved here is to show whether or not a problem K is 
fa-computable, and, if so, to minimize the computation time 0, which in 
general is a function not only of d, but also of card X, and finally for a given 
Θ to minimize the number of states of the finite automaton CC which computes 
K, that is, card E. For the latter problem, at our present stage of development, 
it is more often a matter of reduction than of minimization. 

We would point out that the vector notation used for the states e e E 
(E a Fd) is convenient to work with, but its redundancy does not at all affect 
the exact number of states required for the operation of CC. We may have 
card E < (card F)d, and in particular, ifer = e\ for all r, s e [d~\, then card E = 
card F. 

Remark: One might think that the synchronization of the automata to 
which we have referred until now considerably reduces the autonomy of the 
network. This is not at all true. We shall see in Section 2.3 that by associating 
with each automaton a 3-position counter, to count the transitions, modulo 3, 
we can achieve an autosynchronization of the network. Hence, the only 
external action upon the network's computation is the choice of M(0). 
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As an illustration for our notation, we shall define the boundary automaton, 
which solves the rather easy problem of computing any boundary in a graph. 
In a graph (X, ί/,α), the linear operator "boundary," written as d, associates 
each edge with the sum of its two extremities 

du = a + b if a(w) = (a,b). 

The addition operation is commutative, and has the property z + z = 0. As 
for the boundary of a sum of edges, it is equal to the sum of their extremities. 
In other words, a vertex belongs to the boundary of a sum of edges if it has 
an odd number of limbs in common with these edges. We shall attempt to 
compute the boundary of a given sum L0 of edges, namely S0 = dL0. 

Let us describe the boundary automaton. 

(a) The states: The set F of possible limb states will be written F = 
{ω, /, A}, with ω for a dead limb, / for a quiescent limb, and A for an 
activated limb. 

(b) The initial state of the network: Let the set of edges L0 be defined by 
A 0 c l x [d~\ with 

(x,r)eA0=>p(x,r)eA0. 

At time t = 0, we have 
ex,o = co or I for all (x, r) e X x [d~\ 

except 

er
x°o0 = A for all (x0, r0) e A0. 

(c) The possible cases for state transitions: 

(1) <=>card{r e [d] | er
xt = A} is even for given xeX and, 

given teN, 
(1) =>ex':A*-I. 

We define only the possible cases for change of state. In other cases, the 
function φ leaves the state of the automaton limbs unchanged. The possible 
cases are defined by propositions, such as (1) above and its complement (T). 
Several propositions may be composed together (see the more complex 
example). 

((1) =>) is to be read as "if proposition (1) is true at time t, then. . ." In 
the transition instructions, (ex

r) is to be read as "the change of state of limb 
ex

r from time / to time t+1 i s . . . " (P*- Q) is to be read as "if the state is P, 
then it is replaced by the state g ." (· <- Q) is to be read as "any element of 
F is replaced by g ." 

(d) Results: S0 is the sum of the elements of Γ0, where 

Σ0 = {xeX\3re [d]\ex
r = A}, 
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since the computation reaches a stationary state at time 1, we have 0 = 1 . 
Card F= 3, card E= 3d

 9 and this is the minimum E. 

THEOREM 1. The boundary of any set of edges of a graph is fa-computable. 

Let us now define the coboundary automaton. In a graph (X, U, a) the 
linear operator coboundary, written δ9 associates with each vertex the sum of 
those edges having this vertex exactly once as an extremity 

δχ = £ u9 
ueC(x) 

where C(x) = {ueU\ a(w) = (x, b), b Φ x}. 
As for the coboundary of a sum of vertices, it is equal to the sum of their 

coboundaries, a commutative sum for which z + z = 0. In other words, an 
edge belongs to the coboundary of a sum of vertices if exactly one extremity 
of this edge is a member of the sum. We shall attempt to compute the co-
boundary of a given sum Sx of vertices, namely Lv = òSì. Let us describe the 
coboundary automaton. 

(a) The states: F= {co9I9A9C}9 with ω for a dead limb, / for a quiescent 
limb, A for an activated limb, and C for a limb, not dead, of an edge 
belonging to the coboundary. 

(b) The initial state of the network: Let Sl c X. er
x0=œ or /, except 

for er
x\ 0 = A if xx e Si and (xu rx) is not dead. 

(c) The possible cases for state transitions: 

(1) o er
xt = I and es

yt = A 

or 

er
xt = A and es

ytt = /, p(x,r) = (y9s)9 

(2) o er
xt = A and es

yt = A, p(x,r) = (y9s), 

(\)^ex
r:- - C , 

(2) = > * / : · : / · 

(d) Results: Ll is the sum of the elements of the set Al9 where 

Ai = {((x,r),(y9s))eU\ex' = C}. 

Θ = 1 and card F= 4. Card £ = 3.2d —2 by inspecting the possible states ex9 

and this is the minimum E. 

THEOREM 2. The coboundary of any set of vertices of a graph is fa-cofn-
putable. 
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Let us finally define the marking automaton which associates with x0 e X 
and U0 <= U the set X0 of vertices of the graph (X, U9 a) that are connected to 
x0 in the partial graph (X, U0,OL\UQ). 

(a) The states: F= {ω, Ι,Α,Α}, where / is the state of a limb which is 
not the extremity of an edge of t/0, A is the state of a limb which is theextremity 
of an edge of U0, and A is the state of a limb (x, r), which is the extremity of 
an edge of U0, with x connected to x0 in the partial graph. 

At time t = 0 we have 

er
XOt0 = Ά for all r e [rf]Xo, 

er
Xt0 = A if u(x,r) e U09 x Φ x0, 

er
x0 = ω or / otherwise. 

(b) The possible changes of state: 

(i) o rXtt = Ä 

for at least one r e [d], 

which means every limb of x in state A changes to state Ä if a component of the 
input letter is Ä. 

(c) Results: the set X0 is defined by 

X0 = {xe X\ eXQ = Ä for at least one re[d~\). 

We have Θ less than the length in the subgraph of the longest path from Λ:0 

that does not pass through the same vertex twice. 

2.3. Self-Synchronizing Networks 

Let us recall what is meant by the synchronization of the automata of a 
network R = (X, d, p, E, φ). M(t), the state matrix of R at time / e N, consists 
of elements all of which have the same associated time : er

xt with r e [d] and 
x G X is the rth component of the state of automaton x after / transitions. 

For each automaton x, the input letter at time / is composed of the states 
of neighboring limbs also at time /. which we write 

Γ = es 

where 

p(x,r) = (y,s). 

Abstractly, the sequence M(t) for t e N is defined without reference to 
time, duration of state changes, or spacing of transitions. 
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Intuitively now, to allow us to speak in temporal terms, which is certainly 
legitimate if we wish to consider a physical realization of parallel computation, 
we can imagine that the synchronization is performed by an external clock, 
which causes a change in the states of all the network automata simultaneously, 
and does this at discrete instants spaced conveniently according to the duration 
of the state transitions and the readings of input letters. In fact, a connected 
network of the type described above may perform its own self-synchroniz
ation, as we shall demonstrate, by having a 3-position counter affixed to 
each automaton. The network with a given autonomous clock network, 
thus freed from any external clock, completely autonomous, is called a 
self-synchronized network. 

Let us define a clock network H = (X, d, p, T, φ) for an arbitrary, finite, 
connected graph G(H), and where T= {Ô,î,2}, a set on which addition is 
taken to be mod 3. The state of x, written ext is a constant vector whose 
transitions are written simply 

ex,t+i = é,,i + î (mod3) 

If the initial state of the network is 

eXt0 = 0 for all x e X, 

then 

èxt = / (mod3) for xe X, teN. 

The initial states are 

exl = Ô, for x Φ x0. 

We write |JC0JC| for the length of the shortest path between x0 and x in G(H). 
Let us note that during the first |A*0X| —1 units of time, x undergoes 
transitions which accomplish nothing. It remains in an inactive state. Here, 
let τχ be the total number of effective transitions, undergone by x. We define 
the age of x as 

*x = 1*0*1 + T * · 

For the autonomous clock network the state of x at age tx is written extx, 
which we shall also write as ex. Now we define an admissible state of the 
network as a list of the states of the automata x satisfying the following rule 
of compatibility : two neighboring automata, and two automata having the 
same neighbor, which are in the same state, that is, reading the same number 
on the 3-position clock, have the same age. 
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The autonomous clock network thus approximates the rule of synchro
nization for externally synchronized networks within one unit of time 
between two neighboring automata. 

The automata, though unable to store their age, can, nevertheless, maintain 
this compatibility in the following manner. X undergoes a transition, that is, 
êx<^êx + î, if and only if for each neighboring y, ey = (ex or ex+l) 
and for x Φ x0 there is at least one neighbor z of x for which ez = ex+\ 
In effect, if the network is in an admissible state, then after x makes the above 
transition, it is still in an admissible state. 

We have exactly the following situation, x has gained a unit of age, to 
equal the ages of his neighbors, z at the very least, who were one step ahead 
of him. The ages of any two neighbors, with the same state, x and z for 
example, will never differ by a multiple of 3, since |JC0*I

 a n d |*ozl cannot 
differ by more than one unit, and τχ and τζ under the rule for compatibility 
cannot differ by more than one unit. Incidentally, we have proved here that 
3 is the minimum number of states for the clock automaton Œ(H). 

Let R = (X, d9 p, E, φ) be a network, the graph G(R) of which is connected, 
and let the autonomous clock network H described above be designed so that 
G(H) = G(R). We see, without need of further formalism, that R can 
become autonomous if it is superposed onto H, with the automaton OC(R) 
at x undergoing transitions whenever the corresponding OC(H) does. 

ÛC(R) reads its input letter component by component, reading the com
ponent associated with its neighbor y when y's clock is at the same position as 
JC'S. This introduces no contradictions. 

It is easy to show that the state of x at its tih transition in the externally 
synchronized network is equal for all x e X and all t e N such that t > \x0x\, 
to the state of automaton x with age / in the corresponding self-synchronized 
network. 

To properly understand the weaker type of synchronization that we have 
introduced in R, consider two arbitrary vertices x and y. For a given state 
of the self-synchronizing network, the age of y cannot exceed the age of x 
by more than |JCJ>|. In the externally synchronized network, the tth transition 
of x is independent of the \xy\ — 1 states which y took prior to /. We thus see 
that the lead which y has on x in the self-synchronizing network does not 
hamper the proper functioning of y. 

2.4. Undecidable Connectivity 

We shall define a type of symmetry in a network of finite automata which 
permits the formulation of two fundamental problems of connectivity, 
unsolvable by networks of automata. 
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DEFINITION. A reflection of a network R = (X, d, p, E, φ) is defined as 
any matching 

π = X x Id] -> X x [rf] 

having the following properties for all p,q e Xx [d~] : 

(1) πρ Φ p, no limb is its own image under π; 
(2) (P1/? =Pl q)=>(P1 πρ =P) nq)? compatibility with vertex equivalence; 
(3) P2p=P2 πρ, invariance of limb number; 
(4) p(np) = πρ(ρ), compatible with the matching p. 

Remarks: (i) P1 p Φ P1 up since πρ φ p by (1) and P2p = Ρ2πρ by (3); 
(ii) if p is a dead limb then so is up by (4); 

(iii) n(x,r) = (y,r) is always true for all re Id], by (3), which justifies 
the notation nx = y. 

If R admits a reflection π, R and G(R) are said to be symmetric according to π. 
If a state M(t) of R is such that 

er
xt = er

ytt for all (x,r) s ^ x [</], n(x,r) = (>^,r), 

then M(0 is said to be symmetric according to π. 

PROPOSITION 1 : Proposition of Symmetric Evolution. Let R be a sym
metric network according to the reflection π, and M(0) an initial state of R, 
symmetric according to π. Then, for all t e N, M(t) is symmetric according to π. 

In effect, let us suppose that M(t— 1) is symmetric according to ni then 

ex,t-i = * W - i forall xeX 

and hence 

er
pXft_! = e r

n p x J - . l for all x e l 

This yields 

ex,t = e*x,t for all x e X. 

The proposition now may be proved by induction on t e N. 
An obvious example of a symmetric network is that of the union R of two 

identical disjoint networks S1 and S2, written R = Sl + S2. R admits a natural 
reflection from 5Ί onto S2. 

We now define a transformation upon symmetric networks which leaves 
their reflection π invariant. Let the network R = (X,d,p,E,(j)) be symmetric 
according to the reflection π. Let ργ be a nondead limb of R, meaning that 
PPi ΦΡι> s u c n t n a t ηρΡι ΦΡι- We can associate with pl three other distinct 

f Pl signifies first projection of the pair of elements. 
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limbs: ppu npu and nppx = pnpx. Let us speak then of the quadruple of four 
distinct limbs associated with/?!, 

(PuPi'>Pi>Pi) 

where 

PPi = Pi' and pp2 = p2'9 

nP\ = Pi and πΡι = Pi-

DEFINITION. The exchange on the quadruple of ργ is defined as the 
operation upon R which generates the network 

(plVR) = (X,d9p9E^) 

different from R only for the quadruple associated with pu which becomes 

(PDPI*PI>P\) 

which means by our conventions that we now have 

PPi = Pi and pp2 = px
f 

πΡι = Pi and π/V = p2''. 

We shall write pl V G to denote the graph G(pi V R). 

From the above definition, we immediately deduce the proposition of 
identical evolution for R and p1 V R. 

PROPOSITION 2 : Proposition of Invariance under Exchange. Let R be sym-
(2) If Si is a network that remains connected when the edge (pl9pi) is 

symmetric according to π, and has the same sequence of states M{t) as R, 
provided that they both have the same initial state M(0) symmetric according 
to π. 

Remarks: 

(1) pl V (p1 V R) = R and pl V R = p^ V R = p2 V R = p2 V R. 

(2) If Sl is a network that remains connected when the edge (ρχ,Ρχ) is 
removed, then the symmetric network R = Sl + S2, where S2 is identical to 
Su is not connected, but px V R is connected. 

We now give a criterion for problems which are not fa-computable. 

PROPOSITION 3 : Proposition of Indiscernability. Let G, G' e ^ be two 
finite graphs having the same set of vertices X. Let K be the problem of dis-
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playing a graph configuration (for example, a Hamiltonian cycle) present in 
G but not in G'. If for any pair of networks R and R such that 

G(R) = G and G(R') = G', 

a(R) = <#CR'), 

M(0) = M'(0), where M(0) e M{$\ 

we have M(ί) = M '(t) for all t e N, then the problem K is not fa-computable 
in ^ for ̂ ( ^ ) . 

Proof: There is no finite 0 for which M(0) will display the configuration 
while M'(0) displays its nonexistence, since Μ(θ) = M'(Θ) for all Θ e N. 

Our first statement concerning undecidability is relative to an automaton 
which cannot tell whether two of its own limbs are joined, or whether they are 
in fact joined with two other limbs of a symmetric automaton. 

THEOREM 1. Let K be the problem of displaying all the self-loops of a 
graph. If for some G e ^ ( - , i / ) symmetric according to a reflection π, there 
exists an M(0) e J(($), compatible with G and also symmetric according to 
the reflecticj π, then the problem K is not f.a.-computable in ^(·,*/) for 

Proof: Let G contain at least one nondead limb pY such that ρί Φ πρρ^ 
and P1Pi =Pl ppu that is, px forms self-loop with ρργ. Consider the net
works R and R\ where 

G(R) = G and G(R') = p1 V Ô, 

a(R) = a{K\ 

M(0) = M'(0) = M(0). 

By Proposition 2, we have M(t) = M\t) for all / e N. But notice that px V G 
does not have a self-loop between /^ and p/?l9 since 

PlpPl = Ρ1πρρί = Ρίπρί Φ Ρ'ρ,. 

Thus, by Proposition 3, the problem K is not fa-computable in &(',d) for 

Our second statement of undecidability is relative to an automaton which 
cannot determine whether one of its neighbors is connected to it by edges 
which belong to a given subset of the edges of the graph. 

Let us denote by U0 a set of nondead limbs such that 

peU0oppeU0. 
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The notation U0 reminds us that U0 is identifiable with a subset of £/, and any 
subset of U is identifiable with a U0. 

U0 is said to be symmetric according to π if p e U0onpe U0. Let us define 
an equivalence relation of connectivity in X associated with U0. For/? e ί/0, 
let us denote the adjacency of P1p and P1 pp by 

Pxp-Pxpp and P1 pp - P1 p. 
o o 

The transitive and reflexive closure of the relation — is denoted by <-►, and 
x+-+y is read "x is connected to y by £/0." 

o 

THEOREM 2. Let K be the following problem: For a given graph, with a 
given subset of limbs U0cz Xx [d] such that pe U0opp e U0, and a given 
limb/?! φ U0 such that Ρίρί φΡ1 ρρί, to determine whether or not the relation 
P1pl^P1ppl holds. 

o 

If for some G e # ( ·, d) which is symmetric according to a reflection π, there 
exists an M(0) e Ji{&), compatible with G and also symmetric according to 
the reflection π, then the problem K is not fa-computable in ^ ( ·, </) for M {&). 

Proof: Let us construct the graph G as follows : 0 = Sl + S2, where 
5j and S2 are two identical, disjoint, connected graphs. Let π be the natural 
reflection from 5Ί onto S2. Let/?! and U0 satisfy the above hypotheses, 
with UQ symmetric according to π, and with/?! in Sx such that P1 pl *-*Pl ppx. 

o 

Clearly, pt Φ πρρ1 since πρρ1 is in S2, so that px VG exists. Notice that in 
/?! VG, P1ply>P1 ppl9 since p/?! = πρ/?ΐ9 ργ πρί φ U0, and pi and πρχ are the 
only limbs of Sl connected to S2. Now consider the networks R and R, 
where 

G(R) = G and G(Ä') = px V G 

M(0) = M'(0) = M(0). 

By Proposition 2, we have M(t) = M\i) for all t e N. But in G the connectivity 
relation holds, whereas in pl V ô it does not. Thus, by Proposition 3, K is 
not fa-computable in &(',d) for Jt(&). 

The two foregoing theorems show us that, to avoid problems of undecidable 
connectivity when we do not know whether or not a graph is symmetric, we 
must make certain that in our computation procedures we always choose 
initial states M(0), being not symmetric according to any reflection π, for 
example, with all states identical except one. 
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3. Elementary Problem-Solving Automata 

3.1. Labyrinth Problems: The Tarry Automaton 

Let us first define the complete words of a connected graph. For this we use 
the convenient notation of limbs (x, r) e X x [d~\ and the matching p mX x [*/], 
introduced in Section 2.1. We define the grammar of words of the graph G as 
the set of words constructed from the alphabet 

sé = { / e J r x [ d ] | p ( / ) * / } 

and belonging to one of the following classes : 

(1) Ax, where x e X, called null words of G; 
(2) /, where l G sé, called one-letter words ; 
(3) a = ll...lklk+l...lp9 where lkesé, for k = 1,...,/? and P1 p(lk) = 

P1(lk+i), for k = 1,...,/? — 1, called p-letter words of G. 

Intuitively we interpret the one-letter word l = (x,r) as the traversal of the 
edge of G beginning with /, that is, a traversal from x to y of the edge 
((x,r),(y,s)), if p(x,r) = (y,s); the ^-letter word σ as the traversal of a 
sequence of/? edges beginning with ll9...Jp respectively. 

The word σ' = p(/p)p(/p_ j) . . . p ^ ) is called the inverse word of σ. 
A word σ = / t . . . /p is called çycn'c if P 1 (/j) = P 1 p(/p). 
A word μ = / t . . . /2m of a graph G with m edges is called a complete word if it 

contains each letter of the alphabet sé exactly once. 
We showed [18] that every complete word is cyclic, and that for a graph to 

possess a complete word, it is necessary and sufficient that the graph be 
connected. 

Let G be a connected graph. We define a tree of G rooted in a, where ae X, 
as any subset V of sé with the properties 

( 1 ) the function : (x, r) -► P * p (x, r) restricted to V is a one to one mapping 
of Konto X- {a}; 

(2) for all x e X, if x Φ a, there exists a word σ of G written in the restricted 
alphabet K, say σ = lx... /p, such that P1(ll) = a and Plp(lp) — x. 

Specifying 

K' = { / G ^ | p ( / ) e F } 

is clearly equivalent to specifying V. V is called the inverse tree of tree V. 

We showed [18] that for every complete word μ = lY... l2m of a graph G, 
the set 

Κ(μ) = {/* e μ\ Plp(ìk) # P1 / , for h < k} 
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is a tree of G rooted in Pl (/J, called the entrance tree of the complete word μ. 
The element lk e μ is called the entrance letter of μ at the vertex P1 p(lk). 

We shall compute, using three types of finite automata, three types of 
complete words, each having a specific application. In general, these automata 
serve to induce, from the order defined by d at each vertex, circular orders on 
the elements of the graph: limbs, edges, and vertices. 

Let us describe the Tarry automaton ifT, which solves a labyrinth by 
constructing in every finite graph a complete word beginning at a given point. 

(a) Principles: Tarry's rule is extremely simple; construct a complete 
word μ such that Υ(μ) = ν(μ'). In other words 

(Tl) never use the same limb twice; 
(T2) if/e V, p(/)isthe entrance limb at.Y = Plp(l), then pl is the exit limb. 

It is only used at the last resort. 

