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Preface 

Computational physics is physics done by .means of computational methods. 
Computers do not enter into this tentative definition. A number of funda­
mental techniques of our craft were introduced by Newton, Gauss, Jacobi, 
and other pioneers who lived quite some time before the invention of wor­
kable calculating machines. To be sure, nobody in his right state of mind 
would apply stochastic methods by throwing dice, and the iterative solution 
of differential equations is feasible only in conjunction with the high com­
puting speed of electronic calculators. Nevertheless, computational physics 
is much more than "Physics Using Computers." 

The essential point in computational physics is not the use of machines, 
but the systematic application of numerical techniques in place of, and in 
addition to, analytical methods, in order to render accessible to computation 
as large a part of physical reality as possible. 

In all quantifying sciences the advent of computers rapidly extended 
the applicability of such numerical methods. In the case of physics, how­
ever, it triggered the evolution of an entirely new field with its own goals, 
its own problems, and its own heroes. Since the late forties, computatio­
nal physicists have developed new numerical techniques (Monte Carlo and 
molecular dynamics simulation, fast Fourier transformation), discovered un­
expected physical phenomena (Alder vortices, shear thinning), and posed 
new questions to theory and experiment (chaos, strange at tractors, cellular 
automata, neural nets, spin glasses, ... ). 

An introductory text on computational physics must first of all provide 
the basic numerical/computational techniques. This will be done in Parts 
I and II. These chapters differ from the respective treatments in textbooks 
on numerical mathematics in that they are less comprehensive - only those 
methods that are of importance in physics will be described- and in focusing 
more on "recipes" than on stringent proofs. 

Having laid out the tools, we may then go on to explain specific pro-
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blems of computational physics. Part III provides a - quite subjective -
selection of modern fields of research. A systematic classification of applied 
computational physics is not possible, and probably not even necessary. In 
fact, all areas of physics have been fertilized, and to some extent trans­
formed, by the massive (and intelligent) use of numerical methods. Any 
more advanced sequels to this introductory book would therefore have to 
be either collections of contributions by several authors, or else monographs 
on various subfields of computational physics. 

Appendix A is devoted to a short description of some properties of com­
puting machines. In addition to those inaccuracies and instabilities that are 
inherent in the numerical methods themselves, we have always to keep in 
mind the sources of error that stem from the finite accuracy of the internal 
representation of numbers in a computer. 

In Appendix Ban outline of the technique of "Fast Fourier Transforma­
tion" (FFT) is given. The basic properties and the general usefulness of the 
Fourier transform need no explanation, and its discretized version is easy 
to understand. But what about the practical implementation? By simply 
"coding along" we would end up at an impasse. The expense in computing 
time would increase as the square of the number N of tabulated values of 
the function to be transformed, and things would get sticky above N = 500 
or so. A trick that is usually ascribed to the authors Cooley and Tukey 
(see [PRESS 86]) leads to a substantial acceleration that only renders the 
procedure practicable. In this fast method, the computing time increases as 
N log2 N only, so that table lengths of the order N = 10.000 are no problem 
at all. 

When pregnant with a book, one should avoid people. If, however, 
one has to seek them, be it to ask for advice, to request support or to 
beg for the taking over of teaching loads, they should be such pati­
ent and helpful people like Renata Lukac, Martin Neumann, Harald 
Posch, Georg Reischl or Konrad Singer. 

What one is doing to one's family cannot be made good by words 
alone. 

Vienna, March 1993 F. J. Vesely 
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Further Reading: 

POTTER, D.: COMPUTATIONAL PHYSICS. Wiley, New York 1980. 
Very valuable text; in some places too demanding for the beginner. 

IX 
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title. 
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Useful synopsis of modern problems and methods of computational physics; 
of rather varying didactic quality. 
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LING, W. T.: NUMERICAL RECIPES- THE ART OF SCIENTIFIC CoM­
PUTING. Cambridge University Press, New York 1986. 
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Most of the methods used by computational physicists are drawn from 
three areas of numerical mathematics, namely from the calculus of dif­
ferences, from linear algebra, and from stochastics. 

In the difference calculus we use finite differences, as opposed to infi­
nitesimal differentials, as the elements of computation. Let f( x) be some 
function of a single variable. In standard calculus, at least the independent 
variable x is assumed to vary in a continuous manner. Whenever x is limi­
ted to a discrete set of values Xk (k = 1, 2, ... ),we are entering the realm of 
finite differences. 

History took the opposite route. "Divided differences" of the form 
(fk+l - fk)/(xk+l - xk) served as the base camp when Newton and Leib­
niz set out to attack the summit of infinitesimal calculus. But as soon as 
the frontier towards infinitely small quantities had been crossed, and the 
rules of the differential and integral calculus had been established, physi­
cists grew ever more enthralled by these miraculous new tools. The calculus 
of infinitesimals became a "hit", much like the computer did in our days. 
And much like the computer, it acted to focus the attention of physicists 
on those problems that could most readily be tackled with this apparatus. 
Other topics were shelved for a while, and in the course of many generations 
were almost forgotten. 

A striking example for this selectivity of scientific perception may be 
found in Kepler's problem. By applying the methods of calculus to the 
equations of motion of two gravitating celestial bodies we may eventually 
come up with analytical expressions for the trajectories. For three or more 
interacting bodies this is in general impossible. And so it comes that every 
student of physics very soon learns how to solve the two-body problem 
by analytical means, whereas the study of three- and more-body problems 
became the task of an exclusive circle of specialists. Only in recent years 
the re-encounter with chaos and incomputability in deterministic mechanics 
helped physicists to become once more aware of the wealth of phenomena 
dwelling beyond the "zoo of pure cases." 

The methods of difference calculus, which are actually older, remain ap­
plicable even in the case of three, four, or hundreds of interacting bodies. 
And we are not even restricted to the 1/r -interaction of gravitating masses. 
The price we have to pay for this greater freedom in the selection of me­
chanical problems is the fact that we can no more obtain a closed formula 
for the trajectories, but only a - albeit arbitrarily fine - table of trajectory 
points. 

It is quite understandable that in the three centuries since the publi-
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cation of the "Principia" this more practical aspect of Newton's work was 
somewhat neglected. The repetitive application of iterative algorithms is 
time-consuming and tedious; a renaissance of this branch of computational 
physics could take place only after the development of efficient computing 
machinery. In its modern version it is known as classical-mechanical simu­
lation, or - in a specific context - as "Molecular dynamics" simulation. 

Linear algebra is the second tributary to our methodological pool. Of 
course, any attempt of a comprehensive coverage of this field would go far 
beyond the frame of this text. However, the matrices that are of importance 
in computational physics very often have a rather simple structure. For 
example, by employing the finite difference formalism to convert a partial 
differential equation into a system of linear equations, we end up with a 
matrix of coefficients that has its non-zero elements concentrated near the 
main diagonal- i.e. a "diagonally dominated" matrix. And in the frame­
work of stochastic methods we encounter covariance matrices which are 
always symmetric, real, and positive definite. 

We will therefore concentrate on those techniques that have special im­
portance in computational physics. Just for completeness, a short survey 
of the standard methods for the exact solution of linear systems of equa­
tions will be given. The main part of Chapter 2, however, will be devoted 
to procedures that are particularly suited for symmetric real matrices and 
to those iterative methods that converge particularly fast when applied to 
diagonally dominated matrices. There are also iterative techniques for de­
termining eigenvalues and eigenvectors which may be applied in addition to 
or in place of exact methods. 

Stochastics is statistics turned upside down. Textbooks on statistics are 
in general concerned with procedures that allow us to find and quantify 
certain regularities in a given heap of numbers. Contrariwise, in stochastics 
these statistical properties are given beforehand, and an important task 
then is the production of "random numbers" with just those properties. 

In contrast to the other two pillars of computational physics, stochastics 
is a product of the computer age. In the forties, after the still rather failure­
prone ENIAC, the MANIAC was constructed as the second fully electronic 
computing machine. Its primary use was to be numerical neutron physics. 
(Incidentally, Nicholas Metropolis, who hated this kind of abbreviations, 
had meant to bring the custom to an end once and for all by introducing 
a particularly idiotic acronym [COOPER 89]; the further history of Compu­
terspeak, from UNIVAC to WYSIWYG, is proof of the grandiose failure of 
his brave attempt.) 
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The transport of neutrons through an inhomogeneous medium, be it an 
atomic bomb or the core of a reactor, is described by complicated integra­
differential equations. Instead of solving these transport equations directly, 
Metropolis, Fermi, Ulam and others [ULAM 4 7, METROPOLIS 49] used a 
stochastic procedure which they dubbed "Monte Carlo method." They pro­
grammed their machine in such a way that it sampled at random many 
individual neutron paths. A neutron would be sent on its way with a typi­
cal velocity, could penetrate more or less deeply into the material, was then 
absorbed or scattered into some new direction, and so on. By taking the 
average over many such neutron trajectories one could determine the mean 
:flux at some given point. 

A similar idea is the basis of the method of "Brownian dynamics." Here 
the random motion of mesoscopic particles is simulated according to a sim­
ple rule. Small, randomly sampled path increments are combined to a 
trajectory that closely resembles the typical random walk of Brownian dif­
fusors. By adding external conditions, such as absorbing walls or force 
fields, one may simulate non-trivial, physically relevant situations. 

For the evaluation of thermodynamic averages we may use the statistical­
mechanical Monte Carlo method, which at first sight bears little resemblance 
to its namesake in neutron physics. Here, the canonical phase space of anN­
particle system is perambulated by random steps. By a sophisticated trick 
that is again due to Metropolis, we can achieve that phase space regions 
with a large Boltzmann factor will be visited more frequently than regions 
with small thermodynamic probability. Thus it is possible to determine 
canonical averages by simply taking mean values over such random walks. 

A surprise bounty was discovered just a few years ago. It turned out 
that the basic principle of the Monte Carlo method can be of great value 
even outside of statistical mechanics. If the temperature is slowly decreased 
during the random walk through phase space, eventually only the regions 
with lowest energy will be visited. With a bit of luck we will end up not 
in some local energy dip, but in the global minimum. This means that we 
have here a stochastic method for locating the minimum of a quantity (the 
energy) depending on a large number of variables (the 3N particle coordi­
nates.) Such notoriously difficult multidimensional minimization problems 
are to be found in many branches of science. Applications of this "Simula­
ted annealing" technique range from the optimization of printed circuits on 
computer chips to the analysisis of complex neural nets. 

The three main methodological sources of computational physics will be 
treated in detail in the three Chapters of Part I. It is not my ambition 
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to prove each and every formula in full mathematical rigor. More often 
than not we will content ourselves with arguments of plausibility or with 
citations, if only we end up with a concrete algorithm or procedure. 



Chapter 1 

Finite Differences 

Let f( x) be a continuous function of one variable. The values of this function 
are given only for discrete, and equidistant, values of x: 

fk = f(xk), where Xk = xo + k ~x (1.1) 

The quantity 
(1.2) 

is called "forward difference" at the point Xk. By repeated application of 
this definition we obtain the higher forward differences 

~fk+l - ~fk = fk+2 - 2fk+1 + !k ' 

~2 fk+l- ~2 !k = fk+3- 3fk+2 + 3fk+1- !k 

(1.3) 
(1.4) 

The coefficients of the terms !1 are just the binomial coefficients which may 
conveniently be taken off Pascal's triangle. Quite generally, we have 

(1.5) 

For given ~x, the values of ~fk provide a more or less accurate measure 
of the slope of f ( x) in the region towards the right of x k. Similarly, the 
higher forward differehces are related to the higher derivatives of f(x) in 
that region. 

The "backward difference" at x k is defined as 

(1.6) 

7 
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and the higher backward differences are 

Y'2fk = V'fk- Y'!k-1 = fk- 2fk-1 + fk-2 (1. 7) 

etc., or, in general 

(1.8) 

In the formulae given so far only table values to the right or to the left 
of Xk were used. In contrast, the definition of the "central difference" is 
symmetric with respect to Xk: 

(1.9) 

At first sight this definition does not look all too useful, since by our as­
sumption only table values of fk with integer indices k are given. However, 
if we go on to higher central differences, we find that at least the differences 
of even order contain only terms with integer indices: 

and in general 

fk+1 - 2fk + fk-1 

fk+3/2- 3fk+1/2 + 3fk-l/2 - fk-3/2 
fk+2 - 4fk+1 + 6fk - 4fk-1 + fk-2 

(1.10) 

(1.11) 
(1.12) 

(1.13) 

One final definition, which will serve primarily to provide access to the 
odd-order central differences, pertains to the "central mean", 

1 
- 2[fk+1/2 + fk-1/2] (1.14) 

1 
2[Pfk+1/2 + /lfk-1/2] 

1 
4[fk+1 + 2fk + fk-1] (1.15) 

etc. 

In place of a- not obtainable- central difference of odd order, like 8fk, we 
may then use the central mean of this difference, namely 

1 
p8fk 2[8fk+1/2 + Sfk-1/2] 

1 
2[fk+1 - fk-1] (1.16) 

which again contains only table values that are known. 
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1.1 Interpolation Formulae 

Nota bene: this section is not concerned with "interpolation" - in that 
case we would have to rehearse basic numerical skills like spline, Aitken 
or other interpolation techniques - but with the derivation of interpolation 
formulae which may further on be used as formal expressions. We will later 
differentiate them (Section 1.2), integrate them (Chapter 4) and insert them 
in systems of linear equations (Chapter 5). 

So far we have not made use of the assumption that the points Xk are 
arranged in regular intervals; the relations following now are valid only 
for equidistant table points. This restriction to constant step width may 
seem dubious. However, in computational physics our aim is in general not 
to interpolate within some given - and certainly not always conveniently 
spaced - tables. Rather, the following interpolation formulae shall serve 
us as a basis for the derivation of iterative algorithms to solve differential 
equations. In other words, we will develop methods to produce, on the 
grounds of a given physical law, a sequence of "table values." This implies 
that as a rule we have the freedom to assume some fixed step width. 

Thus, let ..6.x be constant, and let Xk be some particular point in the table 
{ Xk, fk; k = 1, 2, .. }. As a measure for the distance between an arbitrary 
point on the x-axis and the point Xk we will use the normalized quantity 

X- Xk 
u= 

..6.x 
(1.17) 

1.1.1 NGF Interpolation 

We can obtain an interpolation approximation F m ( x) to the tabulated func­
tion by threading a polynomial of order m through m + 1 table points. If 
we use only points to the right of Xk (and Xk itself), the general polynomial 
approximation may be written in terms of forward differences as follows: 
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NGF interpolation: 

where 

Fm(x) = fk + (~)~fk + (~)~2/k + ... 

fk + ~ (~)~l/k + O[(~x)m+l] 

(u) = u( u - 1) ... ( u - l + 1) 
l - l! 

(1.18) 

(1.19) 

The expression 1.18 is known as the Newton-Gregory /forward or NGF in­
terpolation formula. 

The remainder term in 1.18 requires a grain of salt. Strictly speaking, 
this error term has the form 

R = 0 [t(m+l)(x') (x- x')m+l] 
(m + 1)! 

(1.20) 

where x = x' denotes the position of the maximum of lf(m+l)(x)l in the 
interval [xk, Xk+ml· Putting 

X- X 1 =~~X (1.21) 

we have 

(1.22) 

By the simpler notation 0 [ ( ~x )m+l] we only want to stress which power of 
~x is relevant for the variation of the remainder term. The other factors in 
the remainder are assumed to be harmless. This is to say, the function to 
be approximated should be continuous and differentiable, and x should be 
situated, in the case of extrapolation, not too far from the interval [xk, Xk+m]· 

EXAMPLE: Taking m = 2 in the general NGF formula (1.18) we obtain the 
parabolic approximation 

(1.23) 
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1.1.2 NGB Interpolation 

We obtain the Newton-Gregory/backward (or NGB) formula if we use, in 
setting up the polynomial, only table values at xk, Xk-b .. . : 

NGB interpolation: 

u u(u+l) 2 
fk + 1! v fk + 2! v fk + ... 

fk + E (u + ~ -l)V1fk + O[(~x)m+l] (1.24) 

EXAMPLE: With m = 2 we arrive at the parabolic NGB approximation 

(1.25) 

1.1.3 ST Interpolation 

By "Stirling" (or ST) interpolation we denote the formula we obtain by 
employing the central differences 6 fk, 62 /k etc. Here we are faced with the 
difficulty that central differences of odd order cannot be evaluated using a 
given table of function values. Therefore we replace each term of the form 
621+1 fk by its central mean. In this manner we obtain a "symmetrical" 
formula in which the table points Xk, Xk±t, ... Xk±n are used to construct a 
polynomial of even order m = 2n: 
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ST interpolation: 

EXAMPLE: Setting n = 1 (or m = 2) in 1.26 yields the parabolic Stirling formula 

(1.27) 

Within a region symmetric about Xk the Stirling polynomial gives, for 
equal orders of error, the "best" approximation to the tabulated function. 
(The "goodness" of an approximation, which will not be explained any 
further, has to do with the maximum value of the remainder term in the 
given interval.) 

It is in keeping with the uncommunicative style of Isaac Newton that he 
permitted his "regula quae ad innumera aequalia intervalla recte se habet, 
quia tum recte se habebit in locis intermediis" [NEWTON 1674] to be pub­
lished only in the year 1711 [JONES 1711], although he had found it, as is 
evident from various manuscripts, letters and the "Principia ... ", no later 
than 1675-76. (Incidentally, the immediate occasion for his early involve­
ment with the interpolation problem was the request of a private scholar 
by the name of John Smith, who had undertaken to publish an exact table 
of square, cubic and quartic roots of the numbers 1 to 10.000.) As a con­
sequence of this reluctance, various special forms of Newton's formulae are 
ascribed to Gregory, Cotes, Bessel and Stirling, although these authors as 
a rule would respectfully point out Newton's priority. 
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1.2 Difference Quotients 

Thanks to Newton, Gregory and Stirling we are now in possession of a con­
tinuous and several times differentiable function which at least at the table 
points coincides with the given function. Whether it does so in between 
these points we cannot know- it is just our implicit hope. But now we go 
even further in our optimism. The derivative of a function that is given only 
at discrete points is not known even at these points. Nevertheless we will 
assume that the derivatives of our interpolation polynomial are tolerably 
good approximations to those unknown differential quotients. The proce­
dure of approximating derivatives by difference quotients has recently come 
to be termed "differencing." 

In order to be able to differentiate the various polynomials, 1.18, 1.24 
and 1.26, we have to consider first how to differentiate terms of the form 
(~) (see equ. 1.19) with respect to u. The first two derivatives of such 

generalized binomial coefficients are 

d (u) (u) 1-l 1 
du l = l ~ u- i 

(1.28) 

and 

{ 
0 for l = 1 

:u,(7) = (~)~~(u-i)~u-j) forl~2 (1.29) 

1.2.1 DNGF Formulae 

Using the above expressions in differentiating the NGF polynomial1.18, we 
find for the first two derivatives in a small region- preferably towards the 
right - around Xk: 

(1.30) 

(1.31) 
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DNGF: 

~X r~~k _ ~~~k + ~;~k _ ~:~k + .. ·l 
_1 I) -1)/-1 ~lfk + O[(~x)m] (1.32) 
~X l=l { 

DDNGF: 

Table 1.1: NGF approximations to the first and second derivatives at the 
point Xk 

We can see that the quality of the approximation, as given by the order 
of the remainder term, has suffered somewhat; the order of the error has 
decreased by 1 and 2, respectively. 

In the numerical treatment of differential equations we will not need the 
differentiated interpolation formulae in their full glory. It will be sufficient to 
know F'(x) and F"(x) at the supporting points of the grid, in particular at 
the point x = Xk, i.e. for u = 0. The relevant expressions are listed in table 
1.1. 

ExAMPLE: Taking m = 2 we obtain as the DNGF approximation to the first 
derivative at x = Xk: 

(1.34) 
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DNGB: 

DDNGB: 

Table 1.2: NGB approximations to the first and second derivatives at Xk 

1.2.2 DNGB Formulae 

Of course, we can play the same game using the NGB interpolation poly­
nomial. By twice differentiating equ. 1.24 we find the expressions 

_1 E \7/ fk (u + l- 1) E _1_. + O[(~x )m] (1.35) 
~X 1=1 { i=O U + z 

1 m 1 (u + l - 1) /-1 /-1 1 
(~x)2 ~\7 fk l t; ~ (u + i)(u + j) 

#i 

+ O[(~x)m-1 ] (1.36) 

which work best when applied to the left of Xk. In particular, at the position 
x = xk, which means taking u = 0, we find the expressions listed in table 
1.2. 

EXAMPLE: m = 2 yields 

F2'(xk) = ;x [vfk- V"~!kl +O[(~x)2] 

= ;x [~!k- 2fk-1 + ~!k-2] + O[(~x )2] (1.39) 
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1.2.3 DST Formulae 

Lastly, we may choose to differentiate the Stirling formula 1.26 once and 
twice; it is to be expected that the expressions obtained in this manner will 
function best in an interval that is centered around xk: 

F2n'(x) = 

_1_ t (u + 1-1) { [f-Lo21-1 fk + :!:_o2'!k] !:1 1 . + _!_o2'!k} 
~X l=1 21 - 1 21 i=1 U - 1 + Z 21 

+ O[(~x )2n] (1.40) 

11 02 fk 1 n (U + 1 - 1) 
F2n (x) = (~x)2 + (~x)2 ~ 21-1 

. { [f-L021-1 fk + 3!:.._02/!k] 2~ 2~ 1 + _o2_'f_k !:1 __ 1_} 
21 i=1 j;l ( u- 1 + i)( u- 1 + j) 1 i=1 u- 1 + i 

+ O[(~x)2n-1] (1.41) 

At x = Xk (i.e. u = 0) we find the formulas given in table 1.3. 

EXAMPLE: n = 1 yields for the first derivative the approximation 

F2'(xk) = ~x [f-LOfk] + 0[(6.x)2] 

= 2~x [fk+1- !k-1l + 0[(6.x)2] (1.44) 

The particular efficiency of the Stirling formulae is illustrated by the fact 
that by including just the first term on the right-hand side of 1.42 we al­
ready have an approximation of first order- in the case of NGF and NGB, 
inclusion of the first terms alone yields only zero-order approximations (see 
Figure 1.1): 

DNGF: F'(xk) 
~fk 1 

= ~x + O[~x] = ~x [fk+1- fk] + O[~x] (1.45) 
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DST: 

DDST: 

(1.43) 

Table 1.3: Stirling approximations to the first and second derivatives at the 
point Xk 

DNGB: F'(xk) 

DST: F'(xk) 

\lfk 1 
~x + O[~x] = ~x [fk- fk-l] + O[~x] (1.46) 

!18fk 2 1 
= ~x + O[(~x) ] = 2~x [fk+l- /k-1J 

+0[(~x)2] (1.47) 

Furthermore it should be noted that the remainder in 1.43 is of order 2n. 

From 1.41 one would expect 2n- 1, but by a subtle cancellation of error 
terms only the orders 2n and higher survive when we put u = 0. This is 
one reason why symmetric formulae such as those of the Stirling family are 
generally superior to asymmetric ones. It will turn out that the Stirling 
approximation to the second differential quotient serves particularly well in 
the numerical treatment of differential equations of second order. Keeping 
in mind the very special role such second-order differential equations play 
in physics, we regard the following formula with some respect and great 
expectation: 

DDST : F"(xk) 
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DNGF 

DST 

exact 
, , DNGB 

Figure 1.1: Comparison of various simple approximations to the first dif­
ferential quotient 

1.3 Finite Differences in Two Dimensions 

So far we have considered functions that depend on one variable only. How­
ever, the above definitions and relations may easily be generalized to two 
or more independent variables. As an example, let f(x, y) be given for 
equidistant values of x and y, respectively: 

Ai = f ( Xo + i ~x, Yo + j ~y) . (1.49) 

We will use the short notation 

f = of(x,y) 
X- QX (1.50) 

et mut. mut. for the partial derivatives of the function f with respect to 

its arguments. 
For the numerical treatment of partial differential equations we again 

have to "difference", i.e. to construct discrete approximations to the partial 
derivatives at the base points (xi, Yi)· As before, there are several possible 
ways to go about it, each of them related to one of the various approximati­
ons given above. Using the DNGF-, the DNGB- or the DST-approximation 
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of lowest order, we have 

(1.51) 

or 
1 "VJ,·. 

[fx]; 3· ~ ~ [fij- fi-tj] + O[~x] =: ~ s,J + O[~x] ., ux ' ' ux (1.52) 

or 

[ l 1 [ ] [( )2] _ J.tOdi,j [( )2] fx i,j ~ 2~x fi+t,j - fi-l,j + 0 ~X = ~ + 0 ~X (1.53) 

Again, the simple insertion of the central difference quotient in place of the 
derivative results in an order of error that is higher by 1 than if we use 
either of the other finite difference expressions. 

The next step is the approximation of the second derivative of f(x, y) by 
difference quotients. By again fixing one of the independent variables - y, 
say- and considering only fxx' we obtain, in terms of the Stirling (centered) 
approximation, 

[fxx]i,j ~ (~~)2 [fi+t,j- 2fi,j + fi-t,j] + O[(~x)2] 
8[ fi,j + O[(~x)2] 
(~x)2 

(1.54) 

Analogous (and less accurate) formulae are valid within the NGF- and 
NGB-approximations, respectively. For a consistent representation of mixed 
derivatives like fxy one should use the same kind of approximation with re­
spect to both the x- and the y-direction. (This may not hold if x and y 
have a different character, e.g. one space and one time variable; see Section 
1.4.2 and Chapter 5.) In this way we find, using the Stirling expressions as 
an example, 

1 
~ 4~x~y [fi+t,j+l - fi+t,j-t - fi-t,j+t + fi-t,j-t] 

= J.tOi [J.t8jfi,j] + O[~x~y] 
~X ~y 

+O[~x~y] 

(1.55) 

The curvature of the function f ( x, y) at some point may be calculated by 
applying the nabla operator twice. There are two ways in which this opera­
tor \12 may be approximated. (Note that the nabla operator \1 mentioned 
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in this paragraph should not be mixed up with the backward difference for 
which we use the same symbol.) Let us assume, just for simplicity of nota­
tion, that l:iy = l:ix = l:il. Then we may either "difference" along the grid 
axes, writing the local curvature at the grid point ( i, j) as 

"V2 f(x, y) ~ (;l)2 [fi+1,j + fi.jH + fi-1,j + fi,j-1- 4J;,j] 

or we may prefer to apply "diagonal differencing", writing 

(1.56) 

2 1 [ "V f(x,y) ~ 2(/:il)2 fi+1,j+l + fi-1,j+1 + fi-l,j-1 + fi+1,j-1- 4f;,j] (1.57) 

1.4 Sample Applications 

The entire wealth of applications of the finite difference formalism will be­
come accessible only after a detailed consideration of linear algebra (Chapter 
2) and of the ordinary and partial differential equations of physics (Chap­
ters 4 and 5). Here we have to be content with a few hints which hopefully 
will whet the appetite. 

1.4.1 Classical Point Mechanics 

The equations of motion of mass points in classical mechanics are ordinary 
differential equations of second order. Thus the physicist's favorite pet, the 
harmonic oscillator, obeys the equation of motion 

(1.58) 

Everybody knows how to solve this equation analytically. What, then, 
is the procedure to follow in computational physics? We may, for once, 
replace the second differential quotient by the second Stirling-type difference 
quotient (see equ. 1.48): 

(1.59) 

Assume now that the table of trajectory points, {xk; k = 1, 2, ... }, be 
already known up to time tn, and that we want to compute the next value 
Xn+1· From 1.59 we get 

(1.60) 
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or, explicitly, 

(1.61) 

In the field of statistical-mechanical simulation this formula is known as 
the St¢rmer-Verlet algorithm [VESELY 78]. Of course, we may employ it 
also if 1.58 contains, instead of the harmonic acceleration term -w6x, any 
other continuous function of x. Anyone who has ever attempted to tackle 
by analytical means even the most simple of all anharmonic oscillators, 

d2x 2 3 
dt2 = -Wo X - (3 X (1.62) 

will certainly appreciate this. 

EXERCISE: a) Write a program to tabulate and/or display graphically the ana­
lytical solution to equ. 1.58. (You may achieve a very concise visualization by 
displaying the trajectory in phase space, i.e. in the coordinate system { x; x }; for 
x the approximation :i; ~ ( Xk+l- Xk-1 )/2b.t may be used.) Choose specific values 
of w5, b.t and xo, :i:o, and use these to determine the exact value of x 1 . Then, 
starting with xo and x1, employ the algorithm 1.61 to compute the further path 
{ Xk; k = 2, 3, ... }. Test the performance of your program by varying b.t and w5. 
b) Now apply your code to the anharmonic oscillator 1.62. To start the algorithm 
you may either use the exact value of x1 (see, e.g., [LANDAU 62], Chap. V, §28), 
or the approximate value given by 

. b.t .. (.6.t)2 
X1 ~ Xo + XQ + XQ - 2-

1.4.2 Diffusion and Thermal Conduction 

The diffusion equation reads, in one dimension, 

ou(x, t) = D 82u(x, t) 
at 8x2 

(1.63) 

(1.64) 

The variables x and t are again assumed to be discrete. Writing the desired 
density function u at position x; at time tn as 

u£ = u(x;, tn) , (1.65) 
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we may replace the time derivative ou I ot by the linear DN G F -approximation 
(see equ. 1.32). For the second derivative by x on the right hand side of 
1.64 we use the Stirling approximation DDST (equ. 1.48) and obtain the 
so-called "FTCS scheme" (meaning "forward-time, centered-space"), 

(1.66) 

which will be considered in more detail in Section 5.2.1. Introducing the 
abbreviation a = D fl.t I ( fl.x )2 we may rewrite this as an explicit formula, 

(1.67) 

which is valid fori = 1, ... N -1. If the values of the function u at the boun­
dary points x0 und XN are held fixed, and some initial values u? , i = 0, ... N 
are assumed, the expression 1.67 determines the space-time evolution of u 

uniquely. 

EXERCISE: If we interpret u(x, t) as an energy density, or simply as the tempera­
ture T, along a rod of length L = 1, equ. 1.64 may be understood as describing 
the conduction of heat, i.e. the spatio-temporal development of T(x, t): 

&T(x, t) =.X &2T(x, t) 
at &x2 

(1.68) 

Let us now divide the rod into 10 pieces of equal length, and assume the boundary 
conditions T(O, t) = T(i = 1.0 and T(L, t) = Tf0 = 0.5. The values for the 
temperature at timet = 0 (the initial values) are Tf = T~ = ... Tf0 =0.5 and 
T8 = 1.0. 

Employ equ. 1.67 to compute the distribution of temperatures at successive 

time steps; choose various values of the quantity a (say, between 0.1 and 0.6. (See 

also the stability considerations in Section 5.2.1.) 
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Linear Algebra 

By the introduction of finite differences a function f( x) depending on a 
single variable is converted into a table of function values. Such a table 
may be interpreted as a vector f = (!k; k = 1, ... , M). Similarly, a 
function of two variables may be tabulated in the format of a matrix: 

F = [Aj l = [! (Xi' y j) ; i = 1' ... M; j = 1' ... N] . ( 2.1) 

In many physical applications position and time are the relevant indepen­
dent variables; in such cases the time variable t will take the place of y. 
In particular, this holds whenever we have an equation of motion descri­
bing the temporal evolution of the quantity f(x, t), i.e. a partial differential 
equation involving the derivatives of f with respect to both independent 
variables. Initial value problems of this kind, when treated by the finite 
difference formalism, lead to systems of linear equations whose matrix has 
a specific, rather simple structure. 

In contrast, in the case of stationary boundary value problems the va­
riables x and y (and maybe a third independent variable z) are indeed 
spatial coordinates; but again we have to do with partial differential equa­
tions which, by "differencing", may be transformed into systems of linear 
equations (see, e.g., equ. 5.84). 

Further applications of linear algebra can be found in stochastics, where 
covariance matrices have to be handled (see Chapter 3,) and in quantum 
mechanics (eigenvalue problems.) 

The fundamental manipulations we will have to perform on matrices are 

• Inversion of a matrix: 
A {=:::::}A -l (2.2) 

23 
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• Finding the solution to the system of equations defined by a matrix 
A and a vector b: 

A·x = b (2.3) 

(To achieve this it is not necessary to determine the inverse A - 1 .) 

• Finding the eigenvalues Ai and the eigenvectors ai of a quadratic ma­
trix: 

lA- Ai II 
(A - Ai I) · ai 

~ } i = 1, ... N 

(Here, IMI denotes the determinant of a matrix.) 

(2.4) 

There are many excellent textbooks explaining the standard methods 
to employ for these tasks. And every computer center offers various sub­
routine libraries that contain well-proven tools for most problems one may 
encounter. In what follows we will only 

• explain the standard techniques of linear algebra to such an extent 
as to render the above-mentioned black box subroutines at least semi­
transparent; 

• explicate specific methods for the treatment of matrices which are 
either diagonally dominated or symmetric (or both). 

2.1 Exact Methods 

2.1.1 Gauss Elimination and Back Substitution 

This is the classic technique for finding the solution of a system of linear 
algebraic equations A· x = b, with the special bonus of yielding the inverse 
A - 1 as well. Let us write the given system of equations in the form 

(2.5) 
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If we could transform these equations in such a way that the matrix on 
the left-hand side were triangular, i.e. 

a~l a~2 Xt b' 1 

0 a~2 
(2.6) 

0 0 a~N XN b' N 

this would all but solve the problem. In order to obtain this triangular form 
we use the following theorem: 

The solution vector x remains unchanged if arbitrary pairs of 
rows in the matrix A and in the vector b are interchanged si­
multaneously; more generally, replacing a row by a linear com­
bination of itself and other rows leaves x unaltered. 

This leads us to the following procedure: 

Gauss elimination: 

• Find the largest (by absolute value) element in the first column, 
and let i be the row number of that element; exchange the first 
and the i-th row in A and b. 

• Subtract from the 2nd toN-throws in A and b such multiples 
of the first row that all a;1 = 0. 

• Repeat this procedure for the second column and row, etc., up 
toN -1. 

This method is called Gauss(ian) elimination with simple (partial) pivoting. 
In the more efficient method of complete pivoting not only rows but also 
columns are interchanged; this, however, involves memorizing all previous 
interchanges and is therefore more difficult to program. 

Having transformed the matrix to the triangular form 2.6, we may now 
determine the elements of the solution vector by back substitution: 
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Back substitution: 

= _1_b' 
a' N 

NN 

Chapter 2 

a' 1 (b~-1- a~-1,N XN) 
N-1,N-1 

XN-1 

Linear algebra 

(2.7) 

(2.8) 

(2.9) 

If we need, in addition to the solution of our system of equations, also 
the inverse of the matrix A, we simply have to apply the foregoing recipe 
simultaneously to N unit vectors bj = ej of the form 

1 0 
0 1 

e1 = , e2 = 0 etc. (2.10) 

0 

Following the triangulation of A we have N new vectors bj '. Each of these 
is successively used in back substitution; each solution vector so obtained is 
then a column vector of the desired matrix A - 1 . 

EXAMPLE: To determine the inverse of 

we write 

( : : ) . ( ::: ::: ) = ( ~ ~ ) 
By (trivial) Gauss elimination we obtain the triangular system 

( 3 1 ) ( au a12 ) ( 1 0 ) 
0 \0 • 0!21 0!22 = - ~ 1 
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Back substitution in 

yields 

) = ( -i ) 
and from 

( 3 110 ) . ( a12 ) ( 0 ) 
0 3 a22 1 

we find 

( :~: ) ( -1:0 ) 
10 

so that 

-/o) 
10 

2.1.2 LU Decomposition 

A more modern, and in some respects more efficient, device for the solu­
tion of a linear system than Gauss elimination is due to the authors Ba­
nachiewicz, Cholesky and Crout. The name "L U decomposition" implies a 
"lower-upper" factorization of the given matrix. In other words, we seek to 
represent the matrix A as a product of two triangular matrices, such that 

A=L·U (2.11) 

with 

U = ( U~1 ~:: • U1N ) 

0 0 UNN 

(2.12) 

Writing A· x =bas 
L·(U·x)=h (2.13) 
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we can split up the task according to 

L·y=b (2.14) 

and 
U·x=y (2.15) 

Owing to the triangular form of the matrices L and U these equations are 
easy to solve. First we compute an auxiliary vector y by forward substitu­
tion: 

Y1 (2.16) 

Yi = ; i = 2, ... ,N (2.17) 

The solution vector x is then obtained by back substitution in the same 
manner as in the Gauss elimination technique: 

1 
XN = --YN 

UNN 

X; = ~ (Yi- t Uij Xj) ; i = N -1, ... '1 
Uu j=i+l 

(2.18) 

(2.19) 

How, then, are we to find the matrices Land U? The definition L · U = 

A is equivalent to the N 2 equations 

N 

L: l;k Ukj = a;3; i = 1, ... N; j = 1, ... N 
k=l 

(2.20) 

We are free to choose N out of the N 2 + N unknowns l;j, Uij· For conve­
nience, we put l;; = 1 (i = 1, ... N). Also, due to the triangular structure 
of L and U, the summation index k will not run over the whole interval 
[1, ... , N]. Rather, we have 

for i '.5: j 

for i > j 

i 

L: l;k Ukj = a;3 
k=l 

j 

L: l;k Ukj = a;3 
k=l 

(2.21) 

(2.22) 
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This leads to the following procedure for the evaluation of Uij and lii, as 
given by Crout: 

LU decomposition: For j = 1, 2, ... N compute 

Ulj -

Uij = 

lij = 

i-1 

aii - L lik Ukj ; i = 2, ... , j 
k=l 

1 ( j-l ) 
-.. aii - L lik Ukj ; i = j + 1, ... , N 
UJJ k=l 

(2.23) 

(2.24) 

(2.25) 

The determinant of the given matrix is obtained as a side result of LU 
decomposition: 

lA I = ILl · lUI = un u22 ... UNN 

EXAMPLE: For the LU decomposition of 

A=(~~) 
we find, according to Crout: 

so that 

j = 1, i = 1: 

j = 1, i = 2: 

u11 a11 = 1 
1 

l21 = -a21 = 3 
un 

j = 2, i = 1 : U12 

j = 2, i = 2: U22 

a12 = 2 

a22 - h1 u12 = -2 

( ~ ~). ( ~ ~2) ._____. ...____,_. 
L U 

(2.26) 
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At each step (j, i) the required elements lik, Ukj are already available. Each 
of the elements aij of the original matrix A is used only once. In a computer 
code one may therefore save storage space by overwriting aij by Uij or lij, 

respectively. (The lii are equal to 1 and need not be stored at all.) 
Speaking of computer codes: the above procedure is only the basic 

principle of the L U decomposition technique. In order to write an effi­
cient program one would have to include pivoting, which is more involved 
here than in the Gaussian elimination method (see [PRESS 86], p.34f.). 

An important advantage of LU decomposition as compared to Gauss' 
method is the fact that the vector b has so far not been manipulated at 
all. (In particular, there was no exchanging of rows etc.) Only for the 
calculation of a solution vector x by forward and backward substitution the 
elements of b come into play. In other words, we may use the factors L and 
U of a given matrix A again and again, with different vectors b. 

If required, the inverse of the matrix A may again be determined in 
the same manner as with Gaussian elimination: after solving the equations 
A · Xj = ej, with the N unit vectors ej, one combines the column vectors 
Xj to find A - 1 . 

2.1.3 Tridiagonal Matrices: Recursion Method 

In many applications the matrix A in the system of equations A · x = b 
has non-zero elements only along the main diagonal and in the immediately 
adjacent diagonals. In these cases a very fast method may be used to find 
the solution vector x. With the notation 

/31 /1 0 0 
0:2 /32 /2 0 0 

A:: 
0 0:3 /33 /3 0 

(2.27) 

O:N-1 f3N-1 /N-1 

0 O:N f3N 

the system of equations reads 

f31 x1 + /1 x2 = b1 

O:i Xi-1 + f3i Xi + /i Xi+l bi; i = 2, ... 'N -1 (2.28) 

O:N XN-1 + f3N XN = bN 
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Introducing auxiliary variables 9i and hi by the recursive ansatz 

Xi+l = 9i Xi + hi ; i = 1' ... ' N -1 

we find from 2.28 the "downward recursion formulae" 

-aN 
9N-1 = f3N , 

-ai 
9i-1 =--­

f3i + /i 9i 

b·-"'·h· h . _ t it t 
t-1-

f3i + /i 9i 
(i=N-1, ... ,2) 

31 

(2.29) 

(2.30) 

(2.31) 

Having arrived at 91 and h1 we insert the known values of 9i, hi in the "up­
ward recursion formulae" 

(2.32) 

9i Xi + hi; i = 1, ... 'N -1 (2.33) 

(Equation 2.32 for the starting value x 1 follows from (31x 1 + 11 x 2 = b1 and 
x2 = 91x1 +ht-) 

EXAMPLE: In A· x = b, let 

Downward recursion (Equ. 2.30, 2.31): 

1 
93 = --

3 

1 0 
3 1 
1 4 
0 1 

4 
h3 =-

3 
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i = 3: 

i = 2: 

3 
g2= --

10 
20 

g1 = --
27 

Upward recursion (Equ. 2.32, 2.33): 

X1 

i = 1: X2 

i = 2: X3 

i = 3: X4 = 

8 

Chapter 2 

1 
h2=-

10 
h - 19 

1 - 27 

34 
9 
17 

1 
17 

23 
17 

Linear algebra 

A similar method which may be used in the case of a five-diagonal matrix 
is given in [ENGELN 91]. 

2.2 Iterative Methods 

The methods described so far for the solution of linear systems are - in 
principle - exact. Any numerical errors are due to the finite machine accu­
racy (see Appendix A). If the given matrices are well-behaved, the process 
of pivoting explained earlier keeps those roundoff errors small. However, if 
the matrices are near singular, errors may be amplified in an inconvenient 
way in the course of determining the solution. In such cases one should 
"cleanse" the solution by a method called iterative improvement. 

Let x be the exact solution of A · x = b, and let x' be a still somewhat 
inaccurate (or simply estimated) solution vector, such that 

x:=x'+Sx (2.34) 

Inserting this into the given equation we find 

I A·8x=b-A·x' (2.35) 

Since the right-hand side of this equation contains known quantities only, we 
can use it to calculate lix and therefore x. (The numerical values in b-A·x' 
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are small, and double precision should be used here.) If the L U decompo­
sition of the matrix A is known, ~ x is most suitably found by forward and 
back substitution; only ~ N 2 operations are required in this case. In con­
trast, the "exact" methods we may have used to find x' take some N 3 opera­
tions. 

EXAMPLE: The principle of iterative improvement may be demonstrated using a 
grossly inaccurate first approximation x 1• Let 

A= ( ~ ~ ) , b = ( ~ ) and x' = ( -: ) 
From 

we find, using the decomposition 

L = ( ~ ~ ) and U = ( ~ ~2 ) 

the correction vector 

so that the correct solution 

is obtained. 

ox=(=!) 

X= ( ~4) 

The idea underlying the technique of iterative improvement may be ex­
tended in a very fruitful way. Let us interpret equ. 2.35 as an iterative 
formula, 

(2.36) 

forgoing the ambition to reach the correct answer in one single step. We 
may then replace A on the left hand side by a matrix B which should not 
be too different from A, but may be easier to invert: 

(2.37) 



34 Chapter 2 Linear algebra 

or 
(2.38) 

This procedure can be shown to converge to the solution of A· x = b if, and 
only if, lxk+l- Xk I < lxk- Xk-11· This, however, is the case if all eigenvalues 
of the matrix 

B-1 . [B- A] 

are situated within the unit circle. 
It is the choice of the matrix B where the various iterative methods differ. 

The three most important methods are known as Jacobi relaxation, Gauss­
Seidel relaxation (GSR) and successive over-relaxation (SOR). In each of 
these techniques only such matrix manipulations occur that need less than 
~ N 3 operations per iteration; usually ~ N 2 operations are necessary. For 
large matrices iterative methods are therefore much faster than the exact 
techniques. 

