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Preface

Researchers in graph theory, including graduate students, are the primary audience
for this book. Although it is assumed that the reader is acquainted with the basic
concepts in graph theory, this book is self-contained in that all concepts and
terminology needed for the topic are clearly presented and illustrated. This book can
be used for a reading course, a seminar or a short course for graduate students who
are interested in Eulerian and Hamiltonian properties of graphs as well as covering
walks of graphs in general. In addition, this book contains the background needed
to begin a research program on a variety of topics concerning covering walks in
graphs and provides easy access to recent results and open problems in this area of
research.

Many theorems involving walks in graphs can be traced back to problems that
led to some of the best-known and most-studied concepts in graph theory. A walk in
a graph G begins at some vertex u of G, proceeds to an edge e D uu0 incident with
u, then proceeds to u0 and next to an edge incident with u0 (possibly e again). This
continues until the procedure stops at some vertex v, producing a u � v walk W . If
W contains every edge of G, then W is an edge-covering walk, while if W contains
every vertex of G, then it is a vertex-covering walk.

Graph theory is considered to have begun in 1736 when the great Swiss
mathematician Leonhard Euler solved the famous Königsberg Bridge Problem,
which asks whether it is possible to walk about the city of Königsberg (located
in Prussia at the time) and cross each of its seven bridges in the city exactly once.
Eventually it was seen that the Königsberg Bridge Problem could be expressed as
a problem in graph theory, an area of mathematics that did not exist in 1736. This
led to the concept of Eulerian graphs and later to the more general concept of edge-
covering walks in graphs. This is the topic of Chap. 1.

After presenting Euler’s characterization of Eulerian graphs as those con-
nected graphs containing only even vertices, graphs containing Eulerian trails are
described as those connected graphs containing exactly two odd vertices. Oswald
Veblen’s characterization of Eulerian graphs as those connected graphs that can
be decomposed into cycles is presented. From this theorem, a number of results
and conjectures emanated. One of the recent conjectures is the Eulerian Cycle
Decomposition Conjecture. Many results obtained on this conjecture are presented.

Several results are presented that deal with connected graphs containing a
specified number of odd vertices. While connected graphs with odd vertices do
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vi Preface

not have circuits containing each edge exactly once, they do contain closed walks
containing each edge at least once. Determining the minimum number of edges in
such a closed walk is the famous Chinese Postman Problem. This led to the recent
study of irregular Eulerian walks in which no two edges are encountered the same
number of times in the walk.

Some Eulerian graphs contain vertices u having the property that every trail with
initial vertex u can be extended to an Eulerian circuit. Graphs with this property are
described. The analogous result for connected graphs with two odd vertices is also
presented.

Chapter 2 deals with graphs that possess closed vertex-covering walks. This
concept emanates from the so-called Icosian Game of the Irish mathematician
William Rowan Hamilton and his Around the World puzzle, which dealt with cycles
in a dodecahedron containing every vertex. This led to the concepts of Hamiltonian
cycles and Hamiltonian graphs. Although no characterization of Hamiltonian graphs
has ever been found, many sufficient conditions for a graph to be Hamiltonian have
been discovered, the first of which was a 1952 theorem of the Danish mathematician
Gabriel Andrew Dirac, who proved that if the minimum degree of a graph is at least
half of the order of the graph, then that graph is guaranteed to be Hamiltonian.
This was extended somewhat by the Norwegian mathematician Oystein Ore, who
showed that if the sum of the degrees of every two nonadjacent vertices in a graph is
at least its order, then that graph is Hamiltonian. This led to the study of the closure
of graphs and its connection with Hamiltonian graphs.

The best-known necessary condition for a Hamiltonian graph is one that states
that every Hamiltonian graph G has the property that when a set of vertices is
removed from G, then the number of components in the resulting graph never
exceeds the number of vertices removed. This observation led to the well-studied
concept of toughness in graphs and its relationship to Hamiltonian graphs. The
famous Traveling Salesman Problem is also described.

Of a number of operations defined on a graph that result in new graphs, two of the
most common are the line graph and powers of a graph. There have been numerous
theorems dealing with those operations that result in Hamiltonian graphs and graphs
with related properties.

Although many connected graphs do not contain Hamiltonian cycles, every
connected graph contains a closed vertex-covering walk. The major interest here
is the minimum length of such walks in a graph, which is the Hamiltonian number
of the graph. Recent research showed that the Hamiltonian number of a graph G can
be determined by computing the sum of the distances of consecutive terms in each
cyclic ordering of the vertices of G and then finding the minimum of these sums.
The maximum of these sums is the upper Hamiltonian number of G and results on
this topic are presented as well in Chap. 2. Furthermore, several results on the set of
all such numbers obtained in this manner are discussed.

In Chap. 3, the emphasis changes from closed vertex-covering walks in a
connected graph G to the recent research topic of open vertex-covering walks in G.
Such a walk of minimum length is referred to as a traceable walk and its length
is the traceable number of G. Here too it is seen that the traceable number of G
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can be obtained by first computing the sum of the distances of consecutive terms
in each linear ordering of the vertices of G. The minimum value of such a sum is
the traceable number of G; the maximum such sum is the upper traceable number
of G. Special attention is given to these two parameters of trees. Also, comparisons
between the Hamiltonian and traceable numbers are described as are comparisons
between the upper Hamiltonian and upper traceable numbers of given graphs.

One of the differences between closed vertex-covering walks and open vertex-
covering walks in a graph is that, for an open vertex-covering walk, its length
depends on which vertex the walk begins (or ends). For this reason, for each vertex
v in a graph, sequences of the vertices of the graph with v as their initial term and the
resulting sums of distances of consecutive terms are considered. The minimum such
sum is the traceable number of v. Related concepts such as the maximum vertex-
traceable numbers of graphs, traceably singular graphs, and the total traceable
numbers of graphs are described.

The numerous new areas of research presented in this book have led to a number
of conjectures and open problems, which are described throughout the book.

Nagoya, Aichi, Japan Futaba Fujie
Kalamazoo, MI, USA Ping Zhang
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1Eulerian Walks

1.1 The Königsberg Bridge Problem

Not only can the study of covering walks in graphs be traced back to the 1730s but
graph theory itself (indeed graphs) can also be traced to the 1730s.

The city of Königsberg was founded in 1255 by the Teutonic knights under
the leadership of Bohemian King Ottoker II after the second crusade against the
Prussians. Königsberg was the capital of German East Prussia and an important
trading city during the Middle Ages due to its location on the banks of the River
Pregel. Seven bridges were built across the river, five of which were connected to
the island of Kneiphof (see Fig. 1.1). As the map in this figure shows, the river
divides Königsberg into four land regions.

The Prussian Royal Castle was located in Königsberg but it was destroyed during
World War II, as was much of the city. At the conclusion of the war, it was
decided at the Potsdam Conference in 1945 that a region located between Poland
and Lithuania, containing the city of Königsberg, would be made part of Russia. In
1946, Königsberg was renamed Kaliningrad after Mikhail Kalinin, the former leader
of the Soviet Union during 1919–1946. After the fall of the Soviet Union, Lithuania
and other former Soviet republics became independent. Kaliningrad was then no
longer part of Russia. Nevertheless, Kaliningrad never had its name changed back
to Königsberg.

Early in the eighteenth century, the story goes that many citizens of Königsberg
spent their Sunday afternoons strolling about the city. The question arose as to
whether it was possible to walk about the city and cross each of the seven bridges
exactly once. This problem eventually gained some notoriety and acquired a name
known to many:

The Königsberg Bridge Problem. Is it possible to walk about the city of Königs-
berg and cross each of its seven bridges exactly once?

While no one had been able to take such a walk, evidently no one was able to see
why such a walk was impossible.

F. Fujie and P. Zhang, Covering Walks in Graphs, SpringerBriefs in Mathematics,
DOI 10.1007/978-1-4939-0305-4_1, © Futaba Fujie, Ping Zhang 2014
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2 1 Eulerian Walks

Fig. 1.1 A map of the city
of Königsberg

At this point, Leonhard Euler, one of the brilliant mathematicians of all time,
enters the picture. Euler was born in Basel, Switzerland in 1707. It was the well-
known Swiss mathematician, Johann Bernoulli, a member of a famous family of
mathematicians, who encouraged young Leonhard to study mathematics. Euler
became ill while in his 20s, which resulted in his losing vision in one of his eyes.
Later he developed a cataract in his other eye and was totally blind during the last
few years of his life.

Euler was interested in all areas of mathematics that existed during his time.
Among his amazing accomplishments was showing a connection involving perhaps
the five best known numbers in mathematics:

e�i C 1 D 0:

He also established an identity involving the number V of vertices, the number E

of edges, and the number F of faces in every polyhedron, which became known as
the Euler Polyhedron Formula:

V �E C F D 2:

In infinite series, Euler proved in 1735 that

1

12
C 1

22
C 1

32
C 1

42
C � � � D �2

6
;

an accomplishment that only added to Euler’s fame.
Euler was known to be one who corresponded often. Not all individuals with

whom he corresponded were mathematicians. One such person was Carl Leonhard
Ehler, with whom Euler corresponded during the period 1735–1742. So Ehler’s
middle name was Euler’s first name and his family name differed from Euler’s
by a single letter. Ehler was the mayor of Danzig in Prussia, a city located some
80 miles west of Königsberg. (Danzig is now the city of Gdansk in Poland.) While
there is no clear evidence that Euler first became aware of the Königsberg Bridge
Problem through his correspondence with Ehler, these two are known to have
discussed the problem in their communications. Ehler was an acquaintance of the
mathematician Heinrich Kühn and in a letter dated 9 March 1736, Ehler wrote (in
part) the following to Euler:



1.1 The Königsberg Bridge Problem 3

You would render to me and our friend Kühn a most valuable service, putting us greatly
in your debt, most learned Sir, if you would send us the solution, which you know well, to
the problem of the seven Königsberg bridges, together with a proof. It would prove to be an
outstanding example of the calculus of position worthy of your great genius. I have added
a sketch of the said bridges.

The sketch within Ehler’s letter showed where the River Pregel flowed through
Königsberg and the locations of the seven bridges over the river. It is believed
that Ehler asked his question in hopes of promoting the growth of mathematics in
Prussia.

Four days after Ehler wrote this letter to Euler, a letter was written by Euler to the
Italian mathematician Giovanni Marinoni. In this letter, dated 13 March 1736, Euler
described the Königsberg Bridge Problem to Marinoni. Even though Euler didn’t
consider the problem very difficult, he mentioned to Marinoni that he had solved
the problem and explained what there was about this problem that interested him.
This letter said in part:

A problem was posed to me about an island in the city of Königsberg, surrounded by a river
spanned by seven bridges, and I was asked whether someone could traverse the separate
bridges in a connected walk in such a way that each bridge is crossed only once. I was
informed that hitherto no-one had demonstrated the possibility of doing this, or shown that
it is impossible. This question is so banal, but seemed to me worthy of attention in that not
geometry, nor algebra, nor even the art of counting was sufficient to solve it. In view of this,
it occurred to me to wonder whether it belonged to the geometry of position, which Leibniz
had once so much longed for. And so, after some deliberation, I obtained a simple, yet
completely established, rule with whose help one can immediately decide for all examples
of this kind, with any number of bridges in any arrangement, whether or not such a round
trip is possible . . .

In addition to a discussion of the Königsberg Bridge Problem, this letter of Euler
contained two additional points of interest. First, Euler referred to a proof technique
called the geometry of position, originated by the famous German mathematician
Gottfried Leibniz, who, with Sir Isaac Newton, was the originator of calculus.
In 1670 Leibniz wrote a letter to the prominent Dutch mathematician Christiaan
Huygens which said:

I am not content with algebra, in that it yields neither the shortest proofs nor the most
beautiful constructions of geometry. Consequently, in view of this, I consider that we need
yet another kind of analysis, geometric or linear, which deals directly with position, as
algebra deals with magnitude.



4 1 Eulerian Walks

Not only was Euler aware of Leibniz’s interest in the geometry of position but,
as we shall soon see, Euler would do something about it. A second point of interest
in Euler’s letter to Marinoni was his reference to round trips. As we shall also see,
Euler distinguished between walks that were round trips and those that were not.

On 3 April 1736, Euler responded to Ehler’s letter of 9 March. This letter of Euler
to Ehler read in part:

Thus you see, most noble Sir, how this type of solution bears little relationship to
mathematics, and I do not understand why you expect a mathematician to produce it, rather
than anyone else, for the solution is based on reason alone, and its discovery does not
depend on any mathematical principle. Because of this, I do not know why even questions
which bear so little relationship to mathematics are solved more quickly by mathematicians
than by others. In the meantime, most noble Sir, you have assigned this question to the
geometry of position, but I am ignorant as to what this new discipline involves, and so to
which types of problem Leibniz and Wolff expected to see expressed in this way . . .

This letter of Euler also referred to Leibniz and his geometry of position as well
as the German philosopher Christian Wolff.

Euler showed that it was impossible to stroll about the city of Königsberg and
cross each of its seven bridges exactly once, a fact that was probably not surprising
to most citizens of Königsberg. Records show that Euler presented this first solution
of the Königsberg Bridge Problem in a talk to the members of the Petersburg
Academy on 26 August 1735. The following year (in 1736) Euler wrote a paper
containing his solution to the Königsberg Bridge Problem. This paper, written
in Latin and titled “Solutio Problematis ad Geometriam Situs Pertinentis” (The
solution to a problem relating to the geometry of position) was published in the
proceedings of the Petersburg Academy (the Commentarii [32]).

Euler’s paper consisted of 21 numbered paragraphs. He begins his paper by
stating that he has been introduced to a problem whose solution uses the geometry
of position to which Leibniz had referred. Here we refer to the English translation
of Euler’s paper presented in the book Graph Theory 1736–1936 by Biggs, Lloyd,
and Wilson [11].

1: In addition to that branch of geometry which is concerned with magnitudes, and which
has always received the greatest attention, there is another branch, previously almost
unknown, which Leibniz first mentioned, calling it the geometry of position. This branch
is concerned only with the determination of position and its properties; it does not
involve measurements, nor calculations made with them. It has not yet been satisfactorily
determined what kind of problems are relevant to this geometry of position, or what
methods should be used in solving them. Hence, when a problem was recently mentioned,
which seemed geometrical but was so constructed that it did not require the measurement
of distances, nor did calculation help at all, I had no doubt that it was concerned with
the geometry of position – especially as its solution involved only position, and no
calculation was of any use. I have therefore decided to give here the method which I
have found for solving this kind of problem, as an example of the geometry of position.
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Fig. 1.2 A map of
Königsberg with its seven
bridges crossing the river
Pregel

In the second paragraph of this famous paper, Euler states the Königsberg Bridge
Problem and says that this has led him to a more general problem.

2: The problem, which I am told is widely known, is as follows: in Königsberg in Prussia,
there is an island A, called the Kneiphof; the river which surrounds it is divided into two
branches, as can be seen in Fig. 1.2, and these branches are crossed by seven bridges a,
b, c, d , e, f , g. Concerning these bridges, it was asked whether anyone could arrange
a route in such a way that he would cross each bridge once and only once. I was told
that some people asserted that this was impossible, while others were in doubt: but no
one would actually assert that it could be done. From this, I have formulated the general
problem: Whatever be the arrangement and division of the river into branches, and
however many bridges there be, can one find out whether or not it is possible to cross
each bridge exactly once?

In the third paragraph of his paper, Euler explains how this problem could be
approached and why others probably found it so difficult to solve. This paragraph
also gives us some insight into Euler’s logic.

3: As far as the problem of the seven bridges of Königsberg is concerned, it can be solved
by making an exhaustive list of all possible routes, and then finding whether or not any
route satisfies the conditions of the problem. Because of the number of possibilities, this
method of solution would be too difficult and laborious, and in the problems with more
bridges, it would be impossible. Moreover, if this method is followed to its conclusion,
many irrelevant routes will be found, which is the reason for the difficulty of this method.
Hence I rejected it, and looked for another method concerned only with the problem of
whether or not the specified route could be found; I considered that such a method would
be much simpler.

In paragraphs 4 and 5 of his paper, Euler describes the notation he will use;
namely he will be representing the four land regions by A; B; C; D and the seven
bridges by a; b; c; d; e; f; g. Also, if a traveler goes from region A to B by either
bridge a or b, he will represent this by writing AB and if the traveler should then
go to region D, this will be represented by ABD. From this, Euler observes the
crossing of all seven bridges requires a sequence of eight letters to represent it.

In the next three paragraphs 6–8, the main observation that Euler makes is that if
the number of bridges leading into a region is odd and this number is increased by 1,
then half of this result is the number of occurrences of this region in the sequence
of eight letters. Thus, as described in paragraph 9, A must occur three times in this
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sequence and B , C , and D must occur twice each. But this results in nine letters
occurring in this sequence of length 8, an impossibility.

In paragraph 10, Euler begins to consider the more general problem – with any
number of land regions and any number of bridges. He discusses various possible
scenarios throughout paragraphs 10–15. He then writes the following in the next
two paragraphs.

16: In this way it will be easy, even in the most complicated cases, to determine whether or
not a journey can be made crossing each bridge once and once only. I shall, however,
describe a much simpler method for determining this which is not difficult to derive
from the present method, after I have first made a few preliminary observations. First, I
observe that the numbers of bridges written next to the letters A; B; C , etc. together add
up to twice the total number of bridges. The reason for this is that, in the calculation
where every bridge leading to a given area is counted, each bridge is counted twice,
once for each of the two areas which it joins.

17: It follows that the total of the numbers of bridges leading to each area must be an even
number, since half of it is equal to the number of bridges. This is impossible if only
one of these numbers is odd, or if three are odd, or five, and so on. Hence if some of
these numbers of bridges attached to the letters A; B; C; etc. are odd, then there must
be an even number of these. Thus, in the Königsberg problem, there were odd numbers
attached to the letters A; B; C , and D : : :

In terms of graphs, the numbers of bridges attached to the letters A; B; C; etc.
refer to the degrees of the vertices A; B; C; etc. in the graph representing the
situation. What Euler was observing here was a fact that is sometimes called the
First Theorem of Graph Theory (or the Handshaking Lemma), an observation that
was then first made by Euler.

Theorem 1.1 (The First Theorem of Graph Theory). The sum of the degrees of
the vertices in a graph equals twice the size of the graph.

Euler thus observed the following as well. In a graph, a vertex having even (odd)
degree is called an even .odd/ vertex.

Theorem 1.2. The number of odd vertices in a graph is even.

In paragraph 20 of his paper, Euler summarizes what he claims to have shown in
the foregoing paragraphs.

20: So whatever arrangement may be proposed, one can easily determine whether or not
a journey can be made, crossing each bridge once, by the following rules:
• If there are more than two areas to which an odd number of bridges lead, then such

a journey is impossible.
• If, however, the number of bridges is odd for exactly two areas, then the journey is

possible if it starts in either of these areas.
• If, finally, there are no areas to which an odd number of bridges lead, then the

required journey can be accomplished from any starting point.
With these rules, the given problem can also be solved.

Euler concludes his paper with paragraph 21.



1.1 The Königsberg Bridge Problem 7

21: When it has been determined that such a journey can be made, one still has to find how
it should be arranged. For this I use the following rule: let those pairs of bridges which
lead from one area to another be mentally removed, thereby considerably reducing
the number of bridges; it is then an easy task to construct the required route across
the remaining bridges, and the bridges which have been removed will not significantly
alter the route found, as will become clear after a little thought. I do not therefore think
it worthwhile to give any further details concerning the finding of the routes.

While there is no question that in the general situation, a round trip crossing
all bridges exactly once can occur only when the number of bridges leading into
each area is even, a journey between two different areas and crossing each bridge
exactly once can occur only if these two areas are the only areas into which an
odd number of bridges lead. Should there be more than two areas where an odd
number of bridges lead, no journey of any kind is possible that crosses each bridge
exactly once. According to paragraph 21, Euler had evidently convinced himself
that if there is a situation where the number of bridges leading to each area is even,
then the desired round trip is always possible, while if exactly two areas have an odd
number of bridges leading to them, then a desired journey between these is possible.
However, what Euler wrote in these cases was surely not convincing and therefore
not a proof.

While Euler’s paper is often credited with being the beginning of graphs and
graph theory, the term graph never appeared in his paper. Indeed, the term graph
would evidently not appear (in this context) until 1878 when the British mathemati-
cian James Joseph Sylvester first used the word. However, if one were to interpret
each land region as a vertex and each bridge as an edge, graphs did appear abstractly
in Euler’s paper and the reasoning that Euler used was graph theoretic in nature.

So, in terms of graphs Euler proved that should a connected graph G contain
more than two vertices of odd degree, then there is no journey about G that contains
every edge of G exactly once. He evidently convinced himself that he had also
verified the converse, namely: If a connected graph G should contain only vertices
of even degree, then there is a round trip in G that contains every edge of G exactly
once – and if G should contain exactly two vertices of odd degree, then there is
a journey about G starting at one of these odd vertices and ending at the other
that contains every edge of G exactly once. But such is not the case. Indeed, a
complete proof of this converse implication did not appear in print for more than
a century later – in 1873 when the young German mathematician Carl Hierholzer
proved this. Sadly, Hierholzer would die before writing a paper that contained his
proof. The paper [42] containing this proof and authored by Hierholzer had the
following footnote written by his colleague C. Wiener:

Privatdocent Dr. Hierholzer, unfortunately prematurely snatched away by death from the
service of scholarship (died 13 September 1871), reported on the following investigation
to a circle of mathematical friends. It was in order to save it from oblivion (and it had
to be reconstructed without any written record) that I sought to complete the following as
accurately as possible, with the help of my esteemed colleague Lüroth.
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1.2 Eulerian Graphs

As a result of both Euler’s work in his famous Königsberg paper as well as
Hierholzer’s proof, we are able to state these results as theorems in graph theory.
Prior to doing this, however, it is useful to describe some of the terminology and
notation that we will use. These as well as more basic terminology can be found in
any of the books [19, 20, 24]. All graphs we will be encountering throughout this
book will be nontrivial and connected.

For vertices u and v in a connected graph G, a u � v walk W in G is a sequence

W D .u D v0; v1; v2; : : : ; v` D v/ (1.1)

of vertices in G such that vi�1vi is an edge of G for each i .1 � i � `/. If ei D
vi�1vi , then the walk W in (1.1) can also be expressed as

W D .e1; e2; : : : ; e`/: (1.2)

The length of the walk W in (1.1) and (1.2) is denoted by L.W /, so L.W / D `.
If G is a multigraph rather than a graph, then some pairs of vertices are joined by

more than one edge. In this case, it is necessary to denote a walk as a sequence of
edges as in (1.2) rather than a sequence of vertices as in (1.1) to avoid confusion. The
u� v walk is closed if u D v and open otherwise. If there is no repetition of edges in
a walk, then the walk is a trail. A closed nontrivial (more than a single vertex) trail
is a circuit. A u�v walk W as in (1.1) is a u�v path if the vertices v0; v1; : : : ; v` are
distinct. If W is a circuit with L.W / D ` � 3 for which the vertices v0; v1; : : : ; v`�1

are distinct, then W is a cycle.
A circuit in a connected graph G that contains every edge of G is an Eulerian

circuit, while an open trail containing every edge of G is an Eulerian trail. A
graph containing an Eulerian circuit is an Eulerian graph and a graph containing
an Eulerian trail is a traversable graph.

A graph is even if every vertex in that graph is even. We then have the following.

Theorem 1.3. A nontrivial connected graph G is Eulerian if and only if G is even.

Proof. Suppose first that G is an Eulerian graph. Then G contains an Eulerian
circuit C , beginning and ending, say, at u. Let v be a vertex of G different from u.
Then each time we visit v on C , we also leave v. That is, each time v is encountered
on C , a contribution of 2 is made to the degree of v and so deg v is even. This is
also the case for u should u be encountered in the interior of C . Since C begins and
ends at u, another contribution of 2 is made to the degree of u and so deg u is even
as well.

For the converse, let G be a nontrivial connected graph in which every vertex has
even degree. Among all trails in G, select one, say T , of maximum length. Suppose
that T is a u�v trail. If u ¤ v, then T contains an odd number of edges incident with
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Fig. 1.3 The Königsberg
multigraph

v. Since v has even degree, there is some edge e incident with v and not belonging
to T . However, following T by e produces a trail beginning at u that has a greater
length than T . Thus, u D v and T is a circuit. Should T contain all edges of G, then
G is certainly Eulerian. If this is not the case, then since G is connected, there is
some vertex x 2 V.T / and an edge e0 D xy … E.T /. However, the edges belonging
to T produce an x � x circuit of the same length and so we obtain an x � y trail
whose length equals jE.T /j C 1 by adding the edge e0. Since this is impossible, T

must be an Eulerian circuit and G is Eulerian. ut

An important corollary of Theorem 1.3 is the following.

Theorem 1.4. A nontrivial connected graph G is traversable if and only if G

contains exactly two odd vertices. Any Eulerian trail in G then begins at one of
these odd vertices and terminates at the other.

Proof. If G contains an Eulerian u�v trail, then clearly u and v have odd degree and
all other vertices have even degree. For the converse, suppose that G is a connected
graph in which only the vertices u and v have odd degree. Let H be the graph
obtained by adding a new vertex w to G along with the edges uw and vw. Then H

is a connected graph all vertices of which have even degree. Thus H is Eulerian
by Theorem 1.3 and so contains an Eulerian circuit C in which uw and vw are
consecutive edges on C . Deleting w from C produces a u � v (or v � u) Eulerian
trail in G and so G is traversable. ut

Both Theorems 1.3 and 1.4 hold for multigraphs as well. Applying these to the
multigraph of Fig. 1.3 modeling the four land areas of Königsberg and its seven
bridges, we have a solution to the Königsberg Bridge Problem – there is no journey
(round trip or otherwise) about Königsberg that crosses each bridge exactly once!

Another characterization of Eulerian graphs is due to the American mathemati-
cian Oswald Veblen, one of the early contributors to the field of topology. Veblen
helped organize the Institute for Advanced Study in Princeton in 1932 and became
the first professor at the Institute. In 1922 Veblen wrote his most influential book,
Analysis Situs [70], which was what topology was called at that time. This book
contained the first systematic coverage of the main principles of topology and
contributed to the development of modern topology. While the first book on graph
theory was written by Dénes König and published in 1936 [46], Veblen’s “topology”
book contained some graph theory. Indeed, Chap. 1 of his book was titled Linear
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Graphs, a term used for graphs at one time. Veblen is also known for his proof of a
well-known 1905 theorem of geometry.

The Jordan Curve Theorem. Every simple closed curve in a plane divides the
plane into two disjoint regions, the inside and the outside.

There are some who believe that Veblen’s proof may have been the first rigorous
proof of this theorem named for Camille Jordan. Veblen also gave a characterization
of Eulerian graphs.

Theorem 1.5 (Veblen’s Theorem). [69] A nontrivial connected graph G is Eule-
rian if and only if G has a decomposition into cycles.

Proof. Assume that G has a decomposition D into cycles. Since G is connected,
every vertex belongs to one or more cycles in D and so its degree is even. Therefore,
G is Eulerian.

We now verify the converse, namely that every Eulerian graph has a decomposi-
tion into cycles. We proceed by induction on the size m � 3 of an Eulerian graph.
If m D 3, then K3 is the only Eulerian graph of size 3 and is trivially decomposed
into a single cycle. For an integer m � 4, assume that every Eulerian graph of size
less than m has a decomposition into cycles. Let G be an Eulerian graph of size m.
Then G contains a cycle C . If G D C , then G has a trivial cycle decomposition.
Otherwise, let H be the graph obtained by deleting edges belonging to C from
G. Since the vertices in H are still even, each nontrivial component of H is an
Eulerian graph of size less than m and so has a decomposition into cycles. These
cycles together with C then produces a cycle decomposition of G. ut

The graph theorist Sabidussi made a conjecture related to Veblen’s theorem.

Sabidussi’s Conjecture ([34]). Let G be an Eulerian graph without vertices of
degree 2. For each Eulerian circuit C of G, there exists a cycle decomposition D of
G such that every two consecutive edges of C belong to distinct cycles in D .

When it comes to cycle decompositions, the Eulerian graphs that have received
the most attention are the complete graphs of odd order and, to a lesser degree,
the complete graphs of even order from which the edges of a 1-factor have been
removed (that is, those graphs of even order of the form K2;2;:::;2). In 1847, the
famous mathematician Reverend Thomas Penyngton Kirkman [45] proved that the
complete graph of odd order n � 3 can be decomposed into 3-cycles if and only if
its size

�
n
2

�
is divisible by 3. At the other extreme, in 1890 Walecki (see [2]) proved

that the complete graph of odd order n � 3 can always be decomposed into n-
cycles. Consequently, when n � 3 is an odd integer, the complete graph Kn can be
decomposed into m-cycles for m 2 f3; ng if and only if m j �n

2

�
. In fact, Alspach

and Jordon [3] proved in 2001 for every pair n; m of odd integers with 3 � m � n
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that Kn can be decomposed into m-cycles if and only if m j �n
2

�
. In addition, they

proved for every even integer n � 4 and odd integer m with 3 � m < n that
the complete .n=2/-partite graph K2;2;:::;2 can be decomposed into m-cycles if and
only if m divides its size n.n � 2/=2. In 2002 Šajna [60] proved the corresponding
results for even integers m. These results verify special cases of a conjecture made
by Alspach [1] in 1981.

Alspach’s Conjecture. Suppose that n � 3 is an odd integer and that
m1; m2; : : : ; mk are integers such that 3 � mi � n for each i .1 � i � k/

and m1 C m2 C � � � C mk D
�

n
2

�
. Then the complete graph of order n can be

decomposed into the cycles Cm1; Cm2; : : : ; Cmk
. Furthermore, for every even integer

n � 4 and integers m1; m2; : : : ; mk such that 3 � mi � n for each i .1 � i � k/

with m1Cm2C � � � Cmk D .n2 � 2n/=2, there is a decomposition of the complete
.n=2/-partite graph K2;2;:::;2 into the cycles Cm1; Cm2; : : : ; Cmk

.

Alspach’s Conjecture was verified in its entirety by Bryant, Horsley, and
Pettersson [14] in 2012. A conjecture involving cycle decompositions, introduced
in [25], suggests a problem of determining a lower bound on the minimum degree
of Eulerian graphs for which the conjecture holds. Mariusz Meszka (personal
communication) showed that the following conjecture need not hold for graphs with
small minimum degree.

The Eulerian Cycle Decomposition Conjecture (ECDC). Let G be an Eulerian
graph of size m, where a is the minimum number of odd cycles in a cycle
decomposition of G and c is the maximum number of odd cycles in a cycle
decomposition of G. For every integer b satisfying a � b � c and b � m .mod 2/,
there exists a cycle decomposition of G containing exactly b odd cycles.

In the case of the complete graphs of odd order or complete graphs of even order
in which a perfect matching has been removed, the maximum number of odd cycles
in a cycle decomposition of each such graph is given below. This follows from
results of Kirkman [45], Guy [38], and Heinrich, Horák, and Rosa [40].

Theorem 1.6. (a) For an odd integer n � 3, the maximum number s of odd cycles
in a cycle decomposition of the complete graph of order n is

s D
�

n.n � 1/=6 if n � 1; 3 .mod 6/

bn.n � 1/=6c � 1 if n � 5 .mod 6/.

(b) For an even integer n � 4, the maximum number s of odd cycles in a cycle
decomposition of the complete .n=2/-partite graph K2;2;:::;2 is

s D
�

n.n � 2/=6 if n � 0; 2 .mod 6/

bn.n � 2/=6c � 1 if n � 4 .mod 6/.
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Fig. 1.4 Cycle
decompositions of C 2

5 and C 2
6

For nontrivial complete graphs of odd order and graphs K2;2;:::;2 of even order
greater than 2, the ECDC is then a special case of Alspach’s Conjecture and
therefore is satisfied for these two classes of graphs.

For a connected graph G and a positive integer k, the k-th power Gk of G is that
graph with V.Gk/ D V.G/ and E.Gk/ D fuv W 1 � dG.u; v/ � kg. The graphs G2

and G3 are called the square and cube, respectively, of G.
In a cycle decomposition of an Eulerian graph G, the number of odd cycles in

the decomposition and the size of G are of the same parity. One class of Eulerian
graphs are the squares C 2

n of cycles Cn where n � 5. Let C 2
n be constructed from

Cn D .v1; v2; : : : ; vn; v1/. If n is odd, then the edges in C 2
n not belonging to Cn form

another n-cycle, namely .v1; v3; : : : ; vn; v2; v4; : : : ; vn�1; v1/. Similarly, when n is
even, C 2

n consists of the two edge-disjoint n-cycles .v1; v2; : : : ; vn�2; vn; vn�1; v1/

and .v1; v3; : : : ; vn�3; vn�1; vn�2; vn�4; : : : ; v4; v2; vn; v1/. Thus, C 2
n has a cycle

decomposition into two n-cycles for each n � 5.
It is convenient to introduce some notation at this point. If a graph G is

decomposed into a1 copies of Cn1 , a2 copies of Cn2 , and a3 copies of Cn3 , for
example, then we write this decomposition as G D a1Cn1 [ a2Cn2 [ a3Cn3 . For
example, the above observation shows that C 2

n always has a decomposition 2Cn

for n � 5. Of course, this is not the only cycle decomposition of C 2
n . The graph

C 2
5 has two cycle decompositions, namely 2C5 and 2C3 [ C4. Thus, every cycle

decomposition of C 2
5 has exactly two odd cycles. For C 2

6 , there are five cycle
decompositions; namely 3C4 and 2C6 (no odd cycle), 2C3[C6 and C3[C4[C5 (two
odd cycles), and 4C3 (four odd cycles). See Fig. 1.4 for these cycle decompositions
of C 2

5 and C 2
6 . Note that this is a consequence of Alspach’s Conjecture since

C 2
5 D K5 and C 2

6 D K2;2;2. In general, we have the following.

Theorem 1.7. For an integer n � 6, the minimum number of odd cycles in a
cycle decomposition of C 2

n is 0 and the maximum number of odd cycles in a cycle
decomposition of C 2

n is 2d.nC 2/=4e.

