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Preface

The title of this book is ARC ROUTING: Theory, Solutions, and Ap­
plications. The key word in this title is "ROUTING". The thesaurus list­
ing for "route" reads 1 "itinerary, way, course, passage, circuit, beat, run,
round, orbit, trajectory, artery, channel, detour, bypass, 2 road, street,
roadway, thoroughfare, passage, passageway, artery, channel, corridor,
track, trail, avenue, boulevard, highway, thruway, turnpike, 3 means,
medium, agency, steps, instrumentality, way, system, modus operandi,
method, procedure, practice, process, course". As a verb the thesaurus
defines it as "channel, direct, send, point, aim, head, steer, drive, ma­
neuver, and pilot." Different thesaurus listings may add to the corre­
spondence of a one to many mapping. Most of these words implicitly or
explicitly project the sense of moving along some well-understood (phys­
ical) entities or objects. "To route" is defined among other definitions
as "to head", "to steer", "to drive", or "to maneuver" (about an object).

The other key word "ARC" corresponds to "curve" "line" or "bend", '"
connecting two points (or objects represented as points) with an indi-
cation of a direction from one point to the other. Thus, the title ARC
ROUTING conveys that the main topic of this book is about ways of
"maneuvering", "driving", "steering" along curved lines which connect
different objects or points.

Another word associated with routing, especially arc routing, is
"TRAVERSING" or "TRAVERSAL", which in the context of this book
is to "pass through", "pass over", "travel across", "march over", "scan",
"run through", and "inspect". This book could have been titled ARC
TRA VERSALS and it would have been just as appropriate as the title
ARC ROUTING, or perhaps even more so.

The first chapter in this book titled A HISTORICAL PERSPECTIVE
ON ARC ROUTING by H.A. Eiselt and Gilbert Laporte, describes a
problem posed to Leonhard Euler (a well known mathematician) around
1736. The question was whether there is a route (a marching band route)
starting on an island in a city then called Konigsberg, which would tra-
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verse each of the city's seven bridges exactly once (with no repetitions)
and end on the island from which the route started. This practical ques­
tion regarding the planning of a marching band route is often sited as
the beginning of modern graph theory (a branch of mathematics), and
Leonhard Euler, who answered this question (proving that such a route
does not exist for the seven bridges in Konigsberg) is credited as the pi­
oneer of graph theory as we know it today. By solving the seven bridges
Konigsberg problem, he can certainly be considered the "inventor" of
arc routing. In honor of Euler, a whole family of graphs was classified as
Eulerian graphs and the study of the various properties of such Eulerian
graphs has been and still is of great interest for graph theory mathemati­
cians, as is demonstrated in the chapter by Fleischner in this book.

The first time I encountered an arc traversal (arc routing) problem was
in the context of examining work assignments for electric meter readers
in the city of Beer Sheva in Israel (see Stern and Dror, 1979). The city's
electric company periodically sent electric meter readers to record the
consumption of electricity by the different households for billing pur­
poses. The meter readers would traverse the city streets (to scan the
households' meters) and this "work assignment" would have its routes
planned in advance. It was very convenient and natural to represent the
problem as a graph problem with the nodes of the graph as the street in­
tersections and street segments between intersections as the edges (undi­
rected arcs) of the graph. It was a "capacitated problem" in the sense
that no meter reader was assigned a route which exceeded a specified
number of work hours. It was clearly a problem classified as an arc rout­
ing problem. When looking for guidance in solving the meter reading
problem, a "pandora's box" in the form of the extensive literature about
routing and the variety of routing problems opened before me.

This book is primarily about arc traversal and the great variety of arc
routing problems and the applications of arc routing theory for real-life
problems with the key word arc. However, in contrast to arc routing,
there are also node or vertex routing problems that focus on the ver­
tices of graphs instead of the graphs' arcs. (See Toth and Vigo, 2000,
for a recent collection of articles focused on node routing.) Just as Eu­
ler's name stands out for arc routing, Hamilton's name is emblematic for
node routing, and subsequently for a name for a family of graphs: the
Hamiltonian graphs. (For the historic account, see Hoffman and Wolfe,
1985.) In Hamiltonian graphs one might be concerned with the order in
which the vertices of a graph are visited on a.tour. Node routing is also
covered in this book.
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The idea for editing this book came to me while I was examining so­
lutions to a capacitated arc routing problem with split deliveries and
arc time windows which originated in the cattle yard industry. (See a
detailed description in Dror, Leung, and Mullaseril, this book.) In the
last 10 years or so, there has been extensive coverage of arc routing
problems in the literature, especially from a graph theory perspective, in
book format as well as in numerous articles. (See Fleischner, 1990, 1991,
and a chapter in this book.) However, a collection of state of the art
expositions of arc routing problems that explore their graph theoretical
basis, as well as solution methodologies for arc routing problems, and
a number of representative applications, has never (to my knowledge)
been compiled in a single volume. This volume represents an attempt to
provide just that. I believe that we have succeeded because of the elite
group of individuals who have volunteered to contribute to the book,
and I am very thankful for their contributions!

The book contains twelve chapters of various lengths organized into
three main parts: Theory, Solutions, and Applications. The book be­
gins with a chapter titled A HISTORICAL PERSPECTIVE ON ARC
ROUTING by H.A. Eiselt and Gilbert Laporte. In this chapter the au­
thors provide a historical road map for arc routing research. Eiselt and
Laporte start with the definition and the description of the best known
arc routing problem: the celebrated Chinese Postman Problem. They
provide the motivation, and definitions, and outline the. main ideas for
problems with names such as the Windy Chinese Postman Problem, the
Hierarchical Chinese Postman Problem, the Rural Postman Problem, the
Capacitated Arc Routing Problem, and others. This discussion of a num­
ber of very important arc routing problems which form the backbone of
arc routing research provides the reader with a perspective and vocabu­
lary needed for the articles which follow.

The Theory part of the book starts with an excellent review of graph
Theory for arc routing by Herbert Fleischner titled TRA VERSING
GRAPHS: THE EULERIAN AND HAMILTONIAN THEME. It is a
concise over- view of graph concepts, graph problems, and the state of
the art of graph theory in relation to Eulerian graphs and their coun­
terparts, the Hamiltonian graphs. It contains all the important graph
theoretical "building blocks" such as connectivity, Menger's Theorem,
the Splitting Lemma, Factors, Eulerian and Hamiltonian graphs, Cov­
ering walks and Hamiltonian Cycles, Cycle Decomposition, Cycle Covers
and Vertex-cover walks, Elements of Matching Theory, and all the related
problems such as the Chinese Postman Problem, the Traveling Salesman
Problem, and many more. In addition, the chapter contains a bibliogra­
phy listing all the proofs and a more detailed treatment of the chapter's
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themes. The chapter truly represents a unique exposition for all readers
interested in arc routing and in particular for the readers interested pri­
marily in solutions and applications for arc routing.

The focus of the third chapter by Urlich Derigs, titled MATCHING:
ARC ROUTING AND THE SOLUTION CONNECTION, is on the
Matching Problem which is a central component in the solution of the
Chinese Postman Problem and many other related and unrelated prob­
lems in combinatorial optimization. In its classical formulation, the prob­
lem is that of selecting the "best" pairs of nodes on a given graph. It
is one of the most important "stepping stone" problems in the study of
combinatorial optimization in general. The chapter by Urlich Derigs de­
scribes the state of the art for the matching problem in terms of both its
combinatorial and polyhedral aspects. It provides the reader with a clear
link between the two in the algorithmic description and discusses the im­
plementational issues for matching algorithms. The chapter is written in
a very clear fashion by the man who is arguably the most authoritative
professional on theoretical and computational aspects of the matching
problem. I still remember the competition in the early eighties in which
the matching code of Urlich Derigs outperformed all the competition.
This chapter adds to the discussion a very important component in arc
routing research.

Chapter 4 is titled ARC ROUTING: COMPLEXITY AND APPROX­
IMABILITY by Moshe Dror. This chapter formally introduces the no­
tion of complexity and attempts to provide a clear delineation between
'hard' arc routing problems and 'easy' (solvable in polynomial time) arc
routing problems. In addition, it describes the state of the approxima­
tion schemes for the hard arc routing problems. This chapter enables
the reader to appreciate the full scope of the different computational ex­
aminations of arc routing problems discussed in this book.

Chapter 5, by Ellis L. Johnson is titled CHINESE POSTMAN AND
EULER TOUR PROBLEMS IN BI-DIRECTED GRAPHS. Written by
one of the most prominent contributors to arc routing research (see
Edmonds and Johnson, 1973), it describes the connection between im­
portant arc routing applications, especially for aircraft routing, and a
number of mathematical constructs. The chapter examines a number
of concepts such as binary group problems, blocking pairs of clutters,
ideal binary matrices, and relates these concepts to the Chinese Post­
man Problem. In addition, the chapter provides important insights into
the polyhedral and algebraic structures associated with the Chinese Post­
man Problem.
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Chapter 6, POLYHEDRAL THEORY FOR ARC ROUTING PROB­
LEMS by Richard W. Eglese and Adam N. Letchford is the first in the
Solution Methodology section of the book. Its focus (true to the title) is
on the known facts related to the polyhedral description of arc routing
problems. It provides a very clear overview of polyhedral theory and
the state of the art of known valid inequalities and facets for a variety
of arc routing problems. It is a very important chapter leading to exact
solutions for arc routing problems and is similar in its role to chapters
by Grotschel and Padberg (1985), and Padberg and Grotschel (1985),
in the famous l;:>ook The traveling Salesman Problem by Lawler et al.
(1985). Three problems are examined in detail: the Chinese Postman
Problem, the Rural Postman Problem, and the Capacitated Arc Routing
Problem. The chapter represents an excellent summary of the status of
polyhedral results for arc routing as we know it today.

The chapter by E. Benavent, A. Corberan, and J.M. Sanchis, Chapter
7, titled LINEAR PROGRAMMING BASED METHODS FOR SOLV­
ING ARC ROUTING PROBLEMS, represents the logical continuation
of the previous chapter by Eglese and Letchford. Whereas chapter 6 was
about the descriptive (polyhedral) representation of arc routing prob­
lems, this chapter is about using such descriptive representation for con­
structing solutions to arc routing problems by linear programming in the
best possible way. It is an excellent description of the cutting planes and
Branch & Cut methodology and how they can be incorporated into the
linear programming solution approach for the many different arc routing
problem variants considered in this chapter. The chapter examines all
the classical arc routing problem formulations in great detail and builds
on the extensive cutting plane "machinery" developed in the node rout­
ing literature. The objective is to solve such problems exactly, which,
for these NP-hard problems, implies an implicit enumeration, which in
this case are based on cutting planes and Branch & Cut procedures. The
"best" and most successful ingredients for such Branch & Cut solution
procedures for the different arc routing problems are superbly described
in this chapter.

Chapter 8 in this book is titled TRANSFORMATIONS AND EX­
ACT NODE ROUTING SOLUTIONS BY COLUMN GENERATION.
This chapter is written by Moshe Dror and Andre Langevin. The chapter
has two parts. The first part discusses a number of transformations for
modeling arc routing problems as node routing context problems with
a 1-1 mapping between the optimal solutions of the corresponding for­
mulations. The second part of the chapter focuses on solutions using
column generation methodology for capacitated node routing problems
with time windows for the node deliveries. This is motivated by the fact
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that a capacitated arc routing problem with time windows on arcs is
difficult to model and thus justifies the transformation to a node routing
setting. A special focus on the node routing analysis is given to the split
delivery option where a node's demand can be delivered by any number
of vehicles.

Chapter 9, by Alain Hertz and Michel Mittaz on HEURISTIC AL­
GORITHMS examines solution options for arc routing problems that do
not guarantee optimal solutions. An important question regarding hard
arc routing problems is that of selecting, from all possible heuristic tour
constructions for arc routing described in the literature, the heuristic so­
lutions with demonstrated computational or solution quality advantages.
This chapter provides a very well organized and clear description of the
different heuristic techniques available for solving a great variety of arc
routing problems. In the first two sections after the Introduction, the
focus is on more "traditional" heuristic approaches to arc routing prob­
lems such as simple constructive heuristics, two-phase heuristics with the
flavor of cluster first - route second, or the opposite. In the second part
of the chapter the authors present a very fine description of metaheuris­
tics (Simulated Annealing and Tabu Search) and their role in solving arc
routing problems.

Chapter 10, is the first of three chapters in the Applications section
of the book. The chapter's title is ROADWAY SNOW AND ICE CON­
TROL written by James F. Campbell and Andre Langevin. As the
authors of this chapter state "Roadway snow and ice control is one of
the most complex and fascinating venues for arc routing applications" .
When trying to explain arc routing research to a novice, this is perhaps
the clearest and best motivating application for arc routing. The chap­
ter begins by detailing the background of "snow-plowing" characteristics
and complexities. It also describes some early research results for road­
way snow and ice control. However, the main focus is on two successful
system developments and their applications. The first system (currently
used in Indiana according to the authors) is called CASPER. The sec­
ond system described in detail in the chapter has been implemented in
a number of localities in Canada and the U.K.

The second chapter in the Applications section (Chapter 11) is ti­
tled SCHEDULING OF LOCAL DELIVERY CARRIER ROUTES FOR
THE UNITED STATES POSTAL SERVICE. It is written by Lawrence
Bodin and Laurence Levy, two experts in automating solutions in this
complex arc routing environment. Both authors have been constantly
involved in arc routing applications since the early papers by Lawrence
Bodin (see Beltrami and Bodin, 1974, and Bodin and Kursh, 1978, 1979)
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and the dissertation work of Laurence Levy (1986). This is the "classic"
application of arc routing: the generation of postman routes. The book
would not be complete without this chapter. The chapter presents a
clear description of the many issues the post office faces when construct­
ing and assigning postal delivery routes.

The last chapter in the book, Chapter 12, LIVESTOCK FEED DIS­
TRIBUTION AND ARC TRAVERSAL PROBLEMS by Moshe Dror,
Janny M.Y. Leung, and Paul, A. Mullaseril presents the third chapter
on arc routing applications. It describes a large cattle yard operation
near Yuma, Arizona, where over 100,000 head of cattle are fed daily.
The feed distribution activity is modeled as a Rural Postman Problem
with time windows and split delivery. This chapter provides a detailed
description of the arc routing application and the heuristic methodology
experimented with by the authors for solving the actual feed distribution
problems in this cattle yard. From the arc routing perspective, the cattle
yard setting provides an archetypical arc routing setting with many sim­
ilar problem instances all over the world. It serves as a very appropriate
closing for this book.

As the editor of this collection of chapters, I am very honored to have
such an excellent group of contributing authors participate in this book­
writing endeavor. Clearly, this book is the result of collective effort. I am
very thankful to the participants and to the many reviewers who read the
chapters and commented constructively. It took longer to complete the
book than originally envisioned. I am thankful to many that our efforts
have reached such a successful outcome. This book would have required
a more difficult 'endgame' without Gregory R. Lousignont's dedication
and painstaking attention for the production details. My heartfelt thanks
to Greg.
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l. INTRODUCTION
Arc routing problems consist of determining a least cost traversal of

some arcs or edges of a graph, subject to side constraints. Such prob­
lems are encountered in a variety of practical situations such as road or
street maintenance, garbage collection, mail delivery, school bus rout­
ing, meter reading, etc. Details on these applications are provided in
Eiselt, Gendreau and Laporte (1995b), in Assad and Golden (1995), and
in some chapters of this book. Billions of dollars each year are spent
on arc routing operations, mainly by public administrations, and there
exists a sizeable potential for savings. In recent years, new advances in
optimization techniques and in computer technology have contributed
to the dissemination and adoption of sophisticated arc routing software.
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Nowadays, commercial packages make heavy use of rich data bases, ge­
ographical information systems, and interactive graphic interfaces. It is
not exaggerated to affirm that there now exists a thriving arc routing
industry, mostly sustained by consultancy firms.

But the field of arc routing has more humble beginnings. It all started
as a riddle more than two and a half centuries ago with the celebrated
Konigsberg bridges problem, which gave rise to the birth of modern
graph theory and to the first known theorems on arc routing. A num­
ber of algorithmic results were discovered in the nineteenth century and
in the first half of the twentieth century, but most of the field was de­
veloped after 1950. This historical account will therefore cover some
truly classical results but it would be of little value if it did not in­
clude the most recent developments which constitute the core of current
knowledge. Throughout this chapter, we will attempt to answer the two
questions "Who was first?" and "What came next?". There exist sev­
eral general references on arc routing, but the following three books are
particularly recommended for their historical perspective: Konig (1936)
and Fleischner (1990, 1991).

This chapter is organized around three main problem classes. In Sec­
tion 2, we present various versions of the Chinese Postman Problem
(CPP). These are problems in which it is required to traverse all edges
or arcs of a graph. Then, in Section 3, we examine the Rural Postman
Problem (RPP) in which only some edges or arcs must be traversed.
Section 4, deals with the Capacitated Arc Routing Problem (CARP), a
constrained version of the CPP or the RPP with multiple real-life appli­
cations. Some research outlooks are presented in Section 5.

2. THE CHINESE POSTMAN PROBLEM
The Chinese Postman Problem is defined as follows. Let G = (V, E U A)

be a graph where V is a set of vertices, E is a set of (undirected) edges,
and is a set of (directed) arcs. It is generally assumed that G is strongly
connected, i.e., it is always possible to reach any vertex from any other
vertex. With each edge or arc (Vi, Vj) is associated a cost Cij' The CPP
consists of determining a least cost traversal of all edges and arcs of G.
Several cases are of interest:

i) the undirected CPP, where A = 0;

ii) the directed CPP, where E = 0;

iii) the mixed CPP, where A =J 0 and E =J 0;
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Figu·re 1.1 The seven bridges of Konigsberg.

iv) the windy CPP , where A =F 0 but two values <j and <j are asso­
ciated with each edge (ViYj), equal to the cost of travel in each
direction;

v) the hierarchical CPP , where EuA is a partitioned into several classes
and a precedence relation is established between these classes. If a
class Cp of edges and arcs precedes another class Cq , then all edges
and arcs of Cp must be serviced before those of Cq .

In this section, we will successively examine each of these cases.

2.1. THE UNDIRECTED CPP
In the early eighteenth century, the inhabitants of Konigsberg (now

Kaliningrad, Russia) debated whether there existed a closed walk travers­
ing exactly once each of the seven bridges over the river Pregel (Figure
1.1). The question was put to the Swiss mathematician Leonhard Euler
who showed there was none. He presented his results at the St. Peters­
burg Academy and in a short article (Euler, 1736).

The problem can be represented by an undirected graph (Figure 1.2),
in which one vertex is used for each of the two shores of the river and for
the two islands, and each edge corresponds to a bridge. Since a closed
walk requires that each vertex be entered and left the same number of
times, there is obviously no solution in this case since all vertices have
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Figure 1.2 Graph representation of the Konigsberg bridges problem.

odd degrees. In fact, Euler proved that for a closed walk in an undi­
rected connected graph to exist, all vertices must have an even degree.
(The sufficiency of this condition was proved much later by Hierholzer
(1873) who was apparently unaware of Euler's work). Such graphs are
called unicursal or Eulerian. Since duplicating each edge makes all ver­
tex degrees even, there always exists, in an undirected connected graph,
a closed walk covering each edge exactly twice. This has not actually
been proved by Euler, but only illustrated by means of an example. Eu­
ler also showed that there exists such a walk using every edge in each
direction. The original Latin version of Euler's paper is reproduced in
Fleischner (1990), and an English translation has appeared in Scientific
American (Euler, 1953).

While Euler provided conditions for unicursality, he was not appar­
ently concerned with the problem of actually determining a closed walk
in an Eulerian graph. This problem was addressed more than a century
later by Hierholzer (1873). Even nowadays, Hierholzer's algorithm is
probably the best available and has been rediscovered, sometimes with
slight variations, by several other researchers (e.g., the End-Pairing al­
gorithm described in Edmonds and Johnson, 1973). The original de­
scription does not follow the style we are accustomed to, but modern
"translations" have been provided by some researchers (see, e.g., Even,
1979). It can be sketched as follows:

Step 1. Starting from an arbitrary vertex v, gradually trace a cycle by
following untraversed edges, until this procedure cannot be contin­
ued; this can only happen at v.

Step 2. If all edges have been traversed, stop.
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Step 3. Trace a second cycle starting from an unvisited edge incident
to the cycle. Merge the two cycles into one. Go to Step 2.

Another algorithm, not quite as efficient, was proposed by Fleury
(1885), a school headmaster in Marseille (Lucas, 1894).

Step 1. Starting from an arbitrary vertex Vi traverse an edge (Vi,Vj)

that is not a bridge unless it is an end-edge (i.e., an edge whose
removal leaves some edges unreachable), and erase (Vi, Vj).

Step 2. Stop if all edges have been deleted. Otherwise, set Vi := Vj and
go to Step 1.

The difficulty in this algorithm is to determine whether a candidate
edge is a bridge. A thorough description of several other traversal algo­
rithm for Eulerian graphs is provided in Fleischner (1991).

The Chinese Postman Problem was first stated by Meigu Guan (or
Kwan Mei-Ko). The Konigsberg bridge problem is exclusively concerned
with the existence of a closed traversal in a graph, but the question of
determining a least cost traversal is still highly relevant in non-Eulerian
graphs. Guan (1962) addressed the question of minimizing the length of
a walk passing through each edge of a graph at least once. His method
proceeds from the observation that the graph always contains an even
number of odd-degree vertices and that shortest chains must be added
to link odd-degree vertices and thus make the graph Eulerian. It has
been known, at least since the work of Edmonds and Johnson (1973),
that this least cost reconnection can be determined by solving a match­
ing problem. Guan does not state this property, but his result can be
derived from it. He first proves the following necessary condition for a
feasible solution to be optimal: (i) it has no redundancy (i.e., at most
one edge is added for each edge of the original graph); (ii) the cost of
added edges on every cycle does not exceed half the cost of the cycle. To
establish the sufficiency of this result, the author shows that all feasible
solutions satisfying (i) and (ii) must in fact have the same cost (in fact,
Guan's paper only deals with unit costs, but the proof for the general
case follows along the same lines). The procedure suggested by Guan
to determine such a solution in effect solves the matching problem by
ensuring that the chains added to the graph do not intersect. Note that
property (ii) lies at the heart of the proof used by Christofides (1976)
for his 3/2 - approximation of the Traveling Salesman Problem (TSP).
Guan's Chinese postman article is important, not only because it intro­
duces what has now become a standard network optimization problem,
but because it addresses for the first time the "augmentation problem" ,
i.e. the problem of determining the least cost way of making a graph
Eulerian by introducing extra edges or arcs. The augmentation problem
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is in fact the core problem of arc routing. Once a unicursal graph has
been obtained, determining an actual traversal is relatively easy.

The article "Matching, Euler Tours and the Chinese Postman" by
Edmonds and Johnson (1973) must be considered as a corner-stone in
the field of arc routing. In it, the authors formulate the augmentation
problem in an undirected graph using binary integer variables Xij (i < j)
equal to the number of copies of edge (Vi, Vj) introduced into the graph
in order to make it Eulerian. Letting 6 (8) = (Vi, Vj) : {Vi E 8, Vi E V \ 8
or Vi E V \ 8, Vj E 8} for any non-empty subset 8 of V, the problem
can be formulated as follows.

(UGPP)

subject to

Minimize L GijXij

(Vi,Vj)EE

(1.1 )

((Vi;Vj) E E)

((Vi,Vj) E E)

L (8 c V,8 has an odd number
Xij 2: 1, f dd d .. )o 0 - egree vertlcles

(vi,vj)E6(S)

Xij 2: 0,
Xij is integer,

(1.2)

(1.3)

(1.4)

The authors prove that the polyhedron of solutions to (1.2) and (1.3)
is equal to the convex hull of feasible solutions to (UCPP). The authors
show that this program can be solved efficiently by first computing least
cost chains between all pairs of odd degree vertices (there is always an
even number of them), and by then solving a minimum cost matching
problem over the set of odd degree vertices, using these costs. This is
done by adapting a previous algorithm by Edmonds for minimum cost
matching.

2.2. THE DIRECTED CPP
A strongly connected graph is Eulerian if and only if the in-degree of

each vertex is equal to its out-degree. This condition is formally stated
by Ford and Fulkerson (1962, p. 60) but it has been common knowledge
for a long time (it was already treated in Konig's (1936) book).

The procedure for solving the augmentation problem in a directed
graph was proposed almost simultaneously by Edmonds and Johnson
(1973), Orloff (1974), and Beltrami and Bodin (1974). Instead of match­
ing odd-degree vertices as is done in the undirected case, it uses the
transportation algorithm in order to make the graph symmetric, i.e., the
in- and out-degrees of each vertex are equal. In other words, let I be
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the set of vertices Vi for which the number of incoming arcs exceeds the
number of outgoing arcs by Si and let J be the set of vertices Vj for
which the number of outgoing arcs exceeds the number of incoming arcs
by dj . Thus, Si can be interpreted as a supply, and dj as a demand.
In addition, let Cij be the length of a shortest path from Vi to Vj' The
problem is then as follows.

(DC??)

subject to

Minimize L L CijXij

viE!vjEJ

LXij = Si, (Vi E 1)
VjEJ

LXij = d j , (Vj E J)
viE!

(1.5)

(1.6)

(1.7)

(1.8)

The optimal values represent the number of extra times each arc of a
shortest path has to be traversed. Once a unicursal graph has been ob­
tained by this method, determining an actual traversal can be achieved
by adapting, for example, Hierholzer's algorithm. An interesting alter­
native approach is provided in a rather early article by van Aardenne­
Ehrenfest and de Bruijn (1951). Their 0 (IVI + IAI) time algorithm can
be summarized as follows:

Step 1. Construct a spanning arborescepce rooted at any vertex.

Step 2. Label all arcs as follows: Order and label the arcs outgoing
from in an arbitrary fashion; order and label the arcs out of any
other vertex consecutively in an arbitrary fashion, so long as the
last arc is the arc used in the arborescence.

Step 3. Obtain an Euler tour by first following the lowest labeled arc
emanating from an arbitrary vertex; whenever a vertex is entered,
it is left through the arc not yet traversed having the lowest label.
The procedure ends with an Euler circuit when all arcs have been
covered.

2.3. THE MIXED CPP
Ford and Fulkerson (1962, p. 60) were the first to propose necessary

and sufficient conditions for unicursality in a mixed graph: Every vertex
must be incident to an even number of directed and undirected arcs;
moreover, for every non-empty subset S of V, the absolute value of the
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difference between the number of arcs from S to V \ S and the number
of arcs from V \ S to S must be less than or equal to the number of edges
between S and V \ S.

Unfortunately, verifying these conditions or solving the augmenta­
tion problem in a mixed graph is NP-hard, as shown by Papadimitriou
(1976). This is true even if the graph is planar or if all Cij coefficients
have the same value. The standard approach is to formulate the augmen­
tation problem as an integer linear program in which variables represent
the number of copies of each arc or edge that must be introduced into
the graph in order to make it Eulerian. Three such formulations were
proposed by Christofides et al. (1984). Grotschel and Win (1992) and
Nobert and Picard (1996). The first of these formulations was solved
by branch-and-bound and the last two by branch-and-cut. Nobert and
Picard report the most extensive computational results. They solved 440
instances with 16 :s IVI :s 225, 2 ::; IAI ::; 5569 and 15 ::; lEI ::; 4455.
Out of these, 313 instances were solved to optimality at the root of the
search tree and the number of constraints generated in the course of the
algorithm was of the order of IVI.

Once a unicursal mixed graph has been obtained, it is easy to make it
completely directed by using some simple network flow techniques (see
Eiselt, Gendreau and Laporte (1995a) for a full description), and any
algorithm valid for the directed case can then be applied to determine a
traversal.

Heuristics for the mixed CPP were proposed by Edmonds and Johnson
(1973), and later improved by Frederickson (1979) and Christofides et al.
(1984). The best known heuristics are probably MIXED1 and MIXED2,
due to Frederickson, each having a worst-case ratio of 2. If the two
heuristics are applied in succession, the worst-case ratio goes down to
5/3.

2.4. THE WINDY CPP
The windy CPP is defined on an undirected graph where two costs

are associated with each edge, as with and against the wind, but it is
only required to traverse each edge at least once. The problem was
introduced by Minieka (1979). Brucker (1981) and Guan (1984) have
shown that the windy CPP is NP-hard, but the problem can be solved
in polynomial time ifG is Eulerian (Win, 1989) or if the cost functions are
cycle balancing (see, e.g., Fleischner, 1991). The polyhedral structure of
this problem has been analyzed by Win (1987, 1989) and by Grotschel
and Win (1988, 1992). These authors have also proposed an integer
linear programming formulation and a branch-and-cut algorithm for this
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problem. Using this approach, they have solved to optimality instances
with 52 ~ IVI ~ 264 and 78 ~ lEI ~ 489. Out of 36 instances that were
considered, 31 were solved at the root of the search tree.

2.5. THE HIERARCHICAL CPP

The Hierarchical CPP was introduced by Dror, Stern and Trudeau
(1987). This problem arises naturally in snow plowing, where streets
have different priority levels (Stricker, 1970; Lemieux and Campagna,
1984; AHa and Liu, 1988; Haslam and Wright, 1991), in garbage collec­
tion (Bodin and Kursh, 1978), and in flame cutting (Manber and Israni,
1984). The hierarchical CPP is NP-hard, but a polynomially solvable
case has been identified by Dror et al. It occurs when (i) G is fully undi­
rected or fully directed, (ii) the order relation between the classes Cp

of arcs and edges is complete, and (iii) each class induces a connected

graph. An 0 (k 1V15 ) time algorithm was proposed by Dror et al. where
k is the number of classes. Recently, Ghiani and Improta (2000) showed
that this type of hierarchical CPP can be solved as a matching problem
on an auxiliary graph with 0 (k IVI) vertices. A variant of this prob­
lem, introduced by Letchford and Eglese (1998), is to set a deadline for
the completion of service in each class Cp and to determine whether a
solution satisfying these deadlines exists. The authors have proposed a
branch-and-cut algorithm capable of solving small to medium size in­
stances.

3. THE RURAL POSTMAN PROBLEM

The Rural Postman Problem is also defined on a graph G = (V, E U A) ,
but this time only a subset of E U A must be traversed. Such edges and
arcs are said to be required. The remaining edges and arcs may be part
of the solution. Denote by E' and A' the subsets of required edges and
arcs. As for the CPP, several cases can be considered, but not all have
effectively been studied. The RPP can be viewed as that of designing
routes for a postman who has to deliver mail in several villages. Several
streets may have to be serviced within each village, but there may be no
mail to deliver on streets linking the villages. Hence only a subset of the
streets would be required. The problem was introduced by Orloff (1974)
and proved later to be NP-hard by Lenstra and Rinnooy Kan (1976).
However, the RPP on a completely undirected or directed graph can be
solved in polynomial time if the subgraph induced by the required edges
or arcs is strongly connected as it then reduces to a CPP.
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3.1. THE UNDIRECTED RPP
As suggested by Frederickson (1979), a heuristic with a worst-case

performance ratio of 3/2 can be constructed for the undirected RPP
along the lines of the TSP heuristic proposed by Christofides (1976).
The worst-case behavior of this method can only be guaranteed if the
cost matrix satisfies the triangle inequality. The method works by con­
structing a shortest spanning tree between connected components of re­
quired edges, and by then matching the odd-degree vertices. Recently,
Hertz, Laporte and Nanchen-Hugo (1999) produced a family of post­
optimization heuristics for the undirected RPP. These typically produce
optimal or near-optimal solutions on benchmark instances. The authors
show that when adapted to an arc routing context, simple operations
such as insertions, deletions and exchanges, so common in TSP heuris­
tics, become intricate and hard to visualize.

The first integer linear programming formulation for the RPP was
proposed by Christofides et al. (1981). Its variables represent the number
of copies of each edge that must be introduced into the graph in order to
make it Eulerian. It was solved by branch-and-bound, using Lagrangean
relaxation to compute lower bounds, and applied to instances with 9 ::;
IVI::; 84, 13 ::; lEI::; 184, and 4 ::; IE'I ::; 78. An alternative formulation
was later proposed by Sanchis (1990) and Corberan and Sanchis (1994).
These authors conducted a polyhedral analysis of their formulation and
developed a branch-and-cut code. They solved to optimality, at the root
of the search tree, 23 of the 24 instances of Christofides et al. (1981), as
well as two new instances. This line of research was pursued by Letchford
(1996) and by Ghiani and Laporte (2000) who identified new classes of
valid inequalities and integrated them within branch-and-cut algorithms.
In the Ghiani and Laporte article, several classes of instances, involving
up to 350 vertices, are solved to optimality.

3.2. THE DIRECTED RPP
As shown by Christofides et al. (1986), a heuristic for the directed

RPP can be constructed as for the undirected case, by computing a
shortest (directed) arborescence between the connected components, in­
stead of a shortest spanning tree. Copies of some arcs are then introduced
by solving a transportation problem, as for the directed CPP. No worst­
case guarantee has been derived for this heuristic.

An integer linear programming formulation was developed by Christo­
fides et al. (1986), along the lines of the undirected case. Again, the al­
gorithm uses Lagrangean relaxation to compute lower bounds within a
branch-and-bound scheme. The algorithm was used to solve to optimal-
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ity 23 out of 24 instances with 13 ~ IVI ~ 80, 24 ~ lEI ~ 180, and
7 ~ IE'I ~ 74.

3.3. THE MIXED RPP
Research on the mixed RPP is relatively new and scarce. We are

aware of only one contribution, by Corbenin, Marti and Romero (2000).
It describes a tabu search heuristic which has been applied to instances
with 20 ~ IVI ~ 220, 20 ~ lEI ~ 220, 5 ~ IE'I ~ 150, 55 ~ IAI ~ 350,
and 5 ~ IA'I ~ 200. The deviation of the solution value to that of a lower
bound ranges between 0% and 1.35%. The lower bounds were obtained
by means of a constraint generation algorithm.

4. THE CAPACITATED ARC ROUTING
PROBLEM

In the Capacitated Arc Routing Problem, a nonnegative quantity qij

is associated with each edge or arc (Vi, Vj). A fleet of m vehicles, each
having a capacity Q, must traverse all edges or arcs of the graphs and
collect (or deliver) the associated quantities, without ever exceeding Q.
As in the standard Vehicle Routing Problem, the number of vehicles
may be given a priori or can be a decision variable. The CARP was
introduced by Golden and Wong (1981), but a variant in which all %
are strictly positive was investigated earlier by Christofides (1973). In
other words, the CARP studied by Golden and Wong and the majority
of subsequent researchers can be viewed as a capacity constrained RPP
with m vehicles, whereas the problem defined by Christofides is a capac­
ity constrained CPP with m vehicles.

Between 1973 and 1991, several researchers proposed heuristics for
the CARP based on various edge or arc partitioning criteria and on
tour construction methods. Perhaps the best known methods are the
construct-strike algorithm (Christofides 1973), later improved by Pearn
(1989), and the augment-insert algorithm (Pearn, 1991). The modified
construct-strike algorithm is best adapted to dense graphs (70% to 100%
edge or arc density). It gradually constructs feasible cycles and removes
them from the graph. When feasible cycles can no longer be found, an
Eulerian cycle is constructed on the remaining graph and the search for
feasible cycles is repeated. Augment-insert first inserts edges or arcs in
feasible cycles connected to the depot, as long as this is possible. Then
the remaining links are inserted into cycles by using a savings criterion.
This algorithms works best on sparse graphs (up to 30% edge or arc
density). The main drawbacks of all heuristic developed until 1991 is
that they contain little or no post-optimization. Improving a feasible
solution in an arc routing context is indeed difficult as we mentioned
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earlier. Recently, the post-optimization tools developed by Hertz, La­
porte and Nanchen-Hugo (1999) for the undirected RPP were embedded
within a tabu search algorithm for undirected CARPs (Hertz, Laporte
and Mittaz, 2000). Tests performed on benchmark instances showed that
running a truncated version of this algorithm, even for just one second,
outperformed all previously known heuristics for the CARP. Further tests
showed that running the full tabu search algorithm consistently yields
optimal or near-optimal solutions on benchmark instances.

Assessing the quality of a heuristic is possible only if good lower
bounds are available. The earlier lower bounds proposed by Golden
and Wong (1981), Assad, Pearn and Golden (1987) and Benavent et al.
(1992) are in general too weak to provide any meaningful information.
It is only recently that stronger bounds have been derived. These are
computed by formulating the CARP as an integer linear program, solv­
ing its linear relaxation, and generating strong valid inequalities. A fine
example of this approach is provided by Belenguer and Benavent (1998).
Comparing the lower bounds obtained from the linear relaxation with
upper bounds given by tabu search heuristics shows gaps typically below
1%, which speaks highly for the quality of both the lower and upper
bounding approaches.

5. RESEARCH OUTLOOKS
Arc routing has a long and rich history, but only in recent years have

we started to witness the widespread use of software in the area of arc
routing, and we may only have seen the tip of the iceberg. More and more
municipalities, regional authorities, post office administrations, electric­
ity and gas companies, school bus operators, etc. are adopting such
systems. This phenomenon is driven in part by a number of techno­
logical factors, such as breakthroughs in the micro-computer industry
and in data base processing, but also by the ever increasing need to be
competitive and cost-efficient. This growth has been paralleled by the
development of a number of powerful optimization techniques. The two
most important are probably tabu search in the area of heuristics, and
branch-and-cut for exact optimization. We expect much of the research
growth, in the coming years, to be based on these two techniques. Not
all recent scientific discoveries have yet found their way into commercial
computer software, but it should be only a matter of time before this
materializes.
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This chapter deals with basic graph theoretical concepts and then
focuses on special topics which are - in their applications - of relevance
to theoretical and practical problems in OR. Therefore, this chapter is
structured as follows:
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1 Basics of Graph Theory.

2 Connectivity, Menger's Theorem, the Splitting Lemma, and Fac­
tors.

3 Eulerian Graphs and Covering Walks, Cycle Decompositions and
Cycle Covers.

4 Hamiltonian Cycles and Vertex-Covering Walks.

5 Elements of Matching Theory.

6 The Chinese Postman Problem, The Traveling Salesman Problem,
and Related Problems.

7 Elements of Network Theory.

If treated in all details, these seven topics would cover several volumes.
In fact, eulerian graphs and corresponding applications alone are subject
of a monograph comprising three volumes two of which have already been
published some years ago [16]. Therefore, in order to keep the size of this
chapter in accordance with the overall size of this collection of survey
articles, we will restrict ourselves in presenting proofs of theorems and
justifications of algorithms to the cases where these results are of central
importance for this chapter. Nonetheless we will mention in various
instances developments in different directions, in order to give the reader
an indication of the overall development of this area of graph theory.

2. BASICS OF GRAPH THEORY

2.1. GRAPHS AND THEIR PARTS
We write a graph G as G = VUE, where V is a finite set and E is a

finite multiset. The elements of V are called vertices while the elements
of E are called edges. Edges are unordered pairs of not necessarily dis­
tinct vertices from V. We call V =: V(G) the vertex set of G, while
E =: E(G) is called the edge set of G. Vertices joined by an edge are
called adjacent. They are also called the ends of the edge. An edge is
said to be incident to its ends.

If e E E(G) is joining x and y, then we may denote e as xy. A loop
of G is an edge of the form vv, v E V(G). The number of edges joining
the pair u, v of vertices is the multiplicity >.(uv) of the edges of the form
uv. If >.(uv) = k > 1 then the edges el,e2, ... ,ek joining u, v are called
parallel edges. A graph with no loops and no parallel edges is called a
simple graph.
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Likewise, a digraph D is the union of a finite vertex set V and a
finite multiset A, called arc set, which consists of ordered pairs of ver­
tices, called arcs. The vertices joined by an arc a = (u, v) are also said
to be adjacent, with u being the tail of a and v being the head of the arc.

A mixed graph has both edges and arcs. It is represented in the form
M= VuEuA.

Let G be a graph. If we replace each e = xy E E(C) with an arc
ae = (x,y) or (y,x) then we call DG = V(C) u {ae : e E E(G)} an
orientation of C. Conversely, if D is a digraph and we replace every
a = (u,v) E A(D) by the edge ea = uv then we call CD := V(D) U {ea :

a E A(D)} the graph underlying D.

(a) (b)

Figure 2.1 (a) a graph G, (b) an orientation DG of G.

The set Ev denotes the set of edges incident with v. Av := A(VV)
is the number of loops at v. The sum lEvi + Av is called the degree
d(v) of v. Notice that this definition means that we count each loop
incident with v twice. A vertex of odd degree is called an odd vertex
while one of even degree is an even vertex. y E V (C) is a neighbor of
x E V(G) if xy E E(G); the set of neighbors of x is denoted by N(x),
whereas N(x) := N(x) U {x}. Observe that N(x) = N(x) if and only
if xx E E(C). A simple counting argument leads to the following rela­
tionship, which implies that the number of odd vertices in a graph is even.

L d(v) = 2IE(C)1
vEV(G)

(this equation is also known as the Handshaking Lemma).

Define a k-valent vertex as a vertex of degree k. A I-valent vertex is
called a terminal vertex or endvertex while a O-valent vertex is called an
isolated vertex. The maximum degree .6.(G) of a graph C is defined to
be .6.(C) := maxvEV(G) d(v). Similarly we define the minimum degree of
a graph G to be 8(C) := minvEv(G) d(v). Finally, we call p := JV(G) I
and q := IE(C)I the order and size, respectively, of C.



22 ARC ROUTING

In the case of digraphs, we set A; to be the set of arcs having v as
head and At to be the set of arcs having v as tail. Then the in-degree
d-(v) = IA;I and the out-degree d+(v) = IAtl. We have the following
relationship:

L d+(v) = L d-(v) = IA(D)I
vEV(D) vEV(D)

A vertex v of a digraph D is a source if its in-degree is zero. It is a sink
if its out-degree is zero. Order and size of a digraph are defined as in the
case of graphs.

We often deal with parts of a graph G = VUE. Given Vi ~ V and
EI ~ E, we consider C I = VI U EI; it is a graph if for every el E E I
the ends of el are in VI. If so, then G I is a subgraph of C and C is a
supergraph of C I . If Vi = V then we say G I is a spanning subgraph of G.
If a vertex set consists of a singleton v we may often just write v instead
of {v}. Similarly for singleton edge-sets.

A subgraph G I = VI U E I ~ C is called a vertex-induced subgraph
of G if E I = {VIV2 E E: VI,V2 E VI}. We write C I = (VI)a. We may
delete the subscript G if it is clear from the context. So for instance, for
VI ~ V we define G - Vi = (V - Vi). If VI = {v} then C -v:= (V - v).

Given E I ~ E, we call a subgraph C I = VI U E I ~ C edge-induced if
v E VI implies that at least one edge in E I is incident with v. We say
C I = (EI)' However, C-EI = VU(E-Ed may not be an edge-induced
graph, unlike its vertex counterpart.

The difference between a graph C and any of its subgraphs C I is
defined by

C - C I = C - E(Cd - {v E V(C) : da(v) = dal (v)}

(that is, any isolated vertices caused by the removal of the edges of the
subgraph are deleted). Given Vo ~ V(C) we can set Vo = V(C) - Vo.
Then the coboundary of Vo (or just an edge cut of C) is the edge set
E(Vo, Vo) = {e = xy : x E Vo, Y E \Io}. If (va), (\10) are both connected
then the coboundary of Vo is also called a cocycle of Vo. Note that the
latter concept is often called cocircuit in which case the term cocycle is
used to denote an edge cut.

The complement G of a graph C is defined by

V(C) = V(C),

E(C) = {xy: x,y E V(C),xy ~ E(C)}.
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In the case where G is of order n and size 0, we denote Kn := (; and call
K n the complete graph on n vertices.

A vertex v of a graph G is called a cutvertex if G can be written in the
form G = GI UG2 where GI, G2 are subgraphs of G with GI n G2 = v
such that dCl (v) =1= 0, dC2 (v) =1= O. This definition is equivalent to the
classical definition of a cutvertex in the case of loopless graphs, but is
different for graphs with loops. However, Bondy's definition of a cutver­
tex, [7, p. 10] coincides, basically, with the one given here.
Note that (considering Figure 2.2) cutvertex v would still be a cutvertex

rest of the graph

Figure 2.2 A cutvertex in a graph with a loop

if we placed another vertex on the loop.

An edge of G is a bridge if G = GI U G2 U e, where G 1, G2 are disjoint
nonempty subgraphs of G such that one end of e is in G I and the other
end is in G2.

Just as a bridge is a special case of an edge cut, a cutvertex is a
special case of a vertex cut S ~ V(G) which is defined for loopless G by
nonempty subgraphs G I ,G2 ~ G and

i = 1,2 (see [7, p. 34]). Observe, finally, that for any bridge xy E
E(G), x is a cutvertex of G if and only if d(x) > 1.

2.2. WALKS, TRAILS, PATHS, CYCLES;
CONNECTEDNESS

Given a graph G = VuE or a digraph D = V U A, a walk W =
W(Va, vn ) = Va, eI, VI, ... ,en, Vn from va to Vn is an alternating sequence
of vertices and edges of G, respectively arcs of D, so that Vi-l and Vi
are the ends of ei E E, respectively Vi-l is the tail and Vi is the head of
ei E A for 1 ~ i ~ n. The number of times an edge/arc e appears in
a walk is termed its multiplicity Aw(e). If Va = Vn then W is called a
closed walk, otherwise it is an open walk.
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If no edge/arc appears more than once in W then it is called a (open,
closed respectively) trail. If no vertex appears more than once in an open
trail then it is called a path. A closed trail without repetition of vertices
(except Vo = vn ) and with at least one edge/arc is called a cycle. The
inverse W-l of a walk W is a listing of W in reverse order.

In a walk W(vo, vn ) from Vo to Vn in a digraph, the arcs are traversed
according to their orientation. A sequence where arcs are traversed in
any direction regardless of their orientation is called a chain. A chain is
a simple chain if none of its vertices (except possibly the first and the
last) are repeated. The inverse W- 1 of a walk W in a digraph is not a
walk but it is a chain.

The length of a walk/trail/path/cycle/chain W is the number of edges/
arcs in the corresponding sequence and will be denoted by l(W). Corre­
spondingly we will call W even/odd if l(W) is even/odd.

In what follows we will not distinguish between (the various types of)
a walk Wand the subgraph induced by the edges/arcs of W; this espe­
cially applies to the cases where W is a trail, path or cycle.

If a path P(x, y) exists for x, y E V(G), then the distance d(x, y) :=

minp(x,y){l(P(x,y))}. If such a path does not exist, then we set d(x,y) =
00.

Theorem 1 If W(vo, vn ) is an open walk from Vo to Vn then there is a
subsequence P(vo,vn ) ofW(vo,vn ) such that P(vo,vn ) is a path from Vo
to vn .

It is not true however, for a closed walk W in a graph that there is
a subsequence of W which is a cycle: just consider for e E E having
ends x, y E V, the closed sequence x, e, y, e, x; no subsequence of it is a
cycle (note that a cycle contains at least one edge/arc). On the other
hand, a closed walk in a digraph contains a subsequence which is a cycle
containing any given vertex of the original closed walk.

A graph G = VuE is called connected iffor every x, y E V, there is a
P(x,y) (or equivalently, a W(x,y)). A graph which is not connected is
called disconnected. A subgraph G' of a graph G is called a component of
G if G' is a maximal connected subgraph (maximal w.r.t. set inclusion).
c(G) denotes the number of components of G.

Theorem 2 A graph G =VuE is connected if and only if for any fixed
x E V and every y E V there is a P(x,y).
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Theorem 3 Let rv be the equivalence relation defined on V(G) by x rv y
¢=} there is a P(x,y), and let GI , ... ,Ck (k 2: 1) be the equivalence
classes of rv. Then (Ci),l ::; i ::; k is a component of G and G =

U7=1 (Gi ).

Corollary 4 A graph G is disconnected if and only if G = G I 0 G2
where GI f. 0 f. G2, and GI ,G2 are subgraphs ofG.

Note that the symbol 0 refers to the disjoint union of two sets.

Theorem 5 Let G be a graph and v E V(G). Then v is a cutvertex
if and only if either vv E E(G) and dc(v) 2: 3 or G - v has more
components than G.

Proof. (=» Suppose v is a cutvertex. Then G = G 1 U G2 where
G 1 n G2 = v and dci(v) > a,i = 1,2. If W(Gi)! = 1 for at least
one i = 1,2 then vv E E(Gd. Thus dci(v) 2: 2 and since dcj(v) 2: 1
(j = 3 - i) we have dcl(v) + dC2(V) = dc(v) 2: 3. Whence suppose G
contains no loop of the form vv.

Case 1: G is connected. Then G - v = (G1 - v) 0(G2 - v) and both
G I - v and G2 - v are nonempty. By Corollary 4, G - v is disconnected,
i.e. G - v has at least two components, which is more than connected G
had (namely 1).

·k
Case 2: G is disconnected, i.e. G = Ui=l G~ (k 2: 2) and each G~ is a

component of G. v is in exactly one component, without loss of general-
. . k

ity v E V(GD. Then G - v = (G~ - v) U(Ui=2 G~). G~ is connected so
G~ - v has more components than G~ (by case 1). Thus G - v has more
components than G.

(<¢=:) Ifvv E E(G) and dc(v) > 2, set GI = {v}0{e} (where e = vv)
and G2 = G - e. It follows that G I n G2 = v. Since dCl (v) = 2 and
dc(v) 2: 3 we must have dC2(V) 2: 1, meaning that v is a cutvertex. Sup-

. /
pose G - v has more components than G. G = Ui=l Gi, where each Gi
(1 ::; i ::; l) is a component ofG. W.l.o.g. we suppose that v E V(GI). So

G - v = (GI - v) 0(lj~=2Gi). Setting Gi = G1 - v, Gi = Gi (2::; i ::; l)
./

we have G - v = Ui=l Gi. Note that Gi is a connected subgraph of G
for 2 ::; i ::; l.

If there is a connected graph Gi* ;;2 G* such that Gi is a proper
subgraph of Gi* (for some 2 ::; i ::; l) then Gi* contains an edge f not in
Gi. This edge must be in some other G;, meaning that G; n Gi f. 0, a
contradiction. Thus each Gi , 2 ::; i ::; l is maximal and thus a component
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of G - v. So Gi has at least two components Gi,I'··· ,Gi,s' Defining

G~ := (V(Gi,I) U {v})c and G~ := U~=2Gi U (GI - V(Gi,I)) we have
G~ n G~ = {v} and G~ U G~ = G. Since dc~(v) "" 0 "" dc2 (v), v is a
cutvertex of G. _

Corollary 6 A vertex v of a loopless connected graph G is a cutvertex
if and only if V (G) - v can be written in the form VI U V2 where VI, V2
are nonempty sets such that for every VI E V:t, v2 E V2 it follows that
every path in G from VI to V2 contains v.

Bridges of a graph can be characterized similarly.

Theorem 7 For any graph G and e E E(G), e is a bridge of G if and
only if G - e has exactly one component more than G, i.e., c(G - e) =
c(G) + 1.

Proof. (=?) e is a bridge of G so G = GI U G2 U e where e = xv,
x E GI, Y E G2,G1 n G2 = 0, G1 "" 0 "" G2 · Let G' be the component
of G containing e = xy and thus also x, y. Define G~ := (G' - e) n G1 ,

G~ := (G' - e) n G2. So x E G~,y E G~ and G' - e = G~ U G~. If
G' - e is connected then it has a P(x, y). This path must contain an
edge f = uv "" e such that u E G~, v E G~. So f f/. G~ U G~ = G' - e, a
contradiction. So c(G' - e) ~ 2. IfG' - e has (at least) three components
Gi, G2,Gj then one of them, say Gi, contains neither x nor y. Adding e
back to G' - e will not affect Gi, which therefore remains disconnected
from the rest of G', contradicting our assumption that G' was connected.
So c(G' - e) = 2 and c(G - e) = c((G - e) - (G' - e)) + c(G' - e) =
c(G - G') + c(G' - e) = (c(G) - 1) + 2 = c(G) + 1.

(¢=) Let G' be the component of G containing e. Since all other
components of G are unaffected by the removal of e and c(G' - e) =
c(G') + 1 = 2, therefore G' - e = G~ U G;, where G~ and G; are the
components of G' - e. W.l.o.g. x E G~,y E G; for e = xv. Thus
G - e = GI U G2 where GI = G~ and G2 = G; U (G - G') are both
nonempty graphs with nothing in common since they are both unions of
different components. Thus G = GI UG2U e, and so e is a bridge by
definition. _

Corollary 8 Let G be a connected graph. Then e E E(G) is a bridge if
and only if V(G) = VI UV2 such that every path joining any VI E VI to
any v2 E V2 contains e.

The next criterion characterizes bridges visavis cycles in graphs.

Theorem 9 e E E(G) is a bridge ifand only if no cycle ofG contains e.
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However, in the case of digraphs D one distinguishes between three
types of connectedness. Namely:

D is strongly connected iffor all x, y E V(D) there exist paths P(x, y)
and P(y, x).

D is unilaterally connected if for all x, y E V(D) either P(x, y) or
P(y, x) exists.

D is weakly connected if its underlying graph CD is connected.

A strongly/unilaterally/weakly connected component of D is a maxi­
mally strongly/unilaterally/weakly connected subdigraph of D. On the
other hand, D is said to be disconnected if GD is disconnected.

Evidently, a strongly connected digraph is also unilaterally connected,
and a unilaterally connected digraph is also weakly connected. The con­
verse is not true, in general. However, a weakly connected digraph is
strongly connected if every arc belongs to a cycle.

Also, the weakly connected components of D correspond by definition
bijectively to the components of CD. The corresponding equivalence re­
lation is defined by x rv y if and only if there is a P(x, y) in CD. In
contrast, if we define w.r.t strong connectedness x rv y if and only if
paths P(x,y) and P(y, x) exist in D, then this also defines a partition
of V(D). We observe that the latter equivalence relation is a refinement
of the former. Unfortunately, unilateral connectedness does not give rise
to an equivalenc relation analogous to the other two cases, reason be­
ing that the corresponding relation is not transitive, in general (while
P(x,y),P(z,y) ~ D may hold, D may not contain P(x,z) nor P(z,x).

We note in passing that a graph G has a strongly connected orientation
Dc if and only if C is connected and bridgeless; this result has become
known as Robbin's Theorem (see, e.g., [35, p. 8].)

2.3. BIPARTITE GRAPHS, TREES, BLOCKS,
MAPPINGS

A bipartite graph is one whose vertex set can be partitioned into two
sets such that edges join vertices of different sets only.

We present a useful characterization of such graphs.

Theorem 10 A graph G is bipaitite if and only ifG contains no cycles
of odd length.

Proof. (==» Suppose C is bipartite with bipartition V (G) = VI U V2 and
has a cycle C = XQ, el, xl, ... ,en, x n = xQ. W.l.o.g. we assume xQ E VI'
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Then Xl E V2, X2 E VI, ... , Xn = XQ E VI, hence n is even. Thus C is an
even cycle.

(¢=) W.l.o.g. assume C is connected (otherwise consider its compo­
nents). Fix any vertex v in C and mark it red. Mark all vertices adjacent
to v blue. Consider all unmarked vertices adjacent to a blue vertex (none
are adjacent to red vertices since all neighbours of red vertices have been
marked already) and mark them red. Continue this procedure with blue
in place of red. Note that by this marking procedure a vertex marked
red, say, cannot be adjacent to a previously marked vertex unless that
vertex was marked in the immediately preceding step.

The marking stops after all elements of V(C) have been marked. For
suppose it stopped with y E V(C) unmarked; then, since C is connected
a path P(v,y) = P exists. Let w -# y be the last marked vertex in P.
Then the vertex v', the successor of win P, is marked, a contradiction.

We now set A = {vertices marked red} and B = {vertices marked
blue}. Say there is an edge f = ala2 E E(C) with al,a2 E A. Then
aI, a2 have' been marked red in the same step of the marking procedure.
Observe that the marking procedure produces at each step a path from
v to each of the newly marked vertices. Each path is colored alternat­
ing red-blue-red-blue- ... This applies in particular to the respective
paths P(v,al),P(v,a2)' Let X be the last vertex (possibly v itself) that
belongs to both paths as one walks from v to al in P(v,ad. Since
P(x, al), P(x, a2) are paths of equal length with singleton intersection
{x}, P(x,ad,ala2,p- l (x,a2) is a cycle of odd length. This contradic­
tion finishes the proof of the theorem. •

V(C
b

) = V(C) = VI U V2

i.e., C and (C
b

) have the same vertex bipartition,

Following the above definition of the complement of a graph, we define
for a bipartite graph C with bipartition V(C) = VI U V2 the bipartite

-b
complement C by

E(C
b

) = { VIV2 : VI E Vi, v2 E V2, vlv2 ¢ E(C) }.

Likewise, if E(C) = 0, V(C) = Vi UV2 such that IVII = m, 1V21 = n, then
we call Km,n := C

b
the complete bipartite graph on m and n vertices.

A graph C is called acyclic or a forest if it has no cycles. A connected
forest is a tree. Likewise, a digraph is called acyclic if it has no cycles.

A digraph D is a forest/tree if its underlying graph is a forest/tree.
Since a digraph may be acyclic and yet contain a closed chain, the un-
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derlying graph of an acyclic digraph may not be acyclic. In fact, any
graph has an acyclic orientation.

Further, D is an out-tree (in-tree) if D is a tree and there exists z E
V(D) such that for every v E V(D) a path P(z, v) (a path P(v, z)) exists.
z is called in both cases the root of D.

Theorem 11 Every connected graph G contains a spanning tree T, i.e.,
a tree which is a spanning subgraph of G.

A proof of Theorem 11 can be derived from the second part of the
proof of Theorem 10, by modifying the marking procedure. We also
note that a tree is a bipartite graph (since it has no cycles at all - see
Theorem 10), and that every edge of a tree is a bridge (see below). The
latter observation permits another proof of Theorem 11: one deletes ­
step by step - edges belonging to a cycle in the subgraph under consid­
eration until one arrives at a (spanning) acyclic subgraph.

Next we present characterization theorems for trees and out-trees.

Theorem 12 For any graph G of order p and size q, the following are
equivalent.

1 G is a tree.

2 G is loopless and for all x, y E V(G) there is precisely one path
P(x, y).

3 G is connected and every edge is a bridge.

4 G is connected and p = q + 1.

S G is acyclic and p = q + 1.

6 G is acyclic and for all x,y E V(G) satisfying x t= y, xy rf. E(G),
the new graph G U {xy} has precisely one cycle (which necessarily
contains xy).

Theorem 13 Given a digraph D, the following are equivalent.

1 D is an out-tree with root z.

2 D is weakly connected, d-(v) = 1 for every v E V(D) - z,d-(z) =
O.

3 D is acyclic and d-(v) = 1 for every v E V(D) - z,d-(z) = O.

4 D is acyclic and contains z E V (D) such that there is a unique
path P(z, v) for every v E V(D) - z.
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In view of Theorems 11 and 13 one can prove the following on the
existence of spanning out-trees.

Corollary 14 If D is a weakly connected digraph with vertex z such that
there is a path P(z, v) for every v E V(D) then D contains a spanning
outtree with root z.

Results for in-trees analogous to Theorem 13 and Corollary 14 can be
obtained by corresponding modification.

A graph is called nonseparable or simply a block if it has no cutvertices,
whereas a block of a graph G is a maximal nonseparable subgraph B of
G (see Figure 2.3). That is, B is a subgraph of G without cutvertices,

Figure 2.3 A graph and its blocks

and is ma.,"'{imal w.r.t. this property. However, B may contain many ver­
tices which are cutvertices of G. - Correspondingly, a graph is separable
if it has at least one cutvertex. Note also that for every bridge xy of
G, {x,y,xy} is a block of G and that two blocks of G have at most one
vertex in common; such a common vertex is necessarily a cutvertex of G.

The concepts of cutvertex and block give rise to defining the block­
cutvertex graph bc(G) for any graph G; namely: the vertices of bc(G)
are in I-I-correspondence to the blocks and cutvertices of G, and e E
E(bc(G)) if and only if one end of e corresponds to a cutvertex x of G
and the other end corresponds to a block B of G such that x E V(B).

The next result describes the global structure of graphs.

Theorem 15 For any graph G, bc(G) is acyclic and d(x, y) is even for
any two endvertices x, y of the same component of bc(G). Conversely, if
H is an acyclic graph such that d(x,y) is even for any two endvertices
x, y of the same component of H, then there exists a graph G such that
bc(G) and H are isomorphic (see the next paragraph for isomorphy).
Finally, there is a I-I-correspondence between the components of G and
those of bc(G).
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Two graphs G I , Gz are said to be isomorphic if there exist bijections
B: V(GI) --+ V(Gz), ¢ : E(G I ) --+ E(Gz) such that ¢(xy) = B(x)B(y) for
any edge xy of G I . The pair (B,¢) is called an isomorphism. Further­
more, if G l = G z then an isomorphism is called an automorphism.

Isomorphisms between digraphs D I , Dz are defined similarly, the main
difference being that we replace the defining equation by ¢((x,y)) =
(B(x), B(y)) for any arc (x, y) of DI.

If B : V(G I ) --+ V(Gz), ¢ : E(Gl ) --+ E(G2 ) are (not necessarily
1-1) mappings such that ¢(xy) = B(x)B(y) then we call (B, ¢) a homo­
morphism, which in turn is called an epimorphism if ¢(E(G1)) = E(Gz).

The next concept is of a more topological nature. Suppose we are
given a graph G with at least one edge e = xy. Let s tj. V(G) be a
vertex. Then G' = (G - e) U{s, xs, sy} is the graph obtained from G by
subdividing edge e. Two graphs G I , G2 are said to be homeomorphic if
there is G3 such that both G I , G2 can be obtained from G3 by subdivid­
ing edges of G3 by one or more vertices.

We are now in a position to describe the construction of all nonsepa­
rable graphs.

Theorem 16 Every nonseparable graph G with at least 3 vertices can
be obtained from K3 by a sequence of two operations:

1 Adding an edge joining two given vertices.

2 Subdivision of an edge by one or more vertices.

Various properties of nonseparable graphs are expressed by the next
theorem which can be proved easily by the use of Menger's Theorem (see
below).

Theorem 17 Let G be a connected graph of order 2 3. Then the fol­
lowing statements are equivalent.

1 G is nonseparable.

2 G is loopless and every two vertices lie on a cycle.

3 For every v E V(G), e E E(G), there is a cycle containing v,e.

4 For everyel, ez E E(G), there is a cycle containing el, ez.

5 Given x, y E V(G), e E E(G), there is P(x, y) containing e.

6 G is loopless and for every three distinct vertices x, y, z there is
P(x, y) containing z.
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1 G is loopless and for every three distinct vertices x, y, z there is
P(x,y) not containing z.

Further graph theoretical concepts will be explained in the subsequent
sections of this chapter, in the context of various problems dealt with
there.

3. CONNECTIVITY, MENGER'S THEOREM,
THE SPLITTING LEMMA, AND FACTORS

Suppose G is a given graph with non-adjacent vertices x, y. The local
connectivity K = K(X, y) is the smallest number of vertices VI, . .. ,VK

such that G' = G - {VI, ... ,vK } is disconnected and x, yare in different
components of G'. We say a loopless graph G has connectivity K(G) = n
if G contains a spanning subgraph isomorphic to K n +I, or K(G) =
min{ K(X,y): xy ¢ E(G) }. For example, K(Km,n) = min{m,n}.

A loopless graph G is called n-connected if K(G) 2: n. If G is con­
nected with loop vv and d(v) > 2 then K(G) := 1. Thus, a connected
graph G has a cutvertex if and only if K(G) = 1.

In what follows call r 2: 2 paths internally disjoint if any two of these
paths have at most their endvertices in common.

Theorem 18 (Menger's Theorem) Given a graph G with non-adja­
cent vertices x,y. Then K(X,y) is the maximum number p(x,y) ofinter­
nally disjoint paths joining x and y.

Proof. W.l.o.g. we can assume that G is a simple graph. We follow the
classic proof of Dirac (see, e.g., [9, 27]).

If K( X, y) = 0 then G must be disconnected with x, y in different com­
ponents and the theorem is true. If K(X,y) = 1 then G has a cutvertex
separating x,y. Again the theorem holds. Observe that K(X,y) 2: p(x,y)
in general (every P(x,y) contains at least one element of any vertex cut
separating x and y). So we must show that p(x, y) 2: K(X, y) holds when
K(X, y) 2: 2.

Suppose the theorem is false for some K(x, y) = K 2: 2. Among all
graphs G having non-adjacent vertices x, y such that p(x, y) < Kchoose a
graph for which IE(G)I+IV(G)I is minimum. Set p = p(x,y). Next, con­
siderG':= G-e for any e E E(G). Let p' = PG'(x,y) and K' = KG'(X,y).
By the minimality of G, p' = K'. Also, we have p' 2: p-1. Clearly K' ::; K.
Suppose K' = K. Since there are p' = K internally disjoint paths joining
x,yin G', there must be at least K internally disjoint paths joining x,y
in G. So p 2: K, which cannot be by the choice of G. So K' ::; K - 1.
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Suppose K' :S K - 2. Then let 8' = {VI, ... ,Vit'} be a vertex cut
separating x, y in G'. Let X e fi {x, y} be a vertex incident to e. Then
8' U {xe } is a vertex cut of K' + 1 :S K - 1 elements separating x, y in G,
which cannot be. SO K' ~ K - 1 and hence K' = K - 1.

We now claim that there cannot be any vertex z E V(G) - {x,y}
adjacent to both x, y in G. If there is, then let G" := G - z. If we set
p" = PG" (x, y) and K" = KG" (x, y) then p" = K" by the choice of G. Also
x,xz,z,zy,y is a path from x to yin G but not inG". So p-l ~ p". By
the same argument as before, K" + 1 ~ K. Then K - 1 :S K" = p" :S p - 1,
so that K :S p. This is a contradiction again.

Let 8 be a vertex cut of size K separating x, y in G. W.I.o.g. we may
assume G to be a block. By the result of the previous paragraph, no
vertex of 8 can be adjacent to both x and y.

We claim that either x is adjacent to every vertex of 8 or y is adjacent
to every vertex of 8. (*)

Define P(x, 8) to be a path starting in x and ending in some 5 E 8
such that it contains no other vertex of 8. Let P(8, y) be defined as a
path starting in some 5 E 8, ending in y and containing no other vertex
of 8. It follows that

(a) every P(x,y) contains a certain P(x,8) as (initial) section and a
certain P(8,y) as (final) section (the elements of 8 contained in these
latter two paths may be different);
(b) every P(x,8) and every P(8,y) have at most one vertex in com­

mon, and such vertex belongs to 8; otherwise P(x,8),P(8,y) contains
a subsequence which is a P(x,y) not containing any element of S;
(c) every 5 E 8 appears as endvertex (initial vertex) of some P(x,8)

(P(8,y)); otherwise, a proper subset of 8 would separate x and yin G.

Next, define two subgraphs Gx , Gy ~ G by

Gx := (U V(P(x, 8))) ; Gy := (U V(P(S, y)))

where the union is taken over all P(x, S), P(S, y) respectively. Note that

(i) Gx nGy = (8) by (b) and (c) above;
(ii) 8 separates x and y in Gx U Gy , but no S' ~ V(G) with IS'I < 181

does so; otherwise G - S' contains a P(x,y) which in turn must contain
some 5 E 8 (see the initial part of the proof). Whence P(x,y) contains
some P(x, 8) and some P(8, y) which belong to G x , Gy respectively. So
8' n P(x,8) =I- (/) or 8 ' n P(8,y) =I- (/) implying that every P(x,y) in G
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contains an element of 5', i.e., 5' separates x and y already in e, a con­
tradiction.

By (ii), 5 is a minimum vertex cut in exuey separating x and y, and
by the choice of e, e = ex u e y follows. Now construct new graphs

et := ex u { y, sy : s E 5}, et:= e y u { x, xs : s E 5 }.

If the claim (*) were false, the theorem would apply to both e; and
et, thus yielding 151 internally disjoint paths P+(x, 5) in ex and like­
wise 151 such paths P+(5,y) in e y (one just deletes the corresponding
endvertex in the respective paths in G; and Gt). By (i) we can now
form 151 = K pairs of paths P+(x,5),P+(5,y), each of which yields a
P(x, y) c G. This contradiction to the choice of e implies the validity of
(*), so G = e; or e = Gt must hold (observe that 5 is also a minimum
vertex cut in e; and et).

Now let P = x, XUI, UI, UI U2, U2, ... ,y be a shortest path in G con­
necting x and y. Since l(P) > 2 (see above), U2 =I y must hold,
and UIY rt. E(G). Form G' = e - {UIU2} which has a vertex cut
5' = {VI, ... ,vK-I} (see the first part of the proof) and both 5' u {uI}
and 5' U {U2} are vertex cuts of size K in e separating x and y. Since
UIY rt. E(G), XVj E E(G),l :::; j :::; K - 1, by (*) applied to 5' U {UI}.
Since XU2 rt. E(e) by the choice of P, we draw the same conclusion w.r.t.
the edges VjY E E(e) and U2Y E E(G) (considering 5' U {U2}). Since
K 2: 2; 5' =I 0 and so XVI, VIY E E(e), i.e., there is a vertex z = VI

adjacent to both X and y. This final contradiction proves the theorem.

•
Corollary 19 (Whitney's Theorem) A simple graph e is n-con­
nected if and only if for all x,y E V(e),x =I y, there are n internally
disjoint paths joining x, y.

Corollary 20 Let e be a simple graph with K(e) 2: nand lV(e) I 2: 2n.
Given two disjoint vertex sets 5 = {VI, ... ,vn }, 5' = {WI, ... ,wn }, there
are n totally disjoint paths between vertices of 5 and 5'.

Corollary 21 (Dirac) Given a simple n-connected (n 2: 2) graph e
there is a cycle C containing n specified vertices VI, . .. ,Vn .

We also observe that for x, y E V(G) and xy rt. E(G), we always have

K(e) :::; K(X,y) :::; ~(e).

If G is any graph with at least two vertices, then given distinct x, y E
V(G), the local edge connectivity of x and y is defined by

..\(x,y):= min {IEsl: x,y are in different components of e - E s }.
E.c;;..E(G)
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The edge connectivity A(G) of any graph G is taken to be either the
minimum of A(X, y) for any pair of distinct vertices x,y ofG (if IV(G)I 2:
2) or simply A(G) = 2 if IV(G)I = 1, E(G) =1= 0. This definition ensures
that the edge connectivity of a graph is not affected by subdividing any
of its loops. G is said to be n-edge-connected if A(G) 2: n.

Corollary 22 If G is not K 1 then we have the following:

i G is connected~ G is i-connected and G is i-edge-connected.

2 G is nonseparable and IV(G) I 2: 3~ G is 2-connected => G is
2-edge- connected.

3 G is connected and bridgeless~ G is 2-edge-connected.

4 G is connected and has a bridge~ A(G) = 1.

Theorem 23 Given a graph G with E(G) =1= 0 we have K(G) ~ A(G) ~
b(G).

The analogue to Menger's Theorem w.r.t. local edge-connectivity can
be derived with the help of Menger's Theorem.

Proposition 24 Let G be a loopless graph and x,y E V(G),x =1= y, be
given. Then A(X,y) = Pe(x,y), where Pe(x,y) is the maximum number
of edge-disjoint paths joining x and y.

Corollary 25 Gis k-edge-connected if and only if for all x,y E V(G),
x =1= y, there are k edge-disjoint paths from x to y.

For the fGllowing discussion we need to consider block chains which are
defined as graphs G such that bc(G) is a path. Correspondingly, we call a
block chain trivial (non-trivial) if E(bc(G)) = 0(=1= 0). Analogously, call
a block of any graph G an end-block if it corresponds to an endvertex of
bc(G).

Suppose G is a graph with some vertex v of degree at least 3. Let
el, e2 be distinct edges incident to v. Introduce 'Vl,2 tf. V(G) and replace
ei = VUi (i = 1,2) by UiVl,2 (possibly Ul = U2, i.e. el, e2 are parallel
edges). Denote this graph by G1,2. So G1,2 has been obtained from G by
splitting away el, e2. The transition from G to G1,2 is called the splitting
procedure.

Lemma 26 Let G be a nonseparable graph with IV(G) I ?: 3. Suppose
v E V (G) with d(v) 2: 3 exists. Split away from v two edges el, e2 to
form G1,2. Then G1,2 is a block-chain. If it is a non-trivial block-cham
then Vl,2 and v belong to different end-blocks ofG1,2 and Vl,2, v are not
cutvertices ofG1,2.
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Lemma 27 Let G be a connected bridgeless graph with precisely two
blocks B I , B2 with the unique cutvertex v E B I nB2. Choose ei E E(B i )n
E v , i = 1,2 and form GI,2 (in the case where el or e2 is a loop, split
away one of the 'half-edges' of ei, i.e., replace the loop ei = vv by the
edge vv1,2). Then GI,2 is nonseparable.

Lemma 28 (Splitting Lemma) Let G be a connected bridgeless
graph with a vertex v of degree at least 4. Let el, e2, e3 E E v be chosen
arbitrarily, subject to the condition that el and e2 belong to different
blocks if v is a cutvertex. Then at least one of GI,2 and GI,3 formed by
splitting awayel and e2, el and e3 respectively from v, is connected and
bridgeless.

Proof. We first observe that only the block(s) containing el, e2, e3 is/ are
changed, whereas all the other blocks of G are also blocks of G I ,2, G I ,3.

This is so since the splitting procedure does not alter any equation of
the form B n B' = {w} or = 0 where w =I- v is a cutvertex of G, though
it can happen (see Lemma 27) that B' is 'enlarged' by the vertices of
another block.

Let ei belong to the block Bi C G where i = 1,2 and B I =I- B2 if v
is a cutvertex, and B := B I = B2 = B3 otherwise. By the preceding
consideration, G - (B I U B2), G - B respectively, is bridgeless.

Case 1. v is a cutvertex of G. By Lemma 27, (BI UB2h,2 is nonsepa­
rable. It follows that G I,2 = (G - (BI U B 2)) U (BI U B2h,2 is bridgeless.
Observe that v is a cutvertex of G I ,2 if and only if v is contained in some
block B' of G, BI =I- B' =I- B2· To see that GI,2 is also connected, one
only needs to realize how bC(G I ,2) arises from bc(G). Let bi E V(bc(G))
correspond to Bi , i = 1,2, and suppose v retains its name in bc(G). Now,
bc(G I ,2) is obtained from bc(G) by first identifying bl and b2; if v is 2­
valent in bc(G), delete it to obtain bC(G I ,2), otherwise delete one of the
two parallel edges arising in identifying bl and b2. In both cases, bC(GI,2)
is a tree since bc(G) is a tree (cf. Theorem 15). Thus G1.2 is connected
as well.

Case 2. v is not a cutvertex of G. If B is of order 2, then v and w
(the other vertex of B) are joined by at least four edges, and obviously
B I ,2 is a bridgeless block chain with w as the only cutvertex.

Suppose IV(B)I 2: 3, then B is 2-connected. Applying Lemma 26 and
assuming the Splitting Lemma to be false we conclude that
(a) both B I ,2 and B I ,3 are non-trivial block chains containing a bridge

fI,2, h,3 respectively;
(b) the end-blocks of BI,j, j = 2,3, are not bridges and they have at

most a vertex in common in which case this is a cutvertex of BI,j;
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(c) each cycle of BI,j containing VI,j or v, j = 2,3, lies entirely in
the corresponding end-block - thus a cycle containing VI,j and a cycle
containing v in BI,j have at most one vertex in common;
(d) every path P(VI,j, v) C BI,j contains all cutvertices and thus all

bridges of BI,j - see Figure 2.4 .

.... ..............

Figure 2.4

Now, B being 2-connected guarantees the existence of cycles Cu,
C2,4 ~ B such that el,e3 E E(CI ,3), e2,e4 E E(C2,3) (see Theorem 17).
These two cycles lie in different endblocks of B I ,3 (see (c) above), so
they have at most a vertex in common in B I ,3 and thus are edge-disjoint
cycles (in CI ,3 C B I ,3 we only change the name of v to VI,3). On the other
hand, CI ,3 and C2.4 correspond in BI,2 to paths PI .3 and P2.4 respectively,
joining VI,2 and v. By (a) and (d), both PI ,3 and P2,4 contain all bridges
of B I ,2, and there is at least one bridge. So,

and thus

contradicting what we just proved. Whence at least one of B I .2, B I ,3 is
bridgeless, and thus GI ,2 or GI .3 is bridgeless. Assume w.l.o.g. that B I .2

is connected and bridgeless, and thus G I ,2 is bridgeless. Suppose that
G I ,2 is disconnected. Then v and VI,2 lie in different components G~, G2
of G I ,2. Thus we can write

Thus v is a cutvertex of G, contradicting the assumption of this case.
This finishes the proof. _

Corollary 29 Let G be a nonseparable graph with a k-valent vertex v
(k 2: 4) and let el, e2, e3 E Ev be chosen arbitrarily. If both GI ,2 and
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G I ,3 are nontrivial block-chains then bC(Gl ,2) = bC(Gl,3) = S(K2) and
G I ,2, G l ,3 have the same cutvertex.

Corollary 30 Let G =1= K2 be a nonseparable graph having a k-valent
vertex v (k:2 4). Let el,e2,e3 E Ev be chosen arbitrarily. lfG I ,2 has a
bridge then G l ,3 is nonseparable.

The Splitting Lemma has a wide range of applications, particularly
in the theory of eulerian graphs. However, it can also be used for the
classic proof of Petersen's Theorem (see below) in that it yields a short
proof of an intermediate result, Frink's Theorem (see [30, p. 251]). To
state the former we need some more terminology.

A graph is called k-regular if d(v) = k for every v E V(G). A digraph
D is called k-regular if d+(v) = d-(v) = k for all v E V(G).

Let G be a graph. A spanning k-regular subgraph of G is called k­
factor of G. In particular, a I-factor is also called a linear factor or
perfect matching. A 2-factor is a quadratic factor and a connected 2­
factor is called a Hamiltonian cycle of G. A k-factor in a digraph is often
called a k-difactor since it is a 2k-factor in the underlying graph. As a
generalization of I-factors, we define a matching to be a set of pairwise
non-adjacent edges (we also speak of a set of independent edges). A
maximal matching is one which cannot be extended to a larger one,
whereas a maximum matching is one of largest size.

Theorem 31 (Petersen's Theorem) lfG is a 3-regular bridgeless graph
and e E E(G) is arbitrary then E(G) = L UQ where (L)c is a I-factor
and (Q)c is a 2-factor containing e.

Petersen's Theorem was key in the early studies of the Four Color
Problem (see below). In this context, Tait had shown that solving this
problem is equivalent to proving that every 2-connected 3-regtilar planar
graph has a I-factorization (a graph is planar if it can be drawn in the
euclidian plane without edges crossing each other; a I-factorization of
a k-regular graph G is a set of k pairwise edge-disjoint I-factors of G).
The Petersen graph (Figure 2.5) is the smallest 2-connected 3-regular
graph which has no I-factorization - it is not planar either.

However, 2k-regular graphs can be written as the edge-disjoint union
of k 2-factors (they have a 2-factorization).
The Four Color Problem (4CP for short) stated that in any plane

bridgeless graph G, one can color the faces of G with four colors such
that any two faces having an edge in their respective boundary in com­
mon, are colored with different colors (a face of a plane graph G is ­
viewed in topological terms - an open arcwise connected point set F in
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Figure 2.5 The Petersen Graph

the plane such that of = F - F is a (not necessarily connected) sub­
graph of G, called the boundary of the face F). It is folklore to show
that in solving the 4CP it suffices to consider 3-connected 3-regular pla­
nar graphs. This, in turn, had led Tait to formulate the 4CP in the
equivalent form quoted above. This equivalent formulation then led Tait
to conjecture that 3-connected 3-regular planar graphs are hamiltonian.
Had this conjecture been true it would had yielded a simple proof of
the 4CP (see Conjecture 54 below and the subsequent discussion of Sec­
tion 5).

We note in passing that the dual formulation of the 4CP states that
the vertices of any planar loopless graph can be colored with four colors
such that adjacent vertices are colored differently; and that it suffices
to prove the 4CP in its dual form for 4-connected triangulations of the
plane (which are hamiltonian - see Theorem 63 below and the discussion
related to it).

The 4CP was finally solved in its dual form by Appel, Haken, and
Koch, [2]; theirs is a computer-aided proof, as is the more recent but
shorter proof by Robertson, Sanders, Seymour, and Thomas, [37].
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4. EULERIAN GRAPHS AND COVERING
WALKS, CYCLE DECOMPOSITIONS AND
CYCLE COVERS

A graph G is called eulerian if d(v) is even for every v E V(G). A
digraph D is called eulerian if d-(v) = d+(v) for all v E V(D).

We observe that eulerian graphs G are bridgeless; otherwise, for a
bridge e of G, the graph G - e has two components each of which has
precisely one odd vertex (d. Theorem 7), contradicting the Handshaking
Lemma.

A walk in a graph (digraph) H is a covering walk if Aw(h) > 0 for
every h E E(H) (A(H)). If a closed covering walk is a trail then it is
called an eulerian trail. A closed covering walk W where Aw(h) = k for
every h E E(G) (A (D)) is called a k-tracing. In particular, if k = 2, W
is called a double tracing. A double tracing in a graph is called bidirec­
tional if every edge xy, y i- x is passed in W once from x to y and once
from y to x. A double tracing W is called retracting-free if for every
e = xy E E(G), x,e,y,e,x is neither a section of W nor of ~V-l.

Let H be a graph (digraph) and let S = {GI, ... ,er }, r 2: 1 be a
collection of cycles of H. If every e E E(H) (A(H)) belongs to at least
one cycle of S then S is called a cycle cover. If every e E E(H) (A(H))
belongs to exactly k cycles of S then S is called a cycle k-cover. A cycle
I-cover is also called a cycle decomposition of H as it corresponds to a
partition of E(H) (A(H)) into cycles. A cycle 2-cover is also called a
cycle double cover (CDC).

Theorem 32 Given a connected graph G, the following statements are
equivalent.

1 G is eulerian.

2 G has an eulerian trail.

3 G has a cycle decomposition.

Proof. (1) =:} (2): G is eulerian and connected. If E(G) = 0 then
G = K I and T = v with V(G) = {v} is an eulerian trail. If E(G) i- 0
then choose any v E V (G) and start a trail by traversing an edge e
incident with v. Reaching the other end w of e (w = v if e is a loop)
continue the trail T with any not yet traversed edge f incident with w,
etc. So whenever we reach x E V(G) continue T at x with h E Ex-E(T).

Suppose this procedure stops at some y E V(G), i.e., E y - E(T) = 0.
'vVe claim that y = v. If not then every time we arrive at y we have
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traversed an odd number of edges incident to y. So if T eventually stops
at y the degree of y is odd, a contradiction. Thus y = v and Ev ~ E(T).
If E(T) = E(G) then T is an eulerian trail. So suppose this is not the
case. Backtrack on T until z E V(C) is reached for which E z - E(T) =J 0.
Such z exists since C is connected. By assumption E(G) =J E(T), so de­
fine G~ := G - E(T) and produce a closed trail T{ in G~ starting and
ending at z. Writing T = v, e, w, ... ,hz, z, zt, ,v we conclude that
by the construction of T, T{ that TI = v, e, w, , hz, T{, zt, ... ,v is a
closed trail starting and ending at v with Ev UE z ~ E(TI ).

If E(TI ) = E(G) then T l is an eulerian trail; otherwise backtrack on
TI to find Z2 for which E Z2 n E(TI) =I- 0 but EZ2 ~ E(TI). Now con­
tinue to produce T2 in C2 = G - E(TI), starting and ending at Z2 as
we did with respect to T{ and construct T2 by inserting T2 into TI and
so that Ev U E z U E Z2 ~ E(T2). The process of producing closed trails
T, TI ,T2, ... with E(T) C E(TI) C E(T2) ... must come to an end with
some Tr , r:S IV(G)I- 1. Then E(Tr ) = E(G) so that Tr is an eulerian
trail as required.

(Alternate proof of (1) => (2) using the Splitting Lemma.) Since
G is eulerian, it is bridgeless. G is also connected. If d(v) = 2 for
every v E V (G) then G is a cycle and this cycle is an eulerian trail.
Thus suppose d(v) > 2 for some v E V(G).Take el,e2,e3 E E v : el,e2

belong to different blocks of G if v is a cutvertex. W.l.o.g. suppose
G I := GI ,2 is connected and bridgeless. G I is also eulerian. If dCl (v) > 2
then we continue the splitting operation at v. If d(v) = 2k then af­
ter k - 1 splitting operations at v, employing the Splitting Lemma, we
have a connected eulerian bridgeless graph Gk-l where the original v
has been replaced by k 2-valent vertices. If Gk-I is a cycle C then a
run through C corresponds to an eulerian trail of G. If not then find
wE V(C) : dc(w) = dCk_l (w) > 2 and apply the Splitting Lemma to w
similarly. Consequently if d(v) = 2kv , kv E N, then after applying the
Splitting Lemma LVEV(C) (kv-I) = (L kv) - p = q - p times, we obtain
a graph which is a cycle. Running through this cycle corresponds to the
traversal of G by an eulerian trail.

(2) => (3): Since T is an eulerian trail it is a closed covering trail.
Let CI be a shortest closed sequence in T starting and ending at x, say,
with hx (xy) immediately preceding (following) CI in T. Cl is a closed
subtrail of T and since l(CI) = min, CI is a cycle indeed. Next, define
T l = v, el, WI, ... ,hx,x,xy, ... ,v. E(TI ) = E(G) - E(Cl ). So TI is an
eulerian trail in Gl := G - CI . Repeat the above procedure to find a
cycle C2 in C I . Define T2 similarly as an eulerian trail in C2 = GI - C2.
Then E(C2) nE(CI) = 0, so we produce step-by-step a cycle Ci in Gi - I
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such that E(Ci ) n E(Cj) = 0, 1 ::; j < i and G i := G i - 1 - Ci C G i - l ,

implying that the procedure must end with some Gk := Gk-l - Ck = 0
where k:?: I,Ga = G, i.e. Gk-l = Ck· Then S = {CI , ... ,Cd is a cycle
cover with E(Ci ) n E(Cj ) = 0 for 1 ::; j < i ::; k. So S is even a cycle
decomposition.

(3) :::} (1): Since dc; (v) E {O,2} for every Ci E S, we have dc(v) =

L~=l dc;(v) == 0 mod 2.•

Corollary 33 If G is a connected eulerian graph then it has an eulerian
trail starting at any prescribed v E V (G) and e E E v .

Corollary 34 Theorem 32 remains true if we replace "connected graph"
by "weakly connected digraph" (note that a weakly connected eulerian
digraph is strongly connected).

Corollary 35 Every connected graph has a bidirectional double tracing.

While these corollaries can be obtained by applying Theorem 32, the
next corollary results from a more intricate application of the Splitting
Lemma (see also Kotzig's Theorem below).

Corollary 36 (Sabidussi) If G is a connected graph without endver­
tices then it has a retracting-free double tracing.

In view of part 3 of Theorem 32 and Corollary 35 the following has
been conjectured.

Conjecture 37 (Cycle Double Cover Conjecture (CDCC)) Every
connected bridgeless graph has a cycle double cover.

A generalization of this, namely that every connected bridgeless graph
has an 'oriented' CDC S such that every edge is traversed in two differ­
ent directions by the two cycles of S it belongs to, has become known
as the oriented cycle double cover conjecture, whereas the strong cycle
double cover conjecture (SGDGG) states that one might prescribe any
given cycle of G to belong to some CDC.

The following results can also be proved quite easily.

Theorem 38 Every double tracing in a tree T is bidirectional and has
retractions if E(T) =f. 0. Moreover, every closed covering walk in T is a
double tracing.

Corollary 39 If G is a connected graph with precisely two odd vertices
x, y then it has a covering trail starting at x and ending at y.

Corollary 39 is also a consequence of the following result.
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Corollary 40 Let G be a graph without eulerian components, whose 2k
odd vertices are denoted by VI, ... ,V2k· There is a decomposition of E(G)
into k open trails T I , ... ,Tk where each Ti starts at some Vi and ends
at some Vj. Moreover, any decomposition of E(G) into open trails must
have at least k such trails.

Let 5 = {WI, ... ,Ws } be a decomposition of E(G). 5 is called a
path/cycle decomposition of E(G) if for every Wi E 5, (Wi) is a path or
a cycle.

Corollary 41 Every graph G has a path/cycle decomposition 5 such
that the number of paths in 5 is half the number of odd vertices in G.

Let G be any graph. For every V E V(G) let P(v) be a partition of
E v (for d(v) = 0 set P(v) = 0). Define a multiset P(G) := UVEV(G) P(v)
(note that a class C E P(x) may also be a class in P(y)) and call P(G)
a partition system of G. Every C in P(v) is called a forbidden part for
every v E V(G). If lei:::; 2 for every C E P(G) then P(G) is called a
partial transition system. If ICI = 2 for every C E P(G) then P(G) is
called a transition system.

For example, if G is a connected eulerian graph then it has an eulerian
trail (written as an edge sequence) T = el,e2, ... ,eq (consider a loop to
be two half-edges). This induces a transition system XT of G, where

Conversely, a transition system X(G) defines a decomposition of E(G)
into closed trails.

Similarly, a cycle decomposition 5 = {Cl , ... ,Cd induces a transi­
tion system X s where two edges at any vertex are in the same element
of X s if and only if they are in the same cycle of 5.

We call two partition systems Pi (G), P2(G) compatible if for every
v E V(G) and {i,j} = {1,2}, Ci ~ C j for every Ci E Pi(v) S;;; Pi(G) and
every C j E Pj(v) S;;; Pj(G). If Pl(G) = XT (or = Xs) then we say T (or
5) is compatible with P2(G) or P2(G)-compatible.

Theorem 42 (Kotzig's Theorem) Let G be a connected eulerian
graph with a given partition system P(G). Then there is a P(G)-compat­
ible eulerian trail if and only if for every v E V(G) and every C E P(v)
the inequality ICI :::; !d(v) holds.

The following is just a special case of Theorem 42; however, it can be
proved directly by applying the Splitting Lemma.
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Corollary 43 Let C be an eulerian graph with b(G) 2.: 4 and let S be a
cycle decomposition of G. Then there is a Xs-compatible eulerian trail
T inC.

Conjecture 44 (Sabidussi's Compatibility Conjecture (SCC))
Let C be an eulerian graph with b(G) 2.: 4 and let T be an eulerian trail
of C. Then there is a XT-compatible cycle decomposition in G.

However, the condition on the class sizes in Kotzig's Theorem does
not allow to conclude the existence of a P(C)-compatible cycle decom­
position. For example consider the eulerian graph K 5 with the cycle
decomposition S shown in Figure 2.6, where Xs =: X 5 is characterized
by the small arcs marking the transitions of the two cycles in S. We
show that it does not have a X5-compatible cycle decomposition.

Figure 2.6

Suppose S' is a Xs-compatible cycle decomposition of Ks. Let C E S'.
Since S' is Xs-compatible, C contains alternately edges of the outer pen­
tagon and the inner pentagram and thus must be even. Since l(C) :=:; 5,
we have l(C) = 2 or 4. But the former cannot be since K s is simple.
Thus the cycles in S' are of length 4. SO IE(G)I must be a multiple of 4.
But IE(K5 )I=IO, a contradiction. So S' cannot exist.

This non-existence ofaX5-compatible cycle decomposition in K 5 is
basically the reason why arbitrary 2-connected 4-regular graphs with
given system of transition X may not have an X -compatible cycle de­
composition. Also, this example of Figure 2.6 can be used to prove that
the Petersen graph has no I-factorization.

On the other hand, there is a closer relationship between the see
and the eDee than one might suspect at a first glance. To explain this
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relationship we need some more terminology.

An edge cut Eo of a graph G is called essential if G - Eo has at least
2 nontrivial components. The essential edge-connectivity Ae (G) of G is
the size of the smallest essential edge cut of G if such an edge cut exits,
otherwise set Ae(G) = A(G). G is said to be essentially k-edge-connected
if Ae(G) ~ k.

If G has two disjoint cycles then the edge cut E1 is called a cyclic
edge cut if G - E1 has at least two components with each component
having a cycle. The cyclic edge-connectivity Ac (G) of a graph G is defined
to be Ae (G) if G has no two disjoint cycles, or the size of the smallest
cyclic edge cut of G. And G is said to be cyclically k-edge-connected if
Ac(G) ~ k.

Corollary 45 For any loopless graph G, A(G) ~ Ae(G) ~ Ac(G).

Observe also that Ae(K4 ) = Ac(K4 ) = 4 and Ae(K5 ) = Ac(K5 ) = 6.
Given any graph G, a cycle G of G is called a dominating cycle if

every edge of G is incident to a vertex of G.

Conjecture 46 (Dominating Cycle Conjecture (DCC)) Any
3-regular graph G3 with Ac(G3) ~ 4 has a dominating cycle.

It is relatively easy to see, [13], that in proving the see it suffices to
consider connected eulerian graphs having only 4- and 6-valent vertices.
Such graphs together with an eulerian trail give rise - in a natural way
([13]) - to a 3-regular graph with dominating cycle. In fact, the see
has been generalized by Bill Jackson and the author [14] (here we state
the most important case of this generalization).

Conjecture 47 (General Compatibility Conjecture (GCC)) Let
G i- K 5 be a 4-regular graph with Ac(G) ~ 6 and an arbitrary transition
system X. Then there is an X -compatible cycle decomposition S of G.

In fact, the following is true.

Theorem 48

a. The validity of the SGDCC implies the validity of the SCC.

b. The validity of the SCC and the DCC imply the validity of the CDCe.

c. The validity of the GCC implies the validity of the CDGC.

Theorem 48 is a decisive reason why the see and Gee have attracted
quite a few people's research. In fact, the Gee has been proved for large
classes of graphs, even in a more generalized setting (see [43J for details
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and more references). Thus the validity of the see is guaranteed for the
same classes of graphs.

While (a) and (b) have been proved in [13], (c) is due to F. Jaeger, [29].

We note in passing that in [43], cycle covers in general, and cycle dou­
ble covers in particular, are treated extensively.

Returning to the theme of eulerian trails, we now consider connected
plane eulerian graphs G (note that a plane graph is a realization of
a planar graph in the euclidean plane). Now, G being embedded in
the plane allows one to speak of a cyclic ordering of the edges in Ev

for every v E V(G) (w.l.o.g., we assume here and in what follows that
G is loopless). Describe this cyclic ordering counterclockwise, say, by
(el' e2, ... ,e2k,,), 2kv = d(v). Thus one can define a non-intersecting
eulerian trail T as one where for any two transitions {ei' ej}, {ek' eI} of
T at any v E V(G) neither i < k < j < l nor i < l < j < k holds (w.l.o.g.
i =min{i,j,k,l}).

Figure 2.7(a) shows a 6-valent vertex with three pairwise non-inter­
secting transitions which are marked by little arcs.

)

(a)

(

Figure 2.7

(b)

(

An A-trail, on the other hand, is one where for any transition {ei'
ej} EXT at the corresponding vertex v E V (G), it follows that j = i + 1
or j = i-I (read mod d(v)).

Figure 2.7(b) shows one of the two possible choices reo the behavior
of an A-trail at the corresponding vertex. Note, however, that the tran-
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sitions in Figure 2.7(a) do not correspond to an A-trail.

We observe that non-intersecting eulerian trails and A-trails are iden­
tical concepts in the cases where b.(G) :s: 4, but not in general. In fact,
while the Splitting Lemma can be applied to show that every connected
plane eulerian graph has a non-intersecting eulerian trail, there exist in­
finitely many 3-connected plane eulerian graphs which do not admit an
A-trail. Moreover, the decision problem whether a given 3-connected
plane eulerian graph has an A-trail is NP-complete, [1], whereas non­
intersecting eulerian trails can be found in polynomial time, as we shall
see below. Regarding algorithmic complexity in general, we refer the
reader to Chapter 4. Here we are only concerned with the question
whether certain algorithms run in polynomial time, and which problems
are NP-complete.

4.1. ALGORITHMS FOR CONSTRUCTING
EULERIAN TRAILS

In what follows I(P) denotes the set of vertices which are 2-valent in
the path P, i.e., the set of inner vertices of P.

Algorithm 49 (The Splitting Algorithm)
Input: A connected eulerian graph G with IE(G) I = q > 0 and initial
vertex va E V(G).
Step O. H:= G,i:= 0, To = {va}
Step 1. Suppose Ii = va, el, VI, ... ,ei, Vi has been obtained by a (possibly
empty) sequence of splitting operations such that Ti appears as a path P
in H with x E I(P) implying dH(x) = 2. If i = 0 then let el E Evo be
arbitrary. Go to Step 1.2. If i =I- 0 set il = ei·
Step 1.1. IfdH(vi) > 2 choose h,h E Ev;n(E(H)-E(Ii)). FormHI,j
by splitting away il, fJ, j = 2,3. Define H := H I ,2 if it is connected,
otherwise set H := H I ,3. On the other hand, if dH(vi) = 2 then H
remains unchanged.
Step 1.2. Set ei+1 = ViVi+1 for the edge not in Ti and incident with Vi
in H. Set Ti+1 := Ti ,ei+1,Vi+1 (possibly Vi+1 = Vi).
Step 1.3. Set i := i + 1.
Step 2. If i =I- q go to Step 1.
Step 3. Tq is an eulerian trail of G.

Algorithm 50 (Fleury's Algorithm) This only differs from the Split­
ting Algorithm in Step 1.
Input: A connected eulerian graph G with IE(G) I = q > 0 and initial
vertex va E V(G).
Step O. H:= G,i:= O,To = {va}.
Step 1. Suppose Ii = Va, el, VI, ... ,ei, Vi has been already constructed.
Set Gi := G - E(Ii).
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Step 1.1. Choose ei+l E EVi n E(Gi ) such that ei+l is a bridge of Gi
only if Vi is an endverlex of Gi .

Step 1.2. Write ei+l = ViVi+l and set 7i+l = Ti, ei+!, Vi+!.

Step 1.3. Set i := i + 1.
Step 2. If i =J q go to Step 1.
Step 3. Tq is an eulerian trail of G.

Algorithm 51 (Hierholzer's Algorithm)
Input: A connected eulerian graph G with IE(G)I > 0 and initial vertex
Vo E V(G).
Step 1. Construct a closed trail To starting and ending at Vo by travers­
ing step-by-step an edge not yet traversed. To ends at Vo with Eva ~ To.

Set i := O.
Step 2. If E(7i) = E(G) then go to Step 4· If E(7i) =J E(G) then
choose Vi+l E V(7i): EVi +1 - E(T) =J 0. Construct a closed trail T: as
in Step 1 starting and ending at Vi+l, T: ~ G - E(7i).
Step 3. Construct a closed trail 7i+l with E(7i+r) = E(7i) U E(T!) :
starting at Vo and go in T i to Vi+l, then traverse T: and then continue
the run through 7i from Vi+l' Set i := 'i + 1 and go to Step 2.
Step 4. T is an eulerian trail of G.

Looking back at the two independent proofs of the first part of The­
orem 32, it becomes clear why Algorithms 49 and 51 produce eulerian
trails indeed. Moreover, on comparing Fleury's algorithm with the Split­
ting Algorithm, it is also clear that the functioning of the latter implies
the functioning of the former, and that the choice of ei+l in Step 1.1
of Fleury's algorithm corresponds to the choice of e2, e3 in the Splitting
Lemma (if Vi is not an endvertex of Gd. Moreover, checking connected­
ness after splitting away two edges, can be done in polynomial time and
it needs to be done only once per application of the splitting procedure.
Therefore, the first two algorithms run in polynomial time; and so does
Hierholzer's Algorithm which runs even faster. Note that the Splitting
Algorithm can be adapted to produce eulerian trails in digraphs, P(G)­
compatible eulerian trails in graphs, and non-intersecting eulerian trails
in plane graphs: this adaption takes place in Step 1.1 by making specific
choices of hand h, in each of the respective cases. Clearly, these choices
do not essentially alter the polynomial running time of the respectively
adapted Splitting Algorithm.

4.2. MAZES

Mazes can be represented by graphs by replacing doors by vertices and
edges joining doors that can be reached from one to the other without
passing by or through a third door. Figure 2.8 shows an example.
In what follows we present the two most important maze search al­

gorithms which operate on connected graphs and produce bidirectional
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(a) (b) (c)

Figure 2.8 (a) a maze, (b) the maze and its doors, (c) the graph of the maze

double tracings (d. Corollary 35 and Theorem 38). These algorithms
operate with local information only.

Algorithm 52 ('fremaux's Algorithm)
Input: A connected graph G with E(G) =I 0 which is unknown to the
person walking in the maze.
Hypothesis: Whenever v E V(C) has been reached in the course of con­
structing a covering walk W, Aw(e) is known for all e E Ev , with Aw(e)
referring to the section of W performed at the moment of arriving at v.

Step 0: Set i := 0, choose an arbitrary Vo E V(G), set W = vo.
Step 1: Starting at Vi E V(C), walk along any edge ei E EVi - E(W).
Define W:= W,ei,vi+l' possibly Vi = Vi+l. Set i:= i + 1.
Step 2: Suppose W = Vo, eo, Vl, ... , Vi-l ei-l, Vi has been constructed.
If Vi is not an endvertex and Vi =I Vj, 0 :S j < i then go to Step 1.
Step 3: (Vi is an endvertex or Vi = Vj for some 0 :S j < i.) If
Aw(ei-l) > 1 go to Step 4. Otherwise, (Aw(ei-d = 1) set ei = ei-l,
Vi+l = Vi-l and W := W, ei, Vi+l· Set i := i + 1 and go to Step 4.
Step 4: If Aw(e) > 1 for all e E EVil then go to Step 5. Otherwise
choose e E EVi so that Aw(e) is minimum. Set ei = e, Vi+l = Y where
y = Vi if e is a loop, and e E E y nEVi otherwise. Set W := W, ei, Vi+l
and i = i + 1. Go to Step 2.
Step 5: The final W is a bidirectional double tracing ofG.

