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Preface

Just over twenty years ago I made what at first seemed like a small

discovery: a computer experiment of mine showed something I did not

expect. But the more I investigated, the more I realized that what I had

seen was the beginning of a crack in the very foundations of existing

science, and a first clue towards a whole new kind of science.

This book is the culmination of nearly twenty years of work that

I have done to develop that new kind of science. I had never expected it

would take anything like as long, but I have discovered vastly more

than I ever thought possible, and in fact what I have done now touches

almost every existing area of science, and quite a bit besides.

In the early years, I did as I had done before as a scientist, and

published accounts of my ongoing work in the scientific literature. But

although what I wrote seemed to be very well received, I gradually came

to realize that technical papers scattered across the journals of all sorts

of fields could never successfully communicate the kind of major new

intellectual structure that I seemed to be beginning to build.

So I resolved just to keep working quietly until I had finished, and

was ready to present everything in a single coherent way. Fifteen years

later this book is the result. And with it my hope is to share what I have

done with as wide a range of scientists and non-scientists as possible.

In modern times it has been almost unheard of for genuinely new

science to be presented for the first time in a book that can be read by

non-scientists. For progress in science has mostly tended to take place

ix



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

x

in small steps that cannot reasonably be explained without relying on

specialized technical knowledge of what has gone before.

But to develop the new kind of science that I describe in this book I

have had no choice but to take several large steps at once, and in doing so

I have mostly ended up having to start from scratch—with new ideas and

new methods that ultimately depend very little on what has gone before.

In some ways it might have been easier for me to present what I

have done in some kind of new technical formalism. But instead I have

chosen to spend the effort to take things to the point where they are clear

enough to be explained quite fully just in ordinary language and pictures.

Unfortunately, however, this will no doubt mean that there are

some—particularly from the existing sciences—who will at first

assume that their existing technical knowledge must somehow already

cover whatever is in this book. And a few, I fear, will stop at that point,

and choose to learn no more. But many, I hope, will at least look at the

book long enough to begin to be surprised by what it actually says.

At first probably they will think that parts of it cannot possibly

be correct—for they seem so at odds with existing science. And indeed

if I myself were just to pick up this book today without having spent

the past twenty years thinking about its contents, I have little doubt

that I too would not believe many of the things it says. 

But the computer experiments on which the science in the book

is ultimately based are easy to check on any modern computer. And

almost all the arguments in the book—while often not conceptually

simple—require no specialized scientific or other knowledge to follow.

Yet it has certainly taken me years to come to terms with the

conclusions I have reached. And while I hope that all the effort I have

put into presentation in this book will make it easier for others, I do not

expect it to be a quick process. For to absorb in any real way what the

book has to say requires a fairly major shift in intuition and thinking.

But the most important first step, I believe, is just to recognize

what is involved. For though there are connections of all sorts, this

book is first and foremost about a fundamentally new intellectual

structure, that needs to be understood in its own terms, and cannot

reasonably be fit into any existing framework.
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It has been a great challenge for me to capture the things I have

discovered over the past twenty years in a book of manageable size. And to

do so I have often ended up compressing into a page or even a paragraph the

essence of what a chapter or even a book could have been written about.

In the quarter million or so words of the main text my emphasis

is on communicating the core of my ideas and discoveries—as well as

indicating a little of how I came to them. The last three hundred or so

pages of the book—themselves another quarter million or so words—

supplement the main text with many historical and technical notes,

and also summarize more discoveries. The notes that begin on page 849

address some specific issues about reading this book. 

Throughout the book my primary concern is with basic science

and fundamental issues. But building on the foundations in the book

there are a vast array of applications—both conceptual and practical—

that can now be developed. 

No doubt some will come quickly. But most will probably take

decades to emerge. Yet in time I expect that the ideas of this book will

come to pervade not only science and technology but also many areas of

general thinking. And with this its methods will eventually become a

standard part of education—much as mathematics is today. And in the

end most of what now seems surprising and remarkable in the book

will come to seem familiar and commonplace. 

But for me what has always been most important is the actual

process of discovery. For I know of nothing as profoundly exciting as

to glimpse for the first time some new and basic truth. And now that I

have finished building the intellectual structure that I describe in this

book it is my hope that those who read these words can share in the

excitement I have had in making the discoveries that were involved.

Stephen Wolfram
January 15, 2002
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The creation of this book and the science it describes has been a vast
personal undertaking, spanning the better part of half my life so far.
And for it to all have been even remotely possible has required a
series of particular personal circumstances. Foremost among them is
that I have lived at the moment in history when technology has first
made it possible to do the kinds of things I have done. But also
crucial has been that my early successes in science and business have
for more than twenty years allowed me to be free to pursue the
personal intellectual objectives I have chosen. 

That by my late teenage years I had already become established in
science was what originally provided the personal confidence and
practical situation that made it possible for me to embark on an
intellectual project as ambitious as this. My early experiences—
particularly in physics and computing—were crucial in pointing me
in the basic direction I took. My work in designing and documenting
Mathematica and its forerunners was central in developing for me a
certain definite pattern of clear thinking. My experiences in business
were also important in helping me form a capacity for making
strategic intellectual decisions. And the fact that for most of my life I
have tried to learn as broadly and deeply as possible about science
and other fields has provided me a crucial base of knowledge. But
more than anything else what has finally allowed me to create the
new kind of science in this book is Mathematica. For while building
Mathematica has taken a considerable amount of my time, I would
without it as a tool never have been able to do the vast majority of
what is now in this book. 

In my early years I was very much a part of the traditional scientific
community. But had I remained there I have little doubt that I would
never have been able to create something of the magnitude that I
describe in this book. For even just to spend so many years on a
single project outside of existing disciplines—and without publishing
anything about it—would likely have become impossible even in the
highly favorable academic circumstances in which I found myself.

But with the commercial success of Mathematica and Wolfram
Research there have for many years not been any such issues for me.
And indeed, within my company I have been able to build up a
remarkable group of people—who have supported my efforts in all
sorts of ways. Over the past fifteen years hundreds of members of
our R&D and engineering groups have worked to take my ideas for
Mathematica and turn them into finished software that I and millions
of others rely on every day. And at one time or another almost every
major department of my company has provided help that has been
crucial to some aspect of the creation or production of this book. 

Yet what is probably most striking is that even in my role as CEO of a
highly active company I have for more than ten years been able to
devote the large amounts of time that have been required to write
this book and develop the science it describes. And more than
anything else, what has made this possible is the outstanding team
that has helped manage the ongoing operations of the company—
especially our current executive committee: George Beck, Roger
Germundsson, Theodore Gray, Becky Porth, Brenda Skelly, Tom
Wickham-Jones and my brother Conrad Wolfram.

To pursue a project of the length and intensity of this book would not
have been possible without the great personal support of my family
and friends. Particularly crucial have been my wife—who has
contributed both directly and indirectly to many aspects of the form

and content of this book, and my children—whose excitement about
the world has provided continual encouragement and stimulation.
Also important—especially in my youth—were my parents, who
supported my early interests and direction.

Like almost any highly creative project, the writing of this book has
ultimately been a quite solitary and personal matter. But I have been
fortunate over the years to employ a variety of talented assistants, who
have helped the project in many different ways: Eric Berg (project
management, 2000–2001), Jason Cawley (historical and philosophical
issues, 2001–2002 and before), Matthew Cook (technical content,
particularly constructions and proofs, 1991–1998), Andrew de Laix
(technical content and book production systems, 1998–2002),
Matthew Frank (mathematical and historical issues, 2001–2002),
Andrea Gerlach (fact finding and checking, 1999–2002), David
Hillman (constructions and other technical content, 1997–2001), Scott
Koranda (book production systems and project management, 1996–
1998), Ed Pegg, Jr. (technical content, 2000–2002), Todd Rowland
(mathematical issues, 2001–2002), Malgorzata Strzebonska (graphics
finishing, 1997–2002), Matthew Szudzik (mathematical issues, 1998–
2000, 2001), Øyvind Tafjord (physics and other technical issues, 2001–
2002), Kelli Wendt (project management, 2001–2002), Erik Winfree
(software development, 1991–1992). Other members of Wolfram
Research and Wolfram Media who have made particularly significant
contributions include: Larry Adelston (book layout, 2000–2002),
George Beck (project management oversight, 2001–2002 and before),
John Bonadies (cover design and other issues, 1995, 1991–1999), Cat
Boucher (project management, 2001–2002), Jean Buck (library research
1991–1999; many internal and external issues 1999–2002), Jeremy
Davis (design, 2000–2002), Deb Forgacs (library research, 2000–2002),
Thomasanna Hail (project management assistance, 2001), Yu He
(technical issues, 1991–1992), Andy Hunt (font design, 1997–2002),
Janice Hunter (book distribution, 2000–2002), André Kuzniarek (book
design and production, 1991–2002), Richard Miske (book layout,
2001–2002), Jan Progen (proofreading, 1997–2002), David Reiss
(external communications, 2001–2002), Patrick Rice (book build
automation, 2001–2002), Brenda Skelly (manufacturing management,
2001–2002 and before), Caroline Small (document quality assurance,
2001), Michael Trott (occasional technical issues, 1994–2002), Allan
Wylde (publishing issues, 1998–1999). (See also the colophon at the
very end of the book.) My administrative and computer systems
assistants have also been crucial in allowing me to maintain the high
level of personal productivity needed to pursue and complete this
project. 

In developing the new kind of science in this book I have benefitted
in many ways from the worldwide intellectual community. I have
always worked hard to learn as many fields as possible as deeply as I
can—and to keep abreast of new developments that emerge. Part of
what has allowed me to do this is reading an immense number of
books, articles and websites. But over the years what has also been
important is that I have interacted personally with a great many
individuals, and I have been fortunate that my position in science
and technology has brought me into contact at one time or another
with the leaders of almost every major technical field. 

In the early and mid-1980s I did collaborative work relevant to this
book—some published, some unpublished—with several people:
Richard Feynman (foundations of physics and computing), Olivier
Martin (additive cellular automata), John Milnor (mathematics of
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cellular automata), Andrew Odlyzko (additive cellular automata),
Norman Packard (2D cellular automata) and Jim Salem (cellular
automaton fluids). 

Over the course of the past twenty years I have learned many things
relevant to this book from many people. Sometimes I have asked
specific questions and got specific answers. Sometimes discussions
separated by months or years have gradually made me come to
understand something. Sometimes just a single discussion has
caused me to learn an important fact or piece of history—or has
clarified limitations of some particular field. And sometimes a
question asked of me has led me to discover something or to see
how to present something better. In all I recall nearly three hundred
people who have helped me in these kinds of ways in the past
twenty years (this does not include people—especially from the
physics community—with whom my main interactions were before
1981, or those with whom my interactions have mostly been about
Mathematica or the business of Wolfram Research): Ralph Abraham,
Victor Adamchik, Ron Adrian, Guenther Ahlers, Berni Alder, Jan
Ambjørn, John Baez, Jim Bailey, Igor Bakshee, Mary Barsony, Andrej
Bauer, George Beck, Charles Bennett, Michael Berry, Philippe Binder,
Lenore Blum, Manuel Blum, Bruce Boghosian, Enrico Bombieri, Phil
Boyland, William Bricken, Bruno Buchberger, Art Burks, David
Campbell, John Campbell, Chris Carlson, Pete Carruthers, Forrest
Carter, Elise Cawley, Greg Chaitin, Steve Christensen, David
Chudnovsky, Gregory Chudnovsky, John Conway, Barbara Cooper,
Jack Cowan, Richard Crandall, Jim Crutchfield, Karel Culik, Predrag
Cvitanovic, Gautam Dasgupta, Roger Dashen, Martin Davis, Richard
Dawkins, David Deutsch, Kee Dewdney, Persi Diaconis, Whitfield
Diffie, Freeman Dyson, Paul Erdos, Benson Farb, Doyne Farmer,
Mitchell Feigenbaum, Carl Feynman, Richard Feynman, David
Finkelstein, Michael Fisher, Mike Foale, Joseph Ford, John Franks, Ed
Fredkin, Harvey Friedman, Uriel Frisch, Peter Gacs, Jill Gardner,
Laurie Gay, Todd Gayley, Richard Gaylord, Murray Gell-Mann,
Roger Germundsson, Etienne Ghys, Don Glaser, Nigel Goldenfeld,
Shafi Goldwasser, Beatrice Golomb, Solomon Golomb, Bill Gosper,
Peter Grassberger, Alfred Gray, Jeremy Gray, John Gray, Theodore
Gray, David Griffeath, Misha Gromov, David Gross, John
Guckenheimer, Charlie Gunn, Howard Gutowitz, Hyman Hartman,
Jeff Harvey, Brosl Hasslacher, David Hawkins, Gustav Hedlund,
Danny Hillis, Pierre Hohenberg, John Holland, John Hopfield,
Bernardo Huberman, Alfred Hübler, Dominique d’Humières, Lyman
Hurd, Ken Iverson, Raymond Jeanloz, Erica Jen, Leo Kadanoff, Dave
Kammeyer, Kuni Kaneko, Stuart Kauffman, Karen Kavanagh, Jerry
Keiper, Evelyn Fox Keller, Veikko Keränen, Scott Kirkpatrick, Sergiu
Klainerman, Rob Knapp, Don Knuth, Rocky Kolb, John Koza, Bob
Kraichnan, Yoshi Kuramoto, Jeff Lagarias, Rolf Landauer, Jim Langer,
Chris Langton, Joel Lebowitz, David Levermore, Leonid Levin, Silvio
Levy, Steven Levy, Debra Lewis, Wentian Li, Albert Libchaber, David
Librik, Dan Lichtblau, Doug Lind, Aristid Lindenmayer, Kristian
Lindgren, Chris Lindsey, Ed Lorenz, Saunders Mac Lane, Roman
Mäder, Janice Malouf, Benoit Mandelbrot, Norman Margolus, Oleg
Marichev, Olivier Martin, Yuri Matiyasevich, John Maynard Smith,
Curt McMullen, Hans Meinhardt, Michel Mendès France, Nick
Metropolis, John Miller, John Milnor, Marvin Minsky, Don Mitchell,
Kim Molvig, John Moussouris, Walter Munk, Jim Murray, Lee
Neuwirth, Alan Newell, Mats Nordahl, John Novak, Andrew
Odlyzko, Steve Orszag, George Oster, Peter Overmann, Norman

Packard, Heinz Pagels, Leonard Parker, Roger Payne, Holly Peck,
Hans-Otto Peitgen, Roger Penrose, Alan Perelson, Malcolm Perry,
Charlie Peskin, David Pines, Simon Plouffe, Yves Pomeau, Bjorn
Poonen, Marian Pour-El, Kendall Preston, Lutz Priese, Ilya
Prigogine, Itamar Procaccia, Charles Radin, Tom Ray, Jim Reeds,
John Reif, David Reiss, Stanley Reiter, Ken Ribet, Jane Richardson,
Ron Rivest, Igor Rivin, Terry Robb, Julia Robinson, Raphael
Robinson, Robert Rosen, Gian-Carlo Rota, Lee Rubel, Rudy Rucker,
David Ruelle, Jim Salem, Len Sander, Dana Scott, Terry Sejnowski,
Rob Shaw, Tim Shaw, Steve Shenker, Bev Sher, Tsutomu
Shimomura, Peter Shor, Brian Silverman, Karl Sims, Steven Skiena,
Steve Smale, Caroline Small, Alvy Ray Smith, Bruce Smith, Lee
Smolin, Mark Sofroniou, Gene Stanley, Ken Steiglitz, Dan Stein,
Paul Steinhardt, Pat Suppes, Gerry Sussman, Klaus Sutner, Noel
Swerdlow, Harry Swinney, Bart Taub, David Terr, René Thom, Bill
Thurston, Tom Toffoli, Alar Toomre, Russell Towle, Amos Tversky,
Stan Ulam, Leslie Valiant, Léon van Hove, Ilan Vardi, Hal Varian,
Geerat Vermeij, Gerard Vichniac, Stan Wagon, Bob Wainwright,
Bruce Walker, Denis Weaire, Eric Weisstein, Paul Wellin, Caroline
Wickham-Jones, Tom Wickham-Jones, Amie Wilkinson, Stephen
Willson, Jack Wisdom, Rob Wolff, Alexander Wolfram, Conrad
Wolfram, Sybil Wolfram, Lewis Wolpert, Michael Woodford, Larry
Wos, Larry Yaffe, Victor Yakhot, Jim Yorke, John Zerolis, Richard
Zippel, George Zweig, Helio Zwi. In addition to those with whom I
have had direct contact, other individuals have provided input
indirectly through my assistants or others (excluding photograph
sources listed in the colophon): Bill Beyer, Sheila Blair, Victor Dan,
Brent Daniel, Noam Elkies, Peter Falloon, Erich Friedman, Jochen
Gerber, Branko Grünbaum, Richard Guy, Michel Janssen, Martin
Kraus, Temur Kutsia, Richard Langley, Bernd Löchner, Crista Malick,
Brendan McKay, Thomas Scanlon, Rob Scharein, Marjorie Senechal,
Marc Sher, David Singmaster, Neil Sloane, Milton Van Dyke, Bob
Veroff, Curtis Wilson, Mirek Wójtowicz. Librarians at many
institutions—especially the University of Illinois—have often helped
my assistants in locating materials. Many individuals at Wolfram
Research have also contributed their collective breadth of knowledge
on diverse smaller questions.

I began serious development of ideas that eventually led to this book
in 1981, and until 1988 I continued to be a member of various
academic institutions: California Institute of Technology (Physics
Department, 1978–1982), Institute for Advanced Study, Princeton
(School of Natural Sciences, 1982–1986), University of Illinois
(Center for Complex Systems Research, and Departments of Physics,
Mathematics and Computer Science, 1986–1988). I built up
successively larger research groups at these institutions, and both the
scientific and other members of these groups made a variety of
contributions to my work. 

In the early to mid-1980s I was a consultant to a number of
organizations. The primary ones at which I pursued projects that
helped me in formulating issues for this book were Bell Laboratories,
Los Alamos National Laboratory and Thinking Machines
Corporation. In the period before 1986 a few of my projects received
incidental support from various parts of the U.S. government, and I
made use of early workstation computers given to me by Sun
Microsystems. The MacArthur Fellowship that I received in May
1981 was an important element of personal support, and in fact it
was a few months after this award that I made the decision to focus

/
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my work towards what would eventually become the new kind of
science in this book.

In the early years of the project—and before I became independent
of academia—there were a number of individuals who showed
particular foresight in arranging for organizational support or
publication of my work, including: George Bell, Bill Brinkman, Roger
Dashen, Marvin Denicoff, Herman Feschbach, John Gage, Murray
Gell-Mann, Paul Halmos, Sheryl Handler, Danny Hillis, Bob
Kraichnan, Oscar Lanford, Joel Lebowitz, Elliott Lieb, John Maddox,
K. K. Phua, David Pines, Gian-Carlo Rota, Mike Schlesinger, Ralph
Simmons, Larry Smarr, Harry Woolf. 

Many influences early in my life are no doubt reflected in one way or
another in this book. That my mother was an Oxford philosophy don
caused me in my youth to be exposed to a certain amount of academic
philosophy. My classical English education—in elementary school
(Dragon School) and high school (Eton)—emphasized such pursuits
as writing, and exposed me to a certain range of subjects, a remarkable
fraction of which have ended up being useful, especially in the
historical research for this book. My brief times in college (Oxford) and
graduate school (Caltech) enhanced my enthusiasm and confidence in
science, and allowed me rapidly to begin life as a professional scientist.
In the years that I was a member of the theoretical physics community
a great many people provided encouragement, and contributed to my
understanding of science and how it should be done. Among those
friends, colleagues, teachers and others from before 1981 from whom I
learned things relevant for the methods, content or writing of this
book were: Ed Berger, Euan Cameron, Chris Cole, Armand D’Angour,

Richard Feynman, Rick Field, Geoffrey Fox, Philip Gladstone, Nathan
Isgur, Nicholas Kermack, Rocky Kolb, Chris Llewellyn Smith, David
Longrigg, Rob Pike, David Politzer, Dick Roberts, Norman Routledge,
George Rutter, Ken Spencer, Christopher Stuart-Clark, Tony Terrano,
Tini Veltman, Peregrine Williams, Hugo Wolfram, Sybil Wolfram, Larry
Yaffe, George Zweig. 

To complete a project of the magnitude of this book requires extreme
personal focus. And to maintain this, I have for most of the past
decade been an almost complete recluse, attending almost no
outside events, and interacting mainly just with family, friends,
assistants and senior staff at my company. During this period it has
nevertheless provided important encouragement to see that even
without my personal presence, my earlier work in science—and even
more so my work on Mathematica—has had an increasingly great
impact on the world. It has also been a continuing source of further
encouragement to see just how broadly and deeply the worldwide
Mathematica community has been able to make use of the
fundamental ideas that I have embodied in Mathematica. 

To write this book has taken me more than ten years of almost
continuous work, more than a hundred million keystrokes, and more
than a hundred mouse miles. I have accumulated tens of gigabytes
and hundreds of thousands of pages of Mathematica notebooks. I
have executed nearly a million lines of Mathematica input, and
altogether more than a million billion computer operations. But now
that the task is finally done—and I have written down at least the
main elements of my discoveries so far—I look forward to everything
that is now possible. 







1

1
The Foundations for a 
New Kind of Science

An Outline of Basic Ideas

Three centuries ago science was transformed by the dramatic new idea

that rules based on mathematical equations could be used to describe

the natural world. My purpose in this book is to initiate another such

transformation, and to introduce a new kind of science that is based on

the much more general types of rules that can be embodied in simple

computer programs.

It has taken me the better part of twenty years to build the

intellectual structure that is needed, but I have been amazed by its

results. For what I have found is that with the new kind of science I

have developed it suddenly becomes possible to make progress on a

remarkable range of fundamental issues that have never successfully

been addressed by any of the existing sciences before. 

If theoretical science is to be possible at all, then at some level

the systems it studies must follow definite rules. Yet in the past

throughout the exact sciences it has usually been assumed that these

rules must be ones based on traditional mathematics. But the crucial

realization that led me to develop the new kind of science in this book

is that there is in fact no reason to think that systems like those we see

in nature should follow only such traditional mathematical rules. 

Earlier in history it might have been difficult to imagine what

more general types of rules could be like. But today we are surrounded
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by computers whose programs in effect implement a huge variety of

rules. The programs we use in practice are mostly based on extremely

complicated rules specifically designed to perform particular tasks. But

a program can in principle follow essentially any definite set of rules.

And at the core of the new kind of science that I describe in this book

are discoveries I have made about programs with some of the very

simplest rules that are possible.

One might have thought—as at first I certainly did—that if the

rules for a program were simple then this would mean that its behavior

must also be correspondingly simple. For our everyday experience in

building things tends to give us the intuition that creating complexity is

somehow difficult, and requires rules or plans that are themselves

complex. But the pivotal discovery that I made some eighteen years ago is

that in the world of programs such intuition is not even close to correct.

I did what is in a sense one of the most elementary imaginable

computer experiments: I took a sequence of simple programs and then

systematically ran them to see how they behaved. And what I found—

to my great surprise—was that despite the simplicity of their rules, the

behavior of the programs was often far from simple. Indeed, even some

of the very simplest programs that I looked at had behavior that was as

complex as anything I had ever seen.

It took me more than a decade to come to terms with this result,

and to realize just how fundamental and far-reaching its consequences

are. In retrospect there is no reason the result could not have been found

centuries ago, but increasingly I have come to view it as one of the more

important single discoveries in the whole history of theoretical science.

For in addition to opening up vast new domains of exploration, it implies

a radical rethinking of how processes in nature and elsewhere work. 

Perhaps immediately most dramatic is that it yields a resolution

to what has long been considered the single greatest mystery of the

natural world: what secret it is that allows nature seemingly so

effortlessly to produce so much that appears to us so complex. 

It could have been, after all, that in the natural world we would

mostly see forms like squares and circles that we consider simple. But

in fact one of the most striking features of the natural world is that
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across a vast range of physical, biological and other systems we are

continually confronted with what seems to be immense complexity.

And indeed throughout most of history it has been taken almost for

granted that such complexity—being so vastly greater than in the works

of humans—could only be the work of a supernatural being.

But my discovery that many very simple programs produce great

complexity immediately suggests a rather different explanation. For all

it takes is that systems in nature operate like typical programs and then

it follows that their behavior will often be complex. And the reason that

such complexity is not usually seen in human artifacts is just that in

building these we tend in effect to use programs that are specially

chosen to give only behavior simple enough for us to be able to see that

it will achieve the purposes we want.

One might have thought that with all their successes over the

past few centuries the existing sciences would long ago have managed

to address the issue of complexity. But in fact they have not. And indeed

for the most part they have specifically defined their scope in order to

avoid direct contact with it. For while their basic idea of describing

behavior in terms of mathematical equations works well in cases like

planetary motion where the behavior is fairly simple, it almost

inevitably fails whenever the behavior is more complex. And more or

less the same is true of descriptions based on ideas like natural selection

in biology. But by thinking in terms of programs the new kind of

science that I develop in this book is for the first time able to make

meaningful statements about even immensely complex behavior.

In the existing sciences much of the emphasis over the past

century or so has been on breaking systems down to find their

underlying parts, then trying to analyze these parts in as much detail as

possible. And particularly in physics this approach has been sufficiently

successful that the basic components of everyday systems are by now

completely known. But just how these components act together to

produce even some of the most obvious features of the overall behavior

we see has in the past remained an almost complete mystery. Within

the framework of the new kind of science that I develop in this book,

however, it is finally possible to address such a question.
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From the tradition of the existing sciences one might expect that

its answer would depend on all sorts of details, and be quite different for

different types of physical, biological and other systems. But in the

world of simple programs I have discovered that the same basic forms of

behavior occur over and over again almost independent of underlying

details. And what this suggests is that there are quite universal

principles that determine overall behavior and that can be expected to

apply not only to simple programs but also to systems throughout the

natural world and elsewhere.

In the existing sciences whenever a phenomenon is encountered

that seems complex it is taken almost for granted that the phenomenon

must be the result of some underlying mechanism that is itself

complex. But my discovery that simple programs can produce great

complexity makes it clear that this is not in fact correct. And indeed in

the later parts of this book I will show that even remarkably simple

programs seem to capture the essential mechanisms responsible for all

sorts of important phenomena that in the past have always seemed far

too complex to allow any simple explanation.

It is not uncommon in the history of science that new ways of

thinking are what finally allow longstanding issues to be addressed. But

I have been amazed at just how many issues central to the foundations

of the existing sciences I have been able to address by using the idea of

thinking in terms of simple programs. For more than a century, for

example, there has been confusion about how thermodynamic behavior

arises in physics. Yet from my discoveries about simple programs I have

developed a quite straightforward explanation. And in biology, my

discoveries provide for the first time an explicit way to understand just

how it is that so many organisms exhibit such great complexity. Indeed,

I even have increasing evidence that thinking in terms of simple

programs will make it possible to construct a single truly fundamental

theory of physics, from which space, time, quantum mechanics and all

the other known features of our universe will emerge.

When mathematics was introduced into science it provided for

the first time an abstract framework in which scientific conclusions

could be drawn without direct reference to physical reality. Yet despite
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all its development over the past few thousand years mathematics itself

has continued to concentrate only on rather specific types of abstract

systems—most often ones somehow derived from arithmetic or

geometry. But the new kind of science that I describe in this book

introduces what are in a sense much more general abstract systems,

based on rules of essentially any type whatsoever.

One might have thought that such systems would be too diverse

for meaningful general statements to be made about them. But the

crucial idea that has allowed me to build a unified framework for the

new kind of science that I describe in this book is that just as the rules

for any system can be viewed as corresponding to a program, so also its

behavior can be viewed as corresponding to a computation.

Traditional intuition might suggest that to do more sophisticated

computations would always require more sophisticated underlying

rules. But what launched the whole computer revolution is the

remarkable fact that universal systems with fixed underlying rules can

be built that can in effect perform any possible computation.

The threshold for such universality has however generally been

assumed to be high, and to be reached only by elaborate and special

systems like typical electronic computers. But one of the surprising

discoveries in this book is that in fact there are systems whose rules are

simple enough to describe in just one sentence that are nevertheless

universal. And this immediately suggests that the phenomenon of

universality is vastly more common and important—in both abstract

systems and nature—than has ever been imagined before.

But on the basis of many discoveries I have been led to a still

more sweeping conclusion, summarized in what I call the Principle of

Computational Equivalence: that whenever one sees behavior that is

not obviously simple—in essentially any system—it can be thought of

as corresponding to a computation of equivalent sophistication. And

this one very basic principle has a quite unprecedented array of

implications for science and scientific thinking.

For a start, it immediately gives a fundamental explanation for

why simple programs can show behavior that seems to us complex. For

like other processes our own processes of perception and analysis can be
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thought of as computations. But though we might have imagined that

such computations would always be vastly more sophisticated than

those performed by simple programs, the Principle of Computational

Equivalence implies that they are not. And it is this equivalence

between us as observers and the systems that we observe that makes

the behavior of such systems seem to us complex.

One can always in principle find out how a particular system will

behave just by running an experiment and watching what happens. But

the great historical successes of theoretical science have typically

revolved around finding mathematical formulas that instead directly

allow one to predict the outcome. Yet in effect this relies on being able

to shortcut the computational work that the system itself performs.

And the Principle of Computational Equivalence now implies

that this will normally be possible only for rather special systems with

simple behavior. For other systems will tend to perform computations

that are just as sophisticated as those we can do, even with all our

mathematics and computers. And this means that such systems are

computationally irreducible—so that in effect the only way to find their

behavior is to trace each of their steps, spending about as much

computational effort as the systems themselves.

So this implies that there is in a sense a fundamental limitation

to theoretical science. But it also shows that there is something

irreducible that can be achieved by the passage of time. And it leads to

an explanation of how we as humans—even though we may follow

definite underlying rules—can still in a meaningful way show free will.

One feature of many of the most important advances in science

throughout history is that they show new ways in which we as humans

are not special. And at some level the Principle of Computational

Equivalence does this as well. For it implies that when it comes to

computation—or intelligence—we are in the end no more sophisticated

than all sorts of simple programs, and all sorts of systems in nature.

But from the Principle of Computational Equivalence there also

emerges a new kind of unity: for across a vast range of systems, from
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simple programs to brains to our whole universe, the principle implies

that there is a basic equivalence that makes the same fundamental

phenomena occur, and allows the same basic scientific ideas and

methods to be used. And it is this that is ultimately responsible for the

great power of the new kind of science that I describe in this book.

Relations to Other Areas

Mathematics. It is usually assumed that mathematics concerns itself

with the study of arbitrarily general abstract systems. But this book

shows that there are actually a vast range of abstract systems based on

simple programs that traditional mathematics has never considered.

And because these systems are in many ways simpler in construction

than most traditional systems in mathematics it is possible with

appropriate methods in effect to go further in investigating them. 

Some of what one finds are then just unprecedentedly clear

examples of phenomena already known in modern mathematics. But

one also finds some dramatic new phenomena. Most immediately

obvious is a very high level of complexity in the behavior of many

systems whose underlying rules are much simpler than those of most

systems in standard mathematics textbooks.

And one of the consequences of this complexity is that it leads to

fundamental limitations on the idea of proof that has been central to

traditional mathematics. Already in the 1930s Gödel’s Theorem gave

some indications of such limitations. But in the past they have always

seemed irrelevant to most of mathematics as it is actually practiced. 

Yet what the discoveries in this book show is that this is largely

just a reflection of how small the scope is of what is now considered

mathematics. And indeed the core of this book can be viewed as

introducing a major generalization of mathematics—with new ideas

and methods, and vast new areas to be explored. 

The framework I develop in this book also shows that by viewing

the process of doing mathematics in fundamentally computational

terms it becomes possible to address important issues about the

foundations even of existing mathematics. 



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

8

Physics. The traditional mathematical approach to science has

historically had its great success in physics—and by now it has become

almost universally assumed that any serious physical theory must be

based on mathematical equations. Yet with this approach there are still

many common physical phenomena about which physics has had

remarkably little to say. But with the approach of thinking in terms of

simple programs that I develop in this book it finally seems possible to

make some dramatic progress. And indeed in the course of the book we

will see that some extremely simple programs seem able to capture the

essential mechanisms for a great many physical phenomena that have

previously seemed completely mysterious.

Existing methods in theoretical physics tend to revolve around

ideas of continuous numbers and calculus—or sometimes probability.

Yet most of the systems in this book involve just simple discrete

elements with definite rules. And in many ways it is the greater

simplicity of this underlying structure that ultimately makes it possible

to identify so many fundamentally new phenomena.

Ordinary models for physical systems are idealizations that

capture some features and ignore others. And in the past what was most

common was to capture certain simple numerical relationships—that

could for example be represented by smooth curves. But with the new

kinds of models based on simple programs that I explore in this book it

becomes possible to capture all sorts of much more complex features

that can only really be seen in explicit images of behavior.

In the future of physics the greatest triumph would undoubtedly

be to find a truly fundamental theory for our whole universe. Yet

despite occasional optimism, traditional approaches do not make this

seem close at hand. But with the methods and intuition that I develop

in this book there is I believe finally a serious possibility that such a

theory can actually be found.

Biology. Vast amounts are now known about the details of biological

organisms, but very little in the way of general theory has ever emerged.

Classical areas of biology tend to treat evolution by natural selection as
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a foundation—leading to the notion that general observations about

living systems should normally be analyzed on the basis of evolutionary

history rather than abstract theories. And part of the reason for this is

that traditional mathematical models have never seemed to come even

close to capturing the kind of complexity we see in biology. But the

discoveries in this book show that simple programs can produce a high

level of complexity. And in fact it turns out that such programs can

reproduce many features of biological organisms—and for example

seem to capture some of the essential mechanisms through which

genetic programs manage to generate the actual biological forms we see.

So this means that it becomes possible to make a wide range of new

models for biological systems—and potentially to see how to emulate

the essence of their operation, say for medical purposes. And insofar as

there are general principles for simple programs, these principles should

also apply to biological organisms—making it possible to imagine

constructing new kinds of general abstract theories in biology.

Social Sciences. From economics to psychology there has been a

widespread if controversial assumption—no doubt from the success of

the physical sciences—that solid theories must always be formulated in

terms of numbers, equations and traditional mathematics. But I suspect

that one will often have a much better chance of capturing fundamental

mechanisms for phenomena in the social sciences by using instead the

new kind of science that I develop in this book based on simple

programs. No doubt there will quite quickly be all sorts of claims about

applications of my ideas to the social sciences. And indeed the new

intuition that emerges from this book may well almost immediately

explain phenomena that have in the past seemed quite mysterious. But

the very results of the book show that there will inevitably be

fundamental limits to the application of scientific methods. There will

be new questions formulated, but it will take time before it becomes

clear when general theories are possible, and when one must instead

inevitably rely on the details of judgement for specific cases. 
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Computer Science. Throughout its brief history computer science has

focused almost exclusively on studying specific computational systems

set up to perform particular tasks. But one of the core ideas of this book

is to consider the more general scientific question of what arbitrary

computational systems do. And much of what I have found is vastly

different from what one might expect on the basis of existing computer

science. For the systems traditionally studied in computer science tend

to be fairly complicated in their construction—yet yield fairly simple

behavior that recognizably fulfills some particular purpose. But in this

book what I show is that even systems with extremely simple

construction can yield behavior of immense complexity. And by

thinking about this in computational terms one develops a new

intuition about the very nature of computation.

One consequence is a dramatic broadening of the domain to

which computational ideas can be applied—in particular to include all

sorts of fundamental questions about nature and about mathematics.

Another consequence is a new perspective on existing questions in

computer science—particularly ones related to what ultimate resources

are needed to perform general types of computational tasks. 

Philosophy. At any period in history there are issues about the universe

and our role in it that seem accessible only to the general arguments of

philosophy. But often progress in science eventually provides a more

definite context. And I believe that the new kind of science in this book

will do this for a variety of issues that have been considered

fundamental even since antiquity. Among them are questions about

ultimate limits to knowledge, free will, the uniqueness of the human

condition and the inevitability of mathematics. Much has been said

over the course of philosophical history about each of these. Yet

inevitably it has been informed only by current intuition about how

things are supposed to work. But my discoveries in this book lead to

radically new intuition. And with this intuition it turns out that one

can for the first time begin to see resolutions to many longstanding

issues—typically along rather different lines from those expected on the

basis of traditional general arguments in philosophy. 
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Art. It seems so easy for nature to produce forms of great beauty. Yet in

the past art has mostly just had to be content to imitate such forms. But

now, with the discovery that simple programs can capture the essential

mechanisms for all sorts of complex behavior in nature, one can

imagine just sampling such programs to explore generalizations of the

forms we see in nature. Traditional scientific intuition—and early

computer art—might lead one to assume that simple programs would

always produce pictures too simple and rigid to be of artistic interest.

But looking through this book it becomes clear that even a program that

may have extremely simple rules will often be able to generate pictures

that have striking aesthetic qualities—sometimes reminiscent of

nature, but often unlike anything ever seen before. 

Technology. Despite all its success, there is still much that goes on in

nature that seems more complex and sophisticated than anything

technology has ever been able to produce. But what the discoveries in

this book now show is that by using the types of rules embodied in

simple programs one can capture many of the essential mechanisms of

nature. And from this it becomes possible to imagine a whole new kind

of technology that in effect achieves the same sophistication as nature.

Experience with traditional engineering has led to the general

assumption that to perform a sophisticated task requires constructing a

system whose basic rules are somehow correspondingly complicated.

But the discoveries in this book show that this is not the case, and that

in fact extremely simple underlying rules—that might for example

potentially be implemented directly at the level of atoms—are often all

that is needed. My main focus in this book is on matters of basic

science. But I have little doubt that within a matter of a few decades

what I have done will have led to some dramatic changes in the

foundations of technology—and in our basic ability to take what the

universe provides and apply it for our own human purposes. 
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Some Past Initiatives

My goals in this book are sufficiently broad and fundamental that there

have inevitably been previous attempts to achieve at least some of

them. But without the ideas and methods of this book there have been

basic issues that have eventually ended up presenting almost

insuperable barriers to every major approach that has been tried. 

Artificial Intelligence. When electronic computers were first invented,

it was widely believed that it would not be long before they would be

capable of human-like thinking. And in the 1960s the field of artificial

intelligence grew up with the goal of understanding processes of human

thinking and implementing them on computers. But doing this turned

out to be much more difficult than expected, and after some spin-offs,

little fundamental progress was made. At some level, however, the

basic problem has always been to understand how the seemingly simple

components in a brain can lead to all the complexities of thinking. But

now finally with the framework developed in this book one potentially

has a meaningful foundation for doing this. And indeed building on

both theoretical and practical ideas in the book I suspect that dramatic

progress will eventually be possible in creating technological systems

that are capable of human-like thinking.

Artificial Life. Ever since machines have existed, people have wondered

to what extent they might be able to imitate living systems. Most

active from the mid-1980s to the mid-1990s, the field of artificial life

concerned itself mainly with showing that computer programs could be

made to emulate various features of biological systems. But normally it

was assumed that the necessary programs would have to be quite

complex. What the discoveries in this book show, however, is that in

fact very simple programs can be sufficient. And such programs make

the fundamental mechanisms for behavior clearer—and probably come

much closer to what is actually happening in real biological systems. 

Catastrophe Theory. Traditional mathematical models are normally

based on quantities that vary continuously. Yet in nature discrete

changes are often seen. Popular in the 1970s, catastrophe theory was
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concerned with showing that even in traditional mathematical models,

certain simple discrete changes could still occur. In this book I do not

start from any assumption of continuity—and the types of behavior I

study tend to be vastly more complex than those in catastrophe theory. 

Chaos Theory. The field of chaos theory is based on the observation

that certain mathematical systems behave in a way that depends

arbitrarily sensitively on the details of their initial conditions. First

noticed at the end of the 1800s, this came into prominence after

computer simulations in the 1960s and 1970s. Its main significance is

that it implies that if any detail of the initial conditions is uncertain,

then it will eventually become impossible to predict the behavior of the

system. But despite some claims to the contrary in popular accounts,

this fact alone does not imply that the behavior will necessarily be

complex. Indeed, all that it shows is that if there is complexity in the

details of the initial conditions, then this complexity will eventually

appear in the large-scale behavior of the system. But if the initial

conditions are simple, then there is no reason for the behavior not to be

correspondingly simple. What I show in this book, however, is that

even when their initial conditions are very simple there are many

systems that still produce highly complex behavior. And I argue that it

is this phenomenon that is for example responsible for most of the

obvious complexity we see in nature.

Complexity Theory. My discoveries in the early 1980s led me to the

idea that complexity could be studied as a fundamental independent

phenomenon. And gradually this became quite popular. But most of the

scientific work that was done ended up being based only on my earliest

discoveries, and being very much within the framework of one or

another of the existing sciences—with the result that it managed to

make very little progress on any general and fundamental issues. One

feature of the new kind of science that I describe in this book is that it

finally makes possible the development of a basic understanding of the

general phenomenon of complexity, and its origins.
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Computational Complexity Theory. Developed mostly in the 1970s,

computational complexity theory attempts to characterize how

difficult certain computational tasks are to perform. Its concrete results

have tended to be based on fairly specific programs with complicated

structure yet rather simple behavior. The new kind of science in this

book, however, explores much more general classes of programs—and

in doing so begins to shed new light on various longstanding questions

in computational complexity theory.

Cybernetics. In the 1940s it was thought that it might be possible to

understand biological systems on the basis of analogies with electrical

machines. But since essentially the only methods of analysis available

were ones from traditional mathematics, very little of the complex

behavior of typical biological systems was successfully captured.

Dynamical Systems Theory. A branch of mathematics that began

roughly a century ago, the field of dynamical systems theory has been

concerned with studying systems that evolve in time according to

certain kinds of mathematical equations—and in using traditional

geometrical and other mathematical methods to characterize the

possible forms of behavior that such systems can produce. But what I

argue in this book is that in fact the behavior of many systems is

fundamentally too complex to be usefully captured in any such way. 

Evolution Theory. The Darwinian theory of evolution by natural

selection is often assumed to explain the complexity we see in

biological systems—and in fact in recent years the theory has also

increasingly been applied outside of biology. But it has never been at all

clear just why this theory should imply that complexity is generated.

And indeed I will argue in this book that in many respects it tends to

oppose complexity. But the discoveries in the book suggest a new and

quite different mechanism that I believe is in fact responsible for most

of the examples of great complexity that we see in biology. 

Experimental Mathematics. The idea of exploring mathematical

systems by looking at data from calculations has a long history, and has

gradually become more widespread with the advent of computers and
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Mathematica. But almost without exception, it has in the past only been

applied to systems and questions that have already been investigated by

other mathematical means—and that lie very much within the normal

tradition of mathematics. My approach in this book, however, is to use

computer experiments as a basic way to explore much more general

systems—that have never arisen in traditional mathematics, and that

are usually far from being accessible by existing mathematical means. 

Fractal Geometry. Until recently, the only kinds of shapes widely

discussed in science and mathematics were ones that are regular or

smooth. But starting in the late 1970s, the field of fractal geometry

emphasized the importance of nested shapes that contain arbitrarily

intricate pieces, and argued that such shapes are common in nature. In

this book we will encounter a fair number of systems that produce such

nested shapes. But we will also find many systems that produce shapes

which are much more complex, and have no nested structure.

General Systems Theory. Popular especially in the 1960s, general

systems theory was concerned mainly with studying large networks of

elements—often idealizing human organizations. But a complete lack

of anything like the kinds of methods I use in this book made it almost

impossible for any definite conclusions to emerge.

Nanotechnology. Growing rapidly since the early 1990s, the goal of

nanotechnology is to implement technological systems on atomic

scales. But so far nanotechnology has mostly been concerned with

shrinking quite familiar mechanical and other devices. Yet what the

discoveries in this book now show is that there are all sorts of systems

that have much simpler structures, but that can nevertheless perform

very sophisticated tasks. And some of these systems seem in many

ways much more suitable for direct implementation on an atomic scale.

Nonlinear Dynamics. Mathematical equations that have the property

of linearity are usually fairly easy to solve, and so have been used

extensively in pure and applied science. The field of nonlinear

dynamics is concerned with analyzing more complicated equations. Its

greatest success has been with so-called soliton equations for which
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careful manipulation leads to a property similar to linearity. But the

kinds of systems that I discuss in this book typically show much more

complex behavior, and have no such simplifying properties.

Scientific Computing. The field of scientific computing has usually

been concerned with taking traditional mathematical models—most

often for various kinds of fluids and solids—and trying to implement

them on computers using numerical approximation schemes. Typically

it has been difficult to disentangle anything but fairly simple

phenomena from effects associated with the approximations used. The

kinds of models that I introduce in this book involve no approximations

when implemented on computers, and thus readily allow one to

recognize much more complex phenomena.

Self-Organization. In nature it is quite common to see systems that start

disordered and featureless, but then spontaneously organize themselves

to produce definite structures. The loosely knit field of self-organization

has been concerned with understanding this phenomenon. But for the

most part it has used traditional mathematical methods, and as a result

has only been able to investigate the formation of fairly simple structures.

With the ideas in this book, however, it becomes possible to understand

how vastly more complex structures can be formed.

Statistical Mechanics. Since its development about a century ago, the

branch of physics known as statistical mechanics has mostly concerned

itself with understanding the average behavior of systems that consist

of large numbers of gas molecules or other components. In any specific

instance, such systems often behave in a complex way. But by looking

at averages over many instances, statistical mechanics has usually

managed to avoid such complexity. To make contact with real

situations, however, it has often had to use the so-called Second Law of

Thermodynamics, or Principle of Entropy Increase. But for more than a

century there have been nagging difficulties in understanding the basis

for this principle. With the ideas in this book, however, I believe that

there is now a framework in which these can finally be resolved. 
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The Personal Story of the Science in This Book

I can trace the beginning of my serious interest in the kinds of scientific

issues discussed in this book rather accurately to the summer of 1972,

when I was twelve years old. I had bought a copy of the physics

textbook on the right, and had become very curious about the process of

randomization illustrated on its cover. But being far from convinced by

the mathematical explanation given in the book, I decided to try to

simulate the process for myself on a computer.

The computer to which I had access at that time was by modern

standards a very primitive one. And as a result, I had no choice but to

study a very simplified version of the process in the book. I suspected

from the start that the system I constructed might be too simple to

show any of the phenomena I wanted. And after much programming

effort I managed to convince myself that these suspicions were correct.

Yet as it turns out, what I looked at was a particular case of one of

the main kinds of systems—cellular automata—that I consider in this

book. And had it not been for a largely technical point that arose from

my desire to make my simulations as physically realistic as possible, it

is quite possible that by 1974 I would already have discovered some of

the principal phenomena that I now describe in this book.

As it was, however, I decided at that time to devote my energies

to what then seemed to be the most fundamental area of science:

theoretical particle physics. And over the next several years I did indeed

manage to make significant progress in a few areas of particle physics

and cosmology. But after a while I began to suspect that many of the

most important and fundamental questions that I was encountering

were quite independent of the abstruse details of these fields.

And in fact I realized that there were many related questions even

about common everyday phenomena that were still completely

unanswered. What for example is the fundamental origin of the

complicated patterns that one sees in turbulent fluids? How are the

intricate patterns of snowflakes produced? What is the basic mechanism

that allows plants and animals to grow in such complex ways?

The book cover that originally
sparked my interest in some
of the issues discussed in
this book.



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

18

To my surprise, very little seemed to have been done on these

kinds of questions. At first I thought it might be possible to make

progress just by applying some of the sophisticated mathematical

techniques that I had used in theoretical physics. But it soon became

clear that for the phenomena I was studying, traditional mathematical

results would be very difficult, if not impossible, to find.

So what could I do? It so happened that as an outgrowth of my

work in physics I had in 1981 just finished developing a large software

system that was in some respects a forerunner to parts of Mathematica.

And at least at an intellectual level the most difficult part of the project

had been designing the symbolic language on which the system was

based. But in the development of this language I had seen rather clearly

how just a few primitive operations that I had come up with could end up

successfully covering a vast range of sophisticated computational tasks.

So I thought that perhaps I could do something similar in natural

science: that there might be some appropriate primitives that I could

find that would successfully capture a vast range of natural phenomena.

My ideas were not so clearly formed at the time, but I believe I

implicitly imagined that the way this would work is that such

primitives could be used to build up computer programs that would

simulate the various natural systems in which I was interested. 

There were in many cases well-established mathematical models

for the individual components of such systems. But two practical issues

stood in the way of using these as a basis for simulations. First, the

models were usually quite complicated, so that with realistic computer

resources it was very difficult to include enough components for

interesting phenomena to occur. And second, even if one did see such

phenomena, it was almost impossible to tell whether in fact they were

genuine consequences of the underlying models or were just the result

of approximations made in implementing the models on a computer.

But what I realized was that at least for many of the phenomena I

wanted to study, it was not crucial to use the most accurate possible

models for individual components. For among other things there was

evidence from nature that in many cases the details of the components

did not matter much—so that for example the same complex patterns
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of flow occur in both air and water. And with this in mind, what I

decided was that rather than starting from detailed realistic models, I

would instead start from models that were somehow as simple as

possible—and were easy to set up as programs on a computer. 

At the outset, I did not know how this would work, and how

complicated the programs I would need would have to be. And indeed

when I looked at various simple programs they always seemed to yield

behavior vastly simpler than any of the systems I wanted to study.

But in the summer of 1981 I did what I considered to be a fairly

straightforward computer experiment to see how all programs of a

particular type behaved. I had not really expected too much from this

experiment. But in fact its results were so surprising and dramatic that

as I gradually came to understand them, they forced me to change my

whole view of science, and in the end to develop the whole intellectual

structure of the new kind of science that I now describe in this book. 

The picture on the right shows a reproduction of typical output

from my original experiment. The graphics are primitive, but the

elaborate patterns they contain were like nothing I had ever seen before.

At first I did not believe that they could possibly be correct. But after a

while I became convinced that they were—and I realized that I had seen

a sign of a quite remarkable and unexpected phenomenon: that even

from very simple programs behavior of great complexity could emerge.

But how could something as fundamental as this never have been

noticed before? I searched the scientific literature, talked to many

people, and found out that systems similar to the ones I was studying

had been named “cellular automata” some thirty years earlier. But

despite a few close approaches, nobody had ever actually tried anything

quite like the type of experiment I had. 

Yet I still suspected that the basic phenomenon I had seen must

somehow be an obvious consequence of some known scientific principle.

But while I did find that ideas from areas like chaos theory and fractal

geometry helped in explaining some specific features, nothing even close

to the phenomenon as a whole seemed to have ever been studied before.

My early discoveries about the behavior of cellular automata

stimulated a fair amount of activity in the scientific community. And

A reproduction of the computer
printout that first gave me a
hint of some of the central
phenomena in this book. 
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by the mid-1980s, many applications had been found in physics,

biology, computer science, mathematics and elsewhere. And indeed

some of the phenomena I had discovered were starting to be used as the

basis for a new area of research that I called complex systems theory.

Throughout all this, however, I had continued to investigate

more basic questions, and by around 1985 I was beginning to realize

that what I had seen before was just a hint of something still much

more dramatic and fundamental. But to understand what I was

discovering was difficult, and required a major shift in intuition. 

Yet I could see that there were some remarkable intellectual

opportunities ahead. And my first idea was to try to organize the

academic community to take advantage of them. So I started a research

center and a journal, published a list of problems to attack, and worked

hard to communicate the importance of the direction I was defining. 

But despite growing excitement—particularly about some of the

potential applications—there seemed to be very little success in

breaking away from traditional methods and intuition. And after a while

I realized that if there was going to be any dramatic progress made, I was

the one who was going to have to make it. So I resolved to set up the

best tools and infrastructure I could, and then just myself pursue as

efficiently as possible the research that I thought should be done.

In the early 1980s my single greatest impediment had been the

practical difficulty of doing computer experiments using the various

rather low-level tools that were available. But by 1986 I had realized that

with a number of new ideas I had it would be possible to build a single

coherent system for doing all kinds of technical computing. And since

nothing like this seemed likely to exist otherwise, I decided to build it.

The result was Mathematica. 

For five years the process of building Mathematica and the

company around it absorbed me. But in 1991—now no longer an

academic, but instead the CEO of a successful company—I was able to

return to studying the kinds of questions addressed in this book.

And equipped with Mathematica I began to try all sorts of new

experiments. The results were spectacular—and within the space of a

few months I had already made more new discoveries about what
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simple programs do than in all the previous ten years put together. My

earlier work had shown me the beginnings of some unexpected and very

remarkable phenomena. But now from my new experiments I began to

see the full force and generality of these phenomena.

As my methodology and intuition improved, the pace of my

discoveries increased still more, and within just a couple of years I had

managed to take my explorations of the world of simple programs to the

point where the sheer volume of factual information I had accumulated

would be the envy of many long-established fields of science. 

Quite early in the process I had begun to formulate several rather

general principles. And the further I went, the more these principles were

confirmed, and the more I realized just how strong and general they were. 

When I first started at the beginning of the 1980s, my goal was

mostly just to understand the phenomenon of complexity. But by the

mid-1990s I had built up a whole intellectual structure that was capable

of much more, and that in fact provided the foundations for what could

only be considered a fundamentally new kind of science. 

It was for me a most exciting time. For everywhere I turned there

were huge untouched new areas that I was able to explore for the first

time. Each had its own particular features. But with the overall

framework I had developed I was gradually able to answer essentially all

of what seemed to be the most obvious questions that I had raised.

At first I was mostly concerned with new questions that had never

been particularly central to any existing areas of science. But gradually I

realized that the new kind of science I was building should also provide a

fundamentally new way to address basic issues in existing areas. 

So around 1994 I began systematically investigating each of the

various major traditional areas of science. I had long been interested in

fundamental questions in many of these areas. But usually I had tended to

believe most of the conventional wisdom about them. Yet when I began

to study them in the context of my new kind of science I kept on seeing

signs that large parts of this conventional wisdom could not be correct.

The typical issue was that there was some core problem that

traditional methods or intuition had never successfully been able to

address—and which the field had somehow grown to avoid. Yet over
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and over again I was excited to find that with my new kind of science I

could suddenly begin to make great progress—even on problems that in

some cases had remained unanswered for centuries.

Given the whole framework I had built, many of the things I

discovered seemed in the end disarmingly simple. But to get to them

often involved a remarkable amount of scientific work. For it was not

enough just to be able to take a few specific technical steps. Rather, in

each field, it was necessary to develop a sufficiently broad and deep

understanding to be able to identify the truly essential features—that

could then be rethought on the basis of my new kind of science.

Doing this certainly required experience in all sorts of different

areas of science. But perhaps most crucial for me was that the process

was a bit like what I have ended up doing countless times in designing

Mathematica: start from elaborate technical ideas, then gradually see

how to capture their essential features in something amazingly simple.

And the fact that I had managed to make this work so many times in

Mathematica was part of what gave me the confidence to try doing

something similar in all sorts of areas of science.

Often it seemed in retrospect almost bizarre that the conclusions

I ended up reaching had never been reached before. But studying the

history of each field I could in many cases see how it had been led astray

by the lack of some crucial piece of methodology or intuition that had

now emerged in the new kind of science I had developed.

When I made my first discoveries about cellular automata in the

early 1980s I suspected that I had seen the beginning of something

important. But I had no idea just how important it would all ultimately

turn out to be. And indeed over the past twenty years I have made more

discoveries than I ever thought possible. And the new kind of science

that I have spent so much effort building has seemed an ever more

central and critical direction for future intellectual development. 
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2
The Crucial Experiment 

How Do Simple Programs Behave? 

New directions in science have typically been initiated by certain

central observations or experiments. And for the kind of science that I

describe in this book these concerned the behavior of simple programs. 

In our everyday experience with computers, the programs that we

encounter are normally set up to perform very definite tasks. But the key

idea that I had nearly twenty years ago—and that eventually led to the

whole new kind of science in this book—was to ask what happens if one

instead just looks at simple arbitrarily chosen programs, created without

any specific task in mind. How do such programs typically behave?

The mathematical methods that have in the past dominated

theoretical science do not help much with such a question. But with a

computer it is straightforward to start doing experiments to investigate

it. For all one need do is just set up a sequence of possible simple

programs, and then run them and see how they behave. 

Any program can at some level be thought of as consisting of a set

of rules that specify what it should do at each step. There are many

possible ways to set up these rules—and indeed we will study quite a

few of them in the course of this book. But for now, I will consider a

particular class of examples called cellular automata, that were the very

first kinds of simple programs that I investigated in the early 1980s.
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An important feature of cellular automata is that their behavior

can readily be presented in a visual way. And so the picture below

shows what one cellular automaton does over the course of ten steps.

The cellular automaton consists of a line of cells, each colored

either black or white. At every step there is then a definite rule that

determines the color of a given cell from the color of that cell and its

immediate left and right neighbors on the step before. 

For the particular cellular automaton shown here the rule

specifies—as in the picture below—that a cell should be black in all

cases where it or either of its neighbors were black on the step before.

And the picture at the top of the page shows that starting with a

single black cell in the center this rule then leads to a simple growing

pattern uniformly filled with black. But modifying the rule just slightly

one can immediately get a different pattern. 

As a first example, the picture at the top of the facing page shows

what happens with a rule that makes a cell white whenever both of its

neighbors were white on the step before—even if the cell itself was

black before. And rather than producing a pattern that is uniformly

filled with black, this rule now instead gives a pattern that repeatedly

alternates between black and white like a checkerboard.

A visual representation of the behavior
of a cellular automaton, with each row
of cells corresponding to one step. At
the first step the cell in the center is
black and all other cells are white. Then
on each successive step, a particular
cell is made black whenever it or either
of its neighbors were black on the step
before. As the picture shows, this leads
to a simple expanding pattern uniformly
filled with black. 

step 10:

step 9:

step 8:

step 7:

step 6:

step 5:

step 4:

step 3:

step 2:

step 1:

A representation of the rule for
the cellular automaton shown
above. The top row in each box

gives one of the possible combinations of colors for a cell and its immediate neighbors. The
bottom row then specifies what color the center cell should be on the next step in each of these
cases. In the numbering scheme described in Chapter 3, this is cellular automaton rule 254.

step 1:

step 2:

step 3:

step 4:

step 5:
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This pattern is however again fairly simple. And we might

assume that at least with the type of cellular automata that we are

considering, any rule we might choose would always give a pattern that

is quite simple. But now we are in for our first surprise.

The picture below shows the pattern produced by a cellular

automaton of the same type as before, but with a slightly different rule.

A cellular automaton with a slightly different rule. The rule
makes a particular cell black if either of its neighbors was black
on the step before, and makes the cell white if both its
neighbors were white. Starting from a single black cell, this rule
leads to a checkerboard pattern. In the numbering scheme of
Chapter 3, this is cellular automaton rule 250. 

A cellular automaton that produces an intricate nested pattern. The rule in this case is
that a cell should be black whenever one or the other, but not both, of its neighbors
were black on the step before. Even though the rule is very simple, the picture

shows that the overall pattern obtained over the course of 50 steps starting from a single black cell is not so simple. The particular rule
used here can be described by the formula . In the numbering scheme of Chapter 3, it is cellular automaton rule 90. ai

ç = Mod[ai-1 + ai+1, 2]
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This time the rule specifies that a cell should be black when either its

left neighbor or its right neighbor—but not both—were black on the

step before. And again this rule is undeniably quite simple. But now the

picture shows that the pattern it produces is not so simple. 

And if one runs the cellular automaton for more steps, as in the

picture below, then a rather intricate pattern emerges. But one can now

see that this pattern has very definite regularity. For even though it is

intricate, one can see that it actually consists of many nested triangular

pieces that all have exactly the same form. And as the picture shows,

each of these pieces is essentially just a smaller copy of the whole

pattern, with still smaller copies nested in a very regular way inside it.

So of the three cellular automata that we have seen so far, all

ultimately yield patterns that are highly regular: the first a simple

uniform pattern, the second a repetitive pattern, and the third an

intricate but still nested pattern. And we might assume that at least for

A larger version of the pattern from the previous page, now shown without a grid explicitly indicating each cell. The picture shows five
hundred steps of cellular automaton evolution. The pattern obtained is intricate, but has a definite nested structure. Indeed, as the
picture illustrates, each triangular section is essentially just a smaller copy of the whole pattern, with still smaller copies nested inside it.
Patterns with nested structure of this kind are often called “fractal” or “self-similar”. 
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cellular automata with rules as simple as the ones we have been using

these three forms of behavior would be all that we could ever get. 

But the remarkable fact is that this turns out to be wrong.

And the picture below shows an example of this. The rule used—

that I call rule 30—is of exactly the same kind as before, and can be

described as follows. First, look at each cell and its right-hand neighbor.

If both of these were white on the previous step, then take the new

color of the cell to be whatever the previous color of its left-hand

neighbor was. Otherwise, take the new color to be the opposite of that. 

The picture shows what happens when one starts with just one

black cell and then applies this rule over and over again. And what one

sees is something quite startling—and probably the single most

surprising scientific discovery I have ever made. Rather than getting a

simple regular pattern as we might expect, the cellular automaton

instead produces a pattern that seems extremely irregular and complex. 

A cellular automaton with a simple rule that generates a pattern which seems
in many respects random. The rule used is of the same type as in the
previous examples, and the cellular automaton is again started from a single

black cell. But now the pattern that is obtained is highly complex, and shows almost no overall regularity. This picture is our first
example of the fundamental phenomenon that even with simple underlying rules and simple initial conditions, it is possible to
produce behavior of great complexity. In the numbering scheme of Chapter 3, the cellular automaton shown here is rule 30.
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But where does this complexity come from? We certainly did not

put it into the system in any direct way when we set it up. For we just

used a simple cellular automaton rule, and just started from a simple

initial condition containing a single black cell. 

Yet the picture shows that despite this, there is great complexity

in the behavior that emerges. And indeed what we have seen here is a

first example of an extremely general and fundamental phenomenon

that is at the very core of the new kind of science that I develop in this

book. Over and over again we will see the same kind of thing: that even

though the underlying rules for a system are simple, and even though

the system is started from simple initial conditions, the behavior that

the system shows can nevertheless be highly complex. And I will argue

that it is this basic phenomenon that is ultimately responsible for most

of the complexity that we see in nature.

The next two pages show progressively more steps in the

evolution of the rule 30 cellular automaton from the previous page. One

might have thought that after maybe a thousand steps the behavior

would eventually resolve into something simple. But the pictures on

the next two pages show that nothing of the sort happens. 

Some regularities can nevertheless be seen. On the left-hand side,

for example, there are obvious diagonal bands. And dotted throughout

there are various white triangles and other small structures. Yet given

the simplicity of the underlying rule, one would expect vastly more

regularities. And perhaps one might imagine that our failure to see any

in the pictures on the next two pages is just a reflection of some kind of

inadequacy in the human visual system. 

But it turns out that even the most sophisticated mathematical

and statistical methods of analysis seem to do no better. For example,

one can look at the sequence of colors directly below the initial black cell.

And in the first million steps in this sequence, for example, it never

repeats, and indeed none of the tests I have ever done on it show any

meaningful deviation at all from perfect randomness.

In a sense, however, there is a certain simplicity to such perfect

randomness. For even though it may be impossible to predict what
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marker

Five hundred steps in the evolution of the rule 30 cellular automaton from page 27. The pattern produced continues to expand on both
left and right, but only the part that fits across the page is shown here. The asymmetry between the left and right-hand sides is a direct
consequence of asymmetry that exists in the particular underlying cellular automaton rule used. 
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Fifteen hundred steps of rule 30 evolution. Some regularities are evident, particularly on the left. But even after all these steps there are
no signs of overall regularity—and indeed even continuing for a million steps many aspects of the pattern obtained seem perfectly
random according to standard mathematical and statistical tests. The picture here shows a total of just under two million individual cells. 
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color will occur at any specific step, one still knows for example that

black and white will on average always occur equally often.

But it turns out that there are cellular automata whose behavior

is in effect still more complex—and in which even such averages

become very difficult to predict. The pictures on the next several pages

give a rather dramatic example. The basic form of the rule is just the

same as before. But now the specific rule used—that I call rule 110—

takes the new color of a cell to be black in every case except when the

previous colors of the cell and its two neighbors were all the same, or

when the left neighbor was black and the cell and its right neighbor

were both white. 

The pattern obtained with this rule shows a remarkable mixture

of regularity and irregularity. More or less throughout, there is a very

regular background texture that consists of an array of small white

triangles repeating every 7 steps. And beginning near the left-hand edge,

there are diagonal stripes that occur at intervals of exactly 80 steps.

But on the right-hand side, the pattern is much less regular.

Indeed, for the first few hundred steps there is a region that seems

essentially random. But by the bottom of the first page, all that remains

of this region is three copies of a rather simple repetitive structure.

Yet at the top of the next page the arrival of a diagonal stripe from

the left sets off more complicated behavior again. And as the system

progresses, a variety of definite localized structures are produced.

Some of these structures remain stationary, like those at the

bottom of the first page, while others move steadily to the right or left

at various speeds. And on their own, each of these structures works

in a fairly simple way. But as the pictures illustrate, their various

interactions can have very complicated effects. 

And as a result it becomes almost impossible to predict—even

approximately—what the cellular automaton will do.

Will all the structures that are produced eventually annihilate

each other, leaving only a very regular pattern? Or will more and more

structures appear until the whole pattern becomes quite random?

The only sure way to answer these questions, it seems, is just to

run the cellular automaton for as many steps as are needed, and to
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A cellular automaton whose behavior seems neither highly regular nor completely
random. The picture is obtained by applying the simple rule shown for a total of
150 steps, starting with a single black cell. Note that the particular rule used here
yields a pattern that expands on the left but not on the right. In the scheme defined
in Chapter 3, the rule is number 110.

More steps in the pattern shown above. Each successive page shows a total of 700 steps. The pattern continues to expand on the left
forever, but only the part that fits across each page is shown. For a long time it is not clear how the right-hand part of the pattern will
eventually look. But after 2780 steps, a fairly simple repetitive structure emerges. Note that to generate the pictures that follow
requires applying the underlying cellular automaton rule for individual cells a total of about 12 million times.
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watch what happens. And as it turns out, in the particular case shown

here, the outcome is finally clear after about 2780 steps: one structure

survives, and that structure interacts with the periodic stripes coming

from the left to produce behavior that repeats every 240 steps.

However certain one might be that simple programs could never

do more than produce simple behavior, the pictures on the past few

pages should forever disabuse one of that notion. And indeed, what is

perhaps most bizarre about the pictures is just how little trace they

ultimately show of the simplicity of the underlying cellular automaton

rule that was used to produce them.

One might think, for example, that the fact that all the cells in a

cellular automaton follow exactly the same rule would mean that in

pictures like the last few pages all cells would somehow obviously be

doing the same thing. But instead, they seem to be doing quite different

things. Some of them, for example, are part of the regular background,

while others are part of one or another localized structure. And what

makes this possible is that even though individual cells follow the same

rule, different configurations of cells with different sequences of colors

can together produce all sorts of different kinds of behavior.

Looking just at the original cellular automaton rule one would

have no realistic way to foresee all of this. But by doing the appropriate

computer experiments one can easily find out what actually happens—

and in effect begin the process of exploring a whole new world of

remarkable phenomena associated with simple programs. 

The Need for a New Intuition

The pictures in the previous section plainly show that it takes only very

simple rules to produce highly complex behavior. Yet at first this may

seem almost impossible to believe. For it goes against some of our most

basic intuition about the way things normally work.

 A single picture of the behavior from the previous five pages. A total of 3200 steps
are shown. Note that this is more than twice as many as in the picture on page 30. 
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For our everyday experience has led us to expect that an object

that looks complicated must have been constructed in a complicated

way. And so, for example, if we see a complicated mechanical device,

we normally assume that the plans from which the device was built

must also somehow be correspondingly complicated.

But the results at the end of the previous section show that at

least sometimes such an assumption can be completely wrong. For the

patterns we saw are in effect built according to very simple plans—that

just tell us to start with a single black cell, and then repeatedly to apply

a simple cellular automaton rule. Yet what emerges from these plans

shows an immense level of complexity. 

So what is it that makes our normal intuition fail? The most

important point seems to be that it is mostly derived from experience

with building things and doing engineering—where it so happens that

one avoids encountering systems like the ones in the previous section.

For normally we start from whatever behavior we want to get,

then try to design a system that will produce it. Yet to do this reliably,

we have to restrict ourselves to systems whose behavior we can readily

understand and predict—for unless we can foresee how a system will

behave, we cannot be sure that the system will do what we want. 

But unlike engineering, nature operates under no such constraint.

So there is nothing to stop systems like those at the end of the previous

section from showing up. And in fact one of the important conclusions

of this book is that such systems are actually very common in nature.

But because the only situations in which we are routinely aware

both of underlying rules and overall behavior are ones in which we are

building things or doing engineering, we never normally get any

intuition about systems like the ones at the end of the previous section.

So is there then any aspect of everyday experience that should

give us a hint about the phenomena that occur in these systems?

Probably the closest is thinking about features of practical computing.

For we know that computers can perform many complex tasks. Yet

at the level of basic hardware a typical computer is capable of executing just

a few tens of kinds of simple logical, arithmetic and other instructions. And

to some extent the fact that by executing large numbers of such
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instructions one can get all sorts of complex behavior is similar to the

phenomenon we have seen in cellular automata. 

But there is an important difference. For while the individual

machine instructions executed by a computer may be quite simple, the

sequence of such instructions defined by a program may be long and

complicated. And indeed—much as in other areas of engineering—the

typical experience in developing software is that to make a computer do

something complicated requires setting up a program that is itself

somehow correspondingly complicated. 

In a system like a cellular automaton the underlying rules can be

thought of as rough analogs of the machine instructions for a computer,

while the initial conditions can be thought of as rough analogs of the

program. Yet what we saw in the previous section is that in cellular

automata not only can the underlying rules be simple, but the initial

conditions can also be simple—consisting say of just a single black

cell—and still the behavior that is produced can be highly complex.

So while practical computing gives a hint of part of what we saw

in the previous section, the whole phenomenon is something much

larger and stronger. And in a sense the most puzzling aspect of it is that

it seems to involve getting something from nothing. 

For the cellular automata we set up are by any measure simple to

describe. Yet when we ran them we ended with patterns so complex

that they seemed to defy any simple description at all.

And one might hope that it would be possible to call on some

existing kind of intuition to understand such a fundamental

phenomenon. But in fact there seems to be no branch of everyday

experience that provides what is needed. And so we have no choice but

to try to develop a whole new kind of intuition.

And the only reasonable way to do this is to expose ourselves to a

large number of examples. We have seen so far only a few examples, all

in cellular automata. But in the next few chapters we will see many

more examples, both in cellular automata and in all sorts of other

systems. And by absorbing these examples, one is in the end able to

develop an intuition that makes the basic phenomena that I have

discovered seem somehow almost obvious and inevitable.
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Why These Discoveries Were Not Made Before

The main result of this chapter—that programs based on simple rules

can produce behavior of great complexity—seems so fundamental that

one might assume it must have been discovered long ago. But it was

not, and it is useful to understand some of the reasons why it was not.

In the history of science it is fairly common that new

technologies are ultimately what make new areas of basic science

develop. And thus, for example, telescope technology was what led to

modern astronomy, and microscope technology to modern biology. And

now, in much the same way, it is computer technology that has led to

the new kind of science that I describe in this book.

Indeed, this chapter and several of those that follow can in a sense

be viewed as an account of some of the very simplest experiments that

can be done using computers. But why is it that such simple

experiments were never done before? 

One reason is just that they were not in the mainstream of any

existing field of science or mathematics. But a more important reason is

that standard intuition in traditional science gave no reason to think

that their results would be interesting.

And indeed, if it had been known that they were worthwhile,

many of the experiments could actually have been done even long

before computers existed. For while it may be somewhat tedious, it is

certainly possible to work out the behavior of something like a cellular

automaton by hand. And in fact, to do so requires absolutely no

sophisticated ideas from mathematics or elsewhere: all it takes is an

understanding of how to apply simple rules repeatedly. 

And looking at the historical examples of ornamental art on the

facing page, there seems little reason to think that the behavior of many

cellular automata could not have been worked out many centuries or even

millennia ago. And perhaps one day some Babylonian artifact created using

the rule 30 cellular automaton from page 27 will be unearthed. But I very

much doubt it. For I tend to think that if pictures like the one on page 27

had ever in fact been seen in ancient times then science would have been

led down a very different path from the one it actually took. 
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Historical examples of ornamental art. Repetitive patterns are common and some nested patterns are seen, but the more complicated
kinds of patterns discussed in this chapter do not ever appear to have been used. Note that the second-to-last picture is not an abstract
design, but is instead text written in a highly stylized form of Arabic script. 

13th century (Italian) 13th century (Italian) 14th century (Islamic) 14th century (Islamic)

12th century (Italian) 13th century (English) 13th century (Italian) 13th century (Italian)

1st century BC (Celtic) 2nd century (Roman) 8th century (Islamic) 8th century (Celtic)

22,000 BC (Paleolithic) 3500 BC (Sumerian) 1200 BC (Greek) 9th century BC (Phoenician)
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Even early in antiquity attempts were presumably made to see

whether simple abstract rules could reproduce the behavior of natural

systems. But so far as one can tell the only types of rules that were tried

were ones associated with standard geometry and arithmetic. And using

these kinds of rules, only rather simple behavior could be obtained—

adequate to explain some of the regularities observed in astronomy, but

unable to capture much of what is seen elsewhere in nature. 

And perhaps because of this, it typically came to be assumed that

a great many aspects of the natural world are simply beyond human

understanding. But finally the successes based on calculus in the late

1600s began to overthrow this belief. For with calculus there was finally

real success in taking abstract rules created by human thought and

using them to reproduce all sorts of phenomena in the natural world.

But the particular rules that were found to work were fairly

sophisticated ones based on particular kinds of mathematical

equations. And from seeing the sophistication of these rules there began

to develop an implicit belief that in almost no important cases would

simpler rules be useful in reproducing the behavior of natural systems.

During the 1700s and 1800s there was ever-increasing success in

using rules based on mathematical equations to analyze physical

phenomena. And after the spectacular results achieved in physics in the

early 1900s with mathematical equations there emerged an almost

universal belief that absolutely every aspect of the natural world would

in the end be explained by using such equations.

Needless to say, there were many phenomena that did not readily

yield to this approach, but it was generally assumed that if only the

necessary calculations could be done, then an explanation in terms of

mathematical equations would eventually be found.

Beginning in the 1940s, the development of electronic computers

greatly broadened the range of calculations that could be done. But

disappointingly enough, most of the actual calculations that were tried

yielded no fundamentally new insights. And as a result many people

came to believe—and in some cases still believe today—that computers

could never make a real contribution to issues of basic science.
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But the crucial point that was missed is that computers are not

just limited to working out consequences of mathematical equations.

And indeed, what we have seen in this chapter is that there are

fundamental discoveries that can be made if one just studies directly

the behavior of even some of the very simplest computer programs. 

In retrospect it is perhaps ironic that the idea of using simple

programs as models for natural systems did not surface in the early days

of computing. For systems like cellular automata would have been

immensely easier to handle on early computers than mathematical

equations were. But the issue was that computer time was an expensive

commodity, and so it was not thought worth taking the risk of trying

anything but well-established mathematical models.

By the end of the 1970s, however, the situation had changed, and

large amounts of computer time were becoming readily available. And this

is what allowed me in 1981 to begin my experiments on cellular automata.

There is, as I mentioned above, nothing in principle that requires

one to use a computer to study cellular automata. But as a practical

matter, it is difficult to imagine that anyone in modern times would

have the patience to generate many pictures of cellular automata by

hand. For it takes roughly an hour to make the picture on page 27 by

hand, and it would take a few weeks to make the picture on page 29.

Yet even with early mainframe computers, the data for these

pictures could have been generated in a matter of a few seconds and a

few minutes respectively. But the point is that one would be very

unlikely to discover the kinds of fundamental phenomena discussed in

this chapter just by looking at one or two pictures. And indeed for me to

do it certainly took carrying out quite large-scale computer experiments

on a considerable number of different cellular automata.

If one already has a clear idea about the basic features of a

particular phenomenon, then one can often get more details by doing

fairly specific experiments. But in my experience the only way to find

phenomena that one does not already know exist is to do very

systematic and general experiments, and then to look at the results with

as few preconceptions as possible. And while it takes only rather basic
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computer technology to make single pictures of cellular automata, it

requires considerably more to do large-scale systematic experiments.

Indeed, many of my discoveries about cellular automata came as

direct consequences of using progressively better computer technology.

As one example, I discovered the classification scheme for

cellular automata with random initial conditions described at the

beginning of Chapter 6 when I first looked at large numbers of different

cellular automata together on high-resolution graphics displays.

Similarly, I discovered the randomness of rule 30 (page 27) when I was

in the process of setting up large simulations for an early

parallel-processing computer. And in more recent years, I have

discovered a vast range of new phenomena as a result of easily being

able to set up large numbers of computer experiments in Mathematica.

Undoubtedly, therefore, one of the main reasons that the

discoveries I describe in this chapter were not made before the 1980s is

just that computer technology did not yet exist powerful enough to do

the kinds of exploratory experiments that were needed.

But beyond the practicalities of carrying out such experiments, it

was also necessary to have the idea that the experiments might be

worth doing in the first place. And here again computer technology

played a crucial role. For it was from practical experience in using

computers that I developed much of the necessary intuition.

As a simple example, one might have imagined that systems like

cellular automata, being made up of discrete cells, would never be able

to reproduce realistic natural shapes. But knowing about computer

displays it is clear that this is not the case. For a computer display, like

a cellular automaton, consists of a regular array of discrete cells or

pixels. Yet practical experience shows that such displays can produce

quite realistic images, even with fairly small numbers of pixels.

And as a more significant example, one might have imagined that

the simple structure of cellular automaton programs would make it

straightforward to foresee their behavior. But from experience in

practical computing one knows that it is usually very difficult to

foresee what even a simple program will do. Indeed, that is exactly why

bugs in programs are so common. For if one could just look at a program
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and immediately know what it would do, then it would be an easy

matter to check that the program did not contain any bugs.

Notions like the difficulty of finding bugs have no obvious

connection to traditional ideas in science. And perhaps as a result of

this, even after computers had been in use for several decades,

essentially none of this type of intuition from practical computing had

found its way into basic science. But in 1981 it so happened that I had

for some years been deeply involved in both practical computing and

basic science, and I was therefore in an almost unique position to apply

ideas derived from practical computing to basic science. 

Yet despite this, my discoveries about cellular automata still

involved a substantial element of luck. For as I mentioned on page 19,

my very first experiments on cellular automata showed only very

simple behavior, and it was only because doing further experiments was

technically very easy for me that I persisted.

And even after I had seen the first signs of complexity in cellular

automata, it was several more years before I discovered the full range of

examples given in this chapter, and realized just how easily complexity

could be generated in systems like cellular automata.

Part of the reason that this took so long is that it involved

experiments with progressively more sophisticated computer

technology. But the more important reason is that it required the

development of new intuition. And at almost every stage, intuition

from traditional science took me in the wrong direction. But I found

that intuition from practical computing did better. And even though it

was sometimes misleading, it was in the end fairly important in putting

me on the right track.

Thus there are two quite different reasons why it would have

been difficult for the results in this chapter to be discovered much

before computer technology reached the point it did in the 1980s. First,

the necessary computer experiments could not be done with sufficient

ease that they were likely to be tried. And second, the kinds of intuition

about computation that were needed could not readily have been

developed without extensive exposure to practical computing.
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But now that the results of this chapter are known, one can go

back and see quite a number of times in the past when they came at

least somewhat close to being discovered.

It turns out that two-dimensional versions of cellular automata

were already considered in the early 1950s as possible idealized models

for biological systems. But until my work in the 1980s the actual

investigations of cellular automata that were done consisted mainly in

constructions of rather complicated sets of rules that could be shown to

lead to specific kinds of fairly simple behavior.

The question of whether complex behavior could occur in

cellular automata was occasionally raised, but on the basis of intuition

from engineering it was generally assumed that to get any substantial

complexity, one would have to have very complicated underlying rules.

And as a result, the idea of studying cellular automata with simple rules

never surfaced, with the result that nothing like the experiments

described in this chapter were ever done.

In other areas, however, systems that are effectively based on

simple rules were quite often studied, and in fact complex behavior was

sometimes seen. But without a framework to understand its significance,

such behavior tended either to be ignored entirely or to be treated as some

kind of curiosity of no particular fundamental significance.

Indeed, even very early in the history of traditional mathematics

there were already signs of the basic phenomenon of complexity. One

example known for well over two thousand years concerns the

distribution of prime numbers (see page 132). The rules for generating

primes are simple, yet their distribution seems in many respects

random. But almost without exception mathematical work on primes

has concentrated not on this randomness, but rather on proving the

presence of various regularities in the distribution.

Another early sign of the phenomenon of complexity could have

been seen in the digit sequence of a number like 

(see page 136). By the 1700s more than a hundred digits of  had been

computed, and they appeared quite random. But this fact was treated

essentially as a curiosity, and the idea never appears to have arisen that

Π � 3.141592653 …

Π
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there might be a general phenomenon whereby simple rules like those

for computing  could produce complex results.

In the early 1900s various explicit examples were constructed in

several areas of mathematics in which simple rules were repeatedly

applied to numbers, sequences or geometrical patterns. And sometimes

nested or fractal behavior was seen. And in a few cases substantially

more complex behavior was also seen. But the very complexity of this

behavior was usually taken to show that it could not be relevant for real

mathematical work—and could only be of recreational interest.

When electronic computers began to be used in the 1940s, there

were many more opportunities for the phenomenon of complexity to be

seen. And indeed, looking back, significant complexity probably did

occur in many scientific calculations. But these calculations were

almost always based on traditional mathematical models, and since

previous analyses of these models had not revealed complexity, it

tended to be assumed that any complexity in the computer calculations

was just a spurious consequence of the approximations used in them.

One class of systems where some types of complexity were

noticed in the 1950s are so-called iterated maps. But as I will discuss on

page 149, the traditional mathematics that was used to analyze such

systems ended up concentrating only on certain specific features, and

completely missed the main phenomenon discovered in this chapter.

It is often useful in practical computing to produce sequences of

numbers that seem random. And starting in the 1940s, several simple

procedures for generating such sequences were invented. But perhaps

because these procedures always seemed quite ad hoc, no general

conclusions about randomness and complexity were drawn from them.

Along similar lines, systems not unlike the cellular automata

discussed in this chapter were studied in the late 1950s for generating

random sequences to be used in cryptography. Almost all the results

that were obtained are still military secrets, but I do not believe that

any phenomena like the ones described in this chapter were discovered.

And in general, within the context of mainstream science, the

standard intuition that had been developed made it very difficult for

anyone to imagine that it would be worth studying the behavior of the

Π
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very simple kinds of computer programs discussed in this chapter. But

outside of mainstream science, some work along such lines was done.

And for example in the 1960s early computer enthusiasts tried running

various simple programs, and found that in certain cases these programs

could succeed in producing nested patterns.

Then in the early 1970s, considerable recreational computing

interest developed in a specific two-dimensional cellular automaton

known as the Game of Life, whose behavior is in some respects similar

to the rule 110 cellular automaton discussed in this chapter. Great

effort was spent trying to find structures that would be sufficiently

simple and predictable that they could be used as idealized components

for engineering. And although complex behavior was seen it was

generally treated as a nuisance, to be avoided whenever possible.

In a sense it is surprising that so much could be done on the

Game of Life without the much simpler one-dimensional cellular

automata in this chapter ever being investigated. And no doubt the lack

of a connection to basic science was at least in part responsible. 

But whatever the reasons, the fact remains that, despite many

hints over the course of several centuries, the basic phenomenon that I

have described in this chapter was never discovered before.

It is not uncommon in the history of science that once a general

new phenomenon has been identified, one can see that there was

already evidence of it much earlier. But the point is that without the

framework that comes from knowing the general phenomenon, it is

almost inevitable that such evidence will have been ignored.

It is also one of the ironies of progress in science that results

which at one time were so unexpected that they were missed despite

many hints eventually come to seem almost obvious. And having lived

with the results of this chapter for nearly two decades, it is now

difficult for me to imagine that things could possibly work in any other

way. But the history that I have outlined in this section—like the

history of many other scientific discoveries—provides a sobering

reminder of just how easy it is to miss what will later seem obvious.



51

3
The World of Simple Programs

The Search for General Features

At the beginning of the last chapter we asked the basic question of what

simple programs typically do. And as a first step towards answering this

question we looked at several specific examples of a class of programs

known as cellular automata. 

The basic types of behavior that we found are illustrated in the

pictures on the next page. In the first of these there is pure repetition,

and a very simple pattern is formed. In the second, there are many

intricate details, but at an overall level there is still a very regular

nested structure that emerges.

In the third picture, however, one no longer sees such regularity,

and instead there is behavior that seems in many respects random. And

finally in the fourth picture there is what appears to be still more

complex behavior—with elaborate localized structures being generated

that interact in complex ways.

At the outset there was no indication that simple programs could

ever produce behavior so diverse and often complex. But having now

seen these examples, the question becomes how typical they are. Is it

only cellular automata with very specific underlying rules that produce

such behavior? Or is it in fact common in all sorts of simple programs?

My purpose in this chapter is to answer this question by looking

at a wide range of different kinds of programs. And in a sense my
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approach is to work like a naturalist—exploring and studying the

various forms that exist in the world of simple programs. 

I start by considering more general cellular automata, and then I

go on to consider a whole sequence of other kinds of programs—with

underlying structures further and further away from the array of black

and white cells in the cellular automata of the previous chapter. 

And what I discover is that whatever kind of underlying rules one

uses, the behavior that emerges turns out to be remarkably similar to

the basic examples that we have already seen in cellular automata.

Throughout the world of simple programs, it seems, there is great

universality in the types of overall behavior that can be produced. And

in a sense it is ultimately this that makes it possible for me to construct

the coherent new kind of science that I describe in this book—and to

use it to elucidate a large number of phenomena, independent of the

particular details of the systems in which they occur.

randomness (rule 30) localized structures (rule 110)

repetition (rule 250) nesting (rule 90)

Four basic examples from the previous chapter of behavior produced by cellular automata with simple underlying rules. In
each case, the most obvious features that are seen are different. Note that all the pictures are shown on the same scale;
the last picture appears coarser because the structures it contains are larger.
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More Cellular Automata 

The pictures below show the rules used in the four cellular automata on

the facing page. The overall structure of these rules is the same in each

case; what differs is the specific choice of new colors for each possible

combination of previous colors for a cell and its two neighbors.

There turn out to be a total of 256 possible sets of choices that

can be made. And following my original work on cellular automata

these choices can be numbered from 0 to 255, as in the picture below.

But so how do cellular automata with all these different rules

behave? The next page shows a few examples in detail, while the

following two pages show what happens in all 256 possible cases. 

At first, the diversity of what one sees is a little overwhelming.

But on closer investigation, definite themes begin to emerge.

In the very simplest cases, all the cells in the cellular automaton

end up just having the same color after one step. Thus, for example, in

rule 30 rule 110

rule 250 rule 90

The rules used for the four examples of cellular automata on the facing page. In each case, these
specify the new color of a cell for each possible combination of colors of that cell and its immediate
neighbors on the previous step. The rules are numbered according to the scheme described below. 

0 0 0 0 0 0 0 0 = 0

0 0 0 0 0 0 0 1 = 1

0 0 0 0 0 0 1 0 = 2

1 1 1 1 1 1 1 1 = 255

The sequence of 256 possible cellular
automaton rules of the kind shown
above. As indicated, the rules can
conveniently be numbered from 0 to
255. The number assigned is such that
when written in base 2, it gives a
sequence of 0’s and 1’s that correspond
to the sequence of new colors chosen
for each of the eight possible cases
covered by the rule. 
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rule 136 rule 137 rule 138 rule 139

rule 132 rule 133 rule 134 rule 135

rule 128 rule 129 rule 130 rule 131

rule 124 rule 125 rule 126 rule 127

rule 120 rule 121 rule 122 rule 123

rule 116 rule 117 rule 118 rule 119

rule 112 rule 113 rule 114 rule 115

rule 108 rule 109 rule 110 rule 111

rule 104 rule 105 rule 106 rule 107

rule 100 rule 101 rule 102 rule 103

Evolution of cellular automata with a sequence of different possible rules, starting in all cases from a single black cell. 
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rule 120 rule 121 rule 122 rule 123 rule 124 rule 125 rule 126 rule 127

rule 112 rule 113 rule 114 rule 115 rule 116 rule 117 rule 118 rule 119

rule 104 rule 105 rule 106 rule 107 rule 108 rule 109 rule 110 rule 111

rule 96 rule 97 rule 98 rule 99 rule 100 rule 101 rule 102 rule 103

rule 88 rule 89 rule 90 rule 91 rule 92 rule 93 rule 94 rule 95

rule 80 rule 81 rule 82 rule 83 rule 84 rule 85 rule 86 rule 87

rule 72 rule 73 rule 74 rule 75 rule 76 rule 77 rule 78 rule 79

rule 64 rule 65 rule 66 rule 67 rule 68 rule 69 rule 70 rule 71

rule 56 rule 57 rule 58 rule 59 rule 60 rule 61 rule 62 rule 63

rule 48 rule 49 rule 50 rule 51 rule 52 rule 53 rule 54 rule 55

rule 40 rule 41 rule 42 rule 43 rule 44 rule 45 rule 46 rule 47

rule 32 rule 33 rule 34 rule 35 rule 36 rule 37 rule 38 rule 39

rule 24 rule 25 rule 26 rule 27 rule 28 rule 29 rule 30 rule 31

rule 16 rule 17 rule 18 rule 19 rule 20 rule 21 rule 22 rule 23

rule 8 rule 9 rule 10 rule 11 rule 12 rule 13 rule 14 rule 15

rule 0 rule 1 rule 2 rule 3 rule 4 rule 5 rule 6 rule 7
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rule 248 rule 249 rule 250 rule 251 rule 252 rule 253 rule 254 rule 255

rule 240 rule 241 rule 242 rule 243 rule 244 rule 245 rule 246 rule 247

rule 232 rule 233 rule 234 rule 235 rule 236 rule 237 rule 238 rule 239

rule 224 rule 225 rule 226 rule 227 rule 228 rule 229 rule 230 rule 231

rule 216 rule 217 rule 218 rule 219 rule 220 rule 221 rule 222 rule 223

rule 208 rule 209 rule 210 rule 211 rule 212 rule 213 rule 214 rule 215

rule 200 rule 201 rule 202 rule 203 rule 204 rule 205 rule 206 rule 207

rule 192 rule 193 rule 194 rule 195 rule 196 rule 197 rule 198 rule 199

rule 184 rule 185 rule 186 rule 187 rule 188 rule 189 rule 190 rule 191

rule 176 rule 177 rule 178 rule 179 rule 180 rule 181 rule 182 rule 183

rule 168 rule 169 rule 170 rule 171 rule 172 rule 173 rule 174 rule 175

rule 160 rule 161 rule 162 rule 163 rule 164 rule 165 rule 166 rule 167

rule 152 rule 153 rule 154 rule 155 rule 156 rule 157 rule 158 rule 159

rule 144 rule 145 rule 146 rule 147 rule 148 rule 149 rule 150 rule 151

rule 136 rule 137 rule 138 rule 139 rule 140 rule 141 rule 142 rule 143

rule 128 rule 129 rule 130 rule 131 rule 132 rule 133 rule 134 rule 135
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rules 0 and 128 all the cells become white, while in rule 255 all of them

become black. There are also rules such as 7 and 127 in which all cells

alternate between black and white on successive steps.

But among the rules shown on the last few pages, the single most

common kind of behavior is one in which a pattern consisting of a

single cell or a small group of cells persists. Sometimes this pattern

remains stationary, as in rules 4 and 123. But in other cases, such as

rules 2 and 103, it moves to the left or right.

It turns out that the basic structure of the cellular automata

discussed here implies that the maximum speed of any such motion

must be one cell per step. And in many rules, this maximum speed is

achieved—although in rules such as 3 and 103 the average speed is

instead only half a cell per step.

In about two-thirds of all the cellular automata shown on the last

few pages, the patterns produced remain of a fixed size. But in about

one-third of cases, the patterns instead grow forever. Of such growing

patterns, the simplest kind are purely repetitive ones, such as those

seen in rules 50 and 109. But while repetitive patterns are by a small

margin the most common kind, about 14% of all the cellular automata

shown yield more complicated kinds of patterns.

The most common of these are nested patterns, like those on the

next page. And it turns out that although 24 rules in all yield such

nested patterns, there are only three fundamentally different forms that

occur. The simplest and by far the most common is the one exemplified

by rules 22 and 60. But as the pictures on the next page show, other

nested forms are also possible. (In the case of rule 225, the width of the

overall pattern does not grow at a fixed rate, but instead is on average

proportional to the square root of the number of steps.)

The behavior of all 256 possible cellular automata with rules involving two colors and nearest
neighbors. In each case, thirty steps of evolution are shown, starting from a single black cell. Note
that some of the rules are related just by interchange of left and right or black and white (e.g. rules 2
and 16 or rules 126 and 129). There are 88 fundamentally inequivalent such elementary rules.
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Repetition and nesting are widespread themes in many cellular

automata. But as we saw in the previous chapter, it is also possible for

cellular automata to produce patterns that seem in many respects

random. And out of the 256 rules discussed here, it turns out that 10

yield such apparent randomness. There are three basic forms, as

illustrated on the facing page. 

rule 150

rule 105

rule 22

rule 225 rule 225 (shifted)

rule 129

rule 60

Examples of cellular automata that produce nested or fractal patterns. Rule 22—like rule 90 from page 26—gives a pattern with
fractal dimension ; rule 150 gives one with fractal dimension . The width of the pattern
obtained from rule 225 increases like the square root of the number of steps. 

Log[2, 3] ; 1.59 Log[2, 1+
�!!!!

5 ] ; 1.69

Examples of cellular automata that produce patterns with many apparently random features.
Three hundred steps of evolution are shown, starting in each case from a single black cell. 
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rule 73

rule 45

rule 30
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Beyond randomness, the last example in the previous chapter was

rule 110: a cellular automaton whose behavior becomes partitioned into

a complex mixture of regular and irregular parts. This particular cellular

automaton is essentially unique among the 256 rules considered here:

of the four cases in which such behavior is seen, all are equivalent if one

just interchanges the roles of left and right or black and white.

So what about more complicated cellular automaton rules? 

The 256 “elementary” rules that we have discussed so far are by

most measures the simplest possible—and were the first ones I studied.

But one can for example also look at rules that involve three colors,

rather than two, so that cells can not only be black and white, but also

gray. The total number of possible rules of this kind turns out to be

immense—7,625,597,484,987 in all—but by considering only so-called

“totalistic” ones, the number becomes much more manageable.

The idea of a totalistic rule is to take the new color of each cell to

depend only on the average color of neighboring cells, and not on their

individual colors. The picture below shows one example of how this

works. And with three possible colors for each cell, there are 2187

possible totalistic rules, each of which can conveniently be identified

by a code number as illustrated in the picture. The facing page shows a

representative sequence of such rules. 

We might have expected that by allowing three colors rather than

two we would immediately get noticeably more complicated behavior.

1 0 0 1 2 1 0 = 777

Example of a totalistic cellular automaton with three
possible colors for each cell. The rule is set up so that
the new color of every cell is determined by the
average of the previous colors of the cell and its
immediate neighbors. With 0 representing white, 1
gray and 2 black, the rightmost element of the rule
gives the result for average color 0, while the element
immediately to its left gives the result for average
color 1/3—and so on. Interpreting the sequence of
new colors as a sequence of base 3 digits, one can
assign a code number to each totalistic rule. 
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A sequence of totalistic cellular automata with three possible colors for each cell. Although their basic rules are more
complicated, the cellular automata shown here do not seem to have fundamentally more complicated behavior than the
two-color cellular automata shown on previous pages. Note that in the sequence of rules shown here, those that change the
white background are not included. The symmetry of all the patterns is a consequence of the basic structure of totalistic rules.

code 1128 code 1131 code 1134 code 1137 code 1140

code 1113 code 1116 code 1119 code 1122 code 1125

code 1098 code 1101 code 1104 code 1107 code 1110

code 1083 code 1086 code 1089 code 1092 code 1095

code 1068 code 1071 code 1074 code 1077 code 1080

code 1053 code 1056 code 1059 code 1062 code 1065

code 1038 code 1041 code 1044 code 1047 code 1050

code 1023 code 1026 code 1029 code 1032 code 1035

code 1008 code 1011 code 1014 code 1017 code 1020

code 993 code 996 code 999 code 1002 code 1005
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But in fact the behavior we see on the previous page is not unlike what

we already saw in many elementary cellular automata a few pages back.

Having more complicated underlying rules has not, it seems, led to

much greater complexity in overall behavior. 

And indeed, this is a first indication of an important general

phenomenon: that at least beyond a certain point, adding complexity to

the underlying rules for a system does not ultimately lead to more

complex overall behavior. And so for example, in the case of cellular

automata, it seems that all the essential ingredients needed to produce

even the most complex behavior already exist in elementary rules.

Using more complicated rules may be convenient if one wants, say,

to reproduce the details of particular natural systems, but it does not add

fundamentally new features. Indeed, looking at the pictures on the

previous page one sees exactly the same basic themes as in elementary

cellular automata. There are some patterns that attain a definite size, then

repeat forever, as shown below, others that continue to grow, but have a

repetitive form, as at the top of the facing page, and still others that

produce nested or fractal patterns, as at the bottom of the page.

Examples of three-color
totalistic rules that yield
patterns which attain a certain
size, then repeat forever. The
maximum repetition period is
found to be 78 steps, and is
achieved by the rule with code
number 1329. In the pictures
shown here and on the following
pages, the initial condition used
contains a single gray cell. 

code 600 code 843 code 870 code 1086 code 1167 code 1329 code 1572 code 1815 code 1842
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Examples of three-color totalistic rules that yield patterns which grow forever but have a fundamentally repetitive structure.

Examples of three-color totalistic rules which yield nested patterns. In most cases, these patterns have an overall form that is
similar to what was found with two-color rules. But code 420, for example, yields a pattern with a slightly different structure. 

code 966 code 1884

code 219 code 957

code 948 code 1749

code 237 code 420
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Examples of three-color totalistic rules that yield patterns with seemingly random features. Three
hundred steps of evolution are shown in each case. 

code 2040

code 912

code 177
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In detail, some of the patterns are definitely more complicated

than those seen in elementary rules. But at the level of overall behavior,

there are no fundamental differences. And in the case of nested patterns

even the specific structures seen are usually the same as for elementary

rules. Thus, for example, the structure in codes 237 and 948 is the most

common, followed by the one in code 1749. The only new structure not

already seen in elementary rules is the one in code 420—but this occurs

only quite rarely. 

About 85% of all three-color totalistic cellular automata produce

behavior that is ultimately quite regular. But just as in elementary cellular

automata, there are some rules that yield behavior that seems in many

respects random. A few examples of this are given on the facing page. 

Beyond fairly uniform random behavior, there are also cases

similar to elementary rule 110 in which definite structures are

produced that interact in complicated ways. The next page gives a few

examples. In the first case shown, the pattern becomes repetitive after

about 150 steps. In the other two cases, however, it is much less clear

what will ultimately happen. The following pages continue these

patterns for 3000 steps. But even after this many steps it is still quite

unclear what the final behavior will be.

Looking at pictures like these, it is at first difficult to believe that

they can be generated just by following very simple underlying cellular

automaton rules. And indeed, even if one accepts this, there is still a

tendency to assume that somehow what one sees must be a

consequence of some very special feature of cellular automata.

As it turns out, complexity is particularly widespread in cellular

automata, and for this reason it is fortunate that cellular automata were

the very first systems that I originally decided to study. 

But as we will see in the remainder of this chapter, the fundamental

phenomena that we discovered in the previous chapter are in no way

restricted to cellular automata. And although cellular automata remain

some of the very best examples, we will see that a vast range of utterly

different systems all in the end turn out to exhibit extremely similar

types of behavior. 
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Examples of three-color totalistic rules with highly complex behavior showing a mixture of regularity and
irregularity. The partitioning into identifiable structures is similar to what we saw in rule 110 on page 32. 

code 2049

code 1635

code 1041
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code 1635
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code 2049
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The pictures below show totalistic cellular automata whose

overall patterns of growth seem, at least at first, quite complicated. But

it turns out that after only about 100 steps, three out of four of these

patterns have resolved into simple forms.

The one remaining pattern is, however, much more complicated.

As shown on the next page, for several thousand steps it simply grows,

albeit somewhat irregularly. But then its growth becomes slower. And

inside the pattern parts begin to die out. Yet there continue to be

occasional bursts of growth. But finally, after a total of 8282 steps, the

pattern resolves into 31 simple repetitive structures.

Examples of rules that yield patterns
which seem to be on the edge between
growth and extinction. For all but code
1599, the fate of these patterns in fact
becomes clear after less than 100 steps. A
total of 250 steps are shown here. 

 Three thousand steps in the evolution of the last two cellular automata from page 66.
Despite the simplicity of their underlying rules, the final patterns produced show
immense complexity. In neither case is it clear what the final outcome will be—whether
apparent randomness will take over, or whether a simple repetitive form will emerge.

code 357 code 600 code 1599 code 2058
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code 1599

Nine thousand steps in the evolution of the three-color totalistic cellular automaton with code number 1599. Starting from a
single gray cell, each column corresponds to 3000 steps. The outcome of the evolution finally becomes clear after 8282
steps, when the pattern resolves into 31 simple repetitive structures.
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Mobile Automata 

One of the basic features of a cellular automaton is that the colors of all

the cells it contains are updated in parallel at every step in its evolution.

But how important is this feature in determining the overall

behavior that occurs? To address this question, I consider in this section

a class of systems that I call “mobile automata”.

Mobile automata are similar to cellular automata except that

instead of updating all cells in parallel, they have just a single “active

cell” that gets updated at each step—and then they have rules that

specify how this active cell should move from one step to the next. 

The picture below shows an example of a mobile automaton. The

active cell is indicated by a black dot. The rule applies only to this

active cell. It looks at the color of the active cell and its immediate

neighbors, then specifies what the new color of the active cell should

be, and whether the active cell should move left or right.

Much as for cellular automata, one can enumerate all possible rules

of this kind; it turns out that there are 65,536 of them. The pictures at the

top of the next page show typical behavior obtained with such rules. In

cases (a) and (b), the active cell remains localized to a small region, and the

behavior is very simple and repetitive. Cases (c) through (f) are similar,

An example of a mobile automaton. Like a cellular automaton, a
mobile automaton consists of a line of cells, with each cell having
two possible colors. But unlike a cellular automaton, a mobile
automaton has only one “active cell” (indicated here by a black dot)
at any particular step. The rule for the mobile automaton specifies
both how the color of this active cell should be updated, and
whether it should move to the left or right. The result of evolution
for a larger number of steps with the particular rule shown here is
given as example (f) on the next page.



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

72

except that the whole pattern shifts systematically to the right, and in

cases (e) and (f) a sequence of stripes is left behind.

But with a total of 218 out of the 65,536 possible rules, one gets

somewhat different behavior, as cases (g) and (h) above show. The active

cell in these cases does not move in a strictly repetitive way, but instead

sweeps backwards and forwards, going progressively further every time.

The overall pattern produced is still quite simple, however. And

indeed in the compressed form below, it is purely repetitive.

Examples of mobile automata with various rules. In cases (a) through (f) the motion of the active cell is purely repetitive. In cases
(g) and (h) it is not. The width of the pattern in these cases after  steps grows roughly like . t

�!!!!!!!
2 t

Compressed versions of the evolution of mobile automata (g) and (h) above, obtained by showing only
those steps at which the active cell is further to the left or right than it has ever been before. 

(a) (b) (c) (d) (e) (f ) (g) (h)

(e) (f ) (g) (h)

(a) (b) (c) (d)
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Of the 65,536 possible mobile automata with rules of the kind

discussed so far it turns out that not a single one shows more complex

behavior. So can such behavior then ever occur in mobile automata?

One can extend the set of rules one considers by allowing not

only the color of the active cell itself but also the colors of its

immediate neighbors to be updated at each step. And with this

extension, there are a total of 4,294,967,296 possible rules.

If one samples these rules at random, one finds that more than

99% of them just yield simple repetitive behavior. But once in every

few thousand rules, one sees behavior of the kind shown below—that is

not purely repetitive, but instead has a kind of nested structure.

A mobile automaton with slightly more
complicated rules that yields a nested
pattern. Each column on the left shows
200 steps in the mobile automaton
evolution. The compressed form of the
pattern is based on a total of 8000 steps.

compressed
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The overall pattern is nevertheless still very regular. But after

searching through perhaps 50,000 rules, one finally comes across a rule

of the kind shown below—in which the compressed pattern exhibits

very much the same kind of apparent randomness that we saw in

cellular automata like rule 30.

But even though the final pattern left behind by the active cell in

the picture above seems in many respects random, the motion of the

active cell itself is still quite regular. So are there mobile automata in

which the motion of the active cell is also seemingly random? At first, I

believed that there might not be. But after searching through a few

million rules, I finally found the example shown on the facing page.

A mobile automaton that yields a pattern with
seemingly random features. The motion of the active
cell is still quite regular, as the picture on the right
shows. But when viewed in compressed form, as
below, the overall pattern of colors seems in many
respects random. Each column on the right shows
200 steps of evolution; the compressed form below
corresponds to 50,000 steps.

compressed



T H E  W O R L D  O F  S I M P L E  P R O G R A M S C H A P T E R  3

75

A mobile automaton in which the position of the
active cell moves in a seemingly random way. Each
column above shows 400 steps; the compressed
form corresponds to 50,000 steps. It took searching
through a few million mobile automata to find one
with behavior as complex as what we see here. 

compressed
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Despite the fact that mobile automata update only one cell at a

time, it is thus still possible for them to produce behavior of great

complexity. But while we found that such behavior is quite common in

cellular automata, what we have seen in this section indicates that it is

rather rare in mobile automata.

One can get some insight into the origin of this difference by

studying a class of generalized mobile automata, that in a sense

interpolate between ordinary mobile automata and cellular automata.

The basic idea of such generalized mobile automata is to allow

more than one cell to be active at a time. And the underlying rule is

then typically set up so that under certain circumstances an active cell

can split in two, or can disappear entirely.

Thus in the picture below, for example, new active cells end up

being created every few steps.

If one chooses generalized mobile automata at random, most of

them will produce simple behavior, as shown in the first few pictures

on the facing page. But in a few percent of all cases, the behavior is

much more complicated. Often the arrangement of active cells is still

quite regular, although sometimes it is not.

But looking at many examples, a certain theme emerges: complex

behavior almost never occurs except when large numbers of cells are

active at the same time. Indeed there is, it seems, a significant

correlation between overall activity and the likelihood of complex

behavior. And this is part of why complex behavior is so much more

common in cellular automata than in mobile automata.

A generalized mobile automaton in which any number
of cells can be active at a time. The rule given above is
applied to every cell that is active at a particular step. In
many cases, the rule specifies just that the active cell
should move to the left or right. But in some cases, it
specifies that the active cell should split in two,
thereby creating an additional active cell. 
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(a) (b) (c)

(d) (e)

(a) (b) (c)

(d) (e)

(e) ( f ) (g) (h)

(a) (b) (c) (d)

Examples of generalized mobile automata with various rules. In case (a), only a limited number of cells ever become active. But in
all the other cases shown active cells proliferate forever. In case (d), almost all cells are active, and the system operates
essentially like a cellular automaton. In the remaining cases somewhat complicated patterns of cells are active. Note that unlike in
ordinary mobile automata, examples of complex behavior like those shown here are comparatively easy to find.

( f ) (g) (h)
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Turing Machines

In the history of computing, the first widely understood theoretical

computer programs ever constructed were based on a class of systems

now called Turing machines.

Turing machines are similar to mobile automata in that they

consist of a line of cells, known as the “tape”, together with a single

active cell, known as the “head”. But unlike in a mobile automaton, the

head in a Turing machine can have several possible states, represented

by several possible arrow directions in the picture below.

And in addition, the rule for a Turing machine can depend on the

state of the head, and on the color of the cell at the position of the head,

but not on the colors of any neighboring cells.

Turing machines are still widely used in theoretical computer

science. But in almost all cases, one imagines constructing examples to

perform particular tasks, with a huge number of possible states and a

huge number of possible colors for each cell.

But in fact there are non-trivial Turing machines that have just

two possible states and two possible colors for each cell. The pictures

on the facing page show examples of some of the 4096 machines of this

kind. Both repetitive and nested behavior are seen to occur, though

nothing more complicated is found.

An example of a Turing machine. Like a
mobile automaton, the Turing machine
has one active cell or “head”, but now the
head has several possible states,
indicated by the directions of the arrows
in this picture. 
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From our experience with mobile automata, however, we expect

that there should be Turing machines that have more complex behavior.

With three states for the head, there are about three million

possible Turing machines. But while some of these give behavior that

looks slightly more complicated in detail, as in cases (a) and (b) on the

next page, all ultimately turn out to yield just repetitive or nested

patterns—at least if they are started with all cells white.

With four states, however, more complicated behavior

immediately becomes possible. Indeed, in about five out of every

million rules of this kind, one gets patterns with features that seem in

many respects random, as in the pictures on the next two pages. 

So what happens if one allows more than four states for the head?

It turns out that there is almost no change in the kind of behavior one

sees. Apparent randomness becomes slightly more common, but

otherwise the results are essentially the same.

Once again, it seems that there is a threshold for complex

behavior—that is reached as soon as one has at least four states. And

just as in cellular automata, adding more complexity to the underlying

rules does not yield behavior that is ultimately any more complex.

Examples of Turing machines with two possible states for the head. There are a total of 4096 rules
of this kind. Repetitive and nested patterns are seen, but nothing more complicated ever occurs. 

(b) (c) (d) (e) ( f )
(a) (b) (c) (d) (e) ( f )

( f )

(e)

(d)

(c)

(b)

(a)
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(a) (b) (c) (d) (e) (f ) (g) (h)

(e) (f ) (g) (h)

(a) (b) (c) (d)

(a)

(b)

(c)

(d)

(e)

(f )

(g)

(h)

Examples of Turing machines with three and four possible states. With three possible states, only repetitive and nested
patterns are ever ultimately produced, at least starting with all cells white. But with four states, more complicated patterns
are generated. The top set of pictures show the first 150 steps of evolution according to various different rules, starting with
the head in the first state (arrow pointing up), and all cells white. The bottom set of pictures show the evolution in each case
in a compressed form. Each of these pictures includes the first 50 steps at which the head is further to the left or right than
it has ever been before.

compressed
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A Turing machine that exhibits behavior
which seems in many respects random. The
Turing machine has four possible states for
its head, and two possible colors for each
cell on its tape. It starts with all cells white,
corresponding to a blank tape. Each column
above shows 250 steps of evolution; the
compressed form on the left corresponds to
a total of 20,000 steps. 

compressed
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Substitution Systems

One of the features that cellular automata, mobile automata and Turing

machines all have in common is that at the lowest level they consist of

a fixed array of cells. And this means that while the colors of these cells

can be updated according to a wide range of different possible rules, the

underlying number and organization of cells always stays the same. 

Substitution systems, however, are set up so that the number of

elements can change. In the typical case illustrated below, one has a

sequence of elements—each colored say black or white—and at each step

each one of these elements is replaced by a new block of elements.

In the simple cases shown, the rules specify that each element of

a particular color should be replaced by a fixed block of new elements,

independent of the colors of any neighboring elements.

And with these kinds of rules, the total number of elements

typically grows very rapidly, so that pictures like those above quickly

become rather unwieldy. But at least for these kinds of rules, one can

make clearer pictures by thinking of each step not as replacing every

element by a sequence of elements that are drawn the same size, but

rather of subdividing each element into several that are drawn smaller.

In the cases on the facing page, I start from a single element

represented by a long box going all the way across the picture. Then on

successive steps the rules for the substitution system specify how each

box should be subdivided into a sequence of shorter and shorter boxes.

Examples of substitution systems with two possible kinds of elements, in which at every step each
kind of element is replaced by a fixed block of new elements. In the first case shown, the total number
of elements obtained doubles at every step; in the second case, it follows a Fibonacci sequence, and
increases by a factor of roughly  at every step. The two substitution systems
shown here correspond to the second and third examples in the pictures on the following two pages. 

(1+
�!!!!

5 ) /2 ; 1.618
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The pictures at the top of the next page show a few more examples.

And what we see is that in all cases there is obvious regularity in the

patterns produced. Indeed, if one looks carefully, one can see that every

pattern just consists of a collection of identical nested pieces. 

And ultimately this is not surprising. After all, the basic rules for

these substitution systems specify that any time an element of a

particular color appears it will always get subdivided in the same way.

The nested structure becomes even clearer if one represents

elements not as boxes, but instead as branches on a tree. And with this

setup the idea is to start from the trunk of the tree, and then at each

step to use the rules for the substitution system to determine how

every branch should be split into smaller branches.

(d)

(c)

(b)

(a)

Examples of substitution systems in which every element is drawn as being subdivided into a
sequence of new elements at each step. In all cases the overall patterns obtained can be seen to
have a very regular nested form. Rule (b) gives the so-called Thue-Morse sequence, which we will
encounter many times in this book. Rule (c) is related to the Fibonacci sequence. Rule (d) gives a
version of the Cantor set. 
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Then the point is that because the rules depend only on the color of

a particular branch, and not on the colors of any neighboring branches, the

subtrees that are generated from all the branches of the same color must

have exactly the same structure, as in the pictures below.

( i) ( j)

(g) (h)

(e) (f )

(c) (d)

(a) (b)

(a) (b) (c) (d) (e) (f ) (g) (h) ( i) ( j)

More examples of neighbor-independent substitution systems like those on the previous page. Each rule yields a different sequence
of elements, but all of them ultimately have simple nested forms. 

The evolution of the same substitution systems as on the previous page, but now shown in terms of trees. Starting from the trunk at
the bottom, the rules specify that at each step every branch of a particular color should split into smaller branches in the same way.
The result is that each tree consists of a collection of progressively smaller subtrees with the same structure. On page 400 I will use
similar systems to discuss the growth of actual trees and leaves. 

S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E
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To get behavior that is more complicated than simple nesting, it

follows therefore that one must consider substitution systems whose

rules depend not only on the color of a single element, but also on the

color of at least one of its neighbors. The pictures below show examples

in which the rules for replacing an element depend not only on its own

color, but also on the color of the element immediately to its right.

In the first example, the pattern obtained still has a simple nested

structure. But in the second example, the behavior is more complicated,

and there is no obvious nested structure.

One feature of both examples, however, is that the total number

of elements never decreases from one step to the next. The reason for

this is that the basic rules we used specify that every single element

should be replaced by at least one new element.

Examples of substitution systems whose rules depend not just on the color of an element itself, but
also on the color of the element immediately to its right. Rules of this kind cannot readily be
interpreted in terms of simple subdivision of one element into several. And as a result, there is no
obvious way to choose what size of box should be used to represent each element in the picture.
What I do here is simply to divide the whole width of the picture equally among all elements that
appear at each step. Note that on every step the rightmost element is always dropped, since no rule
is given for how to replace it. 
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It is, however, also possible to consider substitution systems in

which elements can simply disappear. If the rate of such disappearances

is too large, then almost any pattern will quickly die out. And if there

are too few disappearances, then most patterns will grow very rapidly.

But there is always a small fraction of rules in which the creation

and destruction of elements is almost perfectly balanced. 

The picture above shows one example. The number of elements

does end up increasing in this particular example, but only by a fixed

amount at each step. And with such slow growth, we can again

represent each element by a box of the same size, just as in our original

pictures of substitution systems on page 82.

When viewed in this way, however, the pattern produced by the

substitution system shown above is seen to have a simple repetitive

form. And as it turns out, among substitution systems with the same

type of rules, all those which yield slow growth also seem to produce

only such simple repetitive patterns.

Knowing this, we might conclude that somehow substitution

systems just cannot produce the kind of complexity that we have seen

in systems like cellular automata. But as with mobile automata and

with Turing machines, we would again be wrong. Indeed, as the

pictures on the facing page demonstrate, allowing elements to have

three or four colors rather than just two immediately makes much more

complicated behavior possible.

Two views of a substitution system whose
rules allow both creation and destruction of
elements. In the view on the left, the boxes
representing each element are scaled to keep
the total width the same, whereas on the
right each box has a fixed size, as in our
original pictures of substitution systems on
page 82. The right-hand view shows that the
rates of creation and destruction of elements
are balanced closely enough that the total
number of elements grows by only a fixed
amount at each step.
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(a) (b) (c)

(d) (e) (f )

(a) (b)

(c) (d)

(e)

(f )

Examples of substitution systems that have three and four possible colors for
each element. The particular rules shown are ones that lead to slow growth
in the total number of elements. Note that on each line in each picture, only
the order of elements is ever significant: as the insets show, a particular
element may change its position as a result of the addition or subtraction of
elements to its left. Note that the pattern in case (a) does eventually repeat,
while the one in case (b) eventually shows a nested structure.
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As it turns out, the first substitution system shown works almost

exactly like a cellular automaton. Indeed, away from the right-hand

edge, all the elements effectively behave as if they were lying on a

regular grid, with the color of each element depending only on the

previous color of that element and the element immediately to its right.

The second substitution system shown again has patches that

exhibit a regular grid structure. But between these patches, there are

regions in which elements are created and destroyed. And in the other

substitution systems shown, elements are created and destroyed

throughout, leaving no trace of any simple grid structure. So in the end

the patterns we obtain can look just as random as what we have seen in

systems like cellular automata. 

Sequential Substitution Systems 

None of the systems we have discussed so far in this chapter might at first

seem much like computer programs of the kind we typically use in

practice. But it turns out that there are for example variants of

substitution systems that work essentially just like standard text editors.

The first step in understanding this correspondence is to think

of substitution systems as operating not on sequences of colored

elements but rather on strings of elements or letters. Thus for

example the state of a substitution system at a particular step can be

represented by the string , where the ’s correspond to

white elements and the ’s to black ones. 

The substitution systems that we discussed in the previous

section work by replacing each element in such a string by a new

sequence of elements—so that in a sense these systems operate in

parallel on all the elements that exist in the string at each step.

But it is also possible to consider sequential substitution

systems, in which the idea is instead to scan the string from left to

right, looking for a particular sequence of elements, and then to

perform a replacement for the first such sequence that is found. And

this setup is now directly analogous to the search-and-replace

function of a typical text editor.

ABBBABA A

B
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The picture below shows an example of a sequential substitution

system in which the rule specifies simply that the first sequence of the

form  found at each step should be replaced with the sequence .

The behavior in this case is very simple, with longer and longer

strings of the same form being produced at each step. But one can get

more complicated behavior if one uses rules that involve more than just

one possible replacement. The idea in this case is at each step to scan

the string repeatedly, trying successive replacements on successive

scans, and stopping as soon as a replacement that can be used is found.

The picture on the next page shows a sequential substitution

system with rule  involving two possible

replacements. Since the sequence  occurs in the initial string that is

given, the first replacement is used on the first step. But the string

 that is produced at the second step does not contain , so now

the first replacement cannot be used. Nevertheless, since the string does

contain the single element , the second replacement can still be used.

Despite such alternation between different replacements,

however, the final pattern that emerges is very regular. Indeed, if one

allows only two possible replacements—and two possible elements—

BA ABA

An example of a very simple sequential substitution
system. The light squares can be thought of as
corresponding to the element A, and the dark squares
to the element B. At each step, the rule then specifies
that the string which exists at that step should be
scanned from left to right, and the first sequence BA
that is found should be replaced by ABA. In the picture,
the black dots indicate which elements are being
replaced at each step. In the case shown, the initial
string is BABA. At each step, the rule then has the
effect of adding an A inside the string.

�ABA � AAB, A � ABA�

ABA

BAAB ABA

A
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then it seems that no rule ever gives behavior that is much more

complicated than in the picture above.

And from this one might be led to conclude that sequential

substitution systems could never produce behavior of any substantial

complexity. But having now seen complexity in many other kinds of

systems, one might suspect that it should also be possible in sequential

substitution systems. 

And it turns out that if one allows more than two possible

replacements then one can indeed immediately get more complex

behavior. The pictures on the facing page show a few examples. In many

cases, fairly regular repetitive or nested patterns are still produced.

But about once in every 10,000 randomly selected rules, rather

different behavior is obtained. Indeed, as the picture on the following

page demonstrates, patterns can be produced that seem in many

respects random, much like patterns we have seen in cellular

automata and other systems.

So this leads to the rather remarkable conclusion that just by

using the simple operations available even in a very basic text editor, it

is still ultimately possible to produce behavior of great complexity.

A sequential substitution system
whose rule involves two possible
replacements. At each step, the
whole string is scanned once to try to
apply the first replacement, and is
then scanned again if necessary to
try to apply the second replacement.
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(a) (b) (c) (d) (e) (f ) (g) (h)

Examples of sequential substitution systems whose rules
involve three possible replacements. In all cases, the
systems are started from the initial string BAB. The black
dots indicate the elements that are replaced at each step. 

(e) (f ) (g) (h)

(a) (b) (c) (d)
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An example of a sequential substitution system that yields apparently random behavior. Each column
on the right-hand side shows the evolution of the system for 250 steps. The compressed picture on the
left is made by evolving for a million steps, but showing only steps at which the string becomes longer
than it has ever been before. (The rule is the same as (g) on the previous page.)

compressed
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Tag Systems

One of the goals of this chapter is to find out just how simple the

underlying structure of a system can be while the system as a whole is

still capable of producing complex behavior. And as one example of a

class of systems with a particularly simple underlying structure, I

consider here what are sometimes known as tag systems.

A tag system consists of a sequence of elements, each colored say

black or white. The rules for the system specify that at each step a fixed

number of elements should be removed from the beginning of the

sequence. And then, depending on the colors of these elements, one of

several possible blocks is tagged onto the end of the sequence.

The pictures below show examples of tag systems in which just

one element is removed at each step. And already in these systems one

sometimes sees behavior that looks somewhat complicated.

But in fact it turns out that if only one element is removed at

each step, then a tag system always effectively acts just like a slow

version of a neighbor-independent substitution system of the kind we

discussed on page 83. And as a result, the pattern it produces must

ultimately have a simple repetitive or nested form.

If two elements are removed at each step, however, then this is no

longer true. And indeed, as the pictures on the next page demonstrate,

the behavior that is obtained in this case can often be very complicated. 

Examples of tag systems in which a single element is removed from the beginning of the sequence at each step, and a new
block of elements is added to the end of the sequence according to the rules shown. Because only a single element is
removed at each step, the systems effectively just cycle through all elements, replacing each one in turn. And after every
complete cycle, the sequences obtained correspond exactly to the sequences produced on successive steps in the first
three ordinary neighbor-independent substitution systems shown on page 83.

(a) (b) (c)

(a)

(b)

(c)
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(a) (b) (c) (d) (e) ( f )

(a)

(d)

(b)

(e)

(c)

( f )

0
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40

60

0 200 400 600 800 1000
0

50

100

150

0 200 400 600 800 1000
0

200

400

0 200 400 600 800 1000

0

200

400

0 200 400 600 800 1000
0

50

100

0 200 400 600 800 1000
0

20

40

0 200 400 600 800 1000

(d) (e) (f )

(a) (b) (c)

0

5000

10,000

10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

(f ) (extended)

Examples of tag systems in which at each step two elements are removed from the beginning of the sequence and then,
based on what these elements are, a specified block of new elements is added to the end of the sequence. (The three dots
in the representation of each rule stand for the rest of the elements in the sequence.) The pictures at the top show the first
hundred steps in evolution according to various rules starting from a pair of black elements. The plots show the total lengths
of the sequences obtained in each case. Note that in case (c), all the elements are eventually removed from the sequence. 
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Cyclic Tag Systems

The basic operation of the tag systems that we discussed in the previous

section is extremely simple. But it turns out that by using a slightly

different setup one can construct systems whose operation is in some

ways even simpler. In an ordinary tag system, one does not know in

advance which of several possible blocks will be added at each step. But

the idea of a cyclic tag system is to make the underlying rule already

specify exactly what block can be added at each step. 

In the simplest case there are two possible blocks, and the rule

simply alternates on successive steps between these blocks, adding a

block at a particular step when the first element in the sequence at that

step is black. The picture below shows an example of how this works. 

The next page shows examples of several cyclic tag systems. In

cases (a) and (b) simple behavior is obtained. In case (c) the behavior is

slightly more complicated, but if the pattern is viewed in the

appropriate way then it turns out to have the same nested form as the

third neighbor-independent substitution system shown on page 83.

So what about cases (d) and (e)? In both of these, the sequences

obtained at successive steps grow on average progressively longer. But if

one looks at the fluctuations in this growth, as in the plots on the next

page, then one finds that these fluctuations are in many respects random.

rule summary:

An example of a cyclic tag system. There are two cases in the rule,
and these cases are used on alternate steps, as indicated by the circle
icons on the left. In each case a single element is removed from the
beginning of the sequence, and then a new block is added at the end
whenever the element removed is black. The rule can be summarized
just by giving the blocks to be used in each case, as shown below.
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(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Examples of cyclic tag systems. In each case the initial condition consists of a single black element. In case (c), alternate steps in the
leftmost column (which in all cyclic tag systems determines the overall behavior) have the same nested form as the third
neighbor-independent substitution system shown on page 83. 
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0
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0 100 200 300 400 500 600 700 800 900 1000

(d)
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-20
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40

0 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000 1,000,000

(d)

0
10
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(e)

0

200

400

600

800

0 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000 1,000,000

(e)

Fluctuations in the growth of sequences for cyclic tag systems (d) and (e) above. The fluctuations are shown with respect to growth at
an average rate of half an element per step.
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Register Machines

All of the various kinds of systems that we have discussed so far in this

chapter can readily be implemented on practical computers. But none of

them at an underlying level actually work very much like typical

computers. Register machines are however specifically designed to be

very simple idealizations of present-day computers. 

Under most everyday circumstances, the hardware construction

of the computers we use is hidden from us by many layers of software.

But at the lowest level, the CPUs of all standard computers have

registers that store numbers, and any program we write is ultimately

converted into a sequence of simple instructions that specify operations

to be performed on these registers.

Most practical computers have quite a few registers, and support

perhaps tens of different kinds of instructions. But as a simple

idealization one can consider register machines with just two registers—

each storing a number of any size—and just two kinds of instructions:

“increments” and “decrement-jumps”. The rules for such register

machines are then idealizations of practical programs, and are taken to

consist of fixed sequences of instructions, to be executed in turn.

Increment instructions are set up just to increase by one the

number stored in a particular register. Decrement-jump instructions, on

the other hand, do two things. First, they decrease by one the number in

a particular register. But then, instead of just going on to execute the

next instruction in the program, they jump to some specified other

point in the program, and begin executing again from there.

Since we assume that the numbers in our registers cannot be

negative, however, a register that is already zero cannot be decremented.

And decrement-jump instructions are then set up so that if they are

applied to a register containing zero, they just do essentially nothing:

they leave the register unchanged, and then they go on to execute the

next instruction in the program, without jumping anywhere. 

This feature of decrement-jump instructions may seem like a

detail, but in fact it is crucial—for it is what makes it possible for our

register machines to take different paths depending on values in

registers through the programs they are given.
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And with this setup, the pictures above show three very simple

examples of register machines with two registers. The programs for

each of the machines are given at the top, with  representing an

increment instruction, and  a decrement-jump. The successive steps

in the evolution of each machine are shown on successive lines down

the page. The instruction being executed is indicated at each step by the

position of the dot on the left, while the numbers in each of the two

registers are indicated by the gray blocks on the right.

All the register machines shown start by executing the first

instruction in their programs. And with the particular programs used

here, the machines are then set up just to execute all the other

instructions in their programs in turn, jumping back to the beginning of

their programs whenever they reach the end.

Both registers in each machine are initially zero. And in the first

machine, the first register alternates between 0 and 1, while the second

remains zero. In the second machine, however, the first register again

Examples of simple register machines, set up to mimic the low-level operation of practical computers. The machines shown
have two registers, whose values on successive steps are given on successive lines down the page. Each machine follows
a fixed program given at the top. The program consists of a sequence of increment and decrement-jump instructions.
Instructions that are shown as light gray boxes refer to the first register; those shown as dark gray boxes refer to the second
one. On each line going down the page, the black dot on the left indicates which instruction in the program is being executed
at the corresponding step. With the particular programs shown here, each machine just executes successive instructions in
turn, jumping to the beginning again when it reaches the end of the program.
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alternates between 0 and 1, but the second register progressively grows.

And finally, in the third machine both registers grow.

But in all these three examples, the overall behavior is essentially

repetitive. And indeed it turns out that among the 10,552 possible

register machines with programs that are four or fewer instructions

long, not a single one exhibits more complicated behavior.

However, with five instructions, slightly more complicated

behavior becomes possible, as the picture below shows. But even in this

example, there is still a highly regular nested structure.

And it turns out that even with up to seven instructions, none of

the 276,224,376 programs that are possible lead to substantially more

complicated behavior. But with eight instructions, 126 out of the

11,019,960,576 possible programs finally do show more complicated

behavior. The next page gives an example. 

A register machine that shows nested
rather than strictly repetitive behavior.
The register machine has a program
which is five instructions long. It turns
out that this program is one of only
two (which differ just by interchange of
the first and second registers) out of
the 248,832 possible programs with
five instructions that yield anything
other than strictly repetitive behavior.
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Looking just at the ordinary evolution labelled (a), however, the

system might still appear to have quite simple and regular behavior. But

a closer examination turns out to reveal irregularities. Part (b) of the

picture shows a version of the evolution compressed to include only

1
1

2
4

3
7

5
13

8
22

12
34

18
52

27
79

41
121

62
184

93
277

140
418

210
628

315
943

473
1417

710
2128

1065
3193

1598
4792

2397
7189

3596
10786

5394
16180

8091
24271

12137
36409

18206
54616

27309
81925

40964
122890

61446
184336

92169
276505

138254
414760

207381
622141

311072
933214

466608
1399822

699912
2099734

1049868
3149602

1574802
4724404

2362203
7086607

3543305
10629913

5314958
15944872

7972437
23917309

11958656
35875966

17937984
(b) (d)(a)

(c)

A register machine whose behavior seems in some ways random. The program for this register machine is eight instructions long.
Testing all 11,019,960,576 possible programs of length eight revealed just this and 125 similar cases of complex behavior. Part (b)
shows the evolution in compressed form, with only those steps included at which either of the registers has just decreased to zero.
The values of the nonzero registers are shown using a logarithmic scale. Part (c) shows the instructions that are executed for the first
400 times that one of the registers is decreased to zero. Finally, part (d) gives the successive values attained by the second register at
steps where the first register has just decreased to zero. These values are given here as binary digit sequences. As discussed on page
122, the values can in fact be obtained by a simple arithmetic rule, without explicitly following each step in the evolution of the register
machine. If one value is , then the next value is  if  is even, and  if  is odd. The initial condition is .n 3 n/2 n (3 n+ 1) /2 n n = 1
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those steps at which one of the two registers has just decreased to zero.

And in this picture one immediately sees some apparently random

variation in the instructions that are executed.

Part (c) of the picture then shows which instructions are executed

for the first 400 times one of the registers has just decreased to zero.

And part (d) finally shows the base 2 digits of the successive values

attained by the second register when the first register has just decreased

to zero. The results appear to show considerable randomness.

So even though it may not be as obvious as in some of the other

systems we have studied, the simple register machine on the facing

page can still generate complex and seemingly quite random behavior.

So what about more complicated register machines?

An obvious possibility is to allow more than two registers. But it

turns out that very little is normally gained by doing this. With three

registers, for example, seemingly random behavior can be obtained with

a program that is seven rather than eight instructions long. But the

actual behavior of the program is almost indistinguishable from what

we have already seen with two registers.

Another way to set up more complicated register machines is to

extend the kinds of underlying instructions one allows. One can for

example introduce instructions that refer to two registers at a time,

adding, subtracting or comparing their contents. But it turns out that the

presence of instructions like these rarely seems to have much effect on

either the form of complex behavior that can occur, or how common it is.

Yet particularly when such extended instruction sets are used,

register machines can provide fairly accurate idealizations of the

low-level operations of real computers. And as a result, programs for

register machines are often very much like programs written in actual

low-level computer languages such as C, BASIC, Java or assembler. 

In a typical case, each variable in such a program simply

corresponds to one of the registers in the register machine, with no

arrays or pointers being allowed. And with this correspondence, our

general results on register machines can also be expected to apply to

simple programs written in actual low-level computer languages.
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Practical details make it somewhat difficult to do systematic

experiments on such programs. But the experiments I have carried out

do suggest that, just as with simple register machines, searching

through many millions of short programs typically yields at least a few

that exhibit complex and seemingly random behavior.

Symbolic Systems

Register machines provide simple idealizations of typical low-level

computer languages. But what about Mathematica? How can one set up a

simple idealization of the transformations on symbolic expressions that

Mathematica does? One approach suggested by the idea of combinators

from the 1920s is to consider expressions with forms such as

 and then to make transformations on these by repeatedly

applying rules such as , where  and  stand for any

expression.

The picture below shows an example of this. At each step the

transformation is done by scanning once from left to right, and applying

the rule wherever possible without overlapping.

e�e�e��e���e��e�

e�x_��y_� � x�x�y�� x_ y_

− [ − [ − ] [ − ] ] [ − ] [ − ]

− [ − ] [ − ] [ − [ − ] [ − ] [ − ] ] [ − ]

− [ − [ − ] ] [ − [ − [ − ] ] [ − ] ] [ − ]

− [ − ] [ − [ − ] [ − [ − [ − ] ] [ − ] ] ] [ − ]

− [ − [ − [ − ] [ − [ − [ − ] ] [ − ] ] ] ] [ − ]

− [ − [ − ] [ − [ − [ − ] ] [ − ] ] ] [ − [ − [ − ] [ − [ − [ − ] ] [ − ] ] ] [ − ] ]

− [ − ] [ − [ − [ − ] ] [ − ] ] [ − [ − ] [ − [ − [ − ] ] [ − ] ] [ − [ − [ − ] [ − [ − [ − ] ] [ − ] ] ] [ − ] ] ]

− [ − [ − [ − [ − ] ] [ − ] ] ] [ − [ − [ − [ − [ − ] ] [ − ] ] ] [ − [ − ] [ − [ − [ − ] ] [ − ] ] [ − [ − ] [ − [ − [ − ] ] [ − ] ] [ − ] ] ] ]

− [ − [ − [ − ] ] [ − ] ] [ − [ − [ − [ − ] ] [ − ] ] [ − [ − [ − [ − [ − ] ] [ − ] ] ] [ − [ − ] [ − [ − [ − ] ] [ − ] ] [ − [ − ] [ − [ − [ − ] ] [ − ] ] [ − ] ] ] ] ]

− [ − [ − ] ] [ − ] [ − [ − [ − ] ] [ − ] [ − [ − [ − [ − ] ] [ − ] ] [ − [ − [ − [ − [ − ] ] [ − ] ] ] [ − [ − ] [ − [ − [ − ] ] [ − ] ] [ − [ − ] [ − [ − [ − ] ] [ − ] ] [ − ] ] ] ] ] ]

− [ − ] [ − [ − ] [ − ] ] [ − [ − ] [ − [ − ] [ − ] ] [ − [ − [ − ] ] [ − ] [ − [ − [ − ] ] [ − ] [ − [ − [ − [ − [ − ] ] [ − ] ] ] [ − [ − ] [ − [ − [ − ] ] [ − ] ] [ − [ − ] [ − [ − [ − ] ] [ − ] ] [ − ] ] ] ] ] ] ]

− [ − [ − [ − ] [ − ] ] ] [ − [ − [ − [ − ] [ − ] ] ] [ − [ − ] [ − [ − ] [ − ] ] [ − [ − ] [ − [ − ] [ − ] ] [ − [ − [ − [ − ] ] [ − ] ] [ − [ − [ − [ − ] ] [ − ] ] [ − [ − ] [ − [ − [ − ] ] [ − ] ] [ − [ − ] [ − [ − [ − ] ] [ − ] ] [ − ] ] ] ] ] ] ] ]

− [ x _ ] [ y _ ]

x [ x [ y ] ]

A sequence of steps in the evolution of a
simple symbolic system. At each step each
boxed region is transformed according to the
rule shown. This transformation corresponds
to applying the basic Mathematica operation

.expression /. rule
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The structure of expressions like those on the facing page is

determined just by their sequence of opening and closing brackets. And

representing these brackets by dark and light squares respectively, the

picture below shows the overall pattern of behavior generated.

[ [ ] [ ] ] [ ] [ ]
[ ] [ ] [ [ ] [ ] [ ] ] [ ]
[ [ ] ] [ [ [ ] ] [ ] ] [ ]
[ ] [ [ ] [ [ [ ] ] [ ] ] ] [ ]
[ [ [ ] [ [ [ ] ] [ ] ] ] ] [ ]
[ [ ] [ [ [ ] ] [ ] ] ] [ [ [ ] [ [ [ ]
[ ] [ [ [ ] ] [ ] ] [ [ ] [ [ [ ] ] [ ]
[ [ [ [ ] ] [ ] ] ] [ [ [ [ [ ] ] [ ] ]
[ [ [ ] ] [ ] ] [ [ [ [ ] ] [ ] ] [ [ [
[ [ ] ] [ ] [ [ [ ] ] [ ] [ [ [ [ ] ] [
[ ] [ [ ] [ ] ] [ [ ] [ [ ] [ ] ] [ [ [
[ [ [ ] [ ] ] ] [ [ [ [ ] [ ] ] ] [ [ ]
[ [ ] [ ] ] [ [ [ ] [ ] ] [ [ [ [ ] [ ]
[ ] [ ] [ [ ] [ ] [ [ [ ] [ ] ] [ [ [ [
[ [ ] ] [ [ [ ] ] [ [ ] [ ] [ [ ] [ ] [
[ ] [ [ ] [ [ [ ] ] [ [ ] [ ] [ [ ] [ ]
[ [ [ ] [ [ [ ] ] [ [ ] [ ] [ [ ] [ ] [
[ [ [ [ [ [ ] ] [ [ ] [ ] [ [ ] [ ] [ [
[ [ [ [ [ ] [ [ ] [ [ ] [ ] [ [ ] [ ] [
[ [ [ [ [ [ [ ] [ [ ] [ ] [ [ ] [ ] [ [
[ [ [ [ [ [ [ [ [ ] [ ] [ [ ] [ ] [ [ [
[ [ [ [ [ [ [ [ [ [ ] ] [ [ [ ] ] [ [ [
[ [ [ [ [ [ [ [ [ ] [ [ ] [ [ [ ] ] [ [
[ [ [ [ [ [ [ [ [ [ [ ] [ [ [ ] ] [ [ [
[ [ [ [ [ [ [ [ [ [ [ [ [ [ ] ] [ [ [ ]
[ [ [ [ [ [ [ [ [ [ [ [ [ ] [ [ ] [ [ [
[ [ [ [ [ [ [ [ [ [ [ [ [ [ [ ] [ [ [ ]
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More steps in the evolution on the previous page, with opening brackets represented by dark squares and closing brackets by light
ones. In each case configurations wider than the picture are cut off on the right. For the initial condition from the previous page, the
system evolves after 264 steps to a fixed configuration involving 256 opening brackets followed by 256 closing brackets. For the initial
condition on the bottom right, the system again evolves to a fixed configuration, but now this takes 65,555 steps, and the configuration
involves 65,536 opening and closing brackets. Note that the evolution rules are highly non-local, and are rather unlike those, say, in a
cellular automaton. It turns out that this particular system always evolves to a fixed configuration, but for initial conditions of size  can
take roughly  iterated powers of 2 (or ) to do so.

n

n 222?
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With the particular rule shown, the behavior always eventually

stabilizes—though sometimes only after an astronomically long time.

But it is quite possible to find symbolic systems where this does

not happen, as illustrated in the pictures below. Sometimes the

behavior that is generated in such systems has a simple repetitive or

nested form. But often—just as in so many other kinds of systems—the

behavior is instead complex and seemingly quite random. 

The behavior of various symbolic systems starting from the initial condition . The plots at the bottom show the difference
in size of the expressions obtained on successive steps. 
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Some Conclusions

In the chapter before this one, we discovered the remarkable fact that

even though their underlying rules are extremely simple, certain cellular

automata can nevertheless produce behavior of great complexity. 

Yet at first, this seems so surprising and so outside our normal

experience that we may tend to assume that it must be a consequence

of some rare and special feature of cellular automata, and must not

occur in other kinds of systems. 

For it is certainly true that cellular automata have many special

features. All their elements, for example, are always arranged in a rigid

array, and are always updated in parallel at each step. And one might

think that features like these could be crucial in making it possible to

produce complex behavior from simple underlying rules.

But from our study of substitution systems earlier in this chapter

we know, for example, that in fact it is not necessary to have elements

that are arranged in a rigid array. And from studying mobile automata,

we know that updating in parallel is also not critical. 

Indeed, I specifically chose the sequence of systems in this

chapter to see what would happen when each of the various special

features of cellular automata were taken away. And the remarkable

conclusion is that in the end none of these features actually matter

much at all. For every single type of system in this chapter has

ultimately proved capable of producing very much the same kind of

complexity that we saw in cellular automata.

So this suggests that in fact the phenomenon of complexity is quite

universal—and quite independent of the details of particular systems. 

But when in general does complexity occur?

The examples in this chapter suggest that if the rules for a

particular system are sufficiently simple, then the system will only ever

exhibit purely repetitive behavior. If the rules are slightly more

complicated, then nesting will also often appear. But to get complexity

in the overall behavior of a system one needs to go beyond some

threshold in the complexity of its underlying rules.
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The remarkable discovery that we have made, however, is that

this threshold is typically extremely low. And indeed in the course of

this chapter we have seen that in every single one of the general kinds

of systems that we have discussed, it ultimately takes only very simple

rules to produce behavior of great complexity. 

One might nevertheless have thought that if one were to increase

the complexity of the rules, then the behavior one would get would also

become correspondingly more complex. But as the pictures on the

facing page illustrate, this is not typically what happens.

Instead, once the threshold for complex behavior has been

reached, what one usually finds is that adding complexity to the

underlying rules does not lead to any perceptible increase at all in the

overall complexity of the behavior that is produced.

The crucial ingredients that are needed for complex behavior are,

it seems, already present in systems with very simple rules, and as a

result, nothing fundamentally new typically happens when the rules

are made more complex. Indeed, as the picture on the facing page

demonstrates, there is often no clear correlation between the

complexity of rules and the complexity of behavior they produce. And

this means, for example, that even with highly complex rules, very

simple behavior still often occurs.

One observation that can be made from the examples in this

chapter is that when the behavior of a system does not look complex, it

tends to be dominated by either repetition or nesting. And indeed, it

seems that the basic themes of repetition, nesting, randomness and

localized structures that we already saw in specific cellular automata in

the previous chapter are actually very general, and in fact represent the

dominant themes in the behavior of a vast range of different systems.

The details of the underlying rules for a specific system can

certainly affect the details of the behavior it produces. But what we

have seen in this chapter is that at an overall level the typical types of

behavior that occur are quite universal, and are almost completely

independent of the details of underlying rules.

And this fact has been crucial in my efforts to develop a coherent

science of the kind I describe in this book. For it is what implies that
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2-color code 7

2-color code 6

2-color code 5

2-color code 4

2-color code 3

2-color code 2

2-color code 1

2-color code 0

3-color code 585

3-color code 584

3-color code 583

3-color code 582

3-color code 581

3-color code 580

3-color code 579

3-color code 578

4-color code 107402

4-color code 107401

4-color code 107400

4-color code 107399

4-color code 107398

4-color code 107397

4-color code 107396

4-color code 107395

5-color code 180197748

5-color code 180197747

5-color code 180197746

5-color code 180197745

5-color code 180197744

5-color code 180197743

5-color code 180197742

5-color code 180197741

Examples of cellular automata with rules of varying complexity. The rules used are of the so-called totalistic type
described on page 60. With two possible colors, just 4 cases need to be specified in such rules, and there are 16 possible
rules in all. But as the number of colors increases, the rules rapidly become more complex. With three colors, there are 7
cases to be specified, and 2187 possible rules; with five colors, there are 13 cases to be specified, and 1,220,703,125
possible rules. But even though the underlying rules increase rapidly in complexity, the overall forms of behavior that we
see do not change much. With two colors, it turns out that no totalistic rules yield anything other than repetitive or nested
behavior. But as soon as three colors are allowed, much more complex behavior is immediately possible. Allowing four or
more colors, however, does not further increase the complexity of the behavior, and, as the picture shows, even with five
colors, simple repetitive and nested behavior can still occur. 
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there are general principles that govern the behavior of a wide range of

systems, independent of the precise details of each system.

And it is this that means that even if we do not know all the

details of what is inside some specific system in nature, we can still

potentially make fundamental statements about its overall behavior.

Indeed, in most cases, the important features of this behavior will

actually turn out to be ones that we have already seen with the various

kinds of very simple rules that we have discussed in this chapter.

How the Discoveries in This Chapter Were Made

This chapter—and the last—have described a series of surprising

discoveries that I have made about what simple programs typically do. And

in making these discoveries I have ended up developing a somewhat new

methodology—that I expect will be central to almost any fundamental

investigation in the new kind of science that I describe in this book.

Traditional mathematics and the existing theoretical sciences

would have suggested using a basic methodology in which one starts

from whatever behavior one wants to study, then tries to construct

examples that show this behavior. But I am sure that had I used this

approach, I would not have got very far. For I would have looked only

for types of behavior that I already believed might exist. And in

studying cellular automata, this would for example probably have

meant that I would only have looked for repetition and nesting.

But what allowed me to discover much more was that I used instead

a methodology fundamentally based on doing computer experiments.

In a traditional scientific experiment, one sets up a system in

nature and then watches to see how it behaves. And in much the same

way, one can set up a program on a computer and then watch how it

behaves. And the great advantage of such an experimental approach is

that it does not require one to know in advance exactly what kinds of

behavior can occur. And this is what makes it possible to discover

genuinely new phenomena that one did not expect.

Experience in the traditional experimental sciences might suggest,

however, that experiments are somehow always fundamentally imprecise.
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For when one deals with systems in nature it is normally impossible to set

up or measure them with perfect precision—and indeed it can be a

challenge even to make a traditional experiment be at all repeatable.

But for the kinds of computer experiments I do in this book, there

is no such issue. For in almost all cases they involve programs whose

rules and initial conditions can be specified with perfect precision—so

that they work exactly the same whenever and wherever they are run.

In many ways these kinds of computer experiments thus manage

to combine the best of both theoretical and experimental approaches to

science. For their results have the kind of precision and clarity that one

expects of theoretical or mathematical statements. Yet these results can

nevertheless be found purely by making observations.

Yet as with all types of experiments it requires considerable skill

and judgement to know how to set up a computer experiment that will

yield meaningful results. And indeed, over the past twenty years or so my

own methodology for doing such experiments has become vastly better.

Over and over again the single most important principle that I

have learned is that the best computer experiments are ones that are as

simple and straightforward as possible. And this principle applies both

to the structure of the actual systems one studies—and to the

procedures that one uses for studying them.

At some level the principle of looking at systems with the

simplest possible structure can be viewed as an abstract aesthetic one.

But it turns out also to have some very concrete consequences.

For a start, the simpler a structure is, the more likely it is that it

will show up in a wide diversity of different places. And this means that

by studying systems with the simplest possible structure one will tend

to get results that have the broadest and most fundamental significance.

In addition, looking at systems with simpler underlying

structures gives one a better chance of being able to tell what is really

responsible for any phenomenon one sees—for there are fewer features

that have been put into the system and that could lead one astray.

At a purely practical level, there is also an advantage to studying

systems with simpler structures; for these systems are usually easier to
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implement on a computer, and can thus typically be investigated more

extensively with given computational resources.

But an obvious issue with saying that one should study systems

with the simplest possible structure is that such systems might just not

be capable of exhibiting the kinds of behavior that one might consider

interesting—or that actually occurs in nature.

And in fact, intuition from traditional science and mathematics

has always tended to suggest that unless one adds all sorts of

complications, most systems will never be able to exhibit any very

relevant behavior. But the results so far in this book have shown that

such intuition is far from correct, and that in reality even systems with

extremely simple rules can give rise to behavior of great complexity.

The consequences of this fact for computer experiments are quite

profound. For it implies that there is never an immediate reason to go

beyond studying systems with rather simple underlying rules. But to

absorb this point is not an easy matter. And indeed, in my experience

the single most common mistake in doing computer experiments is to

look at systems that are vastly more complicated than is necessary.

Typically the reason this happens is that one just cannot imagine

any way in which a simpler system could exhibit interesting behavior.

And so one decides to look at a more complicated system—usually with

features specifically inserted to produce some specific form of behavior. 

Much later one may go back and look at the simpler system

again. And this is often a humbling experience, for it is common to find

that the system does in fact manage to produce interesting behavior—

but just in a way that one was not imaginative enough to guess.

So having seen this many times I now always try to follow the

principle that one can never start with too simple a system. For at

worst, one will just establish a lower limit on what is needed for

interesting behavior to occur. But much more often, one will instead

discover behavior that one never thought was possible.

It should however be emphasized that even in an experiment it is

never entirely straightforward to discover phenomena one did not

expect. For in setting up the experiment, one inevitably has to make

assumptions about the kinds of behavior that can occur. And if it turns
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out that there is behavior which does not happen to fit in with these

assumptions, then typically the experiment will fail to notice it.

In my experience, however, the way to have the best chance of

discovering new phenomena in a computer experiment is to make the

design of the experiment as simple and direct as possible. It is usually

much better, for example, to do a mindless search of a large number of

possible cases than to do a carefully crafted search of a smaller number.

For in narrowing the search one inevitably makes assumptions, and

these assumptions may end up missing the cases of greatest interest.

Along similar lines, I have always found it much better to look

explicitly at the actual behavior of systems, than to work from some

kind of summary. For in making a summary one inevitably has to pick

out only certain features, and in doing this one can remove or obscure

the most interesting effects. 

But one of the problems with very direct experiments is that they

often generate huge amounts of raw data. Yet what I have typically

found is that if one manages to present this data in the form of pictures

then it effectively becomes possible to analyze very quickly just with

one’s eyes. And indeed, in my experience it is typically much easier to

recognize unexpected phenomena in this way than by using any kind of

automated procedure for data analysis.

It was in a certain sense lucky that one-dimensional cellular

automata were the first examples of simple programs that I

investigated. For it so happens that in these systems one can usually get

a good idea of overall behavior just by looking at an array of perhaps

10,000 cells—which can easily be displayed in few square inches. 

And since several of the 256 elementary cellular automaton rules

already generate great complexity, just studying a couple of pages of

pictures like the ones at the beginning of this chapter should in

principle have allowed one to discover the basic phenomenon of

complexity in cellular automata.

But in fact I did not make this discovery in such a straightforward

way. I had the idea of looking at pictures of cellular automaton

evolution at the very beginning. But the technological difficulty of

producing these pictures made me want to reduce their number as
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much as possible. And so at first I looked only at the 32 rules which had

left-right symmetry and made blank backgrounds stay unchanged.

Among these rules I found examples of repetition and nesting.

And with random initial conditions, I found more complicated behavior.

But since I did not expect that any complicated behavior would be

possible with simple initial conditions, I did not try looking at other

rules in an attempt to find it. Nevertheless, as it happens, the first paper

that I published about cellular automata—in 1983—did in fact include a

picture of rule 30 from page 27, as an example of a non-symmetric rule.

But the picture showed only 20 steps of evolution, and at the time I did

not look carefully at it, and certainly did not appreciate its significance.

For several years, I did progressively more sophisticated computer

experiments on cellular automata, and in the process I managed to

elucidate many of their properties. But finally, when technology had

advanced to the point where it became almost trivial for me to do so, I

went back and generated some straightforward pages of pictures of all

256 elementary rules evolving from simple initial conditions. And it

was upon seeing these pictures that I finally began to appreciate the

remarkable phenomenon that occurs in systems like rule 30.

Seven years later, after I had absorbed some basic intuition from

looking at cellular automata like rule 30, I resolved to find out whether

similar phenomena also occurred in other kinds of systems. And the

first such systems that I investigated were mobile automata. 

Mobile automata in a sense evolve very slowly relative to cellular

automata, so to make more efficient pictures I came up with a scheme

for showing their evolution in compressed form. I then started off by

generating pictures of the first hundred, then the first thousand, then

the first ten thousand, mobile automata. But in all of these pictures I

found nothing beyond repetitive and nested behavior.

Yet being convinced that more complicated behavior must be

possible, I decided to persist, and so I wrote a program that would

automatically search through large numbers of mobile automata. I set

up various criteria for the search, based on how I expected mobile

automata could behave. And quite soon, I had made the program search

a million mobile automata, then ten million. 
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But still I found nothing. 

So then I went back and started looking by eye at mobile

automata with large numbers of randomly chosen rules. And after some

time what I realized was that with the compression scheme I was using

there could be mobile automata that would be discarded according to

my search criteria, but which nevertheless still had interesting

behavior. And within an hour of modifying my search program to

account for this, I found the example shown on page 74.

Yet even after this, there were still many assumptions implicit in

my search program. And it took some time longer to identify and

remove them. But having done so, it was then rather straightforward to

find the example shown on page 75.

A somewhat similar pattern has been repeated for most of the

other systems described in this chapter. The main challenge was always

to avoid assumptions and set up experiments that were simple and

direct enough that they did not miss important new phenomena.

In many cases it took a large number of iterations to work out the

right experiments to do. And had it not been for the ease with which I

could set up new experiments using Mathematica, it is likely that I

would never have gotten very far in investigating most of the systems

discussed in this chapter. But in the end, after running programs for a

total of several years of computer time—corresponding to more than a

million billion logical operations—and creating the equivalent of tens

of thousands of pages of pictures, I was finally able to find all of the

various examples shown in this chapter and the ones that follow.
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4
Systems Based on Numbers 

The Notion of Numbers

Much of science has in the past ultimately been concerned with trying

to find ways to describe natural systems in terms of numbers.

Yet so far in this book I have said almost nothing about numbers.

The purpose of this chapter, however, is to investigate a range of

systems that are based on numbers, and to see how their behavior

compares with what we have found in other kinds of systems.

The main reason that systems based on numbers have been so

popular in traditional science is that so much mathematics has been

developed for dealing with them. Indeed, there are certain kinds of

systems based on numbers whose behavior has been analyzed almost

completely using mathematical methods such as calculus.

Inevitably, however, when such complete analysis is possible, the

final behavior that is found is fairly simple. 

So can systems that are based on numbers ever in fact yield

complex behavior? Looking at most textbooks of science and

mathematics, one might well conclude that they cannot. But what one

must realize is that the systems discussed in these textbooks are usually

ones that are specifically chosen to be amenable to fairly complete

analysis, and whose behavior is therefore necessarily quite simple.

And indeed, as we shall see in this chapter, if one ignores the

need for analysis and instead just looks at the results of computer
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experiments, then one quickly finds that even rather simple systems

based on numbers can lead to highly complex behavior.

But what is the origin of this complexity? And how does it relate

to the complexity we have seen in systems like cellular automata?

One might think that with all the mathematics developed for

studying systems based on numbers it would be easy to answer these

kinds of questions. But in fact traditional mathematics seems for the

most part to lead to more confusion than help.

One basic problem is that numbers are handled very differently in

traditional mathematics from the way they are handled in computers

and computer programs. For in a sense, traditional mathematics makes

a fundamental idealization: it assumes that numbers are elementary

objects whose only relevant attribute is their size. But in a computer,

numbers are not elementary objects. Instead, they must be represented

explicitly, typically by giving a sequence of digits.

The idea of representing a number by a sequence of digits is

familiar from everyday life: indeed, our standard way of writing

numbers corresponds exactly to giving their digit sequences in base 10.

What base 10 means is that for each digit there are 10 possible choices:

9

9 × 1

2

2 × 10

8

8 × 100

3

3 × 1000 +++3829 =

(base 10)

4

4 × 1

2

2 × 9

2

2 × 81

5

5 × 729 +++3829 =

(base 9)

5

5 × 1

6

6 × 8

3

3 × 64

7

7 × 512 +++3829 =

(base 8)

0

0 × 1

1

1 × 7

1

1 × 49

4

4 × 343

1

1 × 2401 ++++3829 =

(base 7)

1

1 × 1

2

2 × 6

4

4 × 36

5

5 × 216

2

2 × 1296 ++++3829 =

(base 6)

4

4 × 1

0

0 × 5

3

3 × 25

0

0 × 125

1

1 × 625

1

1 × 3125 +++++3829 =

(base 5)

1

1 × 1

1

1 × 4

3

3 × 16

3

3 × 64

2

2 × 256

3

3 × 1024 +++++3829 =

(base 4)

1

1 × 1

1

1 × 3

2

2 × 9

0

0 × 27

2

2 × 81

0

0 × 243

2

2 × 729

1

1 × 2187 +++++++3829 =

(base 3)

1

1 × 1

0

0 × 2

1

1 × 4

0

0 × 8

1

1 × 16

1

1 × 32

1

1 × 64

1

1 × 128

0

0 × 256

1

1 × 512

1

1 × 1024

1

1 × 2048 +++++++++++3829 =

(base 2)

Representations of the number 3829 in various bases. The
most familiar case is base 10, where starting from the right
successive digits correspond to units, tens, hundreds and so
on. In base 10, there are 10 possible digits: 0 through 9. In
other bases, there are a different number of possible digits. In
base 2, as used in practical computers, there are just two
possible digits: 0 and 1. And in this base, successive digits
starting from the right have coefficients , , ,

, etc.
1 2 4 = 272

8 = 27272
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0 through 9. But as the picture at the bottom of the facing page shows,

one can equally well use other bases. And in practical computers, for

example, base 2 is almost always what is used. 

So what this means is that in a computer numbers are

represented by sequences of 0’s and 1’s, much like sequences of white

and black cells in systems like cellular automata. And operations on

numbers then correspond to ways of updating sequences of 0’s and 1’s.

In traditional mathematics, the details of how operations

performed on numbers affect sequences of digits are usually considered

quite irrelevant. But what we will find in this chapter is that precisely

by looking at such details, we will be able to see more clearly how

complexity develops in systems based on numbers.

In many cases, the behavior we find looks remarkably similar to

what we saw in the previous chapter. Indeed, in the end, despite some

confusing suggestions from traditional mathematics, we will discover

that the general behavior of systems based on numbers is very similar

to the general behavior of simple programs that we have already

discussed.

Elementary Arithmetic

The operations of elementary arithmetic are so simple that it

seems impossible that they could ever lead to behavior of any great

complexity. But what we will find in this section is that in fact they can. 

To begin, consider what is perhaps the simplest conceivable

arithmetic process: start with the number 1 and then just progressively

add 1 at each of a sequence of steps.

The result of this process is to generate the successive numbers

1, 2, 3, 4, 5, 6, 7, 8, … The sizes of these numbers obviously form a

very simple progression. 

But if one looks not at these overall sizes, but rather at digit

sequences, then what one sees is considerably more complicated. And

in fact, as the picture on the right demonstrates, these successive digit

sequences form a pattern that shows an intricate nested structure.

1
1 0
1 1

1 0 0
1 0 1
1 1 0
1 1 1

1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1
1 1 0 0 0
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1
1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

1 0 0 0 0 0
1 0 0 0 0 1
1 0 0 0 1 0
1 0 0 0 1 1
1 0 0 1 0 0
1 0 0 1 0 1
1 0 0 1 1 0
1 0 0 1 1 1
1 0 1 0 0 0
1 0 1 0 0 1
1 0 1 0 1 0
1 0 1 0 1 1
1 0 1 1 0 0
1 0 1 1 0 1
1 0 1 1 1 0
1 0 1 1 1 1
1 1 0 0 0 0
1 1 0 0 0 1
1 1 0 0 1 0
1 1 0 0 1 1
1 1 0 1 0 0
1 1 0 1 0 1
1 1 0 1 1 0
1 1 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 1
1 1 1 0 1 0
1 1 1 0 1 1
1 1 1 1 0 0
1 1 1 1 0 1
1 1 1 1 1 0
1 1 1 1 1 1

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:

Digit sequences of 
successive numbers 
written in base 2. The 
overall pattern has an 
intricate nested form. 
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The pictures below show what happens if one adds a number

other than 1 at each step. Near the right-hand edge, each pattern is

somewhat different. But at an overall level, all the patterns have exactly

the same basic nested structure.

If instead of addition one uses multiplication, however, then the

results one gets can be very different. The first picture at the top of the

facing page shows what happens if one starts with 1 and then

successively multiplies by 2 at each step. 

It turns out that if one represents numbers as digit sequences in

base 2, then the operation of multiplying by 2 has a very simple effect:

it just shifts the digit sequence one place to the left, adding a 0 digit on

the right. And as a result, the overall pattern obtained by successive

multiplication by 2 has a very simple form.

n ! n+ 1 n ! n+ 2 n ! n+ 3 n ! n+ 4 n ! n+ 5 n ! n+ 6 n ! n+ 7 n ! n+ 8

Digit sequences in base 2 of numbers obtained by starting with 1 and then successively adding a
constant at each step. All these patterns ultimately have the same overall nested form.
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But if the multiplication factor at each step is 3, rather than 2,

then the pattern obtained is quite different, as the second picture above

shows. Indeed, even though the only operation used was just simple

multiplication, the final pattern obtained in this case is highly complex.

The picture on the next page shows more steps in the evolution of

the system. At a small scale, there are some obvious triangular and

other structures, but beyond these the pattern looks essentially random. 

So just as in simple programs like cellular automata, it seems

that simple systems based on numbers can also yield behavior that is

highly complex and apparently random.

But we might imagine that the complexity we see in pictures like

the one on the next page must somehow be a consequence of the fact that

we are looking at numbers in terms of their digit sequences—and would

not occur if we just looked at numbers in terms of their overall size. 

A few examples, however, will show that this is not the case. 

To begin the first example, consider what happens if one

multiplies by , or 1.5, at each step. Starting with 1, the successive

numbers that one obtains in this way are 1, , ,

, , , , …

Patterns produced by starting with the number 1, and then successively multiplying by a factor of 2, and a factor of 3. In each
case, the digit sequence of the number obtained at each step is shown in base 2. Multiplication by 2 turns out to correspond just
to shifting all digits in base 2 one position to the left, so that the overall pattern produced in this case is very simple. But
multiplication by 3 yields a much more complicated pattern, as the picture on the right shows. Note that in these pictures the
complete numbers obtained at each step correspond respectively to the successive integer powers of 2 and of 3. 

1
1 0

1 0 0
1 0 0 0

1 0 0 0 0
1 0 0 0 0 0

1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

n ! 2 n 1
1 1

1 0 0 1
1 1 0 1 1

1 0 1 0 0 0 1
1 1 1 1 0 0 1 1

1 0 1 1 0 1 1 0 0 1
1 0 0 0 1 0 0 0 1 0 1 1

n ! 3 n

3�2

3�2 � 1.5 9�4 � 2.25

27�8 � 3.375 81�16 � 5.0625 243�32 � 7.59375 729�64 � 11.390625
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The first 500 powers of 3, shown in base 2. Some small-scale structure is visible, but on a larger scale the pattern seems for all practical
purposes random. Note that the pattern shown here has been truncated at the edge of the page on the left, although in fact the whole
pattern continues to expand to the left forever with an average slope of . Log[2, 3] ; 1.58
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The picture below shows the digit sequences for these numbers

given in base 2. The digits that lie directly below and to the left of the

original 1 at the top of the pattern correspond to the whole number part

of each successive number (e.g. 3 in 3.375), while the digits that lie to

the right correspond to the fractional part (e.g. 0.375 in 3.375).

And instead of looking explicitly at the complete pattern of digits,

one can consider just finding the size of the fractional part of each

successive number. These sizes are plotted at the top of the next page.

And the picture shows that they too exhibit the kind of complexity and

apparent randomness that is evident at the level of digits.

Successive powers of 3/2, shown in base 2. Multiplication by 3/2 can be thought of as multiplication by 3 combined with division by 2.
But division by 2 just does the opposite of multiplication by 2, so in base 2 it simply shifts all digits one position to the right. The overall
pattern is thus a shifted version of the pattern shown on the facing page. 

1
1 1

1 0 0 1
1 1 0 1 1

1 0 1 0 0 0 1
1 1 1 1 0 0 1 1

1 0 1 1 0 1 1 0 0 1
1 0 0 0 1 0 0 0 1 0 1 1
1 1 0 0 1 1 0 1 0 0 0 0 1

1 0 0 1 1 0 0 1 1 1 0 0 0 1 1
1 1 1 0 0 1 1 0 1 0 1 0 1 0 0 1

1 0 1 0 1 1 0 0 1 1 1 1 1 1 1 0 1 1
1 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0 0 1
1 1 0 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0 0 1 1

1 0 0 1 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1
1 1 0 1 1 0 1 0 1 1 1 1 0 0 1 0 0 1 1 0 1 0 1 1

n�!�
3
�������
2
�n
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The example just given involves numbers with fractional parts.

But it turns out that similar phenomena can also be found in systems

that involve only whole numbers.

As a first example, consider a slight variation on the operation of

multiplying by  used above: if the number at a particular step is even

(divisible by 2), then simply multiply that number by , getting a

whole number as the result. But if the number is odd, then first add 1—

so as to get an even number—and only then multiply by .

0

0.5

1

0 50 100 150 200

Sizes of the fractional parts of successive powers of 3/2. These sizes are completely independent of what base is used to represent
the numbers. Only the dots are significant; the shading and lines between them are just included to make the plot easier to read. 

3�2

3�2

3�2

11011000110100110101001101001010000011010000000101111100110101101010010011110110
11111101000001101101011001001111000110001110111101001010110111010111010101000000
00101011111000001100010101111011000001001100011111110000101100110001101110110000
10101010110010100011000100011011010110001101001010101110101000010110101010000000
00110001101101111001100111010000101110011010100011000000110101101010000100001001
10000010000101101110010011011110010110110000111100000100111110111001101011010010
10000100111100001101101000011100110011000100100111100000101010010011011100111111
00110111100010010111011011110100010101100100011100101011011011000000000001001101
10101011010011111011010001110101110100000010111110011010010011011011111010010001
00101000010110100110000100100101001100011001011110010110011000111000100010011000
11000001000111010111110111010101100101011001000010100000010101110001111110001111
01110001011010010110010010010011110100001101111001100101010110011001111111000001
00111110110110111101111110100110001001001110111000001101111011010101000010000100
01001100111110000011111001110011111010001010111100001101110101100011011110010000
11111100010111111110101011010000010110000100110110111100000011011110010101010001
11110011001111100110100000001111101111110110000000011100001100011101011011110011
11001000010110001101011000100100011101111111010101110110010011000100110110001000
01010101010110110011100100100011111100110100110110110111010101110010011101011110

Results of starting with the number 1, then applying the following rule: if
the number at a particular step is even, multiply by 3/2; otherwise, add 1,
then multiply by 3/2. This procedure yields a succession of whole numbers
whose digit sequences in base 2 are shown at the right. The rightmost
digits obtained at each step are shown above. The digit is 0 when the
number is even and 1 when it is odd, and, as shown, the digits alternate in
a seemingly random way. It turns out that the system described here is
closely related to one that arose in studying the register machine shown
on page 100. The system here can be represented by the rule

, while the one on page 100 follows the
rule . After the first step these systems
give the same sequence of numbers, except for an overall factor of 3. 

n ! If [EvenQ[n], 3 n/2, 3 (n+ 1) /2]

n ! If [EvenQ[n], 3 n/2, (3 n+ 1) /2]

1
1 1

1 1 0
1 0 0 1
1 1 1 1

1 1 0 0 0
1 0 0 1 0 0
1 1 0 1 1 0

1 0 1 0 0 0 1
1 1 1 1 0 1 1

1 0 1 1 1 0 1 0
1 0 0 0 1 0 1 1 1
1 1 0 1 0 0 1 0 0

1 0 0 1 1 1 0 1 1 0
1 1 1 0 1 1 0 0 0 1
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This procedure is always guaranteed to give a whole number. And

starting with 1, the sequence of numbers one gets is 1, 3, 6, 9, 15, 24, 36,

54, 81, 123, 186, 279, 420, 630, 945, 1419, 2130, 3195, 4794, … 

Some of these numbers are even, while some are odd. But as the

results at the bottom of the facing page illustrate, the sequence of which

numbers are even and which are odd seems to be completely random.

Despite this randomness, however, the overall sizes of the

numbers obtained still grow in a rather regular way. But by changing

the procedure just slightly, one can get much less regular growth. 

As an example, consider the following procedure: if the number

obtained at a particular step is even, then multiply this number by ;

otherwise, add 1 and then multiply the result by .

If one starts with 1, then this procedure simply gives 1 at every

step. And indeed with many starting numbers, the procedure yields

purely repetitive behavior. But as the picture below shows, it can also

give more complicated behavior. 

Starting for example with the number 6, the sizes of the numbers

obtained on successive steps show a generally increasing trend, but

there are considerable fluctuations, and these fluctuations seem to be

essentially random. Indeed, even after a million steps, when the

5�2

1�2

1 2 3 4 5 6 7 8 9 10

Results of applying the rule , starting with different initial choices of
. In many cases, the behavior obtained is purely repetitive. But in some cases it is not. 

n ! If [EvenQ[n], 5 n/2, (n+ 1) /2]

n
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number obtained has 48,554 (base 10) digits, there is still no sign of

repetition or of any other significant regularity.

So even if one just looks at overall sizes of whole numbers it is

still possible to get great complexity in systems based on numbers. 

But while complexity is visible at this level, it is usually

necessary to go to a more detailed level in order to get any real idea of

why it occurs. And indeed what we have found in this section is that if

one looks at digit sequences, then one sees complex patterns that are

remarkably similar to those produced by systems like cellular automata.

The underlying rules for systems like cellular automata are

however usually rather different from those for systems based on

numbers. The main point is that the rules for cellular automata are

always local: the new color of any particular cell depends only on the

previous color of that cell and its immediate neighbors. But in systems

based on numbers there is usually no such locality. 

One knows from hand calculation that even an operation such as

addition can lead to “carry” digits which propagate arbitrarily far to the

left. And in fact most simple arithmetic operations have the property

0 5 10 15 20 25 30

10

100

1000

10000

0 200 400 600 800 1000

The results of following the same rule as on the previous page, starting from the value 6. Plotted on the right are the
overall sizes of the numbers obtained for the first thousand steps. The plot is on a logarithmic scale, so the height of each
point is essentially the length of the digit sequence for the number that it represents—or the width of the row on the left. 
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that a digit which appears at a particular position in their result can

depend on digits that were originally far away from it.

But despite fundamental differences like this in underlying rules,

the overall behavior produced by systems based on numbers is still very

similar to what one sees for example in cellular automata. 

So just like for the various kinds of programs that we discussed in

the previous chapter, the details of underlying rules again do not seem

to have a crucial effect on the kinds of behavior that can occur.

Indeed, despite the lack of locality in their underlying rules, the

pictures below and on the pages that follow show that it is even

possible to find systems based on numbers that exhibit something like

the localized structures that we saw in cellular automata on page 32. 

1 0 0 0 0
1 0 0 0 1

1 0 0 0 1 0
1 1 0 0 1 1

1 1 0 0 1 1 0
1 0 0 1 1 0 0 1

1 0 0 1 1 0 0 1 0
1 1 1 0 0 1 0 1 1

1 1 0 1 1 1 0 0 1 0
1 0 0 1 0 1 0 1 1 0 1

1 0 1 0 0 1 0 1 0 1 1 0
1 0 0 0 0 1 1 1 1 1 0 1 1

1 0 1 1 0 0 1 1 0 1 1 1 0 0
1 1 1 0 1 1 1 0 1 0 1 0 0 1

1 1 0 0 0 0 1 0 0 1 0 0 0 0 0
1 1 0 0 0 1 1 0 1 1 0 0 0 1 1

An example of a system defined by the
following rule: at each step, take the number
obtained at that step and write its base 2
digits in reverse order, then add the resulting
number to the original one. For many
possible starting numbers, the behavior
obtained is very simple. This picture shows
what happens when one starts with the
number 16. After 180 steps, it turns out that
all that survives are a few objects that one
can view as localized structures. 
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A thousand steps in
the evolution of a
system with the same
rule as on the previous
page, but now starting
with the number 512.
Localized structures are
visible, but the overall
pattern never seems to
take on any kind of
simple repetitive form. 



S Y S T E M S  B A S E D  O N  N U M B E R S C H A P T E R  4

127

Continuation of the
pattern on the facing
page, starting at the
millionth step. The
picture shows the
right-hand edge of the
pattern; the complete
pattern extends about
700 times the width of
the page to the left. 
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Recursive Sequences 

In the previous section, we saw that it is possible to get behavior

of considerable complexity just by applying a variety of operations

based on simple arithmetic. In this section what I will show is that with

the appropriate setup just addition and subtraction turn out to be in a

sense the only operations that one needs.

The basic idea is to consider a sequence of numbers in which

there is a definite rule for getting the next number in the sequence from

previous ones. It is convenient to refer to the first number in each

sequence as , the second as , and so on, so that the th number is

denoted . And with this notation, what the rule does is to specify

how  should be calculated from previous numbers in the sequence. 

In the simplest cases,  depends only on the number

immediately before it in the sequence, denoted . But it is also

possible to set up rules in which  depends not only on , but

also on , as well as on numbers still earlier in the sequence.

The table below gives results obtained with a few specific rules. In

all the cases shown, these results are quite simple, consisting of

sequences that increase uniformly or fluctuate in a purely repetitive way.

f �1� f �2� n

f �n�

f �n�

f �n�

f �n � 1�

f �n� f �n � 1�

f �n � 2�

f [n] = 1+ f [n - 1], f [1] = 1

(a)� 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 ?

f [n] = 1 - f [n - 1], f [1] = 1

(b)� 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 ?

f [n] = 2 f [n - 1], f [1] = 1

(c)� 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 2097152 ?

f [n] = f [n - 1] + f [n - 2], f [1] = 1, f [2] = 1

(d)� 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657 46368 75025 121393 ?

f [n] = f [n - 1] - f [n - 2], f [1] = 1, f [2] = 1

(e)� 1 1 0 -1 -1 0 1 1 0 -1 -1 0 1 1 0 -1 -1 0 1 1 0 -1 -1 0 1 1 0 -1 -1 0 1 1 0 -1 -1 0 1 1 0 -1 -1 0 1 1 ?

f [n] = -f [n - 1] + f [n - 2], f [1] = 1, f [2] = 1

(f)� 1 1 0 1 -1 2 -3 5 -8 13 -21 34 -55 89 -144 233 -377 610 -987 1597 -2584 4181 -6765 10946 -17711 28657 -46368 ?

Examples of some simple recursive sequences. The th element in each sequence is denoted , and the rule specifies how
this element is determined from previous ones. With all the rules shown here, successive elements either increase smoothly or
fluctuate in a purely repetitive way. Sequence (c) is the powers of two; (d) is the so-called Fibonacci sequence, related to powers
of the golden ratio . All rules of the kind shown here lead to sequences where  can be expressed in terms
of a simple sum of powers of the form . 

n f[n]

(1+
�!!!!

5 ) /2 ; 1.618 f[n]

an
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But it turns out that with slightly more complicated rules it is

possible to get much more complicated behavior. The key idea is to

consider rules which look at numbers that are not just a fixed distance

back in the sequence. And what this means is that instead of depending

only on quantities like  and , the rule for  can also

for example depend on a quantity like .

There is some subtlety here because in the abstract nothing

guarantees that  will necessarily be a positive number. And

if it is not, then results obtained by applying the rule can involve

meaningless quantities such as ,  and . 

f �n � 1� f �n � 2� f �n�

f �n � f �n � 1��

n � f �n � 1�

f �0� f ��1� f ��2�

f [n] = 1+ f [n - f [n - 1]], f [1] = 1

(a)� 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 10 10 10 ?

f [n] = 2 + f [n - f [n - 1]], f [1] = 1, f [2] = 1

(b)� 1 1 3 3 3 5 3 5 5 5 7 5 7 5 7 7 7 9 7 9 7 9 7 9 9 9 11 9 11 9 11 9 11 9 11 11 11 13 11 13 11 13 11 13 ?

f [n] = f [f [n - 1]] + f [n - f [n - 1]], f [1] = 1, f [2] = 1

(c)� 1 1 2 2 3 4 4 4 5 6 7 7 8 8 8 8 9 10 11 12 12 13 14 14 15 15 15 16 16 16 16 16 17 18 19 20 21 21 22 23 ?

f [n] = f [n - f [n - 1]] + f [n - f [n - 2] - 1], f [1] = 1, f [2] = 1

(d)� 1 1 2 2 3 4 4 4 5 6 6 7 8 8 8 8 9 10 10 11 12 12 12 13 14 14 15 16 16 16 16 16 17 18 18 19 20 20 20 21 ?

f [n] = f [n - f [n - 1]] + f [n - f [n - 2]], f [1] = 1, f [2] = 1

(e)� 1 1 2 3 3 4 5 5 6 6 6 8 8 8 10 9 10 11 11 12 12 12 12 16 14 14 16 16 16 16 20 17 17 20 21 19 20 22 21 22 ?

f [n] = f [n - f [n - 1] - 1] + f [n - f [n - 2] - 1], f [1] = 1, f [2] = 1

(f)� 1 1 2 2 2 4 3 4 4 4 8 5 5 8 8 6 8 12 8 11 9 9 10 13 16 9 12 20 10 12 23 12 15 21 13 17 18 19 19 22 21 19 ?

f [n] = f [f [n - 1]] + f [n - f [n - 2] - 1], f [1] = 1, f [2] = 1

(g)� 1 1 2 2 2 3 4 4 4 4 5 6 7 8 8 8 8 8 8 9 10 10 10 11 13 15 15 14 15 16 16 16 16 16 16 16 17 18 18 18 18 ?

f [n] = f [f [n - 1]] + f [n - 2 f [n - 1] + 1], f [1] = 1, f [2] = 1

(h)� 1 1 2 2 2 3 3 4 3 4 4 4 5 4 6 5 6 6 7 6 7 6 7 7 7 8 8 9 7 9 7 10 8 11 8 11 9 10 10 11 10 11 10 11 11 ?

0 25 50 75 100
0

10
20
30
40
50
60 (e)

0 25 50 75 100
0

10
20
30
40
50
60 (f )

0 25 50 75 100
0

10

20

30

40

50 (g)

0 25 50 75 100

5

10

15

20 (h)

0 25 50 75 100

2
4
6
8

10
12
14

(a)

0 25 50 75 100

3

6

9

12

15

18 (b)

0 25 50 75 100
0

10

20

30

40

50 (c)

0 25 50 75 100
0

10

20

30

40

50 (d)

Examples of sequences generated by rules that do not depend only on elements a fixed distance back. Most such rules eventually
end up involving meaningless quantities such as  and , but the particular rules shown here all avoid this problem. f[0] f[-1]
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0

20

40

60

80

200 400 600 800 1000 1200 1400 1600 1800 2000

(c) f [n] = �f [f [n�1]]+f[n�f [n�1]]� ( f [n]�n/ 2 shown)

0

1

2

3

4

5

6

200 400 600 800 1000 1200 1400 1600 1800 2000

(d) f [n] = �f [n�f [n�1]]+f[n�f [n�2n]�1]� ( f [n]�n/ 2 shown)

-200

-100

0

100

200

200 400 600 800 1000 1200 1400 1600 1800 2000

(e) f [n] = �f [n�f [n�1]]+f[n�f [n�2]]� ( f [n]�n/ 2 shown)

-400

-200

0

200

400

200 400 600 800 1000 1200 1400 1600 1800 2000

(f ) f [n] = �f [n�f [n�1]�1]+f[n�f [n]�2]�1]� ( f [n]�n/ 2 shown)

-150

-100

-50

0

50

100

200 400 600 800 1000 1200 1400 1600 1800 2000

(g) f [n] = �f [f [n�1]]+f[n�f [n�2]�1]� ( f [n]�n/ 2 shown)

-10

-5

0

5

10

200 400 600 800 1000 1200 1400 1600 1800 2000

(h) f [n] = �f [f [n�1]]+f[n�2f[n�1]+1] �( f [n]�0.42 n0.818 shown)

Fluctuations in the overall increase of sequences from the previous page. In cases (c) and (d), the fluctuations have a regular nested
form, and turn out to be directly related to the base 2 digit sequence of . In the other cases, the fluctuations are more
complicated, and seem in many respects random. All the rules shown start with . 

n

f[1] = f[2] = 1
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For the vast majority of rules written down at random, such

problems do indeed occur. But it is possible to find rules in which they

do not, and the pictures on the previous two pages show a few examples

I have found of such rules. In cases (a) and (b), the behavior is fairly

simple. But in the other cases, it is considerably more complicated.

There is a steady overall increase, but superimposed on this

increase are fluctuations, as shown in the pictures on the facing page.

In cases (c) and (d), these fluctuations turn out to have a very

regular nested form. But in the other cases, the fluctuations seem

instead in many respects random. Thus in case (f), for example, the

number of positive and negative fluctuations appears on average to be

equal even after a million steps.

But in a sense one of the most surprising features of the facing

page is that the fluctuations it shows are so violent. One might have

thought that in going say from  to  there would only ever

be a small change. After all, between  and  there is only a

0.05% change in the size of .

But much as we saw in the previous section it turns out that it is

not so much the size of  that seems to matter as various aspects of its

representation. And indeed, in cases (c) and (d), for example, it so

happens that there is a direct relationship between the fluctuations in

 and the base 2 digit sequence of .

In case (d), the fluctuation in each  turns out to be essentially

just the number of 1’s that occur in the base 2 digit sequence for . And

in case (c), the fluctuations are determined by the total number of 1’s

that occur in the digit sequences of all numbers less than . 

There are no such simple relationships for the other rules shown

on the facing page. But in general one suspects that all these rules can

be thought of as being like simple computer programs that take some

representation of  as their input.

And what we have discovered in this section is that even though

the rules ultimately involve only addition and subtraction, they

nevertheless correspond to programs that are capable of producing

behavior of great complexity. 

f �2000� f �2001�

n � 2000 2001

n

n

f �n� n

f �n�

n

n

n
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The Sequence of Primes 

In the sequence of all possible numbers 1, 2, 3, 4, 5, 6, 7, 8, … most are

divisible by others—so that for example 6 is divisible by 2 and 3. But

this is not true of every number. And so for example 5 and 7 are not

divisible by any other numbers (except trivially by 1). And in fact it has

been known for more than two thousand years that there are an infinite

sequence of so-called prime numbers which are not divisible by other

numbers, the first few being 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, …

The picture below shows a simple rule by which such primes can

be obtained. The idea is to start out on the top line with all possible

numbers. Then on the second line, one removes all numbers larger than 2

that are divisible by 2. On the third line one removes numbers divisible

by 3, and so on. As one goes on, fewer and fewer numbers remain. But

some numbers always remain, and these numbers are exactly the primes.

Given the simplicity of this rule, one might imagine that the

sequence of primes it generates would also be correspondingly simple.

But just as in so many other examples in this book, in fact it is not. And

indeed the plots on the facing page show various features of this

sequence which indicate that it is in many respects quite random.

2

3

4

5

6

7

8

9

10

11

12

13

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97

A filtering process that yields the prime numbers. One starts on the top line with all numbers between 1 and 100. Then on the
second line, one removes numbers larger than 2 that are divisible by 2—as indicated by the gray dots. On the third line, one
removes numbers larger than 3 that are divisible by 3. If one then continues forever, there are some numbers that always remain,
and these are exactly the primes. The process shown is essentially the sieve of Eratosthenes, already known in 200 BC.
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(f ) Gaps between successive primes

(e) The excess of primes of the form 4 k - 1 over ones of the form 4 k + 1

(d) The excess of primes of the form 3 k - 1 over ones of the form 3 k + 1

(c) The difference LogIntegral[n] - PrimePi[n]

Features of the sequence of primes. Despite the simplicity of the rule on the facing page that generates the primes, the actual
sequence of primes that is obtained seems in many respects remarkably random. 
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(a) The sequence of primes (Prime[n]) (b) The number of primes smaller than n (PrimePi[n]),
together with the estimate LogIntegral[n]
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The examples of complexity that I have shown so far in this book

are almost all completely new. But the first few hundred primes were

no doubt known even in antiquity, and it must have been evident that

there was at least some complexity in their distribution. 

However, without the whole intellectual structure that I have

developed in this book, the implications of this observation—and its

potential connection, for example, to phenomena in nature—were not

recognized. And even though there has been a vast amount of

mathematical work done on the sequence of primes over the course of

many centuries, almost without exception it has been concerned not

with basic issues of complexity but instead with trying to find

specific kinds of regularities.

Yet as it turns out, few regularities have in fact been found, and

often the results that have been established tend only to support the

idea that the sequence has many features of randomness. And so, as one

example, it might appear from the pictures on the previous page that (c),

(d) and (e) always stay systematically above the axis. But in fact with

considerable effort it has been proved that all of them are in a sense

more random—and eventually cross the axis an infinite number of

times, and indeed go any distance up or down. 

So is the complexity that we have seen in the sequence of primes

somehow unusual among sequences based on numbers? The pictures

on the facing page show a few other examples of sequences generated

according to simple rules based on properties of numbers. 

And in each case we again see a remarkable level of complexity. 

Some of this complexity can be understood if we look at each

number not in terms of its overall size, but rather in terms of its digit

sequence or set of possible divisors. But in most cases—often despite

centuries of work in number theory—considerable complexity remains.

And indeed the only reasonable conclusion seems to be that just

as in so many other systems in this book, such sequences of numbers

exhibit complexity that somehow arises as a fundamental consequence

of the rules by which the sequences are generated.
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(e) The number of ways of expressing an even number n as the sum of two primes

(d) The number of ways of expressing n as a sum of four squares

(c) The number of ways of expressing n as a sum of three squares

(b) The sum of the divisors of n (excluding n) minus n

(a) The number of divisors of n ( including n)

Sequences based on various simple properties of numbers. Extensive work in number theory has managed to establish only a few
properties of these. It is for example known that (d) never reaches zero, while curve (c) reaches zero only for numbers of the form

. Sequence (b) is zero at so-called perfect numbers. Even perfect numbers always have a known form, but whether any odd
perfect numbers exist is a question that has remained unresolved for more than two thousand years. The claim that sequence (e)
never reaches zero is known as Goldbach’s Conjecture. It was made in 1742 but no proof or counterexample has ever been found. 

4r (8 s + 7)
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Mathematical Constants 

The last few sections have shown that one can set up all sorts of

systems based on numbers in which great complexity can occur. But it

turns out that the possibility of such complexity is already suggested by

some well-known facts in elementary mathematics. 

The facts in question concern the sequences of digits in numbers

like  (pi). To a very rough approximation,  is 3.14. A more accurate

approximation is 3.14159265358979323846264338327950288. 

But how does this sequence of digits continue?

One might suppose that at some level it must be quite simple and

regular. For the value of  is specified by the simple definition of being

the ratio of the circumference of any circle to its diameter.

But it turns out that even though this definition is simple, the

digit sequence of  is not simple at all. The facing page shows the first

4000 digits in the sequence, both in the usual case of base 10, and in

base 2. And the picture below shows a pictorial representation of the

first 20,000 digits in the sequence.

Π Π

Π

Π

00

-50

-100

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

00

-50

-100

10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000

A pictorial representation of the first 20,000 digits of  in base 2. The curve drawn goes up every time a digit is 1, and
down every time it is 0. Great complexity is evident. If the curve were continued further, it would spend more time above
the axis, and no aspect of what is seen provides any evidence that the digit sequence is anything but perfectly random. 

p
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3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384
46095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337867831652712019091
45648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820
46652138414695194151160943305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912
98336733624406566430860213949463952247371907021798609437027705392171762931767523846748184676694051320005681271452635608277857
71342757789609173637178721468440901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960
51870721134999999837297804995105973173281609631859502445945534690830264252230825334468503526193118817101000313783875288658753
32083814206171776691473035982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092164201989
38095257201065485863278865936153381827968230301952035301852968995773622599413891249721775283479131515574857242454150695950829
53311686172785588907509838175463746493931925506040092770167113900984882401285836160356370766010471018194295559619894676783744
94482553797747268471040475346462080466842590694912933136770289891521047521620569660240580381501935112533824300355876402474964
73263914199272604269922796782354781636009341721641219924586315030286182974555706749838505494588586926995690927210797509302955
32116534498720275596023648066549911988183479775356636980742654252786255181841757467289097777279380008164706001614524919217321
72147723501414419735685481613611573525521334757418494684385233239073941433345477624168625189835694855620992192221842725502542
56887671790494601653466804988627232791786085784383827967976681454100953883786360950680064225125205117392984896084128488626945
60424196528502221066118630674427862203919494504712371378696095636437191728746776465757396241389086583264599581339047802759009
94657640789512694683983525957098258226205224894077267194782684826014769909026401363944374553050682034962524517493996514314298
09190659250937221696461515709858387410597885959772975498930161753928468138268683868942774155991855925245953959431049972524680
84598727364469584865383673622262609912460805124388439045124413654976278079771569143599770012961608944169486855584840635342207
22258284886481584560285060168427394522674676788952521385225499546667278239864565961163548862305774564980355936345681743241125
15076069479451096596094025228879710893145669136867228748940560101503308617928680920874760917824938589009714909675985261365549
78189312978482168299894872265880485756401427047755513237964145152374623436454285844479526586782105114135473573952311342716610
21359695362314429524849371871101457654035902799344037420073105785390621983874478084784896833214457138687519435064302184531910
48481005370614680674919278191197939952061419663428754440643745123718192179998391015919561814675142691239748940907186494231961
56794520809514655022523160388193014209376213785595663893778708303906979207734672218256259966150142150306803844773454920260541
46659252014974428507325186660021324340881907104863317346496514539057962685610055081066587969981635747363840525714591028970641
40110971206280439039759515677157700420337869936007230558763176359421873125147120532928191826186125867321579198414848829164470
60957527069572209175671167229109816909152801735067127485832228718352093539657251210835791513698820914442100675103346711031412
67111369908658516398315019701651511685171437657618351556508849099898599823873455283316355076479185358932261854896321329330898
57064204675259070915481416549859461637180270981994309924488957571282890592323326097299712084433573265489382391193259746366730
58360414281388303203824903758985243744170291327656180937734440307074692112019130203303801976211011004492932151608424448596376
69838952286847831235526582131449576857262433441893039686426243410773226978028073189154411010446823252716201052652272111660397

The first 4000 digits of  in bases 10 and 2. Despite the simple definition of  as the ratio of the circumference to the diameter of a
circle, its digit sequence is sufficiently complicated as to seem for practical purposes random.

p p

11.00100100001111110110101010001000100001011010001100001000110100110001001100011001100010100010111000000011011100000111001101000
10010100100000010010011100000100010001010011001111100110001110100000000100000101110111110101001100011101100010011100110110010
00100101000101001010000010000111100110001110001101000000010011011101111011111001010100011001101100111100110100111010010000110
00110110011000000101011000010100110110111110010010111110001010000110111010011111110000100110101011011010110110101010001110000
10010001011110010010000101101101010111011001100010010111100111111011000110111101000100110001000010111010011010011000110111111
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00111000101010111010111010000011000001100011111011011001110010111000011111000010110100110111000011110010011000111101010111111
01011010111010001100110110110000100100110011110101110001111010001100100101001110000001001010001001010110000110011101110011101
11000111101001000100110000110101101001011101110011010111111000100101111111110100000011011011001100010100000100001100100110110
00011101100000001001110011001111101100100001101010011001000101001000011111001010110001100000010111011110110010000000001100101
11011111000010001011101010111011110100110000101011101011011000111011100001001100010001100000010111010110110010100011011100010
00001000111000100100111110100000011101001110010110101011001100010100001111011011010110111111110011100000111111010001000010001
11001001011100000101101000100100000101010010010000100001000000000010001101001110010001111000001001010100111100001111110011011
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In no case are there any obvious regularities. Indeed, in all the

more than two hundred billion digits of  that have so far been

computed, no significant regularity of any kind has ever been found.

Despite the simplicity of its definition, the digit sequence of  seems

for practical purposes completely random. 

But what about other numbers? Is  a special case, or are there

other familiar mathematical constants that have complicated digit

sequences? There are some numbers whose digit sequences effectively

have limited length. Thus, for example, the digit sequence of  in base

10 is 0.375. (Strictly, the digit sequence is 0.3750000000…, but the 0’s

do not affect the value of the number, so are normally suppressed.) 

It is however easy to find numbers whose digit sequences do not

terminate. Thus, for example, the exact value of  in base 10 is

0.3333333333333…, where the 3’s repeat forever. And similarly,  is

0.142857142857142857142857142857…, where now the block of digits

142857 repeats forever. The table below gives the digit sequences for

several rational numbers obtained by dividing pairs of whole numbers.

In all cases what we see is that the digit sequences of such numbers

have a simple repetitive form. And in fact, it turns out that absolutely

all rational numbers have digit sequences that eventually repeat.

We can get some understanding of why this is so by looking at

the details of how processes for performing division work. The pictures

Π

Π

Π

3�8

1�3

1�7

1/3�=� 0.333333333333333333333333333333333333333333333333333333333333333333333333333333333?

1/7 �=� 0.142857142857142857142857142857142857142857142857142857142857142857142857142857142?

1/9�=� 0.111111111111111111111111111111111111111111111111111111111111111111111111111111111?

1/11�=� 0.090909090909090909090909090909090909090909090909090909090909090909090909090909090?

1/81�=� 0.012345679012345679012345679012345679012345679012345679012345679012345679012345679?

1/3�=� 0.010101010101010101010101010101010101010101010101010101010101010101010101010101010?

1/7 �=� 0.001001001001001001001001001001001001001001001001001001001001001001001001001001001?

1/9�=� 0.000111000111000111000111000111000111000111000111000111000111000111000111000111000?

1/11�=� 0.000101110100010111010001011101000101110100010111010001011101000101110100010111010?

1/81�=� 0.000000110010100100010110000111111001101011011101001111000000110010100100010110000?

Digit sequences for various rational numbers, given in base 10 (above) and base 2 (below). For a
number of the form , the digit sequence always repeats with a period of at most  steps. p/q q - 1
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below show successive steps in a particular method for computing the

base 2 digit sequence for the rational numbers .

The method is essentially standard long division, although it is

somewhat simpler in base 2 than in the usual case of base 10. The idea is

to have a number  which essentially keeps track of the remainder at each

step in the division. One starts by setting  equal to . Then at each step,

one compares the values of  and . If  is less than , the digit

generated at that step is 0, and  is replaced by . Otherwise,  is

replaced by . With this procedure, the value of  is always less than

. And as a result, the digit sequence obtained always repeats at most

every  steps.

It turns out, however, that rational numbers are very unusual in

having such simple digit sequences. And indeed, if one looks for

example at square roots the story is completely different.

Perfect squares such as  and  are specifically set

up to have square roots that are just whole numbers. But as the table at

the top of the next page shows, other square roots have much more

complicated digit sequences. In fact, so far as one can tell, all whole

numbers other than perfect squares have square roots whose digit

sequences appear completely random. 

p�q

0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1/ 2

0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

1/ 3

0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1/ 4

0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0

1/ 5

0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0

1/ 6

0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1

1/ 7

0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1/ 8

0
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
1
1
1

1/ 9

0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0

1/ 10

0
0
0
0
1
0
1
1
1
0
1
0
0
0
1
0
1
1
1
0
1
0
0
0
1
0
1
1
1
0
1

1/ 11

Successive steps in the computation of various rational numbers. In each case, the column on the right shows the sequence of
base 2 digits in the number, while the box on the left shows the remainder at each of the steps in the computation. 

r

r p

2 r q 2 r q

r 2 r r

2 r � q r

q

q � 1

4 � 2�2 9 � 3�3
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But how is such randomness produced? The picture at the top of

the facing page shows an example of a procedure for generating the base

2 digit sequence for the square root of a given number .

The procedure is only slightly more complicated than the one for

division discussed above. It involves two numbers  and , which are

initially set to be  and 0, respectively. At each step it compares the

values of  and , and if  is larger than  it replaces  and  by 

and  respectively; otherwise it replaces them just by  and .

And it then turns out that the base 2 digits of  correspond exactly to the

base 2 digits of —with one new digit being generated at each step.

As the picture shows, the results of the procedure exhibit

considerable complexity. And indeed, it seems that just like so many

other examples that we have discussed in this book, the procedure for

generating square roots is based on simple rules but nevertheless yields

behavior of great complexity.

�!!!!2 �=� 1.414213562373095048801688724209698078569671875376948073176679737990732478462107039?

�!!!!3 �=� 1.732050807568877293527446341505872366942805253810380628055806979451933016908800037?

�!!!!5 �=� 2.236067977499789696409173668731276235440618359611525724270897245410520925637804899?

�!!!!6 �=� 2.449489742783178098197284074705891391965947480656670128432692567250960377457315027?

�!!!!7 �=� 2.645751311064590590501615753639260425710259183082450180368334459201068823230283628?

�!!!!8 �=� 2.828427124746190097603377448419396157139343750753896146353359475981464956924214078?

�!!!!!!!10 �=� 3.162277660168379331998893544432718533719555139325216826857504852792594438639238221?

�!!!!!!!11 �=� 3.316624790355399849114932736670686683927088545589353597058682146116484642609043847?

�!!!!2 �=� 1.011010100000100111100110011001111111001110111100110010010000100010110010111110110?

�!!!!3 �=� 1.101110110110011110101110100001011000010011001010101001110011101100100101011101000?

�!!!!5 �=� 10.00111100011011101111001101110010111111101001010011111000001010111110011100111001?

�!!!!6 �=� 10.01110011000100011100001010000001001001000010010111001111101000000110010000110010?

�!!!!7 �=� 10.10100101010011111111010100111010010111110001110100110110111100011100111010100111?

�!!!!8 �=� 10.11010100000100111100110011001111111001110111100110010010000100010110010111110110?

�!!!!!!!10 �=� 11.00101001100010110000011101011011010010110110101001010010010000001001010001010111?

�!!!!!!!11 �=� 11.01010001000011100101001001111111101011011110011010000010110100011101111001001001?

Digit sequences for various square roots, given at the top in base 10 and at the bottom in base 2.
Despite their simple definition, all these sequences seem for practical purposes random.

n

r s

n

r s r s r s 4 �r � s � 1�

2 �s � 2� 4 r 2 s

s
�!!!

n
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It turns out that square roots are certainly not alone in having

apparently random digit sequences. As an example, the table on the next

page gives the digit sequences for some cube roots and fourth roots, as well

as for some logarithms and exponentials. And so far as one can tell, almost

all these kinds of numbers also have apparently random digit sequences.

In fact, rational numbers turn out to be the only kinds of

numbers that have repetitive digit sequences. And at least in square

roots, cube roots, and so on, it is known that no nested digit sequences

A procedure for generating the digit sequences of square roots. Two numbers,  and , are involved.
To find  one starts by setting  and . Then at each step one applies the rule

. The result is that the digits of  in base 2 turn out to
correspond exactly to the digits of . Note that if  is not between 1 and 4, it must be multiplied
or divided by an appropriate power of 4 before starting this procedure. 

r s
�!!!!

n r = n s = 0

{r, s} ! If [r > s, {4 (r - s - 1), 2 (s + 2)}, {4 r, 2 s}] s
�!!!!

n n

r s

1101110110110011110100

r s

1011010100000100111100

�!!!!
3

�!!!!
2
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ever occur. It is straightforward to construct a nested digit sequence

using for example the substitution systems on page 83, but the point is

that such a digit sequence never corresponds to a number that can be

obtained by the mathematical operation of taking roots.

So far in this chapter we have always used digit sequences as

our way of representing numbers. But one might imagine that perhaps

this representation is somehow perverse, and that if we were just to

choose another one, then numbers generated by simple mathematical

operations would no longer seem complex. 

Any representation for a number can in a sense be thought of as

specifying a procedure for constructing that number. Thus, for example, the

pictures at the top of the facing page show how the base 10 and base 2 digit

sequence representations of  can be used to construct the number .

�!!!!
2

3
= 1.2599210498948731647672106072782283505702514647015079800819751121552996765139594837293965624362550941543102560 ?

�!!!!
3

3
= 1.4422495703074083823216383107801095883918692534993505775464161945416875968299973398547554797056452566868350808 ?

�!!!!
2

4
= 1.1892071150027210667174999705604759152929720924638174130190022247194666682269171598707813445381376737160373947 ?

�!!!!
3

4
= 1.3160740129524924608192189017969990551600685902058221767319226585958667951973021330507431502466019315200477423 ?

Log[2] �=�0� .6931471805599453094172321214581765680755001343602552541206800094933936219696947156058633269964186875420014810?

Log[3] �=� 1.0986122886681096913952452369225257046474905578227494517346943336374942932186089668736157548137320887879700290 ?

4 �= � 2.7182818284590452353602874713526624977572470936999595749669676277240766303535475945713821785251664274274663919 ?

42 �= � 7.3890560989306502272304274605750078131803155705518473240871278225225737960790577633843124850791217947737531612?

�!!!!
2

3
�=� 1.0100001010001010001011111001100011010111001010001010111000100010001111011101101010110111000101011011111000100 ?

�!!!!
3

3
�=� 1.0111000100110111010001001001000100100011111011110110010111001101110111100111111100010110110001010110111000110 ?

�!!!!
2

4
�=� 1.0011000001101111111000001010001100011011011100010101001011011110100011010101101001000110001100000101110010000 ?

�!!!!
3

4
�=� 1.0101000011101010001110011111110010111111000101100110010111110110110111000011001100111111000101000001101001101?

Log[2]�=�0� .10110001011100100001011111110111110100011100111101111001101010111100100111100011101100111001100000000011111100 ?

Log[3]�=� 1.0001100100111110101001111010101011010000001100001010100101110110101001000001100110001101010101010000010100111?

4�=� 10.101101111110000101010001011000101000101011101101001010100110101010111111011100010101100010000000100111001111?

42 �=� 111.01100011100110010010111000110101001101110110101101110011000011001110100011101110100010000001101011011010001?

Digit sequences for cube roots, fourth roots, logarithms and exponentials, given at the top in base 10 and the bottom in base 2. Once
again, these sequences seem for practical purposes random.

Π Π
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By replacing the addition and multiplication that appear above by

other operations one can then get other representations for numbers. A

common example are so-called continued fraction representations, in

which the operations of addition and division are used, as shown below.

The table on the next page gives the continued fraction

representations for various numbers. In the case of rational numbers,

the results are always of limited length. But for other numbers, they go

on forever. Square roots turn out to have purely repetitive continued

fraction representations. And the representations of  and all its

roots also show definite regularity. But for , as well as for cube roots,

fourth roots, and so on, the continued fraction representations one gets

seem essentially random. 

What about other representations of numbers? At some level, one

can always use symbolic expressions like  to represent

numbers. And almost by definition, numbers that can be obtained by

simple mathematical operations will correspond to simple such

expressions. But the problem is that there is no telling how difficult it

may be to compute the actual value of a number from the symbolic

expression that is used to represent it. 

And in thinking about representations of numbers, it seems

appropriate to restrict oneself to cases where the effort required to find

the value of a number from its representation is essentially the same for

Procedures for building up  from its base 10 and base 2 digit sequence representations. p

3.141592653�? �=�3 + 1����������
10

�(1+ 1����������
10

�(4 + 1����������
10

�(1+ 1����������
10

�(5 + 1����������
10

�(9 + 1����������
10

�(2 + 1����������
10

�(6 + 1����������
10

�(5 + 1����������
10

�(3 + ? )))))))))

11.001001000�? �=�2 � 1+ 1������
2
�(0 + 1������

2
�(0 + 1������

2
�(1+ 1������

2
�(0 + 1������

2
�(0 + 1������

2
�(1+ 1������

2
�(0 + 1������

2
�(0 + 1������

2
�(0 + ? )))))))))

3 + 1 / (7 + 1 / (15 + 1 / (1+ 1 / (292 + 1 / (1+ 1 / (1+ 1 / (1+ 1 / (2 + 1 / (1+ 1 / (3 + 1 / (1+ 1 / (14 + ? ))))))))))))
????????????????????????????????????????????????????

{3,�7,�15,�1,�292,�1,�1,�1,�2,�1,�3,�1,�14,�2,�1,�1,�2,�2,�2,�2,�1,�84,�2,�1,�1,�15,�3,�13,�1,�4,�2,�6,�6,�99,�1,�2,�2,�6,�3,�5,�1,� ? }

The continued fraction representation of . In this representation the value of  is built up by
successive additions and divisions, rather than successive additions and multiplications. 

p p

	 � 2.718

Π

�!!!
2 � 	

�!!!!
3
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all numbers. If one does this, then the typical experience is that in any

particular representation, some class of numbers will have simple

forms. But other numbers, even though they may be the result of simple

mathematical operations, tend to have seemingly random forms.

And from this it seems appropriate to conclude that numbers

generated by simple mathematical operations are often in some

intrinsic sense complex, independent of the particular representation

that one uses to look at them. 

1 / 7 �=�{0,�7]

7 / 11�=�{0,�1,�1,�1,�3]

�!!!!2 = {1,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,� ?}

�!!!!3 = {1,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,� ?}

�!!!!5 = {2,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,� ?}

�!!!!7 = {2,�1,�1,�1,�4,�1,�1,�1,�4,�1,�1,�1,�4,�1,�1,�1,�4,�1,�1,�1,�4,�1,�1,�1,�4,�1,�1,�1,�4,�1,�1,�1,�4,�1,�1,�1,�4,�1,�1,�1,�4,�1,�1,�1,�4,�1,�1,�1,�4,�1,�1,�1,�4,�1,�1,�1,� ?}

(1 +�!!!!5 ) / 2 = {1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,� ?}

�!!!!2
3

= {1,�3,�1,�5,�1,�1,�4,�1,�1,�8,�1,�14,�1,�10,�2,�1,�4,�12,�2,�3,�2,�1,�3,�4,�1,�1,�2,�14,�3,�12,�1,�15,�3,�1,�4,�534,�1,�1,�5,�1,�1,�121,�1,�2,�2,�4,�10,�3,�2,�2,� ?}

�!!!!3
3

= {1,�2,�3,�1,�4,�1,�5,�1,�1,�6,�2,�5,�8,�3,�3,�4,�2,�6,�4,�4,�1,�3,�2,�3,�4,�1,�4,�9,�1,�8,�4,�3,�1,�3,�2,�6,�1,�6,�1,�3,�1,�1,�1,�1,�12,�3,�1,�3,�1,�1,�4,�1,�6,�1,�5,� ?}

�!!!!2
4

= {1,�5,�3,�1,�1,�40,�5,�1,�1,�25,�2,�3,�1,�6,�2,�1,�1,�2,�1,�2,�1,�1,�1,�2,�2,�1,�7,�2,�7,�1,�1,�1,�2,�1,�1,�32,�4,�1,�6,�2,�1,�1,�1,�15,�1,�5,�1,�4,�1,�1,�1,�3,�1,�3,� ?}

�!!!!3
4

= {1,�3,�6,�9,�1,�1,�2,�1,�2,�1,�2,�5,�1,�12,�5,�1,�4,�1,�13,�1,�6,�1,�22,�1,�8,�21,�3,�142,�1,�1,�2,�1,�2,�2,�7,�1,�2,�1,�1,�1,�5,�3,�1,�1,�2,�1,�1,�3,�1,�1,�1,�1,� ?}

Log[2] = {0,�1,�2,�3,�1,�6,�3,�1,�1,�2,�1,�1,�1,�1,�3,�10,�1,�1,�1,�2,�1,�1,�1,�1,�3,�2,�3,�1,�13,�7,�4,�1,�1,�1,�7,�2,�4,�1,�1,�2,�5,�14,�1,�10,�1,�4,�2,�18,�3,�1,�4,�1,�6,� ?}

Log[3] = {1,�10,�7,�9,�2,�2,�1,�3,�1,�32,�2,�17,�1,�15,�1,�1,�7,�3,�1,�35,�1,�1,�1,�2,�5,�3,�2,�1,�4,�2,�1,�3,�1,�5,�3,�13,�1,�1,�1,�6,�2,�3,�1,�152,�1,�2,�3,�1,�7,�9,�2,� ?}

4 = {2,�1,�2,�1,�1,�4,�1,�1,�6,�1,�1,�8,�1,�1,�10,�1,�1,�12,�1,�1,�14,�1,�1,�16,�1,�1,�18,�1,�1,�20,�1,�1,�22,�1,�1,�24,�1,�1,�26,�1,�1,�28,�1,�1,�30,�1,�1,�32,�1,� ?}

�!!!!
4 = {1,�1,�1,�1,�5,�1,�1,�9,�1,�1,�13,�1,�1,�17,�1,�1,�21,�1,�1,�25,�1,�1,�29,�1,�1,�33,�1,�1,�37,�1,�1,�41,�1,�1,�45,�1,�1,�49,�1,�1,�53,�1,�1,�57,�1,�1,�61,�1,�1,� ?}

�!!!!
4

3
= {1,�2,�1,�1,�8,�1,�1,�14,�1,�1,�20,�1,�1,�26,�1,�1,�32,�1,�1,�38,�1,�1,�44,�1,�1,�50,�1,�1,�56,�1,�1,�62,�1,�1,�68,�1,�1,�74,�1,�1,�80,�1,�1,�86,�1,�1,�92,�1,�1,� ?}

42 = {7,�2,�1,�1,�3,�18,�5,�1,�1,�6,�30,�8,�1,�1,�9,�42,�11,�1,�1,�12,�54,�14,�1,�1,�15,�66,�17,�1,�1,�18,�78,�20,�1,�1,�21,�90,�23,�1,�1,�24,�102,�26,�1,�1,�27,� ?}

43 = {20,�11,�1,�2,�4,�3,�1,�5,�1,�2,�16,�1,�1,�16,�2,�13,�14,�4,�6,�2,�1,�1,�2,�2,�2,�3,�5,�1,�3,�1,�1,�68,�7,�5,�1,�4,�2,�1,�1,�1,�1,�1,�1,�7,�3,�1,�6,�1,�2,�5,�4,�7,� ?}

p = {3,�7,�15,�1,�292,�1,�1,�1,�2,�1,�3,�1,�14,�2,�1,�1,�2,�2,�2,�2,�1,�84,�2,�1,�1,�15,�3,�13,�1,�4,�2,�6,�6,�99,�1,�2,�2,�6,�3,�5,�1,�1,�6,�8,�1,�7,�1,�2,�3,�7,�1,�2,� ?}

p2 = {9,�1,�6,�1,�2,�47,�1,�8,�1,�1,�2,�2,�1,�1,�8,�3,�1,�10,�5,�1,�3,�1,�2,�1,�1,�3,�15,�1,�1,�2,�2,�1,�3,�2,�7,�1,�9,�18,�30,�2,�145,�1,�1,�17,�9,�1,�1,�1,�1,�7,�12,�1,� ?}

Sinh[1] = {1,�5,�1,�2,�2,�2,�1,�2,�7,�5,�1,�1,�1,�2,�2,�19,�1,�2,�1,�7,�1,�1,�9,�1,�3,�1,�1,�2,�1,�1,�1,�1,�1,�3,�1,�2,�4,�5,�3,�5,�1,�3,�1,�1,�1,�2,�7,�1,�9,�1,�1,�2,�1,�21,�1,� ?}

Tanh[1] = {0,�1,�3,�5,�7,�9,�11,�13,�15,�17,�19,�21,�23,�25,�27,�29,�31,�33,�35,�37,�39,�41,�43,�45,�47,�49,�51,�53,�55,�57,�59,�61,�63,�65,�67,�69,�71,�73,� ?}

Continued fraction representations for several numbers. Square roots yield repetitive sequences in this representation, but cube roots
and higher roots yield seemingly random sequences. 
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Mathematical Functions 

The last section showed that individual numbers obtained by applying

various simple mathematical functions can have features that are quite

complex. But what about the functions themselves?

The pictures below show curves obtained by plotting standard

mathematical functions. All of these curves have fairly simple,

essentially repetitive forms. And indeed it turns out that almost all the

standard mathematical functions that are defined, for example, in

Mathematica, yield similarly simple curves.

But if one looks at combinations of these standard functions, it is

fairly easy to get more complicated results. The pictures on the next

page show what happens, for example, if one adds together various sine

functions. In the first picture, the curve one gets has a fairly simple

repetitive structure. In the second picture, the curve is more

complicated, but still has an overall repetitive structure. But in the

third and fourth pictures, there is no such repetitive structure, and

indeed the curves look in many respects random.

                                      
-2

-1

0

1

2

SinIntegral[x]

-30 -20 -10 0 10 20 30
                                      

-0.5

-0.25

0

0.25

0.5

0.75

1

BesselJ[0,x]

-30 -20 -10 0 10 20 30
                          

-0.4

-0.2

0

0.2

0.4

AiryAi[x]

-15 -10 -5 0 5

                                      
-1

-0.5

0

0.5

1

Sin[x]

-15 -10 -5 0 5 10 15
                          

-10

-5

0

5

10

15
Tan[x]

-10 -5 0 5 10
                          

-10

-5

0

5

10

Sec[x]

-10 -5 0 5 10

Plots of some standard mathematical functions. The top row shows three trigonometric functions. The bottom row shows
three so-called special functions that are commonly encountered in mathematical physics and other areas of traditional
science. In all cases the curves shown have fairly simple repetitive forms. 
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In the third picture, however, the points where the curve crosses

the axis come in two regularly spaced families. And as the pictures on

the facing page indicate, for any curve like   the relative

arrangements of these crossing points turn out to be related to the

output of a generalized substitution system in which the rule at each

step is obtained from a term in the continued fraction representation of

.

When  is a square root, then as discussed in the previous

section, the continued fraction representation is purely repetitive,

0

1

2

0

-1

-2

0 50 100 150 200 250

Sin[x] + Sin[3/ 2 x]

0

1

2

0

-1

-2

0 50 100 150 200 250

Sin[x] + Sin[10/ 7 x]

0

1

2

0

-1

-2

0 50 100 150 200 250

Sin[x] + Sin[
�!!!!

2 x]

0

1

2

3

0

-1

-2

-3

0 50 100 150 200 250

Sin[x] + Sin[
�!!!!

2 x] + Sin[
�!!!!

3 x]

Curves obtained by adding together various sine functions. In the first two cases, the curves are ultimately repetitive; in the second two
cases they are not. If viewed as waveforms for sounds, then these curves correspond to chords. The first curve yields a perfect fifth,
while the third curve yields a diminished fifth (or tritone) in an equal temperament scale. 

Sin�x� � Sin�Α x�

�Α � 1���Α � 1�

Α
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2
2
2
2
2

Cos[x] - Cos[ (1 +
�!!!!2 ) x]

1
1
1
1
1
1
1
1
1

Cos[x] - Cos[ (2 +
�!!!!5 ) x]

2
4
1
2
1
1

Cos[x] - Cos[ (2 +
�!!!!5
3

) x]

3
2
1
4
2

Cos[x] - Cos[ (1 +
�!!!!
4 ) x]

1

2

3

4

5

Curves obtained by adding or subtracting exactly two sine or cosine functions turn out to have a pattern
of axis crossings that can be reproduced by a generalized substitution system. In general there is an axis
crossing within an interval when the corresponding element in the generalized substitution system is
black, and there is not when the element is white. In the case of  each step in the
generalized substitution system has a rule determined as shown on the left from a term in the continued
fraction representation of . In the first two examples shown  is a quadratic irrational, so
that the continued fraction is repetitive, and the pattern obtained is purely nested. (The second example
is analogous to the Fibonacci substitution system on page 83.) In the last two examples, however, there
is no such regularity. Note that successive terms in each continued fraction are shown alongside
successive steps in the substitution system going up the page. 

Cos[x] -Cos[a x]

(a - 1) / (a+ 1) a
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making the generated pattern nested. But when  is not a square root

the pattern can be more complicated. And if more than two sine

functions are involved there no longer seems to be any particular

connection to generalized substitution systems or continued fractions. 

Among all the various mathematical functions defined, say, in

Mathematica it turns out that there are also a few—not traditionally

common in natural science—which yield complex curves but which do

not appear to have any explicit dependence on representations of

individual numbers. Many of these are related to the so-called Riemann

zeta function, a version of which is shown in the picture below. 

The basic definition of this function is fairly simple. But in the

end the function turns out to be related to the distribution of primes—

and the curve it generates is quite complicated. Indeed, despite

immense mathematical effort for over a century, it has so far been

impossible even to establish for example the so-called Riemann

Hypothesis, which in effect just states that all the peaks in the curve lie

above the axis, and all the valleys below.

Α
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-6

-8

250 300 350 400 450 500

A curve associated with the so-called Riemann zeta function. The zeta function  is defined as . The
curve shown here is the so-called Riemann-Siegel Z function, which is essentially . The celebrated Riemann
Hypothesis in effect states that all peaks after the first one in this curve must lie above the axis. 

Zeta[s] Sum[1/ks, {k, ¥}]

Zeta[1/2 + 5 t]
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Iterated Maps and the Chaos Phenomenon 

The basic idea of an iterated map is to take a number between 0 and 1,

and then in a sequence of steps to update this number according to a

fixed rule or “map”. Many of the maps I will consider can be expressed

in terms of standard mathematical functions, but in general all that is

needed is that the map take any possible number between 0 and 1 and

yield some definite number that is also between 0 and 1.

The pictures on the next two pages show examples of behavior

obtained with four different possible choices of maps. 

Cases (a) and (b) on the first page show much the same kind of

complexity that we have seen in many other systems in this chapter—

in both digit sequences and sizes of numbers. Case (c) shows complexity

in digit sequences, but the sizes of the numbers it generates rapidly tend

to 0. Case (d), however, seems essentially trivial—and shows no

complexity in either digit sequences or sizes of numbers.

On the first of the next two pages all the examples start with the

number —which has a simple digit sequence. But the examples on

the second of the next two pages instead start with the number —

which has a seemingly random digit sequence.

Cases (a), (b) and (c) look very similar on both pages, particularly

in terms of sizes of numbers. But case (d) looks quite different. For on

the first page it just yields 0’s. But on the second page, it yields numbers

whose sizes continually vary in a seemingly random way.

If one looks at digit sequences, it is rather clear why this happens.

For as the picture illustrates, the so-called shift map used in case (d)

simply serves to shift all digits one position to the left at each step. And

this means that over the course of the evolution of the system, digits

further to the right in the original number will progressively end up all

the way to the left—so that insofar as these digits show randomness,

this will lead to randomness in the sizes of the numbers generated.

It is important to realize, however, that in no real sense is any

randomness actually being generated by the evolution of this system.

Instead, it is just that randomness that was inserted in the digit

sequence of the original number shows up in the results one gets.

1�2

Π�4
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(a)
0
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(b)
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(c)
0

0.25
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0.75

1

(d)

Examples of iterated maps starting from simple initial conditions. At each step there is a number  between 0 and 1 that is updated
by applying a fixed mapping. The four mappings considered here are given above both as formulas and in terms of plots. The pictures
at the top of the page show the base 2 digit sequences of successive numbers obtained by iterating this mapping, while the pictures
in the middle of the page plot the sizes of these numbers. In all cases, the initial conditions consist of the number 1/2—which has a
very simple digit sequence. Yet despite this simplicity, cases (a) and (b) show considerable complexity in both the digit sequences
and the sizes of the numbers produced (compare page 122). In case (c), the digit sequences are complicated but the sizes of the
numbers tend rapidly to zero. And finally, in case (d), neither the digit sequences nor the sizes of numbers are anything but trivial.
Note that in the pictures above each horizontal row of digits corresponds to a number, and that digits further to the left contribute
progressively more to the size of this number. 

x

0 12/3
0

1

1/2(a)

x � FractionalPart[3/ 2 x]

0 11/2
0

1

3 /4

(b)

x � If [x < 1/ 2, 3/ 2 x, 3/ 2 (1 - x)]

0 1
0

1

3/4

(c)

x � FractionalPart[3/ 4 x]

0 11/2
0

1

1/2(d)

x � FractionalPart[2 x]

(a) (b) (c) (d)
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(b)
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(c)
0
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(d)

0 12 /3
0

1

1/2(a)

x � FractionalPart[3/ 2 x]

0 11/2
0

1

3 /4

(b)

x � If [x < 1/ 2, 3/ 2 x, 3/ 2 (1 - x)]

0 1
0

1

3/4

(c)

x � FractionalPart[3/ 4 x]

0 11/2
0

1

1/2(d)

x � FractionalPart[2 x]

The same iterated maps as on the facing page, but now started from the initial condition —a number with a seemingly random
digit sequence. After fairly few steps, cases (a) and (b) yield behavior that is almost indistinguishable from what was seen with simple
initial conditions on the facing page. And in case (c), the same exponential decay in the sizes of numbers occurs as before. But in case
(d), the behavior is much more complicated. Indeed, if one just looked at the sizes of numbers produced, then one sees the same kind
of complexity as in cases (a) and (b). But looking at digit sequences one realizes that this complexity is actually just a direct
transcription of complexity introduced by giving an initial condition with a seemingly random digit sequence. Case (d) is the so-called
shift map—a classic example of a system that exhibits the sensitive dependence on initial conditions often known as chaos. 

p /4

(a) (b) (c) (d)
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This is very different from what happens in cases (a) and (b). For

in these cases complex and seemingly random results are obtained even

on the first of the previous two pages—when the original number has a

very simple digit sequence. And the point is that these maps actually do

intrinsically generate complexity and randomness; they do not just

transcribe it when it is inserted in their initial conditions.

In the context of the approach I have developed in this book this

distinction is easy to understand. But with the traditional mathematical

approach, things can get quite confused. The main issue—already

mentioned at the beginning of this chapter—is that in this approach the

only attribute of numbers that is usually considered significant is their

size. And this means that any issue based on discussing explicit digit

sequences for numbers—and whether for example they are simple or

complicated—tends to seem at best bizarre. 

Indeed, thinking about numbers purely in terms of size, one

might imagine that as soon as any two numbers are sufficiently close in

size they would inevitably lead to results that are somehow also close.

And in fact this is for example the basis for much of the formalism of

calculus in traditional mathematics.

But the essence of the so-called chaos phenomenon is that there

are some systems where arbitrarily small changes in the size of a

number can end up having large effects on the results that are produced.

And the shift map shown as case (d) on the previous two pages turns out

to be a classic example of this. 

The pictures at the top of the facing page show what happens if

one uses as the initial conditions for this system two numbers whose

sizes differ by just one part in a billion billion. And looking at the plots

of sizes of numbers produced, one sees that for quite a while these two

different initial conditions lead to results that are indistinguishably

close. But at some point they diverge and soon become quite different.

And at least if one looks only at the sizes of numbers, this seems

rather mysterious. But as soon as one looks at digit sequences, it

immediately becomes much clearer. For as the pictures at the top of the

facing page show, the fact that the numbers which are used as initial

conditions differ only by a very small amount in size just means that

their first several digits are the same. And for a while these digits are
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what is important. But since the evolution of the system continually

shifts digits to the left, it is inevitable that the differences that exist in

later digits will eventually become important.

The fact that small changes in initial conditions can lead to large

changes in results is a somewhat interesting phenomenon. But as I will

discuss at length in Chapter 7 one must realize that on its own this

cannot explain why randomness—or complexity—should occur in any

particular case. And indeed, for the shift map what we have seen is that

randomness will occur only when the initial conditions that are given

happen to be a number whose digit sequence is random.

But in the past what has often been confusing is that traditional

mathematics implicitly tends to assume that initial conditions of this

kind are in some sense inevitable. For if one thinks about numbers

0

0.25

0.5

0.75

1

initial condition 0.785398163397448310

0

0.25

0.5

0.75

1

initial condition 0.785398163397448311

0

0.25

0.5

0.75

1

difference

The effect of making a small change in the initial conditions for the
shift map—shown as case (d) on pages 150 and 151. The first
picture shows results for the same initial condition as on page
151. The second picture shows what happens if one changes the
size of the number in this initial condition by just one part in a
billion billion. The plots to the left indicate that for a while the sizes
of numbers obtained by the evolution of the system in these two
cases are indistinguishable. But suddenly the results diverge and
become completely different. Looking at the digit sequences
above shows why this happens. The point is that a small change in
the size of the number in the initial conditions corresponds to a
change in digits far to the right. But the evolution of the system
progressively shifts digits to the left, so that the digits which differ
eventually become important. The much-investigated chaos
phenomenon consists essentially of this effect.

initial condition 0.785398163397448310 initial condition 0.785398163397448311 difference
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purely in terms of size, one should make no distinction between

numbers that are sufficiently close in size. And this implies that in

choosing initial conditions for a system like the shift map, one should

therefore make no distinction between the exact number  and

numbers that are sufficiently close in size to .

But it turns out that if one picks a number at random subject only

to the constraint that its size be in a certain range, then it is

overwhelmingly likely that the number one gets will have a digit

sequence that is essentially random. And if one then uses this number

as the initial condition for a shift map, the results will also be

correspondingly random—just like those on the previous page.

In the past this fact has sometimes been taken to indicate that

the shift map somehow fundamentally produces randomness. But as I

have discussed above, the only randomness that can actually come out

of such a system is randomness that was explicitly put in through the

details of its initial conditions. And this means that any claim that the

system produces randomness must really be a claim about the details of

what initial conditions are typically given for it.

I suppose in principle it could be that nature would effectively follow

the same idealization as in traditional mathematics, and would end up

picking numbers purely according to their size. And if this were so, then it

would mean that the initial conditions for systems like the shift map

would naturally have digit sequences that are almost always random. 

But this line of reasoning can ultimately never be too useful. For

what it says is that the randomness we see somehow comes from

randomness that is already present—but it does not explain where that

randomness comes from. And indeed—as I will discuss in Chapter 7—if

one looks only at systems like the shift map then it is not clear any new

randomness can ever actually be generated. 

But a crucial discovery in this book is that systems like (a) and (b)

on pages 150 and 151 can show behavior that seems in many respects

random even when their initial conditions show no sign of randomness

and are in fact extremely simple.

Yet the fact that systems like (a) and (b) can intrinsically generate

randomness even from simple initial conditions does not mean that they

1�2

1�2
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do not also show sensitive dependence on initial conditions. And indeed

the pictures below illustrate that even in such cases changes in digit

sequences are progressively amplified—just like in the shift map case (d).

But the crucial point that I will discuss more in Chapter 7 is that

the presence of sensitive dependence on initial conditions in systems

like (a) and (b) in no way implies that it is what is responsible for the

randomness and complexity we see in these systems. And indeed, what

looking at the shift map in terms of digit sequences shows us is that

this phenomenon on its own can make no contribution at all to what

we can reasonably consider the ultimate production of randomness.

Continuous Cellular Automata 

Despite all their differences, the various kinds of programs discussed in

the previous chapter have one thing in common: they are all based on

elements that can take on only a discrete set of possible forms, typically

just colors black and white. And in this chapter, we have introduced a

similar kind of discreteness into our study of systems based on numbers

Differences in digit sequences produced by a small change in initial conditions for the four iterated maps discussed in this
section. Cases (a), (b) and (d) exhibit sensitive dependence on initial conditions, in the sense that a change in insignificant digits
far to the right eventually grows to affect all digits. Case (c) does not show such sensitivity to initial conditions, but instead
always evolves to 0, independent of its initial conditions. 

(a) (b) (c) (d)
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by considering digit sequences in which each digit can again have only a

discrete set of possible values, typically just 0 and 1.

So now a question that arises is whether all the complexity we

have seen in the past three chapters somehow depends on the

discreteness of the elements in the systems we have looked at. 

And to address this question, what I will do in this section is to

consider a generalization of cellular automata in which each cell is not

just black or white, but instead can have any of a continuous range of

possible levels of gray. One can update the gray level of each cell by

using rules that are in a sense a cross between the totalistic cellular

automaton rules that we discussed at the beginning of the last chapter

and the iterated maps that we just discussed in the previous section.

The idea is to look at the average gray level of a cell and its

immediate neighbors, and then to get the gray level for that cell at the

next step by applying a fixed mapping to the result. The picture below

shows a very simple case in which the new gray level of each cell is

exactly the average of the one for that cell and its immediate neighbors.

Starting from a single black cell, what happens in this case is that the

gray essentially just diffuses away, leaving in the end a uniform pattern.

The picture on the facing page shows what happens with a

slightly more complicated rule in which the average gray level is

multiplied by , and then only the fractional part is kept if the result

of this is greater than 1.

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0.333 0.333 0.333 0 0 0 0

0 0 0 0.111 0.222 0.333 0.222 0.111 0 0 0

0 0 0.037 0.111 0.222 0.259 0.222 0.111 0.037 0 0

0 0.012 0.049 0.123 0.198 0.235 0.198 0.123 0.049 0.012 0

0.004 0.021 0.062 0.123 0.185 0.21 0.185 0.123 0.062 0.021 0.004

A continuous cellular automaton in
which each cell can have any level of
gray between white (0) and black (1).
The rule shown here takes the new
gray level of each cell to be the average
of its own gray level and those of its
immediate neighbors. 

3�2
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And what we see is that despite the presence of continuous gray

levels, the behavior that is produced exhibits the same kind of

complexity that we have seen in many ordinary cellular automata and

other systems with discrete underlying elements.

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0.5 0.5 0.5 0 0 0 0

0 0 0 0.25 0.5 0.75 0.5 0.25 0 0 0

0 0 0.125 0.375 0.75 0.875 0.75 0.375 0.125 0 0

0 0.063 0.25 0.625 0 0.188 0 0.625 0.25 0.063 0

0.031 0.156 0.469 0.438 0.406 0.094 0.406 0.438 0.469 0.156 0.031

A continuous cellular automaton with a slightly more complicated rule.
The rule takes the new gray level of each cell to be the fractional part of
the average gray level of the cell and its neighbors multiplied by 3/2. The
picture shows that starting from a single black cell, this rule yields
behavior of considerable complexity. Note that the operation performed
on individual average gray levels is exactly iterated map (a) from page 150.

FractionalPart[3/ 2 x]
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In fact, it turns out that in continuous cellular automata it takes

only extremely simple rules to generate behavior of considerable

complexity. So as an example the picture below shows a rule that

determines the new gray level for a cell by just adding the constant 

to the average gray level for the cell and its immediate neighbors, and

then taking the fractional part of the result.

The facing page and the one after show what happens when one

chooses different values for the constant that is added. A remarkable

diversity of behavior is seen. Sometimes the behavior is purely

repetitive, but often it has features that seem effectively random. 

And in fact, as the picture in the middle of page 160 shows, it is

even possible to find cases that exhibit localized structures very much

like those occasionally seen in ordinary cellular automata.

1�4

FractionalPart[x+1/ 4]

A continuous cellular automaton whose rule adds the constant 1/4 to the
average gray level for a cell and its immediate neighbors, and takes the
fractional part of the result. The background simply repeats every 4 steps,
but the main pattern has a complex and in many respects random form. 

Continuous cellular automata with the same kind of rules as in the picture
above, but with a variety of different constants being added. Note that it is not
so much the size of the constant as properties like its digit sequence that
seem to determine the overall form of behavior produced in each case. 

0 0 0 0 0 1 0 0 0 0 0

0.25 0.25 0.25 0.25 0.583 0.583 0.583 0.25 0.25 0.25 0.25

0.5 0.5 0.5 0.611 0.722 0.833 0.722 0.611 0.5 0.5 0.5

0.75 0.75 0.787 0.861 0.972 0.009 0.972 0.861 0.787 0.75 0.75

0 0.012 0.049 0.123 0.864 0.901 0.864 0.123 0.049 0.012 0

0.254 0.271 0.312 0.596 0.88 0.127 0.88 0.596 0.312 0.271 0.254
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0.45 0.475 0.5

0.375 0.4 0.425

0.3 0.325 0.35

0.225 0.25 0.275

0.15 0.175 0.2

0.075 0.1 0.125

0 0.025 0.05
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More steps in the evolution of continuous cellular automata with the same kind of rules as on the previous page. In order to remove
the uniform stripes, the picture in the middle shows the difference between the gray level of each cell and its immediate neighbor.
Note the presence of discrete localized structures even though the underlying rules for the system involve continuous gray levels. 

0.475 0.495 0.9

0.3299 0.3299 (differences) 0.35

0.1 0.3 0.325
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Partial Differential Equations

By introducing continuous cellular automata with a continuous range

of gray levels, we have successfully removed some of the discreteness

that exists in ordinary cellular automata. But there is nevertheless

much discreteness that remains: for a continuous cellular automaton is

still made up of discrete cells that are updated in discrete time steps.

So can one in fact construct systems in which there is absolutely

no such discreteness? The answer, it turns out, is that at least in

principle one can, although to do so requires a somewhat higher level of

mathematical abstraction than has so far been necessary in this book.

The basic idea is to imagine that a quantity such as gray level can

be set up to vary continuously in space and time. And what this means

is that instead of just having gray levels in discrete cells at discrete time

steps, one supposes that there exists a definite gray level at absolutely

every point in space and every moment in time—as if one took the limit

of an infinite collection of cells and time steps, with each cell being an

infinitesimal size, and each time step lasting an infinitesimal time.

But how does one give rules for the evolution of such a system?

Having no explicit time steps to work with, one must instead just

specify the rate at which the gray level changes with time at every point

in space. And typically one gives this rate as a simple formula that

depends on the gray level at each point in space, and on the rate at

which that gray level changes with position.

Such rules are known in mathematics as partial differential

equations, and in fact they have been widely studied for about two

hundred years. Indeed, it turns out that almost all the traditional

mathematical models that have been used in physics and other areas of

science are ultimately based on partial differential equations. Thus, for

example, Maxwell’s equations for electromagnetism, Einstein’s

equations for gravity, Schrödinger’s equation for quantum mechanics

and the Hodgkin-Huxley equation for the electrochemistry of nerve

cells are all examples of partial differential equations.

It is in a sense surprising that systems which involve such a high

level of mathematical abstraction should have become so widely used
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in practice. For as we shall see later in this book, it is certainly not that

nature fundamentally follows these abstractions.

And I suspect that in fact the current predominance of partial

differential equations is in many respects a historical accident—and

that had computer technology been developed earlier in the history of

mathematics, the situation would probably now be very different.

But particularly before computers, the great attraction of partial

differential equations was that at least in simple cases explicit

mathematical formulas could be found for their behavior. And this

meant that it was possible to work out, for example, the gray level at a

particular point in space and time just by evaluating a single

mathematical formula, without having in a sense to follow the

complete evolution of the partial differential equation.

The pictures on the facing page show three common partial

differential equations that have been studied over the years. 

The first picture shows the diffusion equation, which can be

viewed as a limiting case of the continuous cellular automaton on page

156. Its behavior is always very simple: any initial gray progressively

diffuses away, so that in the end only uniform white is left.

The second picture shows the wave equation. And with this

equation, the initial lump of gray shown just breaks into two identical

pieces which propagate to the left and right without change.

The third picture shows the sine-Gordon equation. This leads to

slightly more complicated behavior than the other equations—though

the pattern it generates still has a simple repetitive form.

Considering the amount of mathematical work that has been

done on partial differential equations, one might have thought that a

vast range of different equations would by now have been studied. But

in fact almost all the work—at least in one dimension—has

concentrated on just the three specific equations on the facing page,

together with a few others that are essentially equivalent to them. 

And as we have seen, these equations yield only simple behavior.

So is it in fact possible to get more complicated behavior in

partial differential equations? The results in this book on other kinds of

systems strongly suggest that it should be. But traditional
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Three partial differential equations that have historically been studied extensively. Just like in other pictures in this book, position goes
across the page, and time down the page. In each equation  is the gray level at a particular point,  is the rate of change (derivative)
of the gray level with time, and  is the rate of change of that rate of change (second derivative). Similarly,  is the rate of change
with position in space, and  is the rate of change of that rate of change. On this page and the ones that follow the initial
conditions used are , . 

u $t u

$tt u $x u

$xx u

u = 4-x
2

$t u = 0

diffusion equation: $t u[t, x] Ð 1/4 $xx u[t, x]

wave equation: $tt u[t, x] Ð $xx u[t, x]

sine-Gordon soliton equation: $tt u[t, x] Ð $xx u[t, x] + Sin[u[t, x]]
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mathematical methods give very little guidance about how to find such

behavior. Indeed, it seems that the best approach is essentially just to

search through many different partial differential equations, looking for

ones that turn out to show complex behavior.

But an immediate difficulty is that there is no obvious way to

sample possible partial differential equations. In discrete systems such

as cellular automata there are always a discrete set of possible rules. But

in partial differential equations any mathematical formula can appear.

Nevertheless, by representing formulas as symbolic expressions

with discrete sets of possible components, one can devise at least some

schemes for sampling partial differential equations.

But even given a particular partial differential equation, there is

no guarantee that the equation will yield self-consistent results. Indeed,

for a very large fraction of randomly chosen partial differential equations

what one finds is that after just a small amount of time, the gray level

one gets either becomes infinitely large or starts to vary infinitely

quickly in space or time. And whenever such phenomena occur, the

original equation can no longer be used to determine future behavior.

But despite these difficulties I was eventually able to find the

partial differential equations shown on the next two pages. 

The mathematical statement of these equations is fairly simple.

But as the pictures show, their behavior is highly complex. 

Indeed, strangely enough, even though the underlying equations

are continuous, the patterns they produce seem to involve patches that

have a somewhat discrete structure.

But the main point that the pictures on the next two pages make

is that the kind of complex behavior that we have seen in this book is in

no way restricted to systems that are based on discrete elements. It is

certainly much easier to find and to study such behavior in these

discrete systems, but from what we have learned in this section, we

now know that the same kind of behavior can also occur in completely

continuous systems such as partial differential equations.
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Examples of partial differential equations I have found that have more complicated behavior. The background in each case purely is
repetitive, but the main part of the pattern is complex, and reminiscent of what is produced by continuous cellular automata and many
other kinds of systems discussed in this book.

$tt u[t, x] Ð $xx u[t, x] + (1 - u[t, x]2) (1+ u[t, x])

$tt u[t, x] Ð $xx u[t, x] + (1 - u[t, x]2) (1+ 2 u[t, x])

$tt u[t, x] Ð $xx u[t, x] + (1 - u[t, x]2) (1+ 4 u[t, x])
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$tt u[t, x] Ð $xx u[t, x] + (1 - u[t, x]2) (1+ u[t, x])

$tt u[t, x] Ð $xx u[t, x] + (1 - u[t, x]2) (1+ 2 u[t, x])

$tt u[t, x] Ð $xx u[t, x] + (1 - u[t, x]2) (1+ 4 u[t, x])
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Continuous Versus Discrete Systems

One of the most obvious differences between my approach to science

based on simple programs and the traditional approach based on

mathematical equations is that programs tend to involve discrete

elements while equations tend to involve continuous quantities.

But how significant is this difference in the end?

One might have thought that perhaps the basic phenomenon of

complexity that I have identified could only occur in discrete systems. But

from the results of the last few sections, we know that this is not the case.

What is true, however, is that the phenomenon was immensely

easier to discover in discrete systems than it would have been in

continuous ones. Probably complexity is not in any fundamental sense

rarer in continuous systems than in discrete ones. But the point is that

discrete systems can typically be investigated in a much more direct

way than continuous ones.

Indeed, given the rules for a discrete system, it is usually a rather

straightforward matter to do a computer experiment to find out how

the system will behave. But given an equation for a continuous system,

it often requires considerable analysis to work out even approximately

how the system will behave. And in fact, in the end one typically has

rather little idea which aspects of what one sees are actually genuine

features of the system, and which are just artifacts of the particular

methods and approximations that one is using to study it.

With all the work that was done on continuous systems in the

history of traditional science and mathematics, there were undoubtedly

many cases in which effects related to the phenomenon of complexity

were seen. But because the basic phenomenon of complexity was not

known and was not expected, such effects were probably always

dismissed as somehow not being genuine features of the systems being

studied. Yet when I came to investigate discrete systems there was no

Solutions to the same equations as on the previous page over a longer period of time. Note
the appearance of discrete structures. Particularly in the last picture some details are sensitive
to the numerical approximation scheme used in computing the solution to the equation. 



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

168

possibility of dismissing what I saw in such a way. And as a result I was

in a sense forced into recognizing the basic phenomenon of complexity.

But now, armed with the knowledge that this phenomenon

exists, it is possible to go back and look again at continuous systems.

And although there are significant technical difficulties, one finds

as the last few sections have shown that the phenomenon of complexity

can occur in continuous systems just as it does in discrete ones.

It remains much easier to be sure of what is going on in a discrete

system than in a continuous one. But I suspect that essentially all of the

various phenomena that we have observed in discrete systems in the

past several chapters can in fact also be found even in continuous

systems with fairly simple rules. 
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5
Two Dimensions and Beyond 

Introduction

The physical world in which we live involves three dimensions of

space. Yet so far in this book all the systems we have discussed have

effectively been limited to just one dimension. 

The purpose of this chapter, therefore, is to see how much of a

difference it makes to allow more than one dimension.

At least in simple cases, the basic idea—as illustrated in the

pictures below—is to consider systems whose elements do not just lie

along a one-dimensional line, but instead are arranged for example on a

two-dimensional grid.

one dimension

two dimensions three dimensions

Examples of simple arrangements of elements in one, two and three dimensions. In two
dimensions, what is shown is a square grid; triangular and hexagonal grids are also possible. In three
dimensions, what is shown is a cubic lattice; various other lattices, analogous to those for regular
crystals, are also possible—as are arrangements that are not repetitive. 
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Traditional science tends to suggest that allowing more than one

dimension will have very important consequences. Indeed, it turns out

that many of the phenomena that have been most studied in traditional

science simply do not occur in just one dimension. 

Phenomena that involve geometrical shapes, for example, usually

require at least two dimensions, while phenomena that rely on the

existence of knotted structures require three dimensions. But what about

the phenomenon of complexity? How much does it depend on dimension? 

It could be that in going beyond one dimension the character of

the behavior that we would see would immediately change. And indeed

in the course of this chapter, we will come across many examples of

specific effects that depend on having more than one dimension.

But what we will discover in the end is that at an overall level the

behavior we see is not fundamentally much different in two or more

dimensions than in one dimension. Indeed, despite what we might

expect from traditional science, adding more dimensions does not

ultimately seem to have much effect on the occurrence of behavior of

any significant complexity. 

Cellular Automata 

The cellular automata that we have discussed so far in this book are all

purely one-dimensional, so that at each step, they involve only a single

line of cells. But one can also consider two-dimensional cellular

automata that involve a whole grid of cells, with the color of each cell

being updated according to a rule that depends on its neighbors in all

four directions on the grid, as in the picture below.

The form of the rule for a typical two-dimensional cellular automaton.
In the cases discussed in this section, each cell is either black or
white. Usually I consider so-called totalistic rules in which the new
color of the center cell depends only on the average of the previous
colors of its four neighbors, as well as on its own previous color. 
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The pictures below show what happens with an especially simple

rule in which a particular cell is taken to become black if any of its four

neighbors were black on the previous step.

Starting from a single black cell, this rule just yields a uniformly

expanding diamond-shaped region of black cells. But by changing the

rule slightly, one can obtain more complicated patterns of growth. The

pictures below show what happens, for example, with a rule in which

each cell becomes black if just one or all four of its neighbors were black

on the previous step, but otherwise stays the same color as it was before.

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8

Successive steps in the evolution of a two-dimensional cellular automaton whose rule specifies that a particular cell should become
black if any of its neighbors were black on the previous step. (In the numbering scheme described on page 173 this rule is code 1022.) 

step 10 step 20 step 30

Steps in the evolution of a two-dimensional cellular automaton whose rule specifies that a particular cell should become black if exactly
one or all four of its neighbors were black on the previous step, but should otherwise stay the same color. Starting with a single black
cell, this rule yields an intricate, if very regular, pattern of growth. (In the numbering scheme on page 173, the rule is code 942.) 

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8



A three-dimensional object
formed by stacking the two-dimensional
patterns from the bottom of the previous page. Such
pictures are the analogs for two-dimensional cellular automata of the
two-dimensional pictures that I often generate for one-dimensional cellular automata. 
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The patterns produced in this case no longer have a simple

geometrical form, but instead often exhibit an intricate structure

somewhat reminiscent of a snowflake. Yet despite this intricacy, the

patterns still show great regularity. And indeed, if one takes the

patterns from successive steps and stacks them on top of each other to

form a three-dimensional object, as in the picture below, then this

object has a very regular nested structure.

But what about other rules? The facing page and the one that

follows show patterns produced by two-dimensional cellular automata

with a sequence of different rules. Within each pattern there is often

considerable complexity. But this complexity turns out to be very

similar to the complexity we have already seen in one-dimensional
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code 492 code 493 code 494 code 495 code 496 code 497 code 498

code 485 code 486 code 487 code 488 code 489 code 490 code 491

code 478 code 479 code 480 code 481 code 482 code 483 code 484

code 471 code 472 code 473 code 474 code 475 code 476 code 477

code 464 code 465 code 466 code 467 code 468 code 469 code 470

code 457 code 458 code 459 code 460 code 461 code 462 code 463

code 450 code 451 code 452 code 453 code 454 code 455 code 456

Patterns generated by a sequence of two-dimensional cellular automaton rules. The patterns are produced by starting from a
single black square and then running for 22 steps. In each case the base 2 digit sequence for the code number specifies the
rule as follows. The last digit specifies what color the center cell should be if all its neighbors were white on the previous step,
and it too was white. The second-to-last digit specifies what happens if all the neighbors are white, but the center cell itself is
black. And each earlier digit then specifies what should happen if progressively more neighbors are black. (Compare page 60.)
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code 483 code 489 code 491 code 493

code 473 code 475 code 478 code 481

code 465 code 467 code 468 code 470

code 457 code 459 code 461 code 462

code 451 code 452 code 453 code 454

Patterns generated by two-dimensional cellular automata from the previous page, but now after twice as many steps. 
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code 478 code 479 code 480 code 481

code 474 code 475 code 476 code 477

code 470 code 471 code 472 code 473

code 466 code 467 code 468 code 469

code 462 code 463 code 464 code 465

code 458 code 459 code 460 code 461

code 454 code 455 code 456 code 457

code 450 code 451 code 452 code 453

Evolution of one-dimensional slices through some of the two-dimensional cellular automata from the previous two pages. Each
picture shows the colors of cells that lie on the one-dimensional line that goes through the middle of each two-dimensional pattern.
The results are strikingly similar to ones we saw in previous chapters in purely one-dimensional cellular automata. 
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cellular automata. And indeed the previous page shows that if one

looks at the evolution of a one-dimensional slice through each

two-dimensional pattern the results one gets are strikingly similar to

what we have seen in ordinary one-dimensional cellular automata. 

But looking at such slices cannot reveal much about the overall

shapes of the two-dimensional patterns. And in fact it turns out that for

all the two-dimensional cellular automata shown on the last few pages,

these shapes are always very regular.

But it is nevertheless possible to find two-dimensional cellular

automata that yield less regular shapes. And as a first example, the

picture on the facing page shows a rule that produces a pattern whose

surface has seemingly random irregularities, at least on a small scale. 

In this particular case, however, it turns out that on a larger scale

the surface follows a rather smooth curve. And indeed, as the picture on

page 178 shows, it is even possible to find cellular automata that yield

overall shapes that closely approximate perfect circles.

But it is certainly not the case that all two-dimensional cellular

automata produce only simple overall shapes. The pictures on pages

179–181 show one rule, for example, that does not. The rule is actually

rather simple: it just states that a particular cell should become black

whenever exactly three of its eight neighbors—including diagonals—are

black, and otherwise it should stay the same color as it was before.

In order to get any kind of growth with this rule one must start

with at least three black cells. The picture at the top of page 179 shows

what happens with various numbers of black cells. In some cases the

patterns produced are fairly simple—and typically stop growing after

just a few steps. But in other cases, much more complicated patterns are

produced, which often apparently go on growing forever. 

The pictures on page 181 show the behavior produced by starting

from a row of eleven black cells, and then evolving for several hundred

steps. The shapes obtained seem continually to go on changing, with no

simple overall form ever being produced. 

And so it seems that there can be great complexity not only in

the detailed arrangement of black and white cells in a two-dimensional

cellular automaton pattern, but also in the overall shape of the pattern.
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A two-dimensional cellular automaton that yields a pattern with a rough surface. The rule used here
includes diagonal neighbors, and so involves a total of 8 neighbors for each cell, as indicated in the icon
on the left. The rule specifies that the center cell should become black if either 3 or 5 of its 8 neighbors
were black on the step before, and should otherwise stay the same color as it was before. The initial
condition in the case shown consists of a row of 7 black cells. In an extension to 8 neighbors of the
scheme used in the pictures a few pages back, the rule has code number 175850. 

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8

step 9 step 10 step 11 step 12 step 13 step 14 step 15 step 16

step 17 step 18 step 19 step 20 step 21 step 22 step 23 step 24

step 100

step 200
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A cellular automaton that yields a pattern whose shape closely approximates a circle. The rule used is of the same kind as on the
previous page, but now takes the center cell to become black only if it has exactly 3 black neighbors. If it has 1, 2 or 4 black neighbors
then it stays the same color as it was before, and if it has 5 or more black neighbors, then it becomes white on the next step (code
number 746). The initial condition consists of a row of 7 black cells, just as in the picture on the previous page. The pattern shown here
is the result of 400 steps in the evolution of the system. After  steps, the radius of the approximate circle is about . t 0.37 t
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So what about three-dimensional cellular automata? It is

straightforward to generalize the setup for two-dimensional rules to the

three-dimensional case. But particularly on a printed page it is fairly

difficult to display the evolution of a three-dimensional cellular

automaton in a way that can readily be assimilated.

Pages 182 and 183 do however show a few examples of

three-dimensional cellular automata. And just as in the two-dimensional

case, there are some specific new phenomena that can be seen. But overall

it seems that the basic kinds of behavior produced are just the same as in

one and two dimensions. And in particular, the basic phenomenon of

complexity does not seem to depend in any crucial way on the

dimensionality of the system one looks at.

Patterns produced by evolution according to a simple two-dimensional cellular automaton rule starting from rows of black
cells of various lengths. The rule used specifies that a particular cell should become black if exactly three out of its eight
neighbors (with diagonal neighbors included) are black (code number 174826). The patterns in the picture are obtained by 60
steps of evolution according to this rule. The smaller patterns above have all stopped growing after this number of steps, but
many of the other patterns apparently go on growing forever. 

23 initial black cells 25 initial black cells 27 initial black cells 29 initial black cells 31 initial black cells

13 initial black cells 15 initial black cells 17 initial black cells 19 initial black cells 21 initial black cells

3 initial black cells 5 initial black cells 7 initial black cells 9 initial black cells 11 initial black cells
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13 initial black cells

15 initial black cells

17 initial black cells
Three-dimensional objects formed by stacking successive
two-dimensional patterns produced in the evolution of the
cellular automaton from the previous page. The large picture
on the right shows 200 steps of evolution. 

11 initial black cells
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Stages in the evolution of the cellular automaton from the facing page, starting with an initial condition consisting of a row of 11 black cells. 

step 100

step 300

step 400

step 500

step 200
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Examples of three-dimensional cellular automata. In the top set of pictures, the rule specifies that a
cell should become black whenever any of the six neighbors with which it shares a face were black
on the step before. In the bottom pictures, the rule specifies that a cell should become black only
when exactly one of its six neighbors was black on the step before. In both cases, the initial condition
contains a single black cell. In the top pictures, the limiting shape obtained is a regular octahedron. In
the bottom pictures, it is a nested pattern analogous to the two-dimensional one on page 171. 

step 1 step 2 step 3 step 4 step 5 step 6

step 7 step 8 step 9 step 10

step 1 step 2 step 3 step 4 step 5 step 6

step 7 step 8 step 9 step 10
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step 7 step 8 step 9 step 10

step 1 step 2 step 3 step 4 step 5 step 6

step 7 step 8 step 9 step 10

183

Further examples of three-dimensional cellular automata, but now with rules that depend on all 26
neighbors that share either a face or a corner with a particular cell. In the top pictures, the rule
specifies that a cell should become black when exactly one of its 26 neighbors was black on the
step before. In the bottom pictures, the rule specifies that a cell should become black only when
exactly two of its 26 neighbors were black on the step before. In the top pictures, the initial
condition contains a single black cell; in the bottom pictures, it contains a line of three black cells. 
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Turing Machines 

Much as for cellular automata, it is straightforward to generalize

Turing machines to two dimensions. The basic idea—shown in the

picture below—is to allow the head of the Turing machine to move

around on a two-dimensional grid rather than just going backwards and

forwards on a one-dimensional tape.

When we looked at one-dimensional Turing machines earlier in

this book, we found that it was possible for them to exhibit complex

behavior, but that such behavior was rather rare. 

In going to two dimensions we might expect that complex behavior

would somehow immediately become more common. But in fact what

we find is that the situation is remarkably similar to one dimension.

For Turing machines with two or three possible states, only

repetitive and nested behavior normally seem to occur. With four

states, more complex behavior is possible, but it is still rather rare.

The facing page shows some examples of two-dimensional Turing

machines with four states. Simple behavior is overwhelmingly the most

common. But out of a million randomly chosen rules, there will typically

be a few that show complex behavior. Page 186 shows one example where

the behavior seems in many respects completely random. 

An example of a two-dimensional Turing machine
whose head has three possible states. The black dot
represents the position of the head at each step, and
the three possible orientations of the arrow on this dot correspond to the three possible states of the head. The rule specifies
in which of the four possible directions the head should move at each step. Note that the orientation of the arrow representing
the state of the head has no direct relationship to directions on the grid—or to which way the head will move at the next step.

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9

step 10 step 20 step 30 step 40 step 50 step 60
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(a)

(b)

(c)

(d)

(e)

Examples of patterns produced by two-dimensional Turing machines
whose heads have four possible states. In each case, all cells are
initially white, and one of the rules given on the left is applied for the
specified number of steps. Note that in the later cases shown, the
head often visits the same position on the grid many times. 

(a) (step 1000)

(b) (step 2500)

(d) (step 8000)

(c) (step 3000)

(e) (step 10000)
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The path traced out by the head of the two-dimensional Turing machine with rule (e) from the previous page. There are
many seemingly random fluctuations in this path, though in general it tends to grow to the right.

100,000 steps

500,000 steps
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Substitution Systems and Fractals

One-dimensional substitution systems of the kind we discussed on page

82 can be thought of as working by progressively subdividing each

element they contain into several smaller elements.

One can construct two-dimensional substitution systems that

work in essentially the same way, as shown in the pictures below.

The next page gives some more examples of two-dimensional

substitution systems. The patterns that are produced are certainly quite

intricate. But there is nevertheless great regularity in their overall

forms. Indeed, just like patterns produced by one-dimensional

substitution systems on page 83, all the patterns shown here ultimately

have a simple nested structure.

Why does such nesting occur? The basic reason is that at every

step the rules for the substitution system simply replace each black

square with several smaller black squares. And on subsequent steps,

each of these new black squares is then in turn replaced in exactly the

step 5 step 6 step 7 step 8

step 1 step 2 step 3 step 4

A two-dimensional substitution system in which each square is replaced by four
smaller squares at every step according to the rule shown on the left. The pattern
generated has a nested form. 
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(g) (h) ( i)

(d) (e) (f )

(a) (b) (c)

(g) (h) ( i)

(d) (e) (f )

(a) (b) (c)Patterns from various two-dimensional
substitution systems. In each case what is
shown is the pattern obtained after five
steps of evolution according to the rules on
the right, starting with a single black square. 



T W O  D I M E N S I O N S  A N D  B E Y O N D C H A P T E R  5

189

same way, so that it ultimately evolves to produce an identical copy of

the whole pattern. 

But in fact there is nothing about this basic process that depends

on the squares being arranged in any kind of rigid grid. And the picture

below shows what happens if one just uses a simple geometrical rule to

replace each black square by two smaller black squares. The result, once

again, is that one gets an intricate but highly regular nested pattern.

In a substitution system where black squares are arranged on a

grid, one can be sure that different squares will never overlap. But if

there is just a geometrical rule that is used to replace each black square,

then it is possible for the squares produced to overlap, as in the picture

on the next page. Yet at least in this example, the overall pattern that is

ultimately obtained still has a purely nested structure. 

The general idea of building up patterns by repeatedly applying

geometrical rules is at the heart of so-called fractal geometry. And the

step 8 step 9 step 10 step 11

step 1 step 2 step 3 step 4 step 5 step 6 step 7

The pattern obtained by starting with a single black square and then at every step replacing each
black cell with two smaller black cells according to the simple geometrical rule shown on the left.
Note that in applying the rule to a particular square, one must take account of the orientation of
that square. The final pattern obtained has an intricate nested structure. 
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pictures on the facing page show several more examples of fractal

patterns produced in this way. 

The details of the geometrical rules used are different in each

case. But what all the rules have in common is that they involve

replacing one black square by two or more smaller black squares. And

with this kind of setup, it is ultimately inevitable that all the patterns

produced must have a completely regular nested structure.

So what does it take to get patterns with more complicated

structure? The basic answer, much as we saw in one-dimensional

substitution systems on page 85, is some form of interaction between

different elements—so that the replacement for a particular element at

a given step can depend not only on the characteristics of that element

itself, but also on the characteristics of other neighboring elements.

But with geometrical replacement rules of the kind shown on the

facing page there is a problem with this. For elements can end up

anywhere in the plane, making it difficult to define an obvious notion

of neighbors. And the result of this has been that in traditional fractal

geometry the idea of interaction between elements is not considered—

so that all patterns that are produced have a purely nested form.

step 8 step 9 step 10 step 11

step 1 step 2 step 3 step 4 step 5 step 6 step 7

The pattern obtained by repeatedly applying the simple geometrical rule shown on the right.
Even though this basic rule does not involve overlapping squares, the pattern obtained even by
step 3 already has squares that overlap. But the overall pattern obtained after a large number of
steps still has a nested form. 
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Yet if one sets up elements on a grid it is straightforward to allow

the replacements for a given element to depend on its neighbors, as in

the picture at the top of the next page. And if one does this, one

immediately gets all sorts of fairly complicated patterns that are often

not just purely nested—as illustrated in the pictures on the next page.

In Chapter 3 we discussed both ordinary one-dimensional

substitution systems, in which every element is replaced at each step,

and sequential substitution systems, in which just a single block of

elements are replaced at each step. And what we did to find which

block of elements should be replaced at a given step was to scan the

whole sequence of elements from left to right. 

(a)

(b)

(c)

(d)

(b) (d)

(a) (c)

Examples of fractal patterns produced by
repeatedly applying the geometrical rules
shown for a total of 12 steps. The details of
each pattern are different, but in all cases
the patterns have a nested overall structure.
The presence of this nested structure is an
inevitable consequence of the fact that the
rule for replacing an element at a particular
position does not depend in any way on
other elements. 
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So how can this be generalized to higher dimensions? On a

two-dimensional grid one can certainly imagine snaking backwards and

forwards or spiralling outwards to scan all the elements. But as soon as

one defines any particular order for elements—however they may be laid

out—this in effect reduces one to dealing with a one-dimensional system.

And indeed there seems to be no immediate way to generalize

sequential substitution systems to two or more dimensions. In Chapter

9, however, we will see that with more sophisticated ideas it is in fact

possible in any number of dimensions to set up substitution systems in

which elements are scanned in order—but whatever order is used, the

results are in some sense always the same. 

step 1 step 2 step 3 step 4 step 5 step 6 step 7

(e) (f ) (g) (h)

(a) (b) (c) (d)Patterns generated by 8 steps of evolution in various
two-dimensional neighbor-dependent substitution systems. 

A two-dimensional neighbor-dependent substitution system. The
grid of cells is assumed to wrap around in both its dimensions. 

(e) (f ) (g) (h)

(a) (b) (c) (d)
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Network Systems

One feature of systems like cellular automata is that their elements are

always set up in a regular array that remains the same from one step to

the next. In substitution systems with geometrical replacement rules

there is slightly more freedom, but still the elements are ultimately

constrained to lie in a two-dimensional plane. 

Indeed, in all the systems that we have discussed so far there is in

effect always a fixed underlying geometrical structure which remains

unchanged throughout the evolution of the system. 

It turns out, however, that it is possible to construct systems in

which there is no such invariance in basic structure, and in this section

I discuss as an example one version of what I will call network systems.

A network system is fundamentally just a collection of nodes

with various connections between these nodes, and rules that specify

how these connections should change from one step to the next. 

At any particular step in its evolution, a network system can be

thought of a little like an electric circuit, with the nodes of the network

corresponding to the components in the circuit, and the connections to

the wires joining these components together. 

And as in an electric circuit, the properties of the system depend

only on the way in which the nodes are connected together, and not on

any specific layout for the nodes that may happen to be used.

Of course, to make a picture of a network system, one has to

choose particular positions for each of its nodes. But the crucial point is

that these positions have no fundamental significance: they are

introduced solely for the purpose of visual representation. 

In constructing network systems one could in general allow each

node to have any number of connections coming from it. But at least for

the purposes of this section nothing fundamental turns out to be lost if

one restricts oneself to the case in which every node has exactly two

outgoing connections—each of which can then either go to another

node, or can loop back to the original node itself. 

With this setup the very simplest possible network consists of

just one node, with both connections from the node looping back, as
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in the top picture below. With two nodes, there are already three

possible patterns of connections, as shown on the second line below.

And as the number of nodes increases, the number of possible

different networks grows very rapidly.

For most of these networks there is no way of laying out their

nodes so as to get a picture that looks like anything much more than a

random jumble of wires. But it is nevertheless possible to construct

many specific networks that have easily recognizable forms, as shown

in the pictures on the facing page.

Each of the networks illustrated at the top of the facing page

consists at the lowest level of a collection of identical nodes. But the

remarkable fact that we see is that just by changing the pattern of

1 node

2 nodes

3 nodes

Possible networks formed by having one, two or three nodes, with two connections coming out of
each node. The picture shows all inequivalent cases ignoring labels, but excludes networks in which
there are nodes which cannot be reached by connections from other nodes. 
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connections between these nodes it is possible to get structures that

effectively correspond to arrays with different numbers of dimensions.

Example (a) shows a network that is effectively one-dimensional.

The network consists of pairs of nodes that can be arranged in a

sequence in which each pair is connected to one other pair on the left

and another pair on the right. 

But there is nothing intrinsically one-dimensional about the

structure of network systems. And as example (b) demonstrates, it is

just a matter of rearranging connections to get a network that looks like

a two-dimensional rather than a one-dimensional array. Each individual

node in example (b) still has exactly two connections coming out of it,

but now the overall pattern of connections is such that every block of

nodes is connected to four rather than two neighboring blocks, so that

the network effectively forms a two-dimensional square grid.

(c) three dimensions

(a) one dimension

(b) two dimensions

Examples of networks that correspond to arrays in one, two and three dimensions. At an underlying level, each network
consists just of a collection of nodes with two connections coming from each node. But by setting up appropriate
patterns for these connections, one can get networks with very different effective geometrical structures. 
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Example (c) then shows that with appropriate connections, it is also

possible to get a three-dimensional array, and indeed using the same

principles an array with any number of dimensions can easily be obtained.

The pictures below show examples of networks that form infinite

trees rather than arrays. Notice that the first and last networks shown

actually have an identical pattern of connections, but they look different

here because the nodes are arranged in a different way on the page.

(a)

(b)

(c)

Examples of networks that correspond to infinite trees. Note that networks (a) and (c) are identical, though they look different
because the nodes are laid out differently on the page. All the networks shown are truncated at the leaves of each tree. 
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In general, there is great variety in the possible structures that

can be set up in network systems, and as one further example the

picture below shows a network that forms a nested pattern. 

In the pictures above we have seen various examples of

individual networks that might exist at a particular step in the

evolution of a network system. But now we must consider how such

networks are transformed from one step in evolution to the next. 

The basic idea is to have rules that specify how the connections

coming out of each node should be rerouted on the basis of the local

structure of the network around that node.

But to see the effect of any such rules, one must first find a

uniform way of displaying the networks that can be produced. The

pictures at the top of the next page show one possible approach based on

always arranging the nodes in each network in a line across the page.

And although this representation can obscure the geometrical structure

An example of a network that forms a nested
geometrical structure. As in all the other networks
shown, each node here is identical, and has just
two connections coming out of it. 
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of a particular network, as in the second and third cases above, it more

readily allows comparison between different networks.

In setting up rules for network systems, it is convenient to

distinguish the two connections that come out of each node. And in the

pictures above one connection is therefore always shown going above

the line of nodes, while the other is always shown going below. 

The pictures on the facing page show examples of evolution

obtained with four different choices of underlying rules. In the first

case, the rule specifies that the “above” connection from each node

should be rerouted so that it leads to the node obtained by following the

“below” connection and then the “above” connection from that node.

The “below” connection is left unchanged. 

The other rules shown are similar in structure, except that in

cases (c) and (d), the “above” connection from each node is rerouted so

that it simply loops back to the node itself.

In case (d), the result of this is that the network breaks up into

several disconnected pieces. And it turns out that none of the rules I

consider here can ever reconnect these pieces again. So as a

consequence, what I do in the remainder of this section is to track only

the piece that includes the first node shown in pictures such as those

(c)

(b)

(a)

Networks from previous pictures laid out in a uniform way. Network (a) corresponds to a
one-dimensional array, (b) to a two-dimensional array, and (c) to a tree. In the layout shown here, all
the networks have their nodes arranged along a line. Note that in cases (a) and (b) the connections are
arranged so that the arrays effectively wrap around; in case (c) the leaves of the tree are taken to have
connections that loop back to themselves.
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above. And in effect, this then means that other nodes are dropped from

the network, so that the total size of the network decreases. 

By changing the underlying rules, however, the number of nodes

in a network can also be made to increase. The basic way this can be

done is by breaking a connection coming from a particular node by

inserting a new node and then connecting that new node to nodes

obtained by following connections from the original node.

The pictures on the next page show examples of behavior

produced by two rules that use this mechanism. In both cases, a new

node is inserted in the “above” connection from each existing node in

(a) (b) (c) (d)

The evolution of network systems with four different choices of underlying rules. Successive steps in the evolution are shown
on successive lines down the page. In case (a), the “above” connection of each node is rerouted at each step to lead to the
node reached by following first the below connection and then the above connection from that node; the below connection is
left unchanged. In case (b), the above connection of each node is rerouted to the node reached by following the above
connection and then the above connection again; the below connection is left unchanged. In case (c), the above connection of
each node is rerouted so as to loop back to the node itself, while the below connection is left unchanged. And in case (d), the
above connection is rerouted so as to loop back, while the below connection is rerouted to lead to the node reached by
following the above connection. With the “above” connection labelled as 1 and the “below” connection as 2, these rules
correspond to replacing connections  at each node by (a) , (b) , (c) , and (d) .{{1}, {2}} {{2, 1}, {2}} {{1, 1}, {2}} {{}, {2}} {{}, {1}}
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the network. In the first case, the connections from the new node are

exactly the same as the connections from the existing node, while in

the second case, the “above” and “below” connections are reversed.

But in both cases the behavior obtained is quite simple. Yet much

like neighbor-independent substitution systems these network systems

have the property that exactly the same operation is always performed

at each node on every step. 

In general, however, one can set up network systems that have

rules in which different operations are performed at different nodes,

depending on the local structure of the network near each node.

One simple scheme for doing this is based on looking at the two

connections that come out of each node, and then performing one

operation if these two connections lead to the same node, and another if

the connections lead to different nodes. 

The pictures on the facing page show some examples of what can

happen with this scheme. And again it turns out that the behavior is

always quite simple—with the network having a structure that

inevitably grows in an essentially repetitive way. 

But as soon as one allows dependence on slightly longer-range

features of the network, much more complicated behavior immediately

(a) (b)

Evolution of network systems whose rules involve the addition of new nodes. In both cases, the new nodes are inserted in
the “above” connection from each node. In case (a), the connections from the new node lead to the same nodes as the
connections from the original node. In case (b), the above and below connections for the new node are reversed. In the
pictures above, new nodes are placed immediately after the nodes that give rise to them, and gray lines are used to indicate
the origin of each node. Note that the initial conditions consist of a network that contains only a single node.
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becomes possible. And indeed, the pictures on the next two pages show

examples of what can happen if the rules are allowed to depend on the

number of distinct nodes reached by following not just one but up to

two successive connections from each node.

With such rules, the sequence of networks obtained no longer

needs to form any kind of simple progression, and indeed one finds that

even the total number of nodes at each step can vary in a way that

seems in many respects completely random.

When we discuss issues of fundamental physics in Chapter 9 we

will encounter a variety of other types of network systems—and I

suspect that some of these systems will in the end turn out to be closely

related to the basic structure of space and spacetime in our universe. 

(a) (b) (c)

Examples of network systems with rules that cause different operations to be performed at different nodes. Each rule contains
two cases, as shown above. The first case specifies what to do if both connections from a particular node lead to the same node;
the second case specifies what to do when they lead to different nodes. In the rules shown, the connections from a particular
node (indicated by a solid circle) and from new nodes created from this node always go to the nodes indicated by open circles that
are reached by following just a single above or below connection from the original node. Even if this restriction is removed,
however, more complicated behavior does not appear to be seen.
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(a)

(a)
{{1, 1} ! {{1}, {{2, 1}, {2, 1}}}, {1, 2} ! {{{}, {1, 1}}, {{1, 1}, {}}}, {2, 1} ! {{{}, {}}, {{1}, {2, 1}}}, {2, 2} ! {{{1, 1}, {2, 1}}, {{2}, {2, 1}}},
{2, 3} ! {{{}, {}}, {2}}, {2, 4} ! {{{2, 2}, {}}, {}}}

(b)
{{1, 1} ! {{{}, {1, 1}}, {2}}, {1, 2} ! {{2}, {{}, {}}},

{2, 1} ! {{2, 1}, {{}, {1}}}, {2, 2} ! {{{2}, {1}}, {}}, {2, 3} ! {{1, 2}, {2}}, {2, 4} ! {{{1}, {1}}, {2, 1}}}

(c)
{{1, 1} ! {{{1, 1}, {1}}, {2}}, {1, 2} ! {{{1, 2}, {2}}, {{2, 2}, {}}}, {2, 1} ! {{{2, 2}, {2}}, {{1}, {}}}, {2, 2} ! {{{1}, {1}}, {{2, 1}, {1, 1}}},
{2, 3} ! {{2, 1}, {2}}, {2, 4} ! {{{1}, {1, 2}}, {{1, 2}, {}}}}

Network systems in which the rule depends on the number of distinct nodes reached by going up to distance two away from each
node. The plots show the total number of nodes obtained at each step. In cases (a) and (b), the behavior of the system is eventually
repetitive. In case (c), it is nested—the size of the network at step  is related to the number of 1’s in the base 2 digit sequence of . t t
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(e) fluctuations

(d)
{{1, 1} ! {{{1, 2}, {1, 2}}, {}}, {1, 2} ! {{2, 2}, {{1}, {1}}}, {2, 1} ! {{1}, {{}, {2}}}, {2, 2} ! {{1, 2}, {2, 1}}, {2, 3} ! {{{2, 1}, {2}}, {1}},
{2, 4} ! {{1}, {1, 1}}}

(e)
{{1, 1} ! {{}, {{1, 1}, {1, 2}}}, {1, 2} ! {{{}, {1}}, {{1, 1}, {1, 2}}}, {2, 1} ! {{2}, {}}, {2, 2} ! {{{2, 1}, {1}}, {{1, 1}, {2}}},
{2, 3} ! {{2, 2}, {2}}, {2, 4} ! {{2, 1}, {2}}}

Network systems in which the total number of nodes obtained on successive steps appears to vary in a largely random
way forever. About one in 10,000 randomly chosen network systems seem to exhibit the kind of behavior shown here. 
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Multiway Systems

The network systems that we discussed in the previous section do not

have any underlying grid of elements in space. But they still in a sense

have a simple one-dimensional arrangement of states in time. And in fact,

all the systems that we have considered so far in this book can be thought

of as having the same simple structure in time. For all of them are

ultimately set up just to evolve progressively from one state to the next.

