Contributors

E. Benavent
Lawrence Bodin
James F. (i.unpl)u“
A. Corberan
Ulrich l)rrig\
Moshe Dror
Richard W.]“glcw
H.A. Eiselt
Herbert Fleischner
Alain Hertz

[”H lu J()}]”\l)[l
André Langevin

Gilbert Laporte

Adam N. Letchford

Janny M.Y. Leung
Laurence Levy
Michel Mittaz
Paul A. Mullaseril
J-M. Sanchis

ARC

ROUTING:
Theory, Solutions
and Applications

==

Kneiphof

Island

Edited by Moshe Dror

ARC ROUTING

ARC ROUTING
Theory, Solutions and Applications

Edited by
MOSHE DROR

University of Arizona

hd
58

Springer Science+Business Media, LLC

Library of Congress Cataloging-in-Publication Data

Arc routing : theory, solutions, and applications / edited by Moshe Dror.
p. cm.
Includes bibliographical references and index.
ISBN 978-1-4613-7026-0 ISBN 978-1-4615-4495-1 (eBook)
DOI 10.1007/978-1-4615-4495-1

1. Operations research. 2. Graph theory. 1. Dror, Moshe.

T57.6 A73 2000
658.4'034--dc21
00-056135

Copyright © 2000 by Springer Science+Business Media New York

Originally published by Kluwer Academic Publishers, New York in 2000

Softcover reprint of the hardcover 1st edition 2000

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system or transmitted in any form or by any means, mechanical, photo-
copying, recording, or otherwise, without the prior written permission of the
publisher, Springer Science+Business Media, LLC.

Printed on acid-free paper.

in memory of
Chaja & Asher
Frydman

Contents

Preface

Contributing Authors

1

A Historical Perspective on Arc Routing
H.A. Eiselt, Gilbert Laporte

1.1
1.2

1.3

—
[S10~N

Introduction

The Chinese Postman Problem
.1 The Undirected CPP

.2 The Directed CPP

.3 The Mixed CPP

.4 The Windy CPP

.5 The Hierarchical CPP
e Rural Postman Problem
.1 The Undirected RPP

.2 The Directed RPP

.3 The Mixed RPP

The Capacitated Arc Routing Problem
Research Outlooks

B g e e
WL T NN NN

Part I THEORY

2

Traversing Graphs: The Eulerian and Hamiltonian Theme
Herbert Fleischner

2.1
2.2

2.3
2.4

0 uon

Introductory Remarks

Basics of Graph Theory

2.2.1 Graphs and Their Parts

2.2.2 Walks, Trails, Paths, Cycles; Connectedness

2.2.3 Bipartite Graphs, Trees, Blocks, Mappings
Connectivity, Menger’s Theorem the Splitting Lemma, and
Factors

Eulerian Graphs and Covering Walks, Cycle Decompositions
and Cycle Covers

2.4.1 Algorithms for Constructing Eulerian Trails

2.4.2 Mazes

Hamiltonian Cycles and Vertex-Covering Walks

Elements of Matching Theory

The Chinese Postman Problem, The Traveling Salesman Prob-
lem, and Related Problems

Elements of Network Theory

xvii

xiii

viii

3

ARC ROUTING

Matching: Arc Routing and the Solution Connection

Ulrich Derigs
Introduction
Matching: Applications

3.1
3.2

w0 coeaw
(=] [S1 IS VN)

4

3.2.1

©0 6 02 09 00 L0 3 ¢
SISIISISISE:
CO O UL I

Team Selection

Task Scheduling
Processor Scheduling
Route Connection
Arc Routing

Node Routing
General Routing

Set Partitioning

Matchm«T Combinatorial Aspects

Matchmg Polyhedral Aspects

Matching Algorithms: Linking Combinatorial and Polyhedral
Results

Matching Algorithms: Implementation Issues

Start Procedures: Constructing the Initial Extreme Match-

3.6.1

3.6.2
3.6.3

ing
Organization of Dual Updates
Price and Reoptimize

Arc Routing: Complexity and Approximability

Moshe Dror
Introduction: Easy and Hard Problems

4.1
4.2
4.3

o
[SA00

4.6

o

CPP as a Problem in P

NP-Hard Generalizations of the CPP

4.3.1 The Mixed CPP

4.3.2 The MCPP N'P-Completeness

4.3.3 The Rural Postman Problem

4.3.4 The Windy Postman Problem

4.3.5 Non-intersecting Eulerian Circuits and A-trails in Eule-
rian Graphs

4.3.6 Dominating Trails

4.3.7 Precedence in Arc Routing

4.3.8 Capacitated Arc Routing

Approximation Algorithms

Approximation Results for Arc Routing

4.5.1 The Mixed CPP

4.5.2 The Windy CPP

4.5.3 The RPP and Other Variants

4.5.4 The CARP

Conclusions

Chinese Postman and Euler Tour Problems in Bi-directed Graphs
Ellis L. Johnson

Bi-directed Graphs, Euler Tours, and Postman Tours
Aircraft Routing in a Space-time Network

The Chinese Postman Problem in an Undirected Graph
Binary Group Problems and Blocking Problems

Ideal Binary Matrices

5.1

G oro o en
UL LN

Four

Problems on Planar Graphs

Part II Solutions

89

89
91
91
92
93
94
95
98
101
104
107
112

116
119

120
122
123

133

133
141
143
143
144
147
148

149
151
152
154
156
159
159
161
161
162
164

171

171
176
181
189
192
193

6

6.1
6.2
6.3
6.4

6.5

6.6

6.7

{

7.1
7.2

7.3

7.4

Contents ix
Polyhedral Theory for Arc Routing Problems 199
Richard W. Eglese, Adam N. Letchford
Introduction 199
The Basics of Polyhedral Theory 200
The Routing Problems Defined 203
Variants of the Chinese Postman Problem 205
6.4.1 The CPP 205
6.4.2° The DCPP 205
6.4.3 The MCPP 206
6.4.4 The WPP 208
Variants of the Rural Postman Problem 209
6.5.1 The RPP 209
6.5.2 The GRP 212
6.5.3 The DRPP 216
6.5.4 The MRPP 217
The Capacitated Arc Routing Problem 219
6.6.1 Preliminaries 219
6.6.2 Sparse Formulations of the CARP 220
6.6.3 The Dense and Supersparse Formulations of the CARP 224
Conclusions 226
Linear Programming Based Methods for Solving Arc Routing Problems 231
E. Benavent, A. Corberin, J.M. Sanchis
Introduction 232
Chinese Postman Problems 236
7.2.1 The Undirected CPP 236
7.2.1.1 Odd-Cut Separation 237
7.2.2 The Directed CPP 238
7.2.3 The Mixed CPP 239
7.2.3.1 A Cutting Plane Algorithm for the MCPP 240
7.2.3.2 Odd-Cut Separatlon 241
7.2.3.3 Balanced Set Separation 242
7.2.4 The Windy Postman Problem 243
Rural Postman Problems 244
7.3.1 The Undirected RPP 244
7.3.1.1 Connectivity Separation 246
7.3.1.2 R-odd cut Separation 246
7.3.1.3 K-C Inequalities Separation 247
7.3.1.4 Cutting Plane and Branch & Cut Algorithms for the RPP249
7.3.2 The General Routing Problem 250
7.3.2.1 Honeycomb Separation 251
7.3.2.2 Path-Bridge Separation 253
7.3.2.3 Cutting Plane and Branch & Cut Algorithms for the GRP255
7.3.3 The Directed RPP 256
7.3.4 The Mixed RPP 257
7.3.4.1 Connectivity Separation 258
7.3.4.2 R-odd Cut and Balanced Set Separation 259
7.3.4.3 K-C and Path-Bridge Separation 259
The Capacitated Arc Routing Problem 259
7.4.1 Sparse Formulations 260
7.4.1.1 Connectivity Separation 261
7.4.1.2 Parity Separation 262
7.4.1.3 Obligatory Cutset Separation 263
7.4.1.4 Separation of Constraints from the Knapsack Problem 263
7.4.2 Supersparse Formulation for the CARP 264

X ARC ROUTING

N
[o 2]

8

7.4.2.1 Capacity Constraints Separation
7.4.2.2 Disjoint Path Inequalities Separation
7.4.3 Exact Methods Based on the Sparse Formulation

7.4.4 A Cutting Plane Algorithm for the CARP Based on the
Supersparse Formulation

Other Problems
Conclusions

Transformations and Exact Node Routing Solutions by Column
Generation

Moshe Dror, André Langevin

8.1
8.2

8.3

84

8.5

8.6

Introduction

Transformations to Node Routing: Why?

8.2.1 The Capacitated Rural Postman Problem
8.2.2 \/Iathematlcal Formulation of the CARP

8.2.3 When to Transform to Node Routing
Arc Routing Transformations: How

8.3.1 ;I‘ransformations of Uncapacitated Arc Routing Prob-
ems

8.3.2 Transformations of Capacitated Arc Routing Problems

8.3.3 Transformation of CARP with Time Windows to
VRPTW

8.3.4 Split Delivery Arc Routing with Time Windows

l(_]olumn Generation for Routing Problems with Non-split De-

ivery

8.4.1 Revised Simplex: Chvdtal’s Introduction to Column Gen-

eration

.2 Set Covering, Vehicle Routing, and Column Generation

.3 The Shortest Path Subproblem

4

4

4

4 An Algorithm for the Shortest Path with Resource Con-

straints

4.5 Solving SPRCP with only Elementary Paths

.4.5.1 Overlooking an Optimal Elementary Path

.4.5.2 An SPRCP - Improved Elementary Path Algorithm

.4.5.3 Description of the Algorithm

olumn Generation for Routmg Problems with Split Delivery

.1 Properties of Split Deliveries with Triangle Inequality

2 Formulation

3 Set Covering Approach for Split Deliveries

4 The Subproblem for Generating Feasible Columns for
Split Delivery

4.1 Formulating the Subproblem

.4.2 Alternating between the Master Problem and the Sub-
problem

8.5.5 The Computational Phase: A Mixed Integer Solver and
a Dynamic Programming Algorithm

8.5.5.1 Plscretlzmg the Split Deliveries in the SPPRC Subprob-
em

8.5.5.2 Discussion of Computational Experiments for the SD-
VRPTW

8.5.6 Another Set Covering Formulation for SDVRPTW
8.5.6.1 The (M P3) Model and Column Generation Approach

8.5.6.2 The Branching Scheme for the SDVRPTW
Conclusion

PE EEEeQeeee 0o
st Lraron -

267
267
268

269
269
270

277

278
279
279
280
281

9

Contents

Heuristic Algorithms
Alain Hertz, Michel Mittaz

9.1
9.2

9.3

9.4

Part 111
10

Introduction

Heuristics for Uncapacitated Arc Routing Problems

9.2.1 The Chinese Postman Problem
.1 The undirected chinese postman problem
.2 The directed chinese postman problem

.3 The mixed chinese postman problem

4 The windy postman problem

The Rural Postman Problem

.1 The undirected rural postman problem

.2 The directed rural postman problem

.3 The mixed rural postman problem

.4 The stacker crane problem

-5 Additional algorithmic tools

3.1 Simple Constructive Methods for the CARP

3.2 Two-Phase Constructive Methods for the CARP
.3.2.1 Route first-cluster second algorithms

.3.2.2 Cluster first-route second alﬂorlthms

.3.3 Meta-Heuristics for the CARP

onclusion

Applications

Roadway Snow and Ice Control

James F.

10.1
10.2
10.3
10.4
10.5
10.6

10.7
11

Campbell, André Langevin
Introduction

Brief History of RSIC
Characteristics of Arc Routing for RSIC
Solution Approaches

Early Work

Recent Work

10.6.1 CASPER

10.6.2 GeoRoute
10.6.2.10ttawa, Canada
10.6.2.8uffolk County, UK
10.6.3 Other Recent Work
Future

Scheduling of Local Delivery Carrier Routes for the United States
Postal Service

Lawrence Bodin, Laurence Levy

11.1
11.2

11.3

Introduction

The Route Adjustment Process

11.2.1 Inspection

11.2.2 Route Adjustment

11.2.3 Auxiliary (or Remnant) Routes

Types of Delivery Routes

11.3.1 Park and Loop Routes

11.3.2 Curbline/ Dismount Routes

11.3.3 Combined Park and Loop and
Curbline/ Dismount Routes

xi

327

327
329
329
329
331
332
336
338
338
340
344
349
355
361
361
373
373
377
379
383

389

389
390
392
395
396
400
400
406
408
410
411
413

419

420
422

423
424
424
425
426

426

Xii
11.4

11.5

11.6

11.7
11.8

12

ARC ROUTING

11.3.4 Relay Box Routes
Lines of Travel for the Four Types of
Postal Delivery Routes
11.4.1 Walking Line of Travel
11.4.2 Driving Line of Travel
Examples of the Lines of Travel for the Four
Types of Postal Delivery Routes
11.5.1 Park and Loop Routes
11.5.2 Curbline/ Dismount Routes
11.5.3 Combined Park and Loop and
Curbline/ Dismount Routes
11.5.4 Relay Box Routes
11.5.5 Discussion
Algorithm for Route Adjustment
11.6.1 Estimate the Number of Routes to Form
11.6.2 Partition the AOI
11.6.3 Form the Line of Travel for each Partition
11.6.4 Is the Solution Balanced?
Manual Intervention
Conclusions

Livestock Feed Distribution and Arc Traversal Problems
Moshe Dror, Janny M.Y. Leung, Paul A. Mullaseril

12.1

12.2

12.3

12.4

Introduction

12.1.1 The Cattle Industry

12.1.2 The Cattle Yard Operations
Livestock Feed Distribution as Arc Traversals

12.2.1 Arc-Routing Models for Pen Inspection and Feed Deliv-

ery

12.2.1.1Mathematical Formulation of the Capacitated Rural Post-

man Problem (CRPP)
12.2.2 Split Deliveries
12.2.3 Time Windows
A Heuristic Approach for Trip Generation
12.3.1 Generating a Non-split Feasible Solution

12.3.1.1Extended Path Scanning Algorithm for Feeding-Time

Feasibility
12.3.1.2Modified Augment-Merge Algorithm
12.3.2 Arc Swapping
12.3.3 Generating Split Delivery Routes
12.3.4 Route Addition

Route-First Cluster-Second Generalized TSP Heuristic
12.4.1 The Generalized Traveling Salesman Problem
12.4.2 Transforming the CRPP to an Equivalent GTSP

12.4.3 Solving the Equivalent GTSP
Computational Results
Epilogue

427

427
428
428

429
430

431

432
433
434
435
436
437
438
439
440
440

443

444
444
444
447

448

448
450
451
452
452

453
454
455
456
456
457
457
457
458
458
461

Contributing Authors

E. Benavent

Department d’Estadistica i Investigacié Operativa
Universitat de Valéncia

Burjassot-Valéncia, Spain

Lawrence Bodin

R.H. Smith School of Business
University of Maryland

College Park, Maryland 20742 U.S.A.

James F. Campbell

School of Business Administration
University of Missouri - St. Louis

St. Louis, Missouri 63121-4499 U.S.A.

A. Corberdn

Department d’Estadistica i Investigacié Operativa
Universitat de Valéncia

Burjassot-Valéncia, Spain

Ulrich Derigs

Seminar fiir Wirtschaftsinformatik und Operations Research
Universitiat zu Koln

Albertus-Magnus-Platz, D-50923, Cologne, Germany

Moshe Dror
Department of Management Information Systems

University of Arizona
Tucson, Arizona 85721 U.S.A.

xiv ARC ROUTING

Richard W. Eglese

Department of Management Science
Lancaster University

Bailrigg, Lancaster, LA1 4YW England

H.A. Eiselt

Faculty of Administration

University of New Brunswick

Fredericton, New Brunswick, E3B 5A3 Canada

Herbert Fleischner

Institute for Discrete Mathematics
Austrian Academy of Sciences
Vienna, Austria

Alain Hertz
Ecole Polytechnique Fédérale de Lausanne

Department de Mathematiques
MA-Ecubleus, Ch-1015 Lausanne, Switzerland

Ellis L. Johnson
School of Industrial and Systems Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332 U.S.A.

André Langevin
GERAD and Ecole Polytechnique
Montréal, Québec, H3C 3A7 Canada

Gilbert Laporte
Centre de recherche sure les transports

Université de Montréal
Montréal, Québec, H3C 3J7 Canada

Adam N. Letchford
Department of Management Science

Lancaster University
Bailrigg, Lancaster, LA1 4YW England

Contributing Authors xv

Janny M.Y. Leung

Department of Systems Engineering and Engineering Management
The Chinese University of Hong Kong

Shatin, Hong Kong

Laurence Levy
RouteSmart Technologies
Columbia, Maryland 21045 U.S.A.

Michel Mittaz

Ecole Polytechnique Fédérale de Lausanne
Department de Mathematiques

MA-Ecubleus, Ch-1015 Lausanne, Switzerland

Paul A. Mullaseril
Department of Management, College of Business

Mankato State University
Mankato, Minnesota 56002 U.S.A.

J.M. Sanchis

Department de Mathemadtica Aplicada
Universidad Politécnica de Valéncia
Valéncia, Spain

Preface

The title of this book is ARC ROUTING: Theory, Solutions, and Ap-
plications. The key word in this title is “ROUTING”. The thesaurus list-
ing for “route” reads 1 “itinerary, way, course, passage, circuit, beat, run,
round, orbit, trajectory, artery, channel, detour, bypass, 2 road, street,
roadway, thoroughfare, passage, passageway, artery, channel, corridor,
track, trail, avenue, boulevard, highway, thruway, turnpike, 3 means,
medium, agency, steps, instrumentality, way, system, modus operandi,
method, procedure, practice, process, course”. As a verb the thesaurus
defines it as “channel, direct, send, point, aim, head, steer, drive, ma-
neuver, and pilot.” Different thesaurus listings may add to the corre-
spondence of a one to many mapping. Most of these words implicitly or
explicitly project the sense of moving along some well-understood (phys-
ical) entities or objects. “To route” is defined among other definitions
as “to head”, “to steer”, “to drive”, or “to maneuver” (about an object).

The other key word, “ARC” corresponds to “curve”, “line”, or “bend”,
connecting two points (or objects represented as points) with an indi-
cation of a direction from one point to the other. Thus, the title ARC
ROUTING conveys that the main topic of this book is about ways of
“maneuvering”, “driving”, “steering” along curved lines which connect
different objects or points.

Another word associated with routing, especially arc routing, is
“TRAVERSING” or “TRAVERSAL”, which in the context of this book
is to “pass through”, “pass over”, “travel across”, “march over”, “scan”,
“run through”, and “inspect”. This book could have been titled ARC
TRAVERSALS and it would have been just as appropriate as the title
ARC ROUTING, or perhaps even more so.

The first chapter in this book titled A HISTORICAL PERSPECTIVE
ON ARC ROUTING by H.A. Eiselt and Gilbert Laporte, describes a
problem posed to Leonhard Euler (a well known mathematician) around
1736. The question was whether there is a route (a marching band route)
starting on an island in a city then called Kénigsberg, which would tra-

xviii ARC ROUTING

verse each of the city’s seven bridges exactly once (with no repetitions)
and end on the island from which the route started. This practical ques-
tion regarding the planning of a marching band route is often sited as
the beginning of modern graph theory (a branch of mathematics), and
Leonhard Euler, who answered this question (proving that such a route
does not exist for the seven bridges in Konigsberg) is credited as the pi-
oneer of graph theory as we know it today. By solving the seven bridges
Konigsberg problem, he can certainly be considered the “inventor” of
arc routing. In honor of Euler, a whole family of graphs was classified as
Eulerian graphs and the study of the various properties of such Eulerian
graphs has been and still is of great interest for graph theory mathemati-
cians, as is demonstrated in the chapter by Fleischner in this book.

The first time I encountered an arc traversal (arc routing) problem was
in the context of examining work assignments for electric meter readers
in the city of Beer Sheva in Israel (see Stern and Dror, 1979). The city’s
electric company periodically sent electric meter readers to record the
consumption of electricity by the different households for billing pur-
poses. The meter readers would traverse the city streets (to scan the
households’ meters) and this “work assignment” would have its routes
planned in advance. It was very convenient and natural to represent the
problem as a graph problem with the nodes of the graph as the street in-
tersections and street segments between intersections as the edges (undi-
rected arcs) of the graph. It was a “capacitated problem” in the sense
that no meter reader was assigned a route which exceeded a specified
number of work hours. It was clearly a problem classified as an arc rout-
ing problem. When looking for guidance in solving the meter reading
problem, a “pandora’s box” in the form of the extensive literature about
routing and the variety of routing problems opened before me.

This book is primarily about arc traversal and the great variety of arc
routing problems and the applications of arc routing theory for real-life
problems with the key word arc. However, in contrast to arc routing,
there are also node or vertex routing problems that focus on the ver-
tices of graphs instead of the graphs’ arcs. (See Toth and Vigo, 2000,
for a recent collection of articles focused on node routing.) Just as Eu-
ler’s name stands out for arc routing, Hamilton’s name is emblematic for
node routing, and subsequently for a name for a family of graphs: the
Hamiltonian graphs. (For the historic account, see Hoffman and Wolfe,
1985.) In Hamiltonian graphs one might be concerned with the order in
which the vertices of a graph are visited on a.tour. Node routing is also
covered in this book.

PREFACE Xix

The idea for editing this book came to me while I was examining so-
lutions to a capacitated arc routing problem with split deliveries and
arc time windows which originated in the cattle yard industry. (See a
detailed description in Dror, Leung, and Mullaseril, this book.) In the
last 10 years or so, there has been extensive coverage of arc routing
problems in the literature, especially from a graph theory perspective, in
book format as well as in numerous articles. (See Fleischner, 1990, 1991,
and a chapter in this book.) However, a collection of state of the art
expositions of arc routing problems that explore their graph theoretical
basis, as well as solution methodologies for arc routing problems, and
a number of representative applications, has never (to my knowledge)
been compiled in a single volume. This volume represents an attempt to
provide just that. I believe that we have succeeded because of the elite
group of individuals who have volunteered to contribute to the book,
and I am very thankful for their contributions!

The book contains twelve chapters of various lengths organized into
three main parts: Theory, Solutions, and Applications. The book be-
gins with a chapter titled A HISTORICAL PERSPECTIVE ON ARC
ROUTING by H.A. Eiselt and Gilbert Laporte. In this chapter the au-
thors provide a historical road map for arc routing research. Eiselt and
Laporte start with the definition and the description of the best known
arc routing problem: the celebrated Chinese Postman Problem. They
provide the motivation, and definitions, and outline the main ideas for
problems with names such as the Windy Chinese Postman Problem, the
Hierarchical Chinese Postman Problem, the Rural Postman Problem, the
Capacitated Arc Routing Problem, and others. This discussion of a num-
ber of very important arc routing problems which form the backbone of
arc routing research provides the reader with a perspective and vocabu-
lary needed for the articles which follow.

The Theory part of the book starts with an excellent review of graph
Theory for arc routing by Herbert Fleischner titled TRAVERSING
GRAPHS: THE FEULERIAN AND HAMILTONIAN THEME. 1t is a
concise over- view of graph concepts, graph problems, and the state of
the art of graph theory in relation to Eulerian graphs and their coun-
terparts, the Hamiltonian graphs. It contains all the important graph
theoretical “building blocks” such as connectivity, Menger’s Theorem,
the Splitting Lemma, Factors, Eulerian and Hamiltonian graphs, Cov-
ering walks and Hamiltonian Cycles,Cycle Decomposition, Cycle Covers
and Vertez-cover walks, Elements of Matching Theory, and all the related
problems such as the Chinese Postman Problem, the Traveling Salesman
Problem, and many more. In addition, the chapter contains a bibliogra-
phy listing all the proofs and a more detailed treatment of the chapter’s

XX ARC ROUTING

themes. The chapter truly represents a unique exposition for all readers
interested in arc routing and in particular for the readers interested pri-
marily in solutions and applications for arc routing.

The focus of the third chapter by Urlich Derigs, titled MATCHING:
ARC ROUTING AND THE SOLUTION CONNECTION, is on the
Matching Problem which is a central component in the solution of the
Chinese Postman Problem and many other related and unrelated prob-
lems in combinatorial optimization. In its classical formulation, the prob-
lem is that of selecting the “best” pairs of nodes on a given graph. It
is one of the most important “stepping stone” problems in the study of
combinatorial optimization in general. The chapter by Urlich Derigs de-
scribes the state of the art for the matching problem in terms of both its
combinatorial and polyhedral aspects. It provides the reader with a clear
link between the two in the algorithmic description and discusses the im-
plementational issues for matching algorithms. The chapter is written in
a very clear fashion by the man who is arguably the most authoritative
professional on theoretical and computational aspects of the matching
problem. I still remember the competition in the early eighties in which
the matching code of Urlich Derigs outperformed all the competition.
This chapter adds to the discussion a very important component in arc
routing research.

Chapter 4 is titled ARC ROUTING: COMPLEXITY AND APPROX-
IMABILITY by Moshe Dror. This chapter formally introduces the no-
tion of complexity and attempts to provide a clear delineation between
‘hard’ arc routing problems and ‘easy’ (solvable in polynomial time) arc
routing problems. In addition, it describes the state of the approxima-
tion schemes for the hard arc routing problems. This chapter enables
the reader to appreciate the full scope of the different computational ex-
aminations of arc routing problems discussed in this book.

Chapter 5, by Ellis L. Johnson is titled CHINESE POSTMAN AND
EULER TOUR PROBLEMS IN BI-DIRECTED GRAPHS. Written by
one of the most prominent contributors to arc routing research (see
Edmonds and Johnson, 1973), it describes the connection between im-
portant arc routing applications, especially for aircraft routing, and a
number of mathematical constructs. The chapter examines a number
of concepts such as binary group problems, blocking pairs of clutters,
ideal binary matrices, and relates these concepts to the Chinese Post-
man Problem. In addition, the chapter provides important insights into
the polyhedral and algebraic structures associated with the Chinese Post-
man Problem.

PREFACE XXi

Chapter 6, POLYHEDRAL THEORY FOR ARC ROUTING PROB-
LEMS by Richard W. Eglese and Adam N. Letchford is the first in the
Solution Methodology section of the book. Its focus (true to the title) is
on the known facts related to the polyhedral description of arc routing
problems. It provides a very clear overview of polyhedral theory and
the state of the art of known valid inequalities and facets for a variety
of arc routing problems. 1t is a very important chapter leading to exact
solutions for arc routing problems and is similar in its role to chapters
by Grotschel and Padberg (1985), and Padberg and Grotschel (1985),
in the famous book The traveling Salesman Problem by Lawler et al.
(1985). Three problems are examined in detail: the Chinese Postman
Problem, the Rural Postman Problem, and the Capacitated Arc Routing
Problem. The chapter represents an excellent summary of the status of
polyhedral results for arc routing as we know it today.

The chapter by E. Benavent, A. Corberan, and J.M. Sanchis, Chapter
7, titled LINEAR PROGRAMMING BASED METHODS FOR SOLV-
ING ARC ROUTING PROBLEMS, represents the logical continuation
of the previous chapter by Eglese and Letchford. Whereas chapter 6 was
about the descriptive (polyhedral) representation of arc routing prob-
lems, this chapter is about using such descriptive representation for con-
structing solutions to arc routing problems by linear programming in the
best possible way. It is an excellent description of the cutting planes and
Branch & Cut methodology and how they can be incorporated into the
linear programming solution approach for the many different arc routing
problem variants considered in this chapter. The chapter examines all
the classical arc routing problem formulations in great detail and builds
on the extensive cutting plane “machinery” developed in the node rout-
ing literature. The objective is to solve such problems exactly, which,
for these N"P-hard problems, implies an implicit enumeration, which in
this case are based on cutting planes and Branch & Cut procedures. The
“best” and most successful ingredients for such Branch & Cut solution
procedures for the different arc routing problems are superbly described
in this chapter.

Chapter 8 in this book is titled TRANSFORMATIONS AND EX-
ACT NODE ROUTING SOLUTIONS BY COLUMN GENERATION.
This chapter is written by Moshe Dror and Andre Langevin. The chapter
has two parts. The first part discusses a number of transformations for
modeling arc routing problems as node routing context problems with
a 1-1 mapping between the optimal solutions of the corresponding for-
mulations. The second part of the chapter focuses on solutions using
column generation methodology for capacitated node routing problems
with time windows for the node deliveries. This is motivated by the fact

xxii ARC ROUTING

that a capacitated arc routing problem with time windows on arcs is
difficult to model and thus justifies the transformation to a node routing
setting. A special focus on the node routing analysis is given to the split
delivery option where a node’s demand can be delivered by any number
of vehicles.

Chapter 9, by Alain Hertz and Michel Mittaz on HEURISTIC AL-
GORITHMS examines solution options for arc routing problems that do
not guarantee optimal solutions. An important question regarding hard
arc routing problems is that of selecting, from all possible heuristic tour
constructions for arc routing described in the literature, the heuristic so-
lutions with demonstrated computational or solution quality advantages.
This chapter provides a very well organized and clear description of the
different heuristic techniques available for solving a great variety of arc
routing problems. In the first two sections after the Introduction, the
focus is on more “traditional” heuristic approaches to arc routing prob-
lems such as simple constructive heuristics, two-phase heuristics with the
flavor of cluster first — route second, or the opposite. In the second part
of the chapter the authors present a very fine description of metaheuris-
tics (Simulated Annealing and Tabu Search) and their role in solving arc
routing problems.

Chapter 10, is the first of three chapters in the Applications section
of the book. The chapter’s title is ROADWAY SNOW AND ICE CON-
TROL written by James F. Campbell and Andre Langevin. As the
authors of this chapter state “Roadway snow and ice control is one of
the most complex and fascinating venues for arc routing applications”.
When trying to explain arc routing research to a novice, this is perhaps
the clearest and best motivating application for arc routing. The chap-
ter begins by detailing the background of “snow-plowing” characteristics
and complexities. It also describes some early research results for road-
way snow and ice control. However, the main focus is on two successful
system developments and their applications. The first system (currently
used in Indiana according to the authors) is called CASPER. The sec-
ond system described in detail in the chapter has been implemented in
a number of localities in Canada and the U.K.

The second chapter in the Applications section (Chapter 11) is ti-
tled SCHEDULING OF LOCAL DELIVERY CARRIER ROUTES FOR
THE UNITED STATES POSTAL SERVICE. 1t is written by Lawrence
Bodin and Laurence Levy, two experts in automating solutions in this
complex arc routing environment. Both authors have been constantly
involved in arc routing applications since the early papers by Lawrence
Bodin (see Beltrami and Bodin, 1974, and Bodin and Kursh, 1978, 1979)

PREFACE xxiii

and the dissertation work of Laurence Levy (1986). This is the “classic”
application of arc routing: the generation of postman routes. The book
would not be complete without this chapter. The chapter presents a
clear description of the many issues the post office faces when construct-
ing and assigning postal delivery routes.

The last chapter in the book, Chapter 12, LIVESTOCK FEED DIS-
TRIBUTION AND ARC TRAVERSAL PROBLEMS by Moshe Dror,
Janny M.Y. Leung, and Paul, A. Mullaseril presents the third chapter
on arc routing applications. It describes a large cattle yard operation
near Yuma, Arizona, where over 100,000 head of cattle are fed daily.
The feed distribution activity is modeled as a Rural Postman Problem
with time windows and split delivery. This chapter provides a detailed
description of the arc routing application and the heuristic methodology
experimented with by the authors for solving the actual feed distribution
problems in this cattle yard. From the arc routing perspective, the cattle
yard setting provides an archetypical arc routing setting with many sim-
ilar problem instances all over the world. It serves as a very appropriate
closing for this book.

As the editor of this collection of chapters, I am very honored to have
such an excellent group of contributing authors participate in this book-
writing endeavor. Clearly, this book is the result of collective effort. I am
very thankful to the participants and to the many reviewers who read the
chapters and commented constructively. It took longer to complete the
book than originally envisioned. I am thankful to many that our efforts
have reached such a successful outcome. This book would have required
a more difficult ‘endgame’ without Gregory R. Lousignont’s dedication
and painstaking attention for the production details. My heartfelt thanks
to Greg.

References

[1] Beltrami, E. and L. Bodin (1974). “Networks and vehicle routing
for municipal waste collection”, Networks 4, 65-94.

(2] Bodin, L. and S. Kursh (1978). “A computer-assisted system for the
routing and scheduling of street sweepers”, Operations Research 26,
525-537.

(3] Bodin, L. and S. Kursh (1979). “A detailed description of street
sweeper routing and scheduling system”, Comput. & Ops. Res. 6,
181-198.

XXiv

4]

[5]

[6]

[7]

18]

11]

(12]

[13]

[14]

(15]

ARC ROUTING

Dror, M., JJM.Y. Leung, and P.A. Mullaseril (2000). “Livestock feed
distribution and arc traversal problems”, in Dror, M. ed. Arc Rout-
ing: Theory, Solutions and Applications (this book).

Edmonds, J., and E.L. Johnson (1973). “Matching, Euler Tours and
the Chinese postman”, Mathematical Programming 5, 88-124.

Fleischner, H. (1990). Eulerian Graphs and Related Topics, Part
I, Volume 1. Annals of Discrete Mathematics 45. North-Holland,
Amsterdam.

Fleischner, H. (1991). Eulerian Graphs and Related Topics, Part
I, Volume 2. Annals of Discrete Mathematics 50. North-Holland,
Amsterdam.

Fleischner, H. (2000). “Traversing graphs: The Eulerian and Hamil-
tonian theme”, in Dror, M. ed. Arc Routing: Theory, Solutions and
Applications (this book).

Grotschel, M. and M.W. Padberg (1985). “Polyhedral theory”, in
E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys
(eds.), John Wiley & Sons Ltd., 251-305.

Hoffman, A.J. and P. Wolfe (1985). “History”, in The Traveling
Salesman Problem, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan,
and D .B. Shmoys (eds.), John Wiley & Sons Ltd., 1-15.

Lawler, E.L., J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys
(eds.), (1985). The Traveling Salesman Problem, John Wiley & Sons
Ltd.

Levy, L. (1987). The Walking Line of Travel Problem: An Applica-
tion of Arc Routing and Partitioning, Ph.D. Dissertation, University
of Maryland at College Park, Maryland.

Padberg, M.W. and M. Grotschel (1985). “Polyhedral computa-
tions”, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B.
Shmoys (eds.), John Wiley & Sons, Ltd., 307-360.

Stern, H.I. and M. Dror (1979). “Routing electric meter readers”,
Comput. & Ops. Res. 6, 209-223.

Toth, P. and D. Vigo (2000). The Vehicle Routing Problem, to ap-
pear in SIAM Monographs on Discrete Mathematics and Applica-
tions.

MOSHE DROR

Chapter 1

A HISTORICAL PERSPECTIVE ON ARC
ROUTING

H.A. Eiselt

University of New Brunswick

Gilbert Laporte

Universite de Montréal

1. Introduction 1
2. The Chinese Postman Problem 2
2.1 The Undirected CPP 3
2.2 The Directed CPP 6
2.3 The Mixed CPP 7
2.4 The Windy CPP 8
2.5 The Hierarchical CPP 9
3. The Rural Postman Problem 9
3.1 The Undirected RPP 10
3.2 The Directed RPP 10
3.3 The Mixed RPP 11
4. The Capacitated Arc Routing Problem 11
5. Research Outlooks 12

1. INTRODUCTION

Arc routing problems consist of determining a least cost traversal of
some arcs or edges of a graph, subject to side constraints. Such prob-
lems are encountered in a variety of practical situations such as road or
street maintenance, garbage collection, mail delivery, school bus rout-
ing, meter reading, etc. Details on these applications are provided in
Eiselt, Gendreau and Laporte (1995b), in Assad and Golden (1995), and
in some chapters of this book. Billions of dollars each year are spent
on arc routing operations, mainly by public administrations, and there
exists a sizeable potential for savings. In recent years, new advances in
optimization techniques and in computer technology have contributed
to the dissemination and adoption of sophisticated arc routing software.

2 ARC ROUTING

Nowadays, commercial packages make heavy use of rich data bases, ge-
ographical information systems, and interactive graphic interfaces. It is
not exaggerated to affirm that there now exists a thriving arc routing
industry, mostly sustained by consultancy firms.

But the field of arc routing has more humble beginnings. It all started
as a riddle more than two and a half centuries ago with the celebrated
Konigsberg bridges problem, which gave rise to the birth of modern
graph theory and to the first known theorems on arc routing. A num-
ber of algorithmic results were discovered in the nineteenth century and
in the first half of the twentieth century, but most of the field was de-
veloped after 1950. This historical account will therefore cover some
truly classical results but it would be of little value if it did not in-
clude the most recent developments which constitute the core of current
knowledge. Throughout this chapter, we will attempt to answer the two
questions “Who was first?” and “What came next?”. There exist sev-
eral general references on arc routing, but the following three books are
particularly recommended for their historical perspective: Kénig (1936)
and Fleischner (1990, 1991).

This chapter is organized around three main problem classes. In Sec-
tion 2, we present various versions of the Chinese Postman Problem
(CPP). These are problems in which it is required to traverse all edges
or arcs of a graph. Then, in Section 3, we examine the Rural Postman
Problem (RPP) in which only some edges or arcs must be traversed.
Section 4, deals with the Capacitated Arc Routing Problem (CARP), a
constrained version of the CPP or the RPP with multiple real-life appli-
cations. Some research outlooks are presented in Section 5.

2. THE CHINESE POSTMAN PROBLEM

The Chinese Postman Problem is defined as follows. Let G = (V, E U A)
be a graph where V is a set of vertices, E is a set of (undirected) edges,
and is a set of (directed) arcs. It is generally assumed that G is strongly
connected, i.e., it is always possible to reach any vertex from any other
vertex. With each edge or arc (v;,v;) is associated a cost ¢;;. The CPP
consists of determining a least cost traversal of all edges and arcs of G.
Several cases are of interest:

1) the undirected CPP, where A = 0;
11) the directed CPP, where E = {;

ii1) the mized CPP, where A # () and E # 0;

A Historical Perspective on Arc Routing 3

A
Kneiphof
Island

—r

Figure 1.1 The seven bridges of Konigsberg.

@D Pregel

iv) the windy CPP , where A # 0 but two values c; and ¢; are asso-
ciated with each edge (v;v;), equal to the cost of travel in each
direction;

v) the hierarchical CPP | where FUA is a partitioned into several classes
and a precedence relation is established between these classes. If a
class Cp, of edges and arcs precedes another class Cy, then all edges
and arcs of Cp, must be serviced before those of Cj.

In this section, we will successively examine each of these cases.

2.1. THE UNDIRECTED CPP

In the early eighteenth century, the inhabitants of Kénigsberg (now
Kaliningrad, Russia) debated whether there existed a closed walk travers-
ing ezactly once each of the seven bridges over the river Pregel (Figure
1.1). The question was put to the Swiss mathematician Leonhard Euler
who showed there was none. He presented his results at the St. Peters-
burg Academy and in a short article (Euler, 1736).

The probléem can be represented by an undirected graph (Figure 1.2),
in which one vertex is used for each of the two shores of the river and for
the two islands, and each edge corresponds to a bridge. Since a closed
walk requires that each vertex be entered and left the same number of
times, there is obviously no solution in this case since all vertices have

4 ARC ROUTING

©

Figure 1.2 Graph representation of the Konigsberg bridges problem.

odd degrees. In fact, FEuler proved that for a closed walk in an undi-
rected connected graph to exist, all vertices must have an even degree.
(The sufficiency of this condition was proved much later by Hierholzer
(1873) who was apparently unaware of Euler’s work). Such graphs are
called unicursal or Eulerian. Since duplicating each edge makes all ver-
tex degrees even, there always exists, in an undirected connected graph,
a closed walk covering each edge exactly twice. This has not actually
been proved by Euler, but only illustrated by means of an example. Eu-
ler also showed that there exists such a walk using every edge in each
direction. The original Latin version of Euler’s paper is reproduced in
Fleischner (1990), and an English translation has appeared in Scientific
American (Euler, 1953).

While Euler provided conditions for unicursality, he was not appar-
ently concerned with the problem of actually determining a closed walk
in an Eulerian graph. This problem was addressed more than a century
later by Hierholzer (1873). Even nowadays, Hierholzer’s algorithm is
probably the best available and has been rediscovered, sometimes with
slight variations, by several other researchers (e.g., the End-Pairing al-
gorithm described in Edmonds and Johnson, 1973). The original de-
scription does not follow the style we are accustomed to, but modern
“translations” have been provided by some researchers (see, e.g., Even,
1979). It can be sketched as follows:

Step 1. Starting from an arbitrary vertex v, gradually trace a cycle by
following untraversed edges, until this procedure cannot be contin-
ued; this can only happen at v.

Step 2. If all edges have been traversed, stop.

A Historical Perspective on Arc Routing 5

Step 3. Trace a second cycle starting from an unvisited edge incident
to the cycle. Merge the two cycles into one. Go to Step 2.

Another algorithm, not quite as efficient, was proposed by Fleury
(1885), a school headmaster in Marseille (Lucas, 1894).

Step 1. Starting from an arbitrary vertex v; traverse an edge (v;,v;)
that is not a bridge unless it is an end-edge (i.e., an edge whose
removal leaves some edges unreachable), and erase (v;, v;).

Step 2. Stop if all edges have been deleted. Otherwise, set v; := v; and
go to Step 1.

The difficulty in this algorithm is to determine whether a candidate
edge is a bridge. A thorough description of several other traversal algo-
rithm for Eulerian graphs is provided in Fleischner (1991).

The Chinese Postman Problem was first stated by Meigu Guan (or
Kwan Mei-Ko). The Konigsberg bridge problem is exclusively concerned
with the existence of a closed traversal in a graph, but the question of
determining a least cost traversal is still highly relevant in non-Eulerian
graphs. Guan (1962) addressed the question of minimizing the length of
a walk passing through each edge of a graph at least once. His method
proceeds from the observation that the graph always contains an even
number of odd-degree vertices and that shortest chains must be added
to link odd-degree vertices and thus make the graph Eulerian. It has
been known, at least since the work of Edmonds and Johnson (1973),
that this least cost reconnection can be determined by solving a match-
ing problem. Guan does not state this property, but his result can be
derived from it. He first proves the following necessary condition for a
feasible solution to be optimal: (¢) it has no redundancy (i.e., at most
one edge is added for each edge of the original graph); (i¢) the cost of
added edges on every cycle does not exceed half the cost of the cycle. To
establish the sufficiency of this result, the author shows that all feasible
solutions satisfying (7) and (i7) must in fact have the same cost (in fact,
Guan’s paper only deals with unit costs, but the proof for the general
case follows along the same lines). The procedure suggested by Guan
to determine such a solution in effect solves the matching problem by
ensuring that the chains added to the graph do not intersect. Note that
property (i¢) lies at the heart of the proof used by Christofides (1976)
for his 3/2 - approximation of the Traveling Salesman Problem (TSP).
Guan’s Chinese postman article is important, not only because it intro-
duces what has now become a standard network optimization problem,
but because it addresses for the first time the “augmentation problem”,
i.e. the problem of determining the least cost way of making a graph
Eulerian by introducing extra edges or arcs. The augmentation problem

6 ARC ROUTING

is in fact the core problem of arc routing. Once a unicursal graph has
been obtained, determining an actual traversal is relatively easy.

The article “Matching, Euler Tours and the Chinese Postman” by
Edmonds and Johnson (1973) must be considered as a corner-stone in
the field of arc routing. In it, the authors formulate the augmentation
problem in an undirected graph using binary integer variables z;; (¢ < j)
equal to the number of copies of edge (v;,v;) introduced into the graph
in order to make it Eulerian. Letting 6 (S) = (v;,v;) : {vi € S,v; € V\ S
or v; € V\S,v; € S} for any non-empty subset S of V, the problem
can be formulated as follows.

(UCPP) Minimize Y ey (1.1)
(vi,v_,-)EE

subject to

N (S ¢ V, S has an odd number
Z ziy 2 1, of odd-degree verticies) (1:2)
(vi,vj)eé(S)
zij 2 0, ((vi;v5) € E) (1.3)
zij is integer, ((vi,v;) € E) (1.4)

The authors prove that the polyhedron of solutions to (1.2) and (1.3)
is equal to the convex hull of feasible solutions to (UCPP). The authors
show that this program can be solved efficiently by first computing least
cost chains between all pairs of odd degree vertices (there is always an
even number of them), and by then solving a minimum cost matching
problem over the set of odd degree vertices, using these costs. This is
done by adapting a previous algorithm by Edmonds for minimum cost
matching.

2.2. THE DIRECTED CPP

A strongly connected graph is Eulerian if and only if the in-degree of
each vertex is equal to its out-degree. This condition is formally stated
by Ford and Fulkerson (1962, p. 60) but it has been common knowledge
for a long time (it was already treated in Konig’s (1936) book).

The procedure for solving the augmentation problem in a directed
graph was proposed almost simultaneously by Edmonds and Johnson
(1973), Orloff (1974), and Beltrami and Bodin (1974). Instead of match-
ing odd-degree vertices as is done in the undirected case, it uses the
transportation algorithm in order to make the graph symmetric, i.e., the
in- and out-degrees of each vertex are equal. In other words, let I be

A Historical Perspective on Arc Routing 7

the set of vertices v; for which the number of incoming arcs exceeds the
number of outgoing arcs by s; and let J be the set of vertices v; for
which the number of outgoing arcs exceeds the number of incoming arcs
by d;. Thus, s; can be interpreted as a supply, and d; as a demand.
In addition, let c;; be the length of a shortest path from v; to v;. The
problem is then as follows.

(DCPP) Minimize » > ci;ai; (1.5)
vi€lv;ed
subject to
ZZL‘,‘]' = 8, (Ui S I) (16)
'U]'GJ
Sy =dy, (€))
vl
45 >0, (UiEI,’Uj EJ). (18)

The optimal values represent the number of extra times each arc of a
shortest path has to be traversed. Once a unicursal graph has been ob-
tained by this method, determining an actual traversal can be achieved
by adapting, for example, Hierholzer’s algorithm. An interesting alter-
native approach is provided in a rather early article by van Aardenne-
Ehrenfest and de Bruijn (1951). Their O (V| + |A|) time algorithm can
be summarized as follows:

Step 1. Construct a spanning arborescence rooted at any vertex .

Step 2. Label all arcs as follows: Order and label the arcs outgoing
from in an arbitrary fashion; order and label the arcs out of any
other vertex consecutively in an arbitrary fashion, so long as the
last arc is the arc used in the arborescence.

Step 3. Obtain an Euler tour by first following the lowest labeled arc
emanating from an arbitrary vertex; whenever a vertex is entered,
it is left through the arc not yet traversed having the lowest label.
The procedure ends with an Euler circuit when all arcs have been
covered.

2.3. THE MIXED CPP

Ford and Fulkerson (1962, p. 60) were the first to propose necessary
and sufficient conditions for unicursality in a mixed graph: Every vertex
must be incident to an even number of directed and undirected arcs;
moreover, for every non-empty subset S of V', the absolute value of the

8 ARC ROUTING

difference between the number of arcs from S to V' \ S and the number
of arcs from V'\ S to S must be less than or equal to the number of edges
between S and V' \ S.

Unfortunately, verifying these conditions or solving the augmenta-
tion problem in a mixed graph is N'P-hard, as shown by Papadimitriou
(1976). This is true even if the graph is planar or if all ¢;; coefficients
have the same value. The standard approach is to formulate the augmen-
tation problem as an integer linear program in which variables represent
the number of copies of each arc or edge that must be introduced into
the graph in order to make it Eulerian. Three such formulations were
proposed by Christofides et al. (1984). Grotschel and Win (1992) and
Nobert and Picard (1996). The first of these formulations was solved
by branch-and-bound and the last two by branch-and-cut. Nobert and
Picard report the most extensive computational results. They solved 440
instances with 16 < |V| < 225, 2 < |A] < 5569 and 15 < |E] < 4455.
Out of these, 313 instances were solved to optimality at the root of the
search tree and the number of constraints generated in the course of the
algorithm was of the order of |V|.

Once a unicursal mixed graph has been obtained, it is easy to make it
completely directed by using some simple network flow techniques (see
Eiselt, Gendreau and Laporte (1995a) for a full description), and any
algorithm valid for the directed case can then be applied to determine a
traversal.

Heuristics for the mixed CPP were proposed by Edmonds and Johnson
(1973), and later improved by Frederickson (1979) and Christofides et al.
(1984). The best known heuristics are probably MIXED1 and MIXED2,
due to Frederickson, each having a worst-case ratio of 2. If the two
heuristics are applied in succession, the worst-case ratio goes down to
5/3.

2.4. THE WINDY CPP

The windy CPP is defined on an undirected graph where two costs
are associated with each edge, as with and against the wind, but it is
only required to traverse each edge at least once. The problem was
introduced by Minieka (1979). Brucker (1981) and Guan (1984) have
shown that the windy CPP is A"P-hard, but the problem can be solved
in polynomial time if G is Eulerian (Win, 1989) or if the cost functions are
cycle balancing (see, e.g., Fleischner, 1991). The polyhedral structure of
this problem has been analyzed by Win (1987, 1989) and by Grétschel
and Win (1988, 1992). These authors have also proposed an integer
linear programming formulation and a branch-and-cut algorithm for this

A Historical Perspective on Arc Routing 9

problem. Using this approach, they have solved to optimality instances
with 52 < |V| <264 and 78 < |E| < 489. Out of 36 instances that were
considered, 31 were solved at the root of the search tree.

2.5. THE HIERARCHICAL CPP

The Hierarchical CPP was introduced by Dror, Stern and Trudeau
(1987). This problem arises naturally in snow plowing, where streets
have different priority levels (Stricker, 1970; Lemieux and Campagna,
1984; Alfa and Liu, 1988; Haslam and Wright, 1991), in garbage collec-
tion (Bodin and Kursh, 1978), and in flame cutting (Manber and Israni,
1984). The hierarchical CPP is A'P-hard, but a polynomially solvable
case has been identified by Dror et al. It occurs when () G is fully undi-
rected or fully directed, (#i) the order relation between the classes C,
of arcs and edges is complete, and (#4¢) each class induces a connected

graph. An O (k]V|5> time algorithm was proposed by Dror et al. where

k is the number of classes. Recently, Ghiani and Improta (2000) showed
that this type of hierarchical CPP can be solved as a matching problem
on an auxiliary graph with O (k|V]) vertices. A variant of this prob-
lem, introduced by Letchford and Eglese (1998), is to set a deadline for
the completion of service in each class C, and to determine whether a
solution satisfying these deadlines exists. The authors have proposed a
branch-and-cut algorithm capable of solving small to medium size in-
stances.

3. THE RURAL POSTMAN PROBLEM

The Rural Postman Problem is also defined on a graph G = (V, E U A) |
but this time only a subset of £ U A must be traversed. Such edges and
arcs are said to be required. The remaining edges and arcs may be part
of the solution. Denote by E’ and A’ the subsets of required edges and
arcs. As for the CPP, several cases can be considered, but not all have
effectively been studied. The RPP can be viewed as that of designing
routes for a postman who has to deliver mail in several villages. Several
streets may have to be serviced within each village, but there may be no
mail to deliver on streets linking the villages. Hence only a subset of the
streets would be required. The problem was introduced by Orloff (1974)
and proved later to be N"P-hard by Lenstra and Rinnooy Kan (1976).
However, the RPP on a completely undirected or directed graph can be
solved in polynomial time if the subgraph induced by the required edges
or arcs is strongly connected as it then reduces to a CPP.

10 ARC ROUTING

3.1. THE UNDIRECTED RPP

As suggested by Frederickson (1979), a heuristic with a worst-case
performance ratio of 3/2 can be constructed for the undirected RPP
along the lines of the TSP heuristic proposed by Christofides (1976).
The worst-case behavior of this method can only be guaranteed if the
cost matrix satisfies the triangle inequality. The method works by con-
structing a shortest spanning tree between connected components of re-
quired edges, and by then matching the odd-degree vertices. Recently,
Hertz, Laporte and Nanchen-Hugo (1999) produced a family of post-
optimization heuristics for the undirected RPP. These typically produce
optimal or near-optimal solutions on benchmark instances. The authors
show that when adapted to an arc routing context, simple operations
such as insertions, deletions and exchanges, so common in TSP heuris-
tics, become intricate and hard to visualize.

The first integer linear programming formulation for the RPP was
proposed by Christofides et al. (1981). Its variables represent the number
of copies of each edge that must be introduced into the graph in order to
make it Eulerian. It was solved by branch-and-bound, using Lagrangean
relaxation to compute lower bounds, and applied to instances with 9 <
V] < 84,13 < |E| <184, and 4 < |E’| < 78. An alternative formulation
was later proposed by Sanchis (1990) and Corberdn and Sanchis (1994).
These authors conducted a polyhedral analysis of their formulation and
developed a branch-and-cut code. They solved to optimality, at the root
of the search tree, 23 of the 24 instances of Christofides et al. (1981), as
well as two new instances. This line of research was pursued by Letchford
(1996) and by Ghiani and Laporte (2000) who identified new classes of
valid inequalities and integrated them within branch-and-cut algorithms.
In the Ghiani and Laporte article, several classes of instances, involving
up to 350 vertices, are solved to optimality.

3.2. THE DIRECTED RPP

As shown by Christofides et al. (1986), a heuristic for the directed
RPP can be constructed as for the undirected case, by computing a
shortest (directed) arborescence between the connected components, in-
stead of a shortest spanning tree. Copies of some arcs are then introduced
by solving a transportation problem, as for the directed CPP. No worst-
case guarantee has been derived for this heuristic.

An integer linear programming formulation was developed by Christo-
fides et al. (1986), along the lines of the undirected case. Again, the al-
gorithm uses Lagrangean relaxation to compute lower bounds within a
branch-and-bound scheme. The algorithm was used to solve to optimal-

A Historical Perspective on Arc Routing 11

ity 23 out of 24 instances with 13 < |V| < 80, 24 < |FE| < 180, and
7<|E| < T4

3.3. THE MIXED RPP

Research on the mixed RPP is relatively new and scarce. We are
aware of only one contribution, by Corberdn, Marti and Romero (2000).
It describes a tabu search heuristic which has been applied to instances
with 20 < [V] <220, 20 < |E| < 220, 5 < |E'| <150, 55 < |A| < 350,
and 5 < |A’| < 200. The deviation of the solution value to that of a lower
bound ranges between 0% and 1.35%. The lower bounds were obtained
by means of a constraint generation algorithm.

4. THE CAPACITATED ARC ROUTING
PROBLEM

In the Capacitated Arc Routing Problem, a nonnegative quantity g;;
is associated with each edge or arc (vi,v;). A fleet of m vehicles, each
having a capacity 2, must traverse all edges or arcs of the graphs and
collect (or deliver) the associated quantities, without ever exceeding Q.
As in the standard Vehicle Routing Problem, the number of vehicles
may be given a priori or can be a decision variable. The CARP was
introduced by Golden and Wong (1981), but a variant in which all g;;
are strictly positive was investigated earlier by Christofides (1973). In
other words, the CARP studied by Golden and Wong and the majority
of subsequent researchers can be viewed as a capacity constrained RPP
with m vehicles, whereas the problem defined by Christofides is a capac-
ity constrained CPP with m vehicles.

Between 1973 and 1991, several researchers proposed heuristics for
the CARP based on various edge or arc partitioning criteria and on
tour construction methods. Perhaps the best known methods are the
construct-strike algorithm (Christofides 1973), later improved by Pearn
(1989), and the augment-insert algorithm (Pearn, 1991). The modified
construct-strike algorithm is best adapted to dense graphs (70% to 100%
edge or arc density). It gradually constructs feasible cycles and removes
them from the graph. When feasible cycles can no longer be found, an
Fulerian cycle is constructed on the remaining graph and the search for
feasible cycles is repeated. Augment-insert first inserts edges or arcs in
feasible cycles connected to the depot, as long as this is possible. Then
the remaining links are inserted into cycles by using a savings criterion.
This algorithms works best on sparse graphs (up to 30% edge or arc
density). The main drawbacks of all heuristic developed until 1991 is
that they contain little or no post-optimization. Improving a feasible
solution in an arc routing context is indeed difficult as we mentioned

12 ARC ROUTING

earlier. Recently, the post-optimization tools developed by Hertz, La-
porte and Nanchen-Hugo (1999) for the undirected RPP were embedded
within a tabu search algorithm for undirected CARPs (Hertz, Laporte
and Mittaz, 2000). Tests performed on benchmark instances showed that
running a truncated version of this algorithm, even for just one second,
outperformed all previously known heuristics for the CARP. Further tests
showed that running the full tabu search algorithm consistently yields
optimal or near-optimal solutions on benchmark instances.

Assessing the quality of a heuristic is possible only if good lower
bounds are available. The earlier lower bounds proposed by Golden
and Wong (1981), Assad, Pearn and Golden (1987) and Benavent et al.
(1992) are in general too weak to provide any meaningful information.
It is only recently that stronger bounds have been derived. These are
computed by formulating the CARP as an integer linear program, solv-
ing its linear relaxation, and generating strong valid inequalities. A fine
example of this approach is provided by Belenguer and Benavent (1998).
Comparing the lower bounds obtained from the linear relaxation with
upper bounds given by tabu search heuristics shows gaps typically below
1%, which speaks highly for the quality of both the lower and upper
bounding approaches.

5. RESEARCH OUTLOOKS

Arc routing has a long and rich history, but only in recent years have
we started to witness the widespread use of software in the area of arc
routing, and we may only have seen the tip of the iceberg. More and more
municipalities, regional authorities, post office administrations, electric-
ity and gas companies, school bus operators, etc. are adopting such
systems. This phenomenon is driven in part by a number of techno-
logical factors, such as breakthroughs in the micro-computer industry
and in data base processing, but also by the ever increasing need to be
competitive and cost-efficient. This growth has been paralleled by the
development of a number of powerful optimization techniques. The two
most important are probably tabu search in the area of heuristics, and
branch-and-cut for exact optimization. We expect much of the research
growth, in the coming years, to be based on these two techniques. Not
all recent scientific discoveries have yet found their way into commercial
computer software, but it should be only a matter of time before this
materializes.

Acknowledgment

This work was partially supported by the Canadian Natural Sciences
and Engineering Research Council under grants OGP0009160 and OGP003968:
This support is gratefully acknowledged. Thanks are also due to a ref-

A Historical Perspective on Arc Routing 13

eree for making several valuable suggestions, and to Kenneth Rosing and
Catherine Roucairol for providing some hard to find references.

References

1]
2l

3]

[10]

(11}

Alfa, A.S., and D.Q. Liu. 1988. Postman Routing Problem in a
Hierarchical Network. Engineering Optimization 14, 127-138.

Assad, A.A., and B.L. Golden. 1995. Arc Routing Methods and
Applications. In Network Routing, M.O. Ball, T.L. Magnanti, C.L.
Monma, and G.L. Nemhauser (eds.), Handbooks in Operations Re-
search and Management Science. North-Holland, Amsterdam, 375-
483.

Assad, A.A., W.L. Pearn and B.L. Golden. 1987. The Capaci-
tated Chinese Postman Problem: Lower Bounds and Solvable Cases.
American Journal of Mathematics and Management Science 7, 63-

88.

Benavent, E.,; V. Campos, A. Corberdn and E. Mota. 1992. The
Capacitated Arc Routing Problem. Lower Bounds. Networks 22,
669-690.

Belenguer, J.M. and E. Benavent. 1998. A Cutting Plane Algorithm
for the Capacitated Arc Routing Problem.Submitted for publica-
tion.

Beltrami, E.L., and L.D. Bodin. 1974. Networks and Vehicle Routing
for Municipal Waste Collection. Networks 4, 65-94.

Bodin, L.D., and S.J. Kursh. 1978. A Computer-Assisted System for
the Routing and Scheduling of Street Sweepers. Operations Research
26, 525-537.

Brucker, P. (1981) The Chinese postman problem for mixed graphs.
Proc. Int. Workshop, Lecture Notes in Computer Science 100, 354-
366.

Christofides, N. 1973. The Optimum Traversal of a Graph. Omega
1, 719-732.

Christofides, N. 1976. Worst-Case Analysis of a New Heuristic for
the Traveling Salesman Problem. Report No 388, Graduate School
of Industrial Administration, Carnegie Mellon University, Pitts-
burgh.

Christofides, N., E. Benavent, V. Campos, A. Corberan and E.
Mota. 1984. An Optimal Method for the Mixed Postman Problem.
In System Modelling and Optimization, Lecture Notes in Control
and Information Sciences 59, P. Thoft-Christensen (ed.). Springer,
Berlin.

14

[12]

(13]

(14]

22]

(23]

(24]

[25]
(26]

(27]

ARC ROUTING

Christofides, N., V. Campos, A. Corberan and E. Mota. 1981. An
Algorithm for the Rural Postman Problem. Imperial College Report.
1.C.0.R.81.5, London.

Christofides, N., V. Campos, A. Corberan and E. Mota. 1986. An
Algorithm for the Rural Postman Problem on a Directed Graph.
Mathematical Programming Study 26, 155-166.

Corberan, A., R. Marti, and A. Romero. 2000. A Tabu Search Al-
gorithm for the Mixed Rural Postman Problem. Computers & Op-
erations Research 27, 183-203.

Corberén, A., and J.M. Sanchis. 1994. A Polyhedral Approach to the
Rural Postman Problem. Furopean Journal of Operational Research
79, 95-114.

Dror, M., H. Stern and P. Trudeau. 1987. Postman Tour on a Graph
With Precedence Relation on Arcs. Networks 17, 283-294.
Edmonds, J., and E.L. Johnson. 1973. Matching, Euler Tours and
the Chinese Postman Problem. Mathematical Programming 5, 88-
124.

Eiselt, H.A., M. Gendreau, and G. Laporte. 1995. Arc Routing Prob-
lems, Part I: The Chinese Postman Problem. Operations Research
43, 231-242.

Eiselt, H.A., M. Gendreau, and G. Laporte. 1995. Arc Routing Prob-
lems, Part II: The Rural Postman Problem. Operations Research 43,
399-414.

Euler, L. 1736. Solutio Problematis ad Geometrica Situs Pertinentis.
Commentarii academiae scientarum Petropolitanae 8, 128-140.
Euler, L. (J.R. Newman, Ed.). 1953. Leonhard Euler and the
Koenigsberg Bridges. Scientific American 189, 66-70.

Even, S. 1979. Graph Algorithms. Computer Science Press,
Rockville.

Fleischner, H. 1990. Eulerian Graphs and Related Topics (Part 1,
Volume 1), Annals of Discrete Mathematics 45. North-Holland, Am-
sterdam.

Fleischner, H. 1991. Eulerian Graphs and Related Topics (Part 1,
Volume 2), Annals of Discrete Mathematics 45. North-Holland, Am-
sterdam.

Fleury, M. 1885. Deux Problémes de Géométrie de Situation. Jour-
nal de Mathématiques Elémentaires, 157.

Ford, L.R. and D.R. Fulkerson. 1962. Flows in Networks. Princeton
University Press, Princeton, N.J.

Frederickson, G.N. 1979. Approximation Algorithms for Some Post-
man Problem. Journal of the ACM 26, 538-554.

(28]

[29]

(30]
(31]

[32]

(33]

(34]

[35]

(36]

[37]

(38]

(39]

(40]

[41]

(42]

A Historical Perspective on Arc Routing 15

Ghiani, G., and G. Improta. 2000. An Algorithm for the Hierarchical
Chinese Postman Problem. Operations Research Letters. Forthcom-
ing.

Ghiani, G., and G. Laporte. 2000. A Branch-and-Cut Algorithm for
the Undirected Rural Postman Problem. Mathematical Program-
ming. Forthoming.

Golden, B.L., and R.T. Wong. 1981. Capacitated Arc Routing Prob-
lems. Networks 11, 305-315.

Guan, M. 1962. Graphic Programming Using Odd and Even Points.
Chinese Mathematics 1, 273-277.

Haslam, E., and J.R. Wright. 1991. Application of Routing Tech-
nologies to Rural Snow and Ice Control. Transportation Research
Record 1304, 202-211.

Hertz, A., Laporte, G., and P. Nanchen-Hugo. 1999. Improvement
Procedures for the Undirected Rural Postman Problem. INFORMS
Journal on Computing 11, 53-62.

Hertz, A., Laporte, G., and M. Mittaz. 2000. A Tabu Search Heuris-
tic for the Capacitated Arc Routing Problem. Operations Research.
Forthcoming.

Hierholzer, C. 1873. Uber die Moglichkeit, einen Linienzug ohne
Wiederholung und ohne Unterbrechung zu umfahren. Mathematis-
che Annalen V1, 30-32.

Konig, D. 1936. Theorie der endlichen und unendlichen Graphen .
Akademische Verlagsgesellschaft, Leipzig.

Lemieux, P.F., and L. Campagna. 1984. The Snow Ploughing Prob-
lem Solved by a Graph Theory Algorithm. Civil Engineering Sys-
tems 1, 337-341.

Lenstra, J.K., and A.H.G. Rinnooy Kan. 1976. On General Routing
Problems. Networks 6, 273-280.

Letchford, A.N., and R.W. Eglese. 1998. The Rural Postman Prob-
lem with Deadline Classes. Furopean Journal of Operational Re-
search 105, 390-400.

Letchford, A.N. 1996. Polyhedral Results for Some Constrained Arc-
Routing Problems. Ph.D. Thesis, Department of Management Sci-
ence, Lancaster University.

Lucas, M.E. 1894. Récréations Mathématiques IV . Gauthiers-
Villars et fils, Paris.

Manber, U., and S. Israni. 1984. Pierce Point Minimization and
Optimal Torch Path Determination in Flame Cutting. Journal of
Manufacturing Systems 3, 81-89.

Minieka, E. 1979. The Chinese Postman Problem for Mixed Net-
works. Management Science 25, 643-648.

16

[44]
(45]
(46]
[47]

(48]

(49]

[50]

[51]
[52]

(53]

ARC ROUTING

Nobert, Y., and J.-C. Picard. 1996. An Optimal Algorithm for the
Mixed Chinese Postman Problem. Networks 27, 95-108.

Orloff, C.S. 1974. A Fundamental Problem in Vehicle Routing. Net-
works 4, 35-64.

Papadimitriou, C.H. 1976. On the Complexity of Edge Traversing.
Journal of the ACM 23, 544-554.

Pearn, W.-L. 1989. Approximate Solutions for the Capacitated Arc
Routing Problem. Computers & Operations Research 16, 589-600.
Pearn, W.-L. 1991. Augment-Insert Algorithms for the Capacitated
Arc Routing Problem. Computers & Operations Research 18, 189-
198.

Sanchis, J.M. 1990. El Poliedro del Problema del Cartero Rural.
Ph.D. Thesis, Universidad de Valencia, Spain.

Stricker, R. 1970. Public Sector Vehicle Routing: The Chinese Post-
man Problem. M.Sc. Dissertation, Department of Electrical Engi-
neering, Massachusetts Institute of Technology, Cambridge, Mass.
van Aardenne-Ehrenfest, T., and N.G. de Bruijn. 1951. Circuits and
Trees in Oriented Linear Graphs. Simon Stevin 28, 203-217.

Win, Z. 1987. Contributions to Routing Problems. Doctoral Disser-
tation, Universitdt Augsburg, Germany.

Win, Z. 1989. On the Windy Postman Problem in Eulerian Graphs.
Mathematical Programming 44, 97-112.

I

THEORY

Chapter 2

TRAVERSING GRAPHS: THE EULERIAN
AND HAMILTONIAN THEME

Herbert Fleischner

Institute for Discrete Mathematics, Austrian Academy of Sciences

1.
2.

o o

1.

Introductory Remarks
Basics of Graph Theory
2.1 Graphs and Their Parts
2.2 Walks, Trails, Paths, Cycles;
Connectedness
2.3 Bipartite Graphs, Trees, Blocks,
Mappings
Connectivity, Menger’s Theorem, the
Splitting Lemma, and Factors
Eulerian Graphs and Covering Walks,
Cycle Decompositions and Cycle Covers
4.1 Algorithms for Constructing Eulerian Trails
4.2 Magzes
Hamiltonian Cycles and Vertex-Covering Walks
Elements of Matching Theory
The Chinese Postman Problem, The Traveling
Salesman Problem, and Related Problems
Elements of Network Theory

INTRODUCTORY REMARKS

19
20
20

23
27
32
40
47
43
50
58

69
77

This chapter deals with basic graph theoretical concepts and then
focuses on special topics which are — in their applications — of relevance
to theoretical and practical problems in OR. Therefore, this chapter is
structured as follows:

20 ARC ROUTING
1 Basics of Graph Theory.

2 Connectivity, Menger’s Theorem, the Splitting Lemma, and Fac-
tors.

3 Eulerian Graphs and Covering Walks, Cycle Decompositions and
Cycle Covers.

4 Hamiltonian Cycles and Vertex-Covering Walks.
5 Elements of Matching Theory.

6 The Chinese Postman Problem, The Traveling Salesman Problem,
and Related Problems.

7 Elements of Network Theory.

If treated in all details, these seven topics would cover several volumes.
In fact, eulerian graphs and corresponding applications alone are subject
of a monograph comprising three volumes two of which have already been
published some years ago [16]. Therefore, in order to keep the size of this
chapter in accordance with the overall size of this collection of survey
articles, we will restrict ourselves in presenting proofs of theorems and
justifications of algorithms to the cases where these results are of central
importance for this chapter. Nonetheless we will mention in various
instances developments in different directions, in order to give the reader
an indication of the overall development of this area of graph theory.

2. BASICS OF GRAPH THEORY
2.1. GRAPHS AND THEIR PARTS

We write a graph G as G = V U E, where V is a finite set and F is a
finite multiset. The elements of V are called vertices while the elements
of E are called edges. Edges are unordered pairs of not necessarily dis-
tinct vertices from V. We call V =: V(G) the vertex set of G, while
E =: E(QG) is called the edge set of G. Vertices joined by an edge are
called adjacent. They are also called the ends of the edge. An edge is
said to be incident to its ends.

If e € E(G) is joining x and y, then we may denote e as zy. A loop
of G is an edge of the form vv,v € V(G). The number of edges joining
the pair u, v of vertices is the multiplicity A(uv) of the edges of the form
wv. If A(uv) = k > 1 then the edges ey, e, ... , e joining u, v are called
parallel edges. A graph with no loops and no parallel edges is called a
simple graph.

Traversing Graphs: The Eulerign and Hamiltonian Theme — 21

Likewise, a digraph D is the union of a finite vertex set V and a
finite multiset A, called arc set, which consists of ordered pairs of ver-
tices, called arcs. The vertices joined by an arc a = (u,v) are also said
to be adjacent, with u being the tail of a and v being the head of the arc.

A mized graph has both edges and arcs. It is represented in the form
M=VUFEUA.

Let G be a graph. If we replace each e = zy € E(G) with an arc
ae = (z,y) or (y,z) then we call Dg = V(G) U {a. : e € E(G)} an
orientation of G. Conversely, if D is a digraph and we replace every
a = (u,v) € A(D) by the edge e, = uv then we call Gp := V(D) U {e, :
a € A(D)} the graph underlying D.

(2) (b)

Figure 2.1 (a) a graph G, (b) an orientation Dg of G.

The set E, denotes the set of edges incident with v. A, := A(vv)
is the number of loops at v. The sum |E,| + A, is called the degree
d(v) of v. Notice that this definition means that we count each loop
incident with v twice. A vertex of odd degree is called an odd vertex
while one of even degree is an even verter. y € V(G) is a neighbor of
z € V(Q) if zy € E(G); the set of neighbors of z is denoted by N(x),
whereas N(z) := N(z) U {z}. Observe that N(z) = N(z) if and only
if zxz € E(G). A simple counting argument leads to the following rela-
tionship, which implies that the number of odd vertices in a graph is even.

S d(w) =2|B(G)]

veV(G)

(this equation is also known as the Handshaking Lemma).

Define a k-valent vertex as a vertex of degree k. A 1-valent vertex is
called a terminal vertex or endvertex while a O-valent vertex is called an
isolated vertex. The mazimum degree A(G) of a graph G is defined to
be A(G) := max,cy () d(v). Similarly we define the minimum degree of
a graph G to be §(G) := min,ey(g)d(v). Finally, we call p := |V(G)|
and q := |E(G)| the order and size, respectively, of G.

22 ARC ROUTING

In the case of digraphs, we set A; to be the set of arcs having v as
head and A]" to be the set of arcs having v as tail. Then the in-degree
d~(v) = |A;| and the out-degree d*(v) = |A}|. We have the following
relationship:

S dtw) = S () = |AD)
veV(D) veV (D)
A vertex v of a digraph D is a source if its in-degree is zero. It is a sink
if its out-degree is zero. Order and size of a digraph are defined as in the
case of graphs.

We often deal with parts of a graph G = VUE. Given V; C V and
E, C E, we consider G; = V1 U Ey; it is a graph if for every e; € E;
the ends of e; are in V4. If so, then G; is a subgraph of G and G is a
supergraph of Gy. If V; = V then we say G| is a spanning subgraph of G.
If a vertex set consists of a singleton v we may often just write v instead
of {v}. Similarly for singleton edge-sets.

A subgraph G; = Vi U E} C G is called a verter-induced subgraph
of G if By = {vijvy € E : v1,v2 € Vi}. We write G; = (V1)¢. We may
delete the subscript G if it is clear from the context. So for instance, for
V1 CV wedefine G—V; =(V —Vj). If Vi = {v} then G—v :=(V —v).

Given E; C E, we call a subgraph G; = V; U E; C G edge-induced if
v € Vi implies that at least one edge in E] is incident with v. We say
G1 = (E}). However, G— E; = VU(E — E1) may not be an edge-induced
graph, unlike its vertex counterpart.

The difference between a graph G and any of its subgraphs G; is
defined by

G—G1=G—E(G1) - {v e V(G) : dg(v) = dg, (v)}

(that is, any isolated vertices caused by the removal of the edges of the
subgraph are deleted). Given Vp C V(G) we can set Vp = V(G) — V.
Then the coboundary of Vy (or just an edge cut of G) is the edge set
E(WVo,Vo) = {e=zy: z € Vo,y € Wo}. If (Vo), (Vo) are both connected
then the coboundary of Vj is also called a cocycle of Vy. Note that the
latter concept is often called cocircuit in which case the term cocycle is
used to denote an edge cut.

The complement G of a graph G is defined by
V(G)=V(G),
E(G) = {zy: 2,y € V(G),zy ¢ E(G)}-

Traversing Graphs: The Eulerian and Hamiltonian Theme — 23

In the case where G is of order n and size 0, we denote K, := G and call
K, the complete graph on n vertices.

A vertex v of a graph G is called a cutvertez if G can be written in the
form G = Gy UGy where Gy, G2 are subgraphs of G with Gy NGy = v
such that dg, (v) # 0,dg,(v) # 0. This definition is equivalent to the
classical definition of a cutvertex in the case of loopless graphs, but is
different for graphs with loops. However, Bondy’s definition of a cutver-
tex, [7, p. 10] coincides, basically, with the one given here.

Note that (considering Figure 2.2) cutvertex v would still be a cutvertex

loop

rest of the graph

Figure 2.2 A cutvertex in a graph with a loop

if we placed another vertex on the loop.

An edge of G is a bridge if G = G1 UGy Ue, where Gy, G9 are disjoint
nonempty subgraphs of G such that one end of e is in G; and the other
end is in Go.

Just as a bridge is a special case of an edge cut, a cutvertex is a
special case of a vertex cut S C V(G) which is defined for loopless G by
nonempty subgraphs G;,G2 € G and

G =G UG U(SYUE(S,S), G1NGy=(S)NG; =0,

¢t = 1,2 (see {7, p. 34]). Observe, finally, that for any bridge zy €
E(G), z is a cutvertex of G if and only if d(z) > 1.

2.2. WALKS, TRAILS, PATHS, CYCLES;

CONNECTEDNESS
Given a graph G = VU FE or a digraph D = VUA, a walk W =
W (vo,vn) = vg, €1,V1, - . - ,€n,Vn from vg to v, is an alternating sequence

of vertices and edges of G, respectively arcs of D, so that v;— and v;
are the ends of e; € F, respectively v;_1 is the tail and v; is the head of
e; € A for 1 <1 < n. The number of times an edge/arc e appears in
a walk is termed its multiplicity Aw (e). If vg = v, then W is called a
closed walk, otherwise it is an open walk.

24 ARC ROUTING

If no edge/arc appears more than once in W then it is called a (open,
closed respectively) trail. If no vertex appears more than once in an open
trail then it is called a path. A closed trail without repetition of vertices
(except vg = v,) and with at least one edge/arc is called a cycle. The
inverse W1 of a walk W is a listing of W in reverse order.

In a walk W (vg, vp,) from v to v, in a digraph, the arcs are traversed
according to their orientation. A sequence where arcs are traversed in
any direction regardless of their orientation is called a chain. A chain is
a simple chain if none of its vertices (except possibly the first and the
last) are repeated. The inverse W1 of a walk W in a digraph is not a
walk but it is a chain.

The length of a walk/trail/path/cycle/chain W is the number of edges/
arcs in the corresponding sequence and will be denoted by {(W). Corre-
spondingly we will call W even/odd if [(W) is even/odd.

In what follows we will not distinguish between (the various types of)
a walk W and the subgraph induced by the edges/arcs of W this espe-
cially applies to the cases where W is a trail, path or cycle.

If a path P(z,y) exists for z,y € V(G), then the distance d(z,y) :=
minp(;) {{(P(z,y))}. Ifsuch a path does not exist, then we set d(z,y) =
0.

Theorem 1 If W(vo,vn) is an open walk from vy to vy, then there is a
subsequence P(vg,vn) of W(vo,vn) such that P(vg,vy) is a path from vg
to vn,.

It is not true however, for a closed walk W in a graph that there is
a subsequence of W which is a cycle: just consider for e € E having
ends z,y € V, the closed sequence z,e,y, e, ; no subsequence of it is a
cycle (note that a cycle contains at least one edge/arc). On the other
hand, a closed walk in a digraph contains a subsequence which is a cycle
containing any given vertex of the original closed walk.

A graph G = VUFE is called connected if for every x,y € V, there is a
P(z,y) (or equivalently, a W(z,y)). A graph which is not connected is
called disconnected. A subgraph G’ of a graph G is called a component of
G if G’ is a maximal connected subgraph (maximal w.r.t. set inclusion).
¢(@G) denotes the number of components of G.

Theorem 2 A graph G = VUE is connected if and only if for any fired
z €V and every y € V there is a P(z,y).

Traversing Graphs: The Eulerian and Hamiltonian Theme 25

Theorem 3 Let ~ be the equivalence relation defined on V(G) by x ~y
<= there is a P(z,y), and let Cy1,... ,Cx (k > 1) be the equivalence
classes of ~. Then (Ci),1 < i < k is a component of G and G =

U:.'c:l <C‘l> .

Corollary 4 A graph G is disconnected if and only if G = G1 UG,
where G1 # 0 # G2, and G1,G3 are subgraphs of G.

Note that the symbol U refers to the disjoint union of two sets.

Theorem 5 Let G be a graph and v € V(G). Then v is a cutvertex
if and only if either vv € E(G) and dg(v) > 3 or G — v has more
components than G.

Proof. (=) Suppose v is a cutvertex. Then G = G; U G2 where
Gi NGy = v and dg,(v) > 0,5 = 1,2. If |V(G;)| = 1 for at least
one i = 1,2 then vv € E(G;). Thus dg,(v) > 2 and since dg;(v) > 1
(j = 3 —1) we have dg, (v) + dg,(v) = dg) = 3. Whence suppose G
contains no loop of the form vv.

Case 1: G is connected. Then G — v = (G1 — v) U(G2 — v) and both
G1 —v and Go — v are nonempty. By Corollary 4, G — v is disconnected,
i.e. G —v has at least two components, which is more than connected G
had (namely 1).

- k
Case 2: G is disconnected, i.e. G =J;,_; G; (k>2) and each G is a
component of G. v is in exactly one component without loss of general—
ity v € V(G}). Then G —v = (G} —v) U(U G}). G is connected so
G’ — v has more components than G (by case 1) Thus G — v has more
components than G.

(<) If v € E(G) and dg(v) > 2, set G1 = {v}U{e} (where e = vv)
and Go = G —e. It follows that G; N G2 = v. Since dg,(v) = 2 and
dg(v) > 3 we must have dg, (v) > 1, meaning that v is a cutvertex. Sup-

ol
pose G — v has more components than G. G = |J;_; Gi, where each G;
(1<i<l)isa component of G. W.l.o.g. we suppose that v € V(G1). So

G—v—(Gl—v)U(U1_2 ;). Setting G =G1—v, Gf =G; (2<i <)

we have G —v = U G?*. Note that G} is a connected subgraph of G
for2<i<l.

If there is a connected graph G}* 2 G* such that G} is a proper
subgraph of G}* (for some 2 < ¢ <) then G}* contains an edge f not in
G;. This edge must be in some other G}, meaning that G; NG} # 0, a
contradiction. Thus each G;, 2 < 7 < [is maximal and thus a component

26 ARC ROUTING

of G —v. So G7 has at least two components G7 ;,...,G] ;. Defining
Gy = (V(Gf,) U{v}))¢ and Gf := (i, Gi U (G1 — V(GY,)) we have
G{ NGy = {v} and G UGy = G. Since dgy(v) # 0 # dgy(v), v is a
cutvertex of G. m

Corollary 6 A vertex v of a loopless connected graph G is a cutverter
if and only if V(G) — v can be written in the form V3 UV, where V1, Vs
are nonempty sets such that for every vy € Vi,vo € Vo it follows that
every path in G from vy to va contains v.

Bridges of a graph can be characterized similarly.

Theorem 7 For any graph G and e € E(G), e is a bridge of G if and
only if G — e has exactly one component more than G, i.e., ¢(G —e) =
c(G)+ 1.

Proof. (=) e is a bridge of G so G = G; UG2 U e where e = zy,
z2€G,yYy€eGy,GiNGy =0, Gy #0 # Go. Let G’ be the component
of G containing e = zy and thus also z,y. Define G} := (G’ —e) N Gy,

5:=(G'"—e)NGy. Soxz € G,y € Gyand G' —e =G|UG,. If
G’ — e is connected then it has a P(z,y). This path must contain an
edge f =wv # esuch that u € G,v € G5 So fEGIUG, =G —e, a
contradiction. So ¢(G' —e) > 2. If G’ —e has (at least) three components

1, G5, G5 then one of them, say G7, contains neither x nor y. Adding e
back to G’ — e will not affect G}, which therefore remains disconnected
from the rest of G’, contradicting our assumption that G’ was connected.
Soc¢(G'—€e)=2and ¢(G—¢€) =c((G—¢€) —(G' —€)) +c(G' —¢) =
(G-=G)+c(G'—e)=(c(G)—1)+2=1¢(G) + 1.

(«=) Let G’ be the component of G containing e. Since all other
components of G are unaffected by the removal of e and ¢(G' —€) =
c(G") + 1 = 2, therefore G' — e = G} UG, where G| and G}, are the
components of G' —e. Wlo.g. z € G},y € G, for e = zy. Thus
G — e = G UGy where G; = G} and G2 = G4U (G — G') are both
nonempty graphs with nothing in common since they are both unions of
different components. Thus G = G; UGy U e, and so e is a bridge by
definition. m

Corollary 8 Let G be a connected graph. Then e € E(G) is a bridge if
and only if V(G) = Wi UVa such that every path joining any vy € V4 to

any vy € Vo contains e.

The next criterion characterizes bridges visavis cycles in graphs.

Theorem 9 e € E(G) is a bridge if and only if no cycle of G contains e.

Traversing Graphs: The Eulerian and Hamiltonian Theme — 27

However, in the case of digraphs D one distinguishes between three
types of connectedness. Namely:

D is strongly connected if for all z,y € V(D) there exist paths P(z,y)
and P(y,).

D is unilaterally connected if for all z,y € V(D) either P(z,y) or
P(y,x) exists.

D is weakly connected if its underlying graph Gp is connected.

A strongly/unilaterally /weakly connected component of D is a maxi-
mally strongly/unilaterally /weakly connected subdigraph of D. On the
other hand, D is said to be disconnected if Gp is disconnected.

Evidently, a strongly connected digraph is also unilaterally connected,
and a unilaterally connected digraph is also weakly connected. The con-
verse is not true, in general. However, a weakly connected digraph is
strongly connected if every arc belongs to a cycle.

Also, the weakly connected components of D correspond by definition
bijectively to the components of Gp. The corresponding equivalence re-
lation is defined by z ~ y if and only if there is a P(z,y) in Gp. In
contrast, if we define w.r.t strong connectedness z ~ ¥y if and only if
paths P(z,y) and P(y,z) exist in D, then this also defines a partition
of V(D). We observe that the latter equivalence relation is a refinement
of the former. Unfortunately, unilateral connectedness does not give rise
to an equivalenc relation analogous to the other two cases, reason be-
ing that the corresponding relation is not transitive, in general (while
P(z,y), P(z,y) € D may hold, D may not contain P(x, z) nor P(z,z).