Proof. Let G D C 2
n , where Cn D .v1; v2; : : : ; vn; v1/. We first show that G has a

cycle decomposition in which each cycle is even. Although this holds when n is
even by our earlier observation that G can be decomposed into 2Cn, we will show
here that G has a cycle decomposition into three even cycles 2C2dn=4e[C2.n�2dn=4e/

regardless of the parity of n. Consider the subgraphs G1 and G2 of G given by
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Fig. 1.5 Decomposing C 2
n

into three even cycles

G1 D

8
ˆ̂
<

ˆ̂:

.v1; v3; v5; : : : ; vn�1; v1/

.v1; v3; v5; : : : ; vn�2; vn�1; vn; v1/

.v1; v3; v5; : : : ; vn�3; vn�2; vn; v1/

.v1; v3; v5; : : : ; vn; v1/

if n � 0 .mod 4/

if n � 1 .mod 4/

if n � 2 .mod 4/

if n � 3 .mod 4/

G2 D

8
ˆ̂<

ˆ̂:

.v2; v4; v6; : : : ; vn; v2/

.v2; v4; v6; : : : ; vn�5; vn�4; vn�3; vn�2; vn; v2/

.v2; v4; v6; : : : ; vn�2; vn�1; vn; v2/

.v2; v4; v6; : : : ; vn�1; vn; v2/

if n � 0 .mod 4/

if n � 1 .mod 4/

if n � 2 .mod 4/

if n � 3 .mod 4/.

Observe that G1 and G2 are edge-disjoint copies of C2dn=4e. Furthermore, there is a
cycle decomposition G D G1 [ G2 [ G3. The third cycle G3 is also even since its
size equals jE.G/j � .jE.G1/j C jE.G2/j/ D 2.n � jE.G1/j/. (Figure 1.5 shows a
cycle decomposition of C 2

n into 2C8 and another even cycle for 13 � n � 16.)
Next, for a given cycle decomposition D of G D C 2

n , let si .D/ be the number
of odd cycles C in D such that jE.C / \ E.Cn/j D i . Thus, the number of odd
cycles in D equals

P
i�0 si .D/, which we denote by s.D/. Note that s0.D/ D 0 if

n � 0 .mod 4/, s0.D/ � 2 if n � 2 .mod 4/, and s0.D/ � 1 if n is odd. Also,P
i�2 si .D/ � bn=2c. We now consider two cases according to the parity of n.

Case 1. n is even. For i D 1; 2, let Gi D .vi ; viC2; viC4; : : : ; viCn�2; vi /. Then we
have a cycle decomposition D1 of G given by G D G1 [ .n=2/C3. Since G1 (as
well as G2) is an .n=2/-cycle, it follows that s.D1/ equals n=2 and n=2C 1 if n �
0 .mod 4/ and n � 2 .mod 4/, respectively. In other words, s.D1/ D 2b.nC 2/=4c.

Now we show that s1.D/ D 0 for an arbitrary cycle decomposition D of G. To
see this, consider the graph obtained from G by deleting any n � 1 of the n edges
belonging to Cn. The resulting graph consists of G1 and G2 joined by a bridge.
Therefore, there is no cycle (odd or even) containing exactly one edge in Cn, which
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verifies the claim. Thus, s.D/ � n=2 if n � 0 .mod 4/. For the case n � 2 .mod 4/,
we see that s0.D/ D 2 if and only if both G1 and G2 are contained in D . However
then, D is given by G D 2Cn=2 [ Cn and so s.D/ D 2 < n=2 C 1. Therefore,
s.D/ � n=2 C 1 for every cycle decomposition D . The result now follows. (In
addition, s.D/ D 2b.nC 2/=4c if and only if D is given by G D .n=2/C3 [ Cn.)

Case 2. n is odd. Let G3 D .v1; v3; : : : ; vn�2; vn; v2; v1/. Then we obtain a cycle
decomposition D2 of G given by G D G3 [ bn=2cC3. Since G3 is an .dn=2e C 1/-
cycle, it follows that s.D2/ equals bn=2c if n � 1 .mod 4/ and dn=2e if n �
3 .mod 4/. Therefore, s.D2/ D 2b.nC 2/=4c.

Observe that C is a cycle in G satisfying E.C / \ E.Cn/ D ; if and only if
C D .v1; v3; : : : ; vn�2; vn; v2; v4; : : : ; vn�3; vn�1; v1/, a Hamiltonian cycle in G. If
D is a cycle decomposition of G with s0.D/ � 1, then D contains C and G is
decomposed as G D 2Cn and so s.D/ D 2 < 2b.nC 2/=4c. Hence, we next
consider cycle decompositions D of G for which s0.D/ D 0. Suppose that C 0 is an
odd cycle in G such that jE.C 0/ \E.Cn/j D 1.

Subcase 2.1. n � 3 .mod 4/. Then we may assume, without loss of generality, that
C 0 D G3. Furthermore, one sees that no cycle decomposition can contain more than
one such odd cycle. Thus, every cycle decomposition D of G satisfies s1.D/ � 1

and so s.D/ � bn=2c C 1 D dn=2e. (Hence, s.D/ D dn=2e if and only if D is
given by G D bn=2cC3 [ Cdn=2eC1.)

Subcase 2.2. n � 1 .mod 4/. Then we may assume that C 0 D .v1; v2; v4;

v6; : : : ; vn�1; v1/, which is an dn=2e-cycle. If a cycle decomposition D containing
C 0 has another such odd cycle C 00, then we may again assume that C 00 D
.v1; v3; v5; : : : ; vn; v1/. However then, D is given by G D 2Cdn=2e[Cn�1. Therefore,
if s1.D/ � 2, then s1.D/ D s.D/ D 2. This allows us to assume that s1.D/ � 1. If
s1.D/ D 1, say D contains C 0, then there are 3bn=2cC1 edges not belonging to C 0,
four of which (namely the ones incident with v1 or v2) cannot belong to a triangle in
D . This implies that

P
i�2 s.D/ � bn=2c�1 and we obtain s.D/ � bn=2c. (In this

case, s.D/ D bn=2c if and only if D is given by either G D bn=2cC3[Cdn=2eC1 or
G D .bn=2c � 1/ C3 [ C4 [ Cdn=2e.) ut

In general, if n � 5 is odd, then C 2
n D 2Cn; if n � 2 .mod 4/, then C 2

n D
2Cn=2 [Cn; while if n � 0 .mod 4/, then C 2

n D Cn=2 [Cn=2C1 [Cn�1. Therefore,
C 2

n has a cycle decomposition with exactly two odd cycles for each integer n � 5.
Similarly, C 2

7 D 3C3 [ C5 while for every n � 6 .n ¤ 7/ the graph C 2
n has a cycle

decomposition into four triangles and even cycles; so C 2
n has a cycle decomposition

with exactly four odd cycles for n � 6. In [25], the ECDC was verified for Eulerian
complete 3-partite graphs and Eulerian k-th powers of cycles for k D 2; 3; 4. For an
odd integer n � 3, we have C

bn=2c
n D Kn. Therefore, the maximum number of odd

cycles in a cycle decomposition of C k
n is known for k 2 f1; 2; 3; 4; dn=2e � 1g. For
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an even integer n � 4, we have C
n=2�1
n D K2;2;:::;2 (and C

n=2
n D Kn). Therefore,

the maximum number of odd cycles in a cycle decomposition of C k
n is known for

k 2 f1; 2; 3; 4; dn=2e � 1g in this case as well. Furthermore, the ECDC is true for
each of these graphs as well as many other complete multipartite graphs.

We have now seen a characterization of Eulerian graphs as those connected
graphs in which every vertex is incident with an even number of edges as well
as those connected graphs having a decomposition into cycles. Another characteri-
zation of Eulerian graphs that concerns both parity and cycles, jointly due to Toida
[64] and McKee [51], is stated next. The necessity is due to Toida and the sufficiency
to McKee.

Theorem 1.8. A nontrivial connected graph G is Eulerian if and only if every edge
of G lies on an odd number of cycles in G.

Proof. Suppose first that e D uv is an edge in an Eulerian graph G. Since e is not
a bridge, G � e contains u � v trails. Let us consider the set S of those u � v
trails in which v appears exactly once. When constructing a trail T 2 S with initial
vertex u, there is an odd number of choices for the first edge e1 of T . Once e1

has been selected, there is again an odd number of choices for the next edge of
T . This procedure is continued until the trail arrives at v and T is obtained. As a
consequence, jS j is odd.

While every u � v path in G � e is contained in S , there may be some trails
in S that are not paths. Let S 0 be the subset of S containing those trails that are
not paths. If T 2 S 0, one can write T D .u D v0; v1; v2; : : : ; v` D v/, where
` D L.T / and vi1 D vi2 for some integers i1; i2 satisfying 2 � i1 C 2 � i2 �
` � 1. Thus, T contains a circuit C D .vi1 ; vi1C1; vi1C2; : : : ; vi2 D vi1 /. Then there
is a corresponding trail T 0 obtained from T by replacing C by the circuit .vi1 D
vi2 ; vi2�1; vi2�2; : : : ; vi1 /. Since T 0 also belongs to S 0, it follows that the trails in S 0
occur in pairs, that is, jS 0j is even. Therefore, the number of u � v paths in G � e,
which equals the number of cycles containing e in G, must be odd.

We now verify the converse. Let G be a nontrivial connected graph in
which every edge lies on an odd number of cycles in G. For each vertex v, let
fe1; e2; : : : ; edeg vg be the set of edges incident with v. If si denotes the number of
cycles in G containing the edge ei for 1 � i � deg v, then

Pdeg v
iD1 si must be even,

since it counts each cycle containing v twice. It follows that deg v is even since each
si is odd. Therefore, G is Eulerian. ut

We have mentioned that every Eulerian graph has a cycle decomposition. Indeed,
by Theorem 1.5, Eulerian graphs are characterized as those connected graphs
possessing a cycle decomposition. Two cycle decompositions of a labeled Eulerian
graph G are considered different if these two decompositions do not consist of
exactly the same cycles. For example, while we have seen that the complete graph
of order 5 has two cycle decompositions 2C5 and 2C3 [ C4, when the vertices are
labeled, there are actually 21 distinct cycle decompositions as shown in Fig. 1.6.
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Fig. 1.6 The 21 cycle
decompositions of the
labeled K5

Bondy and Halberstam [13] found a more specialized characterization of Eule-
rian graphs into cycle decompositions. One of its consequences is that there is no
labeled graph having an even number of cycle decompositions unless the graph has
no cycle decomposition at all.

Theorem 1.9. A labeled connected graph G is Eulerian if and only if G has an odd
number of cycle decompositions.

Proof. If G has an odd number of cycle decompositions, then G has at least one
cycle decomposition and so G is Eulerian by Theorem 1.5.

We verify the converse by induction on the size m � 3 of Eulerian graphs. For
m D 3, the result is immediate as K3 is the only Eulerian graph of size 3, which
clearly has exactly one cycle decomposition. For an integer m � 4, assume that all
Eulerian graphs of size less than m have an odd number of cycle decompositions.
Let G be an Eulerian graph of size m. If G is an m-cycle, then G has exactly one
cycle decomposition. Thus, assume that G is not a cycle.

Let e 2 E.G/ and suppose that C is a cycle containing e. We now consider
the number s of cycle decompositions of the graph H obtained from G by deleting
the edges belonging to C . Certainly every nontrivial component of H is Eulerian.
Thus, if H is connected, then s is odd by the induction hypothesis. Otherwise,
suppose that H1; H2; : : : ; Hk are the nontrivial components of H and they have
s1; s2; : : : ; sk respective cycle decompositions. Since each si is odd again by the
induction hypothesis, so is s D Qk

iD1 si . Each cycle decomposition of H together
with C results in a cycle decomposition of G and we have shown that there are
s of them, where s is odd. Since the number of cycles containing e is odd by
Theorem 1.8, it follows that the total number

P
s of cycle decompositions of G

is also odd. ut
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Table 1.1 The values of
f1.G/ and f2.G/

G C4 C5 K2;3 K1;1;2

f1.G/ 5 6 19 14

f2.G/ 15 31 54 24

Vector Spaces Associated with a Graph

Eulerian graphs have another interesting property in terms of the number of certain
subgraphs they contain. For a connected graph G, observe that H is a connected
spanning subgraph of G if and only if there exists a spanning tree T of G such that
T � H ; while H is an acyclic subgraph of G if and only if there exists a spanning
tree T of G such that H � T . Suppose, for G, that we define fi .i D 1; 2/ by

f1.G/ D the number of connected spanning subgraphs of G

f2.G/ D the number of acyclic subgraphs of G.

For example, let us consider the four graphs C4, C5, K2;3, and K1;1;2. The values of
fi .i D 1; 2/ for these graphs are summarized in Table 1.1. For these four graphs,
we see that f1.G/ is odd if and only if G is bipartite and f2.G/ is odd if and only if
G is Eulerian, which is in fact the case for connected graphs in general.

For two arbitrary sets X and Y , the symmetric difference X4Y of X and Y is
defined by X4Y D .X [ Y /n.X \ Y /: Observe that (i) X4Y D Y4X , (ii)
X4X D ;, (iii) X4; D ;4X D X . Also,

jX \ .Y4Z/j � jX \ Y j C jX \Zj .mod 2/ (1.3)

for any three sets X; Y; Z since jX\.Y4Z/j D jX\Y jCjX\Zj�2jX\Y \Zj.
The facts (i)–(iii) imply that the power set PA of an arbitrary set A together

with the binary operation4 is an abelian group in which ; is the identity and every
element is its own inverse. In fact, this is a vector space over the field F2 D f0; 1g.
When A is finite, dim PA D jAj.

Suppose that A is a finite set and consider a subspace W of PA. Then the number
of elements in W equals 2dim W . If we define

W0 D fX � A W jX \ Y j � 0 .mod 2/ for all Y 2 W g;
then W0 is another subspace of PA by (1.3) and contains 2dim W0 elements. Note that
W \W0 may or may not be trivial and dim W C dim W0 � dim PA in general.

The following result by Shank [62] is stated and verified in a slightly different
way here.

Theorem 1.10. For a finite set A, let W be a subspace of PA. The number of
subsets of A that meet every nonempty element in W0 is odd if and only if A 2 W0

.that is, the cardinality of each set in W is even/.
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Proof. Let

U D fX 2PA W X \ Y ¤ ; for all Y 2 W0nf;gg
V D f.X; Y / 2PA �W0 W X \ Y D ;g:

Let X be a fixed subset of A. Then W0;X D fY 2 W0 W Y \X D ;g is a subspace
of W0. Thus, jW0;X j � 1 .mod 2/ if and only if X 2 U and so

jV j D
X

X2PA

jW0;X j � jU j .mod 2/: (1.4)

On the other hand, jPAnX j D 2jAj�jX j � 1 and jPAnX j � 1 .mod 2/ if and only if
X D A, which implies that

jV j D
X

X2W0

jPAnX j �
�

0 .mod 2/ if A … W0

1 .mod 2/ if A 2 W0.
(1.5)

By (1.4) and (1.5), therefore, jU j is odd if and only if A 2 W0. ut

For a graph G, the power set E .G/ DPE.G/ of its edge set forms a vector space
(in which the addition of two vectors is their symmetric difference), called the edge
space of G.

The subspace C of E .G/ spanned by the subsets of E.G/ that induce cycles in
G is called the cycle space of G and its dimension equals jE.G/j � jV.G/jC 1. For
example, by selecting a fixed spanning tree T of G, each of the jE.G/j�jV.G/jC1

edges not contained in T produces a cycle in G. The edge sets of these cycles form
a basis of C (called a cycle basis). Observe that X 2 C if and only if the subgraph
induced by X is even.

For a connected graph G, a set X � E.G/ is an edge-cut of G if G � X is
disconnected. If X is an edge-cut of G, then so is Y whenever Y satisfies X �
Y � E.G/. If X is an edge-cut of G while no proper subset of X is, then X is
called a minimal edge-cut of G. When X is a minimal edge-cut of G, the graph
G�X consists of exactly two components. Every edge-cut of G contains a minimal
edge-cut of G as a subset.

Lemma 1.1. For a nontrivial connected graph G with the cycle space C , every
nonempty element of C0 is an edge-cut of G inducing a bipartite subgraph. In
particular, every minimal edge-cut of G belongs to C0.

Proof. Suppose that X is a nonempty subset of E.G/. First, if GŒX� contains a
cycle C , then E.C / 2 C and jX \ E.C /j D jE.C /j. Thus, if X 2 C0, then GŒX�

cannot contain odd cycles. Next, if G � X is connected, then let uv be an edge in
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X . Then G � X contains a u � v path P and so P C uv is a cycle in G containing
exactly one edge of X . Since E.P C uv/ 2 C , it follows that X … C0.

Let X be a minimal edge-cut of G. Then jX\E.C /j is even (and jX\E.C /j D 0

if and only if C is entirely contained in one of the two components in G � X ) for
each cycle C in G. For each nonempty Y 2 C , every component of GŒY � has a
cycle decomposition by Theorem 1.5, which then implies that jX \ Y j is even. ut

A cut is a partition of V.G/ into two nonempty subsets, say V1 and V2. The set
of all edges joining a vertex in V1 and a vertex in V2 is called a cocycle. Hence,
X is a cocycle if and only if X induces a bipartite subgraph. In particular, every
element in C0 is a cocycle by Lemma 1.1. Suppose that V.G/ D fv1; v2; : : : ; vng
and let Xi be the set of edges incident with vi for 1 � i � n. If fV1; V2g is a cut,
then observe that4vi 2V1Xi D 4vi 2V2Xi is the corresponding cocycle, that is, the set
consisting of all cocycles of G is the subspace of E .G/ spanned by X1; X2; : : : ; Xn,
which is called the cocycle space D . Since every element in C0 is a cocycle while
each Xi is a minimal edge-cut, Lemma 1.1 implies that C0 and the cocycle space
coincide. Note that there are 1

2

Pn�1
iD1

�
n
i

� D 2n�1 � 1 cuts. When G is connected,
there is a one-to-one correspondence between the cuts and nonempty cocycles and
so dim C0 D n � 1. In other words, dim E .G/ D jE.G/j D dim C C dim C0:

For a nontrivial connected graph G, observe that G is Eulerian if and only if
E.G/ 2 C ; while G is bipartite if and only if E.G/ 2 C0. If E is a subset of E.G/,
then E\X ¤ ; for every X 2 C nf;g if and only if GŒE.G/nE� is acyclic. In other
words, the number of subsets E such that E \X ¤ ; for every X 2 C nf;g equals
the number of acyclic subgraphs of G. Also, E \ X ¤ ; for every X 2 C0nf;g if
and only if GŒE� is a connected spanning subgraph of G. Hence, Theorem 1.10 has
the following as a consequence.

Theorem 1.11. Let G be a nontrivial connected graph.
(a) The number of subsets E of E.G/ such that GŒE� is contained in a spanning

tree of G is odd if and only if G is Eulerian.
(b) The number of subsets E of E.G/ such that GŒE� contains a spanning tree of

G is odd if and only if G is bipartite.

Combining Theorems 1.3, 1.8, 1.9, and 1.11(a), we obtain a few equivalent
statements.

Theorem 1.12. For a nontrivial connected graph G, the following are
equivalent:
(a) The graph G is Eulerian.
(b) The graph G is even.
(c) Every edge of G belongs to an odd number of cycles.
(d) The graph G has an odd number of cycle decompositions.
(e) The graph G has an odd number of acyclic subgraphs.
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Directed Eulerian Graphs

A directed circuit C in a connected digraph D is an Eulerian circuit if C contains
every arc of D exactly once. A digraph is Eulerian if it contains an Eulerian circuit.
The proof of the following characterization of Eulerian digraphs is essentially that
of the proof of Theorem 1.3.

Theorem 1.13. A connected digraph D is Eulerian if and only if od v D id v for
every vertex v of D.

A characterization of Eulerian graphs can then be given in terms of orientations
of these graphs.

Theorem 1.14. A connected graph G is Eulerian if and only if there is an Eulerian
orientation of G.

Proof. If G is an Eulerian graph of size m, then it has an Eulerian circuit .v1, v2,
: : : ; vm, vmC1 D v1/. Replacing the edge vi viC1 by the arc .vi ; viC1/ for 1 � i �
m produces an Eulerian orientation of G. For the converse, let D be an Eulerian
orientation of a connected graph G. For every vertex v 2 V.G/ D V.D/, we have
odD v D idD v by Theorem 1.13, which then implies that degG v D odD vC idD v is
even. Thus, G is Eulerian. ut

There is a formula for the number of distinct Eulerian circuits in an Eulerian
digraph. The theorem giving this result is called the BEST Theorem, obtained by two
pairs of authors. This theorem is named for the initials of these four mathematicians.
One pair of researchers is Nicolaas de Bruijn and Tatyana Pavlovna van Aardenne-
Ehrenfest [68]. The famous combinatorial concept of de Bruijn sequences was
named for the Dutch mathematician de Bruijn. The father of van Aardenne-
Ehrenfest was the famous physicist Paul Ehrenfest. The well-known physicist Albert
Einstein was often a houseguest of the family. The other pair of mathematicians is
Cedric Smith and William Tutte [67]. Smith was known for his research in genetic
statistics, while Tutte was one of the great graph theorists of all time.

In order to state the BEST Theorem, it is necessary to define a matrix M

associated with a digraph D and some related results. Suppose that V.D/ D
fv1; v2; : : : ; vng. The adjacency matrix A D Œaij � of D is the n � n matrix defined
by aij D 1 if .vi ; vj / is an arc of D and aij D 0 otherwise. The outdegree matrix
B D Œbij � of D is the n � n diagonal matrix for which bii D od vi and bij D 0

if i ¤ j . The matrix M is defined by M D B � A. For 1 � i; j � n, the .i; j /-
cofactor of M is .�1/iCj det.Mij /, where Mij is the .n� 1/� .n� 1/ submatrix of
M obtained by deleting row i and column j of M and det.Mij / is the determinant
of Mij . Thus, the sum of the n entries in each row equals 0. For each i .1 � i � n/,
it is known that the values of the .i; j /-cofactors of M are the same fixed constant.
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Lemma 1.2. If X is a square matrix with the sum of the entries of each row being
zero, then the .i1; j1/- and .i2; j2/-cofactors of X are equal whenever i1 D i2.

Proof. For an n � n matrix X , let �!ci be the column i vector of X . Suppose that i ,
j1, and j2 are integers satisfying 1 � i; j1; j2 � n and j1 ¤ j2. Let Y be the n � n

matrix obtained from X by replacing �!cj2 by ��!cj1 . Thus,

det.Yij1/ D .�1/j1Cj2 det.Yij2/ D .�1/j1Cj2 det.Xij2/: (1.6)

Now column j2 of Y equals ��!cj1 , which is the sum of the columns of X except�!cj1 . Since adding a column to another does not alter the determinant, it follows
that det.Xij1/ D det.Yij1/: Thus, together with (1.6), we obtain det.Xij1/ D
.�1/j1Cj2 det.Xij2/: ut

For a nontrivial tree T and a vertex v 2 V.T /, the in-tree Tv rooted at v is the
orientation of T such that there exists a directed u � v path for every u 2 V.T /. In
terms of out-degree, therefore, the directed tree Tv has the property that

od u D
�

0 if u D v
1 if u ¤ v.

The following is due to Tutte [66], which determines the number of spanning
in-trees of a digraph rooted at a specified vertex.

Theorem 1.15 (Directed Matrix Tree Theorem). Let D be a loopless digraph
with V.D/ D fv1; v2; : : : ; vng. Then the number of spanning in-trees of D rooted at
vi equals the .i; i/-cofactor of M .

For example, let D be the digraph shown in Fig. 1.7. The matrix M for this
digraph is:

M D

2

6
666666
4

1 0 0 0 0 0 �1

0 1 �1 0 0 0 0

0 0 2 �1 0 0 �1

0 0 �1 2 �1 0 0

0 0 0 0 2 �1 �1

�1 0 0 0 �1 2 0

0 �1 0 �1 0 �1 3

3

7
777777
5

Since D is Eulerian, the out-degree and in-degree of each vertex are equal, which
results in zero column sum as well as zero row sum in M . Thus, every two cofactors
of M are equal by Lemma 1.2. This common cofactor is 9 and the nine spanning
in-trees of D rooted at v1 are shown in Fig. 1.8 (with v1 colored red).

Choose one of these in-trees, say the tree T � in Fig. 1.9, where its edges are
colored red. For each vertex vi , let si be an ordering of the di vertices adjacent from
vi in D such that if vi ¤ v1, then u is the last vertex in si if .vi ; u/ belongs to T �.
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Fig. 1.7 An Eulerian
digraph D

Fig. 1.8 The nine spanning
in-trees of D rooted at v1

Then beginning at v1, one can construct a unique Eulerian circuit in D by selecting
available vertices at each step as the predetermined orderings suggest. For example,
the orderings

s1 W v7 s4 W v3; v5 s6 W v5; v1

s2 W v3 s5 W v7; v6 s7 W v2; v6; v4

s3 W v7; v4

give rise to the Eulerian circuit

.v1; v7; v2; v3; v7; v6; v5; v7; v4; v3; v4; v5; v6; v1/: (1.7)

By letting s0
i D si for 1 � i � 6 and s0

7 W v6; v2; v4, we obtain another Eulerian
circuit

.v1; v7; v6; v5; v7; v2; v3; v7; v4; v3; v4; v5; v6; v1/;

which is distinct from (1.7). The key observation here is that the number of distinct
Eulerian circuits generated by each in-tree in this manner equals the number of
distinct n orderings s1; s2; : : : ; sn, which is exactly

Qn
iD1.di � 1/Š; where di D

od vi D id vi for 1 � i � n.

Theorem 1.16 (The BEST Theorem). Let D be an Eulerian digraph of order n

with V.D/ D fv1; v2; : : : ; vng, where od vi D id vi D di and c is the common
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Fig. 1.9 A spanning in-tree
T � of D rooted at v1

Fig. 1.10 Eulerian digraphs
D1 and D2

cofactor of the matrix M . Then the number of distinct Eulerian circuits in D is
given by c

Qn
iD1.di � 1/Š:

Therefore, the digraph D in Fig. 1.7 contains 9
Q7

iD1.di � 1/Š D 18 distinct
Eulerian circuits.

Another Eulerian digraph D1 is shown in Fig. 1.10. As this example shows, it is
possible that there is more than one arc from a vertex to another. (The two arcs from
v2 to v3 in D1 are colored red.) In this case, consider the digraph D2 corresponding
to D1, also shown in Fig. 1.10. One can verify that D2 has exactly four distinct
Eulerian circuits, from which one can conclude that so does D1.

More generally, Theorem 1.16 can be applied to every Eulerian digraph (where
multiple arcs and loops are allowed) if the adjacency matrix A is replaced by the
square matrix A0 of the same size whose .i; j /-entry equals the number of arcs from
vi to vj . For D1, we have

M D B � A0 D

2

6
4

1 �1 0 0

0 3 �2 �1

�1 �1 2 0

0 �1 0 1

3

7
5:

The cofactor of M is 2 and there are 2
Q4

iD1.di � 1/Š D 4 distinct Eulerian circuits,
as observed earlier.
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1.3 Graphs with Odd Vertices

We saw in Theorem 1.4 that traversable graphs are precisely those graphs that
are connected and contain exactly two odd vertices. Just as Theorem 1.14 gives
a characterization of Eulerian graphs in terms of orientations, there is an analogous
characterization of traversable graphs.

A directed trail T in a connected digraph D is an Eulerian trail if T is an open
trail containing every arc of D exactly once. A characterization of digraphs having
Eulerian trails is stated below.

Theorem 1.17. A connected digraph D has an Eulerian trail if and only if D

contains two vertices u and v such that od u D id u C 1 and id v D od v C 1,
while od w D id w for all vertices w of D distinct from u and v. In this case, each
Eulerian trail of D is a u � v trail.

We now state the aforementioned characterization of traversable graphs.

Theorem 1.18. A connected graph G is traversable if and only if there is an
orientation of G that contains an Eulerian trail.

If a graph G has four or more odd vertices, then G contains neither an Eulerian
circuit nor an Eulerian trail, which again explains why there was no journey about
Königsberg that crossed each bridge exactly once. Even though these graphs contain
neither Eulerian circuits nor Eulerian trails, there are some interesting properties that
they possess.

Theorem 1.19. If G is a connected graph containing 2k � 2 odd vertices, then G

can be decomposed into k open trails but no fewer.

Proof. If G is decomposed into open trails, then the vertices that are neither initial
nor terminal vertices of any of these trails are even. It then follows that there is no
decomposition of G into fewer than k open trails, since there are 2k odd vertices.

Suppose that v1; v2; : : : ; v2k are the odd vertices of G. We construct a new graph
H from G by adding k new vertices in U D fu1; u2; : : : ; ukg and joining ui to both
vi and viCk for 1 � i � k. Then H contains an Eulerian circuit C . Deleting the k

vertices in U from C results in k pairwise edge-disjoint trails in G connecting pairs
of odd vertices and every edge of G lies on exactly one of these trails. ut

It is possible to have some conditions on the lengths of trails in the preceding
theorem. A trail T is called an even .odd/ trail if its length L.T / is even (odd). We
first present a lemma.

Lemma 1.3. Let Ti be a trail connecting ui and vi in a graph G for i D 1; 2,
where u1; u2; v1; v2 are four distinct vertices. If T1 and T2 are edge-disjoint and w
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Fig. 1.11 Illustrating
Lemma 1.3

is a vertex belonging to both trails, then there are a u1 � u2 trail T 0
1 and a v1 � v2

trail T 0
2 in G that are edge-disjoint such that w belongs to both T 0

1 and T 0
2 and

E.T1/ [ E.T2/ D E.T 0
1/ [ E.T 0

2/. Similarly, there are a u1 � v2 trail T 00
1 and a

v1 � u2 trail T 00
2 in G that are edge-disjoint such that w belongs to both T 00

1 and T 00
2

and E.T1/ [ E.T2/ D E.T 00
1 / [ E.T 00

2 /. In particular, if both T1 and T2 are odd
trails, then either both T 0

1 and T 0
2 are even trails or both T 00

1 and T 00
2 are even trails.

Although Lemma 1.3 is not surprising (see Fig. 1.11, where T1 is in black and T2

is in red), it will be useful when proving the following result, established in [4]. The
distance d.G1; G2/ between two subgraphs G1 and G2 in a connected graph G is
given by d.G1; G2; / D minfd.u; v/ W u 2 V.G1/; v 2 V.G2/g:

Theorem 1.20. Let G be a connected graph containing 2k .� 2/ odd vertices.
Among all decompositions of G into k open trails, let s be the maximum number of
such trails that are odd.
(a) If the size of G is even, then so is s and for every even integer s0 with 0 � s0 � s,

there exists a decomposition of G into k open trails, exactly s0 of which are odd
trails.

(b) If the size of G is odd, then so is s and for every odd integer s00 with 1 � s00 � s,
there exists a decomposition of G into k open trails, exactly s00 of which are odd
trails.

Proof. That jE.G/j � s .mod 2/ is immediate. We only verify (a) as the proof of (b)
is similar. Since the result is trivially true when s D 0, we assume that 2 � s � k. It
suffices to show that there is a decomposition of G into k open trails, exactly s � 2

of which are odd. Consider the decompositions of G into s odd open trails and k� s

even open trails. For each such decomposition D of G, let

f .D/ D minfd.T 0; T 00/ W T 0; T 00 2 D are distinct odd trails.g

and let D0 be among those decompositions such that f .D0/ is minimum. We claim
that f .D0/ D 0. Assume that D0 D fT1; T2; : : : ; Tkg, where each Ti .1 � i � s/ is
an odd trail. If f .D0/ > 0, then without loss of generality, let x 2 V.T1/ and y 2
V.T2/ such that f .D0/ D d.x; y/ D d.T1; T2/: Let .x D v0; v1; v2; : : : ; vd D y/ be
an x�y geodesic, where then d D d.x; y/. Since d.v1; y/ < f .D0/, the trail in D0

that contains the edge v0v1 must be even, say v0v1 2 E.TsC1/. Also, since the initial
and terminal vertices of the trails T1 and TsC1 are distinct, Lemma 1.3 guarantees
the existence of edge-disjoint trails T 0

1 and T 0
sC1, each connecting odd vertices of G,

such that E.T1/[E.TsC1/ D E.T 0
1/[E.T 0

sC1/. Furthermore, we may assume that
T 0

1 , say, is an odd trail and v0v1 2 E.T 0
1/, while T 0

sC1 is then an even trail. Replacing



26 1 Eulerian Walks

T1 and TsC1 in D0 by T 0
1 and T 0

sC1, we obtain a decomposition D1 of G into s odd
open trails and k � s even open trails, where f .D1/ � d.T 0

1; T2/ � d.v1; y/ <

f .D0/. This is a contradiction.
Thus, f .D0/ D 0 as claimed, that is, T1 and T2, say, share some common vertex.

By Lemma 1.3, therefore, we can find a decomposition D2 D fT 0
1; T 0

2; T3; : : : ; Tkg
of G into k open trails, where T 0

1 and T 0
2 are even trails. As a result, exactly s � 2

trails in D2 are odd trails. ut

The following 1973 result by Chartrand, Polimeni, and Stewart [21] is a
consequence of Theorem 1.20.