Multiway systems, however, are defined so that they can have not

just a single state, but a whole collection of possible states at any given step. 

The picture below shows a very simple example of such a system. 

Each state in the system consists of a sequence of elements, and

in the particular case of the picture above, the rule specifies that at each

step each of these elements either remains the same or is replaced by a

pair of elements. Starting with a single state consisting of one element,

the picture then shows that applying these rules immediately gives two

possible states: one with a single element, and the other with two. 

Multiway systems can in general use any sets of rules that define

replacements for blocks of elements in sequences. We already saw

exactly these kinds of rules when we discussed sequential substitution

systems on page 88. But in sequential substitution systems the idea was

to do just one replacement at each step. In multiway systems, however,

A very simple multiway system in
which one element in each sequence
is replaced at each step by either one
or two elements. The main feature of
multiway systems is that all the
distinct sequences that result are kept. 
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the idea is to do all possible replacements at each step—and then to

keep all the possible different sequences that are generated. 

The pictures below show what happens with some very simple

rules. In each of these examples the behavior turns out to be rather

simple—with for example the number of possible sequences always

increasing uniformly from one step to the next.

In general, however, this number need not exhibit such uniform

growth, and the pictures below show examples where fluctuations occur. 

Examples of simple multiway systems. The number of distinct sequences at step  in these three systems is respectively
,  and  (which increases approximately like ). 

t

Ceiling[t /2] t Fibonacci[t + 1] 1.618t

(a) (b)
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(a)
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(b)

0
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(a) differences

-4

-2

0

2

4

0 100 200 300 400

(b) differencesExamples of multiway systems with slightly more complicated behavior. The plots on the
right show the total number of possible states obtained at each step, and the differences of
these numbers from one step to the next. In both cases, essentially repetitive behavior is
seen, every 40 and 161 steps respectively. Note that in case (a), the total number of possible
states at step  increases roughly like , while in case (b) it increases only like . t t 2 t
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But in both these cases it turns out to be not too long before these

fluctuations essentially repeat. The picture below shows an example

where a larger amount of apparent randomness is seen. Yet even in this

case one finds that there ends up again being essential repetition—

although now only every 1071 steps.

0
10
20
30
40
50
60

0 50 100 150 200 250

-2

0

2

0 100 200 300 400 500

(differences)

A multiway system with behavior that shows some signs of apparent randomness. The rule for this system involves three possible
replacements. Note that the first replacement only removes elements and does not insert new ones. In the pictures sequences
containing zero elements therefore sometimes appear. At least with the initial condition used here, despite considerable early apparent
randomness, the differences in number of elements do repeat (shifted by 1) every 1071 steps. 
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If one looks at many multiway systems, most either grow

exponentially quickly, or not at all; slow growth of the kind seen on the

facing page is rather rare. And indeed even when such growth leads to a

certain amount of apparent randomness it typically in the end seems to

exhibit some form of repetition. If one allows more rapid growth,

however, then there presumably start to be all sorts of multiway

systems that never show any such regularity. But in practice it tends to

be rather difficult to study these kinds of multiway systems—since the

number of states they generate quickly becomes too large to handle. 

One can get some idea about how such systems behave, however,

just by looking at the states that occur at early steps. The picture below

shows an example—with ultimately fairly simple nested behavior.

The pictures on the next page show some more examples.

Sometimes the set of states that get generated at a particular step show

essential repetition—though often with a long period. Sometimes this

set in effect includes a large fraction of the possible digit sequences of a

given length—and so essentially shows nesting. But in other cases there

is at least a hint of considerably more complexity—even though the

total number of states may still end up growing quite smoothly.

step 1 step 2 step 3 step 4
step 5

step 6

step 7

step 8

step 9

step 10

The collections of states generated on successive steps by a simple multiway system
with rapid growth shown on page 205. The particular rule used here eventually
generates all states beginning with a white cell. At step  there are 
states; a given state with  white cells and  black cells appears at step . 

t Fibonacci[t + 1]

m n 2 m+ n - 1
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Looking carefully at the pictures of multiway system evolution

on previous pages, a feature one notices is that the same sequences

often occur on several different steps. Yet it is a consequence of the

basic setup for multiway systems that whenever any particular

sequence occurs, it must always lead to exactly the same behavior. 

So this means that the complete evolution can be represented as

in the picture at the top of the facing page, with each sequence shown

explicitly only once, and any sequence generated more than once

indicated just by an arrow going back to its first occurrence.

( i) ( j ) (k) ( l) (m)

(e) ( f ) (g) (h)

(a) (b) (c) (d)Collections of states generated at particular
steps in the evolution of various multiway
systems. Rule (k) was shown on the
previous page; rules (d) and (f) on page 205.

(a) (step 75) (b) (step 25) (c) (step 60) (d) (step 500)

(e) (step 100) (f ) (step 250) (g) (step 75) (h) (step 400) ( i) (step 11) ( j) (20) (k) (13) ( l) (12) (m) (12)
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But there is no need to arrange the picture like this: for the whole

behavior of the multiway system can in a sense be captured just by

giving the network of what sequence leads to what other. The picture

below shows stages in building up such a network. And what we see is

that just as the network systems that we discussed in the previous

section can build up their own pattern of connections in space, so also

multiway systems can in effect build up their own pattern of

connections in time—and this pattern can often be quite complicated.

The evolution of a multiway
system, first with every
sequence explicitly shown
at each step, and then with
every sequence only ever
shown once. 

step 1 step 2 step 3 step 4

step 5 step 6 step 7 step 8

The network built up by the evolution of the multiway system from the top of the page. This network in effect represents a network
of connections in time between states of the multiway system. 
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Systems Based on Constraints 

In the course of this book we have looked at many different kinds of

systems. But in one respect all these systems have ultimately been set

up in the same basic way: they are all based on explicit rules that

specify how the system evolves from step to step. 

In traditional science, however, it is common to consider systems

that are set up in a rather different way: instead of having explicit rules

for evolution, the systems are just given constraints to satisfy.

As a simple example, consider a line of cells in which each cell is

colored black or white, and in which the arrangement of colors is subject

to the constraint that every cell should have exactly one black and one

white neighbor. Knowing only this constraint gives no explicit procedure

for working out the color of each cell. And in fact it may at first not be

clear that there will be any arrangement of colors that can satisfy the

constraint. But it turns out that there is—as shown below.

And having seen this picture, one might then imagine that there

must be many other patterns that would also satisfy the constraint.

After all, the constraint is local to neighboring cells, so one might

suppose that parts of the pattern sufficiently far apart should always be

independent. But in fact this is not true, and instead the system works a

bit like a puzzle in which there is only one way to fit in each piece. And

in the end it is only the perfectly repetitive pattern shown above that

can satisfy the required constraint at every cell.

Other constraints, however, can allow more freedom. Thus, for

example, with the constraint that every cell must have at least one

neighbor whose color is different from its own, any of the patterns in the

picture at the top of the facing page are allowed, as indeed is any pattern

that involves no more than two successive cells of the same color.

A system consisting of a line of black and white cells whose form is defined by the constraint that
every cell should have exactly one black and one white neighbor. The pattern shown is the only
possible one that satisfies this constraint. The idea of implicitly determining the behavior of a system
by giving constraints that it must satisfy is common in traditional science and mathematics. 
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But while the first arrangement of colors shown above looks

somewhat random, the last two are simple and purely repetitive.

So what about other choices of constraints? We have seen in this

book many examples of systems where simple sets of rules give rise to

highly complex behavior. But what about systems based on constraints?

Are there simple sets of constraints that can force complex patterns?

It turns out that in one-dimensional systems there are not. For in

one dimension it is possible to prove that any local set of constraints

that can be satisfied at all can always be satisfied by some simple and

purely repetitive arrangement of colors. 

But what about two dimensions? The proof for one dimension

breaks down in two dimensions, and so it becomes at least conceivable

that a simple set of constraints could force a complex pattern to occur.

As a first example of a two-dimensional system, consider an array

of black and white cells in which the constraint is imposed that every

black cell should have exactly one black neighbor, and every white cell

should have exactly two white neighbors. 

A system consisting of a line of black and white cells whose form is defined by the constraint that
every cell should have at least one neighbor whose color is different from its own. There are many
possible arrangements of colors that satisfy this constraint. Some, like the first arrangement above,
look quite random. But others, like the second two arrangements above, are simple and repetitive. It
turns out that in a one-dimensional system no set of local constraints can force arrangements of
more complicated types. 

A system consisting of a grid of black and
white cells defined by the constraint that
every black cell should have exactly one
black neighbor among its four neighbors,
and every white cell should have exactly
two white neighbors. The infinite
repetitive pattern shown here, together
with its rotations and reflections, is the
only one that satisfies this constraint.
(The picture is assumed to wrap around
at each edge.) The pattern can be viewed
as a tessellation of 5 ä 5 blocks of cells. 
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As in one dimension, knowing the constraint does not

immediately provide a procedure for finding a pattern which satisfies it.

But a little experimentation reveals that the simple repetitive pattern

above satisfies the constraint, and in fact it is the only pattern to do so.

: 0 , 4
: 4 , 0

: 0 , 4
: 3 , 1

: 0 , 4
: 2 , 2

: 0 , 4
: 1 , 3

: 0 , 4
: 0 , 4

: 1 , 3
: 4 , 0

: 1 , 3
: 3 , 1

: 1 , 3
: 2 , 2

: 1 , 3
: 1 , 3

: 1 , 3
: 0 , 4

: 2 , 2
: 4 , 0

: 2 , 2
: 3 , 1

: 2 , 2
: 2 , 2

: 2 , 2
: 1 , 3

: 2 , 2
: 0 , 4

: 3 , 1
: 4 , 0

: 3 , 1
: 3 , 1

: 3 , 1
: 2 , 2

: 3 , 1
: 1 , 3

: 3 , 1
: 0 , 4

: 4 , 0
: 4 , 0

: 4 , 0
: 3 , 1

: 4 , 0
: 2 , 2

: 4 , 0
: 1 , 3

: 4 , 0
: 0 , 4

Patterns satisfying constraints which specify that every black cell and every white cell must have a certain fixed number of black
and white neighbors. The blank rectangles in the upper right indicate constraints that cannot be satisfied by any pattern
whatsoever. Most of the constraints are satisfied by a single pattern, together with its rotations and reflections. In some cases,
two distinct patterns are possible, and in a few cases, an infinite set of patterns are possible. In all cases where the constraints can
be satisfied at all, a simple repetitive pattern nevertheless suffices.
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What about other constraints? The pictures on the facing page

show schematically what happens with constraints that require each

cell to have various numbers of black and white neighbors. 

Several kinds of results are seen. In the two cases shown as blank

rectangles on the upper right, there are no patterns at all that satisfy the

constraints. But in every other case the constraints can be satisfied, though

typically by just one or sometimes two simple infinite repetitive patterns.

In the three cases shown in the center a whole range of mixtures of different

repetitive patterns are possible. But ultimately, in every case where some

pattern can work, a simple repetitive pattern is all that is needed. 

So what about more complicated constraints? The pictures below

show examples based on constraints that require the local arrangement

of colors around every cell to match a fixed set of possible templates.

There are a total of 4,294,967,296 possible sets of such templates.

And of these, 766,979,044 lead to constraints that cannot be satisfied by

any pattern. But among the 3,527,988,252 that remain, it turns out that

every single one can be satisfied by a simple repetitive pattern. In fact the

number of different repetitive patterns that are ever needed is quite small:

if a particular constraint can be satisfied by any pattern, then one of the

set of 171 repetitive patterns on the next two pages is always sufficient.

Systems specified by the constraint that the local arrangement of colors around every cell must match
the fixed set of possible templates shown. Note that these templates apply to every cell, with
templates of neighboring cells overlapping. Pattern (a) can be viewed as formed from a tessellation of
5 ä 10 blocks of cells; pattern (b) from a tessellation of 24 ä 24 blocks. With the numbering scheme for
constraints used on the next two pages the cases shown here correspond to 1384774 and 328778790. 
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1 65814 66578 69958 81922 135492 147456 201794 262672

332354 397888 1319746 1384774 1385794 1451330 4465152 17111122 17371734

17373270 17437268 18094438 18226274 18358598 18359362 18387014 18625090 18637378

18638930 22581798 34078996 34082880 35398994 38017056 38091074 38351652 39331108

40163602 40171778 43259180 43267650 43277346 43279658 43802950 43803666 43803970

55056436 55874154 56135974 56152110 56153142 56938506 60043594 60055562 60058658

60320822 62707734 64251906 65304582 102262930 102508882 106232194 106467876 106468652

107518484 107796498 108323082 112777238 122972562 123222150 125342342 125358086 127177326

129028110 129558550 134217744 152310376 177484134 177496358 190091370 190107690 194286694

194303014 257478694 261132398 261148718 272703878 272770436 272998726 273064262 273065282
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289768238 289834346 289974358 289974470 289974838 289974950 290009798 290033734 290034358

290035862 290038086 290038566 290098358 290099270 290099894 290101398 290104868 290732486

291279468 292080182 292080294 293636134 293906502 294819366 295213206 306742564 307004786

307011942 307134822 310649160 310783442 310976876 311141734 311176658 311338306 311697798

311698732 311730502 311731522 312225124 312240466 312263982 312271186 314911014 314912066

315172404 315174246 315212076 323786902 323791270 323799090 328494146 328762534 328766598

328767030 328778790 329050134 330066002 331924534 334010518 334288918 373916010 373916076

373917112 373918136 373918388 373987748 373991844 374114744 374122834 375100806 376228178

378638726 394823830 395358286 428057710 429441830 511809130 511816044 545259780 616635046

The complete collection of all 171 patterns needed to satisfy constraints of the type shown on the previous page. If none of these 171
patterns satisfy a particular constraint, then it follows that no pattern at all will satisfy the constraint. The patterns are labelled by
numbers which specify the minimal constraint which requires the given pattern. Patterns differing by overall reflection, rotation or
interchange of black and white are not shown. 
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So how can one force more complex patterns to occur?

The basic answer is that one must extend at least slightly the

kinds of constraints that one considers. And one way to do this is to

require not only that the colors around each cell match a set of

templates, but also that a particular template from this set must appear

at least somewhere in the array of cells.

The pictures below show a few examples of patterns determined

by constraints of this kind. A typical feature is that the patterns are

divided into several separate regions, often emanating from some kind

of center. But at least in all the examples below, the patterns that occur

in each individual region are still simple and repetitive.

So how can one find constraints that force more complex

patterns? To do so has been fairly difficult, and in fact has taken almost

as much computational effort as any other single result in this book.

The basic problem is that given a constraint it can be extremely

difficult to find out what pattern—if any—will satisfy the constraint.

In a system like a cellular automaton that is based on explicit

rules, it is always straightforward to take the rule and apply it to see

106389882 1125528937 339833662 375604536 1378162297

151828 86294 4670324 1428252506 1143305038

Examples of patterns produced by systems in which not only must the arrangement of colors in each neighborhood match one of a
fixed set of templates, but also a certain template from this set must occur at least once in the pattern. The constraints are numbered
as before, and in each picture the template that must occur is shown at the center. Constraint 1125528937 leads to a pattern that
repeats in 98 ä 98 blocks. The last pattern shown is also repetitive, repeating every 56 cells on the diagonal. 
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what pattern is produced. But in a system that is based on constraints,

there is no such direct procedure, and instead one must in effect always

go outside of the system to work out what patterns can occur.

The most straightforward approach might just be to enumerate

every single possible pattern and then see which, if any, of them satisfy

a particular constraint. But in systems containing more than just a few

cells, the total number of possible patterns is absolutely astronomical,

and so enumerating them becomes completely impractical. 

A more practical alternative is to build up patterns iteratively,

starting with a small region, and then adding new cells in essentially all

possible ways, at each stage backtracking if the constraint for the

system does not end up being satisfied.

The pictures on the next page show a few sequences of patterns

produced by this method. In some cases, there emerge quite quickly

simple repetitive patterns that satisfy the constraint. But in other

cases, a huge number of possibilities have to be examined in order to

find any suitable pattern.

And what if there is no pattern at all that can satisfy a particular

constraint? One might think that to demonstrate this would effectively

require examining every conceivable pattern on the infinite grid of

cells. But in fact, if one can show that there is no pattern that satisfies

the constraint in a limited region, then this proves that no pattern can

satisfy the constraint on the whole grid. And indeed for many

constraints, there are already quite small regions for which it is possible

to establish that no pattern can be found.

But occasionally, as in the third picture on the next page, one

runs into constraints that can be satisfied for regions containing

thousands of cells, but not for the whole grid. And to analyze such cases

inevitably requires examining huge numbers of possible patterns.

But with an appropriate collection of tricks, it is in the end

feasible to take almost any system of the type discussed here, and

determine what pattern, if any, satisfies its constraint.

So what kinds of patterns can be needed? In the vast majority of

cases, simple repetitive patterns, or mixtures of such patterns, are the

only ones that are needed.
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But if one systematically examines possible constraints in the

order shown on pages 214 and 215, then it turns out that after

examining more than 18 million of them, one finally discovers the

system shown on the facing page. And in this system, unlike all others

before it, no repetitive pattern is possible; the only pattern that satisfies

the constraint is the non-repetitive nested pattern shown in the picture.

After testing millions of constraints, and tens of billions of

candidate patterns, therefore, it is finally possible to establish that a

system based on simple constraints of the type discussed here can be

forced to exhibit behavior more complex than pure repetition.

(a)

(b)

(c)

Stages in finding patterns that satisfy constraints (a) 4670324, (b) 373384574, and (c) 387520105. Gray is
used to indicate cells whose colors have not yet been determined. The first stage shown in each case
corresponds to cells whose colors can be deduced immediately from the presence of a particular
template at the center. In case (a) choices for additional cells can be made straightforwardly, and an infinite
regular pattern can be built up without any backtracking. In case (b), many choices for additional cells have
to be tried, with much backtracking, and in the end the automatic procedure fails to find a repetitive
pattern. Nevertheless, as the last stage demonstrates, a repetitive pattern does in fact exist. In case (c),
the automatic procedure finds a fairly large and almost regular pattern that satisfies the constraints, but in
this case it turns out that no infinite pattern exists.
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The simplest system based on constraints that is forced to
exhibit a non-repetitive pattern. The constraint requires that the
arrangement of colors around each cell must match one of the

12 templates shown, and that at least somewhere in the pattern a template containing a pair of stacked black cells must occur. In the
numbering scheme used on preceding pages, the constraint is number 18762389. The pattern shown is unique, in that no variations of
it, except for trivial translations, will satisfy the constraints. The nested structure on the diagonal essentially corresponds to a
progression of base 2 digit sequences for positive and negative numbers. 
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What about still more complex behavior? 

There are altogether 137,438,953,472 constraints of the type

shown on page 216. And of the millions of these that I have tested, none

have forced anything more complicated than the kind of nested

behavior seen on the previous page. But if one extends again the type of

constraints one considers, it turns out to become possible to construct

examples that force more complex behavior. 

The idea is to set up templates that involve complete 3 ä 3 blocks

of cells, including diagonal neighbors. The picture below then shows an

example of such a system, in which by allowing only a specific set of 33

templates, a nested pattern is forced to occur.

What about more complex patterns? Searches have not succeeded

in finding anything. But explicit construction, based on correspondence

with one-dimensional cellular automata, leads to the example shown at

the top of the facing page: a system with 56 allowed templates in which

the only pattern satisfying the constraint is a complex and largely

random one, derived from the rule 30 cellular automaton.

An example of a system based on a constraint involving
3 ä 3 templates of cells. In this particular system, only
the 33 templates shown above (out of the 512 possible
ones) are allowed to occur. This constraint, together
with the requirement that the first template must appear
at least somewhere, then turns out to force a nested
pattern to occur. The system shown was specifically
constructed in correspondence with the rule 60
elementary one-dimensional cellular automaton.
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So finally this shows that it is indeed possible to force complex

behavior to occur in systems based on constraints. But from what we

have seen in this section such behavior appears to be quite rare: unlike

many of the simple rules that we have discussed in this book, it seems

that almost all simple constraints lead only to fairly simple patterns.

Any phenomenon based on rules can always ultimately also be

described in terms of constraints. But the results of this section indicate

that these descriptions can have to be fairly complicated for complex

behavior to occur. So the fact that traditional science and mathematics

tends to concentrate on equations that operate like constraints provides

yet another reason for their failure to identify the fundamental

phenomenon of complexity that I discuss in this book. 

A system based on a constraint, in which a complex and largely
random pattern is forced to occur. The constraint specifies that
only the 56 3 ä 3 templates shown at left can occur anywhere in
the pattern, with the first template appearing at least once. The
pattern required to satisfy this constraint corresponds to a
shifted version of the one generated by the evolution of the rule
30 elementary one-dimensional cellular automaton. 
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6
Starting from Randomness

The Emergence of Order

In the past several chapters, we have seen many examples of behavior

that simple programs can produce. But while we have discussed a whole

range of different kinds of underlying rules, we have for the most part

considered only the simplest possible initial conditions—so that for

example we have usually started with just a single black cell. 

My purpose in this chapter is to go to the opposite extreme, and

to consider completely random initial conditions, in which, for

example, every cell is chosen to be black or white at random.

One might think that starting from such randomness no order

would ever emerge. But in fact what we will find in this chapter is that

many systems spontaneously tend to organize themselves, so that even

with completely random initial conditions they end up producing

behavior that has many features that are not at all random.

The picture at the top of the next page shows as a simple first

example a cellular automaton which starts from a typical random

initial condition, then evolves down the page according to the very

simple rule that a cell becomes black if either of its neighbors are black.

What the picture then shows is that every region of white that

exists in the initial conditions progressively gets filled in with black, so

that in the end all that remains is a uniform state with every cell black. 
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The pictures below show examples of other cellular automata

that exhibit the same basic phenomenon. In each case the initial

conditions are random, but the system nevertheless quickly organizes

itself to become either uniformly white or uniformly black.

The facing page shows cellular automata that exhibit slightly

more complicated behavior. Starting from random initial conditions,

these cellular automata again quickly settle down to stable states. But

now these stable states are not just uniform in color, but instead

involve a collection of definite structures that either remain fixed on

successive steps, or repeat periodically. 

So if they have simple underlying rules, do all cellular automata

started from random initial conditions eventually settle down to give

stable states that somehow look simple?

Four more examples of cellular automata that evolve from random initial conditions to completely uniform states. The
rules shown here correspond to numbers 0, 32, 160 and 250.

A cellular automaton that evolves to a simple uniform state when started from any random initial condition. The rule in
this case was first shown on page 24, and is number 254 in the scheme described on page 53. It specifies that a cell
should become black whenever either of its neighbors is already black.
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It turns out that they do not. And indeed the picture on the next

page shows one of many examples in which starting from random

initial conditions there continues to be very complicated behavior

forever. And indeed the behavior that is produced appears in many

respects completely random. But dotted around the picture one sees

many definite white triangles and other small structures that indicate

at least a certain degree of organization.

Examples of cellular automata that evolve from random initial conditions to produce a definite set of simple structures.
For any particular rule, the form of these structures is always the same. But their positions depend on the details of the
initial conditions given, and in many cases the final arrangement of structures can be thought of as a kind of filtered
version of the initial conditions. Thus for example in the first rule shown here a structure consisting of a black cell occurs
wherever there was an isolated black cell in the initial conditions. The rules shown are numbers 4, 108, 218 and 232.
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A cellular automaton that never settles down to a stable state, but instead continues to show
behavior that seems in many respects random. The rule is number 126.
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rule 150 rule 182

rule 22 rule 30

Other examples of cellular automata that never settle down to stable states when started from random initial conditions. Each picture
is a total of 300 cells across. Note the presence of triangles and other small structures dotted throughout all of the pictures.
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The pictures above and on the previous page show more

examples of cellular automata with similar behavior. There is

considerable randomness in the patterns produced in each case. But

despite this randomness there are always triangles and other small

structures that emerge in the evolution of the system. 

So just how complex can the behavior of a cellular automaton

that starts from random initial conditions be? We have seen some

examples where the behavior quickly stabilizes, and others where it

continues to be quite random forever. But in a sense the greatest

complexity lies between these extremes—in systems that neither

stabilize completely, nor exhibit close to uniform randomness forever.

The facing page and the one that follows show as an example the

cellular automaton that we first discussed on page 32. The initial

conditions used are again completely random. But the cellular

automaton quickly organizes itself into a set of definite localized

structures. Yet now these structures do not just remain fixed, but

instead move around and interact with each other in complicated ways.

And the result of this is an elaborate pattern that mixes order and

randomness—and is as complex as anything we have seen in this book.

rule 90 rule 105

Two more cellular automata that generate various small structures but continue to show seemingly quite random behavior forever. 
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Complex behavior in the rule 110 cellular automaton starting from a random initial condition. The system quickly organizes itself to
produce a set of definite localized structures, which then move around and interact with each other in complicated ways. 
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A continuation of the pattern from the previous page. Each page shows 700 steps in the evolution of the cellular automaton. 
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Four Classes of Behavior

In the previous section we saw what a number of specific cellular

automata do if one starts them from random initial conditions. But in

this section I want to ask the more general question of what arbitrary

cellular automata do when started from random initial conditions.

One might at first assume that such a general question could

never have a useful answer. For every single cellular automaton after all

ultimately has a different underlying rule, with different properties and

potentially different consequences. 

But the next few pages show various sequences of cellular

automata, all starting from random initial conditions. 

And while it is indeed true that for almost every rule the specific

pattern produced is at least somewhat different, when one looks at all

the rules together, one sees something quite remarkable: that even

though each pattern is different in detail, the number of fundamentally

different types of patterns is very limited.

Indeed, among all kinds of cellular automata, it seems that the

patterns which arise can almost always be assigned quite easily to one

of just four basic classes illustrated below.

These classes are conveniently numbered in order of increasing

complexity, and each one has certain immediate distinctive features.

In class 1, the behavior is very simple, and almost all initial

conditions lead to exactly the same uniform final state.

class 1 class 2 class 3 class 4

Examples of the four basic classes of behavior seen in the evolution of cellular automata from random initial conditions. I first
developed this classification in 1983.
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rule 232 rule 236 rule 250 rule 254

rule 200 rule 204 rule 218 rule 222

rule 160 rule 164 rule 178 rule 182

rule 128 rule 132 rule 146 rule 150

rule 104 rule 108 rule 122 rule 126

rule 72 rule 76 rule 90 rule 94

rule 32 rule 36 rule 50 rule 54

rule 0 rule 4 rule 18 rule 22

The behavior of all cellular automata that involve only nearest neighbors in a symmetrical way, have two possible colors for
each cell, and leave states consisting only of white cells unchanged.
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code 56 code 58 code 60 code 62

code 48 code 50 code 52 code 54

code 40 code 42 code 44 code 46

code 32 code 34 code 36 code 38

code 24 code 26 code 28 code 30

code 16 code 18 code 20 code 22

code 8 code 10 code 12 code 14

code 0 code 2 code 4 code 6

Totalistic cellular automata whose rules involve nearest and next-nearest neighbors, and where each cell has two possible colors.



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

234

A sequence of totalistic cellular automata with rules that involve only nearest neighbors, but where each cell can have
three possible colors.

code 1086 code 1089 code 1092 code 1095

code 1074 code 1077 code 1080 code 1083

code 1062 code 1065 code 1068 code 1071

code 1050 code 1053 code 1056 code 1059

code 1038 code 1041 code 1044 code 1047

code 1026 code 1029 code 1032 code 1035

code 1014 code 1017 code 1020 code 1023

code 1002 code 1005 code 1008 code 1011
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In class 2, there are many different possible final states, but all of

them consist just of a certain set of simple structures that either remain

the same forever or repeat every few steps.

In class 3, the behavior is more complicated, and seems in many

respects random, although triangles and other small-scale structures are

essentially always at some level seen.

And finally, as illustrated on the next few pages, class 4 involves a

mixture of order and randomness: localized structures are produced

which on their own are fairly simple, but these structures move around

and interact with each other in very complicated ways.   

I originally discovered these four classes of behavior some seventeen

years ago by looking at thousands of pictures similar to those on the last

few pages. And at first, much as I have done here, I based my classification

purely on the general visual appearance of the patterns I saw.

But when I studied more detailed properties of cellular automata,

what I found was that most of these properties were closely correlated

with the classes that I had already identified. Indeed, in trying to predict

detailed properties of a particular cellular automaton, it was often

enough just to know what class the cellular automaton was in. 

And in a sense the situation was similar to what is seen, say, with

the classification of materials into solids, liquids and gases, or of living

organisms into plants and animals. At first, a classification is made

purely on the basis of general appearance. But later, when more detailed

properties become known, these properties turn out to be correlated

with the classes that have already been identified.

Often it is possible to use such detailed properties to make more

precise definitions of the original classes. And typically all reasonable

definitions will then assign any particular system to the same class.

Examples of class 4 cellular automata with totalistic rules involving nearest neighbors and three possible
colors for each cell. Each picture shows 1500 steps of evolution from random initial conditions.
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code 1815
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code 2007
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code 1659
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code 2043
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But with almost any general classification scheme there are

inevitably borderline cases which get assigned to one class by one

definition and another class by another definition. And so it is with

cellular automata: there are occasionally rules like those in the pictures

below that show some features of one class and some of another.

But such rules are quite unusual, and in most cases the behavior

one sees instead falls squarely into one of the four classes described above.

So given the underlying rule for a particular cellular automaton,

can one tell what class of behavior the cellular automaton will produce?

In most cases there is no easy way to do this, and in fact there is

little choice but just to run the cellular automaton and see what it does.

But sometimes one can tell at least a certain amount simply from

the form of the underlying rule. And so for example all rules that lie in

the first two columns on page 232 can be shown to be unable ever to

produce anything besides class 1 or class 2 behavior.

In addition, even when one can tell rather little from a single rule,

it is often the case that rules which occur next to each other in some

sequence have similar behavior. This can be seen for example in the

pictures on the facing page. The top row of rules all have class 1

behavior. But then class 2 behavior is seen, followed by class 4 and then

class 3. And after that, the remainder of the rules are mostly class 3.

The fact that class 4 appears between class 2 and class 3 in the

pictures on the facing page is not uncommon. For while class 4 is above

class 3 in terms of apparent complexity, it is in a sense intermediate

Rare examples of borderline cellular automata that do not fit squarely into any one of the four basic classes described in the text.
Different definitions based on different specific properties will place these cellular automata into different classes. The rules shown
are totalistic ones involving nearest neighbors and three possible colors for each cell. The first rule can be either class 2 or class 4,
the second class 3 or 4, the third class 2 or 3 and the fourth class 1, 2 or 3.

code 219 code 438 code 1380 code 1632
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A sequence of totalistic rules involving nearest neighbors and four possible colors for each cell chosen to show transitions
between rules with different classes of behavior. Note that class 4 seems to occur between class 2 and class 3.

code 1000928 code 1000932 code 1000936 code 1000940

code 1000912 code 1000916 code 1000920 code 1000924

code 1000896 code 1000900 code 1000904 code 1000908

code 1000880 code 1000884 code 1000888 code 1000892

code 1000864 code 1000868 code 1000872 code 1000876

code 1000848 code 1000852 code 1000856 code 1000860

code 1000832 code 1000836 code 1000840 code 1000844

code 1000816 code 1000820 code 1000824 code 1000828
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between class 2 and class 3 in terms of what one might think of as

overall activity.

The point is that class 1 and 2 systems rapidly settle down to

states in which there is essentially no further activity. But class 3

systems continue to have many cells that change at every step, so that

they in a sense maintain a high level of activity forever. Class 4 systems

are then in the middle: for the activity that they show neither dies out

completely, as in class 2, nor remains at the high level seen in class 3.

And indeed when one looks at a particular class 4 system, it often

seems to waver between class 2 and class 3 behavior, never firmly

settling on either of them.

In some respects it is not surprising that among all possible

cellular automata one can identify some that are effectively on the

boundary between class 2 and class 3. But what is remarkable about

actual class 4 systems that one finds in practice is that they have

definite characteristics of their own—most notably the presence of

localized structures—that seem to have no direct relation to being

somehow on the boundary between class 2 and class 3.

And it turns out that class 4 systems with the same general

characteristics are seen for example not only in ordinary cellular

automata but also in such systems as continuous cellular automata.

The facing page shows a sequence of continuous cellular

automata of the kind we discussed on page 155. The underlying rules in

such systems involve a parameter that can vary smoothly from 0 to 1. 

For different values of this parameter, the behavior one sees is

different. But it seems that this behavior falls into essentially the same

four classes that we have already seen in ordinary cellular automata.

And indeed there are even quite direct analogs of for example the

triangle structures that we saw in ordinary class 3 cellular automata.

But since continuous cellular automata have underlying rules

based on a continuous parameter, one can ask what happens if one

smoothly varies this parameter—and in particular one can ask what

sequence of classes of behavior one ends up seeing. 

The answer is that there are normally some stretches of class 1 or

2 behavior, and some stretches of class 3 behavior. But at the transitions
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Examples of the evolution of continuous cellular automata from random initial conditions. As discussed on page 155, each
cell here can have any gray level between 0 and 1, and at each step the gray level of a given cell is determined by averaging
the gray levels of the cell and its two neighbors, adding the specified constant, and then keeping only the fractional part of
the result. The behavior produced once again falls into distinct classes that correspond well to the four classes seen on
previous pages in ordinary cellular automata.

0.8 0.9

0.6 0.7

0.4 0.5

0.2 0.3

0 0.1
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{0.5, 1.13}

0.4

0.398

Examples of continuous cellular automata that exhibit class 4 behavior. The rules are of the same kind as in the previous
picture, except that in the third case shown here, the gray level of each neighboring cell is multiplied by 1.13 before the
average is done. In addition, the actual gray levels in these pictures are obtained by taking the difference between the
gray level of each cell and its neighbor, thus removing the uniform stripes visible in the previous picture. It is remarkable
that class 4 behavior with discrete localized structures can still occur in the continuous systems shown here.
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it turns out that class 4 behavior is typically seen—as illustrated on the

facing page. And what is particularly remarkable is that this behavior

involves the same kinds of localized structures and other features that

we saw in ordinary discrete class 4 cellular automata. 

So what about two-dimensional cellular automata? Do these also

exhibit the same four classes of behavior that we have seen in one

dimension? The pictures on the next two pages show various steps in

the evolution of some simple two-dimensional cellular automata

starting from random initial conditions. And just as in one dimension a

few distinct classes of behavior can immediately be seen. 

But the correspondence with one dimension becomes much more

obvious if one looks not at the complete state of a two-dimensional

cellular automaton at a few specific steps, but rather at a one-dimensional

slice through the system for a whole sequence of steps.

The pictures on page 248 show examples of such slices. And what

we see is that the patterns in these slices look remarkably similar to the

patterns we already saw in ordinary one-dimensional cellular automata.

Indeed, by looking at such slices one can readily identify the very same

four classes of behavior as in one-dimensional cellular automata.

So in particular one sees class 4 behavior. In the examples on page

248, however, such behavior always seems to occur superimposed on

some kind of repetitive background—much as in the case of the rule

110 one-dimensional cellular automaton on page 229.

So can one get class 4 behavior with a simple white background?

Much as in one dimension this does not seem to happen with the very

simplest possible kinds of rules. But as soon as one goes to slightly more

complicated rules—though still very simple—one can find examples.

And so as one example page 249 shows a two-dimensional

cellular automaton often called the Game of Life in which all sorts of

localized structures occur even on a white background. If one watches a

movie of the behavior of this cellular automaton its correspondence to a

one-dimensional class 4 system is not particularly obvious. But as soon

as one looks at a one-dimensional slice—as on page 249—what one sees

is immediately strikingly similar to what we have seen in many

one-dimensional class 4 cellular automata. 
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step 1 step 2 step 5 step 100 step 500

code 52

step 1 step 2 step 5 step 100 step 500

code 38

step 1 step 2 step 5 step 100 step 500

code 30

step 1 step 2 step 5 step 100 step 500

code 24

step 1 step 2 step 5 step 100 step 500

code 12

step 1 step 2 step 5 step 100 step 500

code 4

Examples of the evolution of two-dimensional cellular automata with various totalistic rules starting from random
initial conditions. The rules involve a cell and its four immediate neighbors. Each successive base 2 digit in the code
number for the rule gives the outcome when the total of the cell and its four neighbors runs from 5 down to 0. 
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code 52 code 54 code 56 code 58 code 60

code 42 code 44 code 46 code 48 code 50

code 32 code 34 code 36 code 38 code 40

code 22 code 24 code 26 code 28 code 30

code 12 code 14 code 16 code 18 code 20

code 2 code 4 code 6 code 8 code 10

Patterns produced after 500 steps in the evolution of a sequence of two-dimensional cellular automata starting from
random initial conditions. The rules shown are of the same kind as on the facing page, and include most of the 64
possibilities that leave a state that contains only white cells unchanged. 
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One-dimensional slices through the evolution of various two-dimensional cellular automata. In each picture black cells further back
from the position of the slice are shown in progressively lighter shades of gray, as if they were receding into a kind of fog. Note the
presence of examples of both class 3 and class 4 behavior that look strikingly similar to examples in one dimension.

code 24 code 38

code 4 code 12

code 30 code 52
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The behavior of a class 4 two-dimensional cellular automaton often known in
recreational computing as the Game of Life. Localized structures that move
(so-called gliders) show up as streaks in the pictures given here. The rule for
this cellular automaton considers the 8 neighbors of a cell (including
diagonals): if two of these neighbors are black, then the cell stays the same
color as before; if three are black, then the cell becomes black; and if any
other number of neighbors are black, then the cell becomes white. This rule
is outer totalistic 9-neighbor code 224. The pictures on the right show cells
that were black on preceding steps in progressively lighter shades of gray. 

step 1000

step 500

step 200
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Sensitivity to Initial Conditions

In the previous section we identified four basic classes of cellular

automata by looking at the overall appearance of patterns they produce.

But these four classes also have other significant distinguishing

features—and one important example of these is their sensitivity to

small changes in initial conditions.

The pictures below show the effect of changing the initial color of

a single cell in a typical cellular automaton from each of the four classes

of cellular automata identified in the previous section.

The results are rather different for each class.

In class 1, changes always die out, and in fact exactly the same

final state is reached regardless of what initial conditions were used. In

class 2, changes may persist, but they always remain localized in a

small region of the system. In class 3, however, the behavior is quite

different. For as the facing page shows, any change that is made

The effect of changing the color of a single cell in the initial conditions for typical cellular automata from each of the
four classes identified in the previous section. The black dots indicate all the cells that change. The way that such
changes behave is characteristically different for each of the four classes of systems. 

rule 160 rule 108

rule 126 rule 110
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The effect of changing the color of a single initial cell in three typical class 3 cellular automata. 

rule 22

rule 30

rule 126
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typically spreads at a uniform rate, eventually affecting every part of the

system. In class 4, changes can also spread, but only in a sporadic way—

as illustrated on the facing page and the one that follows. 

So what is the real significance of these different responses to

changes in initial conditions? In a sense what they reveal are basic

differences in the way that each class of systems handles information.

In class 1, information about initial conditions is always rapidly

forgotten—for whatever the initial conditions were, the system quickly

evolves to a single final state that shows no trace of them. 

In class 2, some information about initial conditions is retained

in the final configuration of structures, but this information always

remains completely localized, and is never in any way communicated

from one part of the system to another.

A characteristic feature of class 3 systems, on the other hand, is

that they show long-range communication of information—so that any

change made anywhere in the system will almost always eventually be

communicated even to the most distant parts of the system.

Class 4 systems are once again somewhat intermediate between

class 2 and class 3. Long-range communication of information is in

principle possible, but it does not always occur—for any particular

change is only communicated to other parts of the system if it happens

to affect one of the localized structures that moves across the system.

There are many characteristic differences between the four

classes of systems that we identified in the previous section. But their

differences in the handling of information are in some respects

particularly fundamental. And indeed, as we will see later in this book,

it is often possible to understand some of the most important features

of systems that occur in nature just by looking at how their handling of

information corresponds to what we have seen in the basic classes of

systems that we have identified here.

The effect of small changes in initial conditions in the rule 110 class 4 cellular automaton. The changes
spread only when they are in effect carried by localized structures that propagates across the system. 
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5 cells changed 6 cells changed

3 cells changed 4 cells changed

1 cell changed 2 cells changed
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1 cell changed
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Systems of Limited Size and Class 2 Behavior

In the past two sections we have seen two important features of class 2

systems: first, that their behavior is always eventually repetitive, and

second, that they do not support any kind of long-range communication.

So what is the connection between these two features? 

The answer is that the absence of long-range communication

effectively forces each part of a class 2 system to behave as if it were a

system of limited size. And it is then a general result that any system of

limited size that involves discrete elements and follows definite rules

must always eventually exhibit repetitive behavior. Indeed, as we will

discuss in the next chapter, it is this phenomenon that is ultimately

responsible for much of the repetitive behavior that we see in nature.

The pictures below show a very simple example of the basic

phenomenon. In each case there is a dot that can be in one of six possible

positions. And at every step the dot moves a fixed number of positions to

the right, wrapping around as soon as it reaches the right-hand end.

moving by 1
(period 6)

0 1 2 3 4 5

moving by 2
(period 3)

0 1 2 3 4 5

moving by 3
(period 2)

0 1 2 3 4 5

moving by 4
(period 3)

0 1 2 3 4 5

moving by 5
(period 6)

0 1 2 3 4 5

A simple system that contains a single dot which can be in one of six possible positions. At each step,
the dot moves some number of positions to the right, wrapping around as soon as it reaches the
right-hand end. The behavior of this system, like other systems of limited size, is always repetitive. 
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Looking at the pictures we then see that the behavior which

results is always purely repetitive—though the period of repetition is

different in different cases. And the basic reason for the repetitive

behavior is that whenever the dot ends up in a particular position, it

must always repeat whatever it did when it was last in that position.

But since there are only six possible positions in all, it is

inevitable that after at most six steps the dot will always get to a

position where it has been before. And this means that the behavior

must repeat with a period of at most six steps.

The pictures below show more examples of the same setup,

where now the number of possible positions is 10 and 11. In all cases,

the behavior is repetitive, and the maximum repetition period is equal

to the number of possible positions.

moving by 1
(period 11)

moving by 2
(period 11)

moving by 3
(period 11)

moving by 4
(period 11)

moving by 5
(period 11)

moving by 6
(period 11)

moving by 7
(period 11)

moving by 8
(period 11)

moving by 9
(period 11)

moving by 10
(period 11)

moving by 1
(period 10)

moving by 2
(period 5)

moving by 3
(period 10)

moving by 4
(period 5)

moving by 5
(period 2)

moving by 6
(period 5)

moving by 7
(period 10)

moving by 8
(period 5)

moving by 9
(period 10)

More examples of the type of system shown on the previous page, but now with 10 and 11 possible positions for the dot.
The behavior always repeats itself in at most 10 or 11 steps. But the exact number of steps in each case depends on the
prime factors of the numbers that define the system. 
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Sometimes the actual repetition period is equal to this maximum

value. But often it is smaller. And indeed it is a common feature of

systems of limited size that the repetition period one sees can depend

greatly on the exact size of the system and the exact rule that it follows.

In the type of system shown on the facing page, it turns out that

the repetition period is maximal whenever the number of positions

moved at each step shares no common factor with the total number of

possible positions—and this is achieved for example whenever either of

these quantities is a prime number.

The pictures below show another example of a system of limited

size based on a simple rule. The particular rule is at each step to double

the number that represents the position of the dot, wrapping around as

soon as this goes past the right-hand end.

size 6
(period 2)

size 7
(period 3)

size 8
(period 1)

size 9
(period 6)

size 10
(period 4)

size 11
(period 10)

size 12
(period 2)

size 13
(period 12)

size 14
(period 3)

A system where the number that represents the
position of the dot doubles at each step, wrapping
around whenever it reaches the right-hand end.
(After  steps the dot is thus at position 
in a size  system.) The plot at left gives the
repetition period for this system as a function of
its size; for odd  this period is equal to

.

t Mod[2t , n]

n

n
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Once again, the behavior that results is always repetitive, and the

repetition period can never be greater than the total number of possible

positions for the dot. But as the picture shows, the actual repetition

period jumps around considerably as the size of the system is changed.

And as it turns out, the repetition period is again related to the factors

of the number of possible positions for the dot—and tends to be

maximal in those cases where this number is prime.

So what happens in systems like cellular automata?

The pictures on the facing page show some examples of cellular

automata that have a limited number of cells. In each case the cells are

in effect arranged around a circle, so that the right neighbor of the

rightmost cell is the leftmost cell and vice versa. 

And once again, the behavior of these systems is ultimately

repetitive. But the period of repetition is often quite large. 

The maximum possible repetition period for any system is

always equal to the total number of possible states of the system. 

For the systems involving a single dot that we discussed above,

the possible states correspond just to possible positions for the dot, and

the number of states is therefore equal to the size of the system.

But in a cellular automaton, every possible arrangement of black

and white cells corresponds to a possible state of the system. With  cells

there are thus  possible states. And this number increases very rapidly

with the size : for 5 cells there are already 32 states, for 10 cells 1024

states, for 20 cells 1,048,576 states, and for 30 cells 1,073,741,824 states. 

The pictures on the next page show the actual repetition periods

for various cellular automata. In general, a rapid increase with size is

characteristic of class 3 behavior. Of the elementary rules, however,

only rule 45 seems to yield periods that always stay close to the

maximum of . And in all cases, there are considerable fluctuations in

the periods that occur as the size changes.

So how does all of this relate to class 2 behavior? In the examples

we have just discussed, we have explicitly set up systems that have

limited size. But even when a system in principle contains an infinite

number of cells it is still possible that a particular pattern in that

system will only grow to occupy a limited number of cells. And in any

n

2n

n

2n
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rule 90

size 15
(period 15)

size 16
(period 1)

size 17
(period 15)

size 18
(period 14)

size 19
(period 511)

size 20
(period 12)

size 21
(period 63)

size 22
(period 62)

size 23
(period 2047)

size 24
(period 8)

size 25
(period 1023)

rule 30

size 15
(period 1455)

size 16
(period 6016)

size 17
(period 10,846)

size 18
(period 2844)

size 19
(period 247)

size 20
(period 3420)

size 21
(period 597)

size 22
(period 3256)

size 23
(period 38,249)

size 24
(period 185,040)

size 25
(period 588,425)

The behavior of cellular automata with a limited number of cells. In each case the right neighbor of the rightmost cell is
taken to be the leftmost cell and vice versa. The pattern produced always eventually repeats, but the period of
repetition can increase rapidly with the size of the system. 
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such case, the pattern must repeat itself with a period of at most 

steps, where  is the size of the pattern. 

In a class 2 system with random initial conditions, a similar

thing happens: since different parts of the system do not

communicate with each other, they all behave like separate patterns

of limited size. And in fact in most class 2 cellular automata these

patterns are effectively only a few cells across, so that their repetition

periods are necessarily quite short.

1

10

100

1000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

10,000,000,000

100,000,000,000

1,000,000,000,000

0 10 20 30 40 50 60 70 80 90 100

rule 90

1

10

100

1000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

0 10 20 30

rule 45

1

10

100

1000

10,000

100,000

1,000,000

0 10 20 30 40 50 60 70 80 90 100

rule 110

1

10

100

1000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

0 10 20 30 40

rule 30

Repetition periods for various cellular automata as a function of size. The initial conditions used in each case consist of
a single black cell, as in the pictures on the previous page. The dashed gray line indicates the maximum possible
repetition period of . The maximum repetition period for rule 90 is . For rule 30, the peak repetition periods
are of order , while for rule 45, they are close to  (for , for example, the period is 463,347,935, which is
86% of the maximum possible). For rule 110, the peaks seem to increase roughly like . 

2n 2(n-1)/2 - 1

20.63 n 2n n = 29

n3

2n

n
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Randomness in Class 3 Systems

When one looks at class 3 systems the most obvious feature of their

behavior is its apparent randomness. But where does this randomness

ultimately come from? And is it perhaps all somehow just a reflection

of randomness that was inserted in the initial conditions?

The presence of randomness in initial conditions—together with

sensitive dependence on initial conditions—does imply at least some

degree of randomness in the behavior of any class 3 system. And indeed

when I first saw class 3 cellular automata I assumed that this was the

basic origin of their randomness. 

But the crucial point that I discovered only some time later is

that random behavior can also occur even when there is no randomness

in initial conditions. And indeed, in earlier chapters of this book we

have already seen many examples of this fundamental phenomenon. 

The pictures below now compare what happens in the rule 30

cellular automaton from page 27 if one starts from random initial

conditions and from initial conditions involving just a single black cell.

Comparison of the patterns produced by the rule 30 cellular automaton starting from random initial conditions and from simple
initial conditions involving just a single black cell. Away from the edge of the second picture, the patterns look remarkably similar. 
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The behavior we see in the two cases rapidly becomes almost

indistinguishable. In the first picture the random initial conditions

certainly affect the detailed pattern that is obtained. But the crucial

point is that even without any initial randomness much of what we see

in the second picture still looks like typical random class 3 behavior.

So what about other class 3 cellular automata? Do such systems

always produce randomness even with simple initial conditions?

The pictures below show an example in which random class 3

behavior is obtained when the initial conditions are random, but where

the pattern produced by starting with a single black cell has just a

simple nested form.

Nevertheless, the pictures on the facing page demonstrate that if

one uses initial conditions that are slightly different—though still

simple—then one can still see randomness in the behavior of this

particular cellular automaton. 

Patterns produced by the rule 22 cellular automaton starting from random initial conditions and from an initial condition containing
a single black cell. With random initial conditions typical class 3 behavior is seen. But with the specific initial condition shown on
the right, a simple nested pattern is produced.
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Rule 22 with various different simple initial conditions. In the top four cases, the pattern produced ultimately has a
simple nested form. But in the bottom case, it is instead in many respects random, much like rule 30. 
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There are however a few cellular automata in which class 3

behavior is obtained with random initial conditions, but in which no

significant randomness is ever produced with simple initial conditions.

The pictures below show one example. And in this case it turns

out that all patterns are in effect just simple superpositions of the basic

nested pattern that is obtained by starting with a single black cell.

As a result, when the initial conditions involve only a limited

region of black cells, the overall pattern produced always ultimately has

a simple nested form. Indeed, at each of the steps where a new white

triangle starts in the center, the whole pattern consists just of two

copies of the region of black cells from the initial conditions.

The only way to get a random pattern therefore is to have an

infinite number of randomly placed black cells in the initial conditions.

random initial conditions

Patterns generated by rule 90 with various initial conditions. This particular cellular automaton rule has the special property of
additivity which implies that with any initial conditions the patterns that it produces can be obtained as simple superpositions
of the first pattern shown above. Any initial condition that contains black cells only in a limited region will thus lead to a pattern
that ultimately has a simple nested form. Unlike rule 30 or rule 22 therefore, rule 90 cannot intrinsically generate randomness
starting from simple initial conditions. The randomness in the last picture shown here is thus purely a consequence of the
randomness in its initial conditions. Note that the pictures above show only half as many steps of evolution as the
corresponding pictures of rule 22 on the previous page. 
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And indeed when random initial conditions are used, rule 90 does

manage to produce random behavior of the kind expected in class 3.

But if there are deviations from perfect randomness in the initial

conditions, then these will almost inevitably show up in the evolution

of the system. And thus, for example, if the initial density of black cells

is low, then correspondingly low densities will occur again at various

later steps, as in the second picture below.

With rule 22, on the other hand, there is no such effect, and

instead after just a few steps no visible trace remains of the low density

of initial black cells.

64

128

256

512

rule 22

64

128

256

512

rule 90

Examples of evolution from random initial conditions with a low density of black cells. In rule 22 the low initial density has no
long-term effect. But in rule 90 its effect continues forever. The reason for this difference is that in rule 22 the randomness we
see is intrinsically generated by the evolution of the system, while in rule 90 it comes from randomness in the initial conditions. 
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A couple of sections ago we saw that all class 3 systems have the

property that the detailed patterns they produce are highly sensitive to

detailed changes in initial conditions. But despite this sensitivity at the

level of details, the point is that any system like rule 22 or rule 30 yields

patterns whose overall properties depend very little on the form of the

initial conditions that are given.

By intrinsically generating randomness such systems in a sense

have a certain fundamental stability: for whatever is done to their

initial conditions, they still give the same overall random behavior,

with the same large-scale properties. And as we shall see in the next few

chapters, there are in fact many systems in nature whose apparent

stability is ultimately a consequence of just this kind of phenomenon.

Special Initial Conditions

We have seen that cellular automata such as rule 30 generate seemingly

random behavior when they are started both from random initial

conditions and from simple ones. So one may wonder whether there are

in fact any initial conditions that make rule 30 behave in a simple way.

As a rather trivial example, one certainly knows that if its initial

state is uniformly white, then rule 30 will just yield uniform white forever.

But as the pictures below demonstrate, it is also possible to find less trivial

initial conditions that still make rule 30 behave in a simple way.

Examples of special initial conditions that make the rule 30 cellular automaton yield simple
repetitive behavior. Small patches with the same structures as shown here can be seen

embedded in typical random patterns produced by rule 30. At left is a representation of rule 30. Finding initial conditions that make cellular
automata yield behavior with certain repetition periods is closely related to the problem of satisfying constraints discussed on page 210.
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In fact, it turns out that in any cellular automaton it is inevitable

that initial conditions which consist just of a fixed block of cells

repeated forever will lead to simple repetitive behavior.

For what happens is that each block in effect independently acts

like a system of limited size. The right-hand neighbor of the rightmost

cell in any particular block is the leftmost cell in the next block, but

since all the blocks are identical, this cell always has the same color as

the leftmost cell in the block itself. And as a result, the block evolves

just like one of the systems of limited size that we discussed on page

255. So this means that given a block that is  cells wide, the repetition

period that is obtained must be at most  steps. 

But if one wants a short repetition period, then there is a question

of whether there is a block of any size which can produce it. The

pictures on the next page show the blocks that are needed to get

repetition periods of up to ten steps in rule 30. It turns out that no block

of any size gives a period of exactly two steps, but blocks can be found

for all larger periods at least up to 15 steps.

But what about initial conditions that do not just consist of a

single block repeated forever? It turns out that for rule 30, no other kind

of initial conditions can ever yield repetitive behavior.

But for many rules—including a fair number of class 3 ones—the

situation is different. And as one example the picture on the right below

shows an initial condition for rule 126 that involves two different

blocks but which nevertheless yields repetitive behavior.

n

2n

Rule 126 with a typical random initial condition, and with an initial condition that consists of a random
sequence of the blocks  and . Rule 126 in general shows class 3 behavior, as on the left. But
with the special initial condition on the right it acts like a simple class 2 rule. Note the patches of
class 2 behavior even in the picture on the left.
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period 1, block size 1 period 1, block size 2

period 3, block size 12 period 4, block size 7

period 5, block size 5 period 6, block size 84

period 7, block size 15 period 8, block size 4

period 9, block size 15 period 10, block size 155

All patterns that repeat in 10 or less steps under evolution according to rule 30. In each case the initial conditions
consist of a fixed block of cells that is repeated over and over again. Note that there are no initial conditions that
yield a repetition period of exactly 2 steps. To get period 11, a block that contains 275 cells is required. 
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In a sense what is happening here is that even though rule 126

usually shows class 3 behavior, it is possible to find special initial

conditions that make it behave like a simple class 2 rule.

And in fact it turns out to be quite common for there to exist

special initial conditions for one cellular automaton that make it

behave just like some other cellular automaton. 

Rule 126 will for example behave just like rule 90 if one starts it

from special initial conditions that contain only blocks consisting of

pairs of black and white cells.

The pictures below show how this works: on alternate steps the

arrangement of blocks in rule 126 corresponds exactly to the

arrangement of individual cells in rule 90. And among other things this

explains why it is that with simple initial conditions rule 126 produces

exactly the same kind of nested pattern as rule 90.

rule 126 rule 90

Two examples of the fact that with special initial conditions rule 126 behaves exactly like rule
90. The initial conditions that are used consist of blocks of cells where each block contains
either two black cells or two white cells. If one looks only on every other step, then the

blocks behave exactly like individual cells in rule 90. This correspondence is the basic reason that rule 126 produces the same
kind of nested patterns as rule 90 when it is started from simple initial conditions.
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The point is that these initial conditions in effect contain only

blocks for which rule 126 behaves like rule 90. And as a result, the

overall patterns produced by rule 126 in this case are inevitably exactly

like those produced by rule 90. 

So what about other cellular automata that can yield similar

patterns? In every example in this book where nested patterns like

those from rule 90 are obtained it turns out that the underlying rules

that are responsible can be set up to behave exactly like rule 90.

Sometimes this will happen, say, for any initial condition that has black

cells only in a limited region. But in other cases—like the example of

rule 22 on page 263—rule 90 behavior is obtained only with rather

specific initial conditions.

So what about rule 90 itself? Why does it yield nested patterns?

The basic reason can be thought of as being that just as other

rules can emulate rule 90 when their initial conditions contain only

certain blocks, so also rule 90 is able to emulate itself in this way.

The picture below shows how this works. The idea is to consider

the initial conditions not as a sequence of individual cells, but rather as

a sequence of blocks each containing two adjacent cells. And with an

appropriate form for these blocks what one finds is that the

configuration of blocks evolves exactly according to rule 90.

The fact that both individual cells and whole blocks of cells

evolve according to the same rule then means that whatever pattern is

rule 90 rule 90

A demonstration of the fact that in rule 90 blocks of cells can behave just like individual cells. One
consequence of this is that the patterns produced by rule 90 have a nested or self-similar form. 
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produced must have exactly the same structure whether it is looked at

in terms of individual cells or in terms of blocks of cells. And this can

be achieved in only two ways: either the pattern must be essentially

uniform, or it must have a nested structure—just like we see in rule 90.

So what happens with other rules? It turns out that the property

of self-emulation is rather rare among cellular automaton rules. But one

other example is rule 150—as illustrated in the picture below.

So what else is there in common between rule 90 and rule 150? It

turns out that they are both additive rules, implying that the patterns

they produce can be superimposed in the way we discussed on page 264.

And in fact one can show that any rule that is additive will be able to

emulate itself and will thus yield nested patterns. But there are rather

few additive rules, and indeed with two colors and nearest neighbors

the only fundamentally different ones are precisely rules 90 and 150. 

Ultimately, however, additive rules are not the only ones that can

emulate themselves. An example of another kind is rule 184, in which

blocks of three cells can act like a single cell, as shown below. 

rule 150 rule 150

Another example of a rule in which blocks of cells can behave just like individual cells. Rule
90 and rule 150 are also essentially the only fundamentally different elementary cellular
automaton rules that have the property of being additive (see page 264). 

rule 184 rule 184

A rule that is not additive, but in
which blocks of cells can again
behave just like individual cells. 
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With simple initial conditions of the type we have used so far this

rule will always produce essentially trivial behavior. But one way to see

the properties of the rule is to use nested initial conditions, obtained for

example from substitution systems of the kind we discussed on page 82.

With most rules, including 90 and 150, such nested initial

conditions typically yield results that are ultimately indistinguishable

from those obtained with typical random initial conditions. But for rule

184, an appropriate choice of nested initial conditions yields the highly

regular pattern shown below.

The pattern produced by rule 184 (shown at left) evolving from a nested initial
condition. The particular initial condition shown can be obtained by applying the

substitution system , , starting from a single black element  (see page 83). With this initial condition, rule 184
exhibits an equal number of black and white stripes, which annihilate in pairs so as to yield a regular nested pattern. 

! !
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The nested structure seen in this pattern can then be viewed as a

consequence of the fact that rule 184 is able to emulate itself. And the

picture below shows that rule 184—unlike any of the additive rules—

still produces recognizably nested patterns even when the initial

conditions that are used are random.

As we will see on page 338 the presence of such patterns is

particularly clear when there are equal numbers of black and white cells

in the initial conditions—but how these cells are arranged does not

usually matter much at all. And in general it is possible to find quite a

few cellular automata that yield nested patterns like rule 184 even from

random initial conditions. The picture on the next page shows a

particularly striking example in which explicit regions are formed that

contain patterns with the same overall structure as rule 90.

Rule 184 evolving from a random initial condition. Nested structure similar to what we saw in the previous picture is still visible.
The presence of such structure is most obvious when there are equal numbers of black and white cells in the initial conditions,
but it does not rely on any regularity in the arrangement of these cells. 
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Another example of a cellular automaton that produces a nested pattern even from random initial conditions. The particular rule shown
involves next-nearest as well as nearest neighbors and has rule number 4067213884. As in rule 184, the nested behavior seen here is
most obvious when the density of black and white cells in the initial conditions is equal.
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The Notion of Attractors

In this chapter we have seen many examples of patterns that can be

produced by starting from random initial conditions and then following

the evolution of cellular automata for many steps. 

But what can be said about the individual configurations of black

and white cells that appear at each step? In random initial conditions,

absolutely any sequence of black and white cells can be present. But it

is a feature of most cellular automata that on subsequent steps the

sequences that can be produced become progressively more restricted.

The first picture below shows an extreme example of a class 1

cellular automaton in which after just one step the only sequences that

can occur are those that contain only black cells.

The resulting configuration can be thought of as a so-called

attractor for the cellular automaton evolution. It does not matter what

initial conditions one starts from: one always reaches the same all-black

attractor in the end. The situation is somewhat similar to what happens

in a mechanical system like a physical pendulum. One can start the

pendulum swinging in any configuration, but it will always tend to

evolve to the configuration in which it is hanging straight down.

The second picture above shows a class 2 cellular automaton that

once again evolves to an attractor after just one step. But now the

attractor does not just consist of a single configuration, but instead

Examples of simple cellular automata that evolve after just one step to attractors in which only certain sequences of black and
white cells can occur. In the first case, the sequences that can occur are ones that involve only black cells. In the second case,
the sequences are ones in which every black cell is surrounded by white cells. The rules shown are numbers 255 and 4. 
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consists of all configurations in which black cells occur only when they

are surrounded on each side by at least one white cell.

The picture below shows that for any particular configuration of

this kind, there are in general many different initial conditions that can

lead to it. In a mechanical analogy each possible final configuration is

like the lowest point in a basin—and a ball started anywhere in the

basin will then always roll to that lowest point.

For one-dimensional cellular automata, it turns out that there is a

rather compact way to summarize all the possible sequences of black

and white cells that can occur at any given step in their evolution. 

The basic idea is to construct a network in which each such

sequence of black and white cells corresponds to a possible path. 

In the pictures at the top of the facing page, the first network in

each case represents random initial conditions in which any possible

sequence of black and white cells can occur. Starting from the node in

the middle, one can go around either the left or the right loop in the

network any number of times in any order—representing the fact that

black and white cells can appear any number of times in any order.

At step 2 in the rule 255 example on the facing page, however, the

network has only one loop—representing the fact that at this step the

only sequences which can occur with this rule are ones that consist

purely of black cells, just as we saw on the previous page.

The case of rule 4 is slightly more complicated: at step 2, the

possible sequences that can occur are now represented by a network

with two nodes. Starting at the right-hand node one can go around the

loop to the right any number of times, corresponding to sequences of

Four different initial conditions that all lead to the same final state in the rule 4 cellular automaton shown on the previous page.
The final state can be thought of as one of the possible attractors for the evolution of the cellular automaton; the initial
conditions shown then represent different elements in the basin of attraction for this attractor.
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any number of white cells. At any point one can follow the arrow to the

left to get a black cell, but the form of the network implies that this

black cell must always be followed by at least one white cell.

The pictures on the next page show more examples of class 1 and

2 cellular automata. Unlike in the picture above, these rules do not

reach their final states after one step, but instead just progressively

evolve towards these states. And in the course of this evolution, the set

of sequences that can occur becomes progressively smaller.

In rule 128, for example, the fact that regions of black shrink by

one cell on each side at each step means that any region of black that

exists after  steps must have at least  white cells on either side of it. 

The networks shown on the next page capture all effects like this.

And to do this we see that on successive steps they become somewhat

more complicated. But at least for these class 1 and 2 examples, the

progression of networks always continues to have a fairly simple form.

Networks representing possible
sequences of black and white
cells that can occur at successive
steps in the evolution of the two
cellular automata shown on the
left. In each case the possible
sequences correspond to possible
paths through the network. Both
rules start on step 1 from random
initial conditions in which all
sequences of black and white
cells are allowed. On subsequent
steps, rule 255 allows only
sequences containing just black
cells, while rule 4 allows
sequences that contain both black
and white cells, but requires that
every black cell be surrounded by
white cells. 

t t

…

…

…

…

rule 4 step 1 step 2 step 3

rule 255 step 1 step 2 step 3
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So what happens with class 3 and 4 systems? The pictures on the

facing page show a couple of examples. In rule 126, the only effect at

step 2 is that black cells can no longer appear on their own: they must

always be in groups of two or more. By step 3, it becomes difficult to see

any change if one just looks at an explicit picture of the cellular

automaton evolution. But from the network, one finds that now an

infinite collection of other blocks are forbidden, beginning with the

length 12 block . And on later steps, the set of sequences

that are allowed rapidly becomes more complicated—as reflected in a

rapid increase in the complexity of the corresponding networks.

Networks representing possible sequences of black and white cells that can occur at successive steps in the evolution of several
class 1 and 2 cellular automata. These networks never have more than about  nodes after  steps. t 2 t

rule 184 step 1 step 2 step 3 step 4

rule 160 step 1 step 2 step 3 step 4

rule 132 step 1 step 2 step 3 step 4

rule 128 step 1 step 2 step 3 step 4

rule 108 step 1 step 2 step 3 step 4
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Indeed, this kind of rapid increase in network complexity is a

general characteristic of most class 3 and 4 rules. But it turns out that

there are a few rules which at first appear to be exceptions. 

The pictures at the top of the next page show four different rules

that each have the property that if started from initial conditions in

which all possible sequences of cells are allowed, these same sequences

can all still occur at any subsequent step in the evolution. 

The first two rules that are shown exhibit very simple class 2

behavior. But the last two show typical class 3 behavior. 

What is going on, however, is that in a sense the particular initial

conditions that allow all possible sequences are special for these rules. 

step 1 step 2 step 3

rule 110

step 4

step 1 step 2 step 3

rule 126

step 4

Networks representing possible sequences of black and white cells that can occur at successive steps in the evolution of typical
class 3 and 4 cellular automata. The number of nodes in these networks seems to increase at a rate that is at least exponential. 
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And indeed if one starts with almost any other initial

conditions—say for example ones that do not allow any pair of black

cells together, then as the pictures below illustrate, rapidly increasing

complexity in the sets of sequences that are allowed is again observed.

rule 204 rule 240

rule 30 rule 90

Examples of cellular automata which continue to allow all possible sequences of black and white cells at any step in
their evolution. Such cellular automata in effect define what are known as surjective or onto mappings.

step 1 step 2 step 3

rule 30

step 4

step 1 step 2 step 3

rule 90

step 4

Networks representing possible sequences that can occur in the evolution of the cellular automata at the top of the
page, starting from initial conditions in which black cells are only allowed to appear in pairs.
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Structures in Class 4 Systems

The next page shows three typical examples of class 4 cellular

automata. In each case the initial conditions that are used are

completely random. But after just a few steps, the systems organize

themselves to the point where definite structures become visible.

Most of these structures eventually die out, sometimes in rather

complicated ways. But a crucial feature of any class 4 systems is that

there must always be certain structures that can persist forever in it. 

So how can one find out what these structures are for a particular

cellular automaton? One approach is just to try each possible initial

condition in turn, looking to see whether it leads to a new persistent

structure. And taking the code 20 cellular automaton from the top of

the next page, the page that follows shows what happens in this system

with each of the first couple of hundred possible initial conditions.

In most cases everything just dies out. But when we reach initial

condition number 151 we finally see a structure that persists. 

This particular structure is fairly simple: it just remains fixed in

position and repeats every two steps. But not all persistent structures are

that simple. And indeed at initial condition 187 we see a considerably

more complicated structure, that instead of staying still moves

systematically to the right, repeating its basic form only every 9 steps.

The existence of structures that move is a fundamental feature of

class 4 systems. For as we discussed on page 252, it is these kinds of

structures that make it possible for information to be communicated

from one part of a class 4 system to another—and that ultimately allow

the complex behavior characteristic of class 4 to occur.

But having now seen the structure obtained with initial condition

187, we might assume that all subsequent structures that arise in the

code 20 cellular automaton must be at least as complicated. It turns

out, however, that initial condition 189 suddenly yields a much simpler

structure—that just stays unchanged in one position at every step. 

But going on to initial condition 195, we again find a more

complicated structure—this time one that repeats only every 22 steps.
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Three typical examples of class 4 cellular automata. In each case various kinds of persistent structures are seen.

3 colors, nearest neighbors, code 1329

3 colors, nearest neighbors, code 357

2 colors, next-nearest neighbors, code 20
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261 263 265 267 269 271 273 275 277 279 281 283 285

235 237 239 241 243 245 247 249 251 253 255 257 259

209 211 213 215 217 219 221 223 225 227 229 231 233

183 185 187 189 191 193 195 197 199 201 203 205 207

157 159 161 163 165 167 169 171 173 175 177 179 181

131 133 135 137 139 141 143 145 147 149 151 153 155

105 107 109 111 113 115 117 119 121 123 125 127 129

79 81 83 85 87 89 91 93 95 97 99 101 103

53 55 57 59 61 63 65 67 69 71 73 75 77

27 29 31 33 35 37 39 41 43 45 47 49 51

1 3 5 7 9 11 13 15 17 19 21 23 25

The behavior of the code 20 cellular automaton from the top of the facing page for all initial conditions with black cells in a region of
size less than nine. In most cases the patterns produced simply die out. But with some initial conditions, persistent structures are
formed. Each initial condition is assigned a number whose base 2 digit sequence gives the configuration of black and white cells in
that initial condition. Note that initial conditions 195 and 219 both yield the period 22 persistent structure shown on the next page.
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So just what set of structures does the code 20 cellular automaton

ultimately support? There seems to be no easy way to tell, but the

picture below shows all the structures that I found by explicitly looking

at evolution from the first twenty-five billion possible initial conditions.

Are other structures possible? The largest structure in the picture

above starts from a block that is 30 cells wide. And with the more than

ten billion blocks between 30 and 34 cells wide, no new structures at all

appear. Yet in fact other structures are possible. And the way to tell this

is that for small repetition periods there is a systematic procedure that

allows one to find absolutely all structures with a given period.

The picture on the facing page shows the results of using this

procedure for repetition periods up to 15. And for all repetition periods

up to 10—with the exception of 7—at least one fixed or moving

structure ultimately turns out to exist. Often, however, the smallest

structures for a given period are quite large, so that for example in the

case of period 6 the smallest possible structure is 64 cells wide. 

Persistent structures found by testing the first twenty-five billion possible initial conditions for the code 20 cellular automaton
shown on the previous page. Note that reflected versions of the structures shown are also possible. The base 2 digit sequences of
the numbers given correspond to the initial conditions in each case, as on the previous page.

151
(period 2)

187
(period 9R)

189
(period 1)

195
(period 22)

635
(period 1R)

125,231
(period 38)

595,703
(period 4)

610,999
(period 4)

14,871,103
(period 2R)

256,296,063
(period 5)
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So what about other class 4 cellular automata—like the ones I

showed at the beginning of this section? Do they also end up having

complicated sets of possible persistent structures?

All the persistent structures with repetition periods up to 15 steps in the code 20 cellular automaton.
The structures shown were found by a systematic method similar to the one used to find all
sequences that satisfy the constraints on page 268. 

189
(period 1)

635
(period 1R)

151
(period 2)

14,871,103
(period 2R)

222,678,959,859
(period 3)

595,703
(period 4)

610,999
(period 4)

22,503,642,597
(period 5)

11,221,488,970,893,447,375
(period 6)

10,495,070,598,767
(period 8)

187
(period 9R)

360,759,087,837,221
(period 10)

2,197,520,782,601,119
(period 10)

142,082,121,178,470,981,231
(period 10)
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The picture below shows the structures one finds by explicitly

testing the first two billion possible initial conditions for the code 357

cellular automaton from page 282.

Already with initial condition number 28 a fairly complicated

structure with repetition period 48 is seen. But with all the first million

initial conditions, only one other structure is produced, and this

structure is again one that does not move. 

So are moving structures in fact possible in the code 357 cellular

automaton? My experience with many different rules is that whenever

sufficiently complicated persistent structures occur, structures that

move can eventually be found. And indeed with code 357, initial

condition 4,803,890 yields just such a structure. 

Persistent structures in the code 357 cellular automaton from page 282 obtained by testing the first
two billion possible initial conditions. This cellular automaton allows three possible colors for each
cell; the initial conditions thus correspond to the base 3 digits of the numbers given. No persistent
structures of any size exist in this cellular automaton with repetition periods of less than 5 steps. 

28
(period 48)

7 ,795
(period 19)

1,706,588
(period 26)

4,803,890
(period 41R)

154,596,664
(period 12)

514,454,827
(period 48)
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So if moving structures are inevitable in class 4 systems, what

other fundamentally different kinds of structures might one see if one

were to look at sufficiently many large initial conditions?

The picture below shows the first few persistent structures found

in the code 1329 cellular automaton from the bottom of page 282. The

smallest structures are stationary, but at initial condition 916 a

structure is found that moves—all much the same as in the two other

class 4 cellular automata that we have just discussed.

But when initial condition 54,889 is reached, one suddenly sees

the rather different kind of structure shown on the next page. The

right-hand part of this structure just repeats with a period of 256 steps,

but as this part moves, it leaves behind a sequence of other persistent

structures. And the result is that the whole structure continues to grow

forever, adding progressively more and more cells.

Persistent structures in the code 1329 cellular automaton shown on page 282. 

1
(period 78)

52
(period 7 )

400
(period 2)

800
(period 12)

916
(period 31R)

2,617
(period 9)

2,669
(period 48R)

97,357
(period 2)

659,197
(period 9)
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Yet looking at the picture above, one might suppose that when

unlimited growth occurs, the pattern produced must be fairly complicated.

But once again code 1329 has a surprise in store. For the facing page shows

that when one reaches initial condition 97,439 there is again unlimited

growth—but now the pattern that is produced is very simple. And in fact if

one were just to see this pattern, one would probably assume that it came

from a rule whose typical behavior is vastly simpler than code 1329. 

Unbounded growth in code 1329. The initial
condition contains a block of 10 cells. The
right-hand side of the pattern repeats every
256 steps, and as it moves it leaves behind
an infinite sequence of persistent structures.

initial condition number 54,889
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Further examples of unbounded growth in code 1329. Most of the patterns produced are complex—but some are
simple. 

initial condition 54,889 initial condition 97,439 initial condition 166,426

initial condition 115,396 initial condition 2,069,116
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A typical example of the behavior of the rule 110 cellular automaton with random initial conditions. The background pattern consists of
blocks of 14 cells that repeat every 7 steps. 
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Indeed, it is a general feature of class 4 cellular automata that

with appropriate initial conditions they can mimic the behavior of all

sorts of other systems. And when we discuss computation and the

notion of universality in Chapter 11 we will see the fundamental reason

this ends up being so. But for now the main point is just how diverse

and complex the behavior of class 4 cellular automata can be—even

when their underlying rules are very simple. 

And perhaps the most striking example is the rule 110 cellular

automaton that we first saw on page 32. Its rule is extremely simple—

involving just nearest neighbors and two colors of cells. But its overall

behavior is as complex as any system we have seen. 

The facing page shows a typical example with random initial

conditions. And one immediate slight difference from other class 4 rules

that we have discussed is that structures in rule 110 do not exist on a blank

background: instead, they appear as disruptions in a regular repetitive

pattern that consists of blocks of 14 cells repeating every 7 steps.

The next page shows the kinds of persistent structures that can be

generated in rule 110 from blocks less than 40 cells wide. And just like in

other class 4 rules, there are stationary structures and moving structures—

as well as structures that can be extended by repeating blocks they contain. 

So are there also structures in rule 110 that exhibit unbounded

growth? It is certainly not easy to find them. But if one looks at blocks

of width 41, then such structures do eventually show up, as the picture

on page 293 demonstrates.

So how do the various structures in rule 110 interact? The

answer, as pages 294–296 demonstrate, can be very complicated. 

In some cases, one structure essentially just passes through another

with a slight delay. But often a collision between two structures produces

a whole cascade of new structures. Sometimes the outcome of a collision

is evident after a few steps. But quite often it takes a very large number of

steps before one can tell for sure what is going to happen. 

So even though the individual structures in class 4 systems like

rule 110 may behave in fairly repetitive ways, interactions between

these structures can lead to behavior of immense complexity.
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(a) (b) (c) (d) (e) (f ) (g) (h) ( i) ( j)

(k) ( l) (m) (n) (o)

Persistent structures found in rule 110. Extended versions exist of all but structures (a) and (j). Structures (m) and (n) also exist in
alternate forms shifted with respect to the background. 



S T A R T I N G  F R O M  R A N D O M N E S S C H A P T E R  6

293

An example of unbounded growth in rule 110. The initial condition consists of a block of length 41 inserted between blocks of the
background. New structures on both left and right are produced every 77 steps; the central structure moves 20 cells to the left
during each cycle so that the structures on the left are separated by 37 steps while those on the right are separated by 107 steps. 
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Collisions between persistent structures (o) and (j) from page 292. (The first structure is actually an extended form containing
four copies of structure (o) from page 292.) Each successive picture shows what happens when the original structures are
started progressively further apart.
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Collisions between structures (e) and (o) from page 292.
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A collision between structures (l) and (i) from page 292. It takes more than 4000 steps for the final outcome involving 8 separate
structures to become clear. The height of the picture corresponds to 2000 steps, and the third picture ends at step 4300. 
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7
Mechanisms in 
Programs and Nature

Universality of Behavior

In the past several chapters my main purpose has been to address the

fundamental question of how simple programs behave. In this chapter

my purpose is now to take what we have learned and begin applying it

to the study of actual phenomena in nature.

At the outset one might have thought this would never work. For

one might have assumed that any program based on simple rules would

always lead to behavior that was much too simple to be relevant to

most of what we see in nature. But one of the main discoveries of this

book is that programs based on simple rules do not always produce

simple behavior. 

And indeed in the past several chapters we have seen many

examples where remarkably simple rules give rise to behavior of great

complexity. But to what extent is the behavior obtained from simple

programs similar to behavior we see in nature? 

One way to get some idea of this is just to look at pictures of

natural systems and compare them with pictures of simple programs.

At the level of details there are certainly differences. But at an

overall level there are striking similarities. And indeed it is quite

remarkable just how often systems in nature end up showing behavior

that looks almost identical to what we have seen in some simple

program or another somewhere in this book.
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So why might this be? It is not, I believe, any kind of coincidence,

or trick of perception. And instead what I suspect is that it reflects a

deep correspondence between simple programs and systems in nature.

When one looks at systems in nature, one of the striking things

one notices is that even when systems have quite different underlying

physical, biological or other components their overall patterns of

behavior can often seem remarkably similar.

And in my study of simple programs I have seen essentially the

same phenomenon: that even when programs have quite different

underlying rules, their overall behavior can be remarkably similar.

So this suggests that a kind of universality exists in the types of

behavior that can occur, independent of the details of underlying rules.

And the crucial point is that I believe that this universality

extends not only across simple programs, but also to systems in nature.

So this means that it should not matter much whether the components

of a system are real molecules or idealized black and white cells; the

overall behavior produced should show the same universal features.

And if this is the case, then it means that one can indeed expect

to get insight into the behavior of natural systems by studying the

behavior of simple programs. For it suggests that the basic mechanisms

responsible for phenomena that we see in nature are somehow the same

as those responsible for phenomena that we see in simple programs.

In this chapter my purpose is to discuss some of the most

common phenomena that we see in nature, and to study how they

correspond with phenomena that occur in simple programs.

Some of the phenomena I discuss have at least to some extent

already been analyzed by traditional science. But we will find that by

thinking in terms of simple programs it usually becomes possible to see

the basic mechanisms at work with much greater clarity than before.

And more important, many of the phenomena that I consider—

particularly those that involve significant complexity—have never been

satisfactorily explained in the context of traditional science. But what

we will find in this chapter is that by making use of my discoveries

about simple programs a great many of these phenomena can now for

the first time successfully be explained.
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Three Mechanisms for Randomness

In nature one of the single most common things one sees is apparent

randomness. And indeed, there are a great many different kinds of systems

that all exhibit randomness. And it could be that in each case the cause of

randomness is different. But from my investigations of simple programs I

have come to the conclusion that one can in fact identify just three basic

mechanisms for randomness, as illustrated in the pictures below.

In the first mechanism, randomness is explicitly introduced

into the underlying rules for the system, so that a random color is

chosen for every cell at each step. 

This mechanism is the one most commonly considered in the

traditional sciences. It corresponds essentially to assuming that there is

a random external environment which continually affects the system

one is looking at, and continually injects randomness into it.

In the second mechanism shown above, there is no such

interaction with the environment. The initial conditions for the system

are chosen randomly, but then the subsequent evolution of the system

is assumed to follow definite rules that involve no randomness.

mechanism 1: randomness from the environment mechanism 2: randomness from initial conditions mechanism 3: intrinsic generation of randomness

Three possible mechanisms that can be responsible for randomness. The diagonal arrows represent external input. In the
first case, there is random input from the environment at every step. In the second case, there is random input only in the
initial conditions. And in the third case, there is effectively no random input at all. Yet despite their different underlying
structure, each of these mechanisms leads to randomness in the column shown at the left. The first mechanism
corresponds to randomness produced by external noise, as captured in so-called stochastic models. The second mechanism
is essentially the one suggested by chaos theory. The third mechanism is new, and is suggested by the results on the
behavior of simple programs in this book. I will give evidence that this third mechanism is the most common one in nature.
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A crucial feature of these rules, however, is that they make the

system behave in a way that depends sensitively on the details of its

initial conditions. In the particular case shown, the rules are simply set

up to shift every color one position to the left at each step. 

And what this does is to make the sequence of colors taken on by

any particular cell depend on the colors of cells progressively further

and further to the right in the initial conditions. Insofar as the initial

conditions are random, therefore, so also will the sequence of colors of

any particular cell be correspondingly random.

In general, the rules can be more complicated than those shown in

the example on the previous page. But the basic idea of this mechanism

for randomness is that the randomness one sees arises from some kind of

transcription of randomness that is present in the initial conditions.

The two mechanisms for randomness just discussed have one

important feature in common: they both assume that the randomness

one sees in any particular system must ultimately come from outside of

that system. In a sense, therefore, neither of these mechanisms takes

any real responsibility for explaining the origins of randomness: they

both in the end just say that randomness comes from outside whatever

system one happens to be looking at.

Yet for quite a few years, this rather unsatisfactory type of statement

has been the best that one could make. But the discoveries about simple

programs in this book finally allow new progress to be made. 

The crucial point that we first saw on page 27 is that simple

programs can produce apparently random behavior even when they are

given no random input whatsoever. And what this means is that there

is a third possible mechanism for randomness, which this time does not

rely in any way on randomness already being present outside the

system one is looking at.

If we had found only a few examples of programs that could

generate randomness in this way, then we might think that this third

mechanism was a rare and special one. But in fact over the past few

chapters we have seen that practically every kind of simple program

that we can construct is capable of generating such randomness. 
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And as a result, it is reasonable to expect that this same

mechanism should also occur in many systems in nature. Indeed, as I

will discuss in this chapter and the chapters that follow, I believe that

this mechanism is in fact ultimately responsible for a large fraction, if

not essentially all, of the randomness that we see in the natural world.

But that is not to say that the other two mechanisms are never

relevant in practice. For even though they may not be able to explain

how randomness is produced at the lowest level, they can still be useful

in describing observations about randomness in particular systems.

And in the next few sections, I will discuss various kinds of

systems where the randomness that is seen can be best described by

each of the three mechanisms for randomness identified here.

Randomness from the Environment

With the first mechanism for randomness discussed in the previous

section, the randomness of any particular system is taken to be the

result of continual interaction between that system and randomness in

its environment.

As an everyday example, we can consider a boat bobbing up and

down on a rough ocean. There is nothing intrinsically random about the

boat itself. But the point is that there is randomness in the continually

changing ocean surface that forms the environment for the boat. And since

the motion of the boat follows this ocean surface, it also seems random.

But what is the real origin of this apparent randomness? In a

sense it is that there are innumerable details about an ocean that it is

very difficult to know, but which can nevertheless affect the motion of

the boat. Thus, for example, a particular wave that hits the boat could

be the result of a nearby squall, of an undersea ridge, or perhaps even of

a storm that happened the day before several hundred miles away. But

since one realistically cannot keep track of all these things, the ocean

will inevitably seem in many respects unpredictable and random.

This same basic effect can be even more pronounced when one

looks at smaller-scale systems. A classic example is so-called Brownian
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motion, in which one takes a small grain, say of pollen, puts it in a

liquid, and then looks at its motion under a microscope.

What one finds is that the grain jumps around in an apparently

random way. And as was suspected when this was first noticed in the

1820s, what is going on is that molecules in the liquid are continually

hitting the grain and causing it to move. But even in a tiny volume of

liquid there are already an immense number of molecules. And since

one certainly does not even know at any given time exactly where all

these molecules are, the details of their effect on the motion of the grain

will inevitably seem quite random.

But to observe random Brownian motion, one needs a

microscope. And one might imagine that randomness produced by any

similar molecular process would also be too small to be of relevance in

everyday life. But in fact such randomness is quite obvious in the

operation of many kinds of electronic devices.

As an example, consider a radio receiver that is tuned to the

wrong frequency or has no antenna connected. The radio receiver is

built to amplify any signal that it receives. But what happens when

there is no signal for it to amplify? 

The answer is that the receiver produces noise. And it turns out

that in most cases this noise is nothing other than a highly amplified

version of microscopic processes going on inside the receiver.

In practice, such noise is usually considered a nuisance, and

indeed modern digital electronics systems are typically designed to get

rid of it at every stage. But since at least the 1940s, there have been

various devices built for the specific purpose of generating randomness

using electronic noise.

Typically these devices work by operating fairly standard

electronic components in extreme conditions where there is usually no

output signal, but where microscopic fluctuations can cause breakdown

processes to occur which yield large output signals.

A large-scale example is a pair of metal plates with air in between.

Usually no current flows across this air gap, but when the voltage

between the plates is large enough, the air can break down, sparks can

be generated, and spikes of current can occur. But exactly when and
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where the sparks occur depends on the detailed microscopic motion of

the molecules in the gas, and is therefore potentially quite random.

In an effort to obtain as much randomness as possible, actual

devices that work along these lines have typically used progressively

smaller components: first vacuum tubes and later semiconductors. And

indeed, in a modern semiconductor diode, for example, a breakdown

event can be initiated by the motion of just one electron.

But despite such sensitivity to microscopic effects, what has

consistently been found in practice is that the output from such devices

has significant deviations from perfect randomness.

At first, this is quite surprising. For one might think that

microscopic physical processes would always produce the best possible

randomness. But there are two important effects which tend to limit

this randomness, or indeed any randomness that is obtained through

the mechanism of interaction with the environment.

The first of these concerns the internal details of whatever device

is used to sample the randomness in the environment. 

Every time the device receives a piece of input, its internal state

changes. But in order for successive pieces of input to be treated in an

independent and uncorrelated way, the device must be in exactly the

same state when it receives each piece of input. And the problem is that

while practical devices may eventually relax to what is essentially the

same state, they can do this only at a certain rate.

In a device that produces a spark, for example, it inevitably takes

some time for the hot gas in the path of the spark to be cleared out. And

if another spark is generated before this has happened, the path of the

second spark will not be independent of the first.

One might think that such effects could be avoided by allowing a

certain “dead time” between successive events. But in fact, as we will

also see in connection with quantum mechanics, it is a rather general

feature of systems that perform amplification that relaxation to a normal

state can effectively occur only gradually, so that one would have to wait

an infinite time for such relaxation to be absolutely complete.

But even when the device used to sample the environment does no

amplification and has no relevant internal structure, one may still not see
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perfect randomness. And the reason for this is that there are almost

inevitably correlations even in the supposedly random environment.

In an ocean for example, the inertia of the water essentially forces

there to be waves on the surface of certain sizes. And during the time that a

boat is caught up in a particular one of these waves, its motion will always

be quite regular; it is only when one watches the effect of a sequence of

waves that one sees behavior that appears in any way random.

In a sense, though, this point just emphasizes the incomplete

nature of the mechanism for randomness that we have been discussing

in this section. For to know in any real way why the motion of the boat

is random, we must inevitably ask more about the randomness of the

ocean surface. And indeed, it is only at a fairly superficial level of

description that it is useful to say that the randomness in the motion of

the boat comes from interaction with an environment about which one

will say nothing more than that it is random.

Chaos Theory and Randomness from Initial Conditions

At the beginning of this chapter I outlined three basic mechanisms that

can lead to apparent randomness. And in the previous section I discussed

the first of these mechanisms—based on the idea that the evolution of a

system is continually affected by randomness from its environment.

But to get randomness in a particular system it turns out that

there is no need for continual interaction between the system and an

external random environment. And in the second mechanism for

randomness discussed at the beginning of this chapter, no explicit

randomness is inserted during the evolution of a system. But there is

still randomness in the initial conditions, and the point is that as the

system evolves, it samples more and more of this randomness, and as a

result produces behavior that is correspondingly random.

As a rather simple example one can think of a car driving along a

bumpy road. Unlike waves on an ocean, all the bumps on the road are

already present when the car starts driving, and as a result, one can

consider these bumps to be part of the initial conditions for the system.

But the point is that as time goes on, the car samples more and more of
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the bumps, and if there is randomness in these bumps it leads to

corresponding randomness in the motion of the car.

A somewhat similar example is a ball rolled along a rough

surface. A question such as where the ball comes to rest will depend on

the pattern of bumps on the surface. But now another feature of the

initial conditions is also important: the initial speed of the ball.

And somewhat surprisingly there is already in practice some

apparent randomness in the behavior of such a system even when there

are no significant bumps on the surface. Indeed, games of chance based

on rolling dice, tossing coins and so on all rely on just such randomness.

As a simple example, consider a ball that has one hemisphere

white and the other black. One can roll this ball like a die, and then

look to see which color is on top when the ball comes to rest. And if one

does this in practice, what one will typically find is that the outcome

seems quite random. But where does this randomness come from? 

The answer is that it comes from randomness in the initial speed

with which the ball is rolled. The picture below shows the motion of a

ball with a sequence of different initial speeds. And what one sees is

that it takes only a small change in the initial speed to make the ball

come to rest in a completely different orientation.

A plot of the position of a ball rolled with various initial speeds. Time goes down the page. The ball starts
on the left, with an initial speed given by the initial slope of the curve. The ball slows down as a result of
friction, and eventually stops. The ball is half white and half black, and the stripes in the picture indicate
which color is on top when the ball is at a particular position. The divergence of the curves in the picture
indicate the sensitivity of the motion to the exact initial speed of the ball. Small changes in this speed are
seen to make the ball stop with a different color on top. It is such sensitivity to randomness in the initial
conditions that makes processes such as rolling dice or tossing coins yield seemingly random output.
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The point then is that a human rolling the ball will typically not

be able to control this speed with sufficient accuracy to determine

whether black or white will end up on top. And indeed on successive

trials there will usually be sufficiently large random variations in the

initial speed that the outcomes will seem completely random.

Coin tossing, wheels of fortune, roulette wheels, and similar

generators of randomness all work in essentially the same way. And in

each case the basic mechanism that leads to the randomness we see is a

sensitive dependence on randomness that is present in the typical

initial conditions that are provided.

Without randomness in the initial conditions, however, there is

no randomness in the output from these systems. And indeed it is quite

feasible to build precise machines for tossing coins, rolling balls and so

on that always produce a definite outcome with no randomness at all.

But the discovery which launched what has become known as

chaos theory is that at least in principle there can be systems whose

sensitivity to their initial conditions is so great that no machine with

fixed tolerances can ever be expected to yield repeatable results.

A classic example is an idealized version of the kneading process

which is used for instance to make noodles or taffy. The basic idea is to

take a lump of dough-like material, and repeatedly to stretch this material

to twice its original length, cut it in two, then stack the pieces on top of

each other. The picture at the top of the facing page shows a few steps in

this process. And the important point to notice is that every time the

material is stretched, the distance between neighboring points is doubled. 

The result of this is that any change in the initial position of a

point will be amplified by a factor of two at each step. And while a

particular machine may be able to control the initial position of a point

to a certain accuracy, such repeated amplification will eventually lead

to sensitivity to still smaller changes.

But what does this actually mean for the motion of a point in the

material? The bottom pictures on the facing page show what happens to

two sets of points that start very close together. The most obvious

effect is that these points diverge rapidly on successive steps. But after a

while, they reach the edge of the material and cannot diverge any
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further. And then in the first case, the subsequent motion looks quite

random. But in the second case it is fairly regular. So why is this?

A little analysis shows what is going on. The basic idea is to

represent the position of each point at each step as a number, say ,

which runs from 0 to 1. When the material is stretched, the number is

step 4 step 5 step 6

step 1 step 2 step 3

A kneading process similar to ones used to make noodles or taffy, which exhibits very sensitive dependence on initial conditions. In
the first part of each step, the material is stretched to twice its original length. Then it is cut in two, and the two halves are stacked
on top of each other. The picture demonstrates that dots which are initially close together rapidly separate. (A more realistic
kneading process would fold material rather than cutting it, but the same sensitive dependence on initial conditions would occur.)

Two examples of what can happen
when the kneading process above is
applied to nearby collections of points.
In both cases the points initially
diverge exponentially, as implied by
chaos theory. But after a while they
reach the edge of the material, and
although in the first case they then
show quite random behavior, in the
second case they instead just show
simple repetitive behavior. What
differs between the two cases is the
detailed digit sequences of the
positions of the points: in the first
case these digit sequences are quite
random, while in the second case they
have a simple repetitive form.

x



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

308

doubled. And when the material is cut and stacked, the effect on the

number is then to extract its fractional part.

But it turns out that this process is exactly the same as the one

we discussed on page 153 in the chapter on systems based on numbers.

And what we found there was that it is crucial to think not in

terms of the sizes of the numbers , but rather in terms of their digit

sequences represented in base 2. And in fact, in terms of such digit

sequences, the kneading process consists simply in shifting all digits

one place to the left at each step, as shown in the pictures below.

The way digit sequences work, digits further to the right in a

number always make smaller contributions to its overall size. And as a

result, one might think that digits which lie far to the right in the initial

conditions would never be important. But what the pictures above

show is that these digits will always be shifted to the left, so that

eventually they will in fact be important. As time goes on, therefore,

what is effectively happening is that the system is sampling digits

further and further to the right in the initial conditions.

And in a sense this is not unlike what happens in the example of

a car driving along a bumpy road discussed at the beginning of this

section. Indeed in many ways the only real difference is that instead of

x

0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0
0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1
0 0 0 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 1
0 0 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0
0 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0
0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1
1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 0
0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0
0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1
1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1
0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0
1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0
1 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0
1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 1 1
0 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 1 1 0
1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 1 1 0 0
1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 1 1 0 0 0
0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 1 1 0 0 0 0
0 1 1 0 0 1 0 0 1 1 0 0 1 0 1 1 0 0 0 0 0
1 1 0 0 1 0 0 1 1 0 0 1 0 1 1 0 0 0 0 0 1

� 0.0091918885450
� 0.0183837770900
� 0.0367675541800
� 0.0735351083601
� 0.1470702167201
� 0.2941404334402
� 0.5882808668804
� 0.1765617337609
� 0.3531234675218
� 0.7062469350436
� 0.4124938700871
� 0.8249877401742
� 0.6499754803484
� 0.2999509606969
� 0.5999019213938
� 0.1998038427876
� 0.3996076855752
� 0.7992153711504
� 0.5984307423008
� 0.1968614846015
� 0.3937229692031
� 0.7874459384061

0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

� 0.0089285714286
� 0.0178571428571
� 0.0357142857143
� 0.0714285714286
� 0.1428571428571
� 0.2857142857143
� 0.5714285714286
� 0.1428571428571
� 0.2857142857143
� 0.5714285714286
� 0.1428571428571
� 0.2857142857143
� 0.5714285714286
� 0.1428571428571
� 0.2857142857143
� 0.5714285714286
� 0.1428571428571
� 0.2857142857143
� 0.5714285714286
� 0.1428571428571
� 0.2857142857143
� 0.5714285714286

The digit sequences of positions of points on successive steps in the two examples of kneading
processes at the bottom of the previous page. At each step these digit sequences are shifted one
place to the left. So if the initial digit sequence is random, as in the first example, then the
subsequent behavior will also be correspondingly random. But if the initial digit sequence is simple,
as in the second example, then the behavior will be correspondingly simple. In general, a point at
position  on a particular step will move to position  on the next step.x FractionalPart[2 x]
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being able to see a sequence of explicit bumps in the road, the initial

conditions for the position of a point in the kneading process are

encoded in a more abstract form as a sequence of digits.

But the crucial point is that the behavior we see will only ever be

as random as the sequence of digits in the initial conditions. And in the

first case on the facing page, it so happens that the sequence of digits for

each of the initial points shown is indeed quite random, so the behavior

we see is correspondingly random. But in the second case, the sequence

of digits is regular, and so the behavior is correspondingly regular.

Sensitive dependence on initial conditions thus does not in and of

itself imply that a system will behave in a random way. Indeed, all it

does is to cause digits which make an arbitrarily small contribution to

the size of numbers in the initial conditions eventually to have a

significant effect. But in order for the behavior of the system to be

random, it is necessary in addition that the sequence of digits be

random. And indeed, the whole idea of the mechanism for randomness

in this section is precisely that any randomness we see must come from

randomness in the initial conditions for the system we are looking at.

It is then a separate question why there should be randomness in

these initial conditions. And ultimately this question can only be

answered by going outside of the system one is looking at, and studying

whatever it was that set up its initial conditions.

Accounts of chaos theory in recent years have, however, often

introduced confusion about this point. For what has happened is that

from an implicit assumption made in the mathematics of chaos theory,

the conclusion has been drawn that random digit sequences should be

almost inevitable among the numbers that occur in practice.

The basis for this is the traditional mathematical idealization that

the only relevant attribute of any number is its size. And as discussed on

page 152, what this idealization suggests is that all numbers which are

sufficiently close in size should somehow be equally common. And

indeed if this were true, then it would imply that typical initial

conditions would inevitably involve random digit sequences. 

But there is no particular reason to believe that an idealization

which happens to be convenient for mathematical analysis should
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apply in the natural world. And indeed to assume that it does is

effectively just to ignore the fundamental question of where

randomness in nature comes from.

But beyond even such matters of principle, there are serious

practical problems with the idea of getting randomness from initial

conditions, at least in the case of the kneading process discussed above.

The issue is that the description of the kneading process that we

have used ignores certain obvious physical realities. Most important

among these is that any material one works with will presumably be

made of atoms. And as a result, the notion of being able to make

arbitrarily small changes in the position of a point is unrealistic.

One might think that atoms would always be so small that their size

would in practice be irrelevant. But the whole point is that the kneading

process continually amplifies distances. And indeed after just thirty steps,

the description of the kneading process given above would imply that two

points initially only one atom apart would end up nearly a meter apart.

Yet long before this would ever happen in practice other effects

not accounted for in our simple description of the kneading process

would inevitably also become important. And often such effects will

tend to introduce new randomness from the environment. So the idea

that randomness comes purely from initial conditions can be realistic

only for a fairly small number of steps; randomness which is seen after

that must therefore typically be attributed to other mechanisms.

One might think that the kneading process we have been

discussing is just a bad example, and that in other cases, randomness

from initial conditions would be more significant.

The picture on the facing page shows a system in which a beam

of light repeatedly bounces off a sequence of mirrors. The system is set

up so that every time the light goes around, its position is modified in

exactly the same way as the position of a point in the kneading process.

And just as in the kneading process, there is very sensitive dependence

on the details of the initial conditions, and the behavior that is seen

reflects the digit sequence of these initial conditions.

But once again, in any practical implementation, the light would

go around only a few tens of times before being affected by microscopic
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An arrangement of mirrors set up
to exhibit randomness arising
from sensitive dependence on
initial conditions. The initial
condition for the system is
specified by the position of the
incoming light ray in the gray
region at the top of each picture.
Whether the light ray goes to the
left or to the right at each step is
then determined by successive
digits in the base 2 representation
for the number that gives the
initial condition. The heart of the
system is the “amplifier” shown
on the left which uses a pair of
parabolic mirrors to double the
displacement of each incoming
ray. The initial condition used here
is , which has digit sequence
0.1100100100001111111.

p /4
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perturbations in the mirrors and by other phenomena that are not

accounted for in the simple description we have given.

At the heart of the system shown on the previous page is a

slightly complicated arrangement of parabolic mirrors. But it turns out

that almost any convex reflector will lead to the divergence of

trajectories necessary to get sensitive dependence on initial conditions.

Indeed, the simple pegboard shown below exhibits the same

phenomenon, with balls dropped at even infinitesimally different initial

positions eventually following very different trajectories.

The details of these trajectories cannot be deduced quite as

directly as before from the digit sequences of initial positions, but

Paths followed by four idealized balls dropped from initial positions differing by one part in a thousand into an array of identical circular
pegs. The balls are taken to fall under gravity, and to bounce elastically whenever they hit a peg. As illustrated in the inset, small
differences in direction are amplified—roughly doubling—at each bounce, with the result that after a few bounces the trajectories of the
three balls are quite different. In a physical version of the system with balls of the same actual size as on this page perturbations from
the environment will inevitably be amplified to have a significant effect on the trajectories after roughly the number of bounces shown.
Versions of the system illustrated here—particularly with smaller peg spacings—are sometimes known as Galton or quincunx boards,
and have been used since the late 1800s to demonstrate principles of probability theory. If balls are assumed to fall randomly on each
side of each peg then with a large number of balls the final positions will approximate a binomial distribution.
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exactly the same phenomenon of successively sampling less and less

significant digits still occurs. And once again, at least for a while, any

randomness in the motion of the ball can be attributed to randomness

in this initial digit sequence. 

But after at most ten or so collisions, many other effects, mostly

associated with continual interaction with the environment, will

always in practice become important, so that any subsequent

randomness cannot solely be attributed to initial conditions.

And indeed in any system, the amount of time over which the

details of initial conditions can ever be considered the dominant source

of randomness will inevitably be limited by the level of separation that

exists between the large-scale features that one observes and small-scale

features that one cannot readily control.

So in what kinds of systems do the largest such separations occur?

The answer tends to be systems in astronomy. And as it turns out, the

so-called three-body problem in astronomy was the very first place where

sensitive dependence on initial conditions was extensively studied.

The three-body problem consists in determining the motion of

three bodies—such as the Earth, Sun and Moon—that interact through

gravitational attraction. With just two bodies, it has been known for

nearly four hundred years that the orbits that occur are simple ellipses

or hyperbolas. But with three bodies, the motion can be much more

complicated, and—as was shown at the end of the 1800s—can be

sensitively dependent on the initial conditions that are given. 

The pictures on the next page show a particular case of the

three-body problem, in which there are two large masses in a simple

elliptical orbit, together with an infinitesimally small mass moving up and

down through the plane of this orbit. And what the pictures demonstrate is

that even if the initial position of this mass is changed by just one part in a

hundred million, then within 50 revolutions of the large masses the

trajectory of the small mass will end up being almost completely different. 

So what happens in practice with planets and other bodies in our

solar system? Observations suggest that at least on human timescales

most of their motion is quite regular. And in fact this regularity was in
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the past taken as one of the key pieces of evidence for the idea that

simple laws of nature could exist.

But calculations imply that sensitive dependence on initial

conditions should ultimately occur even in our solar system. Needless

to say, we do not have the option of explicitly setting up different initial

conditions. But if we could watch the solar system for a few million

years, then there should be significant randomness that could be

attributed to sensitive dependence on the digit sequences of initial

conditions—and whose presence in the past may explain some observed

present-day features of our solar system.

An example of the three-body problem, in which an idealized planet moves up and down through the plane of two equal-mass idealized
stars in a perfect elliptical orbit. The trajectories obtained with four possible initial positions for the planet—differing by 10-8—are shown.
The pictures are made assuming the system to be in uniform motion from left to right. Successive black dots indicate where the planets
are on each revolution of the stars. The main picture shows what happens over the course of 100 revolutions. The planet is assumed to be
of negligible mass relative to the stars, and to start with zero vertical velocity at exactly an equal distance between the stars. The
divergence of trajectories with slightly different initial vertical positions indicates sensitive dependence on initial conditions.
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The Intrinsic Generation of Randomness

In the past two sections, we have studied two possible mechanisms that

can lead to observed randomness. But as we have discussed, neither of

these in any real sense themselves generate randomness. Instead, what

they essentially do is just to take random input that comes from

outside, and transfer it to whatever system one is looking at.

One of the important results of this book, however, is that

there is also a third possible mechanism for randomness, in which no

random input from outside is needed, and in which randomness is

instead generated intrinsically inside the systems one is looking at. 

The picture below shows the rule 30 cellular automaton in which

I first identified this mechanism for randomness. The basic rule for the

system is very simple. And the initial condition is also very simple.

Yet despite the lack of anything that can reasonably be considered

random input, the evolution of the system nevertheless intrinsically

yields behavior which seems in many respects random.

As we have discussed before, traditional intuition makes it hard

to believe that such complexity could arise from such a simple

The rule 30 cellular automaton from page 27 that was the first example I found of intrinsic
randomness generation. There is no random input to this system, yet its behavior seems in many
respects random. I suspect that this is how much of the randomness that we see in nature arises. 
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underlying process. But the past several chapters have demonstrated

that this is not only possible, but actually quite common.

Yet looking at the cellular automaton on the previous page there

are clearly at least some regularities in the pattern it produces—like the

diagonal stripes on the left. But if, say, one specifically picks out the

color of the center cell on successive steps, then what one gets seems

like a completely random sequence.

But just how random is this sequence really?

For our purposes here the most relevant point is that so far as one

can tell the sequence is at least as random as sequences one gets from

any of the phenomena in nature that we typically consider random.

When one says that something seems random, what one usually

means in practice is that one cannot see any regularities in it. So when we

say that a particular phenomenon in nature seems random, what we

mean is that none of our standard methods of analysis have succeeded in

finding regularities in it. To assess the randomness of a sequence produced

by something like a cellular automaton, therefore, what we must do is to

apply to it the same methods of analysis as we do to natural systems. 

As I will discuss in Chapter 10, some of these methods have been

well codified in standard mathematics and statistics, while others are

effectively implicit in our processes of visual and other perception. But

the remarkable fact is that none of these methods seem to reveal any

real regularities whatsoever in the rule 30 cellular automaton sequence.

And thus, so far as one can tell, this sequence is at least as random as

anything we see in nature. 

But is it truly random?

Over the past century or so, a variety of definitions of true

randomness have been proposed. And according to most of these

definitions, the sequence is indeed truly random. But there are a certain

class of definitions which do not consider it truly random.

For these definitions are based on the notion of classifying as truly

random only sequences which can never be generated by any simple

procedure whatsoever. Yet starting with a simple initial condition and

then applying a simple cellular automaton rule constitutes a simple
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procedure. And as a result, the center column of rule 30 cannot be

considered truly random according to such definitions. 

But while definitions of this type have a certain conceptual

appeal, they are not likely to be useful in discussions of randomness in

nature. For as we will see later in this book, it is almost certainly

impossible for any natural process ever to generate a sequence which is

guaranteed to be truly random according to such definitions.

For our purposes more useful definitions tend to concentrate not

so much on whether there exists in principle a simple way to generate a

particular sequence, but rather on whether such a way can realistically

be recognized by applying various kinds of analysis to the sequence. And

as discussed above, there is good evidence that the center column of rule

30 is indeed random according to all reasonable definitions of this kind. 

So whether or not one chooses to say that the sequence is truly

random, it is, as far as one can tell, at least random for all practical

purposes. And in fact sequences closely related to it have been used

very successfully as sources of randomness in practical computing.

For many years, most kinds of computer systems and languages

have had facilities for generating what they usually call random numbers.

And in Mathematica—ever since it was first released—

has generated 0’s and 1’s using exactly the rule 30 cellular automaton. 

The way this works is that every time  is called,

another step in the cellular automaton evolution is performed, and the

value of the cell in the center is returned. But one difference from the

picture two pages ago is that for practical reasons the pattern is not

allowed to grow wider and wider forever. Instead, it is wrapped around

in a region that is a few hundred cells wide.

One consequence of this, as discussed on page 259, is that the

sequence of 0’s and 1’s that is generated must then eventually repeat. But

even with the fastest foreseeable computers, the actual period of repetition

will typically be more than a billion billion times the age of the universe.

Another issue is that if one always ran the cellular automaton

from page 315 with the particular initial condition shown there, then

one would always get exactly the same sequence of 0’s and 1’s. But by

using different initial conditions one can get completely different

Random�Integer�

Random�Integer�
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sequences. And in practice if the initial conditions are not explicitly

specified, what Mathematica does, for example, is to use as an initial

condition a representation of various features of the exact state of the

computer system at the time when  was first called.

The rule 30 cellular automaton provides a particularly clear and

good example of intrinsic randomness generation. But in previous

chapters we have seen many other examples of systems that also

intrinsically produce apparent randomness. And it turns out that one of

these is related to the method used since the late 1940s for generating

random numbers in almost all practical computer systems.

The pictures on the facing page show what happens if one

successively multiplies a number by various constant factors, and then

looks at the digit sequences of the numbers that result. As we first saw

on page 119, the patterns of digits obtained in this way seem quite

random. And the idea of so-called linear congruential random number

generators is precisely to make use of this randomness. 

For practical reasons, such generators typically keep only, say, the

rightmost 31 digits in the numbers at each step. Yet even with this

restriction, the sequences generated are random enough that at least

until recently they were almost universally what was used as a source

of randomness in practical computing. 

So in a sense linear congruential generators are another example

of the general phenomenon of intrinsic randomness generation. But it

turns out that in some respects they are rather unusual and misleading.

Keeping only a limited number of digits at each step makes it

inevitable that the sequences produced will eventually repeat. And one of

the reasons for the popularity of linear congruential generators is that

with fairly straightforward mathematical analysis it is possible to tell

exactly what multiplication factors will maximize this repetition period.

It has then often been assumed that having maximal repetition

period will somehow imply maximum randomness in all aspects of the

sequence one gets. But in practice over the years, one after another

linear congruential generator that has been constructed to have

maximal repetition period has turned out to exhibit very substantial

deviations from perfect randomness.

Random
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A typical kind of failure, illustrated in the pictures on the next

page, is that points with coordinates determined by successive numbers

from the generator turn out to be distributed in an embarrassingly

regular way. At first, such failures might suggest that more complicated

schemes must be needed if one is to get good randomness. And indeed

with this thought in mind all sorts of elaborate combinations of linear

congruential and other generators have been proposed. But although

some aspects of the behavior of such systems can be made quite

random, deviations from perfect randomness are still often found.

And seeing this one might conclude that it must be essentially

impossible to produce good randomness with any kind of system that has

reasonably simple rules. But the rule 30 cellular automaton that we

discussed above demonstrates that in fact this is absolutely not the case.

Patterns of digits in base 2 produced by starting with the number 1 and then repeatedly multiplying by various fixed
constants. In all cases, the complete pattern has a triangular form, but except in the first case, it is truncated on the left here.
The mathematical structure of these systems is nevertheless such that digits further to the left do not affect those shown: at
each step the number obtained is effectively reduced modulo , where  is the width of the picture. 2n n

multiplier 37 multiplier 65539

multiplier 3 multiplier 5
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multiplier 3

multiplier 37

multiplier 65539

Examples of three so-called linear congruential random number generators. In each case they start with the number 1, then
successively multiply by the specified multiplier, keeping only the rightmost 31 digits in the base 2 representation of the number
obtained at each step. A version of the case with multiplier 3 was already shown on page 120. Multiplier 65539 was used as the
random number generator on many computer systems, starting with mainframes in the 1960s. The last two pictures in each row
above give the distribution of points whose coordinates in two and three dimensions are obtained by taking successive numbers
from the linear congruential generator. If the output from the generator was perfectly random, then in each case these points would
be uniformly distributed. But as the pictures demonstrate, stripes are visible in either two or three dimensions, or both.
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Indeed, the rules for this cellular automaton are in some respects much

simpler than for even a rather basic linear congruential generator. Yet the

sequences it produces seem perfectly random, and do not suffer from any

of the problems that are typically found in linear congruential generators.

So why do linear congruential generators not produce better

randomness? Ironically, the basic reason is also the reason for their

popularity. The point is that unlike the rule 30 cellular automaton that

we discussed above, linear congruential generators are readily amenable

to detailed mathematical analysis. And as a result, it is possible for

example to guarantee that a particular generator will indeed have a

maximal repetition period.

Almost inevitably, however, having such a maximal period

implies a certain regularity. And in fact, as we shall see later in this

book, the very possibility of any detailed mathematical analysis tends to

imply the presence of at least some deviations from perfect randomness.

But if one is not constrained by the need for such analysis, then as

we saw in the cellular automaton example above, remarkably simple

rules can successfully generate highly random behavior.

And indeed the existence of such simple rules is crucial in

making it plausible that the general mechanism of intrinsic

randomness generations can be widespread in nature. For if the only

way for intrinsic randomness generation to occur was through very

complicated sets of rules, then one would expect that this mechanism

would be seen in practice only in a few very special cases.

But the fact that simple cellular automaton rules are sufficient to

give rise to intrinsic randomness generation suggests that in reality it is

rather easy for this mechanism to occur. And as a result, one can expect

that the mechanism will be found often in nature.

So how does the occurrence of this mechanism compare to the

previous two mechanisms for randomness that we have discussed?

The basic answer, I believe, is that whenever a large amount of

randomness is produced in a short time, intrinsic randomness

generation is overwhelmingly likely to be the mechanism responsible.

We saw in the previous section that random details of the initial

conditions for a system can lead to a certain amount of randomness in
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the behavior of a system. But as we discussed, there is in most practical

situations a limit on the lengths of sequences whose randomness can

realistically be attributed to such a mechanism. With intrinsic

randomness generation, however, there is no such limit: in the cellular

automaton above, for example, all one need do to get a longer random

sequence is to run the cellular automaton for more steps.

But it is also possible to get long random sequences by continual

interaction with a random external environment, as in the first

mechanism for randomness discussed in this chapter. 

The issue with this mechanism, however, is that it can take a

long time to get a given amount of good-quality randomness from it.

And the point is that in most cases, intrinsic randomness generation

can produce similar randomness in a much shorter time.

Indeed, in general, intrinsic randomness generation tends to be

much more efficient than getting randomness from the environment.

The basic reason is that intrinsic randomness generation in a sense puts

all the components in a system to work in producing new randomness,

while getting randomness from the environment does not.

Thus, for example, in the rule 30 cellular automaton discussed

above, every cell in effect actively contributes to the randomness we

see. But in a system that just amplifies randomness from the

environment, none of the components inside the system itself ever

contribute any new randomness at all. Indeed, ironically enough, the

more components that are involved in the process of amplification, the

slower it will typically be to get each new piece of random output. For

as we discussed two sections ago, each component in a sense adds what

one can consider to be more inertia to the amplification process. 

But with a larger number of components it becomes progressively

easier for randomness to be generated through intrinsic randomness

generation. And indeed unless the underlying rules for the system

somehow explicitly prevent it, it turns out in the end that intrinsic

randomness generation will almost inevitably occur—often producing

so much randomness that it completely swamps any randomness that

might be produced from either of the other two mechanisms.
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Yet having said this, one can ask how one can tell in an actual

experiment on some particular system in nature to what extent

intrinsic randomness generation is really the mechanism responsible

for whatever seemingly random behavior one observed.

The clearest sign is a somewhat unexpected phenomenon: that

details of the random behavior can be repeatable from one run of the

experiment to another. It is not surprising that general features of the

behavior will be the same. But what is remarkable is that if intrinsic

randomness generation is the mechanism at work, then the precise

details of the behavior can also be repeatable.

In the mechanism where randomness comes from continual

interaction with the environment, no repeatability can be expected. For

every time the experiment is run, the state of the environment will be

different, and so the behavior one sees will also be correspondingly

different. And similarly, in the mechanism where randomness comes

from the details of initial conditions, there will again be little, if any,

repeatability. For the details of the initial conditions are typically

affected by the environment of the system, and cannot realistically be

kept the same from one run to another.

But the point is that with the mechanism of intrinsic randomness

generation, there is no dependence on the environment. And as a result,

so long as the setup of the system one is looking at remains the same,

the behavior it produces will be exactly the same. Thus for example,

however many times one runs a rule 30 cellular automaton, starting

with a single black cell, the behavior one gets will always be exactly the

same. And so for example the sequence of colors of the center cell,

while seemingly random, will also be exactly the same.

But how easy is it to disturb this sequence? If one makes a fairly

drastic perturbation, such as changing the colors of cells all the way

from white to black, then the sequence will indeed often change, as

illustrated in the pictures at the top of the next page.

But with less drastic perturbations, the sequence can be quite

robust. As an example, one can consider allowing each cell to be not

just black or white, but any shade of gray, as in the continuous cellular

automata we discussed on page 155. And in such systems, one can
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investigate what happens if at every step one randomly perturbs the

gray level of each cell by a small amount.

The pictures on the facing page show results for perturbations of

various sizes. What one sees is that when the perturbations are

sufficiently large, the sequence of colors of the center cell does indeed

change. But the crucial point is that for perturbations below a certain

critical size, the sequence always remains essentially unchanged.

Even though small perturbations are continually being made, the

evolution of the system causes these perturbations to be damped out,

and produces behavior that is in practice indistinguishable from what

would be seen if there were no perturbations.

The question of what size of perturbations can be tolerated without

significant effect depends on the details of the underlying rules. And as

the pictures suggest, rules which yield more complex behavior tend to be

able to tolerate only smaller sizes of perturbations. But the crucial point is

that even when the behavior involves intrinsic randomness generation,

perturbations of at least some size can still be tolerated.

And the reason this is important is that in any real experiment,

there are inevitably perturbations on the system one is looking at. 

With more care in setting up the experiment, a higher degree of

isolation from the environment can usually be achieved. But it is never

possible to eliminate absolutely all interaction with the environment.

4 5 6

1 2 3

The effect of changing the number of initial black cells in the rule 30 cellular automaton shown above. With only 2 or 3 black
cells, the sequence in the center of the pattern does not change. But as soon as more black cells are added, it does change. 
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The effects of various levels of external randomness on the behavior of continuous cellular automata
with generalizations of rules 90 and 30. The value of each cell can be any gray level between 0 and 1.
For the generalization of rule 90, the values of the left and right cells are added together, and the
value of the cell on the next step is then found by applying the continuous generalization of the
modulo 2 function shown at the right. For the generalization of rule 30, a similar scheme based on an
algebraic representation of the rule is used. In both cases, every value at each step is also perturbed
by a random amount up to the percentage indicated for each picture. 

0 1 2 3 4
0

0.2
0.4
0.6
0.8

1

10% perturbations 15% perturbations

0% perturbations 5% perturbations

2% perturbations 5% perturbations

0.8% perturbations 1% perturbations

0% perturbations 0.5% perturbations
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And as a result, the system one is looking at will be subjected to at least

some level of random perturbations from the environment.

But what the pictures on the previous page demonstrate is that

when such perturbations are small enough, they will have essentially no

effect. And what this means is that when intrinsic randomness generation

is the dominant mechanism it is indeed realistic to expect at least some

level of repeatability in the random behavior one sees in real experiments.

So has such repeatability actually been seen in practice?

Unfortunately there is so far very little good information on this

point, since without the idea of intrinsic randomness generation there

was never any reason to look for such repeatability when behavior that

seemed random was observed in an experiment. 

But scattered around the scientific literature—in various corners

of physics, chemistry, biology and elsewhere—I have managed to find at

least some cases where multiple runs of the same carefully controlled

experiment are reported, and in which there are clear hints of

repeatability even in behavior that looks quite random.

If one goes beyond pure numerical data of the kind traditionally

collected in scientific experiments, and instead looks for example at the

visual appearance of systems, then sometimes the phenomenon of

repeatability becomes more obvious. Indeed, for example, as I will

discuss in Chapter 8, different members of the same biological species

often have many detailed visual similarities—even in features that on

their own seem complex and apparently quite random. 

And when there are, for example, two symmetrical sides to a

particular system, it is often possible to compare the visual patterns

produced on each side, and see what similarities exist. And as various

examples in Chapter 8 demonstrate, across a whole range of physical,

biological and other systems there can indeed be remarkable similarities.

So in all of these cases the randomness one sees cannot

reasonably be attributed to randomness that is introduced from the

environment—either continually or through initial conditions. And

instead, there is no choice but to conclude that the randomness must in

fact come from the mechanism of intrinsic randomness generation that

I have discovered in simple programs, and discussed in this section.
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The Phenomenon of Continuity

Many systems that we encounter in nature have behavior that seems in

some way smooth or continuous. Yet cellular automata and most of the

other programs that we have discussed involve only discrete elements.

So how can such systems ever reproduce what we see in nature?

The crucial point is that even though the individual components

in a system may be discrete, the average behavior that is obtained by

looking at a large number of these components may still appear to be

smooth and continuous. And indeed, there are many familiar systems

in nature where exactly this happens. 

Thus, for example, air and water seem like continuous fluids,

even though we know that at a microscopic level they are both in fact

made up of discrete molecules. And in a similar way, sand flows much

like a continuous fluid, even though we can easily see that it is actually

made up of discrete grains. So what is the basic mechanism that allows

systems with discrete components to produce behavior that seems

smooth and continuous?

Most often, the key ingredient is randomness.

If there is no randomness, then the overall forms that one sees

tend to reflect the discreteness of the underlying components. Thus, for

example, the faceted shape of a crystal reflects the regular microscopic

arrangement of discrete atoms in the crystal.

But when randomness is present, such microscopic details often

get averaged out, so that in the end no trace of discreteness is left, and

the results appear to be smooth and continuous. The next page shows a

classic example of this phenomenon, based on so-called random walks.

Each random walk is made by taking a discrete particle, and then

at each step randomly moving the particle one position to the left or

right. If one starts off with several particles, then at any particular time,

each particle will be at a definite discrete position. But what happens if

one looks not at the position of each individual particle, but rather at

the overall distribution of all particles?

The answer, as illustrated on the next page, is that if there are

enough particles, then the distribution one sees takes on a smooth and



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

328

continuous form, and shows no trace of the underlying discreteness of

the system; the randomness has in a sense successfully washed out

essentially all the microscopic details of the system.

The pictures at the top of the facing page show what happens if one

uses several different underlying rules for the motion of each particle. And

what one sees is that despite differences at a microscopic level, the overall

distribution obtained in each case has exactly the same continuous form.

10 particles 20 particles

1000 particles 10,000 particles 100,000 particles 1,000,000 particles

10 particles 20 particles 100 particles 200 particles

The distribution of positions by reached particles that follow random walks. The top left shows three individual examples of random
walks, in which each particle randomly moves one position to the left or right. Even though the individual particles are discrete, the
pictures show that when a large number of particles are considered, the overall behavior obtained seems smooth and continuous.
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Indeed, in the particular case of systems such as random walks,

the Central Limit Theorem suggested over two centuries ago ensures

that for a very wide range of underlying microscopic rules, the same

continuous so-called Gaussian distribution will always be obtained.

This kind of independence of microscopic details has many

important consequences. The pictures on the next page show, for

example, what happens if one looks at two-dimensional random walks

on square and hexagonal lattices. 

One might expect that the different underlying forms of these

lattices would lead to different shapes in overall distributions. But the

remarkable fact illustrated on the next page is that when enough

particles are considered, one gets in the end distributions that have a

purely circular shape that shows no trace of the different discrete

structures of the underlying lattices.

(a) (b) (c) (d)

(a)

(b)

(c)

(d)

A demonstration of the fact that for a wide range of underlying rules for each step in a random walk, the overall distribution
obtained always has the same continuous form. In case (a), each particle moves just one position to the left or right at
each step. In case (b), it can move between 0, 1 or 2 positions, while in case (c) it can move any distance between 0 and
1 at each step. Finally, in case (d), on alternate steps the particle moves either always to the right or always to the left.
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100 steps 101 steps 102 steps 103 steps 104 steps 105 steps

2000 steps; 1 particle 2000 steps; 20 particles

100 steps 101 steps 102 steps 103 steps 104 steps 105 steps

2000 steps; 1 particle 2000 steps; 20 particles 2000 steps; 1,000,000 particles

Examples of random walks on square and hexagonal lattices. Despite the different underlying lattices the average of sufficiently many
particles yields ultimately circular behavior in both cases—as implied by the Central Limit Theorem.

2000 steps; 1,000,000 particles
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Beyond random walks, there are many other systems based on

discrete components in which randomness at a microscopic level also

leads to continuous behavior on a large scale. The picture below shows

as one example what happens in a simple aggregation model. 

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9 step 10

Behavior of a simple aggregation model, in which a single new black cell is added at each step at a randomly chosen position
adjacent to the existing cluster of black cells. The system is a version of the so-called Eden model. The shape obtained is
ultimately an almost perfect circle. 

step 2500 step 5000 step 10,000

step 100,000 step 1,000,000
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The idea of this model is to build up a cluster of black cells by

adding just one new cell at each step. The position of this cell is chosen

entirely at random, with the only constraint being that it should be

adjacent to an existing cell in the cluster.

At early stages, clusters that are grown in this way look quite

irregular. But after a few thousand steps, a smooth overall roughly

circular shape begins to emerge. Unlike for the case of random walks,

there is as yet no known way to make a rigorous mathematical analysis

of this process. But just as for random walks, it appears once again that

the details of the underlying rules for the system do not have much

effect on the main features of the behavior that is seen.

The pictures below, for example, show generalizations of the

aggregation model in which new cells are added only at positions that

have certain numbers of existing neighbors. And despite such changes

Patterns produced by generalized aggregation models in
which a new cell is added only if (a) it would have only one
immediate neighbor (out of four), or (b) it would have either
one or four neighbors. The pictures above show step
30,000, while those on the right show step 200. Despite
the difference in underlying rules, the same basic overall
shape of pattern is eventually produced. 

(a) (b)

(a) (b)
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in underlying rules, the overall shapes of the clusters produced remain

very much the same.

In all these examples, however, the randomness that is involved

comes from the same basic mechanism: it is explicitly inserted from

outside at each step in the evolution of the system.

But it turns out that all that really seems to matter is that

randomness is present: the mechanism through which it arises appears

to be largely irrelevant. And in particular what this means is that

randomness which comes from the mechanism of intrinsic randomness

generation discussed in the previous section is able to make systems

with discrete components behave in seemingly continuous ways.

The picture on the next page shows a two-dimensional cellular

automaton where this happens. There is no randomness in the rules or

the initial conditions for this system. But through the mechanism of

intrinsic randomness generation, the behavior of the system exhibits

considerable randomness. And this randomness turns out to lead to an

overall pattern of growth that yields the same basic kind of smooth

roughly circular form as in the aggregation model.

Having seen this, one might then wonder whether in fact any

system that involves randomness will ultimately produce smooth

overall patterns of growth. The answer is definitely no. In discussing

two-dimensional cellular automata in Chapter 5, for example, we saw

many examples where randomness occurs, but where the overall forms

of growth that are produced have a complicated structure with no

particular smoothness or continuity.

As a rough guide, it seems that continuous patterns of growth are

possible only when the rate at which small-scale random changes occur

is substantially greater than the overall rate of growth. For in a sense it

is only then that there is enough time for randomness to average out the

effects of the underlying discrete structure.

And indeed this same issue also exists for processes other than

growth. In general the point is that continuous behavior can arise in

systems with discrete components only when there are features that

evolve slowly relative to the rate of small-scale random changes.
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step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8

step 9 step 10 step 11 step 12 step 13 step 14 step 15 step 16

A two-dimensional cellular automaton first shown on page 178 with the rule that if out of the eight neighbors (including diagonals)
around a given cell, there are exactly three black cells, then the cell itself becomes black on the next step. If the cell has 1, 2 or 4
black neighbors, then it stays the same color as before, and if it has 5 or more black neighbors, then it becomes white on the next
step. (Outer totalistic code 746.) This simple rule produces randomness through the mechanism of intrinsic randomness generation,
and this randomness in turn leads to a pattern of growth that takes on an increasingly smooth more-or-less circular form.

step 50 step 100 step 200

step 300 step 400
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The pictures on the next page show an example where this

happens. The detailed pattern of black and white cells in these pictures

changes at every step. But the point is that the large domains of black

and white that form have boundaries which move only rather slowly.

And at an overall level these boundaries then behave in a way that

looks quite smooth and continuous. 

It is still true, however, that at a small scale the boundaries

consist of discrete cells. But as the picture below shows, the detailed

configuration of these cells changes rapidly in a seemingly random way.

And just as in the other systems we have discussed, what then emerges

on average from all these small-scale random changes is overall

behavior that again seems in many ways smooth and continuous.

The behavior of an individual domain of black cells in the cellular automaton shown on the next page. The boundary of the domain
exhibits seemingly random fluctuations. But at an overall level, the behavior that is produced seems in many respects quite smooth
and continuous. The domain effectively behaves as if it has a surface tension, so that it first evolves to a roughly circular shape, then
shrinks eventually to nothing. The main black rectangle is initially 39 ä 29 cells in size.

step 1 step 2 step 3 step 4 step 5 step 6

step 10 step 20 step 30 step 40 step 50 step 60

step 100 step 150 step 200 step 250 step 300 step 350

step 400 step 450 step 500 step 550 step 600 step 650
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Behavior of a two-dimensional cellular automaton
starting from a random initial condition. At each
step, each cell looks at the total number of black
cells in the 9-cell neighborhood consisting of the
cell itself and the 8 cells adjacent to it (including
diagonals). If this total is less than 4, then the cell
becomes white on the next step, while if the total
is greater than 6, it becomes black. If the total is
exactly 5, then the cell becomes white, and if the
total is exactly 4, then it becomes black. (The rule has totalistic code 976.) The pictures show that on a large scale, the rule leads to
regions of black and white whose boundaries behave in a seemingly smooth and continuous way. Note that each picture is 80 cells
across, and is effectively wrapped around so that the left neighbor of the leftmost cell is the rightmost cell, and so on. 

step 1 step 2 step 3 step 4 step 5

step 10 step 20 step 30 step 40 step 50

step 100 step 150 step 200 step 250 step 300

step 350 step 400 step 450 step 500 step 550

step 600 step 700 step 800
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Origins of Discreteness

In the previous section we saw that even though a system may on a

small scale consist of discrete components, it is still possible for the

system overall to exhibit behavior that seems smooth and continuous.

And as we have discussed before, the vast majority of traditional

mathematical models have in fact been based on just such continuity. 

But when one looks at actual systems in nature, it turns out that

one often sees discrete behavior—so that, for example, the coat of a

zebra has discrete black and white stripes, not continuous shades of

gray. And in fact many systems that exhibit complex behavior show at

least some level of overall discreteness. 

So what does this mean for continuous models? In the previous

section we found that discrete models could yield continuous behavior.

And what we will find in this section is that the reverse is also true:

continuous models can sometimes yield behavior that appears discrete.

Needless to say, if one wants to study phenomena that are based

on discreteness, it usually makes more sense to start with a model that

is fundamentally discrete. But in making contact with existing

scientific models and results, it is useful to see how discrete behavior

can emerge from continuous processes.

The boiling of water provides a classic example. If one takes some

water and continuously increases its temperature, then for a while

nothing much happens. But when the temperature reaches 100°C, a

discrete transition occurs, and all the water evaporates into steam.

It turns out that there are many kinds of systems in which

continuous changes can lead to such discrete transitions. 

The pictures at the top of the next page show a simple example

based on a one-dimensional cellular automaton. The idea is to make

continuous changes in the initial density of black cells, and then to see

what effect these have on the overall behavior of the system.

One might think that if the changes one makes are always

continuous, then effects would be correspondingly continuous. But the

pictures on the next page demonstrate that this is not so.
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When the initial density of black cells has any value less than

50%, only white stripes ever survive. But as soon as the initial density

increases above 50%, a discrete transition occurs, and it is black stripes,

rather than white, that survive.

The pictures on the facing page show another example of the

same basic phenomenon. When the initial density of black cells is less

than 50%, all regions of black eventually disappear, and the system

becomes completely white. But as soon as the density increases above

50%, the behavior suddenly changes, and the system eventually

becomes completely black.

It turns out that such discrete transitions are fairly rare among

one-dimensional cellular automata, but in two and more dimensions

51% black 55% black 60% black

40% black 45% black 49% black

A one-dimensional cellular automaton that shows a discrete change in behavior when the properties of its initial conditions are
continuously changed. If the initial density of black cells is less than 50%, then only white stripes ultimately survive. But as soon as
the density increases above 50%, the white stripes disappear, and black stripes dominate. The underlying rule for the cellular
automaton shown takes the new color of a cell to be the color of its right neighbor if the cell is black and its left neighbor if the cell is
white. (This corresponds to rule 184 in the scheme described on page 53.)
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they become increasingly common. The pictures on the next page show

two examples—the second corresponding to a rule that we saw in a

different context at the end of the previous section.

In both examples, what essentially happens is that in regions

where there is an excess of black over white, an increasingly large

fraction of cells become black, while in regions where there is an excess

of white over black, the reverse happens. And so long as the boundaries

of the regions do not get stuck—as happens in many one-dimensional

cellular automata—the result is that whichever color was initially more

common eventually takes over the whole system.

A one-dimensional cellular automaton in which the density of black cells obtained after a large number of steps changes discretely
when the initial density of black cells is continuously increased. With an initial density below 50%, regions of black always
eventually disappear. But as soon as the density is increased above 50%, regions of black progressively expand, eventually taking
over the whole system. The underlying rule allows four possible colors for each cell. The rule is set up so that whenever a region of
black occurs to the left of a region of white, an expanding region of gray appears in between. The crucial point is then that if the
region of white is narrower than the region of black, then the gray will reach the edge of the white before it reaches the edge of the
black. And when this happens, the black expands and the gray gradually tapers away. 

40% black 45% black 55% black 60% black
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step 1 step 2 step 5 step 10 step 50 step 100

55%
black

step 1 step 2 step 5 step 10 step 50 step 100

45%
black

step 1 step 2 step 5 step 10 step 100 step 1000

55%
black

step 1 step 2 step 5 step 10 step 100 step 1000

45%
black

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9 step 10 step 11 step 12 step 13 step 14 step 15

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9 step 10 step 11 step 12 step 13 step 14 step 15

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9 step 10 step 11 step 12 step 13 step 14 step 15

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9 step 10 step 11 step 12 step 13 step 14 step 15

Two examples of two-dimensional cellular automata that show discrete transitions in behavior when the density of initial black cells is
continuously varied. In the top rule, the new color of a particular cell is found simply by looking at that cell and its immediate neighbors
above and to the right. If two or more of these three cells are black, then the new color is black; otherwise it is white. The pictures in
the middle above show that with this rule blocks of opposite color are progressively destroyed, so that whichever color was initially
more common eventually dominates completely. The bottom rule above is exactly the same as was shown on page 336. Whichever
color was initially more common again eventually dominates, though with this rule it takes somewhat longer for this to occur.
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In most cellular automata, the behavior obtained after a long

time is either largely independent of the initial density, or varies quite

smoothly with it. But the special feature of the cellular automata

shown on the facing page is that they have two very different stable

states—either all white or all black—and when one changes the initial

density a discrete transition occurs between these two states.

One might think that the existence of such a discrete transition

must somehow be associated with the discrete nature of the underlying

cellular automaton rules. But it turns out that it is also possible to get

such transitions in systems that have continuous underlying rules.

The pictures below show a standard very simple example of how this

can happen. If one starts to the left of the center hump, then the ball will

always roll into the left-hand minimum. But if one progressively changes

the initial position of the ball, then when one passes the center a discrete

transition occurs, and the ball instead rolls into the right-hand minimum.

Thus even though the mathematical equations which govern the

motion of the ball have a simple continuous form, the behavior they

produce still involves a discrete transition. And while this particular

example may seem contrived, it turns out that essentially the same

mathematical equations also occur in many other situations—such as

the evolution of chemical concentrations in various chemical reactions. 

And whenever such equations arise, they inevitably lead to a limited

number of stable states for the system, with discrete transitions occurring

between these states when the parameters of the system are varied.

A standard simple example of a continuous system in which there is a discrete change in behavior as
a consequence of a continuous change in initial conditions. When the ball starts anywhere to the left
of the center line, it rolls into the left-hand minimum. But if instead it starts on the right, then it rolls
into the right-hand minimum. There are many systems in nature that follow the same general form
of mathematical equations as those that describe the energy and motion of the ball. 
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So even if a system at some level follows continuous rules it is

still possible for the system to exhibit discrete overall behavior. And in

fact it is quite common for such behavior to be one of the most obvious

features of a system—which is why discrete systems like cellular

automata end up often being the most appropriate models.

The Problem of Satisfying Constraints

One feature of programs is that they immediately provide explicit rules

that can be followed to determine how a system will behave. But in

traditional science it is common to try to work instead with constraints

that are merely supposed implicitly to force certain behavior to occur.

At the end of Chapter 5 I gave some examples of constraints, and

I showed that constraints do exist that can force quite complex behavior

to occur. But despite this, my strong suspicion is that of all the

examples of complex behavior that we see in nature almost none can in

the end best be explained in terms of constraints.

The basic reason for this is that to work out what pattern of

behavior will satisfy a given constraint usually seems far too difficult

for it to be something that happens routinely in nature.

Many types of constraints—including those in Chapter 5—have

the property that given a specific pattern it is fairly easy to check

whether the pattern satisfies the constraints. But the crucial point is

that this fact by no means implies that it is necessarily easy to go from

the constraints to find a pattern that satisfies them.

The situation is quite different from what happens with explicit

evolution rules. For if one knows such rules then these rules

immediately yield a procedure for working out what behavior will

occur. Yet if one only knows constraints then such constraints do not

on their own immediately yield any specific procedure for working out

what behavior will occur.

In principle one could imagine looking at every possible pattern,

and then picking out the ones that satisfy the constraints. But even

with a 10 ä 10 array of black and white squares, the number of possible

patterns is already 1,267,650,600,228,229,401,496,703,205,376. And with a
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20 ä 20 array this number is larger than the total number of particles in

the universe. So it seems quite inconceivable that systems in nature

could ever carry out such an exhaustive search. 

One might imagine, however, that if such systems were just to

try patterns at random, then even though incredibly few of these

patterns would satisfy any given constraint exactly, a reasonable

number might at least still come close. But typically it turns out that

even this is not the case. And as an example, the pictures below show

what fraction of patterns chosen at random have a given percentage of

squares that violate the constraints described on page 211.

For the majority of patterns around 70% of the squares turn out

to violate the constraints. And in a 10 ä 10 array the chance of finding a

pattern where the fraction of squares that violate the constraints is even

less than 50% is only one in a thousand, while the chance of finding a

pattern where the fraction is less than 25% is one in four trillion. 

And what this means is that a process based on picking patterns

at random will be incredibly unlikely to yield results that are even close

to satisfying the constraints.

So how can one do better? A common approach used both in

natural systems and in practical computing is to have some form of

iterative procedure, in which one starts from a pattern chosen at

0% 25% 50% 75% 100%

5 × 5 array

0% 25% 50% 75% 100%

10 × 10 array

The fraction of all possible patterns in which a certain percentage of squares violate the
constraints discussed on page 211. Only a handful of patterns satisfy the constraints exactly (so
that 0% of the squares are wrong). For large arrays, the vast majority of possible patterns have
about 70% of the squares wrong. 
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random, then progressively modifies the pattern so as to make it closer

to satisfying the constraints.

As a specific example consider taking a series of steps, and at each

step picking a square in the array discussed above at random, then

reversing the color of this square whenever doing so will not increase

the total number of squares in the array that violate the constraints.

The picture below shows results obtained with this procedure.

For the first few steps, there is rapid improvement. But as one goes on,

one sees that the rate of improvement gets slower and slower. And even

after a million steps, it turns out that 15% of the squares in a 10 ä 10

array will on average still not satisfy the constraints.

In practical situations this kind of approximate result can

sometimes be useful, but the pictures at the top of the facing page show

that the actual patterns obtained do not look much at all like the exact

results that we saw for this system in Chapter 5.

0% 25% 50% 75% 100%

step 1

0% 25% 50% 75% 100%

step 10

0% 25% 50% 75% 100%

step 100

0% 25% 50% 75% 100%

step 1000

0% 25% 50% 75% 100%

step 10,000

0%

25%

50%

75%

100%

0 200 400 600 800 1000

0%

25%

50%

75%

100%

0 200 400 600 800 1000

(average)

The results of a procedure intended to produce patterns that get progressively closer to satisfying the constraints described on
page 211. The procedure starts with a randomly chosen pattern, then at each step picks a square in the pattern at random, and
reverses the color of this square whenever doing so does not increase the total number of squares in the pattern that violate the
constraints. The top picture shows one particular run of this procedure. The second picture shows the average behavior obtained
from many runs. And finally, the bottom picture shows how the fraction of patterns with different percentages of squares violating
the constraints changes as the procedure progresses. In all cases 10 ä 10 patterns are used. 
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So why does the procedure not work better? The problem turns

out to be a rather general one. And as a simple example, consider a line

of black and white squares, together with the constraint that each

square should have the same color as its right-hand neighbor. This

constraint will be satisfied only if every square has the same color—

either black or white. But to what extent will an iterative procedure

succeed in finding this solution?

As a first example, consider a procedure that at each step picks a

square at random, then reverses its color whenever doing so reduces the

total number of squares that violate the constraint. The pictures at the top

of the next page show what happens in this case. The results are

step 100 step 1000 step 10,000 step 100,000

(c)

step 100 step 1000 step 10,000 step 100,000 exact

(b)

step 100 step 1000 step 10,000 step 100,000 exact

(a)

Patterns generated by using the same procedure as in the previous picture but with three different sets of constraints.
Case (a) uses the same constraints as in the previous picture, (b) requires every black square and every white square
to have exactly two adjacent black squares, and (c) requires every black square to have 3 adjacent black squares and 1
white square, and every white square to have 4 adjacent white squares. In cases (a) and (b) it is possible to satisfy the
constraints exactly; in case (c) it is not. The pictures show the evolution of a 30 ä 30 array, which is nearly 10 times the
area of the array shown in the previous picture. Although the fraction of squares that violate the constraints is less
than 20% after 100,000 steps, the overall patterns still do not look much like the exact results.
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remarkably poor: instead of steadily evolving to all black or all white, the

system quickly gets stuck in a state that contains regions of different colors.

And as it turns out, this kind of behavior is not uncommon among

iterative procedures; indeed it is even seen in such simple cases as trying to

find the lowest point on a curve. The most obvious iterative procedure to

use for such a problem involves taking a series of small steps, with the

direction of each step being chosen so as locally to go downhill. 

And indeed for the first curve shown below, this procedure works

just fine, and quickly leads to the lowest point. But for the second

Results of four tries at applying an iterative procedure to find configurations which satisfy the
simple constraint that every square should be the same color as the square to its right. (The squares
are assumed to be arranged cyclically, so that the right neighbor of the rightmost square is the
leftmost square.) The procedure starts from a random configuration of squares, and then at each
step picks a square at random, then reverses the color of this square whenever doing so reduces
the total number of squares that violate the constraint. The only configurations that ultimately
satisfy the constraints are all white and all black. But the procedure gets stuck long before it reaches
these configurations. The problem is that for any block more than one square across changing the
color of a square at either end will not reduce the total number of squares that violate the
constraint. And as a result, such blocks remain fixed and cannot disappear. 

Three examples of curves. In the first case, the most obvious mechanical or mathematical
procedure of continually going downhill will successfully lead one to the lowest point. But in the
other two cases, this procedure will usually end up getting stuck at a local minimum. This is the
basic phenomenon which makes it difficult to find patterns that satisfy constraints exactly using a
procedure that is based on progressive improvement. The third picture above is a representation of
the kind of curve that arises in almost all discrete systems based on constraints.
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curve, the procedure will already typically not work; it will usually get

stuck in one of the local minima and never reach a global minimum.

And for discrete systems involving, say, just black and white squares,

it turns out to be almost inevitable that the curves which arise have the

kind of jagged form shown in the third picture at the bottom of the facing

page. So this has the consequence that a simple iterative procedure that

always tries to go downhill will almost invariably get stuck. 

How can one avoid this? One general strategy is to add

randomness, so that in essence one continually shakes the system to

prevent it from getting stuck. But the details of how one does this tend

to have a great effect on the results one gets.

The procedure at the top of the facing page already in a sense

involved randomness, for it picked a square at random at each step. But

as we saw, with this particular procedure the system can still get stuck.

Modifying the procedure slightly, however, can avoid this. And as

an example the pictures below show what happens if at each step one

reverses the color of a random square not only if this will decrease the

total number of squares violating the constraints, but also if it leaves this

number the same. In this case the system never gets permanently stuck,

and instead will always eventually evolve to satisfy the constraints. 

Results from a slight modification to the
procedure used in the picture at the top of
the facing page. A random square is again
picked at each step. But now the color of
that square is reversed not only if doing so
actually changes the total number of
squares that violate the constraint, but
also if it leaves this number the same.
With this procedure, evolution from any
initial condition can visit every possible
configuration, so that the configurations
which satisfy the constraints will at least
eventually be reached. 
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But this process may still take a very long time. And indeed in

the two-dimensional case discussed earlier in this section, the number

of steps required can be quite astronomically long.

So can one speed this up? The more one knows about a particular

system, the more one can invent tricks that work for that system. But

usually these turn out to lead only to modest speedups, and despite

various hopes over the years there seem in the end to be no techniques

that work well across any very broad range of systems.

So what this suggests is that even if in some idealized sense a

system in nature might be expected to satisfy certain constraints, it is

likely that in practice the system will actually not have a way to come

even close to doing this.

In traditional science the notion of constraints is often

introduced in an attempt to summarize the effects of evolution rules.

Typically the idea is that after a sufficiently long time a system should

be found only in states that are invariant under the application of its

evolution rules. And quite often it turns out that one can show that any

states that are invariant in this way must satisfy fairly simple

constraints. But the problem is that except in cases where the behavior

as a whole is very simple it tends not to be true that systems in fact

evolve to strictly invariant states. 

The two cellular automata on the left both have all white and all

black as invariant states. And in the first case, starting from random

initial conditions, the system quickly settles down to the all black

invariant state. But in the second case, nothing like this happens, and

instead the system continues to exhibit complicated and seemingly

random behavior forever.

The two-dimensional patterns that arise from the constraints at

the end of Chapter 5 all turn out to correspond to invariant states of

various two-dimensional cellular automata. And so for example the

pattern of page 211 is found to be the unique invariant state for 572,522

of the 4,294,967,296 possible five-neighbor cellular automaton rules.

But if one starts these rules from random initial conditions, one

typically never gets the pattern of page 211. Instead, as the pictures at

the top of the facing page show, one sees a variety of patterns that very

Two of the 28 elementary
cellular automata whose
only invariant states are
uniform in color. In the first
case one of these invariant
states is always reached;
in the second it is not.
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much more reflect explicit rules of evolution than the constraint

associated with the invariant state.

So what about actual systems in physics? Do they behave any

differently? As one example, consider a large number of circular coins

pushed together on a table. One can think of such a system as having an

invariant state that satisfies the constraint that the coins should be

packed as densely as possible. For identical coins this constraint is

satisfied by the simple repetitive pattern shown on the right. And it

turns out that in this particular case this pattern is quickly produced if

one actually pushes coins together on a table.

But with balls in three dimensions the situation is quite different.

In this case the constraint of densest packing is known to be satisfied

when the balls are laid out in the simple repetitive way shown on the

right. But if one just tries pushing balls together they almost always get

stuck, and never take on anything like the arrangement shown. And if

one jiggles the balls around one still essentially never gets this

arrangement. Indeed, the only way to do it seems to be to lay the balls

down carefully one after another.

In two dimensions similar issues arise as soon as one has coins of

more than one size. Indeed, even with just two sizes, working out how

to satisfy the constraint of densest packing is already so difficult that in

most cases it is still not known what configuration does it.

167812175

530763

176239055

18423119

1072764257

88710593

1840848327

89759053

2131825735

116497901

invariant state

Typical behavior of two-dimensional cellular automata that leave only the pattern on the right invariant. The
results shown come from 500 steps of evolution starting from random initial conditions. In no case does the
global behavior seen come even close to satisfying the simple constraints that determine the invariant state.

The densest packing of
identical circles in the
plane. Each circle is
surrounded by six others.

The densest packing of
identical spheres in three-
dimensional space. Each
sphere is surrounded by 12
others.
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ratio 1:0.8 ratio 1:0.7 ratio 1:0.5

ratio 1:1 ratio 1:0.95 ratio 1:0.9

step 11 step 12 step 13 step 14 step 15 step 16 step 17 step 18 step 19 step 20

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9 step 10

ratio 1:0.9

step 11 step 12 step 13 step 14 step 15 step 16 step 17 step 18 step 19 step 20

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9 step 10

ratio 1:1

Patterns obtained by successively laying down circles in such a way that the center of each new circle is as close as possible to the
center of the first circle. Except in the very first case, the extent to which these represent the densest possible packings is not clear,
and indeed it is quite possible that in most such actual packings circles of different sizes are just separated into several uniform regions.
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The pictures on the facing page show what happens if one starts

with a single circle, then successively adds new circles in such a way

that the center of each one is as close to the center of the first circle as

possible. When all circles are the same size, this procedure yields a

simple repetitive pattern. But as soon as the circles have significantly

different sizes, the pictures on the facing page show that this procedure

tends to produce much more complicated patterns—which in the end

may or may not have much to do with the constraint of densest packing.

One can look at all sorts of other physical systems, but so far as I can

tell the story is always more or less the same: whenever there is behavior of

significant complexity its most plausible explanation tends to be some

explicit process of evolution, not the implicit satisfaction of constraints.

One might still suppose, however, that the situation could be

different in biological systems, and that somehow the process of natural

selection might produce forms that are successfully determined by the

satisfaction of constraints. 

But what I strongly believe, as I discuss in the next chapter, is

that in the end, much as in physical systems, only rather simple forms

can actually be obtained in this way, and that when more complex

forms are seen they once again tend to be associated not with

constraints but rather with the effects of explicit evolution rules—

mostly those governing the growth of an individual organism.

Origins of Simple Behavior

There are many systems in nature that show highly complex behavior.

But there are also many systems that show rather simple behavior—

most often either complete uniformity, or repetition, or nesting. 

And what we have found in this book is that programs are very

much the same: some show highly complex behavior, while others

show only rather simple behavior.

Traditional intuition might have made one assume that there

must be a direct correspondence between the complexity of observed

behavior and the complexity of underlying rules. But one of the central

discoveries of this book is that in fact there is not. 
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For even programs with some of the very simplest possible rules

yield highly complex behavior, while programs with fairly complicated

rules often yield only rather simple behavior. And indeed, as we have

seen many times in this book, and as the pictures below illustrate, even

rules that are extremely similar can produce quite different behavior. 

If one just looks at a rule in its raw form, it is usually almost

impossible to tell much about the overall behavior it will produce. But

in cases where this behavior ends up being simple, one can often

recognize in it specific mechanisms that seem to be at work.

If the behavior of a system is simple, then this inevitably means

that it will have many regularities. And usually there is no definite way

to say which of these regularities should be considered causes of what

one sees, and which should be considered effects.

But it is still often useful to identify simple mechanisms that can

at least serve as descriptions of the behavior of a system.

In many respects the very simplest possible type of behavior in

any system is pure uniformity. And uniformity in time is particularly

straightforward, for it corresponds just to no change occurring in the

evolution of a system. But uniformity in space is already slightly more

complicated, and indeed there are several different mechanisms that can

be involved in it. A rather straightforward one, illustrated in the pictures

A sequence of elementary cellular automata whose rules differ from one to the next only at one
position (a Gray code sequence). Despite the similarity of their rules, the overall behavior of these
cellular automata differs considerably.
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below, is that some process can start at one point in space and then

progressively spread, doing the same thing at every point it reaches.

Another mechanism is that every part of a system can evolve

completely independently to the same state, as in the pictures below.

A slightly less straightforward mechanism is illustrated in the

pictures below. Here different elements in the system do interact, but

the result is still that all of them evolve to the same state. 

So far all the mechanisms for uniformity I have mentioned

involve behavior that is in a sense simple at every level. But in nature

uniformity often seems to be associated with quite complex

microscopic behavior. Most often what happens is that on a small scale

a system exhibits randomness, but on a larger scale this randomness

averages out to leave apparent uniformity, as in the pictures below.

Homogenous growth from a single point is
one straightforward way that uniformity in
space can be produced, here illustrated in a
mobile automaton and a cellular automaton.

Uniformity in space can be achieved
almost trivially if each element in a
system independently evolves to the
same state. 

Class 1 cellular automata
that exhibit evolution to a
uniform state, as discussed
in Chapter 6. 

Averaging out small-scale randomness yields apparent uniformity, as shown here for a rule 30 pattern. 
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It is common for uniform behavior to be quite independent of

initial conditions or other input to a system. But sometimes different

uniform behavior can be obtained with different input.

One way this can happen, illustrated in the pictures below, is for

the system to conserve some quantity—such as total density of black—

and for this quantity to end up being spread uniformly throughout the

system by its evolution.

An alternative is that the system may always evolve to certain

specific uniform phases, but the choice of which phase may depend on

the total value of some quantity, as in the pictures below.

Constraints are yet another basis for uniformity. And as a trivial

example, the constraint in a line of black or white cells that every cell

should be the same color as both its neighbors immediately implies that

the whole line must be either uniformly black or uniformly white.

Beyond uniformity, repetition can be considered the next-simplest

form of behavior. Repetition in time corresponds just to a system

repeatedly returning to a particular state.

This can happen if, for example, the behavior of a system in

effect follows some closed curve such as a circle which always leads

back to the same point. And in general, in any system with definite

rules that only ever visits a limited number of states, it is

With each cell at each step having a
gray level that is the average of its
predecessor and its two neighbors the
total amount of black is conserved, but
eventually becomes spread uniformly
throughout the system.

With different initial conditions this cellular automaton from page 339 can evolve either to uniform white or
uniform black. Such discrete transitions are somewhat less common in one dimension than elsewhere. 
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inevitable—as discussed on page 255 and illustrated above—that the

behavior of the system will eventually repeat.

In some cases the basic structure of a system may allow only a

limited number of possible states. But in other cases what happens is

instead just that the actual evolution of a system never reaches more

than a limited number of states.

Often it is very difficult to predict whether this will be so just by

looking at the underlying rules. But in a system like a cellular

automaton the typical reason for it is just that in the end effects never

spread beyond a limited region, as in the examples shown below.

Given repetition in time, repetition in space will follow

whenever elements that repeat systematically move in space. The

pictures below show two cases of this, with the second picture

illustrating the notion of waves that is common in traditional physics.

Growth from a simple seed can also readily lead to repetition in

both space and time, as in the pictures below.

The behavior of a system will be repetitive in time
whenever it effectively follows a closed curve—either
literally in space, or in terms of states that it visits.

Examples of behavior in mobile
automata and cellular automata that
remains localized to a limited region
and thus always eventually repeats. 

Examples where repetition
in time leads directly to
repetition in space. The
second picture shows
standard wave motion. 

Cellular automata in
which a repetitive pattern
in both space and time is
generated by evolution
from a simple seed.
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But what about random initial conditions? Repetition in time is

still easy to achieve—say just by different parts of a system behaving

independently. But repetition in space is slightly more difficult to

achieve. For even if localized domains of repetition form, they need to

have some mechanism for combining together.

And the walls between different domains often end up not being

mobile enough to allow this to happen, as in the examples below.

But there are certainly cases—in one dimension and particularly

above—where different domains do combine, and exact repetition is

achieved. Sometimes this happens quickly, as in the picture on the left.

But in other cases it happens only rather slowly. An example is

rule 110, in which repetitive domains form with period 14 in space and

7 in time, but as the picture below illustrates, the localized structures

which separate these domains take a very long time to disappear.

As we saw at the end of Chapter 5, many systems based on

constraints also in principle yield repetition—though from the

discussion of the previous section it seems likely that this is rarely a

good explanation for actual repetition that we see in nature.

rule 50 rule 54 rule 62

Cellular automata in which domains of repetitive behavior form, but in which walls typically remain forever between these domains.

A cellular automaton (rule 184)
in which domains quickly
combine to make the whole
system repetitive in space.

from step 1 from step 1000 from step 5000

The behavior of rule 110 starting from random initial conditions. Domains of repetitive behavior are formed, which in most cases
gradually combine as the localized structures which separate them disappear.



M E C H A N I S M S  I N  P R O G R A M S  A N D  N A T U R E C H A P T E R  7

357

Beyond uniformity and repetition, the one further type of simple

behavior that we have often encountered in this book is nesting. And as

with uniformity and repetition, there are several quite different ways

that nesting seems to arise.

Nesting can be defined by thinking in terms of splitting into

smaller and smaller elements according to some fixed rule. And as the

pictures below illustrate, nested patterns are generated very directly in

substitution systems by each element successively splitting explicitly

into blocks of smaller and smaller elements.

An essentially equivalent process involves every element

branching into smaller and smaller elements and eventually forming a

tree-like structure, as in the pictures below.

So what makes a system in nature operate in this way? Part of it

is that the same basic rules must apply regardless of physical scale. But

on its own this would be quite consistent with various kinds of uniform

or spiral growth, and does not imply that there will be what we usually

think of as nesting. And indeed to get nesting seems to require that

there also be some type of discrete splitting or branching process in

which several distinct elements arise from an individual element.

step 4 step 5 step 6

step 1 step 2 step 3

Nesting in one- and two-dimensional neighbor-independent
substitution systems in which each element breaks into a block of
smaller elements at each step.

Nested patterns generated by simple branching processes. (Compare page 406.)
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A somewhat related source of nesting relevant in many

mathematical systems is the nested pattern formed by the digit

sequences of successive numbers, as illustrated on page 117.

But in general nesting need not just arise from larger elements

being broken down into smaller ones: for as we have discovered in this

book it can also arise when larger elements are built up from smaller

ones—and indeed I suspect that this is its more common origin in nature.

As an example, the pictures below show how nested patterns

with larger and larger features can be built up by starting with a single

black cell, and then following simple additive cellular automaton rules.

It turns out that the very same patterns can also be produced—as

the pictures below illustrate—by processes in which new branches form

at regular intervals, and annihilate when any pair of them collide.

But what about random initial conditions? Can nesting also arise

from these? It turns out that it can. And the basic mechanism is

typically some kind of progressive annihilation of elements that are

initially distributed randomly.

Nested patterns built by the evolution of the rule 90 and rule 150 additive cellular automata starting
from a single black cell.

Nested patterns obtained by processes in which either two or three branches are formed at regular
intervals, and annihilate when any pair of them collide. 
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The pictures below show an example, based on the rule 184

cellular automaton. Starting from random initial conditions this rule

yields a collection of stripes which annihilate whenever they meet,

leading to a sequence of progressively larger nested regions.

And as the pictures show, these regions form a pattern that

corresponds to a random tree that builds up from its smallest branches,

much in the way that a river builds up from its tributaries.

Nesting in rule 184 is easiest to see when the initial conditions

contain exactly equal numbers of black and white cells, so that the

numbers of left and right stripes exactly balance, and all stripes

eventually annihilate. But even when the initial conditions are such

that some stripes survive, nested regions are still formed by the stripes

that do annihilate. And indeed in essentially any system where there

are domains that grow fairly independently and then progressively

merge the same basic overall nesting will be seen.

As an example, the picture below shows the rule 110 cellular

automaton evolving from random initial conditions. The picture

The generation of a nested pattern by rule 184 starting from random initial conditions. The pattern consists of a collection of
stripes, highlighted in the second picture, which form the tree-like structure shown in the third picture. The initial condition used
has exactly equal numbers of black and white cells, causing all the stripes eventually to annihilate. 

A highly compressed representation of
the evolution of rule 110 from random
initial conditions in which only the first cell
in every 14 ä 7 block is sampled. 
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samples just the first cell in every 14 ä 7 block of cells, making each

domain of repetitive behavior stand out as having a uniform color. 

In the detailed behavior of the various localized structures that

separate these domains of repetitive behavior there is all sorts of

complexity. But what the picture suggests is that at some rough overall

level these structures progressively tend to annihilate each other, and in

doing so form an approximate nested pattern.

It turns out that this basic process is not restricted to systems

which produce simple uniform or repetitive domains. And the

pictures below show for example cases where the behavior inside each

domain is quite random. 

Instead of following simple straight lines, the boundaries of these

domains now execute seemingly random walks. But the fact that they

annihilate whenever they meet once again tends to lead to an overall

nested pattern of behavior.

So what about systems based on constraints? Can these also lead

to nesting? In Chapter 5 I showed that they can. But what I found is that

whereas at least in principle both uniformity and repetition can be

forced fairly easily by constraints, nesting usually cannot be. 

At the outset, one might have thought that there would be just

one definite mechanism for each type of simple behavior. But what we

k=3 totalistic code 1893 elementary rule 18 (compressed)

Examples involving domains containing apparent randomness. In the second picture, each element shown represents a
2 ä 2 block of original cells. In both cases, the boundaries between domains appear to follow random walks, annihilating
when they meet and thus forming a nested overall pattern. 
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have seen in this section is that in fact there are usually several

apparently quite different mechanisms possible.

Often one can identify features in common between the various

mechanisms for any particular kind of behavior. But typically these end

up just being inevitable consequences of the fact that some specific

kind of behavior is being produced.

And so, for example, one might notice that most mechanisms for

nesting can at some level be viewed as involving hierarchies in which

higher components affect lower ones, but not the other way around. But

in a sense this observation is nothing more than a restatement of a

property of nesting itself.

So in the end one can indeed view most of the mechanisms that I

have discussed in this section as being in some sense genuinely

different. Yet as we have seen all of them can be captured by quite

simple programs. And in Chapter 12 I will discuss how this is related to

the fact that so few fundamentally different types of overall behavior

ultimately seem to occur.
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8
Implications for 
Everyday Systems

Issues of Modelling

In the previous chapter I showed how various general forms of

behavior that are common in nature can be understood by thinking in

terms of simple programs. In this chapter what I will do is to take

what we have learned, and look at a sequence of fairly specific kinds

of systems in nature and elsewhere, and in each case discuss how the

most obvious features of their behavior arise.

The majority of the systems I consider are quite familiar from

everyday life, and at first one might assume that the origins of their

behavior would long ago have been discovered. But in fact, in almost all

cases, rather little turns out to be known, and indeed at any

fundamental level the behavior that is observed has often in the past

seemed quite mysterious. But what we will discover in this chapter is

that by thinking in terms of simple programs, the fundamental origins

of this behavior become much less mysterious.

It should be said at the outset that it is not my purpose to explain

every detail of all the various kinds of systems that I discuss. And in

fact, to do this for even just one kind of system would most likely take

at least another whole book, if not much more.

But what I do want to do is to identify the basic mechanisms that

are responsible for the most obvious features of the behavior of each

kind of system. I want to understand, for example, how in general
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snowflakes come to have the intricate shapes they do. But I am not

concerned, for example, with details such as what the precise curvature

of the tips of the arms of the snowflake will be.

In most cases the basic approach I take is to try to construct the

very simplest possible model for each system. From the intuition of

traditional science we might think that if the behavior of a system is

complex, then any model for the system must also somehow be

correspondingly complex. 

But one of the central discoveries of this book is that this is not in

fact the case, and that at least if one thinks in terms of programs rather

than traditional mathematical equations, then even models that are

based on extremely simple underlying rules can yield behavior of great

complexity. And in fact in the course of this chapter, I will construct a

whole sequence of remarkably simple models that do rather well at

reproducing the main features of complex behavior in a wide range of

everyday natural and other systems.

Any model is ultimately an idealization in which only certain

aspects of a system are captured, and others are ignored. And certainly

in each kind of system that I consider here there are many details that

the models I discuss do not address. But in most cases there have in the

past never really been models that can even reproduce the most obvious

features of the behavior we see. So it is already major progress that the

models I discuss yield pictures that look even roughly right.

In many traditional fields of science any model which could yield

such pictures would immediately be considered highly successful. But

in some fields—especially those where traditional mathematics has

been used the most extensively—it has come to be believed that in a

sense the only truly objective or scientific way to test a model is to look

at certain rather specific details.

Most often what is done is to extract a small set of numbers from

the observed behavior of a system, and then to see how accurately these

numbers can be reproduced by the model. And for systems whose

overall behavior is fairly simple, this approach indeed often works quite

well. But when the overall behavior is complex, it becomes impossible

to characterize it in any complete way by just a few numbers.
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And indeed in the literature of traditional science I have quite often

seen models which were taken very seriously because they could be made

to reproduce a few specific numbers, but which are shown up as

completely wrong if one works out the overall behavior that they imply.

And in my experience by far the best first step in assessing a model is not

to look at numbers or other details, but rather just to use one’s eyes, and

to compare overall pictures of a system with pictures from the model. 

If there are almost no similarities then one can reasonably

conclude that the model is wrong. But if there are some similarities and

some differences, then one must decide whether or not the differences

are crucial. Quite often this will depend, at least in part, on how one

intends to use the model. But with appropriate judgement it is usually

not too difficult from looking at overall behavior to get at least some

sense of whether a particular model is on the right track.

Typically it is not a good sign if the model ends up being almost

as complicated as the phenomenon it purports to describe. And it is an

even worse sign if when new observations are made the model

constantly needs to be patched in order to account for them.

It is usually a good sign on the other hand if a model is simple,

yet still manages to reproduce, even quite roughly, a large number of

features of a particular system. And it is an even better sign if a fair

fraction of these features are ones that were not known, or at least not

explicitly considered, when the model was first constructed.

One might perhaps think that in the end one could always tell

whether a model was correct by explicitly looking at sufficiently

low-level underlying elements in a system and comparing them with

elements in the model. But one must realize that a model is only ever

supposed to provide an abstract representation of a system—and there is

nothing to say that the various elements in this representation need

have any direct correspondence with the elements of the system itself.

Thus, for example, a traditional mathematical model might say

that the motion of a planet is governed by a set of differential equations.

But one does not imagine that this means that the planet itself contains

a device that explicitly solves such equations. Rather, the idea is that
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the equations provide some kind of abstract representation for the

physical effects that actually determine the motion of the planet.

When I have discussed models like the ones in this chapter with

other scientists I have however often encountered great confusion about

such issues. Perhaps it is because in a simple program it is so easy to see

the underlying elements and the rules that govern them. But countless

times I have been asked how models based on simple programs can

possibly be correct, since even though they may successfully reproduce

the behavior of some system, one can plainly see that the system itself

does not, for example, actually consist of discrete cells that, say, follow

the rules of a cellular automaton.

But the whole point is that all any model is supposed to do—

whether it is a cellular automaton, a differential equation, or anything

else—is to provide an abstract representation of effects that are

important in determining the behavior of a system. And below the level

of these effects there is no reason that the model should actually

operate like the system itself. 

Thus, for example, a cellular automaton can readily be set up to

represent the effect of an inhibition on growth at points on the surface

of a snowflake where new material has recently been added. But in the

cellular automaton this effect is just implemented by some rule for

certain configurations of cells—and there is no need for the rule to

correspond in any way to the detailed dynamics of water molecules.

So even though there need not be any correspondence between

elements in a system and in a model, one might imagine that there

must still be some kind of complete correspondence between effects.

But the whole point of a model is to have a simplified representation of

a system, from which those features in which one is interested can

readily be deduced or understood. And the only way to achieve this is to

pick out only certain effects that are important, and to ignore all others.

Indeed, in practice, the main challenge in constructing models is

precisely to identify which effects are important enough that they have

to be kept, and which are not. In some simple situations, it is

sometimes possible to set up experiments in which one can essentially

isolate each individual effect and explicitly measure its importance. But
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in the majority of cases the best evidence that some particular set of

effects are in fact the important ones ultimately comes just from the

success of models that are based on these effects.

The systems that I discuss in this chapter are mostly complicated

enough that there are at least tens of quite different effects that could

contribute to their overall behavior. But in trying to construct the

simplest possible models, I have always picked out just a few effects

that I believe will be the most important. Inevitably there will be

phenomena that depend on other effects, and which are therefore not

correctly reproduced by the models I consider. So if these phenomena

are crucial to some particular application, then there will be no choice

but to extend the model for that application. 

But insofar as the goal is to understand the basic mechanisms

that are responsible for the most obvious features of overall behavior, it

is important to keep the underlying model as simple as possible. For

even with just a few extensions models usually become so complicated

that it is almost impossible to tell where any particular feature of

behavior really comes from.

Over the years I have been able to watch the progress of perhaps a

dozen significant models that I have constructed—though in most cases

never published—for a variety of kinds of systems with complex

behavior. My original models have typically been extremely simple.

And the initial response to them has usually been great surprise that

such simple models could ever yield behavior that has even roughly the

right features. But experts in the particular types of systems involved

have usually been quick to point out that there are many details that

my models do not correctly reproduce. 

Then after an initial period where the models are often said to be

too simplistic to be worth considering, there begin to be all sorts of

extensions added that attempt to capture more effects and more details.

The result of this is that after a few years my original models have

evolved into models that are almost unrecognizably complex. But these

models have often then been used with great success for many practical

purposes. And at that point, with their success established, it

sometimes happens that the models are examined more carefully—and



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

368

it is then discovered that many of the extensions that were added were

in fact quite unnecessary, so that in the end, after perhaps a decade has

passed, it becomes recognized that models equivalent to the simple

ones I originally proposed do indeed work quite well.

One might have thought that in the literature of traditional

science new models would be proposed all the time. But in fact the vast

majority of what is done in practically every field of science involves

not developing new models but rather accumulating experimental data

or working out consequences of existing models.

And among the models that have been used, almost all those that

have gone beyond the level of being purely descriptive have ended up

being formulated in very much the same kind of way: typically as

collections of mathematical equations. Yet as I emphasized at the very

beginning of this book, this is, I believe, the main reason that in the past

it has been so difficult to find workable models for systems whose

behavior is complex. And indeed it is one of the central ideas of this

book to go beyond mathematical equations, and to consider models that

are based on programs which can effectively involve rules of any kind.

It is in many respects easier to work with programs than with

equations. For once one has a program, one can always find out what its

behavior will be just by running it. Yet with an equation one may need

to do elaborate mathematical analysis in order to find out what

behavior it can lead to. It does not help that models based on equations

are often stated in a purely implicit form, so that rather than giving an

actual procedure for determining how a system will behave—as a

program does—they just give constraints on what the behavior must be,

and provide no particular guidance about finding out what, if any,

behavior will in fact satisfy these constraints.

And even when models based on equations can be written in an

explicit form, they still typically involve continuous variables which

cannot for example be handled directly by a practical computer. When

their overall behavior is sufficiently simple, complete mathematical

formulas to describe this behavior can sometimes be found. But as soon

as the behavior is more complex there is usually no choice but to use

some form of approximation. And despite many attempts over the past
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fifty or so years, it has almost never been possible to demonstrate that

results obtained from such approximations even correctly reproduce

what the original mathematical equations would imply.

Models based on simple programs, however, suffer from no such

problems. For essentially all of them involve only discrete elements which

can be handled quite directly on a practical computer. And this means that

it becomes straightforward in principle—and often highly efficient in

practice—to work out at least the basic consequences of such models.

Many of the models that I discuss in this chapter are actually

based on some of the very simplest kinds of programs that I consider

anywhere in this book. But as we shall see, even these models appear

quite sufficient to capture the behavior of a remarkably wide range of

systems from nature and elsewhere—establishing beyond any doubt, I

believe, the practical value of thinking in terms of simple programs.

The Growth of Crystals

At a microscopic level crystals consist of regular arrays of atoms laid

out much like the cells in a cellular automaton. A crystal forms when a

liquid or gas is cooled below its freezing point. Crystals always start

from a seed—often a foreign object such as a grain of dust—and then

grow by progressively adding more atoms to their surface.

As an idealization of this process, one can consider a cellular

automaton in which black cells represent regions of solid and white

cells represent regions of liquid or gas. If one assumes that any cell

which is adjacent to a black cell will itself become black on the next

step, then one gets the patterns of growth shown below.

step 1 step 2 step 3 step 4 step 5 step 6

step 1 step 2 step 3 step 4 step 5 step 6

Cellular automata with rules that
specify that a cell should become
black if any of its neighbors are
already black. The patterns produced
have a simple faceted form that
reflects directly the structure of the
underlying lattice of cells.



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

370

The shapes produced in each case are very simple, and ultimately

consist just of flat facets arranged in a way that reflects directly the

structure of the underlying lattice of cells. And many crystals in

nature—including for example most gemstones—have similarly simple

faceted forms. But some do not. And as one well-known example,

snowflakes can have highly intricate forms, as illustrated below.

To a good approximation, all the molecules in a snowflake

ultimately lie on a simple hexagonal grid. But in the actual process of

snowflake growth, not every possible part of this grid ends up being

filled with ice. The main effect responsible for this is that whenever a

piece of ice is added to the snowflake, there is some heat released,

which then tends to inhibit the addition of further pieces of ice nearby.

One can capture this basic effect by having a cellular automaton

with rules in which cells become black if they have exactly one black

neighbor, but stay white whenever they have more than one black

neighbor. The pictures on the facing page show a sequence of steps in

the evolution of such a cellular automaton. And despite the simplicity

of its underlying rules, what one sees is that the patterns it produces are

strikingly similar to those seen in real snowflakes.

From looking at the behavior of the cellular automaton, one can

immediately make various predictions about snowflakes. For example,

Examples of typical forms of snowflakes. Note that the scales for different pictures are different.
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one expects that during the growth of a particular snowflake there

should be alternation between tree-like and faceted shapes, as new

branches grow but then collide with each other.

And if one looks at real snowflakes, there is every indication that

this is exactly what happens. And in fact, in general the simple cellular

automaton shown above seems remarkably successful at reproducing

all sorts of obvious features of snowflake growth. But inevitably there

are many details that it does not capture. And indeed some of the

photographs on the facing page do not in the end look much like

patterns produced at any step in the evolution shown above.

step 1 step 2 step 3 step 4 step 5 step 6 step 7

step 8 step 9 step 10 step 11 step 12 step 13

step 14 step 15 step 16 step 17 step 18 step 19

step 20 step 21 step 22 step 23 step 24 step 25

step 26 step 27 step 28 step 29 step 30 step 31

The evolution of a cellular automaton in which each cell on a hexagonal grid becomes black whenever exactly one of its
neighbors was black on the step before. This rule captures the basic growth inhibition effect that occurs in snowflakes. The
resulting patterns obtained at different steps look remarkably similar to many real snowflakes.
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But it turns out that as soon as one tries to make a more complete

model, there are immediately an immense number of issues that arise,

and it is difficult to know which are really important and which are not.

At a basic level, one knows that snowflakes are formed when water

vapor in a cloud freezes into ice, and that the structure of a given

snowflake is determined by the temperature and humidity of the

environment in which it grows, and the length of time it spends there. 

The growth inhibition mentioned above is a result of the fact that

when water or water vapor freezes into ice, it releases a certain amount

of latent heat—as the reverse of the phenomenon that when ice is

warmed to 0°C it still needs heat applied before it will actually melt.

But there are also many effects. The freezing temperature, for

example, effectively varies with the curvature of the surface. The rate of

heat conduction differs in different directions on the hexagonal grid.

Convection currents develop in the water vapor around the snowflake.

Mechanical stresses are produced in the crystal as it grows. 

Various models of snowflake growth exist in the standard

scientific literature, typically focusing on one or two of these effects.

But in most cases the models have at some basic level been rather

unsuccessful. For being based on traditional mathematical equations

they have tended to be able to deal only with what amount to fairly

simple smooth shapes—and so have never really been able to address

the kind of intricate structure that is so striking in real snowflakes. 

But with models based on simple programs such as cellular

automata, there is no problem in dealing with more complicated shapes,

and indeed, as we have seen, it is actually quite easy to reproduce the

basic features of the overall behavior that occurs in real snowflakes. 

So what about other types of crystals? 

In nature a variety of forms are seen. And as the pictures on the

facing page demonstrate, the same is true even in cellular automata

with very simple rules. Indeed, much as in nature, the diversity of

behavior is striking. Sometimes simple faceted forms are produced. But

in other cases there are needle-like forms, tree-like or dendritic forms, as

well as rounded forms, and forms that seem in many respects random.
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The occurrence of these last forms is at first especially surprising.

For one might have assumed that any apparent randomness in the final

shape of something like a crystal must always be a consequence of

randomness in its original seed, or in the environment in which it grew. 

But in fact, as the pictures above show—and as we have seen

many times in this book—it is also possible for randomness to arise

intrinsically just through the application of simple underlying rules.

And contrary to what has always been assumed, I suspect that this is

actually how the apparent randomness that one sometimes sees in

shapes formed by crystalline materials often comes about. 

case take a cell to become black if the specified number of its neighbors (including diagonals) on a square grid are black on the
step before. These rules are such that once a cell has become black, corresponding to solid, it never reverts to white again. In
each case a row of initial black cells of the specified length was used.

{3, 5, 6} (7 initial cells) {3, 7} (5 initial cells) {2, 5, 7} (2 initial cells) {3, 5, 7} (13 initial cells)

{1, 5} (1 initial cell) {1, 3, 5} (1 initial cell) {3, 6} (5 initial cells) {2, 4, 6} (2 initial cells)

{2} (2 initial cells) {1, 2} (1 initial cell) {1, 3} (1 initial cell) {3, 4} (3 initial cells)
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The Breaking of Materials

In everyday life one of the most familiar ways to generate randomness is

to break a solid object. For although the details vary from one material to

another it is almost universally the case that the line or surface along

which fracture actually occurs seems rough and in many respects random. 

So what is the origin of this randomness? At first one might think

that it must be a reflection of random small-scale irregularities within

the material. And indeed it is true that in materials that consist of

many separate crystals or grains, fractures often tend to follow the

boundaries between such elements.

But what happens if one takes for example a perfect single

crystal—say a standard highly pure industrial silicon crystal—and

breaks it? The answer is that except in a few special cases the pattern of

fracture one gets seems to look just as random as in other materials.

And what this suggests is that whatever basic mechanism is

responsible for such randomness, it cannot depend on the details of

particular materials. Indeed, the fact that almost indistinguishable

patterns of fracture are seen both at microscopic scales and in geological

systems on scales of order kilometers is another clue that there must be

a more general mechanism at work.

So what might this mechanism be?

When a solid material breaks what typically happens is that a

crack forms—usually at the edge of the material—and then spreads.

Experience with systems from hand-held objects to engineering

structures and earthquakes suggests that it can take a while for a crack

to get started, but that once it does, the crack tends to move quickly

and violently, usually producing a lot of noise in the process.

One can think of the components of a solid—whether at the level

of atoms, molecules, or pieces of rock—as being bound together by

forces that act a little like springs. And when a crack propagates

through the solid, this in effect sets up an elaborate pattern of

vibrations in these springs. The path of the crack is then in turn

determined by where the springs get stretched so far that they break.
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There are many factors which affect the details of displacements

and vibrations in a solid. But as a rough approximation one can perhaps

assume that each element of a solid is either displaced or not, and that

the displacements of neighboring elements interact by some definite

rule—say a simple cellular automaton rule.

The pictures below show the behavior that one gets with a simple

model of this kind. And even though there is no explicit randomness

inserted into the model in any way, the paths of the cracks that emerge

nevertheless appear to be quite random.

There are certainly many aspects of real materials that this model

does not even come close to capturing. But I nevertheless suspect that

even when much more realistic models for specific materials are used,

the fundamental mechanisms responsible for randomness will still be

very much the same as in the extremely simple model shown here.

rule 150 rule 22 rule 122

A very simple cellular automaton model for fracture. At each step, the color of each cell, which roughly
represents the displacement of an element of the solid, is updated according to a cellular automaton
rule. The black dot, representing the location of a crack, moves from one cell to another based on the
displacements of neighboring cells, at each step setting the cell it reaches to be white. Even though no
randomness is inserted from outside, the paths of the cracks that emerge from this model nevertheless
appear to a large extent random. There is some evidence from physical experiments that dislocations
around cracks can form patterns that look similar to the gray and white backgrounds above. 
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Fluid Flow

A great many striking phenomena in nature involve the flow of fluids

like air and water—as illustrated on the facing page. Typical of what

happens is what one sees when water flows around a solid object. At

sufficiently slow speeds, the water in effect just slides smoothly around,

yielding a very simple laminar pattern of flow. But at higher speeds,

there starts to be a region of slow-moving water behind the object, and a

pair of eddies are formed as the water swirls into this region. 

As the speed increases, these eddies become progressively more

elongated. And then suddenly, when a critical speed is reached, the

eddies in effect start breaking off, and getting carried downstream. But

every time one eddy breaks off, another starts to form, so that in the end

a whole street of eddies are seen in the wake behind the object.

At first, these eddies are arranged in a very regular way. But as the

speed of the flow is increased, glitches begin to appear, at first far behind

the object, but eventually throughout the wake. Even at the highest

speeds, some overall regularity nevertheless remains. But superimposed

on this is all sorts of elaborate and seemingly quite random behavior. 

But this is just one example of the very widespread phenomenon of

fluid turbulence. For as the pictures on the facing page indicate—and as

common experience suggests—almost any time a fluid is made to flow

rapidly, it tends to form complex patterns that seem in many ways random.

So why fundamentally does this happen?

Traditional science, with its basis in mathematical equations, has

never really been able to provide any convincing underlying explanation.

But from my discovery that complex and seemingly random behavior is in

a sense easy to get even with very simple programs, the phenomenon of

fluid turbulence immediately begins to seem much less surprising. 

But can simple programs really reproduce the particular kinds of

behavior we see in fluids? At a microscopic level, physical fluids consist

of large numbers of molecules moving around and colliding with each

other. So as a simple idealization, one can consider having a large

number of particles move around on a fixed discrete grid, and undergo

collisions governed by simple cellular-automaton-like rules.
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convection cells hydraulic jump supersonic sphere milk splash nuclear fireball

creeping flow attached eddies convection plumes cloud patterns billowing smoke

vortices behind accelerated airfoil gas jet in air Jupiter atmosphere

attached eddies behind cylinder vortex street section of water jet

falling water stream ink dropped in water rising smoke oil fire soap film turbulence

Examples of typical patterns generated in various kinds of fluid flow. Note the frequent occurrence of seemingly random turbulence. 
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The pictures below give an example of such a system. In the top

row of pictures—as well as picture (a)—all one sees is a collection of

discrete particles bouncing around. But if one zooms out, and looks at

average motion of increasingly large blocks of particles—as in pictures

(b) and (c)—then what begins to emerge is behavior that seems smooth

and continuous—just like one expects to see in a fluid. 

(c) 25725 averages

step 1000 step 1001 step 1002 step 1003

(a) individual cells (b) 575 averages

(d) moving with fluid

A simple cellular automaton system set up to emulate the microscopic behavior of
molecules in a fluid. At each step the configuration of particles is updated according to the
simple collision rules shown above. Particles are reflected whenever they hit the plate. A
steady stream of particles is inserted in a regular way far to the left, with an average speed
3/10 of the maximum possible. Picture (a) shows the configuration of individual particles;
pictures (b) and (c) show total velocities of successively larger blocks of particles. Picture
(d) is obtained by transforming to a reference frame in which the fluid is on average at rest.
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This happens for exactly the same reason as in a real fluid, or, for

that matter, in various examples that we saw in Chapter 7: even though at

an underlying level the system consists of discrete particles, the effective

randomness of the detailed microscopic motions of these particles makes

their large-scale average behavior seem smooth and continuous.

We know from physical experiments that the characteristics of

fluid flow are almost exactly the same for air, water, and all other

ordinary fluids. Yet at an underlying level these different fluids consist

of very different kinds of molecules, with very different properties. But

somehow the details of such microscopic structure gets washed out if

one looks at large-scale fluid-like behavior. 

Many times in this book we have seen examples where different

systems can yield very much the same overall behavior, even though

the details of their underlying rules are quite different. But in the

particular case of systems like fluids, it turns out that one can show—as

I will discuss in the next chapter—that so long as certain physical

quantities such as particle number and momentum are conserved, then

whenever there is sufficient microscopic randomness, it is almost

inevitable that the same overall fluid behavior will be obtained. 

So what this means is that to reproduce the observed properties

of physical fluids one should not need to make a model that involves

realistic molecules: even the highly idealized particles on the facing

page should give rise to essentially the same overall fluid behavior. 

And indeed in pictures (c) and (d) one can already see the

formation of a pair of eddies, just as in one of the pictures on page 377.

So what happens if one increases the speed of the flow? Does one

see the same kinds of phenomena as on page 377? The pictures on the

next page suggest that indeed one does. Below a certain critical speed, a

completely regular array of eddies is formed. But at the speed used in the

pictures on the next page, the array of eddies has begun to show random

irregularities just like those associated with turbulence in real fluids.

So where does this randomness come from?

In the past couple of decades it has come to be widely believed

that randomness in turbulent fluids must somehow be associated with
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step 70000

step 60000

step 50000

step 30000 step 40000

step 10000 step 20000

A larger example of the cellular
automaton system shown on the
previous page. In each picture
there are a total of 30 million
underlying cells. The individual
velocity vectors drawn correspond
to averages over 20 ä 20 blocks of
cells. Particles are inserted in a
regular way at the left-hand end so
as to maintain an overall flow
speed equal to about 0.4 of the
maximum possible. To make the
patterns of flow easier to see, the
velocities shown are transformed
so that the fluid is on average at
rest, and the plate is moving. The
underlying density of particles is
approximately 1 per cell, or 1/6
the maximum possible—a density
which more or less minimizes the
viscosity of the fluid. The Reynolds
number of the flow shown is then
approximately 100. The agreement
with experimental results on actual
fluid flows is striking. 
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sensitive dependence on initial conditions, and with the chaos

phenomenon that we discussed in Chapter 4. 

But while there are certainly mathematical equations that

exhibit this phenomenon, none of those typically investigated have any

close connection to realistic descriptions of fluid flow. 

And in the model on the facing page it turns out that there is

essentially no sensitive dependence on initial conditions, at least at the

level of overall fluid behavior. If one looks at individual particles, then

changing the position of even one particle will typically have an effect

that spreads rapidly. But if one looks instead at the average behavior of

many particles, such effects get completely washed out. And indeed

when it comes to large-scale fluid behavior, it seems to be true that in

almost all cases there is no discernible difference between what

happens with different detailed initial conditions.

So is there ever sensitive dependence on initial conditions?

Presumably there do exist situations in which there is some kind

of delicate balance—say of whether the first eddy is shed at the top or

bottom of an object—and in which small changes in initial conditions

can have a substantial effect. But such situations appear to be very

much the exception rather than the rule. And in the vast majority of

cases, small changes instead seem to damp out rapidly—just as one

might expect from everyday experience with viscosity in fluids.

So what this means is that the randomness we observe in fluid

flow cannot simply be a reflection of randomness that is inserted

through the details of initial conditions. And as it turns out, in the

pictures on the facing page, the initial conditions were specifically set

up to be very simple. Yet despite this, there is still apparent randomness

in the overall behavior that is seen.

And so, once again, just as for many other systems that we have

studied in this book, there is little choice but to conclude that in a

turbulent fluid most of the randomness we see is not in any way

inserted from outside but is instead intrinsically generated inside the

system itself. In the pictures on page 378 considerable randomness was

already evident at the level of individual particles. But since changes in

the configurations of such particles do not seem to have any discernible
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effect on overall patterns of flow, one cannot realistically attribute the

large-scale randomness that one sees in a turbulent fluid to randomness

that exists at the level of individual particles.

Instead, what seems to be happening is that intrinsic randomness

generation occurs directly at the level of large-scale fluid motion. And

as an example of a simple approach to modelling this, one can consider

having a collection of discrete eddies that occur at discrete positions in

the fluid, and interact through simple cellular automaton rules. 

The picture on the left shows an example of what can happen. And

although many details are different from what one sees in real fluids, the

overall mixture of regularity and randomness is strikingly similar.

One consequence of the idea that there is intrinsic randomness

generation in fluids and that it occurs at the level of large-scale fluid

motion is that with sufficiently careful preparation it should be possible

to produce patterns of flow that seem quite random but that are

nevertheless effectively repeatable—so that they look essentially the

same on every successive run of an experiment. 

And even if one looks at existing experiments on fluid flow, there

turn out to be quite a few instances—particularly for example involving

interactions between small numbers of vortices—where there are

known patterns of fluid flow that look intricate, but are nevertheless

essentially repeatable. And while none of these yet look complicated

enough that they might reasonably be called random, I suspect that in

time similar but vastly more complex examples will be found.

Among the patterns of fluid flow on page 377 each has its own

particular details and characteristics. But while some of the simpler

ones have been captured quite completely by methods based on

traditional mathematical equations, the more complex ones have not.

And in fact from the perspective of this book this is not surprising. 

But now from the experience and intuition developed from the

discoveries in this book, I expect that there will in fact be remarkably

simple programs that can be found that will successfully manage to

reproduce the main features of even the most intricate and apparently

random forms of fluid flow. 

A cellular automaton (rule 225)
whose behavior is reminiscent
of turbulent fluid flow.
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Fundamental Issues in Biology

Biological systems are often cited as supreme examples of complexity in

nature, and it is not uncommon for it to be assumed that their complexity

must be somehow of a fundamentally higher order than other systems. 

And typically it is thought that this must be a consequence of the

rather unique processes of adaptation and natural selection that operate

in biological systems. But despite all sorts of discussion over the years,

no clear understanding has ever emerged of just why such processes

should in the end actually lead to much complexity at all. 

And in fact what I have come to believe is that many of the most

obvious examples of complexity in biological systems actually have

very little to do with adaptation or natural selection. And instead what I

suspect is that they are mainly just another consequence of the very

basic phenomenon that I have discovered in this book in the context of

simple programs: that in almost any kind of system many choices of

underlying rules inevitably lead to behavior of great complexity.

The general idea of thinking in terms of programs is, if anything,

even more obvious for biological systems than for physical ones. For in

a physical system the rules of a program must normally be deduced

indirectly from the laws of physics. But in a biological organism there is

genetic material which can be thought of quite directly as providing a

program for the development of the organism.

Most of the programs that I have discussed in this book, however,

have been very simple. Yet the genetic program for every biological

organism known today is long and complicated: in humans, for example, it

presumably involves millions of separate rules—making it by most

measures as complex as large practical software systems like Mathematica. 

So from this one might think that the complexity we see in

biological organisms must all just be a reflection of complexity in their

underlying rules—making discoveries about simple programs not really

relevant. And certainly the presence of many different types of organs

and other elements in a typical complete organism seems likely to be

related to the presence of many separate sets of rules in the underlying
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program. But what if one looks not at a complete organism but instead

just at some part of an organism? 

Particularly on a microscopic scale, the forms one sees are often

highly regular and quite simple, as in the pictures on the facing page.

And when one looks at these, it seems perfectly reasonable to suppose

that they are in effect produced by fairly simple programs.

But what about the much more complicated forms that one sees

in biological systems? On the basis of traditional intuition one might

assume that such forms could never be produced by simple programs.

But from the discoveries in this book we now know that in fact it is

possible to get remarkable complexity even from very simple programs.

So is this what actually happens in biological systems?

There is certainly no dramatic difference between the underlying

types of cells or other elements that occur in complex biological forms

and in the forms on the facing page. And from this one might begin to

suspect that in the end the kinds of programs which generate all these

forms are quite similar—and all potentially rather simple. 

For even though the complete genetic program for an organism is

long and complicated, the subprograms which govern individual aspects

of an organism can still be simple—and there are now plenty of specific

simple examples where this is known to be the case. But still one might

assume that to get significant complexity would require something more.

And indeed at first one might think that it would never really be possible

to say much at all about complexity just by looking at parts of organisms.

But in fact, as it turns out, a rather large fraction of the most

obvious examples of biological complexity seem to involve only

surprisingly limited parts of the organisms. Elaborate pigmentation

patterns, for instance, typically exist just on an outer skin, and are made

up of only a few types of cells. And the vast majority of complicated

Examples of highly regular forms occurring in biological systems. Most of these forms are simple
enough that it seems immediately plausible that they could in effect be generated by simple
programs. The majority show either simple geometrical shapes, or repetition of identical
elements. A few, however, show various types of nesting. Note that there seems to be no obvious
correlation between the sophistication of a form and when in geological time it first appeared. 



I M P L I C A T I O N S  F O R  E V E R Y D A Y  S Y S T E M S C H A P T E R  8

385

octopus tentacle opened brachiopod starfish sea urchin armadillo skin

barnacle fly eye wasp nest fossil ammonite septa nautilus shell section

daisy corn insect muscle section Burgess Shale fossil trilobite

romanesco broccoli heather pollen cow parsley carrot leaf tobacco mosaic viruses

heliozoan axopod radiolarian thallus cactus chickweed pollen

protist microspine section alga chloroplast diatom coccolithophorid
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morphological structures get their forms from arrangements of very

limited numbers of types of cells or other elements.

But just how are the programs for these and other features of

organisms actually determined? Over the past century or so it has

become almost universally believed that at some level these programs

must end up being the ones that maximize the fitness of the organism,

and the number of viable offspring it produces. 

The notion is that if a line of organisms with a particular program

typically produce more offspring, then after a few generations there will

inevitably be vastly more organisms with this program than with other

programs. And if one assumes that the program for each new offspring

involves small random mutations then this means that over the course

of many generations biological evolution will in effect carry out a

random search for programs that maximize the fitness of an organism.

But how successful can one expect such a search to be?

The problem of maximizing fitness is essentially the same as the

problem of satisfying constraints that we discussed at the end of

Chapter 7. And what we found there is that for sufficiently simple

constraints—particularly continuous ones—iterative random searches

can converge fairly quickly to an optimal solution. But as soon as the

constraints are more complicated this is no longer the case. And indeed

even when the optimal solution is comparatively simple it can require an

astronomically large number of steps to get even anywhere close to it.

Biological systems do appear to have some tricks for speeding up

the search process. Sexual reproduction, for example, allows large-scale

mixing of similar programs, rather than just small-scale mutation. And

differentiation into organs in effect allows different parts of a program to

be updated separately. But even with a whole array of such tricks, it is still

completely implausible that the trillion or so generations of organisms

since the beginning of life on Earth would be sufficient to allow optimal

solutions to be found to constraints of any significant complexity.

And indeed one suspects that in fact the vast majority of features

of biological organisms do not correspond to anything close to optimal

solutions: rather, they represent solutions that were fairly easy to find,

but are good enough not to cause fatal problems for the organism.
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The basic notion that organisms tend to evolve to achieve a

maximum fitness has certainly in the past been very useful in providing

a general framework for understanding the historical progression of

species, and in yielding specific explanations for various fairly simple

properties of particular species. 

But in present-day thinking about biology the notion has tended to

be taken to an extreme, so that especially among those not in daily

contact with detailed data on biological systems it has come to be

assumed that essentially every feature of every organism can be explained

on the basis of it somehow maximizing the fitness of the organism.

It is certainly recognized that some aspects of current organisms

are in effect holdovers from earlier stages in biological evolution. And

there is also increasing awareness that the actual process of growth and

development within an individual organism can make it easier or more

difficult for particular kinds of structures to occur. 

But beyond this there is a surprisingly universal conviction that any

significant property that one sees in any organism must be there because it

in essence serves a purpose in maximizing the fitness of the organism.

Often it is at first quite unclear what this purpose might be, but

at least in fairly simple cases, some kind of hypothesis can usually be

constructed. And having settled on a supposed purpose it often seems

quite marvellous how ingenious biology has been in finding a solution

that achieves that purpose.

Thus, for example, the golden ratio spiral of branches on a plant stem

can be viewed as a marvellous way to minimize the shading of leaves,

while the elaborate patterns on certain mollusc shells can be viewed as

marvellous ways to confuse the visual systems of supposed predators.

But it is my strong suspicion that such purposes in fact have very

little to do with the real reasons that these particular features exist. For

instead, as I will discuss in the next couple of sections, what I believe is that

these features actually arise in essence just because they are easy to produce

with fairly simple programs. And indeed as one looks at more and more

complex features of biological organisms—notably texture and

pigmentation patterns—it becomes increasingly difficult to find any

credible purpose at all that would be served by the details of what one sees.
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In the past, the idea of optimization for some sophisticated

purpose seemed to be the only conceivable explanation for the level of

complexity that is seen in many biological systems. But with the

discovery in this book that it takes only a simple program to produce

behavior of great complexity, a quite different—and ultimately much

more predictive—kind of explanation immediately becomes possible.

In the course of biological evolution random mutations will in effect

cause a whole sequence of programs to be tried. And the point is that from

what we have discovered in this book, we now know that it is almost

inevitable that a fair fraction of these programs will yield complex behavior.

Some programs will presumably lead to organisms that are more

successful than others, and natural selection will cause these programs

eventually to dominate. But in most cases I strongly suspect that it is

comparatively coarse features that tend to determine the success of an

organism—not all the details of any complex behavior that may occur.

Thus in a very simple case it is easy to imagine for example that

an organism might be more likely to go unnoticed by its predators, and

thus survive and be more successful, if its skin was a mixture of brown

and white, rather than, say, uniformly bright orange. But it could then

be that most programs which yield any mixture of colors also happen to

be such that they make the colors occur in a highly complex pattern.

And if this is so, then in the course of random mutation, the

chances are that the first program encountered that is successful enough

to survive will also, quite coincidentally, exhibit complex behavior. 

On the basis of traditional biological thinking one would tend to

assume that whatever complexity one saw must in the end be carefully

crafted to satisfy some elaborate set of constraints. But what I believe

instead is that the vast majority of the complexity we see in biological

systems actually has its origin in the purely abstract fact that among

randomly chosen programs many give rise to complex behavior.

In the past it tends to have been implicitly assumed that to get

substantial complexity in a biological system must somehow be

fundamentally very difficult. But from the discoveries in this book I

have come to the conclusion that instead it is actually rather easy.

So how can one tell if this is really the case?
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One circumstantial piece of evidence is that one already sees

considerable complexity even in very early fossil organisms. Over the

course of the past billion or so years, more and more organs and other

devices have appeared. But the most obvious outward signs of

complexity, manifest for example in textures and other morphological

features, seem to have already been present even from very early times.

And indeed there is every indication that the level of complexity

of individual parts of organisms has not changed much in at least

several hundred million years. So this suggests that somehow the

complexity we see must arise from some straightforward and general

mechanism—and not, for example, from a mechanism that relies on

elaborate refinement through a long process of biological evolution.

Another circumstantial piece of evidence that complexity is in a

sense easy to get in biological systems comes from the observation that

among otherwise very similar present-day organisms features such as

pigmentation patterns often vary from quite simple to highly complex. 

Whether one looks at fishes, butterflies, molluscs or practically

any other kind of organism, it is common to find that across species or

even within species organisms that live in the same environment and

have essentially the same internal structure can nevertheless exhibit

radically different pigmentation patterns. In some cases the patterns

may be simple, but in other cases they are highly complex.

And the point is that no elaborate structural changes and no

sophisticated processes of adaptation seem to be needed in order to get

these more complex patterns. And in the end it is, I suspect, just that

some of the possible underlying genetic programs happen to produce

complex patterns, while others do not.

Two sections from now I will discuss a rather striking potential

example of this: if one looks at molluscs of various types, then it turns

out that the range of pigmentation patterns on their shells corresponds

remarkably closely with the range of patterns that are produced by

simple randomly chosen programs based on cellular automata.

And examples like this—together with many others in the next

couple of sections—provide evidence that the kind of complexity we see

in biological organisms can indeed successfully be reproduced by short
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and simple underlying programs. But there still remains the question of

whether actual biological organisms really use such programs, or

whether somehow they instead use much more complicated programs.

Modern molecular biology should soon be able to isolate the

specific programs responsible, say, for the patterns on mollusc shells,

and see explicitly how long they are. But there are already indications

that these programs are quite short. 

For one of the consequences of a program being short is that it has

little room for inessential elements. And this means that almost any

mutation or change in the program—however small—will tend to have

a significant effect on at least the details of patterns it produces.

Sometimes it is hard to tell whether changes in patterns between

organisms within a species are truly of genetic origin. But in cases

where they appear to be it is common to find that different organisms

show a considerable variety of different patterns—supporting the idea

that the programs responsible for these patterns are indeed short.

So what about the actual process of biological evolution? How does

it pick out which programs to use? As a very simple idealization of

biological evolution, one can consider a sequence of cellular automaton

programs in which each successive program is obtained from the previous

one by a random mutation that adds or modifies a single element.

The pictures on the facing page then show a typical example of

what happens with such a setup. If one starts from extremely short

programs, the behavior one gets is at first quite simple. But as soon as

the underlying programs become even slightly longer, one immediately

sees highly complex behavior. 

Traditional intuition would suggest that if the programs were to

become still longer, the behavior would get ever richer and more

complex. But from the discoveries in this book we know that this will

not in general be the case: above a fairly low threshold, adding

complexity to an underlying program does not fundamentally change

the kind of behavior that it can produce.

And from this one concludes that biological systems should in a

sense be capable of generating essentially arbitrary complexity by using

short programs formed by just a few mutations.
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But if complexity is this easy to get, why is it not even more

widespread in biology? For while there are certainly many examples

of elaborate forms and patterns in biological systems, the overall

shapes and many of the most obvious features of typical organisms

are usually quite simple.

So why should this be? My guess is that in essence it reflects

limitations associated with the process of natural selection. For while

The behavior of a sequence of cellular automaton programs obtained by successive random mutations. The first program contains no rules
for changing the color of a cell with any neighborhood. Mutations in successive programs add rules for changing the colors of cells with
specific neighborhoods, or modify these rules. Each program in the sequence differs from the previous one by a single mutation, made
completely at random. The sequence provides a very simple idealization of biological evolution without explicit natural selection. The cellular
automata shown here all have 3 possible colors and nearest-neighbor rules. The label for each picture gives a representation of the rules for
each of the 27 possible 3-cell neighborhoods. A dot signifies that the rule does not change the color of the center cell in the neighborhood.
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natural selection is often touted as a force of almost arbitrary power, I

have increasingly come to believe that in fact its power is remarkably

limited. And indeed, what I suspect is that in the end natural selection

can only operate in a meaningful way on systems or parts of systems

whose behavior is in some sense quite simple.

If a particular part of an organism always grows, say, in a simple

straight line, then it is fairly easy to imagine that natural selection could

succeed in picking out the optimal length for any given environment.

But what if an organism can grow in a more complex way, say like in the

pictures on the previous page? My strong suspicion is that in such a case

natural selection will normally be able to achieve very little. 

There are several reasons for this, all somewhat related.

First, with more complex behavior, there are typically a huge

number of possible variations, and in a realistic population of

organisms it becomes infeasible for any significant fraction of these

variations to be explored.

Second, complex behavior inevitably involves many elaborate

details, and since different ones of these details may happen to be the

deciding factors in the fates of individual organisms, it becomes very

difficult for natural selection to act in a consistent and definitive way.

Third, whenever the overall behavior of a system is more

complex than its underlying program, almost any mutation in the

program will lead to a whole collection of detailed changes in the

behavior, so that natural selection has no opportunity to pick out

changes which are beneficial from those which are not.

Fourth, if random mutations can only, say, increase or decrease a

length, then even if one mutation goes in the wrong direction, it is easy for

another mutation to recover by going in the opposite direction. But if there

are in effect many possible directions, it becomes much more difficult to

recover from missteps, and to exhibit any form of systematic convergence.

And finally, as the results in Chapter 7 suggest, for anything

beyond the very simplest forms of behavior, iterative random searches

rapidly tend to get stuck, and make at best excruciatingly slow progress

towards any kind of global optimum.
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In a sense it is not surprising that natural selection can achieve

little when confronted with complex behavior. For in effect it is being

asked to predict what changes would need to be made in an underlying

program in order to produce or enhance a certain form of overall

behavior. Yet one of the main conclusions of this book is that even

given a particular program, it can be very difficult to see what the

behavior of the program will be. And to go backwards from behavior to

programs is a still much more difficult task.

In writing this book it would certainly have been convenient to

have had a systematic way to be able to find examples of programs that

exhibit specified forms of complex behavior. And indeed I have tried

hard to develop iterative search procedures that would do this. But even

using a whole range of tricks suggested by biology—as well as quite a

number that are not—I have never been successful. And in fact in every

single case I have in the end reverted either to exhaustive or to purely

random searches, with no attempt at iterative improvement.

So what does this mean for biological organisms? It suggests that

if a particular feature of an organism is successfully going to be

optimized for different environments by natural selection, then this

feature must somehow be quite simple.

And no doubt that is a large part of the reason that biological

organisms always tend to consist of separate organs or other parts, each

of which has at least some attributes that are fairly simple. For in this

way there end up being components that are simple enough to be

adjusted in a meaningful fashion by natural selection.

It has often been claimed that natural selection is what makes

systems in biology able to exhibit so much more complexity than

systems that we explicitly construct in engineering. But my strong

suspicion is that in fact the main effect of natural selection is almost

exactly the opposite: it tends to make biological systems avoid

complexity, and be more like systems in engineering.

When one does engineering, one normally operates under the

constraint that the systems one builds must behave in a way that is readily

predictable and understandable. And in order to achieve this one typically
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limits oneself to constructing systems out of fairly small numbers of

components whose behavior and interactions are somehow simple.

But systems in nature need not in general operate under the

constraint that their behavior should be predictable or understandable.

And what this means is that in a sense they can use any number of

components of any kind—with the result, as we have seen in this book,

that the behavior they produce can often be highly complex.

However, if natural selection is to be successful at systematically

molding the properties of a system then once again there are limitations

on the kinds of components that the system can have. And indeed, it

seems that what is needed are components that behave in simple and

somewhat independent ways—much as in traditional engineering.

At some level it is not surprising that there should be an analogy

between engineering and natural selection. For both cases can be viewed

as trying to create systems that will achieve or optimize some goal.

Indeed, the main difference is just that in engineering explicit

human effort is expended to find an appropriate form for the system,

whereas in natural selection an iterative random search process is used

instead. But the point is that the conditions under which these two

approaches work turn out to be not so different.

In fact, there are even, I suspect, similarities in quite detailed

issues such as the kinds of adjustments that can be made to individual

components. In engineering it is common to work with components

whose properties can somehow be varied smoothly, and which can

therefore be analyzed using the methods of calculus and traditional

continuous mathematics.

And as it turns out, much as we saw in Chapter 7, this same kind

of smooth variation is also what tends to make iterative search methods

such as natural selection be successful. 

In biological systems based on discrete genetic programs, it is far

from clear how smooth variation can emerge. Presumably in some cases

it can be approximated by the presence of varying numbers of repeats in

the underlying program. And more often it is probably the result of

combinations of large numbers of elements that each produce fairly

random behavior.
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But the possibility of smooth variation seems to be important

enough to the effectiveness of natural selection that it is extremely

common in actual biological systems. And indeed, while there are some

traits—such as eye color and blood type in humans—that are more or

less discrete, the vast majority of traits seen, say, in the breeding of

plants and animals, show quite smooth variation.

So to what extent does the actual history of biological evolution

reflect the kinds of simple characteristics that I have argued one should

expect from natural selection?

If one looks at species that exist today, and at the fossil record of

past species, then one of the most striking features is just how much is

in common across vast ranges of different organisms. The basic body

plans for animals, for example, have been almost the same for hundreds

of millions of years, and many organs and developmental pathways are

probably even still older. 

In fact, the vast majority of structurally important features seem

to have changed only quite slowly and gradually in the course of

evolution—just as one would expect from a process of natural selection

that is based on smooth variations in fairly simple properties.

But despite this it is still clear that there is considerable diversity,

at least at the level of visual appearance, in the actual forms of

biological organisms that occur. So how then does such diversity arise?

One effect, to be discussed at greater length in the next section, is

essentially just a matter of geometry. If the relative rates of growth of

different parts of an organism change even slightly, then it turns out

that this can sometimes have dramatic consequences for the overall

shape of the organism, as well as for its mechanical operation.

And what this means is that just by making gradual changes in

quantities such as relative rates of growth, natural selection can succeed

in producing organisms that at least in some respects look very different.

But what about other differences between organisms? To what

extent are all of them systematically determined by natural selection?

Following the discussion earlier in this section, it is my strong

suspicion that at least many of the visually most striking differences—
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associated for example with texture and pigmentation patterns—in the

end have almost nothing to do with natural selection.

And instead what I believe is that such differences are in essence

just reflections of completely random changes in underlying genetic

programs, with no systematic effects from natural selection.

Particularly among closely related species of organisms there is

certainly quite a contrast between the dramatic differences often seen

in features such as pigmentation patterns and the amazing constancy of

other features. And most likely those features in which a great degree of

constancy is seen are precisely the ones that have successfully been

molded by natural selection.

But as I mentioned earlier, it is almost always those features

which change most rapidly between species that show the most obvious

signs of complexity. And this observation fits precisely with the idea

that complexity is easy to get by randomly sampling simple programs,

but is hard for natural selection to handle in any kind of systematic way.

So in the end, therefore, what I conclude is that many of the most

obvious features of complexity in biological organisms arise in a sense

not because of natural selection, but rather in spite of it.

No doubt it will for many people be difficult to abandon the idea that

natural selection is somehow crucial to the presence of complexity in

biological organisms. For traditional intuition makes one think that to get

the level of complexity that one sees in biological systems must require

great effort—and the long and ponderous course of evolution revealed in the

fossil record seems like just the kind of process that should be involved.

But the point is that what I have discovered in this book shows

that in fact if one just chooses programs at random, then it is easy to get

behavior of great complexity. And it is this that I believe lies at the

heart of most of the complexity that we see in nature, both in biological

and non-biological systems.

Whenever natural selection is an important determining factor, I

suspect that one will inevitably see many of the same simplifying

features as in systems created through engineering. And only when

natural selection is not crucial, therefore, will biological systems be



I M P L I C A T I O N S  F O R  E V E R Y D A Y  S Y S T E M S C H A P T E R  8

397

able to exhibit the same level of complexity that one observes for

example in many systems in physics.

In biology the presence of long programs with many separate

parts can lead to a certain rather straightforward complexity analogous

to having many physical objects of different kinds collected together.

But the most dramatic examples of complexity in biology tend to occur

in individual parts of systems—and often involve patterns or structures

that look remarkably like those in physics.

Yet if biology samples underlying genetic programs essentially at

random, why should these programs behave anything like programs

that are derived from specific laws of physics?

The answer, as we have seen many times in this book, is that

across a very wide range of programs there is great universality in the

behavior that occurs. The details depend on the exact rules for each

program, but the overall characteristics remain very much the same.

And one of the important consequences of this is that it suggests

that it might be possible to develop a rather general predictive theory of

biology that would tell one, for example, what basic forms are and are

not likely to occur in biological systems.

One might have thought that the traditional idea that organisms

are selected to be optimal for their environment would already long ago

have led to some kind of predictive theory. And indeed it has for example

allowed some simple numerical ratios associated with populations of

organisms to be successfully derived. But about a question such as what

forms of organisms are likely to occur it has much less to say. 

There are a number of situations where fairly complicated structures

appear to have arisen independently in several very different types of

organisms. And it is sometimes claimed that this kind of convergent

evolution occurs because these structures are in some ultimate sense

optimal, making it inevitable that they will eventually be produced. 

But I would be very surprised if this explanation were correct.

And instead what I strongly suspect is that the reason certain structures

appear repeatedly is just that they are somehow common among

programs of certain kinds—just as, for example, we have seen that the
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intricate nested pattern shown on the left arises from many different

simple programs.

Ever since the original development of the theory of evolution,

there has been a widespread belief that the general trend seen in the fossil

record towards the formation of progressively more complicated types of

organisms must somehow be related to an overall increase in optimality.

Needless to say, we do not know what a truly optimal organism

would be like. But if optimality is associated with having as many

offspring as possible, then very simple organisms such as viruses and

protozoa already seem to do very well.

So why then do higher organisms exist at all? My guess is that it

has almost nothing to do with optimality, and that instead it is essentially

just a consequence of strings of random mutations that happened to add

more and more features without introducing fatal flaws.

It is certainly not the case—as is often assumed—that natural

selection somehow inevitably leads to organisms with progressively

more elaborate structures and progressively larger numbers of parts.

For a start, some kinds of organisms have been subject to natural

selection for more than a billion years, but have never ended up

becoming much more complicated. And although there are situations

where organisms do end up becoming more complicated, they also

often become simpler.

A typical pattern—remarkably similar, as it happens, to what

occurs in the history of technology—is that at some point in the fossil

record some major new capability or feature is suddenly seen. At first

there is then rapid expansion, with many new species trying out all

sorts of possibilities that have been opened up. And usually some of

these possibilities get quite ornate and elaborate. But after a while it

becomes clear what makes sense and what does not. And typically

things then get simpler again.

So what is the role of natural selection in all of this? My guess is

that as in other situations, its main systematic contribution is to make

things simpler, and that insofar as things do end up getting more

complicated, this is almost always the result of essentially random

An example of a basic
pattern that is produced
in several variants by a
wide range of simple
programs.
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sampling of underlying programs—without any systematic effect of

natural selection.

For the more superficial aspects of organisms—such as

pigmentation patterns—it seems likely that among programs sampled at

random a fair fraction will produce results that are not disastrous for the

organism. But when one is dealing with the basic structure of organisms,

the vast majority of programs sampled at random will no doubt have

immediate disastrous consequences. And in a sense it is natural selection

that is responsible for the fact that such programs do not survive.

But the point is that in such a case its effect is not systematic or

cumulative. And indeed it is my strong suspicion that for essentially all

purposes the only reasonable model for important new features of

organisms is that they come from programs selected purely at random. 

So does this then mean that there can never be any kind of

general theory for all the features of higher organisms? Presumably the

pattern of exactly which new features were added when in the history

of biological evolution is no more amenable to general theory than the

specific course of events in human history. But I strongly suspect that

the vast majority of significant new features that appear in organisms

are at least at first associated with fairly short underlying programs.

And insofar as this is the case the results of this book should allow one

to develop some fairly general characterizations of what can happen.

So what all this means is that much of what we see in biology

should correspond quite closely to the typical behavior of simple

programs as we have studied them in this book—with the main caveat

being just that certain aspects will be smoothed and simplified by the

effects of natural selection. Seeing in earlier chapters of this book all the

diverse things that simple programs can do, it is easy to be struck by

analogies to books of biological flora and fauna. Yet what we now see is

that in fact such analogies may be quite direct—and that many of the

most obvious features of actual biological organisms may in effect be

direct reflections of typical behavior that one sees in simple programs. 
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Growth of Plants and Animals

Looking at all the elaborate forms of plants and animals one might at

first assume that the underlying rules for their growth must be highly

complex. But in this book we have discovered that even by following

very simple rules it is possible to obtain forms of great complexity. And

what I have come to believe is that in fact most aspects of the growth of

plants and animals are in the end governed by remarkably simple rules.

As a first example of biological growth, consider the stem of a

plant. It is usually only at the tip of a stem that growth can occur, and

much of the time all that ever happens is that the stem just gets

progressively longer. But the crucial phenomenon that ultimately leads

to much of the structure we see in many kinds of plants is that at the

tip of a stem it is possible for new stems to form and branch off. And in

the simplest cases these new stems are in essence just smaller copies of

the original stem, with the same basic rules for growth and branching.

With this setup the succession of branchings can then be

represented by steps in the evolution of a neighbor-independent

substitution system in which the tip of each stem is at each step

replaced by a collection of smaller stems in some fixed configuration.

Two examples of such substitution systems are shown in the

pictures below. In both cases the rules are set up so that every stem in

effect just branches into exactly three new stems at each step. And this

step 1 step 2 step 3 step 4 step 5 step 6 step 7

step 1 step 2 step 3 step 4 step 5 step 6 step 7

Steps in the evolution of substitution systems that provide simple models for the growth of plants.
At each step every growing stem is replaced by a collection of three new stems according to the
rules shown. For individual stems this type of branching is known in botany as monopodial.
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means that the network of connections between stems necessarily has a

very simple nested form. But if one looks at the actual geometrical

arrangement of stems there is no longer such simplicity; indeed, despite

the great simplicity of the underlying rules, considerable complexity is

immediately evident even in the pictures at the bottom of the facing page.

The pictures on the next page show patterns obtained with

various sequences of choices for the lengths and angles of new stems. In

a few cases the patterns are quite simple; but in most cases they turn

out to be highly complex—and remarkably diverse.

The pictures immediately remind one of the overall branching

patterns of all sorts of plants—from algae to ferns to trees to many

kinds of flowering plants. And no doubt it is from such simple rules of

growth that most such overall branching patterns come.

But what about more detailed features of plants? Can they also be

thought of as consequences of simple underlying rules of growth?

For many years I wondered in particular about the shapes of

leaves. For among different plants there is tremendous diversity in such

shapes—as illustrated in the pictures on page 403. Some plants have

leaves with simple smooth boundaries that one might imagine could be

described by traditional mathematical functions. Others have leaves

with various configurations of sharp points. And still others have leaves

with complex and seemingly somewhat random boundaries.

So given this diversity one might at first suppose that no single

kind of underlying rule could be responsible for what is seen. But

looking at arrays of pictures like the ones on the next page one makes a

remarkable discovery: among the patterns that can be generated by

simple substitution systems are ones whose outlines look extremely

similar to those of a wide variety of types of leaves.

There are patterns with smooth edges that look like lily pads.

There are patterns with sharp points that look like prickly leaves of

various kinds. And there are patterns with intricate and seemingly

somewhat random shapes that look like sycamore or grape leaves.

It has never in the past been at all clear how leaves get the shapes

they do. Presumably most of the processes that are important take place

while leaves are still folded up inside buds, and are not yet very solid.
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Limiting patterns produced by substitution systems of the type shown in the previous picture. The patterns on each
row are obtained from rules that are set up to give branches with particular relative lengths. The angles between the
branches are taken to increase by 15o in successive pictures across the row. Note that pictures shown on different
rows are scaled differently—so that the initial vertical stem does not always appear with the same height. The similarity
between pictures on this page and overall branching patterns and shapes of leaves in many kinds of plants is striking.
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Examples of different kinds of leaves, mostly from common flowering plants. The diversity of shapes is remarkable, as is the
similarity to the forms shown on the facing page. The leaves range in size from under an inch to many feet.
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For although leaves typically expand significantly after they come out,

the basic features of their shapes almost never seem to change.

There is some evidence that at least some aspects of the pattern of

veins in a leaf are laid down before the main surface of the leaf is filled

in, and perhaps the stems in the branching process I describe here

correspond to precursors of structures related to veins. Indeed, the

criss-crossing of veins in the leaves of higher plants may be not

unrelated to the fact that stems in the pictures two pages ago often cross

over—although certainly many of the veins in actual full-grown leaves

are probably added long after the shapes of the leaves are determined.

One might at the outset have thought that leaves would get their

shapes through some mechanism quite unrelated to other aspects of

plant growth. But I strongly suspect that in fact the very same simple

process of branching is ultimately responsible both for the overall forms

of plants, and for the shapes of their leaves.

Quite possibly there will sometimes be at least some correspondence

between the lengths and angles that appear in the rules for overall growth

and for the growth of leaves. But in general the details of all these rules will

no doubt depend on very specific characteristics of individual plants.

The distance before a new stem appears is, for example, probably

determined by the rates of production and diffusion of plant hormones

and related substances, and these rates will inevitably depend both on

the thickness and mechanical structure of the stem, as well as on all

kinds of biochemical properties of the plant. And when it comes to the

angles between old and new stems I would not be surprised if these

were governed by such microscopic details as individual shapes of cells

and individual sequences of cell divisions.

The traditional intuition of biology would suggest that whenever one

sees complexity—say in the shape of a leaf—it must have been generated

for some particular purpose by some sophisticated process of natural

selection. But what the pictures on the previous pages demonstrate is that

in fact a high degree of complexity can arise in a sense quite effortlessly just

as a consequence of following certain simple rules of growth.

No doubt some of the underlying properties of plants are indeed

guided by natural selection. But what I strongly suspect is that in the
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vast majority of cases the occurrence of complexity—say in the shapes

of leaves—is in essence just a side effect of the particular rules of growth

that happen to result from the underlying properties of the plant.

The pictures on the next page show the array of possible forms

that can be produced by rules in which each stem splits into exactly

two new stems at each step. The vertical black line on the left-hand

side of the page represents in effect the original stem at each step, and

the pictures are arranged so that the one which appears at a given

position on the page shows the pattern that is generated when the tip of

the right-hand new stem goes to that position relative to the original

stem shown on the left. 

In some cases the patterns obtained are fairly simple. But even in

these cases the pictures show that comparatively small changes in

underlying rules can lead to much more complex patterns. And so if in

the course of biological evolution gradual changes occur in the rules, it

is almost inevitable that complex patterns will sometimes be seen.

But just how suddenly can the patterns change? To get some idea

of this one can construct a kind of limit of the array on the next page in

which the total number of pictures is in effect infinite, but only a

specific infinitesimal region of each picture is shown. Page 407 gives

results for four choices of the position of this region relative to the

original stem. And instead of just displaying black or white depending

on whether any part of the pattern lies in the region, the picture uses

gray levels to indicate how close it comes.

The areas of solid black thus correspond to ranges of parameters

in the underlying rule for which the patterns obtained always reach a

particular position. But what we see is that at the edges of these areas

there are often intricate structures with an essentially nested form. And

the presence of such structures implies that at least with some ranges of

parameters, even very small changes in underlying rules can lead to

large changes in certain aspects of the patterns that are produced.

So what this suggests is that it is almost inevitable that features

such as the shapes of leaves can sometimes change greatly even when

the underlying properties of plants change only slightly. And I suspect
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The full array of patterns that can be produced by simple substitution systems in which each stem branches into exactly two symmetrical
stems at each step. The patterns are arranged on the page so that the pattern shown at a particular position corresponds to what is
obtained with a rule in which the tip of the right-hand stem goes to that position (corrected for the aspect ratio of the array) relative to the
original stem shown as a vertical line on the left-hand side of the page. In each case the result of 10 steps of evolution is shown, and the
pictures are scaled so that all points above the bottom of the original stem can be included. Note that for rules outside of a distorted
semicircle centered on the dot at the left-hand side of the page, and touching the three other sides of the page, the patterns generated
grow at each step, rather than tending to a limit of fixed size.
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Maps of where in the space of parameters for the substitution systems on the facing page the patterns obtained overlap the
region indicated in the icon at the top left of each picture. Black corresponds to complete overlap, while white corresponds to no
overlap. The maps shown can be thought of as being made by taking an infinitely dense limit of the array of pictures on the
facing page, but keeping only what one sees in each picture by looking through a peephole at a particular position relative to the
original stem.
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that this is precisely why such diverse shapes of leaves are occasionally

seen even in plants that otherwise appear very similar.

But while features such as the shapes of leaves typically differ

greatly between different plants, there are also some seemingly quite

sophisticated aspects of plants that typically remain almost exactly the

same across a huge range of species.

One example is the arrangement of sequences of plant organs or

other elements around a stem. In some cases successive leaves, say, will

always come out on opposite sides of a stem—180° apart. But

considerably more common is for leaves to come out less than 180°

apart, and in most plants the angle turns out to be essentially the same,

and equal to almost exactly 137.5°.

It is already remarkable that such a definite angle arises in the

arrangement of leaves—or so-called phyllotaxis—of so many plants. But it

turns out that this very same angle also shows up in all sorts of other

features of plants, as shown in the pictures at the top of the facing page. And

although the geometry is different in different cases, the presence of a fixed

angle close to 137.5° always leads to remarkably regular spiral patterns.

Over the years, much has been written about such patterns, and

about their mathematical properties. For it turns out that an angle

between successive elements of about 137.5° is equivalent to a rotation

by a number of turns equal to the so-called golden ratio

 which arises in a wide variety of mathematical

contexts—notably as the limiting ratio of Fibonacci numbers. 

And no doubt in large part because of this elegant

mathematical connection, it has usually come to be assumed that the

137.5° angle and the spiral patterns to which it leads must

correspond to some kind of sophisticated optimization found by an

elaborate process of natural selection.

But I do not believe that this is in fact the case. And instead what

I strongly suspect is that the patterns are just inevitable consequences

of a rather simple process of growth not unlike one that was already

discussed, at least in general terms, nearly a century ago.

�1 �
�!!!

5 ��2 � 1.618
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The positions of new plant organs or other elements around a

stem are presumably determined by what happens in a small ring of

material near the tip of the growing stem. And what I suspect is that a

new element will typically form at a particular position around the ring

if at that position the concentration of some chemical has reached a

certain critical level.

But as soon as an element is formed, one can expect that it will

deplete the concentration of the chemical in its local neighborhood, and

thus inhibit further elements from forming nearby. Nevertheless,

general processes in the growing stem will presumably make the

concentration steadily rise throughout the ring of active material, and

eventually this concentration will again get high enough at some

position that it will cause another element to be formed.

Examples of spiral arrangements of elements in various plant systems. The details of the final geometry
are different in different cases. But in all cases it turns out that the original angle between successive
elements is almost exactly 137.5°. The first row shows red cabbage (cut open), artichoke, asparagus,
raspberry and strawberry. The first two objects on the last row are a pinecone and an acorn. 
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The pictures above show an example of this type of process. For

purposes of display the ring of active material is unrolled into a line, and

successive states of this line are shown one on top of each other going up

the page. At each step a new element, indicated by a black dot, is taken to

be generated at whatever position the concentration is maximal. And

around this position the new element is then taken to produce a dip in

concentration that is gradually washed out over the course of several steps. 

The way the pictures are drawn, the angles between successive

elements correspond to the horizontal distances between them. And

although these distances vary somewhat for the first few steps, what we

see in general is remarkably rapid convergence to a fixed distance—

which turns out to correspond to an angle of almost exactly 137.5°.

So what happens if one changes the details of the model? In the

extreme case where all memory of previous behavior is immediately

damped out the first picture at the top of the facing page shows that

successive elements form at 180° angles. And in the case where there is

very little damping the last two pictures show that at least for a while

elements can form at fairly random angles. But in the majority of cases

one sees rather rapid convergence to almost precisely 137.5°.

step 1 step 2 step 3 step 4 step 5 step 6

step 7 step 8 step 9 step 10 step 11 step 12 step 13 step 14 step 15 step 16

A simple model for the arrangement of leaves or other elements produced at the growing tip of a plant stem. The stem
is taken to grow up the page, and for purposes of display it is unrolled into a line. The positions of leaves or other
elements are indicated by black dots. The concentration of a chemical is indicated by gray level, and for the top line at
each step, it is also plotted. The rule for the system places a new black dot at whatever position this concentration is
largest. The black dot is then assumed to deplete the concentration around it, but the overall concentration is uniformly
increased before the next step. It turns out that successive black dots rapidly become spaced at almost exactly 137.5°.
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So just how does this angle show up in actual plant systems? As

the top pictures below demonstrate, the details depend on the geometry

and relative growth rates of new elements and of the original stem. But

in all cases very characteristic patterns are produced.

100% damping 95% damping 75% damping 50% damping 25% damping 5�% damping 0�% damping

Examples of changing the amount of damping used in the model on the facing page. 100% damping corresponds
to increasing the overall concentration at each step so much that no memory of previous steps remains. 0%
corresponds to no increase in overall concentration at each step. Away from these extreme cases, rapid
convergence is seen to a spacing between black dots of almost exactly 137.5°.

(a) (b) (c) (d) (e) (f ) (g)

Examples of structures formed in various geometries by successively adding elements at a golden ratio angle 137.5°. Each of these
structures is seen in one type of plant growth or another, as illustrated on page 409. 

120 � 130 � 137 � 137.5 � 138 � 140 � 150 �

Overall patterns formed by successively adding elements at a variety of different angles. In each case the th element appears at
coordinates . Stripes are seen if  (with  in radians) is easy to approximate by a rational number. (The size of
the region before stripes appear depends on .)

n
�!!!!

n {Cos[n q], Sin[n q]} q /p q

Length[ContinuedFraction[q /p]]
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And as the bottom pictures on the previous page demonstrate,

the forms of these patterns are very sensitive to the precise angle of

successive elements: indeed, even a small deviation leads to patterns

that are visually quite different. At first one might have assumed that to

get a precise angle like 137.5° would require some kind of elaborate and

highly detailed process. But just as in so many other situations that we

have seen in this book, what we have seen is that in fact a very simple

rule is all that is in the end needed.

One of the general features of plants is that most of their cells

tend to develop fairly rigid cellulose walls which make it essentially

impossible for new material to be added inside the volume of the plant,

and so typically force new growth to occur only on the outside of the

plant—most importantly at the tips of stems.

But when plants form sheets of material as in leaves or petals there

is usually some flexibility for growth to occur within the sheet. And the

pictures below show examples of what can happen if one starts with a flat

disk and then adds different amounts of material in different places.

If more material is added near the center than near the edge, as in

case (b), then the disk is forced to take on a cup shape similar to many

Disks with varying amounts of material at different distances from their centers. In the top row the disks are always flat,
forcing the cells of material to vary in size and shape. In the bottom row, the disks form shapes in three dimensions in
which all cells are the same size and shape. Relative to case (a), the amount of material going out from the center
decreases linearly in case (b), increases linearly in case (c), and increases exponentially in case (d).

(a) (b) (c) (d)
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flowers. But if more material is added near the edge than near the

center, as in case (c), then the sheet will become wavy at the edge, much

like some leaves. And if the amount of material increases sufficiently

rapidly from the center to the edge, as in case (d), then the disk will be

forced to become highly corrugated, somewhat like a lettuce leaf.

So what about animals? To what extent are their mechanisms of

growth the same as plants? If one looks at air passages or small blood

vessels in higher animals then the patterns of branching one sees look

similar to those in plants. But in most of their obvious structural

features animals do not typically look much like plants at all. And in

fact their mechanisms of growth mostly turn out to be rather different.

As a first example, consider a horn. One might have thought that,

like a stem in a plant, a horn would grow by adding material at its tip.

But in fact, like nails and hair, a horn instead grows by adding material

at its base. And an immediate consequence of this is that the kind of

branching that one sees in plants does not normally occur in horns.

But on the other hand coiling is common. For in order to get a

structure that is perfectly straight, the rate at which material is added

must be exactly the same on each side of the base. And if there is any

difference, one edge of the structure that is produced will always end

up being longer than the other, so that coiling will inevitably result,

as in the pictures below.

And as has been thought for several centuries, it turns out that a

three-dimensional version of this phenomenon is essentially what leads

to the elaborate coiled structures that one sees in mollusc shells. For in

a typical case, the animal which lives at the open end of the shell

0%

10%

20%

50%

100%

Idealized horns generated by progressively adding new material, with the amount of material on the
upper edge of the base always being the specified percentage larger than the amount on the lower
edge. These pictures can be viewed as one-dimensional analogs of those on the facing page.
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secretes new shell material faster on one side than the other, causing

the shell to grow in a spiral. The rates at which shell material is

secreted at different points around the opening are presumably

determined by details of the anatomy of the animal. And it turns out

that—much as we saw in the case of branching structures earlier in this

section—even fairly small changes in such rates can have quite

dramatic effects on the overall shape of the shell.

The pictures below show three examples of what can happen,

while the facing page shows the effects of systematically varying

certain growth rates. And what one sees is that even though the same

very simple underlying model is used, there are all sorts of visually very

different geometrical forms that can nevertheless be produced. 

(a)

(b)

(c)

A simple model for the growth of mollusc shells. In each case new shell material is progressively added at the open end of
the shell. The rule on the left shows the amount of material added at each stage at different points around the opening; the
line from the center indicates the progressive lateral displacement of the opening. Case (a) is typical of a nautilus shell, (b) of
a cone shell and (c) of one-half of a clam shell. All shells produced by adding material according to fixed rules of the kind
shown here have the property that throughout their growth they maintain the same overall shape. 
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So out of all the possible forms, which ones actually occur in real

molluscs? The remarkable fact illustrated on the next page is that

essentially all of them are found in some kind of mollusc or another.

If one just saw a single mollusc shell, one might well think that

its elaborate form must have been carefully crafted by some long

process of natural selection. But what we now see is that in fact all the

different forms that are observed are in effect just consequences of the

(a)

(b)

(c)

(d)

(e)

The effects of varying five simple features of the rule for the growth of a mollusc shell: (a) the overall factor by which the size increases
in the course of each revolution; (b) the relative amount by which the opening is displaced downward at each revolution; (c) the size of
the opening relative to the overall size of the shell; (d) the elongation of the opening; (e) the orientation of elongation in the opening.
The pictures at the beginning and end of each row correspond roughly to the following: (a) pond snail shell, cockle shell; (b) pond snail
shell, horn shell; (c) worm shell, bonnet shell; (d) periwinkle shell, cowrie shell; (e) olive shell, sundial shell.
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Shell shapes generated
by the simple model and
found in nature. The
array shows systematic
variation of the first two
parameters from the
previous page. Similar
arrays could be made for
the other parameters.
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application of three-dimensional geometry to very simple underlying

rules of growth. And so once again therefore natural selection cannot

reasonably be considered the source of the elaborate forms we see. 

Away from mollusc shells, coiled structures—like branched

ones—are not especially common in animals. Indeed, the vast majority

of animals do not tend to have overall forms that are dominated by any

single kind of structure. Rather, they are usually made up of a collection

of separate identifiable parts, like heads, tails, legs, eyes and so on, all

with their own specific structure.

Sometimes some of these parts are repeated, perhaps in a

sequence of segments, or perhaps in some kind of two-dimensional

array. And very often the whole animal is covered by a fairly uniform

outer skin. But the presence of many different kinds of parts is in the

end one of the most obvious features of many animals.

So how do all these parts get produced? The basic mechanism

seems to be that at different places and different times inside a

developing animal different sections of its genetic program end up

getting used—causing different kinds of growth to occur, and different

structures to be produced. And part of what makes this possible is that

particularly at the stage of the embryo most cells in an animal are not

extremely rigid—so that even when different pieces of the animal grow

quite differently they can still deform so as to fit together.

Usually there are some elements—such as bones—that

eventually do become rigid. But the crucial point is that at the stage

when the basic form of an animal is determined most of these elements

are not yet rigid. And this allows various processes to occur that would

otherwise be impossible. 

Probably the most important of these is folding. For folding is not

only involved in producing shapes such as teeth surfaces and human ear

lobes, but is also critical in allowing flat sheets of tissue to form the

kinds of pockets and tubes that are so common inside animals.

Folding seems to occur for a variety of reasons. Sometimes it is

most likely the direct result of tugging by microscopic fibers. And in

other cases it is probably a consequence of growth occurring at different

rates in different places, as in the pictures on page 412.
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But what kinds of shapes can folding produce? The pictures above

show what happens when the local curvature—which is essentially the

local rate of folding—is taken to vary according to several simple rules

as one goes along a curve. In a few cases the shapes produced are rather

simple. But in most cases they are fairly complicated. And it takes only

very simple rules to generate shapes that look like the villi and other

corrugated structures one often sees in animals.

In addition to folding, there are other kinds of processes that are

made possible by the lack of rigidity in a developing animal. One is

furrowing or tearing of tissue through a loss of adhesion between cells.

And another is explicit migration of individual cells based on chemical

or immunological affinities.

But how do all these various processes get organized to produce an

actual animal? If one looks at the sequence of events that take place in a

(a) (b) (c) (d)

(e) (f ) (g) (h)

( i)

( j)

(k)

Curves obtained by varying the local curvature according to definite rules as one goes from one end to the other. Each
sequence of curves shows what happens when the local curvature is multiplied by a progressively larger factor. The local
curvature at any particular point is defined to be the reciprocal of the radius of a circle that approximates the curve at that
point. The formulas for local curvature as a function of arc length for each set of pictures are as follows: 1 (circle);  (Cornu
spiral or clothoid); ; (involute of circle);  (logarithmic or equiangular spiral); ; ; ; . The
curvature functions  can be thought of as specifying how much to turn a vehicle at every moment in order to keep it
driving along the curve. The curves have been rotated so as to fit into the frames provided.

s
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typical animal embryo they at first seem remarkably haphazard. But

presumably the main thing that is going on—as mentioned above—is that

at different places and different times different sections of the underlying

genetic program are being used, and these different sections can lead to

very different kinds of behavior. Some may produce just uniform growth.

Others may lead to various kinds of local folding. And still others may

cause regions of tissue to die—thereby for example allowing separate

fingers and toes to emerge from a single sheet of tissue.

But just how is it determined what section of the underlying

genetic program should be used at what point in the development of the

animal? At first, one might think that each individual cell that comes

into existence might use a different section of the underlying genetic

program. And in very simple animals with just a few hundred cells this

is most likely what in effect happens.

But in general it seems to be not so much individual cells as regions

of the developing animal that end up using different sections of the

underlying program. Indeed, the typical pattern seems to be that

whenever a part of an animal has grown to be a few tenths of a millimeter

across, that part can break up into a handful of smaller regions which each

use a different section of the underlying genetic program.

So how does this work? What appears to be the case is that there

are cells which produce chemicals whose concentrations decrease over

distances of a few tenths of a millimeter. And what has been discovered

in the past decade or so is that in all animals—as well as plants—there

are a handful of so-called homeobox genes which seem to become

active or inactive at particular concentration levels and which control

what section of the underlying genetic program will be used.

The existence of a fixed length scale at which such processes

occur then almost inevitably implies that an embryo must develop in a

somewhat hierarchical fashion. For at a sufficiently early stage, the

whole embryo will be so small that it can contain only a handful of

regions that use different sections of the genetic program. And at this

stage there may, for example, be a leg region, but there will not yet be a

distinct foot region. 
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As the embryo grows, however, the leg region will eventually

become large enough that it can differentiate into several separate

regions. And at this point, a distinct foot region can appear. Then, when

the foot region becomes large enough, it too can break into separate

regions that will, say, turn into bone or soft tissue. And when a region

that will turn into bone becomes large enough, it can break into further

regions that will, say, yield separate individual bones.

If at every stage the tissue in each region produced grows at the

same rate, and all that differs is what final type of cells will exist in each

region, then inevitably a simple and highly regular overall structure will

emerge, as in the idealized picture below. With different substitution rules

for each type of cell, the structure will in general be nested. And in fact

there are, for example, some parts of the skeletons of animals that do

seem to exhibit, at least roughly, a few levels of nesting of this kind.

But in most cases there is no such obvious nesting of this kind. One

reason for this is that a region may break not into a simple line of smaller

regions, but into concentric circles or into some collection of regions in a

much more complicated arrangement—say of the kind that I discuss in

the next section. And perhaps even more important, a region may break

into smaller regions that grow at different rates, and that potentially fold

over or deform in other ways. And when this happens, the geometry that

develops will in turn affect the way that subsequent regions break up.

The idea that the basic mechanism for producing different parts

of animals is that regions a few tenths of a millimeter across break into

separate smaller regions turns out in the end to be strangely similar to

the idea that stems of plants whose tips are perhaps a millimeter across

step 1

step 2

step 3

A schematic illustration of the successive
subdivisions which presumably occur in
the growth of animals. Here the
subdivisions are taken to occur in two
directions, always giving three simple
rectangles which all grow at the same
rate. In practice, the geometry will
usually be much more complex. 



I M P L I C A T I O N S  F O R  E V E R Y D A Y  S Y S T E M S C H A P T E R  8

421

grow by splitting off smaller stems. And indeed it is even known that

some of the genetic phenomena involved are extremely similar.

But the point is that because of the comparative rigidity of plants

during their most important period of growth, only structures that

involve fairly explicit branching can be produced. In animals, however,

the lack of rigidity allows a vastly wider range of structures to appear,

since now tissue in different regions need not just grow uniformly, but

can change shape in a whole variety of ways.

By the time an animal hatches or is born, its basic form is usually

determined, and there are bones or other rigid elements in place to

maintain this form. But in most animals there is still a significant

further increase in size. So how does this work?

Some bones in effect just expand by adding material to their outer

surface. But in many cases, bones are in effect divided into sections, and

growth occurs between these sections. Thus, for example, the long

bones in the arms and legs have regions of growth at each end of their

main shafts. And the skull is divided into a collection of pieces that

each grow around their edges.

Typically there are somewhat different rates of growth for

different parts of an animal—leading, for example, to the decrease in

relative head size usually seen from birth to adulthood. And this

inevitably means that there will be at least some changes in the shapes

of animals as they mature.

But what if one compares different breeds or species of animals?

At first, their shapes may seem quite different. But it turns out that

among animals of a particular family or even order, it is very common

to find that their overall shapes are in fact related by fairly simple and

smooth geometrical transformations.

And indeed it seems likely that—much like the leaves and shells

that we discussed earlier in this section—differences between the

shapes and forms of animals may often be due in large part merely to

different patterns in the rates of growth for their different parts.

Needless to say, just like with leaves and shells, such differences

can have effects that are quite dramatic both visually and mechanically—

turning, say, an animal that walks on four legs into one that walks on
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two. And, again just like with leaves and shells, it seems likely that

among the animals we see are ones that correspond to a fair fraction of the

possible choices for relative rates of growth.

We began this section by asking what underlying rules of growth

would be needed to produce the kind of diversity and complexity that

we see in the forms of plants and animals. And in each case that we

have examined what we have found is that remarkably simple rules

seem to suffice. Indeed, in most cases the basic rules actually seem to

be somewhat simpler than those that operate in many non-biological

systems. But what allows the striking diversity that we see in biological

systems is that different organisms and different species of organisms

are always based on at least slightly different rules.

In the previous section I argued that for the most part such rules

will not be carefully chosen by natural selection, but instead will just be

picked almost at random from among the possibilities. From experience

with traditional mathematical models, however, one might then

assume that this would inevitably imply that all plants and animals

would have forms that look quite similar.

But what we have discovered in this book is that when one uses

rules that correspond to simple programs, rather than, say, traditional

mathematical equations, it is very common to find that different rules lead

to quite different—and often highly complex—patterns of behavior. And it

is this basic phenomenon that I suspect is responsible for most of the

diversity and complexity that we see in the forms of plants and animals.

Biological Pigmentation Patterns

At a visual level, pigmentation patterns represent some of the most obvious

examples of complexity in biological organisms. And in the past it has

usually been assumed that to get the kind of complexity that one sees in

such patterns there must be some highly complex underlying mechanism,

presumably related to optimization through natural selection.

Following the discoveries in this book, however, what I strongly

suspect is that in fact the vast majority of pigmentation patterns in
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biological organisms are instead generated by processes whose basic

rules are extremely simple—and are often chosen essentially at random.

The pictures below shows some typical examples of patterns

found on mollusc shells. Many of these patterns are quite simple. But

some are highly complex. Yet looking at these patterns one notices a

remarkable similarity to patterns that we have seen many times before

in this book—generated by simple one-dimensional cellular automata.

Typical examples of pigmentation patterns on mollusc shells. In each close-up the pattern grows
from top to bottom, just like in a one-dimensional cellular automaton. Patterns with triangles are
often said to have a “tent” or “divaricate” form. The shell on the bottom right is a slightly rare
specimen where something close to an explicit nested pattern can be seen. Most of the shells are
between one and four inches long; the one on the bottom right is nine inches long. The patterns are
all various shades of brown on roughly white backgrounds. The shells are the following types: first
row: Elliot’s volute, vexillate volute, lettered cone; second row: music volute, banded marble cone,
tent olive; third row: bough cone, textile cone, false melon volute (Livonia mammilla).
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This similarity is, I believe, no coincidence. A mollusc shell, like

a one-dimensional cellular automaton, in effect grows one line at a time,

with new shell material being produced by a lip of soft tissue at the edge

of the animal inside the shell. Quite how the pigment on the shell is laid

down is not completely clear. There are undoubtedly elements in the

soft tissue that at any point either will or will not secrete pigment. And

presumably these elements have certain interactions with each other.

And given this, the simplest hypothesis in a sense is that the new state

of the element is determined from the previous state of its neighbors—

just as in a one-dimensional cellular automaton.

rule 0 rule 1 rule 4 rule 5 rule 18 rule 19 rule 22 rule 23

rule 32 rule 33 rule 36 rule 37 rule 50 rule 51 rule 54 rule 55

rule 72 rule 73 rule 76 rule 77 rule 90 rule 91 rule 94 rule 95

rule 104 rule 105 rule 108 rule 109 rule 122 rule 123 rule 126 rule 127

rule 128 rule 129 rule 132 rule 133 rule 146 rule 147 rule 150 rule 151

rule 160 rule 161 rule 164 rule 165 rule 178 rule 179 rule 182 rule 183

rule 200 rule 201 rule 204 rule 205 rule 218 rule 219 rule 222 rule 223

rule 232 rule 233 rule 236 rule 237 rule 250 rule 251 rule 254 rule 255

Examples of patterns produced by the evolution of each of the simplest possible symmetrical one-dimensional cellular automaton
rules, starting from a random initial condition. The types of patterns obtained show striking similarities to those seen on mollusc
shells from the previous page. 
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But which specific cellular automaton rule will any given

mollusc use? The pictures at the bottom of the facing page show all the

possible symmetrical rules that involve two colors and nearest

neighbors. And comparing the patterns in these pictures with patterns

on actual mollusc shells, one notices the remarkable fact that the range

of patterns that occur in the two cases is extremely similar. 

Traditional ideas might have suggested that each kind of mollusc

would carefully optimize the pattern on its shell so as to avoid predators

or to attract mates or prey. But what I think is much more likely is that

these patterns are instead generated by rules that are in effect chosen at

random from among a collection of the simplest possibilities. And what

this means is that insofar as complexity occurs in such patterns it is in a

sense a coincidence. It is not that some elaborate mechanism has

specially developed to produce it. Rather, it just arises as an inevitable

consequence of the basic phenomenon discovered in this book that

simple rules will often yield complex behavior. 

And indeed it turns out that in many species of molluscs the

patterns on their shells—both simple and complex—are completely

hidden by an opaque skin throughout the life of the animal, and so

presumably cannot possibly have been determined by any careful

process of optimization or natural selection.

So what about pigmentation patterns on other kinds of animals?

Mollusc shells are almost unique in having patterns that are built up

one line at a time; much more common is for patterns to develop all at

once all over a surface.

Most often what seems to happen is that at some point in the growth

of an embryo, precursors of pigment-producing cells appear on its surface,

and groups of these cells associated with pigments of different colors then

become arranged in a definite pattern. Typically each individual group of

cells is initially some fraction of a tenth of a millimeter across. But since

different parts of an animal usually grow at different rates, the final pattern

that one sees on an adult animal ends up being scaled differently in

different places—so that, for example, the pattern is smaller in scale on the

head of an animal, since the head grows more slowly.
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Typical examples of pigmentation patterns on animals. Note that many very different animals end up having remarkably similar patterns.
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The pictures on the facing page show typical examples of

pigmentation patterns in animals, and demonstrate that even across a

vast range of different types of animals just a few kinds of patterns

occur over and over again. So how are these patterns produced? Even

though some of them seem quite complex, it turns out that once again

there is a rather simple kind of rule that can account for them.

The idea is that when a pattern forms, the color of each element will

tend to be the same as the average color of nearby elements, and opposite to

the average color of elements further away. Such an effect could have its

origin in the production and diffusion of activator and inhibitor chemicals,

or, for example, in actual motion of different types of cells. But regardless of

its origin, the effect itself can readily be captured just by setting up a

two-dimensional cellular automaton with appropriate rules.

The pictures below show what happens with two slightly different

choices for the relative importance of elements that are further away. In

both cases, starting from a random distribution of black and white elements

there quickly emerge definite patterns—in the first case a collection of

spots, and in the second case a maze-like or labyrinthine structure.

The next page shows the final patterns obtained with a whole

array of different choices of weightings for elements at different

distances. A certain range of patterns emerges—almost all of which

turn out to be quite similar to patterns that one sees on actual animals.

Evolution of simple two-dimensional cellular automata in which the color of each cell at each step is determined by looking
at a weighted sum of the average colors of cells up to distance 3 away. In both rules shown the cell itself and its nearest
neighbors enter with weight 1. Cells at distances 2 and 3 enter with negative weights— -0.4 per cell for the first rule, and
-0.2 for the second. A cell becomes black if the weighted sum is positive, and white otherwise. Starting from random initial
conditions, both rules quickly evolve to stationary states that look very much like pigmentation patterns seen in animals.

step 1 step 2 step 3 step 4 step 5 step 6 step 7

step 1 step 2 step 3 step 4 step 5 step 6 step 7
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But all of these patterns in a sense have the same basic form in

every direction. Yet there are many animals whose pigmentation

patterns exhibit stripes with a definite orientation. Sometimes these

stripes are highly regular, and can potentially arise from any of the

possible mechanisms that yield repetitive behavior. But in cases where

the stripes are less regular they typically look very much like the

patterns generated in the pictures at the top of the facing page using a

version of the simple mechanism described above.

Patterns generated by rules of the type shown on the previous page, with a range of choices for the weights of cells at distances 2
and 3. Weights vary from -0.9 to 0 down the page for distance 2, and from -0.7 to 0.4 across the page for distance 3. In all cases the
evolution starts from the same random initial condition, and is continued until it stabilizes. Note that pigmentation patterns for actual
animals may contain either larger or smaller numbers of elements than the patterns shown here.
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Financial Systems

During the development of the ideas in this book I have been asked

many times whether they might apply to financial systems. There is no

doubt that they do, and as one example I will briefly discuss here what

is probably the most obvious feature of essentially all financial markets:

the apparent randomness with which prices tend to fluctuate.

Whether one looks at stocks, bonds, commodities, currencies,

derivatives or essentially any other kind of financial instrument, the

sequences of prices that one sees at successive times show some overall

trends, but also exhibit varying amounts of apparent randomness.

So what is the origin of this randomness?

In the most naive economic theory, price is a reflection of value,

and the value of an asset is equal to the total of all future earnings—

such as dividends—which will be obtained from it, discounted for the

interest that will be lost from having to wait to get these earnings.

With this view, however, it seems hard to understand why there

should be any significant fluctuations in prices at all. What is usually

said is that prices are in fact determined not by true value, but rather by

the best estimates of that value that can be obtained at any given time.

And it is then assumed that these estimates are ultimately affected by

all sorts of events that go on in the world, making random movements

Examples of rules in which cells in the horizontal and vertical directions are weighted differently. In the first case, cells at
distances 2 and 3 only have an effect in the vertical direction; in the second case, they only have an effect in the horizontal
direction. The result is the formation of either vertical or horizontal stripes.

step 1 step 2 step 3 step 4 step 5 step 6 step 7

step 1 step 2 step 3 step 4 step 5 step 6 step 7
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in prices in a sense just reflections of random changes going on in the

outside environment.

But while this may be a dominant effect on timescales of order

weeks or months—and in some cases perhaps even hours or days—it is

difficult to believe that it can account for the apparent randomness that

is often seen on timescales as short as minutes or even seconds.

In addition, occasionally one can identify situations of seemingly

pure speculation in which trading occurs without the possibility of any

significant external input—and in such situations prices tend to show

more, rather than less, seemingly random fluctuations.

And knowing this, one might then think that perhaps random

fluctuations are just an inevitable feature of the way that prices adjust

to their correct values. But in negotiations between two parties, it is

common to see fairly smooth convergence to a final price. And certainly

one can construct algorithms that operate between larger numbers of

parties that would also lead to fairly smooth behavior.

So in actual markets there is presumably something else going

on. And no doubt part of it is just that the sequence of trades whose

prices are recorded are typically executed by a sequence of different

entities—whether they be humans, organizations or programs—each of

which has its own detailed ways of deciding on an appropriate price.

But just as in so many other systems that we have studied in this

book, once there are sufficiently many separate elements in a system, it

is reasonable to expect that the overall collective behavior that one sees

will go beyond the details of individual elements.

It is sometimes claimed that it is somehow inevitable that

markets must be random, since otherwise money could be made by

predicting them. Yet many people believe that they make money in just

this way every day. And beyond certain simple situations, it is difficult

to see how feedback mechanisms could exist that would systematically

remove predictable elements whenever they were used.

No doubt randomness helps in maintaining some degree of

stability in markets—just as it helps in maintaining stability in many

other kinds of systems that we have discussed in this book. Indeed,

most markets are set up so that extreme instabilities associated with
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certain kinds of loss of randomness are prevented—sometimes by

explicit suspension of trading. 

But why is there randomness in markets in the first place?

Practical experience suggests that particularly on short

timescales much of the randomness that one sees is purely a

consequence of internal dynamics in the market, and has little if

anything to do with the nature or value of what is being traded.

So how can one understand what is going on? One needs a basic

model for the operation and interaction of a large number of entities in

a market. But traditional mathematics, with its emphasis on reducing

everything to a small number of continuous numerical functions, has

rather little to offer along these lines. 

The idea of thinking in terms of programs seems, however, much

more promising. Indeed, as a first approximation one can imagine that

much as in a cellular automaton entities in a market could follow

simple rules based on the behavior of other entities. 

To be at all realistic one would have to set up an elaborate

network to represent the flow of information between different entities.

And one would have to assign fairly complicated rules to each entity—

certainly as complicated as the rules in a typical programmed trading

system. But from what we have learned in this book it seems likely that

this kind of complexity in the underlying structure of the system will

not have a crucial effect on its overall behavior. 

And so as a minimal idealization one can for example try viewing

a market as being like a simple one-dimensional cellular automaton.

Each cell then corresponds to a single trading entity, and the color of the

cell at a particular step specifies whether that entity chooses to buy or

sell at that step. One can imagine all sorts of schemes by which such

colors could be updated. But as a very simple idealization of the way

that information flows in a market, one can, for example, take each

color to be given by a fixed rule that is based on each entity looking at

the actions of its neighbors on the previous step.

With traditional intuition one would assume that such a simple

model must have extremely simple behavior, and certainly nothing like

what is seen in a real market. But as we have discovered in this book,
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simple models do not necessarily have simple behavior. And indeed the

picture below shows an example of the behavior that can occur.

In real markets, it is usually impossible to see in detail what each

entity is doing. Indeed, often all that one knows is the sequence of

prices at which trades are executed. And in a simple cellular automaton

the rough analog of this is the running difference of the total numbers of

black and white cells obtained on successive steps.

And as soon as the underlying rule for the cellular automaton is

such that information will eventually propagate from one entity to all

others—in effect a minimal version of an efficient market hypothesis—

it is essentially inevitable that running totals of numbers of cells will

exhibit significant randomness.

One can always make the underlying system more complicated—

say by having a network of cells, or by allowing different cells to have

different and perhaps changing rules. But although this will make it

more difficult to recognize definite rules even if one looks at the

complete behavior of every element in the system, it does not affect the

basic point that there is randomness that can intrinsically be generated

by the evolution of the system.

An example of a very simple idealized model
of a market. Each cell corresponds to an entity

that either buys or sells on each step. The behavior of a given cell is
determined by looking at the behavior of its two neighbors on the
step before according to the rule shown. The plot below gives as a
rough analog of a market price the running difference of the total
numbers of black and white cells
at successive steps. And
although there are patches of
predictability that can be seen in
the complete behavior of the
system the plot on the right
looks in many respects random. 
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9
Fundamental Physics

The Problems of Physics

In the previous chapter, we saw that many important aspects of a wide

variety of everyday systems can be understood by thinking in terms of

simple programs. But what about fundamental physics? Can ideas

derived from studying simple programs also be applied there?

Fundamental physics is the area in which traditional mathematical

approaches to science have had their greatest success. But despite this

success, there are still many central issues that remain quite unresolved.

And in this chapter my purpose is to consider some of these issues in the

light of what we have learned from studying simple programs.

It might at first not seem sensible to try to use simple programs

as a basis for understanding fundamental physics. For some of the best

established features of physical systems—such as conservation of

energy or equivalence of directions in space—seem to have no obvious

analogs in most of the programs we have discussed so far in this book.

As we will see, it is in fact possible for simple programs to show

these kinds of features. But it turns out that some of the most

important unresolved issues in physics concern phenomena that are in

a sense more general—and do not depend much on such features. 

And indeed what we will see in this chapter is that remarkably

simple programs are often able to capture the essence of what is going

on—even though traditional efforts have been quite unsuccessful.
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Thus, for example, in the early part of this chapter I will discuss

the so-called Second Law of Thermodynamics or Principle of Entropy

Increase: the observation that many physical systems tend to become

irreversibly more random as time progresses. And I will show that the

essence of such behavior can readily be seen in simple programs. 

More than a century has gone by since the Second Law was first

formulated. Yet despite many detailed results in traditional physics, its

origins have remained quite mysterious. But what we will see in this

chapter is that by studying the Second Law in the context of simple

programs, we will finally be able to get a clear understanding of why it

so often holds—as well as of when it may not.

My approach in investigating issues like the Second Law is in

effect to use simple programs as metaphors for physical systems. But

can such programs in fact be more than that? And for example is it

conceivable that at some level physical systems actually operate

directly according to the rules of a simple program?

Looking at the laws of physics as we know them today, this

might seem absurd. For at first the laws might seem much too

complicated to correspond to any simple program. But one of the

crucial discoveries of this book is that even programs with very simple

underlying rules can yield great complexity.

And so it could be with fundamental physics. Underneath the

laws of physics as we know them today it could be that there lies a very

simple program from which all the known laws—and ultimately all the

complexity we see in the universe—emerges.

To suppose that our universe is in essence just a simple program

is certainly a bold hypothesis. But in the second part of this chapter I

will describe some significant progress that I have made in investigating

this hypothesis, and in working out the details of what kinds of simple

programs might be involved.

There is still some distance to go. But from what I have found so

far I am extremely optimistic that by using the ideas of this book the

most fundamental problem of physics—and one of the ultimate

problems of all of science—may finally be within sight of being solved.
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The Notion of Reversibility

At any particular step in the evolution of a system like a cellular

automaton the underlying rule for the system tells one how to proceed

to the next step. But what if one wants to go backwards? Can one

deduce from the arrangement of black and white cells at a particular

step what the arrangement of cells must have been on previous steps? 

All current evidence suggests that the underlying laws of physics

have this kind of reversibility. So this means that given a sufficiently

precise knowledge of the state of a physical system at the present time,

it is therefore possible to deduce not only what the system will do in

the future, but also what it did in the past.

In the first cellular automaton shown below it is also straightforward

to do this. For any cell that has one color at a particular step must always

have had the opposite color on the step before. 

But the second cellular automaton works differently, and does

not allow one to go backwards. For after just a few steps, it makes every

cell black, regardless of what it was before—with the result that there is

no way to tell what color might have occurred on previous steps.

There are many examples of systems in nature which seem to

organize themselves a little like the second case above. And indeed the

conflict between this and the known reversibility of underlying laws of

physics is related to the subject of the next section in this chapter. 

rule 51 rule 254

Examples of cellular automata that are and are not reversible. Rule 51 is reversible, so that it
preserves enough information to allow one to go backwards from any particular step as well as
forwards. Rule 254 is not reversible, since it always evolves to uniform black and preserves no
information about the arrangement of cells on earlier steps. 
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But my purpose here is to explore what kinds of systems can be

reversible. And of the 256 elementary cellular automata with two

colors and nearest-neighbor rules, only the six shown below turn out to

be reversible. And as the pictures demonstrate, all of these exhibit fairly

trivial behavior, in which only rather simple transformations are ever

made to the initial configuration of cells. 

So is it possible to get more complex behavior while maintaining

reversibility? There are a total of 7,625,597,484,987 cellular automata

with three colors and nearest-neighbor rules, and searching through

these one finds just 1800 that are reversible. Of these 1800, many again

exhibit simple behavior, much like the pictures above. But some exhibit

more complex behavior, as in the pictures below.

rule 15 rule 51 rule 85 rule 170 rule 204 rule 240

Examples of the behavior of the six elementary cellular automata that are reversible. In all cases the transformations made to the
initial conditions are simple enough that it is straightforward to go backwards as well as forwards in the evolution.

rule 1123956776897 rule 3097483878567 rule 3681848058291

rule 270361043509 rule 277206003607 rule 1123289366095

Examples of some of the 1800 reversible cellular automata with three colors and nearest-neighbor rules. Even though these
systems exhibit complex behavior that scrambles the initial conditions, all of them are still reversible, so that starting from the
configuration of cells at the bottom of each picture, it is always possible to deduce the configurations on all previous steps.
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How can one now tell that such systems are reversible? It is no

longer true that their evolution leads only to simple transformations of

the initial conditions. But one can still check that starting with the

specific configuration of cells at the bottom of each picture, one can

evolve backwards to get to the top of the picture. And given a particular

rule it turns out to be fairly straightforward to do a detailed analysis

that allows one to prove or disprove its reversibility.

But in trying to understand the range of behavior that can occur

in reversible systems it is often convenient to consider classes of

cellular automata with rules that are specifically constructed to be

reversible. One such class is illustrated below. The idea is to have rules

that explicitly remain the same even if they are turned upside-down,

thereby interchanging the roles of past and future.

Such rules can be constructed by taking ordinary cellular

automata and adding dependence on colors two steps back. 

The resulting rules can be run both forwards and backwards. In

each case they require knowledge of the colors of cells on not one but two

successive steps. Given this knowledge, however, the rules can be used to

determine the configuration of cells on either future or past steps.

The next two pages show examples of the behavior of such

cellular automata with both random and simple initial conditions. 

An example of a cellular automaton that is explicitly set
up to be reversible. The rule for the system remains
unchanged if all its elements are turned upside-down—
effectively interchanging the roles of past and future.
Patterns produced by the rule must exhibit the same time
reversal symmetry, as shown on the left. The specific
rule used here is based on taking elementary rule 214,
then adding the specification that the new color of a cell
should be inverted whenever the cell was black two
steps back. Note that by allowing a total of four rather
than two colors, a version of the rule that depends only
on the immediately preceding step can be constructed. 
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rule 173R rule 190R rule 197R

rule 73R rule 90R rule 142R

rule 13R rule 30R rule 67R

rule 173R rule 190R rule 197R

rule 73R rule 90R rule 142R

rule 13R rule 30R rule 67R

Examples of reversible cellular automata starting from random and from simple initial conditions. In the upper block of
pictures, every cell is chosen to be black or white with equal probability on the two successive first steps. In the lower
block of pictures, only the center cell is taken to be black on these steps.
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rule 150R

rule 154R

rule 214R

The evolution of three reversible cellular automata for 300 steps. In the first case, a regular
nested pattern is obtained. In the other cases, the patterns show many features of randomness.
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rule 37R

An example of a reversible cellular automaton whose evolution supports localized structures. Because of the reversibility of the
underlying rule, every collision must be able to occur equally well when its initial and final states are interchanged. 
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In some cases, the behavior is fairly simple, and the patterns

obtained have simple repetitive or nested structures. But in many cases,

even with simple initial conditions, the patterns produced are highly

complex, and seem in many respects random.

The reversibility of the underlying rules has some obvious

consequences, such as the presence of triangles pointing sideways but

not down. But despite their reversibility, the rules still manage to

produce the kinds of complex behavior that we have seen in cellular

automata and many other systems throughout this book.

So what about localized structures?

The picture on the facing page demonstrates that these can also

occur in reversible systems. There are some constraints on the details of

the kinds of collisions that are possible, but reversible rules typically

tend to work very much like ordinary ones.

So in the end it seems that even though only a very small fraction

of possible systems have the property of being reversible, such systems

can still exhibit behavior just as complex as one sees anywhere else.

Irreversibility and the Second Law of Thermodynamics

All the evidence we have from particle physics and elsewhere suggests

that at a fundamental level the laws of physics are precisely reversible.

Yet our everyday experience is full of examples of seemingly irreversible

phenomena. Most often, what happens is that a system which starts in a

fairly regular or organized state becomes progressively more and more

random and disorganized. And it turns out that this phenomenon can

already be seen in many simple programs. 

The picture at the top of the next page shows an example based on a

reversible cellular automaton of the type discussed in the previous section.

The black cells in this system act a little like particles which bounce

around inside a box and interact with each other when they collide.

At the beginning the particles are placed in a simple arrangement

at the center of the box. But over the course of time the picture shows

that the arrangement of particles becomes progressively more random.
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Typical intuition from traditional science makes it difficult to

understand how such randomness could possibly arise. But the

discovery in this book that a wide range of systems can generate

randomness even with very simple initial conditions makes it seem

considerably less surprising.

But what about reversibility? The underlying rules for the

cellular automaton used in the picture above are precisely reversible.

Yet the picture itself does not at first appear to be at all reversible. For

there appears to be an irreversible increase in randomness as one goes

down successive panels on the page. 

The resolution of this apparent conflict is however fairly

straightforward. For as the picture on the facing page demonstrates, if the

A reversible cellular automaton that exhibits seemingly irreversible behavior. Starting from an initial
condition in which all black cells or particles lie at the center of a box, the distribution becomes
progressively more random. Such behavior appears to be the central phenomenon responsible for
the Second Law of Thermodynamics. The specific cellular automaton used here is rule 122R. The
system is restricted to a region of size 100 cells.
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simple arrangement of particles occurs in the middle of the evolution,

then one can readily see that randomness increases in exactly the same

way—whether one goes forwards or backwards from that point.

Yet there is still something of a mystery. For our everyday

experience is full of examples in which randomness increases much as

in the second half of the picture above. But we essentially never see the

kind of systematic decrease in randomness that occurs in the first half.

By setting up the precise initial conditions that exist at the

beginning of the whole picture it would certainly in principle be

possible to get such behavior. But somehow it seems that initial

conditions like these essentially never actually occur in practice.

An extended version of the picture on the facing page, in which the reversibility of the underlying cellular automaton is more clearly
manifest. An initial condition is carefully constructed so that halfway through the evolution shown a simple arrangement of particles
will be produced. If one starts with this arrangement, then the randomness of the system will effectively increase whether one goes
forwards or backwards in time from that point.
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There has in the past been considerable confusion about why this

might be the case. But the key to understanding what is going on is

simply to realize that one has to think not only about the systems one

is studying, but also about the types of experiments and observations

that one uses in the process of studying them.

The crucial point then turns out to be that practical experiments

almost inevitably end up involving only initial conditions that are fairly

simple for us to describe and construct. And with these types of initial

conditions, systems like the one on the previous page always tend to

exhibit increasing randomness.

But what exactly is it that determines the types of initial

conditions that one can use in an experiment? It seems reasonable to

suppose that in any meaningful experiment the process of setting up the

experiment should somehow be simpler than the process that the

experiment is intended to observe.

But how can one compare such processes? The answer that I will

develop in considerable detail later in this book is to view all such processes

as computations. The conclusion is then that the computation involved in

setting up an experiment should be simpler than the computation involved

in the evolution of the system that is to be studied by the experiment.

It is clear that by starting with a simple state and then tracing

backwards through the actual evolution of a reversible system one can

find initial conditions that will lead to decreasing randomness. But if

one looks for example at the pictures on the last couple of pages the

complexity of the behavior seems to preclude any less arduous way of

finding such initial conditions. And indeed I will argue in Chapter 12

that the Principle of Computational Equivalence suggests that in

general no such reduced procedure should exist.

The consequence of this is that no reasonable experiment can

ever involve setting up the kind of initial conditions that will lead to

decreases in randomness, and that therefore all practical experiments

will tend to show only increases in randomness.

It is this basic argument that I believe explains the observed

validity of what in physics is known as the Second Law of

Thermodynamics. The law was first formulated more than a century
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ago, but despite many related technical results, the basic reasons for its

validity have until now remained rather mysterious.

The field of thermodynamics is generally concerned with issues of

heat and energy in physical systems. A fundamental fact known since the

mid-1800s is that heat is a form of energy associated with the random

microscopic motions of large numbers of atoms or other particles. 

One formulation of the Second Law then states that any energy

associated with organized motions of such particles tends to degrade

irreversibly into heat. And the pictures at the beginning of this section

show essentially just such a phenomenon. Initially there are particles

which move in a fairly regular and organized way. But as time goes on,

the motion that occurs becomes progressively more random.

There are several details of the cellular automaton used above that

differ from actual physical systems of the kind usually studied in

thermodynamics. But at the cost of some additional technical

complication, it is fairly straightforward to set up a more realistic system.

The pictures on the next two pages show a particular

two-dimensional cellular automaton in which black squares representing

particles move around and collide with each other, essentially like

particles in an ideal gas. This cellular automaton shares with the cellular

automaton at the beginning of the section the property of being reversible.

But it also has the additional feature that in every collision the total

number of particles in it remains unchanged. And since each particle can

be thought of as having a certain energy, it follows that the total energy of

the system is therefore conserved.

In the first case shown, the particles are taken to bounce around

in an empty square box. And it turns out that in this particular case

only very simple repetitive behavior is ever obtained. But almost any

change destroys this simplicity. 

And in the second case, for example, the presence of a small fixed

obstacle leads to rapid randomization in the arrangement of particles—

very much like the randomization we saw in the one-dimensional

cellular automaton that we discussed earlier in this section. 
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So even though the total of the energy of all particles remains the

same, the distribution of this energy becomes progressively more

random, just as the usual Second Law implies.

An important practical consequence of this is that it becomes

increasingly difficult to extract energy from the system in the form of

systematic mechanical work. At an idealized level one might imagine

trying to do this by inserting into the system some kind of paddle

which would experience force as a result of impacts from particles.

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9 step 10

step 11 step 12 step 13 step 14 step 15 step 16 step 17 step 18 step 19 step 20

step 21 step 22 step 23 step 24 step 25 step 26 step 27 step 28 step 29 step 30

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9 step 10

step 11 step 12 step 13 step 14 step 15 step 16 step 17 step 18 step 19 step 20

step 21 step 22 step 23 step 24 step 25 step 26 step 27 step 28 step 29 step 30

The behavior of a simple two-dimensional cellular automaton that emulates an ideal gas of particles. In the top group of pictures, the
particles bounce around in an empty square box. In the bottom group of pictures, the box contains a small fixed obstacle. In the top
group of pictures, the arrangement of particles shows simple repetitive behavior. In the bottom group, however, it becomes
progressively more random with time. The underlying rules for the cellular automaton used here are reversible, and conserve the total
number of particles. The specific rules are based on 2 ä 2 blocks—a two-dimensional generalization of the block cellular automata to be
discussed in the next section. For each 2 ä 2 block the configuration of particles is taken to remain the same at a particular step unless
there are exactly two particles arranged diagonally within the block, in which case the particles move to the opposite diagonal. 
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The pictures below show how such force might vary with time in

cases (a) and (b) above. In case (a), where no randomization occurs, the

force can readily be predicted, and it is easy to imagine harnessing it to

produce systematic mechanical work. But in case (b), the force quickly

randomizes, and there is no obvious way to obtain systematic

mechanical work from it.

(a) (b)

Time histories of the cellular automata from the facing page. In each case a slice is taken through the midline of the
box. Black cells that are further from the midline are shown in progressively lighter shades of gray. Case (a)
corresponds to an empty square box, and shows simple repetitive behavior. Case (b) corresponds to a box
containing a fixed obstacle, and in this case rapid randomization is seen. Each panel corresponds to 100 steps in the
evolution of the system; the box is 24 cells across.