We note in passing that a graph G has a strongly connected orientation
D¢ if and only if G is connected and bridgeless; this result has become
known as Robbin’s Theorem (see, e.g., (35, p. 8|.)

2.3. BIPARTITE GRAPHS, TREES, BLOCKS,
MAPPINGS
A bipartite graph is one whose vertex set can be partitioned into two

sets such that edges join vertices of different sets only.

We present a useful characterization of such graphs.

Theorem 10 A graph G 1is bipartite if and only if G contains no cycles
of odd length.

Proof. (=) Suppose G is bipartite with bipartition V(G) = V4 UV, and
has a cycle C = zg,€1,%1,--. ,€n,Tn = To. W.l.o.g. we assume xg € V;.

28 ARC ROUTING

Then z1 € V5, 20 € V4, ...,z = xg € Vi, hence n is even. Thus C is an
even cycle.

(<) W.lLo.g. assume G is connected (otherwise consider its compo-
nents). Fix any vertex v in G and mark it red. Mark all vertices adjacent
to v blue. Consider all unmarked vertices adjacent to a blue vertex (none
are adjacent to red vertices since all neighbours of red vertices have been
marked already) and mark them red. Continue this procedure with blue
in place of red. Note that by this marking procedure a vertex marked
red, say, cannot be adjacent to a previously marked vertex unless that
vertex was marked in the immediately preceding step.

The marking stops after all elements of V(G) have been marked. For
suppose it stopped with y € V(G) unmarked; then, since G is connected
a path P(v,y) = P exists. Let w # y be the last marked vertex in P.
Then the vertex v’, the successor of w in P, is marked, a contradiction.

We now set A = {vertices marked red} and B = {vertices marked
blue}. Say there is an edge f = ajaz € E(G) with a;,a3 € A. Then
a1, az have been marked red in the same step of the marking procedure.
Observe that the marking procedure produces at each step a path from
v to each of the newly marked vertices. Each path is colored alternat-
ing red-blue-red-blue- ... This applies in particular to the respective
paths P(v,a;), P(v,as). Let x be the last vertex (possibly v itself) that
belongs to both paths as one walks from v to a; in P(v,a;). Since
P(z,a1), P(z,a2) are paths of equal length with singleton intersection
{z}, P(z,a1),a1a2, P~}(z,a2) is a cycle of odd length. This contradic-
tion finishes the proof of the theorem. ®

Following the above definition of the complement of a graph, we define
for a bipartite graph G with bipartition V(G) = V; U V; the bipartite

complement G by .
V@) =V({@)=1iW

ie.,, G and (éb) have the same vertex bipartition,
E(@G) ={viva: v, € Vi,uy € Va,v1v0 € E(G) }.
Likewise, if E(G) = 0, V(G) = V1 UV; such that |V;}| = m, [Va| = n, then

we call Ky, p := G’ the complete bipartite graph on m and n vertices.

A graph G is called acyclic or a forest if it has no cycles. A connected
forest is a tree. Likewise, a digraph is called acyclic if it has no cycles.

A digraph D is a forest/tree if its underlying graph is a forest/tree.
Since a digraph may be acyclic and yet contain a closed chain, the un-

Traversing Graphs: The Eulerian and Hamiltonian Theme 29

derlying graph of an acyclic digraph may not be acyclic. In fact, any
graph has an acyclic orientation.

Further, D is an out-tree (in-tree) if D is a tree and there exists z €
V(D) such that for every v € V(D) a path P(z,v) (a path P(v, 2)) exists.
z is called in both cases the root of D.

Theorem 11 Every connected graph G contains a spanning tree T, i.e.,
a tree which is a spanning subgraph of G.

A proof of Theorem 11 can be derived from the second part of the
proof of Theorem 10, by modifying the marking procedure. We also
note that a tree is a bipartite graph (since it has no cycles at all - see
Theorem 10), and that every edge of a tree is a bridge (see below). The
latter observation permits another proof of Theorem 11: one deletes —
step by step — edges belonging to a cycle in the subgraph under consid-
eration until one arrives at a (spanning) acyclic subgraph.

Next we present characterization theorems for trees and out-trees.

Theorem 12 For any graph G of order p and size g, the following are
equivalent.

1 G is a tree.

2 G is loopless and for all z,y € V(G) there is precisely one path
P(z,y).

3 G is connected and every edge is a bridge.
4 G is connected andp =q+ 1.
5 G is acyclicand p=q+1.

6 G is acyclic and for all x,y € V(Q) satisfying z # vy, xy &€ F(G),
the new graph G U {xy} has precisely one cycle (which necessarily
contains zy).

Theorem 13 Given a digraph D, the following are equivalent.
1 D is an out-tree with root z.

2 D is weakly connected, d~(v) =1 for everyv € V(D) — z,d™(2) =
0.

3 D is acyclic and d~(v) =1 for everyv € V(D) — 2,d™(z) = 0.

4 D is acyclic and contains z € V(D) such that there is a unique
path P(z,v) for every v € V(D) — 2.

30 ARC ROUTING

In view of Theorems 11 and 13 one can prove the following on the
existence of spanning out-trees.

Corollary 14 If D is a weakly connected digraph with vertex z such that
there is a path P(z,v) for every v € V(D) then D contains a spanning
outtree with root z.

Results for in-trees analogous to Theorem 13 and Corollary 14 can be
obtained by corresponding modification.

A graph is called nonseparable or simply a block if it has no cutvertices,

whereas a block of a graph G is a maximal nonseparable subgraph B of
G (see Figure 2.3). That is, B is a subgraph of G’ without cutvertices,

Ve

E. e

Figure 2.8 A graph and its blocks

and is maximal w.r.t. this property. However, B may contain many ver-
tices which are cutvertices of G. - Correspondingly, a graph is separable
if it has at least one cutvertex. Note also that for every bridge zy of
G, {z,y,zy} is a block of G and that two blocks of G have at most one
vertex in common; such a common vertex is necessarily a cutvertex of G.

The concepts of cutvertex and block give rise to defining the block-
cutverter graph bc(G) for any graph G; namely: the vertices of be(G)
are in 1-1-correspondence to the blocks and cutvertices of G, and e €
E(be(G)) if and only if one end of e corresponds to a cutvertex = of G
and the other end corresponds to a block B of G such that x € V(B).

The next result describes the global structure of graphs.

Theorem 15 For any graph G, be(G) is acyclic and d(x,y) is even for
any two endvertices T,y of the same component of bc(G). Conversely, if
H is an acyclic graph such that d(z,y) is even for any two endvertices
T,y of the same component of H, then there exists a graph G such that
be(G) and H are isomorphic (see the next paragraph for isomorphy).
Finally, there is a 1-1-correspondence between the components of G and

those of be(G).

Traversing Graphs: The Eulerian and Hamiltonian Theme 31

Two graphs G1, G2 are said to be isomorphic if there exist bijections
0:V(Gy) — V(G2), ¢ : E(G1) — E(Ga) such that ¢(zy) = 0(x)f(y) for
any edge zy of G;j. The pair (8,¢) is called an isomorphism. Further-
more, if G1 = G9 then an isomorphism is called an automorphism.

Isomorphisms between digraphs D;, Do are defined similarly, the main
difference being that we replace the defining equation by ¢((z,y)) =
(8(x),0(y)) for any arc (z,y) of D;.

If 0 : V(G1) — V(Gs), ¢ : E(G1) — E(G2) are (not necessarily
1-1) mappings such that ¢(zy) = 6(x)8(y) then we call (8,¢) a homo-
morphism, which in turn is called an epimorphism if ¢(E(G1)) = E(G2).

The next concept is of a more topological nature. Suppose we are
given a graph G with at least one edge e = zy. Let s € V(G) be a
vertex. Then G’ = (G — e) U {s, zs, sy} is the graph obtained from G by
subdividing edge e. Two graphs G, G2 are said to be homeomorphic if
there is G3 such that both G1, G2 can be obtained from G3 by subdivid-
ing edges of G3 by one or more vertices.

We are now in a position to describe the construction of all nonsepa-
rable graphs.

Theorem 16 FEvery nonseparable graph G with at least 3 vertices can
be obtained from K3 by a sequence of two operations:

1 Adding an edge joining two given vertices.
2 Subdivision of an edge by one or more vertices.

Various properties of nonseparable graphs are expressed by the next
theorem which can be proved easily by the use of Menger’s Theorem (see
below).

Theorem 17 Let G be a connected graph of order > 3. Then the fol-
lowing statements are equivalent.

1 G is nonseparable.

2 G is loopless and every two vertices lie on a cycle.

3 For every v € V(G), e € E(G), there is a cycle containing v, e.
4 For every ey, eq € E(G), there is a cycle containing ey, ea.

5 Given z,y € V(G), e € E(G), there is P(z,y) containing e.

6 G 1is loopless and for every three distinct vertices x,y,z there is
P(z,y) containing z.

32 ARC ROUTING

7 G is loopless and for every three distinct vertices x,y,z there is
P(z,y) not containing z.

Further graph theoretical concepts will be explained in the subsequent
sections of this chapter, in the context of various problems dealt with
there.

3. CONNECTIVITY, MENGER’S THEOREM,
THE SPLITTING LEMMA, AND FACTORS

Suppose G is a given graph with non-adjacent vertices z,y. The local
connectivity kK = k(z,y) is the smallest number of vertices vy,... v,
such that G’ = G — {v1, ... ,v.} is disconnected and z,y are in different
components of G'. We say a loopless graph G has connectivity k(G) = n
if G contains a spanning subgraph isomorphic to K41, or k(G) =
min{ k(z,y) : zy € E(G) }. For example, K(Km) = min{m,n}.

A loopless graph G is called n-connected if k(G) > n. If G is con-
nected with loop vv and d(v) > 2 then x(G) := 1. Thus, a connected
graph G has a cutvertex if and only if K(G) = 1.

In what follows call 7 > 2 paths internally disjoint if any two of these
paths have at most their endvertices in common.

Theorem 18 (Menger’s Theorem) Given a graph G with non-adja-
cent vertices z,y. Then k(z,y) is the mazimum number p(x,y) of inter-
nally disjoint paths joining x and y.

Proof. W.l.o.g. we can assume that G is a simple graph. We follow the
classic proof of Dirac (see, e.g., [9, 27]).

If k(z,y) = 0 then G must be disconnected with z,y in different com-
ponents and the theorem is true. If k(x,y) = 1 then G has a cutvertex
separating ,y. Again the theorem holds. Observe that k(z,y) > p(z,y)
in general (every P(z,y) contains at least one element of any vertex cut
separating r and y). So we must show that p(z,y) > k(z,y) holds when
K(z,y) > 2. '

Suppose the theorem is false for some k(z,y) = k > 2. Among all
graphs G having non-adjacent vertices x,y such that p(z,y) < k choose a
graph for which |E(G)|+|V(G)| is minimum. Set p = p(z,y). Next, con-
sider G’ := G —efor any e € E(G). Let p/ = pgr(z,y) and k' = kg (z,y).
By the minimality of G, p’ = ’. Also, we have p’ > p—1. Clearly k¥’ < k.
Suppose k' = k. Since there are p’ = k internally disjoint paths joining
z,y in G', there must be at least k internally disjoint paths joining z,y
in G. So p > k, which cannot be by the choice of G. So k' < k — 1.

Traversing Graphs: The Eulerian and Hamiltonian Theme 33

Suppose k¥ < k — 2. Then let 8" = {v1,...,uw} be a vertex cut
separating z,y in G'. Let z. & {z,y} be a vertex incident to e. Then
S"U{zxe} is a vertex cut of K" + 1 < k — 1 elements separating z,y in G,
which cannot be. So k¥ > k — 1 and hence k¥’ = k — 1.

We now claim that there cannot be any vertex z € V(G) — {z,y}
adjacent to both z,y in G. If there is, then let G” := G — 2. If we set
p" = pgr(z,y) and K"’ = kgn(z,y) then p” = k" by the choice of G. Also
T,T2,2,2Yy,y is a path from z to y in G but not in G”. So p—1 > p”. By
the same argument as before, k" +1 > k. Then k —1 < k" =p" < p-1,
so that k < p. This is a contradiction again.

Let S be a vertex cut of size k separating x,y in G. W.l.o.g. we may
assume G to be a block. By the result of the previous paragraph, no
vertex of S can be adjacent to both = and y.

We claim that either z is adjacent to every vertex of S or y is adjacent
to every vertex of S. (%)

Define P(z,S) to be a path starting in z and ending in some s € S
such that it contains no other vertex of S. Let P(S,y) be defined as a
path starting in some s € S, ending in y and containing no other vertex
of S. It follows that

(a) every P(z,y) contains a certain P(z,.S) as (initial) section and a
certain P(S,y) as (final) section (the elements of S contained in these
latter two paths may be different);

(b) every P(z,S) and every P(S,y) have at most one vertex in com-
mon, and such vertex belongs to S; otherwise P(z,S), P(S,y) contains
a subsequence which is a P(z,y) not containing any element of S;

(c) every s € S appears as endvertex (initial vertex) of some P(zx, S)
(P(S,y)); otherwise, a proper subset of S would separate z and y in G.

Next, define two subgraphs G;,Gy, C G by

G = (VP 5)); 6= (JV(PSw))

where the union is taken over all P(z,S), P(S,y) respectively. Note that

(i) Gz NGy = (S) by (b) and (c) above;

(ii) S separates z and y in Gz UGy, but no S’ C V(G) with |S'| < | 9]
does so; otherwise G — S’ contains a P(z,y) which in turn must contain
some s € S (see the initial part of the proof). Whence P(z,y) contains
some P(z,S) and some P(S,y) which belong to Gz, Gy respectively. So
S'NP(z,S) # 0 or "N P(S,y) # 0 implying that every P(z,y) in G

34 ARC ROUTING

contains an element of S’, i.e., S’ separates z and y already in G, a con-
tradiction.

By (ii), S is a minimum vertex cut in Gz UG, separating z and y, and
by the choice of G, G = Gz U Gy follows. Now construct new graphs

Gf=G,U{y,sy:s€8}, Gf=Gyu{z,zs:5€8}.

If the claim () were false, the theorem would apply to both G} and
Gy, thus yielding |S| internally disjoint paths P*(z,S) in G, and like-
wise |S| such paths P*(S,y) in Gy (one just deletes the corresponding
endvertex in the respective paths in GF and G}). By (i) we can now
form |S| = & pairs of paths P*(z,S), P*(S,y), each of which yields a
P(z,y) C G. This contradiction to the choice of G implies the validity of
(%), s0 G = G or G = G must hold (observe that S is also a minimum
vertex cut in Gf and GY).

Now let P = x,Tuy,uy,u1ls,us,. ..,y be a shortest path in G con-
necting z and y. Since [(P) > 2 (see above), us # y must hold,
and w1y € E(G). Form G' = G — {wuz} which has a vertex cut
S" = {v1,... ,vk—1} (see the first part of the proof) and both S’ U {u;}
and S’ U {ug} are vertex cuts of size k in G separating = and y. Since
wy € E(G), zv; € E(G),1 < j < k—1, by (x) applied to S’ U {u}.
Since zuy € E(G) by the choice of P, we draw the same conclusion w.r.t.
the edges vjy € E(G) and upy € E(G) (considering S’ U {uz}). Since
k> 2,8 # 0 and so zvy,n1y € E(G), i.e., there is a vertex z = v,
adjacent to both z and y. This final contradiction proves the theorem.
]

Corollary 19 (Whitney’s Theorem) A simple graph G is n-con-
nected if and only if for all z,y € V(G),z # vy, there are n internally
disjoint paths joining z, y.

Corollary 20 Let G be a simple graph with k(G) > n and |V(G)| > 2n.
Given two disjoint vertez sets S = {vy,... ,vn},S" = {w1,... ,w,}, there
are n totally disjoint paths between vertices of S and S'.

Corollary 21 (Dirac) Given a simple n-connected (n > 2) graph G
there is a cycle C containing n specified vertices vy, ... ,Un.

We also observe that for z,y € V(G) and zy &€ E(G), we always have
(G) < k(z,y) < A(G).

If G is any graph with at least two vertices, then given distinct z,y €
V(G), the local edge connectivity of x and y is defined by

Az,y) == E’gx(lc){ |Es| : z,y are in different components of G — E; }.

Traversing Graphs: The Eulerian and Hamiltonian Theme — 35

The edge connectivity A(G) of any graph G is taken to be either the
minimum of A\(z,y) for any pair of distinct vertices z,y of G (if [V(G)| >
2) or simply A(G) = 2if |[V(G)| =1, E(G) # 0. This definition ensures
that the edge connectivity of a graph is not affected by subdividing any
of its loops. G is said to be n-edge-connected if A(G) > n.

Corollary 22 If G is not K; then we have the following:
1 G is connected <= G is 1-connected and G is I-edge-connected.

2 G is nonseparable and |V(G)| > 3 <= G is 2-connected = G is
2-edge-connected.

8 G is connected and bridgeless <= G is 2-edge-connected.

4 G is connected and has a bridge <= A\(G) = 1.

Theorem 23 Given a graph G with E(G) # 0 we have k(G) < M\(G) <
8(G).

The analogue to Menger’s Theorem w.r.t. local edge-connectivity can
be derived with the help of Menger’s Theorem.

Proposition 24 Let G be a loopless graph and x,y € V(G),z # y, be
given. Then Nz,y) = pe(z,y), where pe(z,y) is the marimum number
of edge-disjoint paths joining x and y.

Corollary 25 G is k-edge-connected if and only if for all z,y € V(G),
T # vy, there are k edge-disjoint paths from x to y.

For the following discussion we need to consider block chains which are
defined as graphs G such that bc(G) is a path. Correspondingly, we call a
block chain trivial (non-trivial) if E(bc(G)) = 0(# 0). Analogously, call
a block of any graph G an end-block if it corresponds to an endvertex of

be(G).

Suppose G is a graph with some vertex v of degree at least 3. Let
e1, ez be distinct edges incident to v. Introduce v 2 € V(G) and replace
ei = vu; (¢ = 1,2) by w;v1,2 (possibly u; = ug, i.e. ej,ey are parallel
edges). Denote this graph by G 2. So G 2 has been obtained from G by
splitting away e;, ez. The transition from G to G 2 is called the splitting
procedure.

Lemma 26 Let G be a nonseparable graph with |V(G)| > 3. Suppose
v € V(G) with d(v) > 3 exists. Split away from v two edges ej, e to
form G12. Then G132 is a block-chain. If it is a non-trivial block-chain
then vy 2 and v belong to different end-blocks of G12 and vi2,v are not
cutvertices of G 2.

36 ARC ROUTING

Lemma 27 Let G be a connected bridgeless graph with precisely two
blocks By, By with the unique cutvertezv € BiNBy. Choose e; € E(B;)N
E,, 1 = 1,2 and form G2 (in the case where ey or ey is a loop, split
away one of the ‘half-edges’ of e;, i.e., replace the loop e; = vv by the
edge vvy o). Then Gy is nonseparable.

Lemma 28 (Splitting Lemma) Let G be a connected bridgeless
graph with a vertex v of degree at least 4. Let ey,ez,e3 € E,, be chosen
arbitrarily, subject to the condition that e; and ey belong to different
blocks if v is a cutvertex. Then at least one of G12 and G133 formed by
splitting away ey and eg,e; and e3 respectively from v, is connected and
bridgeless.

Proof. We first observe that only the block(s) containing e, e, e3 is/are
changed, whereas all the other blocks of G are also blocks of G2, G1 3.
This is so since the splitting procedure does not alter any equation of
the form BN B’ = {w} or = @) where w # v is a cutvertex of G, though
it can happen (see Lemma 27) that B’ is ’enlarged’ by the vertices of
another block.

Let e; belong to the block B; C G where ¢ = 1,2 and By # By if v
is a cutvertex, and B := By = By = Bj otherwise. By the preceding
consideration, G — (B; U By), G — B respectively, is bridgeless.

Case 1. v is a cutvertex of G. By Lemma 27, (B, U Bs); 2 is nonsepa-
rable. It follows that G2 = (G — (B1U B2)) U (B1U By)12 is bridgeless.
Observe that v is a cutvertex of G 2 if and only if v is contained in some
block B’ of G, By # B’ # By. To see that Gj is also connected, one
only needs to realize how bc(Gh 2) arises from be(G). Let b; € V(be(G))
correspond to B;,7 = 1,2, and suppose v retains its name in bc(G). Now,
bc(Gh,2) is obtained from bc(G) by first identifying by and bo; if v is 2-
valent in bc(G), delete it to obtain bc(Gh 2), otherwise delete one of the
two parallel edges arising in identifying b; and by. In both cases, bc(G1 2)
is a tree since bc(G) is a tree (cf. Theorem 15). Thus G;.2 is connected
as well.

Case 2. v is not a cutvertex of G. If B is of order 2, then v and w
(the other vertex of B) are joined by at least four edges, and obviously
B 5 is a bridgeless block chain with w as the only cutvertex.

Suppose |V(B)| > 3, then B is 2-connected. Applying Lemma 26 and
assuming the Splitting Lemma to be false we conclude that

(a) both By 2 and By 3 are non-trivial block chains containing a bridge
f1.2, f1,3 respectively;

(b) the end-blocks of By j;,j = 2,3, are not bridges and they have at
most a vertex in common in which case this is a cutvertex of B j;

Traversing Graphs: The Eulerian and Hamiltonian Theme — 37

(c) each cycle of By ; containing v ; or v, j = 2,3, lies entirely in
the corresponding end-block — thus a cycle containing v; ; and a cycle
containing v in B; ; have at most one vertex in common;

(d) every path P(vyj,v) C B ; contains all cutvertices and thus all
bridges of By ; — see Figure 2.4.

V12 v 13 v
B2 Bi3
21,2 23 21,3 29
Figure 2.4

Now, B being 2-connected guarantees the existence of cycles C 3,
C3,4 C B such that e, e3 € E(C13), e2,e4 € E(Ca3) (see Theorem 17).
These two cycles lie in different endblocks of B;3 (see (c) above), so
they have at most a vertex in common in Bj 3 and thus are edge-disjoint
cycles (in Cy 3 C Bj 3 we only change the name of v to v; 3). On the other
hand, C4 3 and Cy 4 correspond in Bj 2 to paths Py 3 and P; 4 respectively,
joining v; 2 and v. By (a) and (d), both Py 3 and P, 4 contain all bridges
of By 2, and there is at least one bridge. So,

E(Pl,g) N E(P2,4) # 0,

and thus
E(C13) N E(Ca4) # 0,

contradicting what we just proved. Whence at least one of By o, By 3 is
bridgeless, and thus G2 or G133 is bridgeless. Assume w.l.o.g. that Bj 2
is connected and bridgeless, and thus Gj 2 is bridgeless. Suppose that
G} 2 is disconnected. Then v and vy 2 lie in different components G}, G5
of G12. Thus we can write

G=G1UG:,GiNGe={v}, G;= (E(G))Y#0, i=1,2.

Thus v is a cutvertex of G, contradicting the assumption of this case.
This finishes the proof. m

Corollary 29 Let G be a nonseparable graph with a k-valent vertez v
(k > 4) and let e1,ez,e3 € E, be chosen arbitrarily. If both G132 and

38 ARC ROUTING

G13 are nontrivial block-chains then bc(Gi2) = be(G13) = S(K2) and
G1,2,G1,3 have the same cutvertez.

Corollary 30 Let G # K, be a nonseparable graph having a k-valent
vertex v (k > 4). Let e1,e2,e3 € E, be chosen arbitrarily. If G12 has a
bridge then G 3 is nonseparable.

The Splitting Lemma has a wide range of applications, particularly
in the theory of eulerian graphs. However, it can also be used for the
classic proof of Petersen’s Theorem (see below) in that it yields a short
proof of an intermediate result, Frink’s Theorem (see [30, p. 251]). To
state the former we need some more terminology.

A graph is called k-regular if d(v) = k for every v € V(G). A digraph
D is called k-regular if d*(v) =d~(v) = k for all v € V(G).

Let G be a graph. A spanning k-regular subgraph of G is called k-
factor of G. In particular, a 1-factor is also called a linear factor or
perfect matching. A 2-factor is a quadratic factor and a connected 2-
factor is called a Hamiltonian cycle of G. A k-factor in a digraph is often
called a k-difactor since it is a 2k-factor in the underlying graph. As a
generalization of 1-factors, we define a matching to be a set of pairwise
non-adjacent edges (we also speak of a set of independent edges). A
mazimal matching is one which cannot be extended to a larger one,
whereas a mazimum matching is one of largest size.

Theorem 31 (Petersen’s Theorem) IfG is a 3-reqular bridgeless graph
and e € E(G) is arbitrary then E(G) = LUQ where (L) is a I-factor
and (Q)¢ 1s a 2-factor containing e.

Petersen’s Theorem was key in the early studies of the Four Color
Problem (see below). In this context, Tait had shown that solving this
problem is equivalent to proving that every 2-connected 3-regular planar
graph has a 1-factorization (a graph is planar if it can be drawn in the
euclidian plane without edges crossing each other; a I-factorization of
a k-regular graph G is a set of k pairwise edge-disjoint 1-factors of G).
The Petersen graph (Figure 2.5) is the smallest 2-connected 3-regular
graph which has no 1-factorization — it is not planar either.

However, 2k-regular graphs can be written as the edge-disjoint union
of k 2-factors (they have a 2-factorization).

The Four Color Problem (4CP for short) stated that in any plane
bridgeless graph G, one can color the faces of G with four colors such
that any two faces having an edge in their respective boundary in com-
mon, are colored with different colors (a face of a plane graph G is —
viewed in topological terms — an open arcwise connected point set F' in

Traversing Graphs: The Eulerian and Hamiltonian Theme 39

a4

Figure 2.5 The Petersen Graph

the plane such that 0F = F — F is a (not necessarily connected) sub-
graph of G, called the boundary of the face F'). It is folklore to show
that in solving the 4CP it suffices to consider 3-connected 3-regular pla-
nar graphs. This, in turn, had led Tait to formulate the 4CP in the
equivalent form quoted above. This equivalent formulation then led Tait
to conjecture that 3-connected 3-regular planar graphs are hamiltonian.
Had this conjecture been true it would had yielded a simple proof of
the 4CP (see Conjecture 54 below and the subsequent discussion of Sec-
tion 5).

We note in passing that the dual formulation of the 4CP states that
the vertices of any planar loopless graph can be colored with four colors
such that adjacent vertices are colored differently; and that it suffices
to prove the 4CP in its dual form for 4-connected triangulations of the
plane (which are hamiltonian — see Theorem 63 below and the discussion
related to it).

The 4CP was finally solved in its dual form by Appel, Haken, and
Koch, [2]; theirs is a computer-aided proof, as is the more recent but
shorter proof by Robertson, Sanders, Seymour, and Thomas, [37].

40 ARC ROUTING

4. EULERIAN GRAPHS AND COVERING
WALKS, CYCLE DECOMPOSITIONS AND
CYCLE COVERS

A graph G is called eulerian if d(v) is even for every v € V(G). A
digraph D is called eulerian if d~(v) = d*(v) for all v € V(D).

We observe that eulerian graphs G are bridgeless; otherwise, for a
bridge e of G, the graph G — e has two components each of which has
precisely one odd vertex (cf. Theorem 7), contradicting the Handshaking
Lemma.

A walk in a graph (digraph) H is a covering walk if Aw(h) > O for
every h € E(H) (A(H)). If a closed covering walk is a trail then it is
called an eulerian trail. A closed covering walk W where Ay (h) = k for
every h € E(G) (A(D)) is called a k-tracing. In particular, if k =2, W
is called a double tracing. A double tracing in a graph is called bidirec-
tional if every edge xy,y # x is passed in W once from z to y and once
from y to z. A double tracing W is called retracting-free if for every
e=u1xy € E(G), z,e,y, e, T is neither a section of W nor of W~1.

Let H be a graph (digraph) and let S = {C1,...,Cr}, r > 1 be a
collection of cycles of H. If every e € E(H) (A(H)) belongs to at least
one cycle of S then S is called a cycle cover. If every e € E(H) (A(H))
belongs to exactly k cycles of S then S is called a cycle k-cover. A cycle
1-cover is also called a cycle decomposition of H as it corresponds to a
partition of E(H) (A(H)) into cycles. A cycle 2-cover is also called a
cycle double cover (CDC).

Theorem 32 Given a connected graph G, the following statements are
equivalent.

1 G 1is eulerian.
2 G has an eulerian trail.

8 G has a cycle decomposition.

Proof. (1) = (2): G is eulerian and connected. If E(G) = 0 then
G = K; and T = v with V(G) = {v} is an eulerian trail. If E(G) # 0
then choose any v € V(G) and start a trail by traversing an edge e
incident with v. Reaching the other end w of e (w = v if e is a loop)
continue the trail T with any not yet traversed edge f incident with w,
etc. So whenever we reach € V(G) continue T at x with h € E; —E(T).

Suppose this procedure stops at some y € V(G), i.e., Ey — E(T) = 0.
We claim that y = v. If not then every time we arrive at y we have

Traversing Graphs: The Eulerian and Hamiltonian Theme 41

traversed an odd number of edges incident to y. So if T" eventually stops
at y the degree of y is odd, a contradiction. Thus y = v and E, C E(T).
If E(T) = E(G) then T is an eulerian trail. So suppose this is not the
case. Backtrack on T until z € V(QG) is reached for which E, —E(T) # 0.
Such z exists since G is connected. By assumption F(G) # E(T), so de-
fine G} := G — E(T) and produce a closed trail 7] in G starting and
ending at z. Writing T = v,e,w,... ,hz,2,2t,... ,v we conclude that
by the construction of T, 7] that Ty = v,e,w,... ,hz,T],2t,... ,v is a
closed trail starting and ending at v with E, U E, C E(Ty).

If E(Ty) = E(G) then T is an eulerian trail; otherwise backtrack on
Ty to find 2z for which E,, N E(Th) # 0 but E,, € E(T1). Now con-
tinue to produce T3 in G = G — E(T1), starting and ending at 22 as
we did with respect to 7] and construct T» by inserting T3 into 771 and
so that E, U E, U E,, C E(T2). The process of producing closed trails
T,T1,Ts,... with E(T) C E(T1) C E(12) ... must come to an end with
some Ty, r < |V(G)| — 1. Then E(T},) = E(G) so that T; is an eulerian
trail as required.

(Alternate proof of (1) = (2) using the Splitting Lemma.) Since
G is eulerian, it is bridgeless. G is also connected. If d(v) = 2 for
every v € V(G) then G is a cycle and this cycle is an eulerian trail.
Thus suppose d(v) > 2 for some v € V(G).Take e;,ez,e3 € E, : e1,e2
belong to different blocks of G if v is a cutvertex. W.lo.g. suppose
G; := G2 is connected and bridgeless. G| is also eulerian. Ifdg,(v) > 2
then we continue the splitting operation at v. If d(v) = 2k then af-
ter k — 1 splitting operations at v, employing the Splitting Lemma, we
have a connected eulerian bridgeless graph Gg—; where the original v
has been replaced by k 2-valent vertices. If Gx_1 is a cycle C then a
run through C corresponds to an eulerian trail of G. If not then find
w € V(G) : dg(w) = dg,_,(w) > 2 and apply the Splitting Lemma to w
similarly. Consequently if d(v) = 2k,, k, € N, then after applying the
Splitting Lemma),y (g (kv—1) = (3" ky) — p = q — p times, we obtain
a graph which is a cycle. Running through this cycle corresponds to the
traversal of G by an eulerian trail.

(2) = (3): Since T is an eulerian trail it is a closed covering trail.
Let C; be a shortest closed sequence in T starting and ending at z, say,
with hz (zy) immediately preceding (following) C; in T. C is a closed
subtrail of T and since {(C;) = min, C) is a cycle indeed. Next, define
Ty =v,e1,wy,... hz,z,zy,... ,v. E(T1) = E(G) — E(C1). So T is an
eulerian trail in G; := G — Cj. Repeat the above procedure to find a
cycle Cy in Gy. Define T, similarly as an eulerian trail in Go = G1 — Ca.
Then E(C>) N E(C1) = 0, so we produce step-by-step a cycle C; in Gi_1

42 ARC ROUTING

such that E(Ci) N E(Cj) =0,1<j<iand G; :=G;_.1—C; C Gi_1,
implying that the procedure must end with some Gy := Gx_1 — Cr =0
where k > 1,Gp = G, i.e. Gx—1 = Ck. Then S = {C1,... ,Cix} is a cycle
cover with E(C;) NE(C;) =0 for 1 < j <i < k. So S is even a cycle
decomposition.

£3) = (1): Since dg¢,(v) € {0,2} for every C; € S, we have dg(v) =
Yoic1dc,(v) =0mod 2. m

Corollary 33 If G is a connected eulerian graph then it has an eulerian
trail starting at any prescribed v € V(G) and e € E,,.

Corollary 34 Theorem 32 remains true if we replace “connected graph”
by “weakly connected digraph” (note that a weakly connected eulerian
digraph is strongly connected).

Corollary 35 FEvery connected graph has a bidirectional double tracing.

While these corollaries can be obtained by applying Theorem 32, the
next corollary results from a more intricate application of the Splitting
Lemma (see also Kotzig’s Theorem below).

Corollary 36 (Sabidussi) If G is a connected graph without endver-
tices then it has a retracting-free double tracing.

In view of part 3 of Theorem 32 and Corollary 35 the following has
been conjectured.

Conjecture 37 (Cycle Double Cover Conjecture (CDCC)) Every
connected bridgeless graph has a cycle double cover.

A generalization of this, namely that every connected bridgeless graph
has an ‘oriented’ CDC S such that every edge is traversed in two differ-
ent directions by the two cycles of S it belongs to, has become known
as the oriented cycle double cover conjecture, whereas the strong cycle
double cover conjecture (SCDCC) states that one might prescribe any
given cycle of G to belong to some CDC.

The following results can also be proved quite easily.

Theorem 38 FEwvery double tracing in a tree T is bidirectional and has
retractions if E(T) # 0. Moreover, every closed covering walk in T is a
double tracing.

Corollary 39 If G is a connected graph with precisely two odd vertices
x, y then it has a covering trail starting at x and ending at y.

Corollary 39 is also a consequence of the following result.

Traversing Graphs: The Eulerian and Hamiltonian Theme — 43

Corollary 40 Let G be a graph without eulerian components, whose 2k
odd vertices are denoted by v1, ... ,vok. There is a decomposition of E(G)
into k open trails Ty, ... , Ty where each T; starts at some v; and ends
at some vj. Moreover, any decomposition of E(G) into open trails must
have at least k such trails.

Let S = {Wy,...,W;} be a decomposition of E(G). S is called a
path/cycle decomposition of E(G) if for every W; € S, (W;) is a path or
a cycle.

Corollary 41 Every graph G has a path/cycle decomposition S such
that the number of paths in S is half the number of odd vertices in G.

Let G be any graph. For every v € V(G) let P(v) be a partition of
E, (for d(v) = 0 set P(v) = 0). Define a multiset P(G) = ey gy P(v)
(note that a class C € P(x) may also be a class in P(y)) and call P(G)
a partition system of G. Every C in P(v) is called a forbidden part for
every v € V(G). If |C| < 2 for every C € P(G) then P(G) is called a
partial transition system. If |C| = 2 for every C € P(G) then P(G) is
called a transition system.

For example, if G is a connected eulerian graph then it has an eulerian
trail (written as an edge sequence) T' = ey, ey, ... ,eq4 (consider a loop to
be two half-edges). This induces a transition system X7 of G, where

Xt = {{e1,e2},{ea,e3},--. , {eg-1,¢4}, {eg, e1}}

Conversely, a transition system X (G) defines a decomposition of E(G)
into closed trails.

Similarly, a cycle decomposition S = {C},...,Cx} induces a transi-
tion system Xg where two edges at any vertex are in the same element
of X if and only if they are in the same cycle of S.

We call two partition systems P1(G), Po(G) compatible if for every
v € V(G) and {i,5} = {1, 2}, C; € C;j for every C; € P;(v) C Pi(G) and
every C; € Pj(v) C P;(G). If Pi(G) = X7 (or = Xg) then we say T (or
S) is compatible with Po(G) or Py(G)-compatible.

Theorem 42 (Kotzig’s Theorem) Let G be a connected eulerian
graph with a given partition system P(G). Then there is a P(G)-compat-
ible eulerian trail if and only if for every v € V(G) and every C € P(v)
the inequality |C| < 3d(v) holds.

The following is just a special case of Theorem 42; however, it can be
proved directly by applying the Splitting Lemma.

44 ARC ROUTING

Corollary 43 Let G be an eulerian graph with §(G) > 4 and let S be a
cycle decomposition of G. Then there is a Xg-compatible eulerian trail
T in G.

Conjecture 44 (Sabidussi’s Compatibility Conjecture (SCC))
Let G be an eulerian graph with §(G) > 4 and let T be an eulerian trail
of G. Then there is a Xp-compatible cycle decomposition in G.

However, the condition on the class sizes in Kotzig’s Theorem does
not allow to conclude the existence of a P(G)-compatible cycle decom-
position. For example consider the eulerian graph K3 with the cycle
decomposition S shown in Figure 2.6, where Xg =: X5 is characterized
by the small arcs marking the transitions of the two cycles in S. We
show that it does not have a Xs-compatible cycle decomposition.

Figure 2.6

Suppose S’ is a X5-compatible cycle decomposition of K5. Let C € S'.
Since S’ is Xs-compatible, C contains alternately edges of the outer pen-
tagon and the inner pentagram and thus must be even. Since I(C) < 5,
we have [(C) = 2 or 4. But the former cannot be since Kj is simple.
Thus the cycles in S’ are of length 4. So |E(G)| must be a multiple of 4.
But |E(K3)|=10, a contradiction. So S’ cannot exist.

This non-existence of a Xs-compatible cycle decomposition in Kj is
basically the reason why arbitrary 2-connected 4-regular graphs with
given system of transition X may not have an X-compatible cycle de-
composition. Also, this example of Figure 2.6 can be used to prove that
the Petersen graph has no 1-factorization.

On the other hand, there is a closer relationship between the SCC
and the CDCC than one might suspect at a first glance. To explain this

Traversing Graphs: The Eulerian and Hamiltonian Theme — 45

relationship we need some more terminology.

An edge cut Ey of a graph G is called essential if G — Eg has at least
2 nontrivial components. The essential edge-connectivity A\e(G) of G is
the size of the smallest essential edge cut of G if such an edge cut exits,
otherwise set A.(G) = M(G). G is said to be essentially k-edge-connected
if \e(G) > k.

If G has two disjoint cycles then the edge cut E; is called a cyclic
edge cut if G — F; has at least two components with each component
having a cycle. The cyclic edge-connectivity A.(G) of a graph G is defined
to be A(G) if G has no two disjoint cycles, or the size of the smallest
cyclic edge cut of G. And G is said to be cyclically k-edge-connected if
X(G) 2 k.

Corollary 45 For any loopless graph G, A(G) < Ae(G) < A(G).

Observe also that A (K4) = A(K4) =4 and A(K5) = A(K35) = 6.
Given any graph G, a cycle C of G is called a dominating cycle if
every edge of G is incident to a vertex of C.

Conjecture 46 (Dominating Cycle Conjecture (DCC)) Any
3-reqular graph G3 with M\(G3) > 4 has a dominating cycle.

It is relatively easy to see, [13], that in proving the SCC it suffices to
consider connected eulerian graphs having only 4- and 6-valent vertices.
Such graphs together with an eulerian trail give rise — in a natural way
((13]) - to a 3-regular graph with dominating cycle. In fact, the SCC
has been generalized by Bill Jackson and the author {14] (here we state
the most important case of this generalization).

Conjecture 47 (General Compatibility Conjecture (GCC)) Let
G # K5 be a 4-regular graph with A\;(G) > 6 and an arbitrary transition
system X . Then there is an X -compatible cycle decomposition S of G.

In fact, the following is true.
Theorem 48
a. The validity of the SCDCC implies the validity of the SCC.
b. The validity of the SCC and the DCC imply the validity of the CDCC.
c. The validity of the GCC implies the validity of the CDCC.

Theorem 48 is a decisive reason why the SCC and GCC have attracted
quite a few people’s research. In fact, the GCC has been proved for large
classes of graphs, even in a more generalized setting (see [43] for details

46 ARC ROUTING

and more references). Thus the validity of the SCC is guaranteed for the
same classes of graphs.

While (a) and (b) have been proved in [13], (c) is due to F. Jaeger, [29].

We note in passing that in [43], cycle covers in general, and cycle dou-
ble covers in particular, are treated extensively.

Returning to the theme of eulerian trails, we now consider connected
plane eulerian graphs G (note that a plane graph is a realization of
a planar graph in the euclidean plane). Now, G being embedded in
the plane allows one to speak of a cyclic ordering of the edges in E,
for every v € V(G) (w.l.o.g., we assume here and in what follows that
G is loopless). Describe this cyclic ordering counterclockwise, say, by
(e1,e2, ... ,€2%,), 2k, = d(v). Thus one can define a non-intersecting
eulerian trail T as one where for any two transitions {e;,e;}, {ex, e} of
T at any v € V(G) neither i < k < j <lnort <! < j < k holds (w.Lo.g.
i = min{s, j, k,l}).

Figure 2.7(a) shows a 6-valent vertex with three pairwise non-inter-
secting transitions which are marked by little arcs.

(a) (b)

Figure 2.7 ‘

An A-trail, on the other hand, is one where for any transition {e;,
e;} € Xr at the corresponding vertex v € V(G), it follows that j =i +1
or j =1 —1 (read mod d(v)).

Figure 2.7(b) shows one of the two possible choices re. the behavior
of an A-trail at the corresponding vertex. Note, however, that the tran-

Traversing Graphs: The FEulerian and Hamiltonian Theme 47
sitions in Figure 2.7(a) do not correspond to an A-trail.

We observe that non-intersecting eulerian trails and A-trails are iden-
tical concepts in the cases where A(G) < 4, but not in general. In fact,
while the Splitting Lemma can be applied to show that every connected
plane eulerian graph has a non-intersecting eulerian trail, there exist in-
finitely many 3-connected plane eulerian graphs which do not admit an
A-trail. Moreover, the decision problem whether a given 3-connected
plane eulerian graph has an A-trail is N'P-complete, [1], whereas non-
intersecting eulerian trails can be found in polynomial time, as we shall
see below. Regarding algorithmic complexity in general, we refer the
reader to Chapter 4. Here we are only concerned with the question
whether certain algorithms run in polynomial time, and which problems
are N'P-complete.

4.1. ALGORITHMS FOR CONSTRUCTING
EULERIAN TRAILS

In what follows I(P) denotes the set of vertices which are 2-valent in
the path P, i.e., the set of inner vertices of P.

Algorithm 49 (The Splitting Algorithm)

Input: A connected eulerian graph G with |E(G)| = ¢ > 0 and initial
vertex vy € V(G).

Step0. H:=G,i:=0,Tp = {Uo}

Step 1. Suppose T; = vg, e1,v1,- .. ,€;,V; has been obtained by a (possibly
empty) sequence of splitting operations such that T; appears as a path P
in H with x € I(P) implying dg(x) = 2. Ifi =0 then let e; € E,, be
arbitrary. Go to Step 1.2. Ifi #£ 0 set f1 = e;.

Step 1.1. Ifdy(v;) > 2 choose fa, f3 € Ey,N(E(H)—-E(T;)). Form H ;
by splitting away fi1, fj, 7 = 2,3. Define H := Hy 3 if it is connected,
otherwise set H = Hy3. On the other hand, if dy(v;) = 2 then H
remains unchanged.

Step 1.2. Set e;y1 = v;vi41 for the edge not in T; and incident with v;
in H. Set Ty 1 :=T;,€i41,Vit1 (possibly viy1 = v;).

Step 1.3. Seti:=i+1.

Step 2. Ifi# g go to Step 1.

Step 3. Ty is an eulerian trail of G.

Algorithm 50 (Fleury’s Algorithm) This only differs from the Split-
ting Algorithm in Step 1.

Input: A connected eulerian graph G with |[E(G)| = ¢ > 0 and initial
vertez vg € V(G).

Step 0. H :=G,i:=0,Tp = {vo}.

Step 1. Suppose T; = vy, €1,v1,-.. ,€;,U; has been already constructed.
Set Gi =G - E(T’Z)

48 ARC ROUTING

Step 1.1. Choose e;y1 € E,, N E(G;) such that ejy1 ts a bridge of G;
only if v; is an endvertex of Gj.

Step 1.2. Write ej+1 = viviy1 and set Tiyy = T;, €401, Vig1.

Step 1.3. Seti:=i+1.

Step 2. Ifi # q go to Step 1.

Step 3. Ty is an eulerian trail of G.

Algorithm 51 (Hierholzer’s Algorithm)

Input: A connected eulerian graph G with |E(G)| > 0 and initial vertex
v € V(G)

Step 1. Construct a closed trail Ty starting and ending at vg by travers-
ing step-by-step an edge not yet traversed. Ty ends at vy with E,, C Tp.
Set i := 0.

Step 2. If E(T;) = E(G) then go to Step 4. If E(T;) # E(G) then
choose v;y1 € V(T;): Ey,,, — E(T) # 0. Construct a closed trail T! as
in Step 1 starting and ending at vi4+1, T C G — E(T).

Step 3. Construct a closed trail T,y with E(Ti11) = E(T;) U E(TY) :
starting at vo and go in T; to viy1, then traverse T} and then continue
the run through T; from viyq. Seti: =i+ 1 and go to Step 2.

Step 4. T is an eulerian trail of G.

Looking back at the two independent proofs of the first part of The-
orem 32, it becomes clear why Algorithms 49 and 51 produce eulerian
trails indeed. Moreover, on comparing Fleury’s algorithm with the Split-
ting Algorithm, it is also clear that the functioning of the latter implies
the functioning of the former, and that the choice of e;;; in Step 1.1
of Fleury’s algorithm corresponds to the choice of eg, e3 in the Splitting
Lemma (if v; is not an endvertex of G;). Moreover, checking connected-
ness after splitting away two edges, can be done in polynomial time and
it needs to be done only once per application of the splitting procedure.
Therefore, the first two algorithms run in polynomial time; and so does
Hierholzer’s Algorithm which runs even faster. Note that the Splitting
Algorithm can be adapted to produce eulerian trails in digraphs, P(G)-
compatible eulerian trails in graphs, and non-intersecting eulerian trails
in plane graphs: this adaption takes place in Step 1.1 by making specific
choices of fy and f3, in each of the respective cases. Clearly, these choices
do not essentially alter the polynomial running time of the respectively
adapted Splitting Algorithm.

4.2. MAZES

Mazes can be represented by graphs by replacing doors by vertices and
edges joining doors that can be reached from one to the other without
passing by or through a third door. Figure 2.8 shows an example.

In what follows we present the two most important maze search al-
gorithms which operate on connected graphs and produce bidirectional

Traversing Graphs: The Eulerian and Hamiltonian Theme — 49

(2) (b) (c)

Figure 2.8 (a) a maze, (b) the maze and its doors, (c) the graph of the maze

double tracings (cf. Corollary 35 and Theorem 38). These algorithms
operate with local information only.

Algorithm 52 (Tremaux’s Algorithm)

Input: A connected graph G with E(G) # @ which is unknown to the
person walking in the maze.

Hypothesis: Whenever v € V(G) has been reached in the course of con-
structing a covering walk W, Aw(e) is known for all e € E,, with Ay (e)
referring to the section of W performed at the moment of arriving at v.

Step 0: Set i := 0, choose an arbitrary vy € V(G), set W = vg.

Step 1: Starting at v; € V(G), walk along any edge e; € E,, — E(W).
Define W := W, e;, vi41, possibly v; = v;4q. Set i:=7+ 1.

Step 2: Suppose W = vg,eq,v1,... ,Vi—1€,—1,; has been constructed.
If v; is not an endverter and v; # v;,0 < j <1 then go to Step 1.

Step 3: (v; is an endverter or v; = v; for some 0 < j < i.) If
Aw(ei—1) > 1 go to Step 4. Otherwise, (Aw(ei—1) = 1) set e; = e;_1,
Vig1 = Vi1 and W := W, e;,v;41. Seti:=1+ 1 and go to Step 4.

Step 4: If Aw(e) > 1 for all e € E,,, then go to Step 5. Otherwise
choose e € E,, so that Aw(e) is minimum. Set e; = e,viy1 = y where
y =v; if e is a loop, and e € Ey N E,, otherwise. Set W := W, e;,vit1
andi=1+1. Go to Step 2.

Step 5: The final W is a bidirectional double tracing of G.

The justification of this algorithm lies basically in the second part of
Step 3 and Theorem 38. Namely: if upon traversing an edge e = zy
for the first time one reaches y, say, which had been reached before
or if y is an endvertex, then one backtracks on e from y to x. This
is tantamount to detach the single edge e from y thus creating a new
endvertex 3’ incident with e. If one performs such a ‘detachment’ at
every step in question, then one ultimately ends up with a tree since
G is connected. Correspondingly, by Theorem 38, the output of the
algorithm is necessarily a bidirectional double tracing of G.

50 ARC ROUTING

Algorithm 53 (Tarry’s Algorithm)

Input: A connected graph G with E(G) # 0.

Hypothesis: Ifv € V(G) is reached in constructing W then Ey , C E,
(the set of edges used away from v by W) is known. ein(v) € E, by which
v 1s reached for the first time is also known.

Step 0: Sett = 0. Choose vy € V(G), set W :=vg. Set {ein(vo)} := 0.
Step 1: Beginning at v; € V(G), walk along any edge e; € E,, :=
Ey — (B3 w U {ein(vi)}). Define W := W,e;,vit1 where e; € Ey, 41,
possibly v; = viy1. Seti:=1+1.

Step 2: Consider W = v, eq, ... ,ei—1,v. If E,, # 0, then go to Step 1;
otherwise, go to Step 3.

Step 3: If {ein(vs)} C Ey y then go to Step 4. Else set e; := ein(vi),
W =W, e;,viy1 (ei € By,), 1 :=1+ 1 and go to Step 2.

Step 4: W is a bidirectional double tracing.

Here, the justification of the algorithm is based on the following two
facts:

1) ({ein(vj) : v; € W}) is a spanning tree of G;

2) for an eulerian trail T in a weakly connected eulerian digraph D, if
one marks at every vertex x other than the initial vertex vy of T", the arc
by which z is being reached for the first time in the course of traversing
T, then the set of marked arcs form a spanning out-tree of D rooted at vyg.

Whence one can interpret Tarry’s Algorithm as producing an eulerian
trail in the eulerian digraph obtained from G by replacing every edge
by two oppositely oriented arcs (cf. Corollary 34) and such eulerian trail
corresponds to a bidirectional double tracing of G.

If one operates with the combined hypotheses of Tremaux’s and Tarry’s
algorithms and proceeds according to Tarry’s algorithm choosing, how-
ever, in Step 1 e; with minimum Aw(e;), then one clearly obtains a
bidirectional double tracing as well. However, if the input is a connected
eulerian graph, then the edge sequence obtained by listing the edges ac-
cording to their second traversal, defines an eulerian trail.

For more details on algorithms producing eulerian trails and on maze
search algorithms, we refer to [16, Vol. 2, Ch. X].

5. HAMILTONIAN CYCLES AND
VERTEX-COVERING WALKS
Let’s start with discussing some conjectures.

Conjecture 54 (Tait’s Conjecture, 1880) Ewvery planar 3-connected,
3-regular graph has a hamiltonian cycle.

Traversing Graphs: The Eulerian and Hamiltonian Theme 51

That the condition of 3-connectedness is important in the above con-
jecture is shown by Figure 2.9.

(a) (b) ()

Figure 2.9 (a) 2-connected non-hamiltonian graph, (b) 2-connected simple non-
hamiltonian graph, (c¢) 2-connected simple bipartite non-hamiltonian graph

The conjecture was disproved in 1946 by W. T. Tutte by giving a
counterexample G3 with A\.(G3) = 3. Later on counterexamples with
Ac(G3) = 5 were found.

Note: For a plane 3-regular G3, A(G3) < minl(C) =: g(G) =girth of
G, where C is a cycle of G.

Conjecture 55 (Tutte) Any 3-connected bipartite 3-regular graph has
a hamiltonian cycle.

This conjecture has been disproved by Horton who developed a coun-
terexample having 96 vertices.

Conjecture 56 (Barnette, Bosak, Tutte) Any planar, 3-connected,
bipartite 3-reqular graph has a hamiltonian cycle.

This is still an open problem.

Observing that the classes of graphs addressed in the above conjectures
have few edges in comparison to their order p (their size is ¢ = 3p/2), one
wonders whether a simple graph is hamiltonian (i.e., has a hamiltonian
cycle) if it is of sufficiently large size. Of course, K}, is hamiltonian and
has 3(p — 1)! hamiltonian cycles (viewed as different subgraphs); it's
of size (’2’) Trivially, the graph obtained from K by deleting all but
one of the edges at some fixed vertex, is non-hamiltonian and of size
(3) — (p — 2). However, the following result of G. A. Dirac (proved in
1952) points already into the right direction. In the sequel, a hamiltonian
path of G is a path containing all vertices of G.

52 ARC ROUTING

Theorem 57 Any simple graph G of order p > 3 with d(v) > & for
every v € V(G) has a hamiltonian cycle.

This result was improved in 1960 by O. Ore who showed the following
to be true.

Theorem 58 Let G be a simple graph of order p > 3 such that d(z) +
d(y) > p for all z,y € V(G) satisfying zy ¢ E(G). Then G is hamilto-
nian.

Proof. We proceed by contradiction. Among all counterexamples for
some fixed p > 3, choose one of mazimum size q. G ¥ K, since K, is
hamiltonian. Thus G contains z,y € V(G), # y, such that zy ¢ E(G).
Form G := GU{zy}; then G; has a hamiltonian cycle C; containing zy.
Number the vertices of G in accordance with a run through C) such that

T =1,V2,...,Up-1,Up = ¥; ViVit1 € E(G)NE(Cy) for 1 <i<p-—1.

So C1—{zy} is a hamiltonian path in G connecting z and y. Observe that
if for some 1 <4 < p—1, v1vi4+1,vpv; € E(G), then G; has a hamiltonian
cycle not containing zy = v1vp. For, P = P(vy,v;), P» = P(vp,vit1) C
(1 would yield a hamiltonian cycle C = Py, v;vp, Pa, vip1v1, v1 not con-
taining v1vp, so that C is a hamiltonian cycle in G, a contradiction. This
implies for every j, 2 < j < p, if zv; € E(G), then yv;_; ¢ E(G). Set
d=d(v). Soif N(z) = {vi;,...,vi,}, then {v;, _1,...,vi,—1}NN(y) = 0.
Thus d(y) < (p—1) — d, whence d(z) +d(y) <d+(p—1)~-d=p—-1,
a contradiction to the hypothesis.

This implies that the counterexample G does not exist, therefore the
theorem is true. ®

Arguing along the same lines as in the preceding proof one obtains
the following for bipartite graphs.

Theorem 59 Suppose G is simple and bipartite, V(G) = ViUV, |V1| =
[Va| = k. Suppose there is a € IN U {0} such that k > 2a and §(G) >
k — a. Then G has a hamiltonian cycle.

Corollary 60 If G is simple and bipartite of order n = 2k, k = |Vj| =
[Va|, and 6(G) > %, then G has a hamiltonian cycle.

Reconsidering the proof of Theorem 58, we conclude the following.

Corollary 61 Given a simple graph G. Suppose there are z,y € V(G)
such that zy € F(G) and d(z)+d(y) > p. Iif GU{zy} has a hamiltonian
cycle, then so does G.

This leads us to the following construction due to Bondy and Chvatal.

Traversing Graphs: The Eulerian and Hamiltonian Theme 53

Consider a simple graph G of order p and let 0 < k < p be given.
If there are z,y € V(G) such that zy ¢ E(G) and d(z) + d(y) > k,
form G, = GU {zy}. If there are z;,y; € V(G1) = V(G) such that
z1y1 € E(Gy) and in G) holds d(zy) + d(y1) > k, then form Gy =
G1 U {zyy1}. Continue this procedure until reaching a graph G, such
that for all u,v € V(G.) = V(G) with ww € E(G,) it follows that
d(u) +d(v) < k holds in Gr. Then G is called the k-closure of G and is
denoted by ck(G).

Note: (1) In the course of constructing cx(G), it can happen that
dg;(u) + dg,(v) > k for some u,v € V(G;) = V(G) with wv ¢ E(G;)
although dg(u) +dg(v) < k. Then uv can be added to G; to form Gj4;.

(2) ck(G) is uniquely determined.

Thus ¢, (G) is well-defined.

Corollary 62 Let G be a simple graph of order p > 3. G has a hamil-
tonian cycle if and only if c¢p(G) has a hamiltonian cycle.

Note that in the case of Ore’s Theorem (Theorem 58) ¢,(G) = K.
In their article [6], Bondy and Chvatal show for several results proved
until then, that in each of these cases the p-closure of the corresponding
graph is complete. Since then, many results have been proved on hamil-
tonian graphs, which are also based on degree conditions and where the
p-closure is not complete. We also note that — based on the proof of The-
orem 59 and on Corollary 60 — one can introduce the bipartite closure of
a bipartite graph, [6].

The graphs for which we have positive answers re. hamiltonian cycles
so far, have “many” edges. So, we may ask which are the conditions one
could use instead of degree conditions to ensure that a graph is hamilto-
nian. If for instance we consider simple planar graphs, we have graphs
with few edges but many other nice properties. In fact, if G is a simple
planar graph of order p > 3, then it has at most 3p — 6 edges, and every
simple maximal plane graph has precisely 3p — 6 edges. Note that such
a plane graph (also called triangulation of the plane) is a plane graph
to which one cannot add any edge without creating a parallel edge or a
crossing with another edge.

Thus simple planar graphs have only a few edges. However, if the
connectivity of a simple planar graph is high enough, then such graphs
are hamiltonian.

Theorem 63 ([41]) Every 4-connected planar graph has a hamiltonian
cycle.

We note in passing that this theorem by W. T. Tutte generalizes a
result of H. Whitney proved in the 1930ies and stating that every 4-

54 ARC ROUTING

connected triangulation of the plane has a hamiltonian cycle.

For the following conjecture and proposition, see, e.g., [16, Vol. 1,
VI.112-VI1.114].

Conjecture 64 (H. Fleischner) Every simple eulerian triangulation
of the plane has an A-trail.

Proposition 65 Conjectures 56 and 64 are equivalent.

Thus we have a hamiltonian problem which can be treated as an eu-
lerian problem. However, the following result should be viewed as a
strategy in dealing with the problem of constructing hamiltonian cycles
in graphs with relatively few edges (see [17] for the following and for
detailed references). To state this and subsequent results, we need some
new concepts.

Let M be a set (e.g., a graph) and let S = {M,..., M,} be a set of
subsets of M such that M = My UM3U---UM,. The intersection graph
of S, denoted by I(S), is defined by

V(I(S)) =S and
M;M; € E(I(S)) if and only if ¢ # j and M; N M; # 0.
Given a graph G, the k-th power G* of G is defined by
V(G*) = V(G) and
xy € E(G®) if and only if dg(z,y) < k for z,y € V(G).

Finally, define the prism P(G) of the graph G as obtained from G and
a copy G’ of G by adding an edge v’ for every v € V(G), v' € V(G)
where v’ is the vertex corresponding to v.

Theorem 66 An arbitrary graph G has a hamiltonian cycle if and only
if there ezists a set of cycles S = {C1,...,Ck,k > 1} such that

1V(S):=UL, V(C) = V()
2 C,-OC,-———(Z) or=2 Ko, 1<, <k, i#]
3 I(S) is a tree.

If such a set S exists then a hamiltonian cycle of G is defined by the
edges belonging to precisely one element of S.

This strategy has proved fruitful in proving the following two results.

Traversing Graphs: The Eulerian and Hamiltonian Theme 55

Theorem 67 ([10, 11, 34]) If G is 2-connected, then G? is hamilto-
nian.

Theorem 68 ([15]) If G is a planar 2-connected S-regular graph, then
P(G) is hamiltonian. '

The proof of these two theorems rests on the construction of special
types of spanning subgraphs in the respective G. To see how the proof
of Theorem 68 makes use of Theorem 66, consider a bipartite graph B
having the following properties:

(a) 1 < d(v) <3 for every v € V(B);

(b) B is connected;

(c) any two cycles of B are disjoint;

(d) if d(v) = 3, then v lies on a cycle of B.

Whence the edges of B not lying on a cycle of B, are the bridges of B;
and by (d), the set of these bridges induces a linear forest, i.e., a forest
I each of whose components is a path. Hence B can be written as

B=FUF
where F is a set of pairwise disjoint even cycles, and E and F are edge-
disjoint.

To see that P(B) is hamiltonian, construct a set of cycles according
to Theorem 66: For a cycle C = z1,z1%2, ..., z2r21, 21 of E (I(C) = 2r)
let C' = of,zizh, o, ..., a5, 2],z be the corresponding cycle in the
copy B’ of B, and for a component P = y1,41y2,...,yx of F, let P/ =
Y1, Y1Y5, - - -, Y, correspond to P.

Now set
H(C) = <{ Toi-1Toi, Ty 11 < i< 20 +1:=1,2r = [(C) }
U{mjm;:1§j§2r}>
for arbitrary cycle C' C E, and
H(P):= <{ YiYi+1, YY1 1 1 <1 <k—-1=1{(P) }U {ylyi,ykyk}>

for every component P of F. Now, each H(C) and each H(P) is a cycle
such that

S:={ H(C),H(P): C is a component of E, P is a component ofF'}

is a set of cycles satisfying conditions 1-3 of Theorem 66. The hard
part of proving Theorem 68 is to show that every planar 2-connected

56 ARC ROUTING

3-regular graph G3 has a spanning bipartite subgraph B as described
above, provided one does not make use of the Four Color Theorem in its
equivalent form whereby such G3 has a 1-factorization. For if one has
such 1-factorization {L;, L9, L3} at hand, then setting E := (L; U Lj)
and F := (L§) where L§ C L3 is of minimum size such that E U F is
connected, yields B as required. For more details of this construction of
B, see [15].

However, the proof of Theorem 67 makes use of Theorem 66 as well,
albeit in a more intricate and more implicit manner. Suffice it to say in
this context that one starts by proving that every connected bridgeless
graph has a connected spanning subgraph S = F U F resembling - to
some extent - B above. Namely: E' is an eulerian graph, F' is a linear
forest, the edges of F' are the bridges of S, and F and F are edge-disjoint
(for details, see [10, 11]).

Unfortunately, if one drops in either of the two Theorems 67, 68 the
condition that the respective graph is 2-connected and requires only
connectedness, then the corresponding statement is false, in general.
Figure 2.10 is the smallest example of a graph whose square is non-
hamiltonian.

Figure 2.10

On the other hand, the following is true (call a graph hamiltonian
connected if any two vertices can be joined by a hamiltonian path).

Theorem 69 ([39]) If G is a connected graph, then G3 is hamiltonian
connected.

Proof. It suffices to prove the theorem for any spanning tree T of G; T
exists by Theorem 11. For p := |V(T)| € {1,2,3} this is trivially true,
so assume w.l.o.g. p > 4, and choose z,y € V(T) arbitrarily.

Traversing Graphs: The Eulerian and Hamiltonian Theme 57

Case 1: z,y are non-adjacent. Consider P(z,y) C T, P(z,y) = z,zx/,
.2y, ..., y; ¢ #x,y (possibly ¥’ = y). Form T—z'y’ = Ty UT5, where
Ty, T, are trees (2'y’ is a bridge of T). W.lo.g. ' € V(T1), ¥ € V(T3).
It follows that = € V(T1), y € V(13).

By induction 7§ has a hamiltonian path P(z,z’). Consider next
T, = Ty U {z',2'y’} C T. By induction (T3")® has a hamiltonian path,
PQ(x,) y) .

Observing that T3, (T;7)3 C T3, and because V(T) = V(T1) U V(T3")
we conclude that Pj(z, '), Px(z',y) is a hamiltonian path in 73 joining
z,y.

Case 2: x,y are adjacent. T = T1 U {zy} U Ts where Ty N T, = 0,
z € Ty, y € Ty, Ty and Ty are trees. Suppose E(T1) # 0 # E(T3), then
let =’ be adjacent to z in T3, ¥y’ adjacent to y in Tp. dr(z',y’) = 3, so
z'y’ € E(T?). Let Py(x, ') be a hamiltonian path in T} joining x, ' and
let Py(y,y) be a hamiltonian path in T5 joining y',y. Then Pi(z,z'),
2y, Po(y/,y) is a hamiltonian path in T joining z and y.

If wlo.g. E(Ty) = 0, then let y' be adjacent to y in Tb. In T3, we
have a hamiltonian path P(y’,y). Note zy’ € E(T?3) since dp(z,y’) = 2.
Since E(Ty) = 0, it follows that z,xy’, P(y',y) is a hamiltonian path in
T3 as required. ®

Theorems 67 and 69 also indicate that if a graph G has locally many
edges, then one may hope to some extent that G is hamiltonian. Calling
a K13 a claw we define a graph G to be claw-free if no vertex-induced
subgraph is a claw. A special type of a claw-free graph is the line graph
L(G) of a graph G; it is defined by

V(L(G)) = E(G), and
ef € E(L(G)) if and only if e, f are adjacent edges in G.

Conjecture 70 (Matthews and Sumner, [32]) Every 4-connected
claw-free graph is hamiltonian.

Conjecture 71 (Thomassen, [40]) Every 4-connected line graph is
hamiltonian.

Noting that k(L(G)) = Ae(G) and that L(G) is hamiltonian if and
only if G has a dominating connected eulerian subgraph (i.e., every edge
of G is incident with a vertex of this subgraph) we conclude that the
following is equivalent to Conjecture 71.

58 ARC ROUTING

Conjecture 72 Every essentially 4-edge-connected graph has a domi-
nating connected eulerian subgraph.

In fact, it has been shown that Conjectures 46, 70, 71, 72 are equiv-
alent, {19, 38]. This brings us back to the consideration of 3-connected
3-regular graphs, for which it has been shown a long time ago that the
decision problem whether such graphs have hamiltonian cycles, is N'P-
complete even in the planar case (see e.g., [24]) — and this is the rea-
son why the A-trail problem for 3-connected planar eulerian graphs is
NP-complete (see above). - The same conclusion can be drawn w.r.t.
dominating cycles: to see this, take any 3-regular 3-connected graph G
(planar or not) and replace every vertex with a triangle, thus creating
G (see Figure 2.11) which is also 3-regular and 3-connected.

Figure 2.11

In fact, Ga has a dominating cycle if and only if G has a hamiltonian
cycle.

However, Conjecture 46 addresses 3-regular graphs G with A.(G) > 4,
whereas A\(Ga) = AMG) = &(G) < 3 in general. This fact may be
compared with the NP-completeness of the decision problem regard-
ing the existence of connected spanning eulerian subgraphs in arbitrary
3-edge-connected graphs (where it reduces to the hamiltonian problem
in the 3-regular case) vis-a-vis the theorem that every 4-edge-connected
graph has a connected spanning eulerian subgraph, [28]. - So, while
deciding the existence of hamiltonian cycles is NP-complete for planar
3-connected graphs, each of these graphs admits a closed walk passing
through every vertex at least once and at most twice, [23].

We finish this section by referring the interested reader again to Bondy’s
survey article 7], and to Bermond’s survey article [5].

6. ELEMENTS OF MATCHING THEORY

As origins of matching theory one may view Petersen’s Theorem (The-
orem 31) and Tait’s equivalent formulation of the Four Color Problem in

Traversing Graphs: The Eulerian and Hamiltonian Theme 59

terms of the existence of a 1-factorization in planar 2-connected 3-regular
graphs (see the last part of section 3). Let us start with the question
under which conditions certain classes of graphs have a 1-factor. For ex-
ample, if a 3-regular graph G is such that it has a vertex which does not
belong to any cycle of G, then G cannot have a 1-factor. So, what is a
meaningful sufficient condition for a k-regular graph to have a 1-factor?
When does a bipartite graph have a 1-factor?” When does an arbitrary
graph have a 1-factor? It is clear that in answering these questions it
suffices to restrict considerations to simple graphs; and clearly, if a graph
has a 1-factor, then it is of even order. The following results are answers
to the above questions. Rather than give detailed references, we refer to
the book on matching theory by Lovdsz and Plummer, {31].

Theorem 73 (Béibler’s Theorem) Letk > 1, and let G be a k-reqular
graph of even order. IfG is (k—1)-edge-connected, then G has a 1-factor.

Theorem 74 (Marriage Theorem or Frobenius’ Theorem) A bi-
partite graph G with vertex bipartition V(G) = AUB has a 1-factor if
and only if |A| = |B| and |A:]| < |[N(A1)| for every Ay C A (N(4;) is
the set of vertices of B which are adjacent to at least one vertex in Aj).

Theorem 75 (P. Hall’s Theorem) Let G be a bipartite graph with
vertez bipartition V(G) = AUB. G has a matching of A into B (i.e., a
matching M such that every a € A is incident to some e € M) if and
only if |N(A1)| > |A1| for every A; C A.

Clearly, Theorem 75 implies Theorem 74. We shall see, however, that
Theorem 74 also implies Theorem 75. For the following theorem, let
¢o(@G) denote the number of components of G having odd order.

Theorem 76 (Tutte’s 1-Factor Theorem) A graph G has a perfect
matching if and only if c,(G — S) < |S| for every S C V(G).

Before presenting the proof of this theorem as developed in [31], we
need some preliminary discussion. Call a simple graph G saturated non-
factorizable if G has no 1-factor, but G U {zy} has a 1-factor for any
z,y € V(G), zy € E(G).

Lemma 77 If G is saturated non-factorizable and of order p, and if S
is the set of vertices of degree p — 1, then the components of G — S are
complete graphs.

Proof. Suppose for some ab,bc € E(G — S) (if such a, b, c exist) that
ac & E(G — S). It follows by definition of S that there is d € V(G) such
that bd ¢ E(G). By the maximality of G, both G U {ac} and G U {bd}
have a 1-factor, Fy and F respectively. Consider the symmetric differ-
ence F1 A Fy := (Fy — F) U (Fy — F): it consists of alternating cycles

60 ARC ROUTING

(w.r.t. F1 and Fy), which thus have even length. Denote them such that
ac € E(Cl), bd € E(Cg)

Case 1: Cy # Cs. Then F3 := F; A E(Cy) is a 1-factor of G, contra-
dicting the hypothesis.

Case 2: C := C}y = Cy. Then C can be written w.l.o.g. as
C =b,bd,d,dz,z,...,y,ya,a,ac,c,...

(i-e., in traversing C from b along bd, a is being reached before c - note
that both ab,bc € E(G — S)). Let P(b,a) C C be the path from b to a
(in C). Then C’" := P(b,a), ab, b is an alternating cycle w.r.t. F, and
E(G) — F;. Thus Fy := Fo A E(C'") is a 1-factor in G, again a contra-
diction.

Whence it follows in both cases that if G’ is a component of G — S of
order p’ > 3, then no two vertices of G’ are of distance 2 apart, i.e., G’
is a complete graph. =

Lemma 78 G is saturated non-factorizable if and only if precisely one
of the following statements is true.

1 G is a complete graph of odd order.

2 G is of even order and contains disjoint complete subgraphs (Sp),
G1,...,Gg covering all of V(G), where Sy C V(G) and k = |So|+2;
G; is of odd order, and every x € V(G;) is adjacent to every s € Sy
for everyi € {1,...,k} (see Figure 2.12 — note that So = 0 and/or
G; ~ K, may hold for some i).

Proof. Suppose G is saturated non-factorizable. If G is of odd order,
then it must be a complete graph, trivially (no graph of odd order has
a 1-factor). Whence assume G is of even order, and let Sy be the set
of vertices of degree p — 1; possibly Sy = 0. In any case, by definition
of So, (Sp) is a complete graph. Let Gi,...,Gx be the components of
G — Sp having odd order. By Lemma 77, each G; is a complete graph.
Moreover, by definition of Sy, every z € V(G;) is adjacent to every
s € Sp. If k < |Sp|, possibly k£ = 0, then consider for each component
G’ of G — Sy of even order p’ a 1-factor F’, and if k > 1, take a 1-factor
F; in G; — z; for fixed z; € V(G;), 1 <t < k (F; = 0,possibly). Since
k < |So|, there exists a matching My of { z; : 1 < ¢ < k } into Sy. The
set of yet unmatched vertices of Sy induces a complete graph of even
order (since G is of even order), which has a 1-factor Fy. Thus

k
U FulURUMUF

p’even i=1

Traversing Graphs: The Eulerian and Hamiltonian Theme 61

(So)

Gk

Figure 2.12

is a 1-factor of G, a contradiction. Thus k > |Sg| + 1, and since G is of
even order it follows by parity that k& > |Sg| + 2. In case k > |Sg| + 3
add an edge zy for x € V(Gk—_1), y € V(Gk). Then

co(G U {zy} — So) =k —2 > |So| +1 > |Sy.

However, G := GU{zy} has a 1-factor F'™ at least k — 2 edges of which
are incident with a vertex in Sy (at least one edge per odd component
of G —Sp). Thus, |So| > k — 2 which is an obvious contradiction to the
last inequality. Whence k = |Sp| + 2.

Likewise, if G — Sp had an even component Gy, form Gt := GU {yz}
where y € V(Gg), z € V(Gp). G* having a 1-factor implies |Sp| >
co(Gt — Sp) = k = |Sp| + 2, again an obvious contradiction. Thus each
component of G — Sy is of odd order. Thus, if G is of even order, then
it has the structure as described in 2.

Conversely, if G is as described in 1., then it is saturated non-factoriz-
able. If it is as described in 2., then edges can be added only between
Components of G — Sy to obtain a simple graph again. Adding just one
such edge to obtain Gt and observing that ¢,(Gt — Sy) = k, we can
construct a 1-factor F'* of G* in a manner similar to the above case
k < |So|, with F* containing the additional edge. Thus G is saturated
non-factorizable. The Lemma now follows. m

The proof of Theorem 76 is now easy: first of all, we may extract from
the proof of Lemma 78 that if G has a 1-factor, then ¢,(G — S) < |S|

62 ARC ROUTING

for every S < V(G). To show the converse we proceed by contradic-
tion; i.e., we assume the validity of this inequality for some G having no
1-factor. Next, add edges between non-adjacent vertices of G until G’
is reached such that G’ has no 1l-factor, but adding any edge between
non-adjacent vertices of G’ results in G” having a 1-factor. Thus G’
is saturated non-factorizable. Since ¢,(G — S) < |S| by hypothesis, we
also have ¢,(G' — S) < |S|, because adding edges does not increase the
number ¢,(G’ — S). This implies, in particular, that G and thus also G’
must be of even order; otherwise, take S = @ to obtain a contradiction
to co(G' — 8) = ¢,(G') < |S| = 0 since ¢,(G') > 1 if G’ is of odd or-
der. Now, defining Sy w.r.t. G’ as before (possibly Sy = () we obtain by
Lemma 78.2., that ¢,(G' — So) = |So| +2. Since ¢,(G — So) > ¢,(G' — Sp)
we obtain altogether ¢,(G —Sp) > |So| +2, contradicting the assumption
co(G = S) < |S| for all S C V(G). The theorem now follows.

Now we use Theorem 76 to deduce the validity of Theorems 73 and 74.
Suppose first, that Theorem 73 is false, and let 7 > 1 be an integer such
that there is an r-regular (r — 1)-edge-connected G for which the theorem
fails. By Theorem 76, there is S C V(G) such that ¢,(G — S) > |S| + 2;
this inequality follows by parity since G is of even order (see the analo-
gous argument in the proof of Lemma 78). Let Gy, ...,Gg, k = ¢,(G—1S5),
be the odd components of G—S. We claim that there are at least 7 edges
joining vertices of G; to vertices of S, for ¢ = 1,..., k. There are at least
r —1 such edges anyway since G is (r — 1)-edge-connected. However, sup-
pose there is an edge cut E; of precisely r — 1 edges separating some G;
from the rest of the graph, for some i € {1,...,k}. Let Gi+ be obtained
from G; by introducing z € V(G) and joining z to every z € V(G;) by
|Ez N E;| edges. Then de(x) = r and dG;* (2) = r — 1. However, since
G is of odd order, Gj has an odd number of odd vertices, contradicting
the Handshaking Lemma. This proves our claim.

Consequently we have |F;| > r for the edge cut E; separating G; from
the rest of the graph for every 7 = 1,...,k, and since these |E;| edges
run between vertices of G; and S, we have

k
|E(S,8)| 2> |Ei| > rk > r(IS| +2) > r|S].
=1
On the other hand, G being r-regular implies |E(S,S)| < 7|S|, an ob-
vious contradiction to the preceding inequality. This proves Theorem 73.

To derive the Marriage Theorem from Theorem 76 we first observe
that if G has a 1-factor F, then |N(A;)| > |A1] follows of necessity for
every Ay C A: for the edges of F incident to A; cover precisely |A;]
vertices in N(A;). To see that the inequality |N(A1)| > |A;| for every

Traversing Graphs: The Eulerian and Hamiltonian Theme 63

A1 C A implies that G has a 1-factor, we proceed again by contradic-
tion. Consequently, a bipartite graph G with |4| = |B| satisfying this
inequality exists, yet it has no 1-factor. By Theorem 76, S C V(G) exists
such that c,(G — S) > |S|. We observe that trivially S # V(G), and
S # (since G is of even order (|V(G)| = |A| + |B| = 2|A[); moreover,
S # A, B since ¢,(G — A) = ¢o(G ~ B) = |A| = |B|. Thus we can write
S = A1 UB; with A — A1#0 # B — B;. Among all possible choices for
the above S, let S be chosen of maximum size.

Suppose now that G —S had a nontrivial odd component G. Then for
the corresponding bipartition V(Gp) := Ao U By we have Ag = V(Gp) N
A, By = V(Go)ﬂB, |A0! #* lBol. If |A0| > |Bol define Sp := SUBy. Since
G —Sp = (G —S) — By, we then have ¢,(G — Sp) = ¢o(G—S)+|A4g|—1 >
|S| + |Ao] > |S| + |Bol = |So], contradicting the choice of S. Likewise,
if |Bp| > |Ao| we set Sp := SU Ap to obtain an analogous contradiction.
Thus every odd component of G—S is a single vertex. Thus the subgraph
induced by these odd components of G — S can be written in the form
A UB] with A} C A, Bf C B, and trivially AjNA; = ByNB; = 0.
Clearly,

1] = |A1] + B < |45] + B} = (G -),
and N(4}) € By, N(B}) € Ar

By hypothesis, however, we also have

IN(AD] > AL
Thus we obtain |B;| > |A]}|, implying

|1l +|Bi] < |A43] +|Bi| < |Bi| + 1B
and hence |[N(B})| < A1l < Bj. (*)
In any case, N(A — N(Bj{)) € B — Bj; and by hypothesis
IN(A=N(B)) 24— N(By)l.

Combining these two inequalities we obtain
|B—Bi| = |B| - |Bj| 2 IN(A-N(B))| 2 |A-N(By)| = |A| - IN(B))];

ie., [N(B})| > |Bjl, a contradiction to inequality (*). Whence we con-
clude that S C V(G) with |S| < ¢o(G — S) does not exist. This finishes
the proof of the Marriage Theorem.

To see finally that the Marriage Theorem implies P. Hall’s Theorem,
we first observe that the inequality stated in the latter theorem is a
necessary condition indeed, just the same as it was in the case of the

64 ARC ROUTING

former theorem. Now, to prove sufficiency it follows from the choice
A1 = A C V(G) that |B| > |A|. If |B| = |A| then P. Hall’'s Theorem
reduces to the former theorem, and nothing has to be proved anymore.

Whence assume |B| > |A|. Construct a new bipartite graph G+
by adding k new vertices zj,...,2z; and joining each of them to ev-
ery v € B, where k = |B| — |A|. Thus we have |B*| = |A™| for
the bipartition V(Gt) = At UB™. Note that Bt = B and 2; € At
for i = 1,...,k. Let A7 C A" be arbitrarily chosen. If z; € Af
for at least one j, then N(A]) = B and therefore, |N(A)| > |47
If, however, AT C A, then |N(A})| > |AF| follows by the hypothe-
sis of Hall’s Theorem. It follows that G* has a 1-factor F}. Setting
F:=F-{e€e ANE; :j€{l,...,k} }, we conclude that F is a
matching in G as required.

The Marriage Theorem can also be used to deduce that every regu-
lar bipartite graph has a 1-factor and therefore, a 1-factorization (thus
no longer requiring any connectivity condition as in Babler’s Theorem).
Namely: Considering for a connected r-regular bipartite graph G with
vertex bipartition V(G) = AUB any A; C A one deduces for the edge
cut Ey separating (A; U N(A;)) from ((A— A1) U (B — N(4,))) that

|[E((A1UN(A1)))| = r|A1| = 7|N(A1)| = |Eo| < 7|N(A1)];
ie., |A1] < |N(A1)]

for every A; C A. That is, since we necessarily have |A| = |B|, G has a
1-factor L; by the Marriage Theorem. Thus, G; := G — L, is a bipartite
(r — 1)-regular graph, and adding L, to a 1-factorization of G; (which
exists by induction since a 1-regular graph has its edge set as its only
1-factor and is bipartite), one obtains a 1-factorization of G. We also
note that this result is equivalent to the existence of a 2-factorization in
arbitrary 2r-regular graphs.

The following result is of central importance in matching theory. Its
proof follows along the lines of (31, 1.2.2. Lemma).

Theorem 79 (Ko6nig’s Minimax Theorem) Let G be a bipartite
graph. The size of a marimum matching My equals the minimum size of
a set Vo C V(G) such that each edge of G is incident with (at least) one
vertez in Vj.

Proof. Denote m(G) := |Mp| and t(G) := |V| where My and Vj are
defined as above for an arbitrary (not necessarily bipartite) graph G. For
every e € My, at least one incident vertex must lie in V by definition of
Vo. Hence t(G) > m(G) for arbitrary graphs.

Traversing Graphs: The Eulerian and Hamiltonian Theme 65

Now consider a maximum matching Mpy in a bipartite graph G. W.l.o.g.,

G is connected; otherwise, establishing t(G;) = m(G;) for each compo-
nent G; of G yields t(G) = m(G). Denote by A and B, respectively, the
two classes in the vertex bipartition of V(G). Let Ag € A,By C B be
the respective sets of vertices incident with edges of My. If Ag = A, then
every edge of G is incident with a vertex of Ap, whence t(G) < |Ag| =
m(G); so in this case t(G) = m(G). We arrive at the same conclusion
if By = B. Whence assume A — Ay # 0 # B — By. Set A’ := A — Ao,
B’ := B — By. Also, no a € A is adjacent to any b € B’ since My is a
maximum matching. Thus, N(Bgy) = A and N(Ag) = B, and all edges
of G are incident with some a € Ag or some b € By.

Consider now the set of paths P4 and Ppg/, which start at a vertex in
A', B’ respectively, and are alternating in the edges of F(G) — My and
My. It follows from the maximality of My that

Pa N Pg = (for every such P4 and every such Ppr (1)

It may very well happen that some e € M belongs to no P4/ and no Ppgr.
In any case, the subgraphs G4 := (|JV(Par)) and Gp := ({JV(Pg))
satisfy G4 NG g = () because of (1). It also follows that

any e € E(V(Ga/),V(Ga)) is incident to a bg € Bo N V(G a),

any e € E(V(Gpg/),V(Gpg)) is incident to a ag € Ao NV (Gp)- (2)

Thus, all edges of G incident with some vertex of G 4/ (G /) are covered
by (i.e., incident with an element of) B := BoNV(Gya/) (A := Ao N
V(Gp)) (see Figure 2.13).

B Bl B - By

€ My (S]\/[6

A— A Al Al

Figure 2.13

Next, set M) := {e € My — (E(GA/) U E(GB/))}, and let Ag C Ay,
B{ C By respectively, be the respective set of vertices incident with some
element of M]. Choose Xy € {Ag, By} arbitrarily. It follows from (1)
and (2) that

m(G) = |Mo| = | 4| + |Bb| + X0l 3)

66 ARC ROUTING

and that every edge of G is incident with some z € Aj U By U Xp. Thus
t(G) < m(G) by (3) implying t(G) = m(G) because of t(G) > m(G) for
arbitrary graphs. The theorem now follows. =

The proof of Theorem 79 gives rise to new concepts which, in turn,
leads to a characterization of maximum matchings in arbitrary graphs,
and a good matching algorithm in bipartite graphs. To this end, consider
an arbitrary graph G and an arbitrary matching M in G. Let Py be
an alternating path w.r.t. M and E(G) — M (Py need not start/end
with an edge of M); call Pys an M-alternating path. Call v € V(G)
not covered by M if E, N M = §. Trivially, if an M-alternating path
P connects v and w which are not covered by M, then the symmetric
difference M A E(P) is a matching larger than M. Such P is called an
M-augmenting path. Thus, if M is a maximum matching in G, then G
contains no M-augmenting path. In fact, the converse holds as well.

Theorem 80 (Berge, [3]) A matching M in a graph G is a mazimum
matching if and only if G contains no M -augmenting path.