THEOREM. The choice of a complete word of a finite-connected graph is 
fa-computable or, the choice of a circular permutation of the limbs of a finite-
connected graph is fa-computable. 

(b) The states of &Ί: F= {ω,/, V, V, 1,2,...,</,î,2,...,<?}, where * is 
the state of the last letter written in the complete word μ, that is, the position 
of the signal which traces out μ, V indicates the entrance limb at x, and re[d~\ 
is a state of (x\s) which stores the directions for μ. The signal leaving x by 
(*,s)had arrived there by (.v,r); in other words, (x,r) = p(lk) and (x,s) = 
lk+l. At time / = 0, we have er

x0 =w or I except for er
x°o0 = r0. 

(c) The possible changes of state: 

(1) o lr
x\t = * the signal arrives at Cv,r); 

(2) o er
xt = ω or / 

for all r e \d\ the signal has never passed through 
x\ 

(3) o ex\t = ω 
for all r2 e [rf], r2 Φ rx, A* has no active limb other than 

(x,ri); 

(4)oeZ = I 
with r2 e [rf], minimum, x has nondead but unused limbs of 

which r2 is the smallest; 

(5) <=> er
x
3

t = V (x, r3) is the entrance limb at .Y; 
therefore, x φ χ0 ; 

(6) o er
xt = î the signal arrives at p(x,r); 
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(7) o r4 = e\\t = e% 
with r4 Φ rs 

( 1 2 ) = > # : / « - K 

( 1 3 ) = > # : / < - P 

(134) = > # : / < - * ! 

(145)=>^ 3 :F<- K 

(6) = > * / : * < - -

(1457) =><4 :r^ 4-ri 

(d) Results: Θ = 2m, where m = card £/. In effect, the network is station
ary from the time 2m— 1 if p(x0, >*o) is the last letter of μ, and from the time 2m 
if not. The automaton x0 knows that t = Θ as soon as it receives a signal and 
finds that it has no more limbs in state /. .v0 has always remembered that it was 
the initial automaton by the absence of a V among its limb states. 

The complete word μ is stored locally at each vertex. In effect, each limb 
(x, r), placed in the state s, is the successor of the limb p(x,s) in the word μ. 
As for the set 

V = {(x,r)eXxldl\er
x,e = V}, 

it represents the inverse of the entrance tree Κ(μ) of μ. Card F = (4 + 2d) and 
c a r d £ < ( 4 + 2</)d. 

In the case where we simply want to pass a signal along once, it is unnecessary 
to store the directions, we set 1 = 2 = ··· = d= U and 1 = 2 = · · · = ^ = 0 
which reduces the number of limb states to 6, F= {ω,/, U, Û, V, V}. If we 
do not even wish to store the tree, we can set V= 0, leaving 5 states, 
F= {ω, /, £/, 0 , V}. Finally, in the case of the traveler who marks his passage 
by coloring the limbs, ω and / are superfluous. If U and V are two colors, 
they are necessary and sufficient for traversing μ. 

3.2. Labyrinth Problems: The Recoil Automata 

Let us define the neutral words of a graph. The operation of reduction 
performed on a word is defined as the removal of two consecutive inverse 
letters / and /'. A word is called neutral if it can be reduced to a null word by a 

we have in mind r4 = r0, at a 
time when the signal returning 

to (x0>
ro) n a s teft y i a (*o>*5); 

r0 is now the state of (x0, r0) and 
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sequence of such reductions. We showed [18] that every finite connected 
graph possesses complete neutral words. 

Let us describe the minirecoil automaton ££mxn which solves a labyrinth, 
by constructing in any finite graph a complete neutral word starting at a 
given point. 

(a) Principles: The minirecoil rule is even simpler than Tarry's rule. 

(Rl) Give priority to limbs with / and p(l) unused. 
(R2) When there are none, retract the existing word in the opposite 

direction, without using the same limb twice. 

We showed [18] that the minirecoil rule generates a complete neutral word, 
having the property of Tarry's words. 

THEOREM. The choice of a complete neutral word of a finite-connected 
graph is fa-computable. 

(b) The states of &min: F= {ω,1,1,2,...,</,1,2,...,<ΐ} where î is the 
state of the last letter written. When (x,s) alone is in state r, p(x,r) and (x,s) 
are used consecutively in the word. When (x,r) and (x,s), with s Φ r, are both 
in state r, then (x, r) = (x0, r0). 

At time / = 0, er
x0 = ω or /except for er

x°o0 = r0. 
(c) Possible changes of state: 

(!)<*/;:,= · 

(2) <>#, = £, = / 
with r2 mini e [d~\ 

(3) o «£, = r3 

(4) o e% = rA Φ r, 
( 5 ) o r s = ^ = e2, 

with rs Φ r6 

(\2)=>^:I^tx 

(123) ^e^.I^P, 

123 =>^ ' : I*-Îl 

(12345) => e? : r , « - / - ! 

(Λ·, r2) is written, and is not a recoil 
letter, 

(.v, r3) is written, and is a recoil 

letter; 

(x, r,) is written just after p(x9rl); 

we have in mind x = x0 and 

^5 = ^ 0 · 
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(d) Results: Θ = 2m. The complete neutral word of S£min and the asso
ciated entrance tree V are in a stationary state, displayed in the same way as 
for if T. 

In Section 3.4, we give two immediate applications of minirecoil words by 
associating with if"11" other elementary automata, which we call stacked 
automata. 

Let us describe the maxirecoil automaton ifmax which solves a labyrinth, 
by constructing in any finite graph a complete neutral word starting at a 
given point. 

(a) Principles: The maxirecoil algorithm differs from the minirecoil 
algorithm in that it recoils as soon as possible instead of recoiling as late as 
possible [18]. 

We mean below by "vertex x is used" that at least one limb of x is already 
written. The maxirecoil rule is the following: 

(51) if the letter / brings to a vertex which is used, then leave by p(/) 
provided that p(l) has not yet been used; 

(52) in all other cases, give priority to limbs / such that / and p(l) are 
unused. 

THEOREM. The choice of a complete neutral word of the maxirecoil type 
of a finite-connected graph is fa-computable. 

(b) The states of£>max: F= {ω,Ι, U, 0, V, Ϋ}. 
This automaton will not store the traced complete neutral word μ, but 

only its entrance tree. * is the state of the last letter written in μ, that is, the 
position of the signal which traces μ. V indicates the entrance limb, and 
U indicates a used limb. 
At time / = 0 we have er

xJ) = ω or /except for ex°o0 = Û. 
(c) The possible changes of state: 

(!)<=>/;:,= · 

(2) <^ ex,t = ω or / 
for all r e [ Ì / ] 

(3) <=> er
XJ = ω 
for all r e [e/], r Φ A*!, 

the signal arrives at (x, r j ; 

x is unused ; 

x has no active limb other than 

C ^ i ) ; 

(4)oeZ = 1 
with r2 e [t/], minimum, x has nondead but unused 

limbs of which (x, r2) is the 
smallest; 
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(5)oeZ = V 

( 6 ) o < l t = f 

(8) oe'x\t = I 

( 6 ) = > e / : * «- ■ 

(13)=><·: I+-V 

(132) =>e;': 7*-K 

(1324)=>e/ : /+- 0 

(1328)=><': /<- 0 

(13284)*«?: 7-^1/ 

(132845) =><£: K«- Pi 

If (132845), the word is finished. 
(d) Results: Θ = 2m. Card F = 6. Card F = 5 if we do not wish to store 

the entrance tree (V =0). Card £ = 6d. 

3.3. Stacked Automata 

We say that the automaton !% is stacked upon the automaton OC if they 
occupy the same vertex and satisfy the following conditions : 

a = (ΕΑ,φΑ,ά), with EA<=FA", 

α = (ΕΒ,φΒ,α), with EB^FB
d, 

where 

ΦΛ^/χ FA
d-> FA

d 

and 

φΒ: FB
d x FB

d x FA
d - F B

d 

so that for (X 
ex,t+l = ΨΑ\ ex,f> 'x,f)> 

while for ^ 

ex,t+l = ΦΒ\ ex,t> 'x,f> ^χ,ί+ΐ)· 

Thus, for its (/+l)th transition, $ takes into account the state of sé at 
time /+ 1, the result of £Ts (/+ l)th transition. This is intuitively acceptable, 
since the information for £Ts (7+l)th transition is already available from 
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(x,r3) is the entrance limb; 
therefore, x Φ x0 ; 

the signal arrives at p(x,r); 

(x,rj is unused; 
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vertex x at time /. The scheme defined above is a particular case of the unique 
transition function for OC and $ together, for which OC is independent of J1. 

If (% is stacked upon OC, the composition of the two may be considered as 
one automaton, which is written {OC*&). 

3.4 Eulerian Path and Edge Ordering 

We seek to compute for an Eulerian graph, that is, a connected graph with 
all the vertices of even degree, an Eulerian word ε, that is, a word such that 
if any letter is used, its inverse is not used, and vice versa. An Eulerian word 
is thus cyclic. 

We showed [18] that the sequence of letters in a minirecoil word which 
appear after their inverse make up an Eulerian word of G, if and only if G is 
Eulerian. 

We shall design an automaton ££E which marks the recoil letters of the 
word μ for concatenating them suitably. 

The stacked automaton (ifmin * <£E) solves the Eulerian problem. 

(a) Principles: The automaton ifE marks, for every recoil letter of μ 
at x, the letter that precedes it in ε. 

THEOREM. The choice of an eulerian word of a finite Eulerian graph is 
fa-computable. 

(b) The states of ifE: F={coJ,U,\,2,...,d}. We use the notation èj 
and / / for the state and input letter of ifE. The initial state is 

êr
x0 = I for xeX, r e [< / ] . 

For (x, r) the state s indicates that (x, r) follows p (x, s) in ε. If p (x, r) = (y, q) 
and there is not yet a p such that êy

p = q, the state s indicates that (x, r) is the 
last letter written in ε. 

(c) Possible changes of state: 

(I) o /£ Φ I 
and ?Xtt Φ r5 

for all r e [d~\ the word ε is interrupted at the 
letter p(x,r5); 

(H)o<£ f + i = * 
and er

x]t+i = r6 or r6, 
with r6, r7 e [d~\ (x,r6) is the letter written in μ 

at time t+l and p(x,r6) is 
already used for μ; thus, 
(x,r6) is a recoil letter, the 
letter of ε written at time 
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(III) o èr
x\t = r7 we have in mind x = x0 ; (x0, rn) 

being the first recoil letter 
of μ, then the first letter of ε; 

(I, II) => êr
x
6 : I<- r5 (x, r6) follows p (x, r5) in ε ; 

(Ϊ, II) => êr
x
6 : / <- r6 we have in mind x = x0 ; (x0, r6) 

being the first letter of e; 

(I, II, III) => ér
x
7 : r7 <r- r5 we have in mind x = x0 ; (x0, r7), 

the first letter of e, must follow 
p(x>r5Ì, the last letter of ε. 

(d) Results: The stacking (j£?min * j£?E) is in a stationary state at time 
Θ = 2w, as in the case of j£?mm. The desired eulerian word ε is a cyclic word, 
locally stored by the stationary state of j£?E at each x. ( è / = s)o(x,r) 
follows p(x,s) in ε. 

Another application of complete neutral words, such as minirecoil words, 
is the computation of a circular permutation of the edges of G, such that every 
edge and its image under the permutation are either adjacent or adjacent to 
the same third edge. We shall construct a new stacking upon ifmin, namely 

(a) Principles: We have seen that a complete word defines a circular 
permutation ä of the limbs of the graph G(R), such that for each limb /, 
/and ä(/) are adjacent. We showed [18] that the sequence of edges correspond
ing to the odd-numbered letters of a minirecoil word μ constitutes a circular 
permutation β of the set U of edges of G, such that u and ß(u) are either 
adjacent or adjacent to a same edge v. The automaton <£υ will copy all the 
limb states of J?min of the form ê(ê = r or K), changing them into e if the limbs 
are even-numbered in μ. 

THEOREM. The choice of a circular permutation of the edges of a finite 
connected graph, such that each edge and its image are either adjacent or 
adjacent to the same third edge, is fa-computable. 

(b) The states of 5£υ: F= {ω,/, 1,2,...,</,Î,2,...,5} where the state s, 
for (x,r), indicates that the edge associated with (x,r), u(x,r), is the follower 
in β of the edge associated with the limb which is followed by p(x,s) in ä, i.e., 

u(x9r) = ß(u(ä~1p(x9s))). 

The state s, for (x, r), allows x to compute ä" 1(x, r), and allows automaton y, 
where p(x, r) = (y, p), to know that (x,r) is even-numbered in the word μ. 
We use the notation éx

r and / / for £?υ. 
The initial state is êr

x
o
o = r0. As with ifmin, this state is not final. 

éJ = ω or I elsewhere. 
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(c) The possible changes of state: 

Ι ^ ^ , ί + 1 = *i 

I I <s> er
Xtt+1 = Ϋ and ex

q Φ ri for all q e [</] 

m o \rit = * 

(I III) or (II III) => ê / : I+-rx 

(IÎÏÏ) or ( I I Ï Ï Ï ) = > < ? / : / < - ^ 

(d) itow/te; 0 = 2m for J^min * if17, the same as for J^min. β is defined by 
the following equivalence : 

(ex' = E)o(ß-l(u(x,r)) = U(OL-\P(X9S))). 

3.5. Rooted Tree of Minimal Paths 

A path from b to a, see Section 3.1, where a, be X,b^a, is a word 
lx l2 -lp such that Ρ ^ Λ ) = * a n d ^V(/P) = «· We call p the length of the 
path. All paths of minimal length from b to a, called minimal paths, have 
their length written as p = \ba\. 

The problem considered here is to find a tree of G, V, rooted at a, which for 
any b e X contains a unique minimal path from b to a. Using this tree, we 
should then be able to pass a signal along the shortest path from b to a. 

(a) Principles: The principle of the rooted tree of minimal paths autom
aton, called ^", is defined in Moore [13]. 

We simply fan out from a, labeling each vertex with a number which counts 
its distance from a, modulo 3. Thus, a is labeled 0, all unlabeled neighbors 
of a are labeled 1, etc. At the tth step, where t = 3m+ q, m e N9 q e {0,1,2}, 
we label all unlabeled neighbors of labeled vertices with q. When no more 
vertices can be labeled, the algorithm is terminated. It is easy to prove that, 
for any b e X, labeled q9 the first limb of a minimal path from b to a is found 
by choosing a neighbor^ of b that is labeled q—l, modulo 3, and letting (b9r) 
be such that P1 p(b,r) = y, and r is minimum. Hence, a unique rooted tree of 
minimal paths is induced by the labeling of the vertices and the local order 
on [</]. 

THEOREM. The choice of a rooted tree of minimal paths of a finite-
connected graph is fa-computable. 

(b) The states of ΖΓ: F = {ω, 7,0,1,2} where ω is a dead limb, I is a 
quiescent limb and 0, 1, 2 are counting states, mod 3. 

If (x,r) is dead, then er
xt = ω, for all t e N. For convenience, let 

[</]» = { r e [ i / ] | e / , É a > } . 
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At time / = 0, we have er
Ot0 = 0 for all r e [d~\a and er

Xt0 = /for all x e X, x Φ a, 
for all re [ i /]x . 

(c) The possible changes of state : 

( l ) < > e ro = / and rx° = q,r0eld]x; 

(1) => ex
r: / <- 9 + 1 (mod3) for all r e \_d~]x. 

(d) Results: The tree is now uniquely determined. Let 

A, = {r 6 [</],! / / = ? - ! (mod3)}. 

Then 

F = {(*, r j | x G Z, ^ f 0 = q,rx = min Δ,}. 

ö=maxx e X |xö| , card F = 5 , and card£ = 4.2d. 
3Γ has the property that all its active (nondead) limbs are always in the same 

state q or /. Thus, for an automaton x with no possibility of dead limbs, that is, 
with [i/]x = [d], card E is reduced to 4. 

Now we define the minimal path automaton &, which traces out paths to a 
in the tree, when stacked upon ΖΓ. 

(a) Principles: Suppose that we wish to find that specific path in the 
tree V which leads from b to a, where b e X, b^a. The first limb of the path 
is that one with the minimum r which joins b to a vertex labeled one less than b, 
and so on. 

(b) The states: F= {ω,/,0,1,2,B, C) where ω,/,0,1,2 have the same 
meanings here as the states of F. B is the selected initial vertex of a minimal 
path, and C is the signal which traces the minimal path. 

We shall denote the states of & as èr
xt and the input letters as lr

xt. At time 
t = 0 we have 

ér
bt0 = B for all re[d\b 

and 

ér
x0 = / for all xe X\x Φ b, for all r e \_d~\x. 

(c) The possible changes of state: 

(2) o ér
Xtt = B for all r e [</], 

(3)oér
x>t = I for all re\d\x 

(4) o er
Xft+1 = q for all r e [</]x 

(5) oAx={re IXLI / / = q-1 (mod3)} Φ 0 

( 6 ) o 3 r 1 e [ r f ] , | t ' = C 
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( 3 4 ) = » ê / : / < - ? 

(245) => èx
r: B *- C, r = minÀ^ 

(56) => éj: q <- C, r = minA* 

(d) Results: £P follows the state changes of 3Γ until the vertex b is labeled. 
Then the minimal path from b to a is immediately traced back. 

The path is (xl,ri),...,(xk,rk), where 

(1) * i = 6 ; 
(2) (.X/,0 is such that ê .̂>0 = C, for i = 1,2,...,/:; 
(3) />V(**,>*) = a. 

There is no more possible change of state when Δχ = Δβ = φ. And so 
e = 2\ba\-l, ca rdF= 10, and card £ = 4.2d + 3d.2d-1 +1 or, with no dead 
limbs, card E = 5 + 3d. Furthermore, (^~*^) may subsequently be used to 
find minimal paths to a from vertices other than b. The labeling of the vertices 
preserves the tree, and it is only necessary to reinitialize the & automata in 
order to begin another computation. 

Let us define the connection automaton Ctf', which, when stacked upon &" 
connects limbs with its neighbors in such a way that a complete neutral word 
is induced in the subgraph V of G(R). 

(a) Principles: The operation of Jf is extremely simple, and resembles 
that of 0>, the minimal path automaton. As F labels the vertices, Jf merely 
marks those limbs which belong to the rooted tree V. The complete word v 
is induced by the circular order on [rf], as we shall see below. 

(b) The states: F=(a>, /, Γ, T, f, V) where Γ, the limb, is a letter of v, 
T, T are transient states used for making connections and V is the entrance 
limb for the rooted tree. We shall denote the states and input letters of X 
as êr

Xtt and lr
xt respectively. 

The root a of V is initialized as follows : ér
Ot0 = T for all r e \d\ and ér

x0 = / 
or ω otherwise. 

(c) The possible changes of state: 

( 0 o eXtt+ ! = q, èr
Xft = I for all r e [_d~\x 

and Âx = { r e [ 4 : i ; = f } # 0 

(2)oéXit=T 

(3) o l'Xtt = V 
and éx: t <- T under any conditions 

(1) => èx\ 1 <r- V, r = minÂx, 
and éx

r: I *-t for all r e [ί/]Λ | r φ Αχ 
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(23)=>ê/: Γ « - T 

( 2 3 ) = > è / : T « - 7 

(d) Results: By the above rules, έχθ = ΤοΙχθ = V, and all limbs of the 
rooted tree V are marked with a T or a V, V denoting the entrance limb of 
each vertex except a. Θ = k(a) + 2, where k(a) = max^^ \ax\. 

The extra two time units are lost at the beginning, since before making its 
connections Jf has to wait until &~ labels the successors of a. Card F = 6 and 
card E < 6d. The complete word v may be found by the following rules, 
where v = /1,...,/2n_2: 

(1) /j is any limb of a marked with a T\ 
(2) if P1 p(li_l) = x, then /,· is the first limb of x, moving clockwise from 

p(ii-i) on [rf], that is found marked with a i o r a K 

Note that v', the inverse of v, may be found simply by beginning at /2„_2 and 
changing the term clockwise to counterclockwise; among the limbs of a 
marked with a T, lt and /2„_2 are adjacent; v and v' are cyclic words and v has 
2tf — 2 letters, that is, twice the number of edges in a tree of« vertices. 

In this section we have separated the edges of the graph G into two parts, 
the tree V and its cotree W. 

We may now construct, for each ueW, the cycle which meets W only at w, 
by marking the edges of V that join the extremities of u. Such a computation 
is done by an automaton derived easily from 3Γ * & of this section. 

We may now construct, for any u e V, the coboundary which meets V only 
at u. Such a computation is done by M * #, that is, by a marking automaton 
Jt (see Section 2.2) where x0 is an extremity of u and U0 = V— {w}, on which 
we stack a coboundary automaton. 

3.6. Vertex Ordering 

Let us recall that we have constructed a circular permutation ä of the limbs 
of a connected graph, see the automaton ££T or j£fmin (Section 3.1 and 3.2), 
and a circular permutation ß of the edges of a connected graph, see the 
automaton £Ρυ (Section 3.3). We shall now construct a circular permutation 
y of X in a connected graph, such that for all x e l , w e have \x, y (x)\ ^ 3. 