0 100 200 300 400 500

(a)

0 100 200 300 400 500

(b)

The force on an idealized paddle placed on the midline of the systems shown above. The force
reflects an imbalance in the number of particles at each step arriving at the midline from above and
below. In case (a) this imbalance is readily predictable. In case (b), however, it rapidly becomes for
most practical purposes random. This randomness is essentially what makes it impossible to build a
physical perpetual motion machine which continually turns heat into mechanical work.
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One might nevertheless imagine that it would be possible to

devise a complicated machine, perhaps with an elaborate arrangement

of paddles, that would still be able to extract systematic mechanical

work even from an apparently random distribution of particles. But it

turns out that in order to do this the machine would effectively have to

be able to predict where every particle would be at every step in time.

And as we shall discuss in Chapter 12, this would mean that the

machine would have to perform computations that are as sophisticated as

those that correspond to the actual evolution of the system itself. The

result is that in practice it is never possible to build perpetual motion

machines that continually take energy in the form of heat—or randomized

particle motions—and convert it into useful mechanical work.

The impossibility of such perpetual motion machines is one

common statement of the Second Law of Thermodynamics. Another is

that a quantity known as entropy tends to increase with time.

Entropy is defined as the amount of information about a system

that is still unknown after one has made a certain set of measurements

on the system. The specific value of the entropy will depend on what

measurements one makes, but the content of the Second Law is that if

one repeats the same measurements at different times, then the entropy

deduced from them will tend to increase with time.

If one managed to find the positions and properties of all the

particles in the system, then no information about the system would

remain unknown, and the entropy of the system would just be zero. But

in a practical experiment, one cannot expect to be able to make

anything like such complete measurements. 

And more realistically, the measurements one makes might for

example give the total numbers of particles in certain regions inside the

box. There are then a large number of possible detailed arrangements of

particles that are all consistent with the results of such measurements. The

entropy is defined as the amount of additional information that would be

needed in order to pick out the specific arrangement that actually occurs.

We will discuss in more detail in Chapter 10 the notion of amount of

information. But here we can imagine numbering all the possible

arrangements of particles that are consistent with the results of our
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measurements, so that the amount of information needed to pick out a

single arrangement is essentially the length in digits of one such number.

The pictures below show the behavior of the entropy calculated in

this way for systems like the one discussed above. And what we see is that

the entropy does indeed tend to increase, just as the Second Law implies.

In effect what is going on is that the measurements we make

represent an attempt to determine the state of the system. But as the

arrangement of particles in the system becomes more random, this

attempt becomes less and less successful.

One might imagine that there could be a more elaborate set of

measurements that would somehow avoid these problems, and would

not lead to increasing entropy. But as we shall discuss in Chapter 12, it

again turns out that setting up such measurements would have to

involve the same level of computational effort as the actual evolution of

the system itself. And as a result, one concludes that the entropy

associated with measurements done in practical experiments will

always tend to increase, as the Second Law suggests. 

0 200 400 600 800 1000

0 200 400 600 800 1000

The entropy as a function of time for systems of the type shown in case (b) from page 447. The top
plot is exactly for case (b); the bottom one is for a system three times larger in size. The entropy is
found in each case by working out how many possible configurations of particles are consistent with
measurements of the total numbers of particles in a 6 ä 6 grid of regions within the system. Just as the
Second Law of Thermodynamics suggests, the entropy tends to increase with time. Note that the
plots above would be exactly symmetrical if they were continued to the left: the entropy would
increase in the same way going both forwards and backwards from the simple initial conditions used. 
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In Chapter 12 we will discuss in more detail some of the key

ideas involved in coming to this conclusion. But the basic point is that

the phenomenon of entropy increase implied by the Second Law is a

more or less direct consequence of the phenomenon discovered in this

book that even with simple initial conditions many systems can

produce complex and seemingly random behavior.

One aspect of the generation of randomness that we have noted

several times in earlier chapters is that once significant randomness has

been produced in a system, the overall properties of that system tend to

become largely independent of the details of its initial conditions.

In any system that is reversible it must always be the case that

different initial conditions lead to at least slightly different states—

otherwise there would be no unique way of going backwards. But the

point is that even though the outcomes from different initial conditions

differ in detail, their overall properties can still be very much the same. 

The pictures on the facing page show an example of what can

happen. Every individual picture has different initial conditions. But

whenever randomness is produced the overall patterns that are obtained

look in the end almost indistinguishable.

The reversibility of the underlying rules implies that at some

level it must be possible to recognize outcomes from different kinds of

initial conditions. But the point is that to do so would require a

computation far more sophisticated than any that could meaningfully

be done as part of a practical measurement process.

So this means that if a system generates sufficient randomness, one

can think of it as evolving towards a unique equilibrium whose properties

are for practical purposes independent of its initial conditions.

This fact turns out in a sense to be implicit in many everyday

applications of physics. For it is what allows us to characterize all sorts

of physical systems by just specifying a few parameters such as

temperature and chemical composition—and avoids us always having

to know the details of the initial conditions and history of each system. 

The existence of a unique equilibrium to which any particular

system tends to evolve is also a common statement of the Second Law of
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Thermodynamics. And once again, therefore, we find that the Second Law

is associated with basic phenomena that we already saw early in this book.

But just how general is the Second Law? And does it really apply

to all of the various kinds of systems that we see in nature? 

Starting nearly a century ago it came to be widely believed that

the Second Law is an almost universal principle. But in reality there is

surprisingly little evidence for this.

Indeed, almost all of the detailed applications ever made of the

full Second Law have been concerned with just one specific area: the

behavior of gases. By now there is therefore good evidence that gases

obey the Second Law—just as the idealized model earlier in this section

suggests. But what about other kinds of systems?

The approach to equilibrium in a reversible cellular automaton with a variety of different initial conditions. Apart from exceptional
cases where no randomization occurs, the behavior obtained with different initial conditions is eventually quite indistinguishable in
its overall properties. Because the underlying rule is reversible, however, the details with different initial conditions are always at
least slightly different—otherwise it would not be possible to go backwards in a unique way. The rule used here is 122R.
Successive pairs of pictures have initial conditions that differ only in the color of a single cell at the center.
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rule 0R rule 26R rule 37R rule 73R rule 90R rule 122R rule 173R rule 214R rule 222R

Examples of reversible cellular automata with various rules. Some quickly randomize, as the Second Law of Thermodynamics
would suggest. But others do not—and thus in effect do not obey the Second Law of Thermodynamics.
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The pictures on the facing page show examples of various

reversible cellular automata. And what we see immediately from these

pictures is that while some systems exhibit exactly the kind of

randomization implied by the Second Law, others do not.

The most obvious exceptions are cases like rule 0R and rule 90R,

where the behavior that is produced has only a very simple fixed or

repetitive form. And existing mathematical studies have indeed identified

these simple exceptions to the Second Law. But they have somehow

implicitly assumed that no other kinds of exceptions can exist.

The picture on the next page, however, shows the behavior of

rule 37R over the course of many steps. And in looking at this picture,

we see a remarkable phenomenon: there is neither a systematic trend

towards increasing randomness, nor any form of simple predictable

behavior. Indeed, it seems that the system just never settles down, but

rather continues to fluctuate forever, sometimes becoming less orderly,

and sometimes more so.

So how can such behavior be understood in the context of the

Second Law? There is, I believe, no choice but to conclude that for

practical purposes rule 37R simply does not obey the Second Law.

And as it turns out, what happens in rule 37R is not so different

from what seems to happen in many systems in nature. If the Second

Law was always obeyed, then one might expect that by now every part

of our universe would have evolved to completely random equilibrium.

Yet it is quite obvious that this has not happened. And indeed

there are many kinds of systems, notably biological ones, that seem to

show, at least temporarily, a trend towards increasing order rather than

increasing randomness.

How do such systems work? A common feature appears to be the

presence of some kind of partitioning: the systems effectively break up into

parts that evolve at least somewhat independently for long periods of time.

The picture on page 456 shows what happens if one starts rule

37R with a single small region of randomness. And for a while what one

sees is that the randomness that has been inserted persists. But

eventually the system instead seems to organize itself to yield just a

small number of simple repetitive structures. 
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steps 0-3000 steps 5000-8000 steps 10000-13000 steps 20000-23000 steps 100000-103000 steps 200000-203000

More steps in the evolution of the reversible cellular automaton with rule 37R. This system is an example of one that does not in any
meaningful way obey the Second Law of Thermodynamics. Instead of exhibiting progressively more random behavior, it appears to
fluctuate between quite ordered and quite disordered states.
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This kind of self-organization is quite opposite to what one

would expect from the Second Law. And at first it also seems

inconsistent with the reversibility of the system. For if all that is left at

the end are a few simple structures, how can there be enough

information to go backwards and reconstruct the initial conditions?

The answer is that one has to consider not only the stationary

structures that stay in the middle of the system, but also all various

small structures that were emitted in the course of the evolution. To go

backwards one would need to set things up so that one absorbs exactly

the sequence of structures that were emitted going forwards.

If, however, one just lets the emitted structures escape, and never

absorbs any other structures, then one is effectively losing information.

The result is that the evolution one sees can be intrinsically not

reversible, so that all of the various forms of self-organization that we

saw earlier in this book in cellular automata that do not have reversible

rules can potentially occur.

If we look at the universe on a large scale, then it turns out that

in a certain sense there is more radiation emitted than absorbed. Indeed,

this is related to the fact that the night sky appears dark, rather than

having bright starlight coming from every direction. But ultimately the

asymmetry between emission and absorption is a consequence of the

fact that the universe is expanding, rather than contracting, with time.

The result is that it is possible for regions of the universe to

become progressively more organized, despite the Second Law, and

despite the reversibility of their underlying rules. And this is a large part

of the reason that organized galaxies, stars and planets can form.

Allowing information to escape is a rather straightforward way to

evade the Second Law. But what the pictures on the facing page

demonstrate is that even in a completely closed system, where no

information at all is allowed to escape, a system like rule 37R still does

not follow the uniform trend towards increasing randomness that is

suggested by the Second Law.

What instead happens is that kinds of membranes form between

different regions of the system, and within each region orderly behavior

can then occur, at least while the membrane survives.
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An example of evolution according to rule 37R from an initial condition containing a fairly random region. Even
though the system is reversible, this region tends to organize itself so as to take on a much simpler form.
Information on the initial conditions ends up being carried by localized structures which radiate outwards.
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This basic mechanism may well be the main one at work in

many biological systems: each cell or each organism becomes separated

from others, and while it survives, it can exhibit organized behavior.

But looking at the pictures of rule 37R on page 454 one may ask

whether perhaps the effects we see are just transients, and that if we

waited long enough something different would happen.

It is an inevitable feature of having a closed system of limited size

that in the end the behavior one gets must repeat itself. And in rules like

0R and 90R shown on page 452 the period of repetition is always very

short. But for rule 37R it usually turns out to be rather long. Indeed, for

the specific example shown on page 454, the period is 293,216,266.

In general, however, the maximum possible period for a system

containing a certain number of cells can be achieved only if the

evolution of the system from any initial condition eventually visits all

the possible states of the system, as discussed on page 258. And if this

in fact happens, then at least eventually the system will inevitably

spend most of its time in states that seem quite random.

But in rule 37R there is no such ergodicity. And instead, starting

from any particular initial condition, the system will only ever visit a

tiny fraction of all possible states. Yet since the total number of states is

astronomically large—about 1060 for size 100—the number of states

visited by rule 37R, and therefore the repetition period, can still be

extremely long.

There are various subtleties involved in making a formal study of

the limiting behavior of rule 37R after a very long time. But irrespective

of these subtleties, the basic fact remains that so far as I can tell, rule

37R simply does not follow the predictions of the Second Law.

And indeed I strongly suspect that there are many systems in

nature which behave in more or less the same way. The Second Law is

an important and quite general principle—but it is not universally

valid. And by thinking in terms of simple programs we have thus been

able in this section not only to understand why the Second Law is often

true, but also to see some of its limitations.
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Conserved Quantities and Continuum Phenomena

Reversibility is one general feature that appears to exist in the basic laws

of physics. Another is conservation of various quantities—so that for

example in the evolution of any closed physical system, total values of

quantities like energy and electric charge appear always to stay the same. 

With most rules, systems like cellular automata do not usually

exhibit such conservation laws. But just as with reversibility, it turns

out to be possible to find rules that for example conserve the total

number of black cells appearing on each step. 

Among elementary cellular automata with just two colors and

nearest-neighbor rules, the only types of examples are the fairly trivial

ones shown in the pictures below.

rule 204 (25% black) rule 204 (50% black) rule 204 (75% black)

rule 184 (25% black) rule 184 (50% black) rule 184 (75% black)

rule 170 (25% black) rule 170 (50% black) rule 170 (75% black)

Elementary cellular automata whose evolution conserves the total number of black cells. The
behavior of the rules shown here is simple enough that in each case it is fairly obvious how the
number of black cells manages to stay the same on every step.
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But with next-nearest-neighbor rules, more complicated examples

become possible, as the pictures below demonstrate.

One straightforward way to generate collections of systems that

will inevitably exhibit conserved quantities is to work not with ordinary

cellular automata but instead with block cellular automata. The basic

idea of a block cellular automaton is illustrated at the top of the next page.

At each step what happens is that blocks of adjacent cells are replaced by

other blocks of the same size according to some definite rule. And then on

successive steps the alignment of these blocks shifts by one cell.

rule 3822644248 (25% black) rule 3822644248 (50% black) rule 3822644248 (75% black)

rule 3484741764 (25% black) rule 3484741764 (50% black) rule 3484741764 (75% black)

rule 3450663328 (25% black) rule 3450663328 (50% black) rule 3450663328 (75% black)

Examples of cellular automata with next-nearest-neighbor rules whose evolution conserves the total number of black cells. Even
though it is not immediately obvious by eye, the total number of black cells stays exactly the same on each successive step in each
picture. Among the 4,294,967,296 possible next-neighbor rules, only 428 exhibit the kind of conservation property shown here.
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And with this setup, if the underlying rules replace each block by

one that contains the same number of black cells, it is inevitable that

the system as a whole will conserve the total number of black cells.

With two possible colors and blocks of size two the only kinds of

block cellular automata that conserve the total number of black cells are

the ones shown below—and all of these exhibit rather trivial behavior. 

An example of a block cellular automaton. The system works by partitioning the sequence of cells that exists at each step into
pairs, then replacing these pairs by other pairs according to the rule shown. The choice of whether to pair a cell with its left or
right neighbor alternates on successive steps. Like many block cellular automata, the system shown is reversible, since in the
rule each pair has a unique predecessor. It does not, however, conserve the total number of black cells.

Block cellular automata with two possible colors and blocks of size two that conserve the total number of black cells (the last
example has this property only on alternate steps). It so happens that all but the second of the rules shown here not only
conserve the total number of black cells but also turn out to be reversible.
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But if one allows three possible colors, and requires, say, that the

total number of black and gray cells together be conserved, then more

complicated behavior can occur, as in the pictures below.

Indeed, as the pictures on the next page demonstrate, such

systems can produce considerable randomness even when starting from

very simple initial conditions. 

Block cellular automata with three possible colors which conserve the combined number of black and
gray cells. In rule (a), black and gray cells remain in localized regions. In rule (b), they move in fairly simple
ways, and in rules (c) and (d), they move in a seemingly somewhat random way. The rules shown here
are reversible, although their behavior is similar to that of non-reversible rules, at least after a few steps.

(25% black+gray) (50% black+gray) (75% black+gray)

rule (a)

(25% black+gray) (50% black+gray) (75% black+gray)

rule (b)

(25% black+gray) (50% black+gray) (75% black+gray)

rule (c)

(25% black+gray) (50% black+gray) (75% black+gray)

rule (d)
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The behavior of rules (c) and (d) from the previous page, starting with very simple initial conditions. Each panel shows 500 steps of
evolution, and rapid randomization is evident. The black and gray cells behave much like physical particles: their total number is
conserved, and with the particular rules used here, their interactions are reversible. Note that the presence of boundaries is crucial;
for without them there would in a sense be no collisions between particles, and the behavior of both systems would be rather trivial. 
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But there is still an important constraint on the behavior: even

though black and gray cells may in effect move around randomly, their

total number must always be conserved. And this means that if one looks

at the total average density of colored cells throughout the system, it must

always remain the same. But local densities in different parts of the system

need not—and in general they will change as colored cells flow in and out. 

The pictures below show what happens with four different rules,

starting with higher density in the middle and lower density on the

sides. With rules (a) and (b), each different region effectively remains

separated forever. But with rules (c) and (d) the regions gradually mix. 

As in many kinds of systems, the details of the initial

arrangement of cells will normally have an effect on the details of the

behavior that occurs. But what the pictures below suggest is that if one

looks only at the overall distribution of density, then these details will

become largely irrelevant—so that a given initial distribution of density

will always tend to evolve in the same overall way, regardless of what

particular arrangement of cells happened to make up that distribution.

The block cellular automata from previous pages started from initial conditions containing regions of different density. In rules (a)
and (b) the regions remain separated forever, but in rules (c) and (d) they gradually diffuse into each other.

rule (a) rule (b) rule (c) rule (d)
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The pictures above then show how the average density evolves in

systems (c) and (d). And what is striking is that even though at the lowest

level both of these systems consist of discrete cells, the overall distribution

of density that emerges in both cases shows smooth continuous behavior.

And much as in physical systems like fluids, what ultimately leads

to this is the presence of small-scale apparent randomness that washes

out details of individual cells or molecules—as well as of conserved

quantities that force certain overall features not to change too quickly.

And in fact, given just these properties it turns out that essentially the

same overall continuum behavior always tends to be obtained. 

One might have thought that continuum behavior would

somehow rely on special features of actual systems in physics. But in

fact what we have seen here is that once again the fundamental

mechanisms responsible already occur in a much more minimal way in

programs that have some remarkably simple underlying rules.

The evolution of overall density for block cellular automata (c) and (d) from the previous page. Even though at an underlying level
these systems consist of discrete cells, their overall behavior seems smooth and continuous. The results shown here are obtained
by averaging over progressively larger numbers of runs with initial conditions that differ in detail, but have the same overall density
distribution. In the limit of an infinite number of runs (or infinite number of cells), the behavior in the second case approaches the
form implied by the continuum diffusion equation. (In the first case correlations in effect last too long to yield exactly such behavior.)

1 run 2 runs 5 runs 10 runs 50 runs 1000 runs

1 run 2 runs 5 runs 10 runs 50 runs 1000 runs
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Ultimate Models for the Universe

The history of physics has seen the development of a sequence of

progressively more accurate models for the universe—from classical

mechanics, through quantum mechanics, to quantum field theory, and

beyond. And one may wonder whether this process will go on forever,

or whether at some point it will come to an end, and one will reach a

final ultimate model for the universe.

Experience with actual results in physics would probably not

make one think so. For it has seemed that whenever one tries to get to

another level of accuracy, one encounters more complex phenomena.

And at least with traditional scientific intuition, this fact suggests that

models of progressively greater complexity will be needed.

But one of the crucial points discovered in this book is that more

complex phenomena do not always require more complex models. And

indeed I have shown that even models based on remarkably simple

programs can produce behavior that is in a sense arbitrarily complex.

So could this be what happens in the universe? And could it even

be that underneath all the complex phenomena we see in physics there

lies some simple program which, if run for long enough, would

reproduce our universe in every detail?

The discovery of such a program would certainly be an exciting

event—as well as a dramatic endorsement for the new kind of science

that I have developed in this book. 

For among other things, with such a program one would finally have

a model of nature that was not in any sense an approximation or

idealization. Instead, it would be a complete and precise representation of

the actual operation of the universe—but all reduced to readily stated rules.

In a sense, the existence of such a program would be the ultimate

validation of the idea that human thought can comprehend the

construction of the universe. But just knowing the underlying program

does not mean that one can immediately deduce every aspect of how

the universe will behave. For as we have seen many times in this book,

there is often a great distance between underlying rules and overall
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behavior. And in fact, this is precisely why it is conceivable that a

simple program could reproduce all the complexity we see in physics.

Given a particular underlying program, it is always in principle

possible to work out what it will do just by running it. But for the whole

universe, doing this kind of explicit simulation is almost by definition

out of the question. So how then can one even expect to tell whether a

particular program is a correct model for the universe? Small-scale

simulation will certainly be possible. And I expect that by combining

this with a certain amount of perhaps fairly sophisticated mathematical

and logical deduction, it will be possible to get at least as far as

reproducing the known laws of physics—and thus of determining

whether a particular model has the potential to be correct.

So if there is indeed a definite ultimate model for the universe,

how might one set about finding it? For those familiar with existing

science, there is at first a tremendous tendency to try to work

backwards from the known laws of physics, and in essence to try to

“engineer” a universe that will have particular features that we observe.

But if there is in fact an ultimate model that is quite simple, then

from what we have seen in this book, I strongly believe that such an

approach will never realistically be successful. For human thinking—

even supplemented by the most sophisticated ideas of current

mathematics and logic—is far from being able to do what is needed. 

Imagine for example trying to work backwards from a knowledge

of the overall features of the picture on the facing page to construct a

rule that would reproduce it. With great effort one might perhaps come

up with some immensely complex rule that would work in most cases.

But there is no serious possibility that starting from overall features one

would ever arrive at the extremely simple rule that was actually used.

It is already difficult enough to work out from an underlying rule

what behavior it will produce. But to invert this in any systematic way is

probably even in principle beyond what any realistic computation can do.

So how then could one ever expect to find the underlying rule in

such a case? Almost always, it seems that the best strategy is a simple

one: to come up with an appropriate general class of rules, and then just
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to search through these rules, trying each one in turn, and looking to

see if it produces the behavior one wants.

But what about the rules for the universe? Surely we cannot

simply search through possible rules of certain kinds, looking for one

whose behavior happens to fit what we see in physics?

With the intuition of traditional science, such an approach seems

absurd. But the point is that if the rule for the universe is sufficiently

simple—and the results of this book suggest that it might be—then it

becomes not so unreasonable to imagine systematically searching for it.

To start performing such a search, however, one first needs to

work out what kinds of rules to consider. And my suspicion is that

none of the specific types of rules that we have discussed so far in this

book will turn out to be adequate. For I believe that all these types of

rules in some sense probably already have too much structure built in.

Thus, for example, cellular automata probably already have too

rigid a built-in notion of space. For a defining feature of cellular

automata is that their cells are always arranged in a rigid array in space.

Yet I strongly suspect that in the underlying rule for our universe there

will be no such built-in structure. Rather, as I discuss in the sections

A typical example of a situation where it would be very difficult to deduce the underlying rule from a
description of the overall behavior that it produces. There is in a sense too great a distance between
the simple rule shown and the behavior that emerges from it. I suspect that the same will be true of
the basic rule for the universe. The particular rule shown here is the elementary cellular automaton
with rule number 94, and with initial condition .
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that follow, my guess is that at the lowest level there will just be certain

patterns of connectivity that tend to exist, and that space as we know it

will then emerge from these patterns as a kind of large-scale limit.

And indeed in general what I expect is that remarkably few

familiar features of our universe will actually be reflected in any direct

way in its ultimate underlying rule. For if all these features were

somehow explicitly and separately included, the rule would necessarily

have to be very complicated to fit them all in.

So if the rule is indeed simple, it almost inevitably follows that we

will not be able to recognize directly in it most features of the universe as

we normally perceive them. And this means that the rule—or at least its

behavior—will necessarily seem to us unfamiliar and abstract.

Most likely for example there will be no easy way to visualize

what the rule does by looking at a collection of elements laid out in

space. Nor will there probably be any immediate trace of even such

basic phenomena as motion.

But despite the lack of these familiar features, I still expect that

the actual rule itself will not be too difficult for us to represent. For I am

fairly certain that the kinds of logical and computational constructs

that we have discussed in this book will be general enough to cover

what is needed. And indeed my guess is that in terms of the kinds of

pictures—or Mathematica programs—that we have used in this book, the

ultimate rule for the universe will turn out to look quite simple.

No doubt there will be many different possible formulations—

some quite unrecognizably different from others. And no doubt a

formulation will eventually be found in which the rule somehow

comes to seem quite obvious and inevitable. 

But I believe that it will be essentially impossible to find such a

formulation without already knowing the rule. And as a result, my

guess is that the only realistic way to find the rule in the first place will

be to start from some very straightforward representation, and then just

to search through large numbers of possible rules in this representation.

Presumably the vast majority of rules will lead to utterly

unworkable universes, in which there is for example no reasonable

notion of space or no reasonable notion of time.
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But my guess is that among appropriate classes of rules there will

actually be quite a large number that lead to universes which share at

least some features with our own. Much as the same laws of continuum

fluid mechanics can emerge in systems with different underlying rules

for molecular interactions, so also I suspect that properties such as the

existence of seemingly continuous space, as well as certain features of

gravitation and quantum mechanics, will emerge with many different

possible underlying rules for the universe.

But my guess is that when it comes to something like the

spectrum of masses of elementary particles—or perhaps even the

overall dimensionality of space—such properties will be quite specific

to particular underlying rules.

In traditional approaches to modelling, one usually tries first to

reproduce some features of a system, then goes on to reproduce others.

But if the ultimate rule for the universe is at all simple, then it follows

that every part of this rule must in a sense be responsible for a great

many different features of the universe. And as a result, it is not likely

to be possible to adjust individual parts of the rule without having an

effect on a whole collection of disparate features of the universe.

So this means that one cannot reasonably expect to use some kind

of incremental procedure to find the ultimate rule for the universe. But it

also means that if one once discovers a rule that reproduces sufficiently

many features of the universe, then it becomes extremely likely that this

rule is indeed the final and correct one for the whole universe.

And I strongly suspect that even in many of the most basic everyday

physical processes, every element of the underlying rule for the universe

will be very extensively exercised. And as a result, if these basic processes

are reproduced correctly, then I believe that one can have considerable

confidence that one in fact has the complete rule for the universe.

Looking at the history of physics, one might think that it would

be completely inadequate just to reproduce everyday physical processes.

For one might expect that there would always be some other esoteric

phenomenon, say in particle physics, that would be discovered and

would show that whatever rule one has found is somehow incomplete.
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But I do not think so. For if the rule for our universe is at all

simple, then I expect that to introduce a new phenomenon, however

esoteric, will involve modifying some basic part of the rule, which will

also affect even common everyday phenomena.

But why should we believe that the rule for our universe is in fact

simple? Certainly among all possible rules of a particular kind only a

limited number can ever be considered simple, and these rules are by

definition somehow special. Yet looking at the history of science, one

might expect that in the end there would turn out to be nothing special

about the rule for our universe—just as there has turned out to be

nothing special about our position in the solar system or the galaxy.

Indeed, one might assume that there are in fact an infinite

number of universes, each with a different rule, and that we simply live

in a particular—and essentially arbitrary—one of them.

It is unlikely to be possible to show for certain that such a theory is

not correct. But one of its consequences is that it gives us no reason to

think that the rule for our particular universe should be in any way

simple. For among all possible rules, the overwhelming majority will not

be simple; in fact, they will instead tend to be almost infinitely complex.

Yet we know, I think, that the rule for our universe is not too

complex. For if the number of different parts of the rule were, for

example, comparable to the number of different situations that have

ever arisen in the history of the universe, then we would not expect

ever to be able to describe the behavior of the universe using only a

limited number of physical laws.

And in fact if one looks at present-day physics, there are not only

a limited number of physical laws, but also the individual laws often

seem to have the simplest forms out of various alternatives. And

knowing this, one might be led to believe that for some reason the

universe is set up to have the simplest rules throughout.

But, unfortunately perhaps, I do not think that this conclusion

necessarily follows. For as I have discussed above, I strongly suspect

that the vast majority of physical laws discovered so far are not truly

fundamental, but are instead merely emergent features of the

large-scale behavior of some ultimate underlying rule. And what this



F U N D A M E N T A L  P H Y S I C S C H A P T E R  9

471

means is that any simplicity observed in known physical laws may

have little connection with simplicity in the underlying rule.

Indeed, it turns out that simple overall laws can emerge almost

regardless of underlying rules. And thus, for example, essentially as a

consequence of randomness generation, a wide range of cellular

automata show the simple density diffusion law on page 464—whether

or not their underlying rules happen to be simple.

So it could be that the laws that we have formulated in existing

physics are simple not because of simplicity in an ultimate underlying

rule, but rather because of some general property of emergent behavior

for the kinds of overall features of the universe that we readily perceive.

Indeed, with this kind of argument, one could be led to think that

there might be no single ultimate rule for the universe at all, but that

instead there might somehow be an infinite sequence of levels of rules,

with each level having a certain simplicity that becomes increasingly

independent of the details of the levels below it.

But one should not imagine that such a setup would make it

unnecessary to ask why our universe is the way it is: for even though

certain features might be inevitable from the general properties of

emergent behavior, there will, I believe, still be many seemingly

arbitrary choices that have to be made in arriving at the universe in

which we live. And once again, therefore, one will have to ask why it

was these choices, and not others, that were made.

So perhaps in the end there is the least to explain if I am correct

that the universe just follows a single, simple, underlying rule.

There will certainly be questions about why it is this particular

rule, and not another one. And I am doubtful that such questions will

ever have meaningful answers. 

But to find the ultimate rule will be a major triumph for science,

and a clear demonstration that at least in some direction, human

thought has reached the edge of what is possible.
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The Nature of Space

In the effort to develop an ultimate model for the universe, a crucial

first step is to think about the nature of space—for inevitably it is in

space that the processes in our universe occur.

Present-day physics almost always assumes that space is a perfect

continuum, in which objects can be placed at absolutely any position.

But one can certainly imagine that space could work very differently.

And for example in a cellular automaton, space is not a continuum but

instead consists just of discrete cells. 

In our everyday experience space nevertheless appears to be

continuous. But then so, for example, do fluids like air and water. And yet

in the case of these fluids we know that at an underlying level they are

composed of discrete molecules. And in fact over the course of the past

century a great many aspects of the physical world that at first seemed

continuous have in the end been discovered to be built up from discrete

elements. And I very strongly suspect that this will also be true of space.

Particle physics experiments have shown that space acts as a

continuum down to distances of around  meters—or a hundred

thousandth the radius of a proton. But there is absolutely no reason to

think that discrete elements will not be found at still smaller distances.

And indeed, in the past one of the main reasons that space has

been assumed to be a perfect continuum is that this makes it easier

to handle in the context of traditional mathematics. But when one

thinks in terms of programs and the kinds of systems I have

discussed in this book, it no longer seems nearly as attractive to

assume that space is a perfect continuum. 

So if space is not in fact a continuum, what might it be? Could it,

for example, be a regular array of cells like in a cellular automaton?

At first, one might think that this would be completely

inconsistent with everyday observations. For even though the

individual cells in the array might be extremely small, one might still

imagine that one would for example see all sorts of signs of the overall

orientation of the array. 

10�20



F U N D A M E N T A L  P H Y S I C S C H A P T E R  9

473

The pictures below show three different cellular automata, all set

up on the same two-dimensional grid. And to see the effect of the grid, I

show what happens when each of these cellular automata is started

from blocks of black cells arranged at three different angles. 

In all cases the patterns produced follow at least to some extent

the orientation of the initial block. But in cases (a) and (b) the effects of

the underlying grid remain quite obvious—for the patterns produced

always have facets aligned with the directions in this grid. But in case

(c) the situation is different, and now the patterns produced turn out

110�8

40�8

10�8

initial condition rule (a) rule (b) rule (c)

Examples of orientation dependence in the behavior of two-dimensional cellular automata on a fixed grid. Three different
initial conditions, consisting of blocks at three different angles, are shown. For rules (a) and (b) the patterns produced always
exhibit features that remain aligned with directions in the underlying grid. But with rule (c) essentially the same rounded
pattern is obtained regardless of orientation. The rules shown here are outer totalistic: (a) 4-neighbor code 468, (b) 4-neighbor
code 686 and (c) 8-neighbor code 746. In cases (a) and (b) 40 steps of evolution are used; in case (c) 100 steps are used.
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always to have the same overall rounded form, essentially independent

of their orientation with respect to the underlying grid. 

And indeed what happens is similar to what we have seen many

times in this book: the evolution of the cellular automaton generates

enough randomness that the effects of the underlying grid tend to be

washed out, with the result that the overall behavior produced ends up

showing essentially no distinction between different directions in space.

So should one conclude from this that the universe is in fact a

giant cellular automaton with rules like those of case (c)? 

It is perhaps not impossible, but I very much doubt it.

For there are immediately simple issues like what one imagines

happens at the edges of the cellular automaton array. But much more

important is the fact that I do not believe in the distinction between space

and its contents implied by the basic construction of a cellular automaton.

For when one builds a cellular automaton one is in a sense always

first setting up an array of cells to represent space itself, and then only

subsequently considering the contents of space, as represented by the

arrangement of colors assigned to the cells in this array.

But if the ultimate model for the universe is to be as simple as

possible, then it seems much more plausible that both space and its

contents should somehow be made of the same stuff—so that in a sense

space becomes the only thing in the universe.

Several times in the past ideas like this have been explored. And

indeed the standard theory for gravity introduced in 1915 is precisely

based on the notion that gravity can be viewed merely as a feature of

space. But despite various attempts in the 1930s and more recently it

has never seemed possible to extend this to cover the whole elaborate

collection of forces and particles that we actually see in our universe. 

Yet my suspicion is that a large part of the reason for this is just

the assumption that space is a perfect continuum—described by

traditional mathematics. For as we have seen many times in this book,

if one looks at systems like programs with discrete elements then it

immediately becomes much easier for highly complex behavior to

emerge. And this is fundamentally what I believe is happening at the

lowest level in space throughout our universe.
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Space as a Network

In the last section I argued that if the ultimate model of physics is to be

as simple as possible, then one should expect that all the features of our

universe must at some level emerge purely from properties of space. But

what should space be like if this is going to be the case?

The discussion in the section before last suggests that for the

richest properties to emerge there should in a sense be as little rigid

underlying structure built in as possible. And with this in mind I

believe that what is by far the most likely is that at the lowest level

space is in effect a giant network of nodes.

In an array of cells like in a cellular automaton each cell is always

assigned some definite position. But in a network of nodes, the nodes

are not intrinsically assigned any position. And indeed, the only thing

that is defined about each node is what other nodes it is connected to.

Yet despite this rather abstract setup, we will see that with a

sufficiently large number of nodes it is possible for the familiar properties

of space to emerge—together with other phenomena seen in physics.

I already introduced in Chapter 5 a particular type of network in

which each node has exactly two outgoing connections to other nodes,

together with any number of incoming connections. The reason I chose

this kind of network in Chapter 5 is that there happens to be a fairly

easy way to set up evolution rules for such networks. But in trying to

find an ultimate model of space, it seems best to start by considering

networks that are somehow as simple as possible in basic structure—

and it turns out that the networks of Chapter 5 are somewhat more

complicated than is necessary. 

For one thing, there is no need to distinguish between incoming

and outgoing connections, or indeed to associate any direction with

each connection. And in addition, nothing fundamental is lost by

requiring that all the nodes in a network have exactly the same total

number of connections to other nodes.

With two connections, only very trivial networks can ever be

made. But if one uses three connections, a vast range of networks

immediately become possible. One might think that one could get a
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fundamentally larger range if one allowed, say, four or five connections

rather than just three. But in fact one cannot, since any node with more

than three connections can in effect always be broken into a collection

of nodes with exactly three connections, as in the pictures on the left.

So what this means is that it is in a sense always sufficient to

consider networks with exactly three connections at each node. And it

is therefore these networks that I will use here in discussing

fundamental models of space.

The pictures below show a few small examples of such networks.

And already considerable diversity is evident. But none of the networks

shown seem to have many properties familiar from ordinary space.

So how then can one get networks that correspond to ordinary

space? The first step is to consider networks that have much larger

numbers of nodes. And as examples of these, the pictures at the top of

the facing page show networks that are specifically constructed to

correspond to ordinary one-, two- and three-dimensional space.

Examples of how nodes with
more than three connections
can be decomposed into
collections of nodes with
exactly three connections.

(o) (p) (q) (r) (s) (t) (u)

(h) ( i) ( j) (k) ( l) (m) (n)

(a) (b) (c) (d) (e) (f ) (g)

Examples of small networks with exactly three connections at each node. The first line shows all
possible networks with up to four nodes. In what follows I consider only non-degenerate networks, in
which there is at most one connection between any two nodes. Example (i) is the smallest network
that cannot be drawn in two dimensions without lines crossing. Examples (k) and (l) are the smallest
networks that have no symmetries between different nodes. Example (e) corresponds to the net of a
tetrahedron, (j) to the net of a cube, and (m) to the net of a dodecahedron. Examples (o) through (u)
show seven ways of drawing the same network, in this case the so-called Petersen network.
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Each of these networks is at the lowest level just a collection of

nodes with certain connections. But the point is that the overall pattern

of these connections is such that on a large scale there emerges a clear

correspondence to ordinary space of a particular dimension.

The pictures above are drawn so as to make this correspondence

obvious. But what if one was just presented with the raw pattern of

connections for some network? How could one see whether the

network could correspond to ordinary space of a particular dimension?

The pictures below illustrate the main difficulty: given only its

pattern of connections, a particular network can be laid out in many

completely different ways, most of which tell one very little about its

potential correspondence with ordinary space.

So how then can one proceed? The fundamental idea is to look at

properties of networks that can both readily be deduced from their

pattern of connections and can also be identified, at least in some

Examples of networks with three connections at each node that are effectively one, two and
three-dimensional. These networks can be continued forever, and all have the property of being
homogeneous, in the sense that every node has an environment identical to every other node.

(a) (b) (c) (d) (e) (f )

Six different ways of laying out the same network. (a) nodes arranged around a circle; (b) nodes
arranged along a line; (c) nodes arranged across the page according to distance from a particular node;
(d) 2D layout with network and spatial distances as close as possible; (e) planar layout; (f) 3D layout.
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large-scale limit, with properties of ordinary space. And the notion of

distance is perhaps the most fundamental of such properties. 

A simple way to define the distance between two points is to say

that it is the length of the shortest path between them. And in ordinary

space, this is normally calculated by subtracting the numerical

coordinates of the positions of the points. But on a network things

become more direct, and the distance between two nodes can be taken

to be simply the minimum number of connections that one has to

follow in order to get from one node to the other.

But can one tell just by looking at such distances whether a

particular network corresponds to ordinary space of a certain dimension?

To a large extent one can. And a test is to see whether there is a

way to lay out the nodes in the network in ordinary space so that the

distances between nodes computed from their positions in space

agree—at least in some approximation—with the distances computed

directly by following connections in the network.

The three networks at the top of the previous page were laid out

precisely so as to make this the case respectively for one, two and

three-dimensional space. But why for example can the second network not

be laid out equally well in one-dimensional rather than two-dimensional

space? One way to see this is to count the number of nodes that appear at a

given distance from a particular node in the network. 

And for this specific network, the answer for this is very simple:

at distance  there are exactly  nodes—so that the total number of

nodes out to distance  grows like . But now if one tried to lay out all

these nodes in one dimension it is inevitable that the network would

have to bulge out in order to fit in all the nodes. And it turns out that it

is uniquely in two dimensions that this particular network can be laid

out in a regular way so that distances based on following connections in

it agree with ordinary distances in space.

For the other two networks at the top of the previous page similar

arguments can be given. And in fact in general the condition for a

network to correspond to ordinary -dimensional space is precisely that

the total number of nodes that appear in it out to distance  grows in

some limiting sense like —a result analogous to the standard

r 3 r

r r2

d

r

rd
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mathematical fact that the area of a two-dimensional circle is ,

while the volume of a three-dimensional sphere is , the volume

of a four-dimensional hypersphere is , and so on.

Below I show pictures of various networks. In each case the first

picture is drawn to emphasize obvious regularities in the network. But

the second picture is drawn in a more systematic way—by picking a

specific starting node, and then laying out other nodes so that those at

Π r2

4�3 Π r3

1�2 Π2 r4

( i) ( j)

(g) (h)

(f )

(d) (e)

(a) (b) (c)

Examples of various networks, shown first to emphasize their regularities, and second to illustrate the number of nodes reached
by going successively more steps from a given node. For networks that in a limiting sense correspond to ordinary -dimensional
space, this number grows like . All the larger networks shown are approximately uniform, in the sense that similar results are
obtained starting from any node. Network (e) effectively has limiting dimension . 

d

r d-1

Log[2, 3] ; 1.58
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successively greater network distances appear in successive columns

across the page. And this setup has the feature that the height of

column  gives the number of nodes that are at network distance . 

So by looking at how these heights grow across the page, one can

see whether there is a correspondence with the  form that one

expects for ordinary -dimensional space. And indeed in case (g), for

example, one sees exactly  linear growth, reflecting dimension 2.

Similarly, in case (d) one sees  growth, reflecting dimension 1,

while in case (h) one sees  growth, reflecting dimension 3. 

Case (f) illustrates slightly more complicated behavior. The basic

network in this case locally has an essentially two-dimensional form—

but at large scales it is curved by being wrapped around a sphere. And

what therefore happens is that for fairly small  one sees  growth—

reflecting the local two-dimensional form—but then for larger  there is

slower growth, reflecting the presence of curvature.

Later in this chapter we will see how such curvature is related to

the phenomenon of gravity. But for now the point is just that network (f)

again behaves very much like ordinary space with a definite dimension.

So do all sufficiently large networks somehow correspond to

ordinary space in a certain number of dimensions? The answer is

definitely no. And as an example, network (i) from the previous page

has a tree-like structure with  nodes at distance . But this number

grows faster than  for any —implying that the network has no

correspondence to ordinary space in any finite number of dimensions. 

If the connections in a network are chosen at random—as in case

(j)—then again there will almost never be the kind of locality that is needed

to get something that corresponds to ordinary finite-dimensional space.

So what might an actual network for space in our universe be like?

It will certainly not be as simple and regular as most of the

networks on the previous page. For within its pattern of connections

must be encoded everything we see in our universe.

And so at the level of individual connections, the network will

most likely at first look quite random. But on a larger scale, it must be

arranged so as to correspond to ordinary three-dimensional space. And

somehow whatever rules update the network must preserve this feature. 
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The Relationship of Space and Time

To make an ultimate theory of physics one needs to understand the true

nature not only of space but also of time. And I believe that here again the

idea of thinking in terms of programs provides some crucial insights.

In our everyday experience space and time seem very different. For

example, we can move from one point in space to another in more or less

any way we choose. But we seem to be forced to progress through time in

a very specific way. Yet despite such obvious apparent differences, almost

all models in present-day fundamental physics have been built on the idea

that space and time somehow work fundamentally the same.

But for most of the systems based on programs that I have discussed

in this book this is certainly not true. And thus for example in a cellular

automaton moving from one point in space to another just corresponds to

shifting from one cell to another. But moving from one point in time to

another involves actually applying the cellular automaton rule.

When we make a picture of the behavior of a cellular automaton,

however, we do nevertheless tend to represent space and time in the

same visual kind of way—with space going across the page and time

going down. And in fact the basic notion of extending the idea of

position in space to an idea of position in time has been common in

scientific thought for more than five centuries.

But in the past century what has happened is that space and time

have come to be thought of as being much more fundamentally similar.

As we will discuss later in this chapter, the main origin of this is that in

relativity theory certain aspects of space and time seem to become

interchangeable. And from this there emerged the idea of thinking in

terms of a spacetime continuum in which time appears merely as a

fourth dimension just like the three ordinary dimensions of space.

So while in a system like a cellular automaton one typically

imagines that a new and separate state of the system is somehow

produced at each step in time, present-day physics more tends to think

of the complete history of the universe throughout time as being just a

single structure laid out in the four dimensions of spacetime.

So what then might determine the form of this structure?
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The laws of physics in effect provide a collection of constraints

on the structure. And while these laws are traditionally stated in terms

of sophisticated mathematical equations, their basic character is similar

to the simple constraints on arrays of black and white cells that I

discussed at the end of Chapter 5. But now instead of defining

constraints just in space, the laws of physics can be thought of as

defining constraints on what can happen in both space and time.

Just as for space, it is my strong belief that time is fundamentally

discrete. And from the discussion of networks for space in the previous

section, one might imagine that perhaps the whole history of the universe

in spacetime could be represented by a giant four-dimensional network.

By analogy with the systems at the end of Chapter 5 a simple

model would then be that this network is determined by the constraint

that around every one of its nodes the overall arrangement of other

nodes must match some particular template or set of templates.

Yet much as in Chapter 5 it turns out often not to be especially easy

to find out which networks, if any, satisfy specific constraints of this kind.

The pictures on the facing page nevertheless show results for quite a few

choices of templates—where in each case the dangling connections in a

template are taken to go to nodes that are not part of the template itself.

Pictures (a) and (b) show what happens with the two very

simplest possible templates—involving just a single node. In case (a), all

networks are allowed except for ones in which a node is connected

directly to itself. In case (b), only the single network shown is allowed.

With templates that involve nodes out to distance one there are a

total of 11 distinct non-trivial cases. And of these, 8 allow no complete

networks to be formed, as in picture (e). But there turn out to be three

cases—shown as pictures (c), (d) and (f)—in which complete networks

can be formed, and in each of these one discovers that a fairly simple

infinite set of networks are actually allowed.

In order to have a meaningful model for the universe, however,

what must presumably happen is that essentially just one network can

satisfy whatever constraints there are, and this one network must then

represent all of the complex spacetime history of our universe.
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(o) (p)

(m) (n)

(k) ( l)

(g) (h) ( i) ( j)

(e) (f )

(c) (d)

(a) (b)

Examples of networks determined by constraints. In each case the networks shown are required to satisfy the constraint
that around every node their form must correspond to the template shown, in such a way that no dangling connections in
the template are joined to each other. The pictures include all 14 templates that involve nodes out to distance at most two
for which complete networks can be formed. In most cases where any such network can be formed, an infinite sequence
of networks is allowed. But in cases (b), (h), (i) and (j) just a single network turns out to be allowed. The network constraint
systems shown here are analogs of the two-dimensional systems based on constraints discussed at the end of Chapter 5.
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So what does one find if one allows templates that include nodes

out to distance two? There are a total of 690 distinct non-trivial such

templates—and of these, 681 allow no complete networks to be formed,

as in case (g). Six of the remaining templates then again allow an infinite

sequence of networks. But there are three templates—shown as cases

(h), (i) and (j)—that turn out to allow just single networks. These

networks are however rather simple, and indeed the most complicated

of them—case (i)—has just 20 nodes, and corresponds to a dodecahedron.

So are there in fact reasonably simple sets of constraints that in

the end allow just one highly complex network, or perhaps a family of

similar networks? I tend to doubt it. For our experience in Chapter 5

was that even in the much more rigid case of arrays of black and white

squares, it was rather difficult to find constraints that would succeed in

forcing anything but very simple patterns to occur.

So what does this mean for getting the kind of complexity that we

see in our universe? We have not had difficulty in getting remarkable

complexity from systems like cellular automata that we have discussed

in this book. But such systems work not by being required to satisfy

constraints, but instead by just repeatedly applying explicit rules.

So is it in the end sensible to think of the universe as a single

structure in spacetime whose form is determined by a set of

constraints? Should we really imagine that the complete spacetime

history of the universe somehow always exists, and that as time

progresses, we are merely exploring different parts of it? Or should we

instead think that the universe—more like systems such as cellular

automata—explicitly evolves in time, so that at each moment a new

state of the universe is in effect created, and the old one is lost?

Models based on traditional mathematical equations—in which

space and time appear just as abstract symbolic variables—have never

had to make much distinction between these two views. But in trying

to understand the ultimate underlying mechanisms of the universe, I

believe that one must inevitably distinguish between these views.

And I strongly believe that the second view is the one most likely

to provide a meaningful underlying model for our universe. But while

this view is closer to our everyday perception of time, it seems to
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contradict the correspondence between space and time that is built into

most of present-day physics. So one might wonder how then it could be

consistent with experiments that have been done in physics?

One possibility, illustrated in the pictures below, is to have a

system that evolves in time according to explicit rules, but for these

rules to have built into them a symmetry between space and time.

Examples of one-dimensional cellular automata which exhibit a symmetry between space and time.
Each picture can be generated by starting from initial conditions at the top, and then just evolving
down the page repeatedly applying the cellular automaton rule. The particular rules shown are
reversible second-order ones with numbers 90R and 150R. 
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But I very much doubt that any such obvious symmetry between

space and time exists in the fundamental rules for our universe. And

instead what I expect is much like we have seen many times before in

this book: that even though at the lowest level there is no direct

correspondence between space and time, such a correspondence

nevertheless emerges when one looks in the appropriate way at larger

scales of the kind probed by practical experiments. 

As I will discuss in the next several sections, I suspect that for

many purposes the history of the universe can in fact be represented by

a certain kind of spacetime network. But the way this network is

formed in effect treats space and time rather differently. And in

particular—just as in a system like a cellular automaton—the network

can be built up incrementally by starting with certain initial conditions

and then applying appropriate underlying rules over and over again.

Any such rules can in principle be thought of as providing a set of

constraints for the spacetime network. But the important point is that

there is no need to do a separate search to find networks that satisfy

such constraints—for the rules themselves instead immediately define

a procedure for building up the necessary network. 

Time and Causal Networks

I argued in the last section that the progress of time should be viewed at

a fundamental level much like the evolution of a system like a cellular

automaton. But one of the features of a cellular automaton is that it is

set up to update all of its cells together, as if at each tick of some global

clock. Yet just as it seems unreasonable to imagine that the universe

consists of a rigid grid of cells in space, so also it seems unreasonable to

imagine that there is a global clock which defines the updating of every

element in the universe synchronized in time.

But what is the alternative? At first it may seem bizarre, but one

possibility that I believe is ultimately not too far from correct is that

the universe might work not like a cellular automaton in which all

cells get updated at once, but instead like a mobile automaton or Turing

machine, in which just a single cell gets updated at each step.
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As discussed in Chapter 3—and illustrated in the picture on the

right—a mobile automaton has just a single active cell which moves

around from one step to the next. And because this active cell is the

only one that ever gets updated, there is never any issue about

synchronizing behavior of different elements at a given step. 

Yet at first it might seem absurd to think that our universe could

work like a mobile automaton. For certainly we do not notice any kind

of active cell visiting different places in the universe in sequence. And

indeed, to the contrary, our perception is that different parts of the

universe seem to evolve in parallel and progress through time together.

But it turns out that what one perceives as happening in a system

like a mobile automaton can depend greatly on whether one is looking

at the system from outside, or whether one is oneself somehow part of

the system. For from the outside, one can readily see each individual

step in the evolution of a mobile automaton, and one can tell that there

is just a single active cell that visits different parts of the system in

sequence. But to an observer who is actually part of the mobile

automaton, the perception can be quite different.

For in order to recognize that time has passed, or indeed that

anything has happened, the state of the observer must somehow change.

But if the observer itself just consists of a collection of cells inside a

mobile automaton, then no such change can occur except on steps when

the active cell in the mobile automaton visits this collection of cells.

And what this means is that between any two successive moments

of time as perceived by an observer inside the mobile automaton, there

can be a great many steps of underlying mobile automaton evolution. 

If an observer could tell what was happening on every step, then

it would be easy to recognize the sequential way in which cells are

updated. But because an observer who is part of a mobile automaton can

in effect only occasionally tell what has happened, then as far as such

an observer is concerned, many cells can appear to have been updated in

parallel between successive moments of time.

To see in more detail how this works it could be that it would be

necessary to make a specific model for the observer. But in fact, it turns

out that it is sufficient just to look at the evolution of the mobile

A mobile automaton in which
only the single active cell
indicated by a dot is updated at
each step, thereby avoiding the
issue of global synchronization. 
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automaton not in terms of individual steps, but rather in terms of

updating events and the causal relationships between them.

The pictures on the facing page show an example of how this

works. Picture (a) is a version of the standard representation that I have

used for mobile automaton evolution elsewhere in the book—in which

successive lines give the colors of cells on successive steps, and the

position of the active cell is indicated at each step by a gray dot. The

subsequent pictures on the facing page all ultimately give essentially

the same information, but gradually present it to emphasize more a

representation in terms of updating events and causal relationships.

Picture (b) is very similar to (a), but shows successive steps of

mobile automaton evolution separated, with gray blobs in between

indicating “updating events” corresponding to each application of the

underlying mobile automaton rule. Picture (b) still has a definite row of

cells for each individual step of mobile automaton evolution. But in

picture (c) cells not updated on a given step are merged together, yielding

vertical stripes of color that extend from one updating event to another.

So what is the significance of these stripes? In essence they serve

to carry the information needed to determine what the next updating

event will be. And as picture (d) begins to emphasize, one can think of

these stripes as indicating what causal relationships or connections

exist between updating events. 

And this notion then suggests a quite different representation for

the whole evolution of the mobile automaton. For rather than having a

picture based on successive individual steps of evolution, one can

instead form a network of the various causal relationships between

updating events, with each updating event being a node in this network,

and each stripe being a connection from one node to another.

A sequence of views of the evolution of a mobile automaton, showing how a network of causal
relationships between updating events can be created. This network provides a very simple model
for spacetime in the universe. Picture (a) is essentially the standard representation of mobile
automaton evolution that I have used in this book. Picture (b) includes gray blobs to indicate updating
events. Picture (c) merges cells that are not being updated. Picture (d) emphasizes the role of vertical
stripes as connections between updating events. Pictures (e) through (g) show how a network can
be formed with nodes corresponding to updating events. Pictures (h) and (i) demonstrate that with
the particular underlying rule used here, a highly regular network is produced.
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Picture (e) shows the updating events and stripes from the top of

picture (d), with the updating events now explicitly numbered.

Pictures (f) and (g) then show how one can take the pattern of

connectivity from picture (e) and lay out the updating events as nodes

so as to produce an orderly network. And for the particular mobile

automaton rule used here, the network one gets ends up being highly

regular, as illustrated in pictures (h) and (i).

So what is the significance of this network? It turns out that it can

be thought of as defining a structure for spacetime as perceived by an

observer inside the mobile automaton—in much the same way as the

networks we discussed two sections ago could be thought of as defining a

structure for space. Each updating event, corresponding to each node in

the network, can be imagined to take place at some point in spacetime.

And the connections between nodes in the network can then be thought

of as defining the pattern of neighbors for points in spacetime.

But unlike in the space networks that we discussed two sections

ago, the connections in the causal networks we consider here always go

only one way: each connection corresponds to a causal relationship in

which one event leads to another, but not the other way around. 

This kind of directionality, however, is exactly what is needed if a

meaningful notion of time is to emerge. For the progress of time can be

defined by saying that only those events that occur later in time than a

particular event can be affected by that event.

And indeed the networks in pictures (g) through (i) on the

previous page were specifically laid out so that successive rows of nodes

going down the page would correspond, at least roughly, to events

occurring at successively later times.

As the numbering in pictures (e) through (g) illustrates, there is

no direct correspondence between this notion of time and the sequence

of updating events that occur in the underlying evolution of the mobile

automaton. For the point is that an observer who is part of the mobile

automaton will never see all the individual steps in this evolution. The

most they will be able to tell is that a certain network of causal

relationships exists—and their perception of time must therefore derive

purely from the properties of this network.
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So does the notion of time that emerges actually have the

familiar features of time as we know it? One might think for example

that in a network there could be loops that would lead to a deviation

from the linear progression of time that we appear to experience. But in

fact, with a causal network constructed from an underlying evolution

process in the way we have done it here no such loops can ever occur.

So what about traces of the sequential character of evolution in the

original mobile automaton? One might imagine that with only a single

active cell being updated at each step different parts of the system would

inevitably be perceived to progress through time one after another. But

what the pictures on page 489 demonstrate is that this need not be the

case. Indeed, in the networks shown there all the nodes on each row are in

effect connected in parallel to the nodes on the row below. So even though

the underlying rules for the mobile automaton involve no global

synchronization, it is nevertheless possible for an observer inside the

mobile automaton to perceive time as progressing in a synchronized way.

Later in this chapter I will discuss how space works in the context

of causal networks—and how ideas of relativity theory emerge. But for

now one can just think of networks like those on page 489 as being laid

out so that time goes down the page and space goes across. And one can

then see that if one follows connections in the network, one is always

forced to go progressively down the page, even though one is able to

move both backwards and forwards across the page—thus agreeing with

our everyday experience of being able to move in more or less any

direction in space, but always being forced to move onward in time.

So what happens with other mobile automata?

The pictures on the next two pages show a few examples.

Rules (a) and (b) yield very simple repetitive networks in which there

is in effect a notion of time but not of space. The underlying way any

mobile automaton works forces time to continue forever. But with rules (a)

and (b) only a limited number of points in space can ever be reached.

The other rules shown do not, however, suffer from this problem:

in all of them progressively more points are reached in space as time

goes on. Rules (c) and (d) yield networks that can be laid out in a quite
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(a) (b)

(c)

(d)

(a)

(b)

(c)

(d)

Examples of mobile automata from Chapter 3 and the causal networks
they generate. In each case the picture on the left is essentially the
standard representation of mobile automaton evolution used in Chapter 3.
The pictures on the right are then causal network representations of the
same evolution. The networks are laid out in analogy to the space
networks on page 479, with nodes being placed on successive rows if
they take progressively more connections to reach from the top node.
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(g)

(e)
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(g)

Note that a single connection can join events that occur at very different steps in the
evolution of the underlying mobile automaton. And indeed to construct even a small
part of the causal network can require an arbitrarily long computation in the underlying
mobile automaton. Thus for example to make the causal networks in pictures (e), (f)
and (g) requires looking respectively at 2447, 731 and 322 steps of mobile automaton
evolution. And indeed in some cases there can be connections that are in effect never
resolved. And thus for example in picture (a) there are downward connections that
never reach any other node—reflecting the presence of positions on the left in the
mobile automata evolution to which the active cell never returns. 
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regular manner. But with rules (e), (f) and (g) the networks are more

complicated, and begin to seem somewhat random. 

The procedure that is used to lay out the networks on the

previous two pages is a direct analog of the procedure used for space

networks on page 479: the row in which a particular node will be placed

is determined by the minimum number of connections that have to be

followed in order to reach that node starting from the node at the top.

In cases (a) and (c) the networks obtained in this way have the

property that all connections between nodes go either across or down

the page. But in every other case shown, at least some connections also

go up the page. So what does this mean for our notion of time? As

mentioned earlier, there can never be a loop in any causal network that

comes from an evolution process. But if one identifies time with

position down the page, the presence of connections that go up as well

as down the page implies that in some sense time does not always

progress in the same direction. Yet at least in the cases shown here

there is still a strong average flow down the page—agreeing with our

everyday perception that time progresses only in one direction.

Like in so many other systems that we have studied in this book,

the randomness that we find in causal networks will inevitably tend to

wash out details of how the networks are constructed. And thus, for

example, even though the underlying rules for a mobile automaton

always treat space and time very differently, the causal networks that

emerge nevertheless often exhibit a kind of uniform randomness in

which space and time somehow work in many respects the same.

But despite this uniformity at the level of causal networks, the

transformation from mobile automaton evolution to causal network is

often far from uniform. And for example the pictures at the top of the

facing page show the causal networks for rules (e) and (f) from the

previous page—but now with each node numbered to specify the step of

mobile automaton evolution from which it was derived.

And what we see is that even nodes that are close to the top of the

causal network can correspond to events which occur after a large number

of steps of mobile automaton evolution. Indeed, to fill in just twenty rows
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of the causal networks for rules (e) and (f) requires following the underlying

mobile automaton evolution for 2447 and 731 steps respectively.

One feature of causal networks is that they tell one not only what

the consequences of a particular event will be, but also in a sense what

its causes were. Thus, for example, if one starts, say, with event 17 in

the first causal network above, then to find out that its causes were

events 11 and 16 one simply has to trace backwards along the

connections which lead to it.

With the specific type of underlying mobile automaton used here,

every node has exactly three incoming and three outgoing connections.

And at least when there is overall apparent randomness, the networks

that one gets by going forwards and backwards from a particular node

will look very similar. In most cases there will still be small differences;

but the causal network on the right above is specifically constructed to

be exactly reversible—much like the cellular automata we discussed

near the beginning of this chapter.

Looking at the causal networks we have seen so far, one may

wonder to what extent their form depends on the particular properties

of the underlying mobile automata that were used to produce them.

For example, one might think that the fact that all the networks

we have seen so far grow at most linearly with time must be an

inevitable consequence of the one-dimensional character of the mobile
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Causal networks corresponding to rules (e) and (f) from page 493, with each node explicitly labelled to
specify from which step of mobile automaton evolution it is derived. Even to fill in the first few rows
of such causal networks, many steps of underlying mobile automaton evolution must be traced.
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automaton rules we have used. But the picture below demonstrates that

even with such one-dimensional rules, it is actually possible to get

causal networks that grow more rapidly. And in fact in the case shown

below there are roughly a factor 1.22 more nodes on each successive

row—corresponding to overall approximate exponential growth.

The causal network for a system is always in some sense dual to the

underlying evolution of the system. And in the case shown here the slow

growth of the region visited by the active cell in the underlying evolution is

reflected in rapid growth of the corresponding causal network. 

As we will see later in this chapter there are in the end some

limitations on the kinds of causal networks that one-dimensional

mobile automata and systems like them can produce. But with different

mobile automaton rules one can still already get tremendous diversity. 

And even though when viewed from outside, systems like mobile

automata might seem to have almost none of the familiar features of

our universe, what we see is that if we as observers are in a sense part of

such systems then immediately some major features quite similar to

those of our universe can emerge. 

A one-dimensional mobile automaton which yields a causal network that in effect grows exponentially with time. The
underlying mobile automaton acts like a binary counter, yielding a pattern whose width grows logarithmically with
the number of steps. The three cases not shown in the rule are never used with the initial conditions given here. 
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The Sequencing of Events in the Universe

In the last section I discussed one type of model in which familiar notions

of time can emerge without any kind of built-in global clock. The particular

models I used were based on mobile automata—in which the presence of a

single active cell forces only one event ever to occur in the universe at once.

But as we will see in this section, there is actually no need for the setup to

be so rigid, or indeed for there to be any kind of construct like an active cell.

One can think of mobile automata as being special cases of

substitution systems of the type I introduced in Chapter 3. Such systems

in general take a string of elements and at each step replace blocks of

these elements with other elements according to some definite rule.

The picture below shows an example of one such system, and

illustrates how—just like in a mobile automaton—relations between

updating events can be represented by a causal network.

1

2 3

4 5

6 7

8 9 10 11

(d)

1

2 3

4 5

6 7

9 11

13 14 16 17

(e) (f )

(a) (b) (c)

Steps in the construction
of a causal network from
a general substitution

system. The substitution system works by replacing
blocks of elements at each step according to the rule
shown. Each such updating event becomes a node
in the causal network. In the case shown here, all
the replacements found to fit in a left-to-right scan
are carried out at each step. 
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(a) (b) (c) (d) (e) (f )

( f )

(e)

(d)

(c)

(b)

(a)

(a) (b) (c) (d)

(e) (f)

Examples of sequential substitution systems of the type discussed on page 88, and the causal networks that emerge
from them. In a sequential substitution system only the first replacement that is found to apply in a left-to-right scan is
ever performed at any step. Rule (a) above yields a causal network that is purely repetitive and thus yields no
meaningful notion of space. Rules (b), (c) and (d) yield causal networks that in effect grow roughly linearly with time. In
rule (f) the causal network grows exponentially, while in rule (e) the causal network also grows quite rapidly, though its
overall growth properties are not clear. Note that to obtain the 10 levels shown here in the causal network for rule (e), it
was necessary to follow the evolution of the underlying substitution system for a total of 258 steps. 
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Substitution systems that correspond to mobile automata can be

thought of as having rules and initial conditions that are specially set up

so that only one updating event can ever occur on any particular step. But

with most rules—including the one shown on the previous page—there

are usually several possible replacements that can be made at each step. 

One scheme for deciding which replacement to make is just to

scan the string from left to right and then pick the first replacement

that applies. This scheme corresponds exactly to the sequential

substitution systems we discussed in Chapter 3.

The pictures on the facing page show a few examples of what can

happen. The behavior one gets is often fairly simple, but in some cases

it can end up being highly complex. And just as in mobile automata, the

causal networks that emerge typically in effect grow linearly with time.

But, again as in mobile automata, there are rules such as (a) in which

there is no growth—and effectively no notion of space. And there are

also rules such as (f)—which turn out to be much more common in

general substitution systems than in mobile automata—in which the

causal network in effect grows exponentially with time.

But why do only one replacement at each step? The pictures on the

next page show what happens if one again scans from left to right, but

now one performs all replacements that fit, rather than just the first one.

In the case of rules (a) and (b) the result is to update every single

element at every step. But since the replacements in these particular

rules involve only one element at a time, one in effect has a

neighbor-independent substitution system of the kind we discussed on

page 82. And as we discovered there, such systems can only ever produce

rather simple behavior: each element repeatedly branches into several

others, yielding a causal network that has the form of a regular tree.

So what happens with replacements that involve more than just

one element? In many cases, the behavior is still quite simple. But as

several of the pictures on the next page demonstrate, fairly simple rules

are sufficient—as in so many other systems that we have discussed in

this book—to obtain highly complex behavior.
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(a) (b) (a) (b)

(c) (d) (e) (f ) (g) (h)

(c) (d) (e) (f ) (g) (h)
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(d)

(c)

(b)

(a)

(h)

(g)

(f )

(e)

Examples of general substitution systems and the causal networks that emerge from them. In the pictures shown
here, every replacement that is found to fit in a left-to-right scan is performed at each step. Rules (a) and (b) act like
neighbor-independent substitution systems of the type discussed on page 84, and yield exponentially growing tree-like causal
networks. The plots at the bottom show the growth rates of the patterns produced by rules (f) and (g). In the case of rule (f)
the pattern turns out to be repetitive, with a period of 796 steps.
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One may wonder, however, to what extent the behavior one sees

depends on the exact scheme that one uses to pick which replacements

to apply at each step. The answer is that for the vast majority of rules—

including rules (c) through (g) in the picture on the facing page—using

different schemes yields quite different behavior—and a quite different

causal network.

But remarkably enough there do exist rules for which exactly the

same causal network is obtained regardless of what scheme is used. And

as it turns out, rules (a) and (b) from the picture on the facing page provide

simple examples of this phenomenon, as illustrated in the pictures below.

For each rule, the three different pictures shown above

correspond to three different ways that replacements can be made. And

while the positions of particular updating events are different in every

picture, the point is that the network of causal connections between

these events is always exactly the same.

This is certainly not true for every substitution system. Indeed,

the pictures on the right show how it can fail, for example, for rule (e)

from the facing page. What one sees in these pictures is that after

event 4, different choices of replacements are made in the two cases, and

the causal relationships implied by these replacements are different.

So what could ensure that no such situation would ever arise in a

particular substitution system? Essentially what needs to be true is that

the sequence of elements alone must always uniquely determine what

replacements can be made in every part of the system. One still has a

(a) (b)

The behavior of rules (a) and (b) from the facing page when replacements are performed at random.
Even though the detailed patterns obtained are different, the causal networks in these particular rules
that represent relationships between replacement events are always exactly the same. 

1
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13 14 15

case 1

1

2 3

4 5

6 7

8 9

10

11

case 2

Examples of two different ways
of performing replacements in
rule (e) from the facing page,
yielding two different causal
networks. 
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choice of whether actually to perform a given replacement at a particular

step, or whether to delay that replacement until a subsequent step. But

what must be true is that there can never be any ambiguity about what

replacement will eventually be made in any given part of the system.

In rules like the ones at the top of page 500 where each replacement

involves just a single element this is inevitably how things must work.

But what about rules that have replacements involving blocks of more

than one element? Can such rules still have the necessary properties?

The pictures below show two examples of rules that do. In the first

picture for each rule, replacements are made at randomly chosen steps,

while in the second picture, they are in a sense always made at the earliest

possible step. But the point is that in no case is there any ambiguity about

what replacement will eventually be made at any particular place in

the system. And as a result, the causal network that represents the

relationships between different updating events is always exactly the same.

So what underlying property must the rules for a substitution

system have in order to make the system as a whole operate in this

way? The basic answer is that somehow different replacements must

never be able to interfere with each other. And one way to guarantee

this is if the blocks involved in replacements can never overlap.

(a) (b)

(a) (b)

Examples of substitution systems in which the same causal networks are
obtained regardless of the way in which replacements are performed. In the
first picture for each rule, the replacements are performed essentially at

random. In the second picture they are performed on the earliest possible step. Note that rule (a)
effectively sorts the elements in its initial conditions, always placing black before white.
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In both the rules shown on the facing page, the only replacement

specified is for the block . And it is inevitably the case that in any

sequence of ’s and ’s different blocks of the form  do not overlap. If

one had replacements for blocks such as ,  or  then these could

overlap. But there is an infinite sequence of blocks such as ,  or 

for which no overlap is possible, and thus for which different

replacements can never interfere.

If a rule involves replacements for several distinct blocks, then to

avoid the possibility of interference one must require that these blocks

can never overlap either themselves or each other. The simplest

non-trivial pair of blocks that has this property is , , while the

simplest triple is , , . And any substitution system

whose rules specify replacements only for blocks such as these is

guaranteed to yield the same causal network regardless of the order in

which replacements are performed. 

In general the condition is in fact somewhat weaker. For it is not

necessary that no overlaps exist at all in the replacements—only that no

overlaps occur in whatever sequences of elements can actually be

generated by the evolution of the substitution systems. 

And in the end there are then all sorts of substitution systems

which have the property that the causal networks they generate are

always independent of the order in which their rules are applied. 

So what does this mean for models of the universe? 

In a system like a cellular automaton, the same underlying rule is

in a sense always applied in exact synchrony to every cell at every step.

But what we have seen in this section is that there also exist systems in

which rules can in effect be applied whenever and wherever one

wants—but the same definite causal network always emerges.

So what this means is that there is no need for any built-in global

clock, or even for any mechanism like an active cell. Simply by choosing

the appropriate underlying rules it is possible to ensure that any sequence

of events consistent with these rules will yield the same causal network

and thus in effect the same perceived history for the universe.
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Uniqueness and Branching in Time

If our universe has no built-in global clock and no construct like an

active cell, then it is almost inevitable that at the lowest level there will

be at least some arbitrariness in how its rules can be applied. 

Yet in the previous section we discovered the rather remarkable

fact that there exist rules with the property that essentially regardless of

how they are applied, the same causal network—and thus the same

perceived history for the universe—will always emerge.

But must it in the end actually be true that the underlying rules

for our universe force there to be a unique perceived history? Near the

end of Chapter 5 I introduced multiway systems as examples of systems

that allow multiple histories. And it turns out that multiway systems

are actually extremely similar in basic structure to the substitution

systems that I discussed in the previous section.

Both types of systems perform the same type of replacements on

strings of elements. But while in a substitution system one always

carries out just a single set of replacements at each step, getting a single

new string, in a multiway system one instead carries out every possible

replacement, thereby typically generating many new strings.

The picture below shows a simple example of how this works.

On the first step in this particular picture, there happens to be only one

replacement that can be performed consistent with the rules, so only a

single string is produced. But on subsequent steps several different

replacements are possible, so several strings are produced. And in

general every path through a picture like this corresponds to a possible

history that exists in the evolution of the multiway system.

A simple example of a multiway
system in which replacements
are applied in all possible ways
to each string at each step.
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So is it conceivable that the ultimate model for our universe

could be based on a multiway system? At first one might not think so.

For our everyday impression is that our universe has just one definite

history, not some kind of whole collection of different histories.

And assuming that one is able to look at a multiway system from

the outside, one will immediately see that different paths exist

corresponding to different histories. 

But the crucial point is that if the complete state of our universe

is in effect like a single string in a multiway system, then there is no

way for us ever to look at the multiway system from the outside. And as

entities inside the multiway system, our perception will inevitably be

that just a single path was followed, corresponding to a single history.

If one were able to look at the multiway system from the outside,

this path would seem quite arbitrary. But for us inside the multiway system

it is the unique path that represents the thread of experience we have had.

Up until a few centuries ago, it was widely believed that the

Earth had some kind of fundamentally unique position in space. But

gradually it became clear that this was not so, and that in a sense it was

merely our own presence that made our particular location in space

seem in any way unique. Yet for time the belief still exists that we—and

our universe—somehow have a unique history. But if in fact our

universe is part of a multiway system, then this will not be true. And

indeed the only thing that will be unique about the particular history

that our universe has had will be that it is the one we have experienced.

At a purely human level I find it rather disappointing to think

that essentially none of the details of our existence are in any way

unique, and that there might be other paths in the multiway system on

which everything would be different. And scientifically it is also

unsatisfying to have to say that there are features of our universe which

are not determined by any finite set of underlying rules, but are instead

in a sense just pure accidents of history associated with the particular

path that we have happened to follow in a multiway system.

In the early parts of Chapter 7 we discussed various possible

origins for the apparent randomness that we see in many natural

systems. And if the universe is described by a multiway system, then
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there will be an additional source of randomness: the arbitrariness of

the path corresponding to the history that we have experienced.

In many respects this randomness is similar to the randomness

from the environment that we discussed at the beginning of Chapter 7.

But an important difference is that it would occur even if one could in

effect perfectly isolate a system from the rest of the universe. If in the

past one had seen apparent randomness in such a system there might

have seemed to be no choice but to assume something like an

underlying multiway system. But one of the discoveries of this book is

that it is actually quite possible to generate what appears to be almost

perfect randomness just by following definite underlying rules.

And indeed I would not expect that observations of randomness

could ever reasonably be used to show that our universe is part of a

multiway system. And in fact my guess is that the only way to show

this with any certainty would be actually to find a specific set of

multiway system rules with the property that regardless of the path

that gets followed these rules would always yield behavior that agrees

with the various observed features of our universe.

At some level it might seem surprising that a multiway system

could ever consistently exhibit any particular form of behavior. For one

might imagine that with so many different paths to choose from it

would often be the case that almost any behavior would be able to occur

on some path or another. And indeed, as the picture on the left shows, it

is not difficult to construct multiway systems in which all possible

strings of a particular kind are produced. 

But if one looks not just at individual strings but rather at the

sequences of strings that exist along paths in the multiway system,

then one finds that these can no longer be so arbitrary. And indeed, in

any multiway system with a limited set of rules, such sequences must

necessarily be subject to all sorts of constraints.

In general, each path in a multiway system can be thought of as

being defined by a possible sequence of ways in which the replacements

specified by a multiway system rule can be applied. And each such path

in turn then defines a causal network of the kind we discussed in the

previous section. But as we saw there, certain underlying rules have the

A multiway system in which
strings of any length can be
generated—but in which only
specific sequences of lengths
actually occur on any path.
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property that the form of this causal network ends up being the same

regardless of the order in which replacements are applied—and thus

regardless of the path that is followed in the multiway system.

The pictures below show some simple examples of rules with this

property. And as it turns out, it is fairly easy to recognize the presence of the

property from the overall pattern of multiway system paths that occur.

If one starts from a given initial string, then typically one will

generate different strings by applying different replacements. But if one

is going to get the same causal network, then it must always be the case

that there are replacements one can apply to the strings one has

generated that yield the same final string. So what this means is that

any pair of paths in the multiway system that diverge must be able to

converge again within just one step—so that all the arrows in pictures

like the ones above must lie on the edges of quadrilaterals. 

Most multiway systems, however, do not have exactly this

property, and as a result the causal networks that are obtained by

following different paths in them will not be absolutely identical. But it

still turns out that whenever paths can always eventually converge—even

if not in a fixed number of steps—there will necessarily be similarities on

a sufficiently large scale in the causal networks that are obtained.

At the level of individual events, the structure of the causal

networks will typically vary greatly. But if one looks at large enough

collections of events, these details will tend to be washed out, and

Examples of multiway systems in which the
causal network associated with every path is
exactly the same. All such multiway systems
have the property that every pair of paths which
diverge at a particular step can converge again
on the following step. The first rule shown has
the effect of sorting the elements in the string.
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regardless of the path one chooses, the overall form of causal network will

be essentially the same. And what this means is that on a sufficiently

large scale, the universe will appear to have a unique history, even though

at the level of individual events there will be considerable arbitrariness.

If there is not enough convergence in the multiway system it will

still be possible to get stuck with different types of strings that never

lead to each other. And if this happens, then it means that the history of

the universe can in effect follow many truly separate branches. But

whenever there is significant randomness produced by the evolution of

the multiway system, this does not typically appear to occur.

So this suggests that in fact it is at some level not too difficult for

multiway systems to reproduce our everyday perception that more or

less definite things happen in the universe. But while this means that it

might be possible for there to be arbitrariness in the causal network for

the universe, it still tends to be my suspicion that there is not—and that

in fact the particular rules followed by the universe do in the end have

the property that they always yield the same causal network.

Evolution of Networks

Earlier in this chapter, I suggested that at the lowest level space might

consist of a giant network of nodes. But how might such a network evolve? 

The most straightforward possibility is that it could work much

like the substitution systems that we have discussed in the past few

sections—and that at each step some piece or pieces of the network

could be replaced by others according to some fixed rule.

The pictures at the top of the facing page show two very simple

examples. Starting with a network whose connections are like the

edges of a tetrahedron, both the rules shown work by replacing each

node at each step by a certain fixed cluster of nodes. 

This setup is very much similar to the neighbor-independent

substitution systems that we discussed on pages 83 and 187. And just as in

these systems, it is possible for intricate structures to be produced, but the

structures always turn out to have a highly regular nested form.
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So what about more general substitution systems? Are there

analogs of these for networks? The answer is that there are, and they are

based on making replacements not just for individual nodes, but rather

for clusters of nodes, as shown in the pictures below.

In the substitution systems for strings discussed in previous sections,

the rules that are given can involve replacing any block of elements by any

other. But in networks there are inevitably some restrictions. For example,

if a cluster of nodes has a certain number of connections to the rest of the

network, then it cannot be replaced by a cluster which has a different

number of connections. And in addition, one cannot have replacements

step 1 step 2 step 3 step 4

step 1 step 2 step 3 step 4

Network evolution in which each node is replaced at each step by a fixed cluster of nodes. The resulting networks have
a regular nested form. The dimensions of the limiting networks are respectively  and .Log[2, 3] ; 1.58 Log[3, 7] ; 1.77

Examples of rules that involve replacing clusters of nodes in a network by other clusters of nodes. All
these rules preserve the planarity of a network. Notice that some of them cannot be reversed since their
right-hand sides are too symmetrical to determine which orientation of the left-hand side should be used.
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like the one on the left that go from a symmetrical cluster to one for which

a particular orientation has to be chosen. 

But despite these restrictions a fairly large number of

replacements are still possible; for example, there are a total of 419

distinct ones that exist involving clusters with no more than five nodes.

So given a replacement for a cluster of a particular form, how

should such a replacement actually be applied to a network? At first

one might think that one could set up some kind of analog of a cellular

automaton and just replace all relevant clusters of nodes at once. 

But in general this will not work. For as the picture below

illustrates, a particular form of cluster can in general appear in many

overlapping ways within a given network.

The issue is essentially no different from the one that we

encountered in previous sections for blocks of elements in substitution

systems on strings. But an additional complication is that in networks,

unlike strings, there is no immediately obvious ordering of elements. 

Nevertheless, it is still possible to devise schemes for deciding

where in a network replacements should be carried out. One fairly

simple scheme, illustrated on the facing page, allows only a single

replacement to be performed at each step, and picks the location of this

replacement so as to affect the least recently updated nodes.

In each pair of pictures in the upper part of the page, the top one

shows the form of the network before the replacement, and the bottom

one shows the result after doing the replacement—with the cluster of

nodes involved in the replacement being highlighted in both cases. In

the 3D pictures in the lower part of the page, networks that arise on

successive steps are shown stacked one on top of the other, with the

nodes involved in each replacement joined by gray lines.

A replacement whose
outcome orientation
cannot be determined.

The 12 ways in which the cluster of nodes on the left occurs in a particular network. In the
particular case shown, each way turns out to overlap with nodes in exactly four others.
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(a)

(b)

(c)

(a) (b) (c)

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8

(a)

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8

(b)

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8

(c)

Examples of the evolution of networks in which a single cluster
of nodes is replaced at each step according to the rules shown.
Each pair of pictures above represents the state of the network
before and after each replacement. The nodes affected by the
replacement are highlighted in both cases. The location at
which the replacement is performed is determined by requiring
that it involve the oldest possible nodes in the network. The
nodes in the pictures above are drawn with a “clock”. The angle
of the beginning of the black sector in the clock indicates when
the node was created, while the angle of its end represents the
current step, so that older nodes have larger black sectors. 
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Inevitably there is a certain arbitrariness in the way these

pictures are drawn. For the underlying rules specify only what the

pattern of connections in a network should be—not how its nodes

should be laid out on the page. And in the effort to make clear the

relationship between networks obtained on different steps, even

identical networks can potentially be drawn somewhat differently.

With rule (a), however, it is fairly easy to see that a simple nested

structure is produced, directly analogous to the one shown on page 509.

And with rule (b), obvious repetitive behavior is obtained.

So what about more complicated behavior? It turns out that even

with rule (c), which is essentially just a combination of rules (a) and (b),

significantly more complicated behavior can already occur.

The picture below shows a few more steps in the evolution of

this rule. And the behavior obtained never seems to repeat, nor do the

networks produced exhibit any kind of obvious nested form.

What about other schemes for applying replacements? The

pictures on the facing page show what happens if at each step one allows

not just a single replacement, but all replacements that do not overlap. 

It takes fewer steps for networks to be built up, but the results are

qualitatively similar to those on the previous page: rule (a) yields a nested

structure, rule (b) gives repetitive behavior, while rule (c) produces

behavior that seems complicated and in some respects random.

step 21 step 22 step 23 step 24 step 25 step 26 step 27 step 28 step 29 step 30

step 11 step 12 step 13 step 14 step 15 step 16 step 17 step 18 step 19 step 20

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9 step 10

More steps in the evolution of rule (c) from the previous page. The number of nodes increases irregularly (though
roughly linearly) with successive steps.
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(a) (b) (c)

Examples of network evolution
according to the same basic underlying
rules as on page 511, but now with all
possible clusters of nodes that do not
overlap being replaced at each step.

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8

(a)

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8

(b)

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8

(c)

(a)

(b)

(c)
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Just as for substitution systems on strings, one can find causal

networks that represent the causal connections between different

updating events on networks. And as an example the pictures below show

such causal networks for the evolution processes on the previous page.

In the rather simple case of rule (a) the results turn out to be

independent of the updating scheme that was used. But for rules (b) and

(c), different schemes in general yield different causal networks.

So what kinds of underlying replacement rules lead to causal

networks that are independent of how the rules are applied? The

situation is much the same as for strings—with the basic criterion just

being that all replacements that appear in the rules should be for

clusters of nodes that can never overlap themselves or each other. 

The pictures below show all possible distinct clusters with up to

five nodes—and all but three of these already can overlap themselves.

(a)

(b)

(c)

Causal networks that represent the relationship between updating events for the
network evolution processes shown on the previous page.

All possible distinct clusters containing up to five nodes, with planarity not required.
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But among slightly larger clusters there turn out to be many that do

not overlap themselves—and indeed this becomes common as soon as

there are at least two connections between each dangling one. 

The first few examples are shown below. And in almost all of these,

there is no overlap not only within a single cluster, but also between

different clusters. And this means that rules based on replacements for

collections of these clusters will have the property that the causal

networks they produce are independent of the updating scheme used. 

One feature of the various rules I showed earlier is that they all

maintain planarity of networks—so that if one starts with a network

that can be laid out in the plane without any lines crossing, then every

subsequent network one gets will also have this property. 

Yet in our everyday experience space certainly does not seem to

have this property. But beyond the practical problem of displaying what

happens, there is actually no fundamental difficulty in setting up rules

that can generate non-planarity—and indeed many rules based on the

clusters above will for example do this.

So in the end, if one manages to find the ultimate rules for the

universe, my expectation is that they will give rise to networks that on

a small scale look largely random. But this very randomness will most

likely be what for example allows a definite and robust value of 3 to

emerge for the dimensionality of space—even though all of the many

complicated phenomena in our universe must also somehow be

represented within the structure of the same network.

The simplest clusters that have no
overlaps with themselves—and mostly
have no overlaps with each other.
Replacements for sets of clusters that
do not overlap have the property of
causal invariance.
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Space, Time and Relativity

Several sections ago I argued that as observers within the universe

everything we can observe must at some level be associated purely with

the network of causal connections between events in the universe. And

in the past few sections I have outlined a series of types of models for

how such a causal network might actually get built up. 

But how do the properties of causal networks relate to our normal

notions of space and time? There turn out to be some slight subtleties—

but these seem to be exactly what end up yielding the theory of relativity.

As we saw in earlier sections, if one has an explicit evolution history

for a system it is straightforward to deduce a causal network from it. But

given only a causal network, what can one say about the evolution history?

The picture below shows an example of how successive steps in a

particular evolution history can be recovered from a particular set of

slices through the causal network derived from it. But what if one were

to choose a different set of slices? In general, the sequence of strings

that one would get would not correspond to anything that could arise

from the same underlying substitution system.

(a) (b)

(c)

An example of how the succession of states in an evolution history can be recovered by taking
appropriate slices through a causal network. Any consistent choice of such slices will correspond to
a possible evolution history—with the same underlying rules, but potentially a different scheme for
determining the order in which to apply replacements. 
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But if one has a system that yields the same causal network

independent of the scheme used to apply its underlying rules, then the

situation is different. And in this case any slice that consistently divides

the causal network into a past and a future must correspond to a possible

state of the underlying system—and any non-overlapping sequence of

such slices must represent a possible evolution history for the system. 

If we could explicitly see the particular underlying evolution

history for the system that corresponds to our universe then this would

in a sense immediately provide absolute information about space and

time in the universe. But if we can observe only the causal network for

the universe then our information about space and time must inevitably

be deduced indirectly from looking at slices of causal networks.

And indeed only some causal networks even yield a reasonable

notion of space at all. For one can think of successive slices through a

causal network as corresponding to states at successive moments in time.

But for there to be something one can reasonably think of as space one has

to be able to identify some background features that stay more or less the

same—which means that the causal network must yield consistent

similarities between states it generates at successive moments in time.

One might have thought that if one just had an underlying

system which did not change on successive steps then this would

immediately yield a fixed structure for space. But in fact, without

updating events, no causal network at all gets built up. And so a system

like the one at the top of the next page is about the simplest that can

yield something even vaguely reminiscent of ordinary space.

In practice I certainly do not expect that even parts of our

universe where nothing much seems to be going on will actually have

causal networks as simple as at the top of the next page. And in fact, as

I mentioned at the end of the previous section, what I expect instead is

that there will always tend to be all sorts of complicated and seemingly

random behavior at small scales—though at larger scales this will

typically get washed out to yield the kind of consistent average

properties that we ordinarily associate with space. 
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One of the defining features of space as we normally experience it

is a certain locality that leads most things that happen at some particular

position to be able at first to affect only things very near them.

Such locality is built into the basic structure of systems like

cellular automata. For in such systems the underlying rules allow the

color of a particular cell to affect only its immediate neighbors at each

step. And this has the consequence that effects in such systems can

spread only at a limited rate, as manifest for example in a maximum

slope for the edges of patterns like those in the pictures below.

In physics there also seems to be a maximum speed at which the

effects of any event can spread: the speed of light, equal to about 300

A very simple substitution system whose causal network has slices that can be thought of as
corresponding to a highly regular idealization of one-dimensional ordinary space. The rule effectively
just sorts elements so that black ones come first, and yields the same causal network regardless of
what updating scheme is used.

Examples of patterns produced by cellular automata, illustrating the fact discussed in Chapter 6 that
the edge of each pattern has a maximum slope equal to one cell per step, corresponding to an
absolute upper limit on the rate of information transmission—similar to the speed of light in physics.
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million meters per second. And it is common in spacetime physics to draw

“light cones” of the kind shown at the right to indicate the region that will

be reached by a light signal emitted from a particular position in space at a

particular time. So what is the analog of this in a causal network?

The answer is straightforward, for the very definition of a causal

network shows that to see how the effects of a particular event spread one

just has to follow the successive connections from it in the causal network.

But in the abstract there is no reason that these connections

should lead to points that can in any way be viewed as nearby in space.

Among the various kinds of underlying systems that I have studied in

this book many have no particular locality in their basic rules. But the

particular kinds of systems I have discussed for both strings and

networks in the past few sections do have a certain locality, in that each

individual replacement they make involves only a few nearby elements.

One might choose to consider systems like these just because it

seems easier to specify their rules. But their locality also seems important

in giving rise to anything that one can reasonably recognize as space.

For without it there will tend to be no particular way to match up

corresponding parts in successive slices through the causal networks

that are produced. And as a result there will not be the consistency

between successive slices necessary to have a stable notion of space.

In the case of substitution systems for strings, locality of

underlying replacement rules immediately implies overall locality of

effects in the system. For the different elements in the system are always

just laid out in a one-dimensional string, with the result that local

replacement rules can only ever propagate effects to nearby elements in

the string—much like in a one-dimensional cellular automaton.

If one is dealing with an underlying system based on networks,

however, then the situation can be somewhat more complicated. For as

we discussed several sections ago—and will discuss again in the final

sections of this chapter—there will typically be only an approximate

correspondence between the structure of the network and the structure

of ordinary space. And so for example—as we will discuss later in

connection with quantum phenomena—there may sometimes be a

kind of thread that connects parts of the network that would not

Schematic illustration of a light
cone in physics. Light emitted
at a point in space will normally
spread out with time into a
cone, whose cross-section is
shown schematically here.
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normally be considered nearby in three-dimensional space. And so

when clusters of nodes that are nearby with respect to connections on

the network get updated, they can potentially propagate effects to what

might be considered distant points in space.

Nevertheless, if a network is going to correspond to space as it

seems to exist in our universe, such phenomena must not be too

important—and in the end there must to a good approximation be the

kind of straightforward locality that exists for example in the simple

causal network of page 518.

In the next section I will discuss how actual physical entities like

particles propagate in systems represented by causal networks. But

ultimately the whole point of causal networks is that their connections

represent all possible ways that effects propagate. Yet these connections

are also what end up defining our notions of space and time in a system.

And particularly in a causal network as regular as the one on page 518

one can then immediately view each connection in the causal network

as corresponding to an effect propagating a certain distance in space

during a certain interval in time.

So what about a more complicated causal network? One might

imagine that its connections could perhaps represent varying distances

in space and varying intervals in time. But there is no independent way

to work out distance in space or interval in time beyond looking at the

connections in the causal network. So the only thing that ultimately

makes sense is to measure space and time taking each connection in

the causal network to correspond to an identical elementary distance in

space and elementary interval in time. 

One may guess that this elementary distance is around

meters, and that the elementary time interval is around 

seconds. But whatever these values are, a crucial point is that their ratio

must be a fixed speed, and we can identify this with the speed of light. So

this means that in a sense every connection in a causal network can be

viewed as representing the propagation of an effect at the speed of light.

And with this realization we are now close to being able to see

how the kinds of systems I have discussed must almost inevitably

succeed in reproducing the fundamental features of relativity theory.

10�35 10�43
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But first we must consider the concept of motion.

To say that one is not moving means that one imagines one is in a

sense sampling the same region of space throughout time. But if one is

moving—say at a fixed speed—then this means that one imagines that

the region of space one is sampling systematically shifts with time, as

illustrated schematically in the simple pictures on the right.

But as we have seen in discussing causal networks, it is in general

quite arbitrary how one chooses to match up space at different times.

And in fact one can just view different states of motion as corresponding

to different such choices: in each case one matches up space so as to

treat the point one is at as being the same throughout time.

Motion at a fixed speed is then the simplest case—and the one

emphasized in the so-called special theory of relativity. And at least in

the context of a highly regular causal network like the one in the picture

on page 518 there is a simple interpretation to this: it just corresponds to

looking at slices at different angles through the causal network. 

Successive parallel slices through the causal network in general

correspond to successive states of the underlying system at successive

moments in time. But there is nothing that determines in any absolute

way the overall angle of these slices in pictures like those on page 518.

And the point is that in fact one can interpret slices at different angles

as corresponding to motion at different fixed speeds.

If the angle is so great that there are connections going up as well

as down between slices, then there will be a problem. But otherwise it

will always be the case that regardless of angle, successive slices must

correspond to possible evolution histories for the underlying system.

One might have thought that states obtained from slices at

different angles would inevitably be consistent only with different sets

of underlying rules. But in fact this is not the case, and instead the exact

same rules can reproduce slices at all angles. And this is a consequence

of the fact that the substitution system on page 518 has the property of

causal invariance—so that it gives the same causal network

independent of the scheme used to apply its underlying rules. 

It is slightly more complicated to represent uniform motion in

causal networks that are not as regular as the one on page 518. But

Graphical representation in
space and time of motion at
fixed speeds.
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whenever there is sufficient uniformity to give a stable structure to

space one can still think of something like parallel slices at different

angles as representing motion at different fixed speeds. 

And the crucial point is that whenever the underlying system is

causal invariant the exact same underlying rules will account for what

one sees in slices at different angles. And what this means is that in

effect the same rules will apply regardless of how fast one is going.

And the remarkable point is then that this is also what seems to

happen in physics. For everyday experience—together with all sorts of

detailed experiments—strongly support the idea that so long as there

are no effects from acceleration or external forces, physical systems

work exactly the same regardless of how fast they are moving.

At the outset it might not have seemed conceivable that any

system which at some level just applies a fixed program to various

underlying elements could successfully capture the phenomenon of

motion. For certainly a system like a typical cellular automaton does

not—since for example its effective rules for evolution at different

angles will usually be quite different. But there are two crucial ideas that

make motion work in the kinds of systems I am discussing here. First,

that causal networks can represent everything that can be observed. And

second, that with causal invariance different slices through a causal

network can be produced by the same underlying rules.

Historically, the idea that physical processes should always be

independent of overall motion goes back at least three hundred years.

And from this idea one expects for example that light should always

travel at its usual speed with respect to whatever emitted it. But what if

one happens to be moving with respect to this emitter? Will the light

then appear to be travelling at a different speed? In the case of sound it

would. But what was discovered around the end of the 1800s is that in

the case of light it does not. And it was essentially to explain this

surprising fact that the special theory of relativity was developed.

In the past, however, there seemed to be no obvious underlying

mechanism that could account for the validity of this basic theory. But

now it turns out that the kinds of discrete causal network models that I

have described almost inevitably end up being able to do this.
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And essentially the reason for this is that—as I discussed above—

each individual connection in any causal network must almost by

definition represent propagation of effects at the speed of light. The

overall structure of space that emerges may be complicated, and there

may be objects that end up moving at all sorts of speeds. But at least

locally the individual connections basically define the speed of light as a

fixed maximum rate of propagation of any effect. And the point is that

they do this regardless of how fast the source of an effect may be moving.

So from this one can use essentially standard arguments to derive

all the various phenomena familiar from ordinary relativity theory. A

typical example is time dilation, in which a fixed time interval for a

system moving at some speed seems to correspond to a longer time

interval for a system at rest. The picture on the next page shows

schematically how this at first unexpected result arises.

The basic idea is to consider what happens when a system that

can act as a simple clock moves at different speeds. At a traditional

physics level one can think of the clock as having a photon of light

bouncing backwards and forwards between mirrors a fixed distance

apart. But more generally one can think of following criss-crossing

connections that exist in some fixed fragment of a causal network. 

In the picture on the next page time goes down the page. The

internal mechanism of the clock is shown as a zig-zag black line—with

each sweep of this line corresponding to the passage of one unit of time.

The black line is always assumed to be moving at the speed of

light—so that it always lies on the surface of a light cone, as indicated

in the top row of pictures. But then in successive pictures the whole

clock is taken to move at increasing fractions of the speed of light.

The dark gray region in each picture represents a fixed amount of

time for the clock—corresponding to a fixed number of sweeps of the

black line. But as the pictures indicate, it is then essentially just a

matter of geometry to see that this dark gray region will correspond to

progressively larger amounts of time for a system at rest—in just the

way predicted by the standard formula of relativistic time dilation. 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

A simple derivation of the classic phenomenon of relativistic time dilation. The pictures show the behavior of a very simple

idealized clock going at different fractions of the speed of light. The clock can be thought of as consisting of a photon of

light bouncing backwards and forwards between mirrors a fixed distance apart. (At a more general level in my approach it

can also be thought of as a fragment of a causal network.) Time is shown going down the page, so that the photon in the

clock traces out a zig-zag path. The fundamental assumption—that in my approach is just a consequence of basic

properties of causal networks—is that the photon always goes at the speed of light, so that its path always lies on the

surface of light cones like the ones in the top row of pictures. A fixed interval of time for the clock—as indicated by the

length of the darker gray regions—corresponds to a progressively longer interval of time at rest. The amount of this time

dilation is given by the classic relativistic formula , where  is the ratio of the speed of the clock to the

speed of light. Such time dilation is routinely observed in particle accelerators—and has to be corrected for in GPS

satellites. It leads to the so-called twin paradox in which less time will pass for a member of a twin going at high speed in a

spacecraft than one staying at rest. The fact that time dilation is a general phenomenon not restricted to something like the

simple clock shown relies in my approach on general properties of causal networks. Once the basic assumptions are

established, the derivation of time dilation given here is no different in principle from the original one given in 1905, though

I believe it is in many ways considerably clearer. Note that it is necessary to consider motion in two dimensions—so that

the clock as a whole can be moving perpendicular to the path of the photon inside it. If these were parallel, one would

inevitably get not just pure time dilation, but a mixture of it and length contraction. 

1/
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Elementary Particles

There are some aspects of the universe—notably the structure of space

and time—that present-day physics tends to assume are continuous.

But over the past century it has at least become universally accepted

that all matter is made up of identifiable discrete particles.

Experiments have found a fairly small number of fundamentally

different kinds of particles, with electrons, photons, muons and the six

basic types of quarks being a few examples. And it is one of the striking

observed regularities of the universe that all particles of a given kind—

say electrons—seem to be absolutely identical in their properties.

But what actually are particles? As far as present-day experiments

can tell, electrons, for example, have zero size and no substructure. But

particularly if space is discrete, it seems almost inevitable that electrons

and other particles must be made up of more fundamental elements. 

So how might this work? An immediate possibility that I suspect

is actually not too far from the mark is that such particles are analogs of

the localized structures that we saw earlier in this book in systems like

the class 4 cellular automata shown on the right. And if this is so, then

it means that at the lowest level, the rules for the universe need make

no reference to particular particles. Instead, all the particles we see

would just emerge as structures formed from more basic elements.

In networks it can be somewhat difficult to visualize localized

structures. But the picture below nevertheless shows a simple example

of how a localized structure can move across a regular planar network.

Both the examples on this page show structures that exist on very

regular backgrounds. But to get any kind of realistic model for actual

Typical examples of particle-like
localized structures in class 4
cellular automata.

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8

A particle-like localized structure in a network.
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particles in physics one must consider structures on much more

complicated and random backgrounds. For any network that has a

serious chance of representing actual space—even a supposedly empty

part—will no doubt show all sorts of seemingly random activity. So any

localized structure that might represent a particle will somehow have

to persist even on this kind of random background.

Yet at first one might think that such randomness would inevitably

disrupt any kind of definite persistent structure. But the pictures below

show two simple examples where it does not. In the first case, there are

localized cracks that persist. And in the second case, there are two

different types of regions, separated by boundaries that act like localized

structures with definite properties, and persist until they annihilate.

So what about networks? It turns out that here again it is possible

to get definite structures that persist even in the presence of

randomness. And to see an example of this consider setting up rules

like those on page 509 that preserve the planarity of networks. 

Starting off with a network that is planar—so that it can be drawn

flat on a page without any lines crossing—such rules can certainly give

all sorts of complex and apparently random behavior. But the way the

rules are set up, all the networks they produce must still be planar.

And if one starts off with a network like the one on the left that

can only be drawn with lines crossing, then what will happen is that the

non-planarity of the network will be preserved. But to what extent does

this non-planarity correspond to a definite structure in the network?

Examples of one-dimensional cellular automata that support various forms of persistent structures
even on largely random backgrounds. These are 3-color totalistic rules with codes 294 and 1893.

A network with a single
irreducible crossing of lines.



F U N D A M E N T A L  P H Y S I C S C H A P T E R  9

527

There are typically many different ways to draw a non-planar

network, each with lines crossing in different places. But there is a

fundamental result in graph theory that shows that if a network is not

planar, then it must always be possible to identify in it a specific part

that can be reduced to one of the two forms shown on the right—or just

the second form for a network with three connections at each node.

So this implies that one can in fact meaningfully associate a

definite structure with non-planarity. And while at some level the

structure can be spread out in the network, the point is that it must

always in effect have a localized core with the form shown on the right.

In general one can imagine having several pieces of non-planarity in

a network—perhaps each pictured like a carrying handle. But if the

underlying rules for the network preserve planarity then each of these

pieces of non-planarity must on their own be persistent—and can in a

sense only disappear through processes like annihilating with each other.

So might these be like actual particles in physics?

In the realistic case of network rules for the universe, planarity as

such is presumably not preserved. But observations in physics suggest

that there are several quantities like electric charge that are conserved.

And ultimately the values of these quantities must reflect properties of

underlying networks that are preserved by network evolution rules.

And if these rules satisfy the constraint of causal invariance that I

discussed in previous sections, then I suspect that this means that they

will inevitably exhibit various additional features—perhaps notably

including for example what is usually known as local gauge invariance.

But what is most relevant here is that it seems likely that—much

as for non-planarity—nonzero values of quantities conserved by

network evolution rules can be thought of as being associated with

some sort of local structures or tangles of connections in the network.

And I suspect that it is essentially such structures that define the cores

of the various types of elementary particles that are seen in physics.

Before the results of this book it might have seemed completely

implausible that anything like this could be correct. For independent of

any specific arguments about networks and their evolution, traditional

intuition would tend to make one think that the elaborate properties of

The K5 and K3,3 forms that lead
to non-planarity in networks. 

How K3,3 is embedded in the
network from the facing page. 
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particles must inevitably be the result of an elaborate underlying setup.

But what we have now seen over and over again in this book is that in

fact it is perfectly possible to get phenomena of great complexity even

with a remarkably simple underlying setup. And I suspect that particles

in physics—with all their various properties and interactions—are just

yet another example of this very general phenomenon. 

One immediate thing that might seem to suggest that elementary

particles must somehow be based on simple discrete structures is the

fact that their values of quantities like electric charge always seem to be

in simple rational ratios. In traditional particle physics this is explained

by saying that many if not all particles are somehow just manifestations

of the same underlying abstract object, related by a simple fixed group

of symmetry operations. But in terms of networks one can imagine a

much more explicit explanation: that there are just a simple discrete set

of possible structures for the cores of particles—each perhaps related in

some quite mechanical way by the group of symmetry operations.

But in addition to quantities like electric charge, another important

intrinsic property of all particles is mass. And unlike for example electric

charge the observed masses of elementary particles never seem to be in

simple ratios—so that for example the muon is about 206.7683 times the

mass of the electron, while the tau lepton is about 16.819 times the mass

of the muon. But despite such results, it is still conceivable that there

could in the end be simple relations between truly fundamental particle

masses—since it turns out that the masses that have actually been

observed in effect also include varying amounts of interaction energy.

A defining feature of any particle is that it can somehow move in

space while maintaining its identity. In traditional physics, such

motion has a straightforward mathematical representation, and it has

not usually seemed meaningful to ask what might underlie it. But in

the approach that I take here, motion is no longer such an intrinsic

concept, and the motion of a particle must be thought of as a process

that is made up of a whole sequence of explicit lower-level steps.

So at first, it might seem surprising that one can even set up a

particular type of particle to move at different speeds. But from the

discussion in the previous section it follows that this is actually an
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almost inevitable consequence of having underlying rules that show

causal invariance. For assuming that around the particle there is some

kind of uniformity in the causal network—and thus in the apparent

structure of space—taking slices through the causal network at an

appropriate angle will always make any particle appear to be at rest.

And the point is that causal invariance then implies that the same

underlying rules can be used to update the network in all such cases.

But what happens if one has two particles that are moving with

different velocities? What will the events associated with the second

particle look like if one takes slices through the causal network so that

the first particle appears to be at rest? The answer is that the more the

second particle moves between successive slices, the more updating

events must be involved. For in effect any node that was associated

with the particle on either one slice or the next must be updated—and

the more the particle moves, the less these will overlap. And in

addition, there will inevitably appear to be an asymmetry in the pattern

of events relative to whatever direction the particle is moving. 

There are many subtleties here, and indeed to explain the

details of what is going on will no doubt require quite a few new and

rather abstract concepts. But the general picture that I believe will

emerge is that when particles move faster they will appear to have

more nodes associated with them. 

Most likely the intrinsic properties of a particle—like its electric

charge—will be associated with some sort of core that corresponds to a

definite network structure involving a roughly fixed number of nodes.

But I suspect that the apparent motion of the particle will be associated

with a kind of coat that somehow interpolates from the core to the

uniform background of surrounding space. With different slices through

the causal network, the apparent size of this coat can change. But I

suspect that the size of the coat in a particular case will somehow be

related to the apparent energy and momentum of a particle in that case. 

An important fact in traditional physics is that interactions

between particles seem to conserve total energy and momentum. And

conceivably the reason for this is that such interactions somehow tend

to preserve the total number of network nodes. Indeed, perhaps in most
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situations—save those associated with the overall expansion of the

universe—the basic rules for the network at least on average just

rearrange nodes and never change their number.

In traditional physics energy and momentum are always assumed

to have continuous values. But just as in the case of position there is no

contradiction with sufficiently small underlying discrete elements. 

As I will discuss in the last section of this chapter, quantum

mechanics tends to make one think of particles with higher momenta

as being somehow progressively less spread out in space. So how can

this be consistent with the idea that higher momentum is associated

with having more nodes? Part of the answer probably has to do with the

fact that outside the piece of the network that corresponds to the

particle, the network presumably matches up to yield uniform space in

much the same way as without the particle. And within the piece of the

network corresponding to the particle, the effective structure of space

may be very different—with for example more long-range connections

added to reduce the effective overall distance.

The Phenomenon of Gravity

At an opposite extreme from elementary particles one can ask how the

universe behaves on the largest possible scales. And the most obvious

effect on such scales is the phenomenon of gravity. So how then might

this emerge from the kinds of models I have discussed here?

The standard theory of gravity for nearly a century has been

general relativity—which is based on the idea of associating gravity

with curvature in space, then specifying how this curvature relates to

the energy and momentum of whatever matter is present. 

Something like a magnetic field in general has different effects on

objects made of different materials. But a key observation verified

experimentally to considerable accuracy is that gravity has exactly the

same effect on the motion of different objects, regardless of what those

objects are made of. And it is this that allows one to think of gravity as

a general feature of space—rather than for example as some type of force

that acts specifically on different objects.
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In the absence of any gravity or forces, our normal definition of

space implies that when an object moves from one point to another, it

always goes along a straight line, which corresponds to the shortest

path. But when gravity is present, objects in general move on curved

paths. Yet these paths can still be the shortest—or so-called geodesics—

if one takes space to be curved. And indeed if space has appropriate

curvature one can get all sorts of paths, as in the pictures below.

But in our actual universe what determines the curvature of

space? The answer from general relativity is that the Einstein equations

give conditions for the value of a particular kind of curvature in terms

of the energy and momentum of matter that is present. And the point

then is that the shortest paths in space with this curvature seem to be

(a) (b) (c)

(d) (e) ( f )

Examples of the effect of curvature in space on paths taken by objects. In each case all the paths shown start parallel,
but do not remain so when there is curvature. The paths are geodesics which go the minimum distance on the surface
to get to all the points they reach. (In general, the minimum may only be local.) Case (b) shows the top of a sphere,
which is a surface of positive curvature. Case (c) shows the negatively curved surface , (d) a paraboloid

, and (e,f) —a rough analog of curvature in space produced by a sphere of mass.
z = x2 - y2

z = x2 + y2 z = 1/ (r + d)
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consistent with those followed by objects moving under the influence

of gravity associated with the given distribution of matter. 

For a continuous surface—or in general a continuous space—the

idea of curvature is a familiar one in traditional geometry. But if the

universe is at an underlying level just a discrete network of nodes then

how does curvature work? At some level the answer is that on large

scales the discrete network must approximate continuous space. 

But it turns out that one can actually also recognize curvature in

the basic structure of a network. If one has a simple array of hexagons—

as in the picture on the left—then this can readily be laid out flat on a

two-dimensional plane. But what if one replaces some of these

hexagons by pentagons? One still has a fundamentally two-dimensional

surface. But if one tries to keep all edges the same length the surface

will inevitably become curved—like a soccer ball or a geodesic dome.

So what this suggests is that in a network just changing the

pattern of connections can in effect change the overall curvature. And

indeed the pictures below show a succession of networks that in effect

have curvatures with a range of negative and positive values.

A hexagonal array corresponding
to flat two-dimensional space. 

Networks with various limiting curvatures. If every region in the network is in effect a hexagon—as in the picture at the top of the
page—then the network will behave as if it is flat. But if pentagons are introduced, as in the cases on the left, the network will
increasingly behave as if it has positive curvature—like part of a sphere. And if heptagons are introduced, as in the cases on the right,
the network will behave as if it has negative curvature. In the bottom row of pictures, the networks are laid out as on page 479, so that
successive heights give the number of nodes at successive distances  from a particular node. In the limit of large , this number is
approximately  where  turns out to be exactly proportional to the curvature.

r r

r 2 (1 - k r 2 +?) k
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But how can we determine the curvature from the structure of

each network? Earlier in this chapter we saw that if a network is going

to correspond to ordinary space in some number of dimensions , then

this means that by going  connections from any given node one must

reach about  nodes. But it turns out that when curvature is present

it leads to a systematic correction to this.

In each of the pictures on the facing page the network shown can

be thought of as corresponding to two-dimensional space. And this

means that to a first approximation the number of nodes reached must

increase linearly with . But the bottom row of pictures show that there

are corrections to this. And what happens is that when there is positive

curvature—as in the pictures on the left—progressively fewer than 

nodes end up being reached. But when there is negative curvature—as

on the right—progressively more nodes end up being reached. And in

general the leading correction to the number of nodes reached turns out

to be proportional to the curvature multiplied by .

So what happens in more than two dimensions? In general the

result could be very complicated, and could for example involve all

sorts of different forms of curvature and other characteristics of space.

But in fact the leading correction to the number of nodes reached is

always quite simple: it is just proportional to what is called the Ricci

scalar curvature, multiplied by . And already here this is some

suggestion of general relativity—for the Ricci scalar curvature also

turns out to be a central quantity in the Einstein equations.

But in trying to see a more detailed correspondence there are

immediately a variety of complications. Perhaps the most obvious is

that the traditional mathematical formulation of general relativity

seems to rely on many detailed properties of continuous space. And

while one expects that sufficiently large networks should in some sense

act on average like continuous space, it is far from clear at first how the

kinds of properties of relevance to general relativity will emerge.

If one starts, say, from an ordinary continuous surface, then it is

straightforward to approximate it as in the picture on the right by a

collection of flat faces. And one might think that the edges of these

faces would define a network of the kind I have been discussing.

d

r

rd�1

r

r

rd�1

rd�1

A surface approximated by
flat faces whose edges form
a trivalent network. 
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But in fact, such a network has vastly less information. For given

just a set of connections between nodes, there is no obvious way even to

know which of these connections should be associated with the same

face—let alone to work out anything like angles between faces.

Yet despite this, it turns out that all the geometrical features that

are ultimately of relevance to general relativity can actually be

determined in large networks just from the connectivity of nodes. 

One of these is the value of the so-called Ricci tensor, which in

effect specifies how the Ricci scalar curvature is made up from different

curvature components associated with different directions. 

As indicated above, the scalar curvature associated with a

network is directly related to how many nodes lie within successive

distances  of a given node on the network—or in effect how many

nodes lie within successive generalized spheres around that node. And

it turns out that the projection of the Ricci tensor along a particular

direction is then just related to the number of nodes that lie within a

cylinder oriented in that direction. But even just defining a consistent

direction in a network is not entirely straightforward. But one way to do

it is simply to pick two points in the network, then to say that paths in

the network are going in the same direction if they are segments of the

same shortest path between those points. And with this definition, a

region that approximates a cylinder can be formed just by setting up

spheres with centers at every point on the path.

But there is now another issue to address: at least in its standard

formulation general relativity is set up in terms of properties not of

three-dimensional space but rather of four-dimensional spacetime. And

this means that what is relevant are properties not so much of specific

networks representing space, but rather of complete causal networks.

And one immediate feature of causal networks that differs from

space networks is that their connections go only one way. But it turns

out that this is exactly what one needs in order to set up the analog of a

spacetime Ricci tensor. The idea is to start at a particular event in the

causal network, then to form what is in effect a cone of events that can

be reached from there. To define the spacetime Ricci tensor, one

considers—as on page 516—a sequence of spacelike slices through this

r
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cone and asks how the number of events that lie within the cone

increases as one goes to successive slices. After  steps, the number of

events reached will be proportional to . But there is then a correction

proportional to , that has a coefficient that is a combination of the

spacetime Ricci scalar and a projection of the spacetime Ricci tensor

along what is in effect the time direction defined by the sequence of

spacelike slices chosen. 

So how does this relate to general relativity? It turns out that

when there is no matter present the Einstein equations simply state

that the spacetime Ricci tensor—and thus all of its projections—are

exactly zero. There can still for example be higher-order curvature, but

there can be no curvature at the level described by the Ricci tensor.

So what this means is that any causal network whose behavior

obeys the Einstein equations must at the level of counting nodes in a cone

have the same uniform structure as it would if it were going to correspond

to ordinary flat space. As we saw a few sections ago, many underlying

replacement rules end up producing networks that are for example too

extensively connected to correspond to ordinary space in any finite

number of dimensions. But I suspect that if one has replacement rules

that are causal invariant and that in effect successfully maintain a fixed

number of dimensions they will almost inevitably lead to behavior that

follows something close to the Einstein equations.

Probably the situation is somewhat analogous to what we saw with

fluid behavior in cellular automata in Chapter 8—that at least if there are

underlying rules whose behavior is complicated enough to generate

significant effective randomness, then almost whenever the rules lead to

conservation of total particle number and momentum something close to

the ordinary Navier-Stokes equation behavior emerges.

So what about matter?

As a first step, one can ask what effect the structure of space has

on something like a particle—assuming that one can ignore the effect of

the particle back on space. In traditional general relativity it is always

assumed that a particle which is not interacting with anything else will

move along a shortest path—or so-called geodesic—in space.

t

td

td�2
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But what about an explicit particle of the kind we discussed in the

previous section that exists as a structure in a network? Given two nodes

in a network, one can always identify a shortest path from one to the

other that goes along a sequence of individual connections in the

network. But in a sense a structure that corresponds to a particle will

normally not fit through this path. For usually the structure will involve

many nodes, and thus typically require many connections going in more

or less the same direction in order to be able to move across the network.

But if one assumes a certain uniformity in networks—and in

particular in the causal network—then it still follows that particles of

the kind that we discussed in the previous section will tend to move

along geodesics. And whereas in traditional general relativity the idea of

motion along geodesics is essentially an assumption, this can now in

principle be derived explicitly from an underlying network model.

One might have thought that in the absence of matter there would

be little to say about gravity—since after all the Einstein equations then

say that there can be no curvature in space, at least of the kind described

by the Ricci tensor. But it turns out that there can still be other kinds of

curvature—described for example by the so-called Riemann tensor—and

these can in fact lead to all sorts of phenomena. Examples include familiar

ones like inverse-square gravitational fields around massive objects, as

well as unfamiliar ones like gravitational waves.

But while the mathematical structure of general relativity is

complicated enough that it is often difficult to see just where in

spacetime effects come from, it is usually assumed that matter is

somehow ultimately required to provide a source for gravity. And in the

full Einstein equations the Ricci tensor need not be zero; instead it is

specified at every point in space as being equal to a certain combination

of energy and momentum density for matter at that point. So this means

that to know what will happen even in phenomena primarily associated

with gravity one typically has to know all sorts of properties of matter.

But why exactly does matter have to be introduced explicitly at

all? It has been the assumption of traditional physics that even though

gravity can be represented in terms of properties of space, other

elements of our universe cannot. But in my approach everything just



F U N D A M E N T A L  P H Y S I C S C H A P T E R  9

537

emerges from the same underlying network—or in effect from the

structure of space. And indeed even in traditional general relativity one

can try avoiding introducing matter explicitly—for example by

imagining that everything we call matter is actually made up of pure

gravitational energy, or of something like gravitational waves. 

But so far as one can tell, the details of this do not work out—so

that at the level of general relativity there is no choice but to introduce

matter explicitly. Yet I suspect that this is in effect just a sign of

limitations in the Einstein equations and general relativity.

For while at a large scale these may provide a reasonable

description of average behavior in a network, it is almost inevitable that

closer to the scale of individual connections they will have to be

modified. Yet presumably one can still use the Einstein equations on

large scales if one introduces matter with appropriate properties as a

way to represent small-scale effects in the network.

In the previous section I suggested that energy and momentum

might in effect be associated with the presence of excess nodes in a

network. And this now potentially seems to fit quite well with what we

have seen in this section. For if the underlying rule for a network is

going to maintain to a certain approximation the same average number

of nodes as flat space, then it follows that wherever there are more

nodes corresponding to energy and momentum, this must be balanced

by something reducing the number of nodes. But such a reduction is

exactly what is needed to correspond to positive curvature of the kind

implied by the Einstein equations in the presence of ordinary matter.

Quantum Phenomena

From our everyday experience with objects that we can see and touch

we develop a certain intuition about how things work. But nearly a

century ago it became clear that when it comes to things like electrons

some of this intuition is no longer correct. Yet there has developed an

elaborate mathematical formalism in quantum theory that successfully

reproduces much of what is observed. And while some aspects of this
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formalism remain mysterious, it has increasingly come to be believed

that any fundamental theory of physics must somehow be based on it.

Yet the kinds of programs I have discussed in this book are not in

any obvious way set up to fit in with this formalism. But as we have

seen a great many times in the course of the book, what emerges from a

program can be very different from what is obvious in its underlying

rules. And in fact it is my strong suspicion that the kinds of programs

that I have discussed in the past few sections will actually in the end

turn out to show many if not all the key features of quantum theory.

To see this, however, will not be easy. For the kinds of constructs

that are emphasized in the standard formalism of quantum theory are

very different from those immediately visible in the programs I have

discussed. And ultimately the only reliable way to make contact will

probably be to set up rather complete and realistic models of

experiments—then gradually to see how limits and idealizations of

these manage to match what is expected from the standard formalism.

Yet from what we have seen in this chapter and earlier in this book

there are already some encouraging signs that one can identify.

At first, though, things might not seem promising. For my model

of particles such as electrons being persistent structures in a network

might initially seem to imply that such particles are somehow definite

objects just like ones familiar from everyday experience. But there are

all sorts of phenomena in quantum theory that seem to indicate that

electrons do not in fact behave like ordinary objects that have definite

properties independent of us making observations of them. 

So how can this be consistent? The basic answer is just that a

network which represents our whole universe must also include us as

observers. And this means that there is no way that we can look at the

network from the outside and see the electron as a definite object.

Instead, anything we deduce about the electron must come from

processes that explicitly go on inside the network.

But this is not just an issue in studying things like electrons: it is

actually a completely general feature of the models I have discussed.

And in fact, as we saw earlier in this chapter, it is what allows them to

support meaningful notions of even such basic concepts as time. At a
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more formal level, it also implies that everything we can observe can be

captured by a causal network. And as I will discuss a little below, I

suspect that the idea of causal invariance for such a network will then

be what turns out to account for some key features of quantum theory.

The basic picture of our universe that I have outlined in the past

few sections is a network whose connections are continually updated

according to some simple set of underlying rules. In the past one might

have assumed that a system like this would be far too simple to

correspond to our universe. But from the discoveries in this book we

now know that even when the underlying rules for a system are simple,

its overall behavior can still be immensely complex.

And at the lowest level what I expect is that even though the rules

being applied are perfectly definite, the overall pattern of connections that

will exist in the network corresponding to our universe will continually

be rearranged in ways complicated enough to seem effectively random.

Yet on a slightly larger scale such randomness will then lead to a

certain average uniformity. And it is then essentially this that I believe

is responsible for maintaining something like ordinary space—with

gradual variations giving rise to the phenomenon of gravity. 

But superimposed on this effectively random background will

then presumably also be some definite structures that persist through

many updatings of the network. And it is these, I believe, that are what

correspond to particles like electrons. 

As I discussed in the last two sections, causal invariance of the

underlying rules implies that such structures should be able to move at

a range of uniform speeds through the background. Typically properties

like charge will be associated with some specific pattern of connections

at the core of the structure corresponding to a particle, while the energy

and momentum of the particle will be associated with roughly the

number of nodes in some outer region around the core.

So what about interactions? If the structures corresponding to

different particles are isolated, then the underlying rules will make

them persist. But if they somehow overlap, these same rules will

usually make some different configuration of particles be produced.
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At some level the situation will no doubt be a little like in the

evolution of a typical class 4 cellular automaton, as illustrated on the

left. Given some initial set of persistent structures, these can interact to

produce some intermediate pattern of behavior, which then eventually

resolves into a final set of structures that again persist. 

In the intermediate pattern of behavior one may also be able to

identify some definite structures. Ones that do not last long can be very

different from ones that would persist forever. But ones that last longer

will tend to have properties progressively closer to genuinely persistent

structures. And while persistent structures can be thought of as

corresponding to real particles, intermediate structures are in many

ways like the virtual particles of traditional particle physics.

So this means that a picture like the one on the left above can be

viewed in a remarkably literal sense as being a spacetime diagram of

particle interactions—a bit like a Feynman diagram from particle physics.

One immediate difference, however, is that in traditional particle

physics one does not imagine a pattern of behavior as definite and

determined as in the picture above. And indeed in my model for the

universe it is already clear that there is more going on. For any process

like the one in the picture above must occur on top of a background of

apparently random small-scale rearrangements of the network. And in

effect what this background does is to introduce a kind of random

environment that can make many different detailed patterns of

behavior occur with certain probabilities even with the same initial

configuration of particles. 

The idea that even a vacuum without particles will have a

complicated and in some ways random form also exists in standard

quantum field theory in traditional physics. The full mathematical

structure of quantum field theory is far from completely worked out. But

the basic notion is that for each possible type of particle there is some

kind of continuous field that exists throughout space—with the presence

of a particle corresponding to a simple type of structure in this field. 

In general, the equations of quantum field theory seem to imply that

there can be all sorts of complicated configurations in the field, even in the

absence of actual particles. But as a first approximation, one can consider

A collision between localized
structures in the rule 110 class
4 cellular automaton.
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just short-lived pairs of virtual particles and antiparticles. And in fact one

can often do something similar for networks. For even in the planar

networks discussed on page 527 a great many different arrangements of

connections can be viewed as being formed from different configurations of

nearby pairs of non-planar persistent structures.

Talking about a random background affecting processes in the

universe immediately tends to suggest certain definite relations

between probabilities for different processes. Thus for example, if there

are two different ways that some process can occur, it suggests that the

total probability for the whole process should be just the sum of the

probabilities for the process to occur in the two different ways.

But the standard formalism of quantum theory says that this is

not correct, and that in fact one has to look at so-called probability

amplitudes, not ordinary probabilities. At a mathematical level, such

amplitudes are analogous to ones for things like waves, and are in effect

just numbers with directions. And what quantum theory says is that

the probability for a whole process can be obtained by linearly

combining the amplitudes for the different ways the process can occur,

then looking at the square of the magnitude of the result—or the analog

of intensity for something like a wave.

So how might this kind of mathematical procedure emerge from

the types of models I have discussed? The answer seems complicated.

For even though the procedure itself may sound straightforward, the

constructs on which it operates are actually far from easy to define just

on the basis of an underlying network—and I have seen no easy way to

unravel the various limits and idealizations that have to be made. 

Nevertheless, a potentially important point is that it is in some

ways misleading to think of particles in a network as just interacting

according to some definite rule, and being perturbed by what is in

essence a random background. For this suggests that there is in effect a

unique history to every particle interaction—determined by the initial

conditions and the configuration that exists in the random background. 

But the true picture is more complicated. For the sequence of

updates to the underlying network can be made in any order—yet each

order in effect gives a different detailed history for the network. But if
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there is causal invariance, then ultimately all these different histories

must in a sense be equivalent. And with this constraint, if one breaks

some process into parts, there will typically be no simple way to

describe how the effect of these parts combines together.

And for at least some purposes it may well make sense to think

explicitly about different possible histories, combining something like

amplitudes that one assigns to each of them. Yet quite how this might work

will certainly depend on what feature of the network one tries to look at. 

It has always been a major issue in quantum theory just how one

tells what is happening with a particular particle like an electron. From

our experience with everyday objects we might think that it should

somehow be possible to do this without affecting the electron. But if

the only things we have are particles, then to find out something about

a given particle we inevitably have to have some other particle—say a

photon of light—explicitly interact with it. And in this interaction the

original particle will inevitably be affected in some way.

And in fact just one interaction will certainly not be enough. For

we as humans cannot normally perceive individual particles. And

indeed there usually have to be a huge number of particles doing more

or less the same thing before we successfully register it. 

Most often the way this is made to happen is by setting up some

kind of detector that is initially in a state that is sufficiently unstable

that just a single particle can initiate a whole cascade of consequences.

And usually such a detector is arranged so that it evolves to one or

another stable state that has sufficiently uniform properties that we can

recognize it as corresponding to a definite outcome of a measurement.

At first, however, such evolution to an organized state might

seem inconsistent with microscopic reversibility. But in fact—just as in

so many other seemingly irreversible processes—all that is needed to

preserve reversibility is that if one looks at sufficient details of the

system there can be arbitrary and seemingly random behavior. And the

point is just that in making conclusions about the result of a

measurement we choose to ignore such details.

So even though the actual result that we take away from a

measurement may be quite simple, many particles—and many events—
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will always be involved in getting it. And in fact in traditional quantum

theory no measurement can ultimately end up giving a definite result

unless in effect an infinite number of particles are involved. 

As I mentioned above, ordinary quantum processes can appear to

follow different histories depending on what scheme is used to decide

the order in which underlying rules are applied. But taking the idealized

limit of a measurement in which an infinite number of particles are

involved will probably in effect establish a single history.

And this implies that if one knew all of the underlying details of

the network that makes up our universe, it should always be possible to

work out the result of any measurement. I strongly believe that the

initial conditions for the universe were quite simple. But like many of

the processes we have seen in this book, the evolution of the universe

no doubt intrinsically generates apparent randomness.

And the result is that most aspects of the network that represents

the current state of our universe will seem essentially random. So this

means that to know its form we would in essence have to sample every

one of its details—which is certainly not possible if we have to use

measurements that each involve a huge number of particles.

One might however imagine that as a first approximation one

could take account of underlying apparent randomness just by saying

that there are certain probabilities for particles to behave in particular

ways. But one of the most often quoted results about foundations of

quantum theory is that in practice there can be correlations observed

between particles that seem impossible to account for in at least the

most obvious kind of such a so-called hidden-variables theory.

For in particular, if one takes two particles that have come from a

single source, then the result of a measurement on one of them is found

in a sense to depend too much on what measurement gets done on the

other—even if there is not enough time for information travelling at the

speed of light to get from one to the other. And indeed this fact has

often been taken to imply that quantum phenomena can ultimately

never be the result of any definite underlying process of evolution.
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But this conclusion depends greatly on traditional assumptions

about the nature of space and of particles. And it turns out that for the

kinds of models I have discussed here it in general no longer holds.

And the basic reason for this is that if the universe is a network

then it can in a sense easily contain threads that continue to connect

particles even when the particles get far apart in terms of ordinary space.

The picture that emerges is then of a background containing a

very large number of connections that maintain an approximation to

three-dimensional space, together with a few threads that in effect go

outside of that space to make direct connections between particles.

If two particles get created together, it is reasonable to expect that

the tangles that represent their cores will tend to have a few

connections in common—and indeed this for example happens for

lumps of non-planarity of the kind we discussed on page 527. But until

there are interactions that change the structure of the cores, these

common connections will then remain—and will continue to define a

thread that goes directly from one particle to the other. 

But there is immediately a slight subtlety here. For earlier in this

chapter I discussed measuring distance on a network just by counting

the minimum number of successive individual connections that one

has to follow in order to get from one point to another. Yet if one uses

this measure of distance then the distance between two particles will

always tend to remain fixed as the number of connections in the thread.

But the point is that this measure of distance is in reality just a

simple idealization of what is relevant in practice. For the only way we

end up actually being able to measure physical distances is in effect by

looking at the propagation of photons or other particles. Yet such

particles always involve many nodes. And while they can get from one

point to another through the large number of connections that define

the background space, they cannot in a sense fit through a small

number of connections in a thread. So this means that distance as we

normally experience it is typically not affected by threads. 

But it does not mean that threads can have no effect at all. And

indeed what I suspect is that it is precisely the presence of threads that

leads to the correlations that are seen in measurements on particles.
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It so happens that the standard formalism of quantum theory

provides a rather simple mathematical description of these correlations.

And it is certainly far from obvious how this might emerge from

detailed mechanisms associated with threads in a network. But the fact

that this and other results seem simple in the standard formalism of

quantum theory should not be taken to imply that they are in any sense

particularly fundamental. And indeed my guess is that most of them

will actually in the end turn out to depend on all sorts of limits and

idealizations in quantum theory—and will emerge just as simple

approximations to much more complex underlying behavior.

In its development since the early 1900s quantum theory has

produced all sorts of elaborate results. And to try to derive them all from

the kinds of models I have outlined here will certainly take an immense

amount of work. But I consider it very encouraging that some of the

most basic quantum phenomena seem to be connected to properties like

causal invariance and the network structure of space that already arose

in our discussion of quite different fundamental issues in physics. 

And all of this supports my strong belief that in the end it will

turn out that every detail of our universe does indeed follow rules that

can be represented by a very simple program—and that everything we

see will ultimately emerge just from running this program.
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10
Processes of Perception 
and Analysis 

Introduction

In the course of the past several chapters, we have discussed the basic

mechanisms responsible for a variety of phenomena that occur in

nature. But in trying to explain our actual experience of the natural

world, we need to consider not only how phenomena are produced in

nature, but also how we perceive and analyze these phenomena. For

inevitably our experience of the natural world is based in the end not

directly on behavior that occurs in nature, but rather on the results of

our perception and analysis of this behavior.

Thus, for example, when we look at the behavior of a particular

natural system, there will be certain features that we notice with our

eyes, and certain features, perhaps different, that we can detect by doing

various kinds of mathematical or other analysis.

In previous chapters, I have argued that the basic mechanisms

responsible for many processes that occur in nature can be captured by

simple computer programs based on simple rules. But what about the

processes that are involved in perception and analysis?

Particularly when it comes to the higher levels of perception,

there is much that we do not know for certain about this. But what I

will argue in this chapter is that the evidence we have suggests that the

basic mechanisms at work can once again successfully be captured by

simple programs based on simple rules.
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In the traditional sciences, it has rarely been thought necessary to

discuss in any explicit kind of way the processes that are involved in

perception and analysis. For in most cases all that one studies are rather

simple features that can readily be extracted by very straightforward

processes—and which can for example be described by just a few

numbers or by a simple mathematical formula.

But as soon as one tries to investigate behavior of any substantial

complexity, the processes of perception and analysis that one needs to

use are no longer so straightforward. And the results one gets can then

depend on these processes.

In the traditional sciences it has usually been assumed that any

result that is not essentially independent of the processes of perception

and analysis used to obtain it cannot be definite or objective enough to

be of much scientific value. But the point is that if one explicitly

studies processes of perception and analysis, then it becomes possible to

make quite definite and objective statements even in such cases.

And indeed some of the most significant conclusions that I will

reach at the end of this book are based precisely on comparing the

processes that are involved in the production of certain forms of

behavior with the processes involved in their perception and analysis. 

What Perception and Analysis Do

In everyday life we are continually bombarded by huge amounts of

data, in the form of images, sounds, and so on. To be able to make use of

this data we must reduce it to more manageable proportions. And this is

what perception and analysis attempt to do. Their role in effect is to take

large volumes of raw data and extract from it summaries that we can use. 

At the level of raw data the picture at the top of the facing page,

for example, can be thought of as consisting of many thousands of

individual black and white cells. But with our powers of visual

perception and analysis we can immediately see that the picture can be

summarized just by saying that it consists essentially of an array of

repeated black diamond shapes.
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There are in general two ways in which data can be reduced by

perception and analysis. First, those aspects of data that are not relevant

for whatever purpose one has can simply be ignored. And second, one

can avoid explicitly having to specify every element in the data by

making use of regularities that one sees.

Thus, for example, in summarizing the picture above, we choose

to ignore some details, and then to describe what remains in terms of its

simple repetitive overall geometrical structure.

Whenever there are regularities in data, it effectively means that

some of the data is redundant. For example, if a particular pattern is

repeated, then one need not specify the form of this pattern more than

once—for the original data can be reproduced just by repeating a copy of

the pattern. And in general, the presence of regularities makes it

possible to replace literal descriptions of data by shorter descriptions

that are based on procedures for reproducing the data.

There are many forms of perception and analysis. Some happen

quite automatically in our eyes, ears and brains—and these we usually

call perception. Others require explicit conscious effort and mathematical

or computational work—and these we usually call analysis. But the basic

goal in all cases is the same: to reduce raw data to a useful summary form.

Such a summary is important whenever one wants to store or

communicate data efficiently. It is also important if one wants to

compare new data with old, or make meaningful extrapolations or

predictions based on data. And in modern information technology the

problems of data compression, feature detection, pattern recognition

An example of a picture that our powers of
perception and analysis readily allow us to
summarize quite succinctly in simple geometrical
terms. At the lowest level, however, the picture
consists of 24,000 black and white cells.
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and system identification all in effect revolve around finding useful

summaries of data.

In traditional science statistical analysis has been the most

common way of trying to find summaries of data. And in general

perception and analysis can be viewed as equivalent to finding models

that reproduce whatever aspects of data one considers relevant. 

Perception and analysis correspond in many respects to the

inverse of most of what we have studied in this book. For typically what

we have done is to start from a simple computer program, and then seen

what behavior this program produces. But in perception and analysis we

start from behavior that we observe, then try to deduce what procedure

or program will reproduce this data.

So how easy is it to do this? It turns out that for most of the kinds

of rules used in traditional mathematics, it is in fact fairly easy. But for

the more general rules that I discuss in this book it appears to often be

extremely difficult. For even though the rules may be simple, the

behavior they produce is often highly complex, and shows absolutely no

obvious trace of its simple origins.

As one example, the pictures on the facing page were all

generated by starting from a single black cell and then applying very

simple two-dimensional cellular automaton rules. Yet if one looks just

at these final pictures, there is no easy way to tell how they were made.

Our standard methods of perception and analysis can certainly

determine that the pictures are for example symmetrical. But none of

these methods typically get even close to being able to recognize just

how simple a procedure can in fact be used to produce the pictures.

One might think that our inability to find such a procedure could

just be a consequence of limitations in the particular methods of

perception and analysis that we, as humans, happen to have developed.

And one might therefore suppose that an alien intelligence could exist

which would be able to look at our pictures and immediately tell that

they were produced by a very simple procedure.

But in fact I very much doubt that this will ever be the case. For I

suspect that there are fundamental limitations on what perception and

analysis can ever be expected to do. For there seem to be many kinds of
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systems in which it is overwhelmingly easier to generate highly

complex behavior than to recognize the origins of this behavior.

As I have discovered in this book, it is rather easy to generate

complex behavior by starting from simple initial conditions and then

following simple sets of rules. But the point is that if one starts from

some particular piece of behavior there are in general no such simple

rules that allow one to go backwards and find out how this behavior can

be produced. Typically the problem is similar to trying to find solutions

that will satisfy certain constraints. And as we have seen several times

in this book, such problems can be extremely difficult. 

So insofar as the actual processes of perception and analysis that

end up being used are fairly simple, it is inevitable that there will be

situations where one cannot recognize the origins of behavior that one

sees—even when this behavior is in fact produced by very simple rules.

Patterns produced by taking a single black cell, then evolving for 50 and 100 steps according to outer totalistic cellular
automaton rules 54, 222 and 374. Despite the simple description that can be given of this procedure, our standard
methods of perception and analysis cannot readily deduce this description given just the final pictures shown here.
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Defining the Notion of Randomness

Many times in this book I have said that the behavior of some system or

another seems random. But so far I have given no precise definition of

what I mean by randomness. And what we will discover in this section

is that to come up with an appropriate definition one has no choice but

to consider issues of perception and analysis.

One might have thought that from traditional mathematics and

statistics there would long ago have emerged some standard definition of

randomness. But despite occasional claims for particular definitions, the

concept of randomness has in fact remained quite obscure. And indeed I

believe that it is only with the discoveries in this book that one is finally

now in a position to develop a real understanding of what randomness is.

At the level of everyday language, when we say that something

seems random what we usually mean is that there are no significant

regularities in it that we can discern—at least with whatever methods

of perception and analysis we use. 

We would not usually say, therefore, that either of the first two

pictures at the top of the facing page seem random, since we can readily

recognize highly regular repetitive and nested patterns in them. But the

third picture we would probably say does seem random, since at least at

the level of ordinary visual perception we cannot recognize any

significant regularities in it.

So given this everyday notion of randomness, how can we build

on it to develop more precise definitions? The first step is to clarify

what it means not to be able to recognize regularities in something.

Following the discussion in the previous section, we know that

whenever we find regularities, it implies that redundancy is present,

and this in turn means that a shorter description can be given. So when

we say that we cannot recognize any regularities, this is equivalent to

saying that we cannot find a shorter description.

The three pictures on the facing page can always be described by

explicitly giving a list of the colors of each of the 6561 cells that they

contain. But by using the regularities that we can see in the first two
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pictures, we can readily construct much shorter—yet still complete—

descriptions of these pictures.

The repetitive structure of picture (a) implies that to reproduce

this picture all we need do is to specify the colors in a 49 ä 2 block, and

then say that this block should be repeated an appropriate number of

times. Similarly, the nested structure of picture (b) implies that to

reproduce this picture, all we need do is to specify the colors in a 3 ä 3

block, and then say that as in a two-dimensional substitution system

each black cell should repeatedly be replaced by this block.

But what about picture (c)? Is there any short description that can

be given of this picture? Or do we have no choice but just to specify

explicitly the color of every one of the cells it contains?

Our powers of visual perception certainly do not reveal any

significant regularities that would allow us to construct a shorter

description. And neither, it turns out, do any standard methods of

mathematical or statistical analysis. And so for practical purposes we

have little choice but just to specify explicitly the color of each cell.

But the fact that no short description can be found by our usual

processes of perception and analysis does not in any sense mean that no

such description exists at all. And indeed, as it happens, picture (c) in

fact allows a very short description. For it can be generated just by

(a) (b) (c)

Pictures exhibiting different degrees of apparent randomness. Pictures (a) and (b) have obvious
regularities, and would never be considered particularly random. But picture (c) has almost no
obvious regularities, and would typically be considered quite random. As it turns out, picture (c), like
(a) and (b), can actually be generated by a quite simple process. But the point is that the simplicity of
this process does not affect the fact that with our standard methods of perception and analysis
picture (c) is for practical purposes random.
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starting with a single black cell and then applying a simple

two-dimensional cellular automaton rule 250 times.

But does the existence of this short description mean that

picture (c) should not be considered random? From a practical point of

view the fact that a short description may exist is presumably not too

relevant if we can never find this description by any of the methods of

perception and analysis that are available to us. But from a conceptual

point of view it may seem unsatisfactory to have a definition of

randomness that depends on our methods of perception and analysis,

and is not somehow absolute.

So one possibility is to define randomness so that something is

considered random only if no short description whatsoever exists of it.

And before the discoveries in this book such a definition might have

seemed not far from our everyday notion of randomness. For we would

probably have assumed that anything generated from a sufficiently

short description would necessarily look fairly simple. But what we

have discovered in this book is that this is absolutely not the case, and

that in fact even from rules with very short descriptions it is easy to

generate behavior in which our standard methods of perception and

analysis recognize no significant regularities.

So to say that something is random only if no short description

whatsoever exists of it turns out to be a highly restrictive definition of

randomness. And in fact, as I mentioned in Chapter 7, it essentially

implies that no process based on definite rules can ever manage to

generate randomness when there is no randomness before. For since the

rules themselves have a short description, anything generated by

following them will also have a correspondingly short description, and

will therefore not be considered random according to this definition.

And even if one is not concerned about where randomness might

come from, there is still a further problem: it turns out in general to be

impossible to determine in any finite way whether any particular thing

can ever be generated from a short description. One might imagine that

one could always just try running all programs with progressively

longer descriptions, and see whether any of them ever generate what

one wants. But the problem is that one can never in general tell in
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advance how many steps of evolution one will need to look at in order

to be sure that any particular piece of behavior will not occur. And as a

result, no finite process can in general be used to guarantee that there is

no short description that exists of a particular thing.

By setting up various restrictions, say on the number of steps of

evolution that will be allowed, it is possible to obtain slightly more

tractable definitions of randomness. But even in such cases the amount

of computational work required to determine whether something

should be considered random is typically astronomically large. And

more important, while such definitions may perhaps be of some

conceptual interest, they correspond very poorly with our intuitive

notion of randomness. In fact, if one followed such a definition most of

the pictures in this book that I have said look random—including for

example picture (c) on page 553—would be considered not random. And

following the discussion of Chapter 7, so would at least many of the

phenomena in nature that we normally think of as random.

Indeed, what I suspect is that ultimately no useful definition of

randomness can be based solely on the issue of what short descriptions

of something may in principle exist. Rather, any useful definition must,

I believe, make at least some reference to how such short descriptions

are supposed to be found.

Over the years, a variety of definitions of randomness have been

proposed that are based on the absence of certain specific regularities.

Often these definitions are presented as somehow being fundamental.

But in fact they typically correspond just to seeing whether some

particular process—and usually a rather simple one—succeeds in

recognizing regularities and thus in generating a shorter description.

A common example—to be discussed further two sections from

now—involves taking, say, a sequence of black and white cells, and

then counting the frequency with which each color and each block of

colors occurs. Any deviation from equality among these frequencies

represents a regularity in the sequence and reveals nonrandomness. But

despite some confusion in the past it is certainly not true that just

checking equality of frequencies of blocks of colors—even arbitrarily

long ones—is sufficient to ensure that no regularities at all exist. This
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procedure can indeed be used to check that no purely repetitive pattern

exists, but as we will see later in this chapter, it does not successfully

detect the presence of even certain highly regular nested patterns.

So how then can we develop a useful yet precise definition of

randomness? What we need is essentially just a precise version of the

statement at the beginning of this section: that something should be

considered random if none of our standard methods of perception and

analysis succeed in detecting any regularities in it. But how can we ever

expect to find any kind of precise general characterization of what all

our various standard methods of perception and analysis do?

The key point that will emerge in this chapter is that in the end

essentially all these methods can be viewed as being based on rather

simple programs. So this suggests a definition that can be given of

randomness: something should be considered to be random whenever

there is essentially no simple program that can succeed in detecting

regularities in it.

Usually if what one is studying was itself created by a simple

program then there will be a few closely related programs that always

succeed in detecting regularities. But if something can reasonably be

considered random, then the point is that the vast majority of simple

programs should not be able to detect any regularities in it.

So does one really need to try essentially all sufficiently simple

programs in order to determine this? In my experience, the answer tends

to be no. For once a few simple programs corresponding to a few standard

methods of perception and analysis have failed to detect regularities, it is

extremely rare for any other simple program to succeed in detecting them.

So this means that the everyday definition of randomness that we

discussed at the very beginning of this section is in the end already

quite unambiguous. For it typically will not matter much which of the

standard methods of perception and analysis we use: after trying a few

of them we will almost always be in a position to come to a quite

definite conclusion about whether or not something should be

considered random. 
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Defining Complexity

Much of what I have done in this book has been concerned in one way

or another with phenomena associated with complexity. But just as one

does not need a formal definition of life in order to study biology, so also

it has not turned out to be necessary so far in this book to have a formal

definition of complexity. Nevertheless, following our discussion of

randomness in the previous section, we are now in a position to

consider how the notion of complexity might be formally defined.

In everyday language, when we say that something seems

complex what we typically mean is that we have not managed to find

any simple description of it—or at least of those features of it in which

we happen to be interested. But the goal of perception and analysis is

precisely to find such descriptions, so when we say that something

seems complex, what we are effectively saying is that our powers of

perception and analysis have failed on it.

As we discussed two sections ago, there are two ways in which

perception and analysis can typically operate. First, they can just

throw away details in which we are not interested. And second, they

can remove redundancy that is associated with any regularities that

they manage to recognize.

The definition of randomness that we discussed in the previous

section was based on the failure of the second of these two functions.

For what it said was that something should be considered random if our

standard methods of perception and analysis could not find any short

description from which the thing could faithfully be reproduced.

But in defining complexity we need to consider both functions of

perception and analysis. For what we want to know is not whether a

simple or short description can be found of every detail of something,

but merely whether such a description can be found of those features in

which we happen to be interested.

In everyday language, the terms “complexity” and “randomness”

are sometimes used almost interchangeably. And for example any of the

three pictures at the top of the next page could potentially be referred to

as either “quite random” or “quite complex”. But if one chooses to look
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only at overall features, then typically one would tend to say that the

third picture seems more complex than the other two. 

For even though the detailed placement of black and white cells

in the first two pictures does not seem simple to describe, at an overall

level these pictures still admit a quite simple description: in essence

they just involve a kind of uniform randomness in which every region

looks more or less the same as every other. But the third picture shows

no such uniformity, even at an overall level. And as a result, we cannot

give a short description of it even if we ignore its small-scale details.

Of course, if one goes to an extreme and looks, say, only at how

big each picture is, then all three pictures have very short descriptions.

And in general how short a description of something one can find will

depend on what features of it one wants to capture—which is why one

may end up ascribing a different complexity to something when one

looks at it for different purposes.

But if one uses a particular method of perception or analysis, then

one can always see how short a description this manages to produce. And

the shorter the description is, the lower one considers the complexity to be.

But to what extent is it possible to define a notion of complexity

that is independent of the details of specific methods of perception and

analysis? In this chapter I argue that essentially all common forms of

perception and analysis correspond to rather simple programs. And if

one is interested in descriptions in which no information is lost—as in

the discussion of randomness in the previous section—then as I

(a) (b) (c)

Examples of pictures that at an everyday level one might typically describe either as being “quite random” or as being “quite complex”.
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mentioned in the previous section, it seems in practice that different

simple programs usually agree quite well in their ability or inability to

find short descriptions.

But this seems to be considerably less true when one is dealing

with descriptions in which information can be lost. For it is rather

common to see cases in which only a few features of a system may be

difficult to describe—and depending on whether or not a given program

happens to be sensitive to these features it can ascribe either a quite

high or a quite low complexity to the system.

Nevertheless, as a practical matter, by far the most common way

in which we determine levels of complexity is by using our eyes and

our powers of visual perception. So in practice what we most often

mean when we say that something seems complex is that the particular

processes that are involved in human visual perception have failed to

extract a short description. 

And indeed I suspect that even below the level of conscious

thought our brains already have a rather definite notion of complexity.

For when we are presented with a complex image, our eyes tend to

dwell on it, presumably in an effort to give our brains a chance to

extract a simple description. 

If we can find no simple features whatsoever—as in the case of

perfect randomness—then we tend to lose interest. But somehow the

images that draw us in the most—and typically that we find the most

aesthetically pleasing—are those for which some features are simple for

us to describe, but others have no short description that can be found by

any of our standard processes of visual perception.

Before the discoveries in this book, one might have thought that

to create anything with a significant level of apparent complexity would

necessarily require a procedure which itself had significant complexity.

But what we have discovered in this book is that in fact there are

remarkably simple programs that produce behavior of great complexity.

And what this means—as the images in this book repeatedly

demonstrate—is that in the end it is rather easy to make pictures for

which our visual system can find no simple overall description. 
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Data Compression

One usually thinks of perception and analysis as being done mainly in

order to provide material for direct human consumption. But in most

modern computer and communications systems there are processes

equivalent to perception and analysis that happen all the time when

data is compressed for more efficient storage or transmission. 

One simple example of such a process is run-length encoding—a

method widely used in practice to compress data that involves long

sequences of identical elements, such as bitmap images of pages of text

with large areas of white.

The basic idea of run-length encoding is to break data into runs of

identical elements, and then to specify the data just by giving the

lengths of these runs. This means, for example, that instead of having to

list explicitly all the cells in a run of, say, 53 identical cells, one instead

just gives the number “53”. And the point is that even if the “53” is

itself represented in terms of black and white cells, this representation

can be much shorter than 53 cells.

(a) (b) (c) (d) (e)

Various representations of numbers from 1 to 30. (a) is unary, in which any given number is represented by a sequence of cells
whose length is equal to that number. (b) is ordinary binary or base 2 representation. (c), (d) and (e) are set up to be
self-delimiting, so that the end of a number can be recognized purely by looking at the cells within it. (c) is like (b), except that it
has a specification of the number of digits at the front. (d) is essentially binary-coded-ternary, with the end of the number
indicated by a pair of black cells. (e) uses a non-integer base derived from the Fibonacci sequence, with the property that a pair
of black cells can appear only at the end of each number. 
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Indeed, any digit sequence can be thought of as providing a short

representation for a number. But for run-length encoding it turns out

that ordinary base 2 digit sequences do not quite work. For if the

numbers corresponding to the lengths of successive runs are given one

after another then there is no way to tell where the digits of one number

end and the next begin. 

Several approaches can be used, however, to avoid this problem.

One, illustrated in picture (c) at the bottom of the facing page, is to

insert at the beginning of each number a specification of how many

digits the number contains. Another approach, illustrated in picture (d),

is in effect to have two cells representing each digit, and then to

indicate the end of the number by a pair of black cells. A variant on this

approach, illustrated in picture (e), uses a non-integer base in which

pairs of black cells can occur only at the end of a number.

2 3 3 3 3 3 3 3 3 3 3 3 3 3

2 4 3 4 3 4 3 4 3 4 3 4

4 6 7 9 8 7

11 11 10 9

(d)

(c)

(b)

(a)

Examples of run-length encoding. In each case the input data is shown on top, and the output is shown below. The
arrows between input and output show how the data is broken into runs of identical elements. Each run is then
specified by a number, represented as a sequence ending with two black cells, as indicated in the inset picture, and in
picture (e) on the facing page. For the first two sets of input data there are enough long runs present that
compression is achieved. But for the other two sets no compression is achieved. Note that the first cell in the output
is used to specify whether the first run is black or white. In this picture and those that follow, the output consists
purely of black and white cells; the gray annotations are included purely as aids to interpretation.
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For small numbers, all these approaches yield representations

that are at least somewhat longer than the explicit sequences shown in

picture (a). But for larger numbers, the representations quickly become

much shorter. And this means that they can potentially be used to

achieve compression in run-length encoding.

The pictures at the bottom of the previous page show what

happens when one applies run-length encoding using representation (e)

from page 560 to various sequences of data. In the first two cases, there

are sufficiently many long runs that compression is achieved. But in the

last two cases, there are too many short runs, and the output from

run-length encoding is actually longer than the input.

The pictures below show the results of applying run-length

encoding to typical patterns produced by cellular automata. When the

patterns contain enough regions of uniform color, compression is

achieved. But when the patterns are more intricate—even in a simple

repetitive way—little or no compression is achieved.

Examples of applying run-length encoding to patterns produced by cellular automata. Successive rows in each original image are
placed end to end so as to give a one-dimensional sequence, then run-length encoded, and then chopped into rows again.
Compression is typically achieved whenever most of the image consists of regions of uniform color.
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Run-length encoding is based on the idea of breaking data up into

runs of identical elements of varying lengths. Another common approach

to data compression is based on forming blocks of fixed length, and then

representing whatever distinct blocks occur by specific codewords.

The pictures below show a few examples of how this works. In

each case the input is taken to be broken into blocks of length 3. In the

first two cases, there are then only two distinct blocks that occur, so

each of these can be represented by a codeword consisting of a single

cell, with the result that substantial compression is achieved.

1 4 2 6 5 3 1 3 1 3 1 1 1 2 2 6 5 1 4 1

2 4 3 1 4 2 3 1 1 2 1 1 1 1 3 1 1 1

1 3 2 1 1 1 1 2 2 2 3 1 1 1 2 2 2

2 1 2 1 1 2 2 1 2 1 2 1 1 1 2 2

2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

(e)

(d)

(c)

(b)

(a)

(e)

(d)

(c)

(b)

(a)

Examples of Huffman coding based on blocks of length 3. In cases (a) and (b), only two possible blocks occur, and
these are assigned codewords consisting of a single black cell and a single white cell. In case (c), 3 possible blocks
occur; the most common is assigned a codeword consisting of a single white cell, while the others are assigned
codewords consisting of two cells. In case (d) 4 out of the 8 possible blocks occur, while in case (e) 6 occur. In all
cases, the output begins with a preamble specifying which block is to be represented by which codeword. The blocks
appear explicitly in this preamble, and are indicated by numbered tabs. The codewords are represented implicitly by
the arrangement of cells shown with arrows. The preamble is followed by the actual codewords representing the
data. The codewords are self-delimiting, so that they can be given one after another, with no separator in between.
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When a larger number of distinct blocks occur, longer codewords

must inevitably be used. But compression can still be achieved if the

codewords for common blocks are sufficiently much shorter than the

blocks themselves.

One simple strategy for assigning codewords is to number all

distinct blocks in order of decreasing frequency, and then just to use the

resulting numbers—given, say, in one of the representations discussed

above—as the codewords. But if one takes into account the actual

frequencies of different blocks, as well as their ranking, then it turns

out that there are better ways to assign codewords.

The pictures below show examples based on a method known as

Huffman coding. In each case the first part of the output specifies which

blocks are to be represented by which codewords, and then the

remainder of the output gives the actual succession of codewords that

correspond to the blocks appearing in the data. And as the pictures

below illustrate, whenever there are fairly few distinct blocks that

occur with high frequency, substantial compression is achieved. 

Huffman encoding with blocks of length 6 applied to patterns produced by cellular automata. The maximum possible compression
is by a factor of 6; the maximum achieved here is roughly a factor of 3. The difference between the size of the results for the last
two examples is mostly a consequence of the presence of large areas of white in the first of them.
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But ultimately there is a limit to the degree of compression that

can be obtained with this method. For even in the very best case any

block of cells in the input can never be compressed to less than one cell

in the output.

So how can one achieve greater compression? One approach—

which turns out to be similar to what is used in practice in most current

high-performance general-purpose compression systems—is to set up an

encoding in which any particular sequence of elements above some

length is given explicitly only once, and all subsequent occurrences of

the same sequence are specified by pointers back to the first one.

The pictures below show what happens when this approach is

applied to a few short sequences. In each case, the output consists of two

kinds of objects, one giving sequences that are occurring for the first time,

and the other giving pointers to sequences that have occurred before. Both

kinds of objects start with a single cell that specifies their type. This is

6 11 �6 8 �11 17

1 11 �1 1 10 �1 19 �21

6 54 �6

6 30 �6

(d)

(c)

(b)

(a)

Examples of pointer-based encoding, in which sequences that have occurred once in the data are subsequently
specified just by pointers. Each section of output starts with an element which indicates whether what follows is a
new sequence, or a pointer to a previous one. After this comes a specification of the length of sequence represented
by this section of output, with the number given in the form used for run-length encoding above. Then comes either a
literal sequence, or a number giving the offset to where the required sequence last occurred in the data. In the
examples shown, pointers are used only for sequences of length at least 6. Pointer-based encoding is similar to the
Lempel-Ziv algorithm widely used in practical high-performance general-purpose compression systems. 
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followed by a specification of the length of the sequence that the object

describes. In the first kind of object, the actual sequence is then given,

while in the second kind of object what is given is a specification of how

far back in the data the required sequence can be found.

With data that is purely repetitive this method achieves quite

dramatic compression. For having once specified the basic sequence to

be repeated, all that then needs to be given is a pointer to this sequence,

together with a representation of the total length of the data.

Purely nested data can also be compressed nearly as much. For as

the pictures below illustrate, each whole level of nesting can be viewed

just as adding a fixed number of repeated sequences.

Examples of the pattern of repeats found in purely nested data. As indicated in these pictures, any
such data must correspond to the output of a neighbor-independent substitution system (see page
83). In pointer-based encoding, the number of pointers required to represent the data increases
essentially like the number of steps in the evolution of the substitution system. Taking into account
the length of the representation for each pointer, the compressed form of a nested sequence of
length  will typically grow in length like . (This can be compared with  growth for a
purely repetitive sequence.) Note that actual algorithms for pointer-based encoding will typically find
a slightly less regular pattern of repeats than is shown in the pictures here.

n Log[n]2 Log[n]
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So what about two-dimensional patterns? The pictures below

show what happens if one takes various patterns, arranges their rows

one after another in a long line, and then applies pointer-based encoding

to the resulting sequences. When there are obvious regularities in the

original pattern, some compression is normally achieved—but in most

cases the amount is not spectacular.

So how can one do better? The basic answer is that one needs to

take account of the two-dimensional nature of the patterns. Most

compression schemes used in practice have in the past primarily been

set up just to handle one-dimensional sequences. But it is not difficult

to set up schemes that operate directly on two-dimensional data.

The picture on the next page shows one approach based on the

idea of breaking images up into collections of nested pieces, each with a

uniform color. In some respects this scheme is a two-dimensional

analog of run-length encoding, and when there are large regions of

uniform color it yields significant compression. 

It is also easy to extend block-based encoding to two dimensions:

all one need do is to assign codewords to two-dimensional rather than

Examples of one-dimensional pointer-based encoding applied to patterns produced by cellular automata. Successive rows in each image
are placed end to end so as to get a sequence to which the encoding can be applied. Pointers are used only for repeats that are of length
at least 4. In the last example, large regions contain no such repeats, and therefore appear in the output just as they do in the input.
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one-dimensional blocks. And as the pictures at the top of the facing

page demonstrate, this procedure can lead to substantial compression.

Particularly notable is what happens in case (d). For even though this

pattern is produced by a simple one-dimensional cellular automaton

rule, and even though one can see by eye that it contains at least some

small-scale regularities, none of the schemes we have discussed up till

now have succeeded in compressing it at all. 

(c) (d)

(a) (b)

(c)

(a)

(d)

(b)

Examples of encoding by two-dimensional recursive subdivision. The idea is to use a generalization of a two-dimensional
substitution system, in which at each step a square either remains the same or is subdivided into four small squares. The
encoding specifies which choice is made at each step for each square. The method is analogous to the quadtree
representation sometimes used in computer graphics. The substantial compression seen even in case (c) is a
consequence of the large areas of uniform white that are present.
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The picture below demonstrates why two-dimensional block

encoding does, however, manage to compress it. The point is that the

two-dimensional blocks that one forms always contain cells whose

colors are connected by the cellular automaton rule—and this greatly

reduces the number of different arrangements of colors that can occur.

In cases (e) and (f), however, there is no simple rule for going from

one row to the next, and two-dimensional block encoding—like all the

other encoding schemes we have discussed so far—does not yield any

substantial compression.

Like block encoding, pointer-based encoding can also be extended

to two dimensions. The basic idea is just to scan two-dimensional data

looking for repeats not of one-dimensional sequences, but instead of

two-dimensional regions. And although such a procedure does not in the

Cellular automaton rule 30, and the 3 ä 2 blocks which appear in large
patterns generated by it. There are a total of  possible 3 ä 2 blocks
of black and white cells; the fact that only 24 of them appear in patterns
generated by rule 30 is what makes it possible for two-dimensional
block-based encoding to compress such patterns.

26 = 64

(e)

(c)

(a)

(f )

(d)

(b)

Examples of two-dimensional block-based encoding. Each image is broken into 3 ä 2 blocks, and codewords are then
assigned to these blocks using the Huffman scheme. Note the presence of compression even in case (d). This is a
consequence of the fact that the cellular automaton rule allows only certain blocks to appear in the pattern, as illustrated
in the picture below. (e) is generated by a two-dimensional cellular automaton; (f) is the sequence that appears on the
center column of rule 30.
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past appear to have been used in practice, it is quite straightforward to

implement. The pictures on the facing page show some examples of the

results one gets. And in many cases it turns out that the overall level of

compression obtained is considerably greater than with any of the other

schemes discussed in this section. But what is perhaps still more

striking is that the patterns of repeated regions seem to capture almost

every regularity that we readily notice by eye—as well as some that we

do not. In pictures (c) and (d), for example, fairly subtle repetition on the

left-hand side is captured, as is fourfold symmetry in picture (e).

One might have thought that to capture all these kinds of

regularities would require a whole collection of complicated

procedures. But what the pictures on the facing page demonstrate is

that in fact just a single rather straightforward procedure is quite

sufficient. And indeed the amount of compression achieved by this

procedure in different cases seems to agree rather well with our

intuitive impression of how much regularity is present.

All of the methods of data compression that we have discussed in

this section can be thought of as corresponding to fairly simple

programs. But each method involves a program with a rather different

structure, and so one might think that it would inevitably be sensitive

to rather different kinds of regularities.

But what we have seen in this section is that in fact different

methods of data compression have remarkably similar characteristics.

Essentially every method, for example, will successfully compress large

regions of uniform color. And most methods manage to compress

behavior that is repetitive, and at least to some extent behavior that is

nested—exactly the two kinds of simple behavior that we have noted

many times in this book. 

For more complicated behavior, however, none of the methods

seem capable of substantial compression. It is not that no compression

is ever in principle possible. Indeed, as it happens, every single one of

the pictures on the facing page can for example be generated from very

short cellular automaton programs.

But the point is that except when the overall behavior shows

repetition or nesting none of the standard methods of data compression
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(e) ( f )

(c) (d)

(a) (b)

(e)

(c)

(a)

(f )

(d)

(b)

Examples of two-dimensional pointer-based encoding. The gray rectangles in the upper pictures indicate repeated regions
that are encoded using pointers. In the particular scheme used here, each of these regions is required to contain at least
25 cells that have not already been encoded using pointers. The images are scanned sequentially and at every point the
maximal rectangle extending to the right and down is found that is a repeat of a rectangle previously encountered, and
contains the largest number of cells not already encoded using pointers. In many cases this maximal rectangle overlaps
those found at subsequent points. 
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as we have discussed them in this section come even close to finding

such short descriptions. And as a result, at least with respect to any of

these methods all we can reasonably say is that the behavior we see

seems for practical purposes random.

Irreversible Data Compression

All the methods of data compression that we discussed in the previous

section are set up to be reversible, in the sense that from the encoded

version of any piece of data it is always possible to recover every detail of

the original. And if one is dealing with data that corresponds to text or

programs such reversibility is typically essential. But with images or sounds

it is typically no longer so necessary: for in such cases all that in the end

usually matters is that one be able to recover something that looks or

sounds right. And by being able to drop details that have little or no

perceptible effect one can often achieve much higher levels of compression.

In the case of images a simple approach is just to ignore features

that are smaller than some minimum size. The pictures below show

The effect of including progressively smaller features in the representation of images
by nested squares. The encoded version of each image is shown underneath the
image. When smaller squares are included, the amount of data required to specify
the image increases rapidly. 
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(a) (b)

basic forms ranked basic forms

Examples of how images can be built up by adding together basic forms consisting of so-called two-dimensional Walsh
functions. On the top left the basic forms are given in so-called sequency order. On the top right they are reordered roughly so as
to go systematically from coarser to finer. In the bottom arrays of pictures each successive picture is obtained by adding in the
corresponding basic form with an appropriate weight. The basic forms shown here have the property of being orthogonal, so that
the weight for each form can be deduced simply by multiplying the original image by that form. Note that the forms involve
numerical values -1 and +1, corresponding to cells colored white and black. The images shown here are all rescaled so that
smallest values are white and largest black. The JPEG method of image compression uses an approach similar to the one shown
here, though with basic forms that have continuous levels of gray, rather than just black and white. 
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what happens if one divides an image into a collection of nested

squares, but imposes a lower limit on the size of these squares. And

what one sees is that as the lower limit is increased, the amount of

compression increases rapidly—though at the cost of a correspondingly

rapid decrease in the quality of the image.

So can one do better at maintaining the quality of the image? Various

schemes are used in practice, and almost all of them are based on the idea

from traditional mathematics that by viewing data in terms of numbers it

becomes possible to decompose the data into sums of fixed basic forms—

some of which can be dropped in order to achieve compression.

The pictures on the previous page show an example of how this

works. On the top left is a set of basic forms which have the property that

any two-dimensional image can be built up simply by adding together

these forms with appropriate weights. On the top right these forms are

then ranked roughly from coarsest to finest. And given this ranking, the

arrays of pictures at the bottom show how two different images can be

built up by progressively adding in more and more of the basic forms.

If all the basic forms are included, then the original image is

faithfully reproduced. But if one drops some of the later forms—thereby

reducing the number of weights that have to be specified—one gets only

an approximation to the image. The facing page shows what happens to

a variety of images when different fractions of the forms are kept.

Images that are sufficiently simple can already be recognized

even when only a very small fraction of the forms are included—

corresponding to a very high level of compression. But most other

images typically require more forms to be included—and thus do not

allow such high levels of compression.

Indeed the situation is very much what one would expect from

the definition of complexity that I gave two sections ago. The relevant

features of both simple and completely random images can readily be

recognized even at quite high levels of compression. But images that

one would normally consider complex tend to have features that cannot

be recognized except at significantly lower levels of compression.

All the pictures on the facing page, however, were generated from

the specific ordering of basic forms shown on the previous page. And
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one might wonder whether perhaps some other ordering would make it

easier to compress more complex images.

One simple approach is just to assemble a large collection of images

typical of the ones that one wants to compress, and then to order the basic

forms so that those which on average occur with larger weights in this

collection appear first. The pictures on the next page show what happens

if one does this first with images of cellular automata and then with

images of letters. And indeed slightly higher levels of compression are

achieved. But whatever ordering is used the fact seems to remain that

images that we would normally consider complex still cannot

systematically be compressed more than a small amount.

1/512 1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2 1

Examples of images obtained by keeping only certain fractions of the complete set of basic forms. In the case of both
simple and completely random images, many features are recognizable even with fairly few basic forms—implying
that a highly compressed representation can be given.
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1/128 1/64 1/32 1/16 1/8 1/4 1/2 1

1/128 1/64 1/32 1/16 1/8 1/4 1/2 1

Results obtained by deducing optimal orderings of basic forms from collections of images of cellular automata
(top) and letters (bottom). The orderings of basic forms are shown on the left, in each case starting with those
whose weights are largest in absolute value when averaged over the collection of images. Note that the
orderings are shown for 8 ä 8 basic forms, while the actual images are 32 ä 32. The orderings are deduced
respectively from images of the 256 elementary cellular automata, and the 52 upper and lower case letters. 
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Visual Perception

In modern times it has usually come to be considered quite unscientific

to base very much just on how things look to our eyes. But the fact

remains that despite all the various methods of mathematical and other

analysis that have been developed, our visual system still represents

one of the most powerful and reliable tools we have. And certainly in

writing this book I have relied heavily on our ability to make all sorts of

deductions on the basis of looking at visual representations.

So how does the human visual system actually work? And what

are its limitations? There are many details yet to be resolved, but over

the past couple of decades, it has begun to become fairly clear how at

least the lowest levels of the system work. And it turns out—just as in

so many other cases that we have seen in this book—that much of what

goes on can be thought of in terms of remarkably simple programs.

In fact, across essentially every kind of human perception, the

basic scheme that seems to be used over and over again is to have

particular kinds of cells set up to respond to specific fixed features in

the data, and then to ignore all other features.

Color perception provides a classic example. On the retina of our

eye are three kinds of color-sensitive cells, with each kind responding

essentially to the level of either red, green or blue. Light from an object

typically involves a whole spectrum of wavelengths. But the fact that

we have only three kinds of color-sensitive cells means that our eyes

essentially sample only three features of this spectrum. And this is why,

for example, we have the impression that mixtures of just three fixed

colors can successfully reproduce all other colors.

So what about patterns and textures? Does our visual system

also work by picking out specific features of these? Everyday

experience suggests that indeed it does. For if we look, say, at the

picture on the next page we do not immediately notice every detail.

And instead what our visual system seems to do is just to pick out

certain features which quickly make us see the picture as a collection

of patches with definite textures. 
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So how does this work? The basic answer seems to be that there

are nerve cells in our eyes and brains which are set up to respond to

particular local patterns in the image formed on the retina of our eye.

The way this comes about appears to be surprisingly direct.

Behind the 100 million or so light-sensitive cells on our retina are a

sequence of layers of nerve cells, first in the eye and then in the brain.

The connections between these cells are set up so that a given cell in

the visual cortex will typically receive inputs only from cells in a fairly

small area on our retina. Some of these inputs will be positive if the

Patches generated by a variety of one-dimensional cellular automaton rules. Each patch is set up to have a roughly equal number of black and
white squares. But despite this, our visual system quickly notices that different patches have different textures. And presumably this is because
the visual system is automatically identifying particular features in each patch. Everyone appears immediately to be able to see some patches
when shown this picture. But after looking at the picture for a while, the boundaries between the patches seem to get somewhat clearer.
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image in a certain part of the area is, say, colored white, while others

will be positive if it is colored black. And the cell in the visual cortex

will then respond only if enough of its inputs are positive,

corresponding to a specific pattern being present in the image.

In practice many details of this setup are quite complicated. But

as a simple idealization, one can consider an array of squares on the

retina, each colored either black or white. And one can then assume

that in the visual cortex there is a corresponding array of cells, with

each cell receiving input from, say, a 2 ä 2 block of squares, and

following the rule that it responds whenever the colors of these squares

form some particular pattern.

The pictures below show a simple example. In each case the first

picture shows the image on the retina, while the second picture shows

which cells respond to it. And with the specific choice of rule used here,

what effectively happens is that the vertical black edges in the original

image get picked out. 

Neurophysiological experiments suggest that cells in the visual

cortex respond to a variety of specific kinds of patterns. And as a simple

idealization, the pictures on the next page show what happens with cells

that respond to each of the 16 possible 2 ä 2 arrangements of black and

white squares. In each case, one can think of the results as corresponding

to picking out some specific local feature in the original image.

Responses to two sample images of cells sensitive to the 2 ä 2 template shown on the left. The cells that respond are indicated
by darker squares in the second picture in each pair. Such responses occur whenever the 2 ä 2 template on the left appears,

corresponding to the presence of a vertical black edge. The extraction of features by this kind of simple template matching appears to
be a key element in human visual perception—as well as being common in technological image processing. The sample images used
here are ones generated by the evolution of elementary one-dimensional cellular automata with rules 60 and 124 respectively. 
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So is this very simple kind of process really what underlies our

seemingly sophisticated perception of patterns and textures? I strongly

suspect that to a large extent it is. An important detail, however, is that

there are cells in the visual cortex which in effect receive input from

larger regions on the retina. But as a simple idealization one can assume

that such cells in the end just respond to repeated versions of the basic

2 ä 2 patterns.

So with this setup, the pictures on the facing page show what

happens with an image like the one from page 578. The results are

somewhat remarkable. For even though the average density of black

and white squares is exactly the same across the whole image, what we

see is that in different patches the features that end up being picked out

have different densities. And it is this, I suspect, that makes us see

different patches as having different textures. 

For much as we distinguish colors by their densities of red, green

and blue, so also it seems likely that we distinguish textures by their

Responses to the sample images from the previous page by types of cells sensitive to each of the local arrangements
of black and white squares shown. In each case, one can think of the resulting patterns as being filtered versions of the
original images in which only parts that exhibit particular features are kept. The patterns can also be viewed as outputs
from a single step in the evolution of two-dimensional block cellular automata in which the rules specify that a block
becomes dark if it has the arrangement of cells shown, and becomes light otherwise. The comparative sparsity of dark
blocks is a consequence of the fact that at any given position a dark block can occur in only one of the 16 cases shown.
The absence of any dark blocks in many of the cases shown can be viewed as a reflection of constraints introduced by
the construction of the images from one-dimensional cellular automaton rules.
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Responses to a smaller version of the image from page 578 by cells sensitive to all 16 possible 2 ä 2 blocks, as well
as their repetitive 3 ä 3 extensions. Patches which appear to have different textures in the original image are seen
to contain characteristically different densities of these various blocks. I strongly suspect that it is density
differences such as these that allow our visual system to distinguish textures.
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densities of certain local features. And the reason that this happens so

quickly when we look at an image is no doubt that the procedure for

picking out such features is a very simple one that can readily be carried

out in parallel by large numbers of separate cells in our eyes and brains.

For patterns and textures, however, unlike for colors, we can

always get beyond the immediate impression that our visual system

provides. And so for example, by making a conscious effort, we can scan

an image with our eyes, scrutinizing different parts in turn and

comparing whatever details we want. 

But what kinds of things can we expect to tell in this way? As the

pictures below suggest, it is usually quite easy to see if an image is purely

repetitive—even in cases where the block that repeats is fairly large.

But with nesting the story is quite different. All eight pictures on

the facing page were generated from the two-dimensional substitution

systems shown, and thus correspond to purely nested patterns. But

except for the last picture on each row—which happen to be dominated

by large areas of essentially uniform color—it is remarkably difficult for

us to tell that the patterns are nested. And this can be viewed as a clear

example of a limitation in our powers of visual perception.

As we found two sections ago, many standard methods of data

compression have the same limitation. But at the end of that section I

showed that the fairly simple procedure of two-dimensional pointer

Examples of all the distinct repetitive patterns that can be formed from arrays of 2 ä 2 and 3 ä 3 blocks. In every single case the
presence of pure repetition is easy to recognize by eye. Note that in a pattern generated by repeating one particular block, there
will normally be other blocks that occur with other alignments. Page 215 shows patterns obtained in systems based on
constraints in which one effectively requires that only certain blocks or sets of blocks occur.
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encoding will succeed in recognizing nesting. So it is not that nesting is

somehow fundamentally difficult to recognize; it is just that the

particular processes that happen to occur in human visual perception do

not in general manage to do it.

So what about randomness? The pictures on the next page show a

few examples of images with various degrees of randomness. And just

by looking at these images it is remarkably difficult to tell which of

them is in fact the most random.

The basic problem is that our visual system makes us notice local

features—such as clumps of black squares—even if their density is

consistent with what it should be in a completely random array. And as

a result, much as with constellations of stars, we tend to identify what

seem to be regularities even in completely random patterns.

In principle it could be that there would be images in which our

visual system would notice essentially no local features. And indeed in

Examples of nested patterns created by following the two-dimensional substitution rules shown. Except for the last examples on
each row, it is remarkably difficult to recognize the nested structure in these patterns by eye, even with quite careful scrutiny. The
two-dimensional pointer-based encoding scheme from page 571 does however manage to recognize the structure in all cases. 
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the last two images on each row above all clumps of squares of the same

color, and then all lines of squares of the same color, have explicitly

been removed. At first glance, these images do in some respects look

more random. But insofar as our visual system contains elements that

respond to each of the possible local arrangements of squares, it is

inevitable that we will identify features of some kind or another in

absolutely any image. 

In practice there are presumably some types of local patterns to

which our visual system responds more strongly than others. And

knowing such a hierarchy, one should be able to produce images that in

a sense seem as random as possible to us. But inevitably such images

would reflect much more the details of our process of visual perception

than they would anything about actual underlying randomness.

Examples of images that approximate perfect randomness. The second image on each row has
squares chosen independently to be black with probabilities 0.4, 0.5 and 0.6 respectively. In the other
images various features are added or removed. In the first image on each row, if any square is
surrounded by four squares with identical colors, then the square is forced to have the same color. In
the third image, any clump of squares with the same color is broken up by reversing the color of the
center square. And in the fourth image, the same is done with lines of squares of the same color.
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Auditory Perception

In the course of this book I have made extensive use of pictures. So why

not also sounds? One issue—beyond the obvious fact that sounds

cannot be included directly in a printed book—is that while one can

study the details of a picture at whatever pace one wants, a sound is in a

sense gone as soon as it has finished playing. 

But everyday experience makes it quite clear that one can still

learn a lot by listening to sounds. So what then are the features of

sounds that our auditory system manages to pick out?

At a fundamental level all sounds consist of patterns of rapid

vibrations. And the way that we hear sounds is by such vibrations

being transmitted to the array of hair cells in our inner ear. The

mechanics of the inner ear are set up so that each row of hair cells

ends up being particularly sensitive to vibrations at some specific

frequency. So what this means is that what we tend to perceive most

about sounds are the frequencies they contain.

Musical notes usually have just one basic frequency, while voiced

speech sounds have two or three. But what about sounds from systems

in nature, or from systems of the kinds we have studied in this book?

There are a number of ways in which one can imagine such

systems being used to generate sounds. One simple approach illustrated

on the right is to consider a sequence of elements produced by the

system, and then to take each element to correspond to a vibration for a

brief time—say a thousandth of a second—in one of two directions. 

So what are such sounds like? If the sequence of elements is

repetitive then what one hears is in essence a pure tone at a specific

frequency—much like a musical note. But if the sequence is random

then what one hears is just an amorphous hiss.

So what happens between these extremes? If the properties of a

sequence gradually change in a definite way over time then one can

often hear this in the corresponding sound. But what about sequences

that have more or less uniform properties? What kinds of regularities

does our auditory system manage to detect in these?

A sequence of discrete elements
and a possible corresponding
waveform for a sound.
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The answer, it seems, is surprisingly simple: we readily recognize

exact or approximate repetition at definite frequencies, and essentially

nothing else. So if we listen to nested sequences, for example, we have

no direct way to tell that they are nested, and indeed all we seem

sensitive to are some rather simple features of the spectrum of

frequencies that occur.

The pictures below show spectra obtained from nested sequences

produced by various simple one-dimensional substitution systems. The

diversity of these spectra is quite striking: some have simple nested

forms dominated by a few isolated peaks at specific frequencies, while

others have quite complex forms that cover large ranges of frequencies. 

( j) (k) ( l)

(g) (h) ( i)

(d ) (e) ( f)

(a) (b) (c)

Frequency spectra of nested sequences generated by one-dimensional neighbor-independent substitution systems. The rules
are the same as shown on pages 83 and 84. Note the presence of both isolated peaks and complicated background patterns. If
a sequence corresponds to a pure tone and repeats every  elements then its spectrum will consist of  equally spaced
peaks. Sequences whose spectra contain no dominant peaks typically sound like random noise, although sometimes explicit
time variation can be heard, and indeed sequence (c) just sounds like a succession of idealized frog ribbets. Intensity or power
spectra are obtained by squaring the quantities shown. 

n n/2
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And given only the underlying rule for a substitution system, it

turns out to be fairly difficult to tell even roughly what the spectrum will

be like. But given the spectrum, one can immediately tell how we will

perceive the sound. When the spectrum is dominated by just one large

peak, we hear a definite tone. And when there are two large peaks we also

typically hear definite tones. But as the number of peaks increases it

rapidly becomes impossible to keep track of them, and we end up just

hearing random noise—even in cases where the peaks happen to have

frequencies that are in the ratios of common musical chords.

So the result is that our ears are not sensitive to most of the elaborate

structure that we see in the spectra of many nested sequences. Indeed, it

seems that as soon as the spectrum covers any broad range of frequencies

all but very large peaks tend to be completely masked, just as in everyday

life a sound needs to be loud if it is to be heard over background noise.

So what about other kinds of regularities in sequences? If a

sequence is basically random but contains some short-range

correlations then these will lead to smooth variations in the spectrum.

And for example sequences that consist of random successions of

specific blocks can yield any of the types of spectra shown below—and

can sound variously like hisses, growls or gurgles.

To get a spectrum with a more elaborate structure requires

long-range correlations—as exist in nested sequences. But so far as I can

Frequency spectra for long sequences obtained by concatenating blocks in random orders. Such
spectra can be calculated by fairly standard methods from stochastic analysis. The first case shown
corresponds to white noise. The second-to-last case always has a black element at every third
position, so exhibits a peak at the corresponding repetition frequency.
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tell, the only kinds of correlations that are ultimately important to our

auditory system are those that lead to some form of repetition.

So in the end, any features of the behavior of a system that go

beyond pure repetition will tend to seem to our ears essentially random.

Statistical Analysis

When it comes to studying large volumes of data the method almost

exclusively used in present-day science is statistical analysis. So what

kinds of processes does such analysis involve? What is typically done in

practice is to compute from raw data various fairly simple quantities

whose values can then be used to assess models which could provide

summaries of the data.

Most kinds of statistical analysis are fundamentally based on the

assumption that such models must be probabilistic, in the sense that

they give only probabilities for behavior, and do not specifically say

what the behavior will be. In different situations the reasons for using

such probabilistic models have been somewhat different, but before the

discoveries in this book one of the key points was that it seemed

inconceivable that there could be deterministic models that would

reproduce the kinds of complexity and apparent randomness that were

so often seen in practice.

If one has a deterministic model then it is at least in principle

quite straightforward to find out whether the model is correct: for all

one has to do is to compare whatever specific behavior the model

predicts with behavior that one observes. But if one has a probabilistic

model then it is a much more difficult matter to assess its validity—and

indeed much of the technical development of the field of statistics, as

well as many of its well-publicized problems, can be traced to this issue.

As one simple example, consider a model in which all possible

sequences of black and white squares are supposed to occur with equal

probability. By effectively enumerating all such sequences, it is easy to

see that such a model predicts that in any particular sequence the

fraction of black squares is most likely to be .1�2
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But what if a sequence one actually observes has 9 black squares

out of 10? Even though this is not the most likely thing to see, one

certainly cannot conclude from seeing it that the model is wrong. For

the model does not say that such sequences are impossible—it merely

says that they should occur only about 1% of the time. 

And indeed there is no meaningful way without more

information to deduce any kind of absolute probability for the model to

be correct. So in practice what almost universally ends up being done is

to consider not just an individual model, but rather a whole class of

models, and then to try to identify which model from this class is the

best one—as measured, say, by the criterion that its likelihood of

generating the observed data is as large as possible.

For sequences of black and white squares a simple class of models

to consider are those in which each square is taken to be black with

some fixed independent probability . Given a set of raw data the

procedure for finding which model in this class is best—according, say,

to the criterion of maximum likelihood—is extremely straightforward:

all one does is to compute what fraction of squares in the data are black,

and this value then immediately gives the value of  for the best model.

So what about more complicated models? Instead of taking each

square to have a color that is chosen completely independently, one can for

example take blocks of squares of some given length to have their colors

chosen together. And in this case the best model is again straightforward to

find: it simply takes the probabilities for different blocks to be equal to the

frequencies with which these blocks occur in the data.

If one does not decide in advance how long the blocks are going to

be, however, then things can become more complicated. For in such a

case one can always just make up an extreme model in which only one

very long block is allowed, with this block being precisely the sequence

that is observed in the data.

Needless to say, such a model would for most purposes not be

considered particularly useful—and certainly it does not succeed in

providing any kind of short summary of the data. But to exclude models

like this in a systematic way requires going beyond criteria such as

p

p
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maximum likelihood, and somehow explicitly taking into account the

complexity of the model itself.

For specific types of models it is possible to come up with various

criteria based for example on the number of separate numerical

parameters that the models contain. But in general the problem of

working out what model is most appropriate for any given set of data is

an extremely difficult one. Indeed, as discussed at the beginning of

Chapter 8, it is in some sense the core issue in any kind of empirical

approach to science.

But traditional statistical analysis is usually far from having to

confront such issues. For typically it restricts itself to very specific

classes of models—and usually ones which even by the standards of this

book are extremely simple. For sequences of black and white squares,

for example, models that work as above by just assigning probabilities

to fixed blocks of squares are by far the most common. An alternative,

typically viewed as quite advanced, is to assign probabilities to

sequences by looking at the paths that correspond to these sequences in

networks of the kind shown below.

Networks (a) and (b) represent cases already discussed above.

Network (a) specifies that the colors of successive squares should be

chosen independently, while network (b) specifies that this should be

done for successive pairs of squares. Network (c), however, specifies

that different probabilities should be used depending on whether the

path has reached the left or the right node in the network. But at least

(a) (b) (c) (d)

Networks defining probabilistic models. Each connection in each network has a certain probability
associated with it, and the model takes sequences of black and white squares to be generated by
tracing paths through the networks according to these probabilities. Cases (a) and (b) are so-called
Markov models that in effect involve no memory and are equivalent to models discussed above.
Cases (c) and (d) correspond to so-called hidden Markov models, with some short-term memory. 



P R O C E S S E S  O F  P E R C E P T I O N  A N D A N A L Y S I S C H A P T E R  1 0

591

so long as the structure of the network is kept the same, it is fairly easy

even in this case to deduce from a given set of data what probabilities in

the network provide the best model for the data—for essentially all one

need do is to follow the path corresponding to the data, and see with

what frequency each connection from each node ends up being used. 

So what about two-dimensional data? From the discussion in

Chapter 5 it follows that no straightforward analogs of the types of

probabilistic models described above can be constructed in such a case.

But as an alternative it turns out that one can use probabilistic versions

of one-dimensional cellular automata, as in the pictures below.

Examples of probabilistic cellular automata, in which the rule specifies the probabilities for each color of cell to be generated given what
the colors of its two neighbors were on the previous step. Because the rule is probabilistic a different detailed pattern of evolution will in
general be obtained each time the cellular automaton is run—as in the top row of pictures above. Despite this, however, any particular
probabilistic cellular automaton will typically exhibit some characteristic overall pattern of behavior, as illustrated in the array of pictures
above. Note that it is fairly common for phase transitions to occur, in which continuous changes in underlying probabilities lead to discrete
changes in typical behavior. Probabilistic cellular automata can be viewed as generalizations of so-called directed percolation models.

run 1 run 2 run 3 run 4 run 5
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The rules for such cellular automata work by assigning to each

possible neighborhood of cells a certain probability to generate a cell of

each color. And for any particular form of neighborhood, it is once again

quite straightforward to find the best model for any given set of data.

For essentially all one need do is to work out with what frequency each

color of cell appears below each possible neighborhood in the data.

But how good are the results one then gets? If one looks at

quantities such as the overall density of black cells that were in effect

used in finding the model in the first place then inevitably the results

one gets seem quite good. But as soon as one looks at explicit pictures

like the ones below, one immediately sees dramatic differences between

the original data and what one gets from the model.

In most cases, the typical behavior produced by the model looks

considerably more random than the data. And indeed at some level this

is hardly surprising: for by using a probabilistic model one is in a sense

starting from an assumption of randomness. 

The model can introduce certain regularities, but these almost

never seem sufficient to force anything other than rather simple

features of data to be correctly reproduced.

Needless to say, just as for most other forms of perception and

analysis, it is typically not the goal of statistical analysis to find precise

and complete representations of data. Rather, the purpose is usually just

A comparison between data generated by ordinary cellular automata and the probabilistic cellular automata that are considered
the best fit to it. While properties such as the density of black cells are typically set up to agree between the data and the model,
the pictures make it clear that more detailed features do not. 
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to extract certain features that are relevant for drawing specific

conclusions about the data. 

And a fundamental example is to try to determine whether a

given sequence can be considered perfectly random—or whether instead

it contains obvious regularities of some kind.

From the point of view of statistical analysis, a sequence is

perfectly random if it is somehow consistent with a model in which all

possible sequences occur with equal probability.

But how can one tell if this is so? What is typically done in

practice is to take a sequence that is given and compute from it the

values of various specific quantities, and then to compare these values

with averages obtained by looking at all possible sequences.

Thus, for example, one might compute the fraction of squares in

a given sequence that are black, and compare this to . Or one might

compute the frequency with which more than two consecutive black

squares occur together, and compare this with the value  obtained by

averaging over all possible sequences.

And if one finds that a value computed from a particular

sequence lies close to the average for all possible sequences then one

can take this as evidence that the sequence is indeed random. But if one

finds that the value lies far from the average then one can take this as

evidence that the sequence is not random.

The pictures at the top of the next page show the results of

computing the frequencies of different blocks in various sequences, and

in each case each successive row shows results for all possible blocks of

a given length. The gray levels on every row are set up so that the

average of all possible sequences corresponds to the pattern of uniform

gray shown below. So any deviation from such uniform gray potentially

provides evidence for a deviation from randomness.

And what we see is that in the first three pictures, there are many

obvious such deviations, while in the remaining pictures there are no

obvious deviations. So from this it is fairly easy to conclude that the

first three sequences are definitely not random, while the remaining

sequences could still be random.

1�2

1�4
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And indeed sequence (a) is certainly not random; in fact it is

purely repetitive. And in general it is fairly easy to see that in any

sequence that is purely repetitive there must beyond a certain length be

many blocks whose frequencies are far from equal. 

It turns out that the same is true for nested sequences. And in the

picture above, sequences (b), (c) and (d) are all nested.

But what about the remaining sequences? Sequences (e) and (f) seem

to yield frequencies that in every case correspond accurately to those

obtained by averaging over all possible sequences. Sequences (g) and (h)

yield results that are fairly similar, but exhibit some definite fluctuations.

So do these fluctuations represent evidence that sequences (g) and

(h) are not in fact random? If one looks at the set of all possible

sequences, one can fairly easily calculate the distribution of frequencies

for any particular block. And from this distribution one can tell with

Statistics of block frequencies for various sequences. In each case the frequency of a particular block
is represented by gray level, with results for blocks of successively greater lengths being shown on
successive rows as indicated on the left. The original sequences are shown broken into lines and
arranged in two dimensions. Sequences (b), (c) and (d) are generated by substitution systems with
rules (b) , , (c) ,  and (d) ,  respectively. (Note that these
substitution systems are the simplest ones that yield equal frequencies of all blocks up to lengths 1,

2 and 3 respectively.) Sequence (e) is generated by a linear feedback shift register (essentially an additive cellular automaton) with
tap positions . Sequence (f) is formed by concatenating base 2 digits of successive integers. Sequence (g) is the center
column of the pattern generated by the rule 30 cellular automaton. Sequence (h) is the base 2 digits of . 

! ! ! ! ! !

{2, 11}

p

(e) (f ) (g) (h)

(a) (b) (c) (d)
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what probability a given deviation from the average should occur for a

sequence that is genuinely chosen at random.

The result turns out to be quite consistent with what we see in

pictures (g) and (h). But it is far from what we see in pictures (e) and (f).

So even though individual block frequencies seem to suggest that

sequences (d) and (e) are random, the lack of any spread in these

frequencies provides evidence that in fact they are not.

So are sequences (g) and (h) in the end truly random? Just like

other sequences discussed in this chapter they are in some sense not,

since they can both be generated by simple underlying rules. But what

the picture on the facing page demonstrates is that if one just does

statistical analysis by computing frequencies of blocks one will see no

evidence of any such underlying simplicity.

One might imagine that if one were to compute other quantities

one could immediately find such evidence. But it turns out that many

of the obvious quantities one might consider computing are in the end

equivalent to various combinations of block frequencies. And perhaps

as a result of this, it has sometimes been thought that if one could just

compute frequencies of blocks of all lengths one would have a kind of

universal test for randomness. But sequences like (e) and (f) on the

facing page make it clear that this is not the case.

So what kinds of quantities can one in the end use in doing

statistical analysis? The answer is that at least in principle one can use

any quantity whatsoever, and in particular one can use quantities that

arise from any of the processes of perception and analysis that I have

discussed so far in this chapter. For in each case all one has to do is to

compute the value of a quantity from a particular sequence of data, and

then compare this value with what would be obtained by averaging over

all possible sequences. In practice, however, the kinds of quantities

actually used in statistical analysis of sequences tend to be rather

limited. Indeed, beyond block frequencies, the only other ones that are

common are those based on correlations, spectra, and occasionally run

lengths—all of which we already discussed earlier in this chapter.

Nevertheless, one can in general imagine taking absolutely any

process and using it as the basis for statistical analysis. For given some
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specific process one can apply it to a piece of raw data, and then see how

the results compare with those obtained from all possible sequences.

If the process is sufficiently simple then by using traditional

mathematics one can sometimes work out fairly completely what will

happen with all possible sequences. But in the vast majority of cases

this cannot be done, and so in practice one has no choice but just to

compare with results obtained by sampling some fairly limited

collection of possible sequences.

Under these circumstances therefore it becomes quite unrealistic

to notice subtle deviations from average behavior. And indeed the only

reliable strategy is usually just to look for cases in which there are huge

differences between results for particular pieces of data and for typical

sequences. For any such differences provide clear evidence that the data

cannot in fact be considered random.

As an example of what can happen when simple processes are

applied to data, the pictures on the facing page show the results of evolution

according to various cellular automaton rules, with initial conditions given

by the sequences from page 594. On each row the first picture illustrates

the typical behavior of each cellular automaton. And the point is that if the

sequences used as initial conditions for the other pictures are to be

considered random then the behavior they yield should be similar.

But what we see is that in many cases the behavior actually

obtained is dramatically different. And what this means is that in such

cases statistical analysis based on simple cellular automata succeeds in

recognizing that the sequences are not in fact random.

But what about sequences like (g) and (h)? With these sequences

none of the simple cellular automaton rules shown here yield behavior

that can readily be distinguished from what is typical. And indeed this is

what I have found for all simple cellular automata that I have searched. 

So from this we must conclude that—just as with all the other

methods of perception and analysis discussed in this chapter—

statistical analysis, even with some generalization, cannot readily

recognize that sequences like (g) and (h) are anything but completely

random—even though at an underlying level these sequences were

generated by quite simple rules.
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(a) (b) (c) (d) (e) (f ) (g) (h)

rule 184

rule 150

rule 122

rule 110

rule 94

rule 73

rule 60

rule 57

rule 54

rule 30

rule 18

rule 4

Examples of applying various rules for cellular automaton evolution to the sequences from page 594. The picture at the
left-hand end of each row is chosen to show the typical behavior of each cellular automaton, given arbitrary initial conditions.
Each cellular automaton rule in effect corresponds to a different statistical analysis procedure. Rule 4 picks out isolated black
cells. Rule 60 essentially constructs a difference table for the sequence of elements. Rules 57 and 184 test for the overall
density of black cells. (As indicated by page 136 the preponderance of white stripes with rule 184 in case (h) is a fluctuation.) 
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Cryptography and Cryptanalysis

The purpose of cryptography is to hide the contents of messages by

encrypting them so as to make them unrecognizable except by someone

who has been given a special decryption key. The purpose of

cryptanalysis is then to defeat this by finding ways to decrypt messages

without being given the key.

The picture on the left shows a standard method of encrypting

messages represented by sequences of black and white squares. The

basic idea is to have an encrypting sequence, shown as column (b) on

the left, and from the original message (a) to get an encrypted version of

the message (c) by reversing the color of every square for which the

corresponding square in the encrypting sequence (b) is black.

So if one receives the encrypted message (c), how can one recover

the original message (a)? If one knows the encrypting sequence (b) then

it is straightforward. For all one need do is to repeat the process that was

used for encryption, and reverse the color of every square in (c) for

which the corresponding square in (b) is black.

But how can one arrange that only the intended recipient of the

message knows the encrypting sequence (b)? In some situations it may

be feasible to transmit the whole encrypting sequence in some secure

way. But much more common is to be able to transmit only some short

key in a secure way, and then to have to generate the encrypting

sequence from this key.

So what kind of procedure might one use to get an encrypting

sequence from a key? The picture at the top of the facing page shows an

extremely simple approach that was widely used in practical

cryptography until less than a century ago. The idea is just to form an

encrypting sequence by repeatedly cycling through the elements in the

key. And as the picture demonstrates, combining this with the original

message leads to an encrypted message in which at least some of the

structure in the original message is obscured.

But perhaps not surprisingly it is fairly easy to do cryptanalysis in

such a case. For if one can find out what any sufficiently long segment

in the encrypting sequence was, then this immediately gives the key,

(a) (b) (c)

Example of a scheme for
encryption. From the original
message (a) an encrypted
message (c) is generated by
reversing the color of each
square for which the
corresponding square in the
encrypting sequence (b) is
black. This scheme is the basis
for essentially all practical
stream ciphers. 
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and from the key the whole of the rest of the encrypting sequence can

immediately be generated.

So what kind of analysis is needed to find a segment of the

encrypting sequence? In an extreme but in practice common case one

might happen to know what certain parts of the original message were—

perhaps standardized greetings or some such—and by comparing the

original and encrypted forms of these parts one can immediately deduce

what the corresponding parts of the encrypting sequence must have been.

And even if all one knows is that the original message was in

some definite language this is still typically good enough. For it means

that there will be certain blocks—say corresponding to words like “the”

in English—that occur much more often than others in the original

message. And since such blocks must be encrypted in the same way

whenever they occur at the same point in the repetition period of the

encrypting sequence they will lead to occasional repeats in the

encrypted message—with the spacing of such repeats always being

some multiple of the repetition period. So this means that just by

looking at the distribution of spacings between repeats one can expect

to determine the repetition period of the encrypting sequence.

And once this is known, it is usually fairly straightforward to find

the actual key. For one can pick out of the encrypted message all the

squares that occur at a certain point in the repetition period of the

A simple example of an encryption system in
which the encrypting sequence is obtained by
repetitively cycling through the elements of the
key. Encryption with two different keys is
shown. In each case the original message is on
the left, the encrypted message is on the right,
and the encrypting sequence corresponds to the
highlighted column of cells. The system is
essentially a Vigenère cipher of the kind widely
used between the 1500s and the early 1900s.
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encrypting sequence, and which are therefore encrypted using a particular

element of the key. Then one can ask whether such squares are more

often black or more often white, and one can compare this with the result

obtained by looking at the frequencies of letters in the language of the

original message. If these two results are the same, then it suggests that

the corresponding element in the key is white, and if they are different

then it suggests that it is black. And once one has found a candidate key it

is easy to check whether the key is correct by trying to use it to recover

some reasonably long part of the original message. For unless one has the

correct key, the chance that what one recovers will be meaningful in the

language of the original message is absolutely negligible.

So what happens if one uses a more complicated rule for generating

an encrypting sequence from a key? Methods like the ones above still

turn out to allow features of the encrypting sequence to be found. And so

to make cryptography work it must be the case that even if one knows

certain features or parts of the encrypting sequence it is still difficult to

deduce the original key or otherwise to generate the rest of the sequence.

The picture below shows one way of generating encrypting

sequences that was widely used in the early years of electronic

cryptography, and is still sometimes used today. The basic idea is to

look at the evolution of an additive cellular automaton in a register of

limited width. The key then gives the initial condition for the cellular

automaton, and the encrypting sequence is extracted, for example, by

sampling a particular cell on successive steps.

Encryption using the rule 60
additive cellular automaton.
This is essentially equivalent
to a linear feedback shift
register.
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So given such an encrypting sequence, is there any easy way to do

cryptanalysis and go backwards and work out the key? 

It turns out that there is. For as the picture below demonstrates,

in an additive cellular automaton like the one considered here the

underlying rule is such that it allows one not only to deduce the form of

a particular row from the row above it, but also to deduce the form of a

particular column from the column to its right. And what this means is

that if one has some segment of the encrypting sequence, corresponding

to part of a column, then one can immediately use this to deduce the

forms of a sequence of other columns, and thus to find the form of a row

in the cellular automaton—and hence the original key.

But what happens if the encrypting sequence does not include

every single cell in a particular column? One cannot then immediately

use the method described above. But it turns out that the additive

nature of the underlying rule still makes comparatively straightforward

cryptanalysis possible.

The picture on the next page shows how this works. Because of

additivity it turns out that one can deduce whether or not some cell a

certain number of steps down a given column is black just by seeing

whether there are an odd or even number of black cells in certain

specific positions in the row at the top. And one can then immediately

An example of the basis for cryptanalysis of an additive cellular automaton. The first set of pictures show the
ordinary evolution of the rule 60 cellular automaton, in which each successive row is deduced from the one above.
The second set of pictures show a kind of sideways evolution in which the rule is reinterpreted so as to allow a
column of cells to be deduced from the column immediately to its right. Note that in both cases the colors of cells
in the area on the lower right cannot be determined without knowing the colors of more initial cells than are shown. 
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invert this to get a way to deduce the colors of cells on a given row from

the colors of certain combinations of cells in a given column.

Which cells in a column are known will depend on how the

encrypting sequence was formed. But with almost any scheme it will

eventually be possible to determine the colors of cells at each of the

positions across any register of limited width. So once again a fairly

simple process is sufficient to allow the original key to be found.

So how then can one make a system that is not so vulnerable to

cryptanalysis? One approach often used in practice is to form

combinations of rules of the kind described above, and then to hope

that the complexity of such rules will somehow have the effect of

making cryptanalysis difficult. 

But as we have seen many times in this book, more complicated

rules do not necessarily produce behavior that is fundamentally any

more complicated. And instead what we have discovered is that even

among extremely simple rules there are ones which seem to yield

behavior that is in a sense as complicated as anything.

Another consequence of additivity: the correspondence between colors of cells on rows and columns in
the rule 60 cellular automaton. In each case specifying the colors of the cells that are marked with dots
immediately determines the colors of the cells that are marked with diamonds. The final diamond cell is
black if an odd number of the dotted cells are black, and is white otherwise. The pictures on the right show
which cells in the top row and which cells in the right-hand column determine the cells at successive
positions in the right-hand column and in the top row respectively. These pictures can be thought of as
matrices with 1’s at the position of each black dot, and 0’s elsewhere. Multiplying these matrices modulo 2
by vectors corresponding to a row of the cellular automaton gives a column, and vice versa. This means
that the matrix on the second row of pictures is the inverse modulo 2 of the one on the first row. 
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So can such rules be used for cryptography? I strongly suspect

that they can, and that in fact they allow one to construct systems that

are at least as secure to cryptanalysis as any that are known. 

The picture below shows a simple example based on the rule

30 cellular automaton that I have discussed several times before in

this book. The idea is to generate an encrypting sequence by

sampling the evolution of the cellular automaton, starting from

initial conditions that are defined by a key.

In the case of the additive cellular automaton shown on the previous

page its nested structure makes it possible to recognize regularities using

many of the methods of perception and analysis discussed in this chapter.

But with rule 30 most sequences that are generated—even from simple

initial conditions—appear completely random with respect to all of the

methods of perception and analysis discussed so far.

So what about cryptanalysis? Does this also fail to find

regularities, or does it provide some special way—at least within the

context of a setup like the one shown above—to recognize whatever

regularities are necessary for one to be able to deduce the initial

condition and thus determine the key?

There is one approach that will always in principle work: one can

just enumerate every possible initial condition, and then see which of

them yields the sequence one wants. But as the width of the cellular

automaton increases, the total number of possible initial conditions

Encryption using a column
of rule 30 as the encrypting
sequence. I first suggested
this method in 1985.
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rapidly becomes astronomical, and to test all of them becomes

completely infeasible.

So are there other approaches that can be used? It turns out that

as illustrated in the picture below rule 30 has a property somewhat like

the additive cellular automaton discussed two pages ago: in addition to

allowing one row to be deduced from the row above, it allows columns

to be deduced from columns to their right. But unlike for the additive

cellular automaton, it takes not just one column but instead two

adjacent columns to make this possible.

So if the encrypting sequence corresponds to a single column,

how can one find an adjacent column? The last row of pictures above

show a way to do this. One picks some sequence of cells for the right

half of the top row, then evolves down the page. And somewhat

surprisingly, it turns out that given the cells in one column, there are

fairly few possibilities for what the neighboring column can be. So by

sampling a limited number of sequences on the top row, one can often

find a second column that then allows columns to the left to be

determined, and thus for a candidate key to be found.

(c)

(b)

(a)

(c)

(b)

(a)
Sideways evolution in rule 30. (a) shows ordinary evolution from one
row to the next. (b) shows evolution to the left starting from a pair of
adjacent columns. (c) shows how a second column can be filled in from
a row of cells to the right. The possibility of (b) is a consequence of
one-sided additivity in rule 30; it leads to some level of cryptanalysis if
the encrypting sequence consists of a complete column of cells.
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But it is rather easy to foil this particular approach to

cryptanalysis: all one need do is not sample every single cell in a given

column in forming the encrypting sequence. For without every cell

there does not appear to be enough information for any kind of local

rule to be able to deduce one column from others.

The picture below shows evidence for this. The cells marked by

dots have colors that are taken as given, and then the colors of other

cells are filled in according to the average that is obtained by starting

from all possible initial conditions.

With two complete columns given, all cells to the left are

determined to be either black or white. And with one complete column

given, significant patches of cells still have determined colors. But if

only every other cell in a column is given, almost nothing definite

follows about the colors of other cells.

So what about the approach on page 602? Could this not be used

here? It turns out that the approach relies crucially on the additivity of the

underlying rules. And since rule 30 is not additive, it simply does not work.

What happens is that the function that determines the color of a particular

cell from the colors of cells in a nearby column rapidly becomes extremely

Patterns generated by rule 30 after averaging over all possible initial conditions that reproduce the arrangements of colors in the cells
indicated by dots. If a cell is completely black or completely white then this means that its color is uniquely determined by the
constraints given. If the cell is shown as gray then this means that it has some probability of being black and some probability of being
white. Note that when two complete adjacent columns are specified all the cells on the left-hand side are determined. But when fewer
cells are specified, the number of cells that are determined decreases rapidly, indicating that cryptanalysis is likely to become difficult.
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complicated—so that the approach probably ends up essentially being no

better than just enumerating possible initial conditions.

The conclusion therefore is that at least with standard methods

of cryptanalysis—as well as a few others—there appears to be no easy

way to deduce the key for rule 30 from any suitably chosen encrypting

sequence. But how can one be sure that there really is absolutely no

easy way to do this? In Chapter 12 I will discuss some fundamental

approaches to such a question. But as a practical matter one can say that

not only have direct attempts to find easy ways to deduce the key in

rule 30 failed, but also—despite some considerable effort—little

progress has been made in solving any of various problems that turn out

to be equivalent to this one.

Traditional Mathematics and Mathematical Formulas

Traditional mathematics has for a long time been the primary method

of analysis used throughout the theoretical sciences. Its goal can usually

be thought of as trying to find a mathematical formula that summarizes

the behavior of a system. So in a simple case if one has an array of black

and white squares, what one would typically look for is a formula that

takes the numbers which specify the position of a particular square and

from these tells one whether the square is black or white.
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With a pattern that is purely repetitive, the formula is always

straightforward, as the picture at the bottom of the facing page illustrates.

For all one ever need do is to work out the remainder from dividing the

position of a particular square by the size of the basic repeating block, and

this then immediately tells one how to look up the color one wants.

So what about nested patterns? It turns out that in most of

traditional mathematics such patterns are already viewed as quite

advanced. But with the right approach, it is in the end still fairly

straightforward to find formulas for them.

The crucial idea—much as in Chapter 4—is to think about numbers

not in terms of their size but instead in terms of their digit sequences. And

with this idea the picture on the next page shows an example of how what

is in effect a formula can be constructed for a nested pattern. 

What one does is to look at the digit sequences for the numbers

that give the vertical and horizontal positions of a certain square. And

then in the specific case shown one compares corresponding digits in

these two sequences, and if these digits are ever respectively 0 and 1,

then the square is white; otherwise it is black.

So why does this procedure work? 

As we have discussed several times in this book, any nested

pattern must—almost by definition—be able to be reproduced by a

neighbor-independent substitution system. And in the case shown on

the next page the rules for this system are such that they replace each

square at each step by a 2 ä 2 block of new squares. So as the picture

illustrates this means that new squares always have positions that

involve numbers containing one extra digit. With the particular rules

shown, the new squares always have the same color as the old one,

except in one specific case: when a black square is replaced, the new

square that appears in the upper right is always white. But this square

An example of how the color of any square in a repetitive pattern can be found from its
coordinates by a simple mathematical procedure. The procedure takes the  and  coordinates of
the square, and computes their remainders after division by 3 and 2 respectively. Using these
remainders—which are shown inside each square—the color of a particular square can be

determined by a simple lookup in the repeating block shown on the left. The whole
procedure can be represented using a mathematical formula that involves either
functions like  or more traditional functions like .
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has the property that its vertical position ends with a 0, and its

horizontal position ends with a 1. So if the numbers that correspond to

the position of a particular square contain this combination of digits at

any point, it follows that the square must be white.

So what about other nested patterns? It turns out that using an

extension of the argument above it is always possible to take the rules
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An example of how the color of any square in a nested pattern can be found from its coordinates by a fairly simple mathematical
procedure. The procedure works by looking at the base 2 digit sequences of the coordinates. If any digit in the  coordinate of a
particular square is 0 when the corresponding digit in the  coordinate is 1 then the square is white; otherwise it is black. The
finite automaton at the bottom right gives a representation of this rule. Starting from the black square, one follows the sequence
of connections that corresponds to the successive digits that one encounters in the  and  coordinates. Whatever square one
lands up at in the finite automaton then gives the color one wants. Why this procedure works is illustrated by the pictures on the
left. The nested pattern can be built up by a 2D substitution system with the rules shown. At each step in the evolution of this
substitution system one gets a finer grid of squares, each specified in effect by one more digit in their coordinates. 

y
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y x
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for the substitution system that generates a particular nested pattern,

and from these construct a procedure for finding the color of a square in

the pattern given its position. The pictures below show several

examples, and in all cases the procedures are fairly straightforward.
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Procedures for determining the color of a square at a given position in various nested patterns. In each case the whole pattern can be
generated by repeatedly applying the substitution system rule shown. The color of any particular square can also be found by feeding the
digit sequences of its  and  coordinates to the finite automaton shown. The first example shown corresponds to cellular automaton rule
60; the last two examples correspond respectively to rules 90 and 150. In the top row of examples, the initial condition for the substitution
system is a single black square, and the start state for the finite automaton is also its black state. In the second row of examples, the initial
condition consists of a light gray square next to a black square. In these cases, the colors of squares to the left of the center can be found
by starting from the light gray state in the finite automaton; the colors of squares to the right can be found by starting from the black state. 

y x



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

610

But while these procedures could easily be implemented as

programs, they are in a sense not based on what are traditionally thought

of as ordinary mathematical functions. So is it in fact possible to get

formulas for the colors of squares that involve only such functions?

In the one specific case shown at the top of the facing page it

turns out to be fairly easy. For it so happens that this particular

pattern—which is equivalent to the patterns at the beginning of each

row on the previous page—can be obtained just by adding together pairs

of numbers in the format of Pascal’s triangle and then putting a black

square whenever there is an entry that is an odd number. 

And as the table below illustrates, the entries in Pascal’s triangle

are simply the binomial coefficients that appear when one expands out

the powers of . So to determine whether a particular square in the

pattern is black or white, all one need do is to compute the

corresponding binomial coefficient, and see whether or not it is an odd

number. And this means that if black is represented by 1 and white by

0, one can then give an explicit formula for the color of the square at

position  on row : it is simply . 

So what about the bottom picture on the facing page? Much as in

the top picture numbers can be assigned to each square, but now these

numbers are computed by successively adding together triples rather

1 � x

x y �1 � ��1�^Binomial�y, x���2

1 1

1 + x 1 + x

(1 + x) 2 1 + 2 x + x2

(1 + x) 3 1 + 3 x + 3 x2 + x3

(1 + x) 4 1 + 4 x + 6 x2 + 4 x3 + x4

(1 + x) 5 1 + 5 x + 10 x2 + 10 x3 + 5 x4 + x5

Binomial[t,n]

1 1

1 + x + x2 1 + x + x2

(1 + x + x2)
2

1 + 2 x + 3 x2 + 2 x3 + x4

(1 + x + x2)
3

1 + 3 x + 6 x2 + 7 x3 + 6 x4 + 3 x5 + x6

(1 + x + x2)
4

1 + 4 x + 10 x2 + 16 x3 + 19 x4 + 16 x5 + 10 x6 + 4 x7 + x8

(1 + x + x2)
5

1 + 5 x + 15 x2 + 30 x3 + 45 x4 + 51 x5 + 45 x6 + 30 x7 + 15 x8 + 5 x9 + x10

GegenbauerC[n,-t,-1/ 2]

Algebraic representations of the patterns on the facing page. The coefficient of  on each row gives the value of each square. These
coefficients can also be obtained from the formulas in terms of  and  given. A particular square is colored black if
its value is odd. This can be determined either from  or equivalently from  or . The succession of
polynomials above can be obtained by expanding the generating functions  and .  is
the ordinary binomial coefficient .  is a so-called orthogonal polynomial—a higher mathematical function. 

xn

Binomial GegenbauerC

a Mod[a, 2] (1 - (-1)a) /2 Sin[p a/2]2

1/ (1 - (1+ x) y) 1/ (1 - (1+ x + x2) y) Binomial[m, n]

m!/ (n! (m - n) !) GegenbauerC
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than pairs. And once again the numbers appear as coefficients, but now

in the expansion of powers of  rather than of . 

So is there an explicit formula for these coefficients? If one

restricts oneself to a fixed number of elementary mathematical

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

1 11 55 165 330 462 462 330 165 55 11 1

1 12 66 220 495 792 924 792 495 220 66 12 1

1 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1

1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1

1 15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15 1

1

1 1 1

1 2 3 2 1

1 3 6 7 6 3 1

1 4 10 16 19 16 10 4 1

1 5 15 30 45 51 45 30 15 5 1

1 6 21 50 90 126 141 126 90 50 21 6 1

1 7 28 77 161 266 357 393 357 266 161 77 28 7 1

1 8 36 112 266 504 784 1016 1107 1016 784 504 266 112 36 8 1

1 9 45 156 414 882 1554 2304 2907 3139 2907 2304 1554 882 414 156 45 9 1

1 10 55 210 615 1452 2850 4740 6765 8350 8953 8350 6765 4740 2850 1452 615 210 55 10 1

1 11 66 275 880 2277 4917 9042 ...55 ...55 ...68 ...53 ...68 ...55 ...55 9042 4917 2277 880 275 66 11 1

1 12 78 352 1221 3432 8074 ...36 ...14 ...52 ...78 ...76 ...89 ...76 ...78 ...52 ...14 ...36 8074 3432 1221 352 78 12 1

1 13 91 442 1651 5005 ...27 ...42 ...24 ...02 ...44 ...06 ...43 ...41 ...43 ...06 ...44 ...02 ...24 ...42 ...27 5005 1651 442 91 13 1

1 14 105 546 2184 7098 ...83 ...74 ...93 ...68 ...70 ...52 ...93 ...90 ...27 ...90 ...93 ...52 ...70 ...68 ...93 ...74 ...83 7098 2184 546 105 14 1

1 15 120 665 2835 9828 ...65 ...55 ...50 ...35 ...31 ...90 ...15 ...35 ...10 ...07 ...10 ...35 ...15 ...90 ...31 ...35 ...50 ...55 ...65 9828 2835 665 120 15 1

Nested patterns constructed using arithmetic operations. The example at the top is Pascal’s triangle,
formed by making each number be the sum of the numbers immediately to its left and right on the
row above. The example at the bottom is a generalization of Pascal’s triangle in which each number is
the sum of the numbers above it and to its left and right on the row above. In both cases squares are
colored black when the numbers that appear in them are odd. The limiting arrangements of colors
correspond to nested patterns. For the top picture the pattern is what would be generated by an
additive cellular automaton following rule 90; for the bottom picture it is what would be generated by
one following rule 150. The numbers in the top picture are binomial coefficients; those in the bottom
picture are particular trinomial coefficients. 

1 � x � x2 1 � x
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functions together with factorials and multinomial coefficients then it

appears that there is not. But if one also allows higher mathematical

functions then it turns out that such a formula can in fact be found: as

indicated in the table above each coefficient is given by a particular

value of a so-called Gegenbauer or ultraspherical function.

So what about other nested patterns? Both of the patterns shown

on the previous page are rather special in that as well as being generated

by substitution systems they can also be produced one row at a time by

the evolution of one-dimensional cellular automata with simple additive

rules. And in fact the approaches used above can be viewed as direct

generalizations of such additive rules to the domain of ordinary numbers.

For a few other nested patterns there exist fairly simple

connections with additive cellular automata and similar systems—

though usually in more dimensions or with more neighbors. But for

most nested patterns there seems to be no obvious way to relate them

to ordinary mathematical functions. Nevertheless, despite this, it is my

guess that in the end it will in fact turn out to be possible to get a

formula for any nested pattern in terms of suitably generalized

hypergeometric functions, or perhaps other functions that are direct

generalizations of ones used in traditional mathematics.

Yet given how simple and regular nested patterns tend to look it

may come as something of a surprise that it should be so difficult to

represent them as traditional mathematical formulas. And certainly if

this example is anything to go by, it begins to seem unlikely that the

more complex kinds of patterns that we have seen so many times in

this book could ever realistically be represented by such formulas.

But it turns out that there are at least some cases where

traditional mathematical formulas can be found even though to the eye

or with respect to other methods of perception and analysis a pattern

may seem highly complex. 

The picture at the top of the facing page is one example. A pattern is

built up by superimposing a sequence of repetitive grids, and to the eye this

pattern seems highly complex. But in fact there is a simple formula for the

color of each square: given the largest factor in common between the
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numbers that specify the horizontal and vertical positions of the square, the

square is white whenever this factor is 1, and is black otherwise.

So what about systems like cellular automata that have definite

rules for evolution? Are there ever cases in which patterns generated by

such systems seem complex to the eye but can in fact be described by

simple mathematical formulas?

I know of one class of examples where this happens, illustrated in

the pictures on the next page. The idea is to set up a row of cells

corresponding to the digits of a number in a certain base, and then at

each step to multiply this number by some fixed factor.

Such a system has many features immediately reminiscent of a

cellular automaton. But at least in the case of multiplication by 3 in

� � � � � �

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

1

1

3

1

1

3

1

1

3

1

1

3

1

1

3

1

1

3

1

1

4

1

2

1

4

1

2

1

4

1

2

1

4

1

2

1

4

1

2

1

5

1

1

1

1

5

1

1

1

1

5

1

1

1

1

5

1

1

1

1

2

1

6

1

2

3

2

1

6

1

2

3

2

1

6

1

2

3

2

1

1

1

1

1

1

1

7

1

1

1

1

1

1

7

1

1

1

1

1

1

4

1

2

1

8

1

2

1

4

1

2

1

8

1

2

1

4

1

2

1

1

1

9

1

1

3

1

1

3

1

1

9

1

1

3

1

1

3

1

1

10

1

2

1

2

5

2

1

2

1

10

1

2

1

2

5

2

1

2

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

4

1

6

1

4

3

2

1

12

1

2

3

4

1

6

1

4

3

2

1

1

1

1

1

1

1

1

13

1

1

1

1

1

1

1

1

1

1

1

1

2

1

2

1

2

1

14

1

2

1

2

1

2

7

2

1

2

1

2

1

5

1

3

1

1

15

1

1

3

1

5

3

1

1

3

5

1

3

1

1

4

1

2

1

16

1

2

1

4

1

2

1

8

1

2

1

4

1

2

1

1

1

1

17

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

1

18

1

2

3

2

1

6

1

2

9

2

1

6

1

2

3

2

1

1

19

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

20

1

2

1

4

5

2

1

4

1

10

1

4

1

2

5

4

1

2

1

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

An example of a pattern that looks complex, but can nevertheless still be represented by a simple mathematical formula. Given
the horizontal and vertical positions  and  a square is white when  and is black otherwise. The condition

 is equivalent to the statement that  and  are relatively prime, or that no reduction is required to bring the fraction
 to lowest terms. It can be shown that if the pattern is extended sufficiently far, then any possible local arrangement of black

squares will eventually appear—though not necessarily with equal frequency. 

x y GCD[x, y] Ð 1

GCD[x, y] Ð 1 x y

x /y
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base 2, the presence of carry digits in the multiplication process

makes the system not quite an ordinary cellular automaton. It turns

out, however, that multiplication by 3 in base 6, or by 2 or 5 in base

10, never leads to carry digits, with the result that in such cases the

system can be thought of as following a purely local cellular

automaton rule of the kind illustrated below.

1
1 1

1 0 0 1
1 1 0 1 1

1 0 1 0 0 0 1
1 1 1 1 0 0 1 1

1 0 1 1 0 1 1 0 0 1
1 0 0 0 1 0 0 0 1 0 1 1

1 1 0 0 1 1 0 1 0 0 0 0 1
1 0 0 1 1 0 0 1 1 1 0 0 0 1 1

1 1 1 0 0 1 1 0 1 0 1 0 1 0 0 1
1 0 1 0 1 1 0 0 1 1 1 1 1 1 1 0 1 1

1 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0 0 1

base 2; multiplier 3

1
2

1 1
2 2

1 2 1
1 0 1 2
2 1 0 1

1 1 2 0 2
1 0 0 1 1 1
2 0 0 2 2 2

1 1 0 1 2 2 1
2 2 1 0 2 1 2

1 2 1 2 1 2 0 1

base 3; multiplier 2

1
3

1 3
4 3

2 1 3
1 0 4 3
3 2 1 3

1 4 0 4 3
5 0 2 1 3

2 3 1 0 4 3
1 1 3 3 2 1 3
3 4 4 4 0 4 3

1 5 2 2 0 2 1 3

base 6; multiplier 3

1
2
4
8

1 6
3 2
6 4

1 2 8
2 5 6
5 1 2

1 0 2 4
2 0 4 8
4 0 9 6

base 10; multiplier 2

1
5

2 5
1 2 5
6 2 5

3 1 2 5
1 5 6 2 5
7 8 1 2 5

3 9 0 6 2 5
1 9 5 3 1 2 5
9 7 6 5 6 2 5

4 8 8 2 8 1 2 5
2 4 4 1 4 0 6 2 5

base 10; multiplier 5

Patterns of digits in various bases generated by successive multiplication by a fixed factor. Such systems were discussed on page
120. With multiplier  row  corresponds to the power . The value of the cell at position  from the end of row  is thus the th

digit of , or . Despite the apparent complexity of the patterns, a fairly simple mathematical formula
thus exists for the color of each square they contain. 

m t mt n t n

mt Mod[Quotient[mt, kn], k]
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base 10; multiplier 2 base 10; multiplier 5
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Cellular automaton rules equivalent to multiplication of digit sequences in various bases. The left part of the
picture shows the explicit form of the rule for base 6 and multiplier 3. The arrays of numbers summarize the rule
for this case and other cases. Note that only certain specific choices of base and multiplier lead to ordinary cellular
automata; with other choices there are carries that propagate arbitrarily far. (See page 661.) 
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As the pictures at the top of the facing page demonstrate, the

overall patterns produced in all cases tend to look complex, and in many

respects random. But the crucial point is that because of the way the

system was constructed there is nevertheless a simple formula for the

color of each cell: it is given just by a particular digit in the number

obtained by raising the multiplier to a power equal to the number of steps.

So despite their apparent complexity, all the patterns on the facing page

can in effect be described by simple traditional mathematical formulas.

But if one thinks about actually using such formulas one might at

first wonder what good they really are. For if one was to work out the

value of a power  by explicitly performing  multiplications, this

would be very similar to explicitly following  steps of cellular

automaton evolution. But the point is that because of certain

mathematical features of powers it turns out to be possible—as

indicated in the table below—to find  with many fewer than 

operations; indeed, one or two operations for every base 2 digit in  is

always for example sufficient.

So what about other patterns produced by cellular automata and

similar systems? Is it possible that in the end all such patterns could just

be described by simple mathematical formulas? I do not think so. In fact,

as I will argue in Chapter 12, my strong belief is that in the vast majority

of cases it will be impossible for quite fundamental reasons to find any

mt t

t

mt t

t

m1 m m

m2 m 6m m2

m3 m 6m 6m m2 6m

m4 m 6m 6m 6m (m2)2

m5 m 6m 6m 6m 6m (m2)2 6m

m6 m 6m 6m 6m 6m 6m (m2 6m)2

m7 m 6m 6m 6m 6m 6m 6m (m2 6m)2 6m

m8 m 6m 6m 6m 6m 6m 6m 6m ((m2)2)2

m9 m 6m 6m 6m 6m 6m 6m 6m 6m ((m2)2)2 6m

m10 m 6m 6m 6m 6m 6m 6m 6m 6m 6m ((m2)2 6m)2

Examples of how powers can be computed more
efficiently than by successive multiplications. In the
cases shown, the choice of whether to square or
multiply by an additional factor of  at each step in
computing  is made on the basis of the successive
digits in the base 2 representation of the number .

m

mt

t
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such simple formula. But even though no simple formula may exist, it is

still always in principle possible to represent the outcome of any process

of cellular automaton evolution by at least some kind of formula.

The picture below shows how this can be done for a single step in

the evolution of three elementary cellular automata. The basic idea is

to translate the rule for a given cellular automaton into a formula that

depends on three variables ,  and  whose values correspond to the

colors of the three initial cells. The formula consists of a sum of terms,

with each term being zero unless the colors of the three cells match a

situation in which the rule yields a black cell.

In the first instance, each term can be set up to correspond

directly to one of the cases in the original rule. But in general this will

lead to a more complicated formula than is necessary. For as the picture

demonstrates, it is often possible to combine several cases into one

term by ignoring the values of some of the variables.

The picture at the top of the facing page shows what happens if

one considers two steps of cellular automaton evolution. There are now

altogether five variables, but at least for rules like rules 254 and 90 the

individual terms end up not depending on most of these variables.

a1 a2 a3

a1a2
a3
 + a1

a2 + a1
a3

a1a2
a3
+a1

a2a3 +a1
a2a3

+a1
a2
a3

rule 30

a1 + a2 + a3

a1a2a3 +a1a2a3
+a1a2

a3 +a1a2
a3
+a1

a2a3 +a1
a2a3

+a1
a2
a3

rule 254

a1a3
 + a1

a3

a1a2a3
+a1a2

a3
+a1

a2a3 +a1
a2
a3

rule 90

Boolean expression representations of the rules for three elementary cellular
automata. The first row shows the original cellular automaton rules. The second
row shows those combinations of cells that yield a black cell according to each of
the rules. The third row shows a minimized version in which gray cells are
introduced to indicate either black or white. In the formulas under the second and
third rows the variable  represents the color of the th cell.  is analogous to

,  to , and  to . The formulas given are in so-called
disjunctive normal form (DNF). They are set up so that only at most one term in
each formula is ever relevant for any particular configuration of colors. 

ai i ei ej

ei © ej ei + ej ei ª ej ei


¨ ei
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So what happens if one considers more steps? As the pictures on

the next page demonstrate, rules like 254 and 90 that have fairly simple

behavior lead to formulas that stay fairly simple. But for rule 30 the

formulas rapidly get much more complicated.

So this strongly suggests that no simple formula exists—at least

of the type used here—that can describe patterns generated by any

significant number of steps of evolution in a system like rule 30.

But what about formulas of other types? The formulas we have

used so far can be thought of as always consisting of sums of products of

variables. But what if we allow formulas with more general structure,

not just two fixed levels of operations?

It turns out that any rule for blocks of black and white cells can

be represented as some combination of just a single type of operation—

for example a so-called NAND function of the kind often used in digital

electronics. And given this, one can imagine finding for any particular

rule the formula that involves the smallest number of NAND functions.

a1a2a3


+ a1a4
a5


+ a1a2
a3 + a1

a2a3a4 +a1
a2a3a5 +a1

a2
a3
a4 +a1

a2
a3
a5

a1 + a2 + a3 + a4 + a5 a1a5


+ a1
a5

rule 30

rule 254 rule 90

Boolean expression representations of the
results from two steps in the evolution of
three elementary cellular automata. At the
top in each case is shown the explicit array
of outcomes for each of the 32 possible
initial configurations of cells. In the middle
are shown those configurations that yield
black cells. And at the bottom are the
minimal representations of these
collections of possibilities.
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a1a2a3a4a5a6
a7
 + a1a2a3a4a6a7a8a9

 + a1a2a3a4a6a7a9a10
 a11

 + a1a2a3a4a6a8
a9 + a1a2a3a4a5

a7 +
a1a2a3a4a5

a8
a9 + a1a2a3a4

a5a7
a8 + a1a2a3a4

a6
a7
a8a9

 + a1a2a3a4
a6
a7
a9a10

 a11
 + a1a2a4a5a6

a7a8
a9
a10 +

a1a2a4a5a6
a7a8

a9
a11 + a1a2a4

a5a6a7a8
a9
 + a1a2a4

a5
a6
a7
a8
a9 + a1a2a3

a4a5
a6
a7
a8 + a1a2a3

a5a6a7
a9 +

a1a2a3
a4
a5a7

a9
 + a1a2a3

a4
a6a8

a9
 + a1a2a3

a4
a6a7

a8 + a1a2a3
a4
a6
a7 + a1a3a4a5

a6a7
 +

a1a3a5a6
a7
a9a10 + a1a3a5a6

a7
a9a11 + a1a3a5

a6a7a8a9a10 + a1a3a5
a6a7a8a9a11 + a1a3a4

a5
a6a7a8 +

a1a3a4
a5
a6a7a9 + a1a3

a5a6a7a8
a9
 + a1a3

a5a6a7
a8 + a1a3

a4
a5a7

a8a10
 a11

 + a1a2
a3a5

a6a7
a8
a9 +

a1a2
a3a4

a5
a6
a7
a8
a9
a10 + a1a2

a3a4
a5
a6
a7
a8
a9
a11 + a1a2

a4a5a7
a8 + a1a2

a4a5a6
a7
a10

 a11
 + a1a2

a4a6a7a8
a9
 +

a1a2
a4a5

a7a8
a9
a10

 a11
 + a1a2

a4a5
a6
a7a8 + a1a2

a4a5
a6
a7a9 + a1a2

a5a6
a7
a8
a9 + a1a2

a3
a4a5a6

a7 +
a1a2
a3
a4a6a7

 + a1a2
a3
a4a5

a7
a8
a9
 + a1a2

a3
a5a7

a8 + a1a2
a3
a6a7a8a9a10 + a1a2

a3
a6a7a8a9a11 +

a1a2
a3
a4
a6a7a8 + a1a2

a3
a4
a6a7a9 + a1a2

a3
a4
a6
a7
a9a10 + a1a2

a3
a4
a6
a7
a9a11 + a1a2

a3
a4
a5
a6
a7
a8
a10

 a11
 +

a1
a2a3a4a5a6a8

a9
 + a1

a2a3a4a5a6a7
a8 + a1

a2a3a4
a7
a8
a9
 + a1

a2a3a4
a5
a6a7

 + a1
a2a3a4

a5
a8
a9
 +

a1
a2a4a5a6

a7a9 + a1
a2a4a5a6

a7a10
 a11

 + a1
a2a5

a6
a7
a8
a9
 + a1

a2a3
a4a5a6

a8 + a1
a2a3

a4a7
a8
a9
 +

a1
a2a3

a4a5
a6 + a1

a2a3
a4a5

a7 + a1
a2a3

a5a6
a7
a8
a9 + a1

a2a3
a6a7a8 + a1

a2a3
a6a7a9 +

a1
a2a3

a5
a6a8

a9 + a1
a2a3

a4
a6
a7
a8a9a10 + a1

a2a3
a4
a6
a7
a8a9a11 + a1

a3a4a5
a6
a7
a8 + a1

a3a4a5
a6
a7
a9
 +

a1
a3a5a7a8a9a10 + a1

a3a5a7a8a9a11 + a1
a3a5a6

a7a8 + a1
a3a4

a5a6a8
a9 + a1

a3a4
a5a7a8 +

a1
a3a4

a6
a7 + a1

a3a4
a5
a7
a8a9a10 + a1

a3a4
a5
a7
a8a9a11 + a1

a3
a4a5

a6
a7
a8
a9 + a1

a3
a4
a5
a6
a7
a8a10

 a11
 +

a1
a3
a4
a5
a6
a7
a9
a10 + a1

a3
a4
a5
a6
a7
a9
a11 + a1

a2
a3a5a6a7

a8
 + a1

a2
a3a5a6

a7 + a1
a2
a3a5

a6
a7
a9 +

a1
a2
a3a5

a6
a7
a10

 a11
 + a1

a2
a3a4

a5a6 + a1
a2
a3a4

a7
a8a10

 a11
 + a1

a2
a3a4

a7
a8a9

 + a1
a2
a4a6a7a8a9

 +
a1
a2
a4a6a7a9a10

 a11
 + a1

a2
a4a6a7a8

a9 + a1
a2
a4a5

a6
a7
a8 + a1

a2
a5a6

a7
a8
a9
a10 + a1

a2
a5a6

a7
a8
a9
a11 +

a1
a2
a5
a6
a7a8

a9
a10 + a1

a2
a5
a6
a7a8

a9
a11 + a1

a2
a4
a5a7

a8
a9
 + a1

a2
a4
a6
a7 + a1

a2
a4
a5
a6a8

a9
 +

a1
a2
a4
a5
a6a7

a8 + a1
a2
a3
a4
a6a7

a8


step 5:

a1a2a3a4
a7 + a1a2a4

a5
a6 + a1a2a3

a4a6a7a8 + a1a2a3
a4a6a7a9 + a1a2a3

a4a5
 + a1a2a3

a6
a7
a8 +

a1a2a3
a6
a7
a9 + a1a3a5a6a7

 + a1a3a5a7a8
a9
 + a1a3a5a6

a7 + a1a3a4
a7
a8
a9
 + a1a4a5

a6
a7
 +

a1a5
a6
a7
a8
a9
 + a1a4

a5
a6a8

a9
 + a1a4

a5
a6a7

 + a1a3
a4a6

a7
 + a1a3

a4a5
a6 + a1a2

a3a4a6
a7 +

a1a2
a3a5a7 + a1a2

a3a4
a7
 + a1a2

a3
a4
a5
a6
a7 + a1

a2a3a4a6a7a8 + a1
a2a3a4a6a7a9 + a1

a2a3a4a5
a7 +

a1
a2a3a4

a6
a7
a8 + a1

a2a3a4
a6
a7
a9 + a1

a2a3
a4
a6
a7 + a1

a3a4a5a6
a7
 + a1

a3a4a5
a6 + a1

a3
a5a6a7

 +
a1
a3
a5a7a8

a9
 + a1

a3
a5a6

a7 + a1
a3
a4
a5a7 + a1

a3
a4
a5a8

a9
 + a1

a2
a3a4

a5
a6
a7 + a1

a2
a4
a5
a6a7a8 +

a1
a2
a4
a5
a6a7a9 + a1

a2
a3
a4a6

a7 + a1
a2
a3
a5a7 + a1

a2
a3
a4
a6
a7
a8 + a1

a2
a3
a4
a6
a7
a9

step 4:

a1a2a3a4a5
 + a1a2a3a5a6

a7
 + a1a2a4

a5 + a1a2
a3a4

a5
a6 + a1a2

a3a4
a5
a7 + a1a2

a3
a5a6 + a1a2

a3
a5a7 +

a1a2
a3
a4
a6
a7
 + a1

a2a4a5a6 + a1
a2a4a5a7 + a1

a2a4
a5
 + a1

a3a4
a5
a6
a7
 + a1

a3
a4a6

a7
 + a1

a3
a5
a6 +

a1
a3
a5
a7 + a1

a2
a3a5 + a1

a2
a4a5



step 3:

a1a2a3
 + a1a4

a5
 + a1a2

a3 + a1
a2a3a4 + a1

a2a3a5 + a1
a2
a3
a4 + a1

a2
a3
a5step 2:

a1a2
a3
 + a1

a2 + a1
a3step 1:

rule 30

a1a3a9a11
 + a1a3a9

a11 + a1a3
a9a11 + a1a3

a9
a11

 + a1
a3a9a11 +

a1
a3a9

a11
 + a1

a3
a9a11

 + a1
a3
a9
a11

step 5:

a1a9
 + a1

a9step 4:

a1a3a5a7
 + a1a3a5

a7 + a1a3
a5a7 + a1a3

a5
a7
 + a1

a3a5a7 + a1
a3a5

a7
 + a1

a3
a5a7

 +
a1
a3
a5
a7

step 3:

a1a5
 + a1

a5step 2:

a1a3
 + a1

a3step 1:
rule 90

a1 + a2 + a3 + a4 + a5 +
a6 + a7 + a8 + a9 + a10 +
a11

step 5:

a1 + a2 + a3 + a4 + a5 + a6 +
a7 + a8 + a9

step 4:

a1 + a2 + a3 + a4 + a5 + a6 + a7

step 3:

a1 + a2 + a3 + a4 + a5step 2:

a1 + a2 + a3step 1:
rule 254

Minimal Boolean expression representations for the results of steps 1 through 5 in the evolution of three elementary cellular
automata. Both rules 254 and 90 have fairly simple overall behavior, and yield comparatively small Boolean expressions. Rule 30
has much more complicated behavior and yields Boolean expressions whose size grows rapidly from one step to the next. (For
steps 1 through 6, the expressions involve 3, 7, 17, 41, 102 and 261 terms respectively.) In each case the Boolean expressions given
are the smallest possible in the disjunctive normal form (DNF) used. 
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The picture below shows some examples of the results. And once

again what we see is that for rules with fairly simple behavior the

formulas are usually fairly simple. But in cases like rule 30, the formulas

one gets are already quite complicated even after just two steps.

rule 254 (2 steps)

( ( ( ( ( ( (a1 Ñ a1) Ñ (a2 Ñ a2)) Ñ
(a3 Ñ a3 )) Ñ (a3 Ñ a3 )) Ñ (a4 Ñ a4)) Ñ

(a4 Ñ a4)) Ñ (a5 Ñ a5 )) Ñ (a5 Ñ a5 )

rule 90 (2 steps)

( (a1 Ñ a1) Ñ a5 ) Ñ (a1 Ñ (a5 Ñ a5 ))

rule 30 (2 steps)

( ( (a1 Ñ a2) Ñ (a1 Ñ a3 )) Ñ (a2 Ñ a3 )) Ñ ( (a1 Ñ a5 ) Ñ
( (a1 Ñ (a1 Ñ a4)) Ñ ( ( (a2 Ñ a3 ) Ñ ( (a2 Ñ a2) Ñ
(a3 Ñ a3 ))) Ñ ( ( (a1 Ñ a4) Ñ a4) Ñ (a5 Ñ a5 )))))

Nand a1 Ñ a2 Not a1 Ñ a1

And (a1 Ñ a2) Ñ (a1 Ñ a2) Or (a1 Ñ a1) Ñ (a2 Ñ a2)

rule 254 (1 step) ( ( (a1 Ñ a1) Ñ (a2 Ñ a2)) Ñ (a3 Ñ a3 )) Ñ (a3 Ñ a3 )

rule 90 (1 step) ( (a1 Ñ a1) Ñ a3 ) Ñ (a1 Ñ (a3 Ñ a3 ))

rule 30 (1 step) ( (a1 Ñ a1) Ñ a2) Ñ ( (a1 Ñ a3 ) Ñ ( (a1 Ñ (a2 Ñ a2)) Ñ (a3 Ñ a3 )))

Minimal representations in
terms of NAND functions of
the first two steps in the
evolution of the same
cellular automata as on the
facing page. In each case,
the network and formula
shown are ones that involve
the absolute minimum
number of operations.
Finding these effectively
required searching through
billions of possibilities. The
picture at the top left shows
the action of a single NAND

function. The next three
pictures show how the
operations used in DNF
formulas can be built up
from NANDs. 
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So even if one allows rather general structure, the evidence is that

in the end there is no way to set up any simple formula that will

describe the outcome of evolution for a system like rule 30.

And even if one settles for complicated formulas, just finding the

least complicated one in a particular case rapidly becomes extremely

difficult. Indeed, for formulas of the type shown on page 618 the

difficulty can already perhaps double at each step. And for the more

general formulas shown on the previous page it may increase by a factor

that is itself almost exponential at each step.

So what this means is that just like for every other method of

analysis that we have considered, we have little choice but to conclude

that traditional mathematics and mathematical formulas cannot in the

end realistically be expected to tell us very much about patterns

generated by systems like rule 30.

Human Thinking

When we are presented with new data one thing we can always do is

just apply our general powers of human thinking to it. And certainly

this allows us with rather modest effort to do quite well in handling all

sorts of data that we choose to interact with in everyday life. But what

about data generated by the kinds of systems that I have discussed in

this book? How does general human thinking do with this?

There are definitely some limitations, since after all, if general

human thinking could easily find simple descriptions of, for example,

all the various pictures in this book, then we would never have

considered any of them complex.

One might in the past have assumed that if a simple description

existed of some piece of data, then with appropriate thinking and

intelligence it would usually not be too difficult to find it. But what the

results in this book establish is that in fact this is far from true. For in

the course of this book we have seen a great many systems whose

underlying rules are extremely simple, yet whose overall behavior is

sufficiently complex that even by thinking quite hard we cannot

recognize its simple origins. 
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Usually a small amount of thinking allows us to identify at least

some regularities. But typically these regularities are ones that can also

be found quite easily by many of the standard methods of perception

and analysis discussed earlier in this chapter.

So what then does human thinking in the end have to contribute?

The most obvious way in which it stands out from other methods of

perception and analysis is in its large-scale use of memory.

For all the other methods that we have discussed effectively

operate by taking each new piece of data and separately applying some

fixed procedure to it. But in human thinking we routinely make use of

the huge amount of memory that we have built up from being exposed

to billions of previous pieces of data. 

And sometimes the results can be quite impressive. For it is quite

common to find that even though no other method has much to say

about a particular piece of data, we can immediately come up with a

description for it by remembering some similar piece of data that we

have encountered before.

And thus, for example, having myself seen thousands of pictures

produced by cellular automata, I can recognize immediately from

memory almost any pattern generated by any of the elementary rules—

even though none of the other methods of perception and analysis can

get very far whenever such patterns are at all complex.

But insofar as there is sophistication in what can be done with

human memory, does this sophistication come merely from the

experiences that are stored in memory, or somehow from the actual

mechanism of memory itself?

The idea of storing large amounts of data and retrieving it

according to various criteria is certainly quite familiar from databases in

practical computing. But there is at least one important difference

between the way typical databases operate, and the way human

memory operates. For in a standard database one tends to be able to find

only data that meets some precise specification, such as containing an

exact match to a particular string of text. Yet with human memory we

routinely seem to be able to retrieve data on the basis of much more

general notions of similarity.
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In general, if one wants to find a piece of data that has a certain

property—either exact or approximate—then one way to do this is just

to scan all the pieces of data that one has stored, and test each of them

in turn. But even if one does all sorts of parallel processing this

approach presumably in the end becomes quite impractical.

So what can one then do? In the case of exact matches there are a

couple of approaches that are widely used in practice.

Probably the most familiar is what is done in typical dictionaries:

all the entries are arranged in alphabetical order, so that when one looks

something up one does not need to scan every single entry but instead

one can quickly home in on just the entry one wants.

Practical database systems almost universally use a slightly more

efficient scheme known as hashing. The basic idea is to have some

definite procedure that takes any word or other piece of data and derives

from it a so-called hash code which is used to determine where the data

will be stored. And the point is that if one is looking for a particular

piece of data, one can then apply this same procedure to that data, get

the hash code for the data, and immediately determine where the data

would have been stored.

But to make this work, does one need a complex hashing

procedure that is carefully tuned to the particular kind of data one is

dealing with? It turns out that one does not. And in fact, all that is

really necessary is that the hashing procedure generate enough

randomness that even though there may be regularities in the original

data, the hash codes that are produced still end up being distributed

roughly uniformly across all possibilities.

And as one might expect from the results in this book, it is easy

to achieve this even with extremely simple programs—either based on

numbers, as in most practical database systems, or based on systems

like cellular automata. 

So what this means is that regardless of what kind of data one is

storing, it takes only a very simple program to set up a hashing scheme

that lets one retrieve pieces of data very efficiently. And I suspect that

at least some aspects of this kind of mechanism are involved in the

operation of human memory.
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But what about the fact that we routinely retrieve from our

memory not just data that matches exactly, but also data that is merely

similar? Ordinary hashing would not let us do this. For a hashing

procedure will normally put different pieces of data at quite different

locations—even if the pieces of data happen in some sense to be similar.

So is it possible to set up forms of hashing that will in fact keep

similar pieces of data together? In a sense what one needs is a hashing

procedure in which the hash codes that are generated depend only on

features of the data that really make a difference, and not on others.

One practical example where this is done is a simple procedure

often used for looking up names by sound rather than spelling. In its

typical form this procedure works by dropping all vowels and grouping

together letters like “d” and “t” that sound similar, with the result that

at least in some approximation the only features that are kept are ones

that make a difference in the way a word sounds.

So how can one achieve this in general? 

In many respects one of the primary goals of all forms of

perception and analysis is precisely to pick out those features of data

that are considered relevant, and to discard all others.

And so, as we discussed earlier in this chapter, the human visual

system, for example, appears to be based on having nerve cells that

respond only to certain specific features of images. And this means that

if one looks only at the output from these nerve cells, then one gets a

representation of visual images in which two images that differ only in

certain kinds of details will be assigned the same representation.

So if it is a representation like this that is used as the basis for

storing data in memory, the result is that one will readily be able to

retrieve not only data that matches exactly, but also data that is merely

similar enough to have the same representation.

In actual brains it is fairly clear that input received by all the

various sensory systems is first processed by assemblies of nerve cells

that in effect extract certain specific features. And it seems likely that

especially in lower organisms it is often representations formed quite

directly from such features that are what is stored in memory.
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But at least in humans there is presumably more going on. For it

is quite common that we can immediately recognize that we have

encountered some particular object before even if it is superficially

presented in a quite different way. And what this suggests is that quite

different patterns of raw data from our sensory systems can at least in

some cases still lead to essentially the same representation in memory.

So how might this be achieved? One possibility is that our brains

might be set up to extract certain specific high-level features—such as,

say, topological structure in three-dimensional space—that happen to

successfully characterize particular kinds of objects that we

traditionally deal with.

But my strong suspicion is that in fact there is some much

simpler and more general mechanism at work, that operates essentially

just at the level of arbitrary data elements, without any direct reference

to the origin or meaning of these data elements.

And one can imagine quite a few ways that such a mechanism

could potentially be set up with nerve cells. 

One step in a particularly simple scheme is illustrated in the

picture below. The basic idea is to have a sequence of layers of nerve

cells—much as one knows exist in the brain—with each cell in each

successive layer responding only if the inputs it gets from some fixed

random set of cells in the layer above form some definite pattern.

One step in a very simple model of the way hash codes for arbitrary data might be generated by layers of nerve cells in the brain.
The response of a single layer of idealized nerve cells to a sequence of progressively different inputs is shown. Each nerve cell
fires and yields black output only if the inputs it gets from certain fixed positions match a particular template. The sequence of
outputs from all the nerve cells can be used as a hash code, whose value tends to be the same for inputs that differ only by small
changes. 
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In a sense this is a straightforward generalization of the scheme for

visual perception that we discussed earlier in this chapter. But the point is

that with such a setup detailed changes in the input to the first layer of cells

only rarely end up having an effect on output from the last layer of cells.

It is not difficult to find systems in which different inputs often

yield the same output. In fact, this is the essence of the very general

phenomenon of attractors that we discussed in Chapter 6—and it is

seen in the vast majority of cellular automata, and in fact in almost any

kind of system that follows definite rules. 

But what is somewhat special about the setup above is that

inputs which yield the same output tend to be ones that might

reasonably be considered similar, while inputs that yield different

outputs tend to be significantly different.

And thus, for example, a change in a single input cell typically

will not have a high probability of affecting the output, while a change

in a large fraction of the input cells will.

So quite independent of precisely which features of the original

data correspond to which input cells, this basic mechanism provides a

simple way to get a representation—and thus a hash code—that will

tend to be the same for pieces of data that somehow have enough

features that are similar.

So how would such a representation in the end be used? In a scheme

like the one above the output cells would presumably be connected to cells

that actually perform actions of some kind—perhaps causing muscles to

move, or perhaps just providing inputs to further nerve cells. 

But so where in all of this would the actual content of our

memory reside? Almost certainly at some level it is encoded in the

details of connections between nerve cells. 

But how then might such details get set up?

There is evidence that permanent changes can be produced in

individual nerve cells as a result of the behavior of nerve cells around

them. And as data gets received by the brain such changes presumably

do occur at least in some cells. But if one looks, say, at nerve cells

involved in the early stages of the visual system, then once the brain has

matured past some point these never seem to change their properties
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much. And quite probably the same is true of many nerve cells involved

in the general process of doing the analog of producing hash codes.

The reason for such a lack of change could conceivably be simply

that at the relevant level the overall properties of the stream of data

corresponding to typical experience remain fairly constant. But it might

also be that if one expects to retrieve elements of memory reliably then

there is no choice but to set things up so that the hashing procedure one

uses always stays essentially the same.

And if there is a fixed such scheme, then this implies that while

certain similarities between pieces of data will immediately be

recognized, others will not.

So how does this compare to what we know of actual human

memory? There are many kinds of similarities that we recognize quite

effortlessly. But there are also ones that we do not. And thus, for

example, given a somewhat complicated visual image—say of a face or a

cellular automaton pattern—we can often not even immediately

recognize similarity to the same image turned upside-down.

So are such limitations in the end intrinsic to the underlying

mechanism of human memory, or do they somehow merely reflect

characteristics of the memory that we happen to build up from our

typical actual experience of the world?

My guess is that it is to some extent a mixture. But insofar as more

important limitations tend to be the result of quite low-level aspects of

our memory system it seems likely that even if these aspects could in

principle be changed it would in practice be essentially impossible to do

so. For the low levels of our memory system are exposed to an immense

stream of data. And so to cause any substantial change one would

presumably have to insert a comparable amount of data with the special

properties one wants. But for a human interacting with anything like a

normal environment this would in practice be absolutely impossible.

So in the end I strongly suspect that the basic rules by which

human memory operates can almost always be viewed as being

essentially fixed—and, I believe, fairly simple.
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But what about the whole process of human thinking? What does

it ultimately involve? My strong suspicion is that the use of memory is

what in fact underlies almost every major aspect of human thinking.

Capabilities like generalization, analogy and intuition immediately

seem very closely related to the ability to retrieve data from memory on

the basis of similarity. But what about capabilities like logical reasoning?

Do these perhaps correspond to a higher-level type of human thinking?

In the past it was often thought that logic might be an appropriate

idealization for all of human thinking. And largely as a result of this,

practical computer systems have always treated logic as something

quite fundamental. But it is my strong suspicion that in fact logic is

very far from fundamental, particularly in human thinking.

For among other things, whereas in the process of thinking we

routinely manage to retrieve remarkable connections almost

instantaneously from memory, we tend to be able to carry out logical

reasoning only by laboriously going from one step to the next. And my

strong suspicion is that when we do this we are in effect again just using

memory, and retrieving patterns of logical argument that we have

learned from experience.

In modern times computer languages have often been thought of

as providing precise ways to represent processes that might otherwise

be carried out by human thinking. But it turns out that almost all of the

major languages in use today are based on setting up procedures that are

in essence direct analogs of step-by-step logical arguments.

As it happens, however, one notable exception is Mathematica.

And indeed, in designing Mathematica, I specifically tried to imitate

the way that humans seem to think about many kinds of

computations. And the structure that I ended up coming up with for

Mathematica can be viewed as being not unlike a precise idealization of

the operation of human memory.

For at the core of Mathematica is the notion of storing collections

of rules in which each rule specifies how to transform all pieces of data

that are similar enough to match a single Mathematica pattern. And the

success of Mathematica provides considerable evidence for the power of

this kind of approach.
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But ultimately—like other computer languages—Mathematica

tends to be concerned mostly with setting up fairly short specifications

for quite definite computations. Yet in everyday human thinking we

seem instead to use vast amounts of stored data to perform tasks whose

definitions and objectives are often quite vague.

There has in the past been a great tendency to assume that given

all its apparent complexity, human thinking must somehow be an

altogether fundamentally complex process, not amenable at any level to

simple explanation or meaningful theory.

But from the discoveries in this book we now know that highly

complex behavior can in fact arise even from very simple basic rules.

And from this it immediately becomes conceivable that there could in

reality be quite simple mechanisms that underlie human thinking.

Certainly there are many complicated details to the construction

of the brain, and no doubt there are specific aspects of human thinking

that depend on some of these details. But I strongly suspect that there is

a definite core to the phenomenon of human thinking that is largely

independent of such details—and that will in the end turn out to be

based on rules that are rather simple.

So how will we be able to tell if this is in fact the case? Detailed

direct studies of the brain and its operation may give some clues. But

my guess is that the only way that really convincing evidence will be

obtained is if actual technological systems are constructed that can

successfully be seen to emulate human thinking.

And indeed as of now our experience with practical computing

provides rather little encouragement that this will ever be possible.

There are certainly some tasks—such as playing chess or doing

algebra—that at one time were considered indicative of human-like

thinking, but which are now routinely done by computer. Yet when it

comes to seemingly much more mundane and everyday types of

thinking the computers and programs that exist at present tend to be

almost farcically inadequate.

So why have we not done better? No doubt part of the answer has

to do with various practicalities of computers and storage systems. But

a more important part, I suspect, has to do with issues of methodology.
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For it has almost always been assumed that to emulate in any

generality a process as sophisticated as human thinking would necessarily

require an extremely complicated system. So what has mostly been done

is to try to construct systems that perform only rather specific tasks.

But then in order to be sure that the appropriate tasks will

actually be performed the systems tend to be set up—as in traditional

engineering—so that their behavior can readily be foreseen, typically by

standard mathematical or logical methods. And what this almost

invariably means is that their behavior is forced to be fairly simple.

Indeed, even when the systems are set up with some ability to learn

they usually tend to act—much like the robots of classical fiction—

with far too much simplicity and predictability to correspond to

realistic typical human thinking.

So on the basis of traditional intuition, one might then assume

that the way to solve this problem must be to use systems with more

complicated underlying rules, perhaps more closely based on details of

human psychology or neurophysiology. But from the discoveries in this

book we know that this is not the case, and that in fact very simple

rules are quite sufficient to produce highly complex behavior.

Nevertheless, if one maintains the goal of performing specific

well-defined tasks, there may still be a problem. For insofar as the

behavior that one gets is complex, it will usually be difficult to direct it

to specific tasks—an issue rather familiar from dealing with actual

humans. So what this means is that most likely it will at some level be

much easier to reproduce general human-like thinking than to set up

some special version of human-like thinking only for specific tasks.

And it is in the end my strong suspicion that most of the core

processes needed for general human-like thinking will be able to be

implemented with rather simple rules.

But a crucial point is that on their own such processes will most

likely not be sufficient to create a system that one would readily

recognize as exhibiting human-like thinking. For in order to be able to

relate in a meaningful way to actual humans, the system would almost

certainly have to have built up a human-like base of experience.
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No doubt as a practical matter this could to some extent be done

just by large-scale recording of experiences of actual humans. But it seems

not unlikely that to get a sufficiently accurate experience base, the system

would itself have to interact with the world in very much the same way

as an actual human—and so would have to have elements that emulate

many elaborate details of human biological and other structure.

Once one has an explicit system that successfully emulates

human thinking, however, one can imagine progressively removing

some of this complexity, and seeing just which features of human

thinking end up being preserved.

So what about human language, for example? Is this purely

learned from the details of human experience? Or are there features of it

that reflect more fundamental aspects of human thinking?

When one learns a language—at least as a young child—one

implicitly tends to deduce simple grammatical rules that are in effect

specific generalizations of examples one has encountered. And I suspect

that in doing this the types of generalizations that one makes are

essentially those that correspond to the types of similarities that one

readily recognizes in retrieving data from memory.

Actual human languages normally have many exceptions to any

simple grammatical rules. And it seems that with sufficient effort we

can in fact learn languages with almost any structure. But the fact that

most modern computer languages are specifically set up to follow

simple grammatical rules seems to make their structures particularly

easy for us to learn—perhaps because they fit in well with low-level

processes of human thinking.

But to what extent is the notion of a language even ultimately

necessary in a system that does human-like thinking? Certainly in

actual humans, languages seem to be crucial for communication. But

one might imagine that if the underlying details of different individuals

from some class of systems were sufficiently identical then

communication could instead be achieved just by directly transferring

low-level patterns of activity. My guess, however, is that as soon as the

experiences of different individuals become different, this will not
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work, and that therefore some form of general intermediate

representation or language will be required.

But does one really need a language that has the kind of sequential

grammatical structure of ordinary human language? Graphical user

interfaces for computer systems certainly often use somewhat different

schemes. And in simple situations these can work well. But my uniform

experience has been that if one wants to specify processes of any significant

complexity in a fashion that can reasonably be understood then the only

realistic way to do this is to use a language—like Mathematica—that has

essentially an ordinary sequential grammatical structure.

Quite why this is I am not certain. Perhaps it is merely a

consequence of our familiarity with traditional human languages. Or

perhaps it is a consequence of our apparent ability to pay attention only

to one thing at a time. But I would not be surprised if in the end it is a

reflection of fairly fundamental features of human thinking.

And indeed our difficulty in thinking about many of the patterns

produced by systems in this book may be not unrelated. For while

ordinary human language has little trouble describing repetitive and

even nested patterns, it seems to be able to do very little with more

complex patterns—which is in a sense why this book, for example,

depends so heavily on visual presentation.

At the outset, one might have imagined that human thinking

must involve fundamentally special processes, utterly different from all

other processes that we have discussed. But just as it has become clear

over the past few centuries that the basic physical constituents of

human beings are not particularly special, so also—especially after the

discoveries in this book—I am quite certain that in the end there will

turn out to be nothing particularly special about the basic processes

that are involved in human thinking.

And indeed, my strong suspicion is that despite the apparent

sophistication of human thinking most of the important processes that

underlie it are actually very simple—much like the processes that seem

to be involved in all the other kinds of perception and analysis that we

have discussed in this chapter.
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Higher Forms of Perception and Analysis

In the course of this chapter we have discussed in turn each of the major

methods of perception and analysis that we in practice use. And if our

goal is to understand the actual experience that we get of the world then

there is no reason to go further. But as a matter of principle one can ask

whether the methods of perception and analysis that we have discussed

in a sense cover what is ultimately possible—or whether instead there

are higher and fundamentally more powerful forms of perception and

analysis that for some reason we do not at present use.

As we discussed early in this chapter, any method of perception

or analysis can at some level be viewed as a way of trying to find simple

descriptions for pieces of data. And what we might have assumed in the

past is that if a piece of data could be generated from a sufficiently

simple description then the data itself would necessarily seem to us

quite simple—and would therefore have many regularities that could be

recognized by our standard methods of perception and analysis.

But one of the central discoveries of this book is that this is far

from true—and that actually it is rather common for rules that have

extremely simple descriptions to give rise to data that is highly

complex, and that has no regularities that can be recognized by any of

our standard methods.

But as we discussed earlier in this chapter the fact that a simple

rule can ultimately be responsible for such data means that at some

level the data must contain regularities. So the point is that these

regularities are just not ones that can be detected by our standard

methods of perception and analysis.

Yet the fact that there are in the end regularities means that at

least in principle there could exist higher forms of perception and

analysis that would succeed in recognizing them.

So might one day some new method of perception and analysis be

invented that would in a sense manage to recognize all possible

regularities, and thus be able to tell immediately if any particular piece

of data could be generated from any kind of simple description?
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My strong belief—as I will argue in Chapter 12—is that at least in

complete generality this will never be possible. But that does not mean that

there cannot exist higher forms of perception and analysis that succeed in

recognizing at least some regularities that our existing methods do not.

The results of this chapter, however, might seem to provide some

circumstantial evidence that in practice even this might not be

possible. For in the course of the chapter we have discussed a whole

range of different kinds of perception and analysis, yet in essentially all

cases we have found that the overall capabilities they exhibit are rather

similar. Most of them, for example, recognize repetition, and some also

recognize nesting. But almost none recognize anything more complex.

So what this perhaps suggests is that in the end there might be

only certain specific capabilities that can be realized in practical

methods of perception and analysis. And certainly it seems not

inconceivable that there could be a fundamental result that the only

kinds of regularities that both occur frequently in actual systems and

can be recognized quickly enough to provide a basis for practical

methods of perception and analysis are ones like repetition and nesting.

But there is another possible explanation for what we have seen

in this chapter: perhaps it is just that we, as humans, are always very

narrow in the methods of perception and analysis that we use. For

certainly it is remarkable that none of the methods that we normally

use ever in the end seem to manage to get much further than we can

already get with our own built-in powers of perception. And what this

perhaps suggests is that we choose the methods we use to be essentially

those that pick out only regularities with which we are somehow

already very familiar from our own built-in powers of perception.

For there is no difficulty in principle in constructing procedures

that have capabilities very different from those of our standard methods

of perception and analysis. Indeed, as one example, one could imagine

just enumerating all possible simple descriptions of some particular

type, and then testing in each case to see whether what one gets

matches a piece of data that one has. 

And in some specific cases, this might well succeed in finding

extremely simple descriptions for the data. But to use such a method in
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any generality almost inevitably requires computational resources far

greater than one would normally consider reasonable in a practical

method of perception or analysis.

And in fact there is really no reason to consider such a

sophisticated procedure. For in a sense any program—including one

that is very simple and runs very quickly—can be thought of as

implementing a method of perception or analysis. For if one gives a

piece of data as the input to the program, then the output one gets—

whatever it may be—can be viewed as corresponding to some kind of

description of the data.

But the problem is that under most circumstances this

description will not be particularly useful. And indeed what typically

seems to be necessary to make it useful is that somehow one is already

familiar with similar descriptions, and knows their significance.

A description based on output from a cellular automaton rule

that one has never seen before is thus for example not likely to be

useful. But a description that picks out a feature like repetition that is

already very familiar to us will typically be much more useful.

And potentially therefore our lack of higher forms of perception

and analysis might in the end have nothing to do with any difficulty in

implementing such forms, but instead may just be a reflection of the

fact that we only have enough context to make descriptions of data

useful when these descriptions are fairly close to the ones we get from

our own built-in human methods of perception.

But why is it then that these methods themselves are not more

powerful? After all, one might think that biological evolution would

inevitably have made us as good as possible at handling data associated

with any of the systems that we commonly encounter in nature.

Yet as we have seen in this book almost whenever there is

significant complexity our powers of human perception end up being far

from adequate to find any kind of minimal summaries of data.

And with the traditional view that biological evolution is

somehow a process of infinite power this seems to leave one little

choice but to conclude that there must be fundamental limitations on

possible methods of perception that can be useful.
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One might imagine perhaps that while there could in principle be

methods of perception that would recognize features beyond, say,

repetition and nesting, any single such feature might never occur in a

sufficiently wide range of systems to make its recognition generally

useful to a biological organism.

But as of now I do not know of any fundamental reason why this

might be so, and following my arguments in Chapter 8 I would not be at

all surprised if the process of biological evolution had simply missed

even methods of perception that are, in some sense, fairly obvious.

So what about an extraterrestrial intelligence? Free from any

effects of terrestrial biological evolution might it have developed all

sorts of higher forms of perception and analysis?

Of course we have no direct information on this. But the very fact

that we have so far failed to discover any evidence for extraterrestrial

intelligence may itself conceivably already be a sign that higher forms

of perception and analysis may be in use.

For as I will discuss in Chapter 12 it seems far from inconceivable

that some of the extraterrestrial radio and other signals that we pick up

and assume to be random noise could in fact be meaningful messages—

but just encoded in a way that can be recognized only by higher forms of

perception and analysis than those we have so far applied to them.

Yet whether or not this is so, the capabilities of extraterrestrial

intelligence are not in the end directly relevant to an understanding of

our own experience of the world. In the future we may well manage to

use higher forms of perception and analysis, and as a result our

experience of the world will change—no doubt along with certain

aspects of our science and mathematics. But for now it is the kinds of

methods of perception and analysis that we have discussed in most of

this chapter that must form the basis for the conclusions we make

about the world. 
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11
The Notion of Computation

Computation as a Framework

In earlier parts of this book we saw many examples of the kinds of

behavior that can be produced by cellular automata and other systems

with simple underlying rules. And in this chapter and the next my goal

is to develop a general framework for thinking about such behavior.

Experience from traditional science might suggest that standard

mathematical analysis should provide the appropriate basis for any such

framework. But as we saw in the previous chapter, such analysis tends to

be useful only when the overall behavior one is studying is fairly simple.

So what can one do when the behavior is more complex? 

If traditional science was our only guide, then at this point we

would probably be quite stuck. But my purpose in this book is precisely

to develop a new kind of science that allows progress to be made in

such cases. And in many respects the single most important idea that

underlies this new science is the notion of computation.

Throughout this book I have referred to systems such as cellular

automata as simple computer programs. So now the point is actually to

think of these systems in terms of the computations they can perform.

In a typical case, the initial conditions for a system like a cellular

automaton can be viewed as corresponding to the input to a

computation, while the state of the system after some number of steps

corresponds to the output. And the key idea is then to think in purely
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abstract terms about the computation that is performed, without

necessarily looking at all the details of how it actually works.

Why is such an abstraction useful? The main reason is that it

potentially allows one to discuss in a unified way systems that have

completely different underlying rules. For even though the internal

workings of two systems may have very little in common, the

computations the systems perform may nevertheless be very similar.

And by thinking in terms of such computations, it then becomes

possible to imagine formulating principles that apply to a very wide

variety of different systems—quite independent of the detailed

structure of their underlying rules. 

Computations in Cellular Automata

I have said that the evolution of a system like a cellular automaton can

be viewed as a computation. But what kind of computation is it, and

how does it compare to computations that we typically do in practice?

The pictures below show an example of a cellular automaton whose

evolution can be viewed as performing a particular simple computation. 

If one starts this cellular automaton with an even number of

black cells, then after a few steps of evolution, no black cells are left.

But if instead one starts it with an odd number of black cells, then a

single black cell survives forever. So in effect this cellular automaton

can be viewed as computing whether a given number is even or odd.

1

1

2

0

3

1

4

0

5

1

6

0

7

1

8

0

9

1

10

0

input:

output:

A simple cellular automaton whose evolution effectively computes the remainder
after division of a number by 2. Starting from a row of  black cells, 0 black cells
survive if  is even, and 1 black cell survives if  is odd. The cellular automaton
follows elementary rule 132, as shown on the left.

n

n n
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One specifies the input to the computation by setting up an appropriate

number of initial black cells. And then one determines the result of the

computation by looking at how many black cells survive in the end.

Testing whether a number is even or odd is by most measures a

rather simple computation. But one can also get cellular automata to

do more complicated computations. And as an example the pictures

below show a cellular automaton that computes the square of any

number. If one starts say with 5 black squares, then after a certain

number of steps the cellular automaton will produce a block of

exactly  black squares.

At first it might seem surprising that a system with the simple

underlying structure of a cellular automaton could ever be made to perform

such a computation. But as we shall see later in this chapter, cellular

automata can in fact perform what are in effect arbitrarily sophisticated

computations. And as one example of a somewhat more sophisticated

computation, the picture on the next page shows a cellular automaton that

computes the successive prime numbers: 2, 3, 5, 7, 11, 13, 17, etc.

5�5 � 25

A cellular automaton that computes the square of any number. The cellular automaton effectively works by adding the original
number  together  times. The underlying rule used here involves eight possible colors for each cell. n n

2

4

3

9

4

16

5

25

input:

output:
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The rule for this cellular automaton is somewhat

complicated—it involves a total of sixteen colors possible for each

cell—but the example demonstrates the point that in principle a

cellular automaton can compute the primes.

A cellular automaton constructed to compute the prime numbers. The system generates a dark gray stripe on the left at all positions
that correspond to any product of numbers other than 1. White gaps then remain at positions that correspond to the prime numbers 2,
3, 5, 7, 11, 13, 17, etc. The cellular automaton effectively does its computation using the standard sieve of Eratosthenes method. The
structures on the right bounce backwards and forwards with repetition periods corresponding to successive odd numbers. Once in each
period they produce a gray stripe which propagates to the left, so that in the end there is a gray stripe corresponding to every multiple of
every number. The rule for the cellular automaton shown here involves 16 possible colors for each cell.

2 3 5 7 11 13 17 19 23 29 31
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So what about the cellular automata that we discussed earlier in

this book? What kinds of computations can they perform?

At some level, any cellular automaton—or for that matter, any

system whatsoever—can be viewed as performing a computation that

determines what its future behavior will be. 

But for the cellular automata that I have discussed in this section,

it so happens that the computations they perform can also conveniently

be described in terms of traditional mathematical notions.

And this turns out to be possible for some of the cellular automata

that I discussed earlier in this book. Thus, for example, as shown below,

rule 94 can effectively be described as enumerating even numbers.

Similarly, rule 62 can be thought of as enumerating numbers that are

multiples of 3, while rule 190 enumerates numbers that are multiples of

4. And if one looks down the center column of the pattern it produces,

rule 129 can be thought of as enumerating numbers that are powers of 2.

But what kinds of computations are cellular automata like the

ones on the right performing? If we compare the patterns they produce

to the patterns we have seen so far in this section, then immediately we

suspect that we cannot describe these computations by anything as

simple as saying, for example, that they generate primes.

So how then can we ever expect to describe these computations?

Traditional mathematics is not much help, but what we will see is that

there are a collection of ideas familiar from practical computing that

provide at least the beginnings of the framework that is needed.

Examples of simple cellular automata whose evolution corresponds to computations that can easily be described in traditional
mathematical terms. In analogy to the previous page, the positions of white cells at the bottom of the rule 94 picture correspond to
even numbers, on the left in rule 62 to multiples of 3, in rule 190 to multiples of 4, and in the center column of rule 129 to powers of 2.

Examples of cellular automata that have simple underlying rules but whose
overall behavior does not seem to correspond to computations with any
kind of simple description in standard mathematical or other terms. 

rule 94 rule 62 rule 190 rule 129

rule 30

rule 45

rule 73
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The Phenomenon of Universality

In the previous section we saw that it is possible to get cellular

automata to perform some fairly sophisticated computations. But for

each specific computation we wanted to do, we always set up a cellular

automaton with a different set of underlying rules. And indeed our

everyday experience with mechanical and other devices might lead us

to assume that in general in order to perform different kinds of tasks we

must always use systems that have different underlying constructions. 

But the remarkable discovery that launched the computer

revolution is that this is not in fact the case. And instead, it is possible

to build universal systems whose underlying construction remains

fixed, but which can be made to perform different tasks just by being

programmed in different ways. 

And indeed, this is exactly how practical computers work: the

hardware of the computer remains fixed, but the computer can be

programmed for different tasks by loading different pieces of software.

The idea of universality is also the basis for computer languages. For

in each language, there are a certain set of primitive operations, which are

then strung together in different ways to create programs for different tasks.

The details of a particular computer system or computer language

will certainly affect how easy it is to perform a particular task. But the

crucial fact that is by now a matter of common knowledge is that with

appropriate programming any computer system or computer language

can ultimately be made to perform exactly the same set of tasks.

One way to see that this must be true is to note that any

particular computer system or computer language can always be set up

by appropriate programming to emulate any other one.

Typically the way this is done is by having each individual

action in the system that is to be emulated be reproduced by some

sequence of actions in the other system. And indeed this is ultimately

how, for example, Mathematica works. For when one enters a

command such as , what actually happens is that the program

which implements the Mathematica language interprets this command

Log�15�
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by executing the appropriate sequence of machine instructions on

whatever computer system one is using.

And having now identified the phenomenon of universality in the

context of practical computing, one can immediately see various

analogs of it in other areas of common experience. Human languages

provide an example. For one knows that given a single fixed underlying

language, it is possible to describe an almost arbitrarily wide range of

things. And given any two languages, it is for the most part always

possible to translate between them.

So what about natural science? Is the phenomenon of

universality also relevant there? Despite its great importance in

computing and elsewhere, it turns out that universality has in the past

never been considered seriously in relation to natural science.

But what I will show in this chapter and the next is that in fact

universality is for example quite crucial in finding general ways to

characterize and understand the complexity we see in natural systems.

The basic point is that if a system is universal, then it must

effectively be capable of emulating any other system, and as a result it

must be able to produce behavior that is as complex as the behavior of

any other system. So knowing that a particular system is universal

thus immediately implies that the system can produce behavior that

is in a sense arbitrarily complex.

But now the question is what kinds of systems are in fact universal. 

Most present-day mechanical devices, for example, are built only

for rather specific tasks, and are not universal. And among electronic

devices there are examples such as simple calculators and electronic

address books that are not universal. But by now the vast majority of

practical electronic devices, despite all their apparent differences, are

based on computers that are universal.