Proof. From what we just said it suffices to assume for a matching
M in G that G has no M-augmenting path. Let M; be a maximum
matching in G and form M A M; each component of which is either
an alternating cycle C' w.r.t. M and M, or both an M-alternating and
M -alternating path P (the case M A M; = (is trivial since it means
that M = M) is a maximum matching). However, P cannot be M-
augmenting by assumption. It cannot be Mj-augmenting either since
M, is a maximum matching. Thus £(P) is even of necessity, implying for
arbitrary K € {C, P} |E(K)NM| = |E(K)NM;| from which |M| = | M|
follows which had to be shown. =

Next, consider again a connected bipartite graph G with vertex bi-
partition V(G) = AUB; let M be any matching in G, and let A’ C A,
B’ C B be the set of vertices which are not covered by M. Denote by
U C A the set of vertices reachable by an M-alternating path starting
in A" (cf. this with the proof of Theorem 79: U = V(G4/) N A). To
construct U, ‘grow’ a maximal forest F" having the following properties:

1 dp(b) = 2 for every b € V(F) N B, and some e € M is incident
with b in F.

2 every component of F' contains a point of A’.

It follows that A’ C V(F) (a € A’ can be added as a singleton compo-
nent), and that U = V(F) N A. The following is basically a consequence
of the proof of Theorem 79.

Traversing Graphs: The Eulerian and Hamiltonian Theme — 67

Corollary 81 Let G, M, A, B, A', B’ and F be as above. M is a
mazimum matching if and only if no ' € B’ is adjacent to any a €
V(F)nA.

The following algorithm derives from the preceding considerations; the
approach used in it is called the Hungarian Method, and the final forest
constructed by it (see below) is a Hungarian forest (see [31, p. 15]). We
use the notation explained above.

Algorithm 82 (Bipartite Matching Algorithm)

Input: Bipartite graph G with V(G) = AU B, any matching M.

Step 1. Form a mazimal forest F' with the above properties 1. and 2.
Step 2. If xy € E(G) exists such that x € V(F)N A, y € B, then
F U {y,zy} contains an M-augmenting path P; M' := M A E(P) is a
larger matching. Set M := M’ and go to Step 1.

Step 3. No zy € E(G) with the above properties exists: M is a mazxi-
mum matching.

We note in passing that one can transform this algorithm into an LP
for which its implementation produces a maximum matching in polyno-
mial time. This is even true in the case of a maximum/minimum cost
perfect matching where the edges of a graph are assigned costs or weights
(see below and the next section). Finally let us remark that finding a
maximum (maximum/minimum cost) matching in an arbitrary graph is
much more involved, and thus cannot be treated in this chapter; this will
be done in other chapters of this book (see Derigs, this book). Again,
the interested reader is referred to [31] for a thorough discussion of this
topic which is irrevocably connected with the work of J. Edmonds.

We now turn to other algorithmic aspects of applied graph theory
which are essential for the treatment of various traversal problems: de-
termining shortest paths in a (di)graph and a minimum cost spanning
tree in a graph. In both cases, the edges/arcs of the (di)graph under
consideration are assigned non-negative real numbers called the length
or the cost of traversing the respective edge/arc, depending on the con-
text.

The Shortest Path Problem. We are given a digraph D = V U A
A = {a1,...,a4} and non-negative real numbers ¢; associated with a;,7 =
1,...,q (4 can be thought of as the ‘length’ of a;). For a,b € V(D), find
a path W = @,a;,,v1,a,, . - - ,ai,,b such that £(W) := > =1 4i; is mini-
mum.

The following polynomial time algorithm has been found indepen-
dently by Dantzig and Dijkstra; for a discussion of this algorithm see,
e.g., [22, 36, 42].

68 ARC ROUTING

Algorithm 83 (Shortest Path Algorithm)

Input: A digraph D = V U A with arc lengths as described in Shortest
Path Problem above.

Step 1. Sett(a) =0, vo:=a, Vo = {vo}.

Step 2. For every v; € Vi, k > 0, determine an “immediate successor”
v; € Vi (i.e., (vi,v5) € A) such that for (vi,v;) = am, €m = min{l, :
v; is tail of ar}. lm =: €m(v;). Determine vy € Vi such that t(v}) +
Im(v}) = mingev, {t(vi) + €m(vi)}. Denote by w! a vertex such that
(v}, w}) has length £y, (v}).

Step 3. Set Viy1 = Vi U {w}} and set t(w}) = t(v}) + lm(vy). Set
k =k + 1 and go to Step 2 if a vertex v € Viq1 adjacent from some
vertex in Vg4 exists.

Step 4. Ifb € Ay then stop. t(b) is the length of a shortest path from &
tobin D. Ifb & Ay then no path from a to b exists.

We refrain from justifying this algorithm (i.e., that it delivers what
it claims to achieve - such justification can be found in the literature
cited above), but note in passing that its running time is O(n3) which
can be improved to O(n?) by slightly modifying the algorithm (see [36]).
We also observe that the Shortest Path Problem can be rephrased as
a matching problem in a subgraph of the prism P(G), [31]. Matching
theory can also be employed to solve the more general case in which the
real numbers ¢; need not be non-negative.

Observe that the above algorithm can be easily adapted to the case of
graphs: just replace every edge ¢;, 1 <1 < g, by two oppositely oriented
arcs each of which is assigned the same length ¢; as e; was.

The Minimum Cost Spanning Tree Problem. In an undirected con-
nected graph G = VUE, E = {ey,... ,eq}, every e; is associated with
a real number ¢; (the “length” of e;). Find a spanning tree T in G such
that £(T') := 3 . cp(r) ¢i is minimum.

The next algorithm is known as Kruskal’s Algorithm but goes back
to Boruvka, [25]. It produces a minimum cost spanning tree very fast;
because of its structure it is often quoted as an example of a Greedy
Algorithm.

Algorithm 84 (Kruskal’s Algorithm)

Input : Connected Graph G of order p, E(G) = {e1,...,eq}, €; associ-
ated with real number £;. W.lo.g. £ <l < --- < 4.

Step 1. Ej:={e1}, G1 :=(En), seti=1.

Step 2. Find the minimum j > max{ k : ex € E; } such that (E;U{e;})
is acyclic. Set B4 = E; U {ej}, Git1 = (Fit1). Seti=1i+1

Step 3. Ifi=p—1 go to Step 4; otherwise go to Step 2.

Step 4. G; is a minimum cost spanning tree of G.

Traversing Graphs: The Eulerian and Hamiltonian Theme — 69

Justification of the algorithm. Since Gp—1 is an acyclic graph on p
vertices and p — 1 edges, it is a spanning tree of G (see Theorem 12.5.);
and Gp-1 exists because G is connected: for, suppose no edge of E(G) —
E; could be added to E; for some i < p — 1. Then there would be a
component G, C G; such that the edge cut E' := E(V(G}),V(G})) in G
would be non-empty since G is connected and |[V(G)| <p—1 (G} is a
tree of size <). Yet, for every e, € E', G; U {e,} contains a cycle C, so
the two vertices x,y incident with e, can be joined by the path C' —e, in
G;, i.e., z,y € V(G}), an obvious contradiction to e, € E’. It remains to
show that Tp := Gp—1 is of minimum cost. Let 7" be any minimum cost
spanning tree, E(T) = {er,,...,er,_;} such that 1y <ry < -+ < rp g,
Wlo.g., T # Tp. Consequently ¢y, < &y, < -0 < 4 (note that
by the assumption in Input, j < k implies ¢; < £;). By the choice of
e1,ly < {,,. If ey € E(T), then form T U {e1}. It has a unique cycle
C; which contains e;, by Theorem 12.6. It follows that ¢, = ¢; for
every e, € E(C1). For otherwise, one could delete e, € E(C;) with
£, > £, to create a spanning tree T1 = (T U {e1}) — {ex} of G (see the
discussion following Theorem 11) with ¢(T1) < ¢(T), a contradiction to
the choice of T'. Whence T is also a minimum cost spanning tree. So set
T, =T ife; € E(T) and T; as above, otherwise. Assume, by induction,
that we have constructed a minimum cost spanning tree 75, s > 1,
such that e;,,...,e;, € E(T;) and E(Ts) — {ei,,---,e,} € E(T), where
Ep_1 ={ey,...,€,_,}, 11 = 1, and such that ¢;, </, . Analogously,
set Tsy1 =T if €;,,, € E(Ts); otherwise, Ts U {e;,,, } contains a unique
cycle Csy1 and e;,, € Csy1. By construction of Egyq,...,Ep_y, it
follows that E" := E(Cs41)N(E(Ts)— E(To)) # 0. For e € E” it follows
of necessity that ¢y = ¢;,,,; otherwise, £y > {; ,, yields a spanning
tree T" := (T U {ei,,, }) — {ex} with £(T") < £(T) contradicting the
choice of T, whereas ¢, < ¢;,,, contradicts the choice of e;,,, instead
of ey in constructing Fsy1. Whence T" can be constructed anyway if
eip1 € E(Ty), and so Ty :=T" is also a minimum cost spanning tree.
It now follows by induction that Tp,_; = Ty is a minimum cost spanning
tree.

7. THE CHINESE POSTMAN PROBLEM,
THE TRAVELING SALESMAN PROBLEM,
AND RELATED PROBLEMS

As we shall see below, the Chinese Postman Problem (CPP) - in
essence — seeks to double certain edges of a given graph G such that the
resulting graph is eulerian. The Hamiltonian Walk Problem (which is
closely related to the Traveling Salesman Problem), on the other hand,
seeks to double certain edges of a certain connected spanning subgraph
G’ of G such that the graph resulting from G’ is eulerian.

70 ARC ROUTING

The CPP was proposed in 1959 by Kwan Mei-Ko (= Guan Meigu)
and states in its general form the following: If G = VU FE is a connected
graph together with a cost function ¢ : E — IR", find a closed walk
W = vy,e1.v9,€e9,...,Up, en,v1 that starts at a given v; € V and tra-
verses each edge at least once so that the total cost (W) := Y7~ | c(e;)
is minimum. Such a walk is called a Postman Tour (PT).

We immediately have the following set of inequalities (for E, C E we
set ¢(Eo) := Y., c(e), and for G, C G we set ¢(Go) := ¢(E(G,))):

c(G) < ¢(W) < 2¢(G)

The lower bound is attained if and only if G is eulerian, whereas the
upper bound is attained if and only if G is a tree.

Theorem 85 A closed covering walk (CCW) W in the connected graph
G with given ¢ := E(G) — IRY ts a PT if and only if the following two
conditions hold:

1 Mw(e) <2 for every e € E(G).
2 for every cycle C of G, ¢(E2(C)) < 3¢(C)
where E(C)={e€ E(C): Aw(e) =2}.

Proof. (=) Define G* by replacing each edge e of G by ke := Ay (e)
parallel edges e(1), ... ek joining the same vertices as e. Then W cor-
responds in Gt to T, an eulerian trail of G*. If e exists such that
Aw(e) > 3 then remove elke) elke=1) from G+ to get a new graph that
is still connected and eulerian and therefore has an eulerian trail which
corresponds to a CCW W’ in G with ¢(W’) < ¢(W), a contradiction.

If there is a cycle C such that ¢(E2(C)) > 3¢(C) then let G*+ :=
(Gt ={e® :ee Ey(C) HU{e? :e€ E(C)— Ey(C) }; it is also a
connected eulerian supergraph of G (for e € E(C) — E5(C), e® means
adding an edge parallel to e). An eulerian trail 77 of G™* corresponds
to a closed covering walk W; in G having total cost ¢(W7) = ¢(W) —
(Bo(C)) + (e(E(C)) — c(Ex(C))) = e(W) +¢(C) — 2(E2(C)) < e(W),

a contradiction.

(<) Let W' be a CCW of G satisfying conditions I, 2 and let W be
a PT of G. Note that W also satisfies 1 and 2 because of the first part
of the proof. We need to show that ¢(W’) = ¢(W), i.e. that W’ is also
a PT. Define E3(G) analogously to E2(C) above and set

G = {{E2(G) with respect to W'})q

Traversing Graphs: The Eulerian and Hamiltonian Theme 71

= ({E2(G) with respect to W})a
Go:=G1AGy

It follows for every v € V(G) that dg, (v) = dg,(v) = d(v) (mod 2);
thus Gy is eulerian.

We may assume E(Gg) # 0; otherwise, ¢(G1) = ¢(G2) and hence
c(W’') = ¢(W). However, E(Go) # § implies that Go has a nontrivial
cycle decomposition {C1,... ,Cr},m > 1, so that Zle c(C;) = ¢(Go).
We have by assumption ¢;1 = ¢(E(C;) N E(G1)) < 1c(C;) and since
W is PT, we also have ¢; 2 := ¢(E(Ci) N B(G2)) < 3¢(Ci),i=1,...,r
However, ¢;1 + ¢;2 = ¢(C;) implying equality in the preceding inequal-
ities. Therefore, ¢(E(Go) N E(G1)) = c(E(Go) N E(G2)) = 3c(Go) and
therefore ¢(G1) = ¢(G2) implying again c¢(W') = c¢(W). It follows that
W’'is alsoa PT. m

However, as interesting as Theorem 85 is (Guan Meigu proved it origi-
nally only for the case ¢ = 1), it is not feasible per se for solving the CPP
algorithmically since the number of cycles in G might be exponentially
large when compared with the size of G. Nonetheless, the structure of
E»(G) points into the right direction.

Let W be a PT in G with given ¢ : E(G) — IRT; set H := ({ e €
E(G) : \w(e) =2 }). By the above,

1. H is acyclic.
2 dg(v) = dy(v) mod 2 for every v € V(G).

If an arbitrary H C G (H not necessarily connected) satisfies both condi-
tions above then one can get a CCW Wy such that Aw,, (e) = 2 for every
e € E(H), and Awy (e) = 1 for every e € E(G) — E(H), but Wy may not
be a PT. However, 1 and 2 give rise to a decomposition of E(H) into k
paths Py, ..., P such that every odd vertex is an endvertex of precisely
one such path, where {v1,... ,vok} = Vo4q is the set of odd vertices of G.
So if P; connects vj,,_, and vj,; (Voda = {Vj;,Vja, - - - »Ujy, }), then these k
paths partition Vogq into classes of size 2 : II(Voqd) = { {Vjpi_1: Vi } 1 1 <
i < k }. Now, Dijkstra’s algorithm (adapted to graphs; see above) yields

in polynomial time a path P(vj,,_,, V) such that its length ¢j,. . is
k *

i=1Chyi_1.jn, We can formulate the next result.

minimum. Setting ¢f; =

Theorem 86 Given a connected graph G with associated cost function
c: E(G) = IR* finding a PT is equivalent to finding a partition I1(Vodd)
such that cf; is minimum.

Observe that once such II{(V,44) with minimum cf; has been found,
the corresponding k paths will be automatically pairwise edge-disjoint,

72 ARC ROUTING

and creating an eulerian supergraph G+ by doubling the edges of these
k paths, any eulerian trail in Gt corresponds to a CCW W in G such
that W is a PT in G. Moreover, we then have ¢(W) = ¢(G) + cfj, where
cfp is minimum.

Create an auxiliary graph Ko, whose vertices are the odd vertices of
G and define a cost function ¢* : E(Ka) — Rt by

c*(vivj) = ¢} ; = minpg, »,)ca (P (vi, vj))

Dijkstra’s algorithm yields not only the number ¢} ; but also a corre-
sponding path in polynomial time. It is clear that every II(Voaq) cor-
responds to a perfect matching in (Ko, c*), and vice versa. Thus the
following is true.

Theorem 87 Solving the CPP in (G, c) is equivalent to finding a min-

imum cost perfect matching in (Ko, c*) where
*

Cij= c*(vi, vj) = minp(y, »)ce c(P(vi,vy))-
Thus the cost of a PT W in G is ¢(W) = ¢(G) + ¢* (M) where
M is a minimum cost perfect matching in (Ko, c*).

Remark. Suppose (G,c) has a perfect matching. Then finding a
minimum cost perfect matching can be transformed to the problem of
finding a maximum cost perfect matching M in G with cost function

E(G) — R*, where ¢ (e) := K —c(e), where K is some real number
greater than max c(e). Then c;(M) = §K -3 cprc(e) = 5K — (M)
where p = |V(G)|. Thus ¢;(M) is maximum if and only if ¢(M) is mini-
mum. Thus a polynomial time algorithm for one problem will lead to a
polynomial time algorithm for the other, since the transition from c to
c) described above is linear in |E(G)].

Algorithm 88

Step 0: Given (G,c), ¢ : E(G) — R™, set Vo(G) = Vogq = {v1,..-,

vor}. If Vo(G) = 0 then G is eulerian and any eulerian trail of G is a

PT.

Step 1. Determine values ¢} ; := ¢*(v;,v;) := Minp(, »,)cc (P (vi, v5))

for1<i,57 <2k, i#].

(Note that c* : E(Ka) — IRY can be determined in polynomial time).

Step 2. Find a minimum cost perfect matching M in (Ko, c*) where
V(Kax) = Vo(G).

(Note that there are polynomial time algorithms for finding such mini-

mum cost perfect matchings).

Step 3. For every viv; € M consider the path P(v;,v;) constructed in

the course of determining c} ; (so ¢(P(vi,v;)) is minimum) and double in

G the edges of P(vi,v;). Denote the resulting (eulerian) graph by G*.

Traversing Graphs: The Eulerian and Hamiltonian Theme 73

Step 4. Find an eulerian trail T in G (again, this can be done in
polynomial time) and translate it into a CCW W in G.
Step 5. W is a PT of G.

Since this algorithm does not repeat any step and since each step can
be done in polynomial time, therefore the algorithm itself terminates in
polynomial time.

The preceding considerations also lead to the following.

Theorem 89 Given a connected graph G with cost function ¢ : E(G) —
IR™, the CPP can be formulated as an Integer Linear Programming Prob-
lem as follows:

Determine ze € {0,1},e € E(G)

such that Z c(e)xe is minimum
EEEu

subject to Z (1+z.) =0 mod 2 for every v € V(G).
EEEv

Given (G, ¢) the Mazimum Cost Cycle Packing Problem (MCPP), asks
for a set S of edge-disjoint cycles such that ¢(S) ==} .5 ¢(C;) is max-
imum.

Theorem 90 The MCPP is equivalent to CPP in the sense that any
solution of the CPP yields a solution of the MCPP. In particular, if W
is a PT for a given connected graph G and Gy := ({ e € E(G) : Aw(e) =
1 }) then Gw is eulerian and any cycle decomposition Sw of Gw is a
solution of the MCPP. Conversely, if S is a solution of the MCPP then
G has a PT Wy such that Aw,(e) = 1 if e € E(Sp) and Aw,(e) = 2
otherwise.

Proof. Let W be a PT. Set Hy := ({ e € E(G) : A\w(e) =2 }). Note
Vodd(Hw) = Voad(G) so Gw := G — Hw is eulerian and has a cycle
decomposition Sy. So ¢(G) = ¢(Gw) + ¢(Hw) = c(Sw) + c(Hw).

On the other hand if H is an arbitrary subgraph with V,gq(H) =
Vodd(G) then Gy := G — H is eulerian and thus has a cycle decomposi-
tion Sg, and ¢(G) = ¢(Sg,) + ¢(H). Since Hy corresponds to a PT,
‘/odd(HW) = Vodd(G) = V:,dd(H), hence C(Hw) < C(H) Note that H
gives rise to a CCW W(H) in G such that

Aw(€) = { 2 i i?ﬁﬁi

Observing further that this correspondence between H
Vodd(H) = Voq4(G) and eulerian subgraphs Gy := G — H

74 ARC ROUTING

bijection, we conclude that ¢(Sw) = maxc(S) where the maximum is
taken over all sets S of edge-disjoint cycles.

Conversely, consider a solution Sy of the MCPP,

Hy:=G- |} E(C).
Ci€So

Also, consider Gy := G — H for H with V,44(H) = V,44(G), so Gy is eu-
lerian. Let Sg,, be a cycle decomposition of G . Since C(SGHO) =¢(Sh)
is maximum over all Sg, as defined above, and V,44(H) = V,44(GQ) =
Vodd(Hp), this implies that there is a CCW W) in G such that ¢(Wp) =
c(G) + c(Hp) and ¢(Hp) is minimum. Thus W is a minimum cost CCW
of G and hence a PT. m

Corollary 91 The MCPP can be solved in polynomial time.

The Minimum Cost Cycle Covering Problem (MCCP) can be stated
as follows. Given a bridgeless graph G, E(G) # 0, c: E(G) — IR*, find
a cycle cover S such that ¢(5) = } ;- csc(C;) is minimum. Let S be
any cycle cover of G. Define Ag(e) to be the number of elements of S
containing e, for any edge e of G. Set k(e) = Ag(e) — 1 Ve € E(G) and
add k(e) parallel edges to G. Call the graph thus obtained G*(9); it is
eulerian (S corresponds to a cycle decomposition St of G*(S)). G*(S5)
is connected if and only if G is connected. An eulerian trail T+ in G*(S)
corresponds to a CCW W™ in G such that ¢c(W*) = ¢(S). Solving the
CPP for (G,c), let W be a PT in G. Thus ¢(W) < ¢(WT), implying
that ¢(W) < ¢(S).

Theorem 92 If G is a connected bridgeless graph with cost function
¢ : E(G) — IR" then any PT W and any solution S of the MCCP
satisfy (W) < ¢(S).

Note that if Gt is an eulerian supergraph of G resulting from dou-
bling certain edges of G the cycle decomposition ST of G* may not
correspond to a cycle cover of G. If C = C(e,€’) = z,e,y,e’,z € ST
for ¢ € E(Gt) — E(G), then C does not correspond to a cycle of G.
However, if G has a cycle decomposition S* such that for every e with
Aw(e) = 2 (where W is a PT corresponding to G*) the elements of S*
containing e, e’ correspond to cycles in G, then S* corresponds to a cycle
cover S in G such that ¢(S) = ¢(W).

However, for the Petersen Graph, with ¢ = 1, any PT W satisfies
c(W) = 20, whereas any solution S of the MCCP satisfies ¢(S) = 21.
This fact follows from the nonexistence of an Xs-compatible cycle decom-
position in Kj (see Figure 2.6 and the discussion of it). Thus, starting

Traversing Graphs: The Eulerian and Hamiltonian Theme 75

with the Petersen graph one can construct an infinite set of 3-regular
graphs for which the inequality in Theorem 92 is strict. In the case of
planar graphs however, the situation is quite different. Call a transition
system X of an eulerian graph G with §(G) > 4 non-separating if no
t € X is an edge cut.

Theorem 93 ([12]) Given a planar eulerian graph G with §(G) > 4
and a nonseparating system X of transitions, there is an X -compatible
cycle decomposition of G.

In fact, Theorem 93 can be proved quite easily by applying the Four
Colour Theorem. However, the proof in [12] does not rely on the latter.
Consequently, Theorem 93 is a nontrivial necessary condition for this
famous result. — However, Theorem 93 is key in proving the next result

(see [18]).

Theorem 94 Let G be a planar bridgeless graph, ¢ : E(G) — IR* a cost
function. If W is a PT and S is a MCC then ¢(W) = ¢(S).

Note that Theorem 94 does not say that finding a MCC S in G is
equivalent to finding a PT in G. But finding an X-compatible cycle
decomposition in a planar eulerian graph G can be done in polynomial
time using the Four Colour Theorem. Thus finding an MCC for (G, ¢),
where G is planar and bridgeless, can be done in polynomial time by first
solving the CPP in (G, ¢). — For generalizations of Theorem 93, see [43].

Just as the CPP has been phrased for graphs, one might pose the
analogous problem for digraphs:

Given a digraph D and a cost function ¢ : A(D) — R*, find a CCW
in D of minimum cost.

This problem is called the Directed Postman Problem (DPP).

It is easy enough to see that for given (D, c), the DPP has a solution
if and only if D is strongly connected. We note in passing that directed
postman tours (DPTs) can be characterized in a way similar to Theo-
rem 85, [20]. In the case of a DPT W in (D, c), however, an arc of D
may very well be traversed more than twice by W. This is also expressed
in the following ILP corresponding to DPP w.r.t. (D,c). Namely:

determine ze € NU{0}, a € A(D),

such that Z c(a)xq is minimum
a€A(D)

subject to Z Tq — Z z, =d (v) —dt(v)

acA} acA;

76 ARC ROUTING

Nonetheless, the basic idea of creating an eulerian superdigraph D% of
D by adding parallel arcs such that the additional costs are minimum,
is analogous to the case of graphs. The idea of transforming the DPP
to a matching problem is also analogous to the case of graphs: now,
however, one is faced with finding a minimum cost perfect matching
M in a complete bipartite graph whose order depends on the numbers
d*(v)—d~(v),v € V(D). This problem is a typical case of an Assignment
Problem. Once such M has been found, the transformation of D into
the eulerian superdigraph D% with the help of the paths corresponding
to elements of M, and reinterpreting an eulerian trail of Dt as a DPT in
D, is analogous to the case of graphs. The paths however, may no longer
be arc-disjoint since arcs can be traversed only in one direction. This
is also the reason why in rephrasing Theorem 92 for strongly connected
digraphs, a solution W of the DPP and a solution S of the MCCP satisfy
(W) = ¢(5).

As for the Mized Postman Problem (MPP), one is given H = V(H) U
E(HYU A(H), c: E(H)U A(H) — IR*, and has to determine a CCW
W in H such that c(W) =} e pia Aw(f)e(f) is minimum.

To determine the existence of a solution of MPP for H one first de-
termines if H has a CCW. This can be done by constructing a digraph
Dy from H by replacing each e € E(H) by two oppositely oriented
arcs joining the same vertices as e and then checking if Dy is strongly
connected. In fact, H has a CCW if and only if Dy is strongly connected.

We refrain from discussing the DPP and MPP more detailed since
they will be treated in other chapters. We note in passing, however, that
the DPP, like the CPP, can be solved in polynomial time, whereas the
MPP is, in general, an N'P-complete problem; this is also true for the
Windy Postman Problem in which every edge of a graph is assigned two
costs, depending on the direction in which the edge is traversed by a
CCW.

We finish this section by ‘touching’ on the Hamiltonian Walk Problem
(HWP) and the Traveling Salesman Problem (TSP). The former can be
phrased as follows.

Given a connected graph G and cost function ¢ : E(G) — IR™, find a
closed vertex-covering walk W such that ¢(W) is minimum.

If Wywp is a solution of the HWP and Wepp a solution of the CPP
for (G, c) then ¢(Wepp) > c(Whpwp) because every CCW is a closed

Traversing Graphs: The Eulerian and Hamiltonian Theme 77

vertex-covering walk. However, in general the HWP is N'P-complete.

In fact even if (G,c) has a hamiltonian cycle C, this by no means
implies that some hamiltonian cycle will constitute a solution of the
HWP. However, one can transformn the HWP to a minimum cost hamil-
tonian cycle problem. To this end, let V(G) = {v1,...,v} = V(X))
and determine for every i # j a path P;; connecting v; and v; such
that ¢(P; ;) =: ¢;; is minimum. Define ¢* : E(Kp) — IR* by setting
C*(Ui7vj) = G j-

Theorem 95 Solving the HWP for (G, c) (G being connected) is equiv-
alent to finding a hamiltonian cycle C in (Kp,c*) such that c*(C) is
minimum (c := E(G) — IR*; for extending c to c*, see above).

Finding such hamiltonian cycle C in K, with minimum ¢*(C) is, how-
ever, also an NP-complete problem.

This equivalent formulation of the HWP is known as the Traveling
Salesman Problem (TSP) for the special case where the cost function
satisfies the triangle inequality, i.e., ¢; ; + ¢k > ¢; k. Of course, the TSP
can be phrased in K, for arbitrary cost function c*. If c* does not satisfy
the triangle inequality, then HWP and TSP might have different solu-
tions in (Kp, ¢*) indeed. This is exemplified by K3 and the cost function
c* which assigns the value 1 to two edges of K3 and the value 3 to the
third edge. So while the TSP for this (Kp,c*) has a unique solution C
with ¢*(C) = 5, the HWP also has a unique solution W for which how-
ever c*(W) = 4 holds.

For a general formulation of TSP as an ILP, see {33, p. 308-309].

However, in some instances the following upper bound may be even
better than the one above involving a PT; it can be computed faster,
anyway.

Theorem 96 If (G,c) is connected and if W is a hamiltonian walk then
(W) < 2¢(Tp) where Ty is a minimum cost spanning tree of G.

8. ELEMENTS OF NETWORK THEORY

A flow in a digraph D (see below) can be understood in a way similar
to the construction of directed postman tours (see above) — provided the
flow values are positive integers — in that one duplicates arcs in accor-
dance with their flow values such that the resulting digraph is eulerian.
However, the subsequent discussion will not resort to such an interpreta-
tion (although certain aspects of this discussion can be better understood
if one keeps this interpretation in mind).

78 ARC ROUTING

In this section, we are concerned practically exclusively with digraphs.
We follow, basically, the notation of [4]. We also refer the interested
reader to the more recent book [8].

Let D = V U A be a digraph. A simple closed chain C in D is called a
circuit; in other words, C is a circuit if C corresponds to a cycle in the
underlying graph Gp. In the case of arc cuts, the terminology is also
analogous: Let Vp C V, and denote the coboundary wy, := A(Vp, Vo);
call wy, elementary or simple or a cocircuit if both (Vp) and (V — V)
are weakly connected. However, just as we dealt with different types of
connectedness, we distinguish between different types of coboundaries in
the case of digraphs. Denote

= wt Uw=
Wy = wy, Uwy,
where w#}o consists precisely of those arcs in wy, whose tail lies in Vp,

whereas wy, consists precisely of those arcs of wy, whose head lies in Vj.
If, for a 51mp1e coboundary wy,, either Wy = @ or wy- = @, then we

call wy, a cocycle. Note that A, = A} U A is a coboundary of D for
every v € V.

A mapping f: A — IR is called a flow if for every v € V

Yo fla)=)" fla) (1)

acAF acAy

Also, we call a mapping t: V — IR a potential with which we associate
a potential difference or tension g : A — IRT by setting for every a =

(z,y) € A,
g(a) = t(y) — t(2). (2)

Conversely, a mapping g : A — IR is called a tension in D if there exists
a potential t : V — IR such that g is associated with t.

In fact, if D is weakly connected and g a tension in D, then for every
potential ¢ and every ¢ € IR, if ¢g is associated with t, then it is also
associated with ¢ + ¢; and if two potentials ¢;,%s give rise to the same
tension, then to = t; + k for some constant k € IR.

In fact, for given D, the set of flows (tensions) in D forms a vec-
tor space called flow space (tension space). These two vector spaces
are better described as subspaces of IR? by first labeling the arcs of
D: A = {a1,... ,aq}. Then we associate with every flow f the vector
(f(a1),- .., f(aq)) and with every tension g the vector (g(a1),... ,g(aq)),
calling them flow vector and tension vector, respectively. In fact, we will
not distinguish between these mappings and the corresponding vectors

Traversing Graphs: The Eulerian and Hamiltonian Theme 79

since they are bijectively related to each other, once the arc labeling is
fixed.

We observe that circuits and flows, coboundaries and tensions are
closely related. Let C be a circuit in D, wp := wy, a cocircuit for some
Vo C V. Assign a sense of traversal to C and set A(C) = AT (C)UA—(C),
where A*(C) contains those arcs of C' whose orientation coincides with
the sense of traversal of C, and A~(C) contains the remaining arcs of C.
Set

ve = W, ... vl

A 1 ifa; € A+(C)
such that v¥ ={ -1 ifa; € A~(C)

0, otherwise.

Likewise, for V5 C V set

_J 1 ifzeV -V
t(x)_{o if eV

and - as a logical consequence — define for
vo = (v0,1,--- ,V0,q)

1 ifaq; € w(’f
Vo, = ~1 ifa; € Wo
0, otherwise

We call v the circuit vector associated with C and vg the coboundary
vector associated with wg. The following is an immediate consequence
from the above definitions.

Lemma 97 Every circutt vector is a flow (vector), every coboundary
vector is a tension (vector), and they are orthogonal.

To determine bases for the flow space, tension space respectively, of
a weakly connected digraph D = V U A, A = {a1,... ,aq}, consider a
spanning tree T C D, w.lo.g. A(T) = {ay,... ,ap_1}.

For every a;,% € {p,... ,q}, there is a unique circuit C; in A(T)U {a;}
and C; contains q;; define the sense of traversal of C; in accordance with
the orientation of a;, and let v; be the corresponding circuit vector.

Similarly, for every a; € A(T),T — a; has precisely two weakly con-
nected components T},T)'. W.lo.g. T} contains the tail of a;; set V; :=
V(T}), and let w; = A(V;,V;); a; € wj follows. Let w; be the cor-

responding cocircuit vector. Observing that C; (w;) contains none of

80 ARC ROUTING

the arcs in {ap, ... ,aq} — {ai} ({a1,-.. ,ap-1} — {a;}) we conclude that
Vp, ... ,Vq are linearly independent, and so are wy, ... ,wy_1. Moreover,
one can show that every flow can be expressed as a linear combination of
Vp,...,Vq, and every tension can be expressed as a linear combination
of wi,...,wp_1. Therefore the following is true.

Theorem 98 Let D = V U A be a weakly connected digraph, A =
{a1,... ,aq} and let v;,w;,p <1< q,1 < j <p—1, be defined as above.
For the flow space Vr and the tension space Vr of D, the following is
true.

1 Bf:={v;:p<1i<q} is abasis of Vr; hence dimVr =q—p+ 1.
2 By :={w;:1<j <p-—1}is abasis of V1, hence dim Vr = p—1.
8 V& and Vr are orthogonal complements in IRY.

However, in practical applications one needs to construct flows or ten-
sions satisfying certain constraints (apart from optimizing a certain ob-
jective function). Consequently, let k;,l; € R,1 < 5 < q,k; < [j,be
chosen, and associate the closed interval I; := [k;, ;] with arc a;.

Theorem 99 Let D = V U A be a digraph, A = {a1,...,aq}, with
Interval I; = {kj,1;} associated with a; € A,1 < j < q. The following is
true.

1 A tension (g1,.-.,9q) satisfying k; < g; <1; , 1 <7 <gq, exists if
and only if for every circuit C of D

SNz > ke, Y, L= Y ke

a;,€A—(C) ai€A+(C) a,—GA*”(C) a; €A (C)

2 (A.J. Hoffman) A flow (fi,..., fq) satisfying k; < f; <,
1 < j < gq, exists if and only if for every cocircuit w = wt Uw™

ZliZ Z ki, ZliZ Zki-

a;Ew™ a;Ewt a;€wt a;€w™

In many practical problems however, these constraints can be relaxed.
In this context, the following problems are of central importance.

The Mazimum Tension Problem. Let D = VU A, A = {a1,... a4},
be given; distinguish two vertices o,w € V with (@,7) € A, w.lo.g.
a; = (w,9). For j = 2,...,q, let I; := [k;,1;] be associated with a;.
Find a tension (g1, g2, - -, 9q) such that

ki<g;<lj,i=2,...,4,

Traversing Graphs: The Eulerian and Hamiltonian Theme — 81

g1 is maximum.

In fact, this problem can be transformed into the Generalized Shortest
Path Problem. Here, we have D = V U A with distinguished vertices 7, w
given such that every other vertex of D lies on some path connecting ¥
and w. With every a € A we associate a real number [(a) (which need
not be nonnegative). Finally we assume that D contains no cycle with
l(C)<o.

Algorithm 100

Input: D=VUA,V = {v1,vs,... ,0n},7 = v1,W = vp, with properties
as above.

Step 0. Find a spanning out-tree T of D with root. U (it exists since
every vertex lies on a path from ¥ to w). For every v;,1,...,n, define
the potential t by t; := t(v;) = l(Pr(9,v;)) where Pr(v,v;) is the unique
path connecting v and v; in T.

Step 1. If t(v;) — t(vi) < Uwi,v5) for every (vs,v;) € A go to Step 3.
Otherwise choose (vi,v;) € A such that t(vj) — t(vs) > I(vs, v5).

Step 2. Set t'(v;) = t(ui) + l(vi,v5), and for every v in T which
lies on a Pr(vj,vg), set t'(vg) = t(vg) — (t(v;) — t'(v5)). Define A" :=
(A(T) ~ (A(T)N AL,) U((vi, ;). Sett:=1t",T = (A’) and go to Step 1.
Step 3. t(w) is the length of a shortest path from ¥ to w in D. Such
path is exhibited by going from U to w in the final T.

We refrain from elaborating on the justification and efficiency of Al-
gorithm 100; we just observe that it is the absence of cycles C' with
[(C) < 0 which guarantees that the algorithm terminates after a finite
number of steps; and that it is, therefore, of polynomial running time.

Following [4] we define a capacitated network or just network as a
digraph D = VU A, A = {a1,...,aq}, having two distinguished ver-
tices ¥,w such that w.l.o.g. (@0,7) = a; and ¥ (w) is the source (sink)
of D — {a1}; thus © is called the entry and w0 is called the exit of the
network, and a € A7 is called an entry arc, whereas a € Ag is called an
erit arc of the network. We also assume that every other vertex lies on
a path from o to w in D. Finally, associate with every a; # a, a capac-

ity ¢; > 0,5 = 2,...,q (i.e., the capacities correspond to the intervals
(0, ¢51)-
Mazimum Flow Problem. Find a flow f = (fi, fo,..., fy) in a network

(as described above) such that 0 < f; <¢j,j =2,...,¢q, and f; is maxi-
mum (fi is called the (flow) value of f).

For the following considerations we consider a simple chain P connect-
ing ¥ and w in a network D, such that a1 ¢ A(P), with an orientation
of P being defined by walking from ¥ to @ in the underlying path F

82 ARC ROUTING

in Gp. Correspondingly, we define A*(P) as the set of arcs of P whose
orientation coincides with that of P, while A=(P) := A(P) — AT(P).
Suppose a feasible flow £ = (f1,...,fq) is given in D, i.e., 0 < f; < ¢
for i = 2,...,q. Call P f-augmenting if f; < c; for every a; € A*(P)
and f; > 0 for every a; € A~ (P). Define d¢ := min{c; — fi,fj : a; €
At(P),a; € A=(P)}.

Lemma 101 Let D be a network with feasible flow f. If an f-augmenting
simple chain P exists, define £+ = (fif,..., f}) by fi = fi + ds

fj +dg for a; € A+(]:))
=4 fi—de for a;e A7(P) j=2,....¢q
fj fOT‘ aj gA(P)

Then £t is a feasible flow of larger value than f (we say f has been
augmented to yield).

Proof. The lemma follows from the definition of f* (the sums of equa-
tion (1) in the definition of a flow remain unaltered, or are both increased
or decreased by dg), and the definition of f itself (d¢ > 0 since P is f-
augmenting). =

The existence of an f-augmenting simple chain is key to the following
considerations.

Algorithm 102 (Ford-Fulkerson Maz-Flow Algorithm for integral ca-
pacitated networks)

Input: Network D with capacities ¢; € IN U {0},5 = 2,...,q, together
with an integral flow fy (i.e., fi € INU{0},t =1,...,q9) - e.g., fo = 0.
Set f = fy. Set g(v) = |V|+ 1 for every v € V (these are the unmarked
vertices).

Step 1. Mark v, set g(0) = 1. Call the vertices with g(v) < |V]| + 1
marked vertices.

Step 2. Choose v with minimum g(v) such that there is an unmarked
w with either a; = (v,w) € A and f; < ¢; ora; = (w,v) € A and f; >0,
if such v exists. Set g(w) = max{g(v) +1: g(v) < |V|+1}. If no such
v exists, go to Step 4.

Step 3. If 1w has not been marked go to Step 2. If w has been marked,
find a simple chain P from ¥ to w in Do C D induced by the arcs used
in the marking procedure in Step 2 (P is f-augmenting). Augment f to
obtain £t in accordance with Lemma 101. Unmark all marked vertices
v# . Set f =f% and go to Step 2.

Step 4. f is a mazimum flow and W is unmarked.

Before justifying this algorithm and drawing further conclusions, some
remarks seem in order.

Traversing Graphs: The Eulerian and Hamiltonian Theme 83

(1) Apart from the requirement that the capacities be nonnegative
integers, there are two crucial items in the Ford-Fulkerson algorithm:
the choice of the integral flow fy in Input, and the construction of the
f-augmenting simple chain P. There are examples (see below) showing
that these choices cannot be arbitrary if one expects the algorithm to
reach Step 4 in polynomial time.

(2) Of course, it is natural to start with fy = 0. However, if one
starts with a flow whose components are not integers, one might be able
to produce an infinite sequence of flows f;,4 = 0,... ,n..., by using
fi-augmenting chains, whose values form a strictly increasing and con-
vergent sequence, yet the limit of this sequence need not be the optimal
flow! Such an example has been exhibited by Lovdsz and Plummer in
[31, p. 47-48]. Such problem cannot arise if the initial flow is integral,
since f* is then also integral by definition of dg (see Lemma 101). Thus
we obtain a strictly increasing sequence of integral flow values, bounded
above by the largest (integral) capacity.

(3) If the graph is small, but min{c; : j = 2,... ,q¢} =1 and M :=
max{c; : j = 2,...,q} is a large integer, then, even starting from fy = 0,
say, a repeated ‘bad choice’ of the f-augmenting chain P may result in a
number of iterations of Step 3 which is proportional in M, whereas the
size of the input is O(log M); i.e., the running time of the algorithm may
be exponential in the input (see [22, p. 127]).

(4) Extending the algorithm to networks with rational capacities does
not create any extra difficulties: just multiply the capacities with their
least common denominator n to obtain integral capacities and multiply
the maximum flow in this modified capacitated network with 1/n to ob-
tain the maximum flow in the original network.

(5) If, however, the capacities are arbitrary nonnegative real numbers,
then, starting from fy = 0 one may get an infinite sequence of feasible
flows (using f-augmenting simple chains again) whose values are strictly
increasing and converge. Yet, the limit of this sequence of flow values
again is not the value of a maximum flow. Such an example has been
exhibited already by Ford-Fulkerson in their book, [21, p. 21-22]; a sim-
pler example can be derived from the one quoted in (2) above.

(6) However, all these difficulties and problems quoted in (2) - (5)
can be overcome by a simple idea due independently to Edmonds and
Karp on the one hand, and Dinits (see (22, 31] for detailed references)
on the other hand. Namely, choose P in Step 3 in such a way that it
corresponds to a shortest path in the underlying graph Gp,. And such

84 ARC ROUTING

a shortest path can be found ‘fast’ by Dantzig’s and Dijkstra’s Algo-
rithm 83. Once Step 3 of Algorithm 102 has been modified this way,
the modified algorithm terminates with a maximum flow in polynomial
time, even if the capacities are arbitrary real numbers.

For the justification of Algorithm 102 some additional notation will
be useful. Consider in a capacitated network D =V UA aset V CV
such that # € V and w € V. Then we call A“—; =AY (V,V -V) a cut of
the network D, and ¢ := EaieA‘i; ci the capacity of the cut AY.

Now, in justifying Algorithm 102, we basically prove the converse
of Lemma 101; that is, if no f-augmenting path exists, then there is no
feasible flow whose value is larger than that of f. To this end, observe first
the following general fact: if D = V(D)U A(D), A(D) = {a1,... ,aq}, is
an arbitrary digraph and w = w™ Uw™ is an arbitrary coboundary of D,

then for any flow f = (f1,..., f;) in D we have the equation
> fi= D
a; €wt a; €w™

(this equation readily follows from equation (1) in the definition of a
flow). Applying this equation to a capacitated network D = V U A
we obtain for an arbitrary cut A*—‘; with capacity ¢ and a feasible flow

g = (g1,--- ,9q) the inequality

91S29i=zgi§5 (*)

G,.,'EA‘——/ aiGAg
(note that for every cut A;—;,al € Ay since W ¢ V).

Whence let f be the final flow constructed by Algorithm 102: f is
obtained in a finite number of steps due to Lemma 101 (d¢ € IV), and
because the capacities are positive integers. For this f we mark v, but
the marking procedure of Step 2 leaves w unmarked (otherwise Step 3
yields an f-augmenting chain P which would allow to augment f). Let
V = {marked vertices}. We observe that for every a; € AV we have
fi = c¢i (otherwise, the head of a; would be marked in Step 2), and for
every a; € A — {a1} we have f; = 0 (otherwise, the tail of a; would be
marked in Step 2). Therefore, equality holds in (x) for this f and this
V, also implying that AjL must be a cut of minimum capacity. This and
() imply that no flow of larger value than f; can exist in this network.

As a consequence of the preceding argument we also obtain the fol-
lowing.

Traversing Graphs: The Eulerian and Hamiltonian Theme 85

Theorem 103 (Max-Flow Min-Cut Theorem) If D is a capacitated
network with entry U and exit W, then the mazimum value of any feasible
flow equals the minimum capacity of any cut of D.

With the help of Algorithm 102 and Theorem 103 one can solve several
problems in applied network theory but also derive graph theoretical
results proved above. As for the former type of results, we refer to
(4, 8, 21, 26, 36]. As for deriving Menger’s Theorem and Proposition 24
(the ‘line version’ of Menger’s Theorem) and corresponding versions for
digraphs, we refer to {31] (as for Menger’s Theorem, this has been done
already in [21]). As for deriving Theorem 79 from Theorem 103 we refer
to [31, 36].

References

[1] Andersen, L.D, and Fleischner, H.; The A"P-completeness of finding
A-trails in Eulerian graphs and of finding spanning trees in hyper-
graphs, Discrete Appl. Math 59 (1995), 203-214.

[2] Appel, K., Haken, W., Koch, J.; Every planar map is four-colorable.
Illinois J. Math. 21 (1977) 429-567.

(3] Berge, C.; Two theorems in graph theory, Proc. Natl. Acad. Sci.
U.S., 43(1957), 842-844.

[4] Berge, C., and Ghouila-Houri, A.; Programmes, jeux et réseaux de
transport. Dunod, Paris 1962 (German translation by Teubner Ver-
lagsges. 1967)

(5] Bermond, J.-C.; Hamiltonian Graphs, in: Selected Topics in Graph
Theory (L.W. Beineke and R.J. Wilson, eds.). Academic Press, N.Y.
1978.

[6] Bondy, J.A., and Chvatal, V.; A method in graph theory, Discrete
Math. 15 (1976), 111-135.
[7] Bondy, J.A.; Basic Graph Theory: Paths and Circuits, in Handbook

of Combinatorics Vol. I (R.L. Graham, M. Grétschel, L. Lovasz,
eds.). North Holland, Amsterdam 1995.

[8] Carre, B.; Graphs and Networks, Oxford Appl. Math. and Comp.
Sc. Ser., Oxford University Press 1979.

[9] Dirac, G.A.; Short proof of Menger’s graph theorem, Mathematika
13 (1966), 42-44.
(10] Fleischner, H.; On Spanning Subgraphs of a Connected Bridgeless
Graph and Their Application to DT-Graphs, JCT 16, 1 (1974), 17-
28.

[11] Fleischner, H.; The Square of Every Two-Connected Graph is
Hamiltonian, JCT 16, 1 (1974), 29-34.

86

[12]

[13]

23]
(24]

25]

ARC ROUTING

Fleischner, H.; Eulersche Linien und Kreisiiberdeckungen, die
vorgegebene Durchginge in den Kanten vermeiden, JCT B 29
(1980), 145-167.

Fleischner, H.; Cycle Decompositions, 2-Coverings, Removable Cy-
cles And The Four-Color-Disease, in: Progress in Graph Theory
(J.A. Bondy and U.S.R. Murty, eds.), Academic Press, 1984, 233-
246.

Fleischner, H.; Some Blood, Sweat, but no Tears in Eulerian Graph
Theory, 250th Anniversary Conference on Graph Theory (Fort
Wayne, IN, 1986). Congr. Numer. 63(1988), 8-48.

Fleischner, H.; The Prism of a 2-connected, Planar, Cubic Graph is
Hamiltonian (a Proof Independent of the Four Colour Theorem), in:
Graph Theory in Memory of G.A. Dirac (L.D. Andersen et al., eds.),
Ann. Discrete Math. 41, North-Holland, Amsterdam 1989, 141-170.

Fleischner, H.; Eulerian Graphs and Related Topics, Part 1, Vols. 1
and 2. Ann. Discrete Math. 45 and 50, North Holland, Amsterdam
(1990 and 1991).

Fleischner, H.; (Some of) The Many Uses of Eulerian Graphs in
Graph Theory (Plus Some Applications), to appear in: Proceedings
of the Paul Catlin Memorial Conference (A. Hobbs ed.), Discrete
Math.

Fleischner, H., and Guan, M.-G.; On the Minimum Weighted Cycle
Covering Problem for Planar Graphs, Ars Combin. 20 (1985), 61-67.

Fleischner, H., and Jackson, B.; A Note Concerning some Conjec-
tures on Cyclically 4-Edge Connected 3-Regular Graphs, in: Graph
Theory in Memory of G. A. Dirac (L.D. Andersen et al.,eds.), Ann.
Discrete Math. 41, North-Holland, Amsterdam 1989, 171-178.

Fleischner, H., and Wenger, E.; Characterizing Directed Postman
Tours, in: Topics in Combinatorics and Graph Theory (R. Bo-
dendiek, R. Henn, eds.), Physica-Verlag, Heidelberg 1990, 257-262.

Ford Jr., L.R., and Fulkerson, D.R.; Flows in Networks, Princeton
University Press, Princeton, N.J. 1962.

Frank, A.; Connectivity and network flows, in: Handbook of Combi-
natorics Vol. I (R.L. Graham, M. Grétschel, L. Lovész, eds.). North
Holland, Amsterdam 1995.

Gao, Z.C., and Richter, R.B.; 2-walks in circuit graphs, JCT B
62(1994),2, 259-267.

Garey, M.R., and Johnson, D.S.; Computers and Intractability: A
Guide to the Theory of NP-Completeness. Freeman, N. Y. 1979.

Graham, R.L., and Hell, P.; On the history of the minimum spanning
tree problem, Ann. Hist. Comput. 7(1985),1, 43-57.

Traversing Graphs: The Eulerian and Hamiltonian Theme — 87

[26] Grotschel, M., Lovdsz, L., Schrijver, A.; Geometric Algorithms and
Combinatorial Optimization; Second Corrected Edition, Springer-
Verlag, Berlin 1993.

[27] Harary, F.; Graph Theory. Addison-Wesley Publ., Reading MA
1969.

(28] Jaeger, F.; A note on sub-eulerian graphs, J. Graph Theory 3, (1979)
91-93.

[29] Jaeger, F.; A Survey of the Cycle Double Cover Conjecture, in:
Cycles in Graphs (B. Alspach et al., eds.), Ann. Discrete Math. 27,
North-Holland, Amsterdam (1985) 1-12.

[30] Konig, D.; Theory of Finite and Infinite Graphs (translation of the
original version in German). Birkh&user, Boston 1990.

[31] Lovdsz, L., and Plummer, M.D.; Matching Theory, Ann. Discrete
Math. 29, North-Holland, Amsterdam, 1986.

[32] Matthews, M., and Sumner, D.; Hamiltonian results in K 3-free
graphs, J. Graph Theory 8, (1984), 139-146.

(33] Papadimitriou, C.H., and Steiglitz, K.; Combinatorial Optimization,
Prentice Hall, New Jersey 1982.

[34] Riha, S.; A new proof of the theorem by Fleischner, JCT B 52
(1991),1, 117-123.

[35] Roberts, F.S.; Graph Theory and Its Applications to Problems of
Society. CBMS-NSF Regional Conference Series in Applied Mathe-
matics, Vol. 29, 1978.

[36] Roberts, F.S.; Applied Combinatorics, Prentice-Hall, New Jersey
1984.

[37] Robertson, N., Sanders, D., Seymour, P.D., Thomas, R.; The four-
colour theorem. JCT B 70 (1997),1, 2-44.

(38] Ryjacek, Z.; On a closure concept in claw-free graphs, JCT B 70
(1997), 217-224.

[39] Sekanina, M.; On an ordering of the set of vertices of a connected
graph. Publ. Fac. Sci. Univ. Brno 412(1960), 137-141.

[40] Thomassen, C.; Reflections on graph theory, J. Graph Theory 10,
(1986), 309-324.

[41] Tutte, W.T.; A Theorem on Planar Graphs, Trans. Amer. Math.
Soc. 82 (1956) 99-116.

[42] Volkmann, L.; Graphen und Digraphen, Springer, Wien 1991.

[43] Zhang, C-Q.; Integer Flows and Cycle Covers of Graphs. Marcel
Dekker, Inc., New York 1997.

Chapter 3

MATCHING: ARC ROUTING AND THE
SOLUTION CONNECTION

Ulrich Derigs

University of Cologne, Germany

1. Introduction 89

2. Matching: Applications 91

2.1 Team Selection 91

2.2 Task Scheduling 92

2.3 Processor Scheduling 93

2.4 Route Connection 94

2.5 Arc Routing 95

2.6 Node Routing 98

2.7 General Routing 101

2.8 Set Partitioning 104

3. Matching: Combinatorial Aspects 107

4. Matching: Polyhedral Aspects 112

5. Matching Algorithms: Linking Combinatorial

and Polyhedral Results 116

6. Matching Algorithms: Implementation Issues 119
6.1 Start Procedures: Constructing the Initial

Extreme Matching 120

6.2 Organization of Dual Updates 122

6.3 Price and Reoptimize 123

1. INTRODUCTION

Given an undirected graph G = (V, E)), a matching M C FE is a subset
of edges no two of which are incident with a common vertex. For any
M C E, we define V(M) as the set of vertices incident to some edge
in M. A matching M in G is called a mazimum cardinality matching
in G if [M| > |M’| for all matchings M’ in G. A perfect matching is
a matching M with V(M) = V. Note that for the existence of perfect
matchings |V| has to be an even number.

90 ARC ROUTING

Figure 3.1 Graph with a non-perfect maximum cardinality matching (matching edges

are doubly lined).

Given a cost ¢;; for each (7,7) € E, we define ¢(F) := Z(i,j)ep Cij
for every FF C E. Then a minimum cost perfect matching is a perfect
matching M that minimizes c(M). Here, we assume w.lo.g. ¢; > 0
since this can always be obtained by adding a large constant to all costs

without changing the problem.

The minimum cost perfect matching problem (MP) can be formulated

as a mathematical program:

Z Ty =1 forieV
z; € {0,1} for (3,5) € E,
where we interpret

{ 1, if (5,5)eM
xij =

0, if (i,5) ¢ M.

(3.1)

(3.2)

(3.3)

Matching: Arc Routing and the Solution Connection 91

It is well known that for bipartite graphs G the integrality conditions
can be relaxed to

Tij > 0 for (Z,]) ekl (34)

and MP becomes a linear program the optimal solution of which will be
(0, 1)-valued automatically.

Matching theory and the matching problem are one of the corner-
stone concepts in combinatorial optimization/ mathematical program-
ming. They constitute a class of genuine integer programs which are
efficiently solvable. Since the matching model arises in various domains,
the ability to solve large matching instances is of practical interest.

In this chapter we first motivate and show the relevance of matchings
especially for arc routing by introducing several well-known applications.
Then we discuss the graph theoretical background and the polyhedral
results which are the foundations for matching algorithms. Finally, we
review algorithmic techniques which have been developed within the last
years and which enable the solution of large matching instances in rea-
sonable time.

Sources on matching are the books by Lovasz and Plummer [1986],
Lawler [1976], Derigs [1988a] and the survey article by Gerards [1995)].

We close this introduction with some notation. For W C V, we define
W) :={(t,j) e E|lieW,j¢ W}andy(W) = {(3,j) € E|1,7 € W},
where we write §(7) instead of §({i}).

2. MATCHING: APPLICATIONS

In this section we outline applications of the bipartite and the non-
bipartite matching model in various domains. The problem of finding
an optimal matching in a bipartite graph is one of the most celebrated
problems taught in the first course in Operations Research. The in-
terpretation of the matching model as pair wise associations of entities
from different classes like male and female persons, jobs and machines
etc. is obvious and has led to the more common terminology as marriage
problem or assignment problem.

2.1. TEAM SELECTION

A clear and illustrative example for the assignment problem was given
by Machol [1961]. A swimming coach must select a medley relay team
from his four best swimmers to swim the four strokes (back, breast, but-
terfly, and free-style). The (average) time of each swimmer in each stroke

92 ARC ROUTING

is known from former tests.

Representing each swimmer and each stroke as a node and connecting
each swimmer-node with each stroke-node by an edge the costs of which
is the associated time the swimmer needs for performing that stroke leads
to a complete 4 x 4 bipartite graph G. Now every perfect matching in
G gives one possible team and the problem of finding the fastest team is
to find the perfect matching with the least costs.

2.2. TASK SCHEDULING

A "more practical” application of bipartite matching arises in schedul-
ing where the problem of minimizing the number of processors or the
total processing time to perform a set of tasks can be modeled as an
assignment problem.

Let V = {v1,...,un} be a set of tasks. The ordered pair (v;,v;) is said
to be compatible if the same processor can perform tasks v; and v; in this
sequence. Now a subset D = {v;,,...,v; } of V is said to be a processor
duty if (vi;,vi,,,) is a compatible pair of tasks, j = 1,...,k — 1, i.e. the
tasks in D can be performed by the same processor. Then a feasible
schedule is a family S = {Dj, ..., D, } of processor duties, such that each
task v € V belongs to exactly one duty D;,j =1, ...,7.

In the domain of ”vehicle scheduling” the tasks v; may represent a
sequence of customers which have to be served by a vehicle, i.e. a vehicle-
tour, but where because of capacity limitations or time constraints the
vehicle has to visit a depot for a certain duration before beginning and
after ending the tour. Let

fi, the duration of the dead heading trip from the depot
to the first customer in tour v;,
l;,the duration of the dead heading trip from the last
customer in tour v; to the depot,
d;, the duration of tour i,
si, the required start time for tour ¢ and,
dp, the duration at the depot between two tours,
then the ordered pair (v;, v;) of tours is compatible if there exists a slack
t;; > 0 such that
si+di +1i+dp+ fi +tij = s5.

t;; gives the so-called idle time of a vehicle spent at the depot between
the performance of tour v; and v;.

Matching: Arc Routing and the Solution Connection 93

Now consider the bipartite graph G = (S,T, E) where S and T are
the node sets with |S| = |T'| = |V|. Every node.i € S corresponds to
the ending terminal of task v; and every node j € T corresponds to
the starting terminal of task v; and E := {(s;,t;)|(vi,v;) are compatible
tasks}. Note that (s;,¢;) € E for all v; € V.

Now there is a one-to-one correspondence between (vehicle) schedules
and matchings in G. Any (vehicle) duty, say D; = {v;,,...,v;, } can be
represented in G as the set of edges

M; = {(Si17t’i2)7 (siz,tis): <oy (Sik_ntik)} .

Since for each v; ; € D; at most one edge in M; is incident to node 84, and
¢;; and since each trip belongs to only one of the vehicle duties Dy, ..., D,
the set

M:=MU..UM,
is a matching in G.

Similarly any matching M of G can be interpreted as a (vehicle) sched-
ule with the following interpretation (cf. Carraresi and Gallo [1984]): If
no matching edge is incident either to s;; or to t; , then task v; is per-
formed as a single duty for its own, i.e. a vehicle runs the single tour v;.

Introducing edge costs the construction of optimal schedules can be re-
duced to finding minimum cost perfect matchings in the complete graph
over the node sets § and T'. Setting

[0 for (si,t) €Ei#
T} 1 else

each least cost perfect matching induces a schedule with a minimum
number of processors (vehicles) necessary, i.e. the optimal matching de-
termines the optimal fleet size.

Minimizing the idle time is accomplished by setting

|ty for (sit;) EEi#
GiT 10 else.

2.3. PROCESSOR SCHEDULING

An early application of non-bipartite cardinality matching arises again
in the area of processor scheduling. Assume two identical processors and
a set of n jobs, all requiring the same processing time with a partial
ordering relation ” < ” prescribing precedence constraints for the jobs,

94 ARC ROUTING

i.e. if 7 < j then job ¢ must be completed before job j can be started by
either processor.

The precedence constraints can be represented as an acyclic directed
graph G = (N, A) with NV representing the set of jobs and (¢,5) € A if
1 < 7 holds. For G we can construct the so-called compatibility graph
G* = (N, E). G* has the same nodes as G and there is an (undirected)
edge (¢,7) if and only if there is no directed path from ¢ to j or from j
to 7 in G, i.e. if nodes ¢ and j are adjacent in G* then job ¢ and job j
can be processed at the same time (by the two processors) given.

Now a maximum cardinality matching M in G* indicates the max-
imum number of jobs that can be processed simultaneously, and thus,
yields a lower bound on the total processing time and can be used to
obtain an optimal schedule (cf. Fujii et al. [1969)]).

2.4. ROUTE CONNECTION

Hasselstrom [1976] gives an early application of non-bipartite weighted
matching in connection with the process of urban transportation plan-
ning by modeling the ”optimization of route connections” as a matching
problem.

The route network in a city usually contains several points of inter-
section where several routes meet. The routes at such a point can be
categorized into two classes

1 routes passing through and
2 routes with one of their terminal points at this point of intersection.

If the routes that are passing through are cut into two parts at the
point of intersection, the resulting network consists of route-legs having
one end in common which would be served by vehicles in both directions.

It is now possible to reconnect these route-legs in several different
ways, i.e. every matching of end points leads to a different route net-
work. The quality of the resulting network is dependent on several dif-
ferent factors, the passenger’s waiting time, number of transfers, number
of vehicles etc., and the representation of these factors by edge costs is
a nontrivial task. The whole procedure is illustrated in Figure 3.2.

An important application of non-bipartite matching is its use in solv-
ing certain routing problems as for instance the Chinese postman prob-
lem and the traveling salesman problem.

Matching: Arc Routing and the Solution Connection 93

T¢ o 7e {@ ; ®
! !
| J |

[L le &
. @ ..___...__)< ol @' @ @ @————3:._.' .OE
[>

I’T?é

@ 3. Reconnecting (matching) the route - legs 4. Modified routing

Figure 8.2 Optimization of route connections.

2.5. ARC ROUTING

Let a connected graph G = (V, E) and non-negative weights ¢; for e; €
E be given. Then a tour in G is a sequence T' = (v, €1, V9, €2, ..., Uk, €k,
vg4+1 = v1) of nodes v; and edges e; such that e; meets the nodes v;
and vjL1. A postman tour in G is a tour which contains every edge at
least once and an Fulerian tour of G is a tour which contains every edge
exactly once. The length of a tour T' = (v1, e, vo,...,€g,v1) is defined

by (T) = Zle Cx..

Now the Chinese postman problem (CPP) is to find the minimum
length postman tour in G. This problem was first solved by Mei Ko
Kwan [1962]. He considered this problem on the practical background
of a postman delivering the daily mail for a certain district of streets.
Thus, the problem is referred to as ”Chinese” postman problem. The
first polynomial algorithm was given by Edmonds and Johnson [1973]
who related this problem to matching theory.

96 ARC ROUTING

It is obvious that whenever there is an Eulerian tour in the graph,
then it solves CPP. A necessary and sufficient condition for the existence
of such a tour was given by Euler [1736]:

”each node must be incident to an even number of edges”.

Thus, if this condition is fulfilled the CPP reduces to the problem of
finding an Eulerian tour.

Given a postman tour every edge of G is traversed at least once. So let
1+1t; be the number of times that edge e; is contained in the tour. Now
we construct a (multi-)graph G’ from G introducing t; additional copies
of edge e; into G. Then the postman tour in G becomes an Eulerian
tour in G'. Thus CPP can be reformulated in the following way:

Chinese postman problem (CPP)

min Z tj-cj
EJ'EE
> (t;+1)=0 mod 2 forv; €V
e;€6(v;)
t; > 0, integer fore; € F,

i.e. find values t; for e; € E s.t. after adding t; copies of e; every node
has even degree and) e;cE i Ciis minimized.

Now if node v has odd degree in G then an odd number of incident
edges has to be added such that v gets even degree in G’. If node v is
an even degree node in G, then an even number of incident edges resp.
no edge has to be added.

Therefore the process of duplicating edges leads to a collection of paths
starting and ending at odd degree vertices the edges of which have to
be duplicated. Thus, one has to decide which pairs of odd degree nodes
(there is always an even number of nodes with odd degree) are to be
joined together by a path of duplicated edges.

This problem can be solved in the following way:
Chinese postman algorithm

1 Determine for every pair v;, v; € V of odd degree nodes the shortest
path P;; joining these two nodes and define d;; to be the length of
path P”

2 Construct the complete graph G = (V,E) where V denotes the
set of all odd degree nodes in G'. Associate with every edge (1, 7)

Matching: Arc Routing and the Solution Connection 97

55 101

Gerdias2(e>

Street-network with nodes of odd-degree shaded Multi-graph with duplicated edges from optimal matching
total cost of edges: 6452 cost of optimat matching 2248
cost of optimal postman tour 6700

Figure 8.3 Solving the Chinese postman problem.

joining v;,v; € E the edge weight d;; and solve the associated
minimum cost perfect matching problem.

3 The edges (i, 7) of the optimal matching M correspond to the paths
P;; the edges of which have to be duplicated to obtain the optimal
postman tour.

Figure 3.3 shows the procedure and result for a refuse collection prob-
lem in a rural area modeled as CPP on a graph with 52 nodes.

This algorithm was developed by Edmonds and Johnson [1973] who
describe a labeling technique which enables us to solve the shortest path
and the matching problem simultaneously. Consequently, this labeling
technique combines elements from shortest path computation and el-
ements from matching algorithms. The problem to be solved is then
to construct an Eulerian tour in G’. This is done by using the so
called next-node-algorithm presented in Edmonds and Johnson {1973]. A
FORTRAN-code for solving the Chinese postman problem can be found
in Burkard and Derigs [1980).

An interesting application or extension of the above concept is that of
minimizing the ”up”-motion of a pen plotter as described by Reingold

98 ARC ROUTING

and Tarjan [1981] and Iri et al. [1983].

Consider the problem of plotting a graph G = (V, E) where the nodes
are given by their (z,y) coordinates. If the graph contains an Eulerian
tour (or path) then it can be drawn without any wasted pen move-
ment. Otherwise the pen must be moved in the "up” position resulting
in wasted pen movement. The graph can be made Eulerian by matching
the edges of odd degree, i.e. introducing an edge which, when drawing
the graph, i.e. drawing the postman tour (or path), has to be traversed
with the pen lifted up in the ”"up”-position. Note that the significant
difference between the classical Chinese postman problem and this vari-
ant is the fact that for the plotter-problem the graph G can be made
Eulerian by using connections not present in the graph and thus the cal-
culation of shortest paths between odd nodes is trivial and the problem
reduces to a pure matching problem.

2.6. NODE ROUTING

A traveling salesman tour is a tour that meets every node exactly
once. Now assume G = (V, E) a complete graph and ¢ : £ — IR, a
cost function fulfilling the triangle condition, i.e. ¢;; + cjx > ¢y for all
i,5,keV.

We define 7 := the set of all traveling salesman tours in G, then the
traveling salesman problem (TSP) can be formulated:

zopT = 7“5251— c(T).

Assume |V| an even number , then every traveling salesman tour T
can be uniquely partitioned into two perfect matchings M; and My in G
by introducing the edges in T alternately into M; and My respectively
and the following relation holds

c(T) = (M) + c(M2) > 2 - min{c(M1),c(Ma)}.

With M := the set of all perfect matchings in G the following property
holds

min c¢(M) <

min ¢(T).
MeM TeT

N =

A spanning tree S in G is a subset of the edges such that

@ [Sl=vl-1
(22) S does not contain a cycle (subtour) in G.

Matching: Arc Routing and the Solution Connection 99

Obviously, given a traveling salesman tour T' € 7, deleting an arbi-
trary edge from T gives a spanning tree S. Thus, with S := the set of
all spanning trees in G the following property holds

min ¢(S) < min ¢(7T).
Ses TeT
For determining minimal spanning trees in a graph rather efficient algo-

rithms have been developed (Dijkstra {1959}, Kruskal [1956]).

For the minimal spanning tree S’ € S let O(S’) be the set of nodes
having odd degree in S’. Note that O(S’) contains always an even num-
ber of nodes. Now O(S’) induces a complete subgraph G’ of G. If we
denote by 77 and M’ the set of traveling salesman tours and perfect
matching in G’ respectively, then the following relation holds:

1 1
i M) € = mi T) < = mi .
R M) = 5 g o) = g g D)

Adding the edges of a least cost perfect matching M’ in G’ to S’ we
obtain an Eulerian graph G, i.e. a graph where each node has even
degree. Let P be a postman tour in G, then

— 3
c(P) =¢c(S) +c(M') < 570PT-

Shortcutting all the subtours of P _the postman tour can be trans-
formed into a traveling salesman tour T in G with

zopr < o(T) < ¢(P) < zopr-

Here shortcutting means that when traversing the postman tour P we
would instead of traveling from a node i to a node j which has already
been visited immediately travel to the successor of node j in the post-
man tour, node k say. Because of the triangle condition we thereby save
some distance, i.e. shorten the tour. If node k has been visited already
we would travel immediately to the successor of & etc.

Thus, this procedure which has been proposed by Christofides [1976]
establishes a heuristic with a worst-case bound of —é— for the relative er-
ror. With respect to this criterion the Christofides-heuristic is the best
known TSP-heuristic up today.

Yet, for practical purpose a maximum error of 50% is not accept-
able. It can be shown that this error is attained for rather constructed
examples though (cf. Cornuejols and Nemhauser [1978]), but applying
this heuristic to the well-known 120-city-problem of Grétschel [1977],

100 ARC ROUTING

we obtain a ”Christofides-tour” which is 37% longer than the optimal
tour. This seems to indicate that the ”pure” Christofides-heuristics is
not a sufficiently valuable approach. Therefore we combined this proce-
dure with a penalty technique and a local optimizer (cf. Derigs [1981b],
[1981c]).

Instead of spanning trees we may construct I-trees in G. Here a 1-tree
is a spanning tree plus a least cost non-tree edge incident with an arbi-
trary node. For 1-trees the same relations hold with respect to traveling
salesman tours as it is the case for spanning trees. Obviously, the least
cost 1-tree B gives a slightly better, i.e. higher lower bound than the
least cost spanning tree. We define B := the set of all 1-trees in G.

Now let m = (my,...,mn) € IR"™ be arbitrary node-penalties and c; :=
cij +7i+m7; for ¢,j € V modified edge costs. Let B™ the minimum 1-tree
with respect to ¢”, then the following relations hold:

n
TR S . . .
c(B)SrTnégll_c (T) = zopr +2 Zﬂ', or

i=1

w(r) = c"(B") -2 _m < zopr

i=1
and thus

z = maxw(m) < zopr.
™

It is easy to see that w is a concave, continuous and piecewise linear
function and for maximizing w(m) several ascent-methods using subgra-
dients have been developed (cf. Held and Karp [1971)).

During the subgradient optimization the function w is evaluated for
a sequence (7r17 71'2, ...,7r’°) of parameters constructing the associated op-
timal 1-trees (B™,B™, ..., B™) with respect to the modified edge costs
(™, c™, ..., c™).

Every such 1-tree B™ can now be used to construct a traveling sales-
man tour T} using the Christofides-heuristic. With
7 :=c(T;) and

n
zji= ﬁj(Bﬂ'j)_z.ZT(g, j=1,..,k
i=1

we obtain a (not necessarily monotone) sequence of lower and upper
bounds.

Matching: Arc Routing and the Solution Connection 101

Now let Ty be the best traveling salesman tour constructed, i.e.

Z0 = ¢(Tp) = min ¢(T;) and
j=1,....k

yeeey

Zn = max ZzZ.
=0 ok

the best lower bound, then Tp is an approximate traveling salesman tour
with relative error not exceeding

z° — 2

€=
Zg

Our computational experience on TSP-instances has shown that when
additionally applying the well-known $-opt local optimizer (cf. Lin and
Kernighan [1973]) to Tp, rather good approximations can be expected
with the error € ranging around 1% only for large problem sizes (cf.
Derigs [1981c]. The results of this procedure for the 120-city-problem

are depicted in Figure 3.4 and 3.5.

2.7. GENERAL ROUTING

The Chinese postman problem and the traveling salesman problem
have been introduced as the two classical routing models. In real-life
routing problems arising in waste collection, street sweeping, delivery of
goods etc. variants of these pure models are applied. CPP/ TSP vari-
ants are well studied in literature, with an overview and classification
given in Bodin and Golden [1981]. With regard to the application of
the matching concept and matching algorithms CPP-generalization are
most relevant.

The situation that the underlying street network consists of one-way-
streets only can be modeled by a directed graph. Edmonds and Johnson
[1973] have given a network-flow-based algorithm for solving the associ-
ated "directed” Chinese postman problem. Yet, when the network con-
tains both directed and undirected arcs, CPP becomes hard to solve (i.e.
the so-called "mized” Chinese postman problem is N'P-complete).

If there is a limit on the vehicle capacity or restrictions on the duration
of a tour then CPP is modified to find a set of cycles (tours) which tra-
verse every edge at least once such that traveling costs are minimized. A
heuristic for this so-called capacitated Chinese postman problem (CCPP)
which is based on the CPP approach has been described by Christofides
[1973].

In some applications it is required that only a specified subset of street
segments (edges) has to be traversed while all other edges may be tra-
versed for dead heading. This routing problem is called the rural postman

102 ARC ROUTING

i
oo o ."\f/‘
° ° o ’ ?\~o
oo %o : ;
) o o \ b N
2o e % =K
o o i . .
% o ° ° N (\ T
oo o % %0 T‘\/\/ < -
oo © ° Lo N
o o \ >
ol © o [
oo00© ° o [, e d
° o ‘/ 3 \
(-] o o 4 g [
. O R
o i [/
o o o 7
o o (=] o “Ne sed
o o o ° o o . i\/ / Pl “\ AN
o / 7
o oo ° 0’ ° A - .
o° o o ° o X o—-‘ H .
o o O © o N = -
0o © ° o o lo 7 < /T
° o © .] \ \ i /
°° f a0 T, r 7/\ e
© oo o o / T . \
° ° o o * “é e
Points in the 120-City-Problem Minimal spanning tree of length 5905 km
g
(nodes of odd degree are shaded)
Minimal spanning tree of length 5905 km Optimal traveling salesman tour of length 6942 km

+ Minimum perfect matching
of nodes with odd degree 2497 km
= Postman tour of length 8402 km

Figure 3.4 Application of the Christofides heuristic to the 120-city-problem (part 1).

Matching: Arc Routing and the Solution Connection 103

A — k//
o~ |
N = N _if/

N\

AN

/ {

-

N

A
- > Py
X\ /- (‘ //j'
\ N~ z‘
S —
- . \]
7
/ N - ,J \
- .’——- — I -7 § oy 3 1
/ \ —' ~— \ ~— [} / ’\ ! l\\
\\ x - { A b 7
/ 1 \ \ i
// 2 \ N PN A /
- L=]
Shortcutting the postman tour leads to a Traveling salesman tour of length 6975 km obtained
traveling salesman tour of iength 7353 km through penalty technique/subgradient optimization

and application of 3-OPT to best tour obtained

Figure 3.5 Application of the Christofides heuristic to the 120-city-problem (part 2).

problem (RPP) [cf. Win [1988]]. If routing is to be done on a specified
subset of edges and a specified subset of nodes then the problem is called
the general routing problem (GRP). Pandit and Muraldharan [1995] have
given a heuristic procedure for solving the capacitated general routing
problem (CGRP) on mixed graphs. In the following we give a short
outline of this heuristic which is based on the concepts for solving the
classical CPP, i.e. for instance matching odd degree nodes by shortest
paths.

Let Go = (Vo, So) be the mixed graph describing the complete street
network where Vp is the set of nodes representing the intersection of
streets and locations of customers and Sy is the set of street segments
and let non-negative length ¢, for e € Sy given. Let V; C V be the
specified set of nodes which must be visited and p; > 0, for ¢ € V3, the
demand on node 7 € V;. Let A; C S be the set of directed arcs repre-
senting one-way streets which have to be traversed and let £y, C Sy be
the set of edges representing streets allowing bi-directional travel which
have to be traversed with g¢ > 0, for e € A;UFE], the demand on segment
e.

Let node 1 represent a central depot and let W > 0 be the capacity
of a vehicle, i.e. every tour has to start and end in node 1 and the total
demand fulfilled on a single tour may not exceed W. Then the problem

104 ARC ROUTING

is to find a set of cycles each passing through node 1 and satisfying the
capacity constraint which satisfies the demands of the nodes in V; and
the demands of the arcs and edges in A; U Ey. Pandit and Muraldharan
[1995] propose the following heuristic:

CGRP-heuristic

1 Extract the subgraph G; consisting of edges, arcs and nodes that
need to be traversed or visited, respectively.

2 If G4 is not connected, connect the components of Gy, i.e. construct
G2 by introducing the edges of a minimum spanning tree between
the components of Gj.

3 If G5 is not strongly connected, make G9 strongly connected, i.e.
construct G3 by introducing in a least cost manner additional links
such that for every pair of vertices u and v there exists a path from
u to v and a path from v to w.

4 If G3 contains nodes of odd degree, connect pairs of odd degree
nodes by shortest paths using the min-cost matching concept from
CPP to obtain Gy4.

5 Assign an orientation to the undirected arcs in G4 such that every
node has equal in- and out-degree solving a min-cost network flow
problem as described in Edmonds and Johnson [1973] to obtain
Gs.

6 Construct a giant Eulerian tour in Gs.

7 Break the giant Eulerian tour intc smaller tours subject to the
capacity constraints.

2.8. SET PARTITIONING

The final application of matching we present is a very general one:
Nemhauser and Weber [1979] have shown that every set partitioning
problem can be reformulated as a matching problem with additional
side-constraints.

Let A € {0,1}™™ and ¢ € IR™ then the set partitioning problem
(SPP) reads

min dzx
Arx =1
z € {0,1}™.

This problem has a high significance from a theoretical as well as a prac-
tical point of view: quite a number of discrete optimization problems

Matching: Arc Routing and the Solution Connection 105

(with linear objective function) can be reduced to SPP and quite a num-
ber of problems from routing and scheduling has been modeled as SPP.

Note that if A has the property
m
Zaij =2 for j=1,...,n
i=1

then A can be interpreted as the incidence matrix of a (multi-)graph G
and SPP is equivalent to MP over G. This connection is the basis of the
Nemhauser-Weber approach.

Let a', ..., a™ be the columns of A, where w.l.o.g. we may assume that
A does not contain identical columns, i.e. a* # a’ for ¢ # j, since for
identical columns only that column with minimum c-value may become
part of an optimal SPP-solution.

Now assume a column o’ with pj non-zero values. Then we associate
with a’ a set of s; = [(p;+1)/2] column-vectors 4], @3, ..., @}, each having
at most 2 non-zero elements and fulfilling

= aJ
a; = ay +...+ as,.

The cost coeflicients é;1, ..., Ejs; for the new columns are defined to fulfill
the relation

¢y = éjl + ...+ éjsj-
Then we can formulate a new set partitioning problem

(SPP") min &

with s=37s; and Ae{0,1}™.
Adding to (SPP') the so-called column joining constraints
g; = g)iﬂ for k=1,..,5;—1and j=1,..,n

yields a problem the feasible solutions of which are in one-to-one corre-
spondence with the feasible solutions of (SPP) and the respective objec-
tive values coincide.

If A contains only columns having exactly two non-zero elements the
transformation is complete and we have transformed SPP into an equiva-
lent perfect matching problem with side-constraints. Otherwise let J; be

106 ARC ROUTING

the set of indices for those columns containing only one non-zero entry
and let

Li:={jeJi| a;; = 1} fori=1,...,m.
For each L; # @ we add a row-vector @; with

I 1 for jeL;
4j = 0 else

to our problem. Thus, we end up with the following problem

min

where S§ = 0 represents the set of column joining constraints.

The matrix (/AllZ)T fulfills the property that every column contains
exactly two non-zero elements and thus induces a graph G. Let M be
the set of matchings in G and for M € M let s be the incidence vector
associated with M. Then (SP) is equivalent to the following matching
problem with side-constraints (MPS)

(MPS) min ¢(M)
MeM
V(M) 2{1,..,m}
Sz = 0.

In Derigs and Metz [1992a] we describe an approach for solving (MPS)
based on Lagrangean relaxation and the construction of k-best match-
ings. In a first phase the column joining constraints are relaxed and the
associated Lagrangean dual is solved using the bundle-approach, an ad-
vanced subgradient technique. Here a sequence of simple unconstrained
matching problems has to be solved. In a second phase the optimal con-
strained matching is constructed through the generation of sequences of
k-best matchings.

The method is exact in the sense that it always stops with an optimal
matching fulfilling all column joining constraints and thus, induces an
optimal SPP-solution. Yet, the method becomes rather inefficient and
infeasible for SPP with dense matrices, i.e. matrices A having columns
with many non-zero entries. In that case the procedure can be modified
to obtain approximate solutions.

Matching: Arc Routing and the Solution Connection 107

The problem of solving matching problems with generalized upper bound
constraints (GUB-MP) has been investigated by Ball et al. [1990] and
Derigs and Metz [1992b] . Derigs and Metz [1992¢] have applied the idea
of transforming (SPP) into (MPS) and the concepts for solving (GUB-
MP) to a delivery/ pickup wvehicle routing problem with time windows
arising in express airline flight scheduling.

The examples introduced in this chapter should have demonstrated
the great potential of the matching model, especially in the domain of
routing and scheduling. Other applications in this area which we could
not introduce are

= scheduling crews and vehicles in mass transit-systems (Ball, Bodin
and Dial [1983])

» matching based improvement algorithms for vehicle routing (Al-
tinkemer and Gavish [1991], Dror and Levy [1986], Desrochers and
Verhoog {1991], Bachem and Malich [1993}),

» capacitated vehicle routing (Miller [1995]).

Finally, the following references should give a small insight into the
use of matchings in other domains:

Sports: creating pairings in chess tournaments (Olafson [1990])

Telecommunication: image transmission (Riskin et al. [1994]), and

Statistical physics: simulation of ground state energy and magne-
tization of two-dimensional randomizing spin models (Bendisch, Derigs
and Metz [1994]).

3. MATCHING: COMBINATORIAL ASPECTS

An alternating path with respect to a matching M in G is a path the
edges of which are alternately in and not in M. Alternating cycles are
defined analogously. An augmenting path is an alternating path between
two unmatched nodes. Given an augmenting path P we can perform the
following exchange operation

M—>M®P:=(M\P)U(P\M). (3.5)

Then M @ P is again a matching in G. For alternating cycles C we define
M @ C analogously.

The importance of augmenting paths stems from the following theo-
rem (cf. Berge [1957]).

Theorem 3.1 A matching M is a mazimum cardinality matching if
and only if M does not allow an augmenting path.

108 ARC ROUTING

Augmenting path P Alternating cycle C

l M@®P l MG C

O=0—0C0=0—-—~0C=0

Figure 3.6 The process of augmentation.

A matching M is called mazimal or saturated if any augmenting path
has at least three edges, i.e. M U{e} is not a matching for all e € E\ M.

To determine augmenting paths, the concept of alternating trees in-
troduced by Edmonds [1965a] has shown to be a powerful tool.

A rooted alternating tree is a tree T = (V(T), E(T)) with distin-
guished root vertex 7 € V'\ V(M) and the property that the paths from
r to each vertex in T are alternating paths and E(T) N M is a perfect
matching with respect to V(T) \ {r}. We designate vertices in a rooted
alternating tree as even or odd depending on whether the number of
edges in the path from 7 to the vertex is even or odd.

The information given by alternating trees is twofold:

a if an unmatched vertex is adjacent to an even vertex of an alternat-
ing tree, then an augmenting path can be obtained by appending
the unmatched vertex to the tree;

m if all even vertices of the tree are connected to odd vertices of the
tree only, then there does not exist an augmenting path starting at
the root vertex r. Trees with this property are called Hungarian
trees.

There are two basic operations for growing/ manipulating an alter-
nating tree such that after at most |V/| of these operations one of the
above cases will occur:

Matching: Arc Routing and the Solution Connection 109

GROW-OPERATION

If a non-tree vertex j € V(M) is adjacent to an even vertex ¢ in the
alternating tree, then we can enlarge T by adding the vertex j and the
vertex which is matched with j, say k, as well as the two edges (, j) and

(7, k)

SHRINK-OPERATION

If two even vertices of T" are adjacent, then adding this edge to the tree
will create ari odd cycle C = (V(C), E(C)) with |MNE(C)| = $(E(C) —
1), a so-called blossom. V(C) can be determined by backtracking the
(alternating) paths from both vertices to the root. This blossom is now
shrunk to a pseudonode vc. This is done by forming the graph G’ =
(V',E'"), where

V' =V \V(C) Uug
E'=E\{@j)|ior jeV(C)}
U {(vc,y)lﬂ(z,j) SRS V(C)aJ ¢ V(C)}

By using this definition, M uniquely defines a matching M’ in G’ and v¢
becomes an even vertex of an alternating tree 7" in G’ which is induced
by T.