The justification of this algorithm lies basically in the second part of
Step 3 and Theorem 38. Namely: if upon traversing an edge e = xy
for the first time one reaches y, say, which had been reached before
or if y is an endvertex, then one backtracks on e from y to x. This
is tantamount to detach the single edge e from y thus creating a new
endvertex y' incident with e. If one performs such a 'detachment' at
every step in question, then one ultimately ends up with a tree since
C is connected. Correspondingly, by Theorem 38, the output of the
algorithm is necessarily a bidirectional double tracing of G.
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Algorithm 53 (Tarry's Algorithm)
Input: A connected graph G with E(G) =1-0.
Hypothesis: If v E V (G) is reached in constructing W then E~ w ~ Ev

(the set of edges used away from v by W) is known. ein(v) E Ev by which
v is reached for the first time is also known.

Step 0: Set i = O. Choose Vo E V(G), set W:= va. Set {ein(VO)} := 0.
Step 1: Beginning at Vi E V(G), walk along, any edge ei E EVi :=

E Vi - (E~i'W U {ein(Vi)}). Define W := W,ei,vi+l where ei E EVi +1'

possibly Vi = Vi+l. Set i := i + 1.
Step 2: Consider W = va, eo, ... ,ei-l, Vi. If EVi =I- 0, then go to Step 1;
otherwise, go to Step 3.
Step 3: If {ein(Vi)} ~ E~i'W then go to Step 4· Else setei:= ein(vd,
W := W, ei, Vi+l (ei E EVi+l)' i := i + 1 and go to Step 2.
Step 4: W is a bidirectional double tracing.

Here, the justification of the algorithm is based on the following two
facts:
1) ({ein(Vj) : Vj E W}) is a spanning tree of G;
2) for an eulerian trail T in a weakly connected eulerian digraph D, if

one marks at every vertex x other than the initial vertex Vo of T, the arc
by which x is being reached for the first time in the course of traversing
T, then the set of marked arcs form a spanning out-tree ofD rooted at va.

Whence one can interpret Tarry's Algorithm as producing an eulerian
trail in the eulerian digraph obtained from G by replacing every edge
by two oppositely oriented arcs (d. Corollary 34) and such eulerian trail
corresponds to a bidirectional double tracing of G.

Ifone operates with the combined hypotheses of Tremaux's and Tarry's
algorithms and proceeds according to Tarry's algorithm choosing, how­
ever, in Step 1 ei with minimum Aw(ei), then one clearly obtains a
bidirectional double tracing as well. However, if the input is a connected
eulerian graph, then the edge sequence obtained by listing the edges ac­
cording to their second traversal, defines an eulerian trail.

For more details on algorithms producing eulerian trails and on maze
search algorithms, we refer to [16, Vol. 2, Ch. X].

5. HAMILTONIAN CYCLES AND
VERTEX-COVERING WALKS

Let's start with discussing some conjectures.

Conjecture 54 (Tait's Conjecture, 1880) Every planar 3-connected,
3-regular graph has a hamiltonian cycle.
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That the condition of 3-connectedness is important in the above con­
jecture is shown by Figure 2.9.

(a) (b) (c)

Figure 2.9 (a) 2-connected non-hamiltonian graph, (b) 2-connected simple non­
hamiltonian graph, (c) 2-connected simple bipartite non-hamiltonian graph

The conjecture was disproved in 1946 by W. T. Tutte by giving a
counterexample G3 with Ac(G3) = 3. Later on counterexamples with
Ac (G3) = 5 were found.

Note: For a plane 3-regular G3, Ac (G3) :s minl(C) =: g(G) =girth of
G, where C is a cycle of G.

Conjecture 55 (Tutte) Any 3-connected bipartite 3-regular graph has
a hamiltonian cycle.

This conjecture has been disproved by Horton who developed a coun­
terexample having 96 vertices.

Conjecture 56 (Barnette, Bosak, Tutte) Any planar, 3-connected,
bipartite 3-regular graph has a hamiltonian cycle.

This is still an open problem.

Observing that the classes of graphs addressed in the above conjectures
have few edges in comparison to their order p (their size is q = 3pj2), one
wonders whether a simple graph is hamiltonian (Le., has a hamiltonian
cycle) if it is of sufficiently large size. Of course, K p is hamiltonian and
has ~(p - 1)! hamiltonian cycles (viewed as different subgraphs); it's
of size m. Trivially, the graph obtained from K p by deleting all but
one of the edges at some fixed vertex, is non-hamiltonian and of size
(~) - (p - 2). However, the following result of G. A. Dirac (proved in
1952) points already into the right direction. In the sequel, a hamiltonian
path of G is a path containing all vertices of G.
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Theorem 57 Any simple graph G of order p 2: 3 with d(v) 2: ~ for
every v E V(G) has a hamiltonian cycle.

This result was improved in 1960 by O. Ore who showed the following
to be true.

Theorem 58 Let G be a simple graph of order p 2: 3 such that d(x) +
d(y) 2: p for all X,V E V(G) satisfying xv rf: E(G). Then G is hamilto­
nian.

Proof. We proceed by contradiction. Among all counterexamples for
some fixed p 2: 3, choose one of maximum size q. G 1- K p since K p is
hamiltonian. Thus G contains x, V E V(G), x f. V, such that xy rf: E(G).
Form G I := GU{xy}; then G I has a hamiltonian cycle CI containing xV.
Number the vertices of G in accordance with a run through C I such that

x = VI, V2, ... ,Vp-I, Vp = y; ViVi+I E E(G) n E(CI ) for 1 ::; i ::; P - l.

So C I - {xy} is a hamiltonian path in G connecting x and y. Observe that
if for some 1 ::; i ::; P - 1, VIVi+ 1, 'Up'Ui E E (G), then G 1 has a hamiltonian
cycle not containing xy = VIVp. For, PI = P(VI,'Ui), P2 = P(Vp,Vi+I) C

C I would yield a hamiltonian cycle C = PI, ViVp, P2, 'Ui+IVI, VI not con­
taining VIVp, so that C is a hamiltonian cycle in G, a contradiction. This
implies for every j, 2 ::; j ::; p, if XVj E E(G), then YVj-I rf: E(G). Set
d = d(v). So if N(x) = {ViI" .. ,Vi d }, then {Vij-I, ... ,vird nN(y) = 0.
Thus d(y) ::; (p - 1) - d, whence d(x) + d(y) ::; d + (p - 1) - d = p - 1,
a contradiction to the hypothesis.

This implies that the counterexample G does not exist, therefore the
theorem is true. _

Arguing along the same lines as in the preceding proof one obtains
the following for bipartite graphs.

Theorem 59 Suppose G is simple and bipartite, V(G) = VI U V2, IViI =
IV2 1 = k. Suppose there is a E IN U {O} such that k > 2a and fJ(G) 2:
k - a. Then G has a hamiltonian cycle.

Corollary 60 If G is simple and bipartite of order n = 2k, k = IVII =
1V21, and fJ (G) > ~, then G has a hamiltonian cycle.

Reconsidering the proof of Theorem 58, we conclude the following.

Corollary 61 Given a simple graph G. Suppose there are X,V E V(G)
such that xy ¢ E(G) and d(x) +d(y) 2: p. If G U { xy} has a hamiltonian
cycle, then so does G.

This leads us to the following construction due to Bondy and Chvatal.
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Consider a simple graph G of order p and let 0 < k :S p be given.
If there are X,Y E V(G) such that xy (j. E(G) and d(x) + dey) 2: k,
form G l = G U {xy}. If there are Xl,Yl E V(G l ) = V(G) such that
XIYI (j. E(G I ) and in GI holds d(xd + d(YI) 2: k, then form G2 =
GI U {XIYI}. Continue this procedure until reaching a graph Gr such
that for all u, v E V(Gr) = V(G) with uv (j. E(Gr ) it follows that
d(u) +d(v) < k holds in Gr. Then Gr is called the k-closure of G and is
denoted by Ck (G) .

Note: (1) In the course of constructing Ck(G), it can happen that
dcj(u) + dCj(v) 2: k for some u,v E V(Gj ) = V(G) with uv (j. E(Gj )

although dc(u) +dc(v) < k. Then uv can be added to G j to form GHI .
(2) Ck(G) is uniquely determined.
Thus Ck(G) is well-defined.

Corollary 62 Let G be a simple graph of order p 2: 3. G has a hamil­
tonian cycle if and only if cp ( G) has a hamiltonian cycle.

Note that in the case of Ore's Theorem (Theorem 58) ep(G) ~ Kp .

In their article [6], Bondy and Chvatal show for several results proved
until then, that in each of these cases the p-closure of the corresponding
graph is complete. Since then, many results have been proved on hamil­
tonian graphs, which are also based on degree conditions and where the
p-closure is not complete. We also note that - based on the proof of The­
orem 59 and on Corollary 60 - one can introduce the bipartite closure of
a bipartite graph, [6].

The graphs for which we have positive answers reo hamiltonian cycles
so far, have "many" edges. So, we may ask which are the conditions one
could use instead of degree conditions to ensure that a graph is hamilto­
nian. If for instance we consider simple planar graphs, we have graphs
with few edges but many other nice properties. In fact, if G is a simple
planar graph of order p 2: 3, then it has at most 3p - 6 edges, and every
simple maximal plane graph has precisely 3p - 6 edges. Note that such
a plane graph (also called triangulation of the plane) is a plane graph
to which one cannot add any edge without creating a parallel edge or a
crossing with another edge.

Thus simple planar graphs have only a few edges. However, if the
connectivity of a simple planar graph is high enough, then such graphs
are hamiltonian.

Theorem 63 ([41]) Every 4-connected planar graph has a hamiltonian
cycle.

We note in passing that this theorem by W. T. Tutte generalizes a
result of H. vVhitney proved in the 1930ies and stating that every 4-
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connected triangulation of the plane has a hamiltonian cycle.

For the following conjecture and proposition, see, e.g., [16, Vol. 1,
VI.112-VI.114].

Conjecture 64 (H. Fleischner) Every simple eulerian triangulation
of the plane has an A-trail.

Proposition 65 Conjectures 56 and 64 are equivalent.

Thus we have a hamiltonian problem which can be treated as an eu­
lerian problem. However, the following result should be viewed as a
strategy in dealing with the problem of constructing hamiltonian cycles
in graphs with relatively few edges (see [17] for the following and for
detailed references). To state this and subsequent results, we need some
new concepts.

Let !vI be a set (e.g., a graph) and let 5 = {l\!h, ... ,Mp } be a set of
subsets of M such that M = M I U lvI2 U ... U Mp . The intersection graph
of 5, denoted by 1(5), is defined by

V(1(5)) = 5 and

MiMj E E(1(5») if and only if i =I j and !vIi n Mj =10.
Given a graph C, the k-th power C k of C is defined by

V(C k
) = V(C) and

xy E E(Ck
) if and only if dc(x, y) :::; k for x, y E V(G).

Finally, define the prism P(G) of the graph C as obtained from G and
a copy G' of G by adding an edge vv' for every v E V(G), v' E V(G')
where v' is the vertex corresponding to v.

Theorem 66 An arbitrary graph G has a hamiltonian cycle if and only
if there exists a set of cycles 5 = {CI , ... , Ck , k 2: I} such that

1 V(5) := U~=I V(Ci ) = V(G)

2 Ci n Cj = 0 or ~ K 2, 1 :::; i, j :::; k, i =I j

3 1(5) is a tree.

If such a set 5 exists then a hamiltonian cycle of G is defined by the
edges belonging to precisely one element of 5.

This strategy has proved fruitful in proving the following two results.
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Theorem 67 ([10, 11, 34]) If G is 2-connected, then G 2 is hamilto­
nian.

Theorem 68 ([15]) If G is a planar 2-connected 3-regular graph, then
P(G) is hamiltonian. .

The proof of these two theorems rests on the construction of special
types of spanning subgraphs in the respective G. To see how the proof
of Theorem 68 makes use of Theorem 66, consider a bipartite graph B
having the following properties:
(a) 1 :S d(v) :S 3 for every v E V(B);
(b) B is connected;
(c) any two cycles of B are disjoint;
(d) if d(v) = 3, then v lies on a cycle of B.

vVhence the edges of B not lying on a cycle of B, are the bridges of B;
and by (d), the set of these bridges induces a linear forest, i.e., a forest
F each of whose components is a path. Hence B can be written as

B=EuF

where E is a set of pairwise disjoint even cycles, and E and Fare edge­
disjoint.

To see that P(B) is hamiltonian, construct a set of cycles according
to Theorem 66: For a cycle C = Xl, X1X2, . .. ,X2rXl, Xl of E (l(C) = 2r)
let (;' = x;,x;x2,x2"" ,x2rx;,x; be the corresponding cycle in the
copy B' of B, and for a component P = Yl,Y1Y2, ... ,Yk of F, let P' =
Y~ ,Y~Y2' ... ,Y~ correspond to P.

Now set

H(C) := ({ X2i-1X2i, X2iX2i+l : 1 :S i :S r,2r + 1 := 1,2r = l(C) }

u { Xjxj : 1 :S j :S 2r })

for arbitrary cycle C c E, and

H(P):= ({ YiYi+l'Y~Y~+l:1:S i:S k -1 = l(P)} u {Y1Y~,YkYD)

for every component P of F. ,Now, each H{C) and each H(P) is a cycle
such that

S:= {H(C),H(P) : C is a component of E,P is a component ofF}

is a set of cycles satisfying conditions 1-3 of Theorem 66. The hard
part of proving Theorem 68 is to show that every planar 2-connected
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3-regular graph 03 has a spanning bipartite subgraph B as described
above, provided one does not make use of the Four Color Theorem in its
equivalent form whereby such 03 has a I-factorization. For if one has
such I-factorization {£1, £2, £3} at hand, then setting E := (£1 U £2)
and F := (£3) where £3 C £3 is of minimum size such that E U F is
connected, yields B as required. For more details of this construction of
B, see [15].

However, the proof of Theorem 67 makes use of Theorem 66 as well,
albeit in a more intricate and more implicit manner. Suffice it to say in
this context that one starts by proving that every connected bridgeless
graph has a connected spanning subgraph 5 = E U F resembling - to
some extent - B above. Namely: E is an eulerian graph, F is a linear
forest, the edges of F are the bridges of 5, and E and F are edge-disjoint
(for details, see [10, 11]).

Unfortunately, if one drops in either of the two Theorems 67, 68 the
condition that the respective graph is 2-connected and requires only
connectedness, then the corresponding statement is false, in general.
Figure 2.10 is the smallest example of a graph whose square is non­
hamiltonian.

Figure 2.10

On the other hand, the following is true (call a graph hamiltonian
connected if any two vertices can be joined by a hamiltonian path).

Theorem 69 ([39]) If 0 is a connected graph, then 0 3 is hamiltonian
connected.

Proof. It suffices to prove the theorem for any spanning tree T of 0; T
exists by Theorem 11. For p := WeT) I E {I, 2, 3} this is trivially true,
so assume w.l.o.g. p 2:: 4, and choose x, y E VeT) arbitrarily.
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Case 1: x,y are non-adjacent. Consider P(x,y) C T, P(x,y) = x,xx',
x', x'y', ... ,y; x' i- x, y (possibly y' = y). Form T-x'y' = TI UT2, where
T I , T2 are trees (x'y' is a bridge of T). W.l.o.g. x' E V(TI), y' E V(T2).
It follows that x E V(Td, y E V(T2).

By induction Tr has a hamiltonian path P(x, x'). Consider next
Tt = T2 U {x',x'y'} CT. By induction (Tt)3 has a hamiltonian path,
P2(X',y).

Observing that Tr, (Tt)3 ~ T 3, and because VeT) = V(TI ) U V(Tt)
we conclude that PI(X,x'), P2(X',y) is a hamiltonian path in T 3 joining
x,y.

Case 2: x,y are adjacent. T = T I U {xy} uT2 where T I nT2 = 0,
x E TIl Y E T2, Ti and T2 are trees. Suppose E(TI) i- 0, i- E(T2), then
let x' be adjacent to x in TIl y' adjacent to y in T2. dr(x',y') = 3, so
x'y' E E(T3). Let PI(x,x') be a hamiltonian path in Tr joining x,x' and
let P2 (y', y) be a hamiltonian path in T:j joining y', y. Then PI (x, x'),
x'y', P2 (y', y) is a hamiltonian path in T3 joining x and y.

If w.l.o.g. E(Td = 0, then let y' be adjacent to y in T2. In T:j, we
have a hamiltonian path P2(y', y). Note xy' E E(T3) since dr(x, y') = 2.
Since E(Td = 0, it follows that x,xy',P2(y',y) is a hamiltonian path in
T 3 as required. _

Theorems 67 and 69 also indicate that if a graph G has locally many
edges, then one may hope to some extent that G is hamiltonian. Calling
a K I ,3 a claw we define a graph G to be claw-free if no vertex-induced
subgraph is a claw. A special type of a claw-free graph is the line graph
L(G) of a graph G; it is defined by

V(L(G)) = E(G), and

ef E E(L(G)) if and only if e, f are adjacent edges in G.

Conjecture 70 (Matthews and Sumner, [32]) Every 4-connected
claw-free graph is hamiltonian.

Conjecture 71 (Thomassen, [40]) Every 4-connected line graph is
hamiltonian.

Noting that ""(L(G)) = Ae(G) and that L(G) is hamiltonian if and
only if G has a dominating connected eulerian subgraph (i.e., every edge
of G is incident with a vertex of this subgraph) we conclude that the
following is equivalent to Conjecture 71.
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Conjecture 72 Every essentially 4-edge-connected graph has a domi­
nating connected eulerian subgraph.

In fact, it has been shown that Conjectures 46, 70, 71, 72 are equiv­
alent, [19, 38]. This brings us back to the consideration of 3-connected
3-regular graphs, for which it has been shown a long time ago that the
decision problem whether such graphs have hamiltonian cycles, is NP­
complete even in the planar case (see e.g., [24]) - and this is the rea­
son why the A-trail problem for 3-connected planar eulerian graphs is
NP-complete (see above). The same conclusion can be drawn w.r.t.
dominating cycles: to see this, take any 3-regular 3-connected graph C
(planar or not) and replace every vertex with a triangle, thus creating
C6, (see Figure 2.11) which is also 3-regular and 3-connected.

C

Figure 2.11

In fact, C 6, has a dominating cycle if and only if C has a hamiltonian
cycle.

However, Conjecture 46 addresses 3-regular graphs G with Ac(C) 2: 4,
whereas Ac(C6,) = A(C) = K(C) :::; 3 in general. This fact may be
compared with the NP-completeness of the decision problem regard­
ing the existence of connected spanning eulerian subgraphs in arbitrary
3-edge-connected graphs (where it reduces to the hamiltonian problem
in the 3-regular case) vis-a.-vis the theorem that every 4-edge-connected
graph has a connected spanning eulerian subgraph, [28]. - So, while
deciding the existence of hamiltonian cycles is NP-complete for planar
3-connected graphs, each of these graphs admits a closed walk passing
through every vertex at least once and at most twice, [23].

We finish this section by referring the interested reader again to Bondy's
survey article [7], and to Bermond's survey article [5].

6. ELEMENTS OF MATCHING THEORY
As origins of matching theory one may view Petersen's Theorem (The­

orem 31) and Tait's equivalent formulation of the Four Color Problem in
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terms of the existence of a I-factorization in planar 2-connected 3-regular
graphs (see the last part of section 3). Let us start with the question
under which conditions certain classes of graphs have a I-factor. For ex­
ample, if a 3-regular graph G is such that it has a vertex which does not
belong to any cycle of G, then G cannot have a I-factor. So, what is a
meaningful sufficient condition for a k-regular graph to have a I-factor?
When does a bipartite graph have a I-factor? When does an arbitrary
graph have a I-factor? It is clear that in answering these questions it
suffices to restrict considerations to simple graphs; and clearly, if a graph
has a I-factor, then it is of even order. The following results are answers
to the above questions. Rather than give detailed references, we refer to
the book on matching theory by Lovasz and Plummer, [31].

Theorem 73 (Babler's Theorem) Let k 2: 1, and let G be a k-regular
graph of even order. IfG is (k-I)-edge-connected, then G has a I-factor.

Theorem 74 (Marriage Theorem or Frobenius' Theorem) A bi­
partite graph G with vertex bipartition V(G) = AUB has a I-factor if
and only illAI = IBI and IAII S IN(Adl for every Al ~ A (N(Ad is
the set of vertices of B which are adjacent to at least one vertex in AI).

Theorem 75 (P. Hall's Theorem) Let G be a bipartite graph with
vertex bipartition V(G) = AUB. G has a matching of A into B (i.e., a
matching M such that every a E A is incident to some e EM) if and
only if IN(AI)I 2: IAII for every Al ~ A.

Clearly, Theorem 75 implies Theorem 74. We shall see, however, that
Theorem 74 also implies Theorem 75. For the following theorem, let
co (G) denote the number of components of G having odd order.

Theorem 76 (Tutte's I-Factor Theorem) A graph G has a perfect
matching if and only if co(G - 5) s 151 for every 5 ~ V(G).

Before presenting the proof of this theorem as developed in [31], we
need some preliminary discussion. Call a simple graph G saturated non­
factorizable if G has no I-factor, but G U {xy} has a I-factor for any
x, y E V(G), xy tJ E(G).

Lemma 77 If G is saturated non-factorizable and of order p, and if 5
is the set of vertices of degree p - 1, then the components of G - 5 are
complete graphs.

Proof. Suppose for some ab, be E E(G - 5) (if such a, b, e exist) that
ae tJ E(G - 5). It follows by definition of 5 that there is d E V(G) such
that bd tJ E(G). By the maximality of G, both G U {ae} and G U {bd}
have a I-factor, FI and F2 respectively. Consider the symmetric differ­
ence FI 6.F2 := (FI - F2) U (F2 - Fd: it consists of alternating cycles
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(w.r.t. F l and F2), which thus have even length. Denote them such that
ac E E(Cd, bd E E(C2).

Case 1: Cl "# C2. Then F3 := Fl 6 E(Cl ) is a I-factor of G, contra­
dicting the hypothesis.

Case 2: C:= C1 = C2. Then C can be written w.l.o.g. as

C = b,bd,d,dx,x, ... ,y,ya,a,ac, c, ...

(i.e., in traversing C from b along bd, a is being reached before c - note
that both ab,bc E E(G - S)). Let P(b, a) c C be the path from b to a
(in C). Then C' := P(b, a), ab, b is an alternating cycle W.r.t. F2 and
E(G) - F2. Thus F4 := F2 6 E(C') is a I-factor in G, again a contra­
diction.

Whence it follows in both cases that if G' is a component of G - S of
order p' 2: 3, then no two vertices of G' are of distance 2 apart, i.e., G'
is a complete graph. •

Lemma 78 G is saturated non-factorizable if and only if precisely one
of the following statements is true.

1 G is a complete graph of odd order.

2 G is of even order and contains disjoint complete subgraphs (So),
Gl , ... , Gk covering all ofV(G), where So ~ V(G) and k = 1501+2;
Gi is of odd order, and every x E V(Gi ) is adjacent to every s E So
for every i E {I, ... ,k} (see Figure 2.12 - note that So = 0 and/or
G i ::= K l may hold for some i).

Proof. Suppose G is saturated non-factorizable. If G is of odd order,
then it must be a complete graph, trivially (no graph of odd order has
a I-factor). Whence assume G is of even order, and let So be the set
of vertices of degree p - 1; possibly So = 0. In any case, by definition
of So, (So) is a complete graph. Let G l , ... , Gk be the components of
G - So having odd order. By Lemma 77, each Gi is a complete graph.
Moreover, by definition of So, every x E V(Gi ) is adjacent to every
s E So. If k ~ ISol, possibly k = 0, then consider for each component
G' of G - So of even order p' a I-factor F', and if k 2: 1, take a I-factor
Ii in Gi - Xi for fixed Xi E V(Gd, 1 ~ i ~ k (Fi = 0, possibly). Since
k ~ ISol, there exists a matching lvIo of { Xi : 1 ~ i ~ k } into So. The
set of yet unmatched vertices of So induces a complete graph of even
order (since G is of even order), which has a I-factor Fa. Thus

k

U F'U UFiUMoUFo
p'even i=l
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(So)

Figure 2.12

is a I-factor of G, a contradiction. Thus k 2: ISol + 1, and since G is of
even order it follows by parity that k 2: ISol + 2. In case k 2: ISol + 3
add an edge xy for x E V(Gk-d, y E V(Gk)' Then

co(GU {xy} - So) = k - 22: ISol + 1> ISol.

However, G+ := G U{xy} has a 1-factor F+ at least k - 2 edges of which
are incident with a vertex in So (at least one edge per odd component
of G+ - So). Thus, ISol 2: k - 2 which is an obvious contradiction to the
last inequality. Whence k = ISol + 2.

Likewise, if G - So had an even component Go, form G+ := G U {yz}
where y E V(Gk), Z E V(Go). G+ having a I-factor implies ISol 2:
co(C+ - So) = k = ISol + 2, again an obvious contradiction. Thus each
component of C - So is of odd order. Thus, if C is of even order, then
it has the structure as described in 2.

Conversely, if C is as described in 1., then it is saturated non-factoriz­
able. If it is as described in 2., then edges can be added only between
Components of C - So to obtain a simple graph again. Adding just one
such edge to obtain G+ and observing that co(C+ - So) = k, we can
construct a I-factor F+ of C+ in a manner similar to the above case
k :; ISol, with F+ containing the additional edge. Thus G is saturated
non-factorizable. The Lemma now follows. •

The proof of Theorem 76 is now easy: first of all, we may extract from
the proof of Lemma 78 that if G has a I-factor, then co(G - S) :; lSI
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for every S :S V (G). To show the converse we proceed by contradic­
tion; i.e., we assume the validity of this inequality for some G having no
I-factor. Next, add edges between non-adjacent vertices of G until G'
is reached such that G' has no I-factor, but adding any edge between
non-adjacent vertices of G' results in Gil having a I-factor. Thus G'
is saturated non-factorizable. Since co(G - S) :S lSI by hypothesis, we
also have co(G' - S) :S lSI, because adding edges does not increase the
number co(G' - S). This implies, in particular, that G and thus also G'
must be of even order; otherwise, take S = 0 to obtain a contradiction
to co(G' - S) = co(G') :S lSI = 0 since co(G') 2:: 1 if G' is of odd or­
der. Now, defining So w.r.t. G' as before (possibly So = 0) we obtain by
Lemma 78.2., that co(G' - So) = ISol +2. Since co(G - So) 2:: co(G' - So)
we obtain altogether co(G-So) 2:: ISol+2, contradicting the assumption
co(G - S) :S lSI for all S ~ V(G). The theorem now follows.

Now we use Theorem 76 to deduce the validity of Theorems 73 and 74.
Suppose first, that Theorem 73 is false, and let r 2:: 1 be an integer such
that there is an r-regular (r -1)-edge-connected G for which the theorem
fails. By Theorem 76, there is S ~ V(G) such that co(G - S) 2:: lSI + 2;
this inequality follows by parity since G is of even order (see the analo­
gous argument in the proof of Lemma 78). Let G I , ... ,Gk,k = co(G-S),
be the odd components of G - S. We claim that there are at least r edges
joining vertices of G i to vertices of S, for i = 1, . .. ,k. There are at least
r - 1 such edges anyway since G is (r - 1)-edge-connected. However, sup­
pose there is an edge cut Ei of precisely r - 1 edges separating some G i
from the rest of the graph, for some i E {I, ... , k}. Let Gt be obtained
from G i by introducing z ~ V(G) and joining z to every x E V(Gi ) by
lEx nEil edges. Then dc+(x) = rand dc+(z) = r - 1. However, since
G i is of odd order, Gt h~ an odd number 'of odd vertices,· contradicting
the Handshaking Lemma. This proves our claim.

Consequently we have IEil 2:: r for the edge cut Ei separating Gi from
the rest of the graph for every i = 1, ... , k, and since these IEil edges
run between vertices of G i and S, we have

k

IE(S, 8)12:: L lEi I 2:: rk 2:: r(ISI + 2) > rlSI·
i=l

On the other hand, G being r-regular implies IE(S,8)1 :S rlSI, an ob­
vious contradiction to the preceding inequality. This proves Theorem 73.

To derive the Marriage Theorem from Theorem 76 we first observe
that if G has a I-factor F, then IN(Adl 2:: IAII follows of necessity for
every Al ~ A: for the edges of F incident to Al cover precisely IAII
vertices in N(AI ). To see that the inequality IN(AI)I 2:: IAII for every
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Al ~ A implies that G has a I-factor, we proceed again by contradic­
tion. Consequently, a bipartite graph G with IAI = IBI satisfying this
inequality exists, yet it has no I-factor. By Theorem 76, S ~ V(G) exists
such that co(G - S) > lSI. We observe that trivially S i- V(G), and
S i- 0 since G is of even order (/V(G)I = IAI + IBI = 21AI)j moreover,
S i- A,B since co(G - A) = co(G - B) = IAI = IBI. Thus we can write
S = Al UBI with A - A l i-0 i- B - B I . Among all possible choices for
the above S, let S be chosen of maximum size.

Suppose now that G-S had a nontrivial odd component Go. Then for
the corresponding bipartition V(Go) := AoUBo we have Ao = V(Go) n
A, Bo = V(Go)nB, IAol i- IBol· If IAol > IBol define So := SUBo. Since
G - So = (G - S) - Bo, we then have Co (G - So) = Co (G - S) +IAo I- 1 2
lSI + IAol > lSI + IBol = ISol, contradicting the choice of S. Likewise,
if IBol > IAol we set So := S UAo to obtain an analogous contradiction.
Thus every odd component of G - S is a single vertex. Thus the subgraph
induced by these odd components of G - S can be written in the form
A~ UBi with A~ ~ A, Bi ~ B, and trivially A~ n Al = Bi n B I = 0.
Clearly,

lSI = lAd + IBII < IA~I + IBil = co(G - S),

and N(AD ~ B I , N(Bi) ~ AI·

By hypothesis, however, we also have

IN(A~)I 2 IA~I·

Thus we obtain IBII 2 IA~I, implying

JAIl + IBd < IA~I + IB~I :::; IBII + IBil

and hence IN(Bi)1 :::; IAII < IBil· (*)

In any case, N(A - N(BD) ~ B - Bi; and by hypothesis

IN(A - N(Bi))12IA - N(Bi)I·

Combining these two inequalities we obtain

IB-Bil = IBI-IBiI2IN(A-N(Bi))12IA-N(Bi)1 = IAI-IN(Bi)I;

i.e., IN(BDI 2 IBil, a contradiction to inequality (*). Whence we con­
clude that S ~ V(G) with lSI < co(G - S) does not exist. This finishes
the proof of the Marriage Theorem.

To see finally that the Marriage Theorem implies P. Hall's Theorem,
we first observe that the inequality stated in the latter theorem is a
necessary condition indeed, just the same as it was in the case of the
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former theorem. Now, to prove sufficiency it follows from the choice
Al = A c V(G) that IBI 2: IAI· If IBI = IAI then P. Hall's Theorem
reduces to the former theorem, and nothing has to be proved anymore.

Whence assume IBI > IAI. Construct a new bipartite graph G+
by adding k new vertices ZI, .. " Zk and joining each of them to ev­
ery v E B, where k = IBI - IAI. Thus we have IB+I = IA+I for
the bipartition V(G+) = A+ UB+. Note that B+ = Band Zi E A+
for i = 1, ... , k. Let At ~ A+ be arbitrarily chosen. If Zj E At
for at least one j, then N(At) = B and therefore, IN(At)1 2: IAtl.
If, however, At ~ A, then IN(At)1 2: IAtl follows by the hypothe­
sis of Hall's Theorem. It follows that G+ has a I-factor Fl. Setting
F := F I - { e E F l n EZj : j E {I, ... , k} }, we conclude that F is a
matching in G as required.

The Marriage Theorem can also be used to deduce that every regu­
lar bipartite graph has a I-factor and therefore, a I-factorization (thus
no longer requiring any connectivity condition as in Babler's Theorem).
Namely: Considering for a connected r-regular bipartite graph G with
vertex bipartition V(G) = AUB any Al C A one deduces for the edge
cut Eo separating (AI U N(Al )) from (A - AI) U (B - N(A l ))) that

IE«(AI U N(AI)))I = rlAll = rIN(Al)I-IEol ::; rIN(AI)I;

i.e., lAd::; IN(AI)I

for every Al ~ A. That is, since we necessarily have IAI = IBI, G has a
I-factor L l by the Marriage Theorem. Thus, G I := G - L l is a bipartite
(r - I)-regular graph, and adding L l to a I-factorization of G I (which
exists by induction since a I-regular graph has its edge set as its only
I-factor and is bipartite), one obtains a I-factorization of G. We also
note that this result is equivalent to the existence of a 2-factorization in
arbitrary 2r-regular graphs.

The following result is of central importance in matching theory. Its
proof follows along the lines of [31, 1.2.2. Lemma].

Theorem 79 (Konig's Minimax Theorem) Let G be a bipartite
graph. The size of a maximum matching M o equals the minimum size of
a set Vo ~ V (G) such that each edge of G is incident with (at least) one
vertex in Vo.

Proof. Denote m(G) := IMol and t(G) := lVol where Mo and Vo are
defined as above for an arbitrary (not necessarily bipartite) graph G. For
everye E Mo, at least one incident vertex must lie in Vo by definition of
Vo. Hence t(G) 2: m(G) for arbitrary graphs.
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Now consider a maximum matching !VIo in a bipartite graph G. W.l.o.g.,
G is connected; otherwise, establishing t(Gd = m(Gd for each compo­
nent Gi of G yields t(G) = m(G). Denote by A and B, respectively, the
two classes in the vertex bipartition of V(G). Let Ao ~ A,Bo ~ B be
the respective sets of vertices incident with edges of !VIo. If Ao = A, then
every edge of G is incident with a vertex of Ao, whence t(G) :S IAol =
m(G); so in this case t(G) = m(G). We arrive at the same conclusion
if Bo = B. Whence assume A - Ao i- 0 i- B - Bo. Set A' := A - Ao,
B' := B - Bo. Also, no a E A' is adjacent to any b E B ' since !VIo is a
maximum matching. Thus, N(Bo) = A and N(Ao) = B, and all edges
of G are incident with some a E Ao or some bE Bo.

Consider now the set of paths PAl and PB', which start at a vertex in
A', B' respectively, and are alternating in the edges of E(G) - Mo and
!VIo. It follows from the maximality of Mo that

PA' n PB' = 0 for every such PA' and every such PB' (1)

It may very well happen that some e E !VIo belongs to no PA' and no PB'.
In any case, the subgraphs GA, := (UV(PA')) and GB, := (UV(PB,))
satisfy GA' n G8' = 0 because of (1). It also follows that

any e E E(V(GA')' V(GA' )) is incident to a bo E Bo n V(GA,),

any e E E(V(GB,), V(GB,)) is incident to a ao E Aon V(GB,).
(2)

Thus, all edges ofG incident with some vertex ofGA' (GB') are covered
by (i.e., incident with an element of) Bo := Bo n V(GA ,) (Ao := Ao n
V(G8')) (see Figure 2.13).

Bo B"o B-Bo

A-Ao A"o
Figure 2.13

A'o

Next, set Mo := {e E !VIo - (E(GA') U E(GB,))}, and let A~ ~ Ao,
Bo~ Bo respectively, be the respective set of vertices incident with some
element of Mo. Choose Xo E {A~, Bo} arbitrarily. It follows from (1)
and (2) that

m(G) = IMol = IAol + IBol + IXol (3)
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and that every edge of G is incident with some x E A~ U Bb U X o. Thus
t(G) ::; meG) by (3) implying t(G) = meG) because of t(G) ~ meG) for
arbitrary graphs. The theorem now follows. •

The proof of Theorem 79 gives rise to new concepts which, in turn,
leads to a characterization of maximum matchings in arbitrary graphs,
and a good matching algorithm in bipartite graphs. To this end, consider
an arbitrary graph G and an arbitrary matching /vI in G. Let PM be
an alternating path w.r.t. M and E(G) - M (PM need not start/end
with an edge of M); call PM an M-altemating path. Call v E V(G)
not covered by Ai if E v n /vI = 0. Trivially, if an lVI-alternating path
P connects v and w which are not covered by /vI, then the symmetric
difference M 6. E(P) is a matching larger than lVf. Such P is called an
M-augmenting path. Thus, if /vI is a maximum matching in G, then G
contains no lVI-augmenting path. In fact, the converse holds as well.

Theorem 80 (Berge, [3]) A matching AI in a graph G is a maximum
matching if and only if G contains no /vI -augmenting path.

Proof. From what we just said it suffices to assume for a matching
M in G that G has no M -augmenting path. Let /vh be a maximum
matching in G and form M 6. kh each component of which is either
an alternating cycle C w.r.t. AI and /vh, or both an kI-alternating and
M1-alternating path P (the case M 6./vh = 0 is trivial since it means
that /vI = M 1 is a maximum matching). However, P cannot be /vI­
augmenting by assumption. It cannot be kh-augmenting either since
lVh is a maximum matching. Thus R(P) is even of necessity, implying for
arbitrary K E {C,P} IE(K)nMI = IE(K)n/vhl from which IMI = l/vhl
follows which had to be shown. •

Next, consider again a connected bipartite graph G with vertex bi­
partition V(G) = AUBj let M be any matching in G, and let A' ~ A,
B ' ~ B be the set of vertices which are not covered by M. Denote by
U ~ A the set of vertices reachable by an kI-alternating path starting
in A' (d. this with the proof of Theorem 79: U = V (GAl) n A). To
construct U, 'grow' a maximal forest F having the following properties:

1 dF(b) = 2 for every b E V(F) n B, and some e E M is incident
with b in F.

2 every component of F contains a point of A'.

It follows that A' ~ V(F) (a E A' can be added as a singleton compo­
nent), and that U = V(F) n A. The following is basically a consequence
of the proof of Theorem 79.
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Corollary 81 Let G, M, A, B, A', B' and F be as above. M is a
maximum matching if and only if no b' E B' is adjacent to any a E

V(F) nA.

The following algorithm derives from the preceding considerations; the
approach used in it is called the Hungarian Method, and the final forest
constructed by it (see below) is a Hungarian forest (see [31, p. 15]). We
use the notation explained above.

Algorithm 82 (Bipartite Matching Algorithm)
Input: Bipartite graph G with V(G) = AUB, any matching M.
Step 1. Form a maximal forest F with the above properties 1. and 2.
Step 2. If xy E E(G) exists such that x E V(F) n A, y E B', then
F U {y, xy} contains an M -augmenting path P,. M' := lvI 6. E(P) is a
larger matching. Set!VI:= lvI' and go to Step 1.
Step 3. No xy E E(G) with the above properties exists: M is a maxi­
mum matching.

We note in passing that one can transform this algorithm into an LP
for which its implementation produces a maximum matching in polyno­
mial time. This is even true in the case of a maximum/minimum cost
perfect matching where the edges of a graph are assigned costs or weights
(see below and the next section). Finally let us remark that finding a
maximum (maximum/minimum cost) matching in an arbitrary graph is
much more involved, and thus cannot be treated in this chapter; this will
be done in other chapters of this book (see Derigs, this book). Again,
the interested reader is referred to [31] for a thorough discussion of this
topic which is irrevocably connected with the work of J. Edmonds.

'vVe now turn to other algorithmic aspects of applied graph theory
which are essential for the treatment of various traversal problems: de­
termining shortest paths in a (di)graph and a minimum cost spanning
tree in a graph. In both cases, the edges/arcs of the (di)graph under
consideration are assigned non-negative real numbers called the length
or the cost of traversing the respective edge/arc, depending on the con­
text.

The Shortest Path Problem. We are given a digraph D = V u A,
A = {aI, ... , aq } and non-negative real numbers Ri associated with ai, i =
1, ... ,q (Ri can be thought of as the 'length' of ad. For ii, bE V(D), find
a path W = ii, ail' VI, ai2' ... ,air' b such that R(W) := 2::1=1 Rij is mini­
mum.

The following polynomial time algorithm has been found indepen­
dently by Dantzig and Dijkstra; for a discussion of this algorithm see,
e.g., [22,36,42].
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Algorithm 83 (Shortest Path Algorithm)
Input: A digraph D = V u A with arc lengths as described in Shortest
Path Problem above.
Step 1. Set tea) = 0, Vo := a, Vo = {vo}.
Step 2. For every Vi E Vk, k ~ 0, determine an "immediate successor"
Vj ¢ Vk (i.e., (Vi,Vj) E A) such that for (Vi,Vj) = am, em = min{£r :
Vi is tail of ar }. em =: £m(vd· Determine vi E Vk such that t(vi) +
£m(vi) = minviEvk{t(vi) + £m(Vi)}' Denote by wi a vertex such that
(vi, wi) has length £m(vi).
Step 3. Set Vk+1 = Vk U {wi} and set t(wi) = t(vi) + £m(vi). Set
k := k + 1 and go to Step 2 if a vertex v ¢ Vk+1 adjacent from some
vertex in Vk+l exists.
Step 4. If bEAk then stop. t(b) is the length of a shortest path from a
to b in D. If b ¢ Ak then no path from a to b exists.

We refrain from justifying this algorithm (i.e., that it delivers what
it claims to achieve - such justification can be found in the literature
cited above), but note in passing that its running time is O(n3 ) which
can be improved to O(n2 ) by slightly modifying the algorithm (see [36]).
vVe also observe that the Shortest Path Problem can be rephrased as
a matching problem in a subgraph of the prism P(G), [31]. Matching
theory can also be employed to solve the more general case in which the
real numbers £i need not be non-negative.

Observe that the above algorithm can be easily adapted to the case of
graphs: just replace every edge ei, 1 :S i :S q, by two oppositely oriented
arcs each of which is assigned the same length Ri as ei was.

The Minimum Cost Spanning Tree Problem. In an undirected con­
nected graph G = VUE, E = {el,'" ,eq }, every ei is associated with
a real number £i (the "length" of ei)' Find a spanning tree T in G such
that £(T) := L:eiEE(T) £i is minimum.

The next algorithm is known as Kruskal's Algorithm but goes back
to Boruvka, [25]. It produces a minimum cost spanning tree very fast;
because of its structure it is often quoted as an example of a Greedy
Algorithm.

Algorithm 84 (Kruskal's Algorithm)
Input: Connected Graph G of order p, E(G) = {e1, ... ,eq}, ei associ­
ated with real number £i. W.l.o.g. £1 :S £2 :S ... :S £q.
Step 1. E 1 := {e1}, G 1 := (E1), set i = 1.
Step 2. Find the minimum j > max{ k : ek E Ei } such that (EiU {ej})
is acyclic. Set Ei+1 = E i U {ej}, Gi+l = (Ei+1)' Set i = i + 1
Step 3. If i = P - 1 go to Step 4,. otherwise go to Step 2.
Step 4. Gi is a minimum cost spanning tree of G.
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Justification of the algorithm. Since Gp- 1 is an acyclic graph on p
vertices and p - 1 edges, it is a spanning tree of G (see Theorem 12.5.);
and Gp - 1 exists because G is connected: for, suppose no edge ofE(G)­
E i could be added to E i for some i < p - 1. Then there would be a
component G~ ~ Gi such that the edge cut E' := E(V(G~),V(GD) in G
would be non-empty since G is connected and IV(GDI ~ p - 1 (G~ is a
tree of size ~ i). Yet, for every er E E', Gi U {er } contains a cycle C, so
the two vertices x, y incident with er can be joined by the path C - er in
Gi , i.e., x,y E V(GD, an obvious contradiction to er E E'. It remains to
show that To := Gp- 1 is of minimum cost. Let T be any minimum cost
spanning tree, E(T) = {erl' ... ,erp_J such that rl ~ r2 ~ '" ~ r p-l.
W.l.o.g., T =f. To. Consequently f rl ~ f r2 ~ ••• ~ f rp_l (note that
by the assumption in Input, j < k implies f j ~ f k ). By the choice of
el,f1 ~ frl' If el 9'. E(T), then form T U {el}' It has a unique cycle
Cl which contains el, by Theorem 12.6. It follows that f k = f 1 for
every ek E E(C1). For otherwise, one could delete ek E E(Cd with
fk > f 1 to create a spanning tree T1 = (T U {et}) - {ed of G (see the
discussion following Theorem 11) with f(Td < f(T), a contradiction to
the choice of T. 'Whence T l is also a minimum cost spanning tree. So set
Tl = T if el E E(T) and T1 as above, otherwise. Assume, by induction,
that we have constructed a minimum cost spanning tree T s , s 2 1,
such that eil' , ei. E E(Ts) and E(Ts) - {eil"'" ei.} ~ E(T), where
Ep - 1 = {eill , eip_l}' i 1 = 1, and such that f i• ~ f r .+ l . Analogously,
set Ts+1 = Ts if ei.H E E(Ts); otherwise, TsU {ei.H} contains a unique
cycle Cs+l and ei.+l E Cs+l . By construction of Es+1 , ... ,Ep- 1 , it
follo~s that E" := E(Cs+dn(E(Ts) -E(To)) =f. 0. For ek E E" it follows
of necessity that f k = fi.H ; otherwise, f k > f i' H yields a spanning
tree Til := (Ts U {ei.+J) - {ek} with f(T") < f(T) contradicting the
choice of T, whereas fk < f i•H contradicts the choice of ei.+l instead
of ek in constructing Es+l. Whence Til can be constructed anyway if
ei.+l 9'. E(Ts), and so Ts+l := Til is also a minimum cost spanning tree.
It now follows by induction that Tp - 1 = To is a minimum cost spanning
tree.

7. THE CHINESE POSTMAN PROBLEM,
THE TRAVELING SALESMAN PROBLEM,
AND RELATED PROBLEMS

As we shall see below, the Chinese Postman Problem (CPP) - in
essence - seeks to double certain edges of a given graph G such that the
resulting graph is eulerian. The Hamiltonian Walk Problem (which is
closely related to the Traveling Salesman Problem), on the other hand,
seeks to double certain edges of a certain connected spanning subgraph
G' of G such that the graph resulting from G' is eulerian.
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The CPP was proposed in 1959 by Kwan Mei-Ko (= Guan Meigu)
and states in its general form the following: If G = VuE is a connected
graph together with a cost function c : E ----> JR+, find a closed walk
W:= VI,el.V2,e2, ... ,vn,en,VI that starts at a given VI E V and tra­
verses each edge at least once so that the total cost c(W) := 2:7=1 c(ed
is minimum. Such a walk is called a Postman Tour (PT).

We immediately have the following set of inequalities (for Eo ~ E we
set c(Eo) := 2:eEE

o
c(e), and for Go ~ G we set c(Go) := c(E(Go))):

c(G) :S c(W) :S 2c(G)

The lower bound is attained if and only if G is eulerian, whereas the
upper bound is attained if and only if G is a tree.

Theorem 85 A closed covering walk (CCW) W in the connected graph
G with given c := E(G) ----> JR+ is a PT if and only if the following two
conditions hold:

1 >'w(e) :S 2 for every e E E(G).

2 for every cycle C of G, C(E2(C)) :S ~c(C)

where E2(C) = { e E E(C) : >'w(e) = 2 }.

Proof. (=}) Define G+ by replacing each edge e of G by ke := >'w (e)
parallel edges e(1), ... , e(ke ) joining the same vertices as e. Then W cor­
responds in G+ to T+, an eulerian trail of G+. If e exists such that
>'w(e) 2 3 then remove e(ke ),e(k.-1) from G+ to get a new graph that
is still connected and eulerian and therefore has an eulerian trail which
corresponds to a CCW W' in G with c(W') < c(W), a contradiction.

If there is a cycle C such that C(E2(C)) > ~c(C) then let G++ :=

(G+ - { e(2) : e E E2(C) }) U { e(2) : e E E(C) - E2(C) }; it is also a
connected eulerian supergraph of G (for e E E(C) - E2(C), e(2) means
adding an edge parallel to e). An eulerian trail T1 of G++ corresponds
to a closed covering walk WI in G having total cost c(WI) = c(W) ­
C(E2(C)) + (c(E(C)) - C(E2(C))) = c(W) + c(C) - 2c(E2(C)) < c(W),
a contradiction.

({:::::) Let W' be a CCW of G satisfying conditions 1, 2 and let W be
a PT of G. Note that W also satisfies 1 and 2 because of the first part
of the proof. We need to show that c(W') = c(W), i.e. that W' is also
a PT. Define E2(G) analogously to E2(C) above and set

G1 := ({E2(G) with respect to W'})c
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G2 := ({E2(G) with respect to W})c

Go:= Gl 6G2

It follows for every v E V(G) that dCI(v) == dC2(v) == d(v) (mod 2);
thus Go is eulerian.

We may assume E(Go) i= 0; otherwise, c(G l ) = C(G2) and hence
c(W') = c(W). However, E(Go) i= 0 implies that Go has a nontrivial
cycle decomposition {Gl , ... ,Gr},r ~ 1, so that 2:~=l c(Gd = c(Go).
We have by assumption Ci,l := c(E(Ci) n E(G l )) ::; 1C(Gi) and since
W is PT, we also have Ci,2 := c(E(Ci) n E(G2)) ::; 1C(Ci), i = 1, ... ,r.
However, Ci,l + Ci,2 = C(Gi) implying equality in the preceding inequal­
ities. Therefore, c(E(Go) n E(GI)) = c(E(Go) n E(G2)) = 1c(Go) and
therefore c(G l ) = C(G2) implying again c(W') = c(W). It follows that
W' is also a PT.•

However, as interesting as Theorem 85 is (Guan Meigu proved it origi­
nally only for the case c == 1), it is not feasible per se for solving the CPP
algorithmically since the number of cycles in G might be exponentially
large when compared with the size of G. Nonetheless, the structur~ of
E2(G) points into the right direction.

Let W be a PT in G with given c : E(G) ---+ 1R+; set H := ({ e E

E(G) : Aw(e) = 2 }). By the above,

1 H is acyclic.

2 dc(v) == dH(v) mod 2 for every v E V(G).

If an arbitrary H ~ G (H not necessarily connected) satisfies both condi­
tions above then one can get a CCW WH such that AWH (e) = 2 for every
e E E(H), and AwH(e) = 1 for every e E E(G)-E(H), but WH may not
be a PT. However, 1 and 2 give rise to a decomposition of E(H) into k
paths Pl , ... ,Pk such that every odd vertex is an endvertex of precisely
one such path, where {Vl,'" ,v2d = Vodd is the set of odd vertices of G.
So if Pi connects V12;_1 and v12; (Vodd = {Vjl' v12 ' ... ,Vhk})' then these k
paths partition Vodd into classes of size 2 : II(Vodd) = { {Vh;_I' Vj2;} : 1 ::;
i ::; k }. Now, Dijkstra's algorithm (adapted to graphs; see above) yields
in polynomial time a path P(v12;_l' v12J such that its length cj2;_I,h; is
minimum. Setting c*rr = "~l c

J
*" J"" we can formulate the next result.L....J .._ 2t-1, 2t

Theorem 86 Given a connected graph G with associated cost junction
c : E(G) ---+ 1R+ finding a PT is equivalent to finding a partition II(Vodd)

such that crr is minimum.

Observe that once such II(Vodd) with minimum crr has been found,
the corresponding k paths will be automatically pairwise edge-disjoint,
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and creating an eulerian supergraph G+ by doubling the edges of these
k paths, any eulerian trail in G+ corresponds to a CCW W in G such
that W is a PT in G. Moreover, we then have c(W) = c(G) + crr, where
crr is minimum.

Create an auxiliary graph K 2k whose vertices are the odd vertices of
G and define a cost function c* : E(K2k ) ~ JR+ by

C*(ViVj) = c:,j = minp(v;,Vj)<;";;G C(P(Vi, Vj))

Dijkstra's algorithm yields not only the number C:,j but also a corre­
sponding path in polynomial time. It is clear that every II(Vodd) cor­
responds to a perfect matching in (K2k , c*), and vice versa. Thus the
following is true.

Theorem 87 Solving the CPP in (G, c) is equivalent to finding a min­
imum cost perfect matching in (K2k , c*) where
<,j := C*(Vi, Vj) = minp(v;,Vj)<;";;G C(P(Vi, Vj)).

Thus the cost of a PT Win G is c(W) = c(G) + c*(M) where
M is a minimum cost perfect matching in (K2k, c*).

Remark. Suppose (G, c) has a perfect matching. Then finding a
minimum cost perfect matching can be transformed to the problem of
finding a maximum cost perfect matching !vI in G with cost function
CI : E(G) ~ JR+, where CI (e) := K - c(e), where K is some real number
greater than maxec(e). Then cI(M) = ~K - LeEMc(e) = ~K - c(M)
where p = IV(G)j. Thus cI(M) is maximum if and only if c(M) is mini­
mum. Thus a polynomial time algorithm for one problem will lead to a
polynomial time algorithm for the other, since the transition from c to
CI described above is linear in IE(G)I.

Algorithm 88
Step 0: Given (G, c), c : E(G) ~ JR+! set Vo(G) = Vodd = {VI, ... ,
v2d. If Vo(G) = 0 then G is eulerian and any eulerian trail of G is a
PT.
Step 1. Determine values c:,j := C*(Vi, Vj) := minp(v;,Vj)<;";;G C(P(Vi, Vj))
for 1 ::; i,j ::; 2k, i =1= j.
(Note that c* : E(K2k) ~ JR+ can be determined in polynomial time).
Step 2. Find a minimum cost perfect matching M in (K2k , c*) where
V(K2k) = Vo(G).
(Note that there are polynomial time algorithms for finding such mini­
mum cost perfect matchings).
Step 3. For every ViVj E !v! consider the path P(Vi, Vj) constructed in
the course of determining <,j (so c(P(Vi, Vj)) is minimum) and double in
G the edges of P(Vi,Vj). Denote the resulting (eulerian) graph by G+.
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Step 4. Find an eulerian trail T in G+ (again, this can be done in
polynomial time) and translate it into a CCW W in G.
Step 5. W is a PT ofG.

Since this algorithm does not repeat any step and since each step can
be done in polynomial time, therefore the algorithm itself terminates in
polynomial time.

The preceding considerations also lead to the following.

Theorem 89 Given a connected graph G with cost function c : E(G) -->

lR+, the CPP can be formulated as an Integer Linear Programming Prob­
lem as follows:

Determine

such that

subject to

X e E {O,l},e E E(G)

L c(e)xe is minimum
eEEv

L (1 + x e ) == a mod 2 for every v E V(G).
eEEv

Given (G, c) the Maximum Cost Cycle Packing Problem (MCPP), asks
for a set S of edge-disjoint cycles such that c(S) := L:CiES c(Ci ) is max­
imum.

Theorem 90 The MCPP is equivalent to CPP in the sense that any
solution of the CPP yields a solution of the MCPP. In particular, if W
is a PT for a given connected graph G and G w := ({ e E E(G) : Aw(e) =
1 }) then Gw is eulerian and any cycle decomposition Sw of Gw is a
solution of the MCPP. Conversely, if So is a solution of the MCPP then
G has a PT Wo such that Awo(e) = 1 if e E E(So) and Awo(e) = 2
otherwise.

Proof. Let W be a PT. Set Hw := ({ e E E(G) : Aw(e) = 2 }). Note
Vodd(Hw) = Vodd(G) so Gw := G - Hw is eulerian and has a cycle
decomposition Sw. So c(G) = c(Gw) + c(Hw) = c(Sw) + c(Hw).

On the other hand if H is an arbitrary subgraph with Vodd(H)
Vodd(G) then GH := G - H is eulerian and thus has a cycle decomposi­
tion SGHand c(G) = c(SGH) + c(H). Since Hw corresponds to a PT,
Vodd(Hw) = Vodd(G) = Vodd(H) , hence c(Hw ) :s; c(H). Note that H
gives rise to a CCW W(H) in G such that

{
I if e f/. E(H)

AW(H)(e) = 2 if e E E(H)

Observing further that this correspondence between H ~ G with
Vodd(H) = ~dd(G) and eulerian subgraphs GH := G - H ~ G is a
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bijection, we conclude that c(Sw) = maxc(S) where the maximum is
taken over all sets S of edge-disjoint cycles.

Conversely, consider a solution So of the MCPP,

Ho:= C - U E(Ci ).

GiESo

Also, consider CH:= C-H for H with Vodd(H) = Vodd(C), so C H is eu­
lerian. Let SGH be a cycle decomposition of C H· Since c(SG

HO
) = c(So)

is maximum over all SGH as defined above, and Vadd(H) = Vodd(C) =
Vodd(Ho), this implies that there is a CCW Wo in G such that c(Wo) =
c(C) +c(Ho) and c(Ho) is minimum. Thus Wo is a minimum cost CCW
of C and hence a PT. •

Corollary 91 The MCPP can be solved in polynomial time.

The Minimum Cost Cycle CoveTing Problem (MCCP) can be stated
as follows. Given a bridgeless graph C, E(C) #- 0, c: E(C) --> lR+, find
a cycle cover S such that c(S) = LGiES c(C) is minimum. Let S be
any cycle cover of C. Define As(e) to be the number of elements of S
containing e, for any edge e of G. Set k(e) = As(e) - 1 Ve E E(G) and
add k(e) parallel edges to G. Call the graph thus obtained C+(S); it is
eulerian (S corresponds to a cycle decomposition S+ of C+(S)). C+(S)
is connected if and only if C is connected. An eulerian trail T+ in G+ (S)
corresponds to a CCW W+ in C such that c(W+) = c(S). Solving the
CPP for (C, c), let W be a PT in C. Thus c(W) :S c(W+), implying
that c(W) :S c(S).

Theorem 92 If C is a connected bTidgeless graph with cost function
c : E(G). --> lR+ then any PT Wand any solution S of the MCCP
satisfy c(W) :S c(S).

Note that if C+ is an eulerian supergraph of G resulting from dou­
bling certain edges of C the cycle decomposition S+ of G+ may not
correspond to a cycle cover of C. If C = C(e, e') = x, e, y, e', x E S+
for e' E E(C+) - E(G), then C does not correspond to a cycle of G.
However, if C+ has a cycle decomposition S* such that for every e with
Aw(e) = 2 (where W is aPT corresponding to C+) the elements of S*
containing e, e' correspond to cycles in G, then S* corresponds to a cycle
cover S in C such that c(S) = c(W).

However, for the Petersen Graph, with c == 1, any PT W satisfies
c(W) = 20, whereas any solution S of the MCCP satisfies c(S) = 2l.
This fact follows from the nonexistence of an Xs-compatible cycle decom­
position in K s (see Figure 2.6 and the discussion of it). Thus, starting
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with the Petersen graph one can construct an infinite set of 3-regular
graphs for which the inequality in Theorem 92 is strict. In the case of
planar graphs however, the situation is quite different. Call a transition
system X of an eulerian graph G with 8(G) 2: 4 non-separating if no
t E X is an edge cut.

Theorem 93 ([12]) Given a planar eulerian graph G with 8(G) 2: 4
and a nonseparating system X of transitions, there is an X -compatible
cycle decomposition ofG.

In fact, Theorem 93 can be proved quite easily by applying the Four
Colour Theorem. However, the proof in [12] does not rely on the latter.
Consequently, Theorem 93 is a nontrivial necessary condition for this
famous result. - However, Theorem 93 is key in proving the next result
(see [18]).

Theorem 94 Let G be a planar bridgeless graph, c : E(G) -> lR+ a cost
function. If W is a PT and S is a MGG then c(W) = c(S).

Note that Theorem 94 does not say that finding a MCC S in G is
equivalent to finding a PT in G. But finding an X-compatible cycle
decomposition in a planar eulerian graph G can be done in polynomial
time using the Four Colour Theorem. Thus finding an MCC for (G, c),
where G is planar and bridgeless, can be done in polynomial time by first
solving the CPP in (G, c). - For generalizations of Theorem 93, see [43].

Just as the CPP has been phrased for graphs, one might pose the
analogous problem for digraphs:

Given a digraph D and a cost function c : A(D) -> lR+, find a GGW
in D of minimum cost.

This problem is called the Directed Postman Problem (DPP).

It is easy enough to see that for given (D, c), the DPP has a solution
if and only if D is strongly connected. We note in passing that directed
postman tours (DPTs) can be characterized in a way similar to Theo­
rem 85, [20]. In the case of a DPT W in (D, c), however, an arc of D
may very well be traversed more than twice by W. This is also expressed
in the following ILP corresponding to DPP w.r.t. (D, c). Namely:

determine

such that

subject to

X a E NU {O}, a E A(D),

L c(a)xa is minimum
aEA(D)

L X a - L X a = d-(v) - d+(v)
aEA;; aEA;;-
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Nonetheless, the basic idea of creating an eulerian superdigraph D+ of
D by adding parallel arcs such that the additional costs are minimum,
is analogous to the case of graphs. The idea of transforming the DPP
to a matching problem is also analogous to the case of graphs: now,
however, one is faced with finding a minimum cost perfect matching
lvI in a complete bipartite graph whose order depends on the numbers
d+(v) -d-(v), v E V(D). This problem is a typical case of an Assignment
Problem. Once such !vI has been found, the transformation of D into
the eulerian superdigraph D+ with the help of the paths corresponding
to elements of lvI, and reinterpreting an eulerian trail of D+ as a DPT in
D, is analogous to the case of graphs. The paths however, may no longer
be arc-disjoint since arcs can be traversed only in one direction. This
is also the reason why in rephrasing Theorem 92 for strongly connected
digraphs, a solution W of the DPP and a solution S of the MCCP satisfy
c(W) = c(S).

As for the Mixed Postman Problem (MPP), one is given H = V(H) U

E(H) U A(H), c: E(H) U A(H) ---+ lR+, and has to determine a CCW
Win H such that c(W) = L!EEUA >"w(J)c(J) is minimum.

To determine the existence of a solution of MPP for H one first de­
termines if H has a CCW. This can be done by constructing a digraph
DH from H by replacing each e E E(H) by two oppositely oriented
arcs joining the same vertices as e and then checking if D H is strongly
connected. In fact, H has a CCW if and only ifD H is strongly connected.

We refrain from discussing the DPP and MPP more detailed since
they will be treated in other chapters. We note in passing, however, that
the DPP, like the CPP, can be solved in polynomial time, whereas the
MPP is, in general, an NP-complete problem; this is also true for the
Windy Postman Problem in which every edge of a graph is assigned two
costs, depending on the direction in which the edge is traversed by a
CCW.

We finish this section by 'touching' on the Hamiltonian Walk Problem
(HWP) and the Traveling Salesman Problem (TSP). The former can be
phrased as follows.

Given a connected graph G and cost function c : E(G) ---+ lR+, find a
closed vertex-covering walk W such that c(W) is minimum.

If WHWP is a solution of the HWP and Wcpp a solution of the CPP
for (G,c) then c(Wcpp) ~ c(WHWP ) because every CCW is a closed
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vertex-covering walk. However, in general the HWP is NP-complete.

In fact even if (G, c) has a hamiltonian cycle C, this by no means
implies that some hamiltonian cycle will constitute a solution of the
HWP. However, one can transform the HWP to a minimum cost hamil­
tonian cycle problem. To this end, let V(G) = {VI, ... ,Vp } = V(Kp )

and determine for every i =1= j a path Pi,j connecting Vi and Vj such
that c(Pi,j) =: Ci,j is minimum. Define c* : E(Kp) ---t JR+ by setting
C*(Vi, Vj) = Ci,j.

Theorem 95 Solving the HWP for (G, c) (G being connected) is equiv­
alent to finding a hamiltonian cycle C in (Kp,c*) such that c*(C) is
minimum (c := E(G) ---t JR+,. for extending c to c*, see above).

Finding such hamiltonian cycle C in K p with minimum c*(C) is, how­
ever, also an NP-complete problem.

This equivalent formulation of the HWP is known as the Traveling
Salesman Problem (TSP) for the special case where the cost function
satisfies the triangle inequality, i.e., Ci,j + Cj,k 2:: Ci,k. Of course, the TSP
can be phrased in K p for arbitrary cost function c*. If c* does not satisfy
the triangle inequality, then HWP and TSP might have different solu­
tions in (Kp , c*) indeed. This is exemplified by K3 and the cost function
c* which assigns the value 1 to two edges of K3 and the value 3 to the
third edge. So while the TSP for this (Kp , c*) has a unique solution C
with c*(C) = 5, the HWP also has a unique solution W for which how­
everc*(W) = 4 holds.

For a general formulation of TSP as an ILP, see [33, p. 308-309].

However, in some instances the following upper bound may be even
better than the one above involving a PT; it can be computed faster,
anyway.

Theorem 96 If (G, c) is connected and if W is a hamiltonian walk then
c(W) :S 2c(To) where To is a minimum cost spanning tree of G.

8. ELEMENTS OF NETWORK THEORY
A flow in a digraph D (see below) can be understood in a way similar

to the construction of directed postman tours (see above) - provided the
flow values are positive integers - in that one duplicates arcs in accor­
dance with their flow values such that the resulting digraph is eulerian.
However, the subsequent discussion will not resort to such an interpreta­
tion (although certain aspects of this discussion can be better understood
if one keeps this interpretation in mind).
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In this section, we are concerned practically exclusively with digraphs.
We follow, basically, the notation of [4]. We also refer the interested
reader to the more recent book [8].

Let D = V UA be a digraph. A simple closed chain C in D is called a
circuit; in other words, C is a circuit if C corresponds to a cycle in the
underlying graph GD. In the case of arc cuts, the terminology is also
analogous: Let Vo ~ V, and denote the coboundary wVo := A(Vo, Va);
call wVo elementary or simple or a cocircuit if both (Vo) and (V - Va)
are weakly connected. However, just as we dealt with different types of
connectedness, we distinguish between different types of coboundaries in
the case of digraphs. Denote

where wto consists precisely of those arcs in wVo whose tail lies in Va,
whereas wVo consists precisely of those arcs of WVowhose head lies in Va.
If, for a simple coboundary wVo, either wv+ = 0 or wv - = 0, then we

o 0

call wvo a cocycle. Note that Av = At u A;- is a coboundary of D for
every v E V.

A mapping f : A --+ JR is called a flow if for every v E V

L f(a) = L f(a)
aEA;; aEA;;-

(1)

Also, we call a mapping t : V --+ JR a potential with which we associate
a potential difference or tension 9 : A --+ JR+ by setting for every a =
(x,y)EA,

g(a) = t(y) - t(x). (2)

Conversely, a mapping 9 : A --+ JR is called a tension in D if there exists
a potential t : V --+ JR such that 9 is associated with t.

In fact, if D is weakly connected and 9 a tension in D, then for every
potential t and every c E JR, if 9 is associated with t, then it is also
associated with t + c; and if two potentials tl, t2 give rise to the same
tension, then t2 = tl + k for some constant k E JR.

In fact, for given D, the set of flows (tensions) in D forms a vec­
tor space called flow space (tension space). These two vector spaces
are better described as subspaces of JRq by first labeling the arcs of
D: A = {al,'" ,aq }. Then we associate with every flow f the vector
(J(al), ... ,f(aq )) and with every tension 9 the vector (g(aI) , ... ,g(aq )),

calling them flow vector and tension vector, respectively. In fact, we will
not distinguish between these mappings and the corresponding vectors
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since they are bijectively related to each other, once the arc labeling is
fixed.

We observe that circuits and flows, coboundaries and tensions are
closely related. Let C be a circuit in D, Wo := wVo a cocircuit for some
Vo ~ V. Assign a sense of traversal to C and set A(C) = A+ (C) U A - (C),
where A+(C) contains those arcs of C whose orientation coincides with
the sense of traversal of C, and A - (C) contains the remaining arcs of C.
Set

such that viil ~ {

Likewise, for va ~ V set

1
-1
0,

if ai E A+(C)
if ai E A-(C)
otherwise.

t(x) = { ~ if x E V - Vo
if x E Vo

and - as a logical consequence - define for

Vo = (VO,I, ... ,VO,q)

VO,i= { -~
0,

'f +I ai E W o
if ai Ewe;
otherwise

We call V c the circuit vector associated with C and Vo the coboundary
vector associated with woo The following is an immediate consequence
from the above definitions.

Lemma 97 Every circuit vector is a flow (vector), every coboundary
vector is a tension (vector), and they are orthogonal.

To determine bases for the flow space, tension space respectively, of
a weakly connected digraph D = V U A, A = {al,'" ,aq}, consider a
spanning tree T ~ D, w.l.o.g. A(T) = {al, ... ,ap-d.

For every ai, i E {p, ... ,q}, there is a unique circuit C i in A(T) U {ail
and Ci contains ai; define the sense of traversal of C i in accordance with
the orientation of ai, and let Vi be the corresponding circuit vector.

Similarly, for every aj E A(T), T - aj has precisely two weakly con­
nected components Tj, Tj'. W.l.o.g. Tj contains the tail of aj; set Vj :=

V(Tj), and let Wj = A(Vj, Vj); aj E wj follows. Let Wj be the cor­
responding cocircuit vector. Observing that Ci (Wj) contains none of
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the arcs in {ap, . .. ,aq} - {ad ({al," . ,ap-d - {aj}) we conclude that
V p , •.. ,Vq are linearly independent, and so are WI, ... ,Wp-l. Moreover,
one can show that every flow can be expressed as a linear combination of
v p , •.. ,vq , and every tension can be expressed as a linear combination
of WI, ... ,wp-l. Therefore the following is true.

Theorem 98 Let D = V u A be a weakly connected digraph, A =
{al,'" ,aq} and letvi,Wj,P:S; i:S; q,I:S;j :S;p-I, be defined as above.
For the flow space VF and the tension space VT of D, the following is
true.

1 BF := {Vi: p :s; i :s; q} is a basis of VF; hence dim VF = q - p + l.

2 BT:= {Wj: I:S;j :s;p-I} is a basis ofVT; hence dim VT =p-l.

3 VF and VT are orthogonal complements in JR.q.

However, in practical applications one needs to construct flows or ten­
sions satisfying certain constraints (apart from optimizing a certain ob­
jective function). Consequently, let k j , lj E JR.,1 :s; j :s; q, kj :s; lj,be
chosen, and associate the closed interval I j := [kj , lj] with arc aj.

Theorem 99 Let D = V u A be a digraph, A = {al,'" ,aq}, with
Interval I j = {kj , Ij} associated with aj E A, 1 :s; j :s; q. The following is
true.

1 A tens·ion (gl,'" ,gq) satisfying k j :s; gj :s; lj , 1 :s; j :s; q, exists if
and only if for every circuit C of D

L Ii ~ L ki , L Ii ~
a;EA-(C) a;EA+(C) a;EA+(C)

2 (A.J. Hoffman) A flow (fl,··· ,fq) satisfying k j :s; Ij :s; lj,
1 :s; j :s; q, exists if and only if for every cocircuit w = w+ Uw-

In many practical problems however, these constraints can be relaxed.
In this context, the following problems are of central importance.

The Maximum Tension Problem. Let D = VUA,A = {al,'" ,aq},
be given; distinguish two vertices V, W E V with (w, v) E A, w.l.o.g.
al = (w, v). For j = 2, ... ,q, let Ij := [kj , lj] be associated with aj'
Find a tension (gl' g2, ... , gq) such that
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91 is maximum.

In fact, this problem can be transformed into the Generalized Shortest
Path Problem. Here, we have D = VUA with distinguished vertices iJ,w
given such that every other vertex of D lies on some path connecting iJ
and W. With every a E A we associate a real number l(a) (which need
not be nonnegative). Finally we assume that D contains no cycle with
l(C) < O.

Algorithm 100
Input: D = V u A, V = {VI, V2, ... ,vn }, iJ = VI, W = 'Un , with properties
as above.
Step O. Find a spanning out-tree T of D with root v (it exists since
every vertex lies on a path from v to tv). For every Vi, 1, ... ,n, define
the potential t by ti := t(Vi) = l(PT(V, vd) where PT(iJ, Vi) is the unique
path connecting v and Vi in T.
Step 1. If t(Vj) - t(Vi) ~ l(Vi' Vj) for every (Vi, Vj) E A go to Step 3.
Otherwise choose (Vi, Vj) E A such that t(Vj) - t(vd > l(Vi, Vj).
Step 2. Set t'(Vj) = t(Vi) + l(Vi,Vj), and for every Vk in T which
lies on a PT(Vj,Vk), set t'(Vk) = t(Vk) - (t(Vj) - t'(Vj)). Define A' :=
(A(T) - (A(T)nA;)) U((Vi, 'Uj)). Set t := t' , T = (A') and go to Step 1.

]

Step 3. t(w) is the length of a shortest path from iJ to W in D. Such
path is exhibited by going from iJ to w in the final T.

We refrain from elaborating on the justification and efficiency of Al­
gorithm 100; we just observe that it is the absence of cycles C with
l (C) < 0 which guarantees that the algorithm terminates after a finite
number of steps; and that it is, therefore, of polynomial running time.

Following [4] we define a capacitated network or just network as a
digraph D = V U A, A = {al,'" ,aq }, having two distinguished ver­
tices iJ, w such that w.l.o.g. (w, v) = al and v (w) is the source (sink)
of D - {al}; thus iJ is called the entry and w is called the exit of the
network, and a E At is called an entry arc, whereas a E A;;; is called an
exit arc of the network. We also assume that every other vertex lies on
a path from v to w in D. Finally, associate with every aj =1= al a capac­
ity Cj 2: 0, j = 2, ... ,q (i.e., the capacities correspond to the intervals
[0, Cjl).

Maximum Flow Problem. Find a flow f = (fl, 12, ,fq) in a network
(as described above) such that a ~ !J ~ Cj, j = 2, ,q, and II is maxi-
mum (II is called the (flow) value of f).

For the following considerations we consider a simple chain P connect­
ing iJ and w in a network D, such that al rt. A(P), with an orientation
of P being defined by walking from iJ to w in the underlying path Po
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in CD. Correspondingly, we define A+(P) as the set of arcs of P whose
orientation coincides with that of P, while A-(P) := A(P) - A+(P).
Suppose a feasible flow f = (!l, ... , fq) is given in D, i.e., 0 ::; fi ::; Ci
for i = 2, ... ,q. Call P f-augmenting if fi < Ci for every ai E A+(P)
and fj > 0 for every aj E A-(P). Define de := min{Ci - fi, Ii : ai E
A+(P),aj E A-(P)}.

Lemma 101 Let D be a network with feasible flow f. If an f -augmenting
simple chain P exists, define f+ = ut, ... , f;n by ft = !l + de

{

fj + de for aj E A+(P)
f+ = fj -de for aj E A-(P) j =2, ... ,q
J -

fj for aj ~ A(P).

Then f+ is a feasible flow of larger value than f (we say f has been
augmented to yield f+).

Proof. The lemma follows from the definition of f+ (the sums of equa­
tion (1) in the definition of a flow remain unaltered, or are both increased
or decreased by de), and the definition of f itself (de> 0 since P is f­
augmenting). •

The existence of an f-augmenting simple chain is key to the following
considerations.

Algorithm 102 (Ford-Fulkerson Max-Flow Algorithm for integral ca­
pacitated networks)
Input: Network D with capacities Cj E IN U {O},j = 2, ... ,q, together
with an integral flow fa (i.e., fi E IN U {O}, i = 1, ... ,q) - e.g., fa = O.
Set f = fa. Set g(v) = IVI + 1 for every v E V (these are the unmarked
vertices).
Step 1. Mark V, set g(v) = 1. Call the vertices with g(v) < IVI + 1
marked vertices.
Step 2. Choose v with minimum g(v) such that there is an unmarked
w with eitherai = (v,w) E A and fi < Ci orai = (w,v) E A and fi > 0,
if such v exists. Set g(w) = max{g(v) + 1 : g(v) < IVI + I}. If no such
v exists, go to Step 4.
Step 3. If w has not been marked go to Step 2. If w has been marked,
find a simple chain P from v to w in Do ~ D induced by the arcs used
in the marking procedure in Step 2 (P is f-augmenting). Augment f to
obtain f+ in accordance with Lemma 101. Unmark all marked vertices
v =1= v. Set f = f+ and go to Step 2.
Step 4. f is a maximum flow and w is unmarked.

Before justifying this algorithm and drawing further conclusions, some
remarks seem in order.
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(1) Apart from the requirement that the capacities be nonnegative
integers, there are two crucial items in the Ford-FUlkerson algorithm:
the choice of the integral flow fo in Input, and the construction of the
f-augmenting simple chain P. There are examples (see below) showing
that these choices cannot be arbitrary if one expects the algorithm to
reach Step 4 in polynomial time.

(2) Of course, it is natural to start with fo = O. However, if one
starts with a flow whose components are not integers, one might be able
to produce an infinite sequence of flows fi , i = 0, ... ,n ... , by using
fi-augmenting chains, whose values form a strictly increasing and con­
vergent sequence, yet the limit of this sequence need not be the optimal
flow! Such an example has been exhibited by Lov8.sz and Plummer in
[31, p. 47-48]. Such problem cannot arise if the initial flow is integral,
since f+ is then also integral by definition of dr (see Lemma 101). Thus
we obtain a strictly increasing sequence of integral flow values, bounded
above by the largest (integral) capacity.

(3) If the graph is small, but min{cj : j = 2, ... ,q} = 1 and !vI :=

max{Cj : j = 2, ... ,q} is a large integer, then, even starting from fo = 0,
say, a repeated 'bad choice' of the f-augmenting chain P may result in a
number of iterations of Step 3 which is proportional in lvI, whereas the
size of the input is O(1og !vI); i.e., the running time of the algorithm may
be exponential in the input (see [22, p. 127]).

(4) Extending the algorithm to networks with rational capacities does
not create any extra difficulties: just multiply the capacities with their
least common denominator n to obtain integral capacities and multiply
the maximum flow in this modified capacitated network with lin to ob­
tain the maximum flow in the original network.

(5) If, however, the capacities are arbitrary nonnegative real numbers,
then, starting from fo = 0 one may get an infinite sequence of feasible
flows (using f-augmenting simple chains again) whose values are strictly
increasing and converge. Yet, the limit of this sequence of flow values
again is not the value of a maximum flow. Such an example has been
exhibited already by Ford-FUlkerson in their book, [21, p. 21-22]; a sim­
pler example can be derived from the one quoted in (2) above.

(6) However, all these difficulties and problems quoted in (2) - (5)
can be overcome by a simple idea due independently to Edmonds and
Karp on the one hand, and Dinits (see [22, 31] for detailed references)
on the other hand. Namely, choose P in Step 3 in such a way that it
corresponds to a shortest path in the underlying graph GDo' And such
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a shortest path can be found 'fast' by Dantzig's and Dijkstra's Algo­
rithm 83. Once Step 3 of Algorithm 102 has been modified this way,
the modified algorithm terminates with a maximum flow in polynomial
time, even if the capacities are arbitrary real numbers.

For the justification of Algorithm 102 some additional notation will
be useful. Consider in a capacitated network D = V u A a set V C V
such that ii E V and w ¢ V. Then we call At := A+(V, V - V) a cut of

the network D, and c := LaiEA"! Ci the capacity of the cut At.
v

Now, in justifying Algorithm 102, we basically prove the converse
of Lemma 101; that is, if no f-augmenting path exists, then there is no
feasible flow whose value is larger than that of f. To this end, observe first
the following general fact: if D = V(D) U A(D), A(D) = {al, . .. ,aq }, is
an arbitrary digraph and w = w+ Uw- is an arbitrary coboundary of D,
then for any flow f = (II, ... ,fq ) in D we have the equation

aiEw+ aiEw-

(this equation readily follows from equation (1) in the definition of a
flow). Applying this equation to a capacitated network D = V U A
we obtain for an arbitrary cut At with capacity c and a feasible flow
g = (gl' ... ,9q) the inequality

gl::; L gi = L gi::; c
aiEA~

(note that for every cut At, al E A9 since w ¢ V).

Whence let f be the final flow constructed by Algorithm 102: f is
obtained in a finite number of steps due to Lemma 101 (dr E IN), and
because the capacities are positive integers. For this f we mark ii, but
the marking procedure of Step 2 leaves w unmarked (otherwise Step 3
yields an f-augmenting chain P which would allow to augment f). Let
V := {marked vertices}. We observe that for every ai E At we have
fi = Ci (otherwise, the head of ai would be marked in Step 2), and for
every ai E A9 - {ad we have fi = 0 (otherwise, the tail of ai would be
marked in Step 2). Therefore, equality holds in (*) for this f and this
V, also implying that At must be a cut of minimum capacity. This and
(*) imply that no flow of larger value than II can exist in this network.

As a consequence of the preceding argument we also obtain the fol­
lowing.
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Theorem 103 (Max-Flow Min-Cut Theorem) If D is a capacitated
network with entry v and exit W, then the maximum value of any feasible
flow equals the minimum capacity of any cut of D.

With the help of Algorithm 102 and Theorem 103 one can solve several
problems in applied network theory but also derive graph theoretical
results proved above. As for the former type of results, we refer to
[4, 8, 21, 26, 36]. As for deriving Menger's Theorem and Proposition 24
(the 'line version' of Menger's Theorem) and corresponding versions for
digraphs, we refer to [31] (as for Menger's Theorem, this has been done
already in [21]). As for deriving Theorem 79 from Theorem 103 we refer
to [31,36].
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Given an undirected graph G = (V, E), a matching M ~ E is a subset
of edges no two of which are incident with a common vertex. For any
M ~ E, we define V (M) as the set of vertices incident to some edge
in M. A matching M in G is called a maximum cardinality matching
in G if IMI 2: IM'I for all matchings M' in G. A perfect matching is
a matching M with V(M) = V. Note that for the existence of perfect
matchings IVI has to be an even number.
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Figure 3.1 Graph with a non-perfect maximum cardinality matching (matching edges
are doubly lined).

Given a cost Cij for each (i,j) E E, we define c(F) := L(i,j)EF Cij

for every F ~ E. Then a minimum cost perfect matching is a perfect
matching !vI that minimizes c(lVI). Here, we assume w.l.o.g. Cij 2: 0
since this can always be obtained by adding a large constant to all costs
without changing the problem.

The minimum cost perfect matching problem (MP) can be formulated
as a mathematical program:

min L Cij' Xij s.t.
(i,j)EE

L Xij = I for i E V
j:(i,j)EE

Xij E {O,I} for (-i,j) E E,

where we interpret

(3.1)

(3.2)

(3.3)

Xij = { 1,
0,

if (i,j) E !vI
if (i,j) ~ M.
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It is well known that for bipartite graphs G the integrality conditions
can be relaxed to

Xij 2: 0 for (i,j) E E (3.4)

and MP becomes a linear program the optimal solution of which will be
(0, I)-valued automatically.

Matching theory and the matching problem are one of the corner­
stone concepts in combinatorial optimization/ mathematical program­
ming. They constitute a class of genuine integer programs which are
efficiently solvable. Since the matching model arises in various domains,
the ability to solve large matching instances is of practical interest.

In this chapter we first motivate and show the relevance of matchings
especially for arc routing by introducing several well-known applications.
Then we discuss the graph theoretical background and the polyhedral
results which are the foundations for matching algorithms. Finally, we
review algorithmic techniques which have been developed within the last
years and which enable the solution of large matching instances in rea­
sonable time.

Sources on matching are the books by Lovasz and Plummer [1986],
Lawler [1976], Derigs [1988a] and the survey article by Gerards [1995].

We close this introduction with some notation. For W ~ V, we define
b(W) := {(i,j) EEl i E W,j tf- W} and ,(W) = {(i,j) EEl i,j E W},
where we write b(i) instead of b({i}).

2. MATCHING: APPLICATIONS
In this section we outline applications of the bipartite and the non­

bipartite matching model in various domains. The problem of finding
an optimal matching in a bipartite graph is one of the most celebrated
problems taught in the first course in Operations Research. The in­
terpretation of the matching model as pair wise associations of entities
from different classes like male and female persons, jobs and machines
etc. is obvious and has led to the more common terminology as marriage
problem or assignment problem.

2.1. TEAM SELECTION
A clear and illustrative example for the assignment problem was given

by Machol [1961]. A swimming coach must select a medley relay team
from his four best swimmers to swim the four strokes (back, breast, but­
terfly, and free-style). The (average) time of each swimmer in each stroke
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is known from former tests.

Representing each swimmer and each stroke as a node and connecting
each swimmer-node with each stroke-node by an edge the costs of which
is the associated time the swimmer needs for performing that stroke leads
to a complete 4 x 4 bipartite graph G. Now every perfect matching in
G gives one possible team and the problem of finding the fastest team is
to find the perfect matching with the least costs.

2.2. TASK SCHEDULING
A"more practical" application of bipartite matching arises in schedul­

ing where the problem of minimizing the number of processors or the
total processing time to perform a set of tasks can be modeled as an
assignment problem.

Let V = {VI, ... ,vn } be a set of tasks. The ordered pair (Vi, Vj) is said
to be compatible if the same processor can perform tasks Vi and Vj in this
sequence. Now a subset D = {Vil' ... ,Vik} of V is said to be a processor
duty if (Vij' Vij+J is a compatible pair of tasks, j = 1, ... , k - 1, i.e. the
tasks in D can be performed by the same processor. Then a feasible
schedule is a family S = {DI , ... , Dr} of processor duties, such that each
task V E V belongs to exactly one duty Dj,j = 1, ... , r.

In the domain of "vehicle scheduling" the tasks Vj may represent a
sequence of customers which have to be served by a vehicle, i.e. a vehicle­
tour, but where because of capacity limitations or time constraints the
vehicle has to visit a depot for a certain duration before beginning and
after ending the tour. Let

Ii, the duration of the dead heading trip from the depot
to the first customer in tour Vi,

Ii, the duration of the dead heading trip from the last

customer in tour Vi to the depot,

d i , the duration of tour i,

Si, the required start time for tour i and,

dp , the duration at the depot between two tours,

then the ordered pair (Vi, Vj) of tours is compatible if there exists a slack
tij ~ 0 such that

Si + di + Ii + dp + fj + ti,j = Sj.

tij gives the so-called idle time of a vehicle spent at the depot between
the performance of tour Vi and Vj.
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Now consider the bipartite graph G = (S, T, E) where Sand Tare
the node sets with lSI = ITI = IVI· Every node.i E S corresponds to
the ending terminal of task Vi and every node JET corresponds to
the starting terminal of task Vj and E := {(Si, tj )I(Vi, Vj) are compatible
tasks}. Note that (Si,ti) E E for all Vi E V.

Now there is a one-to-one correspondence between (vehicle) schedules
and matchings in G. Any (vehicle) duty, say Di = {Vip ... ,Vik} can be
represented in G as the set of edges

Since for each Vij E Di at most one edge in Ali is incident to node Sij and
ti

j
and since each trip belongs to only one of the vehicle duties D 1, ... ,Dr

the set

M:= AlI U ... uMr

is a matching in G.

Similarly any matching M of G can be interpreted as a (vehicle) sched­
ule with the following interpretation (d. Carraresi and Gallo [1984]): If
no matching edge is incident either to Sij or to tij' then task Vj is per­
formed as a single duty for its own, i.e. a vehicle runs the single tour Vj'

Introducing edge costs the construction of optimal schedules can be re­
duced to finding minimum cost perfect matchings in the complete graph
over the node sets Sand T. Setting

.. _{O for(si,tj)EE,i=j:.j
Ci,] - 1 else

each least cost perfect matching induces a schedule with a mInImUm
number of processors (vehicles) necessary, i.e. the optimal matching de­
termines the optimal fleet size.

Minimizing the idle time is accomplished by setting

. . _ {ti,j for (Si, t j) E E, i =j:. j
Ci,] - 0 else.

2.3. PROCESSOR SCHEDULING
An early application of non-bipartite cardinality matching arises again

in the area of processor scheduling. Assume two identical processors and
a set of n jobs, all requiring the same processing time with a partial
ordering relation" :S " prescribing precedence constraints for the jobs,
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i.e. if i ~ j then job i must be completed before job j can be started by
either processor.

The precedence constraints can be represented as an acyclic directed
graph G = (N, A) with N representing the set of jobs and (i,j) E A if
i ~ j holds. For G we can construct the so-called compatibility graph
G* = (N, E). G* has the same nodes as G and there is an (undirected)
edge (i, j) if and only if there is no directed path from i to j or from j
to i in G, i.e. if nodes i and j are adjacent in G* then job i and job j
can be processed at the same time (by the two processors) given.

Now a maximum cardinality matching !VI in G* indicates the max­
imum number of jobs that can be processed simultaneously, and thus,
yields a lower bound on the total processing time and can be used to
obtain an optimal schedule (d. Fujii et al. [1969]).

2.4. ROUTE CONNECTION
Hasselstr6m [1976] gives an early application of non-bipartite weighted

matching in connection with the process of urban transportation plan­
ning by modeling the" optimization of route connections" as a matching
problem.

The route network in a city usually contains several points of inter­
section where several routes meet. The routes at such a point can be
categorized into two classes

1 routes passing through and

2 routes with one of their terminal points at this point of intersection.

If the routes that are passing through are cut into two parts at the
point of intersection, the resulting network consists of route-legs having
one end in common which would be served by vehicles in both directions.

It is now possible to reconnect these route-legs in several different
ways, i.e. every matching of end points leads to a different route net­
work. The quality of the resulting network is dependent on several dif­
ferent factors, the passenger's waiting time, number of transfers, number
of vehicles etc., and the representation of these factors by edge costs is
a nontrivial task. The whole procedure is illustrated in Figure 3.2.

An important application of non-bipartite matching is its use in solv­
ing certain routing problems as for instance the Chinese postman prob­
lem and the traveling salesman problem.
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3. Reconnecting (matching) the route - legs

2. Cutting routes into route· legs
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Figure 3.2 Optimization of route connections.

2.5. ARC ROUTING
Let a connected graph G = (V, E) and non-negative weights Cj for ej E

E be given. Then a tour in G is a sequence T = (vl,el,v2,e2, ... ,vk,ek,
Vk+ 1 = VI) of nodes Vi and edges ei such that ei meets the nodes Vi
and Vi+l. A postman tour in G is a tour which contains every edge at
least once and an Eulerian tour ofG is a tour which contains every edge
exactly once. The length of a tour T = (vl,el, V2, ... ,ek,vl) is defined

by I(T) = 2:7=1 Ck·

Now the Chinese postman problem (CPP) is to .find the mlmmum
length postman tour in G. This problem was first solved by Mei Ko
Kwan [1962]. He considered this problem on the practical background
of a postman delivering the daily mail for a certain district of streets.
Thus, the problem is referred to as "Chinese" postman problem. The
first polynomial algorithm was given by Edmonds and Johnson [1973]
who related this problem to matching theory.
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It is obvious that whenever there is an Eulerian tour in the graph,
then it solves CPP. A necessary and sufficient condition for the existence
of such a tour was given by Euler [1736]:

"each node must be incident to an even number of edges" .

Thus, if this condition is fulfilled the CPP reduces to the problem of
finding an Eulerian tour.

Given a postman tour every edge ofG is traversed at least once. So let
1+ tj be the number of times that edge ej is contained in the tour. Now
we construct a (multi-)graph G' from G introducing tj additional copies
of edge ej into G. Then the postman tour in G becomes an Eulerian
tour inG'. Thus CPP can be reformulated in the following way:

Chinese postman problem (CPP)

min L tj' Cj

ejEE

L (tj + 1) = 0 mod 2 for Vi E V
ejE6(v;)

tj 2: 0, integer for ej E E,

i.e. find values tj for ej E E s. t. after adding tj copies of ej every node
has even degree and LeEE tj 'Cj is minimized.

]

Now if node v has odd degree in G then an odd number of incident
edges has to be added such that v gets even degree in G', If node v is
an even degree node in G, then an even number of incident edges resp.
no edge has to be added.

Therefore the process of duplicating edges leads to a collection of paths
starting and ending at odd degree vertices the edges of which have to
be duplicated. Thus, one has to decide which pairs of odd degree nodes
(there is always an even number of nodes with odd degree) are to be
joined together by a path of duplicated edges.

This problem can be solved in the following way:
Chinese postman algorithm

1 Determine for every pair Vi, Vj E V of odd degree nodes the shortest
path Pij joining these two nodes and define dij to be the length of
path Pij .

2 Construct the complete graph G = (V, E) where V denotes the
set of all odd degree nodes in G'. Associate with every edge (i, j)
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Street-network with nodes of odd·degree shaded
total cost of edges: 6452

Multi-graph with duplicated edges from optimal matching
cost of optimal matching 2248
cost of optimal postman tour 6700

Figure 3.3 Solving the Chinese postman problem.

JOlmng Vi, Vj E E the edge weight dij and solve the associated
minimum cost perfect matching problem.

3 The edges (i, j) of the optimal matching !vI correspond to the paths
Pij the edges of which have to be duplicated to obtain the optimal
postman tour.

Figure 3.3 shows the procedure and result for a refuse collection prob­
lem in a rural area modeled as CPP on a graph with 52 nodes.
This algorithm was developed by Edmonds and Johnson [1973] who

describe a labeling technique which enables us to solve the shortest path
and the matching problem simultaneously. Consequently, this labeling
technique combines elements from shortest path computation and el­
ements from matching algorithms. The problem to be solved is then
to construct an Eulerian tour in C/. This is done by using the so
called next-node-algorithm presented in Edmonds and Johnson [1973]. A
FORTRAN-code for solving the Chinese postman problem can be found
in Burkard and Derigs [1980].

An interesting application or extension of the above concept is that of
minimizing the "up"-motion of a pen plotter as described by Reingold



98 ARC ROUTING

and Tarjan [1981] and Iri et al. [1983].

Consider the problem of plotting a graph G = (V, E) where the nodes
are given by their (x, y) coordinates. If the graph contains an Eulerian
tour (or path) then it can be drawn without any wasted pen move­
ment. Otherwise the pen must be moved in the "up" position resulting
in wasted pen movement. The graph can be made Eulerian by matching
the edges of odd degree, i.e. introducing an edge which, when drawing
the graph, i.e. drawing the postman tour (or path), has to be traversed
with the pen lifted up in the "up" -position. Note that the significant
difference between the classical Chinese postman problem and this vari­
ant is the fact that for the plotter-problem the graph G can be made
Eulerian by using connections not present in the graph and thus the cal­
culation of shortest paths between odd nodes is trivial and the problem
reduces to a pure matching problem.

2.6. NODE ROUTING
A traveling salesman tour is a tour that meets every node exactly

once. Now assume G = (V, E) a complete graph and c : E -. JR+ a
cost function fulfilling the triangle condition, i.e. Cij + Cjk ~ Cik for all
i,j,kEV.

We define T := the set of all traveling salesman tours in G, then the
traveling salesman problem (TSP) can be formulated:

ZOPT = min c(T).
TET

Assume IVI an even number, then every traveling salesman tour T
can be uniquely partitioned into two perfect matchings M1 and M2 in G
by introducing the edges in T alternately into !vh and !vh respectively
and the following relation holds

c(T) = c(!vh) + c(!vh) ~ 2· min{c(!vh),c(M2)}'

With M := the set of all perfect matchings in G the following property
holds

ffj~ c(M) :S ~ ~¥ c(T).

A spanning tree 8 in G is a subset of the edges such that

(i) 181 = IVI- 1

(ii) 8 does not contain a cycle (subtour) in G.
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Obviously, given a traveling salesman tour T E T, deleting an arbi­
trary edge from T gives a spanning tree S. Thus, with S := the set of
all spanning trees in G the following property holds

min c(S) ~ min c(T).
SES YET

For determining minimal spanning trees in a graph rather efficient algo­
rithms have been developed (Dijkstra [1959], Kruskal [1956]).

For the minimal spanning tree S/ E S let O(S') be the set of nodes
having odd degree in S'. Note that O(S/) contains always an even num­
ber of nodes. Now O(S') induces a complete subgraph G' of G. If we
denote by T' and M' the set of traveling salesman tours and perfect
matching in G/ respectively, then the following relation holds:

1 1
min c(M) ~ -2 min c(T) ~ -2 min c(T).

MEM' YET' TET

Adding the edges of a least cost perfect matching lvI' in G' to S' we
obtain an Eulerian graph G, i.e. a graph where each node has even
degree. Let P be a postman tour in G, then

c(P) = c(S') + c(M') ~ ~ZOPT.

Shortcutting all the subtours of P the postman tour can be trans­
formed into a traveling salesman tour T in G with

- - 3
ZOPT ~ c(T) ~ c(P) ~ ""2Z0PT.

Here shortcutting means that when traversing the postman tour P we
would instead of traveling from a node i to a node j which has already
been visited immediately travel to the successor of node j in the post­
man tour, node k say. Because of the triangle condition we thereby save
some distance, i.e. shorten the tour. If node k has been visited already
we would travel immediately to the successor of k etc.

Thus, this procedure which has been proposed by Christofides [1976]
establishes a heuristic with a worst-case bound of ~ for the relative er­
ror. With respect to this criterion the Christofides-heuristic is the best
known TSP-heuristic up today.

Yet, for practical purpose a maximum error of 50% is not accept­
able. It can be shown that this error is attained for rather constructed
examples though (cf. Cornuejols and Nemhauser [1978]), but applying
this heuristic to the well-known 120-city-problem of Grotschel [1977],
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we obtain a "Christofides-tour" which is 37% longer than the optimal
tour. This seems to indicate that the "pure" Christofides-heuristics is
not a sufficiently valuable approach. Therefore we combined this proce­
dure with a penalty technique and a local optimizer (d. Derigs [I98Ib],
[I98Ic]).

Instead of spanning trees we may construct l-trees in G. Here a I-tree
is a spanning tree plus a least cost non-tree edge incident with an arbi­
trary node. For I-trees the same relations hold with respect to traveling
salesman tours as it is the case for spanning trees. Obviously, the least
cost I-tree B gives a slightly better, i.e. higher lower bound than the
least cost spanning tree. We define B := the set of all I-trees in G.

Now let 1r = (1rI, ... , 1rn ) E JRn be arbitrary node-penalties and e'0 :=
Gij +1ri +1rj for i,j E V modified edge costs. Let B 1r the minimum I-tree
with respect to e1r

, then the following relations hold:

n

e1r (B 1r
) ~ min e1r (T) = ZOPT + 2 . '"' 1ri or

TET .I..-J
i=I

n

w(1r) := e
1r (B1r

) - 2· L 1ri ~ ZOPT

i=l

and thus

~:= maxw(1r) ~ ZOPT.
1r

It is easy to see that W is a concave, continuous and piecewise linear
function and for maximizing w(1r) several ascent-methods using subgra­
dients have been developed (d. Held and Karp [1971]).

During the subgradient optimization the function W is evaluated for
a sequence (1r 1 , 1r2 , ... , 1rk ) of parameters constructing the associated op­
timal I-trees (B1r

l, B 1r
2 , ... , B 1r

k) with respect to the modified edge costs
(c1r1 e1r2 c1rk), , ... , .

Every such I-tree B 1r
j can now be used to construct a traveling sales­

man tour Tj using the Christofides-heuristic. With

zj := e(Tj ) and
n

~j := c
1rj (B1r

j) - 2·L 1r{, j = 1, ... , k
i=I

we obtain a (not necessarily monotone) sequence of lower and upper
bounds.
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Now let To be the best traveling salesman tour constructed, i.e.

zO := c(To) = .min c(Tj ) and
J=l, ... ,k

~:= max ~j
J=l...k

the best lower bound, then To is an approximate traveling salesman tour
with relative error not exceeding

zO-~€=--=
~

Our computational experience on TSP-instances has shown that when
additionally applying the well-known 3-opt local optimizer (cf. Lin and
Kernighan [1973]) to To, rather good approximations can be expected
with the error € ranging around 1% only for large problem sizes (cf.
Derigs [1981c]. The results of this procedure for the 120-city-problem
are depicted in Figure 3.4 and 3.5.

2.7. GENERAL ROUTING
The Chinese postman problem and the traveling salesman problem

have been introduced as the two classical routing models. In real-life
routing problems arising in waste collection, street sweeping, delivery of
goods etc. variants of these pure models are applied. CPP/ TSP vari­
ants are well studied in literature, with an overview and classification
given in Bodin and Golden [1981]. With regard to the application of
the matching concept and matching algorithms CPP-generalization are
most relevant.

The situation that the underlying street network consists of one-way­
streets only can be modeled by a directed graph. Edmonds and Johnson
[1973] have given a network-flow-based algorithm for solving the associ­
ated "directed" Chinese postman problem. Yet, when the network con­
tains both directed and undirected arcs, CPP becomes hard to solve (i.e.
the so-called "mixed" Chinese postman problem is NP-complete).

If there is a limit on the vehicle capacity or restrictions on the duration
of a tour then CPP is modified to find a set of cycles (tours) which tra­
verse every edge at least once such that traveling costs are minimized. A
heuristic for this so-called capacitated Chinese postman problem (CCPP)
which is based on the CPP approach has been described by Christofides
[1973].

In some applications it is required that only a specified subset of street
segments (edges) has to be traversed while all other edges may be tra­
versed for dead heading. This routing problem is called the rural postman
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Figure 3.4 Application of the Christofides heuristic to the 120-city-problem (part 1).
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Shortcutling the postman tour leads to a
traveling salesman tour of length 7353 km

Traveling salesman tour of length 6975 km obtained
through penalty technique/subgradient optimization
and application of 3·0PT to best tour obtained

Figure 3.5 Application of the Christofides heuristic to the 120-city-problem (part 2).

problem (RPP) [ef. Win [1988]]. If routing is to be done on a specified
subset of edges and a specified subset of nodes then the problem is called
the general routing problem (GRP). Pandit and Muraldharan [1995] have
given a heuristic procedure for solving the capacitated general routing
problem (CGRP) on mixed graphs. In the following we give a short
outline of this heuristic which is based on the concepts for solving the
classical CPP, i.e. for instance matching odd degree nodes by shortest
paths.