We showed [18] that if we consider a complete neutral word v of a tree of G, 
beginning at a vertex x0 , and the sequence of vertices consisting of x0 and, 
for each even-numbered letter / of v, of the vertex P1 (/) if p(/) comes before 
/ in v and of P1 p(l) if p(l) comes after / in v. Then this sequence is a 
circular permutation y satisfying the above condition. 



Intelligent Graphs 247 

Now Jf (Section 3.5) defines the connections of a complete neutral word of 
a tree VofG rooted at x0. y then can be constructed by the stacking ̂ ~* jf* «£?*, 
with $£x defined as follows : 

(a) Principles: <£x copies the complete neutral word v of Jf, replacing 
the states T of odd-numbered limbs l2k-1 of v by S, then 

(1) placing a hat (5 <- S) on the state of a limb l2k- ! if, according to the 
labeling of ^~, l2k-1 joints its vertex to one of lesser value; 

(2) placing a hat (T*-f) on the state of limb i2k if, according to the 
labeling of &~, l2k-i joins its vertex to one of greater value. 

As a result, at the end of the computation each automaton will have exactly 
one limb in the state *. 

(b) The states of <£x : F= {ω, I, T, f, S, S} ; T or f are even-numbered 
limbs of v, and S or S are odd-numbered limbs of v. If * is the state of /, 
and if k is the first limb in state * coming after / in v, then Pl(k) = y(pl(l)). 

We use the notation ex, èx, ëx for the states of &~, Jf, and <£?*, respectively. 
/ / is the input letter of S£x. Note that S£x does not depend directly upon ex

r. 
Initially the network is idle, and ër

x0 = ω or /for all r and x. 
(c) The possible changes of state: 

(0)<>Ax = {re[</]K f + 1 = r} Φ0 
and ér

xt+ì Φ V for all r e [ i / ] this condition occurs 
only once at vertex 
x0 at time t = 2 

f 

S 

r2 is the first r after rl 

in the circular order 
such that <%,+1 = T 
orV; 

(0)=>e?:/«-S 

(14)=>ë?: / < - S 

(lì) = > # : / « - S 

(23)=>ê?: I+-T 

( l )o7; ; , = Γ or 

(2)oi; ' , , = 5 or 

( 3 ) ~ £ , r + 1 = K 

( 4 ) o Ç , + > = r 
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(d) Results: Let x e X and let (x,r) be the limb of x such that ër
x>e = *. 

Let (y,s) be the first letter after (x,r) in v such that ës
yj = *; then y(x) = y, 

Θ = 2n, card F = 6, and card E ^ 6d. 

THEOREM. The choice of a circular permutation y of the vertices of a 
finite-connected graph, such that for each vertex x and its image y(x) we have 
|ΛΓ, y(jc)| ^ 3, is fa-computable. 

3.7. The Network Firing Squad Problem 

The firing squad problem is one of the earliest problems dealt with in the 
literature on arrays of finite automata [1, 12, 22]. It may be stated as follows: 
Given a line of« automata, including a "general" at one end of the line who is 
activated at time / = 0, we must design the automata so that at some future 
date Θ they will all, simultaneously and for the first time, enter a special firing 
state. A minimum-time 8-state solution for this linear problem, with Θ = In — 2 
was given by Balzer [1]. 

We have formulated and solved a more general problem [15]. Given an 
arbitrary connected network of automata, with any vertex-automaton acting 
as general, we must have them all fire simultaneously at time Θ. Here we give 
an alternate solution to this problem by stacking a generalized firing squad 
automaton !F upon ΖΓ * Jf (see Section 3.5). 

Surprisingly enough, we achieve a computation time of Θ = 2n, only two 
time units more than for the much simpler linear version. 

Let us now define the generalized firing squad automaton, J^, which, when 
stacked upon ΖΓ * jf, uses the words v and v' to guide two linear firing squads 
around the tree. 

(a) Principles: If the valence of R is d, then 3F has 2d limbs, circularly 
numbered \A,lB,...9dA,dB,in what we call the clockwise direction. Thus, [d~\ 
is understood to represent the set {1^, \B,...,dA,dB}. Limbs rA and rB occupy 
the same edge of G(R), so that the matching p becomes p, defined by 

p (x, r) = (y, s) o p (x, rA) = (y, sB) and p (x, rB) = (y, sA). 

In this way, a circular path of limbs corresponding to the word v may be 
found, simply by consulting Jf for the connections. A "double firing squad" 
process may then be launched, beginning at a, the general, who sends out 
signals in opposite directions which meet at the other side of the cyclic word v. 

(b) The states: F will be the same set of limb states used for the linear 
problem, with ω added. 

Let us denote the states and input letters of & by e\t and Yxt respectively 
and those of Jf by èr

xi and lr
xt, respectively. 

Initially the network is idle, and ër
Xt0 = I or ω for all r and x. 



Intelligent Graphs 249 

(c) The possible changes of state: Here it is best to use a verbal explanation 
rather than our conventional propositional notation. Now, in the linear firing 
squad problem, we have d = 2 and the solution involves a transition function 
Φ2: F2 x F2 -> F2. The automaton <F uses that same function to operate on 
pairs of limbs which lie on the path of the complete word v. Those pairs are 
chosen as follows : let 

i ,= frV /*}c[ f l x 

be the ordered set of limbs satisfying èr
x\t+ì = T or Kfor / = 1,...,/?. We form 

a set of/? pairs of elements of 

Lx: Px = {{rB\rA
2\ (rB\rA\..., ( r / , ^ 1 ) } . 

Then, for every / such that Lx Φ φ, we can say that Φ, the transition function 
for J*, is separable into p functions Φ2, each operating on a pair from Px. 
lfp = 1, Px = {(i*1 ,^1)}. Thus, & may be thought of as an aggregation of/? 
independent linear automata. 

There are only two exceptions to the above transition rules. 

(1) When at / = 2 the connections of a have been decided, that is, La Φ φ, 
the condition that έΓ

αΛφΥ for all re[d~\ causes the following 
transition : 

ëa
r: I <- M for r — rp,rA

l. 

Here M denotes the initial state of the general in the linear firing squad. 
This launches two signals which will meet at b, where b = P1 p(/„_i), 
the midpoint of v. 

(2) We include an instruction which will cause the transition 

ëb
r:I*-M for r = rB\rA

+\ 
where 

Γ Β ^ Ρ 2 ^ / . - , ) ) , Λ+ι=Ρ2(ϋ. 

This establishes the ends of the two firing squads. From that point 
on, their operation proceeds normally. 

(d) Results: Since both firing squads consist of n linear automata, they 
will fire simultaneously after In — 2 time units. With the two-unit time delay 
caused by Jf, we have Θ = 2«, card F = 9, and card E < 9d. 

We remark that J^ is dependent on jf, but ^f does not depend directly 
on &~, so that the original definition of stacking is preserved. 

THEOREM. The network firing squad problem is fa-computable by 
er * j f * y. 

Note: By using the "generalized firing squad" algorithm of Moore and 
Langdon [14], where the general's position in the line is arbitrary, we may 
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Fig. 1. Star firing squad, 2 rays. 

achieve a further reduction of the computation time for a network firing squad, 
provided that/? > 1. Any two pairs of a act as the generals for two firing squads, 
sending initial signals in both directions. For the linear case, Θ = 2n — 2 — k 
where k is the general's distance from the nearer end of the line. Thus for the 
network problem we obtain \n < θ < 2n. 

We now solve the star graph firing squad problem. We shall consider a 
network R whose graph G(R) = (X, U, oc) is a star graph with d rays, and with 
the general at the center. For the case d = 2, see Fig. 1. 

If d= 1, this problem reduces to the original linear firing squad problem. 
If d= 2, we have the firing squad problem of Moore and Langdon discussed 

above, in which the general is anywhere in the line. Let the general be x0 , 
and the ends of the two rays be a and b. Let \x0a\ = a, \x0b\ = β, and assume 
α > β. Moore and Langdon show without difficulty that the minimum solution 
time, which they achieve, is θ = 2<χ + β. (Note that w = a + /?+l, where 
n = card X. ) Here we give a solution that is also minimum time, but has a 
much simpler set of transition rules. 

Furthermore, we have generalized our solution of the Star Graph Firing 
Squad Problem with 2 rays to the case with d rays where d is any finite number, 
while maintaining the same solution time 2α + β, α and β being the lengths of 
the longest and second longest rays of G. 

Let us stack first the automaton «^2, which resolves the ordinary linear 
firing squad problem, upon an automaton Sf2, which will coordinate the 
firing squad in the star graph G with 2 rays. We describe the automaton Sf2. 

(a) The states of Sf2: F= {ω, Ι,Α,Β, NUN2,G,H}9 where ω is a dead 
limb, / is a quiescent limb, A is a freezing signal (speed 1), B is an unfreezing 
signal (speed 1), N is a slow signal (speed \), G is a general, and H is a freezing 
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wall. We denote the states of «^2 and Sf1 by êr
Xft and er

Xtt respectively. Note 
that [rf] = {1,2}. 
At time t = 0, we have er

XOi0 = B9 re [</], and èr
XtQ = er

Xt0 = I or ω otherwise. 
(b) The transition rules: 3F2 functions normally unless we specify other

wise. See Section 3.8 for an explanation of signal propagation. 

(1) x0 immediately assumes the "general" state (er
XQ: B<r-G) as the two B 

signals propagate toward the ends a and b of the two rays. 
(2) The B signals are reflected at a and b9 but they cause the initiation of 

two firing squads (éa
r, lb

r: /< -M) . 
(3) When the general x0 transmits the first set of firing squad signals, 

indicated by the arrival from b of a B signal, he abandons the state 
G, changes the B signal to an A signal, and sends out an N signal in the 
same direction. 

(4) When the two firing squads meet, one with an accompanying A signal 
and the other with a B signal, xl9 the automaton at which they meet 
assumes the state H and causes a wall to be formed for both firing 
squads 

(eXi,t+i = H=>êXut+1 = M). 

The B signal is not transmitted, but the A signal is, and causes the 
shorter firing squad, emanating from b9 to be frozen, whatever its 
state may be when the A signal makes contact with it. 

(5) When the N signal arrives at ^ , in state H, xt sends a B signal in the 
same direction to unfreeze the firing squad, so that it may terminate 
normally. 

(c) Results: It is easy to show that the shorter of the two firing squads is 
frozen for exactly α — β time units, so that both firing squads will fire at time 
0 = 2α + β. C a r d F = 8 for ^ 2 , card£ = 64, and cardE= 16 for #"2 

(Waksman's solution [22]). 

STAR GRAPH: GENERAL CASE 

(a) Principles: To operate the firing squad on a star graph having d rays, 
we basically use the same method as in the previous section for the two longest 
rays, having frozen the other firing squads and having determined the appro
priate instants at which to unfreeze them. For the case d= 5, see Fig. 2. 

(b) The states of ^d: F={œ9I9Nl9N29A9Rlp9R2p9R3p9Bp9Ep9G,H}9 

where p e {1,2,...,*/}, Rìp9R2p,R^p are the slowest signals (speed £), and 
Ep is the storage of timing for firing squads. Initial conditions are the same 
as in the 2-rays star graph firing squad problem. 
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Fig. 2. Star graph firing squad, 5 rays. 

(c) The transition rules: 

(1) As above, a B signal is sent out on each ray, and x0 takes state G. 
(2) As above, the reflected B signals initiate firing squads. 
(3) For the second-to-last B signal that arrives at x0, the A and N signals 

are created as above. 
(4) For other B signal arrivals, x0 suppresses the B signal and sends out 

an Rq signal, where q is the number of the corresponding ray, onto any 
nonfrozen ray, and another A signal which freezes ray q. 

(5) When an Rq signal meets a firing squad at an automaton x2, 
pr · . <- F ex2- <-*V 

(6) The intersection of the firing squads with A and B signals follows the 
same rules as in the 2-rays star graph firing squad problem, with the 
A signal freezing the shorter ray, and the N signal prompting an 
unfreezing. 
When Rq overtakes an A signal, Rq is destroyed. 

(7) When a returning firing squad strikes an automaton in state Eq9 a Bq 

signal is sent back toward x0. 
(8) When x0 receives a Bp signal, it unfreezes the firing squad of ray q 

using a B signal. 
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(d) Results: It is easy to show that the point Eq on ray p is midway 
between the ends of rays p and q. Thus all the firing squads will fire simul
taneously, again with Θ = 2α + β, a and ß being the longest and second longest 
lengths of rays. Notice that this time is considerably less than the computation 
time for a network firing squad as described in Section 3.7. If d>2, 
u + ß<n-\ so that 2a + ß < In, card F=5d+1, and card E < (5d+ l)d. 

THEOREM. The star graph firing squad problem with d rays is fa-computable 
by &d*&d. 

3.8. The Early Bird Problem 

We now address ourselves to a problem which is not, strictly speaking, 
graph theoretical, but proves extremely important in the solution of certain 
graph problems, such as the minimum-tree problem, see Section 4.3. The 
early bird problem, as we call it [17] seems, in fact, to be a fundamental 
problem in the study of networks of finite automata, and is closely related to 
the problems of undecidability discussed in Section 2.4. It may be stated as 

Fig. 3. Earl/ bird. 
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follows: given a network R with d= 2, whose graph G(R) is an elementary 
cycle, and given that for some set A cz X9 each automaton x,x e A, is excited 
by an external clock at a distinct time tx, tx^ 0, we must design the automata 
in such a way that after a finite time 0, all the automata of X are in state / 
except for the single automaton x0 who satisfies tXQ = min^^ tx, and is thus 
the "early bird," signified by state E (see Fig. 3). Informally, we can say that 
the automata must determine which one of them was excited first. 

Let us describe the early bird automaton, ê2, which solves the problem 
described above. 

(a) Principles: The easiest way to explain the operation of S2 is to speak 
of signals which are transmitted around the circle of automata at various 
speeds. We say that a signal is transmitted from x to its neighbor^ if x assumes 
a certain state S at time t and y changes to state S at time t + δ. We call 1/(5 
the speed of the signal S. When one of the automata x is excited, it sends out 
signals in each direction. If x = x0 then these signals will meet at the opposite 
end of the circle, and will be reflected back to x0, informing it that it is the 
early bird. If x φ χ0, its signals are destroyed before they meet, according to 
the transition rules for S2. 

(b) The states of ê2: F= {/,/,E, Ê, M, B, G,Ni9N2, RUR2, R3}, where 
/ is a quiescent limb, unchanged since / = 0, / is a quiescent limb which has 
transmitted a signal, E is an early bird, Ê is an excited automaton, M is a wall 
created by intersection of black signals, B is a blue signal (speed = 1), G is a 
green signal (speed = 1), Nl9 N2 are black signals (speed =\), and Ru R2, R3 

are red signals (speed = J). 
To demonstrate the transmission of signals, suppose that at time / a left-

traveling red signal is propagated through x and its left-hand neighbor y. 
Their changes of state are shown in Table I. 

Initially, at time t = 0, the network is quiescent. Each x G A is excited at 
time tx, but x responds to the excitation only if it is still quiescent. In other 
words, er

x0 = / for all x, r such that tx Φ 0; er
xtx — Ê for all x e A, and for all 

r e [ 4 provided that when tx^0, and lr
Xttx-\ = er

x,tx-i
 = I- Notice that 

\d~\ = {1,2}, and there are no dead limbs, since G(R) is a cycle. 

TABLE I 

Time 

/right limb 
*\left limb 

fright limb 
•^left limb 

/ 

/ 
Ri 

I 
I 

H-l 

/ 
Ri 

I 
I 

t+2 

I 
Rz 
I 
I 

H-3 

/ 
/ 
/ 
Ri 

H-4 

/ 
/ 
/ 

R2 
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(c) The transition rules for S2 : For convenience, we list the rules verbally ; 
unless otherwise stated signals are always transmitted, see Fig. 3. 

(1) If ext = £, then x sends one black and one red signal in each direction, 
and then becomes quiescent. 

(2) If x receives a black signal from both directions at once, then ex: -+-M 
(x becomes a wall). 

(3) If ext = M and x receives one red signal, then the wall disappears and 
the red signal is destroyed. 

(4) If ex t = M and x receives a blue signal then the wall disappears 
(ex

r:M^I). 
(5) If a black signal overtakes a red signal moving in the same direction, 

the red signal is destroyed. 
(6) When a red signal is destroyed at x, x sends a blue signal in the 

direction that the red was following. 
(7) If a blue signal overtakes a black signal moving in the same direction, 

both are destroyed. 
(8) If x receives a red signal from both directions at once it sends one 

green signal in each direction. The red signals are destroyed. 
(9) If a green signal overtakes a black signal moving in the same direction, 

the black is destroyed. 
(10) If x receives a green signal at once from both directions, then the 

signals are destroyed, and x is the early bird x0, (ex: · <-E). 

Note: Though we do not explicitly discuss the cases where signals meet at a 
pair of automata, rather than at just one, such cases are easily provided for 
in the transition function. 

(d) Results: Under the above rules, the following assertions can be 
proved readily : 

(1) If tXi < tX2, then the automaton x3 which takes state M as a result of 
the black signals sent by xi and x2 will receive the red signal of x2 before 
that of x1? provided that the reds are not destroyed beforehand. In any 
case, the red signal from x2 will never be transmitted beyond the wall, 

(2) If tXi < tX2, the blue signal resulting from the destruction of x2 's red 
signal will destroy x2 ' s black signal before it passes xl. 

(3) The red signals sent by x0 cannot be destroyed. 

The above statements imply that the only way green signals can be created 
is by the intersection of the two reds originating from the automaton x0. 
We point out that the strict order on the set {tx\ x e A} is a crucial premise. 



256 P. Rosenstiehl, J. R. Fiksel, A. Holliger 

Thus, assuming that txo = 0, we have exo θ = E and exQ = I for x Φ x0, at 
Θ = In, where n = card X). 

Card F = 12 and card£ = 4 + 82 = 68. 

THEOREM. The early bird problem is fa-computable by S2. 

Just as the firing squad problem was generalized from a line to a network, 
the early bird problem may be generalized from a circle to a network R with 
n vertices and degree d. The solution to the problem of finding the early bird 
in the network could be obtained by stacking a generalized early bird automaton 
Sd, similar in principle to J*, upon the automaton Jf, which induces a 
complete cyclic word in the tree defined by 9~. The details of operation would 
parallel those given for the network firing squad computation (see Section 
3.2) with θ = 4η - 2 . 

THEOREM. The network early bird problem is fa-computable by 

3Γ * j f * gd. 

Finally, we state and solve the flock of early birds problem. Given a con
nected network R, a complete cyclic word / iona spanning tree of G(R) which 
induces a vertex ordering for the vertices of R, and a forest of disjoint sub
trees {Τι'. ie 1} of G(R), we must find the early bird within each tree Ti9 

that is, the vertex xt e Tt such that x,· is minimal in the vertex ordering. 
For the solution, we use the automaton j£?x operating on μ as the source of 

excitations for the vertices (see Section 3.6) rather than an external clock. 
Since the T{ are already defined, they each induce a complete cyclic word vf in 
the subtree, according to the rules given in Section 3.5. Thus, we may use 
êd to perform the early bird computations on each cyclic word vf. Note that 
this problem could not be solved for a bounded number of states without the 
early bird algorithm. 

THEOREM. The flock of early birds problem is fa-computable by S£x * êd. 

4. More Complex Problems 

4.1. Block Decomposition 

It is well known since Whitney [23] that the blocks and the articulation 
points of a connected graph form the edges and the vertices, or the vertices 
and the edges, of a hypergraph [3] without a cycle. 

DEFINITION. We state the block decomposition problem as follows: For 
each vertex x e X of a connected graph G = (X, U), determine a partition 
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of the edges incident to x such that each class will consist of edges which are 
part of the same block, that is, which have an elementary cycle passing through 
any two of them. If x is not an articulation point, then this partition will 
contain only one class, which includes all the edges incident to x. 

THEOREM. The block decomposition problem is fa-computable. 

(a) Principles: Let us consider any vertex x0 of the graph, sending a 
maxirecoil signal M l , as described in Section 3.2, through one of its limbs 
(x0, r0). When the signal returns via that limb, it will have traversed all limbs 
of x0 in the block containing (x0, r0), and no other limb of x0. In effect, the 
maxirecoil signal returns to x0 via (x0, r) before (x0, r0), if and only if there 
is an elementary cycle containing (x0, r0) and (x0, r). This is easily proved by 
referring to the maxirecoil rules, see Section 3.2. 

At the beginning, each vertex has only one class of nondead limbs. 
A given vertex x0 begins alone the identification of its partitioning, class 

after class, by sending out a maxirecoil signal M l . Each time a class of the 
vertex x, x0 for example, is identified by the criteria given above, x sends out 
a signal in every direction within that class to erase the maxirecoil word states 
generated during the identification ofthat class. And at the same time x sends 
out a maxirecoil signal Ml through one limb ofthat class. The first automaton 
to receive signal Ml which has not yet completed its partitioning stops Ml 
and recommences the partitioning process. Parallel computation is then 
performed, with at most one partitioning in operation per block. 

Notice that the erasing process cannot affect any active signal Ml or Ml 
since the hypergraph of blocks has no cycle. 

(b) The states of <$f™x: To solve the block decomposition problem, we 
use a special automaton, J^Jax, of the same type as j£?max, see Section 3.2, 
with some simple additional features stated below. 