After this SHRINK operation 7" gives the same information as T and
we can operate in G’ further on. Given a pseudovertex vc we may ezpand
ve by reversing the process described above. During the course of the
algorithm we may perform the SHRINK operation a number of times. In
particular, SHRINK may be invoked recursively in the sense that V(C)
may contain pseudonodes. We call the current graph G’ = (V’/, E') with
(pseudo-) nodes not contained within a pseudonode the surface graph.
Note that for bipartite graphs SHRINK can not occur and we will there-
fore operate on the original graph throughout the procedure.

The operations on alternating trees for constructing augmenting paths
are summarized in Figure 3.7.

For the bipartite and non-bipartite case efficient data structures have
been developed to perform these operations and the augmenting steps.
We will not discuss these problems of handling the ”combinatorial struc-
tures” occurring in matching algorithms in this paper and we refer to
Lawler [1976], Gabow [1976], and Gabow and Tarjan [1983].

For solving weighted matching problems we are interested in augment-
ing paths having special properties with respect to the costs c;;.

110 ARC ROUTING

1. alternating tree T rooted at node r 2. alternating tree T with augmenting path P
after appending the unmatched node s

C) S——
o= Qe Ve /O-—~'O
r@ . - N
e O O) OO
\, N\

3. alternating tree after GROW - Operation 4. alternating tree 5. alternating tree after

with blossom C SHRINK-Operation
P

5. Hungarian tree 6. Reconstructing an augmenting path
after expanding a pseudonode

Figure 3.7 Operations on alternating trees (outer nodes are (+) labeled, inner nodes
are (—) labeled.

Matching: Arc Routing and the Solution Connection 111

For any augmenting path P and alternating cycle P with respect to
M we define

I(P) := c(P\ M) — ¢(P N M).

This value is called the marginal cost of P or length of P since the
following relation holds

(M & P) = c(M) + I(P).

Now an alternating cycle P is called a negative alternating cycle with
respect to M if {(P) < 0. The following theorem, which we attribute to
the matching-folklore gives a purely combinatorial optimality condition
for a minimum cost perfect matching:

Theorem 3.2 A perfect matching M is a minimum cost perfect
matching if and only if M does not allow negative alternating cycles.

A (not necessarily perfect) matching M which does not allow nega-
tive alternating cycles is called extreme. Theorem 3.2 also motivates a
matching approach:

Negative cycle approach.
”Start from any perfect matching and improve the matching successively
over negative alternating cycles until an extreme matching is obtained.”

Extreme matchings in G can be constructed following the procedure
which is inherent in the following theorem:

Theorem 3.3 Let M be an extreme matching and P a shortest aug-
menting path connecting two unsaturated nodes. Then M & P is also an
extreme matching.

This theorem motivates the following approach:

Shortest augmenting path approach.
”Start from any extreme matching M(M = @ possibly) and augment
successively using shortest augmenting paths until a perfect matching is
obtained.”

It can be shown that all known efficient graph theoretical matching al-
gorithms are based on either of these two approaches (cf. Derigs [1988a))
which are related in the following way:

Given a perfect matching M with (¢,7) € M then the negative cycle
approach would ask whether there exists a negative alternating cycle C

112 ARC ROUTING

containing edge (7,). This question can be settled in the following way:
Set M' := M \ (¢,7), then M allows a negative alternating cycle if and
only if {(P) < ¢;j holds for the shortest augmenting path with respect to
M.

Thus, the problem of finding negative alternating cycles can be solved
by computing shortest alternating paths and hence the problem of ef-
ficiently constructing shortest augmenting paths seems to be the key-
problem in all efficient matching algorithms.

For s € V \ V(M) we define P;(M) to be the set of all augmenting
paths with start node s. Let Py be the shortest alternating path con-
tained in Ps(M). Due to the fact that Py € Ps(M) can be found by
growing an alternating tree rooted at node s we call this version the
SA P-tree method.

If we define by P(M) the set of all augmenting paths with respect
to M, we can modify the method outlined above by treating P(M) in-
stead of Ps(M). This modification is called SAP-forest version since the
shortest augmenting path Py € P(M) can be found by growing all the
alternating trees rooted at the unmatched nodes s € V' simultaneously.

4. MATCHING: POLYHEDRAL ASPECTS

From the results of Edmonds [1965b] it is well known that in the
non-bipartite case the integrality conditions can only be relaxed to the
non-negativity conditions if a set of additional constraints is added si-
multaneously.

Let R := {R C V| |R| > 3 odd }, then either of the following sets of
constraints has to be added:
m the set of blossom inequalities
1
Yo @< 5 (Rl=1) for RER (3.6)
(i,5)€7(R)
m the set of cut inequalities

d>ooomg>1 for ReR. (3.7)
(i.7)€8(R)

The importance of these inequalities is that any extreme solution to

min{ Y cij- i | = fulfills (3.2),(3.6),(3.4) (3.8)
(1,7)€EE

Matching: Arc Routing and the Solution Connection 113

or

min{ Y ey -z |z fufills (3.2),(3.7),(3.4) (3.9)
(i,7)€EE

is a solution for MP.

Further on we will call the system using the blossom inequalities ” blos-
som characterization” and the system using the cut inequalities the ”cut
characterization” accordingly.

Obviously, both characterizations are equivalent. In the following
we focus on the cut characterization since implementing matching al-
gorithms based on this characterization lead to optimality conditions
and processing rules with a more intuitive semantic.

When using the cut characterization, we get the dual program (DUAL-

MP)
mazx Zyi + Z YR s.t. (3.10)
eV RER
vi+y;+ Y. Yr<cy for (i,j)€E (3.11)
R:(i,7)€6(R)
yr>0 for RER (3.12)

and the complementary slackness conditions are given by

2 >0=yi+y;+ Y Yr=cy (3.13)
R:(i,)€8(R)
YR > 0= 2 Tij = 1. (314)
R:(i,j)€6(R)

Edmonds [1965b] showed the correctness of the blossom/ cut charac-
terization algorithmically, i.e. he developed an algorithm, the famous
blossom-algorithm, which for any given instantiation of (MP) constructs
a perfect matching M and a feasible dual solution fulfilling complemen-
tary slackness. Using this proof-technique Edmonds killed two birds
with one stone: He did not only establish the so-called linear charac-
terization of perfect matchings, but also showed the correctness of his
(non-simplex) matching algorithm.

Direct non-algorithmical proofs for Edmonds’ characterization of the
matching polytope were later given by several authors (see e.g. Schrijver
(1983]).

114 ARC ROUTING

In fact, the class of odd sets R € R defining necessary inequalities can
be further restricted to the subclass S € R of so-called hypomatchable
sets or shrinkable sets. (cf. Edmonds and Pulleyblank [1974]). Here, a
set R € R is called hypomatchable (shrinkable) if it has the property
that whenever any node in R is matched with a node not in R, the re-
maining set of nodes in R can be matched using edges in v(R) only.

Let G’ = (V', E’) be the graph obtained from G by shrinking some
hypomatchable sets to pseudonodes. Then the importance of this class
stems from the fact that whenever an augmenting path or perfect match-
ing in G’ is found this path or matching can canonically be extended to
an augmenting path or perfect matching in G.

Obviously, any odd cycle in G is a hypomatchable set and the algo-
rithm for finding augmenting paths given in section 3 can be interpreted
as successively shrinking all hypomatchable sets of the odd cycle subclass
which are detected and thereby shrinking more complex hypomatchable
sets of nested odd cycles.

Edmonds and Pulleyblank [1974] have shown that any hypomatchable
set is spanned by such a system of nested odd cycles. Thus, we extend
the notation of a blossom to the set of hypomatchable sets, i.e. a hypo-
matchable set S in G is called a blossom with respect to a matching M
if | Mny(S)| = 5 (IS|-1).

Given a dual solution y we define
Cii=Ci—Yii—Yi— Y, YR (3.15)
Ri(ij)€8(R)

the reduced cost of edge (i,j) € E with respect to y.

An edge with ¢;; = 0 is called tight with respect to y and we define
G(y) := (V, E(y)) with E(y) := {(3,7) € E| &; = 0} the subgraph of
tight edges.

Analyzing the primal and dual solution produced by the blossom al-
gorithm the necessary and sufficient optimality conditions can be refor-
mulated as follows:

A perfect matching M in G is optimal if and only if there exists a dual
solution y for the cut-characterization or the blossom-characterization,
respectively, with the following property

M C E(y), i.e. M contains tight edges only (3.16)
yr>0= | MN§R)|=1. (3.17)

Matching: Arc Routing and the Solution Connection 115

Since M is a perfect matching in G(y) we can deduce from (3.17) that
the following equivalent property holds, too:

yr>0= | MAy(R)| = % (IR| - 1). (3.18)

From the results of Edmonds [1965b] more precisely from the output of
the blossom algorithm, we know that for characterizing optimal match-
ings it suffices to consider a subset of dual vectors y €]RKUS which we
will refer to as strongly dual feasible. Here a vector y €]R_YUS is called
strongly dual feasible if ¢ is dual feasible and y fulfills

ys > 0= S hypomatchable in G(y). (3.19)

The advantage of this subclass of dual solutions is the fact that they
are algorithmically more easy to handle. Given a strongly dual feasible
vector y we define S(y) := {S € S| ys > 0}. A set C € S(y) is called
maximal if there does not exist a set R € S(y) with C C R. Then we ob-
tain the so-called surface graph G x S(y) by shrinking all maximal sets
C € S(y) using the transformation given in section 3. Then the dual
variable yr can be interpreted as the (dual) variable of the pseudonode
vg representing the blossom R in the surface graph.

A not necessarily perfect matching M and a strongly dual feasible vec-
tor y are called a compatible pair if they fulfill (3.16), (3.18) and (3.19).
Now the following theorem can be shown (cf. Derigs [1986]).

Theorem 3.4 M is extreme if and only if there exists a strongly dual
feasible y such that (M,y) is a compatible pair.

The following theorem concerning alternate dual solutions which was
first proved in Derigs [1982] and Ball and Derigs [1983] is essential for
the efficient matching implementations using the ”Price and Reoptimize”
strategy (cf. section 6).

Theorem 3.5 Let M be an extreme matching and i € V arbitrarily
chosen then there exists a dual vector y such that (M,y) is a compatible
pair and ys = 0 for all S € S with i € S (i.e., any node i € V can be
"forced” into the surface graph G x S (y)).

It is important to note that given any compatible pair (M,y) a com-
patible pair (M, /') fulfilling this additional property can be constructed
by essentially one application of the shortest augmenting path labeling
method presented in Derigs [1981a).

116 ARC ROUTING

5. MATCHING ALGORITHMS: LINKING
COMBINATORIAL AND POLYHEDRAL
RESULTS

Edmonds’ algorithm [1965b] combines in a fascinating way polyhe-
dral aspects, especially results from LP-duality with graph theoreti-
cal/combinatorial concepts, an approach which initiated a very successful
field or research area: polyhedral combinatorics.

Throughout the procedure Edmonds’ algorithm keeps a compatible
pair (M,y). The matching M is grown using augmenting paths P made
up entirely of tight edges ensuring that after the augmentation the aug-
mented matching M @ P and the dual solution y are compatible again.
To ensure the fulfillment of condition (3.18) hypomatchable sets R € S
with yg > 0 are shrunk.

Now we start growing an alternating tree T in G(y) x S(y) rooted at
an unmatched node . If T becomes an Hungarian tree, i.e. the surface
graph does not contain an augmenting path P rooted at r the dual solu-
tion is successively altered to y’ such that M and y’ are compatible and
the Hungarian tree can be grown in the new surface graph.

Thus, if the alternating tree T' grown in G(y) x S(y) becomes a Hun-
garian tree we add a nonnegative value € to the dual variable vy, for all
outer nodes/ pseudonodes and we subtract € from y, for all inner nodes/
pseudonodes, i.e. we set

+ [yx+e€ for k outer (pseudo-)node in G(y) x S(y) 3.90
Ye = | yx—e for k inner (pseudo-)node in G(y) x S(y). (3.20)

The constant € is chosen as large as possible subject to the constraint
that the complementary slackness conditions are fulfilled after the dual
change, i.e. (M,y’) is a compatible pair. We determine

€1 :=min{¢; j| edge (4,7) joins an outer node to a node not in T'},
€2 := min {¢;;/2| edge (7,7) joins two outer nodes},
€3 := min {yg |vgr is an inner pseudonode} ,

and we set € := min{ej, €2, €3}.

If € = €;, then after the dual change T can be grown by a new tight
edge, if € = €9, adding the tight edge determining €5 to the tree creates
an odd cycle C which has to be shrunk into a pseudonode. If € = €3, then
after the dual change an inner pseudonode vy has received a zero dual
value and the outermost blossom R represented by vy can be expanded.
In any case we then try to grow the alternating tree in the new surface

graph G(y') x S(¥')-

Matching: Arc Routing and the Solution Connection 117

From this description it becomes apparent that the blossom-algorithm
can be categorized as primal-dual method and extension of the so-called
Hungarian method for solving the assignment problem to the non-bipartite
case (cf. Papadimitriou and Steiglitz [1976]) and there are two central
routines to be combined:

m a routine for finding augmenting paths and

m 3 routine for updating dual solutions.

Analyzing different implementations and approaches for finding opti-
mal matchings Derigs [1988a] showed that the determination of ”shortest
augmenting paths” can be identified as the driving concept for all com-
binatorial approaches either explicitly or implicitly. Thus, it turns out
that every augmenting path in a subgraph G(y) is a shortest augmenting
path. Because of this fundamental property the relationship between
(shortest) augmenting paths in G and (shortest) augmenting paths in
G x S(y) is summarized in the following proposition. For a proof see
Derigs [1981a].

Proposition 3.1 Let (M,y) be a compatible pair with Mg the match-
ing in G x S(y) induced by M. Then the following properties hold:

(2) Any alternating cycle Cs in G x S(y) induces an alternating
cycle C in G with 1 (C) =1 (C).

(44) Any augmenting path Pg connecting two unmatched nodes 1
and .j in G x S(y) induces uniquely an augmenting path P in G con-
necting i and j with [(P) =1 (P) +y; +y;.

(4i7) Let P be an augmenting path in G which is induced by an
augmenting path in G x S(y) and for R € S(y) let Pg:= E(R)NE (P),
i.e. the subpath of P contained in R, then I (Pg) = 0.

Thus, if the shortest M-augmenting path in G is induced by an M-
augmenting path in the surface graph, then it can be found by deter-
mining the shortest M-augmenting path in G x S(y) with respect to the
reduced cost €;;. Note that in the shortest augmenting path algorithm of
Derigs [1981a] all compatible pairs (M, y) fulfill the additional property

Mnéi) =0 = y. = 0forieV
and thus, in proposition 3.1 (i7) we obtain the relationship I(P) = I(P).

Now for all edges the reduced cost ¢;; are non-negative and ¢;; = 0 for
matching edges. And thus, we obtain

I(P)=1(P) = Z Ty

(2.5)eP

118 ARC ROUTING

and we can apply Dijkstra-like labeling methods for finding the shortest
alternating path in the surface graph.

However, the shortest M-augmenting path in G does not necessarily
be induced by an augmenting path in G x S(y). The matching algorithm
must be able to, first, detect whether this might be the case and, second,
overcome this situation. The following proposition gives a method to
control this situation.

Proposition 3.2 Let P be an M -augmenting path in G which is not
induced by an augmenting path in the surface graph but which is induced
by an augmenting path in G' = G x (S(y)\R), t.e. the graph obtained
by expanding an outermost blossom R € S then

1(P) =1 (P)+2yr

For a proof see Derigs [1981a].
We say that the augmenting path P is hidden in the pseudonode vg.

Thus, as long as growing the alternating tree in G x S(y) guarantees
to find an augmenting path the length of which does not exceed the re-
duced cost length of an augmenting path hidden in a pseudonode vg by
more than 2yg, the shortest path found in G x S(y) will also induce a
shortest augmenting path in Gg.

In Derigs [1981a], [1988a] a Dijkstra-like labeling method for con-
structing minimum cost perfect matchings via constructing a sequence
of compatible pairs and augmenting paths with respect to the extreme
matchings is described in detail (and FORTRAN-codes are given in
Burkard and Derigs [1980], and Derigs [1988b]). The labeling method
assigns two distance-labels to nodes giving the length of (shortest) al-
ternating paths of odd and even length from a root node, respectively,
and maintains control variables which indicate the possibility of the exis-
tence of shorter candidate paths which are presently hidden in the surface
graph.

Ball and Derigs [1983] demonstrate that this procedure can be in-
terpreted as an implementation of the primal-dual/blossom algorithm
where the possibly many dual updates within one augmentation phase
are comprised to one single dual update performed after the augmenta-
tion and the distance labels are the aggregation of the e-values of the
dual changes that have been postponed.

Matching: Arc Routing and the Solution Connection 119

Conversely, the blossom algorithm can be interpreted as a shortest
augmenting path method. Yet the problem of finding such a shortest
augmenting path is reduced to a sequence of ”easier” problems, i.e. to
decide whether any augmenting path in G x S(y) exists. Such a reduc-
tion is the common philosophy in so-called primal-dual algorithms.

6. MATCHING ALGORITHMS:
IMPLEMENTATION ISSUES

A first and rather straightforward implementation of the blossom al-
gorithm leads to a complexity of O(|V|?|E|). A first improvement to
O(|V|3) based on a more efficient data-structure for storing the blos-
soms and managing the augmentations and dual changes was given by
Lawler [1976]. Using more involved data structures and concepts like
scaling the cost coefficients the time bound could be further reduced by
Gabow [1990] to O(|V|(|E| + |V'|log]V])) and to

o (|E| log (IV|-N) \/[VT-a (IVI,]E]) log]V|) by Gabow and Tarjan
[1991] with N the magnitude of the largest edge cost and a(n,m) the
inverse of the Ackermann function introduced by Tarjan [1983].

For the Fuclidean matching problem in which the nodes of the graph
are given as points in the plane and the cost of an edge (¢,7) is defined
to be the distance between ¢ and j, Vaidya [1989] showed the complexity
of O ([V”/2 (log |V])?).

According to our knowledge these very refined implementations were
never materialized into machine-executable codes and tested on (large
scale) instances.

Parallel to the development of implementations with improved the-
oretical complexity several researchers have focused on the ”practical
performance” of matching algorithms and have developed a bundle of
techniques, heuristics, tricks etc. to reduce the running time of match-
ing codes enabling the solution of rather large instances and thus, proving
that matching is indeed a well-solvable class of combinatorial program-
ming.

In this section we focus on this aspect and present some of these ap-
proaches. Some enhancements were developed and evaluated for the spe-
cial case of the Euclidean matching problem and thus, their applicability
is limited, i.e. their generalization and their computational advantage
for arbitrary graphs remains questionable.

120 ARC ROUTING

In the following we describe several key-components which have shown
to be significant time savers in several independent studies. These com-
ponents or enhancements may be applied simultaneously, but then their
combined behavior may be difficult to analyze and will depend on the
special instance - euclidean/ non-euclidean graph, size of the graph, range
of the cost-coefficients etc. So far, no single combination has shown to
be dominating the other, but one can say that besides the use of an effi-
cient basic data-structure for handling blossoms and augmentations the
use of some of these enhancements is necessary to be able to solve large
instances in reasonable time. The enhancements which we describe in
the remainder of this section concern

® the choice of the initial (extreme) matching,
a the organization of the dual changes, and

» the adaption of concepts used for solving large scale linear pro-
grams, i.e. the strategy to determine optimal matchings for sparse
subgraphs and use outpricing and reoptimization.

6.1. START PROCEDURES:
CONSTRUCTING THE INITIAL
EXTREME MATCHING

The blossom algorithm and hence the shortest augmenting path method
can be initialized with any compatible pair (M,y). Here a trivial start
would be to choose M = @ and y = 0. Yet, obviously the quality of
the initial pair (M,y) has significant influence on the computational ef-
fort, i.e. the running time for identifying and performing the remaining
augmentations. Such a ”good” initial pair is usually constructed in a so-
called preprocessing phase. While early implementations of the shortest
augmenting path method like the SMP-code given in Burkard and Derigs
[1980] were focussing on producing initial compatible pairs (M,y) with
a matching of large cardinality |M| and were ignoring the importance
of a "good” y-vector, recent applications of the shortest augmenting
path labeling method in connection with results on postoptimal analysis
demonstrated the importance of a good pair (M,y). Note that given a
dual solution y with ys = 0 for S € S any matching M C E(y) can be
used to form an initial compatible pair (M, y).

The SMP-code presented in Burkard and Derigs [1980] uses a greedy-
like routine to determine an initial compatible pair (M,y) which can be
described by the following high-level language program assuming V' =

{1,..,n}:
procedure SMP-Start
Let M:=Q0andy=0

Matching: Arc Routing and the Solution Connection 121

Fori=1untiln
if 2 unmatched do
begin
set § := min{cij — y;|(4,5) € E}
if exists jo unmatched with ¢;j, — yj, = 6 set M := M U (4, jo)
set y; ;=6
end

The above method constructs a matching M and simultaneously a dual
solution y with the property that M is saturated in E(y). M need not
be a maximum cardinality matching in G(y). Yet, computational tests
have shown that constructing a maximum cardinality matching M’ in
G(y) by augmentation of M and then starting the blossom-algorithm/
shortest augmenting path method with (M’ y) does not pay.

Another more efficient start procedure based on solving the so-called
fractional matching problem first has been developed by Derigs and Metz
[19864].

Any basic solution of the linear system (3.2) and (3.4) is called a (per-
fect) fractional matching of G. The following theorem (Balinski {1972];
describes the combinatorial nature of fractional matchings.

Theorem 3.6 For a perfect fractional matching let Ex := ({e € E|
xe > 0}). Then z is (0,1,1/2)-valued and the components of the sub-
graph G' = (V, E(x)) are either a pair of nodes joint by an edge or an
odd cycle.

Given a perfect fractional matching z, let E1(z) :={e € E | ze = 1}
then Ej(z) is a matching in G. Moreover for any odd cycle component
(Vk, Ex(z)) of G’ we have z, = 1/2 for e € Ex(x) and we can easily obtain
a matching My C Ex(z) of cardinality (|Vi|—1)/2 leaving arbitrarily one
node v € Vi unmatched. Thus, any fractional matching x gives raise to a
(non unique) matching M(zx) with E;(z) C M(x) € E(x) of cardinality
|V|/2 — c(x) where ¢(z) is the number of odd cycle components of G'.

Now consider the linear program (fractional matching problem, FMP):
min{c'z| z fulfills (3.2) and (3.4)}

then the following proposition holds:

Proposition 3.3 Let x be an optimal perfect fractional matching in G

and let y € RY! be a complementary dual solution. Then any matching
M C E (y) is an extreme matching in G and (M,y) is a compatible pair.

122 ARC ROUTING

Note that E(z) € E(y). Thus, a compatible pair (M,y) with |M| =
|[V|/2 — ¢(x) can easily be obtained from an optimal perfect fractional
matching x.

FMP can be solved by any linear programming algorithm. Yet, FMP
has a special combinatorial nature, which allows to apply more efficient
special purpose algorithms. FMP is equivalent to a perfect matching
problem (assignment problem) in a bipartite graph G = (V’, V", E) re-
lated to G. This graph is obtained in the following way: Split each
node v € V into two nodes v/,v”. Split each edge (v,w) € E into edges
(v, w") and (w',v”). Let Z be the incidence vector of a perfect matching
M in G then the associated perfect fractional matching = in G is given
by Ty = (:ftv/‘wn + :f:w/yvu)/Q. Setting év’,w” = Gyt 1= Cu,w/2 we get
&% = ¢z and hence the optimal perfect matching in G with respect to &
induces an optimal perfect matching in G.

_ Now let Z be the incidence vector of an optimal perfect matching in
G and ¢ an optimal (complementary) dual solution, i.e.

G + Gur < Gy for (V,w") €E
gv’ -+ gw// = 5vl’w// lf ‘i‘v’,w” > 0.

Note that with T also £ with 2,/ := Ty ,» induces an optimal perfect
matching M in G and § is also complementary to Z. Thus, setting

Yo := (Gor + Go) /2
we get

Yo + Yw < for (v,w) €EE
yv + yw = Cv,w lf x'u,u) > 0.

Hence y is an optimal dual solution to FMP which is complementary to z
and thus, (M(z),y) is a compatible pair for any matching M(z) C E(y).

FMP can be solved by the same concepts as the original non-bipartite
matching problem, i.e. the primal-dual Hungarian method/ shortest aug-
menting path method (cf. Derigs [1985]). For solving large scale assign-
ment problems the application of the ”Price and Reoptimize”-approach
has shown to be highly efficient (cf. Derigs and Metz [1986b]).

6.2. ORGANIZATION OF DUAL UPDATES

A dual update is necessary if the surface graph does not allow a per-
fect matching, i.e. for at least one unmatched node r the search for
an augmenting path fails. In the so-called tree-implementation we pre-
specify the unsaturated node r beforehand and update the duals of the

Matching: Arc Routing and the Solution Connection 123

tree nodes whenever the single alternating tree rooted at r becomes an
Hungarian tree. In the forest-version we simultaneously grow alternat-
ing trees from all unmatched nodes and update the duals of all nodes
contained in the forest.

Using the forest version costs some overhead but usually leads to aug-
menting paths which are shorter with respect to the number of edges
in the paths. While at the beginning of the augmentation process short
augmenting paths (in the just described sense) exist for all unsaturated
nodes and therefore the tree-version has some advantages, the strategy
to grow only single alternating trees for the last augmentations makes
the tree version inferior to the forest-version.

This experience and argumentation has to be viewed under the ad-
ditional aspect that, when using the special start procedures described
above, on the average 95% of the nodes are already matched when enter-
ing the blossom algorithm/ shortest augmenting path method and thus
the forest-version can be expected to work faster.

Also, for the shortest augmenting path implementation of the blossom
algorithm the overhead of the forest-version is reduced, since applying
the shortest path labeling method can be viewed as aggregating and
postponing dual-updates until the point of augmentation.

Cook and Rohe [1998] have developed a so-called ” variable e-approach”
for the forest-version where each alternating tree T; has its own dual
change ¢;. This technique proved to be superior to the standard tree-
and forest-version for the Euclidean matching problem, when applied in
combination with the ”Price and Reoptimize”-approach (cf. section 6.3),
i.e. the dual change logic was applied to rather sparse graphs.

6.3. PRICE AND REOPTIMIZE

The strategy to compute an optimal solution to a sparse subproblem
first and then to use duality to check optimality and control a process
of introducing variables is a standard linear programming technique for
solving large problem instances.

This approach has motivated the very successful principle for solving
large structured, highly constrained problems called (delayed) column
generation. The application of this idea to solving MP was first proposed
by Grotschel and Holland [1985] as key issue in their facet-generating ap-
proach, as well as by Derigs [1986] in a shortest augmenting path based
"primal approach”.

124 ARC ROUTING

The basic idea is as follows:
Price and Reoptimize-algorithm

Step 1 Select a sparse working subgraph G' = (V, E’) of G, i.e. E' CE
Step 2 Construct an optimal pair (M,y) in G’
(using a matching code for sparse problem instances)
Step 3 Calculate the reduced costs of the edges in E'\ E’ with respect
to y if all of the reduced costs are nonnegative then STOP
((M,y) is an optimal pair in G)
else goto 4
(M may not be optimal in G)
Step 4 Select E~ (a subset) of the edges having negative reduced cost,
set B/ .= FE'UE~
Step 5 (Re)solve the matching problem over G’ = (V, E’) and goto 3.

When implementing this approach the following questions arise:

1 Which subgraph should be selected for initialization in Step 1,

2 which matching algorithm/ code should be used to solve the initial
matching problem in Step 2,

3 how can the outpricing in Step 3 be performed efficiently,

4 which subset E~ of edges not pricing out correctly should be in-
troduced into the working subgraph in Step 4, and

5 how can the reoptimization in Step 5 be performed efficiently?

ad (1) The general scope is to construct an initial subgraph with only
small computational effort which is very sparse and at the same time has
a high potential of containing an optimal perfect matching. Approaches
that have shown to be effective choose the k-nearest graph consisting of
the k least costly edges meeting each node plus the edges in the initial ex-
treme matching obtained from solving the fractional matching problem
(Derigs and Metz [1991]) or the k edges of least reduced cost with respect
to the dual solution for the fractional matching problem meeting each
node (Applegate and Cook [1993]). For the special case of the Euclidean
matching problem choosing the edges of an approximate Delauny trian-
gulation of the set of points has been proposed by Cook and Rohe [1998].

ad (2) Since the initial graph is rather sparse, special implementa-
tions of the shortest augmenting path algorithm which take into account
this sparsity in the data structures for storing the graph, in the pro-
cedures (priority queues) for scanning nodes during the shortest path
computation etc. should be used.

Matching: Arc Routing and the Solution Connection 125

ad (3) In the outpricing step we have to calculate

Gji=ci—%—Yi— O, YR
R:(i,j)€6(R)

for edges (7,7) not contained in E’.

Here it is essential to be able to identify for a node 7 all blossoms which
contain 7 and are presently shrunk. Thus, the efficiency of calculating
the reduced costs depends strongly on the efficiency of the data-structure
for managing the nested family S(y) = {R | yr > 0}. Let

sum(i) :=y; + Z yr fori €V, then
R:iER
&ij = cij — sum(i) — sum(j)

is an underestimate for the reduced costs ¢;; of edge (7, j) which is easier
to compute than ¢;; and we only need to price out correctly those edges
for which ¢&; < 0.

Derigs and Metz [1986b] and Metz {1987] developed a special analysis
of the dual solution reducing the number of superfluous outpricing oper-
ations. Applegate and Cook [1993] and Cook and Rohe [1998] describe
similar techniques to reduce the effort for identifying critical edges, i.e.
edges which might not price out correctly in the case of Euclidean match-
ing problems.

ad (4) Identifying the edge (¢,7) ¢ F’ with minimal reduced cost
and introducing this edge into E’ if the reduced cost is negative, is in
some sense equivalent to the standard Dantzig-rule for controlling the
pivoting process in the Simplex method. Obviously, the determination
of this edge is rather costly. The special structure of the matching prob-
lem motivates another strategy:

Let node r € V be fixed and €, := min {%,; | (r,j) € E} then intro-
ducing the edge defining €, into E if ¢, < 0 and resolving the matching
problem using the updating technique described in (5) makes every edge
in §(r) feasible, i.e., without being introduced into the working graph
explicitly all edges (r,j) € E are dual feasible after resolving the match-
ing problem.

Consequently, investigating 6(r) for 7 € V in a round-robin fashion
and enlarging E by subsets of the complete neighborhood §(r) if ¢, < 0
and then starting the reoptimization has shown to be quite efficient,
since the working subgraph stays rather sparse throughout the whole
procedure. Please observe that an edge that has priced out correctly in

126 ARC ROUTING

one iteration may become infeasible in later iterations. Thus, in order
to prove optimality, this procedure has to encounter a sequence of |V|
consecutive phases where for each node r that is fixed all edges in §(r)
price out correctly.

ad (5) Constructing the optimal matching in the modified subgraph
G’ can be performed ”from scratch” and this may certainly be recom-
mendable if the number of edges introduced after performing the out-
pricing step is relatively large. Yet, if this set is small or has a special
structure, for instance it contains only edges meeting a common node,
then reoptimization, i.e. modifying the non-optimal perfect matching
via negative alternating cycles should be preferable.

Here, in a first step the new edges from F~ have to be inserted into
the existing solution, that is we have to construct a modified dual solu-
tion such that ¢;; > 0 for all edges in G’. Derigs [1982] and Ball and
Derigs [1993] have demonstrated how this can be accomplished by the
standard shortest augmenting path labeling method if successively sub-
sets E~(r) := E~N4(r) of edges meeting one node, r say, are introduced
into G'.

Assume that (r,t) € M. If r is shrunk into a pseudonode, we force r
into the surface graph (cf. Theorem 3.5), i.e. in a first step the dual so-
lution is modified such that all hypomatchable sets containing r receive
zero dual value. This can be obtained by adding two artificial nodes a
and b and two artificial edges (a,r) and (¢, b) with sufficiently large costs,
setting yo, = yp = 0 and using the shortest augmenting path method to
find the shortest augmenting path starting at node a. The only existing
augmenting path P is hidden by the pseudonode containing r and has
to use edge (t,b). Since we made this edge expensive enough, P can be
"detected”, i.e. P can become part of the alternating tree rooted at a
only after all pseudonodes containing 7 have been expanded and r has
been forced into the surface graph. Now we delete the artificial nodes
and edges and we perform the dual update to obtain a new dual solution

Y.

If r is not shrunk into a pseudonode (anymore), we set M := M \
{(r,t)} and we simply modify the dual variable of node r by a sufficiciitiy
large A > 0 such that G.; > 0 with respect to 3’ for all edges in §(r), i.e.
we calculate

A:=min{c.; | (r,j) € E~(r)}

Matching: Arc Routing and the Solution Connection 127

o=

pseudonodes
i
v
7
@ © é) ®
Augmenting path connecting nodes a and b Pseudonodes containing node r have been expanded
is hidden in two pseudonodes => dual of node rcan be modified

Figure 3.8 Expanding the pseudonode containing node r through SAP-steps.

and we set

{ y; +A for t=7
Y = i
Y, else

Now we could basically insert all edges meeting 7, i.e. the set §(r), into
G’ and (M,y) is a compatible pair in the enlarged graph, too.

After scanning the subset E7(r) we can either scan another sub-
set, £~ (s) say, or start reoptimization immediately by constructing the
shortest augmenting path from node r. With both approaches we main-
tain the condition that throughout the whole procedure a.compatible
pair (M,y) is at hand and thus, the shortest augmenting path method
can be used for reoptimization.

It is apparent that the choices for (4) and (5) are related. Thus, suc-
cessively pricing out the neighborhood of the nodes and reoptimizing
immediately has shown to be highly effective.

Cook and Rohe [1998] have introduced the concept of careless repairs.
In contrast to the method just described each pseudonode containing
node r is expanded and matching edges meeting those pseudonodes are
eliminated from the matching. Thus results in a graph having a greater
number of unmatched nodes compared to our approach described be-

128

ARC ROUTING

fore. Cook and Rohe [1998] have shown that for the Euclidean match-
ing problem applying careless repairs in combination with the variable
e-approach is outperforming our reoptimization procedure significantly.
Yet, they also experienced that for large Euclidean instances the time
necessary for completing their non-perfect matching was close to the time
for computing the perfect matching from scratch.

References

[
2l

[13]

Altinkemer, K., and B. Gavish [1991]: Parallel savings based heuris-
tics for the delivery problem; Operations Research 39, 456-469.

Applegate, D., and W. Cook [1993]: Solving large-scale matching
problems; in: Network Flows and Matching: First DIMACS Imple-
mentation Challenge (D.S. Johnson and C.C. McGeoch, editors),
American Mathematical Society, 557-576.

Bachem, A., and M. Malich [1993]: The simulated trading heuristic
for solving vehicle routing problems; Operations Research 93, 16-19.
Balinski, M.L. [1972]: Establishing the matching polytope; J. Comb.
Theory, Ser. B 13, 1-13.

Ball, M.O., L.D. Bodin, and R. Dial [1983]: A matching based heuris-
tic for scheduling mass transit crews and vehicles; Transportation
Science 17, 4-31.

Ball, M.O., and U. Derigs [1983]: An analysis of alternate strategies
for implementing matching algorithms; Networks 13, 517-549.

Ball, M.O., U. Derigs, C. Hilbrand, and A. Metz [1990]: Matching
problems with generalized upper bound side constraints; Networks
20, 703-721.

Bendisch, J., U. Derigs, and A. Metz [1994]: An efficient matching
algorithm applied in statistical physis; Discrete Applied Mathemat-
ics 52, 139-153.

Berge, C. [1957]: Two theorems in graph theory; Proc. Natl. Acad.
Sci. USA, 43, 842-844.

Bodin, L. and B. Golden [1981]: Classification in Vehicle Routing
and Scheduling; Networks 11, 97-108.

Burkard, R.E., and U. Derigs [1980]: Assignment and matching prob-
lems: Solution methods with FORTRA N-programs; Springer Lecture
Notes in Mathematical Systems No. 184.

Carraresi, P., and G. Gallo [1984]: Network models for vehicle and
crew scheduling; EJOR 16, 139-151.

Christofides, N. [1976]: Worst-case analysis of a new heuristic for

the traveling salesman problem; Management Science Research Re-
port No. 388, Carnegie-Mellon University.

(14]

[15]

[16]
[17]

[18]

(19]

(20]

22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Matching: Arc Routing and the Solution Connection 129

Cook, W., and A. Rohe [1998): Computing minimum weight perfect
matchings; to appear in: ORSA J. on Computing.

Cornuejols, G., and G.L. Nemhauser [1978]: Tight bounds for
Christofides traveling salesman heuristic; Math. Programming 14,
116-121.

Cunningham, W.H., and A.B. Marsh [1976]: A primal algorithm for
optimal matching; Math. Programming Study 8, 50-72.

Derigs, U. [1981a]: A shortest augmenting path method for solving
minimal perfect matching problems; Networks 11, 379-390.

Derigs, U. [1981b]: On some experiments with a composite heuris-
tic for solving traveling salesman problems; Methods of Operations
Research 40, 287-290.

Derigs, U. [1981c]: Another composite heuristic for solving the trav-
eling salesman problem; University of Maryland, Working Paper.
Derigs, U. [1982]: Shortest augmenting paths and sensitivity analysis
for optimal matchings; Report 82222-OR, Institut fiir Okonometrie
und Operations Research, Universitat Bonn.

Derigs, U. [1985]: The shortest augmenting path method for solving
assignment problems - Motivation and computational experience;
Annals of Operations Research 4, 57-102.

Derigs, U. [1986]: Solving large-scale matching problems efficiently -
A new primal matching approach; Networks 16, 1-16.

Derigs, U. [1988a]: Programming in networks and graphs - On the
combinatorial background and near-equivalence of network flow and
matching algorithms; Lecture Notes in Economics and Mathemati-
cal Systems 300, Springer-Verlag.

Derigs, U. [1988b]: Solving non-bipartite matching problems via
shortest path techniques; Annals of Operations Research 13, 225-
261.

Derigs, U. and A. Metz [1986a]: On the use of optimal fractional
matchings for solving the (integer) matching problem; Computing
36, 263-270.

Derigs, U. and A. Metz [1986b]: An in-core/out-of-core method for
solving large scale assignment problems; Zeitschrift fiir Operations
Research 30, A181-A195.

Derigs, U., and A. Metz [1991]: Solving (large scale) matching prob-
lems combinatorially; Math. Programming 50, 113-121.

Derigs, U., and A. Metz [1992a]: Uber die Matching Relazation fir
das Set Partitioning Problem; in: Operations Research Proceedings
1991, 398-406.

Derigs, U., and A. Metz [1992b]: Maitching problems with knapsack
side constraints - A computational study -; in: Modern Methods

130

(30]

[31]

[43]

44]

ARC ROUTING

of Optimization (ed. by W. Krabs and J. Zowe), Springer Lecture
Notes in Economics and Mathematical Systems 378, 48-89.

Derigs, U., and A. Metz [1992c|: A matching based approach for solv-
ing a delivery/pick-up vehicle routing problem with time constraints;
OR Spektrum 14, 91-106.

Desrochers, M., and T.W. Verhoog [1991]: A new heuristic for the
fleet size and mix vehicle routing problem; Computers and Opera-
tions Research 18, 263-274.

Dijkstra, E.-W. [1959]: A note on two problems in connection with
graphs; Numerische Mathematik 1, 269-271.

Dror, M., and L. Levy [1986]: A vehicle routing improvement algo-
rithm comparison of a “greedy” and matching implementation for
inventory routing; Computers and Operations Research 13, 33-45.

Edmonds, J. [1965a]: Paths, trees and flowers; Can J. Math. 17,
449-467.

Edmonds, J. [1965b]: Mazimum matching and a polyhedron with 0,1
vertices; J. Res. Natl. Bur. Standards 69B, 125-130.

Edmonds, J., and E.L. Johnson [1973]: Matching, Euler tours and
the Chinese postman; Math. Programming 5, 88-124.

Edmonds, J. and W. Pulleyblank [1974]: Facets of 1-matching poly-
hedra; in: Hypergraph Seminar, Lecture Notes in Mathematics, 411,
214-242.

Euler, L. [1736]: Solutio problematis ad geometriam situs pertinen-
tis; Comment. Acad. Sci. Imp. Petropolitanae 8, 128-140.

Fujii, M., T. Kasami, and N. Ninomiya [1969]: Optimal sequenc-
ing of two equivalent processors; SIAM J. Appl. Math 17, 784-789
[Erratum in: SIAM J. Appl. Math. 20 (1971) 141].

Gabow, H.N. [1976]: An efficient implementation of Edmond’s algo-
rithm for mazimum matching on graphs; J. of the ACM 23, 221-234.

Gabow, H.N. [1990): Data structes for weighted matching and near-
est common ancestors with linking; Proc. of the First Annual ACM-
STAM Symp. on Discrete Algorithms, ACM, New York, 434-443.

Gabow, H.N., and R.E. Tarjan [1983]: A linear-time algorithm for
a special case of disjoint set union; Proc. 15th Annual ACM Symp.
on Theory of Computing, York, N.Y., 246-251.

Gabow, H.N., and R.E. Tarjan [1991]: Faster scaling algorithms for
general graph matching problems; J. of the ACM 38, 815-853.

Gerards, A.M.H. [1995]: Matching; in: Handbooks in OR & MS
7 (M.O. Ball, T.L. Magnanti, C.L. Monma, and G.L. Nemhauser,
editors), North Holland, Amsterdam.

(4]

[46]
(47]
[48]

[49]

(50]

[51]

[52]
53] -
[54]

[55]

[56]
[57]
/58]
(59)

(60]

Matching: Arc Routing and the Solution Connection 131

Grotschel, M. [1977]: Polyedrische Charakterisierung Kombina-
torischer Optimierungsprobleme; Mathematical Systems in Eco-
nomics 36; Verlag Anton Hain, Meisenheim am Glan.

Grotschel, M., and O. Holland [1985]: Solving matching problems
with linear programming; Math. Programming 33, 243-259.

Hasselstrom, D. [1976]: Connecting bus-routes at a point of inter-
section; AB VOLVO Working Paper.

Held, M., and R.M. Karp [1971]: The traveling salesman problem
and minimum spanning trees: Part II; Math. Programming 1, 6-25.

Iri, M., K. Murota, and S. Matsui [1983]: An approzimate solution
for the problem of optimizing the plotter pen movement; in: R.F.
Drenick and F. Kozin (eds), ”System Modeling and Optimization”,
Proc. 10th IFIP Conf., New York, 1981, Lecture Notes in Control
and Information Sciences, Vol. 38, Springer-Verlag, Berlin, 572-580.

Johnson, D.S., and C.C. McGeoch [1993]: Network Flows and
Matching - First DIMACS Implementation Challenge; American
Mathematical Society.

Kruskal Jr., J.B. [1956]: On the shortest spanning subtree of a graph
and the traveling salesman problem; Proc. Amer. Math. Soc. 7, 48-
50.

Kuhn, HW. [1955]: The Hungarian method for the assignment prob-
lem; Nav. Res. Log. Quart. 2, 83-97.

Kwan, Mei Ko [1962]: Graphic programming using odd and even
points; Chinese Math. 1, 273-277.

Lawler, E.L. [1976]: Combinatorial Optimization: Networks and Ma-
troids; Holt, Rinehart, and Winston, New York, N.Y.

Lin, S., and B.W. Kernighan [1973]: An effective heuristic algorithm
for the traveling salesman problem; Operations Research 21, 498-
516.

Lovasz, L., and M.D. Plummer [1986): Matching Theory; Annals of
Discrete Mathematics 29, North Holland.

Machol, R.E. [1961]: An application of the assignment problem; Op-
erations Research 9, 585-586.

Metz, A. [1987]: Postoptimale Analyse und neue primale Matching
Algorithmen; Diploma Thesis, University of Cologne.

Miller, D.L. [1995]: A matching based ezact algorithm for capacitated
vehicle routing problems; ORSA J. on Computing 7, 1-9.

Nemhauser, G., and G. Weber [1979]: Optimal set partitioning,
matchings and Lagrangean duality; Naval Res. Log. Quart. 26, 553-
563.

132 ARC ROUTING

[61] Olafson, S. [1990]: Weighted matching in chess tournaments; Jour-
nal of the Operational Research Society 41, 17-24.

[62] Pandit, R. and B. Muraldharan [1995]: A capacitated general routing
problem on mized networks; Computers and Operations Research
26, 465-478.

[63] Papadimitriou, C.H., and K. Steiglitz [1976]: Combinatorial Op-
timization: Algorithms and Complezity; Prentice-Hall, Englewood
Cliffs, NJ.

[64] Reingold, E.M., and R.E. Tarjan [1981): On a greedy heuristic for
complete matching; SIAM J. Comput. 10, 676-681.

[65] Riskin, E., R. Ladner, R. Wand, and L. Atlas [1994]: Indez assign-
ment for progressive transmission of full-search vector quantization;
IEEE Transactions on Image Processing 3, 307-312.

[66] Schrijver, A. [1983]: Short proofs on the matching polyhedron; J.
Comb. Theory, Ser. B 34, 104-108.

[67] Tarjan, R.E. [1983]: Data structures and network algorithms; SIAM,
Philadelphia.

[68] Vaidya, P.M. [1989]: Geometry helps in matching; SIAM J. Comput.
18, 1201-1225.

[69] Weber, G. [1981]: Sensitivity analysis of optimal matchings; Net-
works 11, 41-56.

[70] Win, Z. [1988]: Contributions to routing problems; Unpublished
Ph.D. dissertation Universitdt Ausburg.

Chapter 4

ARC ROUTING: COMPLEXITY AND

APPROXIMABILITY
Moshe Dror
University of Arizona
1. Introduction: Easy and Hard Problems 133
2. CPP as a Problem in P 141
3. N'P-Hard Generalizations of the CPP 143
3.1 The Mixed CPP 143
3.2 The MCPP N'P-Completeness 144
3.3 The Rural Postman Problem 147
3.4 The Windy Postman Problem 148
3.5 Non-intersecting Eulerian Circuits and A-trails
in Eulerian Graphs 149
3.6 Dominating Trails 151
3.7 Precedence in Arc Routing 152
3.8 Capacitated Arc Routing 154
4. Approximation Algorithms 156
5. Approximation Results for Arc Routing 159
5.1 The Mixed CPP 159
5.2 The Windy CPP 161
5.3 The RPP and Other Variants 161
5.4 The CARP 162
6. Conclusions 164
1. INTRODUCTION: EASY AND HARD
PROBLEMS

The majority of arc routing problems can be viewed as variants of the
classical Chinese Postman Problem (CPP). Restating the generic prob-
lem, let G = (V, E) be a connected graph (undirected) with V' a finite
set (the nodes) and E C V x V be the set of edges. In addition, we
have a real valued weight (distance) w;; > 0,Y(3,7) € E, and a design
problem: “Construct a least distance traversal sequence of all the edges
in E starting at and returning to the same node.” This is in essence
the Chinese Postman Problem as posed by Meigu Guan (Mei-Ko Kwan)

134 ARC ROUTING

in 1962, in the Chinese Mathematics journal which is the main reason
why we refer to this problem as the CPP. The historical overview of
arc routing and variants of CPP are eloquently described by Eiselt and
Laporte (this book), however we examine the Guan (1962) work for its
illustration of the computational aspects when solving the CPP and re-
lated problems. As pointed out in Edmonds and Johnson (1973), the
CPP can be separated into two parts: given an arbitrary (connected)
graph G, duplicate a set of edges in F of minimal total weight to trans-
form G into G (an even degree graph) which admits an Euler tour (a
closed tour which traverses exactly once every edge in the graph), and

then construct an Euler tour on G.

Since this chapter’s focus is on computational complexity which clas-
sifies algorithms according to their performance characteristics, we need
to define the appropriate mathematical notation:

Definition Given a nonnegative real function f(z),z > 0,

O(f(x)) denotes the set of all real functions g(x) such that |g(z)/f(z)|
is bounded from above as £ — oc.

Q(f(x)) denotes the set of all real functions g(z) such that |g(z)/f(z)]|
is bounded from below by a (strictly) positive number as z — oo.
O(f(x)) denotes the set of all real functions g(x) such that |g(z)/f(z)|
is bounded from both above and below as x — co.

It is interesting to note that Guan in his 1962 paper had most of the
‘ingredients’ for a good solution methodology for the CPP, however, it
lacked in one important aspect. The construction of the corresponding
Eulerian tour on G had an exponential worst time complexity! (See Fleis-
chner, 1990, for details.) On the other hand, the Euler tour construction
procedures described by Edmonds and Johnson (1973) are dominated in
terms of time complexity by the routine required to transform G into G.
This routine has, for general undirected graphs, time complexity no worse
than O(|V|3), and for sparse graphs time complexity of O(|E||V|log|V|)
(see Ball and Derigs, 1983). This brings us to the topic of computational
complexity and its implications for arc routing problems.

Computational complexity examines the issue of tracking the ‘effort’
(as a measurable difficulty) required to generate a readable answer for a
problem which requires computations. As Johnson (1990) put it “Given
a problem, how much computing power and/or resources do we need
in order to solve it?” In this chapter we address this issue focusing on
arc routing problems. Since clearly this is about answers generated by
computers, we need to examine the basic concepts of what a ‘problem’
is, and some of the related computer science terminology, in order to

Arc Routing: Complexity and Approximability 135

do even a partial justice in addressing computational complexity. There
have been a number of excellent, and much more comprehensive write-
ups on this general topic (Yannakakis, 1997, Shmoys and Tardos, 1995,
Johnson, 1990, Johnson and Papadimitriou, 1985, Garey and Johnson,
1979). This chapter is less comprehensive and less formal.

Following Yannakakis (1997), and Johnson (1990), we define a general
computational problem as follows: Given that “{0,1}*” represents the
set of all finite strings over the alphabet of {0,1} (any finite alphabet can
serve the same purpose), a problem II has a set Dy of strings in {0,1}*
representing the domain of the problem instances, and for each z € Dp
there is a set Aq(z) of strings in {0, 1}* representing the corresponding
possible acceptable answers for the instance z.

This technical definition of a computational problem is rich enough to
represent all the combinatorial optimization problems of interest. For in-
stance, one can easily describe any graph in the form of a finite string in
{0,1}, and the same statement holds for any answer to a graph problem.
Even though a number of different string representations are available for
graphs, such as adjacency lists or incidence matrices, all such representa-
tions, if reasonable (not artificially padded), are related in the sense that
a length of one string representation is bounded by a polynomial in the
length of the other string representation. Thus, the choice of particular
string representation is immaterial in practically all cases. An algorithm
(i.e., a formally specified step by step sequence of ‘actions’ or ‘moves’)
solves problem II if it represents a mapping from D to Ag U@ (takes
the value @ in case there is no answer).

Computational problems can be categorized in relation to the size of
the output sets An(x). A search problem is a problem for which the set
An(z) can have zero, or any positive number of elements. If Ap(z) is
nonempty for all x € Dy, the problem is defined as fotal, and if the set
Arn(z) has at most one member for all z, it is called functional. Decision
problems are a special case of total functional problems and combinato-
rial optimization problems are a special case of search problems where
for each instance z € Dy there is a finite set of solutions and every solu-
tion has a cost. lLe., if ¢ is a solution for x € Dy, we have a cost fri(i, z)
associated with this z.

Computing power or computing effort is measured in the context of
machine computation models. Van Emde Boas (1990), describes machine
computation models and the relations of time and space complexity of
algorithms based on such machine models. The equivalence of the differ-
ent machine models is due to the fact that (quote from the above) “each

136 ARC ROUTING

computation in one formalism can be simulated by a computation in the
other formalism.” and most importantly, “a problem is unsolvable in one
particular model, then it is also unsolvable for all other formalized com-
puting devices to which this particular model is related by mutual simu-
lation.” Thus, theoretical computer science has embarked on the path of
examination fundamental questions relating machine models and compu-
tational problems. One can perhaps say that this started with the classes
of problems denoted as P and NP, where P is the class of (decision)
problems solvable in polynomial time by deterministic Turing machines
and AP the class of (decision) problems solvable in polynomial time by
nondeterministic Turing machines. Since these are machine-dependent
definitions, computer science advanced the following two theses to set up
complexity classes which are examined in machine-independent context
(taken from Van Emde Boas, 1990).

Invariance Thesis: ‘Reasonable’ machines can simulate each other within
a polynomially bounded overhead in time and a constant-factor overhead
in space.

Parallel Computation Thesis: Whatever can be solved in polynomially
bounded space on reasonable sequential machine model can be solved in
polynomially bounded time on a reasonable parallel machine, and vice
versa.

Though no precise definition of ‘reasonable’ machine is usually given,
the basic premise is that such machines are unable to do an unrealistic
amount of computation in one step, such as being able to add numbers
of length 2" in one step.

In order to make the categorization of the most important two classes
of problems in this chapter P and NP even more clear, we cite a theo-
rem by Cook (1971) which states the following:

Theorem 1: Let D be a decision problem. Then the following are
equivalent.

1) D has the succinct certificate property.

1) D is solvable in polynomial time by a nondeterministic Turing ma-
chine.

#3t) D is transformable to INTEGER PROGRAMMING.

Arc Routing: Complezity and Approximability 137

More formal definitions of the terms above, such as ‘decision problem’,
‘succinct certificate property’, and INTEGER PROGRAMMING’, will
follow below.

Is P = N'P? In a chapter on computational complexity for arc routing
problems one still has to state this fundamental open question about the
power of deterministic machines to solve in polynomial time problems
solvable in polynomial time by nondeterministic machines. We clearly
do not intend to address this question here. It is just stated for com-
pleteness.

We restrict our complexity discussions mainly to the NP class of prob-
lems. Even for this class we restrict the discussions further by limiting
the problems to decision problems only. For that we follow the defini-
tions from Johnson (1990), where first a function is defined as a string
relation in which each string x € {0,1}* is the first component of pre-
cisely one pair, and a decision problem is defined as a function in which
the only possible answers are “yes” and “no”.

A language is defined as any subset of {0,1}* and a decision problem
Ry, corresponding to the language L is {(x,yes): x € L}U{(x,no): = ¢ L}.
If L is a language, then its complementary language is co—L = {0,1}*—L.

A problem instance is a string (of 0 and 1 elements) and a size of an
instance [is represented by the number of symbols it contains. Since we
have related all reasonable computing machines by the Invariance The-
sis, we can now restrict the measure of a computational effort to the time
requirement for solving a problem instance I in terms of the worst-case
time over all instances with the number of symbols || (the length of the
instance). We have already used this measure in our introduction to the
CPP by stating that the time complexity of the undirected CPP is given
by (O(IV]3).

The class P of problems contains all the so called ‘easy’ problems
(solvable in polynomial running time). It is important to note that the
Linear Programming problem is a member of the P class. The Lin-
ear Programming problem is said to be the hardest problem in class P
(Johnson, 1990).

Following Johnson and Papadimitriou (1985), we will formalize the
term succinct certificate property first. A succinct certificate for a given
decision problem is a string in {0,1}* whose length is bounded by a
polynomial in the instance length. A polynomial-time certificate check-
ing algorithm is an algorithm which, given such a succinct certificate,

138 ARC ROUTING

can verify whether the certificate is indeed valid. Also, all ‘yes’ instances
of our decision problem have to possess at least one such certificate,
and no ‘no’ answer can have it. What is important to note is that
given a certificate for ‘yes’ it can be validated or discarded quickly (in
polynomial-time).

Stating it a little differently, a decision problem D is said to possess the
succinct certificate property if and only if there is another polynomial-
time solvable decision problem C over the domain of instances of D and
certificates for such instances (‘short’ strings in {0,1}*) such that the
problem instance warrants the answer “yes” if and only if the corre-
sponding instance for C' warrants the answer “yes”.

An INTEGER PROGRAMMING problem can be formally presented
in the following way:

INTEGER PROGRAMMING
Instance: An m xn integer matrix A = (a;;), an m-vector b = (b1, ba, ...
,bm) of integers.

Question: 1Is there an n-vector of nonnegative integers = such that
Ax = b7

In terms of the three different though equivalent characterizations of
the NP class presented in Theorem 1, we have described (i) and (iii).
For a formal definition of nondeterministic Turing machine the reader is
referred (among many others) to Van Emde Boas (1990).

The question with which this chapter will be concerned the most, is
how to establish problem membership in a given class of problems. The
‘tools’ more frequently used to address this question are those of reduc-
tions. More specifically, in this chapter we restrict the reductions to
polynomial-time reductions (or Turing reductions).

A reduction process can be defined with the help of a familiar algorith-
mic concept of a subroutine or more formally an oracle (or a call state-
ment). This polynomial-time reduction construct relates polynomial-
time solvability for problem X by employing an oracle (a subroutine) for
problem Y. That is, problem X is polynomial-time reducible to problem
Y if there is a polynomial-time solution for X which uses a subroutine
for Y and counts the execution time for the subroutine as a single time
unit (or a single step).

Arc Routing: Complexzity and Approzimability 139

Clearly, if problem X is polynomial-time reducible to Y, and prob-
lem Y is solvable in polynomial time, then so is problem X (transitivity
of polynomial-time reducibility). As Johnson and Papadimitriou (1985)
state, essentially there are three kinds of reductions: (a) reductions that
prove a problem easy by reducing it to a known easy problem, (b) reduc-
tions that prove a problem hard by reducing some known hard problem
to it, and (c) reductions which prove nothing by reducing one problem
of unknown type to another problem of unknown type.

This brings us to a point in this somewhat coarse exposition of com-
plexity theory where we need to define the concept of completeness.

Definition 1: Suppose X is a decision problem and all the problems in
the class NP are polynomial-time reducible to X. Then X is hard for
the class NP (under the polynomial-time reduction). If the problem X
is also a member of the class NP, then the problem X is complete for
NP, or NP-complete under polynomial-time reduction.

Another definition of N"P-complete problem, which does not mention
polynomial-time reducibility, is based on the notion of a transformation
from one decision problem to the other. More precisely, if X is a string
relation (a decision problem) and Y is a string relation (another deci-
sion problem), a transformation is defined as a computable function f
by DTM from {0, 1}* to itself such that a problem instance I of X has a
“yes” answer if and only if f(I) has a “yes” answer as a an instance of Y.

Definition 2: A decision problem is N'P-complete if is complete for NP
under polynomial transformations.

For the NP class of problems it is conjectured that both definitions
of N"P-completeness, one based on polynomial-time reducibility and one
based on transformation from one problem to the other, are the same.
However, it is not clear if this holds also for other classes of problems
(Johnson, 1990). We assume here that both definitions are equivalent
for the NP class.

At this point.one has to identify a member of the A'P-complete class
of problems to establish that this class is not empty. Cook identified
the first NP-complete problem — the SATISFIABILITY problem (see
Cook, 1971).

SATISFIABILITY
Instance: List of literals U = (uy,%1,u2,U,... ,Un,Un), sequence of
clauses C = (¢3,¢2, ... ,cm), where each clause ¢; is a subset of U.

140 ARC ROUTING

Answer: “yes” if there is a truth assignment for the variables uq, us, ... ,un
that satisfies all the clauses in C, i.e., a subset U’ C U such that
U N {u;, 4} = 1,4 = 1,2,...,n, and such that [U' N¢| > 1,i =
1,2,...,m.

By 1979 the N'P-completeness class of problems had expanded consid-
erably. Garey and Johnson (1979) list over 300 N"P-complete problems
and many more problems have been added to this list since then. (For a
more recent list which includes approximability results for NP-complete
problems see Crescenzi and Kann, 1998.) However not all N’P-complete
problems are equally difficult and Garey and Johnson make a distinc-
tion between two kinds of AP-complete problems. First, there are those
which can be solved by what is called a pseudopolynomial-time algo-
rithm. A pseudopolynomial-time algorithm for a problem II is defined as
an algorithm whose running time is bounded by a polynomial if all input
numbers are expressed in unary notation. That is, a pseudopolynomial-
time algorithm will solve an instance in polynomial time provided that
the numbers in the instance are bounded by a polynomial in the input
size.

An example of a problem which can be solved in pseudopolynomial
time is the PARTITION problem. It is solvable in O(nB) time, where
B is the sum of the PARTITION numbers. Therefore the PARTITION
problem is solvable efficiently when B is ‘small’. However, the length of
a binary encoding of PARTITION is of O(nlog B) order, and, as Garey
and Johnson (1979) point out, nB is not bounded by any polynomial
function in nlog B.

An N'P-complete problem which can be solved in pseudopolynomial-
time is said to be N'P-complete in the ordinary sense. However, there are
many NP-complete problems (the SATISFIABILITY problem among
them) which cannot be solved in even pseudopolynomial-time. These
are said to be NP-complete in the strong sense.

Following Johnson (1990), a search problem II is N'P-hard if for some
NP-complete problem Y there is a polynomial-time Turing reduction
from Y to II. This implies that combinatorial optimization problem ver-
sions of N'P-complete decision problems are all N’P-hard. As Johnson
(1990) points out, the N'P-hard problems do not constitute an equiva-
lence class since one cannot impose an upper bound on the complexity
of N'P-hard problems (because even undecidable problems can be N'P-
hard). Thus, Johnson introduced the so called N'P-easy class of search
problems by requiring that for such problem there be a polynomial-time
Turing reduction to a problem in ANP. This enables the establishment

Arc Routing: Complezity and Approximability 141

of an equivalence class of search problems that are called N'P-equivalent
for problems that are both A"P-hard and N'P-easy.

At this point we stop with the classification of complexity classes since
it has not been our intention to provide a detailed overview of complexity
theory in its own right. This has been done very well by Johnson (1990)
and others. Here we have only restated and defined the complexity
theory terminology so we can examine arc routing problems and evaluate
how hard it might be to construct optimal solutions for such problems.
We are essentially grouping the different arc routing problem as ‘easy’
problems (in P) and ‘hard’ problems (NP-hard). We will also attempt
to provide the running-time orders when they are known.

2. CPP AS A PROBLEM IN P

One of the original problems on Karp’s (1972) list of ANP-complete
problems is the Hamilton Circuit problem (Input: graph G; Answer:
“yes” if G has a cycle which includes each node exactly once). This re-
sult establishes that the celebrated Traveling Salesman Problem (TSP)
is an AN'P-hard problem. In fact, Karp’s reduction establishes that the
TSP is N'P-hard in the strong sense. When we examine the CPP, it
is also clear that one can transform (in polynomial time) the CPP into
a TSP (see Mullaseril, 1996, and Laporte, 1997). However, this is not
the transformation direction one would select for an ‘easy’ arc routing
problem.

For examination of the CPP and related problems we need to define
a number of new terms (see also Fleischner, this book). A multigraph
has a finite set V' of nodes but the set £ of edges might have multiple
edges identified by (joining) a pair of nodes in V. A simple graph (or
just a graph) has no more than one edge joining any two nodes. With-
out trying to confuse the reader, sometimes we use G to denote a graph
(simple graph) and sometimes we use G to denote a multigraph. We
hope to make clear what is intended in each case. The degree of a node
v,d(v), is the number of edges incident upon v. In the case of directed
edges (arcs), the indegree in(v) (respectively outdegree out(v)), is the
number of edges entering v (respectively leaving v). An Eulerian chain
(respectively Eulerian cycle) is defined to be a chain (a cycle) that uses
each edge exactly once. This brings us to a basic theorem (dated back
to Euler, 1766) which establishes the necessary and sufficient conditions
for a multigraph to possess an Eulerian chain (or an Eulerian cycle).

Theorem 2: A multigraph G has an Eulerian chain if, and only if, it is
connected and the number of vertices of odd degree is 0 or 2.

142 ARC ROUTING

Berge (1973) presents a proof based on an inductive argument which
can be viewed as a constructive (algorithmic) procedure for designing an
Eulerian path or cycle when there is one.

Proving that the CPP is in P requires demonstrating that it can be
solved in polynomial-time. We have already stated this fact in the Intro-
duction, however we pursue it further by presenting a simple algorithm
which traces an Eulerian cycle on an Eulerian graph in O(|E|) time.

Eulerian Cycle Algorithm

INPUT: Eulerian multigraph G = (V, E)

Step 1: Select a node g € V (any node in V will do).

Step 2: Construct a ‘long’ cycle from zg to itself. By ‘long’ it is implied
that when moving to a next node in this ‘long’ cycle you do not go back
to xg if there is still another reachable node. Denote all the edges in this
cycle by E;, and all the nodes by V,,. If E\ E;, = 0, STOP.

Step 3: Let Gy, = (V,E \ Eg,) be the graph obtained by deleting all
the edges already traversed in the cycle. Select a node z; € V;, of degree
d(z1) > 2 in Gy, (any node will do). Clearly such node exists since G
is an Eulerian multigraph and there are still untraversed edges in Gz,.
Repeat Steps 2 and 3 with z;,1 =1,...

Clearly, the number of steps in this cycle construction is no more than
O(|E|), thus the time-complexity of constructing an Eulerian cycle on a
multigraph, which is not necessarily Eulerian, is dominated by the time-
complexity of transforming any given graph into an Eulerian multigraph
by solving what is called a matching problem (see Derigs, this book).

Note that the algorithm above can be implemented almost without
change for directed multigraphs as long as such multigraph satisfies the
directed Eulerian cycle conditions which are simply stated in terms of
indegree being equal to the outdegree at each node. Transformation of a
general multidigraph into an Eulerian multidigraph can be obtained by
solving an auxiliary transportation problem over the nodes of the graph
which are unbalanced in terms of indegree and out degree. Solving this
auxiliary problem optimally (i.e., adding a least cost arc solution to ob-
tain an Eulerian multidigraph) takes no more than O(|V|?) time.

The above discussion of solutions for the CPP on undirected graphs
and the CPP on directed graphs (digraphs) subjugates the complexity
analysis for the two problems to the complexity of the corresponding
matching problem for the undirected CPP and the complexity of the
corresponding transportation problem for the directed CPP. Since the
polynomial time solvability for the matching and transportation prob-

Arc Routing: Complexity and Approximability 143

lems is well established (Derigs, this book) and is dominated by O(|V|3),
it establishes the well known fact that the CPP in both cases belongs to
the class P.

So far we restricted our discussion to either directed or undirected
graphs (multigraphs). A more general case is that of a mized multigraph.
This is a multigraph with some edges — undirected pair of incident nodes,
and arcs — a directed pair of incident nodes. Ford and Fulkerson (1974)
present a necessary and sufficient condition for the existence of an Eule-
rian cycle in a mixed graph (true also for a mixed multigraph), which is
stated as follows:

Theorem 3: (Ford and Fulkerson, 1974, Theorem 7.1) A mixed simple
graph G = (V; E, A) (where E is the set of edges and A is the set of
arcs) contains an Euler cycle if and only if (a) G is connected; (b) every
node of G is incident with an even number of arcs; (c) for every X C V,
the difference between the number of directed arcs from X to X (the
complement of X) and the number of directed arcs from X to X is less
than or equal the number of undirected edges joining X and X.

3. NP-HARD GENERALIZATIONS OF THE
CPP

In this section we examine, starting with the CPP on a simple mixed
graph, a number of a simple generalizations of the classical CPP which
are all N'P-hard.

3.1. THE MIXED CPP

Given a general mixed graph G = (V; E, A) which does not contain
an Euler cycle, the mized chinese postman problem (MCPP) is that of
constructing a cycle on G which traverses every arc and every edge of
G at least once while respecting the direction of each arc (Euler cycle
on a corresponding multigraph). This Euler cycle requirement implies
(1) transforming the graph G = (V; E, A) (by duplicating arcs and/or
edges of G) into a minimal cost multigraph G = (V;E, A) which con-
tains an Euler cycle, and (2) constructing an Euler cycle by assigning a
”proper” directions to the edges in E. The quandary with the MCPP
is that constructing a least cost solution for this problem in the general
case (i.e., selecting the ‘optimal’ traversal direction for the undirected
arcs) is known to be N'P-hard (Papadimitriou, 1976).

As it is stated in Garey and Johnson (1979), the decision version for
the chinese postman problem for mixed graphs is:

144 ARC ROUTING

INSTANCE: Mixed graph G = (V; E, A), where A is a set of directed
edges and E is the set of undirected edges on V, length I(e) a nonnega-
tive integer for each e € AU E, positive integer bound B.

QUESTION: Is there a cycle in G that includes each directed and undi-
rected edge at least once, traversing directed edges only in the specified
direction, and that has total length no more than B?

Papadimitriou (1976) provides a very clever proof that the above de-
cision version of MCPP is N'P-complete by transformation from 3SAT
(three satisfiability problem). We will outline below only a part of the
Papadimitriou’s proof to illuminate the main idea of the proof. In ad-
dition, we present a much shorter new original proof for the above N'P-
completeness result. Papadimitriou (1976) also proves that the MCPP
remains N P-complete even if all edges and arcs have equal length, G
is planar, and the maximum vertex degree is 3. We will restate these
results as well.

3.2. THE MCPP NP-COMPLETENESS

Papadimitriou’s proof for AN"P-completeness of the MCPP is based
on transformation from 3SAT in which he first provides a mixed graph
representation for each variable in a 3SAT problem instance. Figure 4.1
(the unmarked arcs have a cost of 1 each) presents a special mixed graph
for which an optimal chinese postman solution has a cost of 2 (on top of
the sum of costs of individual edges and arcs added exactly once). This
can be proven by enumerating all possible orientations for the undirected
edges. In addition, in any optimal traversal of this graph “either both
edges (0,1),(0,3) enter 0 and both edges (0, 3),(0,4) leave 0, or vice
versa.” (Papadimitriou, 1976). This essentially establishes the option of
assigning the value 0 or 1 to each variable in 3SAT instance and obtain-
ing the optimal traversal path corresponding to such an assignment by
either entering into node “0” or out of node “0”. This optimal traversal
result for the graph in Figure 4.1 carries over to the Figure 4.2 (a) graph
and its symbolic representation in Figure 4.2 (b). The claim is that if a
mixed graph contains m copies of the graph C, and each copy represents
one occurrence of a variable in 3SAT, then the optimal traversal of such
graph will have a cost of at least 2m (above the constant traversal cost
when counting each edge and arc once). The other important details for
constructing the appropriate mixed graph by connecting copies of the C
graphs for each instance of 3SAT are outlined in Papadimotriou (1976).
What is clear is that this is a polynomial transformation in terms of the
number of steps and that the MCPP is a member of NP class. However,
when examining the details of this transformation, it calls for an optimal
MCPP solution each time a variable is ‘traversed’. The number of such

Arc Routing: Complexity and Approrimability 145

calls equals to the number of variables in the 3SAT instance. Thus, this
proof of N'P-completeness perhaps might be more appropriately clas-
sified as a proof by polynomial time reduction. For more details see
Papadimitriou (1976).

Figure 4.1 Mixed graph representing each variable in the 3SAT.

It has already been noted in the original proof of Papadimitriou (1976),
the transformation of an N'P-complete (3SAT or the CO) problem to an
instance of MCPP requires only two different costs for the arcs and edges
of such MCPP instance. Thus, restricting the arc costs to be either 0
or 1 does not make the MCPP any easier. But an even more restric-
tive version of the MCPP is N'P-complete. In Papapdimitriou (1976),

(a) (b)

Figure 4.2 Symbolic mixed graph representation of each variable in the 3SAT.

146 ARC ROUTING

it is proven that the MCPP remains AN'P-complete even if the underly-
ing graph is planar with total degree of nodes at most 3 and cost of all
edges equal to 1. This is accomplished by modifying the MCPP instance
obtained from the 3SAT transformation to admit planarity conditions,
costs of 1 only, and node degrees which do not exceed 3.

Related to the MCPP is the problem called the Minimum Eulerian
Graph (MEG) problem. This problem can be stated as follows: Given
a mixed graph G = (V;E, A), find a minimal cardinality multiset D
of arcs such that the multigraph G = (V;E,AU D) is Eulerian. Since
the emphasis in the MEG is on the cardinality of the multiset D, this
problem can be expressed in terms of finding cardinality matching on an
appropriately constructed bipartite graph. This task of finding cardinal-
ity set D can be accomplished in polynomial time (Derigs, this volume,
and Papadimitriou, 1976). Clearly, the algorithm for MEG can be used
to test if there is a covering of the graph by a single chain or a circuit
(test for a unicursal graph).

For the sake of completeness, we also include an integer programming
(IP) formulation for the MCPP problem based on the formulation given
in Ralphs (1993) (see also the IP formulations in the chapters of this
book by Eglese and Letchford, and by Benavent, Corberan, and San-
chis).

Let y, be the number of additional copies of each arc a € A and denote
by As and A, the sets of opposite directions for an orientation of each
edge e € E. One must choose one orientation for each edge. Let u]

and y. denote the first orientation of e and the additional copies of this

orientation respectively. Similarly for uf,yZ. I(i) and O(:) denote the

arcs directed into or out of node 3.

miana + z Cala + Z ceu£ + Z Celly,

a€cA GGAUAfUAr aGAf acA,
subject to
ul +ul >1,Ve € E, (4.1)
To=14yq,Va €A, (4.2)
z, = uf +yl Ve € Ay, (4.3)
To =Uug + Y5, Ve € Ay, (4.4)

Z Tq — Z z, =0,Vi €V, (4.5)

a€0(i) a€l(i)

Arc Routing: Complezity and Approrimability 147

ya,yg,yg > 0 and integer, Ve, a, (4.6)
ul,ul € {0,1},Ve (4.7)

€

So far we have examined the notion of computational complexity and
in this context have established the fundamental result for arc routing
that the MCPP is NP-complete. In the remaining sections of this chap-
ter we examine different variants of arc routing problems and classify
them as either belonging to the N'P-complete class or solvable in poly-
nomial time (i.e., in P class).

3.3. THE RURAL POSTMAN PROBLEM

A generalization of the Chinese Postman Problem introduced by Orloff
(1974, 1976) and usually referred to as the Rural Postman Problem
(RPP) can be stated as follows: Given a graph G =(V =V UVy E =
E) U Es) (where Vi are the nodes for the multiset of edges F; and V5 are
the nodes of the multiset of edges E2) together with a nonnegative cost
real function on the sets Ej, Fa, construct a minimal cost Euler cycle
which traverses at least once the edges in E;. The edges in F5 can be
traversed if the solution so requires. The key point in the RPP is that
the subgraph induced by E; need not be connected, however the graph
G is a connected graph.

The N'P-hardness of the RPP, shown by Lenstra and Rinnooy Kan
(1976), follows by a simple reduction from the symmetric TSP: any TSP
instance can be converted into an RPP instance by replacing each vertex
into two identical vertices connected by a required edge of zero cost.

However, there is a sense in which the complexity of the RPP is related
to the number of connected components in the subgraph of G induced
by E5. When there is only one such component, the RPP reduces to
the CPP, which as we have seen is well-solved. Moreover, Frederickson
(1979) suggested a recursive algorithm for the RPP which is exponential
only in the number of these components.

Note that, if the connected components in an RPP instance are ‘far
enough away’ from each other, then in any optimal RPP solution one
would traverse completely one component before moving to another com-
ponent. This ‘Clustered Rural Postman Problem’ has been recently ex-
amined by Dror and Langevin (1997), where a solution methodology is

148 ARC ROUTING

proposed which transforms the problem into what is called the General-
ized Traveling Salesman Problem (GTSP). The GTSP assumes that the
nodes of a given graph have been grouped into mutually exclusive and
exhaustive nodes sets and the objective is to find a minimum cost cycle
which includes exactly one node from each node set. Like the Frederick-
son (1979) approach, this algorithm is exponential only in the number
of connected components induced by Fs.

One special version of the RPP with applications in manufacturing and
elsewhere is the so-called Stacker Crane Problem (SCP). In this problem
the graph G is a mixed graph G = (V, AUE), and the set of arcs which has
to be traversed is the entire set A. This problem has been proven N'P-
hard using a transformation from a TSP to an instance of the SCP by
Frederickson et al. (1978). The SCP has been addressed successfully in
the context of printed circuit board assembly under the label of directed
RPP (DRPP) (Ball and Magazine, 1988). For the integer programming
formulations of the DRPP and URPP (undirected RPP) see Ball and
Magazine (1988), Corberan and Sanchis (1994), and Assad and Golden
(1995).

3.4. THE WINDY POSTMAN PROBLEM

In the classical CPP the cost of traversing a ‘street’ in one direction
is assumed to be equal to the cost of traversing the same ‘street’ in
the opposite direction. However, if in a CPP instance there is a cost
distinction based on the traversal direction of an edge e (i.e., ¢;j # cj
for some of the edges e € E), then the corresponding CPP becomes
what is known as the Windy Postman Problem (WPP). This problem
was first considered by Minieka (1979), and subsequently proven N7P-
hard by Guan (1984) by a simple reduction from the MCPP. In fact, the
CPP, the DCPP, and the MCPP, can all be considered as special cases
of the WPP. Win (1989) provides an interesting description of the WPP
polyhedron based on the following integer programming formulation for
the WPP.

min Y (i + i)

e=(i,j)EE
subject to
Tij + x50 2 1,Ve = (4, §) € E, (48)
> (@mi—z)=0,Yi€V, (4.9)

JEN(D)
Tij, Tji >0,Ve = (l,]) eFE (410)

Arc Routing: Complexity and Approzimability 149

xijyxji € {07 1},V€ = (7’,.7) € E (411)

where z;; counts the number of times the edge e = (3, j) is traversed
from 7 to 7, and N(Z) denotes the set of nodes j adjacent to node i by
an edge e = (3,j) € E.

In case the underlying undirected graph G = (V, F) is Eulerian, but
the costs of some edges are ‘windy’, then another related problem is
mentioned in the literature by Guan and Pulleyblank (1985). The prob-
lem asks for a minimum cost traversal of G by an Eulerian tour which
traverses each edge ezactly once. Guan and Pulleyblank (1985) refer
to this problem as the minimum cost Fulerian orientation problem and
describe a polynomial time solution based on a transformation to a min-
imum cost circulation problem. Thus, the WPP on an Eulerian graph
with the condition that the solution has to be an Eulerian tour is in P.
Another case of polynomially solvable WPP discovered by Guan (1984),
is for graphs G in which the cost of a cycle (any cycle) does not change
if the direction of cycle traversal is reversed.

3.5. NON-INTERSECTING EULERIAN
CIRCUITS AND A-TRAILS IN
EULERIAN GRAPHS

If, in the course of constructing an Eulerian circuit on a graph which
is Eulerian, one asks the circuit to conform to some additional condi-
tions or restrictions, the known polynomial time bound on such a circuit
construction effort might be jeopardized. For instance consider a graph
G = (V,E) for which the edges incident to a vertex v € V' have been
ordered (‘modulo d(v)’) in a ’clockwise’ order for every such v. Two
edges are defines as neighbors at v if they are consecutive in the order.
For a planar graph G the neighbors of an edge are the edges adjacent
to it in some face of the graph. A non-intersecting path or circuit in a
planar G is defined as one in which every two consecutive edges (v;, v;)
and (vj,v) in it are neighbors in v;. Here we present a result due to
Bent and Manber (1987), which states that the problem of deciding if
a non-intersecting Eulerian path or circuit in a planar graph G exists
is an N'P-complete problem. The reduction used by Bent and Manber
(1987) to prove this result, reduces SAT (satisfiability) to an instance
of a planar Eulerian graph in two stages. First, it uses a result proven
by Lichtenstein (1982) that for every conjunctive normal form F with
its associated graph G(F') can be converted in polynomial time to a
conjunctive normal form F’ for which its graph G(F") is planar. The
proof then follows with a transformation of G(F’) to an instance of a

150 ARC ROUTING

planar Eulerian graph for which an Eulerian circuit corresponds to the
determination of satisfiability for £’ and subsequently for F'. This trans-
formation is rather lengthy and we direct the interested reader to the
original paper.

Anderson and Fleischner (1995) extended the above N'P-completeness
result of Bent and Manber (1987) to the problem of deciding the existence
of what are called A-trails in a subfamily of Eulerian graphs. Anderson
and Fleischner (1995) have proven a number of other complexity results
not mentioned here and outside the scope of this book since they relate
to spanning trees in hypergraphs. However, we first need to define an
A-trail.

Given a planar representation of an Eulerian graph G, an Eulerian
circuit of G is called an A-trail if and only if consecutive edges of the
circuit, say (vi—1,v;) and (v;, vi+1) are always neighbors in the cyclic or-
dering of the edges incident with v; defined by a clockwise order in the
plane representation. This definition of an A-trail taken from Anderson
and Fleischner (1995) seems to coincide with the definition used in Bent
and Manber (1987) of a non-intersecting Euler circuit in a graph G. To
state the result of Anderson and Fleischner (1995) we need a definition
of an n-connectivity for graph G which is taken from Fleischner, (this
book).

Definition: Given two non-adjacent vertices xz,y € G, the local con-
nectivity of z,y is the smallest number of vertices vy, ... ,vr such that
G' =G - {v1,...,vk} is disconnected and z,y are in different compo-
nents (connected subgraphs) of G’. A loopless graph G (no edges (v,v))
has connectivity n (is n-connected) if G contains a spanning subgraph
isomorphic to K41 (complete graph with n + 1 vertices).

Theorem 5 : (Anderson and Fleischner, 1995) Given a 3-connected pla-
nar Eulerian graph G having only 3-cycle and 4-cycle face boundaries, the
problem of establishing the existence of an A-trail on G is N'P-complete.

The proof of Theorem 5 is based on transformation to an instance of a
3-connected planar Eulerian graph G having only 3-cycle and 4-cycle face
boundaries, from a 3-connected, planar cubic graph G’, and the question
of existence of a Hamiltonian circuit on G’. Establishing the existence
of a Hamiltonian circuit on G’ guarantees the existence of an A-trail on
G, and vice versa. For details of this transformation see Anderson and
Fleischner (1995), where even stronger results are obtained.

Are Routing: Complezity and Approximability 151

3.6. DOMINATING TRAILS

In the previous subsection we defined a concept of an A-trail on a
graph G. In this subsection we focus on yet another arc traversal related
concept — a dominating trail on an undirected graph G(V, E). This sub-
section is based on a recent work of Agnetis et al. (1999) in the context
of coordinating machine set-ups for a two stage flow-shop scheduling in
a manufacturing application.

A trail (Fleischner, this book) is defined as a not necessary simple
circuit in G (i.e., might visit same nodes more than once but is not al-
lowed to pass through any edge more than once). A dominating trail Py
is a trail in G such that each edge e € F is either a member of P, or is
incident to a node in Py. In this sense, a dominating trail ”covers” all
the edges of F.

The dominating trail in a graph G is related to the existence of a
Hamiltonian circuit in a line graph of G denoted as L(G). The line
graph L(G) is defined as a graph whose vertex set V'’ corresponds to a
bijection from the edge set E, and two vertices in L(G) are joined by an
edge whenever the corresponding edges in G are adjacent. It is proven
in Harary and Nash-Williams (1965) that a graph G has a dominating
trail if and only if L(G) is Hamiltonian.

The theorem proven in Agnetis et al. (1999) and reproduced below
states that establishing the existence of a dominating trail on a bipartite
graph is an A/P-complete problem.

DOMINATING TRAIL ON BIPARTITE GRAPH - (DTBG)
Instance: Given a bipartite graph B = (S,T, E) (the vertex sets S and
T and the edge set E).

Question: Is there a dominating trail?

Theorem 6: The DTBG problem is N'P-complete.

Proof: The proof is by transformation from a Hamiltonian circuit prob-
lem on cubic graphs stated as follows: Given a 3-regular graph G =
(V, E), is there a Hamiltonian circuit on G7

The Hamiltonian circuit problem on cubic graphs is know to be N'P-
complete (Garey and Johnson, 1979), and it is clear that the DTBG
problem is in N'P.

Given an instance of a 3-regular cubic graph G, we obtain a corre-
sponding instance bipartite graph G® = (S, T, E') as follows: The set

152 ARC ROUTING

S of vertices in G® corresponds to the set V in G. The set of vertices
T (denoted by ve) corresponds to the set of “mid” points of each edge
e = (i,7j) € E. Now, each vertex ve € T is connected by an edge to the
corresponding ¢ and j vertices in S. This set of edges constitutes the set
E' in G®.

What remains is to show that if there is a dominating trail in G®
then there exists a Hamiltonian circuit in G and vice versa. The proof
arguments are straight forward. For instance, consider a dominating
trail P? in G® and a vertex i € S. Since there are three edges incident
to i and the three edges are “covered” by P¢, the vertex i has to belong
to P?¢ (otherwise the edges are not “covered”). Thus, all vertices in S
are on the trail P¢. On the other hand, no vertex occurs in P% more
than once because the degree of each vertex is 3. Thus, the dominating
trail P9 visits the vertices in S exactly once which corresponds to a
Hamiltonian circuit on G when the vertices in T are ignored. In the
other direction, if there exists a Hamiltonian circuit in G, such a circuit
leads to a dominating trail on G¢ in a straight forward manner. The
optimization version of this problem is that of constructing a dominating
trail of minimal cost. Since it seems that the minimal cost dominating
trail problem has not been examined in great detail (to our knowledge),
we do not know of any approximation solutions for this problem.