2.2.1 Jacobi Relaxation 

We first divide the given matrix according to 

(2.39) 

where D contains only the diagonal elements of A, while L and R are the 
left and right parts of A, respectively. (The matrix L introduced here has, 
of course, nothing to do with the one defined earlier, in the framework of 
LU factorization). The condition of being easy to invert is most readily 
met by the diagonal matrix D. We therefore choose B = D and write the 
iteration formula 2.38 as 

or 

aii x~k+1 ) = bi - L aij x)k); i = 1, ... , N 
jf:i 

EXAMPLE: In A· x = b let 

(2.40) 

(2.41) 
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Starting from the estimated solution 

xo = ( 1.2) 
0.2 

and using the diagonal part of A, 

D=(~ :) 
in the iteration we find the increasingly more accurate solutions 

X1 = ( 0.933 ) ; X2 = ( 1.033 ) etc. ---+ Xoo = ( 1 ) 
-0.100 0.033 0 

The Jacobi method converges best for diagonally dominated matrices A, 
but even there the rate of convergence is moderate at best. The convergence 
behavior is governed by the eigenvalues of the matrix - [L + R]. Writing 
the Jacobi scheme in the form 

Xk+l = D-1 · b + J · Xk , 

with the Jacobi block matrix 

J := n-1 · [D- A] = -D-1 · [L + R] 

(2.42) 

(2.43) 

convergence requires that all eigenvalues of J be smaller than one (by ab­
solute value). Denoting the largest eigenvalue (the spectral radius) of J by 
>..J, we have for the asymptotic rate of convergence 

(2.44) 

In the above example >..J = 0.408 and r ~ 0.59. 

2.2.2 Gauss-Seidel Relaxation (GSR) 
We obtain a somewhat faster convergence than in the Jacobi scheme if we 
choose B = D + L, writing the iteration as 

[D + L] . Xk+1 = b - R . Xk (2.45) 
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Solving the set of implicit equations 

a;; x~k+I) + 2:: a;j x~k+I) = b;- 2:: a;j x)k); i = 1, ... , N (2.46) 
j<i j>i 

is not quite as simple as solving the explicit Jacobi equations 2.41. How­
ever, since the matrix D +Lis triangular the additional effort is affordable. 

EXAMPLE: With the same data as in the previous example we find the first two 
improved solutions 

XI = ( 0.933 ) • X 2 = ( 0.989 ) • 
0.033 ' 0.006 

The convergence rate of the GSR scheme is governed by the matrix 

G = - [D + Lr1 · R (2.47) 

It can be shown [STOER 89] that the spectral radius of G is given by 

.\a = .\} 

so that the rate of convergence is now 

ra ~ 1.\}- 11 
In our example .\a = 0.17 and r ~ 0.83. 

2.2.3 Successive Over-Relaxation (SOR) 

(2.48) 

(2.49) 

This method, which is also called simultaneous over-relaxation, is based on 
the iteration ansatz 

SOR GSR (1 ) xk+1 = w xk+I + - w Xk (2.50) 

The "relaxation parameter" w may be varied within the range 0 :::; w :::; 2 
to optimize the method. 

At each iteration step, then, the "old" vector Xk is mixed with the new 
vector Xk+I which has been calculated using GSR. Reshuffling equ. 2.50 we 
find 

[D + L]· Xk+I = w b- [R- (1- w) A]· Xk (2.51) 
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A single row in this system of equations reads 

a·· x(k+l) +""'a·· x(k+l) = w b·- w""' a·· x(k) + 
H ~ ~ ~J J ~ ~ ~J J 

j<i j>i 

+(1- w) L aijXj(k) 
j<i 

i = 1, ... , N (2.52) 

The rate of convergence of this procedure is governed by the matrix 

S :=- [D + Lr1 · [R- (1- w) A] (2.53) 

Again we may find a relation between the eigenvalues of S and those of J: 
the optimal value of w is given by [STOER 89] 

2 
w= --r==== 

1 + yh- ,\) 
(2.54) 

yielding 

As = [ AJ ]
2 

1 + \h- ,\) 
(2.55) 

The asymptotic rate of convergence is 

(2.56) 

EXAMPLE: With the same data as before we find from 2.54 an optimal relaxation 
parameter w = 1.046, and from that r s = 0.95. The first two iterations yield 

- ( 0.921 ) . - ( 0.994 ) 
Xt- X2- . 

0.026 ' 0.003 

The parameter w as evaluated according to 2.54 is "optimal" only in the 
asymptotic sense, that is, after a certain number of iterations. During the 
first few iterative steps the SOR procedure may give rise to overshooting 
corrections - particularly if w is distinctly larger than 1. One can avoid 
this delay of convergence by starting out with a value of w = 1, letting w 
gradually approach the value given in 2.54. This procedure, which is known 
as "Chebysheff acceleration", consists of the following steps: 
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• The solution vector x is split in 2 vectors Xe, X 0 consisting of the 
elements Xi with even and odd indices, respectively; the vector b is 
split up in the same manner. 

• The two subvectors Xe and X 0 are iterated in alternating succession, 
with the relaxation parameter being adjusted according to 

w(o) 1 
w(t) 1 

1- -X}/2 

w(k+t) 1 
k = 1, ... (2.57) 1 - -X}w(k) /4 ' 

2.2.4 Alternating Direction Implicit Method (ADI) 

Chapter 5 will be devoted to the treatment of those partial differential 
equations which are of major importance in physics. In many cases the 
discretization of such PDEs yields systems of linear equations whose matrix 
is "almost" tridiagonal. More specifically, A has the following five-diagonal 
form: 

X X X 

X X X X 

X X X X 

A= 
X 

X X X 

X X X 

X 
(2.58) 

X X X X 

X 

In such cases it is feasible and advantageous to rewrite the system of equa­
tions in such a way that two coupled tridiagonal systems are obtained. This 
may be interpreted as treating the original system first row by row and 
then column by column. (There we have a partial explanation of the name 
alternating direction implicit method.) To achieve a consistent solution this 
procedure must be iterated, and once more a relaxation parameter is intro­
duced and adjusted for optimum convergence. 

The ADI scheme is tailored to the numerical treatment of the potential 
equation 'V2u = -p. We therefore postpone a more detailed description of 
this method to Section 5.3.1. For the time being, suffice it to say that the 
method converges even more rapidly than SOR acccelerated ala Chebysheff. 
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Conjugate gradients: g0 = - V f(Po) denotes the direction of steepest des­
cent at point Po, g1 is the same at point P~, etc.; h1 points out the direction 
of the gradient conjugate to g0 . The steepest descent method follows the 
tedious zig-zag course Po --t P1 --t P2 --t . . . . The conjugate gradient h1 

gets us to the goal in just two steps. 

Figure 2.1: Conjugate gradients 

2.2.5 Conjugate Gradient Method ( CG) 

The task of solving the equation A · x = b may be interpreted as a mini­
mization problem. Defining the scalar function 

1 2 
f(x) = -JA·x- bj , 

2 
(2.59) 

we only need to find that N-vector x which minimizes f(x) (with the mi­
nimum value f = 0.) 

Various methods are available for the minimization of a scalar function 
of N variables. In our case f(x) is a quadratic function of x, and in such 
instances the method of conjugate gradients is particularly efficient. There 
will be no matrix inversion at all - in marked contrast to the other iterative 
methods. However, the multiplication A·x must be performed several times, 
so that the procedure is economical only for sparse matrices A. (For such 
matrices the multiplication will of course be done by specific subroutines 
involving less than N 2 operations.) 

In order to explain the CG method we start out from the older and less 



40 Chapter 2 Linear algebra 

efficient steepest descent method introduced by Cauchy. For simplicity of 
visualization, but without restriction of generality, we assume the function 
f to depend on two variables x = (x1, x 2 ) only. The lines of equal elevation 
of a quadratic function are ellipses that may, in adverse cases, have a very 
elongated shape, forming a long and narrow channel (see Fig. 2.1). Starting 
from some point Po with a position vector x 0 and proceeding by steepest 

descent we would follow the local gradient 

go = - "V f(Po) (2.60) 

As the figure shows (and as every alpine hiker knows) this direction will by 
no means lead directly to the extremal point of f. The best we can do -
and this is indeed the next step in the steepest descent technique - is to 
proceed to the lowest point P1 along the path that cuts through the narrow 
channel in the direction of g0 • If we now determine once more the local 
gradient g1 == - "V f(P1)i, it must be perpendicular (by construction) to g0 . 

Iterating this procedure we arrive, after many mutually orthogonal bends, 
at the bottom of the channel. 

We would arrive at our goal much faster if from point P1 we took a 
path along the direction h1 instead of g1 . But how are we to find h 1? -
Let us require that in proceeding along h1 the change of the gradient off 

should have no component parallel to g0 . (In contrast, when we follow g1 , 

the gradient off has - initially at least -no g0-component; this, however, 
changes very soon, and the lengthy zig-zag path ensues.) If we can achieve 
this, a gradient in the direction of g0 will not develop immediately- in fact, 
on quadratic surfaces it will never build up again. In our two-dimensional 
example this means that h1 must already point to the desired minimum. 

If we apply these considerations to the particular quadratic function 2.59 
we are led to the prescription given in Fig. 2.2. 

If the system of equations - and therefore the surface f(xt, x2 ) - is of 
dimension 2 only, we have reached our goal after the two steps described 
in Fig. 2.2, and x = x 2 is the solution vector. For systems of higher 
dimensionality one has to go on from x 2 in the direction 

(2.68) 

until the next "low point" is reached at 

(2.69) 
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Conjugate gradient technique: 

1. Let P0 (with the position vector x0) be the starting point of the 
search; the local gradient at P0 is 

g0 ::: -"\lf(Xo) =-AT· [A· Xo- b] (2.61) 

The next "low point" P1 is then situated at 

(2.62) 

with 

(2.63) 

2. From P1 we proceed not along the local gradient 

(2.64) 

but along the gradient conjugate to g0 , i.e. 

gl ·A· go 
ht = gt- A go· 

go· ·go 
(2.65) 

The low point along this path is at 

(2.66) 

with 

(2.67) 

Figure 2.2: The CG method 
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with 
-\ _ lg2 · h2l 

3 - lA · h2l2. 

Chapter 2 Linear algebra 

(2.70) 

A system of N equations requires a total of N such steps to determine the so­
lution vector x. 

EXAMPLE: As already mentioned, the CG method is most appropriate for large 
systems of equation with a sparsely inhabited matrix A. But the necessary ma­
nipulations may be demonstrated using the 2-dimensional example we have used 
before. Let once more 

A = ( 3 1 ) · b = ( 3 ) · and x0 = ( 1.2 ) 
2 4 ' 2 ' 0.2 

The gradient vector at Xo is 

T ( 4.8) g0 = -A · [A· Xo - b] = -
5.6 

and 

so that 

Similarly we find from 2.64-2.66 

and thus 

X = ( 1.000). 
2 -0.004 

It took us just two steps to find the solution to the 2-dimensional system A·x = b. 
If A were a N x N matrix, N such steps would be necessary. 
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2.3 Eigenvalues and Eigenvectors 

Given a matrix A, the physicist who needs the eigenvalues A; defined by 

lA- A; II = 0 (i = 1, ... N) (2. 71) 

and the corresponding eigenvectors a;, 

[A - A; I] · a; = 0 , (2.72) 

will normally make use of one of the various standard subroutine packages. 
In the NAG library, for instance, these would be routines with names like 
F01xxx, F02xxx; the respective ESSL routine would be SGEEV. 

In some situations, however, it is sufficient to determine only a few- ty­
pically the largest - eigenvalues and the associated eigenvectors. Examples 
are Courant and Hilbert's stability analysis of numerical algorithms for the 
solution of differential equations (Section 4.1, [GEAR 71]) and quantum 
mechanical perturbation theory ([KOONIN 85, McKEOWN 87].) In such 
cases it is obviously not a good idea to use the too comprehensive standard 
routines. Rather one will apply one of the following iterative procedures. 

2.3.1 Largest Eigenvalue and Related Eigenvector 

The N eigenvectors a; of a matrix A may be viewed as the base vectors of 
a coordinate system. An arbitrary N-vector x 0 is then represented by 

N 

Xo = l:::c;a; 
i=l 

(2. 73) 

with suitable coefficients c;. Let us assume that x 0 contains a non-vanishing 
component Cm along that eigenvector am which corresponds to the largest 
(by absolute value) eigenvalue Am. Now multiply Xo several times by A, 
each time normalizing the result: 

Xk I= A. Xk-1 (2.74) 

(2.75) 
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After a few iterations we have 

N 

Xk ex L Ci -X7 ai ~ Cm A~ am 
i=l 

(2.76) 

This is to say that the iterated vector will be dominated by the am-component. 
The result is therefore a unit vector with direction am. The eigenvalue Am 
may be obtained from 

(2. 77) 

or alternatively from 

(2.78) 

where Xp (k) denotes any cartesian component of the - still unnormalized -
vector Xk '. Of course, 2. 77 or 2. 78 apply only when all components except 
am have become negligible. 

EXAMPLE: Once more, let 

A;(:~) 
and choose as the starting vector 

xo = ( Vi/2) 
Vi/2 

The iterated and normalized vectors (see equs. 2.74- 2.75) are 

( 0.555 ) ( 0.490 ) ( 0.464 ) 
X - ' X2 - ' X3 - ' 

1 - 0.832 ' - 0.872 ' - 0.886 ' ... 

From x3 and the still unnormalized 

I ( 2.279 ) 
X4 = 

4.471 
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we find, using (2.77), Am = 4.907. The exact solution of the problem is 

am = and Am = 5 . ( 0.45 ) 
0.90 

2.3.2 Arbitrary Eigenvaluef-vector: Inverse Iteration 

The foregoing recipe may be modified so as to produce that eigenvalue An 
which is nearest to some given number A. Again we set out from an arbitrary 
vector x0 • The iterative procedure is now defined by 

It is easy to see that after a few iterations the vector 

N 

Xk ex I: Ci [Ai -Ark ~ 
i=l 

contains almost exclusively the component corresponding to An: 

Xk -+ Cn [An - Ark an 

(2.79) 

(2.80) 

(2.81) 

(2.82) 

An itself may then be evaluated using either one of the obvious relations 

An -A= 
Xp(k) 

(2.83) 
1 (k-1) Xp 

or 

An= A+ 
1 

(2.84) 
I 

Xk-1 · xk 
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EXAMPLE: With the same sample matrix as before and an estimated value >. = 1 
the iteration matrix in 2. 79 is given by 

Starting out from 

xo= ( ~) 
we find for the iterated, normalized vectors 

( 0.832 ) ( 0.740) ( 0.715 ) ( 0.709 ) 
Xt = -0.555 j X 2 = -0.673 j X 3 = -0.699 j X4 = -0.705 

The next vector is, before normalization, 

X 1 = ( 0.708 ) 
5 -0.707 

so that xs' · X4 = 1.0015. Using equ. 2.83 we have >.n = 2.001. The exact 
eigenvalues of A are 5 and 2; the eigenvector corresponding to >. = 2 is 

a= ( 0.707) 
-0.707 

In going through the above exercise we are reminded that - see equ. 2. 79 
- a matrix inversion is required. This is in contrast to the direct iteration 
2.74. Inverse iteration is therefore appropriate only if no more than a few 
eigenvalues/-vectors of a large matrix are needed. In other cases it may be 
advisable after all to invoke the well-optimized standard routines. 

2.4 Sample Applications 

Within physics the most prominent areas of application of linear algebra 
are continuum theory and quantum mechanics. In the theory of continua, 
systems of linear equations occur whenever one of the partial differential 
equations that abound there is discretized (Sees. 2.4.1 and 2.4.2). In quan­
tum mechanics, linear systems are equally ubiquitous. We will just provide 
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an example (Sec. 2.4.3) and for further information refer the reader to the 
truly extensive literature which in this instance is to be found mostly in the 
neighboring realm of quantum chemistry. 

Further applications of linear algebra will be treated in Chapter 3 (Sto­
chastics). 

2.4.1 Diffusion and Thermal Conduction 

In Section 1.4 we have shown how to discretize the diffusion equation (or 
equation of thermal conduction) by applying the DNGF and DDST formu­
lae. Without giving arguments we simply used the DDST approximation 
at time tn, writing 

ou(x, t) 8Jui 
8x2 ~ (~x) 2 (2.85) 

In this manner we arrived at the "FTCS-"formula. With no less justification 
we may use the same spatial differencing at time tn+l, 

(2.86) 

This leads us to the "implicit scheme of first order" 

1 D 
-[u~+1 - u~] = --[u~+l - 2u~+l + u~+l] 
~t ~ ~ (~x)2 ~+1 ~ ~-1 

(2.87) 

which may be written, using a= D D..tj(D..x) 2 , 

- au~+l + (1 + 2a)u~+l - au~+l = u~ 
~-1 ~ ~+1 ~ (2.88) 

for i = 1, ... N- 1. Once more fixing the boundary values u0 and UN we 
may write this system of equations in matrix form, thus: 

A. un+1 = un (2.89) 

where 
1 0 0 0 

-a 1 + 2a -a 0 0 
A:= 0 0 (2.90) 

0 0 1 
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It is now an easy matter to invert this tridiagonal system by the recursion 
scheme of Sec. 2.1.3. 

EXERCISE: Solve the problem of Sec. 1.4 (!-dimensional thermal conduction) by 
applying the implicit scheme in place of the FTCS method. Use various values of 
!lt (and therefore a.) Compare the efficiencies and stabilities of the two methods. 

2.4.2 Potential Equation 

In a later section we will concern ourselves in loving detail with partial 
differential equations of the form 

(2.91) 

According to general typology we are here dealing with an elliptic PDE. 
The electrostatic potential produced by a charge density p( x, y) obeys this 
equation, which was first formulated by Poisson. The equation can be 
solved uniquely only if the values of the solution u( x, y) are given along a 
boundary curve C(x, y) = 0 (Dirichlet boundary conditions,) or if the deriv­
atives (au I ax' au I ay) are known along such a curve (Neumann boundary 
conditions.) 

By introducing finite differences ~x = ~y we derive from 2.91 the dif­
ference equations 

1 
(~x) 2 [ui+t,j- 2ui,j + Ui-1,j + Ui,j+1- 2ui,j + Ui,j-1] = -Pi,j (2.92) 

i = l, ... N; j = l, ... M 

Combining the N row vectors { Ui,j ; j = 1, ... M} sequentially to a vector 
v of length N.M we may write these equations in the form 

A·v=b (2.93) 

where A is a sparse matrix, and where the vector b contains the charge 
density p and the given boundary values of the potential function u (see 
Section 5.3). 
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Any of the methods of solution which we have discussed in this chapter 
may now be applied to equ. 2.93. Actually the relaxation methods and 
the ADI technique are the most popular procedures. In addition there are 
specialized methods that are tailored to the potential equation (see Sees. 
5.3.2 and 5.3.3). 

2.4.3 Electronic Orbitals 

The wave function of the electrons in a molecular shell is frequently ex­
pressed as a linear combination of atomic orbitals (MO-LCAO approxima­
tion): 

(2.94) 

where '1/J; is the wave function of the shells contributing to the molecular 
bond. Applying the Schroedinger equation to this linear combination one 
finds 

"La;H'Ij;; = E"La;'lj;; (2.95) 
. . 
t t 

and further 
L a;Hji = E L a;Sji (2.96) 

i i 

with 

(2.97) 

Equ. 2.96 is just a generalized eigenvalue problem of the form 

H ·a= ES ·a (2.98) 

which may be solved using the procedures described above. 
A particularly transparent example for the application of the LCAO 

method is the Hueckel theory of planar molecules; see, e.g., [McKEOWN 87]. 
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Stochastics 

The idea to include chance in a model of reality may be traced back even to 
antiquity. The Epicuraeans held that the irregular motion of atoms arises 
because individual atoms stray "without cause" from their straight paths. 
Such views necessarily elicited angry opposition from those scholars who 
believed in predetermination. And even the "philosophy professor" Cicero, 
himself an eminent critic of the exaggerated causality doctrine of the Stoics, 
comments caustically: 

"So what new cause is there in nature to make the atoms swerve? 
Or do they draw lots among themselves which will swerve and 
which not? Or do they swerve by a minimum interval and not 
by a larger one, or why do they swerve by one minimum and 
not by two or three? This is wishful thinking, not argument." 
[CICERO -44] 

In fact, the same argument is still going on today- albeit with a slightly 
different vocabulary. Just remember the dispute between the mechanists 
and the champions of free will, the passionate discussion around Jaques 
Monod's book "Chance and Necessity", or the laborious struggle of philo­
sophy with quantum mechanical uncertainty. 

With becoming epistemological humility we will refrain from trying to 
explain the whole world at once. Let us content ourselves with modelling a 
small subsection of physical reality. But then the boundary of our subsystem 
will be permeable to influences - fields, forces, collisions etc. - originating 
in the encompassing system. To avoid having to include the larger system 
in the description we will replace its influence on the subsystem by suitably 

51 
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chosen "accidental" fields, forces, collisions etc. Just this is the basis of 
stochastic methods in physics. 

Let us reflect for a moment on the interrelated concepts "statistical" 
and "stochastic." A statisticus was the administrator of a Roman country 
estate or a manufacture. It was his task to extract the regularities - like the 
total amount of wheat brought in - hidden in the everyday turmoil. This 
is just what a statistician does: out of a heap of more or less irregular data 
he distills the essential parameters - mean, standard deviation and such. 

In contrast, stochastic means simply irregular or arbitrary. While in 
statistics we aim to extract the regular from the irregular, in stochastics we 
put the irregular to work- for instance in "trying out" many possible states 
of a model system. 

It is an amusing fact that statistics and stochastics belong to the oldest 
and youngest branches, respectively, of applied mathematics. The earliest 
written documents found in the libraries of Ur and Nineveh contain "sta­
tistical" reports on harvests and imposts received. Contrariwise, stochastics 
has not been applied in any systematic way- not counting the deeds of single 
pioneers 1 -before the 1940s. 

There are various ways by which to account for the irregular influence 
of the environment upon the modelled subsystem. In Boltzmann's kinetic 
theory of gases and in Smoluchowski's description of diffusional motion ran­
dom forces do not appear explicitly. Rather, they are accounted for modo 
statistico by way of certain mathematical assumptions on the probability 
density in phase space- molecular chaos, detailed balance etc. 

Alternatively, the diffusive motion of a particle may be described in 
terms of a stochastic equation of motion in which the factor of chance is re­
presented explicitly in the form of a stochastic force. In 1907 Paul Langevin 
postulated the following equation for the motion of a Brownian particle: 

d2 
m dt 2 r(t) = -1v(t) + S(t), (3.1) 

Here -1v is the decelerating viscous force acting on the particle as it moves 
through the surrounding fluid, and S is the stochastic force which arises 
from the irregular impacts of the fluid's molecules. Incidentally, it took 
kinetic theorists more than sixty years to come up with a strict derivation 
of Langevin's equation [MAZUR 70]. 

1Such as "Buffon's needle:" a stochastic method for determining the value of 1r. A 
needle is thrown N times onto a sheet of ruled paper; the relative number of throws 
which result in the needle lying across a line is related to 1r. 
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To produce a solution to this equation of motion we must first of all 
draw the actual value of the random forceS by some "gambling" procedure 
(0 Cicero!). The mean value of each Cartesian component of S must of 
course be zero, and the variance is closely related to the viscosity 1 and 
the temperature of the fluid. In Chapter 6 we will take a closer look at 
this method of "Stochastic dynamics." For the moment let us note that the 
crucial step in this technique is the sampling of certain random variates. 
In fact, we may take it as an operational definition of stochastic methods 
in computational physics that in applying such methods one has to call a 
random number generator. 

In Gibbs' version of statistical mechanics one studies, in place of one sin­
gle model system, a large number of inaccurate copies of that system. Each 
member of the so defined "ensemble" differs in detail from the others, with 
the variance of these deviations being known. Once more, chance appears 
only in an implicit manner, namely in the form of statistical assumptions. 
Nevertheless there exists a decidedly stochastic method for evaluating ave­
rages over an ensemble: the Monte Carlo method. Here the ensemble is 
constructed step by step, by producing a sequence of "erroneous copies" 
of a given model system. At each copying step the manner and extent of 
deviation from the preceding copy is sampled; this is called a random walk 
through phase space. In a later chapter (6) the statistical-mechanical Monte 
Carlo method will be explained in more detail. But we note here that what 
is obviously needed once more is a "loaded die" - that is, a random num­
ber generator that produces a sequence of numbers with certain desired 
statistical properties. 

Depending on the specific kind of application we will need random va­
riates with different probability distributions. The most simple task is the 
production of equidistributed random numbers. But the access to all other 
distributions is passing through the equidistribution as well. The following 
section is therefore devoted to the methods that enable us to construct 
sequences of equidistributed random variates. To proceed to other distri­
butions one may then use the transformation method (see Section 3.2.2), 
invoke the rejection method (Section 3.2.4), or set out on a random walk 
(Section 3.3.5). 
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3.1 Equidistributed Random Variates 

The correct name, of course, is "pseudorandom" numbers, since any nume­
rical algorithm for producing a sequence of numbers is necessarily determi­
nistic. However, we will be quite satisfied if the numbers thus produced, 
when submitted to certain statistical tests, are free of undesirable regula­
rities [MARSAGLIA 90]. In that case we will overlook the fact that as a 
rule they do not come from a "truly random" process.2 One requirement, 
however, must hold: the relevant algorithms should be very fast, since in 
the course of a Monte Carlo calculation or a diffusional random walk we 
need large amounts of random numbers. 

3.1.1 Linear Congruential Generators 

The classic method for producing a sequence of homogeneously distributed 
random numbers is defined by the recursive prescription 

II•+' = [al. +b] modm I (3.2) 

(see [ABRAMOWITZ 65], [PRESS 86], [KNUTH 69]). Here, a is some (odd) 
multiplicative factor, m is the largest integer that may be represented by 
the particular computer (usually m = 232 or such), and b is relatively prime 
with respect tom (i.e. band m have no common factor). 

The numbers produced in this manner are homogeneously distributed 
over the whole range of representable integers. A sequence of random num­
bers Xn of type real, equidistributed over the interval (0, 1 ), may he obtained 
by dividing In by m. 

Most of the FORTRAN versions offered by the various manufacturers 
and most of the other high-level languages contain some internal routine 
based on this technique. These routines are usually called by names like 
RAND, RND, RAN etc. (The word random, incidentally, stems from an­
cient French, where randon meant impulsiveness or impetuosity.) The first 
number in the sequence, the - odd-numbered - "seed" 10 , may often be 
chosen by the user. 

2In fact, there have been many attempts to construct "physical" random number 
generators which may be based on thermal noise in resistors or on quantum phenomena 
[STAUFFER 89). 
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"Erasing tracks:" 

1. Produce a list RLI ST( i) of Z equidistributed random numbers 
Xi E (0, 1); i = 1 ... Z. Z should be prime and no less than 
about 100, e.g. Z = 97. 

2. Sample an additional random number yin (0, 1). 

3. Determine a pointer index j E [1, Z] according to 

j = 1 + int(y · Z) 

(int(r) ... largest integer smaller than the real number r.) 

4. Use the element RLIST(j) corresponding to j as the output 
random number. 

5. Put y = RLI ST(j) and replace RLI ST(j) by a new random 
number E (0, 1); return to (3). 
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Figure 3.1: Removal of autocorrelations in simple congruential generators 

Statistical scrutiny shows that the random numbers produced in this 
way are not very "good." While a histogram of their relative frequencies 
looks quite inconspicuous, there are undesirable serial correlations of the 
type 

(xnXn+k) =J. 0; k = 1,2, ... (3.3) 

It depends on the particular application whether such autocorrelations are 
acceptable or not. For instance, every 3 successive Xn might be used as 
cartesian coordinates of a point inside the unit cube. In that case one 
would find that the points would be confined to a discrete manifold of 
parallel planes ([COLDWELL 74]). 

There is a simple and economical trick to cleanse the internal random 
number generator from its serial correlations. The procedure to follow is 
described in Figure 3.1 [PRESS 86]. 
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3.1.2 Shift Register Generators 

There are several names for this group of techniques. One may encounter 
them as "Tausworthe" or "XOR" generators, or as the method of "primitive 
polynomials." Originally these methods were designed for the production of 
random bits, but one may always generate 16, 32, etc. bits at a time and 
combine them to a computer word. 

The procedure is very simple. Assuming that n random bits b1, b2 , •• bn 
are already given, we apply a recursive rule of the form 

(3.4) 

to find another random bit. Here, k < m < .. < n, and EEl denotes the 
logical operation "exclusive or" (XOR) which yields the result 1 only if any 
one, but not both, of the two operands equals 1. 

The properties of the generator 3.4 will obviously depend on the actual 
combination of indices ( k, m, ... , n ). This is not the place to reproduce 
the analysis leading to a class of optimal index combinations. Suffice it to 
refer to the theory of "primitive polynomials modulo 2" [TAUSWORTHE 65, 
NIEDERREITER 82]. These are a subset of all polynomials whose coefficients 
and variables may take on the values 0 or 1 only: 

P( x; k, m, ... n) = 1 + xk + xm + ... + xn ; x = 0 or 1 (3.5) 

A table of primitive polynomials modulo 2 may be found in [PRESS 86], p. 
212. 

We may use any such polynomial modulo 2, be it primitive or not, to 
define a recursion prescription of the form (3.4). The specific advantage 
of primitive polynomials is that the recursion procedures defined by them 
exhibit a certain kind of "exhaustive" property. Starting such a recursion 
with an arbitrary combination of n bits (except 0 ... 0), all possible con­
figurations of n bits will be realized just once before a new cycle begins. 

EXAMPLE: The sequence (1,3) defines a primitive polynomial modulo 2. Starting 
with the arbitrary bit combination 101 we obtain by applying the prescription 

b4 b3 E9 bt 

bs = bs-1 E9 bs-3 j S = 4, 5, .. 

the sequence, reading from left to right, 

101 001110 100 111010 011101 ... 
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: ----------17- -------: 

Figure 3.2: Kirkpatrick-Stall prescription 

It is evident that indeed all possible 3-bit groups (except 000) occur before these­
quence repeats. 

Primitive trinomials of the form 

P(x; m, n) = 1 + xm + xn (3.6) 

yield recursion formulae which require only one XOR operation per step: 

bs = bs-(n-m) EB bs-n; s = n + 1, ... (3.7) 

A specific prescription of this type which has been developed and tested 
by Kirkpatrick and Stoll [KIRKPATRICK 81, KALOS 86] makes use of the 
indices m = 103 and n = 250. 

In all high-level programming languages the XOR command may be 
applied to arguments of the type integer as well. The code line 

I I, = I,_147 \1) I,_,w I (3.8) 

which corresponds to the Kirkpatrick-Stall algorithm, means that the two 
integers on the right-hand side are to be submitted bit by bit to the XOR 
operation. Again, random numbers of type real within the range (0, 1) may 
be obtained by machine-specific normalization. 

To start a generator of this type one must first produce 250 random 
integers. For this purpose a linear congruential generator may be used. To 
keep the storage requirements within bounds while applying a recursion like 
3.8 one will provide for some sort of cyclic replacement of register contents. 

An overview on modern random number generators, in particular on 
Tausworthe algorithms and the related Fibonacci generators, may be found 
in [JAMES 90] (see also [MARSAGLIA 90]). 
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3.2 Other Distributions 

3.2.1 Fundamentals 

Before describing the methods for producing random numbers with arbi­
trary statistical distributions we have to clarify a few basic concepts: 

Distribution function: Let x be a real random variate with a range of 
values (a, b). By distribution function we denote the probability that 
x be less than some given value x0 : 

P(xo) = P{x < xo} (3.9) 

A common example in which a = -oo and b = oo is the Gaussian, or 
normal, distribution 

1 jxo 2/ P(xo) = m= dx e-x 2 

y27r -oo 
(3.10) 

The function P( x) is monotonous and non-decreasing, with P( a) = 0 
and P( b) = 1. The distribution function is dimensionless: [ P( x)] = 1. 

Probability density: The probability (or distribution) density p(x) is de­
fined by the identity 

p(xo) dx = P{x E [x0 , xo + dx]} = dP(xo) (3.11) 

p( x), then, is simply the differential quotient of the distribution func­
tion: 

dP(x) . [xo 
p(x) = ~, 1.e. P(x0 ) = la p(x) dx (3.12) 

The dimension of p( x) equals the inverse of the dimension of x: 

1 
[p(x)] =­

[x] 

In the above example p( x) would be 

p( X) = _1_ e -x2 /2 
y2i 

(3.13) 

(3.14) 

If x may take on discrete values Xa only, with .6.xa = Xa+l - Xa, we 
use the notation 

(3.15) 
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Figure 3.3: Distribution function and density 

for the probability of the event x = Xa. This quantity Pa is by de­
finition dimensionless, in spite of its being related to the probability 
density p( x) of a continuous random variate. 

Statistical (in)dependence: Two random variates x1 , x 2 are said to be 
statistically independent or uncorrelated if the density of the com­
pound probability - that is, the probability for x1 and x 2 occuring 
simultaneously - equals the product of the individual probabilities: 

(3.16) 

In practical applications this means that one may sample each of the 
two variates from its own distribution, regardless of the actual value 
of the other variable. 

By conditional probability density we denote the quantity 

(3.17) 

(For uncorrelated x1, x2 we have p(x2lx1) = p(x2)). 

The density of the marginal distribution gives the density of one of 
the two variables, irrespective of the actual value of the other one; in 
other words, it is an integral over the range of values of that other 
variate: 

(3.18) 
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Moments of a probability density: These are the quantities 

(3.19) 

In the case of two (or more) random variates the definition is to be 
suitably generalized, as in 

(3.20) 

In particular the quantity (x1x2) is called the cross correlation or co­
variance of x 1 and x 2 • If the two variates are statistically independent 
(uncorrelated), we have (x1x2) = (x1)(x2). 

Transformation of probability densities: From equ. 3.11 we may ea­
sily derive a prescription for the transformation of a density p( x) 
upon substitution of variables x +-+ y. Given a bijective mapping 
y = f(x); x = f- 1 (y), and given the density p(x), the conservation of 
probability requires 

ldP(y)i = ldP(x)i (3.21) 

(The absolute value occurs here since we have not required the func­
tion f ( x) to be increasing.) It follows that 

IP(Y) dyl = lp(x) dxl (3.22) 

or 

p(y) p(x) ~~:I 
p[f-l(y)]ldf~~(y) I (3.23) 

Incidentally, the relation 3.23 holds for any kind of density, like mass 
or spectral densities, not only for probability densities. 

EXAMPLE: The spectral density of black body radiation is usually written 
in terms of the angular frequency w: 

nw3 1 
I ( w) = -7r"C-3 .....,en,-w....,/ k=r=-_-1 (3.24) 
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a b 

_lliy 
Figure 3.4: Transformation of the probability density 

If we prefer to give the spectral density in terms of the wave length >. = 
21rcjw, we have from 3.23 

I(>.) I[w(>.)]l ~~I (3.25) 

h (27rc) 3 1 (21rc) 7r2c3 T e(hcj)..)jkT _ 1 ""):2 (3.26) 

EXERCISE: A powder of approximately spherical metallic grains is used for 
sintering. The diameters of the grains obey a normal distribution with 
(d) = 2J.Lm and a = 0.25J.Lm. Determine the distribution of the grain vol­
umes. 

3.2.2 Transformation Method 

Let us now return to our task of generating random numbers x with some 
given probability density (or relative frequency) p( x ). We will first try 
to find a bijective mapping y = f( x) such that the distribution of y is 
homogeneous, i.e. p(y) =c. By the transformation law for densities (read 
backwards) we will then have 

p( X) = c I~~ I = c I d~~) I (3.27) 
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Transformation method: 

Let p( x) be a desired density, with a corresponding distribution func­
tion y = P(x). The inverse of the latter, p-1(y), is assumed to be 
known. 

• Sampley from an equidistribution in the interval (0, 1). 

• Compute x = p-1 (y). 

The variable x then has the desired probability density p(x). 

Figure 3.5: Transformation method 

This means that in order to serve our purpose the mapping y = f ( x) should 
obey 

I df (X) I = ~ p( X) 
dx c 

(3.28) 

It is easy to see that the mapping 

f(x) = P(x) (3.29) 

fulfills this condition, and that c = 1. This solves our problem: all we have to 
do now is sample y from an equidistribution E [0, 1) and compute the inverse 
x = p-1 (y) (see Figs. 3.5, 3.6). 

EXAMPLE: Let 

p(x) =.!. - 1- 2 (Lorentzian) 
7r1+x 

(3.30) 

be the desired density in the interval ( ±oo ). The integral function of p( x) is 

then y = P(x) = 1/2 + (1/7r) arctan x, and the inverse of that is p-1(y) = 
tan[1r(y- 1/2)]. The prescription for producing random variates x distributed 

according to 3.30 is therefore 

• Sample y equidistributed in (0, 1). 

• Compute x = tan[1r(y- ~)]. 

A geometrical interpretation of this procedure may be found from Fig. 3.6. 
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Figure 3.6: Transformation method: geometrical interpretation 
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If y is sampled from a homogeneous distribution E (0, 1) and transformed 
into an x-value using x = p-1(y), then those regions of x in which P(x) 
is steeper are obviously hit more frequently. The slope of P(x), however, 
is just equal to p(x), so that x-values with large p(x) are indeed sampled 
more often than others. 

Sometimes the primitive function P( x) of the given density p( x) is not an 
analytical function, or if it is, it may not be analytically invertible. In such 
cases one may take recourse to approximation and interpolation formulae, 
or else use the "rejection method" to be described later on. 

3.2.3 Generalized Transformation Method: 

The foregoing considerations on the transformation of distribution densities 
are valid not only for a single random variate x, but also for vectors x = 
(x1 , ... , Xn) made up of several variables. Let x be such a vector defined 
within ann-dimensional region Dx, and let y = f(x) be a bijective mapping 
onto a corresponding region Dy (see Fig. 3. 7). Again invoking conservation 
of probability we find 

p(y) = p(x) ~~~~' (3.31) 

where l8xj8yl is now the Jacobi determinant of the transformation x = 
r-l(y). 
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y=f(x) 

Figure 3.7: Transformation in higher dimensions 

Normal Distribution (Box-Muller Method) 

An important application of the generalized transformation method is the 
following, widely used technique for generating normal random variates. 3 

Let 
(3.32) 

be the common density of two uncorrelated normal variates. By introducing 
polar coordinates (r, </>)instead of (xb x2) we find 

(3.33) 

Thus the variable y2 = <P/27r is already homogeneously distributed in (0, 1) 
and statistically independent of r, and we are left with the problem of 
reproducing the density p(r ). The quantity 

r 2 
Y1 = P(r) = Jo p(r') dr' = 1- e-r /2 (3.34) 

is equidistributed in (0, 1). Consequently, 1 - y1 is equidistributed as well, 
and the desired transformation x {:::::::} y reads 

(3.35) 

3 A "cardboard and glue" method for producing almost normal variates makes use 

of the central limit theorem: If y = x1 + ... + Xn is the sum of n = 10 - 15 equidis­
tributed random numbers picked from the interval ( -0.5, 0.5), then the distribution of 
z = y VJ'i7n is almost normal. 
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Box-Muller technique: 

• Construct 

x1 j- 2 ln Yt cos 21ry2 

x2 j- 2 ln Yt sin 21ry2 

The variables x 1 , x 2 are then normal-distributed and statistically in­
dependent. Gaussian variates with given variances (J'i, (]'~are obtained 
by multiplying x 1 and x2 by their respective (J'i· 

Figure 3.8: Gaussian random variates by the Box-Muller technique 
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Thus we may write up the Box-Muller prescription [MULLER 58] for ge­
nerating normal random variates as shown in Figure 3.8. If one prefers to 
avoid the time-consuming evaluation of trigonometric functions, the method 
given in Section 3.2.6 may be used. 

3.2.4 Rejection Method 

The transformation method works fine only if the distribution function- i.e. 
the primitive function of the density- is known and invertible. What if p( x) 
is too complicated for formal integration, or if it is given in tabulated form 
only, for instance as a measured angle-dependent scattering cross section? It 
was just this kind of problems the pioneers of stochastics had in mind when 
they taught ENIAC and MANIAC to play at dice. Therefore the classical 
method for generating arbitrarily distributed random numbers stems from 
those days. In a letter written by John von Neumann to Stanislaw Ulam in 
May 1947 we read: 

"An alternative, which works if e and all values of !(e) lie in 
0, 1, is this: Scan pairs xi,yi and use or reject xi,yi according 
to whether yi ::::; f(xi) or not. In the first case, put ei = xi; in 
the second case form no ej at that step." [COOPER 89] 

In Figure 3.9 this recipe is reproduced in modern notation. From Figure 
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Rejection method: 

Let [a, b] be the allowed range of values of the variate x, and Pm the 
maximum of the density p(x). 

1. Sample a pair of equidistributed random numbers, x E [a, b] and 
y E [O,pm]· 

2. If y ~ p(x), accept x as the next random number, otherwise 
return to step 1. 

Figure 3.9: Rejection method 

X 

a b 
Figure 3.10: Rejection method 
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3.10 it may be appreciated that by this prescription x-values with high p(x) 
will indeed be accepted more frequently than others. 

The method is simple and fast, but it becomes inefficient whenever the 
area of the rectangle [a, b] ® [0, Pm] is large compared to the area below the 
graph of p( x) (which by definition must be = 1). Therefore, if either the 
variation of p(x) is large ("8-like p(x)") or the interval [a, b] is extremely 
wide, a combination of transformation and rejection method is preferable. 
We first try to find a test function f(x) which should closely resemble the 
desired density, with the additional requirement that f(x) ~ p(x) every­
where. If f(x) is integrable, with an invertible primitive F(x), we may 
employ the transformation method to generate x-values that are already 
distributed according to f( x ). More specifically, their distribution is given 
by the correctly normalized density 

_ _ f(x) 
p( x) = F (b) - F (a) (3.36) 

Now we pick a second random number y from an equidistribution in (0, f( x)) 
and subject it to the test y : p(x). By accepting x only if y ~ p(x) we 
generate x with the correct distribution, but with .more "hits" per trial 
than in the simple rejection technique (see Fig. 3.11). 

The improvement with respect to the basic rejection method is related 
to the proximity of f(x) to the given density p(x). A test function that 
is particularly popular for use with single-peaked density functions is the 
Lorentzian introduced in equ. 3.30. The primitive of this function is known 
and invertible, which makes the first step in the improved rejection method 
very simple (see the example given in Section 3.2.2). Various applications of 
the improved method, all using this particular test function, may be found 
in the book by Press et al. [PRESS 86]. 

The rejection method will also be inefficient whenever x = (x1, ... xn) is 
a high-dimensional vector. The probability that a sampled vector x, in com­
bination withy E (O,pm), will be accepted according to the rule y ~ p(x) 
is an n-fold product of probabilities and is therefore small. Multidimen­
sional problems are better treated using a random walk (see Section 3.3.5). 
However, one must then accept that successive random vectors will not be 
uncorrelated. 

There is one multidimensional distribution for which it is quite easy 
to generate random vectors. The following method for producing n-tuples 
of random numbers from a multivariate Gaussian distribution is formally 
elegant and works very fast. 
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Improved rejection method: 

Let f ( x) be a test function similar to p( x), with 

f(x) "2 p(x); x E [a, b] (3.37) 

The primitive function F(x) = f f(x)dx is assumed to be known and 
invertible 

1. Pick a random number x E [a, b] from a distribution with density 

_ f(x) 
p(x) = F(b)- F(a) (3.38) 

by using the transformation method. Pick an additional random 
number y equidistributed in the interval [O,J( x )]. 