(1) j£?£ax can stop a maxirecoil word in process (Ml or Ml) under the 
two conditions indicated above and send out at the same time a new 
maxirecoil word (respectively, Ml or M l ) ; 

(2) j£?£ax can store a partitioning of its limbs ; 
(3) J£?£ax can keep a maxirecoil signal in operation inside a given class of 

limbs, the class of the departure limb being the class of the arrival limb; 
(4) <£ £ax is able to send and transmit erasing signals inside a class of limbs. 

As far as the partitioning activity is concerned, d states suffice to class the 
limbs: Fi = {/, 1,...,*/}. As far as the maxirecoil activity is concerned, we 
notice that there is no overlapping of signals M1 and M2 in the same limb 
since two such signals cannot exist in the same block at once. Furthermore, 
it is not necessary to record the word connections or the entrance tree. 
Then three active states suffice for each signal: F2 = {I, Ul9 Ûl9 Vl9 U2, Û2, V2). 
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We have F = Fl x f 2 u {(ω,ω)}. Initially, at time t = 0, the maxirecoil part 
of the state er

x°0Q, is set to 0, representing the launch of the first Ml signal. 
Otherwise every limb is in the quiescent state. 

(c) The transition rules for J?™x: The transition rules of ifmax are listed 
in Section 3.2. It is unnecessary to explain any further the transition rules 
governing the additional features stated in (b). 

(d) Results: For a given vertex, all limbs with the same class number 
1,2,...,*/— 1 or /, at time 0, belong to the same block. 

Parallel computation in different blocks begins as soon as a first articulation 
point has completed its partitioning. Nevertheless, Θ is difficult to estimate. 
We have roughly Θ ^ card Xx card U. Card F= l(d+1)+ 1 and c a r d £ ^ ldd\. 

Remark: We could easily supply j£?£ax with an additional feature so that 
the block decomposition would include a labeling of all limbs in the same 
block. 

4.2. Hamiltonian Cycle 

We seek to construct an automaton which tests any graph for the existence 
of a Hamiltonian cycle, and displays such a cycle if one exists. 

THEOREM. The Hamiltonian cycle problem is fa-computable. 

Berstel [5] has already verified this theorem. Here we present an approach 
which is simpler and more rapid than his solution, by profiting from certain 
shortcuts in the enumeration of the cycles. Let us describe the automaton J«f 
which solves this problem with 5 colors per limb. 

(a) Principles: Consider the class of words σ originating at a given 
vertex x0 e X, 

σ = / i . . . / * / * + 1 . . . / p , 

such that 

pri U = x0 

and 

Pr\ K 7e Ρ?ι 4 f° r h < k, k = 2,...,/?. 

Notice that no vertex is repeated and that the word must terminate ifprί ρ (lp) = 
prx lh for some h <p. It is clear that this class of words includes Hamiltonian 
words, which pass through every vertex once. The order on the set [//] of 
automaton limbs induces a lexicographic order on this class of words. Thus, 
if we select any initial vertex x0 e X and construct these words one by one, 
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according to the lexicographic order, we must eventually discover a Hamil-
tonian cycle if one exists. 

We follow a sequence of limbs from x0 until we arrive at a vertex which has 
already been traversed. If this vertex is x0, and if no traversed vertex has a 
neighbor that has not been traversed, a Hamiltonian cycle has been found. 
To do so, if the word reaches x0, an 8 signal will retrace the word back 
until it reaches an automaton with an untraversed neighbor. Then a new 
word is tried by taking the first next limb met. It may be shown that none 
of the words skipped by this procedure can be a Hamiltonian cycle. Thus, 
we reduce the required number of computations significantly. 

Note that to avoid confusion the vertices which have been retraced should 
not be marked "untraversed" until after the new limb has been selected at xx. 
In fact, they are marked "untraversed" only when they see the forward passage 
of a new word through one of their neighbors. 

(b) The states of 3tf: F= {ω,Ι,Ι,Ι,Α,Β,Β}, where ω is a dead limb, 
/ is a quiescent limb of an untraversed vertex, / is a quiescent limb of a traversed 
vertex, / is a quiescent limb of a retraced vertex, A is a word construction 
signal, B is a retracing signal, and B is a retracing signal and also a transient 
indicator of forward passage of A. At time / = 0, we have er

x°o = A where 
r0 = min \_d~\Xo, and ex

r = I or ω otherwise. 
(c) The transition rules for #? : When x receives the A signal (// = A), then 

when r is the minimal limb such that ex
r= I, I or B, then ex <r-A if / / = / 

or /, and eJ^B if 1/ =B (not to be confused with a return of the word). 
Also, in both cases, x places its other limbs except for r(ex :·<-/) in state 
B for one unit of time, and then in state / (traversed vertex). The B 
is a transient indicator of forward passage through x. 

(1) If x cannot transmit the A signal as above, since r does not exist, 
then it sends a B signal to retrace the word (if / / = A then ex: /*- B). 

(2) If x receives a B signal (// = B), and (a) ex = B, then x treats the B 
signal as if it were an A signal, (b) ex = I or /, then x transmits a B 
signal if it has an untraversed neighbor, and a B signal if not. 

(3) If a vertex is retraced (transmits a B or a B signal), then it places all 
its limbs in state /, except for a limb transmitting a B signal, which 
remains unchanged. 

(4) If x has an untraversed neighbor, and receives a E signal, (Γχ
ι = B) 

then it selects the first limb above r in the order if it exists, and 
transmits an A signal along that limb, or else transmits B. 

(5) If x has its limbs in state /, and sees a forward passage through one of 
its neighbors (// = B), then x changes its limbs to state /. 

(6) If x0 receives an A signal, x0 being the only vertex whose limbs are 
in state / except for one in state A, then x0 retraces the word »by 
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transmitting a B (if x0 has no untraversed or retraced neighbors) or a B 
(if x0 has a neighbor such that / / = / or /). This constitutes a test for 
a Hamiltonian cycle. When x0 receives the signal B that it transmitted, 
a Hamiltonian cycle has been found. 

(7) If x is such that Fx
l = A = Γχ

2, rl Φ r2 and er
x
3 = A, e'J = /, then x does 

as if Γχ
2 = I and ex = /, for all r Φ r3 (self-loop). 

(d) Results: If a Hamiltonian cycle is found, it is marked by those limbs 
of the graph which are in state B. If no such cycle exists, the procedure will 
terminate when no new words can be formed. The computation time is 
extremely difficult to calculate, but the efficiency of the algorithm has been 
improved to a great extent by the omission of certain words which could not 
lead to a Hamiltonian cycle. Card F = 7 , ca rd£<7 d , and cardJC = 
2d(d- \) + 6d=2d2 + 4d if there are no dead limbs. Then a traveler in the 
graph would solve the problem with 5 colors only. 

4.3. The Minimum Tree Problem 

The well-known minimum tree problem, as we showed [16], can be stated 
as follows. 

Given a total order* upon the set of edges of a graph, determine the spanning 
tree which is first in the lexicographic order, when all the spanning trees are 
written as lists of their branches put in the increasing order. 

The algorithm that best fits our goal here is the one known as Sollin's 
algorithm [3], which is a variation on the third algorithm of Kruskal [11]. 
It consists of 

(1) choosing the minimal edge in the coboundary of each vertex, and 
making it a branch of the minimal tree V; 

(2) choosing the minimal edge in the nonempty coboundaries of sets of 
vertices of each connected subtree of F already formed, and making it a 
branch of the minimal tree V. 

Instruction (2) is repeated as many times as possible. Notice that the algorithm 
involves only local decisions and features parallel computation since all the 
coboundaries are considered simultaneously. This makes it an ideal application 
for computation by networks of finite automata. 

Let us define the total order for the set of edges U in the framework of our 
theory. As we did for the early bird problem, we may suppose an external 
source of excitation acting on the edges in the prescribed order. More precisely, 
an edge enumeration clock functions as follows: the clock contacts each of 

t In [16] we extended the problem to a weak order, which we do not introduce here for 
the sake of simplicity. 
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the edges to check whether they are all ready for an enumeration. This is done 
in the prescribed order, the checking process being performed by repeated 
circular inspections. As soon as the clock has contacted all the edges, and 
found that they are in the ready state, it runs through the order once, 
exciting each edge from the first to the last at a distinct instant of time, and then 
continues its normal contacting procedure. Though we speak casually about 
exciting or contacting edges, the clock actually interacts with vertex automata, 
each edge being associated with a specific limb of one of the vertex automata 
to which it is incident. 

A second ordering is necessary due to an interesting undecidability problem 
involved here which generalizes Theorems 1 and 2 of Section 2.4, namely, 
that an automaton in a subtree Vx of G cannot tell whether an edge incident 
to it and not belonging to Vi is a chord of Vx or an edge of the coboundary of 
the vertices of V1, connecting V1 to another subtree V2. To resolve this problem 
we must escape the risks of undecidable connectivity due to symmetry. It 
can be shown that this is achieved by introducing a vertex enumeration clock, 
which functions continuously, exciting each of the vertices of X according to 
a circular order. We point out that no first vertex exists in the order. An 
excitation consists of a vertex being made to enter a special excited state, not 
accessible via its transition function. 

It is understood, of course, that in addition to the two clocks mentioned 
above, the network is synchronized in the usual way by a synchronization 
clock, which prompts the state transitions of the automata at discrete intervals 
of time. Notice that all three clocks operate at the same speed. In effect, the 
two enumeration clocks can be regarded as synchronized by the synchronization 
clock. 

Remark: As explained before, the three external clocks mentioned here 
may be incorporated into the network as follows: 

(1) the synchronization clock can be replaced by the self-synchronization 
automaton of Section 2.3; 

(2) the continuous vertex enumeration clock can be replaced by the vertex-
ordering automaton of Section 3.6; 

(3) the edge enumeration clock can be replaced by the edge-ordering 
automaton of Section 3.4 with an additional feature for recognizing 
the ready state. 

On the basis of these definitions we can now prove the following theorem. 

THEOREM. The minimal tree problem is fa-computable. 

We define the minimum tree automaton SM, derived from the elementary 
early bird automaton <f (see Section 3.8) for solving the minimum tree problem. 
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(a) Principles of SM: The algorithm will be performed using two types 
of iterations : the first type, which we call labeling procedure, for identification 
of boundaries, the second type, which we call minimization procedure, for 
selecting the minimal edge in a coboundary. 

The labeling procedure involves, for a given vertex x belonging to a subtree 
Vi of V already determined, labeling among the edges incident to x and not 
belonging to Vx those belonging to the coboundary of the vertices of Vt. 

To effect this algorithm, we use a modification of the early bird algorithm, 
see Section 3.8. When a vertex is excited by the vertex enumeration clock, 
it becomes a leader, causing itself and each of its neighbors along edges not 
belonging to its subtree Vx to begin sending independent early bird signals 
within their own subtrees at the same time. 

It is easy to show, due to the strict circular order of enumeration, that two 
automata will simultaneously enter the early bird state if and only if they 
began sending signals at the same instant along the same complete cyclic 
word of their common subtree. 

Thus, at least one leader in each subtree will be able to label each of its 
edges as either chords or coboundary, according to whether the corresponding 
neighbor becomes an early bird at the same time as it does. Since it may have 
d neighbors, it must send out as many as d different sets of early bird signals. 

We point out here that we have generalized the early bird problem to the case 
where there may be one or two early birds in the circle, the first ones excited. 
At the end of the computation, each early bird knows whether there were two 
or one. Here the roles of early birds are played by leader and neighbor. 

Problems of symmetry leading to undecidability are avoided by the vertex-
enumeration clock, which ensures that the state M(t) of the network is 
asymmetric at each instant t. 

Once a vertex has all its edges labeled, they are considered "ready" by the 
edge-enumeration clock, and that vertex ignores all further excitations by the 
vertex-enumeration clock. Thus, the labeling procedure continues until all 
edges are ready, at which time the minimization procedure begins. 

The minimization procedure involves selecting the minimal edge in the 
coboundary of each subtree. This is done using the early bird algorithm in the 
standard version. As the edge-enumeration clock excites each coboundary 
edge, the corresponding vertex sends early bird signals along the complete 
cyclic word of its subtree. Excitations of other edges are simply ignored. 
Clearly, the early bird will be that vertex associated with the minimal edge, 
since it was excited first according to the strict order on U. Each subtree thus 
selects an edge which becomes a new branch of V, and the vertices of that 
subtree immediately begin accepting leader excitations from the vertex-
enumeration clock, thus recommencing the labeling procedure. 

We point out that, at this stage of the algorithm, there may be temporary 
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gaps in the cyclic word of a subtree. For example, if two subtrees Vi and V2 

are to be joined by the minimal edge ιιγ of the coboundary of VY, to form a 
new subtree K12, V1 may select ui before V2 has terminated the minimization 
procedure. However, the vertices of Vx will immediately commence the 
labeling procedure, as if the cyclic word of Vi2 already existed. In fact, there 
will be a gap in the word at the limbs corresponding to ux until V2 is ready to 
establish its connections with neighboring subtrees. We have proved that, 
with very slight modifications to the early bird algorithm, the presence of such 
a gap does not affect the proper functioning of the early bird signals, although 
it may delay the labeling of edges in Vl. 

(b) The states of SM: For the labeling procedure, we require 2d classes 
of early bird signals, 1L,2u...,dL and \N,2N,...,dN, where kL signals are sent 
out by leaders and kN signals by their neighbors. Excluding the state ω, there 
are 11 states in the automaton ê (see Section 3.8), so that we require l l 2 d 

limb states in all. In addition, we require the states K,C,T,S where % is 
excited by the vertex enumeration clock, C is a limb corresponding to a chord 
of the subtree, T is a limb corresponding to an edge of the coboundary, and 
S is a limb belonging to the subtree. 

For the minimization procedure we require only one set of early bird 
signals, as well as the limb states where 0 is excited by the edge enumeration 
clock and M is the minimal edge of a coboundary. 

At time t = 0, the network is quiescent. The edge enumeration clock causes 
the algorithm to be initiated by the labeling procedure, labeling for the first 
step all the edges except the self-loops. 

(c) The transition rules for S M: All early bird signals travel along cyclic 
words whose connections are determined according to the rules given in 
Section 3.5 with branches of the subtree being designated by the limb state S. 

The labeling procedure is as follows: 

(1) If an automaton x has no limbs in state S, then it places all its nondead 
limbs in state T. 

(2) If x has limbs in state S, and has other limbs that are unlabeled in 
state / or /, then it assumes state X when excited. Otherwise, it ignores 
the excitation of the vertex enumeration clock. 

(3) If x is in state X, and has an unlabeled limb k, then it sends out early 
bird signals of class kL. At the same time the neighbor prlp(x,k) sends 
out early bird signals of class kN. Both vertices may subsequently be 
reexcited, and will treat their still-quiescent limbs in the same way. 

(4) If x is the early bird and receives green signals that are mixed, that is, 
of both class kL and kN, then limb (x, k) is placed in state C. 

(5) If x is the early bird and receives green signals that are pure, that is, 
of either class kL or kN, then limb (x,k) is placed in state T. 
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(6) Edges that have both associated limbs in state T, S, or C are considered 
ready by the edge enumeration clock. 

(d) Minimization procedure: We shall say that (x, k) is excited if that 
limb receives the excitation of the edge u with which it is associated. 

(1) If all the nondead limbs of x are in state T, and (x, k) is excited by the 
edge enumeration clock, then (x,k) assumes state M and all other 
nondead limbs of x assume state /. 

(2) If x has limbs in state S, and limb (x, k) is in state T when excited, and 
no other limbs of x have been excited during the current iteration, then 
(x,k) assumes state Û and x sends out early bird signals. Otherwise the 
excitation of the edge enumeration clock is ignored. 

(3) If x receives green signals indicating that it is the early bird, and has 
limb (x9k) in state Û, then (x,k) assumes state M, and all limbs of x in 
state T assume state /. 

(4) If x transmits a single green signal, then all limbs of x formerly in 
state T are placed in state /. 

(5) If a limb in state M finds itself connected to another limb in state M 
or state /, then both limbs assume state S. 

(d) Results: The process terminates with all edges having both associated 
limbs in either state S or state C. Those in state S constitute the required 
minimal spanning tree. 

Because of the parallel computation, with each subtree operating locally, 
the computation time is relatively small. The labeling procedure can last at 
most In2 time units, under very rare conditions, while the minimization 
procedure can last at most In time units. The maximum possible number of 
successive iterations of both procedures is log2 n. Thus we have the very rough 
upper bound 

Θ < (log2/i)2#i(/i+l). 

C a r d F = l l 2 d + 3 + l l + 2 + l = l l 2 i , 4 - 1 7 a n d c a r d £ < l l 2 d + 1 7 d . 
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Let B = {bj\j e N, bj e E}, E being, for instance, the set of vertices of a given 
graph H and the blocks bj being particular subsets of E (edges, paths, and 
circuits of H). A cover is a family of blocks, the union of which is E. A con
figuration is a cover, which is an independent set of a graph G satisfying some 
additional constraints. 
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This contribution concerns the search for an optimal configuration for a 
broad class of objective functions and additional constraints. 

A separation and evaluation procedure is proposed to solve this com
binatorial programming problem. The problem is described and illustrated in 
Section 1. The main concepts are introduced in Section 2. Section 3 is devoted 
to the description of the algorithm. 

1. The General Constrained Set Covering Problem 

1.1. Statement of the Problem 

1.1.1. INTRODUCTION 

Let us consider a set E of m elements, where 

E={ei\ieM}9 M = { l , . . . , m } , 

and a family B of n subsets of £ called blocks, where 

B={bj\bjŒE,jeN}9 N = {l,...,n}. 

A cover C is a subfamily of B such that 

(1) U bj = E. 
bjeC 

The classical set covering problem (CP) is to find a cover C which minimizes 

(2) Σ Pj> 
bjeC 

wherepj is a nonnegative real number assigned to bj. 
An important special case of the CP is the partitioning problem (PP) where C 

cannot be just any cover, but must be a partition of E. Lemke, Salkin, and 
Spielberg [7] have shown that, given any PP which has a feasible solution, the 
CP defined with the same blocks but with new weights p/ such that 

(3) Pj'=Pj+\bj\P: P= Σ Pj> 
bjeB 

has the same set of optimal solutions as the original PP. 
Different algorithms have been proposed to solve the CP and the PP. Good 

syntheses are presented in Garfinkel [5] and Thiriez [14]. For many practical 
purposes we need 

(i) to restrict the set of feasible solutions to covers which possess additional 
properties, less specific than to be a partition; 

(ii) to use a more general objective function than (2). 

t \b\ = cardinality of b. 
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This double generalization of the classical CP leads to the general constrained 
set covering problem (CCP) formulated in Section 1.1.3. The end of this first 
section will be devoted to making explicit this combinatorial programming 
formulation, particularly in connection with graph theory. 

In spite of the interest of this problem, it seems that it has been considered 
only through applications or particular cases, for example, Salkin [13]. No 
general algorithm seems to have been proposed yet. The purpose of this paper 
is to present an algorithm which works without restricting too much the 
possible analytical forms for the additional conditions and the objective 
function. 

This algorithm, described in Section 3, uses the approach introduced in 
Roy [11, Chapter VI, Section A and B]. The general concepts and notations 
are given in Section 2. 

1.1.2. CONFIGURATIONS 

Let us consider a subfamily C of B9 and denote by Xc its characteristic 
vector. Xc is an n x 1 column vector (x1,...,xn) with Xj = 1 if bj e C, and Xj = 0 
if bj$C. Conversely, for any binary n x 1 column vector X, the above relations 
define a subfamily Cx of B. 

All the additional properties of (1) we need to introduce may be expressed 
by conditions of the type 

(4) Φ,(Χ) ^φ,, k= 1,..., 

where Φ*:{0, l}n->R and φκ e R. Various examples of such additional con
ditions are given in Section 1.3 together with the nature of the property they 
are able to formalize. 

Frequently, the presence of a given block bj in a cover C must be considered 
as incompatible with the presence in C of some other blocks bh with bh e T(bj). 

For example, each block bh having at least a elements of E in common with bj 

may have to be excluded from any feasible cover to which bj belongs (a = 1 
leads to PP). The importance of such a property will appear more clearly in 
Section 1.2. 

All such additional properties, which are required in a problem, instead of 
being formalized by a series of conditions of type (4), can always be syn-
thetized in an incompatibility graph G 

G = (B,D 

in which two blocks are connected by an edge, if and only if they cannot occur 
simultaneously in a feasible cover. To be feasible, a cover must therefore be an 
independent set of G. By definition, a subset C of B is an independent set of G, 

if and only if two elements of C are never connected by an edge of G. 
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Let a configuration be any cover which is an independent set of the incom
patibility graph G, and which satisfies conditions (4) imposed by the problem. 

The general constrained set covering problem may then be stated as follows : 
find one configuration which minimizes an objective function Φ0(^0, where 
Φ0:{0,1}Λ->*. 

1.1.3. COMBINATORIAL PROGRAMMING FORMULATION 

.,«, 

(5) 

subject to 

(6) 

(7) 

and 

(8)t 

(9) 

Minimize Φ0(Χ) 

Xj = Oor 1, j = 1,. 

A ■ X > d, 

XeIG, 

ΦΚ(Χ) ^φ,, k=\ 

where rfisanmxl column vector of l's, A is an m xn matrix (A = {a^} with 
au = 1 if e-x G bj and au = 0 if ei φ bj), and IG is the set of characteristic vectors of 
the independent sets of G. 