3.7. PRECEDENCE IN ARC ROUTING

Consider an undirected connected graph G = (V, E) together with a
nonnegative real function C : E — R4 which communicates the cost
of traversing an arc in E. Assume that the edges in E correspond to a
city streets in a place like “Buffalo, NY” where the winters bring a lot of
snow and the roads and streets are divided into classes of ‘importance’
in terms of clearing them of snow. In terms of the graph G, this implies
class precedence for traversals. Simply stated, the major roads should
be cleared before the secondary roads, which have precedence over resi-
dential streets, etc. A similar kind of traversal precedence occurs when
constructing a torch path in flame cutting of metal plates (Manber and
Israni, 1984). This precedence arc traversal setting was analyzed in Dror
et al. (1987), and we restate here some of the results.

Formally, let {E1, Ea,...,Ex} be a partition Pk of the set of edges
E,(E;CE1<i<KENE; =0,i+# j,UX E; = E). Partial order
=< py (or simply < if the implication is clear) of the partition Px implies
that in a CPP solution for the graph G the edges in a set E; are traversed
before any of the edges in Ej; if E; < E; in <p,. Clearly, there must
be some traversal conditions (appropriate connectivity, etc.) satisfied
for the partition Pk for this to be possible. However, the precedence

Arc Routing: Complexity and Approximability 153

< p, does imply that if an subset E; has already been traversed and one
constructs a traversal of E; (of course E; < E; either immediately or
through the transitive closure of <p,), then in traversal of E; one can
reuse edges from E;. Following Dror, et al. (1987), we denote by Fj as
the subgraph of G induced by the union of edge subsets Fy, Es, ... , E.
In this case there exists a Euler cycle on graph G which respects the
partial order of partition Pg if and only if the graphs Fy, k=1,... K
are connected for 1 < k < K. In the case graph G is a directed graph,
one has to require that the sequence of subgraphs Fy,k = 1,...,K be
strongly connected in order to assure the existence of an Euler cycle
which satisfies the partial order Py.

In the case that the partial order <p, represents a chain (a set of
pairwise comparable elements) over the partition Pk, and each of the
subgraphs G; induced by the corresponding subset of edges F; is con-
nected, then the optimal Euler cycle on G which satisfies the precedence
relation <p, can be constructed in polynomial time (Dror, et al. 1987).
The time complexity of the polynomial time solution presented in Dror
et al. (1987) is that of O(|V]°) based on K-partite graph construction
which requires calls to a matching subroutine, followed by a shortest
path algorithm on that K-partite graph. In Ghiani and Improta (2000)
a somewhat different polynomial time procedure has been proposed with
time complexity of O(K3|V|?), which for values of K (< |V|*/3) domi-
nates the procedure of Dror et al. (1987).

In the case the precedence relation <p, represents a general partial
order, even if the subgraphs G;,7 =1, ..., K are connected, to construct
a minimal cost Euler cycle on G which respects <p, is N'P-hard. This
was proven in Dror et al. (1987) by transformation from the Traveling
Salesman Problem (TSP). The outline of the transformation for a TSP
path between nodes s; and s2 into a chinese postman path is presented
in Figure 4.3 (a) and (b). Each node in the original graph (which a
complete graph) is replaced by two nodes and an edge connecting the
two nodes. Such an edge constitutes a single precedence class and has
a ‘high’ traversal cost of M. Add to this graph all edges between the
nodes in the original graph as illustrated in Figure 4.3 (b) except for the
two extreme nodes for the TSP path nodes. The cost of those edges is
the same as that in the original nodes. Now the instance of precedence
relation for edge sets is setup in such a way that the set E; has to be
traversed first before traversing the set of edges with the costs as in the
original graph. All the other edges can be traversed in any order latter
with the edge corresponding to the ‘last’ node in the TSP path to be tra-
versed last. The difference between the optimal Chinese Postman path
solution between nodes s} and s} in the transformed graph given the

154 ARC ROUTING

S1

O
E5

S2

(a) (b)

Figure 4.8 The original complete graph (a) and the transformed graph (b).

precedence relation and the optimal TSP path solution between s; and s9
is KM + A where Aisthe total cost of the arcs in the original graph.

Note however, that in the case where <p, represents for instance a
tree precedence relation, it is not known if the minimal cost Euler cycle
problem is N'P-hard.

The Euler cycle construction in the case of directed graph G, given
a partition Py together with precedence <p,, and even assuming con-
nected subgraphs Gg,k = 1,..., K, is less clear in terms of existence of
feasible solutions and construction of optimal solutions. For chain prece-
dence relation <p, and strongly connected subgraphs G,k =1,... K,
the polynomial procedure in Dror et al. (1987) can be extended to cover
this case. However, strong connectivity of the subgraphs might not be
necessary for the optimal solution and there is not much more we can
contribute on this.

3.8. CAPACITATED ARC ROUTING

What happens if we introduce the notion of pickup quantity (or de-
livery quantity) in the context of edge traversal? This only matters if
the traversing ‘vehicle’ has a finite collection (or delivery) capacity. For
instance, in the case of a directed graph G = (V, A), with pickup quan-
tity go > 0 associated with each arc a € A, together with a pickup limit
of Q@ > 0, the capacitated arc routing problem (CARP) is the arc-routing
analogue of the classical vehicle routing problem (VRP).

Arc Routing: Complezity and Approzimability 155

¢;j = the demand along arc (¢,5) € R C A,
W, = the capacity of vehicle v,
cij = the distance (length) of an arc (4,7) € A, (c;; > 0,V(¢,7) € A),

V = the upper bound on the number of vehicles,
ZTiju = the number of times vehicle v traverses the arc (4, j) € A,
Yiju = a binary variable which takes the value 1 if vehicle v dis-

charges the feed along the arc (¢,7) € R, and takes the
value 0 otherwise.

v
(CARP) : min Y) eijTiz
(GeAv=1
subject to
> Thiw— Y Tkw =0,i € N,u=1,2,...,V, (4.12)
keN keN
|4
> vy = L,VY(i,j) € R, (4.13)
v=1
Z GijYiju S Wy, v=1,---V, (4.14)
(i,))€R
Zijv 2 Yijv, V('L,j) € R? (415)
YSCN,1¢8,
M D> x> > Tie{ ASINR#D, (4.16)
igS.jeS (j.k)EA[SINR v=1,...,V,
yl_—,vE{O,l},V(Z,j)ER,’U=1,)V7 (417)
xierZ+7v(Ii7j) GA,’U=1,... :V) (418)

where M is a large constant no smaller than the total distance of any
circuit that includes all arcs in R, and V[S] is the set of nodes incident
to at least one arc in S.

The objective function represents the total distance traveled by all the
vehicles. Note that arcs can be traversed more than once. The first set
of constraints is the common ‘flow conservation’ constraints for network-
flow formulations. The second set of constraints require that at least one
traversal is made of each of the arcs in R. The third set of constraints
are the capacity constraints for the vehicles. The next set of constraints
require that vehicle v traverse the arc (¢,j) € R if it delivers the de-
mand to this arc. The fifth set of constraints are subtour-elimination
constraints which ensure that each trip include the depot. Note that

156 ARC ROUTING

this formulation of the CARP (taken from Dror and Leung, 1998) not
only has different subtour-elimination constraints than the one given in
Golden and Wong (1981) or Assad and Golden (1995), but also the z;;,
variables have a different interpretation. In addition, the interpretation
for the y;j, variable is in terms of a “fraction” of service delivered to
edge (Z,7) by the vehicle v. In the model above the the y;;, variables
are restricted to binary values. Thus, a vehicle either services an edge or
does not. Later we examine the option of a partial service by a vehicle
(see Dror and Langevin, this book).

Clearly, the CARP is a strongly NP-hard problem by simple reduc-
tion from the bin-packing problem. One can setup an instance of a
capacitated edge routing problem by taking one node to represent the
depot (node 0) and a node for each bin packing item connected in a
star structure to one additional node. The demand on each of the star
edges is equal to the ‘item’ size from the bin packing problem (Garey
and Johnson, 1979). The demand on all the other edges is set to zero.
Set the distances between the depot and one of the “item” nodes to 1
and the distances of the star edges to zero. Also connect each consecu-
tive pair of ‘item’ nodes by a zero cost edge (the periphery of the star).
The optimal CARP solution for such graph corresponds to an optimal
bin packing solution and vice versa. A different proof of AN’P-hardness
for the CARP is obtained after a polynomial graph transformation from
an edge traversal problem to an equivalent node routing problem (see
Dror and Langevin, this book). In that case the A'P-hardness reduction
is from the classical vehicle routing problem. In either case, the CARP
is N'P-hard for edge traversals (undirected graphs) or directed graph
traversals.

4. APPROXIMATION ALGORITHMS

Approximation algorithms for hard (MP-hard) combinatorial opti-
mization problems have played an important part with regards to the
examination and analysis of computational complexity for such prob-
lems. The informal question asked in this context is how close can we get
in a ‘provable way’ to an optimal solution of a given N"P-hard problem
while expending a modest amount (i.e., polynomial time) of computa-
tional resources? An approximation algorithm for a problem is evaluated
in the worst case sense. l.e., what is the worst possible deviation from
optimum taken over all problem instances? The deviation from optimum
is measured in terms of § ratio. More precisely, an algorithm 4 is said
to be a §-approximation for a minimization problem (6 > 1) if for all
instances of this problem the algorithm generates a solution within 6
times the optimum value. In a similar manner, for maximization prob-
lems the § value (< 1) assures that the solutions generated by such

Are Routing: Complezity and Approzimability 157

algorithm will not be less than § times the value of the optimal solution.
The corresponding § value is referred to as performance guarantee of
the approximation algorithm 4. A family of algorithms which trades-
off solution ‘closeness’ (performance guarantee) against running time is
referred to as an approzimation scheme. Following Hochbaum (1997),
Arora and Lund (1997), we introduce a number of formal definitions of
the concepts related to approximation algorithms.

Definition: A polynomial time algorithm A for a minimization problem
P, is said to be a é-approxi- mation algorithm (é§ > 1) if for every prob-
lem instance I of P the algorithm generates a solution which is never
more than § x OPT(I), where OPT(I) denotes the value of the optimal
solution for the instance I of P. In other words, if A(I) denotes the
solution value for instance I generated by A, then § x OPT(I) > A(I)
for all instances I of P. Similarly for maximization problems.

Definition: The absolute performance ratio R4, of an approximation al-
gorithm A is R4 = inf{r > 1|Ra(I) < rOPT(I),VI}.

Definition: The asymptotic performance ratio R} for A is, R} =
inf{r > 1|3n € Z*, R4(I) < rOPT(I) VI, s.t. lex] > n}.

In some cases, as illustrated in Hochbaum (1997), the difference be-
tween the absolute performance ratio and asymptotic performance ratio
of an algorithm can be significant. The trade-off between computational
time and the performance ratio for a family of approximation algorithms
is captured by the two definitions below.

Definition: A family of approximation algorithms {A¢}, is called a poly-
nomial approrimation scheme, if an algorithm A¢ is a (1 + €)-approx-
imation algorithm and for a fixed € its computational time is bounded
by a polynomial in the length of the problem instance I.

Definition: A family of approximation algorithms {4}, is called a fully
polynomial approzimation scheme, if an algorithm A, is a (1+¢€)-approx-
imation algorithm and for a fixed € its computational time is bounded
by a polynomial in the length of the problem instance I and 1/e.

Ideally, one would like for an algorithm to assure ‘closeness’ to an opti-
mal solution of a hard combinatorial problem within a computation time
that is polynomial in the problem size. However, recent results in theory
of approximations for A"P-hard problems suggest that computing good
approximate solutions for many of these problems is just as hard as com-
puting optimal solutions. In other words, the approximation problem of

158 ARC ROUTING

achieving solutions very close to optimum might be A'P-hard problems
in their own right. Since we prove an NP-hardness of a problem by
reduction from a known N'P-hard problem, when proving N'P-hardness
of an approximation such a reduction produces a gap in the value of
the optimum in the sense that the approximation scheme either gets the
optimum value or it cannot get closer than a certain factor g times the
optimum value. Since in this chapter we are interested in examining
the known approximations for hard arc routing problems, we provide a
short and informal discussion of AN'P-hardness of approximations based
primarily on Arora (1994), and Arora and Lund (1997). This is usually
referred to as inapprozimability results.

As Arora and Lund (1997) point out, at the present time inapproxima-
bility results divide problems into four classes based on the performance
ratio that is provably hard to achieve. The performance ratios re?resent—
ing these classes are: 1 + € for some fixed € > 0, Q(Inog), 2%9 '™ for
every fixed v > 0, and n® for some fixed § > 0, (n denotes the input size).
In a manner similar to that of Garey and Johnson (1979), Arora (1994)
and Arora and Lund (1997) start with a set of six so called “canonical”
inapproximability problems to derive by reduction inapproximability re-
sults to many other problems of approximation. Inapproximability result
implies that achieving a certain performance ratio is AP-hard. It means
that if one can prove that a certain polynomial time algorithm achieves
the approximation ratio then P = NP.

A basic canonical problem in inapproximability results is that of MAX-
3SAT which is an optimization version of the 3SAT problem. The objec-
tive in MAX-3SAT is to find a truth assignment, which maximizes the
fraction of satisfied clauses in a given 3CNF (conjunctive normal form
with three variables in each clause) formula. Note that given an instance
I of 3SAT, MAX-3SAT(I) < 1. Arora and Lund (1997) repeat a proof
of the following fundamental theorem.

Theorem 7: There is a fixed ¢ > 0 and a reduction 7 from SAT to
MAX-3SAT such that for every boolean formula I, if I € SAT, then
MAX —3SAT(7(1)) =1, and if I € SAT, then MAX —3SAT(7(1)) <
1/(1+e¢).

In other words, there is a gap in the optimum value of the objective func-
tion of MAX-3SAT depending on whether or not the boolean formula is
satisfiable. This implies that achieving a performance ratio of 1 + ¢ for
MAX-3SAT is N'P-hard.

Arc Routing: Complexity and Approzimability 159

In Arora and Lund (1997), a reduction graph is presented with the top
node representing MAX-3SAT followed by MAX-3SAT(5) (each variable
appears in exactly 5 clauses) and CLIQUE. The node MAX-3SAT(5)
leads to CLASSI, LABEL COVER, and CLASS IV. CLIQUE node leads
to COLORING and CLASS 1V, and then COLORING node again leads
to CLASS IV. In the other direction, LABEL COVER nodes leads to
SET COVER and to CLASS III, and from SET COVER we get to
CLASS II. This description includes the six canonical problems and in-
approximability results for Classes I, II, III, and IV.

The above served only as a very brief outline of inapproximability
introduction and results. It is not our intention to pursue this topic
further here but to examine the state of approximation results for arc
routing problems. Most of such results have been triggered by the early
work of Frederickson (1979), which we summarize below.

5. APPROXIMATION RESULTS FOR ARC
ROUTING

5.1. THE MIXED CPP

Earlier in this chapter we mentioned the result of Papadimitriou (1976)
that the chinese postman problem on a mixed graph (MCPP) is NP-
complete, and gave a new and short proof of this fact. The question we
ask in this subsection is how close to the optimal solution of the MCPP
can we get with a polynomial time algorithm. Edmonds and Johnson
(1973) have suggested a heuristic algorithm for which Frederickson (1979)
proved a performance ratio of 2. In the same article Frederickson pre-
sented three other approximation algorithms for the MCPP. He starts
out with an algorithm which constructs a Euler tour in an ‘opposite’
way to Edmonds and Johnson (1973) with performance ratio of 2 as
well. He then combines the two approximation algorithms into a single
heuristic with performance ratio of 5/3. In addition, for the case where
the mixed graph is planar Frederickson presents a performance ratio 3/2
approximation algorithm. These results were the best known until, very
recently, Raghavachari and Veerasamy (1998, 1999b) obtained a 3/2 ap-
proximation algorithm for the MCPP without the planarity assumption.
We now proceed to outline the main ideas contained in these approxi-
mation schemes.

The heuristic solution procedure for MCPP proposed by Edmonds and
Johnson (1973) aims at modifying the mixed graph G = (V; E, A) by
duplicating and directing edges from E and duplicating arcs from A, in
a ‘cheapest’ manner to obtain the necessary and sufficient conditions for
the existence of an Euler cycle on a modified G. To find this ‘cheapest’

160 ARC ROUTING

set of arcs and edges which need to be duplicated is N’P-hard. The
heuristic starts by constructing a minimal-cost matching solution be-
tween the odd degree nodes of G disregarding the arc directions. Copies
of the arcs and edges in this matching solution are then added to the
graph. This is followed by a procedure which orients some edges and adds
copies of arcs to make the indegree of each node equal to its outdegree.
The procedure is formulated and solved as a min-cost flow problem fol-
lowed by Frederickson’s ‘evenparity’ adjustment which does not increase
the cost over the min-cost flow solution. The end result is a modified
graph which accepts a Euler cycle. The time complexity of this heuristic
is O(max{|V|3, |A|(max{|Al, |E|})?}). It is easy to see that the perfor-
mance ratio of this heuristic is 2 since by duplicating all the arcs and
edges of G to obtain the graph G, all nodes of G2 are of even degree, and
the min-cost flow algorithm provides an optimal solution to the indegree
= outdegree adjustment at each node of the modified graph which is no
more costly than such an adjustment on the original graph.

Frederickson (1979) noticed that the order of the so called ‘matching’
and ‘min-cost flow’ steps can be reversed to form a different heuristic
solution process and that this heuristic maintains the same performance
ratio of 2 for the MCPP and essentially the same time complexity. How-
ever, the two heuristics perform very differently on each others’ worst-
case examples. Denote by Cj; the cost of the arcs in the solution of the
min-cost flow problem. Subsequently, the key difference between the two
heuristics lies in the fact that for the original Edmonds and Johnson'’s
heuristic the cost of its solution does not exceed C* + 2Cjs (where C*
is the cost of the optimal solution) and the ‘reversed’ heuristic generates
a solution with cost not exceeding 2C* — Cjs. By using a threshold of
(1/3)C* for Cpr one obtains the performance ration of 5/3 when both
heuristic are run and the best solution is selected.

Very recently, Raghavachari and Veerasamy (1998, 1999b) improved
on the above performance ratio to give a 3/2 approximation algorithm
for the MCPP. Raghavachari and Veerasamy’s main observation lies in
the fact that the lower bound used by Frederickson can be improved
by a nonnegative cost Cx which is a cost of minimum weight match-
ing of the undirected graph obtained by shrinking all the arcs of the
graph in the output of the min-cost flow algorithm in the Edmonds and
Johnson’s heuristic. Subsequently, they modify the first (Edmonds and
Johnson’s) heuristic in the Frederickson scheme and prove that its cost
does not exceed C* + Cjr and use a threshold value of C*/2 for Cys
to produce the performance ratio of 3/2. The performance ratio of 3/2
for Raghavachari and Veerasamy’s heuristic is tight as demonstrated by

Arc Routing: Complexity and Approzimability 161
Frederickson (1979) examples.

At the present time we are not aware of any work on polynomial
approximation schemes or inapproximability results for the MCPP.

5.2. THE WINDY CPP

Earlier in the chapter we defined the Windy CPP as a generaliza-
tion of the Mixed CPP, where the underlying graph is undirected, but
where the traversal cost for each edge varies according to the direction
of traversal.

Win (1989) formulated the Windy CPP as a minimum-cost flow prob-
lem with side-constraints and showed that the solution to the LP re-
laxation of this formulation is ‘half-integral’ (that is, all variables have
values which are multiple of one-half). Using this fact he was able to
produce a 2-approximation algorithm. This was the best known result
until, very recently, Raghavachari and Veerasamy (1999a) devised a 3/2-
approximation algorithm.

Raghavachari and Veerasamy use the same strategy as Frederickson
(1979) used for the Mixed CPP, in that they describe two different heuris-
tics, each with a performance guarantee of 2, but which achieve a guar-
antee of 3/2 when used together. These heuristics are quite complicated
and the proof of the guarantees are based on some deep structural prop-
erties of the LP relaxation of Win. For the sake of brevity, we do not
describe them in detail.

5.3. THE RPP AND OTHER VARIANTS

Frederickson (1979) mentions very briefly that the RPP with triangle
inequality can be approximated to within 3/2 by modifying the famous
3/2 heuristic for the TSP with triangle inequality, due to Christofides
(1976). A more explicit construction was first provided by Benavent et
al. (1985) and later independently by Jansen (1992). Jansen’s heuris-
tic extends the Christofides’ heuristic to the case of RPP with triangle
inequality by observing that one can ‘collapse’ the subgraphs spanned
by each of the disconnected subsets of the required edges in E» into a
single node each. Then, one constructs a graph whose nodes represent
the collapsed subgraphs and whose edges represent shortest path links
between them and computes a minimum cost spanning tree. Afterwards,
one can apply the ‘matching and short-cut’ algorithm of Christofides to
construct a 3/2-approximate RPP solution. For more detailed descrip-
tion of this approximation algorithm see Jansen (1992).

162 ARC ROUTING

In Dror and Haouari (2000), the concept of generalized combinatorial
optimization problems coined after the Generalized Traveling Salesman
Problem is extended and a short list of classical combinatorial problems
have been recast in this broader framework. One problem on this list
is so called the Generalized Chinese Postman Problem. The generaliza-
tion of the CPP requires traversing at least one edge from each subset
of a given edge partition of the edge set E. More formally, assume that
the edge set F is partitioned into K subsets Ey,... ,Eg. The Gener-
alized Chinese Postman Problem (GCPP) requires finding a minimum
cost tour in G which contains at least one edge from each of the subsets
Ep,k=1,... K.

For motivation, assume that one has only a very limited time for
visiting a large museum. The museum is organized in several different
departments. If the visitor-does not have enough time for fully visiting
all the departments he may restrict his tour to include walking at least
along one wall from each department.

Obviously, when |Ex| = 1 for each k, the GCPP simply reduces to the
CPP, and can be solved in polynomial time. However, the generalized

case is hard which can be easily shown by equivalence between a special
case of GCPP and the Rural Postman Problem (RPP).

We bring up the GCCP in this section on approximation results be-
cause for all cases in the list of the generalized combinatorial optimization
problems described in Dror and Haouari (2000), the authors did not find
‘good’ (finite performance guarantee) heuristics. I.e, the GCPP problem
is not only A"P-hard but also a heuristic solution with guaranteed finite
error bound is not known for this problem.

Other interesting approximation results for problems such as the SCP
(stacker crane problem) and the k-SCP where k tours must be con-
structed with the objective of balancing the tours (minimizing the length
of the longest tour) can be found in Frederickson et al. (1978). For the
SCP they provide a polynomial (quadratic order) algorithm with perfor-
mance guarantee of 9/5, and for the k-SCP a performance guarantee of
(14/5 - 1/k).

5.4. THE CARP

There are essentially two approaches for generating approximation re-
sults for arc routing problems. A direct approach would be to examine
capacitated arc routing heuristics. The other option is to examine ca-
pacitated node routing heuristics since capacitated arc routing problems
possess an equivalent node routing representation. Historically, approx-

Arc Routing: Complexity and Approximability 163

imation heuristics such as the Christofides result for the euclidean TSP,
have been developed before any documented attempts to obtain such re-
sults for arc routing problems. This is true for the uncapacitated problem
versions and even more so for the capacitated arc routing problems. Per-
haps the first description of an approximation result for the CARP on an
undirected graph (denoted by CAPP in Assad and Golden (1995)) can be
found in Golden and Wong (1981). Moreover, Golden and Wong proved
perhaps the first inapproximability result for arc routing problems, more
specifically for CARP. They have shown that even 1.5-approximation for
CARP is N'P-hard. The reduction proof of this result is straight forward
from PARTITION and we restate it here for completeness.

INSTANCE: Finite set A and size s(a) € Z* for each a € A.
QUESTION: Is there asubset A’ C Asuchthat 3~ . 4 s(a) = > ,c 4 5(a)?
The reduction from PARTITION to CARP is as follows:

Set a single node as the zero node and connect it to another node, say
node 1. The distance of this edge is one (co1 = 1), however this edge has
no demand. Now create |A| nodes, one for each member of the set A and
connect them with node 1. Each of the edges (1,7),7 = 2,...,|A| + 1
has a demand equal to s(a) when connected to a node representmty
the element a. This graph structure is a tree. Now set the capacity

= (1/2) Y_,c 4 s(a). From this construction any nonoptimal solution
has a length = 6, whereas the optimal solution corresponding to YES an-
swer for the PART ITION problem has a length = 4. This demonstrates
that constructing an approximation for the CARP with performance
guarantee of less than 1.5, is N'P-hard.

In Haimovich et al. (1988) a number of approximation results for
the VRP are presented. Though the authors assume that points (cus-
tomers) are located in euclidian space, only the triangular inequality is
used to derive their approximation results. They prove that for identi-
cal customers their so called Iterated Optimal Tour Partitioning (I0TP)
heuristic has a performance guarantee of 2 — 1/Q given an optimal al-
gorithm for the TSP. However, given an a approximation algorithm for
the TSP, the performance guarantee is 1 + (1 — 1/Q)a. For the case of
unequal demands, their IOTP procedure provides a performance guar-
antee of 3 — 2/Q given that they use an optimal TSP procedure in the
tour construction. Given an « approximation algorithm for the TSP this
bound takes the form of 2+ (1 — 2/Q)« (Altinkemer and Gavish, 1987).
Since the CARP can be transformed into an equivalent VRP problem and
the triangular inequality of the distance matrix is obtained by a simple

164 ARC ROUTING

shortest path postprocessing, the same approximation performances ex-
ist for the CARP. This has been stated more explicitly by Jansen (1993).

In some applications it is interesting to examine CARP on graphs with
special structure such as tree. The initial work on tree routing problems
can be traced to Labbe et al. (1991).

In the case graph G = (V, E) is a tree (connected graph with [V| —1
edges), the CPP solution simply requires traversing twice each edge e €
E. In the case of capacitated arc routing on trees, this routing problem
can be trivially transformed to node routing on trees by assigning the
entire edge demand to the node ‘away’ from the route node. Thus,
capacitated arc routing on trees and capacitated node routing on trees
are in fact equivalent problems.

6. CONCLUSIONS

In this chapter we have presented an abbreviated overview of com-
putational complexity theory and attempted to provide the reader with
a guided tour of the different arc routing problems in terms of their
complexity classification. When faced with any computational problem,
in particular, with a combinatorial optimization problem, one ought to
estimate a priori the ‘computational effort’ required for generating a
solution for such a problem. In this chapter, the examination of combi-
natorial optimization problems is limited to arc routing. Following on
the foot-steps of Edmonds and Johnson’s (1973) work, many profession-
als working on routing problems, tend instinctively to view arc routing
problems as being not as hard as node routing. The existence of poly-
nomial time solutions for the basic CPP (directed or undirected) are
at the core of such an instinct and in diametric contrast to non-known
existence of polynomial time solutions to the basic TSP. However, as
proven by Papadimitriou (1976), in his path breaking paper “On the
complexity of edge traversing”, basic arc routing problems can be just
as hard as node routing. In a sense, arc routing on a mixed graph, is
even harder since the restriction of node degrees to at most three, graph
planarity, and 0-1 arc/edge costs, still do not make the MCPP any easier.

Some arc routing problems are easy. Building an Eulerian cycle on
undirected graph with all vertices of even degree is easy (Section 2). The
case of completely directed graph of all even degree nodes with in-degree
equal to the out-degree for each node is also easy. Transforming a gen-
eral undirected graph into a graph with all even degree nodes in a cost
minimizing manner requires a little more sophistication and more com-
putational effort (about (|V|?). The same can be said for the completely
directed case. Beyond that, if the graph does not have an ‘easily’ recog-

Arc Routing: Complexity and Approximability 165

nizable ‘simple’ structure, for instance a tree, arc routing problems are
likely to be A"P-hard and therefore just as difficult to solve as any other
difficult combinatorial optimization problem.

Acknowledgment: I am very grateful to Adam Letchford for his com-
ments and suggestions which made writing this chapter a somewhat eas-
ier task. The reader does not notice the improvements but I do and I
would like to thank Adam. Mistakes which remain in the text are all
mine.

References

[

Agnetis, A., P. Detti, C. Meloni, and D. Pacciarelli (1999). ”Set-up
coordination between two stages of supply chain”, Technical Report
32-99, Dipartimento do Informatica e Sistemistica, Universita Degli
di Roma ”La Sapienza”, Italy.

Altinkemer, K. and B. Gavish (1987). “Heuristics for unequal weight
delivery problems with fixed error guarantee”, Oper. Res. Lett. 6,
149-158.

Andersen, L.D., and H. Fleischner (1995). " The NP-completeness
of finding A-trails in Eulerian graphs and of finding spanning trees
in hypergraphs”, Discrete Applied Mathematics 59, 203-214.

Arora, S. (1994). “Probabilistic checking of proofs and hard-
ness of approximation problems”, Ph.D. thesis, U.C. Berke-
ley, Available via anonymous ftp as Princeton TR94-476 from
http://ftp.cs.princeton.edu.

Arora, S. and C. Lund, (1997). “Hardness of approximation”,
in Hochbaum, D.S., (ed.) Approzimation Algorithms for NP-Hard
Problems, PWS Publishing Company, Boston, Massachusetts, 399-
446.

Assad, A.A. and B.L. Golden (1995). “Arc routing methods and
applications”. In M.O. Ball, T.L. Magnanti, C.L. Monma and G.L.
Nemhauser (Eds.) Network Routing. Handbooks of Operations Re-
search and Management Science, 8. Amsterdam: North Holland.

Ball, M.O. and U. Derigs (1983). “An analysis of alternative strate-
gies got implementing matching algorithms”, Networks 13, 517-549.

Ball, M.O. and M.J. Magazine (1988). “Sequencing of insertions in
printed circuit board assembly”, Operations Research 36, 192-201.

Belenguer J.M. and E. Benavent (1998). “The capacitated arc rout-
ing problem: valid inequalities and facets” Computational Optimiza-
tion & Applications 10, 165-187.

166 ~ ARC ROUTING

[10] Benavent, E., V. Campos, A. Corberan, and E. Mota (1985). “Anal-
isis de heuristicos para el problema del cartero rural”, Trabajos de
Estadistica e Investigacion Operativa 36, 27-38.

[11] Benavent, E., A. Corberan, and J.M. Sanchis (2000). “Linear Pro-
gramming Based Methods for Solving Arc Routing Problems”, in
Dror, M. ed. Arc Routing: Theory, Solutions and Applications (this
book).

(12] Bent, W. and U. Manber (1987). “On Non-intersecting Eulerian
circuits”, Discrete Applied Mathematics 18, 87-94.

[13] Berge, C. (1973). Graphs and Hypergraphs, North-Holland Publish-
ing Company, Amsterdam-London.

[14] Crescenzi, P. and V. Kann (1998). ” A compendium of NP optimiza-
tion problems”, Technical Report, Universita di Roma, Italy. Avil-
able at http://www.nada.kth.se/ ~viggo/wwwcompendium/, and as
an Appendix in Complexity and Approximation, Ausiello, G., P.
Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M.
Protasi (Eds.), Springer-Verlag, 1999.

(15] Christofides, N. (1976). “Worst case analysis of a new heuristic

for the traveling salesman problem”, Management Science Research
Rept. 388, Carnegie-Mellon University, Pittsburgh, PA.

[16] Cook, S.A., (1971). “On the complexity of theorem-proving proce-
dures”, Proc. 3rd Annual ACM Symp. Theory of Computing, 151-
158.

[17] Corberan, A. and J.M. Sanchis (1994). “A polyhedral approach to
the rural postman problem”, Eur. J. Oper. Res. 79, 95-114

(18] Derigs, U. (2000). “Matching: Arc Routing and the Solution Con-
nection”, in Dror, M. ed. Arc Routing: Theory, Solutions and Ap-
plications (this book).

[19] Dror, M. and M. Haouari (2000). “Generalized Steiner Problems
and Other Variants”, (forthcoming in J. of Combinatorial Optimiza-
tion).

[20] Dror, M and A. Langevin (1997). “A Generalized Traveling Sales-
man Problem approach to the directed clustered Rural Postman
Problem”, Transportation Science 31, 187-192.

[21] Dror, M and A. Langevin (2000). “Exact Solutions: Transformations
and Column Generation”, in Dror, M. ed. Arc Routing: Theory,
Solutions and Applications (this book).

[22] Dror, M. and J.M.Y. Leung (1998). “Combinatorial optimization in
a cattle yard: Feed distribution, vehicle scheduling, lot sizing, and
dynamic pen assignment”, Gang Yu, ed., Industrial Applications of
Combinatorial Optimization, Kluwer Academic Publishers, 142-171.

[23]
[24]
[25]

[26]

[27]

[28]
[29]

[30]

35)
136]

[37]

Arc Routing: Complezity and Approximability 167

Dror, M., H.I. Stern and P. Trudeau (1987). “Postman tour on graph
with precedence relations on arcs”, Networks 17, 283-294.

Dror, M., J.M.Y. Leung and P.A. Mullaseril (2000). “Livestock Feed
Distribution and Arc Traversal Problems”, (this book).

Edmonds, J., and E.L. Johnson (1973). “Matching, Euler Tours and
the Chinese postman”, Mathematical Programming 5, 88-124.
Eiselt, H.A. and G. Laporte (2000). “A Historical Perspective on
Arc Routing”, in Dror, M. ed. Arc Routing: Theory, Solutions and
Applications in Dror, M. ed. Arc Routing: Theory, Solutions and
Applications (this book).

Eiselt, H.A., M. Gendreau, and G. Laporte (1995). “Arc-routing
problems, part 1: the Chinese postman problem”, Oper. Res. 43,
231-242.

Eiselt, H.A., M. Gendreau & G. Laporte (1995). “Arc-routing prob-
lems, part 2: the rural postman problem”, Oper. Res. 43, 399-414.
Eglese, R.W. and A.N. Letchford (2000), “Polyhedral Theory for
Arc Routing”, (this book).

Fleischner, H. (1990). Eulerian Graphs and Related Topics, Part
I, Volume 1. Annals of Discrete Mathematics 45. North-Holland,
Amsterdam.

Fleischner, H. (2000). “Traversing graphs: The Eulerian and Hamil-
tonian theme”, in Dror, M. ed. Arc Routing: Theory, Solutions and
Applications (this book).

Ford, L.R. and D.R. Fulkerson, (1974). Flows in Networks, Prince-
ton University Press, Sixth Printing.

Frederickson, G.N., (1979). “Approximation algorithms for some
postman problems”, J. of ACM 26, 538-554.

Frederickson, G.N., M.S. Hecht, and C.E. Kim (1978). “Approxi-
mation algorithms for some routing problems”, SIAM J. Comput.
7, 178-193.

Galil, Z. and N. Megiddo (1977). “Cyclic ordering is NP-complete”,
Theoretical Computer Science 5, 179-182.

Garey, M.R. and D.S. Johnson (1979) Computers and Intractability:
a guide to the theory of NP-completeness. San Fr.; Freeman.

Ghiani, G. and G. Improta (2000). “An algorithm for the Hierar-
chical Chinese Postman Problem”, Operations Research Letters 26,
27-32.

Golden, B.L. and R.T. Wong (1981). “Capacitated arc routing prob-
lems” Networks 11, 305-315.

Guan, M. (1984). “On the windy postman problem”, Discrete Ap-
plied Mathematics 9, 41-46.

168

(40]

[41]

[42]

[43]

[44]

[52]
[53]

(54]

[55]

ARC ROUTING

Guan, M. and W. Pulleyblank (1985). “Eulerian orinentations and
circulations”, SIAM J. Algebraic Discr. Math. 6, 657-664.

Haimovich, M., A.H.G. Rinnooy Kan and L. Stougie (1988). “Anal-
ysis of Heuristics for Vehicle Routing Problems”, B.L. Golden and
A.A. Assad (eds), Vehicle Routing: Methods and Studies , Elsevier
Science Publishers B.V. (North-Holland), pp. 47-61.

Harary, F., and C.St.J.A. Nash-Williams (1965). ”On Eulerian and
Hamiltonian graphs and line-graphs”, Canadian Mathematics Bul-
letin, 701-709.

Hochbaum, D.S., (ed.) (1997). Approzimation Algorithms for NP-
Hard Problems , PWS Publishing Company, Boston, Massachusets.

Jansen, K., (1992). “An approximation for the general routing prob-
lem”, Information Processing Letters 41, 333-339.

Jansen, K., (1993). “Bounds for the General Capacitated Routing
Problem”, Networks 23, 165-173.

Johnson, D.S. (1990). “A Catalog of Complexity Classes”, J. van
Leeuwen, ed., Algorithms and Complezity, Handbook of Theoretical
Computer Science, Vol. A, Elsevier Science Publishers B.V., 68-161.

Johnson, D.S. and C.H. Papadimitriou, (1985). “Computational
Complexity”, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and
D.B. Shmoys, eds. The Traveling Salesman Problem, John Wiley
and Sons Ltd., 37-85.

Kappauf, C.H. and G.J. Koehler (1979). “The mixed postman prob-
lem”, Disc. Appl. Math. 1, 89-103.

Karp, R.M., (1972). “Reducibility among combinatorial problems”,
R.E. Miller and J.W. Thatcher, eds. Complezity of Computer Com-
putations, Plenum Press, New York, 85-103.

Labbe, M., G. Laporte and H. Mercure (1991). “Capacitated vehicle
routing on trees”, Operations Research 39, 616-622.

Laporte G., (1997). “Modeling and solving several classes of arc
routing problems as traveling salesman problems”, Com. & Ops.
Res. 24, 1057-1061.

Lenstra, J.K, and A.H.G. Rinnooy Kan (1976). ”On general routing
problem” , Networks 6, 273-280.

Lichtenstein, D., (1982). “Planar formulae and their uses”, SIAM
J. Comput. 11, 329-243.

Manber U. and S. Israni, (1984). “Pierce point minimization and op-
timal torch path determination in flame cutting”, J. Manufacturing
Systems 3, 81-89.

Minieka, E. (1979). “The Chinese postman problem for mixed net-
works”, Management Science 25, 643-648.

(56]

[57]

(62]

(67]

(68]

[69]

[70]

Arc Routing: Complezity and Approzimability 169

Mullaseril, P.A. (1996). “Capacitated Rural Postman Problem with
Time Windows and Split Delivery”, Ph.D. Thesis, MIS Department,
The University of Arizona, Tucson AZ 85721.

Nobert, Y. and J.-C. Picard (1996). “An optimal algorithm for the
mixed Chinese postman problem”, Networks 27, 95-108.

Noon, C.E. and J.C. Bean, (1993). “An efficient transformation of
the generalized traveling salesman problem”, INFOR 31, 39-44.

Orloff, C.S.,.(1974). “A fundamental problem in vehicle routing”,
Networks 4, 35-64.

Orloff, C.S., (1976). “On general routing problems: Comments”,
Networks 6, 281-284.

Papadimitriou, C.H. (1976). “On the complexity of edge traversing”,
J. of the A.C. M. 23, 544-554.

Raghavachari B. and J. Veerasamy, (1998). “Approximation algo-
rithms for the mixed postman problem”, R.E. Bixby, E.A. Boyd,
and R.Z Rios-Mercado (eds.), Proceedings of IPCO VI, Vol. 1412,
Springer-Verlag, 169-179.

Raghavachari B. and J. Veerasamy, (1999a). “Approximation al-
gorithms for asymmetric postman problem”, Proceedings of SODA
1999.

Raghavachari B. and J. Veerasamy, (1999b). “A 3/2-approximation

algorithms for the mixed postman problem”, SIAM J. on Discrete
Mathematics 12, 425-433.

Ralphs, T.K., (1993). “On the mixed Chinese postman problem”,
Oper. Res. Lett. 14, 123-127.

Shmoys, D.B. and E. Tardos (1995). “Computational Complexity”,
in R.L. Graham, M. Grotchel, and L. Lovasz, eds. Handbook of Com-
binatorics, Vol 11, North-Holland, 1599-1645.

Stern, H.I. and M. Dror (1979). “Routing electric meter readers”,
Com. & Ops. Res. 6, 209-223.

Van Emde Boas, P. (1990). “Machine Models and Simulations”, J.
van Leeuwen ed. Handbook of Theoretical Computer Science, Else-
vier Science Publishers, B.V. 1-66.

Win, Z., (1989). “On the windy postman problem on Eulerian
graphs”, Mathematical Programming 44, 97-112.

Yannakakis, M., (1997). “Computational Complexity”, E. Aarts and
J.K. Lenstra eds. Local Search in Combinatorial Optimization, John
Wiley & Sons Ltd., 19-55.

Chapter 5

CHINESE POSTMAN AND EULER TOUR
PROBLEMS IN BI-DIRECTED GRAPHS

Ellis L. Johnson
Georgia Institute of Technology

1. Bi-directed Graphs, Euler Tours, and Postman Tours 171
2. Aircraft Routing in a Space-time Network 176
3. The Chinese Postman Problem in an Undirected Graph 181
4. Binary Group Problems and Blocking Problems 189
5. Ideal Binary Matrices 192
6. Four Problems on Planar Graphs 193

1. BI-DIRECTED GRAPHS, EULER TOURS,
AND POSTMAN TOURS

FEuler tours occupy an interesting position in the history of graph the-
ory. Current interest in this area is due to problems involving tours
where service is required along arcs of the tour rather than at nodes.
Examples of problems of this type involve mail delivery, snow removal,
street cleaning, trash pickup, etc. In considering such problems involv-
ing city streets, the nodes are intersections and the arcs are roadways
between intersections. However, there are one-way streets and two-way
streets. If the service must be done on both sides of a two-way street
then two one-way streets (one in each direction) can replace it. However,
there are situations where the street, even though two-way, need only be
traversed once. For example, mail delivery in a more rural or suburban
setting may require traversing the street or road only once. In a rural
road, mail delivery is frequently done on one side of the road, and those
who live on the other side must cross the road to get their mail. In setting
up the routes, though, the road could be traversed in either direction.
Thus, we consider graphs with two types of connections: directed and
undirected. Other postman problems [14] have been considered.

Two basic classes of problems are addressed. The first is finding a tour
on the graph as it is given. The second involves changing the graph, by
duplicating arcs, so that a tour will exist. The first of these is referred

172 ARC ROUTING

to as an Euler tour problem and the second as a postman problem. Al-
though the second is a perfectly natural extension of the first, the Euler
tour problem is much older. Serious work on the postman problem dates
only to the work of Ford and Fulkerson in the 1950’s (see [10]) and Meigu
Guan [15] in the 1960’s. In the postman problem, there are two ways
to look at the problem. One is the tour itself, but the other is to focus
instead on the arcs or edges that must be duplicated. This set will be
defined as a postman set. In the undirected case, edges need only be
duplicated once. Once a postman set has been determined and added to
the graph, the postman problem reduces to the Euler tour problem. In
the mixed and directed cases, edges and arcs may need to be duplicated
more than once, so the order of duplication must be specified.

This section gives definitions and some results on existence of Euler
tours and postman tours. The next section outlines an application in
aircraft routing. Section 3 discusses the Chinese postman problem in an
undirected graph and gives an algorithm using its polyhedral description.
Section 4 introduces the framework of binary group problems and block-
ing pairs of clutters. Section 5 discusses ideal binary matrices and relates
this concept to binary group problems and, in particular, the postman
problem. Finally, we close with some results on four problems special-
ized to planar graphs. Sections 4, 5 and 6 give additional insights into
the polyhedral and algebraic structures involved. The Chinese postman
problem provides an interesting special case of combinatorial polyhedra,
and algebraic structures. These latter structures include matroids and
Gomory’s group problem [12].

The term mixed graph was used in [18] and the term bidirected graph
was introduced in [7]. Clearly they are somewhat redundant. Bidirected
seems more descriptive in that direction (or the lack of it) is the question
here, so the term mixed graph will be used to mean a bidirected graph
where arcs and edges are both present.

More formally, define a bi-directed graph G to be (N,E U A) where
N is the set of nodes, E is the set of (undirected) edges, and A is the
set of (directed) arcs. An edge consists of an unordered pair of nodes,
and an arc consists of an ordered pair of nodes, say (¢,7). The node &
is called the tail of the arc, and node j is called the head of the arc. In
many of our problems, the edges will be assigned one of the two possible
directions in order to specify a tour as defined below. The graph G is
called directed (undirected) if it only has arcs (edges). If both E and
A are non-empty, then G is called mized. Since all of our graphs are
bidirected graphs, we will simply refer to a graph.

Chinese Postman and Euler Tour Problems in Bi-directed Graphs 173

The degree of a node 7 is the number of edges and arcs meeting .
The in-degree of node 7 is the number of arcs whose head is node i. The
out-degree of node i is the number of arcs whose tail is node 7. A node
is balanced if its in-degree equals its out-degree.

A tour in a graph G is a sequence T' = (n1,v1,N2,V2,... ,UK—1,1K)
where ny is a node and v is an arc or an edge such that it meets the
two nodes ng_; and ng. In addition, the first node n; of the tour is
required to be the same as the last node ng, and if v is an arc then
vk = (Nk—1,n%)- A simple tour is a tour such that no arc or edge appears
more than once in the tour. An FEuler tour is a simple tour T such that
every edge in E appears (exactly once) in 7. A graph G is said to be
Eulerian if it admits an Euler tour. A postman tour is a tour T such
that every edge in E appears at least once in 7". In a postman tour, an
undirected edge may be used any number of times and in either or both
directions. However, the directed edges, while they may appear more
than once in the tour, must always be in the specified direction. Figure
5.1 shows a graph on four nodes with edges numbered 1,2,3,4,5. A post-
man tour traverses the edges (in order) 1,4,2,3,5,4,1, and the associated
postman set is {1,4}.

3
Postman Set:
{1,4}
1 2
Postman Tour:
4 194v293,5,4,1

Figure 5.1 Postman set and postman tour.

The following results summarize conditions for a graph to be Eulerian
and to admit a postman tour. See [9] for more details and historical
perspective.

Theorem 1 (Euler) An undirected graph G is Eulerian if and only if it
is connected and every node has even degree.

Proof 1: The proof is algorithmic. il

174 ARC ROUTING

Theorem 2 [15] An undirected graph G admits a postman tour if and
only if it is connected.

Proof 2: Adding a duplicate copy of every edge to the graph produces a
graph where every degree is twice its original degree. Thus, it produces
an even degree graph, which is Eulerian by Theorem 1. O

Theorem 3 A directed graph G is Eulerian if and only if it is con-
nected and every node is balanced.

Proof 3: Very similar to that of Theorem 1. O

A cut in a connected graph G is the set of edges and arcs meeting a
node in a set S and a node not in S. The cut is frequently referred to
as (S,T) where T'= N/S. When the graph G is directed or mixed, the
di-cut associated with (S, T) is the set of arcs with a tail in S and head
in T. We call the di-cut (S,T) a strong di-cut if the only edges or arcs
in the cut (S,T) are in the di-cut. In other words, there are no edges in
(S,T) and the only arcs in (S,T) have a tail in S and a head in 7. For
a pair of nodes s and ¢t such that s is in S and t is in T, a cut (or di-cut)
is called an (s,t) cut (or (s,t) di-cut).

Theorem 4 A directed graph G has a postman tour if and only if it is
connected and has no strong di-cut.

This result can be proven using a network flow model to balance the
nodes.

Theorem 5 (Ford and Fulkerson) A mixed graph is Eulerian if and only
if it is connected, every node has even degree, and there does not exist a
cut C = (S,T) such that the number of arcs in the di-cut (S, T) is more
than 1/2 the total number of edges and arcs in the cut C.

When every node has even degree, every cut will also have an even
number of edges. However, this last condition to be Eulerian is more
than a condition on nodes. Requiring that no node have in-degree or
out-deree more than one-half of the degree does not assure that the
graph is Eulerian.

Figure 5.2 shows a non-Eulerian mixed graph. Note that every node
has even degrees and satisfies the condition that there are not more arcs
into (or out of) the node than other arcs or edges at the node. In other
words, no node has in-degree or out-degree greater than one-half the de-

Chinese Postman and Euler Tour Problems in Bi-directed Graphs 175

Figure 5.2 Non-Eulerian mixed graph.

gree. Yet the cut indicated has more than one-half of the arcs and edges
in it directed in one direction, so by Theorem 5 the graph has no Euler
tour.

Figure 5.3 shows the same mixed graph as in Figure 5.2 with the
edges numbered. Although there are cuts, e.g. those having sets of arcs
and edges {1,6,7,8} or {2,6,7,8}, with more than one-half of the arcs
directed in one direction, there is no strong di-cut. In this case, edges
1 and 2 must be duplicated twice, so the notion of postman set must
include the number of times each edge is to be duplicated. In the directed
case, the order of duplication is also needed but not in the undirected
case, as has been illustrated in Figure 5.1 and mentioned there.

Postman Tour:
6,2,1,7,5,2,1,9,8,4,3,2,1

Figure 5.3 Postman tour on mixed graph.

176 ARC ROUTING

Theorem 6 (Ford and Fulkerson) A mixed graph admits a postman
tour if and only if it is connected and has no strong di-cut.

See [9] for a discussion of a network flow formulation of the above two
problems. Solving the mixed postman problem is NP-complete, but
special cases were shown to be polynomially solvable in [18]. Other work
has been done, see e.g. [23].

Lemma 1 A bi-directed graph contains an Euler tour if and only if it is
connected and the edges can be partitioned into edge-simple tours.

Proof: The “only if” direction is trivial because a single Euler tour gives
such a partition. To show the converse, an algorithm will be outlined.
There is no claim that the following outlined procedure is efficient in
tracing an Euler tour, but it does serve to prove the lemma. Number
the edge-simple tours, say 1 to 7. Start at any node r in tour number
1. If at that node there are any other tours, then move in the highest
number tour to the next node in that tour and repeat. That is, any time
a node is reached, look for the highest number tour and move along it.
If there is no higher numbered tour, then one can proceed on the same
tour to the next node of that tour unless that tour has been completely
traversed. In that case there will necessarily be a lower numbered tour
interrupted at that node, so choose the highest such tour and continue.
To see that an Euler tour is traced, once a tour of a given number, say k,
is started on, no lower number tour will be used until tour k& is completed.
Every edge that is traversed is used only once, so eventually tour 1 will
be completed. To see that every tour is traversed, induction suffices. [J

See [9] for a discussion of efficient algorithms for finding Euler tours.

Lemma 2 A bi-directed graph G contains an Euler tour if it is con-
nected, even degree, and balanced.

Proof: Even though the undirected (directed) subgraphs of G may not
be connected, each component is Eulerian. Thus the graph can be par-
titioned into cycles and, by lemma 1, is Eulerian. O

2. AIRCRAFT ROUTING IN A SPACE-TIME
NETWORK

In scheduling an airline, usually a daily plan is first arrived at. That
plan assumes that every flight leg is flown every day by the same type of
plane. An aircraft routing says how to connect (or turn) the planes so
that the same turns are made every day. A major requirement for many

Chinese Postman and Euler Tour Problems in Bi-directed Graphs 177

airline planners is that the daily routing for any one fleet type form a
single large cycle. This required cycle is referred to as an unlocked ro-
tation. We will return to this requirement after explaining the problem.
This aircraft routing problem is solved after the fleet types have been
assigned to all flight legs. Typically the fleet assignment model [16] is
used to solve that problem. The output from the fleet assignment model
includes flow values for planes by fleet type on a space-time network.
The network has two types of arcs: flight leg arcs by fleet type and
ground arcs by station (airport) and time. The nodes of the network are
by fleet type, station, and time. There is a node for each departure of
a flight leg having indices: station and time of departure and fleet type
that might fly that leg. There is a corresponding node for the arrival of
the leg with indices: arrival station, ready time, and fleet type. By ready
time is meant the actual scheduled arrival time plus the minimum turn
time. Thus the ready time represents the time at which the plane would
be ready to depart. The flows on the ground arcs represent the number
of planes that stay on the ground beyond the minimum turn time before
departing, by fleet type.

Even if these ground arc flows are not given explicitly, they can be
determined from a fleeted schedule as follows. By a fleeted schedule is
meant the flight legs to be flown, the departure and arrival times, and
the type of plane (fleet type) that is to fly them. For a given fleet type
and a particular station, there are necessarily as many arrivals as depar-
tures. Otherwise the schedule can not be flown. Create a directed cycle
with nodes for departure times of each departing leg and ready times
for each arriving leg. If two of these times are the same, create just one
node. Thus, for this fleet type and this station, each node has a unique
time of day identifying it. Make the cycle by putting an arc from a node
to the node with the next largest time except for the largest time node
gets an arc back to the node with smallest time. Now, this cycle has as
many departures as arrivals. Create exogenous flow requirements with a
supply of one for each arrival and a demand of one for each departure.
Each node has the net supply or demand over all arrivals and departures
at the time associated with that node. On a cycle, there is only one
independent flow needed to determine all flows. The ground arc flows
can not be negative, so solve for flows so that at least one ground arc has
flow of zero. This is the flow solution that uses the minimum number
of planes. The number of planes needed for the fleet type can be deter-
mined by picking a global time such as midnight GMT or 2 am CST, and
adding up over all ground arcs and flight leg arcs that cross that global
time. The ground arc values determined in this way should be the same
as from the fleet assignment problem and the plane count should also
agree. The only reason not to do so is either that the schedule does

178 ARC ROUTING

not require as many planes as available or, more likely, there are other
arcs in the fleet assignment problem representing maintenance or other
activities.

In any case, let us assume that correct values of flows on ground arcs
are known. We now have a directed, balanced network. The only remain-
ing question in finding the unlocked rotation mentioned at the beginning
of this section is whether the network is connected. If it is connected,
then the network is Eulerian, and any Euler tour of it is an unlocked
rotation. Let us first address the connectivity question and return later
to what the unlocked rotation means. Clearly, the network is not con-
nected if there is a proper subset of the nodes such that all of the flight
legs departing from a station in this subset arrive at another station in
this subset. For US airlines, this type of disconnection hardly ever oc-
curs because of the nature of the hub-and-spoke network flown by most
US carriers. In any case, this lack of connectivity is highly undesirable
because it divides the fleet into two sub-fleets that never mingle. Any
planner looking at a fleeting would change the fleeting so as to avoid this
problem. However, there is a more subtle cause of the network being
unconnected. This cause is a disconnection is stations and time. For
example, suppose there is one plane on the ground overnight in Boston
and it flies early in the morning to Fort Lauderdale. Then it stays on
the ground in Fort Lauderdale and flies back to Boston where it again
overnights. Let us suppose further that during the time that it is on the
ground in Fort Lauderdale there are no other arrivals or departures of
the same fleet type and there are no other planes on the ground. This
same assumption is made for Boston. Boston may have other arrivals
of this fleet type during the day, but those planes all depart before the
Fort Lauderdale flight returns to Boston. Then we have an isolated cycle
in space-time that locks that plane into a “locked rotation”. Thus, the
network is connected if and only if there is no proper subset of nodes
(all of which have a station and a time) such that every flight leg of the
given fleet type departing from one of these nodes has an arrival node in
the subset, and every ground arc for this fleet type that meets one node
in the subset and one node not in the subset has zero flow.

The reason that airlines want to avoid a locked rotation is due mainly
to maintenance considerations. There are longer maintenance checks
that are done typically at one station every night. A plane on a locked
rotation may not ever get to that station. In addition, there is the pref-
erence that all planes get maintenance at all stations and get even wear.
Thus, with an unlocked rotation the planes all fly the same legs and go
through all of the maintenance stations.

Chinese Postman and Euler Tour Problems in Bi-directed Graphs 179

Flight Legs

Departure Arrival

DFW 0800 SFO 1000
SFO 1130 JFK 2030
JFK 0830 MIA 1230
MIA 1400 SEA 1930
SEA 0900 ORD 1500
ORD 1600 DFW 1900

UlLphWN M

Figure 5.4 Aircraft Rotation.

For an unlocked rotation, any one plane flies the one day rotations
in order until all have been flown and then starts over the same cycle.
Looking at each day and all of the planes, there are as many days of
flying as there are planes, and each plane flies one of these days worth
of flying. The next day a plane moves to the day of flying of the plane
in front of it. Thus the planes follow each other in a cyclical fashion. Of
course, there may be flying at night, so a day of flying could be defined
as the first departure after the global time until the leg or ground arc
that next crosses the global time. Figure 5.4 provides an example of a
three day cycle where each day has two flight legs and, would require
three planes to fly the six legs.

Any algorithm for finding an Euler tour in a directed graph can be
used to provide an unlocked rotation. However, a simple FIFO rule (that
says here depart the plane that has been on the ground the longest) may
not give an Euler tour but instead several cycles. These cycles would be
referred to as locked rotations.

The question of how to avoid locked rotations is, thus, the same as
how to avoid disconnecting the space-time network when partitioning the
flight legs among the fleet types. Imposing this restriction in the fleet
assignment problem greatly complicates it [2]. Inequalities much like the
subtour elimination constraints in the traveling salesman problem must
be adjoined to the already difficult mixed-integer program. However, in
practice the hub-and-spoke nature of an airline’s network generally keeps

180 ARC ROUTING

the network for each fleet type connected.

There are two other considerations involved in finding routings: through
values and maintenance. What is meant by through values is: when a
plane arrives at a station, typically a hub, where there are choices as
to how to connect to a departure, there may be advantages to connect
so that passengers can stay on the plane. For example, if an American
flight from Atlanta to DFW can connect to a flight to Albuquerque, and
many Atlantans want to fly to Albuquerque, then routing the plane from
Atlanta to DFW to Albuquerque allows the flight to be a 1-stop rather
than a connection. Thus, there are incremental values to certain turns,
mainly at hubs. However, forcing all of these desired turns may destroy
the unlocked rotation, just as imposing a FIFO order may do so.

The other consideration is a constraint that must be satisfied: per-
forming regular maintenance frequently enough. Many airlines will im-
pose a frequency in terms of number of days between certain types of
maintenance in order to make planning easier and be sure of meeting
all FAA rules. This restriction, in general, turns the easy Euler tour
problem into a hard problem. However, once again the hub-and-spoke
network makes it fairly easy to satisfy this restriction. The main dif-
ficulty comes if the network has a significant number of point-to-point
strings of flight legs without a maintenance station being encountered in
the string. Frequently the difficulty can be isolated from the otherwise
large network and conditions found to impose on the fleeting problem.
If the maintenance condition cannot be satisfied, then either the fleeting
must be changed or the routing can be examined in more detail to see if
it meets the FAA requirements.

The maintenance requirement in [2] was that a short maintenance had
to be done every two days and a longer maintenance including avionics
had to be performed every four days. Frequently, however, the require-
ment involves only one type of maintenance that has to be done every
three days. This requirement can be modeled, although it is not an easy
problem to solve, as follows: omit all overnight return arcs and then du-
plicate this reduced network three times to form N, N2, N3. Now any
overnight ground arc that allows maintenance (i.e. at a maintenance
station and sufficiently long) returns to the first node of that station in
network N!. That is, it allows resetting the clock on maintenance. All
other overnight ground arcs go to the first node of that station in the
next higher super-scripted network. That is, the clock keeps running.
The flight leg arcs that cross the global time selected are treated in a
similar manner. They go from their departure node in one network to
their arrival node in the next higher super-scripted network. The prob-

Chinese Postman and Euler Tour Problems in Bi-directed Graphs 181

lem is to select one of the three flight leg arcs from the three networks
N1, N2 N3 for each flight leg so that the resulting arcs can be balanced
by use of ground arcs. Plane count can be assured by simply imposing
a similar constraint of the overnight ground arcs. So far, this problem is
a multi-commodity flow problem, which is hard enough, but in addition
the network chosen must be connected or there will be no unlocked rota-
tion. This construction can be used within the fleet assignment problem
but complicates an already difficult problem.

Another approach [1] involves strings of legs between maintenance
opportunities.

3. THE CHINESE POSTMAN PROBLEM IN
AN UNDIRECTED GRAPH

The problem can be stated as finding a minimum cost duplication of
edges to form an Eulerian graph. Assume that the cost c. on each edge
is non-negative and that multiple edges are allowed in F. The problem
is, thus, to find a minimum cost set of edges to duplicate so as to make
every node have even degree. Clearly, an edge need not be duplicated
more than once. Let M be a subset of edges such that M union E
is Eulerian. We call such a set M a postman set. Thus, a postman set
is a set of edges that allow an Euler tour when those edges are duplicated.

Define a node to be an odd node if it has odd degree and an even node
if it has even degree. A set M of edges is a postman set if and only if
the edges in M form a subgraph such that odd nodes are still odd degree
and even nodes are still even. Then when M is unioned with E, the
resulting multigraph will be even degree everywhere, hence Eulerian.

Theorem 1 (Mei-ko Kwan [15]) A postman set M is optimal if and only
if every cycle C satisfies

Y {e€eCNMlc. <> {e € C\M}ec..

This theorem gives insight into the structure of an optimum solution
but does not lead directly to an algorithm. What it says in words is
that a postman set is optimal if and only if for every cycle the cost of
the edges in the cycle and the postman set is less than or equal to the
remaining edges of the cycle.

It is easily seen that an optimal postman set M need not contain a
cycle. Thus, it can be assumed to be a forest, where a forest is a sub-
graph (not necessarily connected) that has no cycles. The set M can
be included in a spanning tree, since the graph is connected. That is,

182 ARC ROUTING

the forest can be extended to a spanning tree. Conversely, any spanning
tree determines a Chinese postman solution. Before describing the pro-
cedure, define anode to be odd if it has odd degree and even if it has
even degree. The procedure is much like that for finding a basic network
flow solution: for any leaf of the tree, set the edge to be in the postman
set if the leaf-node is odd, otherwise it is not in the postman set. Delete
the edge, changing the parity of the other incident node if the edge is in
the postman set. Repeat until only one node is left, which must at that
point be an even node. We summarize these remarks in Proposition 1.

Proposition 1 Every spanning tree determines a unique postman set,
and every postman set can be embedded in a spanning tree (which need
not be unique).

Define an odd cut to be a (minimal) cut C = (5, 5¢) where S is a set
of nodes such that there are an odd number of odd nodes. The set S (or
equally S€) defines the odd cut and is identified with it. Define a clutter
to be a family of non-nested sets. Given a clutter C, define its blocking
clutter B(C) to be the family of minimal sets each of which meets every
member of C.

Proposition 2 The blocking clutter of the family of all postman sets is
the clutter of odd sets.

For example, the graph in Figure 1 has as its clutter of postman sets
{{1,4},{2, 3}, {5}} and the blocking clutter is {{1, 2,5}, {1, 3,5}, {2, 4, 5},
{3,4,5}}. Each subset of edges in the blocking clutter is an odd cut.

Because the Chinese postman problem is AN"P-complete, the problem
of finding a min cost odd cut is also N'P-complete. However, Padberg
and Rao gave an efficient combinatorial algorithm [24].

The Chinese postman problem can be solved by combining shortest
path and matching algorithms [6]. First solve for the shortest path be-
tween each pair of odd nodes. Then, form the complete graph having a
node for each odd node of the original graph and a cost on each edge
equal to the distance, given by the shortest path step, between those
two odd nodes. Solve the minimum weight matching problem on this
complete graph. Now expand every edge in the matching to the path
that gave the shortest path whose distance is on that edge.

A direct algorithm [18] that does not use matching as a subproblem but
uses an approach similar to the matching algorithm will now be given.

Chinese Postman and Euler Tour Problems in Bi-directed Graphs 183

Before stating the algorithm, pseudonodes and some associated con-
cepts will be defined. The basic idea of a pseudonode is to substitute a
single node in place of a set of nodes. We call this replacement contract-
ing the set of nodes. All edges with both ends in the set disappear from
the graph, and edges with one end in the set meet the new node, called a
pseudonode. Thus, the pseudonode appears as a node in the contracted
graph, but also has associated with it a set of original nodes. In the al-
gorithm, the sets associated with pseudonodes will be nested, i.e. either
disjoint or one contained in the other. The surface graph is obtained
by contracting each maximal sets to form a pseudonode. Pseudonodes
are drawn in the figures as squares whereas original nodes are drawn as
circles. There is a certain layering that is associated with pseudonodes.
Because of the nesting of sets, each pseudonode contains some number
of maximal pseudonodes.

Figure 5.5 Surface graph and one level down.

Figure 5.5 shows a surface graph consisting of three pseudonodes and
two edges. The blossom associated with each pseudonode will be ex-
plained. The blossom associated with a pseudonode will contain as nodes
all of the maximal pseudonodes contained in it together with all of the
original nodes contained in its subset that are not in any of these maxi-
mal pseudonodes. The three forms of blossoms are shown in Figure 5.6.
The first is an odd cycle where every node is a pseudonode. The other
two are both claws, i.e. a node and a set of edges meeting it. In this
case, the node is an original node, and the edges meeting it need not
include all of its incident edges. The claw is an odd claw if the original
node is an odd node. In this case, there will always be an even number
of edges in the blossom. The claw is an even claw if the original node is
an even node. In this case, there will always be an odd number of edges

184 ARC ROUTING

in the blossom. All of the other nodes in the blossom are pseudonodes,
and there are an even number of them in odd claws and an odd number
in even claws.

odd even O——D

odd cycle odd claw even claw

Figure 5.6 Blossoms.

Algorithm:

Start: Let every odd node be an exposed node. Let all primal variables
Ze,e € E, be 0 and all dual variables 7(S) be 0. When z, = 1, the edge
is called a postman edge, and the set of all postman edges is the postman
set. Pick an exposed node and make it in M a pseudonode. Let that

pseudonode be a plus-pseudeonode

plus

minus

minus

plus

Figure 5.7 Planted Tree.

Grow a planted tree T: The form of a planted tree is alternating plus-
and minus-pseudonodes as shown in Figure 5.7. Every minus-pseudonode
will meet two edges, one in the postman set z. = 1) and one not in the
postman set (z. = 0). For any plus-pseudonode k meeting an edge e

Chinese Postman and Euler Tour Problems in Bi-directed Graphs 185

1 2(a) 2()

Figure 5.8 Grow a planted tree.

having z. = 0 and not incident to a minus pseudonode, there are three
cases for the other end ¢: (1) £ is a plus pseudonode, (2) ¢ is a pseudon-
ode not in the tree, and (3) ¢ is a node (necessarily not in the tree T'). In
case (1), e forms an odd cycle when adjoined to the tree T' as shown in
Figure 5.8(1). The odd cycle is said to form a blossom and is shrunk as
described in the next step. The blossom becomes a new plus pseudon-
ode. In case (2), there are two subcases: (a) the postman edge p meeting
¢ meets another pseudonode m, or (b) it meets a node j (see Figure 5.8,
2(a) and 2(b)). In the first case (a), £ becomes a minus pseudonode, and
m becomes a plus pseudonode. In the second case (b), pseudonode £ still
becomes a minus pseudonode, but now node j together with all of the
postman edges meeting it, except for edge p, become a new pseudonode
m that is a plus pseudonode.

In case (3) shown in Figure 5.9, there are two subcases: (a) node ¢
is exposed or its parity condition is satisfied. In case (a), node ¢ is ex-
posed so we can augment. In the case (a), form a new plus pseudonode
m subsuming pseudonode k consisting of k, e, and ¢ together with any
postman edges meeting node £.

Shrink a blossom: When an odd cycle occurs in the tree, the node in
the cycle closest to the root is called the join and is necessarily a plus
pseudonode. Contract, or shrink, the cycle to form a new pseudonode
that becomes a plus pseudonode replacing the join in the tree. Its dual
variable is zero but will increase at the next dual step. All of the dual
variables inside the new pseudonode stay fixed until such time as this
pseudonode is expanded during a dual step. The new pseudonode is in

186 ARC ROUTING

3m)

Figure 5.9 Grow a planted tree.

Exposed
node

Figure 5.10 Augmenting Tree.

the surface graph but all nodes and pseudonodes in the cycle disappear
from the surface graph.

Augment an alternating path: By the structure of a planted tree, there
is an augmenting path in the surface graph (see Figure 5.10). What re-
mains to be shown is that the alternating path can be extended to the
original graph. The graph inside of a pseudonode can have two forms: an
odd cycle of pseudonodes, or a node with any number of incident edges.

In the case of an odd cycle, if there are k pseudonodes, then there must
be (k—1)/2 postman edges in the cycle meeting each pseudonode, except
for the join, exactly once. In the case of a node and some incident edges,

Chinese Postman and Fuler Tour Problems in Bi-directed Graphs 187

odd

odd

Figure 5.11 Augmenting inside pseudonodes.

if the node is an even node, there must be an odd number of incident
edges, and if it is an odd node, then there must be an even number of
incident edges.

Dual step: In the planted tree, increase the dual variable for each plus
pseudonode and decrease the dual variable for each minus pseudonode.
The amount of change is limited to be the minimum of three minimums:

1 the smallest initial dual variable for any minus pseudonode;

2 the minimum reduced cost for all edges in the surface graph with
one end meeting a plus pseudonode and the other end meeting a
node or pseudonode not in the planted tree; and

3 one-half times the minimum reduced cost for all edges in the surface
graph having both end meeting plus pseudonodes.

If (1) limits the dual change, then the minus pseudonodes whose dual
variables reach zero must be expanded before returning to the primal

188 ARC ROUTING

step. If (2) limits the dual change, then when we return to the primal
step the planted tree can be grown further. If (3) limits the dual change,
then when we return to the primal step there will be a blossom that
needs to be shrunk. Of course, there may be several ties for the mini-
mum, and any subset of (1), (2), (3) may occur.

When (1) limits the dual change, it means that the dual variable cor-
responding to the odd cut constraint for the pseudonode has reached
zero and is limited by its non-negativity requirement. In this case, the
linear program would like to relax the equality in the odd cut constraint
to allow inequality, i.e. to allow the slack variable to become positive.
Expanding the pseudonode always allows growing the planted tree in the
newly expanded subgraph to be spanning. Furthermore, if the pseudon-
ode was not a leaf of the tree, then the tree can be reconnected using
the newly expanded subgraph.

| |

minus

[}
LH

plus

(a) ()

Figure 5.12 Expanding minus pseudonodes.

Figure 5.12 shows the cases (a) and (b), where (a) shows a minus pseudon-
ode that is an odd cycle, and (b) shows a minus pseudonode consisting of
an odd node and two incident edges. In case (b), a new plus pseudeonode

Chinese Postman and Euler Tour Problems in Bi-directed Graphs 189

is formed using the rule for growing a planted tree, in this case from the
root, when an original node is encountered (see Figure 5.2, case 3).

The Chinese postman problem is interesting in its own right as a graph
problem with applications in routing. However, it is interesting in other
ways. The first we will discuss is Gomory’s group problem. Gomory
developed this approach {12] as a relaxation of the integer programming
problem. However, the Chinese postman problem is already a group
problem, so there is no relaxation. Section 3 included a discussion of
blocking clutters and blocking pairs of polyhedra. Fulkerson [11] devel-
oped these concepts independently of Gomory’s work, but the Chinese
postman problem provides a very nice example problem for both the-
ories. Johnson [17] developed an algebraic construction to produce a
blocking group problem whose solutions are the blocking cutter. That
construction will be given here and the Chinese postman problem will
be used to illustrate it.

4. BINARY GROUP PROBLEMS AND
BLOCKING PROBLEMS

The general binary group problem is:

z*=0,1
Mz* = b(mod 2)

Minimize cz*,

where M is a 0-1 matrix, ¢ is a non-negative real row vector, and b
is any 0-1 column vector. If M is m x n, then ¢ is an n-vector and
b is an m-vector. The Chinese postman problem can be stated in this
way by letting M be the node-edge incidence matrix of G. There are
clearly other matrices M that can be brought to the form of a node-edge
incidence matrix (two 1’s per column) by elementary row operations.
Results of Tutte [28] show that a binary group problem can be reduced
to a Chinese postman problem if and only if the matrix M does not
contain certain minors [19]. Such matrices are said to be graphic, or
equivalently are said to represent a graphic matroid.

The augmented matrix [M |b] can be brought to standard form by
pivoting (using modulo 2 arithmetic) on columns in a basis to bring the
basis to an m x m identity I and deleting redundant rows to give the
equivalent problem:

z* = (z],zy) =0,1

190 ARC ROUTING
Iz} + Nz = b(mod 2)

A solution z is called basic if the only z* equal to 1 are among z7. It
can be easily seen that basic solutions are minimal among all solutions so
form a clutter. Gomory showed [12] that the vertices of the convex hull
of integer solutions to binary (and ternary) group problems are precisely
the basic solutions.

For the Chinese postman problem, the matrix I corresponds to a span-
ning tree, the vector b is the unique postman solution contained in that
tree, and the matrix N has a column for every edge not in the tree and
that column has a 1 for the edges in the path in the tree between its two
end points. One could say this is an algebraic representation of the Chi-
nese postman problem. However, this representation does not offer any
easy computational advantage. It does, however, show how one postman

solution can be changed to another. If an z7} is changed from 0 to 1, then

a new solution is obtained by subtracting (modulo 2) column N7 from
b. Since the column N7 has 1’s in the cycle formed by the out-of-tree
edge, the affect of setting z7 to 1 and subtracting N J from b is to change
the 0’s on the cycle to 1’s and vice versa. Interestingly, this change in
postman solution moves from one vertex to an adjacent vertex [19]. The
reason that we cannot just perform the simplex method (using modulo
2 arithmetic) is that the objective function is in real arithmetic.

There is an interesting algebraic construction of the blocking problem
[17]. Note that N is m x (n —m) so that an (n —m) X (n —m) identity I
can be used to form the binary group problem in right-hand side form:

T = (LIIN,,.'ZJ[*) =0,1
N*zy+ + Izp~ = 0(mod 2), where N* = N*
bry+ = 1(mod 2)

For the Chinese postman problem, the solutions will be incidence vectors
of odd cuts and the congruence bry- = 1 (mod 2) says that every odd
cut meets a particular postman solution an odd number of times. The
other congruence says that an odd cut meets a cycle an even number
of times. Furthermore, the result here is that any subset of edges that
meets any one particular postman solution contained in a spanning tree
T an odd number of times and meets the cycles in the fundamental set
of cycles of T' an even number of times must be an odd cut. This con-
struction works for any binary group problem [19].

The right-hand-side form used in the construction can, of course, be
brought to standard form by pivoting on the row containing b. Then the
same construction can be used to get a right-hand-side representation

Chinese Postman and Euler Tour Problems in Bi-directed Graphs 191

of the original binary group problem. In right-hand-side form, a basic
solution is one that includes exactly one z; equal to 1 from zx+ and the
values of x;« equal to that column of N*, Again, these basic solutions
are minimal among solutions and are the incidence vectors of the block-
ing clutter of the basic solutions of the original binary group problem.

The Chinese postman problem is characterized by the coefficient ma-
trix being graphic. In that case, the partitioned matrix

(V']

used in forming the right-hand-side form of the odd cut problem is a
co-graphic matrix. However, the particular solution congruence bz~ =
1 keeps the coefficient matrix of the odd cut problem from being co-
graphic. Now consider a binary group problem where the coefficient
matrix M is co-graphic and the right-hand side b is an arbitrary 0-1
vector. Such a problem has been called [20] a co-postman problem. Since
this problem is now considered as the original problem, its standard form
has congruences:

Iz} + Nzjy = b(mod 2)

where for some spanning tree T', N has a column for each edge e of T
and the 1’s in the column of N correspond to the edges in the funda-
mental cut corresponding to the edge e. A row of the matrix [I N]
is a fundamental cycle of the tree T formed by adjoining the edge e; to
the tree. We define a particular co-postman set to be those out-of-tree
edges e; such that b; = 1. Define a cycle to be an odd cycle if it contains
an odd number of co-postman edges. Now the general definition of co-
postman sets is the sets of all edges outside of some spanning tree such
that the fundamental cycle formed by adding the edge to the tree is an
odd cycle. Thus, the co-postman sets are the solutions to a binary group
problem when the coefficient matrix is co-graphic, for some right-hand
side. The blocking clutter way to describe co-postman sets is that they
are the blocking clutter of the odd cycles. Although odd cycles were
defined originally based on a particular co-postman set, any co-postman
set would give the same odd cycles.

For the Chinese postman problem, we usually begin with odd nodes
and define postman sets in terms of meeting odd nodes an odd number of
times. One way to think of that condition is that the postman set meets
the odd cut of edges incident to the node an odd number of times. How-
ever, one can also begin with any fundamental set of cuts, some of which
are designated as odd and some as even. Then, a postman set is a set of
edges that intersects the even fundamental cuts an even number of times
and the odd fundamental cuts an odd number of times. If postman is

192 ARC ROUTING

replaced by co-postman and cut is replaced by cycle in the two preceding
sentences, then we get the corresponding definition of co-postman sets.
For the Chinese postman problem, minimality is assured for a postman
set by being a subset of a spanning tree, i.e. not containing a cycle.
Similarly, a co-postman set is minimal so long as it is a subset of the
compliment of a spanning tree; i.e. does not contain a cut or in other
words does not disconnect the graph.

The classical case of the Chinese postman problem designates a node
as even or odd depending on the parity of its degree. Similarly, the co-
postman problem can have cycles designated even or odd depending on
their parity. In this case, removal of any co-postman set would leave a
bipartite subgraph. Thus, a co-postman set is a complement of a maxi-
mal bipartite subgraph. For non-negative weights on the edges, finding
a minimum weight co-postman set is equivalent to finding a maximum
weight bipartite subgraph, a problem to be N'P-complete [13].

5. IDEAL BINARY MATRICES

Define the matrix Q* to be the 0-1 matrix whose rows are incidence
vectors of basic solutions to the binary group problem. Let @ be the
corresponding matrix whose rows are incidence vectors of the basic solu-
tions known to the blocking binary group problem. The integer program

" =0,1
Qxr>1
cz® = z(min)

is equivalent to the binary group problem. We reemphasize that the
objective coefficients c; are non-negative. The matrix @ is called ideal [4]
when the above linear program has integer solutions for all non-negative
¢. By extension, the original binary group problem and the augmented
matrix [M/b] are also called ideal when @ is ideal. A result of Fulkerson
[11] says that @ is ideal if and only if @Q* is also ideal, and then the two
linear programming polyhedra are called blocking polyhedra or a block-
ing pair of polyhedra. By extension, we refer to the associated integer
programs as being a blocking pair of integer programs. When @ and Q*
are ideal, then the solutions to the linear program with coefficient matrix
Q@ are rows of the matrix Q* and vice versa.

From results of Khatchian [21], it is known that when @ and Q* are
ideal, then one of their linear programs is polynomially solvable if and
only if the other is also polynomially solvable. This fact is due to the
equivalence of separation and optimization since separation for one lin-
ear prograim is optimization over the blocking clutter. Referring to these

Chinese Postman and Euler Tour Problems in Bi-directed Graphs 193

linear programs as polynomially solvable means that the linear program
is polynomially solvable in terms of the input, which is considered to be
the augmented matrix [M/b] rather than the linear programming coef-
ficient matrix [@/1]. The latter matrix has, in general, exponentially
many rows as compared to the former.

The co-postman problem and the corresponding blocking problem are
not, in general, ideal. See [5] where it is shown that they are ideal,
and hence a blocking pair of polyhedra, if and only if the graph has no
odd K5 minor. It is also known that in the general case i.e. when the
graph may have an odd K5 minor, solving the co-postman problem is
NP-complete. Thus, solving the integer program with constraints

" >0,Qz" > 1,

is N'P-complete. However, the blocking problem is to find a minimum
cost odd cycle and is polynomially solvable [13], [19]. Thus, the remark
about the linear programs being both polynomially solvable when one is
provided one and hence both are ideal does not hold true in the non-ideal
case. The linear program for the co-postman problem is polynomially
solvable because it is equivalent to separation over odd cycles. However,
the integer program is equivalent to finding a maximum cost bipartite
subgraph and is not polynomially solvable. For the blocking problem,
the linear program is N'P-complete because it is equivalent to separation
over complements of bipartite subgraphs, i.e. the co-postman problem.
However, the integer program of the blocking problem is the minimum
odd cycle problem and is polynomially solvable. This is an example for
which it is fundamentally easier to solve for an optimum integer answer
than to solve for an optimum linear programming answer, provided P is
not equal to N'P.

6. FOUR PROBLEMS ON PLANAR GRAPHS

When a graph G is planar, it has a dual graph G* that can be obtained
by the following procedure. For any planar representation of the graph
G, there is a node of G* for each region of G, and any edge of G is in
G* and connects the two nodes of G* corresponding to the two regions
of G that the edge separates in G. For simplicity, assume that G has no
cut edges and no loops. Then, G* will have no cut edges or loops. The
duality between G and G* is that edges in a cycle in G are the edges in
a cut in G* and vice versa. Thus, there is a one-to-one mapping between
cycles and cuts, where cycles and cuts are considered as sets of edges.

On planar graphs, there is no real simplification of the Chinese post-
man problem, but the other three problems do have significant simpli-
fications or, at least, interpretations in terms of the dual graphs. In

194 ARC ROUTING

Figure 5.18 Co-postman set.

particular, the co-postman problem is the Chinese postman problem on
the dual graph, where a node ¢* of the dual graph is odd if the region of
the original graph has an odd number of edges in its boundary. The odd
cut problem is the odd cycle on the dual graph, and vice versa. Since the
Chinese postman problem is polynomially solvable and the co-postman
problem is not, the reduction of the co-postman problem to Chinese
postman in the planar graph case is significant. Although the odd cycle
problem and the odd cut problem are both polynomial, the odd cycle
problem seems easier, so that reduction is interesting.

Figure 5.14 Postman set on a dual graph.

Chinese Postman and Euler Tour Problems in Bi-directed Graphs 195

References

[1]

2l

8l

[10]
(11]
(12]
[13]

(14]

Barnhart, C., N. Boland, L. Clarke, E.L. Johnson, G.L. Nemhauser,
R. Shenoi, “Flight String Models for Aircraft Fleeting and Routing”
Transportation Science Vol. 32, No. 3, pp. 208-220, August 1998.
Clarke, L., E.L. Johnson, G.L. Nemhauser, J. Zhu, “The Aircraft
Rotation Problem”, Annals of Operations Research 69, pp. 33-46,
1996.

M. Conforti, G. Cornujols, A. Kapoor and K. Vuskovic, “Perfect,
Ideal and Balanced Matrices”, (1996).

Cornuéjols, G. "Combinatorial Optimization: Packing and Cover-
ing", Lecture Notes, Carrnegie Mellon University, May 1999.
Cornugjols, G. and B. Guenin, “On Ideal Binary Clutters and a
Conjecture of Seymour”, in preparation.

Edmonds, J. “The Chinese Postman Problem”, Operations Research
13, Suppl. 1, pp. 373, 1965.

Edmonds, J. and E.L. Johnson, “Matching: A Well-Solved Class of
Integer Linear Programs”, Combinatorial Structures and Their Ap-
plications, proceedings from Calgary, Alberta, Canada, June 1969,
pp- 89-92.

Edmonds, J. and R.M. Karp, “Theoretical Improvements in Al-
gorithmic Efficiency for Network Flow Problems”, Combinatorial
Structures and Their Applications, proceedings from Calgary, Al-
berta, Canada, June 1969, pp. 93-96.

Eiselt, H.A. and G. Laporte, “A Historical Perspective on Arc Rout-
ing”, this volume.

Ford, L.R. and D.R. Fulkerson, Flows in Networks, Princeton Uni-
versity Press, Princeton, N.J., 1962.

Fulkerson, D.R. “Blocking Polyhedra,” in B. Harris, ed., Graph The-
ory and its Applications (Academic Press, NY), pp. 93-112, 1970.
Gomory, R.E. “Some Polyhedra Related to Combinatorial Prob-
lems,” Linear Algebra and it Applications 2, pp. 451-558, 1969.
Grotschel, M. and W.R. Pulleyblank, “Weakly Bipartite Graphs”,
Operations Research Letters 1 pp. 23-27, 1981.

Grotschel, M. and Z. Win, “A Cutting Plane Algorithm for the
windy Postman Problem”, Mathematical Programming 55 (1992),
pp- 339-358.

Guan, M. “Graphic Programming Using Odd or Even Points”, Chi-
nese Mathematics 1 (1962), pp. 273-377.

Hane, C., C. Barnhart, E.L. Johnson, R. Marsten, G.L. Nemhauser,

G. Sigismondi, “The Fleet Assignment Problem: Solving a Large In-
teger Program”, Mathematical Programming 70, pp. 211-232, 1995.

196 ARC ROUTING

[17] Johnson, E.L. “On Binary Group Problems having the Fulkerson
Property”, Combinatorial Optimization B. Simeone (ed.), Springer-
Verlag, Berlin and Heidelberg, pp. 57-112, 1989.

[18] Johnson, E.L. and J. Edmonds, “Matchings, Euler Tours and the
Chinese Postman”, Mathematical Programming, Vol. 5, pp. 88-124,
1973.

[19] Johnson, E.L. and G. Gastou, “Binary Group and Chinese Postman
Polyhedra”, Mathematical Programming, Vol. 5, pp. 88-124, 1973.