Let Go = (VO, So) be the mixed graph describing the complete street
network where Vo is the set of nodes representing the intersection of
streets and locations of customers and So is the set of street segments
and let non-negative length Ce for e E So given. Let VI ~ Vobe the
specified set of nodes which must be visited and Pi 2: 0, for i E Vi, the
demand on node i E VI. Let Al ~ So be the set of directed arcs repre­
senting one-way streets which have to be traversed and let E1 ~ So be
the set of edges representing streets allowing bi-directional travel which
have to be traversed with qe 2: 0, for e E Al UE I , the demand on segment
e.

Let node 1 represent a central depot and let W 2: °be the capacity
of a vehicle, i.e. every tour has to start and end in node 1 and the total
demand fulfilled on a single tour may not exceed W. Then the problem
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is to find a set of cycles each passing through node 1 and satisfying the
capacity constraint which satisfies the demands of the nodes in VI and
the demands of the arcs and edges in Al U E 1 . Pandit and Muraldharan
[1995] propose the following heuristic:

CGRP-heuristic

1 Extract the subgraph G1 consisting of edges, arcs and nodes that
need to be traversed or visited, respectively.

2 IfG1 is not connected, connect the components ofG1 , i.e. construct
G2 by introducing the edges of a minimum spanning tree between
the components of G1 .

3 If G2 is not strongly connected, make G2 strongly connected, i.e.
construct G3 by introducing in a least cost manner additional links
such that for every pair of vertices u and v there exists a path from
u to v and a path from v to 'U.

4 If G3 contains nodes of odd degree, connect pairs of odd degree
nodes by shortest paths using the min-cost matching concept from
CPP to obtain G4 .

5 Assign an orientation to the undirected arcs in G4 such that every
node has equal in- and out-degree solving a min-cost network flow
problem as described in Edmonds and Johnson [1973] to obtain
Gs·

6 Construct a giant Eulerian tour in Gs.

7 Break the giant Eulerian tour into smaller tours subject to the
capacity constraints.

2.8. SET PARTITIONING
The final application of matching we present is a very general one:

Nemhauser and Weber [1979] have shown that every set partitioning
problem can be reformulated as a matching problem with additional
side-constraints.

Let A E {O,1}mxn and e E JRn then the set partitioning problem
(SPP) reads

min e'x
Ax= 1
x E {O, 1}n.

This problem has a high significance from a theoretical as well as a prac­
tical point of view: quite a number of discrete optimization problems
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(with linear objective function) can be reduced to SPP and quite a num­
ber of problems from routing and scheduling has been modeled as SPP.

Note that if A has the property

m

L aij = 2 for j = 1, ... , n
i=l

then A can be interpreted as the incidence matrix of a (multi-)graph G
and SPP is equivalent to MP over G. This connection is the basis of the
Nemhauser-Weber approach.

Let aI, ... , an be the columns of A, where w.l.o.g. we may assume that
A does not contain identical columns, i.e. ai f. a j for i f. j, since for
identical columns only that column with minimum c-value may become
part of an optimal SPP-solution.

Now assume a column a j with Pj non-zero values. Then we associate
with aj a set of 5j = l(pj+1)j2J column-vectors a{, at ... ,a~j each having
at most 2 non-zero elements and fulfilling

. _ Aj Aj
aJ - a l + ... + aSj '

The cost coefficients Cjl, ... , Cjs j for the new columns are defined to fulfill
the relation

Then we can formulate a new set partitioning problem

(SPP') min C' fj
Afj=l

fj E {O,l}S

with 5 = 'L-j=l 5j and A E {a, l}mxs.

Adding to (SP P') the so-called column joining constraints

Y1c = fjt+l for k = 1, ... , 5j - 1 and j = 1, ... ,n

yields a problem the feasible solutions of which are in one-to-one corre­
spondence with the feasible solutions of (SPP) and the respective objec­
tive values coincide.

If A contains only columns having exactly two non-zero elements the
transformation is complete and we have transformed SPP into an equiva­
lent perfect matching problem with side-constraints. Otherwise let JI be
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the set of indices for those columns containing only one non-zero entry
and let

L i := {j E Jl I aij = I} for i = 1, ... ,m.

For each L i =1= 0 we add a row-vector ai with

a.. _ {I for j E Li
lJ - 0 else

to our problem. Thus, we end up with the following problem

min 2' Y
Ay=l
A-<ly-
Sy=O
Y E {O,1}s

where Sy = 0 represents the set of column joining constraints.

The matrix (AIA)T fulfills the property that every column contains
exactly two non-zero elements and thus induces a graph G. Let M be
the set of matchings in G and for !vI E M let x M be the incidence vector
associated with M. Then (SP) is equivalent to the following matching
problem with side-constraints (MPS)

(lvIPS) min c(M)
MEM
V (M) ;2 {I, ... ,m}
SXM = O.

In Derigs and Metz [1992a] we describe an approach for solving (MPS)
based on Lagrangean relaxation and the construction of k-best match­
ings. In a first phase the column joining constraints are relaxed and the
associated Lagrangean dual is solved using the bundle-approach, an ad­
vanced subgradient technique. Here a sequence of simple unconstrained
matching problems has to be solved. In a second phase the optimal con­
strained matching is constructed through the generation of sequences of
k-best matchings.

The method is exact in the sense that it always stops with an optimal
matching fulfilling all column joining constraints and thus, induces an
optimal SPP-solution. Yet, the method becomes rather inefficient and
infeasible for SPP with dense matrices, i.e. matrices A having columns
with many non-zero entries. In that case the procedure can be modified
to obtain approximate solutions.
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The problem of solving matching problems with generalized upper bound
constraints (GUB-MP) has been investigated by Ball et al. [1990] and
Derigs and Metz [1992b] . Derigs and Metz [1992c] have applied the idea
of transforming (SPP) into (MPS) and the concepts for solving (GUB­
MP) to a delivery/ pickup vehicle routing problem with time windows
arising in express airline flight scheduling.

The examples introduced in this chapter should have demonstrated
the great potential of the matching model, especially in the domain of
routing and scheduling. Other applications in this area which we could
not introduce are

• scheduling crews and vehicles in mass transit-systems (Ball, Bodin
and Dial [1983])

• matching based improvement algorithms for vehicle routing (AI­
tinkemer and Gavish [1991], Dror and Levy [1986], Desrochers and
Verhoog [1991], Bachem and Malich [1993]),

• capacitated vehicle routing (Miller [1995]).

Finally, the following references should give a small insight into the
use of matchings in other domains:
Sports: creating pairings in chess tournaments (Olafson [1990])
Telecommunication: image transmission (Riskin et al. [1994]), and
Statistical physics: simulation of ground state energy and magne-

tization of two-dimensional randomizing spin models (Bendisch, Derigs
and Metz [1994]).

3. MATCHING: COMBINATORIAL ASPECTS
An alternating path with respect to a matching M in G is a path the

edges of which are alternately in and not in lvI. Alternating cycles are
defined analogously. An augmenting path is an alternating path between
two unmatched nodes. Given an augmenting path P we can perform the
following exchange operation

M -+ M (f) P := (M \ P) U (P \ M). (3.5)

Then M (f) P is again a matching in G. For alternating cycles C we define
M (f) C analogously.

The importance of augmenting paths stems from the following theo­
rem (d. Berge [1957]).

Theorem 3.1 A matching M is a maximum cardinality matching if
and only if M does not allow an augmenting path.
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Augmenting path P Alternating cycle C

Figure 3.6 The process of augmentation.

A matching !vI is called maximal or saturated if any augmenting path
has at least three edges, Le. M U { e} is not a matching for all e E E \ M.

To determine augmenting paths, the concept of alternating trees in­
troduced by Edmonds [1965a] has shown to be a powerful tool.

A rooted alternating tree is a tree T = (V(T),E(T)) with distin­
guished root vertex rEV \ V (M) and the property that the paths from
r to each vertex in T are alternating paths and E(T) n !vI is a perfect
matching with respect to V(T) \ {r}. We designate vertices in a rooted
alternating tree as even or odd depending on whether the number of
edges in the path from r to the vertex is even or odd.

The information given by alternating trees is twofold:

• if an unmatched vertex is adjacent to an even vertex of an alternat­
ing tree, then an augmenting path can be obtained by appending
the unmatched vertex to the tree;

• if all even vertices of the tree are connected to odd vertices of the
tree only, then there does not exist an augmenting path starting at
the root vertex r. Trees with this property are called Hungarian
trees.

There are two basic operations for growing/ manipulating an alter­
nating tree such that after at most IVI of these operations one of the
above cases will occur:
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GROW-OPERATION
If a non-tree vertex j E V(l\II) is adjacent to an even vertex i in the

alternating tree, then we can enlarge T by adding the vertex j and the
vertex which is matched with j, say k, as well as the two edges (i,j) and
(j, k).

SHRINK-OPERATION
If two even vertices of T are adjacent, then adding this edge to the tree

will create an odd cycle C = (V(C), E(C)) with IMnE(C)1 = ~(E(C)­

1), a so-called blossom. V(C) can be determined by backtracking the
(alternating) paths from both vertices to the root. This blossom is now
shrunk to a pseudonode vc. This is done by forming the graph G' =
(V', E'), where

V' = V \ V (C) u vc

E' = E \ {(i,j)1 i or j E V(C)}

U {(vc,j)13(i,j) E E,i E V(C),j rJ. V(C)}.

By using this definition, !vI uniquely defines a matching M' in G' and vc
becomes an even vertex of an alternating tree T' in G' which is induced
byT.

After this SHRINK operation T' gives the same information as T and
we can operate in G' further on. Given a pseudovertex vc we may expand
Vc by reversing the process described above. During the course of the
algorithm we may perform the SHRINK operation a number of times. In
particular, SHRINK may be invoked recursively in the sense that V(C)
may contain pseudonodes. We call the current graph G' = (V', E') with
(pseudo-) nodes not contained within a pseudonode the surface graph.
Note that for bipartite graphs SHRINK can not occur and we will there­
fore operate on the original graph throughout the procedure.

The operations on alternating trees for constructing augmenting paths
are summarized in Figure 3.7.

For the bipartite and non-bipartite case efficient data structures have
been developed to perform these operations and the augmenting steps.
We will not discuss these problems of handling the" combinatorial struc­
tures" occurring in matching algorithms in this paper and we refer to
Lawler [1976], Gabow [1976], and Gabow and Tarjan [1983].

For solving weighted matching problems we are interested in augment­
ing paths having special properties with respect to the costs Cij.
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Figure 3.7 Operations on alternating trees (outer nodes are (+) labeled, inner nodes
are (-) labeled.
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For any augmenting path P and alternating cycle P with respect to
M we define

l(P) := c(P \ M) - c(P n M).

This value is called the marginal cost of P or length of P since the
following relation holds

c(M E9 P) = c(M) + l(P).

Now an alternating cycle P is called a negative alternating cycle with
respect to M if l(P) < O. The following theorem, which we attribute to
the matching-folklore gives a purely combinatorial optimality condition
for a minimum cost perfect matching:

Theorem 3.2 A perfect matching !v! is a mmzmum cost perfect
matching if and only if !vI does not allow negative alternating cycles.

A (not necessarily perfect) matching M which does not allow nega­
tive alternating cycles is called extreme. Theorem 3.2 also motivates a
matching approach:

Negative cycle approach.
"Start from any perfect matching and improve the matching successively
over negative alternating cycles until an extreme matching is obtained."

Extreme matchings in G can be constructed following the procedure
which is inherent in the following theorem:

Theorem 3.3 Let !vI be an extreme matching and P a shortest aug­
menting path connecting two unsaturated nodes. Then !v! E9 P is also an
extreme matching.

This theorem motivates the following approach:

Shortest augmenting path approach.
"Start from any extreme matching M(M = 0 possibly) and augment
successively using shortest augmenting paths until a perfect matching is
obtained."

It can be shown that all known efficient graph theoretical matching al­
gorithms are based on either of these two approaches (d. Derigs [1988aJ)
which are related in the following way:

Given a perfect matching M with (i, j) E M then the negative cycle
approach would ask whether there exists a negative alternating cycle C
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containing edge (i, j). This question can be settled in the following way:
Set M' := M \ (i,j), then !vI allows a negative alternating cycle if and
only if l(P) < Cij holds for the shortest augmenting path with respect to
M'.

Thus, the problem of finding negative alternating cycles can be solved
by computing shortest alternating paths and hence the problem of ef­
ficiently constructing shortest augmenting paths seems to be the key­
problem in all efficient matching algorithms.

For S E V \ V(M) we define Ps(M) to be the set of all augmenting
paths with start node s. Let Po be the shortest alternating path con­
tained in Ps(lvI). Due to the fact that Po E Ps(M) can be found by
growing an alternating tree rooted at node s we call this version the
SAP-tree method.

If we define by P(M) the set of all augmenting paths with respect
to M, we can modify the method outlined above by treating P(!vI) in­
stead of Ps(M). This modification is called SAP-forest version since the
shortest augmenting path Po E P(!vI) can be found by growing all the
alternating trees rooted at the unmatched nodes s E V simultaneously.

4. MATCHING: POLYHEDRAL ASPECTS
From the results of Edmonds [1965b] it is well known that in the

non-bipartite case the integrality conditions can only be relaxed to the
non-negativity conditions if a set of additional constraints is added si­
multaneously.

Let n := {R ~ VI IRI 2: 3 odd }, then either of the following sets of
constraints has to be added:

• the set of blossom inequalities

1L Xij:S"2 (IRI - 1)
(i,j)E-y(R)

• the set of cut inequalities

""' x" > 1L tJ-

(i,j)E6(R)

for R E n

for R En.

(3.6)

(3.7)

The importance of these inequalities is that any extreme solution to

min { L Cij' Xij I x fulfills (3.2), (3.6), (3.4)} (3.8)
(i,j)EE
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or

min { I: Cij' Xij I x fufills (3.2), (3.7), (3.4)} (3.9)
(i,j)EE

is a solution for MP.

Further on we will call the system using the blossom inequalities "blos­
som characterization" and the system using the cut inequalities the" cut
characterization" accordingly.

Obviously, both characterizations are equivalent. In the following
we focus on the cut characterization since implementing matching al­
gorithms based on this characterization lead to optimality conditions
and processing rules with a more intuitive semantic.

When using the cut characterization, we get the dual program (DUAL­
MP)

s.t.max I:Yi + I: YR

iEV RER

Yi + Yj + I: YR :S Cij for (i,j) EE
R:(i,j)E<5(R)

YR 2: 0 for R E R

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

and the complementary slackness conditions are given by

Xij > 0 ==> Yi + Yj + I: YR = Cij

R:(i,j)E<5(R)

YR > 0 ==> I: Xij = l.
R:(i,j)E<5(R)

Edmonds [1965b] showed the correctness of the blossom/ cut charac­
terization algorithmically, Le. he developed an algorithm, the famous
blossom-algorithm, which for any given instantiation of (MP) constructs
a perfect matching M and a feasible dual solution fulfilling complemen­
tary slackness. Using this proof-technique Edmonds killed two birds
with one stone: He did not only establish the so-called linear charac­
terization of perfect matchings, but also showed the correctness of his
(non-simplex) matching algorithm.

Direct non-algorithmical proofs for Edmonds' characterization of the
matching polytope were later given by several authors (see e.g. Schrijver
[1983]).



114 ARC ROUTING

In fact, the class of odd sets R E R defining necessary inequalities can
be further restricted to the subclass S ~ R of so-called hypomatchable
sets or shrinkable sets. (d. Edmonds and Pulleyblank [1974]). Here, a
set R E R is called hypomatchable (shrinkable) if it has the property
that whenever any node in R is matched with a node not in R, the re­
maining set of nodes in R can be matched using edges in '"Y(R) only.

Let G' = (V', E') be the graph obtained from G by shrinking some
hypomatchable sets to pseudonodes. Then the importance of this class
stems from the fact that whenever an augmenting path or perfect match­
ing in G' is found this path or matching can canonically be extended to
an augmenting path or perfect matching in G.

Obviously, any odd cycle in G is a hypomatchable set and the algo­
rithm for finding augmenting paths given in section 3 can be interpreted
as successively shrinking all hypomatchable sets of the odd cycle subclass
which are detected and thereby shrinking more complex hypomatchable
sets of nested odd cycles.

Edmonds and Pulleyblank [1974] have shown that any hypomatchable
set is spanned by such a system of nested odd cycles. Thus, we extend
the notation of a blossom to the set of hypomatchable sets, i.e. a hypo­
matchable set S in G is called a blossom with respect to a matching !v!
if I M n '"Y(S) I = ! (lSI - 1).

Given a dual solution y we define

~j := Gij - Yij - Yj - L YR

R:(ij)E6(R)

the reduced cost of edge (i, j) E E with respect to y.

(3.15)

(3.16)

(3.17)

An edge with ~j = 0 is called tight with respect to Y and we define
G(y) := (V, E(y)) with E(y) := {(i,j) E EI ~j = O} the subgraph of
tight edges.

Analyzing the primal and dual solution produced by the blossom al­
gorithm the necessary and sufficient optimality conditions can be refor­
mulated as follows:

A perfect matching M in G is optimal if and only if there exists a dual
solution y for the cut-characterization or the blossom-characterization,
respectively, with the following property

M ~ E(y), Le. M contains tight edges only

YR > 0 ~ I M n 8(R) I = 1.
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Since M is a perfect matching in G(y) we can deduce from (3.17) that
the following equivalent property holds, too:

1
YR > 0 =::;. I Mn')'(R)1 = 2 (IRI-1). (3.18)

From the results of Edmonds [1965b] more precisely from the output of
the blossom algorithm, we know that for characterizing optimal match­
ings it suffices to consider a subset of dual vectors y E JRrus which we
will refer to as strongly dual feasible. Here a vector y E JRrus is called
strongly dual feasible if y is dual feasible and y fulfills

Ys > 0 =::;. S hypomatchable in G(y). (3.19)

The advantage of this subclass of dual solutions is the fact that they
are algorithmically more easy to handle. Given a strongly dual feasible
vector y we define S(y) := {S E S I Ys > O}. A set C E S(y) is called
maximal if there does not exist a set R E S(y) with C c R. Then we ob­
tain the so-called surface graph G x S(y) by shrinking all maximal sets
C E S(y) using the transformation given in section 3. Then the dual
variable yR can be interpreted as the (dual) variable of the pseudonode
VR representing the blossom R in the surface graph.

A not necessarily perfect matching !vI and a strongly dual feasible vec­
tor yare called a compatible pair if they fulfill (3.16), (3.18) and (3.19).
Now the following theorem can be shown (cf. Derigs [1986]).

Theorem 3.4 M is extreme if and only if there exists a strongly dual
feasible y such that (M, y) is a compatible pair.

The following theorem concerning alternate dual solutions which was
first proved in Derigs [1982] and Ball and Derigs [1983] is essential for
the efficient matching implementations using the" Price and Reoptirnize"
strategy (cf. section 6).

Theorem 3.5 Let M be an extreme matching and i E V arbitrarily
chosen then there exists a dual vector y such that (.NI, y) is a compatible
pair and YS = 0 for all S E S with i E S (i.e., any node i E V can be
"forced" into the surface graph G x S (y)).

It is important to note that given any compatible pair (.NI,y) a com­
patible pair (M, y') fulfilling this additional property can be constructed
by essentially one application of the shortest augmenting path labeling
method presented in Derigs [1981a].
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5. MATCHING ALGORITHMS: LINKING
COMBINATORIAL AND POLYHEDRAL
RESULTS

Edmonds' algorithm [1965b] combines in a fascinating way polyhe­
dral aspects, especially results from LP-duality with graph theoreti­
cal/combinatorial concepts, an approach which initiated a very successful
field or research area: polyhedral combinatorics.

Throughout the procedure Edmonds' algorithm keeps a compatible
pair (M, V). The matching !v! is grown using augmenting paths P made
up entirely of tight edges ensuring that after the augmentation the aug­
mented matching M tB P and the dual solution yare compatible again.
To ensure the fulfillment of condition (3.18) hypomatchable sets RES
with YR > 0 are shrunk.

Now we start growing an alternating tree T in G(y) x S(y) rooted at
an unmatched node r. If T becomes an Hungarian tree, i.e. the surface
graph does not contain an augmenting path P rooted at r the dual solu­
tion is successively altered to y' such that !v! and y' are compatible and
the Hungarian tree can be grown in the new surface graph.

Thus, if the alternating tree T grown in G(y) x S(y) becomes a Hun­
garian tree we add a nonnegative value E to the dual variable Yv for all
outer nodes/ pseudonodes and we subtract Efrom Yv for all inner nodes/
pseudonodes, i.e. we set

, = {Yk + E for k ~uter (pseudo-)node in G(y) x S(y) (3.20)
Yk Yk - E for k mner (pseudo-)node in G(y) x S(y).

The constant E is chosen as large as possible subject to the constraint
that the complementary slackness conditions are fulfilled after the dual
change, i.e. (M, y') is a compatible pair. We determine

El := min {~,jl edge (i,j) joins an outer node to a node not in T},

E2 := min {~j /21 edge (i, j) joins two outer nodes} ,
E3 := min {YR IVR is an inner pseudonode} ,

and we set E:= min{El,E2,E3}.

If E= El, then after the dual change T can be grown by a new tight
edge, if E = E2, adding the tight edge determining E2 to the tree creates
an odd cycle C which has to be shrunk into a pseudonode. If E= E3, then
after the dual change an inner pseudonode VR has received a zero dual
value and the outermost blossom R represented by VR can be expanded.
In any case we then try to grow the alternating tree in the new surface
graph G(y') x S(y').
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From this description it becomes apparent that the blossom-algorithm
can be categorized as primal-dual method and extension of the so-called
Hungarian method for solving the assignment problem to the non-bipartite
case (d. Papadimitriou and Steiglitz [1976]) and there are two central
routines to be combined:

• a routine for finding augmenting paths and

• a routine for updating dual solutions.

Analyzing different implementations and approaches for finding opti­
mal matchings Derigs [1988a] showed that the determination of"shortest
augmenting paths" can be identified as the driving concept for all com­
binatorial approaches either explicitly or implicitly. Thus, it turns out
that every augmenting path in a subgraph G(y) is a shortest augmenting
path. Because of this fundamental property the relationship between
(shortest) augmenting paths in G and (shortest) augmenting paths in
G x S(y) is summarized in the following proposition. For a proof see
Derigs [1981a].

Proposition 3.1 Let (M, y) be a compatible pair with Ms the match­
ing in G x S(y) induced by lVI. Then the following properties hold:
(i) Any alternating cycle Cs in G x S(y) induces an alternating

cycle C in G with l (C) = r (C).
(ii) Any augmenting path Ps connecting two unmatched nodes i

and.j in G x S(y) induces uniquely an augmenting path P in G con­
necting i and j with l (P) = f (P) + Yi + Yj'
(iii) Let P be an augmenting path in G which is induced by an

augmenting path in GxS(y) and for R E S(y) let PR;= E(R)nE(p),
i.e. the subpath of P contained in R, then f (PR) = o.

Thus, if the shortest M-augmenting path in G is induced by an lV/­
augmenting path in the surface graph, then it can be found by deter­
mining the shortest M-augmenting path in G x S(y) with respect to the
reduced cost ~j' Note that in the shortest augmenting path algorithm of
Derigs [1981a] all compatible pairs (M, y) fulfill the additional property

M n 8(i) = 0 => Yi = 0 for i E V

and thus, in proposition 3.1 (ii) we obtain the relationship l(P) = I(p).

Now for all edges the reduced cost c;j are non-negative and c;j = 0 for
matching edges. And thus, we obtain

l(P) = I(p) = L Cij

(i,j)EP
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and we can apply Dijkstra-like labeling methods for finding the shortest
alternating path in the surface graph.

However, the shortest !vI-augmen~ing path in G does not necessarily
be induced by an augmenting path in G x S(y). The matching algorithm
must be able to, first, detect whether this might be the case and, second,
overcome this situation. The following proposition gives a method to
control this situation.

Proposition 3.2 Let P be an M -augmenting path in G which is not
induced by an augmenting path in the surface graph but which is induced
by an augmenting path in G' = G x (S(y)",,-R) , i.e. the graph obtained
by expanding an outermost blossom RES then

l (P) = [ (P) + 2YR

For a proof see Derigs [1981a].
We say that the augmenting path P is hidden in the pseudonode VR.

Thus, as long as growing the alternating tree in G x S(y) guarantees
to find an augmenting path the length of which does not exceed the re­
duced cost length of an augmenting path hidden in a pseudonode vR by
more than 2YR, the shortest path found in G x S(y) will also induce a
shortest augmenting path in Go.

In Derigs [1981a], [1988a] a Dijkstra-like labeling method for con­
structing minimum cost perfect matchings via constructing a sequence
of compatible pairs and augmenting paths with respect to the extreme
matchings is described in detail (and FORTRAN-codes are given in
Burkard and Derigs [1980], and Derigs [1988b]). The labeling method
assigns two distance-labels to nodes giving the length of (shortest) al­
ternating paths of odd and even length from a root node, respectively,
and maintains control variables which indicate the possibility of the exis­
tence of shorter candidate paths which are presently hidden in the surface
graph.

Ball and Derigs [1983] demonstrate that this procedure can be in­
terpreted as an implementation of the primal-dual/blossom algorithm
where the possibly many dual updates within one augmentation phase
are comprised to one single dual update performed after the augmenta­
tion and the distance labels are the aggregation of the E-values of the
dual changes that have been postponed.
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Conversely, the blossom algorithm can be interpreted as a shortest
augmenting path method. Yet the problem of finding such a shortest
augmenting path is reduced to a sequence of "easier" problems, Le. to
decide whether any augmenting path in G x S(y) exists. Such a reduc­
tion is the common philosophy in so-called primal-dual algorithms.

6. MATCHING ALGORITHMS:
IMPLEMENTATION ISSUES

A first and rather straightforward implementation of the blossom al­
gorithm leads to a complexity of O(1V12 IEI). A first improvement to
O(1V13 ) based on a more efficient data-structure for storing the blos­
soms and managing the augmentations and dual changes was given by
Lawler [1976]. Using more involved data structures and concepts like
scaling the cost coefficients the time bound could be further reduced by
Gabow [1990] to O(IVI(IEI + IVlloglVl)) and to
o (lEI log (IVI .N) JIVI· a (1Vi, lEI) log IVI) by Gabow and Tarjan
[1991] with N the magnitude of the largest edge cost and a(n, m) the
inverse of the Ackermann function introduced by Tarjan [1983].

For the Euclidean matching problem in which the nodes of the graph
are given as points in the plane and the cost of an edge (i, j) is defined
to be the distance between i and j, Vaidya [1989] showed the complexity
ofO(IVI5/ 2 (log 1V1)4).

According to our knowledge these very refined implementations were
never materialized into machine-executable codes and tested on (large
scale) instances.

Parallel to the development of implementations with improved the­
oretical complexity several researchers have focused on the "practical
performance" of matching algorithms and have developed a bundle of
techniques, heuristics, tricks etc. to reduce the running time of match­
ing codes enabling the solution of rather large instances and thus, proving
that matching is indeed a well-solvable class of combinatorial program­
ming.

In this section we focus on this aspect and present some of these ap­
proaches. Some enhancements were developed and evaluated for the spe­
cial case of the Euclidean matching problem and thus, their applicability
is limited, i.e. their generalization and their computational advantage
for arbitrary graphs remains questionable.
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In the following we describe several key-components which have shown
to be significant time savers in several independent studies. These com­
ponents or enhancements may be applied simultaneously, but then their
combined behavior may be difficult to analyze and will depend on the
special instance - euclidean/ non-euclidean graph, size of the graph, range
of the cost-coefficients etc. So far, no single combination has shown to
be dominating the other, but one can say that besides the use of an effi­
cient basic data-structure for handling blossoms and augmentations the
use of some of these enhancements is necessary to be able to solve large
instances in reasonable time. The enhancements which we describe in
the remainder of this section concern

• the choice of the initial (extreme) matching,

• the organization of the dual changes, and

• the adaption of concepts used for solving large scale linear pro­
grams, i.e. the strategy to determine optimal matchings for sparse
subgraphs and use outpricing and reoptimization.

6.1. START PROCEDURES:
CONSTRUCTING THE INITIAL
EXTREME MATCHING

The blossom algorithm and hence the shortest augmenting path method
can be initialized with any compatible pair (M,y). Here a trivial start
would be to choose lvI = 0 and y == O. Yet, obviously the quality of
the initial pair (M, y) has significant influence on the computational ef­
fort, i.e. the running time for identifying and performing the remaining
augmentations. Such a "good" initial pair is usually constructed in a so­
called preprocessing phase. While early implementations of the shortest
augmenting path method like the SMP-code given in Burkard and Derigs
[1980] were focussing on producing initial compatible pairs (M,y) with
a matching of large cardinality IMI and were ignoring the importance
of a "good" y-vector, recent applications of the shortest augmenting
path labeling method in connection with results on postoptimal analysis
demonstrated the importance of a good pair (lvI, y). Note that given a
dual solution y with ys = 0 for S E S any matching M ~ E(y) can be
used to form an initial compatible pair (M, y).

The SMP-code presented in Burkard and Derigs [1980] uses a greedy­
like routine to determine an initial compatible pair (M, y) which can be
described by the following high-level language program assuming V =
{I, ... ,n}:

procedure SMP-Start
Let M := 0 and y == 0
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For i = 1 until n
if i unmatched do

begin
set 8 := min{Cij - Yjl(i,j) E E}
if exists jo unmatched with Cijo - Yjo = 8 set lVI:= M U (i,jo)
set Yi := 8
end

The above method constructs a matching !vI and simultaneously a dual
solution Y with the property that M is saturated in E(y). M need not
be a maximum cardinality matching in G(y). Yet, computational tests
have shown that constructing a maximum cardinality matching Ai' in
G(y) by augmentation of M and then starting the blossom-algorithm/
shortest augmenting path method with (lVI', y) does not pay.

Another more efficient start procedure based on solving the so-called
fractional matching problem first has been developed by Derigs and Metz
[1986a].

Any basic solution of the linear system (3.2) and (3.4) is called a (per­
fect) fractional matching of G. The following theorem (Balinski [19T2j)
describes the combinatorial nature of fractional matchings.

Theorem 3.6 For a perfect fractional matching let Ex := ({e E EI
X e > O}). Then x is (0,1, 1/2)-valued and the components of the sub­
graph G' = (V, E (x)) are either a pair of nodes joint by an edge or an
odd cycle.

Given a perfect fractional matching x, let E1(x) := {e EEl Xe = q
then El(X) is a matching in G. Moreover for any odd cycle component
(Vk, Ek(X)) ofC' we have Xe = 1/2 for e E Ek(x) and we can easily obtain
a matching lVIk ~ Ek(X) of cardinality (lVkl-1)/2 leaving arbitrarily one
node v E Vk unmatched. Thus, any fractional matching x gives raise to a
(non unique) matching lVI(x) with E1(x) ~ M(x) ~ E(x) of cardinality
1V1/2 - c(x) where c(x) is the number of odd cycle components of C'.

Now consider the linear program (fractional matching problem, FMP):

min{c'xl x fulfills (3.2) and (3.4)}

then the following proposition holds:

Proposition 3.3 Let x be an optimal perfect fractional matching in G
and let y EmlVl be a complementary dual solution. Then any matching
M ~ E (y) is an extreme matching in G and (M, y) is a compatible pair.
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Note that E(x) <; E(y). Thus, a compatible pair (M, y) with IMI =
1V1/2 - c(x) can easily be obtained from an optimal perfect fractional
matching x.

FMP can be solved by any linear programming algorithm. Yet, FMP
has a special combinatorial nature, which allows to apply more efficient
special purpose algorithms. FMP is equivalent to a perfect matching
problem (assignment problem) in a bipartite graph G = (V', V", E) re­
lated to G. This graph is obtained in the following way: Split each
node v E V into two nodes Vi, v". Split each edge (v,w) E E into edges
(Vi, w") and (Wi, v"). Let x be the incidence vector of a perfect matching
1'v1 in G then the associated perfect fractional matching x in G is given
by xv,w = (xv',w" + xw',v" )/2. Setting Cv',w" := Cw',v" := Cv,w/2 we get
C'x = c' x and hence the optimal perfect matching in Gwith respect to c
induces an optimal perfect matching in G.

Now let x be the incidence vector of an optimal perfect matching in
G and y an optimal (complementary) dual solution, i.e.

- - < - r (' ") E-Yv' + Yw" _ cv',w" lor v, w E

Yv' + Yw" = cV',w" if xV',w" > O.

Note that with x also x with xV',w" := xW',v" induces an optimal perfect
matching IV! in G and y is also complementary to x. Thus, setting

Yv := (Yv' + Yv" )/2

we get

Yv + Yw :s Cv,w for (v,w) E E
Yv + Yw = Cv,w if xv,w > O.

Hence y is an optimal dual solution to FMP which is complementary to x
and thus, (M(x), y) is a compatible pair for any matching M(x) <; E(y).

FMP can be solved by the same concepts as the original non-bipartite
matching problem, i.e. the primal-dual Hungarian method/ shortest aug­
menting path method (cf. Derigs [1985]). For solving large scale assign­
ment problems the application of the" Price and Reoptimize" -approach
has shown to be highly efficient (d. Derigs and Metz [1986b]).

6.2. ORGANIZATION OF DUAL UPDATES
A dual update is necessary if the surface graph does not allow a per­

fect matching, i.e. for at least one unmatched node r the search for
an augmenting path fails. In the so-called tree-implementation we pre­
specify the unsaturated node r beforehand and update the duals of the
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tree nodes whenever the single alternating tree rooted at r becomes an
Hungarian tree. In the forest-version we simultaneously grow alternat­
ing trees from all unmatched nodes and update the duals of all nodes
contained in the forest.

Using the forest version costs some overhead but usually leads to aug­
menting paths which are shorter with respect to the number of edges
in the paths. While at the beginning of the augmentation process short
augmenting paths (in the just described sense) exist for all unsaturated
nodes and therefore the tree-version has some advantages, the strategy
to grow only single alternating trees for the last augmentations makes
the tree version inferior to the forest-version.

This experience and argumentation has to be viewed under the ad­
ditional aspect that, when using the special start procedures described
above, on the average 95% of the nodes are already matched when enter­
ing the blossom algorithm/ shortest augmenting path method and thus
the forest-version can be expected to work faster.

Also, for the shortest augmenting path implementation of the blossom
algorithm the overhead of the forest-version is reduced, since applying
the shortest path labeling method can be viewed as aggregating and
postponing dual-updates until the point of augmentation.

Cook and Rohe [1998] have developed a so-called "variable t-approach"
for the forest-version where each alternating tree Ti has its own dual
change ti. This technique proved to be superior to the standard tree­
and forest-version for the Euclidean matching problem, when applied in
combination with the "Price and Reoptimize"-approach (d. section 6.3),
i.e. the dual change logic was applied to rather sparse graphs.

6.3. PRICE AND REOPTIMIZE
The strategy to compute an optimal solution to a sparse subproblem

first and then to use duality to check optimality and control a process
of introducing variables is a standard linear programming technique for
solving large problem instances.

This approach has motivated the very successful principle for solving
large structured, highly constrained problems called (delayed) column
generation. The application of this idea to solving MP was first proposed
by Grotschel and Holland [1985] as key issue in their facet-generating ap­
proach, as well as by Derigs [1986] in a shortest augmenting path based
"primal approach".
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The basic idea is as follows:
Price and Reoptimize-algorithm

Step 1 Select a sparse working subgraph G' = (V, E') of G, i.e. E' ~ E
Step 2 Construct an optimal pair (M,y) in G'

(using a matching code for sparse problem instances)
Step 3 Calculate the reduced costs of the edges in E \ E' with respect

to y if all of the reduced costs are nonnegative then STOP
((M, y) is an optimal pair in G)
else goto 4
(NI may not be optimal in G)

Step 4 Select E- (a subset) of the edges having negative reduced cost,
set E' := E' u E-

Step 5 (Re)solve the matching problem over G' = (V, E') and goto 3.

When implementing this approach the following questions arise:

1 Which subgraph should be selected for initialization in Step 1,

2 which matching algorithm/ code should be used to solve the initial
matching problem in Step 2,

3 how can the outpricing in Step 3 be performed efficiently,

4 which subset E- of edges not pricing out correctly should be in­
troduced into the working subgraph in Step 4, and

5 how can the reoptimization in Step 5 be performed efficiently?

ad (1) The general scope is to construct an initial subgraph with only
small computational effort which is very sparse and at the same time has
a high potential of containing an optimal perfect matching. Approaches
that have shown to be effective choose the k-nearest graph consisting of
the k least costly edges meeting each node plus the edges in the initial ex­
treme matching obtained from solving the fractional matching problem
(Derigs and Metz [1991]) or the k edges of least reduced cost with respect
to the dual solution for the fractional matching problem meeting each
node (Applegate and Cook [1993]). For the special case of the Euclidean
matching problem choosing the edges of an approximate Delauny trian­
gulation of the set of points has been proposed by Cook and Rohe [1998].

ad (2) Since the initial graph is rather sparse, special implementa­
tions of the shortest augmenting path algorithm which take into account
this sparsity in the data structures for storing the graph, in the pro­
cedures (priority queues) for scanning nodes during the shortest path
computation etc. should be used.
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ad (3) In the outpricing step we have to calculate

C7.j := Gij - Yi - Yj - L YR

R:(i,j)E8(R)

for edges (i, j) not contained in E'.
Here it is essential to be able to identify for a node i all blossoms which

contain i and are presently shrunk. Thus, the efficiency of calculating
the reduced costs depends strongly on the efficiency of the data-structure
for managing the nested family S (y) = {R I YR > o}. Let

sum(i) := Yi + L YR for i E V, then
RiER

~j := Gij - sum(i) - sum(j)

is an underestimate for the reduced costs C7.j of edge (i, j) which is easier
to compute than C7.j and we only need to price out correctly those edges
for which ~j < o.

Derigs and Metz [1986b] and Metz [1987] developed a special analysis
of the dual solution reducing the number of superfluous outpricing oper­
ations. Applegate and Cook [1993] and Cook and Rohe [1998] describe
similar techniques to reduce the effort for identifying critical edges, i.e.
edges which might not price out correctly in the case of Euclidean match­
ing problems.

ad (4) Identifying the edge (i,j) t/:. E' with minimal reduced cost
and introducing this edge into E' if the reduced cost is negative, is in
some sense equivalent to the standard Dantzig-rule for controlling the
pivoting process in the Simplex method. Obviously, the determination
of this edge is rather costly. The special structure of the matching prob­
lem motivates another strategy:

Let node rEV be fixed and Er := min {crj I (r,j) E E} then intro­
ducing the edge defining Er into E if Er < 0 and resolving the matching
problem using the updating technique described in (5) makes every edge
in b(r) feasible, i.e., without being introduced into the working graph
explicitly all edges (r,j) E E are dual feasible after resolving the match­
ing problem.

Consequently, investigating b(r) for rEV in a round-robin fashion
and enlarging E by subsets of the complete neighborhood b(r) if Er < 0
and then starting the reoptimization has shown to be quite efficient,
since the working subgraph stays rather sparse throughout the whole
procedure. Please observe that an edge that has priced out correctly in



126 ARC ROUTING

one iteration may become infeasible in later iterations. Thus, in order
to prove optimality, this procedure has to encounter a sequence of IVI
consecutive phases where for each node l' that is fixed all edges in b(r)
price out correctly.

ad (5) Constructing the optimal matching in the modified subgraph
C' can be performed "from scratch" and this may certainly be recom­
mendable if the number of edges introduced after performing the out­
pricing step is relatively large. Yet, if this set is small or has a special
structure, for instance it contains only edges meeting a common node,
then reoptimization, i.e. modifying the non-optimal perfect matching
via negative alternating cycles should be preferable.

Here, in a first step the new edges from E- have to be inserted into
the existing solution, that is we have to construct a modified dual solu­
tion such that 'Cij 2: 0 for all edges in C'. Derigs [1982] and Ball and
Derigs [1993] have demonstrated how this can be accomplished by the
standard shortest augmenting path labeling method if successively sub­
sets E-(r) := E- n8(r) of edges meeting one node, l' say, are introduced
into C'.

Assume that (1', t) E M. If l' is shrunk into a pseudonode, we force l'

into the surface graph (cf. Theorem 3.5), i.e. in a first step the dual so­
lution is modified such that all hypomatchable sets containing l' receive
zero dual value. This can be obtained by adding two artificial nodes a
and band two artificial edges (a, 1') and (t ,b) with sufficiently large costs,
setting Ya = Yb = 0 and using the shortest augmenting path method to
find the shortest augmenting path starting at node a. The only existing
augmenting path P is hidden by the pseudonode containing l' and has
to use edge (t, b). Since we made this edge expensive enough, P can be
"detected", i.e. P can become part of the alternating tree rooted at a
only after all pseudonodes containing l' have been expanded and l' has
been forced into the surface graph. Now we delete the artificial nodes
and edges and we perform the dual update to obtain a new dual solution
y.

If l' is not shrunk into a pseudonode (anymore), we set M := 1\1[ \

{(r, t)} and we simply modify the dual variable of node l' by a suffici,;ntly
large t:l > 0 such that Crj 2: 0 with respect to y' for all edges in 8(1'), i.e.
we calculate

t:l := min {Cr,j I (r,j) E E-(r)}
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Augmenting path connecting nodes a and b
is hidden in two pseudonodes

Pseudonodes containing node, have been expanded
=> dual of node, can be modified

Figure 3.8 Expanding the pseudonode containing node r through SAP-steps.

and we set

._ {y~ + b.. for i = r
Yi.- I

Yi else

Now we could basically insert all edges meeting r, i.e. the set 8(r), into
G' and (lvI,y) is a compa,tible pair in the enlarged graph, too.

After scanning the subset E-(r) we can either scan another sub­
set, E-(s) say, or start reoptimization immediately by constructing the
shortest augmenting path from node r. With both approaches we main­
tain the condition that throughout the whole procedure a. compatible
pair (lvI, y) is at hand and thus, the shortest augmenting path method
can be used for reoptimization.

It is apparent that the choices for (4) and (5) are related. Thus, suc­
cessively pricing out the neighborhood of the nodes and reoptimizing
immediately has shown to be highly effective.

Cook and Rohe [1998] have introduced the concept of careless repairs.
In contrast to the method just described each pseudonode containing
node r is expanded and matching edges meeting those pseudonodes are
eliminated from the matching. Thus results in a graph having a greater
number of unmatched nodes compared to our approach described be-
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fore. Cook and Rohe [1998] have shown that for the Euclidean match­
ing problem applying careless repairs in combination with the variable
E-approach is outperforming our reoptimization procedure significantly.
Yet, they also experienced that for large Euclidean instances the time
necessary for completing their non-perfect matching was close tO,the time
for computing the perfect matching from scratch.
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1. INTRODUCTION: EASY AND HARD
PROBLEMS

The majority of arc routing problems can be viewed as variants of the
classical Chinese Postman Problem (CPP). Restating the generic prob­
lem, let G = (V, E) be a connected graph (undirected) with V a finite
set (the nodes) and E ~ V x V be the set of edges. In addition, we
have a real valued weight (distance) Wij 2: 0, V(i,j) E E, and a design
problem: "Construct a least distance traversal sequence of all the edges
in E starting at and returning to the same node." This is in essence
the Chinese Postman Problem as posed by Meigu Guan (Mei-Ko Kwan)
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in 1962, in the Chinese Mathematics journal which is the main reason
why we refer to this problem as the CPP. The historical overview of
arc routing and variants of CPP are eloquently described by Eiselt and
Laporte (this book), however we examine the Guan (1962) work for its
illustration of the computational aspects when solving the CPP and re­
lated problems. As pointed out in Edmonds and Johnson (1973), the
CPP can be separated into two parts: given an arbitrary (connected)
graph G, duplicate a set of edges in E of minimal total weight to trans­
form G into 6 (an even degree graph) which admits an Euler tour (a
closed tour which traverses exactly once every edge in the graph), and
then construct an Euler tour on 6.

Since this chapter's focus is on computational complexity which clas­
sifies algorithms according to their performance characteristics, we need
to define the appropriate mathematical notation:

Definition Given a nonnegative real function f(x), x > 0,
O(f(x)) denotes the set of all real functions g(x) such that Ig(x)/f(x)1
is bounded from above as x -> 00.

D(f(x)) denotes the set of all real functions g(x) such that Ig(x)/ f(x)1
is bounded from below by a (strictly) positive number as x -> 00.

8(f(x)) denotes the set of all real functions g(x) such that Ig(x)/ f(x)1
is bounded from both above and below as x -> 00.

It is interesting to note that Guan in his 1962 paper had most of the
'ingredients' for a good solution methodology for the CPP, however, it
lacked in one important aspect. The construction of the corresponding
Eulerian tour on 6 had an exponential worst time complexity! (See Fleis­
chner, 1990, for details.) On the other hand, the Euler tour construction
procedures described by Edmonds and Johnson (1973) are dominated in
terms of time complexity by the routine required to transform G into G.
This routine has, for general undirected graphs, time complexity no worse
than O(1V13 ), and for sparse graphs time complexity of O(IEllVlloglVl)
(see Ball and Derigs, 1983). This brings us to the topic of computational
complexity and its implications for arc routing problems.

Computational complexity examines the issue of tracking the 'effort'
(as a measurable difficulty) required to generate a readable answer for a
problem which requires computations. As Johnson (1990) put it "Given
a problem, how much computing power and/or resources do we need
in order to solve it?" In this chapter we address this issue focusing on
arc routing problems. Since clearly.this is about answers generated by
computers, we need to examine the basic concepts of what a 'problem'
is, and some of the related computer science terminology, in order to
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do even a partial justice in addressing computational complexity. There
have been a number of excellent, and much more comprehensive write­
ups on this general topic (Yannakakis, 1997, Shmoys and Tardos, 1995,
Johnson, 1990, Johnson and Papadimitriou, 1985, Garey and Johnson,
1979). This chapter is less comprehensive and less formal.

Following Yannakakis (1997), and Johnson (1990), we define a general
computational problem as follows: Given that "{O, 1}*" represents the
set of all finite strings over the alphabet of {O, I} (any finite alphabet can
serve the same purpose), a problem II has a set Dn of strings in {0,1}*
representing the domain of the problem instances, and for each x E Dn
there is a set An(x) of strings in {0,1}* representing the corresponding
possible acceptable answers for the instance x.

This technical definition of a computational problem is rich enough to
represent all the combinatorial optimization problems of interest. For in­
stance, one can easily describe any graph in the form of a finite string in
{O, I}, and the same statement holds for any answer to a graph problem.
Even though a number of different string representations are available for
graphs, such as adjacency lists or incidence matrices, all such representa­
tions, if reasonable (not artificially padded), are related in the sense that
a length of one string representation is bounded by a polynomial in the
length of the other string representation. Thus, the choice of particular
string representation is immaterial in practically all cases. An algorithm
(i.e., a formally specified step by step sequence of 'actions' or 'moves')
solves problem II if it represents a mapping from Dn to An U 0 (takes
the value 0 in case there is no answer).

Computational problems can be categorized in relation to the size of
the output sets An(x). A search problem is a problem for which the set
An(x) can have zero, or any positive number of elements. If An(x) is
nonempty for all x E Dn, the problem is defined as total, and if the set
An(x) has at most one member for all x, it is called functional. Decision
problems are a special case of total functional problems and combinato­
rial optimization problems are a special case of search problems where
for each instance x E Dn there is a finite set of solutions and every solu­
tion has a cost. I.e., if i is a solution for x E Dn, we have a cost fn(i, x)
associated with this x.

Computing power or computing effort is measured in the context of
machine computation models. Van Emde Boas (1990), describes machine
computation models and the relations of time and space complexity of
algorithms based on such machine models. The equivalence of the differ­
ent machine models is due to the fact that (quote from the above) "each



136 ARC ROUTING

computation in one formalism can be simulated by a computation in the
other formalism." and most importantly, "a problem is unsolvable in one
particular model, then it is also unsolvable for all other formalized com­
puting devices to which this particular model is related by mutual simu­
lation." Thus, theoretical computer science has embarked on the path of
examination fundamental questions relating machine models and compu­
tational problems. One can perhaps say that this started with the classes
of problems denoted as P and NP, where P is the class of (decision)
problems solvable in polynomial time by deterministic Turing machines
and NP the class of (decision) problems solvable in polynomial time by
nondeterministic Turing machines. Since these are machine-dependent
definitions, computer science advanced the following two theses to set up
complexity classes which are examined in machine-independent context
(taken from Van Emde Boas, 1990).

Invariance Thesis: 'Reasonable' machines can simulate each other within
a polynomially bounded overhead in time and a constant-factor overhead
in space.

Parallel Computation Thesis: Whatever can be solved in polynomially
bounded space on reasonable sequential machine model can be solved in
polynomially bounded time on a reasonable parallel machine, and vice
versa.

Though no precise definition of 'reasonable' machine is usually given,
the basic premise is that such machines are unable to do an unrealistic
amount of computation in one step, such as being able to add numbers
of length 2n in one step.

In order to make the categorization of the most important two classes
of problems in this chapter P and NP even more clear, we cite a theo­
rem by Cook (1971) which states the following:

Theorem 1: Let D be a decision problem. Then the following are
equivalent.

i) D has the succinct certificate property.

ii) D is solvable in polynomial time by a nondeterministic Turing ma­
chine.

iii) D is transformable to INTEGER PROGRAMMING.
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More formal definitions of the terms above, such as 'decision problem',
'succinct certificate property', and 'INTEGER PROGRAMMING', will
follow below. .

Is P = NP? In a chapter on computational complexity for arc routing
problems one still has to state this fundamental open question about the
power of deterministic machines to solve in polynomial time problems
solvable in polynomial time by nondeterministic machines. We clearly
do not intend to address this question here. It is just stated for com­
pleteness.

We restrict our complexity discussions mainly to theNP class of prob­
lems. Even for this class we restrict the discussions further by limiting
the problems to decision problems only. For that we follow the defini­
tions from Johnson (1990), where first a function is defined as a string
relation in which each string x E {O, 1}* is the first component of pre­
cisely one pair, and a decision problem is defined as a function in which
the only possible answers are "yes" and "no".

A language is defined as any subset of {O, I}* and a decision problem
RL corresponding to the language Lis {(x,yes): x E L }U{ (x,no): x tJ. L}.
If L is a language, then its complementary language is co-L = {O, l}*-L.

A problem instance is a string (of°and 1 elements) and a size of an
instance I is represented by the number of symbols it contains. Since we
have related all reasonable computing machines by the Invariance The­
sis, we can now restrict the measure of a computational effort to the time
requirement for solving a problem instance I in terms of the worst-case
time over all instances with the number of symbols III (the length of the
instance). We have already used this measure in our introduction to the
CPP by stating that the time complexity of the undirected CPP is given
by (O(1V13).

The class P of problems contains all the so called 'easy' problems
(solvable in polynomial running time). It is important to note that the
Linear Programming problem is a member of the P class. The Lin­
ear Programming problem is said to be the hardest problem in class P
(Johnson, 1990).

Following Johnson and Papadimitriou (1985), we will formalize the
term succinct certificate property first. A succinct certificate for a given
decision problem is a string in {O,l}* whose length is bounded by a
polynomial in the instance length. A polynomial-time certificate check­
ing algorithm is an algorithm which, given such a succinct certificate,
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can verify whether the certificate is indeed valid. Also, all 'yes' instances
of our decision problem have to possess at least one such certificate,
and no 'no' answer can have it. What is important to note is that
given a certificate for 'yes' it can be validated or discarded quickly (in
polynomial- time).

Stating it a little differently, a decision problem D is said to possess the
succinct certificate property if and only if there is another polynomial­
time solvable decision problem C over the domain of instances of D and
certificates for such instances ('short' strings in {0,1}*) such that the
problem instance warrants the answer "yes" if and only if the corre­
sponding instance for C warrants the answer "yes".

An INTEGER PROGRAMMING problem can be formally presented
in the following way:

INTEGER PROGRAMMING
Instance: An m x n integer matrix A = (aij), an m-vector b = (b1 , b2 , ...

,bm ) of integers.

Question: Is there an n-vector of nonnegative integers x such that
Ax = b?

In terms of the three different though equivalent characterizations of
the NP class presented in Theorem 1, we have described (i) and (iii).
For a formal definition of nondeterministic Turing machine the reader is
referred (among many others) to Van Emde Boas (1990).

The question with which this chapter will be concerned the most, is
how to establish problem membership in a given class of problems. The
'tools' more frequently used to address this question are those of reduc­
tions. More specifically, in this chapter we restrict the reductions to
polynomial-time reductions (or Turing reductions).

A reduction process can be defined with the help of a familiar algorith­
mic concept of a subroutine or more formally an oracle (or a call state­
ment). This polynomial-time reduction construct relates polynomial­
time solvability for problem X by employing an oracle (a subroutine) for
problem Y. That is, problem X is polynomial-time reducible to problem
Y if there is a polynomial-time solution for X which uses a subroutine
for Y and counts the execution time for the subroutine as a single time
unit (or a single step).
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Clearly, if problem X is polynomial-time reducible to Y, and prob­
lem Y is solvable in polynomial time, then so is problem X (transitivity
of polynomial-time reducibility). As Johnson and Papadimitriou (1985)
state, essentially there are three kinds of reductions: (a) reductions that
prove a problem easy by reducing it to a known easy problem, (b) reduc­
tions that prove a problem hard by reducing some known hard problem
to it, and (c) reductions which prove nothing by reducing one problem
of unknown type to another problem of unknown type.

This brings us to a point in this somewhat coarse exposition of com­
plexity theory where we need to define the concept of completeness.

Definition 1: Suppose X is a decision problem and all the problems in
the class NP are polynomial-time reducible to X. Then X is hard for
the class NP (under the polynomial-time reduction). If the problem X
is also a member of the class NP, then the problem X is complete for
NP, or NP-complete under polynomial-time reduction.

Another definition of NP-complete problem, which does not mention
polynomial-time reducibility, is based on the notion of a transformation
from one decision problem to the other. More precisely, if X is a string
relation (a decision problem) and Y is a string relation (another deci­
sion problem), a transformation is defined as a computable function f
by DTM from {O, I}" to itself such that a problem instance I of X has a
"yes" answer if and only if f(I) has a "yes" answer as a an instance of Y.

Definition 2: A decision problem is NP-complete if is complete for NP
under polynomial transformations.

For the NP class of problems it is conjectured that both definitions
of NP-completeness, one based on polynomial-time reducibility and one
based on transformation from one problem to the other, are the same.
However, it is not clear if this holds also for other classes of problems
(Johnson, 1990). We assume here that both definitions are equivalent
for the NP class.

At this point. one has to identify a member of the NP-complete class
of problems to establish that this class is not empty. Cook identified
the first NP-complete problem - the SATISFIABILITY problem (see
Cook, 1971).

SATISFIABILITY
Instance: List of literals U = (Ul,Ul,U2,U2, ... ,un,un), sequence of
clauses C = (Cl' C2, ... ,em), where each clause Ci is a subset of U.
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Answer: "yes" if there is a truth assignment for the variables Ul, U2, ... , Un

that satisfies all the clauses in C, i.e., a subset U' ~ U such that
lU' n {ui,udl = 1,i = 1,2, ... ,n, and such that lU' n Cil ~ 1,i =
1,2, ... ,m.

By 1979 the NP-completeness class of problems had expanded consid­
erably. Garey and Johnson (1979) list over 300 NP-complete problems
and many more problems have been added to this list since then. (For a
more recent list which includes approximability results for NP-complete
problems see Crescenzi and Kann, 1998.) However not all NP-complete
problems are equally difficult and Garey and Johnson make a distinc­
tion between two kinds of NP-complete problems. First, there are those
which can be solved by what is called a pseudopolynomial-time algo­
rithm. A pseudopolynomial-time algorithm for a problem IT is defined as
an algorithm whose running time is bounded by a polynomial if all input
numbers are expressed in unary notation. That is, a pseudopolynomial­
time algorithm will solve an instance in polynomial time provided that
the numbers in the instance are bounded by a polynomial in the input
size.

An example of a problem which can be solved in pseudopolynomial
time is the PARTITION problem. It is solvable in O(nB) time, where
B is the sum of the PARTITION numbers. Therefore the PARTITION
problem is solvable effiCiently when B is 'small'. However, the length of
a binary encoding of PARTITION is of O(n logB) order, and, as Garey
and Johnson (1979) point out, nB is not bounded by any polynomial
function in n log B.

An NP-complete problem which can be solved in pseudopolynomial­
time is said to be NP-complete in the ordinary sense. However, there are
many NP-complete problems (the SATISFIABILITY problem among
them) which cannot be solved in even pseudopolynomial-time. These
are said to be NP-complete in the strong sense.

Following Johnson (1990), a search problem II is NP-hard if for some
NP-complete problem Y there is a polynomial-time Turing reduction
from Y to IT. This implies that combinatorial optimization problem ver­
sions of NP-complete deCision problems are all NP-hard. As Johnson
(1990) points out, the NP-hard problems do not constitute an equiva­
lence class since one cannot impose an upper bound on the complexity
of NP-hard problems (because even undecidable problems can be NP­
hard). Thus, Johnson introduced the so called NP-easy class of search
problems by requiring that for such problem there be a polynomial-time
Turing reduction to a problem in NP. This enables the establishment
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of an equivalence class of search problems that are called NP-equivalent
for problems that are both NP-hard and NP-easy.

At this point we stop with the classification of complexity classes since
it has not been our intention to provide a detailed overview of complexity
theory in its own right. This has been done very well by Johnson (1990)
and others. Here we have only restated and defined the complexity
theory terminology so we can examine arc routing problems and evaluate
how hard it might be to construct optimal solutions for such problems.
We are essentially grouping the different arc routing problem as 'easy'
problems (in P) and 'hard' problems (NP-hard). We will also attempt
to provide the running-time orders when they are known.

2. CPP AS A PROBLEM IN P

One of the original problems on Karp's (1972) list of NP-complete
problems is the Hamilton Circuit problem (Input: graph G; Answer:
"yes" if G has a cycle which includes each node exactly once). This re­
sult establishes that the celebrated Traveling Salesman Problem (TSP)
is an NP-hard problem. In fact, Karp's reduction establishes that the
TSP is NP-hard in the strong sense. When we examine the CPP, it
is also clear that one can transform (in polynomial time) the CPP into
a TSP (see Mullaseril, 1996, and Laporte, 1997). However, this is not
the transformation direction one would select for an 'easy' arc routing
problem.

For examination of the CPP and related problems we need to define
a number of new terms (see also Fleischner, this book). A multigraph
has a finite set V of nodes but the set E of edges might have multiple
edges identified by (joining) a pair of nodes in V. A simple graph (or
just a graph) has no more than one edge joining any two nodes. With­
out trying to confuse the reader, sometimes we use G to denote a graph
(simple graph) and sometimes we use G to denote a multigraph. We
hope to make clear what is intended in each case. The degree of a node
v,d(v), is the number of edges incident upon v. In the case of directed
edges (arcs), the indegree in(v) (respectively outdegree out(v)), is the
number of edges entering v (respectively leaving v). An Eulerian chain
(respectively Eulerian cycle) is defined to be a chain (a cycle) that uses
each edge exactly once. This brings us to a basic theorem (dated back
to Euler, 1766) which establishes the necessary and sufficient conditions
for a multigraph to possess an Eulerian chain (or an Eulerian cycle).

Theorem 2: A multigraph G has an Eulerian chain if, and only if, it is
connected and the number of vertices of odd degree is 0 or 2.
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Berge (1973) presents a proof based on an inductive argument which
can be viewed as a constructive (algorithmic) procedure for designing an
Eulerian path or cycle when there is one.

Proving that the CPP is in P requires demonstrating that it can be
solved in polynomial-time. We have already stated this fact in the Intro­
duction, however we pursue it further by presenting a simple algorithm
which traces an Eulerian cycle on an Eulerian graph in O(IEI) time.

Eulerian Cycle Algorithm
INPUT: Eulerian multigraph C = (V, E)
Step 1: Select a node XQ E V (any node in V will do).
Step 2: Construct a 'long' cycle from XQ to itself. By 'long' it is implied
that when moving to a next node in this 'long' cycle you do not go back
to XQ if there is still another reachable node. Denote all the edges in this
cycle by E xa and all the nodes by Vxa' If E \ E xa = 0, STOP.
Step 3: Let C xa = (V, E \ Exa ) be the graph obtained by deleting all
the edges already traversed in the cycle. Select a node Xl E Vxa of degree
d(Xl) 2: 2 in C xa (any node will do). Clearly such node exists since C
is an Eulerian multigraph and there are still untraversed edges in C xa .

Repeat Steps 2 and 3 with Xi, i = 1, ...

Clearly, the number of steps in this cycle construction is no more than
O(lEI), thus the time-complexity of constructing an Eulerian cycle on a
multigraph, which is not necessarily Eulerian, is dominated by the time­
complexity of transforming any given graph into an Eulerian multigraph
by solving what is called a matching problem (see Derigs, this book).

Note that the algorithm above can be implemented almost without
change for directed multigraphs as long as such multigraph satisfies the
directed Eulerian cycle conditions which are simply stated in terms of
indegree being equal to the outdegree at each node. Transformation of a
general multidigraph into an Eulerian multidigraph can be obtained by
solving an auxiliary transportation problem over the nodes of the graph
which are unbalanced in terms of indegree and out degree. Solving this
auxiliary problem optimally (i.e., adding a least cost arc solution to ob­
tain an Eulerian multidigraph) takes no more than 0(1V13) time.

The above discussion of solutions for the CPP on undirected graphs
and the CPP on directed graphs (digraphs) subjugates the complexity
analysis for the two problems to the complexity of the corresponding
matching problem for the undirected CPP and the complexity of the
corresponding transportation problem for the directed CPP. Since the
polynomial time solvability for the matching and transportation prob-
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lems is well established (Derigs, this book) and is dominated by O(/V13),
it establishes the well known fact that the CPP in both cases belongs to
the class P.

So far we restricted our discussion to either directed or undirected
graphs (multigraphs). A more general case is that of a mixed multigraph.
This is a multigraph with some edges - undirected pair of incident nodes,
and arcs - a directed pair of incident nodes. Ford and Fulkerson (1974)
present a necessary and sufficient condition for the existence of an Eule­
rian cycle in a mixed graph (true also for a mixed multigraph), which is
stated as follows:

Theorem 3: (Ford and Fulkerson, 1974, Theorem 7.1) A mixed simple
graph G = (V; E, A) (where E is the set of edges and A is the set of
arcs) contains an Euler cycle if and only if (a) G is connected; (b) every
node of G is incident with an even number of arcs; (c) for every X ~ V,
the difference between the number of directed arcs from X to X (the
complement of X) and the number of directed arcs from X to X is less
than or equal the number of undirected edges joining X and X.

3. NP-HARD GENERALIZATIONS OF THE
CPP

In this section we examine, starting with the CPP on a simple mixed
graph, a number of a simple generalizations of the classical CPP which
are all NP-hard.

3.1. THE MIXED CPP

Given a general mixed graph G = (V; E, A) which does not contain
an Euler cycle, the mixed chinese postman problem (MCPP) is that of
constructing a cycle on G which traverses every arc and every edge of
G at least once while respecting the direction of each arc (Euler cycle
on a corresponding multigraph). This Euler cycle requirement implies
(1) transforming the graph G = (V; E, A) (by duplicating arcs and/or
edges of G) into a minimal cost multigraph G = (V; E,..4.) which con­
tains an Euler cycle, and (2) constructing an Euler cycle by assigning a
"proper" directions to the edges in E. The quandary with the MCPP
is that constructing a least cost solution for this problem in the general
case (i.e., selecting the 'optimal' traversal direction for the undirected
arcs) is known to be NP-hard (Papadimitriou, 1976).

As it is stated in Garey and Johnson (1979), the decision version for
the chinese postman problem for mixed graphs is:



144 ARC ROUTING

INSTANCE: Mixed graph G = (V; E, A), where A is a set of directed
edges and E is the set of undirected edges on V, length l(e) a nonnega­
tive integer for each e E Au E, positive integer bound B.

QUESTION: Is there a cycle in G that includes each directed and undi­
rected edge at least once, traversing directed edges only in the specified
direction, and that has total length no more than B?

Papadimitriou (1976) provides a very clever proof that the above de­
cision version of MCPP is NP-complete by transformation from 3SAT
(three satisfiability problem). We will outline below only a part of the
Papadimitriou's proof to illuminate the main idea of the proof. In ad­
dition, we present a much shorter new original proof for the above NP­
completeness result. Papadimitriou (1976) also proves that the MCPP
remains NP-complete even if all edges and arcs have equal length, G
is planar, and the maximum vertex degree is 3. We will restate these
results as well.

3.2. THE MCPP NP-COMPLETENESS

Papadimitriou's proof for NP-completeness of the MCPP is based
on transformation from 3SAT in which he first provides a mixed graph
representation for each variable in a 3SAT problem instance. Figure 4.1
(the unmarked arcs have a cost of 1 each) presents a special mixed graph
for which an optimal chinese postman solution has a cost of 2 (on top of
the sum of costs of individual edges and arcs added exactly once). This
can be proven by enumerating all possible orientations for the undirected
edges. In addition, in any optimal traversal of this graph "either both
edges (0,1), (0,3) enter °and both edges (0,3), (0,4) leave 0, or vice
versa." (Papadimitriou, 1976). This essentially establishes the option of
assigning the value°or 1 to each variable in 3SAT instance and obtain­
ing the optimal traversal path corresponding to such an assignment by
either entering into node "0" or out of node "0". This optimal traversal
result for the graph in Figure 4.1 carries over to the Figure 4.2 (a) graph
and its symbolic representation in Figure 4.2 (b). The claim is that if a
mixed graph contains m copies of the graph C, and each copy represents
one occurrence of a variable in 3SAT, then the optimal traversal of such
graph will have a cost of at least 2m (above the constant traversal cost
when counting each edge and arc once). The other important details for
constructing the appropriate mixed graph by connecting copies of the C
graphs for each instance of 3SAT are outlined in Papadimotriou (1976).
What is clear is that this is a polynomial transformation in terms of the
number of steps and that the MCPP is a member ofNP class. However,
when examining the details of this transformation, it calls for an optimal
MCPP solution each time a variable is 'traversed'. The number of such
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calls equals to the number of variables in the 3SAT instance. Thus, this
proof of NP-completeness perhaps might be more appropriately clas­
sified as a proof by polynomial time reduction. For more details see
Papadimitriou (1976).

Figure 4.1 YIixed graph representing each variable in the 3SAT.

It has already been noted in the original proof of Papadimitriou (1976),
the transformation of an NP-complete (3SAT or the CO) problem to an
instance of MCPP requires only two different costs for the arcs and edges
of such MCPP instance. Thus, restricting the arc costs to be either 0
or 1 does not make the MCPP any easier. But an even· more restric­
tive version of the MCPP is NP-complete. In Papapdimitriou (1976),

(a)

1

I'

c

(b)

2

2'

Figure 4.2 Symbolic mixed graph representation of each variable in the 3SAT.
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it is proven that the MCPP remains NP-complete even if the underly­
ing graph is planar with total degree of nodes at most 3 and cost of all
edges equal to 1. This is accomplished by modifying the MCPP instance
obtained from the 3SAT transformation to admit planarity conditions,
costs of 1 only, and node degrees which do not exceed 3.

Related to the MCPP is the problem called the Minimum Eulerian
Graph (MEG) problem. This problem can be stated as follows: Given
a mixed graph G = (V; E, A), find a minimal cardinality multiset D
of arcs such that the multigraph (; = (V; E, A U D) is Eulerian. Since
the emphasis in the MEG is on the cardinality of the multiset D, this
problem can be expressed in terms of finding cardinality matching on an
appropriately constructed bipartite graph. This task of finding cardinal­
ity set D can be accomplished in polynomial time (Derigs, this volume,
and Papadimitriou, 1976). Clearly, the algorithm for MEG can be used
to test if there is a covering of the graph by a single chain or a circuit
(test for a unicursal graph).

For the sake of completeness, we also include an integer programming
(IP) formulation for the MCPP problem based on the formulation given
in Ralphs (1993) (see also the IP formulations in the chapters of this
book by Eglese and Letchford, and by Benavent, Corberan, and San­
chis).

Let Ya be the number of additional copies of each arc a E A and denote
by Ai and Ar the sets of opposite directions for an orientation of each
edge e E E. One must choose one orientation for each edge. Let u~

and Y; denote the first orientation of e and the additional copies of this
orientation respectively. Similarly for u!,yt. I (i) and O(i) denote the
arcs directed into or out of node i.

minL Ca + L caYa + L ceu! + L ce'u~
aEA aEAUAfuAr aEAf aEAr

subject to

U! + u~ ~ 1, 'lie E E,

Xa = 1 +Ya,'lia E A,

X a = u! +y!,'lie E AI,

Xa = u~ +Y;, 'lie EAr,

L X a - L X a = 0, 'Iii E V,
aEO(i) aEI(i)

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)
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Ya,Y~,Y~ 2: 0 and integer,Ve,a, (4.6)

u~,u~ E {O,1},Ve (4.7)

So far we have examined the notion of computational complexity and
in this context have established the fundamental result for arc routing
that the MCPP is NP-complete. In the remaining sections of this chap­
ter we examine different variants of arc routing problems and classify
them as either belonging to the NP-complete class or solvable in poly­
nomial time (i.e., in P class).

3.3. THE RURAL POSTMAN PROBLEM
A generalization of the Chinese Postman Problem introduced by Orloff

(1974, 1976) and usually referred to as the Rural Postman Problem
(RPP) can be stated as follows: Given a graph G = (V = VI U \12; E =
E I UE 2 ) (where VI are the nodes for the multiset of edges E I and V2 are
the nodes of the multiset of edges E 2 ) together with a nonnegative cost
real function on the sets E I , E2, construct a minimal cost Euler cycle
which traverses at least once the edges in E I • The edges in E2 can be
traversed if the solution so requires. The key point in the RPP is that
the subgraph induced by E I need not be connected, however the graph
G is a connected graph.

The NP-hardness of the RPP, shown by Lenstra and Rinnooy Kan
(1976), follows by a simple reduction from the symmetric TSP: any TSP
instance can be converted into an RPP instance by replacing each vertex
into two identical vertices connected by a required edge of zero cost.

However, there is a sense in which the complexity of the RPP is related
to the number of connected components in the subgraph of G induced
by E2. When there is only one such component, the RPP reduces to
the CPP, which as we have seen is well-solved. Moreover, Frederickson
(1979) suggested a recursive algorithm for the RPP which is exponential
only in the number of these components.

Note that, if the connected components in an RPP instance are 'far
enough away' from each other, then in any optimal RPP solution one
would traverse completely one component before moving to another com­
ponent. This 'Clustered Rural Postman Problem' has been recently ex­
amined by Drar and Langevin (1997), where a solution methodology is
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proposed which transforms the problem into what is called the General­
ized Traveling Salesman Problem (GTSP). The GTSP assumes that the
nodes of a given graph have been grouped into mutually exclusive and
exhaustive nodes sets and the objective is to find a minimum cost cycle
which includes exactly one node from each node set. Like the Frederick­
son (1979) approach, this algorithm is exponential only in the number
of connected components induced by E2.

One special version of the RPP with applications in manufacturing and
elsewhere is the so-called Stacker Crane Problem (SCP). In this problem
the graph G is a mixed graphG = (V, AUE), and the set of arcs which has
to be traversed is the entire set A. This problem has been proven NP­
hard using a transformation from a TSP to an instance of the SCP by
Frederickson et a1. (1978). The SCP has been addressed successfully in
the context of printed circuit board assembly under the label of directed
RPP (DRPP) (Ball and Magazine, 1988). For the integer programming
formulations of the DRPP and URPP (undirected RPP) see Ball and
Magazine (1988), Corberan and Sanchis (1994), and Assad and Golden
(1995).

3.4. THE WINDY POSTMAN PROBLEM
In the classical CPP the cost of traversing a 'street' in one direction

is assumed to be equal to the cost of traversing the same 'street' in
the opposite direction. However, if in a CPP instance there is a cost
distinction based on the traversal direction of an edge e (i.e., Cij f. Cji

for some of the edges e E E), then the corresponding CPP becomes
what is known as the Windy Postman Problem (WPP). This problem
was first considered by Minieka (1979), and subsequently proven NP­
hard by Guan (1984) by a simple reduction from the MCPP. In fact, the
CPP, the DCPP, and the MCPP, can all be considered as special cases
of the WPP. Win (1989) provides an interesting description of the WPP
polyhedron based on the following integer programming formulation for
the WPP.

min L:: (Cij + Cji)

e=(i,j)EE

subject to

Xij + Xji 2: 1, Ve = (i,j) E E,

L:: (Xij - Xji) = 0, Vi E V,
jEN(i)

Xij, Xji 2: 0, Ve = (i,j) E E

(4.8)

(4.9)

(4.10)
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Xij, Xji E {O, I}, tie = (i,j) E E (4.11)

where Xij counts the number of times the edge e = (i, j) is traversed
from i to j, and N(i) denotes the set of nodes j adjacent to node i by
an edge e = (i,j) E E.

In case the underlying undirected graph G = (V, E) is Eulerian, but
the costs of some edges are 'windy', then another related problem is
mentioned in the literature by Guan and Pulleyblank (1985). The prob­
lem asks for a minimum cost traversal of G by an Eulerian tour which
traverses each edge exactly once. Guan and Pulleyblank (1985) refer
to this problem as the minimum cost Eulerian orientation problem and
describe a polynomial time solution based on a transformation to a min­
imum cost circulation problem. Thus, the WPP on an Eulerian graph
with the condition that the solution has to be an Eulerian tour is in P.
Another case of polynomially solvable WPP discovered by Guan (1984),
is for graphs G in which the cost of a cycle (any cycle) does not change
if the direction of cycle traversal is reversed.

3.5. NON-INTERSECTING EULERIAN
CIRCUITS AND A-TRAILS IN
EULERIAN GRAPHS

If; in the course of constructing an Eulerian circuit on a graph which
is Eulerian, one asks the circuit to conform to some additional condi­
tions or restrictions, the known polynomial time bound on such a circuit
construction effort might be jeopardized. For instance consider a graph
G = (V, E) for which the edges incident to a vertex v E V have been
ordered ('modulo d(v)') in a 'clockwise' order for every such v. Two
edges are defines as neighbors at v if they are consecutive in the order.
For a planar graph G the neighbors of an edge are the edges adjacent
to it in some face of the graph. A non-intersecting path or circuit in a
planar G is defined as one in which every two consecutive edges (Vi, Vj)

and (Vj, Vk) in it are neighbors in Vj' Here we present a result due to
Bent and Manber (1987), which states that the problem of deciding if
a non-intersecting Eulerian path or circuit in a planar graph G exists
is an NP-complete problem. The reduction used by Bent and Manber
(1987) to prove this result, reduces SAT (satisfiability) to an instance
of a planar Eulerian graph in two stages. First, it uses a result proven
by Lichtenstein (1982) that for every conjunctive normal form F with
its associated graph G(F) can be converted in polynomial time to a
conjunctive normal form F' for which its graph G(F') is planar. The
proof then follows with a transformation of G(F') to an instance of a
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planar Eulerian graph for which an Eulerian circuit corresponds to the
determination of satisfiability for F' and subsequently for F. This trans­
formation is rather lengthy and we direct the interested reader to the
original paper.

Anderson and Fleischner (1995) extended the above NP-completeness
result of Bent and Manber (1987) to the problem of deciding the existence
of what are called A-trails in a subfamily of Eulerian graphs. Anderson
and Fleischner (1995) have proven a number of other complexity results
not mentioned here and outside the scope of this book since they relate
to spanning trees in hypergraphs. However, we first need to define an
A-trail.

Given a planar representation of an Eulerian graph C, an Eulerian
circuit of C is called an A-trail if and only if consecutive edges of the
circuit, say (Vi-I,Vi) and (Vi,Vi+l) are always neighbors in the cyclic or­
dering of the edges incident with Vi defined by a clockwise order in the
plane representation. This definition of an A-trail taken from Anderson
and Fleischner (1995) seems to coincide with the definition used in Bent
and Manber (1987) of a non-intersecting Euler circuit in a graph C. To
state the result of Anderson and Fleischner (1995) we need a definition
of an n-connectivity for graph C which is taken from Fleischner, (this
book).

Definition: Given two non-adjacent vertices x, y E C, the local con­
nectivity of x, y is the smallest number of vertices VI, ... ,Vk such that
C' = C - {VI, ... ,Vk} is disconnected and x, yare in different compo­
nents (connected subgraphs) of C'. A loopless graph C (no edges (v, v))
has connectivity n (is n-connected) if C contains a spanning subgraph
isomorphic to Kn+l (complete graph with n + 1 vertices).

Theorem 5 : (Anderson and Fleischner, 1995) Given a 3-connected pla­
nar Eulerian graph C having only 3-cycle and 4-cycle face boundaries, the
problem of establishing the existence of an A-trail on C is NP-complete.

The proof of Theorem 5 is based on transformation to an instance of a
3-connected planar Eulerian graph C having only 3-cycle and 4-cycle face
boundaries, from a 3-connected, planar cubic graph C', and the question
of existence of a Hamiltonian circuit on C'. Establishing the existence
of a Hamiltonian circuit on C' guarantees the existence of an A-trail on
C, and vice versa. For details of this transformation see Anderson and
Fleischner (1995), where even stronger results are obtained.
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3.6. DOMINATING TRAILS
In the previous subsection we defined a concept of an A-trail on a

graph G. In this subsection we focus on yet another arc traversal related
concept - a dominating trail on an undirected graph G(V, E). This sub­
section is based on a recent work of Agnetis et al. (1999) in the context
of coordinating machine set-ups for a two stage flow-shop scheduling in
a manufacturing application.

A trail (Fleischner, this book) is defined as a not necessary simple
circuit in G (i.e., might visit same nodes more than once but is not al­
lowed to pass through any edge more thEm once). A dominating trail Pd
is a trail in G such that each edge e E E is either a member of Pd or is
incident to a node in Pd. In this sense, a dominating trail "covers" all
the edges of E.

The dominating trail in a graph G is related to the existence of a
Hamiltonian circuit in a line graph of G denoted as L(G). The line
graph L(G) is defined as a graph whose vertex set V' corresponds to a
bijection from the edge set E, and two vertices in L(G) are joined by an
edge whenever the corresponding edges in G are adjacent. It is proven
in Harary and Nash-Williams (1965) that a graph G has a dominating
trail if and only if L(G) is Hamiltonian.

The theorem proven in Agnetis et al. (1999) and reproduced below
states that establishing the existence of a dominating trail on a bipartite
graph is an NP-complete problem.

DOMINATING TRAIL ON BIPARTITE GRAPH - (DTBG)
Instance: Given a bipartite graph B = (5, T, E) (the vertex sets 5 and
T and the edge set E).

Question: Is there a dominating trail?

Theorem 6: The DTBG problem is NP-complete.
Proof: The proof is by transformation from a Hamiltonian circuit prob­
lem on cubic graphs stated as follows: Given a 3-regular graph G =
(V, E), is there a Hamiltonian circuit on G?

The Hamiltonian circuit problem on cubic graphs is know to be NP­
complete (Garey and Johnson, 1979), and it is clear that the DTBG
problem is in NP.

Given an instance of a 3-regular cubic graph G, we obtain a corre­
sponding instance bipartite graph Gb = (5, T, E') as follows: The set
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S of vertices in Gb corresponds to the set V in G. The set of vertices
T (denoted by ve ) corresponds to the set of "mid" points of each edge
e = (i,j) E E. Now, each vertex V e E T is connected by an edge to the
corresponding i and j vertices in S. This set of edges constitutes the set
E' in Gb .

What remains is to show that if there is a dominating trail in Gb

then there exists a Hamiltonian circuit in G and vice versa. The proof
arguments are straight forward. For instance, consider a dominating
trail pd in Gb and a vertex i E S. Since there are three edges incident
to i and the three edges are "covered" by pd, the vertex i has to belong
to pd (otherwise the edges are not "covered"). Thus, all vertices in S
are on the trail pd. On the other hand, no vertex occurs in pd more
than once because the degree of each vertex is 3. Thus, the dominating
trail pd visits the vertices in S exactly once which corresponds to a
Hamiltonian circuit on C when the vertices in T are ignored. In the
other direction, if there exists a Hamiltonian circuit in G, such a circuit
leads to a dominating trail on Cd in a straight forward manner. The
optimization version of this problem is that of constructing a dominating
trail of minimal cost. Since it seems that the minimal cost dominating
trail problem has not been examined in great detail (to our knowledge),
we do not know of any approximation solutions for this problem.

3.7. PRECEDENCE IN ARC ROUTING
Consider an undirected connected graph G = (V, E) together with a

nonnegative real function C : E -. R+ which communicates the cost
of traversing an arc in E. Assume that the edges in E correspond to a
city streets in a place like "Buffalo, NY" where the winters bring a lot of
snow and the roads and streets are divided into classes of 'importance'
in terms of clearing them of snow. In terms of the graph G, this implies
class precedence for traversals. Simply stated, the major roads should
be cleared before the secondary roads, .which have precedence over resi­
dential streets, etc. A similar kind of traversal precedence occurs when
constructing a torch path in flame cutting of metal plates (Manber and
Israni, 1984). This precedence arc traversal setting was analyzed in Dror
et al. (1987), and we restate here some of the results.

Formally, let {EI , E2, ... ,EK} be a partition PK of the set of edges
E, (Ei ~ E,l :S i :S K, Ei n Ej = 0, i =1= j, Uf5:1Ei = E). Partial order
-<PK (or simply -< if the implication is clear) of the partition PK implies
that in a CPP solution for the graph C the edges in a set Ei are traversed
before any of the edges in E j if E i -< E j in -<PK' Clearly, there must
be some traversal conditions (appropriate connectivity, etc.) satisfied
for the partition PK for this to be possible. However, the precedence
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-<'PK does imply that if an subset Ei has already been traversed and one
constructs a traversal of Ej (of course E i -<. E j either immediately or
through the transitive closure of -<'PK)' then in traversal of Ej one can
reuse edges from Ei. Following Dror, et al. (1987), we denote by Fk as
the subgraph of G induced by the union of edge subsets E 1 , E2, ... ,Ek .

In this case there exists a Euler cycle on graph G which respects the
partial order of partition PK if and only if the graphs Fk , k = 1, ... ,K
are connected for 1 ::; k ::; K. In the case graph G is a directed graph,
one has to require that the sequence of subgraphs Fk , k = 1, ... ,K be
strongly connected in order to assure the existence of an Euler cycle
which satisfies the partial order PK.

In the case that the partial order -<'PK represents a chain (a set of
pairwise comparable elements) over the partition PK, and each of the
subgraphs Gi induced by the corresponding subset of edges E; is con­
nected, then the optimal Euler cycle on G which satisfies the precedence
relation -<'PK can be constructed in polynomial time (Dror, et al. 1987).
The time complexity of the polynomial time solution presented in Dror
et al. (1987) is that of O(lVI5 ) based on K-partite graph construction
which requires calls to a matching subroutine, followed by a shortest
path algorithm on that K-partite graph. In Ghiani and Improta (2000)
a somewhat different polynomial time procedure has been proposed with
time complexity of O(K3IVI3), which for values of K « 1V12/ 3) domi­
nates the procedure of Dror et al. (1987).

In the case the precedence relation -<'PK represents a general partial
order, even if the subgraphs Gi, i = 1, ... ,K are connected, to construct
a minimal cost Euler cycle on G which respects -<'PK is NP-hard. This
was proven in Dror et al. (1987) by transformation from the Traveling
Salesman Problem (TSP). The outline of the transformation for a TSP
path between nodes 81 and 82 into a chinese postman path is presented
in Figure 4.3 (a) and (b). Each node in the original graph (which a
complete graph) is replaced by two nodes and an edge connecting the
two nodes. Such an edge constitutes a single precedence class and has
a 'high' traversal cost of M. Add to this graph all edges between the
nodes in the original graph as illustrated in Figure 4.3 (b) except for the
two extreme nodes for the TSP path nodes. The cost of those edges is
the same as that in the original nodes. Now the instance of precedence
relation for edge sets is setup in such a way that the set E1 has to be
traversed first before traversing the set of edges with the costs as in the
original graph. All the other edges can be traversed in any order latter
with the edge corresponding to the 'last' node in the TSP path to be tra­
versed last. The difference between the optimal Chinese Postman path
solution between nodes 8~ and 8~ in the transformed graph given the
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Figure 4.3 The original complete graph (a) and the transformed graph (b).

precedence relation and the optimal TSP path solution between 81 and 82

is K!vI + A where A is the total cost of the arcs in the original graph.

Note however, that in the case where -<'PK represents for instance a
tree precedence relation, it is not known if the minimal cost Euler cycle
problem is NP-hard.

The Euler cycle construction in the case of directed graph G, given
a partition Pk together with precedence -<'PK' and even assuming con­
nected subgraphs Gk , k = 1, ... ,K, is less clear in terms of existence of
feasible solutions and construction of optimal solutions. For chain prece­
dence relation -<'PK and strongly connected subgraphs Gk, k = 1, ... ,K,
the polynomial procedure in Dror et al. (1987) can be extended to cover
this case. However, strong connectivity of the subgraphs might not be
necessary for the optimal solution and there is not much more we can
contribute on this.

3.8. CAPACITATED ARC ROUTING
What happens if we introduce the notion of pickup quantity (or de­

livery quantity) in the context of edge traversal? This only matters if
the traversing 'vehicle' has a finite collection (or delivery) capacity. For
instance, in the case of a directed graph G = (V, A), with pickup quan­
tity qa 2: 0 associated with each arc a E A, together with a pickup limit
ofQ > 0, the capacitated arc routing problem (CARP) is the arc-routing
analogue of the classical vehicle routing problem (VRP).



qij =
Wv =
Cij =
V=

Xijv =
Yijv =
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the demand along arc (i, j) E R <;;; A,
the capacity of vehicle v,
the distance (length) of an arc (i, j) E A, (Cij ~ 0, 'v'(i, j) E A),
the upper bound on the number of vehicles,
the number of times vehicle v traverses the arc (i, j) E A,
a binary variable which takes the value 1 if vehicle v dis­
charges the feed along the arc (i, j) E R, and takes the
value 0 otherwise.

(CARP) :
v

min L LCijXijV

(i,j)EA v=l

subject to

L Xkiv - L Xikv = 0, i E N, v = 1,2, ... ,V,
kEN kEN

V

LYijV = 1,'v'('i,j) E R,
v=l

L qijYijv:S vVv , v = 1", . V,
(i,j)ER

Xijv ~ Yijv, 'v'(i,j) E R,

{

'v'S <;;; N, 1 ~ S,
!vI L Xijv ~ L Xjkv, A[S] n R # 0,

i'tS,jES (j,k)EA[SjnR v = 1, ... , V,

Yijv E {O, 1},'v'(i,j) E R,v = 1, ... ,V,

Xijv E Z+, 'v'(i,j) E A, v = 1, ... ,V,

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

where 1\11 is a large constant no smaller than the total distance of any
circuit that includes all arcs in R, and V[S] is the set of nodes incident
to at least one arc in S.

The objective function represents the total distance traveled by all the
vehicles. Note that arcs can be traversed more than once. The first set
of constraints is the common 'flow conservation' constraints for network­
flow formulations. The second set of constraints require that at least one
traversal is made of each of the arcs in R. The third set of constraints
are the capacity constraints for the vehicles. The next set of constraints
require that vehicle v traverse the arc (i, j) E R if it delivers the de­
mand to this arc. The fifth set of constraints are subtour-elimination
constraints which ensure that each trip include the depot. Note that
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this formulation of the CARP (taken from Dror and Leung, 1998) not
only has different subtour-elimination constraints than the one given in
Golden and Wong (1981) or Assad and Golden (1995), but also the Xijv

variables have a different interpretation. In addition, the interpretation
for the Yijv variable is in terms of a "fraction'l of service delivered to
edge (i,j) by the vehicle v. In the model above the the Yijv variables
are restricted to binary values. Thus, a vehicle either services an edge or
does not. Later we examine the option of a partial service by a vehicle
(see Dror and Langevin, this book).

Clearly, the CARP is a strongly NP-hard problem by simple reduc­
tion from the bin-packing problem. One can setup an instance of a
capacitated edge routing problem by taking one node to represent the
depot (node 0) and a node for each bin packing item connected in a
star structure to one additional node. The demand on each of the star
edges is equal to the 'item' size from the bin packing problem (Garey
and Johnson, 1979). The demand on all the other edges is set to zero.
Set the distances between the depot and one of the "item" nodes to 1
and the distances of the star edges to zero. Also connect each consecu­
tive pair of 'item' nodes by a zero cost edge (the periphery of the star).
The optimal CARP solution for such graph corresponds to an optimal
bin packing solution and vice versa. A different proof of NP-hardness
for the CARP is obtained after a polynomial graph transformation from
an edge traversal problem to an equivalent node routing problem (see
Dror and Langevin, this book). In that case the NP-hardness reduction
is from the classical vehicle routing problem. In either case, the CARP
is NP-hard for edge traversals (undirected graphs) or directed graph
traversals.

4. APPROXIMATION ALGORITHMS
Approximation algorithms for hard (NP-hard) combinatorial opti­

mization problems have played an important part with regards to the
examination and analysis of computational complexity for such prob­
lems. The informal question asked in this context is how close can we get
in a 'provable way' to an optimal solution of a given NP-hard problem
while expending a modest amount (i.e., polynomial time) of computa­
tional resources? An approximation algorithm for a problem is evaluated
in the worst case sense. I.e., what is the worst possible deviation from
optimum taken over all problem instances? The deviation from optimum
is measured in terms of /j ratio. More precisely, an algorithm A is said
to be a /j-approximation for a minimization problem (/j > 1) if for all
instances of this problem the algorithm generates a solution within /j
times the optimum value. In a similar manner, for maximization prob­
lems the /j value « 1) assures that the solutions generated by such
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algorithm will not be less than 8 times the value of the optimal solution.
The corresponding 8 value is referred to as performance guarantee of
the approximation algorithm A. A family of algorithms which trades­
off solution 'closeness' (performance guarantee) against running time is
referred to as an approximation scheme. Following Hochbaum (1997),
Arora and Lund (1997), we introduce a number of formal definitions of
the concepts related to approximation algorithms.

Definition: A polynomial time algorithm A for a minimization problem
P, is said to be a 8-approxi- mation algorithm (8 > 1) if for every prob­
lem instance I of P the algorithm generates a solution which is never
more than 8 x OPT(I), where OPT(I) denotes the value of the optimal
solution for the instance I of P. In other words, if A(I) denotes the
solution value for instance I generated by A, then 8 x OPT(I) 2:: A(I)
for all instances I of P. Similarly for maximization problems.

Definition: The absolute performance ratio RA, of an approximation al­
gorithm A is RA = inf{r 2:: 1IRA(I) ~ rOPT(I), VI}.

Definition: The asymptotic performance ratio RA for A is, RA
inf{r 2:: 113n E Z+,RA(I) ~ rOPT(I) Vl,s.t. 1exl 2:: n}.

In some cases, as illustrated in Hochbaum (1997), the difference be­
tween the absolute performance ratio and asymptotic performance ratio
of an algorithm can be significant. The trade-off between computational
time and the performance ratio for a family of approximation algorithms
is captured by the two definitions below.

Definition: A family of approximation algorithms {A£}, is called a poly­
nomial approximation scheme, if an algorithm A£ is a (1 + E)-approx­
imation algorithm and for a fixed E its computational time is bounded
by a polynomial in the length of the problem instance I.

Definition: A family of approximation algorithms {~}, is called a fully
polynomial approximation scheme, if an algorithm~ is a (1 +E)-approx­
imation algorithm and for a fixed E its computational time is bounded
by a polynomial in the length of the problem instance I and liE.

Ideally, one would like for an algorithm to assure 'closeness' to an opti­
mal solution of a hard combinatorial problem within a computation time
that is polynomial in the problem size. However, recent results in theory
of approximations for NP-hard problems suggest that computing good
approximate solutions for many of these problems is just as hard as com­
puting optimal solutions. In other words, the approximation problem of
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achieving solutions very close to optimum might be NP-hard problems
in their own right. Since we prove an NP-hardness of a problem by
reduction from a known NP-hard problem, when proving NP-hardness
of an approximation such a reduction produces a gap in the value of
the optimum in the sense that the approximation scheme either gets the
optimum value or it cannot get closer than a certain factor 9 times the
optimum value. Since in this chapter we are interested in examining
the known approximations for hard arc routing problems, we provide a
short and informal discussion of NP-hardness of approximations based
primarily on Arora (1994), and Arora and Lund (1997). This is usually
referred to as inapproximability results.

As Arora and Lund (1997) point out, at the present time inapproxima­
bility results divide problems into four classes based on the performance
ratio that is provably hard to achieve. The performance ratios rer.:;sent­
ing these classes are: 1 + E for some fixed E > 0, D(ln og), 2/09 n for
every fixed 'Y > 0, and nO for some fixed 8 > 0, (n denotes the input size).
In a manner similar to that of Garey and Johnson (1979), Arora (1994)
and Arora and Lund (1997) start with a set of six so called "canonical"
inapproximability problems to derive by reduction inapproximability re­
sults to many other problems of approximation. Inapproximability result
implies that achieving a certain performance ratio is NP-hard. It means
that if one can prove that a certain polynomial time algorithm achieves
the approximation ratio then P = NP.

A basic canonical problem in inapproximability results is that of MAX­
3SAT which is an optimization version of the 3SAT problem. The objec­
tive in MAX-3SAT is to find a truth assignment, which maximizes the
fraction of satisfied clauses in a given 3CNF (conjunctive normal form
with three variables in each clause) formula. Note that given an instance
I of 3SAT, MAX-3SAT(I) ~ 1. Arora and Lund (1997) repeat a proof
of the following fundamental theorem.

Theorem 7: There is a fixed E > °and a reduction r from SAT to
MAX-3SAT such that for every boolean formula I, if I E SAT, then
MAX - 3SAT(r(I)) = 1, and if I tJ SAT, then lvIAX - 3SAT(r(I)) <
1/(1 + E).

In other words, there is a gap in the optimum value of the objective func­
tion of MAX-3SAT depending on whether or not the boolean formula is
satisfiable. This implies that achieving a performance ratio of 1 + E for
MAX-3SAT is NP-hard.
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In Arora and Lund (1997), a reduction graph is presented with the top
node representing MAX-3SAT followed by MAX-3SAT(5) (each variable
appears in exactly 5 clauses) and CLIQUE. The node MAX-3SAT(5)
leads to CLASSI, LABEL COVER, and CLASS IV. CLIQUE node leads
to COLORING and CLASS IV, and then COLORING node again leads
to CLASS IV. In the other direction, LABEL COVER nodes leads to
SET COVER and to CLASS III, and from SET COVER we get to
CLASS II. This description includes the six canonical problems and in­
approximability results for Classes I, II, III, and IV.

The above served only as a very brief outline of inapproximability
introduction and results. It is not our intention to pursue this topic
further here but to examine the state of approximation results for arc
routing problems. Most of such results have been triggered by the early
work of Frederickson (1979), which we summarize below.

5. APPROXIMATION RESULTS FOR ARC
ROUTING

5.1. THE MIXED CPP
Earlier in this chapter we mentioned the result of Papadimitriou (1976)

that the chinese postman problem on a mixed graph (MCPP) is NP­
complete, and gave a new and short proof of this fact. The question we
ask in this subsection is how close to the optimal solution of the MCPP
can we get with a polynomial time algorithm. Edmonds and Johnson
(1973) have suggested a heuristic algorithm for which Frederickson (1979)
proved a performance ratio of 2. In the same article Frederickson pre­
sented three other approximation algorithms for the MCPP. He starts
out with an algorithm which constructs a Euler tour in an 'opposite'
way to Edmonds and Johnson (1973) with performance ratio of 2 as
well. He then combines the two approximation algorithms into a single
heuristic with performance ratio of 5/3. In addition, for the case where
the mixed graph is planar Frederickson presents a performance ratio 3/2
approximation algorithm. These results were the best known until, very
recently, Raghavachari and Veerasamy (1998, 1999b) obtained a 3/2 ap­
proximation algorithm for the MCPP without the planarity assumption.
We now proceed to outline the main ideas contained in these approxi­
mation schemes.

The heuristic solution procedure for MCPP proposed by Edmonds and
Johnson (1973) aims at modifying the mixed graph G = (Vj E, A) by
duplicating and directing edges from E and duplicating arcs from A, in
a 'cheapest' manner to obtain the necessary and sufficient conditions for
the existence of an Euler cycle on a modified G. To find this 'cheapest'
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set of arcs and edges which need to be duplicated is NP-hard. The
heuristic starts by constructing a minimal-cost matching solution be­
tween the odd degree nodes of G disregarding the arc directions. Copies
of the arcs and edges in this matching solution are then added to the
graph. This is followed by a procedure which orients some edges and adds
copies of arcs to make the indegree of each node equal to its outdegree.
The procedure is formulated and solved as a min-cost flow problem fol­
lowed by Frederickson's 'evenparity' adjustment which does not increase
the cost over the min-cost flow solution. The end result is a modified
graph which accepts a Euler cycle. The time complexity of this heuristic
is O(max{lVl\ IAI(max{IAj, IEI})2}). It is easy to see that the perfor­
mance ratio of this heuristic is 2 since by duplicating all the arcs and
edges of G to obtain the graph G2, all nodes of G2 are of even degree, and
the min-cost flow algorithm provides an optimal solution to the indegree
= outdegree adjustment at each node of the modified graph which is no
more costly than such an adjustment on the original graph.

Frederickson (1979) noticed that the order of the so called 'matching'
and 'min-cost flow' steps can be reversed to form a different heuristic
solution process and that this heuristic maintains the same performance
ratio of 2 for the MCPP and essentially the same time complexity. How­
ever, the two heuristics perform very differently on each others' worst­
case examples. Denote by CM the cost of the arcs in the solution of the
min-cost flow problem. Subsequently, the key difference between the two
heuristics lies in the fact that for the original Edmonds and Johnson's
heuristic the cost of its solution does not exceed C* + 2CM (where C*
is the cost of the optimal solution) and the 'reversed' heuristic generates
a solution with cost not exceeding 2C* - CM. By using a threshold of
(1/3)C* for CM one obtains the performance ration of 5/3 when both
heuristic are run and the best solution is selected.

Very recently, Raghavachari and Veerasamy (1998, 1999b) improved
on the above performance ratio to give a 3/2 approximation algorithm
for the MCPP. Raghavachari and Veerasamy's main observation lies in
the fact that the lower bound used by Frederickson can be improved
by a nonnegative cost Cx which is a cost of minimum weight match­
ing of the undirected graph obtained by shrinking all the arcs of the
graph in the output of the min-cost flow algorithm in the Edmonds and
Johnson's heuristic. Subsequently, they modify the first (Edmonds and
Johnson's) heuristic in the Frederickson scheme and prove that its cost
does not exceed C* + CM and use a threshold value of C* /2 for CM
to produce the performance ratio of 3/2. The performance ratio of 3/2
for Raghavachari and Veerasamy's heuristic is tight as demonstrated by
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Frederickson (1979) examples.

At the present time we are not aware of any work on polynomial
approximation schemes or inapproximability results for the MCPP.

5.2. THE WINDY CPP
Earlier in the chapter we defined the Windy CPP as a generaliza­

tion of the Mixed CPP, where the underlying graph is undirected, but
where the traversal cost for each edge varies according to the direction
of traversal.

Win (1989) formulated the Windy CPP as a minimum-cost flow prob­
lem with side-constraints and showed that the solution to the LP re­
laxation of this formulation is 'half-integral' (that is, all variables have
values which are multiple of one-half). Using this fact he was able to
produce a 2-approximation algorithm. This was the best known result
until, very recently, Raghavachari and Veerasamy (1999a) devised a 3/2­
approximation algorithm.

Raghavachari and Veerasamy use the same strategy as Frederickson
(1979) used for the Mixed CPP, in that they describe two different heuris­
tics, each with a performance guarantee of 2, but which achieve a guar­
antee of 3/2 when used together. These heuristics are quite complicated
and the proof of the guarantees are based on some deep structural prop­
erties of the LP relaxation of Win. For the sake of brevity, we do not
describe them in detail.

5.3. THE RPP AND OTHER VARIANTS
Frederickson (1979) mentions very briefly that the RPP with triangle

inequality can be approximated to within 3/2 by modifying the famous
3/2 heuristic for the TSP with triangle inequality, due to Christofides
(1976). A more explicit construction was first provided by Benavent et
al. (1985) and later independently by Jansen (1992). Jansen's heuris­
tic extends the Christofides , heuristic to the case of RPP with triangle
inequality by observing that one can 'collapse' the subgraphs spanned
by each of the disconnected subsets of the required edges in E2 into a
single node each. Then, one constructs a graph whose nodes represent
the collapsed subgraphs and whose edges represent shortest path links
between them and computes a minimum cost spanning tree. Afterwards,
one can apply the 'matching and short-cut' algorithm of Christofides to
construct a 3/2-approximate RPP solution. For more detailed descrip­
tion of this approximation algorithm see Jansen (1992).
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In Dror and Haouari (2000), the concept of generalized combinatorial
optimization problems coined after the Generalized Traveling Salesman
Problem is extended and a short list of classical combinatorial problems
have been recast in this broader framework. One problem on this list
is so called the Generalized Chinese Postman Problem. The generaliza­
tion of the CPP requires traversing at least one edge from each subset
of a given edge partition of the edge set E. More formally, assume that
the edge set E is partitioned into K subsets E 1, ... , E K. The Gener­
alized Chinese Postman Problem (GCPP) requires finding a minimum
cost tour in G which contains at least one edge from each of the subsets
Ek,k = 1, ... ,K.