Theorem 1.21. If G is a connected graph containing 2k .� 2/ odd vertices, then
G can be decomposed into k open trails, at most one of which is an odd trail.

If G is a connected graph of even size with 2k .� 4/ odd vertices, then it may
not be possible to decompose G into k open trails where some of them have odd
length. Consider, for example, the star K1;2k . It can be shown that if G is a connected
bipartite graph of even size with four odd vertices, then G can be decomposed into
two odd open trails if and only if each partite set of G contains exactly two odd
vertices.

Problem 1.1. Suppose that G is a nontrivial connected graph of even size.
(a) If G contains exactly four odd vertices and G is not bipartite, then under what

conditions can G be decomposed into two odd open trails?
(b) If G contains 2k .� 2/ odd vertices, then under what conditions can G be

decomposed into open trails, at least two of which are odd trails?

The fact that a connected graph G containing 2k odd vertices .k � 1/ can be
decomposed into k open trails connecting pairs of odd vertices implies that G has
k pairwise edge-disjoint paths connecting pairs of odd vertices. We cannot always
specify which pairs have this property, however. Should G contain exactly four odd
vertices, every two pairs of these four odd vertices are connected by edge disjoint
paths.

Theorem 1.22. Suppose that G is a connected graph containing exactly four odd
vertices. If fu1; v1g and fu2; v2g are disjoint 2-subsets of the set of odd vertices of
G, then there exist paths P .i/ .i D 1; 2/ in G connecting ui and vi that are edge-
disjoint.

Proof. It suffices to show that there are a u1 � v1 trail and a u2 � v2 trail that
are edge-disjoint. By Theorem 1.19, the graph G can be decomposed into two
open trails T1 and T2, where say Ti is an xi � yi trail for i D 1; 2. Thus,
fu1; u2; v1; v2g D fx1; x2; y1; y2g is the set of odd vertices in G. Since the result
is immediate if fu1; v1g 2 ffx1; y1g; fx2; y2gg, we may assume, for example, that
fu1; v1g D fx1; y2g. Since G is connected, let z be a vertex belonging to both T1



1.4 The Chinese Postman Problem 27

Fig. 1.12 A graph
containing four odd vertices

and T2. For i D 1; 2, let T 0
i and T 00

i be an xi � z subtrail and z � yi subtrail
of Ti , respectively, such that E.T 0

i / \ E.T 00
i / D ;. Then T 0

1 followed by T 00
2 is

an x1 � y2 trail while T 0
2 followed by T 00

1 is an x2 � y1 trail and these trails are
edge-disjoint. ut

The graph G in Fig. 1.12 contains exactly four odd vertices. Paris of edge-disjoint
paths connecting the odd vertices are shown in bold black and red lines.

Theorem 1.22 does not necessarily hold if there are more than four odd vertices.
For example, suppose that a connected graph G contains a bridge e. Then the
number of odd vertices belonging to Vi must be odd for i D 1; 2, where fV1; V2g
is the partition of V.G/ such that each Vi induces a component in G � e. Thus, if
G has the property that for every four distinct odd vertices u1; u2; v1; v2 of G, there
are ui � vi paths P .i/ in G .i D 1; 2/ that are edge-disjoint, then one of the sets
V1 and V2 must contain exactly one odd vertex. However, this is not necessarily the
case if there are more than four odd vertices. Consider, for example, the double star
(a tree whose diameter equals 3) of order at least 6 in which each of the two central
vertices is adjacent to at least two end-vertices.

Problem 1.2. Let G be a connected graph containing 2k .� 6/ odd vertices. If G

contains a bridge e, then let fV1; V2g be the partition of V.G/ such that each Vi

induces a component in G � e. Furthermore, suppose that minfjVi \ Vodd j W i D
1; 2g D 1, where Vodd is the set of odd vertices in G. If ffu1; v1g; fu2; v2g; : : : ;

fuk; vkgg is a partition of Vodd , then is it possible to find ui � vi paths P .i/ .i D
1; 2; : : : ; k/ that are pairwise edge-disjoint? What if G contains no bridge?

1.4 The Chinese Postman Problem

In 1962 the Chinese mathematician Meigu Guan (often known as Mei-Ko Kwan)
introduced a problem that has a connection with Eulerian graphs.

Suppose that a postman starts from the post office and has mail to deliver to the
houses along each street of his mail route. Once he has completed delivering the
mail, he returns to the post office. The problem is to find the minimum length of a
round trip that accomplishes this. Alan Goldman coined a name for this problem by
which it is commonly known.
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The Chinese Postman Problem. Determine the minimum length of a round trip
that traverses every road in a mail route at least once.

The Chinese Postman Problem suggests a problem in graph theory. Let G be a
connected graph. What is the minimum length ` of a closed walk that contains every
edge of G at least once? Of course, if G is an Eulerian graph, then this minimum
length ` equals the size m of G. Suppose, on the other hand, that G is not Eulerian.
Then ` > m. Let H be the multigraph obtained from G by replacing each edge uv
of G by two parallel edges joining u and v. Then H is Eulerian and thus H contains
an Eulerian circuit which corresponds to a closed walk in G that encounters every
edge of G exactly twice. This observation was made by Euler in paragraph 18 of
his 1736 Königsberg paper and implies that every connected graph G of size m

has a closed walk that contains every edge of G at least once and at most twice.
In particular, the minimum length ` of a closed walk containing every edge of G

satisfies m � ` � 2m, at least. As we mentioned, ` D m if and only if G is
Eulerian. So we may assume that G contains 2k odd vertices where k � 1. There
are

.2k � 1/.2k � 3/.2k � 5/ � � � 3 � 1 D .2k � 1/Š

2k�1.k � 1/Š

ways to divide these 2k odd vertices into k pairs. For each of these k pairs fu; vg,
we compute d.u; v/ and sum these distances over all k pairs. We then compute this
number for all such sets of pairs. Suppose that the minimum of these numbers is d .
Then ` D m C d . If the k pairs that produce the number d are fu1; v1g, fu2; v2g,
: : : ; fuk; vkg, then

Pk
iD1 d.ui ; vi / D d . If P .i/ is a ui � vi geodesic in G, then these

paths P .i/ .1 � i � k/ are pairwise edge disjoint. If we were to replace each edge
uv that lies on any of these paths by two parallel edges joining u and v, then the
resulting multigraph H is Eulerian, which implies that there is a closed walk in G

that contains every edge twice that belongs to one of the paths P .i/ and contains
each of all other edges once.

As a consequence of the observation above, for every connected graph G, there
exists a closed walk containing every edge of G the same number of times. In fact,
there exists a closed walk containing every edge of G exactly k times if k is a
positive even integer. For a positive odd integer k, there is a closed walk containing
every edge of G exactly k times if and only if G is Eulerian. This brings up the
question of which connected graphs have a closed walk in which no two edges
appear on the walk the same number of times. For the purpose of this discussion, it
is useful to introduce some additional terminology.

A closed walk containing every edge of a connected graph at least once is called
an Eulerian walk. By a minimum Eulerian walk, we mean an Eulerian walk of
minimum length. Thus the length e.G/ of a minimum Eulerian walk in a connected
graph G of size m is at least m and at most 2m. Furthermore, this number is m if
and only if G is Eulerian and this number is 2m if and only if G is a tree. In order
to show that the length of a minimum Eulerian walk in a connected graph G of size
m is exactly 2m if and only if G is a tree, we state a theorem due to Kwan [48].
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Theorem 1.23 (Kwan’s Theorem). A minimum Eulerian walk W in a connected
graph G encounters no edge of G more than twice. Also, no more than half of the
edges in any cycle appear twice in W .

Theorem 1.24. Let G be a nontrivial connected graph. Then e.G/ D 2jE.G/j if
and only if G is a tree.

Proof. By Kwan’s Theorem, it suffices to show that e.G/ � 2jE.G/j if G is a tree.
If uv is a bridge in a connected graph G, then consider an Eulerian walk W of

G with initial vertex u. The first time that v is encountered on W , it is preceded by
u; while the next time that u is encountered on W , it is preceded by v. Therefore,
the edge uv occurs an even number of times on W . Since every edge is a bridge in a
tree, the length L.W / of W is at least twice of the size of G when G is a tree. ut

As we mentioned before, while the Chinese Postman Problem asks for the
minimum length of a closed walk in a connected graph G such that every edge of G

appears on the walk once or twice, another problem of interest is that of determining
the minimum length of a closed walk in G such that no two edges of G appear the
same number of times in the walk. Such walks in a graph G distinguish the edges
of G by their occurrences on the walk, which gives rise to the concept of irregular
Eulerian walks in graphs [4].

An Eulerian walk W in a connected graph G is called irregular if no two edges
of G occur the same number of times in W . The first observation in this connection
is that every connected graph contains an irregular Eulerian walk. Suppose that
E.G/ D fe1; e2; : : : ; emg, where ei D ui vi for 1 � i � m. If we replace ei by 2i

parallel edges joining ui and vi for i D 1; 2; : : : ; m, then the resulting multigraph
H is Eulerian, which implies that G has an irregular Eulerian walk W that contains
the edge ei a total of 2i times. The length ` of a minimum irregular Eulerian walk
therefore satisfies the following:

 
mC 1

2

!

� ` � 2

 
mC 1

2

!

: (1.8)

The upper bound in (1.8) is attained only when a connected graph is a tree, as we
show next.

Theorem 1.25. For a nontrivial connected graph G of size m, the length of a
minimum irregular Eulerian walk is 2

�
mC1

2

�
if and only if G is a tree.

Proof. Let W be an irregular Eulerian walk in G. As we saw in the proof of
Theorem 1.24, each bridge in G is encountered an even number of times on W .
Thus, if G is a tree, then each edge of G is encountered an even number of times on
W , that is, L.W / � 2

�
mC1

2

�
. It then follows by (1.8) that the length of a minimum

irregular Eulerian walk is exactly 2
�

mC1
2

�
.
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If G is not a tree, then G contains some cycles. By Kwan’s theorem, there is an
Eulerian walk W1 in which no edge of G occurs on W1 more than twice and some
edges occur on W1 exactly once. Let e1; e2; : : : ; ek be those edges occurring exactly
once on W1. Also, let e0

1; e0
2; : : : ; e 0̀ be those edges occurring exactly twice on W1.

Replacing the edge ei D ui vi by 2i � 1 parallel edges joining ui and vi .1 � i � k/

and replacing the edge e0
i D u0

i v
0
i by 2i parallel edges joining u0

i and v0
i .1 � i � `/,

we obtain an Eulerian multigraph M . This implies that there is an Eulerian walk W2

in G where ei appears 2i � 1 times while e0
i appears 2i times. Since G contains

cycles, k � 1 and so L.W2/ < 2
�

mC1
2

�
. Hence, the length of a minimum irregular

Eulerian walk is also less than 2
�

mC1
2

�
. ut

If a graph G of size m contains an irregular Eulerian walk W of length
�

mC1
2

�
,

then the walk W is said to be optimal. Necessarily, every optimal irregular Eulerian
walk is a minimum irregular Eulerian walk. The following result characterizes those
graphs containing an optimal irregular Eulerian walk.

Theorem 1.26. A connected graph G of size m contains an optimal irregular
Eulerian walk if and only if G contains an even subgraph of size dm=2e.

Proof. First, assume that G contains a subgraph H of size dm=2e such that degH v is
even for every v 2 V.H/. Let E.H/ D fe1; e2; : : : ; edm=2eg and E.G/ D E.H/ [
fe0

1; e0
2; : : : ; e0

bm=2cg. Replacing (i) each edge ei by 2i � 1 parallel edges and (ii)
each edge e0

i by 2i parallel edges, we obtain an Eulerian multigraph M . Then an
Eulerian circuit in M gives rise to an irregular Eulerian walk W in G in which ei

appears exactly 2i � 1 times .1 � i � dm=2e/ and e0
i appears exactly 2i times

.1 � i � bm=2c/. Then L.W / D �
mC1

2

�
and so W is an optimal irregular Eulerian

walk in G.
For the converse, suppose that G contains an optimal irregular Eulerian walk W .

We may assume that E.G/ D fe1; e2; : : : ; emg, where ei appears exactly i times on
W . Let E1 D fe1; e3; : : : ; e2b.m�1/=2cC1g and E2 D E.G/nE1. If H1 and H2 are the
subgraphs induced by E1 and E2, respectively, then fH1; H2g is a decomposition of
G. We claim that the vertices in H1 are all even. The existence of W guarantees that
the multigraph M obtained from G by replacing each edge ei by i parallel edges
is Eulerian. For j D 1; 2, let Mj be the multigraph obtained by replacing each
edge ei 2 E.Hj / by i parallel edges. Then fM1; M2g is a decomposition of M . If
v 2 V.H1/, then degM1

v D degM v�degM2
v is even since both degM v and degM2

v
are. Therefore, degH1

v must be even since degM1
v equals the sum of degH1

v odd
integers. ut

By Theorem 1.26, neither K2 nor K3 contains optimal irregular Eulerian walks.
For 4 � n � 6, on the other hand, C3 � K4, C5 � K5, and K2;4 � K6 and so Kn has
an optimal irregular Eulerian walk. In general, for an integer n � 4, let M D �

n
2

�

if n is odd and M D n.n � 2/=2 if n is even. By recalling Alspach’s conjecture
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(that is no longer a conjecture), which basically lists possible cycle decompositions
of complete graphs of odd order and K2;2;:::;2, we see that if 3 � m � M � 3

or m D M , then Kn contains an even subgraph H of size m. For example, for
each integer n � 7, Alspach’s conjecture guarantees that there is a decomposition
D1 [D2 of Kn, where

D1 D

8
ˆ̂
<

ˆ̂:

f .n=4/Cn�1 g
f bn=4cCn g
f .n=2 � 1/Cn=2; Cdn=4e g
f .bn=2c � 1/Cbn=2c; Cb3n=4c g

if n � 0 .mod 4/

if n � 1 .mod 4/

if n � 2 .mod 4/

if n � 3 .mod 4/

D2 D

8
ˆ̂<

ˆ̂:

f .n=4/Cn�3; .n=2/K2 g
f bn=4cCn g
f .n=2 � 2/Cn=2�1; Cb3n=4c�2; .n=2/K2 g
f .bn=2c � 1/Cbn=2c; Cb3n=4c�1 g

if n � 0 .mod 4/

if n � 1 .mod 4/

if n � 2 .mod 4/

if n � 3 .mod 4/.

By combining the cycles in D1, we obtain an even sugraph H � Kn whose size
equals d�n

2

�
=2e.

Theorem 1.27. The complete graph of order n contains an optimal irregular
Eulerian walk if and only if n � 4.

For the complete bipartite graphs having optimal irregular Eulerian walks, we
have the following characterization.

Theorem 1.28. For integers n1 and n2 with 2 � n1 � n2, the complete bipartite
graph Kn1;n2 has an optimal irregular Eulerian walk if and only if either (i) n1 and
n2 are both even and either n1 ¤ 2 or 4 jn2 or (ii) at least one of n1 and n2 is odd
and n1n2 � 0; 3 .mod 4/.

1.5 Randomly Eulerian Graphs

Some Eulerian graphs G contain vertices v with a rather unusual property, namely
every trail T in G with initial vertex v can be extended to an Eulerian circuit. Graphs
with this property have been referred to by many names but we will say that these
graphs are randomly Eulerian from v. For example, each of the Eulerian graphs Gi

.1 � i � 4/ in Fig. 1.13 is randomly Eulerian from a vertex v if and only if v is
colored red. Thus, the graph G1 is randomly Eulerian from no vertex, G2 and G3 are
randomly Eulerian from some but not every vertex, while G4 is randomly Eulerian
from every vertex.

Ore [57, pp. 74–76] characterized those graphs that are randomly Eulerian from
a vertex.
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Fig. 1.13 Graphs that are
randomly Eulerian from some
vertex

Theorem 1.29. An Eulerian graph G is randomly Eulerian from a vertex v if and
only if every cycle in G contains v.

Proof. First, suppose that a graph G is randomly Eulerian from a vertex v but has a
cycle C that does not contain v. If H is the graph obtained from G by deleting the
edges of C , then every nontrivial component of H is Eulerian and so has a cycle
decomposition. In particular, the component H1 containing v is nontrivial since
degH1

v D degG v � 2. Then find a cycle decomposition D1 of H1 and construct
a circuit C 0 beginning and ending at v by successively traversing the cycles in D1

that contain v. Therefore, C 0 is a circuit in G that contains no edges of C but cannot
be extended any further, since every edge incident with v is already in C 0. This is a
contradiction.

We now verify the converse. Let G be an Eulerian graph with the property that
every cycle of G contains a vertex v of G. Let T be a trail in G with initial vertex
v such that it cannot be extended to a longer trail. Necessarily, T is a circuit that
contains all edges that are incident with v in G. Now let H be the graph obtained
from G by deleting the edges in T . If H contains a nontrivial component H 0, then
H 0 is an Eulerian graph and so contains cycles to which v does not belong. Since this
contradicts the assumption that every cycle in G contains v, it follows that E.T / D
E.G/, that is, T is an Eulerian circuit. ut

As a consequence of Ore’s and Veblen’s theorems (Theorems 1.29 and 1.5), we
have the following.

Theorem 1.30. An Eulerian graph G is randomly Eulerian from a vertex v if and
only if every cycle in a cycle decomposition of G contains v and no two cycles in a
decomposition have more than one other vertex in common.

Therefore, an Eulerian graph G is randomly Eulerian from every vertex if and
only if G is a cycle. For n � 5, let G be a graph of order n that is randomly Eulerian
from a vertex v. By Theorem 1.29, the graph G � v is acyclic. Furthermore, if G � v
is disconnected or contains at least two vertices of degree greater than 2, then v
is the only vertex belonging to every cycle in G. Otherwise, G � v is a star or a
subdivision of a star (including paths). In particular, when G � v is (a subdivision
of) a star but not a path, then G is (a subdivision of) K1;1;2`C1 .` � 1/ in which v
and another vertex, say u, have degree 2.`C1/ while each of the remaining vertices
has degree 2. In this case, G is randomly Eulerian from both u and v but from no
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Fig. 1.14 Graphs that are
randomly traversable from
two, one, or no vertices

other vertices. We therefore have the following result, which shows that the graphs
in Fig. 1.13 illustrate all possible situations regarding randomly Eulerian graphs.

Theorem 1.31. Every Eulerian graph G is randomly Eulerian from no, one, two,
or all vertices of G.

There is an analogous concept for traversable graphs. Let G be a traversable
graph in which u and v are the odd vertices. Then G is said to be randomly
traversable from u if every trail with initial vertex u can be extended to an Eulerian
trail T in G. Necessarily then, T is a u � v trail. The following characterization of
such graphs was given by Chartrand and White [18] in 1970. The same result was
then independently obtained by Dirac [30] in 1972. We present a slightly different
proof by making a use of Ore’s theorem (Theorem 1.29).

Theorem 1.32. A traversable graph G whose odd vertices are u and v is randomly
traversable from u if and only if every cycle of G contains v.

Proof. Let H1 be the graph obtained from G by adding a new vertex w and the edges
uw and vw. If every cycle in G contains v, then H1 is randomly Eulerian from v by
Ore’s theorem. Thus, the path .v; w; u/ can always be extended to an Eulerian circuit
of H1. In other words, every trail beginning at u can be extended to an Eulerian trail
of G.

Conversely, if G is randomly traversable from u but has a cycle C that does not
contain v, then the graph H2 obtained from G by deleting the edges in C as well
has only two odd vertices, namely u and v. Thus, H2 has a nontrivial component
H 0 containing u; v and all edges incident with v. However then, although H 0 is
traversable, any u� v Eulerian trail of H 0 cannot be extended to an Eulerian trail of
G, which contradicts the fact that G is randomly traversable from u. ut

Consider the three graphs G1, G2, and G3 in Fig. 1.14. Note that each graph Gi is
traversable and contains an Eulerian ui � vi trail. By Theorem 1.32, G1 is randomly
traversable from both u1 and v1, G2 is randomly traversable from u2 but not from v2,
while G3 is randomly traversable from neither u3 nor v3.
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2.1 The Icosian Game

The year 1857 saw the introduction of a two-person game called the Icosian Game.
In this game, one player is to place some of 20 given pieces on the points of a
playing board (in the shape of dodecahedron) as shown in Fig. 2.1 so that successive
pieces are placed along the lines of the board. These pieces may be required to
fulfill other conditions as well. The other player then has the responsibility to place
the remaining pieces on the remaining points in such a way that every consecutive
pair of pieces lie along a line of the board and that the twentieth piece lies along a
line of the first piece. Sometimes this can be done, sometimes it cannot.

This game was the invention of William Rowan Hamilton. Before discussing this
game in more detail, let us go back in history to learn some facts about Hamilton.

Hamilton was born in Dublin, Ireland in 1805. He was brought up by his
uncle, who educated him. Very early on, it became clear that Hamilton was an
extraordinarily talented individual. Indeed, at age 5, young William had mastered
the languages Latin, Greek, and Hebrew. By the time he reached 12 years of age, he
had become quite accomplished with mental arithmetic. At age 15, he had studied
the work of Sir Isaac Newton and Pierre-Simon Laplace. That Hamilton discovered
an error in Laplace’s work on celestial mechanics brought him to the attention of the
Astronomer Royal of Dublin. At the age of 18, Hamilton became a student at Trinity
College Dublin. There he placed first in every examination in every subject. During
his first year he was awarded “optime” in classics, which had not been awarded in
20 years. Later he was awarded “optime” in physics, an unheard of distinction to
receive two such awards in different subjects. His education stopped at age 21 when
he became Professor of Astronomy at Trinity College. With this came the title of
Royal Astronomer of Ireland.

In 1832 Hamilton predicted that a ray of light passing through a biaxial crystal
would be refracted into the shape of a cone. When this was experimentally
confirmed, this resulted in a major scientific announcement. Hamilton was knighted
for his discovery in 1835, thereby becoming Sir William Rowan Hamilton.

F. Fujie and P. Zhang, Covering Walks in Graphs, SpringerBriefs in Mathematics,
DOI 10.1007/978-1-4939-0305-4_2, © Futaba Fujie, Ping Zhang 2014
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Fig. 2.1 The Icosian Game

In 1835 Hamilton observed that complex numbers could be represented as
ordered pairs of real numbers. For the next 8 years, Hamilton attempted to extend
his theory to ordered triples but he was never successful. In 1843, however, while
walking across the Brougham Bridge on the Royal Canal in Dublin, Hamilton
discovered a set of 4-dimensional numbers aCbiCcjCdk, where a, b, c, and d are
real numbers, called quaternions. This was the first example of non-commutative
algebra. He was so excited that he carved the formula he had discovered into the
bridge. Today, on a plaque attached to the bridge, the following is written:

Here as he walked by
on the 16th of October 1843
Sir William Rowan Hamilton
in a flash of genius discovered
the fundamental formula for
quaternion multiplication

i2 D j2 D k2 D ijk D �1.

As a consequence of doing this, Hamilton had essentially introduced the cross
product and dot product for vector algebra.

In 1856 Hamilton discovered a non-commutative algebraic structure referred
to as the Icosian Calculus. This discovery came from his failed attempts to find
an algebra of ordered triples that would reflect the three Cartesian axes in the
Euclidean 3-space just as ordered pairs reflect the two Cartesian axes in the
Euclidean plane. The symbols Hamilton used in his Icosian Calculus represented
moves between vertices on a dodecahedron. This led to Hamilton’s invention of
the Icosian Game, which he used as a means of illustrating and popularizing his
mathematical discovery. The Icosian Game was introduced to the public in 1857 at
a meeting of the British Association in Dublin.

How Hamilton thought of connecting his Icosian Calculus to traveling along the
edges of a dodecahedron is unknown. The mathematician John Graves was one of
Hamilton’s best friends. In 1859 a friend of Graves manufactured a version of the
Icosian Game in the form of a small table consisting of a game board with legs,
which was sent to Hamilton. Graves put Hamilton in contact with John Jaques,
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Fig. 2.2 The traveler version
of the Icosian Game

whose company John Jaques and Son manufactured toys and games. Hamilton sold
the rights to his game for 25 pounds to this manufacturer, which was later known as
John Jaques of London and then Jaques of London. This company, still in existence
after two centuries, is known for the chess sets it sells. It also invented the game of
ping pong.

Two versions of Hamilton’s game were manufactured by Jaques, one played on
a flat board and another for a “traveler,” played on an actual dodecahedron. The
traveler version of the game was labeled as:

NEW PUZZLE
TRAVELLER’S DODECAHEDRON

or
A VOYAGE ROUND THE WORLD

Here the 20 vertices of the dodecahedron are labeled with the 20 consonants of the
English alphabet (see Fig. 2.2), which stands for the following 20 cities:

B. Brussels N. Naples
C. Canton P. Paris
D. Delhi Q. Quebec
F. Frankfort R. Rome
G. Geneva S. Stockholm
H. Hanover T. Toholsk
J. Jeddo V. Vienna
K. Kashmere W. Washington
L. London X. Xenia
M. Moscow Z. Zanzibar

The goal of this game was to construct a round trip in which each of the 20 cities
would be visited exactly once. Hamilton played a role in marketing the game. The
preface to the instruction pamphlet, written by Hamilton, began as follows:
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In this new Game (invented by

Sir WILLIAM ROWAN HAMILTON, LL.D., & c., of Dublin,

and by him named Icosian from a Greek word signifying ‘twenty’) a player is to place the
whole or part of a set of twenty numbered pieces or men upon the points or in the holes of
a board, represented by the diagram above drawn, in such a manner as always to proceed
along the lines of the figure, and also to fulfill certain other conditions, which may in various
ways be assigned by another player. Ingenuity and skill may thus be exercised in proposing
as well as in resolving problems of the game. For example, the first of the two players may
place the first five pieces in any five consecutive holes, and then require the second player to
place the remaining fifteen men consecutively in such a manner that the succession may be
cyclical, that is, so that No. 20 may be adjacent to No. 1; and it is always possible to answer
any question of this kind. Thus, if B C D F G are the five given initial points, it is allowed
to complete the succession by following the alphabetical order of the twenty consonants,
as suggested by the diagram itself; but after placing the piece No. 6 in hole H, as above,
it is also allowed (by the supposed conditions) to put No. 7 in X instead of J, and then to
conclude with the succession, W R S T V J K L M N P Q Z. Other examples of Icosian
Problems, with solutions of some of them, will be found in the following page.

2.2 Hamiltonian Graphs

Hamilton’s Icosian Game gave rise to a much-studied class of graphs named for
him. A path containing all the vertices of a graph G is a Hamiltonian path in G,
while a cycle containing all the vertices of G is a Hamiltonian cycle in G. If G

contains a Hamiltonian path, then G is connected; if G contains a Hamiltonian
cycle, then G is 2-connected (that is, G � v is connected for every v 2 V.G/).
A graph is Hamiltonian if it contains a Hamiltonian cycle and a graph is traceable
if it contains a Hamiltonian path. While the graph of the dodecahedron (shown in
Figs. 2.1 and 2.2) and the graph G1 of Fig. 2.3 are both Hamiltonian, none of the
graphs G2, G3, and G4 of Fig. 2.3 are Hamiltonian. The graphs G2 and G3 have
Hamiltonian paths, however. The graph G4 does not contain a Hamiltonian path.
Therefore, G1, G2, and G3 are traceable but G4 is not.

In 1855, the year before Hamilton invented the Icosian Game, Thomas Penyngton
Kirkman studied questions as to whether all vertices of a polyhedron could be visited
exactly once by moving along edges of a polyhedron and returning to the starting
vertex. So even though Kirkman had considered this concept before Hamilton did,
these paths, cycles, and graphs were named for Hamilton, not Kirkman.

Determining conditions under which a graph is Hamiltonian did not occur until
1952 when Gabriel Andrew Dirac [29] introduced a sufficient condition for a graph
to be Hamiltonian in terms of the degrees of the vertices of a graph. Gabriel Dirac
was the stepson of Paul Adrien Maurice Dirac, who was awarded a Nobel Prize in
Physics in 1933. The smallest and largest degrees among the vertices of a graph G

are the minimum degree ı.G/ and maximum degree �.G/, respectively, of G.
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Fig. 2.3 Illustrating
Hamiltonian and traceable
graphs

Theorem 2.1 (Dirac’s Theorem). If G is a graph of order n � 3 and ı.G/ � n=2,
then G is Hamiltonian.

Proof. Assume that this statement is false. Then for some integer n � 3, there is a
non-Hamiltonian graph G of order n and maximum size for which deg v � n=2 for
each vertex v of G. Surely G is not complete, so G contains pairs of nonadjacent
vertices. Let u; v be such a pair. Thus GC uv is Hamiltonian and every Hamiltonian
cycle of GCuv necessarily contains the edge uv. This in turn implies that G contains
a Hamiltonian u � v path .u D v1; v2; : : : ; vn D v/. Let vnC1 D v1 and define
A D fvi W uviC1 2 E.G/g and B D fvi W vvi 2 E.G/g: Since vn … A[B , it follows
that jA [ Bj � n � 1. Corresponding to each vertex adjacent to u is an element of
A; that is, jAj D deg u. Similarly, jBj D deg v. Thus, jAj C jBj � n.

If there exists a vertex vi� belonging to A \ B , then 2 � i� � n � 2 and
uvi�C1; vvi� 2 E.G/. However then,

.u; vi�C1; vi�C2; : : : ; vn D v; vi� ; vi��1; : : : ; v2; v1 D u/

is a Hamiltonian cycle in G, producing a contradiction. Thus A \ B D ; and so
n � jAj C jBj D jA [ Bj � n � 1; which is clearly impossible. ut

In 1960 Oystein Ore [56] generalized Dirac’s theorem. In fact, the proof of
Theorem 2.1 given above also serves as a proof of Ore’s theorem.

Theorem 2.2 (Ore’s Theorem). If G is a graph of order n � 3 such that deg uC
deg v � n for every pair u; v of nonadjacent vertices of G, then G is Hamiltonian.

Suppose that G is a nontrivial graph and consider the graph H D G _ K1, the
join of G and a vertex. This new graph H is certainly Hamiltonian if H satisfies
the condition in either Theorems 2.1 or 2.2. Since G is traceable if and only if H is
Hamiltonian, we obtain the following as a corollary.
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Theorem 2.3. Let G be a graph of order n � 2.
(a) If ı.G/ � .n � 1/=2, then G is traceable.
(b) If deg uC deg v � n � 1 for every pair u; v of nonadjacent vertices of G, then

G is traceable.

Following the publication of Ore’s theorem was a succession of new sufficient
conditions for a graph G to be Hamiltonian in terms of the degrees of the vertices
of G, each more general than those that preceded it. The most general of these was
based on Ore’s theorem and is due to J. Adrian Bondy and Vašek Chvátal.

Let G be a graph of order n. If u1 and v1 are two nonadjacent vertices such
that degG u1 C degG v1 � n, then join u1 and v1 by an edge producing the graph
G1 D G C u1v1. If, in G1, there are two nonadjacent vertices u2 and v2 such that
degG1

u2 C degG1
v2 � n, then join u2 and v2 by an edge producing the graph G2 D

G1 C u2v2. This procedure is continued until no such pairs of nonadjacent vertices
remain. This final graph is called the closure of G and is denoted by CL.G/. Adding
the edges described above can occur in many different orders but the resulting graph
is always the same graph, namely CL.G/. The primary importance of this concept
lies in the following theorem [12].

Theorem 2.4 (Bondy and Chvátal’s Theorem). A graph is Hamiltonian if and
only if its closure is Hamiltonian.

Proof. First, if a graph G is Hamiltonian, then surely CL.G/ is Hamiltonian.
Suppose then that G is a graph of order n � 3 such that CL.G/ is Hamiltonian.
Let G; G1; G2; : : : ; Gk�1; Gk D CL.G/ be a sequence of graphs produced during
the process of obtaining CL.G/. In particular, CL.G/ D Gk D Gk�1 C uv, where
u and v are nonadjacent vertices in Gk�1 and degGk�1

uC degGk�1
v � n. Therefore,

according to the proof of Theorem 2.1, Gk�1 is Hamiltonian. Proceeding backwards,
we see that Gk�2; Gk�3; : : : ; G2; G1 and finally G are Hamiltonian. ut

By Theorem 2.4, a graph G of order at least 3 is Hamiltonian if CL.G/ is
complete. A graph can be Hamiltonian without its closure being complete, however.
For example, for the n-cycles Cn, which are clearly Hamiltonian, CL.Cn/ D Cn ¤
Kn for n � 5.

The sufficient conditions presented for a graph to be Hamiltonian in Dirac’s and
Ore’s theorems are just that, namely, they are sufficient only. That is, a graph can be
Hamiltonian without satisfying either of these conditions. The fact that the cycles
of order at least 5 are Hamiltonian is not a consequence of any of the theorems by
Dirac, Ore, and Bondy and Chvátal. While Dirac’s theorem requires every vertex of
a graph G of order n � 3 to have degree at least n=2 in order to guarantee that G is
Hamiltonian and Ore’s theorem requires many vertices to have degree at least n=2,
neither theorem can be applied if the maximum degree of G is less than n=2.

There are some sufficient conditions for an r-regular graph G to be Hamiltonian
that do not require r � jV.G/j=2. One of these is due to Crispin Nash-
Williams [52].
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Fig. 2.4 The Petersen graph

Theorem 2.5 (Nash-Williams’ Theorem). Every r-regular graph of order 2r C
1 � 5 is Hamiltonian.