[20] Johnson, E.L. and S. Mosterts, “On Four Problems in Graph The-
ory,” SIAM Journal on Algebraic and Discrete Methods, Vol. 2, pp.
163-185, 1987.

[21] Khachian, L.G. “A Polynomial Algorithm in Linear Programming”,
Soviet Mathematics Doklady 20 pp. 191-194, 1979.

[22] Lehman, A. “On the Width-Length Inequality”, Mathematical Pro-
gramming 17 (1979), pp. 403-417.

[23] Nobert, Y. and J.-C. Picard, “An Optimal Algorithm for the Mixed
Chinese Postman Problem”, Networks Vol. 27 (1996), pp. 95-108.

[24] Padberg, M. and M. Rao, “Odd Minimum Cut-Sets and B-
Matchings”, Math. of Operations Research, Vol. 7 No. 1 (1982), pp.
67-80.

[25] Roberts, F.S. and J. Spencer, “A Characterization of Clique
Graphs”, Combinatorial Structures and Their Applications, pro-
ceedings from Calgary, Alberta, Canada, June 1969, pp. 367-368.

[26] Seymour, P.D. “Matroids with the Max-Flow Min-Cut Property”,
Journal of Combinatorial Theory Series B 23 (1977), pp. 189-222.

[27] Stone, A.H. “Some Combinatorial Problems in General Topology”,
Combinatorial Structures and Their Applications, proceedings from
Calgary, Alberta, Canada, June 1969, pp. 413-416.

(28] Tutte, W.T. “Lectures on Matroids”, Journal of Research of the
National Bureau of Standards Section B 69 pp. 1-47, 1965.

II

SOLUTIONS

Chapter 6

POLYHEDRAL THEORY FOR ARC
ROUTING PROBLEMS

Richard W. Eglese

Lancaster University

Adam N. Letchford

Lancaster University

1. Introduction 199
2. The Basics of Polyhedral Theory 200
3. The Routing Problems Defined 203
4. Variants of the Chinese Postman Problem 205
4.1 The CPP 205
4.2 The DCPP 205
4.3 The MCPP 206
4.4 The WPP 208
5. Variants of the Rural Postman Problem 209
5.1 The RPP 209
5.2 The GRP 212
5.3 The DRPP 216
5.4 The MRPP 217
6. The Capacitated Arc Routing Problem 219
6.1 Preliminaries 219
6.2 Sparse Formulations of the CARP 220
6.3 The Dense and Supersparse Formulations of the CARP 224
7. Conclusions 226

1. INTRODUCTION

As explained in Chapter 4, most realistic Arc Routing Problems are
known to be N"P-hard. Therefore we can expect that there will be certain
instances which are impossible to solve to optimality within a reasonable
time. However, this does not mean that all instances will be impossible
to solve. It may well be that an instance which arises in practice has
some structure which makes it amenable to solution by an optimization

200 ARC ROUTING

algorithm. Since, in addition, significant costs are often involved in real-
world instances, research into devising optimization algorithms is still
regarded as important.

At the time of writing, the most promising optimization algorithms
for N'P-hard problems are based on the so-called branch-and-cut method
(see Padberg & Rinaldi, 1991 and also Chapter 7 of this book). The key
to producing an effective branch-and-cut algorithm for a particular class
of problems is to have a good understanding of certain polyhedra which
are associated with those problems.

This chapter gives a self-contained introduction to the main ideas of
polyhedral theory, followed by a state-of-the-art survey of the known
polyhedral results for Arc Routing. The most promising integer pro-
gramming formulations of various Arc Routing Problems are reviewed
and the known valid inequalities and facets of the associated polyhedra
are presented. Note, however, that we are not here concerned with the
algorithmic implications of polyhedral theory. These are discussed in
detail in Chapter 7.

The outline of the chapter is as follows. In Section 2, the basic ideas
and notation involved in polyhedral theory are summarized. In Section
3, the definitions of a number of routing problems are briefly reviewed.
The following two sections review the polyhedral theory for single-vehicle
variants of the Chinese Postman Problem and the Rural Postman Prob-
lem, respectively. Section 6 does the same for the Capacitated Arc Rout-
ing Problem. Some concluding comments are made in Section 7.

Other surveys about Arc Routing which include material on polyhe-
dral theory can be found in Assad & Golden (1995) and Eiselt et al.
(1995a, b).

2. THE BASICS OF POLYHEDRAL THEORY

This section draws on material in Weyl (1935), Grétschel & Padberg
(1985) and Nemhauser & Wolsey (1988).

Like many other combinatorial optimization problems, the majority
of Arc Routing Problems can be formulated as problems of the form:

min{c’z : z € S} (6.1)
where z = {z1,...,z,} € R" is a vector of decision variables, ¢ =
{c1,... ,cn} € RN™ is a vector of objective function coefficients (i.e., costs)

and S C R" is a set of feasible solutions. Often, but not always, S is de-
fined by an explicit system of linear inequalities with integer coefficients,

Polyhedral Theory for Arc Routing Problems 201

together with an integrality condition. That is, there is an integer m, a
matrix A € Z™" and a vector b € Z™ such that

S={ze€Z": Az <b}. (6.2)

In this case, (6.1) is called an Integer Linear Program (ILP). Note that
constraints of the ‘greater than or equal to’ form can be accommodated
in (6.2) if they are multiplied by minus one; equations can also be ac-
commodated since they can be written as two inequalities. Note also
that m may be very large; often it is exponential in 7.

The key to the polyhedral approach is the observation that the feasible
solutions to (6.1) (i.e., the members of S) are vectors in the Euclidean
space ™. It is then easy to define a polyhedron associated with a given
S. In order to show how this can be done, it is first necessary to give
some formal definitions.

A set H C R™ is called a half-space if there exists a vector a € R* and
a scalar ag € R such that H = {xr € ®" : aTx < ap}. Aset P C R is
called a polyhedron if it is the intersection of finitely many half-spaces.
A polyhedron which is bounded (i.e., not of infinite volume) is called a
polytope. Now suppose that z!,... 2% € R are vectors and Ay, ..., Ak
are scalars. A vector of the form M\z! + --- + A\gz® is called an affine
combination of z*,... , zF if Zle A; = 1. An affine combination is also
called a convexr combination if A; > O for all <. Given some S C R"
with S # 0, the affine (respectively, convez) hull of S, denoted by aff(S)
(respectively, conv(S)), is the set of all affine (convex) combinations of
finitely many vectors in S.

Note that for any S, conv(S) C aff(S) holds. Also, aff(S) is always a
polyhedron. The situation is a little more complicated for conv(S). It
can be shown that, when |S] is finite, conv(S) is always a polyhedron.
When |S] is not finite, however, conv(S) can fail to be a polyhedron
(see, e.g., Queyranne & Wang, 1992). Fortunately, however, the sets S
which will be of concern to us in this chapter are ‘well-behaved’, in that
conv(S) will always be a polyhedron.

Another important concept is that of the dimension of a polyhedron.
This is defined using the idea of affine independence. A set of vectors
is affinely independent if no member of the set is an affine combination
of the others. The dimension of a polyhedron P, denoted by dim(P), is
then defined as the maximum number of affinely independent vectors in
P. Note that, if P is defined in R®", then dim(P) < n holds. If equality
holds, P is said to be full-dimensional.

202 ARC ROUTING

Given these definitions, we can now associate a polyhedron with any
instance of a combinatorial optimization problem; namely, the polyhe-
dron conv(S), where S is the set of feasible solutions to (6.1). Because
the vectors in S are assumed to be integral, conv(S) will be a polyhedron
with integral vertices. We will let P; denote such an integral polyhedron.
The whole aim of the polyhedral approach is to find ‘good’ descriptions
of Py for various combinatorial optimization problems. In order to define
what is meant by a ‘good’ description, we need some further definitions.

An inequality Tz < ag is valid for Py if P; C {x € ®": aTz < ap}.
The set F = PrnN{zx € K" : aTx = ag} is called the face induced by
aTxz < ag on P;. Note that F is also a polyhedron. A valid inequality is
supporting if F' # 0. If F = Py, then o’z = qaq is said to be an implicit
equation of P;. The face F of P; induced by a valid inequality a’z < ag
is called a facet if F' # Pr and there is no other valid inequality which
induces a face F’ of P; such that F is strictly contained in F”. Note that
dim(F) = dim(Py) - 1 when F is a facet.

A ‘best possible’ complete linear description of Py must therefore in-
clude all implicit equations and facet-inducing inequalities. Of course, if
there are implicit equations, then any one of the equations or inequalities
can be written in an infinite number of ways. All that is really needed,
however, is one representative of each non-equivalent facet-inducing in-
equality, along with a minimal set of equations which identifies the affine
hull of P;.

When an instance of an NP-hard combinatorial optimization prob-
lem is extremely small, it may be possible to find such a complete linear
description of the associated Pr. However, finding a complete linear
description of Py for instances of realistic size is hopelessly difficult. Al-
though the number of equations needed to identify the affine hull is small
(only n - dim(Pr)), it often happens that P; has an immense number of
facets. An example will drive this point home. Readers who are famil-
iar with the well-known Symmetric Traveling Salesman Problem (STSP)
will regard an STSP instance defined on a graph with only 10 vertices
as trivial. Nevertheless, Christof & Reinelt (1996) have shown that over
5.1 x 100 inequalities are needed to describe Py in this case (together
with 10 equations, one for each vertex in the graph).

A further negative result comes from Karp & Papadimitriou (1982),
who showed that, if a combinatorial optimization problem is N"P-hard,
then the problem of deciding whether or not an inequality is valid for
the associated Py is itself NP-hard.

Polyhedral Theory for Arc Routing Problems 203

Despite these negative results, however, it remains true that large
classes of valid, supporting and even facet-inducing inequalities, along
with implicit equations, are known for many important NP-hard prob-
lems. This will become clear in the following subsections. Such partial
linear descriptions of polyhedra provide the basis for very effective opti-
mization algorithms, see Chapter 7.

3. THE ROUTING PROBLEMS DEFINED

In this section, we give the definitions of twelve different fundamen-
tal routing problems for which polyhedral studies have been conducted.
These will be examined in subsequent sections.

First, we consider undirected, single-vehicle problems. Given a con-
nected, undirected graph G with vertex set V and (undirected) edge set
E, a cost ¢, for each edge e € E, a set Vg C V of required vertices and
a set Egp C E of required edges, the General Routing Problem (GRP)
is the problem of finding a minimum cost vehicle route (‘tour’) passing
through each v € Vi and each e € Eg at least once (Orloff, 1974).

The GRP contains a number of other known problems as special cases.
When Er = 0, the GRP reduces to the Steiner Graphical Traveling
Salesman Problem (SGTSP) (Cornuéjols et al., 1985), also called the
Road Traveling Salesman Problem by Fleischmann (1985). On the other
hand, when Vg = 0, the GRP reduces to the Rural Postman Problem
(RPP) (Orloff, 1974). When Vg = V, the SGTSP in turn reduces to
the Graphical Traveling Salesman Problem or GTSP (Cornuéjols et al.,
1985). Similarly, when Er = F, the RPP reduces to the Chinese Post-
man Problem or CPP (Guan, 1962; Edmonds, 1963).

The CPP can be solved in polynomial time by reduction to a matching
problem (Christofides, 1973; Edmonds & Johnson, 1973), but the RPP,
GTSP, SGTSP and GRP are all NP-hard. The GTSP and SGTSP
were proved to be N'P-hard by Cornuéjols et al. (1985) and the RPP
and GRP were proved to be NP-hard by Lenstra & Rinnooy-Kan (1976).

Now we consider problems in which directed arcs are allowed. Given
a connected, mixed graph G with vertex set V, (undirected) edge set E,
(directed) arc set A, a cost ce for each edge e € E, a cost ¢, for each
arc a € A, a set Eg € F of required edges and a set Ag € A of re-
quired arcs, the Mized Rural Postman Problem (MRPP) is the problem
of finding a minimum cost vehicle route passing through each e € Ep and
each a € Ag at least once (Corberdn, Romero & Sanchis, 1997; Romero,
1997).

204 ARC ROUTING

Like the GRP, the MRPP also contains a number of other problems
as special cases. When A = (), the MRPP reduces to the RPP men-
tioned above. When E = (), the MRPP reduces to the Directed Rural
Postman Problem or DRPP (Christofides et al., 1986). Alternatively,
it may be that Fr = F and Ar = A, in which case the MRPP re-
duces to the Mized Chinese Postman Problem or MCPP (Edmonds &
Johnson, 1973). When Er = §, the MCPP in turn reduces to the Di-
rected Chinese Postman Problem or DCPP (Edmonds & Johnson, 1973).

The DCPP can be solved in polynomial time by reduction to a trans-
portation problem (Edmonds & Johnson, 1973), but the MRPP, DRPP
and MCPP are all N'P-hard. The MCPP (and therefore MRPP) was
proved to be NP-hard by Papadimitriou (1976) and the DRPP was
proved to be A'P-hard by Christofides et al. (1986).

Another single-vehicle problem is known as the Windy Postman Prob-
lem or WPP. It is a generalization of the CPP which allows for the
possibility that the cost of traversing an edge in one direction may dif-
fer from the cost of traversing the edge in the opposite direction. The
WPP combines features of both undirected and directed problems. In
fact, it is easy to show that it contains the MCPP as a special case.
It is therefore AN"P-hard, as noted by Guan (1984), although it is poly-
nomially solvable in certain special cases (Guan, 1984; Win, 1987, 1989).

Now we consider two undirected multi-vehicle problems. The Capac-
itated Arc Routing Problem or CARP is a generalization of the RPP in
which k& > 1 identical vehicles are available, each of capacity @ > 0.
One particular vertex is called the depot and each required edge has an
integral demand q; > 0. The task is to find a minimum cost set of &
feasible routes, each one starting and ending at the depot. (A route is
feasible if the sum of the demands on the route do not exceed Q.) When
Ep = E, the CARP reduces to the Capacitated Chinese Postman Prob-
lem or CCPP (Win, 1987).

Since the CARP is at least as difficult as the RPP, it is NP-hard
(Golden & Wong, 1981). Perhaps more surprisingly, the CCPP is also
NP-hard. In fact, Golden & Wong (1981) showed that it is A"P-hard to
find a 0.5-approzimate solution to the CCPP (i.e., a solution which has
a cost less than 1.5 times the cost of the optimal solution).

Polyhedral Theory for Arc Routing Problems 205

4. VARIANTS OF THE CHINESE POSTMAN
PROBLEM

4.1. THE CPP

Since the CPP can be solved in polynomial time, we might expect
that the associated polyhedra have a simple description. This is indeed
the case. We let the general integer variable z. represent the number
of times that edge e is traversed without being serviced. (That is, z,
represents the number of copies of edge e which will be added to E in
order to make G Eulerian.) For each S C V, we let §(S) denote the set
of edges, commonly called the edge cutse?, which have one end-vertex in
S and one end-vertex in V'\ S. When S = {i}, we write §(¢) rather than
6({z}) for brevity. Finally, for any F' C E, we let z(F') denote) . Ze.
Then our set S of feasible solutions is defined as

2(6(1)) = |6()] (mod 2), (Vi € V) (6.3)
ze > 0, (Ve € E) (6.4)
z € ZIF (6.5)

Note that the conditions (6.3) are not in the form of linear inequalities.
They do however imply the validity of the following odd-cut (or blossom)
inequalities (Edmonds & Johnson, 1973):

z(6(S)) > 1, (VS CV :|6(S)| odd). (6.6)

To see why these inequalities are valid, note that the vehicle must cross
any given edge cutset an even number of times. Hence, if S C V is such
that |6(S)] is odd, then the vehicle must cross the cutset at least once
without servicing. Note that the number of odd-cut inequalities can in-
crease exponentially in the size of the graph G.

Edmonds & Johnson (1973) show that P; is completely described by
the odd-cut inequalities (6.6) and the non-negativity inequalities (6.4).
That is, the conditions (6.3) and (6.5) are unnecessary.

Corberén & Sanchis (1994) have shown that an odd-cut inequality is
facet-inducing if and only if the subgraphs induced in G by S and V'\ S
are each connected; they also showed that a non-negativity inequality
induces a facet if and only if e is not a cut-edge (an edge whose removal
disconnects the graph).

4.2. THE DCPP

Since the DCPP can be solved in polynomial time, we might expect
that the associated polyhedra have a simple description, just as in the
case of the CPP. This is indeed the case. We let the general integer

206 ARC ROUTING

variable z, represent the number of times that arc a is traversed without
being serviced. This is analogous to the formulation for the CPP given
in the previous subsection, in that z, represents the number of copies
of arc a which will be added to A in order to make G Eulerian. For
any i € V, we let 6%(¢) denote the set of arcs which leave i and § ()
denote the set of arcs which enter ¢. Finally, we let b(¢) for each i € V
denote |6~ (z)| — |67 (2)|, the so-called ‘unbalance’ of . Note that b(¢) may
be positive, negative or zero. The set S is then given by (Edmonds &
Johnson, 1973):

z(6%(3)) — (6~ (1)) = b(i), (Vi € V) (6.7)
z, >0, (Va € A) (6.8)
z e Z (6.9)

Equations (6.7), which we will call balance equations, ensure that the
vehicle leaves each vertex as many times as it enters. They describe the
affine hull of Pr and in fact it can be shown that only |V| — 1 of them
are needed (that is, any one of them can be deleted as redundant). It is
also not hard to show that the non-negativity inequalities (6.8) induce
facets of P; under mild conditions.

Edmonds & Johnson (1973) showed that P; is completely described
by the balance equations and non-negativity inequalities. Thus, the in-
tegrality condition (6.9) is unnecessary.

4.3. THE MCPP

When considering how to tackle the MCPP, it appears at first sight
that in addition to an integer variable for each arc, it will be necessary
to have two integer variables for each edge (to indicate the number of
times the edge is traversed in either direction). Indeed, formulations of
this kind have appeared in the literature (e.g., Kappauf & Koehler, 1979;
Christofides et al., 1984; Grotschel & Win, 1992; Ralphs, 1993). How-
ever, it is possible to use only one variable per edge (Nobert & Picard,
1996), as we now explain.

Each MCPP solution is defined by a family (i.e., a set with possi-
ble repeated elements) of edges and arcs which constitute what might
be called a mized Eulerian multigraph. In Ford & Fulkerson (1962), it
is proven that a mixed multigraph is Eulerian if and only if it is even
and balanced. The first condition means that the number of arcs and
edges incident on any vertex is an even integer. To explain the second
condition, we extend our notation a little. Given any S C V, let §(5)
be the set of all edges crossing from S to V' \ S, §*(S) the set of all

Polyhedral Theory for Arc Routing Problems 207

arcs leaving S, and let 67(S) be the set of all arcs entering S. The
condition that the multigraph be balanced means that, for any S C V,
[67(8)| = 167(S)| < |6(S)| holds. Ford & Fulkerson also provide a simple
algorithm to find a tour of a mixed Eulerian multigraph.

Now let the general integer variable z. (respectively, z,) represent the
number of times that edge e (respectively, arc a) is traversed without
being serviced. That is, each variable represents the number of times a
particular edge or arc will be added to EU A to make G Eulerian. Also,
for any S C V let b(S) = |67(S)| — |61(S)| — |6(S)], the so-called ‘unbal-
ance’ of §. Note that this definition of ‘unbalance’ is a generalization of
the definition given in the previous subsection. Finally, let §*(S) denote
5(S)YU T (S)Ué(S). Then the set S of feasible solutions is defined by
the following conditions:

2(6*(3)) = 16*(3)] (mod 2), (Vi€ V) (6.10)

z(67(9)) + z(6(S)) — z(67(S)) > b(S), (VS C V) (6.11)
ze >0, (Ve € E) (6.12)

2, > 0, (Va € A) (6.13)

x € ZIBVUAl (6.14)

The system of congruences (6.10) enforces the condition that the asso-
ciated mixed multigraph be even. Similarly, the balanced set inequalities
(6.11) enforce the condition that the multigraph be balanced. Finally,
(6.12) and (6.13) are just non-negativity inequalities. Obviously, the in-
equalities (6.11) - (6.13) are valid for the associated P;.

It might be thought that a ‘switched’ version of (6.11) would also be
needed for each S, i.e., an inequality of the form z(67(S)) — z(6%(S)) +
z(8(S)) > —b(S). However, this is easily shown to be equivalent to
the balanced set inequality associated with V' \ S. Using this fact,
it is also possible to show that P; is not full-dimensional in general
(though this is not noted explicitly by Nobert & Picard). Suppose that
S C V is such that |§(S)| = 0. Then, the balanced set inequality re-
duces to z(6§1(S)) —z(67(S)) > b(S), whereas, the balanced set inequal-
ity for V'\ S can be written as z(67(S)) — z(67(S)) < b(S). Thus,
z(67(S)) —z(67(S)) = b(S) is an implicit equation of P;. We could call
equations of this type balance equations. It is easily shown that they are
a generalization of the balance equations (6.7) for the DCPP.

One further class of valid inequalities is presented in Nobert & Picard
(1996). They note that the condition (6.10) implies that the following
blossom inequalities are valid for P;:

2(6*(S)) > 1, (VS C V :|8%(S)| odd). (6.15)

208 ARC ROUTING

These are a simple generalization of the odd-cut (blossom) inequalities
for the CPP.

The algorithm of Nobert & Picard (1996), based upon the formula-
tion given here, clearly outperformed algorithms based upon formula-
tions with two variables per edge.

In Subsection 5.4, we review a study by Corberdn, Romero & San-
chis (1997) about polyhedra associated with the Mixed Rural Postman
Problem (MRPP). Since the MRPP contains the MCPP as a special
case, many of the results of Corberdn, Romero & Sanchis also apply to
the MCPP. This implies, for example, that the affine hull of Py is de-
scribed by one balance equation for each connected component in the
subgraph of G induced by the (required) edges and that exactly one of
these equations is redundant. It also yields necessary and sufficient con-
ditions for the non-negativity, blossom and balanced set inequalities to
induce facets of P;. The details are not given here, for brevity.

We would like to close this subsection with a question for future re-
search:

Research Problem: For what (mixed) graphs G (if any) does the poly-
hedron defined by (6.11) - (6.15) contain integer extreme points which
do not represent feasible tours?

4.4. THE WPP

Although the WPP is notionally defined on an undirected graph, we
will assume that the underlying graph is directed, with two arcs (¢, 7),
(4,1) going in opposite directions for each edge e = {7, j} in the original
graph. Then, we can define a general integer variable z;; for each arc in
the directed graph, representing the number of times the vehicle travels
in that particular direction. The set S of feasible solutions is then given
by:

(67 (3)) —z(67(3) =0, (Vi€ V) (6.16)
Tij + Tji > 1, (V{Z,j} € E) (6.17)

zij, %5 > 0, (V{i,j} € E) (6.18)

z € Z2F| (6.19)

The associated polyhedron is examined in Win (1987) and Grétschel
& Win (1988). They show that the balance equations (6.16) describe the
affine hull of P; and that only |V| — 1 of them are needed (any one of
them can be deleted as redundant). They also show that the inequalities
(6.17), which ensure that each edge is traversed at least once, together

Polyhedral Theory for Arc Routing Problems 209
with the non-negativity inequalities (6.18), are facet-inducing.

Grotschel and Win also show that the following odd-cut inequalities
are valid and that they induce facets under mild conditions:

2(67(S)) +2(67(S)) > [6(S)| +1, (VS C V :|86(S)| odd). (6.20)

They also mention that the odd-cut inequality for any S can be re-
written, using the balance equations, in a variety of other forms, such
as:

z(67(5)) = 5 (18(S)| + 1)

DO =

or

| b

z(67(5)) 2 5(16(S)] +1).

2

We close this section by mentioning a result of Win (1987, 1989), who
showed that the polyhedron defined by (6.16), (6.17) and (6.18) is half-
integral. That is, all of its extreme points have components that are
an integral multiple of one-half. He also showed that this polyhedron is
integral if and only if the original graph is Eulerian. Ralphs (1993) gave
a similar result for an analogous formulation for the MCPP.

5. VARIANTS OF THE RURAL POSTMAN
PROBLEM

5.1. THE RPP

An integer programming formulation for the RPP was given in Christo-
fides et al. (1981), but the associated polyhedron was not examined in
detail. This was done in Corberéan & Sanchis (1994). In the Corberdn
& Sanchis (1994) formulation, x. represents the number of times e is
traversed (if e ¢ ERr), or one less than this number (if e € Eg). That
is, x, represents the number of copies of e which will be added to Egr
in order to form an Eulerian multigraph. Now we let Vi denote the
set of vertices incident on at least one required edge (these vertices are
also ‘required’ since the vehicle must travel through them) and let 65 (S)
denote §(S) N Eg. The set S is then defined by

Sr(S) =0,
z(6(5)) >22,VScCV:¢ SNVg#0, (6.21)

VeR\S#0
z(6(2)) = |6r(?)] (mod 2)¥i e V (6.22)
z. >0, (Ve € E) (6.23)

z € ZIF! (6.24)

210 ARC ROUTING

Corberdn & Sanchis (1994) show that the associated polyhedron is
full-dimensional and unbounded. Many classes of valid inequalities and
facets are known. In this subsection, we outline those presented in Cor-
berdn & Sanchis (1994). The other known inequalities were discovered
in the context of the General Routing Problem and will be described in
the next subsection.

Constraints (6.21), called connectivity inequalities, ensure that the
route is connected. They induce facets of P if and only if the sub-
graphs induced in G by S and V' \ S are connected. The non-negativity
inequalities (6.23) induce facets if and only if e is not a cut-edge. An-
other simple class of valid inequalities is given by the following R-odd
cut inequalities:

2(6(S)) =1, (VS CV :|6a(S)| odd) (6.25)

These generalize the odd-cut (blossom) inequalities for the CPP and
are valid for the same reason. Like connectivity inequalities, R-odd cut
inequalities induce facets if and only if the subgraphs induced in G by S
and V' \ S are each connected (Corberdn & Sanchis, 1994).

In order to present the remaining inequalities, we will need some more
definitions. Consider the (generally disconnected) subgraph of G ob-
tained by deleting all non-required edges from G. We call a connected
component of this subgraph an R-component. Also, given two disjoint
subsets A and B of V', we let E(A : B) denote the set of edges in E with
one end-vertex in A and one in B and Er(A : B) denote E(A : B)N ERg.

A K-component (K-C) configuration is a partition {Vp,...Vk} of V,
with K > 3, such that

m 14,...Vk_1 and Wy U Vi are clusters of node sets of one or more
R-components,

u |Egr(Voh : V)| is positive and even,
n B(V;:Viy1)#0fori = 0,... , K —1.

Figure 6.1 shows a K-C configuration: the filled circles represent the
V;, the bold lines represent the required edges crossing from V to Vx and
the plain lines represent the non-required edges which must be present.
Associated with a K-C configuration is a K-C inequality, which can be
written as:

K-1 K

S0 S (a-p)E(EWV, V) - 22(E(Vo : Vk)) = 2(K —1) (6.26)
=0 q=p+1

Polyhedral Theory for Arc Routing Problems 211

|1

Vo Va

Vs
Vi

Vk-1
Figure 6.1 K-C configuration.

K-C inequalities induce facets when certain mild connectivity assump-
tions are met (Corberdn & Sanchis, 1994).

The last class of inequalities presented in Corberdn & Sanchis (1994)
are known as GTSP-type inequalities. Suppose we have an RPP instance
and let m be the number of R-components in G. Consider a partition
of V into sets Si,...,Sm such that S; N Vg # @ and 6g(S:) = @ for
i =1,...,m. Let G5 be the (multi)graph obtained from G by shrink-
ing each S; into a single vertex and eliminating loops. That is, G has
m vertices. It is now possible to define a GTSP instance on G, and
Corberdn & Sanchis (1994) show that any (non-trivial) facet-inducing
inequality for the resulting GTSP polyhedron is also facet-inducing for
the polyhedron associated with the original RPP instance.

This is a powerful result, because GTSP polyhedra have been widely
studied and many classes of facet-inducing inequalities are known for
them. Space does not permit a review here, so the reader is directed to
the surveys Jiinger, Reinelt & Rinaldi (1995, 1997).

We close this subsection by mentioning some recent results due to
Ghiani & Laporte (1997). Suppose that V = Vg (a problem in which
V # Vg can be easily transformed into one in which V = Vp, see e.g.,
Christofides et al., 1981). Consider the graph obtained by ‘shrinking’
each R-component down to a single vertex (but not merging parallel
edges). Find a minimum cost spanning tree T on this shrunk graph.
Then Ghiani & Laporte show that there exists an optimal RPP solution
such that z, < 2 for each e € T and z, < 1 for each e ¢ T. This leads

212 ARC ROUTING

to a pure 0-1 formulation for the RPP, with one binary variable for each
edge, where each e € T is split into two parallel edges with the same cost.

For the Ghiani & Laporte formulation, P is a polytope (that is, a
bounded polyhedron). This polytope is rather different from the un-
bounded polyhedron studied by Corberdn & Sanchis. For one thing, it
is typically not full-dimensional (this is easily shown by considering sets
S C V with 1 < |6(S)| < 3). For another, there are new valid inequali-
ties. For example, let S C V and F C §(S) be such that [§g(S)| + |F| is
odd. Then the inequalities

2(6(S)\ F) > z(F) — |F| + 1 (6.27)

are valid for the polytope but not for the unbounded polyhedron. These
inequalities proved useful in the branch-and-cut algorithm of Ghiani &
Laporte.

It is not immediately obvious which approach to the RPP is ‘best’,
whether that of Corberdn & Sanchis or that of Ghiani & Laporte. The
authors regard this as an interesting theoretical and empirical problem.
Of course, any facet-inducing inequalities for the unbounded polyhedron
are also valid for the polytope. However, they cannot be guaranteed to
induce facets any longer.

5.2. THE GRP

When tackling the GRP, it is helpful to assume (w.l.o.g.) that the
end-vertices of each required edge are in Vi. Define for each e € E a
general integer variable z., representing the number of times e is tra-
versed (if e ¢ ER), or one less than this number (if e € Eg). Then, the
system (6.21) - (6.23) given in the last section defines S in the case of
the GRP as well as in the special case of the RPP. Also, the connectivity,
R-odd cut, K-C and GTSP-type inequalities are valid for the GRP as
well as the RPP (Corberan & Sanchis, 1998). A number of new results
are also known for the GRP and are presented in the remainder of this
subsection. It should be noted that these results are also new even when
specialized to the RPP.

In Corberédn & Sanchis (1998), the K-C inequalities were generalized
to give the honeycomb inequalities, which also define facets if certain
mild connectivity assumptions are met. A honeycomb configuration is a
partition of V into sets S; such that:

n for all 7, | 6(S;) \ 6r(S:) |# 0 and | 6r(S;) | is even or zero;

w there are at least two values ¢ such that §g(S;) # 0;

Polyhedral Theory for Arc Routing Problems 213

» there are at least two values ¢ such that 6g(S;) = 0;

m there is a set T of non-required edges crossing between the S; form-
ing a tree spanning the S;, such that each member of T crosses
between sets S; and S; with Er(S; : §5) = 0.

Many, but not all, honeycomb configurations can be formed by ‘gluing’
K-C configurations together by identifying edges (Corberdn & Sanchis,
1998).

The coefficients in the associated honeycomb inequality are defined as
follows, apart from one exception mentioned in the next paragraph. Let
o denote the coefficient of z. in the honeycomb inequality. Then e = 0
if and only if e ¢ §(S;) for all ¢ and @ =1 for all e € T'. The coefficient
ae of any other crossing non-required edge e is equal to the number of
edges traversed in T to get from one end-vertex of e to the other. For
the required edges crossing between the .S;, the coefficient is 2 units less.

The exception is that, for certain complex honeycomb configurations,
some of the crossing non-required edges which are not in 7" may have a
smaller coefficient. In such cases, the a, must be computed sequentially
(by a so-called sequential lifting procedure).

The honeycomb inequality is then:

> ceme > 2(K — 1) (6.28)
eclk

Figure 6.2 shows two honeycomb configurations. The bold lines repre-
sent edges in §g(V;) for some 7 and the plain lines represent edges in the
spanning tree. In the corresponding inequalities, all edges shown have a
coefficient equal to 1. The rhs is 6 in both cases.

In Letchford (1997a, b), the facet-inducing path-bridge (PB) inequal-
ities were introduced. Like honeycomb inequalities, PB inequalities are
a generalization of K-C inequalities. However, they are a generalization
in a different direction. They are defined in terms of an associated path-
bridge (PB) configuration. Suppose p > 1 and b > 0 are integers such
that p+b > 3 and odd. Let n; > 2 for ¢ = 1,... ,p also be integers. A
PB configuration is (see Figure 6.3) a partition of V' into vertex sets A,
Z and V]-i fori=1,...,p,j=1,...,n; with the following properties:

= each V]-i is a cluster of one or more R-sets,

. |ER(A : Z)I =b,

214 ARC ROUTING

Ss

Sy Sy Se So Sy
Se

Figure 6.2 Two honeycomb configurations.

s B(A:V])#0and E(V. : Z)#0fori=1,...,p,

w E(Vj:Vi) #0fori=1,...,pandj=1,..,n; - L

A
Vl1
‘/'12
‘/21
‘/22
V31

VA

Figure 6.3 PB configuration.

The edges in Eg(A : Z) constitute the bridge. If the bridge is empty
(b = 0), either or both of A and Z are permitted to be empty also.

To define the coefficients of the associated PB inequality, it is helpful to
identify A with Vj and Z with V,; ,, for¢ = 1,...,p. The PB inequality

Polyhedral Theory for Arc Routing Problems 215

is then:
p

E:aﬂeZI+z:m+1 (6.29)

n~._..
ecE i=1 1

where the coefficient ae for an edge e = {u,v} is defined as follows. If
u €V} and v € Vi, j = k, then o, = (j — k)/(n; — 1); unless u € A and
v € Z, in which case a, = 1. If, however, u € Vji and v € V[, with ¢ # r,
1<j<n; 1<k <n,, then o, equals

1 1 -1 k-1

+
n; — 1 nr—lql_l

n—1 n,—1

The PB inequalities include many other known inequalities as special
cases. When the bridge is empty (b = 0), we have the path inequalities
of Cornuéjols, Fonlupt & Naddef (1985), valid for the STSP and GTSP.
When p = 1, the PB inequalities reduce to K-C inequalities.

Another special case of interest is when all the n; fori =1,... ,p are
equal to a same value n. In such cases, the PB inequality is called n-
reqular (a term applied by Cornuéjols et al., 1985, to path inequalities).
Note that K-C inequalities can be regarded as ‘degenerate’ n-regular PB
inequalities, with n = K + 1. The n-regular PB inequalities have a nice
description in terms of vertex sets called handles and teeth. There are n—
1 handles, denoted by Hi,... ,Hp—1, and p teeth, denoted by T1,... , T}
(see Figure 6.4). The first handle is defined as H; = AUV U...UVF;
the other handles are defined inductively as H; = H;_1 U Vi1 U...uy Vip .
The teeth are defined as T; = V{ U...UVy. The n-regular PB inequality
is then:

S a(S(H)) + S #(6(Ty) = mprn+p-1 (630)
i=1 j=1

As shown by Cornuéjols, Fonlupt & Naddef (1985), the 2-regular path
inequalities are equivalent to the well-known comb inequalities for the
STSP, which in turn include the well-known 2-matching inequalities as a
special case (see, e.g., Grotschel & Padberg, 1985). Thus, the 2-regular
PB inequalities can also be regarded as a generalization of the comb and
2-matching inequalities.

Since both the GTSP-type inequalities reviewed in the previous sec-
tion and the PB inequalities mentioned above are analogous to facets
of GTSP polyhedra, it might be suspected that there is some general
procedure for adapting polyhedral results for the GTSP into results for
the GRP. This is indeed the case. In Letchford (1999), it is shown how
to generalize valid or facet-inducing inequalities for the GTSP to the

216 ARC ROUTING

?/‘\
|?
.

R

Figure 6.4 Handles and teeth in a 3-regular PB configuration.

(T010)
\

more general SGTSP (defined in Section 3). Then, it is shown that the
polyhedron Pj for any given GRP instance is a face of a polyhedron of
an associated SGTSP instance. Finally, a certain projection operation is
given which enables any class of valid inequalities for the GTSP to be
adapted to the GRP. We do not describe the arguments involved in any
detail for the sake of brevity; instead, we only mention a few key results:

s R-odd cut inequalities are projected 2-matching inequalities;
s K-C and PB inequalities are projected path inequalities;

= many of the honeycomb inequalities are projected binested inequal-
ities.

5.3. THE DRPP

In this subsection we will need to adapt the notation somewhat. For
a given S C V, we define §7(S), §7(S) and §*(S) as in Section 4. In
addition, Ag(S) will denote the required arcs with both end-vertices in
S. We also set 65(S) = 67(S) N Ag, 65(S) = 67(S) N AR and §3(S) =
65(S) U 65 (S). Finally, b(:) for each i € V will denote |67 (3)| — |65 (3)].
By analogy with the DCPP (Subsection 4.2) and the MCPP (Subsection
4.3), b(¢) can be thought of as the ‘unbalance’ of vertex 7.

The natural approach to the DRPP is to have a general integer variable
z, for each arc a € A, representing the number of times the arc is

Polyhedral Theory for Arc Routing Problems 217

traversed without being serviced (see Christofides et al., 1986; Ball &
Magazine, 1988). Again, this means that z, represents the number of
copies of a that will be added to Ag to form an Eulerian graph. This
leads to the following definition of the set S of feasible solutions:

(61 (7)) — (67 () = b(3)(Vi € V) (6.31)
Ar(S) #0,

z(6F(S)) 2 1(VScV:{ Ag(V\S)#0, (6.32)
55(S) = 0)

zg > 0(Va € A) (6.33)

z ez (6.34)

The associated P; were studied independently by Savall (1990) and
Gun (1993). As for the DCPP and WPP, the balance equations (6.31)
define the affine hull of P; and precisely {V|—1 of them are independent.
The postman cut inequalities (6.32) are the directed analogue of the
connectivity inequalities (6.21) for the RPP. Surprisingly, however, the
conditions for them to induce facets are extremely complicated (there is
not space to describe them here). Finally, the non-negativity inequalities
(6.33) induce facets under mild conditions.

5.4. THE MRPP

Because the MRPP is a common generalization of the RPP, DRPP
and MCPP, all of which have a complicated enough polyhedral structure,
it will be clear to the reader that MRPP polyhedra are likely to be bewil-
deringly complicated (indeed, even the notation becomes burdensome).
Nevertheless, a study has recently been made by Corberin, Romero &
Sanchis (1997) and Romero (1997). To simplify the study, these authors
assume that

s every v € V is incident on at least one required edge or arc
s F=F R-

Instances which do not meet these assumptions are transformed by a
simple procedure into instances which do.

Just as in all of the formulations examined so far (apart from the
one for the WPP in Subsection 4.4), Corberdn, Romero & Sanchis let
ze (or z,) represent the total number of times that an edge (or arc) is
traversed without being serviced. They define §7(S), 67(S), 6(S), 6*(9),
65(S), 65(S), etc., as in previous subsections. Finally, they define an
‘unbalance’ b(S) = |65 ()] — |65 (S)| — [6r(S)| for each S C V. The set

218 ARC ROUTING

S of feasible solutions is then given by:

z(6*(3)) = |6*(3)| (mod 2), (Vi € V) (6.35)

z(6T(S)) > 1, (VS TV :65(S)=0) (6.36)

z(6%(8)) + z(6(S)) — z(67(S)) > b(S), (VS C V) (6.37)
z, >0, (Ve € E) (6.38)

z, >0, (Va € A) (6.39)

z € ZIBVAl (6.40)

The connectivity, balanced set and trivial inequalities, (6.36), (6.37)
and (6.38 - 6.39), respectively, are valid for the associated polyhedron
P;. Note that when §(S) = 0, the balanced set inequalities for S and
V'\ S imply the equation

2(6+(8)) — z(6~(S)) = b(S). (6.41)

Corberdn, Romero & Sanchis show that the affine hull of Py is described
by one such equation for each connected component in the subgraph of G
induced by the (required) edges and that exactly one of these equations
is redundant.

A mixed graph is strongly connected if and only if there is a path
from any vertex to any other vertex, respecting the directions of the
arcs. Note that G must be strongly connected for the MRPP to have a
feasible solution. Corberdn, Romero & Sanchis show that:

® A connectivity inequality induces a facet if and only if the sub-
graphs induced in G by S and V' \ S are both strongly connected
(otherwise, they are dominated by balanced set inequalities).

A trivial inequality induces a facet if and only if the subgraph
formed by removing the corresponding edge (or arc) from G is
strongly connected.

n The odd-cut (blossom) inequalities for the CPP, MCPP and RPP
can be adapted to the MRPP, where they take the form:

z(6*(S)) > 1 (VS C V : |8x(S)| 0dd) (6.42)

The conditions for the balanced set and odd-cut inequalities to induce
facets are rather complicated and will not be given here.

Finally, the same authors adapt the K-C and PB inequalities for the
RPP (see Subsections 5.1 and 5.2) to the MRPP. Interestingly, they show
that these inequalities come in two distinct (non-equivalent) ‘lavours’ in
the mixed case. One version has the same coefficients as in the ordi-
nary RPP, but the other has slightly different coefficients. Both versions
induce distinct facets under certain (complicated) conditions.

Polyhedral Theory for Arc Routing Problems 219

6. THE CAPACITATED ARC ROUTING
PROBLEM

6.1. PRELIMINARIES

In this section, we present the known polyhedral results for the CARP.
Most of the results presented are applicable also for the CCPP, which
is a special case of the CARP, except that some valid inequalities are
only defined when there is more than one R-component. Since Golden &
Wong (1981) proved that it is NP-hard even to find a 0.5-approximate
solution to the CCPP (see also Win, 1987), we should expect CARP
polyhedra to be extremely complicated. And they are indeed.

To make matters worse, it turns out that there are a large number of
competing formulations in the literature. We will attempt to explain the
motivation behind each of these in the present subsection.

In real-life CARP instances, it is common for the upper bound & on
the number of vehicles to be small. Moreover, real problems are fre-
quently defined on road networks, with the result that G is very sparse
(most vertices have degree smaller than 5). Under such circumstances it
is ‘natural’ to use O(k.|E|) variables (O(|E|) for each vehicle). This is
the approach taken by Belenguer (1990), Welz (1994) and Belenguer &
Benavent (1998a). We will call these ‘sparse’ formulations.

When k is large, or when |ER| is small relative to |E], an alternative
approach presents itself. We can ‘break’ the graph G apart as follows:
a complete graph G’ is constructed with two vertices for each required
edge, representing the two endpoints, together with an extra vertex rep-
resenting the depot. An edge from one vertex to another in this ex-
panded graph represents a shortest path between the corresponding pair
of vertices in G. This leads to what we will call the ‘dense’ formulation,
with 2| Eg|? variables. This approach was explored by Letchford (1997a).

A third approach, suggested independently by Letchford (1997a) and
Belenguer & Benavent (1998b), is to have only | E| variables, one for each
edge. Each variable represents the number of times a particular edge is
traversed without being serviced. This leads to what we call a ‘super-
sparse’ formulation. Such a formulation is highly economical, elegant
and easy to understand. However, it comes at a price: the individual
vehicle routes are effectively ‘tangled up’, in that a feasible solution to
such a formulation gives no indication of which vehicle traverses which
edge. In fact, the problem of ‘untangling’ the routes appears to be N'P-
hard, since it contains the NP-hard Bin Packing Problem (see Garey &
Johnson, 1979) as a special case. Nevertheless, the supersparse formu-

220 ARC ROUTING

lation is extremely valuable for producing lower bounds on the cost of a
feasible solution.

Since sparse formulations have been given most attention in the liter-
ature, we devote Subsection 6.2 to them and go into considerable detail.
Subsection 6.3 reviews the results on the dense and supersparse formu-
lations.

Still other approaches to the CARP have been proposed. Golden &
Wong (1981) gave a formulation in which there were an exponential num-
ber of variables and constraints. It is not worth examining this, however,
since it was shown in the thesis of Welz (1994) that the lower bound ob-
tained from the LP relaxation of this formulation is always zero. Finally,
one could also have a formulation in which there is a variable for each
feasible vehicle route and a constraint for each required edge ensuring
that the edge is serviced. This approach is not examined here as it is
the subject of Chapter 8.

In the remainder of this section we will use the convention that the
depot is vertex 1.

6.2. SPARSE FORMULATIONS OF THE
CARP

Two different sparse CARP formulations have appeared in the liter-
ature. One can be found in Welz (1994), the other in Belenguer (1990)
and Belenguer & Benavent (1998a).

The formulation of Welz bears some similarities to the Golden & Wong
(1981) formulation mentioned in the previous subsection, the crucial dif-
ference being that it has a polynomial number of variables. In this for-
mulation, the problem is effectively converted into a directed problem.
That is, each edge {7,j} is regarded as two arcs (7,7) and (j,%), with
identical costs. Then, if {7, j} is required, we require that exactly one of
the pair (¢,7) and (j,7) is serviced. An advantage of viewing the CARP
in this way is that one obtains a pure 0-1 formulation: it is easy to show
that it is never necessary for any vehicle to traverse an edge more than
once in a given direction.

The variables are defined as follows:
Let xfj take the value 1 if arc (7, j) is traversed by vehicle p, 0 otherwise.

Let lfj take the value 1 if arc (¢, j) is serviced by vehicle p, 0 otherwise.

Polyhedral Theory for Arc Routing Problems — 221

Let A be the set of arcs in the resulting directed graph (that is, |A| =
2|E|) and let A(S) be the set of arcs with both end-vertices in S. Welz
suggests defining the set S of feasible solutions by the following system:

2P(6%7(2)) = 2P (6 (3)), (Vi€ V,p=1,... ,k) (6.43)
k
> @ +18) = 1(v{s,j} € Ep) (6.44)
p=1
>, (Y(,5), p=1,... ,k) (6.45)
> alh;<Q, (vp=1,... k) (6.46)
(i,5)€eA
25+ P (A(S))
P(67(5)) = TA(S)] (VS CV\{1}) (6.47)
z € {0,1}2%IE | e {0,1)}%FIExI (6.48)

The equations (6.43) ensure that each vehicle departs from each ver-
tex as many times as it enters. The equations (6.44) ensure that each
required edge is serviced exactly once. The inequalities (6.45) ensure
that each vehicle traverses each edge that it services, (6.46) impose the
capacity restrictions and (6.47) are connectivity inequalities. To tighten
this basic formulation Welz proposes the following odd-cut inequalities:

k
> 2P(7(S)) 2 I6r(S)1/2] (VS SV \ {1} : [6r(S)| 0dd). (6.49)

p=1

Also, Welz mentions that, if it is known that all k£ vehicles must be used,
then the inequalities

2T >1, (Vp=1,...,k) (6.50)
are valid also.

We would like to mention that the connectivity inequalities (6.47)
proposed by Welz are in fact very weak. They can easily be disaggregated
to give:

2P(67(9)) 2 =, (VS SV \{1},(5,4) € A(S))-

We now move on to the sparse CARP formulation presented in Be-
lenguer (1990) and Belenguer & Benavent (1998a), which uses less vari-
ables than the Welz formulation, is more ‘natural’ and gives better com-
putational results. For each e € ER and each p = 1,... ,k, let zf take
the value 1 if e is serviced by vehicle k, 0 otherwise. Also, for each e € E
and each p = 1,... , k, define a general integer variable £ representing

222 ARC ROUTING

the number of times e is traversed (without being serviced, if e € ER).
The set S of feasible solutions is then given by:

P(6(1) +4P(6(6) =0 (mod 2), (Vie V,p=1,...,k) (6.51)

k
> a2 =1, (Ve € Ep) (6.52)
p=1
> @il <Q, (Wp=1,... k) (6.53)
ecFEp
2P (8(S)) +yP(6(S)) = 22F, (VS S V' \ {1}, e € Er(9)) (6.54)
z € {0, 1}}IERly ¢ ZHIBI (6.55)

The reader who has persevered this far will have little difficulty in-
terpreting the constraints in this formulation. The following results are
given by Belenguer & Benavent for the associated Py:

s The constraints (6.52) and (6.53), together with the binary condi-
tions on the z variables in (6.55), define a so-called Generalized As-
signment polytope (see Gottlieb & Rao, 1990a, b). Any inequality
inducing a facet of this polytope (such as non-negativity inequali-
ties zf > 0 for all e € Eg and all p=1,... ,k), induces a facet of
P;. Also, any implicit equation for this polytope (such as (6.52))
is an implicit equation for Pr and vice-versa.

s Computing the dimension of a Generalized Assignment polytope is
NP-hard, and therefore the same is true for the CARP polyhedron
Pr.

a Non-negativity inequalities y£ > 0 for all e € F induce facets.

w If S C V\ {1} is such that |6g(S)| is odd, then the odd-cut in-
equality

k
> yP(8(8)) > 1 (6.56)
p=1

is valid and facet-inducing under mild conditions.

s If S C V\ {1} is such that 6gr(S) # @ and F C 6r(S) is such that
|F| is odd, then the parity inequality

2P (Or(S) \ F) +yP(8(5)) 2 z°(F) — |F| + 1 (6.57)
is valid for p = 1, ...k and facet-inducing under mild conditions.

s For a given S C V' \ {1}, let K(S) denote the minimum number
of vehicles required to service Er(S) U ég(S), due to the capacity

Polyhedral Theory for Arc Routing Problems 223

restrictions. Then the capacity inequality

k
> _yP(6(5)) = 2K(S) — 16r(S)| (6.58)
p=1
is also valid. It will frequently induce a facet when 1 < K(S) < k.
When K (S) = 1, it will be dominated by the connectivity inequal-

ities (6.54). When K(S) = k, then the capacity and connectivity
inequalities are dominated by the stronger obligatory inequalities

2P (6r(S)) +yP(8(5)) = 2 (6.59)
forp=1,...k.
If S C V\ {1} and 3" cp,(syusn(s) @ee < B is valid for all p due
to the Generalized Assignment polytope, then the inequality
2
PEr(S)+PESN 22 DY aed) (6.60)
e€ER(S)USR(S)

is valid also. Note that the connectivity inequalities (6.54) are a
special case of this, since 5 < 1 is valid for the Generalized As-
signment polytope.

In Letchford (1997a), some of these inequalities are generalized.

Let S C V' \ {1} be such that §g(S) # 0, F C §r(S) be such that
|F| is odd and H C {1,...k} be an arbitrary (non-empty) set of
vehicles. Then the general parity inequality

> (@P(Br(S)\ F) +y7(8(5)) = > a”(F) - |F|+1 (6.61)

peH peH

is valid. It is easy to show that the general parity inequalities
include odd-cut and parity inequalities as special cases.

Let S C V'\ {1} be such that K(S) vehicles are required to service
Eg(S)U8r(S), due to the capacity restrictions. Let H C {1,...k}
be an arbitrary subset of vehicles such that k£ — K(S) < |H| < k.
Then the minimum crossing inequality

> (@P(6r(S)) + ¥7(6(S))) > 2(|H| — k + K(S)) (6.62)
peEH

is valid. It is easy to show that the minimum crossing inequalities
include capacity and obligatory inequalities as special cases.

224 ARC ROUTING

The issue of when these inequalities induce facets is not examined by
Letchford.

Finally, Letchford (1997a) also mentions that any valid inequality for
the Corberan & Sanchis RPP formulation can easily be adapted to the
Belenguer & Benavent CARP formulation. That is, if any inequality of
the form), g aexe > B is valid for the former, then Z’;zl Y ecE QeYep =
(3 is valid for the latter. The odd-cut inequalities come under this cate-
gory. In general, however, the resulting inequalities are unlikely to induce
facets unless the demands of the required edges are small relative to the
vehicle capacity Q.

6.3. THE DENSE AND SUPERSPARSE
FORMULATIONS OF THE CARP

In this subsection, the dense and supersparse approaches to the CARP
are reviewed. We begin with the dense formulation, which was explored
by Letchford (1997a).

Assume that the required edges are numbered from 1 to |Eg|. Define
a complete graph G'(V’, E'), with 14-2| R| vertices, as follows. The depot
is represented by vertex 1in G’, just as it wasin G. Fori =1,...,|Eg|,
vertex ¢ + 1 in V'’ represents one arbitrary end-vertex of required edge
1. Similarly, vertex ¢ + |Egr| + 1 in V' represents the other end-vertex
of required edge i. Note that a single vertex in V' may have multiple
representatives in V.

In E',fori=1,...,|ER|, the edge {i+ 1,7+ |Eg|+ 1} now represents
required edge 7. The other edges in E’ represent shortest paths between
the corresponding vertices in G. We will let E* denote these other edges.
It can be readily checked that |E*| = 2|Eg|?. A {0,1} variable z;; is now
defined for every edge in E*, taking the value 1 if a vehicle traverses be-
tween ¢ and j, 0 otherwise.

Now let S C V' \ {1} be called unbroken if it has the property that,
fori = 2,...,|Eg|+ 1,47 € S if and only if ¢ + |[Eg| € S. That is,
S corresponds to a set of required edges in Er. The set S of feasible
solutions is then given by the following linear system (when K(S) is
defined as in the previous subsection):

2(6()) =1, (i =2,...,2|Eg| +1) (6.63)
z(6(S)) > 2K (S)(VS C V' \ {1}, S unbroken) (6.64)
x e {0,1}1F" (6.65)

Polyhedral Theory for Arc Routing Problems. 225

Letchford (1997a) first establishes a mapping between feasible solu-
tions for this formulation and feasible solutions to a classical formula-
tion for the well-known Vehicle Routing Problem (VRP). This means
that valid inequalities for the latter formulation, such as comb, multistar
and hypotour inequalities, can be ‘borrowed’ to give new inequalities for
the CARP (for polyhedral results on the VRP, see, e.g., Araque, 1990;
Araque, Hall & Magnanti, 1990; Cornuéjols & Harche, 1993; Augerat et
al., 1995).

Another class of valid inequalities are presented by Letchford for the
dense formulation. A set S C V' \ {1} is called broken if it is not unbro-
ken. If S is broken, then some set F' # § of required edges lies within
6(S) in G'. If F is odd, then the blossom inequality x(6(S)) > 1 is valid.

Now define the enlargement of a broken set S, denoted by en(S), to
be the minimum unbroken set S’ C V' such that S C S’. Letchford
shows that a necessary condition for a blossom inequality to induce a
facet is that |F'| > 2K (en(S)) + 1, since, otherwise, it is dominated by a
capacity inequality (6.64).

We now move on to examine the supersparse approach, which was pro-
posed independently by Letchford (1997a) and Belenguer & Benavent
(1998b). Let the general integer variable z. represent the number of
times e is traversed without being serviced. A feasible solution then rep-
resents a collection of superimposed routes.

At this point the reader may realize that it is far from obvious how to
define the set S of feasible solutions in terms of equations, inequalities or
congruences. Perhaps surprisingly, however, that does not stop us from
producing valid inequalities. For example, Letchford (1997a) proposes
the following inequalities

s RPP-type inequalities. Any inequality valid for the Corberdn &
Sanchis RPP formulation is valid for the supersparse CARP for-
mulation. This includes non-negativity inequalities . > 0 for all
e € E and R-odd cut inequalities z(6(S)) > 1 for all S C V with
|6r(S)]| odd.

s Capacity inequalities. As usual, let K(S) for any S C V' \ {1}
denote the minimum number of vehicles required to service Eg(S)U
8r(S). Then the inequality

z(6(5)) = 2K(S) — |6r(S)] (6.66)

is valid.

226 ARC ROUTING

Belenguer & Benavent (1998b) propose some further inequalities for
the supersparse formulation. For any S C V, let a(S) be a lower bound
on the minimum number of times that §(S) must be traversed without
servicing. If |6g(S5)| is even, a natural value of a(S) is max{0,2K(S) —
|6r(S)|}. If |6R(S)| is odd, a natural value is max{1,2K(S) — |6r(S)|}.
Now suppose that Sj,...S, are distinct subsets of V' \ {1} and that
F C E is such that there is no feasible solution to the CARP in which
z(6(S;)) = a(S;) for all ¢, yet . = 0 for all e € F. Then the following
inequality is valid:

r

Zw(é(&')) +2z(F) > ia(si) + 2. (6.67)

=1 1=1

These inequalities are related to the hypotour inequalities for the STSP
(e.g., Grotschel & Padberg, 1985) and the extended hypotour inequalities
for the VRP (e.g., Augerat et al., 1995). Belenguer & Benavent (1998b)
give a heuristic for identifying suitable families of sets S;, and then show
how to find an appropriate set ' C E by solving a series of minimum
cost flow problems.

7. CONCLUSIONS

In this chapter we have reviewed the known polyhedral results for a
number of fundamental Arc Routing Problems. It will be seen that a
great deal has been learned. Nevertheless, the results in the field of Arc
Routing are not as comprehensive as the results known for certain node-
routing problems, especially the Symmetric and Asymmetric Traveling
Salesman Problems (see Jiinger, Reinelt & Rinaldi, 1995, 1997).

Of course, problems which are encountered in practice are often more
complex than the problems outlined here. Only recently have researchers
begun to investigate the polyhedral structure of problems with more re-
alistic constraints. To close this chapter, we mention a paper of our own
which deals with a real-life problem.

Letchford & Eglese (1998) define a variant of the RPP called the Ru-
ral Postman Problem with Deadline Classes, in which the edges requiring
service are partitioned into a small number of classes in order of prior-
ity. The idea here is that some roads might need to be treated within
two hours, some within four hours, etc. This occurs in a number of
practical applications, such as postal delivery, snow ploughing or winter
gritting. Letchford & Eglese give a formulation in which the route is
divided into ‘time phases’, each with their own set of variables. The
resulting polyhedron is extremely complex, yet the theoretical results
which were obtained were sufficient to yield a reasonable optimization

Polyhedral Theory for Arc Routing Problems — 227

algorithm (see Chapter 7 for more details).

The authors would like to encourage other researchers to examine
more complex Arc Routing Problems from a polyhedral viewpoint.

Acknowledgments
The authors would like to thank Angel Corberan and an anonymous
referee for helpful comments and corrections.

References

[1]

2l

(6]

(7l

8]

(9]

(10]

Araque, J.R. (1990) Lots of combs of different sizes for vehicle rout-
ing. Discussion Paper, Centre for Operations Research and Econo-
metrics, Catholic University of Louvain, Belgium.

Araque, J.R., L.A. Hall & T.L. Magnanti (1990) Capacitated trees,
capacitated routing and associated polyhedra. Discussion Paper,
Centre for Operations Research and Econometrics, Catholic Uni-
versity of Louvain, Belgium.

Assad, A.A. & B.L. Golden (1995) Arc routing methods and applica-
tions. In M.O. Ball, T.L. Magnanti, C.L. Monma & G.L. Nemhauser
(Eds.) Network Routing. Handbooks of Operations Research and
Management Science, 8. Amsterdam: North Holland.

Augerat, P., J.M. Belenguer, E. Benavent, A. Corberdn, D. Naddef
& G. Rinaldi (1995). Computational results with a branch-and-cut
code for the capacitated vehicle routing problem. Research report
RR949-M, ARTEMIS-IMAG, France.

Ball, M.O. & M.J. Magazine (1988) Sequencing of insertions in
printed circuit board assembly. Oper. Res., 36, 192-201.

Belenguer, J.M. (1990) The capacitated arc-routing problem poly-
hedron. PhD dissertation (in Spanish), Dept. of Stats and OR, Uni-
versity of Valencia, Spain.

Belenguer, J.M. & E. Benavent (1998a) The capacitated arc routing

problem: valid inequalities and facets. Computational Optimization
& Applications, 10, 165-187.

Belenguer, J.M. & E. Benavent (1998b) A cutting-plane algorithm
for the capacitated arc routing problem. Working Paper, Dept. of
Stats and OR, University of Valencia, Spain.

Christof, T. & G. Reinelt (1996) Combinatorial optimization and
small polytopes. Top (J. Span. Stats. & O.R. Soc.), 4, 1-64.

Christofides, N. (1973) The optimum traversal of a graph. Omega,
1, 719-732.

228

(1)

ARC ROUTING

Christofides, N., E. Benavent, V. Campos, A. Corberdn & E. Mota
(1984) An optimal method for the mixed postman problem, in P.
Thoft-Christensen (Ed.) System Modelling and Optimization, Lec-
ture Notes in Control and Inf. Sciences, 59. Berlin: Springer.

Christofides, N., V. Campos, A. Corberén & E. Mota (1981) An
algorithm for the rural postman problem. Report IC.0.R.81.5, Im-
perial College, London.

Christofides, N., V. Campos, A. Corberin & E. Mota (1986) An
algorithm for the rural postman problem on a directed graph. Math.
Prog. Study, 26, 155-166.

Corberdn, A., A. Romero & J.M. Sanchis (1997) Facets of the mixed
rural postman polyhedron. Working paper, Dept. of Stats and OR,
University of Valencia, Spain.

Corberén, A., & J.M. Sanchis (1994) A polyhedral approach to the
rural postman problem. Fur. J. Opl Res., 79, 95-114.

Corberédn, A., & J.M. Sanchis (1998) The general routing problem
polyhedron: facets from the RPP and GTSP polyhedra. Eur. J. Opl
Res., 108, 538-550.

Cornuéjols, G., & F. Harche (1993) Polyhedral study of the capaci-
tated vehicle routing problem. Math. Prog., 60, 21-52.

Cornuéjols, G., J. Fonlupt & D. Naddef (1985) The traveling sales-
man problem on a graph and some related integer polyhedra. Math.
Prog., 33, 1-27.

Edmonds, J. (1963)The Chinese postman problem. Oper. Res., 13,
Suppl. 1, B73-B77.

Edmonds, J. & E.L. Johnson (1973) Matchings, Euler tours and the
Chinese postman. Math. Prog., 5, 88-124.

Eiselt, H.A., M. Gendreau & G. Laporte (1995) Arc-routing prob-
lems, part 1: the Chinese postman problem. Oper. Res., 43, 231-242.

Eiselt, H.A., M. Gendreau & G. Laporte (1995) Arc-routing prob-
lems, part 2: the rural postman problem. Oper. Res., 43, 399-414.

Fleischmann, B. (1985) A cutting-plane procedure for the traveling
salesman problem on a road network. Fur. J. Opl Res., 21, 307-317.

Ford, L.R. & D.R. Fulkerson (1962) Flows in Networks. Princeton
University Press, Princeton, NJ.

Garey, M.R. & D.S. Johnson (1979) Computers and Intractability:
a guide to the theory of NP-completeness. San Fr.; Freeman.

Ghiani, G. & G. Laporte (1997) A branch-and-cut algorithm for
the undirected rural postman problem. Working Paper, Centre for
Research on Transportation, University of Montréal.

[27]
(28]
[29]

(30]

31

(32]
(33]
(34]

[35]

(38]

[39]

[40]

[41]

[42]

Polyhedral Theory for Arc Routing Problems — 229

Golden, B.L. & R.T. Wong (1981) Capacitated arc routing prob-
lems. Networks, 11, 305-315.

Gottlieb, E.S. & M.R. Rao (1990a) The generalised assignment
problem: valid inequalities and facets. Math. Program., 46, 31-52
Gottlieb, E.S. & M.R. Rao (1990b) (1, k)-configuration facets for
the generalised assignment problem. Math. Program., 46, 53-60.
M. Grotschel & M.W. Padberg (1985) Polyhedral theory. In E.L.
Lawler, J.K. Lenstra, A.-H.G. Rinnooy-Kan & D.B. Schmoys (eds.)
The Traveling Salesman Problem. New York: Wiley.

Grétschel, M. & Z. Win (1988) On the windy postman polyhedron.
Report No. 75, Schwerpunkt-progam der Deutschen Forschungs-
geneinschaft, Universitit Augsburg, Germany.

Grotschel, M. & Z. Win (1992) A cutting plane algorithm for the
windy postman problem. Math. Prog., 55, 339-358.

Guan, M. (1962) Graphic programming using odd or even points.
Chinese Math., 1, 237-277.

Guan, M. (1984) On the windy postman problem. Discr. Appl.
Math., 9, 41-46.

Gun, H. (1993) Polyhedral structure and efficient algorithms for
certain classes of directed rural postman problem. PhD dissertation,
Applied Math. Program, University of Maryland at College Park,
Md.

Jiinger, M., G. Reinelt & G. Rinaldi (1995) The traveling sales-
man problem. In M.O. Ball, T.L. Magnanti, C.L. Monma & G.L.
Nemhauser (Eds.) Network Models. Handbooks on Operations Re-
search and Management Science Vol. 7. Amsterdam: Elsevier.
Jiinger, M., G. Reinelt & G. Rinaldi (1997) The traveling salesman
problem. In M. Dell’Amico, F. Maffioli & S. Martello (Eds.) An-
notated Bibliographies in Combinatorial Optimization. Chichester:
Wiley.

Kappauf, C.H. & G.J. Koehler (1979) The mixed postman problem.
Disc. Appl. Math., 1, 89-103.

Karp, R.M. & C.H. Papadimitriou (1982) On linear characteriza-
tions of combinatorial optimization problems. SIAM J. Comput.,
11, 620-632.

Lenstra, J. K. & A.H.G. Rinnooy-Kan (1976) On general routing
problems. Networks, 6, 273-280.

Letchford, A.N. (1997a) Polyhedral results for some constrained arc-
routing problems. PhD Dissertation, Dept. of Management Science,
Lancaster University.

Letchford, A.N. (1997b) New inequalities for the general routing
problem. Fur. J. Opl Res., 96, 317-322.

230 ARC ROUTING

[43] Letchford, A.N. (1999) The general routing problem: a unifying
framework. Fur. J. Opl Res., 112, 122-133.

[44] Letchford, A.N. & R.W. Eglese (1998) The rural postman problem
with deadline classes. Eur. J. of Opl Res., 105, 390-400.

[45] Nemhauser, G.L. & L.A. Wolsey (1988) Integer and Combinatorial
Optimization. New York: Wiley.

[46] Nobert, Y. & J.-C. Picard (1996) An optimal algorithm for the
mixed Chinese postman problem. Networks, 27, 95-108.

[47] Orloff, C.S. (1974) A fundamental problem in vehicle routing. Net-
works, 4, 35-64.

[48] Padberg, M.W. & G. Rinaldi (1991) A branch-and-cut algorithm for

the resolution of large-scale symmetric traveling salesman problems.
SIAM Rev., 33, 60-100.

[49] Papadimitriou, C.H. (1976) On the complexity of edge traversing.
J. of the A.C.M., 23, 544-554.

[50] Queyranne, M. & Y. Wang (1992) On the convex hull of feasible
solutions to certain combinatorial problems. Oper. Res. Lett., 11,
1-11.

[51] Ralphs, T.K. (1993) On the mixed Chinese postman problem. Oper.
Res. Lett., 14, 123-127.

[52] Romero, A. (1997) The rural postman polyhedron on a mixed graph.
PhD dissertation (in Spanish), Dept. of Stats and OR, University
of Valencia, Spain.

(53] Savall, J.V. (1990) Polyhedral results and approximate algorithms
for the directed rural postman problem. PhD Dissertation (in Span-
ish), Dept. of Stats and OR, University of Valencia, Spain.

[54] Welz, S.A. (1994) Optimal solutions for the capacitated arc routing
problem using integer programming. PhD Dissertation, Dept. of QT
and OM, University of Cincinnati.

[65] Weyl, H. (1935) Elementare Theorie der konvexen Polyeder. Co-
mentarii Mathematici Helvetica, 7, 290-306.

[56] Win, Z. (1987) Contributions to routing problems. Doctoral Disser-
tation, Universitit Augsburg, Germany.

[57] Win, Z. (1989) On the windy postman problem on Eulerian graphs.
Math. Prog., 44, 97-112.

Chapter 7

LINEAR PROGRAMMING BASED METHODS
FOR SOLVING ARC ROUTING PROBLEMS

E. Benavent
Universitat de Valéncia

A. Corberén

Universitat de Valéncia

J.M. Sanchis

Universidad Politécnica de Valéncia

1. Introduction 232
2. Chinese Postman Problems 236
2.1 The Undirected CPP 236
2.2 The Directed CPP 238
2.3 The Mixed CPP 239
2.4 The Windy Postman Problem 243
3. Rural Postman Problems 244
3.1 The Undirected RPP 244
3.2 The General Routing Problem 250
3.3 The Directed RPP 256
3.4 The Mixed RPP 257
4. The Capacitated Arc Routing Problem 259
4.1 Sparse Formulations 260
4.2 Supersparse Formulation for the CARP 264
4.3 Exact Methods Based on the Sparse

Formulation 268

4.4 A Cutting Plane Algorithm for the CARP
Based on the Supersparse Formulation 269
Other Problems 269

o v

Conclusions 270

232 ARC ROUTING

1. INTRODUCTION

From the pioneering works of Dantzig, Edmonds and others, poly-
hedral (i.e. linear programming based) methods have been successfully
applied to the resolution of many combinatorial optimization problems.
See Jiinger, Reinelt & Rinaldi (1995) for an excellent survey on this
topic. Roughly speaking, the method consists of trying to formulate the
problem as a Linear Program and using the existing powerful methods
of Linear Programming to solve it.

Arc Routing Problems are no exception and it can be said that Linear
Programming (LP) methods are currently among the most effective ones
for solving N'P-hard Arc Routing Problems.

These methods rely for their effectiveness upon a good understanding
of the polyhedron associated to the problem under study. To obtain such
an understanding, it is necessary to have some grounding in the concepts
and proof techniques of polyhedral theory. This is covered in depth in
Chapter 6 of this book and the untrained reader is advised to read at
least the first two sections of that chapter. The present chapter, on the
other hand, is concerned with the application of polyhedral theory to
the construction of effective optimization algorithms.

Most Arc Routing Problems can be formulated in the form:

min{c’z : z € S} (7.1)

where x = {x1,...,2,} is a vector of decision variables, ¢ = {c1,... ,cn} €

"t is a vector of objective function coefficients (i.e., costs) and S C IR":
is a set of feasible solutions. Given such a problem, it is natural to define
an associated polyhedron conv(S), the convex hull of the vectors in S.
Sometimes, conv(S) fails to be a polyhedron, but usually, if this occurs,
it is easy to adjust the set of feasible solutions in such a way that the
optimal solution does not change and conv(S) is indeed a polyhedron.
In what follows we will suppose this is always the case.

Usually, feasible solutions are associated with integer values of the
decision variables. In such cases, conv(S) has integral extreme points
(vertices) and we use the notation Pr := conv(S). Given that the cost
function is linear, Problem (7.1) is then equivalent to:

Min Tz
ze Py } (7.2)

It is well known that any polyhedron can be described by a set of

linear inequalities, that is, there is an integer m, a matrix A € Z™"

Linear Programming Based Methods for Solving Arc Routing Problems 233

and a vector b € Z™ such that Pr = {x € R" : Az < b}. So, at least
theoretically, Problem (7.2) could be solved as a Linear Program. The
set of linear inequalities given by Az < b is called the linear description
of Pr. Unfortunately, complete linear descriptions of Py are only known
for some easy problems and certainly not for any N'P-hard problem. It
is more usual for only a small part of this description to be known. Nev-
ertheless, as we will see, even partial linear descriptions can provide the
basis for powerful optimization algorithms.

One problem which must be dealt with is that even a partial linear
description frequently contains a huge number of inequalities. By ‘huge’,
we mean a number which is exponential, or worse, in the size of the orig-
inal problem. Therefore, it would not be practical to solve an LP which
includes all of them explicitly.

An alternative that can be used in practice is as follows. We start
with a small subset of the known inequalities and compute the optimal
LP solution subject to these constraints (The polyhedron defined by a
subset of the known inequalities is called a linear relazation of Pr). Then
we check if any of the inequalities not in the current LP are violated by
the optimal LP solution. If one or more violated inequalities are found,
we add one or more of them to the current LP, resolve it and so on. If the
LP solution obtained at the end of this process corresponds to a feasible
solution of the original combinatorial optimization problem, then it is
also optimal for that problem.

The linear inequalities which are added to the LP at each iteration of
this process are called cutting planes, because, geometrically speaking,
they ‘cut off’ the current LP solution. The entire procedure, called the
cutting plane approach, originated in the pioneering work of Dantzig,
Fulkerson and Johnson (1954) on the Symmetric Traveling Salesman
Problem (STSP).

Note that the cutting-plane approach requires a method for identifying
inequalities that are valid for Pr but violated by the current LP solution
(An inequality fTz < fo is valid for Pr if f7Z < fo holds for all Z €
S). Normally, the known valid inequalities fall into certain well-defined
classes. Therefore, for each known class of valid inequalities for Pr, we
are faced with the following problem:

General Identification Problem: given a class of valid inequalities
for a combinatorial optimization problem, and a point T € IR",
either find an inequality in this class which s violated by Z, or
prove that no such inequality exists.

234 ARC ROUTING

This problem is also sometimes known as the separation problem, be-
cause, geometrically speaking, we seek a hyperplane which separates
from Pr. An algorithm that solves it is called an ezact separation algo-
rithm. Typically one finds that the identification problem can be solved
efficiently for some classes of inequalities but is difficult (even N'P-hard)
for others. In the latter case, we have to resort to a heuristic separation
algorithm, which may fail to find a violated inequality in the class, even
if one exists.

Let us now state more properly the scheme of a cutting plane algo-
rithm:

Cutting plane algorithm:
Step 1 (Initialization) Let (LFp) be a linear relaxation of Pr. Set k = 0.

Step 2 (LP solver) Solve (LPy). Let z* be an optimal solution to (LPy).

Step 3 (Identification) Solve the Identification Problem for z*, and for
some classes of known valid inequalities for Pr.

Step 3.1 If we can conclude that ¥ € 3, then z* is optimal; stop.

Step 3.2 If one or more valid inequalities violated by z* are found,
define (LPy41) by adding to (LPy) these inequalities. Set
k:=k+1 and go to Step 2.

Step 3.3 If no violated inequality is found, stop.

The outlined cutting plane algorithm is rather rudimentary. It is quite
common to use a number of refinements, such as: elimination of inequal-
ities that are not binding, fixing of variables, using a dynamic subset of
active variables, etc.

If we are lucky, this algorithm might succeed in solving a given prob-
lem instance even when the linear description of Pz is only partial. This
will happen if the set of linear inequalities generated by the algorithm
just happens to define a polyhedron which has the optimal solution as a
vertex. Nevertheless, for the same reason, it may fail in solving another
instance of the same problem. The fact that no violated inequality has
been found in Step 3.2, does not mean that no such inequality exists.
It may be that the violated inequality belongs to an unknown class of
inequalities, or that it belongs to a known class for which we have used
(without success) a heuristic separation algorithm.

If the cutting plane algorithm fails to solve a given instance, we are left
with several options. One option is to use the solution cost of the final
LP relaxation, which is a (typically good) lower bound on the optimal

Linear Programming Based Methods for Solving Arc Routing Problems 235

solution value, to assess the quality of a known feasible solution found
by any heuristic method. Another option is to feed the final (typically
strong) linear relaxation of Pr into a classical Branch & Bound algorithm
for integer programs.

A more powerful option is to use the so-called Branch & Cut method
(see Padberg & Rinaldi, 1987 and 1991). A Branch & Cut is much like a
Branch & Bound method except for the fact that valid inequalities may
be added at any node of the branching tree. This leads to stronger linear
relaxations at any node, which normally leads in turn to a considerable
reduction in the number of nodes, in comparison to standard Branch &
Bound.

Yet another option is to employ ‘general purpose’ (i.e., not problem
specific) cutting planes, such as Gomory cuts (Gomory, 1958, 1963).
These cuts are guaranteed to lead to the integer optimum in a finite
number of iterations, but are not tailored to the specific Pr in question.
Unfortunately, such cuts are usually weak and tend to lead to numeri-
cal problems when solving the LP. Computational experience indicates
that it is generally far better to use problem specific cutting planes, es-
pecially those which define facets of Pr. This is not surprising, since
the facet-defining inequalities are needed in a minimal linear description
of the polyhedron and are not dominated by any other valid inequality.
However, some effort is required to find facet-defining inequalities and,
even when a new class is discovered, one is then faced with the task of
devising an exact or heuristic separation algorithm.

For an exhaustive list of problems to which the polyhedral approach
has been successfully applied, see Jiinger, Reinelt & Rinaldi (1995). In
this chapter we are specifically concerned with Arc Routing Problems.
Since the basic cutting plane algorithm is the same for each problem, and
the known classes of valid and facet inducing inequalities for Arc Routing
problems have been described in Chapter 6 of this book, we concentrate
mainly on separation algorithms. For each of a number of important Arc
routing Problems, we describe the classes of inequalities for which exact
or heuristic separation algorithms have been proposed and implemented
and give a description of these algorithms. Other surveys about Arc
Routing, which include material on the polyhedral approach, are those
of Assad & Golden (1995) and by Eiselt, Gendreau & Laporte (1995a,b).

The chapter is divided into three main sections devoted to three broad
classes of Arc Routing Problems; namely, Chinese Postman, Rural Post-
man and Capacitated Arc Routing Problems. In each section, different
variants of each problem, such as the directed, undirected and mixed

236 ARC ROUTING

cases, are studied. However, when the same class of inequalities is valid
for two or more different Arc Routing problems, we only describe the
separation algorithms once, to avoid repetition.

We close this section with some notation and definitions that will be
used throughout this chapter.

Let G = (V, E) be an undirected graph where V is the set of nodes
and E is the set of edges. Given a node subset, S C V, §(S) will de-
note the set of edges, commonly called the edge cutset, which have one
end-vertex in S and the other in V'\ S, while E(S) will denote the set
of edges with both end-vertices in S. Given two node subsets 5,5’ C V|
(S : §') will denote the set of edges with one end-vertex in S and the
other in §'.

Given a ground set A and a vector of decision variables x € IR"™, for
any subset F' C A, we let z(F') denote) . Te. In most integer for-
mulations of Arc Routing Problems, A is the set of edges or arcs of a
graph. If this is the case and z* is the optimal LP solution at any iter-
ation of the cutting plane algorithm, then we define the edge-weighted
graph G(z*) as the graph with vertex set equal to V, edge/arc set equal
to {e € A: zf > 0} and edge-weights equal to zX. Graph G(z*) is also
called the support graph corresponding to x*.

Finally, we define the concept of shrinking a set of vertices in a
weighted graph (see, e.g., Fleischmann, 1985; Padberg & Rinaldi, 1990).
Given a graph G = (V, E) with weights on the edges, and aset W C V,
shrinking W means identifying the vertices in W, deleting any resulting
loops and merging each resulting set of parallel edges, if any, into a single
edge. When merging parallel edges, we give the new edge a weight equal
to the sum of the original weights.

2. CHINESE POSTMAN PROBLEMS
2.1. THE UNDIRECTED CPP

Given an undirected and connected graph G = (V, FE) and a nonneg-
ative cost c. for each edge e € E, the (Undirected) CPP is the problem
of finding a minimum cost tour passing through each e € E at least once
(Guan, 1962; Edmonds, 1963). Let z. represent the number of copies of
e that must be added to G in order to obtain an eulerian graph. The
CPP can be then formulated (Edmonds & Johnson, 1973) as:

Minimize E CeZe
ecE

Linear Programming Based Methods for Solving Arc Routing Problems 237

subject to
z(6(S)) > 1¥vS 'V, |6(S)| is odd (7.3)
z. > 0Veec F (7.4)
z. integer,Ve € E (7.5)

The CPP is closely related to the problem of finding a (minimum
cost) perfect matching, since an eulerian graph can be obtained from G
by adding edges to link odd degree vertices (Edmonds & Johnson, 1973;
Christofides, 1973). Edmonds & Johnson solved the CPP by means of
an adaptation of the blossom algorithm for perfect matching problems
(Edmonds, 1965b) and proved that the associated polyhedron is com-
pletely described by the non-negativity inequalities (7.4) and the odd-cut
or blossom inequalities (7.3). In the context of the perfect matching
problem, Grotschel & Holland (1985) implemented a cutting plane algo-
rithm which was showed to be as efficient as the existing combinatorial
type matching algorithms. Then, their procedure could be also consid-
ered as an exact method to solve the CPP. The separation of odd-cut
inequalities (7.3) can be done as follows:

2.1.1 0Odd-Cut Separation.

Let z* € RF and let G(z*) the corresponding support graph. An odd
cut set in G(z*) is defined as a cut set §(S), S C V, such that S contains
an odd number of vertices with odd degree in G. Odd cut inequali-
ties can be separated exactly in polynomial time by finding a minimum
weight odd cutset in G(z*). Using a result of Padberg & Rao (1982),
this problem can be solved by computing a series of maximum flow prob-
lems on G(z*). The number of maximum flow computations needed in
the worst case is equal to the number of odd degree vertices in G minus 1.

Exact algorithm (Padberg € Rao, 1982):

Step 0 Let N = {v,v2,...,vq} be the set of odd degree vertices of G.
Select two vertices vy, vo of N and compute the maximum flow in
G(z*) between v; and vy. The corresponding (minimum weight)
cutset (S : V'\ S) defines two node sets, W, := S and Wy := V'\ S.

Step 1 Let T be the tree formed by the nodes W; and W, and an edge
joining them with cost equal to the maximum flow value.

Step 2 While there exists a node set W on the tree T containing more
than one vertex of IV, repeat:

2.1 Select one of such nodes, say W, and two vertices uy, ug in
W; N N. Compute the maximum flow on G(z*) between u;
and us.

238 ARC ROUTING

2.2 The corresponding cutset (S : V'\ S) divides node W; into two
node sets, W;, := W; NS and W;, := W;N(V'\ S). The other
node sets of the tree T" are contained either in S or in V'\ S.

2.3 Substitute node W; of T' by two nodes W;, and W;, joined by
an edge with cost equal to the maximum flow value. Replace
each edge (Wj, W;) of the tree incident with node W; by an
edge (W;, W;,) or (W;, W,,) depending on, respectively, if W;
is contained in S or in V'\ S.

Step 3 If all the edges in the tree T have cost at least 1, then there is
no odd-cut inequality violated by x=*. Otherwise, pick (iteratively)
an edge of T having a cost less than one. If we delete it from T,
we obtain two subtrees. Let S and V' \ S be the sets of vertices of
G corresponding to the two subtrees. If S contains an odd number
of odd-degree vertices, then z(6(S)) > 1 is an odd-cut inequality
violated by z*.

Heuristic algorithm:

A faster (O(|E|) time) heuristic algorithm was proposed by Grotschel
& Holland (1985) and consists of computing the node sets S, S,... , S,
of the connected components of the subgraph of G(z*) induced by the
edges e € E with z}7 > ¢, where 0 < ¢ < 1 is a given parameter. If
g > 1, then for every ¢ = 1,... ,q, if |§(S;)| is odd and z*(6(S;)) < 1
then, =(6(S;)) > 1 is a violated blossom inequality.

Usually, the heuristic algorithm is executed for different values of pa-
rameter €. A given value is only tried when with the previous ones a
minimum number of violated inequalities is not found. The exact algo-
rithm is executed only when the heuristic fails.

2.2. THE DIRECTED CPP

The Directed Chinese Postman Problem (DCPP) is defined as in the
undirected case except for the fact that graph G is a directed graph
G = (V, A) with set of arcs A. We assume that G is strongly connected
because otherwise, the DCPP is infeasible. As for the undirected case, let
zi; denote the number of copies of arc (¢, j) that must be added to G in
order to obtain an eulerian graph. If G is a strongly connected graph, a
least-cost Eulerian graph can be constructed by solving a transportation
problem : for every vertex ¢, let s; be the number of arcs entering ¢
minus the number of arcs leaving ¢. Let S be the set of vertices ¢ with
s; > 0 and T the set of vertices 7 with s; < 0. If /;; denotes the length
of a shortest path from ¢ to 7 the DCPP can be formulated as follows
(Liebling, 1970; Edmonds & Johnson, 1973):

Linear Programming Based Methods for Solving Arc Routing Problems 239

Minimize g g lijzi;

i€S jeT
subject to
inj =s8;,Vi €S (76)
jET
> mij=-s;Vi€T (7.7)
€S
Tij 2 OvieS, VjeT (78)

This is the LP formulation of the Transportation Problem, and it is
well known that it always has an integer optimal solution. Then, the
DCPP can be easily solved as a Linear Program.

As we have seen up to now, the CPP and the DCPP can both be solved
in polynomial time and a complete linear description of an associated
polyhedron is known for them. Unfortunately, this does not hold for any
other arc routing problem that will be studied in this chapter.

2.3. THE MIXED CPP

Let G = (V,E, A) be a strongly connected mixed graph, with vertex
set V, (undirected) edge set E and (directed) arc set A, and consider a
nonnegative cost ¢, for each edge and arc e € EUA. The Mixed Chinese
Postman Problem (MCPP) is the problem of finding a minimum cost
tour passing through each edge and each arc of G at least once (Ed-
monds & Johnson, 1973).

The arcs or edges will be termed the links of the graph. The degree
of a node is the number of links incident with it.