1.2. Connections with Graph Theory 

Let us consider a directed graph H = (V, U), F being the set of vertices, and 
UczVx Kbeing the set of arcs. Recall that, by definition, Wcz V is an external
ly stable set of / / , if and only if 

Ί veV -W 3weW such that (u>, v) e U. 

We will say that such a vertex w covers vertex v. This terminology emphasizes 
the relationship between coverings and the externally stable property that 
we shall now clarify. 

Consider first the particular directed graph H = (F, E7) derived from a cover
ing problem by defining V 

V = E u B u {z}, z is an additional vertex, 

and Ü (see Fig. 1) 

(z9bj)eU9 bjeB, 

(bj,ei)eÜ, iff eiEbj. 

t This constraint implicitly contains constraint (6), but we prefer to make the latter explicit. 
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b6 

Fig.1 

Whatever the subset C<= B which covers E, see (1), Cu{z} is an externally 
stable set of H. Conversely, any externally stable set W of H such that 
Wr\ E = 0 contains z and a subset C c B which covers E. 

Consider now any directed graph H, with a structure not necessarily similar 
to that of H. Let 

b(v) = {y\ y e V, (v,y) e U} V D G K . 

Then each problem dealing with externally stable sets of H may be viewed as a 
covering problem with E= Vana B= {b(v)\ ve F with b(v) Φ 0}. 

An important particular case of externally stable sets is given by kernels. 
Kcz V is a kernel of H, if K is both an externally stable set of H and an in
dependent set of the same graph H. Problems about kernels may be stated in 
terms of configurations defined by conditions (7) and (8), in which E and B are 
defined as explained above, and G is deduced from H by removing the 
orientations. 

Mathematicians have studied many other covering problems in graph 
theory, see Berge [3], in which the blocks may be edges, paths, circuits, etc. 
In operations research problems, the set of blocks is frequently generated from 
a graph as particular subsets of vertices or arcs, see Bendahan and Fayein [2] or 
Roy [11, Chapter VI, Section B]. In combining these blocks to obtain feasible 
solutions to problems such as line balancing, truck dispatching, synthesis of 
networks, air crew scheduling, etc, additional constraints of type (8) and (9) 
naturally arise. It will be the purpose of another paper to develop these practical 
aspects. We will only explain here, by some examples, what is the significance 
of Φ constraints (9). 
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1.3. Examples ο/Φ Functions 

The following examples deal with the <&k functions involved in constraints (9) 
as well as in the objective function Φ0 . By y} and pj9 j = 1,...,«, we denote 
respectively a real number without restriction on the sign, and a nonnegative 
real number. 

Example 1.3.1: 

Φ(ΛΤ) = min y7· or maxy,·. 
xj=l Xj=\ 

Example 13.2: 
Φ(Χ) = max jj — min y,·. 

Xj=i Xj=i 

Such a quantity can be interpreted as a degree of homogeneity for the con

figuration Cx. It appears in various concrete problems : line balancing, political 

districting, airline or bus crew scheduling, etc. 

Example 1.3.3: 

j 

Such a general linear expression may be used on many occasions. We have 

already met it as the objective function of the CP with y,· ^ 0, V/e N. Two other 

particular cases frequently appear in applications. 

(1) Some ei e E must be covered at least λ{ times and at most λ{' times. 

(2) Some subsets Bt of B must contribute to a configuration with at least 

λ/ blocks and at most Àt". If for a particular value of f, Bt = B, then λ/ and λ" 
are lower and upper bounds for \C\. 

Example 1.3.4: 

* W = lpjyjxjfcpjxj' 
j j 

Such a quantity refers to a mean value per block in the configuration Cx. It 

appears, for instance, in some delivery problems and in ship assignment or 

crew scheduling problems. 

Example 1.3.5: 

Φ W = ΣΡ]χ] + Σ m i n LaijxjAu + 0 -*υ*;)Δ], 
j i J 

where Atj are given nonnegative real numbers, and Δ ^ Διν for all / e M and 

j G N. Such a quantity may be interpreted as follows : 

(1) pj is a fixed cost attached to block bj9 and the first sum is the total fixed 

cost of configuration Cx ; 
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(2) Au is a marginal cost for element e>x with respect to block bj, and the ith 
term of the second sum gives the marginal cost of e{ with respect to configura
tion Cx, which is equal to the smallest Δ0· over all the blocks in Cx which 
cover ev 

This function may be used as the objective function in various problems 
where each block is defined by the assignment of a definite machine, truck, 
ship, etc., to perform a given subset of tasks or activities. When each subset of a 
block also appears itself as a block, it allows us to reduce the size of the problem 
by introducing in B only the maximal blocks. A maximal block is a block con
tained in no other block. 

2. Notation and Main Concepts 

The algorithm described in Section 3 belongs to the general family of what 
we called separation and evaluation procedures, discussed in Roy [10]. In such 
a procedure, the set of feasible solutions is divided into smaller and smaller 
subsets on the basis of a separation principle (see Section 2.1). Each subset so 
generated must be examined for emptiness and then for the possibility of 
existence of an optimal solution. These examination rules extensively use the 
concept of optimistic evaluation (see Section 2.2). To accelerate the exploration 
of the set of all configurations, a third concept is introduced in Section 2.3, the 
concept of forced blocks. 

2.1. Separation Principle 

2.1.1. PARTIAL SOLUTION 

A partial solution ω is, by definition, a pair of disjoint subsets of B 

ω = (Βω\Βω°), BJ c B, Βω° c B, Bj n Βω° = 0. 

We will denote by Ω the set of all partial solutions. 
Consider now the set ^ of all configurations, that is, of all subsets C of B, 

with a characteristic vector Xc satisfying constraints (7), (8), and (9). To each 
ω e Ω is associated the subset # ω of # defined by 

(10) <$ω = {C\Ce V, BJ c C c Β-Βω
0}. 

Let Βω* = Bj- U Βω°. The position of every block bj e Βω* with respect to 
configurations of # ω is completely determined. On the contrary, a block 
bj φ Βω* may be either in or out of a configuration C e ^ . Such a block will 
be called a, free block in the partial solution ω. 
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2.1.2. VECTORS ASSOCIATED WITH A PARTIAL SOLUTION 

The manipulations of partial solutions in the algorithm necessitate the 
introduction of three n x 1 column vectors. 

(11) Χω = {xj\ Xj = 1 if fy e B„l and 0 if not}, 

(12) Χω = {xj\ kj = 0 iffy e Βω° and 1 if not}, 

(13) Υω = Χω + Χω. 

Notice that a n x 1 binary column vector A^can be the characteristic vector of a 
configuration C e ^ w only if Χω ^ X< £ ω , with Z ^ F if and only if the in
equality holds for each component. 

2.1.3. SEPARATION PRINCIPLE 

Let ω be any partial solution and # ω the subset defined in (10). When a 
particular free block bjto has been chosen by some rule, (€ω is partitioned into 
two disjoint subsets <#ωι and #ω2 defined by 

(14) ωχ = (Bj u tyj, V ) , ω2 = ( ^ 1 , 5ω° u {bjj) 

in which Z?Jto belongs to all the configurations of the first one and is excluded 
from all the configurations of the second one. Equation (14) together with a 
rule for the selection of the separating block bjco defines what we will call the 
separation principle for the problem. 

Different selection rules may be considered (see Roy [11, Chapter VI, p. 31, 
first Remark]), but this aspect of the procedure will not be discussed in this 
paper. A particular selection method for the choice of jœ has been adopted for 
the algorithm of Section 3. To explain it, let us introduce the subset Εω° of the 
elements of E, which do not belong to any block of Bj. 

(15) Εω° = {e\eeE,e$b^beBiû
1}. 

The separating block bjot is the first block, the smallest value of the index, such 
that 

(1) bj is a free block in ω, if Εω° = 0 ; 
(2) bj is a free block containing the first element, the smallest index, of £ω°, 

if this subset is not empty. 

Obviously, other selection rules might be considered. 

2.2. Optimistic Evaluation 

2.2.1. DEFINITION 

Consider one of the Φ functions either used for the objective function we 
want to minimize, see (5), or entering into one of the inequalities (9). An 
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optimistic evaluation for Φίί is a function vk of the two vectors Χω and %ω 

associated with a given partial solution ω such that* 

(16) ük(Xm9Xj^Ok(X) Vo)eQ, 

for all the characteristic vectors Χοΐ a configuration of <βω, that is, for all X's 
satisfying (6), (7), (8), (9), and 

(17) Χω*ζΧ^Χω. 

In the building of an optimistic evaluation, we must try to obtain as good an 
approximation as possible of the exact value of the minimum of ΦΙί on # ω with
out increasing too much the complexity, that is, the computational time of this 
evaluation. Nevertheless, it is more appropriate if the following coincidence 
property is satisfied: 

VkvXiD>Xio) = Φ*(^ω)» %ω = ^ ω · 

Before giving examples of how to make up optimistic evaluations (see 
Section 2.2.3), we will show why such functions are considered in our problem. 

2.2.2. ASSOCIATED TEST 

Suppose such an optimistic evaluation for Φ^, k = !,..., q has been built. By 
the test 6k we will refer to the comparison between νΙί(Χω,Χω) and φίί. The test 
will be positive if and only if we obtain 

(18) vk(X„9XJ^(t>k· 

In effect, if this inequality does not hold, it is the proof that # ω is empty. 
Consider now the case k = 0. Suppose an optimistic evaluation v0 has been 

built. Denote by φ0 the value of the best configuration that is known. We can 
do the test Θ0, and if ( 18) does not hold, it is proof that the configurations of (βω, 
if ^ω Φ 0 , are worse than those already known. 

2.2.3. EXAMPLES 

If we go back to the examples of Section 1.3, we see that it is relatively easy to 
obtain optimistic evaluation functions possessing the coincidence property. 

The functions in Examples 1.3.1. and 1.3.2 are monotonie, that is, for all the 
pairs of vectors Zand X' such that X ^ X' either Φ(Χ) ^ Φ(Χ') (nondecreas
ing function) or Φ(Α') ^Φ(Χ') (nonincreasing function). In such cases, the 
optimistic evaluation may be ν(Χω9%ω) = Φ(Χω), if Φ is a nondecreasing 
function, and ν(Χω, Χω) = Φ(Χω), if Φ is a nonincreasing function. 

If we now consider the functions of Examples 1.3.3, 1.3.4, and 1.3.5, it is 

t When we want to maximize, or when inequality (9) is in the reverse orientation, ^ must 
be changed into ^ in (16) and (18). 
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easy to see that they are not monotonie. Nevertheless, as has been shown by 
Bendahan and Fayein [2], it is possible to define, on the same basis as 
before, an optimistic evaluation for those functions, and for many others as far 
as they are quasi-monotonie in the following sense: A Φ function is quasi-
monotonie if it is possible to exhibit 

( 1 ) some monotonie functions pp(X),p = 1,... ; 
(2) a function, ψ(ρί,...,ρρ,...), which is monotonie with respect to each 

variable p p , 

such that 

(19) Φ(Χ) = ψΙΡί(ΧΙ...,ρρ(Χ1...1 

Then, if we substitute ρρ(Χω) or ρρ(£ω) for pp(X) in the right-hand side of 
(19), according to the sense of variation of φ with regard to pp and of pp with 
regard to X, we obtain an optimistic evaluation for Φ(Χ). 

Another general approach, which is very useful in building an optimistic 
evaluation, consists in relaxing some of the constraints defining (€ω so that 
the exact value of the minimum of Φ may be easily computable on the broader 
subset thus introduced. The relaxation, for instance, of constraint (6) together 
with some appropriate transformations of (8) and (9) may allow the use of 
classical linear programming to find the exact value of the minimum. Many 
suggestions have been made in this direction, especially for function (2). 
Rougerie and Viviant [9] give a very extensive list of possible optimistic 
evaluations for this classical objective function of the CP. 

2.3. Forced Blocks 

2.3.1. DEFINITION 

Let us consider a partial solution ω together with its associated subset ^ ω , 
see (10), and a block bjeB—Bœ*. For such a free block in ω, it may happen 
that either 

(20) bjEC V C e ^ 

or 

(21) bj$C VCeVm. 

We then say that bj is a. forced block in ω. 

Suppose that, by studying constraints (7), (8), or (9), it has been possible to 
exhibit 

(1) a subset Βω
+ made of blocks for which (20) holds; 

(2) a subset Βω~ made of blocks for which (21) holds. 
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It is possible to assert that 

(1) <£ω is empty if Βω
+ ηΒω~ Φ0\ 

(2) ^ ω = «^ , ω being defined by 

Bm
l = Βω

ι υ Βω
+ and V = Βω° υ Βω". 

The end of this section will be devoted to showing how, by elementary con
siderations dealing with covering constraints (7), graph constraints (8), and Φ 
constraints (9), subsets like Βω

+ and Βω~ can easily be exhibited. 

2.3.2. FORCED BLOCKS BY COVERING CONSTRAINTS 

Consider the vector Υω defined in (13), and compute 

Ζ = ΑΥω = {zt\ieM}. 

Suppose that for some /', zf = 1. This is proof that the element ex can be covered 
by one and only one free block. Such a block must be included in Βω

+. 
The detection of such forced blocks by covering constraints is developed in 

Step C of the algorithm in Section 3. 

2.3.3. FORCED BLOCKS BY GRAPH CONSTRAINTS 

From the definition of constraints (8), each free block of Γ(Βω
1) is obviously 

an element of Βω~. Step G of the algorithm is based on this remark. 

2.3.4. FORCED BLOCKS BY Φ CONSTRAINTS 

The detection of such forced blocks depends on the nature of the particular 
Φ* function considered. We will give here only two elementary examples. Let us 
consider first the Φ function of Example 1.3.2. Since it is a monotonie non-
decreasing function, the optimistic evaluation associated with it can be 

ν(Χω,Χω) = Φ(Χω) = γω
+ - γω~ 

with 

γω
+ = max y,·, γω~ = min Vj . 

Suppose for a given co we have 

7ω+ — 7ω~ = Φ> Φ the right-hand side of (9). 

Every block bj for which either y,· > γω
+ or yj <γω~ can be included in Βω~. 

Consider now case (2) of Example 1.3.3. Let 

Λ^/,ω) = \Bt n Bj\ and n(t,a>) = \Bt n (Β-Βω*)\. 
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Suppose ω is such that 

ηγ(ί,ω) + η(ί,ω) = λ/, 

then each block of Btn(B-Bœ*) belongs to Βω
+. If for another ω we have 

nl (t, ω) = λ/', then each free block of Bt belongs to Βω~. 
Whatever the ΦΛ function considered, the search for forced blocks involves 

the difference 

That is the reason why this search must be performed in the algorithm together 
with the 6k tests in Step E. 

3. The Algorithm 

Since it represents a separation and evaluation, or branch and bound, 
procedure, this algorithm consists of the exploration of a tree, the nodes of 
which are subsets generated by iterating the separation principle. Two funda
mental types of exploration may be distinguished (see Roy [10]). With the first 
one, called progressive or parallel, we iterate from subset to subset according to 
the value of an optimistic evaluation for the objective function, so as to make it 
monotonically nondecreasing. Though very good results have been obtained 
with progressive separation and evaluation procedures in mixed integer 
programming (see Roy et al. [12]), we will resort to the other type of explora
tion which seems yet more appropriate to our particular problem. This second 
type of exploration, called sequential or serial, is related to implicit enumeration 
methods (see Balas [1] or Geoffrion [6]). It uses a complete order associated 
with the tree. Subsets generated are examined according to the corresponding 
a priori definite sequence. For the classical PP (see Section 1.1.1), efficient 
algorithms of this type have already been proposed by Pierce [8] and by 
Garfinkel and Nemhauser [4]. The following algorithm differs mainly in the 
role attributed to optimistic evaluations and in the introduction of the concept 
of forced blocks. 

3.1. The Basic Tree and Its Exploration 

Let us consider any given ω and its #ω , its separating block bjoi and corre
sponding partial solutions ωι and ω2 defined by (14). Suppose that the con
siderations developed in Sections 2.3.2, 2.3.3, and 2.3.4 allow the exhibition of 
some forced blocks in ωχ and in ω2. With the support of assertion (2) of 
Section 2.3.1, it becomes possible to substitute new partial solutions ω' and ω" 
respectively for col and ω2, such that <£„> = Ήωί and Ή^ = (£0)2. 
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Fig. 2 

If no forced blocks were found, ω' and ω" can always be defined by ω' = ωγ and 
ω" = ω2. 

Fig. 2 shows the elementary module used to build the basic tree T. We will 
now complete its definition. Start with the partial solution ω 0 , the root of Γ, 
defined by 

< = 0> < = 0. 
Define j œ o as explained in Section 2.1.3 and build the two corresponding partial 
solutions ω' and ω" introduced above. Then restart from ω' (see Fig. 3), and 

Fig. 3 

iterate the separation process until each generated subset either has been 
separated or cannot be separated because no separating blocks were found (no 
free block remains in the partial solution considered). We obtain in that manner 
a finite rooted binary tree T (see Fig. 3). 

Let us introduce, for each pair of nodes with the same predecessor in Γ (see 
Fig. 2), a transverse order and with this order, nodes derived from ω{ are 
ranked before, on the left in Fig. 3 nodes derived from ω2 [see (14)]. With this 
transverse order, the nodes of Tmay be completely ordered in a classical way: 
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I 

Stop 

Fig. 4 

the Tarry order (see Roy [11, Chapter V, p. 345]). This order is given by the 
natural order of integers on Fig. 3. 

In the following algorithm, subsets ^ ω are examined according to the Tarry 
order introduced above, but as in all branch and bound procedures, the tree 
is not completely generated. In effect, tests 9k for k = 0, 1,..., q (see Section 
2.2.2) and assertion (1) a of Section 2.3.1, allow us to avoid the separation of 
many ^ ' s , because it is proved that they are empty, or that they do not 
include any optimal solution. 

3.2. Description of the Algorithm 

A simplified flow chart is given in Fig. 4. 

Step I. initialization: Introduce a stack which is empty at the beginning 
of the algorithm. Let φ0 = + oo. Define ω by Βω

χ = 0 and Βω° = 0 and go 
to Step E. 

Step E. Evaluation (see Section 2.3.4) : Execute the following tests and go 
to Step B as soon as one of them is negative. 

0k: vk(X„,Xj < φ,, k = 0,1,...,?. 

Let B+k and B~k be the two possibly empty subsets of forced blocks by con
straint ΦΛ, and 

k=q k=q 
Βω+ = U ^ω*' βω~ = (J B^' 

/c = 0 k = 0 
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If Βω
+ ηΒω~ Φ 0, go to Step B; if not, modifyt ω by 

and 

(1) if Βω
+ Φ 0 , go to Step G, Βω

+ being memorized for this next step; 
(2) i f ^ + = 0 , g o t o S t e p C . 

Step G. Graph exclusion (see Section 2.3.3): Determine B~ = Γ ( 5 ω
+ ) η 

(Β-Βω*) with Γ(Βω
+) = [jbeBio+ Γ(*), and 

(1) i f 5 - n ^ + ^ 0 , g o t o S t e p B ; 
(2) if B~ n Βω

+ = 0 , go to Step C after having modified ω by 

Step C. Covering (see Section 2.3.2) : Compute y4 · Γω = Ζ and 

(1) if for one ie M, zt = 0, go to Step B ; 
(2) if for all i ΕΜ,Ζ^ 2, go to Step S ; 
(3) if Z > 0 and Μω

+ = {i\ ieM and zf = 1} # 0 , determine 

# ω
+ = {j\j eN,yj= 1, X au ^ 1}, yi theyth component of 7ω , 

and go back to Step G, Βω
+ being memorized for this next step. 

Step S. Separation : Test B—Βω* = 0 . If the test is positive, go to Step T. 
Otherwise, determine the smallest value ίω e M such that the corresponding 
component of vector A · Χω equals 0, if there is one. Lety^ be the smallest value 
jeN such that b}eB — Βω* and ai(oj = 1, if ίω is defined. Put on the top of the 
stack the pair (Βω

ι,Βω° u {bjj) and go to Step E after having modified ω by 

Bj «- Bj u {bjj, Bj «- Βω° u r(*,J. 

S7e/> T. Terminal nodes: Execute the following tests, and go to Step B as 
soon as one of them is negative : 

0*(*ω, * ω ) < </>*> k
 = °> !>· ·>?. 

If all are positive, a better solution, characterized by Χω, has been found. 
Memorize it. Modify φ0 by φ0 *-Φ0(Χω) and go to Step B. 

Step B. Backtracking: If the stack is empty, let ω be the couple on its 
top, take it out of the stack, and go to Step E. If it is empty, terminate: 

(1) If φ0 = + oo, the problem has no solution. 
(2) If 0o # + oo, it is the value of the optimal solution, which was found in 

Step T. 

t The symbol <- means that the left-hand side must be changed into the right-hand side. 
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33. Remarks on the Algorithm 

(a) It is very easy to prove that this algorithm works the way announced in 
Section 3.1. For this we have to remark that 

(1) each modification of ω in Steps E, G, C, and S leads effectively to 
another partial solution, the two subsets of the couple are disjoint; 

(2) whatever the ω with which we start Step E, C, G, or S, the subset 
Βω1 u W where b is any free block in ω, is an independent set of the incom
patibility graph G. 