2. If y ~ p(x) accept x as the next random number, else return to 
Step 1. 

Figure 3.11: Improved rejection method 
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3.2.5 Multivariate Gaussian Distribution 

This is a- fortunately rather common- particular instance of a distribution 
of several random variates, x = (x1 ... xn)· Let us assume, for simplicity, 
that all individual averages are (xi) = 0. The density of the compound 
("and") probability is given by 

P(xl X ) = 1 e- ~ I: I: 9ij Xi X j 
, ... , n -/(27r)nS (3.39) 

or more concisely 

(3.40) 

with the covariance matrix of the Xi 

(3.41) 

S = IS I is the determinant of this matrix. S and G are evidently symmetric, 
and as a rule they are diagonally dominated. Incidentally, we will obey 
custom by denoting the eigenvalues of the covariance matrix S by u'f, while 
the eigenvalues of the inverse matrix G are simply called /i· 

The quadratic form Q = xT · G · x describes a manifold (Q = const) 
of concentric n-dimensional ellipsoids whose axes will in general not coin­
cide with the coordinate axes. If they do, then the matrices S and G are 
diagonal, and p(x) decomposes into a product of n independent probability 
densities: 

( ) IIn 1 _!g .. x2 
p x = e 2 tt i 

i=l yf27r Sii 
(3.42) 

Here Sii = (xr) and 9ii = 1/ Sii are the diagonal elements of S and G, respec­
tively. (Besides, in this case Sii = (jl and 9ii = /i, i.e. the diagonal elements 
are also the eigenvalues.) The n variables Xi are then uncorrelated and we 
may simply pick n individual Gaussian variates, combining them to the vec­
tor x. 
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EXAMPLE: Assume that two Gaussian variates have the variances s11 = (xD = 3, 
s22 = (x~) = 4, and the covariance s12 = (x1 x2) = 2: 

The quadratic form Q in the exponent of the probability density is then 

1 2 1 3 2 
Q = 2 x1 - 2 x1 x2 + S x2 . 

The lines of equal density (that is, of equal Q) are ellipses which are inclined with 
respect to the x1,2 coordinate axes (see Fig. 3.12). 

Incidentally, in this simple case one might generate the correlated random variates 
x1, x2 in the following manner: 

• Draw x1 from the marginal (also Gaussian) distribution 

• Since x1 is now fixed, x2 may be picked from the conditional density (see 
3.17) 

&s -~(x - !1.2. x )2 {J; 3 (x 2 x )2 p(x21xt) = e 2S 2 su 1 = -e-16 2-3 1 
1671" 

(This is the density of x2 along the cut x1 = c in Fig. 3.12.) 

For more than two correlated random variates this procedure is much too compli­
cated. In contrast, the following method of principal axis transformation remains 
applicable for any number of dimensions. 

If, in the foregoing example, the covariance had been s12 = (x1 x2) = 0, we 
would have 

All we would have to do is sample x1 from a Gaussian distribution with 

(j~ = 3 and x2 with (j~ = 4, then combine them to the vector x = (xt, x 2). 
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Figure 3.12: Bivariate Gaussian distribution: lines of equal density 
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The ellipses Q = const in Fig. 3.12 would have their axes parallel to the 
coordinate axes. 

These considerations indicate a way to the production of correlated ran­
dom numbers with the distribution density 3.39. If we could succeed in 
rotating the axes of the ellipsoids Q = const by some linear transforma­
tion x = T · y in such a way that they coincide with the coordinate axes, 
then Q would be diagonal in terms of the new variables (y1 ... Yn)· The 
transformed (y-) components of the vector x would be uncorrelated, and 
we could sample them independently. 

What we have to find, then, is a transformation matrix T for which 

n 

Q = X T . G . X = y T . [ T T . G . T] . y = L 9ii I y[ (3.43) 
i=l 

where 9ii 1 are the elements of the diagonalized matrix. This is an underde­
termined problem, and we may choose among various possible diagonaliza­
tion matrices T. The generic method to construct a diagonalization matrix 
for a real, symmetric matrix G goes as follows: 
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Principal axis transformation: 

• Determine the eigenvalues /j and the eigenvectors gj of G. 
(There are standard subroutines available to perform this task, 
like NAG-F02AMF or ESSL-SSYGV.) If need be, normalize the 
gj so that lgj I = 1. 

• Combine the n column vectors gj to form a matrix T. This 
matrix diagonalizes G (and consequently the quadratic form 
Q.) 

In this procedure, S may be used in place of G 
diagonalization matrix T will result (see text). 

s-1 ; the same 

As a special bonus the diagonalization matrix constructed in this manner 
is orthogonal, i.e. it has the property 

TT = T-1 . (3.44) 

It follows that T diagonalizes not only G = S - 1 but also the covariance 
matrix S itself: 

TT · S · T = T-1 · S · T = [T-1 · S - 1 · Tr1 = [TT · G · Tr1 (diagonal) 
(3.45) 

This means that in in the above prescription for finding T we may use 
S instead of its inverse G, arriving at the same matrix T. For practical 
purposes, therefore, G need not be known at all. All that is required are 
the covariances and the assumption that we are dealing with a multivariate 
Gaussian distribution. 

Since T is orthogonal and - by construction - unitary, we have for the 
diagonal elements of the transformed matrix T T · G · T 

I- - 1 
gii = /i = 2 

(7· 

' 
(3.46) 

Thus we arrive at the prescription given in Figure 3.13 for the production of 
correlated Gaussian variables. 

EXAMPLE: Once more, let 

S = ( ~ ~ ) , with the inverse G = ( ! ~ 
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Multivariate Gaussian distribution: 

Assume that the covariance matrix S or its inverse G is given. The 
matrix elements of S are called Sij, the eigenvalues are (}"?. 

• Determine by the above method (principal axis transformation) 
the diagonalization matrix T for S or G. (This step is performed 
only once.) 

• Generate n mutually independent Gaussian random variates Yi 
with the variances a}. 

• Transform the vector y = (Yt ... Ynf according to 

x=T·y (3.4 7) 

The n elements of the vector x are then random numbers obeying the 
desired distribution 3.39. 
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Figure 3.13: Production of n-tuples of random numbers from a multivariate 
Gaussian distribution 



74 Chapter 3 Stochastics 

Principal axis transformation: The eigenvalues of S are ai,2 = (7 ±Vl7)/2 = 
5.56211.438, and the corresponding eigenvectors are 

St = ( 0.615 ) 
0.788 

S2 = ( 0.788) 
-0.615 

(The eigenvectors of a real symmetric matrix are always mutually orthogonal.) 
The matrix constructed by combining s1 and s2, 

T = ( 0.615 0.788 ) 
0.788 -0.615 

should then diagonalize S. We check this: 

( 0.615 0.788 ) . ( 3 2 ) . ( 0.615 0.788 ) = ( 5.562 0 ) 
0.788 -0.615 2 4 0.788 -0.615 0 1.438 

As stated above, the same matrix T will diagonalize the inverse G as well, and 
the remaining diagonal elements are simply the reciprocal values of the a[. 

Generator: To produce a sequence of pairs ( x1, x2) of Gaussian random numbers 
with the given covariance matrix one has to repeatedly perform the following two 
steps: 

• Draw y1 and y2 Gaussian, uncorrelated, with the variances 5.562 and 1.438, 
respectively. (For instance, one may sample two normal variates using the 
Box-Muller method and multiply them by yf5.562 and yf1.438, respec­
tively.) 

• Compute Xt and x2 according to 

EXERCISE: Write a program that generates a sequence of bivariate Gaussian ran­
dom numbers with the statistical properties as assumed in the foregoing example. 
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Equidistribution on the unit circle: 

• Draw a pair of equidistributed random numbers (Yll y2 ) E 
( -1, 1)2 ; compute r 2 = y~ + yi; if necessary, repeat until r 2 ::; 1. 

• x1 = ytfr and x2 = Y2/r are the cartesian coordinates of points 
that are homogeneously distributed on the circumference of the 
unit circle. (This means that we have generated cosine and sine 
of an angle¢> equidistributed in (0, 2n").) 

Figure 3.14: Equidistribution on the circumference of a circle 
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3.2.6 Equidistribution in Orientation Space 

Very often the radius vectors of points homogeneously distributed on the 
circumference of a circle are needed. To generate the cartesian coordinates 
of such points one could, of course, first sample an angle ¢> E (0, 21r) and 
then compute x1 = r cos ¢> and x 2 = r sin ¢>. However, the evaluation 
of the two trigonometric functions is usually time-consuming and therefore 
undesirable. An alternative which need not be explained any further is 
given in Fig. 3.J.4. One has to discard a few random numbers (step 1) and 
evaluate a square root (step 2). However, the resulting expense in computer 
time is for most machines smaller than the gain achieved by avoiding the 
trigonometric functions. 

It is worth mentioning that this technique may also be applied in the 
context of the Box-Muller method explained earlier, in order to avoid the 
evaluation of sine and cosine. The first step is the same as in generating 
an equidistribution on the unit circle, while the second step in Fig. 3.14 is 
replaced by 

(Compare Fig. 3.8.) 

x1 = Yt V( -2 ln r 2)/r2 

x2 Y2 V( -2 ln r 2)/r2 

(3.48) 

(3.49) 

Marsaglia has given a generalization of this technique for the 3- and 
4-dimensional cases, respectively (see [MARSAGLIA 72]). Thus, in case one 
needs points equidistributed over the surface of a sphere, one should not 
succumb to the temptation to introduce spherical polar coordinates, but 
should rather use the recipe of Figure 3.15. 
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Marsaglia (3D): To generate points homogeneously distributed on 
the surface of a sphere, proceed as follows: 

• Draw pairs of random numbers (y~,y2 ) E (-1, 1)2 until r2 = 
Yi + Yi ~ 1. 

• The quantities 

Xt 2yt~ 
X2 2y2~ 
X3 = 1- 2r2 

are then the cartesian coordinates of points out of a homogene­
ous distribution on the surface of the unit sphere. 

Figure 3.15: Equidistribution on the surface of a sphere 

Somewhat more abstract, but still useful at times [VESELY 82] is the 
generalization to the 3-dimensional "surface" of a 4-dimensional unit sphere 
(see Figure 3.16). 

3.3 Random Sequences 

3.3.1 Fundamentals 

So far we have been concerned with the production of random numbers, 
which preferably should be free of serial correlations (xn Xn+k)· Next we 
will consider how to generate sequences of random numbers with given serial 
correlations. Once more we start out by reviewing a few basic concepts: 

Random process/ random sequence: Let {x(t)} be an ensemble of 
functions of the time variable t. (Think of the set of all possible 
temperature curves in the course of a day, or the x-coordinate of a 
molecule in the course of its thermally agitated motion.) Once more 
we ascribe a probability distribution to the function values x(t), which 
may vary within some given range (a, b): 

P1 (x;t) = P{x(t) ~ x} (3.50) 



3.3 Random sequences 

Marsaglia ( 4D): To generate points equidistributed on the three­
dimensional surface of a hypersphere: 

• Draw pairs of random numbers (y17 y2) E ( -1, 1)2 until r~ _ 

Y~ + Yi ::; 1. 

• Draw pairs of random numbers (y3 , y4 ) E ( -1, 1)2 until ri _ 
Y~ + Yl ::; 1. 

• The quantities 

Xt = Yt 
X2 = Y2 
X3 = Y3.j(l- rD/r~ 
X4 = Y4V(l- rD/r~ 

are then the cartesian coordinates of points out of a homogene­
ous distribution on the "surface" of a 4-dimensional unit sphere. 

Figure 3.16: Equidistribution on the surface of a hypersphere 
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By the same token a probability density 

( . ) - dP1 (X; t) 
Pl x, t = dx (3.51) 

is defined. Such an ensemble of time functions is called a random 
process. A particular function x(t) from the ensemble is called a 
realization of the random process. 

A random process is called a random sequence if the variable t may 
assume only discrete values { tk ; k = 0, 1, ... } . In this case one often 
writes x(k) for x(tk)· 

EXAMPLE: Let x0 (t) be a deterministic function of time, and assume that 
the quantity x(t) at any timet be Gauss distributed about the value xo(t): 

( . ) _ 1 _! [x- xo(t)] 2 ja2 
P1 x,t - ~e 2 

v21ra2 

(Of course the variance a might be a function of time as well.) 

Distribution functions of higher order: The foregoing definitions may 
be generalized in the following manner: 

(3.52) 

P{x(it) S X1, ... , x(tn) S Xn} 
(3.53) 

Thus P2 ( •. ) is the compound probability for the events x(t1) S x1 
and x(t2 ) :::; x2 • These higher order distribution functions and the 
corresponding densities 

(3.54) 

describe the random process in ever more - statistical - detail. 
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Stationarity: A random process is stationary in the strong sense if for all 
higher distribution functions 

This means that the origin of time is of no importance. The func­
tions P1(x;t) and Pl(x;t) are then not dependent upon time at all: 
P1(x;t) = P1(x), Pl(x;t) = Pl(x). Furthermore, P2( .•• ) and p2 ( ••• ) 

depend only on the time difference T = t 2 - t1 : 

(3.56) 

A random process is stationary of order k if the foregoing condition 
is fulfilled for the distribution functions up to k-th order only. In the 
following we will treat only random processes that are stationary of 
second order. 

Moments: The moments of the distribution density 3.51 are defined in the 
same way as for simple random variates: 

(3.57) 

(In the stationary case this is indeed identical to the definition 3.19.) 
In addition we may now define moments of the distribution density of 
second order (viz. 3.56): 

(xm(t1) xn(tz)) = 1b 1b x";'x~ pz(xl, xz; tb tz) dx1 dxz (3.58) 

In the stationary case things depend on the temporal distance T = 
tz- t 1 only: 

(xm(O)xn(r)) = 1b1b x";'x~pz(xbxz;r)dxldxz (3.59) 

Autocorrelation: A particularly important moment of the second order 
density is the quantity 

(x(O)x(r)) = 1b1b XJXzpz(xl,xz;r)dxldxz, (3.60) 

which is called the autocorrelation function of x(t). For T -t 0 it 
approaches the variance (x2 ). For finite r it tells us how rapidly a 
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particular value of x(t) will be "forgotten". To see this we may make 
use of the conditional density (viz. equ. 3.17): 

(3.61) 

is the density of x 2 at time t + T under the condition that at time t 
we had x(t) = x1 • The conditional moment 

(3.62) 

is then the average of x(t + r) under the same condition. The faster 
p(x2 lx1 ; r) decays with T the more rapidly the conditional average will 
approach the unconditional one: 

(3.63) 

Gaussian process: A random process is a (stationary) Gaussian process 
if the random variables x(t1), ... , x(tn) obey a multivariate Gaussian 
distribution. The matrix elements of the covariance matrix- which, 
as we know, determines the distribution uniquely (see Section 3.2.5) 
- are in this case simply the values of the autocorrelation function 
at the respective time displacements, (x(O) x(ti - ti)). A Gauss pro­
cess, then, is uniquely determined by its autocorrelation function; the 
distribution function is just 

(3.64) 

with a 2 = (x2). Furthermore we have 

(3.65) 

with 
Q = (x2 )x~ - 2(x(O)x( T) )x1 x 2 + (x2 )x~ 

- S2(r) 
(3.66) 

and 
(3.67) 
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Similarly, 

(3.68) 

where the elements of S are simply given by (x(ti) x(ti)), which in the 
stationary case is identical to (x(O) x(ti- ti)). 

3.3.2 Markov Processes 

For the sake of simplicity we will restrict the discussion to random sequences, 
i.e. random processes on a discretized time axis. A stationary random 
sequence is said to have the Markov property if 

(3.69) 

Thus it is assumed that the "memory" of the physical system we try to 
model by the random sequence goes back no farther than to the preceding 
step. All elements of the sequence (:= "states" of the model system) that 
are farther back do not influence the distribution density of the n-th ele­
ment. (An even shorter memory would mean that successive elements of 
the sequence were not correlated at all.) 

Of particular practical importance are Gaussian Markov processes. To 
describe them uniquely not even p2 ( ••• ) is needed. It is sufficient that the 
autocorrelation function (x(O) x(T)) be known; then p2 ( •• ) and consequently 
all statistical properties of the process follow. Incidentally, it is an important 
hallmark of stationary Gaussian Markov processes that their autocorrelation 
function is always an exponential: 

(3.70) 

(For a proof see [PAPOULIS 81].) 
The most simple procedure for generating a stationary Gaussian Mar­

kov process is based on the stepwise solution of the stochastic differential 
equation 

x(t) = -{3 x(t) + s(t) (3. 71) 

with a stochastic "driving" process s(t). For some given x(O) the general 
solution to this equation reads 

x(t) = x(O) e-f3t +lot e-f3(t-t') s(t') dt' (3.72) 
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Inserting t = tn and t = tn+l = tn + tlt one finds that 

(3.73) 

The equation of motion 3. 71 is complete only if the statistical properties of 
s(t) are given as well. We will assume that s(t) be Gauss distributed about 
(s) = 0, with 

(s(O) s(t)) = A8(t) (3.74) 

The driving random process is thus assumed to be uncorrelated noise. (This 
is often called "8-correlated noise".) With these simple assumptions it may 
be shown that the values of the solution function x(t) (equ. 3.72) at any 
timet belong to a stationary Gaussian distribution with (x2)= A/2(3 and 
that the process {x(tn)} has the Markov property. 

To obtain a prescription for producing the stepwise solution 3. 73 we 
interpret the integrals 

(3.75) 

as elements of a random sequence whose statistical properties may be de­
rived from those of the quantity s(t). In particular, z is Gauss distributed 
with zero mean and (z(tn) z(tn+k)) = 0 fork=/:- 0. The variance is 

(3.76) 

From all this there follows the recipe given in Figure 3.17 for generating a 
stationary, Gaussian Markov sequence. 

ExAMPLE: Consider one cartesian component v(t) of the velocity of a massive 
molecule undergoing diffusive motion in a solvent. It is a fundamental truth of 
statistical mechanics that this quantity is Gauss distributed with variance kT / m: 

Furthermore, under certain simplifying assumptions one may show that the ran­
dom process v(t) obeys the equation of motion postulated by Paul Langevin, 

v(t) = -I' v(t) + s(t) (3.81) 
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"Langevin Shuffle": 

Let the desired stationary Gaussian Markov sequence { x( n) ; n 
0, ... } be defined by the autocorrelation function 

A (x(n) x(n + k)) =- e-f3kAt 
2/3 (3.77) 

with given parameters A, f3 and .6.t. A starting value x(O) is cho­
sen, either by putting x(O) = 0 or by sampling x(O) from a Gauss 
distribution with (x) = 0 and (x2 ) = A/2/3. 

• Draw z(n) from a Gaussian distribution with (z) = 0 and 

(3. 78) 

• Construct 
x(n + 1) = x(n) e-f3At + z(n) (3.79) 

The random sequence thus produced has the desired properties. 

If the product f3 .6.t is much smaller than 1, the exponential in the 
foregoing formulae may be replaced by the linear Taylor approxima­
tion. The iteration prescription then reads 

x(n + 1) = x(n) (1- f3 .6.t) + z'(n) (3.80) 

where z'(n) is picked from a Gauss distribution with (z' 2) =A .6.t (1-
/3 .6.t). 

Figure 3.17: Generating a stationary Gaussian Markov sequence 
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Here f3 is a friction coefficient, and the stochastic acceleration s( t) is a 8 -correlated 
Gaussian process with the autocorrelation function (s(O) s(t)) = (2{3 kT jm) 8(t). 

Again introducing a finite time step t:l.t we can generate a realization of 
the random process v(t) by the method explained above. In this case we have 
A = 2{3 kT / m, which means that the uncorrelated random variate z( n) must be 
sampled from a Gauss distribution with (z2 ) = (kT/m)(l- exp(-2{3/:l.t)). 

The process v(t) as described by 3.81 is stationary and Gaussian with the 
autocorrelation function 

kT (v(O)v(r)) = -e-f3r 
m 

(3.82) 

By some further analysis we could obtain the position x(t) as well, in addition to 
the velocity. This method of simulating the random motion of a dissolved particle 
is called "Stochastic dynamics" or "Brownian dynamics". It will be reviewed at 
more length in Chapter 6. 

EXERCISE: Employ the procedure 3. 79 to generate a Markov sequence { xn} and 
check if its autocorrelation function indeed has the form 3. 77. 

3.3.3 Autoregressive Processes 

We have seen that an iterative procedure of the form 

x(n + 1) = ax(n) + z(n), (3.83) 

with Gaussian z( n) will automatically produce a Gaussian Markov process. 
The Markov property - the "forgetfulness" of the system ~ is expressed by 
the fact that the distribution of x(n + 1) depends on the value of x(n) only. 

A natural generalization of this prescription reads 

K 

x(n + 1) = L ak x(n + 1- k) + z(n) (3.84) 
k=l 

where z( n) is again a 8-correlated process that is not correlated with x( n) 
or any of the foregoing x(n- m): 

(x(n+1-k)z(n))=0; k=1,2, ... (3.85) 
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Equation 3.84 describes a process in which earlier members of the sequence 
exert some influence on the probability density of x(n + 1). Thus the co­
efficients ak are table values of a "memory function" describing the effect 
of past states on x(n + 1).4 In the case of the simple Markov sequence we 
have ak =a hk1· 

Normally the table { ak; k = 1, ... , K} will not be given a priori. Ra­
ther, the random sequence will be known (or required) to have a certain 
autocorrelation function: 

Cm = (x(n)x(n+m)); m= 0,1, ... (3.86) 

How, then, can one determine the coefficients ak such that they produce, 
when inserted in 3.84, a random sequence with the desired autocorrelation? 

Let us assume that the autocorrelation function (ACF, from now on) be 
negligible after M steps: Cm ~ 0 form> M. Now multiply each of theM 
equations 

K 

x(n+m)=Eakx(n+m-k)+z(n+m-1); m=1, ... ,M (3.87) 
k=1 

by x(n) and take the average to find 

K 

Cm = EakCm-k; m = 1, ... ,M 
k=1 

In matrix notation this reads 

c=C·a 

Co C1 CK-1 
C1 Co C1 CK-2 

C= c2 

CM-1 CM-K 

(3.88) 

(3.89) 

(3.90) 

Here we have taken into account that the ACF of a stationary process is a 
symmetric function of time: c_m = Cm. In communication science the M 

4The exact definition of the memory function will be given in Chapter 6. 
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equations 3.88 and 3.89 with the K unknowns ak are known as Yule- Walker 

equations (HONERKAMP 91]. 
In most cases far less than M table values ak (k = 1, ... K) are needed 

to generate an ACF given by M values. For example, in the case of a 
simple Markov sequence the instantly decaying memory function ak = a 8k1 

already produces an exponentially, i.e. less rapidly, decaying ACF. However, 
for K < M the system of equations 3.89 is overdetermined, and we cannot 
fulfill it exactly. In such cases one attempts to optimize the ak in such 
a way that the desired ACF is at least approximately reproduced. The 

approximation error consists of the elements em = Cm- L:f=l akcm-k, and 
we will try to minimize the quantity L:~=l c~. This leads us to the equations 

CT · C ·a= CT · C (3.91) 

Having determined the coefficients ak, we use the relation 

K 

(z2 ) = CQ - L,: akCk (3.92) 
k=l 

to calculate that variance of the random process z( n) which is needed to pro­
duce, by applying 3.84, a random sequence { x( n)} with the desired proper­
ties (SMITH 90, NILSSON 90]. 

EXAMPLE: The desired ACF is given as co = 1, c1 = 0.9, c2 = 0.5, c3 = 0.1. We 
want to find an autoregressive process of order K = 2 whose ACF approximates 
the given table { Cm, m = 0, ... , 3}. The matrix C is given by 

( 
1.0 0.9 ) 

c = 0.9 1 
0.5 0.9 

(3.93) 

and equation 3.91 reads 

0.5 ) . ( 0.9) 
0 9 0.5 

. 0.1 
(3.94) 

The solution is 

= ( 1.55 ) 
a -0.80 (3.95) 
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Let us check whether this process indeed has an ACF that fits the given Cm-values: 
co a1 +c1 a2 = 0.83 (instead of0.9), c1 a1 +co a2 = 0.60 (for 0.5), c2 a1 +c1 a2 = 0.06 
(for 0.1). 

The correct variance (x2) = c0 is obtained by choosing for (z2 ) the value c0 -

a1c1-a2c2 = 0.005 (see equ. 3.92). 

EXERCISE: Write a program to generate a random sequence with the ACF given 
above. Test the code by computing the ACF of the sequence thus produced. 

When trying to invert the matrix C T · C one may run into trouble. Quite 
generally, fitting problems of this kind often lead to almost singular matri­
ces. There are well-proven ways to deal with such situations, and "Nume­
rical Recipes" by PRESS et al. is again a good source to turn to for help 
[PRESS 86]. 

To make an ad hoc suggestion: One may solve - uniquely - the first K 
equations of the overdetermined system 3.89. Then the values { ak , k = 
1, ... K} may be used as initial estimates in an iterative procedure treating 
the full system (see Sec. 2.2). (However, we then have to expect a rather 
low convergence rate.) 

3.3.4 Random Walk 1: Wiener-Levy Process 

Consider once more the stochastic differential equation 3. 71. If we take the 
parameter f3 to be zero, the x-increment for the step tn -+ tn + !::it equals 
(see equ. 3.79) 

x(n + 1) = x(n) + z(n) (3.96) 

where 
{l!:..t 

z(n) = Jo s(tn + t') dt' (3.97) 

is a Gaussian random variate with (z) = 0 and (z2 ) = Atlt. Since z and x 
are uncorrelated, we have 

(3.98) 

Thus the variance of x now increases linearly with the number of steps. In 
other words, this random process is no more stationary. 

As an example, interpreting x as one cartesian coordinate of a diffusing 
particle we identify ([x(n)J2) with the mean squared displacement after n 
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Wiener-Levy process: 

Let A and fl.t (or just the product Afl.t) be given. Choose x(O) = 0. 

• Pick z( n) from a Gauss distribution with zero mean and variance 
Afl.t. 

• Compute 
x(n + 1) = x(n) + z(n) (3.99) 

The random sequence thus produced is a nonstationary Gaussian pro­
cess with variance [x(n)J2 = nAfl.t. 

Figure 3.18: Unbiased random walk 

time steps. In this case we may relate the coefficient A to the diffusion 
constant according to A = 2D. 

A stochastic process obeying equ. 3.97 is called a Wiener-Levy process, 
or Brownian (unbiased) random walk (see Fig. 3.18). 

EXERCISE: 500 random walkers set out from positions x(O) homogeneously distri­
buted in the interval [-1, 1]. The initial particle density is thus rectangular. Each 
of the random walkers is now set on its course to perform its own one-dimensional 
trajectory according to equ. 3.99, with A !:l.t = 0.01. Sketch the particle density 
after 100, 200, ... steps. 

Incidentally, it is not really necessary to draw z( n) from a Gaussian distribu­
tion. For instance, if z(n) comes from an equidistribution in [-fl.x/2, fl.x/2], 
the central limit theorem will enforce that the "compound" x-increment af­
ter every 10 - 15 steps will again be Gauss distributed. (See the footnote 
on page 64.) We may even discretize the x-axis and allow single steps of 
the form z = 0, +fl.x or -fl.x only, with equal probability 1/3 for any of 
these. After many steps, and on a scale which makes fl.x appear small, the 
results will again be the same as before. 

To simulate a 2- or 3-dimensional diffusion process one simply applies 
the above procedure simultaneously and independently to 2 or 3 particle 
coordinates. 
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3.3.5 Random Walk 2: Markov Chains 

A Markov sequence in which the variable x can assume discrete values only 
is called a Markov chain. The conditional probability 

Paf3 = P {x(n) = Xf31 x(n- 1) = Xa} (3.100) 

is then called transition probability between the "states" o: and (3. Let N be 
the number- not necessarily finite- of possible states. TheN x N-matrix 
P = {Paf3} and the N-vector p consisting of the individual probabilities 
Pa = P { x = X a} determine the statistical properties of the Markov chain 
uniquely. 

We are dealing with a reversible Markov chain if 

Pa Paf3 = Pf3 Pf3a (3.101) 

Recalling that Pa Paf3 is the probability that at some step (the n-th, say) 
the state x = Xa is realized and that at the next step we have x = Xf3, 

the property of reversibility simply means that the same combined event in 
reverse order (i.e. x = Xf3 at step n and x = X a at step n + 1) is equally 
probable. 

The N 2 elements of the matrix P are not uniquely defined by the 
N(N- 1)/2 equations 3.101. For a given distribution density p we there­
fore have the choice between many possible transition matrices fulfilling 
the reversibility condition. A particularly popular recipe is the so-called 
"asymmetrical rule" introduced by N. Metropolis: 

Assume that all Xf3 within a certain region around Xa may be reached 
with the same a priori probability 1raf3 = 1/Z, where Z denotes the number 
of these Xf3 (including Xa itself.) We then set the rule 

Paf3 

Pa(J 

7r a(J 

Pf3 
1fa(3-

Pa 

if Pf3 ~ Pa 

if Pf3 < Pa 

(3.102) 

(3.103) 

It is easy to see that this rule fulfills the reversibility condition 3.101. Ano­
ther widely used prescription is the symmetrical, or Glauber, rule 

Pf3 
Paf3 = 7r af3 --'--

Pa + Pf3 
(3.104) 

(Incidentally, other a priori transition probabilities than 1/Z may be used; 
all that is really required is that they are symmetrical with respect to o: and 
(3.) 
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Random numbers a Ia Metropolis: 

Let p = {Pai a= 1, 2, ... } be the vector of probabilities of the events 
x = Xa. We want to generate a random sequence {x(n)} in which the 
relative frequency of the event x(n) = Xa approaches Pa· 

• After the n-th step, let x(n) = Xa. Draw a value Xf3 from a 
region around Xa, preferably according to 

x 13 = xa + (e- 0.5)~x (3.105) 

where e is a random number from an equidistribution E (0, 1), 
and where ~x defines the range of directly accessible states Xf3· 

(This recipe corresponds to the a priori transition probability 
7raf3 = 1/Z; note, however, that other a priori probabilities are 
permissible.) 

• If for P/3 = p(x13) we have P/3 ~ Pa, then let x(n + 1) = Xf3· 

• If P/3 < Pa, then pick a random number e from an equidis­
tribution E (0, 1); if e < Pf3!Pa, let x(n + 1) = Xf3j else put 
x(n + 1) = Xa. 

It is recommended to adjust the parameter ~x such that approxi­
mately one out of two trial moves leads to a new state, x( n + 1) = Xf3· 

Figure 3.19: Random numbers by a biased random walk 

Now for the important point. There is a beautiful theorem on reversible 
stationary Markov chains which in fact may be regarded as the central 
theorem of the Monte Carlo method (see Chapter 6): 

If the stationary Markov chain characterized by p = {Pa} and 
P = {Pa/3} is reversible, then each state X a will be visited, in the 
course of a sufficiently long chain, with the relative frequency Pa. 

We may utilize this theorem together with the asymmetric or symmetric 
rule to formulate still another recipe for generating random numbers with a 
given probability density p. This procedure is described in Figure 3.19. It 
is also sometimes called a random walk, and to discern it from the Wiener­
Levy process the name biased random walk is often preferred. Recall that 
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in a simple (unbiased) random walk on the discretized x-ax:is the transi­
tion probability to all possible neighboring positions is symmetric about 
x ( n) = X a. (In the most simple procedure only the positions Xa±l or X a are 
permitted as the new position x(n + 1), and the probabilities for Xa+l and 
Xa-1 are equal.) 

Thus the method of the biased random walk generates random numbers 
with the required distribution. However, in contrast to the techniques dis­
cussed in Section 3.2 this method produces random numbers that are serially 
correlated: (x(n) x(n+k)) =f. 0. 

EXERCISE: Serial correlations among pseudorandom numbers are normally regar­
ded as undesirable, and the use of the biased random walk for a random number 
generator is accordingly uncommon. In spite of this we may test the method using 
a simple example. Let p( x) = A exp[ -x2] be the desired probability density. Ap­
ply the prescription given in Fig. 3.19 to generate random numbers with this den­
sity. Confirm that (x(n) x(n+k)) f: 0. 

An essential advantage of this method should be mentioned which more 
than makes up for the inconvenient serial correlations. In the transition 
rules, symmetric or asymmetric, the probabilities of the individual states 
appear only in terms of ratios Pf3 I Pa or Pf3 I (Pa + Pf3). This means that their 
absolute values need not be known at all! Accordingly, in the preceding 
exercise the normalizing factor of Pa, which we simply called A, never had 
to be evaluated. 

In the most prominent application of the biased random walk, namely 
the statistical-mechanical Monte Carlo simulation, x( n) is not a scalar coor­
dinate but a configuration vector comprised of 3N coordinates, with N the 
number of particles in the model system. The probability Pa is there gi­
ven by the thermodynamic probability of a configuration. As a rule we do 
not know this probability in absolute terms. We only know the Boltzmann 
factor which is indeed proportional to the probability, but with a usually 
inaccessible normalizing factor, the partition function. 

Thus the feasibility of the Monte Carlo technique hinges on the fact that 
in a biased random walk the probabilities of the individual states need be 
known only up to some normalizing factor. The above theorem guarantees 
that in a correctly performed random walk through 3N-dimensional con-
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figuration space all possible positions of the N particles will be realized with 
their appropriate relative frequencies (see Sec. 6.2). 



Part II 

Everything Flows 
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If it is true that mathematics is the language of physics, then differential 
equations surely are the verbs in it. It is therefore appropriate to devote part 
of this text to the numerical treatment of ordinary and partial differential 
equations. 

We cannot fully understand today what an upheaval the discovery of 
the "fluxion", or differential, calculus must have been in its time. For us it 
is a matter of course to describe a certain model of growth by the equation 

i;(t) = ay(t) 

and to write down immediately the solution y(t) ex: exp(at), i.e. the noto­
rious formula of exponential growth. Equally familiar is the concise New­
tonian formulation of the mechanical law of motion, 

x(t) = _!_K(t) 
m 

Only when we happen to come across an ancient text on ballistics, and 
find quite abstruse conceptions of the trajectories of cannonballs, we can 
sense how difficult the discussion of even such a simple physical problem 
as projectile motion must have been when the tools of differential calculus 
were not yet available. 

Scientists were duly fascinated by the new methods. The French ma­
thematicians and physicists of the eighteenth century brought "le calcul" 
to perfection and applied it to ever more problems. The sense of power 
they experienced found its expression in exaggerated announcements of an 
all-encompassing mechanical theory of all observable phenomena. No se­
vere hindrance was seen in the fact that while for many phenomena one 
may well write down equations of motion, these may seldom be solved in 
explicit, "closed" form. "In principle" the solution was contained in the 
equations, everything else being a technical matter only. 

At times the high esteem of infinitesimal calculus - or rather, the rel­
atively poor image of algebra - would lead to remarkable mistakes. Thus 
the powerful opponent of Christian Doppler, the Viennese mathematician 
Petzval5 , derided the Doppler principle mostly for the reason that it was 
formulated as a simple algebraic relation and not as a differential or integral 
law. 

5JosEF PETZVAL, 1807-91, co-founder of the "Chemico-Physical Society at Vienna" 
still in existence today. He became renowned for his numerical calculations on photogra­
phic multilens objectives, a project that makes him one of the forefathers of computa­
tional physics. 
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Yet it is true: as every student of physics soon finds out, almost all 
relevant physical relations may be put in terms of differential equations. 
(This predominance of differential equations may in fact be due to our 
innate preference for linear-causal thinking; regrettably, this is not the place 
to discuss such matters.) And if we only decide to content ourselves with 
purely numerical solutions, we gain access to a whole world of phenomena 
by far transcending the class of simple cases analyzable "in closed form". 

The first step towards such a numerical solution is always a reformulation 
of the given differential equation in terms of a difference equation. (A 
neologism describing this step is "to difference" the respective equation.) 
For instance, by replacing in 

dx = f(x) 
dt 

the differential quotient by a difference quotient one obtains a linear equa­
tion, which in the most naive approximation reads 

Here Xn = x(tn), and the time increment !:1t = tn+l - tn is taken to be 
constant, i.e. independent of n. Obviously one may then, for given Xn and 
f(xn), compute the next value Xn+l according to 

Iterative algorithms of this kind - albeit somewhat more refined and ac­
curate - provide the basis for all classical and semiclassical simulation me­
thods, as far as these presuppose deterministic equations of motion. 

While the difference calculus suffices for the numerical treatment of or­
dinary differential equations, in the case of partial differential equations 
one has to invoke linear algebra as well. Since the solution function u of 
such an equation depends on at least 2 variables, we obtain by discreti­
zing those variables a table of functional values with 2 or more indices: 
{ui,j, i,j = 1, ... }. The given differential equation transforms into a set of 
difference equations which may be written as a matrix equation (see also 
Section 2.4). 



Chapter 4 

Ordinary Differential 
Equations 

An ordinary differential equation (ODE) in its most general form reads 

L( I II (n)) 0 x,y,y,y , ... y = (4.1) 

where y( x) is the solution function and y' = dy I dx etc. Most differential 
equations that are important in physics are of first or second order, which 
means that they contain no higher derivatives such as y"' or the like. As 
a rule one may rewrite them in explicit form, y' = f(x,y) or y" = g(x,y). 
Sometimes it is profitable to reformulate a given second-order DE as a 
system of two coupled first-order DEs. Thus, the equation of motion for 
the harmonic oscillator, d?xjdt 2 = -w3x, may be transformed (introducing 
the auxiliary function v( t)) into the system 

dx 
-=v· 
dt ' 

dv 2 
-=-w x 
dt 0 

(4.2) 

Another way of writing this is 

and L = ( 0 1 ) -w5 0 
(4.3) 

As we can see, y and dy I dt occur only to first power: we are dealing with 
a linear differential equation. 

Since the solution of a DE is determined only up to one or more con­
stants, we need additional data in order to find the relevant solution. The 
number of such constants equals the number of formal integrations, i.e. the 

97 
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order of the DE. If the values of the required function and of its derivatives 
are all given at one single point x 0 , we are confronted with an initial value 
problem. In contrast, if the set of necessary parameters is divided into se­
veral parts that are given at several points x0 , x1 , ... , we are dealing with a 
boundary value problem. 

Typical initial value problems (IVP) are the various equations of motion 
to be found in all branches of physics. It is plausible that the conceptual 
basis of such equations is the idea that at some point in time the dynamical 
system can be known in all its details ("prepared"); the further evolution 
of the system is then given by the solution y(t) of the equation of motion 
under the given initial condition. 

As a standard example for boundary value problems (BVP) let us recall 
the equation governing the distribution of temperature along a thin rod. It 
reads ,\ d2T / dx2 = 0, and the two constants that define a unique solution 
are usually the temperature values at the ends of the rod, T(x0 ) and T(x 1 ). 

The distinction between IVP and BVP is quite superficial. It is often 
possible to reformulate an equation of motion as a BVP (as in ballistics), 
and a BVP may always be reduced to an IVP with initial values that are at 
first estimated and later corrected (see Sec. 4.3.1). However, the numerical 
techniques for treating the two classes of problems are very different. 

4.1 Initial Value Problems of First Order 

As mentioned before, initial value problems occur mainly in conjunction 
with equations of motion. We will therefore denote the independent variable 
by t instead of x. The generic IVP of first order then reads 

dy . 
dt = f(y, t), w1th y(t = 0) = y0 (4.4) 

To develop a numerical algorithm for solving this problem, let us apply the 
machinery of finite differences. First we discretize the t-axis, writing y n = 
y(n~t) and fn = f(yn)· The various formulae of Section 1.1 then provide 
us with several difference schemes - of varying quality - for determining 
YI,y2, etc. 
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4.1.1 Stability and Accuracy of Difference Schemes 

Recall the DNGF approximation to the first deriavtive of a tabulated func-
tion, 

dyl = ~Yn + O[(~t)) 
dt tn ~t 

(4.5) 

Inserting this in the given differential equation we obtain the difference 
equation 

~n = fn + O[(~t)) (4.6) 

which immediately yields the Euler-Cauchy algorithm 

(4.7) 

As we can see, this formula is accurate to first order only. An even worse 
flaw is that for certain f(y) the EC method is not even stable, so that small 
aberrations from the true solution tend to grow in the course of further 
steps. We will demonstrate the phenomenon of instability of a difference 
scheme by way of a simple example. 

The relaxation or decay equation 

dy(t) = -:\y(t) 
dt 

(4.8) 

describes an exponential decrease or increase of the quantity y(t), depending 
on the sign of the parameter :\. The Euler-Cauchy formula for this DE reads 

Yn+l = (1- A~t)yn (4.9) 

Of course, this formula will work better the smaller the time step ~t we are 
using. The error per time step- the "local error", which increases with (~t)2 

-will then be small. Indeed the numerical solution obtained with :\~t = 0.1 
is almost indiscernible from the exact solution y(t)fy0 = exp( -:\t) (see 
Fig. 4.1). For :\~t = 0.5 the numerical result clearly deviates from the 
exponential. :\~t = 1.5 and 2.0 result in sawtooth curves that differ quite 
far from the correct function, but at least remain finite. For even larger 
values of :\~t the numerical solution - and therefore the error - increases 
with each step. 
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Chapter 4 
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Figure 4.1: Solutions to the equation dyjdt = ->..y, with>..= 1 and y0 = 1 

What happened? The following stability analysis permits us to deter­
mine, for a given DE and a specific numerical algorithm, the range of sta­
bility, i.e. the largest feasible D..t. As a rule the rationale for choosing a 
small time step is to achieve a high accuracy per step (i.e. a small local 
error.) But there are cases where an ever so small D..t leads, in the course of 
many steps, to a "secular", systematic increase of initially small deviations. 
Stability analysis allows us to identify such cases by returning the verdict 
"zero stability range." 

We denote by y(t) the- as a rule unknown- exact solution of the given 
DE, and by e(t) an error that may have accumulated in our calculation. In 
other words, our algorithm has produced the approximate solution y n + en 
at time tn. What, then, is the approximate solution at time tn+l? For the 
EC method we have 

(4.10) 

The EC formula is the most basic member of a class of so-called single step 
algorithms, which produce the solution at time tn+l by application of some 
transformation T to the value of the solution at time tn: 

(4.11) 

Assuming that the deviation en is small and the transformation T is well­
behaved, we may expand T(yn +en) around the correct solution Yn= 

T(Yn +en)~ T(yn) + d~(y) I ·en 
Y Yn 

( 4.12) 
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Since T(yn) = Yn+ll we have from 4.11 

e+1 ~ dT(y)l ·e =G·e n d n- n 
Y Yn 

(4.13) 

The matrix G is called amplification matrix. Obviously the repeated multi­
plication of some initial error e0 (which may simply be caused by the finite 
number of digits in a computer word) may lead to diverging error terms. 
Such divergences will be absent only if all eigenvalues of G are situated 
within the unit circle: 

jgd ~ 1 , for all i ( 4.14) 

Let us apply this insight to the above example of the relaxation equa­
tion. In the Euler-Cauchy method 4.9 the transformation T is simply a 
multiplication by the factor (1 - .\~t): 

T(yn) =: (1 - A~t) Yn (4.15) 

The amplification "matrix" G then degenerates to the scalar quantity (1-
.\~t), and the range of stability is defined by the requirement that 

11- .\~tl ~ 1 ( 4.16) 

For .\ = 1 this condition is met whenever ~t ~ 2. Indeed, it was just the li­
miting value ~t = 2 which produced the marginally stable sawtooth curve in 
Figure4.1. 

EXAMPLE: As a less trivial example for the application of stability analysis we will 
once again consider the harmonic oscillator. Applying the Euler-Cauchy scheme 
to 4.3 we find 

Yn+l =[I+ L~t] · Yn =: T(yn) 

The amplification matrix is 

G = dT(y) I =I+ L~t 
dy Yn 

The eigenvalues of G are 91,2 = 1 ± iwo~t, so that 

(4.17) 

(4.18) 

(4.19) 

Regardless how small we choose ~t, we have always l9t,21 > 1. We conclude that 
the EC method applied to the harmonic oscillator is never stable. 
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In the following descriptions of several important algorithms the range of 
stability will in each instance be given for the two standard equations - re­
laxation and harmonic oscillator. A more in-depth discussion of the stability 
of various methods for initial value problems may be found in [GEAR 71]. 
For completeness, here follow a few concepts that are helpful in discussing 
the stability and accuracy of iterative methods: 

Let L(y) = 0 be the given DE, with the exact solution y(t). (Example: 
L(y) = iJ + )..y = 0; relaxation equation.) Also, let F(y) = 0 be a 
truncated difference scheme pertaining to the given DE, with its own 
exact solution Yn· (Example: Yn as computed by repeated application 
of 4.9.) 