For motivation, assume that one has only a very limited time for
visiting a large museum. The museum is organized in several different
departments. If the visitor' does not have enough time for fully visiting
all the departments he may restrict his tour to include walking at least
along one wall from each department.

Obviously, when IEkl = 1 for each k, the GCPP simply reduces to the
CPP, and can be solved in polynomial time. However, the generalized
case is hard which can be easily shown by equivalence between a special
case of GCPP and the Rural Postman Problem (RPP).

We bring up the GCCP in this section on approximation results be­
cause for all cases in the list of the generalized combinatorial optimization
problems described in Dror and Haouari (2000), the authors did not find
'good' (finite performance guarantee) heuristics. I.e, the GCPP problem
is not only NP-hard but also a heuristic solution with guaranteed finite
error bound is not known for this problem.

Other interesting approximation results for problems such as the SCP
(stacker crane problem) and the k-SCP where k tours must be con­
structed with the objective of balancing the tours (minimizing the length
of the longest tour) can be found in Frederickson et al. (1978). For the
SCP they provide a polynomial (quadratic order) algorithm with perfor­
mance guarantee of 9/5, and for the k-SCP a performance guarantee of
(14/5 - l/k).

5.4. THE CARP

There are essentially two approaches for generating approximation re­
sults for arc routing problems. A direct approach would be to examine
capacitated arc routing heuristics. The other option is to examine ca­
pacitated node routing heuristics since capacitated arc routing problems
possess an equivalent node routing representation. Historically, approx-
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imation heuristics such as the Christofides result for the euclidean TSP,
have been developed before any documented attempts to obtain such re­
sults for arc routing problems. This is true for the uncapacitated problem
versions and even more so for the capacitated arc routing problems. Per­
haps the first description of an approximation result for the CARP on an
undirected graph (denoted by CAPP in Assad and Golden (1995)) can be
found in Golden and Wong (1981). Moreover, Golden and Wong proved
perhaps the first inapproximability result for arc routing problems, more
specifically for CARP. They have shown that even loS-approximation for
CARP is NP-hard. The reduction proof of this result is straight forward
from PARTITION and we restate it here for completeness.

INSTANCE: Finite set A and size s(a) E Z+ for each a E A.

QUESTION: Is there a subset A' ~ A such that 2:aEAI s(a) = 2:aEA' s(a)?

The reduction from PARTITION to CARP is as follows:

Set a single node as the zero node and connect it to another node, say
node 1. The distance of this edge is one (COl = 1), however this edge has
no demand. Now create IAI nodes, one for each member of the set A and
connect them with node 1. Each of the edges (l,i), i = 2, ... ,IAI + 1
has a demand equal to s(a) when connected to a node representing
the element a. This graph structure is a tree. Now set the capacity
Q = (1/2) 2:aEA s(a). From this construction any nonoptimal solution
has a length = 6, whereas the optimal solution corresponding to YES an­
swer for the PARTITION problem has a length = 4. This demonstrates
that constructing an approximation for the CARP with performance
guarantee of less than 1.5, is NP-hard.

In Haimovich et aL (1988) a number of approximation results for
the VRP are presented. Though the authors assume that points (cus­
tomers) are located in euclidian space, only the triangular inequality is
used to derive their approximation results. They prove that for identi­
cal customers their so called Iterated Optimal Tour Partitioning (IOTP)
heuristic has a performance guarantee of 2 - I/Q given an optimal al­
gorithm for the TSP. However, given an 0: approximation algorithm for
the TSP, the performance guarantee is 1 + (1 - I/Q)o:. For the case of
unequal demands, their IOTP procedure provides a performance guar­
antee of 3 - 2/Q given that they use an optimal TSP procedure in the
tour construction. Given an 0: approximation algorithm for the TSP this
bound takes the form of 2+ (1 - 2/Q)0: (Altinkemer and Gavish, 1987).
Since the CARP can be transformed into an equivalent VRP problem and
the triangular inequality of the distance matrix is obtained by a simple
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shortest path postprocessing, the same approximation performances ex­
ist for the CARP. This has been stated more explicitly by Jansen (1993).

In some applications it is interesting to examine CARP on graphs with
special structure such as tree. The initial work on tree routing problems
can be traced to Labbe et al. (1991).

In the case graph G = (V, E) is a tree (connected graph with IVI - 1
edges), the CPP solution simply requires traversing twice each edge e E
E. In the case of capacitated arc routing on trees, this routing problem
can be trivially transformed to node routing on trees by assigning the
entire edge demand to the node 'away' from the route node. Thus,
capacitated arc routing on trees and capacitated node routing on trees
are in fact equivalent problems.

6. CONCLUSIONS
In this chapter we have presented an abbreviated overview of com­

putational complexity theory and attempted to provide the reader with
a guided tour of the different arc routing problems in terms of their
complexity classification. vVhen faced with any computational problem,
in particular, with a combinatorial optimization problem, one ought to
estimate a priori the 'computational effort' required for generating a
solution for such a problem. In this chapter, the examination of combi­
natorial optimization problems is limited to arc routing. Following on
the foot-steps of Edmonds and Johnson's (1973) work, many profession­
als working on routing problems, tend instinctively to view arc routing
problems as being not as hard as node routing. The existence of poly­
nomial time solutions for the basic CPP (directed or undirected) are
at the core of such an instinct and in diametric contrast to non-known
existence of polynomial time solutions to the basic TSP. However, as
proven by Papadimitriou (1976), in his path breaking paper "On the
complexity of edge traversing", basic arc routing problems can be just
as hard as node routing. In a sense, arc routing on a mixed graph, is
even harder since the restriction of node degrees to at most three, graph
planarity, and 0-1 arc/edge costs, still do not make the MCPP any easier.

Some arc routing problems are easy. Building an Eulerian cycle on
undirected graph with all vertices of even degree is easy (Section 2). The
case of completely directed graph of all even degree nodes with in-degree
equal to the out-degree for each node is also easy. Transforming a gen­
eral undirected graph into a graph with all even degree nodes in a cost
minimizing manner requires a little more sophistication and more com­
putational effort (about (1V13). The same can be said for the completely
directed case. Beyond that, if the graph does not have an 'easily' recog-
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nizable 'simple' structure, for instance a tree, arc routing problems are
likely to be NP-hard and therefore just as difficult to solve as any other
difficult combinatorial optimization problem.

Acknowledgment: I am very grateful to Adam Letchford for his com­
ments and suggestions which made writing this chapter a somewhat eas­
ier task. The reader does not notice the improvements but I do and I
would like to thank Adam. Mistakes which remain in the text are all
mine.
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1. BI-DIRECTED GRAPHS, EULER TOURS,
AND POSTMAN TOURS

Euler tours occupy an interesting position in the history of graph the­
ory. Current interest in this area is due to problems involving tours
where service is required along arcs of the tour rather than at nodes.
Examples of problems of this type involve mail delivery, snow removal,
street cleaning, trash pickup, etc. In considering such problems involv­
ing city streets, the nodes are intersections and the arcs are roadways
between intersections. However, there are one-way streets and two-way
streets. If the service must be done on both sides of a two-way street
then two one-way streets (one in each direction) can replace it. However,
there are situations where the street, even though two-way, need only be
traversed once. For example, mail delivery in a more rural or suburban
setting may require traversing the street or road only once. In a rural
road, mail delivery is frequently done on one side of the road, and those
who live on the other side must cross the road to get their mail. In setting
up the routes, though, the road could be traversed in either direction.
Thus, we consider graphs with two types of connections: directed and
undirected. Other postman problems [14] have been considered.

Two basic classes of problems are addressed. The first is finding a tour
on the graph as it is given. The second involves changing the graph, by
duplicating arcs, so that a tour will exist. The first of these is referred



172 ARC ROUTING

to as an Euler tour problem and the second as a postman problem. Al­
though the second is a perfectly natural extension of the first, the Euler
tour problem is much older. Serious work on the postman problem dates
only to the work of Ford and Fulkerson in the 1950's (see [10]) and Meigu
Guan [15] in the 1960's. In the postman problem, there are two ways
to look at the problem. One is the tour itself, but the other is to focus
instead on the arcs or edges that must be duplicated. This set will be
defined as a postman set. In the undirected case, edges need only be
duplicated once. Once a postman set has been determined and added to
the graph, the postman problem reduces to the Euler tour problem. In
the mixed and directed cases, edges and arcs may need to be duplicated
more than once, so the order of duplication must be specified.

This section gives definitions and some results on existence of Euler
tours and postman tours. .The next section outlines an application in
aircraft routing. Section 3 discusses the Chinese postman problem in an
undirected graph and gives an algorithm using its polyhedral description.
Section 4 introduces the framework of binary group problems and block­
ing pairs of clutters. Section 5 discusses ideal binary matrices and relates
this concept to binary group problems and, in particular, the postman
problem. Finally, we close with some results on four problems special­
ized to planar graphs. Sections 4, 5 and 6 give additional insights into
the polyhedral and algebraic structures involved. The Chinese postman
problem provides an interesting special case of combinatorial polyhedra
and algebraic structures. These latter structures include matroids and
Goma"ry's group problem [12].

The term mixed graph was used in [18] and the term bidirected graph
was introduced in [7]. Clearly they are somewhat redundant. Bidirected
seems more descriptive in that direction (or the lack of it) is the question
here, so the term mixed graph will be used to mean a bidirected graph
where arcs and edges are both present.

More formally, define a bi-directed graph G to be (N, E U A) where
N is the set of nodes, E is the set of (undirected) edges, and A is the
set of (directed) arcs. An edge consists of an unordered pair of nodes,
and an arc consists of an ordered pair of nodes, say (i, j). The node i
is called the tail of the arc, and node j is called the head of the arc. In
many of our problems, the edges will be assigned one of the two possible
directions in order to specify a tour as defined below. The graph G is
called directed (undirected) if it only has arcs (edges). If both E and
A are non-empty, then G is called mixed. Since all of our graphs are
bidirected graphs, we will simply refer to a graph.
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The degree of a node i is the number of edges and arcs meeting i.
The in-degree of node i is the number of arcs whose head is node i. The
out-degree of node i is the number of arcs whose tail is node i. A node
is balanced if its in-degree equals its out-degree.

A tour in a graph G is a sequence T = (nI, VI, n2, V2,·· . ,VK-1, nK)
where nk is a node and Vk is an arc or an edge such that it meets the
two nodes nk-I and nk. In addition, the first node ni of the tour is
required to be the same as the last node nK, and if Vk is an arc then
Vk = (nk-I, nk). A simple tour is a tour such that no arc or edge appears
more than once in the tour. An Euler tour is a simple tour T such that
every edge in E appears (exactly once) in T. A graph G is said to be
Eulerian if it admits an Euler tour. A postman tour is a tour T such
that every edge in E appears at least once in T. In a postman tour, an
undirected edge may be used any number of times and in either or both
directions. However, the directed edges, while they may appear more
than once in the tour, must always be in the specified direction. Figure
5.1 shows a graph on four nodes with edges numbered 1,2,3,4,5. A post­
man tour traverses the edges (in order) 1,4,2,3,5,4,1, and the associated
postman set is {1,4}.

3

1

Postman Set:
{l,4}

Postman Tour:
1, 4, 2, 3, 5, 4, 1

Figure 5.1 Postman set and postman tour.

The following results summarize conditions for a graph to be Eulerian
and to admit a postman tour. See [9] for more details and historical
perspective.

Theorem 1 (Euler) An undirected graph G is Eulerian if and only if it
is connected and every node has even degree.

Proof 1: The proof is algorithmic. o
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Theorem 2 [15] An undirected graph G admits a postman tour if and
only if it is connected.

Proof 2: Adding a duplicate copy of every edge to the graph produces a
graph where every degree is twice its original degree. Thus, it produces
an even degree graph, which is Eulerian by Theorem 1. 0

Theorem 3 A directed graph G is Eulerian if and only if it is con­
nected and every node is balanced.

Proof 3: Very similar to that of Theorem 1. o

A cut in a connected graph G is the set of edges and arcs meeting a
node in a set 5 and a node not in 5. The cut is frequently referred to
as (5, T) where T = N /5. When the graph G is directed or mixed, the
di-cut associated with (5, T) is the set of arcs with a tail in 5 and head
in T. We call the di-cut (5, T) a strong di-cut if the only edges or arcs
in the cut (5, T) are in the di-cut. In other words, there are no edges in
(5, T) and the only arcs in (5, T) have a tail in 5 and a head in T. For
a pair of nodes sand t such that s is in 5 and t is in T, a cut (or di-cut)
is called an (s, t) cut (or (s, t) di-cut).

Theorem 4 A directed graph G has a postman tour if and only if it is
connected and has no strong di-cut.

This result can be proven using a network flow model to balance the
nodes.

Theorem 5 (Ford and Fulkerson) A mixed graph is Eulerian if and only
if it is connected, every node has even degree, and there does not exist a
cut C = (5, T) such that the number of arcs in the di-cut (5, T) is more
than 1/2 the total number of edges and arcs in the cut C.

When every node has even degree, every cut will also have an even
number of edges. However, this last condition to be Eulerian is more
than a condition on nodes. Requiring that no node have in-degree or
out-deree more than one-half of the degree does not assure that the
graph is Eulerian.

Figure 5.2 shows a non-Eulerian mixed graph. Note that every node
has even degrees and satisfies the condition that there are not more arcs
into (or out of) the node than other arcs or edges at the node. In other
words, no node has in-degree or out-degree greater than one-half the de-



Chinese Postman and Euler Tour Problems in Bi-directed Graphs 175

Cut

Figure 5.2 Non-Eulerian mixed graph.

gree: Yet the cut indicated has more than one-half of the arcs and edges
in it directed in one direction, so by Theorem 5 the graph has no Euler
tour.

Figure 5.3 shows the same mixed graph as in Figure 5.2 with the
edges numbered. Although there are cuts, e.g. those having sets of arcs
and edges {1, 6, 7, 8} or {2, 6, 7, 8}, with more than one-half of the arcs
directed in one direction, there is no strong di-cut. In this case, edges
1 and 2 must be duplicated twice, so the notion of postman set must
include the number of times each edge is to be duplicated. In the directed
case, the order of duplication is also needed but not in the undirected
case, as has been illustrated in Figure 5.1 and mentioned there.

2

8
Postman Tour:
6, 2, 1, 7, 5, 2, 1, 9, 8, 4, 3, 2, 1

Figure 5.3 Postman tour on mixed graph.
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Theorem 6 (Ford and Fulkerson) A mixed graph admits a postman
tour if and only if it is connected and has no strong di-cut.

See [9] for a discussion of a network flow formulation of the above two
problems. Solving the mixed postman problem is NP-complete, but
special cases were shown to be polynomially solvable in [18]. Other work
has been done, see e.g. [23].

Lemma 1 A bi-directed graph contains an Euler tour if and only if it is
connected and the edges can be partitioned into edge-simple tours.

Proof: The "only if" direction is trivial because a single Euler tour gives
such a partition. To show the converse, an algorithm will be outlined.
There is no claim that the following outlined procedure is efficient in
tracing an Euler tour, but it does serve to prove the lemma. Number
the edge-simple tours, say 1 to T. Start at any node r in tour number
1. If at that node there are any other tours, then move in the highest
number tour to the next node in that tour and repeat. That is, any time
a node is reached, look for the highest number tour and move along it.
If there is no higher numbered tour, then one can proceed on the same
tour to the next node of that tour unless that tour has been completely
traversed. In that case there will necessarily be a lower numbered tour
interrupted at that node, so choose the highest such tour and continue.
To see that an Euler tour is traced, once a tour of a given number, say k,
is started on, no lower number tour will be used until tour k is completed.
Every edge that is traversed is used only once, so eventually tour 1 will
be completed. To see that every tour is traversed, induction suffices. 0

See [9] for a discussion of efficient algorithms for finding Euler tours.

Lemma 2 A bi-directed graph G contains an Euler tour if it is con­
nected, even degree, and balanced.

Proof: Even though the undirected (directed) subgraphs of G may not
be connected, each component is Eulerian. Thus the graph can be par­
titioned into cycles and, by lemma 1, is Eulerian. 0

2. AIRCRAFT ROUTING IN A SPACE-TIME
NETWORK

In scheduling an airline, usually a daily plan is first arrived at. That
plan assumes that every flight leg is flown every day by the same type of
plane. An aircraft routing says how to connect (or turn) the planes so
that the same turns are made every day. A major requirement for many



Chinese Postman and Euler Tour Problems in Bi-directed Graphs 177

airline planners is that the daily routing for anyone fleet type form a
single large cycle. This required cycle is referred to as an unlocked ro­
tation. We will return to this requirement after explaining the problem.
This aircraft routing problem is solved after the fleet types have been
assigned to all flight legs. Typically the fleet assignment model [16] is
used to solve that problem. The output from the fleet assignment model
includes flow values for planes by fleet type on a space-time network.
The network has two types of arcs: flight leg arcs by fleet type and
ground arcs by station (airport) and time. The nodes of the network are
by fleet type, station, and time. There is a node for each departure of
a flight leg having indices: station and time of departure and fleet type
that might fly that leg. There is a corresponding node for the arrival of
the leg with indices: arrival station, ready time, and fleet type. By ready
time is meant the actual scheduled arrival time plus the minimum turn
time. Thus the ready time represents the time at which the plane would
be ready to depart. The flows on the ground arcs represent the number
of planes that stay on the ground beyond the minimum turn time before
departing, by fleet type.

Even if these ground arc flows are not given explicitly, they can be
determined from a fleeted schedule as follows. By a fleeted schedule is
meant the flight legs to be flown, the departure and arrival times, and
the type of plane (fleet type) that is to fly them. For a given fleet type
and a particular station, there are necessarily as many arrivals as depar­
tures. Otherwise the schedule can not be flown. Create a directed cycle
with nodes for departure times of each departing leg and ready times
for each arriving leg. If two of these times are the same, create just one
node. Thus, for this fleet type and this station, each node has a unique
time of day identifying it. Make the cycle by putting an arc from a node
to the node with the next largest time except for the largest time node
gets an arc back to the node with smallest time. Now, this cycle has as
many departures as arrivals. Create exogenous flow requirements with a
supply of one for each arrival and a demand of one for each departure.
Each node has the net supply or demand over all arrivals and departures
at the time associated with that node. On a cycle, there is only one
independent flow needed to determine all flows. The ground arc flows
can not be negative, so solve for flows so that at least one ground arc has
flow of zero. This is the flow solution that uses the minimum number
of planes. The number of planes needed for the fleet type can be deter­
mined by picking a global time such as midnight GMT or 2 am CST, and
adding up over all ground arcs and flight leg arcs that cross that global
time. The ground arc values determined in this way should be the same
as from the fleet assignment problem and the plane count should also
agree. The only reason not to do so is either that the schedule does
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not require as many planes as available or, more likely, there are other
arcs in the fleet assignment problem representing maintenance or other
activities.

In any case, let us assume that correct values of flows on ground arcs
are known. We now have a directed, balanced network. The only remain­
ing question in finding the unlocked rotation mentioned at the beginning
of this section is whether the network is connected. If it is connected,
then the network is Eulerian, and any Euler tour of it is an unlocked
rotation. Let us first address the connectivity question and return later
to what the unlocked rotation means. Clearly, the network is not con­
nected if there is a proper subset of the nodes such that all of the flight
legs departing from a station in this subset arrive at another station in
this subset. For US airlines, this type of disconnection hardly ever oc­
curs because of the nature of the hub-and-spoke network flown by most
US carriers. In any case, this lack of connectivity is highly undesirable
because it divides the fleet into two sub-fleets that never mingle. Any
planner looking at a fleeting would change the fleeting so as to avoid this
problem. However, there is a more subtle cause of the network being
unconnected. This cause is a disconnection is stations and time. For
example, suppose there is one plane on the ground overnight in Boston
and it flies early in the morning to Fort Lauderdale. Then it stays on
the ground in Fort Lauderdale and flies back to Boston where it again
overnights. Let us suppose further that during the time that it is on the
ground in Fort Lauderdale there are no other arrivals or departures of
the same fleet type and there are no other planes on the ground. This
same assumption is made for Boston. Boston may have other arrivals
of this fleet type during the day, but those planes all depart before the
Fort Lauderdale flight returns to Boston. Then we have an isolated cycle
in space-time that locks that plane into a "locked rotation". Thus, the
network is connected if and only if there is no proper subset of nodes
(all of which have a station and a time) such that every flight leg of the
given fleet type departing from one of these nodes has an arrival node in
the subset, and every ground arc for this fleet type that meets one node
in the subset and one node not in the subset has zero flow.

The reason that airlines want to avoid a locked rotation is due mainly
to maintenance considerations. There are longer maintenance checks
that are done typically at one station every night. A plane on a locked
rotation may not ever get to that station. In addition, there is the pref­
erence that all planes get maintenance at all stations and get even wear.
Thus, with an unlocked rotation the planes all fly the same legs and go
through all of the maintenance stations.
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6

Flight Legs
Departure Arrival

1 DFW 0800 SFO 1000
2 SFO 1130 JFK 2030
3 JFK 0830 MIA 1230
4 MIA 1400 SEA 1930
5 SEA 0900 ORO 1500
6 ORO 1600 DFW 1900

Figure 5.4 Aircraft Rotation.

For an unlocked rotation, anyone plane flies the one day rotations
in order until all have been flown and then starts over the same cycle.
Looking at each day and all of the planes, there are as many days of
flying as there are planes, and each plane flies one of these days worth
of flying. The next day a plane moves to the day of flying of the plane
in front of it. Thus the planes follow each other in a cyclical fashion. Of
course, there may be flying at night, so a day of flying could be defined
as the first departure after the global time until the leg or ground arc
that next crosses the global time. Figure 5.4 provides an example of a
three day cycle where each day has two flight legs and, would require
three planes to fly the six legs.

Any algorithm for finding an Euler tour in a directed graph can be
used to provide an unlocked rotation. However, a simple FIFO rule (that
says here depart the plane that has been on the ground the longest) may
not give an Euler tour but instead several cycles. These cycles would be
referred to as locked rotations.

The question of how to avoid locked rotations is, thus, the same as
how to avoid disconnecting the space-time network when partitioning the
flight legs among the fleet types. Imposing this restriction in the fleet
assignment problem greatly complicates it [2J. Inequalities much like the
subtour elimination constraints in the traveling salesman problem must
be adjoined to the already difficult mixed-integer program. However, in
practice the hub-and-spoke nature of an airline's network generally keeps
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the network for each fleet type connected.

There are two other considerations involved in finding routings: through
values and maintenance. What is meant by through values is: when a
plane arrives at a station, typically a hub, where there are choices as
to how to connect to a departure, there may be advantages to connect
so that passengers can stay on the plane. For example, if an American
flight from Atlanta to DFW can connect to a flight to Albuquerque, and
many Atlantans want to fly to Albuquerque, then routing the plane from
Atlanta to DFW to Albuquerque allows the flight to be a I-stop rather
than a connection. Thus, there are incremental values to certain turns,
mainly at hubs. However, forcing all of these desired turns may destroy
the unlocked rotation, just as imposing a FIFO order may do so.

The other consideration is a constraint that must be satisfied: per­
forming regular maintenance frequently enough. Many airlines will im­
pose a frequency in terms of number of days between certain types of
maintenance in order to make planning easier and be sure of meeting
all FAA rules. This restriction, in general, turns the easy Euler tour
problem into a hard problem. However, once again the hub-and-spoke
network makes it fairly easy to satisfy this restriction. The main dif­
ficulty comes if the network has a significant number of point-to-point
strings of flight legs without a maintenance station being encountered in
the string. Frequently the difficulty can be isolated from the otherwise
large network and conditions found to impose on the fleeting problem.
If the maintenance condition cannot be satisfied, then either the fleeting
must be changed or the routing can be examined in more detail to see if
it meets the FAA requirements.

The maintenance requirement in [2] was that a short maintenance had
to be done every two days and a longer maintenance including avionics
had to be performed every four days. Frequently, however, the require­
ment involves only one type of maintenance that has to be done every
three days. This requirement can be modeled, although it is not an easy
problem to solve, as follows: omit all overnight return arcs and then du­
plicate this reduced network three times to form N 1 , N 2 , N 3 . Now any
overnight ground arc that allows maintenance (i.e. at a maintenance
station and sufficiently long) returns to the first node of that station in
network N 1• That is, it allows resetting the clock on maintenance. All
other overnight ground arcs go to the first node of that station in the
next higher super-scripted network. That is, the clock keeps running.
The flight leg arcs that cross the global time selected are treated in a
similar manner. They go from their departure node in one network to
their arrival node in the next higher super-scripted network. The prob-
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lem is to select one of the three flight leg arcs from the three networks
N 1 , N 2 , N3 for each flight leg so that the resulting arcs can be balanced
by use of ground arcs. Plane count can be assured by simply imposing
a similar constraint of the overnight ground arcs. So far, this problem is
a multi-commodity flow problem, which is hard enough, but in addition
the network chosen must be connected or there will be no unlocked rota­
tion. This construction can be used within the fleet assignment problem
but complicates an already difficult problem.

Another approach [1] involves strings of legs between maintenance
opportunities.

3. THE CHINESE POSTMAN PROBLEM IN
AN UNDIRECTED GRAPH

The problem can be stated as finding a minimum cost duplication of
edges to form an Eulerian graph. Assume that the cost Ce on each edge
is non-negative and that multiple edges are allowed in E. The problem
is, thus, to find a minimum cost set of edges to duplicate so as to make
every node have even degree. Clearly, an edge need not be duplicated
more than once. Let M be a subset of edges such that !vI union E
is Eulerian. We call such a set !VI a postman set. Thus, a postman set
is a set of edges that allow an Euler tour when those edges are duplicated.

Define a node to be an odd node if it has odd degree and an even node
if it has even degree. A set !v[ of edges is a postman set if and only if
the edges in M form a subgraph such that odd nodes are still odd degree
and even nodes are still even. Then when !vI is unioned with E, the
resulting multigraph will be even degree everywhere, hence Eulerian.

Theorem 1 (Mei-ko Kwan [15]) A postman set M is optimal if and only
if every cycle C satisfies

L{e E C n M}ce ::; L{e E C\M}ce .

This theorem gives insight into the structure of an optimum solution
but does not lead directly to an algorithm. What it says in words is
that a postman set is optimal if and only if for every cycle the cost of
the edges in the cycle and the postman set is less than or equal to the
remaining edges of the cycle.

It is easily seen that an optimal postman set !VI need not contain a
cycle. Thus, it can be assumed to be a forest, where a forest is a sub­
graph (not necessarily connected) that has no cycles. The set !v[ can
be included in a spanning tree, since the graph is connected. That is,
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the forest can be extended to a spanning tree. Conversely, any spanning
tree determines a Chinese postman solution. Before describing the pro­
cedure, define anode to be odd if it has odd degree and even if it has
even degree. The procedure is much like that for finding a basic network
flow solution: for any leaf of the tree, set the edge to be in the postman
set if the leaf-node is odd, otherwise it is not in the postman set. Delete
the edge, changing the parity of the other incident node if the edge is in
the postman set. Repeat until only one node is left, which must at that
point be an even node. We summarize these remarks in Proposition 1.

Proposition 1 Every spanning tree determines a unique postman set,
and every postman set can be embedded in a spanning tree (which need
not be unique).

Define an odd cut to be a (minimal) cut C = (S, SC) where S is a set
of nodes such that there are an odd number of odd nodes. The set S (or
equally SC) defines the odd cut and is identified with it. Define a clutter
to be a family of non-nested sets. Given a clutter C, define its blocking
clutter B(C) to be the family of minimal sets each of which meets every
member of C.

Proposition 2 The blocking clutter of the family of all postman sets is
the clutter of odd sets.

For example, the graph in Figure 1 has as its clutter of postman sets
{{I, 4}, {2, 3}, {5}} and the blocking clutter is {{I, 2, 5}, {I, 3, 5}, {2, 4, 5},
{3, 4, 5}}. Each subset of edges in the blocking clutter is an odd cut.

Because the Chinese postman problem is NP-complete, the problem
of finding a min cost odd cut is also NP-complete. However, Padberg
and Rao gave an efficient combinatorial algorithm [24].

The Chinese postman problem can be solved by combining shortest
path and matching algorithms [6]. First solve for the shortest path be­
tween each pair of odd nodes. Then, form the complete graph having a
node for each odd node of the original graph and a cost on each edge
equal to the distance, given by the shortest path step, between those
two odd nodes. Solve the minimum weight matching problem on this
complete graph. Now expand every edge in the matching to the path
that gave the shortest path whose distance is on that edge.

A direct algorithm [18] that does not use matching as a subproblem but
uses an approach similar to the matching algorithm will now be given.
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Before stating the algorithm, pseudonodes and some associated con­
cepts will be defined. The basic idea of a pseudonode is to substitute a
single node in place of a set of nodes. We call this replacement contract­
ing the set of nodes. All edges with both ends in the set disappear from
the graph, and edges with one end in the set meet the new node, called a
pseudonode. Thus, the pseudonode appears as a node in the contracted
graph, but also has associated with it a set of original nodes. In the al­
gorithm, the sets associated with pseudonodes will be nested, i.e. either
disjoint or one contained in the other. The surface graph is obtained
by contracting each maximal sets to form a pseudonode. Pseudonodes
are drawn in the figures as squares whereas original nodes are drawn as
circles. There is a certain layering that is associated with pseudonodes.
Because of the nesting of sets, each pseudonode contains some number
of maximal pseudonodes.

odd

Figure 5.5 Surface graph and one level down.

Figure 5.5 shows a surface graph consisting of three pseudonodes and
two edges. The blossom associated with each pseudonode will be ex­
plained. The blossom associated with a pseudonode will contain as nodes
all of the maximal pseudonodes contained in it together with all of the
original nodes contained in its subset that are not in any of these maxi­
mal pseudonodes. The three forms of blossoms are shown in Figure 5.6.
The first is an odd cycle where every node is a pseudonode. The other
two are both claws, i.e. a node and a set of edges meeting it. In this
case, the node is an original node, and the edges meeting it need not
include all of its incident edges. The claw is an odd claw if the original
node is an odd node. In this case, there will always be an even number
of edges in the blossom. The claw is an even claw if the original node is
an even node. In this case, there will always be an odd number of edges
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in the blossom. All of the other nodes in the blossom are pseudonodes,
and there are an even number: of them in odd claws and an odd number
in even claws.

odd cycle

odd~
odd claw

Figure 5.6 Blossoms.

eveno--D

even claw

Algorithm:
Start: Let every odd node be an exposed node. Let all primal variables

xe,e E E, be 0 and all dual variables n(S) be O. When Xe = 1, the edge
is called a postman edge, and the set of all postman edges is the postman
set. Pick an exposed node and make it in Ai a pseudonode. Let that
pseudonode be a plus-pseudeonode

Figure 5.7 Planted Tree.

Grow a planted tree T: The form of a planted tree is alternating plus­
and minus-pseudonodes as shown in Figure 5.7. Every minus-pseudonode
will meet two edges, one in the postman set X e = 1) and one not in the
postman set (xe = 0). For any plus-pseudonode k meeting an edge e
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euen

1 2(a) 2(b}

Figure 5.8 Grow a planted tree.

having X e = 0 and not incident to a minus pseudonode, there are three
cases for the other end fl.: (1) fI. is a plus pseudonode, (2) fI. is a pseudon­
ode not in the tree, and (3) fI. is a node (necessarily not in the tree T). In
case (1), e forms an odd cycle when adjoined to the tree T as shown in
Figure 5.8(1). The odd cycle is said to form a blossom and is shrunk as
described in the next step. The blossom becomes a new plus pseudon­
ode. In case (2), there are two subcases: (a) the postman edge p meeting
fI. meets another pseudonode m, or (b) it meets a node j (see Figure 5.8,
2(a) and 2(b)). In the first case (a), fI. becomes a minus pseudonode, and
m becomes a plus pseudonode. In the second case (b), pseudonode fI. still
becomes a minus pseudonode, but now node j together with all of the
postman edges meeting it, except for edge p, become a new pseudonode
m that is a plus pseudonode.

In case (3) shown in Figure 5.9, there are two subcases: (a) node fI.
is exposed or its parity condition is satisfied. In case (a), node fI. is ex­
posed so we can augment. In the case (a), form a new plus pseudonode
m subsuming pseudonode k consisting of k, e, and fI. together with any
postman edges meeting node fl..

Shrink a blossom: When an odd cycle occurs in the tree, the node in
the cycle closest to the root is called the join and is necessarily a plus
pseudonode. Contract, or shrink, the cycle to form a new pseudonode
that becomes a plus pseudonode replacing the join in the tree. Its dual
variable is zero but will increase at the next dual step. All of the dual
variables inside the new pseudonode stay fixed until such time as this
pseudonode is expanded during a dual step. The new pseudonode is in



186 ARC ROUTING

e

3(aJ 3(bJ

Figure 5.9 Grow a planted tree.

Figure 5.10 Augmenting Tree.

the surface graph but all nodes and pseudonodes in the cycle disappear
from the surface graph.

Augment an alternating path: By the structure of a planted tree, there
is an augmenting path in the surface graph (see Figure 5.10). What re­
mains to be shown is that the alternating path can be extended to the
original graph. The graph inside of a pseudonode can have two forms: an
odd cycle of pseudonodes, or a node with any number of incident edges.

In the case of an odd cycle, if there are k pseudonod~s, then there must
be (k - 1)/2 postman edges in the cycle meeting each pseudonode, except
for the join, exactly once. In the case of a node and some incident edges,
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Figure 5.11 Augmenting inside pseudonodes.

if the node is an even node, there must be an odd number of incident
edges, and if it is an odd node, then there must be an even number of
incident edges.

Dual step: In the planted tree, increase the dual variable for each plus
pseudonode and decrease the dual variable for each minus pseudonode.
The amount of change is limited to be the minimum of three minimums:

1 the smallest initial dual variable for any minus pseudonode;

2 the minimum reduced cost for all edges in the surface graph with
one end meeting a plus pseudonode and the other end meeting a
node or pseudonode not in the planted tree; and

3 one-half times the minimum reduced cost for all edges in the surface
graph having both end meeting plus pseudonodes.

If (1) limits the dual change, then the minus pseudonodes whose dual
variables reach zero must be expanded before returning to the primal
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step. If (2) limits the dual change, then when we return to the primal
step the planted tree can be grown further. If (3) limits the dual change,
then when we return to the primal step there will be a blossom that
needs to be shrunk. Of course, there may be several ties for the mini­
mum, and any subset of (1), (2), (3) may occur.

When (1) limits the dual change, it means that the dual variable cor­
responding to the odd cut constraint for the pseudonode has reached
zero and is limited by its non-negativity requirement. In this case, the
linear program would like to relax the equality in the odd cut constraint
to allow inequality, i.e. to allow the slack variable to become positive.
Expanding the pseudonode always allows growing the planted tree in the
newly expanded subgraph to be spanning. Furthermore, if the pseudon­
ode was not a leaf of the tree, then the tree can be reconnected using
the newly expanded subgraph.

minus

(0) (b)

Figure 5.12 Expanding minus pseudonodes.

Figure 5.12 shows the cases (a) and (b), where (a) shows a minus pseudon­
ode that is an odd cycle, and (b) shows a minus pseudonode consisting of
an odd node and two incident edges. In case (b), a new plus pseudeonode
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is formed using the rule for growing a planted tree, in this case from the
root, when an original node is encountered (see Figure 5.2, case 3).

The Chinese postman problem is interesting in its own right as a graph
problem with applications in routing. However, it is interesting in other
ways. The first we will discuss is Gomory's group problem. Gomory
developed this approach [12] as a relaxation of the integer programming
problem. However, the Chinese postman problem is already a group
problem, so there is no relaxation. Section 3 included a discussion of
blocking clutters and blocking pairs of polyhedra. Fulkerson [11] devel­
oped these concepts independently of Gomory's work, but the Chinese
postman problem provides a very nice example problem for both the­
ories. Johnson [17] developed an algebraic construction to produce a
blocking group problem whose solutions are the blocking cutter. That
construction will be given here and the Chinese postman problem will
be used to illustrate it.

4. BINARY GROUP PROBLEMS AND
BLOCKING PROBLEMS

The general binary group problem is:

x* = 0,1

Mx* = b(mod 2)

Minimize ex*,

where !vI is a 0-1 matrix, c is a non-negative real row vector, and b
is any 0-1 column vector. If !vI is m x n, then c is an n-vector and
b is an m-vector. The Chinese postman problem can be stated in this
way by letting !v! be the node-edge incidence matrix of G. There are
clearly other matrices !vI that can be brought to the form of a node-edge
incidence matrix (two l's per column) by elementary row operations.
Results of Tutte [28] show that a binary group problem can be reduced
to a Chinese postman problem if and only if the matrix !v! does not
contain certain minors [19]. Such matrices are said to be graphic, or
equivalently are said to represent a graphic matroid.

The augmented matrix [!vI Ib] can be brought to standard form by
pivoting (using modulo 2 arithmetic) on columns in a basis to bring the
basis to an m x m identity I and deleting redundant rows to give the
equivalent problem:

x* = (xj,xN) = 0,1
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Ixj + NXN = b(mod2)

A solution x is called basic if the only x* equal to 1 are among xj. It
can be easily seen that basic solutions are minimal among all solutions so
form a clutter. Gomory showed [12] that the vertices of the convex hull
of integer solutions to binary (and ternary) group problems are precisely
the basic solutions.

For the Chinese postman problem, the matrix I corresponds to a span­
ning tree, the vector b is the unique postman solution contained in that
tree, and the matrix N has a column for every edge not in the tree and
that column has a 1 for the edges in the path in the tree between its two
end points. One could say this is an algebraic representation of the Chi­
nese postman problem. However, this representation does not offer any
easy computational advantage. It does, however, show how one postman
solution can be changed to another. If an xi is changed from 0 to 1, then
a new solution is obtained by subtracting (modulo 2) column Nj from
b. Since the column Nj has l's in the cycle formed by the out-of-tree
edge, the affect of setting xi to 1 and subtracting Nj from b is to change
the O's on the cycle to 1's and vice versa. Interestingly, this change in
postman solution moves from one vertex to an adjacent vertex [19]. The
reason that we cannot just perform the simplex method (using modulo
2 arithmetic) is that the objective function is in real arithmetic.

There is an interesting algebraic construction of the blocking problem
[17]. Note that N is m x (n - m) so that an (n - m) x (n - m) identity I
can be used to form the binary group problem in right-hand side form:

x = (XN·,XI·) = 0,1

N*XN' + IXI' = O(mod 2), where N* = Nt

bXN' = l(mod 2)

For the Chinese postman problem, the solutions will be incidence vectors
of odd cuts and the congruence bXN' = 1 (mod 2) says that every odd
cut meets a particular postman solution an odd number of times. The
other congruence says that an odd cut meets a cycle an even number
of times. Furthermore, the result here is that any subset of edges that
meets anyone particular postman solution contained in a spanning tree
T an odd number of times and meets the cycles in the fundamental set
of cycles of T an even number of times must be an odd cut. This con­
struction works for any binary group problem [19].

The right-hand-side form used in the construction can, of course, be
brought to standard form by pivoting on the row containing b. Then the
same construction can be used to get a right-hand-side representation



Chinese Postman and Euler Tour Problems in Bi-direeted Graphs 191

of the original binary group problem. In right-hand-side form, a basic
solution is one that includes exactly one Xj equal to 1 from XN- and the
values of x1" equal to that column of N*. Again, these basic solutions
are minimal among solutions and are the incidence vectors of the block­
ing clutter of the basic solutions of the original binary group problem.

The Chinese postman problem is characterized by the coefficient ma­
trix being graphic. In that case, the partitioned matrix

used in forming the right-hand-side form of the odd cut problem is a
co-graphic matrix. However, the particular solution congruence bXN- =
1 keeps the coefficient matrix of the odd cut problem from being co­
graphic. Now consider a binary group problem where the coefficient
matrix M is co-graphic and the right-hand side b is an arbitrary 0-1
vector. Such a problem has been called [20] a co-postman problem. Since
this problem is now considered as the original problem, its standard form
has· congruences:

I xj + Nx'N = b(mod 2)

where for some spanning tree T, N has a column for each edge e of T
and the 1's in the column of N correspond to the edges in the funda­
mental cut corresponding to the edge e. A row of the matrix [ IN]
is a fundamental cycle of the tree T formed by adjoining the edge ei to
the tree. We define a particular co-postman set to be those out-of-tree
edges ei such that bi = 1. Define a cycle to be an odd cycle if it contains
an odd number of co-postman edges. Now the general definition of co­
postman sets is the sets of all edges outside of some spanning tree such
that the fundamental cycle formed by adding the edge to the tree is an
odd cycle. Thus, the co-postman sets are the solutions to a binary group
problem when the coefficient matrix is co-graphic, for some right-hand
side. The blocking clutter way to describe co-postman sets is that they
are the blocking clutter of the odd cycles. Although odd cycles were
defined originally based on a particular co-postman set, any co-postman
set would give the same odd cycles.

For the Chinese postman problem, we usually begin with odd nodes
and define postman sets in terms of meeting odd nodes an odd number of
times. One way to think of that condition is that the postman set meets
the odd cut of edges incident to the node an odd number of times. How­
ever, one can also begin with any fundamental set of cuts, some of which
are designated as odd and some as even. Then, a postman set is a set of
edges that intersects the even fundamental cuts an even number of times
and the odd fundamental cuts an odd number of times. If postman is
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replaced by co-postman and cut is replaced by cycle in the two preceding
sentences, then we get the corresponding definition of co-postman sets.
For the Chinese postman problem, minimality is assured for a postman
set by being a subset of a spanning tree, i.e. not containing a cycle.
Similarly, a co-postman set is minimal so long as it is a subset of the
compliment of a spanning tree; i.e. does not contain a cut or in other
words does not disconnect the graph.

The classical case of the Chinese postman problem designates a node
as even or odd depending on the parity of its degree. Similarly, the co­
postman problem can have cycles designated even or odd depending on
their parity. In this case, removal of any co-postman set would leave a
bipartite subgraph. Thus, a co-postman set is a complement of a maxi­
mal bipartite subgraph. For non-negative weights on the edges, finding
a minimum weight co-postman set is equivalent to finding a maximum
weight bipartite subgraph, a problem to be NP-complete [13].

5. IDEAL BINARY MATRICES
Define the matrix Q* to be the 0-1 matrix whose rows are incidence

vectors of basic solutions to the binary group problem. Let Q be the
corresponding matrix whose rows are incidence vectors of the basic solu­
tions known to the blocking binary group problem. The integer program

x* = 0,1

Qx* 2:: 1

cx* = z(min)

is equivalent to the binary group problem. We reemphasize that the
objective coefficients Cj are non-negative. The matrix Q is called ideal [4]
when the above linear program has integer solutions for all non-negative
c. By extension, the original binary group problem and the augmented
matrix [M/b] are also called ideal when Q is ideal. A result of Fulkerson
[11] says that Q is ideal if and only if Q* is also ideal, and then the two
linear programming polyhedra are called blocking polyhedra or a block­
ing pair of polyhedra. By extension, we refer to the associated integer
programs as being a blocking pair of integer programs. When Q and Q*
are ideal, then the solutions to the linear program with coefficient matrix
Q are rows of the matrix Q* and vice versa.

From results of Khatchian [21], it is known that when Q and Q* are
ideal, then one of their linear programs is polynomially solvable if and
only if the other is also polynomially solvable. This fact is due to the
equivalence of separation and optimization since separation for one lin­
ear program is optimization over the blocking clutter. Referring to these
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linear programs as polynomially solvable means that the linear program
is polynomially solvable in terms of the input, which is considered to be
the augmented matrix [M/b] rather than the linear programming coef­
ficient matrix [Q/l]. The latter matrix has, in general, exponentially
many rows as compared to the former.

The co-postman problem and the corresponding blocking problem are
not, in general, ideal. See [5] where it is shown that they are ideal,
and hence a blocking pair of polyhedra, if and only if the graph has no
odd K5 minor. It is also known that in the general case i.e. when the
graph may have an odd K5 minor, solving the co-postman problem is
NP-complete. Thus, solving the integer program with constraints

x* ?:: 0,Qx* ?:: 1,

is NP-complete. However, the blocking problem is to find a minimum
cost odd cycle and is polynomially solvable [13], [19]. Thus, the remark
about the linear programs being both polynomially solvable when one is
provided one and hence both are ideal does not hold true in the non-ideal
case. The linear program for the co-postman problem is polynomially
solvable because it is equivalent to separation over odd cycles. However,
the integer program is equivalent to finding a maximum cost bipartite
subgraph and is not polynomially solvable. For the blocking problem,
the linear program is NP-complete because it is equivalent to separation
over complements of bipartite subgraphs, i.e. the co-postman problem.
However, the integer program of the blocking problem is the minimum
odd cycle problem and is polynomially solvable. This is an example for
which it is fundamentally easier to solve for an optimum integer answer
than to solve for an optimum linear programming answer, provided P is
not equal to NP.

6. FOUR PROBLEMS ON PLANAR GRAPHS
When a graph G is planar, it has a dual graph G* that can be obtained

by the following procedure. For any planar representation of the graph
G, there is a node of G* for each region of G, and any edge of G is in
G* and connects the two nodes of G* corresponding to the two regions
of G that the edge separates in G. For simplicity, assume that G has no
cut edges and no loops. Then, G* will have no cut edges or loops. The
duality between G and G* is that edges in a cycle in G are the edges in
a cut in G* and vice versa. Thus, there is a one-to-one mapping between
cycles and cuts, where cycles and cuts are considered as sets of edges.

On planar graphs, there is no real simplification of the Chinese post­
man problem, but the other three problems do have significant simpli­
fications or, at least, interpretations in terms of the dual graphs. In



194 ARC ROUTING

Figure 5.13 Co-postman set.

particular, the co-postman problem is the Chinese postman problem on
the dual graph, where a node i* of the dual graph is odd if the region of
the original graph has an odd number of edges in its boundary. The odd
cut problem is the odd cycle on the dual graph, and vice versa. Since the
Chinese postman problem is polynomially solvable and the co-postman
problem is not, the reduction of the co-postman problem to Chinese
postman in the planar graph case is significant. Although the odd cycle
problem and the odd cut problem are both polynomial, the odd cycle
problem seems easier, so that reduction is interesting.

7

Figure 5.14 Postman set on a dual graph.
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1. INTRODUCTION
As explained in Chapter 4, most realistic Arc Routing Problems are

known to be NP-hard. Therefore we can expect that there will be certain
instances which are impossible to solve to optimality within a reasonable
time. However, this does not mean that all instances will be impossible
to solve. It may well be that an instance which arises in practice has
some structure which makes it amenable to solution by an optimization
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algorithm. Since, in addition, significant costs are often involved in real­
world instances, research into devising optimization algorithms is still
regarded as important.

At the time of writing, the most promising optimization algorithms
for NP-hard problems are based on the so-called' branch-and-cut method
(see Padberg & Rinaldi, 1991 and also Chapter 7 of this book). The key
to producing an effective branch-and-cut algorithm for a particular class
of problems is to have a good understanding of certain polyhedra which
are associated with those problems.

This chapter gives a self-contained introduction to the main ideas of
polyhedral theory, followed by a state-of-the-art survey of the known
polyhedral results for Arc Routing. The most promising integer pro­
gramming formulations of various Arc Routing Problems are reviewed
and the known valid inequalities and facets of the associated polyhedra
are presented. Note, however, that we are not here concerned with the
algorithmic implications of polyhedral theory. These are discussed in
detail in Chapter 7.

The outline of the chapter is as follows. In Section 2, the basic ideas
and notation involved in polyhedral theory are summarized. In Section
3, the definitions of a number of routing problems are briefly reviewed.
The following two sections review the polyhedral theory for single-vehicle
variaQts of the Chinese Postman Problem and the Rural Postman Prob­
lem, respectively. Section 6 does the same for the Capacitated Arc Rout­
ing Problem. Some concluding comments are made in Section 7.

Other surveys about Arc Routing which include material on polyhe­
dral theory can be found in Assad & Golden (1995) and Eiselt et al.
(1995a, b).

2. THE BASICS OF POLYHEDRAL THEORY
This section draws on material in Weyl (1935), Grotschel & Padberg

(1985) and Nemhauser & Wolsey (1988).

Like many other combinatorial optimization problems, the majority
of Arc Routing Problems can be formulated as problems of the form:

min{cT x: XES} (6.1)

where x = {Xl, ... ,Xn } E ~n is a vector of decision variables, c =
{CI, ... ,en} E ~n is a vector of objective function coefficients (i.e., costs)
and S c ~n is a set of feasible solutions. Often, but not always, S is de­
fined by an explicit system of linear inequalities with integer coefficients,
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together with an integrality condition. That is, there is an integer m, a
matrix A E zmn and a vector b E zm such that

5 = {x E Zn : Ax ~ b}. (6.2)

In this case, (6.1) is called an Integer Linear Program (ILP). Note that
constraints of the 'greater than or equal to' form can be accommodated
in (6.2) if they are multiplied by minus one; equations can also be ac­
commodated since they can be written as two inequalities. Note also
that m may be very large; often it is exponential in n.

The key to the polyhedral approach is the observation that the feasible
solutions to (6.1) (i.e., the members of 5) are vectors in the Euclidean
space 3{n. It is then easy to define a polyhedron associated with a given
5. In order to show how this can be done, it is first necessary to give
some formal definitions.

A set H C 3{n is called a half-space if there exists a vector a E 3{n and
a scalar ao E 3{ such that H = {x E 3{n : aTx ~ ao}. A set P C 3{n is
called a polyhedron if it is the intersection of finitely many half-spaces.
A polyhedron which is bounded (i.e., not of infinite volume) is called a
polytope. Now suppose that xl, ... ,xk E 3{n are vectors and A I, ... ,Ak

are scalars. A vector of the form AIXI + ... + AkXk is called an affine
combination of xl, ... ,xk if L~=l Ai = 1. An affine combination is also
called a convex combination if Ai ~ 0 for all i. Given some 5 C 3{n

with 5::1 0, the affine (respectively, convex) hull of 5, denoted by aff(5)
(respectively, conv(5)), is the set of all affine (convex) combinations of
finitely many vectors in 5.

Note that for any 5, conv(5) ~ aff(5) holds. Also, aff(5) is always a
polyhedron. The situation is a little more complicated for conv(5). It
can be shown that, when 151 is finite, conv(5) is always a polyhedron.
When 151 is not finite, however, conv(5) can fail to be a polyhedron
(see, e.g., Queyranne & Wang, 1992). Fortunately, however, the sets 5
which will be of concern to us in this chapter are 'well-behaved', in that
conv(5) will always be a polyhedron.

Another important concept is that of the dimension of a polyhedron.
This is defined using the idea of affine independence. A set of vectors
is affinely independent if no member of the set is an affine combination
of the others. The dimension of a polyhedron P, denoted by dim(P), is
then defined as the maximum number of affinely independent vectors in
P. Note that, if P is defined in 3{n, then dim(P) ~ n holds. If equality
holds, P is said to be full-dimensional.
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Given these definitions, we can now associate a polyhedron with any
instance of a combinatorial optimization problem; namely, the polyhe­
dron conv(S), where S is the set of feasible solutions to (6.1). Because
the vectors in S are assumed to be integral, conv(S) will be a polyhedron
with integral vertices. We will let PI denote such an integral polyhedron.
The whole aim of the polyhedral approach is to find 'good' descriptions
of PI for various combinatorial optimization problems. In order to define
what is meant by a 'good' description, we need some further definitions.

An inequality aTx :s; ao is valid for PI if PI ~ {x E Wn : aTx :s; ao}.
The set F = PI n {x E Wn : aTx = ao} is called the face induced by
aTx :s; ao on PI. Note that F is also a polyhedron. A valid inequality is
supporting if F # 0. If F = PI, then aTx = ao is said to be an implicit
equation of PI. The face F of PI induced by a valid inequality aTx :s; ao
is called a facet if F # PI and there is no other valid inequality which
induces a face F' of PI such that F is strictly contained in F'. Note that
dim(F) = dim (PI ) - 1 when F is a facet.

A 'best possible' complete linear description of PI must therefore in­
clude all implicit equations and facet-inducing inequalities. Of course, if
there are implicit equations, then anyone of the equations or inequalities
can be written in an infinite number of ways. All that is really needed,
however, is one representative of each non-equivalent facet-inducing in­
equality, along with a minimal set of equations which identifies the affine
hull of PI.

When an instance of an NP-hard combinatorial optimization prob­
lem is extremely small, it may be possible to find such a complete linear
description of the associated PI. However, finding a complete linear
description of PI for instances of realistic size is hopelessly difficult. Al­
though the number of equations needed to identify the affine hull is small
(only n - dimePI)), it often happens that PI has an immense number of
facets. An example will drive this point home. Readers who are famil­
iar with the well-known Symmetric Traveling Salesman Problem (STSP)
will regard an STSP instance defined on a graph with only 10 vertices
as trivial. Nevertheless, Christof & Reinelt (1996) have shown that over
5.1 x 1010 inequalities are needed to describe PI in this case (together
with 10 equations, one for each vertex in the graph).

A further negative result comes from Karp & Papadimitriou (1982),
who showed that, if a combinatorial optimization problem is NP-hard,
then the problem of deciding whether or not an inequality is valid for
the associated PI is itself NP-hard.
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Despite these negative results, however, it remains true that large
classes of valid, supporting and even facet-inducing inequalities, along
with implicit equations, are known for many important NP-hard prob­
lems. This will become clear in the following subsections. Such partial
linear descriptions of polyhedra provide the basis for very effective opti­
mization algorithms, see Chapter 7.

3. THE ROUTING PROBLEMS DEFINED
In this section, we give the definitions of twelve different fundamen­

tal routing problems for which polyhedral studies have been conducted.
These will be examined in subsequent sections.

First, we consider undirected, single-vehicle problems. Given a con­
nected, undirected graph C·with vertex set V and (undirected) edge set
E, a cost Ce for each edge e E E, a set VR ~ V of required vertices and
a set ER ~ E of required edges, the General Routing Problem (GRP)
is the problem of finding a minimum cost vehicle route ('tour') passing
through each v E VR and each e E ER at least once (Orloff, 1974).

The GRP contains a number of other known problems as special cases.
When ER = 0, the GRP reduces to the Steiner Graphical Traveling
Salesman Problem (SGTSP) (Cornuejols et al., 1985), also called the
Road Traveling Salesman Problem by Fleischmann (1985). On the other
hand, when VR = 0, the GRP reduces to the Rural Postman Problem
(RPP) (Orloff, 1974). When VR = V, the SGTSP in turn reduces to
the Graphical Traveling Salesman Problem or GTSP (Cornuejols et al.,
1985). Similarly, when ER = E, the RPP reduces to the Chinese Post­
man Problem or CPP (Guan, 1962; Edmonds, 1963).

The CPP can be solved in polynomial time by reduction to a matching
problem (Christofides, 1973; Edmonds & Johnson, 1973), but the RPP,
GTSP, SGTSP and GRP are all N'P-hard. The GTSP and SGTSP
were proved to be N'P-hard by Cornuejols et al. (1985) and the RPP
and GRP were proved to be NP-hard by Lenstra &Rinnooy-Kan (1976).

Now we consider problems in which directed arcs are allowed. Given
a connected, mixed graph C with vertex set V, (undirected) edge set E,
(directed) arc set A, a cost Ce for each edge e E E, a cost Ca for each
arc a E A, a set ER E E of required edges and a set AR E A of re­
quired arcs, the Mixed Rural Postman Problem (MRPP) is the problem
of finding a minimum cost vehicle route passing through each e E ER and
each a E AR at least once (Corberan, Romero & Sanchis, 1997; Romero,
1997).
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Like the GRP, the MRPP also contains a number of other problems
as special cases. When A = 0, the MRPP reduces to the RPP men­
tioned above. When E = 0, the MRPP reduces to the Directed Rural
Postman Problem or DRPP (Christofides et al., 1986). Alternatively,
it may be that ER = E and AR = A, in which case the MRPP re­
duces to the Mixed Chinese Postman Problem or MCPP (Edmonds &
Johnson, 1973). When ER = 0, the MCPP in turn reduces to the Di­
rected Chinese Postman Problem or DCPP (Edmonds & Johnson, 1973).

The DCPP can be solved in polynomial time by reduction to a trans­
portation problem (Edmonds & Johnson, 1973), but the MRPP, DRPP
and MCPP are all NP-hard. The MCPP (and therefore MRPP) was
proved to be NP-hard by Papadimitriou (1976) and the DRPP was
proved to be NP-hard by Christofides et al. (1986).

Another single-vehicle problem is known as the Windy Postman Prob­
lem or WPP. It is a generalization of the CPP which allows for the
possibility that the cost of traversing an edge in one direction may dif­
fer from the cost of traversing the edge in the opposite direction. The
WPP combines features of both undirected and directed problems. In
fact, it is easy to show that it contains the MCPP as a special case.
It is therefore NP-hard, as noted by Guan (1984), although it is poly­
nomially solvable in certain special cases (Guan, 1984; Win, 1987, 1989).

Now we consider two undirected multi-vehicle problems. The Capac­
itated A rc Routing Problem or CARP is a generalization of the RPP in
which k ~ 1 identical vehicles are available, each of capacity Q > O.
One particular vertex is called the depot and each required edge has an
integral demand qi ~ O. The task is to find a minimum cost set of k
feasible routes, each one starting and ending at the depot. (A route is
feasible if the sum of the demands on the route do not exceed Q.) When
ER = E, the CARP reduces to the Capacitated Chinese Postman Prob­
lem or CCPP (Win, 1987).

Since the CARP is at least as difficult as the RPP, it is NP-hard
(Golden & Wong, 1981). Perhaps more surprisingly, the CCPP is also
NP-hard. In fact, Golden & Wong (1981) showed that it is NP-hard to
find a O.5-approximate solution to the CCPP (i.e., a solution which has
a cost less than 1.5 times the cost of the optimal solution).
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4. VARIANTS OF THE CHINESE POSTMAN
PROBLEM

4.1. THE CPP
Since the CPP can be solved in polynomial time, we might expect

that the associated polyhedra have a simple description. This is indeed
the case. We let the general integer variable X e represent the number
of times that edge e is traversed without being serviced. (That is, X e

represents the number of copies of edge e which will be added to E in
order to make G Eulerian.) For each S c V, we let b(S) denote the set
of edges, commonly called the edge cutset, which have one end-vertex in
S and one end-vertex in V\S. When S = {i}, we write b(i) rather than
b({i}) for brevity. Finally, for any FeE, we let x(F) denote LeEF X e .

Then our set S of feasible solutions is defined as

x(b(i)) == Ib(i)1 (mod 2), (Vi E V)

X e ~ 0, ("Ie E E)

x E ZIEI

(6.3)

(6.4)

(6.5)

Note that the conditions (6.3) are not in the form of linear inequalities.
They do however imply the validity of the following odd-cut (or blossom)
inequalities (Edmonds & Johnson, 1973):

x(b(S)) ~ 1, ("IS C V : Ib(S)1 odd). (6.6)

To see why these inequalities are valid, note that the vehicle must cross
any given edge cutset an even number of times. Hence, if S c V is such
that Ib(S)1 is odd, then the vehicle must cross the cutset at least once
without servicing. Note that the number of odd-cut inequalities can in­
crease exponentially in the size of the graph G.

Edmonds & Johnson (1973) show that PI is completely described by
the odd-cut inequalities (6.6) and the non-negativity inequalities (6.4).
That is, the conditions (6.3) and (6.5) are unnecessary.

Corberan & Sanchis (1994) have shown that an odd-cut inequality is
facet-inducing if and only if the subgraphs induced in G by S and V \ S
are each connected; they also showed that a non-negativity inequality
induces a facet if and only if e is not a cut-edge (an edge whose removal
disconnects the graph).

4.2. THE ncpp
Since the DCPP can be solved in polynomial time, we might expect
that the associated polyhedra have a simple description, just as in the
case of the CPP. This is indeed the case. We let the general integer
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variable X a represent the number of times that arc a is traversed without
being serviced. This is analogous to the formulation for the CPP given
in the previous subsection, in that X a represents the number of copies
of arc a which will be added to A in order to make G Eulerian. For
any i E V, we let 8+(i) denote the set of arcs which leave i and 8-(i)
denote the set of arcs which enter i. Finally, we let b(i) for each i E V
denote 18- (i)I-18+(i) I, the so-called 'unbalance' of i. Note that b(i) may
be positive, negative or zero. The set S is then given by (Edmonds &
Johnson, 1973):

x(8+(i)) - x(8-(i)) = b(i), (Vi E V)

X a 2: 0, (Va E A)

xE ZIAI

(6.7)

(6.8)

(6.9)

Equations (6.7), which we will call balance equations, ensure that the
vehicle leaves each vertex as many times as it enters. They describe the
affine hull of PI and in fact it can be shown that only IVI - 1 of them
are needed (that is, anyone of them can be deleted as redundant). It is
also not hard to show that the non-negativity inequalities (6.8) induce
facets of PI under mild conditions.

Edmonds & Johnson (1973) showed that PI is completely described
by the balance equations and non-negativity inequalities. Thus, the in­
tegrality condition (6.9) is unnecessary.

4.3. THE MCPP
When considering how to tackle the MCPP, it appears at first sight

that in addition to an integer variable for each arc, it will be necessary
to have two integer variables for each edge (to indicate the number of
times the edge is traversed in either direction). Indeed, formulations of
this kind have appeared in the literature (e.g., Kappauf & Koehler, 1979;
Christofides et al., 1984; Gr6tschel & Win, 1992; Ralphs, 1993). How­
ever, it is possible to use only one variable per edge (Nobert & Picard,
1996), as we now explain.

Each MCPP solution is defined by a family (i.e., a set with possi­
ble repeated elements) of edges and arcs which constitute what might
be called a mixed Eulerian multigraph. In Ford & Fulkerson (1962), it
is proven that a mixed multigraph is Eulerian if and only if it is even
and balanced. The first condition means that the number of arcs and
edges incident on any vertex is an even integer. To explain the second
condition, we extend our notation a little. Given any 8 c V, let 8(8)
be the set of all edges crossing from 8 to V \ 8, 8+ (S) the set of all
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arcs leaving 8, and let 8-(8) be the set of all arcs entering 8. The
condition that the multigraph be balanced means that, for any 8 C V,
18-(8)1-18+(8)1 :s; 18(8)1 holds. Ford & Fulkerson also provide a simple
algorithm to find a tour of a mixed Eulerian multigraph.

Now let the general integer variable X e (respectively, x a ) represent the
number of times that edge e (respectively, arc a) is traversed without
being serviced. That is, each variable represents the number of times a
particular edge or arc will be added to E U A to make G Eulerian. Also,
for any 8 C V let b(8) = 18-(8)1-18+(8)1-18(8)1, the so-called 'unbal­
ance' of 8. Note that this definition of 'unbalance' is a generalization of
the definition given in the previous subsection. Finally, let 8*(8) denote
8(8) U 8+(8) U 8-(8). Then the set S of feasible solutions is defined by
the following conditions:

x(8*(i)) == 18*(i)1 (mod 2), ('r/i E V)

x(b+(8)) + x(8(8)) - x(b-(8)) ~ b(8), (V8 C V)

X e ~ 0, (Ve E E)

X a ~ 0, (Va E A)
x E ZIEUAI

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

The system of congruences (6.10) enforces the condition that the asso­
ciated mixed multigraph be even. Similarly, the balanced set inequalities
(6.11) enforce the condition that the multigraph be balanced. Finally,
(6.12) and (6.13) are just non-negativity inequalities. Obviously, the in­
equalities (6.11) - (6.13) are valid for the associated PI.

It might be thought that a 'switched' version of (6.11) would also be
needed for each 8, i.e., an inequality of the form x(8-(8)) - x(8+(8)) +
x(8(8)) ~ -b(8). However, this is easily shown to be equivalent to
the balanced set inequality associated with V \ 8. Using this fact,
it is also possible to show that PI is not full-dimensional in general
(though this is not noted explicitly by Nobert & Picard). Suppose that
8 C V is such that 18(8)1 = 0. Then, the balanced set inequality re­
duces to x(8+(8)) -x(b-(8)) ~ b(8), whereas, the balanced set inequal­
ity for V \ 8 can be written as x(8+(8)) - x(8-(8)) :s; b(8). Thus,
x(8+(8)) - x(8-(8)) = b(8) is an implicit equation of PI. We could call
equations of this type balance equations. It is easily shown that they are
a generalization of the balance equations (6.7) for the DCPP.

One further class of valid inequalities is presented in Nobert & Picard
(1996). They note that the condition (6.10) implies that the following
blossom inequalities are valid for PI:

x(8*(8)) ~ 1, (V8 c V : 18*(8)1 odd). (6.15)
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These are a simple generalization of the odd-cut (blossom) inequalities
for the CPP.

The algorithm of Nobert & Picard (1996), based upon the formula­
tion given here, clearly outperformed algorithms based upon formula­
tions with two variables per edge.

In Subsection 5.4, we review a study by Corberan, Romero & San­
chis (1997) about polyhedra associated with the Mixed Rural Postman
Problem (MRPP). Since the MRPP contains the MCPP as a special
case, many of the results of Corberan, Romero & Sanchis also apply to
the MCPP. This implies, for example, that the affine hull of PI is de­
scribed by one balance equation for each connected component in the
subgraph of G induced by the (required) edges and that exactly one of
these equations is redundant. It also yields necessary and sufficient con­
ditions for the non-negativity, blossom and balanced set inequalities to
induce facets of PI. The details are not given here, for brevity.

We would like to close this subsection with a question for future re­
search:

Research Problem: For what (mixed) graphs G (if any) does the poly­
hedron defined by (6.11) - (6.15) contain integer extreme points which
do not represent feasible tours?

4.4. THE WPP
Although the WPP is notionally defined on an undirected graph, we

will assume that the underlying graph is directed, with two arcs (i,j),
(j, i) going in opposite directions for each edge e = {i, j} in the original
graph. Then, we can define a general integer variable Xij for each arc in
the directed graph, representing the number of times the vehicle travels
in that particular direction. The set S of feasible solutions is then given
by:

x(<5+(i)) - x(<5-(i)) = 0, (Vi E V)

Xij + Xji 2: 1, (V{i,j} E E)

Xij,Xji 2: 0, (V{i,j} E E)

x E Z 21E I

(6.16)

(6.17)

(6.18)

(6.19)

The associated polyhedron is examined in Win (1987) and Grotschel
& Win (1988). They show that the balance equations (6.16) describe the
affine hull of PI and that only IVI - 1 of them are needed (anyone of
them can be deleted as redundant). They also show that the inequalities
(6.17), which ensure that each edge is traversed at least once, together
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with the non-negativity inequalities (6.18), are facet-inducing.

Grotschel and Win also show that the following odd-cut inequalities
are valid and that they induce facets under mild conditions:

x(8+(S)) + x(8-(S)) ~ 18(S)1 + 1, (VS C V: 18(S)1 odd). (6.20)

They also mention that the odd-cut inequality for any S can be re­
written, using the balance equations, in a variety of other forms, such
as:

x(8+(S)) ~ ~(18(S)1 + 1)

or

x(8-(S)) ~ ~(18(S)1 + 1).

We close this section by mentioning a result of Win (1987, 1989), who
showed that the polyhedron defined by (6.16), (6.17) and (6.18) is half­
integral. That is, all of its extreme points have components that are
an integral multiple of one-half. He also showed that this polyhedron is
integral if and only if the original graph is Eulerian. Ralphs (1993) gave
a similar result for an analogous formulation for the MCPP.

5. VARIANTS OF THE RURAL POSTMAN
PROBLEM

5.1. THE RPP
An integer programming formulation for the RPP was given in Christ~

fides et al. (1981), but the associated polyhedron was not examined in
detail. This was done in Corberan & Sanchis (1994). In the Corberan
& Sanchis (1994) formulation, X e represents the number of times e is
traversed (if e t/: ER), or one less than this number (if e E ER). That
is, X e represents the number of copies of e which will be added to ER
in order to form an Eulerian multigraph. Now we let VR denote the
set of vertices incident on at least one required edge (these vertices are
also 'required' since the vehicle must travel through them) and let 8R(S)
denote 8(S) n ER. The set S is then defined by

x(6(S)) 2' 2, 'IS C V , {

x(8(i)) == 18R(i)1 (mod 2),Vi E V
X e ~ 0, (Ve E E)

xE ZIEI

8R (S) = 0,
Sn VR # 0,
VR \ S # 0

(6.21)

(6.22)

(6.23)

(6.24)
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Corbenin & Sanchis (1994) show that the associated polyhedron is
full-dimensional and unbounded. Many classes of valid inequalities and
facets are known. In this subsection, we outline those presented in Cor­
beran & Sanchis (1994). The other known inequalities were discovered
in the context of the General Routing Problem and will be described in
the next subsection.

Constraints (6.21), called connectivity inequalities, ensure that the
route is connected. They induce facets of PI if and only if the sub­
graphs induced in G by S and V \ S are connected. The non-negativity
inequalities (6.23) induce facets if and only if e is not a cut-edge. An­
other simple class of valid inequalities is given by the following R-odd
cut inequalities:

x(<5(S)) 2: 1, (VS C V : I<5R(S)1 odd) (6.25)

These generalize the odd-cut (blossom) inequalities for the CPP and
are valid for the same reason. Like connectivity inequalities, R-odd cut
inequalities induce facets if and only if the subgraphs induced in G by S
and V \ S are each connected (Corberan & Sanchis, 1994).

In order to present the remaining inequalities, we will need some more
definitions. Consider the (generally disconnected) subgraph of G ob­
tained by deleting all non-required edges from G. We call a connected
component of this subgraph an R-component. Also, given two disjoint
subsets A and B of V, we let E(A : B) denote the set of edges in E with
one end-vertex in A and one in Band ER(A : B) denote E(A : B) n ER.

A K -component (K-C) configuration is a partition {Va, . .. VK} of V,
with K 2: 3, such that

• VI, ... VK-I and Va U VK are clusters of node sets of one or more
R-components,

• IER(Va: VK)I is positive and even,

• E(Vi: Vi+d =I- 0 for i = 0, ... ,K-1.

Figure 6.1 shows a K-C configuration: the filled circles represent the
Vi, the bold lines represent the required edges crossing from Va to VK and
the plain lines represent the non-required edges which must be present.
Associated with a K-C configuration is a K -C inequality, which can be
written as:

K-I K

L L (q - p)x(E(Vp : Vq )) - 2x(E(Va : VK)) 2: 2(K - 1) (6.26)
p=a q=p+l
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Figure 6.1 K-C configuration.

K-C inequalities induce facets when certain mild connectivity assump­
tions are met (Corberan & Sanchis, 1994).

The last class of inequalities presented in Corberan & Sanchis (1994)
are known as GTSP-type inequalities. Suppose we have an RPP instance
and let m be the number of R-components in G. Consider a partition
of V into sets Sl,'" ,Sm such that Si n VR -# 0 and 8R(Si) = 0 for
i = i, ... ,m. Let Gs be the (multi)graph obtained from G by shrink­
ing each Si into a single vertex and eliminating loops. That is, Gs has
m vertices. It is now possible to define a GTSP instance on Gs and
Corberan & Sanchis (1994) show that any (non-trivial) facet-inducing
inequality for the resulting GTSP polyhedron is also facet-inducing for
the polyhedron associated with the original RPP instance.

This is a powerful result, because GTSP polyhedra have been widely
studied and many classes of facet-inducing inequalities are known for
them. Space does not permit a review here, so the reader is directed to
the surveys JUnger, Reinelt & Rinaldi (1995, 1997).

We close this subsection by mentioning some recent results due to
Ghiani & Laporte (1997). Suppose that V = VR (a problem in which
V -# VR can be easily transformed into one in which V = VR, see e.g.,
Christofides et al., 1981). Consider the graph obtained by 'shrinking'
each R-component down to a single vertex (but not merging parallel
edges). Find a minimum cost spanning tree T on this shrunk graph.
Then Ghiani & Laporte show that there exists an optimal RPP solution
such that X e ~ 2 for each e E T and X e ~ 1 for each e rt T. This leads
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to a pure 0-1 formulation for the RPP, with one binary variable for each
edge, where each e E T is split into two parallel edges with the same cost.

For the Ghiani & Laporte formulation, PI is a polytope (that is, a
bounded polyhedron). This polytope is rather different from the un­
bounded polyhedron studied by Corberan & Sanchis. For one thing, it
is typically not full-dimensional (this is easily shown by considering sets
8 C V with 1 :S 1<5(8)1 :S 3). For another, there are new valid inequali­
ties. For example, let 8 C V and F C <5(8) be such that I<5R(8) 1+ IFI is
odd. Then the inequalities

x(o(8) \ F) 2: x(F) -IFI + 1 (6.27)

are valid for the polytope but not for the unbounded polyhedron. Thf\sr:>
inequalities proved useful in the branch-and-cut algorithm of Ghiani &
Laporte.

It is not immediately obvious which approach to the RPP is 'best',
whether that of Corberan & Sanchis or that of Ghiani & Laporte. The
authors regard this as an interesting theoretical and empirical problem.
Of course, any facet-inducing inequalities for the unbounded polyhedron
are also valid for the polytope. However, they cannot be guaranteed to
induce facets any longer.

5.2. THE GRP
When tackling the GRP, it is helpful to assume (w.l.o.g.) that the

end-vertices of each required edge are in VR. Define for each e E E a
general integer variable X e , representing the number of times e is tra­
versed (if e ¢-. ER), or one less than this number (if e E ER)' Then, the
system (6.21) - (6.23) given in the last section defines S in the case of
the GRP as well as in the special case of the RPP. Also, the connectivity,
R-odd cut, K-C and GTSP-type inequalities are valid for the GRP as
well as the RPP (Corberan & Sanchis, 1998). A number of new results
are also known for the GRP and are presented in the remainder of this
subsection. It should be noted that these results are also new even when
specialized to the RPP.

In Corberan & Sanchis (1998), the K-C inequalities were generalized
to give the honeycomb inequalities, which also define facets if certain
mild connectivity assumptions are met. A honeycomb configuration is a
partition of V into sets 8 i such that:

• there are at least two values i such that OR(Si) =I 0;
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• there are at least two values i such that bR(Si) = 0;

• there is a set T of non-required edges crossing between the Si form­
ing a tree spanning the Si, such that each member of T crosses
between sets Si and Sj with ER(Si : Sj) = 0.

Many, but not all, honeycomb configurations can be formed by 'gluing'
K-C configurations together by identifying edges (Corberan & Sanchis,
1998).

The coefficients in the associated honeycomb inequality are defined as
follows, apart from one exception mentioned in the next paragraph. Let
lXe denote the coefficient of Xe in the honeycomb inequality. Then lXe = 0
if and only if e ~ b(Sd for all i and lXe = 1 for all e E T. The coefficient
lXe of any other crossing non-required edge e is equal to the number of
edges traversed in T to get from one end-vertex of e to the other. For
the required edges crossing between the Si, the coefficient is 2 units less.

The exception is that, for certain complex honeycomb configurations,
some of the crossing non-required edges which are not in T may have a
smaller coefficient. In such cases, the lXe must be computed sequentially
(by a so-called sequential lifting procedure).

The honeycomb inequality is then:

LCeXe 2 2(K -1)
eEE

(6.28)

Figure 6.2 shows two honeycomb configurations. The bold lines repre­
sent edges in bR(Vi) for some i and the plain lines represent edges in the
spanning tree. In the corresponding inequalities, all edges shown have a
coefficient equal to 1. The rhs is 6 in both cases.

In Letchford (1997a, b), the facet-inducing path-bridge (PB) inequal­
ities were introduced. Like honeycomb inequalities, PB inequalities are
a generalization of K -C inequalities. However, they are a generalization
in a different direction. They are defined in terms of an associated path­
bridge (PB) configuration. Suppose p 2 1 and b 2 0 are integers such
that p + b 2 3 and odd. Let ni 2 2 for i = 1, ... ,p also be integers. A
PB configuration is (see Figure 6.3) a partition of V into vertex sets A,
Z and ~i for i = 1, ... ,p, j = 1, ... ,ni with the following properties:

• each ~i is a cluster of one or more R-sets,
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85

Figure 6.2 Two honeycomb configurations .

• E(A: Vn =f 0 and E(V~i : Z) =f 0 for i = 1, ... ,p,

• E (V1 : ""?+1) =f 0 for i = 1, . . . ,p and j = 1, ... ,ni - 1.

A

Z

Figure 6.3 PB configuration.

The edges in ER(A : Z) constitute the bridge. If the bridge is empty
(b = 0), either or both of A and Z are permitted to be empty also.

To define the coefficients of the associated PB inequality, it is helpful to
identify A with V~ and Z with V~i+l for i = 1, ... ,po The PB inequality
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is then:

P n· + 1
""' QeXe 2 1 + ""' -'--~ ~n·-1
eEE i=l '

(6.29)

where the coefficient Q e for an edge e = {u, v} is defined as follows. If
u E V] and v E V~, j 2 k, then Q e = (j - k)j(ni -1); unless u E A and
v E Z, in which case Q e = 1. If, however, u E ~i and v E V;, with i #- r,
1 :S j :S ni, 1 :S k :S nr , then Q e equals

_1_+_1_+ l
j -1 _ k-1,.

ni-1 nr -1 ni-1 nr -1

The PB inequalities include many other known inequalities as special
cases. When the bridge is empty (b = 0), we have the path inequalities
of Cornuejols, Fonlupt & Naddef (1985), valid for the STSP and GTSP.
When p = 1, the PB inequalities reduce to K-C inequalities.

Another special case of interest is when all the ni for i = 1, . " ,pare
equal to a same value n. In such cases, the PB inequality is called n­
regular (a term applied by Cornuejols et al., 1985, to path inequalities).
Note that K-C inequalities can be regarded as 'degenerate' n-regular PB
inequalities, with n = K + 1. The n-regular PB inequalities have a nice
description in terms of vertex sets called handles and teeth. There are n­
1 handles, denoted by H 1, . " , Hn-I, and p teeth, denoted by T I , . . . , Tp

(see Figure 6.4). The first handle is defined as HI = AU Vl u u Vi;
the other handles are defined inductively as Hi = Hi-l U ViI U U ViP.
The teeth are defined as T j = V! u ... u vi The n-regular PB inequality
is then:

n-l p

L X (8(Hi ))+L x (8(Tj )) 2 np+n+p-1.
i=1 j=1

(6.30)

As shown by Cornuejols, Fonlupt & Naddef (1985), the 2-regular path
inequalities are equivalent to the well-known comb inequalities for the
STSP, which in turn include the well-known 2-matching inequalities as a
special case (see, e.g., Gr6tschel & Padberg, 1985). Thus, the 2-regular
PB inequalities can also be regarded as a generalization of the comb and
2-matching inequalities.

Since both the GTSP-type inequalities reviewed in the previous sec­
tion and the PB inequalities mentioned above are analogous to facets
of GTSP polyhedra, it might be suspected that there is some general
procedure for adapting polyhedral results for the GTSP into results for
the GRP. This is indeed the case. In Letchford (1999), it is shown how
to generalize valid or facet-inducing inequalities for the GTSP to the
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Figure 6.4 Handles and teeth in a 3-regular PB configuration.

more general SGTSP (defined in Section 3). Then, it is shown that the
polyhedron PI for any given GRP instance is a face of a polyhedron of
an associated SGTSP instance. Finally, a certain projection operation is
given which enables any class of valid inequalities for the GTSP to be
adapted to the GRP. We do not describe the arguments involved in any
detail for the sake of brevity; instead, we only mention a few key results:

• R-odd cut inequalities are projected 2-matching inequalities;

• K-C and PB inequalities are projected path inequalities;

• many of the honeycomb inequalities are projected binested inequal­
ities.

5.3. THE DRPP
In this subsection we will need to adapt the notation somewhat. For

a given 8 c V, we define 8+(8), 8-(8) and 8*(8) as in Section 4. In
addition, AR(8) will denote the required arcs with both end-vertices in
8. We also set 8~(8) = 8+(8) n AR, 8il(8) = 8-(8) n AR and 8'R(8) =
8'R(8) U 8il(8). Finally, b(i) for each i E V will denote 18il(i)1 -18~(i)l.

By analogy with the DCPP (Subsection 4.2) and the MCPP (Subsection
4.3), b(i) can be thought of as the 'unbalance' of vertex i.

The natural approach to the DRPP is to have a general integer variable
X a for each arc a E A, representing the number of times the arc is
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traversed without being serviced (see Christofides et aI., 1986; Ball &
Magazine, 1988). Again, this means that X a represents the number of
copies of a that will be added to A R to form an Eulerian graph. This
leads to the following definition of the set S of feasible solutions:

x(8+(i)) - x(8-(i)) = b(i)(Vi E V)

{

AR(S) f:. 0,
x(8+(S)) 2 l(VS c V: AR(V \ S) f:. 0,

8R(S) = 0)

X a 2 O(Va E A)

x E ZIAI

(6.31)

(6.32)

(6.33)

(6.34)

The associated PI were studied independently by Savall (1990) and
Gun (1993). As for the DCPP and WPP, the balance equations (6.31)
define the affine hull of PI and precisely 1V1-1 of them are independent.
The postman cut inequalities (6.32) are the directed analogue of the
connectivity inequalities (6.21) for the RPP. Surprisingly, however, the
conditions for them to induce facets are extremely complicated (there is
not space to describe them here). Finally, the non-negativity inequalities
(6.33) induce facets under mild conditions.

5.4. THE MRPP
Because the MRPP is a common generalization of the RPP, DRPP

and MCPP, all of which have a complicated enough polyhedral structure,
it will be clear to the reader that MRPP polyhedra are likely to be bewil­
deringly complicated (indeed, even the notation becomes burdensome).
Nevertheless, a study has recently been made by Corberan, Romero &
Sanchis (1997) and Romero (1997). To simplify the study, these authors
assume that

• every v E V is incident on at least one required edge or arc

Instances which do not meet these assumptions are transformed by a
simple procedure into instances which do.

Just as in all of the formulations examined so far (apart from the
one for the WPP in Subsection 4.4), Corberan, Romero & Sanchis let
X e (or xa) represent the total number of times that an edge (or arc:) :s
traversed without being serviced. They define 8-(S), 8+(S), 8(S), 8*(8),
8"R(S), 8~(S), etc., as in previous subsections. Finally, they define an
'unbalance' b(S) = 18"R(S)I-18~(S)I-18R(S)1 for each S cV. The set
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S of feasible solutions is then given by:

x(b*(i)) == Ib*(i)1 (mod 2), (Vi E V) (6.35)

x(b+(S)) 2: 1, (VS C V : b'R(S) = 0) (6.36)

x(b+(S)) + x(b(S)) - x(b-(S)) 2: b(S), (VS C V) (6.37)
X e 2: 0, (Ve E E) (6.38)
X a 2: 0, (Va E A) (6.39)

x E ZIEUAI (6.40)

The connectivity, balanced set and trivial inequalities, (6.36), (6.37)
and (6.38 - 6.39), respectively, are valid for the associated polyhedron
PI. Note that when 8(S) = 0, the balanced set inequalities for Sand
V \ S imply the equation

x(b+(S)) - x(b-(S)) = b(S). (6.41)

Corberan, Romero & Sanchis show that the affine hull of PI is described
by one such equation for each connected component in the subgraph ofG
induced by the (required) edges and that exactly one of these equations
is redundant.

A mixed graph is strongly connected if and only if there is a path
from any vertex to any other vertex, respecting the directions of the
arcs. Note that G must be strongly connected for the MRPP to have a
feasible solution. Corberan, Romero & Sanchis show that:

• A connectivity inequality induces a facet if and only if the sub­
graphs induced in G by S and V \ S are both strongly connected
(otherwise, they are dominated by balanced set inequalities).

• A trivial inequality induces a facet if and only if the subgraph
formed by removing the corresponding edge (or arc) from G is
strongly connected.

• The odd-cut (blossom) inequalities for the CPP, MCPP and RPP
can be adapted to the MRPP, where they take the form:

x(b*(S)) 2: 1 (VS C V : Ib'R(S)1 odd) (6.42)

The conditions for the balanced set and odd-cut inequalities to induce
facets are rather complicated and will not be given here.

Finally, the same authors adapt the K-C and PB inequalities for the
RPP (see Subsections 5.1 and 5.2) to the MRPP. Interestingly, they show
that these inequalities come in two distinct (non-equivalent) 'flavours' in
the mixed case. One version has the same coefficients as in the ordi­
nary RPP, but the other has slightly different coefficients. Both versions
induce distinct facets under certain (complicated) conditions.
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6. THE CAPACITATED ARC ROUTING
PROBLEM

6.1. PRELIMINARIES
In this section, we present the known polyhedral results for the CARP.

Most of the results presented are applicable also for the CCPP, which
is a special case of the CARP, except that some valid inequalities are
only defined when there is more than one R-component. Since Golden &
Wong (1981) proved that it is NP-hard even to find a 0.5-approximate
solution to the CCPP (see also Win, 1987), we should expect CARP
polyhedra to be extremely complicated. And they are indeed.

To make matters worse, it turns out that there are a large number of
competing formulations in the literature. vVe will attempt to explain the
motivation behind each of these in the present subsection.

In real-life CARP instances, it is common for the upper bound k on
the number of vehicles to be small. Moreover, real problems are fre­
quently defined on road networks, with the result that G is very sparse
(most vertices have degree smaller than 5). Under such circumstances it
is 'natural' to use O(k.IEI) variables (O(IEI) for each vehicle). This is
the approach taken by Belenguer (1990), Welz (1994) and Belenguer &
Benavent (1998a). We will call these 'sparse' formulations.

When k is large, or when IERI is small relative to IE\, an alternative
approach presents itself. We can 'break' the graph G apart as follows:
a complete graph G' is constructed with two vertices for each required
edge, representing the two endpoints, together with an extra vertex rep­
resenting the depot. An edge from one vertex to another in this ex­
panded graph represents a shortest path between the corresponding pair
of vertices in G. This leads to what we will call the 'dense' formulation,
with 21ERI2 variables. This approach was explored by Letchford (1997a).

A third approach, suggested independently by Letchford (1997a) and
Belenguer & Benavent (1998b), is to have only lEI variables, one for each
edge. Each variable represents the number of times a particular edge is
traversed without being serviced. This leads to what we call a 'super­
sparse' formulation. Such a formulation is highly economical, elegant
and easy to understand. However, it comes at a price: the individual
vehicle routes are effectively 'tangled up', in that a feasible solution to
such a formulation gives no indication of which vehicle traverses which
edge. In fact, the problem of 'untangling' the routes appears to be NP­
hard, since it contains the NP-hard Bin Packing Problem (see Garey &
Johnson, 1979) as a special case. Nevertheless, the supersparse formu-
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lation is extremely valuable for producing lower bounds on the cost of a
feasible solution.

Since sparse formulations have been given most attention in the liter­
ature, we devote Subsection 6.2 to them and go into considerable detail.
Subsection 6.3 reviews the results on the dense and supersparse formu­
lations.

Still other approaches to the CARP have been proposed. Golden &
Wong (1981) gave a formulation in which there were an exponential num­
ber of variables and constraints. It is not worth examining this, however,
since it was shown in the thesis of Welz (1994) that the lower bound ob­
tained from the LP relaxation of this formulation is always zero. Finally,
one could also have a formulation in which there is a variable for each
feasible vehicle route and a constraint for each required edge ensuring
that the edge is serviced. This approach is not examined here as it is
the subject of Chapter 8.

In the remainder of this section we will use the convention that the
depot is vertex 1.

6.2. SPARSE FORMULATIONS OF THE
CARP

Two different sparse CARP formulations have appeared in the liter­
ature. One can be found in Welz (1994), the other in Belenguer (1990)
and Belenguer & Benavent (1998a).

The formulation ofWelz bears some similarities to the Golden &Wong
(1981) formulation mentioned in the previous subsection, the crucial dif­
ference being that it has a polynomial number of variables. In this for­
mulation, the problem is effectively converted into a directed problem.
That is, each edge {i,j} is regarded as two arcs (i,j) and (j,i), with
identical costs. Then, if {i, j} is required, we require that exactly one of
the pair (i,j) and (j, i) is serviced. An advantage of viewing the CARP
in this way is that one obtains a pure 0-1 formulation: it is easy to show
that it is never necessary for any vehicle to traverse an edge more than
once in a given direction.

The variables are defined as follows:

Let xfj take the value 1 if arc (i, j) is traversed by vehicle p, 0 otherwise.

Let l~ take the value 1 if arc (i,j) is serviced by vehicle p, 0 otherwise.
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Let A be the set of arcs in the resulting directed graph (that is, IAI =
21EI) and let A(S) be the set of arcs with both end-vertices in S. Welz
suggests defining the set S of feasible solutions by the following system:

k

I:(lfj + l~i) = l(V{i,j} E ER)
p=l

xfj 2: lfj' (V(i,j), P = 1, ... ,k)

I: % lfj :S Q, (Vp = 1, . .. ,k)
(i,j)EA

xP(b+(S)) 2: X~~11~?), (VS ~ V \ {I})

x E {0,1}2k IEI,l E {0,1}2k IERI

(6.43)

(6.44)

(6.45)

(6.46)

(6.47)

(6.48)

The equations (6.43) ensure that each vehicle departs from each ver­
tex as many times as it enters. The equations (6.44) ensure that each
required edge is serviced exactly once. The inequalities (6.45) ensure
that each vehicle traverses each edge that it services, (6.46) impose the
capacity restrictions and (6.47) are connectivity inequalities. To tighten
this basic formulation Welz proposes the following odd-cut inequalities:

k

I:xP(b+(S)) 2: flbR(S)I/21 (VS ~ V \ {I} : IbR(S)1 odd). (6.49)
p=l

Also, Welz mentions that, if it is known that all k vehicles must be used,
then the inequalities

are valid also.

x P(b+(l) 2: 1, (Vp = 1, ... ,k) (6.50)

We would like to mention that the connectivity inequalities (6.47)
proposed by Welz are in fact very weak. They can easily be disaggregated
to give:

xP(b+(S)) 2: xfj' (VS ~ V \ {I}, (i,j) E A(S)).

We now move on to the sparse CARP formulation presented in Be­
lenguer (1990) and Belenguer & Benavent (1998a), which uses less vari­
ables than the Welz formulation, is more 'natural' and gives better com­
putational results. For each e E ER and each p = 1, ... , k, let :z{ take
the value 1 if e is serviced by vehicle k, °otherwise. Also, for each e E E
and each p = 1, ... ,k, define a general integer variable ~ representing



222 ARC ROUTING

the number of times e is traversed (without being serviced, if e E ER).
The set S of feasible solutions is then given by:

xP(8(i)) + yP(8(i)) == 0 (mod 2), (Vi E V,P = 1, ... ,k)
k

LX~ = 1, (Ve E ER)
p=l

L qex~ :S Q, (Vp = 1, ... ,k)
eEER

xP(8(S)) +yP(8(S)) 2: 2x~, (VS ~ V\ {1},e E ER(S))

x E {O, l}kIERI,y E zklEI

(6.51)

(6.52)

(6.53)

(6.54)

(6.55)

The reader who has persevered this far will have little difficulty in­
terpreting the constraints in this formulation. The following results are
given by Belenguer & Benavent for the associated PI:

• The constraints (6.52) and (6.53), together with the binary condi­
tions on the x variables in (6.55), define a so-called Generalized As­
signment polytope (see Gottlieb & Rao, 1990a, b). Any inequality
inducing a facet of this polytope (such as non-negativity inequali­
ties :z!e 2: 0 for all e E ER and all p = 1, ... ,k), induces a facet of
PI. Also, any implicit equation for this polytope (such as (6.52))
is an implicit equation for PI and vice-versa.

• Computing the dimension of a Generalized Assignment polytope is
NP-hard, and therefore the same is true for the CARP polyhedron
PI.

• Non-negativity inequalities yf 2: 0 for all e E E induce facets.

• If S ~ V \ {I} is such that 18R(S)1 is odd, then the odd-cut in­
equality

k

LyP(fJ(S)) 2: 1
p=l

is valid and facet-inducing under mild conditions.

(6.56)

• If S ~ V \ {I} is such that fJR(S) =1= 0 and F ~ 8R(S) is such that
IFI is odd, then the parity inequality

XP(fJR(S) \ F) + yP(8(S)) 2: xP(F) -IFI + 1 (6.57)

is valid for p = 1, ... k and facet-inducing under mild conditions.

• For a given S c V \ {I}, let K(S) denote the minimum number
of vehicles required to service ER(S) U fJR(S) , due to the capacity
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restrictions. Then the capacity inequality

k

~yP(b(S)) ~ 2K(S) -lbR(S)1
p=l

(6.58)

is also valid. It will frequently induce a facet when 1 < K(S) < k.
When K(S) = 1, it will be dominated by the connectivity inequal­
ities (6.54). When K(S) = k, then the capacity and connectivity
inequalities are dominated by the stronger obligatory inequalities

(6.59)

(6.60)

for p = 1, ... k.

• If S c V \ {I} and I:eEER(S)UCR(S) Q:e~ :::; f3 is valid for all p due
to the Generalized Assignment polytope, then the inequality

2
xP(bR(S)) + yP(b(S)) ~ ~( L Q:exn

eEER(S)UCR(S)

is valid also. Note that the connectivity inequalities (6.54) are a
special case of this, since ~ :::; 1 is valid for the Generalized As­
signment polytope.

In Letchford (1997a), some of these inequalities are generalized.

• Let S ~ V \ {I} be such that bR(S) f 0, F ~ bR(S) be such that
IFI is odd and H ~ {I, ... k} be an arbitrary (non-empty) set of
vehicles. Then the general parity inequality

~(XP(bR(S) \ F) + yP(b(S))) ~ ~ xP(F) -IFI + 1 (6.61)
~H ~H

is valid. It is easy to show that the general parity inequalities
include odd-cut and parity inequalities as special cases.

• Let S ~ V \ {I} be such that K(S) vehicles are required to service
ER(S) UbR(S), due to the capacity restrictions. Let H ~ {l, ... k}
be an arbitrary subset of vehicles such that k - K(S) < IHI :::; k.
Then the minimum crossing inequality

~(XP(bR(S))+ yP(b(S))) ~ 2(1HI- k + K(S))
pEH

(6.62)

is valid. It is easy to show that the minimum crossing inequalities
include capacity and obligatory inequalities as special cases.
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The issue of when these inequalities induce facets is not examined by
Letchford.

Finally, Letchford (1997a) also mentions that any valid inequality for
the Corberan & Sanchis RPP formulation can easily be adapted to the
Belenguer & Benavent CARP formulation. That is, if any inequality of
the form LeEE aeXe 2: {3 is valid for the former, then L;=l LeEE aeYep 2:
(3 is valid for the latter. The odd-cut inequalities come under this cate­
gory. In general, however, the resulting inequalities are unlikely to induce
facets unless the demands of the required edges are small relative to the
vehicle capacity Q.

6.3. THE DENSE AND SUPERSPARSE
FORMULATIONS OF THE CARP

In this subsection, the dense and supersparse approaches to the CARP
are reviewed. vVe begin with the dense formulation, which was explored
by Letchford (1997a).

Assume that the required edges are numbered from 1 to IERI. Define
a complete graph G'(V' ,E' ), with 1+21RI vertices, as follows. The depot
is represented by vertex 1 in G' , just as it was in G. For i = 1, ... ,IERI,
vertex i + 1 in V' represents one arbitrary end-vertex of required edge
i. Similarly, vertex i + JERI + 1 in V' represents the other end-vertex
of required edge i. Note that a single vertex in V may have multiple
representatives in V'.

In E' , for i = 1, ... ,IERI, the edge {i+ 1, i + IERI + I} now represents
required edge i. The other edges in E ' represent shortest paths between
the corresponding vertices in G. We will let E* denote these other edges.
It can be readily checked that IE*I = 21ER1 2 . A {O, I} variable Xij is now
defined for every edge in E*, taking the value 1 if a vehicle traverses be­
tween i and j, °otherwise.
Now let S ~ V' \ {I} be called unbroken if it has the property that,

for i = 2, ... ,IERI + 1, i E S if and only if i + IERI E S. That is,
S corresponds to a set of required edges in ER. The set S of feasible
solutions is then given by the following linear system (when K(S) is
defined as in the previous subsection):

x(8(i)) = 1, (i = 2, ... ,2IERI + 1)
x(8(S)) 2: 2K(S)(\:fS ~ Vi \ {I}, S unbroken)

x E {O, 1}IE*I

(6.63)

(6.64)

(6.65)
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Letchford (1997a) first establishes a mapping between feasible solu­
tions for this formulation and feasible solutions to a classical formula­
tion for the well-known Vehicle Routing Problem (VRP). This means
that valid inequalities for the latter formulation, such as comb, multistar
and hypotour inequalities, can be 'borrowed' to give new inequalities for
the CARP (for polyhedral results on the VRP, see, e.g., Araque, 1990;
Araque, Hall & Magnanti, 1990; Cornuejols & Harche, 1993; Augerat et
al., 1995).

Another class of valid inequalities are presented by Letchford for the
dense formulation. A set S c V' \ {I} is called broken if it is not unbro­
ken. If S is broken, then some set F i= 0 of required edges lies within
o(S) in C'. If F is odd, then the blossom inequality x(o(S)) 2 1 is valid.

Now define the enlargement of a broken set S, denoted by en(S), to
be the minimum unbroken set S' C V' such that S c S'. Letchford
shows that a necessary condition for a blossom inequality to induce a
facet is that IFI 2 2K(en(S)) + 1, since, otherwise, it is dominated by a
capacity inequality (6.64).

We now move on to examine the supersparse approach, which was pro­
posed independently by Letchford (1997a) and Belenguer & Benavent
(1998b). Let the general integer variable X e represent the number of
times e is traversed without being serviced. A feasible solution then rep­
resents a collection of superimposed routes.

At this point the reader may realize that it is far from obvious how to
define the set S of feasible solutions in terms of equations, inequalities or
congruences. Perhaps surprisingly, however, that does not stop us from
producing valid inequalities. For example, Letchford (1997a) proposes
the following inequalities

• RPP-type inequalities. Any inequality valid for the Corberan &
Sanchis RPP formulation is valid for the supersparse CARP for­
mulation. This includes non-negativity inequalities X e 2 0 for all
e E E and R-odd cut inequalities x(o(S)) 2 1 for all S C V with
10R(S)1 odd.

• Capacity inequalities. As usual, let K(S) for any S C V \ {I}
denote the minimum number of vehicles required to service ER(S)U
ORCS). Then the inequality

is valid.

X(O(S)) 2 2K(S) -loR(S)1 (6.66)
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Belenguer & Benavent (1998b) propose some further inequalities for
the supersparse formulation. For any S c V, let a(S) be a lower bound
on the minimum number of times that 8(S) must be traversed without
servicing. If 18R (S)1 is even, a natural value of a(S) is max{O,2K(S) ­
18R(S)I}. If 18R(S)1 is odd, a natural value is max{l, 2K(S) -18R(S)I}.
Now suppose that S1,'" Sr are distinct subsets of V \ {I} and that
FeE is such that there is no feasible s6lution to the CARP in which
X(8(Si)) = a(Si) for all i, yet Xe = °for all e E F. Then the following
inequality is valid:

r r

L X(8(Si)) + 2x(F) 2: La(Si) + 2.
i=1 i=1

(6.67)

These inequalities are related to the hypotour inequalities for the STSP
(e.g., Gr6tschel & Padberg, 1985) and the extended hypotour inequalities
for the VRP (e.g., Augerat et aI., 1995). Belenguer & Benavent (1998b)
give a heuristic for identifying suitable families of sets Si, and then show
how to find an appropriate set FeE by solving a series of minimum
cost flow problems.

7. CONCLUSIONS
In this chapter we have reviewed the known polyhedral results for a

number of fundamental Arc Routing Problems. It will be seen that a
great deal has been learned. Nevertheless, the results in the field of Arc
Routing are not as comprehensive as the results known for certain node­
routing problems, especially the Symmetric and Asymmetric Traveling
Salesman Problems (see Junger, Reinelt & Rinaldi, 1995, 1997).

Of course, problems which are encountered in practice are often more
complex than the problems outlined here. Only recently have researchers
begun to investigate the polyhedral structure of problems with more re­
alistic constraints. To close this chapter, we mention a paper of our own
which deals with a real-life problem.

Letchford & Eglese (1998) define a variant of the RPP called the Ru­
ral Postman Problem with Deadline Classes, in which the edges requiring
service are partitioned into a small number of classes in order of prior­
ity. The idea here is that some roads might need to be treated within
two hours, some within four hours, etc. This occurs in a number of
practical applications, such as postal delivery, snow ploughing or winter
gritting. Letchford & Eglese give a formulation in which the route is
divided into 'time phases', each with their own set of variables. The
resulting polyhedron is extremely complex, yet the theoretical results
which were obtained were sufficient to yield a reasonable optimization
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algorithm (see Chapter 7 for more details).

The authors would like to encourage other researchers to examine
more complex Arc Routing Problems from a polyhedral viewpoint.
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1. INTRODUCTION
From the pioneering works of Dantzig, Edmonds and others, poly­

hedral (i.e. linear programming based) methods have been successfully
applied to the resolution of many combinatorial optimization problems.
See JUnger, Reinelt & Rinaldi (1995) for an excellent survey on this
topic. Roughly speaking, the method consists of trying to formulate the
problem as a Linear Program and using the existing powerful methods
of Linear Programming to solve it.

Arc Routing Problems are no exception and it can be said that Linear
Programming (LP) methods are currently among the most effective ones
for solving NP-hard Arc Routing Problems.

These methods rely for their effectiveness upon a good understanding
of the polyhedron associated to the problem under study. To obtain such
an understanding, it is necessary to have some grounding in the concepts
and proof techniques of polyhedral theory. This is covered in depth in
Chapter 6 of this book and the untrained reader is advised to read at
least the first two sections of that chapter. The present chapter, on the
other hand, is concerned with the application of polyhedral theory to
the construction of effective optimization algorithms.