At some level, however, these computers tend to be extremely

similar. Indeed, essentially all of them are based on the same kinds of

logic circuits, the same basic layout of data paths, and so on. And

knowing this, one might conclude that any system which was universal

must include direct analogs of these specific elements. But from
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experience with computer languages, there is already an indication that

the range of systems that are universal might be somewhat broader.

Indeed, Mathematica turns out to be a particularly good example,

in which one can pick very different sets of operations to use, and yet

still be able to implement exactly the same kinds of programs.

So what about cellular automata and other systems with simple

rules? Is it possible for these kinds of systems to be universal?

At first, it seems quite implausible that they could be. For the

intuition that one gets from practical computers and computer

languages seems to suggest that to achieve universality there must be

some fundamentally fairly sophisticated elements present.

But just as we found that the intuition which suggests that

simple rules cannot lead to complex behavior is wrong, so also the

intuition that simple rules cannot be universal also turns out to be

wrong. And indeed, later in this chapter, I will show an example of a

cellular automaton with an extremely simple underlying rule that can

nevertheless in the end be seen to be universal.

In the past it has tended to be assumed that universality is

somehow a rare and special quality, usually possessed only by systems

that are specifically constructed to have it. But one of the results of this

chapter is that in fact universality is a much more widespread

phenomenon. And in the next chapter I will argue that for example it

also occurs in a wide range of important systems that we see in nature.

A Universal Cellular Automaton

As our first specific example of a system that exhibits universality, I

discuss in this section a particular universal cellular automaton that

has been set up to make its operation as easy to follow as possible.

The rules for this cellular automaton itself are always the same.

But the fact that it is universal means that if it is given appropriate

initial conditions it can effectively be programmed to emulate for

example any possible cellular automaton—with any set of rules. 

The next three pages show three examples of this. 
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rule 254

The universal cellular automaton emulating elementary rule 254. Each cell in rule 254 is
represented by a block of 20 cells in the universal cellular automaton. Each of these
blocks encodes both the color of the cell it represents, and the rule for updating this color.
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rule 90

The universal cellular automaton emulating elementary rule 90. The underlying rules for
the universal cellular automaton are exactly the same as on the previous page. But each
block in the initial conditions now contains a representation of rule 90 rather than rule 254. 
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rule 30

The universal cellular automaton emulating rule 30. A total of 848 steps in the
evolution of the universal cellular automaton are shown, corresponding to 16
steps in the evolution of rule 30. 
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On each page the underlying rules for the universal cellular

automaton are exactly the same. But on the first page, the initial

conditions are set up so as to make the universal cellular automaton

emulate rule 254, while on the second page they are set up to make it

emulate rule 90, and on the third page rule 30. 

The pages that follow show how this works. The basic idea is

that a block of 20 cells in the universal cellular automaton is used to

represent each single cell in the cellular automaton that is being

emulated. And within this block of 20 cells is encoded both a

specification of the current color of the cell that is being represented, as

well as the rule by which that color is to be updated. 
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The rules for the universal cellular automaton. There are 19 possible colors for each cell, represented here by 19 different icons.
Since the new color of each cell depends on the previous colors of a total of five cells, there are in principle 2,476,099 cases to
cover. But by using  to stand for a cell with any possible color, many cases are combined. Note that the cases shown are in a
definite order reading down successive columns, with special cases given before more general ones. With the initial conditions
used, there are some combinations of cells that can never occur, and these are not covered in the rules shown. 
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1 1 1 1 1 1 1 0 = 254
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Details of how the universal cellular automaton emulates rule
254. Each of the blocks in the universal cellular automaton
represents a single cell in rule 254, and encodes both the current
color of the cell and the form of the rule used to update it.
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0 1 0 1 1 0 1 0 = 90

Details of how the universal cellular automaton emulates
rule 90. The only difference in initial conditions from the
picture on the previous page is that each block now encodes
rule 90 instead of rule 254.
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0 0 0 1 1 1 1 0 = 30

Details of how the universal cellular automaton emulates
rule 30. Once again, the only difference in initial conditions
from the facing page is that each block now encodes rule 30
instead of rule 90.
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In the examples shown, the cellular automata being emulated

have 8 cases in their rules, with each case giving the outcome for one of

the 8 possible combinations of colors of a cell and its immediate

neighbors. In every block of 20 cells in the universal cellular

automaton, these rules are encoded in a very straightforward way, by

listing in order the outcomes for each of the 8 possible cases.

To update the color of the cell represented by a particular block,

what the universal cellular automaton must then do is to determine

which of the 8 cases applies to that cell. And it does this by successively

eliminating cases that do not apply, until eventually only one case

remains. This process of elimination can be seen quite directly in the

pictures on the previous pages. Below each large black or white triangle,

there are initially 8 vertical dark lines. Each of these lines corresponds to

one of the 8 cases in the rule, and the system is set up so that a particular

line ends as soon as the case to which it corresponds has been eliminated.

It so happens that in the universal cellular automaton discussed

here the elimination process for a given cell always occurs in the block

immediately to the left of the one that represents that cell. But the

process itself is not too difficult to understand, and indeed it works in

much the way one might expect of a practical electronic logic circuit.

There are three basic stages, visible in the pictures as three stripes

moving to the left across each block. The first stripe carries the color of the

left-hand neighbor, and causes all cases in the rule where that neighbor does

not have the appropriate color to be eliminated. The next two stripes then

carry the color of the cell itself and of its right-hand neighbor. And after all

three stripes have passed, only one of the 8 cases ever survives, and this case

is then the one that gives the new color for the cell.

The pictures on the last few pages have shown how the universal

cellular automaton can in effect be programmed to emulate any cellular

automaton whose rules involve nearest neighbors and two possible

colors for each cell. But the universal cellular automaton is in no way

restricted to emulating only rules that involve nearest neighbors. And

thus on the facing page, for example, it is shown emulating a rule that

involves next-nearest as well as nearest neighbors.
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The universal cellular automaton emulating one step in the evolution of the rule shown above,
which involves next-nearest as well as nearest-neighbor cells. The rule now covers a total of 32
cases, corresponding to the possible arrangements of colors of a cell and its nearest and
next-nearest neighbors. The picture shows the evolution of five cells according to the rule shown,
with each cell now being represented by a block of 70 cells in the universal cellular automaton. 
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The blocks needed to represent each cell are now larger, since they

must include all 32 cases in the rule. There are also five elimination

stages rather than three. But despite these differences, the underlying rule

for the universal cellular automaton remains exactly the same.

What about rules that have more than two possible colors for

each cell? It turns out that there is a general way of emulating such

rules by using rules that have just two colors but a larger number of

neighbors. The picture on the facing page shows an example. The idea is

that each cell in the three-color cellular automaton is represented by a

block of three cells in the two-color cellular automaton. And by

looking at neighbors out to distance five on each side, the two-color

cellular automaton can update these blocks at each step in direct

correspondence with the rules of the three-color cellular automaton.

The same basic scheme can be used for rules with any number of

colors. And the conclusion is therefore that the universal cellular

automaton can ultimately emulate a cellular automaton with

absolutely any set of rules, regardless of how many neighbors and how

many colors they may involve. 

This is an important and at first surprising result. For among other

things, it implies that the universal cellular automaton can emulate

cellular automata whose rules are more complicated than its own. If one

did not know about the basic phenomenon of universality, then one

would most likely assume that by using more complicated rules one

would always be able to produce new and different kinds of behavior.

But from studying the universal cellular automaton in this section,

we now know that this is not in fact the case. For given the universal

cellular automaton, it is always in effect possible to program this cellular

automaton to emulate any other cellular automaton, and therefore to

produce whatever behavior the other cellular automaton could produce. 

In a sense, therefore, what we can now see is that nothing

fundamental can ever be gained by using rules that are more

complicated than those for the universal cellular automaton. For given

the universal cellular automaton, more complicated rules can always be

emulated just by setting up appropriate initial conditions.
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An example of how a cellular automaton with three possible colors and
nearest-neighbor rules can be emulated by a cellular automaton with only two

possible colors but a larger number of neighbors (in this case five on each side). The basic idea is to represent each cell in
the three-color rule by a block of three cells in the two-color rule, according to the correspondence given on the left. The
three-color rule illustrated here is totalistic code 1599 from page 70. 
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Looking at the specific universal cellular automaton that we have

discussed in this section, however, we would probably be led to assume

that while the phenomenon of universality might be important in

principle, it would rarely be relevant in practice. For the rules of the

universal cellular automaton in this section are quite complicated—

involving 19 possible colors for each cell, and next-nearest as well as

nearest neighbors. And if such complication was indeed necessary in

order to achieve universality, then one would not expect that universality

would be common, for example, in the systems we see in nature.

But what we will discover later in this chapter is that such

complication in underlying rules is in fact not needed. Indeed, in the

end we will see that universality can actually occur in cellular

automata with just two colors and nearest neighbors. The operation of

such cellular automata is considerably more difficult to follow than the

operation of the universal cellular automaton discussed in this section.

But the existence of universal cellular automata with such simple

underlying rules makes it clear that the basic results we have obtained

in this section are potentially of very broad significance. 

Emulating Other Systems with Cellular Automata

The previous section showed that a particular universal cellular

automaton could emulate any possible cellular automaton. But what

about other types of systems? Can cellular automata also emulate these?

With their simple and rather specific underlying structure one

might think that cellular automata would never be capable of

emulating a very wide range of other systems. But what I will show in

this section is that in fact this is not the case, and that in the end

cellular automata can actually be made to emulate almost every single

type of system that we have discussed in this book.

As a first example of this, the picture on the facing page shows

how a cellular automaton can be made to emulate a mobile automaton. 

The main difference between a mobile automaton and a cellular

automaton is that in a mobile automaton there is a special active cell

that moves around from one step to the next, while in a cellular
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automaton all cells are always effectively treated as being exactly the

same. And to emulate a mobile automaton with a cellular automaton it

turns out that all one need do is to divide the possible colors of cells in

the cellular automaton into two sets: lighter ones that correspond to

ordinary cells in the mobile automaton, and darker ones that

correspond to active cells. And then by setting up appropriate rules and

choosing initial conditions that contain only one darker cell, one can

produce in the cellular automaton an exact emulation of every step in

the evolution of a mobile automaton—as in the picture above.

The same basic approach can be used to construct a cellular

automaton that emulates a Turing machine, as illustrated on the next

page. Once again, lighter colors in the cellular automaton represent

ordinary cells in the Turing machine, while darker colors represent the

cell under the head, with a specific darker color corresponding to each

possible state of the head. 

One might think that the reason that mobile automata and

Turing machines can be emulated by cellular automata is that they

both consist of fixed arrays of cells, just like cellular automata. So then

one may wonder what happens with substitution systems, for example,

where there is no fixed array of elements. 

x
x

An example of a mobile automaton (see page 71) being emulated by a
cellular automaton. In the mobile automaton shown on the left each
cell has two possible colors. In the cellular automaton shown on the
right, the cells have four possible colors, with two darker colors
corresponding to the active cell in the mobile automaton. The rules for
the mobile automaton and the cellular automaton are shown below. In
the rules for the cellular automaton,  indicates a cell of any color. 
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The pictures on the facing page demonstrate that in fact these can

also be emulated by cellular automata. But while one can emulate each

step in the evolution of a mobile automaton or a Turing machine with a

single step of cellular automaton evolution, this is no longer in general

true for substitution systems. 

That this must ultimately be the case one can see from the fact

that the total number of elements in a substitution system can be

multiplied by a factor from one step to the next, while in a cellular

automaton the size of a pattern can only ever increase by a fixed

amount at each step. And what this means is that it can take

progressively larger numbers of cellular automaton steps to reproduce

each successive step in the evolution of the substitution system—as

illustrated in the pictures on the facing page.

The same kind of problem occurs in sequential substitution

systems—as well as in tag systems. But once again, as the pictures on

page 660 demonstrate, it is still perfectly possible to emulate systems

like these using cellular automata.

But just how broad is the set of systems that cellular automata can

ultimately emulate? All the examples of systems that I have shown so far

can at some level be thought of as involving sequences of elements that

are fairly directly analogous to the cells in a cellular automaton.

x
x

An example of a Turing machine being
emulated by a cellular automaton. In the
Turing machine on the left each cell has
two possible colors, and the head has
three possible states. In the cellular
automaton, the cells have eight possible
colors, with the lightest two colors being
used for cells not at the position of the
head. The rules for the Turing machine
and the cellular automaton are shown
below. In the rules for the cellular
automaton,  indicates a cell of any color. 
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(a) (b) (c)

(a) (b) (c)

Examples of cellular automata that emulate substitution systems. The successive steps in the evolution of each substitution
system are obtained at the points indicated by arrows. Note that the sequences of elements generated by the cellular automata
are aligned at the right, while in the pictures of the substitution systems shown they are aligned at the left. The rules for the
three cellular automata involve only nearest neighbors, and allow 12 possible colors for each cell.

(a) (b) (c)
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But one example where there is no such direct analogy is a

register machine. And at the outset one might not imagine that such a

system could ever readily be emulated by a cellular automaton. 

But in fact it turns out to be fairly straightforward to do so, as

illustrated at the top of the facing page. The basic idea is to have the

cellular automaton produce a pattern that expands and contracts on

each side in a way that corresponds to the incrementing and

decrementing of the sizes of numbers in the first and second registers of

A cellular automaton set up to emulate a sequential substitution system. The cellular automaton involves 28
colors and nearest-neighbor rules. The strings produced by the sequential substitution system appear on
successive diagonal stripes indicated by arrows in the evolution of the cellular automaton on the right.
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the register machine. In the center of the cellular automaton is then a

cell whose possible colors correspond to possible points in the program

for the register machine. And as the cell makes transitions from one

color to another, it effectively emits signals that move to the left or

right modifying the pattern in the cellular automaton in a way that

follows each instruction in the register machine program.

So what about systems based on numbers? Can these also be

emulated by cellular automata? As one example the picture on the right

shows how a cellular automaton can be set up to perform repeated

multiplication by 3 of numbers in base 2. And the only real difficulty in

this case is that carries generated in the process of multiplication may

need to be propagated from one end of the number to the other.

So what about practical computers? Can these also be emulated

by cellular automata? From the examples just discussed of register

machines and systems based on numbers, we already know that cellular

automata can emulate some of the low-level operations typically found

in computers. And the pictures on the next two pages show how

cellular automata can also be made to emulate two other important

aspects of practical computers.

An example of a register machine being
emulated by a cellular automaton. The
cellular automaton has 12 possible colors
for each cell. Of these, 5 are used by the
center cell to represent the point that has
been reached in the register machine
program. The other 7 are used to
implement signals that propagate out to
the left and right to do the analog of
incrementing and decrementing each
register. 

1
3

9

27

81

243

729

2187

Repeated multiplication
by 3 in base 2 being
performed by a cellular
automaton with 11
colors. 
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The pictures below show how a cellular automaton can evaluate

any logic expression that is given in a certain form. And the picture on the

facing page then shows how a cellular automaton can retrieve data from a

numbered location in what is effectively a random-access memory.

0 0

0

0 1

1

1 0

1

1 1

1

p ª q

0 0

0

0 1

0

1 0

0

1 1

1

p © q

0 0

0

0 1

0

1 0

0

1 1

1

¨ ( (¨ p) ª (¨ q))

00 0 0

1

0 1 0 1

0

10 1 0

0

11 1 1

1

(p © q) ª ( (¨ p) © (¨ q))

A cellular automaton which emulates basic logic circuits. The underlying rules for the cellular automaton are exactly
the same in each case, and involve nearest neighbors and five possible colors for each cell. But the initial condition
can represent a logic expression that involves any number of variables together with the operations of AND, OR and
NOT. In the examples above, two variables,  and , are used, and in each case the behavior obtained with all four
possible combinations of values for  and  are shown. 

p q

p q
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The details for any particular case are quite complicated, but in

the end it turns out that it is in principle possible to construct a cellular

automaton that emulates a practical computer in its entirety. 

And as a result, one can conclude that any of the very wide

range of computations that can be performed by practical computers

can also be done by cellular automata. 

From the previous section we know that any cellular automaton

can be emulated by a universal cellular automaton. But now we see that

a universal cellular automaton is actually much more universal than

we saw in the previous section. For not only can it emulate any cellular

automaton: it can also emulate any of a wide range of other systems,

including practical computers.

A cellular automaton set up to emulate random-access memory in a computer. The memory is on the right, and can be of any size.
Instructions come in from the left, with memory locations specified by addresses consisting of binary digits.

Operation 3: : read data at location 1 0 0 1 1 (19) Operation 4: : write a 0 at location 1 1 0 0 1 (25)

Operation 1: : write a 1 at location 1 0 0 1 1 (19) Operation 2: : write a 1 at location 1 1 0 1 (13)
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Emulating Cellular Automata with Other Systems

In the previous section we discovered the rather remarkable fact that

cellular automata can be set up to emulate an extremely wide range of

other types of systems. But is this somehow a special feature of cellular

automata, or do other systems also have similar capabilities?

In this section we will discover that in fact almost all of the

systems that we considered in the previous section—and in Chapter 3—

have the same capabilities. And indeed just as we showed that each of

these various systems could be emulated by cellular automata, so now

we will show that these systems can emulate cellular automata.

As a first example, the pictures below show how mobile automata

can be set up to emulate cellular automata. The basic idea is to have the

active cell in the mobile automaton sweep backwards and forwards,

updating cells as it goes, in such a way that after each complete sweep it

has effectively performed one step of cellular automaton evolution.

Examples of mobile automata emulating cellular automata. In case (a) the rules for the mobile automaton are set
up to emulate the rule 90 elementary cellular automaton; in case (b) they are set up to emulate rule 30. The
pictures on the right are obtained by keeping only the steps indicated by arrows on the left, corresponding to
times when the active cell in the mobile automaton is further to the left than it has ever been before. The mobile
automata used here involve 7 possible colors for each cell. 

(a) (b)

(a)

(b)
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The specific pictures at the bottom of the facing page are for

elementary cellular automata with two possible colors for each cell and

nearest-neighbor rules. But the same basic idea can be used for cellular

automata with rules of any kind. And this implies that it is possible to

construct for example a mobile automaton which emulates the

universal cellular automata that we discussed a couple of sections ago.

Such a mobile automaton must then itself be universal, since the

universal cellular automaton that it emulates can in turn emulate a

wide range of other systems, including all possible mobile automata.

A similar scheme to the one for mobile automata can also be used

for Turing machines, as illustrated in the pictures below. And once

again, by emulating the universal cellular automaton, it is then possible

to construct a universal Turing machine.

But as it turns out, a universal Turing machine was already

constructed in 1936, using somewhat different methods. And in fact

that universal Turing machine provided what was historically the very

first clear example of universality seen in any system.

(a) (b)

(a)

(b)

(a)

(b)

Examples of Turing machines that emulate cellular automata with rules 90 and 30. The pictures on the right are obtained by
keeping only the steps indicated by arrows on the left. The Turing machines have 6 states and 3 possible colors for each cell. 
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Continuing with the types of systems from the previous section,

we come next to substitution systems. And here, for once, we find that

at least at first we cannot in general emulate cellular automata. For as

we discussed on page 83, neighbor-independent substitution systems

can generate only patterns that are either repetitive or nested—so they

can never yield the more complicated patterns that are, for example,

needed to emulate rule 30.

But if one generalizes to neighbor-dependent substitution systems

then it immediately becomes very straightforward to emulate cellular

automata, as in the pictures below.

What about sequential substitution systems? Here again it turns

out to be fairly easy to emulate cellular automata—as the pictures at

the top of the facing page demonstrate.

Perhaps more surprisingly, the same is also true for ordinary tag

systems. And even though such systems operate in an extremely simple

underlying way, the pictures at the bottom of the facing page

demonstrate that they can still quite easily emulate cellular automata. 

What about symbolic systems? The structure of these systems is

certainly vastly different from cellular automata. But once again—as

the picture at the top of page 668 shows—it is quite easy to get these

systems to emulate cellular automata. 

Neighbor-dependent substitution systems that emulate cellular automata with rules 90 and 30. The
systems shown are simple examples of neighbor-dependent substitution systems with highly
uniform rules always yielding just one cell and corresponding quite directly to cellular automata.
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(a)

(b)

(a) (b)

Sequential substitution systems that emulate cellular automata with rules 90
and 30. The pictures at the top above are obtained by keeping only the steps
indicated by arrows on the left. The sequential substitution systems involve
elements with 3 possible colors.

rule 90 rule 90 shifted

(a)

rule 30 rule 30 shifted

(b)

rule 90 rule 90 shifted

(a)

rule 30 rule 30 shifted

(b)

(a) (b)

(a)

(b)

Tag systems that emulate the rule 90 and rule 30 cellular automata. The pictures
at the top above are obtained by keeping only the steps indicated by arrows on
the left. Both tag systems involve 6 colors.



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

668

And as soon as one knows that any particular type of system is

capable of emulating any cellular automaton, it immediately follows

that there must be examples of that type of system that are universal.

So what about the other types of systems that we considered in

Chapter 3? One that we have not yet discussed here are cyclic tag

systems. And as it turns out, we will end up using just such systems later

in this chapter as part of establishing a dramatic example of universality.

But to demonstrate that cyclic tag systems can manage to

emulate cellular automata is not quite as straightforward as to do this

for the various kinds of systems we have discussed so far. And indeed

we will end up doing it in several stages. The first stage, illustrated in

the picture at the top of the facing page, is to get a cyclic tag system to

emulate an ordinary tag system with the property that its rules depend

only on the very first element that appears at each step.

r � p � � p � � q � � p � � p � � r �
p � r � p � � p � � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � q � � � p � � p � � r �
r � p � � p � � q � � p � � q � � p � � p � � r �
p � r � p � � p � � � p � � p � � q � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � � p � � q � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � � q � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � p � � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � p � � p � � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � p � � p � � q � � � p � � p � � r �
r � p � � p � � q � � p � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � � p � � p � � q � � p � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � � p � � q � � p � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � � q � � p � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � q � � � p � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � q � � p � � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � q � � p � � q � � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � q � � p � � q � � p � � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � q � � p � � q � � p � � q � � � p � � p � � r �
r � p � � p � � q � � p � � q � � p � � q � � p � � q � � p � � p � � r �
p � r � p � � p � � � p � � p � � q � � p � � q � � p � � q � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � � p � � q � � p � � q � � p � � q � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � � q � � p � � q � � p � � q � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � p � � � p � � q � � p � � q � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � p � � p � � � q � � p � � q � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � p � � p � � p � � � p � � q � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � p � � p � � p � � p � � � q � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � p � � p � � p � � p � � p � � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � p � � p � � p � � p � � p � � p � � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � p � � p � � p � � p � � p � � p � � q � � � p � � p � � r �
r � p � � p � � q � � p � � p � � p � � p � � p � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � � p � � p � � q � � p � � p � � p � � p � � p � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � � p � � q � � p � � p � � p � � p � � p � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � � q � � p � � p � � p � � p � � p � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � q � � � p � � p � � p � � p � � p � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � q � � p � � � p � � p � � p � � p � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � q � � p � � p � � � p � � p � � p � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � q � � p � � p � � p � � � p � � p � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � q � � p � � p � � p � � p � � � p � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � q � � p � � p � � p � � p � � p � � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � q � � p � � p � � p � � p � � p � � q � � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � q � � p � � p � � p � � p � � p � � q � � p � � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � q � � p � � p � � p � � p � � p � � q � � p � � q � � � p � � p � � r �

(a)

(a) (b)

rule 90 shifted rule 30 shifted

(a)
ï[x_][ï][ï][ï] ! ï[x[ï]][ï][ï], ï[x_][ï][ï][ð] ! ï[x[ð]][ï][ð], ï[x_][ï][ð][ï] ! ï[x[ï]][ð][ï], ï[x_][ï][ð][ð] ! ï[x[ð]][ð][ð], ï[x_][ð][ï][ï] ! ï[x[ð]][ï][ï],
ï[x_][ð][ï][ð] ! ï[x[ï]][ï][ð], ï[x_][ð][ð][ï] ! ï[x[ð]][ð][ï], ï[x_][ð][ð][ð] ! ï[x[ï]][ð][ð], ñ[x_] ! ï[ñ[ï][ï]][x], ï[x_][ï][ï][ñ] ! x[ï][ï][ñ]

Symbolic systems set up to emulate cellular automata that have rules 90 and 30. Unlike the examples of symbolic systems in
Chapter 3, which involve only one symbol, these symbolic systems involve three symbols, ,  and . ï ð ñ

(b)
ï[x_][ï][ï][ï] ! ï[x[ï]][ï][ï], ï[x_][ï][ï][ð] ! ï[x[ð]][ï][ð], ï[x_][ï][ð][ï] ! ï[x[ð]][ð][ï], ï[x_][ï][ð][ð] ! ï[x[ð]][ð][ð], ï[x_][ð][ï][ï] ! ï[x[ð]][ï][ï],
ï[x_][ð][ï][ð] ! ï[x[ï]][ï][ð], ï[x_][ð][ð][ï] ! ï[x[ï]][ð][ï], ï[x_][ð][ð][ð] ! ï[x[ï]][ð][ð], ñ[x_] ! ï[ñ[ï][ï]][x], ï[x_][ï][ï][ñ] ! x[ï][ï][ñ]



T H E  N O T I O N  O F  C O M P U T A T I O N C H A P T E R  1 1

669

And having done this, the next stage is to get such a tag system to

emulate a Turing machine. The pictures on the next page illustrate how

this can be done. But at least with the particular construction shown,

the resulting Turing machine can only have cells with two possible

colors. The pictures below demonstrate, however, that such a Turing

tag system evolution tag system expanded evolution

tag system rule

cyclic tag system rule

A cyclic tag system
emulating a tag system that
depends only on the first
element at each step. In the
expanded tag system
evolution, successive colors
of elements are encoded by
having a black cell at
successive positions inside a
fixed block of white cells. 

cyclic tag system evolution

Turing machines with two
colors emulating ones with
more colors. 
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tag system ruletag system evolution (150 steps)

tag system compressed evolution (1500 steps)

Turing machine evolution

Turing machine rule

Turing machine left and right numbers

Emulating a Turing machine with a tag system that depends only on the first element at each step. The configuration of cells on each
side of the head in the Turing machine is treated as a base 2 number. At the steps indicated by arrows the tag system yields
sequences of dark cells with lengths that correspond to each of these numbers.
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machine can readily be made to emulate a Turing machine with any

number of colors. And through the construction of page 665 this then

finally shows that a cyclic tag system can successfully emulate any

cellular automaton—and can thus be universal.

This leaves only one remaining type of system from Chapter 3:

register machines. And although it is again slightly complicated, the

pictures on the next page—and below—show how even these systems

can be made to emulate Turing machines and thus cellular automata.

So what about systems based on numbers, like those we

discussed in Chapter 4? As an example, one can consider a

generalization of the arithmetic systems discussed on page 122—in

which one has a whole number , and at each step one finds the

remainder after dividing by a constant, and based on the value of this

remainder one then applies some specified arithmetic operation to .

register machine program

n

n

register 1
digits

(reversed)

(203,205 steps)

register 2
digits

Turing machine evolution

Turing machine rule

A register machine emulating a
slightly more complicated Turing
machine than on the next page. 
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Turing machine rule

register machine program

register 1
digits

(reversed)

(10,000 steps)

register 2
digits

Turing machine evolution

register machine evolution (300 steps)

register 1 register 2 register 3

register machine compressed evolution (1800 steps)

register 1 register 2

An example of a register machine set up to emulate a Turing machine. The Turing machine used
here has two states for the head; the register machine program has 72 instructions and uses
three registers. The register machine compressed evolution keeps only steps corresponding to
every other time the third register gets incremented from zero. 
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The picture below shows that such a system can be set up to

emulate a register machine. And from the fact that register machines

are universal it follows that so too are such arithmetic systems. 

And indeed the fact that it is possible to set up a universal system

using essentially just the operations of ordinary arithmetic is closely

related to the proof of Gödel’s Theorem discussed on page 784. 

But from what we have learned in this chapter, it no longer seems

surprising that arithmetic should be capable of achieving universality.

Indeed, considering all the kinds of systems that we have found can

exhibit universality, it would have been quite peculiar if arithmetic had

somehow not been able to support it.

5 = 0 + 5 20 30

11 = 1+ 5 21 30

12 = 2 + 5 21 30

33 = 3 + 5 21 31

17 = 2 + 5 20 31

48 = 3 + 5 20 32

49 = 4 + 5 20 32

15 = 0 + 5 20 31

31 = 1+ 5 21 31

10 = 0 + 5 21 30

21 = 1+ 5 22 30

22 = 2 + 5 22 30

63 = 3 + 5 22 31

32 = 2 + 5 21 31

93 = 3 + 5 21 32

47 = 2 + 5 20 32

138 = 3 + 5 20 33

139 = 4 + 5 20 33

45 = 0 + 5 20 32

91 = 1+ 5 21 32

30 = 0 + 5 21 31

61 = 1+ 5 22 31

20 = 0 + 5 22 30

41 = 1+ 5 23 30

42 = 2 + 5 23 30

123 = 3 + 5 23 31

62 = 2 + 5 22 31

183 = 3 + 5 22 32

92 = 2 + 5 21 32

273 = 3 + 5 21 33

137 = 2 + 5 20 33

408 = 3 + 5 20 34

409 = 4 + 5 20 34

135 = 0 + 5 20 33

271 = 1+ 5 21 33

90 = 0 + 5 21 32

181 = 1+ 5 22 32

60 = 0 + 5 22 31

121 = 1+ 5 23 31

40 = 0 + 5 23 30

81 = 1+ 5 24 30

82 = 2 + 5 24 30

243 = 3 + 5 24 31

122 = 2 + 5 23 31

363 = 3 + 5 23 32

182 = 2 + 5 22 32

543 = 3 + 5 22 33

272 = 2 + 5 21 33

813 = 3 + 5 21 34

407 = 2 + 5 20 34

1218 = 3 + 5 20 35

1219 = 4 + 5 20 35

405 = 0 + 5 20 34

811 = 1+ 5 21 34

270 = 0 + 5 21 33

541 = 1+ 5 22 33

180 = 0 + 5 22 32

361 = 1+ 5 23 32

120 = 0 + 5 23 31

241 = 1+ 5 24 31

80 = 0 + 5 24 30

2 n + 1

0

(n�-�1) /3

1

3 (n�-�1)

2

(n + 1) /2

3

(n�-�4) /3

4

2 n + 1

5

n + 1

6

3 (n�-�1)

7

n + 1

8

n + 1

9

2 n + 1

10

n + 1

11

3 (n�-�1)

12

(n + 1) /2

13

n + 1

14

2 n + 1

15

(n�-�1) /3

16

3 (n�-�1)

17

n + 1

18

(n�-�4) /3

19

2 n + 1

20

n + 1

21

3 (n�-�1)

22

(n + 1) /2

23

n + 1

24

2 n + 1

25

n + 1

26

3 (n�-�1)

27

n + 1

28

n + 1

29

An example of how a simple arithmetic
system can emulate a register machine.
The arithmetic system takes the value 
that it obtains at each step, computes

, and then depending on the
result applies to  one of the arithmetic
operations specified by the rule on the
left below. The rule is set up so that if the
value of  is written in the form , ,

 then the values of ,  and  on
successive steps correspond
respectively to the position of the
register machine in its program, and to
the values of the two registers (2 and 3
appear because they are the first two
primes; 5 appears because it is the
length of the register machine program).
The values of  in the pictures on the left
are indicated on a logarithmic scale. 

n

Mod[n, 30]

n

n i + 5 2a

3b i a b

n
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Implications of Universality

When we first discussed cellular automata, Turing machines,

substitution systems, register machines and so on in Chapter 3, each of

these kinds of systems seemed rather different. But already in Chapter 3

we discovered that at the level of overall behavior, all of them had

certain features in common. And now, finally, by thinking in terms of

computation, we can begin to see why this might be the case.

The main point, as the previous two sections have

demonstrated, is that essentially all of these various kinds of

systems—despite their great differences in underlying structure—can

ultimately be made to emulate each other. 

This is a very remarkable result, and one which will turn out to

be crucial to the new kind of science that I develop in this book. 

In a sense its most important consequence is that it implies that

from a computational point of view a very wide variety of systems, with

very different underlying structures, are at some level fundamentally

equivalent. For one might have thought that every different kind of

system that we discussed for example in Chapter 3 would be able to

perform completely different kinds of computations. 

But what we have discovered here is that this is not the case. And

instead it has turned out that essentially every single one of these systems

is ultimately capable of exactly the same kinds of computations.

And among other things, this means that it really does make sense to

discuss the notion of computation in purely abstract terms, without

referring to any specific type of system. For we now know that it ultimately

does not matter what kind of system we use: in the end essentially any

kind of system can be programmed to perform the same computations. And

so if we study computation at an abstract level, we can expect that the

results we get will apply to a very wide range of actual systems.

But it should be emphasized that among systems of any

particular type—say cellular automata—not all possible underlying

rules are capable of supporting the same kinds of computations.

Indeed, as we saw at the beginning of this chapter, some cellular

automata can perform only very simple computations, always yielding
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for example purely repetitive patterns. But the crucial point is that as

one looks at cellular automata with progressively greater

computational capabilities, one will eventually pass the threshold of

universality. And once past this threshold, the set of computations that

can be performed will always be exactly the same.

One might assume that by using more and more sophisticated

underlying rules, one would always be able to construct systems with ever

greater computational capabilities. But the phenomenon of universality

implies that this is not the case, and that as soon as one has passed the

threshold of universality, nothing more can in a sense ever be gained.

In fact, once one has a system that is universal, its properties are

remarkably independent of the details of its construction. For at least as

far as the computations that it can perform are concerned, it does not

matter how sophisticated the underlying rules for the system are, or

even whether the system is a cellular automaton, a Turing machine, or

something else. And as we shall see, this rather remarkable fact forms

the basis for explaining many of the observations we made in Chapter 3,

and indeed for developing much of the conceptual framework that is

needed for the new kind of science in this book.

The Rule 110 Cellular Automaton

In previous sections I have shown that a wide variety of different kinds

of systems can in principle be made to exhibit the phenomenon of

universality. But how complicated do the underlying rules need to be in

a specific case in order actually to achieve universality?

The universal cellular automaton that I described earlier in this

chapter had rather complicated underlying rules, involving 19 possible

colors for each cell, depending on next-nearest as well as nearest

neighbors. But this cellular automaton was specifically constructed so

as to make its operation easy to understand. And by not imposing this

constraint, one might expect that one would be able to find universal

cellular automata that have at least somewhat simpler underlying rules.

Fairly straightforward modifications to the universal cellular

automaton shown earlier in this chapter allow one to reduce the number
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of colors from 19 to 17. And in fact in the early 1970s, it was already

known that cellular automata with 18 colors and nearest-neighbor rules

could be universal. In the late 1980s—with some ingenuity—examples of

universal cellular automata with 7 colors were also constructed.

But such rules still involve 343 distinct cases and are by almost

any measure very complicated. And certainly rules this complicated

could not reasonably be expected to be common in the types of systems

that we typically see in nature. Yet from my experiments on cellular

automata in the early 1980s I became convinced that very much simpler

rules should also show universality. And by the mid-1980s I began to

suspect that even among the very simplest possible rules—with just two

colors and nearest neighbors—there might be examples of universality. 

The leading candidate was what I called rule 110—a cellular

automaton that we have in fact discussed several times before in this

book. Like any of the 256 so-called elementary rules, rule 110 can be

specified as below by giving the outcome for each of the eight possible

combinations of colors of a cell and its nearest neighbors.

Looking just at this very simple specification, however, it seems

at first quite absurd to think that rule 110 might be universal. But as

soon as one looks at a picture of how rule 110 actually behaves, the idea

that it could be universal starts to seem much less absurd. For despite

the simplicity of its underlying rules, rule 110 supports a whole variety

of localized structures—that move around and interact in many

complicated ways. And from pictures like the one on the facing page, it

begins to seem not unreasonable that perhaps these localized structures

could be arranged so as to perform meaningful computations.

The underlying rules for the rule 110 cellular automaton discussed in this section. As elsewhere in the
book, each of the eight cases shows what the new color of a cell should be based on its own previous
color, and on the previous colors of its neighbors. Despite the extreme simplicity of its underlying rules,
what this section will demonstrate is that the rule 110 cellular automaton is in fact universal, and is thus
in a sense capable of arbitrarily complex behavior. If the values of the cells in each block are labelled , 
and , then rule 110 can be written as  or . 

p q

r Mod[(1+ p) q r + q + r, 2] ¨ (p © q © r) © (q ª r)
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In the universal cellular automaton that we discussed earlier in

this chapter, each of the various kinds of components involved in its

operation had properties that were explicitly built into the underlying

rules. Indeed, in most cases each different type of component was

simply represented by a different color of cell. But in rule 110 there are

only two possible colors for each cell. So one may wonder how one

could ever expect to represent different kinds of components. 

A typical example of the behavior of rule 110 with random initial conditions. From looking at pictures like these one can begin to imagine
that it could be possible to arrange localized structures in rule 110 so as to be able to perform meaningful computations. Note that page
292 already showed many of the types of localized structures that can occur in rule 110.
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The crucial idea is to build up components from combinations of

localized structures that the rule in a sense already produces. And if this

works, then it is in effect a very economical solution. For it potentially

allows one to get a large number of different kinds of components without

ever needing to increase the complexity of the underlying rules at all.

But the problem with this approach is that it is typically very

difficult to see how the various structures that happen to occur in a

particular cellular automaton can be assembled into useful components.

And indeed in the case of rule 110 it took several years of work to

develop the necessary ideas and tools. But finally it has turned out to be

possible to show that the rule 110 cellular automaton is in fact universal.

It is truly remarkable that a system with such simple underlying

rules should be able to perform what are in effect computations of

arbitrary sophistication, but that is what its universality implies.

So how then does the proof of universality proceed?

The basic idea is to show that rule 110 can emulate any possible

system in some class of systems where there is already known to be

universality. And it turns out that a convenient such class of systems

are the cyclic tag systems that we introduced on page 95. 

Earlier in this chapter we saw that it is possible to construct a

cyclic tag system that can emulate any given Turing machine. And

since we know that at least some Turing machines are universal, this

fact then establishes that universal cyclic tag systems are possible. 

So if we can succeed in demonstrating that rule 110 can emulate

any cyclic tag system, then we will have managed to prove that rule 110

is itself universal. The sequence of pictures on the facing page shows

the beginnings of what is needed. The basic idea is to start from the

usual representation of a cyclic tag system, and then progressively to

change this representation so as to get closer and closer to what can

actually be emulated directly by rule 110.

Picture (a) shows an example of the evolution of a cyclic tag

system in the standard representation from pages 95 and 96. Picture (b)

then shows another version of this same evolution, but now rearranged

so that each element stays in the same position, rather than always

shifting to the left at each step.
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(a) (b)

(c)

(d)

summary:

Four views of a cyclic tag system
with rules as shown above, drawn
so as to be progressively closer to
what can be emulated directly in
rule 110. Picture (a) shows the
cyclic tag system in the same form
as on pages 95 and 96. Picture (b)
shows the system with sequences
on successive steps rearranged so
that they do not shift to the left
when the first element is removed.
Picture (c) is a skewed version of
(b) in which the way information is
used from the underlying rules at
each step is explicitly indicated.
Picture (d) shows a more definite
mechanism for the evolution of the
system in which different lines
effectively indicate the motions of
different pieces of information. 
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A cyclic tag system in general operates by removing the first

element from the sequence that exists at each step, and then adding a

new block of elements to the end of the sequence if this element is

black. A crucial feature of cyclic tag systems is that the choice of what

block of elements can be added does not depend in any way on the form

of the sequence. So, for example, on the previous page, there are just

two possibilities, and these possibilities alternate on successive steps.

Pictures (a) and (b) on the previous page illustrate the consequences

of applying the rules for a cyclic tag system, but in a sense give no

indication of an explicit mechanism by which these rules might be applied.

In picture (c), however, we see the beginnings of such a mechanism. 

The basic idea is that at each step in the evolution of the system,

there is a stripe that comes in from the left carrying information about

the block that can be added at that step. Then when the stripe hits the

first element in the sequence that exists at that step, it is allowed to pass

only if the element is black. And once past, the stripe continues to the

right, finally adding the block it represents to the end of the sequence.

But while picture (c) shows the effects of various lines carrying

information around the system, it gives no indication of why the lines

should behave in the way they do. Picture (d), however, shows a much

more explicit mechanism. The collections of lines coming in from the

left represent the blocks that can be added at successive steps. The

beginning of each block is indicated by a dashed line, while the

elements within the block are indicated by solid black and gray lines. 

When a dashed line hits the first element in the sequence that

exists at a particular step, it effectively bounces back in the form of a

line propagating to the left that carries the color of the first element. 

When this line is gray, it then absorbs all other lines coming from

the left until the next dashed line arrives. But when the line is black, it

lets lines coming from the left through. These lines then continue until

they collide with gray lines coming from the right, at which point they

generate a new element with the same color as their own.

By looking at picture (d), one can begin to see how it might be

possible for a cyclic tag system to be emulated by rule 110: the basic
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Objects constructed from localized structures in rule 110, used for the emulation of cyclic tag systems. Each of the pictures
shown is 500 cells wide. The objects in the top two pictures correspond to the thick vertical black and gray lines in picture (d)
on page 679. The objects in the next two pictures correspond to the dark and light gray lines that come in from the left in
picture (d). (Note that all the structures are left-right reversed in rule 110.) The third pair of pictures correspond to two versions
of the dashed lines in picture (d). And the fourth pair of pictures correspond to right-going lines on the right-hand side of
picture (d). All the localized structures involved in the pictures above were shown individually on page 292. Note that the
spacings between structures are crucial in determining the objects they represent.

a black element ready to be added a white element ready to be added

the initial form of a separator between blocks the later form of a separator between blocks

a black element in a block a white element in a block

a black element in the sequence a white element in the sequence
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idea is to have each of the various kinds of lines in the picture be

emulated by some collection of localized structures in rule 110.

But at the outset it is by no means clear that collections of

localized structures can be found that will behave in appropriate ways.

With some effort, however, it turns out to be possible to find the

necessary constructs, and indeed the previous page shows various

objects formed from localized structures in rule 110 that can be used to

emulate most of the types of lines in picture (d) on page 679.

The first two pictures show objects that correspond to the black

and white elements indicated by thick vertical lines in picture (d). Both of

these objects happen to consist of the same four localized structures, but

the objects are distinguished by the spacings between these structures.

The second two pictures on the previous page use the same idea

of different spacings between localized structures to represent the black

and gray lines shown coming in from the left in picture (d) on page 679.

Note that because of the particular form of rule 110, the objects

in the second two pictures on the previous page move to the left

rather than to the right. And indeed in setting up a correspondence

with rule 110, it is convenient to left-right reverse all pictures of

cyclic tag systems. But using the various objects from the previous

page, together with a few others, it is then possible to set up a

complete emulation of a cyclic tag system using rule 110. 

The diagram on the facing page shows schematically how this

can be done. Every line in the diagram corresponds to a single localized

structure in rule 110, and although the whole diagram cannot be drawn

completely to scale, the collisions between lines correctly show all the

basic interactions that occur between structures.

The next several pages then give details of what happens in each

of the regions indicated by circles in the schematic diagram. 

Region (a) shows a block separator—corresponding to a dashed

line in picture (d) on page 679—hitting the single black element in the

sequence that exists at the first step. Because the element hit is black,

an object must be produced that allows information from the block at

this step to pass through. Most of the activity in region (a) is concerned

with producing such an object. But it turns out that as a side-effect two
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A schematic diagram of how rule 110 can be made to emulate a cyclic tag system. Each line in this diagram corresponds to one localized
structure in rule 110. Note that the relative slopes of the structures are reproduced faithfully here, but their spacings are not. Note also
that lines shown in different colors here often correspond to the same structure in rule 110. 

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)
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(a) (b) (c)

Close-ups of circled regions shown schematically on the previous page. Each picture is 320 cells wide and shows 1200 evolution steps.
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(d) (e) (f )

Close-ups (continued).
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(g) (h) ( i)

Close-ups (continued).
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additional localized structures are produced that can be seen

propagating to the left. These structures could later cause trouble, but

looking at region (b) we see that in fact they just pass through other

structures that they meet without any adverse effect.

Region (c) shows what happens when the information

corresponding to one element in a block passes through the kind of

object produced in region (a). The number of localized structures that

represent the element is reduced from twelve to four, but the spacings

of these structures continue to specify its color. Region (d) then shows

how the object in region (c) comes to an end when the beginning of the

block separator from the next step arrives.

Region (e) shows how the information corresponding to a black

element in a block is actually converted to a new black element in the

sequence produced by the cyclic tag system. What happens is that the

four localized structures corresponding to the element in the block

collide with four other localized structures travelling in the opposite

direction, and the result is four stationary structures that correspond to

the new element in the sequence. 

Region (f) shows the same process as region (e) but for a white

element. The fact that the element is white is encoded in the wider

spacing of the structures coming from the right, which results in

narrower spacing of the stationary structures.

Region (g) shows the analog of region (a), but now for a white

element instead of a black one. The region begins much like region (a),

except that the four localized structures at the top are more narrowly

spaced. Starting around the middle of the region, however, the behavior

becomes quite different from region (a): while region (a) yields an object

that allows information to pass through, region (g) yields one that stops

all information, as shown in regions (h) and (i). 

Note that even though they begin very differently, regions (d) and

(i) end in the same way, reflecting the fact that in both cases the system

is ready to handle a new block, whatever that block may be.

The pictures on the last few pages were all made for a cyclic tag

system with a specific underlying rule. But exactly the same principles
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can be used whatever the underlying rule is. And the pictures below

show schematically what happens with a few other choices of rules.

The way that the lines interact in the interior of each picture is

always exactly the same. But what changes when one goes from one

rule to another is the arrangement of lines entering the picture.

In the way that the pictures are drawn below, the blocks that

appear in each rule are encoded in the pattern of lines coming in from the

left edge of the picture. But if each picture were extended sufficiently far

to the left, then all these lines would eventually be seen to start from the

top. And what this means is that the arrangement of lines can therefore

always be viewed as an initial condition for the system.

Schematic diagrams of how cyclic tag systems with four different underlying rules can be emulated. The lines in each diagram
correspond essentially to collections of localized structures in rule 110. The processes that occur in the interior of each picture are
always the same; the different cyclic tag system rules are implemented by different arrangements of lines entering each picture.
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This is then finally how universality is achieved in rule 110. The

idea is just to set up initial conditions that correspond to the blocks that

appear in the rule for whatever cyclic tag system one wants to emulate.

The necessary initial conditions consist of repetitions of blocks of

cells, where each of these blocks contains a pattern of localized

structures that corresponds to the block of elements that appear in the

rule for the cyclic tag system. The blocks of cells are always quite

complicated—for the cyclic tag system discussed in most of this section

they are each more than 3000 cells wide—but the crucial point is that

such blocks can be constructed for any cyclic tag system. And what this

means is that with suitable initial conditions, rule 110 can in fact be

made to emulate any cyclic tag system.

It should be mentioned at this point however that there are a few

additional complications involved in setting up appropriate initial

conditions to make rule 110 emulate many cyclic tag systems. For as

the pictures earlier in this section demonstrate, the way we have made

rule 110 emulate cyclic tag systems relies on many details of the

interactions between localized structures in rule 110. And it turns out

that to make sure that with the specific construction used the

appropriate interactions continue to occur at every step, one must put

some constraints on the cyclic tag systems being emulated.

In essence, these constraints end up being that the blocks that

appear in the rule for the cyclic tag system must always be a multiple of

six elements long, and that there must be some bound on the number of

steps that can elapse between the addition of successive new elements

to the cyclic tag system sequence.

Using the ideas discussed on page 669, it is not difficult, however,

to make a cyclic tag system that satisfies these constraints, but that

emulates any other cyclic tag system. And as a result, we may therefore

conclude that rule 110 can in fact successfully emulate absolutely any

cyclic tag system. And this means that rule 110 is indeed universal.
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The Significance of Universality in Rule 110

Practical computers and computer languages have traditionally been

the only common examples of universality that we ever encounter. And

from the fact that these kinds of systems tend to be fairly complicated

in their construction, the general intuition has developed that any

system that manages to be universal must somehow also be based on

quite complicated underlying rules.

But the result of the previous section shows in a rather

spectacular way that this is not the case. It would have been one thing if

we had found an example of a cellular automaton with say four or five

colors that turned out to be universal. But what in fact we have seen is

that a cellular automaton with one of the very simplest possible 256

rules manages to be universal.

So what are the implications of this result? Most important is

that it suggests that universality is an immensely more common

phenomenon than one might otherwise have thought. For if one knew

only about practical computers and about systems like the universal

cellular automaton discussed early in this chapter, then one would

probably assume that universality would rarely if ever be seen outside

of systems that were specifically constructed to exhibit it.

But knowing that a system like rule 110 is universal, the whole

picture changes, and now it seems likely that instead universality

should actually be seen in a very wide range of systems, including many

with rather simple rules.

A couple of sections ago we discussed the fact that as soon as one

has a system that is universal, adding further complication to its rules

cannot have any fundamental effect. For by virtue of its universality the

system can always ultimately just emulate the behavior that would be

obtained with any more complicated set of rules. 

So what this means is that if one looks at a sequence of systems with

progressively more complicated rules, one should expect that the overall

behavior they produce will become more complex only until the threshold

of universality is reached. And as soon as this threshold is passed, there

should then be no further fundamental changes in what one sees.
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The practical importance of this phenomenon depends greatly

however on how far one has to go to get to the threshold of universality. 

But knowing that a system like rule 110 is universal, one now

suspects that this threshold is remarkably easy to reach. And what this

means is that beyond the very simplest rules of any particular kind, the

behavior that one sees should quickly become as complex as it will ever be.

Remarkably enough, it turns out that this is essentially what we

already observed in Chapter 3. Indeed, not only for cellular automata but

also for essentially all of the other kinds of systems that we studied, we

found that highly complex behavior could be obtained even with rather

simple rules, and that adding further complication to these rules did not

in most cases noticeably affect the level of complexity that was produced.

So in retrospect the results of Chapter 3 should already have

suggested that simple underlying rules such as rule 110 might be able to

achieve universality. But what the elaborate construction in the

previous section has done is to show for certain that this is the case.

Class 4 Behavior and Universality

If one looks at the typical behavior of rule 110 with random initial

conditions, then the most obvious feature of what one sees is that there

are a large number of localized structures that move around and interact

with each other in complicated ways. But as we saw in Chapter 6, such

behavior is by no means unique to rule 110. Indeed, it is in fact

characteristic of all cellular automata that lie in what I called class 4.

The pictures on the next page show a few examples of such class

4 systems. And while the details are different in each case, the general

features of the behavior are always rather similar.

So what does this mean about the computational capabilities of

such systems? I strongly suspect that it is true in general that any

cellular automaton which shows overall class 4 behavior will turn

out—like rule 110—to be universal.

We saw at the end of Chapter 6 that class 4 rules always seem to

yield a range of progressively more complicated localized structures.

And my expectation is that if one looks sufficiently hard at any
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particular rule, then one will always eventually be able to find a set of

localized structures that is rich enough to support universality.

The final demonstration that a given rule is universal will no

doubt involve the same kind of elaborate construction as for rule 110.

(c)(a)
(b)

(d)

Examples of cellular automata with class 4 overall behavior, as discussed in Chapter 6. I strongly suspect that all class 4 rules,
like rule 110, will turn out to be universal. 

(c) totalistic 2-color next-nearest-neighbor code 52 (d) totalistic 3-color code 1815

(a) rule 110 (b) second-order rule 37
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But the point is that all the evidence I have so far suggests that for any

class 4 rule such a construction will eventually turn out to be possible.

So what kinds of rules show class 4 behavior?

Among the 256 so-called elementary cellular automata that allow

only two possible colors for each cell and depend only on nearest

neighbors, the only clear immediate example is rule 110—together with

rules 124, 137 and 193 obtained by trivially reversing left and right or

black and white. But as soon as one allows more than two possible

colors, or allows dependence on more than just nearest neighbors, one

immediately finds all sorts of further examples of class 4 behavior.

In fact, as illustrated in the pictures on the facing page, it is

sufficient in such cases just to use so-called totalistic rules in which the

new color of a cell depends only on the average color of cells in its

neighborhood, and not on their individual colors.

In two dimensions class 4 behavior can occur with rules that

involve only two colors and only nearest neighbors—as shown on page

249. And indeed one example of such a rule is the so-called Game of

Life that has been popular in recreational computing since the 1970s.

The strategy for demonstrating universality in a two-dimensional

cellular automaton is in general very much the same as in one

dimension. But in practice the comparative ease with which streams of

localized structures can be made to cross in two dimensions can reduce

some of the technical difficulties involved. And as it turns out there

was already an outline of a proof given even in the 1970s that the Game

of Life two-dimensional cellular automaton is universal. 

Returning to one dimension, one can ask whether among the 256

elementary cellular automata there are any apart from rule 110 that

show even signs of class 4 behavior. As we will see in the next section,

one possibility is rule 54. And if this rule is in fact class 4 then it is my

expectation that by looking at interactions between the localized

structures it supports it will in the end—with enough effort—be

possible to show that it too exhibits the phenomenon of universality.
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The Threshold of Universality in Cellular Automata

By showing that rule 110 is universal, we have established that

universality is possible even among cellular automata with the very

simplest kinds of underlying rules. But there remains the question of

what is ultimately needed for a cellular automaton—or any other kind

of system—to be able to achieve universality. 

In general, if a system is to be universal, then this means that by

setting up an appropriate choice of initial conditions it is possible to get the

system to emulate any type of behavior that can occur in any other system.

And as a consequence, cellular automata like the ones in the pictures below

are definitely not universal, since they always produce just simple uniform

or repetitive patterns of behavior, whatever initial conditions one uses.

In a sense the fundamental reason for this—as we discussed on

page 252—is that such class 1 and class 2 cellular automata never allow

any transmission of information except over limited distances. And the

result of this is that they can only support processes that involve the

correlated action of a limited number of cells.

In cellular automata like the ones at the top of the facing page

some information can be transmitted over larger distances. But the way

this occurs is highly constrained, and in the end these systems can only

produce patterns that are in essence purely nested—so that it is again

not possible for universality to be achieved.

What about additive rules such as 90 and 150? 

With simple initial conditions these rules always yield very

regular nested patterns. But with more complicated initial conditions,

they produce more complicated patterns of behavior—as the pictures at

Examples of elementary cellular automata which only ever show purely uniform or purely repetitive behavior, and which
therefore definitely cannot be universal. These cellular automata are necessarily all class 1 or class 2 systems. 

rule 4 rule 51 rule 108 rule 250
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the bottom of this page illustrate. As we saw on page 264, however,

these patterns never in fact really correspond to more than rather

simple transformations of the initial conditions. Indeed, even after say

1,048,576 steps—or any number of steps that is a power of two—the

array of cells produced always turns out to correspond just to a simple

superposition of two or three shifted copies of the initial conditions.

Examples of cellular automata that do allow information to be transmitted over large distances, but only in
very restricted ways. The overall patterns produced by such cellular automata are essentially nested. No
cellular automata of this kind can ever be universal.

Examples of cellular automata with additive rules. The repetitive occurrence of states that correspond to
simple transformations of the initial conditions prevent such cellular automata from ever being universal.

rule 184

rule 14 rule 62

rule 90

rule 150 rule 90 rule 150
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And since there are many kinds of behavior that do not return to

such predictable forms after any limited number of steps, one must

conclude that additive rules cannot be universal.

At the end of the last section I mentioned rule 54 as another

elementary cellular automaton besides rule 110 that might be class 4.

The pictures below show examples of the typical behavior of rule 54.

Two views of the evolution of rule 54 from typical random initial conditions. The top view shows
the color of every cell at every step. The bottom groups together pairs of cells, and shows only
every other step. There are various localized structures—and hints of class 4 behavior. 
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Some localized structures are definitely seen. But are they enough

to support class 4 behavior and universality? The pictures below show

what happens if one starts looking in turn at each of the possible initial

conditions for rule 54. At first one sees only simple repetitive behavior.

At initial condition 291 one sees a very simple form of nesting. And as

one continues one sees various other repetitive and nested forms. But at

least up to the hundred millionth initial condition one sees nothing

that is fundamentally any more complicated.

So can rule 54 achieve universality? I am not sure. It could be that

if one went just a little further in looking at initial conditions one

would see more complicated behavior. And it could be that even the

structures shown above can be combined to produce all the richness

that is needed for universality. But it could also be that whatever one

does rule 54 will always in the end just show purely repetitive or nested

behavior—which cannot on its own support universality.

What about other elementary cellular automata?

56549

Forms of behavior seen in the first 100 million initial conditions for rule 54. With initial condition 291 the th new stripe on the
right is produced at step . Even in the last case shown, the arrangement of stripes eventually becomes completely
regular, with the th new stripe being produced at step . Pairs of cells are grouped
together in each picture, as at the bottom of the facing page.

n

2 n2 + 8 n - 9

n n2 + 21 n/2 - {6, 5, -4, 3}0Mod[n, 4] + 11 /2

1 3 75 259 291 787 803
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As I will discuss in the next chapter, my general expectation is that

more or less any system whose behavior is not somehow fundamentally

repetitive or nested will in the end turn out to be universal. But I suspect

that this fact will be very much easier to establish for some systems than

for others—with rule 110 being one of the easiest cases.

In general what one needs to do in order to prove universality is to

find a procedure for setting up initial conditions in one system so as to

make it emulate some general class of other systems. And at some level

the main challenge is that our experience from programming and

engineering tends to provide us with only a limited set of methods for

coming up with such a procedure. Typically what we are used to doing is

constructing things in stages. Usually we start by building components,

and then we progressively assemble these into larger and larger

structures. And the point is that at each stage, we need think directly

only about the scale of structures that we are currently handling—and

not for example about all the pieces that make up these structures.

In proving the universality of rule 110, we were able to follow

essentially the same basic approach. We started by identifying various

localized structures, and then we used these structures as components

in building up the progressively larger structures that we needed.

What was in a sense crucial to our approach was therefore that

we could readily control the transmission of information in the system.

For this is what allowed us to treat different localized structures as

being separate and independent objects.

And indeed in any system with class 4 behavior, things will

typically always work in more or less the same way. But in class 3

systems they will not. For what usually happens in such systems is that

a change made even to a single cell will eventually spread to affect all

other cells. And this kind of uncontrolled transmission of information

makes it very difficult to identify pieces that could be used as definite

components in a construction.

So what can be done in such cases? The most obvious possibility

is that one might be able to find special classes of initial conditions in

which transmission of information could be controlled. And an

example where this can be potentially done is rule 73. 
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The pictures below show the typical behavior of rule 73—first

with completely random initial conditions, and then with initial

conditions in which no run of an even number of black squares occurs.

In the second case rule 73 exhibits typical class 3 behavior—with

the usual uncontrolled transmission of information. In the first case,

however, the black walls that are present seem to prevent any

long-range transmission of information at all. 

So can one then achieve something intermediate in rule 73—in

which information is transmitted, but only in a controlled way? 

The pictures at the top of the next page give some indication of how

this might be done. For they show that with an appropriate background rule

73 supports various localized structures, some of which move. And while

these structures may at first seem more like those in rule 54 than rule 110,

I strongly suspect that the complexity of the typical behavior of rule 73 will

be reflected in more sophisticated interactions between the structures—and

will eventually provide what is needed to allow universality to be

demonstrated in much the same way as in rule 110.

Two examples of rule 73. The top example uses completely random initial conditions; the bottom
example uses initial conditions in which no run of an even number of black squares ever occurs. The
bottom example is actually part of the pattern obtained from a single black cell—just to the right of
the center column, starting with step 1000.
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So what about a case like rule 30? With strictly repetitive initial

conditions—like any cellular automaton—this must yield purely

repetitive behavior. But as soon as one perturbs such initial conditions,

one normally seems to get only complicated and seemingly random

behavior, as in the top row of pictures below. 

Yet it turns out still to be possible to get localized structures—as

the bottom row of pictures above demonstrate. But these structures

Examples of localized structures in rule 73. Note that in the last case shown, the background patterns on either side are mirror images.

Examples of patterns produced by rule 30 with repetitive backgrounds. The top row shows the effect of inserting a single extra
black cell into various backgrounds. The bottom row shows all localized structures involving up to 25 cells supported by rule 30 on
repetitive backgrounds with blocks of up to 25 cells. Note that these localized structures always move one cell to the right at each
step—making it impossible for them to interact in non-trivial ways.
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always seem to move at the same speed, and so can never interact. And

even after searching many billions of cases, I have never succeeded in

finding any useful set of localized structures in rule 30.

The picture below shows what happens in rule 45. Many possible

perturbations to repetitive initial conditions again yield seemingly

random behavior. But in one case a nested pattern is produced. And

structures that remain localized are now fairly common—but just as in

rule 30 always seem to move at the same speed.

So although this means that the particular type of approach we

used to demonstrate the universality of rule 110 cannot immediately be

used for rule 30 or rule 45, it certainly does not mean that these rules

are not in the end universal. And as I will discuss in the next chapter, it

is my very strong belief that in fact they will turn out to be.

So how might we get evidence for this?

If a system is universal, then this means that with a suitable

encoding of initial conditions its evolution must emulate the evolution

of any other system. So this suggests that one might be able to get

evidence about universality just by trying different possible encodings,

and then seeing what range of other systems they allow one to emulate.

In the case of the 19-color universal cellular automaton on page

645 it turns out that encodings in which individual black and white

cells are represented by particular 20-cell blocks are sufficient to allow

the universal cellular automaton to emulate all 256 possible elementary

cellular automata—with one step in the evolution of each of these

corresponding to 53 steps in the evolution of the original system. 

Examples of patterns produced by inserting a single extra black cell into repetitive backgrounds for rule 45. Note the appearance of a
slanted version of the nested pattern from rule 90. In rule 45, localized structures turn out to be fairly common—but as in rule 30 they
always seem to move at the same speed, and so presumably cannot interact to produce any kind of class 4 behavior. 
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rule 146

rule 90

rule 0

rule 204

rule 170

rule 240

rule 146

rule 90

rule 22

rule 50

rule 51

rule 170

rule 204

rule 240

rule 254

rule 0

rule 50

rule 170

rule 204

rule 240

rule 254

rule 54

rule 90

rule 90

rule 45

rule 148

rule 176

rule 184

rule 170

rule 0

rule 128

rule 136

rule 240

rule 15

rule 204

rule 48

rule 41

rule 90

rule 0

rule 204

rule 51

rule 192

rule 238

rule 128

rule 94

rule 0

rule 240

rule 170

rule 204

rule 110

rule 240

rule 128

rule 170

rule 240

rule 184

rule 0

rule 184

Examples of using various specific elementary cellular automata to emulate other elementary
cellular automata. In each case single cells are encoded as blocks of cells, and all distinct such
encodings with blocks up to length 20 are shown. 
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So given a particular elementary cellular automaton one can then

ask what other elementary cellular automata it can emulate using

blocks up to a certain length. 

The pictures on the facing page show a few examples. 

The results are not particularly dramatic. No single rule is able to

emulate many others—and the rules that are emulated tend to be rather

simple. An example of a slight surprise is that rule 45 ends up being

able to emulate rule 90. But at least with blocks up to length 25, rule 30

for example is not able to emulate any non-trivial rules at all.

From the proof of universality that we gave it follows that rule

110 must be able to emulate any other elementary cellular automaton

with blocks of some size—but with the actual construction we

discussed this size will be quite astronomical. And certainly in the

picture on the facing page rule 110 does not seem to stand out.

But although it seems somewhat difficult to emulate the

complete evolution of one cellular automaton with another, it turns out

to be much easier to emulate fragments of evolution for limited

numbers of steps. And as an example the picture below shows how rule

30 can be made to emulate the basic action of one step in rule 90.

The idea is to set up a configuration in rule 30 so that if one

inserts input at particular positions the output from the underlying rule

30 evolution corresponds exactly to what one would get from a single

step of rule 90 evolution. And in the particular case shown, this is

achieved by having blocks 3 cells wide between each input position.

But as the picture on the next page indicates, by having

appropriate blocks 5 cells wide rule 30 can actually be made to emulate

Rule 30 set up to emulate a single XOR operation—as used in a step of rule 90 evolution. The initial
conditions for rule 30 are fixed except at the two positions indicated, where input can effectively be
given. The picture shows that for each possible combination of inputs, the result from the rule 30
evolution corresponds exactly to the output from the XOR. 
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one step in the evolution of every single one of the 256 possible

elementary cellular automata.

So what about other underlying rules?

The picture on the facing page shows for several different

underlying rules which of the 256 possible elementary rules can

successfully be emulated with successively wider blocks. In cases where

the underlying rules have only rather simple behavior—as with rules 90

and 184—it turns out that it is never possible to emulate more than a

rule 0

rule 1

rule 2

rule 30

rule 45

rule 90

rule 110

rule 255

Illustrations of how rule 30 can be set up to emulate a single step in the evolution of all elementary cellular automata. 



T H E  N O T I O N  O F  C O M P U T A T I O N C H A P T E R  1 1

705

few of the 256 possible elementary rules. But for underlying rules that

have more complex behavior—like rules 22, 30, or 110—it turns out

that in the end it is always possible to emulate all 256 elementary rules.

The emulation here is, however, only for a single step. So the fact

that it is possible does not immediately establish universality in any

ordinary sense. But it does once again support the idea that almost any

cellular automaton whose behavior seems to us complex can be made

to do computations that are in a sense as sophisticated as one wants. 

And this suggests that such cellular automata will in the end turn

out to be universal—with the result that out of the 256 elementary

rules one expects that perhaps as many as 27 will in fact be universal.
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rule 184

block width

Summaries of how various underlying cellular automata do in emulating a single step in the evolution of each of the 256
possible elementary cellular automata using the scheme from the facing page with blocks of successively greater widths.



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

706

Universality in Turing Machines and Other Systems

From the results of the previous few sections, we now have some idea

where the threshold for universality lies in cellular automata. But what

about other kinds of systems—like Turing machines? How complicated

do the rules need to be in order to get universality?

In the 1950s and early 1960s a certain amount of work was done

on trying to construct small Turing machines that would be universal.

The main achievement of this work was the construction of the

universal machine with 7 states and 4 possible colors shown below.

The rule for a universal Turing machine with 7 states and 4 colors constructed in 1962. Until now, this was essentially the simplest
known universal Turing machine. Note that one element of the rule can be considered as specifying that the Turing machine
should “halt” with the head staying in the same location and same state. 

Turing machine evolution Turing machine evolution compressed

tag system evolution tag system evolution shifted

tag system rule:

An example of how the Turing machine above can emulate a tag system. A black element in the tag
system is set up to correspond to a block of four cells in the Turing machine, while a white element
corresponds to a single cell.
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The picture at the bottom of the facing page shows how universality

can be proved in this case. The basic idea is that by setting up appropriate

initial conditions on the left, the Turing machine can be made to emulate

any tag system of a certain kind. But it then turns out from the discussion

of page 667 that there are tag systems of this kind that are universal.

It is already an achievement to find a universal Turing machine as

comparatively simple as the one on the facing page. And indeed in the forty

years since this example was found, no significantly simpler one has been

found. So one might conclude from this that the machine on the facing

page is somehow at the threshold for universality in Turing machines.

But as one might expect from the discoveries in this book, this is

far from correct. And in fact, by using the universality of rule 110 it

turns out to be possible to come up with the vastly simpler universal

Turing machine shown below—with just 2 states and 5 possible colors. 

The rule for the simplest Turing machine currently known to be universal, based on discoveries in
this book. The machine has 2 states and 5 possible colors. 

Turing machine evolution compressed

Turing machine evolution

An example of how the Turing machine above manages to emulate rule 110.
The compressed picture is made by keeping only the steps indicated at
which the head is further to the right than ever before. To get the picture
shown requires running the Turing machine for a total of 5000 steps.
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As the picture at the bottom of the previous page illustrates, this

Turing machine emulates rule 110 in a quite straightforward way: its head

moves systematically backwards and forwards, at each complete sweep

updating all cells according to a single step of rule 110 evolution. And

knowing from earlier in this chapter that rule 110 is universal, it then

follows that the 2-state 5-color Turing machine must also be universal. 

So is this then the simplest possible universal Turing machine?

I am quite certain that it is not. And in fact I expect that there are

some significantly simpler ones. But just how simple can they actually be?

If one looks at the 4096 Turing machines with 2 states and 2 colors

it is fairly easy to see that their behavior is in all cases too simple to

support universality. So between 2 states and 2 colors and 2 states and 5

colors, where does the threshold for universality in Turing machines lie?

(a) (b) (c) (d)

(c) (d)

(a) (b)

(c) (d)

(a) (b)

Examples of Turing machines with 2 states and 4 colors that show
complex behavior. The compressed pictures above are based on
50,000 steps of evolution. In all cases, all cells are initially white. 
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The pictures at the bottom of the facing page give examples of

some 2-state 4-color Turing machines that show complex behavior. And

I have little doubt that most if not all of these are universal.

Among such 2-state 4-color Turing machines perhaps one in

50,000 shows complex behavior when started from a blank tape.

Among 4-state 2-color Turing machines the same kind of complex

behavior is also seen—as discussed on page 81—but now it occurs only

in perhaps one out of 200,000 cases. 

So what about Turing machines with 2 states and 3 colors? There

are a total of 2,985,984 of these. And most of them yield fairly simple

behavior. But it turns out that 14 of them—all essentially equivalent—

produce considerable complexity, even when started from a blank tape.

The picture below shows an example. 

And although it will no doubt be very difficult to prove, it seems

likely that this Turing machine will in the end turn out to be universal.

And if so, then presumably it will by most measures be the very

simplest Turing machine that is universal. 

One of the 14 essentially equivalent 2-state 3-color Turing machines that
yield complicated behavior when started from a blank tape. The
compressed picture above is made by taking the first 100,000 steps, and

keeping only those at which the head is further to the left than ever before. The interior of the pattern that emerges
is like an inverted version of the rule 60 additive cellular automaton; the boundary, however, is more complicated. In
the numbering scheme of page 761 this is machine 596,440 out of the total of 2,985,984 with 2 states and 3 colors. 
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With 3 states and 2 colors it turns out that with blank initial

conditions all of the 2,985,984 possible Turing machines of this type

quickly evolve to produce simple repetitive or nested behavior. With

more complicated initial conditions the behavior one sees can

sometimes be more complicated, at least for a while—as in the pictures

below. But in the end it still always seems to resolve into a simple form.

Yet despite this, it still seems conceivable that with appropriate

initial conditions significantly more complex behavior might occur—and

might ultimately allow universality in 3-state 2-color Turing machines. 

From the universality of rule 110 we know that if one just starts

enumerating cellular automata in a particular order, then after going

through at most 110 rules, one will definitely see universality. And

from other results earlier in this chapter it seems likely that in fact one

would tend to see universality even somewhat earlier—after going

through only perhaps just ten or twenty rules. 

Among Turing machines, the universal 2-state 5-color rule on

page 707 can be assigned the number 8,679,752,795,626. So this means

(a) (b) (c)

(a)

(b)

(c)

Examples of 3-state 2-color
Turing machines which behave
for a while in slightly complicated
ways. With more elaborate initial
conditions, these machines can
be made to exhibit complicated
behavior for longer. 
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that after going through perhaps nine trillion Turing machines one will

definitely tend to find an example that is universal. But presumably one

will actually find examples much earlier—since for example the 2-state

3-color machine on page 709 is only number 596,440. 

And although these numbers are larger than for cellular

automata, the fact remains that the simplest potentially universal

Turing machines are still very simple in structure, suggesting that the

threshold for universality in Turing machines—just like in cellular

automata—is in many respects very low. 

So what about other types of systems?

I suspect that in almost any case where we have seen complex

behavior earlier in this book it will eventually be possible to show that

there is universality. And indeed, as I will discuss at length in the next

chapter, I believe that in general there is a close connection between

universality and the appearance of complex behavior.

Previous examples of systems that are known to be universal

have typically had rules that are far too complicated to see this with any

clarity. But an almost unique instance where it could potentially have

been seen even long ago are what are known as combinators.

Combinators are a particular case of the symbolic systems that

we discussed on page 102 of Chapter 3. Originally intended as an

idealized way to represent structures of functions defined in logic,

combinators were actually first introduced in 1920—sixteen years

before Turing machines. But although they have been investigated

somewhat over the past eighty years, they have for the most part been

viewed as rather obscure and irrelevant constructs.

The basic rules for combinators are given below.

With short initial conditions, the pictures at the top of the next

page demonstrate that combinators tend to evolve quickly to simple

fixed points. But with initial condition (e) of length 8 the pictures show

Rules for symbolic systems known as combinators, first
introduced in 1920, and proved universal by the mid-1930s.

�[x_][y_][z_] ! x[z][y[z]]
�[x_][y_] ! x
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� [ � ] [ � ] [ � [ � [ � ] ] [ � ] ]
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� [ � [ � ] ] [ � ]
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� [ � [ � [ � ] ] [ � ] ] [ � [ � [ � [ � ] ] [ � ] ] ]
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(a) �[�[�]][�][�][�] (b) �[�[�]][�][�][�]

( j) �[�[�[�][�]]][�][�][�] (k) �[�][�][�[�[�][�]]][�]

(h) �[�][�][�[�[�]]][�][�] ( i) �[�][�][�[�]][�][�[�]]

( f ) �[�][�][�[�[�[�]]]][�] (g) �[�][�][�[�[�]]][�][�]

(e) �[�[�]][�][�][�][�]

(e) �[�[�]][�][�][�][�]

(c) �[�[�]][�][�][�][�] (d) �[�][�][�[�[�]]][�]

0
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(f )

0
200
400
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(g)

0
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(h)

0

5000

0 20 40 60 80

( i)

0
500

1000
1500

0 50 100

( j)

0
5000

10000

0 200 400 600 800 1000

(k)

Examples of combinator evolution. The expression in case (e) is the shortest that leads to unlimited growth. The
plots at the bottom show the total sizes of expressions reached on successive steps. Note that the detailed
pattern of evolution—though not any final fixed point reached—can depend on the fact that the combinator rules
are applied at each step in Mathematica  order. /.
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that no fixed point is reached, and instead there is exponential growth

in total size—with apparently rather random internal behavior.

Other combinators yield still more complicated behavior—

sometimes with overall repetition or nesting, but often not. 

There are features of combinators that are not easy to capture

directly in pictures. But from pictures like the ones on the facing page it

is rather clear that despite their fairly simple underlying rules, the

behavior of combinators can be highly complex. 

And while issues of typical behavior have not really been studied

before, it has been known that combinators are universal almost since

the concept of universality was first introduced in the 1930s. 

One way that we can now show this is to demonstrate that

combinators can emulate rule 110. And as the pictures on the next page

illustrate, it turns out that just repeatedly applying the combinator

expression below reproduces successive steps in the evolution of rule 110. 

There has in the past been no overall context for understanding

universality in combinators. But now what we have seen suggests that such

universality is in a sense just associated with general complex behavior.

Yet we saw in Chapter 3 that there are symbolic systems with

rules even simpler than combinators that still show complex behavior.

And so now I suspect that these too are universal.

And in fact wherever one looks, the threshold for universality

seems to be much lower than one would ever have imagined. And this is

one of the important basic observations that led me to formulate the

Principle of Computational Equivalence that I discuss in the next chapter. 

�[�[�[�]][�[�[�[�[�][�]]]][�[�[�]][�[�[�[�[�[�][�]][�[�[�]]]][�[�[�[�[�]][�[�[�[�[�][�]]]][�[�[�]][�[�[�[

�]][�[�[�[�[�][�]]]][�[�[�]][�[�[�][�]][�[�]]]]]][�[�[�]][�[�[�[�][�]][�[�[�]]]][�[�[�]]]]]]]]][�[�[�]][�[�[

�[�][�]][�[�[�]]]][�[�]]]]]]][�[�[�[�[�[�][�]][�[�[�[�[�][�]][�[�[�[�[�][�]][�[�]]][�[�]]]]][�[�]]]]]]][�[�[

�]][�[�[�[�[�[�][�]][�[�[�]]]][�[�[�[�[�]][�[�[�[�[�][�]]]][�[�[�]][�[�[�[�][�]][�[�]]][�[�]]]]]][�[�[�]][

�[�[�[�]][�[�[�[�[�][�]]]][�[�[�]][�[�[�][�]][�[�[�]]]]]]][�[�[�]][�[�[�[�[�[�][�]][�[�]]][�[�[�]]]][�[�[�[

�[�][�]][�[�]]][�[�]]][�[�[�]]]]][�[�[�[�[�[�[�][�]][�[�]]][�[�]]][�[�[�]]]][�[�[�]]]][�[�[�[�[�[�[�[�][

�]][�[�]]][�[�]]][�[�]]][�[�[�]]]][�[�[�]]]][�[�]]]]]]]]]]][�[�[�[�]][�[�[�[�[�][�]]]][�[�[�]][�[�[�[�]][�[

�[�[�[�][�]]]][�[�[�]][�[�[�][�]][�[�]]]]]][�[�[�]]]]]]][�[�[�]]]]][�[�[�]]]]]]][�[�]]]]]][�[�[�]][�[�[�[�[

�[�]][�]]]][�[�[�][�]][�[�[�]]]]]]

A combinator expression that corresponds to the operation of doing one step of rule 110 evolution. 



10 100 1000 10,000

10 100 1000 10,000 100,000

(459 steps) (664 steps)

step 1

step 2

step 3 step 4

Emulating the rule 110 cellular automaton using combinators. The rule 110 combinator from the previous page is applied once for
each step of rule 110 evolution. The initial state is taken to consist of a single black cell. 
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12
The Principle of 
Computational Equivalence

Basic Framework

Following the discussion of the notion of computation in the previous

chapter, I am now ready in this chapter to describe a bold hypothesis

that I have developed on the basis of the discoveries in this book, and

that I call the Principle of Computational Equivalence.

Among principles in science the Principle of Computational

Equivalence is almost unprecedentedly broad—for it applies to essentially

any process of any kind, either natural or artificial. And its implications

are both broad and deep, addressing a host of longstanding issues not only

in science, but also in mathematics, philosophy and elsewhere.

The key unifying idea that has allowed me to formulate the

Principle of Computational Equivalence is a simple but immensely

powerful one: that all processes, whether they are produced by human

effort or occur spontaneously in nature, can be viewed as computations.

In our practical experience with computers, we are mostly

concerned with computations that have been set up specifically to

perform particular tasks. But as I discussed at the beginning of this book

there is nothing fundamental that requires a computation to have any

such definite purpose. And as I discussed in the previous chapter the

process of evolution of a system like a cellular automaton can for

example perfectly well be viewed as a computation, even though in a

sense all the computation does is generate the behavior of the system.
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But what about processes in nature? Can these also be viewed as

computations? Or does the notion of computation somehow apply only

to systems with abstract elements like, say, the black and white cells in

a cellular automaton?

Before the advent of modern computer applications one might

have assumed that it did. But now every day we see computations being

done with a vast range of different kinds of data—from numbers to text

to images to almost anything else. And what this suggests is that it is

possible to think of any process that follows definite rules as being a

computation—regardless of the kinds of elements it involves.

So in particular this implies that it should be possible to think of

processes in nature as computations. And indeed in the end the only

unfamiliar aspect of this is that the rules such processes follow are

defined not by some computer program that we as humans construct

but rather by the basic laws of nature.

But whatever the details of the rules involved the crucial point is

that it is possible to view every process that occurs in nature or

elsewhere as a computation. And it is this remarkable uniformity that

makes it possible to formulate a principle as broad and powerful as the

Principle of Computational Equivalence.

Outline of the Principle

Across all the vastly different processes that we see in nature and in

systems that we construct one might at first think that there could be

very little in common. But the idea that any process whatsoever can be

viewed as a computation immediately provides at least a uniform

framework in which to discuss different processes. 

And it is by using this framework that the Principle of

Computational Equivalence is formulated. For what the principle does

is to assert that when viewed in computational terms there is a

fundamental equivalence between many different kinds of processes.

There are various ways to state the Principle of Computational

Equivalence, but probably the most general is just to say that almost all
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processes that are not obviously simple can be viewed as computations

of equivalent sophistication.

And although at first this statement might seem vague and

perhaps almost inconsequential, we will see in the course of this

chapter that in fact it has many very specific and dramatic implications.

One might have assumed that among different processes

there would be a vast range of different levels of computational

sophistication. But the remarkable assertion that the Principle of

Computational Equivalence makes is that in practice this is not the

case, and that instead there is essentially just one highest level of

computational sophistication, and this is achieved by almost all

processes that do not seem obviously simple.

So what might lead one to this rather surprising idea? An

important clue comes from the phenomenon of universality that I

discussed in the previous chapter and that has been responsible for

much of the success of modern computer technology. For the essence of

this phenomenon is that it is possible to construct universal systems

that can perform essentially any computation—and which must

therefore all in a sense be capable of exhibiting the highest level of

computational sophistication.

The most familiar examples of universal systems today are

practical computers and general-purpose computer languages. But in

the fifty or so years since the phenomenon of universality was first

identified, all sorts of types of systems have been found to be able to

exhibit universality. Indeed, as I showed in the previous chapter, it is

possible for example to get universality in cellular automata, Turing

machines, register machines—or in fact in practically every kind of

system that I have considered in this book.

So this implies that from a computational point of view even

systems with quite different underlying structures will still usually

show a certain kind of equivalence, in that rules can be found for them

that achieve universality—and that therefore can always exhibit the

same level of computational sophistication.

But while this is already a remarkable result, it represents

only a first step in the direction of the Principle of Computational
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Equivalence. For what the result implies is that in many kinds of

systems particular rules can be found that achieve universality and thus

show the same level of computational sophistication. But the result

says nothing about whether such rules are somehow typical, or are

instead very rare and special.

And in practice, almost without exception, the actual rules that

have been established to be universal have tended to be quite complex.

Indeed, most often they have in effect been engineered out of all sorts of

components that are direct idealizations of various elaborate structures

that exist in practical digital electronic computers.

And on the basis of traditional intuition it has almost always

been assumed that this is somehow inevitable, and that in order to get

something as sophisticated as universality there must be no choice but

to set up rules that are themselves special and sophisticated.

One of the dramatic discoveries of this book, however, is that this

is not the case, and that in fact even extremely simple rules can be

universal. Indeed, from our discussion in the previous chapter, we

already know that among the 256 very simplest possible cellular

automaton rules at least rule 110 and three others like it are universal.

And my strong suspicion is that this is just the beginning, and

that in time a fair fraction of other simple rules will also be shown to be

universal. For one of the implications of the Principle of Computational

Equivalence is that almost any rule whose behavior is not obviously

simple should ultimately be capable of achieving the same level of

computational sophistication and should thus in effect be universal.

So far from universality being some rare and special property that

exists only in systems that have carefully been built to exhibit it, the

Principle of Computational Equivalence implies that instead this

property should be extremely common. And among other things this

means that universality can be expected to occur not only in many

kinds of abstract systems but also in all sorts of systems in nature.

And as we shall see in this chapter, this idea already has many

important and surprising consequences. But still it is far short of what

the full Principle of Computational Equivalence has to say. 
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For knowing that a particular rule is universal just tells one that

it is possible to set up initial conditions that will cause a sophisticated

computation to occur. But it does not tell one what will happen if, for

example, one starts from typical simple initial conditions.

Yet the Principle of Computational Equivalence asserts that even in

such a case, whenever the behavior one sees is not obviously simple, it will

almost always correspond to a computation of equivalent sophistication. 

So what this means is that even, say, in cellular automata that

start from very simple initial conditions, one can expect that those

aspects of their behavior that do not look obviously simple will usually

correspond to computations of equivalent sophistication.

According to the Principle of Computational Equivalence

therefore it does not matter how simple or complicated either the rules

or the initial conditions for a process are: so long as the process itself

does not look obviously simple, then it will almost always correspond

to a computation of equivalent sophistication. 

And what this suggests is that a fundamental unity exists across a

vast range of processes in nature and elsewhere: despite all their

detailed differences every process can be viewed as corresponding to a

computation that is ultimately equivalent in its sophistication.

The Content of the Principle

Like many other fundamental principles in science, the Principle of

Computational Equivalence can be viewed in part as a new law of

nature, in part as an abstract fact and in part as a definition. For in one

sense it tells us what kinds of computations can and cannot happen in

our universe, yet it also summarizes purely abstract deductions about

possible computations, and provides foundations for more general

definitions of the very concept of computation.

Without the Principle of Computational Equivalence one might

assume that different systems would always be able to perform

completely different computations, and that in particular there would

be no upper limit on the sophistication of computations that systems

with sufficiently complicated structures would be able to perform.
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But the discussion of universality in the previous chapter already

suggests that this is not the case. For it implies that at least across the

kinds of systems that we considered in that chapter there is in fact an

upper limit on the sophistication of computations that can be done.

For as we discussed, once one has a universal system such a

system can emulate any of the kinds of systems that we considered—

even ones whose construction is more complicated than its own. So

this means that whatever kinds of computations can be done by the

universal system, none of the other systems will ever be able to do

computations that have any higher level of sophistication.

And as a result it has often seemed reasonable to define what one

means by a computation as being precisely something that can be done

by a universal system of the kind we discussed in the previous chapter.

But despite this, at an abstract level one can always imagine

having systems that do computations beyond what any of the cellular

automata, Turing machines or other types of systems in the previous

chapter can do. For as soon as one identifies any such class of

computations, one can imagine setting up a system which includes an

infinite table of their results.

But even though one can perfectly well imagine such a system,

the Principle of Computational Equivalence makes the assertion that

no such system could ever in fact be constructed in our actual universe.

In essence, therefore, the Principle of Computational Equivalence

introduces a new law of nature to the effect that no system can ever

carry out explicit computations that are more sophisticated than those

carried out by systems like cellular automata and Turing machines.

So what might make one think that this is true? One important

piece of evidence is the success of the various models of natural systems

that I have discussed in this book based on systems like cellular

automata. But despite these successes, one might still imagine that

other systems could exist in nature that are based, say, on continuous

mathematics, and which would allow computations more sophisticated

than those in systems like cellular automata to be done.

Needless to say, I do not believe that this is the case, and in fact if

one could find a truly fundamental theory of physics along the lines I
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discussed in Chapter 9 it would actually be possible to establish this

with complete certainty. For such a theory would have the feature that

it could be emulated by a universal system of the type I discussed in the

previous chapter—with the result that nowhere in our universe could

computations ever occur that are more sophisticated than those carried

out by the universal systems we have discussed.

So what about computations that we perform abstractly with

computers or in our brains? Can these perhaps be more sophisticated?

Presumably they cannot, at least if we want actual results, and not just

generalities. For if a computation is to be carried out explicitly, then it

must ultimately be implemented as a physical process, and must

therefore be subject to the same limitations as any such process.

But as I discussed in the previous section, beyond asserting that

there is an upper limit to computational sophistication, the Principle of

Computational Equivalence also makes the much stronger statement

that almost all processes except those that are obviously simple

actually achieve this limit.

And this is related to what I believe is a very fundamental

abstract fact: that among all possible systems with behavior that is not

obviously simple an overwhelming fraction are universal.

So what would be involved in establishing this fact? 

One could imagine doing much as I did early in this book and

successively looking at every possible rule for some type of system like

a cellular automaton. And if one did this what one would find is that

many of the rules exhibit obviously simple repetitive or nested

behavior. But as I discovered early in this book, many also do not, and

instead exhibit behavior that is often vastly more complex. 

And what the Principle of Computational Equivalence then

asserts is that the vast majority of such rules will be universal.

If one starts from scratch then it is not particularly difficult to

construct rules—though usually fairly complicated ones—that one

knows are universal. And from the result in the previous chapter that

rule 110 is universal it follows for example that any rule containing this

one must also be universal. But if one is just given an arbitrary rule—
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and especially a simple one—then it can be extremely difficult to

determine whether or not the rule is universal. 

As we discussed in the previous chapter, the usual way to

demonstrate that a rule is universal is to find a scheme for setting up

initial conditions and for decoding output that makes the rule emulate

some other rule that is already known to be universal.

But the problem is that in any particular case there is almost no

limit on how complicated such a scheme might need to be. In fact,

about the only restriction is that the scheme itself should not exhibit

universality just in setting up initial conditions and decoding output. 

And indeed it is almost inevitable that the scheme will have to

be at least somewhat complicated: for if a system is to be universal

then it must be able to emulate any of the huge range of other systems

that are universal—with the result that specifying which particular

such system it is going to emulate for the purposes of a proof will

typically require giving a fair amount of information, all of which

must somehow be part of the encoding scheme.

It is often even more difficult to prove that a system is not

universal than to prove that it is. For what one needs to show is that no

possible scheme can be devised that will allow the system to emulate

any other universal system. And usually the only way to be sure of this

is to have a more or less complete analysis of all possible behavior that

the system can exhibit.

If this behavior always has an obvious repetitive or nested form

then it will often be quite straightforward to analyze. But as we saw in

Chapter 10, in almost no other case do standard methods of perception

and analysis allow one to make much progress at all.

As mentioned in Chapter 10, however, I do know of a few

systems based on numbers for which a fairly complete analysis can be

given even though the overall behavior is not repetitive or nested or

otherwise obviously simple. And no doubt some other examples like

this do exist. But it is my strong belief—as embodied in the Principle of

Computational Equivalence—that in the end the vast majority of

systems whose behavior is not obviously simple will turn out to be

universal.
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If one tries to use some kind of systematic procedure to test

whether systems are universal then inevitably there will be three types

of outcomes. Sometimes the procedure will successfully prove that a

system is universal, and sometimes it will prove that it is not. But very

often the procedure will simply come to no definite conclusion, even

after spending a large amount of effort.

Yet in almost all such cases the Principle of Computational

Equivalence asserts that the systems are in fact universal. And although

almost inevitably it will never be easy to prove this in any great

generality, my guess is that, as the decades go by, more and more

specific rules will end up being proved to exhibit universality.

But even if one becomes convinced of the abstract fact that out of

all possible rules that do not yield obviously simple behavior the vast

majority are universal, this still does not quite establish the assertion

made by the Principle of Computational Equivalence that rules of this

kind that appear in nature and elsewhere are almost always universal.

For it could still be that the particular rules that appear are

somehow specially selected to be ones that are not universal. And

certainly there are all sorts of situations in which rules are constrained

to have behavior that is too simple to support universality. Thus, for

example, in most kinds of engineering one tends to pick rules whose

behavior is simple enough that one can readily predict it. And as I

discussed in Chapter 8, something similar seems to happen with rules

in biology that are determined by natural selection.

But when there are no constraints that force simple overall

behavior, my guess is that most rules that appear in nature can be

viewed as being selected in no special way—save perhaps for the fact

that the structure of the rules themselves tends to be fairly simple.

And what this means is that such rules will typically show the

same features as rules chosen at random from all possibilities—with the

result that presumably they do in the end exhibit universality in almost

all cases where their overall behavior is not obviously simple.

But even if a wide range of systems can indeed be shown to be

universal this is still not enough to establish the full Principle of

Computational Equivalence. For the Principle of Computational
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Equivalence is concerned not only with the computational

sophistication of complete systems but also with the computational

sophistication of specific processes that occur within systems.

And when one says that a particular system is universal what one

means is that it is possible by choosing appropriate initial conditions

to make the system perform computations of essentially any

sophistication. But from this there is no guarantee that the vast

majority of initial conditions—including perhaps all those that could

readily arise in nature—will not just yield behavior that corresponds

only to very simple computations.

And indeed in the proof of the universality of rule 110 in the

previous chapter extremely complicated initial conditions were used to

perform even rather simple computations. 

But the Principle of Computational Equivalence asserts that in

fact even if it comes from simple initial conditions almost all behavior

that is not obviously simple will in the end correspond to computations

of equivalent sophistication.

And certainly there are all sorts of pictures in this book that lend

support to this idea. For over and over again we have seen that simple

initial conditions are quite sufficient to produce behavior of immense

complexity, and that making the initial conditions more complicated

typically does not lead to behavior that looks any different.

Quite often part of the reason for this, as illustrated in the

pictures on the facing page, is that even with a single very simple initial

condition the actual evolution of a system will generate blocks that

correspond to essentially all possible initial conditions. And this means

that whatever behavior would be seen with a given overall initial

condition, that same behavior will also be seen at appropriate places in

the single pattern generated from a specific initial condition.

So this suggests a way of having something analogous to

universality in a single pattern instead of in a complete system. The

idea would be that a pattern that is universal could serve as a kind of

directory of possible computations—with different regions in the

pattern giving results for all possible different initial conditions.
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So as a simple example one could imagine having a pattern laid

out on a three-dimensional array with each successive vertical plane

giving the evolution of some one-dimensional universal system from

each of its successive possible initial conditions. And with this setup

any computation, regardless of its sophistication, must appear

somewhere in the pattern.

Occurrences of progressively longer blocks in the pattern generated by rule 30 starting from a single black cell. So far as I can
tell, all possible blocks eventually appear, potentially letting the pattern serve as a kind of directory of all possible computations.
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In a pattern like the one obtained from rule 30 above different

computations are presumably not arranged in any such straightforward

way. But I strongly suspect that even though it may be quite impractical

to find particular computations that one wants, it is still the case that

essentially any possible computation exists somewhere in the pattern.

Much as in the case of universality for complete systems,

however, the Principle of Computational Equivalence does not just say

that a sophisticated computation will be found somewhere in a pattern

produced by a system like rule 30. Rather, it asserts that unless it is

obviously simple essentially any behavior that one sees should

correspond to a computation of equivalent sophistication.

And in a sense this can be viewed as providing a new way to

define the very notion of computation. For it implies that essentially

any piece of complex behavior that we see corresponds to a kind of

lump of computation that is at some level equivalent.

It is a little like what happens in thermodynamics, where all

sorts of complicated microscopic motions are identified as

corresponding in some uniform way to a notion of heat. 

But computation is both a much more general and much more

powerful notion than heat. And as a result, the Principle of

Computational Equivalence has vastly richer implications than the

laws of thermodynamics—or for that matter, than essentially any single

collection of laws in science.

The Validity of the Principle

With the intuition of traditional science the Principle of Computational

Equivalence—and particularly many of its implications—might seem

almost absurd. But as I have developed more and more new intuition

from the discoveries in this book so I have become more and more

certain that the Principle of Computational Equivalence must be valid.

But like any principle in science with real content it could in the

future always be found that at least some aspect of the Principle of

Computational Equivalence is not valid. For as a law of nature the

principle could turn out to disagree with what is observed in our
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universe, while as an abstract fact it could simply represent an incorrect

deduction, and even as a definition it could prove not useful or relevant.

But as more and more evidence is accumulated for phenomena

that would follow from the principle, so it becomes more and more

reasonable to expect that at least in some formulation or another the

principle itself must be valid.

As with many fundamental principles the most general

statement of the Principle of Computational Equivalence may at first

seem quite vague. But almost any specific application of the principle

will tend to suggest more specific and precise statements.

Needless to say, it will always be possible to come up with

statements that might seem related to the Principle of Computational

Equivalence but are not in fact the same. And indeed I suspect this will

happen many times over the years to come. For if one tries to use

methods from traditional science and mathematics it is almost

inevitable that one will be led to statements that are rather different

from the actual Principle of Computational Equivalence.

Indeed, my guess is that there is basically no way to formulate an

accurate statement of the principle except by using methods from the

kind of science introduced in this book. And what this means is that

almost any statement that can, for example, readily be investigated by

the traditional methods of mathematical proof will tend to be largely

irrelevant to the true Principle of Computational Equivalence.

In the course of this book I have made a variety of discoveries

that can be interpreted as limited versions of the Principle of

Computational Equivalence. And as the years and decades go by, it is

my expectation that many more such discoveries will be made. And as

these discoveries are absorbed, I suspect that general intuition in

science will gradually shift, until in the end the Principle of

Computational Equivalence will come to seem almost obvious.

But as of now the principle is far from obvious to most of those

whose intuition is derived from traditional science. And as a result all

sorts of objections to the principle will no doubt be raised. Some of

them will presumably be based on believing that actual systems have
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less computational sophistication than is implied by the principle,

while others will be based on believing that they have more.

But at an underlying level I suspect that the single most common

cause of objections will be confusion about various idealizations that

are made in traditional models for systems. For even though a system

itself may follow the Principle of Computational Equivalence, there is

no guarantee that this will also be true of idealizations of the system.

As I discussed at the beginning of Chapter 8, finding a good model

for a system is mostly about finding idealizations that are as simple as

possible, but that nevertheless still capture the important features of

the system. And the point is that in the past there was never a clear idea

that computational capabilities of systems might be important, so these

were usually not captured correctly when models were made.

Yet one of the characteristics of the kinds of models based on

simple programs that I have developed in this book is that they do

appear successfully to capture the computational capabilities of a wide

range of systems in nature and elsewhere. And in the context of such

models what I have discovered is that there is indeed all sorts of

evidence for the Principle of Computational Equivalence.

But if one uses the kinds of traditional mathematical models that

have in the past been common, things can seem rather different.

For example, many such models idealize systems to the point

where their complete behavior can be described just by some simple

mathematical formula that relates a few overall numerical quantities.

And if one thinks only about this idealization one almost inevitably

concludes that the system has very little computational sophistication.

It is also common for traditional mathematical models to

suggest too much computational sophistication. For example, as I

discussed at the end of Chapter 7, models based on traditional

mathematical equations often give constraints on behavior rather

than explicit rules for generating behavior. 

And if one assumes that actual systems somehow always manage

to find ways to satisfy such constraints, one will be led to conclude that

these systems must be computationally more sophisticated than any of
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the universal systems I have discussed—and must thus violate the

Principle of Computational Equivalence.

For as I will describe in more detail later in this chapter, an

ordinary universal system cannot in any finite number of steps

guarantee to be able to tell whether, say, there is any pattern of black

and white squares that satisfies some constraint of the type I discussed

at the end of Chapter 5. Yet traditional mathematical models often in

effect imply that systems in nature can do things like this.

But I explained at the end of Chapter 7 this is presumably just an

idealization. For while in simple cases complicated molecules may for

example arrange themselves in configurations that minimize energy,

the evidence is that in more complicated cases they typically do not.

And in fact, what they actually seem to do is instead to explore different

configurations by an explicit process of evolution that is quite

consistent with the Principle of Computational Equivalence.

One of the features of cellular automata and most of the other

computational systems that I have discussed in this book is that they

are in some fundamental sense discrete. Yet traditional mathematical

models almost always involve continuous quantities. And this has in

the past often been taken to imply that systems in nature are able to do

computations that are somehow fundamentally more sophisticated

than standard computational systems.

But for several reasons I do not believe this conclusion. 

For a start, the experience has been that if one actually tries to

build analog computers that make use of continuous physical processes

they usually end up being less powerful than ordinary digital

computers, rather than more so.

And indeed, as I have discussed several times in this book, it is in

many cases clear that the whole notion of continuity is just an

idealization—although one that happens to be almost required if one

wants to make use of traditional mathematical methods.

Fluids provide one obvious example. For usually they are thought

of as being described by continuous mathematical equations. But at an

underlying level real fluids consist of discrete particles. And this means

that whatever the mathematical equations may suggest, the actual
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ultimate computational capabilities of fluids must be those of a system

of discrete particles.

But while it is known that many systems in nature are made up

of discrete elements, it is still almost universally believed that there are

some things that are fundamentally continuous—notably positions in

space and values of quantum mechanical probability amplitudes.

Yet as I discussed in Chapter 9 my strong suspicion is that at a

fundamental level absolutely every aspect of our universe will in the

end turn out to be discrete. And if this is so, then it immediately

implies that there cannot ever ultimately be any form of continuity in

our universe that violates the Principle of Computational Equivalence.

But what if one somehow restricts oneself to a domain where

some particular system seems continuous? Can one even at this level

perform more sophisticated computations than in a discrete system?

My guess is that for all practical purposes one cannot. Indeed, it is

my suspicion that with almost any reasonable set of assumptions even

idealized perfectly continuous systems will never in fact be able to

perform fundamentally more sophisticated computations.

In a sense the most basic defining characteristic of continuous

systems is that they operate on arbitrary continuous numbers. But just

to represent every such number in general requires something like an

infinite sequence of digits. And so this implies that continuous systems

must always in effect be able to operate on infinite sequences.

But in itself this is not particularly remarkable. For even a

one-dimensional cellular automaton can be viewed as updating an

infinite sequence of cells at every step in its evolution. But one feature

of this process is that it is fundamentally local: each cell behaves in a

way that is determined purely by cells in a local neighborhood around it.

Yet even the most basic arithmetic operations on continuous

numbers typically involve significant non-locality. Thus, for example,

when one adds two numbers together there can be carries in the digit

sequence that propagate arbitrarily far. And if one computes even a

function like  almost any digit in  will typically have an effect on

almost any digit in the result, as the pictures on the facing page indicate.

1�x x
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But can this detailed kind of phenomenon really be used as the

basis for doing fundamentally more sophisticated computations? To

compare the general computational capabilities of continuous and

discrete systems one needs to find some basic scheme for constructing

inputs and decoding outputs that one can use in both types of systems.

And the most obvious and practical approach is to require that this

always be done by finite discrete processes. 

But at least in this case it seems fairly clear that none of the

simple functions shown above can for example ever lead to results that

go beyond ones that could readily be generated by the evolution of

ordinary discrete systems. And the same is presumably true if one

works with essentially any of what are normally considered standard

mathematical functions. But what happens if one assumes that one can

set up a system that not only finds values of such functions but also

finds solutions to arbitrary equations involving them?

With pure polynomial equations one can deduce from results in

algebra that no fundamentally more sophisticated computations

become possible. But as soon as one even allows trigonometric

functions, for example, it turns out that it becomes possible to

construct equations for which finding a solution is equivalent to finding

x 1/x x2 �!!!!x

x 1/x x2 �!!!!x

Results from mathematical operations on numbers with similar digit sequences. Each successive line in each picture gives the digit
sequence obtained by using a value of  in which one successive digit has been reversed. The top row of pictures start from the
repetitive base 2 digit sequence of ; the bottom row of pictures from . The lack of coherence between successive
digit sequences in each picture reflects the non-locality of mathematical operations when applied to digit sequences.

x

x = 3/5 x = p /4
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the outcome of an infinite number of steps in the evolution of a system

like a cellular automaton.

And while these particular types of equations have never

seriously been proposed as idealizations of actual processes in nature or

elsewhere, it turns out that a related phenomenon can presumably

occur in differential equations—which represent the most common

basis for mathematical models in most areas of traditional science.

Differential equations of the kind we discussed at the end of

Chapter 4 work at some level a little like cellular automata. For given

the state of a system, they provide rules for determining its state at

subsequent times. But whereas cellular automata always evolve only in

discrete steps, differential equations instead go through a continuous

process of evolution in which time appears just as a parameter.

And by making simple algebraic changes to the way that time

enters a differential equation one can often arrange, as in the pictures

below, that processes that would normally take an infinite time will

actually always occur over only a finite time. 

� �

$tt u[t, x] Ð $xx u[t, x] (1 - t)4 ($tt u[t, x] - 2 $t u[t, x] / (1 - t)) Ð $xx u[t, x]

Indications of how an infinite amount of computational work can in principle be performed in a finite
time in continuous systems like partial differential equations. The top left picture shows a solution to
the wave equation. The top right picture shows a solution to an equation obtained from the wave
equation by transforming the time variable according to . The bottom row shows what the
same transformation does to patterns of the kind that are generated by simple cellular automata. It
is presumably possible to construct partial differential equations that give both the original and
transformed versions of these patterns.

t ! 1 - 1/ t
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So if such processes can correspond to the evolution of systems

like cellular automata, then it follows at least formally that differential

equations should be able to do in finite time computations that would

take a discrete system like a cellular automaton an infinite time to do.

But just as it is difficult to make an analog computer faithfully

reproduce many steps in a discrete computation, so also it seems likely

that it will be difficult to set up differential equations that for arbitrarily

long times successfully manage to emulate the precise behavior of

systems like cellular automata. And in fact my suspicion is that to

make this work will require taking limits that are rather similar to

following the evolution of the differential equations for an infinite time.

So my guess is that even within the formalism of traditional

continuous mathematics realistic idealizations of actual processes will

never ultimately be able to perform computations that are more

sophisticated than the Principle of Computational Equivalence implies.

But what about the process of human thinking? Does it also

follow the Principle of Computational Equivalence? Or does it

somehow manage to do computations that are more sophisticated than

the Principle of Computational Equivalence implies?

There is a great tendency for us to assume that there must be

something extremely sophisticated about human thinking. And

certainly the fact that present-day computer systems do not emulate

even some of its most obvious features might seem to support this

view. But as I discussed in Chapter 10, particularly following the

discoveries in this book, it is my strong belief that the basic

mechanisms of human thinking will in the end turn out to correspond

to rather simple computational processes.

So what all of this suggests is that systems in nature do not

perform computations that are more sophisticated than the Principle of

Computational Equivalence allows. But on its own this is not enough to

establish the complete Principle of Computational Equivalence. For the

principle also implies a lower limit on computational sophistication—

making the assertion that almost any process that is not obviously

simple will tend to be equivalent in its computational sophistication.
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And one of the consequences of this is that it implies that most

systems whose behavior seems complex should be universal. Yet as of

now we only know for certain about fairly few systems that are

universal, albeit including ones like rule 110 that have remarkably

simple rules. And no doubt the objection will be raised that other

systems whose behavior seems complex may not in fact be universal.

In particular, it might be thought that the behavior of systems

like rule 30—while obviously at least somewhat computationally

sophisticated—might somehow be too random to be harnessed to allow

complete universality. And although in Chapter 11 I did give a few

pieces of evidence that point towards rule 30 being universal, there can

still be doubts until this has been proved for certain.

And in fact there is a particularly abstruse result in mathematical

logic that might be thought to show that systems can exist that exhibit

some features of arbitrarily sophisticated computation, but which are

nevertheless not universal. For in the late 1950s a whole hierarchy of

systems with so-called intermediate degrees were constructed with the

property that questions about the ultimate output from their evolution

could not in general be answered by finite computation, but for which

the actual form of this output was not flexible enough to be able to

emulate a full range of other systems, and thus support universality.

But when one examines the known examples of such systems—

all of which have very intricate underlying rules—one finds that even

though the particular part of their behavior that is identified as output

is sufficiently restricted to avoid universality, almost every other part of

their behavior nevertheless does exhibit universality—just as one

would expect from the Principle of Computational Equivalence.

So why else might systems like rule 30 fail to be universal? We

know from Chapter 11 that systems whose behavior is purely repetitive

or purely nested cannot be universal. And so we might wonder whether

perhaps some other form of regularity could be present that would

prevent systems like rule 30 from being universal.

When we look at the patterns produced by such systems they

certainly do not seem to have any great regularity; indeed in most
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respects they seem far more random than patterns produced by systems

like rule 110 that we already know are universal.

But how can we be sure that we are not being misled by

limitations in our powers of perception and analysis—and that an

extraterrestrial intelligence, for example, might not immediately

recognize regularity that would show that universality is impossible?

For as we saw in Chapter 10 the methods of perception and

analysis that we normally use cannot detect any form of regularity

much beyond repetition or at most nesting. So this means that even if

some higher form of regularity is in fact present, we as humans might

never be able to tell.

In the history of science and mathematics both repetition and

nesting feature prominently. And if there was some common higher

form of regularity its discovery would no doubt lead to all sorts of

important new advances in science and mathematics.

And when I first started looking at systems like cellular automata

I in effect implicitly assumed that some such form of regularity must

exist. For I was quite certain that even though I saw behavior that

seemed to me complex the simplicity of the underlying rules must

somehow ultimately lead to great regularity in it.

But as the years have gone by—and as I have investigated more

and more systems and tried more and more methods of analysis—I have

gradually come to the conclusion that there is no hidden regularity in

any large class of systems, and that instead what the Principle of

Computational Equivalence suggests is correct: that beyond systems

with obvious regularities like repetition and nesting most systems are

universal, and are equivalent in their computational sophistication.

Explaining the Phenomenon of Complexity

Early in this book I described the remarkable discovery that even

systems with extremely simple underlying rules can produce behavior

that seems to us immensely complex. And in the course of this book, I

have shown a great many examples of this phenomenon, and have



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

736

argued that it is responsible for much of the complexity we see in

nature and elsewhere. 

Yet so far I have given no fundamental explanation for the

phenomenon. But now, by making use of the Principle of Computational

Equivalence, I am finally able to do this. 

And the crucial point is to think of comparing the computational

sophistication of systems that we study with the computational

sophistication of the systems that we use to study them.

At first we might assume that our brains and mathematical

methods would always be capable of vastly greater computational

sophistication than systems based on simple rules—and that as a result

the behavior of such systems would inevitably seem to us fairly simple.

But the Principle of Computational Equivalence implies that this

is not the case. For it asserts that essentially any processes that are not

obviously simple are equivalent in their computational sophistication.

So this means that even though a system may have simple underlying

rules its process of evolution can still computationally be just as

sophisticated as any of the processes we use for perception and analysis.

And this is the fundamental reason that systems with simple

rules are able to show behavior that seems to us complex.

At first, one might think that this explanation would depend on

the particular methods of perception and analysis that we as humans

happen to use. But one of the consequences of the Principle of

Computational Equivalence is that it does not. For the principle asserts

that the same computational equivalence exists for absolutely any

method of perception and analysis that can actually be used.

In traditional science the idealization is usually made that

perception and analysis are in a sense infinitely powerful, so that they

need not be taken into account when one draws conclusions about a

system. But as soon as one tries to deal with systems whose behavior is

anything but fairly simple one finds that this idealization breaks down,

and it becomes necessary to consider perception and analysis as explicit

processes in their own right.

If one studies systems in nature it is inevitable that both the

evolution of the systems themselves and the methods of perception and
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analysis used to study them must be processes based on natural laws.

But at least in the recent history of science it has normally been

assumed that the evolution of typical systems in nature is somehow

much less sophisticated a process than perception and analysis.

Yet what the Principle of Computational Equivalence now

asserts is that this is not the case, and that once a rather low threshold

has been reached, any real system must exhibit essentially the same

level of computational sophistication. So this means that observers will

tend to be computationally equivalent to the systems they observe—

with the inevitable consequence that they will consider the behavior of

such systems complex.

So in the end the fact that we see so much complexity can be

attributed quite directly to the Principle of Computational Equivalence,

and to the fact that so many of the systems we encounter in practice

turn out to be computationally equivalent.

Computational Irreducibility

When viewed in computational terms most of the great historical

triumphs of theoretical science turn out to be remarkably similar in

their basic character. For at some level almost all of them are based on

finding ways to reduce the amount of computational work that has to

be done in order to predict how some particular system will behave.

Most of the time the idea is to derive a mathematical formula

that allows one to determine what the outcome of the evolution of the

system will be without explicitly having to trace its steps. 

And thus, for example, an early triumph of theoretical science

was the derivation of a formula for the position of a single idealized

planet orbiting a star. For given this formula one can just plug in

numbers to work out where the planet will be at any point in the

future, without ever explicitly having to trace the steps in its motion.

But part of what started my whole effort to develop the new kind

of science in this book was the realization that there are many common

systems for which no traditional mathematical formulas have ever been

found that readily describe their overall behavior.
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At first one might have thought this must be some kind of

temporary issue, that could be overcome with sufficient cleverness. But

from the discoveries in this book I have come to the conclusion that in

fact it is not, and that instead it is one of the consequences of a very

fundamental phenomenon that follows from the Principle of

Computational Equivalence and that I call computational irreducibility.

If one views the evolution of a system as a computation, then

each step in this evolution can be thought of as taking a certain amount

of computational effort on the part of the system. But what traditional

theoretical science in a sense implicitly relies on is that much of this

effort is somehow unnecessary—and that in fact it should be possible to

find the outcome of the evolution with much less effort.

And certainly in the first two examples above this is the case. For

just as with the orbit of an idealized planet there is in effect a

straightforward formula that gives the state of each system after any

Examples of computational reducibility and irreducibility in the evolution of cellular automata. The
first two rules yield simple repetitive computationally reducible behavior in which the outcome after
many steps can readily be deduced without tracing each step. The third rule yields behavior that
appears to be computationally irreducible, so that its outcome can effectively be found only by
explicitly tracing each step. The cellular automata shown here all have 3-color totalistic rules. 

code 870 code 843 code 1599
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number of steps. So even though the systems themselves generate their

behavior by going through a whole sequence of steps, we can readily

shortcut this process and find the outcome with much less effort.

But what about the third example on the facing page? What does

it take to find the outcome in this case? It is always possible to do an

experiment and explicitly run the system for a certain number of steps

and see how it behaves. But to have any kind of traditional theory one

must find a shortcut that involves much less computation.

Yet from the picture on the facing page it is certainly not obvious

how one might do this. And looking at the pictures on the next page it

begins to seem quite implausible that there could ever in fact be any

way to find a significant shortcut in the evolution of this system. 

So while the behavior of the first two systems on the facing page

is readily seen to be computationally reducible, the behavior of the

third system appears instead to be computationally irreducible.

In traditional science it has usually been assumed that if one can

succeed in finding definite underlying rules for a system then this

means that ultimately there will always be a fairly easy way to predict

how the system will behave. 

Several decades ago chaos theory pointed out that to have enough

information to make complete predictions one must in general know

not only the rules for a system but also its complete initial conditions.

But now computational irreducibility leads to a much more

fundamental problem with prediction. For it implies that even if in

principle one has all the information one needs to work out how some

particular system will behave, it can still take an irreducible amount of

computational work actually to do this. 

Indeed, whenever computational irreducibility exists in a system

it means that in effect there can be no way to predict how the system

will behave except by going through almost as many steps of

computation as the evolution of the system itself.

In traditional science it has rarely even been recognized that there

is a need to consider how systems that are used to make predictions

actually operate. But what leads to the phenomenon of computational

irreducibility is that there is in fact always a fundamental competition
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5000 steps in the evolution of the third system from the previous page, starting from several initial conditions. The complexity of
the behavior makes it seem inconceivable that there could ever be a procedure that would always immediately find its outcome.
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between systems used to make predictions and systems whose behavior

one tries to predict. 

For if meaningful general predictions are to be possible, it must at

some level be the case that the system making the predictions be able

to outrun the system it is trying to predict. But for this to happen the

system making the predictions must be able to perform more

sophisticated computations than the system it is trying to predict.

In traditional science there has never seemed to be much problem

with this. For it has normally been implicitly assumed that with our

powers of mathematics and general thinking the computations we use

to make predictions must be almost infinitely more sophisticated than

those that occur in most systems in nature and elsewhere whose

behavior we try to predict. 

But the remarkable assertion that the Principle of Computational

Equivalence makes is that this assumption is not correct, and that in fact

almost any system whose behavior is not obviously simple performs

computations that are in the end exactly equivalent in their sophistication.

So what this means is that systems one uses to make predictions

cannot be expected to do computations that are any more sophisticated

than the computations that occur in all sorts of systems whose behavior

we might try to predict. And from this it follows that for many systems

no systematic prediction can be done, so that there is no general way to

shortcut their process of evolution, and as a result their behavior must

be considered computationally irreducible.

If the behavior of a system is obviously simple—and is say either

repetitive or nested—then it will always be computationally reducible.

But it follows from the Principle of Computational Equivalence that in

practically all other cases it will be computationally irreducible.

And this, I believe, is the fundamental reason that traditional

theoretical science has never managed to get far in studying most types

of systems whose behavior is not ultimately quite simple.

For the point is that at an underlying level this kind of science

has always tried to rely on computational reducibility. And for example

its whole idea of using mathematical formulas to describe behavior

makes sense only when the behavior is computationally reducible.
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So when computational irreducibility is present it is inevitable

that the usual methods of traditional theoretical science will not work.

And indeed I suspect the only reason that their failure has not been

more obvious in the past is that theoretical science has typically tended

to define its domain specifically in order to avoid phenomena that do

not happen to be simple enough to be computationally reducible.

But one of the major features of the new kind of science that I

have developed is that it does not have to make any such restriction.

And indeed many of the systems that I study in this book are no doubt

computationally irreducible. And that is why—unlike most traditional

works of theoretical science—this book has very few mathematical

formulas but a great many explicit pictures of the evolution of systems.

It has in the past couple of decades become increasingly common

in practice to study systems by doing explicit computer simulations of

their behavior. But normally it has been assumed that such simulations

are ultimately just a convenient way to do what could otherwise be

done with mathematical formulas.

But what my discoveries about computational irreducibility now

imply is that this is not in fact the case, and that instead there are many

common systems whose behavior cannot in the end be determined at

all except by something like an explicit simulation.

Knowing that universal systems exist already tells one that this

must be true at least in some situations. For consider trying to outrun

the evolution of a universal system. Since such a system can emulate

any system, it can in particular emulate any system that is trying to

outrun it. And from this it follows that nothing can systematically

outrun the universal system. For any system that could would in effect

also have to be able to outrun itself.

But before the discoveries in this book one might have thought

that this could be of little practical relevance. For it was believed that

except among specially constructed systems universality was rare. And

it was also assumed that even when universality was present, very

special initial conditions would be needed if one was ever going to

perform computations at anything like the level of sophistication

involved in most methods of prediction.
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But the Principle of Computational Equivalence asserts that this

is not the case, and that in fact almost any system whose behavior is

not obviously simple will exhibit universality and will perform

sophisticated computations even with typical simple initial conditions. 

So the result is that computational irreducibility can in the end

be expected to be common, so that it should indeed be effectively

impossible to outrun the evolution of all sorts of systems.

One slightly subtle issue in thinking about computational

irreducibility is that given absolutely any system one can always at

least nominally imagine speeding up its evolution by setting up a rule

that for example just executes several steps of evolution at once.

But insofar as such a rule is itself more complicated it may in the

end achieve no real reduction in computational effort. And what is

more important, it turns out that when there is true computational

reducibility its effect is usually much more dramatic.

The pictures on the next page show typical examples based on

cellular automata that exhibit repetitive and nested behavior. In the

patterns on the left the color of each cell at any given step is in effect

found by tracing the explicit evolution of the cellular automaton up to

that step. But in the pictures on the right the results for particular cells are

instead found by procedures that take much less computational effort.

These procedures are again based on cellular automata. But now

what the cellular automata do is to take specifications of positions of

cells, and then in effect compute directly from these the colors of cells.

The way things are set up the initial conditions for these cellular

automata consist of digit sequences of numbers that give positions. The

color of a particular cell is then found by evolving for a number of steps

equal to the length of these input digit sequences. 

And this means for example that the outcome of a million steps

of evolution for either of the cellular automata on the left is now

determined by just 20 steps of evolution, where 20 is the length of the

base 2 digit sequence of the number 1,000,000.

And this turns out to be quite similar to what happens with

typical mathematical formulas in traditional theoretical science. For

the point of such formulas is usually to allow one to give a number as
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input, and then to compute directly something that corresponds, say, to

the outcome of that number of steps in the evolution of a system.

In traditional mathematics it is normally assumed that once one

has an explicit formula involving standard mathematical functions

then one can in effect always evaluate this formula immediately.

But evaluating a formula—like anything else—is a computational

process. And unless some digits effectively never matter, this process

cannot normally take less steps than there are digits in its input. 

Indeed, it could in principle be that the process could take a

number of steps proportional to the numerical value of its input. But if

this were so, then it would mean that evaluating the formula would
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Examples of computational reducibility in action. The pictures on the left show patterns produced by the ordinary evolution of cellular
automata with elementary rules 188 and 60. The pictures on the right show how colors of particular cells in these patterns can be found
with much less computational effort. In each case the position of a cell is specified by a pair of numbers given as base 2 digit sequences
in the initial conditions for a cellular automaton. The evolution of the cellular automaton then quickly determines what the color of the cell
at that position in the pattern on the left will be. For rule 188 the cellular automaton that does this involves 12 colors; for rule 60 it involves
6. In general, to find the color of a cell after  steps of rule 188 or rule 60 evolution takes about  steps. Compare page 608. t Log[2, t]
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require as much effort as just tracing each step in the original process

whose outcome the formula was supposed to give.

And the crucial point that turns out to be the basis for much of

the success of traditional theoretical science is that in fact most

standard mathematical functions can be evaluated in a number of steps

that is far smaller than the numerical value of their input, and that

instead normally grows only slowly with the length of the digit

sequence of their input.

So the result of this is that if there is a traditional mathematical

formula for the outcome of a process then almost always this means

that the process must show great computational reducibility.

In practice, however, the vast majority of cases for which

traditional mathematical formulas are known involve behavior that is

ultimately either uniform or repetitive. And indeed, as we saw in

Chapter 10, if one uses just standard mathematical functions then it is

rather difficult even to reproduce many simple examples of nesting.

But as the pictures on the facing page and in Chapter 10 illustrate, if

one allows more general kinds of underlying rules then it becomes quite

straightforward to set up procedures that with very little computational

effort can find the color of any element in any nested pattern.

So what about more complex patterns, like the rule 30 cellular

automaton pattern at the bottom of the page? 

When I first generated such patterns I spent a huge amount of

time trying to analyze them and trying to find a procedure that would

allow me to compute directly the color of each cell. And indeed it was

the fact that I was never able to make much progress in doing this that

first led me to consider the possibility that there could be a

phenomenon like computational irreducibility.

And now, what the Principle of Computational Equivalence

implies is that in fact almost any system whose behavior is not

obviously simple will tend to exhibit computational irreducibility.

But particularly when the underlying rules are simple there is

often still some superficial computational reducibility. And so, for

example, in the rule 30 pattern on the right one can tell whether a cell

at a given position has any chance of not being white just by doing a

An example of a pattern
where it is difficult to
compute directly the color
of a particular cell. 
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very short computation that tests whether that position lies outside the

center triangular region of the pattern. And in a class 4 cellular

automaton such as rule 110 one can readily shortcut the process of

evolution for at least a limited number of steps in places where there

happen to be only a few well-separated localized structures present.

And indeed in general almost any regularities that we manage to

recognize in the behavior of a system will tend to reflect some kind of

computational reducibility in this behavior. 

If one views the pattern of behavior as a piece of data, then as we

discussed in Chapter 10 regularities in it allow a compressed

description to be found. But the existence of a compressed description

does not on its own imply computational reducibility. For any system

that has simple rules and simple initial conditions—including for

example rule 30—will always have such a description. 

But what makes there be computational reducibility is when only

a short computation is needed to find from the compressed description

any feature of the actual behavior.

And it turns out that the kinds of compressed descriptions that

can be obtained by the methods of perception and analysis that we use

in practice and that we discussed in Chapter 10 all essentially have this

property. So this is why regularities that we recognize by these methods

do indeed reflect the presence of computational reducibility.

But as we saw in Chapter 10, in almost any case where there is

not just repetitive or nested behavior, our normal powers of perception

and analysis recognize very few regularities—even though at some level

the behavior we see may still be generated by extremely simple rules.

And this supports the assertion that beyond perhaps some small

superficial amount of computational reducibility a great many systems

are in the end computationally irreducible. And indeed this assertion

explains, at least in part, why our methods of perception and analysis

cannot be expected to go further in recognizing regularities.

But if behavior that we see looks complex to us, does this

necessarily mean that it can exhibit no computational reducibility?

One way to try to get an idea about this is just to construct patterns
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(m) Mod [d [x].d [y], 2] (n) If[Count [d [y] - d [x], 1] Ð 1, 1, 0] (o) If[Count [d [y] - d [x], 0] Ð 3, 1, 0] (p) If[Count [d [y] - d [x], 0] > 3, 1, 0]

( i) Mod [Mod [y, x], 2] ( j) Mod [Binomial [y, x], 2] (k) Mod [DigitCount [x y, 2, 1], 2] ( l) If[GCD[x, y] Ð 1, 1, 0]

(e) Mod [Quotient [y, x], 2] ( f) Mod [Quotient [y 3 , x 2 ], 2] (g) Mod [Quotient [2y , x], 2] (h) Mod [Quotient [3y , 2x ], 2]

(a) If[Mod [Log[x y], 1] > 1/2, 1, 0] (b) If[Mod [Sqrt[x y], 1] > 1/2, 1, 0] (c) If[Mod [Sin[x y], 1] > 1/2, 1, 0] (d ) If[Mod [Sin[x] + Sin[y], 1] > 1/2, 1, 0]

Examples of patterns set up so that a short computation can be used to determine the color of each cell from the numbers representing its
position. Most such patterns look to us quite simple, but the examples shown here were specifically chosen to be ones that look more
complicated. In most of them fairly standard mathematical functions are used, but in unusual combinations. In every picture both  and  run
from 1 to 127.   stands for . (h) is equivalent to digit sequences of powers of 3 in base 2 (see page 120). (j) is essentially
Pascal’s triangle (see page 611). (l) was discussed on page 613. (m) is a nested pattern seen on page 583. The only pattern that is known to be
obtainable by evolving down the page according to a simple local rule is (j), which corresponds to the rule 60 elementary cellular automaton. 

x y

d[n] IntegerDigits[n, 2, 7]
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where we explicitly set up the color of each cell to be determined by

some short computation from the numbers that represent its position.

When we look at such patterns most of them appear to us quite

simple. But as the pictures on the previous page demonstrate, it turns

out to be possible to find examples where this is not so, and where

instead the patterns appear to us at least somewhat complex.

But for such patterns to yield meaningful examples of

computational reducibility it must also be possible to produce them by

some process of evolution—say by repeated application of a cellular

automaton rule. Yet for the majority of cases shown here there is at

least no obvious way to do this.

I have however found one class of systems—already mentioned in

Chapter 10—whose behavior does not appear simple, but nevertheless

turns out to be computationally reducible, as in the pictures on the

facing page. However, I strongly suspect that systems like this are very

rare, and that in the vast majority of cases where the behavior that we

see in nature and elsewhere appears to us complex it is in the end

indeed associated with computational irreducibility.

So what does this mean for science?

In the past it has normally been assumed that there is no

ultimate limit on what science can be expected to do. And certainly the

progress of science in recent centuries has been so impressive that it has

become common to think that eventually it should yield an easy

theory—perhaps a mathematical formula—for almost anything.

But the discovery of computational irreducibility now implies

that this can fundamentally never happen, and that in fact there can be

no easy theory for almost any behavior that seems to us complex.

It is not that one cannot find underlying rules for such behavior.

Indeed, as I have argued in this book, particularly when they are

formulated in terms of programs I suspect that such rules are often

extremely simple. But the point is that to deduce the consequences of

these rules can require irreducible amounts of computational effort.

One can always in effect do an experiment, and just watch the

actual behavior of whatever system one wants to study. But what one
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cannot in general do is to find an easy theory that will tell one without

much effort what every aspect of this behavior will be.

So given this, can theoretical science still be useful at all?

The answer is definitely yes. For even in its most traditional form

it can often deal quite well with those aspects of behavior that happen

to be simple enough to be computationally reducible. And since one can

never know in advance how far computational reducibility will go in a

particular system it is always worthwhile at least to try applying the

traditional methods of theoretical science.

But ultimately if computational irreducibility is present then

these methods will fail. Yet there are still often many reasons to want

to use abstract theoretical models rather than just doing experiments on

actual systems in nature and elsewhere. And as the results in this book

suggest, by using the right kinds of models much can be achieved.

Any accurate model for a system that exhibits computational

irreducibility must at some level inevitably involve computations that

are as sophisticated as those in the system itself. But as I have shown in
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A system whose behavior looks complex but still turns out to be computationally reducible. The system is a cellular automaton with 10
possible colors for each cell. But it can also be viewed as a system based on numbers, in which successive rows are the base 10 digit
sequences of successive powers of 2. And it turns out that there is a fast way to compute row  just from the base 2 digit sequence of

, as the pictures on the right illustrate. This procedure is based on the standard repeated squaring method of finding  by starting
from 2, and then successively squaring the numbers one gets, multiplying by 2 if the corresponding base 2 digit in  is 1. Using this
procedure one can certainly compute the color of any cell on row  by doing about  operations—instead of the  needed if
one carried out the cellular automaton evolution explicitly.
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this book even systems with very simple underlying rules can still

perform computations that are as sophisticated as in any system.

And what this means is that to capture the essential features

even of systems with very complex behavior it can be sufficient to use

models that have an extremely simple basic structure. Given these

models the only way to find out what they do will usually be just to run

them. But the point is that if the structure of the models is simple

enough, and fits in well enough with what can be implemented

efficiently on a practical computer, then it will often still be perfectly

possible to find out many consequences of the model.

And that, in a sense, is what much of this book has been about.

The Phenomenon of Free Will

Ever since antiquity it has been a great mystery how the universe can

follow definite laws while we as humans still often manage to make

decisions about how to act in ways that seem quite free of obvious laws. 

But from the discoveries in this book it finally now seems

possible to give an explanation for this. And the key, I believe, is the

phenomenon of computational irreducibility.

For what this phenomenon implies is that even though a system

may follow definite underlying laws its overall behavior can still have

aspects that fundamentally cannot be described by reasonable laws.

For if the evolution of a system corresponds to an irreducible

computation then this means that the only way to work out how the

system will behave is essentially to perform this computation—with

the result that there can fundamentally be no laws that allow one to

work out the behavior more directly.

And it is this, I believe, that is the ultimate origin of the apparent

freedom of human will. For even though all the components of our

brains presumably follow definite laws, I strongly suspect that their

overall behavior corresponds to an irreducible computation whose

outcome can never in effect be found by reasonable laws.

And indeed one can already see very much the same kind of thing

going on in a simple system like the cellular automaton on the left. For

A cellular automaton whose
behavior seems to show an
analog of free will. Even
though its underlying laws
are definite—and simple—
the behavior is complicated
enough that many aspects of
it seem to follow no definite
laws. (The rule used is the
same as on page 740.)
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even though the underlying laws for this system are perfectly definite,

its overall behavior ends up being sufficiently complicated that many

aspects of it seem to follow no obvious laws at all.

And indeed if one were to talk about how the cellular automaton

seems to behave one might well say that it just decides to do this or

that—thereby effectively attributing to it some sort of free will.

But can this possibly be reasonable? For if one looks at the

individual cells in the cellular automaton one can plainly see that they

just follow definite rules, with absolutely no freedom at all.

But at some level the same is probably true of the individual

nerve cells in our brains. Yet somehow as a whole our brains still

manage to behave with a certain apparent freedom.

Traditional science has made it very difficult to understand how

this can possibly happen. For normally it has assumed that if one can

only find the underlying rules for the components of a system then in a

sense these tell one everything important about the system.

But what we have seen over and over again in this book is that

this is not even close to correct, and that in fact there can be vastly

more to the behavior of a system than one could ever foresee just by

looking at its underlying rules. And fundamentally this is a

consequence of the phenomenon of computational irreducibility.

For if a system is computationally irreducible this means that

there is in effect a tangible separation between the underlying rules for

the system and its overall behavior associated with the irreducible

amount of computational work needed to go from one to the other. 

And it is in this separation, I believe, that the basic origin of the

apparent freedom we see in all sorts of systems lies—whether those

systems are abstract cellular automata or actual living brains.

But so in the end what makes us think that there is freedom in

what a system does? In practice the main criterion seems to be that we

cannot readily make predictions about the behavior of the system. 

For certainly if we could, then this would show us that the

behavior must be determined in a definite way, and so cannot be free.

But at least with our normal methods of perception and analysis one
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typically needs rather simple behavior for us actually to be able to

identify overall rules that let us make reasonable predictions about it.

Yet in fact even in living organisms such behavior is quite

common. And for example particularly in lower animals there are all

sorts of cases where very simple and predictable responses to stimuli

are seen. But the point is that these are normally just considered to be

unavoidable reflexes that leave no room for decisions or freedom.

Yet as soon as the behavior we see becomes more complex we

quickly tend to imagine that it must be associated with some kind of

underlying freedom. For at least with traditional intuition it has always

seemed quite implausible that any real unpredictability could arise in a

system that just follows definite underlying rules.

And so to explain the behavior that we as humans exhibit it has

often been assumed that there must be something fundamentally more

going on—and perhaps something unique to humans.

In the past the most common belief has been that there must be

some form of external influence from fate—associated perhaps with the

intervention of a supernatural being or perhaps with configurations of

celestial bodies. And in more recent times sensitivity to initial

conditions and quantum randomness have been proposed as more

appropriate scientific explanations.

But much as in our discussion of randomness in Chapter 6

nothing like this is actually needed. For as we have seen many times in

this book even systems with quite simple and definite underlying rules

can produce behavior so complex that it seems free of obvious rules. 

And the crucial point is that this happens just through the

intrinsic evolution of the system—without the need for any additional

input from outside or from any sort of explicit source of randomness.

And I believe that it is this kind of intrinsic process—that we

now know occurs in a vast range of systems—that is primarily

responsible for the apparent freedom in the operation of our brains.

But this is not to say that everything that goes on in our brains

has an intrinsic origin. Indeed, as a practical matter what usually seems

to happen is that we receive external input that leads to some train of

thought which continues for a while, but then dies out until we get
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more input. And often the actual form of this train of thought is

influenced by memory we have developed from inputs in the past—

making it not necessarily repeatable even with exactly the same input.

But it seems likely that the individual steps in each train of

thought follow quite definite underlying rules. And the crucial point is

then that I suspect that the computation performed by applying these

rules is often sophisticated enough to be computationally irreducible—

with the result that it must intrinsically produce behavior that seems to

us free of obvious laws.

Undecidability and Intractability

Computational irreducibility is a very general phenomenon with many

consequences. And among these consequences are various phenomena

that have been widely studied in the abstract theory of computation.

In the past it has normally been assumed that these phenomena

occur only in quite special systems, and not, for example, in typical

systems with simple rules or of the kind that might be seen in nature.

But what my discoveries about computational irreducibility now

suggest is that such phenomena should in fact be very widespread, and

should for example occur in many systems in nature and elsewhere.

In this chapter so far I have mostly been concerned with ongoing

processes of computation, analogous to ongoing behavior of systems in

nature and elsewhere. But as a theoretical matter one can ask what the

final outcome of a computation will be, after perhaps an infinite

number of steps. And if one does this then one encounters the

phenomenon of undecidability that was identified in the 1930s.

The pictures on the next page show an example. In each case

knowing the final outcome is equivalent to deciding what will

eventually happen to the pattern generated by the cellular automaton

evolution. Will it die out? Will it stabilize and become repetitive? Or

will it somehow continue to grow forever? 

One can try to find out by running the system for a certain

number of steps and seeing what happens. And indeed in example (a)

this approach works well: in only 36 steps one finds that the pattern
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Cellular automaton evolution illustrating the phenomenon of undecidability. Pattern (a) dies out after 36 steps; pattern (b)
takes 1017 steps. But what the final outcome in cases (c) and (d) will be is not clear after even a million steps. And in general
there appears to be no finite computation that can guarantee to determine the final outcome of the evolution after an infinite
number of steps. The cellular automaton rule used is a 4-color totalistic one with code 1004600. Whether a pattern in a
cellular automaton ever dies out can be viewed as analogous to a version of the halting problem for Turing machines. 
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dies out. But already in example (b) it is not so easy. One can go for 1000

steps and still not know what is going to happen. And only after 1017

steps does it finally become clear that the pattern in fact dies out.

So what about examples (c) and (d)? What happens to these? After

a million steps neither has died out; in fact they are respectively 31,000

and 39,718 cells wide. And after 10 million steps both are still going,

now 339,028 and 390,023 cells wide. But even having traced the

evolution this far, one still has no idea what its final outcome will be.

And in any system the only way to be able to guarantee to know

this in general is to have some way to shortcut the evolution of the

system, and to be able to reduce to a finite computation what takes the

system an infinite number of steps to do.

But if the behavior of the system is computationally irreducible—

as I suspect is so for the cellular automaton on the facing page and for

many other systems with simple underlying rules—then the point is

that ultimately no such shortcut is possible. And this means that the

general question of what the system will ultimately do can be

considered formally undecidable, in the sense there can be no finite

computation that will guarantee to decide it.

For any particular initial condition it may be that if one just runs

the system for a certain number of steps then one will be able to tell

what it will do. But the crucial point is that there is no guarantee that

this will work: indeed there is no finite amount of computation that

one can always be certain will be enough to answer the question of

what the system does after an infinite number of steps.

That this is the case has been known since the 1930s. But it has

normally been assumed that the effects of such undecidability will

rarely be seen except in special and complicated circumstances. Yet

what the picture on the facing page illustrates is that in fact

undecidability can have quite obvious effects even with a very simple

underlying rule and very simple initial conditions.

And what I suspect is that for almost any system whose behavior

seems to us complex almost any non-trivial question about what the

system does after an infinite number of steps will be undecidable. So,

for example, it will typically be undecidable whether the evolution of
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the system from some particular initial condition will ever generate a

specific arrangement of cell colors—or whether it will yield a pattern

that is, say, ultimately repetitive or ultimately nested.

And if one asks whether any initial conditions exist that lead, for

example, to a pattern that does not die out, then this too will in general

be undecidable—though in a sense this is just an immediate

consequence of the fact that given a particular initial condition one

cannot tell whether or not the pattern it produces will ever die out.

But what if one just looks at possible sequences—as might be

used for initial conditions—and asks whether any of them satisfy some

constraint? Even if the constraint is easy to test it turns out that there

can again be undecidability. For there may be no limit on how far one

has to go to be sure that out of the infinite number of possible

sequences there are really none that satisfy the constraint.

The pictures on the facing page show a simple example of this. The

idea is to pick a set of pairs of upper and lower blocks, and then to ask

whether there is any sequence of such pairs that satisfies the constraint that

the upper and lower strings formed end up being in exact correspondence.

When there are just two kinds of pairs it turns out to be quite

straightforward to answer this question. For if any sequence is going to

satisfy the constraint one can show that there must already be a

sequence of limited length that does so—and if necessary one can find

this sequence by explicitly looking at all possibilities.

But as soon as there are more than two pairs things become much

more complicated, and as the pictures on the facing page demonstrate,

even with very short blocks remarkably long and seemingly quite

random sequences can be required in order to satisfy the constraints.

And in fact I strongly suspect that even with just three pairs there

is already computational irreducibility, so that in effect the only way to

answer the question of whether the constraints can be satisfied is

explicitly to trace through some fraction of all arbitrarily long

sequences—making this question in general undecidable.

And indeed whenever the question one has can somehow involve

looking at an infinite number of steps, or elements, or other things, it
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(m) (n) (o) (p) (q) ( r) (s)

( l)

(k)

( j)

( i)

(h)

(g)

( f )

(e)

(d)

(c)

(a) (b)

Examples of a class of one-dimensional constraints where it is in general undecidable whether they can be satisfied. The constraints require that
concatenating in some order the blocks shown should yield identical upper and lower strings. In cases (a)–(l) the constraints can be satisfied, and
the minimal strings which do so are shown. The plots to the right give the successive differences in length between upper and lower strings
when each new block is added; that this difference reaches zero reflects the fact that the constraint is satisfied. Cases (m)–(s) show constraints
that cannot be satisfied by strings of any finite length. When the constraints involve more than two blocks there seems in general to be no upper
limit on how long a string one may need to consider to tell whether the constraints can be satisfied. Pictures (a), (b), (h) and (j) show the longest
minimal strings needed for any of the 4096, 16384, 65536 and 262144 constraints involving blocks with totals of 7, 8, 9 and 10 elements. The
general problem of satisfying constraints of the kind shown here is known as the Post Correspondence Problem. Finding the systems on this
page required constructing—by computer and otherwise—an immense number of proofs of the impossibility of satisfying particular constraints.
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turns out that such a question is almost inevitably undecidable if it is

asked about a system that exhibits computational irreducibility.

So what about finite questions? 

Such questions can ultimately always be answered by finite

computations. But when computational irreducibility is present such

computations can be forced to have a certain level of difficulty which

sometimes makes them quite intractable.

When one does practical computing one tends to assess the

difficulty of a computation by seeing how much time it takes and

perhaps how big a program it involves and how much memory it needs.

But normally one has no way to tell whether the scheme one has

for doing a particular computation is the most efficient possible. And in

the past there have certainly been several instances when new

algorithms have suddenly allowed all sorts of computations to be done

much more efficiently than had ever been thought possible before.

Indeed, despite great efforts in the field of computational

complexity theory over the course of several decades almost no firm

lower bounds on the difficulty of computations have ever been

established. But using the methods of this book it turns out to be

possible to begin to get at least a few results.

The key is to consider very small programs. For with such

programs it becomes realistic to enumerate every single one of a

particular kind, and then just to see explicitly which is the most

efficient at performing some specific computation.

In the past such an approach would not have seemed sensible, for

it was normally assumed that programs small enough to make it work

would only ever be able to do rather trivial computations. But what my

discoveries have shown is that in fact even very small programs can be

quite capable of doing all sorts of sophisticated computations.

As a first example—based on a rather simple computation—the

picture at the top of the facing page shows a Turing machine set up to

add 1 to any number. The input to the Turing machine is the base 2

digit sequence for the number. The head of the machine starts at the

right-hand end of this sequence, and the machine runs until its head

first goes further to the right—at which point the machine stops, with
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whatever sequence of digits are left behind being taken to be the

output of the computation.

And what the pictures above show is that with this particular

machine the number of steps needed to finish the computation varies

greatly between different inputs. But if one looks just at the absolute

maximum number of steps for any given length of input one finds an

exactly linear increase with this length.

So are there other ways to do the same computation in a different

number of steps? One can readily enumerate all 4096 possible Turing

machines with 2 states and 2 colors. And it turns out that of these

exactly 17 perform the computation of adding 1 to a number. 

Each of them works in a slightly different way, but all of them

follow one of the three schemes shown at the top of the next page—

and all of them end up exhibiting the same overall linear increase in

number of steps with length of input. 

So what about other computations? 

It turns out that there are 351 different functions that can be

computed by one or more of the 4096 Turing machines with 2 states
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Examples of the behavior of a simple Turing machine that does the computation of adding 1 to a number. The number is
given as a base 2 digit sequence; the Turing machine runs until its head hits the gray stripe on the right. The plot shows the
number of steps that this takes as a function of the input number . The result turns out to be given by

, which has a maximum of , where  is the length of the digit sequence of , or
. The average for a given length of input does not increase with , and is always precisely 5.

x

2 IntegerExponent[x + 1, 2] + 3 2 n+ 3 n x

Floor[Log[2, x]] n
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and 2 colors. And as the pictures on the facing page show, different

Turing machines can take very different numbers of steps to do the

computations they do.

Turing machine (a), for example, always finishes its computation

after at most 5 steps, independent of the length of its input. But in most

of the other Turing machines shown, the maximum number of steps

needed generally increases with the length of the input.

Turing machines (b), (c) and (d) are ones that always compute the

same function. But while this means that for a given input each of them

yields the same output, the pictures demonstrate that they usually take

a different number of steps to do so. Nevertheless, if one looks at the

maximum number of steps needed for any given length of input one

finds that this still always increases exactly linearly—just as for the

Turing machines that add 1 shown at the top of this page.

So are there cases in which there is more rapid growth? Turing

machine (e) shows an example in which the maximum number of steps

grows like the square of the length of the input. And it turns out that at

least among 2-state 2-color Turing machines this is the only one that

computes the function it computes—so that at least if one wants to use

a program this simple there is no faster way to do the computation.
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The three schemes for adding 1 to a number that are used by Turing machines with 2 states and 2
colors. All show the same linear growth in maximum number of steps as their size of input increases.
This growth can be viewed as a consequence of potentially having to propagate carry digits from one
end of the input number to the other. The machines shown are numbered 445, 461 and 1512.



T H E  P R I N C I P L E  O F  C O M P U T A T I O N A L E Q U I V A L E N C E C H A P T E R  1 2

761

(a)

(b)

(c)

(d)

(e)

(f )

(g)

(h)

( i)

( j)

(k)

Examples of computations being done by Turing machines with two states and two colors. Evolution from a succession of initial
conditions is shown corresponding to inputs of numbers from 1 to 20. Each block of Turing machines yields the same output for a given
input. A computation is taken to be complete when the head of the Turing machine goes further to the right than it was at the
beginning. The plots show how many steps this takes for successive inputs with lengths up to 9. The maximum for input of length  is
(a) , (b) , (c) , (d) , (e) , (f)  (though the average is ), (g) , (h) , (i) , (j) , (k)
roughly . In cases (i), (j) and (k) there are some inputs for which the head goes further and further to the left, and the Turing
machine never halts. The machines shown are numbered 3279, 1285, 3333, 261, 1447, 1953, 1969, 3517, 3246, 3374, 1507.

n

5 6 n+ 3 4 n+ 3 2 n+ 3 2 n2 + 8 n+ 7 2n+1 - 1 n+ 2 2 n+ 1 3 2 n+ 1 4 n - 1
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So are there computations that take still longer to do? In Turing

machine (f) the maximum number of steps increases exponentially with

the length of the input. But unlike in example (e), this Turing machine

is not the only one that computes the function it computes. And in fact

both (g) and (h) compute the same function—but in a linearly increasing

and constant number of steps respectively.

So what about other Turing machines? In general there is no

guarantee that a particular Turing machine will ever even complete a

computation in a finite number of steps. For as happens with several

inputs in examples (i) and (j) the head may end up simply going further

and further to the left—and never get to the point on the right that is

needed for the computation to be considered complete.

But if one ignores inputs where this happens, then at least in

examples (i) and (j) the maximum number of steps still grows in a very

systematic linear way with the length of the input. 

In example (k), however, there is more irregular growth. But once

again the maximum number of steps in the end just increases like the

square of the length of the input. And indeed if one looks at all 4096

Turing machines with 2 states and 2 colors it turns out that the only

rates of growth that one ever sees are linear, square and exponential. 

And of the six examples where exponential growth occurs, all of

them are like example (f) above—so that there is another 2-state 2-color

Turing machine that computes the same function, but without the

maximum number of steps increasing at all with input length.

So what happens if one considers more complicated Turing

machines? With 3 states and 2 colors there are a total of 2,985,984

possible machines. And it turns out that there are about 33,000 distinct

functions that one or more of these machines computes. 

Most of the time the fastest machine at computing a given function

again exhibits linear or at most quadratic growth. But the facing page

shows some cases where instead it exhibits exponential growth.

And indeed in a few cases the growth seems to be even faster.

Example (h) is the most extreme among 3-state 2-color Turing

machines: with the size 7 input 106 it already takes 1,978,213,883 steps
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(a) (b) (c) (d) (e) (f ) (g) (h) ( i) ( j) (k) ( l)

( l)

(k)

( j)

( i)

(d) (h)

(c) (g)

(b) (f )

(a) (e)

(d) (h) ( l)

(c) (g) (k)

(b) (f ) ( j)

(a) (e) ( i)

Examples of Turing machines with 3 and 4 states in which the maximum number of steps before a computation is finished grows
at least exponentially with the length of the input. In all cases no Turing machines with the same number of states compute the
same functions in fewer steps. In case (h) the number of steps grows so rapidly that only two peaks are seen in the plot. The top
row of pictures are all scaled to be exactly the same height, even though the initial conditions cannot be chosen to make the
number of steps in each case anything more than roughly the same. The machines have numbers: 582285, 657939, 2018806,
2868668, 2138664, 2139050, 132527, 600720, 3374234978, 1806221583, 1232059922, 3238044559. Cases like (c) and (d) show
nested behavior reminiscent of a counter which generates digit sequences of successive integers.
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to generate its output, and in general with size  input it may be able to

take more than  steps.

But what if one allows Turing machines with more complicated

rules? With 4-state 2-color rules it turns out to be possible to generate

the same output as examples (c) and (d) in just a fixed number of steps.

But for none of the other 3-state 2-color Turing machines shown do

4-state rules offer any speedup.

Nevertheless, if one looks carefully at examples (a) through (h)

each of them shows large regions of either repetitive or nested behavior.

And it seems likely that this reflects computational reducibility that

should make it possible for sufficiently complicated programs to

generate the same output in fewer than exponentially many steps.

But looking at 4-state 2-color Turing machines examples (i)

through (l) again appear to exhibit roughly exponential growth. Yet

now—much as for the 4-state Turing machines in Chapter 3—the actual

behavior seen does not show any obvious computational reducibility. 

So this suggests that even though they may be specified by very

simple rules there are indeed Turing machine computations that cannot

actually be carried out except by spending an amount of computational

effort that can increase exponentially with the length of input.

And certainly if one allows no more than 4-state 2-color Turing

machines I have been able to establish by explicitly searching all 4

billion or so possible rules that there is absolutely no way to speed up

the computations in pictures (i) through (l). 

But what about with other kinds of systems?

Once one has a system that is universal it can in principle be

made to do any computation. But the question is at what rate. And

without special optimization a universal Turing machine will for

example typically just operate at some fixed fraction of the speed of any

specific Turing machine that it is set up to emulate. 

And if one looks at different computers and computer languages

practical experience tends to suggest that at least at the level of issues

like exponential growth the rate at which a given computation can be

done is ultimately rather similar in almost every such system. 

n

22n
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But one might imagine that across the much broader range of

computational systems that I have considered in this book—and that

presumably occur in nature—there could nevertheless still be great

differences in the rates at which given computations can be done.

Yet from what we saw in Chapter 11 one suspects that in fact

there are not. For in the course of that chapter it became clear that

almost all the very varied systems in this book can actually be made to

emulate each other in a quite comparable number of steps.

Indeed often we found that it was possible to emulate every step

in a particular system by just a fixed sequence of steps in another

system. But if the number of elements that can be updated in one step is

sufficiently different this tends to become impossible. 

And thus for example the picture on the right shows that it can

take  steps for a Turing machine that updates just one cell at each step

to build up the same pattern as a one-dimensional cellular automaton

builds up in  steps by updating every cell in parallel. 

And in  dimensions it is common for it to take, say,  steps

for one system to emulate  steps of evolution of another.

But can it take an exponential number of steps? Certainly if one

has a substitution system that yields exponentially many elements

then to reproduce all these elements with an ordinary Turing machine

will take exponentially many steps. And similarly if one has a

multiway system that yields exponentially many strings then to

reproduce all these will again take exponentially many steps.

But what if one asks only about some limited feature of the

output—say whether some particular string appears after  steps of

evolution of the multiway system? Given a specific path like the one in

the picture on the right it takes an ordinary Turing machine not much

more than  steps to test whether the path yields the desired string.

But how long can it take for a Turing machine to find out

whether any path in the multiway system manages to produce the

string? If the Turing machine in effect had to examine each of the

perhaps exponentially many paths in turn then this could take

exponentially many steps. But the celebrated P=NP question in

computational complexity theory asks whether in general there is some

t2

t
To emulate  steps in the
evolution of the cellular
automaton takes the Turing
machine  steps. 

t
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A Turing machine can quickly
test the highlighted path but
could take exponentially
long to test all paths.



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

766

way to get such an answer in a number of steps that increases not

exponentially but only like a power.

And although it has never been established for certain it seems by

now likely that in most meaningful senses there is not. So what this

implies is that to answer questions about the -step behavior of a

multiway system can take any ordinary Turing machine a number of

steps that increases faster than any power of .

So how common is this kind of phenomenon? One can view

asking about possible outcomes in a multiway system as like asking

about possible ways to satisfy a constraint. And certainly a great many

practical problems can be formulated in terms of constraints.

But how do such problems compare to each other? The Principle

of Computational Equivalence suggests that those that seem difficult

should somehow tend to be equivalent. And indeed it turns out that

over the course of the past few decades a rather large number of such

problems have in fact all been found to be so-called NP-complete. 

What this means is that these problems exhibit a kind of analog of

universality which makes it possible with less than exponential effort to

translate any instance of any one of them into an instance of any other.

So as an example the picture on the facing page shows how one type of

problem about a so-called non-deterministic Turing machine can be

translated to a different type of problem about a cellular automaton.

Much like a multiway system, a non-deterministic Turing

machine has rules that allow multiple choices to be made at each step,

leading to multiple possible paths of evolution. And an example of an

NP-complete problem is then whether any of these paths satisfy the

constraint that, say, after a particular number of steps, the head of the

Turing machine has ever gone further to the right than it starts.

The top row in the picture on the facing page shows the first few

of the exponentially many possible paths obtained by making successive

sequences of choices in a particular non-deterministic Turing machine.

And in the example shown, one sees that for two of these paths the head

goes to the right, so that the overall constraint is satisfied.

So what about the cellular automaton below in the picture?

Given a particular initial condition its evolution is completely

t

t
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deterministic. But what the picture shows is that with successive

initial conditions it emulates each possible path in the

non-deterministic Turing machine.

And so what this means is that the problem of finding whether

initial conditions exist that make the cellular automaton produce a

certain outcome is equivalent to the non-deterministic Turing machine

problem above—and is therefore in general NP-complete.

So what about other kinds of problems? 

The picture on the next page shows the equivalence between the

classic problem of satisfiability and the non-deterministic Turing

machine problem at the top of this page. In satisfiability what one does

is to start with a collection of rows of black, white and gray squares.

And then what one asks is whether any sequence of just black and

Translation between an NP-complete problem about non-deterministic Turing machines and about cellular
automata. The top row shows how a particular non-deterministic Turing machine behaves with successive
sequences of choices for rules to apply. The bottom row shows how a cellular automaton can be made to

emulate this behavior when given a succession of different initial conditions. The cellular automaton is set up to produce a vertical
black stripe if the head of the Turing machine ever goes further to the right than it starts—as it does in cases 6 and 8. The left part
of each cellular automaton configuration emulates the actual evolution of the Turing machine; a specification of which rules should
be applied at each step is progressively fetched from the right and delivered to the position of the head. Given particular initial
conditions for the Turing machine the problem of whether the head ever goes further to the right than it starts is thus equivalent to
the problem of whether the cellular automaton ever produces a vertical black stripe given particular initial conditions on its left. The
cellular automaton takes  steps to emulate  steps of evolution in the Turing machine. It involves a total of 19 colors.2 t 2 + t t
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step 1 step 2 step 1 step 2 step 3 step 1 step 2 step 3 step 1 step 2 step 3 step 4

Translation between the NP-complete problem of halting in a non-deterministic Turing machine and the classic
NP-complete problem of satisfiability. In satisfiability one sets up a collection of rows of black, white and gray squares,
then asks whether there exists any sequence of black and white squares that satisfies the constraint that on every row the
color of at least one square agrees with the color of the corresponding square in the sequence. Each row can be viewed as
a term in a conjunctive normal form Boolean expression, with each column corresponding to a different variable. When a
given square on a particular row is black or white it indicates that a variable or its negation appear in that term. The
translation from the Turing machine problem is achieved by representing the behavior of the Turing machine by saying
which of a sequence of elementary statements are true about it at each step: whether the head is in one state or another,
whether the cell under the head is black or white, and whether the head is at each of the possible positions it can be in.
The Boolean expression then gives constraints on which of these statements can simultaneously be true. In the first two
pictures, for example, the first row corresponds to the constraint that on the first step of Turing machine evolution, the
head cannot simultaneously be in an up and a down state. About the first half of the terms in each Boolean expression
correspond to similar general constraints about the operation of Turing machines. There are then a few terms that specify
the particular initial conditions used here, followed by terms that give the rule for the Turing machine that is used. The very
last term makes the statement that the Turing machine halts. As the pictures indicate, each possible path of evolution for
the Turing machine then corresponds to a possible assignment of truth values to the variables associated with each
elementary statement. And if there is any path that leads the Turing machine to halt the Boolean expression will be
satisfiable. This is the case in the first and fourth examples shown, but not in the other two. In general, it is possible to
represent  steps in the evolution of a non-deterministic Turing machine by a Boolean expression with at most  terms in

 variables. A version of the translation shown here was what launched the study of NP completeness in the early 1970s.
t t 3

t 2
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white squares exists that satisfies the constraint that on every row there

is at least one square whose color agrees with the color of the

corresponding square in the sequence.

To see the equivalence to questions about Turing machines one

imagines breaking the description of the behavior of a Turing machine

into a sequence of elementary statements: whether the head is in a

particular state on a particular step, whether a certain cell has a

particular color, and so on. The underlying rules for the Turing machine

then define constraints on which sequences of such statements can be

true. And in the picture on the facing page almost every row of black,

white and gray squares corresponds to one such constraint.

The last row, however, represents the further constraint that the

head of the Turing machine must at some point go further to the right

than it starts. And this means that to ask whether there is any sequence

in the satisfiability problem that obeys all the constraints is equivalent

to finding the answer to the Turing machine problem described above.

Starting from satisfiability it is possible to show that all sorts of

well-known computational problems in discrete mathematics are

NP-complete. And in addition almost any undecidable problem that

involves simple constraints—such as the correspondence problem on

page 757—turns out to be NP-complete if restricted to finite cases.

In studying the phenomenon of NP completeness what has

mostly been done in the past is to try to construct particular instances

of rather general problems that exhibit equivalence to other problems.

But almost always what is actually constructed is quite complicated—

and certainly not something one would expect to occur at all often. 

Yet on the basis of intuition from the Principle of Computational

Equivalence I strongly suspect that in most cases there are already quite

simple instances of general NP-complete problems that are just as

difficult as any NP-complete problem. And so, for example, I suspect

that it does not take a cellular automaton nearly as complicated as the

one on page 767 for it to be an NP-complete problem to determine

whether initial conditions exist that lead to particular behavior.



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

770

Indeed, my expectation is that asking about possible outcomes of

 steps of evolution will already be NP-complete even for the rule 30

cellular automaton, as illustrated below.

Just as with the Turing machines of pages 761 and 763 there will

be a certain density of cases where the problem is fairly easy to solve.

But it seems likely that as one increases , no ordinary Turing machine

or cellular automaton will ever be able to guarantee to solve the

problem in a number of steps that grows only like some power of . 

Yet even so, there could still in principle exist in nature some

other kind of system that would be able to do this. And for example one

might imagine that this would be possible if one were able to use

exponentially small components. But almost all the evidence we have

t
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4
5
6
7
8
9

10
11
12

1
2
3
4
5
6
7
8
9

10
11
12

Example of a simple problem that I suspect is NP-complete. The problem is to determine whether
right-hand cells in the initial conditions for rule 30 can be filled in so as to produce a vertical black
stripe of a certain height at the bottom of the center column formed after  steps of evolution. The
pictures at the top show that in case (a) stripes up to height 3 can be produced, in case (b) up to
height 2, and in case (c) only up to height 1. The pictures at the bottom indicate in black for which of
the  successive left-hand sequences of  cells it is impossible to get stripes of respectively
heights 1 and 2. The apparent randomness of these patterns reflects the likely difficulty of the
problem. The problem is related to issues of rule 30 cryptanalysis discussed on page 603. 

t

2t+1 t + 1

t

t
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suggests that in our actual universe there are limits on the sizes and

densities of components that we can ever expect to manipulate.

In present-day physics the standard mathematical formalism of

quantum mechanics is often interpreted as suggesting that quantum

systems work like multiway systems, potentially following many paths

in parallel. And indeed within the usual formalism one can construct

quantum computers that may be able to solve at least a few specific

problems exponentially faster than ordinary Turing machines.

But particularly after my discoveries in Chapter 9, I strongly

suspect that even if this is formally the case, it will still not turn out to

be a true representation of ultimate physical reality, but will instead just

be found to reflect various idealizations made in the models used so far.

And so in the end it seems likely that there really can in some

fundamental sense be an almost exponential difference in the amount

of computational effort needed to find the behavior of a system with

given particular initial conditions, and to solve the inverse problem of

determining which if any initial conditions yield particular behavior.

In fact, my suspicion is that such a difference will exist in almost

any system whose behavior seems to us complex. And among other

things this then implies many fundamental limits on the processes of

perception and analysis that we discussed in Chapter 10.

Such limits can ultimately be viewed as being consequences of

the phenomenon of computational irreducibility. But a much more

direct consequence is one that we have discussed before: that even

given a particular initial condition it can require an irreducible

amount of computational work to find the outcome after a given

number of steps of evolution.

One can specify the number of steps  that one wants by giving

the sequence of digits in . And for systems with sufficiently simple

behavior—say repetitive or nested—the pictures on page 744 indicate

that one can typically determine the outcome with an amount of effort

that is essentially proportional to the length of this digit sequence.

But the point is that when computational irreducibility is

present, one may in effect explicitly have to follow each of the  steps of

evolution—again requiring exponentially more computational work. 

t

t

t
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Implications for Mathematics and Its Foundations

Much of what I have done in this book has been motivated by trying to

understand phenomena in nature. But the ideas that I have developed

are general enough that they do not apply just to nature. And indeed in

this section what I will do is to show that they can also be used to

provide important new insights on fundamental issues in mathematics. 

At some rather abstract level one can immediately recognize a

basic similarity between nature and mathematics: for in nature one

knows that fairly simple underlying laws somehow lead to the rich and

complex behavior we see, while in mathematics the whole field is in a

sense based on the notion that fairly simple axioms like those on the

facing page can lead to all sorts of rich and complex results.

So where does this similarity come from? At first one might

think that it must be a consequence of nature somehow intrinsically

following mathematics. For certainly early in its history mathematics

was specifically set up to capture certain simple aspects of nature.

But one of the starting points for the science in this book is that

when it comes to more complex behavior mathematics has never in

fact done well at explaining most of what we see every day in nature.

Yet at some level there is still all sorts of complexity in

mathematics. And indeed if one looks at a presentation of almost any

piece of modern mathematics it will tend to seem quite complex. But

the point is that this complexity typically has no obvious relationship

to anything we see in nature. And in fact over the past century what has

been done in mathematics has mostly taken increasing pains to

distance itself from any particular correspondence with nature.

So this suggests that the overall similarity between mathematics

and nature must have a deeper origin. And what I believe is that in the

end it is just another consequence of the very general Principle of

Computational Equivalence that I discuss in this chapter. 

For both mathematics and nature involve processes that can be

thought of as computations. And then the point is that all these

computations follow the Principle of Computational Equivalence, so
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a © b Ð b © a
a ª b Ð b ª a
a © (b ª ¨ b) Ð a
a ª (b ©¨ b) Ð a
a © (b ª c) Ð (a © b) ª (a © c)
a ª (b © c) Ð (a ª b) © (a ª c)

basic logic (standard axioms)

a ª b Ð b ª a
a ª (b ª c) Ð (a ª b) ª c
¨ (¨ a ª b) ª ¨ (¨ a ª ¨ b) Ð a

basic logic (Huntington axioms)

a ª b Ð b ª a
a ª (b ª c) Ð (a ª b) ª c
¨ (¨ (a ª b) ª ¨ (a ª ¨ b)) Ð a

basic logic (Robbins axioms)

(a Ñ a) Ñ (a Ñ a) Ð a
a Ñ (bÑ (bÑ b)) Ð a Ñ a

(a Ñ (b Ñ c)) Ñ (a Ñ (b Ñ c)) Ð

( (b Ñ b) Ñ a) Ñ ( (c Ñ c) Ñ a)

basic logic (Sheffer axioms)

(a Ñ a) Ñ (a Ñ b) Ð a
a Ñ (a Ñ b) Ð a Ñ (b Ñ b)
a Ñ (a Ñ (bÑ c)) Ð b Ñ (bÑ (a Ñ c))

basic logic (shorter axioms)

((a Ñ b) Ñ c) Ñ (a Ñ ( (a Ñ c) Ñ a)) Ð c

basic logic (shortest axioms)

´a_ (b_ ¶ c_) ¶ (´a_ b_ ¶ ´a_ c_)
a_ ¶ ´b_ a_ /; FreeQ[a, b]

µa_ a_ 2 b_ /; FreeQ[b, a]

a_ 2 b_ ¶ (c_ ¶ d_) /; FreeQ[c, ´_ _] &&

MatchQ[d, c /. a£a Ï b]

predicate logic

0 9 Ø�a
Ø�a 2Ø�b ¶ a 2 b
a+ 0 2 a
a+Ø�b 2Ø�(a+ b)
a60 2 0
a6Ø�b 2 (a6b) + a
a 9 0 ¶µb a 2Ø�b

reduced arithmetic
(Robinson axioms)

0 9 Ø�a
Ø�a 2Ø�b ¶ a 2 b
a+ 0 2 a
a+Ø�b 2Ø�(a+ b)
a60 2 0
a6Ø�b 2 (a6b) + a

(a�_ Ïa!0 ©´b (a�_ Ïa!b ¶ a�_ Ïa!Ø�b)) ¶

´b a�_ Ïa!b /; FreeQ[a, b]

arithmetic (Peano axioms)

aÞ (bÞc) 2 (aÞb) Þc

semigroup theory

aÞ (bÞc) 2 (aÞb) Þc
aÞ1 2 a
1Þa 2 a

monoid theory

aÞ (bÞc) 2 (aÞb) Þc
aÞ1 2 a

aÞa 2 1

group theory (standard axioms)

a Ç ( ( ( (a Ç a) Ç b) Ç c) Ç ( ( (a Ç a) Ç a) Ç c)) 2 b

group theory (shorter axioms)

aÞbÞ ( ( (c Þc) Þd Þb) Þa) 2 d

group theory (shorter axioms)

aÞ (bÞc) 2 (aÞb) Þc
aÞ1 2 a

aÞa 2 1
aÞb 2 bÞa

commutativegroup theory
(standard axioms)

a Ç (b Ç (c Ç (a Ç b))) 2 c

commutativegroup theory
(shorter axioms)

((aÞb) Þc) ÞaÞc 2 b

commutativegroup theory
(shorter axioms)

a« (b«c) 2 (a«b)«c
a«0 2 a

a«a 2 0
a«b 2 b«a
a» (b»c) 2 (a»b)»c
a» (b«c) 2 (a»b)« (a»c)
a»b 2 b»a

ring theory

a« (b«c) 2 (a«b)«c
a«0 2 a

a«a 2 0
a«b 2 b«a
a» (b»c) 2 (a»b)»c
a» (b«c) 2 (a»b)« (a»c)
a»b 2 b»a
a»1 2 a

a 9 0 ¶ a»a-1 2 1
0 9 1

field theory

a+ (b+ c) 2 (a+ b) + c a 9 0 ¶ a6a-1 2 1

a+ 0 2 a (a > b © b > c) ¶ a > c
a+ (-a) 2 0 a > b ¶ a 9 b
a+ b 2 b+ a a > b ª a 2 b ª b > a
a6 (b6c) 2 (a6b)6c a > b ¶ a+ c > b+ c

a6 (b+ c) 2 (a6b) + (a6c)

a6b 2 b6a

(a > b © c > 0) ¶

a6c > b6c

a61 2 a 1 > 0
(µa a�_ ©µb ´a (a�_ ¶ a > b)) ¶

µb ´c (c > b ¸µa (a�_ © c > a)) /; FreeQ[a, c Ï b]
real algebra (Tarski axioms)

basic logic, �x_ © y_£x_�, �x_£´y_ x_�,

�x_£x_ © # &�, and ...

predicate logic and ...

Axiom systems for traditional mathematics. It is from the axiom systems on this page and the next that most of the millions
of theorems in the literature of mathematics have ultimately been derived. Note that in several cases axiom systems are
given here in much shorter forms than in standard mathematics textbooks. (See also the definitions on the next page.) 
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(aâbâa) ¶ a 2 b
((aâbâc) © (bâd âc)) ¶ (aâbâd)
( (aâbâc) © (aâbâd) © a 9 b) ¶ ( (aâcâd) ª (aâd âc))

a�b
�

Ý b�a
�

a�b
�

Ý c�c�¶ a 2 b

( a�b
�

Ý c�d
�

© a�b
�

Ý e�f
�

) ¶ c�d
�

Ý e�f
�

µa ( ( (bâcâd) © (eâd â f )) ¶ ( (bâaâe) © ( f âcâa)))
µa µb (( (câd âe) © ( f âd âg) © c 9 d) ¶ ( (câgâa) © (câ f âb) © (aâeâb)))

( a�b
�

Ý c�d
�

© b�e
�

Ý d �f
�

© a�g� Ý c�h
�

© b�g
�

Ý d �h
�

© (aâbâe) © (câd â f ) © a 9 b) ¶

e�g� Ý f �h
�

µa ( (bâcâa) © c�a� Ý d �e
�

)
µa µb µc (¨ (aâbâc) ©¨ (bâcâa) ©¨ (câaâb))

( a�b
�

Ý a�c� © d �b
�

Ý d �c
�

© e�b
�

Ý e�c� © b 9 c) ¶ ( (aâd âe) ª (d âeâa) ª (eâaâd))

µa ´b ´c ( (a�_ © b�_) ¶ (aâbâc)) ¶

µd ´b ´c ( (a�_ © b�_) ¶ (bâd âc)) /; FreeQ[a, a Ï c Ï d] && FreeQ[b, a Ï b Ï d]

Euclidean plane geometry

aÞ (bÞc) 2 (aÞb) Þc
aÞ � a 2 a
� aÞa 2 a

aÞí 2 í

í Þa 2 í

� í 2 í

� í 2 í

(a 9 í © b 9 í) ¶ (aÞb 9 í ¸ � a 2 � b)

elementary category theory

´a (a À b ¸ a À c) ¶ b 2 c (extensionality)

¨ a À Ë (empty set)

a À {b, c} ¸ (a 2 b ª a 2 c) (pairing)

a À Äb ¸µc (c À b © a À c) (union)

µa ´b (b À a ¸´c (c À b ¶ c À d)) (power set)

µa ´b (b À a ¸ (b À c ©a�_)) /; FreeQ[a, a] (subset)

µa (Ë À a ©´b (b À a ¶Ä{b, {b}} À a)) ( infinity)

´a (a À b ¶´c ´d ((a�_ Ïe!c ©a�_ Ïe!d ) ¶ c 2 d)) ¶

µf ´g (g À f ¸µa (a À b ©a�_ Ïe!g)) /; FreeQ[a, c Ï d Ï f Ï g]
( replacement)

(¨ Ë À a ©´b ´c ( (b À a © c À a © b 9 c) ¶ bÅ c 2Ë)) ¶

µd ´b (b À a ¶µe d Å b 2 {e})
(choice)

a 9 Ë ¶ µb (b À a © aÅ b 2Ë) (regularity)

set theory

µa_ b_£¨ ´a ¨ b
a_ ¶ b_£¨ a ª b
a_ ¸ b_£ (a ¶ b) © (b ¶ a)

a_ Å b_ 2 c_£

´n (n À c ¸ (n À a © n À b))

{a_}£{a, a}
a_ Ïb_!c_£´b (b 2 c ¶ a)

a_ ¾ b_£´n (n À a ¶ n À b)
a_ 9 b_£¨ (a 2 b)

definitions

© and
ª or
¨ not
Ñ nand
´ for all
µ there exists
Ø next integer
Þ composition
Ç inverse composition

ò inverse

« generalized addition
» generalized multiplication

ò-1 reciprocal

� left identity morphism
� right identity morphism
í morphism mismatch

(òâòâò) is between

ò�ò
�

Ý ò�ò
� segments are congruent

À element of
Ë empty set

{ò, ò} pair
Ä union
Ì set of all points
Í set of all open sets
Î set of all real numbers

typical interpretations

a ÀÍ¶ a ¾ Ì

Ë À Í©Ì À Í

(a ÀÍ© b ÀÍ© aÅ b 2 c) ¶ c ÀÍ

a ¾Í¶ Äa ÀÍ

general topology

real algebra with all objects restricted to �Î

(a ¾ Î © a 9 Ë ©µb (b À Î ©´c (c À a ¶ c > b))) ¶

µb (b À Î ©´d (d À Î ¶ (d > b ¸µc (c À a © d > c))))

real analysis

predicate logic and ...

set theory and ...

Further axiom systems for traditional mathematics. The typical interpretations are relevant for applications, though not
for formal derivation of theorems. The last two axioms listed for set theory are usually considered optional. 
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that they ultimately tend to be equivalent in their computational

sophistication—and thus show all sorts of similar phenomena. 

And what we will see in this section is while some of these

phenomena correspond to known features of mathematics—such as

Gödel’s Theorem—many have never successfully been recognized.

But just what basic processes are involved in mathematics?

Ever since antiquity mathematics has almost defined itself as

being concerned with finding theorems and giving their proofs. And in

any particular branch of mathematics a proof consists of a sequence of

steps ultimately based on axioms like those of the previous two pages.

The picture below gives a simple example of how this works in

basic logic. At the top right are axioms specifying certain fundamental

equivalences between logic expressions. A proof of the equivalence

 between logic expressions is then formed by applying these

axioms in the particular sequence shown.

p | q � q | p

pÑ q

pÑ ( ( q Ñ q ) Ñ ( q Ñ q ) )

pÑ ( pÑ ( q Ñ q ) )

pÑ ( pÑ ( ( ( q Ñ q ) Ñ ( q Ñ q ) ) Ñ ( ( q Ñ q ) Ñ ( ( q Ñ q ) Ñ ( ( p Ñ p ) Ñ ( q Ñ q ) ) ) ) ) )

pÑ ( pÑ ( q Ñ ( ( q Ñ q ) Ñ ( ( q Ñ q ) Ñ ( ( p Ñ p ) Ñ ( q Ñ q ) ) ) ) ) )

pÑ ( pÑ ( q Ñ ( ( q Ñ q ) Ñ ( ( q Ñ q ) Ñ ( ( p Ñ p ) Ñ ( ( ( q Ñ q ) Ñ ( q Ñ q ) ) Ñ ( ( q Ñ q ) Ñ ( q Ñ q ) ) ) ) ) ) ) )

pÑ ( pÑ ( q Ñ ( ( p Ñ p ) Ñ ( ( p Ñ p ) Ñ ( ( q Ñ q ) Ñ ( ( ( q Ñ q ) Ñ ( q Ñ q ) ) Ñ ( ( q Ñ q ) Ñ ( q Ñ q ) ) ) ) ) ) ) )

pÑ ( pÑ ( q Ñ ( ( p Ñ p ) Ñ ( ( p Ñ p ) Ñ ( ( ( ( q Ñ q ) Ñ ( q Ñ q ) ) Ñ ( ( q Ñ q ) Ñ ( q Ñ q ) ) ) Ñ ( ( ( q Ñ q ) Ñ ( q Ñ q ) ) Ñ ( ( q Ñ q ) Ñ ( q Ñ q ) ) ) ) ) ) ) )

pÑ ( pÑ ( q Ñ ( ( p Ñ p ) Ñ ( ( p Ñ p ) Ñ ( ( q Ñ q ) Ñ ( q Ñ q ) ) ) ) ) )

pÑ ( pÑ ( q Ñ ( ( p Ñ p ) Ñ ( ( ( q Ñ q ) Ñ ( q Ñ q ) ) Ñ ( ( q Ñ q ) Ñ ( q Ñ q ) ) ) ) ) )

pÑ ( pÑ ( q Ñ ( ( p Ñ p ) Ñ ( q Ñ q ) ) ) )

pÑ ( pÑ ( q Ñ ( ( p Ñ p ) Ñ ( ( p Ñ p ) Ñ q ) ) ) )

q Ñ ( q Ñ ( pÑ ( ( p Ñ p ) Ñ ( ( p Ñ p ) Ñ q ) ) ) )

q Ñ ( q Ñ ( ( ( pÑ p ) Ñ ( pÑ p ) ) Ñ ( ( p Ñ p ) Ñ ( ( p Ñ p ) Ñ q ) ) ) )

q Ñ ( q Ñ ( pÑ p ) )

q Ñ ( ( p Ñ p ) Ñ ( pÑ p ) )

q Ñ p

2

4

2

1

2

5

2

1

3

1

4

5

2

1

3

1

( a Ñ a ) Ñ ( a Ñ b )

a
1

a

( a Ñ a ) Ñ ( a Ñ b )
2

a Ñ ( a Ñ b )

a Ñ ( b Ñ b )
3

a Ñ ( b Ñ b )

a Ñ ( a Ñ b )
4

a Ñ ( a Ñ ( b Ñ c ) )

b Ñ ( b Ñ ( a Ñ c ) )
5

Proof of the theorem  on the basis of the
shorter set of axioms for logic from page 773. The symbol 
stands for NAND, sometimes known as Sheffer stroke. The
axioms given here do not immediately say whether NAND is
commutative (so that ). But the proof
demonstrates that in fact this follows from them. Note that the
proof uses the approach common in practical mathematics and
in Mathematica of doing direct structural substitutions for
terms—not the approach based on logical implications that has
traditionally been discussed in typical formal mathematical logic.

(p Ñ q) Ð (q Ñ p)

Ñ

(p Ñ q) Ð (q Ñ p)
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In most kinds of mathematics there are all sorts of additional

details, particularly about how to determine which parts of one or more

previous expressions actually get used at each step in a proof. But much

as in our study of systems in nature, one can try to capture the essential

features of what can happen by using a simple idealized model.

And so for example one can imagine representing a step in a proof

just by a string of simple elements such as black and white squares. And

one can then consider the axioms of a system as defining possible

transformations from one sequence of these elements to another—just

like the rules in the multiway systems we discussed in Chapter 5.

The pictures below show how proofs of theorems work with this

setup. Each theorem defines a connection between strings, and proving

the theorem consists in finding a series of transformations—each

associated with an axiom—that lead from one string to another.

But just as in the multiway systems in Chapter 5 one can also

consider an explicit process of evolution, in which one starts from a

Simple idealizations of proofs in mathematics. The rules on the left in effect correspond to axioms
that specify valid transformations between strings of black and white elements. The proofs above
then show how one string—say —can be transformed into another—say —by using the
axioms. Typically there are many different proofs that can be given of a particular theorem; here in
each case the ones shown are examples of the shortest possible proofs. The system shown is an
example of a general substitution system of the kind discussed on page 497. Note that the fifth
theorem  occurs in effect as a lemma in the second theorem .! !
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particular string, then at each successive step one applies all possible

transformations, so that in the end one builds up a whole network of

connections between strings, as in the pictures below. 

In a sense such a network can then be thought of as representing

the whole field of mathematics that can be derived from whatever set of

axioms one is using—with every connection between strings

corresponding to a theorem, and every possible path to a proof.

But can networks like the ones above really reflect mathematics

as it is actually practiced? For certainly the usual axioms in every

traditional area of mathematics are significantly more complicated than

any of the multiway system rules used above.

But just like in so many other cases in this book, it seems that

even systems whose underlying rules are remarkably simple are already

able to capture many of the essential features of mathematics.

An obvious observation in mathematics is that proofs can be

difficult to do. One might at first assume that any theorem that is easy

The result of applying the same transformations as on the facing page—but in all possible ways,
corresponding to the evolution of a multiway system that represents all possible theorems that can be
derived from the axioms. With the axioms used here, the total number of strings grows by a factor of
roughly 1.7 at each step; on the last steps shown there are altogether 237 and 973 strings respectively.
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Three examples of multiway systems
that show the analog of long proofs. In
each case a string consisting of a single
white element is eventually generated—
but this takes respectively 12, 28 and 34
steps to happen. The first multiway
system actually generates all strings in
the end (not least since it yields the
lemmas  and )—and in fact
strings of length  appear after at
most steps. The second multiway
system generates only the  strings
where black comes before white—and
all of these strings appear after at most

 steps. The third multiway system
generates a complicated collection of
strings; the numbers of lengths up to 8
are 1, 2, 4, 8, 14, 22, 34, 45. All the
strings generated have an even number
of black elements. 

! !

n > 2

2 n+ 7

n+ 1

7 n
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to state will also be easy to prove. But experience suggests that this is

far from correct. And indeed there are all sorts of well-known

examples—such as Fermat’s Last Theorem and the Four-Color

Theorem—in which a theorem that is easy to state seems to require a

proof that is immensely long.

So is there an analog of this in multiway systems? It turns out

that often there is, and it is that even though a string may be short it

may nevertheless take a great many steps to reach.

If the rules for a multiway system always increase string length

then it is inevitable that any given string that is ever going to be generated

must appear after only a limited number of steps. But if the rules can both

increase and decrease string length the story is quite different, as the

picture on the facing page illustrates. And often one finds that even a

short string can take a rather large number of steps to produce.

But are all these steps really necessary? Or is it just that the rule

one has used is somehow inefficient, and there are other rules that

generate the short strings much more quickly?

Certainly one can take the rules for any multiway system and

add transformations that immediately generate particular short strings.

But the crucial point is that like so many other systems I have discussed

in this book there are many multiway systems that I suspect are

computationally irreducible—so that there is no way to shortcut their

evolution, and no general way to generate their short strings quickly.

And what I believe is that essentially the same phenomenon

operates in almost every area of mathematics. Just like in multiway

systems, one can always add axioms to make it easier to prove

particular theorems. But I suspect that ultimately there is almost

always computational irreducibility, and this makes it essentially

inevitable that there will be short theorems that only allow long proofs.

In the previous section we saw that computational irreducibility

tends to make infinite questions undecidable. So for example the

question of whether a particular string will ever be generated in the

evolution of a multiway system—regardless of how long one waits—is

in general undecidable. And similarly it can be undecidable whether
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any proof—regardless of length—exists for a specific result in a

mathematical system with particular axioms.

So what are the implications of this?

Probably the most striking arise when one tries to apply

traditional ideas of logic—and particularly notions of true and false.

The way I have set things up, one can find all the statements that

can be proved true in a particular axiom system just by starting with an

expression that represents “true” and then using the rules of the axiom

system, as in the picture on the facing page.

In a multiway system, one can imagine identifying “true” with a

string consisting of a single black element. And this would mean that

every string in networks like the ones below should correspond to a

statement that can be proved true in the axiom system used.

But is this really reasonable? In traditional logic there is always

an operation of negation which takes any true statement, and makes it

into a false one, and vice versa. And in a multiway system, one possible

way negation might work is just to reverse the colors of the elements in

a string. But this then leads to a problem in the first picture above.

For the picture implies that both  and its negation  can be

proved to be true statements. But this cannot be correct. And so what

Multiway systems starting from a single black element that represents TRUE. All strings that appear can be thought of as statements
that are true according to the axioms represented by the multiway system rules. One can take negation to be the operation that
interchanges black and white. This then means that the first multiway system represents an inconsistent axiom system, since on
step 2, both  and its negation  appear. The other two multiway systems are consistent, so that they never generate both a string
and its negation. The third one, however, is incomplete, since for example it never generates either  or its negation . The second
one, however, is both complete and consistent: it generates all strings that begin with , but none that begin with . 
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this means is that with the setup used the underlying axiom system is

inconsistent. So what about the other multiway systems on the facing

page? At least with the strings one can see in the pictures there are no

inconsistencies. But what about with longer strings? For the particular

rules shown it is fairly easy to demonstrate that there are never

inconsistencies. But in general it is not possible to do this, for after

some given string has appeared, it can for example be undecidable

whether the negation of that particular string ever appears.

So what about the axiom systems normally used in actual

mathematics? None of those on pages 773 and 774 appear to be

inconsistent. And what this means is that the set of statements that can

be proved true will never overlap with the set that can be proved false.

But can every possible statement that one might expect to be true

or false actually in the end be proved either true or false? 

p Ñ (pÑ p)

( (p Ñ p) Ñ (pÑ q)) Ñ (pÑ p) (pÑ q) Ñ ( (p Ñ q) Ñ (pÑ q)) p Ñ (pÑ ( (p Ñ p) Ñ (pÑ q))) p Ñ ( ( (p Ñ p) Ñ (pÑ q)) Ñ p)

p Ñ (pÑ ( (p Ñ p) Ñ q)) ( (p Ñ p) Ñ (pÑ p)) Ñ (pÑ p) (pÑ p) Ñ ( (p Ñ p) Ñ (pÑ p)) p Ñ ( ( (p Ñ p) Ñ (pÑ p)) Ñ p) p Ñ (pÑ ( (p Ñ p) Ñ (pÑ p)))

(pÑ p) Ñ p p Ñ (pÑ ( (p Ñ p) Ñ p)) p Ñ (pÑ (pÑ (pÑ p))) p Ñ (pÑ ( (p Ñ p) Ñ (q Ñ r))) ( (p Ñ p) Ñ ( (p Ñ p) Ñ p)) Ñ (pÑ p)

(pÑ p) Ñ ( (p Ñ p) Ñ (pÑ q)) ( (p Ñ q) Ñ (pÑ q)) Ñ (pÑ q) (pÑ ( (p Ñ p) Ñ (pÑ q))) Ñ p p Ñ (pÑ ( (p Ñ p) Ñ (q Ñ p))) p Ñ (pÑ ( (p Ñ p) Ñ (q Ñ q)))

(pÑ ( (p Ñ p) Ñ q)) Ñ p (pÑ p) Ñ ( (p Ñ q) Ñ (pÑ q)) ( ( (p Ñ p) Ñ (pÑ p)) Ñ p) Ñ p (pÑ ( (p Ñ p) Ñ (pÑ p))) Ñ p (pÑ p) Ñ ( (p Ñ p) Ñ (pÑ (q Ñ r)))

(pÑ ( (p Ñ p) Ñ p)) Ñ p (pÑ (pÑ (pÑ p))) Ñ p (pÑ ( (p Ñ p) Ñ (q Ñ r))) Ñ p (pÑ p) Ñ ( (p Ñ p) Ñ (pÑ (pÑ p))) (pÑ p) Ñ ( (p Ñ p) Ñ (pÑ (pÑ q)))

(pÑ ( (p Ñ p) Ñ (q Ñ p))) Ñ p (pÑ ( (p Ñ p) Ñ (q Ñ q))) Ñ p (( (p Ñ p) Ñ (pÑ (pÑ p))) Ñ p) Ñ p (pÑ ( (p Ñ p) Ñ (pÑ (pÑ p)))) Ñ p

(pÑ ( (p Ñ p) Ñ ( (p Ñ p) Ñ q))) Ñ p (pÑ ( (p Ñ p) Ñ ( (p Ñ q) Ñ r))) Ñ p (pÑ ( (p Ñ p) Ñ ( (q Ñ p) Ñ r))) Ñ p (pÑ ( (p Ñ p) Ñ (q Ñ (pÑ r)))) Ñ p

(pÑ ( (p Ñ p) Ñ ( (p Ñ q) Ñ p))) Ñ p (pÑ ( (p Ñ p) Ñ ( (p Ñ q) Ñ q))) Ñ p (pÑ ( (p Ñ p) Ñ ( (q Ñ p) Ñ p))) Ñ p (pÑ ( (p Ñ p) Ñ (q Ñ (pÑ p)))) Ñ p

?

?

?

?

?

?

?

?

?

The network of statements that can be proved true using the axiom system for logic from page 775.  is the simplest
representation for TRUE when logic is set up using the NAND operator . Each arrow indicates an equivalence established by applying a
single axiom. On each row only statements that have not appeared before are given. The statements are sorted so that the simplest are
first. Note that some fairly simple statements do not show up for at least several rows. The total number of statements on successive
rows grows faster than exponentially; for the first few it is 1, 6, 91, 2180, 76138. If continued forever the network would eventually
include all possible true statements (tautologies) of logic (see also page 818). Other simple axiom systems for logic like those on page
808 yield networks similar to the one shown.

p Ñ (p Ñ p)

Ñ
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In the early 1900s it was widely believed that this would

effectively be the case in all reasonable mathematical axiom systems.

For at the time there seemed to be no limit to the power of

mathematics, and no end to the theorems that could be proved. 

But this all changed in 1931 when Gödel’s Theorem showed that

at least in any finitely-specified axiom system containing standard

arithmetic there must inevitably be statements that cannot be proved

either true or false using the rules of the axiom system.

This was a great shock to existing thinking about the foundations

of mathematics. And indeed to this day Gödel’s Theorem has continued

to be widely regarded as a surprising and rather mysterious result.

But the discoveries in this book finally begin to make it seem

inevitable and actually almost obvious. For it turns out that at some

level it can be viewed as just yet another consequence of the very

general Principle of Computational Equivalence.

So what is the analog of Gödel’s Theorem for multiway systems?

Given the setup on page 780 one can ask whether a particular multiway

system is complete in the sense that for every possible string the

system eventually generates either that string or its negation.

And one can see that in fact the third multiway system is

incomplete, since by following its rules one can never for example

generate either  or its negation . But what if one extends the rules by

adding more transformations, corresponding to more axioms? Can one

always in the end make the system complete?

If one is not quite careful, one will generate too many strings, and

inevitably get inconsistencies where both a string and its negation

appear, as in the second picture on the facing page. But at least if one

only has to worry about a limited number of steps, it is always possible

to set things up so as to get a system that is both complete and

consistent, as in the third picture on the facing page.

And in fact in the particular case shown on the facing page it is

fairly straightforward to find rules that make the system always

complete and consistent. But knowing how to do this requires having

behavior that is in a sense simple enough that one can foresee every

aspect of it. 
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Yet if a system is computationally irreducible this will inevitably

not be possible. For at any point the system will always in effect be able

to do more things that one did not expect. And this means that in

general one will not be able to construct a finite set of axioms that can

be guaranteed to lead to ultimate completeness and consistency.

And in fact it turns out that as soon as the question of whether a

particular string can ever be reached is undecidable it immediately

follows that there must be either incompleteness or inconsistency. For

to say that such a question is undecidable is to say that it cannot in

general be answered by any procedure that is guaranteed to finish. 

But if one had a system that was complete and consistent then it

is easy to come up with such a procedure: one just runs the system until

either one reaches the string one is looking for or one reaches its

negation. For the completeness of the system guarantees that one must

always reach one or the other, while its consistency implies that

reaching one allows one to conclude that one will never reach the other.

So the result of this is that if the evolution of a multiway system

is computationally irreducible—so that questions about its ultimate

behavior are undecidable—the system cannot be both complete and

consistent. And if one assumes consistency then it follows that there

must be strings where neither the string nor its negation can be

The effect of adding transformations to the rules for a multiway system. The first multiway system is incomplete, in the sense that
for some strings, it generates neither the string nor its negation. The second multiway system yields more strings—but
introduces inconsistency, since it can generate both  and its negation . The third multiway system is however both
complete and consistent: for every string it eventually generates either that string or its negation.
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reached—corresponding to the fact that statements must exist that

cannot be proved either true or false from a given set of axioms.

But what does it take to establish that such incompleteness will

actually occur in a specific system? 

The basic way to do it is to show that the system is universal. 

But what exactly does universality mean for something like an

axiom system? In effect what it means is that any question about the

behavior of any other universal system can be encoded as a statement in

the axiom system—and if the answer to the question can be established

by watching the evolution of the other universal system for any finite

number of steps then it must also be able to be established by giving a

proof of finite length in the axiom system.

So what axiom systems in mathematics are then universal?

Basic logic is not, since at least in principle one can always

determine the truth of any statement in this system by the finite—if

perhaps exponentially long—procedure of trying all possible

combinations of truth values for the variables that appear in it. 

And essentially the same turns out to be the case for pure

predicate logic, in which one just formally adds “for all” and “there

exists” constructs. But as soon as one also puts in an abstract function

or relation with more than one argument, one gets universality.

And indeed the basis for Gödel’s Theorem is the result that the

standard axioms for basic integer arithmetic support universality.

Set theory and several other standard axiom systems can readily be

made to reproduce arithmetic, and are therefore also universal. And the

same is true of group theory and other algebraic systems like ring theory. 

If one puts enough constraints on the axioms one uses, one can

eventually prevent universality—and in fact this happens for

commutative group theory, and for the simplified versions of both real

algebra and geometry on pages 773 and 774.

But of the axiom systems actually used in current mathematics

research every single one is now known to be universal.

From page 773 we can see that many of these axiom systems can

be stated in quite simple ways. And in the past it might have seemed
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hard to believe that systems this simple could ever be universal, and

thus in a sense be able to emulate essentially any system.

But from the discoveries in this book this now seems almost

inevitable. And indeed the Principle of Computational Equivalence

implies that beyond some low threshold almost any axiom system

should be expected to be universal.

So how does universality actually work in the case of arithmetic?

One approach is illustrated in the picture on the next page. The idea

is to set up an arithmetic statement that can be proved true if the evolution

of a cellular automaton from a given initial condition makes a given cell be

a given color at a given step, and can be proved false if it does not. 

By changing numbers in this arithmetic statement one can then

in effect sample different aspects of the cellular automaton evolution.

And with the cellular automaton being a universal one such as rule 110

this implies that the axioms of arithmetic can support universality.

Such universality then implies Gödel’s Theorem and shows that

there must exist statements about arithmetic that cannot ever be

proved true or false from its normal axioms.

So what are some examples of such statements?

The original proof of Gödel’s Theorem was based on considering

the particular self-referential statement “this statement is unprovable”. 

At first it does not seem obvious that such a statement could ever

be set up as a statement in arithmetic. But if it could then one can see

that it would immediately follow that—as the statement says—it

cannot be proved, since otherwise there would be an inconsistency. 

And in fact the main technical difficulty in the original proof of

Gödel’s Theorem had to do with showing—by doing what amounted to

establishing the universality of arithmetic—that the statement could

indeed meaningfully be encoded as a statement purely in arithmetic.

But at least with the original encoding used, the statement would

be astronomically long if written out in the notation of page 773. And

from this result, one might imagine that unprovability would never be

relevant in any practical situation in mathematics.

But does one really need to have such a complicated statement in

order for it to be unprovable from the axioms of arithmetic? 
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(-3 x6 + x7 + x8 )2 + (21+x3 (1+x1+2 x3) x2 - 2 x4 - x10 + x11)2 + (-2 x8 - x9 + x10 + x11)2 + (1 - 2(1+x3) (x1+2 x3) + x4 + x12)2 +

(1 - 2x1 + x2 + x13)2 + (1 - 2x1 + x5 + x14)2 + (-x4 + 2x3 x5 + 2x1+2 x3 x6 + 2x1+x3 x15 + x16 )2 + (1 - 2x3 + x15 + x17 )2 +

(1 - 2x3 + x16 + x18 )2 + (-x6 - 2 x7 + x9 + x19)2 + (-(2 + 2x6 )x6 + (1+ 2x6 )x7 (1+ 2 x20 + (1+ 2x6 ) x21) + x22)2 + (1 - (1+ 2x6 )x7 + x22 + x23)2 +

(1 - 2x6 + 2 x20 + x24)2 + (-(2 + 4x6 )2 x6 + (1+ 4x6 )x7 (1+ 2 x25 + (1+ 4x6 ) x26 ) + x27 )2 + (1 - (1+ 4x6 )x7 + x27 + x28 )2 +

(1 - 4x6 + 2 x25 + x29)2 + (-(2 + 2x8 )x8 + (1+ 2x8 )x6 (1+ 2 x30 + (1+ 2x8 ) x31) + x32)2 + (1 - (1+ 2x8 )x6 + x32 + x33)2 +

(1 - 2x8 + 2 x30 + x34)2 + (-(2 + 2x8 )x8 + (1+ 2x8 )2 x6 (1+ 2 x35 + (1+ 2x8 ) x36 ) + x37 )2 + (1 - (1+ 2x8 )2 x6 + x37 + x38 )2 +

(1 - 2x8 + 2 x35 + x39)2 + (-(2 + 2x6 )x6 + (1+ 2x6 )x9 (1+ 2 x40 + (1+ 2x6 ) x41) + x42)2 + (1 - (1+ 2x6 )x9 + x42 + x43)2 +

(1 - 2x6 + 2 x40 + x44)2 + (-(2 + 4x7 )2 x7 + (1+ 4x7 )x9 (1+ 2 x45 + (1+ 4x7 ) x46 ) + x47 )2 + (1 - (1+ 4x7 )x9 + x47 + x48 )2 +

(1 - 4x7 + 2 x45 + x49)2 + (-(2 + 2x19 )x19 + (1+ 2x19 )x6 (1+ 2 x50 + (1+ 2x19 ) x51) + x52)2 + (1 - (1+ 2x19 )x6 + x52 + x53)2 +

(1 - 2x19 + 2 x50 + x54)2 + (-(2 + 2x19 )x19 + (1+ 2x19 )2 x7 (1+ 2 x55 + (1+ 2x19 ) x56 ) + x57 )2 + (1 - (1+ 2x19 )2 x7 + x57 + x58 )2 +

(1 - 2x19 + 2 x55 + x59)2 + (-(2 + 2x9 )x9 + (1+ 2x9 )x10 (1+ 2 x60 + (1+ 2x9 ) x61) + x62)2 + (1 - (1+ 2x9 )x10 + x62 + x63)2 + (1 - 2x9 + 2 x60 + x64)2 +

(-(2 + 4x8 )2 x8 + (1+ 4x8 )x10 (1+ 2 x65 + (1+ 4x8 ) x66 ) + x67 )2 + (1 - (1+ 4x8 )x10 + x67 + x68 )2 + (1 - 4x8 + 2 x65 + x69)2 +

(-(2 + 2x11 )x11 + (1+ 2x11 )x9 (1+ 2 x70 + (1+ 2x11 ) x71) + x72)2 + (1 - (1+ 2x11 )x9 + x72 + x73)2 + (1 - 2x11 + 2 x70 + x74)2 +

(-(2 + 2x11 )x11 + (1+ 2x11 )2 x8 (1+ 2 x75 + (1+ 2x11 ) x76 ) + x77 )2 + (1 - (1+ 2x11 )2 x8 + x77 + x78 )2 + (1 - 2x11 + 2 x75 + x79)2 Ð 0

x1 ( initial width) 1
x2 ( initial state) 1
x3 (steps) 1
x4 (evolution) 22
x5 1
x6 2
x7 0
x8 6
x9 0
x10 0
x11 12
x12 41
x13 0
x14 0
x15 1
�

x4 = 22 =
0 1 0
1 1 0

x1 ( initial width) 1
x2 ( initial state) 1
x3 (steps) 2
x4 (evolution) 4508
x5 1
x6 140
x7 8
x8 412
x9 0
x10 0
x11 824
x12 28259
x13 0
x14 0
x15 3
�

x4 = 4508 =
0 0 1 0 0
0 1 1 0 0
1 1 1 0 0

x1 ( initial width) 1
x2 ( initial state) 1
x3 (steps) 3
x4 (evolution) 17177704
x5 1
x6 134200
x7 2096
x8 400504
x9 32
x10 32
x11 801008
x12 251257751
x13 0
x14 0
x15 6
�

x4 = 17177704 =
0 0 0 1 0 0 0
0 0 1 1 0 0 0
0 1 1 1 0 0 0
1 1 0 1 0 0 0

x1 ( initial width) 1
x2 ( initial state) 1
x3 (steps) 4
x4 (evolution) 1105983545840
x5 1
x6 2160124112
x7 8437888
x8 6471934448
x9 32768
x10 32768
x11 12943868896
x12 34078388542991
x13 0
x14 0
x15 15
�

x4 = 1105983545840 =
0 0 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 1 1 1 0 0 0 0
0 1 1 0 1 0 0 0 0
1 1 1 1 1 0 0 0 0

x1 ( initial width) 3
x2 ( initial state) 5
x3 (steps) 4
x4 (evolution) 1409438147512048
x5 7
x6 688202220464
x7 940049184
x8 2063666612208
x9 805306880
x10 805306880
x11 4127333224416
x12 34619358871451919
x13 2
x14 0
x15 13
�

x4 = 1409438147512048 =
0 0 0 0 1 0 1 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0
0 0 1 1 0 0 1 0 0 0 0
0 1 1 1 0 1 1 0 0 0 0
1 1 0 1 1 1 1 0 0 0 0

Universality in arithmetic, illustrated by an integer equation whose solutions in effect emulate the rule 110 universal cellular

automaton from Chapter 11. The equation has many solutions, but all of them satisfy the constraint that the variables through 

must encode possible initial conditions and evolution histories for rule 110. If one fills in fixed values for ,  and , then only one

value for  is ever possible—corresponding to the evolution history of rule 110 for  steps starting from a width  initial condition

given by the digit sequence of . In general any statement about the possible behavior of rule 110 can be encoded as a statement

in arithmetic about solutions to the equation. So for example if one fills in values for ,  and , but not , then the statement

that the equation has no solution for any  corresponds to a statement that rule 110 can never exhibit certain behavior, even after

any number of steps. But the universality of rule 110 implies that such statements must in general be undecidable. So from this it

follows that in at least some instances the axioms of arithmetic can never be used to give a finite proof of whether or not the

statement is true. The construction shown here can be viewed as providing a simple proof of Gödel’s Theorem on the existence of

unprovable statements in arithmetic. Note that the equation shown is a so-called exponential Diophantine one, in which some

variables appear in exponents. At the cost of considerably more complication—and using for example 2154 variables—it is possible

to avoid this. The equation above can however already be viewed as capturing the essence of what is needed to demonstrate the

general unsolvability of Diophantine equations and Hilbert’s Tenth Problem. 

x1 x4

x1 x2 x3

x4 x3 x1

x2

x1 x2 x4 x3

x3
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Over the past seventy years a few simpler examples have been

constructed—mostly with no obviously self-referential character.

But usually these examples have involved rather sophisticated

and obscure mathematical constructs—most often functions that are

somehow set up to grow extremely rapidly. Yet at least in principle

there should be examples that can be constructed based just on

statements that no solutions exist to particular integer equations.

If an integer equation such as  has a definite solution

such as ,  in terms of particular finite integers then this

fact can certainly be proved using the axioms of arithmetic. For it takes

only a finite calculation to check the solution, and this very calculation

can always in effect be thought of as a proof.

But what if the equation has no solutions? To test this explicitly

one would have to look at an infinite number of possible integers. But

the point is that even so, there can still potentially be a finite

mathematical proof that none of these integers will work.

And sometimes the proof may be straightforward—say being

based on showing that one side of the equation is always odd while the

other is always even. In other cases the proof may be more difficult—

say being based on establishing some large maximum size for a

solution, then checking all integers up to that size.

And the point is that in general there may in fact be absolutely no

proof that can be given in terms of the normal axioms of arithmetic.

So how can one see this?

The picture on the facing page shows that one can construct an

integer equation whose solutions represent the behavior of a system

like a cellular automaton. And the way this works is that for example

one variable in the equation gives the number of steps of evolution,

while another gives the outcome after that number of steps.

So with this setup, one can specify the number of steps, then

solve for the outcome after that number of steps. But what if for

example one instead specifies an outcome, then tries to find a solution

for the number of steps at which this outcome occurs?

If in general one was able to tell whether such a solution exists

then it would mean that one could always answer the question of

x2 � y3 � 12

x � 47 y � 13
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whether, say, a particular pattern would ever die out in the evolution of

a given cellular automaton. But from the discussion of the previous

section we know that this in general is undecidable.

So it follows that it must be undecidable whether a given integer

equation of some particular general form has a solution. And from the

arguments above this in turn implies that there must be specific integer

equations that have no solutions but where this fact cannot be proved

from the normal axioms of arithmetic.

So how ultimately can this happen?

At some level it is a consequence of the involvement of infinity.

For at least in a universal system like arithmetic any question that is

entirely finite can in the end always be answered by a finite procedure.

But what about questions that somehow ask, say, about infinite

numbers of possible integers? To have a finite way to address questions

like these is often in the end the main justification for setting up typical

mathematical axiom systems in the first place.

For the point is that instead of handling objects like integers

directly, axiom systems can just give abstract rules for manipulating

statements about them. And within such statements one can refer, say,

to infinite sets of integers just by a symbol like . 

And particularly over the past century there have been many

successes in mathematics that can be attributed to this basic kind of

approach. But the remarkable fact that follows from Gödel’s Theorem is

that whatever one does there will always be cases where the approach

must ultimately fail. And it turns out that the reason for this is

essentially the phenomenon of computational irreducibility.

For while simple infinite quantities like  or the total number

of integers can readily be summarized in finite ways—often just by

using symbols like  and —the same is not in general true of all

infinite processes. And in particular if an infinite process is

computationally irreducible then there cannot in general be any useful

finite summary of what it does—since the existence of such a summary

would imply computational reducibility.

s

1�0

� �0
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So among other things this means that there will inevitably be

questions that finite proofs based on axioms that operate within

ordinary computational systems will never in general be able to answer.

And indeed with integer equations, as soon as one has a general

equation that is universal, it typically follows that there will be specific

instances in which the absence of solutions—or at least of solutions of

some particular kind—can never be proved on the basis of the normal

axioms of arithmetic.

For several decades it has been known that universal integer

equations exist. But the examples that have actually been constructed

are quite complicated—like the one on page 786—with the simplest

involving 9 variables and an immense number of terms. 

Yet from the discoveries in this book I am quite certain that there

are vastly simpler examples that exist—so that in fact there are in the

end rather simple integer equations for which the absence of solutions

can never be proved from the normal axioms of arithmetic.

If one just starts looking at sequences of integer equations—as on

the next page—then in the very simplest cases it is usually fairly easy to

tell whether a particular equation will have any solutions. But this

rapidly becomes very much more difficult. For there is often no obvious

pattern to which equations ultimately have solutions and which do not.

And even when equations do have solutions, the integers involved can

be quite large. So, for example, the smallest solution to  is

, , while the smallest solution to

 is , , .

Integer equations such as  that have only linear

dependence on any variable were largely understood even in antiquity.

Quadratic equations in two variables such as  were

understood by the 1800s. But even equations such as  were

not properly understood until the 1980s. And with equations that have

higher powers or more variables questions of whether solutions exist

quickly end up being unsolved problems of number theory.

It has certainly been known for centuries that there are questions

about integer equations and other aspects of number theory that are

easy to state, yet seem very hard to answer. But in practice it has almost

x2 � 61 y2 � 1

x � 1766319049 y � 226153980

x3 � y3 � z3 � 2 x � 1214928 y � 3480205 z � 3528875

a x � b y � c z � d

x2 � a y2 � b

x2 � a y3 � b
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2 x + 3 y Ð 1 �

2 x + 3 y Ð 2 �

2 x + 3 y Ð 3 �

2 x + 3 y Ð 4 �

2 x + 3 y Ð 5 x Ð 1 y Ð 1

2 x + 3 y Ð 6 �

2 x + 3 y Ð 7 x Ð 2 y Ð 1

2 x + 3 y Ð 8 x Ð 1 y Ð 2

2 x + 3 y Ð 9 x Ð 3 y Ð 1

2 x + 3 y Ð 10 x Ð 2 y Ð 2

2 x + 3 y Ð 11 x Ð 1 y Ð 3

2 x + 3 y Ð 12 x Ð 3 y Ð 2

2 x + 3 y Ð 13 x Ð 2 y Ð 3

2 x + 3 y Ð 14 x Ð 1 y Ð 4

2 x + 3 y Ð 15 x Ð 3 y Ð 3

x2 Ð y2 + 1 �

x2 Ð y2 + 2 �

x2 Ð y2 + 3 x Ð 2 y Ð 1

x2 Ð y2 + 4 �

x2 Ð y2 + 5 x Ð 3 y Ð 2

x2 Ð y2 + 6 �

x2 Ð y2 + 7 x Ð 4 y Ð 3

x2 Ð y2 + 8 x Ð 3 y Ð 1

x2 Ð y2 + 9 x Ð 5 y Ð 4

x2 Ð y2 + 10 �

x2 Ð y2 + 11 x Ð 6 y Ð 5

x2 Ð y2 + 12 x Ð 4 y Ð 2

x2 Ð y2 + 13 x Ð 7 y Ð 6

x2 Ð y2 + 14 �

x2 Ð y2 + 15 x Ð 4 y Ð 1

x2 Ð y2 + 16 x Ð 5 y Ð 3

x2 Ð y2 + 1 �

x2 Ð 2 y2 + 1 x Ð 3 y Ð 2

x2 Ð 3 y2 + 1 x Ð 2 y Ð 1
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x3 + y3 Ð z3 + 18 x Ð 94 y Ð 101 z Ð 123

x3 + y3 Ð z3 + 19 x Ð 26 y Ð 76 z Ð 77

x3 + y3 Ð z3 + 20 x Ð 1 y Ð 3 z Ð 2



T H E  P R I N C I P L E  O F  C O M P U T A T I O N A L E Q U I V A L E N C E C H A P T E R  1 2

791

universally been assumed that with the continued development of

mathematics any of these questions could in the end be answered.

However, what Gödel’s Theorem shows is that there must always

exist some questions that cannot ever be answered using the normal

axioms of arithmetic. Yet the fact that the few known explicit examples

have been extremely complicated has made this seem somehow

fundamentally irrelevant for the actual practice of mathematics.

But from the discoveries in this book it now seems quite certain

that vastly simpler examples also exist. And it is my strong suspicion

that in fact of all the current unsolved problems seriously studied in

number theory a fair fraction will in the end turn out to be questions

that cannot ever be answered using the normal axioms of arithmetic.

If one looks at recent work in number theory, most of it tends to

be based on rather sophisticated methods that do not obviously depend

only on the normal axioms of arithmetic. And for example the elaborate

proof of Fermat’s Last Theorem that has been developed may make at

least some use of axioms that come from fields like set theory and go

beyond the normal ones for arithmetic. 

But so long as one stays within, say, the standard axiom systems

of mathematics on pages 773 and 774, and does not in effect just end up

implicitly adding as an axiom whatever result one is trying to prove, my

strong suspicion is that one will ultimately never be able to go much

further than one can purely with the normal axioms of arithmetic. 

And indeed from the Principle of Computational Equivalence I

strongly believe that in general undecidability and unprovability will

start to occur in practically any area of mathematics almost as soon as

one goes beyond the level of questions that are always easy to answer. 

But if this is so, why then has mathematics managed to get as far

as it has? Certainly there are problems in mathematics that have

remained unsolved for long periods of time. And I suspect that many of

these will in fact in the end turn out to involve undecidability and

 Smallest solutions for various sequences of integer (or so-called Diophantine) equations.  indicates
that it can be proved that no solution exists. A blank indicates that I know only that no solution exists
below a billion. Methods for resolving some of the equations in the first column were known in
antiquity; all had been resolved by the 1800s. Practical methods for resolving the so-called elliptic curve
equations in the second column were developed only in the 1980s. No general methods are yet known
for most of the other equations given—and some classes of them may in fact show undecidability.

�
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unprovability. But the issue remains why such phenomena have not

been much more obvious in everyday work in mathematics. 

At some level I suspect the reason is quite straightforward: it is

that like most other fields of human inquiry mathematics has tended to

define itself to be concerned with just those questions that its methods

can successfully address. And since the main methods traditionally

used in mathematics have revolved around doing proofs, questions that

involve undecidability and unprovability have inevitably been avoided.

But can this really be right? For at least in the past century

mathematics has consistently given the impression that it is concerned

with questions that are somehow as arbitrary and general as possible. 

But one of the important conclusions from what I have done in

this book is that this is far from correct. And indeed for example

traditional mathematics has for the most part never even considered

most of the kinds of systems that I discuss in this book—even though

they are based on some of the very simplest rules possible.

So how has this happened? The main point, I believe, is that in

both the systems it studies and the questions it asks mathematics is

much more a product of its history than is usually realized. 

And in fact particularly compared to what I do in this book the

vast majority of mathematics practiced today still seems to follow

remarkably closely the traditions of arithmetic and geometry that

already existed even in Babylonian times.

It is a fairly recent notion that mathematics should even try to

address arbitrary or general systems. For until not much more than a

century ago mathematics viewed itself essentially just as providing a

precise formulation of certain aspects of everyday experience—mainly

those related to number and space. 

But in the 1800s, with developments such as non-Euclidean

geometry, quaternions, group theory and transfinite numbers it began

to be assumed that the discipline of mathematics could successfully be

applied to any abstract system, however arbitrary or general.

Yet if one looks at the types of systems that are actually studied

in mathematics they continue even to this day to be far from as general

as possible. Indeed at some level most of them can be viewed as having
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been arrived at by the single rather specific approach of starting from

some known set of theorems, then trying to find systems that are

progressively more general, yet still manage to satisfy these theorems.

And given this approach, it tends to be the case that the questions

that are considered interesting are ones that revolve around whatever

theorems a system was set up to satisfy—making it rather likely that

these questions can themselves be addressed by similar theorems,

without any confrontation with undecidability or unprovability.

But what if one looks at other kinds of systems?

One of the main things I have done in this book is in a sense to

introduce a new approach to generalization in which one considers

systems that have simple but completely arbitrary rules—and that are

not set up with any constraint about what theorems they should satisfy.

But if one has such a system, how does one decide what questions

are interesting to ask about it? Without the guidance of known

theorems, the obvious thing to do is just to look explicitly at how the

system behaves—perhaps by making some kind of picture.

And if one does this, then what I have found is that one is usually

immediately led to ask questions that run into phenomena like

undecidability. Indeed, from my experiments it seems that almost as

soon as one leaves behind the constraints of mathematical tradition

undecidability and unprovability become rather common.

As the picture on the next page indicates, it is quite straightforward

to set up an axiom system that deals with logical statements about a

system like a cellular automaton. And within such an axiom system one

can ask questions such as whether the cellular automaton will ever

behave in a particular way after any number of steps.

But as we saw in the previous section, such questions are in

general undecidable. And what this means is that there will inevitably

be cases of them for which no proof of a particular answer can ever be

given within whatever axiom system one is using.

So from this one might conclude that as soon as one looks at

cellular automata or other kinds of systems beyond those normally

studied in mathematics it must immediately become effectively

impossible to make progress using traditional mathematical methods.
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But in fact, in the fifteen years or so since I first emphasized the

importance of cellular automata all sorts of traditional mathematical

work has actually been done on them. So how has this been possible?

The basic point is that the work has tended to concentrate on

particular aspects of cellular automata that are simple enough to avoid

undecidability and unprovability. And typically it has achieved this in

one of two ways: either by considering only very specific cases that

have been observed or constructed to be simple, or by looking at things

in so much generality that only rather simple properties ever survive.

So for example when presented with the 256 elementary cellular

automaton patterns shown on page 55 mathematicians in my

experience have two common responses: either to single out specific

patterns that have a simple repetitive or perhaps nested form, or to

generalize and look not at individual patterns, but rather at aggregate

properties obtained say by evolving from all possible initial conditions.

And about questions that concern, for example, the structure of a

pattern that looks to us complex, the almost universal reaction is that

such questions can somehow not be of any real mathematical interest.

Needless to say, in the framework of the new kind of science in

this book, such questions are now of great interest. And my results

Éa, b³c, dÊ 2 Éa, b, cÊ³ Éb, c, dÊ
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An axiom system for statements about the rule
110 cellular automaton. The top statement above
makes the assertion that the outcome after one
step of evolution from a single black cell has a
particular form. A proof of this statement is
shown to the left. All the statements in the top
block above can be proved true from the axiom
system. The statement at the bottom, however,
cannot be proved either true or false. The axioms
given are set up using predicate logic.
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suggest that if one is ever going to study many important phenomena

that occur in nature one will also inevitably run into them. But to

traditional mathematics they seem uninteresting and quite alien.

As I said above, it is at some level not surprising that questions

will be considered interesting in a particular field only if the methods of

that field can say something useful about them. But this I believe is

ultimately why there have historically been so few signs of

undecidability or unprovability in mathematics. For any kinds of

questions in which such phenomena appear are usually not amenable to

standard methods of mathematics based on proof, and as a result such

questions have inevitably been viewed as being outside what should be

considered interesting for mathematics.

So how then can one set up a reasonable idealization for

mathematics as it is actually practiced? The first step—much as I

discussed earlier in this section—is to think not so much about systems

that might be described by mathematics as about the internal processes

associated with proof that go on inside mathematics.

A proof must ultimately be based on an axiom system, and one

might have imagined that over the course of time mathematics would

have sampled a wide range of possible axiom systems. But in fact in its

historical development mathematics has normally stuck to only rather

few such systems—each one corresponding essentially to some

identifiable field of mathematics, and most given on pages 773 and 774.

So what then happens if one looks at all possible simple axiom

systems—much as we looked, say, at all possible simple cellular

automata earlier in this book? To what extent does what one sees

capture the features of mathematics? With axiom systems idealized as

multiway systems the pictures on the next page show some results.

In some cases the total number of theorems that can ever be

proved is limited. But often the number of theorems increases rapidly

with the length of proof—and in most cases an infinite number of

theorems can eventually be proved. And given experience with

mathematics an obvious question to ask in such cases is to what extent

the system is consistent, or complete, or both.
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But to formulate such a question in a meaningful way one needs a

notion of negation. In general, negation is just some operation that

takes a string and yields another, giving back the original if it is applied

a second time. Earlier in this section we discussed cases in which

negation simply reverses the color of each element in a string. And as a

generalization of this one can consider cases in which negation can be

any operation that preserves lengths of strings.

And in this case it turns out that the criterion for whether a

system is complete and consistent is simply that exactly half the
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Plots showing which possible strings get generated in the first 15 steps of evolution in various multiway systems. Each string that is
generated can be thought of as a theorem derived from the set of axioms represented by the rules of the multiway system. A dot
shows at which step a given string first appears—and indicates the shortest proof of the theorem that string represents. In most cases,
many strings are never produced—so that there are many possible statements that simply do not follow from the axioms given. Thus
for example in first case shown only strings containing nothing but black elements are ever produced. 
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possible strings of a given length are eventually generated if one starts

from the string representing “true”. 

For if more than half the strings are generated, then somewhere

both a string and its negation would have to appear, implying that the

system must be inconsistent. And similarly, if less than half the strings

are generated, there must be some string for which neither that string

nor its negation ever appear, implying that the system is incomplete.

The pictures on the next page show the fractions of strings of

given lengths that are generated on successive steps in various multiway

systems. In general one might have to wait an arbitrarily large number

of steps to find out whether a given string will ever be generated. But in

practice after just a few steps one already seems to get a reasonable

indication of the overall fraction of strings that will ever be generated.

And what one sees is that there is a broad distribution: from cases

in which very few strings can be generated—corresponding to a very

incomplete axiom system—to cases in which all or almost all strings

can be generated—corresponding to a very inconsistent axiom system.

So where in this distribution do the typical axiom systems of

ordinary mathematics lie? Presumably none are inconsistent. And a

few—like basic logic and real algebra—are both complete and

consistent, so that in effect they lie right in the middle of the

distribution. But most are known to be incomplete. And as we

discussed above, this is inevitable as soon as universality is present.

But just how incomplete are they? The answer, it seems, is

typically not very. For if one looks at axiom systems that are widely

used in mathematics they almost all tend to be complete enough to

prove at least a fair fraction of statements either true or false.

So why should this be? I suspect that it has to do with the fact

that in mathematics one usually wants axiom systems that one can

think of as somehow describing definite kinds of objects—about which

one then expects to be able to establish all sorts of definite statements.

And certainly if one looks at the history of mathematics most

basic axiom systems have been arrived at by starting with objects—

such as finite integers or finite sets—then trying to find collections of

axioms that somehow capture the relevant properties of these objects.
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Examples of multiway systems that generate different fractions of possible strings, and in effect range from being highly incomplete
to highly inconsistent. The plots show what fraction of strings of a given length have been produced by each of the first 25 steps in
the evolution of each multiway system. If less than half the strings of a given length are ever produced, this means that there must
be some strings where neither the string nor its negation can be proved, indicating incompleteness. But if more than half the strings
are produced, there must be cases where both a string and its negation can be proved, indicating inconsistency. Rules (f) through (i),
however, produce exactly half the strings of any given length, and can be considered complete and consistent. 



T H E  P R I N C I P L E  O F  C O M P U T A T I O N A L E Q U I V A L E N C E C H A P T E R  1 2

799

But one feature is that normally the resulting axiom system is in a

sense more general than the objects one started from. And this is why for

example one can often use the axiom system to extrapolate to infinite

situations. But it also means that it is not clear whether the axiom system

actually describes only the objects one wants—or whether for example it

also describes all sorts of other quite different objects.

One can think of an axiom system—say one of those listed on

pages 773 and 774—as giving a set of constraints that any object it

describes must satisfy. But as we saw in Chapter 5, it is often possible to

satisfy a single set of constraints in several quite different ways.

And when this happens in an axiom system it typically indicates

incompleteness. For as soon as there are just two objects that both

satisfy the constraints but for which there is some statement that is

true about one but false about the other it immediately follows that at

least this statement cannot consistently be proved true or false, and

that therefore the axiom system must be incomplete. 

One might imagine that if one were to add more axioms to an

axiom system one could always in the end force there to be only one

kind of object that would satisfy the constraints of the system. But as

we saw earlier, as soon as there is universality it is normally impossible

to avoid incompleteness. And if an axiom system is incomplete there

must inevitably be different kinds of objects that satisfy its constraints.

For given any statement that cannot be proved from the axioms there

must be distinct objects for which it is true, and for which it is false.

If an axiom system is far from complete—so that a large fraction

of statements cannot be proved true or false—then there will typically

be many different kinds of objects that are easy to specify and all satisfy

the constraints of the system but for which there are fairly obvious

properties that differ. But if an axiom system is close to complete—so

that the vast majority of statements can be proved true or false—then it

is almost inevitable that the different kinds of objects that satisfy its

constraints must differ only in obscure ways. 

And this is presumably the case in the standard axiom system for

arithmetic from page 773. Originally this axiom system was intended to

describe just ordinary integers. But Gödel’s Theorem showed that it is
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incomplete, so that there must be more than one kind of object that can

satisfy its constraints. Yet it is rather close to being complete—since as

we saw earlier one has to go through at least millions of statements

before finding ones that it cannot prove true or false.

And this means that even though there are objects other than the

ordinary integers that satisfy the standard axioms of arithmetic, they

are quite obscure—in fact, so much so that none have ever yet actually

been constructed with any real degree of explicitness. And this is why it

has been reasonable to think of the standard axiom system of

arithmetic as being basically just about ordinary integers.

But if instead of this standard axiom system one uses the reduced

axiom system from page 773—in which the usual axiom for induction

has been weakened—then the story is quite different. There is again

incompleteness, but now there is much more of it, for even statements

as simple as  and  cannot be proved true or false

from the axioms. And while ordinary integers still satisfy all the

constraints, the system is sufficiently incomplete that all sorts of other

objects with quite different properties also do. So this means that the

system is in a sense no longer about any very definite kind of

mathematical object—and presumably that is why it is not used in

practice in mathematics. 

At this juncture it should perhaps be mentioned that in their raw

form quite a few well-known axiom systems from mathematics are

actually also far from complete. An example of this is the axiom system

for group theory given on page 773. But the point is that this axiom

system represents in a sense just the beginning of group theory. For it

yields only those theorems that hold abstractly for any group.

Yet in doing group theory in practice one normally adds axioms

that in effect constrain one to be dealing say with a specific group rather

than with all possible groups. And the result of this is that once again

one typically has an axiom system that is at least close to complete.

In basic arithmetic and also usually in fields like group theory the

underlying objects that one imagines describing can at some level be

manipulated—and understood—in fairly concrete ways. But in a field

like set theory this is less true. Yet even in this case an attempt has

x � y � y � x x � 0 � x
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historically been made to get an axiom system that somehow describes

definite kinds of objects. But now the main way this has been done is by

progressively adding axioms so as to get closer to having a system that

is complete—with only a rather vague notion of just what underlying

objects one is really expecting to describe.

In studying basic processes of proof multiway systems seem to do

well as minimal idealizations. But if one wants to study axiom systems

that potentially describe definite objects it seems to be somewhat more

convenient to use what I call operator systems. And indeed the version

of logic used on page 775—as well as many of the axiom systems on

pages 773 and 774—are already set up essentially as operator systems.

The basic idea of an operator system is to work with expressions

such as  built up using some operator , and then to

consider for example what equivalences may exist between such

expressions. If one has an operator whose values are given by some finite

table then it is always straightforward to determine whether expressions

are equivalent. For all one need do, as in the pictures at the top of the next

page, is to evaluate the expressions for all possible values of each variable,

and then to see whether the patterns of results one gets are the same.

And in this way one can readily tell, for example, that the first

operator shown is idempotent, so that , while both the first two

operators are associative, so that , and all but the third

operator are commutative, so that . And in principle one can

use this method to establish any equivalence that exists between any

expressions with an operator of any specific form.

But the crucial idea that underlies the traditional approach to

mathematical proof is that one should also be able to deduce such

results just by manipulating expressions in purely symbolic form, using

the rules of an axiom system, without ever having to do anything like

filling in explicit values of variables.

And one advantage of this approach is that at least in principle it

allows one to handle operators—like those found in many areas of

mathematics—that are not based on finite tables. But even for operators

given by finite tables it is often difficult to find axiom systems that can

successfully reproduce all the results for a particular operator. 

�p�q����q�r��p� �

p�p � p

�p�q��r � p��q�r�

p�q � q�p
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With the way I have set things up, any axiom system is itself just

a collection of equivalence results. So the question is then which

equivalence results need to be included in the axiom system in order

that all other equivalence results can be deduced just from these.

In general this can be undecidable—for there is no limit on how

long even a single proof might need to be. But in some cases it turns out

to be possible to establish that a particular set of axioms can

successfully generate all equivalence results for a given operator—and

indeed the picture at the top of the facing page shows examples of this

for each of the four operators in the picture above.

So if two expressions are equivalent then by applying the rules of

the appropriate axiom system it must be possible to get from one to the

other—and in fact the picture on page 775 shows an example of how

p pÆp pÆ (pÆp) pÆq q Æp pÆ (pÆq) pÆ (q Æp) (pÆq)Æ (pÆq) (pÆp)Æ (q Æq)

pÆ (q Æ r) (pÆq)Æ r q Æ (pÆ r)

p pÆp pÆ (pÆp) pÆq q Æp pÆ (pÆq) pÆ (q Æp) (pÆq)Æ (pÆq) (pÆp)Æ (q Æq)

pÆ (q Æ r) (pÆq)Æ r q Æ (pÆ r)

p pÆp pÆ (pÆp) pÆq q Æp pÆ (pÆq) pÆ (q Æp) (pÆq)Æ (pÆq) (pÆp)Æ (q Æq)

pÆ (q Æ r) (pÆq)Æ r q Æ (pÆ r)

p pÆp pÆ (pÆp) pÆq q Æp pÆ (pÆq) pÆ (q Æp) (pÆq)Æ (pÆq) (pÆp)Æ (q Æq)

pÆ (q Æ r) (pÆq)Æ r q Æ (pÆ r)

Values of expressions obtained by using operators of various forms. For each expression the sequence of values
for every possible combination of values of variables is shown. Two expressions are equivalent when this
sequence of values is the same. With black and white interpreted as TRUE and FALSE, the forms of operators
shown here correspond respectively to AND, EQUAL, IMPLIES and NAND. (The first argument to each operator is
shown on the left; the second on top.) The arrays of values generated can be thought of as being like truth tables. 
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this can be done for the fourth axiom system above. But if one removes

just a single axiom from any of the axiom systems above then it turns

out that they no longer work, and for example they cannot establish the

equivalence result stated by whichever axiom one has removed.

In general one can think of axioms for an operator system as

giving constraints on the form of the operator. And if one is going to

reproduce all the equivalences that hold for a particular form then these

constraints must in effect be such as to force that form to occur.

So what happens in general for arbitrary axiom systems? Do they

typically force the operator to have a particular form, or not?

The pictures on the next two pages show which forms of

operators are allowed by various different axiom systems. The

successive blocks of results in each case give the forms allowed with

progressively more possible values for each variable.

Indicated by stars near the bottom of the picture are the four

axiom systems from the top of this page. And for each of these only a

limited number of forms are allowed—all of which ultimately turn out

to be equivalent to just the single forms shown on the facing page.

But what about other axiom systems? Every axiom system must

allow an operator of at least some form. But what the pictures on the

next two pages show is that the vast majority of axiom systems actually

allow operators with all sorts of different forms.

And what this means is that these axiom systems are in a sense

not really about operators of any particular form. And so in effect they

are also far from complete—for they can prove only equivalence results

that hold for every single one of the various operators they allow.

( aÆa)Æ ( aÆb) Ð a aÆ ( aÆb) Ð aÆ (bÆb) aÆ ( aÆ (bÆc)) Ð bÆ (bÆ ( aÆc))

(aÆb)Æa Ð a aÆ (bÆc) Ð bÆ ( aÆc) (aÆb)Æb Ð (bÆa)Æa

(bÆb)Æa Ð a aÆb Ð bÆa (aÆb)Æc Ð aÆ (bÆc)

aÆa Ð a aÆb Ð bÆa (aÆb)Æc Ð aÆ (bÆc) Axiom systems that can be used to derive all the
equivalences between expressions that involve
operators with the forms shown. Each axiom can be
applied in either direction—as in the picture on page
775, with each variable standing for any expression, as
in a Mathematica pattern. The operators shown are
AND, EQUAL, IMPLIES and NAND. They yield respectively
junctional, equivalential, implicational and full
propositional or sentential calculus (ordinary logic).



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

804

� (10) � (262)

� (16)

(0) � (16)

� (21) � (1022)

� (113) � (3492)

� (10) � (100)

� (216) � (335008)

� (146) � (168780)

� (2916) � (167772160)

(0) (0) (0)

(0) (0) (0)

� (298) � (1147649)

� (18)

� (27) � (10000)

� (64) � (10000)

� (136) � (46121)

� (10)

� (64) � (10000)

� (18)

� (10)

� (298) � (1147649)

� (136) � (46121)

� (27) � (10000)

� (3375) � (157351936)

� (3375) � (157351936)

� (729) � (1048576)

(0) (0) (0)

� (729) � (16777216)

(0) (0) (0)

� (19683) � (4294967296)

(aÆb) Æ (aÆ (bÆc)) Ð a ?

2 bÆ (c Æ (aÆ (bÆc))) Ð a ?

( (bÆ (aÆa)) Æa) Æb Ð a ?

( (bÆb) Æa) Æ (aÆb) Ð a ?

1 (aÆb) Æc Ð aÆ (bÆc) ?

(aÆb) Æ (bÆc) Ð a ?

(aÆa) Æ (aÆb) Ð a ?

aÆ ( (aÆa) Æb) Ð a ?

(aÆa) Æ (aÆa) Ð a ?

(bÆb) Æb Ð a ?

bÆ (bÆb) Ð a ?

(bÆb) Æa Ð a ?

(bÆa) Æb Ð a ?

(bÆa) Æa Ð a ?

(aÆb) Æb Ð a ?

(aÆb) Æa Ð a ?

(aÆa) Æb Ð a ?

bÆ (bÆa) Ð a ?

bÆ (aÆb) Ð a ?

bÆ (aÆa) Ð a ?

aÆ (bÆb) Ð a ?

aÆ (bÆa) Ð a ?

aÆ (aÆb) Ð a ?

(aÆa) Æa Ð a ?

aÆ (aÆa) Ð a ?

aÆb Ð bÆa ?

bÆb Ð a ?

bÆa Ð a ?

aÆb Ð a ?

aÆa Ð a ?

b Ð a ?

a Ð a ?
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(0) � (12)

� (16)

(0)

� (27) � (3072)

(0)

(0) � (12)

(0) � (12)

� (9) � (76)

� (16)

� (16)

(0) � (12)

(0) � (12)

� (16) � (2302)

(0) (0)

(0) � (12)

� (63) � (1140)

� (114) � (31104)

� (16)

� (68)

� (12) � (96)

(0) � (12)

(0) � (12)

(0) � (12)

� (108) � (40960)

� (104)

(0) � (24)

(0) � (24)

� 2 (aÆa) Æ (aÆb) Ð a aÆ (aÆb) Ð aÆ (bÆb) aÆ (aÆ (bÆc)) Ð bÆ (bÆ (aÆc)) ?

� 9 (aÆb) Æa Ð a aÆ (bÆc) Ð bÆ (aÆc) (aÆb) Æb Ð (bÆa) Æa ?

( (bÆb) Æ (c Æ (aÆ ( ( (c Æc) Æc) Æd)))) Æd Ð a aÆb Ð bÆa ?

(aÆa) Æ (aÆa) Ð a aÆ (aÆa) Ð bÆ (bÆb) aÆb Ð bÆa ?

� 8 (bÆb) Æa Ð a aÆb Ð bÆa (aÆb) Æc Ð aÆ (bÆc) ?

3 aÆ (bÆ (aÆc)) Ð ( (c Æb) Æb) Æa (aÆa) Æ (bÆa) Ð a ?

3 (bÆ (bÆ (aÆa))) Æ (aÆ (bÆc)) Ð a aÆb Ð bÆa ?

� 7 aÆa Ð a aÆb Ð bÆa (aÆb) Æc Ð aÆ (bÆc) ?

6 ( (bÆb) Æ (c Æ (aÆ ( ( (c Æc) Æc) Æd)))) Æd Ð a ?

6 bÆ ( ( ( (bÆb) Æa) Æc) Æ ( ( (bÆb) Æb) Æc)) Ð a ?

(aÆb) Æ (aÆ (bÆ (bÆb))) Ð a aÆb Ð bÆa ?

(aÆb) Æ (aÆ (bÆ (aÆb))) Ð a aÆb Ð bÆa ?

(aÆa) Æ (aÆb) Ð a aÆ (aÆb) Ð aÆ (bÆb) ?

5 bÆ ( (c Æ (c Æ ( ( (d Æd) Æa) Æd))) Æb) Ð a ?

3 (aÆb) Æ (aÆ (bÆc)) Ð a aÆb Ð bÆa ?

4 (aÆb) Æc Ð aÆ (bÆc) aÆb Ð bÆa ?

aÆ (aÆa) Ð bÆ (bÆb) aÆb Ð bÆa ?

2 ( (bÆb) Æ ( ( (c Æa) Æd) Æc)) Æd Ð a ?

(bÆ (aÆc)) Æa Ð a aÆa Ð bÆb ?

(aÆa) Æ (aÆb) Ð a aÆb Ð bÆa ?

3 ( (bÆc) Æa) Æ (bÆ ( (bÆa) Æb)) Ð a ?

3 (bÆ ( (aÆb) Æb)) Æ (aÆ (c Æb)) Ð a ?

(bÆ (bÆ (aÆa))) Æ (aÆ (bÆc)) Ð a ?

(aÆa) Æ (aÆa) Ð a aÆb Ð bÆa ?

(aÆb) Æa Ð a aÆa Ð bÆb ?

( ( (bÆc) Æd) Æa) Æ (aÆd) Ð a ?

( ( (bÆa) Æc) Æa) Æ (aÆc) Ð a ?

Forms of a binary operator satisfying the constraints of a series of different axiom systems. The successive blocks of results in each
case show forms of the operator allowed with 2, 3 and 4 possible elements. Note that with 3 and 4 elements, only forms inequivalent
under interchange of element labels are shown. Representations of notable systems in mathematics are: (1) semigroup theory, (2)
commutative group theory, (3) basic logic, (4) commutative semigroup theory, (5) squag theory, (6) group theory, (7) junctional calculus,
(8) equivalential calculus and (9) implicational calculus. In each case the operator forms shown correspond to possible semigroups,
commutative groups, systems of logic (Boolean algebras), etc. with 2, 3 and 4 possible elements. The operator forms shown can be
thought of as giving multiplication tables. In model theory, these forms are usually called the models of an axiom system. 
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So if one makes a list of all possible axiom systems—say starting

with the simplest—where in such a list should one expect to see axiom

systems that correspond to traditional areas of mathematics?

Most axiom systems as they are given in typical textbooks are

sufficiently complicated that they will not show up at all early. And in

fact the only immediate exception is the axiom system

 for what are known as semigroups—which

ironically are usually viewed as rather advanced mathematical objects. 

But just how complicated do the axiom systems for traditional

areas of mathematics really need to be? Often it seems that they can be

vastly simpler than their textbook forms. And so, for example, as page 773

indicates, interpreting the  operator as division,  is

known to be an axiom system for commutative group theory, and

 for general group theory.

So what about basic logic? How complicated an axiom system

does one need for this? Textbook discussions of logic mostly use axiom

systems at least as complicated as the first one on page 773. And such

axiom systems not only involve several axioms—they also normally

involve three separate operators: AND ( ), OR ( ) and NOT ( ).

But is this in fact the only way to formulate logic?

As the picture below shows, there are 16 different possible

operators that take two arguments and allow two values, say true and

false. And of these AND, OR and NOT are certainly the most commonly

used in both everyday language and most of mathematics. 

��a�b��c � a��b�c��

� �a��b��c ��a�b��� � c�

�a�����a�a��b��c�����a�a��a��c�� � b�

� 	 �

12 : First 13 : 14 : Or �( ª ) 15 : True

8 : And �( © ) 9 : Equal �( = ) 10 : Last 11 : Implies�( ¶ )

4 : 5 : Not�(¨ ) 6 : Xor �( Ò ) 7 : Nand �( Ñ )

0 : False 1 : Nor�( Ó ) 2 : 3 : Not�(¨ )

Logical functions of two arguments and their
common names. Black stands for TRUE; white for
FALSE. AND, OR, NOT, and IMPLIES are widely used in
traditional logic. EQUAL (if and only if) is common in
more mathematical settings, while XOR is
widespread in discrete mathematics. NAND and NOR

are mostly used only in circuit design and in a few
foundational studies of logic. The first argument for
each function appears on the left in the picture; the
second argument on top. The functions are
numbered like 2-neighbor analogs of the cellular
automaton rules of page 53. 
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But at least at a formal level, logic can be viewed simply as a

theory of functions that take on two possible values given variables

with two possible values. And as we discussed on page 616, any such

function can be represented as a combination of AND, OR and NOT.

But the table below demonstrates that as soon as one goes beyond

the familiar traditions of language and mathematics there are other

operators that can also just as well be used as primitives. And indeed it

has been known since before 1900 that both NAND and NOR on their

own work—a fact I already used on pages 617 and 775.

0 ¨ a © a 1 ¨ (a ª b) 2 ¨ a © b 3 ¨ a
4 ¨ b © a 5 ¨ b 6 ¨ (a © b) © (a ª b) 7 ¨ (a © b)
8 a © b 9 a © b ª ¨ (a ª b) 10 b 11 ¨ a ª b
12 a 13 ¨ b ª a 14 a ª b 15 ¨ a ª a

And
( © )

Or
( ª )

Not
(¨ )

0 ¨ a © a 1 ¨ a ©¨ b 2 ¨ a © b 3 ¨ a
4 ¨ b © a 5 ¨ b 6 ¨ (¨ a ©¨ b) ©¨ (a © b) 7 ¨ (a © b)
8 a © b 9 ¨ (¨ a © b) ©¨ (¨ b © a) 10 b 11 ¨ (¨ b © a)
12 a 13 ¨ (¨ a © b) 14 ¨ (¨ a ©¨ b) 15 ¨ (¨ a © a)

And
( © )

Not
(¨ )

0 ¨ (¨ a ª a) 1 ¨ (a ª b) 2 ¨ (¨ b ª a) 3 ¨ a
4 ¨ (¨ a ª b) 5 ¨ b 6 ¨ (¨ a ª b) ª ¨ (¨ b ª a) 7 ¨ a ª ¨ b
8 ¨ (¨ a ª ¨ b) 9 ¨ (¨ a ª ¨ b) ª ¨ (a ª b) 10 b 11 ¨ a ª b
12 a 13 ¨ b ª a 14 a ª b 15 ¨ a ª a

Or
( ª )

Not
(¨ )

0 ¨ (a ¶ a) 1 ¨ (¨ a ¶ b) 2 ¨ (b ¶ a) 3 ¨ a
4 ¨ (a ¶ b) 5 ¨ b 6 (a ¶ b) ¶ ¨ (b ¶ a) 7 a ¶ ¨ b
8 ¨ (a ¶ ¨ b) 9 ¨ ( (a ¶ b) ¶ ¨ (b ¶ a)) 10 b 11 a ¶ b
12 a 13 b ¶ a 14 ¨ a ¶ b 15 a ¶ a

Implies
( ¶ )

Not
(¨ )

0 a Ò a 1 (a ¶ b) Ò b 2 ((a ¶ b) ¶ b) Ò a 3 (a ¶ a) Ò a
4 ( (a ¶ b) ¶ b) Ò b 5 (a ¶ a) Ò b 6 a Ò b 7 (a ¶ b) Ò a
8 ( ( (a ¶ b) ¶ b) Ò a) Ò b 9 ((a ¶ a) Ò a) Ò b 10 b 11 a ¶ b
12 a 13 b ¶ a 14 (a ¶ b) ¶ b 15 a ¶ a

Xor
( Ò )

Implies
( ¶ )

0 aÆa 1 aÆ (a Ç b) 2 aÆb 3 aÆ (a Ç a)
4 bÆa 5 bÆ (a Ç a) 6 aÆb Ç (b Ç a) 7 aÆb Ç b
8 (aÆb)Æb 9 (aÆb)Æ (b Ç a) 10 b 11 b Ç a
12 a 13 a Ç b 14 a Ç (a Ç b) 15 a Ç a

2
( Æ)

13
( Ç )

0 ( (a Ñ a) Ñ a) Ñ ( (a Ñ a) Ñ a) 1 ( (a Ñ a) Ñ (b Ñ b)) Ñ ( (a Ñ a) Ñ a) 2 ( (a Ñ a) Ñ a) Ñ ( (a Ñ a) Ñ b) 3 a Ñ a
4 ( (a Ñ a) Ñ a) Ñ ( (a Ñ b) Ñ a) 5 b Ñ b 6 ((a Ñ a) Ñ b) Ñ ( (a Ñ b) Ñ a) 7 a Ñ b
8 (a Ñ b) Ñ (a Ñ b) 9 ( (a Ñ a) Ñ (bÑ b)) Ñ (a Ñ b) 10 b 11 (a Ñ b) Ñ a
12 a 13 (a Ñ a) Ñ b 14 (a Ñ a) Ñ (b Ñ b) 15 (a Ñ a) Ñ a

Nand
( Ñ )

0 (a Ó a) Ó a 1 a Ó b 2 (a Ó b) Ó a 3 a Ó a
4 (a Ó a) Ó b 5 b Ó b 6 ((a Ó a) Ó (bÓ b)) Ó (a Ó b) 7 ( (a Ó a) Ó (b Ó b)) Ó ( (a Ó a) Ó a)
8 (a Ó a) Ó (b Ó b) 9 ( (a Ó a) Ó b) Ó ( (a Ó b) Ó a) 10 b 11 ( (a Ó a) Ó a) Ó ( (a Ó a) Ó b)
12 a 13 ( (a Ó a) Ó a) Ó ( (a Ó b) Ó a) 14 (a Ó b) Ó (a Ó b) 15 ( (a Ó a) Ó a) Ó ( (a Ó a) Ó a)

Nor
( Ó )

Functions that can be used to formulate logic. In each case the minimal combinations of primitive functions necessary
to reproduce each of the 16 logical functions of two arguments is given. From these any possible logical function with
any number of arguments can be obtained. Most textbook treatments of logic use AND, OR, and NOT as primitive
functions. NAND and NOR are the only primitive functions that work on their own.
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So this means that logic can be set up using just a single operator.

But how complicated an axiom system does it then need? The first box in

the picture below shows that the direct translation of the standard

textbook AND, OR, NOT axiom system from page 773 is very complicated.

But boxes (b) and (c) show that known alternative axiom systems

for logic reduce the size of the axiom system by about a factor of ten.

And some further reduction is achieved by manipulating the resulting

axioms—leading to the axiom system used above and given in box (d).

But can one go still further? And what happens for example if one

just tries to search simple axiom systems for ones that work?

One can potentially test axiom systems by seeing what operators

satisfy their constraints, as on page 805. The first non-trivial axiom

system that even allows the NAND operator is . And

the first axiom system for which NAND and NOR are the only operators

allowed that involve 2 possible values is .

But if one now looks at operators involving 3 possible values then

it turns out that this axiom system allows ones not equivalent to NAND

(a) (aÆb)Æ (aÆb) Ð (bÆa)Æ (bÆa) (aÆa)Æ (bÆb) Ð (bÆb)Æ (aÆa) (aÆ ( (bÆb)Æ ( (bÆb)Æ (bÆb))))Æ (aÆ ( (bÆb)Æ ( (bÆb)Æ (bÆb)))) Ð a
(aÆa)Æ ( ( (bÆ (bÆb))Æ (bÆ (bÆb)))Æ ( (bÆ (bÆb))Æ (bÆ (bÆb)))) Ð a aÆb Ð ( (aÆb)Æ (aÆb))Æ ( (aÆb)Æ (aÆb))

(aÆ ( (bÆb)Æ (cÆc)))Æ (aÆ ( (bÆb)Æ (cÆc))) Ð ( ( (aÆb)Æ (aÆb))Æ ( (aÆb)Æ (aÆb)))Æ ( ( (aÆc)Æ (aÆc))Æ ( (aÆc)Æ (aÆc)))
(aÆa)Æ ( ( (bÆc)Æ (bÆc))Æ ( (bÆc)Æ (bÆc))) Ð ( ( (aÆa)Æ (bÆb))Æ ( (aÆa)Æ (cÆc)))Æ ( ( (aÆa)Æ (bÆb))Æ ( (aÆa)Æ (cÆc)))

(b) (aÆa)Æ (aÆa) Ð a aÆb Ð bÆa aÆ ( (bÆc)Æ (bÆc)) Ð bÆ ( (aÆc)Æ (aÆc)) (aÆb)Æ (aÆ (bÆb)) Ð a

(c) (aÆa)Æ (aÆa) Ð a aÆ (bÆ (bÆb)) Ð aÆa (aÆ (bÆc))Æ (aÆ (bÆc)) Ð ( (bÆb)Æa)Æ ( (cÆc)Æa)

(d) (aÆa)Æ (aÆb) Ð a aÆ (aÆb) Ð aÆ (bÆb) aÆ (aÆ (bÆc)) Ð bÆ (bÆ (aÆc))

(e) aÆ (bÆ (aÆc)) Ð ( (cÆb)Æb)Æa (aÆa)Æ (bÆa) Ð a

(f ) (aÆb)Æ (aÆ (bÆc)) Ð a aÆb Ð bÆa

(g) ( (bÆc)Æa)Æ (bÆ ( (bÆa)Æb)) Ð a

(h) (bÆ ( (aÆb)Æb))Æ (aÆ (cÆb)) Ð a

Axiom systems for basic logic (propositional calculus) formulated in terms of
NAND ( ). The number of operators that occur in these axiom systems is
respectively 94, 17, 17, 13, 9, 6, 6, 6. System (a) is a translation of the standard
textbook one given on page 773 in terms of AND, OR and NOT. (b) is based on
the Robbins axioms from page 773. (c) is the Sheffer axiom system. (e) is the
Meredith axiom system. The other axiom systems were found for this book.
(d) was used on page 775. (g) and (h) are as short as is possible. Each axiom
system given applies equally well to NOR as well as NAND. 

Ñ

��a�a���a�a� � a�

���b�b��a���a�b� � a�
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and NOR. And this means that it cannot successfully reproduce all the

results of logic. Yet if any axiom system with just a single axiom is

going to be able to do this, the axiom must be of the form . 

With up to 6 NANDs and 2 variables none of the 16,896 possible

axiom systems of this kind work even up to 3-value operators. But with

6 NANDs and 3 variables, 296 of the 288,684 possible axiom systems

work up to 3-value operators, and 100 work up to 4-value operators.

And of the 25 of these that are not trivially equivalent, it then

turns out that the two given as (g) and (h) on the facing page can actually

be proved as on the next two pages to be axiom systems for logic—thus

showing that in the end quite remarkable simplification can be

achieved relative to ordinary textbook axiom systems.

If one looks at axiom systems of the form  the

first one that one finds that allows only NAND and NOR with 2-value

operators is . But as soon as one uses a total

of just 6 NANDs, one suddenly finds that out of the 3402 possibilities

with 3 variables 32 axiom systems equivalent to case (f) above all end

up working all the way up to at least 4-value operators. And in fact it

then turns out that (f) indeed works as an axiom system for logic.

So what this means is that if one were just to go through a list of

the simplest few thousand axiom systems one would already be quite

likely to find one that represents logic.

In human intellectual history logic has had great significance. But

if one looks just at axiom systems is there anything obviously special

about the ones for logic? My guess is that unless one asks about very

specific details there is really not—and that standard logic is in a sense

distinguished in the end only by its historical context.

One feature of logic is that its axioms effectively describe a single

specific operator. But it turns out that there are all sorts of other axioms

that also do this. I gave three examples on page 803, and in the picture on

the right I give two more very simple examples. Indeed, given many forms

of operator there are always axiom systems that can be found to describe it.

�… � a�

�… � a, a�b � b�a�

��a�a���a�a� � a, a�b � b�a�

Axiom systems that
reproduce equivalence
results for the forms of
operators shown.

(aÆa)Æb Ð a

aÆb Ð a
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L�1 (a�( (a�a)�a))�(a�( (a�a)�a))
= A ( ( ( ( (a�a)�a)�(a�( (a�a)�a)))�(a�( (a�a)�a)))�( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�

a))))�(a�( (a�a)�a))
= A ( ( ( ( (a�a)�a)�(a�( (a�a)�a)))�(a�( (a�a)�a)))�( ( (a�a)�a)�(a�( (a�a)�a))))�(a�( (a�a)�a))
= A ( ( ( ( (a�a)�a)�(a�( (a�a)�a)))�(a�( (a�a)�a)))�a)�(a�( (a�a)�a))
= A ( (a�(a�( (a�a)�a)))�a)�(a�( (a�a)�a))
= A a

L�2 (a�a)�( (a�( (a�a)�a))�a)
= A (a�a)�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�a)�(a�( (a�a)�a))))
= L�1 (a�a)�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�( (a�( (a�a)�a))�(a�( (a�a)�a))))�(a�( (a�a)�a))))
= L�1 ( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�( (a�( (a�a)�a))�(a�( (a�a)�a))))�( (a�( (a�a)�a))�( ( (a�( (a�a)�

a))�( (a�( (a�a)�a))�(a�( (a�a)�a))))�(a�( (a�a)�a))))
= A (a�( (a�a)�a))�(a�( (a�a)�a))
= L�1 a

L�3 (a�b)�( (a�a)�( ( (a�a)�b)�(a�a)))
= L�2 ( ( (a�a)�( (a�( (a�a)�a))�a))�b)�( (a�a)�( ( (a�a)�b)�(a�a)))
= A b

L�4 ( (a�( (a�b)�a))�d)�(b�( (b�d)�b))
= A ( (a�( (a�b)�a))�d)�(b�( (b�d)�( ( (a�c)�b)�(a�( (a�b)�a)))))
= A ( (a�( (a�b)�a))�d)�(b�( ( ( ( (a�c)�b)�(a�( (a�b)�a)))�d)�( ( (a�c)�b)�(a�( (a�b)�a)))))
= A ( (a�( (a�b)�a))�d)�( ( ( (a�c)�b)�(a�( (a�b)�a)))�( ( ( ( (a�c)�b)�(a�( (a�b)�a)))�d)�( ( (a�c)�b)�(a�

( (a�b)�a)))))
= L�3 ( ( ( ( (a�c)�b)�(a�( (a�b)�a)))�( ( ( (a�c)�b)�( (a�c)�b))�( ( ( ( (a�c)�b)�( (a�c)�b))�(a�( (a�b)�

a)))�( ( (a�c)�b)�( (a�c)�b)))))�d)�( ( ( (a�c)�b)�(a�( (a�b)�a)))�( ( ( ( (a�c)�b)�(a�( (a�b)�a)))�d)�( ( (a�

c)�b)�(a�( (a�b)�a)))))
= A d

L�5 (a�( (a�a)�a))�( (a�( (a�a)�a))�a)
= A (a�( (a�a)�a))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�a)�(a�( (a�a)�a))))
= A ( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))�( ( (a�a)�a)�( ( ( (a�a)�a)�

(a�( (a�a)�a)))�( (a�a)�a))))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�a)�(a�( (a�a)�a))))
= A ( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))�( ( (a�a)�a)�(a�( (a�a)�

a))))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�a)�(a�( (a�a)�a))))
= A ( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))�a)�( (a�( (a�a)�a))�( ( (a�

( (a�a)�a))�a)�(a�( (a�a)�a))))
= A ( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�

( (a�a)�a)))�(a�( (a�a)�a)))�( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))))�a)�( (a�( (a�a)�a))�

( ( (a�( (a�a)�a))�a)�(a�( (a�a)�a))))
= L�4 a

L�6 (a�( (a�a)�a))�(a�(a�( (a�a)�a)))
= L�1 (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))
= A ( ( ( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�

a)))�(a�( (a�a)�a)))))�( ( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))�( ( ( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))�( (a�

( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))))
= A (a�( (a�a)�a))�( ( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))�( ( ( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))�( (a�

( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))))
= L�5 (a�( (a�a)�a))�(a�( ( ( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�

a)�a)))�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))))
= L�5 (a�( (a�a)�a))�(a�( (a�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�

( (a�a)�a))�( (a�( (a�a)�a))�a))))
= L�1 (a�( (a�a)�a))�(a�( (a�( (a�( (a�a)�a))�(a�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))))
= L�1 (a�( (a�a)�a))�(a�( (a�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�

( (a�a)�a))�( (a�( (a�a)�a))�a))))
= L�4 (a�( (a�a)�a))�(a�( ( ( ( (a�( (a�a)�a))�a)�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�

a)�a)))�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))))
= A (a�( (a�a)�a))�(a�( (a�( (a�a)�a))�( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))))

L�7 (a�( (a�a)�a))�(a�(a�( (a�a)�a)))
= L�6 (a�( (a�a)�a))�(a�( (a�( (a�a)�a))�( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))))
= L�5 (a�( (a�a)�a))�(a�( (a�( (a�a)�a))�a))
= A (a�( (a�a)�a))�(a�( ( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))))�a))
= A (a�( (a�a)�a))�(a�( (a�( (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))))�a))
= L�3 ( (a�(a�( (a�a)�a)))�( (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))))�(a�( (a�( (a�a)�( ( (a�a)�(a�( (a�a)�

a)))�(a�a))))�a))
= A (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))

L�8 ( (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a)))�( (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a)))
= L�7 ( (a�( (a�a)�a))�(a�(a�( (a�a)�a))))�( (a�( (a�a)�a))�(a�(a�( (a�a)�a))))
= L�1 ( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a))))�( (a�( (a�a)�a))�( ( (a�( (a�a)�

a))�(a�( (a�a)�a)))�(a�( (a�a)�a))))
= L�1 a�( (a�a)�a)

L�9 (a�( (a�a)�a))�(a�(a�( (a�a)�a)))
= L�1 (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))
= L�8 ( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�( ( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( (a�( (a�a)�

a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�

( ( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�

( (a�a)�a))�(a�( (a�a)�a)))))
= L�1 (a�( ( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�

a)))))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))�(a�( ( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( (a�( (a�

a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))

L�10 (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))
= L�7 (a�( (a�a)�a))�(a�(a�( (a�a)�a)))
= L�9 (a�( ( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�

a)))))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))�(a�( ( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( (a�( (a�

a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))
= L�1 (a�( (a�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�(a�

( (a�a)�a)))))�(a�( (a�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�

(a�( (a�a)�a)))))

L�11 (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))
= L�10 (a�( (a�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�(a�

( (a�a)�a)))))�(a�( (a�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�

(a�( (a�a)�a)))))
= L�1 (a�( (a�( (a�( (a�a)�a))�(a�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))�(a�( (a�( (a�( (a�

a)�a))�(a�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))

= L�7 (a�( (a�( (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))�(a�( (a�( (a�

a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))

L�12 (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))
= L�11 (a�( (a�( (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))�(a�( (a�( (a�

a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))
= A (a�( ( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))))�( (a�( (a�a)�a))�(a�( (a�

a)�a)))))�(a�( ( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))))�( (a�( (a�a)�a))�(a�

( (a�a)�a)))))
= A (a�( (a�( (a�a)�a))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))�(a�( (a�( (a�a)�a))�( (a�( (a�a)�a))�(a�( (a�

a)�a)))))
= L�1 (a�( (a�( (a�a)�a))�a))�(a�( (a�( (a�a)�a))�a))

L�13 (a�( (a�a)�a))�(a�(a�( (a�a)�a)))
= L�7 (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))
= L�12 (a�( (a�( (a�a)�a))�a))�(a�( (a�( (a�a)�a))�a))

L�14 (a�( (a�( (a�a)�a))�a))�(a�( (a�( (a�a)�a))�a))
= L�13 (a�( (a�a)�a))�(a�(a�( (a�a)�a)))
= L�1 (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))
= A ( ( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))�(a�( (a�a)�a)))�( (a�( (a�

a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�

a)�a)))�(a�( (a�a)�a)))�( ( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))�( (a�( (a�

a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�

a)�a)))�(a�( (a�a)�a)))))
= A ( ( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�

a)))�( (a�a)�a)))�(a�( (a�a)�a)))�( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))))�(a�( (a�a)�a)))�

( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�

a)))�( (a�a)�a)))�(a�( (a�a)�a)))�( ( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�

a)))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�

a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))))
= L�4 (a�( (a�a)�a))�( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))�( ( ( ( ( (a�

a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�

a)�a)))�(a�( (a�a)�a)))))�( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))))
= L�4 (a�( (a�a)�a))�( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))�( (a�( (a�

a)�a))�( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))))
= A (a�( (a�a)�a))�( ( ( ( (a�a)�a)�(a�( (a�a)�a)))�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( ( (a�a)�a)�( ( ( (a�

a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))))
= A (a�( (a�a)�a))�( (a�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�

a)�a)))�(a�( (a�a)�a)))))
= A (a�( (a�a)�a))�( (a�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( ( (a�a)�a)�(a�( (a�a)�a)))�(a�( (a�a)�a)))))

L�15 (a�( (a�( (a�a)�a))�a))�(a�( (a�( (a�a)�a))�a))
= L�14 (a�( (a�a)�a))�( (a�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( ( (a�a)�a)�(a�( (a�a)�a)))�(a�( (a�a)�

a)))))
= A (a�( (a�a)�a))�( (a�(a�( (a�a)�a)))�( (a�( (a�a)�a))�(a�(a�( (a�a)�a)))))
= L�13 (a�( (a�a)�a))�( (a�(a�( (a�a)�a)))�( (a�( (a�( (a�a)�a))�a))�(a�( (a�( (a�a)�a))�a))))

L�16 (a�( (a�( (a�a)�a))�a))�(a�( (a�( (a�a)�a))�a))
= L�15 (a�( (a�a)�a))�( (a�(a�( (a�a)�a)))�( (a�( (a�( (a�a)�a))�a))�(a�( (a�( (a�a)�a))�a))))
= L�12 (a�( (a�a)�a))�( (a�(a�( (a�a)�a)))�( (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))))
= L�3 (a�( (a�a)�a))�(a�( (a�a)�a))

L�17 (a�( (a�a)�a))�(a�(a�( (a�a)�a)))
= L�13 (a�( (a�( (a�a)�a))�a))�(a�( (a�( (a�a)�a))�a))
= L�16 (a�( (a�a)�a))�(a�( (a�a)�a))
= L�1 a

L�18 a�( (a�a)�a)
= L�1 ( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a))))�( (a�( (a�a)�a))�( ( (a�( (a�a)�

a))�(a�( (a�a)�a)))�(a�( (a�a)�a))))
= L�16 ( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a))))�(a�( (a�a)�

a))))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a))))�(a�( (a�a)�a))))
= L�1 ( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�(a�( (a�a)�a))))�(a�( (a�a)�a))))�( (a�( (a�a)�a))�( ( (a�( (a�

a)�a))�(a�(a�( (a�a)�a))))�(a�( (a�a)�a))))
= L�17 ( (a�( (a�a)�a))�(a�(a�( (a�a)�a))))�( (a�( (a�a)�a))�(a�(a�( (a�a)�a))))
= L�17 a�a

L�19 (a�a)�(a�(a�a))
= L�18 (a�a)�(a�(a�( (a�a)�a)))
= L�18 (a�( (a�a)�a))�(a�(a�( (a�a)�a)))
= L�17 a

L�20 a�(a�( (a�( (a�a)�a))�a))
= L�18 a�(a�( (a�( (a�( (a�a)�a))�a))�a))
= L�2 ( (a�a)�( (a�( (a�a)�a))�a))�(a�( (a�( (a�( (a�a)�a))�a))�a))
= A (a�( (a�a)�a))�a

L�21 a�(a�a)
= L�18 a�(a�( (a�a)�a))
= L�18 a�(a�( (a�( (a�a)�a))�a))
= L�20 (a�( (a�a)�a))�a

L�22 (a�a)�(a�a)
= L�18 (a�( (a�a)�a))�(a�( (a�a)�a))
= L�1 a

T �1 (a�a)�(a�a)
= L�22 a

L�23 (a�a)�a
= L�18 (a�( (a�a)�a))�a
= L�21 a�(a�a)

L�24 ( (a�b)�a)�(a�a)
= L�18 ( (a�b)�a)�(a�( (a�a)�a))
= A a

L�25 a�( (a�( (a�b)�(a�b)))�a)
= A ( ( (a�b)�( (a�b)�(a�b)))�(a�( (a�( (a�b)�(a�b)))�a)))�( (a�b)�( ( (a�b)�(a�( (a�( (a�b)�(a�b)))�

a)))�(a�b)))
= A ( (a�b)�(a�b))�( (a�b)�( ( (a�b)�(a�( (a�( (a�b)�(a�b)))�a)))�(a�b)))
= L�19 ( (a�b)�(a�b))�( (a�b)�( ( ( ( (a�b)�(a�b))�( (a�b)�( (a�b)�(a�b))))�(a�( (a�( (a�b)�(a�b)))�a)))�

(a�b)))
= A ( (a�b)�(a�b))�( (a�b)�( ( ( ( (a�b)�(a�b))�( ( ( (a�b)�(a�b))�(a�( (a�(a�b))�a)))�( (a�b)�(a�b))))�

(a�( (a�( (a�b)�(a�b)))�a)))�(a�b)))
= L�24 ( (a�b)�(a�b))�( (a�b)�( ( ( ( ( ( ( (a�b)�(a�b))�( ( ( (a�b)�(a�b))�(a�( (a�(a�b))�a)))�( (a�b)�(a�

b))))�(a�( (a�(a�b))�a)))�( ( (a�b)�(a�b))�( ( ( (a�b)�(a�b))�(a�( (a�(a�b))�a)))�( (a�b)�(a�b)))))�( ( ( (a�

b)�(a�b))�( ( ( (a�b)�(a�b))�(a�( (a�(a�b))�a)))�( (a�b)�(a�b))))�( ( (a�b)�(a�b))�( ( ( (a�b)�(a�b))�(a�

( (a�(a�b))�a)))�( (a�b)�(a�b))))))�(a�( (a�( (a�b)�(a�b)))�a)))�(a�b)))

= A ( (a�b)�(a�b))�( (a�b)�( ( ( (a�( (a�(a�b))�a))�( ( ( (a�b)�(a�b))�( ( ( (a�b)�(a�b))�(a�( (a�(a�b))�

a)))�( (a�b)�(a�b))))�( ( (a�b)�(a�b))�( ( ( (a�b)�(a�b))�(a�( (a�(a�b))�a)))�( (a�b)�(a�b))))))�(a�( (a�

( (a�b)�(a�b)))�a)))�(a�b)))
= A ( (a�b)�(a�b))�( (a�b)�( ( ( (a�( (a�(a�b))�a))�( ( ( (a�b)�(a�b))�( (a�b)�( (a�b)�(a�b))))�( ( (a�b)�

(a�b))�( (a�b)�( (a�b)�(a�b))))))�(a�( (a�( (a�b)�(a�b)))�a)))�(a�b)))
= L�19 ( (a�b)�(a�b))�( (a�b)�( ( ( (a�( (a�(a�b))�a))�( (a�b)�(a�b)))�(a�( (a�( (a�b)�(a�b)))�a)))�(a�

b)))
= A ( (a�b)�(a�b))�( (a�b)�( ( (a�b)�(a�b))�(a�b)))

L�26 a�( (a�( (a�b)�(a�b)))�a)
= L�25 ( (a�b)�(a�b))�( (a�b)�( ( (a�b)�(a�b))�(a�b)))
= A ( (a�b)�(a�b))�( ( ( ( (a�b)�(a�b))�(a�b))�( (a�b)�( ( (a�b)�(a�b))�(a�b))))�( ( (a�b)�(a�b))�( ( ( (a�

b)�(a�b))�( (a�b)�( ( (a�b)�(a�b))�(a�b))))�( (a�b)�(a�b)))))
= A ( (a�b)�(a�b))�( (a�b)�( ( (a�b)�(a�b))�( ( ( (a�b)�(a�b))�( (a�b)�( ( (a�b)�(a�b))�(a�b))))�( (a�b)�

(a�b)))))
= L�12 ( (a�b)�(a�b))�( (a�b)�( ( (a�b)�( ( (a�b)�( ( (a�b)�(a�b))�(a�b)))�(a�b)))�( (a�b)�( ( (a�b)�

( ( (a�b)�(a�b))�(a�b)))�(a�b)))))
= L�16 ( (a�b)�(a�b))�( (a�b)�( ( (a�b)�( ( (a�b)�(a�b))�(a�b)))�( (a�b)�( ( (a�b)�(a�b))�(a�b)))))
= L�1 ( (a�b)�(a�b))�( (a�b)�(a�b))

L�27 a�( (a�( (a�b)�(a�b)))�a)
= L�26 ( (a�b)�(a�b))�( (a�b)�(a�b))
= L�22 a�b

L�28 a
= L�24 ( (a�b)�a)�(a�a)
= L�27 ( (a�b)�a)�( ( ( (a�b)�a)�( ( ( (a�b)�a)�(a�a))�( ( (a�b)�a)�(a�a))))�( (a�b)�a))
= L�24 ( (a�b)�a)�( ( ( (a�b)�a)�(a�a))�( (a�b)�a))

L�29 ( (a�b)�a)�(a�( (a�b)�a))
= L�24 ( (a�b)�a)�( ( ( (a�b)�a)�(a�a))�( (a�b)�a))
= L�28 a

L�30 (a�b)�(a�a)
= L�27 (a�( (a�( (a�b)�(a�b)))�a))�(a�a)
= L�29 (a�( (a�( (a�b)�(a�b)))�a))�( ( ( (a�( (a�b)�(a�b)))�a)�(a�( (a�( (a�b)�(a�b)))�a)))�( ( (a�( (a�

b)�(a�b)))�a)�(a�( (a�( (a�b)�(a�b)))�a))))
= L�29 (a�( (a�( (a�b)�(a�b)))�a))�( ( ( (a�( (a�b)�(a�b)))�a)�( ( ( (a�( (a�b)�(a�b)))�a)�(a�( (a�( (a�b)�

(a�b)))�a)))�( (a�( (a�b)�(a�b)))�a)))�( ( (a�( (a�b)�(a�b)))�a)�( ( ( (a�( (a�b)�(a�b)))�a)�(a�( (a�( (a�b)�

(a�b)))�a)))�( (a�( (a�b)�(a�b)))�a))))
= A ( ( ( ( (a�( (a�b)�(a�b)))�a)�( ( ( (a�( (a�b)�(a�b)))�a)�(a�( (a�( (a�b)�(a�b)))�a)))�( (a�( (a�b)�(a�

b)))�a)))�(a�( (a�( (a�b)�(a�b)))�a)))�( ( (a�( (a�b)�(a�b)))�a)�( ( ( (a�( (a�b)�(a�b)))�a)�(a�( (a�( (a�b)�

(a�b)))�a)))�( (a�( (a�b)�(a�b)))�a))))�( ( ( (a�( (a�b)�(a�b)))�a)�( ( ( (a�( (a�b)�(a�b)))�a)�(a�( (a�( (a�

b)�(a�b)))�a)))�( (a�( (a�b)�(a�b)))�a)))�( ( (a�( (a�b)�(a�b)))�a)�( ( ( (a�( (a�b)�(a�b)))�a)�(a�( (a�( (a�

b)�(a�b)))�a)))�( (a�( (a�b)�(a�b)))�a))))
= L�24 ( (a�( (a�b)�(a�b)))�a)�( ( ( (a�( (a�b)�(a�b)))�a)�(a�( (a�( (a�b)�(a�b)))�a)))�( (a�( (a�b)�(a�

b)))�a))
= L�29 ( (a�( (a�b)�(a�b)))�a)�(a�( (a�( (a�b)�(a�b)))�a))
= L�29 a

L�31 b�( (a�b)�(a�b))
= L�3 ( (a�b)�( (a�a)�( ( (a�a)�b)�(a�a))))�( (a�b)�(a�b))
= L�30 a�b

L�32 a�( (a�b)�(a�b))
= L�30 ( (a�b)�(a�a))�( (a�b)�(a�b))
= L�30 a�b

L�33 a�( (a�b)�a)
= L�32 a�( (a�( (a�b)�(a�b)))�a)
= L�27 a�b

L�34 ( (a�b)�c)�(b�c)
= L�33 ( (a�b)�c)�(b�( (b�c)�b))
= L�33 ( (a�( (a�b)�a))�c)�(b�( (b�c)�b))
= L�4 c

L�35 b�a
= L�31 a�( (b�a)�(b�a))
= L�33 a�( (a�( (b�a)�(b�a)))�a)
= L�31 a�( (b�a)�a)

L�36 b�(b�(a�b))
= L�33 b�(b�(a�( (a�b)�a)))
= L�33 b�(b�( (b�(a�( (a�b)�a)))�b))
= A ( ( (a�( (a�b)�a))�b)�(a�( (a�b)�a)))�(b�( (b�(a�( (a�b)�a)))�b))
= A ( ( (a�( (a�b)�a))�( ( (a�( (a�b)�a))�b)�(a�( (a�b)�a))))�(a�( (a�b)�a)))�(b�( (b�(a�( (a�b)�a)))�

b))
= L�4 a�( (a�b)�a)
= L�33 a�b

L�37 (a�b)�a
= L�36 a�(a�( (a�b)�a))
= L�33 a�(a�b)

L�38 (b�a)�a
= L�36 a�(a�( (b�a)�a))
= L�35 a�(b�a)

L�39 (b�b)�(b�(a�b))
= L�38 (b�b)�( (a�b)�b)
= L�33 (b�b)�( (a�b)�( ( (a�b)�b)�(a�b)))
= L�3 (b�b)�( (a�b)�( ( (a�b)�( (a�b)�( (a�a)�( ( (a�a)�b)�(a�a)))))�(a�b)))
= L�3 ( ( (a�b)�( (a�a)�( ( (a�a)�b)�(a�a))))�( (a�b)�( (a�a)�( ( (a�a)�b)�(a�a)))))�( (a�b)�( ( (a�b)�( (a�

b)�( (a�a)�( ( (a�a)�b)�(a�a)))))�(a�b)))
= A (a�b)�( (a�a)�( ( (a�a)�b)�(a�a)))
= L�3 b

L�40 a
= L�39 (a�a)�(a�( (b�a)�a))
= L�38 (a�a)�(a�(a�(b�a)))
= L�36 (a�a)�(b�a)

L�41 a
= L�39 (a�a)�(a�( (a�b)�a))
= L�33 (a�a)�(a�b)

L�42 b�a
= L�41 b�( (a�a)�(a�b))
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= L�33 b�( (a�a)�(a�( (a�b)�a)))
= L�33 b�( (a�a)�( ( (a�a)�(a�( (a�b)�a)))�(a�a)))
= A ( ( (a�a)�b)�(a�( (a�b)�a)))�( (a�a)�( ( (a�a)�(a�( (a�b)�a)))�(a�a)))
= A a�( (a�b)�a)
= L�33 a�b

L�43 (a�c)�( (a�b)�c)
= L�42 ( (a�b)�c)�(a�c)
= L�33 ( (a�b)�c)�(a�( (a�c)�a))
= A c

L�44 (b�c)�( (a�b)�c)
= L�42 ( (a�b)�c)�(b�c)
= L�34 c

L�45 (b�a)�( (a�c)�b)
= L�42 (a�b)�( (a�c)�b)
= L�43 b

L�46 (b�a)�(a�(b�c))
= L�42 (b�a)�( (b�c)�a)
= L�43 a

L�47 b�c
= L�46 ( (a�b)�(b�c))�( (b�c)�( (a�b)�c))
= L�44 ( (a�b)�(b�c))�c
= L�42 c�( (a�b)�(b�c))

L�48 a�b
= L�45 ( (a�b)�(c�a))�( ( (c�a)�b)�(a�b))
= L�42 ( (a�b)�(c�a))�( (a�b)�( (c�a)�b))
= L�44 ( (a�b)�(c�a))�b

L�49 b�( (a�b)�(c�a))
= L�42 ( (a�b)�(c�a))�b
= L�48 a�b

L�50 (a�b)�c
= L�43 (a�( (a�b)�c))�( (a�c)�( (a�b)�c))
= L�43 (a�( (a�b)�c))�c
= L�42 c�(a�( (a�b)�c))

L�51 a�(b�(a�b))
= L�42 a�( (a�b)�b)
= L�42 ( (a�b)�b)�a
= L�50 a�( (a�b)�( ( (a�b)�b)�a))
= L�42 a�( (b�a)�( ( (a�b)�b)�a))
= L�44 a�a

L�52 (b�a)�(a�b)
= L�50 (a�b)�(b�( (b�a)�(a�b)))
= L�47 (a�b)�(a�b)

L�53 (a�a)�( (b�a)�(b�a))
= L�44 (a�a)�( (b�a)�( ( (a�a)�(b�a))�( ( ( (a�a)�(b�a))�(a�a))�(b�a))))
= L�50 (a�a)�( ( ( (a�a)�(b�a))�(a�a))�(b�a))
= L�42 (a�a)�( (b�a)�( ( (a�a)�(b�a))�(a�a)))
= L�42 (a�a)�( (b�a)�( (a�a)�( (a�a)�(b�a))))
= L�40 (a�a)�( (b�a)�( (a�a)�a))
= L�42 (a�a)�( (b�a)�(a�(a�a)))
= L�47 a�(a�a)

L�54 ( (a�b)�(a�b))�( (a�b)�(a�b))
= L�52 ( (b�a)�(a�b))�( (b�a)�(a�b))
= L�52 ( (a�b)�(b�a))�( (b�a)�(a�b))
= L�52 ( (a�b)�(b�a))�( (a�b)�(a�b))

L�55 a�b
= L�22 ( (a�b)�(a�b))�( (a�b)�(a�b))
= L�54 ( (a�b)�(b�a))�( (a�b)�(a�b))
= L�52 ( (b�a)�(b�a))�( (a�b)�(a�b))

L�56 a�(b�(b�b))
= L�53 a�( (b�b)�( (a�b)�(a�b)))
= L�42 a�( ( (a�b)�(a�b))�(b�b))
= L�40 a�( ( (a�b)�(a�b))�( ( (b�b)�(a�b))�( (b�b)�(a�b))))
= L�53 a�( (a�b)�( (a�b)�(a�b)))
= L�42 a�( ( (a�b)�(a�b))�(a�b))
= L�32 a�( ( (a�b)�(a�b))�(a�( (a�b)�(a�b))))
= L�51 a�a

T �2 a�(b�(b�b))
= L�56 a�a

L�57 ( (a�a)�( ( (a�b)�(a�b))�c))�( (a�a)�( ( (a�b)�(a�b))�c))
= L�56 ( (a�a)�( ( (a�b)�(d �(d �d)))�c))�( (a�a)�( ( (a�b)�(d �(d �d)))�c))
= L�56 ( (a�(d �(d �d)))�( ( (a�b)�(d �(d �d)))�c))�( (a�(d �(d �d)))�( ( (a�b)�(d �(d �d)))�c))
= L�56 ( (a�(d �(d �d)))�( ( (a�b)�(d �(d �d)))�c))�(d �(d �d))
= L�42 (d �(d �d))�( (a�(d �(d �d)))�( ( (a�b)�(d �(d �d)))�c))
= L�42 (d �(d �d))�( ( ( (a�b)�(d �(d �d)))�c)�(a�(d �(d �d))))
= L�42 ( ( ( (a�b)�(d �(d �d)))�c)�(a�(d �(d �d))))�(d �(d �d))
= L�46 ( ( ( (a�b)�(d �(d �d)))�c)�(a�(d �(d �d))))�( ( (a�b)�(d �(d �d)))�( (d �(d �d))�( (a�b)�(d �(d �

d)))))
= L�33 ( ( ( (a�b)�(d �(d �d)))�c)�(a�( (a�(d �(d �d)))�a)))�( ( (a�b)�(d �(d �d)))�( (d �(d �d))�( (a�b)�

(d �(d �d)))))

= A ( ( ( (a�b)�(d �(d �d)))�c)�(a�( (a�(d �(d �d)))�a)))�( ( (a�b)�(d �(d �d)))�( ( ( (a�b)�(d �(d �d)))�

(a�( (a�(d �(d �d)))�a)))�( (a�b)�(d �(d �d)))))

= A a�( (a�(d �(d �d)))�a)
= L�33 a�(d �(d �d))
L�58 (b�b)�( ( (b�c)�(b�c))�d)
= L�22 ( ( (b�b)�( ( (b�c)�(b�c))�d))�( (b�b)�( ( (b�c)�(b�c))�d)))�( ( (b�b)�( ( (b�c)�(b�c))�d))�

( (b�b)�( ( (b�c)�(b�c))�d)))

= L�57 (b�(a�(a�a)))�(b�(a�(a�a)))
= L�56 (b�b)�(b�b)
L�59 (a�a)�( ( (a�b)�(a�b))�c)
= L�58 (a�a)�(a�a)
= L�22 a
L�60 a
= L�59 (a�a)�( ( (a�( (b�a)�(c�b)))�(a�( (b�a)�(c�b))))�( (d �( (a�( (b�a)�(c�b)))�(a�( (b�a)�(c�

b)))))�(e�d)))
= L�49 (a�a)�(d �( (a�( (b�a)�(c�b)))�(a�( (b�a)�(c�b)))))

= L�49 (a�a)�(d �( (b�a)�(b�a)))
L�61 c�( (a�c)�( ( (a�b)�c)�( (a�b)�c)))
= L�42 c�( ( ( (a�b)�c)�( (a�b)�c))�(a�c))
= L�42 ( ( ( (a�b)�c)�( (a�b)�c))�(a�c))�c
= L�46 ( ( ( (a�b)�c)�( (a�b)�c))�(a�c))�( ( (a�b)�c)�(c�( (a�b)�c)))
= L�33 ( ( ( (a�b)�c)�( (a�b)�c))�(a�( (a�c)�a)))�( ( (a�b)�c)�(c�( (a�b)�c)))

= A ( ( ( (a�b)�c)�( (a�b)�c))�(a�( (a�c)�a)))�( ( (a�b)�c)�( ( ( (a�b)�c)�(a�( (a�c)�a)))�( (a�b)�c)))
= A a�( (a�c)�a)
= L�33 a�c

L�62 (a�a)�b
= L�61 b�( ( (a�a)�b)�( ( ( (a�a)�( ( (a�c)�(a�c))�d))�b)�( ( (a�a)�( ( (a�c)�(a�c))�d))�b)))
= L�59 b�( ( (a�a)�b)�( (a�b)�(a�b)))
= L�50 b�( ( (a�b)�(a�b))�( (a�a)�( ( (a�a)�b)�( (a�b)�(a�b)))))

= L�45 b�( ( (a�b)�(a�b))�( ( ( (a�b)�( (b�c)�a))�( (a�b)�( (b�c)�a)))�( ( (a�a)�b)�( (a�b)�(a�b)))))
= L�59 b�(a�b)
L�63 a�(a�b)
= L�42 a�(b�a)

= L�62 (b�b)�a
L�64 a�(b�c)
= L�45 ( (a�(b�c))�c)�( (c�a)�(a�(b�c)))
= L�42 ( (a�(b�c))�c)�( (c�a)�( (b�c)�a))

= L�44 ( (a�(b�c))�c)�a
L�65 a�(b�c)
= L�64 ( (a�(b�c))�c)�a
= L�42 a�( (a�(b�c))�c)

= L�42 a�(c�(a�(b�c)))
L�66 a�c
= L�59 ( (a�c)�(a�c))�( ( ( (a�c)�(c�a))�( (a�c)�(c�a)))�b)
= L�52 ( (a�c)�(a�c))�( ( ( (c�a)�(c�a))�( (c�a)�(c�a)))�b)
= L�22 ( (a�c)�(a�c))�( (c�a)�b)
L�67 (a�b)�(a�b)
= L�59 ( ( (a�b)�(a�b))�( (a�b)�(a�b)))�( ( ( ( (a�b)�(a�b))�( (b�a)�(b�a)))�( ( (a�b)�(a�b))�( (b�a)�

(b�a))))�c)
= L�55 ( ( (a�b)�(a�b))�( (a�b)�(a�b)))�( ( (b�a)�(b�a))�c)
= L�22 (a�b)�( ( (b�a)�(b�a))�c)

L�68 a�( ( (b�c)�(b�a))�( (b�c)�(b�a)))
= L�42 ( ( (b�c)�(b�a))�( (b�c)�(b�a)))�a
= L�63 a�(a�( (b�c)�(b�a)))
= L�33 a�(a�( (b�c)�(b�( (b�a)�b))))

= L�33 a�(a�( (b�c)�( ( (b�c)�(b�( (b�a)�b)))�(b�c))))
= A a�( ( ( (b�c)�a)�(b�( (b�a)�b)))�( (b�c)�( ( (b�c)�(b�( (b�a)�b)))�(b�c))))
= A a�(b�( (b�a)�b))
= L�33 a�(b�a)

= L�62 (b�b)�a
L�69 (b�c)�a
= L�22 ( ( (b�c)�(b�c))�( (b�c)�(b�c)))�a
= L�68 a�( ( ( ( (b�c)�(b�c))�( (c�b)�(c�b)))�( ( (b�c)�(b�c))�a))�( ( ( (b�c)�(b�c))�( (c�b)�(c�b)))�

( ( (b�c)�(b�c))�a)))

= L�55 a�( ( (c�b)�( ( (b�c)�(b�c))�a))�( (c�b)�( ( (b�c)�(b�c))�a)))
L�70 (b�c)�a
= L�69 a�( ( (c�b)�( ( (b�c)�(b�c))�a))�( (c�b)�( ( (b�c)�(b�c))�a)))
= L�67 a�( ( (c�b)�(c�b))�( (c�b)�(c�b)))

= L�22 a�(c�b)
L�71 ( (b�c)�(b�c))�a
= L�68 a�( ( ( (b�c)�(c�b))�( (b�c)�a))�( ( (b�c)�(c�b))�( (b�c)�a)))
= L�52 a�( ( ( (c�b)�(c�b))�( (b�c)�a))�( ( (c�b)�(c�b))�( (b�c)�a)))
= L�66 a�( (c�b)�(c�b))

L�72 (b�a)�( ( (b�c)�a)�( (b�c)�a))
= L�3 (a�( (b�a)�( ( (b�c)�a)�( (b�c)�a))))�( (a�a)�( ( (a�a)�( (b�a)�( ( (b�c)�a)�( (b�c)�a))))�(a�a)))
= L�33 (a�( (b�a)�( ( (b�c)�a)�( (b�c)�a))))�( (a�a)�( (b�a)�( ( (b�c)�a)�( (b�c)�a))))
= L�61 (b�a)�( (a�a)�( (b�a)�( ( (b�c)�a)�( (b�c)�a))))

L�73 (b�a)�( ( (b�c)�a)�( (b�c)�a))
= L�72 (b�a)�( (a�a)�( (b�a)�( ( (b�c)�a)�( (b�c)�a))))
= L�60 (b�a)�a
= L�70 a�(a�b)
= L�63 (b�b)�a
L�74 (a�a)�c
= L�73 (a�c)�( ( (a�b)�c)�( (a�b)�c))
= L�50 ( ( (a�b)�c)�( (a�b)�c))�(a�( (a�c)�( ( (a�b)�c)�( (a�b)�c))))
= L�73 ( ( (a�b)�c)�( (a�b)�c))�(a�( (a�a)�c))

= L�22 ( ( (a�b)�c)�( (a�b)�c))�( ( (a�a)�(a�a))�( (a�a)�c))
= L�41 ( ( (a�b)�c)�( (a�b)�c))�(a�a)
L�75 (a�a)�( (c�(a�b))�(c�(a�b)))
= L�71 ( ( (a�b)�c)�( (a�b)�c))�(a�a)
= L�74 (a�a)�c

L�76 (b�(a�c))�(a�a)
= L�22 ( ( (b�(a�c))�(b�(a�c)))�( (b�(a�c))�(b�(a�c))))�(a�a)
= L�63 (a�a)�( (a�a)�( (b�(a�c))�(b�(a�c))))
= L�75 (a�a)�( (a�a)�b)
L�77 ( (a�b)�(a�b))�(c�a)
= L�75 ( (a�b)�(a�b))�( ( (c�a)�( (a�b)�c))�( (c�a)�( (a�b)�c)))
= L�45 ( (a�b)�(a�b))�(c�c)

L�78 ( (b�c)�(b�c))�a
= L�45 ( (b�c)�(b�c))�( (a�b)�( (b�c)�a))
= L�70 ( ( (b�c)�a)�(a�b))�( (b�c)�(b�c))
= L�22 ( ( ( ( (b�c)�a)�(a�b))�( ( (b�c)�a)�(a�b)))�( ( ( (b�c)�a)�(a�b))�( ( (b�c)�a)�(a�b))))�( (b�c)�

(b�c))
= L�63 ( (b�c)�(b�c))�( ( (b�c)�(b�c))�( ( ( (b�c)�a)�(a�b))�( ( (b�c)�a)�(a�b))))
= L�76 ( ( ( ( (b�c)�a)�(a�b))�( ( (b�c)�a)�(a�b)))�( (b�c)�(a�b)))�( (b�c)�(b�c))
= L�70 ( (b�c)�(b�c))�( ( (b�c)�(a�b))�( ( ( (b�c)�a)�(a�b))�( ( (b�c)�a)�(a�b))))
= L�73 ( (b�c)�(b�c))�( ( (b�c)�(b�c))�(a�b))
= L�63 ( (a�b)�(a�b))�( (b�c)�(b�c))
= L�47 ( (a�b)�(a�b))�( (c�( (a�b)�(b�c)))�(c�( (a�b)�(b�c))))
= L�75 ( (a�b)�(a�b))�c
= L�71 c�( (b�a)�(b�a))

L�79 a�(c�( (a�b)�(a�b)))
= L�42 a�(c�( (b�a)�(b�a)))
= L�78 a�( ( (b�c)�(b�c))�a)
= L�62 ( ( (b�c)�(b�c))�( (b�c)�(b�c)))�a
= L�22 (b�c)�a
L�80 a�( (b�a)�c)
= L�70 (c�(b�a))�a
= L�79 a�( (b�a)�( (a�c)�(a�c)))
= L�42 a�( ( (a�c)�(a�c))�(b�a))
= L�77 a�( ( (a�c)�(a�c))�(b�b))
= L�78 a�(c�( (a�(b�b))�(a�(b�b))))
= L�79 ( (b�b)�c)�a
L�81 ( (c�a)�(a�b))�( (c�a)�(a�b))
= L�40 ( ( ( (c�a)�(a�b))�( (c�a)�(a�b)))�( ( (c�a)�(a�b))�( (c�a)�(a�b))))�( (a�a)�( ( (c�a)�(a�b))�

( (c�a)�(a�b))))
= L�75 ( ( ( (c�a)�(a�b))�( (c�a)�(a�b)))�( ( (c�a)�(a�b))�( (c�a)�(a�b))))�( (a�a)�(c�a))
= L�22 ( (c�a)�(a�b))�( (a�a)�(c�a))
= L�70 ( (a�a)�(c�a))�( (a�b)�(c�a))
= L�40 a�( (a�b)�(c�a))
= L�70 ( (c�a)�(a�b))�a
= L�79 a�( (a�b)�( (a�(c�a))�(a�(c�a))))
= L�70 a�( ( (a�(c�a))�(a�(c�a)))�(b�a))
= L�77 a�( ( (a�(c�a))�(a�(c�a)))�(b�b))
= L�78 a�( (c�a)�( (a�(b�b))�(a�(b�b))))
= L�79 ( (b�b)�(c�a))�a
T �3 ( (b�b)�a)�( (c�c)�a)
= L�42 ( (b�b)�a)�(a�(c�c))
= L�42 (a�(c�c))�( (b�b)�a)
= L�22 ( ( (a�a)�(a�a))�(c�c))�( (b�b)�a)
= L�80 ( (b�b)�a)�( ( (a�a)�( (b�b)�a))�(c�c))
= L�70 ( (c�c)�( (a�a)�( (b�b)�a)))�( (b�b)�a)
= L�81 ( ( (a�a)�( (b�b)�a))�( ( (b�b)�a)�c))�( ( (a�a)�( (b�b)�a))�( ( (b�b)�a)�c))
= L�40 (a�( ( (b�b)�a)�c))�(a�( ( (b�b)�a)�c))
= L�80 ( ( ( (b�b)�(b�b))�c)�a)�( ( ( (b�b)�(b�b))�c)�a)
= L�42 ( (c�( (b�b)�(b�b)))�a)�( (c�( (b�b)�(b�b)))�a)
= L�40 ( ( ( (c�( (b�b)�(b�b)))�(c�( (b�b)�(b�b))))�( (b�b)�(c�( (b�b)�(b�b)))))�a)�( ( ( (c�( (b�b)�

(b�b)))�(c�( (b�b)�(b�b))))�( (b�b)�(c�( (b�b)�(b�b)))))�a)
= L�60 ( ( ( (c�( (b�b)�(b�b)))�(c�( (b�b)�(b�b))))�b)�a)�( ( ( (c�( (b�b)�(b�b)))�(c�( (b�b)�(b�

b))))�b)�a)
= L�42 ( (b�( (c�( (b�b)�(b�b)))�(c�( (b�b)�(b�b)))))�a)�( (b�( (c�( (b�b)�(b�b)))�(c�( (b�b)�(b�

b)))))�a)
= L�78 ( ( ( (c�b)�(c�b))�( (b�b)�(b�b)))�a)�( ( ( (c�b)�(c�b))�( (b�b)�(b�b)))�a)
= L�40 ( ( ( (c�b)�(c�b))�( (b�( (b�b)�(c�b)))�(b�( (b�b)�(c�b)))))�a)�( ( ( (c�b)�(c�b))�( (b�( (b�

b)�(c�b)))�(b�( (b�b)�(c�b)))))�a)
= L�65 ( ( ( (c�b)�(c�b))�( (b�( (c�b)�(b�( (b�b)�(c�b)))))�(b�( (c�b)�(b�( (b�b)�(c�b)))))))�a)�

( ( ( (c�b)�(c�b))�( (b�( (c�b)�(b�( (b�b)�(c�b)))))�(b�( (c�b)�(b�( (b�b)�(c�b)))))))�a)
= L�75 ( ( ( (c�b)�(c�b))�b)�a)�( ( ( (c�b)�(c�b))�b)�a)
= L�78 ( (b�( (c�b)�(c�b)))�a)�( (b�( (c�b)�(c�b)))�a)
= L�31 ( (c�b)�a)�( (c�b)�a)
= L�70 (a�(b�c))�(a�(b�c))

A proof that the axiom system  given as example (g) on page 808 can reproduce the Sheffer axiom
system (c), and is thus a complete axiom system for logic. The proof involves taking the original axiom  and using it to establish a
sequence of lemmas , from which it is eventually possible to prove the three Sheffer axioms . In each part of the proof each line
can be obtained from the previous one just as on page 775 by applying the axiom or lemma indicated. Explicit operators have been
omitted to allow expressions to be printed more compactly. The proof shown takes a total of 343 steps, and involves intermediate
expressions with as many as 128 NANDs. It is quite possible that the proof could be considerably shortened. Note that any proof can
always be recast without lemmas, but will usually then be much longer.