Cumulative truncation error: This is the difference, at time tn, between 
the solution of the DE and that of the difference equation: 

en:y(tn)-Yn (4.20) 

Convergence: A difference scheme is convergent if its solution approaches 
for decreasing time steps the solution of the DE: 

lim Yn = y(tn) or lim en = 0 
~t--+0 ~t--+0 

( 4.21) 

Local truncation error: Inserting the exact solution of the DE in the 
difference scheme one usually obtains a finite value, called the local 
truncation error: 

Consistency: The algorithm F(y) = 0 is consistent if 

lim Fn = 0 
~t ..... o 

(4.22) 

(4.23) 

Roundoff error: Due to the finite accuracy of the representation of num­
bers (for example, but not exclusively, in the computer) the practical 
application of the difference scheme yields, instead of Yn, a somewhat 
different value Yn· The discrepancy is called roundoff error: 

(4.24) 

Stability: The ubiquitous roundoff errors may "excite" a solution of the 
difference equation that is not ~ontained in the original DE. If in 
the course of many iterations this undesired solution grows without 
bounds, the method is unstable. 
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4.1.2 Explicit Methods 

The Euler-Cauchy formula is the most simple example of an explicit inte­
gration scheme. These are procedures that use an explicit expression for 
Yn+t in terms of y and f as given from preceding time steps. (If only Yn 
and fn occur, as in the EC method, we are dealing with an explicit single 
step scheme.) 

The EC formula was derived using that difference quotient which in Sec­
tion 1.2 was called DNGF approximation. We may obtain another explicit 
scheme by introducing the DST approximation: 

(4.25) 

The DE dyjdt = f(t) is thus transformed into a sequence of difference 
equations, 

Yn+t 
Yn+2 

etc. 

= Yn-1 + fn 2~t + O[(~t)3) 
Yn + fn+12~t + O[(~t)3) 

(4.26) 

(4.27) 

Each line is an explicit formula of first order that couples the values of y at 
time steps tn+l and tn-b omitting the quantity Yn· However, fn = f(yn) 
is needed and has to be evaluated in the preceding step. This two-step 
procedure is pictorially called leapfrog technique. 

Note that on the right hand side of 4.26 there appear two time steps. 
The stability analysis of such multistep techniques is a straightforward ge­
neralization of the method explained before. Let us write the general form 
of an explicit multistep scheme as 

k k 

Yn+t = LaiYn-j +~tLbifn-j (4.28) 
j=O j=O 

Applying the same formula to a slightly deviating solution y n-j + en-i and 
computing the difference, we have in linear approximation 

(4.29) 
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Defining the new error vectors 

= ( ::_1 ) 1Jn- • 

en-k 

(4.30) 

and the quadratic matrix 

( 4.31) 

we may write the law of error propagation in the same form as 4.13, 

1Jn+t = G · 1Jn (4.32) 

Again, the stability criterion reads 

jgd ~ 1 , for all i ( 4.33) 

EXAMPLE 1: Applying the leapfrog scheme to the relaxation equation one obtains 
the scalar formula 

Yn+t = Yn-1 - 2Jlt)..yn + O[(flt?J ( 4.34) 

The error propagation obeys 

(4.35) 

so that Ao = -2ilt>.., and At = 1. The matrix G is therefore given by 

( 4.36) 

with eigenvalues 
(4.37) 

Since in the relaxation equation the quantity )..Jlt is real, we have 1921 > 1 under 
all circumstances. The leapfrog scheme is therefore unsuitable for treating decay 
or growth problems. 
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EXAMPLE 2: If we apply the leapfrog method to the harmonic oscillator, we 
obtain (using the definitions of equ. 4.3) 

Yn+l = 2~tL · Yn + Yn-1 (4.38) 

and consequently 
en+l ~ 2~tL ·en+ en-1 (4.39) 

The amplification matrix is therefore, with a= 2~t, 

~) = ( -1w~ 
a 1 

n G= (aiL 0 0 
( 4.40) 

0 0 
1 0 

For the eigenvalues of G we find 

(4.41) 

so that 
191 = 1. (4.42) 

Thus the algorithm, when applied to the harmonic oscillator, is marginally stable, 
regardless of the specific values of ~t and w5. 

4.1.3 Implicit Methods 

The most fundamental implicit scheme is obtained by approximating the 
time derivative by the DNGB (instead of the DNGF) formula: 

dyl = \lyn+l + O[~t] 
dt n+l ~t 

( 4.43) 

Inserting this in dy / dt = f[y( t)] we find 

Yn+l = Yn + fn+l~t + O[(~t)2] (4.44) 
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This formula is of first order accuracy only, no more than the explicit Euler­
Cauchy scheme, but as a rule it is much more stable. The problem is that 
the quantity fn+l is not known at the time it were needed- namely at time 
tn. Only if f(y) is a linear function of its argument y are we in a position to 
translate 4.44 into a feasible integration algorithm. Writing f n+l = L · y n+l, 

we then have 

( 4.45) 

The higher stability of this method as compared to the Euler formula may 
be demonstrated by way of our standard problems. The evolution of errors 
obeys 

en+l = (I- L~tt1 · en = G · en ( 4.46) 

For the relaxation equation G = G = 1/(1 + >.~t), and obviously lgl < 1 
for any ). > 0. (On first sight the case ). < 0 seems to be dangerous; but 
then we are dealing with a growth equation, and the relative error efy will 
still remain bounded.) In the case of the harmonic oscillator we have 

- -1 1 ( 1 ~1t) G = (I- L~t] = l ( D. )2 2 + Wo t -w0 D.t 
( 4.4 7) 

with eigenvalues 

91,2 = ( 1 ~ )2 (1 ± iwo~t] 
1 + wo t 

(4.48) 

so that 
( 4.49) 

which is smaller than 1 for any ~t. 
An implicit scheme of second order may be obtained in the following 

manner. We truncate the DNGF approximation 1.30 after the second term 
and write it down for u = 0 (i.e. t = tn) and for u = 1 (meaning tn+l), 

respectively: 

~t[~Yn- ~~2Yn] + O((~t?J 
~t[~Yn + ~~2Ynl + O((~t)2] 

(4.50) 

( 4.51) 
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Adding the two lines yields 

( 4.52) 

Again, this implicit formula can be of any practical use only if f is linear in 
y. With fn = L · Yn etc. we obtain from 4.52 

Stability is guaranteed for the decay equation if 

= 11- A ~t/21 < 1 191- 1 +A ~t/2 -

which is always true for A > 0. For the harmonic oscillator 

with 191 ::; 1 for all ~t. 

1 ± iw0~t/2 
91 '2 = 1 + (wo~t)2/4 

4.1.4 Predictor-Corrector Method 

(4.53) 

(4.54) 

(4.55) 

The explicit and implicit schemes explained in the preceding sections are of 
first and second order only. In many applications this is not good enough. 
The following predictor-corrector schemes provide a systematic extension 
towards higher orders of accuracy. In this context the predictor is an explicit 
formula, while the corrector may be seen as a kind of implicit prescription. 

To understand the way in which predictors of arbitrary order are con­
structed we once more consider the simple EC formula. Equation 4. 7 is 
based on the assumption that the kernel f(t) maintains the value fn for the 
entire period [tn, tn+t] (see Fig. 4.2a). It is evident that for a systematic 
improvement we simply have to replace this step function by an extrapola­
tion polynomial of order 1, 2, ... using the values of fn, fn-b fn-2 ... (Fig. 
4.2b ). The general NGB polynomial 

u u(u + 1) 2 
J(tn+r)=Jn+ 1!Vfn+ 2! V fn+··· ( 4.56) 
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f(t) 

• I 

• I 

tn-2 tn-1 tn 

(a) 

f(t) 

·--
tn+l tn-2 tn-1 tn 

(b) 

2 
I 

I 
I 

tn+l 

Figure 4.2: PC method: a) EC ansatz: step function for f(t); b) general 
predictor-corrector schemes: 1 ... linear NGB extrapolation; 2 ... parabolic 
NGB extrapolation 

(with u = rj~t) is thus extended into the time interval [tn,tn+ll· This 
renders the right-hand side of the DE dyjdt = f(t) formally integrable, and 
we obtain according to 

p {1 
Yn+l = Yn + ~t Jo du f(tn + u~t) ( 4.57) 

the general Adams-Bashforth predictor 

p- [ 1 52 33 
Yn+l - Yn + ~t fn + ;{vfn + 12 \7 fn + S\7 fn+ 

251 4 95 5 ] + 720\7 fn + 288\7 fn + • .. ( 4.58) 

Depending on how far we go with this series we obtain the various predictor 
formulae listed in Table 4.1. The predictor of first order is, of course, just 
the Euler-Cauchy formula; the second order predictor is often called open 
trapezoidal rule. 

As soon as the predictor y?;+1 is available we may perform the evaluation 
step to determine the quantity 

( 4.59) 
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Predictors for first order differential equations: 

p - + Yn+t- Yn 6.t fn + 0[(6.t)2) (4.62) 

+ ~t [3/n- fn-1] + 0[(6-t?J (4.63) 

6.t[ 4 + 12 23/n- 16/n-1 + 5/n-2) + 0[(6-t) ) (4.64) 

+ ~:[55/n- 59fn-1 + 31fn-2- 9/n-3) + 0[(6.t)5) (4.65) 

Table 4.1: Adams-Bashforth predictors 

which will usually deviate somewhat from the value of the extrapolation po­
lynomial 4.56 at time tn+l· Now inserting /~+1 in a backward interpolation 
formula around tn+l, we can expect to achieve a better approximation than 
by the original extrapolation - albeit within the same order of accuracy. 
Once more we may integrate analytically, 

Yn+l = Yn + 6.t 1: du f(tn+l + u6.t) 

to obtain the general Adams-Moulton corrector 

[ 1 1 2 1 3 
Yn+l = Yn + b.t fn+I - 2 '\7 fn+I - 12 '\7 fn+I - 24 '\7 fn+I 

19 4 3 5 ] 
-720 '\7 fn+I- 160\1 fn+I- · · · 

(4.60) 

( 4.61) 

(wher.e \1 fn+I = f~+l - fn etc.). The first few correctors of this kind are 
assembled in Table 4.2. 

A final evaluation step fn+I = f(Yn+t) yields the definitive value of fn+I 
to be used in the calculation of the next predictor. One might be tempted 
to insert the corrected value of fn+I once more in the corrector formula. The 
gain in accuracy, however, is not sufficient to justify the additional expense 
in computing time. Thus the PC method should always be applied according 
to the pattern PECE, i.e. "prediction-evaluation-correction-evaluation." An 
iterated procedure like P(EC)2E is not worth the effort. 

The PC methods may be thought of as a combination of explicit and im­
plicit formulae. Accordingly the stability range is also intermediate between 



110 Chapter 4 Ordinary differential equations 

Correctors for first order differential equations: 

Yn+l = Yn + !:l.tf;:+l + O[(!:l.t) 2] ( 4.66) 

+ !:it [ p l 3 2 fn+l + fn + 0[(/:it) ] ( 4.67) 

+ !:it[ p [ 4] U 5fn+l + 8Jn - fn-1] + 0 (/:it) ( 4.68) 

+ !:it [ p l [ 5 
24 9fn+l + 19fn- 5fn-1 + fn-2 + 0 (/:it) ] (4.69) 

Table 4.2: Adams-Moulton correctors 

the narrow limits of the explicit and the much wider ones of the implicit 
schemes. Applying, for example, the Adams-Bashforth predictor of second 
order to the relaxation equation one finds for the eigenvalues of the ampli­
fication matrix G the characteristic equation 

2 3 0: 
9 - 9(1- 2o:)- 2 = 0 (4.70) 

where o: = )..f:l.t. For positive).. we have 191 :S 1, as long as !:it :S 1/ >.. The 
Adams-Moulton corrector on the other hand yields the error equation 

1- o:/2 -
en+l = 1 + o:/2 en = 9en (4.71) 

with 191 < 1 for all o: > 0, i.e. for any !:it at all. The limit of stability 
for the combined method should therefore be situated somewhere between 
!:it= 1/).. and !:it= oo. This is indeed borne out by testing the method on 
the relaxation equation. Inserting the predictor formula of order 2, 

(4.72) 

in the corrector formula 

(4.73) 

one finds 

( 4.74) 
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y(t) 

f(t) 

I ,. 

(b) 

Figure 4.3: Runge-Kutta method. a) EC formula(= RK of first order); b) 
RK of second order 

with an identical error equation. The amplification factor thus obeys the 
equation 

2 ( 3 2) a2 g - g 1 - a + -a + - = 0 
4 4 

(4.75) 

For positive a ::; 2 the solutions to this equation are situated within the unit 
circle; the condition for the time step is therefore ~t ::; 2/ .\. The stability 
range of the combined method is thus twice as large as that of the bare 
predictor (~t ::; 1/ .\). 

4.1.5 Runge-Kutta Method 

To understand the idea of the RK technique we once more return to the 
simple EC formula 4.7. It rests on the assumption that f(t) retains the 
value fn during the whole of the time interval [tn, tn+l] (see Figure 4.3a). 
A more refined approach would be to calculate first a predictor for y at 
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Runge-Kutta of order 4 for first-order ODE: 

Yn+l = Yn ( 4. 77) 

Table 4.3: Runge-Kutta of order 4 

half-time tn+l/2, evaluate fn+l/2 = f(Yn+t/2) and then compute a kind of 
corrector at tn+l (Fig. 4.3b): 

Runge-Kutta of order 2: 

Yn+l 

flt f(Yn) 
1 

!::.tf(Yn + 2k1) 

Yn + k2 + O[(llt?J (4.76) 

This algorithm is called Runge-Kutta method of second order, or half-step 
method. It is related to the predictor-corrector technique of second order -
with the difference that the quantity fn-l is not needed. Equation 4. 76 is 
therefore a single step method and may accordingly be applied even at the 
first time step to --+ t1 ; such an algorithm is called self-starting. 

A much more powerful method that has found wide application is the 
RK algorithm of order 4, as described in Table 4.3. 

The most important advantage of the RK method as compared to the PC 
algorithms is that at time tn no preceding values of fn-l, fn-l, ... need be 
known. This is a valuable property not only for starting a calculation from 
t 0 , but also for varying the time step in the course of the computation. If, 
for instance, the magnitude of f[y(t)] varies strongly, llt must be adjusted 
accordingly. Also, the local truncation error may be estimated most easily 
by computing Yn+l first with llt and then once more in two steps of length 
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D..tf2. 
One flaw of the RK method is the necessity of repeatedly evaluating f(y) 

in one time step. Particularly in N-body simulations (molecular dynamics 
calculations) the evaluation step is very costly, and the RK method has 
never become popular with simulators. 

Stability analysis for the RK algorithm proceeds along similar lines as 
for the PC methods. The half-step technique applied to the decay equation 
leads to an error propagation following 

0:.2 

en+l = (1- 0:. + 2)en = gen (4.78) 

with a = Atl.t. For positive A this implies IYI ::; 1 whenever D..t ::; 2/ A. 

4.1.6 Extrapolation Method 

When discussing the Runge-Kutta method we have already mentioned the 
possibility of estimating the local truncation error by subdividing the given 
time step D..t. The authors Richardson, Bulirsch, and Stoer [STOER 89, 
GEAR 71] have extended this idea and have forged it to a method which 
to a large extent eliminates that error. The principle of their method is 
sketched in Figure 4.4. 

A thorough description of this extremely accurate and stable, but also 
rather expensive technique may be found in [STOER 89] and in [PRESS 86]. 

EXERCISE: Test various algorithms by applying them to an analytically solva­
ble problem, as the harmonic oscillator or the 2-body Kepler problem. In­
clude in your code tests that do not rely on the existence of an analytical 
solution (energy conservation or such.) Finally, apply the code to more com­
plex problems like the anharmonic oscillator or the many-body Kepler problem. 

4.2 Initial Value Problems of Second Order 

The fundamental equation of motion in classical point mechanics reads, in 
cartesian coordinates, 

d?r 1 
- = -K[r(t)] 
dt 2 m 

( 4.81) 
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Extrapolation method: 

1. From a given (rather large) interval ~t = t1 - t0 form succes­

sively smaller steps h = ~t/n, with n = 2, 4, 6, 8, 12, ... , (in 
general, nj = 2nj-2 .) 

2. With each of these divided steps h compute the table values 

zo Yo 

Zt = zo + hf(zo) 

Zm+t Zm-1 + 2hf(zm); m = 1, 2 ... n- 1 (leapfrog!) 

and finally 

(4.79) 

3. In this way a sequence of estimated end values y1 are created 

that depend on the divided step width h: Yt = Yt(h). This 
sequence is now extrapolated towards vanishing step width, h ~ 
0. The best way to do this is rational extrapolation, meaning 
that one fits the given pairs { h, y1 (h)} by a rational function 

R(h) = P(h) 
Q(h) 

where P and Q are polynomials. 

Figure 4.4: Extrapolation method by Bulirsch and Stoer 

(4.80) 
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Similar equations hold for the rotatory motion of rigid bodies or of flexible 
chains. And in almost all branches of physics we are faced with some para­
phrase of the harmonic oscillator or the more general anharmonic oscillator 

d2y 2 3 -
dt2 =-woy-(3y - ... =b(y) ( 4.82) 

Since in many instances the acceleration b may depend also on the velocity 
dy / dt - as in the presence of frictional or electromagnetic forces - we will 
write the second-order equation of motion in the general form 

( 4.83) 

It was mentioned before that a second-order DE may always be rewritten 
as a system of two coupled equations of first order, so that the algorithms 
of the preceding section are applicable. However, there are several very effi­
cient techniques that have been specially designed for the direct numerical 
integration of second-order differential equations. 

4.2.1 St~rmer-Verlet Method 

L. Verlet introduced this technique in 1967 in the context of his pioneering 
molecular dynamics simulations on Argon [VERLET 67]. However, a similar 
method had been used as early as 1905 by the Norwegian mathematician C. 
Styjrmer to trace the capricious paths of charged elementary particles that 
are trapped in the magnetic field of the earth. Styjrmer performed these 
computations on the aurora problem together with several of his students, 
without any modern computing aids, in about 5000 hours of work- a true 
founding father of computational physics. 

To derive the Verlet algorithm one simply replaces the second differential 
quotient by the Stirling approximation (see equ. 1.48): 

(4.84) 

This leads immediately to 

( 4.85) 
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Note that the velocity v = iJ does not appear explicitly. The a posteriori 
estimate for the velocity vn, 

( 4.86) 

is quite inaccurate and may be used for crude checks only. Also, the Verlet 
algorithm is not self-starting. In addition to the initial value y0 one needs 
Y-1 to tackle the first time step. In a typical initial value problem the quan­
tities Yo and Yo are given instead. By estimating some suitable y_1 in order 
to start a Verlet calculation one solves not the given IVP but a very similar 
one. Still, the method has become very popular in statistical-mechanical 
simulation. It must be remembered that the aim of such simulations is not 
to find the exact solution to an accurately defined initial value problem, but 
to simulate the "typical" dynamics of anN-body system, for approximately 
given initial conditions. 

If the Verlet method is to be applied to a problem with exact initial 
values, the first time step must be bridged by a self-starting technique, such 
as Runge-Kutta (see below.) 

Stability analysis proceeds in a similar way as for the methods of Section 
4.1. For our standard problem we will use the harmonic oscillator in its more 
common formulation as a DE of second order. The Verlet algorithm then 
reads 

( 4.87) 

whence it follows that 

( 4.88) 

with a= w0 /:lt. The eigenvalue equation 

( 4.89) 

reads 
( 4.90) 

Its root 

0: ff=2 g = (1- -) ± --0: 
2 4 

( 4.91) 

is imaginary for a < 4, with lgl 2 = 1. In the case a 2: 4- which for reasons 
of accuracy is excluded anyway - the Verlet algorithm would be unstable. 
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Verlet leapfrog: 

Vn+l/2 = Vn-l/2 + bn/::it 

Vn - ~( Vn+l/2 + Vn-l/2) (if desired) 

Yn+l Yn + Vn+l/2/::it + O[(/::it)4 ] 

Figure 4.5: Leapfrog version of the Verlet method 

Velocity Verlet: 

Yn+l 
(!::it)2 4 

= Yn + Vnl::it + bn-2- + 0[(/::it) ] 

!::it 
Vn + bnT 

Evaluation step Yn+l --. bn+l 
!::it 

Vn+l = Vn+l/2 + bn+l 2 

Figure 4.6: Swope's formulation of the Verlet algorithm 

117 

(4.92) 

(4.93) 

(4.94) 

(4.95) 

(4.96) 

(4.97) 

(4.98) 

Incidentally, there are two further formulations of the Verlet method, 
which are known as the "leapfrog" and "velocity Verlet" algorithms, re­
spectively. We have already encountered a leapfrog method for treating 
differential equations of first order (see Sec. 4.1.2). Figure 4.5 shows the 
tricks of a leapfrog appropriate to second order DEs. It is important to note 
that in this formulation of the Verlet procedure the velocity - or rather, a 
crude estimate of v-is available already at time tn (see equ. 4.93). 

Also equivalent to the Verlet algorithm is the velocity Verlet prescription 
introduced by Swope [SwoPE 82]. The first line in Figure 4.6 looks like a 
simple Euler-Cauchy formula, but this is mere appearance. The quantity 
Vn+l is not computed according to Vn+l = Vn + bn!::it, as the EC method 
would require. 
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4.2.2 Predictor-Corrector Method 

In the equation d?yfdt2 = b(t) we again replace the function b(t) by a 

NGB polynomial (see Sec. 4.1.4). Integrating twice, we obtain the general 

predictor formulae 

(4.99) 

A specific predictor of order k is found by using terms up to order \lk-zbn. 

Thus the predictor of third order reads 

(4.101) 

p • A 
Yn+l - Yn - Ynut (4.102) 

For a compact notation we define the vector 

(4.103) 

and the coefficient vectors Ck and dk. The predictor of order k may then be 

written as 

Predictor of order k for second order DE: 

The first few vectors ck, dk are given by 

(4.104) 

(4.105) 

(4.106) 
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( 3/2) 
C3 = -1/2 ( 4/3) 

d3 = -1/3 (4.107) 

c4 = -16/12 ( 
23/12 ) 

d4 = -10/12 ( 
19/12 ) 

(4.108) 
5/12 3/12 

-59/24 ( 
55/24 ) 

cs = 37/24 
-264/180 ( 

323/180 ) 

ds = 159/180 (4.109) 

-9/24 -38/180 

Having performed the predictor step, we may insert the preliminary 
result y:+l, y?;+1 in the physical law for b[y, y]. This evaluation step yields 

bp - b [ p ·P ] (4 110) n+1 = Yn+1,Yn+1 · 
(If the acceleration b is effected by a potential force that depends on y but 
not on y, the quantity y?;+l need not be computed at all.) By inserting ~+1 
now in a NGB formula centered on tn+l and again integrating twice we find 
the general corrector 

( ) 2 [ p 1 1 2 1 3 !:l.t b - -Vb +1- -V b +1- -V b +1-n+t 2 n 12 n 24 n 

19 4 3 5 ] ( ) - 720 '\1 bn+l- 160 '\1 bn+1-... 4.111 

(.6.t) 2 [ p 2 1 2 7 3 
-2- bn+l- 3'\lbn+l- 12 '\1 bn+1 - 180 '\1 bn+l-

_.22_'\14b +1 - ~V5b +1- ... J (4.112) 
720 n 2520 n 

Defining the vector 

(4.113) 

and another set of coefficient vectors ek, fk, we may write the corrector of 
order k as 

Corrector of order k for second-order DE: 

- (.6.t) 2ek · bf + 0[(.6.t)k+1] 

= (.6.t) 2 
fk · bf + O[(!:l.t)k+l] 

2 

(4.114) 

(4.115) 
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The first few coefficient vectors are 

(4.116) 

( 1/2 ) 
e3 = 1/2 ( 1/3 ) 

f3 = 2/3 (4.117) 

e4 = 8/12 ( 
5/12 ) 

f4 = 10/12 ( 
3/12 ) 

(4.118) 
-1/12 -1/12 

( 
9/24 ) 

19/24 
es = -5/24 

( 
38/180 ) 

f = 171/180 
5 -36/180 

(4.119) 

1/24 7/180 

The PC method should always be applied according to the scheme P(EC)E. 
Repeating the corrector step, as in P(EC)2E, is uneconomical. Of course, 
omitting the corrector step altogether is not to be recommended either. 
The bare predictor scheme PE is tantamount to using one of the explicit 

algorithms whose bad stability rating we have discussed in Section 4.1.2. 

4.2.3 N ordsieck Formulation of the PC Method 

There are two ways of extrapolating a function - as, for instance, the so­
lution y(t) of our differential equation - into the time interval [tn, tn+ll· 

One is to thread a NGB polynomial through a number of preceding points 
{ tn-k, Yn-k}; the other is to write down a Taylor expansion about tn. For 
the latter approach one needs, instead of the stored values Yn-k, a few de­

rivatives dky / dtk at tn. Such a Taylor predictor of order 3 would read 

p 
Yn+l 

v:+lllt 

··P (flt)2 
Yn+l~ 

... p (llt? 
Yn+l ~ = 

. .. (tlt) 2 ... (llt? [( 4] 
Yn + Ynflt+ Yn ~+ Yn ~ + 0 flt) (4.120) 

Ynflt+ Yn (flt?+ fin (~~)3 + O[(flt)4] (4.121) 

Yn (~~)2 
+fin (~~? + O[(flt)4] (4.122) 

... ( tlt )3 [( )4] ( ) Yn ~ + 0 flt 4.123 
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Defining the vector 
Yn 

Ynl!it 
.. (!!1~)2 
Yn 2. 

( 4.124) 

and the (Pascal triangle) matrix 

1 1 1 1 
0 1 2 3 

A:= 0 0 1 3 (4.125) 
1 

we have 

( 4.126) 

Now follows the evaluation step. Inserting the relevant components of 
z;;+l in the given force law we obtain the acceleration 

bp - b[ p ·P j 
n+l = Yn+l' Yn+l ' ( 4.127) 

which in general will deviate from the extrapolated acceleration as given by 
equ. 4.122. We define a correction term 

- [bp ··P l (/!it)2 
l = n+l - Yn+l - 2- (4.128) 

and write the corrector for Zn+l as 

(4.129) 

with an optimized coefficient vector c [GEAR 66]. For the first few orders 
of accuracy this vector is given as 

19/120 
3/20 

c/6) 3/4 
251/360 

5/6 1 
c = 1 ' 1 

11/18 ' ... (4.130) 

1/3 
1/2 

1/6 
1/12 

1/60 
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These coefficients were optimized by Gear under the assumption that b 
depends on the position coordinate y only, being independent of iJ. The 
simple but important case of point masses interacting via potential forces is 
covered by this apparatus. Whenever b = b(y, iJ), as in rigid body rotation 
or for velocity dependent forces, Gear recommends to replace 19/120 by 
19/90 and 3/20 by 3/16 (see Appendix C of [GEAR 66]). 

Finally, the evaluation step is repeated to yield an improved value of 
the acceleration, bn+l· As before, the procedure may be described in short 
notation as P(EC)E. 

The Nordsieck PC method offers the advantage of being self-starting -
provided that one adds to the initial conditions y0 , y0 and the corresponding 
acceleration iio some ad hoc assumptions about the values of y·0 , 'i/0 etc. 
(for instance, ... = 0). As in all self-starting (single step) algorithms it is 
possible to modify the time step whenever necessary. 

Stability analysis is somewhat tedious for this formulation of the PC 
method, but there are really no surprises. Once again the quasi-implicit 
nature of the corrector provides a welcome extension of the stability region 
as compared to the bare predictor formula. 

4.2.4 Runge-Kutta Method 

Without giving a detailed derivation, we here list a widely used RK algo­
rithm of fourth order for the equation d?yjdt2 = b[y(t)] (see Figure 4.7). 
If the acceleration b depends not only on y but also on iJ, then the proce­
dure given in Figure 4.8 should be used [ABRAMOWITZ 65). With regard 
to the economy of the RK method the considerations of Sec. 4.1.5 hold: 
the repeated evaluation of the acceleration b(y) in the course of a single 
time step may be critical if that evaluation consumes much computer time; 
this more or less rules out the method for application in N-body simulati­
ons. In all other applications the RK method is usually the first choice. It 
is a self-starting algorithm, very accurate, and the assessment of the local 
truncation error using divided time steps is always possible. 

4.2.5 Symplectic Algorithms 

There is more to life than accuracy and stability. In recent years a class of 
integration schemes called "Hamiltonian" or "symplectic" algorithms have 
been discussed a lot. These are integration procedures that are particularly 
well suited for the treatment of mechanical equations of motion. 
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Runge-Kutta of 4th order for second order DE: 

bl = b [Yn] 

b2 = b [Yn + Yn ~t] 
[ . tlt (tlt)2] 

b3 = b Yn + Yn 2 + b1-4-

[ . (tlt)2] 
b4 = b Yn + Ynflt + b2-2-

Yn+l = Yn + ~t [b1 + 2b2 + 2b3 + b4] + O[(tlt)5] 

. (tlt)2[ J [ 5 
Yn+I = Yn + Ynflt + - 6- bl + b2 + b3 + 0 (flt) ] 

(4.131) 

( 4.132) 
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Figure 4.7: Runge-Kutta algorithm of 4th order for a second-order DE with 
b = b(y) 

RK of 4th order for velocity dependent forces: 

bl b[yn, Yn] 

b2 [ . b..t (b..t)2 . b..t] 
b Yn+YnT+bl-8-,Yn+biT 

b3 [ . tlt (tlt)2 . tlt] 
b Yn + YnT + b1-8-,yn + b2T 

b4 = b [Yn + Ynflt + b3 (.6.;)2, Yn + b3flt] 

. . 
+ ~t[b1 + 2b2 + 2b3 + b4] + O[(tlt) 5] (4.133) Yn+l = Yn 

Yn+l = Yn + 
(tlt)2 

Ynllt + - 6-[b1 + b2 + b3] + O[(tlt)5] ( 4.134) 

Figure 4.8: Runge-Kutta of 4th order for second-order DE with b = b(y, y) 
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"Symplectic" means "interlaced" or "intertwined". The term, which is 
due to H. Weyl (cited in [GOLDSTEIN 80]), refers to a particular formu­
lation of the classical Hamiltonian equations of motion. The motivation 
for the development of symplectic algorithms was the hope to "catch" the 
inherent characteristics of mechanical systems more faithfully than by in­
discriminately applying one of the available integration schemes. 

Consider a classical system with M degrees of freedom. The complete 
set of (generalized) coordinates is denoted by q, the conjugate momenta are 
called p. Hamilton's equations read 

dp 
dt = -"VqH(q,p) (4.135) 

where H( q, p) is the (time-independent) Hamiltonian. By linking together 
the two M-vectors q and p we obtain a phase space vector z whose temporal 
evolution is described by the concise equation of motion 

(4.136) 

with the "symplectic matrix" 

(4.137) 

A glance at this matrix makes the significance of the term "intertwined" 
apparent. 

Let us now assume that we are to solve the dynamic equations with 
given initial conditions. If there is an exact solution, yielding z(t) from the 
initial vector z(t0 ), the mapping 

z(to) ===} z(t) (4.138) 

represents a canonical transformation in phase space. It is well known that 
such a transformation conserves the energy ( = numerical value of the Ha­
miltonian), and this property is often used to assess the quality of numerical 
approximations to the exact solution. However, there is another conserved 
quantity which has for a long time been disregarded as a measure of qua­
lity of numerical integrators. Namely, canonical transformations leave the 
symplectic form 

(4.139) 
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unchanged. This tells us something about the "natural" evolution of vol­
ume elements (or rather, "bundles" of trajectories) in phase space. In­
deed, Liouville's theorem, that (deterministic) cornerstone of statistical 
mechanics, follows from the conservation of the standard symplectic form. 

EXAMPLE: Let us unclamp that harmonic oscillator once more. Writing, in honor 
of R. Hamilton, q for the position and p for the (conjugate) momentum, we have 

k p2 
H(z)::: H(q,p) = -2q2 +-

2m 
(4.140) 

The canonical transformation producing the solution at time t from the initial 
conditions q(O),p(O) may be written 

z(t) = ( q ) = ( coswt Jw sinwt ) . ( q(O) ) =A. z(O) (4.141) 
p -mwsinwt coswt p(O) 

(with w2 = kjm.) The energy is, of course, conserved: 

~q2 + .i_ = ~q2(0) + p2(0) (4.142) 
2 2m 2 2m 

What about symplectic structure? Writing {ql(O),PI(O)} and {q2(0),p2(0)} for 
two different initial conditions we find 

( . 0 1 ) ( q2(0) ) s(q1(0) .. ·P2(0)) ::: (ql(O),PI(O)) · · 
-1 0 P2(0) 

·= q1(0)p2(0)- P1(0)q2(0) 

(4.143) 

(4.144) 

There is a simple geometric interpretation for 8. Regarding z = {q,p} as a vector 
in two-dimensional phase space we see that 8 is just the area of a parallelogram 
defined by the two initial state vectors z1,2· Let us check whether 8 is constant 
under the transformation 4.141: 

s(z1(t),z2(t)) zi(t) · J · z2(t) 

zi( 0) · AT · J · A · Z2 ( 0) 

zf (0) · J · z2(0) 

(4.145) 

( 4.146) 

(4.147) 

In other words, the matrices A and J fulfill the requirement AT · J · A = J. 
So much for the exact solution. Now for the simplest numerical integrator, 

the Euler-Cauchy scheme. It may be written as 

z(t) = = m · = E·z(O) ( q ) ( 1 Llt ) ( q(O) ) 
p -mw2 D.t 1 p(O) 

( 4.148) 
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It is easy to prove that this procedure enhances both the energy and the sym­
plectic form by a factor 1 + (wAt)2 at each time step. (In this simple case there is 
an easy remedy: dividing the Euler-Cauchy matrix by J1 + (wAt)2 we obtain an 
integrator that conserves both the energy and the symplectic structure exactly. 
Of course, this is just a particularly harmonious feature of our domestic oscilla­
tor.) 

There are several ways of constructing symplectic algorithms. After 
pioneering attempts by various groups the dust has settled a bit, and the 
very readable survey paper by Yoshida provides a good overview, with all 
important citations [YOSHIDA 93]. 

A symplectic integrator of fourth order that has been developed inde­
pendently by Neri and by Candy and Rozmus is described in Fig. 4.9 
[NERI 88], [CANDY 91]. 

Note that the Candy algorithm is explicit and resembles a Runge-Kutta 
procedure; in contrast to a fourth-order RK algorithm is requires only three 
force evaluations per time step. A third-order scheme (comparable in accu­
racy to St!Z!rmer-Verlet) was found by R. D. Ruth; it has the same structure 
as Candy's algorithm, with the coefficients [RUTH 83] 

(at, a2, a3) = (2/3, -2/3, 1) 

(bt, b2, b3) = (7 /24,3/4, -1/24) 

(4.151) 

(4.152) 

For Hamiltonians that are not separable with respect to q and p symplectic 
algorithms may be devised as well. However, they must be implicit schemes 
[YOSHIDA 93]. 

Of course, the various time-proven algorithms discussed in the preceding 
sections have all been examined for their symplecticity properties. Only one 
among them conserves symplectic structure: the St!Z!rmer-Verlet formula. 
The venerable Runge-Kutta scheme fails, and so do the PC methods. 

Is it not an unprofitable enterprise to construct an integrator that con­
serves so seemingly abstract a quantity as s(zt, z2)? Not quite. It is a 
well-established fact that for non-integrable Hamiltonians (and as one might 
guess, practically all interesting systems are non-integrable) there can be no 
algorithm that conserves both energy and symplectic structure. But Yoshida 
has shown that symplectic integrators do conserve a Hamiltonian function 
that is different from, but close to, the given Hamiltonian [YOSHIDA 93]. 
As a consequence, symplectic algorithms will display no secular (i.e. long­
time) growth of error with regard to energy. This is in marked contrast to 
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Symplectic algorithm of fourth order: Let the Hamiltonian be 
separable in terms of coordinates and momenta: H( q, p) = U( q) + 
T(p ). For the derivatives of H we use the notation 

The state at timet is given by { <Jo, p0 }. 

• For i = 1 to 4 do 

where 

a1 = a4 

a2 = a3 

b1 
b2 = b4 

b3 

= (2 + 21/3 + 2-1/3)/6 
- (1 - 21/3- 2-1/3)/6 

0 
1/(2- 21/ 3 ) 

1/(1 - 22, 3 ) 

Figure 4.9: Symplectic algorithm by Neri and Candy 

(4.149) 
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the behavior of, say, the usual Runge-Kutta integrators, which show good 
local (short-time) accuracy but when applied to Hamiltonian systems will 
lead to a regular long-time decrease in energy. 

To be specific, the simple first-order symplectic algorithm 

( 4.153) 

exactly conserves a Hamiltonian if that is associated to the given Hamilto­
nian H by 

( 4.154) 

where 

1 
H3 = 12 HppHqqHpHq 

(4.155) 
( Hq being shorthand for V' qH etc.) In particular, for the harmonic oscillator 
the perturbed Hamiltonian 

- w2~t 
H = Hho + - 2-pq ( 4.156) 

is conserved exactly. 

EXERCISE: Apply the (non-symplectic) RK method and the (symplectic) St¢rmer­
Verlet algorithm (or the Candy procedure) to the one-body Kepler problem with 
elliptic orbit. Perform long runs to assess the long-time performance of the in­
tegrators. (For RK the orbit should eventually spiral down towards the central 
mass, while the symplectic procedures should only give rise to a gradual precession 
of the perihelion.) 

4.2.6 N umerov's Method 

This technique is usually discussed in the context of boundary value pro­
blems, although it is really an algorithm designed for use with a specific 
initial value problem. The reason is that in the framework of the so-called 
shooting method the solution to a certain kind of BVP is found by taking a 
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detour over a related IVP (see Sec. 4.3.1). An important class of BVP has 
the general form 

(4.157) 

with given boundary values y(xt) and y(x2). A familiar example is the 
one-dimensional Poisson equation for the potential <P( x) in the presence of 
a charge density p(x), 

d2<P 
- = -p(x) 
dx 2 

( 4.158) 

with the values of <P being given at x 1 and x 2 • In terms of equ. 4.157, 
g(x) = 0 and s(x) = -p(x). 

The shooting method then consists in temporarily omitting the infor­
mation y(x2), replacing it by a suitably estimated derivative y' at x1 and 
solving the initial value problem defined by {y(x1), y'(x1)}- for example, by 
the Numerov method. By comparing the end value of y(x2 ) thus computed 
to the given boundary value at x2 one may systematically improve y'(x1), 
approaching the correct solution in an iterative manner. 

To implement Numerov's method one divides the interval [xb x2] into 
sub-intervals of length .6.x and at each intermediate point Xn expands y(x) 
into a power series. Adding the Taylor formulae for Yn+l and Yn-1 one finds 

- 2 "(A )2 (4) (.6.x)4 O[( A )6] Yn+1 - Yn - Yn-1 + Yn ux + Yn ~ + ux (4.159) 

(Note that up to the third term on the r.h.s. this is just Verlet's formula 
4.85.) Insertion of the specific form 4.157 of Yn" yields 

_ 2 (.6.x)4 (4) 6 
Yn+l - 2yn- Yn-1 + (.6.x) [-9nYn + Sn] + ~Yn + 0[(.6.x) ] (4.160) 

For the fourth derivative y<4l one writes, to the same order of accuracy, 

d2y"l d2(-gy+s)l 1 2 y~4) = dx2 n = dx2 n ~ (.6.x)28n( -gy + s) = 
1 

(.6.x)2[-9n+1Yn+l + 29nYn- 9n-1Yn-1 + 
+sn+l- 2sn + Sn-1] (4.161) 

Inserting this in 4.160 one arrives at Numerov's formula 
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To start this two-step algorithm at the point x1 one needs an estimated va­
lue of y(x1 - ~x ). Alternatively, one may estimate y'(x1 ) and treat the first 
subinterval by some self-starting single step algorithm such as Runge-Kutta. 

EXERCISE: Write a code that permits to solve a given second-order equation 
of motion by various algorithms. Apply the program to problems of point 
mechanics and explore the stabilities and accuracies of the diverse techniques. 

4.3 Boundary Value Problems 

The general form of a BVP with one independent variable is 

~~i=fi(X,Yt,···YN)i i=1, ... N (4.163) 

where the N required boundary values are now given at more than one point 
x. Typically there are 

n1 boundary values ai (j = 1, ... n1) at x = x1, and 
n2 = N- n1 boundary values bk (k = 1, ... n2) at x = x2. 

Of course, the quantities Yi, ai and bk may simply be higher derivatives of 
a single solution function y(x). In physics we often encounter BVPs of the 
type 

(4.164) 

which may be transformed, via the substitutions Y1 = y, Y2 = -g(x)yt + 
s(x), into 

= Y2 (4.165) 
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dy2 
dx = -g(x)yt + s(x) ( 4.166) 

Important examples of this kind of boundary value problems are Poisson's 
and Laplace's equations and the time independent Schroedinger equation. 

The one-dimensional Poisson equation reads d2 ¢I dx 2 = - p( x), or 

d¢ 
dx 
de 

dx 

-e 

p(x) 

(4.167) 

( 4.168) 

where p( x) is a charge density. Laplace's equation is identical to Poisson's, 
but with p(x) = 0, i.e. in charge-free space. Another physical problem 
described by the same equation is the temperature distribution along a thin 
rod: d2T I dx 2 = 0. 

The Schroedinger equation for a particle of mass m in a potential U ( x) 
reads 

d2~ . 2m 
-d 2 = -g(x)~, wtth g(x) = - 2 [E- U(x)] 

X ~ 
( 4.169) 

Also, the case of a particle on a centrosymmetric potential U(r) may be 
treated by the same formalism. Factorizing the wave function as in 

1 
~(r) = -R(r) 1/m(O, ¢) 

r 
(4.170) 

we have for the radial function R( r) 

d2R 
= -g(r)R, (4.171) 

with g(r) 2m [E _ U(r) _ l(l + 1)~2 ] 
~ 2 2mr2 

(4.172) 

Two methods are available for finding a solution to any boundary value 
problem, not necessarily of the form 4.164. They are known as the shooting 
and the relaxation technique, respectively. 

4.3.1 Shooting Method 

The basic strategy here is to transform the given boundary value problem 
into an initial value problem with estimated parameters that are then itera­
tively adjusted so as to reproduce the given boundary values. The detailed 
procedure is as follows: 
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First trial shot: Augment the n1 boundary values given at x = x1 by 
n2 = N - n1 estimated parameters 

a (l) = {a(l). k - 1 n }T 
- k' - , ... 2 (4.173) 

such that a completely determined initial value problem is obtained. 
Now integrate this IVP by some suitable technique up to the second 
boundary point x = x 2• (For equations of the frequently occuring 
form y" = -g(x)y + s(x) Numerov's method is recommended.) The 
newly calculated functional values at x = x 2 , 

(4.174) 

will in general deviate from the given boundary values b = {bk; .. . V. 
The difference vector 

(4.175) 

is stored for further use. 