Most Arc Routing Problems can be formulated in the form:

min{cTx: XES} (7.1)

where x = {Xl, ... ,xn } is a vector of decision variables, c = {CI' ... ,cn } E
m:+. is a vector of objective function coefficients (i.e., costs) and S c lR'.;­
is a set of feasible solutions. Given such a problem, it is natural to define
an associated polyhedron conv(S), the convex hull of the vectors in S.
Sometimes, conv(S) fails to be a polyhedron, but usually, if this occurs,
it is easy to adjust the set of feasible solutions in such a way that the
optimal solution does not change and conv(S) is indeed a polyhedron.
In what follows we wiil suppose this is always the case.

Usually, feasible solutions are associated with integer values of the
decision variables. In such cases, conv(S) has integral extreme points
(vertices) and we use the notation PI := conv(S). Given that the cost
function is linear, Problem (7.1) is then equivalent to:

lv/in cT x }
x E PI (7.2)

It is well known that any polyhedron can be described by a set of
linear inequalities, that is, there is an integer m, a matrix A E zmn
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and a vector b E zm such that PI = {x E JRn : Ax :::; b}. So, at least
theoretically, Problem (7.2) could be solved as a Linear Program. The
set of linear inequalities given by Ax :::; b is called the linear description
of PI. Unfortunately, complete linear descriptions of PI are only known
for some easy problems and certainly not for any NP-hard problem. It
is more usual for only a small part of this description to be known. Nev­
ertheless, as we will see, even partial linear descriptions can provide the
basis for powerful optimization algorithms.

One problem which must be dealt with is that even a partial linear
description frequently contains a huge number of inequalities. By 'huge',
we mean a number which is exponential, or worse, in the size of the orig­
inal problem. Therefore, it would not be practical to solve an LP which
includes all of them explicitly.

An alternative that can be used in practice is as follows. We start
with a small subset of the known inequalities and compute the optimal
LP solution subject to these constraints (The polyhedron defined by a
subset of the known inequalities is called a linear relaxation of PI)' Then
we check if any of the inequalities not in the current LP are violated by
the optimal LP solution. If one or more violated inequalities are found,
we add one or more of them to the current LP, resolve it and so on. If the
LP solution obtained at the end of this process corresponds to a feasible
solution of the original combinatorial optimization problem, then it is
also optimal for that problem.

The linear inequalities which are added to the LP at each iteration of
this process are called cutting planes, because, geometrically speaking,
they 'cut off' the current LP solution. The entire procedure, called the
cutting plane approach, originated in the pioneering work of Dantzig,
Fulkerson and Johnson (1954) on the Symmetric Traveling Salesman
Problem (STSP).

Note that the cutting-plane approach requires a method for identifying
inequalities that are valid for PI but violated by the current LP solution
(An inequality fT x :::; fo is valid for PI if fT x :::; fo holds for all x E
S) . Normally, the known valid inequalities fall into certain well-defined
classes. Therefore, for each known class of valid inequalities for PI, we
are faced with the following problem:

General Identification Problem: given a class of valid inequalities
for a combinatorial optimization problem, and a point x E JRn,
either find an inequality in this class which is violated by x, or,
prove that no such inequality exists.
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This problem is also sometimes known as the separation problem, be­
cause, geometrically speaking, we seek a hyperplane which separates x
from PI. An algorithm that solves it is called an exact separation algo­
rithm. Typically one finds that the identification problem can be solved
efficiently for some classes of inequalities but is difficult (even NP-hard)
for others. In the latter case, we have to resort to a heuristic separation
algorithm, which may fail to find a violated inequality in the class, even
if one exists.

Let us now state more properly the scheme of a cutting plane algo­
rithm:

Cutting plane algorithm:

Step 1 (Initialization) Let (LPo) be a linear relaxation of PI. Set k = O.

Step 2 (LP solver) Solve (LPk). Let x k be an optimal solution to (LPk).

Step 3 (Identification) Solve the Identification Problem for x k , and for
some classes of known valid inequalities for PI.

Step 3.1 If we can conclude that x k E 5, then x k is optimal; stop.

Step 3.2 If one or more valid inequalities violated by xk are found,
define (LPk+l) by adding to (LPk) these inequalities. Set
k := k + 1 and go to Step 2.

Step 3.3 If no violated inequality is found, stop.

The outlined cutting plane algorithm is rather rudimentary. It is quite
common to use a number of refinements, such as: elimination of inequal­
ities that are not binding, fixing of variables, using a dynamic subset of
active variables, etc.

If we are lucky, this algorithm might succeed in solving a given prob­
lem instance even when the linear description of PI is only partial. This
will happen if the set of linear inequalities generated by the algorithm
just happens to define a polyhedron which has the optimal solution as a
vertex. Nevertheless, for the same reason, it may fail in solving another
instance of the same problem. The fact that no violated inequality has
been found in Step 3.2, does not mean that no such inequality exists.
It may be that the violated inequality belongs to an unknown class of
inequalities, or that it belongs to a known class for which we have used
(without success) a heuristic separation algorithm.

If the cutting plane algorithm fails to solve a given instance, we are left
with several options. One option is to use the solution cost of the final
LP relaxation, which is a (typically good) lower bound on the optimal
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solution value, to assess the quality of a known feasible solution found
by any heuristic method. Another option is to feed the final (typically
strong) linear relaxation of PI into a classical Branch & Bound algorithm
for integer programs.

A more powerful option is to use the so-called Branch f3 Cut method
(see Padberg & Rinaldi, 1987 and 1991). A Branch & Cut is much like a
Branch & Bound method except for the fact that valid inequalities may
be added at any node of the branching tree. This leads to stronger linear
relaxations at any node, which normally leads in turn to a considerable
reduction in the number of nodes, in comparison to standard Branch &
Bound.

Yet another option is to employ 'general purpose' (i.e., not problem
specific) cutting planes, such as Gomory cuts (Gomory, 1958, 1963).
These cuts are guaranteed to lead to the integer optimum in a finite
number of iterations, but are not tailored to the specific PI in question.
Unfortunately, such cuts are usually weak and tend to lead to numeri­
cal problems when solving the LP. Computational experience indicates
that it is generally far better to use problem specific cutting planes, es­
pecially those which define facets of PI. This is not surprising, since
the facet-defining inequalities are needed in a minimal linear description
of the polyhedron and are not dominated by any other valid inequality.
However, some effort is required to find facet-defining inequalities and,
even when a new class is discovered, one is then faced with the task of
devising an exact or heuristic separation algorithm.

For an exhaustive list of problems to which the polyhedral approach
has been successfully applied, see JUnger, Reinelt & Rinaldi (1995). In
this chapter we are specifically concerned with Arc Routing Problems.
Since the basic cutting plane algorithm is the same for each problem, and
the known classes of valid and facet inducing inequalities for Arc Routing
problems have been described in Chapter 6 of this book, we concentrate
mainly on separation algorithms. For each of a number of important Arc
routing Problems, we describe the classes of inequalities for which exact
or heuristic separation algorithms have been proposed and implemented
and give a description of these algorithms. Other surveys about Arc
Routing, which include material on the polyhedral approach, are those
of Assad & Golden (1995) and by Eiselt, Gendreau & Laporte (1995a,b).

The chapter is divided into three main sections devoted to three broad
classes of Arc Routing Problems; namely, Chinese Postman, Rural Post­
man and Capacitated Arc Routing Problems. In each section, different
variants of each problem, such as the directed, undirected and mixed
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cases, are studied. However, when the same class of inequalities is valid
for two or more different Arc Routing problems, we only describe the
separation algorithms once, to avoid repetition.

We close this section with some notation and definitions that will be
used throughout this chapter.

Let G = (V, E) be an undirected graph where V is the set of nodes
and E is the set of edges. Given a node subset, 5 ~ V, 8(5) will de­
note the set of edges, commonly called the edge cutset, which have one
end-vertex in 5 and the other in V \ 5, while E(5) will denote the set
of edges with both end-vertices in 5. Given two node subsets 5, 5' ~ V,
(5 : 5') will denote the set of edges with one end-vertex in 5 and the
other in 5'.

Given a ground set A and a vector of decision variables x E lRn , for
any subset F ~ A, we let x(F) denote LeEF x e . In most integer for­
mulations of Arc Routing Problems, A is the set of edges or arcs of a
graph. If this is the case and x* is the optimal LP solution at any iter­
ation of the cutting plane algorithm, then we define the edge-weighted
graph G(x*) as the graph with vertex set equal to V, edge/arc set equal
to {e E A : x: > O} and edge-weights equal to x:. Graph G(x*) is also
called the support graph corresponding to x*.

Finally, we define the concept of shrinking a set of vertices in a
weighted graph (see, e.g., Fleischmann, 1985; Padberg & Rinaldi, 1990).
Given a graph G = (V, E) with weights on the edges, and a set We V,
shrinking W means identifying the vertices in W, deleting any resulting
loops and merging each resulting set of parallel edges, if any, into a single
edge. When merging parallel edges, we give the new edge a weight equal
to the sum of the original weights.

2. CHINESE POSTMAN PROBLEMS

2.1. THE UNDIRECTED CPP
Given an undirected and connected graph G = (V, E) and a nonneg­

ative cost Ce for each edge e E E, the (Undirected) CPP is the problem
of finding a minimum cost tour passing through each e E E at least once
(Guan, 1962; Edmonds, 1963). Let X e represent the number of copies of
e that must be added to G in order to obtain an eulerian graph. The
CPP can be then formulated (Edmonds & Johnson, 1973) as:

Minimize LCeXe

eEE
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subject to

x(<5(8)) 2: 1,V8 c V, 1<5(8)1 zs odd

X e 2: O,Ve E E

X e integer,Ve E E

(7.3)

(7.4)
(7.5)

The CPP is closely related to the problem of finding a (minimum
cost) perfect matching, since an eulerian graph can be obtained from G
by adding edges to link odd degree vertices (Edmonds & Johnson, 1973;
Christofides, 1973). Edmonds & Johnson solved the CPP by means of
an adaptation of the blossom algorithm for perfect matching problems
(Edmonds, 1965b) and proved that the associated polyhedron is com­
pletely described by the non-negativity inequalities (7.4) and the odd-cut
or blossom inequalities (7.3). In the context of the perfect matching
problem, Grotschel & Holland (1985) implemented a cutting plane algo­
rithm which was showed to be as efficient as the existing combinatorial
type matching algorithms. Then, their procedure could be also consid­
ered as an exact method to solve the CPP. The separation of odd-cut
inequalities (7.3) can be done as follows:

2.1.1 Odd-Cut Separation.
Let x* E IRE and let G(x*) the corresponding support graph. An odd
cut set in G(x*) is defined as a cut set <5(8),8 c V, such that 8 contains
an odd number of vertices with odd degree in G. Odd cut inequali­
ties can be separated exactly in polynomial time by finding a minimum
weight odd cutset in G(x*). Using a result of Padberg & Rao (1982),
this problem can be solved by computing a series of ma..ximum flow prob­
lems on G(x*). The number of maximum flow computations needed in
the worst case is equal to the number of odd degree vertices in G minus 1.

Exact algorithm (Padberg fj Rao, 1982):

Step 0 Let N = {VI, V2, . .. , vq } be the set of odd degree vertices of G.
Select two vertices VI, v2 of N and compute the maximum flow in
G(x*) between VI and V2. The corresponding (minimum weight)
cutset (8 : V \ 8) defines two node sets, WI := 8 and W2 := V \ 8.

Step 1 Let T be the tree formed by the nodes WI and W2 and an edge
joining them with cost equal to the maximum flow value.

Step 2 While there exists a node set W on the tree T containing more
than one vertex of N, repeat:

2.1 Select one of such nodes, say Wi, and two vertices UI, U2 in
Wi n N. Compute the maximum flow on G(x*) between UI
and U2.
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2.2 The corresponding cutset (5 : V \ 5) divides node Wi into two
node sets, Wil := Wi n 5 and Wi2 := Wi n (V \ 5). The other
node sets of the tree T are contained either in 5 or in V \ 5.

2.3 Substitute node Wi of T by two nodes Wi! and W i2 joined by
an edge with cost equal to the maximum flow value. Replace
each edge (Wj , Wi) of the tree incident with node Wi by an
edge (Wj , W il ) or (Wj , W i2 ) depending on, respectively, if W j
is contained in 5 or in V \ 5.

Step 3 If all the edges in the tree T have cost at least 1, then there is
no odd-cut inequality violated by x*. Otherwise, pick (iteratively)
an edge of T having a cost less than one. If we delete it from T,
we obtain two subtrees. Let 5 and V \ 5 be the sets of vertices of
G corresponding to the two subtrees. If 5 contains an odd number
of odd-degree vertices, then x( 15 (5)) :::::: 1 is an odd-cut inequality
violated by x* .

Heuristic algorithm:

A faster (O(IEI) time) heuristic algorithm was proposed by Grotschel
& Holland (1985) and consists of computing the node sets 51,52, ... ,5q

of the connected components of the subgraph of G(x*) induced by the
edges eE E with x: > E, where 0 ::; E < 1 is a given parameter. If
q> 1, then for every i = 1, ... ,q, if Ib(5i )1 is odd and x*(b(5i )) < 1
then, x(b(5d) :::::: 1 is a violated blossom inequality.

Usually, the heuristic algorithm is executed for different values of pa­
rameter E. A given value is only tried when with the previous ones a
minimum number of violated inequalities is not found. The exact algo·
rithm is executed only when the heuristic fails.

2.2. THE DIRECTED CPP
The Directed Chinese Postman Problem (DCPP) is defined as in the

undirected case except for the fact that graph G is a directed graph
G = (V, A) with set of arcs A. We assume that G is strongly connected
because otherwise, the DCPP is infeasible. As for the undirected case, let
Xij denote the number of copies of arc (i, j) that must be added to G in
order to obtain an eulerian graph. If G is a strongly connected graph, a
least-cost Eulerian graph can be constructed by solving a transportation
problem : for every vertex i, let Si be the number of arcs entering i
minus the number of arcs leaving i. Let 5 be the set of vertices i with
Si > 0 and T the set of vertices i with Si < O. If lij denotes the length
of a shortest path from ·i to j the DCPP can be formulated as follows
(Liebling, 1970; Edmonds & Johnson, 1973):
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Minimize

subject to

LXij = si,Vi E 5
JET

L Xij = -Sj,Vj E T
iES

Xij 2 O,Vi E 5, Vj E T

(7.6)

(7.7)

(7.8)

This is the LP formulation of the Transportation Problem, and it is
well known that it always has an integer optimal solution. Then, the
DCPP can be easily solved as a Linear Program.

As we have seen up to now, the CPP and the DCPP can both be solved
in polynomial time and a complete linear description of an associated
polyhedron is known for them. Unfortunately, this does not hold for any
other arc routing problem that will be studied in this chapter.

2.3. THE MIXED CPP
Let G = (V, E, A) be a strongly connected mixed graph, with vertex

set V, (undirected) edge set E and (directed) arc set A, and consider a
nonnegative cost Ce for each edge and arc e E E u A. The Mixed Chinese
Postman Problem (MCPP) is the problem of finding a minimum cost
tour passing through each edge and each arc of G at least once (Ed­
monds & Johnson, 1973).

The arcs or edges will be termed the links of the graph. The degree
of a node is the number of links incident with it.

For this NP-hard problem (Papadimitriou, 1976), Christofides, Be­
navent, Campos, Corberan & Mota (1984) proposed a formulation with
a variable for each arc, two variables for each edge (representing the
number of times it is traversed in either direction) and a variable for
each vertex. Then, a Branch & Bound algorithm was implemented in
which two different lower bounds, obtained by relaxing two types of
constraints in a Lagrangian manner, were computed at each node of the
search tree. A set of 34 randomly generated instances with 7 :s WI :s 50,
3 :s IAI :s 85 and 4 :s lEI :s 39 were solved to optimality using this al­
gorithm.

The MCPP is an special case of the Windy Postman Problem that
will be studied in section 2.4. As it will be shown there, Gr6tschel &
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Win (1992) have proposed a procedure to solve the WPP that can be
applied to the MCPP as well. Here also, two variables for each edge are
used to formulate the WPP and therefore the MCPP. They solved to
optimality the nine MCPP instances they tried, with 52 ~ IVI ~ 172,
31 ~ IAI ~ 116 and 37 ~ lEI ~ 154.

2.3.1 A Cutting Plane Algorithm for the MCPP.
Nobert & Picard (1996) present a cutting plane algorithm that exactly
solves the MCPP. They use the following characterization of an eulerian
mixed graph given by Ford & Fulkerson (1962):

A strongly connected mixed graph G = (V, E, A) is eulerian if and
only if:

• Evenness condition: The degree of each node is even.

• Balanced sets condition: For every proper subset of vertices 5, the
number of arcs entering 5 minus the number of arcs leaving 5 is
less than or equal to the number of edges between 5 and V \ 5.

Let X e represent the number of copies of link e E E uA that are added
to G in order to obtain an eulerian graph. Note that, unlike in other for­
mulations of the MCPP, only one variable is associated to each edge of G.

For any 5 C V, let 8+ (5) (8- (5)) denote the set of arcs leaving
(entering) 5, and let 8(5), as usual, denote the set of edges with one
end-vertex in 5 and the other in V \ 5. The unbalance b(5) of 5 is de­
fined as b(5) = 18-(5)1-18+(5)1-18(5)1. Let us also define odd(i) = 1
if the degree of vertex i is odd, and odd(i) = 0 otherwise.

Then, Nobert & Picard (1996) formulate the MCPP as the Integer
Linear Program:

Minimize 2:= CeXe

eEEUA

(7.9)

(7.10)

subject to

x(8+(i)) +x(8-(i)) +x(8(i)) +odd(i) = 2zi ,V'i E V

x(8+(5)) - x(8-(5)) + x(8(5)) 2: b(5),V'5 c V, 5:f; (/)
xe , Zi 2: 0 and integer

Constraints (7.9) and (7.10) are just a translation of the above con­
ditions for a mixed graph to be eulerian. Constraints (7.10) are called
balanced set constraints.
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Nobert & Picard (1996) also introduce the odd-cut constraints:

x(b+(5)) + x(b-(5)) + x(b(5)) 2: 1,

V5 c V, 115-(5)1 + 115+(5)1 + 115(5)1 odd
(7.11)

These constraints generalize the odd-cut constraints for the CPP and
are used in the cutting plane algorithm instead of equations (7.9), which
are introduced only to permit the generation of a Gomory cut in some
situations (in practice, this possibility never occurred for the set of in­
stances solved).

The cutting plane designed by Nobert & Picard (1996) for the MCPP
starts with an initial LP containing the objective function, odd cut in­
equalities (7.11) associated with the odd degree vertices of G, unbalanced
sets constraints (7.10) associated with 'inwards' unbalanced vertices and
most unbalanced sets of G (see below how they are generated), and non­
negativity constraints. At each iteration, the current LP is solved and
violated inequalities of types (7.10) and (7.11) are identified and added
to the LP. If no cut is found, and the LP solution is not integral, a Go­
mory cut is generated and added to the LP; if the solution is integer
but contains an odd degree vertex, say i, equation (7.9) is added to the
LP and a Gomory cut is generated on variable Zi and added to the LP.
Finally, if the LP solution is integral and all vertices have even degree,
it is an optimal solution for the MCPP.

Nobert & Picard(1996) were able to solve 148 instances out of 180
randomly generated instances with their pure cutting plane algorithm
running on a CDC Cyber 855 with a time limit of 500 seconds. The
authors report that it was never necessary to generate a Zi variable. The
sizes of the instances were in the range: 10 :::; IVI :::; 169, 2 :::; IAI :::; 2876
and 15 :::; lEI:::; 1849.

We now present the separation algorithms that could be used to gen­
erate violated odd-cut (7.11) and balanced set (7.10) inequalities.

2.3.2 Odd-Cut Separation.
Ifwe consider each link in EUA as an edge (i.e., ignoring the direction of
the arcs), then G can be considered as an undirected graph, and the gen­
eralized odd-cut inequalities (7.11) are exactly the odd-cut inequalities
(7.3) for the CPP. Hence, the separation algorithms presented in section
2.1.1 can be directly applied to the mixed case. Nevertheless, Nobert
& Picard (1996) used only the heuristic algorithm described there with
E = O.
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2.3.3 Balanced Set Separation.
Let x* be the LP solution at any iteration of the cutting plane algo­
rithm and consider the weighted graph G'(x*) = (V, E, A), with weights
We = x; + 1 for all e E E u A. For any S c V, let j(S) = w(8+(S)) ­
w(8-(S))+w(8(S)). It is easy to see that constraint (7.10) is violated by
x* for the subset S if and only if j(S) < O. A set S C V for which j(S)
is minimum is called a most unbalanced set. Nobert & Picard (1996)
reduce the problem of finding a most unbalanced set to computing the
maximum of a quadratic function in binary variables and they refer to
previous works by Picard & Ratliff (1975) and by Picard & Queyranne
(1980), where it is shown that this problem is equivalent to solving a max­
imum flow problem on an associated graph with n + 2 vertices. Here,
we present a more direct proof of this important result and an explicit
description of the maximum flow problem to be solved.

Exact algorithm:

Let us define w: = w(8+ (i)) and wi = w(8- (i)) for each vertex i E V.

Construct the capacitated and undirected graph H = (VH, E H) where
VH = VU {O, n+ I} (0 and n+ 1 are two extra vertices). The set E H has
all the edges of E with an associated capacity of We plus an edge from
vertex 0 to every vertex i E V with capacity WOi = max{wi - w:,O},
and an edge from each vertex i E V to vertex n + 1, with capacity
wi,nH = max{w: - wi, O}.

Solving on H the maximum flow problem from vertex 0 to vertex n +1
provides us with a minimum capacity cut in graph H. Let S* U {O} be
the subset of vertices defining this cut, then S* is a most unbalanced sf't
in G'(x*) as it is shown in the following.

First of all, note that j(S) can be written as: j(S) = LiES(W: ­
wi) + w(8(S)). Let us define P = LiEV WOi and let 8H(S) represent an
edge cutset in graph H. If we subtract the constant P from the capacity
of the cutset in graph H defined by any set S U {O}, we obtain:

w(8H(SU{0}))-P= L Wij+ L wOi+LWi,n+l-LWoi
(i,j)E(S:V\S) iEV\S iES iEV

= L Wij + L(w: - wn = j(S)
(i,j)E(S:V\S) iES

Then, the minimum j(S) corresponds to the minimumW(8H(SU{0} )).
Therefore, any cutset with w(8H (S U {O})) < P provides a violated bal­
anced set inequality.
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To find a most unbalanced set in G, in order to include their corre­
sponding inequality in the initial LP, one can simply apply the above
procedure by setting x* = O. Nobert & Picard (1996) enumerate all the
minimum capacity cuts in H and add them to the LP (unless its num­
ber is too large). Furthermore they split each most unbalanced set into
several smaller ones in order to obtain stronger cuts. We refer to their
work for the details.

2.4. THE WINDY POSTMAN PROBLEM

Let G = (V, E) be an undirected graph with two costs Gij, Cji 2: 0
associated to each edge (i,j) E E, i.e., the cost of traversing an edge de­
pends on the direction of travel. The Windy Postman Problem (WPP)
consists of finding a minimum cost tour traversing all edges of G at least
once. This is an NP-hard problem (Guan, 1984), although it can be
solved in polynomial time if G is eulerian (Win, 1987). It also contains
as special cases the CPP, DCPP and MCPP.

Win (1987) and Grbtschel & Win (1992) proposed a cutting plane
algorithm for the WPP based on a previous polyhedral study, that was
able to solve to optimality most of the problems tested. As far as we
know this was the first polyhedral approach that has been applied to the
resolution of an NP-hard Arc Routing Problem. Let Xij be the number
of times edge (i, j) is traversed from i to j in a WPP solution. The
formulation given by Win (1987) and by Grbtschel & Win (1992) is:

subject to

Minimize L (GijXij + CjiXji)

(i,j)EE

Xij + Xji 2: 1,V(i,j) E E

L (Xij - Xji) = O,Vi E V
(i,j)E6(i)

Xij, Xji 2: 0
Xij, Xji integer

(7.12)

(7.13)

(7.14)

(7.15)

Under certain conditions, non-negativity inequalities, traversing in­
equalities (7.12) and the following odd-cut inequalities induce facets the
corresponding polyhedron (Grbtschel & Win (1988)):
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L (Xij + Xji) ?:: 18(8)1 + 1,V8 c V, 18(8)1 odd
(i,j)E8(S)

1L Xij?:: "2(18(8)1 + 1),V8 c V, 18(8)1 odd
iES,j¢.S

1L Xji?:: "2(18(8)1 + 1),V8 c V, 18(8)1 odd
iES,Ns

(7.16)

(7.17)

(7.18)

Odd-cut inequalities (7.16), (7.17) and (7.18) are equivalent. The form
(7.16) is used in the separation algorithm. Once such a violated inequal­
ity is found, it is added to the LP in the form (7.17) or (7.18) having the
minimum number of non-zero coefficients. Other valid inequalities are
described in Gr6tschel & Win (1988), but only the ones presented above
were implemented in their cutting plane algorithm.

The cutting plane algorithm starts by solving an initial LP containing
the objective function and constraints (7.12), (7.13) and (7.14). Let x* be
the LP solution at any iteration. Ifwe define the weight Wij = x:j+x:j -·1
for each edge (i,j) E E, then any odd-cut in G(x*) with weight less that
1 corresponds to a violated odd-cut inequality (7.16). Hence, the separa­
tion problem for inequalities (7.16) reduces to the problem of determining
an odd-cut of minimum weight in G(x*). The procedures described in
section 2.1.1 were used for this purpose. All the odd-cut violated inequal­
ities are added to the LP, while odd-cut inequalities that were added in
previous iterations and that are non-binding (i.e., have a positive surplus
variable) are removed from the LP.

The algorithm was tested on 36 WPP instances with 52 :S IVI :S 264
and 78 :S lEI :S 489 and it provided an optimal WPP solution for 31
instances. When the cutting plane procedure failed to arrive at an integer
solution, feasible WPP tours were derived by appropriately rounding up
the fractional variables and then possibly setting some variables to zero
(see Gr6tschel & Win (1992) for the details).

3. RURAL POSTMAN PROBLEMS

3.1. THE UNDIRECTED RPP
Let G = (V, E) be a connected and undirected graph with nonnega­

tive costs associated to its edges. Given a subset ER ~ E of 'required'
edges, the problem of finding a minimum cost tour passing at least once
through all the required edges is known as the Rural Postman Problem
(RPP). Note that when ER = E the RPP reduces to the CPP, but in
the general case, if the graph induced by edges in E R, GR = (VR, E R), is
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not connected, the problem is NP-hard (Lenstra & Rinnooy-Kan, 1976).

Christofides, Campos, Corbenin & Mota (1981) implemented a Branch
& Bound algorithm based on Lagrangean Relaxation for this problem
and solved 24 instances with 9 :S IVI :S 84, 13 :S lEI :S 184 and
4 :S JERI :S 74. Their algorithm contains the following pre-processing
stage which converts any RPP instance with V =I VR into another in­
stance for which V = VR:

Simplification routine:

Step 1. Add to GR = (VR, ER) a non required edge between every pair
of vertices in VR having a cost equal to the shortest path length on
G.

Step 2. For each pair (if any exist) of parallel edges with the same cost,
delete one member. Remove all edges e = (i,j) rf. ER such that
Gij = Gik + Ckj for some vertex k.

Let us denote by G = (V, E) the resulting graph. This transformation
can occasionally increase the number of edges in G, but it frequently
decreases it. Suppose from now on that V = VR. Let X e denote the
number of copies of edge e E E that might be added to G in order to
obtain an eulerian graph, and let 8R(5) denote 8(5) n ER. Corbenin &
Sanchis (1994) formulate the RPP as:

Minimize

subject to

x(8(5)) ~ 2,V5 c V, 8R (5) = 0
x(8(i)) == 18R(i)1 (mod2),Vi E V

X e ~ 0 and integer Ve E E

(7.19)

(7.20)

(7.21)

The convex hull in ./RIEl of feasible solutions to (7.19) - (7.21), de­
noted by RPP (G), is an unbounded and full-dimensional polyhedron.
As mentioned in the previous chapter, many classes of valid inequalities
and facets are known for RPP(G), some of them described in the con­
text of the GRP. Corberan, Letchford, & Sanchis (1998) have devised
separation algorithms for:

• connectivity inequalities.

• R-odd cut inequalities.

• K -Component ( K -C) inequalities.
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• regular path-bridge inequalities.

• honeycomb inequalities.

The algorithms for connectivity, R-odd and K-C inequalities are de­
scribed in the following subsections. Separation of path-bridge and hon­
eycomb inequalities will be detailed in the next section because they
were introduced in the context of the General Routing Problem (GRP),
although they can be also applied to the RPP. A set S C V will be called
R-odd if 18R(S)1 is odd, otherwise it will be called R-even. We will call
the connected components of GR R-components. A set of vertices defin­
ing an R-component will be called an R-set.

3.1.1 Connectivity Separation.
Connectivity inequalities (7.19) can be separated exactly in polynomial
time. Consider the shrunk graph Gs = (Vs , E s ) obtained from G(x*) by
shrinking each R-set into a single node and let x* be the resulting edge
weights.

Exact algorithm:

Find a minimum weight cutset in Gs (Gomory & Bu, 1961). Each
cutset with weight less than two corresponds to a violated connectivity
inequality on G.

Heuristic algorithm:

Compute the connected components of the subgraph induced by the
edges e E E s with x; > E, where 0 :S E < 2 is a given parameter. Let
Sl, S2,'" ,Sq be the sets of nodes in the original graph G correspond­
ing to the node sets of these connected components. Then X(8(Si)) 2': 2
is a violated connectivity inequality if q > 1 and X*(8(Si)) < 2. Note
that when q = 2 we have X(8(Sl)) = X(8(S2)), but when q > 2 all the
inequalities are distinct.

Usually, the heuristic is executed for different values of parameter E. A
given value is only tried when with the previous ones a minimum number
of violated inequalities have not been found. Only if the heuristic fails
is the exact algorithm executed.

3.1.2 R-odd cut Separation.
Like odd-cut inequalities for the CPP, R-odd cut inequalities (Corberan
& Sanchis, 1994)

x(8(S)) 2': 1, VS C V" 18R(S)1 odd (7.22)
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can also be separated exactly in polynomial time by using the Padberg­
Rao algorithm. We only have to consider each R-odd vertex as an odd­
degree vertex.

The heuristic described in section 2.1.1 has also been used by Corberan,
Letchford & Sanchis (1998) for values 0, 0.25 and 0.5 of parameter E.

3.1.3 K-C Inequalities Separation.
Roughly speaking, R-odd inequalities assure that every R-odd node i has
to satisfy x(b(i)) 2: 1 but, if i is an R-even node and x(b(i)) = 1 holds,
vertex i becomes an 'odd degree node' but no R-odd inequality is able to
cut off this invalid 'solution'. This is what K-C inequalities (Corberan &
Sanchis, 1994) try to do. K-Component (K-C) inequalities are defined
in terms of a partition {Vo, .. . VK} of V, with K 2: 3 where VI, .. . VK-l
and Vo U VK are clusters of one or more R-sets and I(Vo : VK ) n ERI is
positive and even. The corresponding K-C inequality can be written as:

F(x) = :L (q - p)x((Vp : Vq )) - 2x((Vo : VK)) 2: 2(K - 1)
'dp<q

(7.23)

No exact polynomial algorithm is known to separate K-C inequalities.
For this problem, Corberan, Letchford & Sanchis (1998) have designed
an effective heuristic algorithm, which is based on the following consid­
erations:

• K-C inequalities try to separate solutions x* where an R-even
node u belonging to an R-component Ci satisfies x*(b(u)) ~ 1
and x* ({u} : Ci \ {u}) ~ o. Thus, {u} and Ci \ {u} are suitable
node sets to be considered as Vo and VK respectively. This idea
is generalized by considering node sets Vo with an even number
of R-odd nodes forming a connected component of the subgraph
induced in Ci by edges e with x; > o.

• FOr i = 0,1,2, ... ,K - 1, let LHS(i, i + 1) denote the sum of the
x; for every edge e E (Vp : Vq ) with p :s i and q 2: i + 1. It is then
possible to write the left hand side of (7.23) as:

K-l
F(x*) = :L LHS(i, i + 1) - 2x*((Vo : VK))

i=O

(7.24)

If F(x*) < 2(K - 1), the K-C inequality is violated. Otherwise, it
is satisfied with a slack of F(x*) - 2(K - 1). Shrinking any pair of
consecutive sets Vi, Vi+l into a single set yields a new 'smaller' (K­
l)-C configuration with an associated inequality F'(x) 2: 2(K -2).
It is easy to see that shrinking sets Vi, Vi+l with LHS(i,i + 1) >
2 leads to K-C inequalities with lower slack, as long as K 2: 3
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remains. Hence, by shrinking iteratively pairs Vi, Vi+I, new K-C
inequalities are obtained and checked for possible violation.

Heuristic algorithm:

• Phase 0:
Let Ci be an R-set and let us call x* -external those nodes in C
which are adjacent to nodes not in C i by an edge e with x; > 0.
Assume that Ci has, at least, two x* -external nodes connected to,
at least, two different R-sets.

• Phase I: Define seeds for Vo and VI(.
Consider the subgraph, G(Cd, induced in G by edges e with both
endpoints in Ci and x; > E, where E is a given parameter. Let
u be a x* -external node and compute its corresponding connected
component in G(Ci)' If this component has an even number of
R-odd nodes, set Vo to it and set VI( to the complementary set in
Ci ·

• Phase II: Define the node sets Va, ... , VI(.

(a) Construct the graph G' obtained from the weighted graph
G(x*) by shrinking the sets Vo, VK, and the remaining R­
sets into a single node each.

(b) Compute a maximum weight spanning tree in G' \ {(Va, VI()}.

(c) Transform the tree into a path linking Va and VK, by (iter­
atively) shrinking each node with degree one (different from
Vo, VK ) into its (unique) adjacent node. Let VI, V2, ... ,VK - I
be the nodes of this path. If K 2: 3, they define the node sets
of the K-C configuration.

• Phase III: Check the K-C inequality.
For each i = 0,1, ... ,K - 1, compute LHS(i, i + 1) and F(..c*)
as in (7.24). If F(x*) < 2(K - 1), the K-C inequality is violated.
Otherwise, check if a violated K -C inequality could be obtained by
shrinking iteratively some pairs Vi, Vi+I' while K 2: 3 holds.

The algorithm was executed with values 0,0.25 and 0.5 for parameter
E. Initially, in phase 0, C i is set equal to each of the R-components. In
further stages of the cutting plane algorithm, Ci is set equal to any pair
of R-components adjacent in graph G(x*).
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3.1.4 Cutting Plane and Branch & Cut Algorithms for the
RPP.
In their paper on the RPP polyhedron, Corbenin & Sanchis (1994) re­
port some computational experience with a cutting-plane algorithm in
which only connectivity, R-odd and K-C inequalities were considered
and its identification was carried out visually. All except one of the 24
instances reported in Christofides et al. (1981) were solved to optimality
and the optimal value (although not the optimal solution) was obtained
for the last one. Two other real-life instances, with IVI = 113, lEI = 171
and with 10 and 11, respectively, R-components were also solved.

Corberan, Letchford & Sanchis (1998) present a cutting-plane algo­
rithm for the General Routing Problem (that includes the RPP as a
particular case) containing the heuristic and exact procedures here de­
scribed for the separation of connectivity, R-odd and K-C inequalities,
as well as other procedures that will be presented in the next section.
This algorithm was able to solve the 26 instances of Christofides et al.,
(1981) and Corberan & Sanchis (1994), as well as the 92 RPP instances
generated by Hertz, Laporte & Nanchen (1998). These 92 instances cor­
respond to three classes of randomly generated graphs designed to test
different heuristic algorithms for the RPP. First class graphs were ob­
tained by randomly generating points in the plane; class 2 graphs are
grid graphs generated to represent the topography of cities, while class
3 contains grid graphs with vertex degrees equal to 4. It is worth point­
ing out that the sophisticated heuristic procedures of Hertz, Laporte &
Nanchen (1998) also produced optimal solutions for all the instances (al­
though they could not prove optimality).

Another approach to the RPP has also been proposed by Ghiani and
Laporte (1997). They used the same formulation as before, but they
noted that only a small set of variables (those belonging to an SST
connecting the R-components ofG) may be greater than 1 in an optimal
solution of the RPP and, furthermore these variables can take, at most, a
value of 2 (the corresponding set of edges is denoted by E012)' Then, by
duplicating these latter variables, the authors formulate the RPP using
only 0/1 variables. Ghiani & Laporte have implemented a Branch & Cut
algorithm based on connectivity inequalities (7.19), R-odd inequalities
(7.22) and the following ones (that are only valid under the assumption
that variables X e are binary):

L X e 2 Xeb' VS C V, Sis R-even, eb E 8(S)
eE8(S)\{eb}

(7.25)

To separate the connectivity inequalities (7.19), they use a heuristic sim­
ilar to the one proposed by Fischetti, Salazar & Toth (1997) for the Gen-
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eralized TSP. Starting with the support graph G(x*), each R-component
is shrunk into a single vertex and a maximum spanning tree is built in
the resulting graph. Each stage of the construction of this tree, produces
a subset of R-components for which the corresponding inequality (7.19)
is checked for violation. Once the spanning tree is completed, another
check for violated connectivity constraints is made by removing in turn
each edge of the tree.

To separate R-odd cut inequalities (7.22), Ghiani & Laporte (1997)
use a heuristic similar to the one described in section 2.1.1. Finally, they
have designed a new heuristic algorithm to separate inequalities (7.25)
that can be roughly described as follows. For any R-even component of
subgraph of G(x*) induced by edges with x; > E, where E is a given pa­
rameter, a maximum spanning tree is computed. If the removal of a tree
edge e divides the component into two R-even subcomponents, say G'
and Gil, then two inequalities (7.25) are checked by considering S = G',
eb = e and S = Gil, eb = e. A branching step is executed whenever no
violated inequality can be generated. Branching is made on fractional
variables X e nearest to 0.5 and two son subproblems are generated as
usual, except in the case e E E012, where three son subproblems are
generated.

Ghiani and Laporte (1997) report very good computational results on
a set of 200 instances, corresponding to 3 classes like those in Hertz,
Laporte & Nanchen (1998). Except for 6 instances, other 194 instances
involving up to 300 or 350 vertices were solved to optimality in a rea­
sonable amount of time.

3.2. THE GENERAL ROUTING PROBLEM
Given an undirected and connected graph G = (V, E), a nonnegative

cost Ce for each edge e E E, a set VR ~ V of required vertices and a set
ER ~ E of required edges, the General Routing Problem (GRP) is the
problem of finding a minimum cost tour passing through each v E VR
and each e E ER at least once (Orloff, 1974).

The GRP was proved to be NP-hard by Lenstra & Rinnooy-Kan
(1976). It includes as special cases the arc routing problems on an undi­
rected graph described in previous sections (i.e., the Chinese Postman
Problem, CPP, and the Rural Postman Problem, RPP) and also includes
some well known routing problems where the service requirements are on
the vertices of the graph: when ER = 0, we obtain the Steiner Graphical
Traveling Salesman Problem (SGTSP) (Cornuejols, Fonlupt & Naddef,
1985), also called the Road Traveling Salesman Problem by Fleischmann
(1985); when ER = 0 and VR = V, we obtain the Graphical Traveling
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Salesman Problem (GTSP) (Cornuejols, Fonlupt & Naddef, 1985). A
strong relationship between the GTSP and GRP polyhedra has been de­
scribed in deep by Letchford (1997b).

The integer programming formulation for the GRP is exactly the same
that for the RPP. Hence, connectivity, R-odd cut, K-C and GTSP-type
inequalities are valid for the GRP as well as for the RPP (Corberan &
Sanchis, 1998) and can be separated with the procedures presented in
sections 3.1.1, 3.1.2 and 3.1.3 for the RPP. Inversely, path-bridge (Letch­
ford, 1997a) and honeycomb inequalities (Corberan & Sanchis, 1998)
presented for the GRP are also valid for the RPP, and the corresponding
separation procedures presented in next sections can be also applied to
the RPP. These procedures (Corberan, Letchford & Sanchis, 1998) also
rely on the assumption that V = VR, because, as in the RPP, GRP in­
stances which do not satisfy the assumption can be easily transformed
into instances which do (Christofides, Campos, Corberan & Mota, 1981).

3.2.1 Honeycomb Separation.
In a K-C configuration, an R-component (or a cluster of R-components)
is divided into two parts. A honeycomb configuration (Corberan & San­
chis, 1998) generalizes the K-C configuration simultaneously both in the
number of parts an R-component is divided into and in the number of R­
components we divide. Many honeycomb configurations can be formed
by 'gluing' K-C configurations together by identifying edges.

Honeycomb inequalities for which a separation heuristic has been de­
signed in Corberan, Letchford & Sanchis (1998) are those in which a
single cluster of R-connected components is partitioned into more than
2 parts. The associated honeycomb configurations consist of:

• a partition {VI,." ,VL, WI, ,WK-I} of V, with L 2 3, K 2 4,
such that (VI U.. .UVL), WI, ,WK-I are clusters of one or more
R-sets and 6(Vi) contains a positive and even number of required
edges for all i. The required edges crossing between the Vi spans
the sets Vi considered as nodes.

• a tree T spanning the sets Vi, ... ,VL, WI, . .. , WK -1 such that the
degree in T of every node \Ii is 1, the degree of nodes W j is at least
2 and the path in the tree connecting any distinct Vi, Vj is of length
3 or more.

If L = 2 the tree is a path and we have a K-C configuration. If L 2 3,
then K 2 4 is needed in order to the path in the tree connecting any
distinct Vi, Vj being of length 3 or more.
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In the associated honeycomb inequality, the coefficient Ce of edge e E E
is equal to the number of edges traversed in the spanning tree to get from
one end-vertex of e to the other, except for the edges with one end-vertex
in Vi and the other in Yj, i :f. j, when the coefficient is 2 units less. The
honeycomb inequality is then:

LCeXe ~ 2(K -1)
eEE

Honeycomb inequalities try to separate solutions x* where some R­
even nodes UI, U2, ... ,UL (or sets with an even number of R-odd nodes)
belonging to an R-component Gi satisfy x* (/j (Uj)) ~ 1 and x* ({Uj} :
Gi \ {Uj}) ~ 0, j = 1,2, ... ,L.

The idea of the algorithm is similar to that for the K-C separation.
The main difference is, given an R-set or a cluster of R-sets Gil to deter­
mine the number of node sets to divide it, and how to make the division
into VI, V2, ... , vt. The procedure is as follows:

Let G i be an R-set and remember that x*-external nodes are those in
Gi which are adjacent to nodes not in Gi by an edge e with x: > 0. As­
sume Gi has, at least, two x*-external nodes and connected to, at least,
two different R-sets.

Assign to each x*-external node ui a label k corresponding to the
R-set R k not in Gi with x* ({Uj} : R ) maximum. To each of the re­
maining nodes in Gi , a different negative label is assigned. Starting
with the edge (u, v) in E(Gd with largest x*-weight, let lmin (lmax) be
the smaller (larger) label of that of U and v. Assign the label lmax to
all nodes in Gi having label lmin' This procedure is repeated until all
nodes have positive label. Nodes with the same label define a partition
VI, V2, ... ,\It of the set of nodes of Gi . If the number of R-odd nodes in
each Yj,j = 1, ... ,t is even, we are done. Otherwise, all the sets Yj with
an odd number of R-odd nodes are joined forming a single set. Then, a
partition VI, V2,'" , VL have been defined.

If L ~ 3, these sets are suitable to be considered as part of a honey­
comb configuration. If L = 2, these sets are suitable to be considered
as Vo and VK for a K-C configuration. Otherwise (L = 1), Gi is rejected.

Consider now the graph obtained by shrinking each VI, V2, ... , VL and
each of the remaining R-sets into single nodes. Compute a spanning tree
with large x* weight in this shrunk graph without using edges (Vi, Yj).
Then shrink (iteratively) each node with degree one on the tree (different
from V1, V2, . .. ,VL) into its adjacent node, having in mind that every
node Vi must have degree one in the configuration tree.
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If the above procedure has been successful, a honeycomb configura­
tion has been defined with VI, V2, ... ,VL and WI, lrV2, ... ,WK-I and
its corresponding inequality is checked for possible violation. If it is not
violated, a similar procedure to that of section 3.1.3 for K-C inequalities
shrinks pairs of sets Wi, Wj adjacent in the tree into a single one to
obtain a new 'smaller' honeycomb configuration that, under certain con­
ditions, can be violated. In further stages of the cutting plane algorithm,
Ci is set equal to a pair of R-sets adjacent in graph G(x*).

3.2.2 Path-Bridge Separation.
Letchford (1997a) introduced the path-bridge (PB) inequalities. As K-C
inequalities try to separate 'solutions' in which x(b(i)) = 1 for an R-even
vertex i, PB inequalities try to separate 'solutions' in which x(b(i)) = 2
for an R-odd vertex i. The associated path-bridge (PB) configuration
is presented in detail in Chapter 6. A special case are the so called n­
regular PB inequalities, n-PB, that have an easy description in terms of
handles and teeth:

There are n - 1 handles, HI, ... ,Hn - 1 , and p teeth, T1 , ... , Tp . The
first handle is defined as HI = Au Vl u u Vi; the other handles are
defined inductively as Hi = Hi- 1 U v:1 u u v:p

. The teeth are defined
as Tj = V! u ... u Vi? The n-PB inequality is then:

n-I p

Lx(8(Hi))+Lx(8(Tj)) > np+n+p-1
i=l j=I

(7.27)

Note that 2-PB inequalities are analogous to the comb inequalities for
the STSP (see, e.g., Grotschel & Padberg, 1979). A 2-PB inequality in
which each tooth consists merely of two isolated vertices (connected by
a non-required edge) is called simple (Letchford, 1997a). Simple 2-PB
inequalities are analogous to the 2-matching inequalities for the STSP.

No exact polynomial algorithm is known to separate general n-PB
inequalities. However, simple 2-PB inequalities can be separated in
polynomial time provided that x* satisfies all connectivity inequalities
(Letchford, 1997a). The algorithm is based on the edge-splitting idea of
Padberg & Rao (1982).

Exact algorithm for simple 2-PB separation:

Given an edge e E E with both end-vertices isolated, define x; =
x; + x*(8(e)) - 3. It can be shown that, if all connectivity inequalities
are satisfied, then x; 2: 0 for all such e. If x; < 1, then e is called
splittable.
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Let G' be the graph obtained from G by deleting non-required edges
e with x; = O. Label all vertices odd or even according to whether they
are R-odd or R-even. Then divide each splittable edge e into two edges,
called halves, by inserting a new splitting vertex, labelled odd, in the mid­
dle of e. One half (the normal half) retains the original weight, whereas
the other half (the flipped half) gets a weight of x;. Then, reverse the
label of any non-splitting vertex which is adjacent to an odd number of
flipped halves. Each odd cut with weight less than one in the resulting
split graph corresponds to a violated simple 2-PB inequality. The handle
in the simple 2-PB inequality is composed of all original (non-splitting)
vertices on one shore of the cut. The teeth are the splittable edges whose
flipped halves lie in the cutset.

The above exact separation algorithm has two disadvantages. First,
it is rather slow. Second, there are few violated simple 2-PB inequalities
when the GRP instance has few isolated vertices (indeed, SPB inequal­
ities are not defined at all for RPP instances). Both disadvantages can
be alleviated by applying the algorithm separately to each block of G'.
Each violated simple 2-PB inequality found is then expanded into a vi­
olated (not necessarily simple) 2-PB inequality.

Furthermore, Corberan, Letchford & Sanchis (1998) have devised a
separation heuristic for general n-PB inequalities, which is fast and quite
effective. This n-PB separation heuristic is also applied to each block
separately. Nevertheless, for simplicity of notation, we assume that there
is in fact only one block.

Heuristic algorithm for n-PB separation:

• Phase I: Select candidates for HI
Examine each pair 51,52 of R-sets connected by at least one edge.
If x*(8(51U52)) + x*( (51 : 52)) - 3 :s E, where E is a given parame­
ter, then label the edges in E(5I) and E(52) 'strong' and the edges
in (51 : 52) 'weak'. Store (51,52) as a 'candidate tooth'. 51 and
52 are the 'ends' of the candidate tooth. Examine the remaining
unlabeled edges. Label such an edge e 'weak' if x; :s min{E, O.25}.
Delete all weak edges from G' and examine each connected compo­
nent C in the resulting graph. Let b = 18R(C)1 and let p equal the
number of candidate teeth with exactly one end in C. If p + b ~ 3
and odd, p ~ 1 and the p candidate teeth are vertex-disjoint, then
put C into a list 1t of candidates for HI.
For each candidate HE 1t, repeat:

• Phase II: Construct the configuration nodes.
Set v;.1, ... ,Vi to be the ends of the p candidate teeth lying in H.
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Set A to be the remainder of H, if any. Set vi,.. . ,V{ to be the
other ends of the p candidate teeth. Set Z to be the parts of R-sets
split by A which are not in A. If no such R-sets exist, then Z is
initially empty. Let Gs denote the weighted shrunk graph obtained
from G' by shrinking A, Z and the R-sets which are not contained
in Au Z into a single node each. Add (iteratively) edges of Gs
in order of non-increasing weight so as to build the 'skeleton' of
a path bridge configuration, bearing in mind that, when b = 0, a
'seed' for Z does not exist. In this case, try to build two structures,
one in which Z is forced to be empty and one in which Z is forced
to be non-empty.

Once the structure has been made, shrink iteratively vertices of
degree one (different from A and Z) into their adjacent node to
obtain a PB configuration, not necessarily regular. To make the
configuration regular, choose n according to the length of the short­
est of the p paths in the configuration, and shrink any paths which
are longer than this by merging Z with adjacent V].

• Phase III. Check the n-PB inequality.
Check if the n-PB inequality is violated according to (7.27). If it is
not violated, the slack of the n-PB inequality can be decreased by
removing any handle Hi such that x*(b(Hi)) > p + 1 and merging
adjacent Vji accordingly. Repeat this process iteratively, as long as
n 2: 2 remains, until a violated regular PB inequality is obtained
(if possible).

3.2.3 Cutting Plane and Branch & Cut Algorithms for the
GRP.
The above heuristic and exact procedures for identifying violated Honey­
comb and PB inequalities, as well as those presented in the RPP section
for separating connectivity, R-odd and K-C constraints, have been im­
plemented in a cutting plane algorithm described in Corberan, Letchford
& Sanchis (1998). In the last iteration, when no violated inequality is
found, an integer solution of the last LP relaxation is obtained by in­
voking the Branch and Bound option of CPLEX (1994). If this integer
solution is a tour, then it is optimal for the GRP. Otherwise, its value is
a lower bound for the cost of the optimal GRP tour.

Besides the RPP instances mentioned in section 3.1.4 and some pure
GTSP instances, the cutting plane algorithm was tested on 10 GRP
instances generated from the Albaida graph by selecting visually some
edges as required in order to obtain 'difficult' instances and on 30 other
(randomly generated) instances. This last set of instances, with up to
111 R-components, was obtained from the Albaida graph and from an-
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other real-world based graph - with 196 vertices and 316 edges -, by
defining an edge as required with probability p, p = 0.7,0.5 and 0.3, and
considering all the vertices of the graph as required. Thirty three out of
these 40 were solved to optimality.

The algorithm also proved capable of solving 7 out of 8 GTSP in­
stances (recall that the GTSP, like the RPP, is a special case of the
GRP), which were formed by taking planar Euclidean TSP instances
from TSPLIB and making the associated graphs sparse.

Finally, note that any GRP instance can be transformed into an RPP
instance by duplicating every isolated required vertex and adding a re­
quired edge between them with zero cost. Therefore, the Branch and
Cut algorithm by Ghiani & Laporte (1997) could also be applied (in
principle) to solve the GRP.

3.3. THE DIRECTED RPP
Consider now a strongly connected and directed graph G = (V, A)

with nonnegative arc costs and a subset of required arcs A R ~ A. The
Directed Rural Postman Problem (DRPP) consists of finding a mini­
mum cost tour traversing, at least once, all the arcs in AR. As in the
RPP case, if the subgraph induced by AR is not connected, the DRPP
is NP-hard.

To formulate the problem, we need some new notation. Given S C V,
remember that 8+ (S) (8- (S)) denotes the set of arcs leaving (entering)
S. In addition, 8~(S) = 8+(S) n AR and 8R(S) = 8-(S) n A R. Fi­
nally, as for the undirected case, in order to simplify both the problem
formulation and its resolution, DRPP instances are often transformed
into instances which satisfy VR = V (Christofides, Campos, Corberan &
Mota, 1986).

If X a denotes the number of times an arc a E A is traversed without
being serviced, the formulation of the DRPP given by Christofides et al.
(1986) and Ball & Magazine (1988) is as follows:

Minimize LCaXa

aEA

subject to

x(8+(i)) + 18~(i)1 = x(8-(i)) + 18R(i)/,\ii E V

x(8+(S)) > 1, { \is = UkEQVk ,
- Q C {I, ... ,p}

X a 20 and integer,\ia E A

(7.28)

(7.29)

(7.30)
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where p is the number of connected components of the graph induced by
A R and Vk, k = 1,2, ... ,p, denote the corresponding node sets.

Note two important aspects that make the DRPP different to its undi­
rected version. First, all DRPP tours satisfy equations (7.28), any IVI-l
of them linearly independent. This means that its corresponding poly­
hedron is not full-dimensional and, therefore, more difficult to study.
Second, no small and easy-to-obtain upper bound is known for the vari­
ables in the DRPP formulation, unlike in the undirected case where all
the variables are trivially bounded by 2.

Christofides et al. (1986), solved the DRPP with a Lagrangean Relax­
ation procedure embedded within a Branch and Bound algorithm. With
this method, they were able to solve instances with IVI ranging from 13 to
80, IAI from 24 to 180, IARI from 7 to 74 and a number p of R-connected
components that ranges from 2 to 8. The DRPP polyhedron have been
studied by Savall (1990) and by Gun (1993). Furthermore, some of the
results in Romero (1997) and in Corberan, Romero & Sanchis (1999) for
the Mixed RPP (see section 3.4) apply directly to the DRPP. Then, a
cutting plane algorithm for the DRPP could benefit from some of the
separation procedures described in that section.

3.4. THE MIXED RPP
In this section, we consider again a strongly connected mixed graph

G = (V,E,A) with a cost Ce 2 0 associated to each link (edge or arc)
e E EUA. Furthermore, consider a subset E R S;;; E of required edges and
a subset AR S;;; A of required arcs. Then, the problem of finding a min­
imum cost tour traversing, at least once, all the required links is called
the Mixed Rural Postman Problem (MRPP). Note that when AR = 0
(ER = 0), the MRPP reduces to the RPP (DRPP) and that if ER = E
and A R = A, we obtain the MCPP (that itself generalizes the CPP and
DCPP). Therefore, the MRPP contain, as special CB...'ies, almost all the
Arc Routing Problems involving only one vehicle and is, obviously, an
NP-hard problem in the general case.

Recent works on the MRPP are those by Romero (1997) and by Cor­
beran, Romero & Sanchis (1999). In both studies, a MRPP instance
is transformed into a new one in which every vertex v E V is incident
on, at least, one required link and where ER = E (as each non required
edge e = (i, j) can be replaced by two non required arcs (i, j) and (j, i)).
Under these assumptions, if Ie, e E E U A, represents the number of
copies of link e that are added to G in order to obtain an eulerian graph,
the MRPP formulation is then as follows:
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subject to

Minimize L CeXe

eEEUA

x(8(i)) + 18R(i)1 + x(8+(i)) + 18~(i)1+

x(8-(i)) + 18R(i)1 == 0 (mod 2),Vi E V

x(8+(S)) - x(8-(S)) + x(8(S)) ~ b(S),VS c V

x(8+(S)) > 1, { VS = UkEQVk ,
- Q C {I, ... ,p}

X e ~ 0 and integer,Ve E E U A

(7.31)

(7.32)

(7.33)

(7.34)

where, in a similar way to that in Section 2.3, b(S) is defined as b(S) =
18R(S)I-18~(S)I-18R(S)1 and p is the number of connected components
induced in G by the required links (called R-components) and subsets
Vk , k = 1,2, ... ,p, are their corresponding node sets (called R-sets).

In their paper about the MRPP polyhedron, Corberan, Romero &
Sanchis (1999) present some computational results with a preliminary
cutting-plane algorithm including separation routines for connectivity
(7.33), R-odd cut and balanced set inequalities (7.32). This algorithm
was tested on a set of 100 randomly generated instances with 20 ::;
IVI ::; 100, 15 ::; lEI::; 200, 55 ::; IAI ::; 350, and up to 15 R-connected
components. It produced the optimal solution in 28 out of them and,
on average, the bound obtained was less than 0.5% far from the cost of
a feasible solution obtained by using heuristic methods. The separation
algorithms (similar to that used for the undirected RPP) are described
in what follows.

3.4.1 Connectivity Separation.
Consider the shrunk graph Gs obtained from G(x*) by shrinking each
R-set into a single node. Note that Gs is a directed graph.

Exact algorithm:

Connectivity inequalities can be separated exactly in polynomial time
by computing a maximum directed flow between every pair of vertices
of Gs . Each cutset with weight less than 1 corresponds to a violated
connectivity inequality.

Heuristic algorithm:

Compute the strongly connected components of the subgraph induced
by the links e of Gs with x; > E, where E is a given parameter. Let
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Sl, S2, ... , Sq be the sets of nodes in the original graph G correspond­
ing to the node sets of these strongly connected components. Then,
x(b+(Si)) ~ 1 is a violated connectivity inequality if x*(b+(Si)) < 1.
Constraint x(b-(Si)) ~ 1 is not considered because b(Si) = 0 and, there­
fore, balanced set constraints imply x(15+ (Si)) = x(15- (Si))'

3.4.2 R-odd Cut and Balanced Set Separation.
Let b*(S) = b+(S)Ub-(S)ub(S) and bR(S) = b*(S)n(ERUAR). R-odd
cut inequalities

x(b*(S)) ~ 1, V S ~ V : IbR(S)1 is odd (7.35)

can also be separated exactly in polynomial time, in a similar way to the
odd-cut inequalities separation described in section 2.1.1 for the CPP.
The heuristics presented in that section also apply directly. We only
have to consider each arc in A &'3 an edge and each R-odd vertex as an
odd-degree vertex.

The balanced set separation algorithm described in section 2.3.3 for
the MCPP applies directly to the MRPP.

3.4.3 K-C and Path-Bridge Separation.
No K-C or Path-Bridge separation procedures for the Mixed RPP have
been proposed. Nevertheless, some subclasses of the K-C and PB in­
equalities described in Corbenin, Romero &Sanchis (1999) for the MRPP
have the same coefficients as those for the undirected RPP. Hence, the
separation algorithms described in sections 3.2.2 and 3.1.3 could be
slightly modified to be applied to the mixed case by only considering
every arc of the graph as an edge (ignoring its direction).

4. THE CAPACITATED ARC ROUTING
PROBLEM

The Capacitated Arc Routing Problem (CARP) was introduced by
Golden & Wong (1981) and is defined as follows. Let G = (V, E) be a
connected and undirected graph with a demand de ~ 0 and a traversing
cost Ce ~ 0 asso.ciated to each edge e E E. The subset of edges with
positive demand (called required edges) is denoted by ER . Given a ve­
hicle capacity Q, the CARP consists of finding a set of vehicle routes of
minimum cost that service every required edge and such that every route
contains the depot (that will be assumed to be vertex 1) and the total
demand serviced by a route does not exceed the capacity Q. A route is
a closed chain containing a set of traversed edges, some of which are also
serviced by the route.
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A special case of this problem is the Capacitated Chinese Postman
Problem (CCPP) where all the edges are required ones. Note that the
number of vehicles is free in the above definition of CARP. Some authors
consider different variants of the CARP in which the number of vehicles
is fixed, or an upper bound for it is given.

The minimum number of vehicles that will be used by any feasible so­
lution to the CARP may be computed by solving a Bin Packing Problem
(BP) where the item weights are the edge demands and the bin capacity
is Q. Let K* denote this minimum number of vehicles. The Bin Pack­
ing Problem is N'P-hard, but it can be easily solved for relatively large
instances (see Martello & Toth, 1990).

Several LP formulations of the CARP exist in the literature and a
survey of them can be found in Chapter 6 of this book. Here, we will
only report about those formulations that have been used to develop so­
lution strategies for the CARP. As far as we know, the only work done on
LP-based methods for the CARP is reported in Belenguer & Benavent
(1992, 1994, 1998a, 1998b) and Welz (1994). Different formulations of
the CARP have been used in these works. Following the terminology
used in Chapter 6 of this book, these formulations have been classified
into sparse and supersparse. Welz (1994) uses a sparse formulation with
directed variables, while Belenguer & Benavent use both classes of for­
mulations using non directed variables. These formulations have been
computationally tested and the results are quite encouraging. To sum­
marize their results, we first present the valid inequalities that have been
obtained for the sparse formulation and the corresponding routines im­
plemented to separate them. Afterwards, we review the corresponding
work made on the supersparse formulation. Finally we will present the
results obtained with a Branch & Cut code for the CARP based on the
sparse formulation and a cutting plane algorithm based on the super­
sparse formulation.

4.1. SPARSE FORMULATIONS
Belenguer & Benavent (1992, 1994, 1998a) assume that there is an

upper bound K on the number of available vehicles. This is normally
taken to be equal to K*, but need not be. They use the following deci­
sion variables to formulate the CARP:

~ _ {I if vehicle p serves edge e E ER
e - 0 otherwise

'!k = number of times vehicle p traverses edge e E ER without servic­
ing it.
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Let I = {I, ... ,K}. Given any S ~ V\ {I}, as in previous sections, we
will denote by ER(S) = E(S)nER and 8R(S) = 8(S)nER. On the other
hand, given PEl, R' ~ ER and E' ~ E, we denote xP(R') = L:eERI:I{
and yP(E') = L:eEEI yr Then, the CARP can be formulated as follows:

subject to

Minimize L L cex~+ LLCeY~
pEl eEER pEl eEE

LX~ = 1, VeE ER
pEl

L dex~ $ Q, V pEl
eEER

XP(8R(S)) + yP(8(S)) 2: 2x1J, V S ~ V \ {I},

f E ER(S) and pEl

xP(8R(S)) + yP(8(S)) == 0 (mod 2), V S ~ V \ {I} and pEl

x~ E {O, I}, y~ 2: 0 and integer

(7.36)

(7.37)

(7.38)

(7.39)

(7.40)

Constraints (7.36) and (7.37) ensure, respectively, that each required
edge will be serviced and that the capacity of the vehicles is not exceeded.
Constraints (7.38) (called connectivity constraints) state that, if route p
services edge e then it must traverse any edge cutset separating e from
the depot.

In what follows, we present the separation procedures designed for
-each class of valid inequalities known for this formulation. Constraints
(7.36) and (7.37) are usually included in the initial LP. Let (x, y) be an
optimal solution of the LP containing the objective function and some
set of valid constraints for the CARP. For any fixed vehicle PEl, let
% = :I{ +~, for all e E E (for simplicity, we assume that :I{ = 0
whenever e rf. E R ), and let Gp(w) be the graph induced by the edges
e E E with % > 0 plus the depot (node 1).

4.1.1 Connectivity Separation.
Constraints (7.38) can be separated in polynomial time by applying the
following algorithm for each vehicle p. Consider the weight % as the
capacity of arc e E E in graph Gp(w).

Exact algorithm

1 For each node i E V \ {I}:

Compute the min-cut separating nodes 1 and i. Let 8(Si), Si ~

V \ {I}, be the min-cut and let Fi be the capacity of this cut.
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2 For each edge e = (i,j) E ER:

If max{Fi,Fj} < 2:z{, then a violated connectivity constraint has
been found.

Let Fe be the min-cut separating node 1 and edge e E ER. Note that
Fe 2 max{Fi, Fj}. Then, max{Fi ,Fj} 2 2:z{ implies that no connec­
tivity constraint is violated for this edge. On the other hand, it can be
proved that, if max{Fi , Fj } < 2:z{, then either j E Si or i E Sj holds.
Then, max{Fi,Fj } < 2:z{ implies that either Fe = Fi or Fe = Fj holds,
so Fe < 2:z{ and a violated connectivity constraint can be generated.

4.1.2 Parity Separation.
Parity constraints (7.39) are not linear. In Belenguer & Benavent (1992,1998)
they are substituted by the weaker, but linear, constraints:

(7.41)

were S ~ V\ {I} and H ~ OR(S) with IHI odd. To see that they are valid,
note that if all edges in H are serviced by vehicle'p (that is xP(H) = IHI),
given that IHI is odd, this vehicle will traverse at least once more the
edge cut set o(S), so XP(OR(S) \ H) + yP(o(S)) 2 1. Constraints (7.41),
which will also be called parity constraints in what follows, are similar to
those appearing in the complete description of the 2-matching polytope
(see for instance Grotschel & Holland, 1987).

Exact algorithm:

The separation of constraints (7.41) can be done in polynomial time
using a procedure similar to one described in Padberg & Rao (1982).

From the support graph Gp(w), a new graph G' is constructed as
follows: initially, all the nodes in Gp (w) are labelled as even; then, se­
quentially, each required edge e = (i,j) in Gp(w) is replaced by two
edges (i,ie), which gets a weight l-xe, and (ie,j) with weight Xe, where
ie is a new node labelled as odd. The label of node i is changed from
even to odd (or vice-versa). Finally, for each edge e = (i,j) E E, if
y~ > 0, an edge joining nodes i and j is added to G' with a weight of y~.
Compute now a minimum weight odd cut set in graph G' and let S' be
the set of nodes on the shore of the depot defining this cut. Let S be the
set of original nodes in S'. The set H is defined as the subset of edges
e = (i,j) E OR(S) such that ie 1:. S'. It can be easily shown that IHI is
odd and the weight of the cutset in G' can be written as:

yP(O(S)) + XP(OR(S) \ H) + IHI- xP(H)

Therefore, a violated parity inequality is found if and only if the above
expression is less than 1.
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4.1.3 Obligatory Cutset Separation.
Let DT be the total demand of the required edges and let Qmin =
max{DT - (K - l)Q, O}. Note that Qmin is the minimum demand that
any vehicle must service in any feasible solution to the CARP. For any
8 ~ V \ {I}, let d(8) = LeEER(S)UliR(S) de. Then, the following inequal­
ity is valid:

xP(<5R(8)) + yP(<5(8)) ~ 2 (7.42)

for all pEl and 8 ~ V \ {l},DT - d(8) < Qmin

Note that DT - d(8) < Qmin implies that each vehicle p have to tra­
verse the edge cutset <5(8). For this reason, (7.42) are called obligatory
cutset constraints. Obviously, they only make sense if Qmin > O. No
specific algorithm was devised to separate these constraints. Instead, a
heuristic was used to generate several edge cutsets for which the connec­
tivity, parity and obligatory cutset constraints were checked for possible
violation. The heuristic computes the connected components of Gp(w)
and that of Gp(w) \ {e}, where e is any cut edge of Gp(w).

4.1.4 Separation of Constraints from the Knapsack Prob-
lem.
Obviously, each vehicle capacity constraint (7.37) is a Knapsack like con­
straint. Then, any valid inequality for the Knapsack polytope: conv{z :
2::eEER deze :S Q}, generates K valid inequalities for the CARP, one for
each vehicle p.

Two classes of valid knapsack constraints were used: minimal cover
and (1 - k) configuration constraints.

A set W ~ ER is called a minimal cover if d(W) > Q and d(W \
{f}) :S Q for all fEW. If W is a minimal cover, then the constraint
xP(W) :SI WI-I, for any vehicle p, is valid for the CARP.

A set W ~ ER, an edge f E E R \ Wand an integer 2 :S t :SI WI are
said to define a (1 - k) configuration if:

• d(W):S Q, and

• W'u{f} is a minimal cover for every W' ~ W such that 1W' 1= t.

Then, for any integer r, t :S r :S 1WI, and any subset Tr ~ W such
that 1Tr 1= r, the inequality (r - k + l)xj + xP(Tr ) :S r, for any vehicle
p, is valid for the CARP.

It is well known that minimal cover and (1 - k) configuration con­
straints can be lifted to produce facets of the knapsack polytope. Lifted
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constraints are not guaranteed to be facets for the CARP but they can
still be expected to be strong. The heuristic methods described in Crow­
der, Johnson & Padberg (1983) were used to separate and lift these
constraints.

In the work reported in Welz (1994), the CARP is formulated using
variables that take into account the direction in which each edge is tra­
versed. This formulation is fully described in Chapter 6, so it will not
be reproduced here. Welz uses separation heuristics for his odd cut and
connectivity inequalities that are similar to the ones here described.

4.2. SUPERSPARSE FORMULATION FOR
THE CARP

Consider any feasible solution of the CARP and let us define for each
edge e E E, the aggregated variable:

Ze = total number of times that edge e has been traversed without being
serviced by all the vehicles.

For any S ~ V \ {I}, let k(S) = rd(S) /Ql Obviously, at least k( S)
vehicles are needed to service the edges in ER(S) U 8R(S),

Consider the following supersparse formulation for the CARP:

subject to

Minimize LCeZe

eEE

z(8(S)) 2: 2k(S)- 18R(S) I 't:j S ~ V \ {I}
z(8(S)) 2: 1 't:j S ~ V \ {I}, 18R(S) I odd

Ze 2: 0 't:j e E E

Ze integer 't:j e E E

(7.43)

(7.44)

(7.45)

(7.46)

Constraints (7.43) are called capacity constraints and they express the
fact that at least k(S) vehicles must traverse the edge cutset 8(S) to ser­
vice the edges in ER(S)U8R(S). Constraints (7.44) are the usual odd-cut
constraints which are also valid for the CARP. Note that the objective
function includes only the cost of the deadheading edges of the CARP
solution; the real cost includes also that of traversing exactly once all
the required edges, but this a fixed cost that cannot be minimized. Note
also that the number of vehicles is free in this formulation.

On the other hand, note that the number of variables is IE I, which is
much less than that of the sparse formulation (at least K(I E I+ I ER I)).



Linear Programming Based Methods for Solving Arc RotLting Problems 265

The main drawback of the supersparse formulation is that it is not com­
plete, as it contains integer solutions that do not correspond to feasible
solutions for the CARP.

0.--------10

Q= 25

Figure 7.1 CARP instance.

Consider the CARP instance of Figure 7.1. Note that the solution
{ze = 0 : e E E} satisfies all the capacity and odd-cut constraints. Nev­
ertheless, this solution cannot correspond to a feasible solution for the
CARP, as we now show. Consider the edge cutset defined by S = {6,7},
then 8R(S) U ER(S) = {(3, 6), (7,4), (6,7)}, d(S) = 19 and k(S) = 1.
Given that no deadheading edge exists in the edge cutset 8(S), a single
vehicle will have to service the edges in 8R(S) UER(S). This vehicle will
travel from the depot to node 3 or 4, service the edges in 8R(S) UER(S)
and come back to the depot. Therefore, it will use two edge-disjoint
paths in graph G from the depot to nodes 3 and 4; but these paths have
a total demand of at least 8 and 8 + 19 = 27. As Q = 25, this vehicle
would exceed its capacity.

Although the supersparse formulation is not complete, it has been
used in Belenguer & Benavent (1998b) to compute a lower bound for the
CARP with a cutting plane algorithm that includes constraints (7.43)
and (7.44) as well as other new valid inequalities which are called Disjoint
Path inequalities. There are three classes of Disjoint Path inequalities,
denoted, respectively, DP1, DP2 and DP3, based on similar ideas.
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For instance, the following is a DP1 valid inequality for the CARP
instance depicted in Figure 7.1:

2z(E') + z(8(S)) 2: 2,

where S = {6,7} and E' = {(1,2),(1,3),(1,4),(1,5),(2,3),(4,5)}. The
validity of this inequality becomes apparent by noting that, either:

(a) at least one deadheading edge in the set E' is used, so z(E') 2: 1, or

(b) the edges in 8R(S) U ER(S) are serviced by more than one vehicle,
so z(8(S)) 2: 2.

In general, given a node subset S ~ V \ {I}, such that 2k(S) 2:1
8R (S) I, and edge subset E' ~ E(V \ S), the DP1 inequality associated
to Sand E' is:

2z(E') + z(8(S)) 2 2k(S)- I8R (S) I+2 (7.47)

This inequality is valid ifd(MCFP)+d(S) > k(S)Q, where d(MCFP)
is a lower bound on the total demand that k(S) vehicles would have to
service on their way from the depot to edge cutset 8(S) and on return,
assuming that z(E') = 0. This lower bound can be computed by solving
a Minimum Cost Flow Problem where edge costs are set equal to the
edge demands.

Inequalities DP2 and DP3 are based on similar ideas, although they
are defined on a more involved configuration. Thus, while inequalities
DP1 are defined by a pair (S,E'),S ~ V \ {I} and E' ~ E, inequalities
DP2 and DP3 are defined by a sequence So ~ Sl ~ ... ~ St ~ V \ {I}
and a subset of arcs E' ~ E which is empty in inequalities DP2. We
refer to the paper by Belenguer & Benavent (1998) for the details.

Let us consider now the separation routines that have been used for
the constraints in the supersparse formulation.

Let {ze : e E E} be the optimal solution of an LP containing the ob­
jective function, non-negativity constraints (7.45) and a subset of other
valid constraints for the supersparse formulation. Let G(z) be the graph
induced by the edges e E E with Ze > 0, plus the depot (vertex 1).

The separation of the odd-cut constraints (7.44) can be done in poly­
nomial time with the algorithm of Padberg & Rao as explained in section
3.1.1.
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4.2.1 Capacity Constraints Separation.
The problem of identifying violated inequalities of type (7.43) seems to
be more difficult. In Belenguer & Benavent (1998a, 1998b) the following
heuristics were used to generate sets of nodes for which (7.43) is checked
for possible violation.

1 Compute the node sets of the connected components of G(z).

2 Find a node set 8 ~ V \ {I} for which f(8) = 2:eEo(S) Ze ­

2d(8)/Q+ I bR(8) I is minimum. This can be done in polyno­
mial time by solving a maximum flow problem on a transformed
graph. If we consider the inequality that results when substituting
in (7.43) rd(8)/Ql by d(8)/Q, then f(8) represents the slack of
this inequality, so f(8) < 0 implies that it is violated by the LP
solution and, therefore, (7.43) is also violated. Obviously, (7.43)
must be checked even if f(8) 2: 0 as it is a stronger inequality. This
procedure is similar to the one due to Harche and Rinaldi (1993)
for the CVRP.

3 Substitute the demand de of every edge e by (1 + p)de, where
o< p < 1, and apply the previous procedure. Ten different values
for p have been used.

4.2.2 Disjoint Path Inequalities Separation.
The identification of Disjoint Path (DP) inequalities is far more com­
plex than that of the previous ones. The method proposed by Belenguer
& Benavent(1998b) is as follows. The separation procedures used for
the capacity and odd-cut constraints generate a number of edge cutsets
whose corresponding node sets are stored in a pool to be used in the sep­
aration of DP inequalities. From this pool, three lists are built: INI, a
list of node sets, and SEQ2 and SEQ3, two lists of node sequences. Each
element of INI, SEQ2 and SEQ3, together with an edge set E', defines a
candidate configuration for an inequality DP1, DP2 or DP3, respectively.
The edge set E' is usually defined as E' = {e E E(V\8) : Ze = O} for the
DP1 inequality and similarly for a DP3 inequality. Given a candidate
configuration for a DP inequality, first the tentative inequality is checked
for violation, and, if it is violated, it is then checked for validity, which
involves the solution of a maximum flow problem.

Once a violated (and valid) DP inequality is found, an attempt is made
to strengthen it in two ways: eliminating some edges of E' and using the
parity requirement to decrease from 2 to 1 the coefficients of Ze for the
remaining edges e E E'. We refer to Belenguer & Benavent(1998b) for
the details.
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4.3. EXACT METHODS BASED ON THE
SPARSE FORMULATION

Belenguer & Benavent(1994) have developed a Branch & Cut code for
the CARP based on the sparse formulation but including also capacity
constraints (7.43) and odd-cut constraints (7.44). Note that any valid
inequality for the supersparse formulation can be converted into a valid
inequality in the sparse formulation by substituting Ze = ~PEI ~.

The algorithm first looks for violated constraints of types (7.43) and
(7.44). The separation routines for the other inequalities (from the sparse
formulation) are called only in those iterations where no violated inequal­
ity of the former types is found.

At any iteration of the cutting plane algorithm, if the LP solution is
integer and represents a feasible solution of the CARP, it is the optimal
solution. Otherwise, the separation routines are called to identify vio­
lated inequalities and, if no one is found, a branching step is executed.
The following branching rule was used: select the edge e wi th greatest
demand among those for which ~ is not integer for some vehicle p; then,
create K new nodes by fixing the variable ~ = 1 for each vehicle j E I.
The possibility of facing an LP solution in which all the ~ variables are
integral but which does not represent a CARP solution (for instance,
because some y~ were fractional) was not contemplated by the code, but
this possibility never occurred in the instances tested.

The algorithm was tested on the set of 24 instances used in Benavent,
Campos, Corberan & Mota (1992) having a number of vehicles less than
5 . From this set, 16 instances were solved to optimality with less than
53 nodes in the Branch & Cut tree. Nevertheless, it was observed that
the instances optimally solved were precisely those for which the lower
bound at the root node was equal to the optimal cost. This lower bound
value was reached at the first stage of the cutting plane algorithm, where
only constraints (7.43) and (7.44) are used. The only use of constraints
from the sparse formulation, therefore, is to encourage integrality in the
LP solutions.

Welz (1994) has implemented a Branch & Bound algorithm for the
CARP based on his formulation. At the root node, he uses a cutting
plane algorithm where violated odd cut and connectivity constraints are
identified and added to the LP. When no violated inequality is found and
the solution is not feasible, an integer solution of the last LP is obtained
by invoking a Branch and Bound procedure. If this does not yield a
feasible solution, he adds more inequalities and tries again. The largest
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instances solved with this approach were: K =2, IVI=27, IEI=82 ; K =3,
IVI=16, IEI=48 and K =4, IVI=12, IEI=50.

4.4. A CUTTING PLANE ALGORITHM FOR
THE CARP BASED ON THE
SUPERSPARSE FORMULATION

Belenguer & Benavent(1998b) developed a cutting plane algorithm for
the CARP that uses all the previous separation routines for constraints
of the supersparse formulation. The lower bound obtained with this al­
gorithm outperforms any other existing lower bounding procedure for
the CARP. Nevertheless, even in the case that the LP solution is inte­
ger, the optimal solution cannot be obtained with this approach without
embedding the cutting plane algorithm into a Branch & Cut scheme.
The optimality of the computed lower bound can be stated only if a
heuristic CARP solution with the same cost is known. Comparing the
lower bound with the best upper bound known, it was found that it was
optimal for 21 out of the 24 above mentioned instances from Benavent et
al. (1992). In this paper 10 more difficult instances were also introduced
each with a number of vehicles greater than 7. For these instances, the
lower bound obtained at the root node with the above described Branch
& Cut algorithm that uses the sparse formulation was on average 4.18%
over the best known upper bound, while the lower bound obtained with
the cutting plane algorithm that uses the supersparse formulation had
an average deviation of 2.31%. On the other hand, the cutting plane
algorithm was also tested on the 23 instances used by Golden, DeArmon
& Baker (1983) and Pearn (1989) (removing 2 of them that presented
inconsistencies) and the lower bound was optimal in 19 of them, with an
average gap over the best upper bound known of 0.33%.

5. OTHER PROBLEMS
Letchford and Eglese (1997) studied an interesting Arc Routing Prob­

lem with Time Windows: The Rural Postman Problem with Deadline
Classes (RPPDC). Given that routing problems with time windows are,
in general, very hard to solve to optimality, some relaxations or special
cases of the general problem have been studied. In this case, customers
are divided into a small number of priority classes, each class having its
own time deadline. The paper describes a realistic situation with ap­
plications to the real world. The authors present a formulation of the
problem, a wide number of valid inequalities and a cutting-plane algo­
rithm useful for solving instances of moderate size.

In more detail, Letchford and Eglese (1997) deal with the problem of
finding a minimum cost route traversing a subset, E R , of the edges of a
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graph where E R is divided into a number of deadline classes R 1 , R 2 , . .. ,

RL each class having its own time deadline: customers in R1 must be
serviced by time Tl, customers in R 2 must be serviced by time T 2 , and
so on. A feasible RPPDC route is regarded as being composed of L
phases. In phase i the vehicle services the edges in R i plus (optionally)
some edges in Ri+1 U ... U R L . In the formulation of the problem, the
introduction of variables zvp defined as 1 if phase p ends at vertex v
and 0 otherwise, allows the global route to be split into in some partial
routes corresponding to the different phases, in a similar way to the case
of individual vehicle routes in the multivehicle problems: for each B,
1 :S B :S L, the vector L:~l(xi+yi) +zi, where xi E IRE represents the
number of times each edge is traversed without servicing and yi E IRE is
the incidence vector of the edges serviced in phase i, represents a solu­
tion of the "quasi-RPP" problem defined on graph G, where the edges in
R1 u ... U RB are required edges and, furthermore, the route must cross
exactly one edge in {(v,O),v E V}.

Hence, some valid inequalities can be obtained in a natural way from
the facet-inducing inequalities for L separate RPP instances. These are
called Strong Cumulative constraints (connectivity, R-odd, K-C, etc.)
by the authors. Other constraints, representing the interaction of differ­
ent phases, are also introduced.

Letchford and Eglese (1997) implement a dual cutting-plane algorithm
in which violated inequalities are identified and added to an initial LP
relaxation as cutting-planes. When no more violated inequalities can be
found, branch-and-bound is invoked to obtain integrality. If the resulting
integer solution is not feasible and violates more known inequalities,
those inequalities are added to the LP and the cutting plane procedure
continues again, followed by branch-and-bound and so on. The test
problems were adapted from the 5 most difficult instances in Corbenin
and Sanchis (1994). For each one of this instances, two deadline versions
were solved, with L = 1 and with L = 2.

6. CONCLUSIONS
In this chapter, we have outlined the LP based methods, cutting plane

and Branch & Cut procedures, that have been implemented for several
Arc Routing Problems (ARP). Special attention have been given to the
inequalities for which a separation procedure have been proposed, as well
as to the procedures themselves. These methods have proved to be very
useful to solve ARPs, just as they are for many other Combinatorial
Optimization Problems (COPs).
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It can be said that they have produced best results, when compared
with other methods, on almost all ARPs to which they have been applied.
Nevertheless, for most of them, only cutting plane algorithms have been
implemented. Although many instances have been solved using such al­
gorithms, cutting plane methods do not guarantee to solve exactly all
the instances, but only to produce a lower bound. This is therefore only
a first step: to obtain good lower bounds assessing the quality of the so­
lutions produced by the many new heuristic approaches for COPs and,
particularly, for ARPs (see Chapter 9 of this book), as well as to give
information about how good our understanding of their associated poly­
hedra is. The following step, the implementation of a complete Branch
& Cut scheme producing optimal or provably good solutions (see JUnger,
Reinelt & Thienel, 1994), remains to be done for most of the ARPs.

The work done so far provides a library of tools that makes it easier
to attack the resolution of more complex ARPs: many classes of valid
inequalities and their corresponding separation procedures are known.
As it has been presented here, many ARPs share some classes of valid
inequalities, maybe with minor differences, so separation algorithms can
be adapted easily. The hope of the authors is that the ideas presented in
this chapter can be used for the resolution of other Arc Routing Prob­
lems.
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1. INTRODUCTION
This chapter examines arc routing problems from the "dual" perspec­

tive of node routing. It first attempts to explain and respond to a ques­
tion from a "typical" engineering and applied mathematics graduate who
was exposed to classical node routing problems such as the transporta­
tion and the traveling salesman problems, and ventured a little into the
vast literature on problems and solutions for the different variants of vehi­
cle routing (node routing) problems. Why shouldn't (or why should) any
arc routing problem be viewed as some version of a node routing prob­
lem, pending an appropriate transformation of the corresponding graph?
The first part of this chapter will examine this question addressing the
issue of when such a transformation is necessary and the complementary
question of when, or for what arc routing problems, from computational
point ·of view, a transformation to node routing is inappropriate. In
addition, the first part will attempt to provide a partial account of the
different transformation schemes proposed over the years for arc routing
problems into node routing setting. For an excellent write-up of exact
solution methodologies for "hard" arc routing problems addressed with­
out transformation to a node routing setting the reader is directed to
chapters in this book by Eglese and Letchford, Benavent, Corberan, and
Sanchis, and Johnson.

However, the second and the main part of the chapter focuses on
providing a state-of-the-art survey of column generation methodology
and its computational promise for solving node routing problems. The
emphasis is on exact solutions to vehicle routing problems with time
windows with and without split deliveries. The motivation stems from
the fact that arc routing problems with time windows are very hard
to model directly without an extensive graph modification (Mullaseril,
1996, Mullaseril and Dror, 1997, Dror, Leung, and Mullaseril, this book)
and require transformation to node routing before an attempt of finding
exact solutions can be made. This motivational aspect will be examined
in more detail in the first part of this chapter.
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2. TRANSFORMATIONS TO NODE
ROUTING: WHY?

We begin this section with the description of what is called the Rural
Postman Problem (RPP) since it encapsulates a number of well known
classical node and arc routing problems. We provide a mathematical
formulation of the capacitated RPP which is amenable to straightfor­
ward modification for a split delivery option. Following the capacitated
RPP model we examine the problem of introducing time windows for
arc delivery into such a model (for motivation see Dror and Leung, 1998,
and Dror, Leung, and Mullaseril, this book). The time window model­
ing problem impels the necessity of the transformation from arc routing
graph description of the problem into the node routing problem setting
which leads into the section describing problem transformations.

2.1. THE CAPACITATED RURAL POSTMAN
PROBLEM

Given a connected graph G = (N, E U A), with N as the set of nodes
(vertices), E set of edges (E ~ N x N) and A a set of arcs (A ~ N x N),
the Rural Postman Problem (RPP) is the problem of finding a minimum
cost traversal of a given subset of edges and arcs in R ~ E U A. The
set R is usually referred to as the required edges and arcs. If the set of
edges E = 0, the corresponding problem is sometimes referred to as the
directed RPP (or undirected RPP in case A = 0).

We note from the outset that the (RPP) is strongly NP-hard even
for completely directed and completely undirected graphs (see Lenstra
and Rinnooy Kan, 1976, Garey and Johnson, 1979, and Papadimitriou,
1976). For the additional graph theory terminology and notation the
reader is directed to Fleischner (this book).

The Capacitated Rural Postman Problem, usually denoted as the Ca­
pacitated Arc Routing problem or in short as CARP, has in addition to
traversal cost for each edge and arc, a positive demand value associated
with each edge and arc in the subset R. Subsequently, the CARP is the
problem of finding a minimum cost cover of a given subset R by a set
of traversal circuits with one common node (the depot) such that the
total demand of edges from R serviced (delivered) in each circuit does
not exceed some value Q > 0 (vehicle capacity). Note that in the case
that vehicle capacity Q is less than the total demand on the edges of R,
the CARP solution will require some integer number (> 1) of traversal
circuits to service the edges in R, versus a single circuit (vehicle) solution
outcome for the RPP. Disregarding at this point the issue of the timing
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of traversals for each edge in R, the formulation of the CARP for the
graph G taken from Dror and Leung (1998) is presented below.

2.2. MATHEMATICAL FORMULATION OF
THE CARP

Let
% = the demand along edge (arc) (i,j) E R,
Qv = the capacity of traversal circuit (trip) v,
Gij = the cost of an edge (arc) (i,j) E E (A) . (Note that initially

Gij 2 O,V(i,j) E EUA),
xYj = the number of times edge (arc) (i,j) E E U A is traversed

in trip v,
V = the upper bound on the number of traversal circuits,

v. = { 1 if the edge or arc Ci, j) E R is covered in trip v,
YtJ 0 otherwise.
Node 0 is designated as the depot.

In capacitated edge (arc) routing problems we have basically two costs
(or more in case of a heterogeneous vehicle fleet) for traversing each
edge in R. The unavoidable cost is that of "deadheading" (nondelivery)
traversal. It has to be accounted for in any solution to the CARP and
it is some constant for traversing all the edges and arcs in R, and does
not have any role in solving the CARP if split edge or arc deliveries are
not allowed. The Gij, as denoted above, account only for the incremental
cost (the additional delivery service cost) of traversing the edge (arc)
(i,j).

(CARP) :
v

min L L CijXYj

(i,j)EE v=l

subject to L xki - L xYk = 0, Vi E N, v = 1,2, ... ,V,
kEN kEN

V

Lyij = 1,V(i,j) E R,
v=l

L %yij :; Qv,v = 1,'" V,
(i,j)ER

xYj 2 Yij ,V(i,j) E R, v = 1,2, ... , V,

{

VS ~ R,
M L xYj 2 L xjk> 0 ¢ N[S],

iltN[S],jEN[S] (j,k)ES V = 1, ... ,V,
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yij E {O, I},V(i,j) E R,v = 1, ,V,

xYj E Z+,V(i,j) E E,v = 1, ,V,

where !vI is a large constant greater than or equal to sum of traversals
of arcs and edges in any given S ~ R, and N[S] is the set of nodes
incident to the arc set S. In this formulation, the index v denotes a trip,
and V is the maximum number of trips allowed. We come back to this
formulation later when we discuss the column generation approach for
routing problems.

The objective function represents the total distance covered by all
traversal circuits. Note that edges are allowed to be traversed an integer
number of times (that is, more than once). The first set of constraints
are the common 'flow conservation' constraints for network-flow formu­
lations. The second set of constraints require that at least one traversal
is made for each of the edges in R. The third set of constraints are the
capacity constraints. The next set of constraints require that the traver­
sal circuit v covers the edge (i, j) E R if it delivers its demand. The fifth
set of constraints are subtour-elimination constraints ensuring each trip
is connected to the depot. Note that this formulation of the CARP is
different and more direct than the one given in Golden and Wong (1981)
with respect to subtour elimination constraints and the integrality re­
quirement on xYj variables.

In the next subsection, we introduce the issue of time windows and
their relation to the CARP solution.

2.2.1 Time Window Constraints for Arc Routing.

In this section, we examine time-window constraints for the CARP and
point out the difficulty of formulating the mathematical linear integer
programming model for CARP with time windows, which turns out to
be a much more difficult task than modeling its node-routing (VRP)
counterpart.

Associate with each edge (arc) e ERa time window rae, bel within
which delivery must be completed, and a positive duration te for the
traversal of edge or arc e at the delivery speed. In addition, with each
arc or edge in R, we associate a delivery starting time and completion
time, indicating the times when the vehicle starts the delivery traversal
of the edge (arc) and completes the delivery (service) traversal of the
edge (arc) respectively.
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In the vehicle routing literature for node-routing problems with time
windows, the original "physical" network can be augmented by adding
an arc (i,j), with its edge-length equal to the 'shortest-path' distance,
whenever there is a path from i to j in the original network. With
this augmented network, we can then make the assumption that a node
is visited no more than once, and the time-window restrictions can be
modeled by the constraints:

xij(ti + tij - tj) :S 0, \:I(i,j) E AU E, \:Iv,

ai :S ti :S bi , \:Ii E N, \:Iv,

where ti is a decision variable representing the time when vehicle v ar­
rives to deliver to node i, [ai, bi] is the allowed time window for node i
and tij is the traversal time for edge (arc) (i,j) (see Desrosiers, et al.,
1995). Note that in this formulation, waiting is allowed at customer
nodes.

It is important to note that in an arc routing problems such as CARP,
each arc or edge e E R is serviced exactly once but can be traversed an
additional number of times in a deadheading mode if so required by the
minimum-distance objective. Hence, we cannot associate a unique start­
ing and completion time for an edge (arc) e E E U A. Moreover, it is
not possible to augment the network in a manner analogous to node­
routing problems to get an equivalent formulation where edges and arcs
(or nodes) are visited only once. Thus, the addition of time window re­
quirements for the edges (arcs) in R precludes a direct edge/arc routing
integer linear programming model formulation for the CRPP or even for
the RPP problem. This compels the modeler to seek alternative mod­
eling approaches and to express arc routing settings with time windows
by using graph transformations which necessarily cast the arc routing
problems in terms of their node routing counterparts.

2.3. WHEN TO TRANSFORM TO NODE
ROUTING

The theory of complexity of combinatorial problems such as CARP
classifies problems as 'hard' (not known to be solvable in polynomial
time complexity) or 'easy' for which known polynomial time procedures
exist with guarantee of reaching an optimal solution. The majority of
problems examined in this book belongs to so called NP-class (see chap­
ter in this book by Drot, and the book by Garey and Johnson, 1979).
One of the main results laid in the foundations for the theory of NP­
completeness paper by Cook (1971), was in proving that every problem
in NP-class of decision problems can be polynomially reduced to the
"satisfiability" problem. Furthermore, this property of reducibility for
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the satisfiability problem is shared by entire equivalence class of prob­
lems called NP-complete problems. One of the NP-complete problems
is stated as a decision version of the traveling salesman problem (TSP).
Thus, in principle, one can transform in polynomial time any arc rout­
ing problem (or for that matter any problem in NP) to a TSP problem
version (instance). However, this makes computational sense only for a
selective small subset of problems. The next section in this chapter de­
scribes a number of direct transformations for arc routing problems into
instances of node routing problems. It is perhaps quite transparent that
some arc routing problems ought not to be transformed to node routing
setting since, as Johnson and Papadimitriou (1985) point out, one might
be transforming "easy" problems to a very "hard" problem - the TSP.

For instance, given the classical Chinese Postman Problem (CPP) on
an undirected graph, it is well known that an optimal solution to the
problem can be constructed in time complexity dominated by the com­
plexity of the corresponding minimum weight matching problem for the
odd degree nodes of this graph. Since an efficient (G(lNI 3 )) algorithm
exists for the corresponding matching problem (see Derigs, this book),
there is clearly no computational advantage in transforming the undi­
rected CPP to a node routing problem setting. Identical argument can
be used for the directed CPP, since this problem can also be solved in
its arc routing version by polynomial time algorithms dominated by the
complexity of the corresponding transportation problem. It is perhaps
not surprising that arc routing problems are considered "easier" than
most node routing problems. This intuitive view might have its roots in
the fact that "early" arc routing problems such as the Chinese Postman
Problem (CPP) are solvable in polynomial time asking to prescribe an
arc (or edge) 'covering' solution, whereas node routing is more of a 'arc
selection and partition' process.

However, for arc routing problems which are NP-hard, it might be of
computational interest to examine solution schemes in their transformed
node routing image. As indicated above, for the arc routing problems
with time windows, this is absolutely essential. Moreover for some arc
routing problems, like the Mixed RPP and the Stacker Crane Problem,
the only known exact method, uses a transformation into node routing
problems.

3. ARC ROUTING TRANSFORMATIONS:
HO\V

This section examines a number of well known and more recent graph
transformations which accept a routing problem statement expressed in
terms of arc/edge traversals and converts it to a node routing problem
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on a related graph. The node routing solution on the modified "dual"
graph is equivalent to the arc/edge traversal solution on the original
graph. Clearly, one can also transform a node routing problem state­
ment on a given graph into a arc/edge traversal problem statement on
an appropriately modified graph where the arc/edge traversal solution
would correspond to a node routing solution on the original graph. How­
ever, this transformation of a routing problem is almost never executed
in practice for obvious computational reasons since it results in many
disconnected arc routing subgraphs connected by arcs and edges which
need not be traversed (i.e., the result is usually a many component RPP).

3.1. TRANSFORMATIONS OF
UNCAPACITATED ARC ROUTING
PROBLEMS

Laporte (1997) describes several classes of arc routing problems for
which he provides a transformation into node routing problems and pro­
ceeds to solve these problems as TSPs. The transformation described
by Laporte is a two phase procedure applied uniformly to the Mixed
Chinese Postman Problem (MCPP), the Windy Chinese Postman Prob­
lem (WCPP), the Stacker Crane Problem (SCP), and the variations of
Undirected, Directed, Mixed, and Windy Rural Postman Problems. In
phase 1 of the transformation procedure, the problems are transformed
to what is called the Generalized TSP (GTSP), which is defined below.
In the second phase, the corresponding GTSPs are transformed into TSP
problems, completing the transformation to a "classical" TSP instance.
Below we outline in some detail Laporte's graph transformations.

Given a graph G = (N, A U E), where N is a finite set of nodes, A
(A c N x N) is a set of arcs without self cycles, and E is a set of edges
without self loops and a "length" function defined on AU E. The trans­
formation can be described as follows: replace each edge eij E E by two
arcs aij and aji. The length of the corresponding a's is the same as that
of e. The new graph G' = (N, A') is a directed graph (directed "ver­
sion" of G). In the next step, a complete (directed) graph H = (V, B)
is constructed with two directed arcs between every pair of nodes. The
set of nodes V consists of one node for each arc in the directed graph
G' obtained earlier. Thus, an edge i E E is represented by two nOlk
set Ni in V and an arc j E A by only one node set Nj (a singleton)
in V. Denote by K the total number of such node sets in V. For each
arc a E B, determine its length c(a) using the shortest path distance
obtained on the graph G'. For completeness, note that in the case when
length of the shortest path between two nodes i and j in G' is 00, then
there is no arc (i, j) in B.
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Given graph H = (V = U~lNi,B), the so called Generalized Travel­
ing Salesman Problem (GTSP) consists of constructing a minimal length
circuit on H which contains exactly one node from each subset Ni, i =
1, ... ,K. Laporte (1997) continues this transformation process by im­
plementing the rules described in Noon and Bean (1993) which transform
a GTSP problem into a classical (directed) TSP instance.

The significance of Laporte's work lies in the computational part of
his paper. Some problems, like the Mixed RPP, and the SCP, in their
arc routing version have not been solved to proven optimality. Thus,
the transformations to node routing and their subsequent solutions are
encouraging since they lead to optimal solutions for the corresponding
original arc routing problems. For the Mixed CPP, the more recent re­
sults on the arc routing version by Nobert and Picard (1996) outperform
the results obtained by Laporte (1997) on the transformed node routing
problems. For the Directed RPPs the results are inconclusive since the
reported exact solutions of Christofides et al. (1986) are more than fif­
teen years old.

At this point it is perhaps appropriate to remark that the undirected
arc routing problems require an additional phase in their transformation
to node routing. Specifically, each edge creates a pair of nodes in the
transformed graph only one of which has to be visited. Thus, in that
case there is the need of transforming a GTSP instance before solving
it into a TSP instance. In the directed arc routing case the transformed
problem is already a TSP.

We also note that recently there has been a study of the Generalized
Vehicle Routing Problem (GVRP), which is the problem of designing op­
timal capacitated delivery routes starting from a depot to a number of
mutually exclusive and exhaustive clusters of customers, visiting exactly
one customer in each cluster. This node routing problem was trans­
formed into a capacitated arc routing problem (Ghiani and Improta,
2000) which then was solved using a heuristic methodology designed to
solve arc routing problems (see Hertz and Mittaz, this book).

3.2. TRANSFORMATIONS OF
CAPACITATED ARC ROUTING
PROBLEMS

A node routing problem can be transformed into an arc routing prob­
lem simply by replacing each node i E N that requires delivery (service)
of qi with an edge. The two nodes of such edge are adjacent to all the
other nodes the original node i has been adjacent to. On the other hand,



286 ARC ROUTING

the opposite direction transformation is a little more involved. For the
capacitated arc routing problem (CARP), Pearn et al. (1987) (see also
Assad and Golden, 1995) describe the following transformation into an
equivalent vehicle routing problem (node routing). As in subsection 2.2,
consider a directed graph G = (N, A), with node set N and an arc set
A together with a "distance" or "cost" value for each arc (i,j) E A de­
noted by Cij and a positive value Q (Q = vehicle capacity). Also with
each such arc (i,j) E A a "demand" value qij > 0 (delivery or collection
as the case may be) is specified. Designate node 0,0 E N as the depot.
The CARP problem requires finding a set of circuits on G with node 0
in common, covering all the arcs in A at minimum cost and such that
the total demand over the arcs in each circuit does not exceed the value
Q.

Pearn et al. (1987) transformation proceeds as follows: First, replace
each arc (i,j) E A with three nodes: s(ij),m(ij), and S(ji)' The nodes
are referred to as near-side, middle, and far-side nodes respectively. Let
N' = {O} U {S(ij),m(ij),s(ji)I(i,j) E A} be a set of nodes of the new
graph G' for the corresponding instance of the vehicle routing problem.
Denote by d( i, j) the least cost path between nodes i and j in the original
graph G. In order to determine the cost of the arcs (directly going be­
tween two nodes) in N' define the following distance function d : N' x N':

= {
(1/4)(cij + Ckl) + d(i, k) V(i,j) i (k, l)
d(S(ij),S(kl») = 0 if (i,j) = (k,l)

(1/4)cij+d(p,i), VpEN'

d(m(ij) , S(ji») = (1/4)Cij

and the distance from and to any m(ij) node to nodes other than its
far-side and near-side nodes is set to 00.

The demands at the N' nodes are set as follows: q(S(ij») = q(m(ij») =
q(S(ji») = (1/3)qij. The depot (node 0) has no demand associated with it.