Proof. Let G be an r-regular graph of order 2r C 1, where then r is a positive
even integer. Since C5 is the unique 2-regular graph of order 5, suppose that
r � 4. By Theorem 2.3 (a), we may assume that G contains a Hamiltonian
path, say P D .v0; v1; : : : ; v2r /: Suppose, however, that G is not Hamiltonian.
For 1 � i � 2r , it follows that if v0vi 2 E.G/, then vi�1v2r … E.G/; for
otherwise, .v0; vi ; viC1; : : : ; v2r ; vi�1; vi�2; : : : ; v0/ is a Hamiltonian cycle of G,
which is impossible. Since degG v0 D degG v2r D r , it follows that exactly one
of v0vi and vi�1v2r belongs to E.G/ for 1 � i � 2r . We consider the following two
cases.

Case 1. N.v0/ D fv1; v2; : : : ; vrg. Then N.v2r / D fvr ; vrC1; : : : ; v2rg. If G � vr is
disconnected, then G � vr is a subgraph of 2Kr . However then, either ı.G/ < r

or degG vr D 2r , which contradicts the fact that G is r-regular. Thus, vr is not
a cut-vertex and so vi� vj � 2 E.G/ for some i� and j � satisfying 1 � i� �
r � 1 and r C 1 � j � � 2r � 1. However, then, this produces a Hamiltonian
cycle .v0; v1; : : : ; vi� ; vj � ; vj �C1; : : : ; v2r ; vj ��1; vj ��2; : : : ; vi�C1; v0/: Thus, this
case never occurs.

Case 2. N.v0/ ¤ fv1; v2; : : : ; vrg. Then there exists an integer i� such that v0vi� …
E.G/ and v0vi�C1 2 E.G/. Thus, v2r vi��1 2 E.G/ and v2r vi� … E.G/ and so
we have a 2r-cycle C D .v0; v1; : : : ; vi��1; v2r ; v2r�1; : : : ; vi�C1; v0/: Renaming
the vertices, let us write C D .u1; u2; : : : ; u2r ; u1/: Since deg vi� D r and G is
not Hamiltonian, it follows that either N.vi�/ D fu1; u3; : : : ; u2r�1g or N.vi�/ D
fu2; u4; : : : ; u2rg, say the former. Then for each u2i .1 � i � r/, the cycle obtained
from C by replacing u2i by vi� is also a 2r-cycle. This implies that N.vi�/ D
N.u2i / for 1 � i � r . It then follows that deg u1 � r C 1, which is again a
contradiction. ut

If G is r-regular and jV.G/j � 2r C 2, then G may or may not be connected.
(Consider, for example, G D 2KrC1.) Jackson [43] has shown that if G is
2-connected and its order is at most 3r , then G is guaranteed to be Hamiltonian. In
fact, Zhu, Liu, and Yu [72] showed that 3r can be replaced by 3r C 1 by excluding
the Petersen graph (see Fig. 2.4).
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Theorem 2.6. Every 2-connected r-regular graph of order at most 3r C 1 is
Hamiltonian unless it is the Petersen graph.

The following is therefore a consequence of the above theorem.

Theorem 2.7. Let r be a positive integer. If G is an r-regular graph of order 2rC2,
then either G is Hamiltonian or G D 2KrC1.

Proof. Let G be an r-regular graph of order 2rC2. If r D 1, then clearly G D 2K2.
For r � 2, it suffices to show by Theorem 2.6 that if G is not 2-connected, then
G D 2KrC1. Since G is disconnected if and only if G D 2KrC1, we may assume
that G is connected and has a cut-vertex v. Clearly G is not complete. Also, G being
r-regular implies that each component of G � v contains at least r vertices. Thus,
G � v consists of exactly two components, say G1 and G2, whose orders are r and
r C 1, respectively. However then, the vertices in G1 have degree r in G only if
N.v/ D V.G1/ and G1 D Kr , which then implies that G is already disconnected
even without deleting v. ut

Another sufficient condition for a graph to be Hamiltonian is due to Chvátal and
Paul Erdős [27]. Before presenting their result, let us state a few lemmas.

For a graph G that is not a forest, the length of a longest cycle in G is called the
circumference cir.G/ of G. Therefore, G is Hamiltonian if and only if cir.G/ D
jV.G/j � 3.

Lemma 2.1. If G is a graph with ı.G/ � 2, then G contains cycles and cir.G/ �
ı.G/C 1.

Proof. That G is not a forest is immediate. Suppose that P D .v0; v1; v2; : : : ; v`/

is a longest path in G. Since P cannot be extended any further, the neighborhood
of v0 must be a subset of V.P /nfv0g. Thus, there exists an integer `0 satisfying
ı.G/ � deg v0 � `0 � ` such that v`0 belongs to P and v0v`0 2 E.G/. Thus,
.v0; v1; : : : ; v`0�1; v`0 ; v0/ is a cycle in G whose length is at least ı.G/C 1. ut

For a graph G, consider a subset S � V.G/. The set S is independent if no
two vertices in S are adjacent in G. The independence number ˛.G/ of G is the
maximum number of vertices in an independent set of vertices of G. If G is not
complete and G � S is disconnected, then the set S is called a vertex-cut of G.
The cardinality of a minimum vertex-cut of G is the connectivity of G, denoted
by �.G/. When G is a complete graph, its connectivity is defined as jV.G/j � 1.
Observe that 1 � ˛.G/ � jV.G/j while 0 � �.G/ � jV.G/j � 1. If k is a positive
integer satisfying k � �.G/, then G is said to be k-connected. In other words, for a
k-connected graph G, deleting k � 1 arbitrary vertices from G does not disconnect
the graph. See [24, p. 92], for example, for the proof of the following well-known
result.
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Theorem 2.8. For every graph G, �.G/ � ı.G/.

Theorem 2.9 (Chvátal-Erdős’ Theorem). Let G be a k-connected graph of order
at least 3. If k � ˛.G/, then G is Hamiltonian.

Proof. Suppose that G is a k-connected graph containing more than two vertices,
where k � ˛.G/, and assume, to the contrary, that G is not Hamiltonian. Since
˛.G/ D 1 if and only if G is a complete graph, which is Hamiltonian, we may
assume that ˛.G/ � 2. Lemma 2.1 and Theorem 2.8 then imply that 3 � k C 1 �
cir.G/ � jV.G/j � 1: Suppose that C D .v1; v2; : : : ; v`; v`C1 D v1/ is a cycle in G

whose length is ` D cir.G/ and let H be a component in G � V.C /.
Consider the subsets S and S 0 of V.C / such that, for 1 � i � `, vi 2 S if and

only if vi is adjacent to a vertex in H if and only if viC1 2 S 0. Then S is nonempty
since G is connected. Note also that if S contains two distinct vertices, say u and v,
then G contains a u � v path of length at least 2 each of whose internal vertices is a
vertex in H . Therefore, by the fact that C is a longest cycle in G, no two consecutive
vertices on C belong to S , that is, S \ S 0 D ;. Thus, S is a vertex-cut of G and so
jS 0j D jS j � k.

We now verify that S 0 is an independent set. If this is not the case, then there
are integers i and j satisfying 1 � i < j � ` such that viC1; vj C1 2 S 0 and
viC1vj C1 2 E.G/. Then G contains the vi � vj path P , where

P D
8
<

:

.v1; v`; v`�1; : : : ; vj C1; v2; v3; : : : ; vj / if i D 1

.vi ; vi�1; : : : ; v1; viC1; viC2; : : : ; v`/ if j D `

.vi ; vi�1; : : : ; v1; v`; v`�1; : : : ; vj C1; viC1; viC2; : : : ; vj / otherwise.

In each case, V.P / D V.C /. On the other hand, since both vi and vj belong to S ,
there is also a vi � vj path Q of length at least 2 in G such that V.C / \ V.Q/ D
fvi ; vj g. However, this is impossible since P and Q form a cycle in G whose length
is at least ` C 1 D cir.G/ C 1. Thus, S 0 is independent, as claimed. Furthermore,
for an arbitrary vertex x 2 V.H/, the set S 0 [ fxg is independent. However then,
k C 1 � jS 0 [ fxgj � ˛.G/, which contradicts our original assumption that k �
˛.G/. ut

Therefore, a graph of order at least 3 must be Hamiltonian provided its connec-
tivity is at least as large as its independence number. The complete bipartite graph
Kn;nC1 .n � 1/ shows that the bound is sharp as �.Kn;nC1/ D n D ˛.Kn;nC1/ � 1.
Note that Kn;nC1 is traceable although it is not Hamiltonian.

If G is a nontrivial k-connected graph with k � ˛.G/ � 1, then consider the
graph H D G _K1, the join of G and a vertex. One can verify that H is .k C 1/-
connected and ˛.H/ D ˛.G/. Hence, Theorem 2.9 guarantees that H contains a
Hamiltonian cycle, which in turn implies that G contains a Hamiltonian path.

Theorem 2.10 ([27]). If G is a nontrivial k-connected graph, where k � ˛.G/�1,
then G is traceable.
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2.3 The Toughness of a Graph

While a number of sufficient conditions have been derived for a graph to be
Hamiltonian, there is one well-known and useful necessary condition. We have
already stated that every Hamiltonian graph is 2-connected, that is, no Hamiltonian
graph contains a cut-vertex. Stated in another manner, no Hamiltonian graph G

contains a vertex v such that G � v contains two or more components. In fact,
every Hamiltonian graph satisfies an even more general condition. The number of
components in a graph G is denoted by k.G/.

Theorem 2.11. Let G be a Hamiltonian graph. Then k.G � S/ � jS j for every
nonempty proper subset S of V.G/.

Proof. Let S be a nonempty proper subset of V.G/. Suppose that k.G � S/ D
k � 2 and that G1; G2; : : : ; Gk are the k components of G � S . Therefore, each
vertex in Gi can only be adjacent to vertices in S or to other vertices in Gi . Let
C D .v1; v2; : : : ; vn; vnC1 D v1/ be a Hamiltonian cycle in G, where n D jV.G/j,
and let ij D maxfi W vi 2 V.Gj /; 1 � i � ng for 1 � j � k. Thus, the
set fvi1C1; vi2C1; : : : ; vikC1g is a subset of S containing k distinct vertices. It then
follows that jS j � k D k.G � S/. ut

Necessary conditions are typically most useful when stated in their contrapositive
forms.

Theorem 2.12. If G is a graph containing a nonempty proper subset S of V.G/

such that k.G � S/ > jS j, then G is not Hamiltonian.

As a consequence of Theorem 2.11, if G is Hamiltonian, then jS j=k.G � S/ � 1

for every nonempty proper subset S of V.G/. This observation led Chvátal to
introduce a new concept in 1973.

For a positive real number t , a noncomplete graph G is t -tough if

jS j
k.G � S/

� t

for every vertex-cut S of G. The toughness t .G/ of G is the maximum real number t

for which G is t -tough. For a complete graph Kn, its toughness is taken as t .Kn/ D
.n � 1/=2:

By our earlier observations, every Hamiltonian graph is 1-tough. The converse
is not true, however. For example, the graph G of Fig. 2.5 is 1-tough but is
not Hamiltonian. In addition, it is well known that the Petersen graph P is not
Hamiltonian; yet P is not only 1-tough, it is .4=3/-tough. In 1973, Chvátal [26]
made the following conjecture.
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Fig. 2.5 A non-Hamiltonian
1-tough graph

Fig. 2.6 Constructing the
Bauer-Broersma-Veldman
graph

Chvátal’s Toughness Conjecture. There exists a real number t0 such that every
t0-tough graph is Hamiltonian.

In 1985, Enomoto, Jackson, Katernis, and Saito [31] proved that every 2-tough
graph contains a 2-factor (a spanning 2-regular subgraph) and that there is no real
number t < 2 for which every t -tough graph contains a 2-factor. This added
credence to the following.

The 2-Tough Conjecture. Every 2-tough graph is Hamiltonian.

However, in 2000, Bauer, Broersma, and Veldman [9] showed that the 2-Tough
Conjecture is false by constructing the so-called Bauer-Broersma-Veldman graph, a
graph that is 2-tough but not Hamiltonian. This graph is formed by taking the join
of K2 and the graph of order 40 shown in Fig. 2.6. In fact, Bauer, Broersma, and
Veldman established the following.

Theorem 2.13 ([9]). For every real number t < 9=4, there is a t -tough nontrace-
able graph.

Hamiltonian-Connected Graphs

A graph G is Hamiltonian-connected if G contains a Hamiltonian u � v path for
every two distinct vertices u and v of G. Thus, every Hamiltonian-connected graph
of order at least 3 is Hamiltonian (but the converse is of course false as cycles show).
In fact, every edge in a Hamiltonian-connected graph belongs to a Hamiltonian cycle
in that graph.

A number of conditions for a graph to be Hamiltonian-connected are known
that are similar to those for a graph to be Hamiltonian. The following results are
analogous to Theorems 2.1, 2.2, 2.12, and 2.9, respectively.



46 2 Hamiltonian Walks

Theorem 2.14 ([58]). If G is a graph of order n � 4 such that deg uCdeg v � nC1

for every pair u; v of nonadjacent vertices of G, then G is Hamiltonian-connected.
Consequently, ı.G/ � .nC 1/=2 implies that G is Hamiltonian-connected.

Theorem 2.15. If G is a graph containing a nonempty proper subset S of V.G/

such that k.G � S/ > jS j � 1, then G is not Hamiltonian-connected.

Theorem 2.16 ([27]). If G is a k-connected graph satisfying k � ˛.G/C 1, then
G is Hamiltonian-connected.

2.4 The Traveling Salesman Problem

One of the best known problems concerning Hamiltonian cycles is of a more applied
nature.

The Traveling Salesman Problem. A salesman wishes to make a round trip that
visits certain cities once each. He knows the distance between each pair of cities.
What is the minimum total distance of such a round trip?

This problem can be expressed in terms of weighted graphs. In particular, let
G be a weighted complete graph whose vertices are the cities and where each
edge uv is assigned a weight equal to the distance between u and v. The weight
w.C / of a Hamiltonian cycle C in G is the sum of the weights of the edges of C .
Finding a solution to the Traveling Salesman Problem then consists of determining
the minimum weight of a Hamiltonian cycle in G.

If the number n of cities involved is large, then the number of Hamiltonian cycles
in G that need to be investigated is quite large. We can consider a Hamiltonian cycle
as beginning at any vertex v. Then the remaining n � 1 vertices can follow v in any
of .n � 1/Š orders. This produces .n � 1/Š Hamiltonian cycles whose weights we
need to compute. In fact, we need only consider .n � 1/Š=2 Hamiltonian cycles as
we would obtain the same sum if the order in which the vertices appear in a cycle
were reversed.

Even though the Traveling Salesman Problem is an extremely difficult problem in
general, there are instances where this problem has been solved for a large number of
cities. In 1998 Applegate, Bixby, Chvátal, and Cook [5] solved a Traveling Salesman
Problem for the 13,509 largest cities in the United States (those whose population
exceeded 500 at that time). They also solved a Traveling Salesman Problem for
15,113 German cities in 2001 and for 24,978 Swedish cities in 2004. Their ultimate
goal was to solve the Traveling Salesman Problem for every registered city or
town in the world plus a few research bases in Antartica (1,904,711 locations
in all). In 2006, the four wrote a book titled The Traveling Salesman Problem:
A Computational Study [6], in which they describe the history of the Traveling
Salesman Problem as well as the method they used to solve a range of large-
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scale problems. In 2012 Cook [28] wrote a book titled In Pursuit of the Traveling
Salesman for a more general audience.

2.5 Line Graphs and Powers of Graphs

There are two operations on graphs in which much attention has been focused
regarding Hamiltonian properties of the resulting graphs.

Line Graphs

The line graph L.G/ of a nonempty graph G is that graph whose vertices
correspond to the edges of G where two vertices of L.G/ are adjacent if and only if
the corresponding edges of G are adjacent. The line graph of a graph G is therefore
Hamiltonian provided the m edges of G can be listed as e1; e2; : : : ; em; emC1 D e1

in such a way that ei and eiC1 are adjacent for i D 1; 2; : : : ; m. As a consequence
of this observation, we have the following.

Theorem 2.17. The line graph of an Eulerian graph is Hamiltonian.

Each of the three graphs G1; G2; G3 in Fig. 2.7 is neither Eulerian nor Hamil-
tonian, while L.G1/ is Hamiltonian but not Eulerian, L.G2/ is Eulerian but not
Hamiltonian, and L.G3/ is neither Eulerian nor Hamitonian. The graph G1 shows
that the converse of Theorem 2.17 is not true. In fact, Harary and Nash-Williams
[39] characterized those graphs whose line graphs are Hamiltonian. A circuit C in
a graph G is called a dominating circuit if every edge of G is incident with at least
one vertex of C .

Theorem 2.18. Let G be a graph without isolated vertices. Then L.G/ is Hamil-
tonian if and only if either G is a star of size at least 3 or G contains a dominating
circuit.

Proof. Let m be the size of G. If G is the star K1;m, then L.G/ D Km, which is
Hamiltonian for m � 3. Suppose then that G contains a dominating circuit C D
.v1; v2; : : : ; v`; v1/. It suffices to show that there exists an ordering s W e1; e2; : : : ; em

of the m edges of G such that ei and eiC1 are adjacent edges of G, for 1 � i � m�1,
as are e1 and em, since such an ordering s corresponds to a Hamiltonian cycle of
L.G/. Begin s by selecting, in any order, all edges of G incident with v1 that are not
edges of C , followed by the edge v1v2. At each successive vertex vi , 2 � i � `� 1,
select, in any order, all edges of G incident with vi that are neither edges of C nor
previously selected edges, followed by the edge vi viC1. This process terminates with
the edge v`�1v`. The ordering s is completed by adding the edge v`v1. Since C is a
dominating circuit of G, every edge of G appears exactly once in s. Furthermore,
consecutive edges of s as well as the first and last edges of s are adjacent in G.
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Fig. 2.7 Graphs and their
line graphs

Conversely, suppose that G is not a star but L.G/ is Hamiltonian. We show that
G contains a dominating circuit. Since L.G/ is Hamiltonian, there is an ordering
s W e1; e2; : : : ; em of the m edges of G such that ei and eiC1 are adjacent edges of
G for 1 � i � m � 1, as are e1 and em. For 1 � i � m � 1, let vi be the vertex
of G incident with both ei and eiC1. (Note that 1 � i ¤ j � m � 1 does not
necessarily imply that vi ¤ vj .) Since G is not a star, there is a smallest integer i1
exceeding 1 such that vi1 ¤ v1. Thus, the edges e1; e2; : : : ; ei1�1 are incident with v1

and ei1 D v1vi1 . Next, let i2 (if it exists) be the smallest integer exceeding i1 such that
vi2 ¤ vi1 . Then the edges ei1 ; ei1C1; : : : ; ei2�1 are incident with vi1 and ei2 D vi1vi2 .
Continuing in this fashion, we finally arrive at a vertex vi` such that ei` D vi`�1

vi` ,
where vi` D vm�1. Note that (i) v1 is incident with the edges e1; e2; : : : ; ei1 , (ii)
vij .1 � j � ` � 1/ is incident with the edges eij ; eij C1; : : : ; eij C1

, and (iii) vi`

is incident with the edges ei` ; ei`C1; : : : ; em. Since each edge of G appears exactly
once in s and 1 < i1 < i2 < � � � < i` � m � 1, we obtain a trail

T D .v1; vi1 ; vi2 ; : : : ; vi` D vm�1/ D .ei1 ; ei2 ; : : : ; ei` /

in G with the properties that every edge of G is incident with a vertex in T

and neither e1 nor em belongs to T . Thus, T itself is a dominating circuit if
v1 D vm�1. If not, let v0 be the vertex of G incident with both e1 and em. Now,
if v0 … fv1; vm�1g, then .ei1 ; ei2 ; : : : ; ei` ; em; e1/ is a dominating circuit. Otherwise,
v0 D v1 or v0 D vm�1. If v0 D v1, then em D v1vm�1 and so .ei1 ; ei2 ; : : : ; ei` ; em/ is a
dominating circuit. Similarly, if v0 D vm�1, then .ei1 ; ei2 ; : : : ; ei` ; e1/ is a dominating
circuit. ut
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It is an immediate corollary of Theorem 2.18 that L.G/ is Hamiltonian whenever
G is a graph that is either Eulerian or Hamiltonian. In fact, L.G/ is Hamiltonian if
G contains an Eulerian spanning subgraph. Another consequence of Theorem 2.18
is that if L.G/ is Hamiltonian, then every bridge in G must be a pendant edge.
Indeed, if G contains a bridge e D uv where neither u nor v is an end-vertex, then
the vertex in L.G/ corresponding to e is a cut-vertex. (See the graphs G1 and G3 in
Fig. 2.7, for example.)

For nearly every connected graph, successively taking the line graphs results in
Hamiltonian graphs. For a nonempty graph G, we write L0.G/ for G and L1.G/

for L.G/. By L2.G/, we mean L.L.G//. More generally, for a positive integer k,
the graph Lk.G/ is defined as L.Lk�1.G//.

If G is connected and r-regular, then L.G/ is a connected 2.r�1/-regular graph,
that is, L.G/ is Eulerian. In this case, L.G/ is Hamiltonian if r is even but the same
cannot be guaranteed when r is odd. (Consider, for example, the graph G2 in Fig. 2.7
and the complete graph K4. Both are 3-regular and L.G2/ is not Hamiltonian while
L.K4/ D K2;2;2 is.) Taking the line graph again, however, L2.G/ is a 2.2r � 3/-
regular graph that is both Eulerian and Hamiltonian for every integer r � 2. That
is, L2.G/ is always both Eulerian and Hamiltonian when G is a connected regular
graph containing three or more vertices. For those connected graphs that are not
regular, we have the following result due to Chartrand and Wall [17].

Theorem 2.19. If G is a connected graph with ı.G/ � 3, then L2.G/ is
Hamiltonian.

Proof. Let v be a vertex of G. Then the edges incident with v in G give rise to
a subgraph Gv in L.G/ which is isomorphic to a complete graph whose order
equals deg v .� 3/. Let Hv be a Hamiltonian cycle in Gv and define the spanning
subgraph H of L.G/ by V.H/ D V.L.G// and E.H/ D S

v2V.G/ E.Hv/: Then
H is connected and certainly has a cycle decomposition. Thus, H has an Eulerian
circuit, which is a dominating circuit of L.G/. The desired result now follows by
Theorem 2.18. ut

The graphs G2 and G3 in Fig. 2.7 show that Theorem 2.19 cannot be improved in
general, as neither L.G2/ nor L2.G3/ is Hamiltonian.

Note that L.Pn/ D Pn�1 for each integer n � 2. Thus Ln�1.Pn/ is trivial
and Lk.Pn/ is not defined for k � n. Also, L.Cn/ D Cn for every n � 3 and
L.K1;3/ D C3. Therefore, Lk.Cn/ D Cn for k � 0; while Lk.K1;3/ D C3 for
k � 1. If, however, G is a connected graph that is none of a path, cycle, and the star
K1;3 (called a claw), then we eventually arrive at some positive integer k such that
deg v � 3 for every vertex v of Lk.G/. The following is due to Chartrand [15].

Theorem 2.20. If G is a connected graph that is not a path, then there exists a
positive integer K such that Lk.G/ is Hamiltonian for every integer k � K.
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Powers of Graphs

Another operation on graphs is the k-th power of a graph for various positive
integers k, a topic discussed in Sect. 1.2. Recall for a connected graph G and a
positive integer k that the k-th power Gk of G is the graph with V.Gk/ D V.G/

and E.Gk/ D fuv W 1 � dG.u; v/ � kg.
If G is connected, then Gk is complete if and only if k � diam.G/. Thus, it

suffices to consider Gk only when 1 � k < diam.G/. Since G is a spanning
subgraph of Gk for every positive integer k, the graph Gk is certainly Hamiltonian
if G itself is. For a connected graph G of order n � 3, there is a smallest positive
integer k such that Gk is Hamiltonian. That G3 is Hamiltonian for every connected
graph of order 3 or more is a consequence of a result of Sekanina [61]. Recall that a
graph G is Hamiltonian-connected if G contains a Hamiltonian u� v path for every
two distinct vertices u and v of G.

Theorem 2.21. The cube of every connected graph is Hamiltonian-connected.

Proof. If H is a spanning subgraph of G and H 3 is Hamiltonian-connected, then G3

is also Hamiltonian-connected. Hence, it suffices to prove that the cube of every tree
is Hamiltonian-connected. We proceed by induction on n, the order of the tree. Since
the result is obvious for those graphs having diameter at most 3, assume for every
tree of order less than n that its cube is Hamiltonian-connected for some n � 5.
Let T be a tree of order n. For two arbitrary distinct vertices u; v 2 V.T /, let
.u D v1; v2; : : : ; vdC1 D v/ be the unique u � v path in T , where d D dT .u; v/.
Also, let T1 and T2 be the two components of T � v1v2, where vi belongs to Ti for
i D 1; 2. Thus, for each tree Ti , either Ti is trivial or T 3

i is Hamiltonian-connected.
We consider the following two cases.

Case 1. v D v2, that is, uv 2 E.T /. For each i D 1; 2, let wi 2 NTi .vi / if Ti is
nontrivial and let wi D vi otherwise. (Note that at most one of T1 and T2 is trivial.)
Then dT .w1; w2/ � 3 and so w1w2 2 E.T 3/. If we let P .i/ be a Hamiltonian vi �wi

path in T 3
i (which may be trivial) for i D 1; 2, then P .1/ and P .2/ with the edge

w1w2 form a Hamiltonian u � v path in T 3.

Case 2. v ¤ v2. Then T 3
2 contains a Hamiltonian v2 � v path P . Let P .1/ be a

Hamiltonian v1 � w1 path in T 3
1 , as described in Case 1. Since dT .w1; v2/ � 2, the

paths P .1/ and P with the edge w1v2 form a Hamiltonian u � v path in T 3. ut

The following is therefore immediate by the previous result.

Theorem 2.22. The cube of every connected graph of order at least 3 is
Hamiltonian.
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The graph of order 7 in Fig. 2.5 is the square of the tree obtained by subdividing
each edge of K1;3 exactly once. We have already seen that this graph is not
Hamiltonian. Consequently, even though the cube of every connected graph of order
at least 3 is Hamiltonian, such is not the case for the square. On the other hand, in
the 1960s, Plummer and Nash-Williams independently conjectured that the square
of every 2-connected graph is Hamiltonian. In 1974, this conjecture was verified by
Fleischner [33].

Theorem 2.23. The square of every 2-connected graph is Hamiltonian.

2.6 Hamiltonian Walks and Cyclic Orderings

Let G be a nontrivial connected graph. By a Hamiltonian walk in G is meant a
closed spanning walk of minimum length in G. Thus, while an Eulerian walk is a
closed edge-covering walk, not necessarily of minimum length, a Hamiltonian walk
is a closed vertex-covering walk of minimum length. The length of a Hamiltonian
walk in G is called the Hamiltonian number of G and is denoted by h.G/. Therefore,
h.G/ � jV.G/j and h.G/ D jV.G/j if and only if G is either Hamiltonian or K2.

For a connected graph G, recall that e.G/ denotes the minimum length of an
Eulerian walk in G. We saw in Sect. 1.4 that jE.G/j � e.G/ � 2jE.G/j. Therefore,
if G is a nontrivial connected graph, then

jV.G/j � h.G/ � e.G/ � 2jE.G/j: (2.1)

That the upper bound 2jE.G/j for h.G/ cannot be improved is shown in the next
result due to Goodman and Hedetniemi [37].

Theorem 2.24. If T is a tree of order n � 2, then h.T / D 2.n � 1/.

Proof. Since the size of a tree of order n is n � 1, it suffices to show by (2.1)
that h.T / � 2.n � 1/. Let W be a Hamiltonian walk in T and consider an edge
uv 2 E.T /. We may assume that u precedes v on W . Since uv is a bridge, it lies
on W . We may therefore assume that W begins with u and is immediately followed
by v. Since W terminates at u, the vertex u appears a second time on W and this
occurrence of u is immediately preceded by v. Thus the edge uv appears at least
twice on W . Hence h.T / � 2.n � 1/ and therefore h.T / D 2.n � 1/. ut

The proof of Theorem 2.24 in fact shows that every bridge in a connected graph
G must appear at least twice on any Hamiltonian walk in G. Since a Hamiltonian
walk in a spanning tree T of G is also a Hamiltonian walk in G, it follows that
h.G/ � h.T /. Thus we have the following.
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Fig. 2.8 Illustrating cyclic
orderings of the vertices in a
graph

Theorem 2.25. If G is a nontrivial connected graph of order n, then

n � h.G/ � 2.n � 1/:

In [23] Chartrand, Thomas, Saenpholphat, and Zhang described an alternative
way to compute the Hamiltonian number of a graph. If a graph G of order
n is Hamiltonian, then each Hamiltonian walk in G is a Hamiltonian cycle
C in G, say C D .v1; v2; : : : ; vn; v1/, and so h.G/ D n. Since the edges
v1v2; v2v3; : : : ; vn�1vn; vnv1 belong to G, it follows that there is a cyclic ordering
v1; v2; : : :, vn; vnC1 D v1 of the vertices of G such that

Pn
iD1 d.vi ; viC1/ D n.

In general, for a connected graph G of order n � 2 and a cyclic ordering s W v1;

v2; : : : ; vn; vnC1 D v1 of the vertices of G, the number d.s/ is defined as

d.s/ D
nX

iD1

d.vi ; viC1/: (2.2)

Since d.vi ; viC1/ � 1 for i D 1; 2; : : : ; n, it follows that d.s/ � n: To illustrate
this concept, consider the graph G D K2;4 shown in Fig. 2.8. The distance between
every two vertices of G is either 1 or 2. In every cyclic ordering of the vertices of
G, there are either two pairs or four pairs of consecutive vertices with distance 2.
Consider, for example, the two cyclic orderings s1 W v1; v3; v2; v4; v5; v6; v1 and s2 W
v1; v2; v3; v4; v5; v6; v1. Then d.s1/ D 8 and d.s2/ D 10.

We define the number h�.G/ D min fd.s/g ; where the minimum is taken over
all cyclic orderings s of the vertices of G. Then h�.G/ � n for each connected
graph G of order n � 3 and h�.G/ D n if and only if G is Hamiltonian. In the
graph G D K2;4 of Fig. 2.8, for every cyclic ordering s of V.G/, either d.s/ D 8 or
d.s/ D 10. Thus h�.G/ D 8.

The interest in the parameter h�.G/ lies in the following theorem.

Theorem 2.26. For every connected graph G, h�.G/ D h.G/:

Proof. The result clearly holds if the order of G is 2 and so we assume that
jV.G/j D n � 3. For a cyclic ordering s W v1; v2; : : : ; vn; vnC1 D v1 of V.G/ with
d.s/ D h�.G/, let P .i/ be a vi � viC1 geodesic in G for 1 � i � n. Then the walk
obtained by proceeding along the paths P .1/; P .2/; : : : ; P .n/ in the given order is a
closed spanning walk of G whose length equals h�.G/. Therefore, h.G/ � h�.G/.

Next, let W D .x0; x1; : : : ; x`/ be a Hamiltonian walk in G. Hence, L.W / D
h.G/ � n. Let vi D xi�1 for i D 1; 2. For 3 � i � n, let vi D xji ,
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where ji is the smallest positive integer such that xji … fv1; v2; : : : ; vi�1g. Then
s W v1; v2; : : : ; vn; vnC1 D v1 is a cyclic ordering of V.G/. For 1 � i � n, let Wi be
the vi � viC1 subwalk of W . Then

h�.G/ � d.s/ D
nX

iD1

d.vi ; viC1/ �
nX

iD1

L.Wi / D L.W / D h.G/;

which completes the proof. ut

By Theorems 2.25 and 2.26, h�.T / D h.T / D 2.n � 1/ for every tree T of
order n. In fact, trees are the only graphs G satisfying h.G/ D 2.jV.G/j � 1/.

Theorem 2.27 ([23]). Let G be a nontrivial connected graph of order n. Then
h.G/ D 2.n � 1/ if and only if G is a tree.

Proof. By Theorem 2.24, it remains to show that h.G/ < 2.n � 1/ if G contains
cycles. We proceed by induction on n. If n D 3, then G D K3 and the result is
immediate. Assume for an integer n � 4 that h.H/ < 2.n � 2/ for each connected
graph H of order n� 1 that is not a tree. Let G be a connected graph of order n that
is not a tree. Since h.Cn/ D n < 2.n � 1/, we may assume that G ¤ Cn.

We claim that G contains a vertex u such that G�u is connected but not a tree. If
G contains cut-vertices, then there is a vertex u in an end-block of G with the desired
property. Thus we may assume that G is 2-connected. Since G ¤ Cn, it follows that
G contains a cycle C whose length is less than n. Thus, there is a vertex u that is
not a cut-vertex and G � u still contains C . Since h.G � u/ < 2.n � 2/, there is a
cyclic ordering s0 W v1; v2; : : : ; vn�1; v1 of the vertices of G � u such that d.s0/ D
h.G � u/ < 2.n � 2/. Suppose that u is adjacent to the vertex vi and consider the
cyclic ordering s of V.G/ defined by s W v1; v2; : : : ; vi ; u; viC1; : : : ; vn�1; v1: Since
d.u; vi / D 1, it follows that d.u; viC1/ � d.u; vi /C d.vi ; viC1/ D 1C d.vi ; viC1/:

Hence

d.s/ D d.s0/ � d.vi ; viC1/C d.vi ; u/C d.u; viC1/

� d.s0/ � d.vi ; viC1/C 1C .1C d.vi ; viC1//

< 2.n � 2/C 2 D 2.n � 1/:

Therefore, h.G/ � d.s/ < 2.n � 1/. ut

In Theorem 1.23, we saw for a connected graph G of size m � 1 that e.G/ D 2m

if and only if G is a tree. It then follows by Theorem 2.24 that if G is a tree of order
n, then h.G/ D e.G/ D 2.n � 1/. It was shown in [37] that there are connected
graphs G that are not trees and yet h.G/ D e.G/. In order to describe a class
of graphs with this property, it is useful to introduce a new term. A cycle C in a
connected graph G is a cut-cycle of G if G �E.C / is disconnected.
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For an Eulerian walk W of a connected graph G, let M be the multigraph
obtained from G by replacing each edge uv of G by i parallel edges, where i

equals the number of times the edge uv is encountered on W . In this case, M is
said to be induced by W . In other words, M is the multigraph induced by E.W /.
Consequently, M is Eulerian and V.M/ D V.G/.