Second trial shot: Change the estimated initial values ak by some small 
amount: 

(4.176) 

and again perform the integration up to x = x2. The boundary values 
b~2) thus obtained are again different from the required values bk: 

( 4.177) 

Quasi-linearization: Assuming that the deviations e(l) and e(2) depend 
linearly on the estimated initial values a(l) and a(2), we may compute 
that vector a(3) which would make the deviations disappear (Newton­
Raphson technique): 

( 4.178) 

As a rule the vectors e are in fact not exactly linear in a. Therefore 
one has to iterate the procedure, putting a(l) = a(2) and a(2) = a(3) 

etc., until some desired accuracy has been achieved. 
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EXAMPLE: Let the boundary value problem be defined by the DE 

1 
( 4.179) 

(1 + y)2 

with given values y(O) = y(1) = 0. 
First trial shot: To obtain a completely determined IVP, we choose a(1) = y'(O) = 
1.0. Application of a 4th order Runge-Kutta integrator with 10 sub-intervals 
~x = 0.1 yields b(1) = y(1) = 0.674. Since the required boundary value at x = 1 
is y(1) = 0 the deviation is e(1) = 0.674. 
Second trial shot: Now we put a(2) = 1.1 and integrate once more, finding b(2) = 
0.787, i.e. e(2) = 0.787. 
Quasi-linearization: From 

(3) - (1) - a(2) - a(1) (1) 
a - a b(2) _ b(l) e ( 4.180) 

we find a(3) = 0.405 (= y'(O)). 
Iteration: The next few iterations yield the following values for a ( = y' ( 0)) and 

b (= y(1)): 

n 

3 0.405 - 0.041 
4 0.440 0.003 
5 0.437 0.000 

It is sometimes inconvenient to integrate the (artificial) initial value pro­
blem over the entire interval [x1, x2]. Physical conditions (forces, densities, 
etc.) may vary in different sub-regions of that interval, so that different step 
sizes, or even algorithms, are appropriate. In such cases one defines internal 
border points Xb between such subintervals and joins the piecewise solution 
functions together by requiring smooth continuation at Xb. An example for 
this variant of the shooting method is given in [KOONIN 85]. 
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4.3.2 Relaxation Method 

By discretizing the independent variable x we may always transform a given 
DE into a set of algebraic equations. For example, in the equation 

(4.181) 

the second derivative may be replaced by the DDST approximation 

d2y 1 
dx 2 ~ ( ~x )2 [Yi+1 - 2y; + Yi-1] (4.182) 

which leads to the set of equations 

Yi+1- 2y; + Yi-1- b;(~x) 2 = 0, i = 2, ... M- 1 (4.183) 

The values of y1 and YM will be given: we are dealing with a boundary value 
problem. 

Assume now that we are in possession of a set of values y;, compactly 
written as a vector y(l), that solve the equations 4.183 approximately but 
not exactly. The error components 

e; = Yi+l- 2y; + Yi-1- b;(~x)2 , i = 2, ... M -1 (4.184) 

together with e1 = eM = 0 then define an error vector e(l) which we want 
to make disappear by varying the components of y(1). To find out what 
alterations in y(1) will do the trick we expand the error components e; 

linearly in terms of the relevant Yi= 

e;(Yi-1 + ~Yi-b Yi + ~y;, Yi+1 + ~Yi+1) ~ 
8e; 8e; 8e; 

~ e; + -8-~Yi-1 + -8 ~y; + -8 -~Yi+1 Yi-1 Yi Yi+1 
:::: e; + a;~Yi-1 + {J;~y; + /i~Yi+1 ( i = 1, ... M) ( 4.185) 

This modified error vector is called e<2). The requirement e<2) = 0 may be 
written as 

A· ~y = -e(1) ( 4.186) 

with 

(~I /1 0 

~u A= 
a2 (32 /2 

aM 

( 4.187) 



Boundary value problems 135 

(If y(xt) and y(xM) are given, then 11 = Ci.M = 0 and /31 = f3M = 1.) Thus 
our system of equations is tridiagonal and may readily be solved by the re­
cursion technique of Section 2.1.3. 

EXAMPLE: We take the same example as for the shooting method, 

d2y 1 
dx 2 (1 + y)2 

( 4.188) 

with y(O) = y(1) = 0. The Stirling approximation to the second derivative yields 

(~x)2 
ei = Yi+l- 2yi + Yi-1 + (1 + Yi) 2 (4.189) 

and thus 

( 4.190) 

for i = 2, ... M -1. Furthermore, we have a1 = "Yl = 0, f3t = 1 and Ci.M = "YM = 0, 
f3M = 1. Therefore we may write 

(4.191) 

To start the downwards recursion we put YM-1 = -aM/f3M = 0 and hM-1 = 
-eM/ !3M = 0. The recursion 

-ai -1 -ei- hi 
Yi-1 = = --; hi-1 = a 

f3i + "Yi9i f3i + 9i fJi + 9i 
( 4.192) 

brings us down to 91, h1. Putting 

-e1- "Y1h1 
~Y1 = = e1(= 0) 

!31 + "Y191 
( 4.193) 

we take the upwards recursion 

~Yi+l = 9i~Yi +hi; i = 1, .. . M- 1 (4.194) 

to find the corrections ~Yi· Improved values of Yi are formed according to Yi ----t 

Yi + ~Yi and inserted in 4.189. After a few iterations these corrections are negligi­

ble. 
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Partial Differential Equations 

Entering now the vast field of partial differential equations, we immediately 
announce that our discussion shall be restricted to those types of equations 
that are of major importance in physics. These are the quasilinear PDEs 
of second order, which may be written in the general form 

fJ2u 82u 82u au au 
an ax2 + 2a12 axay + a22 By2 + f(x, y, u, ax, By)= 0 (5.1) 

( "Quasilinear" means that the second derivatives of u appear in linear order 
only). 

The official typology of partial differential equations distinguishes three 
types of such equations, viz. hyperbolic, parabolic, and elliptic: 

hyperbolic: 
parabolic: 
elliptic: 

aua22- a~2 < 0 
a11a22- a~2 = 0 
aua22- a~2 > 0 

(or in particular a12 = 0, ana22 < 0) 
(or a12 = 0, ana22 = 0) 
(or a12 = 0, ana22 > 0) 

Table 5.1lists a few important examples for these kinds of PDEs. 
In the context of physical theory hyperbolic and parabolic equations as 

a rule describe initial value problems, which is to say that one of the inde­
pendent variables is the timet, and that fort= 0 the values of u and au; at 
are known throughout the spatial region under scrutiny. The reason for 
this state of affairs is that such equations arise naturally from the descrip­
tion of transport phenomena, i.e. time-dependent problems. In contrast, 
elliptic PDEs as a rule occur in the description of stationary states u( x, y ), 
the variables x and y (and possibly a third independent variable, z) being 
spatial coordinates. The values of the stationary function u( x, y) must then 
be given along a boundary curve C(x,y) = 0 (or surface, S(x,y,z) = 0): 

137 
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hyperbolic 202u 82u 
c ox2 - at2 = f(x, t) Wave equation 

202u 02U OU 
c ox2 - ae - a(f[ = f(x, t) Wave with damping 

parabolic D g:~ -!fJt = f(x, t) Diffusion equation 

n2 o2u . au 
2m ox2 + zn(f[- U(x)u = 0 Schroedinger equation 

elliptic 
()2u ()2u 
ax2 + oy2 = -p(x,y) Potential equation 

()2u + ()2u- 2mu(x)u = 0 
8x2 oy2 v Schroedinger equation, 

(or = t:u) stationary case 

Table 5.1: Some PDEs (partial differential equations) in physics 

we are dealing with a boundary value problem. With the usual "controlled 
sloppyness" of physicists in matters mathematical we write: 

hyperbolic 
parabolic 

elliptic 

} ~ initial value problems 

~ boundary value problems 

Furthermore, we will restrict the discussion of initial value problems 
(IVP) to certain "pure" types which do not exhaust the vast multitude of 
hyperbolic and parabolic PDEs. The equations that are relevant to the 
description of physical transport processes are usually derived under the 
additional assumption that the quantity to be transported (mass, energy, 
momentum, charge, etc.) is conserved as a whole. The resulting law of 
continuity leads to (hyperbolic or parabolic) equations which are called 
conservative. 
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Let the spatial distribution of some measurable quantity be described by 
a "density" u(r, t). Just for simplicity, but without restriction of generality, 
we assume u to be scalar. The total amount ofthis quantity contained in a 
given volume Vis then 

Mv(t) = j u(r, t) dr 
v 

(5.2) 

The "flux" through the surface S of the volume is denoted by J. It is defined 
as the net amount entering the volume V per unit time. We further define 
a "flux density", or "current density" j(r, t) as a local contribution to the 
total influx (see Fig. 5.1): 

J = - j j(r, t) · dS (per def.) 
0 

- j (V · j) dr (Gauss law) 
v 

(5.3) 

(5.4) 

Restricting the discussion to the particularly important case of an in toto 
conserved quantity, we require the continuity equation 

to hold, which is equivalent to 

dMv =J 
dt 

or, since the volume Vis arbitrary, 

8u=-V·j at 

We denote equ. 5. 7 as the general conservative PDE. 

(5.5) 

(5.6) 

(5.7) 

In most physically relevant cases the flux density j will not depend ex­
plicitly on r and t, but only implicitly by way of the density u(r, t) or its 
spatial derivative, Vu(r, t): 

j = j(u) or j = j(Vu) (5.8) 
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-dS 

Figure 5.1: Derivation of the conservative PDE 

In the first instance, j = j( u ), we are dealing with the conservative-hyperbolic 

equation 

au '( ) -=-V·JU at (5.9) 

Why "hyperbolic"? At first sight, equation 5.9 does not resemble the 
standard form as presented by, say, the wave equation 

(5.10) 

We can see the connection if we introduce in equ. 5.10 the new variables 
r :=auf at and s := c(oufox). We find 

or 

where 

or 
at 
as 
at 

as 
c­ox 
or 

c­ox 

au oj au 
-=--=-C·­ot ax ax 

(5.11) 

(5.12) 

(5.13) 

(5.14) 
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hyperbolic parabolic elliptic 

conservative-hyperbolic conservative-parabolic 

I 
advective diffusive 

I 
Table 5.2: Partial differential equations in physics 

EXAMPLE: The equation of motion for a plane electromagnetic wave may be writ­
ten in two different ways. Denoting by Ey and Bz the non-vanishing components 
of the electric and magnetic fields, respectively, Maxwell's equations lead to 

OBz 
c-­ox 

oEy 
c-­ox 

(5.15) 

(5.16) 

The equations have indeed the form 5.13. However, differentiating by t and x 
and subtracting one may easily derive the wave equation 

(5.17) 

As evident from equ. 5.14, the vector j(u) is a linear function of u. Equa­
tions with this property are again an important subclass of the conservative­
hyperbolic PDEs. They are known as advective equations. The numerical 
schemes to be described in the following sections are applicable to the entire 
class of conservative-hyperbolic PDEs, but the analysis of stability is most 
easily demonstrated in the context of advective equations. 

An heuristic overview on the various types of PDEs that are of import­
ance in physics is presented in Table 5.2. 
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5.1 Initial Value Problems 1: Conservative­
hyperbolic DE 

We seek to construct algorithms for the general equation 

au 
at 

or the more specific advective equation 

aj 
ax 

(5.18) 

(5.19) 

It will turn out that the "best" (i.e. most stable, exact, etc.) method is the 
Lax- Wendroff technique. To introduce this method it is best to proceed via 
the more simple- but sometimes efficient enough - FTCS scheme, the Lax 
and the leapfrog methods. 

5.1.1 FTCS Scheme; Stability Analysis 

Using the notation uj = u(xj, tn) we may rewrite equ. 5.18 to lowest order 
as 

~t [uj+l-uj] ~ - 2 ~x [jj+l-jj_1] (5.20) 

The time derivative is here replaced by b.nun / b.t (which explains part of 
the name: FT for "forward-time"), and in place of ojjax the centered DST 
approximation fd)ij) b.x is used (CS for "centered-space"). The result of 
all this is an explicit formula for uj+l, 

(5.21) 

which is depicted, in a self-explaining manner, in Figure 5.2. 
What about the stability of such a method? The following procedure, 

due to von Neumann, permits an appropriate generalization of the stability 
analysis we have used in the context of ordinary differential equations. 

Assume, for simplicity, that the solution function u be scalar. At some 
time tn the function u(x, t) may be expanded in spatial Fourier components: 

uJ = 2: u;:eikxj 
k 

(5.22) 
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n+l 0 0 0 
I 
I 
I 

n -·-.....J~'----· 
j-1 J j+l 

Figure 5.2: FTCS scheme for the conservative-hyperbolic equation 

The coefficients ur thus determine the shape of the "snapshot" of u(x) at 
time tn. If we can obtain, by inserting the Fourier series in the transfor­
mation law uj+l = T[uj,], an according transformation rule for the Fourier 
components, 

u;:+1 = 9(k) u;: 
then the stability condition reads 

lg(k)l ~ 1 for all k 

(5.23) 

(5.24) 

Applying this idea to the FTCS formula for the advective equation with 
flux density j = cu we find 

(5.25) 

or 
icdt . 

g(k) = 1- dx sm kdx (5.26) 

Obviously, lg( k) I > 1 for any k; the FTCS method is inherently unstable. 
Recalling our earlier experiences with another explicit first order method, 
the Euler-Cauchy scheme of Section 4.1.2, we cannot expect anything better. 

5.1.2 Lax Scheme 

Replacing in the FTCS formula the term uj by its spatial average [uj+l + 
uj_1]/2, we obtain 

(5.27) 
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n+1 0 0. 0 
/ ' / ' / ' / ' 

n • '-' .. 
j-1 j j+1 

Figure 5.3: Lax scheme (Conservative-hyperbolic equation) 

n+1 0 P, 0 , .... , .... , .... , .... 
n ,"'. • . ........ , .... , .... , 

j -1 j j+l .... 

Figure 5.4: Courant-Friedrichs-Lowy condition 

(see Fig. 5.3). The same kind of stability analysis as before (assuming 
scalar u and j, with the advective relation j = cu) leads to 

(k) 1 [ ikb.x -ikb.x] . cb..t eikb.x - e-ikb.x 
g = 2 e + e - z -b..-x ---2-:-i --

or 

g(k) =cos kb..x- i~: sin kb..x 

The condition lg( k) I ::; 1 is tantamount to 

lciflt < 1 
b..x -

(5.28) 

(5.29) 

(5.30) 

This inequality, which will pop up again and again in the stability analysis of 
integration schemes for the advective equation, is called Courant-Friedrichs­
Lowy condition. Its meaning may be appreciated from Figure 5.4. The 
region below the dashed line encompasses, at time tn, that spatial range 
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which according to x(tn+1) = x(tn) ± lei ilt may in principle contribute to 
the value of the solution function u'J+l at the next time step. For a large 
propagation speed c this region is, of course, larger than for small c. If a 
numerical algorithm fails to take into account all values uj, situated within 
the relevant region, it will be unstable. 

Comparing the Lax scheme to the FTCS formula, we find an apparently 
spurious term which cannot be accounted for by considering the original 
DE: 

U n+ 1 - un un un 1 un 2un + un 
j j = c j+l - j-1 + - j+l - j j-1 

ilt 2/lx 2 ilt 
(5.31) 

The second fraction on the right-hand side has the form of a diffusion term, 

(5.32) 

implying that by using the Lax method we are in fact solving the equation 

(5.33) 

However, for small enough ( ilx )2 / ilt this additional term- which obviously 
brought us the gift of stability- will be negligible. We require therefore that 
in addition to the stability condition lclllt ::; ilx we have 

(5.34) 

Incidentally, the Lax scheme amplification factor g(k) for small k, i.e. 
for long wave length modes, is always near to 1: 

g(k) ~ 1 _ (kilx) 2 _ icilt ~ 1 
2 ilx 

(5.35) 

This means that aberrations from the correct solution that range over many 
grid points will die off very slowly. This flaw can be mended only by introdu­
cing algorithms of higher order (see below). 

EXAMPLE: The one-dimensional wave equation may be written in advective form 
as 
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where 

u = ( : ) and c = ( ~c ~c ) 

(see 5.13-5.14). The Lax scheme for this equation reads 

r~+l 
J 

(5.36) 

(5.37) 

To make the connection to the above-mentioned example of a plane electroma­

gnetic wave we may interpret r and s as the magnetic and electric field strengths, 

respectively, and c as the speed of light. Of course, this particular equation 

may be solved easily by analytic methods; but any slight complication, such as a 

locally varying light velocity, will render the numerical procedure all but irresisti­

ble. 

5.1.3 Leapfrog Scheme (LF) 

Both in the FTCS and in the Lax scheme a first order approximation was 

used for the time derivative: au I at ~ D.n uj I D.t. Remembering the excellent 

record of the second-order Stirling formula (see Sec. 1.2.3) we insert 

au un+l - un-l 
-at ~ --2-D..:-t--

in the above equation, to find the leapfrog expression 

(5.38) 

(5.39) 

(Similar formulae were developed earlier for ordinary DE; see equ. 4.26 and 

Fig. 4.5.) 
The amplification factor g( k) obeys (assuming j = cu) 

C D.t "kA "kA 
g2 - 1 = g--( e' u.x - e-' u.x) 

D.x 
(5.40) 

or, with a= cD.tl D.x, 

g( k) = -ia sin kD.x ± J1 - (a sin kD.x )2 (5.41) 
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n+1 0 0 0 
I 

n • ~ • 
n-1 • • • 

j-1 J j+1 

Figure 5.5: Leapfrog scheme for the conservative-hyperbolic equation 

Q Q 

-. -. -. -. - - - -I I 

• • 
J j+3 

Figure 5.6: Decoupled space-time grids in the leapfrog scheme 

The requirement lgl 2 ~ 1 results once more in the CFL condition, 

ctit 
-<1 
fix -

(5.42) 

One drawback of the leapfrog technique is that it describes the evolution 
of the solution function on two decoupled space-time grids (see Fig. 5.6). 
The solutions on the "black" and "white" fields will increasingly differ in 
the course of many time steps. An ad hoc remedy is to discard one of the 
two solutions, giving up half the information attainable with the given grid 
finesse. A better way is to connect the two subgrids by adding a weak 
coupling term, which once more has the form of a diffusion term, on the 
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n+l 

n 

j-1 

/ 
/ 

0 Q 

' I / ' / 

J 

0 

' ' 
j+l 

Figure 5.7: Lax-Wendroff scheme 

right-hand side of 5.39: 

5.1.4 Lax-Wendroff Scheme (LW) 

(5.43) 

A somewhat more complex second-order procedure which, however, avoids 
the disadvantages of the methods described so far, is explained in the Fig­
ures 5. 7 and 5.8. 

Stability analysis is now a bit more involved than for the previous tech­
niques. Assuming once more that j = cu and using the ansatz U'f:+l = 
g(k)UJ: one inserts the Fourier series 5.22 in the successive stages of the LW 
procedure. This yields 

g(k) = 1- ia sin ktlx- a 2(1- cos ktlx), (5.47) 

with a = ctltj tlx. The requirement lgl2 ::; 1 leads once again to the CFL 
condition 5.30. 

5.1.5 Lax and Lax-Wendroff in Two Dimensions 

For simplicity we will again assume a scalar solution u(r, t). The conservative­
hyperbolic equation reads, in two dimensions, 

fJu 
fJt 

fJjx fJjy 
----

fJx fJy 
(5.48) 
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Lax-Wendroff scheme: 

• Lax method with half-step: l::ix /2, !:it /2: 

(5.44) 

d 1 1 £ n+1/2 an ana ogous y tor uj_112 . 

• Evaluation, e.g. for the advective case j = C · u: 

(5.45) 

• leapfrog with half-step: 

(5.46) 

Figure 5.8: Lax-Wendroff method 

(where in the advective case ix = CxU and jy = cyu.) The Lax scheme is 
now written as 

n+l 1 [ n n n n ] /::it [ ·n ·n ] 
ui,j = 4 Ui+1,j + ui,j+l + ui-1,j + ui,j-1 - 2/::ix Jx,i+l,j - Jx,i-1,j 

/::it [ ·n ·n l (5 49) - 2/::iy Jy,i,j+l - Jy,i,j-1 . 

In the more efficient Lax-Wendroff algorithm we require, as input for the 
second stage (half-step leapfrog), quantities such as j;,t~G2,j_ 112 . These 

would have to be computed, via u7:11gj_112 , from ui,j_112 , uf+l,j-1;2 etc. 

Here we have a problem: quantities with half-step spatial indices (i+1/2, j-1/2 

etc.) are given at half-step times ( tn+1; 2 ) only. To mend this, one modifies 
the Lax-Wendroff prescription according to Figs. 5.10-5.11. To calculate 
ui,j\ only the points o (attn) are used, while uitl,j is computed using the 
points D. This again results in a slight drifting apart of the subgrids o and 
D. If the given differential equation happens to contain a diffusive term, the 
two grids are automatically coupled. If there is no diffusive contribution, it 
may be invented, as in the leapfrog method [POTTER 80]. 

Stability analysis proceeds in the same way as in the one-dimensional 
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y 

J 

i-1 • • • I 

X I 

·-- 0 ---e 

i+l • • • 
j-1 j j+l 

Figure 5.9: Lax method in 2 dimensions 

Lax-Wendroff in 2 dimensions: 

• Lax method to determine the u-values at half-step time tn+l/2: 

(5.50) 

etc. 

• Evaluation at half-step time: 

n+l/2 ·n+l/2 
Ui+l,j ' · · · ===? Jx,i+l,j '· · · (5.51) 

• leapfrog with half-step: 

u~fl = u~-,,3 t,J 
b.t [ -n+l/2 -n+l/2 ] 

2b.x Jx,i+l,j - Jx,i-l,j 

b.t [ ·n+l/2 ·n+l/2] 
2t:.y Jy,i,j+l - Jy,i,j-1 (5.52) 

Figure 5.10: Lax-Wendro:ff in 2 dimensions 
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---. y 

! 0 D 9 D 0 
I 

X 
D c;>- - -¢- - -<? D 

o-- -¢-- -¢.-.--¢-- -o 
I ll,J I 

D 6---~--0 D 
li+l,j 

0 D 6 D 0 

Figure 5.11: First stage (= Lax) in the 2-dimensional LW method: o ... 
tn, tn+t, D ... tn+l/2 

case, except for the Fourier modes being now 2-dimensional: 

u(x,y) = L:L:Uk,leikx+ily 

k l 
(5.53) 

Further analysis results in a suitably generalized CFL condition [POTTER 80], 
namely (assuming ~x = ~y) 

~t < ~X (5.54) 
- v'2 Jc; + c~ 

5.2 Initial Value Problems II: Conservative­
parabolic DE 

The generic equation of this kind is the diffusive equation 

au= i_(>.. au) 
at ax ax 

(5.55) 

which for a constant transport coefficient >.. assumes the even simpler form 

au=).. o2u 
ot ox2 

(5.56) 

In the case of parabolic equations there are more feasible integration al­
gorithms to choose from than there were for hyperbolic equations. The 
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0 0 0 
I 

• • • 
Figure 5.12: FTCS method for the parabolic-diffusive equation 

method that may be regarded "best" in more than one respect is the second­
order algorithm by Crank and Nicholson. However, there is also another 
quite competitive method of second order, called Dufort-Frankel scheme, 
and even the various first-order methods, which for didactic reasons will be 
treated first, are reasonably stable. 

5.2.1 FTCS Scheme 

We can once more derive a "forward time-centered space" algorithm, re­
placing 8uf8t by the DNGF approximation ~nuf~t, and 82uj8x2 by the 
DDST formula 8Juf(~x) 2 : 

1 [ n+ 1 n] _ A [ n 2 n n ] 
~t ui - ui - (~x)2 ui+l- ui + uj-l (5.57) 

Using a= ,\~tj(~x)2 this may be written as 

uj+l = (1- 2a)uj + a(uj_1 + uj+l) (5.58) 

(see Fig. 5.12). In contrast to the hyperbolic case the FTCS method is 
stable for parabolic-diffusive equations. For the k-dependent growth factor 
we find 

g(k) = 1- 4a sin2 k~x (5.59) 

which tells us that for stability the condition 

2,\(::)2 ~ 1 (5.60) 

must be met. Noting that the characteristic time for the diffusion over a 
distance ~x (i.e. one lattice space) is 

(~x)2 
T=--

2,\ 
(5.61) 
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o------~o,_--o 

• • • 
Figure 5.13: Implicit method for the parabolic-diffusive equation 

we understand that !:l.t ::::; T is required for stability. 
If we try to enhance the spatial resolution by reducing !:l.x, the charac­

teristic time will decrease quadratically, leading to an unpleasant reduction 
of the permitted time step. The FTCS scheme is therefore, though simple 
and stable, rather inefficient. 

To allow for an explicit or implicit spatial variation of ,\ we may write 
the FTCS formula as 

where 

Aj+l/2 = ,\( x j+l/2) or Aj+l/2 = ,\( Uj+l/2) 

denotes a suitably interpolated interlattice value of,\, 

(5.62) 

(5.63) 

EXERCISE: Apply the FTCS scheme to the thermal conduction problem of Sec. 
1.4.2. Interpret the behavior ofthe solution for varying time step sizes in the light 
of the above stability considerations. 

5.2.2 Implicit Scheme of First Order 

We obtain a considerable increase in efficiency if we take the second spatial 
derivative at time tn+l instead of tn: 

(5.64) 

(see Fig. 5.13). Again defining a = ,\.6.tj(.6.x)2 , we find, for each space 
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point Xj (j = 1,2, .. N -1), 

(5.65) 

Let the boundary values u0 and UN be given; the set of equations may then 
be written as 

A. un+t = un (5.66) 

with 
1 0 0 0 

-a 1 + 2a -a 0 0 
A= 0 0 (5.67) 

0 0 1 

We have seen before that a tridiagonal system of this kind is most easily 
inverted by recursion (see Section 2.1.3). 

Asking for error propagation, we find 

- a g e-ikt:.x + (1 + 2a )g - a g eikt:.x = 1 (5.68) 

or 
1 

g = ------;;-..,..---:--:-
1 + 4a sin2 (k6.x/2) 

(5.69) 

Since 191 ~ 1 under all circumstances, we have here an unconditionally 
stable algorithm! 

Interestingly, the method retains its consistency regarding the limit 
6.x -----* 0 even if we make the time step 6.t very large. In that case 

Un+l _ 2un+l + un+l = c2un+l _ 0 
j+l j j-1 - Vj j - (5.70) 

which corresponds neatly to the differential equation [J2uj ox2 = 0 des­
cribing the long time (stationary) behavior of the diffusion equation. 

EXERCISE: Apply the implicit technique to the thermal conduction problem dis­
cussed in Sects. 5.2.1 and 1.4.2. Consider the efficiency of the procedure as 
compared to FTCS. Relate the problem to the random walk of p. 88. 



5.2 Initial value problems II (parabolic) 

Qf-------(Qr-----10 
I 

• • • 
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Figure 5.14: Crank-Nicholson technique for the parabolic-diffusive equation 

5.2.3 Crank-Nicholson Scheme ( CN) 

As before, we replace au I at by .6.n u I .6.t = ( un+l - un) I .6.t. However' noting 
that this approximation is in fact centered at tn+lf2 , we introduce the same 
kind of time centering on the right-hand side of 5.56. Taking the mean of 
8Jun ( = FTCS) and 8Jun+l ( = implicit scheme) we write 

1 [ n+1 n] A [( n+1 2 n+1 + n+1) + ( n 2 n + n )] .6.t uj - uj = 2( .6.x )2 uj+1 - uj uj_1 ui+1 - uj uj_1 

(5. 71) 
(see Fig. 5.14). A closer look reveals that this Crank-Nicholson formula is 
now of second order in .6.t [PRESS 86]. Defining a = .\.6.tl2(.6.x)2 (mind 
the factor 112 as compared to earlier definitions!) we may write the CN 
algorithm as 

-au~+1 + (1 + 2a)u~+l - au~+l = au~ + (1 - 2a)u~ +au~ J-1 J J+l J-1 J J+l (5.72) 

In matrix notation this is 

A· un+1 = B · un (5.73) 

with 

1 0 0 0 1 0 0 0 
-a 1 + 2a -a 0 0 a 1- 2a a 0 0 

A:= 0 0 ' 
B:= 0 0 

0 0 1 0 0 1 

Thus we have to solve, at each time step, a tridiagonal system of equations. 
The recursion technique of Section 2.1.3 does the trick fast enough. 

The amplification factor is 

(k) = 1- 2a sin2(k.6.xl2) < 1 
9 1 + 2a sin2 (k.6.xl2) - ' 

(5.74) 
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which makes the CN method unconditionally stable. 
For large time steps the CN algorithm is not quite as well-behaved as 

the first-order implicit scheme. flt --+ oo results in 

(5.75) 

yielding 
lim jg(k)j = 1 

D.t-+oo 
(5.76) 

In this limit the method is only marginally stable - errors do not grow, but 
do not decay either. 

Whenever the transport coefficient A depends - either explicitly or im­
plicitly via u - on position, the CN algorithm may be adapted accordingly 
[PRESS 86]. 

EXAMPLE: The time-dependent Schroedinger equation, 

~~ = -iHu, with H = ::2 + U(x) 

when rewritten ala Crank-Nicholson, reads 

With a= !:::..t/2(t::..x? and bj = U(xj)l:::..t/2 this leads to 

(ia)u'J~{ + (1- 2ia + ibj)u'J+l + (ia)u'Jti = 

(5.77) 

(5.78) 

= ( -ia)u'J_1 + (1 + 2ia- ibj)uj + ( -ia)uj+l (5.79) 

Again, we have a tridiagonal system which may be inverted very efficiently by the 
recursion method of Sec. 2.1.3. 

5.2.4 Dufort-Frankel Scheme (DF) 

The DF scheme is similar to the leapfrog algorithm- which, however, would 
be unstable when applied without precaution to the diffusive equation. We 
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Figure 5.15: Dufort-Frankel technique for the parabolic-diffusive equation 

write 

1 [ n+I n-I] _ ), [ n ( n+I + n-I) + n ] 
2~t ui - ui - (~x)2 ui+I- ui ui ui-I (5.80) 

Note that instead of the term -2uj we have introduced the combination 
-( uj+I +uri) (see Fig. 5.15). Using a= 2>.~tj(~x )2 this may be written 
as 

n+I - 1 - a n-I a [ n n ] 
U· - --U· + -- U·+I +u· I 

3 1 + a 3 1 + a 3 J-
(5.81) 

The DF algorithm is of second order in ~t, just as the CN scheme. It has 
the advantage over CN that 5.81 is an explicit expression for uj+I - albeit 
with the necessity to store the past values uri. 

The amplification factor is 

g = - 1- [a cos k~x ± V1- a2 sin2 k~x] 
1+a 

(5.82) 

Considering in turn the cases a2 sin2 k~x ~ 1 and ... < 1 we find that 
lgl 2 :::; 1 always; the method is unconditionally stable. 

5.3 Boundary Value Problems: Elliptic DE 
The standard problem we will invoke to demonstrate the various methods 
for elliptic equations is the two-dimensional potential equation, 

(5.83) 
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For finite charge densities p(x, y) this is Poisson's equation; in charge-free 
space p = 0 it is called Laplace's equation. 

Written in terms of finite differences (assuming l:ly = l:lx = l:ll) equ. 
5.83 reads 

(5.84) 

or 

(5.85) 

(i=1,2, ... N; j=1,2, ... M) 

In enumerating the lattice points one may apply the rules familiar from 

matrices, such that the coordinate y and the index j increase to the right, 
and x and i downwards. 

We now construct a vector v of length N.M by linking together the rows 

of the matrix { Ui,j }: 

Vr = Ui,j, with r = (i- 1)M + j (5.86) 

Conversely, 

i = int (r ~ 1) + 1 and j = [(r- 1) mod M] + 1 (5.87) 

where int( ... ) denotes the next smaller integer. Equation 5.85 then trans­
forms to 

Vr-M + Vr-1- 4vr + Vr+l + Vr+M = -(f:ll) 2Pr 

which may be written 
A·v=b 

(5.88) 

(5.89) 

with the vector b = -(l:ll) 2{pt, ... PN.M V and the pentadiagonal matrix 

-4 1 1 

1 -4 1 

A:= (5.90) 

1 
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Any one of the relaxation methods of Section 2.2 may be applied now to 
solve the system 5.89 in an iterative way. In particular, the Jacobi scheme 
for this equation reads 

(5.91) 

Since the matrix A is sparsely populated, the Gauss-Seidel and the SOR 
methods are just as easy to implement. 

What about the boundary conditions? The equations 5.85, which lead 
to 5.89, apply in this form only to the interior region of the lattice. At 
the rim of the grid - and thus in certain parts of the matrix A - the most 
fundamental (Dirichlet) boundary conditions will provide us with obligatory 
values for the solution u?,j· (In this context the superscript 0 denotes a 
required value, and not the time t = 0). Assume that the grid consists 
of only 5 x 5 points on a square lattice, with Ui,i = u?,i being given along 
the sides of the square (see Fig. 5.16). This gives us a number of trivial 
equations of the type v1 = u~ 1 for the points on the rim. At the interior 

' points equ. 5.89 holds: 

(5.92) 

etc. More specifically, the matrix A has the form given in Fig. 5.17. The 
vector v consists of the nine elements v1, vs, Vg, v12, v13, v14, v11, v1s, v19 , and 
the vector b has components 

b7 -(~1)2P7- u~ 2 - ug 1 
' ' 

bs -(~1)2 Ps - u~,3 
bg -(~l)2pg- u~ 4 - ug 5 

' ' 
b12 -(~1)2 P12 - ug,1 

b13 -(~1)2 P13 

b14 -(~1)2P14- ug 5 
' 

b17 - ( ~1)2 P11 - u~,1 - u~,2 

b1s -(~1)2Pts- u~ 3 
' 

b19 -(~1)2 P19- u~ 5- u~ 4 
' ' 
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• J 

! 
0 0 0 0 0 

(1,1) 

0 • 0 

1 0 • • • 0 

0 • • 0 

0 0 0 0 0 
(5,5) 

Figure 5.16: Potential equation on a 5 X 5 lattice: at the points o the values 
of the potential u( x, y) are given (Dirichlet boundary conditions) 

-4 1 1 
1 -4 1 1 

1 -4 1 

1 -4 1 1 
1 1 -4 1 1 

1 1 -4 1 

1 -4 1 
1 1 -4 1 

1 1 -4 

Figure 5.17: Treatment of Dirichlet-type boundary conditions ui,j = u?,j in 
the case of a 5 x 5 lattice 
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So far we have considered boundary conditions of the Dirichlet type. If 
we are dealing with Neumann boundary conditions of the form 

(5.93) 

a linear approximation for u( x, y) is used to link the boundary values of Ui,j 

to the adjacent interior points. In the context of the previous example, the 
derivatives are now given along the contour of the square. One proceeds as 
follows: 

• The given grid is enlarged by a surrounding layer of additional lattice 
points. For the function u at these external points, u0 ,t, u0,2 , ••• , one 
writes 

uo,t 

uo,2 

Ut,o = Ut,2 - 2f3t,l .!:11 

• At the original boundary points, such as (1, 1), we have 

U21 - 2Utt + Uo 1 + Ut 2- 2Utt + Ut 0 = -Ptt(.!:1l)2 
' ' ' ' ' ' ' 

Elimination of the external values yields 

(5.94) 

u2,1- 2ut,l + u2,1 + u1,2- 2ut,t + Ut,2 = - Pt,t ( .!:11)2 + 2at,t .!:11 + 2f3t,t .!:11 
(5.95) 

Thus the form of the discretized Poisson equation at the boundary points 
is the same as in the interior region (equ. 5.85), except that on the right­
hand side of 5.95 we now have a modified, "effective" charge density. Again 
introducing the vector v and the system matrix A, we find that the upper 
left-hand corner of A looks as shown in Fig. 5.18. 

5.3.1 ADI Method for the Potential Equation 
We are now ready to keep the promise made in Section 2.2.4, to demonstrate 
the use of the particularly effective alternating direction implicit technique 
in the context of the potential equation. 
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-4 2 2 
1 -4 1 2 

1 -4 1 2 
1 -4 1 2 

2 -4 2 

1 -4 2 2 
1 1 -4 1 2 

Figure 5.18: Treatment of Neumann-type boundary conditions in the case 

of a 5 x 5 lattice 

In addition to the previously defined vector v we construct another long 

vector w by linking together the columns of the matrix { Ui,j}: 

W 8 = Ui,j, with s = (j- 1)N + i (5.96) 

and conversely 

. . ( s - 1 ) . [( ) d l J = mt ~ + 1; z = s - 1 mo N + 1 (5.97) 

The vectors v and w have equal status. They are related to each other by 

the reordering transformation 

w=U·v (5.98) 

where U is a sparse matrix consisting solely of elements 0 and 1. 

With this the discretized potential equation 5.85 may be written as 

(5.99) 

or 
At · v + A 2 · w = b (5.100) 

The matrix At now acts exclusively on the "rows" of the Ui,j lattice, while 

A 2 effects the "columns" only (see Fig. 5.19). The advantage of equ. 

5.100 over 5.89 is that the matrices At and A 2 are tridiagonal, and not 

pentadiagonal as the matrix A. They may therefore be treated by the fast 

recursion method of Section 2.1.3. 
The ADI method, then, consists in the iteration of the following double 

step: 
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-j(l ... M) 

1 
• • • 

u =w 1-1 ,j r-1 

i (1 ... N) 

• • • 
ui,j-1=vr-1 ul,j=v r=w r ui,j+1=v r+1 

• • • 
ui+1,j=w r+1 

Figure 5.19: ADI method 

ADI method: 

(At+ wl). yn+l/2 
wn+l/2 

(A2 + wl) · wn+l 

b- (A2 · Wn- wvn) 
U. yn+l/2 

b- (At. yn+l/2- wwn+l/2) 

Here, the optimal value of the relaxation parameter is given by 

(5.101) 

(5.102) 

(5.103) 

163 

(5.104) 

where At and .\2 are the smallest and largest eigenvalue, respectively, of the 
matrix A. In the specific case of the potential equation, assuming a lattice 
with M = N, wehavew ~ 1rjN. 

EXERCISE: Apply the ADI method to the Laplace problem with M = N = 5. 
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5.3.2 Fourier Transform Method (FT) 

We consider once more the discretized Poisson equation on a M x N lattice. 
This time it is more convenient to enumerate the grid points starting with 
index 0, i.e. according to Xk (k = 0, 1, ... M -1) and Yl (l = 0, 1, ... N -1). 
If the given boundary conditions are compatible with a periodic spatial 
continuation of the basic pattern, meaning that uo,l = UM,I and Uk,o = uk,N, 

we may employ the Fourier series representation (see Appendix B) 

1 M-1 N-1 
u = __ """ """ U e -21ri km/M e -21ri nl/N 

k,l M N L....J L....J m,n 
m:::O n:::O 

(5.105) 

with 
M-1N-1 

U = """ """ U e21ri km/M e21ri nl/N m,n L....J L....J k,l (5.106) 
k:::O /:::0 

A similar expansion is used for the charge density Pk,1: 

M-1N-1 
R = """ """ p e21ri km/M e21ri nl/N m,n L....J L....J k,l (5.107) 

k:::O /:::0 

Inserting these expressions in the equation 

(5.108) 

we find 
Um n = -Rm,n(b.l)2 

' 2[cos 2Jrm/M +cos 21rnjN- 2] 
(5.109) 

which may be used in 5.105 to evaluate the solution function uk,l· The 
FT method therefore consists of the steps listed in Figure 5.20. Such a 
method is competitive only if the numerical Fourier transformation may 
be performed at a moderate expense in computing time. But this is just 
what the modern fast Fourier transform techniques (FFT; see Appendix 
B) are offering. To transform N given table values they need no more than 
about N ln N (instead of N 2 ) operations, and are therefore essential for the 
considerable success of the FT method. 

Boundary conditions other than periodic demand different harmonic ex­
pansions. For instance, if the potential values at the boundaries are zero, 
so that uk,l = 0 fork= 0, k = M, l = 0 and l = N (special, or homogene­
ous Dirichlet conditions), it is better to use the sine transform of u and p, 
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FT method for periodic boundary conditions: 

• Determine Rm n from 
' 

M-1N-1 
D = ""' ""' p e21ri km/M e21ri nl/N 

-'Lm,n L...,. L...,. k,l (5.110) 
k=O l=O 

• Compute Um,n according to 5.109 

• Insert Um,n in 5.105 to get Uk,l 

Figure 5.20: Fourier transform method 

defined by 

2 2 M-1 N-1 1rkm 1rln 
M N L L u:n,nsinMsin N 

m=1 n=1 

(5.111) 

M-1 N-1 7rkm 7rnl 
L L uk,l sinMsin N 
k=1 1=1 

(5.112) 

The function u is then automatically zero at the boundaries. Figure 5.21 
gives details of the sine transform procedure. 

It turns out that this method may easily be modified so as to cover the 
case of more general (inhomogeneous) Dirichlet boundary conditions. For 
instance, let u be given along the lower side of the lattice: UM,l = u~,t· For 
the penultimate row M - 1 we write 

U~ /- 2uM-11 + UM-21 + UM-1 1+1- 2uM-1 / + UM-1 /-1 = -(fll)2PM-ll 
' ' ' ' ' ' ( 5 .11'5) 

Subtracting u~ 1 on both sides, we find an equation that is identical to 
the last of equ~. 5.108 for special Dirichlet conditions UM,l = 0, except 
that the right-hand hand side now contains an "effective charge density": 
... = -(tll) 2PM-l,l- u~,I· Thus we may apply the sine transform method 
again, using modified charge terms at the boundaries. 

Special Neumann boundary conditions have the form 

( ~u) = (~u) = 0 at the lattice boundaries 
X k,l y k,l 

(5.116) 
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FT method for homogeneous Dirichlet boundary conditions 
( u = o at the sides): 

• Determine R:n n from , 

M-1 N-1 Jrkm Jrln 
R:n,n = L L Pk,l sin M sin N 

k=1 1=1 

(5.113) 

• Compute u:n n according to , 

-Rs (1}.1)2 us = m,n 

m,n 2[cos 1rmjM +cos 1rnjN- 2] 
(5.114) 

• Insert u:n,n in 5.111 to get Uk,l 

Figure 5.21: FT Method using sine transforms 

They are most naturally accounted for by a cosine series, 

1 2 2 M-1 N-1 1rkm 1rln 
2u~,o + M N L L u:,..,n cos M cos N 

m=1 n=1 

(5.117) 

u:,_.n = , 
M-1 N-1 Jrkm 7rnl 
L L Uk,l COSMCOS N 
k=O l=O 

(5.118) 

For details of the cosine transform method see Figure 5.22. 
General (inhomogeneous) Neumann boundary conditions of the form 

(au) = O'.k,l 

ox kl , 
( ~u) = f3k,l at the lattice boundaries 

y k,l 

(5.122) 

may again be reduced to special Neumann conditions by the introduction of 
effective charge densities. Writing the last line of the discretized potential 
equation as 

and requiring that 

(au) - -at 
OX M,l-

(5.124) 



5.3 Boundary value problems: elliptic 167 

FT method for homogeneous Neumann boundary conditions: 

• Determine Rr;.,,n from 

M-1 N-1 7rkm 7rln 
Rr;.,,n = L L Pk,l COS M COS N 

k=O l=O 

(5.119) 

• Compute u::n, n according to , 

-Rc (/:11)2 uc = m,n 

m,n 2[cos 1rmjM +cos 1rnjN- 2] 
(5.120) 

• Insert U::n, n in , 

to find uk,l 

Figure 5.22: FT method using the cosine transform 
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we approximate the potential on an "outer" line of grid points according to 

UM+1l- UM-11 ~ 2a1fl.l 
' ' 

(5.125) 

Subtracting this from 5.123 we find 

UM-1,/- 2uM,l + UM-1,/ + UM,/+1- 2uM,l + UM,l-1 = -(fl.l) 2PM,l- 2a1fl.l 

(5.126) 
This, however, is identical to the M-th line in the case of special Neumann 
conditions 0:1 = 0, except for a modified charge density appearing on the 
right-hand side. Thus we may again employ the cosine transformation met­
hod, using effective charge densities. 