Since in the classical vehicle routing problem each customer (a node
in G') can only be visited by a single vehicle (no split deliveries), this
transformation guarantees that the nodes s(ij), m(ij), S(ji) corresponding
to the same arc in the original graph G appear consecutively on the same
vehicle route for the VRP solution. Since converting a single arc into
three nodes adds only two arc segments, one needs to add (1/4)th of the
original arc distance when entering near-side node (S(ij»), (1/4)th of the
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original arc distance when leaving the far-side node (S (ji»)' and half of
the arc distance when going from S(ij) to S(ji) through m(ij)'

This transformation by Pearn et al.(1987) converts the CARP with IAI
arcs into a VRP with 31AI +1 nodes, thus more than tripling the problem
size relative to the arc routing problem version. Since the VRP exact
solution methodologies based on implicit enumeration, such as branch
and bound techniques, are very sensitive to problem size this transfor­
mation's tripling size effect might have implications on the solvability
of a problem. As stated by Eiselt et al. (1995b), "the interest of these
transformations is mostly formal and their algorithmic value has yet to
be demonstrated" .

3.3. TRANSFORMATION OF CARP WITH
TIME WINDOWS TO VRPTW

Given any instance of a capacitated arc routing problem on a graph
G = (N, A UE), with time windows only for a subset of required arcs R
in A (i.e., a special case of CARP with time windows), one can formu­
late an equivalent directed vehicle routing problem with time windows
(VRPTW) by performing a graph transformation originated by Mul­
laseril (1996), reproduced in Mullaseril and Dror (1997), and similar
to the transformation described independently in Laporte (1997). This
transformation is described below.

Construct a complete graph G' = (N', A') whose node-set N' consists
of nodes which correspond to the subset of required arcs a E R ~ A
(IN'I = IRI). Each arc a E A has an incident node in N at the tail of the
arc and an incident node in N at head of the arc. Let the length of an arc
(i,j) E A' be the shortest path (without delivery) distance between the
head node of arc ei E A and the tail node of arc ej E A denoted by Gij,

where both arc ei and e j are required arcs (i.e., are members of R ~ A)
each with its corresponding node in N'. The demand and time window
associated with any node i E N' will be the same as its "originating"
arc e E R. Since each arc e E R has a length c(e), each node i E N'
has a "length" (a cost) corresponding to the length of the arc. This
cost will not be used in the subsequent mathematical formulation for
the transformed problem, however this cost is used to calculate tij, the
time required by any trip to travel from node i to any node j in N' in
the following manner:

Let SL be the "service rate" (the time required to deliver service to one
unit of arc length), and where Gi is the cost (length) associated with
node i E N', and Gij is the length of the shortest path from i to j as
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described earlier. Thus the new graph G' has IRI nodes and IR(IRI-1)1
arcs. Note that we assume a homogeneous delivery system of identical
vehicle speeds.

A valid formulation for the VRPTW on the graph G' = (N' ,A'), based
on the formulations from Dror and Trudeau (1990), and Desrosiers et al.
(1995), is presented below. The additional parameters and variables for
this formulation are:

tij = the non-negative duration of a trip from node i to node j.
qi = the daily demand at node i.
xij = 1 if the vehicle v travels along arc (i, j) , and
xij = °otherwise.
yi = 1 indicates that vehicle v delivers the demand at node i, and
yi = °indicates that it does not.
ti = the starting time of delivery to node i by trip v.
S = the set of simple cycles on the set N which include the depot

node.
V = denotes the number of vehicles.
Qv = denotes the capacity of vehicle v.

If the objective is to minimize the total distance traveled by all trips,
the VRPTW can be represented by the following mathematical formu­
lation:

Minimize

subject to:

v
L LCijxij

(i,j)EA'v=l

L xki - L xik = 0, 'r/ i E N ' , V = 1, ... ,V,
(k,i)EA' (i,k)EA'

v
Lyi = 1, 'r/ i E N '
v=l

L qiyi::; Qv, v = 1, ... ,V,
iEN'

yi - L xij ::; 0, i E N ' , V = 1, ... ,V,
(i,j)EA'

(ti + tij - tj)xij ::; 0, 'r/ (i,j) E A', v = 1, ... ,V,

ai::; ti::; bi , 'r/ i E N ' , V = 1, . . . ,V.

xij E {O,l},V (i,j) E A', v = 1'00" V,

yi E {0,1},'r/ (i,j) E A', v = 1, ... ,V,
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This formulation is exactly the node routing transformed representation
of the formulation for the CARP discussed in section 2.2, with includes
the necessary addition of the subsection on time windows 2.2.1, and an
optimal solution to this problem formulation generates an optimal solu­
tion which needs to be recast in the arc routing (CARPTW) terms.

Observe that in the transformed graph G' , we have IRI nodes as com­
pared to 31 VI + 1 nodes in the transformation suggested by Pearn et
al. (1987). Also note that this transformation is bi-directional unlike
the transformation in Pearn et al.(1987). The state-of-the-art VRPTW
algorithms can solve about 100 node problems (Desrochers, et al. 1992).
Hence by just executing this transformation, one may now solve op­
timally CARPTW problems of 100 required arcs using the techniques
developed by Desrosiers et al. (1995).

3.4. SPLIT DELIVERY ARC ROUTING WITH
TIME WINDOWS

A feed distribution problem at a large cattle yard (over 100,000 head
of cattle) in Yuma, Arizona, (see Dror and Leung, 1998, and Dror, Le­
ung, and Mullaseril, this book) has motivated an increased interest in arc
routing, both in its real-life realizations such as in the case of large cattle
yards, and for the related graph theoretical questions. A main character­
istic of such arc routing setting in a cattle yard is that the corresponding
combinatorial optimization problem is best represented by a capacitated
rural postman problem with time windows and split deliveries model.
The previous section describes a transformation of a CARPTW problem
instance to a VRPTW problem instance without split delivery, and the
model "rewrite" required to incorporate the split delivery feature into
the corresponding VRPTW model is minor. The formulation has been
"borrowed" from the split delivery VRP formulation described in Dror
and Trudeau (1990), and the required adjustment is simply the relax­
ation of the binary requirement on the yi variables (denoting the fraction
of demand at node i delivered by vehicle v which is set to 0 or 1 possible
values) and its replacement with

o~ yi ~ 1, \i(i,j) E A', v = 1, ... ,V,

Even though the mathematical model representation of the split de­
livery VRPTW is very similar to the non-split 0-1 integer programming
model, and the fact that both problems are hard (NP-hard in the
strong sense), the sense of applied combinatorial optimization profes­
sionals community working on exact solutions for such routing problems
is that the split delivery VRPTW (or even just the split delivery VRP)
is "harder" than its non-split counterpart. This is specially apparent
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in the case of continuous split (versus discrete split) and was computa­
tionally demonstrated by Dror et al. (1994). As there is an important
real-life motivation for solving split delivery capacitated arc routing with
time windows problems, in the second part of this chapter we present a
detailed examination of a column generation approach for this problem
since presently this seems to be the most promising solution method­
ology for very hard and important routing problems. We begin with a
column generation survey for the non-split node delivery problems first.

As mentioned earlier, the focus of this chapter is on exact solution
procedures for node routing problems based on column generation so­
lution methodology because it has been demonstrated that transforma­
tions from arc routing to node routing settings are efficient (maintain
the problem size) and in some cases absolutely necessary (e.g., problems
with time windows). Thus, all the remaining sections of this chapter are
about solving node routing problems.

4. COLUMN GENERATION FOR ROUTING
PROBLEMS WITH NON-SPLIT
DELIVERY

vVe start this section with a short introduction to the familiar re­
vised simplex approach for solving linear programming problems. vVe
follow with an overview of set covering in the context of vehicle routing,
and column generation. Then the shortest path problem with resource
constraints, which is central in the scheme of solution approach based
on column generation, is examined in some detail based on the work
of Desrochers (1988) and Desrochers and Soumis (1988). This shortest
path problem with resource constraints subsection is also very important
for the next section where we examine the column generation solution
approach for solving the Split Delivery Vehicle Routing Problem with
Time Windows (SDVRPTW) based on the work of Mullaseril and Dror
(1997). This is followed with a summary of a more recent work on the
shortest path problem by Gueguen, et al. (1998), where a modified algo­
rithm is proposed and promising computational results for the VRPTW
are reported.

4.1. REVISED SIMPLEX: CHVATAL'S
INTRODUCTION TO COLUMN
GENERATION

In order to examine column generation solution methodology for ve­
hicle routing problems it is perhaps illuminating to start with a review
of the revised simplex algorithm for solving linear programs based on a
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very elegant exposition of this topic by V. Chvatal in his prize winning
1983 book "Linear programming".
Given a linear program:

Ma..'Cimize z = cx

Ax=b

x2:0

where A is an m x n matrix of reals, C is the cost vector 1 x n, b is the
r.h.s. vector m x 1, and x is the (unknown or decision variables) solution
vector n x 1.

Denoting the nonsingular square basic matrix m x m by AB , i1,~,

inverse by AR
I , and the m x (n - m) nonbasic matrix in the linear

program above by AN , a solution vector XB is obtained

XB = ARIb - AR
IANxN·

where XN is the vector of non-basic variables.

Substituting for XB in the objective function of the linear program

Z = cB(ARIb - AR
IANxN) + CNXN = cBARIb + (CN - cBARI AN)xN.

and ARIb is the vector xB specifying the current values of the basic
variables.

As Chvatal explains, in the revised simplex method, the vector CN -­
cBAR

IAN is computed in two steps: first the m x 1 vector y = cBAR
I is

computed by solving the linear system yAB = CB followed by the calcu­
1ation of the vector (CN - YAN). The important observation for column
generation is that the components of the vector (CN - YAN) may be cal­
culated one by one by identifying specific columns of the matrix AN, For
instance, if a nonbasic variable Xj corresponds to a nonbasic cost coeffi­
cient Cj and a column aj of the nonbasic matrix AN, then its component
in CN - YAN corresponds to Cj - yaj' Thus, any nonbasic variable x j
for which Cj - yaj > 0 in maximization problem will improve the current
objective function value z (corresponding to the current basic solution
xB) by entering the basis. Clearly, in a minimization problem we would
be searching for a nonbasic variable Xj such that Cj - yaj < O.

The determination of the basic variable leaving the basis is obtainerl
by solving, for the vector d standing for the column of ARIaj of the en-

tering variable, another system d = ARIaj and finding the largest t such
that xB- td 2: O. If no such t exists, then the problem is unbounded. If
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the problem is bounded, then at least one component of xB- td is zero
and its corresponding variable is leaving the basis.

Optimality is determined when there is no longer a column aj of AN
such that Cj - yaj > 0. In column generation terminology, the subprob­
lem of generating an "interesting" column (entering column) is defined
by the problem of maximizing the value (Cj - yaj) , subject to column aj
being a member (nonbasic) of the matrix AN, and the cost of the col­
umn equal to Cj' If, for the minimization problem a solution (a column in
AN) is found such that Cj -yaj < 0, then we update our basis and repeat.

The next subsection starts with a short description of set covering
problem which is a central concept for thinking about solving combi­
natorial optimization problems such as capacitated routing problems oy
generating and substituting partial solutions (corresponding to non-basic
columns in AN) which cover (deliver to) all the nodes (customers) of a
given problem instance.

4.2. SET COVERING, VEHICLE ROUTING,
AND COLUMN GENERATION

In general, Set Covering Problem (SCP) can be expressed as follows:
Given a (nonempty) finite set of elements 5 and a collection of subsets
of 5, say C = {nlCi ~ 5 Vi E I} and a real "cost" Ci, i E I, find a
subset I' ~ I such the LiE!' Ciis minimized and 5 ~ UiE!'Ci , On the
other hand, the Set Partition Problem (SPP) for 5 seeks to minimize
LiE!" Ci for a subset 1" ~ I such that 5 = UiE!"Ci, and such that
Ci n Cj = 0, i -# j, i,j E 1".

A set covering approach (sometimes referred to in the literature a5
set partitioning) for the vehicle routing problem with time windows has
been proposed as far back as 1964 by Balinski and Quandt.

The approach by Balinski and Quandt is based on the premise of se­
lecting "good" routes from a given (implicit or explicit) large set of fea­
sible routes. Following the notation and terminology from Desrochers,
et al. (1992) for the VRPTW, the set covering vehicle routing problem
representation on a graph G = (N, A) can be stated as follows:

min LCrxr
rE'R

Lbirxr 2 1,i EN\ {O}
rER

(8.1)

(8.2)
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X r E{0,1},1'ER (8.3)

The set R denotes all the feasible routes for the VRPTW. The constants
(indicators) Dir characterize by a value 1 a route r E R which visits cus­
tomer i E N \ {O}, and Dir takes the value 0 if route r does not visit
customer i. The cost of the route r is denoted by Cr and is calculated as
the sum of the costs of the arcs of this route. N is the set of customer
nodes including the depot node (node 0).

The columns in the formulation above (vectors Dr, r E R of dimension
(INI - 1) x 1) correspond to feasible routes and determine the decision
variables for the problem. Clearly, for any reasonable size problem, the
total number of columns representing all possible feasible routes can be
extremely large (and exponential in the problem's size expressed by the
number of customers). Since the above set covering problem is stated as
a 0/1 linear programming problem with a very large number of columns,
this problem presentation is addressed (solved) only in some trivially
small cases. In any practical context this problem is first examined in its
LP relaxed version by the revised simplex solution methodology based on
column generation. The feasible columns are added usually one at a time
(and more than one at a time in some implementations of the column
generation scheme) by solving an optimization subproblem which both
checks the optimality of the LP relaxation for the set covering problem
and generates a new "better" feasible route if an improvement is possi­
ble. "As indicated by Desrochers, et al. (1992), (see also Haouari et al.
1991) the solution to the LP relaxation of the above VRPTW problem
formulation serves as a lower bound in a branch and bound scheme for
the integer program. In general, this LP relaxation solution generates
an excellent lower bound as demonstrated by the computational results
of Desrochers et al. (1992).

Note that in the case where the cost/distance matrix defined on the
graph G satisfies the triangle inequality, equation (12) implies the same
whether it is written as equality (partition), or ~ (covering). Since it
is always possible to convert a general distance matrix to a matrix with
triangle inequality by solving an all pairs shortest path problem, the as­
sumption of triangle inequality allows for replacing equality in (12) with
"~" and it does not have an effect on the partition solution as long as
the demands at each node are strictly positive.

Unquestionably, a key to a successful column generation scheme for
problems such as VRPTW lies in the ability to solve quickly the sub­
problem - the determination of the existence of an entering column (a
column in R which improves on the current basic solution to the SCP).
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This subproblem for the VRPTW together with its solution methodology
is presented next.

4.3. THE SHORTEST PATH SUBPROBLEM
First, one has to establish what is the "right" subproblem which has

to be solved in order to test the existence of an entering column which
improves on the current basic solution. In principle, we are solving the
minimization problem described earlier (minimize (Cj - yaj) subject to
the constraint that the vector aj represents a nonbasic column of the
corresponding set covering problem). I.e., aj corresponds to a circuit in
graph G whose nodes' demands do not exceed the capacity of the vehicle.
This leads us to the shortest path problem representation for the "right"
subproblem (the" depot" node is represented by "origin" and "destina­
tion" pair of nodes converting a circuit problem into a path problem).
'When the visits to the nodes in G are constrained by time windows, the
corresponding subproblem becomes an appropriate shortest path with
time windows problem.

The shortest path problem with time windows (SPPTW) as a subprob­
lem in a VRPTW column generation solution scheme has been described
in a number of papers (see Desrosiers et al. 1995, for an extensive review).
Perhaps the most successful examination of this problem has been first
presented by Martin Desrochers in his 1988 working paper at GERAD,
Montreal. This early work of M. Desrochers has been considered a fun­
damental contribution and the basis for computational implementation
in real-life commercial software for optimization problems such as crew
scheduling, flight scheduling, staffing problems, school busing, handicap
pickup and delivery, and more. The review of the shortest path with re­
source constraints problem in this chapter is based on the original work
of Desrochers (1988), and on the more recent modifications described by
Gueguen et al. (1998).

The SPPTW is viewed by Desrochers (1988) in a general setting which
includes time window restrictions on the node visits as a special case.
The more general approach to this problem views time as a resource and
a time window as availability restriction of this resource at a given node.
The capacity of the vehicle is clearly another resource. The generaliza­
tion enables the consideration of yet other resources in the same ana­
lytical framework of searching for a path which satisfies resource avail­
ability. This also explains why the problem is often referred to as the
Shortest Path with Resources Constraints Problem (SPRCP). In a com­
putational implementation such as described in Desrochers (1992), and
in many papers originated with the Montreal research center GERAD,
the SPRCP problem is solved by a pseudo-polynomial solution proce-
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dure. (The research on this topic developed over the years in GERAD
is referred to here as the DDDSS results after Desrochers, Desrosiers,
Dumas, Solomon, and Soumis, to avoid excessive listing of references ­
see also the excellent survey by Desrosiers et al. 1995.)

4.4. AN ALGORITHM FOR THE SHORTEST
PATH WITH RESOURCE
CONSTRAINTS

Let G = (N, A) be a directed graph with N as the set of nodes includ­
ing a single source node p and a single sink node q (the nodes p and q
are also referred to as origin and destination respectively). The arc set is
denoted by A (A ~ N x N), and each arc (i,j) E A has a cost Cij which
is a real number (positive or negative). A path in G always starts at node
p and ends at node q and is defined as a sequence of nodes p, iI, , " , iK, q
such that for each consecutive nodes in the sequence (ik' ik+l) there is
an arc in A. The cost of a path is the sum of the costs of the arcs in the
path. The paths need not be simple (or elementary) which implies that
some nodes in the path can occur more than once.

Assume that there are £ resource types (finite positive integer) and
each node requires some nonnegative amount of each resource. In addi­
tion, each of the nodes i E N has for each of the resources 1E £ a "feasi­
bility" window [aLb~] (such as time window, quantity window, etc.). I.e.,
a resource requirement ti at node i satisfies ai ::; ti ::; bi for feasibility. In
addition, with each arc (i, j) E A along the path there is a nonnegative
resource consumption tL,l E £ (such as time, fuel, etc.). The resources
in £ are of two types: (1) "time-like" resources - £', and (2) "delivery
quantity" resources - £ \ £'. The feasibility window taL b~] at node i for
resource 1 E £' implies that a path with resource consumption greater
than bi when reaching the node i is infeasible. This feasibility restriction
has to be satisfied for each of the resources in £'. A path reaching node
i which consumed ::; a~ of resource 1 E L', can "waste" (or wait) the
difference by adjusting its consumption and is considered feasible. The
resources (in £'), such as time, are set to zero at node p (the origin).
I.e., t1 = 0,1 E £' ~ £. The resource levels for resources in L' at node i

along a feasible path are computed as d = t~ + d .;,1 E £',
'k 'k-l 'k-l,'k

However, in this problem setting, for resources 1E £ \£', the opposite
is true. The resource levels for 1 E £ \ £' at node p are set to some
"capacity" value Ql, and the levels at node i along a feasible path are
computed as d = t~ - t~ i, 1E £ \ £'. In this case, a path reaching

'k k-l k-l> k

node i with resource level greater than b~ is considered feasible, but if
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the resource level is below ai, this path is infeasible.

Path feasibility requires that the resource levels for each resource be
within their node window at each node in the path or below (above) for
the appropriate resource types. These resource feasibility requirements
are multi-dimensional generalizations of time window and delivery con­
straints in vehicle routing.

An arc (i, j) E A is infeasible if it is never possible to visit node j after
node i while respecting the feasibility requirements of both nodes i and
j. The graph G can be preprocessed with this respect and all infeasible
arcs excluded from A. This results in that for all arcs (i, j) E A, the
following conditions (constraints) are satisfied: a~ + tL ::; bj, l E L', and

I _ tl > ILL \ L'a i ij _ aj , E .

In summary, the Shortest Path with Resource Constraints Problem
(SPRCP) is defined as follows: find a minimal cost feasible path in G
from node p to node q. Since a number of NP-hard problems, such as
multi-dimensional knapsack problem and resource constrained project
scheduling (Desrochers, 1988, Dror, 1994), can be formulated as a spe­
cial case of the SPRCP, the SPRCP is clearly NP-hard in the strong
sense.

In order to present a dynamic programming approach for solving the
SPRCP we introduce a definition of states. With each path X p ' from
the origin node p to node j associate a state vector (tj, t], ... ,tf) cor­
responding to the resource levels at node j and a cost C(tj, t], ... ,tr)
as a function of the resource levels vector. We restrict the discussion to
feasible paths only, thus the state vector (tj, t], .. . ,tr) describes feasible
resource levels. For simplicity, let the label at node j be described by
(tj,t], ... ,tr,Cj ) and denoted by 7j.

A transition between two feasible states Ti and 7j exists if

(1) There is an arc (i, j) E A, and

(2) tI. < bI. l E L' and tI. > a l. l E L \ L' (since l > tl + t l . l E L' tI. <
J - J ' , J - J' J - t tJ' , J -

t~ - t~j' l E L \ L').

Definition : Let X: and X;j be two distinct paths from p to j with

labels 71# and 7j* respectively. We say that xt; dominates X;j if and

only if C# < C* l# < tI.* l E L' l# > t I* l E L \ L' and T# ..J.. T*
J- J'J -J' 'J -J' 'J -r J'
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For resource l E L \ L', we can rewrite the resource level as t? = -t~
and then drop the "'" notation so we can use only the inequality ~ for
determining non-dominance between labels for the same node i. This
will enable a more "uniform" comparison as stated below.

The dominance relation, defined as vector comparison, determines
that a path X pj and its label Tj are non-dominated if and only if X pj

is the least cost path reaching node j with a state value less than or
equal to (tj, t], ... ,tf). Clearly, it is sufficient to restrict our search to
non-dominated paths. In such a search, we need only to consider exten­
sions of non-dominated paths. The dynamic programming recurrence
equations for the SPRCP are as follows:

C(O, ,0) = 0 for the source p

C(tj, t;, ,tf) = ~W{C(tf, t;, , tf) + Cij: such that (tf, t;, ... ,tf)

feasible and (i,j) E A}, and (tj,t], ,tf) feasible for j E N\ {p}}

The fundamental step in a dynamic programming algorithm for short­
est path problems is the "reaching" step. Starting with a label for a path
Xpi, the algorithm determines the labels corresponding to feasible paths
X pj which extend the path Xpi for all arcs (i,j) E A. In short, labels can
be created for node j every time one of the nodes i with and arc (i, j) E A
is reached. This node "labeling" operation might be time consuming
when several resources are involved since many (non-dominated) labels
(non-dominated paths) might be possible for each node. In Desrochers
and Soumis (1988) (see also Denardo and Fox, 1979), an algorithm for
what is called generalized permanent labeling is described and a concept
of generalized bucket is introduced in order to handle the non-dominated
node labels in an efficient manner. These ideas are further advanced in
Desrochers (1988) to the SPRCP with multiple resource types (with up
to 5 resources in the subsequent computational experiments).

4.5. SOLVING SPRCP WITH ONLY
ELEMENTARY PATHS

Set covering approach to VRP (and VRPTW) requires that customers
(nodes in G) be visited only once (elementary paths). However, the al­
gorithm described in most of the DDDSS computational schemes for the
SPRCP subproblem does not necessarily generate elementary path so­
lutions as has been pointed out by Beasley and Christofides (1989). In
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Figure 8.1 Inclusion of solution spaces.

a number of interesting cases such as the Selective VRP and the Prize
Collecting Problem (see Gueguen, et al. 1999), the pseudo-polynomial
solution approach to SPRCP is not feasible for the fact that the resulting
solution does not necessarily have the elementary path structure. This
section describes a modified algorithm which finds an optimal elemen­
tary path solution for SPRCPs of moderate size.

Desrochers et al. (1992) advanced three dynamic programming mod­
els for the solution of three different versions of the resources constrained
shortest path problem based on the principles presented in Desrochers
(1988). The solution space of the first model contains only feasible routes
and it is stated that "the model is very time consuming to solve." The
solution spaces for the two other models presented as alternatives to
the first model, contain more than just the feasible routes. Generating
such SPRCP routes for the models has a pseudo-polynomial time com­
plexity. The solution space of the second model contains many different
cycles, but the solution space of the third model contains cycles but
no 2-cycles. See Figure 8.1 for the solution space relations between the
three different shortest path problem versions. Desrochers et al. (1992)
propose dynamic programming based procedures which solve efficiently
relaxations of the resource constrained shortest path problem.

The master problem in the Desrochers et al. (1992) solution approach
is the set covering problem presented in (8.1)-(8.3). The subproblem
associated with this formulation is a Shortest Path Problem with Re­
sources Constraints, and it is not necessary that the paths be elemen­
tary. Desrochers at al. (1992) also propose to eliminate all the 2-cycles.
Subsequently, the candidate columns for the master problem consists of
the non elementary paths without 2-cycles.
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The second relaxation model in the Desrochers et al. (1992) approach
has the largest solution space. Solving the elementary shortest path
problem using their model 3 gives an optimal solution in the set (53 \5d,
then one is confronted with the following problem: how can the actual
optimal solution (in the set 51) without cycles be extracted? In the
next subsection, it is shown that there are cases for which the algorithm
proposed by Desrochers (1988) concludes that no elementary path (with
negative costs) exists where in fact there is one.

4.5.1 Overlooking an Optimal Elementary Path.

The purpose of the example below is to show that for a case where
there might be a unique one-time "profit" associated with visiting a
node, Desrochers et al. (1992) algorithm is no longer a valid solution ap­
proach. It is not to say that Desrochers' algorithm is incorrect because
Desrochers clearly stated that his algorithm solves the non-elementary
path case.

In the case where the columns in the column generation procedure for
a vehicle routing setting are restricted to elementary shortest paths, it
is impossible to use an algorithm for the non-elementary shortest path
problem. This fact is demonstrated via an example in Figure 8.2. In
short, the transitivity of the dominance relationship defined earlier for
the labels of paths which are not necessarily elementary, does not extend
itself to elementary paths.

The example of Figure 8.2 proves that when considering non-elementary
paths and the dominance relation proposed by Desrochers (1988), one is
going to miss the optimal elementary path.

As before, the resources are restricted to two: the time and the capac­
ity of the vehicle (Q is equal to 20). This graph has four possible paths
going from the depot (node 0) to node 5, and there are no other paths
because of the capacity constraint:

1 path 1 : 0 -+ 1 -+ 4 -+ 5 : q = 20, t = 20, C = -5
2 path 2 : 0 -+ 2 -+ 4 -+ 5 : q = 12, t = 11, C = 45
3 path 3 : 0 -+ 2 -+ 3 -+ 6 -+ 4 -+ 5 : q = 17, t = 13, C = 15
4 path 4 : 0 -+ 2 -+ 3 -+ 6 -+ 2 -+ 4 -+ 5 : q = 19, t = 14, C = -45

If a non-elementary path is allowed, using the dominance relation of
Desrochers (1988), label 4 dominates labell, and in node 5, there re­
main only three labels corresponding to paths 2, 3 and 4. If one seeks to



300 ARC ROUTING

q - 10

Capacity =20

c-25 q-7
t.7

J-------~5

Figure 8.2 Demand and arc duration.

generate a path with negative cost between nodes 0 and 5, then paths
2 and 3 are eliminated. Label 4 is the only label remaining at node 5,
but its corresponding path is non-elementary. Thus, the conclusion is
that there does not exist a path with negative cost (i.e., the optimum
of the column generation process has been reached). This is contrary to
the fact that path 1 is elementary and has a negative cost of -5, which
is going to improve the current solution.

The situation demonstrated in Figure 8.2 may occur if the graph con­
tains negative cycles and the resources constraints are not very "tight".

4.5.2 An SPRCP - Improved Elementary Path Algorithm.

The elementary shortest path problem has been investigated by Beasley
and Christofides (1989) where they proposed a procedure for finding el­
ementary paths. It involves the addition of an extra resource for each
node (INI extra resources in total), restricting the consumption value
for that resource to be either fully consumed (= 1) or not consumed at
all (= 0). When a path visits node k, it consumes its extra resource ­
Vk = l(Vj = O,j = 1, ... , n = INI, if the path did not visit node j).
Beasley and Christofides did not test their procedure computationally
and suggest that this formulation would be only suitable for solving rela-
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tively small problems for which the number of resources is not very large.

In Gueguen et al. (1998), this idea of Beasley and Christofides has
been implemented and tested to see if it can generate optimal solutions
for problems of moderate size. We present the basic idea underlying
the implementation of this notion. In what follows, the procedure from
Gueguen et al. (1998) is presented in some detail.

First, the dominance relation was rewritten so that two node labels can
be compared according to the new definition of labels. This dominance
relation still allows the use of the original Desrochers (1988) algorithm
since the principle of this algorithm remains the same: all non-dominated
paths are the extension of a non-dominated path.

In order to eliminate efficiently the dominated labels, a new variable
(new resource) Ii is added to each label at each node j. This label counts
the number of nodes previously visited by the path. A label Ti cannot
dominate a label 12 if it visits more nodes (because it consumes more
"visitation" resources). So, instead of comparing all the resources cor­
responding to the n nodes, in some cases, a single comparison between
two labels is sufficient to establish dominance.

With each path X pj from the origin to node j we associate a state

R j = (t}, ... ,tf,fj, Vi,··· ,VP)

which computes the quantity of the resources used by the path, the num­
ber of visited nodes, and the visitation vector (let fj = I:~=1 V].).

For this new label for each node we also obtain a new dominance re­
lation. This new dominance relation has the transitive property for all
paths, elementary and non-elementary just as the "old" dominance rela­
tion.

With this new node labeling procedure, it is likely that we need to
keep more labels for each node since some labels which were dominated
in the previous definition of labels are no longer going to be dominated
with the new one. However, we are sure to keep only labels correspond­
ing to elementary paths. In the unlikely worst case, the labels for all the
existing paths must be kept. However, this is extremely unlikely and the
test results prove that this labeling procedure is quite effective.

The description of the algorithmic procedure is given below, but first,
some notation has to be introduced.
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Qi - the list of feasible labels at node i,
Succ[i] - the set of successors of node i,
E - the list of nodes that have to be treated,
Ext(li, j) - the extended label at node j obtained from label Ii at node
2,

Fij(Qd - the set of labels extended from node i to node j,
EFF( L) - the procedure that conserves only non dominated labels in
the list L of labels.

4.5.3 Description of the Algorithm.

Step 1 Initialization
Qp = (0, ... ,0)
Qi = 0 for i = 1, ... ,n, i =1= p
E = {p}

Step 2 : Exploration of the successors of a node
Choose a node i E E and for j E Succ[i] such that j has not been
visited from i, set Qj = EFF[Fij(Qi) U [Ext(li,j)]]
If Qj has been modified then E = E U {j}

Step 3 : Reduction of E
E=E\{i}
If E = 0 then end, else go to step 2

The important point here is that this algorithm will only generate el­
ementary paths.

The time complexity of this algorithm is strongly related to the struc­
ture of the graph, the numbering of the nodes, and the resources con­
straints. For highly constrained problems, it is possible to implement
this algorithm in an efficient way and reduce the required number of
operations. This efficient implementation has been demonstrated in the
computational experiments described in Gueguen et al. (1998).

Speedup Improvement In this section, a modification is presented
which speeds up the computation time by reducing the number of labels
that need to be considered. In some cases, it is not useful to consider
the resources corresponding to some nodes. Labels which could not be
compared considering all the resources will become comparable and some
of them are going to be dominated, resulting in a "stronger" dominance
relation.
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Example: If you consider the label L1= 1117 I 38 117 I 2 11 I 0 11 I

and the label L2 = I 95 I 34 I 16 I 2 I 0 I 1 I 1 Iwhere the different columns
correspond to the time, the quantity, the cost, the number of visited
nodes and the consumption of the resource associated with three nodes
1, 2 and 3. With the present relation, these two labels are not compara­
ble.

A proposed modification leaves a resource associated with a node if
it is impossible to visit this node again. For the nodes that have not
been visited before and are unreachable with the given path (according
to the time or the delivered quantity), indicate that the corresponding
resource has been consumed. So, with the same example as above, two

new labels are obtained: L~= I 117 I 38 I 17 I 3 I 1 I 1 I 1 Iand the la-

bel L;= I 95 I 34 I 16 I 3 I 1 I 1 I 1 I
The label L; dominates the label L~. If a third label L3 dominates L 2,

then it dominates also L;. Finally, if L2 dominates L3, then the trans­
formed label L; dominates the label L3because all the transformations
that were made on L2 were also made on L3.

Now we modify the previous definition for the labels to including the
above label" correction". With each path Xpj from the origin to node j,
associate a state 'R j = (tJ, .. . ,ty, Ii, ~l , ... , ~n) corresponding to the
quantity of the resources used by the path, the number of nodes that
are unreachable and the visitation vector with the following property:
~i = 1 if the path has visited node i or if it is impossible to reach this
node with the current time value and the delivered quantity. Note that
node i is now unreachable if ~i = 1.

Proposition 1: During the execution of the modified algorithm, one
only needs to consider non-dominated paths.

Proof: Consider two labels in node i that are extended to node j such
that T/ -< 7;.. If it is possible to extend path Xpi, it is possible to extend

path X;n because V? :S V/ = O.

More directly, T/ -< Ti :::;. C: + CiJ' :S Ci + CiJo and t~l + t l . < t l + tlo for•• 1 'J -, 1J
l = 1, ... , L, and
t~l = max{a~,<l + tij } and t~ = max{a~, ti + tij } :::;. t~l :S tj for
l = 1, ... ,L.
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One still has to check the resource associated with each node:

• For the resource corresponding to node j: 1 = V? ::; VJ = 1.

• For a resource corresponding to a node k i= j:

if tj + Sj + tjk ::; bk and tj + Sj + tjk ::; bk : then it is possible
to visit node k, thus,
V~k = V'k and V k = V k and V'k < V k
J ' J " J - J.

if tj + Sj + tjk ::; bk < tj + Sj + tjk: then it is impossible to
return to k with label R. In this case set ~k = 1 and possibly
Sj = Si + 1, if node k was not visited by the path R before,
and don't change the other label values. Thus, V? ::; ~k.
if bk < tj + Sj + tjk ::; tj + Sj + tjk: then it is impossible to

visit node k: V? = 1 and ~k = 1, and V? ::; ~k.
For every case and every k, the inequality V? ::; ~k holds. Then

n n

LV? ::; L ~k i.e. f;::; fj
k=l k=l

The computational experiments with the above modified SPRCP al­
gorithm which generates only elementary paths are fully reported in
Gueguen et al. (1998) and we do not reproduce the tables here. These
results demonstrate that the above algorithm solves problems of mod­
erate size and that the gain obtained when comparing to the original
Desrochers (1988) approach is quite considerable. The common test bed
for VRPTW and shortest path procedures in the context of column gen­
eration for VRPTW are the so-called Solomon's problems (see Solomon,
1983). The computational results clearly indicate that this new algo­
rithm solves also VRPTW problems.

The algorithm with modification succeeded in solving 75 problems on
the 87 tested problems in less than 300 seconds while the version without
the modification succeeded in only 47 problems. The tests in Gueguen
et al.(1999) prove that if a problem has "enough" constraints, then it is
possible to optimally solve problems with 100 nodes in reasonable time
and the more difficult the problems are, the more significant are the
gains.
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5. COLUMN GENERATION FOR ROUTING
PROBLEMS WITH SPLIT DELIVERY

This section is based on the work of Mullaseril (1996), and Mullaseril
and Dror (1997). Once again let G = (N, A) be a directed graph with
node set N and arc set A. Node 0 represents a depot while the re­
maining nodes corresponds to customers that have to be served. At the
depot there is a "free" number of identical vehicles of capacity Q. Every
node except the depot has a nonnegative demand qi and every arc has
an associated nonnegative cost Coij and traversal time tij. With some
danger of confusion, the service time at node i is traditionally denoted
as Si and represents the time needed to unload at i its demanded quan­
tity qi. Assume that the cost matrix (Cij) satisfies the triangle inequality.

The classical Vehicle Routing Problem with Time Windows (VRPTW)
consists of determining a set of least cost vehicle routing solution such
that each route (a circuit on the graph G) starts and ends at the de­
pot, every customer is served exactly once by one vehicle inside his time
windows [ai, bi ] and the total demand of each route does not exceed the
capacity of the vehicle. In this section, a version of this problem is exam­
ined in which the demand qi can be delivered by several vehicles. This
problem is called the Split Delivery Vehicle Routing Problem with Time
Windows (SDVRPTW). In such a problem, the constraint that the de­
mand of any customer is less or equal to Q is relaxed allowing for large
customers whose demand might exceed the capacity of the vehicle.

The split delivery version of the classical vehicle routing problem with­
out time windows was first introduced in Dror and Trudeau (1989, 1990),
and in Dror et al. (1994) several new classes of valid constraints for the
SDVRP are described in the context of a branch and bound algorithm
(some problems with 10, 15 and 20 nodes have been solved). In Frizzell
and Giffin (1995) a heuristic is proposed for vehicle routing with split
deliveries and time windows for grid distance graph. Also in Mullaseril
et al. (1997) a heuristic for split delivery arc routing with time windows
is examined on some real-life problems. Finally, two other papers due to
Sierksma and Tijssen (1998) and Mullaseril and Dror (1997) present op­
timal methods based on column generation respectively for the SDVRP
and the SDVRPTW. The method proposed by Sierksma and Tijssen
(1998) is used to schedule crew exchanges on off-shore locations in the
North Sea. The limited number of places in a helicopter makes that it
is indispensable to split the demand (operations and maintenance crews
flown in) of some platforms. It is important to remark that the quantity
of split (i.e. how many people of one platform are in an helicopter) is
necessarily integer and this quantity is determined in the column gen­
eration subproblem. In the paper of Mullaseril and Dror (1997), only
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Figure 8.3 Example of 2Q + 1 customers for which nonsplit delivery solution with
no more than Q + 1 vehicles of capacity Q has a distance of 2QL + 2e, where as the
split solution with Q + 1 vehicles is of distance 2L + 2Qe.

some preset proportions of split delivery are allowed and these propor­
tions are also preset in the subproblem in the column generation scheme.
Consequently, the solution can serve only as an "approximation" for the
optimal solution in a sense similar to approximating a convex function
by piecewise linear functions. I.e., based on how refined are the preset
split deliveries.

In this section, a set covering formulation for the SDVRPTW is ex­
amined and an algorithm is described that solves to optimality problems
of moderate size. However, first some properties of to the SDVRPTW
solution are restated.

5.1. PROPERTIES OF SPLIT DELIVERIES
WITH TRIANGLE INEQUALITY

It is very easy to demonstrate the potential savings accrued by allow­
ing split deliveries to the demand points. Assume there are (2Q + 1)
demands points as depicted in Figure 8.3. Q points with demand 1 have
a distance of L from the depot. Q points with demand Q and one point
with demand (Q - 1) are located at a distance e « L from the depot.
Also suppose that there are (Q + 2) vehicles of capacity Q.

The optimal solution without split deliveries uses (Q + 1) vehicles and
has a cost of 2LQ. If split is allowed, it is possible to find a solution
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of cost 2L in which one vehicle serves the Q points of demand 1 and
the remaining demand is split between the other vehicles. The ratio of
the solution value without split over the one with split deliveries for this
example tends to Q as e -+ O. Thus, the ratio of the optimal non-split
solution and the optimal split solution can be arbitrarily large. It is
straightforward to extend this result to the case of deliveries with time
windows.

The split delivery problem (the SDVRP or the SDVRTW) might be
perhaps viewed as a "relaxation" of the discrete VRP. However, adding
the option of split delivery introduces a whole new set of delivery alter­
natives in which each one of the routes still represents a TSP solution
over its set of deliveries. Clearly, the SDVRP is NP-hard just by re­
duction from the TSP (by setting the capacity Q larger than the sum
of deliveries). As the formulation below indicates, the SDVRP is mod­
eled as a mixed 0-1 programming problem with yy variables (indicating
the fraction of demand at i delivered by route v) taking their values be­
tween 0 and 1. It has been "conjectured" by Dror et al. (1994) that the
SDVRP is harder than the classic (non-split) VRP in the sense that cer­
tain cut inducing inequalities for the VRP (the 0-1 formulation) are no
longer valid for the SDVRP and the corresponding polyhedral solution
approach is more difficult.

The following observations are taken from Dror and Trudeau (1990),
and Dror, et al. (1994):

Observation 1: If the {Gij} matrix satisfies the triangle inequality, there
exists an optimal solution of the SDVRP in which no two routes have
more than one split demand point in common.

Definition (see also Dror et al., 1994) : Consider k demands points
nl, n2, ... , nk, and k routes such that route 1 includes points nl and n2,

route 2 includes points n2 and n3, ... , route k - 1 includes points nk-I

and nk and route k includes points nk and nl. (This implies that the
points nl, n2, ... , nk receive split deliveries by the k respective routes and
possibly other routes). This subset of demand points {nJ~=1 is called a
k-split cycle.

Observation 2: If the {Gij} matrix satisfies the triangle inequality, there
exists an optimal solution of the SDVRP which contains no k-split cycle
(for any k).

Proofs of the observations above are given in Dror and Trudeau (1990).
For the rest of the chapter it is assumed that the triangle inequality for
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the time matrix, and cost matrix is satisfied. As demonstrated later, it
is not possible to extend these observations for the SDVRPTW.

5.2. FORMULATION
An integer formulation for the SDVRPTW presented by Mullaseril

and Dror (1997) is given below. Similar formulation is presented in
Frizzell and Giffin (1995). This formulation, even though not used in the
computational analysis, serves as a "stepping stone" to the set covering
formulation and the column generation methodology presented later in
the chapter. Let Xfj be a binary variable defined for i #- j and equal to 1
if and only if vehicle v serves customer j just after customer i. Let yy be
the proportion (the fraction) of the demand of customer i delivered by
vehicle v and tf be the time at which vehicle v starts serving customer
i. Let V be an upper bound on the number of vehicles required. Let T
be a large constant (for instance, T = max(max (bi + Si + tij - aj), 0)).

(t,) )
The problem can then be formulated as:

subject to

n n V

M·· . ~~~ v v
InlmlZe L..- L..- L..- CijXij

i=O j=O v=l

(8.4)

n n

Lxij = LXji, j = 0, ... ,n;v = 1, ... ,V (8.5)
i=O i=O

v
LY[ = 1, i = 1, ... , n (8.6)
v=l

i = 0, ... ,n;j = 1, ... ,n;v = 1, ... ,V

i = 1, ... , n; v = 1, ... ,V

n

L qiY[ ~ Q, v = 1, ... ,V
i=l

n

Lxfj 2 Yf,
j=O

ti + Si + tij - (1 - xij)T ~ tj,

ai ~ ti ~ bi , i = 0, ... ,nj v = 1, ... ,V
xij E {O, I}, i,j = 0, ... ,n;v = 1, ... ,V

o~ Y[ ~ 1, i = 1, ... ,nj v = 1, ... ,V

(8.7)

(8.8)

(8.9)

(8.10)

(8.11)

(8.12)

Constraints (8.5) are the flow conservation conditions. Constraints
(8.6) ensure that the demand of each customer is entirely satisfied while
constraints (8.7) specify that vehicle capacities are never exceeded. Con­
straints (8.8) are consistency constraints: if vehicle v delivers customer
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i, it has to leave this customer. Constraints (8.9) and (8.10) ensure the
time continuity, force service instants to be inside the time windows of
the customers and forbid the formation of illegal subtours.

5.3. SET COVERING APPROACH FOR
SPLIT DELIVERIES

In the set covering formulation of a split delivery vehicle routing prob­
lems, a column represents not only a vehicle trip (a circuit on the corre­
sponding graph) but also the split deliveries made on that trip. Since the
fleet is homogeneous (i.e., identical vehicles), the index v denoting a vehi­
cle index changes its designation and now denotes a trip index since each
trip starts and terminates at the depot node. Let {akI k = 1,... ,h}
be a collection of column vectors representing all feasible trips in G. In
vehicle routing problems where split deliveries are not allowed, the entire
demand for a node is delivered by the unique trip which visits that node.
Thus, a feasible trip (column), is determined only by the nodes visited
in that trip and its feasibility established by the total demand of the
nodes visited. However if split deliveries are allowed, a trip k must also
specify the fraction of the demand delivered at each node i when visited
by trip k. In this case the set covering formulation has to impose an
additional constraint for each node i that the total demand for a node
i is delivered by adding up the demand's fractions on some subset of trips.

Definition: A vector Tk consisting of l's and O's of size INI, whose i th

elements indicate whether the trip k visits node i (represented by 1) is
called a visitation vector for trip k.

Definition: A vector Pk with fractional elements, of size INI, whose
i th elements indicates the fraction of the demand delivered at node i is
called the delivery vector for trip k.

Note that in formulation (8.4)-(8.12), the xi/s determine the visita­
tions and the Yi's determine the deliveries.

A column denoting a split delivery trip k can be represented by a vec­
tor ak consisting of the two vectors Tk and Pk :

Hence, a feasible trip, i.e., the column ak, consists of two vectors, the
visitation vector for that trip and its corresponding delivery vector with
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a total 12NI elements in the column. Unlike the pure set covering prob­
lem, the column vector ak of the set covering formulation for the split
delivery problem may have fractional elements. The set covering formu­
lation of the split delivery node routing problem (SDVRP) is given below:

(SCI)

min LCkZk

kEn

LTikZk 2: l,i = 1, ... ,n
kEn

L~kZk 2: l,i = 1, ... ,n
kEn

Zk E {O, 1},Vk E n.

(8.13)

(8.14)

where the variable Zk determines the inclusion (Zk = 1) or the exclusion
(Zk = 0) of the trip ak, while Ck is its associated cost. Tik and Pik are
the ith elements of vectors Tk and P k . The set n is the set of all possible
trips for the vehicles. An important point to note is that the visitation
vector Tk and the delivery vector P k must satisfy the following vector
inequality:

Pk s:; n,Vk
This implies that if the i th element of Pk is non-zero (0 < P ik s:; 1), the
corresponding element of Tk must be 1. Constraints (8.13) insure that
at least one vehicle visits a node requiring service, whereas constraints
(8.14) insure that all of the demand for a node is delivered by some sub­
set of the trips.

In principle, since Tk E ZN and Pk E RN (many splits are possible),
the problem SCI will have an (uncountably) infinite number of columns
and, consequently of decision variables Zk, which determine the selected
columns by taking the value 1 (i.e., the set n is of uncountable cardi­
nality). This is very different from the non-split delivery case where the
number of possible trips is finite even if such number is of exponential
order as a function of the number of nodes in the graph. Thus deter­
mining the optimal solution to the problem above by searching through
all feasible solutions to the problem is not tractable even for very small
size problems. Instead, one must follow the column generation solution
methodology and first solve a linear relaxation of the above set cov­
ering problem formulation using a standard (revised simplex) column
generation approach, where no explicit listing of the entire set of feasi­
ble solutions is necessary. This LP relaxation solution provides a lower
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bound for the SDVRP formulated in the previous subsection.

To solve the set covering problem one first solves the LP relaxation
of SCI using column generation methodology as described in section
4. Each column in the master problem represents a feasible tour of a
subset of nodes in N and is determined by solving a subproblem, where
vehicle capacity constraints and time window constraints (if necessary)
are imposed. In the split delivery problem version, one also relaxes
the requirement that, on every vehicle visit, the entire node (customer)
demand is delivered. The generated column and its associated column
variable are added to the problem SCI and another pivot operation is
performed. Similarly as in the column generation scheme for the VRP,
each subproblem generates a vehicle trip which starts at the depot, visits
one or more nodes and terminates at the depot node.

5.4. THE SUBPROBLEM FOR GENERATING
FEASIBLE COLUMNS FOR SPLIT
DELIVERY

Let the decision variable xij = 1, (i, j) E A, if a trip v uses arc
(i,j) E A and Xij = 0 otherwise. Knowing the arcs traversed by a trip
v will allow to construct the sequence in which the nodes are visited.
Following Mullaseril and Dror (1997), to determine whether or not a
trip visits a node i E N, we compute the quantity LjEN Xij' (i,j) E A.
Let yi be the fraction of the delivery made to node i E N by trip v.
The vector Tv, consists of elements Tiv,i E N, where Tiv = LjENxij,
and the vector Pv consists of the elements Piv = Yi, i E N. Thus the
column av for the master problem is constructed from the solution to
the subproblem as follows:

LjENXlj

Let Gij be the length of arc (i, j) E A. Let 71' = [a,.8] be the vector of
dual variables associated with problem SCI (restricted to the columns
generated so far; ai and .8i, i = 1, ... ,n, are the values of the dual vari­
ables associated with node i, Le., with the corresponding two constraints
for node i). Thus 71' consists of two vectors a and .8, each of size n con­
sisting of these dual variables:
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1r=

13n

Suppose that we can generate the column av corresponding to the
minimum reduced cost cv . Here we state how it can be done. The cost
Cv of the column a v is equal to the total length of a trip, or L:(i,j)EA CijXij.

To generate a new column av the subproblem has the following objective:

over all feasible columns avo Which can be rewritten as

Cv = min ( L (Gij - o:dxij - L 13iyi)

(i,j)EA iEN

Now we can formally present the subproblem whose solution generates
a new candidate column for the "master" problem, i.e., the restricted
version of SCI, in the column generation scheme.

5.4.1 Formulating the Subproblem.

The formulation is based on the work described in Dror and Trudeau
(1990) and Desrosiers et al. (1995), and it assumes that no k-cycles can
occur in the optimal solution for this problem of split-delivery with time­
windows.

Denote by Si the service time at node i and assume that this service
time is additive (dependent on the fraction delivered). Also ti denotes
the time the vehicle arrived at node i. The subproblem (SP) to generate
a feasible column a v is (the superscript v has been omitted in this model):

Minimize L (Gij - O:i)Xij - L 13iYi

(i,j)EA iEN

(SP)
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subject to

L Xip- L Xpj=O,VpEN\{O}
(i,p)EA (P,j)EA

L XOi + L XiO = 2
(O,i)EA (i,O)EA

Yi - L Xij ~ 0, Vi E N
(i,j)EA

LqiYi ~ Q
iEN

(ti + tij + SiYi - tj)Xij ~ 0,V(i,j) E A

ai ~ ti ~ bi ,Vi E N

Xij E {O, I},V(i,j) E A

o~Yi ~ 1, Vi E N

This subproblem can be characterized as a simple shortest cycle (or a
shortest path from an origin node (= depot) to the destination node (=
depot)) problem over a graph G with time windows and partial delivery.
Observe that the costs associated with each arc may be negative. Such
cycles are of finite length owing to the existence of time window con­
straints and hence the subproblems are bounded from below. The above
problem is NP-hard in the strong sense (see Dror, 1994).

5.4.2 Alternating between the Master Problem and the
Subproblem.

The solution process for these type of column generation solution ap­
proach entails alternating between solving the master problem and the
subproblems. The procedure is usually started with an initial set of
columns for the master problem which forms the initial identity basis,
for example, INI single node trips from the depot to each of the nodes in
N, if the demand of each node does not exceed the capacity Q. For each
pivot operation in the master problem, the dual variable vector 1r is up­
dated and used for solving the corresponding subproblem. After solving
the subproblem, the resulting column is added to the master problem
and the next pivot operation performed. The column generation proce­
dure is terminated when no more negative marginal cost columns exist.
This process generates an optimal solution to a linear relaxation of the
problem SCI, which is a lower bound to the set covering problem formu­
lation for the SDVRPTW.
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To our knowledge, the special structure of our master LP problem, ex­
pressed by the vector property Pk :=:; Tk for each of the master problem
columns, has not been examined in terms of speedup in the LP or a cor­
responding matrix size reduction for LP operations and updates. Since
it naturally occurs in the split delivery setting, it would be of interest to
investigate linear systems with this type of matrix partition and column
property.

5.5. THE COMPUTATIONAL PHASE: A
MIXED INTEGER SOLVER AND A
DYNAMIC PROGRAMMING
ALGORITHM

Testing the effectiveness of the column generation method described
above by running extensive computational experiments on data from
the arc routing problems in cattle feed industry as well as randomly gen­
erated problems derived from well known problems in the literature is
described next. The actual solution approach implemented in the tests
is based on the so called 'pulling' dynamic programming algorithm dis­
cussed in Desrochers (1988) and reviewed by Desrosiers et al. (1995).
This solution scheme, based on the dynamic programming algorithm, is
reproduced by Mullaseril (1996) and Mullaseril and Dror (1997) and ap­
plied to problems where both split delivery and time window constraints
are present.

Uniik~ Desrochers' (1988) problem of non-split deliveries with time
windows, when split-deliveries are allowed, some basic characteristics of
the subproblem change. For instance, in non-split subproblems it has
been proven that so called 2-cycles (i.e., cycles of the form (i,j,i)) do
not exist in the optimal solution. With split deliveries, 2-cycles can occur
in the optimal solution of the subproblem. This is easily demonstrated
by the following example even when the service time is independent of
the demand delivered:

Consider two nodes (node 1 and node 2) with time window of [0,5]
and [2,3] respectively. Assume also service time of 1 for node 1 and
service time of 1 for node 2 and travel time of 1 unit between the nodes
(symmetric). Entering node 1 at time 0, the vehicl~ would deliver only
50% of the demand (service of 1 unit) continuing to node 2 to deliver its
total demand in the specified time window of [2,3] before returning to
node 1 in time and completing the delivery (in time).

Still, note that for split-delivery with time windows there are no 'dou­
ble' 2-cycle solutions. I.e., routing sequence like i --+ j --+ i --+ j cannot
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occur.

The above example of 2-cycle can be generalized in a straightforward
fashion to existence of k-cycle (k 2: 2) in the optimal split delivery sub­
problem. The potential of such k-cycles in the optimal solution to the
subproblem complicates the subsequent analysis considerably. Thus, for
the sake of simplicity and full knowledge of the consequences, in the
subsequent analysis the k-cycles in the subproblem's solution are not al­
lowed. In this sense, the result should be viewed as a 'heuristic' since
optimality of the solution cannot be guaranteed. Note that in the case
where the time windows are substantially greater than the service time
and triangular inequality for the distance matrix holds, even in the split­
delivery case, no k-cycles can occur in the optimal subproblem solution.

5.5.1 Discretizing the Split Deliveries in the SPPRC Sub-
problem.

Since the split-delivery routing problem in general is very "hard", and
the split-delivery problem with time windows "reasonably" wide does not
seem to constrain this problem sufficiently and make the task of solving
this problem any easier, a reasonable compromise is that of discretizing
possible split-deliveries to each node. This would considerably reduce
in "size" the number of alternative routings and imply a transformation
(which depending on the discretization scheme could be pseudopolyno­
mial) of the original graph into a graph with no split deliveries. Since the
original SDVRPTW is NP-hard in the strong sense, a pseudopolynomial
transformation does not effect the complexity of the resulting problem.
The solution approach to the discretized SDVRPTW is described in de­
tail in this subsection.

Let R = {Q, t} represent a set of two resources: capacity (Q) and time
(t). Consider 'discretizing' the continuous variable Yi in the subproblem
SP. In the algorithms implemented by Mullaseril and Dror (1997) for
the feedyard problem, the fractional variable Yi is restricted to values
{O.I, 0.2, ... ,0.9, l.0}. As a result, the optimal subproblem solution will
not guarantee an overall optimal solution for the SDVRPTW but only
an upper bound (heuristic) solution to the problem (the set covering for­
mulation).

Note that discretizing the fractional variable Yi is equivalent to a
'graph' transformation where a single node becomes a "chain" of nodes
(one node for each fractional value) with no split-deliveries allowed to
any node. Each of the nodes in such a chain is connected to all other
nodes in the graph in the same manner as the original "parent" node.
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The arcs from one node to another (next) node in the chain have a zero
cost but have a time span (tij) corresponding to time required to ser­
vice the node i. Note that since the nodes in a "chain" are identical
fractions of the original node they can be numbered consecutively such
as iI, iz, ... ,ik, and each requires a delivery of (ljk)qi' The "chained"
nodes are connected by directed arcs in order. Thus, we can assume
(w.l.g.) that the "fractional" nodes are delivered in the chain order.

The dynamic programming method of Desrochers (1988) involves de­
termining the shortest resource constrained feasible path from the origin
p (the depot) to the destination node q (also the depot). With each path
Xpi from the origin p to a node i we associate a label 7i as before, which
corresponds to the consumption of each resource (time and capacity)
on a path Xpi and a cost C i of this path. The rest of this solution is
essentially identical to the one outlined in section 4.4 for the non-split
case.

5.5.2 Discussion of Computational Experiments for the SD-
VRPTW.

Computational experiments for the SDVRTW are reported in Mullaseril
(1996) and in Mulleseril and Dror (1997). The column generation al­
gorithm based on Desrochers' (1988) dynamic programming approach
was used to solve arc routing problems with time windows and split
delivery from a cattle yard that operates in Arizona. The CARP prob­
lems encountered varied from 227 :S IVI :S 581, 294 :S IAI :S 770 and
16 :S IRI :S 348. The algorithm was also tested on randomly generated
problems based on test problems from the literature. These problems
provided two types of input data, those with Euclidean distances and
those with non-Euclidean distance matrix. The data for Euclidean prob­
lems were derived by taking a subset of nodes of the 75-node problem
originally presented in Eilon, Watson-Gandy and Christofides (1971) and
used by many others in their computational experiments. In the prob­
lems generated, we allow split delivery. However, this data set does not
contain time windows associated with each node. Subsequently, the time
window values for each node have been randomly generated. For more
details on how the problems were constructed see Mullaseril (1996) and
Mullaseril and Dror (1997). The solutions obtained for the cattle yard
problems (5 problems) using the above approach were about 6% better
than the heuristic solutions reported in Mulleseril et al (1997).

In the next section we examine a modified approach for solving the
SDVRPTW.
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5.6. ANOTHER SET COVERING
FORMULATION FOR SDVRPTW

Let n be the set of feasible routes for the SDVRPTW, respecting the
time windows of the customers. Let aik be a constant value equal to 1 if
and only if route kEn visits customer i. Ck represents the cost of route
k and is equal to the sum of the costs of the arcs of the route.

Let Xk be a binary variable equal to 1 if and only if route k is used
in the optimal solution and Yik be the quantity delivered by route k to
customer i. The set covering formulation consists in choosing the routes
satisfying all the constraints such that the total cost is minimum. Let
this model be (1vIPI):

MinimizeL CkXk

kEf!

subject to

L aikYik 2: qi, i = 1, ... , n
kEf!

n

XkQ 2: L aikYik> kEn
i=I

Xk E {O, I} kEn°:::; Yik :::; qi, i = 1, ... , n; kEn

(8.15)

(8.16)

Note that we can modify constraints 0 :::; Yik :::; qi for each i to simply
o :::; Yik for each i since if Yik 2: qi, and equivalent cost solution with
Yik = qi exists.

This model determines the set of routes in the optimal solution and
the quantity that is delivered to the customers visited by each route.
Constraints (8.15) ensure that the demand of each customer is satisfied.
The capacity constraint of the different vehicles is represented by con­
straints (8.16) which is also a consistency constraint: if customer i is
served by route k, the cost of this route has to be incurred.

This model has two interesting properties: (i) it finds the exact split
quantity on each route and does not search the solution in a limited
subset of split options such as in Mullaseril and Dror (1997), and (ii) be­
cause no 2-cycles exist in an optimal solution, it does not generate two
columns which represent visits to exactly the same subset of customers
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with different delivery quantities.

However, the problem with this formulation is that its LP relaxation
is very far from the integer solution. Constraints (8.16) are not strong
enough to force variables Xk to have a value near 0 or 1.

It is thus possible to add two kinds of constraints to model (MPd:

Xkqi 2: Yik, Vi, kl aik > 0

L aikXk 2: r~l 'Vi = 1, ... , n
kEn

(8.17)

(8.18)

Constraints (8.17) are consistency constraints which force a route to
be used if it serves a customer and force the variable Xk to be as big as
possible and specially Xk 2: ~~. If one customer is not split in route k, Xk

is then equal to 1. Constraints (8.18) ensure the visit of the minimum
number of vehicles according to the demand for each customer.

With constraints (8.17) and (8.18), respectively we obtain two models
(MP2) and (MP3) that can be used to solve the problem. It is also pos­
sible to create another model (M P4) including both sets of constraints.

It is clear that constraints (8.17) are stronger than constraints (8.18)
but while there are only n constraints (8.18), one for each customer, for
constraints (8.17), each time we generate a route, we have to generate
all the constraints corresponding to the customers visited by this route.
Subsequently, the linear relaxation of problem (!vIP2) is quite difficult
(time consuming) to solve due to the large number of constraints.

5.6.1 The (MPa) Model and Column Generation Approach.

The model (MP3) (called the master problem) is stated below.

MinimizeL CkXk

kEn
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subject to

LaikXk ~ r~l i = 1, ... ,n (8.19)
kEn

L aikYik ~ qi, i = 1, ... ,n (8.20)
kEn

n

XkQ ~ L aikYik, kEf"l (8.21)
i=l

Xk E {O, I}, kEf"l (8.22)

o~ Yik, i = 1, ... ,n; k E f"l (8.23)

The number of variables in the above model corresponds to the number
of feasible routes and, as noted before, can be "very large".

We must have an efficient algorithm that is able to "price out" (gener­
ate) all feasible routes, in particular those that have a negative reduced
cost. Model (lV!P3 ) is slightly different from the conventional set cover­
ing formulations and requires to adapt the classical column generation
scheme described by Desrochers et al. (1992). Each time a column is
generated (and its associated variable), we also have to generate as many
variables as the number of customers that are visited by the new route.
It is important to remark that these variables have 0 cost and do not
appear in the objective function. We also have to add one consistency
constraint.

The simplex solution provides respectively the dual variables associ­
ated to constraints (8.19), (8.20) and (8.21) for the optimal solution of
the restricted master problem: ai, {3i and wk. Consider a new route ko
defined by a column with elements (aiko)(i=l,oo.,n)' Its reduced cost is
equal to:

n

Cko = Cko - L aikoai - QWko
i=l

(8.24)

Suppose that Cko < 0, we need to show that with the new constraints
and the new variables Yiko, the corresponding column will enter in the
basis. To do that, we have to just prove that the dual problem (Da) of
the new problem (MPs)(with the new variables and constraints) is not
feasible. The new column for Xko in (lV!Ps)corresponds to a constraint
in (Da) that is:

n

L aiko ai + QWko ~ Cko
i=l

(8.25)
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But since Wko 2:: °then the constraints (8.25) can not be satisfied
facing equation (8.24) and the fact that the reduced cost Cko is strictly
negative. So, the dual problem (D3) is not feasible. In (D3), the new
variables do not operate in the objective function and in the initial con­
straints. So we are sure that the new solution of the dual problem will
be lower than the first one. Thus, it is clear that the variable Xko is going
to enter in the basis and will decrease the value of the objective function.

Because it is accounted directly in the master problem for the capacity
of the vehicles, we do not have to consider these capacities in the sub­
problem. The subproblem is a special case of the Elementary Shortest
Path Problem with Resource Constraints (see Gueguen et al., 1998, and
the next section). Time and capacity are the only resources that need
to be considered.

A complete description of the problem is given below. (Again, Xij is
equal to 1 if arc (i, j) belongs to the shortest path, °otherwise. ti is
the time at which node i is visited. T is still a large constant.) The
subproblem can then be formulated as:

Minimize I: (Cij - Cl:j)Xij

(i,j)EA

subject to

I: Xip - I: Xpj = 0, Vp EN \ {a}
(i,p)EA (p,j)EA

I: XOi + I: XiO = 2
(O,i)EA (i,O)EA

ti + Si + tij - (1- Xij)T::; tj, V(i,j) E A
ai ::; ti ::; bi ,Vi E N

Xij E {O,l},V(i,j) E A

To solve the above problem, we can use the algorithm by Gueguen et
al. (1998) (summarized in the next section) which is also an adaptation
of the frequently used algorithm proposed by Desrochers (1988). This
algorithm solves the non Elementary Shortest Path Problem with Re­
sources Constraints. It is important to note that this approach is valid
when there is a strong assumption that the service time is independent
of the quantity that is delivered to a customer.

When the optimal solution is reached, one suggestion is to detect and
add in the master problem the violated constraints (8.17) and try again
to add new columns by solving the subproblem. This should improve
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the quality of the linear relaxation of the set covering problem and it
is important to remark that adding the violated constraints does not
change the formulation of the subproblem.

5.6.2 The Branching Scheme for the SDVRPTW.

The column generation gives the optimal solution of the linear relax­
ation of the set covering formulation (IvJP3). If all the variables Xk have
an integer value, the solution is also optimal for the SDVRPTW since
we do not demand that the variables Yik be also integer. In the case
that the XkS are fractional, a Branch & Price tree must be explored and
additional columns might be generated at each node of the tree.

It may seem, at first, that the Branch & Price scheme described by
Desrochers et al. (1992) is not reusable. This scheme involves branching
at the first level on the number of vehicles and at the second level, on
the arcs of the subproblem network. It means that if one branches on an
arc (i,j), it imposes that in one branch Xij = 1, i.e. if node i is served,
one is forced to serve node j just after and in the other branch Xij = 0,
i.e. it is forbidden to serve node j just after node i. In each case, some
arcs are deleted in the subproblem network.

Because split is allowed, several vehicles might visit a customer. So,
it is possible, in a solution, that a vehicle k uses the link (i, j) and
some other vehicle 1 uses the link (i, m) where j and m are two different
customers. It is then impossible to delete links in the subproblem. Sub­
sequently the branching rules of the second level are inappropriate in this
case. For the same reason, it is inappropriate to use the rules described
by Barnhart et al. (1998). They proposed that two customers T and
s are covered by the same column on the first branch and by different
columns on the second branch. It is clear that this rule cannot be used
here for the same argument. These methods therefore cannot be used
directly, but similar ideas can lead to a valid branching scheme.

First, it is clear that it is still possible to branch on the number of
vehicles. If the number of vehicles used: LkEfl Xk is fractional, say
equal to v, we create two branches corresponding to LkEfl Xk ::; LvJ and
LkEfl Xk 2: Lv + 1J. In each case, the dual dnv variable associated to
such a constraint is adequately transferred in the subproblem.

Secondly, we can introduce bfj which is equal to 1 if vehicle k goes

through the arc (i,j) and 0 otherwise. Then, LkEfl b~jXk is equal to the
number of time arc (i,j) is covered by all the vehicles. But, since 2 cycle
splits do not appear in an optimal solution, it is possible to generate an
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optimal solution for which this sum is equal to 0 or 1. Thus, if this value
is fractional, then we create two branches, one where the sum is equal to
1, and one where it is equal to O. And in each case, the dual variables
lij associated to the new constraints are appropriately transferred in the
subproblem. But no arcs are deleteq. of the subproblem network.

It is very important to remark that it is not true for the arcs like (0, i)
and (i, 0) for which LkEO btxk is still integer but might have a value
higher than 1 specially if the demand of a client i is larger than the ca­
pacity of the vehicles.

The difference with the branching rules of Desrochers et al. (1992)
is that here all the constraints in the Master Problem are introduced.
Then, the reduced cost of a new column ko is equal to:

n

Cko = cko - L aiko (}:i - L b~J lij - dnv

i=l (i,j)EA

The rest of the subproblem does not change. What remains is to
conduct computational testing of the above ideas for SDVRPTW.

6. CONCLUSION

This chapter is primarily about column generation solution method­
ology for vehicle routing problems with time windows. The motivation
for this is that arc routing problems with time windows are "hard" and
at the present time we do not know how to describe this kind of prob­
lems using traditional integer programming models. Thus, such problems
have to be transformed into an appropriate node routing graphs and the
solutions to these vehicle routing problems are then to be transformed
back into their original arc routing settings.

The first three sections of this chapter address the issue of when a
transformation of an arc routing problem into a node routing one is nec­
essary and when, or, from a computational point of view, for what arc
routing problems a transformation to node routing is appropriate. An
additional motivation for such a transformation is the fact that for hard
node routing problems, for instance the VRPTW, a numerous algorithms
and extensive solution software have been developed over the past years
which now could be used to solve hard arc routing problems in their
node routing "image". The three sections, also attempt to provide a
partial description and account of the different transformation schemes
proposed over the years. In section 3, transformations of capacitated
arc routing problems with and without split deliveries into an equivalent
node routing problem are described in some detail.
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The node routing problem analyzed in the second part of this chapter
is the capacitated node routing problem with time windows. This is a
very important problem in the node routing literature with numerous
applications in real-life (Desrochers, et al. 1992). The solution method­
ology for this problem has been "traditionally" based on a set covering
problem representation followed by an implementation of a suitable col­
umn generation solution procedure. For this problem, starting from
section 4, in addition to the more traditional solutions based primarily
on the work of Desrochers (1988), we describe a very recent solution ap­
proach based on the work of Cueguen et al. (1998), and Cueguen et al.
(1999). In these two papers, Desrocher's (1988) dynamic programming
scheme for solving the shortest path with resource constraints problem
not necessarily as an elementary path has been modified to account for
the fact that for some problems a solution has to be in the form of an
elementary shortest path. We have reviewed these findings in detail.
We have also examined the capacitated node routing problem with time
windows and split deliveries and presented a column generation model
for its solution. This new problem variant adds a number of nontrivial
complications to an already hard problem. Following Mullaseril (1996)
and Mullaseril and Dror (1997), by restricting the split options, a solu­
tion similar to the one developed for the non-split delivery problem is
described.

In summary, this chapter describes solutions for node routing problems
based on problems which originated in a real-life arc routing setting. In
the process, we reviewed in detail the recent interesting developments in
the column generation solution methodology.
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1. INTRODUCTION
Arc routing problems (ARPs) arise naturally in contexts where streets

require treatments, or customers located along road must be served.
Most ARPs are NP-hard and of large scale. They can therefore rarely
be tackled by means of exact solution methods. This certainly explains
why numerous heuristic algorithms have been developed for the solutions
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of ARPs. We will try in this chapter to give an overview of the main
approaches and tools that are commonly used in heuristic procedures for
ARPs. We do not aim to make an exhaustive survey of all articles that
are devoted to this topic. We seek, however, to point out that the ingre­
dients used in the heuristic methods strongly depend on the structure of
the underlying graph.

ARPs are formally defined over a graph G = (V, E u A), where V is
the vertex set, E is the edge set, and A is the arc set. The traversal
cost Cij of an edge or arc (Vi, Vj) in EuA is supposed to be non-negative
and is also called length of (Vi,Vj). In case of an edge (Vi,Vj) in E, it
is usually assumed that Cij = Cji' G is called directed if E is empty,
undirected if A is empty, and mixed if both E and A are non-empty. A
chain or path in G is represented by a vector of the form (ViI' Vi2' ... ,Vi,),

where (Vij' Vij+!) belongs to E U A for j = 1, ... , t - 1. A tour T, or cycle
in G is a path (Vip Vi2' ... ,Vi,) with Vi, = ViI'

The in-degree di of a vertex Vi is the number of arcs entering Vi, its
out-degree dt is the number of out-going arcs, and its degree di is the
total number of edges and arcs incident to Vi. A graph is called even if
each vertex has an even degree. It is symmetric if the in-degree and the
out-degree of each vertex are equal. A graph G = (V, E u A) is balanced
if, given any subset S of vertices, the difference between the number of
directed arcs from S to V \ S and the number of directed arcs from V \ S
to S is less than or equal to the number of undirected edges joining S
and V \ S.

An Eulerian tour in a graph G = (V, E U A) is a tour which contains
every edge and arc exactly once. G is called Eulerian (or unicursal) if it
possesses an Eulerian tour. A subset R ~ E U A of edges and arcs are
said to be required, i.e. they must be serviced or covered by a vehicle.
A covering tour for R is a tour that traverses all edges and arcs of R at
least once. In the Chinese Postman Problem (CPP), one seeks a mini­
mum cost covering tour for E UA. When R is a proper subset of E UA,
the problem of finding a minimum cost covering tour for R becomes a
Rural Postman Problem (RPP). Extensions of these classical problems
are obtained by imposing capacity constraints. In the Capacitated Arc
Routing Problem (CARP), each required edge or arc (Vi, Vj) in R has a
non-negative demand qij, and all arcs and edges in R must be covered
by a fleet of identical vehicles of capacity Q.

This chapter is organized as follows. Section 2 is devoted to uncapac­
itated ARPs, while Section 3 deals with capacitated ones. We describe
in Section 2.1 heuristics for the CPP. The techniques used to solve the
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CPP depend on the structure of the underlying graph G which can be
directed, undirected or mixed. We also analyze a related problem, called
the windy postman problem (WPP), in which G is undirected although
the cost of traversing an edge depends on the direction of traverse. In
Section 2.2, we focus on the RPP and first analyze the directed, undi­
rected and mixed cases. We then consider the Stacker Crane Problem
(SCP) where some edges must be traversed at least once in a given di­
rection, but can also be traversed as often as needed in the opposite
direction. We conclude Section 2.2 by the description of recent algorith­
mic tools that have been developed for the solution of RPPs.

Section 3 is devoted to the CARP. We first describe simple construc­
tive heuristics and then analyze two-phase constructive methods which
belong to two different categories: cluster first-route second and route
first-cluster second heuristics. We finally review adaptations of meta­
heuristics for the solution of the CARP (e.g., Simulated Annealing and
Tabu Search). A conclusion follows in Section 4, where examples are
given to show that the described classical models can easily be extended
to deal with real-life problems.

2. HEURISTICS FOR UNCAPACITATED
ARC ROUTING PROBLEMS

2.1. THE CHINESE POSTMAN PROBLEM

Consider a graph G = (V, E U A). The chinese postman problem
(CPP) is to determine a tour of minimum cost that covers all edges
and arcs in E U A. The CPP is polynomially solvable if G is directed
or undirected. However, both the mixed CPP and the WPP are NP­
hard. We describe in this section algorithms for the solution of these
four problems. The procedures described for the solution of the directed
and undirected CPP are exact methods that are often used as basic in­
gredients for more complex ARPs. We have therefore decided to include
them in this chapter.

2.1.1 The undirected chinese postman problem.
An Eulerian tour in an undirected graph G = (V, E) is a tour which

contains every edge exactly once. Finding an Eulerian tour in an Eulerian
undirected graph is an easy problem that can be solved, for example,
by means of the O(IEI) algorithm described in [17]. This algorithm is
outlined below. Other procedures are described in chapter 10 of [21].

Algorithm EULERIAN-CYCLE

INPUT: An Eulerian undirected graph G = (V, E).

OUTPUT: An Eulerian tour Ton G.
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Step 1. Determine a tour T covering some edges in E. If T covers all
edges in T then stop.

Step 2. Consider any vertex v on T incident to an edge not on T. Form
a second tour T'containing v and such that T and T' are edge­
disjoint.

Step 3. Let el, e2 be two consecutive edges incident to v on T and let
e3, e4 be two consecutive edges incident to v on T'. Merge T and
T' into a tour Til, starting at v with el, following T until it meets
v by way of e2, then continue on T', starting with e3 until v is met
by way of e4.

Step 4. Set T := Til. If T covers E then stop, else return to Step 2.

It is well-known that an undirected graph is Eulerian if and only if
it is even. Assume that edges are added to a non Eulerian graph G in
order to create an even graph G'. An Eulerian tour in G' corresponds to
a chinese postman tour in G. In order to solve the CPP to optimality,
the edges added to G must be of least total cost. As shown in [17], these
edges can be determined by solving a perfect matching problem on a
graph whose vertices are the odd-degree vertices of G. The algorithm
that solves the CPP on an undirected graph can be described as follows.

Algorithm UCPP

INPUT: An undirected graph G = (V, E).

OUTPUT: A minimum cost chinese postman tour T on G.

Step 1. IfG is even then determine a chinese postman tour T by means
of the EULERIAN-CYCLE algorithm, and stop.

Step 2. Determine the set Va of odd degree vertices in G. Construct a
complete graph Go with vertex set Va. Define the cost of an edge
(Vi, Vj) in Go as the length of the shortest chain S Pij between Vi

and Vj in G.

Step 3. Find a minimum cost perfect matching in Go.

Step 4. Set G' := G. For each edge (Vi,Vj) in the optimal matching,
add to G' all edges that lie on SP;.j.

Step 5. Determine an Eulerian tour T on0' by means of the EULERIAN­
CYCLE algorithm, and stop. T corresponds to an optimal chinese
postman tour on G.

Step 3 of the above algorithm can be solved by means of the O(1V13 )
algorithm proposed in [321. More elaborate algorithms of lower complex­
ity can also be used (see, e.g., [24],[13]).
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2.1.2 The directed chinese postman problem.
The directed CPP is also polynomially solvable. We first observe that

a solution exists if and only if G is strongly connected. The techniques
used to solve the directed CPP are similar to those describe for the
undirected case. Assume first that G is symmetric, i.e., each vertex in G
has equal in- and out-degrees. In such a case, the chinese postman tour
correspond to an Eulerian circuit in G. Such a circuit can be obtained
by means of the following algorithm described in [1] and [17].

Algorithm EULERIAN-CIRCUIT

INPUT: A symmetric directed graph G = (V, A).

OUTPUT: An Eulerian tour T on G.

Step 1. Construct a spanning anti-arborescence rooted at a vertex v in
G.

Step 2. Order and label the arcs out-going from v in an arbitrary fash­
ion. Order and label the arcs out of any other vertex in an arbi­
trary fashion, as long as the last arc is the arc used in the arbores­
cence.

Step 3. Construct a tour T that starts at v with the lowest labelled
arc out-going from v. Then continue as follows: whenever a vertex
is entered, leave it by the arc not yet traversed having the lowest
label.

If G is not symmetric, then copies of some arcs must be added to G so
that the augmented graph G' becomes symmetric. An Eulerian circuit in
G' corresponds to a chinese postman tour in G. The symmetric graph G'
can be obtained from G by solving a transportation problem described
in [5]. This solution method for the directed CPP has a complexity
O(IAIIV12 ) and can be summarized as follows.

Algorithm DCPP

INPUT: A directed graph G = (V, A).

OUTPUT: A minimum cost chinese postman tour T on G.

Step 1. If G is symmetric then determine a chinese postman tour T by
means of the EULERIAN-CIRCUIT algorithm, and stop.

Step 2. Compute bi = di - dt for each vertex Vi in V. Define I =
{Vi E VI bi > O} and J = {Vj E VI bj < O}.

Step 3. Solve the transportation problem in which each vertex Vi E I
has supply bi, each vertex Vj E J has demand Ibjl, and the cost of
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the arc (Vi, Vj) E I x J is equal to the length of the shortest path
SPij linking Vi to Vj in G.

Step 4. Let Xij be the flow on arc (Vi, Vj) in the optimal solution of the
transportation problem. Set G' := G. For each pair (Vi,Vj) E
I x J, add to G' Xij copies of each arc that lies on SPij .

Step 5. Determine an Eulerian tour T in G' by means of the EULERIAN­
CIRCUIT algorithm, and stop. T corresponds to an optimal chinese
postman tour on G.

Other algorithms have been proposed for the solution of the directed
CPP. For example, Edmonds and Johnson [17] propose to use an O(IVI3 )
algorithm which determines a minimum cost flow on an extended graph.
Lin and Zhao [34] have shown that the use of the Complementary Slack­
ness Theorem makes it possible to solve the directed CPP directly on
the original graph. Their algorithm requires (IAI - IVI + 1) calls to an
O(IVI 2 ) procedure. For sparse graphs, this complexity is better than the
O(IVI3) and the O(IAIIVI2

) algorithms mentioned above.

2.1.3 The mixed chinese postman problem.
Consider a mixed graph G = (V, E U A). It is well-known that G

is Eulerian if and only if it is even and balanced. Notice that if G is
even and symmetric, then it is also balanced. The mixed CPP is NP­
hard. It is however polynomially solvable if G is even. Consider first
the case where G is even and balanced. An optimal tour can easily be
determined by means of a three step algorithm that first directs some
edges in E in order to get a symmetric graph G', then directs the edges
of G' for getting a symmetric directed graph Gil, and finally determines
an Eulerian tour in Gil. This algorithm can be described as follows.

Algorithm EVEN-BALANCED-MCPP

INPUT: An even balanced mixed graph G = (V, E U A).

OUTPUT: An Eulerian tour T on G.

(construction of a symmetric graph G')

Step 1. Construct a directed graph H = (V, A U A') by replacing each
edge in E with a pair of opposite directed arcs. Assign to each arc
of AuA' an upper bound of 1. Also, assign to each arc of A a lower
bound of 1 and to each arc of A' a lower bound of O. Determine
a compatible flow in H. Let Xij be the flow on arc (Vi, Vj). Set
G' := G and consider each undirected edge (Vi, Vj): if Xij = 1 and
Xji = 0, then orient this edge from Vi to Vj'

(construction of a symmetric directed graph Gil)
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Step 2. Set Gil := G'. If Gil is a directed graph, then go to Step 3.
Construct an Eulerian directed tour on each connected component
of the partial graph of Gil induced by its undirected edges. Orient
the edges of Gil as in the Eulerian directed tours.

(construction of an Eulerian tour)

Step 3. Construct an Eulerian tour T on G' by means of the EULERIAN­
CIRCUIT algorithm. T corresponds to an Eulerian tour on G.

If the mixed graph G = (V, EuA) is even but not necessarily balanced,
then the problem can still be solved in polynomial time by means of an
algorithm proposed by Edmonds and Johnson [17] (see also [23],[37],
[38]). This algorithm can be described as follows.

Algorithm EVEN-MCPP

INPUT: An even mixed graph G = (V, E u A).

OUTPUT: A minimum cost chinese postman tour T on G.

Step 1. Construct a directed graph G1 = (V, A UAd from G by arbi­
trarily orienting each edge in E (i.e., replace the edge set E by an
arc set Ad. Compute the difference bi between the in-degree and
the out-degree of each vertex Vi in G1. If all bi = 0, set G3 := G I

and go to Step 3.

Step 2. Construct a network G2 = (V, A U Al U A2 U A 3,) such that
Al U A2 contains arcs of opposite direction and cost Cij for each
edge (Vi, Vj) in E, and A3 contains an arc (Vj, Vi) with zero cost
for each arc (Vi,Vj) in AI. Assign an infinite capacity on each arc
in A U Al U A2 and a unit capacity on each arc in A3. Attach a
supply of bi units to each vertex with bi > 0 and a demand of Ibil

units to each vertex with bi < O. Find a minimum cost flow in G2
that satisfies the demands. Let Xij be the flow on an arc (Vi, Vj) in
A UAl U A2U A 3 . Set G3 := G. For each arc (Vi, Vj) in A3 do the
following: if Xij = 2 then orient the edge (Vi, Vj) in G3 from Vi to
Vj; if Xij = 0 then orient (Vi, Vj) from Vj to Vi. Augment G3 by
adding Xij copies of each arc (Vi, Vj) in A UAl U A2.

Step 3. Determine an Eulerian tour T on G3 by means of the EULERIAN­
CIRCUIT algorithm. T corresponds to an optimal chinese postman
tour on G.

Different descriptions of this algorithm can be found in [17],[23],[37],
[38]. It is not difficult to prove that, at Step 2, there is a minimum cost
flow in G2 that uses each arc an even number of times. Frederickson [23]
has however pointed out that there may also exist an optimal flow in G2
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that uses some arcs an odd number of times. For example, it may happen
that Xij = 1 for an arc (Vi, Vj) in A3, in which case the corresponding
edge (Vi, Vj) in G is left non-oriented. With such an optimal flow in G2,
the graph G3 obtained at the end of Step 2 is not necessarily even. The
example depicted in Figures 9.1 (a) and 9.1 (b) illustrates this fact. Fred­
erickson [23] has therefore developed a procedure, called EVENPARITY,
for repairing this problem. One may also simply avoid such a situation
by determining a minimum cost flow on a network G2 (instead of G2)
in which each arc in A3 has a capacity of 1 (instead of 2), each vertex
with bi > 0 has a supply of ~ units (instead of bi ), and each vertex with

bi < 0 has a demand of ¥ units (instead of IbiD. Given any optimal
flow in G2, an edge (Vi, Vj) is oriented from Vi to Vj if the flow Xij on the
arc (Vi, Vj) in A3 is equal to 1, and it is oriented from Vj to Vi if Xij = O.
Moveover, 2Xij copies (instead of Xij) of each arc (Vi, Vj) in A UA 1 U A2

are added to G in order to obtain G3. This is illustrated in Figure 9.1(c).

We now study the mixed CPP for non-even mixed graphs G. In this
case, the problem is NP-hard [39]. We describe two possible heuristics
that extend the techniques used for even graphs. Both heuristics have
been developed by Frederickson [23]. The first heuristic, called MCPP1
transforms G into an even graph G' by replicating some edges, and then
uses the EVEN-MCPP algorithm on G' in order to get a chinese postman
tour in G. The second heuristic, called MCPP2, transforms G into
a symmetric graph G' and then augment G' by adding some edges in
order to get an even symmetric graph. A chinese postman tour in G is
determined by applying Steps 2 and 3 of the EVEN-BALANCED-MCPP
algorithm on G'.

Algorithm MCPP1

INPUT: A mixed graph G = (V,EUA).

OUTPUT: A chinese postman tour T on G.

Step 1. Determine the set Vo of odd degree vertices in G. Construct a
complete graph Go with vertex set Vo. Define the cost of an edge
(Vi, Vj) in Go as the length of the shortest chain SPij between Vi

and Vj in G (irrespectively of arc directions). Find a minimum
cost perfect matching in Go, and set G' := G. For each edge
(Vi, Vj) in the optimal matching, augment G' by adding a copy of
each edge and arc that lies on SPij.

Step 2. Determine an optimal chinese postman tour T on G' by means
of the EVEN-MCPP algorithm. T corresponds to a chinese post­
man tour on G.
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The original even non-balanced graph G.
All arcs have unit cost

Each edge has been arbitrarily oriented.

(a)
Step I of the EVEN-MC?? algorithm.

The corresponding non-even graph G3.
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Algorithm MCPP2

INPUT: A mixed graph G = (V, E UA).

OUTPUT: A chinese postman tour T on G.

Step 1. Apply steps 1 and 2 of the EVEN-MCPP algorithm and let
G' = (V, E' UA') be the resulting symmetric graph.

Step 2. Determine the set Vo of odd degree vertices in the partial sub­
graph H' = (V, E') of G'. Construct a complete graph Go with
vertex set Vo. Define the cost of an edge (Vi, Vj) in Go as the
length of the shortest chain SPij between Vi and Vj in the sub­
graph H = (V, E) of G. Find a minimum cost perfect matching
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in Go, and set Gil := G'. For each edge (Vi, Vj) in the optimal
matching, augment Gil by adding a copy of each edge that lies on
SPij .

Step 3. Determine an optimal chinese postman tour T on Gil by means
of Steps 2 and 3 of the EVEN-BALANCED-MCPP algorithm. T
corresponds to a chinese postman tour on G.

As shown in Frederickson [23], both algorithms MCPPI and MCPP2
have a worst case ratio of 2, and these bounds are sharp. However, if the
two heuristics are applied in succession, the worst case ratio goes down
to 5/3. To our knowledge, it has not been proved that this better bound
is sharp. The combined algorithm can simply be described as follows.

Algorithm COMBINED-MCPP

INPUT: A mixed graph G = (V, E U A).

OUTPUT: A chinese postman tour on G.

Step 1. Determine two chinese postman tours T and T' on G by means
of the MCPPI and MCPP2 algorithms, respectively.

Step 2. Select the tour of smallest cost among T and T'.

2.1.4 The windy postman problem.
The windy postman problem (WPP) consists of determining a least

cost traversal of all edges of an undirected graph G = (V, E) in which
the cost of traversing an edge depends on the direction of travel. This
problem was first introduced by Minieka [38], and Guan [29] has shown
that it is NP-hard except for some special cases which can be solved
in polynomial time. For example, Guan [29] has shown that if the two
possible orientations of each cycle in G have the same length, then the
WPP can be solved by means of the following algorithm.

Algorithm GUAN-WPP

INPUT: An undirected graph G = (V, E) where Cij may differ from
Cji, and in which the two possible orientations of each cycle have
the same length.

OUTPUT: A minimum cost windy postman tour on G.

Step 1. Consider the graph G' = (V, E) in which the cost C~j of an edge
. Cij+cii

(Vi, Vj) IS set equal to 2 .

Step 2. Determine an optimal chinese postman tour T on G' by means
of the UCPP algorithm described in Section 2.1.1. T corresponds
to an optimal windy postman tour on G.
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Another sufficient condition for polynomial solvability is for G to be
Eulerian. For this case, [49] has proved that the EVEN-MCPP described
in Section 2.1.3 can be slightly modified in order to solve the WPP to
optimality. This algorithm can be described as follows.

Algorithm EULERIAN-WPP

INPUT: An Eulerian undirected graph G = (V, E) in which Gij may
differ from Cji.

OUTPUT: A minimum cost windy postman tour on G.

Step 1. Apply Step 1 of EVEN-MCPP (see Section 2.1.3) by orienting
an edge (Vi, Vj) in E from Vi to Vj if Gij < Cji, and from Vj to Vi

otherwise.

Step 2. Apply Step 2 of EVEN-MCPP (see Section 2.1.3) by assigning
a cost Cji;Cij (instead of zero) to each arc (Vj,Vi) in A3.

Step 3. Apply Step 3 of EVEN-MCPP in order to get a tour T. This
tour corresponds to an optimal windy postman tour on G.

Win [49] has also suggested to take advantage of the easiness of the
WPP on Eulerian graphs for the design of a heuristic algorithm for the
general WPP. This algorithm can be described as follows.

Algorithm WPP

INPUT: An undirected graph G = (V, E) in which Cij may differ from
Cji·

OUTPUT: A windy postman tour in G.

Step 1. If G is Eulerian then determine an optimal windy postman tour
by means of the EULERIAN-WPP algorithm, and stop.

Step 2. Consider the graph G' = (V, E) in which the cost c;j of an edge
(Vi,Vj) is set equal to Cii~Cii.

Step 3. Determine the set Vo of odd degree vertices in G'. Construct a
complete graph Go with vertex set Vo. Define the cost of an edge
(Vi, Vj) in Go as the length of the shortest chain SPij between Vi

and Vj in G'. Find a minimum cost perfect matching in Go, and set
Gil := G. For each edge (Vi, Vj) in the optimal matching, augment
Gil by adding a copy of each edge that lies on SPij . (The resulting
graph Gil is Eulerian and has the original costs as in G).

Step 4. Determine an optimal windy postman tour T on Gil by means
of the EULERIAN-WPP algorithm. T corresponds to a windy post­
man tour on G.
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Win [49] has shown that the above algorithm has a worst case ratio
of 2, and that this bound is sharp.

2.2. THE RURAL POSTMAN PROBLEM
Consider a graph a = (V, E U A), and let R be a subset of required

arcs and edges in a. The rural postman problem (RPP) is to determine
a minimum cost covering tour for R. The set of vertices in a incident
to at least one arc or edge in R is denoted VR, and each vertex in VR
is said to be required. The required subgraph aR = (VR, R) is defined as
the partial graph of a induced by R. The RPP is polynomially solvable
if a is directed or undirected and aR is connected. However, in general,
the RPP is NP-hard [33]. We describe in this section algorithms for
the solution of the directed, undirected and mixed RPP. We also study
the stacker crane problem (SCP) which can be viewed as a particular
directed RPP. Finally, we describe new tools that have recently been
developed for the solution of RPPs.

2.2.1 The undirected rural postman problem.
Consider an undirected graph a = (V, E), and let R be its subset of

required edges. Since a may contain many non-required vertices, the
RPP is often solved on a simplified graph as = (VR, RUEs) derived
from aR as follows. An edge (Vi, Vj) is first included in Es for each
Vi,Vj E VR. The cost of an added edge (Vi,Vj) in Es is set equal to the
length of a shortest chain between Vi and Vj in a (while the edges in R
have the same cost as in a). The set Es of added edges is then reduced
by eliminating

(a) all edges (Vi, Vj) E Es for which Gij = Gik + Ckj for some Vk E VR,
and

(b) one of two parallel edges if they have the same cost.

A rural postman tour T is then determined on as, and a tour on a is
obtained by replacing each non-required edge on T by its corresponding
shortest chain in a.
To illustrate, consider the graph a shown in Figure 9.2(a), where the

edges of R are shown in bold lines and the numbers correspond to edge
costs. The simplified graph as is represented in Figure 9.2(b), and a ru­
ral postman tour covering R is shown on as and on a in Figures 9.2(c)
and 9.2(d), respectively.

From now on, we will assume that the considered graph a has al­
ready been simplified (hence V = VR). Consider first the case where
the required subgraph aR is connected. An optimal postman tour in
a can easily determined by means of a procedure that works along the
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(a)

A graph G.

(c)
A rural postman tour on GS'

Figure 9.2

~7

(b)
Its corresponding
simplified graph GS'

(d)

The corresponding
rural postman tour on G.

lines of the UCPP procedure described in Section 2.1.1. A polynomial
algorithm is described below.

Algorithm CONNECTED-URPP

INPUT: An undirected graph G = (V, E), and a subset R of required
edges such that GR = (V, R) is connected.

OUTPUT: A minimum cost rural postman tour on G.

Step 1. Set G' := GR. If G' is even then go to Step 3.

Step 2. Determine the set Vo of odd degree vertices in G'. Construct a
complete graph Go with vertex set Vo. Define the cost of an edge
(Vi, Vj) in Go as the length of the shortest chain S Pij between Vi

and Vj in G. Find a minimum cost perfect matching in Go. For
each edge (Vi,Vj) in the optimal matching, add to G' all edges that
lie on SPij.

Step 3. Determine an Eulerian tour T on G' by means of the EULERIAN­
CYCLE algorithm (see Section 2.1.1). T is an optimal rural post­
man tour on G.

Consider now the case where the required subgraph GR is not con­
nected. Frederickson [23] has suggested to solve the undirected RPP
by means of a procedure that works along the lines of the Christofides
heuristic for the undirected traveling salesman problem [8]. This pro­
cedure, which has a worst case ratio of 3/2 [23], can be described as
follows.
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Algorithm URPP

INPUT: An undirected graph G = (V, E) and a set R of required edges.

OUTPUT: A rural postman tour on G.

Step 1. Set G':= GR, and let CI, ... ,Cc denote the connected compo­
nents of GR. If c = 1 then go to Step 3. Construct a complete
undirected graph G" with vertex set {I, ... ,c}, and in which the
cost of an edge (p, q) is equal to the length of the shortest chain
between a vertex of Cp and a vertex of Cq in G.

Step 2. Determine a minimum cost spanning tree in G". For each edge
(p, q) in the optimal spanning tree, add to G' all edges that lie on
the shortest chain between a vertex of Cp and a vertex of Cq in G.

Step 3. Apply Steps 2.and 3 of the CONNECTED-URPP algorithm in
order to obtain an Eulerian tour T on G'. T corresponds to a
rural postman tour on G.

2.2.2 The directed rural postman problem.
Consider a directed graph G = (V, A). As for the undirected case,

the directed RPP can be solved on a simplified graph Gs = (VR, R U

As) derived from GRas follows. Two arcs (Vi, Vj) and (vj, v;) are first
included in As for each Vi, Vj E VR. The cost of an added arc (Vi, Vj)

in As is set equal to the length of a shortest path linking Vi to Vj in G
(while the arcs in R have the same cost as in G). The set As of added
arc is then reduced by eliminating

(a) all arcs (Vi, Vj) E As for which Gij = Gik + Ckj for some Vk E VR, and

(b) one of two parallel arcs if they have the same cost and the same
orientation.

A rural postman tour T is then determined on Gs, and a tour on G is
obtained by replacing each non-required arc on T by its corresponding
shortest path in G.

Christofides et al. [9] have observed that some non-required arcs in As
can be transferred into the set R of required arcs without modifying the
optimal value of the directed RPP. Such a transfer of an arc (Vi, Vj) E As
can be performed if at least one of the three following properties holds:

(i) (Vi,Vj) is the unique arc out-going vertex Vi in Gs;

(ii) (Vi, Vj) is the unique arc entering vertex Vj in Gs;

(iii) there is a partition of VR into two sets WI and W2, such that (Vi, Vj)

is the unique arc directed from WI towards W2.
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To illustrate, consider the graph G shown in Figure 9.3(a), where the
arcs of R are shown in bold lines and the numbers correspond to arc
costs. A first simplification leads to the graph Gs represented in Figure
9.3 (b). This graph can be further modified by transferring three arcs
from As to R. The resulting graph is shown in Figure 9.3 (c). Notice
that the required subgraph of this latter graph is connected, and an op­
timal rural postman tour can therefore be obtained in polynomial time.
Such a situation was not apparent when dealing with the original graph
G since GR is not connected.

~
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(a)

A graph G.

2~
~2

J

(b)
Its corresponding
simplified graph GS'

Figure 9.3

2~
~2

I

(c)
The graph obtained

by transferring
non-required arcs into R.

From now on, we will assume that the considered graph G has already
been simplified, using the above mentioned tools. Suppose first that
the required subgraph GR is connected. In this case, the directed RPP
can be solved in polynomial time by means of an algorithm that works
along the lines of the DCPP algorithm described in Section 2.1.2 for the
directed Chinese Postman Problem. The algorithm can be described as
follows.

Algorithm CONNECTED-DRPP

INPUT: A directed graph G = (V, A) and a set R of required arcs such
that GR = (V, R) is connected.

OUTPUT: A minimum cost rural postman tour T on G.

Step 1. S~t G' := GR. If G' is symmetric then go to Step 5.

Step 2. Compute bi = di - d; for each vertex Vi in G'. Define I =
{Vi E VI bi > O} and J = {Vj E VI bj < O}.

Step 3. Solve the transportation problem in which each vertex Vi E I
has supply bi, each vertex Vj E J has demand Ibjl, and the cost of
the arc (Vi, Vj) E I x J is equal to the length of the shortest path
SP.;j linking Vi to Vj in G.
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Step 4. Let Xij be the flow on arc (Vi, Vj) in the solution of the trans­
portation problem. For each pair (Vi, Vj) E I x J, add to G' E Xij

copies of each arc that lies on SPij .

Step 5. Determine an Eulerian tour Ton G' by means of the EULERIAN­
CIRCUIT algorithm (see Section 2.1.2). T is an optimal rural post­
man tour on G.

Consider now the case where the required subgraph GR is not con­
nected. Two main heuristic approaches have been proposed to solve the
directed RPP. The first approach, which will be denoted S&C, starts by
extending GR to a symmetric graph G', and then add arcs to G' in order
to get a symmetric, strongly connected graph. The second approach,
called C&S, first extends GR to a connected graph G', and then add
arcs to G' in order to get a symmetric graph. An algorithm following
the S&C approach has been suggested by Ball and Magazine [3] and is
described below.

Algorithm S&C-DRPP

INPUT: A directed graph G = (V, A), and a set R of required arcs.

OUTPUT: A rural postman tour T on G.

Step 1. Set G' := GR. If G' is symmetric then go to Step 3.

Step 2. Apply Steps 2, 3 and 4 of the CONNECTED-DRPP algorithm
in order to transform G' into a symmetric graph.

Step 3. If G' is connected then go to Step 4. Let C l , ... , Cc be the
connected components of G', and let Lij denote the length of a
shortest path linking Vi to Vj in G. Construct a complete undi­
rected graph G' with vertex set {I, ... , e}, and with edge costs
c'pq = min{Lij + Ljil Vi is in Cp and Vj is in Cq }. Determine
a minimum cost spanning tree in Gil. For each edge (p, q) in the
optimal spanning tree, consider the vertices Vi in Cp and Vj in Cq

such that 4q = L ij + L ji , and add to G' all arcs that lie on the
shortest paths linking Vi to Vj and Vj to Vi in G.

Step 4. Determine an Eulerian tour T in G' by means of the EULERIAN­
CIRCUIT algorithm (see Section 2.1.2). T corresponds to a rural
postman tour on G.

This algorithm is illustrated in Figure 9.4. In this example, the com­
plete undirected graphGil contains two vertices linked by an edge ofcost 3.

The C&S approach has been studied in several papers (see for example
[3] and [9]). We describe below the algorithm proposed by Christofides
et al. [9].



Y
2

1 2 2 3

2 3 2

(a)
A graph G.

Algorithm C&S-DRPP

?

0 I - 0I 2

,~
(b)

The symmetric graph
produced in Step 2.

Figure 9.4

Heuristic Algorithms 343

Y
2

I 2

2 3

(c)
The strongly connected
and symmetric graph
produced in Step 3.

INPUT: A directed graph G = (V, A), and a set R of required arcs.

OUTPUT: A rural postman tour T on G.

Step 1. Set G' := GR. If G' is connected then go to Step 3.

Step 2. Let C I , ... , Cc be the connected components of G'. Construct
a complete directed graph Gil with vertex set {I, ... , e}, and with
edge costs e'!xI = min {Cij IVi is in Cp and Vj is in Cq }. Determine a
minimum cost spanning arborescence in Gil (see for example [16]),
rooted at any arbitrary vertex. For each arc (p, q) in the optimal
spanning arborescence, consider the vertices Vi in Cp and Vj in Cq

such that e'!xI = Cij, and add to G' all arcs that lie on the shortest
path linking Vi to Vj in G.

Step 3. Apply Steps 2, 3 and 4 of the CONNECTED-DRPP algorithm
in, order to transform G' into a symmetric graph.

Step 4. Determine an Eulerian tour T in G' by means of the EULERIAN­
CIRCUIT algorithm (see Section 2.1.2). T corresponds to a rural
postman tour on G.

The above algorithm can be repeated by considering in turn all ver­
tices in Gil as root of the spanning arborescence (see Step 2), and then
selecting the best solution. To illustrate, consider the graph G shown in
Figure 9.5(a). The complete graph Gil contains 2 vertices and two span­
ning arborescence can therefore be determined for getting a connected
graph G'. These two graphs are shown in Figure 9.5(b) and their sym­
metric extension is represented in Figure 9.5 (e). Notice that the second
solution is better than the first one.
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As observed by Christofides et al. [9], any rural postman tour can
be improved by replacing two consecutive non-required arcs (Vi, Vj) and
(Vj, Vk) on the tour, by the arc (Vi, Vk) if Cik < Cij +Cjk. For example, the
first solution in Figure 9.5(c) can be transformed into the second better
one by replacing two consecutive arcs of cost 2 and 1, respectively, by an
arc of cost 2.