For this N"P-hard problem (Papadimitriou, 1976), Christofides, Be-
navent, Campos, Corberdn & Mota (1984) proposed a formulation with
a variable for each arc, two variables for each edge (representing the
number of times it is traversed in either direction) and a variable for
each vertex. Then, a Branch & Bound algorithm was implemented in
which two different lower bounds, obtained by relaxing two types of
constraints in a Lagrangian manner, were computed at each node of the
search tree. A set of 34 randomly generated instances with 7 < |V| < 50,
3 < |A] <85 and 4 < |E| < 39 were solved to optimality using this al-
gorithm.

The MCPP is an special case of the Windy Postman Problem that
will be studied in section 2.4. As it will be shown there, Grotschel &

240 ARC ROUTING

Win (1992) have proposed a procedure to solve the WPP that can be
applied to the MCPP as well. Here also, two variables for each edge are
used to formulate the WPP and therefore the MCPP. They solved to
optimality the nine MCPP instances they tried, with 52 < |V| < 172,
31 < |A| €116 and 37 < |E| < 154.

2.3.1 A Cutting Plane Algorithm for the MCPP.

Nobert & Picard (1996) present a cutting plane algorithm that exactly
solves the MCPP. They use the following characterization of an eulerian
mixed graph given by Ford & Fulkerson (1962):

A strongly connected mixed graph G = (V, E, A) is eulerian if and
only if:

s Evenness condition: The degree of each node is even.

m Balanced sets condition: For every proper subset of vertices S, the
number of arcs entering S minus the number of arcs leaving S is
less than or equal to the number of edges between S and V' \ S.

Let x. represent the number of copies of link e € FU A that are added
to G in order to obtain an eulerian graph. Note that, unlike in other for-
mulations of the MCPP, only one variable is associated to each edge of G.

For any S C V, let 6v(S) (67(S)) denote the set of arcs leaving
(entering) S, and let §(S), as usual, denote the set of edges with one
end-vertex in S and the other in V' \ S. The unbalance b(S) of S is de-
fined as b(S) = |67 (S)| — |67 (S)| — |6(S)|. Let us also define odd(i) = 1
if the degree of vertex ¢ is odd, and odd(i) = 0 otherwise.

Then, Nobert & Picard (1996) formulate the MCPP as the Integer
Linear Program:

Minimize Z CoTe
ecEUA
subject to
2(8+ (1)) + 2(67(3)) + x(8(3)) + odd(s) = 2z;,Vi € V (7.9)

z(67(S)) — x(67(S)) + z(8(S)) > b(S)¥VSCV, S#0 (7.10)
Te,z; 2> 0 and integer
Constraints (7.9) and (7.10) are just a translation of the above con-

ditions for a mixed graph to be eulerian. Constraints (7.10) are called
balanced set constraints.

Linear Programming Based Methods for Solving Arc Routing Problems — 241

Nobert & Picard (1996) also introduce the odd-cut constraints:

z(64(S)) +2(67(8)) + z(6(5)) > 1,

VS C V,167(S)| + |61 (S)] + [8(S)| odd
(7.11)

These constraints generalize the odd-cut constraints for the CPP and
are used in the cutting plane algorithm instead of equations (7.9), which
are introduced only to permit the generation of a Gomory cut in some
situations (in practice, this possibility never occurred for the set of in-
stances solved).

The cutting plane designed by Nobert & Picard (1996) for the MCPP
starts with an initial LP containing the objective function, odd cut in-
equalities (7.11) associated with the odd degree vertices of G, unbalanced
sets constraints (7.10) associated with ‘inwards’ unbalanced vertices and
most unbalanced sets of G (see below how they are generated), and non-
negativity constraints. At each iteration, the current LP is solved and
violated inequalities of types (7.10) and (7.11) are identified and added
to the LP. If no cut is found, and the LP solution is not integral, a Go-
mory cut is generated and added to the LP; if the solution is integer
but contains an odd degree vertex, say ¢, equation (7.9) is added to the
LP and a Gomory cut is generated on variable z; and added to the LP.
Finally, if the LP solution is integral and all vertices have even degree,
it is an optimal solution for the MCPP.

Nobert & Picard(1996) were able to solve 148 instances out of 180
randomly generated instances with their pure cutting plane algorithm
running on a CDC Cyber 855 with a time limit of 500 seconds. The
authors report that it was never necessary to generate a z; variable. The
sizes of the instances were in the range: 10 < |V| <169, 2 < |A| < 2876
and 15 < |E| < 1849.

We now present the separation algorithms that could be used to gen-
erate violated odd-cut (7.11) and balanced set (7.10) inequalities.

2.3.2 Odd-Cut Separation.

If we consider each link in EUA as an edge (i.e., ignoring the direction of
the arcs), then G can be considered as an undirected graph, and the gen-
eralized odd-cut inequalities (7.11) are exactly the odd-cut inequalities
(7.3) for the CPP. Hence, the separation algorithms presented in section
2.1.1 can be directly applied to the mixed case. Nevertheless, Nobert
& Picard (1996) used only the heuristic algorithm described there with
e=0.

242 ARC ROUTING

2.3.3 Balanced Set Separation.

Let z* be the LP solution at any iteration of the cutting plane algo-
rithm and consider the weighted graph G'(z*) = (V, E, A), with weights
we =z +1foralle € EUA. Forany S C V,let f(S) = w(6%(S)) -
w(67(9))+w(6(S)). It is easy to see that constraint (7.10) is violated by
x* for the subset S if and only if f(S) < 0. A set S C V for which f(S)
is minimum is called a most unbalanced set. Nobert & Picard (1996)
reduce the problem of finding a most unbalanced set to computing the
maximum of a quadratic function in binary variables and they refer to
previous works by Picard & Ratliff (1975) and by Picard & Queyranne
(1980), where it is shown that this problem is equivalent to solving a max-
imum flow problem on an associated graph with n + 2 vertices. Here,
we present a more direct proof of this important result and an explicit
description of the maximum flow problem to be solved.

Ezact algorithm:
Let us define w;” = w(67(3)) and w; = w(6~(3)) for each vertexi € V.

Construct the capacitated and undirected graph H = (Vy, Ey) where
Vy =V U{0,n+1} (0 and n+1 are two extra vertices). The set Fy has
all the edges of F with an associated capacity of w, plus an edge from
vertex 0 to every vertex i € V with capacity wp; = maz{w; — w;",0},
and an edge from each vertex ¢ € V to vertex n + 1, with capacity
Wi i1 = maz{w] —w;,0}.

Solving on H the maximum flow problem from vertex 0 to vertex n+1
provides us with a minimum capacity cut in graph H. Let $* U {0} be
the subset of vertices defining this cut, then S* is a most unbalanced set
in G'(z*) as it is shown in the following.

First of all, note that f(S) can be written as: f(S) = > ,cg(w; —
w;) +w(6(S)). Let us define P = Y~ .\, wo; and let §y7(S) represent an
edge cutset in graph H. If we subtract the constant P from the capacity
of the cutset in graph H defined by any set S U {0}, we obtain:

w(dp(SU{0})) - P = Z wyj + Z wo; -+ Zwi,n-!-l - Zwm

(1,7)€(S:V\S) i€eV\S €S 1%
= > wy+ Y (wf—w)=f(S)
(4,7)€(S:V\S) i€S

Then, the minimum f(.S) corresponds to the minimum w(§x (SU{0})).
Therefore, any cutset with w(6g (S U {0})) < P provides a violated bal-
anced set inequality.

Linear Programming Based Methods for Solving Arc Routing Problems — 243

To find a most unbalanced set in GG, in order to include their corre-
sponding inequality in the initial LP, one can simply apply the above
procedure by setting * = 0. Nobert & Picard (1996) enumerate all the
minimum capacity cuts in H and add them to the LP (unless its num-
ber is too large). Furthermore they split each most unbalanced set into
several smaller ones in order to obtain stronger cuts. We refer to their
work for the details.

2.4. THE WINDY POSTMAN PROBLEM

Let G = (V,E) be an undirected graph with two costs cjj,¢; > 0
associated to each edge (7,) € E, i.e., the cost of traversing an edge de-
pends on the direction of travel. The Windy Postman Problem (WPP)
consists of finding a minimum cost tour traversing all edges of G at least
once. This is an AN'P-hard problem (Guan, 1984), although it can be
solved in polynomial time if G is eulerian (Win, 1987). It also contains
as special cases the CPP, DCPP and MCPP.

Win (1987) and Grétschel & Win (1992) proposed a cutting plane
algorithm for the WPP based on a previous polyhedral study, that was
able to solve to optimality most of the problems tested. As far as we
know this was the first polyhedral approach that has been applied to the
resolution of an N'P-hard Arc Routing Problem. Let x;; be the number
of times edge (i,7) is traversed from 7 to j in a WPP solution. The
formulation given by Win (1987) and by Grotschel & Win (1992) is:

Minimize > (eijis + cjizsi)
(i.5)€E
subject to
Tij + 20 2 1V(i,j) € E (7.12)
Y (@—zp)=0VieV (7.13)
(i.5)€8(i)
Tij, Ty = 0 (7.14)
Tij, Tj; integer (7.15)

Under certain conditions, non-negativity inequalities, traversing in-
equalities (7.12) and the following odd-cut inequalities induce facets the
corresponding polyhedron (Grétschel & Win (1988)):

244 ARC ROUTING

> (g +zi) 2 6(S) +1L¥S C V, [8(S)| odd (7.16)
(i,1)€8(S)
1
> zi5 2 5(16(S)| +1)¥S C V; [8(5)| odd (7.17)
i€S,5¢S
1
PRI (8@ +1),¥S CV, [6(S)] odd (7.18)
i€S,5¢S

Odd-cut inequalities (7.16), (7.17) and (7.18) are equivalent. The form
(7.16) is used in the separation algorithm. Once such a violated inequal-
ity is found, it is added to the LP in the form (7.17) or (7.18) having the
minimum number of non-zero coeflicients. Other valid inequalities are
described in Grétschel & Win (1988), but only the ones presented above
were implemented in their cutting plane algorithm.

The cutting plane algorithm starts by solving an initial LP containing
the objective function and constraints (7.12), (7.13) and (7.14). Let x* be
the LP solution at any iteration. If we define the weight w;; = z7;+z; —1
for each edge (4, j) € E, then any odd-cut in G(z*) with weight less that
1 corresponds to a violated odd-cut inequality (7.16). Hence, the separa-
tion problem for inequalities (7.16) reduces to the problem of determining
an odd-cut of minimum weight in G(z*). The procedures described in
section 2.1.1 were used for this purpose. All the odd-cut violated inequal-
ities are added to the LP, while odd-cut inequalities that were added in
previous iterations and that are non-binding (i.e., have a positive surplus
variable) are removed from the LP.

The algorithm was tested on 36 WPP instances with 52 < |V| < 264
and 78 < |E| < 489 and it provided an optimal WPP solution for 31
instances. When the cutting plane procedure failed to arrive at an integer
solution, feasible WPP tours were derived by appropriately rounding up
the fractional variables and then possibly setting some variables to zero
(see Grotschel & Win (1992) for the details).

3. RURAL POSTMAN PROBLEMS
3.1. THE UNDIRECTED RPP

Let G = (V, E) be a connected and undirected graph with nonnega-
tive costs associated to its edges. Given a subset Er C E of ‘required’
edges, the problem of finding a minimum cost tour passing at least once
through all the required edges is known as the Rural Postman Problem
(RPP). Note that when Er = F the RPP reduces to the CPP, but in
the general case, if the graph induced by edges in Eg, Gg = (Vg, ERr), is

Linear Programming Based Methods for Solving Arc Routing Problems — 245
not connected, the problem is A’P-hard (Lenstra & Rinnooy-Kan, 1976).

Christofides, Campos, Corberan & Mota (1981) implemented a Branch
& Bound algorithm based on Lagrangean Relaxation for this problem
and solved 24 instances with 9 < |V| < 84, 13 < |E| < 184 and
4 < |Eg| < 74. Their algorithm contains the following pre-processing
stage which converts any RPP instance with V' # Vg into another in-
stance for which V' = Vg:

Simplification routine:

Step 1. Add to Ggr = (Vg, ER) a non required edge between every pair
of vertices in Vg having a cost equal to the shortest path length on
G.

Step 2. For each pair (if any exist) of parallel edges with the same cost,
delete one member. Remove all edges e = (¢,5) ¢ Fpr such that
Cij = Cik + ckj for some vertex k.

Let us denote by G = (V, E) the resulting graph. This transformation
can occasionally increase the number of edges in G, but it frequently
decreases it. Suppose from now on that V = Vg. Let z. denote the
number of copies of edge e € E that might be added to G in order to
obtain an eulerian graph, and let ég(S) denote §(S) N Er. Corberdn &
Sanchis (1994) formulate the RPP as:

Minimize i CeZe

eckE
subject to
z(6(8)) > 2¥S CV, 6r(S)=10 (7.19)
z(8(2)) = |6r(1)] (mod2)Vie V (7.20)
Ze > 0 and integer Ve € F (7.21)

The convex hull in RIZl of feasible solutions to (7.19) - (7.21), de-
noted by RPP(G), is an unbounded and full-dimensional polyhedron.
As mentioned in the previous chapter, many classes of valid inequalities
and facets are known for RPP(G), some of them described in the con-
text of the GRP. Corberan, Letchford, & Sanchis (1998) have devised
separation algorithms for:

m connectivity inequalities.
s R-odd cut inequalities.

s K-Component (K-C) inequalities.

246 ARC ROUTING
m regular path-bridge inequalities.
m honeycomb inequalities.

The algorithms for connectivity, R-odd and K-C inequalities are de-
scribed in the following subsections. Separation of path-bridge and hon-
eycomb inequalities will be detailed in the next section because they
were introduced in the context of the General Routing Problem (GRP),
although they can be also applied to the RPP. A set S C V will be called
R-odd if |6g(S)] is odd, otherwise it will be called R-even. We will call
the connected components of Gg R-components. A set of vertices defin-
ing an R-component will be called an R-set.

3.1.1 Connectivity Separation.

Connectivity inequalities (7.19) can be separated exactly in polynomial
time. Consider the shrunk graph G5 = (V;, E) obtained from G(z*) by
shrinking each R-set into a single node and let * be the resulting edge
weights.

Ezact algorithm:

Find a minimum weight cutset in Gs (Gomory & Hu, 1961). Each
cutset with weight less than two corresponds to a violated connectivity
inequality on G.

Heuristic algorithm:

Compute the connected components of the subgraph induced by the
edges e € E; with 7 > ¢, where 0 < € < 2 is a given parameter. Let
51,852, ...,8¢ be the sets of nodes in the original graph G correspond-
ing to the node sets of these connected components. Then z(6(S;)) > 2
is a violated connectivity inequality if ¢ > 1 and z*(6(S;)) < 2. Note
that when ¢ = 2 we have z(6(S1)) = z(6(S2)), but when g > 2 all the
inequalities are distinct.

Usually, the heuristic is executed for different values of parameter €. A
given value is only tried when with the previous ones a minimum number
of violated inequalities have not been found. Only if the heuristic fails
is the exact algorithm executed.

3.1.2 R-odd cut Separation.
Like odd-cut inequalities for the CPP, R-odd cut inequalities (Corberan
& Sanchis, 1994)

z(6(8))>1, VSCV, |6r(S)| odd (7.22)

Linear Programming Based Methods for Solving Arc Routing Problems 247

can also be separated exactly in polynomial time by using the Padberg-
Rao algorithm. We only have to consider each R-odd vertex as an odd-
degree vertex.

The heuristic described in section 2.1.1 has also been used by Corberdn,
Letchford & Sanchis (1998) for values 0, 0.25 and 0.5 of parameter e.

3.1.3 K-C Inequalities Separation.

Roughly speaking, R-odd inequalities assure that every R-odd node ¢ has
to satisfy z(6(¢)) > 1 but, if 7 is an R-even node and z(6(¢)) = 1 holds,
vertex ¢ becomes an ‘odd degree node’ but no R-odd inequality is able to
cut off this invalid ‘solution’. This is what K-C inequalities (Corberédn &
Sanchis, 1994) try to do. K-Component (K-C) inequalities are defined
in terms of a partition {Vj,...Vx} of V, with K > 3 where V4,... Vg4
and Vp U Vi are clusters of one or more R-sets and |(Vp : Vi) N Eg| is
positive and even. The corresponding K-C inequality can be written as:

F(z)= > (g—-p)a((Vp: Vo)) —22((Vo: Vk)) 22(K—1) (7.23)

Vp<q

No exact polynomial algorithm is known to separate K-C inequalities.
For this problem, Corberdn, Letchford & Sanchis (1998) have designed
an effective heuristic algorithm, which is based on the following consid-
erations:

s K-C inequalities try to separate solutions x* where an R-even
node u belonging to an R-component C; satisfies z*(6(u)) = 1
and z*({u} : C;i \ {uv}) = 0. Thus, {u} and C;\ {u} are suitable
node sets to be considered as Vy and Vi respectively. This idea
is generalized by considering node sets Vj with an even number
of R-odd nodes forming a connected component of the subgraph
induced in C; by edges e with x} > 0.

s Fori:=0,1,2,... ,K —1, let LHS(i,7 + 1) denote the sum of the
x* for every edge e € (V,: V) with p <7 and ¢ >4+ 1. It is then
possible to write the left hand side of (7.23) as:

K-1
F(z*)= > LHS(,i+1)—2z*((Vo : Vk)) (7.24)
i=0

If F(z*) < 2(K — 1), the K-C inequality is violated. Otherwise, it
is satisfied with a slack of F(z*) — 2(K — 1). Shrinking any pair of
consecutive sets V;, V11 into a single set yields a new ‘smaller’ (K-
1)-C configuration with an associated inequality F'(z) > 2(K —2).
It is easy to see that shrinking sets V;, Vi41 with LHS(4,7i + 1) >
2 leads to K-C inequalities with lower slack, as long as K > 3

248 ARC ROUTING

remains. Hence, by shrinking iteratively pairs V;, V;4+1, new K-C
inequalities are obtained and checked for possible violation.

Heuristic algorithm:

= Phase O:
Let C; be an R-set and let us call x*-external those nodes in C;
which are adjacent to nodes not in C; by an edge e with z} > 0.
Assume that C; has, at least, two z*-external nodes connected to,
at least, two different R-sets.

= Phase I: Define seeds for Vj and V.
Consider the subgraph, G(C;), induced in G by edges e with both
endpoints in C; and z; > €, where € is a given parameter. Let
u be a r*-external node and compute its corresponding connected
component in G(C;). If this component has an even number of
R-odd nodes, set Vp to it and set Vi to the complementary set in
Ci.

s Phase II: Define the node sets Vg,...,Vk.

(a) Construct the graph G’ obtained from the weighted graph
G(z*) by shrinking the sets Vo, Vg, and the remaining R-
sets into a single node each.

(b) Compute a maximum weight spanning tree in G"\ {(Vo, Vk)}.

(¢) Transform the tree into a path linking V5 and Vg, by (iter-
atively) shrinking each node with degree one (different from
Vo, Vi) into its (unique) adjacent node. Let Vi, V,,... ,Vk_1
be the nodes of this path. If K > 3, they define the node sets
of the K-C configuration.

s Phase III: Check the K-C inequality.
For each 1 = 0,1,... ,K — 1, compute LHS(i,i + 1) and F(x*)
as in (7.24). If F(z*) < 2(K — 1), the K-C inequality is violated.
Otherwise, check if a violated K-C inequality could be obtained by
shrinking iteratively some pairs V;, Vi;1, while K > 3 holds.

The algorithm was executed with values 0,0.25 and 0.5 for parameter
e. Initially, in phase 0, C; is set equal to each of the R-components. In
further stages of the cutting plane algorithm, C; is set equal to any pair
of R-components adjacent in graph G(z*).

Linear Programming Based Methods for Solving Arc Routing Problems 249

3.1.4 Cutting Plane and Branch & Cut Algorithms for the
RPP.

In their paper on the RPP polyhedron, Corberdn & Sanchis (1994) re-
port some computational experience with a cutting-plane algorithm in
which only connectivity, R-odd and K-C inequalities were considered
and its identification was carried out visually. All except one of the 24
instances reported in Christofides et al. (1981) were solved to optimality
and the optimal value (although not the optimal solution) was obtained
for the last one. Two other real-life instances, with [V| = 113, |E| = 171
and with 10 and 11, respectively, R-components were also solved.

Corberén, Letchford & Sanchis (1998) present a cutting-plane algo-
rithm for the General Routing Problem (that includes the RPP as a
particular case) containing the heuristic and exact procedures here de-
scribed for the separation of connectivity, R-odd and K-C inequalities,
as well as other procedures that will be presented in the next section.
This algorithm was able to solve the 26 instances of Christofides et al.,
(1981) and Corberdn & Sanchis (1994), as well as the 92 RPP instances
generated by Hertz, Laporte & Nanchen (1998). These 92 instances cor-
respond to three classes of randomly generated graphs designed to test
different heuristic algorithms for the RPP. First class graphs were ob-
tained by randomly generating points in the plane; class 2 graphs are
grid graphs generated to represent the topography of cities, while class
3 contains grid graphs with vertex degrees equal to 4. It is worth point-
ing out that the sophisticated heuristic procedures of Hertz, Laporte &
Nanchen (1998) also produced optimal solutions for all the instances (al-
though they could not prove optimality).

Another approach to the RPP has also been proposed by Ghiani and
Laporte (1997). They used the same formulation as before, but they
noted that only a small set of variables (those belonging to an SST
connecting the R-components of G) may be greater than 1 in an optimal
solution of the RPP and, furthermore these variables can take, at most, a
value of 2 (the corresponding set of edges is denoted by Epi12). Then, by
duplicating these latter variables, the authors formulate the RPP using
only 0/1 variables. Ghiani & Laporte have implemented a Branch & Cut
algorithm based on connectivity inequalities (7.19), R-odd inequalities
(7.22) and the following ones (that are only valid under the assumption
that variables z, are binary):

Z Te > Te,, VS CV, Sis Reven, e € 6(5) (7.25)
ecs(S\{ev}

To separate the connectivity inequalities (7.19), they use a heuristic sim-
ilar to the one proposed by Fischetti, Salazar & Toth (1997) for the Gen-

250 ARC ROUTING

eralized TSP. Starting with the support graph G(z*), each R-component
is shrunk into a single vertex and a maximum spanning tree is built in
the resulting graph. Each stage of the construction of this tree, produces
a subset of R-components for which the corresponding inequality (7.19)
is checked for violation. Once the spanning tree is completed, another
check for violated connectivity constraints is made by removing in turn
each edge of the tree.

To separate R-odd cut inequalities (7.22), Ghiani & Laporte (1997)
use a heuristic similar to the one described in section 2.1.1. Finally, they
have designed a new heuristic algorithm to separate inequalities (7.25)
that can be roughly described as follows. For any R-even component of
subgraph of G(z*) induced by edges with z} > ¢, where € is a given pa-
rameter, a maximum spanning tree is computed. If the removal of a tree
edge e divides the component into two R-even subcomponents, say C’
and C”, then two inequalities (7.25) are checked by considering S = C’,
ey =eand S = C”, e, = e. A branching step is executed whenever no
violated inequality can be generated. Branching is made on fractional
variables z. nearest to 0.5 and two son subproblems are generated as
usual, except in the case e € FEyio, where three son subproblems are
generated.

Ghiani and Laporte (1997) report very good computational results on
a set of 200 instances, corresponding to 3 classes like those in Hertz,
Laporte & Nanchen (1998). Except for 6 instances, other 194 instances
involving up to 300 or 350 vertices were solved to optimality in a rea-
sonable amount of time.

3.2. THE GENERAL ROUTING PROBLEM

Given an undirected and connected graph G = (V, E), a nonnegative
cost ¢ for each edge e € E, a set Vg C V of required vertices and a set
ERr C FE of required edges, the General Routing Problem (GRP) is the
problem of finding a minimum cost tour passing through each v € Vi
and each e € Eg at least once (Orloff, 1974).

The GRP was proved to be A/P-hard by Lenstra & Rinnooy-Kan
(1976). It includes as special cases the arc routing problems on an undi-
rected graph described in previous sections (i.e., the Chinese Postman
Problem, CPP, and the Rural Postman Problem, RPP) and also includes
some well known routing problems where the service requirements are on
the vertices of the graph: when Er = (), we obtain the Steiner Graphical
Traveling Salesman Problem (SGTSP) (Cornuéjols, Fonlupt & Naddef,
1985), also called the Road Traveling Salesman Problem by Fleischmann
(1985); when EFr = 0 and Vg = V, we obtain the Graphical Traveling

Linear Programming Based Methods for Solving Arc Routing Problems 251

Salesman Problem (GTSP) (Cornuéjols, Fonlupt & Naddef, 1985). A
strong relationship between the GTSP and GRP polyhedra has been de-
scribed in deep by Letchford (1997b).

The integer programming formulation for the GRP is exactly the same
that for the RPP. Hence, connectivity, R-odd cut, K-C and GTSP-type
inequalities are valid for the GRP as well as for the RPP (Corberan &
Sanchis, 1998) and can be separated with the procedures presented in
sections 3.1.1, 3.1.2 and 3.1.3 for the RPP. Inversely, path-bridge (Letch-
ford, 1997a) and honeycomb inequalities (Corberdan & Sanchis, 1998)
presented for the GRP are also valid for the RPP, and the corresponding
separation procedures presented in next sections can be also applied to
the RPP. These procedures (Corberdn, Letchford & Sanchis, 1998) also
rely on the assumption that V = Vg, because, as in the RPP, GRP in-
stances which do not satisfy the assumption can be easily transformed
into instances which do (Christofides, Campos, Corberdn & Mota, 1981).

3.2.1 Honeycomb Separation.

In a K-C configuration, an R-component (or a cluster of R-components)
is divided into two parts. A honeycomb configuration (Corberdn & San-
chis, 1998) generalizes the K-C configuration simultaneously both in the
number of parts an R-component is divided into and in the number of R-
components we divide. Many honeycomb configurations can be formed
by ‘gluing’ K-C configurations together by identifying edges.

Honeycomb inequalities for which a separation heuristic has been de-
signed in Corberdn, Letchford & Sanchis (1998) are those in which a
single cluster of R-connected components is partitioned into more than
2 parts. The associated honeycomb configurations consist of:

® g partition {Vi,..., VL, Wi,... ,\Wk_ 1} of V, with L > 3, K > 4,
such that (V1U...UVL), Wi,... ,Wk_; are clusters of one or more
R-sets and 6(V;) contains a positive and even number of required
edges for all :. The required edges crossing between the V; spans
the sets V; considered as nodes.

® 3 tree T spanning the sets V1,... ,Vr, Wi, ..., Wg_1 such that the
degree in T of every node V; is 1, the degree of nodes Wj is at least
2 and the path in the tree connecting any distinct V;, Vj is of length
3 or more.

If L = 2 the tree is a path and we have a K-C configuration. If L > 3,
then K > 4 is needed in order to the path in the tree connecting any
distinct V;, V; being of length 3 or more.

252 ARC ROUTING

In the associated honeycomb inequality, the coefficient ¢, of edge e € E
is equal to the number of edges traversed in the spanning tree to get from
one end-vertex of e to the other, except for the edges with one end-vertex
in V; and the other in V}, ¢ # j, when the coeflicient is 2 units less. The
honeycomb inequality is then:

> cee 2 2(K — 1) (7.26)
ecE

Honeycomb inequalities try to separate solutions z* where some R-
even nodes uj,us, ... ,ur (or sets with an even number of R-odd nodes)
belonging to an R-component C; satisfy z*(6(u;)) = 1 and z*({u;} :
Ci\{u;})=0,j=1,2,...,L.

The idea of the algorithm is similar to that for the K-C separation.
The main difference is, given an R-set or a cluster of R-sets Cj, to deter-
mine the number of node sets to divide it, and how to make the division
into V1, V5, ..., V;. The procedure is as follows:

Let C; be an R-set and remember that x*-external nodes are those in
C; which are adjacent to nodes not in C; by an edge e with z} > 0. As-
sume C; has, at least, two x*-external nodes and connected to, at least,
two different R-sets.

Assign to each x*-external node u; a label k corresponding to the
R-set RF not in C; with z*({u;} : R*) maximum. To each of the re-
maining nodes in Cj, a different negative label is assigned. Starting
with the edge (u,v) in E(C;) with largest z*-weight, let lmin (Imez) be
the smaller (larger) label of that of u and v. Assign the label ly0; to
all nodes in C; having label l,,;,. This procedure is repeated until all
nodes have positive label. Nodes with the same label define a partition
Vi, Va, ..., V; of the set of nodes of C;. If the number of R-odd nodes in

each Vj,j =1,...,tis even, we are done. Otherwise, all the sets V; with
an odd number of R-odd nodes are joined forming a single set. Then, a
partition V4, Vs, ..., VL have been defined.

If L > 3, these sets are suitable to be considered as part of a honey-
comb configuration. If L = 2, these sets are suitable to be considered
as Vp and Vi for a K-C configuration. Otherwise (L = 1), C; is rejected.

Consider now the graph obtained by shrinking each V1, V,, ..., VL and
each of the remaining R-sets into single nodes. Compute a spanning tree
with large z* weight in this shrunk graph without using edges (V;, V).
Then shrink (iteratively) each node with degree one on the tree (different
from Vi, Va,..., VL) into its adjacent node, having in mind that every
node V; must have degree one in the configuration tree.

Linear Programming Based Methods for Solving Arc Routing Problems 253

If the above procedure has been successful, a honeycomb configura-
tion has been defined with V), V5,...,Vy and Wy, W, ... , Wk _1 and
its corresponding inequality is checked for possible violation. If it is not
violated, a similar procedure to that of section 3.1.3 for K-C inequalities
shrinks pairs of sets W;, W; adjacent in the tree into a single one to
obtain a new ‘smaller’ honeycomb configuration that, under certain con-
ditions, can be violated. In further stages of the cutting plane algorithm,
C; is set equal to a pair of R-sets adjacent in graph G(z*).

3.2.2 Path-Bridge Separation.

Letchford (1997a) introduced the path-bridge (PB) inequalities. As K-C
inequalities try to separate ‘solutions’ in which z(6(¢)) = 1 for an R-even
vertex i, PB inequalities try to separate ‘solutions’ in which z(6(1)) = 2
for an R-odd vertex i¢. The associated path-bridge (PB) configuration
is presented in detail in Chapter 6. A special case are the so called n-.
reqular PB inequalities, n-PB, that have an easy description in terms of
handles and teeth:

There are n — 1 handles, Hy,... ,H,_;, and p teeth, T1,... ,T,. The
first handle is defined as H; = AU V]! U...U V7, the other handles are
defined inductively as H; = H;i_y UV;! U...UV?P. The teeth are defined

as T = Vlj U...UV{. The n-PB inequality is then:

n—1 p
> a(8(H)) + > z(8(Ty) = np+n+p—1 (7.27)
i=1 7=1

Note that 2-PB inequalities are analogous to the comb inequalities for
the STSP (see, e.g., Grotschel & Padberg, 1979). A 2-PB inequality in
which each tooth consists merely of two isolated vertices (connected by
a non-required edge) is called simple (Letchford, 1997a). Simple 2-PB
inequalities are analogous to the 2-matching inequalities for the STSP.

No exact polynomial algorithm is known to separate general n-PB
inequalities. However, simple 2-PB inequalities can be separated in
polynomial time provided that x* satisfies all connectivity inequalities
(Letchford, 1997a). The algorithm is based on the edge-splitting idea of
Padberg & Rao (1982).

Ezact algorithm for simple 2-PB separation:

Given an edge e € E with both end-vertices isolated, define Z} =
zt + z*(6(e)) — 3. It can be shown that, if all connectivity inequalities
are satisfied, then z} > 0 for all such e. If ZJ < 1, then e is called
splittable.

254 ARC ROUTING

Let G’ be the graph obtained from G by deleting non-required edges
e with ¥ = 0. Label all vertices odd or even according to whether they
are R-odd or R-even. Then divide each splittable edge e into two edges,
called halves, by inserting a new splitting vertez, labelled odd, in the mid-
dle of e. One half (the normal half) retains the original weight, whereas
the other half (the flipped half) gets a weight of Z;. Then, reverse the
label of any non-splitting vertex which is adjacent to an odd number of
flipped halves. Each odd cut with weight less than one in the resulting
split graph corresponds to a violated simple 2-PB inequality. The handle
in the simple 2-PB inequality is composed of all original (non-splitting)
vertices on one shore of the cut. The teeth are the splittable edges whose
flipped halves lie in the cutset.

The above exact separation algorithm has two disadvantages. First,
it is rather slow. Second, there are few violated simple 2-PB inequalities
when the GRP instance has few isolated vertices (indeed, SPB inequal-
ities are not defined at all for RPP instances). Both disadvantages can
be alleviated by applying the algorithm separately to each block of G’.
Each violated simple 2-PB inequality found is then expanded into a vi-
olated (not necessarily simple) 2-PB inequality.

Furthermore, Corberan, Letchford & Sanchis (1998) have devised a
separation heuristic for general n-PB inequalities, which is fast and quite
effective. This n-PB separation heuristic is also applied to each block
separately. Nevertheless, for simplicity of notation, we assume that there
is in fact only one block.

Heuristic algorithm for n-PB separation:

s Phase I: Select candidates for H,
Examine each pair 57,52 of R-sets connected by at least one edge.
If 2*(6(S1US2)) +z*((S1 : S2)) —3 < ¢, where € is a given parame-
ter, then label the edges in E(S7) and E(S2) ‘strong’ and the edges
in (S : S2) ‘weak’. Store (S1,S2) as a ‘candidate tooth’. S; and
Sy are the ‘ends’ of the candidate tooth. Examine the remaining
unlabeled edges. Label such an edge e ‘weak’ if ¥ < min{e, 0.25}.
Delete all weak edges from G’ and examine each connected compo-
nent C in the resulting graph. Let b = |6g(C)| and let p equal the
number of candidate teeth with exactly oneendin C. If p+b >3
and odd, p > 1 and the p candidate teeth are vertex-disjoint, then
put C into a list H of candidates for H;.
For each candidate H € H, repeat:

s Phase II: Construct the configuration nodes.
Set Vi1, ..., VP to be the ends of the p candidate teeth lying in H.

Linear Programming Based Methods for Solving Arc Routing Problems 255

Set A to be the remainder of H, if any. Set Vi,..., VP to be the
other ends of the p candidate teeth. Set Z to be the parts of R-sets
split by A which are not in A. If no such R-sets exist, then Z is
initially empty. Let G5 denote the weighted shrunk graph obtained
from G’ by shrinking A, Z and the R-sets which are not contained
in AU Z into a single node each. Add (iteratively) edges of G;
in order of non-increasing weight so as to build the ‘skeleton’ of
a path bridge configuration, bearing in mind that, when 6 = 0, a
‘seed’ for Z does not exist. In this case, try to build two structures,
one in which Z is forced to be empty and one in which Z is forced
to be non-empty.

Once the structure has been made, shrink iteratively vertices of
degree one (different from A and Z) into their adjacent node to
obtain a PB configuration, not necessarily regular. To make the
configuration regular, choose n according to the length of the short-
est of the p paths in the configuration, and shrink any paths which
are longer than this by merging Z with adjacent V]’

s Phase ITI. Check the n-PB inequality.
Check if the n-PB inequality is violated according to (7.27). If it is
not violated, the slack of the n-PB inequality can be decreased by
removing any handle H; such that *(6(H;)) > p + 1 and merging
adjacent Vji accordingly. Repeat this process iteratively, as long as
n > 2 remains, until a violated regular PB inequality is obtained
(if possible).

3.2.3 Cutting Plane and Branch & Cut Algorithms for the
GRP.

The above heuristic and exact procedures for identifying violated Honey-
comb and PB inequalities, as well as those presented in the RPP section
for separating connectivity, R-odd and K-C constraints, have been im-
plemented in a cutting plane algorithm described in Corberédn, Letchford
& Sanchis (1998). In the last iteration, when no violated inequality is
found, an integer solution of the last LP relaxation is obtained by in-
voking the Branch and Bound option of CPLEX (1994). If this integer
solution is a tour, then it is optimal for the GRP. Otherwise, its value is
a lower bound for the cost of the optimal GRP tour.

Besides the RPP instances mentioned in section 3.1.4 and some pure
GTSP instances, the cutting plane algorithm was tested on 10 GRP
instances generated from the Albaida graph by selecting visually some
edges as required in order to obtain ‘difficult’ instances and on 30 other
(randomly generated) instances. This last set of instances, with up to
111 R-components, was obtained from the Albaida graph and from an-

256 ARC ROUTING

other real-world based graph — with 196 vertices and 316 edges —, by
defining an edge as required with probability p, p = 0.7,0.5 and 0.3, and
considering all the vertices of the graph as required. Thirty three out of
these 40 were solved to optimality.

The algorithm also proved capable of solving 7 out of 8 GTSP in-
stances (recall that the GTSP, like the RPP, is a special case of the
GRP), which were formed by taking planar Euclidean TSP instances
from TSPLIB and making the associated graphs sparse.

Finally, note that any GRP instance can be transformed into an RPP
instance by duplicating every isolated required vertex and adding a re-
quired edge between them with zero cost. Therefore, the Branch and
Cut algorithm by Ghiani & Laporte (1997) could also be applied (in
principle) to solve the GRP.

3.3. THE DIRECTED RPP

Consider now a strongly connected and directed graph G = (V, A)
with nonnegative arc costs and a subset of required arcs Ag C A. The
Directed Rural Postman Problem (DRPP) consists of finding a mini-
mum cost tour traversing, at least once, all the arcs in Ag. As in the
RPP case, if the subgraph induced by Ag is not connected, the DRPP
is N"P-hard.

To formulate the problem, we need some new notation. Given S C V,
remember that §7(S) (67(5)) denotes the set of arcs leaving (entering)
S. In addition, §5(S) = 67(S) N Ag and 65(S) = 67(S) N Ag. Fi-
nally, as for the undirected case, in order to simplify both the problem
formulation and its resolution, DRPP instances are often transformed
into instances which satisfy Vg = V' (Christofides, Campos, Corberdn &
Mota, 1986).

If x, denotes the number of times an arc a € A is traversed without
being serviced, the formulation of the DRPP given by Christofides et al.
(1986) and Ball & Magazine (1988) is as follows:

Minimize Z CaZq
acA
subject to
2(6% () + |65 (0] = 2(67 (1) + |6z (1) Vi € V (7.28)

N VS = UkeqVk,
z(6 (S))ZL{ Qc{l,...,p}

zq > 0 and integer,Va € A (7.30)

(7.29)

Linear Programming Based Methods for Solving Arc Routing Problems 257

where p is the number of connected components of the graph induced by
Ag and Vi, k=1,2,...,p, denote the corresponding node sets.

Note two important aspects that make the DRPP different to its undi-
rected version. First, all DRPP tours satisfy equations (7.28), any |V|—1
of them linearly independent. This means that its corresponding poly-
hedron is not full-dimensional and, therefore, more difficult to study.
Second, no small and easy-to-obtain upper bound is known for the vari-
ables in the DRPP formulation, unlike in the undirected case where all
the variables are trivially bounded by 2.

Christofides et al. (1986), solved the DRPP with a Lagrangean Relax-
ation procedure embedded within a Branch and Bound algorithm. With
this method, they were able to solve instances with |V| ranging from 13 to
80, | A} from 24 to 180, |Ag| from 7 to 74 and a number p of R-connected
components that ranges from 2 to 8. The DRPP polyhedron have been
studied by Savall (1990) and by Gun (1993). Furthermore, some of the
results in Romero (1997) and in Corberdn, Romero & Sanchis (1999) for
the Mixed RPP (see section 3.4) apply directly to the DRPP. Then, a
cutting plane algorithm for the DRPP could benefit from some of the
separation procedures described in that section.

3.4. THE MIXED RPP

In this section, we consider again a strongly connected mixed graph
G =(V,E,A) with a cost c. > 0 associated to each link (edge or arc)
e € EUA. Furthermore, consider a subset Ex C F of required edges and
a subset Agp C A of required arcs. Then, the problem of finding a min-
imum cost tour traversing, at least once, all the required links is called
the Mixed Rural Postman Problem (MRPP). Note that when Ag = 0
(Eg = 0), the MRPP reduces to the RPP (DRPP) and that if Ep = F
and Ar = A, we obtain the MCPP (that itself generalizes the CPP and
DCPP). Therefore, the MRPP contain, as special cases, almost all the
Arc Routing Problems involving only one vehicle and is, obviously, an
NP-hard problem in the general case.

Recent works on the MRPP are those by Romero (1997) and by Cor-
berdn, Romero & Sanchis (1999). In both studies, a MRPP instance
is transformed into a new one in which every vertex v € V is incident
on, at least, one required link and where £'r = F (as each non required
edge e = (4,7) can be replaced by two non required arcs (7, j) and (j,1)).
Under these assumptions, if ., e € E U A, represents the number of
copies of link e that are added to G in order to obtain an eulerian graph,
the MRPP formulation is then as follows:

258 ARC ROUTING

Minimize > ceme
e€EUA
subject to
2(8(3)) + 6 (1)| + 2(8%(3)) + |64 (1) |+
z(67 (1)) + |67 ()| =0 (mod 2),Vie V (7.31)
z(67(S)) — z(67(5)) + z(6(S)) = b(S)¥VS C V (7.32)
z(6%(S)) > 1,{ g i :{lu’“EQ‘g“} (7.33)
ze. > 0 and integerVee FU A (7.34)

where, in a similar way to that in Section 2.3, b(S) is defined as b(S) =
165 (S)| =164 (S)|—16r(S)| and p is the number of connected components
induced in G by the required links (called R-components) and subsets
Vi, k=1,2,...,p, are their corresponding node sets (called R-sets).

In their paper about the MRPP polyhedron, Corberdn, Romero &
Sanchis (1999) present some computational results with a preliminary
cutting-plane algorithm including separation routines for connectivity
(7.33), R-odd cut and balanced set inequalities (7.32). This algorithm
was tested on a set of 100 randomly generated instances with 20 <
V| <100, 15 < |E| < 200, 55 < |A| < 350, and up to 15 R-connected
components. It produced the optimal solution in 28 out of them and,
on average, the bound obtained was less than 0.5% far from the cost of
a feasible solution obtained by using heuristic methods. The separation
algorithms (similar to that used for the undirected RPP) are described
in what follows.

3.4.1 Connectivity Separation.
Consider the shrunk graph G, obtained from G(z*) by shrinking each
R-set into a single node. Note that G is a directed graph.

Ezxact algorithm:

Connectivity inequalities can be separated exactly in polynomial time
by computing a maximum directed flow between every pair of vertices
of G;. Each cutset with weight less than 1 corresponds to a violated
connectivity inequality.

Heuristic algorithm:

Compute the strongly connected components of the subgraph induced
by the links e of G5 with Z} > €, where € is a given parameter. Let

Linear Programming Based Methods for Solving Arc Routing Problems 259

S1,82,...,8¢ be the sets of nodes in the original graph G correspond-
ing to the node sets of these strongly connected components. Then,
z(6%(S;)) > 1 is a violated connectivity inequality if z*(6%(S;)) < 1.
Constraint z(§7(S;)) > 1 is not considered because §(S;) = 0 and, there-
fore, balanced set constraints imply z(67(S;)) = z(67(S:)).

3.4.2 R-odd Cut and Balanced Set Separation.
Let 6*(S) = 61 (S)Us~(S)US(S) and 65,(S) = 6*(S)N(ErUAR). R-odd
cut inequalities

o(6*(S))>1, V SCV : |64(S)| is odd (7.35)

can also be separated exactly in polynomial time, in a similar way to the
odd-cut inequalities separation described in section 2.1.1 for the CPP.
The heuristics presented in that section also apply directly. We only
have to consider each arc in A as an edge and each R-odd vertex as an
odd-degree vertex.

The balanced set separation algorithm described in section 2.3.3 for
the MCPP applies directly to the MRPP.

3.4.3 K-C and Path-Bridge Separation.

No K-C or Path-Bridge separation procedures for the Mixed RPP have
been proposed. Nevertheless, some subclasses of the K-C and PB in-
equalities described in Corberdn, Romero & Sanchis (1999) for the MRPP
have the same coeflicients as those for the undirected RPP. Hence, the
separation algorithms described in sections 3.2.2 and 3.1.3 could be
slightly modified to be applied to the mixed case by only considering
every arc of the graph as an edge (ignoring its direction).

4. THE CAPACITATED ARC ROUTING
PROBLEM

The Capacitated Arc Routing Problem (CARP) was introduced by
Golden & Wong (1981) and is defined as follows. Let G = (V| FE) be a
connected and undirected graph with a demand d. > 0 and a traversing
cost ¢e > 0 associated to each edge e € E. The subset of edges with
positive demand (called required edges) is denoted by Eg. Given a ve-
hicle capacity @, the CARP consists of finding a set of vehicle routes of
minimum cost that service every required edge and such that every route
contains the depot (that will be assumed to be vertex 1) and the total
demand serviced by a route does not exceed the capacity . A route is
a closed chain containing a set of traversed edges, some of which are also
serviced by the route.

260 ARC ROUTING

A special case of this problem is the Capacitated Chinese Postman
Problem (CCPP) where all the edges are required ones. Note that the
number of vehicles is free in the above definition of CARP. Some authors
consider different variants of the CARP in which the number of vehicles
is fixed, or an upper bound for it is given.

The minimum number of vehicles that will be used by any feasible so-
lution to the CARP may be computed by solving a Bin Packing Problem
(BP) where the item weights are the edge demands and the bin capacity
is Q. Let K™ denote this minimum number of vehicles. The Bin Pack-
ing Problem is AP-hard, but it can be easily solved for relatively large
instances (see Martello & Toth, 1990).

Several LP formulations of the CARP exist in the literature and a
survey of them can be found in Chapter 6 of this book. Here, we will
only report about those formulations that have been used to develop so-
lution strategies for the CARP. As far as we know, the only work done on
LP-based methods for the CARP is reported in Belenguer & Benavent
(1992, 1994, 1998a, 1998b) and Welz (1994). Different formulations of
the CARP have been used in these works. Following the terminology
used in Chapter 6 of this book, these formulations have been classified
into sparse and supersparse. Welz (1994) uses a sparse formulation with
directed variables, while Belenguer & Benavent use both classes of for-
mulations using non directed variables. These formulations have been
computationally tested and the results are quite encouraging. To sum-
marize their results, we first present the valid inequalities that have been
obtained for the sparse formulation and the corresponding routines im-
plemented to separate them. Afterwards, we review the corresponding
work made on the supersparse formulation. Finally we will present the
results obtained with a Branch & Cut code for the CARP based on the
sparse formulation and a cutting plane algorithm based on the super-
sparse formulation.

4.1. SPARSE FORMULATIONS

Belenguer & Benavent (1992, 1994, 1998a) assume that there is an
upper bound K on the number of available vehicles. This is normally
taken to be equal to K™, but need not be. They use the following deci-
sion variables to formulate the CARP:

P = 1 if vehicle p serves edge e € Egr
€7] 0 otherwise
y? = number of times vehicle p traverses edge e € Er without servic-
ing it.

Linear Programming Based Methods for Solving Arc Routing Problems 261

Let I ={1,... ,K}. Givenany S C V'\{1}, as in previous sections, we
will denote by Er(S) = E(S)NEg and 6g(S) = 6(S)NEg. On the other
hand, given p € I, R' C Eg and E' C E, we denote zP(R') = > . p 2%
and yP(E') = 3_.cp ¥5. Then, the CARP can be formulated as follows:

Minimize Z Z cex? + Z Z cey?

pel e€ER pel e€E
subject to

> a8 =1,VecEpg (7.36)

pel
Y dal<Q,Vpel (7.37)

ecEp
2P (8r(S)) +y7(6(5)) = 224, V S CV\ {1},

fe€FER(S)andpel (7.38)
2P(8r(S)) +3P(6(S)) =0 (mod 2), VSCV\{l}andpe I (7.39)
zP € {0,1},42 > 0 and integer (7.40)

Constraints (7.36) and (7.37) ensure, respectively, that each required
edge will be serviced and that the capacity of the vehicles is not exceeded.
Constraints (7.38) (called connectivity constraints) state that, if route p
services edge e then it must traverse any edge cutset separating e from
the depot.

In what follows, we present the separation procedures designed for
each class of valid inequalities known for this formulation. Constraints
(7.36) and (7.37) are usually included in the initial LP. Let (z,y) be an
optimal solution of the LP containing the objective function and some
set of valid constraints for the CARP. For any fixed vehicle p € I, let
wl = 28 + ¢f, for all e € E (for simplicity, we assume that =¥ = 0
whenever e ¢ ER), and let Gp(w) be the graph induced by the edges
e € E with wf > 0 plus the depot (node 1).

4.1.1 Connectivity Separation.

Constraints (7.38) can be separated in polynomial time by applying the
following algorithm for each vehicle p. Consider the weight w? as the
capacity of arc e € E in graph Gp(w).

Ezact algorithm

1 For each node i € V'\ {1}:

Compute the min-cut separating nodes 1 and 7. Let §(S;),S; C
V'\ {1}, be the min-cut and let F; be the capacity of this cut.

262 ARC ROUTING

2 For each edge e = (i,7) € Eg:
If maz{F;, Fj} < 2z%, then a violated connectivity constraint has
been found.

Let F, be the min-cut separating node 1 and edge e € Er. Note that
F, > maz{F;, F;}. Then, maz{F;, F;} > 22% implies that no connec-
tivity constraint is violated for this edge. On the other hand, it can be
proved that, if maz{F;, F;} < 22%, then either j € S; or i € S; holds.
Then, maz{F;, Fj} < 22% implies that either F, = F; or F, = Fj holds,
so F, < 22f and a violated connectivity constraint can be generated.

4.1.2 Parity Separation.
Parity constraints (7.39) are not linear. In Belenguer & Benavent (1992,1998)
they are substituted by the weaker, but linear, constraints:

2P (6r(S) \ H) +yP(6(5)) =2 2P(H) — [H| + 1 (7.41)

were S C V\{1} and H C é6r(S) with |H| odd. To see that they are valid,
note that if all edges in H are serviced by vehicle p (that is 2P (H) = |H|),
given that |H| is odd, this vehicle will traverse at least once more the
edge cut set §(S), so zP(6r(S) \ H) + yP(8(S)) > 1. Constraints (7.41),
which will also be called parity constraints in what follows, are similar to
those appearing in the complete description of the 2-matching polytope
(see for instance Grotschel & Holland, 1987).

Ezact algorithm:

The separation of constraints (7.41) can be done in polynomial time
using a procedure similar to one described in Padberg & Rao (1982).

From the support graph Gp(w), a new graph G’ is constructed as
follows: initially, all the nodes in Gp(w) are labelled as even; then, se-
quentially, each required edge e = (¢,j) in Gp(w) is replaced by two
edges (,%¢), which gets a weight 1 —z., and (.,) with weight ., where
e is a new node labelled as odd. The label of node 7 is changed from
even to odd (or vice-versa). Finally, for each edge e = (¢,7) € E, if
yE > 0, an edge joining nodes i and j is added to G’ with a weight of y£.
Compute now a minimum weight odd cut set in graph G’ and let S’ be
the set of nodes on the shore of the depot defining this cut. Let S be the
set of original nodes in S’. The set H is defined as the subset of edges
e = (i,7) € 6r(S) such that i ¢ S’. It can be easily shown that |H| is
odd and the weight of the cutset in G’ can be written as:

yP(8(8)) +2P(6r(S) \ H) + |H| — 2P(H)

Therefore, a violated parity inequality is found if and only if the above
expression is less than 1.

Linear Programming Based Methods for Solving Arc Routing Problems 263

4.1.3 Obligatory Cutset Separation.

Let Dr be the total demand of the required edges and let Qumin =
maz{Dr — (K —1)Q,0}. Note that Qmin is the minimum demand that
any vehicle must service in any feasible solution to the CARP. For any
S CV\{1}, let d(S) = X cepn(s)usn(s) de- Then, the following inequal-
ity is valid:

2P (6r(S)) +yP(8(5)) = 2 (7.42)
forallpe€ I and S CV\ {1}, Dy — d(S) < Qmin

Note that Dy — d(S) < Qmin implies that each vehicle p have to tra-
verse the edge cutset §(S). For this reason, (7.42) are called obligatory
cutset constraints. Obviously, they only make sense if Qi > 0. No
specific algorithm was devised to separate these constraints. Instead, a
heuristic was used to generate several edge cutsets for which the connec-
tivity, parity and obligatory cutset constraints were checked for possible
violation. The heuristic computes the connected components of Gp(w)
and that of Gp(w) \ {e}, where e is any cut edge of G,(w).

4.1.4 Separation of Constraints from the Knapsack Prob-
lem.

Obviously, each vehicle capacity constraint (7.37) is a Knapsack like con-
straint. Then, any valid inequality for the Knapsack polytope: conv{z :
ZeeER deze < Q}, generates K valid inequalities for the CARP, one for
each vehicle p.

Two classes of valid knapsack constraints were used: minimal cover
and (1 — k) configuration constraints.

A set W C EpR is called a minimal cover if d(W) > Q and d(W \
{f}) £Qfor all f € W. If W is a minimal cover, then the constraint
2P(W) <| W | —1, for any vehicle p, is valid for the CARP.

A set W C Eg,anedge f € ER\ W and an integer 2 <t <| W | are
said to define a (1 — k) configuration if:

n d(W) < Q, and
s W/'U{f} is a minimal cover for every W’ C W such that | W’ |= t.

Then, for any integer r, t < r <| W |, and any subset 7,, C W such
that | T, |= r, the inequality (r — k + 1)3:? + 2P(T;) < r, for any vehicle
p, is valid for the CARP.

It is well known that minimal cover and (1 — k) configuration con-
straints can be lifted to produce facets of the knapsack polytope. Lifted

264 ARC ROUTING

constraints are not guaranteed to be facets for the CARP but they can
still be expected to be strong. The heuristic methods described in Crow-
der, Johnson & Padberg (1983) were used to separate and lift these
constraints.

In the work reported in Welz (1994), the CARP is formulated using
variables that take into account the direction in which each edge is tra-
versed. This formulation is fully described in Chapter 6, so it will not
be reproduced here. Welz uses separation heuristics for his odd cut and
connectivity inequalities that are similar to the ones here described.

4.2. SUPERSPARSE FORMULATION FOR
THE CARP

Consider any feasible solution of the CARP and let us define for each
edge e € F, the aggregated variable:

ze = total number of times that edge e has been traversed without being
serviced by all the vehicles.

For any S C V' \ {1}, let k(S) = [d(S)/Q]. Obviously, at least k(S)
vehicles are needed to service the edges in Eg(S) U ég(S).

Consider the following supersparse formulation for the CARP:

Minimize E CeZe

ecE
subject to
2(6(5)) = 2k(S)— | 6r(S) | VS SV \{1} (7.43)
2(6(S)) =21 VSCV\{1},|6r(S)| odd (7.44)
2220 VeeE (7.45)
Ze integer Ve€ E (7.46)

Constraints (7.43) are called capacity constraints and they express the
fact that at least k(S) vehicles must traverse the edge cutset §(S) to ser-
vice the edges in Eg(S)UbSg(S). Constraints (7.44) are the usual odd-cut
constraints which are also valid for the CARP. Note that the objective
function includes only the cost of the deadheading edges of the CARP
solution; the real cost includes also that of traversing exactly once all
the required edges, but this a fixed cost that cannot be minimized. Note
also that the number of vehicles is free in this formulation. '

On the other hand, note that the number of variables is | E |, which is
much less than that of the sparse formulation (at least K(| £ | + | Er |)).

Linear Programming Based Methods for Solving Arc Routing Problems 265

The main drawback of the supersparse formulation is that it is not com-
plete, as it contains integer solutions that do not correspond to feasible
solutions for the CARP.

2
2 2
~—(3)——s o—" 5
2 4 3 9 Q=25

Figure 7.1 CARP instance.

Consider the CARP instance of Figure 7.1. Note that the solution
{ze = 0 : e € E} satisfies all the capacity and odd-cut constraints. Nev-
ertheless, this solution cannot correspond to a feasible solution for the
CARP, as we now show. Consider the edge cutset defined by S = {6, 7},
then 6r(S) U Eg(S) = {(3,6),(7,4),(6,7)},d(S) = 19 and k(S) = 1.
Given that no deadheading edge exists in the edge cutset §(S), a single
vehicle will have to service the edges in ég(S) U Eg(S). This vehicle will
travel from the depot to node 3 or 4, service the edges in ég(S) U Eg(S)
and come back to the depot. Therefore, it will use two edge-disjoint
paths in graph G from the depot to nodes 3 and 4; but these paths have
a total demand of at least 8 and 8 + 19 = 27. As Q = 25, this vehicle
would exceed its capacity.

Although the supersparse formulation is not complete, it has been
used in Belenguer & Benavent (1998b) to compute a lower bound for the
CARP with a cutting plane algorithm that includes constraints (7.43)
and (7.44) as well as other new valid inequalities which are called Disjoint
Path inequalities. There are three classes of Disjoint Path inequalities,
denoted, respectively, DP1, DP2 and DP3, based on similar ideas.

266 ARC ROUTING

For instance, the following is a DP1 valid inequality for the CARP
instance depicted in Figure 7.1:

22(E") + 2(6(8)) > 2,

where § = {6,7} and E’' = {(1,2),(1,3),(1,4),(1,5),(2,3),(4,5)}. The
validity of this inequality becomes apparent by noting that, either:

(a) at least one deadheading edge in the set E' is used, so z(E') > 1, or

(b) the edges in §g(S) U Er(S) are serviced by more than one vehicle,
so z(6(S)) > 2.

In general, given a node subset S C V' \ {1}, such that 2k(S) >|
6r(S) |, and edge subset E' € E(V '\ S), the DP1 inequality associated
to S and E' is:

22(E") + 2(6(S)) = 2k(S)— | 6r(S) | +2 (7.47)

This inequality is valid if d(MCFP)+d(S) > k(S)Q, where d(MCF P)
is a lower bound on the total demand that k(.S) vehicles would have to
service on their way from the depot to edge cutset §(S) and on return,
assuming that z(E’) = 0. This lower bound can be computed by solving
a Minimum Cost Flow Problem where edge costs are set equal to the
edge demands.

Inequalities DP2 and DP3 are based on similar ideas, although they
are defined on a more involved configuration. Thus, while inequalities
DP1 are defined by a pair (S, E’),S C V' \ {1} and E’ C E, inequalities
DP2 and DP3 are defined by a sequence S C S; € ... C S, C V\ {1}
and a subset of arcs E/ C E which is empty in inequalities DP2. We
refer to the paper by Belenguer & Benavent (1998) for the details.

Let us consider now the separation routines that have been used for
the constraints in the supersparse formulation.

Let {zc : e € E} be the optimal solution of an LP containing the ob-
jective function, non-negativity constraints (7.45) and a subset of other
valid constraints for the supersparse formulation. Let G(z) be the graph
induced by the edges e € E with z. > 0, plus the depot (vertex 1).

The separation of the odd-cut constraints (7.44) can be done in poly-
nomial time with the algorithm of Padberg & Rao as explained in section
3.1.1.

Linear Programming Based Methods for Solving Arc Routing Problems 267

4.2.1 Capacity Constraints Separation.

The problem of identifying violated inequalities of type (7.43) seems to
be more difficult. In Belenguer & Benavent (1998a, 1998b) the following
heuristics were used to generate sets of nodes for which (7.43) is checked
for possible violation.

1 Compute the node sets of the connected components of G(z).

2 Find a node set S € V' \ {1} for which f(S) = > .cs5)2 —
2d(S)/Q+ | 6r(S) | is minimum. This can be done in polyno-
mial time by solving a maximum flow problem on a transformed
graph. If we consider the inequality that results when substituting
in (7.43) [d(S)/Q] by d(S)/Q, then f(S) represents the slack of
this inequality, so f(S) < 0 implies that it is violated by the LP
solution and, therefore, (7.43) is also violated. Obviously, (7.43)
must be checked even if f(S) > 0 as it is a stronger inequality. This
procedure is similar to the one due to Harche and Rinaldi (1993)
for the CVRP.

3 Substitute the demand d. of every edge e by (1 + p)d., where
0 < p < 1, and apply the previous procedure. Ten different values
for p have been used.

4.2.2 Disjoint Path Inequalities Separation.

The ‘identification of Disjoint Path (DP) inequalities is far more com-
plex than that of the previous ones. The method proposed by Belenguer
& Benavent(1998b) is as follows. The separation procedures used for
the capacity and odd-cut constraints generate a number of edge cutsets
whose corresponding node sets are stored in a pool to be used in the sep-
aration of DP inequalities. From this pool, three lists are built: INI, a
list of node sets, and SEQ2 and SEQ3, two lists of node sequences. Each
element of INI, SEQ2 and SEQ3, together with an edge set E’, defines a
candidate configuration for an inequality DP1, DP2 or DP3, respectively.
The edge set E' is usually defined as E' = {e € E(V'\S) : 2z = 0} for the
DP1 inequality and similarly for a DP3 inequality. Given a candidate
configuration for a DP inequality, first the tentative inequality is checked
for violation, and, if it is violated, it is then checked for validity, which
involves the solution of a maximum flow problem.

Once a violated (and valid) DP inequality is found, an attempt is made
to strengthen it in two ways: eliminating some edges of E’ and using the
parity requirement to decrease from 2 to 1 the coefficients of z. for the
remaining edges e € E’. We refer to Belenguer & Benavent(1998b) for
the details.

268 ARC ROUTING

4.3. EXACT METHODS BASED ON THE
SPARSE FORMULATION

Belenguer & Benavent(1994) have developed a Branch & Cut code for
the CARP based on the sparse formulation but including also capacity
constraints (7.43) and odd-cut constraints (7.44). Note that any valid
inequality for the supersparse formulation can be converted into a valid
inequality in the sparse formulation by substituting z, = Zpe Y5

The algorithm first looks for violated constraints of types (7.43) and
(7.44). The separation routines for the other inequalities (from the sparse
formulation) are called only in those iterations where no violated inequal-
ity of the former types is found.

At any iteration of the cutting plane algorithm, if the LP solution is
integer and represents a feasible solution of the CARP, it is the optimal
solution. Otherwise, the separation routines are called to identify vio-
lated inequalities and, if no one is found, a branching step is executed.
The following branching rule was used: select the edge e with greatest
demand among those for which 2% is not integer for some vehicle p; then,
create K new nodes by fixing the variable z2 = 1 for each vehicle j € I.
The possibility of facing an LP solution in which all the z£ variables are
integral but which does not represent a CARP solution (for instance,
because some 3£ were fractional) was not contemplated by the code, but
this possibility never occurred in the instances tested.

The algorithm was tested on the set of 24 instances used in Benavent,
Campos, Corberdan & Mota (1992) having a number of vehicles less than
5 . From this set, 16 instances were solved to optimality with less than
53 nodes in the Branch & Cut tree. Nevertheless, it was observed that
the instances optimally solved were precisely those for which the lower
bound at the root node was equal to the optimal cost. This lower bound
value was reached at the first stage of the cutting plane algorithm, where
only constraints (7.43) and (7.44) are used. The only use of constraints
from the sparse formulation, therefore, is to encourage integrality in the
LP solutions.

Welz (1994) has implemented a Branch & Bound algorithm for the
CARP based on his formulation. At the root node, he uses a cutting
plane algorithm where violated odd cut and connectivity constraints are
identified and added to the LP. When no violated inequality is found and
the solution is not feasible, an integer solution of the last LP is obtained
by invoking a Branch and Bound procedure. If this does not yield a
feasible solution, he adds more inequalities and tries again. The largest

Linear Programming Based Methods for Solving Arc Routing Problems 269

instances solved with this approach were : K=2, |V|=27, |E|=82 ; K=3,
|V|=16, |E|=48 and K=4, |V|=12, |E|=50.

4.4. A CUTTING PLANE ALGORITHM FOR
THE CARP BASED ON THE
SUPERSPARSE FORMULATION

Belenguer & Benavent(1998b) developed a cutting plane algorithm for
the CARP that uses all the previous separation routines for constraints
of the supersparse formulation. The lower bound obtained with this al-
gorithm outperforms any other existing lower bounding procedure for
the CARP. Nevertheless, even in the case that the LP solution is inte-
ger, the optimal solution cannot be obtained with this approach without
embedding the cutting plane algorithm into a Branch & Cut scheme.
The optimality of the computed lower bound can be stated only if a
heuristic CARP solution with the same cost is known. Comparing the
lower bound with the best upper bound known, it was found that it was
optimal for 21 out of the 24 above mentioned instances from Benavent et
al. (1992). In this paper 10 more difficult instances were also introduced
each with a number of vehicles greater than 7. For these instances, the
lower bound obtained at the root node with the above described Branch
& Cut algorithm that uses the sparse formulation was on average 4.18%
over the best known upper bound, while the lower bound obtained with
the cutting plane algorithm that uses the supersparse formulation had
an average deviation of 2.31%. On the other hand, the cutting plane
algorithm was also tested on the 23 instances used by Golden, DeArmon
& Baker (1983) and Pearn (1989) (removing 2 of them that presented
inconsistencies) and the lower bound was optimal in 19 of them, with an
average gap over the best upper bound known of 0.33%.

5. OTHER PROBLEMS

Letchford and Eglese (1997) studied an interesting Arc Routing Prob-
lem with Time Windows: The Rural Postman Problem with Deadline
Classes (RPPDC). Given that routing problems with time windows are,
in general, very hard to solve to optimality, some relaxations or special
cases of the general problem have been studied. In this case, customers
are divided into a small number of priority classes, each class having its
own time deadline. The paper describes a realistic situation with ap-
plications to the real world. The authors present a formulation of the
problem, a wide number of valid inequalities and a cutting-plane algo-
rithm useful for solving instances of moderate size.

In more detail, Letchford and Eglese (1997) deal with the problem of
finding a minimum cost route traversing a subset, Eg, of the edges of a

270 ARC ROUTING

graph where Ef, is divided into a number of deadline classes R',R?,. ..,
RL each class having its own time deadline: customers in R! must be
serviced by time T?, customers in R? must be serviced by time 72, and
so on. A feasible RPPDC route is regarded as being composed of L
phases. In phase 1 the vehicle services the edges in R* plus (optionally)
some edges in Rt U ... U RE. In the formulation of the problem, the
introduction of variables z,, defined as 1 if phase p ends at vertex v
and 0 otherwise, allows the global route to be split into in some partial
routes corresponding to the different phases, in a similar way to the case
of individual vehicle routes in the multivehicle problems: for each B,
1 < B < L, the vector Zil(xi + %) + 2%, where z* € IRF represents the
number of times each edge is traversed without servicing and y* € RF is
the incidence vector of the edges serviced in phase i, represents a solu-
tion of the ”"quasi-RPP” problem defined on graph G, where the edges in
R'U...URP are required edges and, furthermore, the route must cross
exactly one edge in {(v,0),v € V}.

Hence, some valid inequalities can be obtained in a natural way from
the facet-inducing inequalities for L separate RPP instances. These are
called Strong Cumulative constraints (connectivity, R-odd, K-C, etc.)
by the authors. Other constraints, representing the interaction of differ-
ent phases, are also introduced.

Letchford and Eglese (1997) implement a dual cutting-plane algorithm
in which violated inequalities are identified and added to an initial LP
relaxation as cutting-planes. When no more violated inequalities can be
found, branch-and-bound is invoked to obtain integrality. If the resulting
integer solution is not feasible and violates more known inequalities,
those inequalities are added to the LP and the cutting plane procedure
continues again, followed by branch-and-bound and so on. The test
problems were adapted from the 5 most difficult instances in Corberan
and Sanchis (1994). For each one of this instances, two deadline versions
were solved, with L = 1 and with L = 2.

6. CONCLUSIONS

In this chapter, we have outlined the LP based methods, cutting plane
and Branch & Cut procedures, that have been implemented for several
Arc Routing Problems (ARP). Special attention have been given to the
inequalities for which a separation procedure have been proposed, as well
as to the procedures themselves. These methods have proved to be very
useful to solve ARPs, just as they are for many other Combinatorial
Optimization Problems (COPs).

Linear Programming Based Methods for Solving Arc Routing Problems — 271

It can be said that they have praduced best results, when compared
with other methods, on almost all ARPs to which they have been applied.
Nevertheless, for most of them, only cutting plane algorithms have been
implemented. Although many instances have been solved using such al-
gorithms, cutting plane methods do not guarantee to solve exactly all
the instances, but only to produce a lower bound. This is therefore only
a first step: to obtain good lower bounds assessing the quality of the so-
lutions produced by the many new heuristic approaches for COPs and,
particularly, for ARPs (see Chapter 9 of this book), as well as to give
information about how good our understanding of their associated poly-
hedra is. The following step, the implementation of a complete Branch
& Cut scheme producing optimal or provably good solutions (see Jiinger,
Reinelt & Thienel, 1994), remains to be done for most of the ARPs.

The work done so far provides a library of tools that makes it easier
to attack the resolution of more complex ARPs: many classes of valid
inequalities and their corresponding separation procedures are known.
As it has been presented here, many ARPs share some classes of valid
inequalities, maybe with minor differences, so separation algorithms can
be adapted easily. The hope of the authors is that the ideas presented in
this chapter can be used for the resolution of other Arc Routing Prob-
lems.

Acknowledgments

We are grateful to Adam Letchford who read an earlier version of the
manuscript and made many valuable comments.

References

(1] Assad, A'A. & B.L. Golden (1995) Arc routing methods and applica-
tions. In M.O. Ball, T.L. Magnanti, C.L. Monma & G.L. Nemhauser
(Eds.) Network Routing. Handbooks of Operations Research and
Management Science, 8. Amsterdam: North Holland.

[2] Ball, M.O. & M.J. Magazine (1988) Sequencing of insertions in
printed circuit board assembly. Operations Research, 36, 192-201.

[3] Belenguer, J.M. & E. Benavent (1992) Polyhedral Results on the
Capacitated Arc Routing Problem. Working Paper, Dept. of Stats
and OR, University of Valencia, Spain.

[4] Belenguer, J.M. & E. Benavent (1994) A Branch and Cut algorithm
for the Capacitated Arc Routing Problem. Workshop on Algorith-
mic Approaches to Large and Complex Combinatorial Optimization
Problems. Giens, France.

272

(5]

(6]

(12]

[13]

(14]

[15]

ARC ROUTING

Belenguer, J.M. & E. Benavent (1998a) The capacitated arc routing
problem: valid inequalities and facets. Computational Optimization
& Applications, 10, 165-187.

Belenguer, J.M. & E. Benavent (1998b) A cutting-plane algorithm
for the capacitated arc routing problem. Working Paper, Dept. of
Stats and OR, University of Valencia, Spain.

Benavent, E., V. Campos, A. Corberdn & E. Mota (1992) The Ca-
pacitated Arc Routing Problem : lower bounds. Networks, 22, 669-
690.

CPLEX Optimization Inc., CPLEX, ver. 3.0, 1994,

Christofides, N. (1973) The optimum traversal of a graph. Omega,
1, 719-732.

Christofides, N., E. Benavent, V. Campos, A. Corberan & E. Mota
(1984) An optimal method for the mixed postman problem, in P.
Thoft-Christensen (Ed.) System Modelling and Optimization, Lec-
ture Notes in Control and Inf. Sciences, 59. Berlin: Springer.

Christofides, N., V. Campos, A. Corberdn & E. Mota (1981) An
algorithm for the rural postman problem. Report IC.O.R.81.5, Im-
perial College, London.

Christofides, N., V. Campos, A. Corberdn & E. Mota (1986) An al-

gorithm for the rural postman problem on a directed graph. Math-
ematical Programming Study, 26, 155-166.

Corberén, A., A. Letchford & J.M. Sanchis (1998) A Cutting Plane
Algorithm for the General Routing Problem. Working Paper. Dept.
of Stats and OR, University of Valencia, Spain.

Corberdn, A., A. Romero & J.M. Sanchis (1999) The General Rout-
ing Problem on a Mixed Graph. Working paper, Dept. of Stats and
OR, University of Valencia, Spain.

Corberédn, A. & J.M. Sanchis (1994) A polyhedral approach to the

rural postman problem. European Journal of Operational Research,
79, 95-114.

Corberdn, A. & J.M. Sanchis (1998) The general routing problem
polyhedron: facets from the RPP and GTSP polyhedra. European
Journal of Operational Research, 108, 538-550.

Cornuéjols, G., J. Fonlupt & D. Naddef (1985) The traveling sales-
man problem on a graph and some related integer polyhedra. Math-
ematical Programming, 33, 1-27.

Crowder, H.P., E.L. Johnson & M.W. Padberg (1983) Solving Large-
Scale Zero-One Linear Programming Problems Operations Research
31, 803-834.

Linear Programming Based Methods for Solving Arc Routing Problems — 273

[19]

20]

(21]

27]

28]

Dantzig, G.B., D.R. Fulkerson & S. M. Johnson (1954) Solution of
a large scale traveling salesman problem Operations Research, 2,
393-410.

Edmonds, J. (1963) The Chinese postman problem. Operations Re-
search, 13, Suppl. 1, B73-B77.

Edmonds, J. (1965) Maximum Matching and a Polyhedron with 0,1
Vertices. Journal of Research National Bureau of Standards., 69B,
125-130.

Edmonds, J. & E.L. Johnson (1973) Matchings, Euler tours and the
Chinese postman. Mathematical Programming, 5, 88-124.

Eiselt, H.A., M. Gendreau & G. Laporte (1995) Arc-routing prob-
lems, part 1: the Chinese postman problem. Operations Research,
43, 231-242.

Eiselt, H.A., M. Gendreau & G. Laporte (1995) Arc-routing prob-
lems, part 2: the rural postman problem. Operations Research, 43,
399-414.

Fischetti, M., J.J. Salazar & P. Toth (1997) A Branch and Cut Algo-
rithm for the Symmetric Generalized Traveling Salesman Problem.
Operations Research 45, 378-394.

Fleischmann, B. (1985) A cutting-plane procedure for the traveling
salesman problem on a road network. European Journal of Opera-
tional Research, 21, 307-317.

Ford, L.R. & D.R. Fulkerson (1962) Flows in Networks. Princeton
University Press, Princeton, NJ.

Ghiani, G. & G. Laporte (1997) A Branch-and-Cut Algorithm for
the Undirected Rural Postman Problem. Centre de Recherche sur
les Transports, University of Montreal. Technical Report CRT-97-54
(December 1997).

Golden, B.L. & R.T. Wong (1981) Capacitated arc routing prob-
lems. Networks, 11, 305-315.

Golden, B.L. J.S. DeArmon & E. Baker (1983) Computational ex-
periments with Algorithms for a class of Routing Problems. Com-
puters and Operations Research 10, 47-59.

Gomory, R.E. (1958) Outline of an algorithm for integer solutions
to linear programs. Bull. Amer. Math. Soc. 64, 275-278.

Gomory, R.E. (1963) An algorithm for integer solutions to linear
programs. In R.L. Graves and P. Wolfe, eds., Recent Advances in
Mathematical Programming, McGraw Hill, New York, 269-302.
Gomory, R.E. & T.C. Hu (1961) Multi-terminal network flows.
SIAM Journal on Applied Mathematics., 9, 551-570.

Grotschel, M. & O. Holland (1985) Solving matching problems with
linear programming. Mathematical Programming, 33, 243-259.

274

(35]

(36]

[49]

ARC ROUTING

Grotschel, M. & O. Holland (1987) A Cutting Plane Algorithm for
Minimum Perfect 2-Matchings. Computing, 39, 327-344.

Grotschel, M. & M.W. Padberg (1979) On the symmetric traveling
salesman problem I: inequalities. Mathematical Programming, 16,
265-280.

Grotschel, M. & Z. Win (1988) On the windy postman polyhedron.
Report No. 75, Schwerpunkt-progam der Deutschen Forschungs-
geneinschaft, Universitit Augsburg, Germany.

Grétschel, M. & Z. Win (1992) A cutting plane algorithm for the
windy postman problem. Mathematical Programming, 55, 339-358.

Guan, M. (1962) Graphic programming using odd or even points.
Chinese Mathematics, 1, 237-277.

Guan, M. (1984) On the windy postman problem. Discrete Applied
Mathematics, 9, 41-46.

Gun, H. (1993) Polyhedral structure and efficient algorithms for
certain classes of directed rural postman problem. PhD dissertation,
Applied Math. Program, University of Maryland at College Park,
Md.

Harche, F. & G. Rinaldi (1991) Vehicle Routing. Private communi-
cation.

Hertz, A., G. Laporte & P. Nanchen (1998) Improvement Procedures
for the Undirected Rural Postman Problem. Centre de Recherche sur
les Transports, University of Montreal. Technical Report CRT-96-30
(revised March 1998).

Jiinger, M., G. Reinelt & G. Rinaldi (1995) The traveling sales-
man problem. In M.O. Ball, T.L. Magnanti, C.L. Monma & G.L.
Nemhauser (Eds.) Network Models. Handbooks on Operations Re-
search and Management Science Vol. 7. Amsterdam: Elsevier.
Jiinger, M., G. Reinelt & S. Thienel (1994) Provably good solutions
for the traveling salesman problem. ZOR - Math. Meth. Oper. Res.,
40,183-217 .

Lenstra, J.K. & A.H.G. Rinnooy-Kan (1976) On general routing
problems. Networks, 6, 273-280.

Letchford, A.N. (1997a) New inequalities for the General Routing
Problem. Furopean Journal of Operational Research, 96, 317-322.

Letchford, A.N. (1997b) The General Routing Polyhedron : a uni-
fying framework. Forthcoming in European Journal of Operational
Research.

Letchford, A.N. & R.W. Eglese (1998) The rural postman problem
with deadline classes. Furopean Journal of Operational Research,
105, 390-400.

Linear Programming Based Methods for Solving Arc Routing Problems — 275

[50]

51
52
53
54

[55]

56]

(61]

Liebling, T.M. (1970) Graphentheorie in Planungs - und Touren-
problemen. Lecture Notes in Operations Research and Mathematical
Systems 21, Springer, Berlin.

Martello, S. & P. Toth (1990) Knapsack Problems: Algorithms and
Computer Implementations. John Wiley.

Nobert, Y. & J.C. Picard (1996) An optimal algorithm for the mixed
chinese postman problem. Networks, 27, 95-108.

Orloff, C.S. (1974) A fundamental problem in vehicle routing. Net-
works, 4, 35-64.

Padberg, M.W. & M.R. Rao (1982) Odd minimum cut-sets and b-
matchings. Mathematics for Operations Research, 7, 67-80.
Padberg, M.W. & G. Rinaldi (1987) Optimization of a 532 City
Symmetric Traveling Salesman Problem by Branch and Cut. Oper-
ations Research Letters, 6, 1-7.

Padberg, M.W. & G. Rinaldi (1990) Facet identification for the sym-
metric traveling salesman polytope. Mathematical Programming, 47,
219-257.

Padberg, M.W. & G. Rinaldi (1991) A branch-and-cut algorithm for
the resolution of large-scale symmetric traveling salesman problems.
SIAM Review, 33, 60-100.

Papadimitriou, C.H. (1976) On the Complexity of Edge Traversing.
J. ACM 23, 544-554.

Pearn, W.L. (1989) Approximate solutions for the Capacitated Arc
Routing Problem. Computers and Operations Research 16, 589-600.
Picard, J.C. & M. Queyranne (1980) On the structure of all min-
imum cuts in a network and applications. Mathematical Program-
ming, 13, 6-16.

Picard, J.C. & H.D. Ratliff (1975) Minimum cuts and related prob-
lems. Networks 5, 357-370.

Romero, A. (1997) On Mixed Rural Postman Problem. PhD Dis-
sertation (in spanish), Dept. of Statistics and OR, University of
Valencia, Spain.

Savall, J.V. (1990) Polyhedral results and approximate algorithms
for the directed rural postman problem. PhD Dissertation (in Span-
ish), Dept. of Statistics and OR, University of Valencia, Spain.
Welz, S.A. (1994) Optimal solutions for the capacitated arc routing
problem using integer programming. PhD Dissertation, Dept. of QT
and OM, University of Cincinnati.

Win, Z. (1987) Contributions to routing problems. Doctoral Disser-
tation, Universitdt Augsburg, Germany.

Chapter 8

TRANSFORMATIONS AND EXACT NODE

ROUTING SOLUTIONS BY COLUMN
GENERATION

Moshe Dror

University of Arizona

André Langevin
GERAD and Ecole Polytechnique

1. Introduction
2. Transformations to Node Routing: Why?
2.1 The Capacitated Rural Postman Problem
2.2 Mathematical Formulation of the CARP
2.3 When to Transfer to Node Routing
3. Arc Routing Transformations: How
3.1 Transformations of Uncapacitated Arc Routing
Problems
3.2 Transformations of Capacitated Arc Routing
Problems
3.3 Transformation of CARP with Time Windows
to VRPTW
3.4 Split Delivery Arc Routing with Time Windows
4. Column Generation for Routing Problems with
Non-split Delivery
4.1 Revised Simplex: Chvdtal’s Introduction to
Column Generation
4.2 Set Covering, Vehicle Routing, and Column
Generation
4.3 The Shortest Path Subproblem
4.4 An Algorithm for the Shortest Path with
Resource Constraints
4.5 Solving SPRCP with only Elementary Paths
5. Column Generation for Routing Problems with Split
Delivery

278
279
279
280
282
283
284
285

287
289

290

290

292
294

295
297

305

278 ARC ROUTING

5.1 Properties or Split Deliveries with Triangle

Inequality 306
5.2 Formulation 308
5.3 Set Covering Approach for Split Deliveries 309
5.4 The Subproblem for Generating Feasible
Columns for Split Delivery 311
5.5 The Computational Phase: A Mixed Integer
Solver and a Dynamic Programming Algorithm 314
5.6 Another Set Covering Formulation for SDVRPTW 317
6. Conclusion 322

1. INTRODUCTION

This chapter examines arc routing problems from the “dual” perspec-
tive of node routing. It first attempts to explain and respond to a ques-
tion from a “typical” engineering and applied mathematics graduate who
was exposed to classical node routing problems such as the transporta-
tion and the traveling salesman problems, and ventured a little into the
vast literature on problems and solutions for the different variants of vehi-
cle routing (node routing) problems. Why shouldn’t (or why should) any
arc routing problem be viewed as some version of a node routing prob-
lem, pending an appropriate transformation of the corresponding graph?
The first part of this chapter will examine this question addressing the
issue of when such a transformation is necessary and the complementary
question of when, or for what arc routing problems, from computational
point -of view, a transformation to node routing is inappropriate. In
addition, the first part will attempt to provide a partial account of the
different transformation schemes proposed over the years for arc routing
problems into node routing setting. For an excellent write-up of exact
solution methodologies for “hard” arc routing problems addressed with-
out transformation to a node routing setting the reader is directed to
chapters in this book by Eglese and Letchford, Benavent, Corberdn, and
Sanchis, and Johnson.

However, the second and the main part of the chapter focuses on
providing a state-of-the-art survey of column generation methodology
and its computational promise for solving node routing problems. The
emphasis is on exact solutions to vehicle routing problems with time
windows with and without split deliveries. The motivation stems from
the fact that arc routing problems with time windows are very hard
to model directly without an extensive graph modification (Mullaseril,
1996, Mullaseril and Dror, 1997, Dror, Leung, and Mullaseril, this book)
and require transformation to node routing before an attempt of finding
exact solutions can be made. This motivational aspect will be examined
in more detail in the first part of this chapter.

Transformations and Ezact Node Routing Solutions by Column Generation 279

2. TRANSFORMATIONS TO NODE
ROUTING: WHY?

We begin this section with the description of what is called the Rural
Postman Problem (RPP) since it encapsulates a number of well known
classical node and arc routing problems. We provide a mathematical
formulation of the capacitated RPP which is amenable to straightfor-
ward modification for a split delivery option. Following the capacitated
RPP model we examine the problem of introducing time windows for
arc delivery into such a model (for motivation see Dror and Leung, 1998,
and Dror, Leung, and Mullaseril, this book). The time window model-
ing problem impels the necessity of the transformation from arc routing
graph description of the problem into the node routing problem setting
which leads into the section describing problem transformations.

2.1. THE CAPACITATED RURAL POSTMAN
PROBLEM

Given a connected graph G = (N, F U A), with N as the set of nodes
(vertices), E set of edges (E C N x N) and A a set of arcs (A C N x N),
the Rural Postman Problem (RPP) is the problem of finding a minimum
cost traversal of a given subset of edges and arcs in R € E U A. The
set R is usually referred to as the required edges and arcs. If the set of
edges F = (), the corresponding problem is sometimes referred to as the
directed RPP (or undirected RPP in case A = 0).

We note from the outset that the (RPP) is strongly AN'P-hard even
for completely directed and completely undirected graphs (see Lenstra
and Rinnooy Kan, 1976, Garey and Johnson, 1979, and Papadimitriou,
1976). For the additional graph theory terminology and notation the
reader is directed to Fleischner (this book).