The assertions of Step B then become evident in the light of the standard 
separation and evaluation procedures. 

(b) In order to quickly unearth the forced blocks corresponding to cover
ing constraints, the rows of the matrix A may be renumbered so as to have 

i < V iff £ au ^ £ aVJ. 
jeN jeN 

The columns may also be arranged so as to facilitate the construction of sets 
like T(bjJ and Γ(Βω

+). For this purpose, the n blocks may be partitioned into 
subsets L j , . . . , Lp,..., each Lp corresponding to a complete subgraph in G. Thus, 
as soon as a block beLp must be included in Βω

ι, we know, without any search, 
that all the others blocks of Lp will be incompatible. The column order used by 
Pierce [8] and Garfinkel and Nemhauser [4] in their algorithm for the PP, 
resorts to this idea, although no incompatibility graph is explicitly introduced 
to formalize the partitioning constraint. 

(c) In practice it may be useful to compute in Step S the value of v0 (Χω, $ω) 
for the ω corresponding to the pair going on the stack, and to memorize this 
value, say \ν(ω), together with the pair. In Step B, it is then easy to compute 
w0 which equals the smallest value of H>(CO)'S which remains in the stack. Now 
if Step T is modified in order to stop the algorithm as soon as 

Φ0 (Χω) — w0 < ε, ε an 0 priori given number, 

we may assert that, when the algorithm is interrupted by that additional rule, 
the best solution found to date differs from the optimal solution by at most ε. 

(d) Some better-hidden forced blocks may easily be introduced to acceler
ate the procedure, according to each particular problem studied. An important 
practical situation must now be mentioned. 

Suppose it is possible to prove that the optimal configuration is a minimum 
cover. By minimum cover, we mean a cover C0 such that 

C cz C0, C φ C0 => C does not cover E. 
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This is obviously the case in the classical CP, and in many other more sophisti
cated real problems. 

Let us now consider a partial solution ω such that ΛΧω ^ 1. It is clear that 
each free block in ω, if there is any, can be considered as a forced block, 
included in Βω~. Then, Step S may be modified as follows: 

(1) drop out test Β-Βω* # 0 ; 
(2) when ίω is not defined, go to Step T after having modified ω by 

Moreover, it may be fruitful to include an additional test in Step E. Is there a 
beBj which is included in the union of the other blocks of Βω

ιΊ If so, go to 
Step B. 
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1. Introduction 

The path number pn(G) of a graph G was introduced by Harary at the 
Jamaica conference on graph theory and computing. In view of this origin, 
it goes without saying that G is assumed to be a finite undirected graph without 
multiple joins and without loops. For such a graph G, we consider paths in G 
and write 

(1) (? = / )
1 u P 2 u - u i )

j *> 
285 
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where Pir\Pj = 0 for ίφ}. Clearly, there are many ways of writing G as 
such a union of disjoint paths. We define pn(G) to be the minimal value of A:, 
the minimum being taken over all possible decompositions of the form (1). 

The path number was studied by the authors [1], where various results 
were obtained forpn{G) in the cases when (1) G is a tree, (2) G has at least one 
circuit, and (3) G is regular. Algorithms were given to produce a minimal 
path set for the complete graph Kn and for the complete bipartite graph 
Kmn. The result for the latter graph, assuming m ^ n, is given by 

pn{Km,in) = "> m < 2n> pn(Kmt2n+\) = " + 1, m even, 

= n + l, m = 2n; = n + (m+1)/2, m odd. 

In this paper, we consider the complete tripartite graph Kabc, and denote 
its path number by k(a9b,c). This function k(a9b,c) is studied, and some 
generalizations for the complete «-partite graph are suggested. 

2. Elementary Results 

We start by assuming that abc Φ 0. With this restriction two obvious lemmas 
may be obtained. 

LEMMA 1. 

, / , x ab + be + ca 
k(a9b,c) ^ -

a + b + c — 1 

Proof: Kahc possesses ab + bc + ca edges. However, no path can contain 
more than a + b + c-1 edges. The lemma follows. 

LEMMA 2. For any a, b, c, we have 

k(a,b,c)>(a+b)l2. 

Proof: Let the a vertices form a set A, the b vertices form a set B, and the 
c vertices a set C. The vertices of C have (a + b)c edges joined to them, and no 
path may contain more than 2c of these edges. The result follows. 

We now combine these results. 

THEOREM 1. If a ^ b ̂  c, then 

k(a,a,a) ^ a+ 1; 

otherwise 

k(a,b,c) ^ (a + b)/2. 



Tripartite Path Numbers 287 

Proof: We now compute the difference between the lower bounds of 
Lemma 2 and Lemma 1 and find that 

a + b ab + ac + bc a{a—\—c) + b(b—\—c) 

2 α + ò + c - l - 2(a + b + c-l) 

This expression is greater than or equal to zero, unless b = c and a = b or 6+ 1. 
If a = b = c, we use Lemma 1 to obtain 

k(a,a,a) ^ a + 1. 

If a = 6+ 1, b = c, the results of Lemmas 1 and 2 are identical. In all other 
cases, Lemma 2 is stronger. Thus, we have the theorem. 

THEOREM 2. For a^b^l, we have fc(l,l,l) = 2 with k(a,c, 1) = 
{(a + b)/2}9 where we use {x} to denote x if x is an integer. The least integer 
above x if x is nonintegral. 

Proof: Theorem 1 gives these results as lower bounds. Thus, one merely 
needs to exhibit an algorithm attaining these bounds. The algorithm for 
A: (1,1,1) is trivial. For k(a,b, 1), we display the algorithm diagrammatically. 

The diagram shows three axes, and each cell indicates an edge joining the 
vertices which coordinatize the cell. Thus, the shaded cell in Fig. 1 indicates 

Fig. 1. Algorithm for k(a, b, 1): a odd, b odd, k = (b-1)/2, n = (a + />)/2, and s = n-k. 
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Fig. 2. A lgor i thm for k(a, b, 1): a even, b even, n = (a+b) /2 , k= (b/2) + 1, and s = n — k. 

Fig. 3. Algor i thm for k(a, b, 1): a odd, b even, k= (b/2) + 1. n = i a + b +1) /2 , and s = n-k. 



Tripartite Path Numbers 289 

the edge joining point 4 in A to point 2 in B. Path number y is indicated by 
writing y in all the cells which form part of the path. With this convention, 
Figs. 1, 2, and 3, complete the proof of Theorem 2. 

3. Extensions of Previous Algorithms 

We establish three further lemmas. 

LEMMA 3. If a > b + c9 b > c9 and any two of a, b, c9 are even, then 

k(a9b9c) = {(a + b)/2}. 

Proof: We consider the tripartite graph as being made up of an (a, b + c) 
bipartite graph and a (b, c) bipartite graph. For a and b even, these graphs use 
a/2 and b/2 paths. With Theorem 1, this proves the result. For a and c even, 
these graphs employ a/2 + (b + l)/2 paths. Again, we have the result. Finally, 
for b and c even, the 2 graphs employ (a+ l)/2 + b/2 paths. This completes the 
lemma. 

LEMMA 4. If a ^ b ̂  c, k(a, b9 c) = {(a + b)/2}9 and 2t > b + c, then 

k(a + 2t,b,c) = {(a + b)/2} + c. 

Proof: Decompose the graph into an (a9b9c) tripartite graph and a 
(2t9b + c) bipartite graph. The result is then immediate. 

LEMMA 5. If a ^ b ̂  c and k (a, b9 c) = {(a + b)/2} and 2t > a + c, then 

k(a,b + 2t,c) = {(a + b)/2} + t. 

Proof: Use a decomposition similar to that in Lemma 4. 

We can now prove Theorem 3. 

THEOREM 3. If a > c, then 

k(a,a9c) = a. 

Proof: From Theorem 1, k(a9a,c) ^ a. An algorithm for constructing a 
covering of the graph with a paths is indicated in Figs. 4 and 5. 

4. The Exceptional Case 

We now consider the exceptional case a = b = c9 and determine k(a,a9a). 
To do this, we divide our edges into 3a classes named d{i9j)9 where 1 < ι < 3 
and 0 < y < a — 1 . The edge set d(JJ) is found as follows: name the vertices 
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Fig. 4. Algorithm for k(o,13,13), where a ̂ 12. 

of A as (1,1), (1,2),...,(1,0), those of B as (2, l),(2,2),...,(2,a), and those of 
C as (3,1), (3,2),..., (3, a). Then d(ij) joins vertex (/ + 1, a) to vertex (/+2, a +j), 
as a ranges from 0 to a—l. Arithmetic in the first element of these pairs is 
modulo 3, in the second element is modulo a. This gives 3a sets of a elements, 
that is, all 3a2 elements of the edge set of G. 

LEMMA 6. If a is odd, then the complete {a, a, a) tripartite graph may be 
partitioned into a Hamiltonian circuits. 

Proof: We merely display the circuits. Circuit / is given as the set 
rf(l,i),rf(2,/),rf(3,l-2i). 

LEMMA 7. If a = 0 modulo 4, the complete (a, a, a) tripartite graph can 
be partitioned into a Hamiltonian circuits. 
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Fig. 5. Algorithm for k(o,12,12), where 0 ^ 1 1 . 

Proof: There are three kinds of circuits. These are 

έ/(1,ι), </(2,ι), rf(3,l-2i), 0 < / < f l / 2 ; 

rf(l,i), rf(2,/+l), rf(3, - 2 / ) , a/2 < i < a; 

rf(l,0), rf(2,e/2+l), </(3,0). 

We may now deduce Theorem 4. 

THEOREM 4. 

k(a9a,a) = a+ I. 

Proof: If a fé 2 modulo 4, we use Lemmas 6 and 7. If a = 2 modulo 4, 
a > 2, the solution is a variant of that used in Lemma 7, and has a pattern 
indicated in Fig. 6 and Fig. 7. For a = 2, the result is trivial. 

One can derive other similar results. 



Fig. 6. Algorith m for k (a, a, σ) = ο+1 . 

Fig. 7. Algorithm for k(10,10,10) = 11. 

292 
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LEMMA 8. 

*(β ,2 ,2 )= 1 + {β/2}, 

and we conjecture that Theorem 1 gives an exact bound. 

5. The Complete n-Partite Graph 

Let v = (vl,v2,..-,vn) be a vector of integers in nonincreasing order. We 
define k(v) to be the path number of the complete «-partite graph on 
(v1,v2,...,vn) vertices, and find that many of the previous results generalize. 
We indicate generalizations by an asterisk. 

LEMMA 1*. 

LEMMA 2*. For n even and all vt odd, we have 

LEMMA 3*. 

k(v) 5* Xi?i/2, i = 1,2, . . . ,«- 1. 

Theorem 1 generalizes to Theorem 1*. 

THEOREM 1 *. If Σ?= ì(vt-vn-l)Vi<0, then 

i*J 

otherwise 

kip) > "t'vtß. 

For n even and all v( odd, we have 

k(v) > Σ "iß-

Proof: We use Lemmas 1*, 2*, and 3*, and denote Σ ^ by S and Σ ^ 2 

by T. Then we need to prove 

(1) S/2>(S2-T)/2(S-l); 
(2) if Σ " - ί ( » ( - » . - 1 ) ο , < 0 , then (S2-T)I2(S-1)> (S-v„)/2; 
(3) if ΣΓ-ι ( » , - » , - ! ) » , ^ 0, then ( S 2 - Γ) /2(5-1) < (S-v„)/2. 
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The first result is equivalent to Τ^ S, which is obvious. The second and third 
follow from writing 

"Σ(Ρ,-νη-1)ν, = (T-vn
2) - vn(S-vn) - (S-vJ 

1 = 1 

= T+vn-S(vn+l) 

= (S-l)(S-v„)-(S2-T). 

COROLLARY 1*. If v„ < vn„ ί, then Case 2 does not occur. 

We can also state two further generalizations, which lend support to the 
conjecture that the bounds of Theorem 1* are exact. 

LEMMA 4*. Let k(v) = (S-vn)/2. If w is a vector and Σ wi = ^ι » a n d if 
k(w,S) = SJ2, then 

k(w,O) = (S+Si-Om)/2. 

LEMMA 5*. If k(v) = (S-vn)/2 and r>k(v)9 and w = (0,0,...,2r,...,0), 
where 2r may be in any position except the last, then 

k(v + w) = k(v) + r. 

Reference 
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A planar map is a dissection of the sphere or closed plane into a finite 
number of simply connected polygonal regions called faces or countries by 
means of a graph drawn in the surface. It is assumed that this graph has no 
loop or isthmus. In this paper we shall use the term map as an abbreviation 
for planar map. 

A Hamiltonian circuit in a map is a circuit in its graph passing through every 
vertex. A map is called Hamiltonian or non-Hamiltonian according as it does or 
does not have such a circuit. A map is said to be cyclically n connected if at 
least n edges must be removed in order to decompose the graph into two 
disjoint parts, each containing a circuit. 

Special interest is attached to the trivalent or cubic maps, in which exactly 
three edges meet at each vertex. These are studied in connection with the four 
color conjecture, which asserts that the faces of a map can be colored in four 
colors so that no two of the same color have a common edge. Let us use the 
term 5 chromatic for the hypothetical maps that do not satisfy this conjecture, 

295 



296 W. T. Tutte 

and let a minimal map be defined as a trivalent 5-chromatic map with the least 
possible number of faces. 

In the theory of the four-color problem it is shown that the conjecture is 
true for all maps if it is true for all trivalent ones. Various properties of minimal 
maps are determined. In particular it is shown that a minimal map must be 
cyclically 5 connected. 

There is a connection between the four-color problem and the theory of 
Hamiltonian circuits. Let C be a Hamiltonian circuit in a map M, not neces
sarily trivalent. It separates the sphere into two regions that we may call the 
inside and the outside of C. The faces inside C can be colored alternately red 
and blue while those outside can be colored alternately green and yellow. Thus, 
all Hamiltonian maps can be 4 colored. 

This fact suggests the possibility of verifying the four-color conjecture by 
showing that the established limitations on the structure of a minimal map 
permit the construction of a Hamiltonian circuit. This possibility was explored 
by Tait toward the end of the nineteenth century [2]. Tait observed that non-
Hamiltonian trivalent maps exist, for example, see the map of Fig. 1, but 
conjectured that all cyclically 3-connected trivalent maps are Hamiltonian. 
Tait's conjecture was eventually shown to be false. The cyclically 3-connected 
non-Hamiltonian map of Fig. 2 was published in 1946 [3], and a cyclically 
4-connected non-Hamiltonian trivalent map was exhibited in 1960 [4]. In 
1965 H. Walther [5] published a cyclically 5-connected non-Hamiltonian 
trivalent map. Walther's map has 83 faces, of which 67 are pentagons, 6 are 
heptagons, 5 are octagons, and 4 are dodecagons. The remaining face has 21 
sides. 

The existence of Walther's map is of course discouraging to students of 
Hamiltonian tetrachromatology. The known properties of minimal maps 
no longer seem inconsistent with their non-Hamiltonian character. With 
Walther's discovery our interest turns anew to the theory of non-Hamiltonian 
trivalent maps. How can we best determine whether or not a given map is 

Fig. 1 
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Fig. 2 

Hamiltonian? How would we set about constructing a non-Hamiltonian 
trivalent map satisfying given conditions ? It must be admitted that even up to 
this stage the progress of the theory seemed somewhat disappointing. By dint 
of much hard work a few highly complicated examples of special interest had 
been constructed, and that was all. 

Soon after Walther's work a revolutionary discovery was made by two 
Russian mathematicians, V. Kozyrev and E. Grinberg. It was reported by 
Sachs in 1968 [1]. It shares one property with some other major advances: 
once explained it seems trivial. Every combinatorialist interested in this aspect 
of his discipline must cry, "Why didn't I think of this myself? How was it 
possible for Tait, or even Hamilton, to miss it?" The work of Kozyrev and 
Grinberg gives some useful sufficient conditions for a map to be non-Hamil
tonian, and makes it reasonably easy to construct non-Hamiltonian trivalent 
maps, even cyclically 5-connected ones. 

Suppose that we are given a map M, not necessarily trivalent, and that we 
assume it to have a Hamiltonian circuit C. Then the edges of M fall naturally 
into three sets, the edges of C, the diagonal edges crossing the inside of C, 
and the diagonal edges crossing the outside of C. Let there be c edges in the 
first set, d' in the second and d" in the third. 

The d' diagonal edges crossing the inside of C decompose that Jordan 
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Fig. 3 

domain into d' +1 faces of the map. Similarly the outside of C is decomposed 
into d"+\ faces by its d" diagonals. Let us denote the number of /-sided 
faces of M by fi. We assume that// of these are inside C and//' are outside. 

Let us sum the numbers of sides of the faces inside C. The result can be 
obtained also by counting 1 for each edge of C and 2 for each diagonal edge 
crossing the inside of C. Thus, 

c + 2d' 

€-2 + 2Σ//, 
i=2 

c - 2 . 

The same reasoning applied to the outside of C gives us the equation 

£(/-2)/y' = c-2. 
i=2 Hence, by subtraction, 

0) Σ0'-2)(/ί
' -fi') = o. 

1 = 2 

00 

Σ'/ι' 
1 = 2 

Σ 0-2)/,' 
1 = 2 
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Kozyrev and Grinberg pointed out that for some finite sequences 
(/2,/3,...,/J of nonnegative integers (1) must always be false however we 
partition each/ into two non-negative integers/·' and//'. Suppose for example 
that / = 0 whenever i—2 does not divide by 3, with the single exception that 
fj=l for one particular y not congruent to 2 modulo 3. Then it is impossible 
to make the expression on the left of (1) divide by 3, and hence (1) is necessarily 
false. We conclude from this that any map corresponding to such a sequence 
must be non-Hamiltonian. Such maps exist; Kozyrev and Grinberg gave the 
trivalent and cyclically 5-connected example, Fig. 3. This has 25 faces, with 
/ 5 = 21 , / 8 = 3, and/9 = 1. A slightly simpler example of a cyclically 5-con
nected non-Hamiltonian trivalent map was obtained at the Calgary Conference 
in June 1969.1 was asked by H. V. Kronk if I knew of any Hamiltonian trivalent 
map in which there was one edge not belonging to any Hamiltonian circuit. 
I was able to reply in the affirmative, mentioning the map obtained from that 
of Fig. 2 by contracting the triangle ABC and the faces inside it into a single 
vertex. The resulting map is Hamiltonian but in it the edge OA belongs to no 
Hamiltonian circuit. I tried however to use the theory of Kozyrev and Grinberg 
to construct a more impressive example. Because of erroneous reasoning I 
stumbled instead upon the cyclically 5-connected non-Hamiltonian map of 
Fig. 4. 

Fig. 4 
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The map of Fig. 4 has 24 faces, with/5 = 18,/6 = 3, and/ 8 = 3. Now this 
sequence of numbers f{ does not make (1) impossible. We observe however 
that whenever that equation is satisfied one of the numbers fb' and/6" is 3 and 
the other is 0. We deduce that for any Hamiltonian circuit of this map the 
three hexagons must be on the same side of the circuit. But this is impossible 
since any Hamiltonian circuit must pass through the common vertex of the 
three hexagons. 

One wonders how far the Kozyrev-Grinberg theory could be extended. Can 
all the known non-Hamiltonian maps be simply explained by this theory or by 
refinements of it ? It is amusing to note that the non-Hamiltonian character 
of the map of Fig. 1 can be demonstrated by the same three-hexagon argument 
that we have used for the map of Fig. 4. It does not seem that the map of Fig. 2 
can be dealt with directly by the theory. However this map is obtained [3] by 
a simple construction based on the map shown below in Fig. 5. The essential 
fact is that no Hamiltonian circuit of the latter map passes through both of 
the edges A and B. This can be regarded as a consequence of the Kozyrev-
Grinberg theory, as (1) can be satisfied only by a Hamiltonian circuit 
separating one of the quadrilaterals from the other four. 

Perhaps a converse form of the Kozyrev-Grinberg theory could be found. 
One wonders for example about those trivalent maps in which the number 
of sides of each face is congruent to 2 modulo 3. For these (1) is trivially true, 

Fig. 5 
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whatever the numbers// and// ' may be. Is Tait's conjecture valid for maps of 
this kind? 

In conclusion let us note that the Kozyrev-Grinberg theory can be expressed 
in dual form as a theory of Hamiltonian bonds. A Hamiltonian bond in a 
graph G is a set H of edges such that the rest of the graph consists of two 
disjoint trees, and each edge of H has one end in each tree. Let us denote the 
number of vertices of G of valency / by fi9 and suppose// of these to be in 
the first tree and// ' in the second. Then we can establish (1), much as before. 
This form of the theory applies to all graphs, planar or nonplanar. 
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1. Introduction 

The binary search tree has been proposed as a data structure for lists of 
names which must be both searched and updated frequently. A binary search 
tree is a rooted, ordered tree such that the out-degree of every node is two for 

t This research was supported in part by the National Research Council of Canada. 
% Present address: Ontario Hydro, Toronto, Ontario, Canada. 
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Leve I 

1 

Fig. I. A lexicographic tree. 

an internal node or zero for a leaf. If there are N internal nodes, there are 2N 
edges and N+ 1 leaves. Each internal node is associated with one name in a 
set of lexicographically ordered names, Ax < A2< ··· <AN. If the internal 
nodes are labeled with the associated names, the post-order listingt of the 
internal nodes is Ai9A2,...9AN. Windley [8], Booth and Colin [1], Hibbard 
[4], and Clampett [3] have given the average search time required to locate 
names in binary trees if all the names are equally likely to be used in a search, 
and are entered in the tree in a random order. When all the names are equally 
likely, a best possible tree, that is, the one with minimum average search time, 
is one in which the average path length from the root to a leaf is minimized. 