2.2.3 The mixed rural postman problem.
The mixed RPP is defined on a mixed graph G = (V,E U A). It can

be assumed that each vertex in V is incident to a required edge or arc,
and that each edge in E is required. Indeed, if this is not the case, then
the original graph can be simplified in a similar way as in the previous
sections. More precisely, consider the graph G' obtained from G by
replacing each edge (Vi, Vj) in E by two arcs (Vi, Vj) and (Vj, Vi) of cost
Gij' The simplified graph GS(VR, RUAs) is obtained from GR(VR, R) by
first including in As two arcs (Vi, Vj) and (Vj, Vi) for each Vi, Vj in VR, the
cost of (Vi, Vj) being set equal to the length of the shortest path linking
Vi to Vj in G' (while the arcs and edges in R have the same cost as in
GR. The set As of added arcs is then reduced by eliminating

(a) all arcs (Vi, Vj) E As for which Gij = Gik + Ckj for some Vk E VR,

(b) all arcs (Vi,Vj) E As which are parallel to a required edge with the
same cost, and
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(c) all arcs (Vi,Vj) E As which are parallel to a required arc with the
same cost and the same orientation.

Notice that all edges in Gs are required. This construction is illus­
trated in Figure 9.6.

A graph G.

2

Figure 9.6

~
~~ ...._2....0
4 I 1

2

Its corresponding
simplified graph GS.

From now on, we will assume that the considered graph G = (V, EuA)
has been simplified, which means that E C R. We denote A R = A n R
the set of required arcs in G. Very few papers have been devoted to
the design of heuristic solution methods for the mixed RPP. The main
reason is probably that this problem can be tackled by means of tools
similar to those used for the solution of the directed or undirected RPP.
The construction of a solution is done by first choosing an orientation for
each required edge, then connecting the required subgraph by means of
a minimum cost spanning tree, and finally adding arcs in order to get an
even symmetric graph on which an Eulerian circuit can be determined.
As for the mixed CPP, when arcs are added to the graph in order to
make it symmetric, a possibility is given to reverse the chosen orienta­
tion of a required edge.

We describe below a heuristic method proposed by Corberan et al.
[11] that works along these lines. In addition to the above mentioned
strategy, these authors propose to orient the required edges in such a
way that each vertex in the resulting directed graph has its out-degree
almost equal to its in-degree. This is done as follows.
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Algorithm MRPP

INPUT: A mixed graph C = (V, E U A) and a set R of required edges
and arcs.

OUTPUT: A rural postman tour on C.

(Orientation of the edges)

Step 1. Construct a directed graph C' = (V, AE U AR) by orienting
in turn each required edge (Vi, Vj) in E as follows. First set AE
equal to the empty set, and let b~ denote the difference between
the in-degree and the out-degree of a vertex Vi in C'. A required
edge (Vi, Vj) is oriented from Vi to Vj if b~ 2: bi ' and from Vj to Vi

otherwise. Once an edge has been oriented, it is introduced into
A E and the next required edge is considered.

(Construction of a connected graph C')

Step 2. Let C 1, ... ,Cc denote the connected components of CR. Define
8; = min {cjil (vj,vd E EUA} and 8; = min {Cijl (Vi,Vj) E
E U A}. Assign the following cost Sj to each arc (Vi, V j) lin king
two connected components of CR:

if b~ :S 0 and bi 2 0
if b~ > 0 and bi 2 0
if b~ :S 0 and bi < 0
if b~ > 0 and bi < 0

Construct a complete undirected connected graph Cc with vertex
set {I, ... ,c} and edge costs d;q = min{Sjl Vi E Cp and Vj E Cq or
Vi E Cq and Vj E Cp }. Determine a spanning tree S of minimum
cost in Cc and introduce the corresponding arcs into C'. If C' is
symmetric then go to Step 5.

(Extension of C' to a symmetric graph)

Step 3. Construct a network H = (V, AE U AeU A~ U A) such that
AE UAecontains directed arcs of opposite orientation and cost Cij

for each edge (Vi, Vj) in E, and A~ contains a directed arc (Vj, Vi)

with zero cost for each (Vi, Vj) in AE. Assign an infinite capacity
to each arc in AE U AeU A and a capacity of 2 to each arc in A~ .
As in Step 1, let b~ denote the difference between the in-degree and
the out-degree of a vertex Vi in C'. Attach a supply of b~ to each
vertex of H with b~ > 0, and a demand of Ib~1 to each vertex with
b~ < O. Find a minimum cost flow in H that satisfies the demands.
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Let Xij be the flow on arc (Vi, Vj). For each arc (Vj, Vi) in A'E do the
following: if Xji = 2 then change the orientation of (Vi, Vj) in G'
(i.e., orient it from Vj to Vi instead of from Vi to Vj), and if Xji = 1
then remove the orientation of the arc (Vi, Vj) in G'. Augment G'
by adding Xij copies of each arc (Vi, Vj) in As U A~ U A. If G' does
not contain any undirected edge then go to Step 5.

(Extension of G' to a directed symmetric graph)

Step 4. Let E' be the set of undirected edges in G'. Determine the set Va
of vertices incident to an odd number of edges in E', and construct a
complete graph Go with vertex set Va. Let Lij denote the length of
a shortest path linking Vi to Vj, using arcs in As U A~ U A. Assign
a cost c?j = min{Lij , L ji } to each edge of Go. Find a perfect
matching !vI in Go of minimum cost and orient each cycle induced
by E' U 1\11 so that the corresponding circuits are of minimum cost
in G. Introduce these circuits into G', in replacement of £'.

(Construction of an Eulerian tour in Gil)

Step 5. Determine an Eulerian tour T in G' by means of the EULERIAN­
CIRCUIT algorithm (see Section 2.1.2). T corresponds to a rural
postman tour on G.

The above algorithm is illustrated in Figure 9.7. The graph G' is first
constructed in Step 1 by successively orienting the edges (a,b), (b,c),
(d,e), (I,d) and (g,h). The costs Sj of the edges (Vi,Vj) linking the
connected components of G' are then computed. For example, there is
one arc entering vertex e and no out-going ones, while vertex 9 has one
out-going arc and no in-coming ones. Hence, the cost of the edge (e, g) is
obtained from its cost in G by subtracting the cost of the shortest edge
or arc out-going e, as well as the cost of the shortest edge or arc entering
g. The new cost of the edge (e, g) is therefore equal to 9 - 1 - 1 = 7. All
costs C~j' as well as the undirected graph Gc are represented in Figure
9.7 (c).

The unique edge of Gc is a minimum cost spanning tree. It corre­
sponds to the edge (e, g) of G which is added to G' in order to get a
connected graph (see Figure 9.7(d)). Notice that we could have deter­
mined a minimum cost spanning tree S according to the original costs
Gij instead of Sj' We try however to build a graph G' which is as close
as possible to a symmetric graph. We therefore favor the choice of edges
(Vi, Vj) where Vi has more in-coming arcs than out-going ones, and where
Vj has more out-going arcs than in-coming ones. By using Cij instead of
Sj' we would have chosen the edge (e, h) instead of (e, g), and the con­
nected graph G' would have a total demand of five units instead of three.
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G' is then transformed into a symmetric graph by solving a minimum
cost flow problem. The resulting graph is represented in Figure 9.7 (e).
The required edges (d, f) and (b, c) are undirected and we therefore enter
Step 4. The complete graph Go is shown in Figure 9.7(f), with its opti­
mal matching IvI in bold lines. The cycle induced by the union of E' and
IvI has two possible orientations of cost 7 and 8, respectively (see Figure
9.7(g)). The best circuit is added to G', and the resulting symmetric
graph is shown in Figure 9.7(h).

Notice that in Step 1, we have not specified the order in which the
edges of E should be considered for their orientation. Corberan et al.
[11] suggest to use a particular ordering of the edges and also propose
some variations for the construction of a spanning tree at Step 2. The
reader interested in these developments is referred to [11].

2.2.4 The stacker crane problem.
Consider an undirected graph G in which some edges must be tra­

versed at least once in a given direction, but can also be traversed as
often as needed in the opposite direction. Such a situation can be rep­
resented by a mixed graph G = (V, E U A) in which each arc in A is
required and parallel to an edge in E with the same cost. The stacker
crane problem (SCP) is to determine a covering tour for A of minimum
cost in G.

Obviously, the SCP is a particular case of the MRPP. It can also be
viewed as a DRPP by replacing each edge with two parallel arcs of oppo­
site direction. Hence, all heuristic methods mentioned in Sections 2.2.2
and 2.2.3 can be used to solve the SCPo Frederickson et at. [22] have
however developed several specific algorithms for which a worst case ra­
tio can be obtained. These algorithms are described below.

For solving the SCP, it is convenient to work on a simplified graph
Gs = (VR, Es U A) where VR is the set of vertices in G incident to at
least one arc in A, and Es contains an edge (Vi, Vj) for each Vi, Vj in
VR . The cost of an edge (Vi, Vj) in Es is set equal to the length of the
shortest chain between Vi and Vj in G. A tour T on Gs can easily be
transformed into a tour on G by replacing each edge of T by its corre­
sponding shortest chain in G.

Figure 9.8 illustrates these concepts. From now on, we will assume
that the given graph G has already been transformed. Notice that this
means that

(i) each arc is required and parallel to an edge of no greater cost,
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(ii) each pair of vertices is linked by an edge, and

(iii) the cost function defined on the edges satisfies the triangle inequal­
ities.

(a)
The original graph G.

(c)

A tour on GS'

(b)
The simplified graph GS'

(d)

The corresponding tour on G.

Figure 9.8

The following simple heuristic has a worst-case ratio of 2. It is illus­
trated in Figure 9.9.

Algorithm SIMPLE-SCP

INPUT: A mixed graph C = (V, E U A).

OUTPUT: A stacker crane tour Ton G.

Step L Set G' = (V,AUA') where AUA' contains directed arcs (Vi,Vj)
and (Vj, Vi) of opposite direction for each arc (Vi,Vj) in A.

Step 2. Let GI , ... ,Ge be the connected components of C'. Construct
a complete undirected graph Ge with vertex set {I, ... , e}, and in
which the cost of an edge (p, q) is set equal to the smallest cost of
an edge between Gp and Gq in C. Find a minimum cost spanning
tree in Ce and let 5 be its corresponding set of edges in G. For
each edge (Vi, Vj) in 5, add two arcs (Vi, Vj) and (Vj, Vi) of opposite
direction into C'.
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Step 3. Determine an Eulerian circuit T in G' by means of the EULERIAN­
CIRCUIT algorithm (see Section 2.1.2). T corresponds to a covering
tour for A in G.

{c,d,e}

a b

(a)
A graph G.

(b)

The graph Gc'

Figure 9.9

(c)
A covering tour for A.

Let CA and Cs denote the total cost of the arcs in A and S, respec­
tively, and let C* be the optimal value of the SCPo The above algorithm
determines a solution of cost 2CA + 2Cs. Since Cs :s; C* - CA, we
have 2CA + 2Cs :s; 2C*, which means that the SIMPLE-SCP algorithm
has a worst case ratio of 2. Frederickson et al. have proposed a more
elaborate procedure which has a worst case ratio of 9/5. It combines
the two following complementary strategies, called LARGE-ARCS and
SMALL-ARCS.

Algorithm LARGE-ARCS

INPUT: A mixed graph G = (V, E U A).

OUTPUT: A stacker crane tour T on G.

Step 1. Let Hand T be the multisets of heads and tails of the arcs in
A. Construct a complete bipartite graph B in which each Vi in H
is linked to each Vj in T by an edge having the same cost as the
edge (Vi, Vj) in E. Determine a minimum cost perfect matching
M in B. Construct a directed graph G' = (V, A U As) where As
is obtained by orienting each edge (Vi, Vj) in M from H to T.

Step 2. Apply Steps 2 and 3 of SIMPLE-SCP to G' in order to determine
a covering tour for A.

Algorithm SMALL-ARCS

INPUT: A mixed graph G = (V, E U A).

OUTPUT: A stacker crane tour T on G.
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Step O. If the arcs in A are not vertex disjoint, then consider each vertex
v of V which is adjacent to a set {aI, ... ,ak} of arcs, with k > 1:

• replace v by a clique Cv of size k in which each edge has a zero
cost,

• replace each arc ai (i = 1, ... , k) by an arc incident to the i-th
element in Cv ,

• replace each edge in G that was originally incident to v by an edge
incident to any vertex in Cv .

All arcs are now vertex disjoint.

Step 1. Construct a complete undirected graph Ge with vertex set A
(i.e., each arc in G has is corresponding vertex in Ge). Define the
cost of an edge (x, y) in Ge as the cost of the smallest edge between
one endpoint of x and one endpoint of y. Let L xy denote the length
of shortest chain between x and y in Ge .

Step 2. Determine a minimum cost spanning tree S in Ge , using the
distance function L. Identify the odd-degree vertices in Sand
determine a minimum cost matching 111 on these vertices, using
the distance function L. Set G' = (V, A), and add to G' all edges
of G induced by SuM.

Step 3. Let Aodd be the subset of arcs in A whose two endpoints have
an odd degree in G', and let Aeven = A \ Aodd . For each arc (Vi, Vj)

in A odd , add an arc (Vj, Vi) in G'. Replace all cliques Cv defined
in Step 0 by their original single vertex v.

Step 4. Find an Eulerian cycle ( in G' (ignoring even arc directions)
by means of the EULERIAN-CYCLE algorithm (see Section 2.1.1).
Choose an orientation for ( so that the total length of the arcs in
Aeven which are traversed backward is at most equal to half of the
total length of the arcs in Aeven . Orient all edges in G' according
to the chosen orientation of (. If an arc (Vi, Vj) in Aeven is traversed
in the wrong direction, then add two arcs (Vi,Vj) and (Vj, Vi) into
G'.

Step 5. Determine an Eulerian circuit T in G' by means of the EULERIAN­
CIRCUIT algorithm (see Section 2.1.2). T corresponds to covering
tour for A.

These two procedures are illustrated in Figure 9.10, on the same ex­
ample as in Figure 9.9. Both LARGE-ARCS and SMALL-ARCS have an
O(max{1V13,IAI3 }) complexity. Notice that the original SMALL-ARCS
algorithm described in [22] does not contain Step O. This Step is how­
ever crucial if the arc set is not vertex disjoint. Indeed, if Step 0 is not
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applied while A is not vertex disjoint, then it may happen, at the end
of Step 2, that the endpoints of the arcs in G' do not have the same
parity (hence, Aodd and Aeven cannot b~ defined). Assume for example
that G contains three vertices a, b, c, two arcs (a, b) and (b, c) of cost
1, and three edges (a, b), (b, c) and (a, c) of cost 1. In such a case, the
complete undirected graph Gc has two vertices linked by an edge of zero
cost. Hence, the graph G' at the end of Step 2 contains only two arcs
(a,b) and (b,c), and these two arcs have one endpoint of degree 1, and
one of degree 2.

Let us first analyze the worst-case behavior of the LARGE-ARCS algo­
rithm. Let CA, CM and Cs denote the total cost of the arcs in A, lvI and
5, respectively, and let C* be the optimal value of the SCPo Both CM
and Cs are smaller or equal to C* - CA. It follows that LARGE-ARCS
provides a solution of cost at most equal to CA +(C* -CA)+2(C* -CA) =
3C* - 2CA.

Let Cs and CM denote the total cost of the spanning tree and the
matching in Step 2 of SMALL-ARCS, and let Codd and Ceven denote the
total cost of the arcs in Aodd and Aeven , respectively. SMALL-ARCS deliv­
ers a solution of cost smaller or equal to CA +CS+CM+Codd+ 2(~Ceven).
Following Christofides [8], we have Cs + CM :S ~(C* - CA). Since
Ceven + Codd = CA, it follows that SMALL-ARCS provides a solution of
cost at most equal to ~CA + ~C*.

The above analysis shows that LARGE-ARCS is more efficient than
SMALL-ARCS when CA is large relative to C*, while SMALL-ARCS should
be preferred when CA is small relative to C*. By combining these two
heuristics, one gets an algorithm with worst case ratio of ~ . Indeed,
consider the following algorithm.

Algorithm COMBINED-SCP

INPUT: A mixed graph G = (V, E U A).

OUTPUT: A stacker crane tour T on G.

Step 1. Determine two tours TL and Ts by means of LARGE-ARCS and
SMALL-ARCS, respectively.

Step 2. Select the tour of smallest cost among TL and Ts.

If CA < i C*, then SMALL-ARCS provides a solution of cost no larger
than ~ (iC*) + ~C* = ~C*.

If CA 2: iC*, then LARGE-ARCS provides a solution of cost smaller or
equal to 3C* - 2 (iC*) = ~C*. It follows that COMBINED-SCP has a
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worst case ratio of t.
The SCP can be viewed as a particular case of the directed Traveling

Salesman Problem (TSP). Indeed, given a graph G = (V, EUA), consider
the complete directed graph GTsP with vertex set A and in which the
cost of an arc linking a vertex (Vi,Vj) to a vertex (Vk,Vh) is equal to the
smallest length of a chain linking Vj to Vk in G. Any traveling salesman
tour of cost CTSP in GTSP can be transformed into a stacker crane tour
of cost CTsp + CA in G (see Figure 9.11). Heuristic algorithms for the
TSP can therefore be adapted in order to solve the SCP directly on G.
For example, Lukka and Salminen [36] have developed an arc insertion
heuristic for the SCP which is an adaptation of a TSP insertion heuristic
proposed by Rosenkrantz et al. [44].

(a)

A graph G.
(b)

The corresponding
graph GTSP'

(c)

An optimal tour in GrSp.

(d)

The corresponding
optimal tour in G.

Figure 9.11

2.2.5 Additional algorithmic tools.
The heuristic algorithms described in sections 2.2.1 to 2.2.4 use the

same basic ingredients. A minimum cost matching or flow is determined
in order to get an even or symmetric graph, while a minimum cost span­
ning tree or arborescence is found for connecting the components of the
required subgraph GR. Recently, additional basic algorithmic tools have
been developed for the solution of uncapacitated arc routing problems
[30]. While these tools are described here for the undirected rural post­
man problem, they can easily be adapted and extended in order to deal
with directed or mixed graphs.

It has been observed by many authors that if a tour contains a chain
C of non-required edges, then it can eventually be reduced by replac­
ing C by a shortest chain linking the endpoints of C. This simple idea
has been extended by Hertz et al. [30] who have designed a procedure,
called SHORTEN, that attempts to reduce the length of a given tour T by
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covering the same set of required edges, but not necessarily in the same
order. This procedure can be described as follows, and is illustrated in
Figure 9.12.

Algorithm SHORTEN

INPUT: A rural postman tour T on an undirected graph G = (V, E).

OUTPUT: A possibly better rural postman tour on G.

Step 1. Choose an orientation for T and let Vi be any vertex on the
tour.

Step 2. Determine a vertex Vj on T such that the length of the path
linking Vi to Vj is as long as possible, while the path linking Vj to
Vi covers all required edges. Let P denote the path from Vi to Vj,

and Q the path from 'Vj to Vi.

Step 3. If all arcs entering Vj on Q are serviced arcs, then go to Step
4. Otherwise, let (Vk' Vj) be a non-serviced arc on Q. The arcs on
Q up to (Vk, 'Vj) induce a circuit C = (Vj, ... , Vk, Vj). Reverse the
orientation of C and go to Step 2.

Step 4. If the length of the shortest chain S~j linking Vi to Vj in G is
shorter than the length of P, then replace P by SPij .

Step 5. Repeatedly apply Steps 2 to 4, considering the two possible
orientations of T, and each possible starting vertex Vi on T, until
no improvement can be obtained.

Given a required edge (Vi, Vj) in a covering tour T for R, the second
procedure, called DROP, builds a new tour T' that covers all edges in
R \ {(Vi, Vj)}. It can simply be described as follows.

Algorithm DROP

INPUT: A covering tour T for R in an undirected graph G = (V, E).

OUTPUT: A covering tour T' for R \ {(Vi, Vj)}.

Step 1. Set R:= R\ {(Vi,Vj)}.

Step 2. Try to get a shorter tour T' by means of the SHORTEN algo­
rithm.

Figure 9.13 illustrates the above procedure. Inversely, given a covering
tour for a set R of edges, and given an edge (Vi, Vj) tt R, the next
procedure, called ADD, constructs a covering tour for Ru {(Vi,Vj)}. In
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V·

(a)

A graphG.

(b)
A tour (c.d.eJ.b.a.e.g.e.d.c) on G.

and a staning venex Vi'

(c)

The situation
when entering Step 3.

P=(c.d.e). Q=(e,f.b.a.e.g.e,d,c).
and (a,e) is a non-serviced arc on Q.

Vi

(d)

The situation
when entering Step 4.

The orientation of the circuit
(eJ.b.a.e) has been reversed.

(e)

A shoner tour covering R.
and a new pair (vi.Vj)

of venices on T.

Figure 9.12

(f)

The final shorter tour.

P
·h

C f

(a)
A graph G.

(b)

A covering tour for R.
(c)

A pair (Vj.Vj) of vertices on T,
when (c.d) is removed from R.

(d)
A sholter tour.

Figure 9.13

what follows, SPij denotes the shortest chain between Vi and Vj in G,
while L ij is the length of S Pij .

Algorithm ADD

INPUT: A covering tour T for R in an undirected graph G
and an edge (Vi, Vj) 1. R.

OUTPUT: A covering tour for Ru {(Vi,Vj)}.

(V,E),

Step 1. If neither Vi nor Vj appears on T, then identify a vertex Vk on
T yielding the minimum value of Lki + Ljk' and add the circuit
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SPki U {(Vi, Vj)} U SPjk on T. Otherwise, if only one of Vi and Vj
(say Vi), or both of them appear on T, but not consecutively, add
the circuit (Vi, Vj, Vi) on T.

Step 2. Set R := RU {(Vi,Vj)} and determine a possibly shorter tour
by means of the SHORTEN algorithm.

Step 1 of the above procedure is illustrated in Figure 9.14. Notice that
the procedures described in this section can also be used as basic tools
for the design of constructive algorithms for the RPP. As an example, a
solution to the undirected RPP can easily be obtained by means of the
following constructive algorithm.

(a)
A graph G.

P
h

e t

g

(b)
A covering (OUr for R=(a,bJ.(e,g)}.

7~

~
ah ~'h p'b

d c fer c f

g g g

(c.d) is added (0 R. (d.e) is added to R.

Figure 9.14

(!J.e) is added 10 R. (e.t) is added (0 R.

Algorithm CONSTRUCT-URPP

INPUT: An undirected graph G = (V, E), and a set R of required
edges.

OUTPUT: A rural postman tour on G.

Step 1. Choose a required edge (Vi,Vj). Set T:= (Vi,Vj, Vi) and R' :=

{(Vi, Vj)}.

Step 2. If R' = R then stop. Otherwise, choose a required edge (Vi,Vj)
in R\R' and determine a tour T' covering R'U{(Vi,Vj)} by means
of the ADD procedure. Set R' := R' U {(Vi,Vj)}, T := T', and
repeat Step 2.
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Post-optimization procedures can be designed on the basis of proce­
dures SHORTEN, DROP and ADD. As an example, one can try to improve
any given tour T by removing a required edge and reinserting it into the
tour, by means of the DROP and ADD algorithms, respectively. This
procedure, called DROP-ADD, is analogous of the Unstringing-Stringing
(US) algorithm for the TSP [25]. More precisely, it can be described as
follows.

Algorithm DROP-ADD

INPUT: A rural postman tour on an undirected graph G = (V, E).

OUTPUT: A possibly better rural postman tour on G.

Step 1. Choose a required edge (Vi, Vj) and construct a covering tour
T' for R \ {(Vi, Vj)} by means of the DROP algorithm. Construct
a covering tour Til for R by applying the ADD algorithm on T'.

Step 2. If Til is shorter than T, then set T := Til.

Step 3. Repeat Steps 1 and 2 with all possible edges (Vi, Vj) in R, until
no additional improvement can be obtained.

An algorithm, similar to the 2-opt procedure [12] for the undirected
TSP, can also be designed for the RPP, as shown below.

Algorithm 2-0PT-RpP

INPUT: A rural postman tour T on an undirected graph G = (V, E).

OUTPUT: A possibly better rural postman tour on G.

Step 1. Choose an orientation for T and select two arcs (Vi, Vj) and
(Vk,Vh) on T. Replace (Vi,Vj) and (Vk,Vh) by the two shortest
chains S~k and SPjh in G, respectively. Reverse the orientation
of the path linking Vj to Vk on T. Let Tl be the resulting tour,
and let R' be the set of required edges covered by T1. Determine a
possibly shorter covering tour T2 for R', by applying the SHORTEN
algorithm on T1 .

Step 2. If .(Vi,Vj) and/or (Vk,Vh) is a required edge that is not covered
by T2 , then determine a tour T3 covering R by means of the ADD
algorithm. If T3 is shorter than T, then set T := T3.

Step 3. Repeat Steps 1 and 2 with the two possible orientations of T,
and with all possible pairs of arcs (Vi,Vj) and (Vk,Vh) on T, until
no additional improvement can be obtained.

In spite of its apparent simplicity, the 2-0PT-Rpp procedure can in
fact be quite involved and its application to a tour T can lead to a
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(a)
A network G.

(b)
A directed rural postman tour on G.

(c)
The arcs (b.c) and (e,d) are replaced
by the paths (b,f,e) and (c,d).

and the orientation of the path (c,f,e) is reversed.
Notice that the tour does not cover (d,e).

(d)
SHORTEN has removed
the circuit (f.e,f),

and has replaced the path (c,d,a)
by the shorter path (c,f,e,a).

(e)

SHORTEN has replaced
the path (a,d,b)

by the shorter path (a,b).

(f)
ADD has introduced
the circuit (e,d,e)

in order to cover (d,e).

Figure 9.15

(g)
SHORTEN has replaced
the path (c,f,e,d) by (c,d).

complicated sequence of intermediate steps before reaching a shorter
tour. This is very different from what happens in the TSP, where a
2-opt exchange simply means that two edges are replaced by two other
edges. This is illustrated in Figure 9.15.

Such basic tools can also be used as ingredients in adaptations of meta­
heuristic algorithms for the RPP. For example, Corberan et al. [11] have
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recently developed a tabu search technique for the solution of the mixed
RPP. They define a tour T' as a neighbor of a given tour T, if T' can
be obtained from T by means of a procedure similar to the SHORTEN

algorithm. For more details, the reader is referred to [11].

3. HEURISTICS FOR CAPACITATED ARC
ROUTING PROBLEMS

This section is devoted to the capacitated arc routing problem (CARP).
Consider a graph G = (V,E U A) with vertex set V = {VO,Vl, ... ,vn },

edge set E and arc set A. Vertex Vo represents a depot at which are
based identical vehicles of capacity Q. A subset R of edges and arcs are
said to be required, i.e., they must be serviced or covered by a vehicle.
The number of vehicles can be a decision variable or a fixed parameter.
Each edge and arc (Vi,Vj) of R has a non-negative weight or demand qij.

Each required edge and arc can be traversed any number of times by any
number of vehicles. A vehicle route is feasible if it starts and ends at the
depot, and the total weight of the edges and arcs serviced by the vehicle
does not exceed Q. The CARP consists of designing a set of feasible
vehicle routes of least total cost, such that each required edge and arc
appears in at least one route and is serviced by exactly one vehicle.

The CARP is NP-hard since it includes the RPP as special case.
Even finding a O.5-approximation to the CARP is NP-hard, as shown by
Golden and Wong [26]. We describe in this section heuristic methods that
have been developed for the solution of the CARP. These heuristics can
be broadly classified into three categories: simple constructive methods,
two-phase constructive methods, and adaptations of meta-heuristics. In
the next sections, we give examples of heuristics for each of these cate­
gories.

3.1. SIMPLE CONSTRUCTIVE METHODS
FOR THE CARP

The capacitated Chinese Postman Problem (CCPP) is a special case
of the CARP where R = E U A. The CCPP can be considered as the
counterpart of the well-known node-oriented standard Vehicle Routing
Problem (VRP). Most simple constructive methods for the CARP have
been developed in a undirected CCPP context, but can easily be adapted
to deal with more general CARPs. We give in this section the original
description of these algorithms.

We will use the following notation. Given two (possibly closed) chains
p = (x, ... ,y) and P' = (y, ... ,z) having a common endpoint y, the
union of the edges of these two chains is a longer (possibly closed) chain
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pll = (x, ... ,y, ... ,z) which is denoted P+P'.

In 1973, Christofides [7] has developed the CONSTRUCT-STRIKE algo­
rithm for the solution of the undirected CCPP. The basic idea of this
algorithm is to construct feasible vehicle routes which, when removed,
do not separate the graph into disconnected components (not counting
isolated vertices). When such a route C is constructed, all required
edges on C are removed from the original graph, and this construct­
then-remove procedure is repeated until no more feasible vehicle routes
can be determined. If edges have not been covered, then artificial non­
required edges are added to the remaining graph and new feasible vehicle
routes are constructed. This process is repeated until a feasible solution
of the undirected CCPP is obtained. A more formal description of this
algorithm is given below.

Algorithm CONSTRUCT-STRIKE

INPUT: An undirected graph G = (V, E).

OUTPUT: A solution of the undirected CCPP.

Step o. Set G' := G.
Step 1. Attempt to determine a feasible vehicle route such that when its

edges are removed from G', the remaining graph is still connected
(not counting isolated vertices). If a feasible route has been deter­
mined, then remove all required edges on this route from G' and
repeat Step 1.

Step 2. Remove all artificial edges (if any) from G'. If all edges of G
have been covered (i.e., G' is empty), then stop. If the depot Vo
has degree zero, then add a copy va of vo in G' and link va to va
by an artificial non-required edge of infinity cost. If G' contains
odd degree vertices then go to Step 3, else go to Step 4.

Step 3. Solve a minimum cost perfect matching problem in order to
transform G' into an even graph (see Section 2.1.1). All edges
added to G' are artificial and non-required. If a copy of the depot
has been created at Step 2, then merge Vo and va. Return to Step
1.

Step 4. Add to G' two shortest chains of artificial non-required edges
between Vo and the vertex nearest vo, and return to Step 1. If
feasible vehicle routes can still not be determined, then add two
more shortest chains of artificial non-required edges between Vo
and its second nearest vertex, etc., until a feasible vehicle route is
found in Step 1.
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Christofides does not suggest any particular method for constructing
the feasible vehicle routes in Step 1. He uses visual inspection. The above
algorithm is illustrated in Figure 9.16. In this example, all edges have a
unit demand, and the vehicle capacity Q is equal to 3. The values on the
edges correspond to their length. A first vehicle route (depot, a, b, depot)
is determined in Step 1. The remaining cycle on G' is not a feasible
vehicle route since its demand exceeds the vehicle capacity. Since G'
is even, two shortest chains of artificial non-required edges are added
between the depot and its nearest vertex c (the artificial edges are rep­
resented by dotted lines). The feasible vehicle route (depot,c,depot) is
then detected and removed from G'. Since the remaining graph contains
odd degree vertices, an optimal matching is added to G' which is now
a cycle with a total demand of 4 units. Two shortest chains are added
from the depot to c, and from the depot to j, before a feasible vehicle
route (depot, j, depot) can be obtained and removed from G'. Since the
depot is now an isolated vertex, a copy of it is introduced into G'. Once
the optimal matching determined in Step 3 has been added to G', one
gets a feasible vehicle route (depot, c, d, e, j, depot) on which only edges
(c, d), (d, e) and (e,f) are serviced.

The original graph.

The roule (depot.c.depol)
has been removed.

...
The roule (depol.f.depol)
and all artificial edges
have been removed.

A copy of the depot has been added.

The route (d~pot.a.h.dcpol)

has been removed.

An optimal matching
has been added.

"a,, ,

~

An optimal matching
has been added.

The two copies of the
depot have been merged.

Figure 9.16

A,;·
".'
( d c f

Two shortest chains
have been added

between the depOl and c.

Two shortest chains
have been added

between !.be depot and c.
and belween lhe depot and r.

~

~
The final solution conl41ins

four vehicle roules.

Pearn [40] has proposed a modified version of the above algorithm. He
does not impose the restriction that the graph obtained when removing
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feasible vehicle routes remains connected. Pearn's algorithm is outlined
below.

Algorithm MODIFIED-CONSTRUCT-STRIKE

INPUT: An undirected graph G = (V, E).

OUTPUT: A solution of the undirected CCPP.

Step O. Set G' := G and Gil := G.

Step 1. Choose an edge (vo, vd incident to the depot in Gil and remove
it from Gil. Set P = (vo, vd and Vend := Vi (Vend denotes the
endpoint of P different from the depot).

Step 2. For each edge (Vend, Vj) in Gil, determine the least quantity
chain Sj in Gil that starts with (Vend, Vj) and links vend to the
depot. Remove from Gil all edges (Vend, Vj) such that the total
demand on P + Sj is larger than the vehicle capacity Q. If Vend
is an isolated vertex in Gil, then set Gil := G' and go to Step 4.
Otherwise, determine the edge (vend, Vj) in Gil that maximizes the
total demand on Sjo Set P:= P+(Vend,Vj) and Vend = Vj. If vend
is not equal to the depot then repeat Step 2. Otherwise, remove
all non-artificial edges of the feasible vehicle route P from G', and
set Gil := G'.

Step 3. If all edges of G have been covered (i.e., G' is empty), then
stop. If the depot is connected to all edges of Gil then return to
Step 1. If the depot is an isolated vertex in Gil, then add to Gil a
shortest chain of artificial non-required edges between Vo and the
nearest non-isolated vertex in Gil.

Step 4. If Gil is even and connected (not counting isolated vertices),
then go to Step 5. Otherwise, transform Gil into an even connected
graph by solving a minimum cost spanning tree problem and a
minimum cost matching problem (see Section 2.2.1). All edges
added to Gil are artificial and non-required. Return to Step l.

Step 5. Choose an edge (Vo, Vi) incident to the depot in Gil and remove
it from Gil. Set P = (vo, Vi) and Vend = Vi.

Step 6. Remove from Gil all edges (Vend, Vj) such that the total demand
on P + (Vend,Vj) is larger than Q. If Vend is an isolated vertex in
Gil, then go to Step 7. Choose any edge (vend,Vj) in Gil, remove
it from Gil, set P := P + (Vend, Vj), Vend := Vj, and repeat Step 6.

Step 7. Add to P the shortest chain C between Vend and Vo in G. P+C
is a feasible vehicle route in which all non-artificial edges of Pare
serviced, while the artificial edges of P and all edges of Care
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only traversed. Remove all non-artificial edges of P from G', set
Gil := G', and return to Step 3.

The choice, at Step 1, of an edge incident to the depot may consid­
erably affect the quality of the final solution. For this reason, Pearn
suggests to generate a set of solutions by considering each edge incident
to the depot as the first edge of the first vehicle route. The final solu­
tion is then the best among all these solutions. The complexity of his
algorithm is O(IEIJVI4 ) while the complexity of the original heuristic
proposed by Christofides is O(IEIJVI3 ).

Figure 9.17 illustrates Pearn's algorithm on the same example as in
Figure 9.16. There are four possible choices for the first edge of the
first vehicle route. By choosing (depot,a), one gets a first feasible vehi­
cle route (depot, a, b, depot). The remaining graph Gil contains a cycle
with total demand 5 > Q. Since Gil is even and connected, we move to
Step 5. By choosing the edge (depot, f) as first edge for the second ve­
hicle route, Step 6 determines the path P = (depot, j, e, d) and no more
edges can be serviced without exceeding the vehicle capacity. The chain
C = (d, c, depot) of non-serviced edges is added to P in order to get a
second feasible vehicle route. The remaining graph Gil is now connected
but not even. Step 4 adds the edges (depot, c) and (c, d) to G' and a
third feasible vehicle route (depot, c, d, c, depot) is determined in Steps 1
and 2. The total cost of this solution is two units better than the one of
Figure 9.16 (26 instead of 28).

Pearn uses a special rule in Step 2 for attempting to construct a fea­
sible vehicle route. He always chooses the edge that maximizes the total
demand on the least return path to the depot. Other edge-selection rules
can be preferred. Golden et al. [27] describe five such rules. Given a
chain P that ends at vertex Vi, one can choose the edge (Vi, Vj) in the
following ways:

rule 1: minimize the distance, Gj, per unit remaining demand;

rule 2: maximize the distance, Gj, per unit remaining demand;

rule 3: minimize the distance from Vj to the depot;

rule 4: maximize the distance from Vj to the depot;

rule 5: use rule 4 if the vehicle is less than half-full, and rule 3 other­
wise.

Golden et al. [27] have developed a heuristic method, called PATH­
SCANNING, that uses these edge-selection rules. Their algorithm has an
O(JVI3) complexity and can be described as follows.
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The original graph.

The chain C=(d,c.depot)
has been added to P
in order to get

a second feasible vehicle route.

The first feasible vehicle route
(depot,a,b,depot)

has been removed from G'.

The chain P=(depot,f,e,d)
has been removed from G'.

Figure 9.17

This chain P=(depot,f,e,d)
cannot be extended without
violating the vehicle capacity.

The chain (d,c,depot)
has been added at Step 4

in order to get an even graph G".
which now corresponds

to the third feasible vehicle route.

Algorithm PATH-SCANNING

INPUT: An undirected graph G = (V, E).

OUTPUT: A solution of the undirected CCPP.

Step O. Set G' := G and Gil := G'.

Step 1. If the depot is an isolated vertex in Gil, then add to Gil a
shortest chain (vo, ... , Vi) of artificial non-required edges between
Vo and the nearest non-isolated vertex Vi in Gil. Set P = (vo, ... , Vi)

and Vend := Vi· Otherwise, choose an edge (vo, Vi) incident to
the depot in Gil and remove it from Gil. Set P = (vo, Vi), and
Vend := Vi·

Step 2. Remove from Gil all edges (Vend, Vj) such that the total demand
on P + (Vend, Vj) is larger than Q. If Vend is an isolated vertex in
Gil, then go to Step 3. Choose an edge (Vend, Vj) in Gil, according
to one of the above mentioned edge-selection rules. Remove this
edge from Gil, set P := P + (Vend, Vj), Vend := Vj, and repeat Step
2.

Step 3. Add to P the shortest chain C from Vend to the depot in G.
P + C is a feasible vehicle route in which all non-artificial edges of
P are serviced, while the artificial edges of P and all edges of C
are only traversed. Remove all non-artificial edges of P from G',
and set Gil := G'. If all edges of G are covered, then stop, else
return to Step 1.
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The PATH-SCANNING algorithm generates a complete solution with
each of the five edge-selection rules, and the final solution is the best
among these five solutions. Pearn [40] has proposed a modified version
of this algorithm where the edge-selection rule is chosen randomly at
each step, following a given probability distribution. He then selects the
best of several solutions generated by this process.

Golden et al. [27J have developed a solution method, called AUGMENT­
MERGE, which is inspired by the Clarke and Wright algorithm [10] for
the Vehicle Routing Problem. The AUGMENT-MERGE algorithm was
originally proposed by Golden and Wong [26J and then modified and
improved in [27]. We describe here the improved version.

Given a feasible vehicle route C, let Pc denote one of the two maximal
chains of non-serviced edges on C that starts at the depot, and let vc
denote the second endpoint of Pc (see Figure 9.18). It follows from this
definition that Pc = (vo, ... ,vc), and it may happen that Vo = Vc (if the
depot is incident to a serviced edge).

A merge of two feasible vehicle routes C and C' is obtained by replac­
ing Pc + PC' in C +C' by a shortest chain P between Vc and VC' in G.
Let Lc, Lc, and L denote the total length of Pc, PC' and P, respec­
tively. The saving induced by such a merge is equal to Lc + Lc, - L.

The two possible choices for Pc on C, and the two for PC' on C',
induce four possible merges of C and C'. We only consider the merge
that yields the largest saving (see Figure 9.18). Golden et al. [27] only
consider merges where vc = VC' , while they do not impose that Pc and
PC' are maximal chains. The AUGMENT-MERGE algorithm works as fol­
lows.

Algorithm AUGMENT-MERGE

INPUT: An undirected graph G = (V, E).

OUTPUT: A solution of the undirected CCPP.

Step 1. For each edge (Vi, Vj) in G, construct a feasible vehicle route
Cij made of a shortest chain of non-serviced edges between the
depot and Vi, the serviced edge (Vi, Vj), and a shortest chain of
non-serviced edges between Vj and the depot.

(A ugment phase)

Step 2. Starting with the longest vehicle route Cij, and as long as ve­
hicle capacity permits, change the status of traversed edges, from
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The two possible choices for Vc

The two possible choices for Vc

)

These two bold chains
depot . contain all serviced edges of C+C'.

Moreover, the first and the last edge
of these chains are serviced edges.

The four possible merges of C and C.
(The path P is represented by dotted lines)

Figure 9.18

non-serviced to serviced, if these edges are covered by shorter vehi­
cle routes, Remove the shorter vehicle routes whose unique serviced
edge is now covered by a longer route.

(Merge phase)

Step 3. Subject to capacity constraints, evaluate the merge of any two
vehicle routes. If the largest saving is positive then merge the two
vehicle routes which yield the largest positive saving, and repeat
Step 3. Else stop.

Chapleau et al. [6] have developed a heuristic method, called PARALLEL­
INSERT, which is inspired by insertion procedures for the Traveling Sales­
man Problem. They use two complementary insertion strategies:

• given an edge, they determine the existing vehicle route into which
this edge should be inserted in order to minimize the detour in­
curred;

• given a route, they determine which uncovered edge should be in­
serted next.

In addition to the capacity constraints, Chapleau et al. consider a
limit L on the length of each vehicle route, and a limit !vI on the number
of vehicle routes. Their algorithm can be outlined as follows.
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Algorithm PARALLEL-INSERT

INPUT: An undirected graph G = (V, E).

OUTPUT: A solution of the undirected CCPP.

Step 1. Determine the farthest edge (Vi, Vj) from the depot and create
a feasible vehicle route servicing (Vi, Vj) (i.e., a route made of a
shortest chain of non-serviced edges between the depot and Vi, the
serviced edge (Vi, Vj), and a shortest chain of non-serviced edges
between Vj and the depot).

(First insertion strategy)

Step 2. Select the farthest uncovered edge (va, Vb) from the depot.
Among the existing routes with sufficient capacity, determine the
route C for which the insertion of (va, Vb) creates the smaller detour
and of which the total length after inserting (va, Vb) does not exceed
the fixed upper bound L. If such a route has been determined, then
insert (va, Vb) into C and repeat Step 2. If no such route exists,
while the current number of routes is smaller than lvI, then create
a new feasible vehicle route servicing edge (Va, Vb), and repeat Step
2. Declare a route C "closed" if no additional uncovered edge can
be serviced by C, without violating the vehicle capacity. All other
existing routes are "open".

(Second insertion strategy)

Step 3. Select the open route C with the lowest load. Let E' be set
of uncovered edges that can be added to C without exceeding the
vehicle capacity. Select the edge (va, Vb) in E' that induces the
smallest detour. If no such edge exists, or if the total length of
C after inserting (va, Vb) exceeds the upper bound L, then declare
route C "closed", else insert (va, Vb) into C. Repeat Step 3 until
all edges are covered, or all routes are closed.

(Termination check)

Step 4. If all edges are covered then stop. Else select the farthest un­
covered edge (va, Vb) from the depot, and create a new vehicle route
servicing edge (va, Vb), and return to Step 2.

Chapleau et al. [6] do not describe how to insert an edge into a given
vehicle route. Such an insertion can be performed, for example, by means
of the ADD algorithm described in Section 2.2.5. One may prefer to use
only Step 1 of the ADD algorithm, since the call to SHORTEN at Step
2 may be time consuming. The PARALLEL-INSERT algorithm has been
applied to a school bus routing problem, and it has been observed that
the use of additional ingredients may help finding better solutions. For
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example, when entering Step 4, Chapleau et al. apply improvement pro­
cedures for possibly reducing the length of each vehicle route. Examples
of such procedures are given in Section 2.2.5 (e.g., SHORTEN, DROP­
ADD, 2-0PT-Rpp). Notice that these improvement procedures can in
fact be applied to each feasible vehicle route produced by any algorithm
presented in this section.

In order to try to reduce the number of vehicle routes, Chapleau et
al. propose to relax the length constraints by a fixed percentage (i.e.,
to slightly increase the upper bound L). Vehicle routes of length larger
than L can then possibly be shortened by means of the above mentioned
improvement procedures.

As other ingredient, Chapleau et al. suggest to eliminate the vehi­
cle route with lowest load and to consider the edges it covered as non­
covered. These edges are then re-inserted in the existing vehicle routes
by means of Steps 2, 3 and 4 of the above algorithm.

Finally, Chapleau et al. describe a strategy that aims to avoid zigzag
routes. For this purpose, they define a threshold length L' which is used
as follows. Let C be a vehicle route and (Va,Vb) an edge to be inserted
into C. If the length of C is smaller than L', then (va, Vb) can be in­
serted anywhere on C. Otherwise, (va, Vb) can only be inserted between
the depot and the last vertex incident to a serviced edge on C.

The last heuristic procedure described in this section is due to Pearn
[41] and combines the ideas contained in the AUGMENT-MERGE and the
PARALLEL-INSERT algorithms. In a first phase, feasible vehicle routes
are generated following the approach used in the"Augment" phase of
the AUGMENT-MERGE algorithm. In a second phase, the remaining
non-covered edges are sequentially inserted into feasible vehicle routes
by means of a procedure similar to the first insertion strategy used in
the PARALLEL-INSERT algorithm. Pearn's algorithm, called AUGMENT­
INSERT, can be described as follows.

Algorithm AUGMENT-INSERT

INPUT: An undirected graph G = (V, E).

OUTPUT: A solution of the undirected CCPP.

Step 1. Let S~j denote the shortest chain between Vi and Vj in G, and
let Lij be its length. For each edge (Vi, Vj) in G, define Dij =
LOi + Ljo. Set G' := G.

(A ugment phase)
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Step 2. Determine the edge (Vi, Vj) in G' with largest value Dij and
such that there is a cycle in G' containing (Vi, Vj) and the depot.
If no such edge is found then go to Step 3. Else, determine the least
cost cycle C in G' containing (Vi, Vj) and the depot, and consider
C as a vehicle route on which (Vi, Vj) is the unique serviced edge.
As long as vehicle capacity permits, change the status of traversed
edges (Va, Vb) on C from non-serviced to serviced, in descending
order of Dab, Let vp and vq be the first and last vertex on C
incident to a serviced edge. Replace the chains of non-serviced
edges linking the depot to vp and the depot to vq by SPOp and
SPqo. Remove the serviced edges from G'. If all edges of G are
covered (i.e., G' is empty), then stop. Else, repeat Step 2.

(Insert phase)

Step 3. Determine the non-covered edge (Vi, Vj) with largest value Dij,
and create the vehicle route C = SPoi + (Vi, Vj) + SPjo on which
(Vi, Vj) is the unique serviced edge.

Step 4. Let £' be the set of non-covered edges that can be added to
C without violating the capacity constraints, and let (va, Vb) be
the edge in £' with maximum value Dab, Compute the detour
incurred by the insertion of (va, Vb) between the depot and the first
or last vertex incident to a serviced edge on C. If this insertion
cost is larger than a fixed upper bound B, then remove (Va, Vb)
from £'. Else, insert (va, Vb) into C. Repeat Step 4 until £' is
empty or both edges incident to the depot are serviced edges.

Step 5. Remove the serviced edges from C'. If G' is empty, then stop.
Else, return to Step 3.

Pearn has proposed two versions of this algorithm. The above is Ver­
sion 1. Version II uses, at Step 2, the least quantity cycle (with respect to
edge demand) instead of the least cost cycle. The upper bound Bused
at Step 4 is an input parameter that controls the length of the vehicle
routes. Notice that the above algorithm considers the edges in decreas­
ing order of D ij , the idea being to favor servicing far-away edges.

The AUGMENT-INSERT algorithm is illustrated in Figure 9.19. In this
example, all edge costs Cij and demands qij are indicated as (Cij, qij) ,
and the vehicle capacity Q is equal to 5. Doted lines represent traversed
but non-serviced edges. The farthest edge (i.e., the edge with maximum
value Dij ) is (e, I), but there is no cycle in C containing (e,j) and
the depot. Hence, we choose to serve (c, d) and build an initial cycle
(depot, b, c, d, e, depot) on which (c, d) is the unique serviced edge. The
service is then extended on edges (b, c), (d, e) and (b, depot), and one
gets the first feasible vehicle route. The farthest uncovered edge which
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(Vi,Vj) Dij

(e,f) 9
(c,d) 8
(b,c) 6
(d,e) 6
(b,e) 4
(a,b) 3

(depot,b) 2
(depot,e) 2
(depot,a) 1

The original network and liIe edges in decreasing order of Dij'

[fr-------@]
I I
I I

rn II], ,'.'The cycle generated
atlile beginning of Step 2.

The cycle generated
at the beginning of Step 2.

The cycle generated
at liIe beginning of Step 3.

V
~

b c,,

The first feasible
vehicle roure.

The second feasible vehicle route
obtained by covering (depot,e)

and by replacing (depot,a,b) by (depot.b).

(a,b) has been inserted
assuming that B~3.

Figure 9.19

The remaining graph G'.

The remaining graph G'.

The third feasible vehicle route.

is in a cycle of G' going through the depot is (b, e). Hence Step 2 builds
the cycle (depot, a, b, e, depot). The service is then extended on edge
(depot, e), and the second feasible vehicle route is obtained by replacing
the chain (depot, a, b) by the shorter chain (depot, b). We then enter the
"Insert" phase. The farthest uncovered edge is (e, J), and Step 3 builds
the cycle (depot, e,j, e, depot), servicing edge (e, J). Then, assuming
that the upper bound B on the insertion cost is at least equal to 3, the
edge (a, b) is inserted and one gets the cycle (depot, a, b, e, f, e, depot), By
extending the service on edge (depot, a) one gets the third feasible vehicle
route. then extended on edge (depot, e), and the second feasible vehicle
route is obtained by replacing the chain (depot, a, b) by the shorter chain
(depot, b). We then enter the "Insert" phase. The farthest uncovered
edge is (e, J), and Step 3 builds the cycle (depot, e, f, e, depot), servicing
edge (e, J). Then, assuming that the upper bound B on the insertion
cost is at least equal to 3, the edge (a, b) is inserted and one gets the cycle
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(depot, a, b, e, j, e, depot). By extending the service on edge (depot, a) one
gets the third feasible vehicle route.

3.2. TWO-PHASE CONSTRUCTIVE
METHODS FOR THE CARP

Two-phase constructive methods belong to two different categories.
The "route first-cluster second" strategy first constructs a giant Eule­
rian tour covering all required edges or arcs. Then, in a second phase,
the tour is partitioned into feasible vehicle routes. On the opposite,
"cluster first-route second" heuristics first determine a partition of the
required edges and arcs into clusters, each having a total weight not ex­
ceeding the vehicle capacity Q. An uncapacitated RPP is then solved
on each cluster. Both strategies are illustrated in the next sections in
an undirected context. The algorithms described below can however be
extended in order to deal with directed and mixed graphs.

3.2.1 Route first-cluster second algorithms.
The first phase of route first-cluster second algorithms is the construc­

tion of a giant Eulerian tour. All algorithms presented in Section 2 can
be used to this end. We describe here several techniques that have been
proposed for the "cluster" phase, that is for the partition of the Eule­
rian tour into feasible vehicle routes. An interesting algorithm has been
proposed by Ulusoy in 1985 [47] who transforms the original graph into
another one on which a shortest path problem has to be solved. Ulusoy's
algorithm can be described as follows.

Algorithm ULUSOy-PARTITIONING

INPUT: An undirected graph G, and a covering tour T for R.

OUTPUT: A set of feasible vehicle routes covering R.

Step O. If a required edge is traversed several times, then service it the
first time it is traversed.

Step 1. Relabel the vertices in G so that the given tour T is equal to
(va, VI , V2, ... ,Vt = va), where Va is the depot. Let r be the largest
index of a vertex incident to a serviced edge on T. Construct a
directed graph G' = (V',A) with vertex set V' = {O,l, ... ,r} and
introduce an arc (a, b) in A (b > a) if and only if the total load on
the path (va, ... ,Vb) does not exceed Q. Remove all arcs (a, b) such
that b > a+ 1 and (Va, Va + 1) or (Vb -1, Vb) is not a serviced edge
on T. Define the cost c~ of (a, b) in G' as follows.

• If b = a + 1 and (va, Va + 1) is not a serviced edge on T, then
set c'ab = O.
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• If b > a + 1 or (Va, Va + 1) is a serviced edge on T, then
consider the chain Pab = (va, ...Vb) on T. If Pab contains the
depot, then add to Pab a shortest chain between Vb and Va in
C; else, add to Pab a shortest chain between the depot and a,
and a shortest chain between the depot and b. In both cases,
one gets a cycle Cab, and the cost c~b of (a, b) in G' is defined
as the total distance of Cab in C.

Step 2. Solve a shortest path problem from 0 to r in C'. Each arc (a, b)
used in the shortest path corresponds to a feasible vehicle route on
G.

depot

The original graph G.

The associated graph G'.
(All arcs (a,b) with a<b are directed from a to b)

An Eulerian tour Ton G.

A shortest path from 0 to 6 in G'.

~depot

I I
I I

I/
depot

The two corresponding feasible vehicle routes.

Figure 9.20

Ulusoy's algorithm is illustrated in Figure 9.20. In this example, all
edges have a unit demand, and the vehicle capacity Q is equal to 3. The
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values on the edges correspond to their length. Doted lines represent
non-required or traversed but non-serviced edges. Since V6 is the last
vertex on T incident to a serviced edge, the auxiliary graph G' has 7
vertices. There is no arc (0,2), (1,3), (1,4), (1,5) and (1,6) in G' since
(VI,V2) is a non-serviced edge on T. Also, there is no arc (0,5), (0,6)
and (2,6) in G' since the corresponding chains on T have a total weight
larger than Q = 3. As an example of computation of cost c'ab , consider
the arc (4,6) in G': the corresponding path (V4,V5,V6) on T contains
the depot, and the cycle C46 is therefore obtained by adding to P46 the
shortest chain (V4, va) between V4 and va. Hence, we get c~6 = 5. As
other example, the cycle C23 induced by (2,3) is obtained by adding
the chains (vo, VI, V2) and (V3, vo) to P23 = (V2, V3), which implies that
c'23 = 5. The shortest path from 0 to 6 in G' is the path (0,3,6), and
we therefore get two feasible vehicle routes: the arc (0,3) corresponds to
the vehicle route (depot,a,b,c,depot) on which (depot,a) and (b,c) are
the unique serviced edges, while the arc (3,6) corresponds to the vehicle
route (depot, c, d, depot) on which all edges are serviced.

A completely different procedure has been proposed by Hertz et al.
[31]. Consider a tour T = (VO,VI, ... ,Vt = vo) with total demand D
larger than Q. In order to partition T into feasible vehicle routes, Hertz
et al. first determine a vertex Vr such that the total demand on the
chain (VO,VI, ... ,vr ) does not exceed the vehicle capacity Q, and the total
demand on the chain (vr, ... ,Vt = vo) does not exceed Q(rDIQ1-1).
Once V r has been determined, a feasible vehicle route is constructed by
adding to (vo, Vl, ... , vr ) the shortest chain from Vr to the depot. Let
r' 2 r be the smallest· index such that (vr ', V r ' +I) is a serviced edge
on T. The procedure is reapplied on the tour T' obtained from T by
replacing the chain (vo, VI, ... ,vr') by a shortest chain of non-serviced
edges between the depot and Vr " This algorithm, called CUT, can be
described more precisely as follows.

Algorithm CUT

INPUT: An undirected graph G, and a covering tour T for R.

OUTPUT: A set of feasible vehicle routes covering R.

Step o. If a required edge is traversed several times, then service it the
last time it is traversed.

Step 1. Relabel the vertices in G so that the given tour T is equal to
(Vo, VI, V2, ... ,Vt = vo), where Vo is the depot. Let D be the total
demand on T. If D ~ Q then stop ( T is a feasible vehicle route).

Step 2. Determine the largest index s such that (Vs-I, vs) is a serviced
edge, and the total demand on (Vo, VI, ... , vs ) does not exceed Q.
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The original graph G. An Eulerian tour T on G.

depotL [II=~ -:m-- :m-- O@
II

depOlII

~
II

depotji

The three vehicle routes generated by the CUT algorithm.

~=m.=..:m...::...
II

depotii

0"=""'=rn==G:
II

depolil

The three vehicle roules generated by Greislorfer's algorilhm.

Figure 9.21

Determine the smallest index s' such that (Vs'-l,Vs') is a serviced
edge, and the total demand on (vs', ... ,Vt = va) does not exceed
Q(rD/Ql - 1). If s' 2 s then set r = s and go to Step 3. For each
r in [s', s] such that (Vr-l, vr ) is a serviced edge, do the following:

• determine the smallest index r' 2 r such that (vr" vr,+d is a
serviced edge on T;

• consider the path Pr = SPro +SPOr, (where SPij denotes the
shortest chain between Vi and Vj in G);

• compute 15r equal to the difference between the length of Pr

and the length of the path (vr , ... , vr ') on T. Select the index
r in [s', s] with smallest value 15r .

Step 3. Construct the feasible vehicle route (va, ... , vr)+SPro, on which
the serviced edges are those that are serviced on the chain (va, ... ,vr)
of T. Determine the smallest index r' 2 r such that (vr', Vr ' +1) is a
serviced edge on T. Replace (va, ... ,vr') by SPar' on T, and return
to Step 1.

The CUT algorithm is in fact a generalization of a procedure proposed
by Greistorfer in 1994 [28] who always sets r = s in Step 2. Figure
9.21 illustrates the improvement that can be obtained by allowing other
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choices for index r. In this example, all edges have a unit demand and a
unit cost, and the vehicle capacity is equal to 3. Since the total demand
D on T is equal to 7, at least 3 vehicles are needed. The first vehicle
must at least reach vertex Vs' = VI before returning to the depot, else
4 vehicles will be needed. Also, the capacity constraints impose that
the first vehicle cannot cover more than three edges, which means that
Vs = Vg. Hence, r is chosen in the interval [1,9]. If the first vehicle
return to the depot at vertex VI, then we compute 81 = 2. Similarly,
we compute 82 = 1 and 8g = 8, and we therefore choose r = 2 (while
Greistorfer's algorithm set r = 9). The total length of the vehicle routes
generated by the CUT algorithm is equal to 20, while Greistorfer's algo­
rithm generates a solution of total length 29.

Notice that it may happen that the index 5' is strictly larger than s.
Indeed, consider a tour T = (vo, VI, V2, vo) on which each edge is ser­
viced and has a demand of 2 units, while the vehicle capacity Q is equal
to 3. A vehicle cannot service more than one edge, which means that
V s = VI. On the other hand, Q( fD /Ql - 1) is equal to 3, which means
that V s' = V2. Hence,s' = 2 > 1 = s. Such a situation occurs because
there is no solution with fD/Ql = 2 feasible vehicle routes. In such a
case, the above algorithm set r = 5 = 1, and a first vehicle covers the edge
(vo, VI)' Two additional vehicles are needed to cover (VI, V2) and (V2, vo).

Improvement on the CUT algorithm have been proposed by Hertz et
al. [31]. For example, procedure SHORTEN, described in Section 2.2.5,
is applied on each feasible vehicle route generated at Step 3. For more
details, the reader is referred to [31].

To conclude this section, let us mention that other partitioning pro­
cedures have been proposed for performing the "cluster" phase of route­
first-cluster second algorithms. For example, Win [48] suggests to use a
next fit bin packing heuristic.

3.2.2 Cluster first-route second algorithms.
Cluster first-route second strategies first determine a partition of the

required edges and arcs into clusters. Vehicle routes are then constructed
in each cluster. Any algorithm of Section 2 can be applied for the sec­
ond phase of these algorithms. We here describe a technique proposed by
Benavent et al.[4] for partitioning the required edges into clusters. This
technique, called CYCLE-AsSIGNMENT, determines the assignment of the
required edges to the vehicles by solving a generalized assignment prob­
lem (GAP). It is inspired by the famous algorithm proposed by Fisher
and Jaikumar for the VRP [20], and seems to be more efficient than the
simple greedy approach proposed by Win [48].
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Algorithm CYCLE-AsSIGNMENT

INPUT: An undirected graph G, and a given number K of available
vehicles.

OUTPUT: An assignment of the required edges to the vehicles.

Step 1. Determine a set {81' ... , SK} of K seed vertices, selecting for
each k = 1, ... ,K a vertex Sk such that the product of the distances
from 8k to the seed vertices 81, ... , 8k-1 and to the depot is max­
imum. Perform interchanges between seed vertices and non-seed
vertices as long as such interchanges increase the product of the
distances among all seed vertices and the distances between the
seed vertices and the depot.

Step 2. Solve a minimum cost spanning tree problem and a minimum
cost matching problem in order to transform GR into an even con­
nected graph G' (see Section 2.2.1). For each k = 1, ... ,K con­
struct the graph G~ containing only vertex 8k. Declare all vehicles
"open".

Step 3. Select the open vehicle k with largest residual capacity, and de­
termine in G' the minimum load cycle containing at least one vertex
of G~. If no such cycle exists, or if its load exceeds the available
residual capacity on vehicle k, then declare vehicle k "closed". Oth­
erwise, add this cycle to G~, and remove it from G'. Repeat Step
3 until all vehicles are closed. Let D k denote the shortest distance
from the depot to 8k in G.

Step 4. Let Pk,ij denote the minimum load chain between Vi and Vj in
G~ , and let Lk,ij be its load. Moreover, let Tk denote the residual
capacity on vehicle k. If two vertices Vi and Vj are linked by a
chain P in G' of load L, and if there exists a vehicle k, visiting Vi

and Vj, and such that 0 < L - Lk,ij < Tk, then interchange the
edges of P and Pk,ij in G' and G~. Perform such interchanges
as long as the total demand of the required edges in G' can be
reduced.

Step 5. For each vehicle k, and each required edge e not in G~, de­
termine the shortest chain Ck,e in G that contains edge e and
links the depot to 8k. Let Dk,e denote the difference between the
length of Ck,e and Dk' and let qe = qij denote the demand on edge
e = (Vi, Vj). For all required edges e in G~, set Dk,e = O. For each
vehicle k, and each required edge e in G, consider the Boolean vari­
able Xk,e defined as 1 if the edge e is assigned to vehicle k, and 0
otherwise.
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Solve the following generalized assignment problem (GAP) (by
means of Ross and Soland's algorithm [43], for example):

K

minimize L2~)k,eXk,e
k=leER

subject to

K

LXk,e = 1, for all e E R
k=l

LQeXk,e ::; Q, for all k = 1, ... , K
eER

Xk,e = [0,1], for all k = 1, ... ,K and e in R

The above heuristic has an interesting feature. A partial clustering
is first determined in Steps 1 to 4. The information contained in this
partial solution passes to Step 5 through the costs Ok,e. Indeed, Ok,e = °
for all edges attached to vehicle k at the end of Step 4. The other values
of Ok,e are positive and approximate the insertion cost of edge e into the
k-th vehicle route. These costs Ok,e provide an incentive for the GAP to
retain the clusters obtained in the first steps.

3.3. META-HEURISTICS FOR THE CARP

In recent years, several meta-heuristics have proved highly efficient for
the solution of combinatorial optimization problems [2] [42]. In particu­
lar, local search techniques (e.g., simulated annealing and tabu search)
appear to be quite successful when applied to a broad range of practical
problems.

Consider a set S of feasible solutions of an optimization problem,
and assume that a neighborhood N(s) ~ S is defined for each solution
s of S. Local search techniques are iterative procedures that aim to
find a solution s in S which minimizes a real-valued objective function
f : S --+ JR. The iterative process starts from an initial solution in S, and
given any solution s, the next solution s' is chosen in N(s). Stopping
rules are defined for interrupting the optimization process. Local search
techniques can be outlined as follows.

Local search techniques

Step o. Choose an initial solution s in S. Set Best-Solution := s.
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Step 1. Find a "good" solution s' in N(s). If f(s') < f (Best-Solution)
then set Best-Solution := s'. Set s := s'. If a stopping condition
is met, then stop. Else repeat Step 1.

Finding the best solution s' in N(s) (i.e., such that f(s') ::; f(S") for
any S" in N(s)) may be a very difficult problem, perhaps not simpler
than the original optimization problem. In such cases, heuristic proce­
dures are used, at each iteration, in order to generate a "good" (but not
necessarily "best") solution in N(s).

In this spirit, Li [35] has applied with limited success simulated an­
nealing and tabu search methods to a road gritting problem. In 1994,
Eglese [18] has developed a simulated annealing approach that can deal
with multiple depot locations and several side constraints. Eglese uses
an interesting concept, called cyclenode graph which can be described as
follows.

Let G be an even connected graph G. Eglese suggests to decompose
G into cycles, according to a checkerboard pattern (see Figure 9.22(b)).
The cyclenode graph N is then created as follows. A vertex in N repre­
sents a cycle in the above mentioned decomposition. An edge is included
between two vertices in N if the corresponding cycles have a common
vertex in the original graph G. A vertex representing the depot is then
added to N and linked to each other vertex in N. The decomposition
procedure as well as the construction of N are illustrated in Figure 9.22
which reproduces the example given in [18].

Each tree containing the depot vertex in the cyclenode graph corre­
sponds to a tour in the original graph G. An example is depicted in
Figure 9.22(d).

Eglese [18] has developed a simulated annealing algorithm that works
directly on the cyclenode graph. A solution of the CARP is defined as
a set of trees in N rooted at the depot node. Neighbor solutions are ob­
tained by performing simple modifications on at most two trees. Eglese
mentions that the main difficulty encountered with this model is that
not all possible routes in G can be represented by a tree in the cyclenode
graph N. For example, in Figure 9.22, the route (depot, h, c, i, h, depot)
has no corresponding tree in N.

Recently, Hertz et al. [31] have developed a tabu search algorithm,
called CARPET, for the solution of the CARP. The CARPET algorithm
is based on several procedures described in the previous sections. For
example, an initial solution is obtained by means of a route first-cluster
second heuristic a giant tour T covering all edges and arcs is first con-



(a)

An even connected graph G.
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(b)

A decomposition of G into cycles,
according to a checkerboard pattern.

(c)
The associated cyclenode network,

without the depot vertex.

(d)

A tree in N and its corresponding tour in G.

Figure 9.22

structed by means of algorithms presented in Section 2; this tour T is then
partitioned into feasible vehicle routes by means of the CUT algorithm.

Solutions violating the capacity constraints can be visited during the
search process. These infeasible solutions are however penalized by the
objective function f. More precisely, let 8 be a solution, L(8) the total
length of the vehicle routes in 8, and E(8) the total excess demand with
respect to vehicle capacity. The value f(8) of a solution 8 is set equal to
L(8) + exE(8), where ex is a self-adjusting penalty parameter. Initially,
ex is set equal to the average length of a shortest chain between the de­
pot and the extremity of all required edges. Every 5 iterations of the
CARPET algorithm, ex is halved if all previous 5 solutions were feasible,
and doubled if they were all infeasible.
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A neighbor solution 8' is obtained from a solution 8 by moving the
service of an edge e from a route T to another route T' of 8. The ser­
vice of e is removed from T by means of the DROP algorithm while it is
introduced into T' by means of the ADD algorithm (see Section 2.2.5).

In order to avoid cycling and being trapped in local optima, a tabu
list T registers the most recent moves that have been performed during
the search process. If the service of an edge has been moved from a route
T to a route T', then the pair (e, T) enters the list T, and the service of
e cannot be reintroduced into T during a given number of iterations.

The main structure of the CARPET algorithm can be outlined as fol­
lows.

Algorithm CARPET

INPUT: An undirected graph G = (V, E).

OUTPUT: A solution of the undirected CARP.

Step 1. Construct a covering tour T for R by means of one of the heuris­
tics described in Section 2.2.1. Partition T into a set 8 of feasible
vehicle routes by means of the CUT algorithm. Set the penalty
parameter a equal to the average length of a shortest chain be­
tween the depot and the extremity of all required edges. Set T
equal to the empty set. Set BesLL := L(8), BesLf := L(8) and
BesLSolution := 8.

Step 2. Determine the neighborhood N(8) of 8 as follows. For each
required edge, consider the route T servicing it, as well all other
routes T' in 8. Remove the service from T by means of the DROP
algorithm, and introduce it into T' by means of the ADD algorithm.

Step 3. Choose the non-tabu neighbor 8' in N(8) which minimizes the
objective function f(i.e., f(8') ~ f(8") for all 8" in N(8) \ T). If
8' satisfies the capacity constraints (i.e., E(8') = 0) and L(8') <
Best..L, then set BesLL := L(81) and Best.5olution := 8'. If
f(8') < BesLf then set BesLf := f(8'). Set 8' := 8, and update
the tabu list T and the penalty parameter Q.

Step 4. Ifno stopping condition is met, then return to Step 2. Else stop,
Best-Solution is the best solution encountered during the search
process.

Several additional ingredients are described in [31]. For example, di­
versification of the search process is obtained by performing a three steps
procedure. A set of routes is first merged in order to obtain a giant (pos­
sibly not feasible) route T. This giant route is then shortened, using
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procedure SHORTEN (see Section 2.2.5). Finally T is decomposed into
feasible vehicle routes by means of the CUT algorithm.

The search process can also be intensified in some promising regions of
the search space. This is done by applying improvement procedures such
as DROP-ADD or 2-0PT-Rpp on each vehicle route of the best solutions
encountered during the search process. For more details, the reader is
referred to [31].

One interesting line of research would be the development of hybrid
meta-heuristics for the solution of the CARP. Such techniques combine
population based methods (e.g., genetic algorithms, scatter search) with
local search techniques, and have already proved highly successful in
other areas of combinatorial optimization.

4. CONCLUSION
Arc routing problems occur in a wide variety of practical problems

with different constraints and objectives. We have described in this
chapter algorithms that can be used to solve basic problems. When
additional constraints must be taken into account, the known heuristic
methods must be adapted or extended. The algorithms described in this
chapter should therefore be considered as skeletons of more specialized
algorithms to be designed for each particular real life problem. Such
adaptations or extensions have already been described in several papers.
For example, Dror et al. [14] [15] have solved a problem in which the
edges and arcs must be serviced in an order that respects a given prece­
dence relation. Multiple depot locations [18] have been handled by using
the cyclenode graph model described in Section 3.3. Time windows as
well as time limits on the routes can also be taken into account as shown,
for example in [19] [45]. Such real-life applications are described in more
details in another chapter of this book.

The reader interested in developing its own heuristic method for the
solution of a given arc routing problem should now have the basic ingre­
dients into his hands which should help him designing the most adequate
heuristic method.
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Roadway snow and ice control (RSIC) is one of the most complex and
fascinating venues for arc routing applications. Arc routing problems oc­
cur in several different aspects of RSIC, including plowing roadways and
sidewalks, spreading chemicals (salt and other de-icers) and abrasives
(sand and stone), and in using snowblowers to load snow into trucks for
hauling to disposal sites. The limited progress of computerized routing
packages in this area (Office of the Legislative Auditor, 1995) highlights
the difficulty of the problems and the weaknesses of theoretical arc rout­
ing models for snow and ice control. Part of the difficulty is due to the
complex operational and infrastructure constraints, especially in urban
areas. The dynamic nature of the problems also adds complexity, as
conditions can vary dramatically over time and space. Furthermore, a
wide variety of equipment with different operating characteristics can be
deployed for RSIC.
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This chapter opens with a brief history of roadway snow and ice con­
trol and then details the dynamic and complex characteristics of arc
routing in this arena. Some early work on analytical approaches to win­
ter arc routing beginning in the 1970s are discussed next. Then two
major successful applications are described in more detail. The first is
the CASPER system, which is currently used, and has been extensively
tested, in the State of Indiana (U.S.A.). The second system is based on
the GeoRoute software and it has been implemented in a variety of loca­
tions in Canada and the U.K. The chapter also includes a brief discussion
of other more recent works, and it closes with a look to the future.

2. BRIEF HISTORY OF RSIC
Roadway snow and ice control has a surprisingly long history that even

predates the automobile. Minsk (1970) and Gray and Male (1981) pro­
vide some historical perspectives on snow removal, and McKelvey (1995)
provides considerable details on early urban snow and ice control, espe­
cially in the northeastern United States. This section highlights some
of the history of RSIC in the U.S. In the last half of the 19th century,
as cities developed into centers of commerce, safe winter travel by horse
drawn vehicles and pedestrians on city streets became a pressing need.
Horse drawn snow plows were used as early as 1862 in Milwaukee, and in
the 1870s private street car companies plowed the snow off their tracks,
but often left it in large piles and ridges that interfered with pedestrian
travel. ·Winter travel problems were so severe that in the winter of 1873­
74 the New York Times called for the construction of elevated lines or
subways to avoid the snow.

Because private snow removal efforts often led to conflicts as snow re­
moved by one business might block another, urban snow and ice control
came to be viewed as a public service. (New York City established a
Department of Street Cleaning with responsibilities including snow re­
moval in 1881.) Before motor vehicles, horse-power and manpower were
used to clear snow, load it into carts, and haul it to disposal sites, which
included rivers, lakes and the city sewer system. The limitations of this
arrangement were well demonstrated in the "Blizzard of 1888", which
dropped up to four feet of snow in the northeastern U.S. and caused over
400 deaths. This storm paralyzed New York City (population 2 million)
with 20 inches of snow, stopped the elevated trains, knocked out com­
munication and electricity, and prompted the New York Times to again
urge building of a subway and underground conduits for utilities. From
this one storm, the City hauled 76,000 loads of snow (primarily to the
East River), and private street car companies dumped even more. Fol­
lowing the Blizzard of 1888, many cities became more systematic about
snow and ice control, including dividing their territory into sectors and
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assigning plows to each sector. Many cities, including New York, Boston
and Chicago, also sought relief by building elevated trains and subways.

As automobiles and trucks rose to prominence in the 20th century,
they focused greater attention on needs for roadway snow and ice con­
trol, and they also provided powerful new tools for snowfighting. Motor­
ized trucks, road scrapers, plows, snow loaders and caterpillar tractors
were used prior to 1920, and subsequent decades saw mechanized snow
fighting quickly replace manual labor. The use of salt for snow and ice
control (though common in European cities) was slower to catch on in
North America (in part due to its hazards for horses!). Salt use became
widespread with the development of practical mechanical spreaders in
the 1940s, and with the greater demand for safe driving conditions. Salt
was readily adopted because it both cut costs for snow and ice control,
and reduced the need for hauling snow. The widespread use of the auto­
mobile in the last half of the 20th century, along with population shifts,
made snow and ice control a crucial and complex winter activity in ur­
ban and rural areas. The high levels of service demanded led to greater
usage of salt, which in turn led to a variety of difficult issues involving
environmental hazards, as well as corrosion to vehicles and infrastruc­
ture. Further obstacles to efficient snowfighting have been added by large
numbers of parked cars, and roadway geometries in suburbs.

The advent of satellite based weather forecasting in the 1960s and bet­
ter public awareness of snow and ice hazards have helped in snowfighting
efforts, but large storms continue to overwhelm available resources. For
example, storms in Chicago in 1967 paralyzed the metropolitan area,
causing shortages of food and medical supplies. Looting and rioting
resulted in some parts of the city, and helicopters were used to reach
otherwise inaccessible hospitals. The snow removal bill for cleanup was
ten times the annual budget for snow and ice control. More recently,
the "Blizzard of 1996" (January 1996) in the northeastern United States
cost $20 billion (Byron Lord, 1996) and forced the closure of U.S. federal
government offices due to the inability of Washington D.C. public works
agencies to maintain passable roadways.

Today, Sapporo, Japan has perhaps the most sophisticated snowfight­
ing and snow disposal system. Sapporo faces special problems as a large
city (population of 1.7 million) which receives an average of five meters
of snow each year! In addition to spreading abrasives and chemicals,
and plowing snow, Sapporo also uses road heating systems, snow melt­
ing tanks, and snow flowing gutters along streets (using river water or
treated sewage) for dumping snow, rather than hauling it to disposal
sites (City of Sapporo 1991).
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3. CHARACTERISTICS OF ARC ROUTING
FOR RSIC

Arc routing problems for roadway snow and ice control (RSIC) are
especially difficult because of the dynamic environment and the com­
plexities of equipment, infrastructure and operations. The two major
roadway snow and ice control operations are plowing, and spreading
chemicals and abrasives, both of which require solving arc routing prob­
lems to direct vehicles through a network of roadways. Arc routing is
also required when using snowblowers to load snow into trucks to be
hauled to disposal sites, as is common in urban areas with heavy snow­
fall. Major storms that cause substantial accumulations of snow and ice
may require plowing, spreading and snow loading operations over sev­
eral days. In contrast, rain followed by freezing temperatures may only
require precautionary spreading operations.

RSIC arc routing problems differ from many other arc routing appli­
cations in a number of important ways, and yet there is also tremendous
variation in RSIC operations themselves, due to vast differences in cli­
mate, levels of service, network complexity and size. However, in all
cases service should be provided efficiently, rapidly, equitably and simul­
taneously across a large and complex network in the presence of other
vehicles and adverse weather conditions. This section highlights some of
the key characteristics of RSIC that affect arc routing.

Roadway snow and ice control is a very dynamic environment both
spatially and temporally. Weather conditions (temperature, wind, pre­
cipitation type and amount, accumulation rate, total accumulation, etc.)
can vary significantly even over small distances due to topographic fea­
tures and water sources, and can vary dramatically over larger distances.
Some spatial variations are persistent, such as the large "lake-effect"
snows from the Great Lakes in North America, while others depend on
the paths of particular storms. Weather conditions also vary over time,
and as conditions evolve the appropriate snow and ice control actions
will change. Light dry snow, heavy wet snow and freezing rain all re­
quire different responses, yet all may occur in a matter of hours. Though
each precipitation event is unique in duration, intensity, and composi­
tion, vehicle routes are generally fixed at the beginning of winter, so the
routes must be robust enough to provide an appropriate level of service
over a wide range of conditions. Traffic conditions are also dynamic and
can have very strong effects on snow removal operations.

The complexity of roadway snow and ice control results from the dif­
ferent environments in which the problems occur in terms of location,
equipment, infrastructure, policies and operations. Rural problems are
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often simpler due to the sparser road networks and the service require­
ment, in many cases, to only remove snow from the roadways. For many
storms, plowing snow off of the roadways, or spreading chemicals and
abrasives is sufficient. Heavier storms may require heavier equipment,
but the availability of open space adjacent to rural roadways usually
means that snow can be piled beside the road to accumulate over the
winter. Snow and ice control in urban areas is a more complex problem
due to the needs to not only clear roadways, but to also clear sidewalks,
crosswalks, fire hydrants, public transit stops, and intersections. Further
complexity in snow plowing is introduced by parked cars, the desire not
to block driveways or sidewalks with plowed snow, and turn restrictions
for u-turns and turns across traffic lanes. (For example, a snow plow
driving on the right-hand side of a roadway is designed to move snow
toward the right edge of the roadway, so a left turn at an intersection
results in a row of snow being left in the middle of the intersection.) In
areas where plowed snow accumulates beside the roadway and impedes
pedestrian or vehicle traffic, it must be physically removed to a disposal
site. Snow disposal operations generally involve plowing snow into a
windrow in the middle of the street and then loading it into trucks with
snow blowers (rotary plows), snow loaders, or other equipment. This is
common following large storms in many urban areas, and can be quite
expensive. For example, Montreal hauls an average of seven million cu­
bic meters of snow each year (plowed from the streets and sidewalks) to
a variety of disposal sites around the city.

Complexity in roadway snow and ice control is also introduced by the
wide range of equipment available. Minsk (1981), Keyser (1981), and
the Winter Urban Environment Research Subcommittee (1994) provide
a wealth of details of snow and ice control equipment and use of chemicals
and abrasives. Each type of equipment (plows, spreader vehicles, snow
loaders) occurs in multiple variations and a single agency's fleet may in­
clude a diverse mix of snowfighting vehicles. Snow plows may be divided
into displacement or blade plows, and rotary plows. Displacement plows
are the most common and may have blades of different lengths, composi­
tions, and angles, which can be straight, articulated or V shaped. Plows
may be mounted on the front of vehicles, under the body, at the side,
or on the rear. Road graders are also used for snow plowing. Rotary
plows also come in several different varieties. Special equipment is also
available for heavy conditions and ice removal. Spreader trucks have
different carrying capacities for materials, and can distribute a variety
of different materials, at different rates, in dry or wet form (wet ma­
terials can increase adhesion to the roadway and speed melting). The
rate of application and the speed of spreader trucks depends on a wide
range of factors including weather conditions, road conditions (wet or
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dry, pavement temperature, etc.), traffic, material being spread, and
characteristics of the spreader mechanism. Trucks can also spread one
or two lanes in a single pass. Snowblowers and snow loaders can also op­
erate at different rates. In addition to the multiple types of equipment
that may be available, some equipment is reconfigurable during and be­
tween storms. For example, plow angles can be changed to allow wider
or narrower swaths to be cleared depending on the width of the roadway.
Also, spreader trucks may change rates of application or materials.

The existing infrastructure in a jurisdiction provides the framework
for the roadway snow and ice control operations. The wide range of
roadways encountered lead to different arc routing problems. A typi­
cal agency may treat a mix of road types and surfaces including single
lane roads, two lane roads, multi-lane roads, alleys, cul-de-sacs, one way
roads, gravel roads, etc. In addition, some roadways may be available for
travel but need not be cleared, generally if they are treated by another
jurisdiction. In urban regions the problems are compounded by the need
to keep clear a variety of other areas such as sidewalks, crosswalks, fire
hydrants, transit stops, intersections, etc. The locations of depots for
chemicals and abrasives, and of vehicle garages also provide constraints
on RSIC operations. Several depots may be located across a region to
provide opportunities for spreader vehicles to refill with materials with­
out returning to the original starting point. In snow loading operations,
the linkage between snow disposal sites and vehicle routes also imposes
restrictions on the arc routing problems (Campbell and Langevin, 1995a,
1995b).

Policy decisions and operational decisions for roadway snow and ice
control contribute to the problem complexity in several ways. Most pub­
lic works agencies assign priorities for treatment to certain roadways to
ensure essential travel routes remain safe. A recent survey in Minnesota
showed that 90% of the counties and 84% of the cities employed priority
routes (Office of the Legislative Auditor 1995). These roadways may be
treated first, and with greater frequency than other roadways. Service
levels for roadways may be specified in terms of route length or frequency
of treatment (e.g., each route should be covered every two hours) q,nd
in terms of end result (e.g., bare pavement of a specified width). Shift
lengths for employees can also affect vehicle routing and scheduling.

Numerous roadway snow and ice control operational decisions affect
the complexity of the arc routing problems. For multi-lane roadways,
two (or more) plows may operate in tandem clearing two (or more) lanes
in one pass. Spreader trucks may similarly operate in tandem or alone.
A spreader truck can also spread materials in swaths of different widths,
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allowing a single pass to treat either one lane or two lanes. Thus, a two­
lane road may be modeled as two directed arcs, or a single undirected
arc, depending on operational decisions. Each road segment of two or
more lanes may also be assigned to a single route or to two (or more)
routes, since each lane (e.g., one direction of travel) could be assigned
to a separate route. Operational considerations in snow plowing include
special considerations to not block intersections or driveways. Since snow
plows turning across traffic lanes (e.g., a left turn from the right side of
a roadway) typically leave a large row of snow through the middle of
an intersection, such turns by plows may be prohibited or discouraged
in plow routes. Alternatively, plows could make these turns, but take
additional time and effort to clear snow from the intersection. Similarly,
plows may leave large rows or piles of snow blocking driveways if care is
not taken to tuck the snow into snowbanks that leave the driveways clear.

In summary, the complex and dynamic practical issues raised in this
section contribute to making arc routing for snow and ice control an ex­
tremely challenging proposition. Haslam and Wright (1991) state that
"design of routes for ... snow and ice control is perhaps the most diffi­
cult and complex of all public service routing problems". Some of the
elements that add difficulty are fixed, such as the roadway network and
infrastructure, while other elements involve long term decisions and poli­
cies such as fleet mix and service levels, and still other elements involve
shorter term operational decisions in conducting roadway snow and ice
control. Arc routing models and solutions that ignore the practical com­
plexities of the problem are likely to provide little real benefits in the
field.

4. SOLUTION APPROACHES
In spite of the difficulty of roadway snow and ice control arc routing

problems, public works agencies have been designing routes every win­
ter for many decades. Routes developed and modified based on field
experiences, usually with considerable input from the drivers, represent
perhaps the earliest solution approach, and one that is still used in a great
many jurisdictions today. In a stable environment with no changes in the
road network, equipment, or service levels, such an approach may over
time produce very good routes, as experienced drivers and public works
officials undoubtedly accumulate a great deal of knowledge and expertise
in RSIC. However, in a more realistic dynamic environment where in­
frastructure, equipment, and service levels may change over time, route
design is much more complex, and periodic redesign is essential for ef­
ficient operations. Design of new routes is also required as jurisdictions
and responsibilities for RSIC change. A 1995 survey in Minnesota re­
ported that 62% of counties and 55% of cities re-evaluate snow routes
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every year; yet only one agency used a computerized routing package
(Office of the Legislative Auditor 1995). (In the same survey, 20% of
cities and 45% of townships reported never re-evaluating their routes!)

Analytical approaches to route design offer great promise for improv­
ing roadway snow and ice control. A simple analytical approach to RSIC
arc routing involves manual analysis based on maps and statistical route
summaries. Careful visual analysis of a route map combined with the
ability to quickly generate route summary statistics (length, travel time,
cost, lengths of different classes of roads, etc.) may lead to manual design
of routes that improve those developed in the field. The development of
a variety of heuristic algorithms for theoretical arc routing problems has
led to applications in snow and ice control, though early results were
less promising than hoped. Idealized models may treat snow plow rout­
ing as a variant of the Chinese Postman Problem (CPP) or the Rural
Postman Problem (RPP), and spreader vehicle routing as a type of Ca­
pacitated Arc Routing Problem (CARP). (Some RSIC routing problems
can also be modeled as node routing, rather than arc routing, problems.
See Laporte 1997.) However, theoretical models for arc routing based
on the CPP, RPP or CARP (see Eiselt et al. 1995a, 1995b) generally
fall short of the requirements for RSIC. The development of digital road
networks and geographic information systems (GIS) with sophisticated
abilities to maintain and analyze locational and attribute data, provides
new opportunities for "optimization" in arc routing. The following two
sections discuss some important developments in RSIC arc routing, and
concentrate on work that has been implemented in the field, rather than
theoretical models that may have been tested with data from the field.

5. EARLY WORK
Scientific and analytical research on roadway snow and ice control be­

gan to attract considerable attention in the 1960s, and the Highway Re­
search Board (now Transportation Research Board) of the United States
held its first international symposium on "snow removal and ice control
research" in 1970 (Highway Research Board, 1970). This included no pa­
pers specifically on arc routing, but did cover topics such as a regression
model for snow removal costs, chemicals for RSIC, pavement heating,
ice-pavement bonds, skid resistance, snow fences, and engineering stud­
ies. By the time of the second such symposium in 1979, a variety of
authors had begun to address RSIC arc routing problems. These early
works were generally based on rather straightforward heuristics for arc
routing problems, and used simulation models to evaluate benefits. Im­
plementation details and operational constraints were rarely considered.



Roadway Snow and Ice Control 397

Marks and Stricker (1971) discuss routing of public service vehicles in­
volved in urban trash collection and snow plowing. They identify parked
cars, cars stuck in a roadway, and priorities for plowing as significant
problems in modeling RSIC. They describe a decomposition algorithm
for arc routing that relies on manual solution of a series of CPPs. They
present an application for trash collection, but not snow plowing, in
Cambridge, Massachusetts.

Liebling (1970 and 1973) presents a study to aid municipal authorities
in Zurich, Switzerland in the planning of the following tasks: choice of
suitable equipment for street cleaning; determination of sites for depots;
planning of individual routes for snow removal and salting. He uses a
graph-theoric formulation to partition the city into sectors, each serviced
by a single vehicle. Then, a standard Chinese Postman Problem is solved
in each sector.

Cook and Alprin (1976) describe a closest street heuristic for routing
of salt spreader trucks. Street segments are defined to require exactly
one load of salt, so this is not a typical arc routing application where
routes include multiple street segments. In this paper street segments
are assigned to trucks dynamically so that as each truck is filled at the
depot it is assigned to the closest untreated street segment. Thus a
single vehicle can be refilled multiple times to serve multiple street seg­
ments. However, each trip from the salt depot is to serve a single street
segment. The objective was to minimize the time for a given fleet of
spreader trucks to cover all streets in a network, and the heuristic was
tested with data from Tulsa, Oklahoma.

Tucker and Clohan (1979) use the then new technology of computer
graphics to help manually design a new route for a snow plow in Farming­
ton, Connecticut. Their design guidelines included minimizing u-turns
at intersections, left turns and deadhead travel (i.e., travel without pro­
viding service). They simulated five storms and conducted sensitivity
analyses to evaluate the role of the rate of snowfall and the initial depth
of snow when plowing begins. They summarized their study by say­
ing that the current route is "near-optimum". They acknowledged the
practical complexities of multiple passes, tandem plowing, delays at in­
tersections, different road widths and varying snow accumulation rates,
but they did not address any of these issues in their new route. Inter­
estingly, they report that

"Snow removal equipment routing is that phase of the operation
which can potentially save the most money. Although certain
methodology in the fields of graph theory and network analysis
could aid in the routing problem, the techniques are somewhat dif-
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ficult to grasp and most city officials are out of touch with this
type of technology."

They also summarize the situation at that time as follows: "With the
exception of a few cities that publish procedural manuals or plans, few
attempts at routing improvement are made."

Lemieux and Campagna (1984) present a simple model for snow plow
routing with roadway priority classes. The approach is to first find an
Eulerian circuit on a directed graph, and then select higher priority roads
when possible. An interactive computer program is described and tested
on a very small network. This model does not consider one-way or multi­
lane streets.

Gilbert (1989) models the snow removal problem for a single snow­
blower as a node covering problem where the nodes correspond to the
segments of streets to be cleared. Several precedence constraints are
taken into account. The resulting model is a large scale non-linear 0-1
programming problem that is not solved. A heuristic approach is de­
veloped based on two versions of an insertion method that adds nodes
iteratively to a given work shift. The first version inserts higher priority
nodes in the first shifts. The second version balances the work load,
mainly in the last days of work. The heuristic is tested with data from
one district in the City of Montreal, Canada.

Gelinas (1992) presents an optimal approach for the snow removal
problem. The problem is modeled as a single vehicle arc routing problem
with precedence constraints. -The solution approach involves construct­
ing Eulerian subgraphs, finding upper and lower bounds by dynamic
programming, and solving a traveling salesman problem by branch-and­
bound. Data from the same district of the City of Montreal as in Gilbert
(1989) was used to test the algorithm.

As both the technical and organizational difficulties of producing a
useful solution became better understood, and as computing power be­
came more widely available, decision support systems became the nat­
ural approach for RSIC arc routing problems. The SnowMaster system
(Evans 1990, Evans and Weant 1990) is an early example of an arc
routing DSS for RSIC. This system was designed to "assist ...engineers
and fleet managers to route snow and ice control vehicles efficiently for
improved service, higher equipment utilization, and lower capital and
operating costs." The route design component of the system included
five different path scanning rules that could be used at each node in the
street network: (1) select the shortest arc, (2) select the longest arc, (3)
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select the arc that maximizes the distance back to the depot, (4) select
the arc that minimizes the distance back to the depot, and (5) if the
vehicle is less than half full, select according to rule 3; if the vehicle is
more than half full, select according to rule 4. A further modification
was included to give priority to adjacent nodes with exactly one unser­
viced arc. Route summaries were provided for all five rules and the user
could select the most appropriate routes.

This system addressed capital costs of equipment and helped to iden­
tify the appropriate mix of equipment required. Simulation tests using
data from Butler County, Ohio showed savings of $251,000 over three
years from reducing the size of the fleet required through improved
routes. Routes designed with SnowMaster were used in the field in
November 1989 and the route completion times from the DSS were "ac­
curate to within only a few percent". Waddell (1994) provides some
sketchy details on several applications of SnowMaster in different U.S.
counties and highlights the linkage between route efficiency and both
storage depot locations and fleet size and composition. He also points
out how "additional trucks are often employed in a misguided effort
to overcome inefficient routes with more resources". Evans and \Veant
(1990) conclude: "Computer-based routing software can provide sub­
stantial benefits for snow and ice control decisions over existing manual
methods by allowing fast scenario analysis and efficient optimization of
routes that improve service and reduce costs." (A recent report of Snow­
Master being used in an urban county was discouraging, as one route
included excessive u-turns. Use of the software was quickly discontinued
according to Simcox 1998).

In spite of the recognition of the value of route "optimization" and
the availability of heuristic solution methods based on arc routing re­
search, progress in arc routing for roadway snow and ice control was
very limited. Early attempts to apply simple heuristics produced nice
results from simulation studies, but were rarely implemented in the field.
Much early work adapted theoretical arc routing models with little con­
sideration of practical RSIC operations. The promise from these early
computer implementations of heuristics was often derailed by poor im­
plementation and user-unfriendly software, distrust of computer-based
(black-box) approaches by public works personnel, and unappreciated
operational complexities. However, these early systems did focus atten­
tion on savings from better routes, and perhaps more importantly the
savings from a more rational and analytical approach to fleet size and
service level (time limits for routes). The SnowMaster system provided
a major advance in the trend towards route "optimization" by encourag­
ing user involvement in route design. However, the inability to consider
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all the nuances of real world operations may have helped to mask some
of the benefits being achieved.

6. RECENT WORK
While the promise of applying analytical techniques of operations re­

search and management science to roadway snow and ice control has
been recognized for several decades, proof of the promise has been slow
in coming. General theoretical arc routing algorithms showed substan­
tial benefits in simulation studies, but actual implementation for RSIC
was a very different matter. The State of Minnesota, a leader in RSIC,
conducted a state-wide survey in 1995 to collect the "best practices" in
snow and ice control, and reported that only a single agency out of the
414 jurisdictions (counties, cities and townships) surveyed, used comput­
erized routing software (Office of the Legislative Auditor, 1995). Thus,
early enthusiasm from researchers for RSIC arc routing "optimization"
gave way to a more pragmatic understanding that "... the application
of analytical and numerical methods, and computer technologies to the
problem of designing winter service routes is in its infancy" (Wang and
Wright 1994).

In spite of the slow progress, from a practical perspective, researchers
and consultants have continued efforts to develop and implement com­
puterized packages for RSIC. The new generation of software packages
for RSIC combine arc routing heuristic algorithms, interactive route de­
sign functionality, user friendly interfaces, and ability to work with digital
network representations. This section focuses on two rather sophisticated
and successful examples: the CASPER system developed for rural RSIC
in Indiana, and the GeoRoute Municipal package. CASPER was devel­
oped in a joint project involving researchers at Purdue University and
personnel of the Indiana Department of Transportation. GeoRoute Mu­
nicipal has been implemented in several urban and rural regions by PSR
Group Ltd. (a consulting company in Nepean, Canada) which licenses
the software from its developer, GIRO Enterprises, Inc. (of Montreal,
Canada).

6.1. CASPER
CASPER (Computer Aided System for Planning Efficient Routes) is a

true interactive decision support system for design of RSIC routes. It has
evolved over a number of years incorporating a variety of improvements,
and is currently used to design routes for the State of Indiana. The infor­
mation in this section is derived from a number of sources (Haslam and
Wright 1991, Wang 1992, Wang and Wright 1992, Wright 1993, Wang
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and Wright 1994, Wang et al. 1995, Goode and Nantung 1995, Goode
1997, Wright 1997). This section first describes the operating environ­
ment for rural RSIC in Indiana, then the routing algorithms in CASPER
and finally results from the field implementation which began in 1993.

The Indiana Department of Transportation (INDOT) maintains over
29,000 lane-miles in over 11,400 miles of roadway. RSIC involves over
1500 trained personnel and approximately 1100 vehicles. The annual
budgets for RSIC since 1992-93 have ranged from $20-$28 million. The
last formal evaluation of snow routes in Indiana, prior to CASPER, oc­
curred in 1970. RSIC vehicles are based in depots across Indiana with
each depot supporting between 5 and 15 routes. Vehicles used for RSIC
include trucks with 8-ton and 12-ton capacities. A typical service vehi­
cle outfitted for snow and ice control, including the plow and spreading
attachments, costs between $70,000 and $120,000. Trucks travel ap­
proximately 20 mph while servicing and 40 mph while deadheading (not
servicing). Because of the relatively large capacities of the trucks, the
route lengths are limited by the level of service (specified as a time limit
for traversing the route), rather than the capacity for carrying materials.
Personnel turnover has averaged approximately 30% from one winter to
the next, therefore requiring annual driver training and making experi­
enced personnel especially valuable.

Roadways in Indiana are divided into three classes for RSIC based
on average daily traffic (ADT). Class 1 roadways have ADT of 5000 or
greater and receive continuous service to keep the road surface wet and
bare. Class 2 roadways have ADT between 1000 and 5000 and receive
continuous service to keep bare wet pavement in the center of the road­
way. Class 3 roadways have ADT of less than 1000 and receive continuous
service to keep the road passable, with chemical treatment only for hills,
curves, and intersections. Route lengths are limited by specified service
levels for each class of roads: class 1 roads should be serviced every 2
hours, while class 2 and class 3 roads should be serviced every 3 hours.

The goal in creating vehicle routes for RSIC in Indiana is to minimize
cost, both by reducing the number of routes and reducing the number
of deadhead miles traveled, while meeting specified service levels and
maintaining class continuity. Costs are reduced by eliminating routes,
since each route requires a vehicle, and by reducing the amount of un­
productive deadhead travel. Deadhead travel is of particular concern,
because "traditionally, the most intense and frequent of all citizen com­
plaints directed at winter operations relates directly to the amount of
deadhead travel" (Wright 1993). The class continuity condition reflects
the inefficiencies of providing a higher than necessary level of service.
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Because all road segments in a route receive the same treatment, the
route must be serviced according to the highest level of service for any
segment of the route. Although providing a higher than needed level of
service may indicate unnecessary expense, it does provide the citizens
with the benefits of safer travel from the better level of service.

CASPER designs multiple routes from a specified depot location (where
vehicles begin and end their routes) to serve a specified network of road­
ways. The route design procedure is repeated for each depot across the
region. Detailed data is required for each arc in the road network, in­
cluding length, width, number of lanes, and ADT. Intersection details,
such as turn lanes, and traffic control devices, are also required to cap­
ture the complex requirements at road intersections and interchanges.
In addition, turn permissions (e.g., safe u-turn locations) can be spec­
ified at different locations. CASPER was originally developed before
the widespread availability of detailed digital road networks, and con­
siderable work was required to extract the necessary roadway data from
the available sources, primarily U.S. Geological Survey digital line graph
data (Wang and Wright 1992). This process is now made easier as public
service agencies acquire detailed digital roadway data, generally with a
geographic information system (GIS). However, considerable work may
still be required to ensure an accurate network representation of complex
intersections and interchanges.

CASPER incorporates multiple objectives in designing routes via a
penalty function that incorporates the conflicting desires to meet speci­
fied service levels (time limits for routes), minimize deadhead travel, and
maintain class continuity. The penalty function is calculated as a sum
of three terms and was developed in consultation with INDOT person­
nel. The penalty is calculated for each route separately, and values can
then be added for a summary performance measure. The service level
constraint is incorporated in the penalty as the deviation in route time
from a target time measured in minutes, and then cubed. The target
time is specified as a range, and the current values are 90-120 minutes
for class 1 routes, and 150-165 minutes for class 2 and class 3 routes.
Thus, a class 1 route of 80 minutes (or of 130) minutes incurs a penalty
of 1000 (ten cubed). Penalizing routes that are too short encourages
using fewer routes, which reduces costs; penalizing routes that are too
long encourages achieving the desired frequency of service. Deadhead
travel is incorporated in the penalty as the sum of the deadhead miles.
Class continuity is reflected in the penalty as one-third of the number of
off-class miles, i.e., miles in a route of a class other than that desired (for
example, a class 2 road included in a class 1 route). The one-third weight
for off-class miles relative to the unit weight for deadhead miles indicates



Roadway Snow and Ice Control 403

a greater importance for deadhead miles. However, the time limits are
much more important as reflected in the exponential (cubic) function.
Thus, the penalty component for a large time deviation will far exceed
the other components. However, when the route length penalty (time de­
viation) is small, then the deadhead and off-class miles will be important.

Arc routing in CASPER is accomplished with a heuristic route gener­
ation algorithm and an interactive tabu search based route improvement
heuristic. The route generation heuristic grows routes from the depot
using the penalty function to guide development. (An earlier greedy
seed-node based route generation approach is described in Haslam and
Wright 1991). CASPER also allows user specified (e.g., existing) routes
to be treated as input to the route improvement heuristic. The route
improvement heuristic is also guided by the penalty function, and is a
refinement of that in Haslam and Wright (1991).

Before generating routes, CASPER estimates the number of routes re­
quired for each class of roadways based on the lane-miles of that class of
roadways, vehicle speeds and the time limit (service level) for that class.
Each route is started from the depot by selecting the closest unserviced
arc of the appropriate class. Each route is then extended using a "two
arc look-ahead procedure" that selects the next arc in a route based on
maximizing the number of arcs of the appropriate class incident to the
far end of the next arc. Thus, if the end of a route of class n is node
i, then the next arc in the route will be the arc of class n incident to
node i, that is adjacent to the greatest number of arcs of class n. Arcs
are only added to a route if the shortest path from the endpoint back to
the depot keeps the total route length within the time limit for that class.