The Capacitated Rural Postman Problem, usually denoted as the Ca-
pacitated Arc Routing problem or in short as CARP, has in addition to
traversal cost for each edge and arc, a positive demand value associated
with each edge and arc in the subset R. Subsequently, the CARP is the
problem of finding a minimum cost cover of a given subset R by a set
of traversal circuits with one common node (the depot) such that the
total demand of edges from R serviced (delivered) in each circuit does
not exceed some value @ > 0 (vehicle capacity). Note that in the case
that vehicle capacity @ is less than the total demand on the edges of R,
the CARP solution will require some integer number (> 1) of traversal
circuits to service the edges in R, versus a single circuit (vehicle) solution
outcome for the RPP. Disregarding at this point the issue of the timing

280 ARC ROUTING

of traversals for each edge in R, the formulation of the CARP for the
graph G taken from Dror and Leung (1998) is presented below.

2.2, MATHEMATICAL FORMULATION OF
THE CARP

Let
¢i; = the demand along edge (arc) (3,j) € R,

Q. = the capacity of traversal circuit (¢trip) v,

cij = the cost of an edge (arc) (4,7) € E(A). (Note that initially
cij >0,V (4,5) € EUA),

z7; = the number of times edge (arc) (i,j) € E'U A is traversed

in trip v,
V = the upper bound on the number of traversal circuits,
» _ | 1 if the edge or arc (4,7) € R is covered in trip v,
Y5 =1 0 otherwise.

Node 0 is designated as the depot.

In capacitated edge (arc) routing problems we have basically two costs
(or more in case of a heterogeneous vehicle fleet) for traversing each
edge in R. The unavoidable cost is that of “deadheading” (nondelivery)
traversal. It has to be accounted for in any solution to the CARP and
it is some constant for traversing all the edges and arcs in R, and does
not have any role in solving the CARP if split edge or arc deliveries are
not allowed. The c¢;;, as denoted above, account only for the incremental
cost (the additional delivery service cost) of traversing the edge (arc)

(1,5).
14
(CARP): min Z Zcij:vfj
(@j)eE v=1
subject to Zmzi-—Zx}’kzo,\/ieN,v———l,Q,...,V,
keN keN

|4
>yl =1,Y(,5) € R,
v=1

S gyl < Quu=1,---V,

(i.)eR

2l 29, V(6,5) € Ru=1,2,...,V,
VS CR,

igN[S],jEN]S] (5.k)eS v=1,...,V,

Transformations and Exact Node Routing Solutions by Column Generation — 281

vy €{0,1},¥(,5) e Ru=1,...,V,
:13:-}]- & Z+,V('i,j) eFuv=1,... ,V,

where M is a large constant greater than or equal to sum of traversals
of arcs and edges in any given S C R, and N[S] is the set of nodes
incident to the arc set S. In this formulation, the index v denotes a trip,
and V is the maximum number of trips allowed. We come back to this
formulation later when we discuss the column generation approach for
routing problems.

The objective function represents the total distance covered by all
traversal circuits. Note that edges are allowed to be traversed an integer
number of times (that is, more than once). The first set of constraints
are the common ‘flow conservation’ constraints for network-flow formu-
lations. The second set of constraints require that at least one traversal
is made for each of the edges in R. The third set of constraints are the
capacity constraints. The next set of constraints require that the traver-
sal circuit v covers the edge (7,7) € R if it delivers its demand. The fifth
set of constraints are subtour-elimination constraints ensuring each trip
is connected to the depot. Note that this formulation of the CARP is
different and more direct than the one given in Golden and Wong (1981)
with respect to subtour elimination constraints and the integrality re-
quirement on z7; variables.

In the next subsection, we introduce the issue of time windows and
their relation to the CARP solution.

2.2.1 Time Window Constraints for Arc Routing.

In this section, we examine time-window constraints for the CARP and
point out the difficulty of formulating the mathematical linear integer
programming model for CARP with time windows, which turns out to
be a much more difficult task than modeling its node-routing (VRP)
counterpart.

Associate with each edge (arc) e € R a time window [ae, be] within
which delivery must be completed, and a positive duration t. for the
traversal of edge or arc e at the delivery speed. In addition, with each
arc or edge in R, we associate a delivery starting time and completion
time, indicating the times when the vehicle starts the delivery traversal
of the edge (arc) and completes the delivery (service) traversal of the
edge (arc) respectively.

282 ARC ROUTING

In the vehicle routing literature for node-routing problems with time
windows, the original “physical” network can be augmented by adding
an arc (¢,7), with its edge-length equal to the ‘shortest-path’ distance,
whenever there is a path from ¢ to j in the original network. With
this augmented network, we can then make the assumption that a node
is visited no more than once, and the time-window restrictions can be
modeled by the constraints:

x; (] +ti; —t7) <0,V(i,5) € AUE, Vv,
a; <t¥ < b;,Vi €N, Vo,

where t? is a decision variable representing the time when vehicle v ar-
rives to deliver to node i, [a;, b;] is the allowed time window for node ¢
and t;; is the traversal time for edge (arc) (7,j) (see Desrosiers, et al.,
1995). Note that in this formulation, waiting is allowed at customer
nodes.

It is important to note that in an arc routing problems such as CARP,
each arc or edge e € R is serviced exactly once but can be traversed an
additional number of times in a deadheading mode if so required by the
minimum-distance objective. Hence, we cannot associate a unique start-
ing and completion time for an edge (arc) e € EU A. Moreover, it is
not possible to augment the network in a manner analogous to node-
routing problems to get an equivalent formulation where edges and arcs
(or nodes) are visited only once. Thus, the addition of time window re-
quirements for the edges (arcs) in R precludes a direct edge/arc routing
integer linear programming model formulation for the CRPP or even for
the RPP problem. This compels the modeler to seek alternative mod-
eling approaches and to express arc routing settings with time windows
by using graph transformations which necessarily cast the arc routing
problems in terms of their node routing counterparts.

2.3. WHEN TO TRANSFORM TO NODE
ROUTING

The theory of complexity of combinatorial problems such as CARP
classifies problems as ‘hard’ (not known to be solvable in polynomial
time complexity) or ‘easy’ for which known polynomial time procedures
exist with guarantee of reaching an optimal solution. The majority of
problems examined in this book belongs to so called A"P-class (see chap-
ter in this book by Dror, and the book by Garey and Johnson, 1979).
One of the main results laid in the foundations for the theory of N'P-
completeness paper by Cook (1971), was in proving that every problem
in N'P-class of decision problems can be polynomially reduced to the
“satisfiability” problem. Furthermore, this property of reducibility for

Transformations and Exact Node Routing Solutions by Column Generation — 283

the satisfiability problem is shared by entire equivalence class of prob-
lems called N'P-complete problems. One of the N'P-complete problems
is stated as a decision version of the traveling salesman problem (TSP).
Thus, in principle, one can transform in polynomial time any arc rout-
ing problem (or for that matter any problem in N'P) to a TSP problem
version (instance). However, this makes computational sense only for a
selective small subset of problems. The next section in this chapter de-
scribes a number of direct transformations for arc routing problems into
instances of node routing problems. It is perhaps quite transparent that
some arc routing problems ought not to be transformed to node routing
setting since, as Johnson and Papadimitriou (1985) point out, one might
be transforming “easy” problems to a very “hard” problem — the TSP.

For instance, given the classical Chinese Postman Problem (CPP) on
an undirected graph, it is well known that an optimal solution to the
problem can be constructed in time complexity dominated by the com-
plexity of the corresponding minimum weight matching problem for the
odd degree nodes of this graph. Since an efficient (O(]N|?®)) algorithm
exists for the corresponding matching problem (see Derigs, this book),
there is clearly no computational advantage in transforming the undi-
rected CPP to a node routing problem setting. Identical argument can
be used for the directed CPP, since this problem can also be solved in
its arc routing version by polynomial time algorithms dominated by the
complexity of the corresponding transportation problem. It is perhaps
not surprising that arc routing problems are considered “easier” than
most node routing problems. This intuitive view might have its roots in
the fact that “early” arc routing problems such as the Chinese Postman
Problem (CPP) are solvable in polynomial time asking to prescribe an
arc (or edge) ‘covering’ solution, whereas node routing is more of a ‘arc
selection and partition’ process.

However, for arc routing problems which are N'P-hard, it might be of
computational interest to examine solution schemes in their transformed
node routing image. As indicated above, for the arc routing problems
with time windows, this is absolutely essential. Moreover for some arc
routing problems, like the Mixed RPP and the Stacker Crane Problem,
the only known exact method, uses a transformation into node routing
problems.

3. ARC ROUTING TRANSFORMATIONS:
HOW

This section examines a number of well known and more recent graph
transformations which accept a routing problem statement expressed in
terms of arc/edge traversals and converts it to a node routing problem

284 ARC ROUTING

on a related graph. The node routing solution on the modified “dual”
graph is equivalent to the arc/edge traversal solution on the original
graph. Clearly, one can also transform a node routing problem state-
ment on a given graph into a arc/edge traversal problem statement on
an appropriately modified graph where the arc/edge traversal solution
would correspond to a node routing solution on the original graph. How-
ever, this transformation of a routing problem is almost never executed
in practice for obvious computational reasons since it results in many
disconnected arc routing subgraphs connected by arcs and edges which
need not be traversed (i.e., the result is usually a many component RPP).

3.1. TRANSFORMATIONS OF
UNCAPACITATED ARC ROUTING
PROBLEMS

Laporte (1997) describes several classes of arc routing problems for
which he provides a transformation into node routing problems and pro-
ceeds to solve these problems as TSPs. The transformation described
by Laporte is a two phase procedure applied uniformly to the Mixed
Chinese Postman Problem (MCPP), the Windy Chinese Postman Prob-
lem (WCPP), the Stacker Crane Problem (SCP), and the variations of
Undirected, Directed, Mixed, and Windy Rural Postman Problems. In
phase 1 of the transformation procedure, the problems are transformed
to what is called the Generalized TSP (GTSP), which is defined below.
In the second phase, the corresponding GTSPs are transformed into TSP
problems, completing the transformation to a “classical” TSP instance.
Below we outline in some detail Laporte’s graph transformations.

Given a graph G = (N, AU E), where N is a finite set of nodes, A
(A C N x N) is a set of arcs without self cycles, and E is a set of edges
without self loops and a “length” function defined on AU E. The trans-
formation can be described as follows: replace each edge e;; € E by two
arcs a;; and aj;. The length of the corresponding a’s is the same as that
of e. The new graph G’ = (N, A’) is a directed graph (directed “ver-
sion” of G). In the next step, a complete (directed) graph H = (V, B)
is constructed with two directed arcs between every pair of nodes. The
set of nodes V consists of one node for each arc in the directed graph
G’ obtained earlier. Thus, an edge 7 € E is represented by two nod:-
set N; in V and an arc j € A by only one node set N; (a singleton)
in V. Denote by K the total number of such node sets in V. For each
arc a € B, determine its length c(a) using the shortest path distance
obtained on the graph G’. For completeness, note that in the case when
length of the shortest path between two nodes ¢ and j in G’ is oo, then
there is no arc (7,7) in B.

Transformations and Exact Node Routing Solutions by Column Generation ~ 285

Given graph H = (V = UX | N;, B), the so called Generalized Travel-
ing Salesman Problem (GTSP) consists of constructing a minimal length
circuit on H which contains exactly one node from each subset Nj,i =
1,...,K. Laporte (1997) continues this transformation process by im-
plementing the rules described in Noon and Bean (1993) which transform
a GTSP problem into a classical (directed) TSP instance.

The significance of Laporte’s work lies in the computational part of
his paper. Some problems, like the Mixed RPP, and the SCP, in their
arc routing version have not been solved to proven optimality. Thus,
the transformations to node routing and their subsequent solutions are
encouraging since they lead to optimal solutions for the corresponding
original arc routing problems. For the Mixed CPP, the more recent re-
sults on the arc routing version by Nobert and Picard (1996) outperform
the results obtained by Laporte (1997) on the transformed node routing
problems. For the Directed RPPs the results are inconclusive since the
reported exact solutions of Christofides et al. (1986) are more than fif-
teen years old.

At this point it is perhaps appropriate to remark that the undirected
arc routing problems require an additional phase in their transformation
to node routing. Specifically, each edge creates a pair of nodes in the
transformed graph only one of which has to be visited. Thus, in that
case there is the need of transforming a GTSP instance before solving
it into a TSP instance. In the directed arc routing case the transformed
problem is already a TSP.

We also note that recently there has been a study of the Generalized
Vehicle Routing Problem (GVRP), which is the problem of designing op-
timal capacitated delivery routes starting from a depot to a number of
mutually exclusive and exhaustive clusters of customers, visiting exactly
one customer in each cluster. This node routing problem was trans-
formed into a capacitated arc routing problem (Ghiani and Improta,
2000) which then was solved using a heuristic methodology designed to
solve arc routing problems (see Hertz and Mittaz, this book).

3.2. TRANSFORMATIONS OF
CAPACITATED ARC ROUTING
PROBLEMS

A node routing problem can be transformed into an arc routing prob-
lem simply by replacing each node i € N that requires delivery (service)
of ¢; with an edge. The two nodes of such edge are adjacent to all the
other nodes the original node 7 has been adjacent to. On the other hand,

286 ARC ROUTING

the opposite direction transformation is a little more involved. For the
capacitated arc routing problem (CARP), Pearn et al. (1987) (see also
Assad and Golden, 1995) describe the following transformation into an
equivalent vehicle routing problem (node routing). As in subsection 2.2,
consider a directed graph G = (N, A), with node set N and an arc set
A together with a “distance” or “cost” value for each arc (i,7) € A de-
noted by ¢;; and a positive value @ (Q = vehicle capacity). Also with
each such arc (¢,7) € A a “demand” value ¢;; > 0 (delivery or collection
as the case may be) is specified. Designate node 0,0 € N as the depot.
The CARP problem requires finding a set of circuits on G with node 0
in common, covering all the arcs in A at minimum cost and such that
the total demand over the arcs in each circuit does not exceed the value

Q.

Pearn et al. (1987) transformation proceeds as follows: First, replace
each arc (i,j) € A with three nodes: s(;;),m;;), and s(j;). The nodes
are referred to as near-side, middle, and far-side nodes respectively. Let
N = {0} U {s(ij), m@;), S(j)|(5,7) € A} be a set of nodes of the new
graph G’ for the corresponding instance of the vehicle routing problem.
Denote by d(i, j) the least cost path between nodes i and j in the original
graph G. In order to determine the cost of the arcs (directly going be-
tween two nodes) in N’ define the following distance function d : N’ x N':

d(ss;) = { (1/4)(cij + cu) +d(i, k) V(i,5) # (k1)
S Sk = d(s), S(ky) = 0 if (4,7) = (k,1)
d(p7s('ij)) = (1/4)C1] +J(pv7’)a VPE N’

d(sijy,maz) = d(meg), sgiy) = (1/4)ci;

and the distance from and to any m;;) node to nodes other than its
far-side and near-side nodes is set to co.

The demands at the N’ nodes are set as follows: q(s(;5)) = q(m(j;) =
q(s(ji)) = (1/3)gi;. The depot (node 0) has no demand associated with it.

Since in the classical vehicle routing problem each customer (a node
in G’) can only be visited by a single vehicle (no split deliveries), this
transformation guarantees that the nodes s(;;), m(i5), S(ji) corresponding
to the same arc in the original graph G appear consecutively on the same
vehicle route for the VRP solution. Since converting a single arc into
three nodes adds only two arc segments, one needs to add (1/4)th of the
original arc distance when entering near-side node (s(;;)), (1/4)th of the

Transformations and Exact Node Routing Solutions by Column Generation — 287

original arc distance when leaving the far-side node (s(;;)), and half of
the arc distance when going from s(;5) to s(;;) through m;.

This transformation by Pearn et al.(1987) converts the CARP with | A|
arcs into a VRP with 3| A|+1 nodes, thus more than tripling the problem
size relative to the arc routing problem version. Since the VRP exact
solution methodologies based on implicit enumeration, such as branch
and bound techniques, are very sensitive to problem size this transfor-
mation’s tripling size effect might have implications on the solvability
of a problem. As stated by Eiselt et al. (1995b), “the interest of these
transformations is mostly formal and their algorithmic value has yet to
be demonstrated”.

3.3. TRANSFORMATION OF CARP WITH
TIME WINDOWS TO VRPTW

Given any instance of a capacitated arc routing problem on a graph
G = (N, AU E), with time windows only for a subset of required arcs R
in A (i.e., a special case of CARP with time windows), one can formu-
late an equivalent directed vehicle routing problem with time windows
(VRPTW) by performing a graph transformation originated by Mul-
laseril (1996), reproduced in Mullaseril and Dror (1997), and similar
to the transformation described independently in Laporte (1997). This
transformation is described below.

Construct a complete graph G' = (N’, A’) whose node-set N’ consists
of nodes which correspond to the subset of required arcs a € R C A
(IN'| = |R|). Each arc a € A has an incident node in N at the tail of the
arc and an incident node in NV at head of the arc. Let the length of an arc
(¢,7) € A’ be the shortest path (without delivery) distance between the
head node of arc €' € A and the tail node of arc e/ € A denoted by Cij,
where both arc €* and e’ are required arcs (i.e., are members of R C A)
each with its corresponding node in N’. The demand and time window
associated with any node ¢ € N’ will be the same as its “originating”
arc e € R. Since each arc e € R has a length c(e), each node i € N’
has a “length” (a cost) corresponding to the length of the arc. This
cost will not be used in the subsequent mathematical formulation for
the transformed problem, however this cost is used to calculate ¢;;, the
time required by any trip to travel from node 7 to any node j in N’ in
the following manner:

tij = ¢;/SL + ¢ij

Let Sy, be the “service rate” (the time required to deliver service to one
unit of arc length), and where ¢; is the cost (length) associated with
node ¢ € N’, and c¢;; is the length of the shortest path from 7 to j as

288 ARC ROUTING

described earlier. Thus the new graph G’ has |R| nodes and |R(|R| — 1)|
arcs. Note that we assume a homogeneous delivery system of identical
vehicle speeds.

A valid formulation for the VRPTW on the graph G' = (IN/, A"), based
on the formulations from Dror and Trudeau (1990), and Desrosiers et al.
(1995), is presented below. The additional parameters and variables for
this formulation are:

t;j = the non-negative duration of a trip from node 7 to node j.

¢; = the daily demand at node 3.

z¥; = 1 if the vehicle v travels along arc (,7), and

z;; = 0 otherwise.

y? = 1 indicates that vehicle v delivers the demand at node ¢, and

y? = 0 indicates that it does not.

t? = the starting time of delivery to node ¢ by trip v.

S = the set of simple cycles on the set N which include the depot

node.

V = denotes the number of vehicles.

@, = denotes the capacity of vehicle v.
If the objective is to minimize the total distance traveled by all trips,

the VRPTW can be represented by the following mathematical formu-
lation:

\%
L o
Minimize E E Cij Ty

(i.)eA’ v=1
subject to: Z Thi — Z . =0,Yie N, v=1,...,V,
(ki)eA! G,k)EA!
1%
dw=1vieN
v=1
Z%yf SQ‘Ua V= 17 7V7
i€EN’
yzp— Z x;)jSO’ iENla v=1,....,V,
(i,5)eA’
a; < tV<bh,VieN,v=1,...,V.

2% €{0,1L,V (G, € A, v=1,...,V,
wWe{0,1},V(@Gj)eA, v=1,...,V,

Transformations and Ezact Node Routing Solutions by Column Generation 289

This formulation is exactly the node routing transformed representation
of the formulation for the CARP discussed in section 2.2, with includes
the necessary addition of the subsection on time windows 2.2.1, and an
optimal solution to this problem formulation generates an optimal solu-
tion which needs to be recast in the arc routing (CARPTW) terms.

Observe that in the transformed graph G’, we have |R| nodes as com-
pared to 3|V| + 1 nodes in the transformation suggested by Pearn et
al. (1987). Also note that this transformation is bi-directional unlike
the transformation in Pearn et al.(1987). The state-of-the-art VRPTW
algorithms can solve about 100 node problems (Desrochers, et al. 1992).
Hence by just executing this transformation, one may now solve op-
timally CARPTW problems of 100 required arcs using the techniques
developed by Desrosiers et al. (1995).

3.4. SPLIT DELIVERY ARC ROUTING WITH
TIME WINDOWS

A feed distribution problem at a large cattle yard (over 100,000 head
of cattle) in Yuma, Arizona, (see Dror and Leung, 1998, and Dror, Le-
ung, and Mullaseril, this book) has motivated an increased interest in arc
routing, both in its real-life realizations such as in the case of large cattle
yards, and for the related graph theoretical questions. A main character-
istic of such arc routing setting in a cattle yard is that the corresponding
combinatorial optimization problem is best represented by a capacitated
rural postman problem with time windows and split deliveries model.
The previous section describes a transformation of a CARPTW problem
instance to a VRPTW problem instance without split delivery, and the
model “rewrite” required to incorporate the split delivery feature into
the corresponding VRPTW model is minor. The formulation has been
“borrowed” from the split delivery VRP formulation described in Dror
and Trudeau (1990), and the required adjustment is simply the relax-
ation of the binary requirement on the y? variables (denoting the fraction
of demand at node ¢ delivered by vehicle v which is set to 0 or 1 possible
values) and its replacement with

0 Sy:} S 1,V(1,j) EAIa'U: 17 7V7

Even though the mathematical model representation of the split de-
livery VRPTW is very similar to the non-split 0-1 integer programming
model, and the fact that both problems are hard (A'P-hard in the
strong sense), the sense of applied combinatorial optimization profes-
sionals community working on exact solutions for such routing problems
is that the split delivery VRPTW (or even just the split delivery VRP)
is “harder” than its non-split counterpart. This is specially apparent

290 ARC ROUTING

in the case of continuous split (versus discrete split) and was computa-
tionally demonstrated by Dror et al. (1994). As there is an important
real-life motivation for solving split delivery capacitated arc routing with
time windows problems, in the second part of this chapter we present a
detailed examination of a column generation approach for this problem
since presently this seems to be the most promising solution method-
ology for very hard and important routing problems. We begin with a
column generation survey for the non-split node delivery problems first.

As mentioned earlier, the focus of this chapter is on exact solution
procedures for node routing problems based on column generation so-
lution methodology because it has been demonstrated that transforma-
tions from arc routing to node routing settings are efficient (maintain
the problem size) and in some cases absolutely necessary (e.g., problems
with time windows). Thus, all the remaining sections of this chapter are
about solving node routing problems.

4. COLUMN GENERATION FOR ROUTING
PROBLEMS WITH NON-SPLIT
DELIVERY

We start this section with a short introduction to the familiar re-
vised simplex approach for solving linear programming problems. We
follow with an overview of set covering in the context of vehicle routing,
and column generation. Then the shortest path problem with resource
constraints, which is central in the scheme of solution approach based
on column generation, is examined in some detail based on the work
of Desrochers (1988) and Desrochers and Soumis (1988). This shortest
path problem with resource constraints subsection is also very important
for the next section where we examine the column generation solution
approach for solving the Split Delivery Vehicle Routing Problem with
Time Windows (SDVRPTW) based on the work of Mullaseril and Dror
(1997). This is followed with a summary of a more recent work on the
shortest path problem by Guéguen, et al. (1998), where a modified algo-
rithm is proposed and promising computational results for the VRPTW
are reported.

4.1. REVISED SIMPLEX: CHVATAL’S
INTRODUCTION TO COLUMN
GENERATION

In order to examine column generation solution methodology for ve-
hicle routing problems it is perhaps illuminating to start with a review
of the revised simplex algorithm for solving linear programs based on a

Transformations and Ezact Node Routing Solutions by Column Generation 201

very elegant exposition of this topic by V. Chvdtal in his prize winning
1983 book “Linear programming”.
Given a linear program:

Maximize z = c¢X
Ax=Db
x>0

where A is an m x n matrix of reals, c is the cost vector 1 x n, b is the
r.hus. vector m x 1, and x is the (unknown or decision variables) solution
vector n x 1.

Denoting the nonsingular square basic matrix m x m by Ag , its
inverse by A1'31 , and the m x (n — m) nonbasic matrix in the linear
program above by Ay , a solution vector xg is obtained

XB = Aglb - AélANXN.

where xp; is the vector of non-basic variables.

Substituting for xp in the objective function of the linear program
zZ = CB(Aglb - ABIANXN) + CcNXN = cBAglb + (eNn — cBAglAN)xN.

and Aglb is the vector xp specifying the current values of the basic
variables.

As Chvidtal explains, in the revised simplex method, the vector cn -
cBAglAN is computed in two steps: first the mx 1 vectory = cg A};l 1S
computed by solving the linear system yAp = cp followed by the calcu-
lation of the vector (cy — yAn). The important observation for column
generation is that the components of the vector (¢ — yAn) may be cal-
culated one by one by identifying specific columns of the matrix An. For
instance, if a nonbasic variable z; corresponds to a nonbasic cost coeffi-
cient ¢; and a column aj; of the nonbasic matrix Ay, then its component
in ¢y — yAN corresponds to ¢; — ya;. Thus, any nonbasic variable z;
for which ¢; —ya; > 0 in maximization problem will improve the current
objective function value z (corresponding to the current basic solution
X};) by entering the basis. Clearly, in a minimization problem we would
be searching for a nonbasic variable z; such that ¢; —ya; <0.

The determination of the basic variable leaving the basis is obtained
by solving, for the vector d standing for the column of Aglaj of the en-
tering variable, another system d = Agla]. and finding the largest ¢ such
that xj —td > 0. If no such ¢t exists, then the problem is unbounded. If

292 ARC ROUTING

the problem is bounded, then at least one component of x — td is zero
and its corresponding variable is leaving the basis.

Optimality is determined when there is no longer a column a; of An
such that ¢; —ya; > 0. In column generation terminology, the subprob-
lem of generating an "interesting" column (entering column) is defined
by the problem of maximizing the value (c; —ya;), subject to column a;
being a member (nonbasic) of the matrix AN, and the cost of the col-
umn equal to ¢;. If, for the minimization problem a solution (a column in
An) is found such that ¢;—ya; < 0, then we update our basis and repeat.

The next subsection starts with a short description of set covering
problem which is a central concept for thinking about solving combi-
natorial optimization problems such as capacitated routing problems by
generating and substituting partial solutions (corresponding to non-basic
columns in Ap) which cover (deliver to) all the nodes (customers) of a
given problem instance.

4.2. SET COVERING, VEHICLE ROUTING,
AND COLUMN GENERATION

In general, Set Covering Problem (SCP) can be expressed as follows:
Given a (nonempty) finite set of elements S and a collection of subsets
of S, say C = {C;|C; C S Vi € I} and a real "cost” ¢;,i € I, find a
subset I’ C I such the } .., ¢; is minimized and S C UjepCi. On the
other ‘hand, the Set Partition Problem (SPP) for S seeks to minimize
Y icqr ¢ for a subset I” C I such that § = U;e/vC;, and such that
C:NCj=0,ij,ijel.

A set covering approach (sometimes referred to in the literature as
set partitioning) for the vehicle routing problem with time windows has
been proposed as far back as 1964 by Balinski and Quandt.

The approach by Balinski and Quandt is based on the premise of se-
lecting “good” routes from a given (implicit or explicit) large set of fea-
sible routes. Following the notation and terminology from Desrochers,
et al. (1992) for the VRPTW, the set covering vehicle routing problem
representation on a graph G = (N, A) can be stated as follows:

minz CrZy (8.1)
reR
> bz > 1,i€ N\ {0} (8.2)

TER

Transformations and Exact Node Routing Solutions by Column Generation 293

z, €{0,1},r €R (8.3)

The set R denotes all the feasible routes for the VRPTW. The constants
(indicators) 6;, characterize by a value 1 a route r € R which visits cus-
tomer 1 € N \ {0}, and ;. takes the value 0 if route r does not visit
customer 7. The cost of the route r is denoted by ¢, and is calculated as
the sum of the costs of the arcs of this route. IV is the set of customer
nodes including the depot node (node 0).

The columns in the formulation above (vectors &, 7 € R of dimension
(IN} = 1) x 1) correspond to feasible routes and determine the decision
variables for the problem. Clearly, for any reasonable size problem, the
total number of columns representing all possible feasible routes can be
extremely large (and exponential in the problem’s size expressed by the
number of customers). Since the above set covering problem is stated as
a 0/1 linear programming problem with a very large number of columns,
this problem presentation is addressed (solved) only in some trivially
small cases. In any practical context this problem is first examined in its
LP relaxed version by the revised simplex solution methodology based on
column generation. The feasible columns are added usually one at a time
(and more than one at a time in some implementations of the column
generation scheme) by solving an optimization subproblem which both
checks the optimality of the LP relaxation for the set covering problem
and generates a new “better” feasible route if an improvement is possi-
ble. As indicated by Desrochers, et al. (1992), (see also Haouari et al.
1991) the solution to the LP relaxation of the above VRPTW problem
formulation serves as a lower bound in a branch and bound scheme for
the integer program. In general, this LP relaxation solution generates
an excellent lower bound as demonstrated by the computational results
of Desrochers et al. (1992).

Note that in the case where the cost/distance matrix defined on the
graph G satisfies the triangle inequality, equation (12) implies the same
whether it is written as equality (partition), or > (covering). Since it
is always possible to convert a general distance matrix to a matrix with
triangle inequality by solving an all pairs shortest path problem, the as-
sumption of triangle inequality allows for replacing equality in (12) with
“>" and it does not have an effect on the partition solution as long as
the demands at each node are strictly positive.

Unquestionably, a key to a successful column generation scheme for
problems such as VRPTW lies in the ability to solve quickly the sub-
problem — the determination of the existence of an entering column (a
column in R which improves on the current basic solution to the SCP).

294 ARC ROUTING

This subproblem for the VRPTW together with its solution methodology
is presented next.

4.3. THE SHORTEST PATH SUBPROBLEM

First, one has to establish what is the “right” subproblem which has
to be solved in order to test the existence of an entering column which
improves on the current basic solution. In principle, we are solving the
minimization problem described earlier (minimize (¢; — ya;) subject to
the constraint that the vector a; represents a nonbasic column of the
corresponding set covering problem). I.e., a; corresponds to a circuit in
graph G whose nodes’ demands do not exceed the capacity of the vehicle.
This leads us to the shortest path problem representation for the "right”
subproblem (the ”depot” node is represented by “origin” and “destina-
tion” pair of nodes converting a circuit problem into a path problem).
When the visits to the nodes in GG are constrained by time windows, the
corresponding subproblem becomes an appropriate shortest path with
time windows problem.

The shortest path problem with time windows (SPPTW) as a subprob-
lem in a VRPTW column generation solution scheme has been described
in a number of papers (see Desrosiers et al. 1995, for an extensive review).
Perhaps the most successful examination of this problem has been first
presented by Martin Desrochers in his 1988 working paper at GERAD,
Montreal. This early work of M. Desrochers has been considered a fun-
damental contribution and the basis for computational implementation
in real-life commercial software for optimization problems such as crew
scheduling, flight scheduling, staffing problems, school busing, handicap
pickup and delivery, and more. The review of the shortest path with re-
source constraints problem in this chapter is based on the original work
of Desrochers (1988), and on the more recent modifications described by
Guéguen et al. (1998).

The SPPTW is viewed by Desrochers (1988) in a general setting which
includes time window restrictions on the node visits as a special case.
The more general approach to this problem views time as a resource and
a time window as availability restriction of this resource at a given node.
The capacity of the vehicle is clearly another resource. The generaliza-
tion enables the consideration of yet other resources in the same ana-
lytical framework of searching for a path which satisfies resource avail-
ability. This also explains why the problem is often referred to as the
Shortest Path with Resources Constraints Problem (SPRCP). In a com-
putational implementation such as described in Desrochers (1992), and
in many papers originated with the Montreal research center GERAD,
the SPRCP problem is solved by a pseudo-polynomial solution proce-

Transformations and Ezact Node Routing Solutions by Column Generation — 295

dure. (The research on this topic developed over the years in GERAD
is referred to here as the DDDSS results after Desrochers, Desrosiers,
Dumas, Solomon, and Soumis, to avoid excessive listing of references -
see also the excellent survey by Desrosiers et al. 1995.)

4.4. AN ALGORITHM FOR THE SHORTEST
PATH WITH RESOURCE
CONSTRAINTS

Let G = (N, A) be a directed graph with N as the set of nodes includ-
ing a single source node p and a single sink node ¢ (the nodes p and ¢
are also referred to as origin and destination respectively). The arc set is
denoted by A (A C N x N), and each arc (4, 5) € A has a cost ¢;; which
is a real number (positive or negative). A path in G always starts at node
p and ends at node ¢ and is defined as a sequence of nodes p,1,... ,ix,q
such that for each consecutive nodes in the sequence (ix,ir41) there is
an arc in A. The cost of a path is the sum of the costs of the arcs in the
path. The paths need not be simple (or elementary) which implies that
some nodes in the path can occur more than once.

Assume that there are L resource types (finite positive integer) and
each node requires some nonnegative amount of each resource. In addi-
tion, each of the nodes ¢ € IV has for each of the resources [€ L a “feasi-
bility” window [al, b}] (such as time window, quantity window, etc.). I.e.,
a resource requirement t! at node i satisfies a! < ¢! < bl for feasibility. In
addition, with each arc (¢,7) € A along the path there is a nonnegative
resource consumption tﬁj,l € L (such as time, fuel, etc.). The resources
in L are of two types: (1) “time-like” resources — L', and (2) “delivery
quantity” resources ~ L\ L. The feasibility window [al,bl] at node i for
resource [€ L' implies that a path with resource consumption greater
than b when reaching the node i is infeasible. This feasibility restriction
has to be satisfied for each of the resources in L'. A path reaching node
i which consumed < a! of resource | € L/, can “waste” (or wait) the
difference by adjusting its consumption and is considered feasible. The
resources (in L'), such as time, are set to zero at node p (the origin).
Le., ti, = 0,l € L'’ C L. The resource levels for resources in L’ at node ¢
lel.

along a feasible path are computed as ték =t +d

te—3 k—1,0k7

However, in this problem setting, for resources { € L\ L, the opposite
is true. The resource levels for [€ L\ L’ at node p are set to some
“capacity” value @', and the levels at node i along a feasible path are
computed as t} = tﬁk_l - tik—lwik’l € L\ L'. In this case, a path reaching
node i with resource level greater than b. is considered feasible, but if

296 ARC ROUTING
the resource level is below a!, this path is infeasible.

Path feasibility requires that the resource levels for each resource be
within their node window at each node in the path or below (above) for
the appropriate resource types. These resource feasibility requirements
are multi-dimensional generalizations of time window and delivery con-
straints in vehicle routing.

An arc (4,7) € A is infeasible if it is never possible to visit node j after
node ¢ while respecting the feasibility requirements of both nodes 7 and
7. The graph G can be preprocessed with this respect and all infeasible
arcs excluded from A. This results in that for all arcs (¢,7) € A, the
following conditions (constraints) are satisfied: al + tﬁj < bg,l € L', and
al —tﬁj > ag,l eL\L.

In summary, the Shortest Path with Resource Constraints Problem
(SPRCP) is defined as follows: find a minimal cost feasible path in G
from node p to node q. Since a number of NP-hard problems, such as
multi-dimensional knapsack problem and resource constrained project
scheduling (Desrochers, 1988, Dror, 1994), can be formulated as a spe-
cial case of the SPRCP, the SPRCP is clearly AP-hard in the strong

sense.

In order to present a dynamic programming approach for solving the
SPRCP we introduce a definition of states. With each path X; from
the origin node p to node j associate a state vector (t}, t?, . ,t][-’) cor-
responding to the resource levels at node 7 and a cost C(t},t?, ... ,tf
as a function of the resource levels vector. We restrict the discussion to
feasible paths only, thus the state vector (t}, t?, .. ,tf) describes feasible
resource levels. For simplicity, let the label at node j be described by
(t},t?, e ,tJL,Cj) and denoted by 7.

A transition between two feasible states 7; and 7; exists if
(1) There is an arc (i,7) € A, and

1 1 ! l] !)) l 1 4l
(12) tjlg bl e L,, and t; > aj,l € L\ L' (since t; > t; +t;;,l € L', t; <
Definition : Let X;; and X7, be two distinct paths from p to j with
labels Tj# and 7" respectively. We say that X;f; dominates Xp; if and

. * 4l * l *
only if C¥ < Cj, 6% <trle L/ t# >t le L\ L/, and T #T*.

Transformations and Ezact Node Routing Solutions by Column Generation 297

For resource [€ L\ L, we can rewrite the resource level as t;l = ~tk
and then drop the “” notation so we can use only the inequality < for
determining non-dominance between labels for the same node ¢. This
will enable a more “uniform” comparison as stated below.

The dominance relation, defined as vector comparison, determines
that a path Xp; and its label 7; are non-dominated if and only if Xp;
is the least cost path reaching node j with a state value less than or
equal to (tjl-, t?, e ,tJL). Clearly, it is sufficient to restrict our search to
non-dominated paths. In such a search, we need only to consider exten-
sions of non-dominated paths. The dynamic programming recurrence

equations for the SPRCP are as follows:

= 0 for the source p

)

) = rgiﬁ{C(ﬁ,t?,... ,tE) + ¢ ¢ such that (¢1,¢2,... ,tf)
1

)

c(o,...,0
C(t},t2,... 15

feasible and (7,j) € A}, and (t},t?, ... ,tf) feasible for j € N\ {p}}

The fundamental step in a dynamic programming algorithm for short-
est path problems is the “reaching” step. Starting with a label for a path
Xpi, the algorithm determines the labels corresponding to feasible paths
Xpj which extend the path Xp; for all arcs (7, j) € A. In short, labels can
be created for node j every time one of the nodes 7 with and arc (z,5) € A
is reached. This node “labeling” operation might be time consuming
when several resources are involved since many (non-dominated) labels
(non-dominated paths) might be possible for each node. In Desrochers
and Soumis (1988) (see also Denardo and Fox, 1979), an algorithm for
what is called generalized permanent labeling is described and a concept
of generalized bucket is introduced in order to handle the non-dominated
node labels in an efficient manner. These ideas are further advanced in
Desrochers (1988) to the SPRCP with multiple resource types (with up
to 5 resources in the subsequent computational experiments).

4.5. SOLVING SPRCP WITH ONLY
ELEMENTARY PATHS

Set covering approach to VRP (and VRPTW) requires that customers
(nodes in G) be visited only once (elementary paths). However, the al-
gorithm described in most of the DDDSS computational schemes for the
SPRCP subproblem does not necessarily generate elementary path so-
lutions as has been pointed out by Beasley and Christofides (1989). In

298 ARC ROUTING

Space solution Space solution) Space solution

of model 1 of model 3 of model 2

Figure 8.1 Inclusion of solution spaces.

a number of interesting cases such as the Selective VRP and the Prize
Collecting Problem (see Guéguen, et al. 1999), the pseudo-polynomial
solution approach to SPRCP is not feasible for the fact that the resulting
solution does not necessarily have the elementary path structure. This
section describes a modified algorithm which finds an optimal elemen-
tary path solution for SPRCPs of moderate size.

Desrochers et al. (1992) advanced three dynamic programming mod-
els for the solution of three different versions of the resources constrained
shortest path problem based on the principles presented in Desrochers
(1988). The solution space of the first model contains only feasible routes
and it is stated that “the model is very time consuming to solve.” The
solution spaces for the two other models presented as alternatives to
the first model, contain more than just the feasible routes. Generating
such SPRCP routes for the models has a pseudo-polynomial time com-
plexity. The solution space of the second model contains many different
cycles, but the solution space of the third model contains cycles but
no 2-cycles. See Figure 8.1 for the solution space relations between the
three different shortest path problem versions. Desrochers et al. (1992)
propose dynamic programming based procedures which solve efficiently
relaxations of the resource constrained shortest path problem.

The master problem in the Desrochers et al. (1992) solution approach
is the set covering problem presented in (8.1)-(8.3). The subproblem
associated with this formulation is a Shortest Path Problem with Re-
sources Constraints, and it is not necessary that the paths be elemen-
tary. Desrochers at al. (1992) also propose to eliminate all the 2-cycles.
Subsequently, the candidate columns for the master problem consists of
the non elementary paths without 2-cycles.

Transformations and Exact Node Routing Solutions by Column Generation 299

The second relaxation model in the Desrochers et al. (1992) approach
has the largest solution space. Solving the elementary shortest path
problem using their model 3 gives an optimal solution in the set (S3\S}),
then one is confronted with the following problem: how can the actual
optimal solution (in the set S;) without cycles be extracted? In the
next subsection, it is shown that there are cases for which the algorithm
proposed by Desrochers (1988) concludes that no elementary path (with
negative costs) exists where in fact there is one.

4.5.1 Overlooking an Optimal Elementary Path.

The purpose of the example below is to show that for a case where
there might be a unique one-time “profit” associated with visiting a
node, Desrochers et al. (1992) algorithm is no longer a valid solution ap-
proach. It is not to say that Desrochers’ algorithm is incorrect because
Desrochers clearly stated that his algorithm solves the non-elementary
path case.

In the case where the columns in the column generation procedure for
a vehicle routing setting are restricted to elementary shortest paths, it
is impossible to use an algorithm for the non-elementary shortest path
problem. This fact is demonstrated via an example in Figure 8.2. In
short, the transitivity of the dominance relationship defined earlier for
the labels of paths which are not necessarily elementary, does not extend
itself to elementary paths.

The example of Figure 8.2 proves that when considering non-elementary
paths and the dominance relation proposed by Desrochers (1988), one is
going to miss the optimal elementary path.

As before, the resources are restricted to two: the time and the capac-
ity of the vehicle (Q is equal to 20). This graph has four possible paths
going from the depot (node 0) to node 5, and there are no other paths
because of the capacity constraint;

lpathl: 0—-1—-4—-55:9=20,t=20,c=-5
2path2:0-22—-24-5:q=12,t=11,c =45
3path3:0-2-3—-56—-24—-55:q=17,t=13,c=15
4pathd:0-2—-23—-6—-22—-4—>55:9q=19,t=14,c= —45

If a non-elementary path is allowed, using the dominance relation of
Desrochers (1988), label 4 dominates label 1, and in node 5, there re-
main only three labels corresponding to paths 2, 3 and 4. If one seeks to

300 ARC ROUTING

c=25 q=7

Capacity = 20

Figure 8.2 Demand and arc duration.

generate a path with negative cost between nodes 0 and 5, then paths
2 and 3 are eliminated. Label 4 is the only label remaining at node 5,
but its corresponding path is non-elementary. Thus, the conclusion is
that there does not exist a path with negative cost (i.e., the optimum
of the column generation process has been reached). This is contrary to
the fact that path 1 is elementary and has a negative cost of -5, which
is going to improve the current solution.

The situation demonstrated in Figure 8.2 may occur if the graph con-
tains negative cycles and the resources constraints are not very “tight”.

4.5.2 An SPRCP — Improved Elementary Path Algorithm.

The elementary shortest path problem has been investigated by Beasley
and Christofides (1989) where they proposed a procedure for finding el-
ementary paths. It involves the addition of an extra resource for each
node (|N| extra resources in total), restricting the consumption value
for that resource to be either fully consumed (= 1) or not consumed at
all (= 0). When a path visits node k, it consumes its extra resource -
Vi = 1(V; = 0,5 = 1,...,n = |N|, if the path did not visit node j).
Beasley and Christofides did not test their procedure computationally
and suggest that this formulation would be only suitable for solving rela-

Transformations and Exact Node Routing Solutions by Column Generation 301

tively small problems for which the number of resources is not very large.

In Guéguen et al. (1998), this idea of Beasley and Christofides has
been implemented and tested to see if it can generate optimal solutions
for problems of moderate size. We present the basic idea underlying
the implementation of this notion. In what follows, the procedure from
Guéguen et al. (1998) is presented in some detail.

First, the dominance relation was rewritten so that two node labels can
be compared according to the new definition of labels. This dominance
relation still allows the use of the original Desrochers (1988) algorithm
since the principle of this algorithm remains the same: all non-dominated
paths are the extension of a non-dominated path.

In order to eliminate efficiently the dominated labels, a new variable
(new resource) f; is added to each label at each node j. This label counts
the number of nodes previously visited by the path. A label 7; cannot
dominate a label 7, if it visits more nodes (because it consumes more
“visitation” resources). So, instead of comparing all the resources cor-
responding to the n nodes, in some cases, a single comparison between
two labels is sufficient to establish dominance.

With each path Xp; from the origin to node j we associate a state
1 L 1
R_’] = (t]7 7t_7?f]>‘/] PR 7V7'n)

which computes the quantity of the resources used by the path, the num-
ber of visited nodes, and the visitation vector (let f; = i, V}.).

For this new label for each node we also obtain a new dominance re-
lation. This new dominance relation has the transitive property for all
paths, elementary and non-elementary just as the "old" dominance rela-
tion.

With this new node labeling procedure, it is likely that we need to
keep more labels for each node since some labels which were dominated
in the previous definition of labels are no longer going to be dominated
with the new one. However, we are sure to keep only labels correspond-
ing to elementary paths. In the unlikely worst case, the labels for all the
existing paths must be kept. However, this is extremely unlikely and the
test results prove that this labeling procedure is quite effective.

The description of the algorithmic procedure is given below, but first,
some notation has to be introduced.

302 ARC ROUTING

Qi - the list of feasible labels at node 1,

Succli] - the set of successors of node ¢,

E - the list of nodes that have to be treated,

Ext(l;,7) - the extended label at node 7 obtained from label I; at node

/L’

F;;(Q;) - the set of labels extended from node ¢ to node j,

EFF(L) - the procedure that conserves only non dominated labels in
the list L of labels.

4.5.3 Description of the Algorithm.

Step 1 : Initialization

Qp:(o,...,O)
Qi=0fori=1,...,ni#p
E = {p}

Step 2 : FExploration of the successors of a node
Choose a node 7 € E and for j € Succ[i] such that j has not been
visited from ¢, set Q; = EFF[F;;(Q;) U [Ext(l;,7)]]
If Q; has been modified then £ = E'U {j}

Step 3 : Reduction of E
E=E\{i)
If E = (then end, else go to step 2

The important point here is that this algorithm will only generate el-
ementary paths.

The time complexity of this algorithm is strongly related to the struc-
ture of the graph, the numbering of the nodes, and the resources con-
straints. For highly constrained problems, it is possible to implement
this algorithm in an efficient way and reduce the required number of
operations. This efficient implementation has been demonstrated in the
computational experiments described in Guéguen et al. (1998).

Speedup Improvement In this section, a modification is presented
which speeds up the computation time by reducing the number of labels
that need to be considered. In some cases, it is not useful to consider
the resources corresponding to some nodes. Labels which could not be
compared considering all the resources will become comparable and some
of them are going to be dominated, resulting in a “stronger” dominance
relation.

Transformations and Exact Node Routing Solutions by Column Generation 303

Example: If you consider the label L1=| 117 | 38 [17 I 2] 1|0 | 1]

and the label L2=| 95 l 34] 16 I 2 | 0 | 1 | 1 lwhere the different columns

correspond to the time, the quantity, the cost, the number of visited
nodes and the consumption of the resource associated with three nodes
1, 2 and 3. With the present relation, these two labels are not compara-
ble.

A proposed modification leaves a resource associated with a node if
it is impossible to visit this node again. For the nodes that have not
been visited before and are unreachable with the given path (according
to the time or the delivered quantity), indicate that the corresponding
resource has been consumed. So, with the same example as above, two

new labels are obtained: Lj=| 117 [38 | 17| 3| 1| 1| 1 |and the la-

bel Lt=|95]34 |16 |3|1]1]1]

The label L) dominates the label L] . If a third label L3 dominates Lo,
then it dominates also L5. Finally, if Ly dominates L3, then the trans-
formed label L5 dominates the label L because all the transformations
that were made on Lo were also made on L.

Now we modify the previous definition for the labels to including the
above label "correction". With each path X,; from the origin to node 7,
associate a state R; = (t},... ,tf, f3, V', ..., V}*) corresponding to the
quantity of the resources used by the path, the number of nodes that
are unreachable and the visitation vector with the following property:
Vji = 1 if the path has visited node 7 or if it is impossible to reach this
node with the current time value and the delivered quantity. Note that

node 7 is now unreachable if V]’ =1.

Proposition 1: During the execution of the modified algorithm, one
only needs to consider non-dominated paths.

Proof : Consider two labels in node 7 that are extended to node j such
that 7 < 7;. If it is possible to extend path Xp;, it is possible to extend

path X, because V;” <V =0.

More directly, 7' < 7; = C! + ¢;; < C; + ¢;j and t;l + téj < té + téj for
l=1,...,L, and

1 I [l !

}fjl T maxL{ag,til + tﬁj} and té- = ma:c{a;,té + ti;} = tjl < t; for

304 ARC ROUTING
One still has to check the resource associated with each node:

m For the resource corresponding to node j: 1 = Vj’j < ij = 1.

» For a resource corresponding to a node k # j:

— if t;- + 85+ tjx < br and tj+s;+ty < bi: then it is possible
to visit node k, thus,

Vi = V/* and VF = V¥, and V;¥ < VF.

— if t;» + 55+ tjx < bp < tj + 55+ tjg: then it is impossible to
return to k with label R. In this case set V¥ = 1 and possibly
s; = s; + 1, if node k was not visited by the path R before,
and don’t change the other label values. Thus, Vj'k < ij .

—if b < t; + 85 +tik <t + S5+ Lk then it is impossible to
visit node k: Vj"c =1 and V}k =1, and Vj'k < ij.

For every case and every k, the inequality Vj"c < V]-k holds. Then
n n
Ik k . !
D ViFSY Ve fi<4
k=1 k=1

=T/ <T;

The computational experiments with the above modified SPRCP al-
gorithm which generates only elementary paths are fully reported in
Guéguen et al. (1998) and we do not reproduce the tables here. These
results demonstrate that the above algorithm solves problems of mod-
erate size and that the gain obtained when comparing to the original
Desrochers (1988) approach is quite considerable. The common test bed
for VRPTW and shortest path procedures in the context of column gen-
eration for VRPTW are the so-called Solomon’s problems (see Solomon,
1983). The computational results clearly indicate that this new algo-
rithm solves also VRPTW problems.

The algorithm with modification succeeded in solving 75 problems on
the 87 tested problems in less than 300 seconds while the version without
the modification succeeded in only 47 problems. The tests in Guéguen
et al.(1999) prove that if a problem has “enough” constraints, then it is
possible to optimally solve problems with 100 nodes in reasonable time
and the more difficult the problems are, the more significant are the
gains.

Transformations and Ezract Node Routing Solutions by Column Generation 305

5. COLUMN GENERATION FOR ROUTING
PROBLEMS WITH SPLIT DELIVERY

This section is based on the work of Mullaseril (1996), and Mullaseril
and Dror (1997). Once again let G = (N, A) be a directed graph with
node set N and arc set A. Node 0 represents a depot while the re-
maining nodes corresponds to customers that have to be served. At the
depot there is a “free” number of identical vehicles of capacity Q. Every
node except the depot has a nonnegative demand ¢; and every arc has
an associated nonnegative cost ¢;; and traversal time t¢;;. With some
danger of confusion, the service time at node i is traditionally denoted
as s; and represents the time needed to unload at 7 its demanded quan-
tity ¢;. Assume that the cost matrix (c;;) satisfies the triangle inequality.

The classical Vehicle Routing Problem with Time Windows (VRPTW)
consists of determining a set of least cost vehicle routing solution such
that each route (a circuit on the graph G) starts and ends at the de-
pot, every customer is served exactly once by one vehicle inside his time
windows [a;, b;] and the total demand of each route does not exceed the
capacity of the vehicle. In this section, a version of this problem is exam-
ined in which the demand ¢; can be delivered by several vehicles. This
problem is called the Split Delivery Vehicle Routing Problem with Time
Windows (SDVRPTW). In such a problem, the constraint that the de-
mand of any customer is less or equal to @ is relaxed allowing for large
customers whose demand might exceed the capacity of the vehicle.

The split delivery version of the classical vehicle routing problem with-
out time windows was first introduced in Dror and Trudeau (1989, 1990),
and in Dror et al. (1994) several new classes of valid constraints for the
SDVRP are described in the context of a branch and bound algorithm
(some problems with 10, 15 and 20 nodes have been solved). In Frizzell
and Giffin (1995) a heuristic is proposed for vehicle routing with split
deliveries and time windows for grid distance graph. Also in Mullaseril
et al. (1997) a heuristic for split delivery arc routing with time windows
is examined on some real-life problems. Finally, two other papers due to
Sierksma and Tijssen (1998) and Mullaseril and Dror (1997) present op-
timal methods based on column generation respectively for the SDVRP
and the SDVRPTW. The method proposed by Sierksma and Tijssen
(1998) is used to schedule crew exchanges on off-shore locations in the
North Sea. The limited number of places in a helicopter makes that it
is indispensable to split the demand (operations and maintenance crews
flown in) of some platforms. It is important to remark that the quantity
of split (i.e. how many people of one platform are in an helicopter) is
necessarily integer and this quantity is determined in the column gen-
eration subproblem. In the paper of Mullaseril and Dror (1997), only

306 ARC ROUTING

distance = L
,l" ~~\‘ ll'l ~\\‘
’ \X / @ unit demand)Y
Q customers distance =L -¢ | customers s
Depot with demand } ! with zero !
of @-1 H %\ intercustomer
/ \, distance J;

N v

~~~~~

.~ -

0 = souwIsIp

Single customer
with demand of Q

Figure 8.3 Example of 2Q + 1 customers for which nonsplit delivery solution with
no more than @ + 1 vehicles of capacity @ has a distance of 2QL + 2e, where as the
split solution with @ + 1 vehicles is of distance 2L + 2Qe.

some preset proportions of split delivery are allowed and these propor-
tions are also preset in the subproblem in the column generation scheme.
Consequently, the solution can serve only as an “approximation” for the
optimal solution in a sense similar to approximating a convex function
by piecewise linear functions. I.e., based on how refined are the preset
split deliveries.

In this section, a set covering formulation for the SDVRPTW is ex-
amined and an algorithm is described that solves to optimality problems
of moderate size. However, first some properties of to the SDVRPTW
solution are restated.

5.1. PROPERTIES OF SPLIT DELIVERIES
WITH TRIANGLE INEQUALITY

It is very easy to demonstrate the potential savings accrued by allow-
ing split deliveries to the demand points. Assume there are (2Q + 1)
demands points as depicted in Figure 8.3. @) points with demand 1 have
a distance of L from the depot. @ points with demand @) and one point
with demand (Q — 1) are located at a distance e < L from the depot.
Also suppose that there are (Q + 2) vehicles of capacity Q.

The optimal solution without split deliveries uses (@ + 1) vehicles and
has a cost of 2LQ). If split is allowed, it is possible to find a solution



Transformations and Exact Node Routing Solutions by Column Generation 307

of cost 2L in which one vehicle serves the @ points of demand 1 and
the remaining demand is split between the other vehicles. The ratio of
the solution value without split over the one with split deliveries for this
example tends to  as e — 0. Thus, the ratio of the optimal non-split
solution and the optimal split solution can be arbitrarily large. It is
straightforward to extend this result to the case of deliveries with time
windows.

The split delivery problem (the SDVRP or the SDVRTW) might be
perhaps viewed as a "relaxation” of the discrete VRP. However, adding
the option of split delivery introduces a whole new set of delivery alter-
natives in which each one of the routes still represents a TSP solution
over its set of deliveries. Clearly, the SDVRP is AP-hard just by re-
duction from the TSP (by setting the capacity @ larger than the sum
of deliveries). As the formulation below indicates, the SDVRP is mod-
eled as a mixed 0-1 programming problem with y? variables (indicating
the fraction of demand at ¢ delivered by route v) taking their values be-
tween 0 and 1. It has been “conjectured” by Dror et al. (1994) that the
SDVRP is harder than the classic (non-split) VRP in the sense that cer-
tain cut inducing inequalities for the VRP (the 0-1 formulation) are no
longer valid for the SDVRP and the corresponding polyhedral solution
approach is more difficult.

The following observations are taken from Dror and Trudeau (1990),
and Dror, et al. (1994):

Observation 1: If the {¢;;} matrix satisfies the triangle inequality, there
exists an optimal solution of the SDVRP in which no two routes have
more than one split demand point in common.

Definition (see also Dror et al., 1994) : Consider k demands points
ni,na, ..., Nk, and k routes such that route 1 includes points n; and ng,
route 2 includes points ny and ns, ..., route k — 1 includes points ng_y
and ng and route k includes points nx and nj. (This implies that the
points ny, ng, ..., ng receive split deliveries by the k respective routes and
possibly other routes). This subset of demand points {n;}¥_, is called a
k-split cycle.

Observation 2: If the {c¢;;} matrix satisfies the triangle inequality, there
exists an optimal solution of the SDVRP which contains no k-split cycle
(for any k).

Proofs of the observations above are given in Dror and Trudeau (1990).
For the rest of the chapter it is assumed that the triangle inequality for



308  ARC ROUTING

the time matrix, and cost matrix is satisfied. As demonstrated later, it
is not possible to extend these observations for the SDVRPTW.

5.2. FORMULATION

An integer formulation for the SDVRPTW presented by Mullaseril
and Dror (1997) is given below. Similar formulation is presented in
Frizzell and Giffin (1995). This formulation, even though not used in the
computational analysis, serves as a “stepping stone” to the set covering
formulation and the column generation methodology presented later in
the chapter. Let z}; be a binary variable defined for ¢ # j and equal to 1
if and only if vehicle v serves customer j just after customer i. Let y? be
the proportion (the fraction) of the demand of customer ¢ delivered by
vehicle v and t} be the time at which vehicle v starts serving customer
1. Let V be an upper bound on the number of vehicles required. Let T

be a large constant (for instance, T' = max(r(na;c (b + 5 + tij — a;),0)).
17]
The problem can then be formulated as:

n n V
Minimize Z Z Z T3 (8.4)

i=0 j=0 v=1
subject to
n n
doah=3aY%, j=0,.,mv=1.,V (8.5)
i=0 i=0
v
dwr=1, i=1,..,n (8.6)
v=1
n
quy:) S Q7 ’l) = 1’ M) V (8-7)
i=1
n
Zx:’] >yl i=1,.,nv=1,...,V (8.8)
e
ti+si+tij—(1—z;)T<tj, i=0,..,n;i=1.,nv=1,.,V
(8.9)
a; < t;-) < bi, 1= 0, e, U = 1, ,V (810)
z3; €{0,1}, 4,j=0,..,nv=1,...,V (8.11)
0<y/ <1, i=1,...,nv=1,..,V (8.12)

Constraints (8.5) are the flow conservation conditions. Constraints
(8.6) ensure that the demand of each customer is entirely satisfied while
constraints (8.7) specify that vehicle capacities are never exceeded. Con-
straints (8.8) are consistency constraints: if vehicle v delivers customer



Transformations and Exact Node Routing Solutions by Column Generation 309

i, it has to leave this customer. Constraints (8.9) and (8.10) ensure the
time continuity, force service instants to be inside the time windows of
the customers and forbid the formation of illegal subtours.

5.3. SET COVERING APPROACH FOR
SPLIT DELIVERIES

In the set covering formulation of a split delivery vehicle routing prob-
lems, a column represents not only a vehicle trip (a circuit on the corre-
sponding graph) but also the split deliveries made on that trip. Since the
fleet is homogeneous (i.e., identical vehicles), the index v denoting a vehi-
cle index changes its designation and now denotes a trip index since each
trip starts and terminates at the depot node. Let {ax| k= 1,...,h}
be a collection of column vectors representing all feasible trips in G. In
vehicle routing problems where split deliveries are not allowed, the entire
demand for a node is delivered by the unique trip which visits that node.
Thus, a feasible trip (column), is determined only by the nodes visited
in that trip and its feasibility established by the total demand of the
nodes visited. However if split deliveries are allowed, a trip k must also
specify the fraction of the demand delivered at each node ¢ when visited
by trip k. In this case the set covering formulation has to impose an
additional constraint for each node 7 that the total demand for a node
1 is delivered by adding up the demand’s fractions on some subset of trips.
Definition: A vector T} consisting of 1’s and 0’s of size | N|, whose it"
elements indicate whether the trip k visits node ¢ (represented by 1) is
called a wisitation vector for trip k.

Definition: A vector P, with fractional elements, of size |N|, whose
it" elements indicates the fraction of the demand delivered at node i is
called the delivery vector for trip k.

Note that in formulation (8.4)-(8.12), the z};’s determine the visita-
tions and the y}’s determine the deliveries.

A column denoting a split delivery trip k can be represented by a vec-
tor ay consisting of the two vectors Ty and Pg:

T
=] |

Hence, a feasible trip, i.e., the column ag, consists of two vectors, the
visitation vector for that trip and its corresponding delivery vector with



310  ARC ROUTING

a total |2V| elements in the column. Unlike the pure set covering prob-
lem, the column vector ay of the set covering formulation for the split
delivery problem may have fractional elements. The set covering formu-
lation of the split delivery node routing problem (SDVRP) is given below:

(SC1)
miankzk
ke
> Tz >1,i=1,..,n (8.13)
kel
Zakzk >1,i=1,..,n (8.14)
keQ

2k € {0,1},\7’]6 € €.

where the variable 2z determines the inclusion (zx = 1) or the exclusion
(zx = 0) of the trip ag, while ¢ is its associated cost. T;x and P are
the ith elements of vectors Ty, and Py. The set  is the set of all possible
trips for the vehicles. An important point to note is that the visitation
vector T and the delivery vector Pr must satisfy the following vector
inequality:

P, < Ty, VE

This implies that if the i** element of P is non-zero (0 < Py < 1), the
corresponding element of Ty must be 1. Constraints (8.13) insure that
at least one vehicle visits a node requiring service, whereas constraints
(8.14) insure that all of the demand for a node is delivered by some sub-
set of the trips.

In principle, since Ty € ZV and Py € RN (many splits are possible),
the problem SC1 will have an (uncountably) infinite number of columns
and, consequently of decision variables 2z, which determine the selected
columns by taking the value 1 (i.e., the set Q is of uncountable cardi-
nality). This is very different from the non-split delivery case where the
number of possible trips is finite even if such number is of exponential
order as a function of the number of nodes in the graph. Thus deter-
mining the optimal solution to the problem above by searching through
all feasible solutions to the problem is not tractable even for very small
size problems. Instead, one must follow the column generation solution
methodology and first solve a linear relaxation of the above set cov-
ering problem formulation using a standard (revised simplex) column
generation approach, where no explicit listing of the entire set of feasi-
ble solutions is necessary. This LP relaxation solution provides a lower



Transformations and Ezact Node Routing Solutions by Column Generation 311

bound for the SDVRP formulated in the previous subsection.

To solve the set covering problem one first solves the LP relaxation
of SC1 using column generation methodology as described in section
4. Each column in the master problem represents a feasible tour of a
subset of nodes in NV and is determined by solving a subproblem, where
vehicle capacity constraints and time window constraints (if necessary)
are imposed. In the split delivery problem version, one also relaxes
the requirement that, on every vehicle visit, the entire node (customer)
demand is delivered. The generated column and its associated column
variable are added to the problem SC1 and another pivot operation is
performed. Similarly as in the column generation scheme for the VRP,
each subproblem generates a vehicle trip which starts at the depot, visits
one or more nodes and terminates at the depot node.

5.4. THE SUBPROBLEM FOR GENERATING
FEASIBLE COLUMNS FOR SPLIT
DELIVERY

Let the decision variable z}; = 1, (i,5) € A, if a trip v uses arc
(i,7) € A and z}; = 0 otherwise. Knowing the arcs traversed by a trip
v will allow to construct the sequence in which the nodes are visited.
Following Mullaseril and Dror (1997), to determine whether or not a
trip visits a node ¢ € N, we compute the quantity > ..y 7}, (i,7) € 4.
Let y? be the fraction of the delivery made to node : € N by trip v.
The vector T, consists of elements T;,,t € N, where T}, = ZjeN x}’j,
and the vector P, consists of the elements P, = y7,2 € N. Thus the
column a, for the master problem is constructed from the solution to

the subproblem as follows:

ZjeN 33'1)3' ]

v
ZjeN Tnj
v
)1

v

Yn

Let c;; be the length of arc (i,7) € A. Let m = [a, 8] be the vector of
dual variables associated with problem SC1 (restricted to the columns
generated so far; a; and f;, ¢ = 1,...,n, are the values of the dual vari-
ables associated with node 1, i.e., with the corresponding two constraints
for node 7). Thus 7 consists of two vectors a and 3, each of size n con-
sisting of these dual variables:



312  ARC ROUTING

[

Qn

B

[ 6o

Suppose that we can generate the column a, corresponding to the
minimum reduced cost ¢,. Here we state how it can be done. The cost
¢, of the column a, is equal to the total length of a trip, or Z(i’ JeA Cij T
To generate a new column 3, the subproblem has the following objective:

€, = min (¢, — 7a,)

over all feasible columns a,. Which can be rewritten as

€, = min ( Z (cij — aq)z; — Zﬁz’yf)

(L.j)eA ieN

Now we can formally present the subproblem whose solution generates
a new candidate column for the “master” problem, i.e., the restricted
version of SC1, in the column generation scheme.

5.4.1 Formulating the Subproblem.

The formulation is based on the work described in Dror and Trudeau
(1990) and Desrosiers et al. (1995), and it assumes that no k-cycles can
occur in the optimal solution for this problem of split-delivery with time-
windows.

Denote by s; the service time at node 7 and assume that this service
time is additive (dependent on the fraction delivered). Also ¢; denotes
the time the vehicle arrived at node 7. The subproblem (SP) to generate
a feasible column a, is (the superscript v has been omitted in this model):

Minimize Z (cij — aq)zij — Zﬂiyi (SP)

(if)eA ieN



Transformations and Ezact Node Routing Solutions by Column Generation 313

subject to

Z Tip — Z zp; = 0,Vp € N\ {0}

(1,p)eA (p.d)eA

Z zo; + Z Tig =2
(0,)eA (i,0)cA
Y — Z Tij <0,Vie N
(i,5)€A
Z%’yi <Q
iEN
(ti + b5 + Sy — tj)l‘,'j < O,V(i,j) cA
a; <t; <b,VieN
i € {0,1},V(¢,7) € A
0<y;, <1,Yie N

8
w

This subproblem can be characterized as a simple shortest cycle (or a
shortest path from an origin node (= depot) to the destination node (=
depot)) problem over a graph G with time windows and partial delivery.
Observe that the costs associated with each arc may be negative. Such
cycles are of finite length owing to the existence of time window con-
straints and hence the subproblems are bounded from below. The above
problem is ANP-hard in the strong sense (see Dror, 1994).

5.4.2 Alternating between the Master Problem and the
Subproblem.

The solution process for these type of column generation solution ap-
proach entails alternating between solving the master problem and the
subproblems. The procedure is usually started with an initial set of
columns for the master problem which forms the initial identity basis,
for example, | V| single node trips from the depot to each of the nodes in
N, if the demand of each node does not exceed the capacity Q). For each
pivot operation in the master problem, the dual variable vector 7 is up-
dated and used for solving the corresponding subproblem. After solving
the subproblem, the resulting column is added to the master problem
and the next pivot operation performed. The column generation proce-
dure is terminated when no more negative marginal cost columns exist.
This process generates an optimal solution to a linear relaxation of the
problem SC1, which is a lower bound to the set covering problem formu-
lation for the SDVRPTW.



314  ARC ROUTING

To our knowledge, the special structure of our master LP problem, ex-
pressed by the vector property Pr < T for each of the master problem
columns, has not been examined in terms of speedup in the LP or a cor-
responding matrix size reduction for LP operations and updates. Since
it naturally occurs in the split delivery setting, it would be of interest to
investigate linear systems with this type of matrix partition and column

property.

5.5. THE COMPUTATIONAL PHASE: A
MIXED INTEGER SOLVER AND A
DYNAMIC PROGRAMMING
ALGORITHM

Testing the effectiveness of the column generation method described
above by running extensive computational experiments on data from
the arc routing problems in cattle feed industry as well as randomly gen-
erated problems derived from well known problems in the literature is
described next. The actual solution approach implemented in the tests
is based on the so called ‘pulling’ dynamic programming algorithm dis-
cussed in Desrochers (1988) and reviewed by Desrosiers et al. (1995).
This solution scheme, based on the dynamic programming algorithm, is
reproduced by Mullaseril (1996) and Mullaseril and Dror (1997) and ap-
plied to problems where both split delivery and time window constraints
are present.

Unlike Desrochers’ (1988) problem of non-split deliveries with time
windows, when split-deliveries are allowed, some basic characteristics of
the subproblem change. For instance, in non-split subproblems it has
been proven that so called 2-cycles (i.e., cycles of the form (3, 7,¢)) do
not exist in the optimal solution. With split deliveries, 2-cycles can occur
in the optimal solution of the subproblem. This is easily demonstrated
by the following example even when the service time is independent of
the demand delivered:

Consider two nodes (node 1 and node 2) with time window of [0, 5]
and [2, 3] respectively. Assume also service time of 1 for node 1 and
service time of 1 for node 2 and travel time of 1 unit between the nodes
(symmetric). Entering node 1 at time 0, the vehicle would deliver only
50% of the demand (service of 1 unit) continuing to node 2 to deliver its
total demand in the specified time window of [2,3] before returning to
node 1 in time and completing the delivery (in time).

Still, note that for split-delivery with time windows there are no ’dou-
ble’ 2-cycle solutions. I.e., routing sequence like ¢ — j — ¢ — j cannot



Transformations and Ezxact Node Routing Solutions by Column Generation 315

occur.

The above example of 2-cycle can be generalized in a straightforward
fashion to existence of k-cycle (k > 2) in the optimal split delivery sub-
problem. The potential of such k-cycles in the optimal solution to the
subproblem complicates the subsequent analysis considerably. Thus, for
the sake of simplicity and full knowledge of the consequences, in the
subsequent analysis the k-cycles in the subproblem’s solution are not al-
lowed. In this sense, the result should be viewed as a ‘heuristic’ since
optimality of the solution cannot be guaranteed. Note that in the case
where the time windows are substantially greater than the service time
and triangular inequality for the distance matrix holds, even in the split-
delivery case, no k-cycles can occur in the optimal subproblem solution.

5.5.1 Discretizing the Split Deliveries in the SPPRC Sub-
problem.

Since the split-delivery routing problem in general is very “hard”, and
the split-delivery problem with time windows “reasonably” wide does not
seemn to constrain this problem sufficiently and make the task of solving
this problem any easier, a reasonable compromise is that of discretizing
possible split-deliveries to each node. This would considerably reduce
in “size” the number of alternative routings and imply a transformation
(which depending on the discretization scheme could be pseudopolyno-
mial) of the original graph into a graph with no split deliveries. Since the
original SDVRPTW is A'P-hard in the strong sense, a pseudopolynomial
transformation does not effect the complexity of the resulting problem.
The solution approach to the discretized SDVRPTW is described in de-
tail in this subsection.

Let R = {Q,t} represent a set of two resources: capacity (Q) and time
(t). Consider ‘discretizing’ the continuous variable y; in the subproblem
SP. In the algorithms implemented by Mullaseril and Dror (1997) for
the feedyard problem, the fractional variable y; is restricted to values
{0.1,0.2,...,0.9,1.0}. As a result, the optimal subproblem solution will
not guarantee an overall optimal solution for the SDVRPTW but only
an upper bound (heuristic) solution to the problem (the set covering for-
mulation).

Note that discretizing the fractional variable y; is equivalent to a
‘eraph’ transformation where a single node becomes a “chain” of nodes
(one node for each fractional value) with no split-deliveries allowed to
any node. Each of the nodes in such a chain is connected to all other
nodes in the graph in the same manner as the original “parent” node.



316  ARC ROUTING

The arcs from one node to another (next) node in the chain have a zero
cost but have a time span (t;;) corresponding to time required to ser-
vice the node 7. Note that since the nodes in a “chain” are identical
fractions of the original node they can be numbered consecutively such
as 11,12, ... ,i, and each requires a delivery of (1/k)g;. The “chained”
nodes are connected by directed arcs in order. Thus, we can assume
(w.l.g.) that the “fractional” nodes are delivered in the chain order.

The dynamic programming method of Desrochers (1988) involves de-
termining the shortest resource constrained feasible path from the origin
p (the depot) to the destination node g (also the depot). With each path
Xpi from the origin p to a node ¢ we associate a label 7; as before, which
corresponds to the consumption of each resource (time and capacity)
on a path Xp; and a cost C; of this path. The rest of this solution is
essentially identical to the one outlined in section 4.4 for the non-split
case.

5.5.2 Discussion of Computational Experiments for the SD-
VRPTW.

Computational experiments for the SDVRTW are reported in Mullaseril
(1996) and in Mulleseril and Dror (1997). The column generation al-
gorithm based on Desrochers’ (1988) dynamic programming approach
was used to solve arc routing problems with time windows and split
delivery from a cattle yard that operates in Arizona. The CARP prob-
lems encountered varied from 227 < |V| < 581, 294 < |A] < 770 and
16 < |R| < 348. The algorithm was also tested on randomly generated
problems based on test problems from the literature. These problems
provided two types of input data, those with Euclidean distances and
those with non-Euclidean distance matrix. The data for Euclidean prob-
lems were derived by taking a subset of nodes of the 75-node problem
originally presented in Eilon, Watson-Gandy and Christofides (1971) and
used by many others in their computational experiments. In the prob-
lems generated, we allow split delivery. However, this data set does not
contain time windows associated with each node. Subsequently, the time
window values for each node have been randomly generated. For more
details on how the problems were constructed see Mullaseril (1996) and
Mullaseril and Dror (1997). The solutions obtained for the cattle yard
problems (5 problems) using the above approach were about 6% better
than the heuristic solutions reported in Mulleseril et al (1997).

In the next section we examine a modified approach for solving the
SDVRPTW.



Transformations and Ezact Node Routing Solutions by Column Generation — 317

5.6. ANOTHER SET COVERING
FORMULATION FOR SDVRPTW

Let © be the set of feasible routes for the SDVRPTW, respecting the
time windows of the customers. Let a;; be a constant value equal to 1 if
and only if route k € Q2 visits customer i. ¢ represents the cost of route
k and is equal to the sum of the costs of the arcs of the route.

Let z; be a binary variable equal to 1 if and only if route &k is used
in the optimal solution and y;; be the quantity delivered by route k to
customer ¢. The set covering formulation consists in choosing the routes
satisfying all the constraints such that the total cost is minimum. Let
this model be (M P;):

Minimize Z CL Tk
keQ)
subject to
Zaikyik 2¢q, 1=1,..,n (8.15)
ke
n
zkQ > Zaikyik, ke (8.16)
1=1

zx € {0,1} ke
0Ly <q, i=1,..,nk €

Note that we can modify constraints 0 < y;x < ¢; for each ¢ to simply
0 < y; for each 7 since if y;x > g¢i, and equivalent cost solution with
Yk = ¢; exists.

This model determines the set of routes in the optimal solution and
the quantity that is delivered to the customers visited by each route.
Constraints (8.15) ensure that the demand of each customer is satisfied.
The capacity constraint of the different vehicles is represented by con-
straints (8.16) which is also a consistency constraint: if customer i is
served by route k, the cost of this route has to be incurred.

This model has two interesting properties: (i) it finds the exact split
quantity on each route and does not search the solution in a limited
subset of split options such as in Mullaseril and Dror (1997), and (ii) be-
cause no 2-cycles exist in an optimal solution, it does not generate two
columns which represent visits to exactly the same subset of customers



318  ARC ROUTING

with different delivery quantities.

However, the problem with this formulation is that its LP relaxation
is very far from the integer solution. Constraints (8.16) are not strong
enough to force variables zj to have a value near 0 or 1.

It is thus possible to add two kinds of constraints to model (M Py):

TkGi 2 Yik, Vi, k| ax >0 (8.17)

> anzk > %1 NVi=1,..,n (8.18)

keQ

Constraints (8.17) are consistency constraints which force a route to
be used if it serves a customer and force the variable z; to be as big as
possible and specially ;. > %”fh. If one customer is not split in route k, zx
is then equal to 1. Constraints (8.18) ensure the visit of the minimum
number of vehicles according to the demand for each customer.

With constraints (8.17) and (8.18), respectively we obtain two models
(M P,) and (M P3) that can be used to solve the problem. It is also pos-
sible to create another model (M Py) including both sets of constraints.

It is clear that constraints (8.17) are stronger than constraints (8.18)
but while there are only n constraints (8.18), one for each customer, for
constraints (8.17), each time we generate a route, we have to generate
all the constraints corresponding to the customers visited by this route.
Subsequently, the linear relaxation of problem (M P») is quite difficult
(time consuming) to solve due to the large number of constraints.

5.6.1 The (M P3) Model and Column Generation Approach.

The model (M P3) (called the master problem) is stated below.

Minimize E CkTh
keQ



Transformations and Exact Node Routing Solutions by Column Generation 319

subject to

mez%kiﬁwm (8.19)

ke
Zaik’yik >q, 1=1,...,n (820)
ke
n
T Q > Zaikyik, ke (8.21)
i=1
zr € {0,1}, ke (8.22)
0<yik, i=1,..,nkeq (8.23)

The number of variables in the above model corresponds to the number
of feasible routes and, as noted before, can be “very large”.

We must have an efficient algorithm that is able to “price out” (gener-
ate) all feasible routes, in particular those that have a negative reduced
cost. Model (M P3) is slightly different from the conventional set cover-
ing formulations and requires to adapt the classical column generation
scheme described by Desrochers et al. (1992). Each time a column is
generated (and its associated variable), we also have to generate as many
variables as the number of customers that are visited by the new route.
It is important to remark that these variables have 0 cost and do not
appear in the objective function. We also have to add one consistency
constraint.

The simplex solution provides respectively the dual variables associ-
ated to constraints (8.19), (8.20) and (8.21) for the optimal solution of
the restricted master problem: «;, §; and w;. Consider a new route kg
defined by a column with elements (@iky)(i=1,....n)- Its reduced cost is
equal to:

n
E1‘30 = CkO - Za‘ikoa’i - kao (824)

=1

Suppose that &, < 0, we need to show that with the new constraints
and the new variables y;,, the corresponding column will enter in the
basis. To do that, we have to just prove that the dual problem (Dj3) of
the new problem (M P3) (with the new variables and constraints) is not
feasible. The new column for zy, in (M P3) corresponds to a constraint
in (Dj) that is:

n
D ik + Qui, < cky (8.25)

i=1



320  ARC ROUTING

But since wg, > 0 then the constraints (8.25) can not be satisfied
facing equation (8.24) and the fact that the reduced cost ¢, is strictly
negative. So, the dual problem (Dj) is not feasible. In (Dj), the new
variables do not operate in the objective function and in the initial con-
straints. So we are sure that the new solution of the dual problem will
be lower than the first one. Thus, it is clear that the variable z, is going
to enter in the basis and will decrease the value of the objective function.

Because it is accounted directly in the master problem for the capacity
of the vehicles, we do not have to consider these capacities in the sub-
problem. The subproblem is a special case of the Elementary Shortest
Path Problem with Resource Constraints (see Guéguen et al., 1998, and
the next section). Time and capacity are the only resources that need
to be considered.

A complete description of the problem is given below. (Again, z;; is
equal to 1 if arc (4,7) belongs to the shortest path, 0 otherwise. t; is
the time at which node 7 is visited. T is still a large constant.) The
subproblem can then be formulated as:

Minimize Z (cij — aj)zij
(z,7)€A

subject to

> wp— D xp=0,Ype N\ {0}

(i,p)eA (pJ)EA
> st 3 o2
(09)€A (4,0)€A

t; +si +ti; — (1 — :E,']')T < tj,V(i,j) cA
a; <t; <b,Vie N
Zij € {O,l},V(i,j) €A

To solve the above problem, we can use the algorithm by Guéguen et
al. (1998) (summarized in the next section) which is also an adaptation
of the frequently used algorithm proposed by Desrochers (1988). This
algorithm solves the non Elementary Shortest Path Problem with Re-
sources Constraints. It is important to note that this approach is valid
when there is a strong assumption that the service time is independent
of the quantity that is delivered to a customer.

When the optimal solution is reached, one suggestion is to detect and
add in the master problem the violated constraints (8.17) and try again
to add new columns by solving the subproblem. This should improve



Transformations and Exact Node Routing Solutions by Column Generation 321

the quality of the linear relaxation of the set covering problem and it
is important to remark that adding the violated constraints does not
change the formulation of the subproblem.

5.6.2 The Branching Scheme for the SDVRPTW.,

The column generation gives the optimal solution of the linear relax-
ation of the set covering formulation (M P3). If all the variables z; have
an integer value, the solution is also optimal for the SDVRPTW since
we do not demand that the variables y;; be also integer. In the case
that the xxs are fractional, a Branch & Price tree must be explored and
additional columns might be generated at each node of the tree.

It may seem, at first, that the Branch & Price scheme described by
Desrochers et al. (1992) is not reusable. This scheme involves branching
at the first level on the number of vehicles and at the second level, on
the arcs of the subproblem network. It means that if one branches on an
arc (7,7), it imposes that in one branch z;; = 1, i.e. if node 7 is served,
one is forced to serve node j just after and in the other branch z;; = 0,
i.e. it is forbidden to serve node j just after node 7. In each case, some
arcs are deleted in the subproblem network.

Because split is allowed, several vehicles might visit a customer. So,
it is possible, in a solution, that a vehicle k uses the link (7,7) and
some other vehicle [ uses the link (i,m) where j and m are two different
customers. It is then impossible to delete links in the subproblem. Sub-
sequently the branching rules of the second level are inappropriate in this
case. For the same reason, it is inappropriate to use the rules described
by Barnhart et al. (1998). They proposed that two customers r and
s are covered by the same column on the first branch and by different
columns on the second branch. It is clear that this rule cannot be used
here for the same argument. These methods therefore cannot be used
directly, but similar ideas can lead to a valid branching scheme.

First, it is clear that it is still possible to branch on the number of
vehicles. If the number of vehicles used: » ;. oz is fractional, say
equal to v, we create two branches corresponding to > .. zx < |v] and
Y ke Tk = |v 4 1], In each case, the dual dn, variable associated to
such a constraint is adequately transferred in the subproblem.

Secondly, we can introduce bfj which is equal to 1 if vehicle k& goes
through the arc (¢, 5) and 0 otherwise. Then, 3, cq b¥;zx is equal to the
number of time arc (¢, j) is covered by all the vehicles. But, since 2 cycle
splits do not appear in an optimal solution, it is possible to generate an



322  ARC ROUTING

optimal solution for which this sum is equal to 0 or 1. Thus, if this value
is fractional, then we create two branches, one where the sum is equal to
1, and one where it is equal to 0. And in each case, the dual variables
7i; associated to the new constraints are appropriately transferred in the
subproblem. But no arcs are deleted of the subproblem network.

It is very important to remark that it is not true for the arcs like (0, 1)
and (¢,0) for which ) ,.q bfjmk is still integer but might have a value
higher than 1 specially if the demand of a client 7 is larger than the ca-
pacity of the vehicles.

The difference with the branching rules of Desrochers et al. (1992)
is that here all the constraints in the Master Problem are introduced.
Then, the reduced cost of a new column kg is equal to:

n
Choy = Chko — zaikoai - Z bf}”)’i]‘ — dny
i=1 (i,j)eA
The rest of the subproblem does not change. What remains is to
conduct computational testing of the above ideas for SDVRPTW.

6. CONCLUSION

This chapter is primarily about column generation solution method-
ology for vehicle routing problems with time windows. The motivation
for this is that arc routing problems with time windows are “hard” and
at the present time we do not know how to describe this kind of prob-
lems using traditional integer programming models. Thus, such problems
have to be transformed into an appropriate node routing graphs and the
solutions to these vehicle routing problems are then to be transformed
back into their original arc routing settings.

The first three sections of this chapter address the issue of when a
transformation of an arc routing problem into a node routing one is nec-
essary and when, or, from a computational point of view, for what arc
routing problems a transformation to node routing is appropriate. An
additional motivation for such a transformation is the fact that for hard
node routing problems, for instance the VRPTW, a numerous algorithms
and extensive solution software have been developed over the past years
which now could be used to solve hard arc routing problems in their
node routing “image”. The three sections, also attempt to provide a
partial description and account of the different transformation schemes
proposed over the years. In section 3, transformations of capacitated
arc routing problems with and without split deliveries into an equivalent
node routing problem are described in some detail.



Transformations and Ezxact Node Routing Solutions by Column Generation 323

The node routing problem analyzed in the second part of this chapter
is the capacitated node routing problem with time windows. This is a
very important problem in the node routing literature with numerous
applications in real-life (Desrochers, et al. 1992). The solution method-
ology for this problem has been “traditionally” based on a set covering
problem representation followed by an implementation of a suitable col-
umn generation solution procedure. For this problem, starting from
section 4, in addition to the more traditional solutions based primarily
on the work of Desrochers (1988), we describe a very recent solution ap-
proach based on the work of Guéguen et al. (1998), and Guéguen et al.
(1999). In these two papers, Desrocher’s (1988) dynamic programming
scheme for solving the shortest path with resource constraints problem
not necessarily as an elementary path has been modified to account for
the fact that for some problems a solution has to be in the form of an
elementary shortest path. We have reviewed these findings in detail.
We have also examined the capacitated node routing problem with time
windows and split deliveries an<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>