Theorem 2.28. If G is a connected graph such that h.G/ D e.G/, then every cycle
of G is a cut-cycle.

Proof. If G is a tree, then h.G/ D e.G/ and the result follows vacuously.
Otherwise, we may assume, to the contrary, that h.G/ D e.G/ and G contains
a cycle C that is not a cut-cycle. Therefore, G � E.C / is a connected spanning
subgraph of G. Suppose that C is an `-cycle. Let W be an Eulerian walk of
G with L.W / D e.G/ and let M be the multigraph induced by E.W /. Then
M is an Eulerian multigraph and V.M/ D V.G/. Since C is not a cut-cycle,
M � E.C / is an Eulerian spanning submultigraph of M . An Eulerian circuit in
M � E.C / gives rise to a closed spanning walk in G � E.C / and so in G. Hence
h.G/ � jE.M/ �E.C /j D e.G/ � ` < e.G/, which is a contradiction. ut

Theorem 2.28 was strengthened in 1974 by Goodman and Hedetniemi [37].

Theorem 2.29. If a connected graph G contains a cycle such that more than half
of its edges can be removed without disconnecting G, then h.G/ < e.G/.

Proof. Let W be an Eulerian walk of G with L.W / D e.G/ and let M be the
Eulerian multigraph induced by W . Let C be a cycle of G such that E.C / can be
partitioned into E1 and E2 with jE1j > jE2j and G � E1 is connected. Certainly,
C is a cycle in M . Also, M � E1 is a connected spanning submiltigraph of M ,
since G � E1 � M � E1 and G � E1 is connected. For each edge e D uv in E2,
we add an additional edge joining u and v in M � E1. This produces an Eulerian
multigraph M 0 whose vertex set is V.G/. An Eulerian circuit in M 0 gives rise to a
closed spanning walk in G�E1 and so in G. Hence h.G/ � jE.M/j�jE1jCjE2j D
jE.M/j � .jE1j � jE2j/ < jE.M/j D e.G/. ut

The converse of Theorem 2.29 is false. For example, consider G D K2;3, where
h.G/ D 6 and e.G/ D 8. In this case, the removal of more than half of the edges
of every cycle results in a subgraph of K1 C P4, which is disconnected. On the
other hand, if G is an Eulerian graph, then the converse is true, as the next result
shows [37]. In order to present a proof of this result, we first make some preliminary
observations. We saw that if W is an Eulerian walk of minimum length in a graph
G, then each edge of G appears at most twice in W: It was shown in [37] that this is
also the case for a Hamiltonian walk in a graph.

Theorem 2.30. Every edge in a connected graph G appears at most twice in a
Hamiltonian walk in G.
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Proof. Suppose that there exists some edge uv of a connected graph G that appears
at least three times in a Hamiltonian walk W in G. We may assume that W has one
of the following two forms

W 0 D .u; v; W1; u; v; W2; u; v; W3/ and W 00 D .u; v; W1; u; v; W2; v; u; W3/;

where W1; W2; W3 are (possibly empty) subwalks in W . Let
 �
W i denote the reverse

of the subwalk Wi . If W D W 0, then the walk .u;
 �
W 1; v; W2; u; v; W3/ is a closed

spanning walk of G which is shorter than W . This contradicts the defining property

of W . Similarly, if W D W 00, then the walk .u;
 �
W 1; v; W2; v; u; W3/ is a closed

spanning walk of G which is shorter than W , another contradiction. ut

The following theorem deals with Hamiltonian walks in Eulerian graphs.

Theorem 2.31. Let G be an Eulerian graph. Then h.G/ < e.G/ if and only if
G contains a cycle such that more than half of its edges can be removed without
disconnecting G.

Proof. By Theorem 2.29, we only show that an Eulerian graph G with h.G/ <

e.G/ has a cycle the removal of more than half of whose edges from G does not
disconnect G. Let G be an Eulerian graph and consider a Hamiltonian walk W of
G. By Theorem 2.30, we have a partition fE0; E1; E2g of E.G/ such that e 2 Ei if
and only if e appears i times in W for 0 � i � 2. Therefore, E0 is not an edge-cut of
G. Also, h.G/ D L.W / D jE1jC2jE2j and e.G/ D jE.G/j D jE0jCjE1jCjE2j.
Thus, h.G/ < e.G/ implies that jE0j > jE2j.

For a vertex v 2 V.G/, let Ev be the set of the edges incident with v in G.
Of course, degG v D jEvj is even since G is Eulerian. Also, since the multigraph
M induced by E.W / is Eulerian whose vertex set equals V.G/, it follows that
degM v D jEv \ E1j C 2jEv \ E2j is also even, which in turn implies that jEv \
.E0 [E2/j is even. Thus, the graph G0 induced by E0 [E2 is a nonempty spanning
subgraph of G in which every nontrivial component is Eulerian. Thus, G0 has a cycle
decomposition according to Veblen’s Theorem and so G0 (and G as well) contains
a cycle C such that jE.C /\E0j > jE.C /\E2j. Now, G � .E.C / \E0/ must be
connected since E0 is not an edge-cut of G. ut

One of the best known sufficient conditions for a graph to be Hamiltonian is that
due to Ore (Theorem 2.2). This theorem can be stated in terms of the Hamiltonian
number of a graph as follows.

Theorem 2.32. If G is a graph of order n � 3 such that deg uCdeg v � n whenever
uv … E.G/, then h.G/ D n.
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Jean-Claude Bermond [10] generalized this result by showing that if G is a
connected graph of order n for which the minimum degree sum � of every two
nonadjacent vertices of G satisfies 2 � � � n, then h.G/ is no more than 2n � � .

Theorem 2.33 (Bermond’s Theorem). Let G be a connected graph G of order
n � 3. If deg u C deg v � � for every pair u; v of nonadjacent vertices of G and
2 � � � n, then h.G/ � 2n � � .

Among the results obtained by Goodman and Hedetniemi is the following [37].

Theorem 2.34. Let G be a connected graph having blocks B1; B2; : : : ; Bk . Then
the union of the edges in a Hamiltonian walk for each of the blocks Bi forms a
Hamiltonian walk for G and, conversely, the edges in a Hamiltonian walk of G that
belong to Bi form a Hamiltonian walk in Bi .

Theorem 2.34 implies that the study of Hamiltonian walks can be restricted
to 2-connected graphs. For k-connected graphs .k � 2/ of a specified diameter,
the following appears in [37]. The diameter of a connected graph G is the largest
distance between two vertices of G and is denoted by diam.G/.

Theorem 2.35. If G is a k-connected graph of order n having diameter d , then

h.G/ � 2.n � 1/ � 2 bk=2c .d � 1/:

The clique number of a graph G is the maximum order among the complete
subgraphs of G. In [59] an upper bound was established for h.G/ in terms of the
order and clique number of a connected graph G.

Theorem 2.36. If G is a nontrivial connected graph of order n having clique
number !, then h.G/ � 2n � !: Furthermore, for each integer ! with 2 � ! � n,
there exists a connected graph G of order n having clique number ! such that
h.G/ D 2n � !:

By Theorem 2.27, trees of order n are the only connected graphs of order n with
Hamiltonian number 2.n � 1/. All connected graphs of order n with Hamiltonian
number 2n� 3 or 2n� 4 are characterized in [59]. A connected graph with exactly
one cycle is called a unicyclic graph. Therefore, a unicyclic graph is a graph
obtained from a tree by joining two nonadjacent vertices. In other words, G is
unicyclic if G itself is a cycle or G contains exactly one block that is a cycle and
each of the remaining block is K2.

Theorem 2.37. Let G be a connected graph of order n � 3. Then h.G/ D 2n � 3

if and only if G is a unicyclic graph whose unique cycle is a triangle.
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Let G1 be the set of connected graphs G of order n � 5 with cut-vertices such that
G contains exactly two blocks that are K3 and each of the remaining blocks of G is
K2. Also, let G2 be the set of connected graphs G of order n � 5 with cut-vertices
such that G contains exactly one block that is one of the graphs in the set

fK4g [ fK2;n0�2; K1;1;n0�2 W 4 � n0 � n � 1g
and each of the remaining blocks of G is K2.

Theorem 2.38. Let G be a connected graph of order n. Then h.G/ D 2n�4 if and
only if (a) n � 4 and G 2 fK4; K2;n�2; K1;1;n�2g or (b) n � 5 and G 2 G1 [ G2.

We have seen that if T is a nontrivial tree of order n, then h.T / D 2.n � 1/,
which is clearly even. With the aid of the alternative definition of the Hamiltonian
number of a graph in terms of d.s/ defined in (2.2), we can extend this fact to all
connected bipartite graphs.

Theorem 2.39 ([35]). If G is a nontrivial connected bipartite graph, then d.s/ is
even for every cyclic ordering s of V.G/.

Proof. For an arbitrary cyclic ordering s W v1; v2; : : : ; vn; vnC1 D v1 of V.G/, where
n D jV.G/j, consider the set fi1; i2; : : : ; ikg of integers with 1 D i1 < i2 < � � � <
ik D nC2 (where the subscripts of the vertices are expressed as integers modulo n)
such that (i) vij and vij C1

belong to different partite sets .1 � j � k � 2/ and (ii)
the set Sj D fvi W ij � i < ij C1g is contained in a partite set .1 � j � k � 1/.
Since v1 D vnC1 belongs to both S1 and Sk�1, it follows that k must be even and
the partite sets of G are S1 [ S3 [ � � � [ Sk�1 and S2 [ S4 [ � � � [ Sk�2. Therefore,
d.vi ; viC1/ is odd if and only if i D ij � 1 .2 � j � k � 1/, that is, exactly k � 2

of the n summands in d.s/ are odd. ut

Alternatively, we may consider Theorem 2.39 as follows. For a nontrivial
connected graph G of order n, suppose that s W v1; v2; : : : ; vn; vnC1 D v1 is a cyclic
ordering of V.G/. If P .i/ is a vi � viC1 geodesic for 1 � i � n, then the walk
W obtained by traversing the n paths P .1/; P .2/; : : : ; P .n/ in this order is a closed
walk in which every vertex of G appears at least once. Furthermore, the length of
W equals d.s/. Since the length of a u � v walk in a bipartite graph is even if and
only if u and v belong to the same partite set, every closed walk in a bipartite graph
has even length.

Theorem 2.40. If G is a connected bipartite graph, then h.G/ is even.

Hamiltonian walks in maximal planar graphs were studied by Asano, Nishizeki,
and Watanabe [7, 8]. In [7], it was shown that if G is a maximal planar graph of
order n � 10, then G is Hamiltonian and so h.G/ D n. For a maximal planar graph
of order n � 11, an upper bound was established in terms of n.
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Theorem 2.41. If G is a maximal planar graph of order n � 11, then h.G/ �
1:5.n � 3/.

As indicated in [8], the problem of finding a Hamiltonian walk in a given graph
is NP-complete. This problem is a generalized Hamiltonian cycle problem and is a
special case of the Traveling Salesman Problem. With the aid of the techniques of
divide-and-conquer and augmentation, an approximation algorithm for this problem
on maximal planar graphs was presented in [8]. This algorithm finds in O.n2/

time, a closed spanning walk of length at most 3.n � 3/=2 in a given arbitrary
maximal planar graph of order n � 9. More recent results include the following by
Kawarabayashi and Ozeki [44].

Theorem 2.42. Let G be a 3-connected planar graph. Then h.G/ � 4.n � 1/=3,
where jV.G/j D n.

2.7 The Upper Hamiltonian Number of a Graph

In Sect. 2.6, we saw for the graph G D K2;4 (shown in Fig. 2.8) that d.s/ D 8 D
h.G/ or d.s/ D 10 for every cyclic ordering s of V.G/.

For a connected graph G in general, the upper Hamiltonian number hC.G/ is
defined as

hC.G/ D max fd.s/g ;
where the maximum is taken over all cyclic orderings s of the vertices of G. This
concept was introduced in [23]. Thus, h.G/ D 8 while hC.G/ D 10 for G D
K2;4. In fact, Theorem 2.39 implies that both h.G/ and hC.G/ are even when G is
bipartite.

Obviously, hC.G/ � h.G/ for every connected graph G in general, while the two
parameters are equal when G is complete. As another example, let us consider the
hypercubes Qn. Note that Q1 D K2 and so h.Q1/ D hC.Q1/ D 2. For n � 2, the
graph Qn is Hamiltonian and so h.Qn/ D 2n for each n � 1. The upper Hamiltonian
number of Qn was obtained in [23].

Theorem 2.43. For each integer n � 2, hC.Qn/ D 2n�1.2n � 1/:

Proof. First, we show that hC.Qn/ � 2n�1.2n � 1/: Let s be an arbitrary cyclic
ordering of V.Qn/ with d.s/ D hC.Qn/. Since diam.Qn/ D n and each vertex
v 2 V.Qn/ has exactly one vertex v0 2 V.Qn/ such that d.v; v0/ D n, at most 2n�1

terms in d.s/ are equal to n. Thus, hC.Qn/ D d.s/ � 2n�1n C 2n�1.n � 1/ D
2n�1.2n � 1/:

To verify that hC.Qn/ � 2n�1.2n � 1/, note that the result is straightforward
to verify for Q2 D C4 and so we may assume that n � 3. Let G D Qn. Then G

consists of two disjoint copies G1 and G2 of Qn�1, where corresponding vertices
of G1 and G2 are adjacent. For each vertex v of G, there is a unique vertex v0 of G
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such that d.v; v0/ D n D diam.Qn/. Necessarily, exactly one of v and v0 belongs to
G1. Let .v1; v2; : : : ; v2n�1 ; v2n�1C1 D v1/ be a Hamiltonian cycle in G1 and consider
the cyclic ordering s W v1; v0

1; v2; v0
2; : : : ; v2n�1 ; v0

2n�1 ; v1 of V.G/. By the triangle
inequality, d.viC1; v0

i / � d.vi ; v0
i / � d.vi ; viC1/ D n � 1 for 1 � i � 2n�1. Hence,

hC.Qn/ � d.s/ D 2n�1nC 2n�1.n � 1/ D 2n�1.2n � 1/: ut

The upper Hamiltonian numbers of trees and cycles have been calculated in
[23, 47].

Theorem 2.44. If T is a nontrivial tree of order n, then

2.n � 1/ D h.T / � hC.T / � �n2=2
˘

:

Furthermore, hC.T / D 2.n � 1/ if and only if T is a star and hC.T / D �
n2=2

˘
if

and only if T is a path.

Theorem 2.45. For each integer n � 3, h.Cn/ D n and

hC.Cn/ D .n � 2/b.n � 1/=2c C 2d.n � 1/=2e:

Theorems 2.43–2.45 show, not surprisingly, that hC.G/ can be considerably
larger than h.G/. There are, however, only two graphs G of a fixed order for which
h.G/ D hC.G/, a fact established in [23]. Two vertices u and v are antipodal
vertices in a connected graph G if d.u; v/ D diam.G/.

Theorem 2.46. Let G be a nontrivial connected graph. Then h.G/ D hC.G/ if
and only if G is either complete or a star.

Proof. Let G be a connected graph of order n � 2. For every cyclic ordering s of
V.G/, observe that d.s/ D n if G is complete while d.s/ D 2.n � 1/ if G is a star.
In other words, h.Kn/ D hC.Kn/ D n and h.K1;n�1/ D hC.K1;n�1/ D 2.n � 1/.

For the converse, suppose that G is a connected graph of order n and G ¤
Kn; K1;n�1. Thus, n � 4 and d D diam.G/ � 2. We may also assume by
Theorems 2.44 and 2.45 that G is neither a path nor a cycle. We now consider
two cases, according to whether d � 3 or d D 2.

Case 1. d � 3. Let P D .v1; v2; : : : ; vdC1/ be a v1 � vdC1 geodesic, where v1

and vdC1 are antipodal vertices in G. Since G itself is not a path, the set U D
V.G/ � V.P / is not empty. Write U D fu1; u2; : : : ; un�d�1g and define cyclic
orderings s and s0 of V.G/ by

s W v1; v2; v3; v4; : : : ; vdC1; u1; u2; : : : ; un�d�1; v1 (2.3)

s0 W v1; v3; v2; v4; : : : ; vdC1; u1; u2; : : : ; un�d�1; v1: (2.4)
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Fig. 2.9 Induced subgraphs
F1 and F2 of G

Observe then that hC.G/ � d.s0/ D d.s/C 2 � h.G/C 2.

Case 2. d D 2. Since G is not a star, G contains cycles. Let g be the girth (the
length of a smallest cycle) in G. So g � 3. Assume first that g D 3. Since G is
connected and not complete, there exists a set V � V.G/ such that the subgraph
induced by V in G is isomorphic to one of the graphs F1 and F2 in Fig. 2.9.

If n D 4, then the cyclic orderings s W v1; v2; v3; v4; v1 and s0 W v1; v3; v2; v4; v1

show that hC.G/ � h.G/ C 1. For n � 5, the set U D V.G/ � V is nonempty.
Then define the cyclic orderings s and s0 of V.G/ as described in (2.3) and (2.4) with
d D 3, respectively, and verify that d.s0/ D d.s/C 1. Thus, hC.G/ � h.G/C 1.

If g � 4, then let C D .v1; v2; : : : ; vg; v1/ be an induced cycle of G and let
U D V.G/ � V.C / D fu1; u2; : : : ; un�gg, which is nonempty since G ¤ Cn.
Again, by considering the cyclic orderings s and s0 of V.G/ as described in (2.3)
and (2.4) with d D g � 1, respectively, we see that hC.G/ � h.G/C 2. ut

The proof of Theorem 2.46 suggests that if G is a graph with hC.G/�h.G/ D 1,
then jV.G/j � 4, diam.G/ D 2, and G must contain a triangle. In order to obtain a
complete characterization of those graphs G for which the difference between h.G/

and hC.G/ is exactly 1, the following is useful. Note that G _H denotes the join
of vertex-disjoint graphs G and H (while G CH is the union of G and H ).

Lemma 2.2. For a graph G, let G1 D K1 _G and G2 D K1 _G. Then hC.G1/�
h.G1/ D hC.G2/ � h.G2/.

Proof. For a graph G of order n � 1 .� 1/, construct each of G1 and G2 by adding
a new vertex and joining it to every vertex of G and G, respectively. Let V D
V.G1/ D V.G2/. Since G1 D G2 D K2 if n D 2, we may assume that n � 3.
For every two distinct vertices u; v 2 V.G/, we have dG1.u; v/ C dG2.u; v/ D 3.
Therefore, dG1.s/ C dG2.s/ D 3n � 2 for every cyclic ordering s of V . Let s1

and s2 be cyclic orderings of V.G1/ D V.G2/ such that dG1.s1/ D h.G1/ and
dG2.s2/ D hC.G2/. Then 3n � 2 D dG1.s1/ C dG2.s1/ � h.G1/ C hC.G2/ �
dG1.s2/C dG2.s2/ D 3n � 2; implying that h.G1/C hC.G2/ D 3n � 2. Similarly,
h.G2/C hC.G1/ D 3n � 2. Therefore, hC.G1/ � h.G1/ D hC.G2/ � h.G2/. ut

For a set U � V.G/, where say jU j D `, an ordering v1; v2; : : : ; v` of the `

vertices in U is called a linear ordering of U .
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Theorem 2.47. Let G be a nontrivial connected graph of order n. Then hC.G/ �
h.G/ D 1 if and only if n � 4 and G D K1 _H , where

H 2 fK1;:::;1;2; K1;:::;1;2; K1;n�2; K1;n�2g:

Proof. For n � 4, let H1 D K1;n�2, H2 D K1;:::;1;2, H3 D H2, and H4 D H1. Then
it is straightforward to verify that

h.K1 _Hi / D hC.K1 _Hi / � 1 D
�

nC 2 � i if i D 1; 2

2n � i if i D 3; 4.

For the converse, suppose that G is a connected graph of order n and hC.G/ �
h.G/ D 1. Then n � 4 since G is neither complete nor a star by Theorem 2.46.
Furthermore, as we saw in the proof of Theorem 2.46, there is neither P4 nor C4 as
an induced subgraph in G. We may therefore assume that �.G/ D n � 1 and G

contains triangles. That is, G D K1 _ H for some graph H of order n � 1 that is
neither complete nor empty. For n D 4, therefore, H 2 fK1;2; K1;2g.

Now assume that n � 5. We next show that none of 2K2, P4, and C4 is an
induced subgraph in H . We have already seen that neither P4 nor C4 can be an
induced subgraph in G, that is, neither is contained in H as an induced subgraph.
Also, 2K2 D C 4 cannot be an induced subgraph in H by Lemma 2.2. For n D 5,
therefore, H 2 fK1;1;2; K1;1;2; K1;3; K1;3g or H 2 fH0; H 0g, where H0 D K1CP3.
One can quickly verify that h.K1 _H0/ D 6 D hC.K1 _H0/� 2 and so hC.K1 _
H0/ � h.K1 _H0/ D hC.K1 _H 0/ � h.K1 _H 0/ D 2 by Lemma 2.2.

Finally, assume that n � 6. We next show that degH v 2 f0; 1; n � 3; n � 2g
for every v 2 V.H/. Assume, to the contrary, that v1 is a vertex in H with 2 �
degH v1 � n � 4. Then let v2; v3; v4; v5 be vertices in H such that v2 and v3 are
adjacent to v1 while v4 and v5 are not. Let v0 be the vertex in G that is adjacent to
every vertex in H . Then by considering two orderings s1 W v2; v1; v3; v4; v0; v5; v2 and
s2 W v2; v0; v3; v4; v1; v5; v2 (and by inserting some fixed linear ordering of V.G/ �
fv0; v1; : : : ; v5g between v5 and v2 in each of s1 and s2 in case n � 7), we see that
hC.G/ � h.G/ � 2. This verifies the claim. Furthermore, �.H/ 2 f1; n � 3; n �
2g since H is nonempty. If �.H/ D 1, then H D K1;:::;1;2 since 2K2 cannot be
an induced subgraph in H . Thus, we now consider the following two cases. Let
V.H/ D fv1; v2; : : : ; vn�1g and degH v1 D �.H/.

Case 1. �.H/ D n � 3. Then suppose that v1v2 … E.H/. If degH v2 � 1, say
v2v3 2 E.H/, then we may assume that v3v4 … E.H/ since degH v3 � n � 3.
However, this implies that the subgraph induced by fv1; v2; v3; v4g is either C4 or P4,
which cannot occur. Hence, degH v2 D 0. If H ¤ K1;n�2, then H D K1 CK1;n�3

since degH v 2 f0; 1; n�3; n�2g for every v 2 V.H/. To see that this cannot occur,
observe that H is traceable and K1 _ H is Hamiltonian while dK1_H .s/ � n C 2

for any cyclic ordering of V.K1 _ H/ whose first three terms are v3; v1; v4. Thus,
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hC.K1 _ H/ � h.K1 _ H/ D hC.K1 _ H/ � h.K1 _ H/ � 2 by Lemma 2.2.
Therefore, H D K1;n�2 is the only possibility in this case.

Case 2. �.H/ D n�2. Then ı.H/ 2 f1; n�3g since H is not complete. If there are
two or more vertices having degree n � 2 in H , then ı.H/ D n � 3. Furthermore,
H D K1;:::;1;2 since C4 cannot occur as an induced subgraph in H . On the other
hand, if v1 is the only vertex whose degree in H equals n � 2, then the number of
end-vertices in H is either 1 or n� 2. If the former occurs, then H D K1CK1;n�3.
However, this is impossible by Case 1 and Lemma 2.2. Therefore, H D K1;n�2. ut

Observe that if s W v1; v2; : : : ; vn; vnC1 D v1 is any cyclic ordering of the vertices
of a connected graph, then for each vertex vi .1 � i � n/, both d.vi�1; vi / � e.vi /

and d.vi ; viC1/ � e.vi /, where e.vi / denotes the eccentricity of vi (the distance
from vi to a vertex farthest from vi ). Therefore, if G is a connected graph of order
n � 3 with V.G/ D fv1; v2; : : : ; vng, then

hC.G/ �
nX

iD1

e.vi /:

Since the eccentricity of a vertex in G is at most the diameter of G, we have the
following upper bound for hC.G/ in terms of the order and diameter of G.

Theorem 2.48. If G is a nontrivial connected graph of order n and diameter d ,
then hC.G/ � nd:

The upper bound in Theorem 2.48 has been shown to be sharp in [23]. A sharp
lower bound for the upper Hamiltonian number of a connected graph G, also in
terms of the order and diameter of G, was obtained by Král, Tong, and Zhu in [47].

Theorem 2.49. If G is a nontrivial connected graph of order n and diameter d ,
then

hC.G/ � nC dd 2=2e � 1:

Furthermore, for each pair n; d of integers satisfying 1 � d � n � 1, there is a
connected graph G of order n and diameter d with hC.G/ D nC dd 2=2e � 1.

2.8 The Hamiltonian Spectrum of a Graph

For a connected graph G, the Hamiltonian spectrum H .G/ of G is defined in
[47] as

H .G/ D fd.s/ W s is a cyclic ordering of the vertices of Gg:



2.8 The Hamiltonian Spectrum of a Graph 63

Fig. 2.10 Illustrating the
Hamiltonian spectrum of a
graph

Of course, this implies that h.G/; hC.G/ 2H .G/ and, in general,

H .G/ � fk W k D h.G/; h.G/C 1; : : : ; hC.G/g: (2.5)

The following is therefore an immediate consequence of Theorem 2.46.

Theorem 2.50. The Hamiltonian spectrum of a connected graph G consists of a
single number if and only if G is either a complete graph or a star.

As another illustration, consider the Petersen graph P in Fig. 2.10. Since P is a
non-Hamiltonian graph of order 10, it follows that h.P / � 11. On the other hand,
hC.P / � 20 by Theorem 2.48. Therefore, 11 � h.P / < hC.P / � 20: In fact,
h.P / D 11 and hC.P / D 20. Consider the sequences si .1 � i � 10/ given by

s1 W u1; u2; u3; u4; u5; v5; v2; v4; v3; v1; u1

s2 W u1; u2; u3; u4; u5; v5; v2; v3; v4; v1; u1

s3 W u1; u2; u3; u5; u4; v4; v2; v3; v5; v1; u1

s4 W u1; u3; u5; u2; u4; v4; v2; v5; v3; v1; u1

s5 W u1; u3; u5; u2; u4; v3; v5; v2; v4; v1; u1

s6 W u1; u3; u5; u2; u4; v5; v2; v4; v3; v1; u1

s7 W u1; u3; u5; u2; u4; v3; v5; v4; v2; v1; u1

s8 W u1; u3; u5; u2; v2; u4; v3; v4; v5; v1; u1

s9 W u1; u3; u5; u2; u4; v2; v3; v4; v5; v1; u1

s10 W u1; u3; u5; u2; u4; v1; v2; v3; v4; v5; u1:

Since d.si / D 10 C i for 1 � i � 10, it follows that H .P / D f11; 12; : : : ; 20g,
that is, equality holds in (2.5). On the other hand, Theorem 2.39 implies that the
Hamiltonian spectrum of a connected bipartite graph consists only of even integers,
that is, equality in (2.5) does not hold in general.

The Hamiltonian spectrum of an n-cycle was determined in [47] for each integer
n � 3. Recall that hC.Cn/ D .n � 2/b.n � 1/=2c C 2d.n � 1/=2e.

Theorem 2.51. Let n � 3 be an integer.
(a) If n is even, then H .Cn/ D fn; nC 2; : : : ; hC.Cn/ � 2; hC.Cn/g:



64 2 Hamiltonian Walks

(b) If n is odd, then

H .Cn/ Dfn; nC 2; : : : ; 2n � 5; 2n � 3g[
f2n � 2; 2n � 1; : : : ; hC.Cn/ � 2g [ fhC.Cn/g:

The Hamiltonian spectrum of a tree was determined by Liu [50]. In order to
present this result, we introduce some additional definitions. For a vertex v of a
connected graph G, the total distance td.v/ of v is the sum of the distances from v
to all vertices of G. The minimum total distance over all vertices of G is the median
number of G and is denoted by med.G/.

Theorem 2.52. For a nontrivial tree T of order n,

H .T / D f2k W k D n � 1; n; nC 1; : : : ; med.T /g:

The following is a consequence of Theorem 2.52.

Theorem 2.53. The upper Hamiltonian number of a nontrivial tree T equals
2 med.T /.

According to Theorems 2.44 and 2.53 (or Theorem 2.39), the upper Hamiltonian
number of a tree of order n is an even integer between 2.n � 1/ and

�
n2=2

˘
. In

fact, for each integer n � 3, every even integer between 2.n � 1/ and
�
n2=2

˘
is

the upper Hamiltonian number of some tree of order n. In order to show this, we
first present some preliminary results. A vertex of a connected graph G whose total
distance equals the median number of G is a median vertex of G. The subgraph
of G induced by its median vertices of G is the median of G. The following two
lemmas will be useful to us, the first of which is an easy observation and the second
of which was established by Truszczyński [65].

Lemma 2.3. No end-vertex of a tree T of order at least 3 is a median vertex of T .

Lemma 2.4. The median of every connected graph G lies in a single block of G.

It therefore follows by Lemma 2.4 that the median of a tree is either K1 or K2.

Theorem 2.54. For each pair n; k of integers satisfying 1 � n � 1 � k � bn2=4c,
there exists a tree T of order n such that hC.T / D 2k.

Proof. By Theorem 2.44, the result holds when k 2 fn�1; bn2=4cg. Thus, let n � 5

be a fixed integer and suppose that k is an integer satisfying nC 1 � k � bn2=4c
and there exists a tree Tk of order n with hC.Tk/ D 2k. We show that there exists a
tree T of order n with hC.T / D 2.k � 1/.
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Let x be a median vertex of Tk and select a vertex y farthest from
x. Thus, y is an end-vertex in Tk while x is not by Lemma 2.3. Also,
tdTk

.x/ D med.Tk/ D k by Theorem 2.53. Now consider the y � x geodesic
P D .y D v0; v1; v2; : : : ; ve.x/ D x/, where e.x/ is the eccentricity of x. Note that
e.x/ � 2 since Tk is not a star. Let T be the tree obtained from Tk by deleting the
edge v0v1 and adding the edge v0v2. Then y is an end-vertex in T while v1 may or
may not. We claim that med.T / D k � 1. For each vertex v 2 V.T /� fyg, observe
that

tdT .v/ D
�

tdTk
.v/C 1 if v 2 V.T 0/

tdTk
.v/ � 1 otherwise,

where T 0 is the component of T �v1v2 containing v1. Since tdT .y/ > med.T / again
by Lemma 2.3, it follows that med.T / D tdT .x/ D k�1 and so hC.T / D 2.k�1/

by Theorem 2.53. ut

As we have seen earlier, d.s/ and d.s0/ are of the same parity for every two cyclic
orderings s and s0 of V.G/ if G is either complete or bipartite. In fact, these are the
only two classes of connected graphs with this property.

Theorem 2.55 ([35]). A nontrivial connected graph G has the property that d.s/

and d.s0/ are of the same parity for every two cyclic orderings s and s0 of V.G/ if
and only if G is complete or bipartite.

Proof. By the discussion above, we may assume that G is neither complete nor
bipartite. We consider two cases.

Case 1. G contains a triangle. Let G0 D K! be a largest clique in G, where then
! � 3. Since G is not complete and G is connected, there is a vertex in V.G/ �
V.G0/ that is adjacent to some but not all vertices of G0. Thus, there is a triangle
.v1; v2; v3; v1/ and a vertex v4 2 V.G/ � fv1; v2; v3g such that v2v4 … E.G/ and
v3v4 2 E.G/. For a fixed linear ordering s of V.G/ � fv2; v3; v4g whose terminal
vertex is v1, let s1 be the ordering v1; v2; v3; v4 followed by s. Similarly, let s2 be
the ordering v1; v3; v2; v4 followed by s. Then both s1 and s2 are cyclic orderings of
V.G/ and d.s2/ � d.s1/ D 1. Hence, d.s1/ and d.s2/ are of opposite parity.

Case 2. G is triangle-free. Let C D .v1; v2; : : : ; v`; v1/ be a shortest odd cycle in G.
Thus, ` � 5 and C is an induced subgraph of G. We consider two subcases.