Once all routes stop "growing" by this two arc look-ahead procedure,
routes are expanded in three steps. In each step routes are only ex­
panded if their total service time is within the specified limit. The first
route expansion step takes any unserviced arc incident to a route of the
same class and adds that arc to the route. This step maintains class
continuity. The second route expansion step takes any unserviced arc
incident to a route of higher service level class and adds that arc to the
route. The arcs added in this step will receive a higher level of service
than necessary. The third route expansion step adds each unserviced arc
to a route of the same class. This involves deadhead travel to and from
the added arc, since arcs incident to a route of the same class would have
been added earlier. The selection of the route for each arc is based on
minimizing the penalty function.
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The final step in generating routes is to add any remaining unserviced
arcs to a route. This is accomplished by ignoring both the classes of
arcs and the time limits for routes. The addition of an arc to a route
is again based on the penalty function calculation. At the end of this
step, each arc will be serviced on exactly one route. Arcs may also be
used for deadhead travel in one or more routes. The penalty function
can be calculated for each route, and these can be summed to produce
a single performance measure for each depot. The routes resulting from
this generation procedure may not be very good, but they do provide a
feasible starting point for the route improvement heuristic.

Once an initial set of routes is specified (whether from the route gener­
ation heuristic or some other procedure), CASPER invokes an interactive
arc swapping route improvement heuristic. Swaps of a single arc or of
two arcs are considered, and the penalty values are used to evaluate the
improvement. The improvement heuristic is guided by a tabu search
procedure with a tabu list that can be specified to contain either the
arcs and routes involved in the swap, or just the arcs (a more restrictive
option). A second "permanent tabu list" is used to retain user specified
moves that can not be reversed. This allows the route designer to lock
in desirable features of a route. Candidates arcs for swapping are gener­
ated from the routes with the greatest penalties to increase the chances
of finding good swaps. User specified parameters allow considerable con­
trol over the route improvement heuristic. See Wang (1992) for details.
Users are also provided with tools to specify arcs to swap, and to "freeze"
portions of routes. Furthermore, 'users can specify arcs for class upgrades
(service level improvements) as may be needed to address a hazardous
spot (e.g., a sharp curve or steep hill). In practice, CASPER users have
spent considerable time in the route improvement phase in an interac­
tive effort to understand the routes being generated by CASPER, and
to suggest improvements. CASPER is designed to be used by someone
knowledgeable about snow and ice control, and about the transportation
network being analyzed. The interactive nature of CASPER allows great
flexibility in accommodating features not reflected in the data when de­
signing routes.

CASPER was initially field tested in Winter 1992-93 following redesign
of routes in about 40% of Indiana. A summary of the results from four
northern INDOT districts is shown in Table 1.
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Before CASPER After CASPER
# of Deadhead Off-class # of Deadhead Off-class Penalty

District routes miles miles routes miles miles change

Greenfield 57 454 423 58 533 478 -98.8%
La Porte 113 1436 253 99 1039 761 -97.5%
Ft. Wayne 116 1174 606 108 1271 1021 -97.9%
Crawfordsville 144 1286 536 131 1322 1000 -94.8%
Total 430 4350 1818 396 4165 3260 -96.3%
Percent change -7.9% -4.3% +79.3% -96.3%
from Wnghl(I993) and Wang el al. (1995)

Table 1: CASPER Summary

The two most important changes are the decrease in the number of
routes required of 34 (7.9%), and the very large decrease in the penalty
values. The large decreases in penalty values (between 95% and 99% for
each district and overall) result mainly from the CASPER routes better
meeting the specified service levels. Note however, that in the routes de­
signed with CASPER the deadhead miles and off-class miles may show
an increase in particular districts, or even overall. The general pattern
is that CASPER designs routes that meet the target service times, but
may increase deadhead miles and off-class miles to achieve this. One
interesting finding from consultations with INDOT was that designing
routes that satisfy the target service times makes deadhead travel less of­
fensive. Public complaints actually decreased with the CASPER routes,
in spite of the reduction in the number of routes. The real problem from
the field is when service level is not being met and citizens see vehicles
deadheading. (Class continuity is also not a significant issue when ser­
vice levels are met.)

Evaluation of CASPER included comprehensive field evaluation of new
routes, based on forms completed by drivers following each traversal of
a route during a storm. Field experience with the routes generated by
CASPER showed that 72% of the new routes were deemed acceptable.
Route acceptance ranged from 23% to 100% in different subdistricts.
The general procedure was to use the routes for two winters and modify
them when necessary, even adding new routes if needed. Thus, routes
were not finalized until several winters worth of successful operation.

From the field evaluation in approximately 40% of Indiana, INDOT
estimated savings of $2.2 million in the first year and $4.8 million over
10 years. Initial estimates from extrapolating the results from these field
tests to the entire state of Indiana produced a total savings of about $10
million state-wide, from elimination of 50 routes (50 vehicles). A more
recent estimate from INDOT of the net present worth of savings from
CASPER routes for the period 1993-2016 is $4 million (Goode 1997).
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This includes the cost savings for not replacing trucks (10 year life) at
$75,000, plus annual savings for fuel, labor and maintenance on the truck,
plow and spreader. The total cost for the project to develop CASPER,
including INDOT and university contributions, has been estimated at
$172,000 (Wright, 1997).

Following the initial route design efforts and field evaluations, CASPER
was used to design additional routes in 1995 using INDOTS's new GIS
basemap. INDOT also contracted with a consulting firm to complete a
variety of modifications to CASPER. Delays in completing the software
modifications slowed state-wide implementation of new routes. This ar­

rangement also led to a dispute over ownership of the CASPER product
(Goode 1997, Gini and Zhao 1997), with some attempts being made by
the consulting firm to sell a product derived from CASPER. Currently
CASPER is not a commercially available product, though there are plans
to make it more widely available in the future (Wright 1997).

One interesting finding from the CASPER experience was the impor­
tance of depot location in achieving good vehicle routes. A centrally
located depot (relative to the specified network) generally produced bet­
ter routes than a depot located near the edge of the network. Depot
locations adjacent to multi-lane highways also led to good routes. Be­
cause CASPER designs networks for a specified depot and associated
network, reallocation of the road segments between depots is not consid­
ered..Kandula and Wright (1995) have thus developed arc partitioning
models to optimally assign arcs to depots.

6.2. GEOROUTE
GeoRoute is a commercially available software package for vehicle

routing developed by GIRO Enterprises, Inc. of Montreal, Canada.
GeoRoute Municipal is the name of the relevant software for arc routing.
PSR Group Ltd. of Nepean, Canada has incorporated GeoRoute Mu­
nicipal in a system named MOPS (Municipal Operations Performance
System) for roadway snow and ice control in urban regions. PSR Group
has done considerable work implementing systems for snow and ice con­
trol, especially in urban regions, based on the GeoRoute arc routing
software. PSR Group has probably accumulated the greatest amount
of experience with "optimized" arc routing for snow and ice control in
North America. In this section we will use "GeoRoute" to refer to these
various related RSIC software packages.

GeoRoute is a complete interactive decision support system for de­
sign of roadway snow and ice control routes. It consists of four modules:
network manager, route manager, site editor, and map generator. The
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network manager is a geographical data base with map display capa­
bilities. Each street segment on the map is linked with a data base
containing information such as the intersections (nodes), address ranges,
street names of the adjacent streets, etc. The network manager allows
users to edit the network and its attributes. The route manager is the
optimization system. It works hierarchically and allows for each type of
operation: spreading materials, plowing snow, snowblowing (for loading
and disposal of snow). The approach is to divide the region into sectors,
and then for each sector to optimize the routes for a number of scenarios.
The site editor allows users to locate various facilities on the network,
such as garages, depots, etc. The map generator facilitates creation and
printing of the required maps.

GeoRoute incorporates routines to consider a variety of different RSIC
environments, including urban and rural operations, and thus is less
narrowly focused than CASPER. The following characteristics of snow
removal are taken into account by GeoRoute:

• Variable criteria are used for sequencing of the road segments
within a route. For instance right turns are favored for plowing
operations, while they are limited as much as possible for snow­
blowing. A user-definable multi-criteria evaluation function can be
calibrated according to needs.

• In urban networks, both sides of each street are assigned to the
same route. In rural road networks this is not the case, as it could
lead to very inefficient routes.

• Repetitive treatments of the same road are allowed. The software
takes into account the frequency of service, which depends on the
level of precipitation and the need to balance the services over time.

• For the spreading operations, the number of passes needed to serve
each road segment is determined automatically given the width of
the street and the type of equipment. The vehicle capacity and
the spreading rate, which varies according to the type of street, is
also taken into account. Moreover, if desired the spreading can be
done only on a portion of the street (e.g., at the intersections).

GeoRoute is a proprietary software package, and thus details on its
"optimization" algorithms are not publicly available. GeoRoute designs
routes one at a time combining clustering and sequencing. For cluster­
ing, a seed is selected first, and then the algorithm considers its nearest
neighbors. Precautions are taken to keep the routes as compact as possi­
ble and to prevent isolating a sub-region that would lead to an inefficient
route. A temporal dimension can be taken into account in selecting the
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cluster when in the presence of time windows.

For constructing routes in GeoRoute, the GENIUS algorithm (Gen­
dreau et al., 1992) has been adapted for arc routing. GENIUS is a gen­
eralized insertion algorithm for the traveling salesman problem. With
generalized insertions, a "localized" re-optimization is done simultane­
ously with the insertion. The algorithm uses a multi-criteria evaluation
function defined by the user. It takes into account time windows and
determines if it is better to serve a street segment in a single pass or
in two passes (e.g., for spreading two-way streets). Both clustering and
sequencing work with subsets of arcs that the user specified to be on the
same route.

GeoRoute has been used to optimize snow removal activities in many
settings in Canada (including the cities of Laval, Charlesbourg, and Ne­
pean, and the Ottawa-Carlton Regional Government) and in the United
Kingdom. Case studies with GeoRoute in Ottawa, Canada and Suffolk
County, U.K. are presented next to illustrate how the software was used.

6.2.1 Ottawa, Canada.
Ottawa, Canada has a population of 314,000 and an annual snowfall of
220 cm. The budget for winter maintenance is approximately $16 mil­
lion for treating 2400 lane-km. The material presented here has been
extracted mostly from Miner and Brethertan (1996), Miner (1997) and
Bretherton (1997), and describes the development of plow routes for ap­
proximately one-third (800 lane-km) of the city using GeoRoute. The
experience in Ottawa includes both computer simulation tests, as well as
field tests in Winter 1995-96. This case study reports the analysis per­
formed by the PSR Group, and the city-wide costs and savings identified
from the implementation of a winter-long field trial.

Ottawa used 60 predefined roadway routes for plowing, 22 routes for
salting, and over 70 sidewalk plow routes. Snow disposal operations are
conducted on over 550 km of streets. Ottawa contracted with PSR Group
Ltd. to conduct a pilot project involving routes for snow plows. A trial
area corresponding to one district of Ottawa was selected. It contains
800 lane-km of streets within the City. The consultants were asked to
undertake simulation tests to evaluate three sets of routes:

1 The actual plow routes.

2 Revised plow routes constructed by resequencing the streets in the
actual routes.

3 Optimized plow routes.
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Each revised route (#2) included the same streets in the correspond­
ing actual route (#1), but possibly serviced in a different sequence. The
optimized routes (#3) were developed by allowing the GeoRoute soft­
ware to determine which streets are on each route and in what sequence
they are visited.

For the computer simulation tests, the region of interest was originally
served by 24 single plow routes and 9 tandem plow routes (two plows
operating together). Table 2 provides results of the computer simulation
tests.

Time (hrs)

Number of routes Minimum Average Maximum

Original 24 single 3.7 6.9 11.9

Revised 24 single 2.5 5.0 8.0

Optimized 19 single 5.8 6.0 6.5

Original 9 tandem 2.1 4.2 6.5

Revised 9 tandem 2.0 3.5 5.5

Optimized 8 tandem 3.0 4.1 4.5

Table 2: Computer Simulation Tests in Ottawa, Canada.

The row for "Original" refers to the actual routes prior to optimiza­
tion with GeoRoute. The range of route times in this row show that
the City did not provide a consistent level of service, with the maximum
route time being over three times greater than the minimum route time.

Productivity gains and a more consistent level of service were obtained
by simply resequencing the streets in an existing plow route. For the re­
vised routes, both the average length of a route and the variation in route
length are reduced. Thus, the routes are shorter (on average) and the
workload is better balanced among the routes. This is true for both single
and tandem routes. The optimized routes show further improvements.
Although the average route time increased relative to the revised routes,
for both single and tandem routes, optimization eliminates routes: five
single routes and one tandem route are eliminated. The result is that the
total plowing time (number of routes x average route length) decreases
from 165.6 hours for the 24 single original routes to 114 hours for the 19
single optimized routes. The total time for the tandem routes decreased
from 37.8 hours for the 9 tandem original routes to 32.8 for the 8 tan­
dem optimized routes. The variation in route length was also greatly
reduced by optimization. The results of the optimization produced pro-
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jected savings of 17% of the hired plow hours per storm, which equated
to $15,000 per storm, or $150,000 per year.

Based on the simulation results, it was recommended that a winter­
long field trial be conducted to verify savings and identify potentially
unexpected additional costs. For the field tests, only the optimized single
routes were considered. Drivers were given a map and text description of
their new optimized route. A number of problems became apparent after
the first storm (on November 14, 1995), due to drivers not adequately
understanding the new routes. Consequently, for the remainder of the
winter, the field tests were scaled back to include only four routes and the
drivers on these routes were trained to be familiarized with their routes.
The remaining portion of the city was served by its original (current)
routes. In the following eight storms that winter, the optimized routes
fared better than the non-optimized (current) routes. Productivity on
the four optimized routes ranged from 3.2 km per hour to 3.75 km per
hour. Productivity on the original routes averaged 2.0 km per hour.
Thus, the optimized routes showed an increased productivity of 60% to
almost 90%.

6.2.2 Suffolk County, UK.
Suffolk County, England has a population of 660,000 and experiences
icing conditions , as well as a small amount of snow each winter (less
than 10 cm of snow on average). The budget for winter maintenance
is approximately £1.2 million and prior to 1997 the County had been
responsible for maintaining approximately 6900 km of roadways. This
total includes 400 km of trunk roads, for which maintenance responsi­
bilities were transferred away from the County (to consultants employed
by the central government) in April 1997. Thus, these 400 km were no
longer the County's responsibility, and the existing routes needed to be
re-designed to treat only the County roads. The following results are
from Guttridge (1998) and Thompson (1997).

The planning of routes in Suffolk County was done manually prior to
1996. PSR Group Ltd. was hired to design new routes using GeoRoute
to explore whether computerized analysis combined with geographically
accurate network databases could provide a valuable alternative to man­
ually designed routes. In addition, from a risk management perspective,
computerized route optimization was seen as a proactive strategy to both
reduce the likelihood of incidents and to demonstrate retrospectively that
adequate service level provision was planned.

Suffolk County began using the GeoRoute software in September 1996
to develop new routes. Two different areas were chosen for a first trial
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application of the software: a dense urban area, and another larger area,
with similar population, incorporating a variety of urban areas, a sub­
urban fringe of the dense urban area, and a multitude of smaller towns
and villages. Network and operational details including one-way streets,
turn-restrictions, service priorities, road widths, spreading rates, vehicle
capacities and level of service requirements were considered. The follow­
ing results are based on the application of GeoRoute to re-design the
Priority 1 salting network. The Priority 1 salting network originally in­
cluded 37 routes covering 1430 km of county roads. All these routes were
limited to a length of two hours. The GeoRoute software produced 35
routes rather than 37, with the two hour treatment time. The software
also allowed other service levels (time limits) to be evaluated and pro­
duced 33 routes with a 2.5 hour time limit. Thus, the number of routes
was reduced by 2 or 4, depending on the time limit. The estimated sav­
ings for each route eliminated was £ 11,000 per year, so the total savings
for the Priority 1 network is projected to be £ 22,000 - £ 44,000 per year,
depending on the level of service.

The cost for route re-design was estimated to be £ 70,000, including
staff time and purchase of the GeoRoute software (Guttridge 1998). The
cost of re-designing the routes manually was estimated to be at least £
30,000 (Thompson 1997). In addition, a manual solution (as in the past)
would have produced less efficient routes and prevented evaluation of
different levels of service (Thompson 1997).

6.3. OTHER RECENT WORK
In addition to the work with CASPER and GeoRoute, several other

authors have recently addressed arc routing for snow and ice control in
urban and rural areas. However, implementation details are not reported
in these papers.

Eglese and Li (1992) and Eglese (1994) describe rural RSIC research
based on a 1988 study of winter gritting (spreading abrasives) in Lan­
cashire County, U.K. Trucks are assumed to service each road in a single
pass by spreading both sides of the road at the same time. (Note that
this is not feasible for plows.) This allows each road to be modeled as an
undirected arc. Multiple depots in the network are modeled explicitly.
The solution procedure to design routes (based on Male and Liebman
1978) involves using a Clarke-Wright-like greedy heuristic on a cycle node
graph derived from the solution of a CPP on the original transportation
network. Simulated annealing is then used to improve the truck routes.
The objective is to minimize the number of routes and the penalties from
exceeding specified distance or time constraints. The approach is tested
in three areas which include a total of 694 arcs and 1162 km of roadway.
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Detailed results were not reported, but the most significant finding was
that the number of depots could be more than halved without increasing
the number of trucks.

Li and Eglese (1996) consider the same problem of winter gritting, but
incorporate directed and undirected arcs, priority classes, and salt de­
pots that allow vehicles to be refilled without returning to their origin.
They describe an interactive PC-based software package that incorpo­
rates a "time constraint two phase" heuristic routing algorithm. Each
route begins by selecting the unserviced arc farthest from the depot.
Phase one extends the route back to the depot, beginning at the end of
the initial arc nearest the depot. Phase 2 then extends the route from
the far end of the initial arc back to the depot. In each phase, priority
is given to seleCting arcs with degree one, or arcs adjacent to those with
degree one. Time constraints and capacity constraints are checked as
each arc is added to ensure route feasibility. The software allows routes
to be constructed in an automatic mode, with no user intervention, or
with user intervention to specify the next arc to add to the route in each
phase. The heuristic was compared to the earlier approach (Eglese 1994)
with data from three areas in Lancashire County. Results showed that
allowing user intervention in the route design produced up to 15% fewer
routes and 17% less total distance compared to the automatic (no user
intervention) version of the heuristic. The new heuristic also produced
better routes than the earlier approach in Eglese (1994).

Letchford and Eglese (1998) present a different approach for the single
vehicle rural postman problem with deadline classes that reflects priori­
ties for snow and ice control. Optimal solutions are found using a dual
cutting plane method with valid inequalities as cutting planes. Optimal
results are presented for five problems, the largest of which includes 110
undirected arcs, 67 of which require service.

Lotan et al. (1996) describe winter gritting in the province of Antwerp,
Belgium. The network to be treated included 747 arcs accounting for over
1000 km of roads, divided into two priority classes. Routes start from
one of the main depots, but trucks may be refilled at supplementary salt
depots. The problems addressed include defining districts (partitioning
the network into sub-networks), locating depots, and routing trucks.
The focus of this work is on more strategic aspects, rather than the
arc routing details. Interesting findings include the benefits of locating
supplementary salt depots near the borders between different districts to
allow greater usage, and the tradeoffs in treating two lanes in one pass,
rather than making two passes.



Roadway Snow and Ice Control 413

7. FUTURE
'While several successful software packages for RSIC arc routing have

been developed, they have not yet been widely implemented. This may
change with the documentation of recent RSIC successes, the continu­
ing increase in sophistication and ease-of-use of software packages, and
the increasing familiarity of users with technology. For example, a pi­
lot project for the State of Minnesota is underway in Hennepin County,
Minnesota to customize the TransCAD software (Caliper Corporation,
Newton Massachusetts) for RSIC (Simcox, 1998). This may lead to de­
velopment of a package suitable for many jurisdictions in that state.

However, several obstacles remain to the widespread adoption of route
optimization for roadway snow and ice control. Because RSIC problems
are so complex and site specific, there is unlikely to be a satisfactory
"off the shelf" RSIC software package. Considerable cost and effort for
customization, data conversion and cleaning, training, maintenance, etc.
are the rule rather than the exception. The very different cultures of
public works and operations research/management science also hinders
usage of arc routing "optimization" for RSIC. Issues such as the loss of
freedom to drivers in designing their own routes, and the faith in "black
box" route optimization software require greater attention.

The future holds some interesting opportunities as recent technological
advances in snowfighting affect RSIC in a variety of ways.

• Road Weather Information Systems (Boselly 1993) are pavement
based sensors that collect, monitor and communicate weather and
pavement information in real time. Such information could lead
to dynamic routing for RSIC to treat only those areas in need at
a particular time. Such "just-in-time" routes could be designed
dynamically in real-time for each vehicle.

• Truck mounted pavement sensors that use infrared light to de­
tect pavement temperatures (currently used in Indiana) could help
better determine when and how to treat a road. Also, electronic
spreader controls on trucks can adjust the amount of materials be­
ing spread based on vehicle speed, and store data on spreading for
later analysis.

• Anti-icing is a preventive approach to RSIC that has shown good
promise (Blackburn et al. 1993). Anti-icing seeks to prevent or
minimize the formation of an ice-to-pavement bond by spreading
chemicals prior to, or quickly after the start of ice or snow. Good
routes for anti-icing mayor may not coincide with good routes for
plowing and spreading during a storm.
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• Automatic vehicle location (AVL) using global positioning system
(GPS) technology offers some interesting possibilities for RSIC. Ve­
hicle locations can be tracked and monitored to provide real-time
data on vehicle location and status (e.g., spreading or not, plowing
or not, etc.), as well as an historical record of vehicle activity. This
technology has been employed for RSIC by several agencies. The
benefits from real-time monitoring include a better ability to reallo­
cate equipment and personnel in real-time, better ability to inform
the public of current operations, verification of work completed,
and identification of unauthorized travel. The Virginia Depart­
ment of Transportation saved over $1 million by reducing fraud
from the ability to verify RSIC operations by contractors (Miner
1997).

In summary, the history of arc routing for roadway snow and ice con­
trol shows a distinct gap between theory and practice. The early promise
of applying optimization tools and techniques for arc routing to RSIC
gave way to an understanding of the complexities and difficulty of these
problems, and the need for custom solutions. Sophisticated and suc­
cessful interactive decision support system software packages now exist,
with documented benefits from several winter's worth of field experience.
We may now be on the verge of widespread adoption of route optimiza­
tion software for RSIC, and finally realizing the promise of arc routing
optimization for RSIC.
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The United States Postal Service (USPS) delivers over 166 billion
pieces of mail each year to over 100 million delivery locations. The de­
livery operation of the USPS is so large that it accounts for over 40
percent of the mail volume in the world. The USPS has over 275,000
postal carriers who are involved in USPS local delivery operations on a
daily basis (Wright, 1992 and Assad and Golden, 1995).

The local delivery routes for the USPS are broken down into two
classes, city routes and rural routes. Historic procedures are in place to
determine whether a route is classified as a city route or a rural route.
The carriers that service the city delivery routes (the routes considered
in this chapter) belong to a union, the National Association of Letter
Carriers (NALC). In this chapter, we shall concentrate on the various
classes of city delivery routes and describe procedures for performing ad­
justments to these routes.

The current route adjustment process for the city routes is a well es­
tablished, time consuming, manual process. This process adheres to a
set of rules that both the USPS and the NALC agree ensures fairness
and equity. The rules to carry out a route adjustment process are docu­
mented in Handbook M-39. The rules for adjusting the rural routes are
different than the rules for adjusting the city routes. These rules are not
contained in Handbook M-39 and are not described in this chapter.

The agreed-upon goals of the route adjustment process for the city
routes are as follows:
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i. The delivery routing is carried out in an optimum fashion so
that each letter carrier has an 8 hour workday.

ii. Each carrier spends the same amount of time each day in the
office.

iii. Each carrier spends about the same amount of time each day
delivering mail.

iv. A balance in workload among the letter carriers is achieved.
v. Does the route represent an 8 hour workday.

A letter carrier's workday normally consists of two parts. A letter
carrier normally spends the first three hours of his workday at the postal
facility organizing and sorting the mail on his route. The carrier then
travels to his route and spends the remainder of the day delivering the
mail.

The USPS anticipates that the city routes (as well as the rural routes)
will require realignment with increased frequency as technology improve­
ments in the processing and sorting of the mail, such as automated de­
livery point sequencing of the mail, are implemented (Cebry, DeSilva
and DiLisio, 1992), Assad and Golden, 1995). As these new technologies
are implemented within the USPS, it is anticipated that the carrier will
spend less time (up to one hour a day) at the postal facility and more
time delivering mail. The route adjustment process will be used to im­
plement changes in the routes that must occur when the routes get out
of balance and these routes no longer represent 8 hour workdays.

Technology, however, is not the only reason for a route adjustment.
The letter carrier's time to carry out his daily activities changes as new
residences and offices are built on the route and mail volumes change.
Since some routes change faster than other routes, routes become un­
balanced. Some routes may require overtime and other routes may have
some slack time. The demands in an area may grow to such an extent
that an extra letter carrier may have to be added to the area. In all
of these cases, the route adjustment process must be used to adjust the
routes in order to satisfy the goals of the route adjustment process listed
above.

The two types of route adjustments that can be performed are called
major route adjustments and minor route adjustments. In a major route
adjustment, the existing route structure is either completely or partially
discarded and new routes are formed over the region. In a minor route
adjustment, street segments are moved from one route to another in or­
der to achieve better balance among the routes. Today, both major and
minor route adjustments are accomplished manually by the USPS.
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In the terminology of the USPS, the line of travel for a route is the
sequence of street segments that a carrier must follow in servicing his
route. The line of travel for many of the carrier routes is bimodal and
consists of two parts - the driving line of travel and the walking line of
travel. The driving line of travel for a route is the sequence of street seg­
ments that a carrier must follow while driving his route and the walking
line of travel for a route is the sequence of street segments that a carrier
must follow while walking his route. The driving line of travel and the
walking line of travel have to be carefully integrated together to form the
line of travel for the route. Since the postal carrier routes can involve
two modes of transportation, walking and driving, the lines of travel for
the postal carriers can be different than the lines of travel for other arc
routing applications.

The major focus of this chapter is to describe the various types of local
delivery carrier routes and the resulting lines of travel. As part of this
description, algorithms for generating these (possibly bimodal) lines of
travel are outlined and examples that illustrate these lines of travel are
presented. Also, in this chapter, the USPS route adjustment process is
described, an algorithmic approach for doing major route adjustments
is outlined and some brief remarks on manual intervention and the cur­
rent status of automated routing within the route adjustment process is
presented.

2. THE ROUTE ADJUSTMENT PROCESS

The current procedure for route inspection and route restructuring
consists of the following three steps - preparation, inspection and route
adjustment. Preparation includes the training of personnel on inspection
procedures, a review of the current operations, and the scheduling and
planning of the inspection. Inspection includes the timing of the in-office
activities, the counting of the mail volumes in the office and the recording
of actual carrier performance on the route. Route adjustment includes
the carrying out of the actual route adjustments. The effective execution
of the route adjustment step includes the route examiner consulting with
the carriers involved in the route adjustment and the implementation of
the adjusted routes. The USPS and the NALC have agreed that the route
adjustments must be implemented within 52 days of the completion of
the inspection of the routes. The inspection and route adjustment steps
of this process are now discussed in more detail.

2.1. INSPECTION

In the inspection step, the route examiner attempts to ascertain if
there are problems with any of the routes being examined. More specifi-
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cally, for any route involved in the route adjustment process, the exam­
iner tries to determine the following:

1. Does the route begin and end close enough to the postal facility
to eliminate the need for the carrier driving to the route?

ii. Can some deadheading be eliminated from the route?
iii. Is the driving line of travel on a driving route as safe as possible?

Can adverse turns be eliminated?
iv. Are there too many park locations on a park and loop route?

Too many park locations on a route lead to excessive vehicle
movements and delays.

v. Does the route represent an 8 hour workday?

If the route fails any of these considerations just mentioned, then this
route is a candidate for a route adjustment.

2.2. ROUTE ADJUSTMENT
If, after completing a route inspection, the inspector determines that

a route adjustment is necessary, then the route adjustment procedures
are invoked. These procedures decide upon the street segments to remove
from the routes (called the tentative amount of relief on the routes) and
street segments to add to the routes (called the addition required to the
routes) so that each route represents approximately 8 hours of work on
a daily basis. As a result of this realignment process, the following can
occur:

i. An existing auxiliary route can be changed in size or eliminated.
Auxiliary routes are described in 2.3.

ii. A regular route can be reduced to auxiliary status.
iii. A route can be eliminated entirely.
iv. A new route can be formed.

Other considerations in the route adjustment process are as follows:

i. Some of the routes are to begin and end close enough to the postal
facility to eliminate the need for the carrier driving to the route.

ii. Deadheading is reduced.
iii. The routes are compact.
iv. The routes do not cross ZIP Code boundaries.
v. Adverse turns are eliminated on thecurblinej dismount routesso

that the routes are as safe as possible.
VI. The number ofpark locations on a park and loop (walking) route

is minimized.

As noted above, if this adjustment process starts with the existing
routes and manually moves territory between routes, then this route
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adjustment is called a minor route adjustment. If the existing routes are
not maintained and new routes formed, then this route adjustment is
called a major route adjustment.

2.3. AUXILIARY (OR REMNANT) ROUTES
In 2.2, the notion of an auxiliary route was presented. An auxiliary

(or remnant) route can playa critical role in carrying out a route ad­
justment. An auxiliary route is a partial route that does not represent
an 8 hour workday. An auxiliary route can be used in the following sit­
uation. Suppose that the workload in a region currently undergoing a
route adjustment is estimated to be 9.4 carrier routes. This estimate is
derived using the estimation procedure presented in 6.1. Then, the route
adjuster can form nine 8 hour routes that are balanced and represent
a full workday plus an auxiliary route representing .4 of a full route.
The auxiliary route can be strategically located in a high growth area to
absorb the growth in the area or be combined with the auxiliary route
from an adjacent region to form an 8 hour route. These routes can be
formed using the procedure given in section 6.

Even though the workload indicates that an auxiliary route is needed,
the route adjuster can decide to eliminate the auxiliary route. Thus, in
the above example, the route adjuster can decide to use the procedure de­
scribed in Section 6 either to form 9 complete routes and pay a little over­
time to all of the carriers or 10 routes and have each route somewhat un­
der 8 hours in duration. In some cases, overtime can be a cost-effective
option in forming routes. If the size of the auxiliary route is small, then
the cost of overtime may be less than using one additional carrier. If the
area is growing quickly, then forming an additional route can be desir­
able because these routes can absorb the growth and postpone the need
to do another route adjustment.

Auxiliary routes are important considerations in arc routing applica­
tions. In several applications that we have encountered, auxiliary routes
have led to successful, cost-effective solutions being generated.

3. TYPES OF DELIVERY ROUTES
Park and loop and curbline routes were introduced in the description

of the route adjustment process in 2.2. If all of the street segments on
the route requiring delivery are serviced by a carrier walking the route,
then the route is called a park and loop route or relay box route. On the
other hand, if all of the street segments on the route requiring deliv­
ery are serviced by a carrier driving the route, then the route is called
a curbline/ dismount route. Furthermore, the possibility exists for the
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carrier to service some of the street segments while driving the route
and service the remaining street segments while walking the route. This
route is called a combined curbline/ dismount and park and loop route.

A park and loop route and a combined curbline/ dismount and park
and loop route involve two modes of transportation - driving and walk­
ing. Park and loop routes and combined curbline/ dismount and park
and loop routes are examples of single vehicle bimodal arc routing prob­
lems. Another major example of a bimodal arc routing problem is meter
reader scheduling.

In this section, the four major types of city delivery routes serviced
by the carriers of the USPS are described. Each route type represents
a single vehicle arc routing problem. If a(m, n) and a(n, m) are two
arcs or edges on the street segment between intersections m and n, then
a(m, n) and a(n, m) are called counterpart arcs or edges (Levy, 1987).
Assuming that a(m, n) and a(n, m) both require service, then, in most
cases, a(m, n) and a(n, m) are serviced by the same carrier. Exceptions
to this assumption occur when the counterpart arcs a(m, n) and a(n, m)
are streets that are heavily traveled or difficult to cross. In these cases,
the USPS may force these two street segments to be on different routes.
This situation is an exception and not the ordinary way that the USPS
carries out its local delivery operations. In the description of the route
types given below, it is assumed that both counterpart arcs are on the
same route.

3.1. PARK AND LOOP ROUTES
In a park and loop route, the carrier drives a vehicle from the postal

facility to a park location on the route. After parking the vehicle at the
PARK location, the carrier loads his satchel, walks a set of street seg­
ments comprising a Walking LOOP out of the PARK location and
returns to the vehicle. Generally the street segments in a loop are ser­
viced one side of the street at a time. An exception is when the USPS
decides that a street segment should be serviced as a zig-zag or mean­
der. The street segments making up a loop are constrained so that the
mail to be delivered in the loop does not exceed the mail capacity of the
carrier's satchel. In many cases, a loop takes no more than one hour to
complete.

When a carrier returns to the vehicle after having completed a Walk­
ing Loop and there is another Walking Loop to be performed by the
carrier from the park location, then the carrier refreshes his satchel and
begins the next Walking Loop. This process continues until all Walking
Loops out of a park location are serviced. Then, the carrier moves the
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vehicle to the next park location and repeats the process. Upon finishing
all of the Walking Loops in the route, the carrier drives the vehicle back
to the postal facility. This return to the postal facility completes the
park and loop route.

In the algorithms that we have designed for this problem (Levy, 1987,
Levy and Bodin, 1988, Assad and Golden, 1995), each street segment
adjacent to a park location is in a different loop. This assumption re­
flects an actual consideration of the USPS. The USPS assumes that if
a carrier walks past a park location on a loop, the carrier will stop at
his vehicle and refresh his satchel to service the next set of arcs on the
loop. This assumption is perfectly reasonable since there is no need for
the carrier to carry mail any longer than necessary.

Thus, in an efficient park and loop route,

i. A different loop emanates out of each street segment adjacent to a
park location.

ii. Park locations are generally chosen so that there are at least three
street segments incident to it.

iii. The number of park locations in a park and loop route is minimized.
Minimizing the number of park locations reduces the amount of
deadhead driving on the route.

3.2. CURBLINEj DISMOUNT ROUTES
In either a curbline or dismount motorized city delivery route, all

deliveries are made while the carrier drives the vehicle from one stop to
the next stop over all the street segments requiring service. There are no
walking deliveries in a curblinej dismount route. The difference between
a curbline route and a dismount route is as follows. In a curbline route,
more than 50 percent of the possible deliveries are made to customer
mailboxes at the curb. The carrier does not leave the vehicle to make
the curbline deliveries. In a dismount route, more than 50 percent of the
deliveries are made by dismount delivery to the door. In this case, the
carrier leaves the vehicle and delivers the mail to each customer requiring
a dismount delivery. A curblinej dismount route is the only local postal
delivery route guaranteed to involve one mode of transportation from its
beginning at the postal facility to its termination at the postal facility.

3.3. COMBINED PARK AND LOOP AND
CURBLINEj DISMOUNT ROUTES

Often, a city delivery route will contain both park and loop and cur­
blinej dismount service. In a combined park and loop and curblinej dis­
mount route, the carrier delivers some of the mail while walking (park
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and loop) and delivers the remainder of the mail while driving. Both
the park and loop route and the curbline/ dismount route are special
cases of the combined park and loop and curbline/ dismount route. As
noted above, in a park and loop route, there are no deliveries made while
driving and, in a curbline/ dismount route, there are no deliveries made
while walking a loop. The algorithms for solving the general park and
loop and curbline/ dismount problem must consider the bimodal aspect
of the problem.

3.4. RELAY BOX ROUTES
A relay box route is a variant of a park and loop route. In a relay box

route, the carrier generally does not drive a vehicle but arrives at the
initial location by some means of transportation with a full satchel of
mail to deliver. The carrier then delivers the mail in the satchel and ar­
rives at a relay box. The carrier then refreshes his satchel with additional
mail at the relay box and continues to make deliveries while walking. In
essence, the carrier carries out walking loops out of the rela.x box and the
relay boxes in a relay box route are analogous to the park locations in a
park and loop route. In a relay box route, the carrier must walk between
relay boxes whereas, in a park and loop route, the carrier drives between
park locations. Generally, the last loop out of a relay box is designed
so that the carrier ends up at the next relay box as the last location of
this loop. Upon terminating the route, the carrier generally returns to the
postal facility by some means of transportation determined by the USPS.

In a relay box route, the mail is waiting for the carrier when he ar­
rives at the relay box after having delivered the mail that the carrier has
brought with him from the postal facility. To accomplish this, another
carrier delivers the mail to the relay box in advance of the carrier refresh­
ing his satchel at the relay box. The delivery of the mail to the relay
box is a node routing problem with time windows and is not considered
in this chapter. Since relay boxes are easy to move, an algorithm for
solving this problem can be developed to allow for some flexibility in the
location of each of the relay boxes.

4. LINES OF TRAVEL FOR THE FOUR
TYPES OF POSTAL DELIVERY ROUTES

In Section 3, the four major types of delivery routes were described.
Each delivery route type involves one carrier and is a variant of a single
vehicle Chinese Postman problem. Even if the street segments to be
serviced on a delivery route (arcs in a network) are identical, the line of
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travel for the carrier can depend on the type of delivery route.

Let A be the set of street segments requiring service on a single route.
A = B u C where B is the set of street segments requiring walking ser­
vice and C is the set of street segments requiring driving service. The
networks, G(A) = [N(A),A], G(B) = [N(B),B], and G(C) = [N(C),C]
may be disconnected. G(A), G(B) and G(C) are subnetworks of the
overall street network that is assumed to be strongly connected.

Disconnectivities force many additional considerations on the forma­
tion of the lines of travel. Some of these issues are discussed in Assad
and Golden, 1995 and Win, 1989. Further, in the driving line of travel
problem, some streets can be zig-zagged and the other streets require
two traversals for servicing the counterpart arcs. Thus, the generation
of the line of travel can be over a mixed network where some arcs are
directed and other arcs are undirected.

4.1. WALKING LINE OF TRAVEL
Assuming arc set B is not empty and the network G(B) is connected,

then the procedure for generating the walking line of travel for the arcs
in G(B) can be outlined as follows. This approach was first presented in
Levy, 1987.

I. The network, G(B), is extracted from the overall street network.
ii. The park locations for the walking line of travel for this route are

determined.
iii. The arcs in B are broken down into clusters where each cluster

represents the streets to be serviced in a walking loop (see Levy,
1987). The seed points of these clusters are the counterpart arcs
that represent a street segment incident to a park location and
every street segment incident to a park location is a seed point
for a cluster.

iv. The walking line of travel for each cluster is found by solving a
variant of a Windy postman problem (Win, 1989).

4.2. DRIVING LINE OF TRAVEL
An algorithm based on a variant of an algorithm for solving either a

directed Chinese postman problem or Traveling Salesman problem (La­
porte, 1997) can be used to give the driving line of travel. This driving
line of travel covers every street segment in G(C) plus the streets that
have to be deadheaded to form a continuous directed line of travel. In all
cases, the algorithm is based on a directed graph where an undirected
street segment is replaced by two directed street segments (in opposite
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directions) for deadheading purposes if the street is 2-way and one di­
rected street segment in the direction of traffic if the street is I-way.

5. EXAMPLES OF THE LINES OF TRAVEL
FOR THE FOUR TYPES OF POSTAL
DELIVERY ROUTES

In this section, examples of the lines of travel for the four types of
postal delivery routes described in Section 3 are presented. In these ex­
amples, both counterpart arcs for a street segment are assumed to re
quire service by the same carrier. As noted earlier, this assumption is
generally a requirement on any USPS city route. In practice, however,
it is possible for one side of a street segment to require service and the
other side of the street segment to not require service. An example of
this situation is when one side of a street segment has residences and
small business and the other side of the street segment is a recreation
area with no locations requiring service.

We will use the same network (Figure 11.1) to illustrate the different
lines of travel. This network is comprised of the street segments that
make up a single carrier route. All street segment are counterpart arc
pairs and each street segment requires service by either walking the street
segment or driving the street segment. The type of service on each
street segment depends upon the type of delivery route problem being
considered and will be specified in each example.

a F b G c

A E

d H e I f

Figure 11.1 Network for Examples of the Different Types of Local Delivery Routes.
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5.1. PARK AND LOOP ROUTES
Assume that all edges in Figure 11.1 require service, any service is ac­

complished by walking the street segment and each side of a counterpart
arc pair has to be serviced on a separate traversal of the street segment
(i.e. no zig-zagging of a street segment is permitted). Since the carrier
walks each street segment while servicing the street segment, the service
can be carried out in either direction on the street segment.

5.1.1 Walking Line of Travel

The steps that are followed in determining the walking line of travel
are the following.

a. Park Locations
The park locations are d and f.

b. Walking Loops:
Walking Loop 1: A, F, F, A.
Walking Loop 2: H,B,B,H.
Walking Loop 3: I, C, C, I.
Walking Loop 4: E, G, G, D, D, E.

c. Walking Line of Travel for Walking Loop 1
Leave park location d.
Service one side of A.
Service one side of F.
Service the other side of F.
Service the other side of A.
Return to park location d.

Comments: The Walking Line of Travel for the Walking Loops 2-4 can
be found in a manner similar to the way the Walking Line of Travel was
found for Walking Loop 1. Moreover, in an actual situation, we would
probably use e as the only park location for this ~oute since it has four
street segments adjacent to it. However, in this example, we used two
park locations to better illustrate the Driving Line of Travel. Also, in
the description of the walking loops and Walking Line of Travel, street
segments are repeated twice because each side of each street segment has
to be serviced.

5.1.2 Driving Line of Travel
Leave the Postal Facility.
Drive to Park Location d and Park the Vehicle.
Drive to Park Location f and Park the Vehicle.
Return to the Postal Facility.
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5.1.3 Overall Line of Travel
The overall line of travel for this park and loop route joins the walking

lines of travel for each walking loop with the driving line of travel to get
a complete sequencing of the streets in the postal carrier's line of travel.
This overall line of travel is the following.

Deadhead drive from the Postal Facility to Park Location d. Park
at d.

Walking Loop 1: A, F, F, A.
(The walking line of travel for this walk loop is specified in
5.1.1.c.)
Walking Loop 2: H,B,B,H.

Deadhead drive from Park Location d to Park Location f.
Walking Loop 3: I, G, G,I.
Walking Loop 4: E, G, G, D, D, E.

Deadhead drive from Park Location f to the Postal Facility.

5.2. CURBLINEj DISMOUNT ROUTES
Assume that all street segments in Figure 11.1 make up a curbline/

dismount route. The network displayed in Figure 11.1 for this case is
G(G) = [N(G), G]. Further, each of the counterpart arcs of each street
segment has to be serviced by the carrier on a separate traversal of the
street segment. In this example, it is assumed that the carrier cannot
meander or zig-zagging a street segment, there are no one-way streets,
and the service has to be carried out in the direction of travel on the
street segment. In this case, this problem turns out to be the generation
of an Euler circuit over a directed, connected network where each node
is in balance (i.e. each node in G(G) has the same number of arcs into
the node as out of the node).

As noted above, all street segments in the curbline/ dismount problem
are serviced by driving the street segment and there are no park locations
or walking loops. Assuming that the closest node to the depot is node
a, all street segments permit two-way traffic and U turns are acceptable,
then a line of travel for this example is the following.

Line of Travel:
Deadhead drive from the Postal Facility to a.
Drive the street segments (or arcs in the network) in the following
order:

F,G,G,G,D,D,E,I,B,B,H,A,A,H,I,E,G and F.
(There is no deadhead driving in this part of the line of travel.)
Deadhead drive from a to the Postal Facility.
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5.3. COMBINED PARK AND LOOP AND
CURBLINE/ DISMOUNT ROUTES

In the example of the combined park and loop and curblinej dismount
problem, both sides of every street segment in Figure 11.1 have to be
serviced. Assume that all street segments except for C and G have to be
served as walking street segments and that C and G have to be serviced
as driving street segments. To keep this example close to the Park and
Loop example in 4.1, d and f are assumed to be the park locations.

5.3.1 Walking Line of Travel
a. Park Locations:
Park locations are d and f.

b. Walking Loops:
Walking Loop 1: A, F, F, A.
Walking Loop 2: H,B,B,H.
Walking Loop 3: I, I.
Walking Loop 4: E, D, D, E.

c. Walking Line of Travel for Walking Loop 1 (The Walking Line of
Travel for the Walking Loops 2-4 can be found in a similar manner.)
Leave park location d.
Service one side of A.
Service one side of F.
Service the other side of F.
Service the other side of A.
Return to park location d.

5.3.2 Driving Line of Travel
Leave the Postal Facility.
Deadhead to Park Location d and park the vehicle at d.
Deadhead to €.
Service one side of C.
Service one side of G.
Service the other side of G.
Service the other side of C.
Deadhead to f and park the vehicle at f.
Deadhead from f to the Postal Facility.

5.3.3 Overall Line of Travel
Deadhead drive from thePostal Facility to Park Location d. Park at d.

Walking Loop 1: A, F, F, A.
Walking Loop 2: H,B,B,H.

Deadhead drive on H from d to €.
Service one side of C while driving.
Service one side of G while driving.
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Service the other side of G while driving.
Service the other side of C while driving.
Deadhead drive on E to Park Location f. Park at f.

Walking Loop 3: 1,1.
Walking Loop 4: E,D,D,E.

Deadhead drive from e to the Postal Facility.

5.4. RELAY BOX ROUTES
The Relay Box problem is similar to the Park and Loop Problem. As

with the Park and Loop Problem, both sides of all of the street seg­
ments in Figure 11.1 require walking service. Further, meandering or
zig-zagging of a street segment is not permitted. Since each street seg­
ment is being walked while being serviced, the service can be carried out
in either direction on the street segment. The generation of the line of
travel for this relay box route is given below:

a. Relay Box Locations
The Relay Box locations are d and f and these locations are known
in advance.

b. Walking Loops:
Walking Loop 1: A, F, F, A.
Walking Loop 2: H,B,B,H.
Walking Loop 3: I, C, C, I.
Walking Loop 4: E,G,G,D,D,E.

c. Walking Line of Travel for Walking Loop 1 (The Walking Line of
Travel for the Walking Loops 2-4 can be found in a similar manner.)
Leave the relay box at location d.
Service one side of A.
Service one side of F.
Service the other side of F.
Service the other side of A.
Return to the relay box at location d and reload satchel.

Overall Line of Travel:
Get to d from the Postal Facility by either a USPS vehicle or public
transportation.
Carry out the following in the order specified

Walking Loop 1: A, F, F, A.
Walking Loop 2: H,B,B,H.

Deadhead walk from d to f.
Walking Loop 3: I, C, C, I.
Walking Loop 4: E,G,G,D,D,E.

Return to the Postal Facility by USPS vehicle or public transportation.
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5.5. DISCUSSION
The examples presented above in this section described different types

of single vehicle arc routing problems. These arc routing problems demon­
strated the different lines of travel that would be encountered by the
USPS depending upon the type of route that was formed. The route can
be bimodal; that is to say, the route can have a driving component and a
walking component. Other complications that have to be accounted for
in an algorithm for finding the line of travel for a route are as follows:

i. The network made up of the street segments to be serviced for
both the driving line of travel problem and the walking line of
travel problem may be disconnected.

ii. The driving line of travel can involve both one-way streets and
two-way streets. There is no meander or zig-zag service permitted
on the street segments in the driving line of travel problem.
However, the algorithms have to be able to handle this situation
if zig-zaggings should occur (Win, 1989).

lll. As demonstrated in the above examples, a bimodal travel path.
has the walking loops superimposed on top of driving portion of
the line of travel. These walking loops or walking lines of travel
account for the park and loop and relay box portions of the routes.

IV. As with most single vehicle arc routing problems, the overall
objective in finding this line of travel is to reduce the total
nonproductive time on the route. Nonproductive time includes
deadhead travel time (both walking and driving) and the time that
the USPS carrier spends in refreshing his satchel.

v. Minimizing the number of park locations generally reduces a) the
nonproductive time on the route by reducing the excessive vehicle
movements on park and loop routes and combined park and loop
and curblinejdismount routes and b) the number of times the
satchel of the USPS carrier has to be refreshed or filled up.

vi. The line of travel must be as safe as possible. This safety can be
achieved by avoiding adverse or unsafe turns and street crossings.
Some adverse or unsafe turns andstreet crossingscanbeeliminated
by penalizing these situations in the algorithm described in the
next section to make these turns undesirable. Further, the route
adjuster that inspects the solution to make sure the routes are safe
can force certain desirable situations if the route adjuster is not
satisfied with thecomputer-generated routes. However, eliminating
these adverse turns can introduce more deadheading.
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6. ALGORITHM FOR ROUTE ADJUSTMENT
If minor route adjustments are to be performed, then having an algo­

rithm for generating a line of travel for each route is the only algorithm
that is needed. The procedure for generating these lines of travel is out­
lined in section 6.3 below. If, however, the system is to generate the
partitions as well as the line of travel, then a more complicated algo­
rithmic structure evolves. This means that the line of travel algorithms
must be imbedded within a graph partitioning procedure that breaks
down an Area of Interest (AGI) into a set of partitions representing the
carrier routes. For the USPS, an AOI can be thought of as a 5 digit zip
code area. A 5 digit zip code area generally contains no more than a few
thousand street segments and 50 routes - a relatively ideal size.

This overall procedure that is now described assumes the following:

i. The service time on each of the street segments is relatively small
(for example, in most cases, the time for a carrier to service a street
segment is no more than 15 minutes).

11. The number of street segments on most of the routes is relatively
large (generally at least 15 street segments).

Ill. There are no time windows.
IV. An auxiliary route is possible. Each route (except for the auxiliary

route) must contain about 8 hours work. This route time includes
office time, time to/from the route and delivery time on the route.

VI. Route interlacing or route overlap is as small as possible.

A simple explanation of interlacing routes is as follows. Two routes do
not interlace or overlap if it is possible to draw a polygon around each
of these two routes and the polygons do not have any area in common.
Routes that do not interlace are easy to administer as there is no confu­
sion as to the street segments that belong on each route. In many cases,
the route adjuster will manually swap street segments between routes to
eliminate interlacing. As with reducing adverse turns, manually swap­
ping street segments to reduce interlacing generally results in additional
deadheading. Before computerized routing, the street segments on each
route in an area were colored with a different color. In this way, the
supervisor in the area could easily determine the streets assigned to each
route.

A priority partition is a set of streets that have to be serviced early in
the day. For example, a priority partition can be the streets that exist
in a commercial portion of the AOL The USPS has decided that it is
desirable in many cases to have the commercial enterprises in the AOI
receive their mail early in the day. Although priority partitions exist,
the algorithm outlined below does not consider priority partitions. We
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have modified the algorithm described in this section to consider priority
partitions.

In most cases, this algorithm is a double application of a 'cluster first,
route second' procedure (Bodin, Golden, Assad and Ball, 1983). The al­
gorithm first partitions the AOI into partitions where each street segment
requiring service is assigned to a partition. Then, for each partition, the
street segments that require walking service are further broken down into
smaller clusters representing park and loops or relay box routes. Then,
walking line of travel paths are generated over each of these smaller clus­
ters that represent a park and loop or a relay box route. Finally, a
minimum length driving line of travel is formed over all street segments
requiring driving service and the park locations of the vehicles. The re­
sulting travel path represents the overall line of travel for the partition.
An overall line of travel is generated for each partition, including the aux­
iliary partition. Details of this overall procedure have been presented in
Levy, 1987, Levy and Bodin, 1988, Levy and Bodin, 1989, Bodin and
Levy, 1991, Bodin, Fagan and Levy, 1992a and 1992b, and Assad and
Golden, 1995.

The statistics for the solution (partitions and lines of travel for each
partition) are then examined. If the solution is not balanced, then the
next iteration through the procedure is carried out with a revised es­
timate of the number of vehicles needed to service the stops. If this
solution is superior to the best solution found so far, then this solution
is saved as the best solution found so far. As soon as a balanced so­
lution has been attained or a specified number of iterations have been
carried out, then the algorithm terminates. The best solution found so
far is manually examined to allow the postal inspector to manually swap
street segments between routes in order to derive an improved or safer
solution.

6.1. ESTIMATE THE NUMBER OF ROUTES
TO FORM

The first step in the algorithm is to estimate the number of routes to
service the street segments that require service in the AOI. This estimate
need not be an integer. To determine this estimate, the total workload
in the AOI is computed. Total workload is the total service time on all
of the street segments plus allowances for deadhead travel time, time to
park the vehicle, time to refresh the satchel, and an estimate of total
office time. Total office time includes the time necessary to begin and
end a day's work plus the time to sort the mail into bins representing
the line of travel for the carrier.
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To carry out this estimate, a target workload is specified. For example,
if 8 hour (480 minute) routes are desired, the target workload may be
465 minutes. Then, the estimate of the number of routes to form over
the AOI is simply the ratio of the total workload in the AOI divided by
the target workload.

Since the estimate of the number of routes need not be integer, the
need for an auxiliary route can be detected at this early stage in the
algorithm. The user must decide to use one of the following in the next
step of the algorithm:

I. Partition the AOI with a remnant route,
11. Increase the estimate of the number of routes to the next largest

integer (introducing slack into the routes) and partition the AOI
with this increased number of vehicles, or

111. Decrease the estimate of the number of routes to the next smallest
integer and partition the AOI with this decreased number of
vehicles, possibly introducing overtime into the routes.

6.2. PARTITION THE AOI
In this step, the AOI is broken down into the number of partitions de­

termined in 6.1 where this partitioning can include the auxiliary route.
To carry out this partitioning, an acceptable workload interval is spec­
ified where an acceptable workload interval is defined as follows [target
workload - A, target workload + B] where A and B are generally small
(15 minutes, for example). A solution is considered balanced if the du­
ration of all of the routes fall in the acceptable workload interval. A
balanced solution means that the final set of routes and lines of travel
are all approximately the same duration and close to the desired length
of a workday.

To accomplish the partitioning, a seed point is selected for each parti­
tion and all of the street segments in the AOI are assigned to a partition.
This partitioning is carried out in two parts:

1. An initial partitioning of the street segments in the AOI.
ii. An automatic swapping of street segments between partitions.

The goal of the partitioning is that all of the partitions contain about
the same workload. Counterpart arcs are assigned to the same partition.
If the street segments that require service in the AOI form a disconnected
network, then a minimum number of component connections are added
to the network of required streets to form a connected network. The
partitioning is carried out over this new network.
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This partitioning is based strictly on the workload on a street segment
and involves all of the walking and driving street segments that require
service The partitioning is constructed so that little overlap between the
partitions is achieved. As noted above, details of this step can be found
in Levy, 1987, Levy and Bodin, 1988, and Assad and Golden, 1995.

6.3. FORM THE LINE OF TRAVEL FOR
EACH PARTITION

The AOI has been broken down into partitions where each partition
represents the set of street segments to be serviced by a carrier. The
problem now is to develop a bimodal line of travel for each partition.
This bimodal line of travel is carried out in the following order.

6.3.1 Walking Line of Travel Problem

The Walking Line of Travel Problem is the original problem that we
studied for the USPS (Levy, 1987 and Levy and Bodin, 1988). In the
Walking Line of Travel Problem, all walking street segments in a parti­
tion are identified. In GeoMod, the route system we developed for the
USPS, identifying the walking street segments is a partition is easy be­
cause each street segment has an carrier number associated with it. The
walking street segments in the partition are then broken down into clus­
ters where each cluster represents a loop for a park and loop route or a
loop for a relay box route. Then, a minimum deadhead time walking line
of travel is found for each of the clusters. To accomplish this clustering,
the following is carried out.

1. The workload over all of the walking street segments is computed.
ii. A set of park locations is selected.
iii. Each street segment adjacent to a park location is denoted as a

seed point in the clustering.
IV. A modified version of a heuristic clustering procedure or set

partitioning procedure is solved.

Then, a minimum deadhead time travel path is formed over each
of these clusters by solving an Undirected Chinese Postman Problem
(UCPP). The UCPP can become complex since the street segments that
require driving service can form a highly disconnected network. However,
since the underlying street network is strongly connected, a solution to
the UCPP can be found. The component connections used in 6.2 are
disregarded in this step; these connections were just used to form the
initial set of partitions.
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6.3.2 Driving Line of Travel Problem

After a Walking Line of Travel Problem has been found for each walk­
ing partition, a Driving Line of Travel Problem is solved to find the
Driving Line of Travel for that partition. The entities to be serviced on
the Driving Line of Travel are the following:

i. The street segments between the route and the postal facility.
ii. All street segments that require driving service in the partition.
iii. All park locations.

This problem turns out to be a small, directed Chinese Postman Prob­
lem can be tricky to solve because of this large number of disconnectiv­
ities, turn difficulties, street crossing difficulties and the zig-zag service
on some street segments.

We have had success in solving this problem as a Traveling Salesman
Problem (TSP) where each required street segment is a node in the TSP
(Laporte, 1997). The advantage of solving this problem as a TSP is
that turn difficulties and street crossing difficulties can be accounted for
in the objective function. Also, we have solved this problem as an arc
routing problem using a connect-and-balance approach. In a connect­
and-balance approach, the disconnected components are joined together
by adding in street segments that are to be deadheaded forming a con­
nected network. Once, the network is connected, the problem becomes
a more traditional arc routing problem that can be solved by traditional
procedures.

6.4. IS THE SOLUTION BALANCED?
After 6.3, the AOI is broken down into partitions, a bimodal line of

travel is found over each partition, deadhead time estimates are deter­
mined and paths between the postal facility and each of the routes are
found. The question then arises - is the solution balanced? That is to
say, does the workload for each partition fall in the acceptable workload
interval where the acceptable workload interval was defined as follows
[target workload - A, target workload + B] (see 6.2). If the bimodal line
of travel for all of the routes falls in the acceptable workload interval,
then a balanced solution has been found and the algorithm terminates.
Otherwise, the workload estimate is revised and the procedure is re­
peated. However, the workload estimate on iteration Q, Q > 1, is more
accurate than the workload estimate found on iteration 1 since better
estimates of deadhead time on each of the routes are now known.

This procedure continues for a specified number of iterations, P. If
a balanced solution is not found on any iteration, the deviation of each
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of the routes from the endpoints of the acceptable workload interval is
computed and summed. If this sum is smaller than the previous best
sum, then this solution is kept as the best solution found so far. If a
balanced solution is not found on any of the P iterations, then the best
solution found so far is specified as the final solution for this problem.

7. MANUAL INTERVENTION
The procedure described in 6.0 is a set of algorithms that gives a so­

lution without manual intervention. However, our experience has shown
that integral to a computer system for solving any vehicle routing prob­
lem is to allow the user to have the ability to perform manual adjustments
to the solution (Bodin and Levy, 1994).

GeoLimited is a computer system that we built for the USPS for per­
forming minor route adjustments manually. GeoLimited allows the route
adjuster to transfer territory and set up travel paths while conforming
to all of the workrules and regulations agreed upon by the USPS and the
NALC. Presently, GeoLimited has been implemented with great success
in all 85 USPS districts in the United States. The USPS has selected
GeoLimited as the software system of choice for doing manual route
adjustments.

8. CONCLUSIONS
In this chapter, both the major route adjustment process and minor

route adjustment process for the USPS has been described. Emphasis
has been placed on describing the various line of travel problems that
the USPS encounters. In particular, bimodal lines of travel that involve
walking and driving lines of travel (appropriately integrated together)
have been introduced. The algorithms for solving these lines of travel
have been imbedded within more traditional graph partitioning proce­
dures in order to outline an approach for solving the major route adjust­
ment problem as well. Furthermore, this approach (described in Section
6) can be modified for use in other applications such as the scheduling
of meter reader and residential sanitation vehicles.

In section 7, moreover, the GeoLimited system for minor route adjust­
ments has been briefly described and it was noted that GeoLimited is
the USPS system of choice for manual route adjustments. USPS person­
nel have been trained on the use of GeoLimited and GeoLimited is an
integral part of the minor route adjustment process. We can safely say
that GeoLimited has been successfully used for route adjustments.
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Automatic algorithms such as those described above are not being
used by the USPS for major route adjustments. Moreover, the line of
travel procedures described above are not used within GeoLimited for
generating minimum deadhead travel paths. One of the main reasons
why these procedures have not been used is based on the notion of
standards. In most arc routing problems, the time to service a street
segment or deadhead a street segment is assumed to be independent of
the person carrying out the service. This is not the case with the USPS.
In their collective bargaining agreements, the USPS and the NALC have
agreed that the time to service or traverse a street segment is a function
of the carrier carrying out the service. As such, the assignment of work
to a partition depends upon the carrier assigned to the partition. Our
research assumed that standards exist and this assumption was agreed
to by our project director at the USPS. The USPS has groups investigat­
ing the use of these algorithms for major route adjustments. However,
these groups have to reconcile the differences between the assumptions
in the algorithms and a few of the workrules specified in the collective
bargaining agreements.
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1. INTRODUCTION
We describe a setting where the arc routing activity is the principal

operational focus of an enterprise. The cattle yard in Arizona studied
in this chapter produces cattle for the general meat market. Cattlemen
do not set the price for their product, which fluctuates depending on
supply, demand and the psychology of the cattle market at the time
of sale. Therefore, reducing operational costs is a major concern of a
cattle yard, whose main operation is the daily delivery of feed to all the
livestock. Since the feeding troughs are located along the sides of the
pens, the profitability of the enterprise depends on finding the optimal
arc traversals!

1.1. THE CATTLE INDUSTRY
The romantic image of the cattlemen's life on the range has fuelled

the imagination of generations of young people all over the world, and is
an icon of the United States' historical and cultural heritage. A modern
cattle ranch belies this idyllic image. In fact, today's beef and dairy in­
dustry is very complex, and forms the largest part of the U.S. food and
fibre industry, which, in turn, is the largest segment of the U.S. economy
(about 17.5 percent of the gross national product). Cattle ranching, done
in all 50 states (see Appendix), contributes 1.6 million jobs to thousands
of rural economies and adds, directly and indirectly, $153 billion to the
U.S. national economy.

Despite media reports about our changing diet, U.S. beef production
increased by nearly 3 billion pounds (14%) and total cattle numbers
increased by 7.7 million head (8%) from 1990 to 1996. In fact, produc­
tion of all meats stayed at near record levels. According to the U.S.
Department of Agriculture, sales of cattle and calves totaled more than
$36 billion in 1996, the average per capita consumption of red meat and
poultry is 209 pounds, and 7 billion beef servings were consumed in
restaurants. Steakhouse restaurant traffic has increased 43.6% over the
period 1993-1996. Furthermore, growing demand for quality grain-fed
U.S. beef in foreign countries has fostered growth in beef exports, which
now account for nearly 8 percent of beef output. Export of U.S. cattle,
beef and beef products in 1996 totaled $4.8 billion, and the top export
markets for U.S. beef are Japan, Korea, Canada, Mexico and Hong Kong.

1.2. THE CATTLE YARD OPERATIONS
This chapter describes the operations of a large cattle yard in Arizona,

which employs about 135 cattlemen. This cattle yard houses over 100,000
head of cattle, on average, in about 600 cattle pens dispersed over an area
that measures roughly 10 miles by 5 miles. The cattle yard is presently
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being expanded to house over 125,000 head of cattle. As shown in Fig­
ure 12.1, in addition to pens for keeping livestock, this yard contains a
large mixing plant that produces the daily feed rations, storage facili­
ties (both for feed ingredients and finished feed), and loading/unloading
facilities including a rail depot for receiving feed ingredients and ship­
ping/receiving of cattle.

The cattle-feed is mixed from ingredients such as hay, straw, grain,
alfalfa and trace nutrients at the mixing plant, and is stored in 5 or
6 large holding bins from where it is dispatched to the cattle pens by
trucks. The feed has to be freshly cut and mixed; otherwise the cattle
will reject it. The feed mixing plant is a large and highly automated
facility which can produce the feed requirements of the cattle ranch in
a few hours and its main focus is on the consistency and quality of the
mix produced for each ration or feed type. A dispatch center close to the
mixing plant co-ordinates the loading/unloading and timely dispatch of
the feed distribution vehicles and also of the incoming and outgoing cat­
tle. With over 100,000 head of cattle, there is almost a daily movement
of new (young) incoming cattle and the shipping-out of mature cattle.

The operational activities in the cattle yard are intuitive and simple
and are organized around the feeding needs and plans for the cattle. At
the time of initiating this study, the feed distribution management of
such large cattle ranches was based primarily on the experience and in­
tuition of the operating crew. No attempt had been made to introduce
computer-based planning tools or decision support systems for feed dis­
tribution.

This chapter primarily focuses on the daily problem of managing a
fleet of trucks for distributing feed at this cattle yard. Almost every
activity in the cattle yard is driven by the feeding needs of the cattle.
The daily feed distribution operation requires a detailed planning and
scheduling of the delivery routes for the trucks. Twice a day about
seventy-five trips are made from the feed storage facilities to the pens.
Each pen is delivered feed of only one type and the daily time windows
for feed delivery are fixed. Feed is specially formulated for the various
types and breeds of cattle; as the cattle mature, their diet requirements
also change. Therefore, the feed type, volume of feed, and feeding time
for each pen may vary from day to day. In this cattle yard, five different
types of feed are produced and distributed. Only one type of feed may be
carried in a truck in each trip. Since the feed types vary in density, the
vehicle capacities also differ by feed type. The delivery trucks are spe­
cially equipped to automatically dispense feed into the feeding troughs
which are located along a designated side of each cattle pen. The trucks
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Figure 12.1 A map of the feed-yard.

are equipped to dispense the feed from the driver side only which causes
the feed troughs to have a "direction" along each of the cattle pens.

The investigation into feed distribution planning is part of a larger
study aimed at making all aspects of the operations at the cattle yard
more efficient. The overall management problem is modeled as a hierar­
chical production mix and distribution problem. The demands placed by
the cattle on the system form the input for the feed distribution problem.
The solution to the feed distribution problem in turn forms the input for
a scheduling problem, which assigns the feed delivery trips generated to
the available trucks. The output from this model then drives the produc­
tion scheduling problem for the mixing plant. From the outset, it was
clear that the feed distribution system was the bottleneck in the entire
process. The capacity of the feed mixing plant outstripped that of the
feed distribution system. The feed mill operators were forced to make
frequent stops to allow the distribution people to catch up. Addition­
ally, land and pens are freely available and hence any improvement to
the distribution system translates to an equivalent increase in the overall
capacity to feed cattle, thereby increasing revenue for the cattle yard in
question.
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Other important activities of the cattle yard, such as vaccination and
hormonal treatments for the cattle, are accomplished by moving an entire
cattle lot (the content of a cattle pen) to an appropriate service area in
the cattle yard and performing the desired task on each one of the cattle.
In addition, calves may outgrow the capacity of the pen where they are
housed as they mature, and the cattle lot needs to be split and moved
to different pens. Often, the cattle are moved 3 to 4 times during their
sojourn in the yard. The planning of cattle movements in co-ordination
with the assignment of the appropriate pens is an important and costly.
activity. The modeling aspects of this activity are described in detail in
Dror and Leung (1998).

The models and methods described in this chapter can be a decision­
support tool to help the cattlemen effectively manage the feed distribu­
tion at the cattle yard. In Section 2, we present arc-routing models of the
feed distribution problem. In Section 3, we present heuristic procedures
for constructing feasible trips for delivery of cattle feed. We describe ex­
tensions made to existing heuristics available in the literature and route
improvement procedures adopted, and discuss some issues pertinent to
obtaining good solutions. In Section 4, we describe a different heuristic
based on a Generalized Traveling Salesman Problem (GTSP) model of
the problem. In the last two sections, we describe the computational
results from our experiments with these heuristics and summarize the
impact of our study in the operation of the cattle yard.

2. LIVESTOCK FEED DISTRIBUTION AS
ARC TRAVERSALS

Every morning the operators of the yard must tour all pens with cattle
to determine which pens have feeding troughs that are "slick" ("com­
pletelyempty" in cattlemen parlance). Emergency rations are then de­
livered to these pens; otherwise, the hungry cattle might 'escape' from
these pens and extra manpower is needed to round them up. Also, when
a trough is slick, the cattle in the pen tend to gorge themselves when
food is available later, which may lead to increased death rates. The
main daily activity of the yard is the delivery of a prescribed amount
(less any emergency ration already delivered) of a particular feed type to
each pen. For any given feed type used on the ranch, there are a num­
ber of pens (out of the total of about 600) which require the delivery
of a pre-determined feed quantity, each within a specified time window
during the day.
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2.1. ARC-ROUTING MODELS FOR PEN
INSPECTION AND FEED DELIVERY

We represent the cattle yard as a connected graph G = (N, E U A),
whose edges e E E correspond to the connecting road segments and the
arcs a E A correspond to the directed road segments along the pens. As
noted earlier, these segments are directed because of the delivery mech­
anism of the trucks and the location of the feeding troughs. The graph
for the Arizonan ranch contains 581 nodes and more than 1000 edges
and arcs. The problems of slick inspection and feed delivery are cast in
a general framework of arc routing.

For slick inspection, since no feed is delivered, it does not matter which
direction an arc is traversed. For this problem, we consider the graph
G = (N, E UA), where A corresponds to the set of arcs A with the arc
direction ignored. The slick inspection problem necessitates the finding
of a minimum-distance closed traversal of a given subset of edges S ~ A
in the connected graph G = (N, E u A), with an additive non-negative
real distance function defined on E U A. In other words, it is an undi­
rected Chinese Postman Problem or a Rural Postman Problem (RPP).
The set of required edges S is the collection of edges denoting the sides
of the pens with feeding troughs of those pens that contain cattle.

The modeling approach for feed delivery (both for emergency rations
and for regular feed delivery) represents a generalization of the Rural
Postman Problem. We now consider the graph G = (N, E U A). For
each feed type, there is a set of required arcs Rf corresponding to the
set of pens which require that particular feed type, with a demand quan­
tity associated with each arc in Rf. Since each truck can carry only one
feed type, the distribution for each feed type forms a separate problem
and is modeled as such. The cardinality of the arcs in Rf varies from 16
for the smallest problem to 348 for the largest.

2.1.1 Mathematical Formulation of the Capacitated Rural
Postman Problem (CRPP).

We are given a positive demand qe for each arc e in the set of required
arcs R ~ A. A circuit in G which includes the depot (node 1) and such
that the cumulative demand of the required arcs in this circuit does not
exceed some pre-specified 'vehicle' capacity, denoted by Wv , is called a
feasible trip with respect to vehicle v. The Capacitated Rural Postman
Problem (CRPP) is that of determining a set of feasible trips (for a
given set of vehicles) of total minimum distance which traverse all the
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arcs in R. We formulate the CRPP using the following parameters and
variables:
% = the demand along arc (i,j) E R ~ A,
Wv = the capacity of vehicle v,
Cij = the distance (length) of an arc (i,j) E A, (Cij ~ 0,V(i,j) E A),

V = the upper bound on the number of vehicles,

Xijv =
Yijv =

the number of times vehicle v traverses the arc (i,j) E A,
a binary variable which takes the value 1 if vehicle v dis­
charges the feed along the arc (i, j) E R, and takes the value°otherwise.

subject to

(CRPP) :
v

min L L CijXijv

(i,j)EA v=l

L Xkiv ~ L Xikv = O,i E N, v = 1,2, ... ,V,
kEN kEN

V

LYijV = 1,V(i,j) E R,
v=l

L qijYijv:::; Wv,v = 1"" V,
(i,j)ER

Xijv ~ Yijv ,V(i, j) E R,

M L Xijv ~ L Xjkv, {
if/S,jES (j,k)EA[S]nR

vs ~ N, 11- S,
A[S]nR#0,
v = 1, ... ,V,

(12.1)

(12.2)

(12.3)

(12.4)

(12.5)

Yijv E {O, l},V(i,j) E R, v = 1, ,V,

Xijv E Z+,V(i,j) E A,v = 1, ,V,

(12.6)

(12.7)

where M is a large constant no smaller than the total distance of any
circuit that includes all arcs in R, and A[S] is the set of arcs incident
from at least one node in S. (In this formulation, we assume each vehicle
makes only one trip. In reality, the index v will denote a trip and trips
not overlapping in time could be assigned to the same vehicle.)

The objective function represents the total distance traveled by all the
vehicles. Note that arcs can be traversed more than once. The first set
of constraints is the common 'flow conservation' constraints for network­
flow formulations. The second set of constraints require that at least one
traversal is made of each of the arcs in R. The third set of constraints are
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the capacity constraints for the vehicles. The next set of constraints re­
quire that vehicle v traverse the arc (i, j) E R if it delivers the demand to
this arc. The fifth set of constraints are subtour-elimination constraints
which ensure that each trip include the depot. Note that this formulation
of CRPP not only has different subtour-elimination constraints than the
one given in Golden and Wong (1981), but also the Xijv variables have
a different interpretation. In addition, this formulation does not allow
'split delivery' since the demand for any required arc is delivered by ex­
actly one vehicle.

Many practical problems can be modeled as variations of the RPP.
The reader interested in applications of arc routing problems is referred
to Bodin and Kursh (1978), Manber and Israni (1984), Stern and Dror
(1979), Eglese (1994), Eglese and Murdock (1991), and Christofides et
al. (1986). Recent surveys are provided by Assad and Golden (1995),
and Eiselt et al. (1995a, 1995b). The RPP is a difficult combinatorial
optimization problem; it is NP-hard in the strong sense even for com­
pletely directed and completely undirected graphs (Garey and Johnson,
1979). Successful exact solution procedures can at present address only
problems of much smaller size than the problem that motivated this
chapter.

2.2. SPLIT DELIVERIES
In practice, truck loading at the feed storage depot is not very precise.

vVhen loading, the driver brings the truck underneath the feed storage
bin and opens a chute which releases the feed into the truck. Even though
the amount of feed loaded onto the truck is weighed, the scales are not
precise enough for exact control, and a truck might have less or more
than the required demand of the cattle pens on his feed distribution trip.
In principle (and in practice), a truck might dispense a partial amount
of feed into a given trough provided it (or another truck) will deliver the
remaining amount separately within the required feeding time-window.

vVhen the demand of an arc can be served by more than one vehicle,
the feed distribution problem becomes a split-delivery capacitated arc­
routing problem. To allow for split delivery, we can replace constraint
(6) in the formulation (CRPP) by

Yijv 2: 0, V(i,j) E R, Vv.

The variable Yijv now represents the fraction of the demand of arc (i,j)
that is delivered by vehicle v. With split delivery, a feasible trip is a cir­
cuit of G that includes the depot node and such that the sum of qijYijv

over all required arcs (i,j) in the circuit does not exceed the vehicle ca­
pacity Wv . The CRPP with split deliveries is the problem of finding a
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set of feasible trips that minimizes the total distanced traveled such that
the total demand of the required arcs is satisfied.

In most routing problems studied in the literature, the assumption is
made that the demand of an arc (or node) is not split between vehicles.
The CRPP with split deliveries has not been explicitly addressed in the
literature. We are not familiar with any past attempts to solve this
problem or any mathematical formulations for this problem even though
the formulation follows in quite a "natural" manner (for the routing
expert) from the vast literature of general routing problems. A naive
view might be that the split-delivery case is "easier" than the non-split
problem version. However, Dror et al. (1994) demonstrated that it is
not "easier" to solve the Vehicle Routing Problem (VRP), where the
nodes carry demand requirements, with split deliveries allowed. 'Whilst
some properties of the optimal VRP solution with split deliveries (see
Dror and Trudeau, 1989, 1990, and Dror et al. 1994) can be extended
to the split delivery problem for arc routing, allowing for split deliveries
represents a generalization of the arc-routing problem and is significantly
harder if exact solutions are attempted.

2.3. TIME WINDOWS
Each pen, besides requiring a specified amount of feed of a particular

type, requires that the feed be delivered within a specified time-window.
The feeding time-window for each pen corresponds to a "mealtime" for
the cattle in this pen, which become used to receiving its ration at ap­
proximately the same time(s) each day. When driving through the cattle
yard, one can easily spot the pens that expect to be fed since the cattle
in those pens are alert and standing up watching for the delivery truck.

One aim of our study was to increase the capacity of the feed distribu­
tion system by reducing delivery times. The time taken to deliver feed is
determined by the distance traveled, given that the feed dispensing rates
cannot be further improved. Hence, the objective is to design a set of
feed delivery trips that minimizes the total distance traveled by the fleet
of trucks, while meeting the time-window constraints for feed delivery.
In our observations over a number of visits to the cattle yard and the
examination of delivery records, we note that the manual dispatching
(feed distribution) solutions constructed daily by the current operating
crew did not conform very closely with the delivery time-windows speci­
fied for the different pens. In a large cattle yard as the one in this study,
there is always movement of cattle in and out of the yard and inside
the yard between the different pens. When a certain cattle lot has been
moved to a different pen, the feeding time window for this cattle lot must
still be observed at its new pen. Thus, the feeding requirements with
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respect to the pen locations are changing all the time. This makes the
feed distribution problem quite complex to grasp and operate manually,
and the intuitive solutions of the drivers and dispatchers are often not
even "feasible", let alone optimal. Therefore, it made it even more ap­
parent that a computer-generated solution should be able to deliver a
more time-responsive and efficient routing and scheduling plan for feed
distribution for the cattle yard.

3. A HEURISTIC APPROACH FOR TRIP
GENERATION

This section describes our heuristic approach to solve the CRPP with
split deliveries and time-windows, which includes several procedures which
are extensions of known arc-routing algorithms, modified to handle the
complications of time-windows and split deliveries. Our solution strategy
is an adaptation of the heuristics proposed for the split delivery for node
routing problems, explored in Dror and Trudeau (1989, 1990). vVe first
generate feasible solutions for the corresponding routing problem where
split deliveries are not allowed, and then improve the initial non-split
delivery routes by generating, in a heuristic fashion, split deliveries. The
initial non-split routes are evaluated for split delivery and route consol­
idation by various improvement procedures. All of our heuristics have
been adapted to consider time-windows. Our overall solution approach
include four modules:

1 generating a non-split feasible solution (using Path Scanning or
Augment-Merge heuristics),

2 improving the solution by arc swapping,

3 generating split-delivery routes by k-split generation and

4 modifying the solution by route addition.

A road-map of the set of heuristic algorithms applied is given in Figure
12.2.

3.1. GENERATING A NON-SPLIT FEASIBLE
SOLUTION

Two heuristics are used to generate a set of feasible (non-split) routes
- the extended path-scan heuristic and the modified .augment-merge
heuristic, which adapts the path-scanning algorithms (introduced by
Golden, DeArmon, and Baker, 1983) and the Augment-Merge approach
(introduced by Golden and Wong (1981) for the capacitated arc-routing
problem) to consider time-window constraints.
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Figure 12.2 A Road-map of the Heuristic Procedures used.

3.1.1 Extended Path Scanning Algorithm for Feeding-Time
Feasibility.

In our approach, we construct feasible routes one at a time until the
demands of all arcs in the set of required arcs are met. Initially, each
route starts at the depot and is extended one arc at a time based on one of
the criteria listed below. Only arcs that do not violate the time-window
constraints are added. The rules for arc-selection that were tested in the
extended path scanning algorithm are:

1 minimizing the distance of insertion and return per unit demand
for arc (i',j'),

2 minimizing the distance of insertion per unit demand for arc (i', j'),

3 minimizing the distance of insertion and return,

4 minimizing the distance of return,

5 maximizing the distance from node j' back to the depot if the
remaining vehicle capacity is less than half; otherwise minimizing
the distance of insertion,

6 minimizing the distance of insertion,
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where the distance of insertion is the shortest-path distance from the
end of the partial-constructed path to node i' and the return distance is
the shortest-path distance from node j' to the depot.

For rules 1 and 3, the initial trips are constructed from arcs close
to the depot, whereas subsequent trips include arcs far away from the
depot. For rules 2 and 6, the trips tend to fan out radially since the
return distance is not considered. Rule 5 essentially selects arcs away
from the depot when the truck is relatively empty and selects arcs closer
to the depot when it is more than half-full.

3.1.2 Modified Augment-Merge Algorithm.

In the augment-merge approach of Golden and Wong (1981), each arc
(i, j) E R lies initially on a separate route; routes are then merged to
effect savings in cost, while remaining feasible with respect to capac­
ity constraints. The merge phase is repeated until no more merging of
routes is possible. In our extended augment-merge heuristic, we look for
possible merging of routes that are capacity- and time-feasible and also
result in net overall savings. This process is repeated until no additional
route merging is possible. A further modification for our application is
to group together arcs that correspond to pens that are in the same row
and may be serviced by the same route into a single composite demand
arc, which results in a substantial reduction in the size of the graph and
solution time.

We introduce some definitions that will be used both here and in the
heuristic described in the next section. Let GR = (N(R) U {I}, R) =
Ur::=lGf be the subgraph of G = (N, A) induced by the arc-set Rand
the depot node with Gf = (N(Rk ), Rk ), k = 1, ... ,K being the con­
nected components of GR.

Definition. An entry node of Rk is a node i E N(Rk) such that there
is a j EN \ N(Rk) with (j,i) E A \ Rk.
An exit node of Rk is a node i E N(Rk) such that there is aj E N\N(Rk)
with (i,j) E A \ Rk.

This concept of entry and exit nodes is taken from Dror, Stern and
Trudeau (1987) and Dror and Langevin (1997). Our variant of the
Augment-Merge algorithm is described as follows.

Phase I: Augment.

1 Determine the subset of N that are entry nodes for R.
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2 Start with (i, j) E R with node i being an entry node. If the
demand for (i,j) is not met yet, start a new trip Ii with an appro­
priate start time so the demand for arc (i,j) is met at the beginning
of its time-window using a shortest path from the depot to node i.

3 Let arc (i',j') E R be adjacent to (i,j) and determine whether its
demand can be met by the same trip (checking vehicle capacity
and time-window restrictions). If so, add the arc (i', j') to the trip.

4 Repeat step 3 with (i', j') as (i, j) until (i, j) is not adjacent to any
arc in R or the vehicle capacity is reached.

5 Choose another entry node of R and repeat steps 1-3 until there
are no more arcs in R with unsatisfied demand.

Note that this version of Augment-Merge is different than the one in
Golden and Wong (1981) since its initial routes are generated between
pairs of entry and exit nodes and not one route for each arc separately.

Phase-II: Merge.

1 Set trip index v = 1.

2 For j f. v, evaluate if trip Tv can be merged with trip Tj, without
violating vehicle capacity and timing restrictions. If so, we compute
the savings in the distance of the trips when merged. Choose Tj

with the highest savings and merge with Tv. Re-compute the start
and finish times for the merged trip and for each arc on the trip.

3 Set v = v + 1, and repeat steps 2-3.

4 Repeat Steps 2 through 4 until no more merging of trips is possible.

3.2. ARC SWAPPING

This step is an improvement heuristic based on the concept of arc­
swapping between different routes. This procedure generalizes the clas­
sical 2-0pt heuristic for the Traveling Salesman Problem by Lin and
Kernighan (1973). The variant for the Vehicle Routing Problem (VRP)
is described in Dror and Levy (1986). Our arc-swapping improvement
procedure for the CRPP is adapted to include time windows and is run
on all feasible solutions obtained, both with and without split deliver­
ies. Arc-swapping heuristics are also discussed in Potvin and Rousseau
(1995), and more sophisticated node exchange heuristics, which can be
adapted to arc routing, are described in Gendreau, et al. (1992). A sur­
vey of heuristic algorithms for arc routing is given in this book by Hertz
and Mittaz (2000).
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3.3. GENERATING SPLIT DELIVERY
ROUTES

In this module, we check to see if the delivery made to an arc can
be split across k other candidate routes in such a way that the highest
savings can be obtained. Let Cuv represent the length of an arc (u, v),
and Cuv represent the shortest-path distance from node u to node v.
Let arc (i, j) on route h be the arc that is being considered for splitting
between k ~ 2 routes. Let a and b be the nodes immediately prior to and
after arc (i,j) on route h. Denote by it and jt the consecutive nodes on
route t between which we would like to introduce arc (i, j). The savings
st obtained by introducing a k-split delivery at arc (i, j) is:

k

st = Cai + C jb + C ij - Cab + 2:)Citjt - Citi - Cij - C jjt ) (12.8)

t==l

In any candidate k-split route, the insertion position of arc (i, j) into
each candidate route is the one that nets the highest overall savings as
shown in the summand in (12.8) above. The k-split generation is per­
formed only if st is positive.
The candidate routes are chosen from the set of routes whose possible

time-span cover the time window on arc (i, j). This list is further pruned
to those that can actually deliver to arc (i, j) within its specified time­
window. For the Arizonan yard, it was unrealistic to have more than ten
trips with trip times that spanned any particular delivery arc, hence k
was limited to 10 in our computations. If more than one division of the
demand is possible, we choose to assign the demand to routes according
to non-decreasing spare capacity of the routes. If the demand delivered
to arc (i, j) is already split between a number of routes, we do not just
take the partial delivery and split it further. Instead, we remove the split
arc (i, j) from all routes and then re-evaluate splitting the delivery.

3.4. ROUTE ADDITION
In route addition, we investigate arcs whose demand is split among

several routes, and consider if consolidating them into one new route
will effect net savings in distance traversed. Thus, we may be able to
realize savings if an arc which is being serviced by two or more routes
is excluded from these routes and the demand for the arc is delivered
on a separate trip. We note that the "consolidated" arc need not be
the only arc in the newly added route; we may add segments from the
original routes as well. Various possible permutations of such routes were
discussed in Dror and Trudeau (1990) for the node-routing case and in
Mullaseril (1996) for the arc-routing case. Calculations for savings is
a straightforward extension of the concept first proposed by Clark and
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Wright (1964). We do not consider more than 3-route addition in our
study.

4. ROUTE-FIRST CLUSTER-SECOND
GENERALIZED TSP HEURISTIC

In this section we describe a heuristic approach to CRPP based on the
well-established principle in capacitated arc-routing (see, for example,
Stern and Dror, 1979) of "route-first and cluster-second", and which
uses an exact solution procedure for the Generalized Traveling Salesman
Problem (GTSP). (See Noon and Bean, 1991, 1993).

4.1. THE GENERALIZED TRAVELING
SALESMAN PROBLEM

In a Generalized Traveling Salesman Problem, the nodes of the given
graph H = (S, L) are partitioned into node-sets Sk, k = 1, ... ,K. There
are no arcs in L connecting nodes within the same set Sk in the partition.
The objective is to find a minimum-cost cycle which includes exactly one
node from each node-set in the partition. Clearly, when each node-set
in the partition contains exactly one node, the GTSP reduces to the
classical Traveling Salesman Problem. A mathematical formulation of
the GTSP is given in Noon and Bean (1991).

4.2. TRANSFORMING THE CRPP TO AN
EQUIVALENT GTSP

In order to apply the GTSP for routing in the Capacitated Rural
Postman Problem, we first calculate the following quantities: For each
connected component of required arcs Gf = (N(Rk), Rk) of the graph
GR , induced by R and the depot node, and for each pair (s, t) of its
entry and exit nodes, let lk(S, t) denote the distance of the minimum­
length traversal of all the arcs in Rk starting at entry node s and ending
at exit node t. This traversal is done with respect to G = (N, A); that
is, arcs in A \ Rk can be used. Clearly, the computation of an optimal
traversal of Rk' when required to start at a given entry node and end
at a pre-specified exit node of that subgraph, is of O(IN(Rk)13 ) time­
complexity. We also compute the shortest-path distance (again relative
to G = (N,A)) from each exit node in Rk to each entry node in all other
components R/, l :f:. k.

The graph H = (S, L) for the GTSP is constructed as follows. For
k = 1,. " ,K, the set Sk consists of nodes in one-to-one correspondence
with the set of pairs of entry and exit nodes of Rk. In other words, each
node in Sk correspond to an entry-exit node pair in Rk. Let node i E Sk
correspond to (s, t) E Rk and nodei' E S~ correspond to (s', t') E R~,
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then the length of arc (i,i') E L is the sum of lk(S,t) and the shortest­
path distance from t to s' (relative to C = (N, A)). Note that by con­
struction, since the depot node is not in N(R), the single depot node is
a connected component of CR.

4.3. SOLVING THE EQUIVALENT GTSP
Every tour of the CTSP corresponds to a trip covering all the arcs

of R, where the subsets Rk are traversed in the order indicated by the
nodes of the CTSP tour. The CTSP approach may be used to solve
for the slick inspection problem which is modeled as an RPP; however,
given the size of the problem on hand, this is not implemented as yet.

In case of the feed distribution problem (CRPP) and given the opti­
mal GTSP route, the clustering part of the heuristic is straightforward.
Starting from the depot, follow the optimal CTSP route until the ca­
pacity of the vehicle is exceeded. Terminate the trip at the last node
before exceeding capacity and return to the depot. Start a new trip with
the node following the termination point of the previous trip as the first
node and continue until vehicle capacity is exceeded again. Repeat this
routine until all arcs demands are met.

An optimal solution of the corresponding CTSP represents the "route
first" part, and the trip generation the "cluster-second" part, of this
heuristic approach to the CRPP. Even though the CTSP is NP-hard in
the strong sense, if the number of disconnected graph components Cf for
this problem is relatively small (not exceeding 30), the solution method­
ology described in Noon and Bean (1991) solves such problem optimally
in reasonable time. However, note that the time-window constraints (but
not the capacity constraints) are ignored in this heuristic, so the routes
generated may not be feasible with respect to feeding time-windows.
On the other hand, since the 'cluster' step of the CTSP heuristic is
not guaranteed to be optimal, the CTSP heuristic solution is not neces­
sary optimal for (CRPP), and hence is not necessarily a lower bound to
the capacitated arc-routing problem with time windows modeled in this
chapter. (See the computational results for problems 400 and 500 in the
next section.)

5. COMPUTATIONAL RESULTS
We tested our heuristics using data from the Arizonan cattle yard.

Solutions were obtained for seven problems, which are representative of
the daily feed requirements for various feed mixes. The problems are for
five feed-types, indexed by 100, 400, 500, 700 and 800. The data set for
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feed-type 100 is also disaggregated to form two more data sets, indexed
by 100A and 100B. These problems ranged in size from 227 nodes and
294 arcs to 581 nodes and 770 arcs, and the number of demand arcs
ranged from 16 to 348.

Table 12.1: Problem sizes and results of the GTSP heuIistic.

Problem (Feed Type) 100 400 700 800 500 100-A 100-8
Nodes in ti 581 581 581 581 581 354 227
Arcs in G 770 770 770 770 770 473 294
Arcs in 1< 348 16 44 45 55 198 150

GTSP
Components in H 9 10 20 10 40 32
Nodes in H 36 40 80 40 160 128
Arcs in H 1152 1440 6080 1440 24960 15872
RPP Solution - 27900 28900 21200 52200 64400 34000
CRPP Solution - 66635 55538 111836 73448 340064 107093

The computational experiments were performed on an Intel Pentium
based machine running at 200Mhz. Table 12.1 reports the size of these
problems and the size of the auxiliary graph H = (5, L) generated by the
GTSP heuristic. In this table we report the total distance traveled using
the GTSP approach, and both the RPP solution (capacity constraints
ignored) and the CRPP solution (capacity constraints considered) using
the heuristic to break the RPP tour into trips. All heuristics used un­
der 25 seconds CPU time even on a desktop machine. The GTSP code
used (Noon and Bean, 1991) did not solve problems with the number
of components greater than 70. Thus, for feed-type 100 we did not ob­
tain GTSP-based solutions. The GTSP heuristic generally provides the
lowest-cost solution compared to the other heuristics tested, since time­
window constraints are ignored.

Table 12.2 shows the comparison between the current routing plan
and the solution using the 'best' non-split heuristic as indicated in Ta­
bles 12.4 to 12.10. Split delivery solutions obtained by implementing the
procedures described in Sections 3.3 and 3.4 are also presented in Table
12.2. A more detailed description of the split delivery arc routing with
time windows heuristics are presented in Mullaseril and Dror (1997).
The solutions generated by the arc routing procedures presented in this
chapter are significantly (up to 42%) better than the current cattle yard
distribution solutions. The split delivery option reduces the distribution
distance further in three out of five cases. This distance reduction is
best illustrated for feed-type 100 where it saves about 5% of the distance
traveled over the non-split solution.
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Table 12.2: Comparison between heuristic and current routing plans.

Split
Feed Heuristic Heuristic # of Heuristic # of Current # of Improvement
Type Used Distance Trips Distance Trips Distance Trips In DIstance

100 Path Scan-6 439592 38 418133 39 534809 45 22%
400 Path Scan-6 58119 6 58119 6 82932 5 30%
500 Path Scan-6 46044 3 46044 3 78836 3 42%
700 Path Scan-2 98030 5 95476 5 105560 6 10%
800 Path Scan-3 102177 5 102177 5 117298 7 13%

Our computational results are summarized in Tables 12.4 to 12.10.
Each data set is solved (heuristically) for both the split and non-split
version of the problem, each with and without the arc-swapping mod­
ule. In generating the initial non-split solution, both the path-scanning
heuristic (for each of the six arc selection criteria) and the augment­
merge heuristic are used. Our computational results show a large vari­
ance among the path-scanning heuristics. The solution values indicate
that the sixth path-scanning heuristic is the most effective; it performed
the best in 5 out of 7 problems with respect to distance and 4 out of 7
with respect to the total number of trips.

It is interesting to note that the arc-swapping heuristic seems to
make very little or no improvement on the Augment-merge solutions.
In oui opinion, the "best" solution is influenced by the input. In this
facility, cattle of similar age, breed and disposition were grouped to­
gether and also belonged to the same or closely related time-windows.
Hence "greedy" heuristics such as the Path Scan 6 (closest arc), and
the augment-merge heuristic tended to perform much better than the
other heuristics. The performance of the three improvement procedures
(arc-swapping, k-split, route addition) varies considerable across differ­
ent input (output from the CRPP module) as Tables 12.4 to 12.10 show.
At times, the k-split module performs better when the arc-swapping
module is not utilized as in the cases of feed-types 100 and 500 using
Path Scan-4. However, in general, the use of all three improvement pro­
cedures resulted in better solutions.

The cattle operated on a single feed basis prior to this study. To
investigate the viability of changing the operation to two feeds per day,
we tested our heuristics for the two cases. Case 1 represents the single­
feed scenario, while in Case 2, the daily requirements are delivered in two
feeding time-windows. Computational runs were done on the same graph
(same underlying pen layout) for the two cases. To accommodate for slick
feeding, the demand in Case 1 is 75 percent of the total demand in Case
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2, assuming that 25 percent of the daily demand is delivered as slick feed.
The operators of the feed-yard had three criteria by which to judge the
heuristics. The most obvious one is distance traveled and minimizing it
will serve to increase the capacity of the feed-yard in terms of number of
cattle fed. However, the feed-yard sometimes pays drivers of trucks based
on the number of trips delivered and hence would like to minimize that
cost. Similarly the wear and tear on the truck and drivers is based on
the number of hours of operation and they would like to keep this below
certain prescribed limits. Hence we collected information on the distance
traveled, total hours of operation and total number of trips for each of
the heuristics. Tables 12.4 to 12.10 report in detail the computational
results for all seven problems (all heuristic algorithms) for the two cases
described above. Figures 12.3 to 12.6 report on the comparison (in terms
of rank) of all heuristics with respect to total distance traveled and the
total number of trips for the two cases. One can observe that the benefits
from two feeds per day outweighs the additional expense.

6. EPILOGUE
Our preliminary computational results point out the inefficiencies in

the current operations. Our analysis of the data shows that pens requir­
ing the same feed type with adjacent time windows are dispersed ran­
domly throughout the yard. Hence vehicles have to deadhead between
adjacent deliveries within a trip resulting in considerable non-productive
time, and which leads to the use of more vehicles than absolutely nec­
essary. Subsequently, the management of the cattle yard revised their
distribution policies. The yard adopted what is known in industry par­
lance as 'zone feeding'. The principle idea in zone feeding is to insure
that each row of pens has the same feed delivered to it and with identical
time windows. Thus a trip can service a whole row of pens without hav­
ing to deadhead between two pens. The rows of pens were then assigned
time windows in a staggered fashion so that trucks could progressively
proceed from one row of pens to the next without skipping a row while
making deliveries. This leads to clustered demand patterns that are eas­
ier to manage.

In this regard, the CTSP heuristic can be used, in some sense, to
provide an approximate target for improvements to the system, since
it generates a solution which ignores time-windows and thus, in most
cases, should be superior to a solution that is time-constrained. The
routes generated by the CTSP heuristic can also help to set the target
time-windows when adjusting the demand patterns for zone feeding, by
indicating which pens will be delivered on the same route if they have
the same or adjacent time windows.
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Prior to implementing the zone feeding policy, the information systems
in the yard were also vastly improved (see Tracey and Dror, 1996, for
the description of a computerized graphical implementation proposed for
the new information system). The entire fleet is managed by a dispatch
control center where the feeding plans are determined ahead of time and
downloaded on to laptop computers provided in each of the trucks. One
of the drawbacks of the system in-use is that target times for feeding
each of the pens are not available. This information can be provided
by the solution to the CRPP with time-windows, which determines the
start and finish times for delivery at each pen, enabling more precise
monitoring and control of the delivery system.

The zone feeding strategy leads to near-optimal routes provided the
demand patterns can be preserved in this state over time. However, as
noted, it is often necessary to move cattle to other pens as they ma­
ture. When cattle are moved to a new location, they may not be able
to immediately adapt to the new feeding time imposed on them by the
time windows associated with these pens; it takes some time before they
are trained to feed at a new mealtime. (Such time changes cause dis­
tress among the cattle, which is not desirable.) Thus, cattle movements
and adjustments lead to a gradual breakdown of the clustered demand
pattern that zone feeding seeks to maintain. A more zonal demand pat­
tern can be restored by occasional re-arrangement of cattle and a good
assignment of pens to incoming cattle. Finding the optimal initial pen
assignment and the optimization of cattle movement within the yard is
an interesting direction for future research.

After examining our computational results, the yard management im­
plemented a new improved feed distribution policy. In the improved
plan implemented, two trucks each start at the north-east and south­
west corners and each truck starts delivering feed to alternate rows of
pens, leapfrogging the other as they proceed through the yard. In cer­
tain seasons of high utilization of the yard, more trucks are pressed into
the service. This strategy considerably improved the speed of delivery.
Hence the yard moved from a single feed a day to two feeds a day, early
morning and late afternoon. Two feeds a day is better than a single feed
as the cattle have lower tendency to overeat and their diets could be
controlled with greater precision leading to other benefits such as lower
death rates.
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Table 12.3: The cattle and calves business of the 50 U.S. states in 1995.

Cash Receipts Ntunberof Cash Receipts Ntunberof

From Cattle Businesses From Cattle Businesses

State (in $1000) (in 1000) State (in $1000) (in 1000)

1. Texas 6.295.600 149.00 2. Kansas 4.523.400 38.00

3. Nebraska 4.157,800 28,00 4. Colorado 2.081.200 13.00

5. Oklahoma 1.758.600 62.00 6. Iowa 1.705.000 45.00

7, California 1.289,800 25.00 8, South Dakota 1.045.900 21.00

9, Minnesota 835.200 37.00 10. MJntana 667.800 12.00

11. Missouri 659,800 75.00 12, Washington 645.000 20,00

13. llIinois 622,300 27.00 14. Idaho 618.100 12,00

15, Wisconsin 611.200 50.00 16. Kentucky 548.200 54.on
17, NewMexico 483.100 9.50 18. Wyoming 461.700 5.70

19. Arizona 434.000 4.30 20. North Dakota 366.300 14.00

21, Pennsylvania 354,700 33.00 22. Arkansas 310.900 32.00

23. Tennessee 310.500 63.00 24. Alabama 308,300 35.00

25, Oregon 294.100 22.00 26. F10Iida 289,800 21.00

27. Georgia 284.900 29.00 28. Indiana 268,600 28.00

29. Michigan 264.800 19.00 30, Utah 261.400 7.70

31. OhIo 256.700 35,00 32. Vrrglnla 252.400 31.00

33. Mississippi 156.800 30.00 34. North Carolina 152.200 33.00

35. NewYork 149.200 19,00 36. louisiana 115.500 18.00

37. Nevada 102.400 1.70 38. South Carolina 91.700 14.00

39. West Virglnla 69.300 17.00 40. Maryland 60.000 6.50

41. Vennont 39.500 3,90 42. Maine 16.300 2.80

43. Hawaii 14.600 0.85 44. Connecticut 13.900 1.30

45. New Jersey 9.100 2.00 46. Massachusetts 8.200 1.80

47. New Hampshire 5.600 1.10 48. Delaware 2,600 0.58

49. Rhode Island 600 0.21 50. Alaska 600 0.12

Total United States: 34.275.200 1211.06
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Figure 12.3: Performance of Heuristics with respect to
Distance for Case 1
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Figure 12.4: Performance of Heuristics with respect to
Distance for Case 2

--<>- Path Scan-l

- • - Path Scan-2

- & - Path Scan-3
---0-Path Scan-4

- • - Path Scan-5

~ Path Scan-6

~Augment-Merge

8

7

6 .--
5

.lll
I: 4 ..
&!
3 .., .... .:2 ....

0

100 400 500 700 800 100-A 100-B

Feed Type



474 ARC ROUTING

Figure 12.5: Perlonnance of Heuristics with respect to
Number of Trips for Case 1
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Figure 12.6: Perlonnance of Heuristics with respect to
Number of Trips for Case 2
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