A lexicographic tree is a binary search tree, such that: 

(1) there is a set of N frequencies α ΐ5...,αΝ, α£ being associated with A>x\ 
(2) there is a set of 7V+ 1 frequencies β0,...,βΝ9 associated with the leaves, 

ßi being the frequency of encountering names which lie between Ai and Ai+l, 
ß0 being the frequency of names preceding A1, and ßN being the frequency of 
names following AN ; 

(3) the post-order listing of the lexicographic tree, with the nodes labeled 
with the associated frequencies, is β0,αί,βί,...,αΝ,βΝ. 

A special case of the lexicographic tree occurs when all the /?,· are zero. In this 
case, only the names AUA29...9AN would be used to search the tree and all 
searches would be successful, that is, terminate at an internal node. 

Figure 1 illustrates a lexicographic tree with four names Ai,...,A4, and the 
nine associated frequencies. The weighted path length P of a lexicographic 
tree is given by 

p= tu«d«,+ t^ßdßt, 
/ = 1 i = 0 

t The post-order listing for a binary tree is left subtree, root, right subtree; see Knuth [5]. 
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where Lfe) is the level of the node with frequency af. For the tree shown in 
Fig. 1, 

P = 3j30 + 2a! + 30! + a2 + 4ß2 + 3a3 + 4ß3 + 2a4 + 3j84. 

The weight W of the tree is the sum of all the frequencies. The average search 
length is defined as the weighted path length divided by ^ a n d can be interpreted 
as being the average time to search the tree for a name. It is therefore of 
interest to construct a lexicographic tree with minimum weighted path length. 

Knuth has given an algorithm for constructing an optimal lexicographic 
tree [6]. It is not necessarily unique. The algorithm requires a time proportional 
to N2 and storage proportional to TV2. It constructs the tree from the bottom 
to top, that is, from the leaves to the root, and is practical when the number of 
names is small. However, for large values of TV (in practice N>200) it will 
require the use of secondary storage on all but the largest computers, and the 
time will be prohibitive. If N is very large, say 100,000, it is clear that the 
algorithm is impractical both with respect to time and space. 

In this contribution, we will present a top-down algorithm which constructs 
nearly optimal lexicographic trees. The algorithm chooses a root for the tree 
and repeatedly chooses roots for the subtrees until a subtree is encountered 
which contains N0 or fewer names, where N0 is a parameter of the-algorithm. 
Knuth's "Algorithm K" is then used to construct an optimal subtree. In a 
recent paper, Nievergelt and Wong [7] derive certain expressions for the 
expected search times for optimal trees, for balanced trees, and for random 
trees. From these they are led to suggest a heuristic method for constructing 
a nearly optimal tree. Our method corresponds in part to this suggestion/ 

2. An Application 

An application of a lexicographic search tree, where a large number of 
nodes is needed, is the author index of a library catalog, where author surnames 
are the nodes. In this case, the frequency associated with each name could be, 
for example, the number of entries for each author in the catalog, or, more 
usefully, the total number of references to an author's books in a given time 
interval. The author index could be maintained on a computer and accessed 
by librarians for updating and expanding the catalog, and by users for querying 
the catalog in a read-only manner. In addition to the frequency associated 
with each name, it would be possible to determine the frequencies for names 
which lie between the names in the lexicographic tree. Although the index 
would be continually updated, the frequency associated with most of the 

f J. Bruno and E. G. Coffman, Jr., have also described a heuristic method for constructing 
a nearly optimal tree [2]. 
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TABLE I 

Average Search Length 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Optimal 
search 
length 

4.2944 
6.6060 
5.8749 
6.0650 
6.6424 

5.9633 
5.8250 
6.2576 
7.0856 
7.3376 

N o = 0 

F=l 

4.7271 

7.6283 
6.4392 
6.7204 
7.5619 

7.0943 
6.7102 

7.8798 
9.8991 

8.2455 

N o = 0 
Root = 

centroid 

4.9253 
7.0881 

6.1205 
6.4168 

6.8175 
6.5883 
6.3265 
6.8535 
7.4352 

7.5238 

No = 1 5 
F=4 

4.3635 
6.6809 
5.9439 
6.1591 

6.7192 
6.0404 
5.8256 
6.3669 
7.2746 

7.3675 

No = 1 5 
F=5 

4.3708 
6.6812 
5.9454 

6.1254 
6.7201 
6.0777 
5.8280 

6.3793 
7.3114 
7.3487 

No = 1 5 

F=6 

4.4103 
6.6812 
5.9454 
6.1473 
6.8078 
6.0777 

5.8560 
6.3780 
7.3512 

7.3954 

No = 15 
F = 1 0 6 

4.4682 

6.8741 
5.9807 
6.1640 
6.7693 
6.2380 

5.9994 
6.5602 
7.2489 

7.4175 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

4.6317 
7.2555 
6.2534 

6.3976 
7.0182 
6.5382 
6.4549 

6.5810 
7.1216 

7.6958 

5.0299 

8.1425 
6.7129 
6.8927 

7.7191 
7.6647 
7.2480 
8.4312 

9.6699 
8.3864 

5.6680 
7.7977 
6.8398 

6.8801 
7.2384 
7.0262 
6.9911 
6.8701 

7.3190 

7.8933 

4.7003 
7.2602 
6.2854 

6.4308 
7.0570 
6.5632 

6.4638 
6.8593 

7.4623 
7.7384 

4.6721 

7.2685 
6.3060 
6.4539 

7.0835 
6.5793 
6.4630 

6.7082 
7.4606 

7.7054 

4.7795 
7.2685 
6.3175 
6.4661 

7.0870 
6.6808 
6.4831 
6.7288 
7.4161 
7.7054 

4.7738 

7.4535 
6.3910 

6.5360 
7.0981 
6.7689 
6.6469 

7.0154 
7.3423 
7.7128 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

4.0035 
6.4230 
5.5561 

5.7628 
6.2211 
5.6524 
5.5935 
6.0850 
7.0125 
6.9738 

4.7786 
8.1525 
6.6162 
6.8180 

7.2739 
7.1084 
7.1817 
9.2180 
11.1363 
8.3983 

4.5373 
6.9852 

5.8533 
6.2072 

6.3650 
6.2465 
6.0225 
6.6197 
7.2585 

7.0934 

4.0547 
6.4747 
5.5814 

5.8182 

6.2596 
5.7149 
5.7259 
6.3225 
7.2805 
7.0482 

4.0547 
6.4759 

5.5814 
5.8089 

6.2658 
5.7569 
5.7231 
6.2860 
7.2344 
7.0626 

4.1393 
6.5035 
5.6105 
5.8098 

6.2681 
5.7656 
5.7313 
6.2445 
7.2344 
7.0385 

4.0655 
6.4868 
5.7129 

5.8764 

6.3288 
5.9927 
5.7873 
6.3284 
7.2099 

7.0921 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

5.0362 

7.4164 
6.5463 

6.6505 
7.2702 
6.5494 

6.7508 
6.7320 
7.1119 
7.8730 

5.9324 
8.8770 
7.4664 

7.5831 
8.4620 
7.6391 
8.4449 
8.7564 
10.4205 
8.9113 

5.8784 
7.8493 
6.9774 
7.1837 
7.4610 
7.0804 

7.1797 
6.9632 
7.3073 
8.0264 

5.0572 
7.4609 
6.5611 
6.6667 
7.3371 
6.5627 
6.7954 
6.9473 
7.3833 
7.8765 

5.0572 
7.4606 
6.5697 
6.6758 
7.3085 
6.5627 
6.8179 
6.9595 
7.3798 
7.8863 

5.1860 
7.4908 
6.5697 
6.6758 
7.3173 
6.5892 
6.7669 
6.9377 

7.3798 
7.8802 

5.1079 

7.5341 
6.6169 
6.7062 
7.3212 
6.6194 
6.9337 
7.1285 
7.3373 
7.8880 
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TABLE I (continued) 

Sei 5: 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Optimal 
search 
length 

4.1379 
5.9726 
5.7540 
5.9979 
6.6600 
5.3331 
5.4117 
5.8119 
6.9904 
7.2693 

Wo = 0 
F = l 

4.8235 
7.2296 
6.7917 
7.0442 
8.3690 
6.5523 
6.6474 
7.2683 

10.3917 
8.7128 

Wo = 0 
Root = 
centroid 

5.3214 
6.7504 
6.2758 
6.5053 
6.9629 
5.9711 
6.3725 
6.3579 
7.2422 
7.4147 

W0=15 
F = 4 

4.1815 
6.0523 
5.7765 
6.0469 
6.8071 
5.3672 
5.4284 
5.8935 
7.2023 
7.3624 

M, = 15 
F = 5 

4.2028 
6.1668 
5.8456 
6.0605 
6.7324 
5.3995 
5.4284 
5.9134 
7.1713 
7.2930 

Wo =15 
F = 6 

4.2060 
6.1718 
5.8301 
6.0479 
6.7515 
5.5638 
5.4522 
5.9896 
7.1620 
7.2949 

Wo =15 
F=10 6 

4.2735 
6.1478 
5.8458 
6.0706 
6.8056 
5.5449 
5.7755 
5.9578 
7.1881 
7.3149 

names would not change greatly over a short period. For the case where 
frequencies are determined by usage statistics, each access to the catalog 
would be recorded. The search tree should be reconstructed periodically to 
reflect the changing search patterns. The problem is to construct the binary 
tree which minimizes the time required to locate an author's name, or to 
ascertain that the name is not in the tree. 

3. Basis of a Top-Down Algorithm 

Knuth suggests two possible rules for structuring nearly optimal lexico
graphic trees, and points out that neither rule will produce an optimal tree in 
all cases. The first rule is to choose the A{ with the largest af as the root of the 
tree, then proceed similarly for the subtrees. A set of names whose ßi frequencies 
are 0 and whose af satisfy 

i - l 

«i > Z a i ' * = 2,...,7V 
y = i 

will be structured into an optimal tree if we use this rule. Tests on this rule 
were included with the tests on the algorithm described in Section 7. See 
Table I, Column N0 = 0, F= 1, where the average search lengths obtained 
by this method are compared with the optimal lengths. The poor results using 
this rule are partially explained by noting that the ßi cannot influence the final 
structure of the tree. In general, the larger the sum of the ßi9 compared to the 
sum of the ocif the poorer is this rule. However, even the tests with all the 
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8 12 16 20 24 28 32 36 4 0 4 4 4 8 52 56 60 

Root Index 

Fig. 2. Dependence of path length on root position. 

I i - root index 
i OIL 

ΓΊ 4 
2 19 
3 3 
4 3 
5 1 
6 1 
7 28 
8 4 
9 4 

10 S 
11 1 
12 1 
13 1 
14 35 
15 13 
16 27 
17 11 
18 32 
19 1 
20 50 
21 2 
22 1 
23 1 
24 27 
25 2 
26 31 
27 2 
28 3 
29 1 
30 2 

ί a i 

31 7 
32 59 
33 4 
34 1 
35 1 
36 7 
3 7 3 
38 2 
39 3 
4 0 22 
41 2 
4 2 1 
43 5 2 
4 4 3 
45 1 
46 4 
4 7 I 
4 8 1 
49 1 
50 6 
51 8 
52 13 
53 f 
54 4 
55 1 
56 1 
5 7 1 
5 8 1 
59 1 
6 0 26 

ßi equal to zero, Sets 1-5, Case 1, do not produce acceptable nearly optimal 
trees. 

The second rule suggested by Knuth is to choose as root a name whose left 
and right subtrees are most nearly equal in weight. There will be one or two 
such names. We will call the single name, or the lexicographically larger of 
the two names, the centroid. Choosing the centroid as root will result in an 
optimal tree when all the ô  and ß-t are equal. This rule takes into account 
both the OLI and /?,·. It nearly always is a significant improvement (see Table I, 
Column N0 = 0, root = centroid) over choosing a name with largest af as the 
root. Since this second rule does not consider the individual a,·, a node with 
a very small oet· may be chosen as a root when there is an adjacent node with 
αΐ+ι v e r y l a r ê e which may, in fact, be the actual root of the optimal tree. 
Thus, neither of the rules suggested by Knuth is satisfactory for constructing 
a nearly optimal tree. 

If the a,· a n d ßi are not all equal, we can regard the centroid as a first choice, 
and establish a rule for determining how far to move from this choice. To 
determine how far to move, let us examine how the minimum path length of a 
tree varies when different nodes are chosen as the root. From a set of names 
Al9...,AN, construct trees Tl9...,TN by choosing At as the root of Ti9 and 
constructing optimal binary subtrees for A{. As an example, Fig. 2 shows the 
weighted path length of the Tt for the first 60 names of data Set 1, Case 6. See 
Section 7 for a description of the test data. The minimum of this graph at 32 
corresponds to the optimal tree. 
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Examining the weighted path length of many sets of Ti9 such as that shown 
in Fig. 2, indicates that, in the majority of cases, the minimum weighted path 
length occurs when the frequency of the root of Γ, is a local maximum, that is, 
a i - i < ai > a i+i · We would expect this relation, since if we choose oii.l as 
the root in place of a,·, the increase in the weighted path length of the right 
subtree, due to adding oci, will usually be larger than the decrease in the weighted 
path length of the left subtree, due to removing a , · ^ . In addition, if the 
weighted path length of Ti9 denoted by Pi9 is a local minimum, that is, 
P f_! >Pi<Pi+l9 it is usually true that the associated af is a local maximum. 
In other words, a local minimum of Pt usually corresponds to a local maxi
mum for the af. This is true for the central portion of the graph, that is, values 
of Pi for 10 < / < 50, in Fig. 2. The relation should not be expected to hold 
when one of the subtrees contains very few nodes, since, in this case, the 
structure and weighted path length of a subtree can be significantly changed 
by the removal or addition of even a single name and its corresponding a,· 
frequency. 

Based on the preceding discussion, our algorithm chooses as the root a 
name with the largest associated af in a neighborhood of the centroid. If this 
maximum is not unique, the name whose af is closest to the centroid is taken, 
enlarging if necessary the neighborhood which is being considered. The size 
of the neighborhood is determined by a parameter of the algorithm. The 
choice so determined may not be the root of the optimal tree, but it will usually 
be a name corresponding to a local minimum of the curve in Fig. 2. In practice, 
it is found that the value of the local minimum is not significantly larger than 
the minimum weighted path length. This rule for determining how far to move 
from the centroid does not consider the magnitude of the individual ßi9 thus, 
for a small number of names, the tree can have a structure quite different 
from, and an average search length larger than, the optimal tree. Since 
Algorithm K is easily applied to small trees, it is used to determine the optimal 
subtree for subtrees containing fewer than a specified number of names N0. 

4. Algorithm for Nearly Optimal Lexicographic Trees 

Given the ordered set {A} of names, such that Αγ < A2 < ··· < AN, 
aj,...,aN, and β0,...,βΝ, the steps of the algorithm to structure a nearly 
optimal lexicographic tree are as follows : 

(1) If N^N0, structure an optimal binary tree using Algorithm K. 
(2) If N> N0, let Wkukl be the weight of the subtree with frequencies 
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ß k i , αΛι + 1,...,αΛ2, ßk2, F a parameter,* and Ac the centroid. Form the ordered 
set of names {AF} = {AL} u Ac, where the members of the set {AL} satisfy 

\^O,L-I-^L,N\ < WojilF, 1 < F < W0j} 

(3) Find an index, max, such that amax = maximum,· af, where A{ e {AF}. 
(4) If in the set {AF} there is at least one name preceding or equal to Ac 

with associated frequency amax, let/? be the index such that Ap with ap = amax, 
is lexicographically closest to Ac. If there is no such p, let {AQ} be the null 
set and go to Step 6. 

(5) If Ap is the first member of {AF} and <xp_lxxp, form the set 
{AQ} = {Ap_uAp-2>-->Au}> w here <*„_,·_! > ap_,·, y = 0, . . . , /?-w-l and 
a «- i < au o r w~/> = Llog2N; if Ap is not the first member of {AF}9 let {AQ} 
be the null set. 

(6) If in the set {AF} there is at least one name following or equal to Ac 

with associated frequency amax let r be the index such that Ar with ar = amax 

is lexicographically closest to Ac; if there is no such r, let {As} be the null set 
and go to Step 8. 

(7) If Ar is the last member of {AF} and ccr < αΓ+ j , form the set {As} = 
{Ar+i9Ar+2,...,AO}> w h e r e a r + y < a r + i + 1 , y = 0 , l , . . . , i ; - r - l , and <xv>ocv+i 

orv-r = Llog2 N. lfAr is not the last member of {AF}, let {As} be the null set. 
(8) Find an index, root, such that aroot = maximum,·a,·, where A{ e {AQ} u 

{AF}u{As} and |Wo,root-i~^rootjvl is minimized; choose Aroot as the root 
of the tree. 

(9) Go to Step 1 and repeat the algorithm for the subtrees Al,...,Aroot_l 

and Aroot+i,-..9AN, where N is root— 1 and N-root for the two cases. 

5. Choosing Parameters of the Algorithm 

The algorithm defined in the preceding section has two parameters, 7V0 

and F9 which are influenced by the computer on which the algorithm is executed, 
the frequencies associated with the nodes, and the desired precision of the 
average search length. The parameter N0 determines the maximum number 
of names which will be structured into an optimal subtree using Algorithm K. 
In practice, the available storage will usually determine an upper bound for 
N0. The larger the value of N0, the closer the average search length of the nearly 
optimal tree. We thus have a trade-off, which is examined further below, 
between the value of 7V0 and the ratio of the average search length of the nearly 
optimal tree to the average search length of the optimal tree. 

t F determines the neighborhood of the set {AF}. 
t Wo, N = W, the weight of the tree. 
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Fig. 3. Dependence of search length on the parameter N 0 . 

Let us examine Fig. 3 which shows 5 examples, from the tests described in 
Section 7, of how the average search length for a nearly optimal tree depends 
on N0. As Ν0 increases, the value of the average search length decreases. 
However, for each example, there is a value of N0 beyond which the average 
search length decreases very slowly or remains constant. This value is largely 
determined by the sum of the ßt and the sum of the αί5 which we will refer to 
as the β and a frequency respectively. In general, if the β frequency is less than 
a few multiples of the a frequency, the value of N0 beyond which it does not 
pay to go is small. In the examples shown, there is little advantage in choosing 
N0 larger than 15. This is the value used in our tests described in Section 7. 
If the β frequency is many times greater than the a frequency, N0 should be 
increased, perhaps, to 25 or 30. 

The second parameter which can be varied is F, which determines the size 
of the neighborhood about the centroid from which the root will be chosen. 
With F = 1, the neighborhood is the entire tree. The name with the largest 
associated frequency becomes the new root.f Increasing F restricts the neigh-

* If N0 = 0, this corresponds to the first rule of Knuth. 

Set 2 Case 6 (9fc=1.0) 
1 · · 
Set2Case3 (9f r=1.0) 

Set3Case6 (3&= .6) 
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borhood. Choosing F = W0N restricts the neighborhood so that little searching 
takes place, and a name near or equal to the centroid is chosen as the root. 

The value of Falso depends on the ß frequency and the a frequency. Let us as
sume that the ß frequency is many times greater than the a frequency, and all the 
a; are small compared to the smallest ßt. If the smallest ßt is sufficiently large, 
the optimal binary tree will be the complete binary tree/ This tree is structured 
by our algorithm when F= W0tN, that is, the centroid is chosen as the root. 
In practice a set of frequencies satisfying the above conditions will not occur 
often. However, it is found that having the ß frequency many times greater 
than the a frequency is a sufficient condition for F= W0N to produce good 
nearly optimal trees. 

When the ß frequency is less than a few multiples of the a frequency, the 
average search length of the nearly optimal tree is improved by increasing the 
neighborhood of the centroid which is searched for the root, as discussed in 
Section 3. If the ß frequency is a few multiples of the a frequency, it is found 
that the choice of F is not critical and the average search length of the nearly 
optimal tree is almost constant for F> 5. If the a and ß frequencies are nearly 
equal, the minimum average search length occurs for F near 4. If the ß fre
quency is small compared to the a frequency, the individual af frequency will 
determine the best value of F. 

Fig. 4 shows 5 examples, from tests described in Section 7, of how the 
average search length for a nearly optimal tree depends on F. Unless the ß 
frequency is many times greater than the a frequency, a value of 4 for F seems 
to be acceptable. 

6. Time to Construct the Nearly Optimal Tree 

Before considering general timing formulas, let us determine the time 
required to construct a tree from N names with all frequencies uniform, that is, 
with af = ßi = constant. As usual, the parameters of our algorithm will be 
denoted by N0 and F. Our algorithm consists of two steps, one for locating 
ATOOt in a subtree and the other for constructing an optimal subtree using 
Algorithm K. 