Subcase 2.1. ` D 5. If G itself is a cycle, that is, if n D ` D 5, then let s1 W
v1; v3; v2; v4; v5; v1 and s2 W v1; v3; v4; v2; v5; v1 be two cyclic orderings of the vertices
of G. Hence, d.s1/ D 7 and d.s2/ D 8. If n � 6, then let s be a fixed linear ordering
of the vertices of V.G/ � fv2; v3; v4; v5g whose terminal vertex is v1. Now consider
s0

1 W v1; v3; v2; v4; v5 and s0
2 W v1; v4; v2; v3; v5. For i D 1; 2, let si be the ordering s0

i

followed by s. Then si is a cyclic ordering of V.G/ and d.s2/ � d.s1/ D 1.
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Subcase 2.2. ` � 7. Let s be a fixed linear ordering of the set V.G/�fv2; : : : ; v`�1g
whose terminal vertex is v1. Let `� D .`C 1/=2 and consider

s0
1 W v1; v`� ; v2; v3; : : : ; v`��1; v`�C1; v`�C2; : : : ; v`�1

s0
2 W v1; v`�C1; v2; v3; : : : ; v`� ; v`�C2; v`�C3; : : : ; v`�1:

For i D 1; 2, let si be the ordering s0
i followed by s. Then both s1 and s2 are cyclic

orderings of V.G/ and d.s2/ � d.s1/ D 1. ut

The following is an immediate consequence of the proof of Theorem 2.55.

Theorem 2.56. If G is a nontrivial connected graph that is neither complete nor
bipartite, then there are cyclic orderings s and s0 of V.G/ such that d.s/�d.s0/ D 1.
In other words, H .G/ contains two consecutive integers.

We have seen that the Hamiltonian spectrum of a graph G consists of a single
element if and only if G is either complete or a star. Suppose now that G is a graph
for which H .G/ contains exactly two elements. If G is not bipartite, then it follows
by Theorem 2.56 that hC.G/ � h.G/ D 1. Such graphs have been completely
characterized in Theorem 2.47.

A tree T is a double star if it contains exactly two vertices that are not end-
vertices. Necessarily, these two vertices are adjacent in T . If their degrees are r and
s .r; s � 2/, respectively, then we write T D Sr;s . For those graphs G that are
bipartite and jH .G/j D 2, we have the following.

Theorem 2.57 ([35]). Let G be a nontrivial connected bipartite graph of order n.
Then jH .G/j D 2 if and only if n � 4 and G is either S2;n�2 or K2;n�2.

Combining Theorems 2.56 and 2.57, we have the following.

Theorem 2.58. Let G be a nontrivial connected graph of order n. Then jH .G/j D
2 if and only if n � 4 and either
(a) G 2 fS2;n�2; K2;n�2g or
(b) G D K1 _H , where H 2 fK1;:::;1;2; K1;:::;1;2; K1;n�2; K1;n�2g:
Furthermore, the two integers in H .G/ are of the same parity if and only if
(a) occurs.

Theorem 2.59 ([35]). If G is a connected graph of order n such that hC.G/ �
h.G/ D 2, then exactly one of the following (a)–(c) occurs:
(a) n � 4 and G 2 fS2;n�2; K2;n�2g.
(b) n � 5 and G D H1 _H2, where H1 is complete and

i. n � 6 and H2 D K3 or
ii. n � 5 and H2 D K2;2 or

iii. n � 5 and H2 D K1 CK`, where 2 � ` � n � 3.
(c) n � 5 and G is neither bipartite nor Hamiltonian.
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3.1 The Traceable Number of a Graph

Recall that a graph is Hamiltonian if it contains a Hamiltonian cycle and a graph is
traceable if it contains a Hamiltonian path. Therefore, every Hamiltonian graph is
traceable but the converse is clearly false.

As a corollary of some results by Dirac and Ore (Theorems 2.1 and 2.2), we saw
some sufficient conditions for a graph to be traceable (Theorem 2.3). For example,
a graph G is traceable provided its minimum degree is at least .jV.G/j � 1/=2.

For a graph G, let S be a nonempty proper subset of V.G/. We have seen that

k.G � S/ �
� jS j if G is Hamiltonian
jS j � 1 if G is Hamiltonian-connected,

where k.H/ denotes the number of components in a graph H (Theorems 2.11
and 2.14). There is a similar necessary condition for graphs to be traceable.

Theorem 3.1. If G is traceable, then k.G � S/ � jS j C 1 for every nonempty
proper subset S of V.G/.

Proof. Suppose that G contains a Hamiltonian path and consider the Hamiltonian
graph H obtained from G by adding a new vertex v and joining it to every vertex in
G. If S is a nonempty proper subset of V.G/, then consider the set S 0 D S [ fvg.
Since H is Hamiltonian and S 0 is a nonempty proper subset of V.H/, it follows by
Theorem 2.11 that k.G � S/ D k.H � S 0/ � jS 0j D jS j C 1. ut

We saw in Sect. 2.6 that a Hamiltonian graph G of order n is a graph for which
there is a cyclic ordering v1; v2; : : : ; vn; vnC1 D v1 of V.G/ such that d.vi ; viC1/ D 1

for 1 � i � n. We may view traceable graphs in a similar way. That is, if a nontrivial
graph G of order n is traceable, then there is a linear ordering v1; v2; : : : ; vn of its
vertices such that d.vi ; viC1/ D 1 for 1 � i � n�1. We now define a new graphical
parameter, which corresponds to the Hamiltonian number of graphs.

F. Fujie and P. Zhang, Covering Walks in Graphs, SpringerBriefs in Mathematics,
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For a connected graph G of order n � 2 and a linear ordering s W v1; v2; : : : ; vn

of the vertices of G, we define the number d.s/ by

d.s/ D
n�1X

iD1

d.vi ; viC1/:

The traceable number t .G/ of G is then defined by

t .G/ D minfd.s/g;

where the minimum is taken over all linear orderings s of V.G/. Thus, t .G/ � n�1

in general and t .G/ D n � 1 if and only if G is traceable.
While a Hamiltonian walk in a graph G is a closed spanning walk of minimum

length in G, an open spanning walk of minimum length in G is called a traceable
walk. Hence, a traceable walk in G is a vertex-covering walk of minimum length.
As the Hamiltonian number equals the length of a Hamiltonian walk for a graph,
the traceable number of a graph and the length of a traceable walk in that graph are
equal.

Theorem 3.2 ([53]). For a nontrivial connected graph G, the length of a traceable
walk in G equals t .G/.

Several bounds for the traceable number of a graph have been established in
terms of its order and other graphical parameters. A closed spanning walk W in a
connected graph G always contains an open spanning walk in G whose length is at
most L.W / � 1. Thus, if G is a connected graph of order n and size m, then

n � 1 � t .G/ < h.G/ � e.G/ � 2m:

In fact, the difference h.G/ � t .G/ is positive and bounded above by the diameter
of G.

Theorem 3.3 ([53]). If G is a nontrivial connected graph, then

1 � h.G/ � t .G/ � diam.G/:

Proof. The lower bound is immediate. For the upper bound, let s W v1; v2; : : : ; vn be
a linear ordering of V.G/, where n is the order of G, such that d.s/ D t .G/. Then
for the cyclic ordering sc W v1; v2; : : : ; vn; v1 of V.G/, observe that h.G/ � d.sc/ D
d.s/C d.v1; vn/ � t .G/C diam.G/. Thus, h.G/ � t .G/ � diam.G/. ut

Since n � h.G/ � 2.n� 1/ (Theorem 2.25), we obtain the following bounds for
the traceable number of a graph in terms of its order.
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Theorem 3.4. For every connected graph G of order n � 2,

n � 1 � t .G/ � 2n � 3:

Obviously, the lower bound in Theorem 3.4 is sharp. For the upper bound, we
will see soon that there is only one graph of order n whose traceable number equals
2n � 3.

While the standard distance d.u; v/ between two vertices u and v in a connected
graph G is the length of a u� v geodesic (a shortest u� v path) in G, this is not the
only way that distance has been defined on the vertex set of a connected graph. The
length of a longest u � v path is called the detour distance D.u; v/ between u and v
in G. As with standard distance, detour distance is a metric on V.G/. A u � v path
of length D.u; v/ is a u � v detour. The eccentricity e.v/ of a vertex v in G is the
distance from v to a vertex farthest from v in G. The detour eccentricity eD.v/ of a
vertex v is, as expected, the detour distance from v to a vertex farthest from v. The
detour diameter diamD.G/ of G is then a maximum detour eccentricity among the
vertices in G. In other words, diamD.G/ is the length of a longest path in G.

Theorem 3.5 ([53]). If G is a nontrivial connected graph of order n, then

t .G/ � 2.n � 1/ � diamD.G/:

Proof. We proceed by induction on n. The result is straightforward to verify for
n D 2; 3. For an integer n � 4, assume, for every connected graph H of order
n � 1, that t .H/ � 2n � 4 � diamD.H/. Let G be a connected graph of order n. If
G is traceable, then t .G/ D diamD.G/ D n � 1; so t .G/ D 2.n � 1/ � diamD.G/

in this case. Hence, we assume that G does not contain a Hamiltonian path, that is,
diamD.G/ � n � 2. Let P be a u � v detour of length diamD.G/ in G. Among the
vertices in G not belonging to P , let w be a vertex such that the standard distance
between w and a vertex in P is maximum. Thus, G�w is a connected graph of order
n � 1 containing P and so diamD.G � w/ D diamD.G/. Let s W v1; v2; : : : ; vn�1

be a linear ordering of V.G � w/ with d.s/ D t .G � w/. Since G is connected,
wvi 2 E.G/ for some i .1 � i � n � 1/. Let s0 be a linear ordering of V.G/

obtained from s by inserting w immediately after vi . If i D n, then t .G/ � d.s0/ D
d.s/C d.vn; w/ D t .G � w/C 1. Otherwise, d.w; viC1/ � d.w; vi /C d.vi ; viC1/

and so t .G/ � d.s0/ D d.s/Cd.vi ; w/Cd.w; viC1/�d.vi ; viC1/ � t .G�w/C2.
Since t .G �w/ � 2n� 4� diamD.G �w/ D 2n� 4� diamD.G/ by the induction
hypothesis, the result now follows. ut

Theorem 3.5 implies that a graph G with t .G/ D 2jV.G/j � 3 must have
diamD.G/ D 1, that is, G D K2. Since t .K2/ D 2 � 2 � 3, we now see that
K2 is the only graph that attains the upper bound in Theorem 3.4. In other words,
n � 1 � t .G/ � 2n � 4 for every connected graph G of order n � 3.
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Fig. 3.1 A graph G with
t .G/ D 13

A graph is a linear forest if each of its components is a path. The following result
gives a lower bound for the traceable number of a graph in terms of its order and the
maximum size of a spanning linear forest.

Theorem 3.6 ([53]). If G is a nontrivial connected graph of order n such that the
maximum size of a spanning linear forest in G is p, then t .G/ � 2.n � 1/ � p.

Proof. For an arbitrary linear sequence s W v1; v2; : : : ; vn of V.G/, observe that at
most p of the n� 1 numbers d.vi ; viC1/ .1 � i � n� 1/ equal 1 and the remaining
n� 1�p numbers are at least 2. Hence, d.s/ � pC 2.n� 1�p/ D 2.n� 1/�p,
that is, t .G/ � 2.n � 1/ � p. ut

By Theorems 3.5 and 3.6, for example, t .K1;n�1/ D 2n�4 for n � 3. As another
example, the graph G of Fig. 3.1 has order n D 11 and diamD.G/ D 6 while the
maximum size of a spanning linear forest in G is 8. Therefore, 12 � t .G/ � 14.
It turns out that t .G/ D 13 and s W v1; v2; : : : ; v11 is a linear ordering of G with
d.s/ D 13. In order to show that t .G/ > 12, consider a spanning linear forest F of
G whose size equals 8. Then F consists of three paths, say Q1, Q2, and Q3. Let Qi

be an xi �x0
i path for 1 � i � 3. If the distance between two end-vertices belonging

to different paths equals 2, say d.x1; x2/ D 2, then d.u; v/ � 3 for all u 2 fx0
1; x0

2g
and v 2 fx3; x0

3g. Now assume, to the contrary, that s0 is a linear ordering of V.G/

with d.s0/ D 12. Then the ten summands in d.s0/ are either (i) eight 1s and two 2s
or (ii) nine 1s and one 3. By the above observation, (i) cannot occur. However, (ii)
is also impossible since there is no spanning linear forest of size 9. Hence, no such
s0 exists and we conclude that 2.n� 1/�p < t.G/ < 2.n� 1/� diamD.G/ in this
case.

The above observation gives us the following.

Theorem 3.7 ([53]). If G is a nontrivial connected graph of order n and
diam.G/ D 2, then t .G/ D 2.n � 1/ � p, where p is the maximum size of a
spanning linear forest in G.

Suppose that v is a vertex in a connected graph G that is not a cut-vertex of G.
Then G � v is connected and dG�v.x; y/ � dG.x; y/ for every x; y 2 V.G � v/.
The following result gives a bound for the traceable number of G� v in terms of the
traceable number of G and some other parameters.
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Theorem 3.8. Let v be a vertex in a nontrivial connected graph G such that G � v
is connected. Then

t .G/ � 2 � t .G � v/ �
�

t .G/ � 1 if v is an end-vertex or ` D 3

t.G/C k.` � 4/ if ` � 4,

where ` is the length of a longest cycle containing v in G .when v is not an end-
vertex/ and k is the minimum number of occurrences of v in a traceable walk of G.

Proof. First, let W D .w0; w1; : : : ; wt.G�v// be a traceable walk of G � v. Then let
wi 2 N.v/ and consider the walk obtained from W by inserting the two vertices
v; wi immediately after wi . Then the resulting walk is a spanning walk of G whose
length equals t .G � v/C 2. Thus, t .G/ � t .G � v/C 2.

For the upper bound, let W D .w0; w1; : : : ; wt.G// be a traceable walk of G

such that v occurs in W a total of k times. If v is an end-vertex or ` 2 f3; 4g, then
dG�v.x; y/ D dG.x; y/ for every x; y 2 V.G � v/.

Case 1. v is an end-vertex or ` D 3. Then the subgraph induced by N.v/ is
complete and no x � y geodesic in G contains v unless v 2 fx; yg. Thus, v appears
in W exactly once. If v D w0 or v D wt.G/, then we obtain a spanning walk of G� v
whose length equals t .G/ � 1. Otherwise, we still have a spanning walk whose
length equals (i) t .G/ � 2 if v is an end-vertex and (ii) t .G/ � 1 if ` D 3. Hence,
t .G � v/ � t .G/ � 1 in this case.

Case 2. ` � 4. If v D wi for some i .1 � i � t .G/� 1/, then dG�v.wi�1; wiC1/ �
`�2. Thus, if v 2 fw0; wt.G/g, then t .G�v/ � t .G/�1�2.k�1/C.`�2/.k�1/ D
t .G/ C .k � 1/.` � 4/ � 1. Otherwise, t .G � v/ � t .G/ � 2k C .` � 2/k D
t .G/C k.` � 4/.

This completes the proof. ut

3.2 The Traceable Number of a Tree

Analogous to Hamiltonian numbers of graphs, the traceable number of a connected
graph is bounded above by the traceable number of any connected spanning
subgraph of that graph. In particular, if T is a spanning tree of G, then t .G/ � t .T /.
For this reason, it is useful to study the traceable numbers of trees.

In a tree, every two vertices are connected by a unique path. Therefore, d.u; v/ D
D.u; v/ for every two vertices u; v in a tree, which then implies that diam.T / D
diamD.T / for every tree T . The next result gives the exact value of the traceable
number of a tree in terms of its order and diameter.

Theorem 3.9 ([53]). If T is a nontrivial tree of order n, then

t .T / D 2.n � 1/ � diam.T /:
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Proof. By Theorem 3.5, we have t .G/ � 2.n � 1/ � diamD.T / D 2.n � 1/ �
diam.T /. On the other hand, we also have t .T / � h.T / � diam.T / D 2.n � 1/ �
diam.T / by Theorems 2.24 and 3.3. ut

We have seen that n�1 � t .G/ � 2n�4 for a connected graph G of order n � 3.
For a tree T of order n � 3, we have 2 � diam.T / � n � 1 and diam.T / D 2 if
and only if T is a star while diam.T / D n � 1 if and only if T is a path. For an
integer d with 3 � d � n�2, let T be a tree obtained from a path P of order d C1

by adding n � d � 1 new vertices and joining each of them to a vertex on P that is
not an end-vertex. Since T is a tree of order n and diam.T / D d , every pair n; d of
integers with 2 � d � n � 1 is realizable as the order and diameter of a tree. This
observation and Theorem 3.9 establish another realization result.

Theorem 3.10 ([53]). For each pair k; n of integers with 2 � n� 1 � k � 2n� 4,
there exists a tree T of order n and t .T / D k.

If T is a tree of order n � 3, then of course, t .T / D n� 1 if and only if T D Pn.
Also, t .T / D 2n � 4 if and only if T D K1;n�1. Thus, there is only one tree of
order n having traceable number n � 1 and there is only one tree of order n having
traceable number 2n � 4.

Recall that a tree T is a double star if it contains exactly two vertices that are
not end-vertices. Necessarily these vertices are adjacent in T . Equivalently, T is a
double star if and only if diam.T / D 3; that is, T is a tree of order n and traceable
number 2n � 5 if and only if T is a double star. Hence, there are exactly bn=2c � 1

non-isomorphic trees of order n having traceable number 2n � 5. Similarly, there
are exactly d.n � 3/=2e non-isomorphic trees of order n having traceable number
n, since such trees must have diameter n � 2, that is, each of these trees must be
a caterpillar of order n � 4 containing exactly three end-vertices whose removal
results in Pn�3.

Suppose that G is a nontrivial connected graph of order n. Then we have seen
that n � 1 � t .G/ � 2n � 3 and
• t .G/ D n�1 if and only if G contains Pn as a spanning tree, that is, diamD.G/ D

n � 1;
• t .G/ D 2n � 3 if and only if G D K2, that is, diamD.G/ D 1.
When G is not traceable, that is, if n � t .G/ � 2n� 4, then what can be said about
G and its spanning trees? For graphs having some specific traceable numbers, we
have the following:
(a) If t .G/ D 2n � 4, then G contains K1;n�1 as a spanning tree but the converse

does not hold.
(b) If t .G/ D 2n � 5, then G contains a double star of order n as a spanning tree

but the converse does not hold.
(c) If t .G/ D n, then G does not necessarily contain a caterpillar having diameter

n � 2 as a spanning tree.
We verify (a)–(c) by characterizing those graphs G with t .G/ 2 fn; 2n�5; 2n�4g,
where n is the order of G.
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Theorem 3.11. If G is a nontrivial connected graph of order n, then t .G/ D 2n�4

if and only if diamD.G/ D 2.

Proof. Since t .K2/ > 2 � 2 � 4, it follows that n � 3 and diamD.G/ � 2. Assume
first that t .G/ D 2n � 4. Then diamD.G/ � 2 by Theorem 3.5. Conversely, if
diamD.G/ D 2, then �.G/ D n� 1 since otherwise a path whose length exceeds 2

results. Therefore, G is either a triangle or a star. Note that t .K3/ D 2 � 3 � 4 while
t .K1;n�1/ D 2n � 4 by Theorem 3.9. ut

Theorem 3.12. If G is a connected graph of order n, then t .G/ D 2n � 5 if and
only if diamD.G/ D 3.

Proof. By Theorem 3.11, we may assume that diamD.G/ � 3. Also, diamD.G/ �
2.n�1/� t .G/ by Theorem 3.5. Thus, t .G/ D 2n�5 implies that diamD.G/ D 3.
Conversely, suppose that diamD.G/ D 3. By Theorem 3.5, it suffices to verify that
t .G/ � 2n � 5. Since the result immediately follows when G is a double star by
Theorem 3.9, suppose that G contains a cycle. Then either (i) n D 4 and G is
traceable or (ii) n � 5 and G D K1;n�1 C e. If (i) occurs, then t .G/ D 2 � 4 � 5.
Otherwise, the maximum size of a spanning linear forest in G is 3 and so t .G/ �
2n � 5 by Theorem 3.6. ut

Theorems 3.11 and 3.12 imply the following.

Theorem 3.13. Let G be a connected graph of order n � 3.
(a) t .G/ D 2n � 4 if and only if G 2 fK3; K1;n�1g.
(b) t .G/ D 2n � 5 if and only if either

i. n D 4 and G ¤ K1;3 or
ii. n � 5 and either G is a double star or n D jE.G/j D �.G/C 1.

If T is a tree containing exactly three end-vertices, then �.T / D 3 and there is
exactly one vertex whose degree equals 3. In other words, T is a subdivision of a
claw K1;3. We next characterize those graphs G for which t .G/ D jV.G/j.

Theorem 3.14. If G is a connected graph of order n � 3, then t .G/ D n if and
only if (i) diamD.G/ � n � 2 and (ii) G contains a spanning tree T with exactly
three end-vertices, one of which is adjacent in G to the vertex of degree 3 in T .

Proof. Suppose that t .G/ D n and let W D .w0; w1; : : : ; wn/ be a traceable walk
in G. Since W contains nC 1 vertices, wi D wj for some i; j with 0 � i < j � n

and j � i � 2. We may also assume that i ¤ 0 and j ¤ n since G is not traceable.
Therefore, G contains a spanning tree T in which w0, wj �1 and wn are the only end-
vertices in T and �.T / D degT .wi / D 3. Furthermore, wi wj �1 2 E.G/. For the
converse, suppose that G contains a spanning tree T obtained from three nontrivial
paths .u0; u1; : : : ; u`1/, .v0; v1; : : : ; v`2/, and .w0; w1; : : : ; w`3/ by identifying the
three vertices u0, v0, and w0. Furthermore, suppose that u0 and u`1 are adjacent in
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G. Then s W v`2 ; v`2�1; : : : ; v1; u0; u1; : : : ; u`1 ; w1; w2 : : : ; w`3 is a linear ordering of
V.G/ and d.s/ � n since the only pair of consecutive vertices in s that are possibly
not adjacent is u`1 ; w1 and d.u`1 ; w1/ � 2. If diamD.G/ � n � 2, then G is not
traceable and so t .G/ D n. ut

Thus far, we have seen that if G is a nontrivial connected graph of order n, then
n � 1 � t .G/ � 2n � 3 and t .G/ C diamD.G/ D 2.n � 1/ whenever t .G/ 2
fn � 1; 2n � 5; 2n � 4; 2n � 3g. However, if t .G/ D 2n � 6, then diamD.G/ D 4

by Theorems 3.5, 3.11, and 3.12 but the converse is false. To see this, let ` be a
nonnegative integer and G D K1 _ .`C 2/K2. Then the order of G is 2`C 5 and
diamD.G/ D 4. One can also verify that t .G/ D 3` C 4 D 2.2` C 5/ � 6 � `.
Similarly, it is not the case that t .G/ D n if and only if diamD.G/ D n�2. Instead,
we have the following.

Theorem 3.15. Let G be a connected graph of order n. If t .G/ D n, then

2 � b2n=3c � diamD.G/ � n � 2:

Proof. If t .G/ D n, then n � 4 since G is not traceable. The upper bound
is an immediate consequence of Theorem 3.5. For the lower bound, let W D
.w0; w1; : : : ; wn/ be a traceable walk in G. We may assume that wi D wj

for some i; j with 1 � i < j � n � 1 and j � i � 2. Therefore, G

contains three paths .w0; w1; : : : ; wj �1/, .w0; w1; : : : ; wi ; wj C1; wj C2; : : : ; wn/, and
.wiC1; wiC2; : : : ; wn/ whose lengths equal j�1, nCi�j , and n�i�1, respectively.
Hence, the detour diameter of G is at least maxfj �1; nC i �j; n� i�1g: Assume,
to the contrary, that diamD.G/ < b2n=3c. Then

2.n � 1/ D .j � 1/C .nC i � j /C .n � i � 1/ � 3.b2n=3c � 1/ � 2n � 3;

which is impossible. Thus, G contains a path whose length is at least b2n=3c. ut

The bounds in Theorem 3.15 are sharp. In fact, by adjusting the values of i and
j in the proof, we see that for every pair k; n of integers with n � 4 and b2n=3c �
k � n � 2, there is a connected graph G with diamD.G/ D k and jV.G/j D
t .G/ D n. For example, if G is a connected graph with jV.G/j D t .G/ D 12, then
8 � diamD.G/ � 10 by Theorem 3.15. For 8 � i � 10, the graph Gi in Fig. 3.2
has order 12, traceable number 12, and diamD.Gi / D i .

3.3 The Traceable and Hamiltonian Numbers of a Graph

We have already observed that 1 � h.G/ � t .G/ � diam.G/ for every nontrivial
connected graph G. This suggests investigating the value of h.G/ � t .G/, which
is the topic of this section. First, we look at conditions for a graph G under which
h.G/ � t .G/ attains either the lower or upper bound above.
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Fig. 3.2 Graphs G8, G9, and
G10

Theorem 3.16 ([53]). Let G be a nontrivial connected graph. Then h.G/�t .G/ D
1 if and only if G is either K2 or Hamiltonian.

Proof. First, h.K2/ D t .K2/ C 1 D 2. If G is a Hamiltonian graph with n D
jV.G/j � 3, then certainly h.G/ D n and t .G/ D n � 1; so h.G/ � t .G/ D 1.
To verify the converse, suppose that G is a graph that is not Hamiltonian. Let W D
.w1; w2; : : : ; wh.G/; w1/ be a Hamiltonian walk in G. Since W contains more than n

vertices, we may assume, without loss of generality, that w1 D wi for some i with
3 � i � h.G/ � 1. Then W 0 D .w2; w3; : : : ; wh.G// is a spanning walk in G. Thus,
t .G/ � L.W 0/ D L.W / � 2 D h.G/ � 2, that is, h.G/ � t .G/ � 2. ut

Theorem 3.17. Let G be a nontrivial connected graph of order n. Then
h.G/ � t .G/ D diam.G/ if and only if there exists a cyclic ordering s W
v1; v2; : : : ; vn; vnC1 D v1 of V.G/ such that d.s/ D h.G/ and maxfd.vi ; viC1/ W
1 � i � ng D diam.G/.

Proof. Suppose first that h.G/� t .G/ D diam.G/. Let s` W v1; v2; : : : ; vn be a linear
ordering of V.G/ with d.s`/ D t .G/. Then considering the cyclic ordering sc W
v1; v2; : : : ; vn; v1, we have t .G/Cdiam.G/ D h.G/ � d.sc/ D d.s`/Cd.v1; vn/ �
t .G/C diam.G/, that is, d.sc/ D h.G/ and d.v1; vn/ D diam.G/.

For the converse, suppose that sc W v1; v2; : : : ; vn; vnC1 D v1 is a cyclic ordering
of V.G/ with d.sc/ D h.G/ and, without loss of generality, d.v1; vn/ D diam.G/.
Then for the linear ordering s` W v1; v2; : : : ; vn of V.G/, we have t .G/ � d.s`/ D
d.sc/ � d.v1; vn/ D h.G/ � diam.G/. Since h.G/ � t .G/ � diam.G/ by
Theorem 3.3, it follows that h.G/ � t .G/ D diam.G/. ut

Theorem 3.18. Let G be a nontrivial connected graph. If h.G/�t .G/ D diam.G/,
then the initial and terminal vertices of every traceable walk in G are antipodal
vertices.

Proof. Let W D .w0; w1; : : : ; wt.G// be a traceable walk in G. Let vi D wi�1

for i D 1; 2. For 3 � i � n D jV.G/j, let vi D wji , where ji is the smallest
positive integer such that wji … fv1; v2; : : : ; vi�1g. Then s` W v1; v2; : : : ; vn is a
linear ordering of V.G/ with d.s`/ D t .G/. By considering the cyclic ordering
sc W v1; v2; : : : ; vn; v1 of V.G/, we obtain
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t .G/C diam.G/ D h.G/ � d.sc/ D d.s`/C d.v1; vn/ � t .G/C diam.G/;

that is, d.v1; vn/ D diam.G/. Hence, the desired result follows since v1 D w0 and
vn D wt.G/. ut

If diam.G/ � 3, then the converse of Theorem 3.18 holds, which we verify next.

Theorem 3.19. Let G be a nontrivial connected graph and diam.G/ � 3. If
d.u; v/ D diam.G/ for every traceable u � v walk in G, then h.G/ � t .G/ D
diam.G/.

Proof. Suppose that 1 � h.G/ � t .G/ < diam.G/. If h.G/ � t .G/ D 1, that is,
if G is Hamiltonian, then there exists a Hamiltonian u � v path such that d.u; v/ D
1 < diam.G/. Hence, assume that h.G/ � t .G/ D 2 and diam.G/ D 3. Let W D
.w1; w2; : : : ; wh.G/; w1/ be a Hamiltonian walk in G. Since G is not Hamiltonian,
we may assume that w1 D wi for some i with 3 � i � h.G/ � 1. Then W 0 D
.w2; w3; : : : ; wh.G// is a spanning walk in G whose length equals h.G/� 2 D t .G/.
Therefore, W 0 is a traceable walk. Furthermore, d.w2; wh.G// � 2 < diam.G/. ut

While every Hamiltonian graph G satisfies h.G/ � t .G/ D 1, there are also
numerous graphs G for which h.G/ � t .G/ D diam.G/ (trees, complete k-partite
graphs that are not Hamiltonian, for example). Furthermore, for each pair k; d of
positive integers with k � d , there is a graph G with h.G/ � t .G/ D k and
diam.G/ D d . In order to see this, we first present a lemma.

Theorem 2.34 states that the Hamiltonian number of a connected graph G equals
the sum of the Hamiltonian numbers of the blocks in G. A connected graph whose
order and size are equal is a graph that can be obtained from a tree by adding an
edge. Such a graph therefore contains exactly one cycle and is called a unicyclic
graph.

Lemma 3.1. Let G be a unicyclic graph of order n in which the length of the unique
cycle is `. Then h.G/ D 2n � `.

Proof. The result clearly holds if ` D n and so assume that G itself is not a cycle.
Let C be the cycle in G. Then the n � ` edges not belonging to C are bridges.
Therefore, G contains n�`C1 blocks, one of which is C and each of the remaining
is a copy of P2. It then follows that h.G/ D h.C /C .n�`/h.P2/ D `C2.n�`/ D
2n � ` by Theorem 2.34. ut

Theorem 3.20 ([53]). For each pair k; d of integers with 1 � k � d , there exists
a connected graph G having diameter d such that h.G/ � t .G/ D k.

Proof. For k D d , let G be a tree having diameter d . Then h.G/ D 2.n� 1/ while
t .G/ D 2.n�1/�d , where n D jV.G/j, and the result is immediate. Thus, assume
that k < d . For k D 1, a cycle of order 2d has the desired property. For k � 2,
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let G be the unicyclic graph obtained from a path .v1; v2; : : : ; v2d�kC1/ by joining
v1 and v2.d�kC1/. Then jV.G/j D 2d � k C 1 and diam.G/ D d . We also have
h.G/ D 2.2d � kC 1/� 2.d � kC 1/ D 2d by Lemma 3.1. Since G is traceable,
t .G/ D 2d � k. Thus, h.G/ � t .G/ D k. ut

Since h.G/ � t .G/ C diam.G/ for every nontrivial connected graph G and,
trivially, t .G/ � diam.G/, it follows that

t .G/C 1 � h.G/ � 2t.G/: (3.1)

The lower bound is sharp by Theorem 3.16. For the upper bound, observe that
h.G/ D 2t.G/ if and only if t .G/ D diam.G/ if and only if G is a path.

By (3.1), if G is a connected graph whose traceable and Hamiltonian numbers are
a and b, respectively, then a < b � 2a. In fact, every pair a; b of positive integers
satisfying a < b � 2a is realizable as the traceable number and Hamiltonian
number, respectively, of some connected graph.

Theorem 3.21 ([53]). For each pair a; b of positive integers with a < b � 2a,
there exists a connected graph G with t .G/ D a and h.G/ D b.

We have also seen that if G is a connected graph of order n � 2, then n �
h.G/ � 2.n � 1/. Hence, if t .G/ D a and h.G/ D b, then

1 � n � 1 � a < b � 2.n � 1/: (3.2)

The next result determines all triples .a; b; n/ of integers satisfying (3.2) that can be
realized as the traceable number, Hamiltonian number, and order, respectively, of
some connected graph.

Theorem 3.22 ([53]). For each triple .a; b; n/ of integers with 1 � n � 1 � a <

b � 2.n � 1/, there is a connected graph G of order n such that t .G/ D a and
h.G/ D b if and only if either (i) b D n D aC 1 or (ii) b � aC 2.

Proof. Let G be a connected graph of order n with t .G/ D a and h.G/ D b. Then
a < b. In particular, if b D a C 1, then G is Hamiltonian by Theorem 3.16 and so
b D n.

For the converse, assume that a; b; n are integers with 1 � n � 1 � a < b �
2.n � 1/ such that b D n D a C 1 or b � a C 2. If b D n D a C 1, then every
Hamiltonian graph of order n has the desired property. Also, if b D 2.n � 1/, then
a tree of order n and diameter 2.n � 1/ � a has the desired property. Thus, assume
that aC 2 � b � 2n � 3. We consider two cases.
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Case 1. a D n�1. Then let G1 be the graph obtained from a path P D .v1; v2; : : : ;

v2n�a�1/ by joining v1 and v2n�b . Then G1 is a unicyclic traceable graph of order
2n � a � 1 D n and so t .G1/ D n � 1 D a. Also, h.G1/ D 2n � .2n � b/ D b by
Lemma 3.1.