{( (b Æc) Æa) Æ (b Æ ( (b Æa) Æb)) Ð a}

A

Ln Tn
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So what about patterns of theorems? Does logic somehow stand

out when one looks at these? The picture below shows which possible

simple equivalence theorems hold in systems from page 805.

And comparing with page 805 one sees that typically the more

forms of operator are allowed by the constraints of an axiom system,

the fewer equivalence results hold in that axiom system.

(pÆp)Æp Ð (pÆp)Æq

(pÆp)Æp Ð pÆ (pÆq)

pÆ (pÆp) Ð (pÆp)Æq

pÆ (pÆp) Ð pÆ (pÆq)

(pÆp)Æp Ð pÆ (pÆp)

pÆ (pÆp) Ð (pÆp)Æp

q Æq Ð (pÆq)Æq

q Æq Ð pÆ (q Æq)

q Æq Ð (pÆq)Æp

q Æq Ð pÆ (q Æp)

q Æq Ð (pÆp)Æq

q Æq Ð pÆ (pÆq)

q Æq Ð (pÆp)Æp

q Æq Ð pÆ (pÆp)

q Æp Ð (pÆq)Æq

q Æp Ð pÆ (q Æq)

q Æp Ð (pÆq)Æp

q Æp Ð pÆ (q Æp)

q Æp Ð (pÆp)Æq

q Æp Ð pÆ (pÆq)

q Æp Ð (pÆp)Æp

q Æp Ð pÆ (pÆp)

pÆq Ð (q Æq)Æq

pÆq Ð q Æ (q Æq)

pÆq Ð (q Æq)Æp

pÆq Ð q Æ (q Æp)

pÆq Ð (q Æp)Æq

pÆq Ð q Æ (pÆq)

pÆq Ð (q Æp)Æp

pÆq Ð q Æ (pÆp)

pÆq Ð (pÆq)Æq

pÆq Ð pÆ (q Æq)

pÆq Ð (pÆq)Æp

pÆq Ð pÆ (q Æp)

pÆq Ð (pÆp)Æq

pÆq Ð pÆ (pÆq)

pÆq Ð (pÆp)Æp

pÆq Ð pÆ (pÆp)

pÆp Ð (q Æq)Æq

pÆp Ð q Æ (q Æq)

pÆp Ð (q Æq)Æp

pÆp Ð q Æ (q Æp)

pÆp Ð (q Æp)Æq

pÆp Ð q Æ (pÆq)

pÆp Ð (q Æp)Æp

pÆp Ð q Æ (pÆp)

pÆp Ð (pÆq)Æq

pÆp Ð pÆ (q Æq)

pÆp Ð (pÆq)Æp

pÆp Ð pÆ (q Æp)

pÆp Ð (pÆp)Æq

pÆp Ð pÆ (pÆq)

pÆp Ð (pÆp)Æp

pÆp Ð pÆ (pÆp)

q Ð (pÆq)Æq

q Ð pÆ (q Æq)

q Ð (pÆq)Æp

q Ð pÆ (q Æp)

q Ð (pÆp)Æq

q Ð pÆ (pÆq)

q Ð (pÆp)Æp

q Ð pÆ (pÆp)

p Ð (q Æq)Æq

p Ð q Æ (q Æq)

p Ð (q Æq)Æp

p Ð q Æ (q Æp)

p Ð (q Æp)Æq

p Ð q Æ (pÆq)

p Ð (q Æp)Æp

p Ð q Æ (pÆp)

p Ð (pÆq)Æq

p Ð pÆ (q Æq)

p Ð (pÆq)Æp

p Ð pÆ (q Æp)

p Ð (pÆp)Æq

p Ð pÆ (pÆq)

p Ð (pÆp)Æp

p Ð pÆ (pÆp)

pÆq Ð q Æq

pÆq Ð q Æp

pÆp Ð q Æq

pÆp Ð q Æp

pÆp Ð pÆq

q Ð pÆq

q Ð pÆp

p Ð q Æq

p Ð q Æp

p Ð pÆq

p Ð pÆp

p Ð q

aÆa Ð a ?

aÆb Ð a ?

bÆa Ð a ?

bÆb Ð a ?

aÆb Ð bÆa ?

aÆ (aÆa) Ð a ?

(aÆa)Æa Ð a ?

aÆ (aÆb) Ð a ?

aÆ (bÆa) Ð a ?

aÆ (bÆb) Ð a ?

bÆ (aÆa) Ð a ?

bÆ (aÆb) Ð a ?

bÆ (bÆa) Ð a ?

(aÆa)Æb Ð a ?

(aÆb)Æa Ð a ?

(aÆb)Æb Ð a ?

(bÆa)Æa Ð a ?

(bÆa)Æb Ð a ?

(bÆb)Æa Ð a ?

bÆ (bÆb) Ð a ?

(bÆb)Æb Ð a ?

(aÆa)Æ (aÆa) Ð a ?

aÆ ( (aÆa)Æb) Ð a ?

(aÆa)Æ (aÆb) Ð a ?

(aÆb)Æ (bÆc) Ð a ?

(aÆb)Æc Ð aÆ (bÆc) ?

( (bÆb)Æa)Æ (aÆb) Ð a ?

( (bÆ (aÆa))Æa)Æb Ð a ?

bÆ (c Æ (aÆ (bÆc))) Ð a ?

(aÆb)Æ (aÆ (bÆc)) Ð a ?

( ( (bÆa)Æc)Æa)Æ (aÆc) Ð a ?

( ( (bÆc)Æd)Æa)Æ (aÆd) Ð a ?

(aÆb)Æa Ð a aÆa Ð bÆb ?

(aÆa)Æ (aÆa) Ð a aÆb Ð bÆa ?

(bÆ (bÆ (aÆa)))Æ (aÆ (bÆc)) Ð a ?

(bÆ ( (aÆb)Æb))Æ (aÆ (c Æb)) Ð a ?

( (bÆc)Æa)Æ (bÆ ( (bÆa)Æb)) Ð a ?

(aÆa)Æ (aÆb) Ð a aÆb Ð bÆa ?

(bÆ (aÆc))Æa Ð a aÆa Ð bÆb ?

Theorems that can be proved on the basis of simple axiom systems from page 805. A black square indicates that a particular theorem
holds in a particular axiom system. In general the question of whether a given theorem holds is undecidable, but the particular
theorems given here happen to be simple enough that results for them can with some effort be established with certainty. 
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So what happens if essentially just a single form of operator is

allowed? The pictures below show results for the 16 forms from page

806, and among these one sees that logic yields the fewest theorems.

(pÆp)Æp Ð (pÆp)Æq

(pÆp)Æp Ð pÆ (pÆq)

pÆ (pÆp) Ð (pÆp)Æq

pÆ (pÆp) Ð pÆ (pÆq)

(pÆp)Æp Ð pÆ (pÆp)

pÆ (pÆp) Ð (pÆp)Æp

q Æq Ð (pÆq)Æq

q Æq Ð pÆ (q Æq)

q Æq Ð (pÆq)Æp

q Æq Ð pÆ (q Æp)

q Æq Ð (pÆp)Æq

q Æq Ð pÆ (pÆq)

q Æq Ð (pÆp)Æp

q Æq Ð pÆ (pÆp)

q Æp Ð (pÆq)Æq

q Æp Ð pÆ (q Æq)

q Æp Ð (pÆq)Æp

q Æp Ð pÆ (q Æp)

q Æp Ð (pÆp)Æq

q Æp Ð pÆ (pÆq)

q Æp Ð (pÆp)Æp

q Æp Ð pÆ (pÆp)

pÆq Ð (q Æq)Æq

pÆq Ð q Æ (q Æq)

pÆq Ð (q Æq)Æp

pÆq Ð q Æ (q Æp)

pÆq Ð (q Æp)Æq

pÆq Ð q Æ (pÆq)

pÆq Ð (q Æp)Æp

pÆq Ð q Æ (pÆp)

pÆq Ð (pÆq)Æq

pÆq Ð pÆ (q Æq)

pÆq Ð (pÆq)Æp

pÆq Ð pÆ (q Æp)

pÆq Ð (pÆp)Æq

pÆq Ð pÆ (pÆq)

pÆq Ð (pÆp)Æp

pÆq Ð pÆ (pÆp)

pÆp Ð (q Æq)Æq

pÆp Ð q Æ (q Æq)

pÆp Ð (q Æq)Æp

pÆp Ð q Æ (q Æp)

pÆp Ð (q Æp)Æq

pÆp Ð q Æ (pÆq)

pÆp Ð (q Æp)Æp

pÆp Ð q Æ (pÆp)

pÆp Ð (pÆq)Æq

pÆp Ð pÆ (q Æq)

pÆp Ð (pÆq)Æp

pÆp Ð pÆ (q Æp)

pÆp Ð (pÆp)Æq

pÆp Ð pÆ (pÆq)

pÆp Ð (pÆp)Æp

pÆp Ð pÆ (pÆp)

q Ð (pÆq)Æq

q Ð pÆ (q Æq)

q Ð (pÆq)Æp

q Ð pÆ (q Æp)

q Ð (pÆp)Æq

q Ð pÆ (pÆq)

q Ð (pÆp)Æp

q Ð pÆ (pÆp)

p Ð (q Æq)Æq

p Ð q Æ (q Æq)

p Ð (q Æq)Æp

p Ð q Æ (q Æp)

p Ð (q Æp)Æq

p Ð q Æ (pÆq)

p Ð (q Æp)Æp

p Ð q Æ (pÆp)

p Ð (pÆq)Æq

p Ð pÆ (q Æq)

p Ð (pÆq)Æp

p Ð pÆ (q Æp)

p Ð (pÆp)Æq

p Ð pÆ (pÆq)

p Ð (pÆp)Æp

p Ð pÆ (pÆp)

pÆq Ð q Æq

pÆq Ð q Æp

pÆp Ð q Æq

pÆp Ð q Æp

pÆp Ð pÆq

q Ð pÆq

q Ð pÆp

p Ð q Æq

p Ð q Æp

p Ð pÆq

p Ð pÆp

p Ð q

False:0 ?

Nor:1 ?

2 ?

Not:3 ?

4 ?

Not:5 ?

Xor:6 ?

Nand:7 ?

And:8 ?

Equal:9 ?

Last:10 ?

Implies:11 ?

First:12 ?

13 ?

Or:14 ?

True:15 ?

(pÆq)Æq Ð (q Æq)Æq

(pÆq)Æq Ð q Æ (q Æq)

pÆ (q Æq) Ð (q Æq)Æq

pÆ (q Æq) Ð q Æ (q Æq)

(pÆq)Æq Ð (q Æq)Æp

(pÆq)Æq Ð q Æ (q Æp)

pÆ (q Æq) Ð (q Æq)Æp

pÆ (q Æq) Ð q Æ (q Æp)

(pÆq)Æq Ð (q Æp)Æq

(pÆq)Æq Ð q Æ (pÆq)

pÆ (q Æq) Ð (q Æp)Æq

pÆ (q Æq) Ð q Æ (pÆq)

(pÆq)Æq Ð (q Æp)Æp

(pÆq)Æq Ð q Æ (pÆp)

pÆ (q Æq) Ð (q Æp)Æp

pÆ (q Æq) Ð q Æ (pÆp)

(pÆq)Æq Ð pÆ (q Æq)

pÆ (q Æq) Ð (pÆq)Æq

(pÆq)Æp Ð (q Æq)Æq

(pÆq)Æp Ð q Æ (q Æq)

pÆ (q Æp) Ð (q Æq)Æq

pÆ (q Æp) Ð q Æ (q Æq)

(pÆq)Æp Ð (q Æq)Æp

(pÆq)Æp Ð q Æ (q Æp)

pÆ (q Æp) Ð (q Æq)Æp

pÆ (q Æp) Ð q Æ (q Æp)

(pÆq)Æp Ð (q Æp)Æq

(pÆq)Æp Ð q Æ (pÆq)

pÆ (q Æp) Ð (q Æp)Æq

pÆ (q Æp) Ð q Æ (pÆq)

(pÆq)Æp Ð (q Æp)Æp

(pÆq)Æp Ð q Æ (pÆp)

pÆ (q Æp) Ð (q Æp)Æp

pÆ (q Æp) Ð q Æ (pÆp)

(pÆq)Æp Ð (pÆq)Æq

(pÆq)Æp Ð pÆ (q Æq)

pÆ (q Æp) Ð (pÆq)Æq

pÆ (q Æp) Ð pÆ (q Æq)

(pÆq)Æp Ð pÆ (q Æp)

pÆ (q Æp) Ð (pÆq)Æp

(pÆp)Æq Ð (q Æq)Æq

(pÆp)Æq Ð q Æ (q Æq)

pÆ (pÆq) Ð (q Æq)Æq

pÆ (pÆq) Ð q Æ (q Æq)

(pÆp)Æq Ð (q Æq)Æp

(pÆp)Æq Ð q Æ (q Æp)

pÆ (pÆq) Ð (q Æq)Æp

pÆ (pÆq) Ð q Æ (q Æp)

(pÆp)Æq Ð (q Æp)Æq

(pÆp)Æq Ð q Æ (pÆq)

pÆ (pÆq) Ð (q Æp)Æq

pÆ (pÆq) Ð q Æ (pÆq)

(pÆp)Æq Ð (q Æp)Æp

(pÆp)Æq Ð q Æ (pÆp)

pÆ (pÆq) Ð (q Æp)Æp

pÆ (pÆq) Ð q Æ (pÆp)

(pÆp)Æq Ð (pÆq)Æq

(pÆp)Æq Ð pÆ (q Æq)

pÆ (pÆq) Ð (pÆq)Æq

pÆ (pÆq) Ð pÆ (q Æq)

(pÆp)Æq Ð (pÆq)Æp

(pÆp)Æq Ð pÆ (q Æp)

pÆ (pÆq) Ð (pÆq)Æp

pÆ (pÆq) Ð pÆ (q Æp)

(pÆp)Æq Ð pÆ (pÆq)

pÆ (pÆq) Ð (pÆp)Æq

(pÆp)Æp Ð (q Æq)Æq

(pÆp)Æp Ð q Æ (q Æq)

pÆ (pÆp) Ð (q Æq)Æq

pÆ (pÆp) Ð q Æ (q Æq)

(pÆp)Æp Ð (q Æq)Æp

(pÆp)Æp Ð q Æ (q Æp)

pÆ (pÆp) Ð (q Æq)Æp

pÆ (pÆp) Ð q Æ (q Æp)

(pÆp)Æp Ð (q Æp)Æq

(pÆp)Æp Ð q Æ (pÆq)

pÆ (pÆp) Ð (q Æp)Æq

pÆ (pÆp) Ð q Æ (pÆq)

(pÆp)Æp Ð (q Æp)Æp

(pÆp)Æp Ð q Æ (pÆp)

pÆ (pÆp) Ð (q Æp)Æp

pÆ (pÆp) Ð q Æ (pÆp)

(pÆp)Æp Ð (pÆq)Æq

(pÆp)Æp Ð pÆ (q Æq)

pÆ (pÆp) Ð (pÆq)Æq

pÆ (pÆp) Ð pÆ (q Æq)

(pÆp)Æp Ð (pÆq)Æp

(pÆp)Æp Ð pÆ (q Æp)

pÆ (pÆp) Ð (pÆq)Æp

pÆ (pÆp) Ð pÆ (q Æp)

False:0 ?

Nor:1 ?

2 ?

Not:3 ?

4 ?

Not:5 ?

Xor:6 ?

Nand:7 ?

And:8 ?

Equal:9 ?

Last:10 ?

Implies:11 ?

First:12 ?

13 ?

Or:14 ?

True:15 ?

Theorems that hold with operators of each of the forms shown on page 806. NAND and NOR yield the smallest
number of theorems.
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But if one considers for example analogs of logic for variables

with more than two possible values, the picture below shows that one

immediately gets systems with still fewer theorems.

So what about proofs? Is there something about these that is

somehow special in the case of ordinary logic? 

In the axiom systems on page 803 the typical lengths of proofs

seem to increase from one system to the next, so that they end up being

longest for the last axiom system, which corresponds to logic. 

But if one picks a different axiom system for logic—say one of the

others on page 808—then the length of a particular proof will usually

change. But since one can always just start by proving the new axioms,

the change can only be by a fixed amount. And as it turns out, even the

simplest axiom system (f) given on page 808 seems to allow fairly short

proofs of at least most short theorems.

But as one tries to prove progressively longer theorems it appears

that whatever axiom system one uses for logic the lengths of proofs can

increase as fast as exponentially. A crucial point, however, is that for

theorems of a given length there is always a definite upper limit on the

length of proof needed. Yet once again this is not something unique to

logic. Indeed, it turns out that this must always be the case for any

axiom system—like those on page 803—that ends up allowing

essentially only operators of a single form.

So what about other axiom systems?

The very simplest ones on pages 805 and 812 seem to yield proofs

that are always comparatively short. But when one looks at axiom

systems that are even slightly more complicated the proofs of anything

(pÆq)Æp Ð q Æ (pÆp)

pÆ (q Æp) Ð (q Æp)Æp

pÆ (q Æp) Ð q Æ (pÆp)

(pÆq)Æp Ð (pÆq)Æq

(pÆq)Æp Ð pÆ (q Æq)

pÆ (q Æp) Ð (pÆq)Æq

pÆ (q Æp) Ð pÆ (q Æq)

(pÆq)Æp Ð pÆ (q Æp)

pÆ (q Æp) Ð (pÆq)Æp

(pÆp)Æq Ð (q Æq)Æq

(pÆp)Æq Ð q Æ (q Æq)

pÆ (pÆq) Ð (q Æq)Æq

pÆ (pÆq) Ð q Æ (q Æq)

(pÆp)Æq Ð (q Æq)Æp

(pÆp)Æq Ð q Æ (q Æp)

pÆ (pÆq) Ð (q Æq)Æp

pÆ (pÆq) Ð q Æ (q Æp)

(pÆp)Æq Ð (q Æp)Æq

(pÆp)Æq Ð q Æ (pÆq)

pÆ (pÆq) Ð (q Æp)Æq

pÆ (pÆq) Ð q Æ (pÆq)

(pÆp)Æq Ð (q Æp)Æp

(pÆp)Æq Ð q Æ (pÆp)

pÆ (pÆq) Ð (q Æp)Æp

pÆ (pÆq) Ð q Æ (pÆp)

(pÆp)Æq Ð (pÆq)Æq

(pÆp)Æq Ð pÆ (q Æq)

pÆ (pÆq) Ð (pÆq)Æq

pÆ (pÆq) Ð pÆ (q Æq)

(pÆp)Æq Ð (pÆq)Æp

(pÆp)Æq Ð pÆ (q Æp)

pÆ (pÆq) Ð (pÆq)Æp

pÆ (pÆq) Ð pÆ (q Æp)

(pÆp)Æq Ð pÆ (pÆq)

pÆ (pÆq) Ð (pÆp)Æq

(pÆp)Æp Ð (q Æq)Æq

(pÆp)Æp Ð q Æ (q Æq)

pÆ (pÆp) Ð (q Æq)Æq

pÆ (pÆp) Ð q Æ (q Æq)

(pÆp)Æp Ð (q Æq)Æp

2 ?

3 ?

4 ?

2 3 4

Theorems in analogs of logic that allow
different numbers of truth values.
Statements like  do not hold in
general with more than 2 truth values. 

p Ð ¨ ¨ p
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but the simplest results can get much longer—making it in practice often

difficult to tell whether a given result can actually even be proved at all.

And this is in a sense just another example of the same basic

phenomenon that we already saw early in this section in multiway

systems, and that often seems to occur in real mathematics: that even if

a theorem is short to state, its proof can be arbitrarily long.

And this I believe is ultimately a reflection of the Principle of

Computational Equivalence. For the principle suggests that most axiom

systems whose consequences are not obviously simple will tend to be

universal. And this means that they will exhibit computational

irreducibility and undecidability—and will allow no general upper limit

to be placed on how long a proof could be needed for any given result.

As I discussed earlier, most of the common axiom systems in

traditional mathematics are known to be universal—basic logic being

one of the few exceptions. But one might have assumed that to achieve

their universality these axiom systems would have to be specially set

up with all sorts of specific sophisticated features.

Yet from the results of this book—as embodied in the Principle of

Computational Equivalence—we now know that this is not the case,

and that in fact universality should already be rather common even

among very simple axiom systems, like those on page 805.

And indeed, while operator systems and multiway systems have

many superficial differences, I suspect that when it comes to

universality they work very much the same. So in either idealization,

one should not have to go far to get axiom systems that exhibit

universality—just like most of the ones in traditional mathematics.

But once one has reached an axiom system that is universal, why

should one in a sense ever have to go further? After all, what it means

for an axiom system to be universal is that by setting up a suitable

encoding it must in principle be possible to make that axiom system

reproduce any other possible axiom system.

But the point is that the kinds of encodings that are normally

used in mathematics are in practice rather limited. For while it is

common, say, to take a problem in geometry and reformulate it as a

problem in algebra, this is almost always done just by setting up a direct
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translation between the objects one is describing—usually in effect just

by renaming the operators used to manipulate them. 

Yet to take full advantage of universality one must consider not

only translations between objects but also translations between

complete proofs. And if one does this it is indeed perfectly possible, say,

to program arithmetic to reproduce any proof in set theory. In fact, all

one need do is to encode the axioms of set theory in something like the

arithmetic equation system of page 786. 

But with the notable exception of Gödel’s Theorem these kinds of

encodings are not normally used in mathematics. So this means that

even when universality is present realistic idealizations of mathematics

must still distinguish different axiom systems.

So in the end what is it that determines which axiom systems are

actually used in mathematics? In the course of this section I have

discussed a few criteria. But in the end history seems to be the only real

determining factor. For given almost any general property that one can

pick out in axiom systems like those on pages 773 and 774 there

typically seem to be all sorts of operator and multiway systems—often

including some rather simple ones—that share the exact same property.

So this leads to the conclusion that there is in a sense nothing

fundamentally special about the particular axiom systems that have

traditionally been used in mathematics—and that in fact there are all

sorts of other axiom systems that could perfectly well be used as

foundations for what are in effect new fields of mathematics—just as

rich as the traditional ones, but without the historical connections.

So what about existing fields of mathematics? As I mentioned

earlier in this section, I strongly believe that even within these there are

fundamental limitations that have implicitly been imposed on what has

actually been studied. And most often what has happened is that there

are only certain kinds of questions or statements that have been

considered of real mathematical interest.

The picture on the facing page shows a rather straightforward

version of this. It lists in order a large number of theorems from basic

logic, highlighting just those few that are considered interesting enough

by typical textbooks of logic to be given explicit names.
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1 a Ð a © a 2 a Ð a ª a a © a Ð a ª a 3 a © b Ð b © a 4 a ª b Ð b ª a 5 a Ð¨ ¨ a
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�

The theorems of basic logic written out in order of increasing complexity. Those considered interesting enough to name in typical textbooks
are highlighted. The theorems are respectively: (1), (2) idempotence (laws of tautology) of AND and OR, (3), (4) commutativity of AND and OR,
(5) law of double negation, (6), (7) absorption (redundancy) laws, (8) law of noncontradiction (definition of FALSE), (9) law of excluded middle
(definition of TRUE), (10) de Morgan’s law, (11), (12) associativity of AND and OR, (13), (14) distributive laws. With the exception of the second
distributive law, it turns out that the highlighted theorems are exactly the ones that cannot be derived from preceding theorems in the list.
The distributive laws appear at positions 2813 and 2814 in the list; it takes a long proof to obtain the second one from preceding theorems. 
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But what determines which theorems these will be? One might

have thought that it would be purely a matter of history. But actually

looking at the list of theorems it always seems that the interesting ones

are in a sense those that show the least unnecessary complication.

And indeed if one starts from the beginning of the list one finds

that most of the theorems can readily be derived from simpler ones

earlier in the list. But there are a few that cannot—and that therefore

provide in a sense the simplest statements of genuinely new

information. And remarkably enough what I have found is that these

theorems are almost exactly the ones highlighted on the previous page

that have traditionally been identified as interesting.

So what happens if one applies the same criterion in other

settings? The picture below shows as an example theorems from the

formulation of logic discussed above based on NAND.

a Ñ b Ð b Ñ a a Ð (a Ñ a) Ñ (a Ñ a) a Ð (a Ñ a) Ñ (a Ñ b) a Ð (a Ñ a) Ñ (b Ñ a)

a Ð (a Ñ b) Ñ (a Ñ a) a Ð (b Ñ a) Ñ (a Ñ a) (a Ñ a) Ñ a Ð a Ñ (a Ñ a) (a Ñ a) Ñ a Ð (b Ñ b) Ñ b

a Ñ (a Ñ a) Ð (b Ñ b) Ñ b (a Ñ a) Ñ a Ð b Ñ (b Ñ b) a Ñ (a Ñ a) Ð b Ñ (b Ñ b) a Ñ (a Ñ b) Ð (a Ñ b) Ñ a

a Ñ (a Ñ b) Ð a Ñ (b Ñ a) (a Ñ a) Ñ b Ð (a Ñ b) Ñ b a Ñ (a Ñ b) Ð a Ñ (b Ñ b) a Ñ (a Ñ b) Ð (b Ñ a) Ñ a

(a Ñ a) Ñ b Ð b Ñ (a Ñ a) (a Ñ a) Ñ b Ð (b Ñ a) Ñ b (a Ñ a) Ñ b Ð b Ñ (a Ñ b) a Ñ (a Ñ b) Ð (b Ñ b) Ñ a

(a Ñ a) Ñ b Ð b Ñ (b Ñ a) (a Ñ b) Ñ a Ð a Ñ (b Ñ a) (a Ñ b) Ñ a Ð a Ñ (b Ñ b) a Ñ (b Ñ a) Ð a Ñ (b Ñ b)

(a Ñ b) Ñ a Ð (b Ñ a) Ñ a a Ñ (b Ñ a) Ð (b Ñ a) Ñ a (a Ñ b) Ñ a Ð (b Ñ b) Ñ a a Ñ (b Ñ a) Ð (b Ñ b) Ñ a

a Ñ (b Ñ b) Ð (b Ñ a) Ñ a (a Ñ b) Ñ b Ð b Ñ (a Ñ a) (a Ñ b) Ñ b Ð (b Ñ a) Ñ b (a Ñ b) Ñ b Ð b Ñ (a Ñ b)

a Ñ (b Ñ b) Ð (b Ñ b) Ñ a (a Ñ b) Ñ b Ð b Ñ (b Ñ a) a Ñ (b Ñ c) Ð a Ñ (c Ñ b) (a Ñ b) Ñ c Ð (b Ñ a) Ñ c

a Ñ (b Ñ c) Ð (b Ñ c) Ñ a (a Ñ b) Ñ c Ð c Ñ (a Ñ b) a Ñ (b Ñ c) Ð (c Ñ b) Ñ a (a Ñ b) Ñ c Ð c Ñ (b Ñ a)

(a Ñ a) Ñ (a Ñ a) Ð (a Ñ a) Ñ (a Ñ b) (a Ñ a) Ñ (a Ñ a) Ð (a Ñ a) Ñ (b Ñ a) (a Ñ a) Ñ (a Ñ a) Ð (a Ñ b) Ñ (a Ñ a) (a Ñ a) Ñ (a Ñ a) Ð (b Ñ a) Ñ (a Ñ a)

(a Ñ a) Ñ (a Ñ b) Ð (a Ñ a) Ñ (a Ñ c) (a Ñ a) Ñ (a Ñ b) Ð (a Ñ a) Ñ (b Ñ a) (a Ñ a) Ñ (a Ñ b) Ð (a Ñ a) Ñ (c Ñ a) (a Ñ a) Ñ (a Ñ b) Ð (a Ñ b) Ñ (a Ñ a)

� 118 lines

a Ñ ( (a Ñ b) Ñ b) Ð (c Ñ (a Ñ a)) Ñ a a Ñ ( (a Ñ b) Ñ b) Ð ( (c Ñ a) Ñ c) Ñ a a Ñ ( (a Ñ b) Ñ b) Ð (c Ñ (a Ñ c)) Ñ a (a Ñ (a Ñ b)) Ñ b Ð (c Ñ (b Ñ b)) Ñ b

(a Ñ (a Ñ b)) Ñ b Ð ( (c Ñ b) Ñ c) Ñ b (a Ñ (a Ñ b)) Ñ b Ð (c Ñ (b Ñ c)) Ñ b a Ñ ( (a Ñ b) Ñ b) Ð (c Ñ (c Ñ a)) Ñ a (a Ñ (a Ñ b)) Ñ b Ð (c Ñ (c Ñ b)) Ñ b

a Ñ ( (a Ñ b) Ñ b) Ð ( (c Ñ c) Ñ c) Ñ a a Ñ ( (a Ñ b) Ñ b) Ð (c Ñ (c Ñ c)) Ñ a (a Ñ (a Ñ b)) Ñ b Ð ( (c Ñ c) Ñ c) Ñ b (a Ñ (a Ñ b)) Ñ b Ð (c Ñ (c Ñ c)) Ñ b

a Ñ (a Ñ (b Ñ c)) Ð a Ñ (a Ñ (c Ñ b)) (a Ñ (a Ñ b)) Ñ c Ð ( (a Ñ b) Ñ a) Ñ c (a Ñ (a Ñ b)) Ñ c Ð (a Ñ (b Ñ a)) Ñ c a Ñ ( (a Ñ b) Ñ c) Ð a Ñ ( (b Ñ a) Ñ c)

( (a Ñ a) Ñ b) Ñ c Ð ( (a Ñ b) Ñ b) Ñ c (a Ñ (a Ñ b)) Ñ c Ð (a Ñ (b Ñ b)) Ñ c a Ñ ( (a Ñ b) Ñ c) Ð a Ñ ( (b Ñ b) Ñ c) a Ñ ( (a Ñ b) Ñ c) Ð ( (a Ñ b) Ñ c) Ñ a

a Ñ (a Ñ (b Ñ c)) Ð (a Ñ (b Ñ c)) Ñ a a Ñ (a Ñ (b Ñ c)) Ð a Ñ ( (b Ñ c) Ñ a) a Ñ (a Ñ (b Ñ c)) Ð ( (a Ñ b) Ñ c) Ñ c (a Ñ (a Ñ b)) Ñ c Ð (a Ñ (b Ñ c)) Ñ c

a Ñ ( (a Ñ b) Ñ c) Ð a Ñ ( (b Ñ c) Ñ c) a Ñ ( (a Ñ b) Ñ c) Ð a Ñ (c Ñ (a Ñ b)) a Ñ (a Ñ (b Ñ c)) Ð (a Ñ (c Ñ b)) Ñ a a Ñ (a Ñ (b Ñ c)) Ð a Ñ ( (c Ñ b) Ñ a)

a Ñ ( (a Ñ b) Ñ c) Ð a Ñ (c Ñ (b Ñ a)) a Ñ (a Ñ (b Ñ c)) Ð ( (a Ñ c) Ñ b) Ñ b a Ñ ( (a Ñ b) Ñ c) Ð a Ñ (c Ñ (b Ñ b)) ( (a Ñ a) Ñ b) Ñ c Ð ( (a Ñ c) Ñ b) Ñ c

(a Ñ (a Ñ b)) Ñ c Ð (a Ñ (c Ñ b)) Ñ c a Ñ ( (a Ñ b) Ñ c) Ð a Ñ ( (c Ñ b) Ñ c) a Ñ ( (a Ñ b) Ñ c) Ð a Ñ (c Ñ (b Ñ c)) a Ñ ( (a Ñ b) Ñ c) Ð a Ñ (c Ñ (c Ñ b))

�

The theorems of logic formulated in terms of NAND. Theorems which cannot be derived from ones earlier in the list are highlighted.
The last highlighted theorem is 539th in the list. No later theorems would be highlighted since the ones shown form a complete
axiom system from which any theorem of logic can be derived. The last highlighted theorem is however an example of one that
follows from the axioms, but is hard to prove.
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Now there is no particular historical tradition to rely on. But the

criterion nevertheless still seems to agree rather well with judgements a

human might make. And much as in the picture on page 817, what one

sees is that right at the beginning of the list there are several theorems

that are identified as interesting. But after these one has to go a long

way before one finds other ones.

So if one were to go still further, would one eventually find yet

more? It turns out that with the criterion we have used one would not.

And the reason is that just the six theorems highlighted already happen

to form an axiom system from which any possible theorem about

NANDs can ultimately be derived.

And indeed, whenever one is dealing with theorems that can be

derived from a finite axiom system the criterion implies that only a

finite number of theorems should ever be considered interesting—

ending as soon as one has in a sense got enough theorems to be able to

reproduce some formulation of the axiom system.

But this is essentially like saying that once one knows the rules

for a system nothing else about it should ever be considered interesting.

Yet most of this book is concerned precisely with all the interesting

behavior that can emerge even if one knows the rules for a system.

And the point is that if computational irreducibility is present,

then there is in a sense all sorts of information about the behavior of a

system that can only be found from its rules by doing an irreducibly

large amount of computational work. And the analog of this in an

axiom system is that there are theorems that can be reached only by

proofs that are somehow irreducibly long.

So what this suggests is that a theorem might be considered

interesting not only if it cannot be derived at all from simpler theorems

but also if it cannot be derived from them except by some long proof.

And indeed in basic logic the last theorem identified as interesting on

page 817—the distributivity of OR—is an example of one that can in

principle be derived from earlier theorems, but only by a proof that

seems to be much longer than other theorems of comparable size.

In logic, however, all proofs are in effect ultimately of limited

length. But in any axiom system where there is universality—and thus
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undecidability—this is no longer the case, and as I discussed above I

suspect that it will actually be quite common for there to be all sorts of

short theorems that have only extremely long proofs.

No doubt many such theorems are much too difficult ever to

prove in practice. But even if they could be proved, would they be

considered interesting? Certainly they would provide what is in essence

new information, but my strong suspicion is that in mathematics as it

is currently practiced they would only rarely be considered interesting.

And most often the stated reason for this would be that they do

not seem to fit into any general framework of mathematical results, but

instead just seem like isolated random mathematical facts.

In doing mathematics, it is common to use terms like difficult,

powerful, surprising and deep to describe theorems. But what do these

really mean? As I mentioned above, any field of mathematics can at

some level be viewed as a giant network of statements in which the

connections correspond to theorems. And my suspicion is that our

intuitive characterizations of theorems are in effect just reflections of

our perception of various features of the structure of this network.

And indeed I suspect that by looking at issues such as how easy a

given theorem makes it to get from one part of a network to another it

will be possible to formalize many intuitive notions about the practice

of mathematics—much as earlier in this book we were able to formalize

notions of everyday experience such as complexity and randomness.

Different fields of mathematics may well have networks with

characteristically different features. And so, for example, what are

usually viewed as more successful areas of pure mathematics may have

more compact networks, while areas that seem to involve all sorts of

isolated facts—like elementary number theory or theory of specific

cellular automata—may have sparser networks with more tendrils.

And such differences will be reflected in proofs that can be given.

For example, in a sparser network the proof of a particular theorem may

not contain many pieces that can be used in proving other theorems.

But in a more compact network there may be intermediate definitions

and concepts that can be used in a whole range of different theorems.
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Indeed, in an extreme case it might even be possible to do the

analog of what has been done, say, in the computation of symbolic

integrals, and to set up some kind of uniform procedure for finding a

proof of essentially any short theorem.

And in general whenever there are enough repeated elements

within a single proof or between different proofs this indicates the

presence of computational reducibility. Yet while this means that there

is in effect less new information in each theorem that is proved, it turns

out that in most areas of mathematics these theorems are usually the

ones that are considered interesting.

The presence of universality implies that there must at some

level be computational irreducibility—and thus that there must be

theorems that cannot be reached by any short procedure. But the point

is that mathematics has tended to ignore these, and instead to

concentrate just on what are in effect limited patches of computational

reducibility in the network of all possible theorems.

Yet in a sense this is no different from what has happened, say, in

physics, where the phenomena that have traditionally been studied are

mostly just those ones that show enough computational reducibility to

allow analysis by traditional methods of theoretical physics.

But whereas in physics one has only to look at the natural world

to see that other more complex phenomena exist, the usual approaches

to mathematics provide almost no hint of anything analogous.

Yet with the new approach based on explicit experimentation

used in this book it now becomes quite clear that phenomena such as

computational irreducibility occur in abstract mathematical systems.

And indeed the Principle of Computational Equivalence implies

that such phenomena should be close at hand in almost every direction:

it is merely that—despite its reputation for generality—mathematics

has in the past implicitly tended to define itself to avoid them.

So what this means is that in the future, when the ideas and

methods of this book have successfully been absorbed, the field of

mathematics as it exists today will come to be seen as a small and

surprisingly uncharacteristic sample of what is actually possible.
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Intelligence in the Universe

Whether or not we as humans are the only examples of intelligence in

the universe is one of the great unanswered questions of science.

Just how intelligence should be defined has never been quite

clear. But in recent times it has usually been assumed that it has

something to do with an ability to perform sophisticated computations.

And with traditional intuition it has always seemed perfectly

reasonable that it should take a system as complicated as a human to

exhibit such capabilities—and that the whole elaborate history of life

on Earth should have been needed to generate such a system.

With the development of computer technology it became clear

that many features of intelligence could be achieved in systems that are

not biological. Yet our experience has still been that to build a computer

requires sophisticated engineering that in a sense exists only because of

human biological and cultural development.

But one of the central discoveries of this book is that in fact

nothing so elaborate is needed to get sophisticated computation. And

indeed the Principle of Computational Equivalence implies that a vast

range of systems—even ones with very simple underlying rules—should

be equivalent in the sophistication of the computations they perform.

So in as much as intelligence is associated with the ability to do

sophisticated computations it should in no way require billions of years

of biological evolution to produce—and indeed we should see it all over

the place, in all sorts of systems, whether biological or otherwise.

And certainly some everyday turns of phrase might suggest that

we do. For when we say that the weather has a mind of its own we are

in effect attributing something like intelligence to the motion of a fluid.

Yet surely, one might argue, there must be something fundamentally

more to true intelligence of the kind that we as humans have. 

So what then might this be?

Certainly one can identify all sorts of specific features of human

intelligence: the ability to understand language, to do mathematics,

solve puzzles, and so on. But the question is whether there are more
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general features that somehow capture the essence of true intelligence,

independent of the particular details of human intelligence.

Perhaps it could be the ability to learn and remember. Or the

ability to adapt to a wide range of different and complex situations. Or

the ability to handle abstract general representations of data.

At first, all of these might seem like reasonable indicators of true

intelligence. But as soon as one tries to think about them independent

of the particular example of human intelligence, it becomes much less

clear. And indeed, from the discoveries in this book I am now quite

certain that any of them can actually be achieved in systems that we

would normally never think of as showing anything like intelligence.

Learning and memory, for example, can effectively occur in any

system that has structures that form in response to input, and that can

persist for a long time and affect the behavior of the system. And this

can happen even in simple cellular automata—or, say, in a physical

system like a fluid that carves out a long-term pattern in a solid surface.

Adaptation to all sorts of complex situations also occurs in a

great many systems. It is well recognized when natural selection is

present. But at some level it can also be thought of as occurring

whenever a constraint ends up getting satisfied—even say that a fluid

flowing around a complex object minimizes the energy it dissipates.

Handling abstraction is also in a sense rather common. Indeed, as

soon as one thinks of a system as performing computations one can

immediately view features of those computations as being like abstract

representations of input to the system.

So given all of this is there any way to define a general notion of

true intelligence? My guess is that ultimately there is not, and that in

fact any workable definition of what we normally think of as

intelligence will end up having to be tied to all sorts of seemingly rather

specific details of human intelligence.

And as it turns out this is quite similar to what happens if one

tries to define the seemingly much simpler notion of life.

There was a time when it was thought that practically any

system that moves spontaneously and responds to stimuli must be
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alive. But with the development of machines having even the most

primitive sensors it became clear that this was not correct.

Work in the field of thermodynamics led to the idea that perhaps

living systems could be defined by their ability to take disorganized

material and spontaneously organize it—usually to incorporate it into

their own structure. Yet all sorts of non-living systems—from crystals

to flames—also do this. And Chapter 6 showed that self-organization is

actually extremely common even among systems with simple rules.

For a while it was thought that perhaps life might be defined by

its ability for self-reproduction. But in the 1950s abstract computational

systems were constructed that also had this ability. Yet it seemed that

they needed highly complex rules—not unlike those found in actual

living cells. But in fact no such complexity is really necessary. And as

one might now expect from the intuition in this book, even systems

like the one below with remarkably simple rules can still manage to

show self-reproduction—despite the fact that they bear almost no other

resemblance to ordinary living systems. 

If one looks at typical living systems one of their most obvious

features is great apparent complexity. And for a long time it has been

thought that such complexity must somehow be unique to living

systems—perhaps requiring billions of years of biological evolution to

develop. But what I have shown in this book is that this is not the case,

and that in fact a vast range of systems—including ones with very

step 10 step 11 step 12 step 13 step 14 step 15 step 16 step 17 step 18

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9

A two-dimensional cellular automaton that exhibits an almost trivial form of self-reproduction, in which multiple copies of any initial
pattern appear every time the number of steps of evolution doubles. The rule used is additive, and takes a cell to be black whenever
an odd number of its neighbors were black on the step before (outer totalistic code 204). The same basic self-reproduction
phenomenon occurs in elementary rule 90, as well as in essentially any other additive rule, in any number of dimensions. 
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simple underlying rules—can generate at least as much complexity as

we see in the components of typical living systems. 

Yet despite all this, we do not in our everyday experience

typically have much difficulty telling living systems from non-living

ones. But the reason for this is that all living systems on Earth share an

immense number of detailed structural and chemical features—

reflecting their long common history of biological evolution. 

So what about extraterrestrial life? To be able to recognize this

we would need some kind of general definition of life, independent of

the details of life on Earth. But just as in the case of intelligence, I

believe that no reasonable definition of this kind can actually be given.

Indeed, following the discoveries in this book I have come to the

conclusion that almost any general feature that one might think of as

characterizing life will actually occur even in many systems with very

simple rules. And I have little doubt that all sorts of such systems can

be identified both terrestrially and extraterrestrially—and certainly

require nothing like the elaborate history of life on Earth to produce.

But most likely we would not consider these systems even close

to being real examples of life. And in fact I expect that in the end the

only way we would unquestionably view a system as being an example

of life is if we found that it shared many specific details with life on

Earth—probably down, say, to being made of gelatinous materials and

having components analogous to proteins, enzymes, cell membranes

and so on—and perhaps even down to being based on specific chemical

substances like water, sugars, ATP and DNA. 

So what then of extraterrestrial intelligence? To what extent

would it have to show the same details as human intelligence—and

perhaps even the same kinds of knowledge—for us to recognize it as a

valid example of intelligence?

Already just among humans it can in practice be somewhat

difficult to recognize intelligence in the absence of shared education

and culture. Indeed, in young children it remains almost completely

unclear at what stage different aspects of intelligence become active.

And when it comes to other animals things become even more

difficult. If one specifically tries to train an animal to solve
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mathematical puzzles or to communicate using human language then

it is usually possible to recognize what intelligence it shows.

But if one just observes the normal activities of the animal it can

be remarkably difficult to tell whether they involve intelligence. And so

as a typical example it remains quite unclear whether there is

intelligence associated with the songs of either birds or whales.

To us these songs may sound quite musical—and indeed they

even seem to show some of the same principles of organization as

human music. But do they really require intelligence to generate?

Particularly for birds it has increasingly been possible to trace the

detailed processes by which songs are produced. And it seems that at

least some of their elaborate elements are just direct consequences of

the complex patterns of air flow that occur in the vocal tracts of birds. 

But there is definitely also input from the brain of the bird. Yet

within the brain some of the neural pathways responsible are known.

And one might think that if all such pathways could be found then this

would immediately show that no intelligence was involved.

Certainly if the pathways could somehow be seen to support only

simple computations then this would be a reasonable conclusion. But

just using definite pathways—or definite underlying rules—does not in

any way preclude intelligence. And in fact if one looks inside a human

brain—say in the process of generating speech—one will no doubt also

see definite pathways and definite rules in use.

So how then can we judge whether something like a bird song, or

a whale song—or, for that matter, an extraterrestrial signal—is a

reflection of intelligence? The fundamental criterion we tend to use is

whether it has a meaning—or whether it communicates anything.

Everyday experience shows us that it can often be very hard to

tell. For even if we just hear a human language that we do not know it

can be almost impossible for us to recognize whether what is being said

is meaningful or not. And the same is true if we pick up data of any

kind that is encoded in a format we do not know.

We might start by trying to use our powers of perception and

analysis to find regularities in the data. And if we found too many

regularities we might conclude that the data could not represent
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enough information to communicate anything significant—and indeed

perhaps this is the case for at least some highly repetitive bird songs.

But what if we could find no particular regularities? Our everyday

experience with human language might make us think that the data

could then have no meaning. But there is nothing to say that it might

not be a perfectly meaningful message—even one in human language—

that just happens to have been encrypted or compressed to a point

where it shows no detectable regularities.

And indeed it is sobering to notice that if one just listens even to

bird songs and whale songs there is little that fundamentally seems to

distinguish them from what can be generated by all sorts of processes in

nature—say the motion of chimes blowing in the wind or of plasma in

the Earth’s magnetosphere.

One might imagine that one could find out whether a meaningful

message had been communicated in a particular case by looking for

correlations it induces between the actions of sender and receiver. But it

is extremely common in all sorts of natural systems to see effects that

propagate from one element to another. And when it comes even to

whale songs it turns out that no clear correlations have ever in the end

been identified between senders and receivers.

But what if one were to notice some event happen to the sender?

If one were somehow to see a representation of this in what the sender

produced, would it not be evidence for meaningful communication?

Once again, it need not be. For there are a great many cases in

which systems generate signals that reflect what happens to them. And

so, for example, a drum that is struck in a particular pattern will

produce a sound that reflects—and in effect represents—that pattern.

Yet on the other hand even among humans different training or

culture can lead to vastly different responses to a given event. And for

animals there is the added problem of emphasis on different forms of

perception. For presumably dogs can sense the detailed pattern of smell

in their environment, and dolphins the detailed pattern of fluid motion

around them. Yet we as humans would almost certainly not recognize

descriptions presented in such terms. 
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So if we cannot identify intelligence by looking for meaningful

communication, can we perhaps at least tell for a given object whether

intelligence has been involved in producing it?

For certainly our everyday experience is that it is usually quite

easy to tell whether something is an artifact created by humans. 

But a large part of the reason for this is just that most artifacts we

encounter in practice have specific elements that look rather similar. Yet

presumably this is for the most part just a reflection of the historical

development of engineering—and of the fact that the same basic

geometrical and other forms have ended up being used over and over again.

So are there then more general ways to recognize artifacts? 

A fairly good way in practice to guess whether something is an

artifact is just to look and see whether it appears simple. For although

there are exceptions—like crystals, bubbles and animal horns—the

majority of objects that exist in nature have irregular and often very

intricate forms that seem much more complex than typical artifacts.

And indeed this fact has often been taken to show that objects in

nature must have been created by a deity whose capabilities go beyond

human intelligence. For traditional intuition suggests that if one sees

more complexity it must always in a sense have more complex origins.

But one of the main discoveries of this book is that in fact great

complexity can arise even in systems with extremely simple underlying

rules, so that in the end nothing with rules even as elaborate as human

intelligence—let alone beyond it—is needed to explain the kind of

complexity we see in nature.

But the question then remains why when human intelligence is

involved it tends to create artifacts that look much simpler than objects

that just appear in nature. And I believe the basic answer to this has to

do with the fact that when we as humans set up artifacts we usually

need to be able to foresee what they will do—for otherwise we have no

way to tell whether they will achieve the purposes we want.

Yet nature presumably operates under no such constraint. And in

fact I have argued that among systems that appear in nature a great

many exhibit computational irreducibility—so that in a sense it

becomes irreducibly difficult to foresee what they will do.
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Yet at least with its traditional methodology engineering tends to

rely on computational reducibility. For typically it operates by building

systems up in such a way that the behavior of each element can always

readily be predicted by something like a simple mathematical formula.

And the result of this is that most systems created by engineering

are forced in some sense to seem simple—in mechanical cases for

example typically being based only on simple repetitive motion.

But is simplicity a necessary feature of artifacts? Or might

artifacts created by extraterrestrial intelligence—or by future human

technology—seem to show no signs of simplicity?

As soon as we say that a system achieves a definite purpose this

means that we can summarize at least some part of what the system

does just by describing this purpose. So if we have a simple description

of the purpose it follows that we must be able to give a simple summary

of at least some part of what the system does.

But does this then mean that the whole behavior of the system

must be simple? Traditional engineering might tend to make one think

so. For typically our experience is that if we are able to get a particular

kind of system to generate a particular outcome at all, then normally

the behavior involved in doing so is quite simple.

But one of the results of this book is that in general things need

not work like this. And so for example at the end of Chapter 5 we saw

several systems in which a simple constraint of achieving a particular

outcome could in effect only be satisfied with fairly complex behavior.

And as I will discuss in the next section I believe that in the effort

to optimize things it is almost inevitable that even to achieve

comparatively simple purposes more advanced forms of technology will

make use of systems that have more and more complex behavior.

So this means that there is in the end no reason to think that

artifacts with simple purposes will necessarily look simple.

And so if we are just presented with something, how then can we

tell if it has a purpose? Even with things that we know were created by

humans it can already be difficult. And so, for example, there are many

archeological structures—such as Stonehenge—where it is at best

unclear which features were intended to be purposeful.
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And even in present-day situations, if we are exposed to objects or

activities outside the areas of human endeavor with which we happen

to be familiar, it can be very hard for us to tell which features are

immediately purposeful, and which are unintentional—or have, say,

primarily ornamental or ceremonial functions.

Indeed, even if we are told a purpose we will often not recognize

it. And the only way we will normally become convinced of its validity

is by understanding how some whole chain of consequences can lead to

purposes that happen to fit into our own specific personal context.

So given this how then can we ever expect in general to recognize

the presence of purpose—say as a sign of extraterrestrial intelligence?

And as an example if we were to see a cellular automaton how

would we be able to tell whether it was created for a purpose?

Of the cellular automata in this book—especially in Chapter 11—

a few were specifically constructed to achieve particular purposes. But

the vast majority originally just arose as part of my investigation of

what happens with the simplest possible underlying rules.

And at first I did not think of most of them as achieving any

particular purposes at all. But gradually as I built up the whole context

of the science in this book I realized that many of them could in fact be

thought of as achieving very definite purposes.

Systems like rule 110 shown on the left have a kind of local

coherence in their behavior that reminds one of the operation of

traditional engineering systems—or of purposeful human activity. But

the same is not true of systems like rule 30. For although one can see

that such systems have a lot going on, one tends to assume that

somehow none of it is coherent enough to achieve any definite purpose.

Yet in the context of the ideas in this book, a system like rule 30

can be viewed as achieving the purpose of performing a fairly

sophisticated computation. And indeed we know that this computation

is useful in practice for generating sequences that appear random.

But of course it is not necessary for us to talk about purpose when

we describe the behavior of rule 30. We can perfectly well instead talk

only about mechanism, and about the way in which the underlying

rules for the cellular automaton lead to the behavior we see.

rule 110

rule 30

Cellular automata whose behavior
does and does not give the
impression of being purposeful.
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And indeed this is true of any system. But as a practical matter

we often end up describing what systems do in terms of purpose when

this seems to us simpler than describing it in terms of mechanism.

And so for example if we can identify some simple constraint

that a system always tries to satisfy it is not uncommon for us to talk of

this as being the purpose of the system. And in fact we do this even in

cases like minimization of energy in physical systems or natural

selection for fitness in biological systems where nothing that we

ordinarily think of as intelligence is involved.

So the fact that we may be able to interpret a system as achieving

some purpose does not necessarily mean that the system was really

created with that purpose in mind. And indeed just looking at the

system we will never ultimately be able to tell for sure that it was.

But we can still often manage to guess. And given a particular

supposed purpose one potential criterion to use is that the system in a

sense not appear to do too much that is extraneous to that purpose.

And so, for example, in looking at the pictures on the right it

would normally seem much more plausible that rule 254 might have

been set up for the purpose of generating a uniformly expanding pattern

than that rule 30 might have been. For while rule 30 does generate such

a pattern, it also does a lot else that appears irrelevant to this purpose.

So what this might suggest is that perhaps one could tell that a

system was set up for a given purpose if the system turns out to be in a

sense the minimal one that achieves that purpose.

But an immediate issue is that in traditional engineering we

normally do not come even close to getting systems that are minimal.

Yet it seems reasonable to suppose that as technology becomes more

advanced it should become more common that the systems it sets up

for a given purpose are ones that are minimal.

So as an example of all this consider cellular automata that achieve

the purpose of doubling the width of the pattern given in their input. Case

(a) in the picture on the next page is a cellular automaton one might

construct for this purpose by using ideas from traditional engineering.

But while this cellular automaton seems to have little extraneous

going on, it operates in a slow and sequential way, and its underlying

rule 254

rule 30

If the purpose is to
generate a uniformly
expanding pattern it
seems more plausible
that the top cellular
automaton should have
been the one created
for this purpose.
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rules turn out to be far from minimal. For case (b) gets its results much

more quickly—in effect by operating in parallel—and its rules involve

four possible colors rather than six.

But is case (b) really the minimal cellular automaton that

achieves the purpose of doubling its input? Just thinking about it, one

might not be able to come up with anything better. But if one in effect

explicitly searches all 8 trillion or so rules that involve less than four

colors, it turns out that one can find 4277 three-color rules that work.

The pictures on the facing page show a few typical examples. 

Each uses at least a slightly different scheme, but all achieve the

same purpose of doubling their input. Yet often they operate in ways

that seem considerably more complex than most familiar artifacts. And

indeed some of the examples might look to us more like systems that

just occur in nature than like artifacts.

But the point is that with sufficiently advanced technology one

might expect that doubling of input would be implemented using a rule

that is in some sense optimal. Different criteria for optimality could

lead to different rules, but usually they will be rules like those on the

facing page—and sometimes rules with quite complex behavior.

But now the question is if one were just to encounter such a rule,

would one be able to guess that it was created for a purpose? After all,

(a) (c)

(b)

Examples of cellular automata that can be viewed as achieving the purpose of doubling the width of the pattern
given in their input. Rule (a) involves 6 colors, and works sequentially, much as a typical traditional engineering
system might. Rule (b) involves 4 colors, and works in parallel. Rule (c) was found by a large search, and involves
only 3 colors. It takes the fewest steps of any 3-color rule to generate its result. Its rule number is 5407067979. 
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7066073564883

Examples of rules with three colors that achieve the purpose of doubling the width of the pattern given in their input. These
examples are taken from the 4277 found in effect by searching exhaustively all 7,625,597,484,987 possible rules with three colors. In
most cases the number of steps to generate the final pattern increases roughly linearly with the width of the input—although in the
case of the fourth-to-last rule on the second row it is  for width . 2 (n2 - n+ 1) n

1920106431 5407067979 50663695617 50749793433 144892613592 238949703351 272425762404 272684219877 493427573370 837428508144 1380347975457 3385253974896

4510289298924 5616661823460 5616790963623 5794444905633 6424448193765 6463950373854 6463950380415 6863658437061 6937134280020 7050911966469

144892613592 493427573370 837428508144 4510289298924 6424448193765 6463950373854
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there are all sorts of features in the behavior of these rules that could in

principle represent a possible purpose. But what is special about rules

like those on the previous page is that they are the minimal ones that

exhibit the particular feature of doubling their input.

And in general if one sees some feature in the behavior of a

system then finding out that the rule for the system is the minimal or

optimal one for producing that feature may make it seem more likely

that at least with sufficiently advanced technology the system might

have specifically been created for the purpose of exhibiting that feature.

Computational irreducibility implies that it can be arbitrarily

difficult to find minimal or optimal rules. Yet given any procedure for

trying to do this it is certainly always possible that the procedure could

just occur in nature without any purpose or intelligence being involved.

And in fact one might consider this not all that unlikely for the

kind of fairly straightforward exhaustive searches that I ended up using

to find the cellular automaton rules in the pictures on the previous page.

So what does all this mean for extraterrestrial intelligence?

Extrapolating from our own development we might expect that

given sufficiently advanced technology it would be almost inevitable

for artifacts to be constructed on an astronomical scale—perhaps for

example giant machines with objects like stars as components.

Yet we do not believe that we have ever seen any such artifacts.

But how do we know for sure? For certainly our astronomical

observations have revealed all sorts of phenomena for which we do not

yet have any very satisfactory explanations. And indeed until just a few

centuries ago most such unexplained phenomena would routinely have

been attributed to some kind of divine intelligence. 

But in more recent times it has become almost universally

assumed that they must instead be the result of physical processes in

which nothing like intelligence is involved. 

Yet what the discoveries in this book have shown is that even

such physical processes can often correspond to computations that are

at least as sophisticated as any that we as humans perform.

But what we believe is that somehow none of the phenomena we

see have any sense of purpose analogous to typical human artifacts.
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Occasionally we do see evidence of simple geometrical shapes

like those familiar from human artifacts—or visible on the Earth from

space. But normally our explanations for these end up being short

enough that they seem to leave no room for anything like intelligence.

And when we see elaborate patterns, say in nebulas or galaxies, we

assume that these can have no purpose—even though they may remind

us to some extent of human art.

So if we do not recognize any objects that seem to be artifacts,

what about signals that might correspond to messages?

If we looked at the Earth from far away the most obvious signs of

human intelligence would probably be found in radio signals.

And in fact in the past it was often assumed that just to generate

radio signals at all must require intelligence and technology. So when

complex radio signals not of human origin were discovered in the early

1900s it was at first thought that they must be coming from

extraterrestrial intelligence. But it was eventually realized that in fact

the signals were just produced by effects in the Earth’s magnetosphere.

And then again in the 1960s when the intense and highly regular

signals of pulsars were discovered it was briefly thought that they too

must come from extraterrestrial intelligence. But it was soon realized

that these signals could actually be produced just by ordinary physical

processes in the magnetospheres of rapidly rotating neutron stars.

So what might a real signal from extraterrestrial intelligence be

like? Human radio signals currently tend to be characterized by the

presence of sharply defined carrier frequencies, corresponding in effect

to almost perfect small-scale repetition. But such regularity greatly

reduces the rate at which information can be transmitted. And as

technology advances less and less regularity needs to be present.

But in practice essentially all serious searches for extraterrestrial

intelligence made so far have been based on using radio telescopes to

look for signals with sharply defined frequencies. And indeed no such

signals have been found. But as we saw in Chapter 10 even signals that

are nested rather than purely repetitive cannot reliably be recognized

just by looking for peaks in frequency spectra.
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And there is certainly in general no lack of radio signals that we

receive from around our galaxy and beyond. But the point is that these

signals typically seem to us quite random. And normally this has made

us assume that they must in effect just be some kind of radio noise that

is being produced by one of several simple physical processes.

But could it be that some of these signals instead come from

extraterrestrial intelligence—and are in fact meaningful messages?

Ongoing communications between extraterrestrials seem likely

to be localized to regions of space where they are needed, and therefore

presumably not accessible to us. And even if some signals involved in

such communications are broadcast, my guess is that they will exhibit

essentially no detectable regularities. For any such regularity represents

in a sense a redundancy or inefficiency that can be removed by the

sender and receiver both using appropriate data compression.

But if there are beacons that are intended to be noticed even if

one does not already know that they are there, then the signals these

produce must necessarily have recognizable distinguishing features, and

thus regularities that can be detected, at least by their potential users.

So perhaps the problem is just that the methods of perception and

analysis that we as humans have are not powerful enough. And perhaps

if we could only find the appropriate new method it would suddenly be

clear that some of what we thought was random radio noise is actually

the output of beacons set up by extraterrestrial intelligence.

For as we saw in Chapter 10 most of the methods of perception

and analysis that we currently use can in general do little more than

recognize repetition—and sometimes nesting. Yet in the course of this

book we have seen a great many examples where data that appears to us

quite random can in fact be produced by very simple underlying rules.

And although I somewhat doubt it, one could certainly imagine

that if one were to show data like the center column of rule 30 or the

digit sequence of  to an extraterrestrial then they would immediately

be able to deduce simple rules that can produce these.

But even if at some point we were to find that some of the

seemingly random radio noise that we detect can be generated by

simple rules, what would this mean about extraterrestrial intelligence?

Π
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In many respects, the simpler the rules, the more likely it might

seem that they could be associated with ordinary physical processes,

without anything like intelligence being involved. 

Yet as we discussed above, if one could actually determine that

the rules used in a given case were the simplest possible, then this

might suggest that they were somehow set up on purpose. But in

practice if one just receives a signal one normally has no way to tell

which of all possible rules for producing it were in fact used.

So is there then any kind of signal that could be sent that would

unambiguously communicate the presence of intelligence?

In the past, one might have thought that it would be enough for

the production of the signal to involve sophisticated computation. But

the discoveries in this book have made it clear that in fact such

computation is quite common in all sorts of systems that do not show

anything that we would normally consider intelligence.

And indeed it seems likely that for example an ordinary physical

process like fluid turbulence in the gas around a star should rather

quickly do more computation than has by most measures ever been

done throughout the whole course of human intellectual history.

In discussions of extraterrestrial intelligence it is often claimed

that mathematical constructs—such as the sequence of primes—

somehow serve as universal signs of intelligence.

But from the results in this book it is clear that this is not correct. 

For while in the past it might have seemed that the only way to

generate primes was by using intelligence, we now know that the rather

straightforward computations required can actually be carried out by a

vast range of different systems—with no apparent need for intelligence.

One might nevertheless imagine that any sufficiently advanced

intelligence would somehow at least consider the primes significant.

But here again I do not believe that this is correct. For very little

even of current human technology depends on ideas about primes. And

I am also fairly sure that not much can be deduced from the fact that

primes happen to be popular in present-day human mathematics.

For despite its reputation for generality I argued at length in the

previous section that the whole field of mathematics that we as
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humans have historically developed ultimately covers only a tiny

fraction of what is possible—notably leaving out the vast majority of

systems that I have studied in this book.

And if one identifies a feature—such as repetition or nesting—

that is common to many possible systems, then it becomes inevitable

that this feature will appear not only when intelligence or mathematics

is involved, but also in all sorts of systems that just occur in nature.

So what about trying to set up a signal that gives evidence of

somehow having been created for a purpose? I argued above that if the

rules for a system are as simple as they can be, then this may suggest

the presence of purpose. But such a criterion relies on seeing not only a

signal but also the mechanism by which the signal was produced.

So what about a signal on its own? One might imagine that one

could set something up—say the solution to a difficult mathematical

problem—that was somehow easy to describe in terms of a constraint

or purpose, but difficult to explain in terms of an explicit mechanism.

But in a sense such a thing cannot exist. For given a constraint, it

is always in principle simple to set up an exhaustive search that

provides a mechanism for finding what satisfies the constraint.

However, this may still take a lot of computational effort. But we

cannot use that alone as a criterion. For as we have seen, many systems

that just occur in nature actually end up doing more computation than

typical systems that we explicitly set up for a purpose.

So even if we cannot find an abstract way to give evidence of

purpose or intelligence, what about using the practical fact that both

the sender and receiver of a signal exist in the same physical universe?

Can one perhaps use a signal that is a representation of actual data in,

say, astronomy, physics or chemistry?

As I discussed earlier, the more direct the representation the

more easily an ordinary physical process can be expected to generate it,

and the less there will be any indication of intelligence—just as, for

example, something like a photograph can be produced essentially just

by projecting light, while a diagram or a painting requires more.

But as soon as there is interpretation of data, it can become very

difficult to recognize the results. For different forms of perception and
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different experiences and contexts can cause vastly different features to

be emphasized. And thus, for example, the fact that we can readily

recognize pictures of animals in cave paintings made by Stone Age

humans depends greatly on the fact that our visual system still picks

out the same specific features.

But what about more abstract art?

Although one has the feeling that this involves more human

input, it rapidly becomes extremely difficult to tell what has been

created on purpose. And so, for example, if one sees a splash of paint it

is almost impossible to know without detailed cultural background and

context whether it is intended to be purposeful art.

So what does all this mean about extraterrestrial intelligence?

My main conclusion is rather similar to my conclusion about

artificial intelligence in Chapter 10: that the basic issue is not finding

systems that perform sophisticated enough computations, but rather

finding ones whose details happen to be similar enough to us as humans

that we recognize what they do as showing intelligence.

And there is perhaps some analogy to recognizing the capability

for sophisticated computation in the first place. For while this is

undoubtedly very common say in cellular automata, the most

immediate suggestions of it are in class 4 systems like rule 110 that in

effect happen to do their computations in a way that looks at least

somewhat similar to the way we as humans are used to doing them. 

So should we expect that somehow recognizable extraterrestrial

intelligence will occur at a level of a few percent—like class 4 systems?

There is clearly more to the phenomenon of intelligence than

this. But if we require something that follows too many of the details of

us as humans there is already evidence that it does not exist. For if such

intelligence had ever arisen in the past, then extrapolating from our

own history we would expect that some of it would long ago have

colonized our galaxy—at least with signals, if not with physical objects.

But I suspect that if we generalize even quite modestly our

definition of intelligence then there will be examples that can be

found—at least with sufficiently powerful methods of perception and

analysis. Yet it seems likely that they will behave in some ways that are
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as bizarrely different from human intelligence as many of the simple

programs in this book are different from the systems that have

traditionally been studied in human mathematics and science. 

Implications for Technology

My main purpose in this book has been to build a new kind of basic

science. But I expect that in time what I have done will also have many

implications for technology. No doubt there will be all sorts of specific

applications of particular results and ideas. But in the long run probably

the most important consequence will be to introduce a vast new range

of systems and processes that can be used for technology. 

And indeed one of the things that emerges from this book is that

traditional engineering has actually considered only a tiny and quite

unrepresentative fraction of all the kinds of systems and processes that

are in principle possible. 

Presumably the reason—as I have mentioned several times in this

book—is that its whole methodology has tended to be based on setting

up systems whose behavior is simple enough that almost every aspect

of them can always readily be predicted. But doing this has immediately

excluded many of the systems that I have studied in this book—or for

that matter that occur in nature. And no doubt this is why systems

created by engineering have in the past usually ended up looking so

much simpler than typical systems in nature. 

And with traditional intuition it has normally been assumed that

the only way to create systems that show a higher degree of complexity

is somehow to build this complexity into their underlying rules. 

But one of the central discoveries of this book is that this is not

the case, and that in fact it is perfectly possible for systems even with

extremely simple underlying rules to produce behavior that has

immense complexity—and that looks like what one sees in nature.

And I believe that if one uses such systems it is almost inevitable

that a vast amount of new technology will become possible.

There are some places where just the abstract ability to produce

complexity from simple rules is already important. One example

discussed in Chapter 10 is cryptography. Other examples include all
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sorts of practical processes in which bias or deadlock can be avoided by

using randomness, or in which one wants to generate behavior that is

somehow too complex for an adversary to predict.

Being able to produce complexity that is even roughly like what

we see in nature also has immediate consequences—say in generating

realistic textures and computer graphics or in producing artistic images

that we abstractly perceive as having features familiar from nature.

The phenomenon of computational irreducibility implies that to

find out what some specific system with complex behavior will do can

require explicit simulation that involves an irreducible amount of

computational work. But as a practical matter, if one can set up a model

that is based on sufficiently simple rules then it becomes more likely

that one will be able to make designs and build control devices that

work even with some system in nature that shows complex behavior. 

So what about computers? Although the components used have

shifted from vacuum tubes to semiconductors the fundamental rules by

which computers operate have changed very little in half a century.

But what the Principle of Computational Equivalence implies is

that there are actually a vast range of very different kinds of rules that

all lead to exactly the same computational capabilities—and so can all

in principle be used as a basis for making computers.

Traditional intuition suggests that to be able to do sophisticated

computations one would inevitably need a system with complicated

underlying rules. But what I have shown in this book is that this is not

the case, and that in fact even systems with extremely simple rules—

like the rule 110 cellular automaton—can often be universal, and thus

be capable of doing computations as sophisticated as any other system.

And the fact that the underlying rules can be so simple vastly

expands the kinds of components that can realistically be used to

implement them. For while it is quite implausible that some simple

chemical process could successfully assemble a traditional computer

out of atoms, it seems quite plausible that this could be done for

something like a rule 110 cellular automaton.

Indeed, it seems likely that a system could be set up in which

just one or a few atoms would correspond to a cell in a system like a

cellular automaton. And one thing this would mean is that doing
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computations would then translate almost directly into building

actual physical structures out of atoms.

In the past biology—with all its details of DNA, proteins,

ribosomes and so on—has provided our only example of programmable

construction on an atomic scale. But the discoveries in this book

suggest that there are vastly simpler systems that could also be used.

And indeed my guess is that the essential features of all sorts of

intricate structures that are seen in living systems can actually be

reproduced with remarkably simple rules—making it for example

possible to use technology to repair or replace a whole new range of

functions of biological tissues and organs.

But given some form of perhaps complex behavior, how can one

find rules that will manage to generate it? The traditional engineering

approach—if it works at all—will almost inevitably give rules that are

in effect at least as complicated as the behavior one is trying to get.

At first biology seems to do better by repeatedly making random

modifications to genetic programs, and then applying natural selection.

But while this process does quite often yield programs with complex

behavior, I argued earlier in this book that it does not usually manage to

mold anything but fairly simple aspects of this behavior.

So what then can one do? Occasionally some kind of iterative or

directed search may work. But in my experience there are so many

different and unexpected things that can happen with simple programs

that ultimately the only way to find what one wants is essentially just

to do an exhaustive search of all possibilities.

And with computers as they are today one can already often look

at trillions of cases—as on page 833. But while this is enough to see a

tremendous range of behavior, there is no guarantee that one will in fact

run across whatever specific features one is looking for.

Yet in a sense this is a familiar problem. For especially early in

their history many branches of technology have ended up searching the

natural world for ingredients or systems that serve particular

purposes—whether for making light bulb filaments or drugs. And in

some sense the only difference here is that in the abstract world of

simple programs doing a search becomes much more systematic. 
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But while traditional engineering has usually ended up finding

ways to avoid searches for the limited kinds of systems it considers, the

phenomenon of computational irreducibility makes it inevitable that if

one considers all possible simple programs then finding particular

forms of behavior can require doing searches that involve irreducibly

large amounts of computational work.

And in a sense this means that if one tries directly to produce

specific pieces of technology one can potentially always get stuck. So in

practice a better approach will often be in effect just to do basic

science—and much as I have done in this book to try to build up a body

of abstract knowledge about how all sorts of simple programs behave.

In chemistry for example one might start by studying the basic

science of how all sorts of different substances behave. But having

developed a library of results one is then in a position to pick out

substances that might be relevant for a specific technological purpose.

And I believe much the same will happen with simple programs.

Indeed, in my experience it is remarkable just how often even

elementary cellular automata like rule 90 and rule 30 can be applied in

one way or another to technological situations.

In general one can think of technology as trying to take systems

that exist in nature or elsewhere and harness them to achieve human

purposes. But history suggests that it is often difficult even to imagine a

purpose without having seen at least something that achieves it.

And indeed a vast quantity of current technology is in the end

based on trying to set up our own systems to emulate features that we

have noticed exist in ordinary biological or physical systems.

But inevitably we tend to notice only those features that

somehow fit into the whole conceptual framework we use. And insofar

as that framework is based even implicitly on traditional science it will

tend to miss much of what I have discussed in this book.

So in the decades to come, when the science in this book has

been absorbed, it is my expectation that it will not only suggest many

new ways to achieve existing technological purposes but will also

suggest many new purposes that technology can address.



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

844

Historical Perspectives

It would be most satisfying if science were to prove that we as humans

are in some fundamental way special, and above everything else in the

universe. But if one looks at the history of science many of its greatest

advances have come precisely from identifying ways in which we are

not special—for this is what allows science to make ever more general

statements about the universe and the things in it. 

Four centuries ago we learned for example that our planet does

not lie at a special position in the universe. A century and a half ago we

learned that there was nothing very special about the origin of our

species. And over the past century we have learned that there is nothing

special about our various physical, chemical and other constituents.

Yet in Western thought there is still a strong belief that there

must be something fundamentally special about us. And nowadays the

most common assumption is that it must have to do with the level of

intelligence or complexity that we exhibit. But building on what I have

discovered in this book, the Principle of Computational Equivalence

now makes the fairly dramatic statement that even in these ways there

is nothing fundamentally special about us. 

For if one thinks in computational terms the issue is essentially

whether we somehow show a specially high level of computational

sophistication. Yet the Principle of Computational Equivalence asserts

that almost any system whose behavior is not obviously simple will

tend to be exactly equivalent in its computational sophistication.

So this means that there is in the end no difference between the

level of computational sophistication that is achieved by humans and

by all sorts of other systems in nature and elsewhere. 

For my discoveries imply that whether the underlying system is a

human brain, a turbulent fluid, or a cellular automaton, the behavior it

exhibits will correspond to a computation of equivalent sophistication.

And while from the point of view of modern intellectual thinking

this may come as quite a shock, it is perhaps not so surprising at the

level of everyday experience. For there are certainly many systems in

nature whose behavior is complex enough that we often describe it in
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human terms. And indeed in early human thinking it is very common

to encounter the idea of animism: that systems with complex behavior

in nature must be driven by the same kind of essential spirit as humans.

But for thousands of years this has been seen as naive and counter

to progress in science. Yet now essentially this idea—viewed in

computational terms through the discoveries in this book—emerges as

crucial. For as I discussed earlier in this chapter, it is the computational

equivalence of us as observers to the systems in nature that we observe

that makes these systems seem to us so complex and unpredictable.

And while in the past it was often assumed that such complexity

must somehow be special to systems in nature, what my discoveries

and the Principle of Computational Equivalence now show is that in

fact it is vastly more general. For what we have seen in this book is that

even when their underlying rules are almost as simple as possible,

abstract systems like cellular automata can achieve exactly the same

level of computational sophistication as anything else.

It is perhaps a little humbling to discover that we as humans are

in effect computationally no more capable than cellular automata with

very simple rules. But the Principle of Computational Equivalence also

implies that the same is ultimately true of our whole universe. 

So while science has often made it seem that we as humans are

somehow insignificant compared to the universe, the Principle of

Computational Equivalence now shows that in a certain sense we are at

the same level as it is. For the principle implies that what goes on inside

us can ultimately achieve just the same level of computational

sophistication as our whole universe.

But while science has in the past shown that in many ways there

is nothing special about us as humans, the very success of science has

tended to give us the idea that with our intelligence we are in some way

above the universe. Yet now the Principle of Computational

Equivalence implies that the computational sophistication of our

intelligence should in a sense be shared by many parts of our universe—

an idea that perhaps seems more familiar from religion than science.

Particularly with all the successes of science, there has been a great

desire to capture the essence of the human condition in abstract scientific
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terms. And this has become all the more relevant as its replication with

technology begins to seem realistic. But what the Principle of

Computational Equivalence suggests is that abstract descriptions will

never ultimately distinguish us from all sorts of other systems in nature

and elsewhere. And what this means is that in a sense there can be no

abstract basic science of the human condition—only something that

involves all sorts of specific details of humans and their history.

So while we might have imagined that science would eventually

show us how to rise above all our human details what we now see is

that in fact these details are in effect the only important thing about us. 

And indeed at some level it is the Principle of Computational

Equivalence that allows these details to be significant. For this is what

leads to the phenomenon of computational irreducibility. And this in

turn is in effect what allows history to be significant—and what implies

that something irreducible can be achieved by the evolution of a system.

Looking at the progress of science over the course of history one

might assume that it would only be a matter of time before everything

would somehow be predicted by science. But the Principle of

Computational Equivalence—and the phenomenon of computational

irreducibility—now shows that this will never happen.

There will always be details that can be reduced further—and

that will allow science to continue to show progress. But we now know

that there are some fundamental boundaries to science and knowledge. 

And indeed in the end the Principle of Computational

Equivalence encapsulates both the ultimate power and the ultimate

weakness of science. For it implies that all the wonders of our universe

can in effect be captured by simple rules, yet it shows that there can be

no way to know all the consequences of these rules, except in effect just

to watch and see how they unfold.
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â Website. A large amount of additional material related to
this book and these notes will progressively be made
available through the website www.wolframscience.com.
(See also the copyright page at the beginning of the book.)

â The role of these notes. The material in these notes is
intended to be complementary to the main text, and is not
always self-contained on its own. It is thus important to read
these notes in parallel with the sections of the main text to
which they refer, since some necessary points may be made
only in the main text. Captions to pictures in the main text
also often contain details that are not repeated in these notes.

â Writing style. This book was not easy to write, not least
because it contains many complex intellectual arguments
presented in plain language. And in order to make these
arguments as easy to understand as possible, I have had to
adopt some rhetorical devices. Perhaps most annoying to
those with a copyediting orientation will be my predilection
for starting sentences with conjunctions. The main reason I
have done this is to break up what would otherwise be
extremely long sentences. For the points that I make are often
sufficiently complex to require quite long explanations. And
to make what I have written more readable than, say, a
typical classic work of philosophy, I have broken these
explanations into several sentences, necessarily with
conjunctions at the beginning of each. Also annoying to some
will be my widespread use of short paragraphs. In the main
text I normally follow the principle that any paragraph
should communicate just one basic idea. And my hope is
then that after reading each paragraph readers will pause a
moment to absorb each idea before going on to the next one.
(This book introduces the third major distinct style of writing
that I have used in publications. The first I developed for
scientific papers; the second for documents like The
Mathematica Book.) 

â Billions. Following standard American usage, billion in this
book means , trillion , and so on. 

â Clarity and modesty. There is a common style of
understated scientific writing to which I was once a devoted
subscriber. But at some point I discovered that more
significant results are usually incomprehensible if presented
in this style. For unless one has a realistic understanding of
how important something is, it is very difficult to place or
absorb it. And so in writing this book I have chosen to
explain straightforwardly the importance I believe my
various results have. Perhaps I might avoid some criticism by
a greater display of modesty, but the cost would be a drastic
reduction in clarity.

â Explaining ideas. In presenting major new ideas in a book
such as this, there is a trade-off between trying to explain
these ideas directly on their own, and using previous ideas to
provide a context. For some readers there is a clear short-
term benefit in referring to previous ideas, and in discussing
to what extent they are right and wrong. But for other readers
this approach is likely just to introduce confusion. And over
the course of time the ideas that typical readers know will
tend to shift. So to make this book as broadly accessible as
possible what I mostly do is in the main text to discuss ideas
as directly as I can—but then in these notes to outline their
historical context. Occasionally in the main text I do mention
existing ideas—though I try hard to avoid fads that I expect
will not be widely remembered within a few years.
Throughout the book my main goal is to explain new ideas,
not to criticize ones from the past. Sometimes clarity
demands that I say explicitly that something from the past is
wrong, but generally I try to avoid this, preferring instead
just to state whatever I now believe is true. No doubt this
book will draw the ire of some of those with whose ideas its
results do not agree, but much as I might like to do so, I
cannot realistically avoid this just by the way I present what I
have discovered. 

â Technology references. In an effort to make the main text
of this book as timeless as possible, I have generally avoided109 1012

General Notes
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referring to everyday systems whose character or name I
expect will change as technology advances. Inevitably,
however, I do discuss computers, even though I fully expect
that some of the terms and concepts I use in connection with
them will end up seeming dated in a matter of a few
decades.

â Whimsy. Cellular automata and most of the other systems
in this book readily admit various kinds of whimsical
descriptions. The rule 30 cellular automaton, for example,
can be described as follows. Imagine a stadium full of people,
with each person having two cards: one black and one white.
Make the person in the middle of the top row of seats hold up
a black card, and make everyone else in that row hold up a
white card. Now each successive person in each successive
row determines the color of the card they hold up by looking
at the person directly above them, and above them
immediately to their left and right, and then applying the
simple rule on page 27. A photograph of the stadium will
then show the pattern produced by rule 30. Descriptions like
this may make abstract systems seem more connected to at
least artificial everyday situations, but if the goal is to focus
on fundamental ideas, as in this book, then such whimsy is,
in my experience, normally just a major distraction. 

â Timeline of writing. I worked on the writing of this book
with few breaks for a little over ten years, beginning in June
1991, and ending in January 2002. The chapters were written
roughly as follows: Chapter 1: 1991, 1999, 2001; Chapter 2:
1991–2; Chapter 3: 1992; Chapter 4: 1992–3; Chapter 5: 1993;
Chapter 6: 1992–3; Chapter 7: 1994–6; Chapter 8: 1994–5,
1997; Chapter 9: 1995–8, 2001; Chapter 10: 1998–9; Chapter 11:
1995; Chapter 12: 1999–2001. Some sections of chapters
(usually later ones) were added well after the rest. These
notes were also sometimes written well after the main text of
a given chapter.

â Identifying new material. The vast majority of results in this
book have never appeared in published form before. A few
were however included—implicitly or explicitly—in
publications of mine from the early 1980s (see page 881).
Whenever I am aware of antecedents to major material in the
main text I have indicated this in the notes. Within the notes
themselves, results that are given without historical
discussion and without statements such as “it is known that”
are generally new to this book. Researchers seeking further
information should consult the website for the book.

â Citations and references. In developing the ideas described
in this book I have looked at many thousands of books,
papers and websites—and have interacted with hundreds of
people (see page xiii). But rather than trying to give a huge

list of specific references, I have instead included in these
notes historical information tracing key contributions. From
the names of concepts and people that I mention, it is
straightforward to do web or database searches that give a
vastly more complete picture of available references than
could possibly fit in a book of manageable size—or than
could be created correctly without immense scholarship.
Note that while most current works of science tend to refer
mainly just to very recent material, this book often refers to
material that is centuries or even millennia old—in some
ways more in the tradition of fields like philosophy.

â Historical notes. I have included extensive historical notes
in this book in part out of respect for what has gone before, in
part to provide context for ideas (and to see how current
beliefs came to be as they are) and in part because the steps
one goes through in understanding things may track steps
that were gone through historically. Often in the book my
conclusions in a particular field differ in a fundamental way
from what has been traditional, and it has been important to
me in confirming my understanding to study history and see
how the conclusions I have reached were missed before. My
discussion of science in this book is generally quite precise,
being based among other things on computer experiments
that can readily be reproduced. But my discussion of history
is inevitably less precise. And while I have gone to
considerable effort to ensure that its main elements are
correct, ultimate objective confirmation is usually impossible.
I have always tried to read original writings—for I have often
found that later characterizations drop elements crucial for
my purposes, or recast history to simplify pedagogy. But
even for pieces of history where the people involved are still
alive there are often no primary written records, leaving me
to rely on secondary sources and recollections extracted in
personal interviews—which are inevitably colored by later
ideas and understanding. And while with sufficient effort it
is usually possible to give fairly simple explanations for
fundamental ideas in science, the same may not be true of
their history. Looking at the historical notes in this book one
striking feature is how often individuals of significant fame
are mentioned—but not for the reason they are usually
famous. And perhaps the explanation for this is in part that
most of those who one can now see made contributions to the
kinds of foundational issues I address were capable enough
to have been successful at something—but without the whole
context of this book they tended to view the types of results I
discuss largely as curiosities, and so never tried to do much
with them. Note that in mentioning people in connection
with ideas and results, I have tried to concentrate on those
who seemed to make the most essential contributions for my



G E N E R A L  N O T E S

851

purposes—even when this does not entirely agree with
traditions or criteria in particular academic fields. 

â Dates. Rather than following the usual academic practice of
giving years when the discoveries were first published in
books or journals, I have when possible given years when
discoveries were first made. Note that I use a form like 1880s
to refer to a decade, and 1800s to refer to a whole century.

â Autobiographical elements. Every discovery in this book
has some kind of specific personal story associated with it.
Sometimes the story is quite straightforward; sometimes it is
convoluted and colorful. But much as I enjoy recounting such
stories, I have chosen not to make them part of this book. 

â Cover image. The image on the cover of this book is derived
from the first 440 or so steps (with perhaps 10 at each end cut
off by trimming) of the pattern generated by evolution
according to the rule 110 cellular automaton discussed on
page 32, with an initial condition consisting of repeats of

 followed by repeats of . The picture on the
right shows 3000 steps in this evolution. The central region
grows by 1 cell every 2 steps on the left and 22 cells every 340
steps on the right. Many persistent structures emanate from
the right-hand edge of the region. After just 29 steps, this
edge takes on a form that repeats every 1700 steps. During
each such cycle, a total of 65 persistent structures are
produced, of 11 of the 15 kinds from page 292, and their
interactions make the full repetition period 6800 steps. 

â Endpapers.  The goldenrod pages inside the front cover
show the center 900 or so cells of the first 500 or so steps in
the evolution of the rule 30 cellular automaton of page 29
from a single black cell. The pages inside the back cover show
the next 500 or so steps.

â Using color. Aside from practicalities of printing, what
made me decide not to use color in this book were issues of
visual perception. For much as it is easier to read text in black
and white, so also it is easier to assimilate detailed pictures if
they are just in black and white. And in fact many types of
images in this book show quite misleading features in color.
In human visual perception the color of something tends to
seem different depending on what is around it—so that for
example a red element tends to look purple or pink if the
elements around it are respectively blue or white. And
particularly if there are few colors arranged in ways that are
not visually familiar it is typical for this effect to make all
sorts of spurious patterns appear. 

â Pictures in the book. All the diagrammatic pictures in this
book were created using Mathematica. (The photographs were
also laid out and image-processed using Mathematica.) The
ability of Mathematica to manipulate graphics in a symbolic



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

852

way was crucial—and was what ultimately made it possible
for the book to have so many elaborate pictures. 

To those familiar with book layout it may seem surprising
that I was able to include so many pictures of so many
different shapes and sizes without having to resort to a
device like figure numbers. And indeed it required solving
innumerable small geometrical puzzles to do so. But what
ultimately made it possible was that the Mathematica
programs for generating the pictures were almost always
general enough that it was straightforward for me to get, say,
a picture with a different number of cells or steps. 

â Hyphenation.  An unusual feature of the text in this book is
that it almost never uses hyphenation; from seeing so much
word-wrapped text on computers I at least have come to
view hyphenation as an ugly and misleading device.

â Book production system.  Beyond its actual content, the
production of this book was a highly complex process that
relied on the methodology for software releases developed at
my company over the past fifteen years. Had I been starting
the book now I would likely have authored all of it directly in
Mathematica and Publicon. But a decade ago I made the
decision to compose all the original source for the book in
FrameMaker. This source was then processed by an elaborate
automated procedure much like a standard software build.
The first step involved converting a MIF version of the
complete source into a Mathematica symbolic expression.
Then within Mathematica various transformations and tests
were done on this expression—with for example every
program in these notes being formatted and broken into lines
using rules similar to Mathematica . The
resulting symbolic expressions were then converted back to
MIF, formatted in FrameMaker, and automatically output as
PDF. (Note that special characters in programs are rendered
using the new Mathematica-Sans font specifically created for
the book.) (See also the colophon at the very end of the book.)

â Printing.  Many of the pictures in this book have a rather
different character from things that are normally printed. For
unlike traditional diagrams consisting of separate visible
elements—or photographs involving smooth gradations of
color—they often for example contain hundreds of cells per
inch, each in effect independently black or white. And to
capture this properly required careful sheet-fed printing on
paper smooth enough to avoid significant spreading of ink.
(See also the colophon at the very end of the book.)

â Index.  In the index to this book I have tried to cater both to
those who have already read the book in detail, and to those
who have not. My approach has generally been to include
any term that might realistically come to mind when thinking

of a given topic—or remembering what the book says about
that topic. And this means that even if the book mentions a
term only in passing, I have tended to include it if for one
reason or another I think it is likely to be memorable to
people with certain experience or interests. Note that looking
up Mathematica functions used in connection with some issue
is often a good way to identify related issues. In the actual
building of the index in this book, sorting, processing and
checking were done using a variety of automated
Mathematica procedures, operating on a symbolic
representation of the full text and index of the book. Often it
is possible by reading an index to identify the important
issues in a book. And to some extent that is possible here,
though often the presence of more subentries just reflects
material being more spread out, not more important. 

â People in the index. Conventions for personal names vary
considerably with culture and historical period. I have tried
in the index to give all names in the form they might be used
on standardized documents in the modern U.S. I have done
standard transliterations from non-Latin character sets. I give
in full those forenames that I believe are or were most
commonly used by a particular individual; for other
forenames (including for example Russian patronymics) I
give only initials. I normally give formal versions of
forenames—though for individuals I have personally known
I give in the text the form of forenames I would normally use
in addressing them. I have dropped all honorifics or titles,
except when they significantly alter a name. When there are
several versions of a name, I normally use the one that was
current closest to the time of work I mention. For each person
in the index I list the country or countries where that person
predominantly worked. Note that this may not reflect where
the person was born, educated, did military service, or died.
Rather, it tries to indicate where the person did the majority
of their work, particularly as it relates to this book. I
generally refer to countries or regions by the names of their
closest present-day approximations, as these might appear in
postal addresses. When borders have changed, I tend to favor
the country whose language is what the person normally
speaks or spoke. I usually list countries in the order that a
person has worked in them, ignoring repeats. Note that while
many of the people listed are well known, extensive research
(often through personal contacts, as well as institutional and
government records) was required to track down quite a few
of them. (Ending dates are obviously not included for people
who died after the writing of this book was finished in
January 2002.) 

â Notation. In the main text, I have almost entirely avoided
any kind of formal symbolic notation—usually relying

StandardForm
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instead on diagrammatic pictures. In these notes, however, it
will often be convenient to use such notation to give precise
and compact representations of objects and operations. In
the past, essentially the only large-scale notation available
for theoretical science has been traditional mathematical
notation. But on its own this would do me little good—for I
need to represent not only traditional mathematics, but also
more general rules and programs, as well as procedures and
algorithms. But one of the reasons I created the Mathematica
language was precisely to provide a much more general
notation. So in these notes I use this language throughout as
my notation. And this has many important advantages—
and indeed it is hard to imagine that I would ever have been
able to write these notes without it. One point is that it is
completely uniform and standardized: there can never be
any hidden assumptions or ambiguity about what a
particular piece of notation means, since ultimately it is
defined by the actual Mathematica software system and its
documentation (see below). In cases where there is
traditional mathematical notation for something, the
corresponding Mathematica notation is normally almost
identical—though occasionally a few details are changed to
avoid ambiguity. The concept that everything is a symbolic
expression allows Mathematica notation, however, to
represent essentially any kind of abstract object. And when
it comes to procedures and algorithms, the primitives in the
Mathematica language are chosen to make typical steps easy
to represent—with the result that a single line of
Mathematica can often capture what would otherwise require
many paragraphs of English text (and large amounts of
pseudocode, or lower-level computer language code).
Another very important practical feature of Mathematica
notation is that by now a large number of people are
familiar with it—certainly more than are for example
familiar with sophisticated traditional notation in, say,
mathematical logic. And the final and very critical
advantage of Mathematica notation is that one can not only
read it, but also actually execute it on a computer, and
interact with it. And this makes it both vastly easier to apply
and build on, and also easier to analyze and understand.

â Mathematica. I created Mathematica to be an integrated
language and environment for computing in general, and
technical computing in particular. Following its release in 1988,
Mathematica has become very widely used in science, technology,
education and elsewhere. (It is now also increasingly used as a
component inside other software systems.)

Mathematica is available from Wolfram Research for all
standard computer systems; much more information about it
can be found on the web, especially from www.wolfram.com.

There are many books about Mathematica—the original one
being my The Mathematica Book. 

The core of Mathematica is its language—which is based on
the concept of symbolic programming. This language
supports most traditional programming paradigms, but
considerably generalizes them with the ideas of symbolic
programming that I developed for it. In recent years there has
started to be increasing use of the language component of
Mathematica for all sorts of applications outside the area of
technical computing where Mathematica as a whole has
traditionally been most widely used. 

The programs in these notes were created for Mathematica 4.1
(released 2000). They should run without any change in all
subsequent versions of Mathematica, and the majority will
also run in prior versions, all the way back to Mathematica 1
(released 1988) or Mathematica 2 (released 1990). Most of the
programs require only the language component of
Mathematica—and not its mathematical knowledge base—
and so should run in all software systems powered by
Mathematica, in which language capabilities are enabled.

Here are examples of how some of the basic Mathematica
constructs used in the notes in this book work:

ä Iteration

äFunctional operations

äList manipulation

Nest[f , x, 3]£ f [f [f [x]]]

NestList[f , x, 3]£{x, f [x], f [f [x]], f [f [f [x]]]}

Fold[f , x, {1, 2}]£ f [f [x, 1], 2]

FoldList[f , x, {1, 2}]£{x, f [x, 1], f [f [x, 1], 2]}

Function[x, x + k][a]£a + k

(# + k &)[a]£a + k

( r[#1] + s[#2] &)[a, b]£ r[a] + s[b]

Map[f , {a, b, c}]£{f [a], f [b], f [c]}

Apply[f , {a, b, c}]£ f [a, b, c]

Select[{1, 2, 3, 4, 5}, EvenQ]£{2, 4}

MapIndexed[f , {a, b, c}]£{f [a, {1}], f [b, {2}], f [c, {3}]}

{a, b, c, d}031£c

{a, b, c, d}0{2, 4, 3, 2}1£{b, d, c, b}

Take[{a, b, c, d, e}, 2]£{a, b}

Drop[{a, b, c, d, e}, -2]£{a, b, c}

Rest[{a, b, c, d}]£{b, c, d}

ReplacePart[{a, b, c, d}, x, 3]£{a, b, x, d}

Length[{a, b, c}]£3

Range[5]£{1, 2, 3, 4, 5}

Table[f [ i], {i, 4}]£{f [1], f [2], f [3], f [4]}



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

854

äTransformation rules

äNumerical functions

The Mathematica programs in these notes are formatted in
Mathematica . The following table specifies how
to enter these programs in Mathematica , using only
ordinary keyboard characters: 

â About the programs. Like other aspects of the exposition in
this book, I have gone to considerable effort to make the
programs in these notes as clear and concise as possible. And
I believe the final programs will be useful both to execute,
and to read and study—if necessary without a computer.
Most of the programs involve only built-in Mathematica
functions, and so can be run in Mathematica without setting

up any further definitions. (Many programs nevertheless
contain variables that need to be assigned their values before
the programs are run—as can be done for example with

. When subsidiary functions are used,
these functions also typically need to be defined before the
programs are run—even though in these notes I often show
the necessary definitions after the programs. Note that most
of the programs do not explicitly do input checking or error
generation. Only occasionally do the programs significantly
sacrifice efficiency for elegance.) A good first step in
understanding any program is to run it on a few inputs. The
symbolic character of the Mathematica language also allows
programs to be taken apart, so that their pieces can be run
and analyzed separately. Careful study of the various
programs in these notes should provide good background
not only for implementing what I discuss in the book, but
also for doing high-level programming of any kind. Many of
the programs use several of the programming paradigms
available in Mathematica—making it essentially impossible to
capture their essence in any lower-level language. Note that a
given program can essentially always be written in
Mathematica in many different ways—though often other
ways end up being vastly longer than the ones presented
here. Material about the programs should be available at the
book website—including for example some of the automated
tests run to check the programs, as well as annotations about
how the programs work. 

â Computer experiments. Essentially all the computer
experiments for this book were done using Mathematica
running on a standard workstation-class computer, and later
PC (initially on a 33 MHz NeXTstation, then on a 100 MHz
HP 700 running NeXTSTEP, then on a 200 MHz P6 PC
running Windows 95, and finally on 450 MHz, 700 MHz and
faster PCs running Windows 95, and later Windows NT—
with a Linux fileserver). For some larger searches earlier in
the project, I wrote special-purpose C programs connected to
Mathematica via MathLink. (Increasing computer speed and
greater efficiency in successive versions of Mathematica have
gradually almost eliminated my use of C.) In some cases I
have run programs for many days or weeks, sometimes
distributed via MathLink across a few hundred computers in
my company’s network. So far in my life the primary
computer hardware systems I have used have been: Elliott
903 (1973–6); IBM 370 (1976–8); CDC 7600 (1978–9); VAX 11/
780 (1980–2); Sun-1, 2, Ridge 32 (1982–4); CM-1 (1985); Sun-3
(1985–8); SPARC (1988–91); NeXT (1991–4); HP 700 (1995–6);
PC (1996– ). The primary languages have been: assembler
(1973–6); FORTRAN (1976–9); C (1979–~1994); SMP (1980–6);
Mathematica (1987– ). (See also page 899.)

Table[f [ i, j], {i, 2}, { j , 3}]£
{{f [1, 1], f [1, 2], f [1, 3]}, {f [2, 1], f [2, 2], f [2, 3]}}

Array[f , {2, 2}]£{{f [1, 1], f [1, 2]}, {f [2, 1], f [2, 2]}}

Flatten[{{a, b}, {c}, {d, e}}]£{a, b, c, d, e}

Flatten[{{a, {b, c}}, {{d}, e}}, 1]£{a, {b, c}, {d}, e}

Partition[{a, b, c, d}, 2, 1]£{{a, b}, {b, c}, {c, d}}

Split[{a, a, a, b, b, a, a}]£{{a, a, a}, {b, b}, {a, a}}

ListConvolve[{a, b}, {1, 2, 3, 4, 5}]£
{2 a + b, 3 a + 2 b, 4 a + 3 b, 5 a + 4 b}

Position[{a, b, c, a, a}, a]£{{1}, {4}, {5}}

RotateLeft[{a, b, c, d, e}, 2]£{c, d, e, a, b}

Join[{a, b, c}, {d, b}]£{a, b, c, d, b}

Union[{a, a, c, b, b}]£{a, b, c}

{a, b, c, d} /. b ! p£{a, p, c, d}

{f [a], f [b], f [c]} /. f [a] ! p£{p, f [b], f [c]}

{f [a], f [b], f [c]} /. f [x_] ! p[x]£{p[a], p[b], p[c]}

{f [1], f [b], f [2]} /. f [x_Integer] ! p[x]£{p[1], f [b], p[2]}

{f [1, 2], f [3], f [4, 5]} /. f [x_, y_] ! x + y£{3, f [3], 9}

{f [1], g[2], f [2], g[3]} /. f [1] Ï g[_] ! p£{p, p, f [2], p}

Quotient[207, 10]£20

Mod[207, 10]£7

Floor[1.45]£1

Ceiling[1.45]£2

IntegerDigits[13, 2]£{1, 1, 0, 1}
IntegerDigits[13, 2, 6]£{0, 0, 1, 1, 0, 1}

DigitCount[13, 2, 1]£3

FromDigits[{1, 1, 0, 1}, 2]£13

StandardForm
InputForm

p Pi ¥ Infinity 4 E 5 I

x° x Degree xy x ^y
�!!!!

x Sqrt[x] x ! y x -> y

x 9 y x != y x < y x <= y $x y D[y, x] ¨ x ! x

x © y x && y x ª y x || y x Ò y Xor[x, y] x Ñ y Nand[x, y]

Block[{k = 2}, program]
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â Educational issues. The new kind of science in this book
represents a unique educational opportunity. For it touches
an immense range of important and compelling everyday
phenomena and issues in science, yet to understand its key
ideas requires no prior scientific or technical education. So
this means that it is potentially realistic to use as the basis
for an overall introduction to the ideas of science. And
indeed having understood its basic elements, it becomes
vastly easier to understand many aspects of traditional
science, and to see how they fit into the whole framework of
knowledge.

No doubt there will at first be a tendency to follow the
progression of scientific history and to present the ideas of
this book only at an advanced stage in the educational
process, after teaching many aspects of traditional science.
But it is fairly clear that it is vastly easier to explain much of
what is in this book than to explain many ideas in traditional
science. For among other things the new kind of science in
this book does not rely on elaborate abstract concepts from
traditional mathematics; instead it is based mostly just on
pictures, and on ideas that have become increasingly familiar
from practical use of computers. And in fact, in my
experience, with good presentation, surprisingly young
children are able to grasp many key ideas in this book—even
if their knowledge of mathematics does not go beyond the
simplest operations on numbers.

Over the past fifty or so years traditional mathematics has
become a core part of education. And while its more
elementary aspects are certainly crucial for everyday modern
life, beyond basic algebra its central place in education must
presumably be justified more on the basis of promoting
overall patterns of thinking than in supplying specific factual
knowledge of everyday relevance. But in fact I believe that
the basic aspects of the new kind of science in this book in
many ways provide more suitable material for general
education than traditional mathematics. They involve some
of the same kinds of precise thinking, but do not rely on
abstract concepts that are potentially very difficult to
communicate. And insofar as they involve the development
of technical expertise, it is in the direction of computing—
which is vastly more relevant to modern life than advanced
mathematics.

The new kind of science in this book connects in all sorts of
ways with mathematics and the existing sciences—and it can
be used at an educational level to place some of the
fundamental ideas in these areas in a clearer context. In
computer science it can also be used as a rich source of basic
examples—much as physics is used as a source of basic
examples in traditional mathematics education. 

A remarkable feature of the new kind of science in this book
is that it makes genuine research accessible to people with
almost no specific technical knowledge. For it is almost
certain that experiments on, say, some specific cellular
automaton whose rule has been picked at random from a
large set will never have been done before. To conclude
anything interesting from such experiments nevertheless
requires certain scientific methodology and judgement—but
from an educational point of view this represents a uniquely
accessible environment in which to develop such skills. 

In many fields, advanced education seems useful only if one
intends to pursue those specific fields. But a few fields such
as physics are notable for being sources of individuals with
broadly applicable skills. I believe that the new kind of
science in this book will in time serve a similar role.

â Reading this book. This is a long book densely packed with
ideas and results, and to read all of it carefully is a major
undertaking. The first section of Chapter 1 provides a basic—
though compressed—overview of some of key ideas. Chapter
2 describes some of the basic results that led me to develop
the new kind of science in the book. Every subsequent
chapter in one way or another builds on earlier ones. Some
people will probably find the sweeping conclusions of the
final chapter of the book the most interesting; others will
probably be more interested in specific results and
applications in earlier chapters. 

These notes are never necessary for the basic flow of any of
the arguments I make in the book—though they often
provide context and important supporting information, as
well as considerable amounts of new primary material.
Specialists in particular fields should be sure to read the
notes that relate to their fields before they draw any final
conclusions about what I have to say.

I have written this book with considerable care, and I believe
that to those seriously interested in its contents, it will repay
careful and repeated reading. Note that in the main text I
have tried to emphasize important points by various kinds of
stylistic devices. But in packing as much as possible into
these notes I have often been unable to do this. And in
general these notes have a high enough information density
that it will be rare that everything they say can readily be
assimilated in just one reading, even if it is quite careful.

â Learning the new kind of science. There will, I hope, be
many who want to learn about what is in this book, whether
out of general intellectual interest, to apply it in some way or
another, or to participate in its further development. But
regardless of the purpose, the best first step will certainly be
to read as much of this book as possible with care. In time
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there will doubtless also be all sorts of additional material
and educational options available. But ultimately the key to a
real understanding is to experience ideas for oneself. And for
the new kind of science in this book this is in a sense
unprecedentedly easy, for all it requires is a standard
computer on which to do computer experiments. 

At first the best thing is probably just to repeat some of the
experiments I describe in this book—using the software and
resources described at the website, or perhaps just by typing
in some of the programs in these notes. And even if one can
already see the result of an experiment in a picture in this
book, it has been my consistent observation that one
internalizes results of experiments much better if one gets
them by running a program oneself than if one just sees them
printed in a book. To get a deeper understanding, however,
one invariably needs to try formulating experiments for
oneself. One might wonder, for example, what would
happen if some particular system were run for more steps
than I show in this book. Would the system go on doing what
one sees in the book, or might it start doing something quite
different? With the appropriate setup, one can immediately
run a program to find out. Often one will have some kind of
guess about what the answer should be. At first—if my own
experience is a guide—this guess will quite often be wrong.
But gradually, after seeing what happens in enough cases,
one will begin to develop a correct and robust new intuition.
Realistically this seems to take several months even for the
most talented and open-minded people. But as the new
intuition matures, ideas in this book like the Principle of
Computational Equivalence, that may at first seem hard to
believe, will slowly come to seem almost obvious.

For someone to assimilate all of the new kind of science I
describe in this book will take a very significant time.
Indeed, in a traditional educational setting I expect that it
will require an investment of years comparable to learning
an area like physics. How long it will take a given
individual to get to the point of being able to do something
specific with the new kind of science in this book will
depend greatly on their background and particular goals.
But in almost any case a crucial practical step—if it has not
already been taken—will be to learn well Mathematica and
the language it embodies. For although most simple
programs can be implemented in almost any computational
environment, not using the capabilities of Mathematica will
be an immediate handicap—which, for example, would
certainly have prevented me from discovering the vast
majority of what is now in this book.

â Developing the new kind of science. Up to this point in its
history the science in this book has essentially been just my

personal project. But now that the book is out, all sorts of
other people can begin to participate—adding their own
personal achievements to the development of the intellectual
structure that I have built in this book. 

The first obvious but crucial thing to do is to explain and
interpret what is already in the book. For although this is a
long book that I have tried to write as clearly as possible,
there is immensely more that can and should be said—in
many different ways—about almost all the ideas and results
it contains. Sometimes a more technical presentation may be
useful; sometimes a less technical one. Sometimes it will be
helpful to make more connections to some existing area of
thought or scholarship. And sometimes particular ideas and
results in this book will just benefit from the emphasis of
having a whole paper or book or website devoted to them. 

One of my goals in this book has been to answer the most
obvious questions about each of the subjects I address. And
at this I believe I have been moderately successful. But the
science I have developed in this book opens up an area so
vast that the twenty years I have spent investigating it have
allowed me to explore only tiny parts. And indeed from
almost every page of this book there are all sorts of new
questions that emerge. In fact, even about systems that I have
studied as extensively as cellular automata I am always
amazed at just how easy it is to identify worthwhile
questions that have not yet been addressed. And in general
the ideas and methods of this book seem to yield an
unending stream of important questions of a remarkable
range of different kinds. 

On the website associated with this book I plan to maintain a
list of questions that I believe are of particular interest. The
questions will be of many kinds and at many levels. Some it
will be possible to address just by fairly straightforward but
organized computer experimentation, while others will
benefit from varying levels of technical skill and knowledge
from existing areas of science, mathematics or elsewhere. 

Like any serious intellectual pursuit, doing well the new kind
of science in this book is not easy. In writing the book I have
put great effort into explaining things in straightforward
ways. But the fact that in some particular case I may have
succeeded does not mean that the underlying science was
easy. And in fact my uniform experience has been that to
make progress in the kind of science I describe in this book
requires at a raw intellectual level at least as much as any
traditional area of science. The kind of extensive detailed
technical knowledge that characterizes most traditional areas
of science is usually not needed—though it can be helpful.
But if anything, greater clarity and organization of thought is
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needed than in areas where there is existing technical
formalism to fall back on. At a practical level the most
important basic skill is probably Mathematica programming.
For it is crucial to be able to try out new ideas and
experiments quickly—and in my experience it is also
important to have the discipline of formulating things in the
precise language of Mathematica. 

One feature of this book is that it covers a broad area and
comes to very broad conclusions. But to get to the point of
being able to do this has taken me twenty years of gradually
building up from specific detailed results and ideas. And I
have no doubt that in the future essentially all significant
contributions will also be made by building on foundations
of specific detailed facts. And indeed, what I expect to be the
mainstay of the science that develops from this book is the
gradual accumulation of more and more knowledge of a
variety of detailed concrete kinds.

I have tried in this book to lead by example in defining the
way I believe things should be done. Probably the single
most important principle that I have followed is just to try to
keep everything as simple as possible. Study the simplest
systems. Ask the most obvious questions. Search for the most
straightforward explanations. For among other things, this is
ultimately how the most useful and powerful results are
obtained. Not that it is easy to do this. For while in the end it
may be possible to get to something simple and elegant, it
often takes huge intellectual effort to see just how this can be
done. And without great tenacity there is a tremendous
tendency to stop before one has gone far enough. 

In most existing fields of science there are so many
technicalities to learn and keep current on that it is rare for
anyone but a professional scientist to be able to make any
significant contribution. But in the new kind of science that I
describe in this book I believe that at least at first there will be
opportunities for a much broader range of people to make

contributions. In existing fields of science their largely closed
communities tend to maintain standards of quality mostly
through direct institutional and personal contact. Yet
particularly when there are technical aspects to a field it is
also comparatively easy for practitioners to assess a piece of
work just from the overall way it handles and presents its
technicalities. And in fact there are obvious analogs of this in
the new kind of science that I describe in this book. First,
there is the issue of whether tools like computers are used in
effective ways. But in many ways more central is whether
there is a certain basic level of clarity and simplicity to a piece
of work. Often it is difficult to achieve this. But the point is
that the skills necessary to do so correspond rather directly to
the ones necessary to carry out the actual science itself well. 

â Applications. At the core of this book is a body of ideas and
results that define a new kind of basic science. And I have no
doubt that in time this will yield a remarkably broad range of
applications. And sometimes—particularly in technology—
these applications may be quite straightforward and direct.
But if the objective is to develop a model for some specific
system in nature or elsewhere it is almost inevitable that this
will not be easy. For while I believe that the basic science that
I develop in this book provides a remarkably powerful new
framework, coming up with an actual model requires all
sorts of detailed work and analysis. Certainly it would be
wonderful if one could just take the ideas and results in this
book and somehow immediately use them to create models
for all sorts of systems. And indeed—particularly from the
examples I give in Chapter 8—there will probably be at least
a few cases where this can be done. But most of the time
nothing like it will be possible. And instead—just as in any
other framework—there will be no choice but first to learn all
sorts of details of a system, and then to use judgement and
creativity to see which of them are really essential to a model
and which are not. (See also page 364.)
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NOTES FOR CHAPTER 1

The Foundations for a New Kind of Science

An Outline of Basic Ideas

â Mathematics in science. The main event usually viewed as
marking the beginning of the modern mathematical
approach to science was the publication of Isaac Newton’s
1687 book Mathematical Principles of Natural Philosophy (the
Principia). The idea that mathematics might be relevant to
science nevertheless had long precursors in both practical
and philosophical traditions. Before 500 BC the Babylonians
were using arithmetic to describe and predict astronomical
data. And by 500 BC the Pythagoreans had come to believe
that all natural phenomena should somehow be reducible to
relationships between numbers. Many Greek philosophers
then discussed the general concept that nature should be
amenable to abstract reasoning of the kind used in
mathematics. And at a more practical level, the results and
methodology of Euclid’s work on geometry from around 300
BC became the basis for studies in astronomy, optics and
mechanics, notably by Archimedes and Ptolemy. In medieval
times there were some doubts about the utility of
mathematics in science, and in the late 1200s, for example,
Albertus Magnus made the statement that “many of the
geometer’s figures are not found in natural bodies, and many
natural figures, particularly those of animals and plants, are
not determinable by the art of geometry”. Roger Bacon
nevertheless wrote in 1267 that “mathematics is the door and
key to the sciences”, and by the 1500s it was often believed
that for science to be meaningful it must somehow follow the
systematic character of mathematics. (Typical of the time was
the statement of Leonardo da Vinci that “no human inquiry
can be called science unless it pursues its path through
mathematical exposition and demonstration”.) Around the
end of the 1500s Galileo began to develop more explicit
connections between concepts in mathematics and in
physics, and concluded that the universe could be
understood only in the “language of mathematics”, whose
“characters are triangles, circles and other geometric figures”.

What Isaac Newton then did was in effect to suggest that
natural systems are at some fundamental level actually
governed by purely abstract laws that can be specified in
terms of mathematical equations. This idea has met with its
greatest success in physics, where for the past three centuries
essentially every major theory has been formulated in terms
of mathematical equations. Starting in the mid-1800s, it has
also had increasing success in chemistry. And in the past
century, it has had a few scattered successes in dealing with
simpler phenomena in fields like biology and economics. But
despite the vast range of phenomena in nature that have
never successfully been described in mathematical terms, it
has become quite universally assumed that, as David Hilbert
put it in 1900, “mathematics is the foundation of all exact
knowledge of natural phenomena”. There continue to be
theories in science that are not explicitly mathematical—
examples being continental drift and evolution by natural
selection—but, as for example Alfred Whitehead stated in
1911, it is generally believed that “all science as it grows
toward perfection becomes mathematical in its ideas”.

â Definition of mathematics. When I use the term
“mathematics” in this book what I mean is that field of
human endeavor that has in practice traditionally been called
mathematics. One could in principle imagine defining
mathematics to encompass all studies of abstract systems,
and indeed this was in essence the definition that I had in
mind when I chose the name Mathematica. But in practice
mathematics has defined itself to be vastly narrower, and to
include, for example, nothing like the majority of the
programs that I discuss in this book. Indeed, in many
respects, what is called mathematics today can be seen as a
direct extension of the particular notions of arithmetic and
geometry that apparently arose in Babylonian times. Typical
dictionary definitions reflect this by describing mathematics
as the study of number and space, together with their
abstractions and generalizations. And even logic—an
abstract system that dates from antiquity—is not normally
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considered part of mainstream mathematics. Particularly
over the past century the defining characteristic of research in
mathematics has increasingly been the use of theorem and
proof methodology. And while some generalization has
occurred in the types of systems being studied, it has usually
been much limited by the desire to maintain the validity of
some set of theorems (see page 793). This emphasis on
theorems has also led to a focus on equations that statically
state facts rather than on rules that define actions, as in most
of the systems in this book. But despite all these issues, many
mathematicians implicitly tend to assume that somehow
mathematics as it is practiced is universal, and that any
possible abstract system will be covered by some area of
mathematics or another. The results of this book, however,
make it quite clear that this is not the case, and that in fact
traditional mathematics has reached only a tiny fraction of all
the kinds of abstract systems that can in principle be studied.

â Reasons for mathematics in science. It is not surprising that
there should be issues in science to which mathematics is
relevant, since until about a century ago the whole purpose
of mathematics was at some level thought of as being to
provide abstract idealizations of aspects of physical reality
(with the consequence that concepts like dimensions above 3
and transfinite numbers were not readily accepted as
meaningful even in mathematics). But there is absolutely no
reason to think that the specific concepts that have arisen so
far in the history of mathematics should cover all of science,
and indeed in this book I give extensive evidence that they
do not. At times the role of mathematics in science has been
used in philosophy as an indicator of the ultimate power of
human thinking. In the mid-1900s, especially among
physicists, there was occasionally some surprise expressed
about the effectiveness of mathematics in the natural
sciences. One explanation advanced by Albert Einstein was
that the only physical laws we can recognize are ones that are
easy to express in our system of mathematics. 

â History of programs and nature. Given the idea of using
programs as a basis for describing nature, one can go back in
history and find at least a few rough precursors of this idea.
Around 100 AD, for example, following earlier Greek
thinking, Lucretius made the somewhat vague suggestion
that the universe might consist of atoms assembled according
to grammatical rules like letters and words in human
language. From the Pythagoreans around 500 BC through
Ptolemy around 150 AD to the early work of Johannes Kepler
around 1595 there was the notion that the planets might
follow definite geometrical rules like the elements of a
mechanical clock. But following the work of Isaac Newton in
the late 1600s it increasingly came to be believed that systems

could only meaningfully be described by the mathematical
equations they satisfy, and not by any explicit mechanism or
rules. The failure of the concept of ether and the rise of
quantum mechanics in the early 1900s strengthened this view
to the point where at least in physics mechanistic
explanations of any kind became largely disreputable.
(Starting in the 1800s systems based on very simple rules
were nevertheless used in studies of genetics and heredity.)
With the advent of electronics and computers in the 1940s
and 1950s, models like neural networks and cellular
automata began to be introduced, primarily in biology (see
pages 876 and 1099). But in essentially all cases they were
viewed just as approximations to models based on traditional
mathematical equations. In the 1960s and 1970s there arose in
the early computer hacker community the general idea that
the universe might somehow operate like a program. But
attempts to engineer explicit features of our universe using
constructs from practical programming were unsuccessful,
and the idea largely fell into disrepute (see page 1026).
Nevertheless, starting in the 1970s many programs were
written to simulate all sorts of scientific and technological
systems, and often these programs in effect defined the
models used. But in almost all cases the elements of the
models were firmly based on traditional mathematical
equations, and the programs themselves were highly
complex, and not much like the simple programs I discuss in
this book. (See also pages 363 and 992.)

â Extensions of mathematics. See page 793. 

â The role of logic. In addition to standard mathematics, the
formal system most widely discussed since antiquity is logic
(see page 1099). And starting with Aristotle there was in fact
a long tradition of trying to use logic as a framework for
drawing conclusions about nature. In the early 1600s the
experimental method was suggested as a better alternative.
And after mathematics began to show extensive success in
describing nature in the late 1600s no further large-scale
efforts to do this on the basis of logic appear to have been
made. It is conceivable that Gottfried Leibniz might have
tried in the late 1600s, but when his work was followed up in
the late 1800s by Gottlob Frege and others the emphasis was
on building up mathematics, not natural science, from logic
(see page 1149). And indeed by this point logic was viewed
mostly as a possible representation of human thought—and
not as a formal system relevant to nature. So when computers
arose it was their numerical and mathematical rather than
logical capabilities that were normally assumed relevant for
natural science. But in the early 1980s the cellular automata
that I studied I often characterized as being based on logical
rules, rather than traditional mathematical ones. However, as
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we will see on page 806, traditional logic is in fact in many
ways very narrow compared to the whole range of rules
based on simple programs that I actually consider in this
book. 

â Complexity and theology. Both complexity and order in the
natural world have been cited as evidence for an intelligent
creator (compare page 1195). Early mythologies most often
assume that the universe started in chaos, with a
supernatural being adding order, then creating a series of
specific complex natural systems. In Greek philosophy it was
commonly thought that the regularities seen in astronomy
and elsewhere (such as the obvious circular shapes of the Sun
and Moon) were reflections of perfect mathematical forms
associated with divine beings. About complexity Aristotle
did note that what nature makes is “finer than art”, though
this was not central to his arguments about causes of natural
phenomena. By the beginning of the Christian era, however,
there is evidence of a general belief that the complexity of
nature must be the work of a supernatural being—and for
example there are statements in the Bible that can be read in
this way. Around 1270 Thomas Aquinas gave as an argument
for the existence of God the fact that things in nature seem to
“act for an end” (as revealed for example by always acting in
the same way), and thus must have been specifically
designed with that end in mind. In astronomy, as specific
natural laws began to be discovered, the role of God began to
recede somewhat, with Isaac Newton claiming, for example,
that God must have first set the planets on their courses, but
then mathematical laws took over to govern their subsequent
behavior. Particularly in biology, however, the so-called
“argument by design” became ever more popular. Typical
was John Ray’s 1691 book The Wisdom of God Manifested in the
Works of the Creation, which gave a long series of examples
from biology that it claimed were so complex that they must
be the work of a supernatural being. By the early 1800s, such
ideas had led to the field of natural theology, and William
Paley gave the much quoted argument that if it took a
sophisticated human watchmaker to construct a watch, then
the only plausible explanation for the vastly greater
complexity of biological systems was that they must have
been created by a supernatural being. Following the
publication of Charles Darwin’s Origin of Species in 1859
many scientists began to argue that natural selection could
explain all the basic phenomena of biology, and although
some religious groups maintained strong resistance, it was
widely assumed by the mid-1900s that no other explanation
was needed. In fact, however, just how complexity arises was
never really resolved, and in the end I believe that it is only
with the ideas of this book that this can successfully be done. 

â Artifacts and natural systems. See page 828.

â Complexity and science. Ever since antiquity science has
tended to see its main purpose as being the study of
regularities—and this has meant that insofar as complexity is
viewed as an absence of regularities, it has tended to be
ignored or avoided. There have however been occasional
discussions of various general aspects of complexity and
what can account for them. Thus, for example, by 200 BC the
Epicureans were discussing the idea that varied and complex
forms in nature could be made up from arrangements of
small numbers of types of elementary atoms in much the
same way as varied and complex written texts are made up
from small numbers of types of letters. And although its
consequences were remarkably confused, the notion of a
single underlying substance that could be transmuted into
anything—living or not—was also a centerpiece of alchemy.
Starting in the 1600s successes in physics and discoveries like
the circulation of blood led to the idea that it should be
possible to explain the operation of almost any natural
system in essentially mechanical terms—leading for example
René Descartes to claim in 1637 that we should one day be
able to explain the operation of a tree just like we do a clock.
But as mathematical methods developed, they seemed to
apply mainly to physical systems, and not for example to
biological ones. And indeed Immanuel Kant wrote in 1790
that “it is absurd to hope that another Newton will arise in
the future who will make comprehensible to us the
production of a blade of grass according to natural laws”. In
the late 1700s and early 1800s mathematical methods began
to be used in economics and later in studying populations.
And partly influenced by results from this, Charles Darwin
in 1859 suggested natural selection as the basis for many
phenomena in biology, including complexity. By the late
1800s advances in chemistry had established that biological
systems were made of the same basic components as physical
ones. But biology still continued to concentrate on very
specific observations—with no serious theoretical discussion
of anything as general as the phenomenon of complexity. In
the 1800s statistics was increasingly viewed as providing a
scientific approach to complex processes in practical social
systems. And in the late 1800s statistical mechanics was then
used as a basis for analyzing complex microscopic processes
in physics. Most of the advances in physics in the late 1800s
and early 1900s in effect avoided complexity by
concentrating on properties and systems simple enough to be
described by explicit mathematical formulas. And when
other fields tried in the early and mid-1900s to imitate
successes in physics, they too generally tended to concentrate
on issues that seemed amenable to explicit mathematical
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formulas. Within mathematics itself—especially in number
theory and the three-body problem—there were calculations
that yielded results that seemed complex. But normally this
complexity was viewed just as something to be overcome—
either by looking at things in a different way, or by proving
more powerful theorems—and not as something to be
studied or even much commented on in its own right.

In the 1940s, however, successes in the analysis of logistical
and electronic systems led to discussion of the idea that it
might be possible to set up some sort of general approach to
complex systems—especially biological and social ones. And
by the late 1940s the cybernetics movement was becoming
increasingly popular—with Norbert Wiener emphasizing
feedback control and stochastic differential equations, and
John von Neumann and others emphasizing systems based
on networks of elements often modelled after neurons. There
were spinoffs such as control theory and game theory, but
little progress was made on core issues of complexity, and
already by the mid-1950s what began to dominate were
vague discussions involving fashionable issues in areas such
as psychiatry and anthropology. There also emerged a
tradition of robotics and artificial intelligence, and a few of
the systems that were built or simulated did show some
complexity of behavior (see page 879). But in most cases this
was viewed just as something to be overcome in order to
achieve the engineering objectives sought. Particularly in
the 1960s there was discussion of complexity in large
human organizations—especially in connection with the
development of management science and the features of
various forms of hierarchy—and there emerged what was
called systems theory, which in practice typically involved
simulating networks of differential equations, often
representing relationships in flowcharts. Attempts were for
example made at worldwide models, but by the 1970s their
results—especially in economics—were being discredited.
(Similar methods are nevertheless used today, especially in
environmental modelling.)

With its strong emphasis on simple laws and measurements
of numbers, physics has normally tended to define itself to
avoid complexity. But from at least the 1940s, issues of
complexity were nevertheless occasionally mentioned by
physicists as important, most often in connection with fluid
turbulence or features of nonlinear differential equations.
Questions about pattern formation, particularly in biology
and in relation to thermodynamics, led to a sequence of
studies of reaction-diffusion equations, which by the 1970s
were being presented as relevant to general issues of
complexity, under names like self-organization, synergetics
and dissipative structures. By the late 1970s the work of

Benoit Mandelbrot on fractals provided an important
example of a general approach to addressing a certain kind of
complexity. And chaos theory—with its basis in the
mathematics of dynamical systems theory—also began to
become popular in the late 1970s, being discussed
particularly in connection with fluid turbulence. In
essentially all cases, however, the emphasis remained on
trying to find some aspect of complex behavior that could be
summarized by a single number or a traditional
mathematical equation.

As discussed on pages 44–50, there were by the beginning of
the 1980s various kinds of abstract systems whose rules were
simple but which had nevertheless shown complex behavior,
particularly in computer simulations. But usually this was
considered largely a curiosity, and there was no particular
sense that there might be a general phenomenon of
complexity that could be of central interest, say in natural
science. And indeed there remained an almost universal
belief that to capture any complexity of real scientific
relevance one must have a complex underlying model. My
work on cellular automata in the early 1980s provided strong
evidence, however, that complex behavior very much like
what was seen in nature could in fact arise in a very general
way from remarkably simple underlying rules. And starting
around the mid-1980s it began to be not uncommon to hear
the statement that complex behavior can arise from simple
rules—though often there was great confusion about just
what this was actually saying, and what, for example, should
be considered complex behavior, or a simple rule.

That complexity could be identified as a coherent
phenomenon that could be studied scientifically in its own
right was something I began to emphasize around 1984. And
having created the beginnings of what I considered to be the
necessary intellectual structure, I started to try to develop an
organizational structure to allow what I called complex
systems research to spread. Some of what I did had fairly
immediate effects, but much did not, and by late 1986 I had
started building Mathematica and decided to pursue my own
scientific interests in a more independent way (see page 20).
By the late 1980s, however, there was widespread discussion
of what was by then being called complexity theory. (I had
avoided this name to prevent confusion with the largely
unrelated field of computational complexity theory). And
indeed many of the points I had made about the promise of
the field were being enthusiastically repeated in popular
accounts—and there were starting to be quite a number of
new institutions devoted to the field. (A notable example was
the Santa Fe Institute, whose orientation towards complexity
seems to have been a quite direct consequence of my efforts.)
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But despite all this, no major new scientific developments
were forthcoming—not least because there was a tremendous
tendency to ignore the idea of simple underlying rules and of
what I had discovered in cellular automata, and instead to set
up computer simulations with rules far too complicated to
allow them to be used in studying fundamental questions.
And combined with a predilection for considering issues in
the social and biological sciences that seem hard to pin down,
this led to considerable skepticism among many scientists—
with the result that by the mid-1990s the field was to some
extent in retreat—though the statement that complexity is
somehow an important and fundamental issue has continued
to be emphasized especially in studies of ecological and
business systems. 

Watching the history of the field of complexity theory has
made it particularly clear to me that without a major new
intellectual structure complexity cannot realistically be
studied in a meaningful scientific way. But it is now just such
a structure that I believe I have finally been able to set up in
this book. 

Relations to Other Areas

â Page 7 · Mathematics. I discuss the implications of this book
for the foundations of mathematics mainly on pages 772–821
and in the rather extensive corresponding notes. With a
sufficiently general definition of mathematics, however, the
whole core of the book can in fact be viewed as a work of
experimental mathematics. And even with a more traditional
definition, this is at least true of much of my discussion of
systems based on numbers in Chapter 4. The notes to almost
all chapters of the book contain a great many new
mathematical results, mostly emerging from my analysis of
some of the simpler behavior considered in the book. Pages
606–620 and 737–750 discuss in general the capabilities of
mathematical analysis, while pages 588–597 address the
foundations of statistics. Note that some ideas and results
highly relevant to current frontiers in mathematics appear in
some rather unexpected places in the book. Specific examples
include the parameter space sets that I discuss in connection
with shapes of plant leaves on page 407, and the minimal
axioms for logic that I discuss on page 810. A more general
example is the issue of smooth objects arising from
combinatorial data that I discuss in Chapter 9 in connection
with the nature of space in fundamental physics.

â Page 8 · Physics. I discuss general mechanisms and models
relevant for physical systems in Chapter 7, specific types of
everyday physical systems in Chapter 8, and applications to
basic foundational problems in physics in Chapter 9. I

mention some further fundamental issues in physics around
page 730 and in chemistry on page 1193. 

â Page 8 · Biology. The main place I discuss applications to
biology is on pages 383–429 of Chapter 8, where I consider
first general questions about biology and evolution, and then
more specific issues about growth and pattern in biological
organisms. I consider visual and auditory perception on
pages 577–588, and the operation of brains on pages 620–631.
I also discuss the definition of life on pages 823 and 1178, as
well as mentioning protein folding and structure on pages
1003 and 1184. 

â Page 9 · Social and related sciences. I discuss the particular
example of financial systems on pages 429–432, and make
some general comments on page 1014. The end of Chapter 10,
as well as some parts of Chapter 12, also discuss various
issues that can be viewed as foundational questions.

â Page 10 · Computer science. Chapter 11 as well as parts of
Chapter 12 (especially pages 753–771) address foundational
issues in computer science. Chapter 3 uses standard
computer science models such as Turing machines and
register machines as examples of simple programs. In many
places in the book—especially these notes—I discuss all sorts
of specific problems and issues of direct relevance to current
computer science. Examples include cryptography (pages
598–606), Boolean functions (pages 616–619 and 806–814),
user interfaces (page 1102) and quantum computing
(page 1147). 

â Page 10 · Philosophy. Chapter 12 is the main place I address
traditional philosophical issues. On pages 363–369 of Chapter
8, however, I discuss some general issues of modelling, and
in Chapter 10 I consider at length not only practical but also
foundational questions about perception and to some extent
general thinking and consciousness. (See page 1196.)

â Page 11 · Technology. The notes to this book mention many
specific technological connections, and I expect that many of
the models and methods of analysis that I use in the book can
be applied quite directly for technological purposes. I discuss
foundational questions about technology mainly on
pages 840–843. 

â Scope of existing sciences. One might imagine that physics
would for example concern itself with all aspects of physical
systems, biology with all aspects of biological systems, and
so on. But in fact as they are actually practiced most of the
traditional sciences are much narrower in scope. Historically
what has typically happened is that in each science a certain
way of thinking has emerged as the most successful. And
then over the course of time, the scope of the science itself has
come to be defined to encompass just those issues that this
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way of thinking is able to address. So when a new
phenomenon is observed, a particular science will typically
tend to focus on just those aspects of the phenomenon that
can be studied by whatever way of thinking has been
adopted in that science. And when the phenomenon involves
substantial complexity, what has in the past usually
happened is that simpler and simpler aspects are
investigated until one is found that is simple enough to
analyze using the chosen way of thinking.

The Personal Story of the Science in This Book

â Page 17 · Statistical physics cover. The pictures show disks
representing idealized molecules bouncing around in a box,
and the book claims that as time goes on there is almost
inevitably increasing randomization. The pictures were made
in about 1964 by Berni Alder and Frederick Reif from
oscilloscope output from the LARC computer at what was
then Lawrence Radiation Laboratory. A total of 40 disks were
started with positions and velocities determined by a middle-
square random number generator (see page 975), and their
motion was followed for about 10 collision times—after
which roundoff errors in the 64-bit numbers used had grown
too big. From the point of view of this book the
randomization seen in these pictures is in large part just a
reflection of the fact that a random sequence of digits were
used in the initial conditions. But what the discoveries in this
book show is that such randomness can also be generated

without any such random input—finally clarifying some
very basic issues in statistical physics. (See page 441.)

â Page 17 · My 1973 computer experiments. I used a British
Elliott 903 computer with 8 kilowords of 18-bit ferrite core
memory. The assembly language program that I wrote filled
up a fair fraction of the memory. The system that I looked at
was a 2D cellular automaton with discrete particles colliding
on a square grid. Had I not been concerned with physics-like
conservation laws, or had I used something other than a
square grid, the teleprinter output that I generated would
have shown randomization. (See page 999.)

â Page 19 · Computer printouts. The printouts show a series of
elementary cellular automata started from random initial
conditions (see page 232). I generated them in 1981 using a C
program running on a VAX 11/780 computer with an early
version of the Unix operating system. (See also page 880.) 

â Timeline. Major periods in my work have been:

ä 1974–1980: particle physics and cosmology

ä 1979–1981: developing SMP computer algebra system

ä 1981–1986: cellular automata etc.

ä 1986–1991: intensive Mathematica development 

ä 1991–2001: writing this book
(Wolfram Research, Inc. was founded in 1987; Mathematica 1.0
was released June 23, 1988; the company and successive
versions of Mathematica continue to be major parts of my life.)

â Detailed history. See pages 880–882. 
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NOTES FOR CHAPTER 2

The Crucial Experiment

How Do Simple Programs Behave?

â Implementing cellular automata. It is convenient to
represent the state of a cellular automaton at each step by a
list such as , where  corresponds to a white cell
and  to a black cell. An initial condition consisting of 
white cells with one black cell in the middle can then be
obtained with the function (see below for comments on this
and other Mathematica functions)

For cellular automata of the kind discussed in this chapter,
the rule can also be represented by a list. Thus, for example,
rule 30 on page 27 corresponds to the list .
(The numbering of rules is discussed on page 53.) In general,
the list for a particular rule can be obtained with the function

Given a rule together with a list representing the state  of a
cellular automaton at a particular step, the following simple
function gives the state at the next step:

A list of states corresponding to evolution for  steps can then
be obtained with

Graphics of this evolution can be generated using

And having set up the definitions above, the Mathematica input

will generate the image:

The description just given should be adequate for most
cellular automaton simulations. In some earlier versions of
Mathematica a considerably faster version of the program can
be created by using the definition

In addition, in Mathematica 4 and above, one can use

or directly in terms of the rule number 

(In versions of Mathematica subsequent to the release of this
book the built-in  function can be used, as
discussed on page 867.) It is also possible to have  call
the following external C language program via MathLink—
though typically with successive versions of Mathematica the
speed advantage obtained will be progressively less
significant:

#include "mathlink.h"

main(argc, argv)
int argc; char *argv[];
{
MLMain(argc, argv);
}

void casteps(revrule, rlen, a, n, steps)
int *revrule, rlen, *a, n, steps;
{
int i, *ap, t, tp;

for (i = 0; i <steps; i++)
{
a[0] = a[n-2]; /* right boundary */
a[n-1] = a[1]; /* left boundary */

t = a[0];
for (ap = a+1; ap <= a+n-2; ap++)

{
tp = ap[0];
ap[0] = revrule[ap[1]+2*(tp + 2*t)];
t = tp;
}

}

MLPutIntegerList(stdlink, a, n);
}

The linkage of this external program to the Mathematica
function  is achieved with the following MathLink
template (note the optional third argument which allows

{0, 0, 1, 0, 0} 0
1 n

 CenterList[n_Integer] :=
ReplacePart[Table[0, {n}], 1, Ceiling[n/2]]

{0, 0, 0, 1, 1, 1, 1, 0}

ElementaryRule[num_Integer] := IntegerDigits[num, 2, 8]

a

 CAStep[rule_List, a_List] :=
rule08 - (RotateLeft[a] + 2 (a + 2 RotateRight[a]))1

t

 CAEvolveList[rule_, init_List, t_Integer] :=
NestList[CAStep[rule, #] &, init, t]

 CAGraphics[history_List] := Graphics[
Raster[1 -Reverse[history]]�AspectRatio ! Automatic]

 Show[CAGraphics[CAEvolveList[
ElementaryRule[30], CenterList[103], 50]]]

 CAStep = Compile[{{rule, _Integer, 1}, {a, _Integer, 1}},
rule08 - (RotateLeft[a] + 2 (a + 2 RotateRight[a]))1]

CAStep[rule_, a_] := rule08 - ListConvolve[{1, 2, 4}, a, 2]1

num

Sign[BitAnd[2^ListConvolve[{1, 2, 4}, a, 2], num]]

CellularAutomaton
CAStep

CAStep
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 to perform several steps of cellular automaton
evolution at a time):

:Begin:
:Function: casteps
:Pattern: CAStep[rule_List, a_List, steps_Integer:1]
:Arguments: {Reverse[rule], a, steps}
:ArgumentTypes: {IntegerList, IntegerList, Integer}
:ReturnType: Manual
:End:

There are a couple of tricky issues in the C program above.
First, cellular automaton rules are always defined to use the
old values of neighbors in determining the new value of any
particular cell. But since the C program explicitly updates
values sequentially from left to right, the left-hand neighbor
of a particular cell will already have been given its new value
when one tries to updates the cell itself. As a result, it is
necessary to store the old value of the left-hand neighbor in a
temporary variable in order to make it available for updating
the cell itself. (Another approach to this problem is to
maintain two copies of the array of cells, and to interchange
pointers to them after every step in the cellular automaton
evolution.)

Another tricky point in cellular automaton programs
concerns boundary conditions. Since in a practical computer
one can use only a finite array of cells, one must decide how
the cellular automaton rule is to be applied to the cells at each
end of the array. In both the Mathematica and the C programs
above, we effectively use a cyclic array, in which the left
neighbor of the leftmost cell is taken to be rightmost cell, and
vice versa. In the C program, this is implemented by
explicitly copying the value of the leftmost cell to the
rightmost position in the array, and vice versa, before
updating the values in the array. (In a sense there is a bug in
the program in that the update only puts new values into

 of the  array elements.) 

â Comments on Mathematica functions.  works by
first creating a list of  0’s, then replacing the middle 0 by a
1. (In Mathematica 4 and above PadLeft[{1}, n, 0, Floor[n/2]] can
be used instead.)  works by converting 
into a base 2 digit sequence, padding with zeros on the left
so as to make a list of length 8. The scheme for numbering
rules works so that if the value of a particular cell is , the
value of its left neighbor is , and the value of its right
neighbor is , then the element at position 
in the list obtained from  will give the new
value of the cell. 

 uses the fact that Mathematica can manipulate all
the elements in a list at once.  and

 make shifted versions of the original list of
cell values . Then when these lists are added together,
their corresponding elements are combined, as in

. The result is that a list
is produced which specifies for each cell which element of
the rule applies to that cell. The actual list of new cell
values is then generated by using the fact that

. Note that by using
 and  one automatically gets cyclic

boundary conditions. 

 applies   times. Many other evolution
functions in these notes use the same mechanism. In general

, etc.

â Bitwise optimizations. The C program above stores each cell
value in a separate element of an integer array. But since
every value must be either 0 or 1, it can in fact be encoded by
just a single bit. And since integer variables in practical
computers typically involve 32 or 64 bits, the values of many
cells can be packed into a single integer variable. The main
point of this is that typical machine instructions operate in
parallel on all the bits in such a variable. And thus for
example the values of all cells represented by an integer
variable  can be updated in parallel according to rule 30 by
the single C statement

a = a>>1 ^ (a | a<<1); 

This statement, however, will only update the specific block
of cells encoded in . Gluing together updates to a
sequence of such blocks requires slightly intricate code. (It
is much easier to implement in Mathematica—as discussed
above—since there functions like  can operate on
integers of any length.) In general, bitwise optimizations
require representing cellular automaton rules not by simple
look-up tables but rather by Boolean expressions, which
must be derived for each rule and can be quite complicated
(see page 869). Applying the rules can however be made
faster by using bitslicing to avoid shift operations. The idea
is to store the cellular automaton configuration in, say, 
variables  whose bits correspond respectively to the
cell values , , ,
etc. This then makes the left and right neighbors of the th

bit in  be the th bits in  and —so that
for example a step of rule 30 evolution can be achieved just
by  with no shift operations
needed (except in boundary conditions on  and

). If many steps of evolution are required, it is
sufficient just to pack all cell values at the beginning, and
unpack them at the end. 

â More general rules. The programs given so far are for
cellular automata with rules of the specific kind described in
this chapter. In general, however, a 1D cellular automaton
rule can be given as a set of explicit replacements for all

CAStep

n - 2 n

CenterList
n

ElementaryRule num

q
p

r 8 - ( r + 2 (q + 2 p))
ElementaryRule

CAStep
RotateLeft[a]

RotateRight[a]
a

{p, q, r} + {s, t, u}£{p + s, q + t, r + u}

{i, j , k}0{2, 1, 1, 3, 2}1£{ j , i, i, k, j}
RotateLeft RotateRight

CAEvolveList CAStep t

NestList[s[r, #] &, i, 2]£{i, s[r, i], s[r, s[r, i]]}

a

a

BitXor

m
w[ i]
{a1, am+1, a2 m+1, ?} {a2, am+2, a2 m+2, ?} {a3, ?}

j
w[ i] j w[ i - 1] w[ i + 1]

w[ i] = w[ i - 1]^ (w[ i] Ï w[ i + 1])
w[0]

w[m - 1]
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possible blocks of cells in each neighborhood (see page 60).
Thus, for example, rule 30 can be given as

To use rules in this form,  can be rewritten as

or

The rules that are given can now contain patterns, so that rule
90, for example, can be written as

But how can one set up a program that can handle rules in
several different forms? A convenient approach is to put a
“wrapper” around each rule that specifies what form the rule
is in. Then, for example, one can define 

Note that the second two definitions have been generalized to
allow rules that involve  neighbors on each side. In each case, the
use of  could be replaced by Transpose[Table[RotateLeft[a,

i], {i, -r, r}]]. For efficiency in early versions of Mathematica, explicit
rule lists in the second definition can be preprocessed using

, and functions in the third definition
preprocessed using . 

I discuss the implementation of totalistic cellular automata
on page 886, and of higher-dimensional cellular automata on
page 927. 

â Built-in cellular automaton function. Versions of Mathematica
subsequent to the release of this book will include a very general
function for cellular automaton evolution. The description is as
follows (see also page 886):

CellularAutomaton[rnum, init, t] generates a list representing
the evolution of cellular automaton rule rnum from initial
condition init for t steps. 

CellularAutomaton[rnum, init, t, {off1, offx, . . . }] keeps only the
parts of the evolution list with the specified offsets. 

Possible settings for rnum are: 

â CellularAutomaton[{n, k}, . . . ] is equivalent to CellularAutomaton[{n, {k,
{k2, k, 1}}}, . . . ]. â Common forms for 2D cellular automata include:

â Normally, all elements in init and the evolution list are integers
between 0 and k-1. â But when a general function is used, the elements
of init and the evolution list do not have to be integers. â The second
argument passed to fun is the step number, starting at 0. â Initial
conditions are constructed from init as follows:

â The first element of aspec is superimposed on the background at the first
position in the positive direction in each coordinate relative to the origin.
This means that bspec[[1,1,.. .]] is aligned with aspec[[1, 1,. ..]]. â Time
offsets offt are specified as follows:

â CellularAutomaton[rnum, init, t] generates an evolution list of length
t+1. â The initial condition is taken to have offset 0. â Space offsets offx

are specified as follows:

â In one dimension, the first element of aspec is taken by default to have
space offset 0. â In any number of dimensions, aspec[[1, 1, 1, . . . ]] is
taken by default to have space offset {0, 0, 0, . . . }. â Each element of
the evolution list produced by CellularAutomaton is always the same
size. â With an initial condition specified by an aspec of width w, the
region that can be affected after t steps by a cellular automaton with a

n k = 2, r = 1, elementary rule
{n, k} general nearest-neighbor rule with k colors

{n, k, r} general rule with k colors and range r
{n, k, {r1, r2, . . . ,

rd}}

d-dimensional rule with (2 r1 + 1) ä (2 r2 + 1) 

ä . . . ä  (2 rd + 1) neighborhood
{n, k, {{off1}, {off2}, . . . , {offs}}}

rule with neighbors at specified offsets
{n, {k, 1}} k-color nearest-neighbor totalistic rule

 {{1, 1, 1} ! 0, {1, 1, 0} ! 0, {1, 0, 1} ! 0, {1, 0, 0} ! 1,
{0, 1, 1} ! 1, {0, 1, 0} ! 1, {0, 0, 1} ! 1, {0, 0, 0} ! 0}

CAStep
 CAStep[rule_, a_List] :=

Transpose[{RotateRight[a], a, RotateLeft[a]}] /. rule

CAStep[rule_, a_List] := Partition[a, 3, 1, 2] /. rule

{{1, _, 1} ! 0, {1, _, 0} ! 1, {0, _, 1} ! 1, {0, _, 0} ! 0}

 CAStep[ElementaryCARule[rule_List], a_List] :=
rule08 - (RotateLeft[a] + 2 (a + 2 RotateRight[a]))1

CAStep[GeneralCARule[rule_, r_Integer : 1], a_List] :=
Partition[a, 2 r + 1, 1, r + 1] /. rule

CAStep[FunctionCARule[f_, r_Integer : 1], a_List] :=
Map[f , Partition[a, 2 r + 1, 1, r + 1]]

r
Partition

Dispatch[rules]
Compile[{{x, _Integer, 1}}, body]

{n, {k, 1}, r} k-color range r totalistic rule
{n, {k, {wt1, wt2, . . . }}, rspec}

rule in which neighbor i is assigned weight wti

{fun, {}, rspec} applies the function fun to each list of 
neighbors, with a second argument of the step 
number

{n, {k, 1}, {1, 1}} 9-neighbor totalistic rule
{n, {k, {{0, 1, 0}, {1, 1, 1}, {0, 1, 0}}, {1, 1}}}

5-neighbor totalistic rule
{n, {k, {{0, k, 0}, {k, 1, k}, {0, k, 0}}, {1, 1}}}

5-neighbor outer totalistic rule
{n + k5 (k – 1), {k, {{0, 1, 0}, {1, 4 k + 1, 1}, {0, 1, 0}}, {1, 1}}}

5-neighbor growth rule

{a1, a2, . . . } explicit list of values ai, assumed cyclic
{{a1, a2, . . . }, b} values ai superimposed on a b background

{{a1, a2, . . . }, {b1, b2, . . . }}

values ai superimposed on a background of 
repetitions of b1, b2, . . .

{{{{a11, a12, . . . }, off1}, {a21, . . . }, off2}, . . . }, bspec}
values ai j at offsets offi on a background

{{a11, a12, . . . },{a21, . . . }, . . . }
explicit list of values in two dimensions

{aspec, bspec} values in d dimensions with d-dimensional padding

All all steps 0 through t (default)
u steps 0 through u
-1 last step (step t)

{u} step u
{u1, u2} steps u1 through u2

{u1, u2, du} steps u1, u1 + du, . . .

All all cells that can be affected by the specified 
initial condition

Automatic all cells in the region that differs from the 
background

0 cell aligned with beginning of aspec
x cells at offsets up to x on the right

-x cells at offsets up to x on the left
{x} cell at offset x to the right

{-x} cell at offset x to the left
{x1, x2} cells at offsets x1 through x2

{x1, x2, dx} cells x1, x1 + dx, . . .
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rule of range r has width w + 2 r t. â If no bspec background is specified,
space offsets of All and Automatic will include every cell in aspec. â A
space offset of All includes all cells that can be affected by the initial
condition. â A space offset of Automatic can be used to trim off
background from the sides of a cellular automaton pattern. â In
working out how wide a region to keep, Automatic only looks at results
on steps specified by offt.

Some examples include:

This gives the array of values obtained by running rule 30 for 3 steps, 
starting from an initial condition consisting of a single 1 surrounded by 0’s. 
In[1] : = CellularAutomaton[30, {{1}, 0}, 3]

Out[1]= {{0, 0, 0, 1, 0, 0, 0}, {0, 0, 1, 1, 1, 0, 0}, {0, 1, 1, 0, 0, 1, 0}, {1, 1, 0, 1, 1, 1, 1}}

This runs rule 30 for 50 steps and makes a picture of the result.
In[2] : = Show[RasterGraphics[CellularAutomaton[30, {{1}, 0}, 50]]]

If all values in the initial condition are given explicitly, they are in effect 
assumed to continue cyclically. The runs rule 30 with 5 cells for 3 steps. 
In[3] : = CellularAutomaton[30, {1, 0, 0, 1, 0}, 3]

Out[3]= {{1, 0, 0, 1, 0}, {1, 1, 1, 1, 0}, {1, 0, 0, 0, 0}, {1, 1, 0, 0, 1}}

This starts from {1,1} on an infinite background of repeating {1,0,1,1} blocks. 
By default, only the region of the pattern affected by the {1,1} is given.
In[4] : = Show[RasterGraphics[CellularAutomaton[30, {{1, 1}, {1, 0, 1, 1}}, 50]]]

This gives all cells that could possibly be affected, whether or not they are.
In[5] : = Show[RasterGraphics[CellularAutomaton[30, 

{{1, 1}, {1, 0, 1, 1}}, 50, {All, All}]]]

This places blocks in the initial conditions at offsets -10 and 20.
In[6] : = Show[RasterGraphics[CellularAutomaton[30, 

{{{{1}, {-10}}, {{1, 1}, {20}}}, 0}, 50]]]

This gives only the last row after running for 10 steps.
In[7] : = CellularAutomaton[30, {{1}, 0}, 10, -1]

Out[7]= {{1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0}}

This runs for 5 steps, giving the cells on the 3 center columns at each step.
In[8] : = CellularAutomaton[30, {{1}, 0}, 5, {All, {-1, 1}}]

Out[8]= {{0, 1, 0}, {1, 1, 1}, {1, 0, 0}, {0, 1, 1}, {0, 1, 0}, {1, 1, 1}}

This picks out every other cell in space and time, starting 200 cells to the left.

In[9] : = Show[RasterGraphics[CellularAutomaton[30, {{1}, 0}, 100, 

{{1, 100, 2}, {-200, 200, 2}}]]]

This runs the general k=3 , r=1 rule with rule number 921408.
In[10] : = Show[RasterGraphics[CellularAutomaton[{921408, 3, 1}, {{1}, 0}, 100]]]

This runs the totalistic k=3, r=1 rule with code 867.
In[11] : = Show[RasterGraphics[CellularAutomaton[{867, {3, 1}, 1}, {{1}, 0}, 50]]]

This uses a rule based on applying a function to each neighborhood of cells.
In[12] : = Show[RasterGraphics[CellularAutomaton[

{Mod[Apply[Plus, #], 4] &, {}, 1}, {{1}, 0}, 50]]]

This runs 2D 9-neighbor totalistic code 3702 for 25 steps, giving the results 
for the last 5 steps.
In[13] : = Show[GraphicsArray[ Map[RasterGraphics, 

CellularAutomaton[{3702, {2, 1}, {1, 1}}, {{{1}}, 0}, 25, -5]]]]

â Special-purpose hardware. The simple structure of cellular
automata makes it natural to think of implementing them with
special-purpose hardware. And indeed from the 1950s on, a
sequence of special-purpose machines have been built to
implement 1D, 2D and sometimes 3D cellular automata. Two
basic ideas have been used: parallelism and pipelines. Both
ideas rely on the local nature of cellular automaton rules.

In the parallel approach, the machine has many separate
processors, each dedicated to handling a single cell or a small
group of cells. In the pipelined approach, there is just a single
processor (or perhaps a few processors) through which the
data on different cells is successively piped. The key point,
however, is that at every stage it is easy to know what data
will be needed, so this data can be prefetched, potentially
through a specially built memory system.
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In general, the speed increases that can be achieved depend
on many details of memory and communications
architecture. The increases have tended to become less
significant over the years, as the on-chip memories of
microprocessors have become larger, and the time necessary
to send data from one chip to another has become
proportionately more important.

In the future, however, new technologies may change the
trade-offs, and indeed cellular automata are obvious
candidates for early implementation in both nanotechnology
and optical computing. (See also page 841.)

â Audio representation. A step in the evolution of a cellular
automaton can be represented as a sound by treating each
cell like a key on a piano, with the key taken to be pressed if
the cell is black. This yields a chord such as

A sequence of such chords can sometimes provide a useful
representation of cellular automaton evolution. (See also
page 1080.) 

â Cellular automaton rules as formulas. The value  for a
cell on step  at position  in any of the cellular automata in
this chapter can be obtained from the definition

Different rules correspond to different choices of the function
. For example, rule 90 on page 25 corresponds to

One can specify initial conditions for example by 

(the cell on step 0 at position 0 has value 1, but all other cells
on that step have value 0). Then just asking for  one
will immediately get the value after 4 steps of the cell at
position 0. (For efficiency, the main definition should in
practice be given as

so that all intermediate values which are computed are
automatically stored.)

The definition of the function  for rule 90 that we gave
above is essentially just a look-up table. But it is also possible
to define this function in an algebraic way

Algebraic definitions can also be given for other rules:

äRule 254 (page 24): 

äRule 250 (page 25):  

äRule 30 (page 27): 

äRule 110 (page 32): 

In these definitions, we represent the values of cells by the
numbers 1 or 0. If values +1 and -1 are used instead, different
formulas are obtained; rule 90, for example, corresponds to

. It is also possible to represent values of cells as  and
. And in this case cellular automaton rules become logic

expressions:

äRule 254: 

äRule 250: 

äRule 90: 

äRule 30: 

äRule 110: 

(Note that  corresponds to ,  to ,
 to  and  to

.)

Given either the algebraic or logical form of a cellular
automaton rule, it is possible at least in principle to generate
symbolic formulas for the results of cellular automaton
evolution. Thus, for example, one can use initial conditions

to generate a formula for the value of a cell that holds for any
choice of values for the three initial center cells. In practice,
however, most such formulas rapidly become very
complicated, as discussed on page 618. 

â Mathematical interpretation of cellular automata. In the
context of pure mathematics, the state space of a 1D cellular
automaton with an infinite number of cells can be viewed as
a Cantor set. The cellular automaton rule then corresponds to
a continuous mapping of this Cantor set to itself (continuity
follows from the locality of the rule). (Compare page 959.) 

The pictures above show representations of the mappings
corresponding to various rules, obtained by plotting

 against 

 Play[Evaluate[Apply[Plus, Flatten[Map[Sin[1000 # t] &,
N[21/12]^Position[ list, 1]]]]], {t, 0, 0.2}]

a[t, i]
t i

a[t_, i_] := f [a[t - 1, i - 1], a[t - 1, i], a[t - 1, i + 1]]

f

f [1, _, 1] = 0; f [0, _, 1] = 1; f [1, _, 0] = 1; f [0, _, 0] = 0

a[0, 0] = 1; a[0, _] = 0

a[4, 0]

a[t_, i_] := a[t, i] = f [a[t - 1, i - 1], a[t - 1, i], a[t - 1, i + 1]]

f

f [p_, q_, r_] := Mod[p + r, 2]

1 - ( 1 - p) (1 - q) (1 - r)

p + r - p r

Mod[p + q + r + q r, 2]

Mod[( 1+ p) q r + q + r, 2]

p r True
False

Or[p, q, r]

Or[p, r]

Xor[p, r]

Xor[p, Or[q, r]]

Xor[Or[p, q], And[p, q, r]]

Not[p] 1 - p And[p, q] p q
Xor[p, q] Mod[p + q, 2] Or[p, q]
Mod[p q + p + q, 2]

a[0, -1] = p; a[0, 0] = q; a[0, 1] = r; a[0, _] = 0

rule 90 rule 30 rule 110

rule 170 rule 254 rule 250

Sum[a[t + 1, i] 2-i , {i, -n, n}] Sum[a[t, i] 2-i , {i, -n, n}]
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for all possible choices of the . (Periodic boundary
conditions are used, so that the  can be viewed as
corresponding precisely to digits of rational numbers.) Rule
170 is the classic shift map which shifts all cell values one
position to the left without changing them. In the pictures
below, this map has the form  (compare page 153).

for all possible choices of the . (Periodic boundary
conditions are used, so that the  can be viewed as
corresponding precisely to digits of rational numbers.) Rule
170 is the classic shift map which shifts all cell values one
position to the left without changing them. In the pictures
below, this map has the form  (compare page 153).

â Page 26 · Pascal’s triangle and rule 90. As shown on page
611 the pattern produced by rule 90 is exactly Pascal’s
triangle of binomial coefficients reduced modulo 2: black
cells correspond to odd binomial coefficients.

The number of black cells on row  is given by
, where  is plotted on

page 902. The positions of the black cells are given by (and
this establishes the connection with the picture on page 117)

The actual pattern generated by rule 90 corresponds to the
coefficients in  (see
page 1091); the color of a particular cell is thus given by

. 

 yields a distorted pattern that is the
one produced by rule 60 (see page 58). In this pattern, the
color of a particular cell can be obtained directly from the
digit sequences for  and  by  or (see
page 583)

â Self-similarity. The pattern generated by rule 90 after a
given number of steps has the property that it is identical to
what one would get by going twice as many steps, and then
keeping only every other row and column. After  steps the
triangular region outlined by the pattern contains altogether

 cells, but only  of these are black. In the limit of an
infinite number of steps one gets a fractal known as a
Sierpinski pattern (see page 934), with fractal dimension

 (see page 933). Nesting occurs in all cellular
automata with additive rules (see page 955). 

â Another initial condition. Inserting a single  in a
background of  blocks in rule 90 yields the pattern below
in which both the white and striped regions have fractal
dimension 2.

â More colors. The pictures below show generalizations of
rule 90 to  possible colors using the rule

or equivalently . The
number of cells that are not white on row  in this case is
given by . (For non-prime

, the patterns are obtained by superimposing the patterns
corresponding to the factors of .) A related result is that

 is given by the number of
borrows in the base  subtraction of  from .

 is given for prime  by

The patterns obtained for any  are nested. For prime  the
total number of non-white cells down to step  is

 and the patterns have fractal dimension
 (see page 955). These are examples of

additive rules, discussed further on page 952. (See also page
922 for the continuous case.)

â History. Pascal’s triangle probably dates from antiquity; it
was known in China in the 1200s, and was discussed in some
detail by Blaise Pascal in 1654, particularly in connection
with probability theory. The digit-based approach to finding
binomial coefficients modulo  has been invented
independently many times since the mid-1800s, notably by
Edouard Lucas in 1877 and James Glaisher in 1899. The fact
that the odd binomial coefficients form a nested geometrical
pattern had apparently not been widely noticed before I
emphasized it in 1982. 
 
 

â Other integer functions. The pictures above show patterns
produced by reducing several integer functions modulo 2.
With  arguments  yields a nested pattern in 
dimensions. Note that  yields a more complicated

a[t, i]
a[t, i]

Mod[2 x, 1]

t
2^DigitCount[t, 2, 1] DigitCount[t, 2, 1]

 Fold[Flatten[{#1 - #2, #1+#2}] &, 0, 2^DigitPositions[t]]

DigitPositions[n_] :=
Flatten[Position[Reverse[IntegerDigits[n, 2]], 1]] - 1

PolynomialMod[Expand[( 1/x + x)t], 2]

Mod[Binomial[t, ( n+ t) /2], 2] /; EvenQ[n+ t]

Mod[Binomial[t, n], 2]

t n 1 - Sign[BitAnd[-t, n]]

 With[{d = Ceiling[Log[2, Max[t, n] + 1]]}, If[FreeQ[
IntegerDigits[t, 2, d] - IntegerDigits[n, 2, d], -1], 1, 0]]

2m

4m 3m

Log[2, 3] ; 1.59

k
 CAStep[k_Integer, a_List] :=

Mod[RotateLeft[a] +RotateRight[a], k]

Mod[ListCorrelate[{1, 0, 1}, a, 2], k]
t

Apply[Times, 1+ IntegerDigits[t, k]]
k

k
IntegerExponent[Binomial[t, n], k]

k n t
Mod[Binomial[t, n], k] k
 With[{d = Ceiling[Log[k, Max[t, n] + 1]]},

Mod[Apply[Times, Apply[Binomial, Transpose[
{IntegerDigits[t, k, d], IntegerDigits[n, k, d]}], {1}]], k]]

k k
km

(1/2 k ( k + 1))m

1+ Log[k, ( k + 1)/2]

k = 5 k = 6 k = 7

k = 2 k = 3 k = 4

k

Binomial[m,n] Multinomial[m,n] StirlingS1[m,n] StirlingS2[m,n]

d Multinomial d
GCD[m, n]
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pattern (see page 613), as do  (see
page 1081) and various combinations of functions (see
page 747).

â Bitwise functions. Bitwise functions typically yield nested
patterns. (As discussed above, any cellular automaton rule
can be represented as an appropriate combination of bitwise
functions.) Note that  and

. 

The patterns below show where  for
successive  and correspond to steps in the “munching
squares” program studied on the PDP-1 computer in 1962. 

Nesting is also seen in curves obtained by applying bitwise
functions to  and  for successive . Note that  has the
same digits as , but shifted one position to the left. 

â Page 28 · Tests of randomness. The statistical tests that I
have performed include the eight listed on page 1084.

â Page 29 · Rule 30. The left-hand side of the pattern shown
has an obvious repetitive character. In general, if one looks
along a diagonal  cells in from either edge of the pattern,
then the period of repetition can be at most . On the right-
hand edge, the first few periods that are seen are

 and in
general the period seems to increase exponentially with
depth. On the left-hand edge, the period increases only

extremely slowly: period 2 is first achieved at depth 3, period
4 at depth 8, 8 at 29, 16 at 400, 32 at 87,867, 64 at 2,107,985,255
or more, and so on. (Each period doubling turns out to occur
exactly when a diagonal in the pattern eventually becomes a
white stripe, and the diagonal to its left has an odd number of
black cells in each repeating block.) The boundary that
separates repetition on the left from randomness on the right
moves an average of about 0.252 cells to the left at every step
(compare page 949). The picture below shows the
fluctuations around this average. 

Complete pattern. All possible blocks appear to occur
eventually (see page 725). The probability for a block of 
adjacent white cells (corresponding to a row in a white
triangle) seems quite accurately to approach , with the
first length 10 such block occurring at step 67 and the first
length 20 one occurring at step 515.

Center column. The pictures below show the excess of black
over white cells in the center column. Out of the first 100,000
cells, a total of 50,098 are black, and out of the first million
500,768 are. The longest run of identical colors in the first
100,000 cells consists of 21 black cells, and in the first million
elements 22 black cells. The first  elements can be found
efficiently using

The sequence does not repeat in at least its first million steps,
and I would amazed if it ever repeats, but as of now I know
of no rigorous proof of this. (Erica Jen showed in 1986 that no
pair of columns can ever repeat, and the arguments on page
1087 suggest that neither can the center column together with
occasional neighboring cells.) 

â Page 32 · Rule 110. Many more details of rule 110 are
discussed on pages 229 and 675. Localized structures that
can occur are shown on page 292. Note that of the 8 cases in
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the basic rule for rule 110, only one differs from rule 102—
which is a simple additive rule obtained by reflecting
rule 60. 

The Need for a New Intuition

â Reactions of scientists. Many scientists find the complexity
of the pictures in this chapter so surprising that at first they
assume it cannot be real. Typically they imagine that while
the pictures may look complicated, they would actually seem
simple if only they were subjected to the appropriate kind of
analysis. In Chapter 10 I will give extensive evidence that this
is not the case. But suffice it to say here that when it comes to
finding regularities even the most advanced methods from
mathematics and statistics tend to be no more powerful than
our eyes. And whatever formal definition one may use for
complexity (see page 557), the fact that our eyes perceive it in
the systems discussed in this chapter is already very
significant. 

â Intuition from practical computing. Everyday experience
with computers and programming leads to observations like
the following:

äGeneral-purpose computers and general-purpose 
programming languages can be built.

äDifferent programs for doing all sorts of different things 
can be set up.

äAny given program can be implemented in many ways. 

äPrograms can behave in complicated and seemingly 
random ways—particularly when they are not working 
properly.

äDebugging a program can be difficult.

ä It is often difficult to foresee what a program can do by 
reading its code. 

äThe lower the level of representation of the code for a 
program the more difficult it tends to be to understand. 

ä Some computational problems are easy to state but hard to 
solve.

äPrograms that simulate natural systems are among the 
most computationally expensive.

ä It is possible for people to create large programs—at least 
in pieces. 

ä It is almost always possible to optimize a program more, 
but the optimized version may be more difficult to 
understand.

ä Shorter programs are sometimes more efficient, but 
optimizations often require many cases to be treated 
separately, making programs longer. 

ä If programs are patched too much, they typically stop 
working at all.

â Applications to design. Many of the pictures in this book
look strikingly similar to artistic designs of various styles.
Probably this reflects not so much a similarity in underlying
rules, but rather similarity in features that are most
noticeable to the human visual system. Note that square
grids of colored cells as in the cellular automata in this
chapter can be used quite directly as weaving patterns. (See
also page 929.) 

Why These Discoveries Were Not Made Before

â Page 43 ·  Ornamental art. Almost all major cultural periods
are associated with certain characteristic forms of ornament.
Often the forms of ornament used on particular kinds of
objects probably arose as idealized imitations of earlier or
more natural forms for such objects—so that, for example,
imitations of weaving, bricks and various plant forms are
common. Large-scale purely abstract patterns were also
central to art in such cultural traditions as Islam where
natural forms were considered works of God that must not
be shown directly. Once established, styles of ornament tend
to be repeated extensively as a way of providing certain
comfort and familiarity—especially in architecture. The vast
majority of elaborate ornament seems to have been created
by artisans with little or no formal theoretical discussion,
although particularly since the 1800s there have been various
attempts to find systematic ways to catalog forms of
ornament, sometimes based on analogies with grammar.
(Issues of proportion have however long been the subject of
considerable theoretical discussion.) It is notable that
whereas repetitive patterns have been used extensively in
ornament, even nesting is rather rare. And even though for
example elaborate symmetry rules have been devised,
nothing like cellular automaton rules appear to have ever
arisen. The results in this book now show that such rules can
capture the essence of many complex processes that occur in
nature—so that even though they lack historical context such
rules can potentially provide a basis for forms of ornament
that are familiar as idealizations of nature. (Compare
page 929.) 

The pictures in the main text show a sequence of early
examples of various characteristic forms of ornament. 
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22,000 BC (Paleolithic). Mammoth ivory bracelet from
Mezin, Ukraine. Similar zig-zag designs are seen in other
objects from the same period. In the example shown, it is
notable that the angle of the zig-zags is comparable to the
angle of the Schreger lines that occur naturally in
mammoth dentin.

3000 BC (Sumerian). Columns with three colors of clay pegs
set in mud from a wall of the Eanna temple in Uruk,
Mesopotamia (Warka, Iraq)—perhaps mentioned in the Epic
of Gilgamesh. (Now in the Staatliche Museum, Berlin.) This
is the earliest known explicit example of mosaic. 

1200 BC (Greek). The back of a clay accounting tablet from
Pylos, Greece. The pattern was presumably made by the
procedure shown below. Legend has it that it was the plan
for the labyrinth housing the minotaur in the palace at
Knossos, Crete, and that it was designed by Daedalus. It is
also said that it was a logo for the city of Troy—or perhaps
the plan of some of its walls. The pattern—in either its
square or rounded form—has appeared with remarkably
little variation in a huge variety of places all over the
world—from Cretan coins, to graffiti at Pompeii, to the
floor of the cathedral at Chartres, to carvings in Peru, to
logos for aboriginal tribes. For probably three thousand
years, it has been the single most common design used for
mazes. 

900 BC (Phoenician). Ivory carving presumably from the
Mediterranean area. (Now in the British Museum.) This was
a common decorative pattern, formed by drawing circles
centered at holes arranged in a triangular array. It is also
found in Egyptian and other art. Such patterns were
discussed by Euclid and later Leonardo da Vinci in
connection with the theory of lunes. 

1st century BC (Celtic). The back of the so-called Desborough
Mirror—a bronze mirror from Desborough, England made
in the Iron Age sometime between 50 BC and 50 AD. (Now
in the British Museum.) The engraved pattern is made of
parts of circles that just touch each other, as in the picture
below.

2nd century AD (Roman). A mosaic from a complex in Rome,
Italy. (Now in the National Museum, Rome.) The geometrical
pattern was presumably made by first constructing 48
regularly spaced spokes by repeated angle bisection, as in the
first picture below, then drawing semicircles centered at the
end of each spoke, and finally adding concentric circles
through the intersection points. Similar rosette patterns may
have been used in Greece around 350 BC; they became
popular in churches in the 1500s.

8th century (Islamic). A detail on the outside wall of the Great
Mosque of Córdoba, Spain, built around 785 AD. 

8th century (Celtic). An area less than 2 inches square from
inside the letter  on the extremely elaborate chi-rho page of
the Book of Kells, an illuminated gospel manuscript created
over a period of years at various monasteries, probably
starting around 800 AD at the Irish monastery on the island
of Iona, Scotland. Even on this one page there are perhaps a
dozen other very similar nested structures. 

12th century (Italian). A window in the Palatine Chapel in
Palermo, Sicily, presumably built around 1140 AD. The
chapel is characteristic of so-called Arab-Norman style.

13th century (English). The Dean’s Eye rose window of the
Lincoln cathedral in England, built around 1225 AD. Similar
tree-like patterns are seen in many Gothic windows from the
same general period. 

13th century (Italian) (4 pictures). Marble mosaics on the floor
of the cathedral at Anagni, Italy, made around 1226 AD by
Cosmas of the Cosmati group. (The fourth picture is a close-
up of the third.) The third picture—particularly the part
magnified in the fourth picture—shows an approximate
nested structure, presumably created as in the pictures below.
The triangles are all equilateral, with the result that at a given
step several different sizes of triangles occur—though the
basic structure of the pattern is still the same as from the rule
90 cellular automaton. (Compare the Apollonian packing of
page 986.) The Cosmati group—mostly four generations of
one family—made elaborate geometrical and other mosaics
with a mixture of Byzantine, Islamic and other influences
from about 1190 to 1300, mostly in and around Rome, but
also for example in Westminster Abbey in England.
Triangular shapes with one level of nesting are quite
common in their work; three levels of nesting as shown here

Ρ
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are rare. It is notable that in later imitations of Cosmati
mosaics, these kinds of patterns were almost never used.

14th century (Islamic). Wall decoration in the Pir-i-Bakran
mausoleum in Linjan, Iran, built around 1299–1312. The
pattern is square Kufi calligraphy for a widely quoted verse
of the Koran. Starting from traditional Naskhi Arabic script,
as in the picture below, the Kufi style began to develop
around 900 AD, with square Kufi being used in architectural
ornamental by about 1100 AD. 

14th century (Islamic). Tiled wall in the Alcázar of Seville, Spain,
built in 1364. (The same pattern was used at about the same
time in the Alhambra in Granada, Spain.) The pattern can be
made by starting with a grid of triangles, then consistently
pushing in or out the sides of each one. (Notable uses of such
patterns were made by Maurits Escher starting in the 1930s.) 

Other cases. The cases that are known inevitably tend to be
ones created out of stone or ceramic materials that survive;
no doubt there were others created for example with wood or
textiles. One case with wood is Chinese lattice. What has
survived mostly shows repetitive patterns, but the ice-ray
style, probably going back to 100 AD, has approximate
nesting, though with many random elements. The patterns
shown are all basically two-dimensional. An example of 1D
ornamental patterns are molding profiles. Ever since
antiquity these have often been quite elaborate, and it is
conceivable that they can sometimes be interpreted as
showing nesting.

â Recognition of art. One bizarre possibility is that forms like
those from rule 30 could have been created as art long ago
but not be recognized now. For while it is easy to tell that a
cave painting of an animal is a piece of purposeful art, dots
carved into a rock in an approximate rule 30 pattern might
not even be noticed as something of human origin. But
although there are many seemingly random painted patterns
in caves from perhaps 30,000 BC, I would be amazed if any of
them were actually produced by definite simple rules. (See
page 839.)

â The concept of rules. Processes based on rules occur in a
great many areas of human endeavor. Sometimes the rules
serve mainly as a constraint. But it is not uncommon for them
to be used—like in a cellular automaton—as a way of
specifying how structures should be built up. Almost
without exception, however, the rules have in the past been
chosen to yield only rather specific and simple results.
Beyond ornamental art, examples with long histories include: 

Architecture. Structures such as ziggurats and pyramids were
presumably constructed by assembling collections of stones
according to simple rules. The Great Pyramid in Egypt was
built around 2500 BC and contains about two million large
stones. (By comparison, the pictures of rule 30 on pages 29
and 30 contain a total of about a million cells.) Starting
perhaps as long ago as 1000 BC Hindu temples were
constructed with similar elements on different scales,
yielding a form of approximate nesting. In Roman and later
architecture, rooms in buildings have quite often been
arranged in roughly nested patterns (an extreme example
being the Castel del Monte from the 1200s). From the
Middle Ages many Persian gardens (such as those of the Taj
Mahal from around 1650) have had fairly regular nested
structures obtained by a few successive fourfold
subdivisions. And starting in the early 1200s, Gothic
windows were often constructed with levels of roughly tree-
like nested forms (see above). Nesting does not appear to
have been used in physical city plans (except to a small
extent in Vauban star fortifications), though it is common in
organizational structures. (As indicated above, architectural
ornament has also often in effect been constructed using
definite rules.) 

Textile making. Since early in human history there appear to
have been definite rules used for weaving. But insofar as the
purpose is to produce fabric the basic arrangement of threads
is normally always repetitive. 

Rope.  Since at least 3000 BC rope has been made by twisting
together strands themselves made by twisting, yielding
cross-sections with some nesting, as in the second picture
below. (Since the development of wire rope in the 1870s
precise designs have been used, including at least recently
the  one shown last below.) 7�7�7
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Knots and string figures. For many thousands of years definite
rules have been used for tying knots and presumably also for
making string figures. But when the rules have more than a
few steps they tend to be repetitive.

Paperfolding. Although paperfolding has presumably been
practiced for at least 2000 years, even the nested form on
page 892 seems to have been noticed only very recently.

Mathematics. Ever since Babylonian times arithmetic has been
done by repeatedly applying simple rules to digits in numbers.
And ever since ancient Greek times iterative methods have been
used to construct geometrical figures. In the late 1600s the idea
also emerged that mathematical proofs could be thought of as
consisting of repeated applications of definite rules. But the idea
of studying possible simple rules independent of their purpose in
generating results seems never to have arisen. And as
mathematics began to focus on continuous systems the notion of
enumerating possible rules became progressively more difficult.

Logic. Rules of logic have been used since around 400 BC. But
beyond forms like syllogisms little seems to have been
studied in the way of generating identifiable patterns from
them. (See page 1099.)

Grammar. The idea that human language is constructed from
words according to definite grammatical rules has existed
since at least around perhaps 500 BC when Panini gave a
grammar for Sanskrit. (Less formal versions of the idea were
also common in ancient Greek times.) But for the most part it
was not until about the 1950s that rules of grammar began to
be viewed as specifications for generating structures, rather
than just constraints. (See page 1103.) 

Poetry.  Definite rules for rhythm in poetry were already well
developed in antiquity—and by perhaps 200 BC Indian work
on enumerating their possible forms appears to have led to
both Pascal’s triangle and Fibonacci numbers. Patterns of
rhyme involving iterated length-6 permutations (sestina) and
interleaved repetitive sequences (terza rima) were in use by
the 1300s, notably by Dante. 

Music. Simple progressions and various forms of repetition
have presumably been used in music since at least the time of
Pythagoras. Beginning in the 1200s more complex forms of
interleaving such as those of canons have occasionally been
used. And in the past century a few composers have
implicitly or explicitly used structures based on simple
Fibonacci and other substitution systems. Note that rules
such as those of counterpoint are used mainly as constraints,
not as ways of generating structure.

Military drill. The notion of using definite rules to organize
and maneuver formations of soldiers appears to have existed

in Babylonian and Assyrian times, and to be well codified by
Roman times. Fairly elaborate cases were described for
example by Niccolò Machiavelli in 1521, but all were set up
to yield only rather simple behavior, such as a column of
soldiers being rearranged into lines. (See the firing squad
problem on page 1035.)

Games. Games are normally based on definite rules, but are
set up so that at each step they involve choosing one of many
possibilities, either by skill or randomness. The game of Go,
which originated before 500 BC and perhaps as early as 2300
BC, is a case where particularly simple rules manage to allow
remarkably complex patterns of play to occur. (Go involves
putting black and white stones on a grid, making it visually
similar to a cellular automaton.)

Puzzles. Geometric and arithmetic puzzles surprisingly close
to those common today seem to have existed since as long
ago as 2000 BC. Usually they are based on constraints, and
occasionally they can be thought of as providing evidence
that simple constraints can have complicated solutions. 

Cryptography.  Rules for encrypting messages have been used
since perhaps 2000 BC, with non-trivial repetitive schemes
becoming common in the 1500s, but more complex schemes
not appearing until well into the 1900s. (See page 1085.)

Maze designs.  From antiquity until about the 1500s the
majority of mazes followed a small number of designs—most
often based directly on the one shown on page 873, or with
subunits like it. (It is now known that there are many other
designs that are also possible.)

Rule-based pictures. It is rather common for geometric doodles
to be based on definite rules, but it is rare for the rules to be
carried far, or for the doodles to be preserved. Some of
Leonardo da Vinci’s planned book on “Geometrical Play”
from the early 1500s has, however, survived, and shows
elaborate patterns satisfying particular constraints. Various
attempts to enumerate all possible patterns of particular
simple kinds have been made—a notable example being
Sébastien Truchet in 1704 drawing 2D patterns formed by
combining , , ,  in various possible ways.

â Page 44 · Understanding nature. In Greek times it was noted
that simple geometrical rules could explain many features of
astronomy—the most obvious being the apparent revolution
of the stars and the circular shapes of the Sun and Moon. But
it was noted that with few exceptions—like beehives—
natural objects that occur terrestrially did not appear to
follow any simple geometrical rules. (The most complicated
curves in Greek geometry were things like cissoids and
conchoids.) So from this it was concluded that only certain
supposedly perfect objects like the heavenly bodies could be
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expected to be fully amenable to human understanding.
What rules for natural objects might in effect have been tried
in the Judeo-Christian tradition is less clear—though for
example the Book of Job does comment on the difficulty of
“numbering the clouds by wisdom”. And with the notable
exception of the alchemists it continued to be believed
throughout the Middle Ages that the wonders of nature were
beyond human understanding. 

â Atomism. The idea that everything might be made up from
large numbers of discrete elements was discussed around
perhaps 450 BC by Leucippus and Democritus. Sometime later
the Epicureans then suggested that a few types of elements
might suffice, and an analogy was made (notably by Lucretius
around 100 AD) to the fact that different configurations of
letters can make up all the words in a language. But only some
schools of Greek philosophy ever supported atomism, and it
soon fell out of favor. It was revived in the late 1600s, when
corpuscular theories of both light and matter began to be
widely discussed. In the early 1800s arguments based on
atoms led to success in chemistry, and in the late 1800s
statistical mechanics of large assemblies of atoms were used to
explain properties of matter (see page 1019). With the rise of
quantum theory in the early 1900s it became firmly established
that physical systems contain discrete particles. But it was
normally assumed that one should think only about explicit
particles with realistic mechanical properties—so that abstract
idealizations like cellular automata did not arise. (See also
pages 1027 and 1043.)

â History of cellular automata. Despite their very simple
construction, nothing like general cellular automata appear
to have been considered before about the 1950s. Yet in the
1950s—inspired in various ways by the advent of electronic
computers—several different kinds of systems equivalent to
cellular automata were independently introduced. A variety
of precursors can be identified. Operations on sequences of
digits had been used since antiquity in doing arithmetic.
Finite difference approximations to differential equations
began to emerge in the early 1900s and were fairly well
known by the 1930s. And Turing machines invented in 1936
were based on thinking about arbitrary operations on
sequences of discrete elements. (Notions in physics like the
Ising model do not appear to have had a direct influence.)

The best-known way in which cellular automata were
introduced (and which eventually led to their name) was
through work by John von Neumann in trying to develop an
abstract model of self-reproduction in biology—a topic which
had emerged from investigations in cybernetics. Around
1947—perhaps based on chemical engineering—von
Neumann began by thinking about models based on 3D

factories described by partial differential equations. Soon he
changed to thinking about robotics and imagined perhaps
implementing an example using a toy construction set. By
analogy to electronic circuit layouts he realized however that
2D should be enough. And following a 1951 suggestion from
Stanislaw Ulam (who may have already independently
considered the problem) he simplified his model and ended
up with a 2D cellular automaton (he apparently hoped later
to convert the results back to differential equations). The
particular cellular automaton he constructed in 1952–3 had
29 possible colors for each cell, and complicated rules
specifically set up to emulate the operations of components
of an electronic computer and various mechanical devices. To
give a mathematical proof of the possibility of self-
reproduction, von Neumann then outlined the construction
of a 200,000 cell configuration which would reproduce itself
(details were filled in by Arthur Burks in the early 1960s).
Von Neumann appears to have believed—presumably in part
from seeing the complexity of actual biological organisms
and electronic computers—that something like this level of
complexity would inevitably be necessary for a system to
exhibit sophisticated capabilities such as self-reproduction. In
this book I show that this is absolutely not the case, but with
the intuition he had from existing mathematics and
engineering von Neumann presumably never imagined this.

Two immediate threads emerged from von Neumann’s work.
The first, mostly in the 1960s, was increasingly whimsical
discussion of building actual self-reproducing automata—
often in the form of spacecraft. The second was an attempt to
capture more of the essence of self-reproduction by
mathematical studies of detailed properties of cellular
automata. Over the course of the 1960s constructions were
found for progressively simpler cellular automata capable of
self-reproduction (see page 1179) and universal computation
(see page 1115). Starting in the early 1960s a few rather simple
general features of cellular automata thought to be relevant
to self-reproduction were noticed—and were studied with
increasingly elaborate technical formalism. (An example was
the so-called Garden of Eden result that there can be
configurations in cellular automata that arise only as initial
conditions; see page 961.) There were also various explicit
constructions done of cellular automata whose behavior
showed particular simple features perhaps relevant to self-
reproduction (such as so-called firing squad synchronization,
as on page 1035).

By the end of the 1950s it had been noted that cellular
automata could be viewed as parallel computers, and
particularly in the 1960s a sequence of increasingly detailed
and technical theorems—often analogous to ones about
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Turing machines—were proved about their formal
computational capabilities. At the end of the 1960s there then
began to be attempts to connect cellular automata to
mathematical discussions of dynamical systems—although
as discussed below this had in fact already been done a
decade earlier, with different terminology. And by the mid-
1970s work on cellular automata had mostly become quite
esoteric, and interest in it largely waned. (Some work
nevertheless continued, particularly in Russia and Japan.)
Note that even in computer science various names for
cellular automata were used, including tessellation automata,
cellular spaces, iterative automata, homogeneous structures
and universal spaces.

As mentioned in the main text, there were by the late 1950s
already all sorts of general-purpose computers on which
simulations of cellular automata would have been easy to
perform. But for the most part these computers were used to
study traditional much more complicated systems such as
partial differential equations. Around 1960, however, there
were a couple of simulations related to 2D cellular automata
done. Stanislaw Ulam and others used computers at Los
Alamos to produce a handful of examples of what they called
recursively defined geometrical objects—essentially the
results of evolving generalized 2D cellular automata from
single black cells (see page 928). Especially after obtaining
larger pictures in 1967, Ulam noted that in at least one case
fairly simple growth rules generated a complicated pattern,
and mentioned that this might be relevant to biology. But
perhaps because almost no progress was made on this with
traditional mathematical methods, the result was not widely
known, and was never pursued. (Ulam tried to construct a
1D analog, but ended up not with a cellular automaton, but
instead with the sequences based on numbers discussed on
page 908.) Around 1961 Edward Fredkin simulated the 2D
analog of rule 90 on a PDP-1 computer, and noted its self-
reproduction properties (see page 1179), but was generally
more interested in finding simple physics-like features.

Despite the lack of investigation in science, one example of a
cellular automaton did enter recreational computing in a
major way in the early 1970s. Apparently motivated in part
by questions in mathematical logic, and in part by work on
“simulation games” by Ulam and others, John Conway in
1968 began doing experiments (mostly by hand, but later on
a PDP-7 computer) with a variety of different 2D cellular
automaton rules, and by 1970 had come up with a simple set
of rules he called “The Game of Life”, that exhibit a range of
complex behavior (see page 249). Largely through
popularization in Scientific American by Martin Gardner, Life
became widely known. An immense amount of effort was

spent finding special initial conditions that give particular
forms of repetitive or other behavior, but virtually no
systematic scientific work was done (perhaps in part because
even Conway treated the system largely as a recreation), and
almost without exception only the very specific rules of Life
were ever investigated. (In 1978 as a possible 1D analog of
Life easier to implement on early personal computers
Jonathan Millen did however briefly consider what turns out
to be the code 20 ,  totalistic rule from page 283.) 

Quite disconnected from all this, even in the 1950s, specific
types of 2D and 1D cellular automata were already being
used in various electronic devices and special-purpose
computers. In fact, when digital image processing began to
be done in the mid-1950s (for such applications as optical
character recognition and microscopic particle counting) 2D
cellular automaton rules were usually what was used to
remove noise. And for several decades starting in 1960 a long
line of so-called cellular logic systems were built to
implement 2D cellular automata, mainly for image
processing. Most of the rules used were specifically set up to
have simple behavior, but occasionally it was noted as a
largely recreational matter that for example patterns of
alternating stripes (“custering”) could be generated. 

In the late 1950s and early 1960s schemes for electronic
miniaturization and early integrated circuits were often
based on having identical logical elements laid out on lines or
grids to form so-called cellular arrays. In the early 1960s there
was for a time interest in iterative arrays in which data would
be run repeatedly through such systems. But few design
principles emerged, and the technology for making chips
with more elaborate and less uniform circuits developed
rapidly. Ever since the 1960s the idea of making array or
parallel computers has nevertheless resurfaced repeatedly,
notably in systems like the ILLIAC IV from the 1960s and
1970s, and systolic arrays and various massively parallel
computers from the 1980s. Typically the rules imagined for
each element of such systems are however immensely more
complicated than for any of the simple cellular automata I
consider. 

From at least the early 1940s, electronic or other digital delay
lines or shift registers were a common way to store data such
as digits of numbers, and by the late 1940s it had been noted
that so-called linear feedback shift registers (see page 974)
could generate complicated output sequences. These systems
turn out to be essentially 1D additive cellular automata (like
rule 90) with a limited number of cells (compare page 259).
Extensive algebraic analysis of their behavior was done
starting in the mid-1950s, but most of it concentrated on
issues like repetition periods, and did not even explicitly

k = 2 r = 2
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uncover nested patterns. (Related analysis of linear
recurrences over finite fields had been done in a few cases in
the 1800s, and in some detail in the 1930s.) General 1D
cellular automata are related to nonlinear feedback shift
registers, and some explorations of these—including ones
surprisingly close to rule 30 (see page 1088)—were made
using special-purpose hardware by Solomon Golomb in
1956–9 for applications in jamming-resistant radio control—
though again concentrating on issues like repetition periods.
Linear feedback shift registers quickly became widely used in
communications applications. Nonlinear feedback shift
registers seem to have been used extensively for military
cryptography, but despite persistent rumors the details of
what was done continue to be secret.

In pure mathematics, infinite sequences of 0’s and 1’s have
been considered in various forms since at least the late 1800s.
Starting in the 1930s the development of symbolic dynamics
(see page 960) led to the investigation of mappings of such
sequences to themselves. And by the mid-1950s studies were
being made (notably by Gustav Hedlund) of so-called shift-
commuting block maps—which turn out to be exactly 1D
cellular automata (see page 961). In the 1950s and early 1960s
there was work in this area (at least in the U.S.) by a number
of distinguished pure mathematicians, but since it was in
large part for application to cryptography, much of it was
kept secret. And what was published was mostly abstract
theorems about features too global to reveal any of the kind
of complexity I discuss.

Specific types of cellular automata have also arisen—usually
under different names—in a vast range of situations. In the
late 1950s and early 1960s what were essentially 1D cellular
automata were studied as a way to optimize circuits for
arithmetic and other operations. From the 1960s onward
simulations of idealized neural networks sometimes had
neurons connected to neighbors on a grid, yielding a 2D
cellular automaton. Similarly, various models of active
media—particularly heart and other muscles—and reaction-
diffusion processes used a discrete grid and discrete
excitation states, corresponding to a 2D cellular automaton.
(In physics, discrete idealizations of statistical mechanics and
dynamic versions of systems like the Ising model were
sometimes close to cellular automata, except for the crucial
difference of having randomness built into their underlying
rules.) Additive cellular automata such as rule 90 had
implicitly arisen in studies of binomial coefficient modulo
primes in the 1800s (see page 870), but also appeared in
various settings such as the “forests of stunted trees” studied
around 1970. 

Yet by the late 1970s, despite all these different directions,
research on systems equivalent to cellular automata had
largely petered out. That this should have happened just
around the time when computers were first becoming widely
available for exploratory work is ironic. But in a sense it was
fortunate, because it allowed me when I started working on
cellular automata in 1981 to define the field in a new way
(though somewhat to my later regret I chose—in an attempt
to recognize history—to use the name “cellular automata” for
the systems I was studying). The publication of my first
paper on cellular automata in 1983 (see page 881) led to a
rapid increase of interest in the field, and over the years since
then a steadily increasing number of papers (as indicated by
the number of source documents in the Science Citation
Index shown below) have been published on cellular
automata—almost all following the directions I defined.

â Close approaches. The basic phenomena in this chapter
have come at least somewhat close to being discovered many
times in the past. The historical progression of primary
examples of this seem to be as follows:

ä 500s–200s BC: Simply-stated problems such as finding 
primes or perfect numbers are presumably seen to have 
complicated solutions, but no general significance is 
attached to this (see pages 132 and 910). 

ä 1200s: Fibonacci sequences, Pascal’s triangle and other 
rule-based numerical constructions are studied, but are 
found to show only simple behavior. 

ä 1500s: Leonardo da Vinci experiments with rules 
corresponding to simple geometrical constraints (see page 
875), but finds only simple forms satisfying these 
constraints. 

ä 1700s: Leonhard Euler and others compute continued 
fraction representations for numbers with simple formulas 
(see pages 143 and 915), noting regularity in some cases, 
but making no comment in other cases.

ä 1700s and 1800s: The digits of  and other transcendental 
numbers are seen to exhibit apparent randomness (see 
page 136), but the idea of thinking about this randomness 
as coming from the process of calculation does not arise.

ä 1800s: The distribution of primes is studied extensively—
but mostly its regularities, rather than its irregularities, are 
considered. (See page 132.) 
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ä 1800s: Complicated behavior is found in the three-body 
problem, but it is assumed that with better mathematical 
techniques it will eventually be resolved. (See page 972.)

ä 1880s: John Venn and others note the apparent 
randomness of the digits of , but somehow take it for 
granted.

ä 1906: Axel Thue studies simple substitution systems (see 
page 893) and finds behavior that seems complicated—
though it turns out to be nested.

ä 1910s: Gaston Julia and others study iterated maps, but 
concentrate on properties amenable to simple description. 

ä 1920: Moses Schönfinkel introduces combinators (see 
page 1121) but considers mostly cases specifically 
constructed to correspond to ordinary logical functions.

ä 1921: Emil Post looks at a simple tag system (see page 894) 
whose behavior is difficult to predict, but failing to prove 
anything about it, goes on to other problems.

ä 1920: The Ising model is introduced, but only statistics of 
configurations, and not any dynamics, are studied.

ä 1931: Kurt Gödel establishes Gödel’s Theorem (see 
page 782), but the constructions he uses are so complicated 
that he and others assume that simple systems can never 
exhibit similar phenomena.

äMid-1930s: Alan Turing, Alonzo Church, Emil Post, etc. 
introduce various models of computation, but use them in 
constructing proofs, and do not investigate the actual 
behavior of simple examples.

ä 1930s: The  problem (see page 904) is posed, and 
unpredictable behavior is found, but the main focus is on 
proving a simple result about it. 

äLate 1940s and 1950s: Pseudorandom number generators 
are developed (see page 974), but are viewed as tricks 
whose behavior has no particular scientific significance. 

äLate 1940s and early 1950s: Complex behavior is 
occasionally observed in fairly simple electronic devices 
built to illustrate ideas of cybernetics, but is usually 
viewed as something to avoid.

ä 1952: Alan Turing applies computers to studying 
biological systems, but uses traditional mathematical 
models rather than, say, Turing machines. 

ä 1952–1953: John von Neumann makes theoretical studies 
of complicated cellular automata, but does not try looking 
at simpler cases, or simulating the systems on a computer.

äMid-1950s: Enrico Fermi and collaborators simulate 
simple systems of nonlinear springs on a computer, but do 

not notice that simple initial conditions can lead to 
complicated behavior. 

äMid-1950s to mid-1960s: Specific 2D cellular automata are 
used for image processing; a few rules showing slightly 
complex behavior are noticed, but are considered of purely 
recreational interest. 

äLate 1950s: Computer simulations of iterated maps are 
done, but concentrate mostly on repetitive behavior. (See 
page 918.)

äLate 1950s: Ideas from dynamical systems theory begin to 
be applied to systems equivalent to 1D cellular automata, 
but details of specific behavior are not studied except in 
trivial cases.

äLate 1950s: Idealized neural networks are simulated on 
digital computers, but the somewhat complicated 
behavior seen is considered mainly a distraction from the 
phenomena of interest, and is not investigated. (See 
page 1099.)

äLate 1950s: Berni Alder and Thomas Wainwright do 
computer simulations of dynamics of hard sphere 
idealized molecules, but concentrate on large-scale 
features that do not show complexity. (See page 999.)

ä 1956–1959: Solomon Golomb simulates nonlinear feedback 
shift registers—some with rules close to rule 30—but 
studies mainly their repetition periods not their detailed 
complex behavior. (See page 1088.)

ä 1960, 1967: Stanislaw Ulam and collaborators simulate 
systems close to 2D cellular automata, and note the 
appearance of complicated patterns (see above).

ä 1961: Edward Fredkin simulates the 2D analog of rule 90 
and notes features that amount to nesting (see above).

äEarly 1960s: Students at MIT try running many small 
computer programs, and in some cases visualizing their 
output. They discover various examples (such as 
“munching foos”) that produce nested behavior (see 
page 871), but do not go further. 

ä 1962: Marvin Minsky and others study many simple 
Turing machines, but do not go far enough to discover the 
complex behavior shown on page 81.

ä 1963: Edward Lorenz simulates a differential equation that 
shows complex behavior (see page 971), but concentrates 
on its lack of periodicity and sensitive dependence on 
initial conditions.

äMid-1960s: Simulations of random Boolean networks are 
done (see page 936), but concentrate on simple average 
properties.

p
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ä 1970: John Conway introduces the Game of Life 2D 
cellular automaton (see above).

ä 1971: Michael Paterson considers a class of simple 2D 
Turing machines that he calls worms and that exhibit 
complicated behavior (see page 930).

ä 1973: I look at some 2D cellular automata, but force the 
rules to have properties that prevent complex behavior 
(see page 864).

äMid-1970s: Benoit Mandelbrot develops the idea of fractals 
(see page 934), and emphasizes the importance of 
computer graphics in studying complex forms. 

äMid-1970s: Tommaso Toffoli simulates all 4096 2D cellular 
automata of the simplest type, but studies mainly just their 
stabilization from random initial conditions.

äLate 1970s: Douglas Hofstadter studies a recursive 
sequence with complicated behavior (see page 907), but 
does not take it far enough to conclude much.

ä 1979: Benoit Mandelbrot discovers the Mandelbrot set (see 
page 934) but concentrates on its nested structure, not its 
overall complexity.

ä 1981: I begin to study 1D cellular automata, and generate a 
small picture analogous to the one of rule 30 on page 27, 
but fail to study it. 

ä 1984: I make a detailed study of rule 30, and begin to 
understand the significance of it and systems like it.

â The importance of explicitness. Looking through this book,
one striking difference with most previous scientific accounts
is the presence of so many explicit pictures that show how
every element in a system behaves. In the past, people have
tended to consider it more scientific to give only numerical
summaries of such data. But most of the phenomena I discuss
in this book could not have been found without such explicit
pictures. (See also page 108.)

â My work on cellular automata. I began serious work on
cellular automata in the middle of 1981. I had been thinking
for some time about how complicated patterns could arise in
natural systems—in apparent violation of the Second Law of
Thermodynamics. I had been particularly interested in self-
gravitating gases where the basic physics seemed clear, but
where complex phenomena like galaxy formation seemed to
occur. I had also been interested in neural networks, where
there had been fairly simple models developed by Warren
McCulloch and Walter Pitts in the 1940s. I came up with
cellular automata as an attempt to capture the essential
features of a range of systems, from self-gravitating gases to
neural networks. I wanted to find models that had a simple

structure like the Ising model in statistical mechanics
(studied since the 1920s), but which had definite rules for
time evolution and could easily be simulated on a computer.
Ironically enough, while cellular automata are good for many
things, they turn out to be rather unsuitable for modelling
either self-gravitating gases or neural networks. (See page
1021). But by the time I realized this, it was clear that cellular
automata were of great interest for many other purposes.

I did my first major computer experiments on cellular
automata late in 1981 (see page 19). Two features initially
struck me most. First, that starting from random initial
conditions, cellular automata could organize themselves to
produce complex patterns. And second, that in cases like rule
90 simple initial conditions led to nested or fractal patterns.
During the first half of 1982, I worked hard to analyze the
behavior of cellular automata using ideas from statistical
mechanics, dynamical systems theory and discrete
mathematics. And in June 1982, I finished my first paper on
cellular automata, entitled “Statistical Mechanics of Cellular
Automata”. Published in the journal Reviews of Modern
Physics in July 1983, this paper already presents in raw form
many of the key ideas that led to the development of the
science described in this book. It discusses the fact that by not
using traditional mathematical equations, simple models can
potentially be made to reproduce complex phenomena, and
it mentions some of the consequences of viewing models like
cellular automata as computational systems. The paper also
contained a small picture of rule 30 started from a single
black cell. But at the time, I did not study this picture in
detail, and I tacitly assumed that whenever I saw
randomness it must come from the random initial conditions
that I used. (See page 112.)

It was some time in the fall of 1981 that I first found out (at a
dinner with some then-young MIT computer scientists) that a
version of the systems I had invented had been studied
before under the name of “cellular automata”. (I had been
aware of the Game of Life, but its recreational emphasis had
put me off studying it.) Knowing the name cellular automata,
I was able to track down quite a number of relevant papers
from the 1950s and 1960s. But I found that active research on
what had been called cellular automata had more or less
petered out (with the slight exception of a group at MIT at
that time mainly concerned with building special-purpose
hardware for 2D cellular automata). By late 1982 preprints of
my paper on cellular automata had created quite a stir, and I
got involved in organizing a conference held in March 1983 at
Los Alamos to bring together many people newly interested
in cellular automata with earlier workers in the field.
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As part of preparing for that conference, I decided to use the
graphics capabilities of the new workstation computer I had
just obtained (a very early unit from Sun Microsystems) to
investigate in a systematic way the behavior of a large
collection of different cellular automata. And after spending
several weeks looking at screen after screen of patterns—and
trying to analyze their properties—I came to the conclusion
that one could identify in the behavior of cellular automata
with random initial conditions just four basic classes, each
with its own characteristic features (see page 231).

In 1982 and early 1983, my efforts to analyze cellular
automata were mainly based on ideas from discrete
mathematics and dynamical systems theory. In the course of
1983, I also began to make serious use of formal language
theory and the theory of computation. But for the most part
I concentrated on characterizing behavior obtained from all
possible initial conditions. And in fact I still vaguely
assumed that if simple initial conditions were used, only
fairly simple behavior would be obtained. Several of my
papers had actually shown quite detailed pictures where
this was not the case. I had noticed them, but they had
never been among the examples I had studied in depth,
partly for the superficial reason that the rules they involved
were not symmetrical, or inevitably led to patterns that were
otherwise not convenient for display. I do not know exactly
what made me start looking more carefully at simple initial
conditions, though I believe that I first systematically
generated high-resolution pictures of all the , 
cellular automata as an exercise for an early laserprinter—
probably at the beginning of 1984. And I do know that for
example on June 1, 1984 I printed out pictures of rule 30,
rule 110 and ,  totalistic code 10 (see note below),
took them with me on a flight from New York to London,
and a few days later was in Sweden talking about
randomness in rule 30 and its potential significance. 

A month or so later, writing an article for Scientific
American—nominally on the subject of software in science
and mathematics—led me to think more carefully about
basic issues of computation and modelling, and to describe
for the first time the idea of computational irreducibility
(see page 737). In the fall of 1984 I began to investigate
some of the implications of what I had discovered about
cellular automata for foundational questions in science.
And by early 1985 I had written what I consider to be my
two most fundamental (if excessively short) papers from
the period: one on undecidability and intractability in
theoretical physics, and the other on intrinsic randomness
generation and the origins of randomness in physical
systems. 

In the early summer of 1985 I was doing consulting at a
startup company called Thinking Machines Corporation,
which had developed a massively parallel computer called
the Connection Machine that was fairly well suited to cellular
automaton simulation. Partly as an application for this
computer I then ended up making a detailed study of rule 30
and its randomness—among other things proposing it as a
practical random sequence generator and cryptosystem.

I had always thought that cellular automata could be a way
to get at foundational questions in thermodynamics and
hydrodynamics. And in mid-1985, partly in an attempt to
find uses for the Connection Machine, I devised a practical
scheme for doing fluid mechanics with cellular automata (see
page 378). Then over the course of that winter and the
following spring I analyzed the scheme and worked out its
correspondence to the traditional continuum approach. 

By 1986, however, I felt that I had answered at least the first
round of obvious questions about cellular automata, and it
increasingly seemed that it would not be easier to go further
with the computational tools available. In June 1986 I
organized one last conference on cellular automata—then in
August 1986 essentially left the field to begin the
development of Mathematica. 

Over the years, I have come back to look at cellular automata
again and again, and every time I have been amazed and
delighted by the richness of the phenomena they exhibit. As I
argue in this book, a vast range of systems must in the end
show the same basic phenomena. But cellular automata—
and especially 1D ones—make the phenomena particularly
clear, which is why even after investigating all sorts of other
systems 1D cellular automata are still the most common
examples that I use in this book.

â My papers. The primary papers that I published about
cellular automata and other issues related to this book were
(the dates indicate when I finished my work on each paper;
the papers were actually published 6–12 months later):

ä “Statistical mechanics of cellular automata” (June 1982) 
(introducing 1D cellular automata and studying many of 
their properties)

ä “Algebraic properties of cellular automata” (with Olivier 
Martin and Andrew Odlyzko) (February 1983) (analyzing 
additive cellular automata such as rule 90)

ä “Universality and complexity in cellular automata” (April 
1983) (classifying cellular automaton behavior)

ä “Computation theory of cellular automata” (November 
1983) (characterizing behavior using formal language 
theory)

k = 2 r = 1

k = 2 r = 2
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ä “Two-dimensional cellular automata” (with Norman 
Packard) (October 1984) (extending results to two 
dimensions)

ä “Undecidability and intractability in theoretical physics” 
(October 1984) (introducing computational irreducibility)

ä “Origins of randomness in physical systems” (February 
1985) (introducing intrinsic randomness generation)

ä “Random sequence generation by cellular automata” (July 
1985) (a detailed study of rule 30)

ä “Thermodynamics and hydrodynamics of cellular 
automata” (with James Salem) (November 1985) 
(continuum behavior from cellular automata)

ä “Approaches to complexity engineering” (December 1985) 
(finding systems that achieve specified goals)

ä “Cellular automaton fluids: Basic theory” (March 1986) 
(deriving the Navier-Stokes equations from cellular 
automata)

The ideas in the first five and the very last of these papers
have been reasonably well absorbed over the past fifteen or
so years. But those in the other five have not, and indeed
seem to require the whole development of this book to be
able to present in an appropriate way. 

Other significant publications of mine providing relevant
summaries were (the dates here are for actual publication—
sometimes close to writing, but sometimes long delayed):

ä “Computers in science and mathematics” (September 
1984) (Scientific American article about foundations of the 
computational approach to science and mathematics)

ä “Cellular automata as models of complexity” (October 
1984) (Nature article introducing cellular automata)

ä “Geometry of binomial coefficients” (November 1984) 
(additive cellular automata and nested patterns)

ä “Twenty problems in the theory of cellular automata” 
(1985) (a list of unsolved problems to attack—most now 
finally resolved in this book)

ä “Tables of cellular automaton properties” (June 1986) 
(features of elementary cellular automata)

ä “Cryptography with cellular automata” (1986) (using rule 
30 as a cryptosystem)

ä “Complex systems theory” (1988) (1984 speech suggesting 
the research direction for the new Santa Fe Institute)

â Code 10. Rule 30 is by many measures the simplest cellular
automaton that generates randomness from a single black initial
cell. But there are other simple examples—that historically I
noticed slightly earlier than rule 30, though did not study—that
occur in ,  totalistic rules. And indeed among the 64
such rules, 13 show randomness. An example shown below is
code 10, which specifies that if 1 or 3 cells out of 5 are black then
the next cell is black; otherwise it is white.

k = 2 r = 2
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0 255 0 255 32 251 32 251 64 253 8 239 96 249 40 235 128 254 128 254 160 250 160 250 192 252 136 238 224 248 168 234

1 127 1 127 33 123 33 123 65 125 9 111 97 121 41 107 129 126 129 126 161 122 161 122 193 124 137 110 225 120 169 106

2 191 16 247 34 187 48 243 66 189 24 231 98 185 56 227 130 190 144 246 162 186 176 242 194 188 152 230 226 184 184 226

3 63 17 119 35 59 49 115 67 61 25 103 99 57 57 99 131 62 145 118 163 58 177 114 195 60 153 102 227 56 185 98

4 223 4 223 36 219 36 219 68 221 12 207 100 217 44 203 132 222 132 222 164 218 164 218 196 220 140 206 228 216 172 202

5 95 5 95 37 91 37 91 69 93 13 79 101 89 45 75 133 94 133 94 165 90 165 90 197 92 141 78 229 88 173 74

6 159 20 215 38 155 52 211 70 157 28 199 102 153 60 195 134 158 148 214 166 154 180 210 198 156 156 198 230 152 188 194

7 31 21 87 39 27 53 83 71 29 29 71 103 25 61 67 135 30 149 86 167 26 181 82 199 28 157 70 231 24 189 66

8 239 64 253 40 235 96 249 72 237 72 237 104 233 104 233 136 238 192 252 168 234 224 248 200 236 200 236 232 232 232 232

9 111 65 125 41 107 97 121 73 109 73 109 105 105 105 105 137 110 193 124 169 106 225 120 201 108 201 108 233 104 233 104

10 175 80 245 42 171 112 241 74 173 88 229 106 169 120 225 138 174 208 244 170 170 240 240 202 172 216 228 234 168 248 224

11 47 81 117 43 43 113 113 75 45 89 101 107 41 121 97 139 46 209 116 171 42 241 112 203 44 217 100 235 40 249 96

12 207 68 221 44 203 100 217 76 205 76 205 108 201 108 201 140 206 196 220 172 202 228 216 204 204 204 204 236 200 236 200

13 79 69 93 45 75 101 89 77 77 77 77 109 73 109 73 141 78 197 92 173 74 229 88 205 76 205 76 237 72 237 72

14 143 84 213 46 139 116 209 78 141 92 197 110 137 124 193 142 142 212 212 174 138 244 208 206 140 220 196 238 136 252 192

15 15 85 85 47 11 117 81 79 13 93 69 111 9 125 65 143 14 213 84 175 10 245 80 207 12 221 68 239 8 253 64

16 247 2 191 48 243 34 187 80 245 10 175 112 241 42 171 144 246 130 190 176 242 162 186 208 244 138 174 240 240 170 170

17 119 3 63 49 115 35 59 81 117 11 47 113 113 43 43 145 118 131 62 177 114 163 58 209 116 139 46 241 112 171 42

18 183 18 183 50 179 50 179 82 181 26 167 114 177 58 163 146 182 146 182 178 178 178 178 210 180 154 166 242 176 186 162

19 55 19 55 51 51 51 51 83 53 27 39 115 49 59 35 147 54 147 54 179 50 179 50 211 52 155 38 243 48 187 34

20 215 6 159 52 211 38 155 84 213 14 143 116 209 46 139 148 214 134 158 180 210 166 154 212 212 142 142 244 208 174 138

21 87 7 31 53 83 39 27 85 85 15 15 117 81 47 11 149 86 135 30 181 82 167 26 213 84 143 14 245 80 175 10

22 151 22 151 54 147 54 147 86 149 30 135 118 145 62 131 150 150 150 150 182 146 182 146 214 148 158 134 246 144 190 130

23 23 23 23 55 19 55 19 87 21 31 7 119 17 63 3 151 22 151 22 183 18 183 18 215 20 159 6 247 16 191 2

24 231 66 189 56 227 98 185 88 229 74 173 120 225 106 169 152 230 194 188 184 226 226 184 216 228 202 172 248 224 234 168

25 103 67 61 57 99 99 57 89 101 75 45 121 97 107 41 153 102 195 60 185 98 227 56 217 100 203 44 249 96 235 40

26 167 82 181 58 163 114 177 90 165 90 165 122 161 122 161 154 166 210 180 186 162 242 176 218 164 218 164 250 160 250 160

27 39 83 53 59 35 115 49 91 37 91 37 123 33 123 33 155 38 211 52 187 34 243 48 219 36 219 36 251 32 251 32

28 199 70 157 60 195 102 153 92 197 78 141 124 193 110 137 156 198 198 156 188 194 230 152 220 196 206 140 252 192 238 136

29 71 71 29 61 67 103 25 93 69 79 13 125 65 111 9 157 70 199 28 189 66 231 24 221 68 207 12 253 64 239 8

30 135 86 149 62 131 118 145 94 133 94 133 126 129 126 129 158 134 214 148 190 130 246 144 222 132 222 132 254 128 254 128

31 7 87 21 63 3 119 17 95 5 95 5 127 1 127 1 159 6 215 20 191 2 247 16 223 4 223 4 255 0 255 0

NOTES FOR CHAPTER 3

The World of Simple Programs

More Cellular Automata

â Page 53 · Numbering scheme. I introduced the numbering
scheme used here in the 1983 paper where I first discussed
one-dimensional cellular automata (see page 881). I termed
two-color nearest-neighbor cellular automata “elementary”
to reflect the idea that their rules are as simple as possible. 

â Page 55 · Rule equivalences. The table below gives basic
equivalences between elementary cellular automaton rules. In each
block the second entry is the rule obtained by interchanging black
and white, the third entry is the rule obtained by interchanging left

and right, and the fourth entry the rule obtained by applying both
operations. (The smallest rule number is given in boldface.) For a
rule with number  the two operations correspond respectively to
computing  and  with

. 

â Special rules. Rule 51: complement; rule 170: left shift; rule
204: identity; rule 240: right shift. These rules only ever
depend on one cell in each neighborhood.

â Rule expressions. The table on the next page gives Boolean
expressions for each of the elementary rules. The expressions

n
1 -Reverse[ list] list0{1, 5, 3, 7, 2, 6, 4, 8}1

list = IntegerDigits[n, 2, 8]
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rule 0 : 0 rule 64 : p © q © (¨ r) rule 128 : p © q © r rule 192 : p © q
rule 1 : ¨ (p ª q ª r) rule 65 : ¨ ( (p Ò q) ª r) rule 129 : ¨ ( (p Ò q) ª (p Ò r)) rule 193 : p Ò (p ª q ª (¨ r)) Ò q
rule 2 : (¨ p) © (¨ q) © r rule 66 : (p Ò r) © (q Ò r) rule 130 : (p Ò q Ò r) © r rule 194 : p Ò (p ª q ª r) Ò q
rule 3 : ¨ (p ª q) rule 67 : p Ò (p © q © r) Ò (¨ q) rule 131 : p Ò (p © q © (¨ r)) Ò (¨ q) rule 195 : p Ò (¨ q)
rule 4 : (¨ (p ª r)) © q rule 68 : q © (¨ r) rule 132 : (p Ò q Ò r) © q rule 196 : (p ª (¨ r)) © q
rule 5 : ¨ (p ª r) rule 69 : ( (¨ p) ª q ª r) Ò r rule 133 : p Ò (p © (¨ q) © r) Ò (¨ r) rule 197 : (¨ (p ª (q Ò r))) Ò q
rule 6 : (¨ p) © (q Ò r) rule 70 : ( (p © r) ª q) Ò r rule 134 : (p © (q ª r)) Ò q Ò r rule 198 : (p © r) Ò q Ò r
rule 7 : ¨ (p ª (q © r)) rule 71 : ( (p Ò (¨ r)) ª q) Ò r rule 135 : (¨ p) Ò (q © r) rule 199 : p Ò (p ª (¨ q) ª r) Ò q
rule 8 : (¨ p) © q © r rule 72 : (p © q) Ò (q © r) rule 136 : q © r rule 200 : (p ª r) © q
rule 9 : ¨ (p ª (q Ò r)) rule 73 : ¨ ( (p © r) ª (p Ò q Ò r)) rule 137 : ( (¨ p) ª q ª r) Ò q Ò r rule 201 : (¨ (p ª r)) Ò q
rule 10 : (¨ p) © r rule 74 : (p © (q ª r)) Ò r rule 138 : (p © (¨ q) © r) Ò r rule 202 : (p © (q Ò r)) Ò r
rule 11 : p Ò (p ª (¨ q) ª r) rule 75 : p Ò ( (¨ q) ª r) rule 139 : ¨ ( (p ª q) Ò (q © r)) rule 203 : (p Ò (¨ q)) ª (q © r)
rule 12 : (p © q) Ò q rule 76 : (p © q © r) Ò q rule 140 : ( (¨ p) ª r) © q rule 204 : q
rule 13 : p Ò (p ª q ª (¨ r)) rule 77 : p Ò ( (p Ò q) ª (p Ò (¨ r))) rule 141 : p Ò ( (p Ò q) ª (¨ r)) rule 205 : (¨ (p ª r)) ª q
rule 14 : p Ò (p ª q ª r) rule 78 : p Ò ( (p Ò q) ª r) rule 142 : p Ò ( (p Ò q) ª (p Ò r)) rule 206 : ( (¨ p) © r) ª q
rule 15 : ¨ p rule 79 : (¨ p) ª (q © (¨ r)) rule 143 : (¨ p) ª (q © r) rule 207 : ¨ (p © (¨ q))
rule 16 : p © (¨ q) © (¨ r) rule 80 : p © (¨ r) rule 144 : p © (p Ò q Ò r) rule 208 : p © (q ª (¨ r))
rule 17 : ¨ (q ª r) rule 81 : (p ª (¨ q) ª r) Ò r rule 145 : ( (¨ p) © q © r) Ò q Ò (¨ r) rule 209 : ¨ ( (p © q) Ò (q ª r))
rule 18 : (p Ò q Ò r) © (¨ q) rule 82 : (p ª (q © r)) Ò r rule 146 : p Ò ( (p ª r) © q) Ò r rule 210 : p Ò (q © r) Ò r
rule 19 : ¨ ( (p © r) ª q) rule 83 : (p ª (q Ò (¨ r))) Ò r rule 147 : (p © r) Ò (¨ q) rule 211 : p Ò ( (¨ p) ª q ª r) Ò q
rule 20 : (p Ò q) © (¨ r) rule 84 : (p ª q ª r) Ò r rule 148 : p Ò ( (p ª q) © r) Ò q rule 212 : ( (p Ò q) ª (p Ò r)) Ò r
rule 21 : ¨ ( (p © q) ª r) rule 85 : ¨ r rule 149 : (p © q) Ò (¨ r) rule 213 : (p © q) ª (¨ r)
rule 22 : p Ò (p © q © r) Ò q Ò r rule 86 : (p ª q) Ò r rule 150 : p Ò q Ò r rule 214 : (p © q) ª (p Ò q Ò r)
rule 23 : p Ò ( (p Ò (¨ q)) ª (q Ò r)) rule 87 : ¨ ( (p ª q) © r) rule 151 : p Ò (¨ (p ª q ª r)) Ò q Ò r rule 215 : ¨ ( (p Ò q) © r)
rule 24 : (p Ò q) © (p Ò r) rule 88 : p Ò ( (p ª q) © r) rule 152 : (p ª q ª r) Ò q Ò r rule 216 : p Ò ( (p Ò q) © r)
rule 25 : (p © q © r) Ò q Ò (¨ r) rule 89 : (p ª (¨ q)) Ò r rule 153 : q Ò (¨ r) rule 217 : (p © q) ª (q Ò (¨ r))
rule 26 : p Ò ( (p © q) ª r) rule 90 : p Ò r rule 154 : p Ò (p © q) Ò r rule 218 : p Ò (p © q © r) Ò r
rule 27 : p Ò ( (p Ò (¨ q)) ª r) rule 91 : p Ò (¨ (p ª q ª r)) Ò r rule 155 : (p ª q ª (¨ r)) Ò q Ò r rule 219 : (p Ò r) ª (p Ò (¨ q))
rule 28 : p Ò ( (p © r) ª q) rule 92 : (p ª (q Ò r)) Ò r rule 156 : p Ò (p © r) Ò q rule 220 : (p © (¨ r)) ª q
rule 29 : p Ò ( (p Ò (¨ r)) ª q) rule 93 : ¨ ( (p ª (¨ q)) © r) rule 157 : (p ª (¨ q) ª r) Ò q Ò r rule 221 : q ª (¨ r)
rule 30 : p Ò (q ª r) rule 94 : (p © r) Ò (p ª q ª r) rule 158 : (p Ò q Ò r) ª (q © r) rule 222 : (p Ò q Ò r) ª q
rule 31 : ¨ (p © (q ª r)) rule 95 : ¨ (p © r) rule 159 : ¨ (p © (q Ò r)) rule 223 : ¨ (p © (¨ q) © r)
rule 32 : p © (¨ q) © r rule 96 : p © (q Ò r) rule 160 : p © r rule 224 : p © (q ª r)
rule 33 : ¨ ( (p Ò q Ò r) ª q) rule 97 : ¨ ( (p Ò q Ò r) ª (q © r)) rule 161 : p Ò (p ª (¨ q) ª r) Ò r rule 225 : p Ò (¨ (q ª r))
rule 34 : (¨ q) © r rule 98 : ( (p ª r) © q) Ò r rule 162 : (p ª (¨ q)) © r rule 226 : (p © q) Ò (q © r) Ò r
rule 35 : ( (¨ p) ª q ª r) Ò q rule 99 : ( (¨ p) ª r) Ò q rule 163 : ( (¨ p) ª (q Ò r)) Ò q rule 227 : (p © r) ª (p Ò (¨ q))
rule 36 : (p Ò q) © (q Ò r) rule 100 : ( (p ª q) © r) Ò q rule 164 : p Ò (p ª q ª r) Ò r rule 228 : ( (p Ò q) © r) Ò q
rule 37 : p Ò (p © q © r) Ò (¨ r) rule 101 : p Ò (p © q) Ò (¨ r) rule 165 : p Ò (¨ r) rule 229 : (p © q) ª (p Ò (¨ r))
rule 38 : ( (p © q) ª r) Ò q rule 102 : q Ò r rule 166 : (p © q) Ò q Ò r rule 230 : (p © q © r) Ò q Ò r
rule 39 : ( (p Ò (¨ q)) ª r) Ò q rule 103 : (¨ (p ª q ª r)) Ò q Ò r rule 167 : p Ò (p ª q ª (¨ r)) Ò r rule 231 : (p Ò (¨ q)) ª (q Ò r)
rule 40 : (p Ò q) © r rule 104 : p Ò (p ª q ª r) Ò q Ò r rule 168 : (p ª q) © r rule 232 : (p © q) ª ( (p ª q) © r)
rule 41 : ¨ ( (p © q) ª (p Ò q Ò r)) rule 105 : p Ò q Ò (¨ r) rule 169 : (¨ (p ª q)) Ò r rule 233 : p Ò (p © q © r) Ò q Ò (¨ r)
rule 42 : (p © q © r) Ò r rule 106 : (p © q) Ò r rule 170 : r rule 234 : (p © q) ª r
rule 43 : p Ò ( (p Ò r) ª (p Ò (¨ q))) rule 107 : p Ò (p ª q ª (¨ r)) Ò q Ò r rule 171 : (¨ (p ª q)) ª r rule 235 : (p Ò (¨ q)) ª r
rule 44 : (p © (q ª r)) Ò q rule 108 : (p © r) Ò q rule 172 : (p © (q Ò r)) Ò q rule 236 : (p © r) ª q
rule 45 : p Ò (q ª (¨ r)) rule 109 : p Ò (p ª (¨ q) ª r) Ò q Ò r rule 173 : (p Ò (¨ r)) ª (q © r) rule 237 : (p Ò (¨ r)) ª q
rule 46 : (p © q) Ò (q ª r) rule 110 : ( (¨ p) © q © r) Ò q Ò r rule 174 : ( (p © q) Ò q) ª r rule 238 : q ª r
rule 47 : (¨ p) ª ( (¨ q) © r) rule 111 : (¨ p) ª (q Ò r) rule 175 : (¨ p) ª r rule 239 : (¨ p) ª q ª r
rule 48 : p © (¨ q) rule 112 : p Ò (p © q © r) rule 176 : p © ( (¨ q) ª r) rule 240 : p
rule 49 : (p ª q ª (¨ r)) Ò q rule 113 : p Ò (¨ ( (p Ò q) ª (p Ò r))) rule 177 : p Ò (¨ ( (p Ò q) ª r)) rule 241 : p ª (¨ (q ª r))
rule 50 : (p ª q ª r) Ò q rule 114 : ( (p Ò q) ª r) Ò q rule 178 : ( (p Ò q) ª (p Ò r)) Ò q rule 242 : p ª ( (¨ q) © r)
rule 51 : ¨ q rule 115 : (p © (¨ r)) ª (¨ q) rule 179 : (p © r) ª (¨ q) rule 243 : p ª (¨ q)
rule 52 : (p ª (q © r)) Ò q rule 116 : (p ª q) Ò (q © r) rule 180 : p Ò q Ò (q © r) rule 244 : p ª (q © (¨ r))
rule 53 : (p ª (q Ò (¨ r))) Ò q rule 117 : (p © (¨ q)) ª (¨ r) rule 181 : p Ò ( (¨ p) ª q ª r) Ò r rule 245 : p ª (¨ r)
rule 54 : (p ª r) Ò q rule 118 : (p ª q ª r) Ò (q © r) rule 182 : (p © r) ª (p Ò q Ò r) rule 246 : p ª (q Ò r)
rule 55 : ¨ ( (p ª r) © q) rule 119 : ¨ (q © r) rule 183 : (p Ò q Ò r) ª (¨ q) rule 247 : p ª (¨ q) ª (¨ r)
rule 56 : p Ò ( (p ª r) © q) rule 120 : p Ò (q © r) rule 184 : p Ò (p © q) Ò (q © r) rule 248 : p ª (q © r)
rule 57 : (p ª (¨ r)) Ò q rule 121 : p Ò ( (¨ p) ª q ª r) Ò q Ò r rule 185 : (p © r) ª (q Ò (¨ r)) rule 249 : p ª (q Ò (¨ r))
rule 58 : (p ª (q Ò r)) Ò q rule 122 : p Ò (p © (¨ q) © r) Ò r rule 186 : (p © (¨ q)) ª r rule 250 : p ª r
rule 59 : ( (¨ p) © r) ª (¨ q) rule 123 : ¨ ( (p Ò q Ò r) © q) rule 187 : (¨ q) ª r rule 251 : p ª (¨ q) ª r
rule 60 : p Ò q rule 124 : p Ò (p © q © (¨ r)) Ò q rule 188 : p Ò (p © q © r) Ò q rule 252 : p ª q
rule 61 : p Ò (p ª q ª r) Ò (¨ q) rule 125 : (p Ò q) ª (¨ r) rule 189 : (p Ò q) ª (p Ò (¨ r)) rule 253 : p ª q ª (¨ r)
rule 62 : (p © q) Ò (p ª q ª r) rule 126 : (p Ò q) ª (p Ò r) rule 190 : (p Ò q) ª r rule 254 : p ª q ª r
rule 63 : ¨ (p © q) rule 127 : ¨ (p © q © r) rule 191 : (¨ p) ª (¨ q) ª r rule 255 : 1
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use the minimum possible number of operators; when there
are several equivalent forms, I give the most uniform and
symmetrical one. Note that  stands for . 

â Rule orderings. The fact that successive rules often show
very different behavior does not appear to be affected by
using alternative orderings such as Gray code (see
page 901.) 

â Page 58 · Algebraic forms. The rules here can be expressed
in algebraic terms (see page 869) as follows:

äRule 22: 

äRule 60: 

äRule 105: 

äRule 129:  

äRule 150:  

äRule 225: 

Note that rules 60, 105 and 150 are additive, like rule 90.

â Rule 150. This rule can be viewed as an analog of rule 90 in
which the values of three cells, rather than two, are added
modulo 2. Corresponding to the result on page 870 for rule
90, the number of black cells at row  in the pattern from rule
150 is given by

There are a total of  black cells in the
pattern obtained up to step , implying fractal dimension

. (See also page 956.)

The value at step  in the column immediately adjacent to
the center is the nested sequence discussed on page 892
and given by . The cell at
position  on row  turns out to be given by

, as discussed on page 612.

â Rule 225. The width of the pattern after  steps varies
between  (achieved when ) and

 (achieved when ). The pattern scales
differently in the horizontal and vertical direction,
corresponding to fractal dimensions  and 
respectively. Note that with more complicated initial
conditions rule 225 often no longer yields a regular nested
pattern, as shown on page 951. The resulting patterns
typically grow at a roughly constant average rate. 

â Rule 22. With more complicated initial conditions the
pattern is often no longer nested, as shown on page 263. 

â Page 59 · Algebraic forms. The rules here can be expressed in
algebraic terms (see page 869) as follows:

äRule 30:  

äRule 45:  

äRule 73:  

â Rule 45. The center column of the pattern appears for
practical purposes random, just as in rule 30. The left edge of
the pattern moves 1 cell every 2 steps; the boundary between
repetition and randomness moves on average 0.17 cells
per step. 

â Rule 73. The pattern has a few definite regularities. The
center column of cells is repetitive, alternating between black
and white on successive steps. And in all cases black cells
appear only in blocks that are an odd number of cells wide.
(Any block in rule 73 consisting of an even number of black
cells will evolve to a structure that remains fixed forever, as
mentioned on page 954.) The more complicated central
region of the pattern grows 4 cells every 7 steps; the outer
region consists of blocks that are 12 cells wide and repeat
every 3 steps. 

â Alternating colors. The pictures below show rules 45 and 73
with the colors of cells on alternate steps reversed.

â Two-cell neighborhoods. By having cells on successive steps
be arranged like hexagons or staggered bricks, as in the
pictures below, one can set up cellular automata in which the
new color of each cell depends on the previous colors of two
rather than three neighboring cells. 

With  possible colors for each cell, there are a total of 
possible rules of this type, each specified by a -digit
number in base  (7743 for the rule shown above). For

, there are 16 possible rules, and the most complicated
pattern obtained is nested like the rule 90 elementary
cellular automaton. With , there are 19,683 possible
rules, 1734 of which are fundamentally inequivalent, and
many more complicated patterns are seen, as in the
pictures at the top of the next page.

Ò Xor

Mod[p + q + r + p q r, 2]

Mod[p + q, 2]

Mod[1+ p + q + r, 2]

Mod[1+ p + q + r + p q + q r + p r, 2]

Mod[p + q + r, 2]

Mod[1+ p + q + r + q r, 2]

t

Apply[Times, Map[( 2#+2 - ( -1)#+2)/3 &,
Cases[Split[IntegerDigits[t, 2]], k : {( 1) ..} " Length[k]]]]

2m Fibonacci[m+ 2]
2m

Log[2, 1+
�!!!!5 ]

t

Mod[IntegerExponent[t, 2], 2]
n t

Mod[GegenbauerC[n, -t, -1/2], 2]

t
Sqrt[3/2]�!!!t t = 3622 n+1

Sqrt[9/2]�!!!t t = 22 n+1

Log[2, 5] Log[4, 5]

Mod[p + q + r + q r, 2]

Mod[1+ p + r + q r, 2]

Mod[1+ p + q + r + p r + p q r, 2]

k kk2

k2

k
k = 2

k = 3
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With  given by  a single step of
evolution can be implemented as

With  given by  a single step of
evolution can be implemented as

â Page 60 · Numbers of rules. Allowing  possible colors for
each cell and considering  neighbors on each side, there are

 possible cellular automaton rules in all, of which
 are symmetric, and  are totalistic. (For

,  there are therefore 256 possible rules altogether, of
which 16 are totalistic. For ,  there are 4,294,967,296
rules in all, of which 64 are totalistic. And for , 
there are 7,625,597,484,987 rules in all, with 2187 totalistic
ones.) Note that for , a particular rule will in general be
totalistic only for a specific assignment of values to colors. I
first introduced totalistic rules in 1983.

â Implementation of general cellular automata. With  colors
and  neighbors on each side, a single step in the evolution of
a general cellular automaton is given by

where  is obtained from a rule number  by
. (See also page 927.)

â Implementation of totalistic cellular automata. To handle
totalistic rules that involve  colors and nearest neighbors,
one can add the definition

to what was given on page 867. The following definition also
handles the more general case of  neighbors:

One can generate the representation of totalistic rules used by
these functions from code numbers using

â Common framework. The Mathematica built-in function
 discussed on page 867 handles general and

totalistic rules in the same framework by using
 and taking the weights  to be

respectively  and . 

â Page 63 · Mod 3 rule. Code 420 is an example of an additive
rule, and yields a pattern corresponding to Pascal’s triangle
modulo 3, as discussed on page 870.

â Compositions of cellular automata. One way to construct
more complicated rules is from compositions of simpler
rules. One can, for example, consider each step applying first
one elementary cellular automaton rule, then another. The
result is in effect a ,  rule. Usually the order in which
the two elementary rules are applied will matter, and the
overall behavior obtained will have no simple relationship to
that of either of the individual rules. (See also page 956.)

â Rules based on algebraic systems. If the values of cells are
taken to be elements of some finite algebraic system, then one
can set up a cellular automaton with rule 

where  is the analog of multiplication for the system (see also
page 1094). The pattern obtained after  steps is then given by

The pictures below show results with  being , and
cells having values (a) , (b) the unit complex numbers

, (c) the unit quaternions. 

In general, with  elements  can be specified by an 
“multiplication table”. For , the patterns obtained are at
most nested. Pictures (a) and (b) below however correspond
to the  multiplication tables 
and . Note that for (b) the table is
symmetric, corresponding to a commutative multiplication
operation.

If  is associative (flat), so that , then
the algebraic system is known as a semigroup. (See also

rule 12294 rule 16963 rule 17989

rule 7743 rule 8364 rule 8701

rule 3826 rule 5451 rule 6385

rule IntegerDigits[num, k, k2]

CAStep[{k_, rule_}, a_List] := rule0k2 -RotateLeft[a] - k a1

k
r

kk2 r+1

k1/2 kr+1 (1+kr ) k1+(k-1) (2 r+1)

k = 2 r = 1
k = 2 r = 2

k = 3 r = 1

k > 2

k
r

CAStep[CARule[rule_List, k_, r_], a_List] :=
rule0-1 - ListConvolve[k^Range[0, 2 r], a, r + 1]1

rule num
IntegerDigits[num, k, k2 r+1]

k

CAStep[TotalisticCARule[rule_List, 1], a_List] :=
rule0-1 - (RotateLeft[a] + a +RotateRight[a])1

r
CAStep[TotalisticCARule[rule_List, r_Integer], a_List] :=

rule0-1 - Sum[RotateLeft[a, i], {i, -r, r}]1

ToTotalisticCARule[num_Integer, k_Integer, r_Integer] :=
TotalisticCARule[IntegerDigits[num, k, 1+ ( k - 1) (2 r + 1)], r]

CellularAutomaton

ListConvolve[w, a, r + 1] w
k^Table[ i - 1, {i, 2 r + 1}] Table[1, {2 r + 1}]

k = 2 r = 2

a[t_, i_] := f [a[t - 1, i - 1], a[t - 1, i]]

f
t

NestList[f [RotateRight[#], #] &, init, t]

f Times
{1, -1}

{1, 5, -1, -5}

(a) (b) (c)

n f n7n
n = 2

n = 3 {{1, 1, 3}, {3, 3, 2}, {2, 2, 1}}

{{3, 1, 3}, {1, 3, 1}, {3, 1, 2}}

(a) (b) (c)

f f [f [ i, j], k] 2 f [ i, f [ j , k]]
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page 805.) With a single cell seed, no pattern more
complicated than nested can be obtained in such a system.
And with any seed, it appears to require a semigroup with at
least six elements to obtain a more complicated pattern.

If  has an identity element, so that  for all , and has
inverses, so that  for some , then the system is a
group. (See page 945.) If the group is Abelian, so that

, then only nested patterns are ever produced
(see page 955). But it turns out that the very simplest possible
non-Abelian group yields the pattern in (c) above. The group
used is S3, which has six elements and multiplication table

The initial condition contains  surrounded by ’s.

Mobile Automata

â Implementation. The state of a mobile automaton at a
particular step can conveniently be represented by a pair

, where  gives the values of the cells, and 
specifies the position of the active cell (the value of the active
cell is thus ). Then, for example, the rule for the mobile
automaton shown on page 71 can be given as

where the left-hand side in each case gives the value of the
active cell and its left and right neighbors, while the right-
hand side consists of a pair containing the new value of the
active cell and the displacement of its position. (In analogy
with cellular automata, this rule can be labelled 
where the first number refers to colors, and the second
displacements.) With a rule given in this form, each step in
the evolution of the mobile automaton corresponds to the
function

The complete evolution for many steps can then be obtained
with

(The program will run more efficiently if  is applied
to the rule before giving it as input.)

For the mobile automaton on page 73, the rule can be given
as

and  must be rewritten as

â Compressed evolution. An alternative compression scheme
for mobile automata is discussed on page 488.

â Page 72 · Distribution of behavior. The pictures below show
the distributions of transient and of period lengths for the
65,318 mobile automata of the type described here that yield
ultimately repetitive behavior. Rule (f) has a period equal to
the maximum of 16. 

â Page 75 · Active cell motion. The pictures below show the
positions of the active cell for 20,000 steps of evolution in
various mobile automata. (a), (b) and (c) correspond
respectively to the rules on pages 73, 74 and 75. (c) has an
outer envelope whose edges grow at rates . (d)
yields logarithmic growth as shown on page 496 (like Turing
machine (f) on page 79). In most cases where the behavior is
ultimately repetitive, transients and periods seem to follow
the same approximate exponential distribution as in the note
above. (g) however suddenly yields repetitive behavior with
period 4032 after 405,941 steps. (h) does not appear to evolve
to strict repetition or nesting, but does show progressively
longer patches with fairly orderly behavior. (c) shows no
obvious deviation from randomness in at least the first
billion steps (after which the pattern it produces is 57,014
cells wide).

â Implementation of generalized mobile automata. The state
of a generalized mobile automaton at a particular step can be

f f [1, i] 2 i i
f [ i, j] 2 1 j

f [ i, j] 2 f [ j , i]

{{1, 2, 3, 4, 5, 6}, {2, 1, 5, 6, 3, 4}, {3, 4, 1, 2, 6, 5},
{4, 3, 6, 5, 1, 2}, {5, 6, 2, 1, 4, 3}, {6, 5, 4, 3, 2, 1}}

{5, 6} 1

{list, n} list n

list0n1

{{1, 1, 1} ! {0, 1}, {1, 1, 0} ! {0, 1},
{1, 0, 1} ! {1, -1}, {1, 0, 0} ! {0, -1}, {0, 1, 1} ! {0, -1},
{0, 1, 0} ! {0, 1}, {0, 0, 1} ! {1, 1}, {0, 0, 0} ! {1, -1}}

{35, 57}

MAStep[rule_, {list_List, n_Integer}] /; 1 < n < Length[ list] :=
Apply[{ReplacePart[ list, #1, n], n+#2} &,

Replace[Take[ list, {n - 1, n+ 1}], rule]]

MAEvolveList[rule_, init_List, t_Integer] :=
NestList[MAStep[rule, #] &, init, t]

Dispatch

{{1, 1, 1} ! {{0, 0, 0}, -1}, {1, 1, 0} ! {{1, 0, 1}, -1},
{1, 0, 1} ! {{1, 1, 1}, 1}, {1, 0, 0} ! {{1, 0, 0}, 1},
{0, 1, 1} ! {{0, 0, 0}, 1}, {0, 1, 0} ! {{0, 1, 1}, -1},
{0, 0, 1} ! {{1, 0, 1}, 1}, {0, 0, 0} ! {{1, 1, 1}, 1}}

MAStep

MAStep[rule_, {list_List, n_Integer}] /; 1 < n < Length[ list] :=
Apply[{Join[Take[ list, {1, n - 2}], #1, Take[ list, {n+ 2, -1}]],

n+#2} &, Replace[Take[ list, {n - 1, n+ 1}], rule]]

0.000001

0.0001

0.01

1

5 10 15 20
0.000001

0.0001

0.01

1

5 10 15 20

{-1.5, 0.3}�!!!t

(g) (h)

(e) ( f )

(c) (d)

(a) (b)
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specified by , where  gives the values of the
cells, and  is a list of the positions of active cells. The rule
can be given by specifying a list of cases such as

, where in each case the second sublist
specifies the new relative positions of active cells. With this
setup successive steps in the evolution of the system can be
obtained from

Turing Machines

â Implementation. The state of a Turing machine at a
particular step can be represented by the triple ,
where  gives the state of the head,  gives the values of the
cells, and  specifies the position of the head (the cell under
the head thus has value ). Then, for example, the rule
for the Turing machine shown on page 78 can be given as

where the left-hand side in each case gives the state of the
head and the value of the cell under the head, and the right-
hand side consists of a triple giving the new state of the head,
the new value of the cell under the head and the
displacement of the head.

With a rule given in this form, a single step in the evolution of
the Turing machine can be implemented with the function

The evolution for many steps can then be obtained using

An alternative approach is to represent the complete state of
the Turing machine by , and then to use 

The result of  steps of evolution from a blank tape can also
be obtained from (see also page 1143)

â Number of rules. With  possible colors for each cell and 
possible states, there are a total of  possible Turing
machine rules. Often many of these rules are immediately
equivalent, or can show only very simple behavior (see
page 1120).

â Numbering scheme. One can number Turing machines and
get their rules using

The examples on page 79 have numbers 3024, 982, 925, 1971,
2506 and 1953.

â Page 79 · Counter machine. Turing machine (f) operates like
a base 2 counter: at steps where its head is at the leftmost
position, the colors of the cells correspond to the reverse of
the base 2 digit sequences of successive numbers. All possible
arrangements of colors are thus eventually produced. The
overall pattern attains width  after  steps. 

â Page 80 · Distribution of behavior. With 2 possible states
and 2 possible colors for each cell, starting from a blank
tape, the maximum repetition period obtained is 9 steps,
and 12 out of the 4096 possible rules (or about 0.29%) yield
non-repetitive behavior. With 3 states and 2 colors, the
maximum period is 24, and about 0.37% of rules yield non-
repetitive behavior, always nested. (Usually I have not
found more complicated behavior in such rules even with
initial conditions in which there are both black and white
cells, though see page 761.) With 2 states and 3 colors, the
maximum repetition period is again 24, about 0.65% of rules
yield non-repetitive behavior, and the 14 rules discussed on
page 709 yield more complex behavior. With more colors or
more states, the percentage of rules that yield non-repetitive
behavior steadily increases, as shown below, roughly like

. (Compare page 1120.)

â Page 81 · Head motion. The picture below shows the motion
of the head for the first million steps. After about 20,000
steps, the width of the pattern produced grows at a rate close
to . 

â Localized structures. Even when the overall behavior of a
Turing machine is complicated, it is possible for simple
localized structures to exist, much as in cellular automata

{list, nlist} list
nlist

{0, 0, 0} ! {1, {1, -1}}

GMAStep[rules_, {list_, nlist_}] := Module[{a, na}, {a, na} =
Transpose[Map[Replace[Take[ list, {# - 1, # + 1}], rules] &,
nlist]]; {Fold[ReplacePart[#1, Last[#2], First[#2]] &,
list, Transpose[{nlist, a}]], Union[Flatten[nlist + na]]}]

{s, list, n}
s list

n
list0n1

{{1, 0} ! {3, 1, -1}, {1, 1} ! {2, 0, 1}, {2, 0} ! {1, 1, 1},
{2, 1} ! {3, 1, 1}, {3, 0} ! {2, 1, 1}, {3, 1} ! {1, 0, -1}}

TMStep[rule_List, {s_, a_List, n_}] /; 1 < n < Length[a] :=
Apply[{#1, ReplacePart[a, #2, n], n+#3} &,

Replace[{s, a0n1}, rule]]

TMEvolveList[rule_, init_List, t_Integer] :=
NestList[TMStep[rule, #] &, init, t]

MapAt[{s, #} &, list, n]

TMStep[rule_, c_] := Replace[c,
{a___, x_, h_List, y_, b___} " Apply[{{a, x, #2, {#1, y}, b},

{a, {#1, x}, #2, y, b}}0#31 &, h /. rule]]

t

s = 1; a[_] = 0; n = 0;
Do[{s, a[n], d} = {s, a[n]} /. rule; n += d, {t}]

k s
(2 s k)s k

Flatten[MapIndexed[{1, -1} #2 + {0, k} ! {1, 1, 2}
Mod[Quotient[#1, {2 k, 2, 1}], {s, k, 2}] + {1, 0, -1} &,

Partition[IntegerDigits[n, 2 s k, s k], k], {2}]]

j 2 j - j

0.28 (s - 1) ( k - 1)

�!!!t

-1200
-1000
-800
-600
-400
-200

0

0 200,000 400,000 600,000 800,000

2
4

6
8

10

colors
2

4

6
8

10

states

0
5�%

10�%

15�%

2
4

6
8

10

colors



T H E  W O R L D  O F  S I M P L E  P R O G R A M S N O T E S  F O R  C H A P T E R  3

889

such as rule 110. What can happen is that with certain specific
repetitive backgrounds, the head can move in a simple
repetitive way, as shown in the pictures below for the Turing
machine from page 81.

such as rule 110. What can happen is that with certain specific
repetitive backgrounds, the head can move in a simple
repetitive way, as shown in the pictures below for the Turing
machine from page 81.

â History. Turing machines were invented by Alan Turing in
1936 to serve as idealized models for the basic processes of
mathematical calculation (see page 1128). As discussed on
page 1110, Turing's main interest was in showing what his
machines could in principle be made to do, not in finding out
what simple examples of them actually did. Indeed, so far as
I know, even though he had access to the necessary
technology, Turing never explicitly simulated any Turing
machine on a computer.

Since Turing’s time, Turing machines have been extensively
used as abstract models in theoretical computer science. But
in almost no cases has the explicit behavior of simple Turing
machines been considered. In the early 1960s, however,
Marvin Minsky and others did work on finding the simplest
Turing machines that could exhibit certain properties. Most
of their effort was devoted to finding ingenious constructions
for creating appropriate machines (see page 1119). But
around 1961 they did systematically study all 4096 2-state 2-
color machines, and simulated the behavior of some simple
Turing machines on a computer. They found repetitive and
nested behavior, but did not investigate enough examples to
discover the more complex behavior shown in the main text. 

As an offshoot of abstract studies of Turing machines, Tibor
Radó in 1962 formulated what he called the Busy Beaver
Problem: to find a Turing machine with a specified number of
states that “keeps busy” for as many steps as possible before
finally reaching a particular “halt state” (numbered 0 below).
(A variant of the problem asks for the maximum number of
black cells that are left when the machine halts.) By 1966 the
results for 2, 3 and 4 states had been found: the maximum
numbers of steps are 6, 21 and 107, respectively, with 4, 5 and
13 final black cells. Rules achieving these bounds are: 

The result for 5 states is still unknown, but a machine taking
47,176,870 steps and leaving 4098 black cells was found by
Heiner Marxen and Jürgen Buntrock in 1990. Its rule is:

The pictures below show (a) the first 500 steps of evolution,
(b) the first million steps in compressed form and (c) the

number of black cells obtained at each step. Perhaps not
surprisingly for a system optimized to run as long as
possible, the machine operates in a rather systematic and
regular way. With 6 states, a machine is known that takes
about  steps to halt, and leaves about

 black cells. (See also page 1144.)

Substitution Systems

â Implementation. The rule for a neighbor-independent
substitution system such as the first one on page 82 can
conveniently be given as . And with
this representation, the evolution for  steps is given by 

where in the first example on page 82, the initial condition is .

An alternative approach is to use strings, representing the
rule by  and the initial condition by

. In this case, the evolution can be obtained using 

For a neighbor-dependent substitution system such as the
first one on page 85 the rule can be given as

And with this representation, the evolution for  steps is
given by

where the initial condition for the first example on page 85 is
. 

â Page 83 · Properties. The examples shown here all appear in
quite a number of different contexts in this book. Note that
each of them in effect yields a single sequence that gets
progressively longer at each step; other rules make the colors
of elements alternate on successive steps. 

(a) (Successive digits sequence) The sequence produced is
repetitive, with the element at position  being black for 

3.002 × 101730

1.29 × 10865

0

5000

10000

15000

0 10,000,000 20,000,000 30,000,000 40,000,000 50,000,000

{1 ! {1, 0}, 0 ! {0, 1}}
t

SSEvolveList[rule_, init_List, t_Integer] :=
NestList[Flatten[# /. rule] &, init, t]

{1}

{"B" ! "BA", "A" ! "AB"}
"B"

SSEvolveList[rule_, init_String, t_Integer] :=
NestList[StringReplace[#, rule] &, init, t]

{{1, 1} ! {0, 1}, {1, 0} ! {1, 0}, {0, 1} ! {0}, {0, 0} ! {0, 1}}

t

SS2EvolveList[rule_, init_List, t_Integer] :=
NestList[Flatten[Partition[#, 2, 1] /. rule] &, init, t]

{0, 1, 1, 0}

n n
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odd and white for  even. There are a total of  elements
after  steps. The complete pattern formed by looking at all
the steps together has the same structure as the arrangement
of base 2 digits in successive numbers shown on page 117. 

(b) (Thue-Morse sequence) The color  of the element at
position  is given by . These
colors satisfy 
with . There are a total of  elements in the sequence
after  steps. The sequence on step  can be obtained from

. The number of black and
white elements at each step is always the same. All four
possible pairs of successive elements occur, though not with
equal frequency. Runs of three identical elements never
occur, and in general no block of elements can ever occur
more than twice. The first  elements in the sequence can be
obtained from (see page 1081)

The first  elements can also be obtained from (see page 1092)

The sequence occurs many times in this book; it can for
example be derived from a column of values in the rule 150
cellular automaton pattern discussed on page 885. 

(c) (Fibonacci-related sequence) The sequence at step  can be obtained
from . This
sequence has length  (or approximately )
(see note below). The color of the element at position  is given by

 (see page
904), while the position of the th white element is given by the so-
called Beatty sequence . The ratio of the
number of white elements to black at step  is

, which approaches 
for large . For all , the number of distinct
blocks of  successive elements that actually appear out of the 
possibilities is  (making it a so-called Sturmian sequence as
discussed on page 1084).

(d) (Cantor set) The color of the element at position  is given
by , which turns out
to be equivalent to

There are  elements after  steps, of which  are black. The
picture below shows the number of black cells that occur
before position . The resulting curve has a nested form, with
envelope . 

â Growth rates. The total number of elements of each color that
occur at each step in a neighbor-independent substitution
system can be found by forming the matrix  where 
gives the number of elements of color  that appear in the
block that replaces an element of color . For case (c) above,

. A list that gives the number of elements of
each color at step  can then be found from

, where  gives the initial number of
elements of each color—  for case (c) above. For large ,
the total number of elements typically grows like , where 
is the largest eigenvalue of  the relative numbers of
elements of each color are given by the corresponding
eigenvector. For case (c),  is , or .
There are exceptional cases where , so that the growth is
not exponential. For the rule ,

, and the number of elements at step 
starting with  is just . For ,

, and the number of elements
starting with  is . For neighbor-independent
rules, the growth for large  must follow an exponential or an
integer power less than the number of possible colors. For
neighbor-dependent rules, any form of growth can in principle
be obtained. 

â Fibonacci numbers. The Fibonacci numbers 
(  for short) can be generated by the recurrence relation

The first few Fibonacci numbers are: 1, 1, 2, 3, 5, 8, 13, 21, 34,
55, 89, 144, 233, 377. For large  the ratio 
approaches  or . 

 can be obtained in many ways:

ä

ä

ä

ä

ä

ä

ä

ä

A fast method for evaluating  is

Fibonacci numbers appear to have first arisen in perhaps 200
BC in work by Pingala on enumerating possible patterns of

n 2t

t

s[n]
n 1 -Mod[DigitCount[n - 1, 2, 1], 2]

s[n_] := If[EvenQ[n], 1 - s[n/2], s[( n+ 1)/2]]
s[1] = 1 2t

t t
Nest[Join[#, 1 - #] &, {1}, t - 1]

2m

(CoefficientList[Product[1 - z 2s

, {s, 0, m - 1}], z] + 1)/2

n
Mod[CoefficientList[Series[( 1+Sqrt[( 1 - 3 x)/ ( 1+ x)]) /

( 2 (1+ x)), {x, 0, n - 1}], x], 2]

t
a[t_] := Join[a[t - 1], a[t - 2]]; a[1] = {0}; a[2] = {0, 1}

Fibonacci[t + 1] 1.618t+1

n
2 - ( Floor[( n+ 1) GoldenRatio] - Floor[n GoldenRatio])

k
Floor[k GoldenRatio]

t
Fibonacci[t - 1] /Fibonacci[t - 2] GoldenRatio

t m < Fibonacci[t - 1]
m 2m

m+ 1

n
If[FreeQ[IntegerDigits[n - 1, 3], 1], 1, 0]

If[OddQ[n], Sign[Mod[Binomial[n - 1, (n - 1)/2], 3]], 0, 1]

3t t 2t

n
n^Log[3, 2]

0

20

40

60

100 200 300 400 500 600 700

m m0i, j1
j + 1
i + 1

m = {{1, 1}, {1, 0}}
t

init�.�MatrixPower[m, t] init
{1, 0} t

l t l

m;

l GoldenRatio (1+
�!!!!5 )/2

l 2 1
{0 ! {0, 1}, 1 ! {1}}

m = {{1, 1}, {0, 1}} t
{0} t {0 ! {0, 1}, 1 ! {1, 2}, 2 ! {2}}

m = {{1, 1, 0}, {0, 1, 1}, {0, 0, 1}}
{0} ( t2 - t + 2)/2

t

Fibonacci[n]
f [n]

f [n_] := f [n] = f [n - 1] + f [n - 2]

f [1] = f [2] = 1

n f [n] / f [n - 1]
GoldenRatio (1+

�!!!!5 )/2 ; 1.618

Fibonacci[n]

(GoldenRation - ( -GoldenRatio)-n)/�!!!!5

Round[GoldenRation /�!!!!5 ]

21-n Coefficient[( 1+
�!!!!5 )n, �!!!!5 ]

MatrixPower[{{1, 1}, {1, 0}}, n - 1]01, 11

Numerator[NestList[1/ (1+#) &, 1, n]]

Coefficient[Series[1/ (1 - t - t2), {t, 0, n}], tn-1]

Sum[Binomial[n - i - 1, i], {i, 0, ( n - 1)/2}]

2n-2 -Count[IntegerDigits[Range[0, 2n-2], 2], {___, 1, 1, ___}]

Fibonacci[n]

First[Fold[f , {1, 0, -1}, Rest[IntegerDigits[n, 2]]]]

f [{a_, b_, s_}, 0] = {a (a + 2 b), s + a (2 a - b), 1}

f [{a_, b_, s_}, 1] = {-s + ( a + b) ( a + 2 b), a ( a + 2 b), -1}



T H E  W O R L D  O F  S I M P L E  P R O G R A M S N O T E S  F O R  C H A P T E R  3

891

poetry formed from syllables of two lengths. They were
independently discussed by Leonardo Fibonacci in 1202 as
solutions to a mathematical puzzle concerning rabbit
breeding, and by Johannes Kepler in 1611 in connection with
approximations to the pentagon. Their recurrence relation
appears to have been understood from the early 1600s, but it
has only been in the past very few decades that they have in
general become widely discussed.

For , the value of  for which  is
.

The sequence  is always purely
repetitive; the maximum period is , achieved when

 (compare page 975).

 has the fairly complicated form shown
below. It appears to be zero only when  is of the form  or

, where  is not prime ( ).

The number  appears to have been used in art
and architecture since antiquity.  is the default

 for Mathematica graphics. In addition:

ä  is the solution to  or 

äThe right-hand rectangle in  is similar to the whole 
rectangle when the aspect ratio is  

ä

äThe ratio of the length of the diagonal to the length of a 
side in a regular pentagon is  

äThe corners of an icosahedron are at coordinates

ä  approximates 
 to  digits, as does 

äA successive angle difference of  radians yields 
points maximally separated around a circle (see page 1006).

â Lucas numbers. Lucas numbers  satisfy the same
recurrence relation  as Fibonacci
numbers, but with the initial conditions ; .
Among the relations satisfied by Lucas numbers are:

ä

ä

â Generalized Fibonacci sequences. Any linear recurrence
relation yields sequences with many properties in common

with the Fibonacci numbers—though with 
replaced by other algebraic numbers. The Perrin sequence

; ;  has the
peculiar property that  mostly but not
always only for  prime. (For more on recurrence relations
see page 128.)