The subtree roots, Aroot, located by our algorithm will form the first L le
vels of the nearly optimal N name tree whenever N satisfies 

(1) 2L"1(Wo+1) + 2L~l - 1 < N ^ 2L(N0) + 2L - 1 

The time required to locate Aroot for a subtree with Nt names and weight 
W1 is proportional to WJF or equivalently, since the weights are all equal, 

t A complete binary tree has leaves only on level L or L+1 ; see Knuth [5]. 
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3 4 5 6 7 8 9 

F (No=15) 

Fig. 4. Dependence of search length on the parameter F. 

to N1/F. On any level Lx ^ L, there are 2Ll " * subtree roots to be located, each 
requiring a time proportional to N/F(2Ll ~1). Hence, locating the subtree roots 
on each level requires a time proportional to N/F. The total time will be 
proportional to LN/F. 

For any value of TV satisfying (1) for some L, 2L subtrees will be constructed 
by Algorithm K. The average number of names in each subtree varies from 
N0/2 to N0, as TV varies from the lower bound to the upper bound of (1). 
If a subtree containing N0 names is constructed in time K(N0) by Algorithm K, 
the total time required by our algorithm to construct the nearly optimal tree 
when N is equal to the upper bound in (1) is given by 

(2) Time = K'LN/F+ K(N0)2
L 

, /N+l\N , JN+1\ 
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Fig. 5. Time to construct a nearly optimal tree. 

Hence, the time required to construct this tree is given by an equation of the 
form 

(3) Time = Kx N log2 N + K2N. 

Similarly, when TV equals the lower bound in (1) the time required to construct 
the tree will be given by 

(4) Time = Kt N log2 N+ K3N9 

where K3 is determined by the time required by Algorithm K to construct an 
optimal subtree with N0/2 names. 

The average time per node required to construct the tree can be obtained 
by dividing (3) and (4) by N. Figure 5 shows the time per node required by our 
algorithm to construct the nearly optimal tree when the number of names in 
the optimal subtrees is N0/2 and N0. In both cases, the form of our normalized 
equation is verified, since the plotted times lie on a straight line on the semi-
logarithmic graph paper. 

The nearly optimal trees of N names, with N not satisfying (1), have names 
chosen as subtree roots accounting for the names on the first L levels and some 
of the names on the L + 1 level. The time required to locate ATOOt in an N 0 + 1 
name subtree, and construct two optimal subtrees of N0/2 names, is less than 
the time required to construct an optimal N0 +1 name subtree. Hence, the 

Parameters of the Algorithm 

F = 4 N0=15 

O Ì L A uniform 

15 names in each 
optimal subtree 

0Li,&i random 
numbers 

CLi,Ê>i uniform 
7or8 names in each 
optimal subtree 
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time required to construct any N name nearly optimal tree with uniform 
frequencies is given by the expression 

K1Nlog2N+K4N9 

where K3 < K^ ^ K2, and K^ is determined by the number of optimal sub
trees and the number of names in each optimal subtree. 

The shape of the nearly optimal tree depends on the individual af and /f; 
frequencies. In general, the subtree roots will not form the first L levels as in 
the case of uniform frequencies. If most of the subtree roots occur on the first 
L levels, an equation of the form (3) may be used to estimate the time required 
to construct the tree. In practical applications, such as the library index, this 
will usually be the case. For example, Fig. 5 shows the time per node required 
to construct a tree in which the af and ßt frequencies are random numbers 
between 1 and 200. The slopes of the straight lines fitted to the plotted con
struction times for the random and uniform frequencies are almost equal. 
Since the expected average search lengths of the balanced tree and the optimal 
tree satisfy (see Nievergelt and Wong [7]). 

| expected average search length — log2Af| < constant, 

we would expect the construction time per node of the nearly optimal trees 
to differ by a constant. That is, the slopes of the lines in Fig. 5 would be 
expected to be equal. The deviation of the construction times from the straight 
line for random frequencies results from the dependence of the time on the 
number of names in each optimal subtree. These numbers are determined by 
the random af and j?f frequencies. 

The times in Fig. 5 were obtained from an ALGOL implementation of our 
algorithm executing on an IBM/360 Model 65, and should not be regarded as 
a measure of the minimum time required to construct a tree of N names. 
A much more efficient program could be written using assembler language 
for some sections. However, the form of the equation estimating the time 
should remain unchanged. 

The algorithm requires AN words of storage for the data. From the nature 
of our top down algorithm, it would be possible to use secondary storage for 
the data, when constructing trees for large values of N, without greatly 
increasing the running time beyond that achieved with a very large core store. 

7. Tests of the Algorithm 

Using a value of N = 200, the algorithm was tested for five sets of af 

frequencies, and for 10 sets of ßt frequencies with each af set. The sets of 
oil were chosen in the following manner; Sets 1, 2, and 3 were obtained by 



316 
W

. A
. W

alk
er and C

. C
. G

otlieb 

11-

TABLE II 

Test Dataa 

Set I 4 

2 

2 

33 

128 

1 

1 

2 

10 

1 

Set 2 7 

2 

90 

1 

1 

3 

1 

2 

2 

3 

19 3 3 1 1 2 8  4 

1 1 2 7 2 3 1 2 3  

1 5 2  3 1 4  1 1  

1 1 8 7 1 2 1  

350 1 2 1 87 2 1 

2 1 1 8 1 2 1  

2 4 6 2 2 1 1 1  

4 4 3  2 1 4  1 I 

8 1 5 1 0  1 2 1 0  

1 1 1 1 4 2 2  

4 1 1 2 0  1 2  I 

1 1 4 2 2 1 3  

3 I 4  1 4 2 9  1 

3 5 4 6 2  7 1 1  

1 1 2 4 1  1 1  6 

1 3  2 1 1 2 9  2 

6 1 9  2 1 3  I 1  

4 1 1 1 1 1 1  

I 1  1 1  2 2 9  3 

6 2 2  I 2 3  1 9  

ai Frequencies 
~ ~- ~ 

4 5 1 1 1 35 13 27 11 32 1 50 

1 2  7 5 9  4 1 1  7 3 2 3 2 2  

1 6 8 1 3  1 4  1 1  1 1  1 2 6  

1 2 4 1 0  5 1 0 2 3  1 1  9 6 2 

8 3 4 1 6 3  2 3 1 4 1 5 0  1 I 1  

3 4 2 1  I 9  1 1  2 1 0  4 1 5  1 

3 1 1  3 14 4 1 2  1 1  2 2 

18 1 1  7 1 4 5 1 5  9 3 1 5  4 

2 1 2 4 2 9  1 1 6  1 1  4 1 2  1 

6 4 1 1 4 5 5  1 5 3  1 1  1 4  

3 1 1  1 3 0  1 1  1 1  1 3 3 0  

1 2 1 7 1 2 4 2 6 6 7 1  

1 1  1 2  6 2 2 1 5  5 2 40 

1 3 1 1 4 2 1 1 2 2 6 1 1  

1 3 3 1 1 2 1 2 8 1 1 0 1 9 ~  

1 0 0 1 5  1 2 7  1 1  1 1 0 3  1 2  

1 4 1 2 0 1 1 3 3 6 2 1 3 ~  

7 1 3 3 9  1 1 1 5 1 1  2 1 4  6 

10 24 2 1 1  1 3  1 I 1  5 1 

1 I 8  1 6  1 1 3 0 2  1 1 4 9 0  
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128 
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Case 9 12 

900 

24 

49 

6 

7 

70 
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40 

25 

10 

1 5 2 3  1 

350 1 2 1 

4 4 3  2 I 

8 1 5 1 0  

3 1 4 1  

1 1 2 4 1  

5 306 1 12 

1 0 1 2 1  

1 7 8 4 3  

2 1  1 3 3  

8 315 18 7 

6 14 12 623 

248 13 7 28 

24 30 68 6 

14 37 11 9 

11 41 8 7 

7 15 15 121 

14 6 66 323 

73 7 12 6 

22 11 18 7 

4 1  

87 2 

4 1  

1 2  

4 29 

1 1  

1 13 

1 11 

1 4 0  

2 183 

24 6 

12 8 

6 8  

12 60 

4 34 

7 211 

23 18 

999 960 

6 195 

497 45 

1 

1 

1 

10 

1 

6 

1 

40 

3 

2 

5 

48 

129 

12 

34 

60 

14 

6 

12 

22 1 

1 

8 

18 

2 

1 

100 

1 

2 

1 
7 

6 

19 

6 

9 

14 

18 

7 

6 

970 

190 

6 

3 

1 

1 

1 

15 

10 

51 

1 

2 

37 

25 

8 

145 

240 

7 

12 

54 

12 

6 

8 

4 

1 

24 

1 

1 

1 

2 

2 

1 

49 

6 

42 

I83 

6 

14 

6 

4 

43 

30 

13 

1 

7 

29 

2 

2 

2 

1 

3 
4 

78 

479 

6 

6 

6 

49 

25 

1 

2 

72 

1 

63 

1 

1 

6 

7 

2 

11 

1 

I 

6 

12 

570 

97 

5 

31 

63 

1 

7 

6 

4 

2 

45 

16 

2 

1 

2 

54 

84 

15 

23 

19 

94 

8 

145 

930 

7 

468 

25 

5 

1 1 1 1  

3 14 150 1 

1 5 9 3 1  

1 1 4 1  

2 1 5 5  

1 1 1 0 3  

3 2 2 1  

227 227 1 1 

7 37 30 1 

173 1 1 2 

6 8 1 0 6  

8 4 9 0 0  7 6 

56 18 13 30 

9 27 7 13 

8 8 7 4 3  

7 75 7 98 

315 7 7 66 

24 18 6 540 

1 90 970 6 

6 37 49 78 

n 

z 1 26 R ~ 

z. 
5 4  a 
2 1 "  

2 4 0  5 
1 2 %  

2 1 '  

9 4  O 
5 12 3. 
4 4  Iy 

.O 

E 1 1  

r 

E. 
156 720 8 

0 

6 18 ? 

907 110 $ 

25 160 
5 

5 840 n 

7 6  
350 14 

18 31 

5 12 

6 8  

The a, and /3, vectors are arranged in the following matrices as 
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examining three sections* of the University of Toronto Library author-title 
catalog, and defining a name A{ to be a surname under which a card was filed. 
The surname could be a main or added entry, an author or title, as long as the 
card was filed under the surname. The frequency a,· associated with Av was 
the number of cards on which the A{ appeared. If several copies of a book were 
in various departmental libraries, each copy might have a separate card, and 
each card was counted in determining the af. For each of the three sections, 
an oti distribution was found. The fourth set of a,· was chosen by eliminating 
the most frequently occurring names from Sets 1 and 2, and then selecting 
200 names from those remaining. Set 5 was obtained by including all of the 
larger frequencies found in Sets 1, 2, and 3 in the 200 frequencies. 

For each set of af, 10 sets of ft, divided in 4 classes were obtained as follows: 

Class 1 : the ft were all equal. 

Case 1: ft = 0, O^i^N; 
Case 2:' ft = 10, 0 ̂  ι ^ N. 

Class 2: the ft were calculated as a function of neighboring a/} where 
cii is taken as 0 for / < 0 or / > N. 

Case 3: ft = (a£ + a, + 0/2, O^i^N; 
Case 4: ft = (a i_1+a i + a i + 1 +a / + 2)/4, O^i^N; 
Case 5: ft= |3a f + 1 -2a i + 3 | , O^i^N. 

Class 3 : the ft were chosen so the sum of the ft would be equal to or less 
than the sum of the af. 

Case 6: ft chosen from Set 1, 2, and 3, Case 3 and 4; 
Case 7: ft chosen from Set 1, 2, and 3, Case 3 and 4. 

Class 4 : the ft were chosen so the sum of the ft would be larger than the 
sum of the a,·. 

Case 8: ft chosen from Sets 1, 2, and 3, Case 3 and 4; 
Case 9: ft chosen randomly; 
Case 10: ft= 1.5(αί_1+αΙ· + α / + 1 +α ί + 2 ) , O^i^N. 

The 5 sets of af frequencies and Cases 6, 7, 8, and 9 of the ft frequencies are 
listed in Table II. In Table I the average search length of the optimal tree is 
compared with the results of our top down algorithm for different values of 
N0 and F. 

The best nearly optimal trees are obtained when the β frequency and the 
a frequency are approximately equal in value. In these cases the difference 

t The third section, for example, corresponds to surnames between Newstead and 
Niedermayer. 
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between the average search length of the nearly optimal tree and the optimal 
tree is usually less than 1%. When the ß frequency is many times greater than 
the a frequency, the poorest nearly optimal trees are constructed. This is 
expected, since the algorithm uses the j8f frequencies in choosing the centroid, 
but does not consider them when choosing another name for the actual root. 
Even for the poorest nearly optimal trees, the difference between the average 
search length of the optimal and the nearly optimal tree is less than 3.5%. 

The algorithm was also tested over a sequence of values of TV. The sets of 
names used for this test were drawn from a list of 144,486 distinct surnames, 
each having an associated frequency afc.

f The names were first ordered so 
that tth ^ a-l2 ^ ·· ^ αίΐ44486· For each value of TV in the sequence, the TV most 
frequently occurring names Ah9...,AiN were selected and reordered lexico
graphically, that is, so that Aix < ··· < AiN. The frequencies used to construct 
the tree were as follows: a,· was the frequency associated with A^ and ßj was 
the sum of the frequencies of names between At. and A{ . Note that as the 
number of names in the tree increases, the a frequency increases by an amount 
equal to the ß frequency decrease, that is, the total weight of the tree remains 
constant. As previously, the sum of the a's is called the a frequency, and the 
sum of the /Ts the ß frequency. 

The results of the test are given in Table III and shown in Fig. 6. For TV < 150, 
optimal trees could be easily constructed and the difference in the average 
search length of the optimal and nearly optimal tree is always less than 2%. 
For TV ^ 150, the ß frequency is several times the a frequency, and from 
arguments given previously, the difference in the average search length of the 
optimal and nearly optimal tree is expected to decrease as TV and oc/ß increases. 
Thus, it is reasonable to expect that the dependence of the nearly optimal tree 
on TV will be the same as that of the optimal tree. From Fig. 6, we observe that 
for small values of TV, the average search length behaves approximately like 
log2 TV. However, for large values of TV (> 6000), the average search length of 
the nearly optimal tree is almost constant. This is in contrast to the average 
search length of approximately log2 TV for an optimal tree of TV names, and 
2TV+ 1 nodes, with uniform af and ßt frequencies. 

The observed result is to be expected. When TV is small, the large /?f account 
for most of the weight of the tree and the leaf nodes largely determine the 
average search length. As TV increases, the /?f decrease, and the A( with largest 
associated frequencies become nodes in the tree. Eventually the ßt become 
small enough, and the levels on which they occur deep enough, so that the 
contribution to the weighted path length of a subtree formed by splitting a 
ßi into afc's and ßk's hardly changes. An interpretation of the above results is 

f The original list consisted of over one million names, of which 144,486 were distinct. 
The frequencies are the frequencies of occurrences in the original list. 
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TABLE III 

Average Search Length 

N 

5 
15 
25 
50 
100 
150 
200 
500 
1000 
3000 

6000 
12,000 
144,486 

a Frequency 

19,846 

42,653 
60,087 

92,117 

138,975 
173,157 
200,412 
305,266 

401,288 
561,956 

655,538 
740,022 

1002,343 

ß Frequency 

982,497 
959,690 
942,256 

910,226 
863,368 
829,186 

801,931 
697,077 

601,055 
440,387 

346,805 
262,321 

0 

Optimal tree 

3.4114 

4.2864 

5.0638 
6.0483 
7.0007 

7.4885 

Nearly optimal 

tree 

W 0 = 15,F=5 

3.4114 

4.2864 
5.1033 
6.1461 
7.0437 

7.5503 

7.8795 
8.9606 
9.6490 
10.6220 
11.1177 

11.1592 

12 

11 

10 

9 

£T 8 

.3 
7 

_c 
υ 
<σ 6 

CO 
5 

v 

u 4 

> 
< 3 

2 

1 

Nearly optimal Tree 

(y^~ Optimal Tree 

2 4 8 16 64 256 1024 4,096 

Number of Names in the Tree 

Fig. 6. Dependence of search length on the number of names in the tree. 
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that, if we know all the names which could be used to search a binary tree, 
and the frequencies with which they occur, then there is a value of N, 6000 in 
our example, such that, if more than the N most frequently occurring names 
are placed in the tree, the average search length will not be appreciably 
increased. 

8. Summary 

Our top-down algorithm for constructing nearly optimal lexicographic trees 
required a time proportional to N log2 N for all N name trees constructed, 
and requires storage proportional to N. As the af and ß frequencies change 
over a period of time, it would be necessary to completely restructure the tree 
to keep it in a nearly optimal form. In a practical application such as the 
library index discussed above, the frequencies associated with the nodes 
would not change greatly over a short period of time. It would be feasible to 
use our algorithm to occasionally restructure the tree. In addition, the ß 
frequency would usually be less than the a frequency in such an application, 
and the nearly optimal trees can be expected to have an average search length 
within 1% ofthat of the optimal tree. 
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Bottom-up valency (BUV) code, 172 
decoding algorithm for, 175, 176 

Boundary automation, see Automaton 
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Bounds on chromatic number, 112, 115 
Brooks's theorem, 112 
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Clique, 193 
Code, 154 
Coding problem, 154 
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sequential, 110 
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Decoding algorithm, 161, 162 
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code 
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Decoding procedure, 154 
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Forced blocks, 273, 276 
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Free p-mino, see p-Minoes 

G 

General constrained set covering prob
lem, 268 

algorithm for, 278 
description of, 280 

Graceful graphs, 24, 25 
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Height of transition graph, see Transi
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Homeomorphically irreducible, 50 
Hypercubical polyominoes, see Polyo-
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I 
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Lexicographic tree, see Trees 
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Map, 295 
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Minimum covering problem, 2 
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Minimum degree algorithm, 214 
Minimum fill-in, 206 
Minimum tree problem, 260 
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Monotone deficiency, 191 
Monotonely adjacent, 191 
Monotone transitive extension, 192 
Monotone transitive graphs, 185 
Monotone transitive ordering, 198 
Myopic algorithm, 219 

N 

Natural representation, 128 
Nearly optimal lexical trees, 309 
Nearly optimal tree, 312 
Network firing squad problem, 248 
Networks of finite automata, 222 

graphical problems solvable by, 224 
Nongraceful graphs, 27 
Non-Hamiltonian maps, 295 
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O 

Optimal ordering and algorithms, 202 
Optimistic evaluation, 274 
Ordering algorithms, 213 
Out-tree, 151 



328 Index 

Packing and covering, 40 
Parallel exploration, 278 
Partial graph, 54 
Partitioning problem, 268 
Path number, 40, 285 
Period of flower, 130 
Periodic automaton, 79 
Period sequence, 136 
Permutation graphs, 137 
Planar map, 295 
Planarity algorithm, 70 
Plane trees, see Trees 
Plane rooted trees, see Trees 
Planted plane trees, see Trees 
p-Mino(es), 87 

asymptotic results for number of, 96 
counting algorithm for, 94 
fixed, 88 
free, 88 
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stretched, 91 
tri, 87 
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enantiomorphic, 108 
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Progressive exploration, 278 

Quiescent state, 223 
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Self-synchronization of networks, 228 
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273 
Separation principal, 273, 274 
Separator, 193 
Sequential coloring, 110 
Sequential exploration, 278 
Sequential-with-interchange coloring, 116 
Serial exploration, 278 
Set covering problem, 268 
Smallest-last (SL) coloring algorithm, 

114 
Smolenskii code, 180 
Stable set, 8 
Stacked automaton, see Automaton 
Star graph, 251 
Stars, 48 

with given topology, 58 
State-output automaton, see Automaton 
State-transition function, 222 
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Automaton 
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Recoil automaton, see Automaton 
Recursive-smallest-vertex-degree-last-

with-interchange (SLI) coloring 
algorithm, 116 

Reducing chain, 7 
Representation basis, 128 
Representation field, 128 
Root, 130 
Rooled binary tree, see Trees 
Rooted tree, see Trees 

Tarry automaton, 235 
Tarry order, 279 
Top-down algorithm, 307 
Topological type, 49 
Topology, 50 
Transition function, 125 
Transition graph, 123, 124, 125 

height of, 131 
Tree(s), 15, 155 

average height of, 19 
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and &-trees, 201 
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plane, 156 
plane rooted, 155 

binary code for, 157 
planted plain, 15, 155, 156 

binary code for, 157 
rooted, 155 

binary code for, 160 
of minimal paths, 243 

unrooted, 163, 178 
binary code for, 163 

Tree codes, properties of, 166 
Tree function, 178 
Tree function code, 177 
Tree point, 130 
Triangulated graphs, 192, 193 
Triangulations, 194 

bounds for, 212 
Tripartite graph, 286 
Tri p-mino, see p-Minoes 
Trivalent maps, 295 

Truncated max-degree bound, 112 
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Undecidable connectivity, 230 
Unrestricted path number, 42 
Unrooted trees, see Trees 
Unsolved problems on graph number-

ings, 36 
Unsolved problems on path numbers, 44 

Valency codes, 172 
Vertex ordering, 246 
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Walk-around labeling, 171 
Walk-around valency (WAV) code, 174 

decoding algorithm for, 176, 177 
direct-integer algorithm for, 179 

WAV code, see Walk-around valency 
code 174 