5.3.3 Cyclic Reduction (CR) 

We consider once more the discretized potential equation, 

(5.127) 

The grid points are enumerated in the same way as for the FT method: 0 
to N - 1 and M - 1. For the number of columns in the lattice we choose 
an integer power of 2: M = 2P. Defining the column vectors 

Uk = { Uk,l; l = 0, ... N - 1 v ; k = 0, ... 'M - 1 

we may write 5.127 as 

where 

T 
1 

-2 

B 

0 
1 )-e 0 

2 

21 

0 
0 

(5.128) 

(5.129) 

) 
Note that BandT have the appealing property of being tridiagonal. Next 
we form linear combinations of every three successive equations 5.129, ac­
cording to the pattern [k- 1] - T · [k] + [k + 1], to find 

(5.130) 
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with 

T(1) _ 21- T 2 

P~1 ) Pk-1 - T · Pk + Pk+I 
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(5.131) 

(5.132) 

Evidently, the "reduced" equation 5.130 has the same form as 5.129, except 
that only every other vector uk appears in it. We iterate this process of 
reduction until we arrive at 

(5.133) 

But the vectors u0 and UM are none other than the given boundary values 
uo,l and uM,I (l = 0, 1, ... N- 1). Furthermore, the matrix T(P) is known 
since it arose from the p-fold iteration of the rule 5.131. Of course, T(P) 
is not tridiagonal any more; however, it may at least be represented by a 
2P-fold product of tridiagonal matrices [HOCKNEY 81]: 

2P 

T(P) =-II [T- ,811] (5.134) 
1=1 

with 

[2(1- 1)7rl 
,81 = 2 COS 2p+l (5.135) 

Thus it is possible to solve 5.133 for the vector UMJ2 by inverting 2P tridia­
gonal systems of equations. 

Now we retrace our steps: the vectors UMJ4 and u3MJ4 follow from 

Uo + T(p-1) · uM/4 + uM/2 = -p~~~)(~l)2 

llM/2 + T(p-1). U3M/4 + UM -,;;:;.J,4(~1)2 

and so forth. 
Hackney has shown that a combination of the CR technique and the 

Fourier transform method is superior to most other techniques for solving 
the potential equation [HOCKNEY 70]. In his "FACR" method (for Fourier 
analysis and cyclic reduction) one uses in place of the column vector uk = 
{ Uk,li l = 0, ... N- 1 V its N Fourier components, 

N-1 

Uk(n) = L Uk,1e21rini/N; (n = 0, ... N- 1) (5.136) 
1=0 
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Inserting the Fourier series for uk,l in the potential equation one obtains for 
the n-th Fourier component the equation 

(5.137) 

As before, a linear combination of every 3 successive equations may be 
formed, yielding 

[ 27rn 2 
Uk-2(n) + 2- (2cos N- 4) ]Uk(n) + uk+2(n) = 

= -(~l)2 [Rk-2(n)- (2cos 2~n- 4)Rk(n) + Rk+2(n)] (5.138) 

Formal iteration eventually leads to 

(5.139) 

where b(P) and pc:J12 are given by the iteration. Backwards iteration then 
yields the desired quantities Uk( n) in succession; inserting them in the Fou­
rier series for uk 1 one obtains the solution. 

' 
The performance of this method is once again linked to the efficiency of 

the Fourier transform algorithm. It is therefore absolutely necessary to use 
the FFT (fast Fourier transform) algorithm explained in Appendix B. 



Part III 

Anchors A weigh 
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It is now the time to describe a few applications of the methods devel­
oped in Parts I and II. I have tried hard, and failed, to come up with 
some reasonable categorization of applied computational physics. It seems 
that computation has transformed all parts of physics, and it is probably 
best to hold on to the usual partitioning of physics into various branches. 
Clearly, we cannot cover here all those branches, neatly tracking every pos­
sible application of computational techniques. All we can do is discuss a 
few well-chosen exemplary cases, trying to convey the spirit of the compu­
tational approach. 

Unabashedly, then, I will start off with my own field of interest, viz. 
statistical-mechanical simulation. The Monte Carlo technique explained at 
the beginning of Chapter 6 makes extensive use of the stochastic methods of 
Chapter 3. In contrast, the "molecular dynamics" method is based on the 
treatment of classical dynamical equations ala Newton, and the algorithms 
of Chapter 4 will accordingly play an important role. 

Numerical quantum mechanics is a large-scale business, and the large­
scale businessmen are mostly chemists, not physicists. However, in addi­
tion to the standard program packages of quantum chemistry that, with 
increasing computer power, are being applied to ever more complex mo­
lecules, there are a number of interesting alternative methods tailored to 
specific problems. Some of these approaches date back to the early days 
of computer-based stochastics [KALOS 7 4], while others are relatively new 
[CAR 85]. Chapter 7 is devoted to an overview of these techniques. 

The space-time behavior of flowing continua is described by partial diffe­
rential equations. Some widely used methods of computational hydrodyna­
mics, obtained by combining the calculus of differences with linear algebra, 
are explained in Chapter 8. 

Recently a number of authors have pointed out that hydrodynamic pro­
blems may be treated using "cellular automata", or "dynamical lattice gas 
models". The fundamental idea of this approach, whose value is yet to be 
assessed, is outlined in Section 8.3. 



Chapter 6 

Simulation and Statistical 
Mechanics 

"Why is the water wet?" says a nursery rhyme in my country. And the 
grown-up physicist is still striving to explain the macroscopically observa­
ble properties of matter in terms of the microscopic kinetics and dynamics 
of molecules. Since the simultaneous motion of a large number of interac­
ting particles is not tractable by analytical means, statistical mechanics has 
always been obliged to introduce additional, simplifying assumptions whose 
effect upon the results is hard to estimate. 

What makes the kinetic theory of matter so difficult is not the particu­
larly large number of molecules contained in a chunk or drop of a substance. 
In fact, the properties of a microdrop of some hundred molecules will dif­
fer from those of a macroscopic sample by no more than a few percent. 
The catch is that we cannot solve, in closed form, the coupled equations of 
motion of even three particles only, let alone a hundred or more. 

However, as soon as computers were available to take over the drud­
gery of repetitive calculations, the well-preserved numerical algorithms were 
brushed up and applied to various manybody problems. 

Incidentally, the term computer originally meant just what it says -
one who computes. The earliest computers to actually bear this name were 
woman employees of astronomical institutes whose task was the fast andre­
liable execution of celestial-mechanical calculations [LANKFORD 90].1 And 

1 An amusing example of the early use of "parallel computers" is the development of 
the first photographic combination lenses. For this project the Viennese mathematician 
Petzval, whom we have encountered before (see page 95), had several artillery men of 
the Imperial Austro-Hungarian army (of ranks "Bombardier" and "Oberfeuerwerker") be 
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the older term "calculator" may be equated to "applied mathematician". 
It is worth remembering that none less than Johannes Kepler once held the 
position of calculator ( "Rechenmeister"). 

Still, it was not before the advent of electronic computers that statistical­
mechanical problems could be approached earnestly. In the early years 
powerful machines were available only at the American "National Labo­
ratories". Thus the National Lab at Los Alamos came to be the cradle 
of statistical-mechanical simulation. Nicholas Metropolis, the Rosenbluths, 
and Edward Teller employed a stochastic procedure to sample various con­
figurations of 32 hard disks. Like that other stochastic method they had 
developed to treat neutron transport through matter, they called their tech­
nique "Monte Carlo calculation" [METROPOLIS 53]. 

There existed a prejudice at that time that in a fluid of hard spheres 
without attractive pair forces there could not be a solid-liquid phase transi­
tion. Thus it came as quite a surprise when, in the following years, extensive 
simulations of the hard disk and hard sphere systems proved the existence 
of a melting transition [HOOVER 68]. 

Only a few years later the molecular dynamics method was developed at 
Lawrence Livermore Lab. Berni Alder found out that it was feasible to re­
produce by computer simulation the "actual" dynamics going on in a dense 
fluid of hard spheres. In a classic paper published in 1957 he formulated the 
main ingredients of a workable simulation procedure [ALDER 57]. In the 
following years he studied in detail the structural and dynamical properties 
of the hard sphere fluid. In the course of these investigations he discovered a 
very profound and quite unexpected effect. At low densities- roughly corre­
sponding to the critical density of a real fluid- there appeared an anomaly 
of molecule dynamics which Alder and other authors could later explain as 
the effect of microscopic vortices. These thermally excited "Alder vortices", 
which initially comprise no more than a few dozens of particles, have the 
capacity to store part of the momentum a thermally agitated molecule may 
possess at some given time, and to gradually pay back the stored momen­
tum to that molecule. The fluid molecules will thus retain some fraction of 
their original velocity for much longer than may be expected according to 
simple kinetic theories. This may be illustrated in terms of the velocity au-

put under his command. In the course ofthe year 1840 these efficient and- well, sure-fire 
- calculators traced the paths of light rays through various lens combinations until an 
optimum with respect to lens power and aberrations had been found. In the history of 
photography the "Petzvallens" has a special place as the first high-performance objective 
for portrait work. 
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tocorrelation function, which at these densities displays a pronounced "long 
time tail". A consequence of this is that the mean squared displacement, 
and consequently the diffusion constant, is far higher than expected. 

With Hoover's proof of the existence of a melting transition in hard 
sphere fluids and Alder's discovery of the long time tail, computer simu­
lation rose from its role as a "handmaiden of theory" to an autonomous 
field of research. In the sixties Aneesur Rahman and Loup Verlet procee­
ded to perform the first simulations of a Lennard-Janes fluid [RAHMAN 64, 
VERLET 67]. The interaction potential 

(6.1) 

(with substance-specific parameters E and a) is richer of detail than the 
interaction between hard spheres; in fact, it describes rather accurately the 
forces acting between the atoms in a noble gas. Thus it was possible for 
the first time to compare the results of simulations to experiments on real 
substances. 

In the years that followed, liquid state physics advanced in great leaps. 
The microscopic structure and dynamics as well as the thermodynamics and 
the transport properties of simple fluids were understood ever more clearly. 
The "Alder vortex" was rediscovered in the Lennard-Janes fluid, again 
causing an enhanced diffusion coefficient as compared to theoretical pre­
dictions [LEVESQUE 69]. The phase transitions solid-liquid [HOOVER 68] 
and liquid-gas [HANSEN 69] were located, and more recently one could 
even resolve the long-standing paradox of irreversibility (which apparently 
should not occur in a classical system obeying reversible equations of mo­
tion) [HoLIAN 87, PoscH 90]. 

In 1971 Aneesur Rahman and Frank H. Stillinger undertook to simu­
late so complex a liquid as water [RAHMAN 71]. Since then many different 
model potentials for water have been proposed and used in simulations 
[NEUMANN 86]. Most of the properties of water and aequeous solutions 
are by now well understood, while others - mostly those connected to the 
H-bond structure and to quantum effects- remain fuzzy. With increasing 
power of the computing machines, but also with increasing refinement of 
the algorithms, ever more complex molecules became accessible to simu­
lation. In these days program packages are offered that will at the push 
of a button reproduce the conformational dynamics of proteins made up 
of several hundred atomic groups [VAN GUNSTEREN 84]. Also, stunning 
numbers of particles may be followed by simulation. When even the flow 
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patterns in mesoscopic vortices are now computed by molecular simulation 
[RAPAPORT 88], the borderline towards hydrodynamic phenomena in the 
strict sense has been crossed. 

Various methodological paths have been tried out with the objective of 
using the available computing power most efficiently. Apart from the mo­
lecular dynamics method, the technique of "stochastic dynamics" is often 
employed. In many instances one is interested only in the motion of a mi­
nority of "primary" particles within a large system. An important example 
is a dilute solution of ions, in which the solvent molecules may be regarded 
as "extras" whose role is just to provide frictional hindrance as well as ther­
mal agitation to the ions. This type of ionic motion in a viscous, thermally 
fluctuating medium is reasonably well described by a generalized Langevin 
equation. One may therefore simulate the ion dynamics by solving this sto­
chastic equation of motion, without having to follow the motion of the far 
too many solvent particles (see Section 6.6). 

An extensive discussion of the the various statistical-mechanical simu­
lation methods and their application would be outside the scope of this 
book. Suffice it to cite just three out of the many textbooks on this sub­
ject: [VESELY 78], in German, is by now somewhat outdated with regard 
to applications but still valid as an introduction to the basic simulation pro­
cedures. [ALLEN 90], in English, is a more recent, excellent methodological 
overview. A rather new compilation of applications of the MC method is 
[BINDER 92]. 

6.1 Model Systems of Statistical Mechanics 

Simulation requires a model in which the microscopic constituents of a piece 
of matter are correctly represented. A fluid, for once, may be regarded as a 
collection of atoms or molecules which, if only they are massive enough, will 
obey the laws of classical mechanics. These particles may then be treated 
as mass points or rigid bodies interacting with each other by pair forces. 
A microscopic snapshot of a small subvolume of our sample, containing N 
particles, is uniquely described by the N positional vectors. If the motion 
of the particles - in the context of a molecular dynamics simulation - is to 
be followed, the momentary velocities of all particles must be given as well. 

If the position vectors of the N atoms are combined into a vector r c = 
{rt, ... rN }, then the set of all possible such vectors spans the 3N-dimen­
sional "configuration space" fc· Given some property a(rc) of theN-body 
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system, depending on the positions of all particles (i.e. of the microstate 
r c), the thermodynamic average of the quantity a is given by 

(6.2) 

where p(r c) is the probability density at the configuration space point r c• 
It would be all too nice if we could actually compute averages of this 

form, since the macroscopically measurable properties of a substance are 
indeed equal to such averages. For instance, it is easy to show that the 
internal energy of a piece of matter is given by 

1 
U = NkT + -(L:L:u(ni)) 

2 . . 
t J 

(6.3) 

where u(rii) is the potential energy of a pair of particles with pair distance 
rii· Similarly, the pressure is 

NkT 1 dul 
p=---(L:L:rij- ) 

V 6V . . dr 
t J Tij 

(6.4) 

The problem with evaluating the expression 6.2 is - apart from the truly 
high dimensionality of the integral- that the probability density p(rc) is in 
general unknown. We do know that for instance in the canonical ensemble 
p(rc) is proportional to the Boltzmann factor exp[-E(rc)/kT], but the 
normalizing factor Q, which according to 

(6.5) 

defines the absolute value of the probability density, is not known. Inciden­
tally, Q is called the configurational partition function. 

In a basic model of ferromagnetic solids the atoms are taken to reside at 
fixed positions on the vertices of some appropriate crystal lattice. However, 
they are carrying dipole vectors (spins) with individually varying directions. 
In the framework of the early Ising model the spins may point either up 
or down, while the later Heisenberg model permits all directions. The mi­
croscopic configuration r c of such a model system is defined, not by the 
(trivial) positions, but by theN spins on the lattice. 

In a two-dimensional square Ising lattice only the four nearest spins 
are assumed to contribute to the energy of some spin ai (= ±1); in three 
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dimensions the six nearest neighbors must be considered. The total energy 
of the N spins is given by 

A N 4or6 

E = --L L O"iO"j(i) 
2 . 1 '( ') •= J • =1 

(6.6) 

(A being a coupling constant). This expression for the energy may be 
inserted in the Boltzmann factor to yield the density in canonical phase 
space. 

One relevant "observable" a (rc) whose average may be compared to 
measurements on real ferromagnets is the magnetic polarization 

(6.7) 

as a function of temperature. An external magnetic field H may be applied, 
with the additional potential energy being given by EH = -HL_; O";. 

Two tasks have to be performed before the actual simulation of a disor­
dered fluid or a spin system may begin: a reasonable rule must be invented 
to treat the boundary conditions, and a suitable initial configuration has to 
be set up. 

Due to the small size of our model system- typically, 5 -100 molecular 
diameters - the majority of fluid particles or lattice spins would be situated 
near some "wall" or "boundary", which certainly is not a good represen­
tation of the situation inside a macroscopic sample. Therefore the authors 
of the very first Monte Carlo studies already employed "periodic boundary 
conditions", meaning that they surrounded the basic cell containing the N 
particles by periodic images of itself. In the case of the very short-ranged 
spin interaction this means that even the last ("rightmost") spin in a lattice 
row feels the effect of a right neighbor - whose spin value is simply taken 
to be the same as that of the first (leftmost) spin in that row (see Fig. 6.1). 
Similar rules apply at the other boundary lines (or faces) of the grid. 

In the case of the disordered model fluid the periodic boundary condi­
tions are defined by the following rule: 

Instead of the x-coordinate x; of some particle the quantity 

(x; + 2L) mod L (6.8) 

(with L the side length of the cell) is stored; the same goes for y; 
and z;. In this way the number of particles within the basic cell 
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' 
Figure 6.1: Periodic boundary conditions on a lattice 

is always conserved. A particle leaving the cell by crossing the 
right boundary is automatically replaced by a particle entering 
from the left, etc. (Adding 2L before performing the modulo 
operation only serves to catch any runaway particles with Xi < 
-L.) 
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To compute the potential pair energy or the force between two par­
ticles i and j one augments the periodic boundary conditions by the so­
called nearest image convention. For example, if the coordinate difference 
~Xij = Xj -Xi is larger than L/2, then the particle j will be disregarded 
as an interaction partner of i, with its left image, having coordinate Xj- L, 
taking its place. In practice this means simply that when calculating u(rij) 

or similar we use the quantity ~Xij- Lin place of ~Xij· An analogous rule 
holds for ~Xij ::; - L /2 and for the other coordinates. 

Incidentally, it is advantageous to code the conditions ~x > L/2 etc. without 
using the if command. Many modern computers offer the possibility of "vectori­
zation", i.e. the simultaneous execution of a code command acting on an entire 
array of variables. The if command, however, is a hindrance for vectorization. 
It is therefore recommended to use the equivalent code line 

~x = ~x- L ·int (~x) (6.9) 

which may be vectorized. 

Setting up an initial configuration for the Ising lattice is simple: draw 
N spin values at random, with equal probabilities for + 1 and -1. For 
molecules the matter is not as straightforward. If we were to sample the 
initial positions of the particles at random there would be many particle 
pairs with unphysically small distances. The strong repulsion - e.g. pro­
portional to r-12 for Lennard-Janes molecules- would give rise to very high 
initial energies and forces, and thus to numerical instabilities. It is therefore 
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customary to initially place the molecules onto the vertices of some crystal 
lattice - face-centered cubic is very popular for isotropic interactions - and 
to have them intermingle in a longish "thermalization run" before starting 
on the simulation proper. (Since the population number in a cubic cell with 
face-centered cubic arrangement is 4m3 , with m = 1, 2, ... , the literature 
abounds with particle numbers such as N = 32, 108, 256, 500 etc.) 

6.2 Monte Carlo Method 

6.2.1 Standard MC technique 

In Section 3.3.5 we learned how to compute averages even if the probability 
density is known no better than up to an undetermined normalization fac­
tor. In the context of statistical mechanics this is a well-known problem: the 
configurational partition function Q c is in most cases unknown. The trick is 
to generate a Markov chain of, say, K configurations {rc(k), k = 1, ... K} 
such that the relative frequency of a configuration in the chain is propor­
tional to the corresponding Boltzmann factor. We may then estimate the 
mean value (a) from 

1 K 

(a) = K La [rc(k)] 
k=l 

(6.10) 

A widely used prescription for generating a suitable Markov chain of micro­
states is the biased random walk through configuration space described in 
Figure 6.2. The parameter d should be adjusted empirically in such a way 
that in step 3 approximately one out of two attempted steps r~ is accepted. 

Incidentally, the random variate sampled in step 1 need not come from 
an equidistribution; any probability density that is symmetrical about 0, 
such as a Gauss distribution, will serve the purpose. 

Step 3 is the proper core of the MC method. In the case of hard disks or 
spheres it looks slightly different. E( k) and E' may then assume the values 
0 and oo only, and the Boltzmann factors are either 1 or 0. Figure 6.3 shows 
the accordingly modified part of the MC procedure. 

Still another modification is needed to deal with Ising (or related) sys­
tems. The appropriate procedure is described in Figure 6.4. 

The basic recipes explained above should be sufficient to guide the 
reader in writing an Ising MC program and do "experiments" with it. 
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Metropolis Monte Carlo: 

Let r c( k) = { r1 ... rN} be given; the potential energy of this configuration 
is E(k) = (1/2) u Ei u(lri- riD· 

1. Generate a "neighboring" configuration r~ by randomly moving one 
of the N particles within a cubic region centered around its present 
position: 

xj = Xj + d (~- 0.5) 

and similarly for Yh Zj. Here, d ( = side length of the displacement 
cube) is a parameter to be optimized (see text), and~ is a random 
number from an equidistribution in (0, 1). The number j of the 
particle to be moved may either be drawn among the N candidates, 
or may run cyclically through the set of particle indices. 

2. Determine the modified total energy E'; since displacing particle j 
affects only N- 1 of the N(N- 1)/2 pair distances in the system, 
it is not necessary to recalculate the entire double sum to get E'. 

3. If E' ~ E(k), we accept r~ as the next element of the Markov chain: 

E' ~ E(k): 

=> r c( k + 1) = r~ ; go to ( 1) 

If E' > E(k), compare the quotient of the two thermodynamic pro­
babilities, 

q = e-[E'- E(k)]/kT 

to a random number~ E (0, 1): 

E' > E(k): 

~ ~ q : => r c( k + 1) = r~ ; go to ( 1) 

~ > q: => rc(k+1)=rc(k); goto(1) 

(This is the so-called "asymmetric rule"; see also Sec. 3.3.5.) 

Figure 6.2: Statistical-mechanical Monte Carlo for a model fluid with con­
tinuous potential 
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Let rc(k) = {rl ... rN} be given. 

• Trial move rc(k) ----+ r~: 

xj = Xj + d(~- 0.5) etc., for yj, Zj (6.11) 

• If particle j now overlaps with any other particle, let r c( k + 1) = 
rc(k); otherwise let rc(k + 1) = r~. 

Figure 6.3: Monte Carlo for hard spheres 

Let r c( k) = { O"t, ... 'O"N} be given. 

• Pick a spin O"i and tentatively invert it. The resulting energy 
change is 

4 

!).E = Aai L O"j 

j( i) 
(6.12) 

• If !).E ::::; 0, accept the inverted spin: ai(k + 1) = -ai(k); 
otherwise, draw an equidistributed ~ E (0, 1) and compare it 
tow = exp[-!).EjkT]; if~ < w, accept -ai, else leave O"i un­
changed: ai(k + 1) = ai(k). 

Figure 6.4: Monte Carlo simulation on an Ising lattice 
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EXERCISE: Let N = n.n spins O'i = ±1; i = 1, .. . N be situated on the vertices 
of a two-dimensional square lattice. The interaction energy is defined by 

(6.13) 

where the sum over j involves the 4 nearest neighbors of spin i. Periodic boundary 
conditions are assumed 

• Write a Monte Carlo code to perform a biased random walk through con­
figuration space. 

• Determine the mean total moment (M} :: O::::i ui} and its variance as a 
function of the quantity 1/kT. Compare your results to literature data 
(BINDER 87]. 

6.2.2 Simulated Annealing 

When performing a random walk through configuration space, following 
Metropolis' directions, we are again and again penetrating into "less favor­
able" regions of higher potential energy. The higher the temperature, the 
easier it is to reach such removed ranges. If the temperature is lowered, the 
phase space point representing our system will preferably move "downhill" 
- see step 3 in the Monte Carlo procedure. Eventually, for kT -t 0 only the 
nearest local minimum of the function U[r1, ... rN] can be reached at all. 

The problem of finding the global extremum of a function of many va­
riables pops up in many branches of applied mathematics. Examples are 
the nonlinear fit to a given set of table values (the function to be minimized 
being the sum of squared deviations), or optimization problems of all kinds, 
as in the construction of computer chips ("travelling salesman problem") 
and in the physics of microclusters (random dense packing with minimum 
energy). 

A systematic scan of variable space for such a global extremum is feasible 
only up to 6-8 variables. Above that, a simple stochastic method would be 
to repeatedly draw a starting position and find the nearest local minimum 
by a steepest descent strategy. However, if U { r} has a very ragged profile, 
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this procedure will again be slow in identifying the lowest one among all 
local minima. 

Kirkpatrick et al. have demonstrated that the Monte Carlo principle 
may be employed to detect the global extremum of a function of many 
variables [KIRKPATRICK 83]. Let U(x 1 , ••• XN) be such a "cost function" 
that is to be minimized. A starting vector x 0 = { x~, ... x~} is drawn at 
random, and an initial "temperature" is chosen such that it is comparable in 
value to the variation L:l.U = Umax- Umin· Accordingly, a MC random walk 
will touch all regions of variable space with almost equal probability. If the 
temperature is now carefully lowered ("annealing"), the entire x-space will 
still remain accessible at first, but regions with lower U(x) will be visited 
more frequently than the "higher ranges". Finally, for kT ---+ 0 the system 
point will come to rest in a minimum that very probably (albeit not with 
certainty) will be the global minimum. 

Kirkpatrick and co-authors applied this technique to the minimization of 
electric leads in highly integrated electronic modules. At the first attempt 
they achieved a considerable saving in computing time as compared to the 
proven optimization packages used until then. 

EXERCISE: Create (fake!) a table of "measured values with errors" according to 

(6.14) 

with ~i coming from a Gauss distribution with suitable variance, and with the 
function f defined by 

f(x; c)= Cte-c2(x- c3)2 + c4e-cs(x- c6)2 (6.15) 

( c1 ... c6 being a set of arbitrary coefficients). 
Using these data, try to reconstruct the parameters c1 ... c6 by fitting the 

theoretical function f to the table points (Xi, y;). The cost function is 

(6.16) 

Choose an initial vector c0 and perform an MC random walk through c-space, 
slowly lowering the temperature. 
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6.3 Molecular Dynamics Simulation 

Two simple examples will serve to demonstrate the principle of the MD 
method. First we will deal with a system of hard spheres (or disks), then the 
standard model for simple liquids, the Lennard-Janes fluid, will be treated. 

6.3.1 Hard Spheres 

For an initial configuration of a system of hard spheres we will once again set 
up a suitable lattice. The N spheres are given random initial velocities, with 
the additional requirement that the total kinetic energy is to be consistent 
with some desired temperature according to Ek = 3NkT /2. Furthermore, 
it is advantageous to make the total momentum (which will be conserved 
in the simulation) equal to zero. 

The next step is to find, for each pair of particles ( i, j) in the system, 
the time t;j it would take that pair to meet: 

(6.17) 

where d is the sphere diameter, r is the distance between the centers of i 
and j, and 

b 

v 

(rj- r;) · (vj- v;) 
l(vj- v;)l (6.18) 

For each particle i the smallest positive collision time t( i) = min( t;j) 
and the corresponding collision partner j ( i) is memorized. (If particle i has 
no collision partner at positive times, we set j(i) = 0 and t(i) = [oo], i.e. 
the largest representable number.) 

Evidently, the calculation of all possible collision times is quite costly, 
since there are N(N- 1)/2 pairs to be scanned. However, this double loop 
over all indices has to be performed only once, at the start of the simulation. 

Next we identify the smallest among theN "next collision times", calling 
it t( i 0 ). This gives us the time that will pass until the very next collision 
occuring in the entire system. Let the partners in this collision be i 0 and 

)0· 

Now all particle positions are incremented according to the free flight 
law 

(6.19) 
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and all t( i) are decreased by t( i0 ). 

The elastic collision between the spheres i = i 0 and j = j 0 leads to new 
velocities of these two particles: 

v~ = Vi + ~ v , vj = vi - ~ v (6.20) 

where 
(6.21) 

All pairwise collision times tij that involve either i 0 or j 0 must now be 
recalculated using the new velocities. For this purpose no more than 2(N-
1) pairs have to be scanned. 

The elementary step of a hard sphere MD calculation is now completed. 
The next step is started by once more searching the tij for the smallest ele­
ment. The detailed pattern of a single hard-sphere MD step is described in 
Fig. 6.5. 

EXERCISE: For a two-dimensional system of hard disks, write subroutines to a) 
set up an initial configuration (simplest, though not best: square lattice;) b) 
calculate t{i) and j(i); c) perform a pair collision. Combine these subroutines 
into an MD code. To avoid the difficulty mentioned at the end of Fig. 6.5 one 
might use reflecting boundary conditions, doing a "billiard dynamics" simulation. 

6.3.2 Continuous Potentials 

The interaction between hard particles was treated as an instantaneous 
collision process, implying forces of infinite strengths acting during infinitely 
short times. A dynamical equation is of no use in such a model, and it was 
therefore appropriate to invoke the collision laws for calculating the altered 
velocities. In contrast, for continously varying pair potentials we have for 
some particle i at any time t 

(6.23) 

with 
(6.24) 
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Molecular dynamics simulation of hard spheres: 

Immediately after a collision, for each particle i in the system the 
time t( i) to its next collision and the partner j ( i) at that collision is 
assumed to be known. 

1. Determine the smallest positive element t(io) among the t(i), 
identify the corresponding particle i 0 and its collision partner 
jo = j(io). 

2. Let all particles follow their free flight paths for a period t( io); 
subtract t(io) from each t(i). 

3. Perform the elastic collision between i 0 and j 0 ; after the collision 
these spheres have the new velocities 

r·· 
v' = v ± ~v, with ~v = b dg (6.22) 

4. Recalculate all times t( i) that involve either i0 or j 0 , i.e. for 
i = io, i = j(io), i = jo, and i = j(jo). 

5. Go to (1). 

At low densities the large free path may create problems with the peri­
odic boundary conditions, some particle suddenly appearing where it 
overlaps another. One therefore limits the time allowed for free flight 
such that for each coordinate a the free flight displacement fulfills 
~X a ::; L /2 - d. 

Figure 6.5: Molecular dynamics of hard spheres 

189 



190 Chapter 6 Simulation and statistical mechanics 

We will consider the standard Lennard-Jones interaction 6.1. For the pair 
force we find 

E [ (r··)-14 (r .. )-s] 
Kij = -24 a 2 2 : - : rij (6.25) 

where rij = rj - ri. 

When evaluating the total force acting on a particle we apply periodic 
boundary conditions and the nearest image convention (see Sec. 6.1). In 
this way we may determine the quantity on the right-hand side of 6.23. The 
road is clear then for the stepwise integration of the dynamical equations 
by one of the methods explained in Chapter 4. One very popular method 
is the St~rmer-Verlet algorithm 

(6.26) 

(with bi = 'L.#i Kij / m). But the predictor-corrector method - usually in 
the Nordsieck formulation- is also widely used. 

There are many generalizations of this basic idea of molecular dyna­
mics simulation, involving orientation dependent potentials and ionic in­
teractions, polymers or other complex molecules. Also, in the many years 
that have passed since Alder's inspiration we have learned how to simulate 
nonequilibrium phenomena as well, such as the laminary flow of a liquid 
[EVANS 86], and how to include the action of an external thermostat upon 
the model system [N os:E 91]. A surprising discovery in the context of shear 
flow was the so-called "shear thinning" effect. It turned out that at very 
high shear rates the "experimental" viscosity of the model liquid would 
decrease. This phenomenon could eventually be traced back to the forma­
tion of streamlines that may glide along each other with almost no friction 
[REYES 86]. 

When simulating nonequilibrium processes one is faced with the problem 
of a gradual temperature rise in the sample. This is not a numerical artifact 
but a genuine physical effect. The external fields that must be introduced 
to sustain the nonequilibrium situation necessarily perform work on the 
system, causing an increase of internal energy. 

Introducing a thermostat in a dynamical simulation is a nontrivial task. 
The temperature of a molecular dynamics sample is not an input parameter 
to be manipulated at will; rather, it is a quantity to be "measured" in terms 
of an average of the kinetic energy of the particles, 

(Ekin) = (~ m;t) = d N~T 
t 

(6.27) 
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(d ... dimension). Many authors have come up with suggestions how to 
maintain a desired temperature in a dynamical simulation - for instance, 
by repeatedly rescaling all velocities ("brute force thermostat") or by ad­
ding a suitable stochastic force acting on the molecules. Such ad hoc tricks 
have great disadvantages: they are unphysical, and they introduce an artifi­
cial trait of irreversibility and/or indeterminacy into the microscopic dyna­
mics. Finally Sh. Nose succeeded in finding a thermostating strategy that 
is compatible with the spirit of microscopic (reversible and deterministic) 
simulation. Nose, and later Hoover, could prove that under very mild con­
ditions the following augmented equations of motion will lead to a correct 
sampling of the canonical phase space at a given temperature T0 : 

1 
(6.28) Vi -Ki -evi 

m 
2 

(6.29) e = Q [Ekin - 3NkTo/2] 

In this formulation of the thermostated dynamical equations the coupling 
parameter Q describes the inertia of the thermostat. The quantity e(t) 
bears some similarity to a viscosity- with the important difference that it 
is temporally varying and may assume negative values as well. 

Many profound insights into the foundations of nonequilibrium stati­
stical mechanics have been gained by the application of the deterministic, 
reversible, yet thermostated equations of motion 6.28-6.29. A more detailed 
account of the method may be found in [HOOVER 91]. Important applica­
tions are given in [PoscH 89] and [PoscH 92]. 

EXERCISE: For a three-dimensional Lennard-Janes system, write subroutines to 
a) set up an initial configuration (say, face-centered cubic;) b) calculate the mo­
mentary accelerations bi(tn) from 6.25, using periodic boundary conditions and 
the nearest image convention; c) integrate the equations of motion by a suitable 
algorithm such as 6.26. Fit the subroutines together to obtain a MD code. Test 
the code by monitoring the mechanically conserved quantities. 



192 Chapter 6 Simulation and statistical mechanics 

6.4 Evaluation of Simulation Experiments 

We are now in a position to proceed to calculating averages of the form 6.2. 
The most elementary thermodynamic observables, pressure and internal 
energy, may be expressed as averages of the virial and the potential energy, 
respectively (see equs. 6.3-6.4). The virial is defined by 

1 
W = ~K; · r; = - 2 :l:~Kij · r;j (6.30) 

' ' J 

However, the powerful "microscope" of computer simulation gives access 
to many more details about the structure and the dynamics of statistical­
mechanical systems. An important characteristic of microscopic structure 
is the pair correlation function g(r); and the main features of molecular 
motion are most concisely described in terms of the velocity autocorrelation 
function C(t). 

6.4.1 Pair Correlation Function 

Quite generally, the quantity to be averaged according to equation 6.2 need 
not be a simple function of dynamical variables; it may well be an "indicator 
function", or distribution function, of the type 

a(r; rc) = 2:: 8(r;- r) (6.31) 

' 
Averages of this or similar quantities represent relative frequencies - in the 
present case the relative frequency of some particle residing near r. Such 
relative frequencies may also be interpreted as probability densities. In our 
example the quantity (a(r)) = p(r) would simply denote the mean fluid 
density at position r: 

p(r) = (2:: 8(r;- r)) (6.32) 

' 
In a fluid we usually have p(r) = const; only in the presence of external 
fields or near surfaces p(r) varies in a non-trivial manner. A much more 
interesting quantity to be evaluated is the "pair correlation function" (PCF) 

v 
g(r) = 47rr2N(N -1) (~~ D(r- r;j)) (6.33) 

This is in fact a (ill-normalized) conditional probability density- to wit, the 
probability of finding a particle at r, given that there is a particle at the 
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Figure 6.6: Pair correlation function of the Lennard-Jones liquid 

coordinate origin. g(r), then, provides a measure of spatial ordering in a 
fluid (or any molecular system)_ 

To determine g(r) in a simulation one first divides the range of r-values 
(at most, [0; L/2], where Lis the side length of the basic cell) into 50-200 
intervals of length !:ir. A given configuration { r1, ... rN} is scanned to 
determine, for each pair (i,j), a channel number 

k = int (~~) (6.34) 

In a histogram table g( k) the corresponding value is then incremented by 
1. This procedure is repeated every, say, 50 MD steps (or 50N MC steps). 
A the end of the simulation run the histogram is normalized according to 
6.33. The typical shape of the PCF at liquid densities is depicted in Fig. 
6.6 

The extraordinary importance of the PCF for the physics of fluids stems 
from the fact that the average of any quantity that depends on the pair po­
tential u( r) - and this holds for the majority of physically relevant properties 
- may be expressed as an integral over g( r). Thus, we have for the pressure 
(see also 6.4) 

NkT N 2 J du p = ---- r-g(r)dr 
V 6V2 dr 

(6.35) 
v 
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Moreover, the PCF is the natural "meeting place" of theory, experiment, 
and computer simulation. It is possible to compute g( r) for a given pair 
potential u(r) by analytical means- albeit under rather restrictive simplify­
ing assumptions [KOHLER 72], [HANSEN 86]. And the Fourier transform 
of g( r), the "scattering law" 

S(k)=1+~ j[g(r)-1]eik·rdr (6.36) 
v 

is accessible to "real" experiments. In fact, S( k) is just the relative intensity 
of neutron or X-ray scattering at a scattering angle () which is related to k 
by 

(6.37) 

6.4.2 Autocorrelation Functions 

In dynamical simulations not only spatial correlations such as g( r) but also 
temporal correlations of the type 

Ca(t) = (a(O)a(t)) (6.38) 

may be computed. An elementary example is the velocity autocorrelation 
in fluids defined by 

C(t) = (vi(O) · vi(t)) (6.39) 

This was the very first autocorrelation function (ACF) to be determined 
in MD simulations [ALDER 67]. It turned out that near the critical fluid 
density (except that there is no critical point in the hard sphere system 
studied then) the long time behavior deviates strongly from theoretical ex­
pectations. The simplest kinetic theory would predict C(t) <X e-.At; Alder 
found C ( t) <X t-312 . The diffusion constant D of a liquid is given by 

1 00 

D = "3 j C(t)dt (6.40) 
0 

The value of D is therefore strongly affected by the long time tail of C(t); 
indeed, the results of MD experiments are about 30 percent higher than 
simple kinetic theory would estimate. 

It could later be shown that the surprising persistence of C(t) is due to 
collective effects. Part of the momentary momentum of a particle is stored 
in a microscopic vortex that dies off very slowly [DoRFMAN 72]. 
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Figure 6. 7: Velocity autocorrelation function of the Lennard-Jones fluid 

To calculate simple autocorrelation functions in a computer simulation, 
proceed as follows: 

• At regular intervals of 20 - 100 time steps, mark starting values 
{ a(to,m), m = 1, ... M}. Since in the further process only the pre­
ceding M ~ 10 - 20 starting values are required, it is best to store 
them in a shift register. 

• At each time tn, compute theM products 

Zm = a(tn) · a(to,m), m = 1, ... M (6.41) 

and relate them to the (discrete) time displacements b..tm = tn - to,m; 
a particular iltm defines a channel number 

(6.42) 

indicating the particular histogram channel to be incremented by Zm. 
To simplify the final normalization it is recommended to count the 
number of times each channel k is incremented. 

Figure 6. 7 shows the general shape of the velocity ACF in a simple fluid. 
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6.5 Particles and Fields 

In describing the basic simulation methods of statistical mechanics we con­
centrated on interparticle potentials that are negligible beyond a few par­
ticle diameters. A measure for the importance of the neglected "tail" of a 
potential u( r) is the integral 

(6.43) 

where reo is the cutoff distance. Well-behaved potentials such as Lennard­
Janes decay with a high enough negative power of r so as to keep this 
integral small. There are important cases, however, where we cannot hope 
for such convenience. The interaction between charged particles decays only 
as r-1 , and it will never do to cut off the potential at any distance. The 
same holds for the gravitational potential acting between stars or yet larger 
assemblies of heavenly matter. 

6.5.1 Ewald summation 

To account for the effect of the long-ranged ion-ion interaction 
q1q2 

Uqq = --
r 

(6.44) 

we may take recourse to a method known from solid state theory [EWALD 21]. 
In the Ewald summation approach the periodic boundary conditions are ta­
ken literally: the basic cell containing N /2 each of positive and negative 
charges in some spatial arrangement is interpreted as a single crystallogra­
phic element surrounded by an infinite number of identical copies of itself. 
Such an infinitely extended, globally neutral ion lattice contains an infinite 
number of charges situated at rj+ and rj- , respectively. The total potential 
at the position of some ion i residing in the basic cell is therefore given by 
the finite difference of two diverging series: 

(6.45) 

The calculation of the potential in r -space would thus lead to an undeter­
mined form oo - oo. Alternatively, the point charges creating the potential 
may be described by a sum of delta-like charge densities, 

00 00 

p(r)=q L 8(r-ri+)-q L 8(r-rj-) (6.46) 
j+=1 j-=1 
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Figure 6.8: Ewald summation 

This periodically varying charge density may be expanded in a Fourier series 
whose terms determine the Fourier components <f>(k) of the electrostatic 
potential. In principle these components can be summed to give the total 
potential at some position. However, the Fourier representation of a delta­
function requires infinitely many terms, and the Fourier space calculation 
would again lead to convergence problems. 

A way out of this dilemma is to split up the potential in two well­
behaved parts, one being represented in r-space and the other in k-space 
by rapidly converging series. Without restriction of generality we consider 
a one-dimensional "ion lattice" with a charge distribution as depicted in 
Figure 6.8. The delta-like point charges (represented by narrow Gaussians) 
are augmented by Gaussian charge "clouds" of opposite sign, 

(6.47) 

to form an auxiliary lattice 1. A further lattice (2) is then introduced to 
compensate the additional Gaussian charges, such that "lattice 1 + lattice 
2 = original lattice". 

The potential produced by lattice 1 is computed in r-space. The farther 
we walk away from a Gaussian charge cloud, the more it will resemble 
a delta-like point charge, effectively compensating the original charge it 
accompanies. Thus the series in r-space will converge quite rapidly - the 
more so if the Gaussians are narrow, i.e. if the parameter 'I] in 6.47 is large. 

The potential created by lattice 2 is evaluated in k-space. If the Gaus­
sians are broad, i.e. if 'I] is small, we will need a smaller number of Fourier 
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components. By suitably adjusting TJ, optimal convergence of both series 
may be achieved. 

Let us now turn to the more interesting case of three-dimensional model 
systems. Considering a cubic base cell with side length L containing N 
charges, the Fourier series now involves the vectors 

(6.48) 

with integer numbers kx etc. The most general interparticle vector, invol­
ving both base and periodic cell charges, may be written as 

ri,j,n=ri+nL-ri (i,j=1, ... ,N) (6.49) 

where nL is a general translation vector in the periodic lattice. Performing 
the Ewald procedure again we obtain the total potential at position ri, 

with 
2 roo e 

F(z) = -Ji lz e- dt 

(6.50) 

(6.51) 

Two tricky details should be mentioned that caused some confusion in 
the literature before they could be straightened out. First, a Gaussian 
charge cloud will formally interact with itself, giving rise to a spurious 
contribution to the potential energy of a point charge qi ; this contribution 
must be subtracted in the final formula. Second, the infinitely repeated 
lattice should be thought of as the result of a stepwise extension of a finite 
(roughly spherical) array of image cells. Obviously, the properties of such 
a finite lattice will depend on the dielectric constant Es of the surrounding 
continuum. It turns out that this influence does not vanish when we take 
the limit of an infinitely large repeated array. Thus the potential energy 
of a charge in the base cell contains a contribution from E8 • Usually, one 
assumes Es = 1. 

Taking into consideration these two corrections, we have for the total 
potential energy of the system 

(6.52) 
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A similar procedure may be developed for particles that carry point dipoles 
in place of charges. The method is known as "Ewald-Kornfeld summation" 
This and other methods suited for the dipole-dipole potential, such as the 
reaction field method or Ladd's multipole expansion method are explained 
in [VESELY 78) and [ALLEN 90). 

6.5.2 Particle-Mesh Methods (PM and P3M): 
In large-scale model simulations it is often appropriate not to insist on in­
formation about every single constituent particle. Hot plasmas (or galaxies, 
for that matter) may be described by bunching together some 104 - 108 

of the ions, electrons, or stars into "superparticles". The position vector 
of such a superparticle indicates the center of mass of a charge cloud or a 
cluster of stars. Collisions or interactions between neighboring sub-particles 
are irrelevant for the behavior of the system as a whole and are therefore 
neglected. For a detailed discussion ofthese arguments see [HOCKNEY 81). 