Case 2. a � n. Then let G2 be the graph obtained from the graph G1 of order
2n � a � 1 produced in Case 1 by (i) joining vi and vj for all i; j with 1 � i <

j � 2n � b and (ii) adding a � n C 1 new vertices and joining each of them to
v2n�b . Then jV.G2/j D .2n � a � 1/ C .a � n C 1/ D n. Since G2 consists of
b � nC 1 blocks, namely one copy of K2n�b and b � n copies of P2, Theorem 2.34
implies that h.G2/ D .2n�b/C2.b�n/ D b. Note also that diam.G2/ D b�a and
diamD.G2/ D 2n�a�2. Since h.G2/�diam.G2/ � t .G2/ � 2.n�1/�diamD.G2/

by Theorems 3.3 and 3.5, it follows that t .G2/ D a. ut

3.4 The Upper Traceable Number of a Graph

For a nontrivial connected graph G, recall that the upper Hamiltonian number
hC.G/ is defined by hC.G/ D maxfd.s/g, where the maximum is taken over all
cyclic orderings s of V.G/. As expected, the upper traceable number is defined by

tC.G/ D maxfd.s/g;

where the maximum is taken over all linear orderings s of V.G/. Consequently,
t .G/ � tC.G/ for every G.

We have seen that the only graphs whose Hamiltonian and upper Hamiltonian
numbers are equal are complete graphs and stars. For traceable and upper traceable
numbers, the two numbers coincide only when the graph is complete. Clearly
t .Kn/ D tC.Kn/ D n � 1. On the other hand, if G is a connected graph of order
n � 3 that is not complete, then G contains a path .x; y; z/ where xz … E.G/. Let
s1 and s2 be linear orderings of V.G/ whose first three terms are x; y; z and y; x; z,
respectively, and the remaining n�3 terms (when n � 4) are exactly the same. Then
d.s0

2/ D d.s0
1/C 1 and so t .G/ � d.s0

1/ < d.s0
2/ � tC.G/.

Theorem 3.23. Let G be a nontrivial connected graph. Then tC.G/ D t .G/ if and
only if G is complete.

Those graphs G for which hC.G/ � h.G/ D 1 have been determined in
Theorem 2.47. Recall that G is a graph satisfying hC.G/ � h.G/ D 1 if and
only if G D K1 _ H , where jV.H/j � 3 and H 2 fH 0 D K1;:::;1;2; H 00 D
K1;n�2; H 0; H 00g: Here, let n D jV.G/j � 4 and observe that



3.4 The Upper Traceable Number of a Graph 79

t .G/ D tC.G/ � 2 D h.G/ � 2 D hC.G/ � 3

D
8
<

:

n � 1 if G D K1 _H 00
2n � 6 if G D K1 _H 00 D K1;1;n�2

2n � 5 if G D K1 _H 0.

There is a proof similar to that given for Theorem 2.47. Note that K1 _ H 0 D
K1;:::;1;2.

Theorem 3.24. Let G be a connected graph of order n. Then tC.G/� t .G/ D 1 if
and only if n � 3 and G 2 fK1;:::;1;2; K1;n�1g.

Observe that

t .G/ D tC.G/ � 1 D hC.G/ � 2 D
�

n � 1 if G D K1;:::;1;2

2n � 4 if G D K1;n�1.

Upper Traceable and Upper Hamiltonian Numbers of a Graph

In a nontrivial connected graph G, the distance between any two vertices is at most
the diameter of G. Thus, hC.G/ � n diam.G/ and tC.G/ � .n � 1/ diam.G/,
where n is the order of G. Furthermore, one can quickly verify that equalities hold
in both cases for odd cycles, for example.

A vertex in a connected graph G is a central vertex in G if its eccentricity equals
the radius rad.G/ of G. If every vertex in G is a central vertex, then rad.G/ D
diam.G/ and G is said to be self-centered. Suppose that G is a connected graph
of order n containing k central vertices .k � 1/. Then for every cyclic ordering sc

of V.G/, at least k C 1 summands in d.sc/ are at most rad.G/ and the remaining
summands are at most diam.G/. Thus, d.sc/ � .kC1/ rad.G/C.n�k�1/ diam.G/.
Similarly, d.s`/ � k rad.G/C .n � k � 1/ diam.G/ for every linear ordering s` of
V.G/.

Theorem 3.25. If G is a nontrivial connected graph of order n containing k central
vertices, then

hC.G/ � 2 rad.G/C .n � 2/ diam.G/ � .k C 1/ rad.G/C .n � k � 1/ diam.G/I
tC.G/ � rad.G/C .n � 2/ diam.G/ � k rad.G/C .n � k � 1/ diam.G/:

By Theorem 3.25, if hC.G/ D n diam.G/ or tC.G/ D .n � 1/ diam.G/,
then G is self-centered. Note that the converse is not true (consider even cycles,
for example). Also, if T is a nontrivial tree of order n, then either (i) T contains
exactly one central vertex and diam.G/ D 2 rad.G/ or (ii) T contains exactly two
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central vertices and diam.G/ D 2 rad.G/� 1. Thus, hC.T / � .n� 1/ diam.T / and
tC.T / � .n � 3=2/ diam.T /.

When we consider powers of a given connected graph G, the k-th power Gk is
complete if and only if k � d D diam.G/. In particular, Gd�1 is the graph such
that uv 2 E.Gd�1/ if and only if d.u; v/ < d , which suggests the following.

Theorem 3.26. Let G be a connected graph of order n and diam.G/ D d � 2.
Then
(a) hC.G/ D nd if and only if Gd�1 is Hamiltonian and
(b) tC.G/ D .n � 1/d if and only if Gd�1 is traceable.

Thus, if hC.G/ D n diam.G/, then tC.G/ D .n � 1/ diam.G/. The converse
holds only for n � 4. If G is a connected graph of order n � 4, then G is self-
centered if and only if G is complete or G D C4. Hence, either hC.G/ D n diam.G/

or tC.G/ < .n � 1/ diam.G/. For n � 5, construct a graph G of order n from
H D Kb.n�1/=2c;d.n�1/=2e by adding a new vertex x and joining x to two vertices of
H belonging to different partite sets. Then diam.G/ D 2 and G is a traceable graph
in which x is a cut-vertex. Thus, tC.G/ D 2.n � 1/ while hC.G/ D 2n � 1.

While odd cycles are examples of Hamiltonian graphs G of order n for which
hC.G/ D n diam.G/ D tC.G/ C diam.G/, there are numerous non-Hamiltonian
(and even non-traceable) graphs having this property. For integers d � 2 and ` � 3,
let G be a subdivision of K2;` such that deleting the two vertices of degree ` from
G results in Pd C .` � 1/Pd�1, the union of ` paths. In this case, the order of G

equals `.d � 1/ C 3 and diam.G/ D d . Note that every cycle in G is isomorphic
to either C2d or C2dC1. As an example, let us consider the situation where ` D 3.
Then G can be constructed from a cycle C D .v1; v2; : : : ; v2dC1; v1/ and a path
P D .x1; x2; : : : ; xd�1/ by adding the edges x1x2dC1 and xd�1vd . Let

E1 D fv1vdC1; vd�1v2d ; vd v2d ; vd v2dC1; vdC1v2dC1g
E2 D fvi xd�i W 1 � i � d � 1g
E3 D fvb3d=2cC1xbd=2c; vb3d=2cC1xbd=2cC1g (if d � 3)

E4 D fvi vi�d ; vi xi�d�1 W d C 2 � i � b3d=2cg (if d � 4)

E5 D fvi vi�d�1; vi xi�d W b3d=2c C 2 � i � 2d � 1g (if d � 5):

Then the subgraph induced by [5
iD1Ei is a Hamiltonian cycle in Gd�1. Hence, G is

a non-Hamiltonian (yet traceable) graph such that hC.G/ D tC.G/C diam.G/. By
investigating the graphs constructed in this manner with ` � 4, we see that there are
non-traceable graphs G for which hC.G/ D tC.G/C diam.G/ as well.

By Theorem 3.26, if G is bipartite and either hC.G/ D n diam.G/ or tC.G/ D
.n � 1/ diam.G/, where n D jV.G/j, then diam.G/ cannot be even.
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Theorem 3.27. Let G be a nontrivial connected bipartite graph of order n.
(a) If hC.G/ D n diam.G/, then rad.G/ D diam.G/ is odd, n is even, and G �

Kn=2;n=2:

(b) If tC.G/ D .n � 1/ diam.G/, then rad.G/ D diam.G/ is odd and G �
Kbn=2c;dn=2e.

While the difference between the Hamiltonian number and traceable number of
a graph is positive and at most the diameter of the graph, there are similar bounds
for the upper Hamiltonian number and upper traceable number.

Theorem 3.28. For a nontrivial connected graph G,

1 � hC.G/ � tC.G/ � rad.G/:

Proof. The lower bound is obvious. To verify the upper bound, let sc W v1;

v2; : : : ; vn; v1 be a cyclic ordering of V.G/, where n D jV.G/j, with d.sc/ D
hC.G/. Without loss of generality, assume that v1 is a central vertex in G. Then
observe that tC.G/ � d.s`/ D hC.G/ � d.v1; vn/, where s` W v1; v2; : : : ; vn is
the linear ordering of V.G/ obtained from sc . Since d.v1; vn/ � rad.G/, we have
hC.G/ � tC.G/ � rad.G/. ut

Therefore, if G is a graph with rad.G/ D 1, that is, if G contains a spanning
star, then hC.G/� tC.G/ D 1. Of course, these are not the only graphs having this
property; we’ll soon see that every nontrivial tree T satisfies hC.T / � tC.T / D 1.

The Upper Traceable Numbers of Trees

For each edge e in a tree T , the component number cn.e/ of e is defined in [23] as
the minimum order of a component of T � e. Let us write cn.T / DPe2E.T / cn.e/.
Although the exact value of hC.T / is already known in terms of the median med.T /

of T (Theorem 2.53), the following upper bound for the upper Hamiltonian numbers
of trees is also useful.

Theorem 3.29 ([23]). If T is a nontrivial tree, then hC.T / � 2 cn.T /.

Proof. Let s W v1; v2; : : : ; vn; vnC1 D v1 be an arbitrary cyclic ordering of V.T /,
where n D jV.T /j. For each i .1 � i � n/, let Qi be the vi � viC1 path in T .
Thus, the n paths Q1; Q2; : : : ; Qn traversed in this order results in a closed spanning
walk W whose length equals d.s/. If e 2 E.T /, then for each path Qi , the edge e

occurs at most once and e 2 E.Qi / if and only if vi and viC1 belong to different
components in T � e. Thus, each edge e in T occurs in W at most 2 cn.e/ times.
Therefore, d.s/ � 2 cn.T /. ut
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Fig. 3.3 A step in the proof
of Theorem 3.30

We now present a formula for the upper traceable number of a tree.

Theorem 3.30 ([54]). If T is a nontrivial tree, then tC.T / D 2 cn.T / � 1.

Proof. It suffices to find a linear ordering s of V.T / for which d.s/ D 2 cn.T / � 1

since tC.T / < hC.T / � 2 cn.T /. The statement is clearly true if T has order 2.
Hence, we may assume that n D jV.T /j � 3. Let T1 D T and suppose that v2 is
an end-vertex of T1. Construct a path Q2 in T1 with initial vertex v2 by selecting
every successive edge in Q2 in such a way that the edge selected at each step has
the maximum component number among all available edges. Suppose that Q2 is a
v2 � v3 path. Necessarily, v3 is another end-vertex of T1. Let T2 D T1 � v2. We then
construct a path Q3 in T2 with initial vertex v3 by selecting each successive edge
in Q3 so that the edge selected at each step has the maximum component number
among all edges available. The terminal vertex of Q3 is now called v4, which is
an end-vertex of T2, and we next consider T3 D T2 � v3. Continuing, we arrive at
the vn�1 � vn path Qn�1 in Tn�2. The final vertex of T is denoted by v1, which is
necessarily adjacent to vn�1 and vn. Let Tn�1 be the tree consisting of v1 and vn.
Finally, let Q1 be the v1 � v2 path in T . This procedure is illustrated in Fig. 3.3,
where each vi � viC1 path Qi for 2 � i � n � 1 is indicated in red.

Thus, Q1; Q2 � T1 D T while Qi � Ti�1 D T � fv2; v3; : : : ; vi�1g for 3 �
i � n � 1. Let ei be the initial edge in QiC1 for 1 � i � n � 2 and en�1 D v1vn.
Then E.T / D fe1; e2; : : : ; en�1g. We will show that d.s/ D 2 cn.T / � 1 for the
linear ordering s W v1; v2; : : : ; vn of V.T / by verifying that each edge e 2 E.T / is
traversed either 2 cn.e/ � 1 times or 2 cn.e/ times by the paths Q1; Q2; : : : ; Qn�1

and the former occurs if and only if e D en�1.
Let e D ei� be a fixed edge of T . Then e 2 E.Ti / if and only if 1 � i � i�.

In particular, e is a pendant edge in Ti� . For each i with 1 � i � minfi�; n � 2g,
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let S 0
i and S 00

i be the components of Ti � e such that jV.S 0
i /j � jV.S 00

i /j C 1. We
claim that if viC1 2 V.S 0

i /, then viC2 2 V.S 00
i /, that is, the edge e is traversed by

the viC1� viC2 path QiC1. Let e D xy with x 2 V.S 0
i / and assume, to the contrary,

that viC1; viC2 2 V.S 0
i /. Thus, x … fviC1; viC2g.

If jV.S 0
i /j � jV.S 00

i /j, then the component number of each edge in S 0
i is strictly

less than cnTi .e/. Let .viC1 D u1; u2; : : : ; uk D x/ and .viC2 D w1; w2; : : : ; w` D
x/ be the viCj � x paths for j D 1; 2, respectively. Obviously, both paths
are entirely contained in S 0

i . Furthermore, QiC1 D .viC1 D u1; u2; : : : ; uk0 D
w`0 ; w`0�1; : : : ; w1 D viC2/ for some integers k0 and `0 satisfying 2 � k0 � k

and 2 � `0 � `. Then

cnTi .uk0uk0C1/ > cnTi .uk0�1uk0/C cnTi .w`0w`0�1/ > cnTi .w`0w`0�1/:

At the same time, however, k0 < k and cnTi .uk0uk0C1/ � cnTi .w`0w`0�1/ by the
construction of QiC1. This is impossible. If jV.S 0

i /j D jV.S 00
i /j C 1, then there

exists at most one edge in S 0
i whose component number equals cnTi .e/ and the

remaining edges in S 0
i have component number strictly less than cnTi .e/. With this,

a similar argument given for the case where jV.S 0
i /j � jV.S 00

i /j results in another
contradiction. Hence, as claimed, viC2 2 V.S 00

i / if viC1 2 V.S 0
i /.

Now let T 0 and T 00 be the components of T � e, where jV.T 0/j � jV.T 00/j.
Then we may assume that V.T 0/ D fvj1 ; vj2 ; : : : ; vjc g, where c D cn.e/ and
j1 < j2 < � � � < jc . Necessarily, the vertex vjc is incident with e. In each tree Ti

containing e (that is, for 1 � i � i�), let T 0
i and T 00

i be the components of Ti � e

such that T 0
i � T 0 and T 00

i � T 00. Then by the claim given above, it follows that
jV.T 0

i /j � jV.T 00
i /j. Thus, jc D i� C 1 and no two vertices in T 0 are consecutive in

s. Also, v1 2 V.T 00/ and so j1 � 2. Hence, if 1 � i� � n�2, then the edge e D ei�

is traversed by the 2c distinct paths

Qj1�1; Qj1 ; Qj2�1; Qj2 ; : : : ; Qjc�1 D Qi� ; Qjc D Qi�C1:

Otherwise, e D en�1 and this edge is traversed by the 2c � 1 distinct paths

Qj1�1; Qj1 ; Qj2�1; Qj2 ; : : : ; Qjc�1�1; Qjc�1 ; Qjc�1 D Qi� D Qn�1:

This completes the proof. ut

Theorem 3.31. If T is a nontrivial tree, then hC.T / D tC.T /C 1 D 2 cn.T /:

Theorem 3.32. If T is a nontrivial tree, then med.T / D cn.T /.

Recall that upper and lower bounds for the upper Hamiltonian number of a tree
were established in terms of its order (Theorem 2.44), that is, if T is a tree of order
n � 3, then 2.n�1/ � hC.T / � �n2=2

˘
: Moreover, hC.T / D 2.n�1/ if and only

if T is a star while hC.T / D bn2=2c if and only if T is a path. Thus, the following
is a consequence of Theorem 3.31.
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Theorem 3.33. Let T be a tree of order n � 3. Then 2n�3 � tC.T / � bn2=2c�1:

Furthermore, tC.T / D 2n� 3 if and only if T is a star and tC.T / D bn2=2c � 1 if
and only if T is a path.

Theorem 3.34. If T is a nontrivial tree of order n and diameter d , then

2n � 3C 2bd=2cb.d � 1/=2c � tC.T / � .n � 3=2/d:

Proof. The upper bound has been verified after Theorem 3.25. For the lower bound,
let P be a longest path in T . Then observe that

X

e2E.P /

cnT .e/ �
�

2.1C 2C � � � C d=2/ if d is even
2.1C 2C � � � C .d � 1/=2/C .d C 1/=2 if d is odd

D dd=2ed.d C 1/=2e:

Since cn.T / � n�d�1CPe2E.P / cnT .e/, the result follows by Theorem 3.30. ut

The Traceable and Upper Traceable Numbers of a Graph

We have seen that if G is a nontrivial connected graph of order n, then

n � 1 � t .G/ � tC.G/ � bn2=2c � 1

and t .G/ D n � 1 if and only if G contains Pn as a subgraph while tC.G/ D
bn2=2c � 1 if and only if G itself is Pn. We say that the ordered pair .a; b/ of
positive integers is realizable if there exists a graph whose traceable number and
upper traceable number are a and b, respectively. Thus, .a; b.aC 1/2=2c � 1/ is
realizable for every positive integer a. It is then natural to ask which ordered pairs
are realizable. A complete answer is established in [36].

Theorem 3.35. For a pair a; b of positive integers, there exists a graph G such that
.t.G/; tC.G// D .a; b/ if and only if either
i. a � b � ba2=2c or

ii. ba2=2c C 1 � b � b.aC 1/2=2c � 1 and b is odd.

3.5 Traceable Numbers of Vertices in a Graph

Since Pn and Cn .n � 3/ are, of course, both traceable graphs of order n, it follows
that t .Pn/ D t .Cn/ D n � 1. One difference between these two graphs is that, for
Pn, there are exactly two linear orderings s of the vertices for which d.s/ D n � 1,
while for Cn, there are 2n such linear orderings. More specifically, the initial vertex
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Fig. 3.4 A graph G with
t .G/ D 4 and t?.G/ D 5

of every Hamiltonian path in Pn must be one of the two end-vertices. In contrast,
every vertex in Cn is the initial vertex of some Hamiltonian path.

Let G be a nontrivial connected graph of order n. For a vertex v of G, the
traceable number t .v/ of v is defined by

t .v/ D minfd.s/g;

where the minimum is taken over all linear orderings s of V.G/ whose initial term
is v. Therefore, t .v/ � n � 1 for every v 2 V.G/ and t .v/ D n � 1 if and only if
G contains a Hamiltonian path with initial vertex v. Observe also that the traceable
number t .G/ of G can be alternatively defined by

t .G/ D minft .v/ W v 2 V.G/g:

As in Theorems 2.26 and 3.2, we have the following.

Theorem 3.36 ([53]). Let G be a nontrivial connected graph and v 2 V.G/. Then
t .v/ equals the length of a shortest spanning walk in G whose initial vertex is v.

For example, in the traceable graph G shown in Fig. 3.4, every Hamiltonian path
starts at one of the two end-vertices (and ends at the other end-vertex). Hence,
t .v1/ D t .v5/ D t .G/ D 4 while t .vi / � 5 for 2 � i � 4. In fact, t .vi / D 5

for 2 � i � 4 since t .vi / � d.si / D 5 where

s2 W v2; v1; v3; v4; v5

s3 W v3; v1; v2; v4; v5

s4 W v4; v5; v3; v2; v1:

For a nontrivial connected graph G, the maximum vertex traceable number t?.G/

of G is defined as
t?.G/ D maxft .v/ W v 2 V.G/g:

Thus, t .G/ D 4 and t?.G/ D 5 for the graph G in Fig. 3.4. Obviously, t .G/ �
t?.G/ for every connected graph G. The maximum vertex traceable numbers of
graphs will be discussed further in Sect. 3.6.

For two vertices u and v in a connected graph G, we have 0 � jt .u/ � t .v/j �
t?.G/ � t .G/ as both t .u/ and t .v/ are between t .G/ and t?.G/. In fact, we have
the following.
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Theorem 3.37 ([53]). Let G be a nontrivial connected graph and u; v 2 V.G/.
Then jt .u/ � t .v/j � d.u; v/.

Proof. It suffices to show that jt .u/ � t .v/j � 1 when uv 2 E.G/. Let n D jV.G/j
and consider a linear ordering s W v D v1; v2; : : : ; vn such that d.s/ D t .v/.
Therefore, u D vi for some i with 2 � i � n. If u D vn, then consider the linear
ordering s0 W u D vn; vn�1; : : : ; v1. Clearly, t .u/ � d.s0/ D d.s/ D t .v/. Otherwise,
let s00 W u D vi ; vi�1; : : : ; v1 D v; viC1; viC2; : : : ; vn and observe that

t .u/ � d.s00/ D d.s/C d.v; viC1/ � d.u; viC1/

� t .v/C .d.v; u/C d.u; viC1// � d.u; viC1/

D t .v/C 1:

Thus, t .u/� t .v/ � 1 in each case. One can similarly show that t .v/� t .u/ � 1. ut

For a vertex v in a connected graph G, recall that the eccentricity e.v/ is the
greatest distance between v and a vertex in G.

Theorem 3.38 ([53]). If v is a vertex in a tree of order n � 2, then

t .v/ D 2.n � 1/ � e.v/:

Proof. We first show that t .v/ � 2.n � 1/ � e.v/, where v is a vertex in a tree T

of order n � 2. Let s W v D v1; v2; : : : ; vn be a linear ordering of V.T / such that
d.s/ D t .v/. Then for the cyclic ordering s0 W v1; v2; : : : ; vn; v1 of V.T /, we have

2.n � 1/ D h.T / � d.s0/ D d.s/C d.v1; vn/ � t .v/C e.v/

and so t .v/ � 2.n � 1/ � e.v/.
In order to show that t .v/ � 2.n� 1/� e.v/ for each vertex v in a nontrivial tree

of order n, we proceed by induction on n. The result clearly holds for n D 2. For an
integer n � 3, assume that t .u/ � 2n � 4 � e.u/ for every tree T 0 of order n � 1

and every vertex u in T 0. Let T be a tree of order n and v 2 V.T /. If T D Pn and v
is an end-vertex, then certainly t .v/ D e.v/ D n� 1 and so t .v/ D 2.n� 1/� e.v/.
Therefore, let us assume that this is not the case. Let P be a longest path in T with
initial vertex v, say P is a v � u path. Therefore, e.v/ D d.v; u/. Let w be an end-
vertex that does not belong to P . Therefore, T 0 D T � w is a tree of order n � 1

containing v and eT 0.v/ D eT .v/. By the induction hypothesis,

tT 0.v/ � 2n � 4 � eT 0.v/ D 2n � 4 � eT .v/:

Let x be the vertex that is adjacent to w in T . If s0 W v D v1; v2; : : : ; vn�1 is a
linear ordering of V.T 0/ such that d.s0/ D tT 0.v/, then x D vi for some i with
1 � i � n � 1. Now let s be the linear ordering of V.T / obtained from s0 by
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inserting w immediately after vi . Then one can verify that d.s/ D d.s0/ C 1 if
x D vn�1 and d.s/ � d.s0/ C 2 otherwise. Hence, tT .v/ � d.s/ � d.s0/ C 2 D
tT 0.v/C 2 � 2.n � 1/ � eT .v/. ut

By Theorem 3.38, if T is a tree of order n � 2, then

t .T / D minft .v/ W v 2 V.T /g
D minf2.n � 1/ � e.v/ W v 2 V.T /g
D 2.n � 1/ �maxfe.v/ W v 2 V.T /g
D 2.n � 1/ � diam.T /;

which provides us with an alternative proof of Theorem 3.9.

3.6 The Maximum Vertex Traceable Number of a Graph

As defined in Sect. 3.5, the maximum vertex traceable number t?.G/ of G is defined
as

t?.G/ D maxft .v/ W v 2 V.G/g:
Clearly t .G/ � t?.G/ � tC.G/. The following is a consequence of Theorems 3.23
and 3.24.

Theorem 3.39. If G is a nontrivial connected graph of order n, then
(a) t .G/ D t?.G/ D tC.G/ if and only if G is complete,
(b) t .G/ D t?.G/ D tC.G/ � 1 if and only if n � 4 and G D K1;:::;1;2, and
(c) t .G/C 1 D t?.G/ D tC.G/ if and only if n � 3 and G is a star.

Trees form another class of graphs for which the maximum vertex traceable
numbers are easy to find. If T is a nontrivial tree of order n, then

t?.T / D maxft .v/ W v 2 V.T /g
D maxf2.n � 1/ � e.v/ W v 2 V.T /g
D 2.n � 1/ � rad.T /:

Theorem 3.40. If T is a nontrivial tree of order n, then

t .T / D 2.n � 1/ � diam.T / and t?.T / D 2.n � 1/ � rad.T /:

If n; r are integers such that 1 � r � d.n � 1/=2e, then there exists a tree T of
order n and radius r .
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Theorem 3.41. For each pair n; k of integers with n � 2 and

b3.n � 1/=2c � k � 2.n � 1/ � 1;

there exists a tree T of order n with t?.T / D k.

If G is a nontrivial connected graph of order n and t?.G/ D n � 1, then t .v/ D
n � 1 for every v 2 V.G/, that is, every vertex is the initial vertex of a Hamiltonian
path. Such a graph G is called homogeneously traceable. Homogeneously traceable
graphs will be discussed further later.

If H is a connected spanning subgraph of a nontrivial graph G, then t?.G/ �
t?.H/. Thus, if G is a connected graph of order n � 2 and t?.G/ D 2n � 3,
then K1;n�1 is the unique spanning tree of G. Therefore, either G itself is a star or
G D K3. Since t?.K3/ D 2 < 2 � 3 � 3, we have the following.

Theorem 3.42. If G is a nontrivial connected graph of order n, then

n � 1 � t .G/ � t?.G/ � 2n � 3:

Also, t?.G/ D n � 1 if and only if G is homogeneously traceable while t?.G/ D
2n � 3 if and only if G D K1;n�1.

For a given nontrivial connected graph G, it is clear that t .G/ � t?.G/ � tC.G/.
Also,

t?.G/ D tC.G/ if G is either a complete graph or a star. (3.3)

Thus, tC.G/ is a sharp upper bound for t?.G/. However, in most instances, there
is an improved upper bound for t?.G/ in terms of tC.G/ and another graphical
parameter, namely t .G/.

Theorem 3.43. For every nontrivial connected graph G,

t?.G/ � .t.G/C tC.G/C 1/=2:

Proof. Since the result is immediate when t .G/ D t?.G/, we assume that
t .G/ < t?.G/. It suffices to show that t?.G/ � t .G/ � tC.G/ � t?.G/ C 1. Let
s0 W v1; v2; : : : ; vn be a linear ordering of V.G/, where n D jV.G/j, for which
d.s0/ D t .G/. Let x be a vertex for which t .x/ D t?.G/. Since t .G/ ¤ t?.G/,
we may assume that x D vi for some i , where 2 � i � n � 1. Consider the linear
ordering s1 W x; v1; v2; : : : ; vi�1; viC1; viC2; : : : ; vn and observe that

t?.G/ D t .x/ � d.s0/C d.x; v1/C d.vi�1; viC1/ � d.vi�1; vi / � d.vi ; viC1/

� t .G/C e.x/;
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where e.x/ is the eccentricity of x. Now let y and z be a neighbor of x and a
vertex farthest from x, respectively. For a linear ordering s0 of V.G/ � fxg whose
first and last terms are y and z, respectively, let s2 and s3 be the linear orderings
of V.G/ such that s2 is the ordering whose initial term is x followed by s0 and s3

is the ordering whose terminal term is x preceded by s0. Then t?.G/ � d.s2/ D
d.s0/ C 1 � d.s0/ C e.x/ D d.s3/ � tC.G/ and so tC.G/ � t?.G/ C 1 � e.x/.
Hence, t?.G/ � t .G/ � e.x/ � tC.G/ � t?.G/C 1. ut

By Theorem 3.43, if G is a graph satisfying t?.G/ D tC.G/, then tC.T / �
t .G/ C 1. Hence, Theorem 3.39 implies that the converse of (3.3) also holds, that
is, t?.G/ D tC.G/ if and only if G is either a complete graph or a star.

Problem 3.1. For which graphs G is t?.G/ D .t.G/C tC.G/C 1/=2?

We saw in Theorem 3.37 that jt .u/ � t .v/j � 1 when u and v are adjacent. The
following is an immediate consequence of this observation.

Theorem 3.44. Let G be a nontrivial connected graph. If k is an integer such that
t .G/ � k � t?.G/, then there exists a vertex whose traceable number equals k.

Proof. Since the statement is obvious if k D t .G/ or k D t?.G/, assume that
t .G/ < k < t?.G/. Let u; v 2 V.G/ such that t .u/ D t .G/ and t .v/ D t?.G/.
Consider a u � v geodesic P D .u D v0; v1; : : : ; v` D v/, where ` D d.u; v/.
Suppose that j is the largest integer such that vj belongs to P and t .vj / � k.
Thus, j � ` � 1. We claim that t .vj / D k. If this is not the case, then t .vj / �
k � 1 and t .vj C1/ � k C 1. However then, t .vj C1/ � t .vj / � 2, which contradicts
Theorem 3.37. ut

The traceable vertex spectrum T .G/ of a nontrivial connected graph G is
defined as T .G/ D ft .v/ W v 2 V.G/g. Thus, Theorem 3.44 implies that
T .G/ D ft .G/; t.G/ C 1; t.G/ C 2; : : : ; t?.G/g. In particular, if t .G/ D t?.G/,
then T .G/ is a singleton set and so t .v/ is a constant for all v 2 V.G/. For this
reason, a graph G is said to be traceably singular if t .G/ D t?.G/. It is therefore
natural to ask what properties traceably singular graphs possess. Note that if G is
a Hamiltonian graph of order n � 3, then every vertex is the initial vertex of a
Hamiltonian path, that is, T .G/ D fn � 1g. Therefore, every Hamiltonian graph
is certainly traceably singular. There are also non-Hamiltonian graphs with this
property. For example, although the Petersen graph P is not Hamiltonian, every
vertex is the initial vertex of a Hamiltonian path and so T .P / D f9g. In fact,
deleting any edge or vertex from P results in another traceably singular graph. On
the other hand, deleting any two edges from P results in a graph that is not traceably
singular.

The Petersen graph is an example of a hypohamiltonian graph. A graph G is
hypohamiltonian if G itself is not Hamiltonian but G � v is Hamiltonian for every
v 2 V.G/. Every hypohamiltonian graph is 3-connected since deleting any two
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Fig. 3.5 The graph G�

vertices results in a traceable graph. Furthermore, hypohamiltonian graphs form
another class of graphs that are not only traceable but also traceably singular.

Theorem 3.45. If G is a graph that is either Hamiltonian or hypohamiltonian, then
G is traceable and traceably singular.

It is known that the Petersen graph is the smallest hypohamiltonian graph (see
[41]). Among the known infinite classes of hypohamiltonian graphs is one found
by Lindgren [49]. For each positive integer k, let Hk be the graph obtained from a
.6kC3/-cycle C D .v1; v2; : : : ; v6kC3; v1/ by adding the edges vi vj , where 1 � i �
3k C 1 and either (i) i � 1 .mod 3/ and j � i D 3k C 1 or (ii) i � 2 .mod 3/ and
j � i D 3kC2. Thus, Hk is a Hamiltonian graph of order 6kC3 containing 2kC1

vertices of degree 2 and 4k C 2 vertices of degree 3. From Hk , the graph Gk is
obtained by adding a new vertex x and the edges xvi if and only if i � 0 .mod 3/.
Therefore, Gk is a graph of order 6k C 4 such that deg v D 3 if v 2 V.C / and
deg v D 2kC1 if v D x. The graph H1 is the Petersen graph. By symmetry, it is not
too difficult to verify that Gk � v is Hamiltonian for every v 2 V.Gk/. Furthermore,
while Hk is clearly Hamiltonian, if there is a u � v Hamiltonian path in Hk , then at
most one of u and v is adjacent to x in Gk , which implies that Gk is not Hamiltonian.

Another example of a traceably singular graph is the graph G� shown in Fig. 3.5.
Note that G� is neither Hamiltonian nor hypohamiltonian. This is a graph of order 9

and size 12 in which every vertex is the initial vertex of a Hamiltonian path. In
fact, there exists a Hamiltonian u � v path if and only if either (i) deg u D 2 and
d.u; v/ � 2 or (ii) deg u D 3 and d.u; v/ D deg v.

With the aid of G�, one can construct a traceably singular graph of order n that
is neither Hamiltonian nor hypohamiltonian for every integer n � 9.

Theorem 3.46. For each integer n � 9, there exists a traceably singular graph of
order n that is neither Hamiltonian nor hypohamiltonian.

Proof. Since the graph G� has the desired property, we may assume that n � 10.
Let v be a vertex in G� whose degree equals 2 and let N.v/ D fu; wg. Consider
the graph Gn obtained from G� � v by adding a copy of Kn�8 and joining each of
these n � 8 vertices to both u and w. One can then verify that Gn has the desired
properties. ut
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Traceably Singular Graphs That Are Traceable: Homogeneously
Traceable Graphs

The examples of traceably singular graphs we have seen thus far are all traceable.
A graph G is homogeneously traceable if every vertex is the initial vertex of a
Hamiltonian path in G. Thus, a homogeneously traceable graph is traceably singular
and t .G/ D t?.G/ D n � 1, where n D jV.G/j. Since Hamiltonian graphs are
obviously homogeneously traceable, it is more interesting to restrict our attention to
homogeneously traceable graphs that are not Hamiltonian. These graphs have been
studied by Skupień [63] and Chartrand, Gould, and Kapoor [22].