â Connections with digit sequences. In a sequence generated
by a neighbor-independent substitution system the color of
the element at position  turns out always to be related to the
digit sequence of the number  in an appropriate base. The
basic reason for this is that as shown on page 84 the evolution
of the substitution system always yields a tree, and the
successive digits in  determine which branch is taken at
each level in order to reach the element at position . In cases
(a) and (b) on pages 83 and 84, the tree has two branches at
every node, and so the base 2 digits of  determine the
successive left and right branches that must be taken. Given
that a branch with a certain color has been reached, the color
of the branch to be taken next is then determined purely by
the next digit in the digit sequence of . For case (b) on pages
83 and 84, the rule that gives the color of the next branch in
terms of the color of the current branch and the next digit is

. In terms of this
rule, the color of the element at position  is given by

The rule used here can be thought of as a finite automaton
with two states. In general, the behavior of any neighbor-
independent substitution system where each element is
subdivided into exactly  elements can be reproduced by a
finite automaton with  states operating on digit sequences
in base . The nested structure of the patterns produced is
thus a direct consequence of the nesting seen in the patterns
of these digit sequences, as shown on page 117.

Note that if the rule for the finite automaton is represented
for example as  where each sublist corresponds
to a particular state, and the elements of the sublist give the
successor states with inputs , then the th

element in the output sequence can be obtained from

while the first  elements can be obtained from

To treat examples such as case (c) where elements can
subdivide into blocks of several different lengths one must
generalize the notion of digit sequences. In base  a number
is constructed from a digit sequence , , , 
(with ) according to . But
given a sequence of digits that are each 0 or 1, it is also
possible for example to construct numbers according to

m > 1 n m 2 Fibonacci[n]
Round[Log[GoldenRatio, �!!!!5 m]]

Mod[Fibonacci[n], k]
6 k

k = 10 5m

Mod[Fibonacci[n], n]
n 5m

12 q q q > 5

0

50

100

150

200

0 50 100 150 200

GoldenRatio
1/GoldenRatio

AspectRatio

GoldenRatio x 2 1+ 1/x x2 2 x + 1

GoldenRatio

Cos[p /5] 2 Cos[36 8] 2 GoldenRatio/2

GoldenRatio

Flatten[Array[NestList[RotateRight,
{0, ( -1)#1 GoldenRatio, (-1)#2}, 3] &, {2, 2}], 2]

1+ FixedPoint[N[1/ (1+#), k] &, 1]
GoldenRatio k
FixedPoint[N[Sqrt[1+#], k] &, 1]

GoldenRatio

Lucas[n]
f [n_] := f [n - 1] + f [n - 2]

f [1] = 1 f [2] = 3

Lucas[n_] := Fibonacci[n - 1] + Fibonacci[n+ 1]

GoldenRation 2 ( Lucas[n] + Fibonacci[n]�!!!!5 )/2

GoldenRatio

f [n_] := f [n - 2] + f [n - 3] f [0] = 3; f [1] = 0 f [2] = 2
Mod[f [n], n] 2 0

n

n
n

n
n

n

n

{{0, 0} ! 0, {0, 1} ! 1, {1, 0} ! 1, {1, 1} ! 0}
n

Fold[Replace[{#1, #2}, rule] &, 1, IntegerDigits[n - 1, 2]]

k
k

k

{{1, 2}, {2, 1}}

Range[0, k - 1] n

Fold[rule0#1, #21 &, 1, IntegerDigits[n - 1, k] + 1] - 1

km

Nest[Flatten[rule0#1] &, 1, m] - 1

k
a[r] ? a[1] a[0]

0 < a[ i] < k Sum[a[ i] k i, {i, 0, r}]
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. (As discussed on page
1070, this representation is unique so long as one does not
allow any pairs of adjacent 1’s in the digit sequence.) It then
turns out that if one expresses the position  as a
generalized digit sequence of this kind, then the color of the
corresponding element in substitution system (c) is just the
last digit in this sequence.

â Connections with square roots. Substitution systems such
as (c) above are related to projections of lines with quadratic
irrational slopes, as discussed on page 904.

â Spectra of substitution systems. See page 1080. 

â Representation by paths. An alternative to representing
substitution systems by 1D sequences of black and white
squares is to use 2D paths consisting of sequences of left and
right turns. The paths obtained at successive steps for rule (b)
above are shown below. 

The pictures below show paths obtained with the rule
, starting from . Note the similarity

to the 2D system shown on page 190. 

When the paths do not cross themselves, nested structure is
evident. But in a case like the rule 
starting with , the presence of many crossings tends to
hide such regularity, as in the pictures below. 

â Paperfolding sequences. The sequence of up and down
creases in a strip of paper that is successively folded in half
is given by a substitution system; after  steps the sequence
turns out to be .
The corresponding path (effectively obtained by making
each crease a right angle) is shown below. (See page 189.)

â 2D representations. Individual sequences from 1D
substitution systems can be displayed in 2D by breaking
them into a succession of rows. The pictures below show
results for the substitution systems on page 83. In case (b),
with rows chosen to be  elements in length, the leftmost
column will always be identical to the beginning of the
sequence, and in addition every interior element will be
black exactly when the cell at the top of its column has the
same color as the one at the beginning of its row. In case (c),
stripes appear at angles related to .

â Page 84 · Other examples. 

(a) (Period-doubling sequence) After  steps, there are a total of
 elements, and the sequence is given by

. It contains a total
of  black elements, and if the last element is
dropped, it forms a palindrome. The th element is given by

. As discussed on page 885, the
sequence appears in a vertical column of cellular automaton
rule 150. The Thue-Morse sequence discussed on page 890
can be obtained from it by applying 

(b) The th element is simply .

(c) Same as (a), after the replacement  in each
sequence. Note that the spectra of (a) and (c) are nevertheless
different, as discussed on page 1080. 

(d) The length of the sequence at step  satisfies
, so that 

for . The number of white elements at step  is then
. Much like example (c) on page 83 there are

 distinct blocks of length , and with
 the th element of the

sequence is given by  (see page 903).

Sum[a[ i] Fibonacci[ i + 2], {i, 0, r}]

n

{1 ! {1}, 0 ! {0, 0, 1}} {0}

{1 ! {0, 0, 1}, 0 ! {1, 0}}
{1}

t
NestList[Join[#, {0}, Reverse[1 - #]] &, {0}, t]

2j

GoldenRatio

t
2t

Nest[MapAt[1 - # &, Join[#, #], -1] &, {0}, t]
Round[2t /3]

n
Mod[IntegerExponent[n, 2], 2]

1 -Mod[Flatten[Partition[FoldList[Plus, 0, list], 1, 2]], 2]

n Mod[n, 2]

1 ! {1, 1}

t
a[t] 2 2 a[t - 1] + a[t - 2] a[t] = Round[( 1+

�!!!!2 )t-1 /2]
t > 1 t

Round[a[t] /�!!!!2 ]

m+ 1 m
f = Floor[( 1 - 1/�!!!!2 ) (# + 1/�!!!!2 )] & n

f [n+ 1] - f [n]

(a) (b) (c) (d)
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(e) For large  the number of elements increases like  with
; there are always  times as many white

elements as black ones. 

(f) The number of elements at step  is , and
the th element is given by  (see
page 903).

(g) The number of elements is the same as in (f). 

(h) The number of black elements is ; the total number of
elements is . 

(i) and (j) The total number of elements is . 

â History. In their various representations, 1D substitution
systems have been invented independently many times for
many different purposes. (For the history of fractals and 2D
substitution systems see page 934.) Viewed as generators of
sequences with certain combinatorial properties, substitution
systems such as example (b) on page 83 appeared in the work
of Axel Thue in 1906. (Thue’s stated purpose in this work
was to develop the science of logic by finding difficult
problems with possible connections to number theory.) The
sequence of example (b) was rediscovered by Marston Morse
in 1917 in connection with his development of symbolic
dynamics—and in finding what could happen in discrete
approximations to continuous systems. Studies of general
neighbor-independent substitution systems (sometimes
under such names as sequence homomorphisms, iterated
morphisms and uniform tag systems) have continued in this
context to this day. In addition, particularly since the 1980s,
they have been studied in the context of formal language
theory and the so-called combinatorics of words. (Period-
doubling phenomena also led to contact with physics starting
in the late 1970s.)

Independent of work in symbolic dynamics, substitution
systems viewed as generators of sequences were reinvented
in 1968 by Aristid Lindenmayer under the name of L systems
for the purpose of constructing models of branching plants
(see page 1005). So-called 0L systems correspond to my
neighbor-independent substitution systems; 1L systems
correspond to the neighbor-dependent substitution systems
on page 85. Work on L systems has proceeded along two
quite different lines: modelling specific plant systems, and
investigating general computational capabilities. In the mid-
1980s, particularly through the work of Alvy Ray Smith, L
systems became widely used for realistic renderings of plants
in computer graphics.

The idea of constructing abstract trees such as family trees
according to definite rules presumably goes back to antiquity.

The tree representation of rule (c) from page 83 was for
example probably drawn by Leonardo Fibonacci in 1202. 

The first six levels of the specific pattern in example (a) on
page 83 correspond exactly to the segregation diagram for
the I Ching that arose in China as early as 2000 BC. Black
regions represent yin and white ones yang. The elements on
level six correspond to the 64 hexagrams of the I Ching. At
what time the segregation diagram was first drawn is not
clear, but it was almost certainly before 1000 AD, and in the
1600s it appears to have influenced Gottfried Leibniz in his
development of base 2 numbers. 

Viewed in terms of digit sequences, example (d) from page 83
was discussed by Georg Cantor in 1883 in connection with his
investigations of the idea of continuity. General relations
between digit sequences and sequences produced by neighbor-
independent substitution systems were found in the 1960s.
Connections of sequences such as (c) to algebraic numbers (see
page 903) arose in precursors to studies of wavelets. 

Paths representing sequences from 1D substitution systems can
be generated by 2D geometrical substitution systems, as on
page 189. The “C” curve shown on the facing page and on page
190 was for example described by Paul Lévy in 1937, and was
rediscovered as the output of a simple computer program by
William Gosper in the 1960s. Paperfolding or so-called dragon
curves (as shown above) were discussed by John Heighway in
the mid-1960s, and were analyzed by Chandler Davis, Donald
Knuth and others. These curves have the property that they
eventually fill space. Space-filling curves based on slightly more
complicated substitution systems were already discussed by
Giuseppe Peano in 1890 and by David Hilbert in 1891 in
connection with questions about the foundations of calculus.

Sequences from substitution systems have no doubt
appeared over the years as incidental features of great many
pieces of mathematical work. As early as 1851, for example,
Eugène Prouhet showed that if sequences of integers were
partitioned according to sequence (b) on page 83, then sums
of powers of these integers would be equal: thus

 is equal for  and 
if  is a sequence of the form (b) on page 83 with length ,

. The optimal solution to the Towers of Hanoi puzzle
invented in 1883 also turns out to be an example of a
substitution system sequence.

Sequential Substitution Systems

â Implementation. Sequential substitution systems can be
implemented quite directly by using Mathematica’s standard

t lt

l = (�!!!!!!!13 + 1)/2 l

t Round[( 1+
�!!!!2 )t /2]

n Floor[�!!!!2 (n+ 1)] - Floor[�!!!!2 n]

2t-1

2t-2 ( t + 1)

3t-1

Apply[Plus, Flatten[Position[s, i]]k] i = 0 i = 1
s 2m

m > k
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mechanism for applying transformation rules to symbolic
expressions. Having made the definition

the state of a sequential substitution system at a particular
step can be represented by a symbolic expression such as

. The rule on page 82 can then be given simply as

while the rule on page 85 becomes

The  attribute of  makes these rules apply not only for
example to the whole sequence  but also to any
subsequence such as . (With  being ,

 is equivalent to  and so on. A
 function has the mathematical property of being

associative.) And with this setup,  steps of evolution can be
found with

Note that as an alternative to having  be , one can
explicitly set up rules based on patterns such as

. And by using rules such as
 one can

keep track of the positions at which substitutions are made.
(  replaces all occurrences of a given substring,
not just the first one, so cannot be used directly as an
alternative to having a flat function.) 

â Capabilities. Even with the single rule , a
sequential substitution system can sort its initial conditions
so that all 0’s occur before all 1’s. (See also page 1113.)

â Order of replacements. For many sequential substitution
systems the evolution effectively stops because a string is
produced to which none of the replacements given apply. In
most sequential substitution systems there is more than one
possible replacement that can in principle apply at a
particular step, so the order in which the replacements are
tried matters. (Multiway systems discussed on page 497 are
what result if all possible replacements are performed at each
step.) There are however special sequential substitution
systems (those with the so-called confluence property
discussed on page 1036) in which in a certain sense the order
of replacements does not matter. 

â History. Sequential substitution systems are closely related
to the multiway systems discussed on page 938, and are often
considered examples of production systems or string
rewriting systems. In the form I discuss here, they seem to
have arisen first under the name “normal algorithms” in the
work of Andrei Markov in the late 1940s on computability
and the idealization of mathematical processes. Starting in

the 1960s text editors like TECO and ed used sequential
substitution system rules, as have string-processing
languages such as SNOBOL and perl. Mathematica uses an
analog of sequential substitution system rules to transform
general symbolic expressions. The fact that new rules can be
added to a sequential substitution system incrementally
without changing its basic structure has made such systems
popular in studies of adaptive programming.

Tag Systems

â Implementation. With the rules for case (a) on page 94 given
for example by

the evolution of a tag system can be obtained from

An alternative implementation is based on applying to the
list at each step rules such as

There are a total of  possible rules if blocks
up to length  can be added at each step and  colors are
allowed. For ,  and  this is 50,625. 

â Page 94 · Randomness. To get some idea of the randomness
of the behavior, one can look at the sequence of first elements
produced on successive steps. In case (a), the fraction of black
elements fluctuates around 1/2; in (b) it approaches 3/4; in
(d) it fluctuates around near 0.3548, while in (e) and (f) it does
not appear to stabilize. 

â History. The tag systems that I consider are generalizations
of those first discussed by Emil Post in 1920 as simple
idealizations of certain syntactic reduction rules in Alfred
Whitehead and Bertrand Russell’s Principia Mathematica (see
page 1149). Post’s tag systems differ from mine in that his
allow the choice of block that is added at each step to
depend only on the very first element in the sequence at
that step (see however page 670). (The lag systems studied
in 1963 by Hao Wang allow dependence on more than just
the first element, but remove only the first element.) It turns
out that in order to get complex behavior in such systems,
one needs either to allow more than two possible colors for
each element, or to remove more than two elements from
the beginning of the sequence at each step. Around 1921,
Post apparently studied all tag systems of his type that
involve removal and addition of no more than two elements
at each step, and he concluded that none of them produced
complicated behavior. But then he looked at rules that

Attributes[s] = Flat

s[1, 0, 1, 0]

s[1, 0] ! s[0, 1, 0]

{s[0, 1, 0] ! s[0, 0, 1], s[0] ! s[0, 1, 0]}

Flat s
s[1, 0, 1, 0]

s[1, 0] s Flat
s[s[1, 0], 1, s[0]] s[1, 0, 1, 0]
Flat

t

SSSEvolveList[rule_, init_s, t_Integer] :=
NestList[# /. rule &, init, t]

s Flat

s[x___, 1, 0, y___] ! s[x, 0, 1, 0, y]
s[x___, 1, 0, y___] " {s[x, 0, 1, 0, y], Length[s[x]]}

StringReplace

{s[1, 0] ! s[0, 1]}

{2, {{0, 0} ! {1, 1}, {1, 0} ! {}, {0, 1} ! {1, 0}, {1, 1} ! {0, 0, 0}}}

TSEvolveList[{n_, rule_}, init_, t_] := NestList[If[Length[#] <
n, {}, Join[Drop[#, n], Take[#, n] /. rule]] &, init, t]

{{0, 0, s___} ! {s, 1, 1}, {1, 0, s___} ! {s},
{0, 1, s___} ! {s, 1, 0}, {1, 1, s___} ! {s, 0, 0, 0}}

( ( k r+1 - 1)/ ( k - 1))kn

r k
r = 3 k = 2 n = 2
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remove three elements at each step, and he discovered the
rule . As he noted,
the behavior of this rule varies considerably with the initial
conditions used. But at least for all the initial conditions up
to length 28, the rule eventually just leads to behavior that
repeats with a period of 1, 2, 6, 10, 28 or 40. With more than
two colors, one finds that rules of Post’s type which remove
just two elements at each step can yield complex behavior,
even starting from an initial condition such as . An
example is .
(See also pages 1113 and 1141.)

Cyclic Tag Systems

â Implementation. With the rules for the cyclic tag system on
page 95 given as , the evolution can be obtained
from

The leading elements on many more than  successive steps
can be obtained directly from

â Page 95 · Generalizations. The implementation above
immediately allows cyclic tag systems which cycle through a
list of more than two blocks. (With just one block the
behavior is always repetitive.) Cyclic tag systems which
allow any value for each element can be obtained by adding
the rule

The leading elements in this case can be obtained using

â Mechanical implementation. Cyclic tag systems admit a
particularly straightforward mechanical implementation.
Black and white balls are kept in a trough as in the picture
below. At each step the leftmost ball in the trough is released,
and if this ball is black (as determined, for example, by size) a
mechanism causes a new block of balls to be added at the
right-hand end of the trough. This mechanism can work in

several ways; typically it will involve a rotary element that
determines which case of the rule to use at each step. Rule (e)
from the main text allows a particularly simple supply of
new balls. Note that the system will inevitably fail if the
trough overflows with balls. 

â Page 96 · Properties. Assuming that black and white
elements occur in an uncorrelated way, then the sequences in
a cyclic tag system with  blocks should grow by an average
of  elements at each step. With

 blocks, this means that growth can occur only if the
total number of black elements in both blocks is more than 3.
Rules such as  and  therefore yield
repetitive behavior with sequences of limited length. 

Note that if all blocks in a cyclic tag system with  blocks
have lengths divisible by , then one can tell in advance on
which steps blocks will be added, and the overall behavior
obtained must correspond to a neighbor-independent
substitution system. The rules for the relevant substitution
system may however depend on the initial conditions for the
cyclic tag system. 

gives for example the Thue-Morse substitution system
.

In example (a), the elements are correlated, so that slower
growth occurs than in the estimate above. In example (c), the
elements are again correlated: the growth is by an average of

 elements at each step, and the first
elements on alternate steps form the same nested sequence as
obtained from the substitution system . In
example (d), the frequency of 1’s among the first elements of
sequence is approximately 3/4;  never occurs, and the
frequency of  is approximately 1/2. In example (e), the
frequency of 1’s is again about 3/4, but now  occurs
with frequency 0.05,  occurs with frequency 0.55, while

 and  cannot occur. 

â History. Cyclic tag systems were studied by Matthew Cook
in 1994 in connection with working on the rule 110 cellular
automaton for this book. The sequence 
defined by the property  was
suggested as a mathematical puzzle by William Kolakoski in
1965 and is equivalent to

It is known that this sequence does not repeat, contains no
more than two identical consecutive blocks, and has at least
very close to equal numbers of 1’s and 2’s. Replacing 2 by 3
yields a sequence which has a fairly simple nested form. 

{3, {{0, _, _} ! {0, 0}, {1, _, _} ! {1, 1, 0, 1}}}

{0, 0}
{2, {{0, _} ! {2, 1}, {1, _} ! {0}, {2, _} ! {0, 2, 1, 2}}}

{{1, 1}, {1, 0}}

CTEvolveList[rules_, init_, t_] :=
Map[Last, NestList[CTStep, {rules, init}, t]]

CTStep[{{r_, s___}, {0, a___}}] := {{s, r}, {a}}

CTStep[{{r_, s___}, {1, a___}}] := {{s, r}, Join[{a}, r]}

CTStep[{u_, {}}] := {u, {}}

t

CTList[rules_, init_, t_] :=
Flatten[Map[Last, NestList[CTListStep, {rules, init}, t]]]

CTListStep[{rules_, list_}] :=
{RotateLeft[rules, Length[ list]], Flatten[rules0

Mod[Flatten[Position[ list, 1]], Length[rules], 1]1]}

CTStep[{{r_, s___}, {n_, a___}}] :=
{{s, r}, Flatten[{a, Table[r, {n}]}]}

CTListStep[{rules_, list_}] :=
{RotateLeft[rules, Length[ list]], With[{n = Length[rules]},

Flatten[Apply[Table[#1, {#2}] &, Map[Transpose[
{rules, #}] &, Partition[ list, n, n, 1, 0]], {2}]]]}

n
Count[Flatten[rules], 1] /n - 1

n = 2

{{1, 0}, {0, 1}} {{1, 1}, {0}}

n
n

Flatten[{1, 0, CTList[{{1, 0, 0, 1}, {0, 1, 1, 0}}, {0, 1}, t]}]

{1 ! {1, 0}, 0 ! {0, 1}}

(�!!!!5 - 1)/2 ; 0.618

{1 ! {1, 0}, 0 ! {1}}

{0, 0}
{1, 1}

{0, 0}
{1, 1}

{0, 0, 0} {0, 1, 0}

{1, 2, 2, 1, 1, 2, ?}

list 2 Map[Length, Split[ list]]

Join[{1, 2}, Map[First, CTEvolveList[{{1}, {2}}, {2}, t]]]
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Register Machines

â Implementation. The state of a register machine at a
particular step can be represented by the pair , where

 gives the position in the program of current instruction
being executed (the “program counter”) and  gives the
values of the registers. The program for the register machine
on page 99 can then be given as

where  represents an increment instruction, and  a
decrement jump.

With this setup, the evolution of any register machine can be
implemented using the functions (a typical initial condition is

)

The total number of possible programs of length  using 
registers is . Note that by prepending suitable 
instructions one can effectively set up initial conditions with
arbitrary values in registers.

â Halting. It is sometimes convenient to think of register
machines as going into a special halt state if they try to
execute instructions beyond the end of their program. (See
page 1137.) The fraction of possible register machines that do
this starting from initial condition  decreases
steadily with program length , reaching about 0.76 for .
The most common number of steps before halting is always

, while the maximum numbers of steps for  up to 8 is
 where in the last case this is

achieved by

â Page 101 · Extended instruction sets. One can consider also
including instructions such as

Note that by being able to add and subtract only 1 at each step,
the register machines shown in the main text necessarily operate
quite slowly: they always take at least  steps to build up a
number of size . But while extending the instruction set can
increase the speed of operations, it does not appear to yield a
much larger density of machines with complex behavior.

â History. Register machines (also known as counter
machines and program machines) are a fairly obvious
idealization of practical computers, and have been invented
in slightly different forms several times. Early uses of them
were made by John Shepherdson and Howard Sturgis
around 1959 and Marvin Minsky around 1960. Somewhat
similar constructs were part of Kurt Gödel’s 1931 work on
representing logic within arithmetic (see page 1158). 

â Page 102 · Random programs. See page 1182. 

Symbolic Systems

â Implementation. The evolution for  steps of the first
symbolic system shown can be implemented simply by

â Symbolic expressions. Expressions like  and  that
give values of functions are familiar from mathematics and
from typical computer languages. Expressions like 
giving compositions of functions are also familiar. But in
general, as in Mathematica, it is possible to have expressions in
which the head  in  can itself be any expression—not just
a single symbol. Thus for example ,  and

 are all possible expressions. And these kinds of
expressions often arise in Mathematica when one manipulates
functions as a whole before applying them to arguments.
(  for example gives  which is .)
(In principle one can imagine representing all objects with
forms such as  by so-called currying as , and
indeed I tried this in the early 1980s in SMP. But although this
can be convenient when  is a discrete function such as a
matrix, it is inconsistent with general mathematical and other
usage in which for example  and  are
both treated as values of functions.) 

â Representations. Among the representations that can be
used for expressions are: 

Typical transformation rules are non-local in all these
representations. Polish representation (whose reverse form
has been used in HP calculators) for an expression can be
obtained using (see also page 1173)

{n, list}
n

list

{i[1], d[2, 1], i[2], d[1, 3], d[2, 1]}

i[_] d[_, _]

{1, {0, 0}}
RMStep[prog_, {n_Integer, list_List}] := If[n > Length[prog],

{n, list}, RMExecute[prog0n1, {n, list}]]
RMExecute[ i[r_], {n_, list_}] := {n+ 1, MapAt[# + 1 &, list, r]}

RMExecute[d[r_, m_], {n_, list_}] :=
If[ list0r1 > 0, {m, MapAt[# - 1 &, list, r]}, {n+ 1, list}]

RMEvolveList[prog_, init : {_Integer, _List}, t_Integer] :=
NestList[RMStep[prog, #] &, init, t]

n k
(k (1+ n))n i[r]

{1, {0, 0}}
n n = 8

n n
{1, 3, 5, 10, 16, 37, 215, 1280}

{i[1], d[2, 7], d[2, 1], i[2], i[2], d[1, 4], i[1], d[2, 3]}

RMExecute[eq[r1_, r2_, m_], {n_, list_}] :=
If[ list0r11 2 list0r21, {m, list}, {n+ 1, list}]

RMExecute[add[r1_, r2_], {n_, list_}] :=
{n+ 1, ReplacePart[ list, list0r11+ list0r21, r1]}

RMExecute[ jmp[r1_], {n_, list_}] := {list0r11, list}

n
n

t

NestList[# /. −[x_][y_] ! x[x[y]] &, init, t]

Log[x] f [x]

f [g[x]]

h h[x]
f [g][x] f [g[h]][x]

f [g][h][x]

$xx f [x] f �[x] Derivative[2][f][x]

f [x, y] f [x][y]

f

Gamma[x] Gamma[a, x]

Flatten[expr //. x_[y_] ! {¬, x, y}]

a[b[c[d]]]

{�, a, �, b, �, c, d}

a�� �(b�� �(c�� �d))

{a, {b, {c, d}}}

a[b][c[d]]

{�, �, a, b, �, c, d}

(a�� �b)�� �(c�� �d)

{{a, b}, {c, d}}

a[b[c][d]]

{�, a, �, �, b, c, d}

a�� �( (b�� �c)�� �d)

{a, {{b, c}, d}}

a[b][c][d]

{�, �, �, a, b, c, d}

( (a�� �b)�� �c)�� �d

{{{a, b}, c}, d}

functional

Polish

operator

tree

a
b

a
d c

d

abc
a b

c
c d

d b
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The original expression can be recovered using

(Pictures of symbolic system evolution made with Polish
notation differ in detail but look qualitatively similar to those
made as in the main text with functional notation.)

The tree representation of an expression can be obtained
using , and when each object has just
one argument, the tree is binary, as in LISP. 

If only a single symbol ever appears, then all that matters is
the overall structure of an expression, which can be captured
as in the main text by the sequence of opening and closing
brackets, given by

â Possible expressions.  gives the number of
symbols that appear anywhere in an expression, while

 gives the number of closing brackets at the end
of its functional representation—equal to the number of
levels in the rightmost branch of the tree representation. (The
maximum number of levels in the tree can be computed from

.) 

With a list  of possible symbols,  gives all possible
expressions with :

There are a total of  such
expressions. When  the expressions correspond
to possible balanced sequences of opening and closing
brackets (see page 989).

â Page 103 · Properties. All initial conditions eventually evolve to
expressions of the form , which then remain fixed.
The quantity  turns out to remain
constant through the evolution, so this gives the final value of 
for any initial condition. The maximum is 
(compare page 906), achieved for initial conditions of the form

. (By analogy with page 1122 any  expression
can be interpreted as a Church numeral

, so that 
evolves to .) During the evolution the rule can apply
only to the inner part 
of an expression. The depth of this inner part for initial condition

 is shown below. For all initial conditions this
depth seems at first to increase linearly, then to decrease in a
nested way according to

This quantity alternates between value  at position  and
value  at position . It reaches a fixed point as soon as

the depth reaches 0. For initial conditions of size , this
occurs after at most  steps.
(See also page 1145.) 

â Other rules. If only a single variable appears in the rule,
then typically only nested behavior can be generated—
though in an example like  it can be
quite complex. The left-hand side of each rule can consist of
any expression;  and  are two
possibilities. However, at least with small initial conditions it
seems easier to achieve complex behavior with rules based
on . Note that rules with no explicit ’s on the left-
hand side always give trees with regular nested structures;

 (or  in Mathematica), for
example, yields balanced binary trees.

â Long halting times. Symbolic systems with rules of the form
 always evolve to fixed points—

though with initial conditions of size  this can take of order
 steps (see above). In general there will be

symbolic systems where the number of steps to evolve to a
fixed point grows arbitrarily rapidly with  (see page 1145),
and indeed I suspect that there are even systems with quite
simple rules where proving that a fixed point is always
reached in a finite number of steps is beyond, for example,
the axiom system for arithmetic (see page 1163).

â Trees. The rules given on pages 103 and 104 correspond to
the transformations on trees shown below.

The first few steps in evolution from two initial conditions
of the system on page 103 correspond to the sequences of
trees below.

First[Reverse[ list] //. {w___, x_, y_, ¬, z___} ! {w, y[x], z}]

expr //. x_[y_] ! {x, y}

Flatten[Characters[ToString[expr ]] /.
{"[ " ! 1, "]" ! 0, "−" ! {}}]

LeafCount[expr]

Depth[expr]

expr /. _Symbol ! 1 //. x_[y_] ! 1+Max[x, y]

s c[s, n]
LeafCount[expr] 2 n

c[s_, 1] = s; c[s_, n_] := Flatten[
Table[Outer[#1[#2] &, c[s, n -m], c[s, m]], {m, n - 1}]]

Binomial[2 n - 2, n - 1] Length[s]n /n
Length[s] 2 1

Nest[−, −, m]

expr //. {− ! 0, x_[y_] ! 2x + y}
m

Nest[2# &, 0, n]

Nest[#[−] &, −, n] −

u = expr //. {− ! 2, x_[y_] ! y x} = 22m
expr[a][b]

Nest[a, b, u]
FixedPoint[Replace[#, −[x_] ! x] &, expr]

−[−][−][−][−][−]

FoldList[Plus, 0, Flatten[Table[
{1, 1, Table[-1, {IntegerExponent[ i, 2] + 1}]}, {i, m}]]]

1 2j

j 2 j - j + 1

n
Sum[Nest[2# &, 0, i] - 1, {i, n}] + 1

0

10

20

30

0 20,000 40,000 60,000

−[x_][_] ! −[x[−[−][−]][−]]

−[−[x_]][y_] −[−][x_[y_]]

−[x_][y_] −

x_[y_] ! x[y][x[y]] x_ ! x[x]

−[x_][y_] ! Nest[x, y, r]
n

Nest[r # &, 0, n]

n

− x y x
−y

x
− x y x y − y − x y x

y− −

− x y x y x − x y −
x−y−

− x y x x y

− x y −
y x

− −
−

−[−][−][−]

−[−[−][−]][−][−]
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â Order dependence. The operation  in
Mathematica has the effect of scanning the functional
representation of  from left to right, and applying rules
whenever possible while avoiding overlaps. (Standard
evaluation in Mathematica is equivalent to  and
uses the same ordering, while  uses a different order.)
One can have a rule be applied only once using

Many symbolic systems (including the one on page 103) have
the so-called Church-Rosser property (see page 1036) which
implies that if a fixed point is reached in the evolution of the
system, this fixed point will be the same regardless of the
order in which rules are applied. 

â History. Symbolic systems of the general type I discuss here
seem to have first arisen in 1920 in the work of Moses
Schönfinkel on what became known as combinators. As
discussed on page 1121 Schönfinkel introduced certain specific
rules that he suggested could be used to build up functions
defined in logic. Beginning in the 1930s there were a variety of
theoretical studies of how logic and mathematics could be set
up with combinators, notably by Haskell Curry. For the most
part, however, only Schönfinkel’s specific rules were ever
used, and only rather specific forms of behavior were
investigated. In the 1970s and 1980s there was interest in using
combinators as a basis for compilation of functional
programming languages, but only fairly specific situations of
immediate practical relevance were considered. (Combinators
have also been used as logic recreations, notably by Raymond
Smullyan.)

Constructs like combinators appear to have almost never been
studied in mainstream pure mathematics. Most likely the reason
is that building up functions on the basis of the structure of
symbolic expressions has never seemed to have much obvious
correspondence to the traditional mathematical view of
functions as mappings. And in fact even in mathematical logic,
combinators have usually not been considered mainstream.
Most likely the reason is that ever since the work of Bertrand
Russell in the early 1900s it has generally been assumed that it is
desirable to distinguish a hierarchy of different types of
functions and objects—analogous to the different types of data
supported in most programming languages. But combinators
are set up not to have any restrictions associated with types.
And it turns out that among programming languages
Mathematica is almost unique in also having this same feature.
And from experience with Mathematica it is now clear that
having a symbolic system which—like combinators—has no
built-in notion of types allows great generality and flexibility.
(One can always set up the analog of types by having rules only
for expressions whose heads have particular structures.)

â Operator systems. One can generalize symbolic systems by
having rules that define transformations for any Mathematica
pattern. Often these can be thought of as one-way versions of
axioms for operator systems (see page 1172), but applied only
once per step (as  does), rather than in all possible ways (as
in a multiway system)—so that the evolution is just given by

. The rule  then for example
generates a balanced binary tree. The pictures below show
the patterns of opening and closing parentheses obtained
from operator system evolution rules in a few cases.

â Network analogs. The state of a symbolic system can always
be viewed as corresponding to a tree. If a more general
network is allowed then rules based on analogs of network
substitution systems from page 508 can be used. (One can
also construct an infinite tree from a general network by
following all its possible paths, as on page 277, but in most
cases there will be no simple way to apply symbolic system
rules to such a tree.)

How the Discoveries in This Chapter Were Made

â Page 109 · Repeatability and numerical analysis. The discrete
nature of the systems that I consider in most of this book
makes it almost inevitable that computer experiments on them
will be perfectly repeatable. But if, as in the past, one tries to do
computer experiments on continuous mathematical systems,
then the situation can be different. For in such cases one must
inevitably make discrete approximations for the underlying
representation of numbers and for the operations that one
performs on them. And in many practical situations, one relies
for these approximations on “machine arithmetic”—which can
differ from one computer system to another.

â Page 109 · Studying simple systems. Over the years, I have
watched with disappointment the continuing failure of most
scientists and mathematicians to grasp the idea of doing
computer experiments on the simplest possible systems.
Those with physical science backgrounds tend to add
features to their systems in an attempt to produce some kind
of presumed realism. And those with mathematical
backgrounds tend to add features to make their systems fit in
with complicated and abstract ideas—often related to
continuity—that exist in modern mathematics. The result of
all this has been that remarkably few truly meaningful
computer experiments have ended up ever being done. 

expr /. lhs ! rhs

expr

expr //. rules
Map

Module[{i = 1}, expr /. lhs " rhs /; i ++ 2 1]

/.

NestList[# /. rule &, init, t] x_ ! x Æx

x_ ! x Æx x_Æy_ ! (y Æx)Æy x_Æy_ ! (y Æy)Æ (x Æx) x_Æy_ ! y Æ (x Æx)
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â Page 111 · The relevance of theorems. Following traditional
mathematical thinking, one might imagine that the best way
to be certain about what could possibly happen in some
particular system would be to prove a theorem about it. But
in my experience, proofs tend to be subject to many of the
same kinds of problems as computer experiments: it is easy
to end up making implicit assumptions that can be violated
by circumstances one cannot foresee. And indeed, by now I
have come to trust the correctness of conclusions based on
simple systematic computer experiments much more than I
trust all but the simplest proofs. 

â Attitudes of mathematicians. Mathematicians often seem to
feel that computer experimentation is somehow less precise
than their standard mathematical methods. It is true that in
studying questions related to continuous mathematics,
imprecise numerical approximations have often been made
when computers are used (see above). But discrete or
symbolic computations can be absolutely precise. And in a
sense presenting a particular object found by experiment
(such as a cellular automaton whose evolution shows some
particular property) can be viewed as a constructive
existence proof for such an object. In doing mathematics
there is often the idea that proofs should explain the result
they prove—and one might not think this could be achieved
if one just presents an object with certain properties. But
being able to look in detail at how such an object works will
in many cases provide a much better understanding than a
standard abstract mathematical proof. And inevitably it is
much easier to find new results by the experimental
approach than by the traditional approach based on proofs. 

â History of experimental mathematics. The general idea of
finding mathematical results by doing computational
experiments has a distinguished, if not widely discussed,
history. The method was extensively used, for example, by
Carl Friedrich Gauss in the 1800s in his studies of number
theory, and presumably by Srinivasa Ramanujan in the early
1900s in coming up with many algebraic identities. The
Gibbs phenomenon in Fourier analysis was noticed in 1898
on a mechanical computer constructed by Albert Michelson.
Solitons were rediscovered in experiments done around
1954 on an early electronic computer by Enrico Fermi and
collaborators. (They had been seen in physical systems by
John Scott Russell in 1834, but had not been widely

investigated.) The chaos phenomenon was noted in a
computer experiment by Edward Lorenz in 1962 (see page
971). Universal behavior in iterated maps (see page 921) was
discovered by Mitchell Feigenbaum in 1975 by looking at
examples from an electronic calculator. Many aspects of
fractals were found by Benoit Mandelbrot in the 1970s using
computer graphics. In the 1960s and 1970s a variety of
algebraic identities were found using computer algebra,
notably by William Gosper. (Starting in the mid-1970s I
routinely did computer algebra experiments to find
formulas in theoretical physics—though I did not mention
this when presenting the formulas.) The idea that as a
matter of principle there should be truths in mathematics
that can only be reached by some form of inductive
reasoning—like in natural science—was discussed by Kurt
Gödel in the 1940s and by Gregory Chaitin in the 1970s. But
it received little attention. With the release of Mathematica in
1988, mathematical experiments began to emerge as a
standard element of practical mathematical pedagogy, and
gradually also as an approach to be tried in at least some
types of mathematical research, especially ones close to
number theory. But even now, unlike essentially all other
branches of science, mainstream mathematics continues to
be entirely dominated by theoretical rather than
experimental methods. And even when experiments are
done, their purpose is essentially always just to provide
another way to look at traditional questions in traditional
mathematical systems. What I do in this book—and started
in the early 1980s—is, however, rather different: I use
computer experiments to look at questions and systems that
can be viewed as having a mathematical character, yet have
never in the past been considered in any way by traditional
mathematics. 

â Page 113 · Practicalities. The investigations described in this
chapter were done using Mathematica, mostly in 1992. For
larger searches, I sometimes created optimized C programs
that were controlled via MathLink from within Mathematica—
though with the versions of Mathematica that exist today this
would now be unnecessary. For my very largest searches, I
used Mathematica to dispatch programs to a large number of
different computers on a network, then had the computers
send me email whenever they found interesting results. (See
also page 854.)
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NOTES FOR CHAPTER 4

Systems Based on Numbers

The Notion of Numbers

â Implementation of digit sequences. A whole number  can
be converted to a sequence of digits in base  using

 or (see also page 1094)

and from a sequence of digits using  or 

For a number  between 0 and 1, the first  digits in its digit
sequence in base  are given by  or 

and from these digits one can reconstruct an approximation
to the number using  or 

â Gray code. In looking at digit sequences, it is sometimes useful
to consider ordering numbers by a criterion other than their
size. An example is Gray code ordering, in which successive
numbers are arranged to differ in only one digit. One possible
such ordering for numbers with a total of  digits is

The succession of sizes and digit sequences of numbers
ordered in this way are shown below. (Note that the digit
sequence picture is turned on its side relative to those in the
main text). The number which appears at position  is given
by . (Iterating the related function

 yields numbers whose digit sequences
correspond to the rule 60 cellular automaton).

â A note for mathematicians. Some mathematicians will at
first find what I say in this chapter quite bizarre. It may help

however to point out that the traditional view of numbers
already shows signs of breaking down in many studies of
dynamical systems done over the past few decades. Thus for
example, instead of getting results in terms of continuous
functions, Cantor sets very often appear. Indeed, the
symbolic dynamics approach that is often used in dynamical
systems theory is quite close to the digit sequence approach I
use here—Markov partitions in dynamical systems theory
are essentially just generalizations of digit expansions.

However, in the cases that are analyzed in dynamical systems
theory, only shifts and other very simple operations are
typically performed on digit sequences. And as a result, most
of the phenomena that I discuss in this chapter have not been
seen in work done in dynamical systems theory.

â History of numbers. Numbers were probably first used
many thousands of years ago in commerce, and initially only
whole numbers and perhaps rational numbers were needed.
But already in Babylonian times, practical problems of
geometry began to require square roots. Nevertheless, for a
very long time, and despite some development of algebra,
only numbers that could somehow in principle be
constructed mechanically were ever considered. The
invention of fluxions by Isaac Newton in the late 1600s,
however, introduced the idea of continuous variables—
numbers with a continuous range of possible sizes. But while
this was a convenient and powerful notion, it also involved a
new level of abstraction, and it brought with it considerable
confusion about fundamental issues. In fact, it was really
only through the development of rigorous mathematical
analysis in the late 1800s that this confusion finally began to
clear up. And already by the 1880s Georg Cantor and others
had constructed completely discontinuous functions, in
which the idea of treating numbers as continuous variables
where only the size matters was called into question. But
until almost the 1970s, and the emergence of fractal geometry
and chaos theory, these functions were largely considered as

n
k
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x m
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Floor[k NestList[Mod[k #, 1] &, x, m - 1]]
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Fold[#1/k +#2 &, 0, Reverse[ list]] / k

m
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Nest[Join[#, Length[#] +Reverse[#]] &, {0}, m]

i
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mathematical curiosities, of no practical relevance. (See also
page 1168.)

Independent of pure mathematics, however, practical
applications of numbers have always had to go beyond the
abstract idealization of continuous variables. For whether
one does calculations by hand, by mechanical calculator or
by electronic computer, one always needs an explicit
representation for numbers, typically in terms of a sequence
of digits of a certain length. (From the 1930s to 1960s, some
work was done on so-called analog computers which used
electrical voltages to represent continuous variables, but such
machines turned out not to be reliable enough for most
practical purposes.) From the earliest days of electronic
computing, however, great efforts were made to try to
approximate a continuum of numbers as closely as possible.
And indeed for studying systems with fairly simple behavior,
such approximations can typically be made to work. But as
we shall see later in this chapter, with more complex
behavior, it is almost inevitable that the approximation
breaks down, and there is no choice but to look at the explicit
representations of numbers. (See also page 1128.)

â History of digit sequences. On an abacus or similar device
numbers are in effect represented by digit sequences. In
antiquity however most systems for writing numbers were
like the Roman one and not based on digit sequences. An
exception was the Babylonian base 60 system (from which
hours:minutes:seconds notation derives). The Hindu-Arabic
base 10 system in its modern form probably originated
around 600 AD, and particularly following the work of
Leonardo Fibonacci in the early 1200s, became common by
the 1400s. Base 2 appears to have first been considered
explicitly in the early 1600s (notably by John Napier in 1617),
and was studied in detail by Gottfried Leibniz starting in
1679. The possibility of arbitrary bases was stated by Blaise
Pascal in 1658. Various bases were used in puzzles, but rarely
in pure mathematics (work by Georg Cantor in the 1860s
being an exception). The first widespread use of base 2 was in
electronic computers, starting in the late 1940s. Even in the
1980s digit sequences were viewed by most mathematicians
as largely irrelevant for pure mathematical purposes. The
study of fractals and nesting, the appearance of many
algorithms involving digit sequences and the routine use of
long numbers in Mathematica have however gradually made
digit sequences be seen as more central to mathematics.

Elementary Arithmetic

â Page 117 · Substitution systems. There are many connections
between digit sequences and substitution systems, as

discussed on page 891. The pattern shown here is essentially
a rotated version of the pattern generated by the first
substitution system on page 83. 

â Page 117 · Digit counts. The number of black squares on row
 in the pattern shown here is given by 

and is plotted below. This function appeared on page 870 in
the discussion of binomial coefficients modulo 2, and will
appear again in several other places in this book. Note the
inequality . Formulas for

 include  and 

Straightforward generalizations of  can be defined
for integer and non-integer bases and by looking not only at
the total number of digits but also at correlations between
digits. In all cases the analogs of the picture below have a
nested structure. 

â Negative bases. Given a suitable list of digits from 0 to 
one can obtain any positive or negative number using

. The picture below shows the digit
sequences of successive numbers in base -2; the row  from
the bottom turns out to consist of alternating black and white
blocks of length . (In ordinary base 2 a number  can be
represented as on a typical electronic computer by
complementing each digit, including leading 0’s.) (See also
page 1093.)

â Non-power bases. One can consider representing numbers
by  where the  need not be .
So long as  grows less rapidly than  (as when

 or ), digits 0 and 1 will suffice,
though the representation is not generally unique. (See
page 1070.)

â Multiplicative digit sequences. One can consider
generalizations of digit sequences in which numbers are
broken into parts combined not by addition but by
multiplication. Since numbers can be factored uniquely into
products of powers of primes, a number can be specified by a
list in which 1’s appear at the positions of the appropriate

 (which can be sorted by size) and 0’s appear
elsewhere, as shown below. Note that unlike the case of
ordinary additive digits, far more than  digits are
required to specify a number . 

n DigitCount[n, 2, 1]

1 < DigitCount[n, 2, 1] < Log[2, n]
DigitCount[n, 2, 1] n - IntegerExponent[n!, 2]

2 n - Log[2, Denominator[Derivative[n][( 1 - #)-1/2 &][0] /n!]]

DigitCount

4 8 16 32 64 128

0
1
2
3
4
5
6
7

k - 1

FromDigits[ list, -k]
j

2 j -n

-42 -10 0 5 21 85

Sum[a[n] f [n], {n, 0, ¥}] f [n] kn

f [n] 2n

f = Fibonacci f = Prime

Prime[m]n

Log[m]

m
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â Page 120 · Powers of three in base 2. The th row in the
pattern shown can be obtained simply as .
Even such individual rows seem in many respects random.
The picture below shows the fraction of 1’s that appear on
successive rows. The fraction seems to tend to 1/2. 

If one looks only at the rightmost  columns of the pattern,
one sees repetition—but the period of the repetition grows
like . Typical vertical columns have one obvious deviation
from randomness: it is twice as probable for the same colors
to occur on successive steps than for opposite colors. (For
multiplier  in base , the relative frequencies of pairs 
are given by .)

The sequence  obtained from the rightmost 
digits corresponds to a simple linear congruential
pseudorandom number generator. Such generators are
widely used in practical computer systems, as discussed
further on page 974. (Note that in the particular case used
here, pairs of numbers  always lie on
lines; with multipliers other than 3, such regularities may
occur for longer blocks of numbers.)

Note that if one uses base 6 rather than base 2, then as shown
on page 614 powers of 3 still yield a complicated pattern, but
all operations are strictly local, and the system corresponds to
a cellular automaton with 6 possible colors for each cell and
rule  (see page 1093). 

â Leading digits. In base  the leading digits of powers are
not equally probable, but follow the logarithmic law from
page 914. 

â Page 122 · Powers of 3/2. The th value shown in the plot
here is . Measurements suggest that these
values are uniformly distributed in the range 0 to 1, but
despite a fair amount of mathematical work since the 1940s,
there has been no substantial progress towards proving this. 

In base 6,  is a cellular automaton with rule

(Note that this rule is invertible.) Looking at  then
corresponds to studying the cellular automaton with an initial

condition given by the base 6 digits of . It is then possible to
find special values of  (an example is 0.166669170371...)
which make the first digit in the fractional part of 
always nonzero, so that . In general, it
seems that  can be kept as large as about 
(e.g. with ) but no larger.

â General powers. It has been known in principle since the
1930s that  is uniformly distributed in the range 0
to 1 for almost all values of . However, no specific value of 
for which this is true has ever been explicitly found. (Some
attempts to construct such values were made in the 1970s.)
Exceptions are known to include so-called Pisot numbers
such as ,  and  (the
numerically smallest of all Pisot numbers) for which

 becomes 0 or 1 for large . Note that 
effectively extracts successive digits of  in base  (see pages
149 and 919).

â Multiples of irrational numbers. Instead of powers one can
consider successive multiples  of a number . The
pictures below show results obtained as a function of  for
various choices of . (These correspond to positions of a
particle bouncing around in an idealized box, as discussed on
pages 971 and 1022.)

When  is a rational number, the sequence always repeats.
But in all other cases, the sequence does not repeat, and in
fact it is known that a uniform distribution of values is
obtained. (The average difference of successive values is
maximized for , as mentioned on page 891.)

â Relation to substitution systems. Despite the uniform
distribution result in the note above, the sequence

 is definitely not completely
random, and can in fact be generated by a sequence of
substitution rules. The first  rules (which yield far more
than  elements of the original sequence) are obtained for
any  that is not a rational number from the continued
fraction form (see page 914) of  by 

Given these rules, the original sequence is given by

If  is the solution to a quadratic equation, then the continued
fraction form is repetitive, and so there are a limited number
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of different substitution rules. In this case, therefore, the
original sequence can be found by a neighbor-independent
substitution system of the kind discussed on page 82. For

 the substitution system is 
(see page 890), for  it is  (see
page 892) and for  it is .
(The presence of nested structure is particularly evident in

.) (See also
pages 892, 916, 932 and 1084.) 

â Other uniformly distributed sequences. Cases in which
 is uniformly distributed include , ,

, ,  and  (  irrational)
and probably . (See also page 914.) 

â Page 122 · Implementation. The evolution for  steps of the
system at the top of the page can be computed simply by 

â Page 122 · The 3n+1 problem. The system described here is
similar to the so-called  problem, in which one looks at
the rule  and asks whether
for any initial value of  the system eventually evolves to 1
(and thereafter simply repeats the sequence 1, 2, 1, 2, ...). It
has been observed that this happens for all initial values of 
up to at least , but despite a fair amount of mathematical
effort since the problem was first posed in the 1930s, no
general proof for all values of  has ever been found. (For
negative initial , the evolution appears always to reach -1, -5
or -17, and then repeat with periods 1, 3 or 11 respectively.)
An alternative formulation is to ask whether for all 

With the rule  used in the
main text, the sequence produced repeats if  ever reaches 2,
4 or 40 (and possibly higher numbers). But with initial
values of  up to 10,000, this happens in only 642 cases, and
with values up to 100,000 it happens in only 2683 cases. In
all other cases, the values of  in the sequence appear to
grow forever.

To get some idea about the origin of this behavior, one can
assume that successive values of  are randomly even and odd
with equal probability. And with this assumption,  should
increase by a factor of 5/2 half the time, and decrease by a factor
close to 1/2 the rest of the time—so that after  steps it should be
multiplied by an overall factor of about . Starting with

, the effective exponents for  are
. One reason

that all sequences do not grow forever is that even with perfect
randomness, there will be fluctuations, and occasionally  will
reach a low value that makes it get stuck in a repetitive
sequence.

If one applies the same kind of argument to the standard
 problem, then one concludes that  should on average

decrease by a factor of  at each step, making it
unsurprising that at least in most cases  eventually reaches
the value 1. Indeed, averaging over many initial values of ,
there is good quantitative agreement between the predictions
of the randomness approximation and the actual 
problem. But since there is no fundamental basis for the
randomness approximation, it is still conceivable that a
particular value of  exists that does not follow its
predictions.

The pictures below show how many steps are needed to
reach value 1 starting from different values of . Case (a) is
the standard  problem. Cases (b) and (c) use somewhat
different rules that yield considerably simpler behavior. In
case (b), the number of steps is equal to the number of base 2
digits in , while in case (c) it is determined by the number of
1’s in the base 2 digit sequence of .

â 3n+1 problem as cellular automaton. If one writes the digits
of  in base 6, then the rule for updating the digit sequence is
a cellular automaton with 7 possible colors (color 6 works as
an end marker that appears to the left and right of the actual
digit sequence):

The  problem can then be viewed as a question about
the existence of persistent structure in this cellular
automaton. 

â Reconstructing initial conditions. Given a particular starting
value of , it is difficult to predict what precise sequence of even
and odd values will be obtained in the system on page 122. But
given  steps in this sequence as a list of 0’s and 1’s, the
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following function will reconstruct the rightmost  digits in the
starting value of :

â A reversible system. In both the ordinary  problem
and in the systems discussed in the main text different
numbers often evolve to the same value so that there is no
unique way to reverse the evolution. However, with the rule 

it is always possible to go backwards by the rule

The picture shows the number of base 10 digits in numbers
obtained by backward and forward evolution from . For

, the system always enters a short cycle. Starting at ,
there is also a length 12 cycle. But apart from these cycles, the
numbers produced always seem to grow without bound at an
average rate of  in the forward direction, and 
in the backward direction (at least all numbers up to 10,000
grow to above 10100). Approximately one number in 20 has the
property that evolution either backward or forward from it
never leads to a smaller number.

â Page 125 · Reversal-addition systems. The operation that is
performed here is 

After a few steps, the digit sequence obtained is typically
reversal symmetric (a generalized palindrome) except for the
interchange of 0 and 1, and for the presence of localized
structures. The sequence expands by at least one digit every two
steps; more rapid expansion is typically correlated with
increased randomness. For most initial , the overall pattern
obtained quickly becomes repetitive, with an effective period of
4 steps. But with the initial condition , no repetition
occurs for at least a million steps, at which point  has 568418
base 2 digits. The plot below shows the lengths of the successive
regions of regularity visible on the right-hand edge of the
picture on page 126 over the course of the first million steps.

If one works directly with a digit sequence of fixed length,
dropping any carries on the left, then a repetitive pattern is
typically obtained fairly quickly. If one always includes one

new digit on the left at every step, even when it is 0, then a
rather random pattern is produced.

â History. Systems similar to the one described here (though
often in base 10) were mentioned in the recreational
mathematics literature at least as long ago as 1939. A few small
computer experiments were done around 1970, but no large-
scale investigations seem to have previously been made.

â Digit reversal. Sequences of the form 

shown below appear in algorithms such as the fast Fourier
transform and, with different values of  for different
coordinates, in certain quasi-Monte Carlo schemes. (See
pages 1073 and 1085.) Such sequences were considered by
Johannes van der Corput in 1935. 

â Iterated run-length encoding. Starting say with  consider
repeatedly replacing  by (see page 1070) 

The resulting sequences contain only the numbers 1, 2 and 3,
but otherwise at first appear fairly random. However, as
noticed by John Conway around 1986, the sequences can
actually be obtained by a neighbor-independent substitution
system, acting on 92 subsequences, with rules such as

.
The system thus in the end produces patterns that are purely
nested, though formed from rather complicated elements.
The length of the sequence at the th step grows like ,
where  is the root of a degree 71 polynomial,
corresponding to the largest eigenvalue of the transition
matrix for the substitution system. 

â Digit count sequences. Starting say with  repeatedly
replace  by

The resulting sequences grow in length roughly like .
The picture below shows the fluctuations around  of the
cumulative number of 1’s up to position  in the sequence
obtained at step 1000. A definite nested structure similar to
picture (c) on page 130 is evident. 
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â Iterated bitwise operations. The pictures below show digit
sequences generated by repeatedly applying combinations of
bitwise and arithmetic operations. The first example
corresponds to elementary cellular automaton rule 60. Note
that any cellular automaton rule can be reproduced by some
appropriate combination of bitwise and arithmetic
operations. 

Recursive Sequences

â Page 128 · Recurrence relations. The rules for the sequences
given here all have the form of linear recurrence relations. An
explicit formula for the th term in each sequence can be
found by solving the algebraic equation obtained by
applying the replacement  to the recurrence
relation. (In case (e), for example, the equation is

.) Note that (d) is the Fibonacci sequence,
discussed on page 890.

Standard examples of recursive sequences that do not come
from linear recurrence relations include factorial

and Ackermann functions (see below). These two sequences
both grow rapidly, but smoothly. 
A recurrence relation like 

corresponds to an iterated map of the kind discussed on page
920, and has complicated behavior for many rational . 

â Ackermann functions. A convenient example is

The original function constructed by Wilhelm Ackermann
around 1926 is essentially 

or

For successive  (following the so-called Grzegorczyk
hierarchy) this is , , , , .... 
can also be written  and is sometimes
called tetration and denoted .

â Page 129 ·  Computation of sequences. It is straightforward
to compute the various sequences given here, but to avoid a
rapid increase in computer time, it is essential to store all the

values of  that one has already computed, rather than
recomputing them every time they are needed. This is
achieved for example by the definitions 

The question of which recursive definitions yield
meaningful sequences can depend on the details of how the
rules are applied. For example,  may occur, but if the
complete expression is , then the actual value of

 is irrelevant. The default form of evaluation for
recursive functions implemented by all standard computer
languages (including Mathematica) is the so-called leftmost
innermost scheme, which attempts to find explicit values for
each  that occurs first, and will therefore never notice if

 in fact occurs only in the combination . (The
SMP system that I built around 1980 allowed different
schemes—but they rarely seemed useful and were difficult
to understand.) 

â Page 131 · Properties of sequences. Sequence (d) is given by 

The list of elements in the sequence up to value  is given by 

The differences between the first  of these elements is

The largest  for which  is given by
 or 

(this satisfies ).

The form of sequence (c) is similar to that obtained from
concatenation numbers on page 913. Hump  in the picture
of sequence (c) shown is given by

The first  elements in the sequence can also be generated
in terms of reordered base 2 digit sequences by

Note that the positive and negative fluctuations in sequence
(f) are not completely random: although the probability for
individual fluctuations in each direction seems to be the
same, the probability for two positive fluctuations in a row is
smaller than for two negative fluctuations in a row.

In the sequences discussed here,  always has the form
. The plots at the top of the next page show

 and  as a function of . 

n

f [m_] ! tm

tn 2 -tn-1 + tn-2

f [1] = 1; f [n_] := n f [n - 1]

f [0] = x; f [n_] := a f [n - 1] ( 1 - f [n - 1])

x

f [1, n_] := n; f [m_, 1] := f [m - 1, 2]

f [m_, n_] := f [m - 1, f [m, n - 1] + 1]

f [1, x_, y_] := x + y;
f [m_, x_, y_] := Nest[f [m - 1, x, #] &, x, y - 1]

f [m_, x_, y_] :=
Nest[Function[z, Nest[#1, x, z - 1]] &, x +# &, m - 1][y]

m
x + y x y xy Nest[x# &, 1, y] f [4, x, y]

Array[x &, y, 1, Power]
xàày

f [n]

f [n_] := f [n] = f [n - f [n - 1]] + f [n - f [n - 2]]

f [1] = f [2] = 1

f [-1]
f [-1] - f [-1]

f [-1]

f [k]
f [k] f [k] - f [k]

f [n_] := (n+ g[IntegerDigits[n, 2]]) /2

g[{( 1) ..}] = 1; g[{1, (0) ..}] = 0

g[{1, s__}] := 1+ g[IntegerDigits[FromDigits[{s}, 2] + 1, 2]]

m

Flatten[Table[Table[n, {IntegerExponent[n, 2] + 1}], {n, m}]]

2 (2k - 1)

Nest[Replace[#, {x___} ! {x, 1, x, 0}] &, {}, k]

n f [n] 2 m
2 m+ 1 -DigitCount[m, 2, 1] IntegerExponent[( 2 m)!, 2] + 1

h[1] = 2; h[m_] := h[Floor[m/2]] +m

m

FoldList[Plus, 0, Flatten[Nest[Delete[NestList[Rest, #,
Length[#] - 1], 2] &, Append[Table[1, {m}], 0], m]] - 1/2]

2m

FoldList[Plus, 1, Map[Last[Last[#]] &,
Sort[Table[( {Length[#], Apply[Plus, #], 1 - #} &)[

IntegerDigits[ i, 2]], {i, 2m}]]]]

f [n_]
f [p[n]] + f [q[n]]
p[n] q[n] n

BitXor[2 n, n] BitXor[3 + 2 n, n] BitXor[3 n, n] BitXor[6 n, n] BitOr[2 n, n] BitOr[6 n, n]
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The process of evaluating  for a particular  can be
thought of as yielding a tree where each node is a particular

 which has two successors,  and . The
distinct nodes reached starting from  for sequence (f)
are then for example . The total
lengths of these chains (corresponding to the depth of the
evaluation tree) seem to increase roughly like  for all
the rules on this page. For the Fibonacci sequence, it is
instead . The maximum number of distinct nodes at any
level in the tree has large fluctuations but its peaks seem to
increase roughly linearly for all the rules on this page (in the
Fibonacci case it is ).

â History. The idea of sequences in which later terms are
deduced from earlier ones existed in antiquity, notably in the
method of induction and in various approximation schemes
(compare page 918). The Fibonacci sequence also appears to
have arisen in antiquity (see page 890). A fairly clear idea of
integer recurrence relations has existed since about the 1600s,
but until very recently mainstream mathematics has almost
never investigated them. In the late 1800s and early 1900s
issues about the foundations of mathematics (see note below)
led to the formal definition of so-called recursive functions.
But almost without exception the emphasis was on studying
what such functions could in principle do, not on looking at
the actual behavior of particular ones. And indeed, despite
their simple forms, recursive sequences of the kind I discuss
here do not for the most part ever appear to have been
studied before—although sequence (c) was mentioned in
lectures by John Conway around 1988, and the first 17 terms
of sequence (e) were given by Douglas Hofstadter in 1979.

â Primitive recursive functions. As part of trying to formalize
foundations of arithmetic Richard Dedekind began around
1888 to discuss possible functions that could be defined using
recursion (induction). By the 1920s there had then emerged a
definite notion of primitive recursive functions. The proof of
Gödel’s Theorem in 1931 made use of both primitive and
general recursive functions—and by the mid-1930s emphasis
had shifted to discussion of general recursive functions. 

Primitive recursive functions are defined to deal with non-
negative integers and to be set up by combining the basic
functions  (zero),  (successor) and

 (projection) using the operations of
composition and primitive recursion

 and  can then for example be defined as

Most familiar integer mathematical functions also turn out to
be primitive recursive—examples being , ,

,  and . And indeed in the early 1900s it
was thought that perhaps any function that could reasonably
be computed would be primitive recursive (see page 1125).
But the construction in the late 1920s of the Ackermann
function  discussed above showed that this was not
correct. For any primitive recursive function can grow for
large  at most like  with fixed . Yet  will
always eventually grow faster than this—demonstrating that
the whole Ackermann function cannot be primitive
recursive. (See page 1162.)

A crucial feature of primitive recursive functions is that the
number of steps they take to evaluate is always limited, and
can always in effect be determined in advance, since the basic
operation of primitive recursion can be unwound simply as

And what this means is that any computation that for
example fundamentally involves a search that might not
terminate cannot be implemented by a primitive recursive
function. General recursive functions, however, also allow 

which can perform unbounded searches. (Ordinary
primitive recursive functions are always total functions, that
give definite values for every possible input. But general
recursive functions can be partial functions, that do not
terminate for some inputs.) As discussed on page 1121 it
turns out that general recursive functions are universal, so
that they can be used to represent any possible computable
function. (Note that any general recursive function can be
expressed in the form  where  and  are primitive
recursive.)

In enumerating recursive functions it is convenient to use
symbolic definitions for composition and primitive recursion

where the more efficient unwound form is

And in terms of these, for example, . 

f [n] n

f [k] f [p[k]] f [q[k]]
f [12]

{{12}, {3, 7}, {1, 2, 4}, {1, 2}, {1}}

Log[n]

n - 1

Ceiling[n/2]

z = 0 & s = # + 1 &

p[ i_] := Slot[ i] &

f [0, y___Integer] := g[y]

f [x_Integer, y___Integer] := h[f [x - 1, y], x - 1, y]

Plus Times

plus[0, y_] = y; plus[x_, y_] := s[plus[x - 1, y]]

times[0, y_] = 0; times[x_, y_] := plus[times[x - 1, y], y]

Power Mod
Binomial GCD Prime

f [m, x, y]

x f [m, x, x] m f [x, x, x]

f [x_, y___] := Fold[h[#1, #2, y] &, g[y], Range[0, x - 1]]

m[f_] = NestWhile[# + 1 &, 0, Function[n, f [n, ##1] 9 0]] &

c[f , m[g]] f g

c[g_, h___] = Apply[g, Through[{h}[##]]] &

r[g_, h_] =
If[#1 2 0, g[##2], h[#0[#1 - 1, ##2], #1 - 1, ##2]] &

r[g_, h_] = Fold[Function[{u, v}, h[u, v, ##2]],
g[##2], Range[0, # - 1]] &

plus = r[p[1], s]
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The total number of recursive functions grows roughly
exponentially in the size ( ) of such expressions, and
roughly linearly in the number of arguments.

Most randomly selected primitive recursive functions show
very simple behavior—either constant or linearly increasing
when fed successive integers as arguments. The smallest
examples that show other behavior are: 

ä , which is , with quadratic 
growth

ä , which is , with exponential 
growth

ä , which is , 
which shows very simple nesting

ä , which is , with repetitive 
behavior 

ä  which is 
, growing like 

. 

 is the first function to show
significantly more complex behavior, and indeed as the picture
below indicates, it already shows remarkable randomness.
From its definition, the function can be written as

Its first zeros are at .

Each zero is immediately followed by a maximum equal to ,
and as picture below shows, values tend to accumulate for
example on lines of the form . 

Note that functions of the form 
are given in terms of the original Ackermann function in the
note above by . 

Before the example above one might have thought that
primitive recursive functions would always have to show
rather simple behavior. But already an immediate
counterexample is . And it turns out that if they never
sample values below  the functions in the main text are
also all primitive recursive. (Their definitions have a

primitive recursive structure, but to operate correctly they
must be given integers that are non-negative.) 

Among functions with simple explicit definitions, essentially
the only examples known fundamentally to be not primitive
recursive are ones closely related to the Ackermann
function. But given an enumeration of primitive recursive
functions (say ordered first by , then with ) in
which the th function is  diagonalization (see page
1128) yields the function  shown below which
cannot be primitive recursive. It is inevitable that the
function shown must eventually grow faster than any
primitive recursive function (at  its value is 63190,
while at  it is 1073844). But by reducing the results
modulo 2 one gets a function that does not grow—and has
seemingly quite random behavior—yet is presumably again
not primitive recursive.

(Note that multiple arguments to a recursive function can be
encoded as a single argument using functions like the  of
page 1120—though the irregularity of such functions tends to
make it difficult then to tell what is going on in the
underlying recursive function.)

â Ulam sequences. Slightly more complicated definitions in
terms of numbers yield all sorts of sequences with very
complicated forms. An example suggested by Stanislaw
Ulam around 1960 (in a peculiar attempt to get a 1D analog
of a 2D cellular automaton; see pages 877 and 928) starts
with , then successively appends the smallest number
that is the sum of two previous numbers in just one way,
yielding 

With this initial condition, the sequence is known to go on
forever. At least up to  terms, it increases roughly
like , but as shown below the fluctuations seem
random. 

The Sequence of Primes

â History of primes. Whether the Babylonians had the notion
of primes is not clear, but before 400 BC the Pythagoreans
had introduced primes as numbers of objects that can be

LeafCount

r[z, r[s, s]] 1/2 # (# + 1) &

r[z, r[s, c[s, s]]] 2#+1 - # - 2 &
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r[z, r[c[s, z], z]] Mod[#, 2] &

r[z, r[s, r[s, s]]]
Fold[1/2 #1 (#1+ 1) +#2 &, 0, Range[#]] &
22x

r[z, r[s, r[s, r[s, p[2]]]]]
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arranged only in a single line, and not in any other
rectangular array. Around 300 BC Euclid discussed various
properties of primes in his Elements, giving for example a
proof that there are an infinity of primes. The sieve of
Eratosthenes was described in 200 BC, apparently following
ideas of Plato. Then starting in the early 1600s various
methods for factoring were developed, and conjectures
about formulas for primes were made. Pierre Fermat
suggested  as a source for primes and Marin
Mersenne  (see page 911). In 1752 Christian
Goldbach showed that no ordinary polynomial could
generate only primes, though as pointed out by Leonhard
Euler  does so for . (With  or 
included there are at least complicated cases known where
polynomial-like formulas can be set up whose evaluation
corresponds to explicit prime-generating procedures—see
page 1162.) Starting around 1800 extensive work was done
on analytical approximations to the distribution of primes
(see below). There continued to be slow progress in finding
specific large primes;  was found prime around 1750
and  in 1876. (  was found composite in 1732,
as have now all  for .) Then starting in the
1950s with the use of electronic computers many new large
primes were found. The number of digits in the largest
known prime has historically increased roughly
exponentially with time over the past two decades, with a
prime of over 4 million digits ( ) now being
known (see page 911). 

â Page 132 · Finding primes. The sieve of Eratosthenes
shown in the picture is an appropriate procedure if one
wants to find every prime, but testing whether an
individual number is prime can be done much more
efficiently, as in  in Mathematica, for example by
using Fermat’s so-called little theorem that 
whenever  is prime. The th prime  can also be
computed fairly efficiently using ideas from analytic
number theory (see below). 

â Decimation systems. A somewhat similar system starts with
a line of cells, then at each step removes every th cell that
remains, as in the pictures below. The number of steps for
which a cell at position  will survive can be computed as

If a cell is going to survive for  steps, then it turns out that
this can be determined by looking at the last  digits in the
base  representation of its position. For , a cell
survives for  steps if these digits are all 0 (so that
s== ). But for , no such simple
characterization appears to exist.

If the cells are arranged on a circle of size , the question of
which cell is removed last is the so-called Josephus problem.
The solution is , or

 for .

â Page 132 · Divisors. The picture below shows as black
squares the divisors of each successive number (which
correspond to the gray dots in the picture in the main text).
Primes have divisors 1 and  only. (See also pages 902
and 747.)

â Page 133 · Results about primes.  is given
approximately by . (  is
22,801,763,489 while the approximation gives .) A
first approximation to  is . A somewhat
better approximation is , equal to

. This was found empirically by
Carl Friedrich Gauss in 1792, based on looking at a table of
primes. (  is 50,847,534 while  is
about 50,849,235.) A still better approximation is obtained by
subtracting  where the  are
the complex zeros of the Riemann zeta function ,
discussed on page 918. According to the Riemann
Hypothesis, the difference between  and

 is of order . More refined analytical
estimates of  are good enough that they are used
by Mathematica to compute  for large . 

It is known that the ratio of the number of primes of the form
 and  asymptotically approaches 1, but almost

nothing has been proved about the fluctuations.

The gap between successive primes  is
thought to grow on average at most like . It is
known that for sufficiently large  a gap of any size must
exist. It is believed but not proved that there are an infinite
number of “twin primes” with a gap of exactly 2. 

â History of number theory. Most areas of mathematics go
from inception to maturity within at most a century. But in

22n
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s
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number theory there are questions that were formulated
more than 2000 years ago (such as whether any odd perfect
numbers exist) that have still not been answered. Of the
principles that have been established in number theory, a
great many were first revealed by explicit experiments.
From its inception in classical times, through its
development in the 1600s to 1800s, number theory was
largely separate from other fields of mathematics. But
starting at the end of the 1800s, increasing connections were
found to other areas of both continuous and discrete
mathematics. And through these connections, sophisticated
proofs of such results as Fermat’s Last Theorem—open for
350 years—have been constructed. Long considered a rather
esoteric branch of mathematics, number theory has in recent
years grown in practical importance through its use in areas
such as coding theory, cryptography and statistical
mechanics. Properties of numbers and certain elementary
aspects of number theory have also always played a central
role in amateur and recreational mathematics. And as this
chapter indicates, number theory can also be used to
provide many examples of the basic phenomena discussed
in this book.

â Page 134 · Tables of primes. No explicit tables of primes
appear to have survived from antiquity, but it seems likely
that all primes up to somewhere between 5000 and 10000
were known. (In 348 BC, Plato mentioned divisors of 5040,
and by 100 AD there is evidence that the fifth perfect number
was known, requiring the knowledge that 8191 is prime.) In
1202 Leonardo Fibonacci explicitly gave as an example a list
of primes up to 100. And by the mid-1600s there were printed
tables of primes up to 100,000, containing as much data as in
plots (c) and (d). In the 1700s and 1800s many tables of
number factorizations were constructed; by the 1770s there
was a table up to 2 million, and by the 1860s up to 100
million. A table of primes up to a trillion could now be
generated fairly easily with current computer technology—
though for most purposes computation of specific primes is
more useful.

â Page 134 · Numbers of primes. The fact that curve (c) must
cross the axis was proved by John Littlewood in 1914, and it
is known to have at least one crossing below 10317. Somewhat
related to the curves shown here is the function

, equal to 0 if  has a repeated prime factor and
otherwise . The quantity

 behaves very
much like a random walk. The so-called Mertens Conjecture
from 1897 stated that the magnitude of this quantity is less
than . But this was disproved in 1983, although the
necessary  is not known explicitly. 

â Relative primes. A single number is prime if it has no non-
trivial factors. Two numbers are said to be relatively prime if
they share no non-trivial factors. The pattern formed by
numbers with this property is shown on page 613. 

â Page 135 · Properties. (a) The number of divisors of  is
given by , equal to . For
large  this number is on average of order

. 

(b) (Aliquot sums) The quantity that is plotted is
, equal to .

This quantity was considered of great significance in
antiquity, particularly by the Pythagoreans. Numbers were
known as abundant, deficient or perfect depending on
whether the quantity was positive, negative or zero. (See
notes on perfect numbers below.) For large ,

 is known to grow at most like
, and on average like 

(see page 1093). As discovered by Srinivasa Ramanujan in
1918 its fluctuations (see below) can be obtained from the
formula

(c) Squares are taken to be of positive or negative integers, or
zero. The number of ways of expressing an integer  as the
sum of two such squares is .
This is nonzero when all prime factors of  of the form 
appear with even exponents. There is no known simple
formula for the number of ways of expressing an integer as a
sum of three squares, although part of the condition in the
main text for integers to be expressible in this way was
established by René Descartes in 1638 and the rest by Adrien
Legendre in 1798. Note that the total number of integers less
than  which can be expressed as a sum of three squares
increases roughly like , with fluctuations related to

. It is known that the directions of all
vectors  for which  are uniformly
distributed in the limit of large .

The total number of ways that integers less than  can be
expressed as a sum of  squares is equal to the number of
integer lattice points that lie inside a sphere of radius  in

-dimensional space. For , this approaches  for large
, with an error of order , where . 

(d) All numbers  can be expressed as the sum of four squares,
in exactly 
ways, as established by Carl Jacobi in 1829. Edward Waring
stated in 1770 that any number can be expressed as a sum of at
most 9 cubes and 19 fourth powers. Seven cubes appear to
suffice for all but 17 numbers, the last of which is 455; four
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cubes may suffice for all but 113936676 numbers, the last of
which is 7373170279850. (See also page 1166.)

(e) Goldbach’s Conjecture has been verified for all even
numbers up to . In 1973 it was proved that any
even number can be written as the sum of a prime and a
number that has at most two prime factors, not necessarily
distinct. The number of ways of writing an integer  as a
sum of two primes can be calculated explicitly as

.
This quantity was conjectured by G. H. Hardy and John
Littlewood in 1922 to be proportional to 

It was proved in 1937 by Ivan Vinogradov that any large odd
integer can be expressed as a sum of three primes.

â Trapezoidal primes. If one lays out  objects in an 
rectangular array, then  is prime if either  or  must be .
Following the Pythagorean idea of figurate numbers one can
instead consider laying out objects in an array of  rows,
containing successively , , … objects. It turns out all
numbers except powers of 2 can be represented this way.

â Other integer functions.  gives nested
behavior as for decimation systems on page 909, while

 and  yield more
complicated behavior, as shown on pages 257 and 1093. 

â Spectra. The pictures below show frequency spectra
obtained from the sequences in the main text. Some
regularity is evident, and in cases (a) and (b) it can be
understood from trigonometric sum formulas of Ramanujan
discussed above (see also pages 586 and 1081).

â Perfect numbers. Perfect numbers with the property that
 have been studied since at least

the time of Pythagoras around 500 BC. The first few perfect
numbers are  (a total of 39 are
currently known). It was shown by Euclid in 300 BC that

 is a perfect number whenever  is prime.
Leonhard Euler then proved around 1780 that every even
perfect number must have this form. The values of  for the
known Mersenne primes  are shown below. These values
can be found using the so-called Lucas-Lehmer test

, and in all cases  itself
must be prime.

 

 

Whether any odd perfect numbers exist is probably the single
oldest unsolved problem in mathematics. It is known that any odd
perfect number must be greater than , must have a factor of at
least , and must be less than  if it has only  prime factors.
Looking at curve (b) on page 135, however, it does not seem
inconceivable that an odd perfect number could exist. For odd  up
to 500 million the only values near 0 that appear in the curve are

, with, for example, the first 6
occurring at  and last 18 occurring at .
Various generalizations of perfect numbers have been considered,
requiring for example 
(pluperfect) or  (quasiperfect). 

â Iterated aliquot sums. Related to case (b) above is a system
which repeats the replacement 
or equivalently . The fixed points of
this procedure are the perfect numbers (see above). Other
numbers usually evolve to perfect numbers, or to short
repetitive sequences of numbers. But if one starts, for
example, with the number 276, then the picture below shows
the number of base 10 digits in the value obtained at each
step.

After 500 steps, the value is the 53-digit number
39448887705043893375102470161238803295318090278129552

The question of whether such values can increase forever was
considered by Eugène Catalan in 1887, and has remained
unresolved since.

Mathematical Constants

â Page 137 · Digits of pi. The digits of  shown here can be
obtained in less than a second from Mathematica on a typical
current computer using . Historically, the
number of decimal digits of  that have been computed is
roughly as follows: 2000 BC (Babylonians, Egyptians): 2
digits; 200 BC (Archimedes): 5 digits; 1430 AD: 14 digits;
1610: 35 digits; 1706: 100 digits; 1844: 200 digits; 1855: 500
digits; 1949 (ENIAC computer): 2037 digits; 1961: 100,000
digits (IBM 7090); 1973: 1 million; 1983: 16 million; 1989: 1
billion; 1997: 50 billion; 1999: 206 billion. In the first 200
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billion digits, the frequencies of 0 through 9 differ from 20
billion by

An early approximation to  was 

30 digits were obtained with 

An efficient way to compute  to  digits of precision is

This requires about  steps, or a total of roughly
 operations (see page 1134).

â Computing nth digits directly. Most methods for computing
mathematical constants progressively generate each
additional digit. But following work by Simon Plouffe and
others in 1995 it became clear that it is sometimes possible to
generate, at least with overwhelming probability, the th digit
without explicitly finding previous ones. As an example, the

th digit of  in base 2 is formally given by
. And in practice

the th digit can be found just by computing slightly over 
terms of the sum, according to

where several values of  can be tried to check that the result
does not change. (Note that with finite-precision arithmetic,
some exponentially small probability exists that truncation of
numbers will lead to incorrect results.) The same basic
approach as for  can be used to obtain base 16 digits in

 from the following formula for :

A similar approach can also be used for many other constants
that can be viewed as related to values of .

â Page 139 · Rational numbers. The pictures above show the
base 2 digit sequences of numbers  for successive .

The digits of  in base  repeat with period 

which is equal to  for prime , and is
at most . Each repeating block of digits typically seems
quite random, and has properties such as all possible
subblocks of digits up to a certain length appearing (see
page 1084). 

â Page 139 · Digit sequence properties. Empirical evidence for
the randomness of the digit sequences of , , etc. has
been accumulating since early computer experiments in the
1940s. The evidence is based on applying various standard
statistical tests of randomness, and remains somewhat
haphazard. (Already in 1888 John Venn had noted for
example that the first 707 digits of  lead to an apparently
typical 2D random walk.) (See page 1089.)

The fact that  is not a rational number was discovered by
the Pythagoreans. Numbers that arise as solutions of
polynomial equations are called algebraic; those that do not
are called transcendental.  and  were proved to be
transcendental in 1873 and 1882 respectively. It is known that

 and  for whole numbers  (except 0 and 1
respectively) are transcendental. It is also known for example
that  and  are transcendental. It is
not known for example whether  is even
irrational. 

A number is said to be “normal” in a particular base if every
digit and every block of digits of any length occur with equal
frequency. Note that the fact that a number is normal in one
base does not imply anything about its normality in another
base (unless the bases are related for example by both being
powers of 2). Despite empirical evidence, no number
expressed just in terms of standard mathematical functions
has ever been rigorously proved to be normal. It has
nevertheless been known since the work of Emile Borel in
1909 that numbers picked randomly on the basis of their
value are almost always normal. And indeed with explicit
constructions in terms of digits, it is quite straightforward to
get numbers that are normal. An example of this is the
number 0.1234567891011121314... obtained by concatenating
the digits of successive integers in base 10 (see below). This
number was discussed by David Champernowne in 1933,
and is known to be transcendental. A few other results are
also known. One based on gradual extension of work by
Richard Stoneham from 1971 is that numbers of the form

 for prime  are normal in base 
(for ), and are transcendental.

{30841, -85289, 136978, 69393, -78309,
-82947, -118485, -32406, 291044, -130820}

p
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n Log[2]
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n n
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â Page 141 · Square roots. A standard way to compute  is
Newton's method (actually used already in 2000 BC by the
Babylonians), in which one takes an estimate of the value 
and then successively applies the rule . After
 steps, this method yields a result accurate to about  digits.

Another approach to computing square roots is based on the
fact that the ratio of successive terms in for example the
sequence  with  tends to

. This method yields about  base 2 digits after 
steps.

The method of computing square roots shown in the main
text is less efficient (it computes  digits in  steps), but
illustrates more of the mechanisms involved. The basic idea
is at every step  to maintain the relation ,
keeping  as small as possible so as to make .
Note that the method works not only for integers, but for any
rational number  for which . 

â Nested digit sequences. The number obtained from the
substitution system  is approximately
0.587545966 in base 10. It is certainly conceivable that a
quantity such as Feigenbaum’s constant (approximately
4.6692016091) could have a digit sequence with this kind of
nested structure.

From the result on page 890, the number whose digits are
obtained from  is given by

. This number is
known to be transcendental. The th term in its continued
fraction representation turns out to be . 

The fact that nested digit sequences do not correspond to
algebraic numbers follows from work by Alfred van der
Poorten and others in the early 1980s. The argument is based
on showing that an algebraic function always exists for
which the coefficients in its power series correspond to any
given nested sequence when reduced modulo some . (See
page 1092.) But then there is a general result that if a
particular sequence of power series coefficients can be
obtained from an algebraic (but not rational) function
modulo a particular , then it can only be obtained from
transcendental functions modulo any other —or over the
integers.

â Concatenation sequences. One can consider forming
sequences by concatenating digits of successive integers in
base , as in . In the
limit, such sequences contain with equal frequency all
possible blocks of any given length, but as shown on page
597, they exhibit other obvious deviations from randomness.
The picture below shows the  sequence chopped into
length 256 blocks.

 

Applying  to the whole sequence
yields the pattern shown below. 

The systematic increase is a consequence of the leading 1 in
each concatenated sequence. Dropping this 1 yields the
pattern below.

This is similar to picture (c) on page 131, and is a digit-by-
digit version of 

Note that although the picture above has a nested structure,
the original concatenation sequences are not nested, and so
cannot be generated by substitution systems. The element at
position  in the first sequence discussed above can however
be obtained in about  steps using

where the result of the  can be expressed as

Following work by Maxim Rytin in the late 1990s about 
digits of a concatenation sequence can be found fairly
efficiently from

Concatenation sequences can also be generated by joining
together digits from other representations of numbers; the
picture below shows results for the Gray code representation
from page 901.
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â Specially constructed transcendental numbers. Numbers
known to be transcendental include ones whose digit
sequences contain 1’s only at positions ,  or .
Concatenation sequences, as well as generalizations formed
by concatenating values of polynomials at successive integer
points, are also known to yield numbers that are
transcendental.

â Runs of digits. One can consider any base 2 digit sequence as
consisting of successive runs of 0’s and 1’s, constructed from
the list of run lengths by

This representation is related to so-called surreal numbers
(though with the first few digits different). The number with
run lengths corresponding to successive integers (so that the

th digit is ) turns out to be
, and

appears at least not to be algebraic.

â Leading digits. Even though in individual numbers
generated by simple mathematical procedures all possible
digits often appear to occur with equal frequency, leading
digits in sequences of numbers typically do not. Instead it is
common for a leading digit  in base  to occur with
frequency  (so that in base 10 1’s occur 30% of
the time and 9’s 4.5%). This will happen whenever

 is uniformly distributed, which, as
discussed on page 903, is known to be true for sequences such
as  (with  irrational), , , , but not

,  or . A logarithmic law for leading digits is
also found in many practical numerical tables, as noted by
Simon Newcomb in 1881 and Frank Benford in 1938.

â Page 143 · Continued fractions. The first  terms in the
continued fraction representation for a number  can be
found from the built-in Mathematica function

, or from

A rational approximation to the number  can be
reconstructed from the continued fraction using

 or by

The pictures below show the digit sequences of successive
iterates obtained from  for
several numbers .

Unlike ordinary digits, the individual terms in a continued
fraction can be of any size. In the continued fraction for a
randomly chosen number, the probability to find a term of
size  is , so that the
probability of getting a 1 is about 41.50%, and the probability
of getting a large term falls off like . If one looks at many
terms, then their geometric mean is finite, and approaches
Khinchin’s constant . 

In the first 1000 terms of the continued fraction for , there
are 412 1’s, and the geometric mean is about 2.6656. The
largest individual term is the 432th one, which is equal to
20,776. In the first million terms, there are 414,526 1’s, the
geometric mean is 2.68447, and the largest term is the
453,294th one, which is 12,996,958.

Note that although the usual continued fraction for  looks
quite random, modified forms such as 

can be very regular. 

The continued fractions for  and  have simple
forms (as discussed by Leonhard Euler in the mid-1700s); other
rational powers of  and tangents do not appear to. The sequence
of odd numbers gives the continued fraction for ; the
sequence of even numbers for . In
general, continued fractions whose th term is  correspond
to numbers given by .
Numbers whose continued fraction terms are polynomials in 
can presumably also be represented in terms of suitably
generalized hypergeometric functions. (All so-called Hurwitz
numbers have continued fractions that consist of interleaved
polynomial sequences—a property left unchanged by

.) 

As discovered by Jeffrey Shallit in 1979, numbers of the form
 that have nonzero digits in base  only

at positions  turn out to have continued fractions with
terms of limited size, and with a nested structure that can be
found using a substitution system according to

The continued fractions for square roots are always periodic;
for higher roots they never appear to show any significant
regularities. The first million terms in the continued fraction
for  contain 414,983 1’s, have geometric mean 2.68505,
and have largest term 4,156,269 at position 484,709. Terms of
any size presumably in the end always occur in continued
fractions for higher roots, though this is not known for
certain. Fairly large terms are sometimes seen quite early: in

 term 19 is 3052, while in  term 34

n! 2n Fibonacci[n]

Fold[Join[#1, Table[1 - Last[#1], {#2}]] &, {0}, list]
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n a n+ b
BesselI [b/a, 2/a] /BesselI [b/a + 1, 2/a]

n

x ! ( a x + b)/ ( c x + d)

Sum[1/k2i
, {i, 0, ¥}] k

2i

{0, k - 1, k + 2, k, k, k - 2, k, k + 2, k - 2, k}0
Nest[Flatten[{{1, 2}, {3, 4}, {5, 6}, {7, 8}, {5, 6}, {3, 4},

{9, 10}, {7, 8}, {9, 10}, {3, 4}}0#1] &, 1, n]1

21/3

51/3 Root[10 + 8 # - #3 &, 1]



S Y S T E M S  B A S E D  O N  N U M B E R S N O T E S  F O R  C H A P T E R  4

915

is 1,501,790. The presence of a large term indicates a close
approximation to a rational number. In a few known cases
simple formulas yield numbers that are close but not equal to
integers. An example discovered by Srinivasa Ramanujan
around 1913 is , which is an integer to one part
in , and has second continued fraction term
1,333,462,407,511. (This particular example can be understood
from the fact that as  increases  becomes
extremely close to , which
turns out to be an integer whenever there is unique
factorization of numbers of the form —and 
is the largest of the 9 cases for which this is so.) Other less
spectacular examples include  and .

Numbers with digits given by concatenation sequences in
any base  (see note above) seem to have unusual continued
fractions, in which most terms are fairly small, but some are
extremely large. Thus with , term 30 is 4,534,532, term 64
is 4,682,854,730,443,938, term 152 is about  and term
669,468 is about . (For the  case of the original
Champernowne number, even term 18 is already about

.) The plots below of the numbers of digits in
successive terms turn out to have patterns of peaks that show
some signs of nesting. 

In analogy to digits in a concatenation sequence the terms in
the sequence

are known to occur with the same frequencies as they would
in the continued fraction representation for a randomly
chosen number. 

The pictures below show as a function of  the quantity 

which gives a measure of the closeness of successive rational
approximations to . For any irrational number this quantity
cannot be less than 2, while for algebraic irrationals Klaus
Roth showed in 1955 that it can only have finitely many
peaks that reach above any specified level.

â History. Euclid’s algorithm states that starting from
integers  iterating 
eventually leads to . (See page 1093.) The
pictures below show how this works. The numbers of
successively smaller squares (corresponding to the numbers
of steps in the algorithm) turn out to be exactly

. 

It was discovered in antiquity that Euclid’s algorithm starting
with  terminates only when  is rational. In all cases,
however, the relationship with continued fractions remains,
as below.

Infinite continued fractions appear to have first been
explicitly written down in the mid-1500s, and to have
become popular in many problems in number theory by the
1700s. Leonhard Euler studied many continued fractions,
while Joseph Lagrange seems to have thought that it might
be possible to recognize any algebraic number from its
continued fraction. The periodicity of continued fractions for
quadratic irrationals was proved by Evariste Galois in 1828.
From the late 1800s interest in continued fractions as such
waned; it finally increased again in the 1980s in connection
with problems in dynamical systems theory. 

â Egyptian fractions. Following the ancient Egyptian number
system, rational numbers can be represented by sums of
reciprocals, as in . With suitable
distinct integers  one can represent any number by

. The representation is not unique;
,  and  all yield . Simple choices

for  yield many standard transcendental numbers: :
; : ; : ; : ;

: ; : ; :
. (See also page 902.)

â Nested radicals. Given a list of integers acting like digits one
can consider representing numbers in the form

. A sequence of identical
digits  then corresponds to the number .
(Note that .) Repeats
of a digit block  give numbers that solve

. It appears that digits 0, 1, 2 are
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sufficient to represent uniquely all numbers between 1 and 2.
For any number  the first  digits are given by 

Even rational numbers such as  do not yield simple digit
sequences. For random , digits 0, 1, 2 appear to occur with
limiting frequencies .

â Digital slope representation. One can approximate a line of
any slope  as in the picture below by a sequence of segments
on a square grid (such as a digital display device). The
vertical distance moved at the th horizontal position is

, and the sequence obtained from
this (which contains only terms  and )
provides a unique representation for . As discussed on page
903 this sequence can be generated by applying substitution
rules derived from the continued fraction form of . If  is
rational, the sequence is repetitive, while if  is a quadratic
irrational, it is nested. Given a sequence of length , an
approximation to  can be reconstructed using 

The fractional part of the result obtained is always an
element of the Farey sequence

(See also pages 892, 932 and 1084.) 

â Representations for integers. See page 560.

â Operator representations. Instead of repeatedly applying an
operation to a sequence of digits one can consider forming
integers (or other numbers) by performing trees of operations on
a single constant. Thus, for example, any integer  can be
obtained by a tree of  additions of 1’s such as

. Another operator that can be used to generate
any integer is . In this case 6 is , and
an integer  can be obtained by 
or at most  applications of . The operator

 can be used for any . It also turns out that
 works, though in this case even for 2 the

smallest representation is . (For
 the number of applications needed is

.)
The pictures below show the smallest number of operator
applications required for successive integers. With the pair of
operators  and  (a case considered in recreational

mathematics for -ary operators) numbers of the form  have
particularly small representations. Note that in all cases the size of
the smallest representation must at some level increase like

 (compare pages 1067 and 1070), but there may be some
“algorithmically simple” integers that have shorter
representations.

â Number classification. One can imagine classifying real
numbers in terms of what kinds of operations are needed to
obtain them from integers. Rational numbers require only
division (or solving linear equations), while algebraic
numbers require solving polynomial equations. Rather little
is known about numbers that require solving transcendental
equations—and indeed it can even be undecidable (see page
1138) whether two equations can yield the same number.
Starting with integers and then applying arithmetic
operations and fractional powers one can readily reproduce
all algebraic numbers up to degree 4, but not beyond. The
sets of numbers that can be obtained by applying elementary
functions like ,  and  seem in various ways to be
disjoint from algebraic numbers. But if one applies
multivariate elliptic or hypergeometric functions it was
established in the late 1800s and early 1900s that one can in
principle reach any algebraic number. One can also ask what
numbers can be generated by integrals (or by solving
differential equations). For rational functions ,

 must always be a linear function of
 and  applied to algebraic numbers

(  for example yields ). Multiple integrals
of rational functions can be more complicated, as in 

and presumably often cannot be expressed at all in terms of
standard mathematical functions. Integrals of rational
functions over regions defined by polynomial inequalities
have recently been discussed under the name “periods”.
Many numbers associated with  and  can readily
be generated, though apparently for example  and

 cannot. One can also consider numbers
obtained from infinite sums (or by solving recurrence

x n
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equations). If  is a rational function, 
must just be a linear combination of  functions,
but again the multivariate case can be much more
complicated. 

Mathematical Functions

â Page 145 · Mathematical functions. (See page 1091.)
 goes like  for large  while 

goes like . Other standard mathematical
functions that oscillate at large  include  and

. Most hypergeometric-type functions either
increase or decrease exponentially for large arguments,
though in the directions of Stokes lines in the complex plane
they can oscillate sinusoidally. (For  the Stokes lines
are in directions .)

â Lissajous figures. Plotting multiple sine functions each on
different coordinate axes yields so-called Lissajous or
Bowditch figures, as illustrated below. If the coefficients
inside all the sine functions are rational, then going from

 to  yields a
closed curve. Irrational ratios of coefficients lead to curves
that never close and eventually fill space uniformly. 

â Page 146 · Two sine functions.  can be
rewritten as  (using

), implying that the function has two families of
equally spaced zeros:  and  . 

â Differential equations. The function  can
be obtained as the solution of the differential equation

 with the initial conditions
, .

â Musical chords. In a so-called equal temperament scale the
12 standard musical notes that make up an octave have a
progression of frequencies . Most schemes for musical
tuning use rational approximations to these numbers. Until
the past century, and since at least the 1300s, diminished fifth
or tritone chords that consist of two notes (such as C and )
with frequency ratio  have generally been avoided as
sounding discordant. (See also page 1079.) 

â Page 146 · Three sine functions. All zeros of the function
 lie on the real axis. But for

, there are usually zeros off the

real axis (even say for , , ), as shown in the
pictures below. 

If ,  and  are rational,  is
periodic with period , and there are a limited
number of different spacings between zeros. But in a case like

 there is a continuous
distribution of spacings between zeros, as shown on a
logarithmic scale below. (For  there are a total of
448,494 zeros, with maximum spacing  and minimum
spacing .)

â Page 147 · Substitution systems.  has two
families of zeros:  and . Assuming

, the number of zeros from the second family which
appear between the th and th zero from the first family is

and as discussed on page 903 this sequence can be obtained
by applying a sequence of substitution rules. For

 a more complicated sequence of
substitution rules yields the analogous sequence in which

 is inserted in each . 

â Many sine functions. Adding many sine functions yields a
so-called Fourier series (see page 1074). The pictures below
show  for various numbers of terms .
Apart from a glitch that gets narrower with increasing  (the
so-called Gibbs phenomenon), the result has a simple
triangular form. Other so-called Fourier series in which the
coefficient of  is a smooth function of  for all
integer  yield similarly simple results. 

The pictures below show , where in
effect all coefficients of  other than those where  is
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a perfect square are set to zero. The result is a much more
complicated curve. Note that for  of the form , the

 sum is just

The pictures below show  (as studied
by Karl Weierstrass in 1872). The curves obtained in this case
show a definite nested structure, in which the value at a point

 is essentially determined directly from the base 2 digit
sequence of . (See also page 1080.) 

The curves below are approximations to
. They can be thought of as having

dimensions  and smoothed power spectra . 

â FM synthesis. More complicated curves can be obtained for
example using FM synthesis, as discussed on page 1079.

â Page 148 · Zeta function. For real  the Riemann zeta
function  is given by  or

. The zeta function as
analytically continued for complex  was studied by
Bernhard Riemann in 1859, who showed that 
could be approximated (see page 909) up to order  by

, where
the  are the complex zeros of . The Riemann
Hypothesis then states that all  satisfy ,
which implies a certain randomness in the distribution of
prime numbers, and a bound of order  on

. The Riemann Hypothesis is also
equivalent to the statement that a bound of order 
exists on .

The picture in the main text shows ,
defined as , where

The first term in an approximation to  is
; to get results to a given

precision requires summing a number of terms that

increases like , making routine computation possible up
to .

It is known that: 

äThe average spacing between zeros decreases like 
.

äThe amplitude of wiggles grows with , but more slowly 
than .

äAt least the first 10 billion zeros have .

The statistical distribution of zeros was studied by Andrew
Odlyzko and others starting in the late 1970s (following ideas
of David Hilbert and George Pólya in the early 1900s), and it
was found that to a good approximation, the spacings
between zeros are distributed like the spacings between
eigenvalues of random unitary matrices (see page 977). 

In 1972 Sergei Voronin showed that  has a
certain universality in that there always in principle exists
some  (presumably in practice usually astronomically large)
for which it can reproduce to any specified precision over say
the region  any analytic function without zeros. 

Iterated Maps and the Chaos Phenomenon

â History of iterated maps. Newton’s method from the late
1600s for finding roots of polynomials (already used in
specific cases in antiquity) can be thought of as a smooth
iterated map (see page 920) in which a rational function is
repeatedly applied (see page 1101). Questions of convergence
led in the late 1800s and early 1900s to interest in iteration
theory, particularly for rational functions in the complex
plane (see page 933). There were occasional comments about
complicated behavior (notably by Arthur Cayley in 1879) but
no real investigation seems to have been made. In the 1890s
Henri Poincaré studied so-called return maps giving for
example positions of objects on successive orbits. Starting in
the 1930s iterated maps were sometimes considered as
possible models in fields like population biology and
business cycle theory—usually arising as discrete annualized
versions of continuous equations like the Verhulst logistic
differential equation from the mid-1800s. In most cases the
most that was noted was simple oscillatory behavior,
although for example in 1954 William Ricker iterated
empirical reproduction curves for fish, and saw more
complex behavior—though made little comment on it. In the
1950s Paul Stein and Stanislaw Ulam did an extensive
computer study of various iterated maps of nonlinear
functions. They concentrated on questions of convergence,
but nevertheless noted complicated behavior. (Already in the
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late 1940s John von Neumann had suggested using
 as a random number generator, commenting on

its extraction of initial condition digits, as mentioned on page
921.) Some detailed analytical studies of logistic maps of the
form  were done in the late 1950s and early
1960s—and in the mid-1970s iterated maps became popular,
with much analysis and computer experimentation on them
being done. But typically studies have concentrated on
repetition, nesting and sensitive dependence on initial
conditions—not on more general issues of complexity.

In connection with his study of continued fractions Carl
Friedrich Gauss noted in 1799 complexity in the behavior of
the iterated map . Beginning in the late
1800s there was number theoretical investigation of the
sequence  associated with the map

 (see page 903), notably by G. H. Hardy
and John Littlewood in 1914. Various features of randomness
such as uniform distribution were established, and
connections to smooth iterated maps emerged after the
development of symbolic dynamics in the late 1930s.

â History of chaos theory. See page 971.

â Page 150 · Exact iterates. For any integer  the th iterate of
 can be written as ,

or equivalently . In the specific
case  the iterates of  have the
form . (See pages 903 and 1098.)

â Page 151 · Problems with computer experiments. The
defining characteristic of a system that exhibits chaos is that on
successive steps the system samples digits which lie further
and further to the right in its initial condition. But in a practical
computer, only a limited number of digits can ever be stored.
In Mathematica, one can choose how many digits to store (and
in the pictures shown in the main text, enough digits were
used to avoid the problems discussed in this note). But a low-
level language such as FORTRAN, C or Java always stores a
fixed number of digits, typically around 53, in its standard
double-precision floating-point representation of numbers. 

So what happens when a system one is simulating tries to
sample digits in its initial conditions beyond the ones that are
stored? The answer depends on the way that arithmetic is
handled in the computer system one uses. 

When doing high-precision arithmetic, Mathematica follows
the principle that it should only ever give digits that are
known to be correct on the basis of the input that was
provided. This means that in simulating chaotic systems,
the numbers produced will typically have progressively
fewer digits: later digits cannot be known to be correct
without more precise knowledge of this initial condition.

(An example is ;
 gives the number of significant digits of

each element in the list.) 

But most current languages and hardware systems follow a
rather different approach. (For low-precision machine
arithmetic, Mathematica is also forced to follow this
approach.) What they do is to give a fixed number of digits as
the result of every computation, whether or not all those
digits are known to be correct. It is then the task of numerical
analysis to establish that in a particular computation, the
final results obtained are not unduly affected by digits that
are not known to be correct. And in practice, for many kinds
of computations, this is to a large extent the case. But
whenever chaos is involved, it is inevitably not. 

As an example, consider the iterated map 
discussed in the main text. At each step, this map shifts all the
base 2 digits in  one position to the left. But if the computer
gives a fixed number of digits at each step, then additional digits
must be filled in on the right. On most computers, these
additional digits are always 0. And so after some number of
steps, all the digits in  are 0, and thus the value of  is simply 0. 

But it turns out that a typical pocket calculator gives a different
result. For pocket calculators effectively represent numbers in
base 10 (actually so-called binary-coded decimal) not base 2,
and fill in unknown digits with 0 in base 10. (Base 10 is used so
that multiplying for example 1/3 by 3 gives exactly 1 rather
than the more confusing result 0.9999... obtained with base 2.) 

Pictures (a) and (c) below show simulations of the shift map on a
typical computer, while pictures (b) and (d) show
corresponding simulations on a pocket calculator. (Starting with
initial condition  the digit sequence at step  is essentially 

on the computer, and

on the calculator. In both cases the limited number of digits
implies behavior that ultimately repeats—but only long after
the other effects we discuss have occurred.) 

x ! 4 x (1 - x)

x ! a x (1 - x)

x ! FractionalPart[1/x]

FractionalPart[an x]
x ! FractionalPart[a x]

a n
x ! FractionalPart[a x] FractionalPart[an x]

1/2 -ArcTan[Cot[an p x]] /p
a = 2 If[x < 1/2, a x, a (1 - x)]
ArcCos[Cos[2n p x]] /p

NestList[Mod[2 #, 1] &, N[p /4, 40], 200]
Map[Precision, list]

x ! Mod[2 x, 1]

x

x x

x n

IntegerDigits[Mod[2n Floor[253 x], 253], 2, 53]

Flatten[IntegerDigits[IntegerDigits[
Mod[2n Floor[1012 x], 1012], 10, 12], 2, 4]]

(a) (b) (c) (d)
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For the first several steps, the results as shown at the top of
each corresponding picture agree. But as soon as the effect of
sampling beyond the digits explicitly stored in the initial
condition becomes important, the results are completely
different. The computer gives simply 0, but the pocket
calculator yields apparently random sequences—which turn
out to be analogous to those discussed on page 319.

Other chaotic systems have a similar sensitivity to the details
of computer arithmetic. But the simple behavior of the shift
map turns out to be rather rare: in most cases—such as the
multiplication by 3/2 shown in the pictures below—apparent
randomness is produced, even on a typical computer.

It is important to realize however that this randomness has
little to do with the details of the initial conditions. Instead,
just as in other examples in this book, the randomness arises
from an intrinsic process that occurs even with the simple
repetitive initial condition shown in pictures (c) and (d)
above. 

Computer simulations of chaotic systems have been done
since the 1950s. And it has often been observed that the
sequences generated in these simulations look quite random.
But as we now see, such randomness cannot in fact be a
consequence of the chaos phenomenon and of sensitive
dependence on initial conditions.

Nevertheless, confusingly enough, even though it does not
come from sensitive dependence on initial conditions, such
randomness is what makes the overall properties of
simulations typically follow the idealized mathematical
predictions of chaos theory. The point is that the presence of
randomness makes the system behave on different steps as if
it were evolving from slightly different initial conditions. But
statistical averages over different initial conditions typically
yield essentially the results one would get by evolution from
a single initial condition containing an infinite number of
randomly chosen digits.

â Page 152 ·  Mathematical perspectives. Mathematicians may
be confused by my discussion of complexity in iterated maps.

The first point to make is that the issues I am studying are
rather different from the ones that are traditionally studied in
the mathematics of these systems. The next point is that I
have specifically chosen not to make the idealizations about
numbers and operations on numbers that are usually made
in mathematics. 

In particular, it is usually assumed that performing some
standard mathematical operation, such as taking a square
root, cannot have a significant effect on the system one is
studying. But in trying to track down the origins of
complex behavior, the effects of such operations can be
significant. Indeed, as we saw on page 141, taking square
roots can for example generate seemingly random digit
sequences.

Many mathematicians may object that digit sequences are
just too fragile an entity to be worth studying. They may
argue that it is only robust and invariant concepts that are
useful. But robustness with respect to mathematical
operations is a different issue from robustness with respect to
computational operations. Indeed, we will see later in this
book that large classes of digit sequences can be considered
equivalent with respect to computational operations, but
these classes are quite different ones from those that are
considered equivalent with respect to mathematical
operations.

â Information content of initial conditions. Common sense
suggests that it is a quite different thing to specify a simple
initial condition containing, say, a single black cell on a white
background, than to specify an initial condition containing an
infinite sequence of randomly chosen cells. But in traditional
mathematics no distinction is usually made between these
kinds of specifications. And as a result, mathematicians may
find it difficult to understand my distinction between
randomness generated intrinsically by the evolution of a
system and randomness from initial conditions (see
page 299). The distinction may seem more obvious if one
considers, for example, sequential substitution systems or
cyclic tag systems. For such systems cannot meaningfully be
given infinite random initial conditions, yet they can still
perfectly well generate highly random behavior. (Their initial
conditions correspond in a sense to integers rather than real
numbers.)

â Smooth iterated maps. In the main text, all the functions
used as mappings consist of linear pieces, usually joined
together discontinuously. But the same basic phenomena
seen with such mappings also occur when smooth functions
are used. A particularly well-studied example (see page 918)
is the so-called logistic map . The base 2 digitx ! a x (1 - x)

(a) (b) (c) (d)
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sequences obtained with this map starting from  are
shown below for various values of . The quadratic nature
of the map typically causes the total number of digits to
double at each step. But at least for small , progressively
more digits on the left show purely repetitive behavior. As 
increases, the repetition period goes through a series of
doublings. The detailed behavior is different for every value
of , but whenever the repetition period is , it turns out
that with any initial condition the leftmost digit always
eventually follows a sequence that consists of repetitions of
step  in the evolution of the substitution system

 starting either from  or . As 
approaches 3.569946, the period doublings get closer and
closer together, and eventually a point is reached at which
the sequence of leftmost digits is no longer repetitive but
instead corresponds to the nested pattern formed after an
infinite number of steps in the evolution of the substitution
system. (An important result discovered by Mitchell
Feigenbaum in 1975 is that this basic setup is universal to all
smooth maps whose functions have a single hump.) When 
is increased further, there is usually no longer repetitive or
nested behavior. And although there are typically some
constraints, the behavior obtained tends to depend on the
details of the digit sequence of the initial conditions. In the
special case , it turns out that replacing  by 
makes the mapping become just ,
revealing simple shift map dependence on the initial digit
sequence. (See pages 1090 and 1098.) 

â Higher-dimensional generalizations. One can consider so-
called Anosov maps such as  where

 is a matrix such as . Any initial condition
containing only rational numbers will then yield repetitive
behavior, much as in the shift map. But as soon as  itself
contains rational numbers, complicated behavior can be
obtained even with an initial condition such as .

â Distribution of chaotic behavior. For iterated maps, unlike
for discrete systems such as cellular automata, one can get
continuous ranges of rules by varying parameters. With
maps based on piecewise linear functions the regions of
parameters in which chaotic behavior occurs typically have
simple shapes; with maps based, say, on quadratic

functions, however, elaborate nested shapes can occur. (See
page 934.)

â Page 155 · Lyapunov exponents. The number of new digits
that are affected at each step by a small change in initial
conditions gives the so-called Lyapunov exponent  for the
evolution. After  steps, the difference in size resulting from
the change in initial conditions will be multiplied by
approximately —at least until this difference is of order 1.
(See page 950.)

â Chaos in nature. See page 304.

â Bitwise operations. Cellular automata can be thought of as
analogs of iterated maps in which bitwise operations such as

 are used instead of ordinary arithmetic ones. (See
page 906.) 

Continuous Cellular Automata

â Implementation. The state of a continuous cellular
automaton at a particular step can be represented by a list of
numbers, each lying between 0 and 1. This list can then be
updated using

where for the rule on page 157  is 
while for the rule on page 158 it is . 

Note that in the definitions above, the elements of  can be
either exact rational numbers, or approximate numbers
obtained using . For rough calculations, standard machine-
precision numbers may sometimes suffice, but for detailed
calculations exact rational numbers are essential. Indeed, the
presence of exponentially increasing errors would make the
bottom of the picture on page 157 qualitatively wrong if just
64-bit double-precision numbers had been used. On page 160
the effect is much larger, and almost all the pictures would be
completely wrong—with the notable exception of the one
that shows localized structures. 

â History. Continuous cellular automata have been
introduced independently several times, under several
different names. In all cases the rules have been at least
slightly more complicated than the ones I consider here, and
behavior starting from simple initial conditions does not
appear to have been studied before. Versions of continuous
cellular automata arose in the mid-1970s as idealizations of
coupled ordinary differential equations for arrays of
nonlinear oscillators, and implicitly in finite difference
approximations to partial differential equations. They began
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to be studied with extensive computer simulations in the
early 1980s, probably following my work on ordinary cellular
automata. Most often considered, notably by Kunihiko
Kaneko and co-workers, were so-called “coupled map
lattices” or “lattice dynamical systems” in which an iterated
map (typically a logistic map) was applied at each step to a
combination of neighboring cell value. A transition from
regular class 2 to irregular class 3 behavior, with class 4
behavior involving localized structures in between, was
observed, and was studied in detail by Hugues Chaté and
Paul Manneville, starting in the late 1980s. 

â Page 158 · Properties. At step  the background is
. For rational  this always repeats, cycling

through  possible values (compare page 255).
In most patterns generated from initial conditions
containing say a single black cell most cells whose values
are not forced to be the same end up being at least slightly
different—even in cases like . Note that in cases
like  there is some trace of a pattern at every step—
but it only becomes obvious when it makes values wrap
around from 1 to 0. The pictures below show successive
colors of (a) the background (compare page 950) and (b) the
center cell for each  from 0 to 1 for the systems on
page 159. (Compare page 243.)

If  is not a rational number the background never repeats,
but the main features of patterns obtained seem similar. 

â Additive rules. In the case  the systems on page 159 are
purely additive. A simpler example is the rule

With a single nonzero initial cell with value  the pattern
produced is just Pascal’s triangle modulo . If  is a rational
number only a limited set of values appear, and the pattern
has a nested form analogous to those shown on page 870. If 
is irrational then equidistribution of 
implies that all possible values eventually appear; the
corresponding patterns seem fairly irregular, as shown
below. (Compare pages 953 and 1092.)

â Probabilistic cellular automata. As an alternative to having
continuous values at each cell, one can consider ordinary
cellular automata with discrete values, but introduce
probabilities for, say, two different rules to be applied at each
cell. Examples of probabilistic cellular automata are shown
on page 591; their behavior is typically quite similar to
continuous cellular automata.

Partial Differential Equations

â Ordinary differential equations. It is also possible to set up
systems which have a finite number of continuous variables
(say , , etc.) that change continuously with time. The
rules for such systems correspond to ordinary differential
equations. Over the past century, the field of dynamical
systems theory has produced many results about such
systems. If all equations are of the form

, etc. then it is known for example that
it is necessary to have at least three equations in order to get
behavior that is not ultimately fixed or repetitive. (The
Lorenz equations are an example.) If the function  depends
explicitly on time, then two equations suffice. (The van der
Pol equations are an example.)

Just as in iterated maps, a small change in the initial values 
etc. can often lead to an exponentially increasing difference in
later values of , etc. But as in iterated maps, the main part of
this process that has been analyzed is simply the excavation of
progressively less significant digits in the number . 

(Note that numerical simulations of ODEs on computers
must approximate continuous time by discrete steps, making
the system essentially an iterated map, and often yielding
spurious complicated behavior.)

â Klein-Gordon equation. The behavior of the Klein-Gordon
equation  is visually very
similar to that shown for the sine-Gordon equation. For the
Klein-Gordon equation, however, there is an exact solution: 

â Origins of the equations. The diffusion equation arises in
physics from the evolution of temperature or of gas density.

t
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The wave equation represents the propagation of linear
waves, for example along a compressible spring. The sine-
Gordon equation represents nonlinear waves obtained for
example as the limit of a very large number of pendulums all
connected to a spring. The traditional name of the equation is
a pun on the Klein-Gordon equation that appears in
relativistic quantum mechanics and in describing strings in
elastic media. It is notable that unlike with ODEs, essentially
all PDEs that have been widely studied come quite directly
from physics. My PDE on page 165 is however an exception. 

â Nonlinearity. The pictures below show behavior with initial
conditions containing two Gaussians (and periodic boundary
conditions). The diffusion and wave equations are linear, so
that results are linear sums of those with single Gaussians.
The sine-Gordon equation is nonlinear, but its solutions
satisfy a generalized linear superposition principle. The
equation from page 165 shows no such simple superposition
principle. Note that even with a linear equation, fairly
complicated patterns of behavior can sometimes emerge as a
result of boundary conditions. 

â Higher dimensions. The pictures below show as examples
the solution to the wave equation in 1D, 2D and 3D starting
from a stationary square pulse.

In each case a 1D slice through the solution is shown, and the
solution is multiplied by . For the wave equation, and for
a fair number of other equations, even and odd dimensions
behave differently. In 1D and 3D, the value at the origin
quickly becomes exactly 0; in 2D it is given by

, which tends to zero only like 
(which means that a sound pulse cannot propagate in a
normal way in 2D).

â Page 164 · Singular behavior. An example of an equation
that yields inconsistent behavior is the diffusion equation
with a negative diffusion constant:

This equation makes any variation in  as a function of 
eventually become infinitely rapid.

Many equations used in physics can lead to singularities:
the Navier-Stokes equations for fluid flow yield shock
waves, while the Einstein equations yield black holes. At a
physical level, such singularities usually indicate that
processes not captured by the equations have become
important. But at a mathematical level one can simply ask
whether a particular equation always has solutions which
are at least as regular as its initial conditions. Despite much
work, however, only a few results along these lines are
known. 

â Existence and uniqueness. Unlike systems such as cellular
automata, PDEs do not have a built-in notion of “evolution”
or “time”. Instead, as discussed on page 940, a PDE is
essentially just a constraint on the values of a function at
different times or different positions. In solving a PDE, one is
usually interested in determining values that satisfy this
constraint inside a particular region, based on information
about values on the edges. It is then a fundamental question
how much can be specified on the edges in order to obtain a
unique solution. If too little is specified, there may be many
possible solutions, while if too much is specified there may
be no consistent solution at all. For some very simple PDEs,
the conditions for unique solutions are known. So-called
hyperbolic equations (such as the wave equation, the sine-
Gordon equation and my equation) work a little like cellular
automata in that in at least one dimension information can
propagate only at a limited speed, say . The result is that in
such equations, giving values for  at  for 
will uniquely determine  at larger  for

. In other PDEs, such as so-called elliptic
ones, there is no such limit on the rate of information
propagation, and as a result, it is immediately necessary to
know values of  at all , and on the boundaries of the
region, in order to determine  for any . 

â Page 165 · Field equations. Any equation of the form

can be thought of as a classical field equation for a scalar
field. Defining

the field then has Lagrangian density

and conserves the Hamiltonian (energy function)

With the choice for  made here (with ),  is
bounded from below, and as a result it follows that no
singularities ever occur in . 

wave equation sine-Gordon equation my equation

0 0.5 0.8 1.2 1.5 2 2.5

0 0.5 0.8 1.2 1.5 2 2.5

0 0.5 0.8 1.2 1.5 2 2.5

r d-1

1 - t /Sqrt[t2 - 1] -1/ (2 t2)

$t u[t, x] 2 -$xx u[t, x]

u x

c
u[t, x] t = 0 -s < x < s

u[t, x] t
-s + c t < x < s - c t

u[t, x] x
u[t, x] t > 0

$tt u[t, x] 2 $xx u[t, x] + f [u[t, x]]

v[u] = -Integrate[f [u], u]

( ($t u)2 - ($x u)2)/2 - v[u]

Integrate[( ($t u)2 + ($x u)2)/2 + v[u], {x, -¥, ¥}]

f [u] a > 0 v[u]

u[t, x]
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â Equation for the background. If  is independent of ,
as it is sufficiently far away from the main pattern, then the
partial differential equation on page 165 reduces to the
ordinary differential equation

For , the solution to this equation can be written in terms
of Jacobi elliptic functions as 

In general the solution is 

where

and , ,  are determined by the equation

In all cases (except when ), the solution is
periodic and non-singular. For , the period is

. For , the period is about 4.01;
for , it is about 3.62; while for , it is about 3.18. For

, the solution can be written without Jacobi elliptic
functions, and is given by

â Numerical analysis. To find numerical solutions to PDEs
on a digital computer one has no choice but to make
approximations. In the typical case of the finite difference
method one sets up a system with discrete cells in space
and time that is much like a continuous cellular automaton,
and then hopes that when the cells in this system are made
small enough its behavior will be close to that of the
continuous PDE.

Several things can go wrong, however. The pictures below
show as one example what happens with the diffusion
equation when the cells have size  in time and  in space.
So long as the so-called Courant condition  is
satisfied, the results are correct. But when  is made
larger, an instability develops, and the discrete
approximation yields completely different results from the
continuous PDE. 

Many methods beyond finite differences have been invented
over the past 30 years for finding numerical solutions to
PDEs. All however ultimately involve discretization, and can
suffer from difficulties that are similar—though often more
insidious—to those for finite differences.

For equations where one can come at least close to having
explicit algebraic formulas for solutions, it has often been
possible to prove that a certain discretization procedure will
yield correct results. But when the form of the true solution is
more complicated, such proofs are typically impossible.

And indeed in practice it is often difficult to tell whether
complexity that is seen is actually a consequence of the
underlying PDE, or is instead merely a reflection of the
discretization procedure. I strongly suspect that many
equations, particularly in fluid dynamics, that have been
studied over the past few decades exhibit highly complex
behavior. But in most publications such behavior is never
shown, presumably because the authors are not sure whether
the behavior is a genuine consequence of the equations they
are studying. 

â Implementation. All the numerical solutions shown were
found using the  function built into Mathematica. In
general, finite difference methods, the method of lines and
pseudospectral methods can be used. For equations of the form

one can set up a simple finite difference method by taking 
in the form of pure function and creating from it a kernel
with space step  and time step :

Iteration for  steps is then performed by

With this approach an approximation to the top example on
page 165 can be obtained from

For both this example and the middle one the results
converge rapidly as  decreases. But for the bottom
example, the pictures below show that convergence is not so
rapid, and indeed, as is typical in working with PDEs,
despite having used large amounts of computer time I do not
know whether the details of the picture in the main text are
really correct. The energy function (see above) is at least
roughly conserved, but it seems quite likely that the “shocks”
visible are merely a consequence of the discretization
procedure used. 

u[t, x] x

u�[t] 2 ( 1 - u[t]2) ( 1+ a u[t])

u[0] 2 u ç[0] 2 0

a = 0

�!!!!3 JacobiSN[t /31/4, 1/2]2 / ( 1+ JacobiCN[t /31/4, 1/2]2)

b d JacobiSN[r t, s]2 / ( b - d JacobiCN[r t, s]2)

r = -Sqrt[1/8 a c (b - d)]

s = d (c - b)/ ( c (d - b))

b c d

(x - b) ( x - c) ( x - d) 2 -( 12 + 6 a x - 4 x2 - 3 a x3)/ ( 3 a)

-8 /3 < a < -1/�!!!!6
a = 0

2 31/4 EllipticK[1/2] ; 4.88 a = 1
a = 2 a = 4

a = 8 /3

3 Sin[Sqrt[5/6] t]2 / ( 2 + 3 Cos[Sqrt[5/6] t]2)

dt dx
dt /dx < 1/2

dt /dx

dt / dx = 0.4 dt / dx = 0.5 dt / dx = 0.6

NDSolve

$tt u[t, x] 2 $xx u[t, x] + f [u[t, x]]

f

dx dt
PDEKernel[f_, {dx_, dt_}] := Compile[{a, b, c, d},

Evaluate[( 2 b - d) + ( ( a + c - 2 b)/dx2 + f [b]) dt2]]

n
PDEEvolveList[ker_, {u0_, u1_}, n_] :=

Map[First, NestList[PDEStep[ker, #] &, {u0, u1}, n]]
PDEStep[ker_, {u1_, u2_}] := {u2, Apply[ker, Transpose[

{RotateLeft[u2], u2, RotateRight[u2], u1}], {1}]}

PDEEvolveList[PDEKernel[
( 1 - #2) ( 1+#) &, {0.1, 0.05}], Transpose[
Table[{1, 1}N[Exp[-x2]], {x, -20, 20, 0.1}]], 400]

dx

dx 0.5 dx 0.2 dx 0.05
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â Different powers. The equations

with , , , etc. appear to show similar behavior to the
 equation in the main text.

â Other PDEs. The pictures above show three PDEs that have
been studied in recent years. All are of the so-called
parabolic type, so that, unlike my equation, they have no

limit on the rate of information propagation, and thus a
solution in any region immediately depends on values on
the boundary—which in the pictures below is taken to be
periodic. (The deterministic Kardar-Parisi-Zhang equation

 yields behavior
like Burger’s equation, but symmetrical. Note that  is
plotted in the second picture, while for the last equation a
common less symmetrical form replaces the last term by

.) 

Continuous Versus Discrete Systems

â History. From the late 1600s when calculus was invented it
took about two centuries before mathematicians came to
terms with the concepts of continuity that it required. And to
do so it was necessary to abandon concrete intuition, and
instead to rely on abstract mathematical theorems. (See page
1149.) The kind of discrete systems that I consider in this
book allow a return to a more concrete form of mathematics,
without the necessity for such abstraction.

â “Calculus”. It is an irony of language that the word
“calculus” now associated with continuous systems comes
from the Latin word which means a small pebble of the kind
used for doing discrete calculations (same root as “calcium”).

$tt u[t, x] 2 $xx u[t, x] + ( 1 - u[t, x]n) ( 1+ a u[t, x])

n = 4 6 8
n = 2

Burger's equation: $t u[t, x] Ð $xx u[t, x] - u[t, x] $x u[t, x]

nonlinear Schrödinger equation: 5 $t u[t, x] Ð -$xx u[t, x] + 4 Abs[u[t, x]]2 u[t, x]

Kuramoto-Sivashinsky equation: $t u[t, x] Ð -$xx u[t, x] - 1/ 2 $xxxx u[t, x] + ($x u[t, x])2

$t u[t, x] 2 a $xx u[t, x] + 1/2 b ($x u[t, x])2

Abs[u]

u[t, x] $x u[t, x]





927

NOTES FOR CHAPTER 5

Two Dimensions and Beyond

Introduction

â Other lattices. See page 929.

â Page 170 · 1D phenomena. Among the phenomena that
cannot occur in one dimension are those associated with
shape, winding and knotting, as well as traditional phase
transitions with reversible evolution rules (see page 981).

Cellular Automata

â Implementation. An  array of white squares with a
single black square in the middle can be generated by 

For the 5-neighbor rules introduced on page 170 each step
can be implemented by 

where  is obtained from the  number by
. 

For the 9-neighbor rules introduced on page 177

where  is given by . 

In  dimensions with  colors, 5-neighbor rules generalize to
(2d+1)-neighbor rules, with 

with  given by .

9-neighbor rules generalize to -neighbor rules, with 

with  given by . 

In 3 dimensions, the positions of black cells can conveniently
be displayed using 

â General rules. One can specify the neighborhood for any
rule in any dimension by giving a list of the offsets for the
cells used to update a given cell. For 1D elementary rules
the list is , while for 2D 5-neighbor rules it is

. In this book such offset
lists are always taken to be in the order given by , so
that for range  rules in  dimensions the order is the same
as . One can
specify a neighborhood configuration by giving in the same
order as the offset list the color of each cell in the
neighborhood. With offset list  and  colors the possible
neighborhood configurations are

(These are shown on page 53 for elementary rules and page
941 for 5-neighbor rules.) If a cellular automaton rule takes
the new color of a cell with neighborhood configuration

 to be , then one can
define its rule number to be . A
single step in evolution of a general cellular automaton with
state  and rule number  is then given by

or equivalently by

â Numbers of possible rules. The table below gives the total
number of 2D rules of various types with two possible colors
for each cell. Given an initial pattern with a certain symmetry,
a rule will maintain that symmetry if the rule is such that
every neighborhood equivalent under the symmetry yields
the same color of cell. Rules are considered rotationally

n7n

PadLeft[{{1}}, {n, n}, 0, Floor[{n, n} /2]]

 CAStep[rule_, a_] := Map[rule010 - #1 &,
ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}]

rule code
IntegerDigits[code, 2, 10]

 CAStep[rule_, a_] := Map[rule018 - #1 &,
ListConvolve[{{2, 2, 2}, {2, 1, 2}, {2, 2, 2}}, a, 2], {2}]

rule IntegerDigits[code, 2, 18]

d k

 CAStep[{rule_, d_}, a_] :=
Map[rule0-1 - #1 &, a + k AxesTotal[a, d], {d}]

AxesTotal[a_, d_] := Apply[Plus, Map[RotateLeft[a, #] +
RotateRight[a, #] &, IdentityMatrix[d]]]

rule IntegerDigits[code, k, k (2 d (k - 1) + 1)]

3d

 CAStep[{rule_, d_}, a_] :=
Map[rule0-1 - #1 &, a + k FullTotal[a, d], {d}]

FullTotal[a_, d_] :=
Array[RotateLeft[a, {##}] &, Table[3, {d}], -1, Plus] - a

rule IntegerDigits[code, k, k ( ( 3d - 1) ( k - 1) + 1)]

Graphics3D[Map[Cuboid[-Reverse[#]] &, Position[a, 1]]]

{{-1}, {0}, {1}}

{{-1, 0}, {0, -1}, {0, 0}, {0, 1}, {1, 0}}

Sort
r d

Flatten[Array[List, Table[2 r + 1, {d}], -r], d - 1]

os k

 Reverse[Table[IntegerDigits[ i - 1,
k, Length[os]], {i, k^Length[os]}]]

IntegerDigits[ i, k, Length[os]] u0i + 11
FromDigits[Reverse[u], k]

a num
 Map[IntegerDigits[num, k, k^Length[os]]0-1 - #1 &,

Apply[Plus, MapIndexed[k^ ( Length[os] - First[#2])
RotateLeft[a, #1] &, os]], {-1}]

 Map[IntegerDigits[num, k, k^Length[os]]0-# - 11 &,
ListCorrelate[Fold[ReplacePart[k #1, 1, #2 + r + 1] &,

Array[0 &, Table[2 r + 1, {d}]], os], a, r + 1], {d}]
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symmetric in the table below if they preserve any possible
rotational symmetry consistent with the underlying
arrangement of cells. Totalistic rules depend only on the total
number of black cells in a neighborhood; outer totalistic rules
(as in the previous note) also depend on the color of the
center cell. Growth totalistic rules make any cell that becomes
black remain black forever.

In such a rule, given a list of how many neighbors around a
given cell (out of  possible) make the cell turn black the
outer totalistic code for the rule can be obtained from

â Symmetric 5-neighbor rules. Among the 32 possible 5-cell
neighborhoods shown for example on page 941 there are 12
classes related by symmetries, given by

Completely symmetric 5-neighbor rules can be numbered
from 0 to 4095, with each digit specifying the new color of
the cell for each of these symmetry classes of
neighborhoods. Such rule numbers can be converted to
general form using

â Growth rules. The pictures below show examples of rules
in which a cell becomes black if it has exactly the specified
numbers of black neighbors (the initial conditions used
have the minimal number of black cells for growth). The
code numbers in these cases are given by

 where  is the number of
neighbors, here 5. (See also the 9-neighbor examples on
page 373.)

â Page 171 · Code 942 slices. The following is the result of
taking vertical slices through the pattern with a sequence of
offsets from the center:
 

 

  

â History. As indicated on pages 876–878, 2D cellular
automata were historically studied more extensively than 1D
ones—though rarely with simple initial conditions. The 5-cell
neighborhood on page 170 was considered by John von
Neumann in 1952; the 9-cell one on page 177 by Edward
Moore in 1962. (Both are also common in finite difference
approximations in numerical analysis.) (The 7-cell hexagonal
neighborhood of page 369 was considered for image
processing purposes by Marcel Golay in 1959.) Ever since the
invention of the Game of Life around 1970 a remarkable
number of hardware and software simulators have been built
to watch its evolution. But until after my work in the 1980s
simulators for more general 2D cellular automata were rare.
A sequence of hardware simulators were nevertheless built
starting in the mid-1970s by Tommaso Toffoli and later
Norman Margolus. And as mentioned on page 1077, going
back to the 1950s some image processing systems have been
based on particular families of 2D cellular automaton rules.

â Ulam systems. Having formulated the system around 1960,
Stanislaw Ulam and collaborators (see page 877) in 1967
simulated 120 steps of the process shown below, with black
cells after  steps occurring at positions

s

Apply[Plus, 2^Join[2 list, 2 Range[s + 1] - 1]]

5 - neighbor square 9 - neighbor square hexagonal

general 232 ; 47109 2512 ; 10154 2128 ; 371038

rotationally symmetric 212 = 4096 2140 ; 1042 228 ; 37108

completely symmetric 212 = 4096 2102 ; 571030 226 ; 77107

outer totalistic 210 = 1024 218 ; 37105 214 = 16384

totalistic 26 = 64 210 = 1024 28 = 256

growth totalistic 25 = 32 29 = 512 27 = 128

 s = {{1}, {2, 3, 9, 17}, {4, 10, 19, 25},
{5}, {6, 7, 13, 21}, {8, 14, 23, 29}, {11, 18},
{12, 20, 26, 27}, {15, 22}, {16, 24, 30, 31}, {28}, {32}}

 FromDigits[Map[Last, Sort[Flatten[Map[Thread,
Thread[{s, IntegerDigits[n, 2, 12]}]], 1]]], 2]

2/3 (4n - 1) +Apply[Plus, 4list] n

{1} {1, 2} {1, 3} {1, 4} {1, 3, 4}

offset 3 offset 4 offset 5

offset 0 offset 1 offset 2

t
 Map[First,

First[Nest[UStep[p[q[r[#1], #2]] &, {{1, 0}, {0, 1}, {-1, 0},
{0, -1}}, #] &, ( {#, #} &)[{{{0, 0}, {0, 0}}}], t]]]

UStep[f_, os_, {a_, b_}] := ( {Join[a, #], #} &)[f [Flatten[
Outer[{#1+#2, #1} &, Map[First, b], os, 1], 1], a]]

r[c_] := Map[First, Select[Split[Sort[c],
First[#1] 2 First[#2] &], Length[#] 2 1 &]]

q[c_, a_] := Select[c,
Apply[And, Map[Function[u, qq[#1, u, a]], a]] &]

p[c_] := Select[c,
Apply[And, Map[Function[u, pp[#1, u]], c]] &]

pp[{x_, u_}, {y_, v_}] := Max[Abs[x - y]] > 1 || u 2 v

qq[{x_, u_}, {y_, v_}, a_] := x 2 y || Max[Abs[x - y]] > 1 ||
u 2 y || First[Cases[a, {u, z_} ! z]] 2 y

step 6 step 7 step 8 step 9 step 10

step 1 step 2 step 3 step 4 step 5

step 50
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These rules are fairly complicated, and involve more history
than ordinary cellular automata. But from the discoveries in
this book we now know that much simpler rules can also
yield very complicated behavior. And as the pictures below
show, this is true even just for parts of the rules above (
alone yields outer totalistic code 686 in 2D, and rule 90 in 1D). 

Ulam also in 1967 considered the pure 2D cellular automaton
with outer totalistic code 12 (though he stated its rule in a
complicated way). As shown in the pictures below, when
started from blocks of certain sizes this rule yields complex
patterns—although nothing like this was noted in 1967.

â Limiting shapes. When growth occurs at the maximum rate
the outer boundaries of a cellular automaton pattern reflect
the neighborhood involved in its underlying rule (in rough
analogy to the Wulff construction for shapes of crystals).
When growth occurs at a slower rate, a wide range of
polygonal and other shapes can be obtained, as illustrated in
the main text.

â Additive rules. See page 1092.

â Page 174 · Cellular automaton art. 2D cellular automata can
be used to make a wide range of designs for rugs, wallpaper,
and similar objects. Repeating squares of pattern can be
produced by using periodic boundary conditions. Rules with
more than two colors will sometimes be appropriate. For
rugs, it is typically desirable to have each cell correspond to
more than one tuft, since otherwise with most rules the rug
looks too busy. (Compare page 872.)

â Page 177 · Code 175850. See also page 980.

â Page 178 · Code 746. The pattern generated is not perfectly
circular, as discussed on page 979. Its interior is mostly fixed,
but there are scattered small regions that cycle with a variety
of periods. 

â Page 181 · Code 174826. The pictures below show the upper-
right quadrant for more steps. Most of the lines visible are 8

cells across, and grow by 4 cells every 12 steps. They typically
survive being hit by more complicated growth from the side.
But occasionally runners 3 cells wide will start on the side of
a line. And since these go 2 cells every 3 steps they always
catch up with lines, producing complicated growth, often
terminating the lines. 

â Page 183 · Projections from 3D. Looking from above, with
closer cells shown darker, the following show patterns
generated after 30 steps, by (a) the rule at the top of page 183,
(b) the rule at the bottom of page 183, (c) the rule where a cell
becomes black if exactly 3 out of 26 neighbors were black and
(d) the same as (c), but with a  rather than a 
initial block of black cells:

â Other geometries. Systems like cellular automata can
readily be set up on any geometrical structure in which a
limited number of types of cells can be identified, with every
cell of a given type having a similar neighborhood.

In the simplest case, the cells are all identical, and are laid out
in the same orientation in a repetitive array. The centers of the
cells form a lattice, with coordinates that are integer
multiples of some set of basis vectors. The possible complete
symmetries of such lattices are much studied in
crystallography. But for the purpose of nearest-neighbor
cellular automaton rules, what matters is not detailed
geometry, but merely what cells are adjacent to a given cell.
This can be determined by looking at the Voronoi region (see
page 987) for each point in the lattice. In any given
dimension, this region (variously known as a Dirichlet
domain or Wigner-Seitz cell, and dual to the primitive cell,
first Brillouin zone or Wulff shape) has a limited number of
possible overall shapes. The most symmetrical versions of
these shapes in 2D are the square (4 neighbors) and hexagon
(6) and in 3D (as found by Evgraf Fedorov in 1885) the cube
(6), hexagonal prism (8), rhombic dodecahedron (12) (e.g.

s

r[] q[] p[] p[q[]] p[q[r[]]]

6 66 7 67 8 68 9 69 10 610

161 262 3 63 464 5 65

step 1000 step 2000 step 3000

3�3�1 3�1�1

(a) (b) (c) (d)
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face-centered cubic crystals), rhombo-hexagonal or elongated
dodecahedron (12) and truncated octahedron or
tetradecahedron (14) (e.g. body-centered cubic crystals), as
shown below. (In 4D, 8, 16 and 24 nearest neighbors are
possible; in higher dimensions possibilities have been
investigated in connection with sphere packing.) (Compare
pages 1029 and 986.)

In general, there is no need for individual cells in a cellular
automaton to have the same orientation. A triangular lattice
is one example where they do not. And indeed, any tiling of
congruent figures can readily be used to make a cellular
automaton, as illustrated by the pentagonal example below.
(Outer totalistic codes specify rules; the first rule makes a
particular cell black when any of its five neighbors are black
and has code 4094. Note that even though individual cells are
pentagonal, large-scale cellular automaton patterns usually
have 2-, 4- or 8-fold symmetry.) 

There is even no need for the tiling to be repetitive; the
picture below shows a cellular automaton on a nested
Penrose tiling (see page 932). This tiling has two different
shapes of tile, but here both are treated the same by the
cellular automaton rule, which is given by an outer totalistic
code number. The first example is code 254, which makes a
particular cell become black when any of its three neighbors
are black. (Large-scale cellular automaton patterns here can
have 5-fold symmetry.) (See also page 1027.)

â Networks. Cellular automata can be set up so that each
cell corresponds to a node in a network. (See page 936.)
The only requirement is that around each node the network
must have the same structure (or at least a limited number
of possible structures). For nearest-neighbor rules, it
suffices that each node has the same number of
connections. For longer-range rules, the network must
satisfy constraints of the kind discussed on page 483.
(Cayley graphs of groups always have the necessary
homogeneity.) If the connections at each node are not
labelled, then only totalistic cellular automaton rules can be
implemented. Many topological and geometrical properties
of the underlying network can affect the overall behavior of
a cellular automaton on it. 

Turing Machines

â Implementation. With rules represented as a list of elements
of the form  (  is the state of the
head and  the color of the cell under the head) each step in
the evolution of a 2D Turing machine is given by

â History. At a formal level 2D Turing machines have been
studied since at least the 1950s. And on several occasions
systems equivalent to specific simple 2D Turing machines
have also been constructed. In fact, much as for cellular
automata, more explicit experiments have been done on 2D
Turing machines than 1D ones. A tradition of early robotics
going back to the 1940s—and leading for example to the
Logo computer language—involved studying idealizations
of mobile turtles. And in 1971 Michael Paterson and John
Conway constructed what they described as an idealization
of a prehistoric worm, which was essentially a 2D Turing
machine in which the state of the head records the direction
of the motion taken at each step. Michael Beeler in 1973 used
a computer at MIT to investigate all 1296 possible worms
with rules of the simplest type on a hexagonal grid, and he
found several with fairly complex behavior. But this
discovery does not appear to have been followed up, and
systems equivalent to simple 2D Turing machines were
reinvented again, largely independently, several times in the
mid-1980s: by Christopher Langton in 1985 under the name
“vants”; by Rudy Rucker in 1987 under the name “turmites”;
and by Allen Brady in 1987 under the name “turning
machines”. The specific 4-state rule

step 1 step 2 step 3 step 4 step 5 step 6step 1 step 2 step 3 step 4 step 5 step 6

code 38 code 564 code 700 code 966 code 2990 code 4094

step 1 step 2 step 3 step 4 step 5 step 6

code 22 code 54 code 174 code 214 code 220 code 254

{s, a} ! {sp, ap, {dx, dy}} s
a

 TM2DStep[rule_, {s_, tape_, r : {x_, y_}}] :=
Apply[{#1, ReplacePart[tape, #2, {r}], r +#3} &,
{s, tape0x, y1} /. rule]

 {s_, c_} " With[{sp = s (2 c - 1) 5},
{sp, 1 - c, {Re[sp], Im[sp]}}]

930
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has been called Langton’s ant, and various studies of it were
done in the 1990s. 

â Visualization. The pictures below show the 2D position of
the head at 500 successive steps for the rules on page 185. 

Some 2D Turing machines exhibit elements of randomness at
some steps, but then fill in every so often to form simple
repetitive patterns. An example is the 3-state rule 

â Rules based on turning. The rules used in the main text
specify the displacement of the head at each step in terms of
fixed directions in the underlying grid. An alternative is to
specify the turns to make at each step in the motion of the
head. This is how turtles in the Logo computer language are
set up. (Compare the discussion of paths in substitution
systems on page 892.) 

â 2D mobile automata. Mobile automata can be generalized
just like Turing machines. Even in the simplest case, however,
with only four neighbors involved there are already 
possible rules, or nearly 1029 even for . 

Substitution Systems and Fractals

â Implementation. With the rule on page 187 given for
example by  the result of
 steps in the evolution of a 2D substitution system from a

initial condition such as  is given by 

â Connection with digit sequences. Just as in the 1D case
discussed on page 891, the color of a cell at position  in a
2D substitution system can be determined using a finite
automaton from the digit sequences of the numbers  and .
At step , the complete array of cells is 

where for the pattern on page 187,  and .
For patterns (a) through (f) on page 188,  and  is
given respectively by (a) , (b) , (c)

, (d) , (e) , (f)
. Note that the excluded pairs of digits are in

exact correspondence with the positions of which squares are
 in the underlying rules for the substitution systems. (See

pages 608 and 1091.)

â Page 187 · Sierpihski pattern. Other ways to generate
step  of the pattern shown here in various orientations
include:

ä  (see pages 611 and 870)

ä  (see pages 608 and 871)

ä  

(see page 870)

ä  

(see page 870) 

ä  (see 
page 906)

ä  

(see page 1034) 

ä  

(see pages 870 and 951)

ä  

(see page 1091)

ä  

(compare page 1073)

The positions of black squares can be found from:

ä  

ä  

(compare page 1005)

ä  

(see page 358) 

ä  

(see page 870)

ä  

(see page 509) 

(a) (b) (c) (d) (e)

( 4 k)k5

k = 2

{1 ! {{1, 0}, {1, 1}}, 0 ! {{0, 0}, {0, 0}}}

t
{{1}}

 SS2DEvolve[rule_, init_, t_] :=
Nest[Flatten2D[# /. rule] &, init, t]

Flatten2D[ list_] :=
Apply[Join, Map[MapThread[Join, #] &, list]]

{i, j}

i j
n

 Table[If[FreeQ[Transpose[IntegerDigits[{i, j}, k, n]], form],
1, 0], {i, 0, kn - 1}, { j , 0, kn - 1}]

k = 2 form = {0, 1}
k = 3 form

{1, 1} {0 Ï 2, 0 Ï 2}

{0 Ï 2, 0 Ï 2} Ï {1, 1} {i_, j_} /; j > i {0, 2} Ï {1, 1} Ï {2, 0}
{0, 2} Ï {1, 1}

0

n

Mod[Array[Binomial, {2, 2}n, 0], 2]

1 - Sign[Array[BitAnd, {2, 2}n, 0]]

NestList[Mod[RotateLeft[#] + #, 2] &,
PadLeft[{1}, 2n], 2n - 1]

NestList[Mod[ListConvolve[{1, 1}, #, -1], 2] &,
PadLeft[{1}, 2n], 2n - 1]

IntegerDigits[NestList[BitXor[2 #, #] &, 1, 2n - 1], 2, 2n]

NestList[Mod[Rest[FoldList[Plus, 0, #]], 2] &,
Table[1, {2n}], 2n - 1]

Table[PadRight[
Mod[CoefficientList[( 1+ x)t-1, x], 2], 2n - 1], {t, 2n}]

Reverse[Mod[CoefficientList[Series[1/ (1 - ( 1+ x) y),
{x, 0, 2n - 1}, {y, 0, 2n - 1}], {x, y}], 2]]

Nest[Apply[Join, MapThread[
Join, {{#, #}, {0 #, #}}, 2]] &, {{1}}, n]

Nest[Flatten[2 # /. {x_, y_} ! {{x, y}, {x + 1, y}, {x, y + 1}},
1] &, {{0, 0}}, n]

( Transpose[{Re[#], Im[#]}] &)[
Flatten[Nest[{2 #, 2 # + 1, 2 # + 5} &, {0}, n]]]

Position[Map[Split, NestList[Sort[Flatten[{#, # + 1}]] &,
{0}, 2n - 1]], _? (OddQ[Length[#]] &), {2}]

Flatten[Table[Map[{t, #} &,
Fold[Flatten[{#1, #1+#2}] &, 0, Flatten[2^ (Position[

Reverse[IntegerDigits[t, 2]], 1] - 1)]]], {t, 2n - 1}], 1]

Map[Map[FromDigits[#, 2] &, Transpose[Partition[#, 2]]] &,
Position[Nest[{{#, #}, {#}} &, 1, n], 1] - 1]
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A formatting hack giving the same visual pattern is

â Non-white backgrounds. The pictures below show
substitution systems in which white squares are replaced by
blocks which contain black squares. There is still a nested
structure but it is usually not visually as obvious as before.
(See page 583.)

â Higher-dimensional generalizations. The state of a -
dimensional substitution system can be represented by a
nested list of depth . The evolution of the system for  steps
can be obtained from 

The analog in 3D of the 2D rule on page 187 is

Note that in  dimensions, each black cell must be replaced
by at least  black cells at each step in order to obtain
an object that is not restricted to a dimension 
hyperplane. 

â Other shapes. The systems on pages 187 and 188 are based
on subdividing squares into smaller squares. But one can also
set up substitution systems that are based on subdividing
other geometrical figures, as shown below.

The second example involves two distinct shapes: a square and
a  aspect ratio rectangle. Labelling each shape and

orientation with a different color, the behavior of this system can
be reproduced with equal-sized squares using the rule

 starting
from initial condition .

â Penrose tilings. The nested pattern shown below was
studied by Roger Penrose in 1974 (see page 943).

The arrangement of triangles at step  can be obtained from a
substitution system according to 

This pattern can be viewed as generalizations of the pattern
generated by the 1D Fibonacci substitution system (c) on
page 83. As discussed on page 903, this 1D sequence can be
obtained by looking at how a line with  slope cuts
through a 2D lattice of squares. Penrose tilings can be
obtained by looking at how a 2D plane with slopes based on

 cuts through a lattice of hypercubes in 5D. The
tilings turn out to have approximate 5-fold symmetry. (See
also page 943.)

In general, projections onto any regular lattice in any number
of dimensions from hyperplanes with any quadratic
irrational slopes will yield nested patterns that can be
generated by subdividing some shape or another according
to a substitution system. Despite some confusion in the
literature, however, this procedure can reproduce only a tiny
fraction of all possible nested patterns. 

â Page 189 · Dragon curve. The pattern shown here can be
obtained in several related ways, including from numbers in
base  (see below) and from a doubled version of the
paths generated by 1D paperfolding substitution systems
(see page 892). Its boundary has fractal dimension

.

DisplayForm[Nest[SubsuperscriptBox[#, #, #] &, "1", n]]

d

d t

 SSEvolve[rule_, init_, t_, d_Integer] :=
Nest[FlattenArray[# /. rule, d] &, init, t]

FlattenArray[ list_, d_] :=
Fold[Function[{a, n}, Map[MapThread[Join, #, n] &,

a, -{d + 2}]], list, Reverse[Range[d] - 1]]

 {1 ! Array[If[LessEqual[##], 0, 1] &, {2, 2, 2}],
0 ! Array[0 &, {2, 2, 2}]}

d
d + 1

d - 1

GoldenRatio

{3 ! {{1, 0}, {3, 2}}, 2 ! {{1}, {3}}, 1 ! {{3, 2}}, 0 ! {{3}}}

{{3}}

t

 With[{f = GoldenRatio}, Nest[# /. a[p_, q_, r_] "
With[{s = ( p +fq) (2 - f)}, {a[r, s, q], b[r, s, p]}] /.

b[p_, q_, r_] " With[{s = ( p +f r) ( 2 - f)}, {a[p, q, s], b[
r, s, q]}] &, a[{1/2, Sin[2p /5] f}, {1, 0}, {0, 0}], t]]

GoldenRatio

GoldenRatio

5 - 1

2 Log[2, Root[2 +#12 - #13, 1]] ; 1.52
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â Implementation. The most convenient approach is to represent
each pattern by a list of complex numbers, with the center of each
square being given in terms of each complex number  by

. The pattern after  steps is then given by
, where for the rule on page 189

 (  gives
a transformed version). For the rule on page 190,

. For rules (a), (b) and (c)
(Koch curve) on page 191 the forms of  are respectively: 

â Connection with digit sequences. Patterns after  steps can
be viewed as containing all -digit integers in an appropriate
complex base. Thus the patterns on page 189 can be formed
from -digit integers in base  containing only digits 0 and
1, as given by

In the particular case of base  with digits 0 through , it
turns out that for sufficiently large  any complex integer can
be represented, and will therefore be part of the pattern.
(Compare page 1094.)

â Visualization. The 3D pictures below show successive steps
in the evolution of each of the geometric substitution systems
from the main text. 

â Parameter space sets. See pages 407 and 1006 for a
discussion of varying parameters in geometrical substitution
systems. 

â Affine transformations. Any set of so-called affine
transformations that take the vector for each point, multiply
it by a fixed matrix and then add a fixed vector, will yield
nested patterns similar to those shown in the main text.
Linear operations on complex numbers of the kind
discussed above correspond geometrically to rotations,
translations and rescalings. General affine transformations
also allow reflection and skewing. In addition, affine
transformations can readily be generalized to any number of
dimensions, while complex numbers represent only two
dimensions.

â Complex maps. Many kinds of nonlinear transformations
on complex numbers yield nested patterns. Sets of so-called
Möbius transformations of the form 
always yield such patterns (and correspond to so-called
modular groups when ). Transformations of the
form  yield so-called Julia sets
which form nested patterns for many values of  (see note
below). In fact, a fair fraction of all possible transformations
based on algebraic functions will yield nested patterns. For
typically the continuity of such functions implies that only a
limited number of shapes not related by limited variations in
local magnification can occur at any scale. 

â Fractal dimensions. Certain features of nested patterns can
be characterized by so-called fractal dimensions. The
pictures below show five patterns with three successively
finer grids superimposed. The dimension of a pattern can be
computed by looking at how the number of grid squares
that have any gray in them varies with the length  of the
edge of each grid square. In the first case shown, this
number varies like  for small , while in the last case,
it varies like . In general, if the number varies like

, one can take  to be the dimension of the pattern.
And in the intermediate cases shown, it turns out that  has
non-integer values. 

The grid in the pictures above fits over the pattern in a very
regular way. But even when this does not happen, the
limiting behavior for small  is still  for any nested
pattern. This form is inevitable if the underlying pattern
effectively has the same structure on all scales. For some of
the more complex patterns encountered in this book,
however, there continues to be different structure on different
scales, so that the effective value of  fluctuates as the scale
changes, and may not converge to any definite value. (Precise
definitions of dimension based for example on the maximum
ever achieved by  will often in general imply formally non-
computable values, as in the discussion of page 1138.) 

z
{Re[z], Im[z]} n
Nest[Flatten[f [#]] &, {0}, n]
f [z_] = 1/2 (1 - 5) {z + 1/2, z - 1/2} f [z_] = ( 1 - 5) {z + 1, z}

f [z_] = 1/2 (1 - 5) {5 z + 1/2, z - 1/2}
f [z_]

 ( 0.296 - 0.57 5) z - 0.067 5 - {1.04, 0.237}

N[1/40 {17 (�!!!!3 - 5) z, -24+ 14 z}]

N[( 1/2 (1/�!!!!3 - 1) ( 5 + {1, -1}) - 5 - ( 1+ {5, -5} /�!!!!3 ) z)/2]

t
t

t 5 - 1

Table[FromDigits[IntegerDigits[s, 2, t], 5 - 1], {s, 0, 2t - 1}]

5 - q q2

t

z ! ( a z + b)/ ( c z + d)

a d - b c 2 1
z ! {Sqrt[z - c], -Sqrt[z - c]}

c

a

(1/a)1 a
(1/a)2

(1/a)d d
d

a (1/a)d

d

d
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Fractal dimensions characterize some aspects of nested
patterns, but patterns with the same dimension can often
look very different. One approach to getting better
characterizations is to look at each grid square, and to ask not
just whether there is any gray in it, but how much. Quantities
derived from the mean, variance and other moments of the
probability distribution can serve as generalizations of fractal
dimension. (Compare page 959.)

â History of fractals. The idea of using nested 2D shapes in
art probably goes back to antiquity; some examples were
shown on page 43. In mathematics, nested shapes began to
be used at the end of the 1800s, mainly as counterexamples
to ideas about continuity that had grown out of work on
calculus. The first examples were graphs of functions: the
curve on page 918 was discussed by Bernhard Riemann in
1861 and by Karl Weierstrass in 1872. Later came
geometrical figures: example (c) on page 191 was
introduced by Helge von Koch in 1906, the example on
page 187 by Waclaw Sierpinski in 1916, examples (a) and (c)
on page 188 by Karl Menger in 1926 and the example on
page 190 by Paul Lévy in 1937. Similar figures were also
produced independently in the 1960s in the course of early
experiments with computer graphics, primarily at MIT.
From the point of view of mathematics, however, nested
shapes tended to be viewed as rare and pathological
examples, of no general significance. But the crucial idea
that was developed by Benoit Mandelbrot in the late 1960s
and early 1970s was that in fact nested shapes can be
identified in a great many natural systems and in several
branches of mathematics. Using early raster-based
computer display technology, Mandelbrot was able to
produce striking pictures of what he called fractals. And
following the publication of Mandelbrot’s 1975 book,
interest in fractals increased rapidly. Quantitative
comparisons of pure power laws implied by the simplest
fractals with observations of natural systems have had
somewhat mixed success, leading to the introduction of
multifractals with more parameters, but Mandelbrot’s
general idea of the importance of fractals is now well
established in both science and mathematics.

â The Mandelbrot set. The pictures below show Julia sets
produced by the procedure of taking the transformation

 discussed above and iterating it
starting at  for an array of values of  in the complex
plane.
 
 
 
 

 

 

The Mandelbrot set introduced by Benoit Mandelbrot in 1979
is defined as the set of values of  for which such Julia sets
are connected. This turns out to be equivalent to the set of
values of  for which starting at  the inverse mapping

 leads only to bounded values of . The Mandelbrot
set turns out to have many intricate features which have been
widely reproduced for their aesthetic value, as well as
studied by mathematicians. The first picture below shows the
overall form of the set; subsequent pictures show successive
magnifications of the regions indicated. All parts of the
Mandelbrot set are known to be connected. The whole set is
not self-similar. However, as seen in the third and fourth
pictures, within the set are isolated small copies of the whole
set. In addition, as seen in the last picture, near most values
of  the boundary of the Mandelbrot set looks very much like
the Julia set for that value of .

On pages 407 and 1006 I discuss parameter space sets that are
somewhat analogous to the Mandelbrot set, but whose
properties are in many respects much clearer. And from this
discussion there emerges the following interpretation of the
Mandelbrot set that appears not to be well known but which
I find most illuminating. Look at the array of Julia sets and
ask for each  whether the Julia set includes the point .

z ! {Sqrt[z - c], -Sqrt[z - c]}
z = 0 c

-2 -1 0 1 2

0

5

2�5

c

c z = 0
z ! z 2 + c z

c
c

c z = 0
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The set of values of  for which it does corresponds exactly to
the boundary of the Mandelbrot set. The pictures below show
a generalization of this idea, in which gray level indicates the
minimum distance  of any point  in the Julia set
from a fixed point . The first picture shows the case ,
corresponding to the usual Mandelbrot set.

â Page 192 · Neighbor-dependent substitution systems. Given
a list of individual replacement rules such as

, each step in the evolution
shown corresponds to

One can consider rules in which some replacements lead to
subdivision of elements but others do not. However, unlike
for the 1D case, there will in general in 2D be an arbitrarily
large set of different possible neighborhood configurations
around any given cell. 

â Page 192 · Space-filling curves. One can conveniently scan a
finite 2D grid just by going along each successive row in turn.
One can scan a quadrant of an infinite grid using the 
function on page 1127, or one can scan a whole grid by for
example going in a square spiral that at step  reaches position

Network Systems

â Implementation. The nodes in a network system can
conveniently be labelled by numbers , , , and the
network obtained at a particular step can be represented by a
list of pairs, where the pair at position  gives the numbers
corresponding to the nodes reached by following the above
and below connections from node . With this setup, a
network consisting of just one node is  and a 1D array
of  nodes can be obtained with 

With above connections represented as  and the below
connections as , the node reached by following a succession

 of connections from node  is given by 

The total number of distinct nodes reached by following all
possible succession of connections up to length  is given by 

For each such list the rules for the network system then specify
how the connections from node  should be rerouted. The rule

 specifies that when 
gives  for a node , the connections from that node should
become . The rule

 specifies that a new node should
be inserted in the above connection, and this new node should
have connections .
With rules set up in this way, each step in the evolution of a
network system is given by 

The set of nodes that can be reached from node  is given by

and disconnected nodes can be removed using 

The sequence of networks obtained on successive steps by
applying the rules and then removing all nodes not
connected to node number  is given by

Note that the nodes in each network are not necessarily
numbered in the order that they appear on successive lines in
the pictures in the main text. Additional information on the
origin of each new node must be maintained if this order is to
be found.

â Rule structure. For depth 1, the possible results from
 are  and . For depth 2, they are ,

, , ,  and . In general, each
successive element in a list from  cannot be
more than twice the previous element.

â Undirected networks. Networks with connections that do
not have definite directions are discussed at length in
Chapter 9, mainly as potential models for space in the
universe. The rules for updating such networks turn out to be

c

Abs[z - z0] z
z0 z0 = 0

z0 = 0 z0 = 1 z0 = 5

{{_, 1}, {0, 1}} ! {{1, 0}, {1, 1}}

Flatten2D[Partition[ list, {2, 2}, 1, -1] /. rule]

s

t
 ( 1/2 ( -1)# ( {1, -1} (Abs[#2 - t] - #) +#2 - t -Mod[#, 2]) &)[

Round[�!!!t ]]

1 2 ? n

i

i
{{1, 1}}

n
 CyclicNet[n_] := RotateRight[

Table[Mod[{i - 1, i + 1}, n] + 1, {i, n}]]

1
2

s i

Follow[ list_, i_, s_List] := Fold[ list0#110#21 &, i, s]

d
 NeighborNumbers[ list_, i_Integer, d_Integer] :=

Map[Length, NestList[Union[Flatten[ list0#1]] &,
Union[ list0i1], d - 1]]

i
{2, 3} ! {{2, 1}, {1}} NeighborNumbers

{2, 3} i
{Follow[ list, i, {2, 1}], Follow[ list, i, {1}]}

{2, 3} ! {{{2, 1}, {1, 1}}, {1}}

{Follow[ list, i, {2, 1}], Follow[ list, i, {1, 1}]}

 NetEvolveStep[{depth_Integer, rule_List}, list_List] := Block[
{new = {}}, Join[Table[Map[NetEvolveStep1[#, list, i] &,

Replace[NeighborNumbers[ list, i, depth],
rule]], {i, Length[ list]}], new]]

NetEvolveStep1[s : {___Integer}, list_, i_] := Follow[ list, i, s]

NetEvolveStep1[{s1 : {___Integer}, s2 : {___Integer}},
list_, i_] := Length[ list] + Length[

AppendTo[new, {Follow[ list, i, s1], Follow[ list, i, s2]}]]

i
 ConnectedNodes[ list_, i_] :=

FixedPoint[Union[Flatten[{#, list0#1}]] &, {i}]

 RenumberNodes[ list_, seq_] :=
Map[Position[seq, #]01, 11 &, list0seq1, {2}]

1
 NetEvolveList[rule_, init_, t_Integer] :=

NestList[(RenumberNodes[#, ConnectedNodes[#, 1]] &)[
NetEvolveStep[rule, #]] &, init, t]

NeighborNumbers {1} {2} {1, 1}
{1, 2} {2, 1} {2, 2} {2, 3} {2, 4}

NeighborNumbers
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somewhat more difficult to apply than those for the network
systems discussed here. 

â Page 199 · Computer science. The networks discussed here
can be thought of as very simple analogs of data structures in
practical computer programs. The connections correspond to
pointers between elements of these data structures. The fact
that there are two connections coming from each node is
reminiscent of the LISP language, but in the networks
considered here there are no leaves corresponding to atoms
in LISP. Note that the process of dropping nodes that become
disconnected is analogous to so-called “garbage collection”
for data structures. The networks considered here are also
related to the combinator systems discussed on page 1121.

â Page 202 ·  Properties. Random behavior seems to occur in a
few out of every thousand randomly selected rules of the
kind shown here. In case (c), the following gives a list of the
numbers of nodes generated up to step : 

â Sequential network systems. In the network systems
discussed in the main text, every node is updated in
parallel at each step. It is however also possible to consider
systems in which there is only a single active node, and
operations are performed only on that node at any
particular step. The active node can move by following its
above or below connections, in a way that is determined by
a rule which depends on the local structure of the network.
The pictures below show examples of sequential network
systems; the path of the active node is indicated by a thick
black line.

It is rather common for the active node eventually to get
stuck at a particular position in the network; the picture
below shows the effect of this on the total number of nodes in
the last case illustrated above. The rule for this system is 

â Dimensionality of networks. As discussed on page 479, if a
sufficiently large network has a -dimensional form, then by
following  connections in succession from a given node, one
should reach about  distinct nodes. The plots below show
the actual numbers of nodes reached as a function of  for the
systems on pages 202 and 203 at steps 1, 10, 20, ..., 200. 

â Cellular automata on networks. The cellular automata that
we have considered so far all have cells arranged in regular
arrays. But one can also set up generalizations in which the
cells correspond to nodes in arbitrary networks. Given a
network of the kind discussed in the main text of this section,
one can assign a color to each node, and then update this
color at each step according to a rule that depends on the
colors of the nodes to which the connections from that node
go. The behavior obtained depends greatly on the form of the
network, but with networks of finite size the results are
typically like those obtained for other finite size cellular
automata of the kind discussed on page 259.

â Implementation. Given a network represented as a list in
which element  is , where  is the node reached by
the above connection from node , and  is the node reached
by the below connection, each step corresponds to 

â Boolean networks. Several lines of development from the
cybernetics movement (notably in immunology, genetics and
management science) led in the 1960s to a study of random
Boolean networks—notably by Stuart Kauffman and Crayton
Walker. Such systems are like cellular automata on networks,
except for the fact that when they are set up each node has a
rule that is randomly chosen from all  possible ones with

 inputs. With  class 2 behavior (see Chapter 6) tends to

t
 FoldList[Plus, 1, Join[{1, 4, 12, 10, -20, 6, 4},

Map[d, IntegerDigits[Range[4, t - 5], 2]]]]
d[{___, 1}] = 1

d[{1, p : ( ( 0) ..), 0}] :=
-Apply[Plus, 4 Range[Length[{p}]] - 1] + 6

d[{__, 1, p : ( ( 0) ..), 0}] := d[{1, p, 0}] - 7

d[{___, p : ( ( 1) ..), q : ( ( 0) ...), 1, 0}] :=
4 Length[{p}] + 3 Length[{q}] + 2

d[{___, p : ( ( 1) ..), 1, 0}] := 4 Length[{p}] + 2

 {{1, 1} ! {{{{}, {1, 1}}, {2}}, 2}, {1, 2} ! {{{2, 2}, {{}, {2, 2}}}, 2},
{2, 1} ! {{{}, {2, 2}}, 2}, {2, 2} ! {{{1, 2}, {{1}, {2}}}, 1},
{2, 3} ! {{{{1, 2}, {1}}, {{2}, {2, 1}}}, 2},
{2, 4} ! {{{2, 2}, {{2, 1}, {}}}, 1}}

0
5

10
15
20
25
30
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(e)

i {a, i, b} a
i b

 NetCAStep[{rule_, net_}, list_] :=
Map[Replace[#, rule] &, list0net1]

22s

s s = 2
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dominate. But for , the behavior one sees quickly
approaches what is typical for a random mapping in which
the network representing the evolution of the  states of the

 underlying nodes is itself connected essentially randomly
(see page 963). (Attempts were made in the 1980s to study
phase transitions as a function of  in analogy to ones in
percolation and spin glasses.) Note that in almost all work on
random Boolean networks averages are in effect taken over
possible configurations, making it impossible to see anything
like the kind of complex behavior that I discuss in cellular
automata and many other systems in this book. 

Multiway Systems

â Implementation. It is convenient to represent the state of a
multiway system at each step by a list of strings, where an
individual string is for example . The rules for the
multiway system can then be given for example as

The evolution of the system is given by the functions

An alternative approach uses lists instead of strings, and in
effect works by tracing the internal steps that Mathematica
goes through in trying out possible matchings. With the rule
from above written as

 can be rewritten as

The case shown on page 206 is

starting with {"ABABAB"}. Note that the rules are set up so that
a string for which there are no applicable replacements at a
given step is simply dropped.

â General properties. The merging of states (as done above by
) is crucial to the behavior seen. Note that the pictures

shown indicate only which states yield which states—not for
example in how many ways the rules can be applied to a
given state to yield a given new state. 

If there was no merging, then if a typical state yielded more
than one new state, then inevitably the total number of
states would increase exponentially. But when there is

merging, this need not occur—making it difficult to give
probabilistic estimates of growth rates. Note that a given
rule can yield very different growth rates with different
initial conditions. Thus, for example, the growth rate for

 is , where  is the
number of initial ’s. With most rules, states that appear at
one step can disappear at later steps. But if  and its
analogs are part of the rule, then every state will always be
kept, almost inevitably leading to overall nesting in pictures
like those on page 208. 

In cases where all strings that appear both in rules and
initial conditions are sorted—so that for example ’s appear
before ’s—any string generated will also be sorted, so it
can be specified just by giving a list of how many ’s and
how many ’s appear in it. The rule for the system can then
be stated in terms of a difference vector—which for

 is . Given a
list of string specifications, a step in the evolution of the
multiway system corresponds to

â Page 206 · Properties. The total number of strings grows
approximately quadratically; its differences repeat (offset by
1) with period 1071. The number of new strings generated at
successive steps grows approximately linearly; its differences
repeat with period 21. The third element of the rule is at first
used only on some steps—but after step 50 it appears to be
used somewhere in every step.

The pictures below show in stacked form (as on page 208) all
sequences generated at various steps of evolution. Note that
after just a few steps, the sequences produced always seem to
consist of white elements followed by black, with possibly
one block of black in the white region. Without this
additional block of black, only the first case in the rule can
ever apply. 

In analogy with page 796 the picture below shows wh
different strings with lengths up to 10 are reached in the
evolution of the system.

s > 2

2m

m

s

"ABBAAB"

{"AAB" ! " BB", " BA" ! " ABB"}

 MWStep[rule_List, slist_List] := Union[Flatten[
Map[Function[s, Map[MWStep1[#, s] &, rule]], slist]]]

MWStep1[p_String ! q_String, s_String] :=
Map[StringReplacePart[s, q, #] &, StringPosition[s, p]]

MWEvolveList[rule_, init_List, t_Integer] :=
NestList[MWStep[rule, #] &, init, t]

 {{x___, 0, 0, 1, y___} ! {x, 1, 1, y},
{x___, 1, 0, y___} ! {x, 0, 1, 1, y}}

MWStep
 MWStep[rule_List, slist_List] :=

Union[Flatten[Map[ReplaceList[#, rule] &, slist], 1]]

{"AB" ! "", "ABA" ! "ABBAB", "ABABBB" ! "AAAAABA"}

Union

{"A" ! "AA", "AB" ! "BA", "BA" ! "AB"} tn+1 n
B

"A" ! "A"

A
B

A
B

{"BA" ! "AAA", "BAA" ! "BBBA"} {{2, -1}, {-1, 2}}

 Select[Union[Flatten[Outer[Plus, diff , list, 1], 1]],
Abs[#] 2 # &]

step 100 step 200 step 300 step 400

10

20

30

40

50

60
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Different initial conditions for this multiway system lead to
behavior that either dies out (as for ), or grows
exponentially forever (as for ).

â Frequency of behavior. Among multiway systems with
randomly chosen rules, one finds about equal numbers that
grow rapidly and die out completely. A few percent exhibit
repetitive behavior, while only one in several million exhibit
more complex behavior. One common form of more complex
behavior is quadratic growth, with essentially periodic
fluctuations superimposed—as on page 206. 

â History. Versions of multiway systems have been invented
many times in a variety of contexts. In mathematics specific
examples of them arose in formal group theory (see below)
around the end of the 1800s. Axel Thue considered versions
with two-way rules (analogous to semigroups, as discussed
below) in 1912, leading to the name semi-Thue systems
sometimes being used for general multiway systems. Other
names for multiway systems have included string and term
rewrite systems, production systems and associative calculi.
From the early 1900s various generalizations of multiway
systems were used as idealizations of mathematical proofs
(see page 1150); multiway systems with explicit pattern
variables (such as ) were studied under the name canonical
systems by Emil Post starting in the 1920s. Since the 1950s,
multiway systems have been widely used as generators of
formal languages (see below). Simple analogs of multiway
systems have also been used in genetic analysis in biology
and in models for particle showers and other branching
processes in physics and elsewhere. 

â Semigroups and groups. The multiway systems that I
discuss can be viewed as representations for generalized
versions of familiar mathematical structures. Semigroups are
obtained by requiring that rules come in pairs: with each rule
such as  there must also be the reversed rule

. Such pairs of rules correspond to relations in
the semigroup, specifying for example that  is
equivalent to . (The operation in the semigroup is
concatenation of strings;  acts as an identity element, so in
fact a monoid is always obtained.) Groups require that not
only rules but also symbols come in pairs. Thus, for example,
in addition to a symbol , there must be an inverse symbol ,
with the rules ,  and their reversals. 

In the usual mathematical approach, the objects of greatest
interest for many purposes are those collections of sequences
that cannot be transformed into each other by any of the rules
given. Such collections correspond to distinct elements of the
group or semigroup, and in general many different choices of
underlying rules may yield the same elements with the same

properties. In terms of multiway systems, each of the
elements corresponds to a disconnected part of the network
formed from all possible sequences. 

Given a particular representation of a group or semigroup in
terms of rules for a multiway system, an object that is often
useful is the so-called Cayley graph—a network where each
node is an element of the group, and the connections show
what elements are reached by appending each possible
symbol to the sequences that represent a given element. The
so-called free semigroup has no relations and thus no rules,
so that all strings of generators correspond to distinct
elements, and the Cayley graph is a tree like the ones shown
on page 196. The simplest non-trivial commutative
semigroup has rules  and , so that
strings of generators with ’s and ’s in different orders are
equivalent and the Cayley graph is a 2D grid. 

For some sets of underlying rules, the total number of
distinct elements in a group or semigroup is finite. (Compare
page 945.) A major mathematical achievement in the 1980s
was the complete classification of all possible so-called
simple finite groups that in effect have no factors. (For
semigroups no such classification has yet been made.) In each
case, there are many different choices of rules that yield the
same group (and similar Cayley graphs). And it is known
that even fairly simple sets of rules can yield large and
complicated groups. The icosahedral group  defined by
the rules  has 60 elements. But in the
most complicated case a dozen rules yield the Monster
Group, where the number of elements is 

808017424794512875886459904961710757005754368000000000 

(See also pages 945 and 1032.)

Following work in the 1980s and 1990s by Mikhael Gromov
and others, it is also known that for groups with randomly
chosen underlying rules, the Cayley graph is usually either
finite, or has a rapidly branching tree-like structure. But there
are presumably also marginal cases that exhibit complex
behavior analogous to what we saw in the main text. And
indeed for example, despite conjectures to the contrary, it was
found in the 1980s by Rostislav Grigorchuk that complicated
groups could be constructed in which growth intermediate
between polynomial and exponential can occur. (Note that
different choices of generators can yield Cayley graphs with
different local subgraphs; but the overall structure of a
sufficiently large graph for a particular group is always the
same.) 

â Formal languages. The multiway systems that I discuss are
similar to so-called generative grammars in the theory of
formal languages. The idea of a generative grammar is that

"ABA"
"ABAABABA"

s_

"ABB" ! "BA"
"BA" ! "ABB"

"ABB"
"BA"

""

A a
"Aa" ! "" "aA" ! ""

"AB" ! "BA" "BA" ! "AB"
A B

A5

x2 2 y 3 2 ( x y)5 2 1
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all possible expressions in a particular formal language can
be produced by applying in all possible ways the set of
replacement rules given by the grammar. Thus, for example,
the rules  starting with 
will generate all expressions that consist of balanced
sequences of parentheses. (Final expressions correspond to
those without the “non-terminal” symbol .) The hierarchy
described by Noam Chomsky in 1956 distinguishes four
kinds of generative grammars (see page 1104):

Regular grammars. The left-hand side of each rule must
consist of one non-terminal symbol, and the right-hand side
can contain only one non-terminal symbol. An example is

 starting with  which
generates sequences in which no pair of ’s ever appear
together. Expressions in regular languages can be
recognized by finite automata of the kind discussed on
page 957. 

Context-free grammars.  The left-hand side of each rule must
consist of one non-terminal symbol, but the right-hand side
can contain several non-terminal symbols. Examples
include the parenthesis language mentioned above,

 starting with , and the syntactic
definitions of Mathematica and most other modern computer
languages. Context-free languages can be recognized by a
computer using only memory on a single last-in first-out
stack. (See pages 1091 and 1103.)

Context-sensitive grammars. The left-hand side of each rule is
no longer than the right, but is otherwise unrestricted. An
example is  starting
with , which generates expressions of the form

.

Unrestricted grammars. Any rules are allowed.

(See also page 944.)

â Multidimensional multiway systems. As a generalization of
multiway systems based on 1D strings one can consider
systems in which rules operate on arbitrary blocks of
elements in an array in any number of dimensions. Still
more general network substitution systems are discussed on
page 508. 

â Limited size versions. One can set up multiway systems of
limited size by applying transformations cyclically to strings.

â Multiway tag systems. See page 1141.

â Multiway systems based on numbers. One can consider for
example the rule  implemented by 

In this case there are  distinct numbers
obtained at step . In general, rules based on simple
arithmetic operations yield only simple nested structures. If
the numbers  are allowed to have both real and imaginary
parts then results analogous to those discussed for
substitution systems on page 933 are obtained. (Somewhat
related systems based on recursive sequences are discussed
on page 907. Compare also sorted multiway systems on
page 937.)

â Non-deterministic systems. Multiway systems are examples
of what are often in computer science called non-
deterministic systems. The general idea of a non-
deterministic system is to have rules with several possible
outcomes, and then to allow each of these outcomes to be
followed. Non-deterministic Turing machines are a common
example. For most types of systems (such as Turing
machines) such non-deterministic versions do not ultimately
allow any greater range of computations to be performed
than deterministic ones. (But see page 766.)

â Fundamental physics. See page 504.

â Game systems. One can think of positions or configurations
in a game as corresponding to nodes in a large network, and
the possible moves in the game as corresponding to
connections between nodes. Most games have rules which
imply that if certain states are reached one player can be
forced in the end to lose, regardless of what specific moves
they make. And even though the underlying rules in the
game may be simple, the pattern of such winning positions is
often quite complex. Most games have huge networks whose
structure is difficult to visualize (even the network for tic-tac-
toe, for example, has 5478 nodes). One example that allows
easy visualization is a simplification of several common
games known as nim. This has  piles of objects, and on
alternate steps each of two players takes as many objects as
they want from any one of the piles. The winner is the player
who manages to take the very last object. With just two piles
one player can force the other to lose by arranging that after
each of their moves the two piles have equal heights. With
more than two piles it was discovered in 1901 that one player
can in general force the other to lose by arranging that after
each of their moves , where  is the list of
heights. For  this yields a nested pattern, analogous to
those shown on page 871. If one allows only specific numbers
of objects to be taken at each step a nested pattern is again
obtained. With more general rules it seems almost inevitable
that much more complicated patterns will occur.

{"x" ! "xx", "x" ! "( x)", "x" ! "( )"} "x"

x

{"x" ! "xA", "x" ! "yB", "y" ! "xA"} "x"
B

{"x" ! "AxA", "x" ! "B"} "x"

{"Ax" ! "AAxx", "xA" ! "BAA", "xB" ! "Bx"}
"AAxBA"

Table["A", {n}]<> Table["B", {n}]<> Table["A", {n}]

n ! {n+ 1, 2 n}

NestList[Union[Flatten[{# + 1, 2 #}]] &, {0}, t]

Fibonacci[t + 2]
t

n

k

Apply[BitXor, h] 2 0 h
k > 1
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Systems Based on Constraints

â The notion of equations. In the mathematical framework
traditionally used in the exact sciences, laws of nature are
usually represented not by explicit rules for evolution, but
rather by abstract equations. And in general what such
equations do is to specify constraints that systems must
satisfy. Sometimes these constraints just relate the state of a
system at one time to its state at a previous time. And in such
cases, the constraints can usually be converted into explicit
evolution rules. But if the constraints relate different features
of a system at one particular time, then they cannot be
converted into evolution rules. In computer programs and
other kinds of discrete systems, explicit evolution rules and
implicit constraints usually work very differently. But in
traditional continuous mathematics, it turns out that these
differences are somewhat obscured. First of all, at a formal
level, equations corresponding to these two cases can look
very similar. And secondly, the equations are almost always
so difficult to deal with at all that distinctions between the
two cases are not readily noticed.

In the language of differential equations—the most widely
used models in traditional science—the two cases we are
discussing are essentially so-called initial value and
boundary value problems, discussed on page 923. And at a
formal level, the two cases are so similar that in studying
partial differential equations one often starts with an
equation, and only later tries to work out whether initial or
boundary values are needed in order to get either any
solution or a unique solution. For the specific case of second-
order equations, it is known in general what is needed.
Elliptic equations such as the Laplace equation need
boundary values, while hyperbolic and parabolic equations
such as the wave equation and diffusion equation need initial
values. But for higher-order equations it can be extremely
difficult to work out what initial or boundary values are
needed, and indeed this has been the subject of much
research for many decades.

Given a partial differential equation with initial or boundary
values, there is then the question of solving it. To do this on a
computer requires constructing a discrete approximation. But
it turns out that the standard methods used (such as finite
difference and finite element) involve extremely similar
computations for initial and for boundary value problems,
leaving no trace of the significant differences between these
cases that are so obvious in the discrete systems that we
discuss in most of this book.

â Linear and nonlinear systems. A vast number of different
applications of traditional mathematics are ultimately based

on linear equations of the form  where  and  are
vectors (lists) and  is a matrix (list of lists), all containing
ordinary continuous numbers. If  is known then such
equations in essence provide explicit rules for computing .
But if only  is known, then the equations can instead be
thought of as providing implicit constraints for . However,
it so happens that even in this case  can still be found fairly
straightforwardly using . With vectors of
length  it generically takes about  steps to compute 
given , and a little less than  steps to compute  given 
(the best known algorithms—which are based on matrix
multiplication—currently involve about  steps). But as
soon as the original equation is nonlinear, say

, the situation changes dramatically. It still
takes only about  steps to compute  given , but it
becomes vastly more difficult to compute  given , taking
perhaps  steps. (Generically there are  solutions for ,
and even for integer coefficients in the range  to  already
in 95% of cases there are 4 solutions with  as soon as

.) 

â Explanations based on constraints. In some areas of science
it is common to give explanations in terms of constraints
rather than mechanisms. Thus, for example, in physics there
are so-called variational principles which state that physical
systems will behave in ways that minimize or maximize
certain quantities. One such principle implies that atoms in
molecules will tend to arrange themselves so as to minimize
their energy. For simple molecules, this is a useful principle.
But for complicated molecules of the kind that are common
in living systems, this principle becomes much less useful. In
fact, in finding out what configuration such molecules
actually adopt, it is usually much more relevant to know how
the molecule evolves in time as it is created than which of its
configurations formally has minimum energy. (See pages 342
and 1185.)

â Page 211 · 1D constraints. The constraints in the main text
can be thought of as specifying that only some of the 
possible blocks of cells of length  (with  possible colors for
each cell) are allowed. To see the consequences of such
constraints consider breaking a sequence of colors into blocks
of length , with each block overlapping by  cells with its
predecessor, as in . If all possible sequences
of colors were allowed, then there would be  possibilities for
what block could follow a given block, given by

. The possible
sequences of length  blocks that can occur are conveniently
represented by possible paths by so-called de Bruijn
networks, of the kind shown for  and  through 
below.

u 2 m�.�v u v
m

v
u

u
v

v
LinearSolve[m, u]

n n2 u
v n3 v u

n2.4

u 2 m1 �.�v +m2 �.�v
2

n2 u v
v u

22n
2n v

-r +r
n = 2

r > 6

kn

n k

n n - 1
Partition[ list, n, 1]

k

Map[Rest, Table[Append[ list, i], {i, 0, k - 1}]]
n

k = 2 n = 2 5
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Given the network for a particular , it is straightforward to
see what happens when only certain length  blocks are
allowed: one just keeps the arcs in the network that
correspond to allowed blocks, and drops all other ones. Then
if one can still form an infinite path by going along the arcs
that remain, this path will correspond to a pattern that
satisfies the constraints. Sometimes there will be a unique
such path; in other cases there will be choices that can be
made along the path. But the crucial point is that since there
are only  nodes in the network, then if any infinite path is
possible, there must be such a path that visits the same node
and thus repeats itself after at most  cells. The constraint
on page 210 has  and ; the pattern that satisfies it
repeats with period 4, thus saturating the bound. (See also
page 266.)

â 1D cellular automata. In a cellular automaton with  colors
and  neighbors, configurations that are left invariant after 
steps of evolution according to the cellular automaton rule
are exactly the ones which contain only those length 
blocks in which the center cell is the same before and after the
evolution. Such configurations therefore obey constraints of
the kind discussed in the main text. As we will see on page
225 some cellular automata evolve to invariant
configurations from any initial conditions, but most do not.
(See page 954.)

â Dynamical systems theory. Sets of sequences in which a
finite collection of blocks are excluded are sometimes known
as finite complement languages, or subshifts of finite type.
(See page 958.)

â Page 215 · 2D constraints. The constraints shown here are
minimal, in the sense that in each case removing any of the
allowed templates prevents the constraint from ever being
satisfied. Note that constraints which differ only by overall
rotation, reflection or interchange of black and white are not
explicitly shown. The number of allowed templates out of the
total of 32 possible varies from 1 to 15 for the constraints
shown, with 12 being the most common. Smaller sets of
allowed templates typically seem to lead to constraints that
can be satisfied by visually simpler patterns. 

â Numbering scheme. The constraint numbered  allows the
templates at  in the list
below. (See also page 927.)

â Identifying the 171 patterns. The number of constraints to
consider can be reduced by symmetries, by discarding sets of
templates that are supersets of ones already known to be
satisfiable, and by requiring that each template in the set be
compatible with itself or with at least one other in each of the
eight immediately adjacent positions. The remaining
constraints can then be analyzed by attempting to build up
explicit patterns that satisfy them, as discussed below. 

â Checking constraints. A set of allowed templates can be
specified by a Mathematica pattern of the form  etc.
where the  are for example . To
check whether an array  contains only arrangements of
colors corresponding to allowed templates one can then use

â Representing repetitive patterns. Repetitive patterns are
often most conveniently represented as tessellations of
rectangles whose corners overlap. Pattern (a) on page 213 can
be specified as

Given this, a complete  by  array filled with this pattern
can be constructed from

â Searching for patterns. The basic approach to finding a
pattern which satisfies a particular constraint on an infinite
array of cells is to start with a pattern which satisfies the
constraint in a small region, and then to try to extend the
pattern. Often the constraint will immediately force a unique
extension of the pattern, at least for some distance. But
eventually there will normally be places where the pattern is
not yet uniquely determined, and so a series of choices have
to be made. The procedure used to find the results in this
book attempts to extend patterns along a square spiral,
making whatever choices are needed, and backtracking if
these turn out to be inconsistent with the constraint. At every
step in the procedure, regularities are tested for that would
imply the possibility of an infinite repetitive pattern. In
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Position[IntegerDigits[n, 2, 32], 1]

t1 Ï t2 Ï t3

ti {{_, 1, _}, {0, 0, 1}, {_, 0, _}}
list

 SatisfiedQ[ list_, allowed_] :=
Apply[And, Map[MatchQ[#, allowed] &,

Partition[ list, {3, 3}, {1, 1}], {2}], {0, 1}]

{{2, -1, 2, 3}, {{0, 0, 0, 0}, {1, 1, 0, 0}, {1, 0, 0, 0}}}

nx ny

 c[{d1_, d2_, d3_, d4_}, {x_, y_}] :=
With[{d = d1 d2 + d1 d4+ d3 d4},

Mod[{{d2 x + d4 x + d3 y, d4 x - d1 y}} /d, 1]]
Fill[{dlist_, data_}, {nx_, ny_}] :=
Array[c[dlist, {##}] &, {nx, ny}] /. Flatten[MapIndexed[

c[dlist, Reverse[#2]] ! #1 &, Reverse[data], {2}], 1]
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addition, whenever there is a choice, the first cases to be tried
are set up to be ones that tend to extend whatever regularity
has developed so far. And when backtracking is needed, the
procedure always goes back to the most recent choice that
actually affected whatever inconsistency was discovered.
And in addition it remembers what has already been worked
out, so as to avoid, for example, unnecessarily working out
the pattern on the opposite side of the spiral again. 

â Undecidability. The general problem of whether an infinite
pattern exists that satisfies a particular constraint is formally
undecidable (see page 1139). This means that in general there
can be no upper bound on the size of region for which the
constraints can be satisfied, even if they are not satisfiable for
the complete infinite grid. 

â NP completeness. The problem of whether a pattern can be
found that satisfies a constraint even in a finite region is NP-
complete. (See page 1145.) This suggests that to determine
whether a repetitive pattern with repeating blocks of size 
exists may in general take a number of steps which grows
more rapidly than any polynomial in .

â Enumerating patterns. Compare page 959.

â Page 219 · Non-periodic pattern. The color at position ,  in
the pattern is given by

The origin of the ,  coordinates is the only freedom in this
pattern. The nested structure is like the progression of base 2
digit sequences shown on page 117. Negative numbers are
effectively represented by complements of digit sequences,
much as in typical practical computers. With the procedure
described above for finding patterns that satisfy a constraint,
generating the pattern shown here is straightforward once
the appropriate constraint is identified.

â Other types of constraints. Constraints based on smaller
templates simply require smaller numbers of repetitive
patterns: :4; :7; :17; :11; :12. To extend the class of
systems considered in the main text, one can increase the size
of the templates, or increase the number of possible colors for
each cell. For  templates with two colors extensive
randomized searches have failed to discover examples where
non-repetitive patterns are forced to occur. Another extension
of the constraints in the main text is to require that not just a
single template, but every template in the set, must occur
somewhere in the pattern. Searches of such systems have also

failed to discover examples of forced non-repetitive patterns
beyond the one shown in the text.

â Forcing nested patterns. It is straightforward to find
constraints that allow nested patterns; the challenge is to find
ones that force such patterns to occur. Many nested patterns
(such as the one made by rule 90, for example) contain large
areas of uniform white, and it is typically difficult to prevent
pure repetition of that area. One approach to finding
constraints that can be satisfied only by nested patterns is
nevertheless to start from specific nested patterns, look at what
templates occur, and then see whether these templates are
such that they do not allow any purely repetitive patterns. A
convenient way to generate a large class of nested patterns is
to use 2D substitution systems of the kind discussed on page
188. But searching all 4 billion or so possible such systems with

 blocks and up to four colors one finds not a single case in
which a nested pattern is forced to occur. It can nevertheless be
shown that with a sufficiently large number of extra colors any
nested pattern can be forced to occur. And it turns out that a
result from the mid-1970s by Robert Ammann for a related
problem of tiling (see below) allows one to construct a specific
system with 16 colors in which constraints of the kind
discussed here force a nested pattern to occur. One starts from
the substitution system with rules

This yields the nested pattern below which contains only 51
of the 65,536 possible  blocks of cells with 16 colors. It
then turns out that with the constraint that the only 
arrangements of colors that can occur are ones that match
these 51 blocks, one is forced to get the nested pattern below.

â Relation to 2D cellular automata. The kind of constraints
discussed are exactly those that must be satisfied by
configurations that remain unchanged in the evolution of a
2D cellular automaton. The argument for this is similar to the
one on pages 941 and 954 for 1D cellular automata. The point
is that of the 32 5-cell neighborhoods involved in the 2D
cellular automaton rule, only some subset will have the
property that the center cell remains unchanged after
applying the rule. And any configuration which does not
change must involve only these subsets. Using the results of
this section it then follows that in the evolution of all 2D

n

n

x y

 a[x_, y_] := Mod[y + 1, 2] /; x + y > 0

a[x_, y_] := 0 /; Mod[x + y, 2] 2 1

a[x_, y_] :=
Mod[Floor[( x - y) 2(x+y-6)/4], 2] /; Mod[x + y, 4] 2 2

a[x_, y_] := 1 - Sign[Mod[x - y + 2, 2(-x-y+8)/4]]

x y

3�3

2�2

 {1 ! {{3}}, 2 ! {{13, 1}, {4, 10}}, 3 ! {{15, 1}, {4, 12}},
4 ! {{14, 1}, {2, 9}}, 5 ! {{13, 1}, {4, 12}}, 6 ! {{13, 1}, {8, 9}},
7 ! {{15, 1}, {4, 10}}, 8 ! {{14, 1}, {6, 10}}, 9 ! {{14}, {2}},
10 ! {{16}, {7}}, 11 ! {{13}, {8}}, 12 ! {{16}, {3}},
13 ! {{5, 11}}, 14 ! {{2, 9}}, 15 ! {{3, 11}}, 16 ! {{6, 10}}}

2�2
2�2
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cellular automata of the type discussed on page 170 there
exist purely repetitive configurations that remain unchanged.

â Relation to 1D cellular automata. A picture that shows the
evolution of a 1D cellular automaton can be thought of as a
2D array of cells in which the color of each cell satisfies a
constraint that relates it to the cells above according to the
cellular automaton rule. This constraint can then be
represented in terms of a set of allowed templates; the set for
rule 30 is as follows:

To reproduce an ordinary picture of cellular automaton
evolution, one would have to specify in advance a whole line
of black and white cells. Below this line there would then be a
unique pattern corresponding to the application of the
cellular automaton rule. But above the line, except for
reversible rules, there is no guarantee that any pattern
satisfying the constraints can exist. 

If one specifies no cells in advance, or at most a few cells, as in
the systems discussed in the main text, then the issue is
different, however. And now it is always possible to construct
a repetitive pattern which satisfies the constraints simply by
finding repetitive behavior in the evolution of the cellular
automaton from a spatially repetitive initial condition.

â Non-computable patterns. It is known to be possible to set
up constraints that will force patterns in which finding the
color of a particular cell can require doing something like
solving a halting problem—which cannot in general be done
by any finite computation. (See also page 1139.)

â Tiling. The constraints discussed here are similar to those
encountered in covering the plane with tiles of various
shapes. Of regular polygons, only squares, triangles and
hexagons can be used to do this, and in these cases the tilings
are always repetitive. For some time it was believed that any
set of tiles that could cover the plane could be arranged to do
so repetitively. But in 1964 Robert Berger demonstrated that
this was not the case, and constructed a set of about 20,000
tiles that could cover the plane only in a nested fashion. Later
Berger reduced the number of tiles needed to 104. Then
Raphael Robinson in 1971 reduced the number tiles to six,
and in 1974 Roger Penrose showed that just two tiles were
necessary. Penrose’s tiles can cover the plane only in a nested
pattern that can be constructed from a substitution system
that successively subdivides each tile, as shown on page 932.
(Note that various dissections of these tiles can also be used.
The edges of the particular shapes shown should strictly be
distinguished in order to prevent trivial periodic
arrangements.) The triangles in the construction have angles

which are multiples of , so that the whole tiling has an
approximate 5-fold symmetry (see page 994). Repetitive
tilings of the plane can only have 3-, 4- or 6-fold symmetry. 

No single shape is known which has the property that it can
tile the plane only non-repetitively, although one strongly
suspects that one must exist. In 3D, John Conway has found a
single biprism that can fill space only in a sequence of layers
with an irrational rotation angle between each layer. 

In addition, in no case has a simple set of tiles been found
which force a pattern more complicated than a nested one.
The results on page 221 in this book can be used to
constructed a complicated set of tiles with this property, but I
suspect that a much simpler set could be found.

(See also page 1139.)

â Polyominoes. An example of a tiling problem that is in
some respects particularly close to the grid-based constraint
systems discussed in the main text concerns covering the
plane with polyominoes that are formed by gluing collections
of squares together. Tiling by polyominoes has been
investigated since at least the late 1950s, particularly by
Solomon Golomb, but it is only very recently that sets of
polyominoes which force non-periodic patterns have been
found. The set (a) below was announced by Roger Penrose in
1994; the slightly smaller set (b) was found by Matthew Cook
as part of the development of this book.

Both of these sets yield nested patterns. Steps in the
construction of the pattern for set (b) are shown below. At
stage  the number of polyominoes of each type is

. Set (a) works in a roughly
similar way, but with a considerably more complicated
recursion.

p /5

(a) (b)

n
Fibonacci[2 n - {2, 0, 1}] / {1, 2, 1}
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â Ground states of spin systems. The constraints discussed in
the main text are similar to those that arise in the physics of
2D spin systems. An example of such a system is the so-
called Ising model discussed on page 981. The idea in all such
systems is to have an array of spins, each of which can be
either up or down. The energy associated with each spin is
then given by some function which depends on the
configuration of neighboring spins. The ground state of the
system corresponds to an arrangement of spins with the
smallest total energy. In the ordinary Ising model, this
ground state is simply all spins up or all spins down. But in
generalizations of the Ising model with more complicated
energy functions, the conditions to get a state of the lowest
possible energy can correspond exactly to the constraints
discussed in the main text. And from the results shown one
sees that in some cases random-looking ground states should
occur. Note that a rather different way to get a somewhat
similar ground state is to consider a spin glass, in which the
standard Ising model energy function is used, but multiplied
by -1 or +1 at random for each spin.

â Correspondence systems. For a discussion of a class of 1D
systems based on constraints see page 757.

â Sequence equations. Another way to set up 1D systems
based on constraints is by having equations like

, where each
variable stands for a list. Fairly simple such equations can
force fairly complicated results, although as discussed on
page 1141 there are known to be limits to this complexity. 

â Pattern-avoiding sequences. As another form of constraint
one can require, say, that no pair of identical blocks ever
appear together in a sequence, so that the sequence does not
match . With just two possible elements, no
sequence above length 3 can satisfy this constraint. But with

 possible elements, there are infinite nested sequences
that can, such as the one produced by the substitution system

, starting with . One can
find the sequences of length  that work by using

and the number of these grows roughly like .

The constraint that no triple of identical blocks appear
together turns out to be satisfied by the Thue-Morse nested
sequence from page 83—as already noted by Axel Thue in
1906. (The number of sequences that work seems to grow
roughly like .)

For any given , many combinations of blocks will inevitably
occur in sufficiently long sequences (compare page 1068).
(For example, with ,  always

matches any sequence with length more than 18.) But some
patterns of blocks can be avoided. And for example it is
known that for  any pattern with length 6 or more
(excluding the ’s) and only two different variables (say 
and ) can always be avoided. But it also known that
among the infinite sequences which do this, there are always
nested ones (sometimes one has to iterate one substitution
rule, then at the end apply once a different substitution rule).
With more variables, however, it seems possible that there
will be patterns that can be avoided only by sequences with a
more complicated structure. And a potential sign of this
would be patterns for which the number of sequences that
avoid them varies in a complicated way with length. 

â Formal languages. Formal languages of the kind discussed
on page 938 can be used to define constraints on 1D
sequences. The constraints shown on page 210 correspond to
special cases of regular languages (see page 940). For both
regular and context-free languages the so-called pumping
lemmas imply that if any finite sequences satisfy the
constraints, then so must an essentially repetitive infinite
sequence. 

â Diophantine equations. Any algebraic equation—such as
—can readily be solved if one allows the

variables to have any numerical value. But if one insists that
the variables are whole numbers, then the problem is more
analogous to the discrete constraints in the main text, and
becomes much more difficult. And in fact, even though such
so-called Diophantine equations have been studied since
well before the time of Diophantus around perhaps 250 AD,
only limited results about them are known. 

Linear Diophantine equations such as  yield
simple repetitive results, as in the pictures below, and can be
handled essentially just by knowing .

Even the simplest quadratic Diophantine equations can
already show much more complex behavior. The equation

 has no solution except when  is a perfect square.
But the Pell equation  (already studied in
antiquity) has infinitely many solutions whenever  is
positive and not a perfect square. The smallest solution for 
is given by

Flatten[{x, 1, x, 0, y}] === Flatten[{0, y, 0, y, x}]

{___, x__, x__, ___}

k = 3

{0 ! {0, 1, 2}, 1 ! {0, 2}, 2 ! {1}} {0}
n

 Nest[DeleteCases[Flatten[Map[Table[Append[#, i - 1],
{i, k}] &, #], 1], {___, x__, x__, ___}] &, {{}}, n]

3n/4

2n/2

k

k = 2 {___, x__, y__, x__, y__, ___}

k > 2
___ x__

y__

x3 + x + 1 2 0

a x 2 b y + c

ExtendedGCD[a, b]

3 x Ð 4 y 4 x Ð 5 y 3 x Ð 4 y + 1 4 x Ð 5 y + 3

x2 2 a y 2 a
x2 2 a y 2 + 1

a
x

 Numerator[FromContinuedFraction[
ContinuedFraction[�!!!!a , ( If[EvenQ[#], #, 2 #] &)[

Length[Last[ContinuedFraction[�!!!!a ]]]]]]]
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This is plotted below; complicated variation and some very
large values are seen (with  for example

).

In three variables, the equation  yields so-called
Pythagorean triples , , etc. And even in this
case the set of possible solutions for  and  in the pictures
below looks fairly complicated—though after removing
common factors, they are in fact just given by

. (See page 1078.)

The pictures below show the possible solutions for  and  in
various Diophantine equations. As in other systems based on
numbers, nested patterns are not common—though page
1160 shows how they can in principle be achieved with an
equation whose solutions satisfy .
(The equation  also for example has solutions
only when  is not of the form .) 

Many Diophantine equations have at most very sparse
solutions. And indeed for example Fermat’s Last Theorem
states that  can never be satisfied for . With

four variables one has for example ,
—but with fourth powers the smallest result

is . 

(See pages 791 and 1164.)

â Matrices satisfying constraints. One can consider for
example magic squares, Latin squares (quasigroup
multiplication tables), and matrices having the Hadamard
property discussed on page 1073. One can also consider
matrices whose powers contain certain patterns. (See also
page 805.)

â Finite groups and semigroups. Any finite group or
semigroup can be thought of as defined by having a
multiplication table which satisfies the constraints given on
page 887. The total number of semigroups increases faster
than exponentially with size in a seemingly quite uniform
way. But the number of groups varies in a complicated way
with size, as in the picture below. (The peaks are known to
grow roughly like —intermediate
between polynomial and exponential.) As mentioned on
page 938, through major mathematical effort, a complete
classification of all finite so-called simple groups that in effect
have no factors is known. Most such groups come in families
that are easy to characterize; a handful of so-called sporadic
ones are much more difficult to find. But this classification
does not immediately provide a practical way to enumerate
all possible groups. (See also pages 938 and 1032.)

â Constraints on formulas. Many standard problems of
algebraic computation can be viewed as consisting in finding
formulas that satisfy certain constraints. An example is exact
solution of algebraic equations. For quadratic equations the
standard formula gives solutions for arbitrary coefficients in
terms of square roots. Similar formulas in terms of th roots
have been known since the 1500s for equations with degrees

 up to 4, although their  starting at  increases
like 6, 25, 183, 718. For higher degrees it is known that such
general formulas must involve other functions. For degrees 5
and 6 it was shown in the late 1800s that  or

 are sufficient, although for degrees 5 and
6 respectively the necessary formulas have a  in the
billions. (Sharing common subexpressions yields a 
in the thousands.) (See also page 1129.)

a = 61
x 2 1766319049
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NOTES FOR CHAPTER 6

Starting from Randomness

The Emergence of Order

â Page 226 · Properties of patterns. For a random initial
condition, the average density of black cells is exactly 1/2.
For rule 126, the density after many steps is still 1/2. For rule
22, it is approximately 0.35095. For rule 30 and rule 150 it is
exactly 1/2, while for rule 182 it is 3/4. And insofar as rule
110 converges to a definite density, the density is 4/7. (See
page 953 for a method of estimating these densities.)

Even after many steps, individual lines in the patterns
produced by rules 30 and 150 remain in general completely
random. But in rule 126, black cells always tend to appear in
pairs, while in rule 182, every white cell tends to be
surrounded by black ones. And in rule 22, there are more
complicated conditions involving blocks of 4 cells.

The density of triangles of size  goes roughly like  for
rules 126, 30 (see also page 871), 150 and 182 and roughly like

 for rule 22.

In the algebraic representation discussed on page 869,
rule 22 is , rule 126 is

, rule 150 is 
and rule 182 is . 
 
 

â Continual injection of randomness. In the main text we
discuss what happens when one starts from random initial
conditions and then evolves according to a definite cellular
automaton rule. As an alternative one can consider starting
with very simple initial conditions, such as all cells white,
and then at each step randomly changing the color of the
center cell. Some examples of what happens are shown at the
bottom of the previous column. The results are usually very
similar to those obtained with random initial conditions.

â History. The fact that despite initial randomness processes
like friction can make systems settle down into definite
configurations has been the basis for all sorts of engineering
throughout history. The rise of statistical mechanics in the late
1800s emphasized the idea of entropy increase and the
fundamental tendency for systems to become progressively
more disordered as they evolve to thermodynamic
equilibrium. Theories were nevertheless developed for a few
cases of spontaneous pattern formation—notably in
convection, cirrus clouds and ocean waves. When the study of
feedback and stability became popular in the 1940s, there were
many results about how specific simple fixed or repetitive
behaviors in time could emerge despite random input. In the
1950s it was suggested that reaction-diffusion processes might
be responsible for spontaneous pattern formation in biology
(see page 1012)—and starting in the 1970s such processes were
discussed as prime examples of the phenomenon of self-
organization. But in their usual form, they yield essentially
only rather simple repetitive patterns. Ever since around 1900
it tended to be assumed that any fundamental theory of
systems with many components must be based on statistical
mechanics. But almost all work in the field of statistical
mechanics concentrated on systems in or very near thermal
equilibrium—in which in a sense there is almost complete
disorder. In the 1970s there began to be more discussion of
phenomena far from equilibrium, although typically it got no
further than to consider how external forces could lead to
reaction-diffusion-like phenomena. My own work on cellular

n 2-n

1.3-n

Mod[p + q + r + p q r, 2]
Mod[( p + q) (q + r) + ( p + r), 2] Mod[p + q + r, 2]

Mod[p r (1+ q) + ( p + q + r), 2]

rule 108 rule 110 rule 126

rule 30 rule 62 rule 90
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automata in 1981 emerged in part from thinking about self-
gravitating systems (see page 880) where it seemed
conceivable that there might be very basic rules quite different
from those usually studied in statistical mechanics. And when
I first generated pictures of the behavior of arbitrary cellular
automaton rules, what struck me most was the order that
emerged even from random initial conditions. But while it was
immediately clear that most cellular automata do not have the
kind of reversible underlying rules assumed in traditional
statistical mechanics, it still seemed initially very surprising
that their overall behavior could be so elaborate—and so far
from the complete orderlessness one might expect on the basis
of traditional ideas of entropy maximization.

Four Classes of Behavior

â Different runs. The qualitative behavior seen with a given
cellular automaton rule will normally look exactly the same
for essentially all different large random initial conditions—
just as it does for different parts of a single initial condition.
And as discussed on page 597 any obvious differences could
in effect be thought of as revealing deviations from
randomness in the initial conditions.

â Page 232 · Elementary rules. The examples shown have rule
numbers  for which  matches

. 

â Page 235 · States of matter. As suggested by pages 944 and
1193, working out whether a particular substance at a
particular temperature will be a solid, liquid or gas may in
fact be computationally comparable in difficulty to working
out what class of behavior a particular cellular automaton
will exhibit.

â Page 235 · Class 4 rules. Other examples of class 4 totalistic
rules with  colors include 357 (page 282), 438, 600, 792,
924, 1038, 1041, 1086, 1329 (page 282), 1572, 1599 (see page
70), 1635 (see page 67), 1662, 1815 (page 236), 2007 (page 237)
and 2049 (see page 68). 

â Frequencies of classes. The pie charts below show results for
1D totalistic cellular automata with  colors and range . Class
3 tends to become more common as the number of elements in
the rule increases because as soon as any of these elements
yield class 3 behavior, that behavior dominates the system.

â History. I discovered the classification scheme for cellular
automata described here late in 1983, and announced it in
January 1984. Much work has been done by me and others on
ways to make the classification scheme precise. The notion
that class 4 can be viewed as intermediate between class 2
and class 3 was studied particularly by Christopher Langton,
Wentian Li and Norman Packard in 1986 for ordinary cellular
automata, by Hyman Hartman in 1985 for probabilistic
cellular automata and by Hugues Chaté and Paul Manneville
in 1990 for continuous cellular automata. 

â Subclasses within class 4. Different class 4 systems can show
localized structures with strikingly similar forms, and this
may allow subclasses within class 4 to be identified. In
addition, class 4 systems show varying levels of activity, and
it is possible that there may be discrete transitions—perhaps
analogous to percolation—that can be used to define
boundaries between subclasses. 

â Page 240 · Undecidability. Almost any definite procedure for
determining the class of a particular rule will have the feature
that in borderline cases it can take arbitrarily long, often
formally showing undecidability, as discussed on page 1138.
(An example would be a test for class 1 based on checking
that no initial pattern of any size can survive. Including
probabilities can help, but there are still always borderline
cases and potential undecidability.) 

â Page 244 · Continuous cellular automata. In ordinary cellular
automata, going from one rule to the next in a sequence
involves some discrete change. But in continuous cellular
automata, the parameters of the rule can be varied smoothly.
Nevertheless, it still turns out that there are discrete
transitions in the overall behavior that is produced. In fact,
there is often a complicated set of transitions that depends
more on the digit sequence of the parameter than its size.
And between these transitions there are usually ranges of
parameter values that yield definite class 4 behavior.
(Compare page 922.)

â Nearby cellular automaton rules. In a range  cellular
automaton the new color of a particular cell depends only on
cells at most a distance  away. One can make an equivalent
cellular automaton of larger range by having a rule in which
cells at distance more than  have no effect. One can then
define nearby cellular automata to be those where the
differences in the rule involve only cells close to the edge of
the range. With larger and larger ranges one can then
construct closer approximations to continuous sequences of
cellular automata. 

â 2D class 4 cellular automata. No 5- or 9-neighbor totalistic
rules nor 5-neighbor outer totalistic ones appear to yield

n IntegerDigits[n, 2, 8]
{_, i_, _, j_, i_, _, j_, 0}

k = 3

k r
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class 4 behavior with a white background. But among 9-
neighbor outer totalistic rules there are examples with codes
224 (Game of Life), 226, 4320 (sometimes called HighLife),
5344, 6248, 6752, 6754 and 8416, etc. It turns out that the
simplest moving structures are the same in codes 224, 226
and 4320. 

â Page 249 · Game of Life. Invented by John Conway around
1970 (see page 877), the Life 2D cellular automaton has been
much studied in recreational computing, and as described
on page 964 many localized structures in it have been
identified. Each step in its evolution can be implemented
using

A more efficient implementation can be obtained by
operating not on a complete array of black and white cells
but rather just on a list of positions of black cells. With this
setup, each step then corresponds to 

(A still more efficient implementation is based on finding
runs of length 3 and 4 in .)

â 3D class 4 rules. With a cubic lattice of the type shown on
page 183, and with updating rules of the form 

Carter Bays discovered between 1986 and 1990 the three
examples , , and . The pictures below
show successive steps in the evolution of a moving structure
in the second of these rules.

â Random initial conditions in other systems. Whenever the
initial conditions for a system can involve an infinite
sequence of elements these elements can potentially be
chosen at random. In systems like mobile automata and
Turing machines the colors of initial cells can be random,
but the active cell must start at a definite location, and
depending on the behavior only a limited region of initial
cells near this location may ever be sampled. Ordinary
substitution systems can operate on infinite sequences of
elements chosen at random. Sequential substitution systems,
however, rely on scanning limited sequences of elements,

and so cannot readily be given infinite random initial
conditions. The same is true of ordinary and cyclic tag
systems. Systems based on continuous numbers involve
infinite sequences of digits which can readily be chosen at
random (see page 154). But systems based on integers
(including register machines) always deal with finite
sequences of digits, for which there is no unique definition
of randomness. (See however the discussion of number
representations on page 1070.) Random networks (see pages
963 and 1038) can be used to provide random initial
conditions for network systems. Multiway systems cannot
meaningfully be given infinite random initial conditions
since these would typically lead to an infinite number of
possible states. Systems based on constraints do not have
initial conditions. (See also page 920.)

Sensitivity to Initial Conditions

â Page 251 · Properties. In rule 126, the outer edges of the
region of change always expand by exactly one cell per step.
The same is true of the right-hand edge in rule 30—though
the left-hand edge in this case expands only about 0.2428
cells on average per step. In rule 22, both edges expand about
0.7660 cells on average per step. 

The motion of the right-hand edge in rule 30 can be
understood by noting that with this rule the color of a
particular cell will always change if the color of the cell to its
left is changed on the previous step (see page 601). Nothing
as simple is true for the left-hand edge, and indeed this seems
to execute an essentially random walk—with an average
motion of about 0.2428 cells per step. Note that in the
approximation that the colors of all cells in the pattern are
assumed completely independent and random there should
be motion by 0.25 cells per step. Curiously, as discussed on
page 871, the region of non-repetitive behavior in evolution
from a single black cell according to rule 30 seems to grow at
a similar but not identical rate of about 0.252 cells per step.
(For rule 45, the left-hand edge of the difference pattern
moves about 0.1724 cells per step; for rule 54 both edges
move about 0.553 cells per step.)

â Difference patterns. The maximum rate at which a region of
change can grow is determined by the range of the
underlying cellular automaton rule. If the rule involves up to
 nearest neighbors, then at each step a change in the color of

a given cell can affect cells up to  away—so that the edge of
the region of change can move by  cells. 

For most class 3 rules, once one is inside the region of change,
the colors of cells usually become essentially uncorrelated.

LifeStep[a_List] :=
MapThread[If[#1 2 1 && #2 2 4 || #2 2 3, 1, 0] &,
{a, Sum[RotateLeft[a, {i, j}], {i, -1, 1}, { j , -1, 1}]}, 2]

LifeStep[ list_] :=
With[{p = Flatten[Array[List, {3, 3}, -1], 1]},

With[{u = Split[Sort[Flatten[Outer[Plus, list, p, 1], 1]]]},
Union[Cases[u, {x_, _, _} ! x],

Intersection[Cases[u, {x_, _, _, _} ! x], list]]]]

Sort[u]

LifeStep3D[{p_, q_, r_}, a_List] := MapThread[If[
#1 2 1 && p < #2 < q || #2 2 r, 1, 0] &, {a, Sum[RotateLeft[
a, {i, j , k}], {i, -1, 1}, { j , -1, 1}, {k, -1, 1}] - a}, 3]

{5, 7, 6} {4, 5, 5} {5, 6, 5}

r
r
r
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However, for additive rules the pattern of differences is just
exactly the pattern that would be obtained by evolution from
an initial condition consisting only of the changes made. In
general the pattern of probabilities for changes can be
thought of as being somewhat like a Green’s function in
mathematical physics—though the nonadditivity of most
cellular automata makes this analogy less useful. (Note that
the pattern of differences between two initial conditions in a
rule with  possible colors can always be reproduced by
looking at the evolution from a single initial condition of a
suitable rule with  colors.) In 2D class 3 cellular automata,
the region of change usually ends up having a roughly
circular shape—a result presumably related to the Central
Limit Theorem (see page 976).

For any additive or partially additive class 3 cellular
automaton (such as rule 90 or rule 30) any change in initial
conditions will always lead to expanding differences. But in
other rules it sometimes may not. And thus, for example, in
rule 22, changing the color of a single cell has no effect after
even one step if the cell has a  block on either side. But
while there are a few other initial conditions for which
differences can die out after several steps most forms of
averaging will say that the majority of initial conditions lead
to growing patterns of differences. 

â Lyapunov exponents. If one thinks of cells to the right of a
point in a 1D cellular automaton as being like digits in a real
number, then linear growth in the region of differences
associated with a change further to the right is analogous to
the exponentially sensitive dependence on initial conditions
shown on page 155. The speed at which the region of
differences expands in the cellular automaton can thus be
thought of as giving a Lyapunov exponent (see page 921) that
characterizes instability in the system.

Systems of Limited Size and Class 2 Behavior

â Page 255 · Cyclic addition. After  steps, the dot will be at
position  where  is the total number of
positions, and  is the number of positions moved at each
step. The repetition period is given by . The
picture on page 613 shows the values of  and  for which
this is equal to .

An alternative interpretation of the system discussed here
involves arranging the possible positions in a circle, so that at
each step the dot goes a fraction  of the way around the
circle. The repetition period is maximal when  is a fraction
in lowest terms. The picture below shows the repetition
periods as a function of the numerical size of the quantity .

 

â Page 257 · Cyclic multiplication. With multiplication by  at
each step the dot will be at position  after  steps. If

 and  have no factors in common, there will be a  for which
, so that the dot returns to position 1. The

smallest such  is given by , which
always divides  (see page 1093), and has a value
between  and , with the upper limit being
attained only if  is prime. (This value is related to the
repetition period for the digit sequence of  in base , as
discussed on page 912). When  the dot can never
visit position 0. But if , the dot reaches 0 after  steps,
and then stays there. In general, the dot will visit position

 every 
steps. 

â Page 260 · Maximum periods. A cellular automaton with 
cells and  colors has  possible states, but if the system has
cyclic boundary conditions, then the maximum repetition
period is smaller than . The reason is that different states of
the cellular automaton have different symmetry properties,
and thus cannot be on the same cycle. In particular, if a state of
a cellular automaton has a certain spatial period, given by the
minimum positive  for which , then
this state can never evolve to one with a larger spatial period.
The number of states with spatial period  is given by 

or equivalently 

In a cellular automaton with a total of  cells, the maximum
possible repetition period is thus . For , the
maximum periods for  up to 10 are:

. In all cases,  is
divisible by . For prime ,  is . For large ,

 oscillates between about  and . (See
page 963.)
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â Additive cellular automata. In the case of additive rules such
as rule 90 and rule 60, a mathematical analysis of the
repetition periods can be given (as done by Olivier Martin,
Andrew Odlyzko and me in 1983). One starts by converting
the list of cell colors at each step to a polynomial

. Then for the case of rule 60 with  cells
and cyclic boundary conditions, the state obtained after 
steps is given by 

where  is the polynomial representing the initial state, and
 for a single black cell in the first position. The state 

evolves after one step to the state , and for odd  this
latter state always eventually appears again. Using the result
that  modulo 2 for any , one then finds
that the repetition period always divides the quantity

, which in turn is at most
. The actual periods are often smaller than , with

the following ratios occurring:

There appears to be no case for  where the period
achieves the absolute maximum . 

In the case of rule 90 a similar analysis can be given, with the
 used at each step replaced by . And now the

repetition period for odd  divides

The exponent here always lies between  and
, with the upper bound being attained only if  is

prime. Unlike for the case of rule 60, the period is usually
equal to  (and is assumed so for the picture on page 260),
with the first exception occurring at .

â Rules 30 and 45. Maximum periods are often achieved with
initial conditions consisting of a single black cell. Particularly
for rule 30, however, there are quite a few exceptions. For

, for example, the maximum period is 832 but the
period with a single black cell is 260. For rule 45, the
maximum possible period discussed above is achieved for

, but does not appear to be achieved for any larger .
(See page 962.)

â Comparison of rules. Rules 45, 30 and 60, together with their
conjugates and reflections, yield the longest repetition
periods of all elementary rules (see page 1087). The picture
below compares their periods as a function of .

â Implementing boundary conditions. In the bitwise
representation discussed on page 865, 0’s outside of a width 
can be implemented by applying  at each step.
Cyclic boundary conditions can be implemented efficiently in
assembler on computers that support cyclic shift instructions.

Randomness in Class 3 Systems

â Page 263 · Rule 22. Randomness is obtained with initial
conditions consisting of two black squares  positions apart
for any . The base 2 digit sequences for 19, 25, 37, 39, 41,
45, 47, 51, 57, 61, … also give initial conditions that yield
randomness. Despite its overall randomness there are some
regularities in the pattern shown at the bottom of the page. The
overall density of black cells is not 1/2 but is instead
approximately 0.35, just as for random initial conditions. And
if one looks at the center cell in the pattern one finds that it is
never black on two successive steps, and the probability for
white to follow white is about twice the probability for black to
follow white. There is also a region of repetitive behavior on
each side of the pattern; the random part in the middle
expands at about 0.766 cells per step—the same speed that we
found on page 949 that changes spread in this rule.

â Rule 225. With initial conditions consisting of a single black
cell, this class 3 rule yields a regular nested pattern, as shown on
page 58. But with the initial condition , it yields the much
more complicated pattern shown below. With a background
consisting of repetitions of the block , insertion of a single
initial white cell yields a largely random pattern that expands by
one cell per step. Rule 225 can be expressed as . 

â Rule 94. With appropriate initial conditions this class 2 rule
can yield both nested and random behavior, as shown below.
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t

PolynomialMod[( 1+ x)t z, {xn - 1, 2}]

z
z = 1 z = 1

z = 1+ x n

1+ x2m
2 ( 1+ x)2m

m
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â Rule 218. If pairs of adjacent black cells appear anywhere in
its initial conditions this class 2 rule gives uniform black, but
if none do it gives a rule 90 nested pattern. 

â Additive rules. Of the 256 elementary cellular automata 8
are additive: . All of these are
either trivial or essentially equivalent to rules 90 or 150.

Of all  rules with  colors and range  it turns out that
there are always exactly  additive ones—each obtained
by taking the cells in the neighborhood and adding them
modulo  with weights between  and . As discussed on
page 955, any rule based on addition modulo  must yield a
nested pattern, and it therefore follows that any rule that is
additive must give a nested pattern, as in the examples
below. (See also page 870.)

Note that each step in the evolution of any additive cellular
automaton can be computed as

(See page 1087 for a discussion of partial additivity.)

â Page 264 · Generalized additivity. In general what it means
for a system to be additive is that some addition operation 
can be used to combine any set of evolution histories to yield
another possible evolution history. If  is the rule for the
system, this then requires for any states  and  the
distributive property

(In mathematical terms this is equivalent to the statement
that  is conjugate to itself under the action of —or
alternatively that  defines a homomorphism with respect to
the  operation.) In the usual case,  is just

, yielding say for rule 90 the results below.

But it turns out that some elementary rules show additivity
with respect to other addition operations. An example as
shown below is rule 250 with  taken as  ( ).

If a system is additive it means that one can work out how
the system will behave from any initial condition just by
combining the patterns (“Green’s functions”) obtained from
certain basic initial conditions—say ones containing a single
black cell. To get all the familiar properties of additivity one
needs an addition operation that is associative ( ) and
commutative ( ), and has an identity element (white
or  in the cases above)—so that it defines a commutative
monoid. (Usually it is also convenient to be able to get all
possible elements by combining a small number of basic
generator elements.)

The inequivalent commutative monoids with up to 
colors are (in total there are 1, 2, 5, 19, 78, 421, 2637,  such
objects): 

For ,  the number of rules additive with respect to
these is respectively: ; for , : ; for ,

: ; for , :

It turns out to be possible to show that any rules  additive
with respect to some addition operation  must work by
applying that operation to values associated with cells in
their neighborhood. The values are obtained by applying to
cells at each position one of the unary operations
(endomorphisms)  that satisfy  for
individual cell values  and . (For , there are 2 possible

, while for  there are 3.)

The basic examples are then rules of the form
—analogs of rule 90, but with

other addition operations (compare page 886). The  can be
used to give analogs of the weights that appear in the note
above. And rules that involve more than two cells can be
obtained by having several instances of —which can
always be flattened. But in all cases the general results for
associative rules on page 956 show that the patterns obtained
must be at most nested.

If instead of an ordinary cellular automaton with a limited
number of possible colors one considers a system in which
every cell can have any integer value then additivity with
respect to ordinary addition becomes just traditional linearity.
And the only way to achieve this is to have a rule in which the
new value of a cell is given by a linear form such as . If
the values of cells are allowed to be any real number then
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linear forms such as  again yield additivity with
respect to ordinary addition. But in general one can apply to
each cell value any function  that obeys the so-called Cauchy
functional equation . If  is required
to be continuous, then the only form it can have is . But if
one allows  to be discontinuous then there can be some other
exotic possibilities. It is inevitable that within any rationally
related set of values  one must have  with fixed .
But if one assumes the Axiom of Choice then in principle it
becomes possible to construct  which have different  for
different sets of  values. (Note however that I do not believe
that such  could ever actually be constructed in any explicit
way by any real computational system—or in fact by any
system in our universe.) 

In general  need not be ordinary addition, but can be any
operation that defines a commutative monoid—including an
infinite one. An example is ordinary numbers modulo an
irrational. And indeed a cellular automaton whose rule is
based on  will show additivity with respect to
this operation (see page 922). If  has an inverse, so that it
defines a group, then the only continuous (Lie group)
examples turn out to be combinations of ordinary addition
and modular addition (the group U(1)). This assumes,
however, that the underlying cellular automaton has
discrete cells. But one can also imagine setting up systems
whose states are continuous functions of position.  then
defines a mapping from one such function to another. To be
analogous to cellular automata one can then require this
mapping to be local, in which case if it is continuous it must
be just a linear differential operator involving

—and at some level its behavior must be fairly
simple. (Compare page 161.) 

â Probabilistic estimates. One way to get estimates for density
and other properties of class 3 cellular automata is to make
the assumption that the color of each cell at each step is
completely random. And with this assumption, if the overall
density of black cells at a particular step is , then each cell at
that step should independently have probability  to be
black. This means that for example the probability to find a
black cell followed by two white cells is . And in
general, the probabilities for all 8 possible combinations of 3
cells are given by

In terms of these probabilities the density at the next step in
the evolution of cellular automaton with rule number  is
then given by

For rule 22, for example, this means that if the density at a
particular step is , then the density on the next step should be

, and the densities on subsequent steps should be
obtained by iterating this function. (At least for the 256
elementary cellular automata this iterated map is never chaotic.)
The stable density after many steps is then given by

, so that  or
approximately 0.42. The actual density for rule 22 is however
0.35095. The reason for the discrepancy is that the probabilities
for different cells are in fact correlated. One can systematically
include more such correlations by looking at more steps of
evolution at once. For two steps, one must consider probabilities
for all 32 combinations of 5 cells, and for rule 22 the function
becomes , yielding density 0.35012; for three
steps it is  yielding
density 0.379. The plot below shows what happens with more
steps: the results seem to converge slowly to the exact result
indicated by the gray line. 

(For rules 90 and 30 the functions obtained after one step are
respectively  and , both of which
turn out to imply correct final densities of ).

Probabilistic approximation schemes like this are often used
in statistical physics under the name of mean field theories.
In general, such approximations tend to work better for
systems in larger numbers of dimensions, where correlations
tend to be less important.

Probabilistic estimates can also be used for other quantities,
such as growth rates of difference patterns (see page 949). In
most cases, however, buildup of correlations tends to prevent
systematic improvement of such approximations.

â Density in rule 90. From the superposition principle above
and the number of black cells at step  in a pattern starting
from a single black cell (see page 870) one can compute the
density after  steps in the evolution of rule 90 with initial
conditions of density  to be (see also page 602)

â Densities in other rules. The pictures below show how the
densities on successive steps depend on the initial density.
Densities are indicated by gray levels. Initial densities are
shown across each picture. Successive steps are shown
down the page. Rule 236 is class 2, and the density retains
a memory of its initial value. But in the class 3 rules 126
and 30, the densities converge quickly to a fixed value.
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Page 339 shows a cellular automaton with very different
behavior. 

â Density oscillations in rule 73. Although there are always
some fluctuations, most rules yield densities that converge
more or less uniformly to their final values. One exception is
rule 73, which yields densities that continue to oscillate with
a period of 3 steps forever. The origin of this phenomenon is
that with completely random initial conditions rule 73
evolves to a collection of independent regions, as in the
picture below, and many of these regions contain patterns
that repeat with period 3. The boundaries between regions
come from blocks of even numbers of black cells in the initial
conditions, and if one does not allow any such blocks, the
density oscillations no longer occur. (See also page 699.) 

Special Initial Conditions

â Page 267 · Repeating blocks. The discussion in the main text
is mostly about repetition strictly every  steps, and no
sooner. (If a system repeats for example every 3 steps, then it
is inevitable that it will also repeat in the same way every 6, 9,
12, 15, etc. steps.) Finding configurations in a 1D cellular
automaton that repeat with a particular period is equivalent
to satisfying the kind of constraints we discussed on page
211. And as described there, if such constraints can be
satisfied at all, then it must be possible to satisfy them with a
configuration that consists of a repetition of identical blocks.
Indeed, for period , the length of blocks required is at most

 (or  for range  rules).

The pictures at the bottom of the previous column summarize
which periods can be obtained with various rules. Periods
from 1 to 15 are represented by different rows, with period 1 at
the bottom. Within each row a gray bar indicates that a
particular period can be obtained with blocks of some length.
The black dots indicate specific block sizes up to 25 that work.

In rule 90 (as well as other additive rules such as 60 and 150)
any period can occur, but all configurations that repeat must
consist of a sequence of identical blocks. For periods up to 10,
examples of such blocks in rule 90 are given by the digits of

For period 1 the possible blocks are  and ; for period 2
 and . The total number of configurations in rule

90 that repeat with any period that divides  is always . 

Rules 30 and 45 (as well as other one-sided additive rules)
also have the property that all configurations that repeat
must consist of a sequence of identical blocks. The total
number of configurations in rule 30 that repeat with periods
that divide 1 through 10 are .
In general for one-sided additive rules the number of such
configurations increases for large  like , where  is the
spacetime entropy of page 960. (This is the analog of a
standard result in dynamical systems theory about expansive
homeomorphisms.)

For rules that do not show at least one-sided additivity there
can be an infinite number of configurations that repeat with a
given period. To find them one considers all possible blocks
of length  and picks out those that after  steps
evolve so that their center cell ends up the same color as it
was originally. The possible configurations that repeat with
period  then correspond to the finite complement language
(see page 958) obtained by stringing together these blocks.
For , rule 18 leaves 20 of the 32 possible length 5 blocks
invariant, but these blocks can only be strung together to
yield repetitions of , where now  and  are not
fixed, but in every case can each be either  or . 

(See also page 700.)

â Localized structures. See pages 281 and 1118.

â 2D cellular automata. As expected from the discussion of
constraints on page 942, the problem of finding repeating
configurations is much more difficult in two dimensions than
in one dimension. Thus for example unlike in 1D there is no
guarantee in 2D that among repeating configurations of a
particular period there is necessarily one that consists just of
a repetitive array of fixed blocks. Indeed, as discussed on
page 1139, it is in a sense possible that the only repeating
configurations are arbitrarily complex. Note that if one

0% 25% 50% 75% 100% 0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
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considers configurations in 2D that consist only of infinitely
long stripes, then the problem reduces again to the 1D case.
(See also page 349.)

â Systems based on numbers. An iterated map of the kind
discussed on page 150 with rule  (with
rational ) will yield repetitive behavior when its initial
condition is a rational number. The same is true for higher-
dimensional generalizations such as so-called Anosov maps

. The continued fraction map
 discussed on page 914 becomes repetitive

whenever its initial condition is a solution to a quadratic
equation. 

For a map  where  is a polynomial such as
 the real initial conditions that yield period  are

given by

For  the results usually cannot be expressed in
terms of explicit radicals beyond period 2. (See page 961.)

â Sarkovskii’s theorem. For any iterated map based on a
continuous function such as a polynomial it was shown in
1962 that if an initial condition exists that gives period 3, then
other initial conditions must exist that give any other period.
In general, if a period  is possible then so must all periods 
for which  satisfies

Extensions of this to other types of systems seem difficult to
find, but it is conceivable that when viewed as continuous
mappings on a Cantor set (see page 869) at least some cellular
automata might exhibit similar properties.

â Page 269 · Rule emulations. See pages 702 and 1118. 

â Renormalization group. The notion of studying systems by
seeing the effect of changing the scale on which one looks at
them has been widely used in physics since about 1970, and
there is some analogy between this and what I do here with
cellular automata. In the lattice version in physics one
typically considers what happens to averages over all
possible configurations of a system if one does a so-called
blocking transformation that replaces blocks of elements by
individual elements. And what one finds is that in certain
cases—notably in connection with nesting at critical points
associated with phase transitions (see page 981)—certain
averages turn out to be the same as one would get if one did
no blocking but just changed parameters (“coupling
constants”) in the underlying rules that specify the weighting
of different configurations. How such effective parameters
change with scale is then governed by so-called
renormalization group differential equations. And when one

looks at large scales the versions of these equations that arise
in practice essentially always show fixed points, whose
properties do not depend much on details of the equations—
leading to certain universal results across many different
underlying systems (see page 983).

What I do in the main text can be thought of as carrying out
blocking transformations on cellular automata. But only
rarely do such transformations yield cellular automata
whose rules are of the same type one started from. And in
most cases such rules will not suffice even if one takes
averages. And indeed, so far as I can tell, only in those cases
where there is fairly simple nested behavior is any direct
analog of renormalization group methods useful. (See
page 989.)

â Page 271 · Self-similarity of additive rules. The fact that rule
90 can emulate itself can be seen fairly easily from a symbolic
description of the rule. Given three cells  the rule
specifies that the new value of the center cell will be

. But given  the value after
one step is  and after
two steps is again . It turns out that this
argument generalizes (by interspersing  0’s and going for

 steps) to any additive rule based on reduction modulo 
(see page 952) so long as  is prime. And it follows that in this
case the pattern generated after a certain number of steps
from a single non-white cell will always be the same as one
gets by going  times that number of steps and then keeping
only every th row and column. And this immediately
implies that the pattern must always have a nested form. If 
is not prime the pattern is no longer strictly invariant with
respect to keeping only every th row and column—but is in
effect still a superposition of patterns with this property for
factor of . (Compare page 870.) 

â Fractal dimensions. The total number of nonzero cells in the
first  rows of the pattern generated by the evolution of an
additive cellular automaton with  colors and weights  (see
page 952) from a single initial  can be found using

The fractal dimension of this pattern is then given by the
large  limit of

When  is prime it turns out that this can be computed as

x ! Mod[a x, 1]
a

{x, y} ! Mod[m�.�{x, y}, 1]
x ! Mod[1/x, 1]

x ! f [x] f [x]
a x (1 - x) p

Select[x /. Solve[Nest[f , x, p] 2 x, x], Im[#] 2 0 &]

x ! a x (1 - x)

m n
p = {m, n}

OrderedQ[( Transpose[If[MemberQ[p/#, 1], Map[Reverse,
{p/#, #}], {#, p /#}]] &)[2^ IntegerExponent[p, 2]]]

{a1, a2, a3}

Mod[a1 + a3, 2] {a1, 0, a2, 0, a3, 0}
{Mod[a1 + a2, 2], 0, Mod[a2 + a3, 2], 0}

{Mod[a1 + a3, 2], 0}
k - 1

k k
k

k
k

k

k

k

t
k w

1
g[w_, k_, t_] := Apply[Plus, Sign[NestList[Mod[

ListCorrelate[w, #, {-1, 1}, 0], k] &, {1}, t - 1]], {0, 1}]

m

Log[k, g[w, k, km+1] /g[w, k, km]]

k
d[w_, k_ : 2] := Log[k, Max[Abs[Eigenvalues[With[
{s = Length[w] - 1}, (Map[Function[u, Map[Count[u, #] &,
#1]], Map[Flatten[Map[Partition[Take[#, k + s - 1], s, 1] &,
NestList[Mod[ListConvolve[w, #], k] &, #, k - 1]], 1] &,
Map[Flatten[Map[{Table[0, {k - 1}], #} &, Append[#,
0]]] &, #]]] &)[Array[IntegerDigits[#, k, s] &, ks - 1]]]]]]]
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For rule 90 one gets . For rule
150 . (See page 58.) For the
other rules on page 952:

Other cases include (see page 870):

â General associative rules. With a cellular automaton rule in
which the new color of a cell is given by  (compare
page 886) it turns out that the pattern generated by evolution
from a single non-white cell is always nested if the function 
has the property of being associative or . In fact, for a
system involving  colors the pattern produced will always
be essentially just one of the patterns obtained from an
additive rule with  or less colors. In general, the pattern
produced by evolution for  steps is given by 

so that the first few steps yield

If  is , however, then the last two lines here become

and in general the number of ’s that appear in a particular
element is given as in Pascal’s triangle by a binomial
coefficient. If  is commutative ( ) then all that can
ever matter to the value of an element is its number of ’s. Yet
since there are a finite set of possible values for each element
it immediately follows that the resulting pattern must be
essentially Pascal’s triangle modulo some integer. And even
if  is not commutative, the same result will hold so long as

 and —since then any element can be
reduced to . The result can also be generalized to
cellular automata with basic rules involving more than two
elements—since if  is ,  is always just

.

If one starts from more than a single non-  element, then it is
still true that a nested pattern will be produced if  is both

associative and commutative. And from the discussion on
page 952 this means that any rule that shows generalized
additivity must always yield a nested pattern. But if f is not
commutative, then even if it is associative, non-nested
patterns can be produced. And indeed page 887 shows an
example of this based on the non-commutative group S3. (In
general  can correspond to an almost arbitrary semigroup,
but with a single initial element only a cyclic subgroup of it is
ever explored.) 

â Nesting in rule 45. As illustrated on page 701, starting from
a single black cell on a background of repeated  blocks,
rule 45 yields a slanted version of the nested rule 90 pattern.

â Uniqueness of patterns. Starting from a particular initial
condition, different rules can often yield the same pattern.
The picture below shows in sorted order the configurations
obtained at each successive step in the evolution of all 256
elementary cellular automata starting from a single black cell.
After a large number of steps, between 94 and 105 distinct
individual configurations are obtained, together with 143
distinct complete patterns. (Compare page 1186.)

â Square root of rule 30. Although rule 30 cannot apparently
be decomposed into other ,  cellular automata, it
can be viewed as the square of the ,  cellular
automata with rule numbers 11736, 11739 and 11742.

â Page 272 · Nested initial conditions. The pictures below
show patterns generated by rule 90 starting from the nested
sequences on page 83. (See page 1091.) 

The Notion of Attractors

â Page 275 · Discrete systems. In traditional mathematics
mechanical and other systems are assumed continuous, so
that for example a pendulum may get exponentially close to

d[{1, 0, 1}] = Log[2, 3] ; 1.58
d[{1, 1, 1}] = Log[2, 1+

�!!!!5 ] ; 1.69

d[{1, 1, 0, 1, 0}] =
Log[2, Root[4+ 2 # - 2 #2 - 3 #3 +#4 &, 2]] ; 1.72

d[{1, 1, 0, 1, 1}] =
Log[2, Root[-4+ 4 # + #2 - 4 #3 +#4 &, 2]] ; 1.8

d[{1, 0, 1}, k] = 1+ Log[k, ( k + 1)/2]

d[{1, 1, 1}, 3] = Log[3, 6] ; 1.63

d[{1, 1, 1}, 5] = Log[5, 19] ; 1.83

d[{1, 1, 1}, 7] = Log[7, Root[-27136 + 23280 # -
7288 #2 + 1008 #3 - 59 #4 +#5 &, 1]] ; 1.85

f [a1, a2]

f
Flat

k

k
t

NestList[
Inner[f , Prepend[#, 0], Append[#, 0], List] &, {a}, t]

{a}
{f [0, a], f [a, 0]}
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f [f [f [0, a], f [a, 0]], f [f [a, 0], 0]], f [f [f [a, 0], 0], 0]}

f Flat
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{f [0, 0, 0, a], f [0, 0, a, 0, a, a, 0],
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f Orderless
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f
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0
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the attractor state where it has stopped, but it will never
strictly reach this attractor. In discrete systems like cellular
automata, however, there is no problem in explicitly reaching
at least simple attractors.

â Implementation. One can represent a network by a list such
as  where each element
represents a node whose number corresponds to the position
of the element, and for each node there are rules that specify
to which nodes arcs with different values lead. Starting with
a list of nodes, the nodes reached by following arcs with
value  for one step are given by

A list of values then corresponds to a path in the network
starting from any node if 

Given a set of sequences of values represented by a particular
network, the set obtained after one step of cellular automaton
evolution is given by

where here elementary rule 126 is specified for example by
. Starting from the set

of all possible sequences, as given by

this then yields for rule 126 the network

It is always possible to find a minimal network that
represents a set of sequences. This can be done by first
creating a “deterministic” network in which at most one arc
of each value comes out of each node, then combining
equivalent nodes. The whole procedure can be performed
using

If  has  nodes, then in general  can have as
many as  nodes. The form of  given here can take

up to about  steps to generate a result with  nodes; an
 procedure is known. The result from  for rule

126 is .

In general  will yield a network with the property that
any allowed sequence of values corresponds to a path which
starts from node 1. In the main text, however, the networks
allow paths that start at any node. To obtain such trimmed
networks one can apply the function

â Finite automata. The networks discussed in the main text
can be viewed as finite automata (also known as finite state
machines). Each node in the network corresponds to a state
in the automaton, and each arc represents a transition that
occurs when a particular value is given as input. 
above in general produces a non-deterministic finite
automaton (NDFA) for which a particular sequence of values
does not determine a unique path through the network.

 creates an equivalent DFA, then minimizes this. The
Myhill-Nerode theorem ensures that a unique minimal DFA
can always be found (though to do so is in general a PSPACE-
complete problem).

The total number of distinct minimal finite automata with
 possible labels for each arc grows with the number of

nodes as follows: 3, 7, 78, 1388, … (The simple result 
based on the number of ways to connect up  nodes is a
significant overestimate because of equivalence between
automata with different patterns of connections.) 

â Regular languages. The set of sequences obtained by
following possible paths through a finite network is often
called a regular language, and appears in studies of many
kinds of systems. (See page 939.) 

â Regular expressions. The sequences in a regular language
correspond to those that can be matched by Mathematica
patterns that use no explicit pattern names. Thus for example

 corresponds to all possible sequences of ’s and
’s, while  corresponds to the

sequences that can occur after 2 steps in rule 126 and
 to those that can

occur after 2 steps in rule 110 (see page 279). 

â Generating functions. The sequences in a regular language
can be thought of as corresponding to products of non-
commuting variables that appear as coefficients in a formal
power series expansion of a generating function. A basic
result is that for regular languages this generating function

{{1 ! 2}, {0 ! 3, 1 ! 2}, {0 ! 3, 1 ! 1}}

a
NetStep[net_, i_, a_] :=

Union[ReplaceList[a, Flatten[net0i1]]]

Fold[NetStep[net, #1, #2] &,
Range[Length[net]], list] =!= {}

NetCAStep[{k_, r_, rtab_}, net_] := Flatten[
Map[Table[# /. ( a_ ! s_) " rtab0i k + a + 11 ! k2 r ( s - 1) +

1+Mod[ i k + a, k2 r], {i, 0, k2 r - 1}] &, net], 1]

{2, 1, Reverse[IntegerDigits[126, 2, 8]]}

AllNet[k_ : 2] := {Thread[Range[k] - 1 ! 1]}

{{0 ! 1, 1 ! 2}, {1 ! 3, 1 ! 4}, {1 ! 1, 1 ! 2}, {1 ! 3, 0 ! 4}}

MinNet[net_, k_ : 2] := Module[{d = DSets[net, k], q, b},
If[First[d] =!= {}, AllNet[k], q = ISets[b = Map[Table[

Position[d, NetStep[net, #, a]]01, 11, {a, 0, k - 1}] &, d]];
DeleteCases[MapIndexed[#2021 - 1 ! #1 &, Rest[

Map[Position[q, #]01, 11 &, Transpose[Map[#0Map[
First, q]1 &, Transpose[b]]], {2}]] - 1, {2}], _ ! 0, {2}]]]

DSets[net_, k_ : 2] :=
FixedPoint[Union[Flatten[Map[Table[NetStep[net, #, a],

{a, 0, k - 1}] &, #], 1]] &, {Range[Length[net]]}]
ISets[ list_] := FixedPoint[Function[g, Flatten[Map[

Map[Last, Split[Sort[Transpose[{Map[Position[g, #]01,
11 &, list, {2}], Range[Length[ list]]}]0#1], First[#1] 2

First[#2] &], {2}] &, g], 1]], {{1}, Range[2, Length[ list]]}]

net q MinNet[net]
2q - 1 MinNet

n2 n
n Log[n] MinNet

{{1 ! 3}, {0 ! 2, 1 ! 1}, {0 ! 2, 1 ! 3}}

MinNet

TrimNet[net_] :=
With[{m = Apply[Intersection, Map[FixedPoint[

Union[#, Flatten[Map[Last, net0#1, {2}]]] &,
#] &, Map[List, Range[Length[net]]]]]},

net0m1 /. Table[( a_ ! m0i1) ! a ! i, {i, Length[m]}]]

NetCAStep

MinNet

k = 2
(n+ 1)n k

n

{( 0 Ï 1) ...} 0
1 {1, 1, (1) ..., 0, ( 0) ...} ...

{( 0) ..., 1, {0, (0) ..., 1, 1} Ï {1, (1) ..., 0}} ...
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is always rational. (Compare the discussion of entropies
below.)

â History. Simple finite automata have implicitly been used
in electromechanical machines for over a century. A formal
version of them appeared in 1943 in McCulloch-Pitts neural
network models. (An earlier analog had appeared in Markov
chains.) Intensive work on them in the 1950s (sometimes
under the name sequential machines) established many basic
properties, including interpretation as regular languages and
equivalence to regular expressions. Connections to formal
power series and to substitution systems (see page 891) were
studied in the 1960s. And with the development of the Unix
operating system in the 1970s regular expressions began to be
widely used in practical computing in lexical analysis (lex)
and text searching (ed and grep). Regular languages also
arose in dynamical systems theory in the early 1970s under
the name of sofic systems. 

â Page 278 · Network properties. The number of nodes and
connections at step  are: rule 108: , ; rule 128: ,

; rule 132: , ; rule 160: , ;
rule 184: , . For rule 126 the first few cases are

and for rule 110 they are 

The maximum size of network that can possibly be generated
after  steps of cellular automaton evolution is . For

 the maximum of 15 (with 29 connections) is achieved for
16 out of the 256 possible elementary rules, including 22, 37,
73, 94, 104, 122, 146 and 164. For , rule 22 gives the
largest network, with 280 nodes and 551 arcs. The , 
totalistic rule with code 20 gives a network with 65535 nodes
after just 1 step. Note that rules which yield maximal size
networks are in a sense close to allowing all possible
sequences. (The shortest excluded block for code 20 is of
length 36.)

â Excluded blocks. As the evolution of a cellular automaton
proceeds, the set of sequences that can appear typically
shrinks, with progressively more blocks being excluded. In
some cases the set of allowed sequences forms a so-called
finite complement language (or subshift of finite type) that
can be characterized completely just by saying that some
finite set of blocks are excluded. But whenever the overall
behavior is at all complex, there tend to be an infinite set of
blocks excluded, making it necessary to use a network of
the kind discussed in the main text. If there are  nodes in
such a network, then if any blocks are excluded, the
shortest one of them must be of length less than . And if
there are going to be an infinite number of excluded blocks,
there must be additional excluded blocks with lengths

between  and . In rule 126, the lengths of the shortest
newly excluded blocks on successive steps are 0, 3, 12, 13,
14, 14, 17, 15. It is common to see such lengths
progressively increase, although in principle they can
decrease by as much as  from one step to the next. (As
an example, in rule 54 they decrease from 9 to 7 between
steps 4 and 5.) 

â Entropies and dimensions. There are  sequences possible
for  cells that are each either black or white. But as we
have seen, in most cellular automata not all these
sequences can occur except in the initial conditions. The
number of sequences  of length  that can actually occur
is given by

where the adjacency matrix  is given by 

For rule 32, for example,  turns out to be ,
so that for large  it is approximately . For any
rule,  for large  will behave like , where  is the largest
eigenvalue of . For rule 126 after 1 step, the characteristic
polynomial for  is , giving . After 2
steps, the polynomial is 

giving . Note that  is always an algebraic number—
or strictly a so-called Perron number, obtained from a
polynomial with leading coefficient 1. (Note that any possible
Perron number can be obtained for example from some finite
complement language.) 

It is often convenient to fit  for large  to the form ,
where  is the so-called spatial (topological) entropy (see
page 1084), given by . The value of this for
successive  never increases; for the first 3 steps in rule 126 it
is for example approximately 1, 0.811, 0.793. The exact value
of  after more steps tends to be very difficult to find, and
indeed the question of whether its limiting value after
infinitely many steps satisfies a given bound—say even being
nonzero—is in general undecidable (see page 1138). 

If one associates with each possible sequence of length  a
number , then the set of sequences that
actually occur at a given step form a Cantor set (see note
below), whose Hausdorff dimension turns out to be exactly .

â Cycles and zeta functions. The number of sequences of 
cells that can occur repeatedly, corresponding to cycles in the
network, is given in terms of the adjacency matrix  by

. These numbers can also be obtained
as the coefficients of  in the series expansion of

t > 1 8 13 2 t
2 t + 2 2 t + 1 3 t + 3 ( t + 1)2 ( t + 1) ( t + 3)

2 t 3 t + 1
{{1, 2}, {3, 5}, {13, 23}, {106, 196}, {2866, 5474}}

{{1, 2}, {5, 9}, {20, 38}, {206, 403}, {1353, 2666}}

t 2k2 r t
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Apply[Plus, Flatten[MatrixPower[m, n]]]

m
MapAt[1+# &, Table[0, {Length[net]}, {Length[net]}],

Flatten[MapIndexed[{First[#2], Last[#1]} &, net, {2}], 1]]

sn Fibonacci[n+ 3]
n GoldenRation
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m
m x3 - 2 x2 + x - 1 k ; 1.755

x13 - 4 x12 + 6 x11 - 5 x10 + 3 x9 - 3 x8 +
5 x7 - 3 x6 - x5 + 4 x4 - 2 x3 + x2 - x + 1

k ; 1.732 k

sn n 2h n

h
Log[2, k]
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h

n
Sum[ai 2-i , {i, n}]

h

n

m
Tr[MatrixPower[m, n]]
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, with the so-called zeta function, which is
always a rational function of , given by

and corresponds to the product over all cycles of . 

â 2D generalizations. Above 1D no systematic method seems
to exist for finding exact formulas for entropies (as expected
from the discussion at the end of Chapter 5). Indeed, even
working out for large  how many of the  possible
configurations of a  grid of black and white squares
contain no pair of adjacent black cells is difficult. Fitting the
result to  one finds , but no exact formula for 
has ever been found. With hexagonal cells, however, the
exact solution of the so-called hard hexagon lattice gas model
in 1980 showed that  is the logarithm of the largest
root of a degree 12 polynomial. (The solution of the so-called
dimer problem in 1961 also showed that for complete
coverings of a square grid by 2-cell dominoes

.) 

â Probability-based entropies. This section has concentrated
on characterizing what sequences can possibly occur in 1D
cellular automata, with no regard to their probability. It turns
out to be difficult to extend the discussion of networks to
include probabilities in a rigorous way. But it is
straightforward to define versions of entropy that take
account of probabilities—and indeed the closest analog to the
usual entropy in physics or information theory is obtained by
taking the probabilities  for the  blocks of length 
(assuming  colors), then constructing

I have tended to call this quantity measure entropy, though in
other contexts, it is often just called entropy or information,
and is sometimes called information dimension. The quantity

is the entropy discussed in the notes above, and is variously
called set entropy, topological entropy, capacity and fractal
dimension. An example of a generalization is the quantity
given for blocks of size  by 

where  yields set entropy, the limit  measure
entropy, and  so-called correlation entropy. For any 
the maximum  occurs when all . It is
always the case that . The  have been
introduced in almost identical form several times, notably by
Alfréd Rényi in the 1950s as information measures for
probability distributions, in the 1970s as part of the
thermodynamic formalism for dynamical systems, and in the
1980s as generalized dimensions for multifractals. (Related
objects have also arisen in connection with Hölder exponents
for discontinuous functions.)

â Entropy estimates. Entropies  computed from blocks of
size  always decrease with ; the quantity  is always
convex (negative second difference) with respect to . At
least at a basic level, to compute topological entropy one
needs in effect to count every possible sequence that can be
generated. But one can potentially get an estimate of measure
entropy just by sampling possible sequences. One problem,
however, is that even though such sampling may give
estimates of probabilities that are unbiased (and have
Gaussian errors), a direct computation of measure entropy
from them will tend to give a value that is systematically too
small. (A potential way around this is to use the theory of
unbiased estimators for polynomials just above and below

.)

â Nested structure of attractors. Associating with each
sequence of length  (and  possible colors for each element)
a number , the set of sequences that occur
in the limit  forms a Cantor set. For , the set of
sequences where the second color never occurs corresponds
to the standard middle-thirds Cantor set. In general,
whenever the possible sequences correspond to paths
through a finite network, it follows that the Cantor set
obtained has a nested structure. Indeed, constructing the
Cantor set in levels by considering progressively longer
sequences is effectively equivalent to following successive
steps in a substitution system of the kind discussed on page
83. (To see the equivalence first set up  kinds of elements in
the substitution system corresponding to the  nodes in the
network.) Note that if the possible sequences cannot be
described by a network, then the Cantor set obtained will
inevitably not have a strictly nested form.

â Surjectivity and injectivity. One can think of a cellular
automaton rule as a mapping (endomorphism) from the
space of possible states of the cellular automaton to itself.
(See page 869.) Usually this mapping is contractive, so that
not all the states which appear as input to the mapping can
also appear as output. But in some cases, the mapping is
surjective or onto, meaning that any state which appears as
input can also appear as output. Among , 
elementary cellular automata it turns out that this happens
precisely for those 30 rules that are additive with respect to
at least the first or last position on which they depend (see
pages 601 and 1087); this includes both rules 90 and 150 and
rules 30 and 45. With ,  there are a total of
4,294,967,296 possible rules. Out of these 141,884 are onto—
and 11,388 of these turn out not to be additive with respect
to any position. The easiest way to test whether a particular
rule is onto seems to be essentially just to construct the
minimal finite automaton discussed on page 957. The onto
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x
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,  rules were found in 1961 in a computer study by
Gustav Hedlund and others; they later apparently provided
input in the design of S-boxes for DES cryptography (see
page 1085).

Even when a cellular automaton mapping is surjective, it is
still often many-to-one, in the sense that several input states
can yield the same output state. (Thus for example additive
rules such as 90 and 150, as well as one-sided additive rules
such as 30 and 45 are always 4-to-1.) But some surjective rules
also have the property of being injective, so that different
input states always yield different output states. And in such
a case the cellular automaton mapping is one-to-one or
bijective (an automorphism). This is equivalent to saying that
the rule is reversible, as discussed on page 1017.

(In 2D such properties are in general undecidable; see
page 1138.)

â Temporal sequences. So far we have considered possible
sequences of cells that can occur at a particular step in the
evolution of a cellular automaton. But one can also consider
sequences formed from the color of a particular cell on a
succession of steps. For class 1 and 2 cellular automata,
there are typically only a limited number of possible
sequences of any length allowed. And when the length is
large, the sequences are almost always either just uniform or
repetitive. For class 3 cellular automata, however, the
number of sequences of length  typically grows rapidly
with . For additive rules such as 60 and 90, and for
partially additive rules such as 30 and 45, any possible
sequence can occur if an appropriate initial condition is
given. For rule 18, it appears that any sequence can occur
that never contains more than one adjacent black cell. I
know of no general characterization of temporal sequences
analogous to the finite automaton one used for spatial
sequences above. However, if one defines the entropy or
dimension  for temporal sequences by analogy with the
definition for spatial sequences above, then it follows for
example that , where  is the maximum rate at
which changes grow in the cellular automaton. The origin of
this inequality is indicated in the picture below. The basic
idea is that the size of the region that can affect a given cell
in the course of  steps is . But for large sizes  the total
number of possible configurations of this region is .
(Inequalities between entropies and Lyapunov exponents
are also common in dynamical systems based on numbers,
but are more difficult to derive.) Note that in effect,  gives
the information content of spatial sequences in units of bits
per unit distance, while  gives the corresponding quantity
for temporal sequences in units of bits per unit time. (One
can also define directional entropies based on sequences at

different slopes; the values of such entropies tend to change
discontinuously when the slope crosses .)

Different classes of cellular automata show characteristically
different entropy values. Class 1 has  and . Class 2
has  but . Class 3 has  and . Class 4
tends to show fluctuations which prevent definite values of

 and  from being found. 

â Spacetime patches. One can imagine defining entropies and
dimensions associated with regions of any shape in the
spacetime history of a cellular automaton. As an example,
one can consider patches that extend  cells across in space
and  cells down in time. If the color of every cell in such a
patch could be chosen independently then there would be

 possible configurations of the complete patch. But in fact,
having just specified a block of length  in the initial
conditions, the cellular automaton rule then uniquely
determines the color of every cell in the patch, allowing a
total of at most  configurations. One can define
a topological spacetime entropy  as 

and a measure spacetime entropy  by replacing  with
. In general,  and . For

additive rules like rule 90 and rule 150 every possible
configuration of the initial block leads to a different
configuration for the patch, so that . But for other
rules many different configurations of the initial block can
lead to the same configuration for the patch, yielding
potentially much smaller values of . Just as for most other
entropies, when a cellular automaton shows complicated
behavior it tends to be difficult to find much more than upper
bounds for . For rule 30, , and there is some
evidence that its true value may actually be 1. For rule 18 it
appears that , while for rule 22,  and for rule
54 . 

â History. The analysis of cellular automata given in this
section is largely as I worked it out in the early 1980s. Parts
of it, however, are related to earlier investigations,
particularly in dynamical systems theory. Starting in the
1930s the idea of symbolic dynamics began to emerge, in
which one partitions continuous values in a system into bins
represented by discrete symbols, and then looks at the
sequences of such symbols that can be produced by the
evolution of the system. In connection with early work on
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chaos theory, it was noted that there are some systems that
act like “full shifts”, in the sense that the set of sequences
they generate includes all possibilities—and corresponds to
what one would get by starting with any possible number,
then successively shifting digits to the left, and at each step
picking off the leading digit. It was noted that some systems
could also yield various kinds of subshifts that are subsets
of full shifts. But since—unlike in cellular automata—the
symbol sequences being studied were obtained by rather
arbitrary partitionings of continuous values, the question
arose of what effect using different partitionings would
have. One approach was to try to find invariants that would
remain unchanged in different partitionings—and this is
what led, for example, to the study of topological entropy in
the 1960s. Another approach was to look at actual possible
transformations between partitionings, and this led from the
late 1950s to various studies of so-called shift-commuting
block maps (or sliding-block codes)—which turn out to be
exactly 1D cellular automata (see page 878). The locality of
cellular automaton rules was thought of as making them the
analog for symbol sequences of continuous functions for
real numbers (compare page 869). Of particular interest
were invertible (reversible) cellular automaton rules, since
systems related by these were considered conjugate or
topologically equivalent.

In the 1950s and 1960s—quite independent of symbolic
dynamics—there was a certain amount of work done in
connection with ideas about self-reproduction (see page 876)
on the question of what configurations one could arrange to
produce in 1D and 2D cellular automata. And this led for
example to the study of so-called Garden of Eden states that
can appear only in initial conditions—as well as to some
general discussion of properties such as surjectivity.

When I started working on cellular automata in the early
1980s I wanted to see how far one could get by following
ideas of statistical mechanics and dynamical systems theory
and trying to find global characterizations of the possible
behavior of individual cellular automata. In the traditional
symbolic dynamics of continuous systems it had always
been assumed that meaningful quantities must be invariant
under continuous invertible transformations of symbol
sequences. It turns out that the spacetime (or “invariant”)
entropy defined in the previous note has this property. But
the spatial and temporal entropies that I introduced do
not—and indeed in studying specific cellular automata there
seems to be no particular reason why such a property would
be useful. 

â Attractors in systems based on numbers. Particularly for
systems based on ordinary differential equations (see

page 922) a geometrical classification of possible attractors
exists. There are fixed points, limit cycles and so-called
strange attractors. (The first two of these were identified
around the end of the 1800s; the last with clarity only in the
1960s.) Fixed points correspond to zero-dimensional subsets
of the space of possible states, limit cycles to one-dimensional
subsets (circles, solenoids, etc.). Strange attractors often have
a nested structure with non-integer fractal dimension. But
even in cases where the behavior obtained with a particular
random initial condition is very complicated the structure of
the attractor is almost invariably quite simple. 

â Iterated maps. For maps of the form  discussed
on page 920 the attractor for small  is a fixed point, then a
period 2 limit cycle, then period 4, 8, 16, etc. There is an
accumulation of limit cycles at  where the system
has a special nested structure. (See pages 920 and 955.) 

â Attractors in Turing machines. In theoretical studies Turing
machines are often set up so that if their initial conditions
follow a particular formal grammar (see page 938) then they
evolve to “accept” states—which can be thought of as being
somewhat like attractors.

â Systems of limited size. For any system with a limited total
number of states, it is possible to create a finite network that
gives a global representation of the behavior of the system.
The idea of this network (which is very different from the
finite automata networks discussed above) is to have each
node represent a complete state of the system. At each step in
the evolution of the system, every state evolves to some new
state, and this process is represented in the network by an arc
that joins each node to a new node. The picture below gives
the networks obtained for systems of the kind shown on page
255. Each node is labelled by a possible position for the dot.
In the first case shown, starting for example at position 4 the
dot then visits positions 5, 0, 1, 2 and so on, at each step going
from one node in the network to the next.

The pictures below give networks obtained from the system
shown on page 257 for various values of . For odd , the
networks consist purely of cycles. But for even , there are
also trees of states that lead to these cycles.
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In general, any network that represents the evolution of a
system with definite rules will have the same basic form.
There are cycles which contain states that are visited
repeatedly, and there can also be trees that represent transient
states that can each only ever occur at most once in the
evolution of the system.

The picture below shows the network obtained from a class
1 cellular automaton (rule 254) with 4 cells and thus 16
possible states. All but one of these 16 states evolve after at
most two steps to state 15, which corresponds to all cells
being black.

The pictures below show networks obtained when more cells
are included in the cellular automaton above. The same
convergence to a single fixed point is observed.

The pictures below give corresponding results for a class 2
cellular automaton (rule 132). The number of distinct cycles
now increases with the size of the system. (As discussed
below, identical pieces of the network are often related by
symmetries of the underlying cellular automaton system.)

In class 3, larger cycles are usually obtained, and often the
whole network is dominated by a single largest cycle. The
second set of pictures below summarize the results for some
larger cellular automata. Each distinct region corresponds to
a disjoint part of the network, with the area of the region
being proportional to the number of nodes involved. The
dark blobs represent cycles. (See page 1087.)
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rule 30
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rule 45
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For large sizes there is a rough correspondence with the
infinite size case, but many features are still different. (To
recover correct infinite size results one must increase size
while keeping the number of steps of evolution fixed; the
networks shown above, however, effectively depend on
arbitrarily many steps of evolution.)

â Symmetries. Many of the networks above contain large
numbers of identical pieces. Typically the reason is that the
states in each piece are shifted copies of each other, and in
such cases the number of pieces will be a divisor of . (See
page 950.) If the underlying cellular automaton rule exhibits
an invariance—say under reflection in space or permutation
of colors—this will also often lead to the presence of identical
pieces in the final network, corresponding to cosets of the
symmetry transformation.

â Shift rules. The pictures below show networks obtained
with rule 170, which just shifts every configuration one
position to the left at each step. With any such shift rule, all
states lie on cycles, and the lengths of these cycles are the
divisors of the size . Every cycle corresponds in effect to a
distinct necklace with  beads; with  colors the total number
of these is

The number of cycles of length exactly  is ,
where  is defined on page 950. For prime , each cycle
(except all 0’s) corresponds to a term in the product

. (See page 975.)

â Additive rules. The pictures below show networks
obtained for the additive cellular automata with rules 60
and 90. The networks are highly regular and can be

analyzed by the algebraic methods mentioned on page 951.
The lengths of the longest cycles are given on page 951; all
other cycles must have lengths which divide these. Rooted
at every state on each cycle is an identical structure. When
the number of cells  is odd this structure consists of a
single arc, so that half of all states lie on cycles. When  is
even, the structure is a balanced tree of depth

 and degree 2 for rule 60, and
depth  and degree 4 for rule 90.
The total fraction of states on cycles is in both cases

. States with a single black cell
are always on the longest cycles. The state with no black
cells always forms a cycle of length 1.

â Random networks. The pictures below show networks in
which each of a set of  nodes has as its successor a node that
is chosen at random from the set. The total number of
possible such networks is . For large , the average
number of distinct cycles in all such networks is

, and the average length of these cycles is
. The average fraction of nodes that have no

predecessor is  or  in the limit . Note that
processes such as cellular automaton evolution do not yield
networks whose properties are particularly close to those of
purely random ones.
 
 

rule 110
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rule 90
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Structures in Class 4 Systems

â Page 283 · Survival data. The number of steps for which the
pattern produced by each of the first 1000 initial conditions in
code 20 survive are indicated in the picture below. 72 of these
initial conditions lead to persistent structures. Among the
first million initial conditions, 60,171 lead to persistent
structures and among the first billion initial conditions the
number is 71,079,205. 

â Page 290 · Background. At every step the background
pattern in rule 110 consists of repetitions of the block

, as shown in the picture
below. On step  the color of a cell at position  is given by

. 

â Page 292 · Structures. The persistent structures shown can
be obtained from the following  by inserting the
sequences  between repetitions of the
background block :

The repetition periods and distances moved in each period
for the structures are respectively

Note that the periodicity of the background forces all rule 110
structures to have periods and distances given by

 where  and  are non-negative integers.
Extended versions of structures (d)–(i) can be obtained by collisions
with (a). Extended versions of (b) and (c) can be obtained from

where  is a non-negative integer and  is one of 

Note that in most cases multiple copies of the same structure
can travel next to each other, as seen on page 290.

â Page 293 · Glider gun. The initial conditions shown
correspond to .

â Page 294 · Collisions. A fundamental result is that the sum
of the widths of all persistent structures involved in an
interaction must be conserved modulo 14. 

â The Game of Life. The 2D cellular automaton described on
page 949 supports a whole range of persistent structures,
many of which have been given quaint names by its
enthusiasts. With typical random initial conditions the most
common structures to occur are:

The next most common moving structure is the so-called
“spaceship”:

The complete set of structures with less than 8 black cells that
remain unchanged at every step in the evolution are:

More complicated repetitive and moving structures are
shown in the pictures below. If one looks at the history of a
single row of cells, it typically looks much like the complete
histories we have seen in 1D class 4 cellular automata.

size 10 size 100 size 1000 size 10000 size 100000

0 200 400 600 800 1000
60
50
40
30
20
10

0

b = {1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0}

t x
b0Mod[x + 4 t, 14] + 11

{n, w}

IntegerDigits[n, 2, w]

b
{{152, 8}, {183, 8}, {18472955, 25}, {732, 10}, {129643, 18},
{0, 5}, {152, 13}, {39672, 21}, {619, 15}, {44, 7},
{334900605644, 39}, {8440, 15}, {248, 9}, {760, 11}, {38, 6}}

{{4, -2}, {12, -6}, {12, -6}, {42, -14},
{42, -14}, {15, -4}, {15, -4}, {15, -4}, {15, -4},
{30, -8}, {92, -18}, {36, -4}, {7, 0}, {10, 2}, {3, 2}}

{4, -2} r + {3, 2} s r s

Flatten[{IntegerDigits[1468, 2], Table[
IntegerDigits[102524348, 2], {n}], IntegerDigits[v, 2]}]

n v
{1784, 801016, 410097400, 13304, 6406392, 3280778648}

{n, w} = {1339191737336, 41}

"glider"

"block" "beehive" "blinker"

"pulsar" "26 oscillator" "slow ship" "blinker ship"



S T A R T I N G  F R O M  R A N D O M N E S S N O T E S  F O R  C H A P T E R  6

965

Structures with all repetition periods up to 18 have been
found in Life; examples are shown in the pictures below. 

Persistent structures with various speeds in the horizontal
and vertical direction have also been found, as shown below.

The first example of unbounded growth in Life was the so-
called “glider gun”, discovered by William Gosper in 1970
and shown below. This object emits a glider every 30 steps.
The simplest known initial condition which leads to a glider
gun contains 21 black cells. The so-called “switch engine”
discovered in 1971 generates unbounded growth by leaving
a trail behind when it moves; it is now known that it can be
obtained from an initial condition with 10 black cells, or
black cells in just a  or  region. It is also known
that from less than 10 initial black cells no unbounded
growth is ever possible.

Many more elaborate structures similar to the glider gun
were found in the 1970s and 1980s; two are illustrated below.

A simpler kind of unbounded growth occurs if one starts
from an infinite line of black cells. In that case, the evolution
is effectively 1D, and turns out to follow elementary rule 22,
thus producing the infinitely growing nested pattern shown
on page 263.

For a long time it was not clear whether Life would support any
kind of uniform unbounded growth from a finite initial region
of black cells. However, in 1993 David Bell found starting from
206 black cells the “spacefiller” shown below. This object is
closely analogous to those shown for code 1329 on page 287. 

As in other class 4 cellular automata, there are structures in
Life which take a very long time to settle down. The so-called
“puffer train” below which starts from 23 black cells becomes
repetitive with period 140 only after more than 1100 steps. 

â Other 2D cellular automata. The general problem of finding
persistent structures is much more difficult in 2D than in 1D,
and there is no completely general procedure, for example,
for finding all structures of any size that have a certain
repetition period.

â Structures in Turing machines. See page 888. 
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NOTES FOR CHAPTER 7

Mechanisms in Programs and Nature

Universality of Behavior

â History. That very different natural and artificial systems
can show similar forms has been noted for many centuries.
Informal studies have been done by a whole sequence of
architects interested both in codifying possible forms and in
finding ways to make structures fit in with nature and with
our perception of it. Beginning in the Renaissance the point
has also been noted by representational and decorative
artists, most often in the context of developing a theory of
the types of forms to be studied by students of art. The
growth of comparative anatomy in the 1800s led to
attempts at more scientific treatments, with analogies
between biological and physical systems being emphasized
particularly by D’Arcy Thompson in 1917. Yet despite all
this, the phenomenon of similarity between forms
remained largely a curiosity, discussed mainly in illustrated
books with no clear basis in either art or science. In a few
cases (such as work by Peter Stevens in 1974) general
themes were however suggested. These included for
example symmetry, the golden ratio, spirals, vortices,
minimal surfaces, branching patterns, and—since the
1980s—fractals. The suggestion is also sometimes made
that we perceive a kind of harmony in nature because we
see only a limited number of types of forms in it. And
particularly in classical architecture the idea is almost
universally used that structures will seem more
comfortable to us if they repeat in ornament or otherwise
forms with which we have become familiar from nature.
Whenever a scientific model has the same character for
different systems this means that the systems will tend to
show similar forms. And as models like cellular automata
capable of dealing with complexity have become more
widespread it has been increasingly popular to show that
they can capture similar forms seen in very different
systems. 

Three Mechanisms for Randomness

â Page 299 · Definition. How randomness can be defined is
discussed at length on page 552.

â History. In antiquity, it was often assumed that all events
must be governed by deterministic fate—with any apparent
randomness being the result of arbitrariness on the part of
the gods. Around 330 BC Aristotle mentioned that instead
randomness might just be associated with coincidences
outside whatever system one is looking at, while around 300
BC Epicurus suggested that there might be randomness
continually injected into the motion of all atoms. The rise of
emphasis on human free will (see page 1135) eroded belief in
determinism, but did not especially address issues of
randomness. By the 1700s the success of Newtonian physics
seemed again to establish a form of determinism, and led to
the assumption that whatever randomness was actually seen
must reflect lack of knowledge on the part of the observer—
or particularly in astronomy some form of error of
measurement. The presence of apparent randomness in digit
sequences of square roots, logarithms, numbers like , and
other mathematical constructs was presumably noticed by
the 1600s (see page 911), and by the late 1800s it was being
taken for granted. But the significance of this for randomness
in nature was never recognized. In the late 1800s and early
1900s attempts to justify both statistical mechanics and
probability theory led to ideas that perfect microscopic
randomness might somehow be a fundamental feature of the
physical world. And particularly with the rise of quantum
mechanics it came to be thought that meaningful calculations
could be done only on probabilities, not on individual
random sequences. Indeed, in almost every area where
quantitative methods were used, if randomness was
observed, then either a different system was studied, or
efforts were made to remove the randomness by averaging or
some other statistical method. One case where there was
occasional discussion of origins of randomness from at least

p
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the early 1900s was fluid turbulence (see page 997). Early
theories tended to concentrate on superpositions of repetitive
motions, but by the 1970s ideas of chaos theory began to
dominate. And in fact the widespread assumption emerged
that between randomness in the environment, quantum
randomness and chaos theory almost any observed
randomness in nature could be accounted for. Traditional
mathematical models of natural systems are often expressed
in terms of probabilities, but do not normally involve
anything one can explicitly consider as randomness. Models
used in computer simulations, however, do very often use
explicit randomness. For not knowing about the
phenomenon of intrinsic randomness generation, it has
normally been assumed that with the kinds of discrete
elements and fairly simple rules common in such models,
realistically complicated behavior can only ever be obtained
if explicit randomness is continually introduced. 

â Applications of randomness. See page 1192.

â Sources of randomness. Two simple mechanical methods for
generating randomness seem to have been used in almost
every civilization throughout recorded history. One is to toss
an object and see which way up or where it lands; the other is
to select an object from a collection mixed by shaking. The
first method has been common in games of chance, with
polyhedral dice already existing in 2750 BC. The second—
often called drawing lots—has normally been used when
there is more at stake. It is mentioned several times in the
Bible, and even today remains the most common method for
large lotteries. (See page 969.) Variants include methods such
as drawing straws. In antiquity fortune-telling from
randomness often involved looking say at growth patterns of
goat entrails or sheep shoulder blades; today configurations
of tea leaves are sometimes considered. In early modern
times the matching of fracture patterns in broken tally sticks
was used to identify counterparties in financial contracts.
Horse races and other events used as a basis for gambling can
be viewed as randomness sources. Children’s games like
musical chairs in effect generate randomness by picking
arbitrary stopping times. Games of chance based on wheels
seem to have existed in Roman times; roulette developed in
the 1700s. Card shuffling (see page 974) has been used as a
source of randomness since at least the 1300s. Pegboards (as
on page 312) were used to demonstrate effects of randomness
in the late 1800s. An explicit table of 40,000 random digits
was created in 1927 by Leonard Tippett from details of census
data. And in 1938 further tables were generated by Ronald
Fisher from digits of logarithms. Several tables based on
physical processes were produced, with the RAND
Corporation in 1955 publishing a table of a million random

digits obtained from an electronic roulette wheel. Beginning
in the 1950s, however, it became increasingly common to use
pseudorandom generators whenever long sequences were
needed—with linear feedback shift registers being most
popular in standalone electronic devices, and linear
congruential generators in programs (see page 974). There
nevertheless continued to be occasional work done on
mechanical sources of randomness for toys and games, and
on physical electronic sources for cryptography systems (see
page 969). 

Randomness from the Environment

â Page 301 · Stochastic models. The mechanism for
randomness discussed in this section is the basis for so-called
stochastic models now widely used in traditional science.
Typically the idea of these models is to approximate those
elements of a system about which one does not know much
by random variables. (See also page 588.) In the early work
along these lines done by James Clerk Maxwell and others in
the 1880s, analytical formulas were usually worked out for
the probabilities of different outcomes. But when electronic
computers became available in the 1940s, the so-called Monte
Carlo method became increasingly popular, in which instead
explicit simulations are performed with different choices of
random variables, and then statistical averages are found.
Early uses of the Monte Carlo method were mostly in
physics, particularly for studies of neutron diffusion and
particle shower generation in high-energy collisions. But by
the 1980s the Monte Carlo method had also become common
in other fields, and was routinely used in studying for
example message flows in communication networks and
pricing processes in financial markets. (See also page 1192.)

â Page 301 · Ocean surfaces. See page 1001.

â Page 302 · Random walks. See page 328. 