The dynamics of a superparticle is governed by the electromagnetic or 
gravitational field created by all other charges or masses in the system. Due 
to the long range of these 1/r-potentials the local field is to a large extent 
produced by superparticles that are quite far removed from the particle in 
question. This fact was utilized by Hockney and others to introduce an 
essential simplification and speed-up of such simulations. 

Consider the following model system: a square cell, subdivided into 
M x M cells of side length ~x = ~y = ~l. The minor cells should still be 
large enough to contain on the average 10-100 superparticles each. (Taking 
M ~ 100 this means we are dealing with N ~ 105 - 106 superparticles- a 
formidable number for the molecular dynamicist.) The equation of motion 
for a superparticle reads 

(6.53) 

where ~(r) denotes the solution of the potential equation V2~ = -p. The 
charge (or mass) density p(r, t) is defined by the positions of all superpar­
ticles. 

Suppose that the configuration of superions be known at some time tn. 
Our first task is then to compute, using the positions of all particles, the 
potential function at the centers of the minor cells. The methods explained 
in Chapter 5.3 are useful here. 
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The given configuration of superions must first of all be replaced by 
a discretized, lattice-like charge distribution Pi,j. Various approximations 
come to mind. The most elementary, called nearest grid point (NGP) rule, 
reads 

1 ;-. 8 ( Xk ·) 8 ( Yk ·) 
Pi,j = (lll) 2 ~ qk lll - z lll - J (6.54) 

Here the charge density at the center of each cell ( i, j) is determined simply 
by adding up all charges situated in that cell. 

The calculation of the potential may now be performed by a relaxation 
method or - most efficiently - by the FACR technique as developed by 
Hackney; see Sec. 5.3.3 and [HOCKNEY 81]. As a result of this step the 
values of the potential <I>i,j at the cell centers are available. 

Assuming that a given superparticle k is presently located in cell ( i, j) 
we may approximate the field at the position rk by 

- [<I>i+l,j- <I>i-l,j] /2lll 

- [<I>i,j+l- <I>i,j-1] /2lll 

(6.55) 

(6.56) 

Given the local fields, the equation of motion 6.53 may be integrated by a 
suitable algorithm, such as the St¢rmer-Verlet formula 

2rk- rk-1 + ~(~t)2 Ei · 
mk ,J 

[ rk+l - rk] /2llt 

(6.57) 

(6.58) 

Having thus updated the positions rk+l we may begin the next time step 
by once again distributing the irregularly located charges to the cell centers 
and computing the potential <I>i,j. A systematic prescription for the PM 
procedure is shown in Fig. 6.10. 

If the cells are only sparsely inhabited by superparticles, the cell charge 
Pi,j changes considerably upon entry or exit of a single particle. The re­
sulting jumps in <I>i,j and Ei,j tend to destabilize the numerical procedure 
for integrating the dynamical equations. It is an easy matter to reduce this 
oversensitivity with respect to charge transfer by applying a more refined 
method of charge assignment than the NGP rule 6.54. Instead of having 
all charges contribute with equal weights to the local charge density, we 
distribute appropriate fractions of each charge to the four nearest cell cen­
ters. (We are speaking of two dimensions; in three-dimensional systems 
there would be eight cells in the vicinity.) According to the cloud in cell 
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Figure 6.9: Area weighting according to the CIC (cloud-in-cell) rule 

(CIC) rule these fractions, or weights, are assigned in proportion to the 
overlap areas of a square of side length ill, centered around the particle 
under consideration, and the respective neighbor cells (see Fig. 6.9). 

In the framework of the PM technique only the fields originating from 
far-removed superparticles are correctly represented. In many applications 
the assumption that nearby particles have little influence upon the dyna­
mics is not justified. Be it that we study the interpenetration of galactic 
spiral arms, investigate the properties of dense plasmas or follow the beha­
vior of ions in melts (or crystals), the short-range interactions must not be 
neglected. 

Similarly, in the simulation of ionic melts by molecular dynamics pro­
per - no superparticles, but actual molecules- short-ranged forces are an 
essential part of the total interaction. One widely used model potential for 
ions is the one introduced by Born, Huggins and Mayer: 

U( ) qiqj B -a .. r Cij Dij 
r =--+ i·e 'J ----

41l"t::0r 3 r6 r 8 
(6.62) 

Here we have, in addition to the electrostatic interaction, contributions that 
are repulsive at short distance (the B- term) and attractive at intermediate 
distances (C-, D- terms). 

Hockney suggested that the optimal strategy in such cases is a mixture 
of the PM method and the molecular dynamics technique [HOCKNEY 81]. 
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Particle-mesh method: 

At time tn the spatial distribution { rk} of the charged (or gravitating) 
superparticles is given. 

1. Assign charge densities Pi,i to the centers of the cells, either 
according to the N G P rule 

1 ~ 8 (Xk ·) 8 ( Yk ·) 
Pi,i = (Lll)2 ~ qk Lll - z Lll - J (6.59) 

or by some more refined method such as CIC (see Fig. 6.9). 

2. Compute the potential at the cell centers, preferably by the 
FACR method. For the local field within cell (i,j) use the ap-
proximation 

E = - [<P·+t · - <P·-1 ·] j2Lll X I,J I,J (6.60) 

etc. 

3. Integrate the dynamical equations up to tn+l, for instance by 
St~rmer-Verlet 

(6.61) 

Figure 6.10: Particle-mesh method 
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The short-ranged forces are taken into account up to a certain interpar­
ticle distance, while the long-ranged contributions are accounted for by the 
particle-mesh procedure. This combination of particle-particle and particle­
mesh methods has come to be called PPPM- or P3 M technique. 

6.6 Stochastic Dynamics 

In molecular dynamics experiments we deal with equations of motion of the 
form 

.. 1 "K 
ri =- L..J ij, 

m. 
J 

i = 1, ... N (6.63) 

By far the most costly step is the evaluation of the N(N- 1)/2 coupling 
terms Kij. As a rule some 90 - 95 percent of the computing time is spent 
in the nested loop of the force calculation. 

In some applications, however, there are two different classes of degrees 
of freedom in the system- primary ones whose temporal evolution we want 
to follow, and secondary ones that are in fact just dragged along to provide 
at any given time the complete set of intermolecular forces Kij. The basic 
example for such a system is a dilute ionic solution of, say, 10- 50 ions in 
the company of some 5000 water molecules. 

In such a situation it may be a good idea to replace the effect of the 
secondary particles by suitably sampled stochastic forces having similar sta­
tistical properties as the proper forces Kij(t). 

Forgetting for the moment about the- rare- interactions between ions, 
we may write down an equation of motion for the single ion in a viscous 
solvent: 

v(t) = -7]v(t) + a(t) (6.64) 

This is Langevin's equation. The statistical properties of the stochastic 
acceleration a= S/m (S ... stochastic force) are given by 

(v(O) · a(t)) 

(a(O) · a(t)) 

0 for t ~ 0 

321JkT 8(t) 
m 

(6.65) 

(6.66) 

The first of these relations tells us that a( t) is not correlated to previous 
values of the ion velocity; the second equation means that the stochastic 
and frictional forces are mutually related - which is not surprising since they 
are both caused by collisions of the ion with solvent molecules. Equation 
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6.66 gives us only the autocorrelation of the quantity a( t); the statistical 
distribution of lal is not known a priori. As customary in such cases, we 
assume that the components of a(t) are Gauss distributed. 

The formal solution to 6.64 reads 

t 

v(t) = v(O)e-'1t + j e -"!(t- t')a(t') dt' (6.67) 
0 

By comparing v(t) (and a corresponding expression for the second integral 
r( t)) at times tn and tn+t we find 

t:.t 
Vne-"1!1t + j e-"1(!1t- t')a(tn + t') dt' (6.68) 

0 

1- e-"1!1t t:.t1- e-"1(!1t- t') 
rn + Vn + J a(tn + t') dt' (6.69) 

, 0 , 

Using the definitions 

and 

e(t) = e-"lt, 

t:.t 

1 -,t 
f(t) = - e , 

V n = J e(!1t- t') a(tn + t') 
0 

t:.t 
Rn = J f(!1t- t') a(tn + t') 

0 

the stepwise solution to Langevin's equation may be written 

Vn e(f1t) + V n 

rn + Vn f(!1t) + Rn 

(6.70) 

(6.71) 

(6.72) 

(6.73) 

(6.74) 

The cartesian components of the stochastic vectors V n, Rn are time inte­
grals of the respective components of the 8-correlated stochastic process a( t) 
whose statistical properties are given. They are therefore random variates 
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themselves, with statistical properties that are uniquely determined by, and 
easily derived from, those of the generating process a(t). In particular, we 
have (Vn) = (Rn) = 0, (Vn Vn+t) = (RnRn+t) = 0, and 

(v;) 
kT 
-:;;; [1- e2 (~t)] (6.75) 

(R;) 
kT 

m 112 [211~t- 3 + 4e(~t)- e2(~t)] (6.76) 

(VnRn) = kT'fl f2(~t) (6.77) 
m 

We have learned in Section 3.2.5 how to generate pairs of correlated Gaus­
sian variates. At each time step, then, we may invoke the procedure ex­
plained there to produce random numbers Vn, Rn with the desired statistics 
and insert them, component-wise, in 6.73-6.74. 

In the intuitive formulation of equ. 6.64 by P. Langevin, as well as in its 
much belated stringent derivation, it was always assumed that the stochastic 
force has a h-like autocorrelation (see equ. 6.66). This is tantamount to 
assuming that the solvent particles are much lighter, and therefore faster, 
than the solute particle. In contrast, if both particle types have comparable 
masses, the generalized Langevin equation applies: 

where 

v(t) = -1t M(t- t') v(t') dt' + a(t) 

(v(O)a(t)) 

(a(O)a(t)) 

0 

kT M(t) 
m 

for t ~ 0 

(6.78) 

(6. 79) 

(6.80) 

We are now faced with a stochastic integrodifferential equation that involves 
the "history" of the solute particle's motion in the form of the memory 
function M(t) (see [MORI 65]). In practice M(t) is usually fast-decaying, 
implying that the integrand in 6. 78 need be considered for a limited time 
span only. 

There are various methods to render the generalized Langevin equation 
accessible to numerical work. One group of methods proceeds by approxi­
mating the memory function by a certain class of functions. To put it more 
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clearly, one assumes - with good physical justification - that the Laplace 
transform M( s) may be represented by a truncated chain fraction in the 
variable s. Under this condition the integrodifferential equation may be 
replaced by a set of coupled differential equations. When written in matrix 
notation these equations have exactly the same shape as 6.64. They may 
therefore be treated using the same principles [VESELY 84]. 

In the other group of techniques one does not attempt to approximate 
the memory function; instead, one assumes that M(t) may be neglected 
after K ~ 20 -- 60 time steps. The random process a(t), whose autocorre­
lation is given by a limited table of M(t)-values, may then be generated as 
an autoregressive process by the method described in Sec. 3.3.3. Replacing 
the integral in 6. 78 by a sum over the most recent 20 - 60 time steps, one 
may construct v(t) and r(t) in a step-by-step procedure (see [SMITH 90], 
and also [NILSSON 90]). 



Chapter 7 

Quantum Mechanical 
Simulation 

We will not concern ourselves with the time-proven methods that are applied 
by quantum chemists to compute electronic energies of ever larger molecules; 
one recommended reference on those crafts is [HEHRE 86]. In the following 
sections four "physical" techniques will be described that are suited for the 
investigation of simple quantum systems. They have been applied first to 
solvated electrons, hydrogen, helium, neon and silicon, and more recently 
also to metals, carbon and ionic melts. 

The technique of quantum mechanical diffusion Monte Carlo (QMC, or 
DMC) dates back to the early days of stochastic simulation. At a meeting 
held just a few years after publication of the very first statistical-mechanical 
MC calculations, various ideas on how to treat the Schroedinger equation by 
stochastic methods were suggested [MEYERS 56]. Many of these ideas were 
in fact premature, and it took several generations of computing machines 
before they could be put into action. The "rediscovery" of DMC in the eigh­
ties is due to D. Ceperley and- once again- Berni Alder [CEPERLEY 80]. 

In its basic formulation the DMC method serves to determine the ground 
state of a bosonic system. The first calculations of this kind were done 
for 4He [KALOS 7 4, WHITLOCK 79]. More recently, the method has been 
tuned up in such a way that fermions and excited states may be attacked 
as well [BARNETT 86, CEPERLEY 88]. 

With the path integral Monte Carlo (PIMC) method we are entering the 
statistical mechanics of quantum systems. Diffusion Monte Carlo usually 
refers to the ground state, meaning that the temperature is zero. In PIMC 
calculations a finite temperature enters by way of a Boltzmann factor - or 
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rather, by its quantum mechanical equivalent, the density matrix. Applica­
tions of the procedure range from the study of solvated electrons in simple 
liquids [PARRINELLO 84, COKER 87] to the investigation of the properties 
of solid para-hydrogen [ZOPPI 91]. 

Wave packet dynamics (WPD) constituted the first attempt of a dyna­
mical semiclassical simulation - an adaptation, as it were, of the molecular 
dynamics method to quantum mechanics. Building upon ideas proposed by 
Heller et al. [HELLER 75, HELLER 76], Konrad Singer developed a proce­
dure for simulc:.ting the dynamics of "smeared out" neon atoms [SINGER 86]. 
The further development of the method seems to be possible only by exten­
sive formal and computational effort [HUBER 88, KOLAR 89]. 

The most exciting new development of the last decade was the designing 
of a veritable quantum molecular dynamics method by Car and Parrinello 
[CAR 85]. While in this context the atomic cores (i.e. nucleus plus inner 
electrons) are still treated as classical particles (Born-Oppenheimer approx­
imation), the outer electrons obey truly quantum mechanical laws. The 
first substance to be investigated in this manner was amorphous silicon. In 
recent years, however, the method has come to be applied to a much wider 
class of materials: lithium [WENTZCOVICH 91]; microclusters of alkali met­
als [VITEK 89]; molten carbon [GALLI 90B]; ionic melts [GALLI 90A]. A 
survey of applications of the technique is given in [VITEK 89]. 

7.1 Diffusion Monte Carlo (DMC) 

The time-dependent Schroedinger equation for a particle of mass m located 
in a potential U ( r) reads 

·t: 8\lf(r, t) _ H •T•( ) 
Zn Ot - 'J! r,t 

where the operator His defined as 

n,2 
H =. --V2 + [U(r)- ET] 

2m 

(7.1) 

(7.2) 

The trial energy ET is an arbitrary parameter that effects only the - unob­
servable - phase of the wave function but not its modulus. Introducing a 
new "imaginary time" variables= itfn we obtain 

8\lf(r,s) os = DV2\lf(r,s)- [U(r)- ET] \lf(r,s) (7.3) 
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with D = n2 /2m. 
This equation describes the evolution, in space and "time", of a density 

\[1 as the consequence of a diffusion process (first term on the right) super­
posed upon autocatalysis (second term). For visualization one may think 
of a population of bacteria diffusing about in a fluid with locally varying 
nutrient concentration. 

By expanding \[1 in eigenfunctions \[1 n of the energy operator one may 
verify the following points: 

• If ET =Eo (ground state energy), then all \[In except Wo will fade out 
for large "times" s: 

lim \[1 ( r, s) = \[1 0 ( r) 
S--HX) 

(7.4) 

• If ET > E0 , the total momentary weight I(s) = J w(r, s) dr will grow 
exponentially in time. 

• If ET < E0 , the integral I ( s) decreases exponentially in time. 

Thus we should try to solve 7.3 for various values of ET, always monitoring 
the temporal behavior of I( s ). If we succeed in finding a value of ET that 
gives rise to a solution w(r,s) whose measure I(s) remains stationary, we 
may be sure that ET = E0 and \[1 = \[10 . 

How, then, do we generate a solution to equ. 7.3? Consider the terms 
on the right-hand side one at a time. The diffusion part of 7.3 reads 

on(r,t) _ D"2 ( ) 
ot - v n r, t (7.5) 

Instead of invoking for this partial differential equation one of the methods 
of Chapter 5 we may employ a stochastic procedure. We have already 
learned that the diffusion equation is just the statistical summing up of 
many individual Brownian random walks as described in Sec. 3.3.4. We 
may therefore put N Brownian walkers on their respective ways, letting 
them move about according to 

(7.6) 

(the components ex,y,z of the single random step being drawn from a Gauss 
distribution with 0'2 = 2D /}.t.) If we consider an entire ensemble made up 
of M such N-particle systems, the local distribution density at timet, 

1 1 M N 
p(r, t) = (8 [ri(t) - r]) = M N I: I: 8 [ri,z(t) - r] (7. 7) 

l=l i=l 



210 Chapter 7 Quantum mechanics 

will provide an excellent estimate for the solution n(r, t) of the diffusion 
equation 7.5. 

At long times t this solution is a very broad, flat and uninteresting dis­
tribution, regardless of what initial distribution n(r, 0) we started from. 
However, if there is also a built-in mechanism for a spatially varying auto­
catalytic process, we will obtain a non-trivial inhomogeneous density even 
for late times. 

The autocatalytic part of the transformed Schroedinger equation 7.3 has 
the shape 

8n(r,t) _ J( ) ( ) at - r n r,t (7.8) 

Of course, the formal solution to this could be written 

n(r, t) = n(r, 0) exp [f(r)t] (7.9) 

However, we will once more employ a stochastic scheme to construct the 
solution. Again, consider an ensemble of M systems of N particles each. 
The particles are now fixed at their respective positions; the number M of 
systems in the ensemble is now allowed to vary: those systems which contain 
many particles located at "favorable" positions where f(r) is high are to be 
replicated, while systems with unfavorable configurations are weeded out. 
To put it more clearly, the following procedure is applied when going from 
tn to tn+l: 

• For each of the M(tn) systems, determine the multiplicity (see equ. 
7.9) 

(7.10) 

• Replicate the 1-th system such that on the average K1 copies are pre­
sent. To achieve this, produce first int(K1) - 1 copies (int( .. )= next 
smaller integer) and then, with probability w = K1- int(K1), one ad­
ditional copy. (In practice, draw e equidistributed E [0, 1] and check 
whether e :::; w.) If K1 < 1, remove, with probability 1- K1, the l-th 
system from the ensemble. 

The total number M ( tn) of systems in the ensemble may increase or decrease 
upon application of this rule. At the end the distribution density 7. 7 may 
again be used to estimate the density at position r. 
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Diffusion Monte Carlo: 

N (non-interacting) particles of mass m, distributed at random in a 
given spatial region, are subject to the influence of a potential U(r). 
Determine the "diffusion constant" D = 1i2 /2m; choose a trial energy 
ET, a time step ~s and an initial ensemble size M(s0 ). 

1. For each system l ( = 1, ... M ( s0 )) in the ensemble and for each 
particle i ( = 1, ... N) perform a random displacement step 

(7.11) 

where the components of the vector ~i 1 are picked from a Gaus­
sian distribution with u 2 = 2D ~s. ' 

2. For each system l determine the multiplicity Kt according to 

(7.12) 

3. Produce int(Kt) -1 copies of each system (int( ... ) denoting the 
nearest smaller integer;) with probability w = K 1 - int(Kt) pro­
duce one additional copy, such that on the average there are Kt 
copies in all. If Kt < 1, purge the system with probability 1-K1 

from the ensemble. 

4. If the number M of systems contained in the ensemble increases 
systematically (i.e. for several successive steps), choose a smaller 
ET; if M increases, take a larger ET. 

5. Repeat until M remains constant; then the ground state energy 
is Eo= ET and 

Wo(r) = (h(ri,/- r)) (7.13) 

Figure 7.1: Quantum mechanical diffusion Monte Carlo 
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Let us now apply these ideas to the transformed Schroedinger equation 
7 .3. Combining the two stochastic techniques for solving the diffusion and 
autocatalytic equations we obtain the procedure described in Figure 7.1. 

It is evident from the above reasoning that the method will work only for 
real, non-negative functions \If. In this basic formulation it is therefore sui­
ted only for application to bosonic systems such as 4He. Two advanced va­
riants of the technique that may be applied to fermions as well are known as 
fixed node and released node approximation, respectively [CEPERLEY 88]. 
If the node surfaces of W - i.e. the loci of sign changes - are known, then the 
regions on different sides of these surfaces may be treated separately; within 
each of these regions W is either positive or negative, and the modulus of 
\If is computed by the above method (fixed node). Normally the positions 
of the node surfaces are only approximately known; in such cases they are 
estimated and empirically varied until a minimum of the energy is found 
(released node). 

It must be stressed that the analogy between the wave function \If ( r, t) 
and a probability of residence n(r, t) which we are exploiting in the DMC 
method is purely formal. In particular, it has nothing to do with the inter­
pretation of the wave function in terms of a positional probability according 
to IW(r)J2 = prob{quantum object to be found at r}. 

There are situations in which the DMC method in the above formulation 
is unstable. Whenever we have a potential U(r) that is strongly negative 
in some region of space, the autocatalytic term in 7.3 will overwhelm eve­
rything else, playing tricks to numerical stability. Such problems may be 
tamed by a modified method called importance sampling DMC. Introdu­
cing an estimate WT(r) of the correct solution W0 (r) we define the auxiliary 
function 

f(r, s) =: WT(r) W(r, s) (7.14) 

By inserting this in 7. 3 we find for f ( r, s) the governing equation 

a 1 2 [H wT ] [ 1 12] - = D\1 f- --- ET f- D\1· f"Vln WT as WT 
(7.15) 

The autocatalytic term is now small since 

(7.16) 

The multiplicity K1 will thus remain bounded, making the solution well­
behaved. 
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The last term to the right of equ. 7.15 has the shape of an advective 
contribution. In the suggestive image of a diffusing and procreating bacterial 
strain it now looks as if there were an additional driving force 

F(r) = \7 ln IWT(r)l 2 (7.17) 

creating a flow, or drift. The random walk of the individual diffusors has 
then a preferred direction along F(r), such that 

(7.18) 

instead of 7.11. And the multiplicity Kt is to be determined from 

K1 =exp{[~:T-ETJ~s} (7.19) 

instead of the rule 7.12. All other manipulations described in Fig. 7.1 
remain unaltered. 

A different formulation of the DMC procedure (actually the older one) 
is known as "Green's function Monte Carlo" (GFMC); see, among others, 
[SKINNER 85]. 

Two examples will serve to illustrate the application of the DMC (or 
GFMC) method in research. Whitlock et al. have once again attempted to 
assess the ground state of 4He, aiming at (and achieving) a higher accuracy 
than previous authors [WHITLOCK 79]. Barnett and co-workers studied 
the electron affinity, and thus the chemical reactivity, of fluorine by the 
fixed node variant of the DMC technique [BARNETT 86]. To this end they 
determined the ground state energies ofF and F -, respectively. The energy 
difference ~Eo= 3.45 ± 0.11 eV represents the electron affinity of fluorine. 

7.2 Path Integral Monte Carlo (PIMC) 

Up to now we have only considered the ground state of an isolated quantum 
system. Let us now assume that the object of study is part of a larger 
system having a finite temperature. Then statistical mechanics, in a guise 
appropriate for quantum systems, enters the stage. Feynman's path integral 
formalism has proved particularly useful in this context. 

Since our quantum system is now in contact with a heat bath of tem­
perature kT > 0, it must be in a mixed state consisting of the various 
eigenstates of the energy operator: 

w = LcnWn, where H\lln =En Wn (7.20) 
n 
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The quantum analog of the Boltzmann factor of classical statistical mecha­
nics is the density matrix defined by 

n 

(7.21) 
n 

Writing f3 for 1/kT, we have for the average of some observable a(r), 

(a)= j a(r)p(r,r;f3)dr j j p(r,r;f3)dr = Sp[ap]j Sp[p] (7.22) 

Evidently, the denominator Sp[p] here plays the role of a canonical partition 
function. If we could simply write down p( r, r; (3) for a quantum system, 
the road would be free for a Monte Carlo simulation along the same lines 
as in the classical case. However, the explicit form of the density matrix is 
usually quite complex or even unknown. Somehow we will have to get along 
using only the few simple density matrices we are prepared to handle. 

Let us review, therefore, the explicit forms of the density matrix for two 
very simple models- the free particle and the harmonic oscillator. Just for 
notational simplicity the one-dimensional case will be considered. 

Density matrix for the free particle: Let a particle of mass m be 

confined to a box of length L. (We will eventually let L approach oo.) In 
the absence of an external potential the energy operator reads simply 

n,2 82 

H=----
2m 8x2 

(7.23) 

and considering the normalization of the eigenfunctions over the interval 
[-L/2, L/2] we have 

1 "k \II = -ez nX 
n ~ ' 

with kn = 2~n and E = 1i2 k2 
n 2m n 

Inserting this in the definition of the density matrix we obtain 

Po(x, x'; (3) = L !.e-ikn(x- x') e-f31i2 k?J2m 
n L 

(7.24) 

(7.25) 

In the limit L --+ oo the discrete wave number kn turns into a continuous 
variable k whose differential is approximated by dk ~ ilk = kn+l - kn = 
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21r J L. The sum in p0 may then be written as an integral, such that 

00 

Po(x,xl;/3) = 2~ j e-ik(x- xl) e-f3n2k2j2m dk (7.26) 
-oo 

Thus we find for the density matrix of the free particle 

(7.27) 

The probability for the particle to be located at x, as given by the diagonal 
element p0 (x, x; (3), is obviously independent of x- as it must be for a free 
particle. 

Density matrix for the harmonic oscillator: A particle of mass m may 
now be moving in a harmonic potential well, 

(7.28) 

Again determining the eigenfunctions of the energy operator and inserting 
them in the general expression for the density matrix, we find (see, e.g., 
(KUBO 71]) 

1 mw0 f3nw0 [ ] 
1/2 

p(x, x; {3) = 1rn tanh-2-

{ mwo [ 1 2 1 1 2 f3nwo] } ·exp -'4fi (x + x) tanh2,{3nw0 + (x- x) coth-2- (7.29) 

For the evaluation of statistical-mechanical averages we require solely the 
diagonal elements 

mwo f3nwo mwo f3nwo 
[ ]

1/2 { } 
p(x, x; (3) = 1rn tanh-2-. exp --n-x2 tanh-2- (7.30) 
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The trick in the PIMC method is to express the density matrix of any 
given system in terms of the free particle density 7.27. The following trans­
formation provides an excuse for doing this: 

p(x,x';{3) 
n 

n 

E w~(x) e-f3H/2 J dx"li(x'- x") e-f3H/2wn(x") = 
n 

E w~(x) e-f3H/2 J dx"E Wm(x') w~(x") e-f3H/2wn(x") = 
n m 

= J dx" [~ W~(x) e-f3H/2 Wn(x")] [~ Wm(x") e-f3H/2wm(x')] 

Therefore, 

p(x,x';{3) = j dx"p(x,x"; %)p(x",x'; %) (7.31) 

The expression on the right-hand side is known as a path integral. The 
beauty of it is that the integrand consists of density matrices pertaining to 
{3 /2, i.e. double the original temperature. But the higher the temperature, 
the smaller will the effect of the potential U(x) be- and the more closely 
will the respective factor in the integrand resemble the density matrix of a 
free particle. Might there be a way to iterate this formal procedure, such 
that the remaining high-temperature density matrices may essentially be 
equated to the free particle density p0? 

There is such a way. Writing x0 , Xt, x2 ••• in place of x, x', x", .. . , we 
have the strict relation 

p(xo,xp;f3) = j ... j dx1 dx2 ... dXP-1 p(xo,xt; ~) .. . p(xp_t,xp; ~) (7.32) 

The number P of intermediate steps is called the Trotter number. If we 
only choose P large enough- in practice, between 5 and 100- the following 
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ansatz provides a good approximation to the real thing: 

p(xp, Xp+l; !) = L:w~(xp) e-(,8/ P) [HJree + U(x)] Wn(Xp+I) 
n 

~ L:w~(xp) e-(,8/ P)lf.Jree'lfn(Xp+I)e-(,B/2P) [U(xp) + U(xP+1)] 
n 

(7.33) 

For the diagonal element p( x0 , x0 ; ,B) required to perform averages we find 

p(xo, xo; ,B)= AP/2 j ... j dx1 ... dxP-1 e-,B(Uint + Uext) (7.34) 

with 
P-1 

Uext = L U(xp)j P (7.35) 
p=O 

and 
A1r~ 2 

Uint = -,8 L....J (xp--:- Xp+1) 
p=O 

(7.36) 

Proceeding now to the more relevant case of three dimensions, we have 

p(ro, ro; ,B)= A3P/2 j ... j dr1 ... drP-1 e-,B(Uint + Uext) (7.37) 

with the same A as above, and 

P-1 
Uext = L U(rp)j P, (7.38) 

p=O 

Chandler and Wolynes have pointed out that the expression 7.37 has 
the shape of a classical Boltzmann factor pertaining to a particular kind of 
ring polymer [CHANDLER 81]. The P elements of this polymer are under 
the influence of an external potential 

(7.39) 
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classical quantum mechanical 

Figure 7.2: Classical isomorphism for one particle 

Successive links of the ring chain are coupled together by a harmonic bond 
potential 

(7.40) 

where we have put Xp = x0 • This so-called classical isomorphism is illus­
trated in Figure 7.2. 

It follows that we may play the old classical Monte Carlo game to obtain 
quantum statistical averages. All we have to do is replace a single particle by 
a flexible ring polymer made up of 5- 100 links that are coupled according 
to the pattern just described. The PIMC procedure for one particle in an 
external potential is described in Fig. 7.3. 

The strength of the springs acting between successive elements of the 
polymer, as given by k = Pmj (Pn?, increases with larger Trotter num­
bers, while the influence of the external potential will decrease according to 
Uext(rp) = U(rp)/ P. The forceful springs permit only very small displace­
ments per Monte Carlo step, although the mild variation of Uext(rp) would 
allow much larger strides. 

This dilemma may be solved by first moving the entire ring polymer, 
without changing its shape, by a large random step, and subsequently dis­
placing the individual elements relative to each other by a small amount . 
Another way out is to construct the entire ring polymer anew at each time 
step, sampling the single element positions from the narrow multivariate 
Gauss distribution 

(7.44) 

and to displace the center of mass of the chain by a wide random step. 
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Path integral Monte Carlo for one particle: 

A particle that is under the influence of an external potential U(r) 
is represented by a ring polymer consisting of P links. Let r = 
{ r 0 , ... rp_l} and the according potential energy 

Upot(r) = Uint(r) + Uext(r) (7.41) 

be given, with 

(7.42) 

(7.43) 

1. Displace rasa whole by D.r (large); also, move each link rp by 
a small amount D.rp; the new configuration is called r'. 

2. Compute Upot(r') and D.U = Upot(r') - Upot(r). 

3. Metropolis step: Draw e from an equidistribution in [0, 1]; 
if D.U ~ 0, put r = r'; 
if D.U > 0 and e ~ e-!3 t:.U, put r = r' as well; 
if D.U > 0 and e > e-!3 t:.U, let r remain unchanged. 

4. Return to (1). 

Figure 7.3: PIMC for one particle 
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The preceding considerations may without any difficulty be generalized 
to the case of N particles interacting by a pair potential u(lrj -ril). Each of 
these particles has to be represented by a P-element ring chain. Denoting 
the position of element p in chain (=particle) i by ri,p, we have for the 
diagonal element of the total density matrix 

(7.45) 

with r0 = {r1,0 •.. rN,o}. Obviously, the pair potential acts only between re­
spective links (p) of different chains. 

EXERCISE: Write a PIMC program treating the case of one particle of mass m 

in a two-dimensional oscillator potential U(r) = kr2 /2. Let the Trotter number 
vary between 2 and 10. Determine the positional probability p(r) of the particle 
from the relative frequency of residence at r, averaged over all chain links. Noting 
that 

p(r) = p(r,r;/3) (7.46) 

we would expect for the two-dimensional harmonic oscillator (with w5 = k / m) 

[A] A 2 mw6 f31iwo 
p(r) = 21rr -; e- r , where A= Ttanh-2- (7.47) 

(For convenience, put 1i = 1.) Draw several configurations of the ring polymer 

that occur in the course of the simulation. 

Three examples from recent literature may serve to illustrate the practical 

application of the PIMC method. 
Parrinello and Rahman studied the behavior of a solvated electron in 

molten KCl [PARRINELLO 84]. The physical question here is whether such 

electrons are localized or smeared out in the quantum manner. (Apart from 

the theoretical interest of such !'Jimple quantum systems, solvated electrons 

may serve as spectroscopic probes for the microscopic dynamics in polar 

liquids. And they are an attractive playground for trying out the PIMC 

method.) The simulation yielded the definitive answer that electrons in 

molten KCl are clearly localized. 
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Coker et al. investigated the solvation of electrons in simple fluids, 
in contrast to the molten halogenide studied by Parrinello and Rahman. 
It turns out that an electron in liquid helium will be strongly localized, 
whereas in liquid xenon it has quite an extended positional probability (see 
Fig. 7.4). The probable reason for this behavior is that the atomic shell of 
He is rather rigid and difficult to polarize, resulting in a strong repulsion 
experienced by an extra electron. The solvated particle is therefore sur­
rounded by rigid walls that confine it much like a cage. In contrast, the 
shells of the larger noble gas atoms are easily polarizable, producing a long­
ranged dipole potential that adds up to a flat local potential; the solvated 
electron is therefore "quasi-free" [COKER 87]. 

Zoppi and Neumann studied the properties of solid parahydrogen (see 
[ZoPPI 91]). The kinetic energy contained in the lattice may be measured 
by neutron scattering, but is also accessible to PIMC simulation. The au­
thors found good agreement between experiment and simulation. (Due 
to its small mass, hydrogen is an eminently quantum mechanical system; 
any attempt to calculate the energy along classical or semi-classical lines is 
therefore doomed to failure.) 

7.3 Wave Packet Dynamics (WPD) 

Particles of moderately small mass, such as neon atoms, may not be trea­
ted as point masses, yet do not require a full-fledged quantum mechanical 
treatment. The quantum broadening is small enough to permit simple ap­
proximations. A useful approach is to represent the wave packet describing 
the (fuzzy) position of the atomic center of some particle k by a Gaussian: 

(7.48) 

where the quadratic form Qk is defined by 

Qk(t) [r- Rk(t)f · Ak(t) · [r- Rk(t)] + Pk(t) · [r- Rk(t)] + Dk(t) 
ei(t). Ak(t). ek(t) + Pk(t). ek(t) + nk(t) (7.49) 

The center of the packet, then, is located at Rk(t). The matrix Ak(t) 
describes the momentary shape, size and orientation of the wave packet. 
In the most simple case Ak is scalar, making the wave packet spherically 
symmetric. In general Ak describes an ellipsoidal "cloud" with a typical 
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Figure 7.4: From Coker et al.: solvated electron a) in liquid helium, b) in 
liquid xenon 
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size of about aLJ/10. The vector Pk(t) defines the momentum of the wave 
packet, and Dk(t) is a phase factor that takes care of normalization. 

For easy visualization of the formalism let us consider the one-dimensional 
case. An individual wave packet is described by 

where 

Q(t) 

<P(x, t) = ek Q(t) 

A(t)[x- X(tW + P(t)[x- X(t)] + D(t) 
A(t)e(t) + P(t)e(t) + D(t) 

(7.50) 

(7.51) 

(A and D are in general complex; P is real.) The expectation value of the 
position operator x is then given by 

(</Jixi<P) = j dx x <P*(x, t)<P(x, t) = X(t) (7.52) 

and the expected momentum is 

(<PI- in :x I<P) = ... = P(t) (7.53) 

Thus the given wave packet indeed represents a semiclassical particle located 
at X ( t) and having momentum P( t). 

The assumption of a Gaussian shape for the wave packet has no physical 
foundation. It is made for mathematical convenience, the argument being 
that any approximation that goes beyond the classical assumption of a 
mass point (i.e. a b'-like wave packet) will improve matters. The specific 
advantage of the Gaussian shape as compared to others is that such a wave 
packet, when subjected to the influence of a harmonic potential, will retain 
its Gaussian shape - albeit with parameters A, P and D that may change 
with time. But any continuous potential may be approximated locally by 
a quadratic function, i.e. a harmonic potential. 

The wave function 7.48 describes a single particle. In a system of N 
atoms the complete wave function is often approximated by the product 

N 

w(r, t) = II <Pk(r, t) (7.54) 
k=l 

The effects of exchangeability are thus assumed to be negligible - a safe bet 
when dealing with medium-mass atoms such as neon. 
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We are now ready to solve the time-dependent Schroedinger equation 

'i: 8\lf(r, t) H•T•( ) - 0 
zn at - 'I! r, t - (7.55) 

Following a suggestion of Heller, we apply the minimum principle of Dirac, 
Frenkel, and McLachlan. The DFM principle tells us that the temporal 
evolution of the parameters Ak, Pk, and Dk must occur in such a way that 
the expression 

(7.56) 

will at all times assume its minimum value. 
By applying the tools of variational calculus to this problem, and intro­

ducing the simplifying assumption that Ak = Akl (spherical Gaussian) one 
obtains the following equations of motion for the quantities Ak, Pk, and Dk 
(omitting the particle index k): 

( . 2 2) 2 - [ 31ii P 2 ·] A+ m A (~ ) + (U) + --;:A- 2m+ D 

Pa(~~) + (U~a) 

(A+ !A2) ((e)2)+(Ue)+ [- 3~iA- ~~ +D] (e) = 

Here, ( ... ) denotes an expectation value, and 

uk = E J U(rk!)</>i</>l drl 
I# 

0 (7.57) 

0 (7.58) 

0 (7.59) 

(7.60) 

is the potential created at rk by the "smeared out" particles l. Singer et 
al. recommend to approximate the given pair potential U(r) by a sum of 
Gaussian functions; in this way the right-hand side of 7.60 can be split up 
into a sum of simple definite integrals. 

The above equations (7.57-7.59) may be cast in a more compact form 
by introducing auxiliary variables c, d, and Z according to 

c = ((e)2) - (e)2 

a = (ue)- (u)(e) 
(7.61) 

(7.62) 
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and 
mZ 

A:=--
2Z 
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(7.63) 

With R = P /m, the equations of motion for the position Rand the shape 
parameter Z read 

ROI 
(Uea) 

(7.64) ---
m(e~) 

z 2 d 
(7.65) ---z 

me 

They can be solved using any appropriate integration method, such as the 
St~rmer-Verlet algorithm. 

Singer and Smith applied this procedure to liquid and gaseous neon 
[SINGER 86]. The basic thermodynamic properties could be reproduced in 
good agreement with experimental values. The pair correlation function ex­
hibits a smearing out of its peaks, in qualitative accordance with prediction 
(although rather more pronounced than expected). 

According to quantum mechanical formalism the kinetic energy of the 
wave packets is given by the curvature of <f>k· The shape parameter Ak 
therefore determines the temperature of the system. It turns out that the 
temperature calculated in this manner is always too high if Ak is allowed to 
vary between individual wave packets. Better agreement with experiment is 
obtained by the "semi-frozen" approximation, in which all Ak are taken to 
be equal, changing in unison under the influence of a force that is averaged 
over all. particles. 

7.4 Density Functional Molecular Dynamics 
(DFMD) 

In a pioneering work Car and Parrinello introduced a method that permits a 
veritable dynamical simulation of quantum mechanical systems [CAR 85]. 
In the context of this "ab initio molecular dynamics" technique the only 
tribute to classical mechanics is the application of the Born-Oppenheimer 
approximation. The atomic cores (or "ions") consisting of the nucleus and 
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the inner electronic shells are assumed to move according to classical laws, 
their masses being much larger than the single electron mass. But the 
valence and conduction electrons are represented by wave functions that are 
allowed to assume the configuration of least energy in the momentary field 
created by the ions (and by all other valence and conduction electrons). 
Let wi(r) be the - mutually orthonormalized - wave functions of the N 
electrons. The electron density at some position r is then given by 

N 

n(r) = E lllli(rW (7.66) 
i=l 

The momentary configuration of the (classical) ions is given by the set of 
ionic position vectors, {Rz}. The ions produce a potential field U(r; {Rz}) 
which the electronic wave functions are invited to adjust to. 

The energy of the system depends on the spatially varying electron den­
sity and on the ion potential U( .. . ). To be exact, the expression for the 
total energy is 

(7.67) 

with 

N [ n2 ] "'£:I dr Wi(r) -2m V 2 Wi(r) (7.68) 

j dr U(r; {Rz}) n(r) (7.69) 
v 

~ j j d d , n(r) n(r') 
2 r r lr- r'l 
vv 

(7.70) 

(7.71) 

E 1 gives the kinetic energy of the electrons, and their potential energy 
in the field created by the ions is given by E2. The term E3 accounts 
for the electrostatic interaction between the electrons. Finally, Exc stands 
for "exchange and correlation", representing the contribution of quantum 
mechanical exchange and correlation interactions to the total energy. There 
are various approximate expressions for this latter term. The most simple 
one, which has proved quite satisfactory in this context, is the so-called local 

density approximation (see [CAR 85]). 



Density functional MD 227 

In practical work the wave functions \l!i(r) are usually expanded in terms 
of plane waves, 

wi(r) = L Ci(k)eik. r 
k 

(7. 72) 

with up to several hundred terms per electron. The problem now is to find 
that set of expansion coefficients { Ci(k)}, i.e. those wave functions {Wi}, 
which minimize the energy functional 7.67. Of course, the orthonormality 
condition 

j Wi(r, t) Wj(r, t) dr = 8ij (7.73) 
v 

must be met as well. Application of variational calculus to this problem 
leads to the so-called Kahn-Sham equations [KOHN 65] which may be solved 
by an iterative method. However, this procedure is too slow to permit a 
dynamical simulation. 

For several years now we have been in possession of a powerful and 
efficient method for finding the minimum of a many-variable function: si­
mulated annealing. The original formulation of this technique, as given by 
Kirkpatrick et al. [KIRKPATRICK 83], has been explained in the context of 
the statistical-mechanical Monte Carlo method (see Sec. 6.2.2). It may be 
employed here without alteration. 

However, Car and Parrinello have suggested a variant of simulated an­
nealing that is more in keeping with the spirit of dynamical simulation; they 
called their approach "dynamical simulated annealing": 

Let I" denote an abstract (and at the moment arbitrary) "mass" assigned 
to each electronic wave function Wi. We may then define an equally abstract 
"kinetic energy" pertaining to a temporal change of Wi: 

(7.74) 

The formal analogy to mechanics is pushed even further by the intro­
duction of a Lagrangian 

M 1·12 + 2 L Rl - E( {\l!i}; {Ri}) 
l 

+ ~ ~ Aii [! Wi \l! i - 8ii] 
t J 

(7.75) 

Here M is the ionic mass, and the Lagrange multipliers Aij have been in­
troduced to allow for the conditions 7. 73. Application of the Lagrangian 
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formalism of mechanics yields the "equations of motion" 

(7.76) 

(7. 77) 

Equation 7. 77 describes the classical dynamics of the ions. The first 
equation, however, represents the abstract "motion" in the space of the 
electronic degrees of freedom. If we keep the "temperature" of this motion, 

as given by the "kinetic energy" (J.L/2) E l4-il 2
, small at all times, then the 

electronic subsystem will always remain close to the momentary minimum 
of the energy surface defined by the slowly varying ionic configuration. 

To meet the requirement that the electronic degrees of freedom are to 
adjust quite fast to the varying energy landscape we have to choose the 
abstract mass J.l rather small in comparison to the ionic masses. (A good 
choice is J.l = 1.0 atomic mass unit.) 

If we were to leave the dynamic system 7.76-7.77 to its own devices, the 
electronic degrees of freedom would gradually assume the temperature of 
the ionic motion. To keep the temperature of the Wi small we may either 
rescale all ~ i from time to time or introduce one of the thermostats available 
from statistical-mechanical simulation; see Sec. 6.3.2. 
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Hydrodynamics 

The flow field v(r, t) in a compressible viscous fluid obeys the equation of 
motion 

a alv + \7 . [pvv] + \7 p - f.L \7 . u = 0 (8.1) 

with p, denoting the viscosity, and the N avier-Stokes tensor U defined by 

T 2 
U = \7v + (\7v) - -(\7 · v)I - 3 (8.2) 

(The coefficient in the last term is dependent on dimensionality; in two 
dimensions it is 1 instead of 2/3.) 