Suppose that G is a nontrivial homogeneously traceable graph. Since every
vertex is the initial vertex of a Hamiltonian path in G, it follows that G � v is
traceable for every v 2 V.G/. Hence, G is clearly 2-connected. Furthermore, G � v
contains at most two end-vertices. In particular, when G is not Hamiltonian, then
G � v contains at most one end-vertex. These facts are summarized as follows.

Theorem 3.47 ([22, 63]). Let G be a nontrivial homogeneously traceable graph.
Then G is 2-connected and k.G � S/ � jS j for every nonempty proper subset S

of V.G/. For every vertex v 2 V.G/, the graph G � v is traceable and contains at
most two end-vertices.

Theorem 3.48 ([22]). Let G be a nontrivial homogeneously traceable graph that
is not Hamiltonian. Then for every v 2 V.G/, the graph G � v is traceable and
contains at most one end-vertex. Also, the number of vertices of degree 2 is at most
jV.G/j=2.

The proof of Ore’s Theorem (Theorem 2.2) implies the following.

Lemma 3.2. Let G be a graph of order n � 3 and u; v 2 V.G/. If there exists a
Hamiltonian u � v path and deg uC deg v � n, then G is Hamiltonian.

Theorem 3.49 ([22]). If G is a non-Hamiltonian homogeneously traceable graph
of order n, then (i) n 2 f1; 2g or (ii) n � 7 and 3 � �.G/ � n � 4.

Proof. The result is obvious for n D 1; 2. Also, if G is a 2-connected graph of order
n 2 f3; 4; 5g, then either G is Hamiltonian or G 2 fK2;3; K1;1;3g. Since neither
K2;3 nor K1;1;3 is homogeneously traceable, the result holds for 3 � n � 5 as well.
Thus, let us assume that n � 6. Let v be a vertex whose degree equals �.G/ and
consider a Hamiltonian path .v D v1; v2; : : : ; vn/ whose initial vertex is v. Since
deg vn � 2, it follows that G is Hamiltonian or �.G/ � n � 3 by Lemma 3.2.
Now assume, to the contrary, that G is a non-Hamiltonian homogeneously traceable
graph and �.G/ D n � 3. Since deg v D n � 3, we have deg vn D 2. Suppose that
vi vn 2 E.G/, where 2 � i � n � 2. Thus, there is a Hamiltonian v � viC1 path,
implying that deg viC1 D 2. If i D n � 2, then vn�2 is a cut-vertex, which cannot
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occur. Also, if i � n � 3, then G � vn�3 contains two end-vertices, which is again
impossible. Thus, �.G/ � n � 4. Since G ¤ Cn, the result now follows. ut

Theorem 3.50 ([22]). If G is a non-Hamiltonian homogeneously traceable graph
of order n and �.G/ D n � 4, then the subgraph induced by the vertices of
degree n � 4 is complete.

Proof. Assume, to the contrary, that there exists a non-Hamiltonian homogeneously
traceable graph G of order n containing nonadjacent vertices u; v of degree n � 4.
Add as many edges as possible between pairs of nonadjacent vertices of G so that
the resulting graph H is still not Hamiltonian. Hence, H is a non-Hamiltonian
homogeneously traceable graph of order n such that addition of an edge to H

produces a Hamiltonian graph. Note that degH u D degH v D n � 4 D �.H/.
Since H C uv is Hamiltonian, it follows that H contains a Hamiltonian u � v path.
Therefore, 2.n � 4/ D degH uC degH v � n � 1, that is, n D 7. We may assume
that .v1; v2; : : : ; v7/ is a Hamiltonian path in H and deg v1 D deg v7 D 3 while
v1v7 … E.H/. Let N.v1/ D fv2; vi1 ; vi2g, where 3 � i1 < i2 � 6, and N.v7/ D
fv6; vj1 ; vj2g, where 2 � j1 < j2 � 5. Now observe that fi1; i2g \ fj1; j2g D ;
since �.H/ D 3. Also, fi1; i2g \ fj1 C 1; j2 C 1g D ; since H is not Hamiltonian.
Therefore, fi1; i2g D f5; 6g and fj1; j2g D f2; 3g. However, this still produces a
Hamiltonian cycle in H , which is a contradiction. ut

It is now easy to verify that every homogeneously traceable graph of order 7 must
be Hamiltonian.

Theorem 3.51 ([22]). Let G be a graph of order 7. Then G is Hamiltonian if and
only if G is homogeneously traceable.

Proof. If there exists a non-Hamiltonian homogeneously traceable graph G of
order 7, then G contains at most three vertices of degree 2 by Theorem 3.50.
Then by Theorem 3.49, there are at least four vertices of degree 3. However, this
is impossible by Theorem 3.50. ut

Similarly, there is no non-Hamiltonian homogenously traceable graph of order 8.
If there were such a graph G, then 2 � deg v � 4 for every v 2 V.G/. It is stated in
[22] that consideration of all possible cases yields the result that no such G exists.

While a graph that is homogeneously traceable must have sufficiently many
edges, having too many edges results in a Hamiltonian graph. By Theorem 3.48,
if G is a homogeneously traceable non-Hamiltonian graph of order n � 9, then at
most n=2 vertices in G are of degree 2 while the remaining vertices are of degree
greater than 2.

Theorem 3.52 ([22]). If G is a homogeneously traceable non-Hamiltonian graph
of order n, then either (i) n D 1; 2 or (ii) n � 9 and jE.G/j � 5n=4.
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It is also shown in [22] that this is a sharp bound. For example, let ` be a positive
integer and consider the graph H D C2`C1�P2 (the Cartesian product of C2`C1

and P2). Let C and C 0 be the two vertex-disjoint copies of C2`C1 in H . Then G is
obtained from H by replacing each P2 joining v 2 V.C / and v0 2 V.C 0/ by P4

such that dG.v; v0/ D 3. Observe then that the resulting graph G has order 4.2`C1/

and size 5.2`C 1/, possessing the desired properties.

Randomly Traceable Graphs

A traceable graph G is said to be randomly traceable if a Hamiltonian path always
results upon starting at any vertex in G and successively proceeding to any adjacent
vertex not yet encountered. In other words, for an arbitrary u � v path P in G,
there exists a Hamiltonian path P 0 with initial vertex u such that P � P 0. Thus,
a randomly traceable graph is homogeneously traceable but the converse is false.
(Consider, for example, the Petersen graph.) If, in addition, jV.G/j � 3 and the
final vertex of each such path is adjacent to the first vertex, then G is called randomly
Hamiltonian. These graphs were studied by Chartrand and Kronk [16].

While a randomly Hamiltonian graph is clearly randomly traceable, if G is a
randomly traceable graph of order at least 3, then G turns out to be randomly
Hamiltonian as well.

Theorem 3.53 ([16]). Let G be a graph of order at least 3. Then G is randomly
traceable if and only if G is randomly Hamiltonian.

Proof. Let G be a randomly traceable graph of order n and suppose that P D
.v1; v2; : : : ; vn/ is a Hamiltonian path. Consider the subpath P 0 D .v2; v3; : : : ; vn/ of
P . Since G is randomly traceable, it must be possible to begin with P 0 and conclude
with a Hamiltonian path. This implies that v1vn 2 E.G/, that is, P can be extended
to a Hamiltonian cycle. ut

Thus, given any randomly traceable graph G of order n � 3, we may assume the
presence of a Hamiltonian cycle. More can be said.

Lemma 3.3 ([16]). Let G be a randomly traceable graph of order n � 3 with a
Hamiltonian cycle C D .v1; v2; : : : ; vn; v1/. For each integer ` with 1 � ` � n=2,
let E` D fvi viC` W 1 � i � ng, where the subscripts are expressed modulo n. Then
either E` � E.G/ or E` \E.G/ D ;.

Proof. Since E1 D E.C / � E.G/, we may assume that ` � 2. It suffices to show
that if vi vj 2 E` \ E.G/, then viC1vj C1 2 E.G/. Also, we may assume, without
loss of generality, that i D 1. Observe that .v2; v3; : : : ; vj ; v1; vn; vn�1; : : : ; vj C1/

is a Hamiltonian path. Since G is randomly Hamiltonian, it follows that v2vj C1 2
E.G/. ut
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By Lemma 3.3, if G is a randomly traceable graph of order at most 5, then G must
be either a cycle or a complete graph. For graphs of order at least 6, the following is
also useful.

Lemma 3.4. Let G be a randomly traceable graph of order n � 6 with a
Hamiltonian cycle C D .v1; v2; : : : ; vn; v1/. If ` is an integer with 3 � ` � n � 3,
then v1v` 2 E.G/ implies that v1v`C2 2 E.G/.

Proof. Assume that v1v` 2 E.G/. Then by Lemma 3.3, G contains a path P D
.v`C3; v`C4; : : : ; vn; v`�1; v`�2; : : : ; v2; v`C1; v`; v1/, which contains every vertex in
G except for v`C2. Since we must be able to extend P to a Hamiltonian path, it
follows that v1v`C2 2 E.G/. ut

Theorem 3.54 ([16]). A nontrivial graph G is randomly traceable if and only if G

is a cycle, a complete graph, or a regular complete bipartite graph.

Proof. It is straightforward to verify that cycles, complete graphs, and regular
complete bipartite graphs are randomly traceable.

Conversely, let G be a randomly traceable graph of order n. For n D 2; 3,
the result is obvious. Hence, assume that n � 4 and let C D .v1; v2; : : : ; vn; v1/

be a Hamiltonian cycle in G. If G D C , then G D Cn. We therefore assume
that G contains edges not belonging to C (called chords) and necessarily then
cycles containing exactly one chord. Such cycles will be referred to as outer cycles.
Consider the smallest p for which G contains an outer p-cycle.

Let p be the smallest positive integer such that v1vp 2 E.G/. (Thus, 2 � p �
n=2 C 1.) If p � 5, then observe that the path .v4; v5; : : : ; vp; v1; v2; vpC1; vpC2;

: : : ; vn/ cannot be extended to a Hamiltonian path since v3vn … E.G/, which is a
contradiction. Therefore, p 2 f2; 3; 4g. Of course, G D Cn if p D 2. If p D 3, then
we see that v1v4 2 E.G/ by considering the path .v2; v3; v5; v6; : : : ; vn; v1/. Thus, G

contains every possible edge by Lemmas 3.3 and 3.4, that is, G is complete.
Suppose finally that p D 4. If n is odd, say n D 2k C 1 for some integer k � 3,

then one of v1vkC1 and v1vkC2 belongs to E.G/ by Lemma 3.4. Then Lemma 3.3
guarantees that v1vkC1; v1vkC2 2 Ek � E.G/, which implies that v1vn�2 2 E.G/

by Lemma 3.4. However, this is impossible since p ¤ 3. Thus, n must be even and
G contains every possible edge without making odd cycles. That is, G is a regular
complete bipartite graph. ut

A graph G is strongly randomly traceable if for every two distinct vertices u and
v in G, a Hamiltonian u � v path always results upon starting at u and successively
proceeding to any vertex not yet encountered with the added restriction that v is not
to be taken should some other eligible vertex still be available.

Theorem 3.55 ([16]). A graph G of order at least 3 is strongly randomly traceable
if and only if G is complete.
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Fig. 3.6 The Coxeter graph

Traceably Singular Graphs That Are Not Traceable

The examples of traceably singular graphs we have seen thus far are those that
are homogeneously traceable. Are there graphs that are traceably singular and
not traceable? In other words, are there graphs G for which t .G/ D t?.G/ �
jV.G/j? Note that if a graph is not traceable, then it is neither Hamiltonian nor
hypohamiltonian.

A graph G is vertex-transitive if for every pair u; v of vertices of G, there exists
an automorphism � W V.G/! V.G/ such that �.u/ D v. For example, the Petersen
graph, complete graphs, and regular complete bipartite graphs are vertex-transitive.
Certainly, every vertex-transitive graph is regular, but not conversely. Suppose that
G is a nontrivial connected vertex-transitive graph and let v 2 V.G/ with t .v/ D
t .G/. Then G contains a spanning walk .v D v0; v1; : : : ; vt.G// of length t .G/ whose
initial vertex is v. Let u be a vertex in G distinct from v and � W V.G/ ! V.G/

an automorphism such that u D �.v/ D �.v0/. Then G contains a spanning walk
.u D �.v0/; �.v1/; : : : ; �.vt.G/// of length t .G/ whose initial vertex is u. That is,
t .v/ D t .G/ for all v 2 V.G/. As a consequence, we obtain the following.

Theorem 3.56. Every connected vertex-transitive graph is traceably singular.

Of course, the converse of Theorem 3.56 does not hold. For example, every
Hamiltonian graph that is not regular is traceably singular but not vertex-transitive.

There are currently only five known nontrivial connected vertex-transitive graphs
that are not Hamiltonian, namely K2, the Petersen graph (order 10), the Coxeter
graph (order 28, see Fig. 3.6), and two graphs derived from the Petersen graph and
Coxeter graphs by replacing each vertex by a triangle (see Fig. 3.7). The Petersen
graph and Coxeter graph are hypohamiltonian while the last two are called the
truncated Petersen graph (order 30) and truncated Coxeter graph (order 84),
respectively, and neither is hypohamiltonian. Each of these five vertex-transitive
graphs fails to contain a Hamiltonian cycle; yet all five contain Hamiltonian
paths. Therefore, these are examples of non-Hamiltonian homogeneously trace-
able graphs. It is not known whether there exists a vertex-transitive graph that
is not traceable. That is, we know of no vertex-transitive graph G for which
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Fig. 3.7 Replacing a vertex
by a triangle

Fig. 3.8 The Zamfirescu
graph of order 36

Fig. 3.9 Replacing a vertex
by P � v

t .G/ D t?.G/ � jV.G/j. In fact, Royle conjectured that all other connected vertex-
transitive graphs are Hamiltonian (see [24]).

There does exist a traceably singular graph that is neither traceable nor vertex-
transitive. The Zamfirescu graph G of order 36, found by Zamfirescu [71], shown
in Fig. 3.8, is not vertex-transitive and t .G/ D t?.G/ D 37, which was observed
by Allen Schwenk (personal communication). The Zamfirescu graph of order 36 is
a snark (a connected bridgeless cubic graph having chromatic index 4 and girth at
least 5, where the girth of a graph is the length of a shortest cycle in that graph).
Every snark is a non-Hamiltonian graph containing the Petersen graph as a minor
while many known snarks are hypohamiltonian, which implies that many known
snarks are homogeneously traceable. The Zamfirescu graph of order 36 therefore has
a somewhat surprising property of being a non-traceable snark that is still traceably
singular.

The Zamfirescu graph of order 36 is obtained by replacing each vertex of a
complete graph of order 4 by the graph P � v of order 9 (the Petersen graph P with
a vertex deleted), as shown in Fig. 3.9. In general, this operation transforms a cubic
Hamiltonian graph of order 2n .�4/ into another cubic graph G of order 18n. One
may verify that the resulting G is a traceably singular graph with t .G/ D t?.G/ D
20n � 3. Clearly G is non-traceable; the length of a longest path in this graph is
diamD.G/ D 16nC 1.
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3.7 The Total Traceable Number of a Graph

For a nontrivial connected graph G of order n, the total traceable number t t .G/ is
defined by

t t .G/ D
X

v2V.G/

t.v/:

Since t .v/ � n � 1 for every v 2 V.G/, it follows that t t .G/ � n.n � 1/.
Furthermore, t t .G/ D n.n � 1/ if and only if G is homogeneously traceable.
Therefore, the total traceable number of a connected graph G of order n can be
considered as a measure of how close G is to being homogeneously traceable – the
closer t t .G/ is to n.n � 1/, the closer G is to being homogeneously traceable.

It is immediate that nt.G/ � t t .G/ � nt?.G/. By Theorem 3.44, recall that

T .G/ D ft .v/ W v 2 V.G/g D ft .G/; t.G/C 1; : : : ; t?.G/g:

Furthermore, if s is a linear ordering of V.G/ for which d.s/ D t .G/, then t .v/ D
t .G/ when v is either the initial term or the terminal term of s.

Theorem 3.57. If G is a nontrivial connected graph of order n, then

nt.G/C �t?.G/�t.G/C1
2

� � t t .G/ � nt?.G/ �
��

t?.G/�t.G/C1
2

�C t?.G/ � t .G/
�

.

Proof. Since the result is obvious when t .G/ D t?.G/, we may assume that t .G/ <

t?.G/. Let us first consider the lower bound. By Theorem 3.44, there is at least
one vertex v for which t .v/ D t .G/ C i for 1 � i � t?.G/ � t .G/ and at most
n � t?.G/ C t .G/ vertices for which t .v/ D t .G/. Thus, t t .G/ � nt.G/ C .1 C
2C � � � C .t?.G/� t .G///, as desired. The upper bound can be verified in a similar
manner, remembering that there are at least two vertices having traceable number
t .G/. ut

As for other Hamiltonian numbers and traceable numbers, the total traceable
number of a connected graph is bounded above by the total traceable number of a
connected spanning subgraph of that graph.

Theorem 3.58. If H is a connected spanning subgraph of a nontrivial graph G,
then t t .G/ � t t .H/. In particular,

t t .G/ � minft t .T / W T is a spanning tree of Gg:

Hence, it is useful to know the total traceable numbers of trees. In order to do
this, we first recall a useful result from Sect. 3.5 on the traceable number of a vertex
of a tree; that is, if T is a nontrivial tree of order n, then
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t .v/ D 2.n � 1/ � e.v/ (3.4)

for every v 2 V.T /. Using (3.4), it is straightforward to verify that

t t .T / D n.n � 1/C
8
<

:

b.n � 1/2=4c if T is a path of order n � 2

n2 � 3nC 1 if T is a star of order n � 3

n2 � 4nC 2 if T is a double star of order n � 4.

If Sn denotes the set of trees of order n, then

ft t .T / W T 2 S2g D f2g
ft t .T / W T 2 S3g D f7g
ft t .T / W T 2 S4g D f14g [ f17g
ft t .T / W T 2 S5g D f24g [ f27g [ f31g
ft t .T / W T 2 S6g D f36g [ f40; 41g [ f44g [ f49g
ft t .T / W T 2 S7g D f51g [ f55; 56g [ f60; 61; 62g [ f65g [ f71g:

For a nontrivial tree T , there is exactly one central vertex if diam.T / is even and
there are exactly two central vertices otherwise. This gives us sharp upper and lower
bounds for the total traceable numbers of trees in terms of order and diameter.

Theorem 3.59. Let T be a tree of order n � 3 and diameter d . Then

n.n � 1/C b0 � t t .T / � n.n � 1/C b00;

where b0 and b00 are the integers given by

b0 D n2 � .d C 1/nC bd=2cdd=2e
b00 D n2 � b.d C 5/=2c � bd=2c2 C dd=2e C 1:

Proof. We consider two cases according to the parity of d .

Case 1. d is even. Then d D 2r , where r D rad.T /. In this case, observe that
b0 D n2 � .2r C 1/nC r2 and b00 D n2 � .r C 2/n� r2 C r C 1. Thus, T contains
exactly one vertex with eccentricity r and at least two vertices with eccentricity i

for each i with r C 1 � i � 2r . Therefore,

X

v2V.T /

e.v/ � r C 2
�
r2 C �rC1

2

��C .n � 2r � 1/.2r/ D 2rn � r2
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while

X

v2V.T /

e.v/ � r C 2
�
r2 C �rC1

2

��C .n� 2r � 1/.r C 1/ D .r C 1/nC r2 � r � 1:

Since t t .T / D n.2.n � 1// �Pv2V.T / e.v/ by (3.4), it follows that

n.n� 1/C n2 � .2r C 1/n� r2 � t t .T / � n.n� 1/C n2 � .r C 2/n� r2C r C 1;

that is, n.n � 1/C b0 � t t .T / � n.n � 1/C b00.

Case 2. d is odd. Then d D 2r � 1, where r D rad.T /. In this case, we have
b0 D n2 � 2rnC r.r � 1/ and b00 D n2 � .r C 2/n � r.r � 3/. Hence, T contains
exactly two vertices with eccentricity r and at least two vertices with eccentricity i

for each i with r C 1 � i � 2r � 1. Then one can verify that

.r C 1/nC r.r � 3/ �
X

v2V.T /

e.v/ � .2r � 1/n � r.r � 1/:

Therefore, the desired result is again obtained. ut

For a fixed integer d � 2, let P D .v0; v1; : : : ; vd / be a path of length d . If T

is a tree of order n and diameter d , then t t .T / D n.n � 1/C b0 if and only if T is
obtained from P by adding n�d �1 new vertices and joining each of these vertices
to either v1 or vd�1. On the other hand, t t .T / D n.n � 1/C b00 if and only if T is
obtained from P by adding n�d �1 new vertices and joining each of these vertices
to exactly one of vbd=2c and vdd=2e.

In general, if b is an integer such that b0 � b � b00, then a tree of order n

and diameter d can be constructed from the path P by adding pendant edges at
appropriate vertices of P such that its total traceable number equals n.n � 1/C b.
Thus, we have the following realization result.

Theorem 3.60. Let n, d , and a be integers such that 2 � d � n � 1. Then there
exists a tree T of order n, diam.T / D d , and t t .T / D a if and only if a D
n.n � 1/C b for some integer b satisfying

n2 � .d C 1/nC bd=2cdd=2e � b � n2 � b.d C 5/=2cn � bd=2c2 C dd=2e C 1:

Consequently, if T is neither a star nor a double star, then

n.n � 1/C b.n � 1/2=4c � t t .T / � n.n � 1/C .n2 � 4n � 1/:

Let G be a connected graph of order n � 3. Recall that the detour diameter
diamD.G/ is the length of a longest path in G and so 2 � diamD.G/ � n�1. While
diam.T / D diamD.T / when T is a tree, diam.G/ � diamD.G/ for a connected
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graph G in general. If G is connected, then it is not always the case that G contains
a spanning tree T such that diam.T / D diam.G/. However, the following always
holds.

Lemma 3.5. If P is a longest path in a connected graph G, then G has a spanning
tree containing P . In other words, every connected graph G contains a spanning
tree T such that diam.T / D diamD.G/.

Proof. We proceed by induction on the order of G. If G is a connected graph of
order at most 4, then either G D K1;3 or G is traceable. Let n � 4 be an integer and
suppose that every connected graph of order n has the desired property. Now assume
that G is a connected graph of order nC 1 and let P be a longest path in G. Since
the desired result is immediate if V.G/ D V.P /, let us assume that the set S D
V.G/�V.P / is nonempty. Select x 2 S such that d.x; V .P // D maxfd.v; V .P // W
v 2 Sg. Hence, x is not a cut-vertex. Let y 2 V.P / such that d.x; y/ D d.x; V .P //

and consider an x � y geodesic Q D .x D v0; v1; : : : ; v` D y/. (Since x … V.P /,
observe that ` D d.x; y/ � 1.) Now consider the graph H D G � x. Observe
that H is a connected graph of order n containing P , so there exists a spanning tree
TH of H containing P . Then by adding a pendant edge at v1 in TH , we obtain a
spanning tree of G containing P as well. ut

We have seen that diamD.G/ D 2 if and only if G is a star and diamD.G/ D 3 if
and only if G is either a double star or G D K1;n�1C e. It can be easily verified that
t t .K1;n�1C e/ D n.n� 1/C .n2� 4nC 1/. Therefore, if G is a connected graph of
order n � 5 and diamD.G/ � 4, then n.n�1/ � t t .G/ � n.n�1/C .n2�4n�1/

by Theorem 3.60 and Lemma 3.5.
Let us now turn our attention to those pairs n; a of integers such that n � 5 and

n.n � 1/C b.n � 1/2=4c � a � n.n � 1/C .n2 � 4n � 1/ (3.5)

for which there exists a connected graph G of order n and t t .G/ D a.
For integers n and d with n � 6 and 5 � d � n � 1, let b0

n;d�1 and b00
n;d be the

integers given by

b0
n;d�1 D n2 � dnC b.d � 1/=2cd.d � 1/=2e

b00
n;d D n2 � b.d C 5/=2cn � bd=2c2 C dd=2e C 1:

Define gn W f5; 6; : : : ; n � 1g ! Z by

gn.d/ D maxf0; b0
n;d�1 � b00

n;d � 1g: (3.6)

That is, the value of gn.d/ gives us the number of integers “missing” between the
total traceable numbers of trees of diameters d and d � 1. For example,
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Fig. 3.10 Graphs G1, G2,
and G3

ft t .T / W T 2 S8; diam.T / � 4g D f68g [ f73; 74; 75g [ f78; 79; 80g
[ f84; 85; 86; 87g:

Since

ft t .T / W T 2 S8; diam.T / D 7g D f68g
ft t .T / W T 2 S8; diam.T / D 6g D f73; 74; 75g;

there are g8.7/ D 4 “missing” integers (namely, 69, 70, 71, and 72) between the
two sets.

Theorem 3.61. For integers n; d with 5 � d � n � 1,
(a) gn.5/ D 3,
(b) gn.n � 1/ D bn=2c,
(c) gn.n � 2/ D 2 if n � 8 and is even, gn.n � 2/ D 3 if n � 7 and is odd, and
(d) g9.6/ D g11.7/ D g12.9/ D 1 and g10.7/ D 2.
Otherwise, gn.d/ D 0.

In [55], how those “gaps” due to the values of gn.d/ being nonzero can be filled
in is described. The graphs Gi .1 � i � 3/ in Fig. 3.10 are obtained from a path P

of order 5 by adding n�5 pendant edges at the central vertex of P and adding a few
additional edges as shown. Observe then that t t .Gi / D n.n� 1/C .n2 � 5n/C i D
n.n � 1/C b00

n;5 C i: These three graphs correspond to gn.5/ D 3.
For gn.n � 1/ D bn=2c, assume first that n is even. Let P D .v1; v2; : : : ; vn�2/

and Q D .w1; w2/ be vertex-disjoint paths of orders n � 2 and 2, respectively.
Let G1 be the graph obtained from P and Q by adding the edges wi v2 .i D 1; 2/

and vn=2�2vn=2. For each integer j with 1 � j � bn=4c, construct G2j from P

and Q by adding the edges wi vj C1 .i D 1; 2/. Also, for each integer j with 1 �
j � b.n � 2/=4c, construct G2j C1 from P and Q by adding the edges wi vj C1

.i D 1; 2/ and w2vj C2 and deleting the edge w1w2. Then we have constructed the
graphs G1; G2; : : : ; Gn=2 and
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Fig. 3.11 Graphs G1;

G2; : : : ; G5 for n D 10

Fig. 3.12 Graphs H1 and H2

for n D 10

t t.Gi / D n.n � 1/C b.n � 1/2=4c C i D n.n � 1/C b00
n;n�1 C i

for 1 � i � bn=2c. A similar construction exists when n is odd. Figure 3.11 shows
the graphs G1; G2; : : : ; G5 for n D 10.

Next assume that n � 8 and n is even. Thus, gn.n�2/ D 2. Let P D .v1; v2; : : : ;

vn�3/ and Q D .w1; w2/ be vertex-disjoint paths of orders n� 3 and 2, respectively.
For i D 1; 2, construct Hi from P and Q by adding the edges wj v2 .j D 1; 2/ and
a pendant edge at the vertex vn=2�4Ci . Then t t .Hi / D n.n � 1/ C b00

n;n�2 C i for
i D 1; 2. See Fig. 3.12 for n D 10. When n is odd, a similar construction produces
three graphs corresponding to gn.n � 2/ D 3.

Let Gn;a be a connected graph of order n with t t .Gn;a/ D a. According to
Theorem 3.61(d), we still need to determine the existence of graphs G9;104, G10;127,
G10;128, G11;162, and G12;183. It turns out that all graphs listed above exist and are
shown in Fig. 3.13.

Theorem 3.62. A pair n; a of integers with n � 5 and

n.n � 1/C �.n � 1/2=4
˘ � a � n.n � 1/C .n2 � 4n � 1/

is realizable as the order and total traceable number of some connected graph.
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Fig. 3.13 Graphs Gn;a

It remains to study those pairs n; a for which n � 5 and

n.n � 1/ � a � n.n � 1/C �.n � 1/2=4
˘ � 1: (3.7)

It is shown in [55] that for every pair n; a satisfying (3.7) there exists a graph whose
order and traceable number are n and a, respectively. Although we do not include
details here, the idea is as follows. If we let kn D b.nC 5/=4c, then it follows that
.kn � 2/n < b.n � 1/2=4c � .kn � 1/n. Let k be an integer such that 2 � k � kn.

If ` is another integer such that 3 � ` � n� kC 1, then let C be a cycle of order
` and K D Kn�k�`C2 C .k � 2/K1 such that V.C / \ V.K/ D ;. A graph G is
constructed by joining every vertex of K to a vertex belonging to C . Then one can
verify that t t .G/ D n.n � 1/C .k � 2/nC ` � 2.

Also, for each integer i D 1; 2; 3, let K D Kn�kC1�i and P D Pi be a
complete graph and a path of orders n � k C 1 � i and i , respectively, such that
V.K/ \ V.P / D ;. Let u and v be two distinct vertices in K. Then obtain the graph
G by (i) joining an end-vertex of P to u and (ii) adding k � 1 pendant edges at v
and observe that t t .G/ D n.n � 1/C .k � 1/n � k � 1C i:

Finally, let P D .v1; v2; : : : ; v6/ be a path of order 6 and suppose that k � 3. For
each integer i 2 f1; 2; : : : ; k � 2g, let K D Ki and K 0 D Kn�k�4�i be complete
graphs of orders i and n � k � 4 � i , respectively, such that P , K, and K 0 are
pairwise vertex-disjoint. Then let the graph G of order n obtained from P , K, and
K 0 by (i) joining every vertex of K to both u3 and u4, (ii) joining every vertex of
K 0 to both u2 and u3, and (iii) adding k � 2 pendant edges at u2 has t t .Hk;i / D
n.n � 1/C .k � 1/n � k C 2C i:
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Theorem 3.63 ([55]). Every pair n; a of integers with n � 5 and

n.n � 1/ � a � n.n � 1/C �.n � 1/2=4
˘ � 1

is realizable as the order and total traceable number of some connected graph.

Combining Theorems 3.62 and 3.63, we obtain a complete realization result.

Theorem 3.64. A pair n; ˛ of integers with n � 3 is realizable as the order and
total traceable number of some connected graph if and only if

n.n � 1/ � ˛ � n.n � 1/C .n2 � 3nC 1/

and exactly one of the following (a)–(c) occurs.
(a) n D 3.
(b) n D 4 and ˛ 2 f12; 13; 14; 17g.
(c) n � 5 and either

i. ˛ � n.n � 1/C .n2 � 4nC 2/ and ˛ ¤ n.n � 1/C .n2 � 4n/ or
ii. ˛ D n.n � 1/C .n2 � 3nC 1/.
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A
adjacency matrix, 20
antipodal vertex, 59

B
Bauer-Broersma-Veldman graph, 45
BEST Theorem, 20

C
central vertex, 79
Chinese Postman Problem, 27
circuit, 8
circumference, 42
claw, 73
clique number, 56
closed walk, 8
closure, 40
cocycle, 19
cocycle space, 19
component number, 81
connectivity, 42
Coxeter graph, 95
cube of a graph, 12
cut, 19
cycle, 8
cycle basis, 18
cycle space, 18
cyclic ordering, 52

D
detour diameter, 69
detour distance, 69
detour eccentricity, 69
diameter, 56
distance between subgraphs, 25
dominating circuit, 47
double star, 66

E
eccentricity, 62
edge space, 18
edge-covering walk, 51
edge-cut, 18
Eulerian circuit, 8
Eulerian digraph, 20
Eulerian graph, 8
Eulerian trail, 8
Eulerian walk, 28
even graph, 8
even (odd) trail, 24
even (odd) vertex, 6

F
First Theorem of Graph Theory, 6

G
girth, 60

H
Hamiltonian cycle, 38
Hamiltonian graph, 38
Hamiltonian number, 51
Hamiltonian path, 38
Hamiltonian spectrum, 62
Hamilotnian walk, 51
Hamiltonian-connected graph, 45
homogeneously traceable, 91
hypohamiltonian, 89

I
Icosian Game, 35
in-tree rooted at a vertex, 21
independence number, 42
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independent set, 42
irregular Eulerian walk, 29

K
Königsberg Bridge Problem, 1

L
line graph, 47
linear forest, 70
linear ordering, 67

M
maximum degree, 38
maximum vertex traceable number, 85
median number, 64
minimal edge-cut, 18
minimum degree, 38
minimum Eulerian walk, 28

O
open walk, 8
optimal irregular Eulerian walk, 30
Ore’s Theorem, 39
outdegree matrix, 20

P
path, 8
Petersen graph, 41
power of a graph, 12

R
randomly Eulerian from a vertex, 31
randomly Hamiltonian, 93
randomly traceable, 93
randomly traversable from a vertex, 33

S
self-centered, 79
snark, 96
square of a graph, 12
strongly randomly traceable, 94
symmetric difference, 17

T
total distance, 64
total traceable number, 97
toughness, 44
traceable graph, 38
traceable number of a vertex, 85
traceable vertex spectrum, 89
traceable walk, 68
traceably singular, 89
trail, 8
Traveling Salesman Problem, 46
traversable graph, 8
truncated Coxeter graph, 95
truncated Petersen graph, 95

U
unicyclic graph, 56
upper Hamiltonian number, 58
upper traceable number, 78

V
vertex-covering walk, 51
vertex-cut, 42
vertex-transitive, 95

W
walk, 8
weight, 46
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