â Page 302 · Electronic noise. Three types of noise are
commonly observed in typical devices: 

Shot noise. Electric currents are not continuous but are
ultimately made up from large numbers of moving charge
carriers, typically electrons. Shot noise arises from statistical
fluctuations in the flow of charge carriers: if a single bit of
data is represented by 10,000 electrons, the magnitude of the
fluctuations will typically be about 1%. When looked at as a
waveform over time, shot noise has a flat frequency
spectrum.

Thermal (Johnson) noise. Even though an electric current may
have a definite overall direction, the individual charge
carriers within it will exhibit random motions. In a material
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at nonzero temperature, the energy of these motions and thus
the intensity of the thermal noise they produce is essentially
proportional to temperature. (At very low temperatures,
quantum mechanical fluctuations still yield random motion
in most materials.) Like shot noise, thermal noise has a flat
frequency spectrum. 

Flicker (1/f) noise. Almost all electronic devices also exhibit a
third kind of noise, whose main characteristic is that its
spectrum is not flat, but instead goes roughly like  over a
wide range of frequencies. Such a spectrum implies the
presence of large low-frequency fluctuations, and indeed
fluctuations are often seen over timescales of many minutes
or even hours. Unlike the types of noise described above, this
kind of noise can be affected by details of the construction of
individual devices. Although seen since the 1920s its origins
remain somewhat mysterious (see below). 

â Power spectra. Many random processes in nature show
power spectra  with fairly simple forms.
Most common are white noise uniform in frequency and 
noise associated with random walks. Other pure power laws

 are also sometimes seen; the pictures below show some
examples. (Note that the correlations in such data in some
sense go like .) Particularly over the past few decades all
sorts of examples of “  noise” have been identified with

, including flicker noise in resistors, semiconductor
devices and vacuum tubes, as well as thunderstorms,
earthquake and sunspot activity, heartbeat intervals, road
traffic density and some DNA sequences. A pure 
spectrum presumably reflects some form of underlying
nesting or self-similarity, although exactly what has usually
been difficult to determine. Mechanisms that generally seem
able to give  include random walks with exponential
waiting times, power-law distributions of step sizes (Lévy
flights), or white noise variations of parameters, as well as
random processes with exponentially distributed relaxation
times (as from Boltzmann factors for uniformly distributed
barrier heights), fractional integration of white noise,
intermittency at transitions to chaos, and random
substitution systems. (There was confusion in the late 1980s
when theoretical studies of self-organized criticality failed
correctly to take squares in computing power spectra.) Note
that the Weierstrass function of page 918 yields a 
spectrum, and presumably suitable averages of spectra from
any substitution system should also have  forms
(compare page 586).

â Page 303 · Spark chambers. The sensitivity of sparks to
microscopic details of the environment is highlighted by the
several devices which essentially use them to detect the
passage of individual elementary particles such as protons.
Such particles leave a tiny trail of ionized gas, which
becomes the path of the spark. This principle was used in
Geiger counters, and later in spark chambers and wire
chambers. 

â Physical randomness generators. It is almost universally
assumed that at some level physical processes must be the
best potential sources of true randomness. But in practice
their record has actually been very poor. It does not help that
unlike algorithms physical devices can be affected by their
environment, and can also not normally be copied identically.
But in almost every case I know where detailed analysis has
been done substantial deviations from perfect randomness
have been found. This has however typically been attributed
to engineering mistakes—or to sampling data too quickly—
and not to anything more fundamental that is for example
worth describing in publications.

â Mechanical randomness. It takes only small imperfections in
dice or roulette wheels to get substantially non-random
results (see page 971). Gaming regulations typically require
dice to be perfect cubes to within one part in a few thousand;
casinos normally retire dice after a few hundred rolls. 

In processes like stirring and shaking it can take a long time
for correlations to disappear—as in the phenomenon of long-
time tails mentioned on page 999. One notable consequence
were traces of insertion order among the 366 capsules used in
the 1970 draft lottery in the U.S. But despite such problems
mixing of objects remains by far the most common way to
generate randomness when there is a desire for the public to
see randomization occur. And so for example all the state
lotteries in the U.S. are currently based on mixing between 10
and 54 balls. (Numbers games were instead sometimes based
on digits of financial data in newspapers.) 

There have been a steady stream of inventions for mechanical
randomness generation. Some are essentially versions of
dice. Others involve complicated cams or linkages,
particularly for mechanical toys. And still others involve
making objects like balls bounce around as randomly as
possible in air or other fluids.

â Electronic randomness. Since the 1940s a steady stream of
electronic devices for producing randomness have been
invented, with no single one ever becoming widely used.
An early example was the ERNIE machine from 1957 for
British national lottery (premium bond) drawings, which
worked by sampling shot noise from neon discharge
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tubes—and perhaps because it extracted only a few digits
per second no deviations from randomness in its output
were found. (U.S. missiles apparently used a similar method
to produce randomly spaced radar pulses for determining
altitude.) Since the 1970s electronic randomness generators
have typically been based on features of semiconductor
devices—sometimes thermal noise, but more often
breakdown, often in back-biased zener diodes. All sorts of
schemes have been invented for getting unbiased output
from such systems, and acceptable randomness can often be
obtained at kilohertz rates, but obvious correlations almost
always appear at higher rates. Macroscopic thermal
diffusion undoubtedly underestimates the time for good
microscopic randomization. For in addition to  noise
effects, solitons and other collective lattice effects
presumably lead to power-law decay of correlations. It still
seems likely however that some general inequalities should
exist between the rate and quality of randomness that can be
extracted from a system with particular thermodynamic
properties. 

â Quantum randomness. It is usually assumed that even if all
else fails a quantum process such as radioactive decay will
yield perfect randomness. But in practice the most accurate
measurements show phenomena such as  noise,
presumably as a result of features of the detector and
perhaps of electromagnetic fields associated with decay
products. Acceptable randomness has however been
obtained at rates of tens of bits per second. Recent attempts
have also been made to produce quantum randomness at
megahertz rates by detecting paths of single photons. (See
also page 1064.)

â Randomness in computer systems. Most randomness needed
in practical computer systems is generated purely by
programs, as discussed on page 317. But to avoid having a
particular program give exactly the same random sequence
every time it is run, one usually starts from a seed chosen on
the basis of some random feature of the environment. Until the
early 1990s this seed was most often taken from the exact time
of day indicated by the computer’s clock at the moment when
it was requested. But particularly in environments where
multiple programs can start almost simultaneously other
approaches became necessary. Versions of the Unix operating
system, for example, began to support a virtual device
(typically called /dev/random) to maintain a kind of pool of
randomness based on details of the computer system. Most
often this uses precise timings between interrupts generated
by keys being pressed, a mouse being moved, or data being
delivered from a disk, network, or other device. And to
prevent the same state being reached every time a computer is

rebooted, some information is permanently maintained in a
file. At the end of the 1990s standard microprocessors also
began to include instructions to sample thermal noise from an
on-chip resistor. (Any password or encryption key made up by
a human can be thought of as a source of randomness; some
systems look at details of biometric data, or scribbles drawn
with a mouse.) 

â Randomness in biology. Thermal fluctuations in chemical
reactions lead to many kinds of microscopic randomness in
biological systems, sometimes amplified when organisms
grow. For example, small-scale randomness in embryos can
affect large-scale pigmentation patterns in adult organisms,
as discussed on page 1013. Random changes in single DNA
molecules can have global effects on the development of an
organism. Standard mitotic cell division normally produces
identical copies of DNA—with random errors potentially
leading for example to cancers. But in sexual reproduction
genetic material is rearranged in ways normally assumed by
classical genetics to be perfectly random. One reason is that
which sperm fertilizes a given egg is determined by random
details of sperm and fluid motion. Another reason is that egg
and sperm cells get half the genetic material of an organism,
somewhat at random. In most cells, say in humans, there are
two versions of all 23 chromosomes—one from the father and
one from the mother. But when meiosis forms egg and sperm
cells they get only one version of each. There is also exchange
of DNA between paternal and maternal chromosomes,
typically with a few crossovers per chromosome, at positions
that seem more or less randomly distributed among many
possibilities (the details affect regions of repeating DNA used
for example in DNA fingerprinting). 

In the immune system blocks of DNA—and joins between
them—are selected at random by microscopic chemical
processes when antibodies are formed. 

Most animal behavior is ultimately controlled by electrical
activity in nerve cells—and this can be affected by details of
sensory input, as well as by microscopic chemical processes
in individual cells and synapses (see page 1011). 

Flagellated microorganisms can show random changes in
direction as a result of tumbling when their flagella counter-
rotate and the filaments in them flail around.

(See also page 1011.)

Chaos Theory and Randomness from Initial Conditions

â Page 305 · Spinning and tossing. Starting with speed , the
speed of the ball at time  is simply , where  is the
deceleration produced by friction. The ball thus stops at time

1/f

1/f

v
t v - a t a
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. The distance gone by the ball at a given time is
, and its orientation is . For dice

and coins there are some additional detailed effects
associated with the shapes of these objects and the way they
bounce. (Polyhedral dice have become more common since
Dungeons & Dragons became popular in the late 1970s.)
Note that in practice a coin tossed in the air will typically
turn over between ten and twenty times while a die rolled on
a table will turn over a few tens of times. A coin spun on a
table can rotate several hundred times before falling over and
coming to rest.

â Billiards. A somewhat related system is formed by a billiard
ball bouncing around on a table. The issue of which sequence
of horizontal and vertical sides the ball hits depends on the
exact slope with which the ball is started (in the picture
below it is ). In general, it is given by the successive
terms in the continued fraction form (see page 914) of this
slope, and is related to substitution systems (see page 903).
(See also page 1022.)

â Fluttering. If one releases a stationary piece of paper in air,
then unlike a coin, it does not typically maintain the same
orientation as it falls. Small pieces of paper spin in a
repetitive way; but larger pieces of paper tend to flutter in a
seemingly random way (as discussed, among others, by
James Clerk Maxwell in 1853). A similar phenomenon can be
seen if one drops a coin in water. I suspect that in these cases
the randomness that occurs has an intrinsic origin, rather
than being the result of sensitive dependence on initial
conditions.

â History of chaos theory. The idea that small causes can
sometimes have large effects has been noted by historians
and others since antiquity, and captured for example in “for
want of a nail … a kingdom was lost”. In 1860 James Clerk
Maxwell discussed how collisions between hard sphere
molecules could lead to progressive amplification of small
changes and yield microscopic randomness in gases. In the
1870s Maxwell also suggested that mechanical instability
and amplification of infinitely small changes at occasional
critical points might explain apparent free will (see page
1135). (It was already fairly well understood that for
example small changes could determine which way a beam
would buckle.) In 1890 Henri Poincaré found sensitive
dependence on initial conditions in a particular case of the

three-body problem (see below), and later proposed that
such phenomena could be common, say in meteorology. In
1898 Jacques Hadamard noted general divergence of
trajectories in spaces of negative curvature, and Pierre
Duhem discussed the possible general significance of this in
1908. In the 1800s there had been work on nonlinear
oscillators—particularly in connection with models of
musical instruments—and in 1927 Balthazar van der Pol
noted occasional “noisy” behavior in a vacuum tube
oscillator circuit presumably governed by a simple
nonlinear differential equation. By the 1930s the field of
dynamical systems theory had begun to provide
characterizations of possible forms of behavior in
differential equations. And in the early 1940s Mary
Cartwright and John Littlewood noted that van der Pol’s
equation could exhibit solutions somehow sensitive to all
digits in its initial conditions. The iterated map 
was also known to have a similar property (see page 918).
But most investigations centered on simple and usually
repetitive behavior—with any strange behavior implicitly
assumed to be infinitely unlikely. In 1962, however, Edward
Lorenz did a computer simulation of a set of simplified
differential equations for fluid convection (see page 998) in
which he saw complicated behavior that seemed to depend
sensitively on initial conditions—in a way that he suggested
was like the map . In the mid-1960s,
notably through the work of Steve Smale, proofs were given
that there could be differential equations in which such
sensitivity is generic. In the late 1960s there began to be all
sorts of simulations of differential equations with
complicated behavior, first mainly on analog computers,
and later on digital computers. Then in the mid-1970s,
particularly following discussion by Robert May, studies of
iterated maps with sensitive dependence on initial
conditions became common. Work by Robert Shaw in the
late 1970s clarified connections between information content
of initial conditions and apparent randomness of behavior.
The term “chaos” had been used since antiquity to describe
various forms of randomness, but in the late 1970s it became
specifically tied to the phenomenon of sensitive dependence
on initial conditions. By the early 1980s at least indirect
signs of chaos in this sense (see note below) had been seen
in all sorts of mechanical, electrical, fluid and other systems,
and there emerged a widespread conviction that such chaos
must be the source of all important randomness in nature.
So in 1985 when I raised the possibility that intrinsic
randomness might instead be a key phenomenon this was
greeted with much hostility by some younger proponents of
chaos theory. Insofar as what they had to say was of a
scientific nature, their main point was that somehow what I

v /a
x = v t - a t2 /2 Mod[x, 2p r]

1/�!!!!2
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had seen in cellular automata must be specific to discrete
systems, and would not occur in the continuous systems
assumed to be relevant in nature. But from many results in
this book it is now clear that this is not correct. (Note that
James Gleick’s 1987 popular book Chaos covers somewhat
more than is usually considered chaos theory—including
some of my results on cellular automata from the early
1980s.) 

â Information content of initial conditions. See page 920.

â Recognizing chaos. Any system that depends sensitively on
digits in its initial conditions must necessarily be able to
show behavior that is not purely repetitive (compare page
955). And when it is said that chaos has been found in a
particular system in nature what this most often actually
means is just that behavior with no specific repetition
frequency has been seen (compare page 586). To give
evidence that this is not merely a reflection of continual
injection of randomness from the environment what is
normally done is to show that at least some aspect of the
behavior of the system can be fit by a definite simple iterated
map or differential equation. But inevitably the fit will only
be approximate, so there will always be room for effects from
randomness in the environment. And in general this kind of
approach can never establish that sensitive dependence on
initial conditions is actually the dominant source of
randomness in a given system—say as opposed to intrinsic
randomness generation. (Attempts are sometimes made to
detect sensitive dependence directly by watching whether a
system can do different things after it appears to return to
almost exactly the same state. But the problem is that it is
hard to be sure that the system really is in the same state—
and that there are not all sorts of large differences that do not
happen to have been observed.) 

â Instability. Sensitive dependence on initial conditions is
associated with a kind of uniform instability in systems. But
vastly more common in practice is instability only at specific
critical points—say bifurcation points—combined with either
intrinsic randomness generation or randomness from the
environment. (Note that despite its widespread use in
discussions of chaos theory, this is also what usually seems to
happen with the weather; see page 1177.) 

â Page 313 · Three-body problem. The two-body problem was
analyzed by Johannes Kepler in 1609 and solved by Isaac
Newton in 1687. The three-body problem was a central topic
in mathematical physics from the mid-1700s until the early
1900s. Various exact results were obtained—notably the
existence of stable equilateral triangle configurations
corresponding to so-called Lagrange points. Many

approximate practical calculations, particularly on the Earth-
Moon-Sun system, were done using series expansions
involving thousands of algebraic terms. (It is now possible to
get most results just by direct numerical computation using
for example .) From its basic setup the three-body
system conserves standard mechanical quantities like energy
and angular momentum. But it was thought it might also
conserve other quantities (or so-called integrals of the
motion). In 1887, however, Heinrich Bruns showed that there
could be no such quantities expressible as algebraic functions
of the positions and velocities of the bodies (in standard
Cartesian coordinates). In the mid-1890s Henri Poincaré then
showed that there could also be no such quantities analytic in
positions, velocities and mass ratios. And from these results
the conclusion was drawn that the three-body problem could
not be solved in terms of algebraic formulas and integrals. In
1912 Karl Sundman did however find an infinite series that
could in principle be summed to give the solution—but
which converges exceptionally slowly. And even now it
remains conceivable that the three-body problem could be
solved in terms of more sophisticated standard mathematical
functions. But I strongly suspect that in fact nothing like this
will ever be possible and that instead the three-body problem
will turn out to show the phenomenon of computational
irreducibility discussed in Chapter 12 (and that for example
three-body systems are universal and in effect able to
perform any computation). (See also page 1132.)

In Henri Poincaré’s study of the collection of possible
trajectories for three-body systems he identified sensitive
dependence on initial conditions (see above), noted the
general complexity of what could happen (particularly in
connection with so-called homoclinic tangles), and
developed topology to provide a simpler overall description.
With appropriate initial conditions one can get various forms
of simple behavior. The pictures below show some of the
possible repetitive orbits of an idealized planet moving in the
plane of a pair of stars that are in a perfect elliptical orbit.

The pictures below show results for a fairly typical sequence
of initial conditions where all three bodies interact. (The two
bodies at the bottom are initially at rest; the body at the top is
given progressively larger rightward velocities.) What
generically happens is that one of the bodies escapes from the
other two (like  or sometimes ). Often this happens
quickly, but sometimes all three bodies show complex and

NDSolve
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apparently random behavior for quite a while. (The delay
before escaping is reminiscent of resonant scattering.)

â Page 314 · Simple case. The position of the idealized planet
in the case shown satisfies the differential equation

where  is the eccentricity of the elliptical orbit of the stars
(  in the picture). (Note that the physical situation is
unstable: if the planet is perturbed so that there is a
difference between its distance to each star, this will tend to
increase.) Except when , the equation has no solution in
terms of standard mathematical functions. It can be solved
numerically in Mathematica using , although a
working precision of 40 decimal digits was used to obtain
the results shown. Following work by Kirill Sitnikov in 1960
and by Vladimir Alekseev in 1968, it was established that
with suitably chosen initial conditions, the equation yields
any sequence  of successive zero-crossing
times . The pictures below show the dependence of 
on  and . As  increases,  typically begins to vary
more rapidly with —reflecting sensitive dependence on
initial conditions. 

â Page 314 · Randomness in the solar system. Most motion
observed in the solar system on human timescales is highly
regular—though sometimes intricate, as in the sequence of
numbers of days between successive new moons shown

below. In the mid-1980s, however, work by Jack Wisdom and
others established that randomness associated with sensitive
dependence on initial conditions could occur in certain
current situations in the solar system, notably in the orbits of
asteroids. Various calculations suggest that there should also
be sensitive dependence on initial conditions in the orbits of
planets in the solar system—with effects doubling every few
million years. But there are so far no observational signs of
randomness resulting from this, and indeed the planets—at
least now—mostly just seem to have orbits that are within a
few percent of circles. If a planet moved in too random a way
then it would tend to collide or escape from the solar system.
And indeed it seems quite likely that in the past there may
have been significantly more planets in our solar system—
with only those that maintained regular orbits now being left.
(See also page 1021.) 

The Intrinsic Generation of Randomness

â Autoplectic processes. In the 1985 paper where I introduced
intrinsic randomness generation I called processes that show
this autoplectic, while I called processes that transcribe
randomness from outside homoplectic.

â Page 316 · Algorithmic randomness. The idea of there being
no simple procedure that can generate a particular sequence
can be stated more precisely by saying that there is no
program shorter than the sequence itself which can be used
to generate the sequence, as discussed in more detail on
page 1067. 

â Page 317 · Randomness in Mathematica.  is
the function that sets up the initial conditions for the cellular
automaton. The idea of using this kind of system in general
and this system in particular as a source of randomness was
described in my 1987 U.S. patent number 4,691,291.

â Page 321 · Cellular automata. From the discussion here it
should not be thought that in general there is necessarily
anything better about generating randomness with cellular
automata than with systems based on numbers. But the point
is that the specific method used for making practical linear
congruential generators does not yield particularly good
randomness and has led to some incorrect intuition about the
generation of randomness. If one goes beyond the specifics of
linear congruential generators, then one can find many
features of systems based on numbers that seem to be
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perfectly random, as discussed in Chapter 4. In addition, one
should recognize that while the complete evolution of the
cellular automaton may effectively generate perfect
randomness, there may be deviations from randomness
introduced when one constructs a practical random number
generator with a limited number of cells. Nevertheless, no
such deviations have so far been found except when one
looks at sequences whose lengths are close to the repetition
period. (See however page 603.)

â Page 321 · Card shuffling. Another rather poor example of
intrinsic randomness generation is perfect card shuffling. In a
typical case, one splits the deck of cards in two, then carefully
riffles the cards so as to make alternate cards come from each
part of the deck. Surprisingly enough, this simple procedure,
which can be represented by the function

with or without the , is able to produce orderings
which at least in some respects seem quite random. But by
doing  one ends up with a simple
reversal of the original deck, as in the pictures below. 

â Random number generators. A fairly small number of
different types of random number generators have been used
in practice, so it is possible to describe all the major ones here. 

Linear congruential generators. The original suggestion made
by Derrick Lehmer in 1948 was to take a number  and at
each step to replace it by . Lehmer used 
and . Most subsequent implementations have
used , often with . Such choices are particularly
convenient on computers where machine integers are
represented by 32 binary digits. The behavior of the linear
congruential generator depends greatly on the exact choice
of . Starting with the so-called RANDU generator used on
mainframe computers in the 1960s, a common choice made
was . But as shown in the main text, this choice
leads to embarrassingly obvious regularities. Starting in the
mid-1970s, another common choice was . This was
also found to lead to regularities, but only in six or more
dimensions. (Small values of  also lead to an excess of runs
of identical digits, as mentioned on page 903.)

The repetition period for a generator with rule
 is given (for  and  relatively prime) by

. If  is of the form , this implies a

maximum period for any  of , achieved when
. In general the maximum period

is , where the value  can be
achieved for prime . 

As illustrated in the main text, when  the right-hand
base 2 digits in numbers produced by linear congruential
generators repeat with short periods; a digit  positions
from the right will typically repeat with period no more
than . When  is prime, however, even the
rightmost digit repeats only with period  for many
values of . 

More general linear congruential generators use the basic
rule , and in this case,  is no longer
special, and a repetition period of exactly  can be achieved
with appropriate choices of ,  and . Note that if the
period is equal to its absolute maximum of , then every
possible  is always visited, whatever  one starts from. Page
962 showed diagrams that represent the evolution for all
possible starting values of . 

Each point in the 2D plots in the main text has coordinates of
the form  where . If one
could ignore the , then the coordinates would simply be

, so the points would lie on a single straight line
with slope . But the presence of the  takes the points off
this line whenever . Nevertheless, if  is small, there
are long runs of  for which the  is never important.
And that is why in the case  the points in the plot fall on
obvious lines.

In the case , the points lie on planes in 3D. The
reason for this is that 

so that in computing  from  and  only small
coefficients are involved.

It is a general result related to finding short vectors in lattices
that for some  the quantity  can always be written in
terms of the  using only small coefficients. And
as a consequence, the points produced by any linear
congruential generator must lie on regular hyperplanes in
some number of dimensions.

(For cryptanalysis of linear congruential generators see page
1089.)

Linear feedback shift registers. Used since the 1950s,
particularly in special-purpose electronic devices, these
systems are effectively based on running additive cellular
automata such as rule 60 in registers with a limited number
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of cells and with a certain type of spiral boundary conditions.
In a typical case, each cell is updated using

with a step of cellular automaton evolution corresponding to
the result of updating all cells in the register. As with additive
cellular automata, the behavior obtained depends greatly on
the length  of the register. The maximal repetition period of

 can be achieved only if 
finds no factors. (For , this is true when , , , ,

, , , , , , , , , , , , ,  or .
Maximal period is assured when in addition .)
The pictures below show the evolution obtained for 
with

Like additive cellular automata as discussed on page 951,
states in a linear feedback shift register can be represented by
a polynomial . Starting from a single 1, the
state after  steps is then given by 

This result illustrates the analogy with linear congruential
generators. And if the distribution of points generated is
studied with the Cantor set geometry, the same kind of
problems occur as in the linear congruential case (compare
page 1094).

In general, linear feedback shift registers can have “taps” at
any list of positions on the register, so that their evolution is
given by

(With taps specified by the positions of 1’s in a vector of 0’s,
the inside of the  can be replaced by  as on page
1087.) For a register of size  the maximal period of  is
obtained whenever  is one of the

 primitive polynomials that appear in
. (See pages 963

and 1084.)

One can also consider nonlinear feedback shift registers, as
discussed on page 1088.

Generalized Fibonacci generators. It was suggested in the late
1950s that the Fibonacci sequence 

modulo  might be used with different choices of  and
 as a random number generator (see page 891). This

particular idea did not work well, but generalizations based
on the recurrence  have
been studied extensively, for example with , .
Such generators are directly related to linear feedback shift
registers, since with a list of length , each step is simply 

Cryptographic generators. As discussed on page 598, so-called
stream cipher cryptographic systems work essentially by
generating a repeatable random sequence. Practical stream
cipher systems can thus be used as random number
generators. Starting in the 1980s, the most common example
has been the Data Encryption Standard (DES) introduced by
the U.S. government (see page 1085). Unless special-purpose
hardware is used, however, this method has not usually been
efficient enough for practical random number generation
applications. 

Quadratic congruential generators. Several generalizations of
linear congruential generators have been considered in
which nonlinear functions of  are used at each step. In fact,
the first known generator for digital computers was John von
Neumann’s “middle square method”

In practice this generator has too short a repetition period to
be useful. But in the early 1980s studies of public key
cryptographic systems based on number theoretical
problems led to some reinvestigation of quadratic
congruential generators. The simplest example uses the rule

It was shown that for  with  and  prime the
sequence  was in a sense as difficult to predict as
the number  is to factor (see page 1090). But in practice,
the period of the generator in such cases is usually too short
to be useful. In addition, there has been the practical
problem that if  is stored on a computer as a 32-bit
number, then  can be 64 bits long, and so cannot be
stored in the same way. In general, the period divides

. When  is a
prime, this implies that the period can then be as long as

. The largest  less than  for which this is true
is 65063, and the sequence generated in this case appears to
be fairly random.

Cellular automaton generators. I invented the rule 30 cellular
automaton random number generator in 1985. Since that
time the generator has become quite widely used for a
variety of applications. Essentially all the other generators
discussed here have certain linearity properties which
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allow for fairly complete analysis using traditional
mathematical methods. Rule 30 has no such properties.
Empirical studies, however, suggest that the repetition
period, for example, is about , where  is the number
of cells (see page 260). Note that rule 45 can be used as an
alternative to rule 30. It has a somewhat longer period, but
does not mix up nearby initial conditions as quickly as rule
30. (See also page 603.)

â Unequal probabilities. Given a sequence  of  equally
probable 0’s and 1’s, the following generates a single 0 or 1
with probabilities approximating  to  digits:

This can be generalized to allow a whole sequence to be
generated with as little as an average of two input digits
being used for each output digit. 

â Page 323 · Sources of repeatable randomness. In using
repeatability to test for intrinsic randomness generation, one
must avoid systems in which there is essentially some kind of
static randomness in the environment. Sources of this include
the profile of a rough solid surface, or the detailed patterns of
grains inside a solid. 

â Page 324 · Probabilistic rules. There appears to be a discrete
transition as a function of the size of the perturbations,
similar to phase transitions seen in the phenomenon of
directed percolation. Note that if one just uses the original
cellular automata rules, then with any nonzero probability of
reversing the colors of cells, the patterns will be essentially
destroyed. With more complicated cellular automaton rules,
one can get behavior closer to the continuous cellular
automata shown here. (See also page 591.)

â Page 325 · Noisy cellular automata. In correspondence with
electronics, the continuous cellular automata used here can
be thought of as analog models for digital cellular automata.
The specific form of the continuous generalization of the
modulo 2 function used is

Each cell in the system is then updated according to 
for rule 90, and  for rule 30. Perturbations of
size  are then added using .

Note that the basic approach used here can be extended to
allow discrete cellular automata to be approximated by
partial differential equations where not only color but also
space and time are continuous. (Compare page 464.)

â Page 326 · Repeatably random experiments. Over the years, I
have asked many experimental scientists about repeatability
in seemingly random data, and in almost all cases they have
told me that they have never looked for such a thing. But in a

few cases they say that in fact on thinking about it they
remember various forms of repeatability.

Examples where I have seen evidence of repeatable
randomness as a function of time in published experimental
data include temperature differences in thermal convection
in closed cells of liquid helium, reaction rates in oxidation of
carbon monoxide on catalytic surfaces, and output voltages
from firings of excited single nerve cells. Typically there are
quite long periods of time where the behavior is rather
accurately repeatable—even though it may wiggle tens or
hundreds in a seemingly random way—interspersed with
jumps of some kind. In most cases the only credible models
seem to be ones based on intrinsic randomness generation.
But insofar as there is any definite model, it is inevitable that
looking in sufficient detail at sufficiently many components
of the system will reveal regularities associated with the
underlying mechanism.

The Phenomenon of Continuity

â Discreteness in computer programs. The reason for
discreteness in computer programs is that the only real way
we know how to construct such programs is using discrete
logical structures. The data that is manipulated by programs
can be continuous, as can the elements of their rules. But at
some level one always gives discrete symbolic descriptions of
the logical structure of programs. And it is then certainly
more consistent to make both data and programs involve
only discrete elements. In Chapter 12 I will argue that this
approach is not only convenient, but also necessary if we are
to represent our computations using processes that can
actually occur in nature.

â Central Limit Theorem. Averages of large collections of
random numbers tend to follow a Gaussian or normal
distribution in which the probability of getting value  is 

The mean  and standard deviation  are determined by
properties of the random numbers, but the form of the
distribution is always the same. The only conditions are
that the random numbers should be statistically
independent, and that their distribution should have
bounded variance, so that, for example, the probability for
very large numbers is rapidly damped. (The limit of an
infinite collection of numbers gives  in accordance
with the law of large numbers.) The pictures at the top of
the next page show how averages of successively larger
collections of uniformly distributed numbers converge to a
Gaussian distribution.
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The Central Limit Theorem leads to a self-similarity property
for the Gaussian distribution: if one takes  numbers that
follow Gaussian distributions, then their average should also
follow a Gaussian distribution, though with a standard
deviation that is  times smaller.

â History. That averages of random numbers follow bell-
shaped distributions was known in the late 1600s. The
formula for the Gaussian distribution was derived by
Abraham de Moivre around 1733 in connection with
theoretical studies of gambling. In the late 1700s Pierre-
Simon Laplace did this again to predict the distribution of
comet orbits, and showed that the same results would be
obtained for other underlying distributions. Carl Friedrich
Gauss made connections to the distribution of observational
errors, and the relevance of the Gaussian distribution to
biological and social systems was noted. Progressively more
general proofs of the Central Limit Theorem were given from
the early 1800s to the 1930s. Many natural systems were
found to exhibit Gaussian distributions—a typical example
being height distributions for humans. (Weight distributions
are however closer to lognormal; compare page 1003.) And
when statistical methods such as analysis of variance became
established in the early 1900s it became increasingly common
to assume underlying Gaussian distributions. (Gaussian
distributions were also found in statistical mechanics in the
late 1800s.)

â Related results. Gaussian distributions arise when large
numbers of random variables get added together. If instead
such variables (say probabilities) get multiplied together
what arises is the lognormal distribution

For a wide range of underlying distributions the extreme
values in large collections of random variables follow the
Fisher-Tippett distribution

related to the Weibull distribution used in reliability analysis.

For large symmetric matrices with random entries following
a distribution with mean 0 and bounded variance the density
of normalized eigenvalues tends to Wigner’s semicircle law

while the distribution of spacings between tends to

The distribution of largest eigenvalues can often be expressed
in terms of Painlevé functions.

(See also  noise on page 969.) 

â Page 328 · Random walks. In one dimension, a random walk
with  steps of length 1 starting at position 0 can be generated
from

or equivalently

A generalization to  dimensions is then

A fundamental property of random walks is that after  steps
the root mean square displacement from the starting position
is proportional to . In general, the probability distribution
for the displacement of a particle that executes a random
walk is 

The same results are obtained, with a different value of , for
other random microscopic rules, so long as the variance of
the distribution of step lengths is bounded (as in the Central
Limit Theorem).

As mentioned on page 1082, the frequency spectrum
 for a 1D random walk goes like . 

The character of random walks changes somewhat in different
numbers of dimensions. For example, in 1D and 2D, there is
probability 1 that a particle will eventually return to its starting
point. But in 3D, this probability (on a simple cubic lattice)
drops to about 0.341, and in  dimensions the probability falls
roughly like . After a large number of steps , the
number of distinct positions visited will be proportional to ,
at least above 2 dimensions (in 2D, it is proportional to

 and in 1D ). Note that the outer boundaries of
patterns like those on page 330 formed by  random walks
tend to become rougher when  is much larger than . 

To make a random walk on a lattice with  directions in two
dimensions, one can set up

then use 

It turns out that on any regular lattice, in any number of
dimensions, the average behavior of a random walk is
always isotropic. As discussed in the note below, this can be
viewed as a consequence of the fact that the probability
distribution in a random walk depends only on 

and not on products of more of the . 

There are nevertheless some properties of random walks that
are not isotropic. The picture below, for example, shows the
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so-called extreme value distribution of positions furthest
from the origin reached after 10 steps and 100 steps by
random walks on various lattices.

In the pictures in the main text, all particles start out at a
particular position, and progressively spread out from there.
But in general, one can consider sources that emit new
particles every step, or absorbers and reflectors of particles.
The average distribution of particles is given in general by
the diffusion equation shown on page 163. The solutions to
this equation are always smooth and continuous.

A physical example of an approximation to a random walk is
the spreading of ink on blotting paper. 

â Self-avoiding walks. Any walk where the probabilities for a
given step depend only on a fixed number of preceding steps
gives the same kind of limiting Gaussian distribution. But
imposing the constraint that a walk must always avoid
anywhere it has been before (as for example in an idealized
polymer molecule) leads to correlations over arbitrary times.
If one adds individual steps at random then in 2D one
typically gets stuck after perhaps a few tens of steps. But
tricks are known for generating long self-avoiding walks by
combining shorter walks or successively pivoting pieces
starting with a simple line. The pictures below show some
1000-step examples. They look in many ways similar to
ordinary random walks, but their limiting distribution is no
longer strictly Gaussian, and their root mean square
displacement after  steps varies like . (In 
dimensions the exponent is close to the Flory mean field
theory value ; for  the results are the same as
without self-avoidance.) 

â Page 331 · Basic aggregation model. This model appears to
have first been described by Murray Eden in 1961 as a way of
studying biological growth, and was simulated by him on a
computer for clusters up to about 32,000 cells. By the mid-
1980s clusters with a billion cells had been grown, and a very
surprising slight anisotropy had been observed. The pictures
below show which cells occur in more than 10% of 1000

randomly grown clusters. There is a 2% or so anisotropy that
appears to remain essentially fixed for clusters above perhaps
a million cells, tucking them in along the diagonal directions.
The width of the region of roughness on the surface of each
cluster varies with the radius of the cluster approximately
like . The most extensive use of the model in practice has
been for studying tumor growth: currently a typical tumor at
detection contains about a billion cells, and it is important to
predict what protrusions there will be that can break off and
form additional tumors elsewhere.

â Implementation. One way to represent a cluster is by giving
a list of the coordinates at which each black cell occurs. Then
starting with a single black cell at the origin, represented by

, the cluster can be grown for  steps as follows:

This implementation can easily be extended to any type of
lattice and any number of dimensions. Even with various
additional optimizations, it is remarkable how much slower
it is to grow a cluster with a model that requires external
random input than to generate similar patterns with models
such as cellular automata that intrinsically generate their
own randomness.

The implementation above is a so-called type B Eden model
in which one first selects a cell in the cluster, then randomly
selects one of its neighbors. One gets extremely similar
results with a type A Eden model in which one just randomly
selects a cell from all the ones adjacent to the cluster. With a
grid of cells set up in advance, each step in this type of Eden
model can be achieved with

This implementation can readily be extended to generalized
aggregation models (see below). 

â Page 332 · Generalized aggregation models. One can in
general have rules in which new cells can be added only at
positions whose neighborhoods match specific templates
(compare page 213). There are 32 possible symmetric such
rules with just 4 immediate neighbors—of which 16 lead to
growth (from any seed), and all seem to yield at least
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approximately circular clusters (of varying densities).
Without symmetry, all sorts of shapes can be obtained, as in
the pictures below. (The rule numbers here follow the scheme
on page 927 with offsets ). Note
that even though the underlying rule involves randomness
definite geometrical shapes can be produced. An extreme
case is rule 2, where only a single neighborhood with a single
black cell is allowed, so that growth occurs along a single
line.

If one puts conditions on where cells can be added one can in
principle get clusters where no further growth is possible.
This does not seem to happen for rules that involve 4
neighbors, but with 8 neighbors there are cases in which
clusters can get fairly large, but end up having no sites where
further cells can be added. The pictures below show
examples for a rule that allows growth except when there are
exactly 1, 3 or 4 neighbors (totalistic constraint 242). 

The question of what ultimate forms of behavior can occur
with any sequence of random choices, starting from a given
configuration with a given rule, is presumably in general
undecidable. (It has some immediate relations to tiling
problems and to halting problems for non-deterministic
Turing machines.) With the rule illustrated above, however,
those clusters that do successfully grow exhibit complicated
and irregular shapes, but nevertheless eventually seem to
take on a roughly circular shape, as in the pictures below.

At some level the basic aggregation model of page 331 has a
deterministic outcome: after sufficiently many steps every
cell will be black. But most generalized aggregation models
do not have this property: instead, the form of their internal
patterns depends on the sequence of random choices made.
Particularly with more than two colors it is however possible
to arrange that the internal pattern always ends up being the
same, or at least has patches that are the same—essentially by

using rules with the confluence property discussed on page
1036.

The pictures below show 1D generalized aggregation
systems with various templates. The second one is the analog
of the system from page 331.

â Page 333 · Diffusion-limited aggregation (DLA). While many
2D cellular automata produce intricate nested shapes, the
aggregation models shown here seem to tend to simple
limiting shapes. Most likely there are some generalized
aggregation models for which this is not the case. And
indeed this phenomenon has been seen in other systems with
randomness in their underlying rules. An example studied
extensively in the 1980s is diffusion-limited aggregation
(DLA). The idea of this model is to add cells to a cluster one
at a time, and to determine where a cell will be added by
seeing where a random walk that starts far from the cluster
first lands on a square adjacent to the cluster. An example of
the behavior obtained in this model is shown below:

The lack of smooth overall behavior in this case can perhaps
be attributed to the global probing of the cluster that is
effectively done by each incoming random walk. (See also
page 994.) 

â Page 334 · Code 746. Much as in the aggregation model
above, the pictures below show that there is a slight deviation
from perfect circular growth, with an anisotropy that appears
to remain roughly fixed at perhaps 4% above a few thousand
steps (corresponding to patterns with a few million cells).
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â Other rules. The pictures below show patterns generated
after 10,000 steps with several rules, starting respectively
from rows of 7, 6, 7 and 11 cells (compare pages 177 and 181).
The outer boundaries are somewhat smooth, though
definitely not circular. In the second rule shown, the interior
of the pattern always continues to change; in the others it
remains essentially fixed. 

â Isotropy. Any pattern grown from a single cell according to
rules that do not distinguish different directions on a lattice
must show the same symmetry as the lattice. But we have
seen that in fact many rules actually yield almost circular
patterns with much higher symmetry. One can characterize
the symmetry of a pattern by taking the list  of positions of
cells it contains, and looking at tensors of successive ranks :

For circular or spherical patterns that are perfectly isotropic
in  dimensions these tensors must all be proportional to

For odd  this is inevitably true for any lattice with mirror
symmetry. But for even  it can fail. For a square lattice, it
still nevertheless always holds up to  (so that the
analogs of moments of inertia satisfy ,

). And for a hexagonal lattice it holds up to
. But when  isotropy requires the  and

 tensor components to have ratio —while
square symmetry allows these components to have any
ratio. (In general there will be more than one component
unless the representation of the lattice symmetry group
carried by the rank  tensor is irreducible.) In 3D no regular
lattice forces isotropy beyond , while in 4D the SO(8)
lattice works up to , in 8D the E8 lattice up to , and
in 24D the Leech lattice up to . (Lattices that give
dense sphere packings tend to show more isotropy.) Note
that isotropy can also be characterized using analogs of
multipole moments, obtained in 2D by summing

, and in higher dimensions by summing
appropriate  or  functions.
For isotropy, only the  moment can be nonzero. On a
2D lattice with  directions, all moments are forced to be
zero except when  divides . (Sums of squares of
moments of given order in general provide rotationally

invariant measures of anisotropy—equal to pair correlations
weighted with  or  functions.) 

Even though it is not inevitable from lattice symmetry, one
might think that if there is some kind of effective randomness
in the underlying rules then sufficiently large patterns would
still often show some sort of average isotropy. And at least in
the case of ordinary random walks, they do, so that for
example, the ratio averaged over all possible walks of 
tensor components after  steps on a square lattice is

, converging to the isotropic value 3, and the
ratio of  components is . For the
aggregation model of page 331,  also decreases with ,
reaching 4 around , but now its asymptotic value is
around 3.07.

In continuous systems such as partial differential equations,
isotropy requires that coordinates in effect appear only in .
In most finite difference approximations, there is presumably
isotropy in the end, but the rates of convergence are almost
inevitably rather different in different directions relative to
the lattice.

â Page 336 · Domains. Some of the effective rules for
interfaces between black and white domains are easy to state.
Given a flat interface, the layer of cells immediately on either
side of this interface behaves like the rule 150 1D cellular
automaton. On an infinitely long interface, protrusions of
cells with one color into a domain of the opposite color get
progressively smaller, eventually leaving only a certain
pattern of cells in the layer immediately on one side of the
interface.  corners in an otherwise flat interface
effectively act like reflective boundary conditions for the
layer of cells on top of the interface.

The phenomenon of domains illustrated here is also found in
various 2D cellular automata with 4-neighbor rather than
8-neighbor rules. One example is totalistic code 52, which is a
direct analog in the 4-neighbor case of the rule illustrated
here. Other examples are outer totalistic codes 111, 293, 295
and 920. The domain boundaries in these cases, however, are
not as clear as for the 8-neighbor totalistic rule with code 976
that is shown here.

â Spinodal decomposition. The separation into progressively
larger black and white regions seen in the cellular automata
shown here is reminiscent of the phenomena that occur for
example in the separation of randomly mixed oil and water.
Various continuous models of such processes have been
proposed, notably the Cahn-Hilliard equation from 1958.
One feature often found is that the average radius of
“droplets” increases with time roughly like . 
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Origins of Discreteness

â Page 339 · 1D transitions. There are no examples of the
phenomenon shown here among the 256 rules with two
possible colors and depending only on nearest neighbors.
Among the 4,294,967,296 rules that depend on next-nearest
neighbors, there are a handful of examples, including rules
with numbers 4196304428, 4262364716, 4268278316 and
4266296876. The behavior obtained with the first of these
rules is shown below. An example that depends on three
neighbors on each side was discovered by Peter Gacs,
Georgii Kurdyumov and Leonid Levin in 1978, following
work on how reliable electronic circuits can be built from
unreliable components by Andrei Toom: 

The 4-color rule shown in the text is probably the clearest
example available in one dimension. It has rule number
294869764523995749814890097794812493824.

â Page 340 · 2D transitions. The simplest symmetrical rules
(such as 4-neighbor totalistic code 56) which make the new
color of a cell be the same as the majority of the cells in its
neighborhood do not exhibit the discrete transition
phenomenon, but instead lead to fixed regions of black and
white. The 4-neighbor rule with totalistic code 52 can be used
as an alternative to the second rule shown here. A
probabilistic version of the first rule shown here was
discussed by Andrei Toom in 1980.

â Phase transitions. The discrete transitions shown in cellular
automata in this section are examples of general phenomena
known in physics as phase transitions. A phase transition can
be defined as any discontinuous change that occurs in a
system with a large number of components when a
parameter associated with that system is varied. (Some
physicists might argue for a somewhat narrower definition
that allows only discontinuities in the so-called partition
function of equilibrium statistical mechanics, but for many of
the most interesting applications, the definition I use is the
appropriate one.) Standard examples of phase transitions

include boiling, melting, sublimation (solids such as dry ice
turning into gases), loss of magnetization when a
ferromagnet is heated, alignment of molecules in liquid
crystals above a certain electric field (the basis for liquid
crystal displays), and the onset of superconductivity and
superfluidity at low temperatures. 

It is conventional to distinguish two kinds of phase
transitions, often called first-order and higher-order. First-
order transitions occur when a system has two possible
states, such as liquid and gas, and as a parameter is varied,
which of these states is the stable one changes. Boiling and
melting are both examples of first-order transitions, as is the
phenomenon shown in the cellular automaton in the main
text. Note that one feature of first-order transitions is that as
soon as the transition is passed, the whole system always
switches completely from one state to the other.

Higher-order transitions are in a sense more gradual. On one
side of the transition, a system is typically completely
disordered. But when the transition is passed, the system
does not immediately become completely ordered. Instead,
its order increases gradually from zero as the parameter is
varied. Typically the presence of order is signalled by the
breaking of some kind of symmetry—say of rotational
symmetry by the spontaneous selection of a preferred
direction.

â The Ising model. The 2D Ising model is a prototypical
example of a system with a higher-order phase transition.
Introduced by Wilhelm Lenz in 1920 as an idealization of
ferromagnetic materials (and studied by Ernst Ising) it
involves a square array  of spins, each either up or down (+1
or -1), corresponding to two orientations for magnetic
moments of atoms. The magnetic energy of the system is
taken to be

so that each pair of adjacent spins contributes -1 when
they are parallel and +1 when they are not. The
overall magnetization of the system is given by

. 

In physical ferromagnetic materials what is observed is that
at high temperature, corresponding to high internal energy,
there is no overall magnetization. But when the temperature
goes below a critical value, spins tend to line up, and an
overall magnetization spontaneously develops. In the context
of the 2D Ising model this phenomenon is associated with the
fact that those configurations of a large array of spins that
have high total energy are overwhelmingly likely to have
near zero overall magnetization, while those that have low

{a1_, a2_, a3_, a4_, a5_, a6_, a7_} !
If[If[a4 2 1, a1 + a3 + a4, a4 + a5 + a7] > 2, 1, 0]

40% black 45% black 55% black 60% black

s

e[s_] := -1/2 Apply[Plus, s ListConvolve[
{{0, 1, 0}, {1, 0, 1}, {0, 1, 0}}, s, 2], {0, 1}]

m[s_] := Apply[Plus, s, {0, 1}]
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total energy are overwhelmingly likely to have nonzero
overall magnetization. For an  array  of spins there are a
total of  possible configurations. The pictures below show
the results of picking all configurations with a given energy

 (cyclic boundary conditions are assumed) and then
working out their distribution of magnetization values .
Even for small  the pictures demonstrate that for large 
the magnetization  is likely to be close to zero, but for
smaller  two branches approaching +1 and -1 appear. In
the limit  the distribution of magnetization values
becomes sharp, and a definite discontinuous phase transition
is observed.

Following the work of Lars Onsager around 1944, it turns out
that an exact solution in terms of traditional mathematical
functions can be found in this case. (This seems to be true
only in 2D, and not in 3D or higher.) Almost all spin
configurations with  (where here and below all
quantities are divided by the total number of spins, so that

 and ) yield  But for
smaller  one can show that

where  can be deduced from

This implies that just below the critical point  (which
corresponds to ) , where
here 1/8 is a so-called critical exponent. (Another analytical
result is that for  correlations between pairs of spins can
be expressed in terms of Painlevé functions.)

Despite its directness, the approach above of considering sets of
configurations with specific energies  is not how the Ising
model has usually been studied. Instead, what has normally
been done is to take the array of spins to be in thermal
equilibrium with a heat bath, so that, following standard
statistical mechanics, each possible spin configuration occurs
with probability , where  is inverse temperature.
It nevertheless turns out that in the limit  this so-called
canonical ensemble approach yields the same results for most
quantities as the microcanonical approach that I have used; 
simply appears as a parameter, as in the formulas above. 

About actual spin systems evolving in time the Ising model
itself does not make any statement. But whenever the
evolution is ergodic, so that all states of a given energy are
visited with equal frequency, the average behavior obtained

will at least eventually correspond to the average over all
states discussed above.

In Monte Carlo studies of the Ising model one normally tries
to sample states with appropriate probabilities by randomly
flipping spins according to a procedure that can be thought
of as emulating interaction with a heat bath. But in most
actual physical spin systems it seems unlikely that there will
be so much continual interaction with the environment. And
from my discussion of intrinsic randomness generation it
should come as no surprise that even a completely
deterministic rule for the evolution of spins can make the
system visit possible states in an effectively random way. 

Among the simplest possible types of rules all those that
conserve the energy  turn out to have behavior that is too
simple and regular. And indeed, of the 4096 symmetric 5-
neighbor rules, only identity and complement conserve .
Of the  general 5-neighbor rules 34 conserve —but all
have only very simple behavior. (Compositions of several
such rules can nevertheless yield complex behavior. Note
that as indicated on page 1022, 34 of the 256 elementary 1D
rules conserve the analog of .) Of the 262,144 9-neighbor
outer totalistic rules the only ones that conserve  are
identity and complement. But among all  9-neighbor
rules, there are undoubtedly examples that show effectively
random behavior. One marginally more complicated case
effectively involving 13 neighbors is 

where

is set up so that alternating checkerboards of cells are
updated on successive steps.

One can see a phase transition in this system by looking at
the dependence of behavior on conserved total energy .
If there are no correlations between spins, and a fraction  of
them are +1, then  and . And
since the evolution conserves  changing the initial value
of  allows one to sample different total energies. But since
the evolution does not conserve  the average of this after
many steps can be expected to be typical of all possible states
of given . 

The pictures at the top of the next page show the values of
 (densities of +1 cells) after 0, 10, 100 and 1000 steps for a

 system as a function of the initial values of 
and . Also shown is the result expected for an infinite
system at infinite time. (The slow approach to this limit can
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be viewed as being a consequence of smallness of finite size
scaling exponents in Ising-like systems.) 

The phase transition in the Ising model is associated with a
lack of smoothness in the dependence of the final  value on

 or the initial value  of  in limiting cases of the pictures
above. The transition occurs at , corresponding to

. The pictures show typical configurations
generated after 1000 steps from various initial densities, as
well as slices through their evolution. 

And what one sees at least roughly is that right around the
phase transition there are patches of black and white of all
sizes, forming an approximately nested random pattern. (See
also pages 989 and 1149.)

â General features of phase transitions. To reproduce the
Ising model, a cellular automaton must have several special
properties. In addition to conserving energy, its evolution
must be reversible in the sense discussed on page 435. And
with the constraint of reversibility, it turns out that it is
impossible to get a non-trivial phase transition in any 1D
system with the kind of short-range interactions that exist
in a cellular automaton. But in systems whose evolution is
not reversible, it is possible for phase transitions to occur in
1D, as the examples in the main text show. 

One point to notice is that the sharp change which
characterizes any phase transition can only be a true
discontinuity in the limit of an infinitely large system. In the
case of the system on page 339, for example, it is possible to
find special configurations with a finite total number of cells
which lead to behavior opposite to what one expects purely
on the basis of their initial density of black cells. When the
total number of cells increases, however, the fraction of such
configurations rapidly decreases, and in the infinite size
limit, there are no such configurations, and a truly
discontinuous transition occurs exactly at density 1/2.

The discrete nature of phase transitions was at one time often
explained as a consequence of changes in the symmetry of a
system. The idea is that symmetry is either present or absent,
and there is no continuous variation of level of symmetry
possible. Thus, for example, above the transition, the Ising
model treats up and down spins exactly the same. But below
the transition, it effectively makes a choice of one spin
direction or the other. Similarly, when a liquid freezes into a
crystalline solid, it effectively makes a choice about the
alignment of the crystal in space. But in boiling, as well as in
a number of model examples, there is no obvious change of
symmetry. And from studying phase transitions in cellular
automata, it does not seem that an interpretation in terms of
symmetry is particularly useful.

A common feature of phase transitions is that right at the
transition point, there is competition between both phases,
and some kind of nested structure is typically formed, as
discussed on page 273 and above. The overall form and
fractal dimension of this nested structure is typically
independent of small-scale features of the system, making it
fairly universal, and amenable to analysis using the
renormalization group approach (see page 955). 

â Percolation. A simple example of a phase transition studied
extensively since the 1950s involves taking a square lattice
and filling in at random a certain density of black cells. In the
limit of infinite size, there is a discrete transition at a density
of about 0.592746, with zero probability below the transition
to find a connected “percolating” cluster of black cells
spanning the lattice, and unit probability above. (For a
triangular lattice the critical density is exactly 1/2.) One can
also study directed percolation in which one takes account of
the connectivity of cells only in one direction on the lattice.
(Compare the probabilistic cellular automata on pages 325
and 591. Note that the evolution of such systems is also
analogous to the process of applying transfer matrices in
studies of spin systems like Ising models.)
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â Page 341 · Rate equations. In standard chemical kinetics one
assumes that molecules are uniformly distributed in space, so
that the rates for particular reactions are proportional to the
products of the densities of the molecules that react in them.
Conditions for equilibrium where rates balance thus tend to
be polynomial equations for densities—with discontinuous
jumps in solutions sometimes occurring as parameters are
changed. Analogous equations arise in probabilistic
approximations to systems like cellular automata, as on page
953. But here—as well as in fast chemical reactions—
correlations in spatial arrangements of elements tend to be
important, invalidating simple probabilistic approaches. (For
the cellular automaton on page 339 the simple condition for
equilibrium is , which correctly implies that 0,
1/2 and 1 are possible equilibrium densities.) 

â Discreteness in space. Many systems with continuous
underlying rules generate discrete cellular structures in
space. One common mechanism is for a wave of a definite
wavelength to form (see page 988), and then for some feature
of each cycle of this wave to be picked out, as in the picture
below. In Chladni figures of sand on vibrating plates and in
cloud streets in the atmosphere what happens is that material
collects at points of zero displacement. And when a stream of
water breaks up into discrete drops what happens is that
oscillation minima yield necks that break.

Superpositions of waves at different angles can lead to
various 2D cellular structures, as in the pictures below
(compare page 1078).

Various forms of focusing and accumulation can also lead to
discreteness in continuous systems. The first picture below
shows a caustic or catastrophe in which a continuous
distribution of light rays are focused by a circular reflector
onto a discrete line with a cusp. The second picture shows a
shock wave produced by an accumulation of circular waves
emanating from a moving object—as seen in wakes of ships,
sonic booms from supersonic aircraft, and Cerenkov light
from fast-moving charged particles.

The Problem of Satisfying Constraints

â Rules versus constraints. See page 940. 

â NP completeness. Finding 2D patterns that satisfy the
constraints in the previous section is in general a so-called
NP-complete problem. And this means that no known
algorithm can be expected to solve this problem exactly for a
size  array (say with given boundaries) in much less than 
steps (see page 1145). The same is true even if one allows a
small fraction of squares to violate the constraints. However,
the 1D version of the problem is not NP-complete, and in fact
there is a specific rather efficient algorithm described on page
954 for solving it. Nevertheless, the procedures discussed in
this section do not manage to make use of such specific
algorithms, and in fact typically show little difference
between problems that are and are not formally NP-
complete.

â Page 343 · Distribution. The distribution shown here rapidly
approaches a Gaussian. (Note that in a  array, there are 10
interior squares that are subject to the constraints, while in a

 array there are 65.) Very similar results seem to be
obtained for constraints in a wide range of discrete systems.

â Page 346 · Implementation. The number of squares violating
the constraint used here is given by

When applied to all possible patterns, this function yields a
distribution with Gaussian tails, but with a sharp point in the
middle. Successive steps in the iterative procedure used on
this page are given by

while those in the procedure on page 347 have  in place of
. The third curve shown on page 346 is obtained from

There is no single ordering that makes all states which can be
reached by changing a single square be adjacent. However,
the ordering defined by  from page 901 does do this
for one particular sequence of single square changes. The
resulting curve is very similar to what is already shown.

â Page 347 · Iterative improvement. The borders of the regions
of black and white in the picture shown here essentially
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follow random walks and annihilate in pairs so that their
number decreases with time like . In 2D the regions are
more complicated and there is no such simple behavior.
Indeed starting from a particular state it is for example not
clear whether it is ever possible to reach all other states.

â Gradient descent. A standard method for finding a
minimum in a smooth function  is to use 

If there are local minima, then which one is reached will
depend on the starting point . It will not necessarily be the
one closest to  because of potentially complicated
overshooting effects associated with the step size .
Newton’s method for finding zeros of  is related and is
given by

â Combinatorial optimization. The problem of coming as
close as possible to satisfying constraints in an arrangement
of black and white squares is a simple example of a
combinatorial optimization problem. In general, such
problems involve minimization of a quantity that is
determined by the arrangement of some set of discrete
elements. A typical example is finding a placement of
components in a 2D circuit so that the total length of wire
necessary to the connect these components is minimized
(related to the so-called travelling salesman problem). In
using iterative procedures to solve combinatorial
optimization problems, one issue is what kind of changes
should be made at each step. In the main text we
considered changing just one square at a time. But one can
also change larger numbers of squares, or, for example,
interchange whole blocks of squares. In general, the larger
the changes made, the faster one can potentially approach a
minimum, but the greater the chance is of overshooting. In
the main text, we assumed that at each step we should
always move closer to the minimum, or at least not get
further away. But in trying to get over the kind of bumps
shown in the third curve on page 346 it is sometimes better
also to allow some probability of moving away from the
minimum at a particular step. One approach is simulated
annealing, in which one starts with this probability being
large, and progressively decreases it. The notion is that at
the beginning, one wants to move easily over the coarse
features of a jagged curve, but then later home in on
details. If the curve has a nested form, which appears to be
the case in some combinatorial optimization problems, then
this scheme can be expected to be at least somewhat
effective. For the problems considered in the main text,
simulated annealing provides some improvement but not
much. 

â Biologically motivated schemes. The process of biological
evolution by natural selection can be thought of as an
iterative procedure for optimization. Usually, however, what
is being optimized is some aspect of the form or behavior of
an organism, which represents a very complicated constraint
on the underlying genetic material. (It is as if one is defining
constraints on the initial conditions for a cellular automaton
by looking at the pattern generated by the cellular automaton
after a long time.) But the strategies of biological evolution
can also be used in trying to satisfy simpler constraints. Two
of the most important strategies are maintaining a whole
population of individuals, not just the single best result so
far, and using sex to produce large-scale mixing. But once
again, while these strategies may in some cases lead to
greater efficiency, they do not usually lead to qualitative
differences. (See also page 1105.)

â History. Work on combinatorial optimization started in
earnest in the late 1950s, but by the time NP completeness
was discovered in 1971 (see page 1143) it had become clear
that finding exact solutions would be very difficult.
Approximate methods tended to be constructed for specific
problems. But in the early 1980s, simulated annealing was
suggested by Scott Kirkpatrick and others as one of the first
potentially general approaches. And starting in the mid-
1980s, extensive work was done on biologically motivated
so-called genetic algorithms, which had been advocated by
John Holland since the 1960s. Progress in combinatorial
optimization is however often difficult to recognize, because
there are almost no general results, and results that are
quoted are often sensitive to details of the problems studied
and the computer implementations used.

â Page 349 · 2D cellular automata. The rule numbers are
specified as on page 927. 

â Page 349 · Circle packings. Hexagonal packing of equal
circles has been known since early antiquity (e.g. the fourth
picture on page 43). It fills a fraction  of area—
which was proved maximal for periodic packings by Carl
Friedrich Gauss in 1831 and for any packing by Axel Thue in
1910 and László Fejes Tóth in 1940. Much has been done to
study densest packings of limited numbers of circles into
various shapes, as well as onto surfaces of spheres (as in golf
balls, pollen grains or radiolarians). Typically it has been
found that with enough circles, patches of hexagonal packing
always tend to form. (See page 987.)

For circles of unequal sizes rather little has been done. A
procedure analogous to the one on page 350 was
introduced by Charles Bennett in 1971 for 3D spheres
(relevant for binary alloys). The picture below shows the
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network of contacts between circles in the cases from page
350. Note that with the procedure used, each new circle
added must immediately touch two existing ones, though
subsequently it may get touched by varying numbers of
other circles.

The distribution of numbers of circles that touch a given
circle changes with the ratio of circle sizes, as in the picture
below. The total filling fraction seems to vary fairly smoothly
with this ratio, though I would not be surprised if some
small-scale jumps were present.

Note that even a single circle of different size in the center can
have a large-scale effect on the results of the procedure, as
illustrated in the pictures below.

Finding densest packings of  circles is in general like solving
quadratic programming problems with about  constraints.
But at least for many size ratios I suspect that the final result
will simply involve each kind of circle forming a separated
hexagonally-packed region. This will not happen, however,
for size ratios , since then the small circles
can fit into the interstices of an ordinary hexagonal pattern,
yielding a filling fraction . The
picture below shows what happens if one repeatedly inserts
circles to form a so-called Apollonian packing derived from
the problem studied by Apollonius of finding a circle that
touches three others. At step ,  circles are added for each
original circle, and the network of tangencies among circles is
exactly example (a) from page 509. Most of the circles added
at a given step are not the same size, however, making the
overall geometry not straightforwardly nested. (The total
numbers of different sizes of circles for the first few steps are

. At step 3, for example, the new
circles have radii  and . In
general, the radius of a circle inscribed between three
other touching circles that have radii , ,  is

.) In the limit of an
infinite number of steps the filling fraction tends to 1, while

the region left unfilled has a fractal dimension of about
1.3057.

To achieve filling fraction 1 requires arbitrarily small circles,
but there are many different arrangements of circles that will
work, some not even close to nested. When actual granular
materials are formed by crushing, there is probably some
tendency to generate smaller pieces by following essentially
substitution system rules, and the result may be a nested
distribution of sizes that allows an Apollonian-like packing.

Apollonian packings turn out to correspond to limit sets
invariant under groups of rational transformations in the
complex plane. Note that as on page 1007 packings can be
constructed in which the sizes of circles vary smoothly with
position according to a harmonic function. 

â Sphere packings. The 3D face-centered cubic (fcc) packing
shown in the main text has presumably been known since
antiquity, and has been used extensively for packing fruit,
cannon balls, etc. It fills space with a density ,
which Johannes Kepler suggested in 1609 might be the
maximum possible. This was proved for periodic packings
by Carl Friedrich Gauss in 1831, and for any packing by
Thomas Hales in 1998. (By offsetting successive layers
hexagonal close packing (hcp) can be obtained; this has the
same density as fcc, but has a trapezoid-rhombic
dodecahedron Voronoi diagram—see note below and page
929—rather than an ordinary rhombic dodecahedron.)

Random packings of spheres typically have densities around
0.64 (compared to 0.74 for fcc). Many of their large pores
appear to be associated with poor packing of tetrahedral
clusters of 4 spheres. (Note that individual such clusters—as
well as for example 13-sphere approximate icosahedra—
represent locally dense packings.)

It is common for shaking to cause granular materials (such as
coffee or sand grains) to settle and pack at least a few percent
better. Larger objects normally come to the top (as with
mixed nuts, popcorn or pebbles and sand), essentially
because the smaller ones more easily fall through interstices. 

â Higher dimensions. In no dimension above 3 is it known
for certain what configuration of spheres yields the densest
packing. Cases in which spheres are arranged on repetitive
lattices are related to error-correcting codes and groups. Up
to 8D, the densest packings of this type are known to be ones
obtained by successively adding layers individually
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optimized in each dimension. And in fact up to 26D (with the
exception of 11 through 13) all the densest packings known
so far are lattices that work like this. In 8D and 24D these
lattices are known to be ones in which each sphere touches
the maximal number of others (240 and 196560 respectively).
(In 8D the lattice also corresponds to the root vectors of the
Lie group E8; in 24D it is the Leech lattice derived from a
Golay code, and related to the Monster Group). In various
dimensions above 10 packings in which successive layers are
shifted give slightly higher densities than known lattices. In
all examples found so far the densest packings can always be
repetitive; most can also be highly symmetrical—though in
high dimensions random lattices often do not yield much
worse results.

â Discrete packings. The pictures below show a discrete
analog of circle packing in which one arranges as many
circles as possible with a given diameter on a grid. (The grid
is assumed to wrap around.)

The pictures show all the distinct maximal cases that exist for
a  grid, corresponding to possible circles with diameters

. Already some of these are difficult to find.
And in fact in general finding such packings is an NP-
complete problem: it is equivalent to the problem of finding
the maximum clique (completely connected set) in the graph
whose vertices are joined whenever they correspond to grid
points on which non-overlapping circles could be centered.

On large grids, optimal packings seem to approach rational
approximations to hexagonal packings. But what happens if
one generalizes to allow circles of different sizes is not clear.

â Voronoi diagrams. The Voronoi diagram for a set of points
shows the region around each point in which one is closer to
that point than to any other. (The edges of the regions are
thus like watersheds.) The pictures below show a few
examples. In 2D the regions in a Voronoi diagram are always
polygons, and in 3D polyhedra. If all the points lie on a
repetitive lattice each region will always be the same, and is
often known as a Wigner-Seitz cell or a Dirichlet domain. For
a simple cubic lattice the regions are cubes with 6 faces. For

an fcc lattice they are rhombic dodecahedra with 12 faces and
for a bcc lattice they are truncated octahedra (tetradecahedra)
with 14 faces. (Compare page 929.) 

Voronoi diagrams for irregularly distributed points have
found many applications. In 2D they are used in studies of
animal territories, retail store utilization and municipal
districting. In 3D they are used as simple models of foams,
grains in solids, assemblies of biological cells and self-
gravitating regions in primordial galaxy formation. Voronoi
diagrams are relevant whenever there is growth in all
directions at an identical speed from a collection of seed
points. (In high dimensions they also appear immediately in
studying error-correcting codes.)

Modern computational geometry has provided efficient
algorithms for constructing Voronoi diagrams, and has
allowed them to be used in mesh generation, point location,
cluster analysis, machining plans and many other
computational tasks.

â Discrete Voronoi diagrams. The ,  cellular
automaton 

is an example of a system that generates discrete 1D Voronoi
diagrams by having regions that grow from every initial
black cell, but stop whenever they meet, as shown below.

Analogous behavior can also be obtained in 2D, as shown for
a 2D cellular automaton in the pictures below.

â Brillouin zones. A region in an ordinary Voronoi diagram
shows where a given point is closest. One can also consider
higher-order Voronoi diagrams in which each region shows
where a given point is the th closest. The total area of each
region is the same for every , but some complexity in shape
is seen, though for large  they always in a sense

7 × 7
Sqrt[m2 + n2]
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approximate circles. 3D versions of such regions have been
encountered in studies of quantum mechanical properties of
crystals since the 1930s.

â Packing deformable objects. If one pushes together
identical deformable objects in 2D they tend to arrange
themselves in a regular hexagonal array—and this
configuration is known to minimize total boundary length.
In 3D the arrangement one gets is typically not very
regular—although as noted at various times since the 1600s
individual objects often have pentagonal faces suggestive of
dodecahedra. (The average number of faces for each object
depends on the details of the random process used to pack
them, but is typically around 14. Note that for a 3D Voronoi
diagram with randomly placed points, the average number
of faces for each region is .) It was
suggested by William Thomson (Kelvin) in 1887 that an
array of 14-faced tetradecahedra on a bcc lattice might yield
minimum total face area. But in 1993 Denis Weaire and
Robert Phelan discovered a layered repetitive arrangement
of 12- and 14-faced polyhedra (average 13.5) that yields
0.003 times less total area. It seems likely that there are
polyhedra which fill space in a less regular way and yield
still smaller total area. (Note that if the surfaces minimize
area like soap films they are slightly curved in all these
cases. See also pages 1007 and 1039.)

â Page 351 · Protein folding. When the molecular structure of
proteins was first studied in the 1950s it was assumed that
given their amino acid sequences pure minimization of
energy would determine their often elaborate overall shapes.
But by the 1990s it was fairly clear that in fact many details of
the actual processes by which proteins are assembled can
greatly affect their specific pattern of folding. (Examples
include effects of chaperone molecules and prions.) (See
pages 1003 and 1184.) 

Origins of Simple Behavior

â Previous approaches. Before the discoveries in this book,
nested and sometimes even repetitive behavior were quite
often considered complex, and it was assumed that elaborate
theories were necessary to explain them. Most of the theories
that have been proposed are ultimately equivalent to what I
discuss in this section, though they are usually presented in
vastly more complicated ways.

â Uniformity in frequency. As shown on page 587, a
completely random sequence of cells yields a spectrum that
is essentially uniform in frequency. Such uniformity in
frequency is implied by standard quantum theory to exist in

the idealized zero-point fluctuations of a free quantum
field—with direct consequences for such semiclassical
phenomena as the Casimir effect and Hawking radiation.
(See page 1062.)

â Repetition in numbers. A common source of repetition in
systems involving numbers is the almost trivial fact that in a
sequence of successive integers there is a repetitive pattern of
cases at which a particular divisor occurs. Other examples
include the repetitive structure of digits in rational numbers
(see page 138) and continued fraction terms in square roots
(see page 144). 

â Repetition in continuous systems. A standard approach to
partial differential equations (PDEs) used for more than a
century is so-called linear stability analysis, in which one
assumes that small fluctuations around some kind of basic
solution can be treated as a superposition of waves of the
form . And at least in a linear
approximation any given PDE then typically implies that 
is connected to the wavenumber  by a so-called dispersion
relation, which often has a simple algebraic form. For some 
this yields a value of  that is real—corresponding to an
ordinary wave that maintains the same amplitude. But for
some  one often finds that  has an imaginary part. The
most common case  yields exponential damping.
But particularly when the original PDE is nonlinear one often
finds that  for some range of —implying an
instability which causes modes with certain spatial
wavelengths to grow. The mode with the most negative

 will grow fastest, potentially leading to repetitive
behavior that shows a particular dominant spatial
wavelength. Repetitive patterns with this type of origin are
seen in a number of situations, especially in fluids (and
notably in connection with Kelvin-Helmholtz, Rayleigh-
Taylor and other well-studied instabilities). Examples are
ripples and swell on an ocean (compare page 1001), Bénard
convection cells, cloud streets and splash coronas. Note that
modes that grow exponentially inevitably soon become too
large for a linear approximation—and when this
approximation breaks down more complicated behavior with
no sign of simple repetitive patterns is often seen.

â Examples of nesting. Examples in which a single element
splits into others include branching in plants, particle
showers, genealogical trees, river deltas and crushing of
rocks. Examples in which elements merge include river
tributaries and some cracking phenomena.

â Page 358 · Nesting in numbers. Chapter 4 contains several
examples of systems based on numbers that exhibit nested
behavior. Ultimately these examples can usually be traced to
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nesting in the pattern of digits of successive integers, but
significant translation is often required. 

â Nested lists. One can think of structures that annihilate in
pairs as being like parentheses or other delimiters that come
in pairs, as in the picture below.

A string of balanced parentheses is analogous to a nested
Mathematica list such as . The Mathematica
expression tree for this list then has a structure analogous to
the nested pattern in the picture. 

The set of possible strings of balanced parentheses forms a
context-free language, as discussed on page 939. The number
of such strings containing  characters is the th Catalan
number  (as obtained from the
generating function ). The number of
strings of depth  (and thus taking  steps to annihilate
completely) is given by  where

Several types of structures are equivalent to strings of
balanced parentheses, as illustrated below.

â Phase transitions. Nesting in systems like rule 184 (see page
273) is closely related to the phenomenon of scaling studied
in phase transitions and critical phenomena since the 1960s.
As discussed on page 983 ordinary equilibrium statistical
mechanics effectively samples configurations of systems like
rule 184 after large numbers of steps of evolution. But the
point is that when the initial number of black and white cells
is exactly equal—corresponding to a phase transition point—
a typical configuration of rule 184 will contain domains with
a nested distribution of sizes. The properties of such
configurations can be studied by considering invariance
under rescalings of the kind discussed on page 955, in
analogy to renormalization group methods. A typical result
is that correlations between colors of different cells fall off
like a power of distance—with the specific power depending
only on general features of the nested patterns formed, and
not on most details of the system.

â Self-organized criticality. The fact that in traditional
statistical mechanics nesting had been encountered only at
the precise locations of phase transitions led in the 1980s to

the notion that despite its ubiquity in nature nesting must
somehow require fine tuning of parameters. Already in the
early 1980s, however, my studies on simple additive and
other cellular automata (see page 26) had for example made
it rather clear that this is not the case. But in the late 1980s it
became popular to think that in many systems nesting (as
well as the largely unrelated phenomenon of  noise) might
be the result of fine tuning of parameters achieved through
some automatic process of self-regulation. Computer
experiments on various cellular automata and related
systems were given as examples of how this might work. But
in most of these experiments mistakes and misinterpretations
were found, and in the end little of value was learned about
the origins of nesting (or  noise). Nevertheless, a number
of interesting systems did emerge, the best known being the
idealized sandpile model from the 1987 work of Per Bak,
Chao Tang and Kurt Wiesenfeld. This is a  2D cellular
automaton in which toppling of sand above a critical slope is
captured by updating an array of relative sand heights 
according to the rule

Starting from any initial condition, the rule eventually yields
a fixed configuration with all values less than 4, as in the
picture below. (With an  initial block of 4’s, stabilization
typically takes about  steps.). 

To model the pouring of sand into a pile one can consider a
series of cycles, in which at each cycle one first adds 4 to the
value of the center cell, then repeatedly applies the rule until a
new fixed configuration  is obtained.
(The more usual version of the model adds to a random cell.)
The picture below shows slices through the evolution at
several successive cycles. Avalanches of different sizes occur,
yielding activity that lasts for varying numbers of steps. 

The pictures at the top of the next page show some of the
final fixed configurations, together with the number of steps
needed to reach them. (The total value of  at cycle  is ;
the radius of the nonzero region is about .) The
behavior one sees is fairly complicated—a fact which in the
past resulted in much confusion and some bizarre claims, but
which in the light of the discoveries in this book no longer
seems surprising.
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Sum[c[{i, j}, d], {i, 0, m - 1}, { j , m - d, n - 1}]
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1/f

1/f

k = 8

s

SandStep[s_] := s + ListConvolve[
{{0, 1, 0}, {1, -4, 1}, {0, 1, 0}}, UnitStep[s - 4], 2, 0]

n6n
0.4 n2

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9 step 10

FixedPoint[SandStep, s]

cycle 50 cycle 51 cycle 52 cycle 53 cycle 54 cycle 55 cycle 56 cycle 57 cycle 58

s t 4 t
0.74�!!!t
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The system can be generalized to  dimensions as a 
cellular automaton with  final values. The total value of 
is always conserved. In 1D, the update rule is simply 

In this case the evolution obtained if one repeatedly adds to
the center cell (as in the first picture below) is always quite
simple. But as the pictures below illustrate, evolution from
typical initial conditions yields behavior that often looks a
little like rule 184. With a total initial  value of , the
number of steps before a fixed point is reached seems to
increase roughly like .

When , more complicated behavior is seen for evolution
from at least some initial conditions, as indicated above.

â Random walks. It is a consequence of the Central Limit
Theorem that the pattern of any random walk with steps of
bounded length (see page 977) must have a certain nested or

self-similar structure, in the sense that rescaled averages of
different numbers of steps will always yield patterns that
look qualitatively the same. As emphasized by Benoit
Mandelbrot in connection with a variety of systems in nature,
the same is also true for random walks whose step lengths
follow a power-law distribution, but are unbounded.
(Compare page 969.) 

â Structure of algorithms. The two most common overall
frameworks that have traditionally been used in algorithms
in computer science are iteration and recursion—and these
correspond quite directly to having operations performed
respectively in repetitive and nested ways. But while
iteration is generally viewed as being quite easy to
understand, until recently even recursion was usually
considered rather difficult. No doubt the methods of this
book will in the future lead to all sorts of algorithms based on
much more complex patterns of behavior. (See page 1142.)

â Origins of localized structures. Much as with other features
of behavior, one can identify several mechanisms that can
lead to localized structures. In 1D, localized structures
sometimes arise as defects in largely repetitive behavior, or
more generally as boundaries between states with different
properties—such as the different phases of the repetitive
background in rule 110. In higher dimensions a common
source—especially in systems that show some level of
continuity—are point, line or other topological defects (see
page 1045), of which vortices are a typical example. 

cycle 25 cycle 50 cycle 100 cycle 200
0

20

40

0 50 100 150 200

d k = 4 d
2 d s

SandStep[s_] :=
s + ListConvolve[{1, -2, 1}, UnitStep[s - 2], 2, 0]

s m

m2

d > 1
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NOTES FOR CHAPTER 8

Implications for Everyday Systems

Issues of Modelling

â Page 363 · Uncertainties of this chapter. In earlier chapters of
this book what I have said can mostly be said with absolute
certainty, since it is based on observations about the behavior
of purely abstract systems that I have explicitly constructed.
But in this chapter, I study actual systems that exist in nature,
and as a result, most of what I say cannot be said with any
absolute certainty, but instead must involve a significant
component of hypothesis. For I no longer control the basic
rules of the systems I am studying, and instead I must just try
to deduce these rules from observation—with the potential
that despite my best efforts my deductions could simply be
incorrect.

â Experiences of modelling. Over the course of the past 25
years I have constructed an immense number of models for a
wide range of scientific, technical and business purposes. But
while these models have often proved extremely useful in
practice, I have usually considered them intellectually quite
unsatisfactory. For being models, they are inevitably
incomplete, and it is never in any definitive sense possible to
establish their validity. 

â Page 363 · Notes on this chapter. Much of this book is
concerned with topics that have never been discussed in any
concrete form before, so that between the main text and these
notes I have been able to include a large fraction of
everything that is known about them. But in this chapter (as
well as some of the ones that follow) the systems I consider
have often had huge amounts written about them before,
making any kind of complete summary quite impossible.

â Material for this chapter. Like the rest of this book, this
chapter is strongly based on my personal work and
observations. For almost all of the systems discussed I have
personally collected extensive data and samples, often over
the course of many years, and sometimes in quite unlikely
and amusing circumstances. I have also tried to study the

existing scientific literature, and indeed in working on this
chapter I have looked at many thousands of papers and
books—even though the vast majority of them tend to ignore
overall issues, and instead concentrate on details of often
excruciating specificity. 

â Page 365 · Models versus experiments. In modern science it
is usually said that the ultimate test of any model is its
agreement with experiment. But this is often interpreted to
mean that if an experiment ever disagrees with a model, then
the model must be wrong. Particularly when the model is
simple and the experiment is complex, however, my personal
experience has been that it is quite common for it to be the
experiment, rather than the model, that is wrong. When I
started doing particle physics in the mid-1970s I assumed—
like most theoretical scientists—that the results of
experiments could somehow always be treated as rigid
constraints on models. But in 1977 I worked on constructing
the first model based on QCD for heavy particle production
in high-energy proton-proton collisions. The model predicted
a certain rate for the production of such particles. But an
experiment which failed to see any of these particles implied
that the rate must be much lower. And on the basis of this I
spent great effort trying to see what might be wrong with the
model—only to discover some time later that in fact the
methodology of the experiment was flawed and its results
were wrong. At first I thought that perhaps this was an
isolated incident. But soon I had seen many examples where
the stated results of physics experiments were incorrect,
either through straightforward mistakes or through subtly
prejudiced analysis. And outside of physics, I have tended to
find still less reliability in the results of complex experiments.

â Page 366 · Models versus reality. Questions about the
correspondence between models and reality have been much
debated in the philosophy of science for many centuries, and
were, for example, central to the disagreement between
Galileo and the church in the early 1600s. Many successful
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models are in practice first introduced as convenient
calculational devices, but later turn out to have a direct
correspondence to reality. Two examples are planets orbiting
the Sun, and quarks being constituents of particles. It remains
to be seen whether such models as the imaginary time
statistical mechanics formalism for quantum mechanics (see
page 1061) turn out to have any direct correspondence to
reality. 

â History of modelling. Creation myths can in a sense be
viewed as primitive models. Early examples of models with
more extensive structure included epicycles. Traditional
mathematical models of the modern type originated in the
1600s. The success of such models in physics led to attempts
to imitate them in other fields, but for the most part these did
not succeed. The idea of modelling intricate patterns using
programs arose to some extent in the study of fractals in the
late 1970s. And the notion of models based on simple
programs such as cellular automata was central to my work
in the early 1980s. But despite quite a number of fairly well-
known successes, there is even now surprisingly little
understanding among most scientists of the idea of models
based on simple programs. Work in computer graphics—
with its emphasis on producing pictures that look right—has
made some contributions. And it seems likely that the
possibility of computerized and especially image-based data
taking will contribute further. (See also page 860.)

â Page 367 · Finding models. Even though a model may have
a simple form, it may not be at all easy to find. Indeed, many
of the models in this chapter took me a very long time to find.
By far my most common mistake was trying to build too
much into the basic structure of the model. Often I was sure
that some feature of the behavior of a system must be built
into the underlying model—yet I could see no simple way to
do it. But eventually what happened was that I tried a few
other very simple models, and to my great surprise one of
them ended up showing the behavior I wanted, even though
I had in no way explicitly built it in. 

â Page 369 · Consequences of models. Given a program it is
always possible to run the program to find out what it will
do. But as I discuss in Chapter 12, when the behavior is
complex it may take an irreducible amount of computational
work to answer any given question about it. However, this is
not a sign of imperfection in the model; it is merely a
fundamental feature of complex behavior.

â Universality in models. With traditional models based on
equations, it is usually assumed that there is a unique correct
version of any model. But in the previous chapter we saw
that it is possible for quite different programs to yield

essentially the same large-scale behavior, implying that with
programs there can be many models that have the same
consequences but different detailed underlying structure.

The Growth of Crystals

â Page 369 · Nucleation. In the absence of container walls or of
other objects that can act as seeds, liquids and gases can
typically be supercooled quite far below their freezing points.
It appears to be extremely unlikely for spontaneous
microscopic fluctuations to initiate crystal growth, and
natural snowflakes, for example, presumably nucleate
around dust or other particles in the air. Snowflakes in man-
made snow are typically nucleated by synthetic materials. In
this case and in experiments on cloud seeding it has been
observed that the details of seeds can affect the overall shapes
of crystals that grow from them. 

â Page 369 · Implementation. One can treat hexagonal lattices
as distorted square lattices, updated according to

where . On this page the rule
used is code 16382; on page 371 it is code 10926. The
centers of an array of regular hexagons are given by

. 

â Page 372 · Identical snowflakes. The widespread claim that
no two snowflakes are alike is not in practice true. It is
however the case that as a result of turbulent air currents a
collection of snowflakes that fall to the ground in a particular
region will often have come from very different regions of a
cloud, and therefore will have grown in different
environments. Note that the reason that the six arms of a
single snowflake usually look the same is that all of them
have grown in essentially the same environment. Deviations
are usually the result of collisions between falling
snowflakes.

â History of snowflake studies. Rough sketches of snowflakes
were published by Olaus Magnus of Uppsala around 1550.
Johannes Kepler made more detailed pictures and identified
hexagonal symmetry around 1611. Over the course of the
next few centuries, following work by René Descartes, Robert
Hooke and others, progressively more accurate pictures were
made and correlations between weather conditions and
snowflake forms were found. Thousands of photographs of
snowflakes were taken by Wilson Bentley over the period
1884–1931. Beginning in 1932 an extensive study of
snowflakes was made by Ukichiro Nakaya, who in 1936 also
produced the first artificial snowflakes. Most of the fairly

CAStep[rule_List, a_] := Map[rule014 - #1 &,
a + 2 ListConvolve[{{1, 1, 0}, {1, 0, 1}, {0, 1, 1}}, a, 2], {2}]

rule = IntegerDigits[code, 2, 14]

Table[{i �!!!!3 , j}, {i, 1, m}, { j , Mod[ i, 2], n, 2}]
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small amount of more recent work on snowflakes has been
done as part of more general studies on dendritic crystal
growth. Note that tree-like snowflakes are what make snow
fluffy, while simple hexagons make it denser and more
slippery. The proportion of different types of snowflakes is
important in understanding phenomena such as avalanches. 

â History of crystal growth. The vast majority of work done on
crystal growth has been concerned with practical methods
rather than with theoretical analyses. The first synthetic
gemstones were made in the mid-1800s, and methods for
making high-quality crystals of various materials have been
developed over the course of the past century. Since the mid-
1970s such crystals have been crucial to the semiconductor
industry. Systematic studies of the symmetries of crystals
with flat facets began in the 1700s, and the relationship to
internal structure was confirmed by X-ray crystallography in
the 1920s. The many different possible external forms of
crystals have been noted in mineralogy since Greek times,
but although classification schemes have been given, these
forms have apparently still not been studied in a particularly
systematic way.

â Models of crystal growth. There are two common types of
models for crystal growth: ones based on the physics of
individual atoms, and ones based on continuum descriptions
of large collections of atoms. In the former category, it was
recognized in the 1940s that a single atom is very unlikely to
stick to a completely flat surface, so growth will always tend
to occur at steps on a crystal surface, often associated with
screw dislocations in the crystal structure. In practice,
however, as scanning tunnelling microscopes have revealed,
most crystal surfaces that are not grown at an extremely slow
rate tend to be quite rough at an atomic scale—and so it
seems that for example the aggregation model from page 331
may be more appropriate. In snowflakes and other crystals
features such as the branches of tree-like structures are much
larger than atomic dimensions, so a continuum description
can potentially be used. It is possible to write down a
nonlinear partial differential equation for the motion of the
solidification front, taking into account basic thermodynamic
effects. The first result (discovered by William Mullins and
Robert Sekerka in 1963) is that if every part of the front is at
the same temperature, then any deviations from planarity in
the front will tend to grow. The shape of the front is
presumably stabilized by the Gibbs-Thomson effect, which
implies that the freezing temperature is lower when the front
is more curved. The characteristic length for deformations of
the front turns out to be the geometric mean of a microscopic
length associated with surface energy and a macroscopic
length associated with diffusion. It is this characteristic

length that presumably determines the size of an individual
cell in the cellular automaton model. 

Dendritic crystals are commonly seen in ice formations on
windows, and in pieces of aluminum of the kind found at
typical hardware stores. 

â Hopper crystals. When a pool of molten bismuth solidifies it
tends to form crystals like those in the first two pictures
below. What seems to give these crystals their characteristic
“hoppered” shapes is that there is more rapid growth at the
edges of each face than at the center. (Spirals are probably
associated with underlying screw dislocations.) Hoppering
has not been much studied for scientific purposes, but has
been noticed in many substances, including galena, rose
quartz, gold, calcite, salt and ice. 

â Page 373 · Other models. There are many ways to extend
the simple cellular automata shown here. One possibility is
to allow dependence on next-nearest as well as nearest
neighbors. In this case it turns out that non-convex as well
as convex faceted shapes can be obtained. Another
possibility is to allow cells that have become black to turn
white again. In this case all the various kinds of patterns
that we saw in Chapter 5 can occur. A general feature of
cellular automaton rules is that they are fundamentally
local. Some models of crystal growth, however, call for long-
range effects such as a temperature field which changes
throughout the crystal in an effectively instantaneous way. It
turns out, however, that many seemingly long-range effects
can actually be captured quite easily in cellular automata. In
a typical case, this can be done by introducing a third
possible color for each cell, and then having rapidly
changing arrangements of this color.

â Polycrystalline materials. When solids with complicated
forms are seen, it has usually been assumed that they must be
aggregates of many separate crystals, with each crystal
having a simple faceted shape. But the results given here
indicate that in fact individual crystals can yield highly
complex shapes. There will nevertheless be cases however
where multiple crystals are involved. These can be modelled
by having a cellular automaton in which one starts from
several separated seeds. Sometimes the regions associated
with different seeds may have different characteristics; the
boundaries between these regions then form a Voronoi
diagram (see page 1038). 

993
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â Quasicrystals. In some special materials it was discovered in
1984 that atoms are arranged not on a purely repetitive grid,
but instead in a pattern with the nested type of structure
discussed on page 932. A characteristic feature of such
patterns is that they can have approximate pentagonal or
icosahedral symmetry, which is impossible for purely
repetitive patterns. It has usually been assumed that the
arrangement of atoms in a quasicrystal is determined by
satisfying a constraint analogous to minimization of energy.
And as we saw on page 932 it is indeed possible to get nested
patterns by requiring that certain constraints be satisfied. But
another explanation for such patterns is that they are the
result of growth processes that are some kind of cross
between those on pages 373 and 659. 

â Amorphous materials. When solidification occurs fairly
slowly, atoms have time to arrange themselves in a regular
crystalline way. But if the cooling is sufficiently rapid,
amorphous solids such as glasses are often formed. And in
such cases, the packing of atoms is quite random—except
that locally there is often approximate icosahedral structure,
analogous to that discussed on page 943. (See also page 986.)

â Diffusion-limited aggregation (DLA). DLA is a model for a
variety of natural growth processes that was invented by
Thomas Witten and Leonard Sander in 1981, and which at
first seems quite different from a cellular automaton. The
basic idea of DLA is to build up a cluster of black cells by
starting with a single black cell and then successively
introducing new black cells far away that undergo random
walks and stick to the cluster as soon as they come into
contact with it. The patterns that are obtained by this
procedure turn out for reasons that are still not particularly
clear to have a random but on average nested form.
(Depending on precise details of the underlying model, very
large clusters may sometimes not have nested forms, at least
in 2D.) The basic reason that DLA patterns are not very dense
is that once arms have formed on the outside of the cluster,
they tend to catch new cells before these cells have had a
chance to go inside. It turns out that at a mathematical level
DLA can be reproduced by solving the Laplace equation at
each step with a constant boundary condition on the cluster,
and then using the result to give the probability for adding a
new cell at each point on the cluster. To construct a cellular
automaton analog of DLA one can introduce gray as well as
black and white cells, and then have the gray cells represent
pieces of solid that have not yet become permanently
attached to the main cluster. Rapid rearrangement of gray
cells on successive steps can then have a similar effect to the
random walks that occur in the usual DLA model. Whether a
pattern with all the properties expected in DLA is produced

seems to depend in some detail on the rules for the gray cells.
But so long as there is effective randomness in the successive
positions of these cells, and so long as the total number of
them is conserved, then it appears that DLA-like results are
usually obtained. No doubt there are also simpler cellular
automaton rules that yield similar results. (See also page 979.)

â Boiling. The boiling of a liquid such as water involves a
kind of growth inhibition that is in some ways analogous to
that seen in dendritic crystal growth. When a particular piece
of liquid boils—forming a bubble of gas—a certain latent
heat is consumed, reducing the local temperature, and
inhibiting further boiling. In the pictures below the liquid is
divided into cells, with each cell having a temperature
from 0 to 1, corresponding exactly to a continuous cellular
automaton of the kind discussed on page 155. At each step,
the temperature of every cell is given by the average of its
temperature and the temperatures of its neighbors,
representing the process of heat diffusion, with a constant
amount added to represent external heating. If the
temperature of any cell exceeds 1, then only the fractional
part is kept, as in the systems on page 158, representing the
consumption of latent heat in the boiling process. The
pictures below illustrate the kind of seemingly random
pattern of bubble formation that can be heard in the noise
produced by boiling water. 

The Breaking of Materials

â Phenomenology of microscopic fracture. Different materials
show rather different characteristics depending on how
ductile or brittle they are. Ductile materials—such as taffy or
mild steel—bend and smoothly neck before breaking. Brittle
materials—such as chalk or glass—do not deform
significantly before catastrophic failure. Ductile materials in
effect flow slightly before breaking, and as a result their
fracture surfaces tend to be less jagged. In addition, in
response to stresses in the material, small voids often form—
perhaps nucleating around imperfections—yielding a pock-
marked surface. In brittle materials, the beginning of the
fracture surface typically looks quite mirror-like, then it starts
to look misty, and finally, often at a sharply defined point, it
begins to look complex and hackled. (This sequence is
qualitatively not unlike the initiation of randomness in
turbulent fluid flow and many other systems.) Cracks in

heating rate 0.05 heating rate 0.1
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brittle materials typically seem to start slowly, then accelerate
to about half the Rayleigh speed at which small deformation
waves on the surface would propagate. Brittle fracture
involves violent breaking of atomic bonds; it usually leaves a
jagged surface, and can lead to emission of both high-
frequency sound as well as light. Directly around a crack
complex patterns of stress are typically produced, though
away from the crack they resolve quickly to a fairly smooth
and simple form. It is known that ultrasound can affect the
course of cracks, suggesting that crack propagation is
affected by local stresses. There are many different detailed
geometries for fracture, associated with snapping, tearing,
shattering, pulling apart, and so on. In many situations,
individual cracks will split into multiple cracks as they
propagate, sometimes producing elaborate tree-like
structures. The statistical properties of fracture surfaces have
been studied fairly extensively. There is reasonable evidence
of self-similarity, typically associated with a fractal
dimension around 0.8 or slightly smaller.

â Models of microscopic fracture. Two kinds of models have
traditionally been studied: ones based on looking at arrays of
atoms, and ones based on continuum descriptions of
materials. At the atomic level, a simple model suggested
fairly recently is that atoms are connected by bonds with a
random distribution of strengths, and that cracks follow
paths that minimize the total strength of bonds to be broken.
It is not clear why in a crystal bonds should be of different
strengths, and there is some evidence that this model yields
incorrect predictions for the statistical properties of actual
cracks. A slightly better model, related to the one in the main
text, is that the bonds between atoms are identical, and act
like springs which break when they are stretched too far. In
recent years, computer simulations with millions of atoms
have been carried out—usually with realistic but complicated
interatomic force laws—and some randomness has been
observed, but its origins have not been isolated. A set of
nonlinear partial differential equations known as the Lamé
equations are commonly used as a continuum description of
elastic materials. Various instabilities have been found in
these equations, but the equations are based on small
deformations, and presumably cannot be relied upon to
provide information about fracture.

â History. Fracture has been a critical issue throughout the
history of engineering. Its scientific study was particularly
stimulated by failures of various types of ships and aircraft in
the 1940s and 1950s, and many quantitative empirical results
were obtained, so that by the 1960s ductile fracture as an
engineering issue became fairly well understood. In the
1980s, ideas about fractals suggested new interpretations of

fracture surfaces, and in the past few years, various models
of fracture based on ideas from statistical physics have been
tried. Atomic-level computer experiments on fracture began
in earnest in the late 1980s, but only very recently has it been
possible to include enough atoms to even begin addressing
questions about the structure of cracks. 

â Page 375 · Experimental data. To investigate the model in the
main text requires looking not only at the path of a crack, but
also at dislocations of atoms near it. To do this dynamically is
difficult, but in a perfect crystal final patterns of dislocations
that remain at the edge of a region affected by fracture can be
seen for example by electron diffraction. And it turns out that
these often look remarkably like patterns made by 1D class 3
cellular automata. (Similar patterns may perhaps also be seen
in recent detailed simulations of fracture processes in arrays
of idealized atoms.)

â Large-scale fractures. It is remarkable to what extent very
large-scale fractures can look like small-scale ones. If the
path of a crack were, say, a perfect random walk, then one
might imagine that large-scale cracks could simply be
combinations of many small-scale segments. But when one
looks at geological systems, for example, the smallest
relevant scales for the cracks one sees are certainly no
smaller than particles of soil. And as a result, one needs a
more general mechanism, not just one that just relates to
atoms and molecules.

â Alternate models. It is straightforward to set up 3-color
cellular automata with the same basic idea as in the main
text, but in which there is no need for a special cell to
represent the crack. In addition, instead of modelling the
displacement of atoms, one can try to model directly the
presence or absence of atoms at particular positions. And
then one can start from a repetitive array of cells, with a
perturbation to represent the beginning of the crack.

â Electric breakdown. Somewhat related to fracture is the
process of electric breakdown, visible for example in
lightning, Lichtenberg figures or plasma-filled glass globes
used as executive toys. At least in the case of lightning,
there is some evidence that small inhomogeneities in the
atmosphere can be important in producing at least some
aspects of the apparent randomness that is seen. (With
electric potential thought of like a diffusion field, models
based on diffusion-limited aggregation are sometimes
used.)

â Crushing. For a rather wide range of cases it appears that in
crushed solids such as rocks the probability of a particular
fragment having a diameter larger than  is given
approximately by . It seems likely that the origin of this is

r
r -2.5
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that each rock has a certain probability to break into, say, two
smaller rocks at each stage in the crushing process, much as
in a substitution system. 

â Effects of microscopic roughness. The two most obvious
features that are affected by the microscopic roughness of
materials are visual appearance and sliding friction. A
perfectly flat surface will reflect light like a mirror.
Roughness will lead to more diffuse reflection, although the
connection between observed properties of rough surfaces
and typical parametrizations used in computer graphics is
not clear.

The friction force that opposes sliding is usually assumed to
be proportional purely to the force with which surfaces are
pressed together. Presumably at least the beginning of the
explanation for this slightly bizarre fact is that most of the
friction force is associated with microscopic peaks in rough
surfaces, and that the number of these peaks that come into
close contact increases as surfaces are pushed together. 

â Crinkling. A question somewhat related to fracture
concerns the generation of definite creases in crumpled or
wrinkled objects such as pieces of paper or fabric. It is not too
difficult to make various statements about details of the
particular arrangements of creases that can occur, but
nothing seems to be known about the origin of the overall
randomness that is almost universally seen. 

Fluid Flow

â Page 376 · Reynolds numbers. If a system is to act like a
continuum fluid, then almost by definition its behavior can
involve only a limited number of macroscopic quantities,
such as density and velocity. And from this it follows that
patterns of flow should not depend separately on absolute
speeds and sizes. Instead, the character of a flow should
typically be determined by a single Reynolds number,

, where  is the characteristic speed of the flow
(measured say in ),  is a characteristic size (measured
say in ), and  is the kinematic viscosity of the fluid. For
water, , for air , and for glycerine ,
all in units of . In flow past a cylinder it is
conventional to take  to be the diameter of the cylinder. But
the fact that the form of flow should depend only on
Reynolds number means that in the pictures in the main text
for example it is not necessary to specify absolute sizes or
speeds: one need only know the product  that appears in
the Reynolds number. In practice, moving one’s finger slowly
through water gives a Reynolds number of about 100 (so that
a regular array of dimples corresponding to eddies are visible

behind one’s finger), walking in air about 10,000, a boat in the
millions, and a large airplane in the billions.

The Reynolds number roughly measures the ratio of inertial
to viscous effects. When the Reynolds number is small the
viscous damping dominates, and the flow is laminar and
smooth. When the Reynolds number is large, inertia
associated with fluid motions dominates, and the flow is
turbulent and complicated.

In different systems, the characteristic length used typically
in the definition of Reynolds number is different. In most
cases, however, the transition from laminar to turbulent flow
occurs at Reynolds numbers around a hundred. 

In some situations, however, Reynolds number alone does
not appear to be sufficient to determine when a flow will
become turbulent. Indeed, modern experiments on streams
of dye in water (or rising columns of smoke) typically show a
transition to turbulence at a significantly lower Reynolds
number than the original experiments on these systems done
by Osborne Reynolds in the 1880s. Presumably the reason for
this is that the transition point can be lowered by
perturbations from the environment, and such perturbations
are more common in the modern mechanized world. If
perturbations are indeed important, it implies that a
traditional fluid description is not adequate. I suspect,
however, that even though perturbations may determine the
precise point at which turbulence begins, intrinsic
randomness generation will dominate once turbulence has
been initiated.

â Navier-Stokes equations. The traditional model of fluids
used in physics is based on a set of partial differential
equations known as the Navier-Stokes equations. These
equations were originally derived in the 1840s on the basis of
conservation laws and first-order approximations. But if one
assumes sufficient randomness in microscopic molecular
processes they can also be derived from molecular dynamics,
as done in the early 1900s, as well as from cellular automata
of the kind shown on page 378, as I did in 1985 (see below).
For very low Reynolds numbers and simple geometries, it is
often possible to find explicit formulas for solutions to the
Navier-Stokes equations. But even in the regime of flow
where regular arrays of eddies are produced, analytical
methods have never yielded complete explicit solutions. In
this regime, however, numerical approximations are fairly
easy to find. Since about the 1960s computers have been
powerful enough to allow computations at least nominally to
be extended to considerably higher Reynolds numbers. And
indeed it has become increasingly common to see numerical
results given far into the turbulent regime—leading
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sometimes to the assumption that turbulence has somehow
been derived from the Navier-Stokes equations. But just what
such numerical results actually have to do with detailed
solutions to the Navier-Stokes equations is not clear. For in
particular it ends up being almost impossible to distinguish
whatever genuine instability and apparent randomness may
be implied by the Navier-Stokes equations from artifacts that
get introduced through the discretization procedure used in
solving the equations on a computer. One of the key
advantages of my cellular automaton approach to fluids is
precisely that it does not require any such approximations. 

At a mathematical level analysis of the Navier-Stokes has
never established the formal uniqueness and existence of
solutions. Indeed, there is even some evidence that
singularities might almost inevitably form, which would
imply a breakdown of the equations, and perhaps a need to
account for underlying molecular processes.

In turbulent flow at higher Reynolds numbers there begin to
be eddies with a wide range of sizes. And to capture all these
eddies in a computation eventually involves prohibitively
large amounts of information. In practice, therefore, semi-
empirical models of turbulence tend to be used—often “eddy
viscosities”—with no direct relation to the Navier-Stokes
equations. In airflow past an airplane there is however
typically only a one-inch layer on each surface where such
issues are important; the large-scale features of the remainder
of the flow, which nevertheless accounts for only about half
the drag on the airplane, can usually be studied without
reference to turbulence.

The Navier-Stokes equations assume that all speeds are small
compared to the speed of sound—and thus that the Mach
number giving the ratio of these speeds is much less than
one. In essentially all practical situations, Mach numbers
close to one occur only at extremely high Reynolds
numbers—where turbulence in any case would make it
impossible to work out the detailed consequences of the
Navier-Stokes equations. Nevertheless, in the case of cellular
automaton fluids, I was able in 1985 to work out the rather
complicated next order corrections to the Navier-Stokes
equations. 

Above the speed of sound, fluids form shocks where density
or velocity change over very small distances (see below).
And by Mach 4 or so, shocks are typically so sharp that
changes occur in less than the distance between molecular
collisions—making it essential to go beyond the continuum
fluid approximation, and account for molecular effects. 

â Models of turbulence. Traditional models typically view
turbulence as consisting of some form of cascade of eddies.

This notion was already suggested in pictures by Leonardo
da Vinci from around 1510, and in Japanese pictures (notably
by Katsushika Hokusai) from around 1800 showing ocean
waves breaking into precisely nested tongues of water. The
theoretical study of turbulence began in earnest in the early
1900s, with emphasis on issues such as energy transfer
among eddies and statistical correlations between velocities.
Most published work became increasingly mathematical, but
particularly following the ideas of Lewis Richardson in the
1920s, the underlying physical notion was that a large eddy,
formed say by fluid flowing around an object, would be
unstable, and would break up into smaller eddies, which in
turn would break up into still smaller eddies, until eventually
the eddies would be of such a size as to be readily damped by
viscosity. An important step was taken in 1941 by Andrei
Kolmogorov who argued that if the eddies in such a cascade
were in a statistical equilibrium, then dimensional analysis
would effectively imply that the spectrum of velocity
fluctuations associated with the eddies must have a 
distribution, with  being wavenumber. This result has
turned out to be in respectable agreement with a range of
experimental data, but its physical significance has remained
somewhat unclear. For there appear to be no explicit entities
in fluids that can be directly identified as cascades of eddies.
One possibility might be that an eddy could correspond to a
local patch of vorticity or rotation in the fluid. And it is a
general feature of fluids that interfaces between regions of
different velocity are unstable, typically first becoming wavy
and then breaking into separate pieces. But physical
experiments and simulations in the past few years have
suggested that vorticity in turbulent fluids in practice tends
to become concentrated on a complicated network of lines
that stretch and twist. Perhaps some interpretation can be
made involving eddies existing only in a fractal region, or
interacting with each other as well as branching. And
perhaps new forms of definite localized structures can be
identified. But no clear understanding has yet emerged, and
indeed most of the analysis that is done—which tends to be
largely statistical in nature—is not likely to shed much light
on the general question of why there is so much apparent
randomness in turbulence. 

â Chaos theory and turbulence. The full Navier-Stokes
equations for fluid flow are far from being amenable to
traditional mathematical analysis. But some simplified
ordinary differential equations which potentially
approximate various situations in fluid flow can be more
amenable to analysis—and can exhibit the chaos
phenomenon. Work in the 1950s by Lev Landau, Andrei
Kolmogorov and others focused on equations with periodic
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and quasiperiodic behavior. But in 1962 Edward Lorenz
discovered more complicated behavior in computer
experiments on equations related to fluid flow (see page 971).
Analysis of this behavior was closely linked to the chaos
phenomenon of sensitive dependence on initial conditions.
And by the late 1970s it had become popular to believe that
the randomness in fluid turbulence was somehow associated
with this phenomenon.

Experiments in very restricted situations showed
correspondence with iterated maps in which the chaos
phenomenon is seen. But the details of the connection with
true turbulence remained unclear. And as I argue in the main
text, the chaos phenomenon in the end seems quite unlikely
to explain most of the randomness we see in turbulence. The
basic problem is that a complex pattern of flow in effect
involves a huge amount of information—and to extract this
information purely from initial conditions would require for
example going to a submolecular level, far below where
traditional models of fluids could possibly apply.

Even within the context of the Lorenz equations there are
already indications of difficulties with the chaos explanation.
The Lorenz equations represent a first-order approximation
to certain Navier-Stokes-like equations, in which viscosity is
ignored. And when one goes to higher orders progressively
more account is taken of viscosity, but the chaos phenomenon
becomes progressively weaker. I suspect that in the limit
where viscosity is fully included most details of initial
conditions will simply be damped out, as physical intuition
suggests. Even within the Lorenz equations, however, one
can see evidence of intrinsic randomness generation, in
which randomness is produced without any need for
randomness in initial conditions. And as it turns out I suspect
that despite subsequent developments the original ideas of
Andrei Kolmogorov about complicated behavior in ordinary
differential equations were probably more in line with my
notion of intrinsic randomness generation than with the
chaos phenomenon. 

â Flows past objects. By far the most experimental data has
been collected for flows past cylinders. The few
comparisons that have been done indicate that most results
are extremely similar for plates and other non-streamlined
or “bluff” objects. For spheres at infinitesimal Reynolds
numbers a fairly simple exact analytical solution to the
Navier-Stokes equations was found by George Stokes in
1851, giving a drag coefficient of . For a cylinder, there
are difficulties with boundary conditions at infinity, but the
drag coefficient was nevertheless calculated by William
Oseen in 1915 to be .
At infinitesimal Reynolds number the flow around a

symmetrical object is always symmetrical. As the Reynolds
number increases, it becomes progressively more
asymmetrical, and at  for a cylinder, closed eddies
begin to appear behind the object. The length of the region
associated with these eddies is found to grow almost
perfectly linearly with Reynolds number. At  for a
cylinder, oscillations are often seen in the eddies, and at

, a vortex street forms. Increasingly accurate
numerical calculations based on direct approximations to
the Navier-Stokes equations have been done in the regime
of attached eddies since the 1930s. For a vortex street no
analytical solution has ever been found, and indeed it is
only recently that the general paths of fluid elements have
even been accurately deduced. A simple model due to
Theodore von Kármán from 1911 predicts a relative spacing
of  between vortices, and bifurcation theory
analyses have provided some justification for some such
result. Over the range  vortices are found to be
generated at a cylinder with almost perfect periodicity at a
dimensionless frequency (Strouhal number) that increases
smoothly from about 0.12 to 0.19. But even though
successive vortices are formed at fixed intervals,
irregularities can develop as the array of vortices goes
downstream, and such irregularities seem to occur at lower
Reynolds numbers for flows past plates than cylinders.
Some direct calculations of interactions between vortices
have been done in the context of the Navier-Stokes
equations, but the cellular automaton approach of page 378
seems to provide essentially the first reliable global results.
In both calculations and experiments, there is often
sensitivity to details of whatever boundary conditions are
imposed on the fluid, even if they are far from the object.
Results can also be affected by the history of the flow. In
general, the early way the flow develops over time typically
mirrors quite precisely the long-time behavior seen at
successively greater Reynolds numbers. In experiments, the
process of vortex generation at a cylinder first becomes
irregular somewhere between  and . After
this surprisingly few qualitative changes are seen even up to
Reynolds numbers as high as 100,000. There is overall
periodicity much like in a vortex street, but the detailed
motion of the fluid is increasingly random. Typically the
scale of the smallest eddies gets smaller in rough
correspondence with the  prediction of Kolmogorov’s
general arguments about turbulence. In flow past a cylinder,
there are various quite sudden changes in the periodicity,
apparently associated with 3D phenomena in which the
flow is not uniform along the axis of the cylinder. The drag
coefficient remains almost constant at a value around 1 until

, at which point it drops precipitously for a while.
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This phenomenon is associated with details of flow close to
the cylinder. At lower Reynolds numbers, the flow is still
laminar when it first comes around the cylinder; but there is
a transition to turbulence in this boundary layer after which
the fluid can in effect slide more easily around the cylinder.
When the speed of the flow passes the speed of sound in the
fluid, shocks appear. Usually they form simple geometrical
patterns (see below), and have the effect of forcing the
turbulent wake behind the cylinder to become narrower. 

â 2D fluids. The cellular automaton shown in the main text
is purely two-dimensional. Experiments done on soap films
since the 1980s indicate, however, that at least up to
Reynolds numbers of several hundred, the patterns of flow
around objects such as cylinders are almost identical to
those seen in ordinary 3D fluids. The basic argument for
Kolmogorov’s  result for the spectrum of turbulence is
independent of dimension, but there are reasons to believe
that in 2D eddies will tend to combine, so that after
sufficiently long times only a small number of large eddies
will be left. There is some evidence for this kind of process
in the Earth’s atmosphere, as well as in such phenomena as
the Red Spot on Jupiter. At a microscopic level, there are
some not completely unrelated issues in 2D about whether
perturbations in a fluid made up of discrete molecules
damp quickly enough to lead to ordinary viscosity.
Formally, there is evidence that the Navier-Stokes equations
in 2D might have a  viscosity term, rather than a

 one. But this effect, even if it is in fact present in
principle, is almost certainly irrelevant on the scales of
practical experiments.

â Cellular automaton fluids. A large number of technical
issues can be studied in connection with cellular automaton
fluids. Many were already discussed in my original 1985
paper. Others have been covered in some of the many papers
that have appeared since then. Of particular concern are
issues about how rotation and translation invariance emerge
at the level of fluid processes even though they are absent in
the underlying cellular automaton structure. The very
simplest rules turn out to have difficulties in these regards
(see page 1024), which is why the model shown in the main
text, for example, is on a hexagonal rather than a square grid
(compare page 980). The model can be viewed as a block
cellular automaton of the type discussed on page 460, but on
a 2D hexagonal grid. In general a block cellular automaton
works by making replacements for overlapping blocks of
cells on alternating steps. In the 1D case of page 460, the
blocks that are replaced consist of pairs of adjacent cells with
two different alignments. On a 2D square grid, one can use
overlapping  square blocks. But on a 2D hexagonal grid,

one must instead alternate on successive steps between
hexagons and their dual triangles. 

â Vorticity-based models. As an alternative to models of
fluids based on elements with discrete velocities, one can
consider using elements with discrete vorticities.

â History of cellular automaton fluids. Following the
development of the molecular model for gases in the late
1800s (see page 1019), early mathematical derivations of
continuum fluid behavior from underlying molecular
dynamics were already complete by the 1920s. More
streamlined approaches with the same basic assumptions
continued to be developed over the next several decades. In
the late 1950s Berni Alder and Thomas Wainwright began
to do computer simulations of idealized molecular
dynamics of 2D hard spheres—mainly to investigate
transitions between solids, liquids and gases. In 1967 they
observed so-called long-time tails not expected from
existing calculations, and although it was realized that these
were a consequence of fluid-like behavior not readily
accounted for in purely microscopic approximations, it did
not seem plausible that large-scale fluid phenomena could
be investigated with molecular dynamics. The idea of
setting up models with discrete approximations to the
velocities of molecules appears to have arisen first in the
work of James Broadwell in 1964 on the dynamics of
rarefied gases. In the 1960s there was also interest in so-
called lattice gases in which—by analogy with spin systems
like the Ising model—discrete particles were placed in all
possible configurations on a lattice subject to certain local
constraints, and average equilibrium properties were
computed. By the early 1970s more dynamic models were
sometimes being considered, and for example Yves Pomeau
and collaborators constructed idealized models of gases in
which both positions and velocities of molecules were
discrete. As it happens, in 1973, as one of my earliest
computer programs, I created a simulation of essentially the
same kind of system (see page 17). But it turned out that
this particular kind of system, set up as it was on a square
grid, was almost uniquely unable to generate the kind of
randomness that we have seen so often in this book, and
that is needed to obtain standard large-scale fluid behavior.
And as a result, essentially no further development on
discrete models of fluids was then done until after my work
on cellular automata in the early 1980s. I had always
viewed turbulent fluids as an important potential
application for cellular automata. And in 1984, as part of
work I was doing on massively parallel computing, I
resolved to develop a practical approach to fluid mechanics
based on cellular automata. I initiated discussions with
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various members of the fluid dynamics community, who
strongly discouraged me from pursuing my ideas. But I
persisted, and by the summer of 1985 I had managed to
produce pictures like those on page 378. Meanwhile,
however, some of the very same individuals who had
discouraged me had in fact themselves pursued exactly the
line of research I had discussed. And by late 1985, cellular
automaton fluids were generating considerable interest
throughout the fluid mechanics community. Many claims
were made that existing computational methods were
necessarily far superior. But in practice over the years since
1985, cellular automaton methods have grown steadily in
popularity, and are now widely used in physics and
engineering. Yet despite all the work that has been done,
the fundamental issues about the origins of turbulence that
I had originally planned to investigate in cellular
automaton fluids have remained largely untouched. 

â Computational fluid dynamics. From its inception in the
mid-1940s until the invention of cellular automaton fluids in
the 1980s, essentially all computational fluid dynamics
involved taking the continuum Navier-Stokes equations and
then approximating these equations using some form of
discrete mesh in space and time, and arguing that when the
mesh becomes small enough, correct results would be
obtained. Cellular automaton fluids start from a
fundamentally discrete system which can be simulated
precisely, and thus avoid the need for any such arguments.
One issue however is that in the simplest cellular automaton
fluids molecules are in effect counted in unary: each molecule
is traced separately, rather than just being included as part of
a total number that can be manipulated using standard
arithmetic operations. A variety of tricks, however, maintain
precision while in effect allowing a large number of
molecules to be handled at the same time.

â Sound waves and shocks. Sound waves in a fluid
correspond to periodic variations in density. The pictures
below show how a density perturbation leads to a sound
wave in a cellular automaton fluid. The sound wave turns
out to travel at a fraction  of the microscopic particle
speed.

When the speed of a fluid relative to an object becomes
comparable to the speed of sound, the fluid will inevitably

show variations in density. Typically shocks develop at the
front and back of an object, as illustrated below.

It turns out that when two shocks meet, they usually have
little effect on each other, and when there are boundaries,
shocks are usually reflected in simple ways. The result of this
is that in most situations patterns of shocks generated have a
fairly simple geometrical structure, with none of the
randomness of turbulence. 

â Splashes. Particularly familiar everyday examples of
complex fluid behavior are splashes made by objects falling
into water. When a water drop hits a water surface, at first a
symmetrical crater forms. But soon its rim becomes unstable,
and several peaks (often with small drops at the top) appear
in a characteristic coronet pattern. If the original drop was
moving quickly, a whole hemisphere of water then closes in
above. But in any case a peak appears at the center,
sometimes with a spherical drop at the top. If a solid object is
dropped into water, the overall structure of the splash made
can depend in great detail on its shape and surface
roughness. Splashes were studied using flash photography
by Arthur Worthington around 1900 (as well as Harold
Edgerton in the 1950s), but remarkably little theoretical
investigation of them has ever been made.

â Generalizations of fluid flow. In the simplest case the local
state of a fluid is characterized by its velocity and perhaps
density. But there are many situations where there are also
other quantities relevant, notably temperature and chemical
composition. And it turns out to be rather straightforward to
generalize cellular automaton fluids to handle these.

â Convection. When there is a temperature difference
between the top and bottom of a fluid, hot fluid tends to rise,
and cold fluid then comes down again. At low temperature
differences (characterized by a low dimensionless Rayleigh
number) a regular pattern of hexagonal Bénard convection
cells is formed (see page 377). But as the temperature
difference increases, a transition to turbulence is seen, with
most of the same characteristics as in flow past an object. A
cellular automaton model can be made by allowing particles
with more than one possible energy: the average particle
energy in a region corresponds to fluid temperature.
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â Atmospheric turbulence. Convection occurs because air near
the ground is warmer than air at higher altitudes. On a clear
night over flat terrain, air flow can be laminar near the
ground. Usually, however, it is turbulent near the ground—
producing, for example, random gusting in wind—but
becomes laminar at higher altitudes. Turbulent convection
nevertheless occurs in most clouds, leading to random
billowing shapes. The “turbulence” that causes bumps in
airplanes is often associated with clouds, though sometimes
with larger-scale wave-like fluid motions such as the jet
stream. 

â Ocean surfaces. At low wind speeds, regular ripples are
seen; at higher wind speeds, a random pattern of creases
occurs. It seems likely that randomness in the wind has little
to do with the behavior of the ocean surface; instead it is the
intrinsic dynamics of the water that is most important.

â Granular materials. Sand and other granular materials show
many phenomena seen in fluids. (Sand dunes are the rough
analog of ocean waves.) Vortices have recently been seen, and
presumably under appropriate conditions turbulence will
eventually also be seen.

â Geological structures. Typical landscapes on Earth are to a
first approximation formed by regions of crust being uplifted
through tectonic activity, then being sculpted by progressive
erosion (and redeposition of sediment) associated with the
flow of water. (Visually very different special cases include
volcanos, impact craters and wind-sculpted deserts.)
Eventually erosion and deposition will in effect completely
smooth out a landscape. But at intermediate times one will
see all sorts of potentially dramatic gullies that reflect the
pattern of drainage, and the formation of a whole tree of
streams and rivers. (Such trees have been studied since at
least the early 1900s, with typical examples of concepts being
Horton stream order, equal to  for trees given as
Mathematica expressions.) If one imagines a uniform slope
with discrete streams of water going randomly in each
direction at the top, and then merging whenever they meet,
one immediately gets a simple tree structure a little like in the
pictures at the top of page 359. (More complicated models
based for example on aggregation, percolation and energy
minimization have been proposed in recent years—and
perhaps because most random spanning trees are similar,
they tend to give similar results.) As emphasized by Benoit
Mandelbrot in the 1970s and 1980s, topography and contour
lines (notably coastlines) seem to show apparently random
structure on a wide range of scales—with definite power
laws being measured in quite a few cases. And presumably at
some level this is the result of the nested patterns in which
erosion occurs. (An unrelated effect is that as a result of the

dynamics of flow in it, even a single river on a featureless
landscape will typically tend to increase the curvature of its
meanders, until they break off and form oxbow lakes.) 

Fundamental Issues in Biology

â Page 383 · History. The origins of biological complexity have
been debated since antiquity. For a long time it was assumed
that the magnitude of the complexity was so great that it
could never have arisen from any ordinary natural process,
and therefore must have been inserted from outside through
some kind of divine plan. However, with the publication of
Charles Darwin’s Origin of Species in 1859 it became clear that
there were natural processes that could in fact shape features
of biological organisms. There was no specific argument for
why natural selection should lead to the development of
complexity, although Darwin appears to have believed that
this would emerge somewhat like a principle in physics. In
the century or so after the publication of Origin of Species
many detailed aspects of natural selection were elucidated,
but the increasing use of traditional mathematical methods
largely precluded serious analysis of complexity. Continuing
controversy about contradictions with religious accounts of
creation caused most scientists to be adamant in assuming
that every aspect of biological systems must be shaped
purely by natural selection. And by the 1980s natural
selection had become firmly enshrined as a force of
practically unbounded power, assumed—though without
specific evidence—to be capable of solving almost any
problem and producing almost any degree of complexity.

My own work on cellular automata in the early 1980s
showed that great complexity could be generated just from
simple programs, without any process like natural selection.
But although I and others believed that my results should be
relevant to biological systems there was still a pervasive
belief that the level of complexity seen in biology must
somehow be uniquely associated with natural selection. In
the late 1980s the study of artificial life caused several
detailed computer simulations of natural selection to be
done, and these simulations reproduced various known
features of biological evolution. But from looking at such
simulations, as well as from my own experiments done from
1980 onwards, I increasingly came to believe that almost any
complexity being generated had its origin in phenomena
similar to those I had seen in cellular automata—and had
essentially nothing to do with natural selection.

â Attitudes of biologists. Over the years, I have discussed
versions of the ideas in this section with many biologists of
different kinds. Most are quick to point out at least anecdotal

Depth



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

1002

cases in which features of organisms do not seem to have
been shaped by natural selection. But if asked about
complexity—either in specific examples or in general—the
vast majority soon end up trying to give explanations based
on natural selection. Those with a historical bent often
recognize that the origins of complexity have always been
somewhat mysterious in biology, and indeed sometimes state
that this has laid the field open to many attacks. But generally
my experience has been that the further one goes from those
involved with specific molecular or other details of biological
systems the more one encounters a fundamental conviction
that natural selection must be the ultimate origin of any
important feature of biological systems.

â Page 383 · Genetic programs. Genetic programs are
encoded as sequences of four possible nucleotide bases on
strands of DNA or RNA. The simplest known viruses have
programs that are a few thousand elements in length;
bacteria typically have programs that are a few million
elements; fruit flies a few hundred million; and humans
around four billion. There is not a uniform correspondence
between apparent sophistication of organisms and lengths
of genetic programs: different species of amphibians, for
example, have programs that can differ in length by a factor
of a hundred, and can be as many as tens of billions of
elements long. Genetic programs are normally broken into
sections, many of which are genes that provide templates
for making particular proteins. In humans, there are
perhaps around 40,000 genes, specifying proteins for about
200 distinct cell types. Many of the low-level details of how
proteins are produced is now known, but higher-level
issues about organization into different cell types remain
somewhat mysterious. Note that although most of the
information necessary to construct an organism is encoded
in its genetic program, other material in the original egg cell
or the environment before birth can probably also
sometimes be relevant.

â Page 386 · Tricks in evolution. Among the tricks used are:
sexual reproduction, causing large-scale mixing of similar
programs; organs, suborganisms, symbiosis and parasitism,
allowing different parts of programs to be optimized
separately; mutation rate enzymes, allowing parts that need
change to be searched more quickly; learnability in
individual organisms, allowing larger local deviations from
optimality to be tried.

â Page 387 · Belief in optimality. The notion that features of
biological organisms are always somehow optimized for a
particular purpose has become extremely deep seated—and
indeed it has been discussed since antiquity. Most modern
biologists at least pay lip service to historical accidents and

developmental constraints, but if pressed revert surprisingly
quickly to the notion of optimization for a purpose.

â Page 390 · Studying natural selection. From the basic
description of natural selection one might have thought that
it would correspond to a unique simple program. But in fact
there are always many somewhat arbitrary details,
particularly centering around exactly how to prune less fit
organisms. And the consequence of this is that in my
experience it is essentially impossible to come up with
precise definitive conclusions about natural selection on the
basis of specific simple computer experiments. Using the
Principle of Computational Equivalence discussed in
Chapter 12, however, I suspect that it will nevertheless be
possible to develop a general theory of what natural selection
typically can and cannot do.

â Page 391 · Other models. Sequential substitution systems
are probably more realistic than cellular automata as models
of genetic programs, since elements can explicitly be added
to their rules at will. As a rather different approach, one can
consider a fixed underlying rule—say a class 4 cellular
automaton—with modifications in initial conditions. The
notion of universality in Chapter 11 implies that under
suitable conditions this should be equivalent to modifications
in rules. As an alternative to modelling individual organisms,
one can also consider substitution systems which directly
generate genealogical trees for populations of organisms,
somewhat like Leonardo Fibonacci’s original model of a
rabbit population. 

â Page 391 · Adaptive value of complexity. One might think
that the reason complexity is not more widespread in biology
is that somehow it is too sensitive to perturbations. But in
fact, as discussed in Chapter 7, randomness and complexity
tend to lead to more, rather than less, robustness in overall
behavior. Indeed, many even seemingly simple biological
processes appear to be stabilized by randomness—leading,
for example, to random fluctuations in interbeat intervals for
healthy hearts. And some biological processes rely directly
on complex or random phenomena—for example, finding
good paths for foraging for food, avoiding predators or
mounting suitable immune responses. (Compare page 1192.)

â Page 393 · Genetic algorithms. As mentioned on page 985, it
is straightforward to apply natural selection to computer
programs, and for certain kinds of practical tasks with
appropriate continuity properties this may be a useful
approach. 

â Page 394 · Smooth variables. Despite their importance in
understanding natural selection both in biology and in
potential computational applications, the fundamental



I M P L I C A T I O N S  F O R  E V E R Y D A Y  S Y S T E M S N O T E S  F O R  C H A P T E R  8

1003

origins of smooth variables or so-called quantitative traits
seem to have been investigated rather little. Within
populations of organisms such traits are often found to have
Gaussian distributions (as, for example, in heights of
humans), but this gives little clue as to their origin. (Weights
of humans nevertheless have closer to a lognormal
distribution.) It is generally assumed that smooth variables
must be associated with so-called polygenes that effectively
include a large number of individual discrete genes. In pre-
Mendelian genetics, observations on smooth variables are
presumably what led to the theory that traits of offspring are
determined by smoothly mixing the blood of their parents.

â Page 395 · Species. One feature of biological organisms is
that they normally occur in discrete species, with distinct
differences between different species. It seems likely that the
existence of such discreteness is related to the discreteness of
underlying genetic programs. Currently there are a few
million species known. Most are distinguished just by their
habitats, visual appearance or various simple numerical
characteristics. Sometimes, however, it is known that
members of different species have the traditional defining
characteristic that they cannot normally mate, though this
may well be more a matter of the mechanics of mating and
development than a fundamental feature.

â Defining life. See pages 823 and 1178. 

â Page 397 · Analogies with thermodynamics. Over the past
century there have been a number of attempts to connect the
development of complexity in biological systems with the
increase of entropy in thermodynamic systems. In fact, when
it was first introduced the very term “entropy” was supposed
to suggest an analogy with biological evolution. But despite
this, no detailed correspondence between thermodynamics
and evolution has ever been forthcoming. However, my
statement here that complexity in biology can occur because
natural selection cannot control complex behavior is rather
similar to my statement in Chapter 9 that entropy can
increase because physical experiments in a sense also cannot
control complex behavior.

â Page 398 · Major new features. Traditional groupings of
living organisms into kingdoms and phyla are typically
defined by the presence of major new features. Standard
examples from higher animals include regulation of body
temperature and internal gestation of young. Important
examples from earlier in the history of life include nuclear
membranes, sexual reproduction, multicellularity, protective
shells and photosynthesis. 

Trilobites are a fairly clear example of organisms where over
the course of a few hundred million years the fossil record

shows increases in apparent morphological complexity,
followed by decreases. Something similar can be seen in the
historical evolution of technological systems such as cars.

â Software statistics. Empirical analysis of the million or so
lines of source code that make up Mathematica suggests that
different functions—which are roughly analogous to
different genes—rather accurately follow an exponential
distribution of sizes, with a slightly elevated tail.

â Proteins. At a molecular level much of any living cell is
made up of proteins formed from chains of tens to thousands
of amino acids. Of the thousands of proteins now known
some (like keratin and collagen) are fibrous, and have a
simple repetitive underlying structure. But many are
globular, and have at least a core in which the 3D packing of
amino acids seems quite random. Usually there are some
sections that consist of simple  helices,  sheets, or
combinations of these. But other parts—often including sites
important for function—seem more like random walks. At
some level the 3D shapes of proteins (tertiary structure) are
presumably determined by energy minimization. But in
practice very different shapes can probably have almost
identical energies, so that in as much as a given protein
always takes on the same shape this must be associated with
the dynamics of the process by which the protein folds when
it is assembled. (Compare page 988.) One might expect that
biological evolution would have had obvious effects on
proteins. But as mentioned on page 1184 the actual sequences
of amino acids in proteins typically appear quite random.
And at some level this is presumably why there seems to be
so much randomness in their shapes. (Biological evolution
may conceivably have selected for proteins that fold reliably
or are more robust with respect to changes in single amino
acids, but there is currently no clear evidence for this.) 

Growth of Plants and Animals

â History. The first steps towards a theory of biological form
were already taken in Greek times with attempts—notably
by Aristotle—to classify biological organisms and to
understand their growth. By the 1600s extensive
classification had been done, and many structural features
had been identified as in common between different
organisms. But despite hopes on the part of René Descartes,
Galileo and others that biological processes might follow the
same kind of rigid clockwork rules that were beginning to
emerge in physics, no general principles were forthcoming.
Rough analogies between the forms and functions of
biological and non-biological systems were fairly common
among both artists and scientists, but were rarely thought to

Α Β
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have much scientific significance. In the 1800s more detailed
analogies began to emerge, sometimes as offshoots of the
field of morphology named by Johann Goethe, and
sometimes with mathematical interpretations, and in 1917
D’Arcy Thompson published the first edition of his book On
Growth and Form which used mathematical methods—
mostly from analytical geometry—to discuss a variety of
biological processes, usually in analogy with ones in
physics. But emphasis on evolutionary rather than
mechanistic explanations for a long time caused little further
work to be done along these lines. Much additional data
was obtained, particularly in embryology, and by the 1930s
it seemed fairly clear that at least some aspects of growth in
the embryo were controlled by chemical messengers. In 1951
Alan Turing worked out a general mathematical model of
this based on reaction-diffusion equations, and suggested
that such a model might account for many pigmentation
and structural patterns in biological systems (see page 1012).
For nearly twenty years, however, no significant follow-up
was done on this idea. There were quite a few attempts—
often misguided in my opinion—to use traditional ideas
from physics and engineering to derive forms of biological
organisms from constraints of mechanical or other
optimality. And in the late 1960s, René Thom made an
important attempt to use sophisticated methods from
topology to develop a general theory of biological form. But
the mathematics of his work was inaccessible to most
natural scientists, and its popularized version, known as
catastrophe theory, largely fell into disrepute. 

The idea of comparing systems in biology and engineering
dates back to antiquity, but for a long time it was mainly
thought of just as an inspiration for engineering. In the
mid-1940s, however, mostly under the banner of
cybernetics, tools from the analysis of electrical systems
began to be used for studying biological systems. And
partly from this—with much reinforcement from the
discovery of the genetic code—there emerged the idea of
thinking about biological systems in purely abstract logical
or computational terms. This led to an early introduction of
2D cellular automata (see page 876), but the emphasis was
on ambitious general questions rather than specific models.
Little progress was made, and by the 1960s most work
along these lines had petered out. In the late 1970s,
however, fractals and L systems (see below) began to
provide examples where simple rules could be seen to
yield biological-like branching behavior. And in the 1980s,
interest in non-equilibrium physical processes, and in
phenomena such as diffusion-limited aggregation, led to
renewed interest in reaction-diffusion equations, and to

somewhat more explicit models for various biological
processes. My own work on cellular automata in the early
1980s started a number of new lines of computational
modelling, some of which became involved in the rise and
fall of the artificial life movement in the late 1980s and
early 1990s.

â Page 400 · Growth in plants. At the lowest level, the growth
of any organism proceeds by either division or expansion of
cells, together with occasional formation of cavities between
cells. In plants, cells typically expand—normally through
intake of water—only for a limited period, after which the
cellulose in their walls crystallizes to make them quite rigid.
In most plants—at least after the embryonic stage—cells
typically divide only in localized regions known as
meristems, and each division yields one cell that can divide
again, and one that cannot. Often the very tip of a stem
consists of a single cell in the shape of an inverted
tetrahedron, and in lower plants such as mosses this is
essentially the only cell that divides. In flowering plants,
cell division normally occurs around the edge of a region of
size 0.2–1 mm containing many tens of cells. (Hearts of
palm in palm trees can however be much larger.) The
details of how cell division works in plants remain largely
unknown. There is some evidence that orientation of new
cells is in part controlled by microscopic fibers. Various
small molecules that can diffuse between cells (such as so-
called auxins) are known to affect growth and production of
new stems (see below).

â Page 401 · Branching in plants. Almost all kinds of plants
exhibit some form of branching, and particularly in smaller
plants the branching is often extremely regular. In a plant as
large as a typical tree—particularly one that grows slowly—
different conditions associated with the growth of different
branches may however destroy some of the regularity of
branching. Among algae and more primitive plants such as
whisk ferns, repeated splitting of a single branch into two is
particularly common. Ferns and conifers both typically
exhibit three-way branching. Among flowering plants so-
called dicotyledons exhibit branching throughout the plant.
Monocotyledons—of which palms and grasses are two
examples—typically have only one primary site of growth,
and thus do not exhibit repeated branching. (In grasses the
growth site is at the bottom of the stem, and in bamboos there
are multiple growth sites up the stem.)

The forms of branching in plants have been used as means of
classification since antiquity. Alexander von Humboldt in
1808 identified 19 overall types of branching which have
been used, with some modifications, by plant geographers
and botanists ever since. Note that in the vast majority of
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cases, branches do not lie in a plane; often they are instead
arranged in a spiral, as discussed on page 408. But when
projected into two dimensions, the patterns obtained still
look similar to those in the main text. 

â Page 402 · Implementation. It is convenient to represent the
positions of all tips by complex numbers. One can take the
original stem to extend from the point -1 to 0; the rule is then
specified by the list  of complex numbers corresponding to
the positions of the new tip obtained after one step. And after

 steps the positions of all tips generated are given simply by 

â Mathematical properties. If an element  of the list  is real,
so that there is a stem that goes straight up, then the limiting
height of the center of the pattern is obtained by summing a
geometric series, and is given by . The overall
limiting pattern will be finite so long as  for all
elements of . After  steps the total length of all stems is
given by . (See page 1006 for other
properties.)

â Page 402 · Simple geometries. Page 357 shows how some of
the nested patterns commonly seen in this book can be
produced by the growth processes shown here. 

â History of branching models. The concept of systematic
rules for the way that stems—particularly those carrying
flowers—are connected in a plant seems to have been
clearly understood among botanists by the 1800s. Only with
the advent of computer graphics in the 1970s, however, does
the idea appear to have arisen of varying angles to get
different forms. An early example was the work of Hisao
Honda in 1970 on the structure of trees. Pictures analogous
to the bottom row on page 402 were also generated by
Benoit Mandelbrot in connection with his development of
fractals. Starting in 1967 Aristid Lindenmayer emphasized
the use of substitution or L systems (see page 893) as a way
of modelling patterns of connections in plants. And
beginning in the early 1980s—particularly through work by
Alvy Ray Smith and later Przemyslaw Prusinkiewicz—
models based on L systems and fractals became routinely
used for producing images of plants in practical computer
graphics. Around the same time Michael Barnsley also used
so-called iterated function systems to make pictures of
ferns—but he appears to have viewed these more as a
curiosity than a contribution to botany. Over the past decade
or so, a few mentions have been made of using complicated
models based on L systems to reproduce shapes of specific
types of leaves, but so far as I can tell, nothing like the
simple model that I describe in the main text has ever been
considered before.

â Page 404 · Leaf shapes. Leaves are usually put into
categories like the ones below, with names mostly derived
from Latin words for similar-looking objects.

Some classification of leaf shapes was done by Theophrastus
as early as 300 BC, and classifications similar to those above
were in use by the early Renaissance period. (They appear for
example in the first edition of the Encyclopedia Britannica from
1768.) Leaf shapes have been widely used since antiquity as a
way of identifying plants—initially particularly for medicinal
purposes. But there has been very little general scientific
investigation of leaf shapes, and most of what has been done
has concentrated on the expansion of leaves once they are out
of their buds. Already in 1724 Stephen Hales looked at the
motion of grids of marks on fig leaves, and noted that growth
seemed to occur more or less uniformly throughout the leaf.
Similar but increasingly quantitative studies have been made
ever since, and have reported a variety of non-uniformities in
growth. For a long time it was believed that after leaves came
out of their buds growth was due mainly to cell expansion,
but in the 1980s it became clear that many cell divisions in
fact occur, both on the boundary and the interior. At the
earliest stages, buds that will turn into leaves start as bumps
on a plant stem, with a structure that is essentially impossible
to discern. Surgically modifying such buds when they are as
small as 0.1 mm can have dramatic effects on final leaf shape,
suggesting that at least some aspects of the shape are already
determined at that point. On a single plant different leaves
can have somewhat different shapes—sometimes for
example those lower on a tree are smoother, while those
higher are pointier. It may nevertheless be that leaves on a
single plant initially have a discrete set of possible shapes,
with variations in final shape arising from differences in
environmental conditions during expansion. My model for
leaf shapes is presumably most relevant for initial shapes.

Traditional evolutionary explanations have not had much to
say about detailed questions of leaf shape; one minor claim is
that the pointed tips at the ends of many tropical leaves exist
to allow moisture to drip off the leaves. The fossil record
suggests that leaves first arose roughly 400 million years ago,
probably when collections of branches which lay in a plane
became joined by webbing. Early plants such as ferns have
compound leaves in which explicit branching structure is still
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seen. Extremely few models for shapes of individual leaves
appear to have ever been proposed. In 1917 D’Arcy
Thompson mentioned that leaves might have growth rates
that are simple functions of angle, and drew the first of the
pictures shown below.

With new tip positions as on page 400 given by
, rough  for at least some

versions of some common plants include: wild carrot (Queen
Anne’s lace) , cypress , coralbells

, ivy , grape , sycamore
, mallow , goosefoot ,

willow , morning glory , cucumber
, ginger . 

â Page 404 · Self-limiting growth. It is often said that in
plants, unlike animals, there is no global control of growth.
And one feature of the simple branching processes I
describe is that for purely mathematical reasons, their rules
always produce structures that are of limited size. Note that
in fact it is known that there is some global control of
growth even in plants: for example hormones produced by
leaves can affect growth of roots.

â Page 407 · Parameter space sets. Points in the space of
parameters can conveniently be labelled by a complex number

, where the imaginary direction is taken to increase to the right.
The pattern corresponding to each point is the limit of

 when .
Such a limiting pattern exists only within the unit circle

. It then turns out that the limiting pattern is either
completely connected or completely disconnected; which it is
depends on whether it contains any points on the vertical axis

. Every point in the pattern must correspond to some
list of left and right branchings, represented by 0’s and 1’s
respectively; in terms of this list the position of the point is given
by .
Patterns are disconnected if there is a gap between the parts
obtained from lists starting with 0 and with 1. The magnitude of
this gap turns out to be given by 

The picture below shows the region for which the gap is
positive, corresponding to trees which are not connected.
(This region was found by Michael Barnsley and others in

the late 1980s.) The overall maximum gap occurs at
. The bottom boundary of the region

lies along ; the extremal point on the edge of
the gap in this case corresponds to 
where the last two elements repeat forever. The rest of the
boundary consists of a sequence of algebraic curves, with
almost imperceptible changes in slope in between; the first
corresponds to , while subsequent
ones correspond to ,

, etc.

In the pictures in the main text, the black region is connected
wherever it does not protrude into the shaded region, which
corresponds to disconnected patterns, in the pictures above.
And in general it turns out that near any particular value of 
the sets shown in black in the main text always look at
sufficient magnification like the pattern that would be
obtained for that value of . The reason for this is that if 
changes only slightly, then the pattern to a first
approximation deforms only slightly, so that the part seen
through the peephole just shifts, and in a small region of 
values the peephole in effect simply scans over different parts
of the pattern. 

A simple way to approximate the pictures in the main text
would be to generate patterns by iterating the substitution
system a fixed number of times. In practice, however, it is
essential to prune the tree of points at each stage. And at least
for  not too close to 1, this can be done by discarding
points that are so far away from the peephole that their
descendents could not possibly return to it.

The parameter space sets discussed here are somewhat
analogous to the Mandelbrot set discussed on page 934,
though in many ways easier to understand. 

(See also the discussion of universal objects on page 1127.)

â Page 409 · Mathematics of phyllotaxis. A rotation by
 turns is equivalent to a rotation by

 turns, or .
Successive approximations to this number are given by

, so that elements numbered
 (i.e. 1, 2, 3, 5, 8, 13, …) will be the ones that come

closest to being a whole number of turns apart, and thus to
being lined up on the stem. As mentioned on page 891,
having  turns between elements makes them in a
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sense as evenly distributed as possible, given that they are
added sequentially.

â History of phyllotaxis. The regularities of phyllotaxis were
presumably noticed in antiquity, and were certainly
recognized in the 1400s, notably by Leonardo da Vinci. By the
1800s various mathematical features of phyllotaxis were
known, and in 1837 Louis and Auguste Bravais identified the
presence of a golden ratio angle. In 1868 Wilhelm Hofmeister
proposed that new elements form in the largest gap left by
previous elements. And in 1913 Johannes Schoute argued
that diffusion of a chemical creates fields of inhibition around
new elements—a model in outline equivalent to mine. In the
past century features of phyllotaxis have been rediscovered
surprisingly many times, with work being done quite
independently both in abstract mathematical settings, and in
the context of specific models (most of which are ultimately
very similar). One development in the 1990s is the generation
of phyllotaxis-like patterns in superconductors, ferrofluids
and other physical systems.

â Observed phyllotaxis. Many spiral patterns in actual plants
converge to within a degree or less of , though just as
in the model in the main text, there are usually deviations
for the first few elements produced. The angles are
particularly accurate in, for example, flower heads—where
it is likely the positions of elements are adjusted by
mechanical forces after they are originally generated. Other
examples of phyllotaxis-like patterns in biology include the
scales of pangolins and surfaces of tooth-like structures in
certain kinds of rays and sharks.

â Projections of patterns. The literature of phyllotaxis is full of
baroque descriptions of the features of projections of patterns
with golden ratio angles. In the pictures below, the th point
has position , and
in such pictures regular spirals or parastichies emanating
from the center are seen whenever points whose numbers
differ by  are joined. Note that the tips of many
growing stems seem to be approximately paraboloidal,
making the th point a distance  from the center.

â Page 410 · Implementation. It is convenient to consider a
line of discrete cells, much as in a continuous cellular
automaton. With a concentrations list , the position  of a
new element is given by ,
while the new list of concentrations is 
where  is a list of depletions associated with addition of a
new element at position 1. In the main text a Gaussian form
is used for . Other smooth functions typically nevertheless
yield identical results. Note that in order to get an accurate
approximation to a golden ratio angle there must be a fairly
large number of cells.

â Shapes of cells. Many types of cells are arranged like typical
3D packings of deformable objects (see page 988)—with
considerable apparent randomness in individual shapes and
positions, but definite overall statistical properties. Cells
arranged on a surface—as in the retina or in skin—or that are
intrinsically elongated—as in muscle—tend again to be
arranged like typical packings, but now in 2D, where a
regular hexagonal grid is formed. 

â Page 412 · Symmetries. Biological systems often show
definite discrete symmetry. (In monocotyledon plants there is
usually 3-fold symmetry; in dicotyledons 4- or 5-fold.
Animals like starfish often have 5-fold symmetry; higher
animals usually only 2-fold symmetry. There are fossils with
7- and 9-fold symmetry. At microscopic levels there are
sometimes other symmetries: cilia of eukaryotic cells can for
example show 9- and 13-fold symmetry. In the phyllotaxis
process discussed in the main text one new element is
produced at a time. But if several elements are produced
together the same basic mechanism will tend to make these
elements be equally spaced in angle—leading to overall
discrete symmetry. (Individual proteins sometimes also
arrange themselves into overall structures that have discrete
symmetries—which can then be reflected in shapes of cells or
larger objects.) (See also page 1011.)

â Page 412 · Locally isotropic growth. A convenient way to
see what happens if elements of a surface grow isotropically
is to divide the surface into a collection of very small
circles, and then to expand the circle at each point by a
factor . If the local curvature of the surface is
originally , then after such growth, the curvature
turns out to be 
where . In order for the surface to
stay flat its growth rate  must therefore solve
Laplace’s equation, and hence must be a harmonic function

. This is equivalent to saying that the growth
must correspond to a conformal mapping which locally
preserves angles. The pictures below show results for
several growth rate functions; in the last case, the function
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is not harmonic, and the surface cannot be drawn in the
plane without tearing. Note that if the elements of a surface
are allowed to change shape, then the surface can always
remain flat, as in the top row of pictures on page 412.
Harmonic growth rate functions can potentially be obtained
from the large-time effects of a chemical subject to diffusion.
And this may perhaps be related to the flatness observed in
the growth of leaves. (See also page 1010.) 

â Page 413 · Branching in animals. Capillaries, bronchioles
and kidney ducts in higher animals typically seem to form
trees in which each tip as it extends repeatedly splits into two
branches. (In human lungs, for example, there are about 20
levels of branching.) The same kind of structure is seen in the
digestive systems of lower animals—as visible externally, for
example, in the arms of a basket star. 

â Page 413 · Antlers. Like stems of plants antlers grow at
their tips, and can thus exhibit branching. This is made
possible by the fact that antlers, unlike horns, have a layer of
soft tissue on the outside—which delivers the nutrients
needed for growth to occur on the outer surface of the bone
at their tips.

â Page 414 · Shells. Shells grow through the secretion of rigid
material from the soft lip or mantle of the animal inside, and
over periods of months to years they form coiled structures
that normally follow rather accurate equiangular spirals,
typically right-handed. The number of turns or whorls varies
widely, from less than one in a typical bivalve, to more than
thirty in a highly pointed univalve such as a screw shell.
Usually the coiled structure is obvious from looking at the
apex on the outside of the shell, but in cowries, for example, it
is made less obvious by the fact that later whorls completely
cover earlier ones, and at the opening of the shell some
dissolving and resculpting of material occurs. In addition to
smooth coiled overall structures, some shells exhibit spines.
These are associated with tentacles of tissue which secrete shell
material at their tips as they grow. Inside shells such as
nautiluses, there are a sequence of sealed chambers, with septa
between them laid down perhaps once a month. These septa in
present-day species are smooth, but in fossil ammonites they
can be highly corrugated. Typically the corrugations are
accurately symmetrical, and I suspect that they in effect
represent slices through a lettuce-leaf-like structure formed
from a surface with tree-like internal growth.

â Shell model. The center of the opening of a shell is taken to
trace out a helix whose  coordinates are given as a
function of the total angle of revolution  by

. On row (a) of page 415 the parameter 
varies from 1.05 to 1.65, while on row (b)  varies from 0 to 6.
The complete surface of the shell is obtained by varying both
 and  in

where  varies from 0.4 to 1.6 on row (c),  from 1 to 4 on row
(d) and  from 0 to 1.2 on row (e). For many values of
parameters the surface defined by this formula intersects
itself. However, in an actual shell material can only be added
on the outside of what already exists, and this can be
represented by restricting  to run over only part of the range
-  to . The effect of this on internal structure can be seen in
the slice of the cone shell on row (b) of page 414. Most real
shells follow the model described here with remarkable
accuracy. There are, however, deviations in some species,
most often as a result of gradual changes in parameters
during the life of the organism. As the pictures in the main
text show, shells of actual molluscs (both current and fossil)
exist throughout a large region of parameter space. And in
fact it appears that the only parameter values that are not
covered are ones where the shell could not easily have been
secreted by an animal because its shape is degenerate and
leaves little useful room for the animal. Some regions of
parameter space are more common than others, and this may
be a consequence either of natural selection or of the detailed
molecular biology of mollusc growth. Shells where
successive whorls do not touch (as in the first picture on row
(c) of page 415) appear to be significantly less common than
others, perhaps because they have lower mechanical rigidity.
They do however occur, though sometimes as internal rather
than external shells. 

â History. Following Aristotle’s notion of gnomon figures that
keep the same shape when they grow, equiangular spirals
were discussed by René Descartes in 1638, and soon
thereafter Christopher Wren noted their relation to shells. A
clear mathematical model of shell growth based on
equiangular spirals was given by Henry Moseley in 1838,
and the model used here is a direct extension of his. Careful
studies from the mid-1800s to mid-1900s validated Moseley’s
basic model for a wide variety of shells, though an increasing
emphasis was placed on shells that showed deviations from
the model. In the mid-1960s David Raup used early
computer graphics to generate pictures for various ranges of
parameters, but perhaps because he considered only specific
classes of molluscs there emerged from his work the belief
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that parameters of shells are greatly constrained—with
explanations being proposed based on optimization of such
features as strength, relative volume, and stability when
falling through water. But as discussed in the main text I
strongly suspect that in fact there are no such global
constraints, and instead almost all reasonable values of
parameters from the simple model used do actually occur in
real molluscs. In the past few decades, increasingly complex
models for shells have been constructed, typically focusing
on fairly specific or unusual cases. Most of these models have
far more parameters than the simple one used here, and by
varying these parameters it is almost always possible to get
forms that probably do not correspond to real shells. And
presumably the reason for this is just that such models
represent processes that do not occur in the growth of actual
molluscs. One widespread issue concerns the orientation of
the opening to a shell. The model used here assumes that this
opening always stays vertical—which appears to be what
happens most often in practice. But following the notion of
Frenet frames in differential geometry, it has often come to be
supposed that the opening to a shell instead typically lies in a
plane perpendicular to the helix traced out by the growth of
the shell. This idea, however, leads to twisted shapes like
those shown below that occur rarely, if ever, in actual shells.
And in fact, despite elaborate efforts of computer graphics it
has proved rather difficult with parametrizations based on
Frenet frames to produce shells that have a reasonable range
of realistic shapes.

â Page 417 · Discrete folding. See page 892.

â Page 418 · Intrinsically defined curves. With curvature
given by a function  of the arc length , explicit
coordinates  of points are obtained from
(compare page 1048)

For various choices of , formulas for  can be
found using : 

: 
: 

: 
:  

: 

: result involves  
: result involves ,

expressible in terms of generalized Kampé de Fériet
hypergeometric functions of two variables.

When ,  yields 2D shapes that are
basically nested, with pieces overlapping for .

The general idea of so-called natural equations for obtaining
curves from local curvature appears to have been first
considered by Leonhard Euler in 1736. Many examples with
fairly simple behavior were studied in the 1800s. The case of

 was studied by Eduard Lehr in 1932. Cases
related to  were studied by Alfred Gray around
1992 using Mathematica. 

â Multidimensional generalizations. Curvatures for surfaces
and higher-dimensional objects can be defined in terms of the
principal axes of approximating ellipsoids at each point.
There are combinations of these curvatures—in 2D Gaussian
curvature and mean curvature—which are independent of
the coordinate system used. (Compare page 1049.) Given
such curvatures, a surface can in principle be obtained by
solving certain partial differential equations. But even in the
case of zero mean curvature, which corresponds to minimal
surfaces of the kind followed by an idealized soap film, this is
already a mathematical problem of significant difficulty. 

If one looks at projections of surfaces, it is common to see
lines of discontinuity at which a surface goes, say, from
having three sheets to one. Catastrophe theory provides a
classification of such discontinuities—the simplest being a
cusp. And as emphasized by René Thom in the 1960s, it is
possible that some structures seen in animals may be related
to such discontinuities.

â Page 419 · Embryo development. Starting from a single egg
cell, embryos first exhibit a series of geometrically quite
precise cell divisions corresponding, I suspect, to a simple
neighbor-independent substitution system. When the
embryo consists of a definite number of cells—from tens to
tens of thousands depending on species—the phenomenon
of gastrulation occurs, and the hollow sphere of cells that has
been produced folds in on itself so as to begin to form more
tubular structures. In organisms with a total of just a few
thousand cells, the final position and type of every cell seems
to be determined directly by the genetic program of the
organism; most likely what happens is that each cell division
leads to some modification in genetic material, perhaps
through rules like those in a multiway system. Beyond a few
thousand cells, however, individual cells seem to be less
relevant, and instead what appears to happen is that
chemicals such as retinoic acid (a derivative of vitamin A)
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produced by particular cells diffuse to affect all cells in a
region a tenth of a millimeter or so across. Probably as a
result of chemical concentration gradients, different so-called
homeobox genes are then activated in different parts of the
region. Each of these genes—out of a total of 38 in humans—
yields proteins which then in turn switch on or off large
banks of genes, allowing different forms of behavior for cells
in different places. 

â History of embryology. General issues of embryology were
already discussed in Greek times, notably by Hippocrates
and Aristotle. But even in the 1700s it was still thought that
perhaps every embryo started from a very small version of a
complete organism. In the 1800s, however, detailed studies
revealed the progressive development of complexity in the
growth of an embryo. At the end of the 1800s experiments
based on removing or modifying parts of early embryos
began, and by the 1920s it had been discovered that there
were definite pieces of embryos that were responsible for
inducing various aspects of development to occur. That
concentrations of diffusing chemicals might define where in
an embryo different elements would form was first
suggested in the early 1900s, but it was not until the 1970s
and 1980s—after it was emphasized by Lewis Wolpert in
1969 under the name “positional information”—that there
was clear experimental investigation of this idea. From the
1930s and before, it was known that different genes are
involved in different aspects of embryo development. And
with the advent of gene manipulation methods in the 1970s
and 1980s, it became possible to investigate the genetic
control of development in organisms such as fruit flies in
tremendous detail. Among the important discoveries made
were the homeobox genes (see note above).

â Page 420 · Bones. Precursors of bones can be identified quite
early in the growth of most vertebrate embryos. Typically the
cells involved are cartilage, with bone subsequently forming
around them. In hardened bones growth normally occurs by
replication of cartilage cells in plates perhaps a millimeter
thick, with bone forming by a somewhat complicated process
involving continual dissolving and redeposition of already
hardened material. The rate at which bone grows depends on
the pressure exerted on it, and presumably this allows
feedback that for example prevents coiling. Quite how the
complicated collection of tens of bones that make up a typical
skull manage to grow so as to stay connected—often with
highly corrugated suture lines—remains fairly mysterious.

â General constraints on growth. Given a system made from
material with certain overall properties, one can ask what
distributions of growth are consistent with those properties,
and what kinds of shapes can be produced. With material

that is completely rigid growth can occur only at boundaries.
With material where every part can deform arbitrarily any
kind of growth can occur. With material where parts can
locally expand, but cannot change their shape, page 1007
showed that a 2D surface will remain flat if the growth rate is
a harmonic function. The Riemann mapping theorem of
complex analysis then implies that even in this case, any
smooth initial shape can grow into any other such shape with
a suitable growth rate function. In a 3D system with locally
isotropic growth the condition to avoid tearing is that the
Ricci scalar curvature must vanish, and this is achieved if the
local growth rate satisfies a certain partial differential
equation. (See also page 1049.)

â Parametrizations of growth. The idea that different
objects—say different human bodies or faces—can be related
by changing a small number of geometrical parameters was
used by artists such as Albrecht Dürer in the 1500s, and may
have been known to architects and others in antiquity. (In
modern times this idea is associated for example with the
notion that just a few measurements are sufficient to specify
the fitting of clothes.) D’Arcy Thompson in 1917 suggested
that shapes in many different species could also be related
in this way. In the case of shells and horns he gave a fairly
precise analysis, as discussed above. But he also drew
various pictures of fishes and skulls, and argued that they
were related by deformations of coordinates. Largely from
this grew the field of morphometrics, in which the relative
positions of features such as eyes or tips of fins are
compared in different species. And although statistical
significance is reduced by considering only discrete features,
some evidence has emerged that different species do indeed
have shapes related by changes in fairly small numbers of
geometrical parameters. Such changes could be accounted
for by changes in growth rates, but it is noteworthy that my
results above on branching and folding make it clear that in
general changes in growth rates can have much more
dramatic effects.

As emphasized by D’Arcy Thompson, even a single
organism will change shape if its parts grow at different
rates. And in the 1930s and 1940s it became popular to study
differential growth, typically under the name of allometry.
Exponential growth was usually assumed, and there was
much discussion about the details and correctness of this.
Practical applications were made to farm animals, and later
to changes in facial bone structure during childhood. But
despite some work in the past twenty years using models
based on fluids, solid mechanics and networks of rigid
elements, much about differential growth remains unclear. (A
better approach may be one similar to general relativity.)
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â Schemes for growth. After the initial embryonic stage, many
general features of the growth of different types of organisms
can be viewed as consequences of the nature of the elements
that make the organisms rigid. In plants, as we have
discussed, essentially all cells have rigid cellulose walls. In
vertebrate animals, rigidity comes mainly from bones that are
internal to the organism. In arthropods and some other
invertebrates, an exoskeleton is typically the main source of
rigidity. Growth in such organisms usually then proceeds by
adding soft tissue on the inside, then periodically moulting
the exoskeleton. In a first approximation, the mechanical
pressure of internal tissue will typically make the shape of
the exoskeleton form an approximate minimal surface. 

â Tumors. In both plants and animals tumors seem to grow
mainly by fairly random addition of cells to their surface—
much as in the aggregation models shown on page 332. 

â Pollen. The grains of pollen produced by different species of
plants have a remarkable range of different forms. Produced
in groups of four, each grain is effectively a single cell (with
two nuclei) between a few and few hundred microns across.
At an overall level most grains seem to have regular
polyhedral shapes, though often with bulges or dents.
Perhaps such forms arise through grains effectively being
made with small numbers of roughly spherical elements
being either as tightly or loosely packed as possible. The
outer walls of pollen grains are often covered with a certain
density of tiny columns that can form spikes, or can have
plates on top that can form cross-linkages and can join
together to appear as patches. 

â Radiolarians. The silicate skeletons of single-cell plankton
organisms such as radiolarians and diatoms have been used
for well over a century as examples of complex microscopic
forms in biology. (See page 385.) Most likely their overall
shapes are determined before they harden through
minimization of area by surface tension. Their pores and
cross-linkages presumably reflect packings of many roughly
spherical elements on the surface during formation (as seen
in the mid-1990s in aluminophosphates). 

â Self-assembly. Some growth—particularly at a microscopic
level—seems to be based on objects with particular shapes or
affinities sticking together only in specific ways—much as in
the systems based on constraints discussed on page 210 (and
especially the network constraint systems of page 483). (See
also page 1193.)

â Animal behavior. Simple repetitive behavior is common, as
in circadian and brain rhythms, as well as peristalsis and
walking. (In a millipede there are, for example, typically just
two modes of locomotion, both simple, involving opposite

legs moving either together or oppositely.) Many structures
built by animals have repetitive forms, as in beehives and
spider webs; the more complex structures made for example
by termites can perhaps be understood in terms of
generalized aggregation systems (see page 978). (Typical
models involve the notion of stigmergy: that elements are
added at a particular point based only on features
immediately around them; see also page 1184.) Nested
patterns may occur in flocks of birds such as geese. Fairly
regular nested space-filling curves are sometimes seen in the
eating paths of caterpillars. Apparent randomness is
common in physiological processes such as twitchings of
muscles and microscopic eye motions, as well as in random
walks executed during foraging. My suspicion is that just as
there appear to be small collections of cells—so-called central
pattern generators—that generate repetitive behavior, so also
there will turn out to be small collections of cells that
generate intrinsically random behavior. 

Biological Pigmentation Patterns

â Collecting shells. The shells I show in this section are mostly
from my fairly small personal collection, obtained at shops
and markets around the world. (A few of the ones on page
416 are from the Field Museum.) The vast majority of shells
on typical beaches do not have especially elaborate patterns.
The Philippines are the largest current source of collectible
shells: when molluscs intended as food are caught in nets
interesting-looking shells are sometimes picked out before
being discarded. Shell collecting as a hobby probably had its
greatest popularity in the late 1700s and 1800s. In recent
times one reason for studying animals that live in cone shells
is that they produce potent neurotoxins that show promise as
pain-control drugs. 

â Shell patterns. The so-called mantle of soft tissue which
covers the animal inside the shell is what secretes the shell
and produces the pattern on it. Some species deposit material
in a highly regular way every day; others seem to do it
intermittently over periods of months or years. In many
species the outer surface of the shell is covered by a kind of
skin known as the periostracum, and in most cases this skin
is opaque, thereby obscuring the patterns underneath until
long after the animal has died. Note that if one makes a hole
in a shell, the pattern is usually quite unaffected, suggesting
that the pattern is primarily a consequence of features of the
underlying mantle. In addition, patterns are often divided
into three or four large bands, presumably in correspondence
with features of the anatomy of the mantle. Sometimes
physical ridges exist on shells in correspondence with their
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pigmentation patterns. It is not clear whether multiple kinds
of shell patterns can occur within one species, or whether
they are always associated with genetically different species. 

â Cowries. In cowries the outside of the shell is covered by the
mantle of the animal. The patterns on the shell typically
involve spots, and are typical of those obtained from 2D
cellular automata of the kind shown on page 428. The mantle
is normally in two parts; the boundary between them shows
up as a discontinuity in the shell pattern.

â History. Elaborate patterns on shells have been noticed
since antiquity, and have featured in a number of well-known
works of art and literature. Since the late 1600s they have also
been extensively used in classifying molluscs. But almost no
efforts to understand the origins of such patterns seem to
ever have been made. One study was done in 1969 by Conrad
Waddington and Russell Cowe in which patterns on one
particular kind of shell were reproduced by a specific
computer simulation based on the idea of diverging waves of
pigment. In 1982 I noticed that the patterns I had generated
with 1D cellular automata looked remarkably similar to
patterns on shells. I used this quite widely as an illustration
of how cellular automata might be relevant to modelling
natural systems. And I also made some efforts to do actual
biological experiments, but I gave up when it seemed that the
species of molluscs I wanted to study were difficult, if not
impossible, to keep in captivity. Following my work, various
other studies of shell patterns were done. Bard Ermentrout,
John Campbell and George Oster constructed a model based
on the idea that pigment-producing cells might act like nerve
cells with a certain degree of memory. And Hans Meinhardt
has constructed progressively more elaborate models based
on reaction-diffusion equations.

â Page 426 · Animals shown. Flatworm, cuttlefish, honeycomb
moray, spotted moray, foureye butterfly fish; emperor
angelfish, suckermouth catfish, ornate cowfish, clown
triggerfish, poison-dart frog; ornate horned frog, marbled
salamander, spiny softshell, gila monster, ball python; gray-
banded kingsnake, guinea fowl, peacock, ring-tailed lemur,
panda; cheetah, ocelot, leopard, tiger, spotted hyena; western
spotted skunk, civet, zebra, brazilian tapir, giraffe.

â Animal coloration. Coloration can arise either directly
through the presence of visible colored cells such as those in
freckles, or indirectly by virtue of cells such as hair follicles
imparting pigments to the non-living elements such as fur,
feathers and scales that grow from them. In many cases such
elements are arranged in a highly regular way, often in a
repetitive hexagonal pattern. Evolutionary optimization is
often used to explain observed pigmentation patterns—with

varying degrees of success. The notion that for example the
stripes of a zebra are for camouflage may at first seem
implausible, but there is some evidence that dramatic stripes
do make it harder for a predator to recognize the overall
shape of the zebra. Many of the pigments used by animals
are by-products of metabolism, suggesting that at least at
first pigmentation patterns were probably often incidental to
the operation of the animal. 

â Page 427 · Implementation. Given a 2D array of values  and
a list of weights , each step in the evolution of the system
corresponds to

â Features of the model. The model is a totalistic 2D cellular
automaton, as discussed on page 927. It shows class 2
behavior in which information propagates only over limited
distances, so that except when the total size of the system is
comparable to the range of the rule, boundary conditions are
not crucial.

Similar models have been considered before. In the early
1950s (see below) Alan Turing used a model which effectively
differed mainly in having continuous color levels. In 1979
Nicholas Swindale constructed a model with discrete levels
to investigate ocular dominance stripes in the brain (see
below). And following my work on cellular automata in the
early 1980s, David Young in 1984 considered a model even
more similar to the one I use here.

There are simple cellular automata—such as 8-neighbor
outer totalistic code 196623—which eventually yield maze-
like patterns even when started from simple initial
conditions. The rule on page 336 gives dappled patterns with
progressively larger spots.

â Reaction-diffusion processes. The cellular automaton in the
main text can be viewed as a discrete idealization of a
reaction-diffusion process. The notion that diffusion might be
important in embryo development had been suggested in the
early 1900s (see page 1004), but it was only in 1952 that Alan
Turing showed how it could lead to the formation of definite
patterns. Diffusion of a single chemical always tends to
smooth out distributions of concentration. But Turing
pointed out that with two chemicals in which each can be
produced from the other it is possible for separated regions
to develop. If  is a vector of chemical
concentrations, then for suitable values of parameters even
the standard linear diffusion equation 
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can exhibit an instability which causes disturbances with
certain spatial wavelengths to grow (compare page 988). In
his 1952 paper Turing used a finite difference approximation
to a pair of diffusion equations to show that starting from a
random distribution of concentration values dappled regions
could develop in which one or the other chemical was
dominant. With purely linear equations, any instability will
always eventually lead to infinite concentrations, but Turing
noted that this could be avoided by using realistic nonlinear
chemical rate equations. In the couple of years before his
death in 1954, Turing appears to have tried to simulate such
nonlinear equations on an early digital computer, but my
cursory efforts to understand his programs—written as they
are in a 32-character machine code—were not successful.

Following Turing’s work, the fact that simple reaction-
diffusion equations can yield spatially inhomogeneous
patterns has been rediscovered—with varying degrees of
independence—many times. In the early 1970s Ilya Prigogine
termed the patterns dissipative structures. And in the mid-
1970s, Hermann Haken considered the phenomenon a
cornerstone of what he called synergetics.

Many detailed mathematical analyses of linear reaction-
diffusion equations have been done since the 1970s;
numerical solutions to linear and occasionally nonlinear such
equations have also often been found, and in recent years
explicit pictures of patterns—rather than just curves of
related functions—have commonly been generated. In the
context of biological pigmentation patterns detailed studies
have been done particularly by Hans Meinhardt and James
Murray. 

â Scales of patterns. The visual appearance of a pattern on an
actual animal depends greatly on the scale of the pattern
relative to the whole animal. Pandas and anteaters, for
example, typically have just a few regions of different color,
while other animals can have hundreds of regions. Studies
based on linear reaction-diffusion equations sometimes
assume that patterns correspond to stationary modes of the
equations, which inevitably depend greatly on boundary
conditions. But in more realistic models patterns emerge
from long time behavior with generic initial conditions,
making boundary conditions—and effects such as changes in
them associated with growth of an embryo—much less
important.

â Excitable media. In many physical situations effects become
decreasingly important as they propagate further away. But
in active or excitable media such as heart, muscle and nerve
tissue an effect can maintain its magnitude as it propagates,
leading to the formation of a variety of spatial structures. An

early model of such media was constructed in 1946 by
Norbert Wiener and Arturo Rosenblueth, based on a discrete
array of continuous elements. Models with discrete elements
were already considered in the 1960s, and in 1977 James
Greenberg and Stuart Hastings introduced a simple 2D
cellular automaton with three colors. The pictures below
show what is probably the most complex feature of this
cellular automaton and related systems: the formation of
spiral waves. Such spiral waves were studied in 2D and 3D in
the 1970s and 1980s, particularly by Arthur Winfree and
others; they are fairly easy to observe in both inorganic
chemical reactions (see below) and slime mold colonies. 

â Examples in chemistry. Overall concentrations in chemical
reactions can be described by nonlinear ordinary differential
equations. Reactions with oscillatory behavior were
predicted by Alfred Lotka in 1910 and observed
experimentally by William Bray in 1917, but for some reason
they were not further investigated at that time. An example
was found experimentally by Boris Belousov in 1951 and
extensive investigations of it were begun by Anatol
Zhabotinsky around 1960. In the early 1970s spiral waves
were seen in the spatial distribution of concentrations in this
reaction, and by the end of the 1970s images of such waves
were commonly used as icons of the somewhat ill-defined
notion of self-organization. 

â Maze-like patterns. Maze-like patterns occur in several
quite different kinds of systems. Cases in which the
underlying mechanism is probably similar to that discussed
in the main text include brain coral, large-scale vegetation
bands seen in tropical areas, patterns of sand dunes, patterns
in pre-turbulent fluid convection, and ocular dominance
stripes consisting of regions of brain tissue that get marked
when different dye is introduced into nerves from left and
right eyes. Cases in which the underlying mechanism is
probably more associated with folding of fixed amounts of
material include human fingerprint patterns and patterns in
ferrofluids consisting of suspensions of magnetic particles.

â Origins of randomness. The model in the main text assumes
that randomness enters through initial conditions. If the two
parts of a single animal—say opposite wings on a butterfly—
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form together, then these initial conditions can be expected to
be the same. But usually even the two sides of a single animal
are never physically together, and they normally end up
having quite uncorrelated random features. In cases such as
fingerprints and zebra stripes there is some correlation
between different sides, suggesting an intrinsic component to
the randomness that occurs. (The fingerprints of identical
twins are typically similar but not identical; iris patterns are
quite different.) Note that at least sometimes random initial
patterns are formed by cells that have the same type, but
different lineages—as in cells expressing genes from the two
different X chromosomes in a female animal such as a typical
tortoiseshell cat. (In general, quite a few traits—particularly
related to aging—can show significant variation in strains of
organisms that are genetically identical.)

Financial Systems

â Laws of human behavior. Over the past century there have
been a fair number of quantitative laws proposed for features
of human behavior. Some are presumably a direct reflection
of human biological construction. Thus for example, Weber’s
law that the perceived strength of a stimulus tends to vary
logarithmically with its actual strength seems likely to be
related to the electrochemistry of nerve cells. Of laws for
more complicated cognitive or social phenomena the vast
majority are statistical in nature. And of those that withstand
scrutiny, most in my experience turn out to be transformed
versions of statements that some quantity or another can be
approximated by perfect randomness. Gaussian distributions
typically arise when measurements involve sums of random
quantities; other common distributions are obtained from
products or other simple combinations of random quantities,
or from the results of simple processes based on random
quantities. Exponential distributions (as seen, for example, in
learning curves) and power-law distributions (as in Zipf’s
law below) are both, for example, very easy to obtain. (Note
that particularly in economics there are also various laws
derived from calculus and game theory that are viewed as
being quite successful, and are not fundamentally statistical.)

â Zipf’s law. To a fairly good approximation the th most
common word in a large sample of English text occurs with
frequency , as illustrated in the first picture below. This
fact was first noticed around the end of the 1800s, and was
attributed in 1949 by George Zipf to a general, though vague,
Principle of Least Effort for human behavior. I suspect that in
fact the law has a rather simple probabilistic origin. Consider
generating a long piece of text by picking at random from 
letters and a space. Now collect and rank all the “words”

delimited by spaces that are formed. When , the th most
common word will have frequency . But when , it
turns out that the th most common word will have a
frequency that approximates . If all  letters have equal
probabilities, there will be many words with equal frequency,
so the distribution will contain steps, as in the second picture
below. If the  letters have non-commensurate probabilities,
then a smooth distribution is obtained, as in the third picture.
If all letter probabilities are equal, then words will simply be
ranked by length, with all  words of length  occurring
with frequency . The normalization of probabilities then
implies , and since the word at rank roughly 
then has probability , Zipf’s law follows.

â Motion of people and cars. To a first approximation crowds
of people seem to show aggregate fluid-like behavior similar
to what is seen in gases. Fronts of people—as occur in riots
or infantry battles—seem to show instabilities perhaps
analogous to those in fluids. Road traffic that is constrained
to travel along a line exhibits stop-start instabilities when its
overall rate is reduced, say by an obstruction. This appears
to be a consequence of the delay before one driver responds
to changes in speed of cars in front of them. Fairly accurate
cellular automaton models of this phenomenon were
developed in the early 1990s. 

â Growth of cities. In the absence of geographical constraints,
such as terrain or oceans, cities typically have patchy,
irregular, shapes. At first an aggregation system (see page
331) might seem to be an obvious model for their growth:
each new development gets added to the exterior of the city
at a random position. But actual cities look much more
irregular. Most likely the reason is that embedded within the
cities is a network of transportation routes, and these tend to
have a tree- or vein-like structure (though not necessarily
with a single center)—with major freeways etc. as trunks. The
result of following this structure is to produce a much more
irregular boundary.

â Randomness in markets. After the somewhat tricky process
of correcting for overall trends, empirical price data from a
wide range of markets seem to a first approximation to
follow random walks and thus to exhibit Gaussian
fluctuations, as noted by Louis Bachelier in 1900. However,
particularly on timescales less than a day, it has in the past
decade become clear that, as suggested by Benoit Mandelbrot
in the early 1960s, large price fluctuations are significantly
more common than a Gaussian distribution would imply.
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Such an effect is easy to model with the approach used in the
main text if different entities interact in clumps or herds—
which can be forced if they are connected in a hierarchical
network rather than just a line. 

The observed standard deviation of a price—or essentially
so-called volatility or beta—can be considered as a measure
of the risk of fluctuations in that price. The Capital Asset
Pricing Model proposed in the early 1960s suggested that
average rates of price increases should be proportional to
such variances. And the Black-Scholes model from 1973
implies that prices of suitably constructed options should
depend in a sense only on such variances. Over the past
decade various corrections to this model have been
developed based on non-Gaussian distributions of prices.

â Speculative markets. Cases of markets that seem to operate
almost completely independent of objective value have
occurred many times in economic history, particularly in
connection with innovations in technology or finance.
Examples range from tulip bulbs in the mid-1630s to
railroads in the mid-1800s to internet businesses in the late
1990s. (Note however that in any particular case it can be
claimed that certain speculation was rational, even if it did
not work out—but usually it is difficult to get convincing
evidence for this, and often effects are obscured by
generalized money supply or bankruptcy issues.)

â Properties of markets. Issues of how averaging is done and
how irrelevant trends are removed turn out to make
unequivocal tests of almost any quantitative hypothesis
about prices essentially impossible. The rational expectations
theory that prices reflect discounted future earnings has for
example been subjected to many empirical tests, but has
never been convincingly proved or disproved. 

â Efficient markets. In its strong form the so-called Efficient
Market Hypothesis states that prices immediately adjust to
reflect all possible information, so that knowing a particular
piece of information can never be used to make a profit. It is
now widely recognized—even in academia—that this
hypothesis is a fairly poor representation of reality. 

â Details of trading. Cynics might suggest that much of the
randomness in practical markets is associated with details of
trading. For much of the money actually made from markets
on an ongoing basis comes from commissions on trades. And
if prices quickly settled down to their final values, fewer

trades would tend to be made. (Different entities would
nevertheless still often need liquidity at different times.) 

â Models of markets. When serious economic theory began
in the 1700s arguments tended to be based purely on
common sense. But with the work of Léon Walras in the
1870s mathematical models began to become popular. In the
early 1900s, common sense again for a while became
dominant. But particularly with the development of game
theory in the 1940s the notion became established, at least
in theoretical economics, that prices represent equilibrium
points whose properties can be derived mathematically
from requirements of optimality. In practical trading, partly
as an outgrowth of theories of business cycles, there had
emerged all sorts of elaborate so-called technical analysis in
which patterns of price movements were supposed—often
on the basis of almost mystical theories—to be indicators of
future behavior. In the late 1970s, particularly after the work
of Fischer Black and Myron Scholes on options pricing, new
models of markets based on methods from statistical
physics began to be used, but in these models randomness
was taken purely as an assumption. In another direction, it
was noticed that dynamic versions of game theory could
yield iterated maps and ordinary differential equations
which would lead to chaotic behavior in prices, but
connections with randomness in actual markets were not
established. By the mid-1980s, however, it began to be clear
that the whole game-theoretical idea of thinking of markets
as collections of rational entities that optimize their
positions on the basis of complete information was quite
inadequate. Some attempts were made to extend traditional
mathematical models, and various highly theoretical
analyses were done based on treating entities in the market
as universal computers. But by the end of the 1980s, the
idea had emerged of doing explicit computer simulations
with entities in the market represented by practical
programs. (See also page 1105.) Often these programs used
fairly sophisticated algorithms intended to mimic human
traders, but in competitions between programs simpler
algorithms have never seemed to be at much of a
disadvantage. The model in the main text is in a sense an
ultimate idealization along these lines. It follows a sequence
of efforts that I have made since the mid-1980s—though
have never considered very satisfactory—to find minimal
but accurate models of financial processes.
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NOTES FOR CHAPTER 9

Fundamental Physics

The Notion of Reversibility

â Page 437 · Testing for reversibility. To show that a cellular
automaton is reversible it is sufficient to check that all
configurations consisting of repetitions of different blocks
have different successors. This can be done for blocks up to
length  in a 1D cellular automaton with  colors using

For ,  it turns out that it suffices to test only up to
 (128 out of the 256 rules fail at , 64 at , 44 at
 and 14 at ); for ,  it suffices to test up to

, and for , , up to . But although these
results suggest that in general it should suffice to test only up
to , all that has so far been rigorously proved is that

 (or  for , ) is sufficient.

For 2D cellular automata an analogous procedure can in
principle be used, though there is no upper limit on the size
of blocks that need to be tested, and in fact the question of
whether a particular rule is reversible is directly equivalent to
the tiling problem discussed on page 213 (compare page 942),
and is thus formally undecidable.

â Numbers of reversible rules. For , , there are 6
reversible rules, as shown on page 436. For ,  there are
62 reversible rules, in 20 families inequivalent under
symmetries, out of a total of  or about 4 billion possible rules.
For ,  there are 1800 reversible rules, in 172 families.
For , , some of the reversible rules can be constructed
from the second-order cellular automata below. Note that for
any  and , no non-trivial totalistic rule can ever be reversible.

â Inverse rules. Some reversible rules are self-inverse, so that
applying the same rule twice yields the identity. Other rules
come in distinct pairs. Most often a rule that involves 
neighbors has an inverse that also involves at most 
neighbors. But for both ,  and ,  there turn
out to be reversible rules whose inverses involve larger

numbers of neighbors. For any given rule one can define the
neighborhood size  to be the largest block of cells that is
ever needed to determine the color of a single new cell. In
general , and for a simple identity or shift rule,

. For , , it then turns out that all the reversible
rules and their inverses have . For , , the
reversible rules have values of  from 1 to 5, but their
inverses have values  from 1 to 6. There are only 8 rules (the
inequivalent ones being 16740555 and 3327051468) where

, and in each case  while . For , , there
are a total of 936 rules with this property: 576, 216 and 144
with ,  and , and in all cases . Examples with

, ,  and  are shown below. For arbitrary  and , it is
not clear what the maximum  can be; the only bound
rigorously established so far is . 

â Surjectivity and injectivity. See page 959.

â Directional reversibility. Even if successive time steps in the
evolution of a cellular automaton do not correspond to an
injective map, it is still possible to get an injective map by
looking at successive lines at some angle in the spacetime
evolution of the system. Examples where this works include
the surjective rules 30 and 90. 

â Page 437 · Second-order cellular automata. Second-order
elementary rules can be implemented using

where  is obtained from the rule number using
. 

n k

ReversibleQ[rule_, k_, n_] := Catch[Do[
If[Length[Union[Table[CAStep[rule, IntegerDigits[ i, k, m]],

{i, 0, km - 1}]]] 9 km, Throw[False]], {m, n}]; True]

k = 2 r = 1
n = 4 n = 1 n = 2
n = 3 n = 4 k = 2 r = 2
n = 15 k = 3 r = 1 n = 9

n = k2 r

n = k2 r ( k2 r - 1) + 2 r + 1 n = 15 k = 2 r = 1

k = 2 r = 1
k = 2 r = 2

232

k = 3 r = 1
k = 4 r = 1

k r

r
r

k = 2 r = 2 k = 3 r = 1

s

s < 2 r + 1
s = 1 k = 2 r = 1

s = 1 k = 2 r = 2
s

s

s > s s = 6 s = 5 k = 3 r = 1

s = 4 5 6 s = 3
s = 3 4 5 6 k r

s

s < r + 1/2 k2 r+1 ( k2 r - 1)

2828556973047 3762560660157 538556225233 3066231781977

CA2EvolveList[rule_List, {a_List, b_List}, t_Integer] :=
Map[First, NestList[CA2Step[rule, #] &, {a, b}, t]]

CA2Step[rule_List, {a_, b_}] := {b, Mod[a + rule0
8 - (RotateLeft[b] + 2 (b + 2 RotateRight[b]))1, 2]}

rule
IntegerDigits[n, 2, 8]
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The combination  of the result
from  corresponds to evolution according to a
first-order ,  rule.

â History. The concept of getting reversibility in a cellular
automaton by having a second-order rule was apparently
first suggested by Edward Fredkin around 1970 in the
context of 2D systems—on the basis of an analogy with
second-order differential equations in physics. Similar ideas
had appeared in numerical analysis in the 1960s in
connection with so-called symmetric or self-adjoint discrete
approximations to differential equations.

â Page 438 · Properties. The pattern from rule 67R with simple
initial conditions grows irregularly, at an average rate of
about 1 cell every 5 steps. The right-hand side of the pattern
from rule 173R consists three triangles that repeat
progressively larger at steps of the form . Rule 90R
has the property that of the diamond of cells at relative
positions  it is always true for
any  that an even number are black.

â Page 439 · Properties. The initial conditions used here have
a single black cell on two successive initial steps. For rule
150R, however, there is no black cell on the first initial step.
The pattern generated by rule 150R has fractal dimension

 or about 1.83. In rule 154R, each
diagonal stripe is followed by at least one 0; otherwise, the
positions of the stripes appear to be quite random, with a
density around 0.44.

â Generalized additive rules. Additive cellular automata of
the kind discussed on page 952 can be generalized by
allowing the new value of each cell to be obtained from
combinations of cells on  previous steps. For rule 90 the
combination  can be specified as , while for rule
150R it can be specified as . All generalized
additive rules ultimately yield nested patterns. Starting with
a list of the initial conditions for  steps, the configurations
for the next  steps are given by

where .
Just as for ordinary additive rules on page 1091, an
algebraic analysis for generalized additive rules can be
given. The objects that appear are solutions to linear
recurrences of order , and in general involve th roots. For
rule 150R, the configuration at step  as shown in the
picture on page 439 is given by , where

 and . (See also
page 1078.)

â Page 440 · Rule 37R. Complicated structures are fairly easy
to get with this rule. The initial condition  with all
cells 0 on the previous step yields a structure that repeats but
only every 666 steps. The initial condition 
yields a pattern that grows sporadically for 3774 steps, then
breaks into two repetitive structures. The typical background
repeats every 3 steps.

â Classification of reversible rules. In a reversible system it is
possible with suitable initial conditions to get absolutely any
arrangement of cells to appear at any step. Despite this,
however, the overall spacetime pattern of cells is not
arbitrary, but is instead determined by the underlying rules.
If one starts with completely random initial conditions then
class 2 and class 3 behavior are often seen. Class 1 behavior
can never occur in a reversible system. Class 4 behavior can
occur, as in rule 37R, but is typically obvious only if one starts
say with a low density of black cells. 

For arbitrary rules, difference patterns of the kind shown on
page 250 can get both larger and smaller. In a reversible rule,
such patterns can grow and shrink, but can never die out
completely. 

â Emergence of reversibility. Once on an attractor, any
system—even if it does not have reversible underlying
rules—must in some sense show approximate reversibility.
(Compare page 959.)

â Other reversible systems. Reversible examples can be
found of essentially all the types of systems discussed in
this book. Reversible mobile automata can for instance be
constructed using

where  is an element of . An
example that exhibits complex behavior is:

Systems based on numbers are typically reversible whenever
the mathematical operations they involve are invertible.
Thus, for example, the system on page 121 based on
successive multiplication by 3/2 is reversible by using
division by 3/2. Page 905 gives another example of a
reversible system based on numbers.

Multiway systems are reversible whenever both  and
 are present as rules, so that the system corresponds

mathematically to a semigroup. (See page 938.)

â Reversible computation. Typical practical computers—and
computer languages—are not even close to reversible: many
inputs can lead to the same output, and there is no unique

Drop[ list, -1] + 2 Drop[ list, 1]
CA2EvolveList

k = 4 r = 1

2 (9s - 1)

{{-n, 0}, {0, -n}, {n, 0}, {0, n}}
n

Log[2, 3 +
�!!!!!!!17 ] - 1

s
c {{1, 0, 1}}

{{0, 1, 0}, {1, 1, 1}}

s
s

Append[Rest[ list],
Map[Mod[Apply[Plus, Flatten[c #]], 2] &, Transpose[

Table[RotateLeft[ list, {0, i}], {i, -r, r}], {3, 2, 1}]]]

r = ( Length[First[c]] - 1)/2

s s
t

(ut - v t ) /Sqrt[4+ h2]

{u, v} = z /. Solve[z 2 2 h z + 1] h = 1/x + 1+ x

{1, 0, 1}

{{0, 1, 1}, {1, 0, 0}}

Table[( IntegerDigits[ i, 2, 3] ! If[First[#] 2 0, {#, -1},
{Reverse[#], 1}] &)[IntegerDigits[perm0i1, 2, 3]], {i, 8}]

perm Permutations[Range[8]]

a ! b
b ! a
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way to undo the steps of a computation. But despite early
confusion (see page 1020), it has been known since at least
the 1970s that there is nothing in principle which prevents
computation from being reversible. And indeed—just like
with the cellular automata in this section—most of the
systems in Chapter 11 that exhibit universal computation can
readily be made reversible with only slight overhead. 

Irreversibility and the Second Law of Thermodynamics

â Time reversal invariance. The reversibility of the laws of
physics implies that given the state of a physical system at a
particular time, it is always possibly to work out uniquely
both its future and its past. Time reversal invariance would
further imply that the rules for going in each direction should
be identical. To a very good approximation this appears to be
true, but it turns out that in certain esoteric particle physics
processes small deviations have been found. In particular, it
was discovered in 1964 that the decay of the  particle
violated time reversal invariance at the level of about one
part in a thousand. In current theories, this effect is not
attributed any particularly fundamental origin, and is just
assumed to be associated with the arbitrary setting of certain
parameters.  decay was for a long time the only example
of time reversal violation that had explicitly been seen,
although recently examples in  particle decays have
probably also been seen. It also turns out that the only
current viable theories of the apparent preponderance of
matter over antimatter in the universe are based on the idea
that a small amount of time reversal violation occurred in the
decays of certain very massive particles in the very early
universe.

The basic formalism used for particle physics assumes not
only reversibility, but also so-called CPT invariance. This
means that same rules should apply if one not only reverses
the direction of time (T), but also simultaneously inverts all
spatial coordinates (P) and conjugates all charges (C),
replacing particles by antiparticles. In a certain mathematical
sense, CPT invariance can be viewed as a generalization of
relativistic invariance: with a speed faster than light,
something close to an ordinary relativistic transformation is a
CPT transformation.

Originally it was assumed that C, P and T would all
separately be invariances, as they are in classical mechanics.
But in 1957 it was discovered that in radioactive beta decay, C
and P are in a sense each maximally violated: among other
things, the correlation between spin and motion direction is
exactly opposite for neutrinos and for antineutrinos that are
emitted. Despite this, it was still assumed that CP and T

would be true invariances. But in 1964 these too were found
to be violated. Starting with a pure beam of  particles, it
turns out that quantum mechanical mixing processes lead
after about 10-8 seconds to a certain mixture of  particles—
the antiparticles of the . And what effectively happens is
that the amount of mixing differs by about 0.1% in the
positive and negative time directions. (What is actually
observed is a small probability for the long-lived component
of a  beam to decay into two rather than three pions. Some
analysis is required to connect this with T violation.) Particle
physics experiments so far support exact CPT invariance.
Simple models of gravity potentially suggest CPT violation
(as a consequence of deviations from pure special relativistic
invariance), but such effects tend to disappear when the
models are refined.

â History of thermodynamics. Basic physical notions of heat
and temperature were established in the 1600s, and scientists
of the time appear to have thought correctly that heat is
associated with the motion of microscopic constituents of
matter. But in the 1700s it became widely believed that heat
was instead a separate fluid-like substance. Experiments by
James Joule and others in the 1840s put this in doubt, and
finally in the 1850s it became accepted that heat is in fact a
form of energy. The relation between heat and energy was
important for the development of steam engines, and in 1824
Sadi Carnot had captured some of the ideas of
thermodynamics in his discussion of the efficiency of an
idealized engine. Around 1850 Rudolf Clausius and William
Thomson (Kelvin) stated both the First Law—that total
energy is conserved—and the Second Law of
Thermodynamics. The Second Law was originally
formulated in terms of the fact that heat does not
spontaneously flow from a colder body to a hotter. Other
formulations followed quickly, and Kelvin in particular
understood some of the law’s general implications. The idea
that gases consist of molecules in motion had been discussed
in some detail by Daniel Bernoulli in 1738, but had fallen out
of favor, and was revived by Clausius in 1857. Following this,
James Clerk Maxwell in 1860 derived from the mechanics of
individual molecular collisions the expected distribution of
molecular speeds in a gas. Over the next several years the
kinetic theory of gases developed rapidly, and many
macroscopic properties of gases in equilibrium were
computed. In 1872 Ludwig Boltzmann constructed an
equation that he thought could describe the detailed time
development of a gas, whether in equilibrium or not. In the
1860s Clausius had introduced entropy as a ratio of heat to
temperature, and had stated the Second Law in terms of the
increase of this quantity. Boltzmann then showed that his
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equation implied the so-called H Theorem, which states that
a quantity equal to entropy in equilibrium must always
increase with time. At first, it seemed that Boltzmann had
successfully proved the Second Law. But then it was noticed
that since molecular collisions were assumed reversible, his
derivation could be run in reverse, and would then imply the
opposite of the Second Law. Much later it was realized that
Boltzmann’s original equation implicitly assumed that
molecules are uncorrelated before each collision, but not
afterwards, thereby introducing a fundamental asymmetry in
time. Early in the 1870s Maxwell and Kelvin appear to have
already understood that the Second Law could not formally
be derived from microscopic physics, but must somehow be
a consequence of human inability to track large numbers of
molecules. In responding to objections concerning
reversibility Boltzmann realized around 1876 that in a gas
there are many more states that seem random than seem
orderly. This realization led him to argue that entropy must
be proportional to the logarithm of the number of possible
states of a system, and to formulate ideas about ergodicity.
The statistical mechanics of systems of particles was put in a
more general context by Willard Gibbs, beginning around
1900. Gibbs introduced the notion of an ensemble—a
collection of many possible states of a system, each assigned
a certain probability. He argued that if the time evolution of a
single state were to visit all other states in the ensemble—the
so-called ergodic hypothesis—then averaged over a
sufficiently long time a single state would behave in a way
that was typical of the ensemble. Gibbs also gave qualitative
arguments that entropy would increase if it were measured
in a “coarse-grained” way in which nearby states were not
distinguished. In the early 1900s the development of
thermodynamics was largely overshadowed by quantum
theory and little fundamental work was done on it.
Nevertheless, by the 1930s, the Second Law had somehow
come to be generally regarded as a principle of physics
whose foundations should be questioned only as a curiosity.
Despite neglect in physics, however, ergodic theory became
an active area of pure mathematics, and from the 1920s to the
1960s properties related to ergodicity were established for
many kinds of simple systems. When electronic computers
became available in the 1950s, Enrico Fermi and others began
to investigate the ergodic properties of nonlinear systems of
springs. But they ended up concentrating on recurrence
phenomena related to solitons, and not looking at general
questions related to the Second Law. Much the same
happened in the 1960s, when the first simulations of hard
sphere gases were led to concentrate on the specific
phenomenon of long-time tails. And by the 1970s, computer
experiments were mostly oriented towards ordinary

differential equations and strange attractors, rather than
towards systems with large numbers of components, to
which the Second Law might apply. Starting in the 1950s, it
was recognized that entropy is simply the negative of the
information quantity introduced in the 1940s by Claude
Shannon. Following statements by John von Neumann, it
was thought that any computational process must
necessarily increase entropy, but by the early 1970s, notably
with work by Charles Bennett, it became accepted that this is
not so (see page 1018), laying some early groundwork for
relating computational and thermodynamic ideas. 

â Current thinking on the Second Law. The vast majority of
current physics textbooks imply that the Second Law is well
established, though with surprising regularity they say that
detailed arguments for it are beyond their scope. More
specialized articles tend to admit that the origins of the
Second Law remain mysterious. Most ultimately attribute its
validity to unknown constraints on initial conditions or
measurements, though some appeal to external
perturbations, to cosmology or to unknown features of
quantum mechanics.

An argument for the Second Law from around 1900, still
reproduced in many textbooks, is that if a system is ergodic
then it will visit all its possible states, and the vast majority of
these will look random. But only very special kinds of
systems are in fact ergodic, and even in such systems, the
time necessary to visit a significant fraction of all possible
states is astronomically long. Another argument for the
Second Law, arising from work in the 1930s and 1940s,
particularly on systems of hard spheres, is based on the
notion of instability with respect to small changes in initial
conditions. The argument suffers however from the same
difficulties as the ones for chaos theory discussed in Chapter
6 and does not in the end explain in any real way the origins
of randomness, or the observed validity of the Second Law.

With the Second Law accepted as a general principle, there is
confusion about why systems in nature have not all
dissipated into complete randomness. And often the rather
absurd claim is made that all the order we see in the universe
must just be a fluctuation—leaving little explanatory power
for principles such as the Second Law.

â My explanation of the Second Law. What I say in this book
is not incompatible with much of what has been said about
the Second Law before; it is simply that I make more definite
some key points that have been left vague before. In
particular, I use notions of computation to specify what kinds
of initial conditions can reasonably be prepared, and what
kinds of measurements can reasonably be made. In a sense
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what I do is just to require that the operation of coarse
graining correspond to a computation that is less
sophisticated than the actual evolution of the system being
studied. (See also Chapters 10 and 12.)

â Biological systems and Maxwell’s demon. Unlike most
physical systems, biological systems typically seem capable
of spontaneously organizing themselves. And as a result,
even the original statements of the Second Law talked only
about “inanimate systems”. In the mid-1860s James Clerk
Maxwell then suggested that a demon operating at a
microscopic level could reduce the randomness of a system
such as a gas by intelligently controlling the motion of
molecules. For many years there was considerable confusion
about Maxwell’s demon. There were arguments that the
demon must use a flashlight that generates entropy. And
there were extensive demonstrations that actual biological
systems reduce their internal entropy only at the cost of
increases in the entropy of their environment. But in fact the
main point is that if the evolution of the whole system is to be
reversible, then the demon must store enough information to
reverse its own actions, and this limits how much the demon
can do, preventing it, for example, from unscrambling a large
system of gas molecules.

â Self-gravitating systems. The observed existence of
structures such as galaxies might lead one to think that any
large number of objects subject to mutual gravitational
attraction might not follow the Second Law and become
randomized, but might instead always form orderly clumps.
It is difficult to know, however, what an idealized self-
gravitating system would do. For in practice, issues such as
the limited size of a galaxy, its overall rotation, and the details
of stellar collisions all seem to have major effects on the
results obtained. (And it is presumably not feasible to do a
small-scale experiment, say in Earth orbit.) There are known
to be various instabilities that lead in the direction of
clumping and core collapse, but how these weigh against
effects such as the transfer of energy into tight binding of
small groups of stars is not clear. Small galaxies such as
globular clusters that contain less than a million stars seem to
exhibit a certain uniformity which suggests a kind of
equilibrium. Larger galaxies such as our own that contain
perhaps 100 billion stars often have intricate spiral or other
structure, whose origin may be associated with gravitational
effects, or may be a consequence of detailed processes of star
formation and explosion. (There is some evidence that older
galaxies of a given size tend to develop more regularities in
their structure.) Current theories of the early universe tend to
assume that galaxies originally began to form as a result of
density fluctuations of non-gravitational origin (and reflected

in the cosmic microwave background). But there is evidence
that a widespread fractal structure develops—with a
correlation function of the form —in the distribution of
stars in our galaxy, galaxies in clusters and clusters in
superclusters, perhaps suggesting the existence of general
overall laws for self-gravitating systems. (See also page 973.)

As mentioned on page 880, it so happens that my original
interest in cellular automata around 1981 developed in part
from trying to model the growth of structure in self-
gravitating systems. At first I attempted to merge and
generalize ideas from traditional areas of mathematical
physics, such as kinetic theory, statistical mechanics and field
theory. But then, particularly as I began to think about doing
explicit computer simulations, I decided to take a different
tack and instead to look for the most idealized possible
models. And in doing this I quickly came up with cellular
automata. But when I started to investigate cellular
automata, I discovered some very remarkable phenomena,
and I was soon led away from self-gravitating systems, and
into the process of developing the much more general science
in this book. Over the years, I have occasionally come back to
the problem of self-gravitating systems, but I have never
succeeded in developing what I consider to be a satisfactory
approach to them. 

â Cosmology and the Second Law. In the standard big bang
model it is assumed that all matter in the universe was
initially in completely random thermal equilibrium. But such
equilibrium implies uniformity, and from this it follows that
the initial conditions for the gravitational forces in the
universe must have been highly regular, resulting in simple
overall expansion, rather than random expansion in some
places and contraction in others. As I discuss on page 1026 I
suspect that in fact the universe as a whole probably had
what were ultimately very simple initial conditions, and it is
just that the effective rules for the evolution of matter led to
rapid randomization, whereas those for gravity did not.

â Alignment of time in the universe. Evidence from
astronomy clearly suggests that the direction of irreversible
processes is the same throughout the universe. The reason for
this is presumably that all parts of the universe are
expanding—with the local consequence that radiation is
more often emitted than absorbed, as evidenced by the fact
that the night sky is dark. Olbers’ paradox asks why one does
not see a bright star in every direction in the night sky. The
answer is that locally stars are clumped, and light from stars
further away is progressively red-shifted to lower energy.
Focusing a larger and larger distance away, the light one sees
was emitted longer and longer ago. And eventually one sees
light emitted when the universe was filled with hot opaque

r -1.8
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gas—now red-shifted to become the 2.7K cosmic microwave
background.

â Poincaré recurrence. Systems of limited size that contain
only discrete elements inevitably repeat their evolution after
a sufficiently long time (see page 258). In 1890 Henri Poincaré
established the somewhat less obvious fact that even
continuous systems also always eventually get at least
arbitrarily close to repeating themselves. This discovery led
to some confusion in early interpretations of the Second Law,
but the huge length of time involved in a Poincaré recurrence
makes it completely irrelevant in practice.

â Page 446 · Billiards. The discrete system I consider here is
analogous to continuous so-called billiard systems consisting
of circular balls in the plane. The simplest case involves one
ball bouncing around in a region of a definite shape. In a
rectangular region, the position is given by 
and every point will be visited if the parameters have
irrational ratios. In a region that contains fixed circular
obstructions, the motion can become sensitively dependent
on initial conditions. (This setup is similar to a so-called
Lorentz gas.) For a system of balls in a region with cyclic
boundaries, a complicated proof due to Yakov Sinai from the
1960s purports to show that every ball eventually visits every
point in the region, and that certain simple statistical
properties of trajectories are consistent with randomness.
(See also page 971.)

â Page 449 · Entropy of particles in a box. The number of
possible states of a region of  cells containing  particles is

. In the large size limit, the logarithm of this
can be approximated by . 

â Page 457 · Periods in rule 37R. With a system of size , the
maximum possible repetition period is . In actuality,
however, the periods are considerably shorter. With all cells
0 on one step, and a block of nonzero cells on the next step,
the periods are for example: : ; : ; :

; : ; : irregular ( ; peaks at
); : irregular ( ;  for ;

 for ). With completely random initial
conditions, there are great fluctuations, but a typical period
is around . 

Conserved Quantities and Continuum Phenomena

â Physics. The quantities in physics that so far seem to be
exactly conserved are: energy, momentum, angular
momentum, electric charge, color charge, lepton number (as
well as electron number, muon number and  lepton
number) and baryon number.

â Implementation. Whether a -color cellular automaton with
range  conserves total cell value can be determined from 

where  can be taken to be , and perhaps smaller. Among
the 256 elementary cellular automata just 5 conserve total cell
value. Among the  ,  rules 428 do, and of these 2
are symmetric, and 6 are reversible, and all these are just shift
and identity rules. 

â More general conserved quantities. Some rules conserve not
total numbers of cells with given colors, but rather total
numbers of blocks of cells with given forms—or
combinations of these. The pictures below show the simplest
quantities of these kinds that end up being conserved by
various elementary rules.

Among the 256 elementary rules, the total numbers that have
conserved quantities involving at most blocks of lengths 1
through 10 are . 

Rules that show complicated behavior usually do not seem to
have conserved quantities, and this is true for example of
rules 30, 90 and 110, at least up to blocks of length 10.

One can count the number of occurrences of each of the 
possible blocks of length  in a given state using

Conserved quantities of the kind discussed here are then of
the form  where  is some fixed list. A way to find
candidates for  is to compute 

for progressively larger  and , and to see what lists
continue to appear. For block size ,  lists will always
appear as a result of trivial conserved quantities. (With ,
for ,  represents conservation of the total number of
cells, regardless of color, while for ,  represents
the same thing, while  represents the fact that in
going along in any state the number of black-to-white
transitions must equal the number of white-to-black ones.) If
more than  lists appear, however, then some must
correspond to genuine non-trivial conserved quantities. To
identify any such quantity with certainty, it turns out to be
enough to look at the  states where no block of length
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 appears more than once (and perhaps even just
some fairly small subset of these).

(See also page 981.)

â Other conserved quantities. The conserved quantities
discussed so far can all be thought of as taking values
assigned to blocks of different kinds in a given state and then
just adding them up as ordinary numbers. But one can also
imagine using other operations to combine such values.
Addition modulo  can be handled by inserting 
in  in the previous note. And doing this shows for
example that rule 150 conserves the total number of black
cells modulo 2. But in general not many additional conserved
quantities are found in this way. One can also consider
combining values of blocks by the multiplication operation in
a group—and seeing whether the conjugacy class of the
result is conserved. 

â PDEs. In the early 1960s it was discovered that certain
nonlinear PDEs support an infinite number of distinct
conserved quantities, associated with so-called integrability
and the presence of solitons. Systematic methods now exist to
find conserved quantities that are given by integrals of
polynomials of any given degree in the dependent variables
and their derivatives. Most randomly chosen PDEs appear,
however, to have no such conserved quantities.

â Local conservation laws. Whenever a system like a cellular
automaton (or PDE) has a global conserved quantity there
must always be a local conservation law which expresses the
fact that every point in the system the total flux of the
conserved quantity into a particular region must equal the
rate of increase of the quantity inside it. (If the conserved
quantity is thought of like charge, the flux is then current.) In
any 1D ,  cellular automaton, it follows from the
basic structure of the rule that one can tell what the difference
in values of a particular cell on two successive steps will be
just by looking at the cell and its immediate neighbor on each
side. But if the number of black cells is conserved, then one
can compute this difference instead by defining a suitable
flux, and subtracting its values on the left and right of the
cell. What the flux should be depends on the rule. For rule
184, it can be taken to be 1 for each  block, and to be 0
otherwise. For rule 170, it is 1 for both  and . For rule 150,
it is 1 for  and , with all computations done modulo 2. In
general, if the global conserved quantity involves blocks of
size , the flux can be computed by looking at blocks of size

. What the values for these blocks should be can be
found by solving a system of linear equations; that a solution
must exist can be seen by looking at the de Bruijn network
(see page 941), with nodes labelled by size  blocks,

and connections by value differences between size  blocks
at the center of the possible size  blocks. (Note that the
same basic kind of setup works in any number of
dimensions.)

â Block cellular automata. With a rule of the form
 the

evolution of a block cellular automaton with blocks of size 
can be implemented using

Starting with a single black cell, none of the ,  block
cellular automata generate anything beyond simple nested
patterns. In general, there are  possible rules for block
cellular automata with  colors and blocks of size . Of these,

 are reversible. For , the number of rules that
conserve the total number of black cells can be computed
from  as . The
number of these rules that are also reversible is

. In general, a block cellular automaton is
reversible only if its rule simply permutes the  possible
blocks.

Compressing each block into a single cell, and  steps into
one, any block cellular automaton with  colors and block
size  can be translated directly into an ordinary cellular
automaton with  colors and range . 

â Page 461 · Block rules. These pictures show the behavior of
rule (c) starting from some special initial conditions. 

The repetition period with a total of  cells can be  steps.
With random initial conditions, the period is typically up to
about . Starting with a block of  black cells, the period
can get close to this. For , , for example, it is
31,300. 

Note that even in rule (b) wraparound phenomena can lead
to repetition periods that increase rapidly with  (e.g. 4820
for , ), but presumably not exponentially.

In rule (d), the repetition periods can typically be larger than
in rule (c): e.g. 803,780 for , .

â Page 464 · Limiting procedures. Several different limiting
procedures all appear to yield the same continuum behavior
for the cellular automata shown here. In the pictures on this
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page a large ensemble of different initial conditions is
considered, and the density of each individual cell averaged
over this ensemble is computed. In a more direct analogy to
actual physical systems, one would consider instead a very
large number of cells, then compute the density in a single
state of the system by averaging over regions that contain
many cells but are nevertheless small compared to the size of
the whole system.

â PDE approximations. Cellular automaton (d) in the main
text can be viewed as minimal discrete approximations to the
diffusion equation. The evolution of densities in the
ensemble average is analogous to a traditional finite
difference method with a real number at each site. The
cellular automaton itself uses in effect a distributed
representation of the density.

â Diffusion equation. In an appropriate limit the density
distribution for cellular automaton (d) appears to satisfy the
usual diffusion equation  discussed on
page 163. The solution to this equation with an impulse
initial condition is , and with a block from  to 
it is .

â Derivation of the diffusion equation. With some appropriate
assumptions, it is fairly straightforward to derive the usual
diffusion equation from a cellular automaton. Let the density
of black cells at position  and time  be , where this
density can conveniently be computed by averaging over
many instances of the system. If we assume that the density
varies slowly with position and time, then we can make
series expansions such as

where the coordinates are scaled so that adjacent cells are at
positions , , , etc. If we then assume perfect
underlying randomness, the density at a particular position
must be given in terms of the densities at neighboring
positions on the previous step by 

Density conservation implies that , while left-
right symmetry implies . And from this it follows that

Performing a series expansion then yields

which in turn gives exactly the usual 1D diffusion equation
, where  is the diffusion coefficient for

the system. I first gave this derivation in 1986, together with
extensive generalizations.

â Page 464 · Non-standard diffusion. To get ordinary diffusion
behavior of the kind that occurs in gases—and is described
by the diffusion equation—it is in effect necessary to have

perfect uncorrelated randomness, with no structure that
persists too long. But for example in the rule (a) picture on
page 463 there is in effect a block of solid that persists in the
middle—so that no ordinary diffusion behavior is seen. In
rule (c) there is considerable apparent randomness, but it
turns out that there are also fluctuations that last too long to
yield ordinary diffusion. And thus for example whenever
there is a structure containing  identical cells (as on page
462), this typically takes about  steps to decay away. The
result is that on page 464 the limiting form of the average
behavior does not end up being an ordinary Gaussian.

â Conservation of vector quantities. Conservation of the total
number of colored cells is analogous to conservation of a
scalar quantity such as energy or particle number. One can
also consider conservation of a vector quantity such as
momentum which has not only a magnitude but also a
direction. Direction makes little sense in 1D, but is
meaningful in 2D. The 2D cellular automaton used as a
model of an idealized gas on page 446 provides an example
of a system that can be viewed as conserving a vector
quantity. In the absence of fixed scatterers, the total fluxes of
particles in the horizontal and the vertical directions are
conserved. But in a sense there is too much conservation in
this system, and there is no interaction between horizontal
and vertical motions. This can be achieved by having more
complicated underlying rules. One possibility is to use a
hexagonal rather than square grid, thereby allowing six
particle directions rather than four. On such a grid it is
possible to randomize microscopic particle motions, but
nevertheless conserve overall momenta. This is essentially
the model used in my discussion of fluids on page 378. 

Ultimate Models for the Universe

â History of ultimate models. From the earliest days of Greek
science until well into the 1900s, it seems to have often been
believed that an ultimate model of the universe was not far
away. In antiquity there were vague ideas about everything
being made of elements like fire and water. In the 1700s,
following the success of Newtonian mechanics, a common
assumption seems to have been that everything (with the
possible exception of light) must consist of tiny corpuscles
with gravity-like forces between them. In the 1800s the
notion of fields—and the ether—began to develop, and in the
1880s it was suggested that atoms might be knotted vortices
in the ether (see page 1044). When the electron was
discovered in 1897 it was briefly thought that it might be the
fundamental constituent of everything. And later it was
imagined that perhaps electromagnetic fields could underlie
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everything. Then after the introduction of general relativity
for the gravitational field in 1915, there were efforts,
especially in the 1930s, to introduce extensions that would
yield unified field theories of everything (see page 1028). By
the 1950s, however, an increasing number of subatomic
particles were being found, and most efforts at unification
became considerably more modest. In the 1960s the quark
model began to explain many of the particles that were seen.
Then in the 1970s work in quantum field theory encouraged
the use of gauge theories and by the late 1970s the so-called
Standard Model had emerged, with the Weinberg-Salam
SU(2) U(1) gauge theory for weak interactions and
electromagnetism, and the QCD SU(3) gauge theory for
strong interactions. The discoveries of the c quark,  lepton
and b quark were largely unexpected, but by the late 1970s
there was widespread enthusiasm for the idea of a single
“grand unified” gauge theory, based say on SU(5), that
would explain all forces except gravity. By the mid-1980s
failure to observe expected proton decay cast doubts on
simple versions of such models, and various possibilities
based on supersymmetry and groups like SO(10) were
considered. Occasional attempts to construct quantum
theories of gravity had been made since the 1930s, and in the
late 1980s these began to be pursued more vigorously. In the
mid-1980s the discovery that string theory could be given
various mathematical features that were considered desirable
made it emerge as the main hope for an ultimate “theory of
everything”. But despite all sorts of elegant mathematical
work, the theory remains rather distant from observed
features of our universe. In some parts of particle physics, it
is still sometimes claimed that an ultimate theory is not far
away, but outside it generally seems to be assumed that
physics is somehow instead an endless frontier—that will
continue to yield a stream of surprising and increasingly
complex discoveries forever—with no ultimate theory ever
being found.

â Theological implications. Some may view an ultimate model
of the universe as “leaving no room for a god”, while others
may view it as a direct reflection of the existence of a god. In
any case, knowing a complete and ultimate model does make
it impossible to have miracles or divine interventions that
come from outside the laws of the universe—though
working out what will happen on the basis of these laws may
nevertheless be irreducibly difficult.

â Origins of physical models. Considering the reputation of
physics as an empirical science, it is remarkable how many
significant theories were in fact first constructed on largely
aesthetic grounds. Notable examples include Maxwell’s
equations for electromagnetism (1880s), general relativity

(1915), the Dirac equation for relativistic electrons (1928), and
QCD (early 1970s). This history makes it seem more plausible
that one might be able to come up with an ultimate model of
physics on largely aesthetic grounds, rather than mainly by
working from detailed experimental observations.

â Simplicity in scientific models. To curtail absurdly
complicated early scientific models Occam’s razor principle
that “entities should not be multiplied beyond necessity”
was introduced in the 1300s. This principle has worked well
in physics, where it has often proven to be the case, for
example, that out of all possible terms in an equation the only
ones that actually occur are the very simplest. But in a field
like biology, the principle has usually been regarded as much
less successful. For many complicated features are seen in
biological organisms, and when there have been guesses of
simple explanations for them, these have often turned out to
be wrong. Much of what is seen is probably a reflection of
complicated details of the history of biological evolution. But
particularly after the discoveries in this book it seems likely
that at least some of what appears complicated may actually
be produced by very simple underlying programs—which
perhaps occur because they were the first to be tried, or are
the most efficient or robust. Outside of natural science,
Occam’s principle can sometimes be useful—typically
because simplicity is a good assumption in some aspect of
human behavior or motivation. In looking at well-developed
technological systems or human organizations simplicity is
also quite often a reasonable assumption—since over the
course of time parts that are complicated or difficult to
understand will tend to have been optimized away. 

â Numerology. Ever since the Pythagoreans many attempts to
find truly ultimate models of the universe have ended up
centering on derivations of numbers that are somehow
thought to be characteristic of the universe. In the past century,
the emphasis has been on physical constants such as the fine
structure constant , and usually the idea is
that such constants arise directly from counting objects of
some specified type using traditional discrete mathematics. A
notable effort along these lines was made by Arthur
Eddington in the mid-1930s, and certainly over the past
twenty or so years I have received a steady stream of mail
presenting such notions with varying degrees of obscurity and
mysticism. But while I believe that every feature of our
universe does indeed come from an ultimate discrete model, I
would be very surprised if the values of constants which
happen to be easy for us to measure in the end turn out to be
given by simple traditional mathematical formulas.

â Emergence of simple laws. In statistical physics it is seen
that universal and fairly simple overall laws often emerge
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even in systems whose underlying molecular or other
structure can be quite complicated. The basic origin of this
phenomenon is the averaging effect of randomness discussed
in Chapter 7 (technically, it is the survival only of leading
operators at renormalization group fixed points). The same
phenomenon is also seen in quantum field theory, where it is
essentially a consequence of the averaging effect of quantum
fluctuations, which have a direct mathematical analog to
statistical physics.

â Apparent simplicity. Given any rules it is always possible to
develop a form of description in which these rules will be
considered simple. But what is interesting to ask is whether
the underlying rules of the universe will seem simple—or
special, say in their elegance or symmetry—with respect to
forms of description that we as humans currently use. 

â Mechanistic models. Until quite recently, it was generally
assumed that if one were able to get at the microscopic
constituents of the universe they would look essentially like
small-scale analogs of objects familiar from everyday life.
And so, for example, the various models of atoms from the
end of the 1800s and beginning of the 1900s were all based on
familiar mechanical systems. But with the rise of quantum
mechanics it came to be believed throughout mainstream
physics that any true fundamental model must be abstract
and mathematical—and never ultimately amenable to any
kind of direct mechanistic description. Occasionally there
have been mechanistic descriptions used—as in the parton
and bag models, and various continuum models of high-
energy collisions—but they have typically been viewed only
as convenient rough approximations. (Feynman diagrams
may also seem superficially mechanistic, but are really just
representations of quite abstract mathematical formulas.)
And indeed since at least the 1960s mechanistic models have
tended to carry the stigma of uninformed amateur science.

With the rise of computers there began to be occasional
discussion—though largely outside of mainstream science—
that the universe might have a mechanism related to
computers. Since the 1950s science fiction has sometimes
featured the idea that the universe or some part of it—such as
the Earth—could be an intentionally created computer, or
that our perception of the universe could be based on a
computer simulation. Starting in the 1950s a few computer
scientists considered the idea that the universe might have
components like a computer. Konrad Zuse suggested that it
could be a continuous cellular automaton; Edward Fredkin
an ordinary cellular automaton (compare page 1027). And
over the past few decades—normally in the context of
amateur science—there have been a steady stream of systems
like cellular automata constructed to have elements

reminiscent of observed particles or forces. From the point of
view of mainstream physics, such models have usually
seemed quite naive. And from what I say in the main text, no
such literal mechanistic model can ever in the end
realistically be expected to work. For if an ultimate model is
going to be simple, then in a sense it cannot have room for all
sorts of elements that are immediately recognizable in terms
of everyday known physics. And instead I believe that what
must happen relies on the phenomena discovered in this
book—and involves the emergence of complex properties
without any obvious underlying mechanistic set up.
(Compare page 860.) 

â The Anthropic Principle. It is sometimes argued that the
reason our universe has the characteristics it does is because
otherwise an intelligence such as us could not have arisen to
observe it. But to apply such an argument one must among
other things assume that we can imagine all the ways in
which intelligence could conceivably operate. Yet as we have
seen in this book it is possible for highly complex behavior—
ultimately not dissimilar to intelligence—to arise from simple
programs in ways that we never came even close to
imagining. And indeed, as we discuss in Chapter 12, it seems
likely that above a fairly low threshold the vast majority of
underlying rules can in fact in some way or another support
arbitrarily complex computations—potentially allowing
something one might call intelligence in a vast range of very
different universes. (See page 822.)

â Physics versus mathematics. Theoretical physics can be
viewed as taking physical input in the form of models and
then using mathematics to work out the consequences. If I
am correct that there is a simple underlying program for the
universe, then this means that theoretical physics must at
some level have only a very small amount of true physical
input—and the rest must in a sense all just be mathematics.

â Initial conditions. To find the behavior of the universe one
potentially needs to know not only its rule but also its initial
conditions. Like the rule, I suspect that the initial conditions
will turn out to be simple. And ultimately there should be
traces of such simplicity in, say, the distribution of galaxies or
the cosmic microwave background. But ideas like those on
page 1055—as well as inflation—tend to suggest that we
currently see only a tiny fraction of the whole universe,
making it very difficult for example to recognize overall
geometrical regularities. And it could also be that even
though there might ultimately have been simple initial
conditions, the current phase of our universe might be the
result of some sequence of previous phases, and so
effectively have much more complicated initial conditions.
(Proposals discussed in quantum cosmology since the 1980s
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that for example just involve requiring the universe to satisfy
final but not initial boundary condition constraints do not fit
well into my kinds of models.)

â Consequences of an ultimate model. Even if one knows an
ultimate model for the universe, there will inevitably be
irreducible difficulty in working out all its consequences.
Indeed, questions like “does there exist a way to transmit
information faster than light?” may boil down to issues
analogous to whether it is possible to construct a
configuration that has a certain property in, say, the rule 110
cellular automaton. And while some such questions may be
answered by fairly straightforward computational or
mathematical means, there will be no upper bound on the
amount of effort that it could take to answer any particular
question.

â Meaning of the universe. If the whole history of our
universe can be obtained by following definite simple rules,
then at some level this history has the same kind of character
as a construct such as the digit sequence of . And what this
suggests is that it makes no more or less sense to talk about
the meaning of phenomena in our universe as it does to talk
about the meaning of phenomena in the digit sequence of .

The Nature of Space

â History of discrete space. The idea that matter might be
made up of discrete particles existed in antiquity (see page
876), and occasionally the notion was discussed that space
might also be discrete—and that this might for example be a
way of avoiding issues like Zeno’s paradox. In 1644 René
Descartes proposed that space might initially consist of an
array of identical tiny discrete spheres, with motion then
occurring through chains of these spheres going around in
vortices—albeit with pieces being abraded off. But with the
rise of calculus in the 1700s all serious fundamental models
in physics began to assume continuous space. In discussing
the notion of curved space, Bernhard Riemann remarked in
1854 that it would be easier to give a general mathematical
definition of distance if space were discrete. But since
physical theories seemed to require continuous space, the
necessary new mathematics was developed and almost
universally used—though for example in 1887 William
Thomson (Kelvin) did consider a discrete foam-like model
for the ether (compare page 988). Starting in 1930,
difficulties with infinities in quantum field theory again led
to a series of proposals that spacetime might be discrete.
And indeed by the late 1930s this notion was fairly widely
discussed as a possible inevitable feature of quantum
mechanics. But there were problems with relativistic

invariance, and after ideas of renormalization developed in
the 1940s, discrete space seemed unnecessary, and has been
out of favor ever since. Some non-standard versions of
quantum field theory involving discrete space did however
continue to be investigated into the 1960s, and by then a few
isolated other initiatives had arisen that involved discrete
space. The idea that space might be defined by some sort of
causal network of discrete elementary quantum events arose
in various forms in work by Carl von Weizsäcker (ur-
theory), John Wheeler (pregeometry), David Finkelstein
(spacetime code), David Bohm (topochronology) and Roger
Penrose (spin networks; see page 1055). General arguments
for discrete space were also sometimes made—notably by
Edward Fredkin, Marvin Minsky and to some extent
Richard Feynman—on the basis of analogies to computers
and in particular the idea that a given region of space
should contain only a finite amount of information. In the
1980s approximation schemes such as lattice gauge theory
and later Regge calculus (see page 1054) that take space to
be discrete became popular, and it was occasionally
suggested that versions of these could be exact models.
There have been a variety of continuing initiatives that
involve discrete space, with names like combinatorial
physics—but most have used essentially mechanistic models
(see page 1026), and none have achieved significant
mainstream acceptance. Work on quantum gravity in the
late 1980s and 1990s led to renewed interest in the
microscopic features of spacetime (see page 1054). Models
that involve discreteness have been proposed—most often
based on spin networks—but there is usually still some
form of continuous averaging present, leading for example
to suggestions very different from mine that perhaps this
could lead to the traditional continuum description through
some analog of the wave-particle duality of elementary
quantum mechanics. I myself became interested in the idea
of completely discrete space in the mid-1970s, but I could
not find a plausible framework for it until I started thinking
about networks in the mid-1980s.

â Planck length. Even in existing particle physics it is
generally assumed that the traditional simple continuum
description of space must break down at least below about
the Planck length  meters—since at
this scale dimensional analysis suggests that quantum effects
should be comparable in magnitude to gravitational ones.

â Page 472 · Symmetry. A system like a cellular automaton
that consists of a large number of identical cells must in effect
be arranged like a crystal, and therefore must exhibit one of
the limited number of possible crystal symmetries in any
particular dimension, as discussed on page 929. And even a
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generalized cellular automaton constructed say on a Penrose
tiling still turns out to have a discrete spatial symmetry.

â Page 474 · Space and its contents. A number of somewhat
different ideas about space were discussed in antiquity.
Around 375 BC Plato vaguely suggested that the universe
might consist of large numbers of abstract polyhedra. A little
later Aristotle proposed that space is set up so as to provide a
definite place for everything—and in effect to force it there.
But in geometry as developed by Euclid there was at least a
mathematical notion of space as a kind of uniform
background. And by sometime after 300 BC the Epicureans
developed the idea of atoms of matter existing in a mostly
featureless void of space. In the Middle Ages there was
discussion about how the non-material character of God
might fit in with ideas about space. In the early 1600s the
concept of inertia developed by Galileo implied that space
must have a certain fundamental uniformity. And with the
formulation of mechanics by Isaac Newton in 1687 space
became increasingly viewed as something purely abstract,
quite different in character from material objects which exist
in it. Philosophers had meanwhile discussed matter—as
opposed to mind—being something characterized by having
spatial extent. And for example in 1643 Thomas Hobbes
suggested that the whole universe might be made of the
same continuous stuff, with different densities of it
corresponding to different materials, and geometry being just
an abstract idealization of its properties. But in the late 1600s
Gottfried Leibniz suggested instead that everything might
consist of discrete monads, with space emerging from the
pattern of relative distances between them. Yet with the
success of Newtonian mechanics such ideas had by the late
1700s been largely forgotten—leading space almost always to
be viewed just in simple abstract geometrical terms. The
development of non-Euclidean geometry in the mid-1800s
nevertheless suggested that even at the level of geometry
space could in principle have a complicated structure. But in
physics it was still assumed that space itself must have a
standard fixed Euclidean form—and that everything in the
universe must just exist in this space. By the late 1800s,
however, it was widely believed that in addition to ordinary
material objects, there must throughout space be a fluid-like
ether with certain mechanical and electromagnetic
properties. And in the 1860s it was even suggested that
perhaps atoms might just correspond to knots in this ether
(see page 1044). But this idea soon fell out of favor, and when
relativity theory was introduced in 1905 it emphasized
relations between material objects and in effect always
treated space as just some kind of abstract background, with
no real structure of its own. But in 1915 general relativity

introduced the idea that space could actually have a varying
non-Euclidean geometry—and that this could represent
gravity. Yet it was still assumed that matter was something
different—that for example had to be represented separately
by explicit terms in the Einstein equations. There were
nevertheless immediate thoughts that perhaps at least
electromagnetism could be like gravity and just arise from
features of space. And in 1918 Hermann Weyl suggested that
this could happen through local variations of scale or
“gauge” in space, while in the 1920s Theodor Kaluza and
Oskar Klein suggested that it could be associated with a fifth
spacetime dimension of invisibly small extent. And from the
1920s to the 1950s Albert Einstein increasingly considered the
possibility that there might be a unified field theory in which
all matter would somehow be associated with the geometry
of space. His main specific idea was to allow the metric of
spacetime to be non-symmetric (see page 1052) and perhaps
complex—with its additional components yielding
electromagnetism. And he then tried to construct nonlinear
field equations that would show no singularities, but would
have solutions (perhaps analogous to the geons discussed on
page 1054) that would exhibit various discrete features
corresponding to particles—and perhaps quantum effects.
But with the development of quantum field theory in the
1920s and 1930s most of physics again treated space as fixed
and featureless—though now filled with various types of
fields, whose excitations were set up to correspond to
observed types of particles. Gravity has never fit very well
into this framework. But it has always still been expected that
in an ultimate quantum theory of gravity space will have to
have a structure that is somehow like a quantum field. But
when quantum gravity began to be investigated in earnest in
the 1980s (see page 1054) most efforts concentrated on the
already difficult problem of pure gravity—and did not
consider how matter might enter. In the development of
ordinary quantum field theories, supergravity theories
studied in the 1980s did nominally support particles
identified with gravitons, but were still formulated on a fixed
background spacetime. And when string theory became
popular in the 1980s the idea was again to have strings
propagating in a background spacetime—though it turned
out that for consistency this spacetime had to satisfy the
Einstein equations. Consistency also typically required the
basic spacetime to be 10-dimensional—with the reduction to
observed 4D spacetime normally assumed to occur through
restriction of the other dimensions to some kind of so-called
Calabi-Yau manifold of small extent, associated excitations
with various particles through an analog of the Kaluza-Klein
mechanism. It has always been hoped that this kind of
seemingly arbitrary setup would somehow automatically
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emerge from the underlying theory. And in the late 1990s
there seemed to be some signs of this when dualities were
discovered in various generalized string theories—notably
for example between quantum particle excitations and
gravitational black hole configurations. So while it remains
impossible to work out all the consequences of string
theories, it is conceivable that among the representations of
such theories there might be ones in which matter can be
viewed as just being associated with features of space.

Space as a Network

â Page 476 · Trivalent networks. With  nodes and 3
connections at each node a network must always have an
even number of nodes, and a total of  connections. Of all
possible such networks, most large ones end up being
connected. The number of distinct such networks for even 
from 2 to 10 is . If no self connections are
allowed then these numbers become , while if
neither self nor multiple connections are allowed (yielding
what are often referred to as cubic or 3-regular graphs), the
numbers become ,
or asymptotically . (For
symmetric graphs see page 1032.) If one requires the
networks to be planar the numbers are

. If one looks at
subnetworks with dangling connections, the number of these
up to size 10 is , or

 if no self or multiple
connections are allowed (see also page 1039). 

â Properties of networks. Over the past century or so a
variety of global properties of networks have been studied.
Typical ones include:

äEdge connectivity: the minimum number of connections 
that must be removed to make the network disconnected. 

äDiameter: the maximum distance between any two nodes 
in the network. The pictures below show the largest planar 
trivalent networks with diameters 1, 2 and 3, and the 
largest known ones with diameters 4, 5 and 6. 

äCircumference: the length of the longest cycle in the 
network. Although difficult to determine in particular 
cases, many networks allow so-called Hamiltonian cycles 
that include every node. (Up to 8 nodes, all 8 trivalent 
networks have this property; up to 10 nodes 25 of 27 do.)

äGirth: the length of the shortest cycle in the network. The 
pictures below show the smallest trivalent networks with 
girths 3 through 8 (so-called cages). Girth can be relevant 
in seeing whether a particular cluster can ever occur in 
network. 

äChromatic number: the minimum of colors that can be 
assigned to nodes so that no adjacent nodes end up the 
same color. It follows from the Four-Color Theorem that 
the maximum for planar networks is 4. It turns out that for 
all trivalent networks the maximum is also 4, and is almost 
always 3.

â Regular polytopes. In 3D, of the five regular polyhedra, only
the tetrahedron, cube and dodecahedron have three edges
meeting at each vertex, corresponding to a trivalent network.
(Of the 13 additional Archimedean solids, 7 yield trivalent
networks.) In 4D the six regular polytopes have 4, 4, 6, 8, 4
and 12 edges meeting at each vertex, and in higher
dimensions the simplex (  vertices) and hypercube (
vertices) have  edges meeting at each vertex, while the co-
cube (  vertices) has . (See also symmetric graphs
on page 1032, and page 929.) 

â Page 476 · Generalizations. Almost any kind of generalized
network can be emulated by a trivalent network just by
introducing more nodes. As indicated in the main text,
networks with more than three connections at each node can
be emulated by combining nodes into groups, and looking
only at the connections between groups. Networks with
colored nodes can be emulated by representing each color of
node by a fixed group of nodes. Going beyond ordinary
networks, one can consider hypernetworks in which
connections join not just pairs of nodes, but larger numbers
of nodes. Such hypernetworks are specified by adjacency
tensors rather than adjacency matrices. But it is possible to
emulate any hypernetwork by having each generalized
connection correspond to a group of connections in an
ordinary trivalent network.

â Maintaining simple rules. An important reason for
considering models based solely on trivalent networks is that
they allow simpler evolution rules to be maintained (see page
508). If nodes can have more than three connections, then
they will often be able to evolve to have any number of
connections—in which case one must give what is in effect an
infinite set of rules to specify what to do for each number of
connections. 

n

3 n/2

n
{2, 5, 17, 71, 388}

{1, 2, 6, 20, 91}

{0, 1, 2, 5, 19, 85, 509, 4060, 41301, 510489}

( 6 n)!/ ( ( 3 n)! (2 n)! 288n 42)

{0, 1, 1, 3, 9, 32, 133, 681, 3893, 24809, 169206}

{2, 5, 7, 22, 43, 141, 373, 1270, 4053, 14671}

{1, 1, 2, 6, 10, 29, 64, 194, 531, 1733}

d + 1 2d

d
2 d 2 (d - 1)
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â Page 477 · 3D network. The 3D network (c) can be laid out in
space using  where 

The resulting structure is a cubic array of blocks with each
block containing 8 nodes. The shortest cycle that returns to a
particular node turns out to involve 10 edges. The structure
does not correspond to the way that chemical bonds are
arranged in any common crystalline materials, probably
because it would be likely to be mechanically unstable.

â Continuum limits. For all everyday purposes a region in a
network with enough nodes and an appropriate pattern of
connections can act just like ordinary continuous space. But
at a formal mathematical level this can happen rigorously
only in an infinite limit. And in general, there is no reason to
expect that all properties of the system (notably for example
the existence of particles) will be preserved by taking such a
limit. But in understanding the structure of space and
comparing to ordinary continuous space it is convenient to
imagine taking such a limit. Inevitably there are several
scales involved, and one can only expect continuum behavior
if one looks at scales intermediate between individual
connections in the underlying network and the overall size of
the whole network. Yet as I will discuss on pages 534 and
1050 even at such scales it is far from straightforward to see
how all the various well-studied properties of ordinary
continuous space (as embodied for example in the theory of
manifolds) can emerge from discrete underlying networks. 

â Page 478 · Definitions of distance. Any measure of
distance—whether in ordinary continuous space or
elsewhere—takes a pair of points and yields a number.
Several properties are normally assumed. First, that if the
points are identical the distance is zero, and if they are
different, it is a positive number. Second, that the distance
between points  and  is the same as between  and .
And third, that the so-called triangle inequality holds, so that
the distance  is no greater than the sum of the distances

 and . With distance on a network defined as the length
of shortest path between nodes one immediately gets all
three of these properties. And even though all distances
defined this way will be integers, they still make any network
formally correspond in mathematical terms to a metric space
(or strictly a path metric space). If the connections on the
underlying network are one-way (as in causal networks) then
one no longer necessarily gets the second property, and when

a continuum limit exists it can correspond to a (perhaps
discontinuous) section through a fiber bundle rather than to a
manifold. Note that as discussed on page 536 physical
measures of distance will always end up being based not just
on single paths in a network, but on the propagation of
something like a particle, which typically in effect requires
the presence of many paths. (See page 1048.)

â Page 478 · Definitions of dimension. The most obvious way
to define the dimension of a space is somehow to ask how
many parameters—or coordinates—are needed to specify a
point in it. But starting in the 1870s the discovery of
constructs like space-filling curves (see page 1127) led to
investigation of other definitions. And indeed there is some
reason to believe that around 1884 Georg Cantor may have
tried developing a definition based on essentially the idea
that I use here of looking at growth rates of volumes of
spheres (balls). But for standard continuous spaces this
definition is hard to make robust—since unlike in discrete
networks where one can define volume just by counting
nodes, defining volume in a continuous space requires
assigning a potentially arbitrary density function. And as a
result, in the late 1800s and early 1900s other definitions of
dimension were developed. What emerged as most popular
is topological dimension, in which one fills space with
overlapping balls, and asks what the minimum number that
ever have to overlap at any point will be. Also considered
was so-called Hausdorff dimension, which became popular
in connection with fractals in the 1980s (see page 933), and
which can have non-integer values. But for discrete networks
the standard definitions for both topological and Hausdorff
dimension give the trivial result 0. One can get more
meaningful results by thinking about continuum limits, but
the definition of dimension that I give in the main text seems
much more straightforward. Even here, there are however
some subtleties. For example, to find a definite volume
growth rate one does still need to take some kind of limit—
and one needs to avoid sampling too many or too few nodes
in the network. And just as with fractal dimensions discussed
on page 933 there are issues about whether a definite power
law for the growth rate will emerge, and how one should
average over results for different parts of the network. There
are some alternative approaches to defining dimension in
which some of these issues at least become less explicit. For
example, one can imagine not just forming a ball on the
network, but instead growing something like a cellular
automaton, and seeing how big a pattern it produces after
some number of steps. And similarly, one can for example
look at the statistics of random walks on the network. A
slightly different but still related approach is to study the

Array[x[8 {##}] &, {n, n, n}]
x[m : {_, _, _}] := {x1[m], x1[m+ 4],

x2[m+ {4, 2, 0}], x2[m+ {0, 6, 4}]}

x1[m : {_, _, _}] := Line[Map[# +m &, {{1, 0, 0}, {1, 1, 1},
{0, 2, 1}, {1, 1, 1}, {3, 1, 3}, {3, 0, 4}, {3, 1, 3}, {4, 2, 3}}]]

x2[{i_, j_, k_}] :=
x1[{-i - 4, - j - 2, k}] /. {a_, b_, c_} ! {-a, -b, c}

A B B A

AC
AB BC
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density of eigenvalues of the Laplace operator—which can
also be thought of as measuring the number of solutions to
equations giving linear constraints on numbers assigned to
connected nodes. More sophisticated versions of this involve
looking at invariants studied in topological field theory. And
there are potentially also definitions based for example on
considering geodesics and seeing how many linearly
independent directions can be defined with them. (Note that
given explicit coordinates, one can check whether one is in 
or more dimensions by asking for all possible points

and this should also work for sufficiently separated points on
networks. Still another related approach is to consider
coloring the edges of a network: if there are  possible
colors, all of which appear at every node, then it follows that

 coordinates can consistently be assigned to each node.)

â Page 478 · Counting of nodes. The number of nodes reached
by going out to network distance  (with ) from any
node in the networks on page 477 is (a) , (b)

, and (c)

In any trivalent network, the quantity  obtained by
adding up the numbers of nodes reached by going distance 
from each node must satisfy  and , where 
is the total number of nodes in the network. In addition, the
limit of  for large  must be . The values of  for all
other  will depend on the pattern of connections in the
network.

â Page 479 · Cycle lengths. The lengths of the shortest cycles
(girths) of the networks on page 479 are (a) 3, (b) 5, (c) 4, (d) 4,
(e) 3, (f) 5, (g) 6, (h) 10, (i) , (j) 3. Note that rules of the kind
discussed on page 508 which involve replacing clusters of
nodes can only apply when cycles in the cluster match those
in the network. 

â Page 479 · Volumes of spheres. See page 1050.

â Page 480 · Implementation. Networks are conveniently
represented by assigning a number to each node, then having
lists of rules which specify what nodes the connection from a
particular node go to. The tetrahedron network from page
476 is for example given in this representation by

The list of nodes reached by following up to  connections
from node  are then given by 

The network distance corresponding to the length of the
shortest path between two nodes is given by

â Finding layouts. One way to lay out a network  so that
network distances in it come as close as possible to ordinary
distances in -dimensional space, is just to search for values
of the  which minimize a quantity such as 

using for example  starting say with 
and all the other . Rarely is there a unique
minimum that can be found, but the approach nevertheless
seems to work fairly well whenever a good layout exists in a
particular number of dimensions. One can imagine
weighting different network distances differently, but usually
I have found that equal weightings work best. If one ignores
all constraints beyond network distance 1, then one is in
effect just trying to build the network out of identical rigid
rods. It turns out that this is almost always possible even in
2D (though not in 1D); the only exception is the tetrahedron
network. And in fact very few trivalent structures are rigid,
in the sense the angles between rods are uniquely
determined. (In 3D, for example, this is true only for the
tetrahedron.)

â Hamming distances. In the so-called loop switching method
of routing messages in communications systems one lays out
a network on an -dimensional Boolean hypercube so that
the distance on the hypercube (equal to Hamming distance)
agrees with distance in the network. It is known that to
achieve this exactly,  must be at the least the number of
either positive or negative eigenvalues of the distance matrix
for the network, and can need to be as much as , where 
is the total number of nodes. 

â Continuous mathematics. Even though networks are discrete,
it is conceivable that network-based models can also be
formulated in terms of continuous mathematics, with a
network-like structure emerging for example from the pattern
of singularities or topology of continuous surfaces or functions.

The Relationship of Space and Time

â History. The idea of representing time graphically like space
has a long history—and was used for example by Nicholas
Oresme in the mid-1300s. In the 1700s and 1800s the idea of
position and time as just two coordinates was widespread in
mathematical physics—and this then led to notions like
“travelling in time” in H. G. Wells’s 1895 The Time Machine.
The mathematical framework developed for relativity theory
in the early 1900s (see page 1042) treated space and time very

d

Det[Table[( x[ i] - x[ j])�.�( x[ i] - x[ j]), {i, d + 3}, { j , d + 3}]] 2 0

d + 1

d

r r > 1
4 r - 4

3 r 2 /2 - 3 r /2 + 1
First[Select[4 r 3 /9 + 2 r 2 /3 +

{2, 5/3, 5/3} r - {10/9, 1, -4/9}, IntegerQ]]

f [r]
r

f [0] = n f [1] = 3 n n

f [r] r n2 f [r]
r

�

{1 ! {2, 3, 4}, 2 ! {1, 3, 4}, 3 ! {1, 2, 4}, 4 ! {1, 2, 3}}

n
i

NodeLists[g_, i_, n_] :=
NestList[Union[Flatten[# /. g]] &, {i}, n]

Distance[g_, {i_, j_}] := Length[NestWhileList[
Union[Flatten[# /. g]] &, {i}, ! MemberQ[#, j] &]] - 1

g

d
x[ i, k]

With[{n = Length[g]}, Apply[Plus,
Flatten[( Table[Distance[g, {i, j}], {i, n}, { j , n}]2 - Table[

Sum[( x[ i, k] - x[ j , k])2, {k, d}], {i, n}, { j , n}])2]]]

FindMinimum x[1, _] ! 0
x[_, _] ! Random[]

m

m

n - 1 n
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symmetrically, leading popular accounts of the theory to
emphasize a kind of fundamental equivalence between them
and to try to make this seem inevitable through rather
confusing thought experiments on such topics as idealized
trains travelling near the speed of light.

In the context of traditional mathematical equations there has
never been much reason to consider the possibility that space
and time might be fundamentally different. For typically space
and time are both just represented by abstract symbolic
variables, and the formal process of solving equations as a
function of position in space and as a function of time is
essentially identical. But as soon as one tries to construct more
explicit models of space and time one is immediately led to
consider the possibility that they may be quite different.

â Page 482 · Discreteness in time. In present-day physics, time,
like space, is always assumed to be perfectly continuous. But
experiments—the most direct of which are based on looking for
quantization in the measured decay times of very short-lived
particles—have only demonstrated continuity on scales longer
than about  seconds, and there is nothing to say that on
shorter scales time is not in fact discrete. (The possibility of a
discrete quantum of time was briefly discussed in the 1920s
when quantum mechanics was first being developed.)

â Page 483 · Network constraint systems. Cases (a), (f) and (p)
allow all networks that do not contain respectively cycles of
length 1 (self-loops), cycles of length 3 or less, and cycles of
length 5 or less. In cases where an infinite sequence of
networks is allowed, there are typically particular
subnetworks that can occur any number of times, making the
sizes of allowed networks form arithmetic progressions. In
cases (m), (n) and (o) respectively triangle, pentagon and
square subnetworks can be repeated.

The main text excludes templates that have no dangling
connections, and are thus themselves already complete
networks. There are 5 such templates involving nodes out to
distance one, but of these only 3 correspond to networks that
satisfy the constraint that around each node the network has
the same form as the template. Among templates involving
nodes out to distance two there are 106 that have no dangling
connections, and of these only 8 satisfy the constraints.

The main text considers only constraints based on a single
template. One can also allow each node to have a
neighborhood that corresponds to any of a set of templates.
For templates involving nodes out to distance one, there are
13 minimal sets in the sense of page 941, of which only 6
contain just one template, 6 contain two and 1 contains three. 

If one does allow dangling connections to be joined within a
single template, the results are similar to those discussed so

far. There are 52 possible templates involving nodes out to
distance two, of which 12 allow complete networks to be
formed, none forced to be larger than 12 nodes. There are 46
minimal sets, with the largest containing 4 templates, but
none forcing a network larger than 16 nodes.

â Symmetric graphs. The constraints in a network constraint
system require that the structure around each node agrees
with a template that contains some number of nodes. A
symmetric graph satisfies the same type of constraint, but
with the template being the whole network. The pictures
below show the smallest few symmetric graphs with 3
connections at each node (with up to 100 nodes there are still
only 37 such graphs; compare page 1029).

â Cayley graphs. As discussed on page 938, the structure of a
group can be represented by a Cayley graph where nodes
correspond to elements in the group, and connections specify
results of multiplying by generators. The transitivity of group
multiplication implies that Cayley graphs always have the
property of being symmetric (see above). The number of
connections at each node is fixed, and given by the number of
distinct generators and inverses. In cases such as the tetrahedral
group  there are 3 connections at each node. The relations
among the generators of a group can be thought of as
constraints defining the Cayley graph. As mentioned on page
938, there are finite groups that have simple relations but at least
very large Cayley graphs. For infinite groups, it is known (see
page 938) that in most cases Cayley graphs are locally like trees,
and so do not have finite dimension. It appears that only when
the group is nilpotent (so that certain combinations of elements
commute much as they do on a lattice) is there polynomial
growth in the Cayley graph and thus finite dimension. 

â Page 485 · Spacetime symmetric rules. With  and the
neighborhoods shown here, only the additive rules 90R,
105R, 150R and 165R are space-time symmetric. For larger 
and larger neighborhoods, there presumably begin to be non-
additive rules with this property.

Time and Causal Networks

â Causal networks. The idea of using networks to represent
interdependencies of events seems to have developed with
the systematization of manufacturing in the early 1900s—

10-26

A4

k = 2

k



F U N D A M E N T A L  P H Y S I C S N O T E S  F O R  C H A P T E R  9

1033

notably in the work of Frank and Lillian Gilbreth—and has
been popular since at least the 1940s. Early applications
included switching circuits, logistics planning, decision
analysis and general flowcharting. In the last few decades
causal networks have been widely used in system
specification methods such as Petri nets, as well as in
schemes for medical and other diagnosis. Since at least the
1960s, causal networks have also been discussed as
representations of connections between events in spacetime,
particularly in quantum mechanics (see page 1027). 

Causal networks like mine that are ultimately associated
with some evolution or flow of activity always have certain
properties. In particular, they can never contain loops, and
thus correspond to directed acyclic graphs. And from this it
follows for example that even the most circuitous path
between two nodes must be of finite length. 

Causal networks can also be viewed as Hasse diagrams of
partially ordered sets, as discussed on page 1040.

â Implementation. Given a list of successive positions of the
active cell, as from  (see
page 887), the network can be generated using

where nodes not yet found by explicit evolution are
indicated by . 

â Page 488 · Mobile automata. The special structure of mobile
automata of the type used here leads to several special features
in the causal networks derived from them. One of these is that
every node always has exactly 3 incoming and 3 outgoing
connections. Another feature is that there is always a path of
doubled connections (associated with the active cell) that visits
every node in some order. And in addition, the final network
must always be planar—as it is whenever it is derived from
the evolution of a local underlying 1D system.

â Computational compression. In the model for time
described here, it is noteworthy that in a sense an arbitrary
amount of underlying computation can take place between
successive moments in perceived time. 

â Page 496 · 2D mobile automata. As in 2D random walks,
active cells in 2D mobile automata often do not return to
positions they have visited before, with the result that no
causal connections end up being created. 

The Sequencing of Events in the Universe

â Implementation. Sequential substitution systems in which
only one replacement is ever done at each step can just be

implemented using  as described on page 893. Substitution
systems in which all replacements are done that are found to
fit in a left-to-right scan can be implemented as follows

with rules given as .

â Generating causal networks. If every element generated in
the evolution of a generalized substitution system is assigned
a unique number, then events can be represented for example
by —and from a list of such events a
causal network can be built up using

â The sequential limit. Even when the order of applying rules
does not matter, using the scheme of a sequential substitution
system will often give different results. If there is a tree of
possible replacements (as in ), then the sequential
substitution system in a sense does depth-first recursion in
the infinite tree, never returning from the single path it takes.
Other schemes are closer to breadth-first recursion.

â Page 502 · Rule (b). The maximum number of steps for
which the rule can be applied occurs with initial conditions
consisting of a white element followed by  black elements,
and in this case the number of steps is .

â String theory. The sequences of symbols I call strings here
have absolutely no direct connection to the continuous
deformable 1D objects known as strings in string theory. 

â String overlaps. The total numbers of strings with length 
and  colors that cannot overlap themselves are given by 

Up to reversal and interchange of  and , the first few overlap-
free strings with 2 colors are , , , , .

The shortest pairs of strings of 2 elements with no self- or
mutual overlaps are , ,

; there are a total of 13 such pairs with
strings up to length 5, and 85 with strings up to length 6. 

The shortest non-overlapping triple of strings is
 and its variants. There are a total

of 36 such triples with no string having length more than 6.

â Simulating mobile automata. Given a mobile automaton
like the one from page 73 with rules in the form used on page

Map[Last, MAEvolveList[rule, init, t]]

MAToNet[ list_] := Module[{u, j, k}, u[_] = ¥; Reverse[
Table[ j = list0i1; k = {u[ j - 1], u[ j], u[ j + 1]}; u[ j - 1] =

u[ j] = u[ j + 1] = i; i ! k, {i, Length[ list], 1, -1}]]]

¥

/.

GSSEvolveList[rule_, s_, n_] :=
NestList[GSSStep[rule, #] &, s, n]

GSSStep[rule_, s_] :=
g[rule, s, f [StringPosition[s, Map[First, rule]]]]

f [{}] = {}; f [s_] := Fold[If[Last[Last[#1]] > First[#2],
#1, Append[#1, #2]] &, {First[s]}, Rest[s]]

g[rule_, s_, {}] := s; g[rule_, s_, pos_] := StringReplacePart[
s, Map[StringTake[s, #] &, pos] /. rule, pos]

{"ABA" ! "BAAB", "BBBB" ! "AA"}

{4, 5} ! {11, 12, 13}

With[{u = Map[First, list]}, MapIndexed[Function[
{e, i}, First[ i] ! Map[( If[# === {}, ¥, #01, 11] &)[

Position[u, #]] &, Last[e]]], list]]

"A" ! "AA"

n
2n + n

n
k

a[0] = 1; a[n_] := k a[n - 1] - If[EvenQ[n], a[n/2], 0]

A B
A AB AAB AAAB AABB

{"A", "B"} {"AABB", "AABAB"}

{"AABB", "ABABB"}

{"AAABB", "ABABB", "ABAABB"}
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887—and behavior of any complexity—the following will
yield a causal-invariant substitution system that emulates it:

â Sequential cellular automata. Ordinary cellular automata are
set up so that every cell is updated in parallel at each step,
based on the colors of neighboring cells on the previous step.
But in analogy with generalized substitution systems, one can
also consider sequential cellular automata, in which cells are
updated sequentially rather than in parallel. The behavior of
such systems is usually very different from that of
corresponding ordinary cellular automata, mainly because in
sequential cellular automata the new color of a particular cell
can depend on new rather than old colors of neighboring cells. 

The pictures below show the behavior of several sequential
cellular automata with ,  elementary rules. In the
top picture of each pair every individual update is indicated
by a black dot. In the bottom picture each line represents one
complete step of evolution, including one update of each cell.
Note that in this representation, effects can propagate all the
way across the system in a single step.

Size dependence. Because effects can propagate all the way
across the system in a single step, the overall size, as well as
boundary conditions, for the system can be significant after
just a few steps, as illustrated in the pictures of rule 60 below.

Additive rules. Among elementary sequential cellular
automata, those with additive rules turn out to yield some of
the most complex behavior, as illustrated below. The top row
shows evolution with the boundary forced to be white; the
bottom row shows cyclic boundary conditions. Even though
the basic rule is additive, there seems to be no simple
traditional mathematical description of the results.

Updating orders. Somewhat different results are typically
obtained if one allows different updating orders. For each
complete update of a rule 90 sequential cellular automaton,
the pictures below show results with (a) left-to-right scan, (b)
random ordering of all cells, the same for each pass through
the whole system, (c) random ordering of all cells, different
for different passes, (d) completely random ordering, in
which a particular cell can be updated twice before other cells
have even been updated once.

Map[StringJoin, Map[{"AAABB", "ABABB", "ABAABB"}0
# + 11 &, Map[Insert[#011, 2, 2] !

Insert[#02, 11, 2, 2 +#02, 21] &, rule], {2}], {2}]

k = 2 r = 1

rule 45 rule 60 rule 90 rule 254

size 49 size 50 size 51

rule 60 rule 90 rule 165

(a) (b) (c) (d)
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History. Sequential cellular automata have a similar
relationship to ordinary cellular automata as implicit
updating schemes in finite difference methods have to
explicit ones, or as infinite impulse response digital filters
have to finite ones. There were several studies of sequential
or asynchronous cellular automata done following my work
on ordinary cellular automata in the early 1980s. 

Implementation. The following will update triples of cells in
the specified order by using the function :

A random ordering of  cells corresponds to a random
permutation of the form

â Intrinsic synchronization in cellular automata. Taking the
rules for an ordinary cellular automaton and applying them
sequentially will normally yield very different results. But it
turns out that there are variants on cellular automata in
which the rules can be applied in any order and the overall
behavior obtained—or at least the causal network—is always
the same. The picture below shows how this works for a
simple block cellular automaton. The basic idea is that to
each cell is added an arrow, and any pair of cells is updated
only when their arrows point at each other. This in a sense
forces cells to wait to be updated until the data they need is
ready. Note that the rules can be thought of as replacements
such as  for blocks of length 4 with 4 colors.

â “Firing squad” synchronization. By choosing appropriate
rules it is possible to achieve many forms of synchronization
directly within cellular automata. One version posed as a
problem by John Myhill in 1957 consists in setting up a rule
in which all cells in a region go into a special state after
exactly the same number of steps. The problem was first
solved in the early 1960s; the solution using 6 colors and a
minimal number of steps shown on the right below was
found in 1988 by Jacques Mazoyer, who also determined that
no similar 4-color solutions exist. Note that this solution in
effect constructs a nested pattern of any width (it does this by
optionally including or excluding one additional cell at each
nesting level, using a mechanism related to the decimation
systems of page 909). If one drops the requirement of cells

going into a special state, then even the 2-color elementary
rule 60 shown on the left can be viewed as solving the
problem—but only for widths that are powers of 2.

â Distributed computing. Many of the basic issues about the
progress of time in a universe consisting of many separate
elements have analogs in the progress of computations that are
distributed across many separate computing elements. In
practice, such computations are most often done by requiring
explicit synchronization of all elements at appropriate points,
and implementing this using a mechanism that is outside of
the computation. But more theoretical investigations of formal
concurrent systems, temporal logics, dataflow systems, Petri
nets and so on have led to ideas about distributed computing
that are somewhat closer to the ones I discuss here for the
universe. And, as it happens, in the mid-1980s I tried hard,
though at the time without much success, to use updating
rules for networks as the basis for a new kind of programming
language intended for massively parallel computers.

Uniqueness and Branching in Time

â Page 506 · String transformations. An example of a rule that
allows one to go from any string of ’s and s to any other is 

(Compare page 1038.)

â Parallel universes. The idea of parallel universes which
somehow interact with each other has been much explored in
science fiction. And one might think that if the history of each
universe corresponds to one path in a multiway system then
the convergence of paths might represent interactions
between universes. But in fact, much as in the case of time
travel, such connections do not represent additional
observable effects; they simply imply consistency conditions,
in this case between universes whose paths converge. 

â Many-worlds models. The notion of “many-figured time”
has been discussed since the 1950s in the context of the many-
worlds interpretation of quantum mechanics. There are some
similarities to the multiway systems that I consider here. But
an important difference is that while in the many-worlds

f
OrderedUpdate[f_, a_, order_] := Fold[ReplacePart[

#1, f [Take[#1, {#2 - 1, #2 + 1}]], #2] &, a, order]

n

Fold[Insert[#1, #2, Random[Integer, Length[#1]] + 1] &,
{}, Range[n]]

"A><B" ! "<AB>"

A B ç

{"A" ! "AA", " AA" ! "A", " A" ! "B", " B" ! "A"}

width 35

width 32

width 10 width 25 width 50
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approach, branchings are associated with possible
observation or measurement events, what I suggest here is
that they could be an intrinsic feature of even the very
lowest-level rules for the universe. (See also page 1063.)

â Spacetime networks from multiway systems. The main text
considers models in which the steps of evolution in a
multiway system yield a succession of events in time. An
alternative kind of model, somewhat analogous to the ones
based on constraints on page 483, is to take the pattern of
evolution of a multiway system to define directly a
complete spacetime network. Instead of looking separately
at strings produced at each step, one instead maintains just
a single copy of each distinct string ever produced, and
makes that correspond to a node in the network. Each node
is then connected to the nodes associated with the strings
reached by one application of the multiway rule, as on
page 209.

It is fairly straightforward to generate in this way networks
of any dimension. For example, starting with  ’s the rule

 yields a regular -dimensional grid, as
shown below.

If each node in a network is associated with a point in
spacetime, then one slightly peculiar feature is that every
such point would have an associated string—something like
an encoded position coordinate. And it then becomes
somewhat difficult to understand why different regions of
spacetime seem to behave so similarly—and do not, for
example, seem to depend on the details of their coordinates.

â Page 507 · Commuting operations. If replacements on
strings are viewed as mathematical operations, then when
the replacements give the same result if applied in any order,
the corresponding operations commute. 

â Conditions for convergence. One way to guarantee that
there is convergence after one step is to require as in the
previous section that blocks to be replaced cannot overlap
with themselves or each other. And of the 196 possible rules
involving two colors and blocks of length at most three, 112
have this property. But there are also an additional 20 rules
which allow some overlap but which nevertheless yield
convergence after one step. Examples are  and

. In these rules some of the elements essentially
just supply context, but are not affected by the replacement.
These elements can then overlap while not affecting the

result. Note that unless one excludes the context elements
from events, paths in the multiway system will converge,
but the causal networks on these paths will be locally
slightly different.

Much as in the previous section, even if paths do not
converge for every possible string, it can still be true that
paths converge for all strings that are actually generated from
a particular initial string.

In general, one can consider convergence after any number of
steps, requiring that any two strings which have a common
ancestor must at some point also have a common successor. Note
that a rule such as 
exhibits convergence for all paths that have diverged for only one
step, but not for all those that have diverged for longer. In general
it is formally undecidable whether a particular multiway system
will eventually exhibit convergence of all paths. 

â Confluence. As mentioned on page 938, multiway systems
have been studied in mathematical logic, typically under
names such as rewrite systems, since the early 1900s. The
property of path convergence discussed in the main text has
been considered since the 1930s, usually under the name of
confluence, or sometimes the Church-Rosser property. (Also
considered is strong confluence—that paths can always
converge in at most one step, and local confluence—that
paths can converge after diverging for one step but not
necessarily more. Early in its history confluence was most
often studied for symbolic systems and lambda calculus
rather than ordinary multiway systems.) 

Confluence is important in defining a notion of equivalence
for strings. One can say that two strings are equivalent if they
can both be transformed to the same string by using the rules
of the multiway system. And with such a definition,
confluence is what is needed to obtain transitivity for
equality, so that  and  implies . 

Most often confluence is studied in the context of terminating
multiway systems—multiway systems in which eventually
strings are produced to which no further replacements apply.
If a terminating multiway system has the confluence
property, then this implies that regardless of the path taken, a
given string will always evolve to a unique string that can be
thought of as giving a canonical or normal form for the
original string. Examples (a) through (c) below have this
property; (d) does not. In example (a), the canonical form is
all elements black; in (b) it is a single black element, and in (c)
all elements are black, except the last one, which is white if
there were any initial white elements. Note that the first
example on page 507 has a canonical form consisting of a
sorted string.

n A
{"A" ! "AB", "AB" ! "A"} n

"AAA" ! "A"
"AA" ! "ABA"

{"A" ! "B", "A" ! "C", "B" ! "A", "B" ! "D"}

p 2 q q 2 r p 2 r
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The process of evaluation in mathematics or in a computer
language such as Mathematica can be thought of as involving
the application of a sequence of replacement rules. Only if
these rules have the confluence property will the results
always be unique, and independent of the order of rule
application.

The evaluation of functions with attribute  in Mathematica
provides an example of confluence. If  is , then in
evaluating  one can equally well start with

 or . Showing only the arguments to ,
the pictures below illustrate how the flat functions  and

 are confluent, while the non-flat function  is not.

â Completion. If one has a multiway system that terminates
but is not confluent then it turns out often to be possible to
make it confluent by adding a finite set of new rules. Given a
string  which gets transformed either to  or  by the
original rules, one can always imagine adding a new rule

 or  that makes the paths from  immediately
converge. To do this explicitly for all possible  that can
occur would however entail having infinitely many new
rules. But as noted by Donald Knuth and Peter Bendix in
1970 it turns out often to be sufficient just iteratively to add
new rules only for each so-called critical pair ,  that is
obtained from strings  that represent minimal overlaps in
the left-hand sides of the rules one has. To decide whether to
add  or  in each case one can have some kind of
ordering on strings. For the procedure to work this ordering
must be such that the strings generated on successive steps in
every possible evolution of the multiway system follow the
ordering. A number of variations of the basic procedure—
using different orderings and with different schemes for
dropping redundant rules—have been proposed for systems
arising in different kinds of applications. The original Knuth-
Bendix procedure was for equations (of the form ) had

the feature that it could terminate yet not give a confluent
multiway system. But in the 1980s so-called unfailing
completion algorithms (see page 1158) were developed
that—if they terminate—guarantee to give confluent
systems. (The question of whether any procedure of this type
will terminate in a particular case is nevertheless in general
undecidable.)

The basic idea of so-called critical pair completion
procedures has arisen several times—notably in the Gröbner
basis approach of Bruno Buchberger from 1965 to finding
canonical forms for systems of polynomials. 

â Relationships between types of networks. Each arrow on
each path in a multiway system corresponds to a node in a
causal network. Each element in each string in a multiway
system corresponds to a connection in a causal network. Each
complete string in a multiway system corresponds to a
possible slice that goes through all connections across a
causal network. Such a slice can be considered in traditional
physics terms as a spacelike hypersurface (see page 1041).

Evolution of Networks

â Page 509 ·  Neighbor-independent rules. Even though the
same replacement is performed at each node at each step, the
networks produced are not homogeneous. In the first case
shown, the picture produced after  steps has 
regions with  edges. In the limit , the picture has
the geometrical form of an Apollonian circle packing (see
page 986). The number of nodes at distance up to  from a
given node is at most  where

. In practice this number fluctuates
greatly with , making pictures like those on page 479 not
exhibit smooth profiles. Averaged over all nodes, however,
the number of nodes at distance up to  approximates

, implying an effective dimension of .
Note that there is no upper limit on the dimension that can be
obtained with appropriate neighbor-independent rules. 

â Implementation. For many practical purposes the best
representation for networks is the one given on page 1031.
But in updating networks a particularly straightforward
implementation of one scheme can be obtained if one uses
instead a more explicit symbolic representation such as

This allows one to capture the basic character of networks by

Updating rules can then be written in terms of ordinary
Mathematica patterns. A slight complication is that the
patterns have to include all nodes whose connections go to

(a) (b) (c) (d)

Flat
f Flat

f [a, b, c]
f [f [a, b], c] f [a, f [b, c]] f

Xor
And Implies

p q r

q ! r r ! q p
p

q r
p

q ! r r ! q

a · b

t 463t-k-1

362k t !¥

r
1+Sum[c[ i] + c[ i - 1], {i, n}]

c[ i_] := 2^DigitCount[ i, 2]
r

r
r ^Log[2, 3] Log[2, 3]

u[1 ! v[2, 3, 4], 2 ! v[1, 3, 4], 3 ! v[1, 2, 4], 4 ! v[1, 2, 3]]

Attributes[u] = {Flat, Orderless}; Attributes[v] = Orderless
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nodes whose labels are changed by the update. The rule at
the top of page 509 must therefore be written out as

and this corresponds to the Mathematica rule

(Strictly there also need to be additional rules to cover where
for example nodes 3 and 4 are actually the same.) With rules
in this form the network update is simply

Note that just as we discussed for strings on page 1033 the
direct use of  here corresponds to a particular scheme for
applying the update rule. 

â Identifying subnetworks. The problem of finding where in a
network a given subnetwork can occur turns out in general
to be computationally difficult. For strings the analogous
problem is straightforward, since in a string of length  one
can ultimately just try each of the  possible starting points
for the substring and see for which of them a match occurs.
But for a network with  nodes, a similar procedure would
require one to check  possible configurations in order to
find out where a subnetwork of size  occurs. In practice,
however, for fixed subnetworks, one can devise fairly
efficient procedures. But the general problem of so-called
subgraph isomorphism is formally NP-complete. 

â Page 509 · Number of replacements. The total number of
distinct replacements that maintain planarity, involve
clusters with up to five nodes and have from 3 to 7 dangling
connections is . Not maintaining planarity,
the numbers are . (See page 1039.)

â Cycles in networks. See page 1031. 

â Planar networks. One feature of a planar network is that it
is always possible to identify definite regions or faces
bounded by connections in the network. And from Euler’s
formula , it then follows that the average number
of edges of each face is always , where  is the total
number of faces. Note that with my definition of dimension
for networks, the fact that a network is planar does not
necessarily mean that it has be two-dimensional—and for
example the networks on page 509 are not. 

â Arbitrary transformations. By applying the string
transformation rules on page 1035 at appropriate locations, it

is possible to transform any string of ’s and ’s to any other.
And the analog of this for networks is that by applying the
rules shown below at appropriate locations it is possible to
transform any network into any other. These rules
correspond to the moves invented by James Alexander in
1923 in connection with transforming one knot into another.
(Note that the first two rules suffice for all planar networks,
and are sometimes called respectively T2 and T1.)

As an example, the pictures below show how a tetrahedron
network can be transformed into a cube.

â Random networks. One way to generate the connections for
a “completely random” trivalent network with  nodes is just
to apply a random permutation:

Networks obtained in this way are usually connected, but
will almost always contain self-loops and multiple edges.
Properties of random networks are discussed on page 963. A
convenient way to get somewhat random planar networks is
from 2D Voronoi diagrams of the kind discussed on page 987.

â Random replacements. As indicated in the note above,
applying the second rule (T1, shown as (b) on page 511) at an
appropriate sequence of positions can transform one planar
network into any other with the same number of nodes. The
pictures below show what happens if this rule is repeatedly
applied at random positions in a network. Each time it is
applied, the rule adds two edges to one face, and removes
them from another. After many steps the pictures below
show that faces with large numbers of edges appear. The
average number of edges must always be 6 (see note above),
but in a sufficiently large network the probability for a face to
have  edges eventually approaches an equilibrium value of

. (For large  this is approximately
 with ; if 1- and 2-edged regions are allowed then

.) There may be some easy way to
derive such results, but so far it has only been done using
fairly sophisticated techniques from quantum field theory
developed in the late 1970s. The starting point is to look at a

i1 i3i4

i5

i6i7

i8

i2

i1

i2

i3i4

i5

i6i7

i8

new[1]new[2]

u[ i1_ ! v[ i2_, i3_, i4_], i3_ ! v[ i1_, i5_, i6_],
i4_ ! v[ i1_, i7_, i8_]] " u[ i1 ! v[ i2, new[1], new[2]],
new[1] ! v[ i1, new[2], i3], new[2] ! v[ i1, new[1], i4],
i3 ! v[new[1], i5, i6], i4 ! v[new[2], i7, i8]]

NetStep[rule_, net_] := Block[{new},
net /. rule /. new[n_] ! n+Apply[Max, Map[First, net]]]

/.

n
n

n
nk

k

{16, 8, 125, 24, 246}

{14, 5, 13, 2, 2}

f + n = e+ 2
6 (1 - 2/ f ) f

A B

step 1 step 2 step 3

n

RandomNetwork[n_? EvenQ] := Partition[
Fold[Insert[#1, #2, Random[Integer, Length[#1]] + 1] &,
{}, Floor[Range[1, n+ 2/3, 1/3]]], 2]

n
8 (n - 2) (2 n - 3)!! (3/8)n /n! n
ln l = 3/4
l = ( 3 +

�!!!!3 )/6 ; 0.79
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 field theory with SU( ) internal symmetry and to note
that in the limit  what dominates are Feynman
diagrams that have the structure of planar trivalent networks
(see page 1040). And it then turns out that in zero spacetime
dimensions the complete path integral for the theory can be
evaluated exactly—yielding in effect a generating function
for the number of possible networks. Parametric
differentiation (to yield -point correlation functions) then
gives results for -sided regions. Another result that has been
derived is that the average total number  of edges of all
faces around a given face with  edges is .
Note that the networks obtained always have dimension 2
according to my definitions.

â Cellular structures. There are many systems in nature that
consist of assemblies of discrete regions—and the lines that
define the interfaces between these regions form networks. In
many cases the regions are fixed once established (compare
page 988). But in other cases there is continuing evolution, as
for example in soap and other foams and froths, grains in
metals and perhaps some biological tissues. In 2D situations
the lines between regions generically form a trivalent planar
network. In a soap foam, the geometrical layout of this
network is determined by surface tension forces—with
connections meeting at  at each node, though being
slightly curved and of different lengths. Pressure differences
lead to diffusion of gas and on average to von Neumann’s
Law that the area of an -sided region changes linearly with
time, at a rate proportional to . Typically the network
topology of a foam continually rearranges itself through
cascades of seemingly random T1 processes (rule (b) from
page 511), with regions that reach zero size disappearing
through T2 processes (reversed rule (a)). And as noted for
example by Cyril Smith in the early 1950s there is a
characteristic coarsening that occurs. Something similar is
already visible in the pure T1 pictures in the note above. But
results such as the so-called Aboav-Weaire law that 
from the note above is in practice about  suggest that
T2 processes are also important. (Processes like cell division

in 2D biological tissue in effect directly add connections to a
network. But this can again be thought of as a combination of
T1 and T2 processes, and in appropriate idealizations can
lead to very similar results.)

â Page 514 · Cluster numbers. The following tables give the
total numbers of distinct clusters—with number of nodes
going across the page, and number of dangling connections
going down. (See also page 1038.)

â Page 515 · Non-overlapping clusters. The picture shows all
distinct clusters with 3 dangling connections and 9 nodes that
are not self-overlapping. The only smaller cluster with the
same property is the trivial one with just a single node.

Most clusters that can overlap will be able to do so in an
infinite number of possible networks. (One can see this by
noting that they can overlap inside clusters with dangling
connections, not just closed networks.) But there are some
clusters that can overlap only in a few small networks. The
pictures below show examples where this happens. The
pictures in the main text still treat such clusters as non-
overlapping. 

If two clusters overlap, then this means that there is some
network in which there are copies of these clusters that involve
some of the same nodes. And it is possible to search for such a
network by starting from a single node and then sequentially
trying to take corresponding pieces from the two clusters. 

â 1- and 2-connection clusters. Clusters with just one or two
dangling connections can always in effect be thought of just
as adding extra structure to single connections in a network.
But this extra structure can be important in the application of
other rules—and can for example emulate something like
having multiple colors of connections.

â Connectedness. It is not clear whether a network that
represents the universe must remain globally connected, or
whether pieces can break off. But any replacements that take
connected clusters and yield connected clusters must always
maintain the connectedness of any network.

Φ 3 n
n !¥

n
n

m[n]
n 7 n+ 3 + 9/ (n+ 1)

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8

step 1 step 100 step 200 step 500 step 1000

120 °

n
n - 6

m[n]
5 n+ c

1 2 3 4 5 6 7 8 9 10

0 0 0 0 1 0 2 0 5 0 19
1 0 0 0 0 1 0 4 0 19 0
2 0 0 0 1 0 5 0 23 0 132
3 1 0 1 0 3 0 15 0 91 0
4 0 1 0 2 0 9 0 54 0 390
5 0 0 1 0 4 0 22 0 166 0
6 0 0 0 2 0 9 0 63 0 551

1 2 3 4 5 6 7 8 9 10

7 0 0 0 0 2 0 17 0 157 0
8 0 0 0 0 0 4 0 38 0 424
9 0 0 0 0 0 0 6 0 80 0

10 0 0 0 0 0 0 0 11 0 180
11 0 0 0 0 0 0 0 0 18 0
12 0 0 0 0 0 0 0 0 0 37
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â Reversibility. By including both forward and backward
versions of every transformation it is straightforward to set
up reversible rules for network evolution. It is not clear,
however, whether the basic rules for the universe are really
reversible. It could well be that the apparent reversibility we
see arises because the universe is effectively on an attractor,
as discussed on page 1018. Note that if pieces of the universe
can break off, but cannot reconnect, then there will inevitably
be an irreversible loss of information.

â 1/n expansion. If there are  possible colors for each
connection in a network, then for large  it turns out that
the vast majority of networks will be planar. This idea was
used in the 1980s as a way of simplifying the Feynman
diagrams to consider in QCD and other quantum field
theories. (See page 1039.)

â Feynman diagrams. In the standard approach to particle
physics, possible interaction processes are represented by
networks in which each node corresponds to an elementary
interaction, and the nodes are joined by connections which
correspond to the propagation of particles in spacetime. I can
see no direct physical relationship between such diagrams
and the networks I consider. However, at a mathematical
level, the set of trivalent networks with  nodes formally
corresponds to the set of th order Feynman diagrams in a 
field theory. (Compare page 1039.) 

â Chemical analogy. The evolution of a network can be
thought of as an idealized version of a chemical process in
which molecules are networks of bonds. (See page 1193.)

â Symbolic representations. Expressions in which common
subexpressions are shared correspond to networks, as do
collections of relations between objects representing nodes.

â Graph grammars. The notion of generalizing substitutions
for strings to the case of networks has been discussed in
computer science since the 1960s—and a fair amount of
formal work has been done on so-called graph grammars for
specifying formal languages whose elements are networks.
Even a good analog of regular languages has, however, not
yet been found. But applications to constructing or verifying
practical network-based system description schemes are
quite often discussed. In mathematics rather little is usually
done with anything but very trivial network substitutions. In
mathematics, rather little is usually done with network
substitutions, though the proof of the Four-Color Theorem in
1976 was for example based on showing that 300 or so
possible replacement rules—if applied in an appropriate
sequence—can transform any graph to have one of 1936
smaller subgraphs that require the same number of colors.
(32 rules and 633 subgraphs are now known to be sufficient.)

â Network mobile automata. The analog of a mobile
automaton can be defined for networks by setting up a single
active node, then having rules which replace clusters of
nodes around this active node, and move its position. The
pictures below show two simple examples. 

The total number of replacements that can be used in the
rules of a network mobile automaton and which involve
clusters with up to four nodes and have from 1 to 4
dangling connections is . Despite looking
at several hundred thousand cases I have not been able to
find network mobile automata with especially complicated
behavior. 

Note that by having a cluster of nodes with a unique form it
is possible to emulate a network mobile automaton using an
ordinary network substitution system. 