This equation contains both advective (hyperbolic, that is) and diffusive 
(parabolic) terms. For small or vanishing viscosity the advective character is 
predominant, while in the viscous case the diffusive terms dominate. In the 
stationary case, i.e. for a 1 at = o, we are dealing with an elliptic equation. 

The Navier-Stokes equation 8.1 is supplemented by the continuity equa-
tion for the mass, 

ap at+ \7. pv = 0 

and by the equation for the conservation of energy, 

where 

ae at + \7. [(e + p)v] = 0 

pv2 
e = pt-+-

2 
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(8.3) 

(8.4) 

(8.5) 
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denotes the energy density ( E ••• internal energy per unit mass of the fluid). 
Finally, an equation of state p = p(p, E) coupling the pressure to density 
and thermal energy is required. 

Equations 8.1-8.4 describe a perplexing multitude of phenomena, and 
it is advisable to stake out smaller sub-areas. If we make the viscosity 
negligible we find instead of 8.1 an equation describing the motion of an 
"ideal fluid" (Section 8.1). The air flow in the vicinity of an aircraft may 
be represented in this way. On the other hand, by taking into account 
the viscosity but neglecting the compressibility we arrive at equations that 
describe the flow of real liquids (Section 8.2). 

Equation 8.1 does not contain the influence of gravity. If we add a term 
pg (g ... acceleration of gravity) the fluid will have a free surface capable 
of carrying waves. To calculate and visualize such phenomena one may use 
the MAC (marker and cell) method (see Section 8.2.3). 

The partial differential equations 8.1-8.4, or their simplified versions, 
may be tackled using the techniques explained in Chapter 5. A quite diffe­
rent approach to numerical hydrodynamics has recently been suggested by 
the study of lattice gas models (see Section 8.3). These are a specific type of 
cellular automata, i.e. 2- or 3-dimensional bit patterns evolving according 
to certain rules. 

8.1 Compressible Flow without Viscosity 

The frictionless flow of a fluid is described by the equations 

ap 
0 (8.6) -+Y'·pv = 

at 
apv Tt + \7 · [pvv] + \7p 0 (8.7) 

ae 
at + \7 . [ ( e + p )v l 0 (8.8) 

In these Eulerian flow equations a laboratory-fixed coordinate system is 
assumed implicitly. The time derivative a I at is to be taken at a fixed point 
in space. However, the properties of a volume element that is moving along 
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with the flowing substance will change according to the Lagrange derivative 

d a - = -+v· \7, 
dt at 

(8.9) 

so that the above equations may alternatively be written in the Lagrange 
form 

dp 

dt 
dv 

p dt 
de 

dt 

-p\7. v 

-\lp 

- ( e + p) \7 p - ( v · \7) p 

-e(\7 · v)- \7 · (pv) 

Using 8.5 the last equation may be cast into the form 

dE p 
- =-- (\7. v) 
dt p 

8.1.1 Explicit Eulerian Methods 

(8.10) 

(8.11) 

(8.12) 

(8.13) 

Euler's equations 8.6-8.8 may always be written in the standard conservative­
advective form that has been discussed at the beginning of Chapter 5: 

with 

ou - ojx - ojy - ojz 
at ax oy az 

PVx 

pv; +p 
' jx = PVyVx 

PVzVx 

(e + p)vx 

pvy 
PVxVy 

' Jy = pv; + p 
PVzVy 

(e + p)vy 

(8.14) 

' Jz = PVyVz 

pv; + p 
(e+p)vz 

(8.15) 

Therefore the whole arsenal of methods given in Chapter 5 for the nume­
rical treatment of conservative-advective equations - Lax, Lax-Wendroff, 
leapfrog - may be invoked to solve equ. 8.14. As a simple example let us 
write down the Lax algorithm for the one-dimensional case (see [PoTTER 80]): 
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Explicit Euler / Lax: 

(8.16) 

ej+l = ~ ( ej+l - ej_1) 

- 2~tx [(ej+l + pj+l) vj+1 - (ej_1 + pj_1) vj_1] (8.18) 

8.1.2 Particle-in-Cell Method (PIC) 

For simplicity we will here consider an ideal gas. Also, at this level we 
want to avoid having to deal with the effects of thermal conductivity. Our 
assumption therefore is that the gas flows so fast that the adiabatic equation 
of state holds. In a moving mass element of the fluid, then, the quotient 
pj p'Y = c will be constant -in other words, its Lagrangian time derivative 
ts zero: ac 

-+v·Vc=O at (8.19) 

Together with 8.6 this yields a continuity equation for the quantity pc, 

a at [pc] + V · [pcv] = 0 (8.20) 

Thus the equations for the inviscid flow of an ideal gas that are to be treated 
by the PIC- (particle in cell-) method read 

~ + V · (pv) - 0 (8.21) 

apv Tt + V · (pvv) -Vp (8.22) 

a at (pc) + V · (pcv) 0 (8.23) 
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With no harm to generality we may consider the two-dimensional case. 
First we discretize the spatial axes to obtain an Eulerian (lab-fixed) lattice 
of cells with side lengths .6-x = .6-y = .6.1. A representation of the local 
density is achieved by filling each cell with a variable number of particles; 
to keep statistical density fluctuations low the number of particles in a cell 
should not be too small. The particles are not meant to represent atoms 
or molecules but "fluid elements" whose properties at time tn are described 
by the vectors 

k = l, ... N (8.24) 

The net properties of the Eulerian cells are then simply sums over the 
particles they contain: 

n 
Pi,i 

N 

(:;)2 E 8 [ri!(i,j)] (8.25) 

N 

= (:;)2 E vl!8 [rl!(i,j)] (8.26) 

N 

(:;)2 E cl!8 [ri!(i,j)] (pc)i,i = (8.27) 

where we have used the short notation 

(8.28) 

To update the cell velocities - the velocities within the cells, that is - we 
write 8.22 in the form 

8v 8p 
p- = -\lp- v-- \1· (pvv) 

8t 8t 
(8.29) 

and for a moment neglect the last two terms on the right hand side. The 
remaining equation describes the effect of the pressure gradient on the cell 
velocities. By discretizing and using the equation of state to evaluate the 
cell pressures Pi,i we obtain the preliminary new values 

n ( n n ) vx,i,j - a Pi+I,j - Pi-l,j 

vn 0 0 - a (P~ 0 - p~ 0 ) y,l,J l,J+l l,J-1 

with 

(8.30) 

(8.31) 

(8.32) 
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Each particle (fluid element) k may now be given a new value of the ve­
locity and of the quantity c. We assume that the particles simply adopt 
the properties pertaining to the Euler cell they inhabit (local equilibrium), 
writing 

vnk+l = v~fl und cn+l = p~ ·f(p~ ·)"~ 
t,J k t,J t,J (8.33) 

Now we attend to the Lagrangian transport terms in equation 8.29. The 
simplest way to account for their effect is to let the fluid particles move along 
with suitable velocities. Defining the time centered cell velocities 

n+l/2 1 [ n+l n ] 
vi,i = 2 vi,j + vi,i (8.34) 

we compute the particle velocities by taking a weighted sum over the adja­
cent Eulerian cells: 

(8.35) 

The weights a(ij) are the overlap areas of a square of side length !:11 centered 
around particle k and the nearest Euler cells (ij). (We have encountered 
this kind of area weighting before, in conjunction with the particle-mesh 
method of 6.5.2; see Fig. 6.9.) With the updated positions 

(8.36) 

and the quantities of equ. 8.33 we have completed the new vector of particle 
properties, u'k+l· A step-by-step description of the PIC method is given in 
Figure 8.1. 

8.1.3 Smoothed Particle Hydrodynamics (SPH) 

The PIC technique is a cross-breed between an Eulerian and a Lagrangian 
method. The velocity change due to pressure gradients is computed using 
a fixed grid of Euler cells, but the transport of momentum and energy is 
treated a la Lagrange, namely by letting the fluid elements (particles) move 
in continuous space. The rationale for switching back and forth between 
the two representations is that equation 8.29 involves a pressure gradient. 
Tradition has it that gradients are most easily evaluated on a regular grid­
see 8.30-8.31. In contrast, the transport of conserved quantities is simulated 
quite naturally using a particle picture - see 8.36. 
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PIC method (2-dimensional): At time tn the state of the fluid is re­
presented by N particles with the property vectors u~ = { r~, v~, c~} 
( k = 1, ... N). In each Eulerian cell of side length !::il there should be 
at least ~ 100 particles. 

1. Compute, for each Euler cell ( i, j), the cell properties 
N 

n Pi,j = ( :;)2 {; b [r~( i, j)] 

m N 

(6.l)2 L v~b[r~(i,j)] 
k=l 

(pv )i,j 

m N 
(6.!)2 {; c~b [r~(i,j)] 

(8.37) 

(8.38) 

(8.39) 

2. Using the equation of state to evaluate cell pressures Pi,j, compute 
new (preliminary) flow velocities according to 

n ( n n ) vx,i,j - a Pi+l,j - Pi-l,j 

n ( n n ) vy,i,j - a Pi,j+l - Pi,j-1 

(8.40) 

(8.41) 

with a = !:it/ 2( !::il)Pi,j. For each fluid particle k we now have vk'+l = 
v'0t1 and cn+l = pn · j(p"'!- ·)"~. 

t,J k t,J t,J 

3. From the time-centered cell velocities v7,j1/2 = [vi,j1 + vf,j J/ 2 com­

pute for each particle k an intermediate velocity 

n+l/2 _ 1 " n+l/2 
v k - (6.!)2 L.J a(ij) v ( ij) 

( ij) 
(8.42) 

using suitable weights a(ij) (see text); calculate new particle positions 

4. Each particle is now given the new state vector 

un+l = {rn+l vn+l cn+l} 
k- k'k'k 

Figure 8.1: Particle-in-cell method 

(8.43) 

(8.44) 
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However, there have been very fruitful attempts to avoid the use of the 
Euler lattice altogether. All information about the state of the moving 
fluid is contained in the vectors Uk (k = 1, ... N), and steps 1 and 2 in 
the PIC method (Fig. 8.1) are really just a methodological detour through 
Euler territory, with the sole purpose of evaluating density and pressure and 
differencing the latter. In principle, it should be possible to determine the 
pressure gradients, and thus the forces acting on the fluid elements, without 
ever leaving the particle picture. 

If we abandon Euler cells we have to provide for some consistent re­
presentation of the spatially continuous fluid density. In the PIC me­
thod the average density within a cell was determined by the number of 
point particles in that cell. Lucy [LUCY 77] and Gingold and Monaghan 
[GINGOLD 77, MONAGHAN 92] pointed out that by loading each particle 
with a spatially extended interpolation kernel one may define an average 
density at any point in space as a sum over the individual contributions. 
Let w(r- ri) denote the interpolation kernel centered around the position 
of particle i ; the estimated density at r is then 

N 

(p(r)) = 2: mi w(r- ri) (8.45) 
i=l 

where mi is the mass of the particle (i.e. the fluid element). More generally, 
any spatially varying property A(r) of the fluid may be represented by its 
"smoothed particle estimate" 

N A(r·) 
(A(r)) = {; mi p(r;) w(r- ri) (8.46) 

(where p(ri) now denotes the average 8.45 taken at the position ri ). The 
function w(s), which by the various authors has been called smoothing, 
broadening, weighting or interpolating kernel, is most conveniently assumed 
to be a Gaussian. In three dimensions, then, 

__ 1 _ _ 82jd2 
w(s)- 7r3/2d3 e (8.4 7) 

with an arbitrary width d. If the width is small, the density interpolant will 
fluctuate rather heavily; if it is too large, the summations cannot be restric­
ted to nearby particles and thus become time-consuming. In practice one 
chooses d such that the average number of neighboring particles spanned by 
the Gaussian is about 5 for two dimensions and 15 in the three-dimensional 
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case. Other functional forms than the Gaussian are possible and sometimes 
even lead to better results. 

We return now to the Lagrangian equations of motion for mass, mo­
mentum and energy, equs. 8.10, 8.11 and 8.13, and try to rewrite them 
consistently in smoothed particle form. In keeping with the somewhat in­
tuitive character of the SPH method, various ways of defining the quantity 
A(r) to be interpolated according to 8.46 have been tried out. For in­
stance, in the momentum equation dv I dt = -\7 pIp one might interpolate 
p and \7 p directly, inserting the results on the right hand side. It turns 
out that this procedure would not conserve linear and angular momentum 
[MONAGHAN 92]. Instead, one uses the identity 

~ \lp = v (E) +E. \7 P 
p p p2 

(8.48) 

and the SPH expressions for A = PIp and A = p to write the velocity 
equation as 

(8.49) 

with Wik = w(rik) = w(rk - ri)· If Wik is Gaussian, this equation describes 
the motion of particle i under the influence of central pair forces 

( Pk Pi) 2rik 
Fik = -mimk 2 + 2 -d2 Wik 

Pk Pi 
(8.50) 

Similar considerations lead to the SPH equivalents of the other Lagrangian 
flow equations, 

dp· N 
-' = """"'mk v·k · \l·w·k dt L..... • • • 

k=l 

(8.51) 

where Vik = Vk- vi, and 

dEi N 
-=-l:mk 
dt k=l 

(8.52) 

The equation of motion for the density p need not be integrated. Instead, 
equ. 8.45 may be invoked to find and estimate for the density at ri once 
all particle positions are known. Note that in addition to Pi, Vi and Ei the 
position ri must also be updated to complete a time step cycle. The obvious 
relation 

dri 
--v· dt - • (8.53) 
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may be used, but Monaghan has shown that the less obvious formula 

dri N mk 
- = Vi + L -=-Vik Wik 
dt k=t Pik 

(8.54) 

with Pik = (Pi+ Pk)/2 leaves angular and linear momentum conservation 
intact while offering the advantage that nearby particles will have similar 
velocities [MONAGHAN 89]. 

Equations 8.51, 8.49, 8.53 and 8.52 may be solved simultaneously by 
some suitable algorithm (see Chapter 4). The leapfrog algorithm has often 
been applied, but the use of predictor-corrector and Runge-Kutta schemes 
has also been reported. One out of many possible integration procedures is 
the following variant of the half-step technique ([MONAGHAN 89]): 

Given all particle positions at time tn, the local density at ri is computed 
from the interpolation formula 8.45. Writing equs. 8.49 and 8.52 as 

the predictors 

and 

dvi _ F· 
dt - t 

and dEi - Q· 
dt - t 

v~+l = v~ + ~t F~ E~+l = E~ + ~t Q~ 
I I t l I I t 

r~+l = r~ +~tv~ 
I I I 

(8.55) 

(8.56) 

(8.57) 

are calculated. Mid-point values of ri, Vi and Ei are determined according 
to 

r~+t/2 = (ri + ri'+t) /2 (8.58) 

etc. From these, mid-point values of Pi, Fi and Qi are computed and inserted 
in correctors of the type 

(8.59) 

Note that the equation of motion for the density, equ. 8.51, is not inte­
grated numerically. Using the interpolation formula for p takes somewhat 
longer, since the summation in 8.45 has to be performed separately, but 
mass conservation is better fulfilled than by integrating 8.51. 

Figure 8.2 gives an overview of one time step in a basic version of the 
SPH procedure. 

It should be noted that the SPH technique, although it is here dis­
cussed in conjunction with compressible in viscid flow, may be applied to 
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other flow problems as well. Incompressibility may be handled by using 
an equation of state that keeps compressibility effects below a few percent 
[MONAGHAN 92), and the influence of viscosity is best accounted for by 
an additional term in the equations of motions for momentum and energy, 
equs. 8.49 and 8.52, thus: 

The artificial viscosity term II;k is modeled in the following way: 

{ 
-o:c;kf/,~k + f3ft;k 

IT;k = Pik 
0 

if v;k · r;k < 0 

with c denoting the speed of sound, ft defined by 

(v;k · r;k) d 
f/,ik = 2 + 2 

rik rt 

(8.60) 

(8.61) 

(8.62) 

(8.63) 

and the conventions a;k = ak-a; and a;k = (a;+ ak)/2. This form of II 
takes care of the effects of shear and bulk viscosity. The parameters o: and 
j3 are not critical, but should be near o: = 1 and j3 = 2 for best results 
[MONAGHAN 92]. The quantity rt prevents singularities for r;k ~ 0. It 
should be chosen according to ry 2 = O.Old2 • 

Another physical feature that has been excluded from our discussion but 
may be treated in the framework of SPH is thermal conduction. A suitable 
term representing the exchange of thermal energy between particles is given 
in [MONAGHAN 89]. 

8.2 Incompressible Flow with Viscosity 

Assuming dpjdt = 0 in 8.3 we find 

\?·v=O (8.69) 

The flow of an incompressible liquid is necessarily source-free. Furthermore, 
8.69 implies that 

(8.70) 
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Smoothed particle hydrodynamics: At time tn the state of the fluid 
is represented by N particles with masses mi and the property vectors 
uf = { rf, vf, Ef} ( i = 1, ... N). (In the case of an ideal gas under­
going adiabatic flow, the specific energy E may be replaced by c = pf p"~ 
= E('y- 1)/p"~- 1 ). A suitable interpolation kernel is assumed, e.g. w(s) = 
(1j1r3l 2d3 )exp{ -s2 / d2}, with the width d chosen so as to span about 5 (in 
2 dimensions) or 15 (3-d) neighbors. 

1. At each particle position ri the density Pi is computed by interpola­

tion: 
N 

Pi= L mk w(rik) (8.64) 
k=l 

2. From the given equation of state p = p(p, E) compute the pressures 

Pi = p(pi, Ei). 

3. Integrate the equations of motion 

dri 
dt 

dvi 
dt 

= Vi (or equ. 8.54) (8.65) 

(8.66) 

(8.67) 

over one time step by some suitable integrator (Runge-Kutta, or the 
simple procedure 8.55-8.59) to obtain 

u~+l = {r~+t v~+t E~+t} 
I - t ' t ' t 

i = 1, ... N (8.68) 

A modification of this scheme is obtained by including the density Pi in 

the state vector of particle i and integrating the pertinent equation of 

motion, 8.51. The time step integrations for r, v, p and E may then be 

performed simultaneously, and the evaluation of the density according to 

8.64 is omitted. This procedure works faster, but exact mass conservation 

is not guaranteed. 

Figure 8.2: Smoothed particle hydrodynamics (SPH) 



8.2 Incompressible viscous flow 

so that the N avier-Stokes equation now assumes the form 

av at + (v. V')v = - \i'p + v\72v 

with v = J.L/p and p = pfp. 
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(8.71) 

The two classic techniques for the numerical treatment of 8.69 and 8. 71 
are the vorticity and the pressure method. 

8.2.1 Vorticity Method 

Taking the rotation of equ. 8. 71 we obtain 

aw at + (v. V')w = v\72w (8.72) 

where we have introduced the vorticity w = \7 x v. We can see that the 
vorticity is transported both by an advective process ( V· \7 w) and by viscous 
diffusion. 

Since the velocity has no divergence it may be written as the rotation 
of a streaming function u. The definition 

v:=V'xu (8. 73) 

does not determine the function u uniquely; we are free to require that 
\7 ·U = 0. Thus the relations that provide the starting point for the vorticity 
method read 

aw - + (v· V')w at (8.74) 

(8. 75) 
(8.76) 

In the two-dimensional case the vectors u and w have only z-components 
and may be treated as pseudoscalars: 

aw 
v\72w - ( vxay - vyax) W (8.77) 

at 
\72u -w (8.78) 

u\7 X ez = ( a,u ) (8.79) v 
-8xu 
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The proven numerical method for solving these equations, a modification of 
the Lax-Wendroff scheme, is described in Figure 8.3. The stability of the 
method is once more governed by the CFL condition (see Section 5.1), 

In addition, the presence of diffusive terms implies the restriction 

A (~1)2 
u.t<-­- v 

8.2.2 Pressure Method 

(8.80) 

(8.81) 

Going back to the N avier-Stokes equation for incompressible flow, we now 
take the divergence (instead of rotation) of 8.71 and use the identity 

V' · (v · V') v = (V'v) : (V'v) 

(with A: B = ~i ~i AijBji) to obtain the set of equations 

av at + (v. V')v = - V'p + vV'2v 

V'2p = -(V'v) : (V'v) 

which provide the basis for the pressure method. 
In the two-dimensional case these equations read 

avx _ ap + V [a2vx + a2vx ]- av; _ avxVy 
at ax ox2 oy2 ox oy 

OVy 
= - Op + v [o2vy + o2vy ]- ov;- OVxVy 

ot oy ox2 oy2 oy ox 

(8.89) 

(8.90) 

(8.91) 

(8.92) 

(8.93) 

o2- o2-
- [ ( ~: )' + 2 ( ~) ( ~~) + ( ~~ )'] ___E_+___E_ (8.94) ox2 oy2 

When attempting to solve these equations by a finite difference scheme 
we have to make sure that the divergence condition V' · v = 0 will stay 
intact in the course of the calculation. To achieve this, Harlow and Welch 
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Vorticity method (2-dimensional): 

Let the flow field at time tn be given by uf,j and wf.j· For simplicity, let 
b.y = b.x = b.l. 

1. Auxiliary quantities: 

(8.82) 

(8.83) 

(8.84) 

etc., for the 4 lattice points nearest to ( i, j). Thus the viscous terms 
are being neglected for the time being (compare 8. 7 4). 

2. From the Poisson equation 8. 75 the streaming function is also de­
termined at half-step time, using diagonal differencing (see Section 
1.3): 

n+l/2 n+l/2 n+l/2 n n+l/2 _ n+1/2( A 1)2 
ui,j+1 + ui,j-1 + ui+2,j+l + ui+2,j-1 - 4ui+1,j - -wi+l,j u 

(8.85) 

3. Now follows the integration step proper, the viscous term included: 

n+1/2 v .. 
x,z,J 

n+l/2 v .. 
y,z,J 

1 ( n+1/2 n+l/2) 
2!:!.1 ui,j+1 - ui,j-1 

1 ( n+l/2 n+1/2) 
- 2!:!.1 ui+1,j - ui-1,j 

Figure 8.3: Vorticity method 

(8.86) 

(8.87) 
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Figure 8.4: Grid structure in the pressure method 

have suggested the following kind of discretization ([HARLOW 65], see also 
[POTTER 80]). 

The grid values of the pressure Pi,j are taken to be localized at the centers 
of the Euler cells, while the velocity components Vx,i,j and Vy,i,j are placed 
at the right and upper box sides, respectively (see Fig. 8.4). The divergence 
of the velocity is then approximated by 

1 1 
Di,j = !:11 [vx,i,j - Vx,i-l,j] + !:11 [vy,i,j - Vy,i,j-1] (8.95) 

or, in "geographical" notation, 

1 1 
De = !:11 [vx,e - Vx,w] + !:11 [vy,c - Vy,s] (8.96) 

The requirement of vanishing divergence then reads simply De = 0. 
Using this staggered grid, the Navier-Stokes equations 8.92-8.93 are now 

treated a la Lax (all terms on the right hand side having the time index n): 

n+l _ 1 [ ] f1t [ 2 2 ] 
Vx,C - 4 Vx,N + Vx,E + Vx,S + Vx,W - 2f11 Vx,E - Vx,W 

!:1t [1 1 ] 
- 2f:1[ 2 ( Vy,E + Vy,e) ( Vx,N + Vx,C) - 2 ( Vy,S + Vy,SE) ( Vx,S + Vx,C) 

!:1t vl1t 
- !:11 (PE - Pe) + (!:11)2 ( Vx,N + Vx,E + Vx,S + Vx,W - 4vx,c) (8.97) 



8.2 Incompressible viscous flow 245 

v;,tl = ~ [vy,N + Vy,E + Vy,S + Vy,W]- 2~[ [v;,N- v;,s] 

!1t [1 1 ] - 2111 2 ( Vx,N + Vx,C) ( Vy,E + Vy,C) - 2 ( Vx,NW + Vx,W) ( Vy,W + Vy,C) 

!1t v!1t 
- /1[ (fiN- fie)+ (f1l) 2 (vy,N + Vy,E + Vy,S + Vy,W- 4vy,c) (8.98) 

Inserting the new velocity components in 8.96 we find 

Dn+t - 1 (Dn Dn Dn Dn ) !1t sn 
C - 4 N + E + S + W - 2( /11)2 C 

!1t 
- (!1l)2 (fif{ + fi1E + fis + fiw- 4fic) 

+ (:tz;2 (DN +DE;+ D8 + Dw- 4Dc) (8.99) 

with 

Sa = ( v;,E - v;,c- v;,w + v;,ww) + ( v;,N - v;,c - v;,s + v;,ss) 
1 1 +2 ( Vy,E + Vy,C) ( Vx,N + Vx,C)- 2 ( Vy,S + Vy,SE) ( Vx,S + Vx,C) 

1 1 -2 ( Vx,NW + Vx,W) ( Vy,C + Vy,W) + 2 ( Vx,W + Vx,SW) ( Vy,ES + Vy,SW) (8.100) 

Next we have to solve the Poisson equation 8.94. If the methods for 
doing this were without error, and if indeed all Di,i and nr,·_tt were zero, we 
could simply write 

fiN +fiE + fis + fiw - 4fi = -So (8.101) 

to compute the pressures at each time step. The Lax method by which we 
have produced the new velocities is conservative, meaning that (disregarding 
machine errors) it would fulfill the condition Df.i = 0 at all times. However, 
the Poisson solver introduces an error in pi,'Jl which makes Di,j1 depart 
from zero. To balance this we take into account these non-vanishing values 
of the divergence at time tn+l and write in place of 8.101 

(!11)2 
fiN+ fiE+ fis + fiw- 4fic = -So+ 411t (DN +DE+ Ds + Dw) 

+v (DN +DE+ Ds + Dw- 4Dc) (8.102) 
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In this manner we can prevent a gradual accumulation of errors which would 
produce spurious compressibility effects in the flow. 

For the pressure method to be stable, once again the conditions 

fl.t < fl.l 
- J21vlmax 

must be met. 

and fl.t < ! (fl.l)2 

- 2 v (8.103) 

8.2.3 Free Surfaces: Marker-and-Cell Method (MAC) 

Thus far we have assumed the liquid to reach up to the vessel walls at all 
sides. A barytropic liquid, however, is capable of spontaneously forming 
a free surface as a boundary against the "vacuum". In the MAC (marker 
and cell) method appropriate boundary conditions are introduced to handle 
such an open surface. The "marker" particles, which primarily serve to 
distinguish between liquid-filled and empty Euler cells, may also be utilized 
for the graphical representation of the shape of the liquid surface. 

To integrate the hydrodynamic equations 

av 
at 

V'. v 

-V'p- (v · V')v + vV'2v + g 

0 

(8.104) 

(8.105) 

one makes use of any of the foregoing techniques - the pressure method 
seems most popular in this context. However, each Euler cell now contains 
marker particles moving along according to the simple law rn+l = rn+vn fl.t, 
where vn is a particle velocity whose value is determined by interpolation, 
with suitable weights, from the velocities Vx, Vy in the adjacent Euler cells 
[HARLOW 65]. 

The salient point here is the treatment of the Eulerian cells that con­
stitute the free surface. There are four possible types of such interfacial 
cells. Figure 8.5 shows these four kinds of cells and the respective boundary 
conditions pertaining to the velocity components vx, vy. The boundary con­
ditions for the pressure are the same in all cases: p = Pvac, where Pvac is the 
"external" pressure in the empty Euler cells. 

8.3 Cellular Automata and Hydrodynamics 

Cellular automata are one- or two-dimensional bit patterns that evolve in 
(discrete) time according to certain simple rules. The classic example is 
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vy,N=vy,s 
N V.,,w = Vx,E 

w c E 

s s 

n+l_ n 
Vx,w-Vx,W 

N Vy, =vy.s N n+l n 
V x,E = y :ac,E 

w c E w c E 

s n+l _ o 
Vx,w - Vx,W s n+J n 

v y,N = v y, +g~t 

n+J= n +g~t 
vy,s vy,s 

n+l _ n 
V x , E -V x,E 

Figure 8.5: MAC method: the 4 types of surface cells and the appropriate 
boundary conditions for vx, vy (see POTTER) 

provided by John H. Conway's famous computer game "Life", in which 
each pixel on a screen is to be set or erased depending on the status of 
the neighboring pixels [EIGEN 82]. Informatics [WOLFRAM 86], evolution 
theory, and the mathematical theory of complexity [WOLFRAM 84] were 
quick to acquire this discretized representation of reality for their respective 
purposes. The following more physical application is just a kind of footnote 
to the broad theme of cellular automata. 

Hardy, Pomeau and de Pazzis were the first to suggest a model repre­
senting a two-dimensional flow field in terms of bit patterns. Their "HPP 
model" works as follows [HARDY 73]: 

A two-dimensional region is once more depicted by a grid of Eulerian 
cells, or "points". Each grid point ( i, j) may be populated by up to four 
"particles" whose velocities must point into different directions of the com­
pass. The absolute value of the velocity is always v = 1. 

Thus the number of possible "states" of a grid point is 24 = 16. An 
economical way to describe the state of the grid point ( i, j) is to define a 4-bit 
(or half-byte) computer word ai,j representing the "empty" or "full" status 
of the compass directions E,N,W,S by one bit each (see Fig. 8.6). However, 
in many applications it is advantageous to combine the bits referring to the 
same direction at several successive grid points into one computer word. 
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0 0 0 

en w s 
a11 = [ 1 1 0 1 ] . 

Figure 8.6: HPP model 

eo no Wo So et nt wt st 

e2 n2 w2 s2 . . . 

. . . . . . 
. . . 

e3o n3o W3o S3o e3t n3t W31 S31 

Figure 8.7: Storage methods in the HPP model 

For example, in a 16 x 16 grid each compass direction would be described 
by a set of 32 words of 1 byte each (see Fig. 8. 7). 

The state of the entire grid at time tn+l follows from the configuration at 
time tn according to a deterministic rule which is comprised of two substeps, 
free flight and scattering. In the free flight phase each particle moves on 
by one vertex in its direction of flight. In the example of Figure 8. 7 each 
"north" bit in the second row (i.e. the bits in words n 2 and n3 ), if it had 
value 1, would be reset to 0, while the respective bit above (in words n0 and 
n1 ) would be set to 1. Similar translations take place for the bit elements 
of the "south" words, while the 1-bits within the "east" and "west" words 
are right- and left-shifted, respectively, by one position. 

In most programming languages logical operations may be performed 
not only with logical variables consisting of single bits, but also with byte­
words or even integers made up of several bytes. In the above example the 
new word n~ could be computed as 

(8.106) 
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Figure 8.8: Scattering law for the HPP model 

with V denoting the bitwise or-operation. 
Analogous commands apply to the s-words. The compass directions e 

and w have to be handled, with this storing arrangement, in a bit-by-bit 
manner. However, nothing prevents us from combining the east and west 
bits column-wise; the translation may then be formulated as simply, and 
computed as speedily, as for north and south. 

Obviously, one has to invent some plausible procedure for those bits 
that encounter any of the boundaries; there may be a law of reflection, or a 
periodic boundary type rule. For example, if the grid is meant to describe 
the flow field in the interior of a horizontal tube, it will make sense to decree 
that all n-bits in the top row are to be transformed into s-bits before the 
translation takes place: this is reflection. At the left and right borders one 
may assume periodic boundary conditions. Reflection laws may also be used 
to outline the shapes of any obstacles that may be present within the flow 
regwn. 

Periodic boundary conditions will preserve momentum and energy ex­
actly, while in the presence of reflexion the conservation laws can hold only 
on the average. 

Now for the second step, scattering. If after the translation step a grid 
point is inhabited by two particles, its state is changed according to the 
rule depicted in Fig. 8.8. In all other cases the state remains unaltered. 
Momentum and energy are conserved by this scattering rule. We may write 
the HPP scattering rule in a concise, computer-adapted way as follows: 

a~.i = { e EB u, n EB u, w EB u, s EB u} (8.107) 

where ai,j = { e, n, w, s} is the state of grid point ( i, j) before scattering (but 
after translation), and 

u = [(e EB n) 0 (wEBs)] 0 [e EB (•w)] (8.108) 

By 8, E9 and ..., we denote the logical operators and, exclusive or, and not. 
( E9 differs from V in that 1 EB 1 = 0.) Instead of using these operators (and 
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<P ·I· . X . <P + .. • 
~ ~ 

. \. ~ 

~· #·r. I. #·A· 
Figure 8.9: Scattering rules in the FHP model 

the respective computer commands) one may store the set of scattering 
rules in terms of a lookup table. 

Primitive as this model may seem when compared to the usual des­
cription of the flow field, it proves to be quite relevant for hydrodynamics 
[FRISCH 86, WOLFRAM 86B]. The momentary population number at a grid 
point defines a density at that position, and the sum of velocities at ( i, j) 
may be interpreted as a local velocity density in a fluid. By analyzing the 
foregoing "rules of the game" in a spatially and temporally coarse-grained 
manner one obtains for the averaged dynamics of mass and velocity very 
suggestive formulae that closely resemble the continuity and N a vier-Stokes 
equations. The important practical point is that in simulating a system by 
the above rules only logical operations between logical or integer variables 
need be performed. Such calculations are much faster than the floating 
point operations needed for integrating differential equations. 

The still rather crude HPP model may he improved by the introduc­
tion of hexagonal cells in place of the simple quadratic lattice. In this 
"FHP model", thus named after the authors Frisch, Hasslacher, and Pomeau 
[FRISCH 86], there are six possible flight directions per grid point - and an 
accordingly larger number of scattering rules (see Figure 8.9). Further re­
finements of the model make allowance for the possibility of particles at 
rest, which makes for a still richer microdynamics. There are also attempts 
at defining and applying three-dimensional CA models [D'HUMIERES]. 

It should be noted that in the basic HPP and FHP models the particles 
lose their identity in the process of scattering (see Figs. 8.8). It seems 
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therefore that one cannot determine single particle properties, like velocity 
autocorrelations, by such simulations. However, it is always possible to 
"tag" some particles and augment the scattering law in such a way that in 
each scattering process the tags are passed on in a unique (be it random or 
deterministic) manner. 

D. Frenkel has used such a procedure to study the long time behavior of 
the velocity autocorrelation function [FRENKEL 90, ERNST 91]. This is a 
molecular property all right, but at long times it will certainly be governed 
by hydrodynamic effects. It is a well underpinned tenet of kinetic theory 
that the "long time tail" of the velocity ACF should decay as ex rd/2, where 
dis the spatial dimension (2 or 3). However, the usual molecular dynamics 
simulations are not well suited to accurately study details of the long time 
behavior. By a two-dimensional FHP simulation, in contrast, Frenkel et al. 
were able to produce unequivocal proof for the expected t-1 decay. 
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Appendix A 

Machine Errors 

This book is about algorithms, not machines. Nevertheless we will here 
display a few basic truths about the internal representation of numbers in 
computers. Keeping in mind such details often helps to keep the ubiquitous 
roundoff errors small. 

In a generic 32-bit machine a real number is stored as follows: 

I ± I e (exponent; 8 bits) I m (mantissa; 23 bits) I 
or, in a more usual notation, 

x = ±m. 2e- eo 

• The mantissa m is normalized, i.e. shifted to the left as far as possible, 
such that there is a 1 in the first position; each left-shift by one position 
makes the exponent e smaller by 1. (Since the leftmost bit of m is then 
known to be 1, it need not be stored at all, permitting one further left­
shift and a corresponding gain in accuracy; m then has an effective 
length of 24 bits.) 

• The bias e0 is a fixed, machine-specific integer number to be added to 
the "actual" exponent e- e0 , such that the stored exponent e remains 
positive. 

EXAMPLE: With a bias of e0 = 151 (and keeping the high-end bit ofthe mantissa) 
the internal representation of the number 0.25 is, using 1/4 = (1· 222 ). 2-24 and 
-24 + 151 = 127, 

255 
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1 
I + I 121 1 1 o o ... o o 1 -

4 

Before any addition or subtraction the exponents of the two arguments must 
be equalized; to this end the smaller exponent is increased, and the respec­
tive mantissa is right-shifted (decreased). All bits of the mantissa that are 
thus being "expelled" at the right end are lost for the accuracy of the result. 
The resulting error is called roundoff error. By machine accuracy we denote 
the smallest number that, when added to 1.0, produces a result =f. 1.0. In 
the above example the number 2-22 = 2.38 ·10-7 , when added to 1.0, would 
just produce a result =f. 1.0, while the next smaller representable number 
2-23 = 1.19 · 10-7 would leave not a rack behind: 

1.0 1 + 1129 11 o o ... o o 1 

+2-22 1 + 1101 11 o o ... o o 1 

- 1 + 1129 11 o o ... o 1 1 

but 

1.0 1 + 1129 11 o o ... o o 1 

+2-23 1 + 1106 11 o o ... o o 1 

1 + 1129 11 o o ... o o 1 

A particularly dangerous situation arises when two almost equal numbers 
have to be subtracted. Such a case is depicted in Figure A.l. In the last 
(normalization) step the mantissa is arbitrarily filled up by zeros; the un­
certainty of the result is 50%. 

There is an everyday task in which such small differences may arise: 
solving the quadratic equation ax2 + bx + c = 0. The usual formula 

-b±vb2 -4ac 
X1,2 = 2a 

(A.1) 

will yield inaccurate results whenever ac < < b2 • Since in writing a program 



I + I 35 I 11 1. . . 111 1 

1 + 1 35 1 11 1. . . 11 o 1 
I + I 35 I o o o . . . o o 1 I 

= I + 114 11 o o ... o o o 1 

Figure A.1: Subtraction of two almost equal numbers 
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one must always provide for the worst possible case, it is recommended to 
use the equivalent but less error-prone formula 

with 

q 
X1 =-, 

a 

c 
X2 =-

q 

1 
q = -2 [b + sgn(b) ..)b2 - 4ac] 

(A.2) 

(A.3) 

EXERCISE: Assess the machine accuracy of your computer by trying various ne­
gative powers of 2, each time adding and subtracting the number 1.0 and checking 
whether the result is zero. 



Appendix B 

Discrete Fourier 
Transformation 

B.l Fundamentals 

We are using the convention 

00 00 

](v) = j f(t) e21rivt dt, f(t) = j ](v) e-21rivt dv (B.1) 
-oo -oo 

Assume that the function f(t) is given only at discrete, equidistant values 
of its argument: 

fk = f(tk) = f(k.6.t) k = ... - 2,-1,0,1,2,... (B.2) 

The reciprocal value of the time increment .6.t is called sampling rate. The 
higher the sampling rate, the more details of the given function f(t) will be 
captured by the table of discrete values fk· This intuitively evident fact is 
put in quantitative terms by Nyquist's theorem: if the Fourier spectrum of 
f(t), 

00 

](v) = j f(t)e21l'ivtdt (B.3) 
-oo 

is negligible for frequencies beyond the critical (or Nyquist) frequency 

1 
±vo=±-

2.6.t 
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(B.4) 



260 Appendix B Discret'e Fourier transformation 

then f(t) is called a band-limited process. Such a process is completely 
determined by its sampled values fk· The formula that permits the recon­
struction of f(t) from the sampled data reads 

f(t) = f: /k sin[27rllo(t- kilt)] 
k=-oo 27l"llo(t- kilt) 

(B.5) 

(In contrast, if f(t) is not band-limited, sampling with finite time resolution 
results in "mirroring in" the outlying parts of the spectrum from beyond 
±llo, superposing them on the correct spectrum. In signal processing this 
effect is known as "aliasing".) 

Let us assume now that a finite set of sampled values is given: 

fk, k = 0, 1, ... N - 1 (B.6) 

and let N be an even number. Define discrete frequencies by 

n N N 
lin= N ilt' n = -2, · · · 'O, · .. '2 (B.7) 

(The lin pertaining ton= N/2 is again the Nyquist frequency.) Then the 
Fourier transform of f(t) at some frequency lin is given by 

N-1 . N-1 . 
}(lin)~ ilt L fke27l"Zllntk = ilt L fke27l"zkn/N (B.8) 

k=O k=O 

Thus it makes sense to define the discrete Fourier transform as 

N-1 
Fn = L fke27l"ikn/N (B.9) 

k=O 

with N even, and n = 0, ±1, ... , N/2 

According to B.8 the Fourier transform proper is just }(lin) ~ ilt Fn. 
From the definition of Fn it follows that F_n = FN-n· We make use 

of this periodicity to renumber the Fn such that n runs from 0 to N - 1 
(instead of -N/2 to N/2): 

_N _!:L + 1 
2' 2 ' 

0, -1 

==> 0, ~- 1, ±~, ~ + 1, N -1 
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With this indexing convention the back transformation may be conveniently 
written 

(B.10) 

B.2 Fast Fourier Transform (FFT) 

If we were to use the definition B.9 "as is" to calculate the discrete Fou­
rier transform, we would have to perform some N 2 operations. Cooley and 
Tukey (and before them Danielson and Lanczos; see [PRESS 86]) have de­
monstrated how, by smart handling of data, the number of operations may 
be pushed down to~ N log2 N. Note that for N = 1000 this is an accelera­
tion of 100 : 1. Indeed, many algorithms of modern computational physics 
hinge on this possibility of rapidly transforming back and forth long tables 
of function values. 

In the following it is always assumed that N =2m. If N is not a power 
of 2, simply "pad" the table, putting fk = 0 up to the next useful table 
length. Defining 

(B.ll) 

we realize that w~ = w N /2 etc. The discrete Fourier transform is therefore 

N-1 

FN = E W,Vk!k 
k=O 
N/2-1 N/2-1 

= E W,V~d21 + w,v E W,V~d21+I 
1=0 1=0 

(B.12) 

(B.13) 

(B.14) 

where the indices e and o stand for "even" and "odd". Next we treat each 
of the two terms to the right of B.14 by the same pattern, finding 

pe pee + wn peo 
n n N/2 n 

po = poe + wn poo 
n n N/2 n 

(B.15) 

(B.16) 

By iterating this procedure m = log2 N times we finally arrive at terms F~ ... ) 
that are identical to the given table values fk. 
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EXAMPLE: Putting N = 4 we have W4 := exp[21ri/4] and 

3 

Fn = L:w;k!k n = 0, ... 3 
k=O 

1 1 

L W21 hz + w; L:W21 h1+1 
l=O l=O 

F~ + W,r'F~ 

p~e + W2 p~o + W,r' [ p~e + W2 p~o] 
fo + W2 h + w; [It + W2 hl 

(B.17) 

(B.18) 

(B.19) 

(B.20) 

(B.21) 

Thus the correspondence between the table values fk and the terms p~e etc. is 
as follows: 

ee eo 
0 2 

oe 
1 

00 

3 

EXERCISE: Demonstrate that a similar analysis as above leads for N = 8 to the 
correspondences 

eee 
0 

eeo 
4 

eoe 
2 

eoo 
6 

oee 
1 

oeo 
5 

ooe 
3 

000 

7 

It is easy to see that this correspondence is reproduced by the following 
rule: 1) put e +-+ 0 and o +-+ 1, such that eeo +-+ 001 etc.; 2) reverse the bit 
pattern thus obtained and interpret the result as an integer number: eeo +-+ 

001 +-+ 100 = 4. In other words, arrange the table values fk in bit-reversed 
order. (For example, k = 4 is at position 1 since 4 = 100--+ 001 = 1.) 

The correctly arranged fk are now combined in pairs according to B.21. 
The rule to follow in performing this "decimation" step is sketched in Fig. 
B.l. On each level (m) the terms a, bare combined according to 

(B.22) 

It is evident that the number of operations is of order N log2 N. 
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0 4 2 6 1 5 3 7 
m= 1 a b a b a b a b 

______.. ______.. ______.. ______.. 
m=2 a b a b 

m=3 a b 

Figure B.1: Decimation for N = 8 

Further details of the method, plus sample programs in Pascal, Fortran, 
or Care given in [PRESS 86]. 

EXERCISE: Sketch the pattern of Figure B.l for N = 4 and perform the "decima­
tion". Compare your result to equ. B.21. 
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