â Directed network systems. If one adds directionality to the
connections in a network it becomes particularly easy to set
up rules for clusters of nodes that cannot overlap. For no two
clusters whose dangling connections all point inwards can
ever overlap, at least so long as neither of these clusters
themselves contain subclusters whose dangling connections
similarly all point inwards. The pictures below show a few
examples of such clusters. Note that in a random network of

 nodes, about  such clusters typically occur.

Space, Time and Relativity

â Page 516 · Posets. The way I set things up, collections of
events can be thought of as partially ordered sets (posets). If
all events occurred in a definite sequence in time, this would
define a total linear ordering for them. But with the setup I
use, there is only a partial ordering of events, defined by
causal connections. The causal networks I draw are so-called
Hasse or order diagrams of the posets of events. If a
connection goes directly from  to  in this network then  is
said to cover . And in general if there is a path from  to 
then one writes . The collection of all events that will
lead to a given set of events (the union of their past light
cones) is known as the filter of that set. Within a poset, there

n
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n
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can be sequences of elements that are totally ordered, and
these are called chains. (The maximum length of any chain is
sometimes called the dimension of a poset, but this is
unrelated to the notions of dimension I consider.) There can
also be sets of elements between which no ordering relations
at all are defined, and these are called antichains. 

Standard examples of posets include subsets of a set ordered
by the subset relation, complex numbers ordered by
magnitude, and integers ordered by divisibility. Posets first
arose as general concepts in the late 1800s in connection with
the development of mathematical logic, and to some extent
abstract algebra. They became somewhat popular in the mid-
1900s, both as formal generalizations in lattice theory, and as
structures in various combinatorics applications. It was
already noted in the 1920s that events in relativity theory
formed posets. 

The pictures below show the first few distinct possible
Hasse diagrams for posets. For successive numbers of
elements the total numbers of these are 1, 2, 5, 16, 63, 318,
2045, 16999, ...

â Page 517 · Spacelike slices. The definition of spacelike slices
used here is directly analogous to what is used in traditional
relativity theory (typically under names like spacelike
hypersurfaces and Cauchy surfaces). There will normally be
many different possible choices of spacelike slices, but in all
cases a particular such slice is set up to represent what can
consistently be thought of as all of space at a given time.
One definition of a spacelike slice is then a maximal set of
points in which no pair are causally related (corresponding
to a maximal antichain in a poset). Another definition
(equivalent for any connected causal network) is that
spacelike slices are what consistently divide a causal
network into a past and a future. And an intermediate
definition is that a spacelike slice contains points that are
not themselves causally related, but which appear in either
the past or the future of every other point. Given a spacelike
slice in a causal network, it is always possible to construct
another such slice by finding all those points whose
immediate predecessors are all included either in the
original slice or its predecessors.

â Page 518 · Speed of light.  In a vacuum the speed of light is
299,792,458 meters/second (and this is actually what is
taken to define a meter). In materials light mostly travels

slower—basically because there are delays when it is
absorbed and reemitted by atoms. In a first approximation,
the slowdown factor is the refractive index. But particularly
in materials which can amplify light a whole sequence of
peculiar effects have been observed—and it is fairly subtle
to account correctly for incoming and outgoing signals, and
to show that at least no energy or information is transmitted
faster than . The standard mathematical framework of
relativity theory implies that any massless particle must
propagate at  in a vacuum—so that not only light but also
gravitational waves presumably go at this speed (and the
same is at least approximately true of neutrinos). The
effective mass for massive particles increases by a factor

 at speed , making it take progressively
more energy to increase . At a formal mathematical level it
is possible to imagine tachyons which always travel faster
than . But the structure of modern physics would find it
difficult to accommodate interactions between these and
ordinary particles.

â Page 522 · History of relativity. (See also page 1028.) The
idea that mechanical processes should work the same
regardless of how fast one is moving was expressed by
Galileo in the early 1600s, particularly in connection with the
motion of the Earth—and was incorporated in the laws of
mechanics formulated by Isaac Newton in 1687. But when
the wave theory of light finally became popular in the mid-
1800s it seemed to imply that no similar principle could be
true for light. For it was generally assumed that waves of
light must correspond to explicit disturbances in a medium
or ether that fills space. And it was thus expected that for
example the apparent speed of light would depend on how
fast one was moving with respect to this ether. And indeed
in particular this was what the equations for
electromagnetism developed by James Maxwell in the 1860s
seemed to suggest. But in 1881 an experiment by Albert
Michelson (repeated more accurately in 1887 as the
Michelson-Morley experiment and now done to the 
level) showed that in fact this was not correct. Already in
1882 George FitzGerald and Hendrik Lorentz noted that if
there was a contraction in length by a factor 
in any object moving at speed  (with  being the speed of
light) then this would explain the result. And in 1904 Lorentz
pointed out that Maxwell’s equations are formally invariant
under a so-called Lorentz transformation of space and time
coordinates (see note below). Then in 1905 Albert Einstein
proposed his so-called special theory of relativity—which
took as its basic postulates not only that the laws of
mechanics and electrodynamics are independent of how fast
one is moving, but that this is also true of the speed of light.
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And while at first these postulates might seem incompatible,
what Einstein showed was that they are not—at least if
modifications are made to the basic laws of mechanics. In the
few years that followed, various formulations of this result
were given, with Hermann Minkowski in 1908 showing that
it could be derived if one just assumes that space and time
enter all physical laws together in a certain kind of 4D vector.
In the late 1800s Ernst Mach had emphasized the idea of
formulating science and particularly mechanics in terms only
of concepts that can actually be measured by observers. And
in this framework Einstein and others gave what seemed to
be almost purely deductive arguments for relativity theory—
with the result that it generally came to be assumed that
there was no meaningful sense in which one could ever
imagine deriving relativity from anything more fundamental.
Yet as I discussed earlier in the chapter, if a complete theory
of physics is to be as simple as possible, then most things like
relativity theory must in effect be derived from more basic
features of the theory—as I start to try to do in the main text
of this section. 

â Standard treatment. In a standard treatment of relativity
theory one way to begin is to consider setting up a square
grid of points in space and time—and then to ask what kind
of transformed grid corresponds to this same set of points if
one is moving at some velocity . At first one might assume
that the answer would just be a grid that has been sheared by
the simple transformation , as in the first
row of pictures below. And indeed for purposes of
Newtonian mechanics this so-called Galilean transformation
is exactly what is needed. But as the pictures below illustrate,
it implies that light cones tip as  increases, so that the
apparent speed of light changes, and for example Maxwell’s
equations must change their form. But the key point is that
with an appropriate transformation that affects both space
and time, the speed of light can be left the same. The
necessary transformation is the so-called Lorentz
transformation

And from this the time dilation factor 
shown on page 524 follows, as well as the length contraction
factor . An important feature of the Lorentz
transformation is that it preserves the quantity —
with the result that as  changes in the pictures below a
given point in the grid traces out a hyperbola whose
asymptotes lie on a light cone. Note that on a light cone

 always vanishes. Note also that the intersection of
the past and future light cones for two events separated by a
distance  in space and  in time always has a volume
proportional exactly to .

â Inferences from relativity. The pictures on page 524 show
that an idealized clock based on bouncing light between
mirrors will exhibit relativistic time dilation. And from such
derivations it is often assumed that the same result must hold
for any possible clock system. But as a practical matter it does
not. And indeed for example the clocks in GPS satellites are
specifically set up so as to remove the effects of time dilation.
And in the twin paradox one can certainly imagine that each
twin could have an accelerometer whose readings they use to
correct their clocks. Indeed, even when it comes to individual
particles there are subtle effects associated with acceleration
and radiation (see page 1062)—so that in the end not entirely
clear that something like a biological system would actually
in practice exhibit just standard time dilation.

One feature of relativity is that it implies that only relative
motion is ultimately ever detectable. (This was also implied
by Newtonian mechanics for purely mechanical systems.)
And from this it is often concluded that there can be nothing
like an ether that one can consider as defining an absolute
state of rest in the universe. But in fact the cosmic microwave
background in effect does exactly this. For in standard
cosmological models it fills the universe, but is everywhere at
rest relative to the global center of mass of the universe. And
from the anisotropies we have observed in the microwave
background it is thus possible to conclude that the Earth is
moving at an absolute speed of about  relative to the
center of mass of the universe. In particle physics standard
models also in effect introduce things that are assumed to be
at rest relative to the center of mass of the universe. One
example is the Higgs condensate discussed in connection
with particle masses (see page 1047). Other possible
examples include zero-point fluctuations in quantum fields. 

Outside of science, relativity theory is sometimes given as
evidence for various general ideas of cultural relativism
(compare page 1131)—which have existed since well before
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relativity theory in physics, and seem in the end to have no
meaningful connection to it. 

â Particle physics. Relativity theory was originally formulated
just for mechanics and electromagnetism. But its predictions
like  were immediately applied for example to
radioactivity, and soon it came to be assumed that the theory
would work for any system at all—unless it involved gravity.
So this has meant that in particle physics  is
at some level the only quantity that ever appears. And to
make mathematical work easier, what is very often done is to
carry out the so-called Wick rotation —so relativistic
invariance is just independence on 4D orientation. (See page
1061.) But except in rather simple cases there is practically no
evidence that results obtained after Wick rotation have
anything to do with physical reality—and certainly the
transformation removes some very basic phenomena such as
particle propagation. One feature of it, however, is that it
maps the equation for quantum mechanical time evolution
into the equation for probabilities in statistical mechanics,
with imaginary time corresponding to inverse temperature.
And while it is conceivable that this mapping may have some
deep significance, none has so far ever been identified. 

â Time travel. The idea that space and time are similar
suggests that it might be possible to move backwards and
forwards in time just like it is possible to move backwards
and forwards in space. And indeed in the partial differential
equations that define general relativity, it is formally possible
for the motion of particles to achieve this, at least when there
is sufficient negative energy density from matter or a
cosmological constant. But even in this case there is no real
progression in which one travels backwards in time. Instead,
the possibility of motion that leads to earlier times simply
implies a requirement of consistency between behavior at
earlier and later times.

Elementary Particles

â Note for physicists. My goal in the remainder of this chapter
is not to present a specific ultimate model for physics, but
rather to discuss at a fairly general level some features that I
believe such a model will have, given the overall discoveries
of this book, and the specific results I have described in this
chapter. I am certainly aware that many physicists will want
to know more details. But particularly in making contact
with existing physics it is almost inevitable that all sorts of
technical formalism will be needed—and to maintain balance
in this book I have not included this here. (Given my own
personal background in theoretical physics it will come as no

surprise that I have often used such formalism in the process
of working out what I describe in these sections.) 

â Page 525 · Types of particles. Current particle physics
identifies three basic types of known elementary particles:
leptons, quarks and gauge bosons. The known leptons are
the electron (e), muon (m) and tau lepton (t), and their
corresponding neutrinos (ne, n

m
, n

t
). Quarks exist inside

hadrons like the proton and pion, but never seem to occur as
ordinary free particles. Six types are known: u, d, c (charm), s
(strange), t (top), b. Gauge bosons are associated with forces.
Those currently known are the photon (g) for
electromagnetism (QED), W and Z for so-called weak
interactions, and the gluon (g) for QCD interactions between
quarks. Gravitons associated with gravitational forces
presumably also exist. In ordinary matter, the only particles
that contribute in direct ways to everyday physical, chemical
and even nuclear properties are electrons, photons and
effectively u and d quarks, and gluons. (These, together
presumably with some type of neutrino, are the only types of
particles that never seem to decay.) The first reasonably direct
observations of the various types of particles were as follows
(some were predicted in advance): e (1897), g (~1905), u, d
(1914/~1970), m (1937), s (1946), ne (1956), n

m
 (1962), c (1974), t,

n
t
 (1975), b (1977), g (~1979), W (1983), Z (1983), t (1995). 

Most particles exist in several variations. Apart from the
photon (and graviton), all have distinct antiparticles. Each
quark has 3 possible color configurations; the gluon has 8.
Most particles also have multiple spin states. Quarks and
leptons have spin 1/2, yielding 2 spin states (neutrinos could
have only 1 if they were massless). Gauge bosons normally
have spin 1 (the graviton would have spin 2) yielding 3 spin
states for massive ones. Real massless ones such as the
photon always have just 2. (See page 1046.) 

In the Standard Model the idea of spontaneous symmetry
breaking (see page 1047) allows particles with different
masses to be viewed as manifestations of single particles, and
this is effectively done for W, Z, g, as well as for each of the 3
so-called families of quarks and leptons: u, d; c, s; t, b and e, ne;
m, n

m
; t, n

t
. Grand unified models typically do this for all

known gauge bosons (except gravitons) and for
corresponding families of quarks and leptons—and
inevitably imply the existence of various additional particles
more massive than those known, but with properties that are
somehow intermediate. Some models also unify different
families, and supersymmetric models unify quarks and
leptons with gauge bosons. 

â History. The idea that matter—and light—might be made
up of discrete particles was already discussed in antiquity
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(see page 876). But it was only in the mid-1800s that there
started to be real evidence for the existence of some kind of
discrete atoms of matter. Yet at the time, the idea of fields was
popular, and it was believed that the universe must be filled
with a continuous fluid-like ether responsible at least for
light and other electromagnetic phenomena. So for example
following ideas of William Rankine from 1849 William
Thomson (Kelvin) in 1867 suggested that perhaps atoms
might be like knotted stable vortex rings in the ether—with
different knots corresponding to different chemical elements.
But though it initiated the mathematical classification of
knots, and now has certain conceptual similarities to what I
discuss in this book, the details of this model did not work
out—and it had been largely abandoned even before the
electron was discovered in 1897. Ernest Rutherford’s work in
the 1910s on scattering from atoms introduced the idea of an
atomic nucleus, and after the discovery of the neutron in 1932
it became clear that the main constituents of nuclei were
protons and neutrons. The positron and the muon were
discovered in cosmic rays in the 1930s, followed in the 1940s
by a handful of other particles. By the 1960s particle
accelerators were finding large numbers of new particles
every year. And the hypothesis was then suggested that all
these particles might actually be composed of just three more
fundamental particles that became known as quarks. An
alternative so-called democratic or bootstrap hypothesis was
also suggested: that somehow any particle could just be
viewed as a composite of all others with the same overall
properties—with everything being determined by
consistency in the web of interactions between particles, and
no particles in a sense being more fundamental than others.
But by the early 1970s experiments on so-called deep inelastic
scattering had given increasingly direct evidence for point-
like constituents inside particles like protons—and by the
mid-1970s these were routinely identified with quarks. 

As soon as the electron was discovered there were questions
about its possible size. For if its charge was distributed over a
sphere of radius , this was expected to lead to electrostatic
repulsion energy proportional to . And although it was
suggested around 1900 that effects associated with this might
account for the mass of the electron, this ran into problems
with relativity theory, and it also remained mysterious just
what might hold the electron together. (A late suggestion
made in 1953 by Hendrik Casimir was that it could be forces
associated with zero-point fluctuations in quantum fields—
but at least with the simplest setup these turned out to have
wrong sign.) 

The development of quantum theory in the 1920s showed
that discrete particles will inevitably exhibit continuous

wave-like features in their spatial distribution of probability
amplitudes. But traditional quantum mechanics and
quantum field theory are both normally formulated with the
assumption that the basic particles they describe have zero
intrinsic spatial size. Sometimes nonzero size is taken into
account by inserting additional interaction parameters—as
done in the 1950s with magnetic moments and form factors
of protons and neutrons. But for example in quantum
electrodynamics the definite assumption is made that
electrons are intrinsically of zero size. Quantum fluctuations
make any particle in an interacting field theory effectively be
surrounded by virtual particles. Yet not unlike in classical
electrodynamics having zero intrinsic size for the electron
still immediately suggests that an electron should have
infinite self-energy. In the 1930s ideas about avoiding this
centered around modifying basic laws of electrodynamics or
the structure of spacetime (see page 1027). But the
development of renormalization in the 1940s showed that
these infinities could in effect just be factored out. And by the
1960s a long series of successes in the predictions of QED had
led to the almost universal belief that its assumption of point-
like electrons must be correct. It was occasionally suggested
that the muon might be some kind of composite object. But
experiments seemed to indicate that it was in every way
identical to the electron, except in mass. And although no
reasonable explanation for its existence was found, it came to
be generally assumed by the 1970s that it was just another
point-like particle. And indeed—apart from few rare
suggestions to the contrary—the same is now assumed
throughout mainstream practical particle physics for all of
the basic particles that appear in the Standard Model. (Actual
experiments based on high-energy scattering and precision
magnetic moment measurements have shown only that
electrons and muons must have sizes smaller than about

—or about  times the size of a
proton. One can make arguments that composite particles
this small should have masses much larger than are
observed—but it is easy to find theories that avoid these.)

In the 1980s superstring theory introduced the idea that
particles might actually be tiny 1D strings—with different
types of particles corresponding essentially just to strings in
different modes of vibration. Since the 1960s it has been
noted in many simplified quantum field theories that there
can be a kind of duality in which a soliton or other extended
field configuration in one representation becomes what acts
like an elementary particle in another representation. And in
the late 1990s there were indications that such phenomena
could occur in generalized string theories—leading to
suggestions of at least an abstract correspondence between
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for example particles like electrons and gravitational
configurations like black holes. 

â Page 526 · Topological defects. An idealized vortex in a 2D
fluid involves velocity vectors that in effect wind around a
point—and can never be unwound by making a series of
small local perturbations. The result is a certain kind of
stability that can be viewed as being of topological origin.
One can classify forms of stability like this in terms of the
mathematics of homotopy. Most common are point and line
defects in vector fields, but more complicated defects can
occur, notably in liquid crystals, models of condensates in the
early universe, and certain nonlinear field theories. Analogs
of homotopy can presumably be devised to represent certain
forms of stability in systems like the networks I consider. 

â Page 527 · Kuratowski’s theorem. Any network can be laid
out in 3D space. (This is related to the Whitney embedding
theorem that any -dimensional manifold can be embedded
in (2d+1)-dimensional space.) When one says that a network
is planar what one means is that it can be laid out in
ordinary 2D space without any lines crossing. Kuratowski’s
theorem that planarity is associated with the absence of
specific subgraphs in a network is an important result in
graph theory established in the late 1920s. A subgraph is
formally defined to be what one gets by selecting just some
subset of connections in a network—and with this
definition Kuratowski’s theorem must allow extensions of
K5 and K3,3 where extra nodes have been inserted in the
middle of connections. (K5 and K3,3 are examples of so-
called complete graphs, obtained by taking sets of specified
numbers of nodes and connecting them in all possible
ways.) Another approach is to consider reducing whole
networks to so-called minors by deleting connections or
merging connected nodes, and in this case Wagner’s
theorem shows that any non-planar network must be
exactly reducible to either K5 or K3,3.

One can generalize the question of planarity to asking
whether networks can be laid out on 2D surfaces with
various topological structures—and in fact the genus of a
graph can be defined to be the number of handles that must
be added to a plane to embed the graph without crossings.
But even on a torus it turns out that there is no finite set of
(extended) subgraphs whose absence guarantees that a
network can successfully be laid out. Nevertheless, if one
considers minors a finite list does suffice—though for
example on a torus it is known that at least 800 (and perhaps
vastly more) are needed. (There is in fact a general theorem
established since the 1980s that absolutely any list of
networks—say for example ones that cannot be laid on a
given surface—must actually in effect always all be reducible

to some finite list of minors.) Note that finding the genus for
a particular trivalent network is in general NP-complete. 

â Page 527 · Gauge invariance. It is often convenient to define
quantities for which only differences or derivatives matter. In
classical physics an example is electric potential, which can be
shifted by any constant amount without affecting voltage
differences or the electric field given by its gradient. In the
mid-1800s the idea emerged of a vector potential whose curl
gives the magnetic field, and it was soon recognized—notably
by James Clerk Maxwell—that any function whose curl
vanishes (and that can therefore normally be written as a
gradient) could be added to the vector potential without
affecting the magnetic field. By the end of the 1800s the general
conditions on electromagnetic potentials for invariance of
fields were known, though were not thought particularly
significant. In 1918 Hermann Weyl tried to reproduce
electromagnetism by adding the notion of an arbitrary scale or
gauge to the metric of general relativity (see page 1028)—and
noted the “gauge invariance” of his theory under
simultaneous transformation of electromagnetic potentials
and multiplication of the metric by a position-dependent
factor. Following the introduction of the Schrödinger equation
in quantum mechanics in 1926 it was almost immediately
noticed that the equations for a charged particle in an
electromagnetic field were invariant under gauge
transformations in which the wave function was multiplied by
a position-dependent phase factor. The idea then arose that
perhaps some kind of gauge invariance could also be used as
the basis for formulating theories of forces other than
electromagnetism. And after a few earlier attempts, Yang-Mills
theories were introduced in 1954 by extending the notion of a
phase factor to an element of an arbitrary non-Abelian group.
In the 1970s the Standard Model then emerged, based entirely
on such theories. In mathematical terms, gauge theories can be
viewed as describing fiber bundles in which connections
between values of group elements in fibers at neighboring
spacetime points are specified by gauge potentials—and
curvatures correspond to gauge fields. (General relativity is in
effect a special case in which the group elements are
themselves related to spacetime coordinates.) 

â Page 527 · Identifying particles. In something like a class 4
cellular automaton it is quite straightforward to start
enumerating possible persistent structures—as we saw in
Chapter 6. But in a network system it can be much more
difficult. Ultimately what one wants to do is to find what
possible types of forms for local regions are inequivalent
under the application of the underlying rules. But in general
it may be undecidable even whether two such forms are
actually equivalent (compare the notes below and on page

d
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the rules infinitely many times. In specific cases, however,
generalizations of concepts like planarity and homotopy may
provide useful guides. And a first step may be to look at
small closed networks and try to determine which of these
can be transformed into each other by a given set of rules. 

â Knot theory. Somewhat analogous to the problem in the
note above is the problem of classifying knots. The pictures
below show some of the simplest distinct knots. But given
presentations of two knots, no finite procedure is known that
determines in general whether the knots are equivalent (or
constructs a sequence of Reidemeister moves that transform
one into the other). Quite probably this is in general
undecidable, though since the 1920s a few polynomial
invariants have been discovered—with recent ones being
related to ideas from quantum field theory—that have
allowed some progress to be made. (Even the problem of
determining whether a knot specified by line segments is
trivial is known to be NP-complete.)

â Page 528 · Charge quantization. It is an observed fact that
the electric and other charges of all particles are simple
rational multiples of each other. In the context of
electromagnetism alone, there would be no particular reason
to expect this (unless magnetic monopoles exist). But as soon
as different particles are related by a non-Abelian symmetry
group, then the discreteness of the representations of such a
group immediately implies that all charges must be rational
multiples of each other.

â Spin.  Even when they appear to be of zero size, particles
exhibit intrinsic angular momentum known as spin. The total
spin is always a fixed multiple of the basic unit :  for
quarks and leptons, 1 for photons and other ordinary gauge
bosons, 2 for gravitons, and in theory 0 for Higgs particles.
(Observed mesons have spins up to perhaps 5 and nuclei up
to more than 50.) Particles of higher spin in effect require
more information to specify their orientation (or polarization
or its analog). And in the context of network models it could
be that spin is somehow related to something as simple as the
number of places at which the core of a particle is attached to
the rest of the network. Spin values can be thought of as
specifying which irreducible representation of the group of
symmetries of spacetime is needed to describe a particle after
momentum has been factored out. For ordinary massive

particles in d-dimensional space the group is Spin(d), while
for massless particles it is E( ) (the Euclidean group). (For
tachyons, it would be fundamentally non-compact, forcing
continuous spin values.) For small transformations, Spin(d) is
just the ordinary rotation group SO(d), but globally it is its
universal cover, or SU(2) in 3D. And this can be thought of as
what allows half-integer spins, which must be described by
spinors rather than vectors or tensors. Such objects have the
property that they are not left invariant by  rotations, but
only by  ones—a feature potentially fairly easy to
reproduce with networks, perhaps even without definite
integer dimensions. In the standard formalism of quantum
field theory it can be shown that (above 2D) half-integer
spins must always be associated with fermions (which for
example satisfy the exclusion principle), and integer spins
with bosons. (This spin-statistics connection also seems to
hold for various kinds of objects defined by extended field
configurations.) 

â Page 528 · Particle masses. The measured masses of known
elementary particles in units of GeV (roughly equal to the
proton mass) are: photon: 0, electron: 0.000510998902; muon:
0.1056583569;  lepton: 1.77705; : 80.4; : 91.19. Recent
evidence suggests a mass of about  GeV for at least one
type of neutrino. Quarks and gluons presumably never occur
as free particles, but still act in many ways as if they have
definite masses. For all of them their confinement contributes
perhaps 0.3 GeV of effective mass. Then there is also a direct
mass: gluons 0; : ~0.005;  ~0.01; : ~0.2; : 1.3; : 4.4; : 176
GeV. Note that among sets of particles that have the same
quantum numbers—like , ,  or , —mixing occurs that
makes states of definite mass—that would propagate
unchanged as free particles—differ by a unitary
transformation from states that are left unchanged by
interactions. When one sets up a quantum field theory one
can typically in effect insert various mass parameters for
particles. Self-interactions normally introduce formally
infinite corrections—but if a theory is renormalizable then
this means that there are only a limited number of
independent such corrections, with the result that relations
between masses of different particles are preserved. In
quantum field theory any particle is always surrounded by a
kind of cloud of virtual particles interacting with it. And
following the Uncertainty Principle phenomena involving
larger momentum scales will then to probe progressively
smaller parts of this cloud—yielding different effective
masses. (The masses tend to go up or down logarithmically
with momentum scale—following so-called renormalization
group equations.)
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The Standard Model starts off with certain symmetries that
force the masses of all ordinary particles to be zero. But then
one assumes that nonzero masses are generated by
spontaneous symmetry breaking. One starts by taking each
particle to be coupled to a so-called Higgs field. Then one
introduces self-interactions in this field so as to make its
stable state be one that has constant nonzero value
throughout the universe. But this means that as particles
propagate, their interactions with the background give them
an effective mass. And by having Higgs couplings be
proportional to observed particle masses, it becomes
inevitable that these will be the masses of particles. One
prediction of the usual version of this mechanism for mass is
that a definite Higgs particle should exist—which in the
minimal Standard Model experiments should observe fairly
soon. At times there have been hopes of so-called dynamical
symmetry breaking giving the same effective results as the
Higgs mechanism, but without an explicit Higgs field—
perhaps through something similar to various phenomena in
condensed matter physics. String theory, like the Standard
Model, tends to start with zero mass particles—and then
hopes that an appropriate Higgs-like mechanism will
generate nonzero ones. 

â More particles. To produce more massive particles requires
higher-energy particle collisions, and today’s accelerators
only allow one to search up to masses of perhaps 200 GeV.
(Sufficiently stable particles could have survived from the
early universe, and a few cosmic ray interactions in principle
give higher energies—but are normally too rare to be useful.)
I am not sure whether in my approach one should expect an
infinite series of progressively more massive particles. The
example of nonplanarity might suggest not, but even in the
class 4 cellular automata discussed in Chapter 6 it is not clear
whether fundamentally different progressively larger
structures will appear forever. In quantum field theory
particles of any mass can always in principle exist for short
times in virtual form. But normally their effects decrease like
powers of their mass—making them hard to measure. In two
kinds of cases, however, this does not happen: one is so-
called anomalies, the other interactions with the Higgs field,
in which couplings are proportional to mass. In the minimal
Standard Model it turns out to be impossible to get quarks or
leptons with masses much above about 200 GeV without
destabilizing the vacuum (a fact pointed out by David
Politzer and me in 1979). But with more complicated models
one can avoid this constraint. In supersymmetric models—
and string theory—there are typically also all sorts of other
types of particles, assumed to have high masses since they
have not been observed. There is evidence against any more

than the three known generations of quarks and leptons in
that the decay process  has a rate that rather
accurately agrees with what is expected from just three types
of low-mass neutrinos. 

â Page 530 · Expansion of the universe. See page 1055.

The Phenomenon of Gravity

â History. With the Earth believed to be the center of the
universe, gravity did not seem to require much explanation: it
was just a force bringing things to a natural place. But with the
advent of Copernican astronomy in the 1500s something more
was needed. In the early 1600s Galileo noted that the force of
gravity seems to depend only on the mass of an object, and not
on any of its other features. In 1687 Isaac Newton then
suggested a universal inverse square law of gravity between
objects. In the 1700s and 1800s all sorts of celestial mechanics
was done on the basis of this—with occasional observational
anomalies being resolved for example by the discovery of new
planets. Starting in the mid-1800s there were attempts to
formulate gravity in the same way as electromagnetism—and
in 1900 it was for example suggested that gravitational effects
might propagate at the speed of light. Following his
introduction of relativity theory in 1905, Albert Einstein began
to seek a theory of gravity that would fit in with it. Ordinary
special relativity has the feature that it assumes that systems
behave the same regardless of their overall velocity—but not
regardless of their acceleration. In 1907 Einstein then
suggested the equivalence principle that gravity always locally
has the same effect as an acceleration. (This principle requires
only slightly more than Galileo’s idea of the equivalence of
gravitational and inertial mass, which has now been verified to
the  level.) But by 1912 Einstein realized that if the
effective laws of physics were somehow to remain the same in
systems with different accelerations (or in different
gravitational fields) then this would require a change in their
perceived geometry. And building on ideas of differential
geometry and tensor calculus from the late 1800s Einstein then
began to formulate the concept that gravity is associated with
curvature of space. In the late 1800s Ernst Mach had argued
that phenomena like acceleration and rotation could
ultimately be defined only relative to matter in the universe.
And partly on this basis Einstein used the idea that curvature
in space must be like a field produced by matter—leading
eventually to his formulation in 1915 of the standard Einstein
equations for general relativity. An immediate prediction of
these was a deviation from the inverse square law, explaining
an observed precession in the orbit of Mercury. After a
dramatic verification in 1919 of predicted bending of light by
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the Sun, general relativity began to be widely accepted. In the
1920s expansion of the universe was discovered, and this was
seen to be consistent with general relativity. In the 1940s study
of the evolution of stars then led to discussion of what became
known as black holes. But for the most part general relativity
was still viewed as being highly elegant though of little
practical relevance. In the 1960s, however, more work began to
be done on it. The discovery of the cosmic microwave
background in 1965 led to increasing interest in cosmology.
Precision tests—particularly with spacecraft—were designed.
In calculations it was sometimes difficult to tell what was a
genuine effect, and what was just a feature of the particular
coordinates used. But a variety of increasingly abstract
mathematical methods were developed, leading notably to
general theorems about inevitability of singularities. Detailed
calculations tended to require complicated symbolic tensor
manipulation (with some associated problems being NP-
complete), but with the development of computer algebra this
gradually became more feasible—and by the mid-1970s
approximate numerical methods were also being used.
Various alternative formulations of general relativity were
proposed, based for example on tetrads, spinors and twistors
(and more recently on connection, loop and non-commutative
geometry methods)—but none led to any great simplification.
Meanwhile, there continued to be ever more accurate
experimental tests of general relativity in the solar system—
and at least in the weak gravitational fields available there
(with metrics differing from the identity by at most one part in

), all have worked out to around the  level. Starting in
the 1960s, more and more ambitious gravitational wave
detectors have been built—although none as yet have actually
observed anything. Measurements done on a binary pulsar
system are nevertheless consistent at a  level with the
emission of gravitational radiation in a fairly strong
gravitational field at the rate implied by general relativity. And
since the 1980s there has been increasing conviction that at
least indirect effects of black holes associated with very strong
gravitational fields are being observed. 

Over the years, some variants of general relativity have been
proposed. At least when formulated in terms of tensors, none
have quite the simplicity of the original theory—but some
lead to rather different predictions, such as an absence of
singularities like black holes. Ever since quantum theory
began in the early 1900s there has been discussion of
quantum gravity—and almost every major method
developed for handling other quantum phenomena has been
tried on gravity. Starting in the 1980s a variety of methods
more specific to quantum gravity were also pursued, but
none have yet had convincing success. (See page 1054.)

â Differential geometry. Standard descriptions of properties
like curvature—as used for example in general relativity—
are normally based on differential geometry. In its usual
formulation this assumes that space is continuous, and can
always effectively be treated as some kind of deformed
version of ordinary Euclidean space—thus forming what is
known as a manifold. The result of this is that points in space
can always be specified by lists of coordinates—although
historically one of the objectives of differential geometry has
been to find ways to define properties like curvature so that
they do not depend on the choice of such coordinates. The
geometrical properties of a space are in general specified by
its so-called metric—and this metric allows one to compute
quantities based on lengths and angles from coordinates. The
metric can be written as a matrix , defined so that the
analog for infinitesimal vectors  and  of  in ordinary
Euclidean space is . (This is essentially equivalent to
saying that infinitesimal arc length is related to infinitesimal
coordinate distances by .) In  dimensions the
metric  for a so-called Riemannian space can in general be
any  positive-definite symmetric matrix—and can vary
with position. But for ordinary flat Euclidean space it is
always just  (at least with Cartesian
coordinates). Within say a surface whose points 
are obtained by evaluating an expression  as a function of
parameters  (so that for example ,

 for a  surface) the metric turns out to be
given by

In ordinary Euclidean space a defining feature of geometry is
that the shortest path between two points is a straight line.
But in an arbitrary space things can be more complicated,
and in general such a path will be a geodesic (see note below)
which can have a more complicated form. If the coordinates
along a path are given by an expression  (such as

) that depends on a parameter , and the metric at
position  is , then the length of a path turns out to be

and geodesics then correspond to paths that extremize this
quantity. In ordinary Euclidean space, such paths are
straight lines, so that the length of a path between points
with lists of coordinates  and  is just the ordinary
Euclidean distance . But in general, even
though geodesics are not straight lines their lengths can still
be used to define a so-called geodesic distance—which turns
out to have all the various properties of a distance discussed
on page 1030. 

If one draws a circle of radius  on a page, then the smaller 
is, the more curved the circle will be—and one can define the
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circle to have a constant curvature equal to . If one draws
a more general curve on a page, one can define its curvature
at every point by seeing what size of circle fits it best at that
point—or equivalently what the coefficients are in a
quadratic approximation. (Compare page 418.) With a 2D
surface in ordinary 3D space, one can imagine fitting
quadrics (generalized ellipsoids). But these are now specified
by two radii, yielding two principal curvatures. And in
general these curvatures depend on the way the surface is
laid out in 3D space. But a crucial point noted by Carl-
Friedrich Gauss in the 1820s is that the product of such
curvatures—the so-called Gaussian curvature—is always
independent of how the surface is laid out, and can thus be
viewed as intrinsic to the surface itself, and for example
determined purely from the metric for the 2D space
corresponding to the surface. 

In a 2D space, intrinsic curvature is completely specified just
by Gaussian curvature. In higher-dimensional spaces, there
are more components, but in general they are all part of the
so-called Riemann tensor—a rank-4 tensor introduced by
Bernhard Riemann in 1854. (In Mathematica, the explicit form
of such a tensor can be represented as a nested list for which

.) Several descriptions of the Riemann
tensor can be given. One is based on looking at infinitesimal
vectors ,  and  and asking how much  differs when
transported two ways around the edges of a parallelogram,
from  to  via  and via . In ordinary flat
space there is no difference, but in general the difference is a
vector that is defined to be . (The 
that appears here is formally Rijk

l.) Another description of the
Riemann tensor is based on geodesics. In flat Euclidean space
any two geodesics that start parallel always remain so. But a
defining feature of general non-Euclidean spaces is that this
is not in general so. And it turns out that the Riemann tensor
is what determines the rate at which geodesics deviate from
being parallel. Still another description of the Riemann tensor
is as the coefficient of the quadratic terms in an expansion of
the metric about a particular point, using so-called normal
coordinates set up to make linear terms vanish. In general the
Riemann tensor can always be computed from the metric,
though it is somewhat complicated. If  is a list of coordinate
parameters that appear in a -dimensional metric , then

where the so-called Christoffel symbol  is

There are  elements in the nested lists for , but
symmetries and the so-called Bianchi identity reduce the

number of independent components to —or
20 for . One can then compute the Ricci tensor
( ) using

and this has  independent components in 
dimensions. (The parts of the Riemann tensor not captured
by the Ricci tensor correspond to the so-called Weyl tensor;
for  the Ricci tensor has only one independent
component, equal to the negative of the Gaussian curvature.)
Finally, the Ricci scalar curvature is given by

â Page 531 · Geodesics.  On a sphere all geodesics are arcs of
great circles. On a surface of constant negative curvature (like
(c)) geodesics diverge exponentially, as noted in early work
on chaos theory (see page 971). The path of a geodesic can in
general be found by requiring that the analog of acceleration
vanishes for it. In the case of a surface defined by 
this is equivalent to solving 

together with the corresponding equation for , as already
noted by Leonhard Euler in 1728 in connection with his
development of the calculus of variations.

â Page 532 · Spherical networks. One can construct networks
of constant positive curvature by approximating the surface
of a sphere—starting with a dodecahedron and adding
hexagons. (Euler’s theorem implies that at any stage there
must always be exactly 12 pentagonal faces.) The following
are examples with 20, 60, 80, 180 and 320 nodes: 

The object with 60 nodes is a truncated icosahedron—the
shape of a standard soccer ball, as well the shape of the
fullerene molecule C60. (Note that in C60 one of the
connections at each node is always a double chemical bond,
since carbon has valence 4.) Geodesic domes are typically
duals of such networks—with three edges on each face.

â Hyperbolic networks. Any surface that always has positive
curvature must eventually close up to form something like
a sphere. But a surface that has negative curvature (and no
holes) must in some sense be infinite—more like cases (c)
and (d) on page 412. Yet even in such a case one can always
define coordinates that nominally allow the surface to be
drawn in a finite way—and the Poincaré disk model used
in the pictures below is the standard way of doing this. In
ordinary flat space, regular polygons with more than 6
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sides can never form a tessellation. But in a space with
negative curvature this is possible for polygons with
arbitrarily many sides—and the networks that result have
been much studied as Cayley graphs of Fuchsian groups.
One feature of these networks is that the number of nodes
reached in them by following  connections always grows
like . But if one intersperses hexagons in the networks (as
in the main text) then one finds that for small  the number
of nodes just grows like —as one would expect for
something like a 2D surface. But if one tries to look at
growth rates on scales that are not small compared to
characteristic lengths associated with curvature then one
again sees exponential growth—just as in the case of a
uniform tessellation without hexagons.

â Page 533 · Sphere volumes. In ordinary flat Euclidean space
the area of a 2D circle is , and the volume of a 3D sphere

. In general, the volume of a sphere in -dimensional
Euclidean space is  where  (the
surface area is ). (The function  has a maximum
around , then decreases rapidly with .)

If instead of flat space one considers a space defined by the
surface of a 3D sphere—say with radius —one can ask
about areas of circles in this space. Such circles are no longer
flat, but instead are like caps on the sphere—with a circle of
radius  containing all points that are geodesic (great circle)
distance less than  from its center. Such a circle has area

In the -dimensional space corresponding to the surface of a
(d+1)-dimensional sphere of radius , the volume of a -
dimensional sphere of radius  is similarly given by

where

In an arbitrary -dimensional space the volume of a sphere
can depend on position, but in general it is given by

where the Ricci scalar curvature is evaluated at the position
of the sphere. (The space corresponding to a (d+1)-
dimensional sphere has .) The 
version of this formula was derived in 1848; the general case
in 1917 and 1939. Various derivations can be given. One can

start from the fact that the volume density in any space is
given in terms of the metric by . But in normal
coordinates the first non-trivial term in the expansion of the
metric is proportional to the Riemann tensor, yet the
symmetry of a spherical volume makes it inevitable that the
Ricci scalar is the only combination of components that can
appear at lowest order. To next order the result is

where the new quantities involved are

In general the series in  may not converge, but it is known
that at least in most cases only flat space can give a result that
shows no correction to the basic  form. It is also known that
if the Ricci tensor is non-negative, then the volume never
grows faster than . 

â Cylinder volumes. In any -dimensional space, the volume
of a cylinder of length  and radius  whose direction is
defined by a unit vector  turns out to be given by

Note that what determines the volume of the cylinder is
curvature orthogonal to its direction—and this is what leads
to the combination of Ricci scalar and tensor that appears. 

â Page 533 · Discrete spaces. Most work with surfaces done on
computers—whether for computer graphics, computer-aided
design, solving boundary value problems or otherwise—
makes use of discrete approximations. Typically surfaces are
represented by collections of patches—with a simple mesh of
triangles often being used. The triangles are however
normally specified not so much by their network of
connections as by the explicit coordinates of their vertices.
And while there are various triangulation methods that for
example avoid triangles with small angles, no standard
method yields networks analogous to the ones I consider in
which all triangle edges are effectively the same length.

In pure mathematics a basic idea in topology has been to
look for finite or discrete ways to capture essential features
of continuous surfaces and spaces. And as an early part of
this Henri Poincaré in the 1890s introduced the concept of
approximating manifolds by cell complexes consisting of
collections of generalized polyhedra. By the 1920s there was
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then extensive work on so-called combinatorial topology, in
which spaces are thought of as being decomposed into
abstract complexes consisting say of triangles, tetrahedra
and higher-dimensional simplices. But while explicit
coordinates and lengths are not usually discussed, it is still
imagined that one knows more information than in the
networks I consider: not only how vertices are connected by
edges, but also how edges are arranged around faces, faces
around volumes, and so on. And while in 2D and 3D it is
possible to set up such an approximation to any manifold in
this way, it turns out that at least in 5D and above it is not.
Before the 1960s it had been hoped that in accordance with
the Hauptvermutung of combinatorial topology it would be
possible to tell whether a continuous mapping and thus
topological equivalence exists between manifolds just by
seeing whether subdivisions of simplicial complexes for
them could be identical. But in the 1960s it was discovered
that at least in 5D and above this will not always work. And
largely as a result of this, there has tended to be less interest
in ideas like simplicial complexes.

And indeed a crucial point for my discussion in the main
text is that in formulating general relativity one actually
does not appear to need all the structure of a simplicial
complex. In fact, the only features of manifolds that
ultimately seem relevant are ones that in appropriate limits
are determined just from the connectivity of networks. The
details of the limits are mathematically somewhat intricate
(compare page 1030), but the basic approach is
straightforward. One can find the volume of a sphere
(geodesic ball) in a network just by counting the number of
nodes out to a given network distance from a certain node.
And from the limiting growth rate of this one can
immediately get the Ricci scalar curvature—just as in the
continuous case discussed above. To get the Ricci tensor one
also needs a direction. But one can get this from a
geodesic—which is in effect the analog of a straight line in
the network. Note that unlike in a continuous space there is
however usually no obvious way to continue a geodesic in a
network. And in general, some—but not all—of the
standard constructions used in continuous spaces can also
immediately be used in networks. So for example it is
straightforward to construct a triangle in a network: one just
starts from a particular node, follows geodesics to two
others, then joins these with a geodesic. But to extend the
triangle into a parallelogram is not so easy—since there is
no immediate notion of parallelism in the network. And this
means that neither the Riemann tensor, nor a so-called
Schild ladder for parallel transport, can readily be
constructed. 

Since the 1980s there has been increasing interest in
formulating notions of continuous geometry for objects like
Cayley graphs of groups—which are fundamentally discrete
but have infinite limits analogous to continuous systems.
(Compare page 938.) 

â Manifold undecidability. Given a particular set of network
substitution rules there is in general no finite way to decide
whether any sequence of such rules exists that will transform
particular networks into each other. (Compare undecidability
in multiway systems on page 779.) And although one might
not expect it on the basis of traditional mathematical
intuition, there is an analog of this even for topological
equivalence of ordinary continuous manifolds. For the
fundamental groups that represent how basic loops can be
combined must be equivalent for equivalent manifolds. Yet it
turns out that in 4D and above the fundamental group can
have essentially any set of generators and relations—so that
the undecidability of the word problem for arbitrary groups
(see page 1141) implies undecidability of equivalence of
manifolds. (In 2D it is straightforward to decide equivalence,
and in 3D it is known that only some fundamental groups
can be obtained—roughly because not all networks can be
embedded in 2D—and it is expected that it will ultimately be
possible to decide equivalence.) 

â Non-integer dimensions.  Unlike in traditional differential
geometry (and general relativity) my formulation of space as
a network potentially allows concepts like curvature to be
defined even outside of integers numbers of dimensions.

â Page 534 · Lorentzian spaces. In ordinary Euclidean space
distance is given by . In setting up relativity
theory it is convenient (see page 1042) to define an analog of
distance (so-called proper time) in 4D spacetime by

. And in terms of differential geometry
such Minkowski space can be specified by the metric

 (now taking ). To set up
general relativity one then considers not Riemannian
manifolds but instead Lorentzian ones in which the metric is
not positive definite, but instead has the signature of
Minkowski space.

In such Lorentzian spaces, however, there is no useful
immediate analog of a sphere. For given any point, even the
light cone that corresponds to points at zero spacetime
distance from it has an infinite volume. But with an
appropriate definition one can still set up cones that have finite
volume. To do this in general one starts by picking a vector 
in a timelike direction, then normalizes it to be a unit vector so
that . Then one defines a cone of height  whose
apex is a given point to be those points whose displacement
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vector  satisfies  (and ). And the
volume of such a cone then turns out to be

â Torsion. In standard geometry, one assumes that the
distance from one point to another is the same as the
distance back, so that the metric tensor can be taken to be
symmetric, and there is zero so-called torsion. But in for
example a causal network, connections have definite
directions, and there is in general no such symmetry. And if
one looks at the volume of a cone this can then introduce a
correction proportional to . But as soon as there is enough
uniformity to define a reasonable notion of static space, it
seems that this effect must vanish. (Note that in pure
mathematics there are several different uses of the word
“torsion”. Here I use it to refer to the antisymmetric parts of
the metric tensor.)

â Random causal networks. If one assumes that there are
events at random positions in continuous spacetime, then
one can construct an effective causal network for them by
setting up connections between each event and all events in
its future light cone—then deleting connections that are
redundant in the sense that they just provide shortcuts to
events that could otherwise be reached by following multiple
connections. The pictures below show examples of causal
networks obtained in this way. The number of connections
generally increases faster than linearly with the number of
events. Most links end up being at angles that are close to the
edge of the light cone. 

â Page 534 · Einstein equations. In the absence of matter, the
standard statement of the Einstein equations is that all
components of the Ricci tensor—and thus also the Ricci
scalar—must be zero (or formally that Rij = 0 ). But since the
vanishing of all components of a tensor must be
independent of the coordinates used, it follows that the
vacuum Einstein equations are equivalent to the statement

 for all timelike unit vectors —a
statement that can readily be applied to networks of the
kind I consider in the main text. (A related statement is that
the 3D Ricci scalar curvature of all spacelike hypersurfaces
must vanish wherever these have vanishing extrinsic
curvature.) 

Another way to state the Einstein equations—already
discussed by David Hilbert in 1915—is as the constraint that
the integral of  (the so-called Einstein-
Hilbert action) be an extremum. (An idealized soap film or
other minimal surface extremizes the integral of the intrinsic
volume element , without a  factor.) In
the discrete Regge calculus that I mention on page 1054 this
variational principle turns out to have a rather simple form.

The Einstein-Hilbert action—and the Einstein equations—
can be viewed as having the simplest forms that do not
ultimately depend on the choice of coordinates. Higher-order
terms—say powers of the Ricci scalar curvature—could well
arise from underlying network systems, but would not
contribute noticeably except in very high gravitational fields.

Various physical interpretations can be given of the
vanishing of the Ricci tensor implied by the ordinary vacuum
Einstein equations. Closely related to my discussion of the
absence of  terms in volume growth for 4D spacetime cones
is the statement that if one sets up a small 3D ball of
comoving test particles then the volume it defines must have
zero first and second derivatives with time. 

Below 4D the vanishing of the Ricci tensor immediately
implies the vanishing of all components of the Riemann
tensor—so that the vacuum Einstein equations force space at
least locally to have its ordinary flat form. (Even in 2D there
can nevertheless still be non-trivial global topology—for
example with flat space having its edges identified as on a
torus. In the Euclidean case there were for a long time no
non-trivial solutions to the Einstein equations known in any
number of dimensions, but in the 1970s examples were
found, including large families of Calabi-Yau manifolds.) 

In the presence of matter, the typical formal statement of the
full Einstein equations is , where

 is the energy-momentum (stress-energy) tensor for
matter and  is the gravitational constant. (An additional so-
called cosmological term  is sometimes added on the
right to adjust the effective overall energy density of the
universe, and thus its expansion rate. Note that the equation
can also be written .) The

,  component of  gives the flux of the  component of
4-momentum (whose components are energy and ordinary 3-
momentum) in the  direction. The fact that T00 is energy
density implies that for static matter (where ) the
equation is in a sense a minimal extension of Poisson’s
equation of Newtonian gravity theory. Note that
conservation of energy and momentum implies that 
must have zero divergence—a result guaranteed in the
Einstein equations by the structure of the left-hand side. 
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In the variational approach to gravity mentioned above, the
 plays the role of a Lagrangian density for pure

gravity—and in the presence of matter the Lagrangian
density for matter must be added to it. At a physical level, the
full Einstein equations can be interpreted as saying that the
volume  of a small ball of comoving test particles satisfies

where  is the total energy density and  is the pressure
averaged over all space directions. 

To solve the full Einstein equations in any particular physical
situation requires a knowledge of —and thus of
properties of matter such as the relation between pressure
and energy density (equation of state). Quite a few global
results about the formation of singularities and the absence of
paths looping around in time can nevertheless be obtained
just by assuming certain so-called energy conditions for .
(A fairly stringent example is —and whether this
is actually true for non-trivial interacting quantum fields
remains unclear.)

In their usual formulation, the Einstein equations are thought
of as defining constraints on the structure of 4D spacetime.
But at some level they can also be viewed as defining how 3D
space evolves with time. And indeed the so-called initial
value formulations constructed in the 1960s allow one to start
with a 3D metric and various extrinsic curvatures defined for
a 3D spacelike hypersurface, and then work out how these
change on successive hypersurfaces. But at least in terms of
tensors, the equations involved show nothing like the
simplicity of the usual 4D Einstein equations. One can
potentially view the causal networks that I discuss in the
main text as providing another approach to setting up an
initial value formulation of the Einstein equations. 

â Page 536 · Pure gravity. In the absence of matter, the Einstein
equations always admit ordinary flat Minkowski space as a
solution. But they also admit other solutions that in effect
represent configurations of pure gravitational field. And in
fact the 4D vacuum Einstein equations are already a
sophisticated set of nonlinear partial differential equations
that can support all sorts of complex behavior. Several tens of
families of solutions to the equations have been found—some
with obvious physical interpretations, others without. 

Already in 1916 Karl Schwarzschild gave the solution for a
spherically symmetric gravitational field. He imagined that
this field itself existed in a vacuum—but that it was produced
by a mass such as a star at its center. In its original form the
metric becomes singular at radius  (or  km with

 in solar masses). At first it was assumed that this would
always be inside a star, where the vacuum Einstein equations

would not apply. But in the 1930s it was suggested that stars
could collapse to concentrate their mass in a smaller radius.
The singularity was then interpreted as an event horizon that
separates the interior of a black hole from the ordinary space
around it. In 1960 it was realized, however, that appropriate
coordinates allowed smooth continuation across the event
horizon—and that the only genuine singularity was infinite
curvature at a single point at the center. Sometimes it was
said that this must reflect the presence of a point mass, but
soon it was typically just said to be a point at which the
Einstein equations—for whatever reason—do not apply.
Different choices of coordinates led to different apparent
locations and forms of the singularity, and by the late 1970s
the most common representation was just a smooth manifold
with a topology reflecting the removal of a point—and
without any specific reference to the presence of matter.

Appealing to ideas of Ernst Mach from the late 1800s it has
often been assumed that to get curvature in space always
eventually requires the presence of matter. But in fact even
the vacuum Einstein equations for complete universes (with
no points left out) have solutions that show curvature. If one
assumes that space is both homogeneous and isotropic then
it turns out that only ordinary flat Minkowski space is
allowed. (When matter or a cosmological term is present
one gets different solutions—that always expand or contract,
and are much studied in cosmology.) If anisotropy is
present, however, then there can be all sorts of solutions—
classified for example as having different Bianchi symmetry
types. And a variety of inhomogeneous solutions with no
singularities are also known—an example being the 1962
Ozsváth-Schücking rotating vacuum. But in all cases the
structure is too simple to capture much that seems relevant
for our present universe.

One form of solution to the vacuum Einstein equations is a
gravitational wave consisting of a small perturbation
propagating through flat space. No solutions have yet been
found that represent complete universes containing emitters
and absorbers of such waves (or even for example just two
massive bodies). But it is known that combinations of
gravitational waves can be set up that will for example
evolve to generate singularities. And I suspect that nonlinear
interactions between such waves will also inevitably lead to
the analog of turbulence for pure gravity. (Numerical
simulations often show all sorts of complex behavior—but in
the past this has normally been attributed just to the
approximations used. Note that for example Bianchi type IX
solutions for a complete universe show sensitive dependence
on initial conditions—and no doubt this can also happen
with nonlinear gravitational waves.)
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As mentioned on page 1028, Albert Einstein considered the
possibility that particles of matter might somehow just be
localized structures in gravitational and electromagnetic
fields. And in the mid-1950s John Wheeler studied explicit
simple examples of such so-called geons. But in all cases they
were found to be unstable—decaying into ordinary
gravitational waves. The idea of having purely gravitational
localized structures has also occasionally been considered—
but so far no stable field configuration has been found. (And
no purely repetitive solutions can exist.)

The equivalence principle (see page 1047) might suggest that
anything with mass—or energy—should affect the curvature
of space in the same way. But in the Einstein equations the
energy-momentum tensor is not supposed to include
contributions from the gravitational field. (There are
alternative and seemingly inelegant theories of gravity that
work differently—and notably do not yield black holes. The
setup is also somewhat different in recent versions of string
theory.) The very definition of energy for the gravitational
field is not particularly straightforward in general relativity.
But perhaps a definition could be found that would allow
localized structures in the gravitational field to make
effective contributions to the energy-momentum tensor that
would mimic those from explicit particles of matter.
Nevertheless, there are quite a few phenomena associated
with particles that seem difficult to reproduce with pure
gravity—at least say without extra dimensions. One example
is parity violation; another is the presence of long-range
forces other than gravity. 

â Quantum gravity. That there should be quantum effects in
gravity was already noted in the 1910s, and when quantum
field theory began to develop in the 1930s, there were
immediately attempts to apply it to gravity. The first idea was
to represent gravity as a field that exists in flat spacetime, and
by analogy with photons in quantum electrodynamics to
introduce gravitons (at one point identified with neutrinos).
By the mid-1950s a path integral (see page 1061) based on the
Einstein-Hilbert action had been constructed, and by the
early 1960s Feynman diagram rules had been derived, and it
had been verified that tree diagrams involving gravitons
gave results that agreed with general relativity for small
gravitational fields. But as soon as loop diagrams were
considered, infinities began to appear. And unlike for
quantum electrodynamics there did not seem to be only a
finite number of these—that could be removed by
renormalization. And in fact by 1973 gravity coupled to
matter had been shown for certain not to be renormalizable—
and the same was finally shown for pure gravity in 1986.
There was an attempt in the 1970s and early 1980s to look

directly at the path integral—without doing an expansion in
terms of Feynman diagrams. But despite the fact that at least
in Euclidean spacetime a variety of seemingly relevant field
configurations were identified, many mathematical
difficulties were encountered. And in the late-1970s there
began to be interest in the idea that supersymmetric field
theories might make infinities associated with gravitons be
cancelled by ones associated with other particles. But in the
end this did not work out. And then in the mid-1980s one of
the great attractions of string theory was that it seemed to
support graviton excitations without the problem of infinities
seen in point-particle field theories. But it had other
problems, and to avoid these, supersymmetry had to be
introduced, leading to the presence of many other particles
that have so far not been observed. (See also page 1029.)

Starting in the 1950s a rather different approach to quantum
gravity involved trying to find a representation of the
structure of spacetime in which a quantum analog of the
Einstein equations could be obtained by the formal
procedure of canonical quantization (see page 1058). Yet
despite a few signs of progress in the 1960s there was great
difficulty in finding appropriately independent variables to
use. In the late 1980s, however, it was suggested that
variables could be used corresponding roughly to
gravitational fluxes through loops in space. And in terms of
these loop variables it was at least formally possible to write
down a version of quantum gravity. Yet while this was found
in the 1990s to have a correspondence with spin networks
(see below), it has remained impossible to see just how it
might yield ordinary general relativity as a limit.

Even if one assumes that spacetime is in a sense ultimately
continuous one can imagine investigating quantum gravity
by doing some kind of discrete approximation. And in 1961
Tullio Regge noted that for a simplicial complex (see page
1050) the Einstein-Hilbert action has a rather simple form in
terms of angles between edges. Starting in the 1980s after the
development of lattice gauge theories, simulations of random
surfaces and higher-dimensional spaces set up in this way
were done—often using so-called dynamic triangulation
based on random sequences of generalized Alexander moves
from page 1038. But there were difficulties with Lorentzian
spaces, and when large-scale average behavior was studied,
it seemed difficult to reproduce observed smooth spacetime.
Analytical approaches (that happened to be like 0D string
theory) were also found for 2D discrete spacetimes (compare
page 1038)—but they were not successfully extended to
higher dimensions. 

Over the years, various attempts have been made to derive
quantum gravity from fundamentally discrete models of
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spacetime (compare page 1027). In recent times the most
widely discussed have been spin networks—which despite
their name ultimately seem to have fairly little to do with
the systems I consider. Spin networks were introduced in
1964 by Roger Penrose as a way to set up an intrinsically
quantum mechanical model of spacetime. A simple analog
involves a 2D surface made out of triangles whose edges
have integer lengths . If one computes the product of

 for all triangles, then it turns out for
example that this quantity is extremized exactly when the
whole surface is flat. In 3D one imagines breaking space into
tetrahedra whose edge lengths correspond to discrete
quantum spin values. And in 1968 Tullio Regge and Giorgio
Ponzano suggested—almost as an afterthought in technical
work on  symbols—that the quantum probability
amplitude for any form of space might perhaps be given by
the product of  symbols for the spins on each tetrahedron.
The  are slightly esoteric
objects that correspond to recoupling coefficients for the 3D
rotation group SO(3), and that arose in 1940s studies of
combinations of three angular momenta in atomic physics—
and were often represented graphically as networks. For
large  they are approximated by ,
where  is the volume of the tetrahedron and  is a deficit
angle. And from this it turns out that limits of products of

 symbols correspond essentially to , where  is the
discrete form of the Einstein-Hilbert action—extremized by
flat 3D space. (The picture below shows for example

. Note that for any  the 
symbols can be given in terms of .) 

In the early 1990s there was again interest in spin networks
when the Turaev-Viro invariant for 3D spaces was discovered
from a topological field theory involving triangulations
weighted with  symbols of the quantum group SU(2)q—
and it was seen that invariance under Alexander moves on
the triangulation corresponded to the Biedenharn-Elliott
identity for  symbols. In the mid-1990s it was then found
that states in 3D loop quantum gravity (see above) could be
represented in terms of spin networks—leading for example
to quantization of all areas and volumes. In attempting
extensions to 4D, spin foams have been introduced—and
variously interpreted in terms of simplified Feynman
diagrams, constructs in multidimensional category theory,
and possible evolutions of spin networks. In all cases,
however, spin networks and spin foams seem to be viewed

just as calculational constructs that must be evaluated and
added together to get quantum amplitudes—quite different
from my idea of associating an explicit evolution history for
the universe with the evolution of a network. 

â Cosmology. On a large scale our universe appears to show a
uniform expansion that makes progressively more distant
galaxies recede from us at progressively higher speeds. In
general relativity this is explained by saying that the initial
conditions must have involved expansion—and that there is
not enough in the way of matter or gravitational fields to
produce the gravity to slow down this expansion too much.
(Note that as soon as objects get gravitationally bound—like
galaxies in clusters—there is no longer expansion between
them.) The standard big bang model assumes that the universe
starts with matter at what is in effect an arbitrarily high
temperature. One issue much discussed in cosmology since
the late 1970s is how the universe manages to be so uniform.
Thermal equilibrium should eventually lead to uniformity—
but different parts of the universe cannot come to equilibrium
until there has at least been time for effects to propagate
between them. Yet there seems for example to be overall
uniformity in what we see if we look in opposite directions in
the sky—even though extrapolating from the current rate of
expansion there has not been enough time since the beginning
of the universe for anything to propagate from one side to the
other. But starting in the early 1980s it has been popular to
think that early in its history the universe must have
undergone a period of exponential expansion or so-called
inflation. And what this would do is to take just a tiny region
and make it large enough to correspond to everything we can
now see in the universe. But the point is that a sufficiently tiny
region will have had time to come to thermal equilibrium—
and so will be approximately uniform, just as the cosmic
microwave background is now observed to be. The actual
process of inflation is usually assumed to reflect some form of
phase transition associated with decreasing temperature of
matter in the universe. Most often it is assumed that in the
present universe a delicate balance must exist between energy
density from a background Higgs field (see page 1047) and a
cosmological term in the Einstein equations (see page 1052).
But above a critical temperature thermal fluctuations should
prevent the background from forming—leading to at least
some period in which the universe is dominated by a
cosmological term which yields exponential expansion. There
tend to be various detailed problems with this scenario, but at
least with a sufficiently complicated setup it seems possible to
get results that are consistent with observations made so far.

In the context of the discoveries in this book, my expectation
is that the universe started from a simple small network, then
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progressively added more and more nodes as it evolved,
until eventually on a large scale something corresponding to
4D spacetime emerged. And with this setup, the observed
uniformity of the universe becomes much less surprising.
Intrinsic randomness generation always tends to lead to a
certain uniformity in networks. But the crucial point is that
this will not take long to happen throughout any network if it
is appropriately connected. Traditional models tend to
assume that there are ultimately a fixed number of spacetime
dimensions in the universe. And with this assumption it is
inevitable that if the universe in a sense expands at the speed
of light, then regions on opposite sides of it can essentially
never share any common history. But in a network model the
situation is different. The causal network always captures
what happens. And in a case like page 518—with spacetime
always effectively having a fixed finite dimension—points
that are a distance  apart tend to have common ancestors
only at least  steps back. But in a case like (a) on page 514—
where spacetime has the structure of an exponentially
growing tree—points a distance  apart typically have
common ancestors just  steps back. And in fact many
kinds of causal networks—say associated with early
randomly connected space networks—will inevitably yield
common ancestors for distant parts of the universe. (Note
that such phenomena presumably occur at around the Planck
scale of  GeV rather than at the  GeV or lower scale
normally discussed in connection with inflation. They can to
some extent be captured in general relativity by imagining an
effective spacetime dimension that is initially infinite, then
gradually decreases to 4.) 

Quantum Phenomena

â History.  In classical physics quantities like energy were
always assumed to correspond to continuous variables. But
in 1900 Max Planck noticed that fits to the measured
spectrum of electromagnetic radiation produced by hot
objects could be explained if there were discrete quanta of
electromagnetic energy. And by 1910 work by Albert
Einstein, notably on the photoelectric effect and on heat
capacities of solids, had given evidence for discrete quanta of
energy in both light and matter. In 1913 Niels Bohr then made
the suggestion that the discrete spectrum of light emitted by
hydrogen atoms could be explained as being produced by
electrons making transitions between orbits with discrete
quantized angular momenta. By 1920 ideas from celestial
mechanics had been used to develop a formalism for
quantized orbits which successfully explained various
features of atoms and chemical elements. But it was not clear

how to extend the formalism say to a problem like
propagation of light through a crystal. In 1925, however,
Werner Heisenberg suggested a new and more general
formalism that became known as matrix mechanics. The
original idea was to imagine describing the state of an atom
in terms of an array of amplitudes for virtual oscillators with
each possible frequency. Particular conditions amounting to
quantization were then imposed on matrices of transitions
between these, and the idea was introduced that only certain
kinds of amplitude combinations could ever be observed. In
1923 Louis de Broglie had suggested that just as light—which
in optics was traditionally described in terms of waves—
seemed in some respects to act like discrete particles, so
conversely particles like electrons might in some respects act
like waves. In 1926 Erwin Schrödinger then suggested a
partial differential equation for the wave functions of
particles like electrons. And when effectively restricted to a
finite region, this equation allowed only certain modes,
corresponding to discrete quantum states—whose properties
turned out to be exactly the same as implied by matrix
mechanics. In the late 1920s Paul Dirac developed a more
abstract operator-based formalism. And by the end of the
1920s basic practical quantum mechanics was established in
more or less the form it appears in textbooks today. In the
period since, increasing computational capabilities have
allowed coupled Schrödinger equations for progressively
more particles to be solved (reasonably accurate solutions for
hundreds of particles can now be found), allowing ever
larger studies in atomic, molecular, nuclear and solid-state
physics. A notable theoretical interest starting in the 1980s
was so-called quantum chaos, in which it was found that
modes (wave functions) in regions like stadiums that did not
yield simple analytical solutions tended to show complicated
and seemingly random forms. 

Basic quantum mechanics is set up to describe how fixed
numbers of particles behave—say in externally applied
electromagnetic or other fields. But to describe things like
fields one must allow particles to be created and destroyed.
In the mid-1920s there was already discussion of how to set
up a formalism for this, with an underlying idea again being
to think in terms of virtual oscillators—but now one for each
possible state of each possible one of any number of particles.
At first this was just applied to a pure electromagnetic field of
non-interacting photons, but by the end of the 1920s there
was a version of quantum electrodynamics (QED) for
interacting photons and electrons that is essentially the same
as today. To find predictions from this theory a so-called
perturbation expansion was made, with successive terms
representing progressively more interactions, and each
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having a higher power of the so-called coupling constant
. It was immediately noticed, however, that self-

interactions of particles would give rise to infinities, much as
in classical electromagnetism. At first attempts were made to
avoid this by modifying the basic theory (see page 1044). But
by the mid-1940s detailed calculations were being done in
which infinite parts were just being dropped—and the results
were being found to agree rather precisely with experiments.
In the late 1940s this procedure was then essentially justified
by the idea of renormalization: that since in all possible QED
processes only three different infinities can ever appear, these
can in effect systematically be factored out from all
predictions of the theory. Then in 1949 Feynman diagrams
were introduced (see note below) to represent terms in the
QED perturbation expansion—and the rules for these rapidly
became what defined QED in essentially all practical
applications. Evaluating Feynman diagrams involved
extensive algebra, and indeed stimulated the development of
computer algebra (including my own interest in the field).
But by the 1970s the dozen or so standard processes
discussed in QED had been calculated to order —and by
the mid-1980s the anomalous magnetic moment of the
electron had been calculated to order , and nearly one part
in a trillion (see note below). 

But despite the success of perturbation theory in QED it did
not at first seem applicable to other issues in particle physics.
The weak interactions involved in radioactive beta decay
seemed too weak for anything beyond lowest order to be
relevant—and in any case not renormalizable. And the strong
interactions responsible for holding nuclei together (and
associated for example with exchange of pions and other
mesons) seemed too strong for it to make sense to do an
expansion with larger numbers of individual interactions
treated as less important. So this led in the 1960s to attempts
to base theories just on setting up simple mathematical
constraints on the overall so-called S matrix defining the
mapping from incoming to outgoing quantum states. But by
the end of the 1960s theoretical progress seemed blocked by
basic questions about functions of several complex variables,
and predictions that were made did not seem to work well. 

By the early 1970s, however, there was increasing interest in
so-called gauge or Yang-Mills theories formed in essence by
generalizing QED to operate not just with a scalar charge, but
with charges viewed as elements of non-Abelian groups. In
1972 it was shown that spontaneously broken gauge theories
of the kind needed to describe weak interactions were
renormalizable—allowing meaningful use of perturbation
theory and Feynman diagrams. And then in 1973 it was
discovered that QCD—the gauge theory for quarks and

gluons with SU(3) color charges—was asymptotically free (it
was known to be renormalizable), so that for processes
probing sufficiently small distances, its effective coupling
was small enough for perturbation theory. By the early 1980s
first-order calculations of most basic QCD processes had
been done—and by the 1990s second-order corrections were
also known. Schemes for adding up all Feynman diagrams
with certain very simple repetitive or other structures were
developed. But despite a few results about large-distance
analogs of renormalizability, the question of what QCD
might imply for processes at larger distances could not really
be addressed by such methods. 

In 1941 Richard Feynman pointed out that amplitudes in
quantum theory could be worked out by using path integrals
that sum with appropriate weights contributions from all
possible histories of a system. (The Schrödinger equation is
like a diffusion equation in imaginary time, so the path
integral for it can be thought of as like an enumeration of
random walks. The idea of describing random walks with
path integrals was discussed from the early 1900s.) At first
the path integral was viewed mostly as a curiosity, but by the
late 1970s it was emerging as the standard way to define a
quantum field theory. Attempts were made to see if the path
integral for QCD (and later for quantum gravity) could be
approximated with a few exact solutions (such as instantons)
to classical field equations. By the early 1980s there was then
extensive work on lattice gauge theories in which the path
integral (in Euclidean space) was approximated by randomly
sampling discretized field configurations. But—I suspect for
reasons that I discuss in the note below—such methods were
never extremely successful. And the result is that beyond
perturbation theory there is still no real example of a
definitive success from standard relativistic quantum field
theory. (In addition, even efforts in the context of so-called
axiomatic field theory to set up mathematically rigorous
formulations have run into many difficulties—with the only
examples satisfying all proposed axioms typically in the end
being field theories without any real interactions. In
condensed matter physics there are nevertheless cases like
the Kondo model where exact solutions have been found,
and where the effective energy function for electrons
happens to be roughly the same as in a relativistic theory.) 

As mentioned on page 1044, ordinary quantum field theory
in effect deals only with point particles. And indeed a
recurring issue in it has been difficulty with constraints and
redundant degrees of freedom—such as those associated
with extended objects. (A typical goal is to find variables in
which one can carry out what is known as canonical
quantization: essentially applying the same straightforward
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transformation of equations that happens to work in
ordinary elementary quantum mechanics.) One feature of
string theory and its generalizations is that they define
presumably consistent quantum field theories for excitations
of extended objects—though an analog of quantum field
theory in which whole strings can be created and destroyed
has not yet been developed.

When the formalism of quantum mechanics was developed
in the mid-1920s there were immediately questions about its
interpretation. But it was quickly suggested that given a
wave function  from the Schrödinger equation 
should represent probability—and essentially all practical
applications have been based on this ever since. From a
conceptual point of view it has however often seemed
peculiar that a supposedly fundamental theory should talk
only about probabilities. Following the introduction of the
uncertainty principle and related formalism in the 1920s one
idea that arose was that—in rough analogy to relativity
theory—it might just be that there are only certain quantities
that are observable in definite ways. But this was not enough,
and by the 1930s it was being suggested that the validity of
quantum mechanics might be a sign that whole new general
frameworks for philosophy or logic were needed—a notion
supported by the apparent need to bring consciousness into
discussions about measurement in quantum mechanics (see
page 1063). The peculiar character of quantum mechanics
was again emphasized by the idealized experiment of Albert
Einstein, Boris Podolsky and Nathan Rosen in 1935. But
among most physicists the apparent lack of an ordinary
mechanistic way to think about quantum mechanics ended
up just being seen as another piece of evidence for the
fundamental role of mathematical formalism in physics. 

One way for probabilities to appear even in deterministic
systems is for there to be hidden variables whose values are
unknown. But following mathematical work in the early
1930s it was usually assumed that this could not be what was
going on in quantum mechanics. In 1952 David Bohm did
however manage to construct a somewhat elaborate model
based on hidden variables that gave the same results as
ordinary quantum mechanics—though involved infinitely
fast propagation of information. In the early 1960s John Bell
then showed that in any hidden variables theory of a certain
general type there are specific inequalities that combinations
of probabilities must satisfy (see page 1064). And by the early
1980s experiments had shown that such inequalities were
indeed violated in practice—so that there were in fact
correlations of the kind suggested by quantum mechanics. At
first these just seemed like isolated esoteric effects, but by the
mid-1990s they were being codified in the field of quantum

information theory, and led to constructions with names like
quantum cryptography and quantum teleportation. 

Particularly when viewed in terms of path integrals the
standard formalism of quantum theory tends to suggest that
quantum systems somehow do more computation in their
evolution than classical ones. And after occasional discussion
as early as the 1950s, this led by the late 1980s to extensive
investigation of systems that could be viewed as quantum
analogs of idealized computers. In the mid-1990s efficient
procedures for integer factoring and a few other problems
were suggested for such systems, and by the late 1990s small
experiments on these were beginning to be done in various
types of physical systems. But it is becoming increasingly
unclear just how the idealizations in the underlying model
really work, and to what extent quantum mechanics is
actually in the end even required—as opposed, say, just to
classical wave phenomena. (See page 1147.)

Partly as a result of discussions about measurement there
began to be questions in the 1980s about whether ordinary
quantum mechanics can describe systems containing very
large numbers of particles. Experiments in the 1980s and
1990s on such phenomena as macroscopic superposition and
Bose-Einstein condensation nevertheless showed that
standard quantum effects still occur with trillions of atoms.
But inevitably the kinds of general phenomena that I discuss
in this book will also occur—leading to all sorts of behavior
that at least cannot readily be foreseen just from the basic
rules of quantum mechanics. 

â Quantum effects.  Over the years, many suggested effects
have been thought to be characteristic of quantum systems:

äBasic quantization (1913): mechanical properties of 
particles in effectively bounded systems are discrete;

äWave-particle duality (1923): objects like electrons and 
photons can be described as either waves or particles;

ä Spin (1925): particles can have intrinsic angular 
momentum even if they are of zero size; 

äNon-commuting measurements (1926): one can get 
different results doing measurements in different orders;

äComplex amplitudes (1926): processes are described by 
complex probability amplitudes;

äProbabilism (1926): outcomes are random, though 
probabilities for them can be computed;

äAmplitude superposition (1926): there is a linear 
superposition principle for probability amplitudes;

ä State superposition (1926): quantum systems can occur in 
superpositions of measurable states;
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äExclusion principle (1926): amplitudes cancel for fermions 
like electrons to go in the same state;

ä Interference (1927): probability amplitudes for particles 
can interfere, potentially destructively;

äUncertainty principle (1927): quantities like position and 
momenta have related measurement uncertainties;

äHilbert space (1927): states of systems are represented by 
vectors of amplitudes rather than individual variables;

äField quantization (1927): only discrete numbers of any 
particular kind of particle can in effect ever exist;

äQuantum tunnelling (1928): particles have amplitudes to 
go where no classical motion would take them;

äVirtual particles (1932): particles can occur for short times 
without their usual energy-momentum relation;

ä Spinors (1930s): fermions show rotational invariance 
under SU(2) rather than SO(3); 

äEntanglement (1935): separated parts of a system often 
inevitably behave in irreducibly correlated ways;

äQuantum logic (1936): relations between events do not 
follow ordinary laws of logic; 

äPath integrals (1941): probabilities for behavior are 
obtained by summing contributions from many paths;

ä Imaginary time (1947): statistical mechanics is like 
quantum mechanics in imaginary time;

äVacuum fluctuations (1948): there are continual random 
field fluctuations even in the vacuum;

äAharanov-Bohm effect (1959): magnetic fields can affect 
particles even in regions where they have zero strength;

äBell’s inequalities (1964): correlations between events can 
be larger than in any ordinary probabilistic system;

äAnomalies (1969): virtual particles can have effects that 
violate the original symmetries of a system; 

äDelayed choice experiments (1978): whether particle or 
wave features are seen can be determined after an event;

äQuantum computing (1980s): there is the potential for 
fundamental parallelism in computations.

All of these effects are implied by the standard mathematical
formalism of quantum theory. But it has never been entirely
clear which of them are in a sense true defining features of
quantum phenomena, and which are somehow just details. It
does not help that most of the effects—at least individually—
can be reproduced by mechanisms that seem to have little to
do with the usual structure of quantum theory. So for
example there will tend to be quantization whenever the

underlying elements of a system are discrete. Similarly,
features like the uncertainty principle and path integrals tend
to be seen whenever things like waves are involved. And
probabilistic effects can arise from any of the mechanisms for
randomness discussed in Chapter 7. Complex amplitudes
can be thought of just as vector quantities. And it is
straightforward to set up rules that will for example
reproduce the detailed evolution of amplitudes according say
to the Schrödinger equation (see note below). It is somewhat
more difficult to set up a system in which such amplitudes
will somehow directly determine probabilities. And indeed
in recent times consequences of this—such as violations of
Bell’s inequalities—are what have probably most often been
quoted as the most unique features of quantum systems. It is
however notable that the vast majority of traditional
applications of quantum theory do not seem to have
anything to do with such effects. And in fact I do not consider
it at all clear just what is really essential about them, and
what is in the end just a consequence of the extreme limits
that seem to need to be taken to get explicit versions of them.

â Reproducing quantum phenomena.  Given molecular
dynamics it is much easier to see how to reproduce fluid
mechanics than rigid-body mechanics—since to get rigid
bodies with only a few degrees of freedom requires taking all
sorts of limits of correlations between underlying molecules.
And I strongly suspect that given a discrete underlying
model of the type I discuss here it will similarly be much
easier to reproduce quantum field theory than ordinary
quantum mechanics. And indeed even with traditional
formalism, it is usually difficult to see how quantum
mechanics can be obtained as a limit of quantum field theory.
(Classical limits are slightly easier: they tend to be associated
with stationary features or caustics that occur at large
quantum numbers—or coherent states that represent
eigenstates of raising or particle creation operators. Note that
the exclusion principle makes classical limits for fermions
difficult—but crucial for the stability of bulk matter.)

â Discrete quantum mechanics.  While there are many issues
in finding a complete underlying discrete model for
quantum phenomena, it is quite straightforward to set up
continuous cellular automata whose limiting behavior
reproduces the evolution of probability amplitudes in
standard quantum mechanics. One starts by assigning a
continuous complex number value to each cell. Then given
the list of such values the crucial constraint imposed by the
standard formalism of quantum mechanics is unitarity: that
the quantity  representing total probability
should be conserved. This is in a sense analogous to
conservation of total density in diffusion processes. From

Tr[Abs[ list]2]
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the discussion of page 1024 one can reproduce the 1D
diffusion equation with a continuous block cellular
automaton in which the new value of each block is given by

. So in the case of quantum
mechanics one can consider having each new block be
given by . The
pictures below show examples of behavior obtained with
this rule. (Gray levels represent magnitude for each cell,
and arrows phase.) And it turns out that in suitable limits
one generally gets essentially the behavior expected from
either the Dirac or Klein-Gordon equations for relativistic
particles, or the Schrödinger equation for non-relativistic
particles. (Versions of this were noticed by Richard
Feynman in the 1940s in connection with his development
of path integrals, and were pointed out again several times
in the 1980s and 1990s.)

One might hope to be able to get an ordinary cellular
automaton with a limited set of possible values by choosing a
suitable . But in fact in non-trivial cases most of the cells
generated at each step end up having distinct values. One
can generalize the setup to more dimensions or to allow 
matrices that are elements of SU(n). Such matrices can be
viewed in the context of ordinary quantum formalism as S
matrices for elementary evolution events—and can in general
represent interactions. (Note that all rules based on matrices
are additive, reflecting the usual assumption of linearity at
the level of amplitudes in quantum mechanics. Non-additive
unitary rules can also be found. The analog of an external
potential can be introduced by progressively changing values
of certain cells at each step. Despite their basic setup the
systems discussed here are not direct analogs of standard
quantum spin systems, since these normally have local
Hamiltonians and non-local evolution functions, while the
systems here have local evolution functions but seem always
to require non-local Hamiltonians.) 

â Page 540 · Feynman diagrams.  The pictures below show a
typical set of Feynman diagrams used to do calculations in
QED—in this case for so-called Compton scattering of a
photon by an electron. The straight lines in the diagrams
represent electrons; the wavy ones photons. At some level
each diagram can be thought of as representing a process in
which an electron and photon come in from the left, interact
in some way, then go out to the right. The incoming and

outgoing lines correspond to real particles that propagate to
infinity. The lines inside each diagram correspond to virtual
particles that in effect propagate only a limited distance, and
have a distribution of energy-momentum and polarization
properties that can differ from real particles. (Exchanges of
virtual photons can be thought of as producing familiar
electromagnetic forces; exchanges of virtual electrons as
yielding an analog of covalent forces in chemistry.) 

To work out the total probability for a process from Feynman
diagrams, what one does is to find the expression
corresponding to each diagram, then one adds these up, and
squares the result. The first two blocks of pictures above
show all the diagrams for Compton scattering that involve 2
or 3 photons—and contribute through order . Since for
QED , one might expect that this would give quite
an accurate result—and indeed experiments suggest that it
does. But the number of diagrams grows rapidly with order,
and in fact the  order term can be about ,
yielding a series that formally diverges. In simpler examples
where exact results are known, however, the first few terms
typically still seem to give numerically accurate results for
small . (The high-order terms often seem to be associated
with asymptotic series for things like .) 

The most extensive calculation made so far in QED is for the
magnetic moment of the electron. Ignoring parts that depend
on particle masses the result (derived in successive orders
from 1, 1, 7, 72, 891 diagrams) is

or roughly

The comparative simplicity of the symbolic forms here
(which might get still simpler in terms of suitable generalized
polylogarithm functions) may be a hint that methods much
more efficient than explicit Feynman diagram evaluation
could be used. But it seems likely that there would be limits
to this, and that in the end QED will exhibit the kind of
computational irreducibility that I discuss in Chapter 12.

Feynman diagrams in QCD work at the formal level very
much like those in QED—except that there are usually many
more of them, and their numerical results tend to be larger,
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with expansion parameters often effectively being  rather
than . For processes with large characteristic momentum
transfers in which the effective  in QCD is small,
remarkably accurate results are obtained with first and
perhaps second-order Feynman diagrams. But as soon as the
effective  becomes larger, Feynman diagrams as such
rapidly seem to stop being useful. 

â Quantum field theory.  In standard approaches to quantum
field theory one tends to think of particles as some kind of
small perturbations in a field. Normally for calculations these
perturbations are on their own taken to be plane waves of
definite frequency, and indeed in many ways they are direct
analogs of waves in classical field theories like those of
electromagnetism or fluid mechanics. To investigate
collisions between particles, one thus looks at what happens
with multiple waves. In a system described by linear
equations, there is always a simple superposition principle,
and waves just pass through each other unchanged. But what
in effect leads to non-trivial interactions between particles is
the presence of nonlinearities. If these are small enough then
it makes sense to do a perturbation expansion in which one
approximates field configurations in terms of a succession of
arrangements of ordinary waves—as in Feynman diagrams.
But just as one cannot expect to capture fully turbulent fluid
flow in terms of a few simple waves, so in general as soon as
there is substantial nonlinearity it will no longer be sufficient
just to do perturbation expansions. And indeed for example
in QCD there are presumably many cases in which it is
necessary to look at something closer to actual complete field
configurations—and correlations in them. 

The way the path integral for a quantum field theory works,
each possible configuration of the field is in effect taken to
make a contribution , where  is the so-called
action for the field configuration (given by the integral of the
Lagrangian density—essentially a modified energy density),
and  is a basic scale factor for quantum effects (Planck’s
constant divided by ). In most places in the space of all
possible field configurations, the value of  will vary quite
quickly between nearby configurations. And assuming this
variation is somehow random, the contributions of these
nearby configurations will tend to cancel out. But inevitably
there will be some places in the space where  is stationary
(has zero variational derivative) with respect to changes in
fields. And in some approximation the field configurations in
these places can be expected to dominate the path integral.
But it turns out that these field configurations are exactly the
ones that satisfy the partial differential equations for the
classical version of the field theory. (This is analogous to
what happens for example in classical diffraction theory,

where there is an analog of the path integral—with 
replaced by inverse frequency—whose stationary points
correspond through the so-called eikonal approximation to
rays in geometrical optics.) In cases like QED and QCD the
most obvious solutions to the classical equations are ones in
which all fields are zero. And indeed standard perturbation
theory is based on starting from these and then looking at the
expansion of  in powers of the coupling constant.
But while this works for QED, it is only adequate for QCD in
situations where the effective coupling is small. And indeed
in other situations it seems likely that there will be all sorts of
other solutions to the classical equations that become
important. But apart from a few special cases with high
symmetry, remarkably little is known about solutions to the
classical equations even for pure gluon fields. No doubt the
analog of turbulence can occur, and certainly there is
sensitive dependence on initial conditions (even non-Abelian
plane waves involve iterated maps that show this).
Presumably much like in fluids there are various coherent
structures such as color flux tubes and glueballs. But I doubt
that states involving organized arrangements of these are
common. And in general when there is strong coupling the
path integral will potentially be dominated by large numbers
of configurations not close to classical solutions.

In studying quantum field theories it has been common to
consider effectively replacing time coordinates  by  to go
from ordinary Minkowski space to Euclidean space (see page
1043). But while there is no problem in doing this at a formal
mathematical level—and indeed the expressions one gets
from Feynman diagrams can always be analytically
continued in this way—what general correspondence there is
for actual physical processes is far from clear. Formally
continuing to Euclidean space makes path integrals easier to
define with traditional mathematics, and gives them weights
of the form —analogous to constant temperature
systems in statistical mechanics. Discretizing yields lattice
gauge theories with energy functions involving for example

 for color directions at adjacent sites. And Monte
Carlo studies of such theories suggest all sorts of complex
behavior, often similar in outline from what appears to occur
in the corresponding classical field theories. (It seems
conceivable that asymptotic freedom could lead to an analog
of damping at small scales roughly like viscosity in turbulent
fluids.)

One of the apparent implications of QCD is the confinement
of quarks and gluons inside color-neutral hadrons. And at
some level this is presumably a reflection of the fact that
QCD forces get stronger rather than weaker with increasing
distance. The beginnings of this are visible in perturbation
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theory in the increase of the effective coupling with distance
associated with asymptotic freedom. (In QED effective
couplings decrease slightly with distance because fields get
screened by virtual electron-positron pairs. The same
happens with virtual quarks in QCD, but a larger effect is
virtual gluon pairs whose color magnetic moments line up
with a color field and serve to increase it.) At larger distances
something like color flux tubes that act like elastic strings
may form. But no detailed way to get confinement with
purely classical gluon fields is known. In the quantum case, a
sign of confinement would be exponential decrease with
spacetime area of the average phase of color flux through so-
called Wilson loops—and this is achieved if there is in a sense
maximal randomness in field configurations. (Note that it is
not inconceivable that the formal problem of whether quarks
and gluons can ever escape to infinity starting from some
given class of field configurations may in general be
undecidable.) 

â Vacuum fluctuations. As an analog of the uncertainty
principle, one of the implications of the basic formalism of
quantum theory is that an ordinary quantum field can in a
sense never maintain precisely zero value, but must always
show certain fluctuations—even in what one considers the
vacuum. And in terms of Feynman diagrams the way this
happens is by virtual particle-antiparticle pairs of all types and
all energy-momenta continually forming and annihilating at
all points in the vacuum. Insofar as such vacuum fluctuations
are always exactly the same, however, they presumably cannot
be detected. (In the formalism of quantum field theory, they
are usually removed by so-called normal ordering. But
without this every mode of any quantum system will show a
zero-point energy —positive in sign for bosons and
negative for fermions, cancelling for perfect supersymmetry.
Quite what gravitational effects such zero-point energy might
have has never been clear.) If one somehow changes the space
in which a vacuum exists, there can be directly observable
effects of vacuum fluctuations. An example is the 1948 Casimir
effect—in which the absence of low-energy (long wavelength)
virtual particle pairs in the space between two metal plates
(but not in the infinite space outside) leads to a small but
measurable force of attraction between them. The different
detailed patterns of modes of different fields in different
spaces can lead to very different effective vacuum energies—
often negative. And at least with the idealization of
impermeable classical conducting boundaries one predicts
(based on work of mine from 1981) the peculiar effect that
closed cycles can be set up that systematically extract energy
from vacuum fluctuations in a photon field. 

If one has moving boundaries it turns out that vacuum
fluctuations can in effect be viewed as producing real particles.
And as known since the 1960s, the same is true for expanding
universes. What happens in essence is that the modes of fields
in different background spacetime structures differ to the point
where zero-point excitations seem like actual particle
excitations to a detector or observer calibrated to fields in
ordinary fixed flat infinite spacetime. And in fact just uniform
acceleration turns out to make detectors register real particles
in a vacuum—in this case with a thermal spectrum at a
temperature proportional to the acceleration. (Uniform
rotation also leads to real particles, but apparently with a
different spectrum.) As expected from the equivalence
principle, a uniform gravitational field should produce the
same effect. (Uniform electric fields lead in a formally similar
way to production of charged particles.) And as pointed out by
Stephen Hawking in 1974, black holes should also generate
thermal radiation (at a temperature ). A
common interpretation is that the radiated particles are
somehow ones left behind when the other particle in a virtual
pair goes inside the event horizon. (A similar explanation can
be given for uniform acceleration—for which there is also an
event horizon.) There has been much discussion of the idea
that Hawking radiation somehow shows pure quantum states
spontaneously turning into mixed ones, more or less as in
quantum measurements. But presumably this is just a
reflection of the idealization involved in looking at quantum
fields in a fixed background classical spacetime. And indeed
work in string theory in the mid-1990s may suggest ways in
which quantum gravity configurations of black hole surfaces
could maintain the information needed for the whole system
to act as a pure state. 

â Page 542 ·  Quantum measurement. The basic mathematical
formalism used in standard quantum theory to describe pure
quantum processes deals just with vectors of probability
amplitudes. Yet our everyday experience of the physical
world is that we observe definite things to happen. And the
way this is normally captured is by saying that when an
observation is made the vector of amplitudes is somehow
replaced by its projection  into a subspace corresponding to
the outcome seen—with the probability of getting the
outcome being taken to be determined by . 

At the level of pure quantum processes, the standard rules of
quantum theory say that amplitudes should be added as
complex numbers—with the result that they can for example
potentially cancel each other, and generally lead to wave-like
interference phenomena. But after an observation is made, it
is in effect assumed that a system can be described by
ordinary real-number probabilities—so that for example no
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interference is possible. (At a formal level, results of pure
quantum processes are termed pure quantum states, and are
characterized by vectors of probability amplitudes; results of
all possible observations are termed mixed states, and are in
effect represented as mixtures of pure states.)

Ever since the 1930s there have been questions about just
what should count as an observation. To explain everyday
experience, conscious perception presumably always must.
But it was not clear whether the operation of inanimate
measuring devices of various kinds also should. And a major
apparent problem was that if everything—including the
measuring device—is supposed to be treated as part of the
same quantum system, then all of it must follow the rules for
pure quantum processes, which do not explicitly include any
reduction of the kind supposed to occur in observations. 

One approach to getting around this suggested in the late
1950s is the many-worlds interpretation (see page 1035): that
there is in a sense a universal pure quantum process that
involves all possible outcomes for every conceivable
observation, and that represents the tree of all possible
threads of history—but that in a particular thread, involving
a particular sequence of tree branches, and representing a
particular thread of experience for us, there is in effect a
reduction in the pure quantum process at each branch point.
Similar schemes have been popular in quantum cosmology
since the early 1990s in connection with studying wave
functions for the complete universe. 

A quite different—and I think much more fruitful—approach
is to consider analyzing actual potential measurement
processes in the context of ordinary quantum mechanics. For
even if one takes these processes to be pure quantum ones,
what I believe is that in almost all cases appropriate idealized
limits of them will reproduce what are in effect the usual
rules for observations in quantum theory. A key point is that
for one to consider something a reasonable measurement it
must in a sense yield a definitive result. And in the context of
standard quantum theory this means that somehow all the
probability amplitudes associated with the measuring device
must in effect be concentrated in specific outcomes—with no
significant interference between different outcomes. 

If one has just a few quantum particles—governed say by an
appropriate Schrödinger equation—then presumably there
can be no such concentration. But with a sufficiently large
number of particles—and appropriate interactions—one
expects that there can be. At first this might seem impossible.
For the basic rules for pure quantum processes are entirely
reversible (unitary). So one might think that if the evolution
of a system leads to concentration of amplitudes, then it

should equally well lead to the reverse. But the crucial point
is that while this may in principle be possible, it may
essentially never happen in practice—just like classical
reversible systems essentially never show behavior that goes
against the Second Law of thermodynamics. As suggested by
the main text, the details in the quantum measurement case
are slightly more complicated—since to represent multiple
outcomes measuring devices typically have to have the
analogs of multiple equilibrium states. But the basic
phenomena are ultimately very similar—and both are in
effect based on the presence of microscopic randomness. (In a
quantum system the randomness serves to give collections of
complex numbers whose average is essentially always zero.) 

This so-called decoherence approach was discussed in the
1930s, and finally began to become popular in the 1980s. But
to make it work there needs to be some source of appropriate
randomness. And almost without exception what has been
assumed is that this must come through the first mechanism
discussed in Chapter 7: that there is somehow randomness
present in the environment that always gets into the system
one is looking at. Various different specific mechanisms for
this have been suggested, including ones based on ambient
low-frequency photons, background quantum vacuum
fluctuations and background spacetime metric fluctuations.
(A somewhat related proposal involves quantum gravity
effects in which irreversibility is assumed to be generated
through analogs of the black hole processes mentioned in the
previous note.) And indeed in recent practical experiments
where simple pure quantum states have carefully been set
up, they seem to be destroyed by randomness from the
environment on timescales of at most perhaps microseconds.
But this does not mean that in more complicated systems
more characteristic of real measuring devices there may not
be other sources of randomness that end up dominating. 

One might imagine that a possibility would be the second
mechanism for randomness from Chapter 7, based on ideas
of chaos theory. For certainly in the standard formalism,
quantum probability amplitudes are taken to be continuous
quantities in which an arbitrary number of digits can be
specified. But at least for a single particle, the Schrödinger
equation is in all ways linear, and so it cannot support any
kind of real sensitivity to initial conditions, or even to
parameters. But when many particles are involved the
situation can presumably be different, as it definitely can be
in quantum field theory (see page 1061). 

I suspect, however, that in fact the most important source of
randomness in most cases will instead be the phenomenon of
intrinsic randomness generation that I first discovered in
systems like the rule 30 cellular automaton. Just like in so
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many other areas, the emphasis on traditional mathematical
methods has meant that for the most part fundamental
studies have been made only on quantum systems that in the
end turn out to have fairly simple behavior. Yet even within
the standard formalism of quantum theory there are actually
no doubt many closed systems that intrinsically manage to
produce complex and seemingly random behavior even with
very simple parameters and initial conditions. And in fact
some clear signs of this were already present in studies of so-
called quantum chaos in the 1980s—although most of the
specific cases actually considered involved time-independent
constraint satisfaction, not explicit time evolution. Curiously,
what the Principle of Computational Equivalence suggests is
that when quantum systems intrinsically produce apparent
randomness they will in the end typically be capable of doing
computations just as sophisticated as any other system—and
in particular just as sophisticated as would be involved in
conscious perception.

As a practical matter, mechanisms like intrinsic randomness
generation presumably allow systems involving macroscopic
numbers of particles to yield behavior in which interference
becomes astronomically unlikely. But to reproduce the kind
of exact reduction of probability amplitudes that is implied
by the standard formalism of quantum theory inevitably
requires taking the limit of an infinite system. Yet the
Principle of Computational Equivalence suggests that the
results of such a limit will typically be non-computable.
(Using quantum field theory to represent infinite numbers of
particles presumably cannot help; after appropriate analysis
of the fairly sophisticated continuous mathematics involved,
exactly the same computational issues should arise.) 

It is often assumed that quantum systems should somehow
easily be able to generate perfect randomness. But any
sequence of bits one extracts must be deduced from a
corresponding sequence of measurements. And certainly in
practice—as mentioned on pages 303 and 970—correlations
in the internal states of measuring devices between
successive measurements will tend to lead to deviations
from randomness. Whatever generates randomness and
brings measuring devices back to equilibrium will
eventually damp out such correlations. But insofar as
measuring devices must formally involve infinite numbers
of particles this process will formally require infinitely many
steps. So this means that in effect an infinite computation is
actually being done to generate each new bit. But with this
amount of computation there are many ways to generate
random bits. And in fact an infinite computation could even
in principle produce algorithmic randomness (see page
1067) of the kind that is implicitly suggested by the

traditional continuous mathematical formalism of quantum
theory. So what this suggests is that there may in the end be
no clear way to tell whether randomness is coming from an
underlying quantum process that is being measured, or
from the actual process of measurement. And indeed when
it comes to more realistic finite measuring devices I would
not be surprised if most of the supposed quantum
randomness they measure is actually more properly
attributed to intrinsic randomness generation associated
with their internal mechanisms. 

â Page 543 · Bell’s inequalities. In classical physics one can set
up light waves that are linearly polarized with any given
orientation. And if these hit polarizing (“anti-glare”) filters
whose orientation is off by an angle , then the waves
transmitted will have intensity . In quantum theory
the quantization of particle spin implies that any photon
hitting a polarizing filter will always either just go through
or be absorbed—so that in effect its spin measured relative
to the orientation of the polarizer is either +1 or -1. A variety
of atomic and other processes give pairs of photons that are
forced to have total spin 0. And in what is essentially the
Einstein-Podolsky-Rosen setup mentioned on page 1058 one
can ask what happens if such photons are made to hit
polarizers whose orientations differ by angle . In ordinary
quantum theory, a straightforward calculation implies that
the expected value of the product of the two measured spin
values will be . But now imagine instead that when
each photon is produced it is assigned some “hidden
variable”  that in effect explicitly specifies the angle of its
polarization. Then assume that a polarizer oriented at 
will measure the spin of such a photon to have value 
for some fixed function . Now the expected value of the
product of the two measured spin values is found just by
averaging over  as

A version of Bell’s inequalities is then that this integral can
decrease with  no faster than —as achieved when

. (In 3D  must be extended to a sphere, but the same
final result holds.) Yet as mentioned on page 1058, actual
experiments show that in fact the decrease with  is more
rapid—and is instead consistent with the quantum theory
result . So what this means is that there is in a sense
more correlation between measurements made on separated
photons than can apparently be explained by the individual
photons carrying any kind of explicit hidden property. (In the
standard formalism of quantum theory this is normally
explained by saying that the two photons can only
meaningfully be considered as part of a single “entangled”
state. Note that because of the probabilistic nature of the
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correlations it turns out to be impossible to use them to do
anything that would normally be considered communicating
information faster than the speed of light.) 

A basic assumption in deriving Bell’s inequalities is that the
choice of polarizer angle for measuring one photon is not
affected by the choice of angle for the other. And indeed
experiments have been done which try to enforce this by
choosing the angles for the polarizers only just before the
photons reach them—and too close in time for a light signal
to get from one to the other. Such experiments again show
violations of Bell’s inequalities. But inevitably the actually
devices that work out choices of polarizer angles must be in
causal contact as part of setting up the experiment. And
although it seems contrived, it is thus at least conceivable
that with a realistic model for their time evolution such
devices could end up operating in just such a way as to yield
observed violations of Bell’s inequalities.

Another way to get violations of Bell’s inequalities is to allow
explicit instantaneous propagation of information. But
traditional models involving for example a background
quantum potential again seem quite contrived, and difficult
to generalize to relativistic cases. The approach I discuss in
the main text is quite different, in effect using the idea that in
a network model of space there can be direct connections
between particles that do not in a sense ever have to go
through ordinary intermediate points in space.

When set up for pairs of particles, Bell’s inequalities tend just
to provide numerical constraints on probabilities. But for

triples of particles, it was noticed in the late 1980s that they
can give constraints that force probabilities to be 0 or 1,
implying that with the assumptions made, certain
configurations of measurement results are simply impossible. 

In quantum field theory the whole concept of measurement
is much less developed than in quantum mechanics—not
least because in field theory it is much more difficult to factor
out subsystems, and so to avoid having to give explicit
descriptions of measuring devices. But at least in axiomatic
quantum field theory it is typically assumed that one can
somehow measure expectation values of any suitably
smeared product of field operators. (It is possible that these
could be reconstructed from combinations of idealized
scattering experiments). And to get a kind of analog of Bell’s
inequalities one can look at correlations defined by such
expectation values for field operators at spacelike-separated
points (too close in time for light signals to get from one to
another). And it then turns out that even in the vacuum state
the vacuum fluctuations that are present show nonzero such
correlations—an analog of ordinary quantum mechanical
entanglement. (In a non-interacting approximation these
correlations turn out to be as large as is mathematically
possible, but fall off exponentially outside the light cone,
with exponents determined by the smallest particle mass or
the measurement resolution.) In a sense, however, the
presence of such correlations is just a reflection of the
idealized way in which the vacuum state is set up—with each
field mode determined all at once for the whole system. 
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NOTES FOR CHAPTER 10

Processes of Perception and Analysis

Defining the Notion of Randomness

â Page 554 · Algorithmic information theory. A description of
a piece of data can always be thought of as some kind of
program for reproducing the data. So if one could find the
shortest program that works then this must correspond to the
shortest possible description of the data—and in algorithmic
information theory if this is no shorter than the data itself
then the data is considered to be algorithmically random.

How long the shortest program is for a given piece of data
will in general depend on what system is supposed to run the
program. But in a sense the program will on the whole be as
short as possible if the system is universal (see page 642).
And between any two universal systems programs can differ
in length by at most a constant: for one can always just add a
fixed interpreter program to the programs for one system in
order to make them run on the other system.

As mentioned in the main text, any data generated by a
simple program can by definition never be algorithmically
random. And so even though algorithmic randomness is
often considered in theoretical discussions (see note below) it
cannot be directly relevant to the kind of randomness we see
in so many systems in this book—or, I believe, in nature.

If one considers all  possible sequences (say of 0’s and 1’s)
of length  then it is straightforward to see that most of them
must be more or less algorithmically random. For in order to
have enough programs to generate all  sequences most of
the programs one uses must themselves be close to length .
(In practice there are subtleties associated with the encoding
of programs that make this hold only for sufficiently large .)
But even though one knows that almost all long sequences
must be algorithmically random, it turns out to be
undecidable in general whether any particular sequence is
algorithmically random. For in general one can give no upper
limit to how much computational effort one might have to
expend in order to find out whether any given short

program—after any number of steps—will generate the
sequence one wants.

But even though one can never expect to construct them
explicitly, one can still give formal descriptions of sequences
that are algorithmically random. An example due to Gregory
Chaitin is the digits of the fraction  of initial conditions for
which a universal system halts (essentially a compressed
version—with various subtleties about limits—of the
sequence from page 1127 giving the outcome for each initial
condition). As emphasized by Chaitin, it is possible to ask
questions purely in arithmetic (say about sequences of values
of a parameter that yield infinite numbers of solutions to an
integer equation) whose answers would correspond to
algorithmically random sequences. (See page 786.)

As a reduced analog of algorithmic information theory one
can for example ask what the simplest cellular automaton
rule is that will generate a given sequence if started from a
single black cell. Page 1186 gives some results, and suggests
that sequences which require more complicated cellular
automaton rules do tend to look to us more complicated and
more random.

â History. Randomness and unpredictability were discussed
as general notions in antiquity in connection both with
questions of free will (see page 1135) and games of chance.
When probability theory emerged in the mid-1600s it
implicitly assumed sequences random in the sense of having
limiting frequencies following its predictions. By the 1800s
there was extensive debate about this, but in the early 1900s
with the advent of statistical mechanics and measure theory
the use of ensembles (see page 1020) turned discussions of
probability away from issues of randomness in individual
sequences. With the development of statistical hypothesis
testing in the early 1900s various tests for randomness were
proposed (see page 1084). Sometimes these were claimed to
have some kind of general significance, but mostly they were
just viewed as simple practical methods. In many fields
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outside of statistics, however, the idea persisted even to the
1990s that block frequencies (or flat frequency spectra) were
somehow the only ultimate tests for randomness. In 1909
Emile Borel had formulated the notion of normal numbers
(see page 912) whose infinite digit sequences contain all
blocks with equal frequency. And in the 1920s Richard von
Mises—attempting to capture the observed lack of
systematically successful gambling schemes—suggested that
randomness for individual infinite sequences could be
defined in general by requiring that “collectives” consisting
of elements appearing at positions specified by any
procedure should show equal frequencies. To disallow
procedures say specially set up to pick out all the infinite
number of 1’s in a sequence Alonzo Church in 1940
suggested that only procedures corresponding to finite
computations be considered. (Compare page 1021 on coarse-
graining in thermodynamics.) Starting in the late 1940s the
development of information theory began to suggest
connections between randomness and inability to compress
data, but emphasis on  measures of information
content (see page 1071) reinforced the idea that block
frequencies are the only real criterion for randomness. In the
early 1960s, however, the notion of algorithmic randomness
(see note above) was introduced by Gregory Chaitin, Andrei
Kolmogorov and Ray Solomonoff. And unlike earlier
proposals the consequences of this definition seemed to show
remarkable consistency (in 1966 for example Per Martin-Löf
proved that in effect it covered all possible statistical tests)—
so that by the early 1990s it had become generally accepted as
the appropriate ultimate definition of randomness. In the
1980s, however, work on cryptography had led to the study
of some slightly weaker definitions of randomness based on
inability to do cryptanalysis or make predictions with
polynomial-time computations (see page 1089). But quite
what the relationship of any of these definitions might be to
natural science or everyday experience was never much
discussed. Note that definitions of randomness given in
dictionaries tend to emphasize lack of aim or purpose, in
effect following the common legal approach of looking at
underlying intentions (or say at physical construction of dice)
rather than trying to tell if things are random from their
observed behavior.

â Inevitable regularities and Ramsey theory. One might have
thought that there could be no meaningful type of regularity
that would be present in all possible data of a given kind. But
through the development since the late 1920s of Ramsey
theory it has become clear that this is not the case. As one
example, consider looking for runs of  equally spaced
squares of the same color embedded in sequences of black

and white squares of length . The pictures below show
results with  for various . For  there are always
some sequences in which no runs of length 3 exist. But it
turns out that for  every single possible sequence
contains at least one run of length 3. For any  the same is
true for sufficiently large ; it is known that  requires

 and  requires . (In problems like this the
analog of  often grows extremely rapidly with .) If one has
a sufficiently long sequence, therefore, just knowing that a
run of equally spaced identical elements exists in it does not
narrow down at all what the sequence actually is, and can so
cannot ultimately be considered a useful regularity.

(Compare pattern-avoiding sequences on page 944.)

Defining Complexity

â Page 557 · History. There have been terms for complexity in
everyday language since antiquity. But the idea of treating
complexity as a coherent scientific concept potentially
amenable to explicit definition is quite new: indeed this
became popular only in the late 1980s—in part as a result of
my own efforts. That what one would usually call complexity
can be present in mathematical systems was for example
already noted in the 1890s by Henri Poincaré in connection
with the three-body problem (see page 972). And in the 1920s
the issue of quantifying the complexity of simple
mathematical formulas had come up in work on assessing
statistical models (compare page 1083). By the 1940s general
comments about biological, social and occasionally other
systems being characterized by high complexity were
common, particularly in connection with the cybernetics
movement. Most often complexity seems to have been
thought of as associated with the presence of large numbers
of components with different types or behavior, and typically
also with the presence of extensive interconnections or
interdependencies. But occasionally—especially in some
areas of social science—complexity was instead thought of as
being characterized by somehow going beyond what human
minds can handle. In the 1950s there was some discussion in
pure mathematics of notions of complexity associated
variously with sizes of axioms for logical theories, and with
numbers of ways to satisfy such axioms. The development of
information theory in the late 1940s—followed by the
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discovery of the structure of DNA in 1953—led to the idea
that perhaps complexity might be related to information
content. And when the notion of algorithmic information
content as the length of a shortest program (see page 1067)
emerged in the 1960s it was suggested that this might be an
appropriate definition for complexity. Several other
definitions used in specific fields in the 1960s and 1970s were
also based on sizes of descriptions: examples were optimal
orders of models in systems theory, lengths of logic
expressions for circuit and program design, and numbers of
factors in Krohn-Rhodes decompositions of semigroups.
Beginning in the 1970s computational complexity theory took
a somewhat different direction, defining what it called
complexity in terms of resources needed to perform
computational tasks. Starting in the 1980s with the rise of
complex systems research (see page 862) it was considered
important by many physicists to find a definition that would
provide some kind of numerical measure of complexity. It
was noted that both very ordered and very disordered
systems normally seem to be of low complexity, and much
was made of the observation that systems on the border
between these extremes—particularly class 4 cellular
automata—seem to have higher complexity. In addition, the
presence of some kind of hierarchy was often taken to
indicate higher complexity, as was evidence of computational
capabilities. It was also usually assumed that living systems
should have the highest complexity—perhaps as a result of
their long evolutionary history. And this made informal
definitions of complexity often include all sorts of detailed
features of life (see page 1178). One attempt at an abstract
definition was what Charles Bennett called logical depth: the
number of computational steps needed to reproduce
something from its shortest description. Many simpler
definitions of complexity were proposed in the 1980s. Quite a
few were based just on changing  in the definition
of entropy to a quantity vanishing for both ordered and
disordered . Many others were based on looking at
correlations and mutual information measures—and using
the fact that in a system with many interdependent and
potentially hierarchical parts this should go on changing as
one looks at more and more. Some were based purely on
fractal dimensions or dimensions associated with strange
attractors. Following my 1984 study of minimal sizes of finite
automata capable of reproducing states in cellular automaton
evolution (see page 276) a whole series of definitions were
developed based on minimal sizes of descriptions in terms of
deterministic and probabilistic finite automata (see page
1084). In general it is possible to imagine setting up all sorts
of definitions for quantities that one chooses to call
complexity. But what is most relevant for my purposes in this

book is instead to find ways to capture everyday notions of
complexity—and then to see how systems can produce these.
(Note that since the 1980s there has been interest in finding
measures of complexity that instead for example allow
maintainability and robustness of software and management
systems to be assessed. Sometimes these have been based on
observations of humans trying to understand or verify
systems, but more often they have just been based for
example on simple properties of networks that define the
flow of control or data—or in some cases on the length of
documentation needed.) (The kind of complexity discussed
here has nothing directly to do with complex numbers such
as  introduced into mathematics since the 1600s.) 

Data Compression

â Practicalities. Data compression is important in making
maximal use of limited information storage and transmission
capabilities. One might think that as such capabilities
increase, data compression would become less relevant. But
so far this has not been the case, since the volume of data
always seems to increase more rapidly than capabilities for
storing and transmitting it. In the future, compression is
always likely to remain relevant when there are physical
constraints—such as transmission by electromagnetic
radiation that is not spatially localized. 

â History. Morse code, invented in 1838 for use in
telegraphy, is an early example of data compression based
on using shorter codewords for letters such as “e” and “t”
that are more common in English. Modern work on data
compression began in the late 1940s with the development
of information theory. In 1949 Claude Shannon and Robert
Fano devised a systematic way to assign codewords based
on probabilities of blocks. An optimal method for doing this
was then found by David Huffman in 1951. Early
implementations were typically done in hardware, with
specific choices of codewords being made as compromises
between compression and error correction. In the mid-1970s,
the idea emerged of dynamically updating codewords for
Huffman encoding, based on the actual data encountered.
And in the late 1970s, with online storage of text files
becoming common, software compression programs began
to be developed, almost all based on adaptive Huffman
coding. In 1977 Abraham Lempel and Jacob Ziv suggested
the basic idea of pointer-based encoding. In the mid-1980s,
following work by Terry Welch, the so-called LZW
algorithm rapidly became the method of choice for most
general-purpose compression systems. It was used in
programs such as PKZIP, as well as in hardware devices
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such as modems. In the late 1980s, digital images became
more common, and standards for compressing them
emerged. In the early 1990s, lossy compression methods (to
be discussed in the next section) also began to be widely
used. Current image compression standards include: FAX
CCITT 3 (run-length encoding, with codewords determined
by Huffman coding from a definite distribution of run
lengths); GIF (LZW); JPEG (lossy discrete cosine transform,
then Huffman or arithmetic coding); BMP (run-length
encoding, etc.); TIFF (FAX, JPEG, GIF, etc.). Typical
compression ratios currently achieved for text are around
3:1, for line diagrams and text images around 3:1, and for
photographic images around 2:1 lossless, and 20:1 lossy. (For
sound compression see page 1080.)

â Page 560 · Number representations. The sequence of 1’s and
0’s representing a number  are obtained as follows:

(a) Unary. . (Not self-delimited.)

(b) Ordinary base 2. . (Not self-delimited.)

(c) Length prefixed. Starting with an ordinary base 2 digit
sequence, one prepends a unary specification of its length,
then a specification of that length specification, and so on: 

(d) Binary-coded base 3. One takes base 3 representation, then
converts each digit to a pair of base 2 digits, handling the
beginning and end of the sequence in a special way. 

(e) Fibonacci encoding. Instead of decomposing a number into
a sum of powers of an integer base, one decomposes it into a
sum of Fibonacci numbers (see page 902). This
decomposition becomes unique when one requires that no
pair of 1’s appear together. 

The representations of all the first  numbers
can be obtained from (the version in the main text has

 applied)

â Lengths of representations. (a) , (b) , (c)
,

(d) , (e)
. Large  approximations:

(a) , (b) , (c) , (d)
, (e) .

Shown on a logarithmic scale, representations (b) through (e)
(given here for numbers 1 through 500) all grow roughly
linearly: 

â Completeness. If one successively reads 0’s and 1’s from an
infinite sequence then the representations (c), (d) and (e) have
the property that eventually one will always accumulate a
valid representation for some number or another. The
pictures below show which sequences of 0’s and 1’s
correspond to complete numbers in these representations.
Every vertical column is a possible sequence of 0’s and 1’s,
and the column is shown to terminate when a complete
number is obtained.

With an infinite random sequence of 0’s and 1’s, different
number representations yield different distributions of sizes
of numbers. Representation (b), for example, is more
weighted towards large numbers, while (c) is more weighted
towards small numbers. Maximal compression for a
sequence of numbers with a particular distribution of sizes is
obtained by choosing a representation that yields a matching
such distribution. (See also page 949.)

â Practical computing. Numbers used for arithmetic in
practical computing are usually assumed to have a fixed
length of, say, 32 bits, and thus do not need to be self-
delimiting. In Mathematica, where integers can be of essentially
any size, a representation closer to (b) above is used.

â Page 561 · Run-length encoding. Data can be converted to
run lengths by . Each number is then
replaced by its representation.

With completely random input, the output will on average be
longer by a factor  where  is the
length of the representation for . For the Fibonacci encoding
used in the main text, this factor is approximately 1.41028. (In
base 2 this number has 1’s essentially at positions

; as discussed on page 914, the number is
transcendental.) 

n

Table[0, {n}]

IntegerDigits[n, 2]

( Flatten[{Sign[-Range[1 - Length[#], 0]], #}] &)[
Map[Rest, IntegerDigits[Rest[Reverse[NestWhileList[

Floor[Log[2, #]] &, n+ 1, # > 1 &]]], 2]]]

Flatten[IntegerDigits[
Append[2 -With[{w = Floor[Log[3, 2 n]]},

IntegerDigits[n - ( 3w+1 - 1)/2, 3, w]], 3], 2, 2]]

Apply[Take, RealDigits[(N[#, N[Log[10, #] + 3]] &)[
n�!!!!5 /GoldenRatio2 + 1/2], GoldenRatio]]

Fibonacci[n] - 1

Rest[RotateLeft[Join[#, {0, 1}]]] &

Apply[Join, Map[Last,
NestList[{#021, Join[Map[Join[{1, 0}, Rest[#]] &, #021],

Map[Join[{1, 0}, #] &, #011]]} &, {{}, {{1}}}, n - 3]]]

n Floor[Log[2, n] + 1]
Tr[FixedPointList[Max[0, Ceiling[Log[2, #]]] &, n+ 2]] - n - 3

2 Ceiling[Log[3, 2 n+ 1]]
Floor[Log[GoldenRatio, �!!!!5 (n+ 1/2)]] n

n Log[2, n] Log[2, n] + Log[2, Log[2, n]] +?

2 Log[3, n] Log[GoldenRatio, n]

(b) (c) (d) (e)

(a) (b) (c)

Map[Length, Split[data]]

Sum[2-(n+1) r[n], {n, 1, ¥}] r[n]
n

Fibonacci[n]
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â Page 563 · Huffman coding. From a list  of probabilities for
blocks, the list of codewords can be generated using

Given the list of codewords , the sequence of blocks that
occur in encoded data  can be uniquely reconstructed using

Note that the encoded data can consist of any sequence of 0’s
and 1’s. If all  possible blocks of length  occur with equal
probability, then the Huffman codewords will consist of
blocks equivalent to the original ones. In an opposite
extreme, blocks with probabilities , , , … will
yield codewords of lengths 1, 2, 3, …

In practical applications, Huffman coding is sometimes
extended to allow the choice of codewords to be updated
dynamically as more data is read.

â Maximal block compression. If one has data that consists of a
long sequence of blocks, each of length , and each
independently chosen with probability  to be of type , then
as argued by Claude Shannon in the late 1940s, it turns out that
the minimum number of base 2 bits needed on average to
represent each block in such a sequence is

. If all blocks occur with an
equal probability of , then  takes on its maximum possible
value of . If only one block occurs with nonzero probability
then . Following Shannon, the quantity  (whose form is
analogous to entropy in physics, as discussed on page 1020) is
often referred to as “information content”. This name, however,
is very misleading. For certainly  does not in general give the
length of the shortest possible description of the data; all it does
is to give the shortest length of description that is obtained by
treating successive blocks as if they occur with independent
probabilities. With this assumption one then finds that maximal
compression occurs if a block of probability  is represented
by a codeword of length . Huffman coding with a
large number of codewords will approach this if all the  are
powers of 1/2. (The self-delimiting of codewords leads to
deviations for small numbers of codewords.) For  that are
not powers of 1/2, non-integer length codewords would be
required. The method of arithmetic coding provides an
alternative in which the output does not consist of separate
codewords concatenated together. (Compare algorithmic
information content discussed on pages 554 and 1067.)

â Arithmetic coding. Consider dividing the interval from 0 to
1 into a succession of bins, with each bin having a width
equal to the probability for some sequence of blocks to occur.

The idea of arithmetic coding is to represent each such bin by
the digit sequence of the shortest number within the bin—
after trailing zeros have been dropped. For any sequence 
this can be done using

Huffman coding of a sequence containing a single 0 block
together with  1 blocks will yield output of length about ;
arithmetic coding will yield length about . Compression
in arithmetic coding still relies, however, on unequal block
probabilities, just like in Huffman coding. Originally
suggested in the early 1960s, arithmetic coding reemerged in
the late 1980s when high-speed floating-point computation
became common, and is occasionally used in practice.

â Page 565 · Pointer-based encoding. One can encode a list of
data  by generating pointers to the longest and most recent
copies of each subsequence of length at least  using

The process of encoding can be made considerably faster
by keeping a dictionary of previously encountered
subsequences. One can reproduce the original data using

To get a representation purely in terms of 0 and 1, one can use
a self-delimiting representation for each integer that appears.
(Knowing the explicit representation one could then
determine whether each block would be shorter if encoded
literally or using a pointer.) The encoded version of a purely
repetitive sequence of length  has a length that grows like

. The encoded version of a purely nested sequence
grows like . The encoded version of a sufficiently
random sequence grows like  (with the specific encoding
used in the text, the length is about ). Note that any
sequence of 0’s and 1’s corresponds to the beginning of the
encoding for some sequence or another.

It is possible to construct sequences whose encoded versions
grow roughly like fractional powers of . An example is the
sequence  whose encoded
version grows like . Cyclic tag systems often seem to
produce sequences whose encoded versions grow like fractional

p

Map[Drop[Last[#], -1] &, Sort[
Flatten[MapIndexed[Rule, FixedPoint[Replace[Sort[#],

{{p0_, i0_}, {p1_, i1_}, pi___} ! {{p0 + p1, {i0, i1}},
pi}] &, MapIndexed[List, p]]01, 21, {-1}]]]] - 1
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d

First[{{}, d} //. MapIndexed[
{{r___}, Flatten[{#1, s___}]} ! {{r, #2011}, {s}} &, c]]
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Module[{c, m = 0},
Map[c[#] = {m, m += Count[s, #] /Length[s]} &, Union[s]];
Function[x, (First[RealDigits[2# Ceiling[2-# Min[x]],

2, -#, -1]] &)[Floor[Log[2, Max[x] -Min[x]]]]][
Fold[(Max[#1] -Min[#1]) c[#2] +Min[#1] &, {0, 1}, s]]]
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PEncode[d_, b_ : 4] := Module[{i, a, u, v},
i = 2; a = {First[d]}; While[ i < Length[d], {u, v} =

Last[Sort[Table[{MatchLength[d, i, j], j}, { j , i - 1}]]];
If[u > b, AppendTo[a, p[ i - v, u]]; i += u,

AppendTo[a, d0i1]; i ++]]; a]
MatchLength[d_, i_, j_] := With[{m = Length[d] - i}, Catch[
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PDecode[a_] := Module[{d = Flatten[
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powers of . Sequences produced by concatenation sequences are
not typically compressed by pointer encoding.

With completely random input, the probability that the
length  subsequence which begins at element  is a repeat
of a previous subsequence is roughly . The
overall fraction of a length  input that consists of repeats of
length at least  is greater than  and is essentially

â LZW algorithms. Practical implementations of pointer-
based encoding can maintain only a limited dictionary of
possible repeats. Various schemes exist for optimizing the
construction, storage and rewriting of such dictionaries. 

â Page 568 · Recursive subdivision. In one dimension,
encoding can be done using

In  dimensions, it can be done using

â 2D run-length encoding. A simple way to generalize run-
length encoding to two dimensions is to scan data one row
after another, always finding the largest rectangle of uniform
color that starts at each particular point. The pictures below
show regions with an area of more than 10 cells found in this
way. The presence of so many thin and overlapping regions
prevents good compression. 

2D run-length encoding can also be done by scanning the
data according to a more complicated space-filling curve, of
the kind discussed on page 893. 

Irreversible Data Compression

â History. The idea of creating sounds by adding together
pure tones goes back to antiquity. At a mathematical level,

following work by Joseph Fourier around 1810 it became
clear by the mid-1800s how any sufficiently smooth function
could be decomposed into sums of sine waves with
frequencies corresponding to successive integers. Early
telephony and sound recording in the late 1800s already used
the idea of compressing sounds by dropping high- and low-
frequency components. From the early days of television in
the 1950s, some attempts were made to do similar kinds of
compression for images. Serious efforts in this direction were
not made, however, until digital storage and processing of
images became common in the late 1980s.

â Orthogonal bases. The defining feature of a set of basic forms
is that it is complete, in the sense that any piece of data can be
built up by adding the basic forms with appropriate weights.
Most sets of basic forms used in practice also have the feature
of being orthogonal, which turns out to make it particularly
easy to work out the weights for a given piece of data. In 1D, a
basic form  is just a list. Orthogonality is then the property
that  for all . And when this property holds,
the weights are given essentially just by .

The concept of orthogonal bases was historically worked out
first in the considerably more difficult case of continuous
functions. Here a typical orthogonality property is

. As
discovered by Joseph Fourier around 1810, this is satisfied for
basis functions such as .

â Page 573 · Walsh transforms. The basic forms shown in the
main text are 2D Walsh functions—represented as 
matrices. Each collection of such functions can be obtained
from lists of vectors representing 1D Walsh functions by
using , or equivalently

.

The pictures below show how 1D arrays of data values can be
built up by adding together 1D Walsh functions. At each step
the Walsh function used is given underneath the array of
values obtained so far. 

The components of the vectors for 1D Walsh functions can be
ordered in many ways. The pictures below show the

n

b n
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n
b 1 - 2b /n
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{ j , i - b + 1, i - 1}], {i, b, n - b}] / ( n - 2 b + 1)
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Subdivide[a_] := Flatten[
If[Length[a] 2 2, a, If[Apply[SameQ, a], {1, First[a]},

{0, Map[Subdivide, Partition[a, Length[a] /2]]}]]]

n
Subdivide[a_, n_] := With[{s = Table[1, {n}]}, Flatten[

If[Dimensions[a] 2 2 s, a, If[Apply[SameQ, Flatten[a]],
{1, First[Flatten[a]]}, {0, Map[Subdivide[#, n] &,

Partition[a, 1/2 Length[a] s], {n}]}]]]]
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complete matrices of basis vectors obtained with three
common orderings. 

The matrices for size  can be obtained from

with (a) , , (b) ,
, and (c) . (a) is used in the main

text. Known as sequency order, it has the property that each
row involves one more change of color than the previous
row. (b) is known as natural or Hadamard order. It exhibits a
nested structure, and can be obtained as in the pictures below
from the evolution of a 2D substitution system, or
equivalently from a Kronecker product as in

with

(c) is known as dyadic or Paley order. It is related to (a) by
Gray code reordering of the rows, and to (b) by reordering
according to (see page 905)

It is also given by 

where (b) is obtained simply by dropping the . 

Walsh functions can correspond to nested sequences. The
function at position  in
basis (a), for example, is exactly the Thue-Morse sequence
(with 0 replaced by -1) from page 83. 

Given the matrix  of basis vectors, the Walsh transform is
simply . Direct evaluation of this for length  takes 
steps. However, the nested structure of  in natural order
allows evaluation in only about  steps using 

This procedure is similar to the fast Fourier transform
discussed below. Transforms of 2D data are equivalent to 1D
transforms of flattened data.

Walsh functions were used by electrical engineers such as
Frank Fowle in the 1890s to find transpositions of wires
that minimized crosstalk; they were introduced into
mathematics by Joseph Walsh in 1923. Raymond Paley
introduced the dyadic basis in 1932. Mathematical
connections with harmonic analysis of discrete groups were
investigated from the late 1940s. In the 1960s, Walsh
transforms became fairly widespread in discrete signal and
image processing. 

â Page 575 · Walsh spectra. The arrays of absolute values of
weights of basic forms for successive images are as follows:

â Hadamard matrices. Hadamard matrices are  matrices
with elements -1 and +1, whose rows are orthogonal, so that

. The matrices used in
Walsh transforms are special cases with . There are
thought to be Hadamard matrices with every size 
(and for  no other sizes are possible); the number of
distinct such matrices for each  up to 7 is 1, 1, 1, 5, 3, 60, 487.
The so-called Paley family of Hadamard matrices for

 with  prime are given by

Originally introduced by Jacques Hadamard in 1893 as the
matrices with elements  which attain the maximal
possible determinant , Hadamard matrices appear in
various combinatorial problems, particularly design of
exhaustive combinations of experiments and Reed-Muller
error-correcting codes.

â Image averaging. Walsh functions yield significantly better
compression than simple successive averaging of  blocks
of cells, as shown below.

(a) (b) (c)

n = 2s

Nest[Apply[Join, f [{Map[Flatten[Map[{#, #} &, #]] &, #],
Map[Flatten[Map[{#, -#} &, #]] &, g[#]]}]] &, {{1}}, s]

f = Identity g = Reverse f = Transpose
g = Identity f = g = Identity

Nest[Flatten2D[Map[# {{1, 1}, {1, -1}} &, #, {2}]] &, {{1}}, s]

Flatten2D[a_] :=
Apply[Join, Apply[Join, Map[Transpose, a], {2}]]

BitReverseOrder[a_] :=
With[{n = Length[a]}, a0Map[FromDigits[Reverse[#], 2] &,

IntegerDigits[Range[0, n - 1], 2, Log[2, n]]] + 11]

Array[Apply[Times, (-1)^ ( IntegerDigits[#1, 2, s]
Reverse[IntegerDigits[#2, 2, s]])] &, 2^{s, s}, 0]
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m
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n Log[n]

Nest[Flatten[Transpose[Partition[#, 2]�.�{{1, 1}, {1, -1}}]] &,
data, Log[2, Length[data]]]
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PadLeft[Array[JacobiSymbol[#2 - #1, n - 1] &, {n, n} - 1] -
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â Practical image compression. Two basic phenomena
contribute to our ability to compress images in practice. First,
that typical images of relevance tend to be far from random—
indeed they often involve quite limited numbers of distinct
objects. And second, that many fine details of images go
unnoticed by the human visual system (see the next section).

â Fourier transforms. In a typical Fourier transform, one uses
basic forms such as  with  running from 1 to .
The weights associated with these forms can be found using

, and given these weights the original data can also be
reconstructed using . The pictures below show
what happens in such a so-called discrete cosine transform
when different fractions of the weights are kept, and others
are effectively set to zero. High-frequency wiggles associated
with the so-called Gibbs phenomenon are typical near edges.

 can be thought of as multiplication by the
 matrix . Applying

 to this matrix yields a matrix which has an
essentially nested form, and for size  can be obtained
from

Using this structure, one obtains the so-called fast Fourier
transform which operates in  steps and is given by

(See also page 1080.)

â JPEG compression. In common use since the early 1990s
JPEG compression works by first assigning color values to
definite bins, then applying a discrete Fourier cosine
transform, then applying Huffman encoding to the resulting
weights. The “quality” of the image is determined by how
many weights are kept; a typical default quality factor, used
say by  in Mathematica, is 75. 

â Wavelets. Each basic form in an ordinary Walsh or Fourier
transform has nonzero elements spread throughout. With
wavelets the elements are more localized. As noted in the late

1980s basic forms can be set up by scaling and translating just
a single appropriately chosen underlying shape. The (a) Haar
and (b) Daubechies wavelets  shown below both have
the property that the basic forms  (whose 2D
analogs are shown as on page 573) are orthogonal for every
different  and . 

The pictures below show images built up by keeping
successively more of these basic forms. Sharp edges have
fewer wiggles than with Fourier transforms. 

â Sound compression. See page 1080.

Visual Perception

â Color vision. The three types of color-sensitive cone cells on
the human retina each have definite response curves as a
function of wavelength. The perceived color of light with a
given wavelength distribution is basically determined by the
three numbers obtained by integrating these responses. For
any wavelength distribution it turns out that if one scales
these numbers to add up to one, then the chromaticity values
obtained must lie within a certain region. Mixing  specific
colors in different proportions allows one to reach any point
in an -cornered polytope. For  this polytope comes
close to filling the region of all possible colors, but for no 
can it completely fill it—which is why practical displays and
printing processes can produce only limited ranges of colors. 

An important observation, related to the fact that limitations
in color ranges are usually not too troublesome, is that the
perceived colors of objects stay more or less constant even
when viewed in very different lighting, corresponding to
very different wavelength distributions. In recent years it has
become clear that the origin of this phenomenon is that
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beyond the original cone cells, most color-sensitive cells in
our visual system respond not to absolute color levels, but
instead to differences in color levels at slightly different
positions. (Responses to nearby relative values rather than
absolute values seem to be common in many forms of human
perception.)

The fact that white light is a mixture of colors was noticed by
Isaac Newton in 1704, and it became clear in the course of the
1700s that three primaries could reproduce most colors.
Thomas Young suggested in 1802 that there might be three
types of color receptors in the eye, but it was not until 1959
that these were actually identified—though on the basis of
perceptual experiments, parametrizations of color space were
already well established by the 1930s. While humans and
primates normally have three types of cone cells, it has been
found that other mammals normally have two, while birds,
reptiles and fishes typically have between 3 and 5.

â Nerve cells. In the retina and the brain, nerve cells typically
have an irregular tree-like structure, with between a few and
a few thousand dendrites carrying input signals, and one or
more axons carrying output signals. Nerve cells can respond
on timescales of order milliseconds to changes in their inputs
by changing their rate of generating output electrical spikes.
As has been believed since the 1940s, most often nerve cells
seem to operate at least roughly by effectively adding up
their inputs with various positive or negative weights, then
going into an excited state if the result exceeds some
threshold. The weights seem to be determined by detailed
properties of the synapses between nerve cells. Their values
can presumably change to reflect certain aspects of the
activity of the cell, thus forming a basis for memory (see page
1102). In organisms with a total of only a few thousand nerve
cells, each individual cell typically has definite connections
and a definite function. But in humans with perhaps 100
billion nerve cells, the physical connections seem quite
haphazard, and most nerve cells probably develop their
function as a result of building up weights associated with
their actual pattern of behavior, either spontaneous or in
response to external stimuli.

â The visual system. Connected to the 100 million or so light-
sensitive photoreceptor cells on the retina are roughly two
layers of nerve cells, with various kinds of cross-connections,
out of which come the million fibers that form the optic
nerve. After essentially one stop, most of these go to the
primary visual cortex at the back of the brain, which itself
contains more than 100 million nerve cells. Physical
connections between nerve cells have usually been difficult
to map. But starting in the 1950s it became possible to record
electrical activity in single cells, and from this the discovery

was made that many cells respond to rather specific visual
stimuli. In the retina, most common are center-surround
cells, which respond when there is a higher level of light in
the center of a roughly circular region and a lower level
outside, or vice versa. In the first few layers of the visual
cortex about half the cells respond to elongated versions of
similar stimuli, while others seem sensitive to various forms
of change or motion. In the fovea at the center of the retina, a
single center-surround cell seems to get input from just a few
nearby photoreceptors. In successive layers of the visual
cortex cells seem to get input from progressively larger
regions. There is a very direct mapping of positions on the
retina to regions in the visual cortex. But within each region
there are different cells responding to stimuli at different
angles, as well as to stimuli from different eyes. Cells with
particular kinds of responses are usually found to be
arranged in labyrinthine patterns very much like those
shown on page 427. And no doubt the processes which
produce these patterns during the development of the
organism can be idealized by simple 2D cellular automata.
Quite what determines the pattern of illumination to which a
given cell will respond is not yet clear, although there is some
evidence that it is the result of adaptation associated with
various kinds of test inputs. Since the late 1970s, it has been
common to assume that the response of a cell can be
modelled by derivatives of Gaussians such as those shown
below, or perhaps by Gabor functions given by products of
trigonometric functions and Gaussians. Experiments have
determined responses to these and other specific stimuli, but
inevitably no experiment can find all the stimuli to which a
cell is sensitive. 

The visual systems of a number of specific higher and lower
organisms have now been studied, and despite a few
differences (such as cross-connections being behind the
photoreceptors on the retinas of octopuses and squids, but in
front in most higher animals), the same general features are
usually seen. In lower organisms, there tend to be fewer
layers of cells, with individual cells more specialized to
particular visual stimuli of relevance to the organism.

â Feedback. Most of the lowest levels of visual processing
seem to involve only signals going successively from one
layer in the eye or brain to the next. But presumably there is
at least some feedback to previous layers, yielding in effect
iteration of rules like the ones used in the main text. The

f $x f $xx f $xx f + $yy f $xxx f
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resulting evolution process is likely to have attractors,
potentially explaining the fact that in images such as “Magic
Eye” random dot stereograms features can pop out after
several seconds or minutes of scrutiny, even without any
conscious effort. 

â Scale invariance. In a first approximation our recognition of
objects does not seem to be much affected by overall size or
overall light level. For light level—as with color constancy—
this is presumably achieved by responding only to
differences between levels at different positions. Probably the
same effect contributes to scale invariance by emphasizing
only edges and corners. And if one is looking at objects like
letters, it helps that one has learned them at many different
sizes. But also similar cells most likely receive inputs from
regions with a range of different sizes on the retina—making
even unfamiliar textures seem the same over at least a certain
range of scales. When viewed at a normal reading distance of
12 inches each square in the picture on page 578 covers a
region about 5 cells across on the retina. With good lighting
and good eyesight the textures in the picture can still be
distinguished at a distance of 5 feet, where each square
covers only one cell. But if the picture is enlarged by a factor
of 3 or more then at normal reading distance it can become
difficult to distinguish the textures—perhaps because the
squares cover regions larger than the templates used at the
lowest levels in our visual system.

â History. Ever since antiquity the visual arts have yielded
practical schemes and sometimes also fairly abstract
frameworks for determining what features of images will
have what impact. In fact, even in prehistoric times it seems
to have been known, for example, that edges are often
sufficient to communicate visual forms, as in the pictures
below. 

Visual perception has been used for centuries as an example
in philosophical discussions about the nature of experience.
Traditional mathematical methods began to be applied to it
in the second half of the 1800s, particularly through the
development of psychophysics. Studies of visual illusions
around the end of the 1800s raised many questions that were
not readily amenable to numerical measurement or
traditional mathematical analysis, and this led in part to the
Gestalt approach to psychology which attempted to
formulate various global principles of visual perception.

In the 1940s and 1950s, the idea emerged that visual images
might be processed using arrays of simple elements. At a
largely theoretical level, this led to the perceptron model of
the visual system as a network of idealized neurons. And at a
practical level it also led to many systems for image
processing (see below), based essentially on simple cellular
automata (see page 928). Such systems were widely used by
the end of the 1960s, especially in aerial reconnaissance and
biomedical applications. 

Attempts to characterize human abilities to perceive texture
appear to have started in earnest with the work of Bela Julesz
around 1962. At first it was thought that the visual system
might be sensitive only to the overall autocorrelation of an
image, given by the probability that randomly selected points
have the same color. But within a few years it became clear
that images could be constructed—notably with systems
equivalent to additive cellular automata (see below)—that
had the same autocorrelations but looked completely
different. Julesz then suggested that discrimination between
textures might be based on the presence of “textons”, loosely
defined as localized regions like those shown below with
some set of distinct geometrical or topological properties. 

In the 1970s, two approaches to vision developed. One was
largely an outgrowth of work in artificial intelligence, and
concentrated mostly on trying to use traditional mathematics
to characterize fairly high-level perception of objects and
their geometrical properties. The other, emphasized
particularly by David Marr, concentrated on lower-level
processes, mostly based on simple models of the responses of
single nerve cells, and very often effectively applying

 with simple kernels, as in the pictures below.

In the 1980s, approaches based on neural networks capable of
learning became popular, and attempts were made in the
context of computational neuroscience to create models
combining higher- and lower-level aspects of visual
perception. 

The basic idea that early stages of visual perception involve
extraction of local features has been fairly clear since the
1950s, and researchers from a variety of fields have invented
and reinvented implementations of this idea many times. But
mainly through a desire to use traditional mathematics, these

ListConvolve
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implementations have tended to be implicitly restricted to
using elements with various linearity properties—typically
leading to rather unconvincing results. My model is closer to
what is often done in practical image processing, and
apparently to how actual nerve cells work, and in effect
assumes highly nonlinear elements.

â Page 581 · Implementation. The exact matches for a template
 in data containing elements 0 and 1 can be obtained from

â Testing the model. Although it is difficult to get good
systematic data, the many examples I have tried indicate that
the levels of discrimination between textures that we achieve
with our visual system agree remarkably well with those
suggested by my simple model. A practical issue that arises
is that if one repeatedly tries experiments with the same set
of textures, then after a while one learns to discriminate these
particular textures better. Shifting successive rows or even
just making an overall rotation seems, however, to avoid this
effect. 

â Related models. Rather than requiring particular templates
to be matched, one can consider applying arbitrary cellular
automaton rules. The pictures below show results from a
single step of the 16 even-numbered totalistic 5-neighbor
rules. The results are surprisingly easy to interpret in terms of
feature extraction.

â Image processing. The release of programs like Photoshop
in the late 1980s made image processing operations such as
smoothing, sharpening and edge detection widely available
on general-purpose computers. Most of these operations are
just done by applying  with simple kernels.
(Even before computers, such convolutions could be done
using the fact that diffraction of light effectively performs
Fourier transforms.) Ever since the 1960s all sorts of schemes
for nonlinear processing of images have been discussed and
used in particular communities. An example originally
popular in the earth and environmental sciences is so-called
mathematical morphology, based on “dilation” of data
consisting of 0’s and 1’s with a “structuring element” 
according to  (as well as the
dual operation of “erosion”). Most schemes like this can
ultimately be thought of as picking out templates or applying
simple cellular automaton rules.

â Real textures. The textures I consider in the main text are all
based on arrays of discrete black and white squares. One can
also consider textures associated, say, with surface roughness
of physical objects. Models of these are often needed for
realistic computer graphics. Common approaches are to
assume that the surfaces are random with some frequency
spectrum, or can be generated as fractals using substitution
systems with random parameters. In recent times, models
based on wavelets have also been used.

â Statistical methods. Even though they do not appear to
correspond to how the human visual system works,
statistical methods are often used in trying to discriminate
textures automatically. Correlations, conditional entropies
and fractal dimensions are commonly computed. Often it is
assumed that different parts of a texture are statistically
independent, so that the texture can be characterized by
probabilities for local patterns, as in a so-called Markov
random field or generalized autoregressive moving average
(ARMA) process.

â Camouflage. On both animals and military vehicles it is
often important to have patterns that cannot be distinguished
from a background by the visual systems of predators. And
in most cases this is presumably best achieved by avoiding
differences in densities of certain local features. Note that in a
related situation almost any fairly random overlaid pattern
containing many local features can successfully be used to
mask the contents of a paper envelope. 

â Halftoning. In printed books like this one, gray levels are
usually obtained by printing small dots of black with varying
sizes. On displays consisting of fixed arrays of pixels, gray
levels must be obtained by having only a certain density of
pixels be black. One way to achieve this is to break the array
into  blocks, then successively to fill in pixels in each
block until the appropriate gray level is reached, as in the
pictures below, in an order given for example by 

An alternative to this so-called ordered dither approach is
the Floyd-Steinberg or error-diffusion method invented in
1976. This scans sequentially, accumulating and spreading
total gray level in the data, then generating a black pixel
whenever a threshold is exceeded. The method can be
implemented using 

s

Sign[ListCorrelate[2 s - 1, data] -Count[s, 1, 2]] + 1

ListConvolve

s

Sign[ListConvolve[s, data, 1, 0]]

2n72n

Nest[
Flatten2D[{{4 # + 0, 4 # + 2}, {4 # + 3, 4 # + 1}}] &, {{0}}, n]

Module[{a = Flatten[data], r, s},
{r, s} = Dimensions[data]; Partition[Do[

a0i + {1, s - 1, s, s + 1}1 += m (a0i1 - If[a0i1 < 1/2, 0, 1]),
{i, r s - s - 1}]; Map[If[# < 1/2, 0, 1] &, a], s]]
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In its original version , as in the first row of
pictures below. But even with  the method
generates fairly random patterns, as in the second row below.
(Note that significantly different results can be obtained if
different boundary conditions are used for each row.) 

To give the best impression of uniform gray, one must in
general minimize features detected by the human visual
system. One simple way to do this appears to be to use
nested patterns like the ones below. 

â Generating textures. As discussed on page 217, it is in
general difficult to find 2D patterns which at all points match
some definite set of templates. With  templates, there
turn out to be just 7 minimal such patterns, shown below.
Constructing patterns in which templates occur with definite
densities is also difficult, although randomized iterative
schemes allow some approximation to be obtained.

One-dimensional cellular automata are especially convenient
generators of distinctive textures. Indeed, as was noticed
around 1980, generalizations of additive rules involving cells
in different relative locations can produce textures with
similar statistics, but different visual appearance, as shown
below. (All the examples shown turn out to correspond to
ordinary, sequential and reversible cellular automata seen
elsewhere in this book.) (See also page 1018.)

â Moire patterns. The pictures below show moire patterns
formed by superimposing grids of points at different angles.
Our visual system does not immediately perceive the grids,

but instead mainly picks up features formed from local
arrangements of dots. The second picture below is similar to
patterns of halftone screens visible in 4-color printing under a
magnifying glass. 

In the first two pictures below, bands with spacing
 are visible wherever lines cross. In the second

two pictures there is also an apparent repetitive pattern with
approximately the same repetition period.

The patterns are exactly repetitive only when ,
where  and  are elements of a primitive Pythagorean triple
(so that ,  and  are all integers, and

). This occurs when ,  (see
page 945), and in this case the minimum displacement that
leaves the whole pattern unchanged is .

The second row of pictures illustrates what happens if
points closer than distance  are joined. The results
appear to capture at least some of the features picked out by
our visual system. 

â Perception and presentation. In writing this book it has been
a great challenge to find graphical representations that make
the behavior of systems as clear as possible for the purposes
of human visual perception. Even small changes in
representation can greatly affect what properties are noticed.
As a simple example, the pictures below are identical, except
for the fact that the colors of cells on alternate rows have been
reversed.

m = {7, 3, 5, 1} /16
m = {1, 0, 1, 0} /2

1/ 8 1/ 7 1/ 4 1/ 3 3/ 8 2/ 5 9/ 16

1/ 8 1/ 7 1/ 4 1/ 3 3/ 8 2/ 5 9/ 16

1/ 5 1/ 4 1/ 3 2/ 5 1/ 2
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Auditory Perception

â Sounds. The human auditory system is sensitive to sound
at frequencies between about 20 Hz and 20 kHz. Middle A
on a piano typically corresponds to a frequency of 440 Hz.
Each octave represents a change in frequency by a factor of
two. In western music there are normally 12 notes identified
within an octave. These differ in frequency by successive
factors of roughly —with different temperament
schemes using different rational approximations to powers
of this quantity.

The perceived character of a sound seems to depend most on
the frequencies it contains, but also to be somewhat affected
by the way its intensity ramps up with time, as well as the
way frequencies change during this ramp up. Many musical
instruments produce sound by vibrating strings or air in
cylindrical or conical tubes, and in these cases, there is one
main frequency, together with roughly equally spaced
overtones. In percussion instruments, the spectrum of
frequencies is usually much more complicated. In speech,
vowels and voiced consonants tend to be characterized by
the lowest two or three frequencies of the mouth. In nature,
processes such as fluid turbulence and fracture yield a broad
spectrum of frequencies. In speech, letters like “s” also yield
broad spectra, presumably because they involve fluid
turbulence.

Any sound can be specified by giving its amplitude or
waveform as a function of time.  corresponds to a
pure tone. Other simple mathematical functions can also
yield distinctive sounds. FM synthesis functions such as

 can be made to sound somewhat like
various musical instruments, and indeed were widely used
in early synthesizers. 

â Auditory system. Sound is detected by the motion it causes
in hair cells in the cochlea of the inner ear. When vibrations of
a particular frequency enter the cochlea an active process
involving hair cells causes the vibrations to be concentrated
at a certain distance down the cochlea. To a good
approximation this distance is proportional to the logarithm
of the frequency, and going up one octave in frequency
corresponds to moving roughly 3.5 mm. Of the 12,000 or so

hair cells in the cochlea most seem to be involved mainly
with mechanical issues; about 3500 seem to produce
outgoing signals. These are collected by about 30,000 nerve
fibers which go down the auditory nerve and after several
stops reach the auditory cortex. Different nerve cells seem to
have rates of firing which are set up to reflect both sound
intensity, and below perhaps 300 Hz, actual amplitude peaks
in the sound waveform. Much as in both the visual and
tactile systems, there seems to be a fairly direct mapping
from position on the cochlea to position in the auditory
cortex. In animals such as bats it is known that specific nerve
cells respond to particular kinds of frequency changes. But in
primates, for example, little is known about exactly what
features are extracted in the auditory cortex. 

The fact that there are a million nerve fibers going from the
eye to the brain, but only about 30,000 going from the ear to
the brain means that while it takes several million bits per
second to transmit video of acceptable quality, a few tens of
thousands of bits are adequate for audio (NTSC television is
5 MHz; audio CDs 22 kHz; telephone 8 kHz). Presumably
related is also the fact that it is typically much easier to make
realistic sound effects than realistic visual ones.

â Chords. Two pure tones played together exhibit beats at the
difference of their frequencies—a consequence of the fact that

With , one can explicitly hear the time variation of
the beats if their frequency is below about 15 Hz, and the
result is quite pleasant. But between 15 Hz and about 60 Hz,
the sound tends to be rather grating—possibly because this
frequency range conflicts with that used for signals in the
auditory nerve.

In music it is usually thought that chords consisting of tones
with frequencies whose ratios have small denominators
(such as 3/2, corresponding to a perfect fifth) yield the most
pleasing sounds. The mechanics of the ear imply that if two
tones of reasonable amplitude are played together,
progressively smaller additional signals will effectively be
generated at frequencies . The picture
below shows the extent to which such frequencies tend to be
in the range that yield grating effects. The minima at values
of  corresponding to rationals with small
denominators may explain why such chords seem more
pleasing. (See also page 917.)

21/12
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â History. The notion of musical notes and of concepts such as
octaves goes back at least five thousand years. Around 550
BC the Pythagoreans identified various potential connections
between numbers and the perception of sounds. And over
the course of time a wide range of mathematical and
aesthetic principles were suggested. But it was not until the
1800s, particularly with the work of Hermann Helmholtz,
that the physical basis for the perception of sound began to
be seriously investigated. Work on speech sounds by
Alexander Graham Bell and others was related to the
development of the telephone in the late 1800s. In the past
few decades, with better experiments, particularly on the
emission of sound by the ear, and with ideas and analysis
from electrical engineers and physicists the basic behavior of
at least the cochlea is becoming largely understood. 

â Sonification. Sound has occasionally been used as a means
of understanding scientific data. In the 1950s and 1960s
analog computers (and sometimes digital computers)
routinely had sound output. And in the 1970s some
discoveries about chaos in differential equations were made
using such output. In experimental neuroscience sounds are
also routinely used to monitor impulses in nerve cells. 

â Implementation.  in Mathematica generates
sound output by treating the elements of  as successive
samples in the waveform of the sound, typically with a
default sample rate of 8000 Hz.

â Time variation. Many systems discussed in this book produce
sounds with distinctive and sometimes pleasing time variation.
Particularly dramatic are the concatenation systems discussed
on page 913, as well as successive rows in nested patterns such
as 
and sequences based on numbers such as

 (see page
613). The recursive sequences on page 130 yield sounds
reminiscent of many natural systems.

â Musical scores. Instead of taking a sequence to correspond
directly to the waveform of a sound, one can consider it to
give a musical score in which each element represents a note
of a certain frequency, played for some specific short time.
(One can avoid clicks by arranging the waveform to cross
zero at both the beginning and end of each note.) With this
setup my experience is that both repetitive and random
sequences tend to seem quite monotonous and dull. But
nested sequences I have found can quite often generate
rather pleasing tunes. (One can either determine frequencies
of notes directly from the values of elements, or, say, from
cumulative sums of such values, or from heights in paths like
those on page 892.) (See also page 869.)

â Recognizing repetition. The curve of the function
 shown on page 146 looks complicated to

the eye. But a sound with a corresponding waveform is
recognized by the ear as consisting simply of two pure tones.
However, if one uses the function to generate a score—say
playing a note at the position of each peak—then no such
simplicity can be recognized. And this fact is presumably
why musical scores normally have notes only at integer
multiples of some fixed time interval. 

â Sound compression. Sound compression has in practice
mostly been applied to human speech. In typical voice coders
(vocoders) 64k bits per second of digital data are obtained by
sampling the original sound waveform 8000 times per
second, and assigning one of 256 possible levels to each
sample. (Since the 1960s, so-called mu-law companding has
often been used, in which these levels are distributed
exponentially in amplitude.) Encoding only differences
between successive samples leads to perhaps a factor of 2
compression. Much more dramatic compression can be
achieved by making an explicit model for speech sounds.
Most common is to assume that within each phoneme-length
chunk of a few tens of milliseconds the vocal tract acts like a
linear filter excited either by pure tones or randomness. In so-
called linear predictive coding (LPC) optimal parameters are
found to make each sound sample be a linear combination of,
say, 8 preceding samples. The residue from this procedure is
then often fitted to a code book of possible forms, and the
result is that intelligible speech can be obtained with as little
as 3 kbps of data. Hardware implementations of LPC and
related methods have been widespread since before the
1980s; software implementations are now becoming
common. Music has in the past rarely been compressed,
except insofar as it can be specified by a score. But recently
the MP3 format associated with MPEG and largely based on
LPC methods has begun to be used for compression of
arbitrary sounds, and is increasingly applied to music. 

â Page 586 · Spectra. The spectra shown are given by
, where the symmetrical second half of this

list is dropped in the pictures. Also of relevance are intensity
or power spectra, obtained as the square of these spectra.
These are related to the autocorrelation function according to

(See also page 1074.)

â Spectra of substitution systems. Questions that turn out to
be related to spectra of substitution systems have arisen in
various areas of pure mathematics since the late 1800s. In the
1980s, particularly following discoveries in iterated maps
and quasicrystals, studies of such spectra were made in the

ListPlay[data]
data

Flatten[IntegerDigits[NestList[BitXor[#, 2 #] &, 1, 500], 2]]

Flatten[Table[If[GCD[ i, j] 2 0, 1, 0], {i, 1000}, { j , i}]]

Sin[x] +Sin[�!!!!2 x]

Abs[Fourier[data]]

Fourier[ list]2 2
Fourier[ListConvolve[ list, list, {1, 1}]] /Sqrt[Length[ list]]



P R O C E S S E S  O F  P E R C E P T I O N  A N D  A N A L Y S I S N O T E S  F O R  C H A P T E R  1 0

1081

context of number theory and dynamical systems theory.
Some general principles were proposed, but a great many
exceptions were always eventually found. 

As suggested by the pictures in the main text, spectra such as
(b) and (d) in the limit consist purely of discrete Dirac delta
function peaks, while spectra such as (a) and (c) also contain
essentially continuous parts. There seems to be no simple
criterion for deciding from the rule what type of spectrum
will be obtained. (In some cases it works to look at whether
the limiting ratio of lengths on successive steps is a Pisot
number.) One general result, however, is that all so-called
Sturmian sequences  with

 an irrational number must yield discrete spectra. And as
discussed on page 903, if  is a quadratic irrational, then such
sequences can be generated by substitution systems.

For any substitution system the spectrum  at step 
from initial condition  is given by a linear recurrence relation
in terms of the . With  colors each giving a
string of the same length  the recurrence relation is

Some specific properties of the examples shown include:

(a) (Thue-Morse sequence) The spectrum is essentially
. The

main peak is at position 1/3, and in the power spectrum this
peak contains half of the total. The generating function for the
sequence (with 0 replaced by -1) satisfies , so
that . (Z transform or
generating function methods can be applied directly only for
substitution systems with rules such as .)
After  steps a continuous approximation to the spectrum is

, which is an example of a type
of product studied by Frigyes Riesz in 1918 in connection with
questions about the convergence of trigonometric series. It is
related to the product of sawtooth functions given by

. Peaks occur for values
of  such as 1/3 that are not well approximated by numbers of
the form  with small  and . 

(b) (Fibonacci-related sequence) This sequence is a Sturmian
one. The maximum of the spectrum is at . The
spectrum is roughly like the markings on a ruler that is
recursively divided into  pieces.

(c) (Cantor set) In the limit, no single peak contains a
nonzero fraction of the power spectrum. After  steps a
continuous approximation to the spectrum is

.

(d) (Period-doubling sequence) The spectrum is
, almost like the

markings on a base 2 ruler. 

(See also page 917.)

â Flat spectra. Any impulse sequence 
will yield a flat spectrum. With odd  the same turns out to
be true for sequences —a fact
used in the design of acoustic diffusers (see page 1183). For
sequences involving only two distinct integers flat spectra are
rare; with  those equivalent to  seem to be the
only examples. (  works for any  and , as do
all lists obtained working modulo  from 
where  is any invertible polynomial.) If one ignores the
first component of the spectrum the remainder is flat for a
constant sequence, or for a random sequence in the limit of
infinite length. It is also flat for maximal length LFSR
sequences (see page 1084) and for sequences

 with prime  (see page 870).
By adding a suitable constant to each element one can then
arrange in such cases for the whole spectrum to be flat. If

  sequences also satisfy
. Sequences of 0’s and 1’s that have the same

property are ,  or in general
. If -1 is allowed,

additional sequences such as  are also
possible. (See also pages 911.)

â Nested vibrations. With an assembly of springs arranged in
a nested pattern simple initial excitations can yield motion
that shows nested behavior in time. If the standard
methodology of mechanics is followed, and the system is
analyzed in terms of normal modes, then the spectrum of
possible frequencies can look complicated, just as in the
examples on page 586. (Similar considerations apply to the
motion of quantum mechanical electrons in nested
potentials.)

â Page 587 · Random block sequences. Analytical forms for all
but the last spectrum are: , , , ,

, ,
, where , and 

runs from  to  in each plot. Given a list of blocks such as
 each element of  can be thought of as a

state in a finite automaton or a Markov process (see page
1084). The transitions between these states have probabilities
given by  where
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The average spectrum of sequences generated according to
these probabilities can be obtained by computing the
correlation function for elements a distance  apart

then forming  and
taking the limit . If  then the spectrum is

. For a random walk (see
page 977) in which  occur with equal probability the
spectrum is , or roughly . 

The same basic setup also applies to spectra associated with
linear filters and ARMA time series processes (see page
1083), in which elements in a sequence are generated from
external random noise by forming linear combinations of the
noise with definite configurations of elements in the
sequence.

â Spectra of cellular automata. When cellular automata have
non-trivial attractors as discussed in Chapter 6 the spectra of
sequences obtained at particular steps can exhibit a variety of
features, as shown below. 

â 2D spectra. The pictures below give the 2D Fourier
transforms of the nested patterns shown on page 583.

â Diffraction patterns. X-ray diffraction patterns give Fourier
transforms of the spatial arrangement of atoms in a material.
For an ordinary crystal with atoms on a repetitive lattice, the

patterns consist of a few isolated peaks. For quasicrystals
with generalized Penrose tiling structures the patterns also
contain a few large peaks, though as in example (b) on page
586 there are also a hierarchy of smaller peaks present. In
general, materials with nested structures do not necessarily
yield discrete diffraction patterns. In the early 1990s,
experiments were done in which layers a few atoms thick of
two different materials were deposited in a Thue-Morse
sequence. The resulting object was found to yield X-ray
diffraction patterns just like example (a) on page 586.

Statistical Analysis

â History. Some computations of odds for games of chance
were already made in antiquity. Beginning around the 1200s
increasingly elaborate results based on the combinatorial
enumeration of possibilities were obtained by mystics and
mathematicians, with systematically correct methods being
developed in the mid-1600s and early 1700s. The idea of
making inferences from sampled data arose in the mid-
1600s in connection with estimating populations and
developing precursors of life insurance. The method of
averaging to correct for what were assumed to be random
errors of observation began to be used, primarily in
astronomy, in the mid-1700s, while least squares fitting and
the notion of probability distributions became established
around 1800. Probabilistic models based on random
variations between individuals began to be used in biology
in the mid-1800s, and many of the classical methods now
used for statistical analysis were developed in the late 1800s
and early 1900s in the context of agricultural research. In
physics fundamentally probabilistic models were central to
the introduction of statistical mechanics in the late 1800s
and quantum mechanics in the early 1900s. Beginning as
early as the 1700s, the foundations of statistical analysis
have been vigorously debated, with a succession of fairly
specific approaches being claimed as the only ones capable
of drawing unbiased conclusions from data. The practical
use of statistical analysis began to increase rapidly in the
1960s and 1970s, particularly among biological and social
scientists, as computers became more widespread. All too
often, however, inadequate amounts of data have ended up
being subjected to elaborate statistical analyses whose
results are then blindly assumed to represent definitive
scientific conclusions. In the 1980s, at least in some fields,
traditional statistical analysis began to become less popular,
being replaced by more direct examination of data
presented graphically by computer. In addition, in the
1990s, particularly in the context of consumer electronics

r
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devices, there has been an increasing emphasis on using
statistical analysis to make decisions from data, and
methods such as fuzzy logic and neural networks have
become popular.

â Practical statistics. The vast majority of statistical analysis is
in practice done on continuous numerical data. And with
surprising regularity it is assumed that random variations in
such data follow a Gaussian distribution (see page 976). But
while this may sometimes be true—perhaps as a consequence
of the Central Limit Theorem—it is rarely checked, making it
likely that many detailed inferences are wrong. So-called
robust statistics uses for example medians rather than means
as an attempt to downplay outlying data that does not follow
a Gaussian distribution.

Classical statistical analysis mostly involves trying to use
data to estimate parameters in specific probabilistic models.
Non-parametric statistics and related methods often claim to
derive conclusions without assuming particular models for
data. But insofar as a conclusion relies on extrapolation
beyond actual measured data it must inevitably in some way
use a model for data that has not been measured.

â Time series. Sequences of continuous numerical data are
often known as time series, and starting in the 1960s
standard models for them have consisted of linear
recurrence relations or linear differential equations with
random noise continually being added. The linearity of such
models has allowed efficient methods for estimating their
parameters to be developed, and these are widely used,
under slightly different names, in control engineering and in
business analysis. In recent years nonlinear models have
also sometimes been considered, but typically their
parameters are very difficult to estimate reliably. As
discussed on page 919 it was already realized in the 1970s
that even without external random noise nonlinear models
could produce time series with seemingly random features.
But confusion about the importance of sensitivity to initial
conditions caused the kind of discoveries made in this book
to be missed.

â Page 588 · Origin of probabilities. Probabilities are normally
assumed to enter for at least two reasons: (a) because of
random variation between individuals, and (b) because of
random errors in measurement. (a) is particularly common in
the biological and social sciences; (b) in the physical sciences.
In physics effects of statistical mechanics and quantum
mechanics are also assumed to introduce probabilities.
Probabilistic models for abstract mathematical systems have
in the past been rare, though the results about randomness in
this book may make them more common in the future.

â Probabilistic models. A probabilistic model must associate
with every sequence a probability that is a number between
0 and 1. This can be done either by giving an explicit
procedure for taking sequences and finding probabilities, or
by defining a process in which sequences are generated with
appropriate probabilities. A typical example of the first
approach is the Ising model for spin systems in which
relative probabilities of sequences are found by multiplying
together the results of applying a simple function to blocks
of nearby elements in the sequence. Monte Carlo methods
and probabilistic cellular automata provide examples of the
second approach.

â Page 588 · Binomial distribution. If black squares appear
independently with probability  then the probability that 
squares out of  are black is .

â Page 589 · Estimation of parameters. One way to estimate
parameters in simple probabilistic models is to compute the
mean and other moments of the data and then to work out
what values of the parameters will reproduce these. More
general is the maximum likelihood method in which one
finds the values of the parameters which maximize the
probability of generating the observed data from the model.
(Least squares fits do this for models in which the data
exhibits independent Gaussian variations.) Various
modifications can be made involving for example weighting
with a risk function before maximizing. If one starts with a
priori probability distributions for all parameters, then
Bayes’s Theorem on conditional probabilities allows one to
avoid the arbitrariness of methods such as maximum
likelihood and explicitly to work out from the observed data
what the probability is for each possible choice of
parameters in the model. It is rare in practice, however, to be
able to get convincing a priori probability distributions,
although when there are physical or other reasons to expect
entropy to be maximized the so-called maximum entropy
method may be useful.

â Complexity of models. The pictures at the top of the next
page show least squares fits (found using  in Mathematica)
to polynomials with progressively higher degrees and
therefore progressively more parameters. Which fit should be
considered best in any particular case must ultimately
depend on external considerations. But since the 1980s there
have been attempts to find general criteria, typically based on
maximizing quantities such as  (the Akaike
information criterion), where  is the probability that the
observed data would be generated from a given model
(  is proportional to variance in a least squares fit),
and  is the number of parameters in the model.
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n Binomial[n, m] pm (1 - p)n-m

Fit
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â Page 590 · Markov processes. The networks in the main text
can be viewed as representing finite automata (see page 957)
with probabilities associated with transitions between nodes
or states. Given a vector of probabilities to be in each state,
the evolution of the system corresponds to multiplication by
the matrix of probabilities for each transition. (Compare the
calculation of properties of substitution systems on page
890.) Markov processes first arose in the early 1900s and have
been widely studied since the 1950s. In their first uses as
models it was typically assumed that each state transition
could explicitly be observed. But by the 1980s hidden
Markov models were being studied, in which only some of
the states or transitions could be distinguished by outside
observations. Practical applications were made in speech
understanding and text compression. And in the late 1980s,
building on work of mine from 1984 (described on page 276),
James Crutchfield made a study of such models in which he
defined the complexity of a model to be equal to 
summed over all connections in the network. He argued that
the best scientific model is one that minimizes this
complexity—which with probabilities 0 and 1 is equivalent to
minimizing the number of nodes in the network. 

â Non-local processes. It follows from the fact that any path
in a finite network must always eventually return to a node
where it has been before that any Markov process must be
fundamentally local, in the sense that the probabilities it
implies for what happens at a given point in a sequence must
be independent of those for points sufficiently far away. But
probabilistic models based on other underlying systems can
yield sequences with long-range correlations. As an example,
probabilistic neighbor-independent substitution systems can
yield sequences with hierarchical structures that have
approximate nesting. And since the mid-1990s such systems
(usually characterized as random trees or random context-
free languages) have sometimes been used in analyzing data
that is expected to have grammatical structure of some kind.

â Page 594 · Block frequencies. In any repetitive sequence the
number of distinct blocks of length  must become constant
with  for sufficiently large . In a nested sequence the
number must always continue increasing roughly linearly,
and must be greater than  for every . (The differences of
successive numbers themselves form a nested sequence.) If
exactly  distinct blocks occur for every , then the
sequence must be of the so-called Sturmian type discussed

on page 916, and the th element must be given by
, where  is an irrational

number. Up to limited  nested sequences can contain all 
possible blocks, and can do so with asymptotically equal
frequencies. Pictures (b), (c) and (d) show the simplest cases
where this occurs (for length 3 
also works). Linear feedback shift registers of the type used
in picture (e) are discussed below. Concatenation sequences
of the type used in picture (f) are discussed on page 913. In
both cases equal frequencies of blocks are obtained only for
sequences of length exactly . 

â LFSR sequences. Often referred to as pseudonoise or PN
sequences, maximal length linear feedback shift register
sequences have repetition period  and are generated by
shift registers that go through all their possible states except
the one consisting of all 0’s, as discussed on page 974. Blocks
in such sequences obtained from  must all
be distinct since they correspond to successive complete
states of the shift register. This means that every block with
length up to  (except all 0’s) must occur with equal
frequency. (Note that only a small fraction of all possible
sequences with this property can be generated by LFSRs.)
The regularity of PN sequences is revealed by looking at the
autocorrelation . This quantity is
-1 for all nonzero  for PN sequences (so that all but the first
component in  are equal), but has mean
0 for truly random sequences. (Related sequences can be
generated from  as discussed on page 912.)

â Entropy estimates. Fitting the number of distinct blocks of
length  to the form  for large  the quantity  gives the
so-called topological entropy of the system. The so-called
measure entropy is given as discussed on page 959 by the
limit of  where the  are the
probabilities for the blocks. Actually getting accurate
estimates of such entropies is however often rather difficult,
and typically upper bounds are ultimately all that can
realistically be given. Note also that as discussed in the main
text having maximal entropy does not by any means imply
perfect randomness.

â Tests of randomness. Statistical analysis has in practice
been much more concerned with finding regularities in data
than in testing for randomness. But over the course of the
past century a variety of tests of randomness have been
proposed, especially in the context of games of chance and
their government regulation. Most often the tests are applied
not directly to sequences of 0’s and 1’s, but instead say to
numbers obtained from blocks of 8 elements. A typical
collection of tests described by Donald Knuth in 1968
includes: (1) frequency or equidistribution test (possible
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elements should occur with equal frequency); (2) serial test
(pairs of elements should be equally likely to be in
descending and ascending order); (3) gap test (runs of
elements all greater or less than some fixed value should
have lengths that follow a binomial distribution); (4) poker
test (blocks corresponding to possible poker hands should
occur with appropriate frequencies); (5) coupon collector’s
test (runs before complete sets of values are found should
have lengths that follow a definite distribution); (6)
permutation test (in blocks of elements possible orderings of
values should occur equally often); (7) runs up test (runs of
monotonically increasing elements should have lengths that
follow a definite distribution); (8) maximum-of-t test
(maximum values in blocks of elements should follow a
power-law distribution). With appropriate values of
parameters, these tests in practice tend to be at least
somewhat independent, although in principle, if sufficient
data were available, they could all be subsumed into basic
block frequency and run-length tests. Of the sequences on
page 594, (a) through (d) as well as (f) fail every single one of
the tests, (e) fails only the serial test, while (g) and (h) pass all
the tests. (Failure is defined as a value that is as large or small
as that obtained from the data occurring below a specified
probability in the set of all possible sequences.) Widespread
use of tests like these on pseudorandom generators (see page
974) began in the late 1970s, with discoveries of defects in
common generators being announced every few years. 

In the 1980s simulations in physics had begun to use
pseudorandom generators to produce sequences with
billions of elements, and by the late 1980s evidence had
developed that a few common generators gave incorrect
results in such cases as phase transition properties of the 3D
Ising model and shapes of diffusion-limited aggregates.
(These difficulties provided yet more support for my
contention that models with intrinsic randomness are more
reliable than those with external randomness.) In the 1990s
various idealizations of physics simulations—based on
random walks, correlation functions, localization of
eigenstates, and so on—were used as tests of pseudorandom
generators. These tests mostly seem simpler than those
shown on page 597 obtained by running a cellular automaton
rule on the data.

Over the years, essentially every proposed statistical test of
randomness has been applied to the center column of rule 30.
And occasionally people have told me that their tests have
found deviations from randomness. But in every single case
further investigation showed that the results were somehow
incorrect. So as of now, the center column of rule 30 appears
to pass every single proposed statistical test of randomness. 

â Difference tables. See page 1091.

â Randomized algorithms. Whether a randomized algorithm
gives correct answers can be viewed as a test of randomness
for whatever supposedly random sequence is provided to it.
But in most practical cases such tests are not particularly
stringent; linear congruential generators, for example, almost
always pass. (There are perhaps exceptions in VLSI testing.)
And this is basically why it has so often proved possible to
replace randomized algorithms by deterministic ones that are
at least as efficient (see page 1192). An example is Monte
Carlo integration, where what ultimately matters is uniform
sampling of the integrand—which can usually be achieved
better by quasi-random irrational number multiple (see page
903) or digit reversal (see page 905) sequences than by
sequences one might consider more random.

Cryptography and Cryptanalysis

â History. Cryptography has been in use since antiquity, and
has been a decisive factor in a remarkably large number of
military and other campaigns. Typical of early systems was
the substitution cipher of Julius Caesar, in which every letter
was cyclically shifted in the alphabet by three positions, with
A being replaced by D, B by E, and so on. Systems based on
more arbitrary substitutions were in use by the 1300s. And
while methods for their cryptanalysis were developed in the
1400s, such systems continued to see occasional serious use
until the early 1900s. Ciphers of the type shown on page 599
were introduced in the 1500s, notably by Blaise de Vigenère;
systematic methods for their cryptanalysis were developed in
the mid-1800s and early 1900s. By the mid-1800s, however,
codes based on books of translations for whole phrases were
much more common than ciphers, probably because more
sophisticated algorithms for ciphers were difficult to
implement by hand. But in the 1920s electromechanical
technology led to the development of rotor machines, in
which an encrypting sequence with an extremely long period
was generated by rotating a sequence of noncommensurate
rotors. A notable achievement of cryptanalysis was the 1940
breaking of the German Enigma rotor machine using a
mixture of statistical analysis and automatic enumeration of
keys. Starting in the 1950s, electronic devices were the
primary ones used for cryptography. Linear feedback shift
registers and perhaps nonlinear ones seem to have been
common, though little is publicly known about military
cryptographic systems after World War II. In 1977 the U.S.
government introduced the DES data encryption standard,
and in the 1980s this became the dominant force in the
growing field of commercial cryptography. DES takes 64-bit
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blocks of data and a 56-bit key, and applies 16 rounds of
substitutions and permutations. The S-box that implements
each substitution works much like a single step of a cellular
automaton. No fast method of cryptanalysis for DES is
publicly known, although by now for a single DES system an
exhaustive search of keys has become feasible. Two major
changes occurred in cryptography in the 1980s. First,
cryptographic systems routinely began to be implemented in
software rather than in special-purpose hardware, and thus
became much more widely available. And second, following
the introduction of public-key cryptography in 1975, the idea
emerged of basing cryptography not on systems with
complicated and seemingly arbitrary construction, but
instead on systems derived from well-known mathematical
problems. Initially several different problems were
considered, but after a while the only ones to survive were
those such as the RSA system discussed below based
essentially on the problem of factoring integers. Present-day
publicly available cryptographic systems are almost all based
on variants of either DES (such as the IDEA system of PGP),
linear feedback shift registers or RSA. My cellular automaton
cryptographic system is one of the very few fundamentally
different systems to have been introduced in recent years.

â Basic theory. As was recognized in the 1920s the only way
to make a completely secure cryptographic system is to use a
so-called one-time pad and to have a key that is as long as the
message, and is chosen completely at random separately for
each message. As soon as there are a limited number of
possible keys then in principle one can always try each of
them in turn, looking in each case to see whether they imply
an original message that is meaningful in the language in
which the message is written. And as Claude Shannon
argued in the 1940s, the length of message needed to be
reasonably certain that only one key will satisfy this criterion
is equal to the length of the key divided by the redundancy of
the language in which the message is written—equal to about
0.5 for English (see below).

In a cryptographic system with keys of length  there will
typically be a total of  possible keys. If one guesses a key it
will normally take a time polynomial in  to check whether
the key is correct, and thus the problem of cryptanalysis is in
the class known in theoretical computer science as NP or
non-deterministic polynomial time (see page 1142). It is
suspected but not established that there exist at least some
problems in NP that cannot be solved in polynomial time,
potentially indicating that for an appropriate system it might
be impossible to do cryptanalysis in any time polynomial in

. (See page 1089.)

â Text. As the picture below illustrates, English text typically
remains intelligible until about half its characters have been
deleted, indicating that it has a redundancy of around 0.5.
Most other languages have slightly higher redundancies,
making documents in those languages slightly longer than
their counterparts in English.

Redundancy can in principle be estimated by breaking text
into blocks of length , then looking for the limit of the
entropy as  (see page 1084). Statistically uniform
samples of text do not in practice, however, tend to be large
enough to allow more than about  to be reached, and the
presence of correlations (even though exponentially damped)
between far-separated letters means that computed entropies
usually decrease continually with , making it difficult to
estimate their limit (see page 1084). Note that particularly in
computer languages higher redundancy is found if one takes
account of grammatical structure.

â Page 599 · Cryptanalysis. The so-called Vigenère cipher was
thought for several centuries to be unbreakable. The idea of
looking for repeats was introduced by Friedrich Kasiski in
1863. A statistical approach based on the fact that frequencies
tend to be closer to uniform for longer keys was introduced
by William Friedman in the 1920s. The methods described in
the main text are fairly characteristic of the mixture between
generality and detail that is typical in practical cryptanalysis. 

â Page 600 · Linear feedback shift registers. See notes on pages
974 and 1084. LFSR sequences are widely used in radio
technology, particularly in the context of spread spectrum
applications. Their purpose is usually to provide a way to
distinguish or synchronize signals, and sometimes to provide
a level of cryptographic security. In CDMA technology for
cellular telephones, for example, data is overlaid on LFSR
sequences, and sequences other than the one intended for a
particular receiver seem like noise which can be ignored. As
another example, the Global Positioning System (GPS) works
by having 24 satellites each transmit maximal length
sequences from different length 10 LFSRs. Position is
deduced from the arrival times of signals, as determined by
the relative phases of the LFSR sequences received. (GPS P-
code apparently uses much longer LFSR sequences and
repeats only every 267 days. Before May 2000 it was used to
add unpredictable timing errors to ordinary GPS signals.) 

n
kn

n

n

About half the letters in typical English text are redundant.
About half the letter- in typical Eng--sh text are redun-ant.
Abou- half the -etter- in ty-ical Eng--sh text are redun--nt.
Abou- half the -e-t--- i- ty-ical Eng--sh text are redun--nt.
Abou- half t-e -e-t--- -- ty-ical Eng--sh text ar- red-n--nt.
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â LFSR cryptanalysis. Given a sequence obtained from a
length  LFSR (see page 975)

the vector of taps  can be deduced from

(An iterative algorithm in  taking about  rather than 
steps was given by Elwyn Berlekamp and James Massey in
1968.) The same basic approach can be used to deduce the
rule for an additive cellular automaton from vertical
sequences. 

â Page 603 · Rule 30 cryptography. Rule 30 is known to have
many of the properties desirable for practical cryptography.
It does not repeat with any short period or show any obvious
structure for almost all keys. Small changes in keys typically
leads to large changes in the encrypting sequence. The
Boolean expressions which determine the encrypting
sequence from the key rapidly become highly complex (see
page 618). And furthermore the system can be implemented
very efficiently, particularly in parallel hardware.

I originally studied rule 30 in the context of basic science,
but I soon realized that it could serve as the basis for
practical random sequence generation and cryptography,
and I analyzed this extensively in 1985. (Most but not all of
the results from my original paper are included in this
book, together with various new results.) In 1985 and soon
thereafter a number of people (notably Richard and Carl
Feynman) tried to cryptanalyze rule 30, but without
success. From the beginning, computations of spacetime
entropies for rule 30 (see page 960) gave indications that
for strong cryptography one should not sample all cells in
a column, and in 1991 Willi Meier and Othmar Staffelbach
described essentially the explicit cryptanalysis approach
shown on page 601. Rule 30 has been widely used for
random sequence generation, but for a variety of reasons I
have not in the past much emphasized its applications in
cryptography.

â Properties of rule 30. Rule 30 can be written in the form
 (see page 869) and thus exhibits a kind of one-sided

additivity on the left. This leads to some features that are
desirable for cryptography (such as long repetition periods)
and to some that are not (such as the sideways evolution of
page 601). It implies that every block of length  that occurs
at a particular step has exactly 4 immediate predecessor
blocks of length  (see page 960). It also implies that all

 possible single columns of  cells can be generated from
some initial condition. Not all  pairs of adjacent columns
can occur, however. There seems to be no simple

characterization, say in terms of paths through networks, of
which can, but for successive  the total numbers are

or roughly .

Given two complete adjacent columns page 601 shows how
all columns any distance to the left can be found. It turns out
that this can be done even if the right-hand one of the two
adjacent columns is not complete. So for example whenever
there is a black cell in the left column it is irrelevant what
appears in the right column. Note that the configuration of
relevant cells can be repetitive only if the initial conditions
were repetitive (see page 871). 

In a cellular automaton of limited size , any column must
eventually repeat. There could be  distinct possible
columns; in practice, for successive  there are

—within 2%
of  already for . This means that for the initial
conditions to be determined uniquely, the number of cells
that must be given in a column is almost exactly , as
illustrated in the pictures below. Many distinct columns
correspond to starting at different points on a single cycle of
states. The length of the longest cycle grows roughly like

 (see page 260). The complete cycle structure is
illustrated on page 962. Most of the  possible states have
unique predecessors; for large , about  or

 instead have 0 or 2 predecessors. The
predecessors of a given state can be found from

â Directional sampling. One can consider sampling cells not
in a vertical column but on lines at any angle. In a rule 30
system of infinite size, it turns out that at  clockwise from
vertical all possible sequences can occur on any two adjacent
lines, probably making cryptanalysis more difficult in this
case. (Note that directional sampling is always equivalent to
looking at a vertical column in the evolution of a cellular
automaton whose basic rule has been composed with an
appropriate shift rule.) 

â Alternative rules. Among elementary rules, rule 45 is the
only plausible alternative to rule 30. It usually yields longer

n

Nest[Mod[Append[#, Take[#, -n]�.�vec], 2] &, list, t]

vec
LinearSolve[Table[Take[seq, {i, i + n - 1}], {i, n}],

Take[seq, {n+ 1, 2 n}], Modulus ! 2]

n n2 n3

p Ò ( q ª r)

m

m+ 2
2t t

4t

t
{4, 12, 32, 80, 200, 496, 1208, 2916, 6964, 16476, 38616,

89844, 207544, 476596, 1089000, 2477236, 5615036}

2.25t

n
2n

n
{2, 3, 7, 14, 30, 60, 101, 245, 497, 972, 1997, 3997}

2n n = 12

n

20.63 n

2n

n 20.76 n

Root[#3 - #2 - 2 &, 1]n

Cases[Map[Fold[Prepend[#1, If[#2 2 1 Ò
Take[#1, 2] 2 {0, 0}, 0, 1]] &, #, Reverse[ list]] &, {{0,

0}, {0, 1}, {1, 0}, {1, 1}}], {a_, b_, c___, a_, b_} ! {b, c, a}]
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repetition periods (see page 260), but shows slightly slower
responses to changes in the key. (Changes expand about 1.24
cells per step in rule 30, and about 1.17 in rule 45.) Rule 45
shares with rule 30 the property of one-sided additivity. With
the occasional exception of the additive rule 60, elementary
rules not equivalent to 30 or 45 tend to exhibit vastly shorter
repetition periods. (The completely non-additive rule with
largest typical repetition period is rule 110.) (See page 951.)

If one considers rules that depend on 4 rather than 3 cells,
then the results turn out to be surprisingly similar: out of all
65536 possible such rules the ones with longest periods
essentially always seem to be variants of rules 45, 30 or 60. In
a region of size 15, for example, the longest period is 20460,
and this is achieved by rule 13251, which is just rule 45
applied to the first three cells in the neighborhood. (Rule 45
itself has period 6820 in this case.) After a few rules with long
periods, the periods obtained drop off rapidly. (In general the
number of rules with a given period seems to decrease
roughly exponentially with period.) For size 15, the 33 rules
with the longest periods are all additive with respect to one
position. The pictures below show the first rules that are not
additive with respect to any position. 

Among the 4,294,967,296  rules which depend on 5 cells,
there are again just a few that give long periods, but now
only a small fraction of these seem directly related to rules 45
and 30, and perhaps half are not additive with respect to any
position. The pictures below show the rules with longest
periods for size 15; these same rules also yield the longest
periods for many other sizes. The first two are additive with
respect to one position, but do not appear to be directly
related to rules 45 or 30; the last two are not additive with
respect to any position. Formulas for the rules are
respectively:

Note that for size 15 the maximum possible period is 32730
(see page 950).

â Nonlinear feedback shift registers. Linear feedback shift
registers of the kind discussed on page 974 can be
generalized to allow any function  (note the slight analogy
with cyclic tag systems):

With the choice 
and  this is essentially a rule  elementary
cellular automaton. With a list of length ,

 gives one step in the
evolution of the cellular automaton in a register of width ,
with a certain kind of spiral boundary condition. The case
analogous to rule 30 yields some of the longest repetition
periods—usually remarkably close to the absolute maximum
of  (for  the result is 1999864, 95% of the
maximum). 

Nonlinear feedback shift registers were apparently studied in
the context of military cryptography in the 1950s, but very
little about them has made its way into the open literature
(see page 878). An empirical investigation of repetition
periods in such systems was made by Solomon Golomb in
1959. The main conclusion drawn from extensive data was
that nothing like the linear theory applies. One set of
computations concerned functions

(apparently chosen to have balance between 0’s and 1’s that
would minimize correlations). Tap positions  were
among those studied, but nothing like the pictures below
were apparently ever explicitly generated—and nearly three
decades passed before I noticed the remarkable behavior of
the rule 30 cellular automaton.

31420
(1635)

45443
(1620)

14030
(1560)

44227
(1545)

12686
(1380)

2924
(1320)

r = 2

p Ò (¨ q ª r ª s © ¨ t)

r Ò (¨ p ª q ª s © ¨ t)

u = ¨ p © ¨ q ª q © t; ¨ r © u ª q © ¨ s © ( p ª ¨ r) ª r © s © ¨ u

s © ( q © ¨ r ª p © ¨ q © t) ª ¨ ( s ª ( p ª q) © ( r Ò ( q ª t)))

1017723955

2076199695

184612095
(31455)

263458575
(29865)

2076199695
(25395)

1017723955
(23370)

f

NLFSRStep[f_, taps_, list_] :=
Append[Rest[ list], f [ list0taps1]]

f = IntegerDigits[s, 2, 8]08 - #�.�{4, 2, 1}1 &
taps = {1, 2, 3} s

n
Nest[NLFSRStep[f , taps, #] &, list, n]

n

2n - 1 n = 21

f [{w_, x_, y_, z_}] := Mod[w + y + z + x y + x z + y z, 2]

{1, 2, 3, 4}
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Sequences of states in any shift register must correspond to
paths through a network of the kind shown on page 941. And
as noted by Nicolaas de Bruijn in 1946 there are  such
paths with length , and thus this number of functions  out
of the  possible must yield sequences of maximal length.
(For  colors, the number of paths is .)

â Backtracking. If one wants to find out which of the 
possible initial conditions of width  evolve to yield a specific
column of colors in a system like an elementary cellular
automaton one can usually do somewhat better than just
testing all possibilities. The picture below illustrates a typical
approach, applied to 3 steps of rule 30. The idea is
successively to look at each numbered cell, and to make a tree
of possibilities representing what happens if one tries to fill in
each possible color for each cell. A branch in the resulting
tree continues only if it corresponds to a configuration of cell
colors whose evolution is consistent with the specified
column of colors. 

The picture below shows trees obtained for the column 
in various elementary cellular automata. In cases like rules
250 and 254 no initial condition gives the specified column,
so all branches eventually die out. In class 2 examples like
rule 10 many intermediate configurations are possible. Rules
like 90 and to some extent 30 that allow sideways evolution
yield comparatively simple trees. 

If one wants to find just a single initial condition that
works then one can set up a recursive algorithm that in
effect does a depth-first traversal of the tree. No doubt in
many cases the number of nodes that have to be visited
eventually increases like , but many branches usually die
off quickly, greatly reducing the typical effort required in
practice.

â Deducing cellular automaton rules. Given a complete
cellular automaton pattern it is easy to deduce the rule which
produced it just by identifying examples of places where
each element in the rule was used, as in the picture at the top
of the next column. Given an incomplete pattern, deducing
the rule in effect requires solving Boolean equations.

 

  

â Linear congruential generators. Cryptanalysis of linear
congruential generators is fairly straightforward. Given only
an output list  parameters 
that generate the list can be found for sufficiently large 
from 

With slightly more effort both  and  can be found just
from .

â Digit sequence encryption. One can consider using as
encrypting sequences the digit sequences of numbers
obtained from standard mathematical functions. As
discussed on page 139 such digit sequences often seem
locally very random. But in many cases one can immediately
tell how a sequence was made just by globally applying
appropriate mathematical functions. Thus, for example,
given the digit sequence of  one can retrieve the key  just
by squaring the number obtained from early digits in the
sequence. Whenever a number  is known to satisfy

 with fixed  one can take the
early digits of  and use  to find integer
solutions for the . With  this method allows
algebraic numbers to be recognized. If no linear equation is
satisfied by any combination of known functions of ,
however, the method fails, and it seems quite likely that in
such cases secure encrypting sequences can be generated,
albeit less efficiently than with systems like cellular
automata. 

â Problem-based cryptography. Particularly following the
work of Whitfield Diffie and Martin Hellman in 1976 it
became popular to consider cryptography systems based on
mathematical problems that are easy to state but have been
found difficult to solve. It was at first hoped that the
problems could be NP-complete ones, which are universal in
the sense that their solution can be used to provide a solution
to any problem in the class NP (see page 1086). To date,
however, no system has been devised whose cryptanalysis is
known to be NP-complete. Indeed, essentially the only
problem on which cryptography systems have so far
successfully been based is factoring of integers (see below).
And while this problem has resisted a fair number of
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Fold[GCD[#1, If[#1 2 0, #2, Mod[#2, #1]]] &, 0,
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attempts at solution, it is not known to be NP-complete (and
indeed its ability to be solved in polynomial time on a formal
quantum computer may suggest that it is not). 

My cellular automaton cryptography system follows the
principle of being based on a problem that is easy to state.
And indeed the general problem of finding initial conditions
for a cellular automaton is NP-complete (see page 767). But
the problem is not known to be NP-complete for the specific
case of, say, rule 30. Significantly less work has been done on
the problem of finding initial conditions for rule 30 than on
the problem of factoring integers. But the greater simplicity
of rule 30 might make one already have almost as much
confidence in the difficulty of solving this problem as of
factoring integers. 

â Factoring integers. The difficulty of factoring is presumably
related to the irregularity of the pattern of divisors shown on
page 909. One approach to factoring a number  is just to try
dividing it by each of the numbers up to . A sequence of
much faster methods have however been developed over the
past few decades, one simple example that works for most 
being the so-called rho method of John Pollard (compare the
quadratic residue sequences discussed below):

Most existing methods depend on facts in number theory
that are fairly easy to state, though implementing them for
maximum efficiency tends to lead to complex programs.
Typical running times for  in Mathematica 4
are shown below for the first 1000 numbers with each of 15
through 30 digits. Different current methods asymptotically
require slightly different numbers of steps—but all typically
at least . Nevertheless, to test whether a
number is prime ( ) it is known that only a few more
than  steps suffice. 

â RSA cryptography. Widely used in practice, the idea is to
encode messages using a public key specified by a number ,
but to make it so that to decode the messages requires a private
key based on the factors of . An element  in a message is
encoded as . It can then be decoded as

, where .
But to find  (see page 1093) is equivalent in
difficulty to finding the factors of . 

â Quadratic residue sequences. As an outgrowth of ideas
related to RSA cryptography it was shown in 1982 by
Lenore Blum, Manuel Blum and Michael Shub that the
sequence

discussed on page 975 has the property that if  with 
and  primes (congruent to 3 modulo 4) then any systematic
regularities detected in the sequence can eventually be used to
discover factors of . What is behind this is that each of the
numbers in the basic sequence here must be a so-called
quadratic residue of the form , and given any such
quadratic residue  the expression 
turns out always to be a factor of —and at least sometimes a
non-trivial one. So if one could reconstruct sufficiently many
complete numbers  from the sequence of  values
then this would provide a way to factor  (compare the
Pollard rho method above). But in practice it is difficult to do
this, because without knowing the factors of  one cannot
even readily tell whether a given  is a quadratic residue
modulo . The pictures below show as black squares all the
quadratic residues for each successive  going down the page
(the ordinary squares 1, 4, 9, 16, … show up as vertical black
stripes). If  is a prime , then the simple tests

 (see page 1081) or 
determine whether  is a quadratic residue. But with ,
one has to factor  and find  and  in order to carry out
similar tests. The condition 
ensures that only one of the solutions  and  to

 is ever a quadratic residue, with the result
that the iterated mapping  always has a
unique inverse. But unlike in a cellular automaton even given
a complete  (the analog of a complete cellular automaton
state) it is difficult to invert the mapping and solve for the  on
the previous step.

Traditional Mathematics and Mathematical Formulas

â Practical empirical mathematics. In looking for formulas to
describe behavior seen in this book I have in practice
typically taken associated sequences of numbers and then

n
�!!!!n
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tested whether obvious regularities are revealed by
combinations of such operations as: computing successive
differences (see note below), computing running totals,
looking for repeated blocks, picking out running maxima,
picking out numbers with particular modular residues, and
looking at positions of particular values, and at the forms of
the digit sequences of these positions. 

â Difference tables and polynomials. A common mathematical
approach to analyzing sequences is to form a difference table
by repeatedly evaluating .
If the elements of  correspond to values of a polynomial of
degree  at successive integers, then  will
contain only zeros. If the differences are computed modulo 
then the difference table corresponds essentially to the
evolution of an additive cellular automaton (see page 597). The
pictures below show the results with  (rule 60) for (a)

, (b) Thue-Morse sequence, (c) Fibonacci
substitution system, (d) , (e) digits of . (See
also page 956.) 

â Page 607 · Implementation. The color of a cell at position
 in the pattern shown is given by

.

â Page 608 · Nested patterns and numbers. See page 931.

â Page 609 · Implementation. Given the rules for a
substitution system in the form used on page 931 a finite
automaton (as on page 957) which yields the color of each cell
from the digit sequences of its position is

This works in any number of dimensions so long as each
replacement yields a block of the same cuboidal form. 

â Arbitrary digit operations. If the operation on digit
sequences that determines whether a square will be black can
be performed by a finite automaton (see page 957) then the
pattern generated must always be either repetitive or nested.
The pictures below show examples with more general
operations. Picture (a) in effect shows which words in a
simple context-free language of parenthesis matching (see
page 939) are syntactically correct. Scanning the digit
sequences from the left, one starts with 0 open parentheses,
then adds 1 whenever corresponding digits in the  and 
coordinates differ, and subtracts 1 whenever they are the

same. A square is black if no negative number ever appears.
Picture (b) has a black square wherever digits at more than
half the possible positions differ between the  and 
coordinates. Picture (c) has a black square wherever the
maximum run of either identical or different digits has a
length which is an odd number. All the patterns shown have
the kind of intricate substructure typical of nesting. But none
of the patterns are purely nested.

â Page 610 · Generating functions. A convenient algebraic
way to describe a sequence of numbers  is to give a
generating function .  thus
corresponds to the constant sequence and  to the
Fibonacci sequence (see page 890). A 2D array can be
described by . The
array for rule 60 is then , for rule 90

, for rule 150  and for
second-order reversible rule 150 (see page 439)

. Any rational function is the
generating function for some additive cellular automaton.

â Page 611 · Pascal’s triangle. See notes on page 870.

â Nesting in bitwise functions. See page 871.

â Trinomial coefficients. The coefficient of  in the expansion
of  is 

which can be evaluated as

or finally . This result follows
directly from the generating function formula

â Gegenbauer functions. Introduced by Leopold Gegenbauer
in 1893  is a polynomial in  with
integer coefficients for all integer  and . It is a special case
of  and  and satisfies a second-
order ordinary differential equation in . The

 form a set of orthogonal functions
on a -dimensional sphere. The 
obtained for  are .

â Standard mathematical functions. There are an infinite
number of possible functions with integer or continuous

d[ list_] := Drop[ list, 1] -Drop[ list, -1]
list

n Nest[d, list, n+ 1]
k

k = 2
Fibonacci[n]

(Prime[n] - 1)/2 p
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{x, y}
Extract [{{1, 0, 1}, {0, 1, 0}}, Mod[{y, x}, {2, 3}] + 1]

Map[Flatten[MapIndexed[#2 - 1 ! Position[rules, #1 ! _]0
1, 11 &, Last[#], {-1}]] &, rules]
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arguments. But in practice there is a definite set of standard
named mathematical functions that are considered
reasonable to include as primitives in formulas, and that are
implemented as built-in functions in Mathematica. The so-
called elementary functions (logarithms, exponentials,
trigonometric and hyperbolic functions, and their inverses)
were mostly introduced before about 1700. In the 1700s and
1800s another several hundred so-called special functions
were introduced. Most arose first as solutions to specific
differential equations, typically in physics and astronomy;
some arose as products, sums of series or inverses of other
functions. In the mid-1800s it became clear that despite their
different origins most of these functions could be viewed as
special cases of , and that the
functions covered the solutions to all linear differential
equations of a certain type. (  and  are
parametric derivatives of ; elliptic
modular functions are inverses.) Rather few new special
functions have been introduced over the past century. The
main reason has been that the obvious generalizations seem
to yield classes of functions whose properties cannot be
worked out with much completeness. So, for example, if
there are more parameters it becomes difficult to find
continuous definitions that work for all complex values of
these parameters. (Typically one needs to generalize
formulas that are initially set up with integer numbers of
terms; examples include taking  to be

 and  to be .) And if one
modifies the usual hypergeometric equation

 by making  nonlinear then solutions
typically become hard to find, and vary greatly in character
with the form of . (For rational  Paul Painlevé in the 1890s
identified just 6 additional types of functions that are
needed, but even now series expansions are not known for
all of them.) Generalizations of special functions can in
principle be used to represent the results of many kinds of
computations. Thus, for example, generalized elliptic theta
functions represent solutions to arbitrary polynomial
equations, while multivariate hypergeometric functions
represent arbitrary conformal mappings. In Mathematica,
however, functions like  provide more convenient ways
to access such results. 

A variety of standard mathematical functions with integer
arguments were introduced in the late 1800s and early 1900s
in connection with number theory. A few functions that
involve manipulation of digits have also become standard
since the use of computers became widespread.

â 1D sequences. Generating functions that are rational always
lead to sequences which after reduction modulo 2 are purely

repetitive. Algebraic generating functions can also lead to
nested sequences. (Note that to get only integer sequences
such generating functions have to be specially chosen.)

 yields a sequence with 1’s at positions , as
essentially obtained from the substitution system

.  yields
sequence (a) on page 84. 
(see page 890) yields the Thue-Morse sequence. (This
particular generating function satisfies the equation

.)  yields almost the
Cantor set sequence from page 83. 
gives a sequence with 1’s at positions .

For any sequence with an algebraic generating function and
thus for any nested sequence the th element can always be
expressed in terms of hypergeometric functions. For the
Thue-Morse sequence the result is

â Multidimensional additive rules. The 2D analog of rule 90
yields the patterns shown below. The colors of cells are given
essentially by . In  dimensions

 cells are black at step . The fractal
dimension of the (d+1)-dimensional structure formed from all
black cells is .

The 2D analog of rule 150 yields the patterns below; the
fractal dimension of the structure in this case is

. 

â Continuous generalizations. Functions such as 
and  can immediately be evaluated
for continuous  and . The pictures on the right below show

 for these functions (equivalent to
 for integer ). The discrete results on the

left can be obtained by sampling only where integer grid
lines cross. Note that without further conditions the
continuous forms cannot be considered unique extensions of
the discrete ones. The presence of poles in quantities such as
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 leads to essential singularities in
the rightmost picture below. (Compare page 922.)

â Nested continuous functions. Most standard continuous
mathematical functions never show any kind of nested
behavior. Elliptic theta and elliptic modular functions are
exceptions. Each of these functions has definite finite values
only in a limited region of the complex plane, and on the
boundary of this region they exhibit singularities at every
single rational point. The picture below shows

. Like other elliptic modular
functions,  satisfies 
with , , ,  integers such that . The function
can be obtained as the solution to a second-order nonlinear
ordinary differential equation. Nested behavior is also found
for example in , which is given essentially
by .

â Page 613 · GCD array. (See also page 950.) There are various
deviations from perfect randomness. The density of white
squares is asymptotically . (The probability for 
randomly chosen integers to be relatively prime is .)
No  or larger block of white squares can ever occur. An
arrangement of black squares with any list of relative offsets
will always eventually occur. (This follows from the Chinese
Remainder Theorem.) The first  block of black squares
occurs at , the first  block at  and the
first  block at . The densities of such
blocks are respectively about 0.002,  and . In
general the density for an arrangement of white squares with
offsets  is given in  dimensions by (no simple closed
formula seems to exist except for the  case)

White squares correspond to lattice points that are directly
visible from the origin at the top left of the picture, so that

lines to them do not pass through any other integer points.
On row  the number of white squares encountered before
reaching the leading diagonal is . This function is
shown below. Its computation is known in general to be
equivalent in difficulty to factoring  (see page 1090). 
can be computed using Euclid’s algorithm as discussed on
page 915.

â Power cellular automata. Multiplication by  in base 
corresponds to a local cellular automaton operation on digit
sequences when every prime that divides  also divides . The
first non-trivial cases for which this is so are ,  and

, . When  itself divides , the cellular automaton
rule is ; in other
cases the rule can be obtained by composition. A similar result
holds for rational , obtained for example by allowing  and 
above to be negative. In all cases the cellular automaton rule, like
the original operation on numbers, is invertible. The inverse rule,
corresponding to multiplication by , can be obtained by
applying the rule for multiplication by the integer , then
shifting right by  positions. (See page 903.)

The condition for locality in negative bases (see page 902) is
more stringent. The first non-trivial example is , ,
corresponding to a rule that depends on four neighboring cells.

Non-trivial examples of multiplication by  in base  all
appear to be class 3 systems (see page 250), with small
changes in initial conditions growing at a roughly fixed rate.

â Page 615 · Computing powers. The method of repeated
squaring (also known as the binary power method, Russian
peasant method and Pingala’s method) computes the
quantity  by performing about  multiplications and
building up the sequence

(related to the Horner form for the base 2 representation of ).
Given two numbers  and  their product can be computed
in base  by (  does the carries)

For numbers with  digits direct evaluation of the
convolution would take about  steps. But FFT-related
methods reduce this to about  steps (see also page
1142). And this implies that to find a particular digit of  in
base  will take altogether about  steps.
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One might think that a more efficient approach would be to
start with the trivial length  digit sequence for  in base ,
then to find a particular base  digit just by converting to
base . However, the straightforward method for converting
a -digit number  to base  takes about  divisions, though
this can be reduced to around  by using a recursive
method such as

The pictures below show stages in the computation of 
(a) by a power tree in base 2 and (b) by conversion from
base 3. Both approaches seem to require about the same
number of underlying steps. Note that even though one
may only want to find a single digit in , I know of no
way to do this without essentially computing all the other
digits in  as well.

â Complex powers. The pictures below show successive
powers of complex numbers  with digits extracted
according to

Non-trivial cases of complex number multiplication never
correspond to local cellular automaton operations. (Compare
page 933.)

â Additive cellular automata. As discussed on page 951 a step
in the evolution of an additive cellular automaton can be
thought of as multiplication by a polynomial modulo . After
 steps, therefore, the configuration of such a system is given

by . This quantity can be computed
using power tree methods (see below), though as discussed
on page 609, even more efficient methods are also available.
(A similar formalism can be set up for any of the cellular
automata with generalized additivity discussed on page 952;
see also page 886.)

â The more general case. One can think of a single step in the
evolution of any system as taking a rule  and state , and
producing a new state . Usually the representations
that are used for  and  will be quite different, and the

function  will have no special properties. But for both
multiplication rules and additive cellular automata it turns
out that rules and states can be represented in the same way,
and the evolution functions  have the property of being
associative, so that . This means
that in effect one can always choose to evolve the rule rather
than a state. A consequence is that for example 4 steps of
evolution can be computed not only as 
but also as  or —
which requires only 3 applications of . And in general if  is
associative the result  of  steps of
evolution can be rewritten for example using the repeated
squaring method as

which requires only about  rather than  applications
of . 

As a very simple example, consider a system which starts with
the integer 1, then at each step just adds 1. One can compute the
result of 9 steps of evolution as ,
but a better scheme is to use partial results and compute
successively —which is what the
repeated squaring method above does when , .
This same basic scheme can be used with any associative
function — , , , ,  or whatever—so long as
suitable forms for  and  are used. 

For the multiplication rules discussed in the main text both
states and rules can immediately be represented by
integers, with , and  giving the multiplier.
For additive cellular automata, states and rules can be
represented as polynomials (see page 951), with

 and for example 
for elementary rule 60. The correspondence between
multiplication rules and additive cellular automata can be
seen even more directly if one represents all states by
integers and computes  in terms of base  digits. In both
cases it then turns out that  can be obtained from (see
note above)

where for multiplication rules  and for additive
cellular automata . For multiplication rules,
there are normally carries (handled by ), but for
power cellular automata, these have only limited range, so
that  can be used.

For any associative function  the repeated squaring method
allows the result of  steps of evolution to be computed with
only about  applications of . But to be able to do this
some of the arguments given to  inevitably need to be larger.
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So whether a speedup is in the end achieved will depend on
how fast  can be evaluated for arguments of various sizes.
Typically the issue is whether  for large  and  can be
found with much less effort than it would take to evaluate

 about  times. If , then as discussed in the
note above, the most obvious procedure for evaluating

 would involve about  operations, where  and 
are the numbers of digits in  and . But when  FFT-
related methods allow this to be reduced to about 
operations. And in fact whenever  is commutative
( ) it turns out that such methods can be used, and
substantial speedups obtained. But whether anything like
this will work in other cases is not clear. 

(See also page 886.)

â Evaluation chains. The idea of building up computations
like  from partial results has existed since
Egyptian times. Since the late 1800s there have been efforts
to find schemes that require the absolute minimum number
of steps. The method based on  in the previous
two notes can be improved (notably by power tree
methods), but apparently about  steps are always
needed. (Finding the optimal addition chain for given  may
be NP-complete.)

One can also consider building up lists of non-identical
elements, say by successively using . In general a
length  list can require about  steps. But if the list
contains a nested sequence, say generated using a
substitution system, then about  steps should be
sufficient. (Compare page 566.)

â Boolean formulas. A Boolean function of  variables can
always be specified by an explicit table giving values for all 
possible inputs. (Any cellular automaton rule with an -cell
neighborhood corresponds to such a function; digit sequences
in rule numbers correspond to explicit tables of values.) Like
ordinary algebraic functions, Boolean functions can also be
represented by a variety of kinds of formulas. Those on pages
616 and 618 use so-called disjunctive normal form (DNF)

, which is common in practice in
programmable logic arrays (PLAs). (The addition and
multiplication operators in the main text should be interpreted
as  and  respectively.) In general any given function will
allow many DNF representations; minimal ones can be found
as described below. Writing a Boolean function in DNF is the
rough analog of applying  to a polynomial.
Conjunctive normal form (CNF)  is the
rough analog of applying . DNF and CNF both involve
Boolean formulas of depth 2. As in the note on multilevel
formulas below, one can also in effect introduce intermediate

variables to get recursive formulas of larger depth, somewhat
analogous to results from . (Unbalanced depths in
different parts of a formula lead to latencies in a circuit,
reducing practical utility.) 

â DNF minimization. From a table of values for a Boolean
function one can immediately get a DNF representation just
by listing cases where the value is 1. For one step in rule 30,
for example, this yields , as
shown on page 616. One can think of this as specifying
corners that should be colored on an -dimensional Boolean
hypercube. To reduce the representation, one must introduce
“don’t care” elements ; in this example the final minimal
form consists of the list of 3 so-called implicants

. In general, an implicant with  ’s
can be thought of as corresponding to an -dimensional
hyperplane on the Boolean hypercube. The problem of
minimization is then to find the minimal set of hyperplanes
that will cover the corners for a particular Boolean function.
The first step is to work out so-called prime implicants
corresponding to hyperplanes that cannot be contained in
higher-dimensional ones. Given an original DNF list , this
can be done using : 

The minimal DNF then consists of a collection of these
prime implicants. Sometimes it is all of them, but
increasingly often when  it is only some. (For example,
in  the first prime implicant is
covered by the others, and can therefore be dropped.)
Given the original list  and the complete prime implicant
list  the so-called Quine-McCluskey procedure can be
used to find a minimal list of prime implicants, and thus a
minimal DNF:

The number of steps required in this procedure can increase
exponentially with the length of . Other procedures work
slightly more efficiently, but in general the problem of
finding the minimal DNF for a Boolean function of 
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variables is NP-complete (see page 768) and is thus expected
to grow in difficulty faster than any polynomial in . In
practice, however, cases up to about  are nevertheless
currently handled quite routinely.

â Formula sizes. There are a total of  possible Boolean
functions of  variables. The maximum number of terms
needed to represent any of these functions in DNF is .
The actual numbers of functions which require 0, 1, 2, …
terms is for : ; for : , and
for : . The
maximal length turns out always to be realized for the simple
parity function , as well as its negation. The reason for
this is essentially that these functions are the ones that make
the coloring of the Boolean hypercube maximally
fragmented. (Other functions with maximal length are never
additive, at least for .)

â Cellular automaton formulas. See page 869. The maximum
length DNF for elementary rules after 1 step is 4, and this is
achieved by rules 105, 107, 109, 121, 150, 151, 158, 182, 214
and 233. These rules have behavior of quite varying
complexity. Rules 150 and 105 are additive, and correspond
to  and its negation. After  steps the maximum
conceivable DNF would be of length . In practice, after 2
steps, the maximum length is 9, achieved by rules 107, 121
and 182; after 3 steps, it is 33 achieved by rule 182; after 4
steps, 78 achieved by rule 129; after 5 steps 256 achieved by
rules 105 and 150. The distributions of lengths for all
elementary rules are shown below.

Note that the length of a minimal DNF representation cannot
be considered a reliable measure of the complexity of a
function, since among other things, just exchanging the role
of black and white can substantially change this length (as in
the case of rule 126 versus rule 129). 

â Primitive functions. There are several possible choices of
primitive functions that can be combined to represent any
Boolean function. In DNF ,  and  are used.

 alone is also sufficient, as shown on
page 619 and further discussed on page 807. (It is indicated
by  in the main text.) The functions ,  and  are
equivalent to ,  and  for variables modulo 2,
and in this case algebraic functions like  can
be used for minimization. (See also page 1102.)

â Multilevel formulas. DNF formulas always have depth 2. By
allowing larger depths one can potentially find smaller formulas

for functions. A major result from the 1980s is that it requires a
formula with depth at least  to make it
possible to represent an  of  variables using a polynomial
number of ,  and  operations. If one chooses an -
variable Boolean function at random out of the  possibilities,
it is typical that regardless of depth a formula involving at least

 operations will be needed to represent it. A formula of
polynomial size and logarithmic depth exists only when a
function is the computational complexity class NC discussed on
page 1149.

Little is known about systematic minimization of Boolean
formulas with depths above 2. Nevertheless, some programs
for circuit design such as SIS do include a few heuristics. And
this for example allows SIS to generate higher depth
formulas somewhat smaller than the minimal DNF for the
first three steps of rule 30 evolution.

â Page 619 · NAND expressions. If one allows a depth of at
most  any -input Boolean function can be obtained just
by combining 2-input  functions. (See page 807.) (Note
that unless one introduces an explicit copy operation—or
adds variables as in the previous note—there is no way to use
the same intermediate result multiple times without
recomputing it.)

The pictures below show the distributions of numbers of
 operations needed for all  -input Boolean

functions. For , the largest number of such operations is
6, achieved by ; for , it is 14, achieved by  (rule
150); for , it is 27, achieved by rule 5737, which is

 except when all inputs are . The average
number of operations needed when , ,  is about

. 

The maximum depths for the expressions of minimal size
are respectively 4, 6 and 7, always achieved among others
for the function taking the most  operations. The total
numbers of functions involving successive depths are:

: , : , :
, corresponding to averages

.
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The following generates explicit lists of -input Boolean
functions requiring successively larger numbers of 
operations:

The results for 2-step cellular automaton evolution in the
main text were found by a recursive procedure. First,
expressions containing progressively more  operations
were enumerated, and those for functions that had not been
seen before were kept. It then turned out that this made it
possible to get to expressions at least half as large as any
needed, so that it could be assumed that remaining
expressions could be decomposed as , where 
had already been found. The pictures below show some more
results obtained in this way.

â Cellular automaton formulas. For 1 step, the elementary
cellular automaton rules are exactly the 256  Boolean
functions. For 2 steps, they represent a small subset of the 

 functions. They require an average of about 11.6 
operations, and a maximum of 27 (achieved by rules 107 and 121). 

For rule 254 the result after  steps (which is always
asymmetric, even though the rule is symmetric) is

If explicit copy operations were allowed, then the number of
 operations after  steps could not increase faster than 

for any rule. But without copy (fanout) operations no
corresponding result is immediately clear.

â Binary decision diagrams. One can specify a Boolean
function of  variables by giving a finite automaton (and thus
a network) in which paths exist only for those lists of values
for which the function yields . The resulting so-called
binary decision diagram (BDD) can be minimized using the
methods of page 957. Out of all possible Boolean functions the
number that require BDDs of sizes 1, 2, … is for :

 and for : ; the absolute
maximum grows roughly like . For cellular automata with
simple behavior, the minimal BDD typically grows linearly on
successive steps. For rule 254, for example, it is , while
for rule 90 it is . For cellular automata with more
complex behavior, it typically grows roughly exponentially.

Thus for rule 30 it is  and for rule 110
. The size of the minimal BDD can depend on

the order in which variables are specified; thus for example,
just reflecting rule 30 to give rule 86 yields . 

In practical system design BDDs have become fairly popular
in the past ten years, and by maintaining minimality when
logical combinations of functions are formed, cases with
millions of nodes have been studied. (Some practical systems
are found to yield fairly small BDDs, while others are not.) 

â History. Logic has been used as an abstraction of arguments
in ordinary language since antiquity. Its serious mathematical
formulation began with the work of George Boole in the mid-
1800s. (See page 1151.) Concepts of Boolean algebra were
applied to electronic switching circuits by Claude Shannon in
1937, and became a standard part of electronic design
methodology by the 1950s. DNF had been introduced as part
of the development of mathematical logic in the early 1900s,
but became particularly popular in the 1970s with the advent
of programmable logic arrays (PLAs) used in application-
specific integrated circuits (ASICs). Diagrammatic and
mechanical methods for minimizing simple logic expressions
have existed since at least medieval times. More systematic
methods for minimizing complex expressions began to be
developed in the early 1950s, but until well into the 1980s a
diagrammatic method known as a Karnaugh map was the
most commonly used in practice. In the late 1970s there
began to be computer programs for large-scale Boolean
minimization—the best known being Espresso. Only in the
1990s, however, did exact minimization of complex DNF
expressions become common. Minimization of Boolean
expressions with depth larger than 2 has been considered off
and on since the late 1950s, and became popular in the 1990s
in connection with the BDDs discussed above. Various forms
of Boolean minimization have routinely been used in chip
and circuit design since the late 1980s, though often physical
and geometrical constraints are now more important than
pure logical ones. In addition, theoretical studies of minimal
Boolean circuits became increasingly popular starting in the
1980s, as discussed on page 1148.

â Reversible logic. In an ordinary Boolean function with 
inputs there is no unique way to tell from its output which of
the  possible sets of inputs was given. But as noted in the
1970s, it is possible to set up systems that evaluate Boolean
functions, yet operate reversibly. The basic idea is to have 
outputs as well as  inputs—with every one of the 
possible sets of inputs mapping to a unique set of outputs.
Normally one specifies the first  inputs, taking the others to
be fixed, and then looks say at the first output, ignoring all
others. One can represent the inside of such a system much

n
Nand

Map[FromDigits[#, 2] &, NestWhile[Append[#,
Complement[Flatten[Table[Outer[1 - Times[##] &,

#0i1, #0-i1, 1], {i, Length[#]}], 2], Flatten[#, 1]]] &,
{1 - Transpose[IntegerDigits[Range[2n] - 1, 2, n]]},
Length[Flatten[#, 1]] < 22n

&], {2}]

Nand

f [##] Ñ g[##] & f

rule 150 rule 110 rule 126 rule 45 rule 54

n = 3
232

n = 5 Nand

t

Nest[{{#, #021+ 1}, #021+ 1} &, {{1, 1}, {2, 2}}, t - 2]

Nand t t2

n

True

n = 2
{1, 0, 6, 9} n = 3 {1, 0, 0, 27, 36, 132, 60}

2n

8 t + 2
4 t + 2

{7, 14, 29, 60, 129}

{7, 15, 27, 52, 88}

{6, 11, 20, 36, 63}

n

2n

m
m 2m

n



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

1098

like a sorting network from page 1142—but with -input -
output gates instead of pair comparisons. If each such gate is
itself reversible, then overall reversibility is guaranteed. With
gates that in effect implement  and 
(with other inputs constant, and other outputs ignored) one
can set up a direct translation of Boolean functions given in
the form shown on page 619. Of the 24 possible reversible

 gates, none can yield anything other than additive
Boolean functions (as formed from  and ). But of the
40,320 ( ) reversible  gates (in 52 distinct classes) it
turns out that 38,976 (in 23 classes) can be used to reproduce
any possible Boolean function. A simple example of such a
universal gate is —and not allowing
permutations of gate inputs (or in effect wire crossings) a
simple example is . (Compare
pages 1147 and 1173.) 

â Continuous systems. The systems I discuss in the main text
of this section are mostly discrete. But from experience with
traditional mathematics one might have the impression that
it would at some basic level be easier to get formulas for
continuous systems. I believe, however, that this is not the
case, and that the reason for the impression is just that it is
usually so much more difficult even to represent the states of
continuous systems that one normally tends to work only
with ones that have comparatively simple overall behavior—
and are therefore more readily described by formulas. (See
also pages 167 and 729.)

As an example of what can happen in continuous systems
consider iterated mappings  from page 920. Each
successive step in such a mapping can in principle be
represented by an algebraic formula. But the table below
gives for example the actual algebraic formulas obtained in
the case  after applying —and shows that
these increase quite rapidly in complexity.

In the specific case , however, it turns out that by
allowing more sophisticated mathematical functions one can
get a complete formula: the result after any number of steps 
can be written in any of the forms

where these follow from functional relations such as

For  it also turns out that there is a complete formula:

And the same is true for :

In all these examples  enters essentially only in . And if
one assumes that this is a general feature then one can
formally derive for any  the result

where  is a function that satisfies the functional equation

When ,  is . When  it is 
and when  it is . But in general for
arbitrary  there is no standard mathematical function that
seems to satisfy the functional equation. (It has long been
known that only elliptic functions such as  satisfy
polynomial addition formulas—but there is no immediate
analog of this for replication formulas.) Given the functional
equation one can find a power series for  for any . The
series has an accumulation of poles on the circle ;
the coefficient of  turns out to have denominator

For other iterated maps general formulas also seem rare. But
for example  and  both give results
just involving powers, while  sometimes
yields trigonometric functions, as on page 915. In addition,
from a known replication formula for an elliptic or other
function one can often construct an iterated map whose
behavior can be expressed in terms of that function. (See also
page 919.)

Human Thinking

â The brain. There are a total of about 100 billion neurons in a
human brain (see page 1075), each with an average of a few
thousand synapses connecting it to other cells. On a small
scale the arrangement of neurons seems quite haphazard. But
on a larger scale the brain seems to be organized into areas
with very definite functions. This organization is sometimes
revealed by explicitly following nerve fibers. More often it
has been deduced by looking at what happens if parts of the
brain are disabled or stimulated. In recent times it has also
begun to be possible to image local electrical and metabolic
activity while the brain is in normal operation. From all these
methods it is known that each kind of sensory input is first
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processed in its own specific area of the brain. Inputs from
different senses are integrated in an area that effectively
maintains a map of the body; a similar area initiates output to
muscles. Certain higher mental functions are known to be
localized in definite areas of the brain, though within these
areas there is often variability between individuals. Areas are
currently known for specific aspects of language, memory
(see below) and various cognitive tasks. There is some
evidence that thinking about seemingly rather similar things
can lead to significantly different patterns of activity. 

Most of the action of the brain seems to be associated with local
electrical connections between neurons. Some collective electrical
activity is however revealed by EEG. In addition, levels of
chemicals such as hormones, drugs and neurotransmitters can
have significant global effects on the brain. 

â History. Ever since antiquity immense amounts have been
written about human thinking. Until recent centuries most of
it was in the tradition of philosophy, and indeed one of the
major themes of philosophy throughout its history has been
the elucidation of principles of human thinking. However,
almost all the relevant ideas generated have remained
forever controversial, and almost none have become concrete
enough to be applied in science or technology. An exception
is logic, which was introduced in earnest by Aristotle in the
4th century BC as a way to model certain patterns of human
reasoning. Logic developed somewhat in medieval times,
and in the late 1600s Gottfried Leibniz tried to use it as the
foundation for a universal language to capture all systematic
thinking. Beginning with the work of George Boole in the
mid-1800s most of logic began to become more closely
integrated with mathematics and even less convincingly
relevant as a model for general human thinking. 

The notion of applying scientific methods to the study of
human thinking developed largely with the rise of the field
of psychology in the mid-1800s. Two somewhat different
approaches were taken. The first concentrated on doing fairly
controlled experiments on humans or animals and looking at
responses to specific stimuli. The second concentrated on
trying to formulate fairly general theories based on
observations of overall human behavior, initially in adults
and later especially in children. Both approaches achieved
some success, but by the 1930s many of their positions had
become quite extreme, and the identification of phenomena
to contradict every simple conclusion reached led
increasingly to the view that human thinking would allow no
simple explanations. 

The idea that it might be possible to construct machines or
other inanimate objects that could emulate human thinking

existed already in antiquity, and became increasingly popular
starting in the 1600s. It began to appear widely in fiction in
the 1800s, and has remained a standard fixture in portrayals
of the future ever since.

In the early 1900s it became clear that the brain consists of
neurons which operate electrically, and by the 1940s
analogies between brains and electrical machines were
widely discussed, particularly in the context of the
cybernetics movement. In 1943 Warren McCulloch and
Walter Pitts formulated a simple idealized model of networks
of neurons and tried to analyze it using methods of
mathematical logic. In 1949 Donald Hebb then argued that
simple underlying neural mechanisms could explain
observed psychological phenomena such as learning.
Computer simulations of neural networks were done starting
in the mid-1950s, but the networks were too small to have
any chance to exhibit behavior that could reasonably be
identified with thinking. (Ironically enough, as mentioned on
page 879, the phenomenon central to this book of complex
behavior with simple underlying rules was in effect seen in
some of these experiments, but it was considered a
distraction and ignored.) And in the 1960s, particularly after
Frank Rosenblatt’s introduction of perceptrons, neural
networks were increasingly used only as systems for specific
visual and other tasks (see page 1076).

The idea that computers could be made to exhibit human-like
thinking was discussed by Alan Turing in 1950 using many of
the same arguments that one would give today. Turing made
the prediction that by 2000 a computer would exist that could
pass the so-called Turing test and be able to imitate a human
in a conversation. (René Descartes had discussed a similar
test for machines in 1637, but concluded that it would never
be passed.) When electronic computers were first becoming
widespread in the 1950s they were often popularly referred
to as “electronic brains”. And when early efforts to make
computers perform tasks such as playing games were fairly
successful, the expectation developed that general human-
like thinking was not far away. In the 1960s, with extensive
support from the U.S. government, great effort was put into
the field of artificial intelligence. Many programs were
written to perform specific tasks. Sometimes the programs
were set up to follow general models of the high-level
processes of thinking. But by the 1970s it was becoming clear
that in almost all cases where programs were successful
(notable examples being chess, algebra and autonomous
control), they typically worked by following definite
algorithms not closely related to general human thinking. 

Occasional work on neural networks had continued through
the 1960s and 1970s, with a few definite results being obtained
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using methods from physics. Then in the early 1980s,
particularly following work by John Hopfield, computer
simulations of neural networks became widespread. Early
applications, particularly by Terrence Sejnowski and Geoffrey
Hinton, demonstrated that simple neural networks could be
made to learn tasks of at least some sophistication. But by the
mid-1990s it was becoming clear that—probably in large part
as a consequence of reliance on methods from traditional
mathematics—typical neural network models were mostly
being successful only in situations where what was needed
was a fairly straightforward extension of standard continuous
probabilistic models of data.

â The future. To achieve human-like thinking with computers
will no doubt require advances in both basic science and
technology. I strongly suspect that a key element is to be able
to store a collection of experiences comparable to those of a
human. Indeed, to succeed even with specific tasks such as
speech recognition or language translation seems to require
human-like amounts of background knowledge. Present-day
computers are beginning to have storage capacities that are
probably comparable to those of the brain. From looking at
the brain one might guess that parallel or other non-standard
hardware might be required to achieve efficient human-like
thinking. But I rather suspect that—much as in the analogy
between birds and airplanes—it will in the end be possible to
set up algorithms that achieve the same basic functions but
work satisfactorily even on standard sequential-processing
computers.

â Sleep. A common feature of higher organisms is the
existence of distinct behavioral states of sleep and
wakefulness. There are various theories that sleep is
somehow fundamental to the process of thinking. But my
guess is that its most important function is quite mundane:
just as muscles build up lactic acid waste products, so also I
suspect synapses in the brain build up waste products, and
these can only safely be cleared out when the brain is not in
normal use.

â Page 621 · Pointer encoding. The pointer encoding
compression method discussed on page 571 implements a
very simple form of memory based on literal repetitions, and
already leads to fairly good compression of many kinds of
data. 

â Page 622 · Hashing. Given data in the form of sequences of
numbers between  and , a very simple hashing scheme
is just to compute . But for data
corresponding, say, to English words this scheme yields a
very nonuniform distribution of hash codes, since, for
example, there are many words beginning with “ba”, but

none beginning with “bb”. The slightly modified but still
very simple scheme , where  is
usually chosen to be a prime, is what is most often used in
practice. For a fair fraction of values of , the hash codes
obtained from this scheme change whenever any element of

 is changed. If  then it turns out that
interchanging a pair of adjacent length  blocks in  never
affects the result. Out of the many hundreds of times that I
have used hashing in practice, I recall only a couple of cases
where schemes like the one just described were not adequate,
and in these cases the data always turned out to have quite
dramatic regularities.

In typical applications hash codes give locations in computer
memory, from which actual data is found either by following
a chain of pointers, or by probing successive locations until
an empty one is reached. In the internals of Mathematica the
most common way that hashing is used is for recognizing
data and finding unique stored versions of it. There are
several subtleties associated with setting up hash codes that
appropriately handle approximate real numbers and
Mathematica patterns.

Hashing is a sufficiently simple idea that it has been invented
independently many times since at least the 1950s. The main
alternative to hashing is to store data with successive
elements corresponding to successive levels in a tree. In the
past decade, hashing has become widely used not only for
searching but also for authentication. The basic idea in this
case is to take a document and to compute from it a small
hash code that changes when almost any change is made in
the document, and for which it is a difficult problem of
cryptanalysis to work out what changes in the document will
lead to no change in the hash code. Schemes for such hash
codes can fairly easily be constructed using rule 30 and other
cellular automata.

â Page 623 · Similar words. The soundex system for hashing
names according to sound was first used on 1880 U.S. census
data, and is still today widely used by telephone information
services. The system works essentially by dropping vowels
and assigning consonants to six possible groups. More
sophisticated systems along the same lines can be set up
using finite automata.

Natural language query systems usually work by stripping
words to their linguistic roots (e.g. “stripping” “strip”)
before looking them up. Spell-checking systems typically
find suggested corrections by doing a succession of lookups
after applying transformations based on common errors.

Even given two specific words it can be difficult to find out
whether they should be considered similar. Fairly efficient
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algorithms are known for cases such as genetic sequences
where small numbers of insertions, deletions and
substitutions are expected. But if more complicated
transformations are allowed—say corresponding to rules in a
multiway system—the problem rapidly becomes intractable
(see page 765).

â Numerical data. In situations where pieces of data can be
thought of as points in space similarity can often be defined
in terms of spatial distance. And this means that around
every point corresponding to a piece of data in memory
there is a region of points that can be considered more
similar to that point than to any other. Picture (a) shows a
so-called Voronoi diagram (see page 1038) obtained in this
way in two dimensions. Particularly in higher dimensions,
it becomes rather difficult in practice to determine for
certain which existing point is closest to some new point.
But to do it approximately is considerably easier. One
approach, illustrated in picture (b), is to use a -
dimensional tree. Another approach, illustrated in picture
(c), is to set up a continuous function with minima at the
existing points, and then to search for the closest minimum.
In most cases, this search will be done using some iterative
scheme such as Newton’s method; the result is that the
boundaries between regions typically take on an intricate
nested form. (The case shown corresponds to iteration of
the map  corresponding to Newton’s
method for finding the complex roots of .)

The pictures below show how one can build up a kind of
memory landscape by successively adding points. In a first
approximation, the regions considered similar to a particular
minimum are delimited by sharp watersheds corresponding
to local maxima in the landscape. But if an iterative scheme
for minimization is used, these watersheds are typically no
longer sharp, but take on a local nested structure, much as in
picture (c) above.

In numbers earlier digits are traditionally considered more
important than later ones, and this allows numbers to be

arranged in a simple one-dimensional sequence. But in
strings where each element is considered equally important,
no such layout is possible. A vague approximation, perhaps
useful for some applications, is nevertheless to use a space-
filling curve (see page 893).

â Error-correcting codes. In many information transmission
and storage applications one needs to be able to recover data
even if some errors are introduced into it. The standard way
to do this is to set up an error-correcting code in which blocks
of  original data elements are represented by a codeword of
length  that in effect includes some redundant elements.
Then—somewhat in analogy to retrieving closest
memories—one can take a sequence of length  that one
receives and find the codeword that differs from it in the
fewest elements. If the codewords are chosen so that every
pair differs by at least  elements (or equivalently, have so-
called Hamming distance at least ), then this means that
errors in up to  elements can be corrected, and
finding suitable codewords is like finding packings of
spheres in -dimensional space. It is common in practice to
use so-called linear codes which can be analyzed using
algebraic methods, and for which the spheres are arranged in
a repetitive array. The Hamming codes with ,

,  are an example, invented by Marcel Golay in
1949 and Richard Hamming in 1950. Defining

blocks of data of length  can be encoded with

while blocks of length  (and at most one error) can be
decoded with

A number of families of linear codes are known, together
with a few nonlinear ones. But in all cases they tend to be
based on rather special mathematical structures which do not
seem likely to occur in any system like the brain.

â Matrix memories. Many times since the 1950s it has been
noted that methods from linear algebra suggest ways to
construct associative memories in which data can potentially
be retrieved on the basis of some form of similarity. Typically
one starts from some list of vectors to be stored, then forms a
matrix such as . Given a new piece of
data corresponding to a vector , its decomposition in terms
of stored vectors can be found by computing . And by
applying various forms of thresholding one can often pick
out at least approximately the stored vector closest to the
piece of data given. But such schemes tend to be inefficient in
practice, as well as presumably being unrealistic as actual
models of the brain.
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â Neural network models. The basic rule used in essentially
all neural network models is extremely simple. Each neuron
is assumed to have a value between -1 and 1 corresponding
roughly to a firing rate. Then given a list  of the values of
one set of neurons, one finds the values of another set using

, where in early models  was
usually chosen, and now  is more common, and  is
a rectangular matrix which gives weights—normally
assumed to be continuous numbers, often between -1 and
+1—for the synaptic connections between the neurons in
each set. In the simplest case, studied especially in the
context of perceptrons in the 1960s, one has only two sets of
neurons: an input layer and an output layer. But with suitable
weights one can reproduce many functions. For example,
with three inputs and one output,  yields
essentially the rule for the rule 178 elementary cellular
automaton. But out of the  possible Boolean functions of 
inputs, only 14 (out of 16) can be obtained for , 104 (out
of 256) for , 1882 for , and 94304 for . (The VC
dimension is  for such systems.) The key idea that
became popular in the early 1980s was to consider neural
networks with an additional layer of “hidden units”. By
introducing enough hidden units it is then possible—just as
in the formulas discussed on page 616—to reproduce
essentially any function. Suitable weights (which are
typically far from unique) are in practice usually found by
gradient descent methods based either on minimization of
deviations from desired outputs given particular inputs
(supervised learning) or on maximization of some
discrimination or other criterion (unsupervised learning). 

Particularly in early investigations of neural networks, it was
common to consider systems more like very simple cellular
automata, in which the  corresponded not to states of
successive layers of neurons, but rather to states of the same
set of neurons at successive times. For most choices of
weights, such a system exhibits typical class 3 behavior and
never settles down to give an obvious definite output. But in
special circumstances probably not of great biological
relevance it can yield class 2 behavior. An example studied
by John Hopfield in 1981 is a symmetric matrix  with
neuron values being updated sequentially in a random order
rather than in parallel.

â Memory. Since the early 1900s it has been suspected that
long-term memory is somehow encoded in the strengths of
synaptic connections between nerve cells. It is known that at
least in specific cases such strengths can remain unchanged
for at least hours or more, but can immediately change if
connected nerve cells have various patterns of simultaneous
excitation. The changes that occur appear to be associated

changes in ionic channels in cell membranes and sometimes
with the addition of new synapses between cells.

Observations suggest that in humans there are several
different types of memory, with somewhat different
characteristics. (Examples include memory for facts and for
motor skills.) Usually there is a short-term or so-called
working component, lasting perhaps 30 seconds, and
typically holding perhaps seven items, and a long-term
component that can apparently last a lifetime. Specific parts
of the brain (such as the hippocampus) appear necessary for
the long-term component to form. In at least some cases there
is evidence for specialized areas that handle particular types
of memories. When new data is first presented, many parts of
the brain are often active in processing it. But once the data
has somehow been learned, only parts directly associated
with handling it usually appear to be active. 

Memories often seem at some level to be built up
incrementally, as reflected in smooth learning curves for
motor skills. It is not clear whether this is due to actual
incremental changes in nerve cells or just to the filling in of
progressively more cases that differ in detail.

Experiments on human learning suggest that a particular
memory typically involves an association between
components from several sensory systems, as well as
emotional state. 

When several incomplete examples of data are presented,
there appears to be some commonality in the character of
generalizations that we make. One mathematically
convenient but probably unrealistic model studied in recent
years in the context of computational learning theory
involves building up minimal Boolean formulas consistent
with the examples seen.

â Child development. As children get older their thinking
becomes progressively more sophisticated, advancing
through a series of fairly definite stages that appear to be
associated with an increasing ability to handle generalization
and abstraction. It is not clear whether this development is
primarily associated with physiological changes or with the
accumulation of more experiences (or, in effect, with the
addition of more layers of software). Nor is it clear how it
relates to the fact that the number of items that can be stored
in short-term memory seems steadily to increase. 

â Computer interfaces. The earliest computer interfaces were
essentially just numerical. By the 1960s text-based interfaces
were common, and in the decade following the introduction of
the Macintosh in 1984 graphical interfaces based on menus and
dialogs came to largely dominate consumer software. Such
interfaces work well if what one wants is basically to take a
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single object and apply operations to it. And they can be
extended somewhat by using visual block diagrams or
flowcharts. But whenever there is neither just a single active
data element nor an obvious sequence of independent execution
steps—as for many of the programs in this book—my
experience has always been that the only viable choice of
interface is a computer language like Mathematica, based
essentially on one-dimensional sequences of word-like
constructs. The rule diagrams in this book represent a possible
new method for specifying some simpler programs, but it
remains to be seen whether such diagrams can readily both be
created incrementally by humans and interpreted by computer.

â Page 627 · Structure of Mathematica. Beneath all the
sophisticated capabilities of Mathematica lies a remarkably
simple basic structure. The key idea is to represent data of
any kind by a symbolic expression of the general form

. (  is thus ,
 is  and  is .) The

basic action of Mathematica is then to transform such
expressions according to whatever rules it knows. Most often
these rules are specified in terms of Mathematica patterns—
expressions in which  can stand for any expression.

â Context-free languages. The set of valid expressions in a
context-free language can be defined recursively by rules
such as  and  that specify how one
expression can be built up from sequences of literal objects or
“tokens” and other expressions. (As discussed on page 939,
the fact that the left-hand side contains nothing more than 
is what makes the language context free.) To interpret or
parse an expression in a context-free language one has to go
backwards and find out which rules could be used to
generate that expression. (For the built-in syntax of
Mathematica this is achieved using .) 

It is convenient to think of expressions in a language as having
forms such as  with . Then
the rules for the language consisting of balanced runs of
parentheses (see page 939) can be written as

Different expressions in the language can be obtained by
applying different sequences of these rules, say using (this
gives so-called leftmost derivations)

Given an expression, one can then use the following to find a
list of rules that will generate it—if this exists:

In general, there will in principle be more than one such list,
and to pick the appropriate list in a practical situation one
normally takes the rules of the language to apply with a
certain precedence—which is how, for example,  comes
to be interpreted in Mathematica as  rather
than . (Note that in practice the output
from a parser for a context-free language is usually
represented as a tree—as in Mathematica —with each
node corresponding to one rule application.)

Given only the rules for a context-free language, it is often
very difficult to find out the properties of the language
(compare page 944). Indeed, determining even whether two
sets of rules ultimately yield the same set of expressions is in
general undecidable (see page 1138). 

â Languages. There are about 140 human languages and 15
full-fledged computer languages currently in use by a million
people or more. Human languages typically have perhaps
50,000 reasonably common words; computer languages
usually have a few hundred at most (Mathematica, however,
has at least nominally somewhat over 1000). In expressing
general human issues, different human languages tend to be
largely equivalent—though they often differ when it comes
to matters of special cultural or environmental interest to
their users. Computer languages are also mostly equivalent
in their handling of general programming issues—and
indeed among widespread languages the only substantial
exception is Mathematica, which supports symbolic,
functional and pattern-based as well as procedural
programming. Human languages have mostly evolved quite
haphazardly over the course of many centuries, becoming
sometimes simpler, sometimes more complicated. Computer
languages are almost always specifically designed once and
for all, usually by a single person. New human languages
have sometimes been developed—a notable example being
Esperanto in the 1890s—but for reasons largely of political
history none have in practice become widely used.

Human languages always seem to have fairly definite rules
for what is grammatically correct. And in a first
approximation these rules can usually be thought of as
specifying that every sentence must be constructed from
various independent nested phrases, much as in a context-
free grammar (see above). But in any given language there
are always many exceptions, and in the end it has proved
essentially impossible to identify specific detailed features—
beyond for example the existence of nouns and verbs—that
are convincingly universal across more than just languages
with clear historical connections (such as the Indo-European
ones). (One obvious general deviation from the context-free

head[arg1, arg2, ?] a + b2 Plus[a, Power[b, 2]]
{a, b, c} List[a, b, c] a = b + 1 Set[a, Plus[b, 1]]

_

"e" ! "e + e" "e" ! "( e )"

"e"

ToExpression

s["( ", "( ", ")", ")"] Attributes[s] = Flat

{s[e] ! s[e, e], s[e] ! s["( ", e, " )"], s[e] ! s["( ", ")"]}

Fold[#1 /. rules0#21 &, s[e], list]

Parse[rules_, expr_] := Catch[Block[{t = {}}, NestWhile[
ReplaceList[#, MapIndexed[ReverseRule, rules]] &,
{{expr, {}}}, # /. {s[e], u_} " Throw[u]; # =!= {} &];]]

ReverseRule[a_ ! b_, {i_}] := {___, {s[x___, b, y___], {u___}},
___} " {s[x, a, y], {i, u}} /; FreeQ[s[x], s[a]]

x + y z
Plus[x, Times[y, z]]

Times[Plus[x, y], z]

FullForm
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model is that in practice subordinate clauses can never be
nested too deep if a sentence is expected to be understood.)

All the computer languages that are in widespread use today
are based quite explicitly on context-free grammars. And even
though the original motivation for this was typically ease of
specification or implementation, I strongly suspect that it has
also been critical in making it readily possible for people to
learn such languages. For in my observation, exceptions to the
context-free model are often what confuse users of computer
languages the most—even when those users have never been
exposed to computer languages before. And indeed the same
seems to be true for traditional mathematical notation, where
occasional deviations from the context-free model in fields like
logic seem to make material particularly hard to read. (A
notable feature that I was surprised to discover in designing
Mathematica 3 is that users of mathematical notation seem to
have a remarkably universal view of the precedence of
different mathematical operators.)

The idea of describing languages by grammars dates back to
antiquity (see page 875). And starting in the 1800s extensive
studies were made of the comparative grammars of different
languages. But the notion that grammars could be thought of
like programs for generating languages did not emerge with
clarity until the work of Noam Chomsky beginning in 1956.
And following this, there were for a while many efforts to
formulate precise models for human languages, and to relate
these to properties of the brain. But by the 1980s it became
clear—notably through the failure of attempts to automate
natural language understanding and translation—that
language cannot in most cases (with the possible exception of
grammar-checking software) meaningfully be isolated from
other aspects of human thinking. 

Computer languages emerged in the early 1950s as higher-
level alternatives to programming directly in machine code.
FORTRAN was developed in 1954 with a syntax intended as a
simple idealization of mathematical notation. And in 1958, as
part of the ALGOL project, John Backus used the idea of
production systems from mathematical logic (see page 1150)
to set up a recursive specification equivalent to a context-free
grammar. A few deviations from this approach were tried—
notably in LISP and APL—but by the 1970s, following the
development of automated compiler generators such as yacc,
so-called Backus-Naur context-free specifications for
computer languages had become quite standard. (A practical
enhancement to this was the introduction of two-
dimensional grammar in Mathematica 3 in 1996.) 

â Page 631 · Computer language fluency. It is common that
when one knows a human language sufficiently well, one

feels that one can readily “think in that language”. In my
experience the same is eventually true with computer
languages. In particular, after many years of using
Mathematica, I have now got to the point where I can
effectively think directly in Mathematica, so that I can start
entering a Mathematica program even though I may be a long
way from being able to explain in English what I want to do.

â Brainteasers. In many puzzles and IQ tests the setup is to
give a few elements in some sequence of numbers, strings or
pictures, then to ask what the next element would be. The
correct answer is normally assumed to be the one that in a
sense allows the simplest description of all the data. But
despite attempts to remove cultural and other biases such
questions in practice seem almost always to rely on being
able to retrieve from memory various specific forms and
transformations. And I strongly suspect that if one were, for
example, to construct similar questions using outputs from
many of the simple programs I discuss in this book then
unless one had studied almost exactly the cases of such
programs used one would never manage to work out the
answers.

â Human generation of randomness. If asked to type a
random sequence of 0’s and 1’s, most people will at first
produce a sequence with too many alternations between 0
and 1. But with modest learning time my experience is that
one can generate sequences with quite good randomness.

â Game theory. Remarkably simple models are often
believed to capture features of what might seem like
sophisticated decision making by humans, animals and
human organizations. A particular case on which many
studies have been done is the so-called iterated Prisoner’s
Dilemma, in which two players make a sequence of choices

 and  to “cooperate” ( ) or “defect” ( ), each trying to
maximize their score  with . At a
single step, standard static game theory from the 1940s
implies that a player should always defect, but in the 1960s
a folk theorem emerged that if a whole sequence of steps is
considered then a possible strategy for perfectly rational
players is always to cooperate—in apparent agreement
with some observations on human and animal behavior. In
1979 Robert Axelrod tried setting up computer programs as
players and found that in tournaments between them the
winner was often a simple “tit-for-tat” program that
cooperates on the first step, then on subsequent steps just
does whatever its opponent did on the previous step. The
same winner was also often obtained by natural selection—
a fact widely taken to explain cooperation phenomena in
evolutionary biology and the social sciences. In the late
1980s similar studies were done on processes such as

a b 1 2
m0a, b1 m = {{1, -1}, {2, 0}}
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auctions (cf page 1015), and in the late 1990s on games
such as Rock, Paper, Scissors (RoShamBo) (with

). (A simpler game—
certainly played since antiquity—is Penny Matching or
Evens and Odds, with .) But even
though they seemed to capture or better actual human
behavior, the programs considered in all these cases
typically just used standard statistical or Markov model
methods, or matching of specific sequences—making them
far too weak to make predictions about the kinds of
complex behavior shown in this book. (Note that a
program can always win the games above if it can in effect
successfully predict each move its opponent will make. In a
game between two arbitrary programs it can be
undecidable which will win more often over the course of
an infinite number of moves.)

â Games between programs. One can set up a game between
two programs generating single bits of output by for example
taking the input at each step to be the concatenation of the
historical sequences of outputs from the two programs. The
pictures below show what happens if the programs operate
by applying elementary cellular automaton rules  times to

 inputs. The plots on the left show cumulative scores in
the Evens and Odds game; the array on the right indicates for
each of the 256 possible rules the average number of wins it
gets against each of the 256 rules. At some level considerable
complexity is evident. But the rules that win most often
typically seem to do so in rather simple ways. 

Higher Forms of Perception and Analysis

â Biological perception.Animals can process data not only
from visual or auditory sources (as discussed on pages 577
and 585), but also from mechanical, thermal, chemical and
other sources. Usually special receptors for each type of data
convert it into electrical impulses in nerve cells. Mechanical
and thermal data are often mapped onto an array of nerve
cells in the brain, from which features are extracted similar
to those in visual perception. Taste involves data from solids

and liquids; smell data from gases. The human tongue has
millions of taste buds scattered on its surface, each with
many tens of nerve cells. Rather little is currently known
about how taste data is processed, and it is not even clear
whether the traditional notion that there are just four or so
primary tastes is correct. The human nose has several tens of
millions of receptors, apparently broken into a few hundred
distinct types. Each of these types probably has proteins that
form pockets with definite shapes, making it respond to
molecules whose shapes fit into these pockets. People
typically distinguish a few thousand odors, presumably by
comparing responses of different receptor types. (Foods
usually contain tens of distinct odors; manufactured scents
hundreds.) There is evidence that at the first level of
processing in the brain all receptors of a given type excite
nerve cells that lie in the same spatial region. But just how
different regions are laid out is not clear, and may well differ
between individuals. Polymers whose lengths differ by
more than one or two repeating units often seem to smell
different, and it is conceivable that elaborate general
features of shapes of molecules can be perceived. But more
likely there is no way to build up sophisticated taste or
smell data—and no analog of any properties such as
repetition or nesting.

â Page 634 · Evolving to predict. If one thinks that biological
evolution is infinitely powerful one might imagine that by
emulating it one would always be able to find ways to
predict any sequence of data. But in practice methods
based, for example, on genetic programming seem to do at
best only about as well as all sorts of other methods
discussed in this chapter. And typically what limits them
seems to be much the same as I argue in Chapter 8 limits
actual biological evolution: that incremental changes are
difficult to make except when the behavior is fairly simple.
(See also page 985.)

It is common for animals to move in apparently random
ways when they are trying to avoid predators. Yet I suspect
that the randomness they use is often generated by quite
simple rules (see page 1011)—so that in principle it could be
predictable. So it is then notable that biological evolution has
apparently never made predators able to catch their prey by
predicting anything that looks to us particularly random;
instead strategies tend to be based on tricks that do not
require predicting more than at most repetition.

â Page 635 · Familiar features. What makes features familiar
to us is that they are common in our typical environment and
are readily recognized by our built-in human powers of
perception. In the distant past humans were presumably
exposed only to features generated by ordinary natural

m = {{0, -1, 1}, {1, 0, -1}, {-1, 1, 0}}

m = {{1, -1}, {-1, 1}}
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processes. But ever since the dawn of civilization humans
have increasingly been exposed to things that were explicitly
constructed through engineering, architecture, art,
mathematics and other human activities. And indeed as
human knowledge and culture have progressed, humans
have ended up being exposed to new kinds of features. For
example, while repetition has been much emphasized for
several millennia, it is only in the past couple of decades that
precise nesting has had much emphasis. So this may make
one wonder what features will be emphasized in the future.
The vast majority of forms created by humans in the past—
say in art or architecture—have had basic features that are

either directly copied from systems in nature, or are in effect
built up by using extremely simple kinds of rules. On the
basis of the discoveries in this book I thus tend to suspect that
almost any feature that might end up becoming emphasized
in the future will already be present—and probably even be
fairly common—in the behavior of the kinds of simple
programs that I have discussed in this book. (When future
technology is routinely able to interact with individual atoms
there will presumably quickly be a new class of quantum and
other features that become familiar.)

â Relativism and postmodernism. See pages 1131 and 1196. 
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NOTES FOR CHAPTER 11

The Notion of Computation

Computation as a Framework

â History of computing. Even in prehistoric times there were
no doubt schemes for computation based for example on
making specific arrangements of pebbles. Such schemes
were somewhat formalized a few thousand years ago with
the invention of the abacus. And by about 200 BC the
development of gears had made it possible to create devices
(such as the Antikythera device from perhaps around 90
BC) in which the positions of wheels would correspond to
positions of astronomical objects. By about 100 AD Hero
had described an odometer-like device that could be driven
automatically and could effectively count in digital form.
But it was not until the 1600s that mechanical devices for
digital computation appear to have actually been built.
Around 1621 Wilhelm Schickard probably built a machine
based on gears for doing simplified multiplications
involved in Johannes Kepler’s calculations of the orbit of
the Moon. But much more widely known were the
machines built in the 1640s by Blaise Pascal for doing
addition on numbers with five or so digits and in the 1670s
by Gottfried Leibniz for doing multiplication, division and
square roots. At first, these machines were viewed mainly
as curiosities. But as the technology improved, they
gradually began to find practical applications. In the mid-
1800s, for example, following the ideas of Charles Babbage,
so-called difference engines were used to automatically
compute and print tables of values of polynomials. And
from the late 1800s until about 1970 mechanical calculators
were in very widespread use. (In addition, starting with
Stanley Jevons in 1869, a few machines were constructed for
evaluating logic expressions, though they were viewed
almost entirely as curiosities.)

In parallel with the development of devices for digital
computation, various so-called analog computers were also
built that used continuous physical processes to in effect
perform computations. In 1876 William Thomson (Kelvin)

constructed a so-called harmonic analyzer, in which an
assembly of disks were used to sum trigonometric series and
thus to predict tides. Kelvin mentioned that a similar device
could be built to solve differential equations. This idea was
independently developed by Vannevar Bush, who built the
first mechanical so-called differential analyzer in the late
1920s. And in the 1930s, electrical analog computers began to
be produced, and in fact they remained in widespread use for
finding approximate solutions to differential equations until
the late 1960s.

The types of machines discussed so far all have the feature
that they have to be physically rearranged or rewired in
order to perform different calculations. But the idea of a
programmable machine already emerged around 1800, first
with player pianos, and then with Marie Jacquard’s
invention of an automatic loom which used punched cards to
determine its weaving patterns. And in the 1830s, Charles
Babbage described what he called an analytical engine,
which, if built, would have been able to perform sequences of
arithmetic operations under punched card control. Starting at
the end of the 1800s tabulating machines based on punched
cards became widely used for commercial and government
data processing. Initially, these machines were purely
mechanical, but by the 1930s, most were electromechanical,
and had units for carrying out basic arithmetic operations.
The Harvard Mark I computer (proposed by Howard Aiken
in 1937 and completed in 1944) consisted of many such units
hooked together so as to perform scientific calculations.
Following work by John Atanasoff around 1940, electronic
machines with similar architectures started to be built. The
first large-scale such system was the ENIAC, built between
1943 and 1946. The focus of the ENIAC was on numerical
computation, originally for creating ballistics tables. But in
the early 1940s, the British wartime cryptanalysis group
(which included Alan Turing) constructed fairly large
electromechanical machines that performed logical, rather
than arithmetic, operations. 
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All the systems mentioned so far had the feature that they
performed operations in what was essentially a fixed
sequence. But by the late 1940s it had become clear,
particularly through the writings of John von Neumann, that
it would be convenient to be able to jump around instead of
always having to follow a fixed sequence. And with the idea
of storing programs electronically, this became fairly easy to
do, so that by 1950 more than ten stored-program computers
had been built in the U.S. and in England. Speed and
memory capacity have increased immensely since the 1950s,
particularly as a result of the development of semiconductor
chip technology, but in many respects the basic hardware
architecture of computers has remained very much the same. 

Major changes have, however, occurred in software. In the
late 1950s and early 1960s, the main innovation was the
development of computer languages such as FORTRAN,
COBOL and BASIC. These languages allowed programs to be
specified in a somewhat abstract way, independent of the
precise details of the hardware architecture of the computer.
But the languages were primarily intended only for
specifying numerical calculations. In the late 1960s and early
1970s, there developed the notion of operating systems—
programs whose purpose was to control the resources of a
computer—and with them came languages such as C. And
then in the late 1970s and early 1980s, as the cost of computer
memory fell, it began to be feasible to manipulate not just
purely numerical data, but also data representing text and
later pictures. With the advent of personal computers in the
early 1980s, interactive computing became common, and as
the resolution of computer displays increased, concepts such
as graphical user interfaces developed. In more recent years
continuing increases in speed have made it possible for more
and more layers of software to be constructed, and for many
operations previously done with special hardware to be
implemented purely in software.

â Practical computers. At the lowest level the hardware of a
practical computer consists of digital electronic circuits. In
these circuits, lumps of electric charge (in 2001 about half a
million electrons each) flow through channels which cross to
form various kinds of gates. Each gate performs a simple
logic operation; for example, letting charge pass in one
channel only if charge is present in the other channel. From
circuits containing millions of such gates are built the two
main elements of the computer: the processor which
actually performs computations, and the memory which
stores data. The memory consists of an array of cells, with
the presence or absence of a lump of charge at gates in each
cell representing a 1 or 0 value for the bit of data associated
with that cell.

One of the crucial ideas of a general-purpose computer is that
sequences of such bits of data in memory can represent
information of absolutely any kind. Numbers for example are
typically represented in base 2 by sequences of 32 or more
bits. Similarly, characters of text are usually represented by
sequences of 8 or more bits. (The character “a” is typically
01100001.) Images are usually represented by bitmaps
containing thousands or millions of bits, with each bit
specifying for example whether a pixel at a particular
location should, say, be black or white. Every possible
location in memory has a definite address, independent of its
contents. The address is typically represented as a number
which itself can be stored in memory.

What makes possible essential universality in a practical
computer is that the data which is stored in memory can be a
program. At the lowest level, a program consists of a
sequence of instructions to be executed by the processor. Any
particular kind of processor is built to support a certain fixed
set of possible kinds of instructions, each represented by a
specific number or opcode. There are typically a few tens of
possible instructions, each executed by a certain part of the
circuit in the processor. A typical one of these instructions
might add two numbers together; a program would specify
which numbers to add by giving their addresses in memory.

What practical computers always basically do is to repeat
millions of times a second a simple cycle, in which the
processor fetches an instruction from memory, then executes
the instruction. The address of the instruction to be fetched at
each point is specified by the current value of the program
counter—a number stored in memory that is incremented by
the processor, or can be modified by instruction in the
program. At any given time, there are usually several
programs stored in the memory of a computer, all organized
by an operating system program which determines when
other programs should run. Devices like keyboards, mice and
microphones convert input into data that is inserted into
memory at certain fixed locations. The operating system
periodically checks these locations, and if necessary runs
programs to respond to the input that is given.

A crucial achievement in practical computing over the past
several decades has been the creation of more and more
sophisticated software. Often the programs that make up
this software are several million instructions long. They
usually contain many subprograms that perform parts of
their task. Some programs are set up to perform very
specific applications, say word processing. But an important
class of programs are languages. A language provides a
fixed set of constructs that allow one to specify
computations. The set of instructions performed by the
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processor in a computer constitutes a low-level “machine”
language. In practice, however, programs are rarely written
at such a low level. More often, languages like C, FORTRAN,
Java or Mathematica are used. In these languages, each
construct represents what is often a large number of
machine instructions. There are two basic ways that
languages can operate: compiled or interpreted. In a
compiled language like C or FORTRAN, the source code of
the program must always first be translated by a compiler
program into object code that essentially consists of machine
instructions. Once compiled, a program can be executed any
number of times. In an interpreted language, each piece of
input effectively causes a fixed subprogram to be executed
to perform an operation specified by that input.

â Intuition from practical computing. See page 872.

Computations in Cellular Automata

â Page 639 · Other examples. Rule 152 and rule 144, which
effectively compute  and ,
respectively, are shown below with  initial black cells. 

As discussed on page 989 rule 184 effectively determines
whether its initial conditions correspond to a balanced
sequence of open and close parentheses. (Rule 132 can be
viewed as being like a syntax checker for a regular language;
rule 184 for a context-free language.)

â Page 639 · Squaring cellular automaton. The rules are 

and the initial conditions consist of 
surrounded by ’s. The rules can be implemented using

 as given on page 867. (See also page 1186.)

â Page 640 · Primes cellular automaton. The rules are 

and the initial conditions consist of  surrounded
by ’s. The right-hand region in the pattern grows like .
(See also page 132.)

â Random initial conditions. The pictures below show the
squaring and primes cellular automata starting from
random initial conditions. Note that for both systems the
majority of cases in their rules are not used in the specific
computations for which they were constructed. Changing
these cases can lead to different behavior with random
initial conditions.

â Efficiency of computations. Present-day practical computers
almost always process data in a basically sequential manner.
Cellular automata, however, intrinsically operate in parallel,
and can thus presumably perform at least some
computations in fundamentally fewer steps. (Compare the
discussion of P completeness on page 1149.) 

â Minimal programs for sequences. See page 1186.

The Phenomenon of Universality

â History of universality. In Greek times it was noted as a
philosophical matter that any single human language can be
used to describe the same basic range of facts and processes.
And with logic introduced as a way to formalize arguments
(see page 1099), Gottfried Leibniz in the 1600s considered the
idea of setting up a universal language based on logic that
would provide a precise description analogous to a
mathematical proof of any fact or process. But while Leibniz
considered the possibility of checking his descriptions by
machine, he apparently did not imagine setting up the analog
of a computation in which something is explicitly generated
from input that has been given.

The idea of having an abstract procedure that can be fed a
range of different inputs had precursors in antiquity in the
use of letters to denote objects in geometrical constructions,
and in the 1500s in the introduction of symbolic formulas
and algebraic variables. But the notion of abstract functions

Ceiling[n/2] Ceiling[n/4]
n = 18

rule 152 rule 144

{{0, _, 3} ! 0, {_, 2, 3} ! 3, {1, 1, 3} ! 4, {_, 1, 4} ! 4, {1 Ï 2, 3,
_} ! 5, {p : (0 Ï 1), 4, _} ! 7 - p, {7, 2, 6} ! 3, {7, _, _} ! 7,

{_, 7, p : (1 Ï 2)} ! p, {_, p : (5 Ï 6), _} ! 7 - p, {5 Ï 6, p : (1 Ï 2), _} !
7 - p, {5 Ï 6, 0, 0} ! 1, {_, p : (1 Ï 2), _} ! p, {_, _, _} ! 0}

Append[Table[1, {n}], 3]
0

GeneralCARule

{{13, 3, 13} ! 12, {6, _, 4} ! 15, {10, _, 3 Ï 11} ! 15, {13, 7, _} !
8, {13, 8, 7} ! 13, {15, 8, _} ! 1, {8, _, _} ! 7, {15, 1, _} ! 2,

{_, 1, _} ! 1, {1, _, _} ! 8, {2 Ï 4 Ï 5, _, _} ! 13, {15, 2, _} ! 4,
{_, 4, 8} ! 4, {_, 4, _} ! 5, {_, 5, _} ! 3, {15, 3, _} ! 12,
{_, x : (2 Ï 3 Ï 8), _} ! x, {_, x : (11 Ï 12), _} ! x - 1, {11, _, _} ! 13,
{13, _, 1 Ï 2 Ï 3 Ï 5 Ï 6 Ï 10 Ï 11} ! 15, {13, 0, 8} ! 15,
{14, _, 6 Ï 10} ! 15, {10, 0 Ï 9 Ï 13, 6 Ï 10} ! 15, {6, _, 6} ! 0,
{_, _, 10} ! 9, {6 Ï 10, 15, 9} ! 14, {_, 6 Ï 10, 9 Ï 14 Ï 15} ! 10,
{_, 6 Ï 10, _} ! 6, {6 Ï 10, 15, _} ! 13, {13 Ï 14, _, 9 Ï 15} ! 14,
{13 Ï 14, _, _} ! 13, {_, _, 15} ! 15, {_, _, 9 Ï 14} ! 9, {_, _, _} ! 0}

{10, 0, 4, 8}
0 �!!!t
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in mathematics reached its modern form only near the end
of the 1800s.

At the beginning of the 1800s practical devices such as the
player pianos and the Jacquard loom were invented that
could in effect be fed different inputs using analogs of
punched cards. And in the 1830s Charles Babbage and Ada
Lovelace noted that a similar approach could be used to
specify the mathematical procedure to be followed by a
mechanical calculating machine (see page 1107). But it was
somehow assumed that the specification of the procedure
must be done quite separately from the specification of the
data to which the procedure was to be applied.

Starting in the 1880s attempts to build up both numbers and
the operations of arithmetic from logic and set theory began
to suggest that both data and procedures could potentially be
described in common terms. And in the 1920s work by Moses
Schönfinkel on combinators and by Emil Post on string
rewriting systems provided fairly concrete examples of this.

In 1930 Kurt Gödel used the same basic idea to set up Gödel
numbers to encode logical and other procedures as numbers.
(Leibniz had in fact already done this for basic logic
expressions in 1679.) But Gödel then took the crucial step of
showing that the process of finding outputs from all such
procedures could in effect be viewed as equivalent to
following relations of logic and arithmetic—thus establishing
that these relations are in a certain sense universal (see page
784). This fact, however, was embedded inside the rather
technical proof of Gödel’s Theorem, and it was at first not at
all clear how specific it might be to the particular
mathematical systems considered.

But in 1935 Alonzo Church constructed a system in lambda
calculus that he showed could be made to emulate any other
system in lambda calculus if given appropriate input, and in
1936 Alan Turing did the same thing for Turing machines. As
discussed on page 1125, both Church and Turing argued that
the systems they set up would be able to perform any
reasonable computation. In both cases, their original
motivation was to use this fact to construct an argument that
the so-called decision problem (Entscheidungsproblem) of
mathematical logic was undecidable (see page 1136). But
Turing in particular gradually realized that his notion of
universality could be applied to practical computers.

Turing’s results were used in the 1940s—notably in the work
of Warren McCulloch and Walter Pitts—as a basis for the
assertion that electric circuit analogs of neural networks
could achieve the sophistication of brains, and this appears to
have influenced John von Neumann’s thinking about the
general programmability of electronic computers.

Nevertheless, by the late 1940s, practical computer
engineering had also been led to the idea of storing
programs—like data—electronically, and in the 1950s it
became widely understood that general-purpose practical
computers could be viewed as universal systems.

Many theoretical investigations of universality were made in
the 1950s and 1960s, but gradually the emphasis shifted more
towards issues of languages and algorithms.

â Universality in Mathematica. As an example of how
different primitive operations can be used to do the same
computation, the following are a few ways that the factorial
function can be defined in Mathematica:

A Universal Cellular Automaton

â Page 648 · Universal cellular automaton. The rules for the
universal cellular automaton are

f [n_] := n!

f [n_] := n f [n - 1]; f [1] = 1

f [n_] := Product[ i, {i, n}]

f [n_] := Module[{t = 1}, Do[t = t i, {i, n}]; t]

f [n_] := Module[{t = 1, i}, For[ i = 1, i < n, i ++, t *= i]; t]

f [n_] := Apply[Times, Range[n]]

f [n_] := Fold[Times, 1, Range[n]]

f [n_] := If[n 2 1, 1, n f [n - 1]]

f [n_] := Fold[#2[#1] &, 1, Array[Function[t, #1 t] &, n]]

f = If[#1 2 1, 1, #1 #0[#1 - 1]] &

{{_, 3, 7, 18, _} ! 12, {_, 5, 7 Ï 8, 0, _} ! 12, {_, 3, 10, 18, _} ! 16,
{_, 5, 10 Ï 11, 0, _} ! 16, {_, 5, 8, 18, _} ! 7, {_, 5, 14, 0 Ï 18, _} !
12, {_, _, 8, 5, _} ! 7, {_, _, 14, 5, _} ! 12, {_, 5, 11, 18, _} ! 10,
{_, 5, 17, 0 Ï 18, _} ! 16, {_, _, x : (11 Ï 17), 5, _} ! x - 1,
{_, 0 Ï 9 Ï 18, x : (7 Ï 10 Ï 16), 3, _} ! x + 1, {_, 0 Ï 9 Ï 18, 12, 3, _} !
14, {_, _, 0 Ï 9 Ï 18, 7 Ï 10 Ï 12 Ï 16, x : (3 Ï 5)} ! 8 - x,
{_, _, _, 8 Ï 11 Ï 14 Ï 17, x : (3 Ï 5)} ! 8 - x, {_, 13, 4, _, x : (0 Ï 18)} !
x, {18, _, 4, _, _} ! 18, {_, _, 18, _, 4} ! 18, {0, _, 4, _, _} ! 0,
{_, _, 0, _, 4} ! 0, {4, _, 0 Ï 18, 1, _} ! 3, {4, _, _, _, _} ! 4,
{_, _, 4, _, _} ! 9, {_, 4, 12, _, _} ! 7, {_, 4, 16, _, _} ! 10,
{x : (0 Ï 18), _, 6, _, _} ! x, {_, 2, 6, 15, x : (0 Ï 18)} ! x, {_, 12 Ï 16,
6, 7, _} ! 0, {_, 12 Ï 16, 6, 10, _} ! 18, {_, 9, 10, 6, _} ! 16,

{_, 9, 7, 6, _} ! 12, {9, 15, 6, 7, 9} ! 0, {9, 15, 6, 10, 9} ! 18,
{9, _, 6, _, _} ! 9, {_, 6, 7, 9, 12 Ï 16} ! 12, {_, 6, 10, 9, 12 Ï 16} !
16, {12 Ï 16, 6, 7, 9, _} ! 12, {12 Ï 16, 6, 10, 9, _} ! 16,
{6, 13, _, _, _} ! 9, {6, _, _, _, _} ! 6, {_, _, 9, 13, 3} ! 9,
{_, 9, 13, 3, _} ! 15, {_, _, _, 15, 3} ! 3, {_, 3, 15, 0 Ï 18, _} ! 13,
{_, 13, 3, _, 0 Ï 18} ! 6, {x : (0 Ï 18), 15, 9, _, _} ! x,
{_, 6, 13, _, _} ! 15, {_, 4, 15, _, _} ! 13, {_, _, _, 15, 6} ! 6,
{_, _, 2, 6, 15} ! 1, {_, _, 1, 6, _} ! 2, {_, 1, 6, _, _} ! 9, {_, 3, 2,
_, _} ! 1, {3, 2, _, _, _} ! 3, {_, _, 3, 2, _} ! 3, {_, 1, 9, 1, 6} ! 6,

{_, _, 9, 1, 6} ! 4, {_, 4, 2, _, _} ! 1, {_, _, _, _, x : (3 Ï 5)} ! x,
{_, _, 3 Ï 5, _, x : (0 Ï 18)} ! x, {_, _, x : (1 Ï 2 Ï 7 Ï 8 Ï 9 Ï 10 Ï 11 Ï

12 Ï 13 Ï 14 Ï 15 Ï 16 Ï 17), _, _} ! x, {_, _, 18, 7 Ï 10, 18} ! 18,
{_, _, 0, 7 Ï 10, 0} ! 0, {_, _, 0 Ï 18, _, _} ! 9, {_, _, x_, _, _} ! x}
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where the numbers correspond to the icons shown in the
main text according to 

The block in the initial conditions for the universal cellular
automaton corresponding to a cell with color  is given by

where  is the range of the rule to be emulated (  for
elementary rules) and  is the list of outcomes for that rule
(starting with the outcome for ). In general, there
are  cases in the rule to be emulated; each block in the
universal cellular automaton is  cells wide,
and each step in the rule to be emulated corresponds to

 steps in the evolution of the
universal cellular automaton.

â Page 655 · More colors. Given a rule that involves three
colors and nearest neighbors, the following converts each
case of the rule to a collection of cases for a rule with two
colors:

The problem of encoding cells with several colors by blocks
of black and white cells is related to standard problems in
coding theory (see page 560). One approach is to use  to
indicate the boundary of each block, and then within each
block to use all possible digit sequences which do not contain

, as in the Fibonacci number system discussed on page
892. Note that the original rule with  colors and  neighbors
involves  bits of information; the two-color rule
that emulates it involves  bits. As a result, the
minimum possible  for ,  is about 2.2; in the
specific example shown in the main text it is 5. 

Emulating Other Systems with Cellular Automata

â Page 657 · Mobile automata. Given a mobile automaton with
rules in the form used on page 887, a cellular automaton
which emulates it can be constructed using

This specific definition assumes that the mobile automaton
has two possible colors for each cell; it yields a cellular
automaton with four possible colors for each cell. An initial

condition with a single 2 surrounded by 0’s corresponds to
all cells being white in the mobile automaton. 

â Page 658 · Turing machines. Given any Turing machine
with rules in the form used on page 888 and  possible colors
for each cell, a cellular automaton which emulates it can be
constructed using

If the Turing machine has  states for its head, then the
cellular automaton has  colors for each cell. An
initial condition with a single cell of color  surrounded by
0’s corresponds to being in state 1 with a blank tape in the
Turing machine.

â Page 659 · Substitution systems. Given a substitution system
with rules in the form such as  used on
page 889, the rules for a cellular automaton which emulates it
are obtained from

where specific values for cells can be obtained from 

An initial condition consisting of a single element with color
 in the substitution system is represented by 

surrounded by ’s in the cellular automaton. The specific
definition given above works for neighbor-independent
substitution systems whose elements have two possible
colors, and in which each element is replaced at each step by
at most two new elements. 

â Page 660 · Sequential substitution systems. Given a
sequential substitution system with rules in the form used on
page 893, the rules for a cellular automaton which emulates it
can be obtained from

 

0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

a
Flatten[{Transpose[{Join[{4, 18 (1 - a), 6}, Table[9,

{22 r+1 - 3}]], 10 - 3 rtab}], Table[{9, 1}, {r}], 9, 13}]

r r = 1
rtab

{1, 1, (1) ...}
22 r+1

2 (22 r+1 + r + 1)

(3 r + 2) 22 r+1 + 3 r 2 + 7 r + 3

CA3ToCA2[{a_, b_, c_} ! d_] := Union[Flatten[Table[Thread[
Partition[Flatten[{l, a, b, c, r} /. coding], 11, 1]0{2,

3, 4}1 ! ( d /. coding)], {l, 0, 2}, {r, 0, 2}], 2]]
coding = {0 ! {0, 0, 0}, 1 ! {0, 0, 1}, 2 ! {0, 1, 1}}

{1, 1}

{1, 1}
k r

Log[2, kk2 r+1

]

Log[2, 222 s+1

]

s k = 3 r = 1

MAToCA[rules_] :=
Append[Flatten[Map[g, rules]], {_, _, x_, _, _} ! x]

g[{a_, b_, c_} ! {d_, e_}] := {{_, a, b + 2, c, _} ! d, If[e 2 1,
{a, b + 2, c, _, _} ! c + 2, {_, _, a, b + 2, c} ! a + 2]}

k

TMToCA[rules_, k_ : 2] :=
Flatten[{Map[g[#, k] &, rules], {_, x_, _} ! x}]

g[{s_, a_} ! {sp_, ap_, d_}, k_] := {If[d 2 1, Identity,
Reverse][{k s + a, x_, _}] ! k sp + x, {_, k s + a, _} ! ap}

s
k (s + 1)

k

{1 ! {0}, 0 ! {0, 1}}

SSToCA[rules_] := {{b, b, p[x_, _]} ! s[x],
{_, s[v : (0 Ï 1)], p[x_, _]} ! p[v, x], {_, p[_, y_], _} ! s[y],
{_, s[v : (0 Ï 1)], _m} ! m[v], {s[0 Ï 1], m[v : (0 Ï 1)], _} !
s[v], {b, m[v : (0 Ï 1)], _} ! r[v], {_, r[v : (0 Ï 1)], _} "
(Replace[v, rules] /. {{x_} ! s[x], {x_, y_} ! p[x, y]}),
{_r, s[v : (0 Ï 1)], _} ! r[v], {_r, b, _} ! m[b],
{s[0 Ï 1], m[b], _} ! b, {_, v_, _} ! v}

{b ! 0, s[0] ! 1, m[0] ! 2, p[0, 0] ! 3,
r[0] ! 4, p[0, 1] ! 5, p[1, 0] ! 6, r[1] ! 7,
p[1, 1] ! 8, m[1] ! 9, m[b] ! 10, s[1] ! 11}

i m[ i]
b

SSSToCA[rules_] := Flatten[{{v[_, _, _], u, _} ! u, {_, v[rn_,
x_, _], u} ! r[rn+ 1, x], {_, v[_, x_, _], _} ! x, MapIndexed[
With[{rn = #2011, rs = #1011, rr = #1021}, {If [Length[rs] 2
1, {u, r[rn, First[rs]], _} ! q[0, rr], {u, r[rn, First[rs]], _} !
v[rn, First[rs], Take[rs, 1]]], {u, r[rn, x_], _} ! v[rn, x, {}],
{v[rn, _, Drop[rs, -1]], Last[rs], _} ! q[Length[rs] - 1, rr],
Table[{v[rn, _, Flatten[{___, Take[rs, i - 1]}]], rs0i1, _} ! v[
rn, rs0i1, Take[rs, i]], {i, Length[rs] - 1, 1, -1}], {v[rn, _, _],
y_, _} ! v[rn, y, {}]}] &, rules /. s ! List], {_, q[0, {x__, _}],
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The initial condition is obtained by applying the rule
 and then padding with ’s. 

â Page 661 · Register machines. Given the program for a
register machine in the form used on page 896, the rules for a
cellular automaton that emulates it can be obtained from

If  is the length of the register machine program, then the
resulting cellular automaton has  possible colors for
each cell. If the initial numbers in the two registers are 
and , then the initial conditions for the cellular automaton
are  surrounded
by 0’s.

â Page 661 · Multiplication systems. The rules for the cellular
automaton shown here are

and the initial condition consists of a single  surrounded by
’s. The idea used is that multiplication by 3 can be achieved

by scanning digits from right to left, adding to each digit the
value of the digit on its immediate right, as well as a carry
that can propagate any distance but cannot be larger than 1.
Note that as discussed on page 614 multiplication by some
multipliers in some bases (such as by 3 in base 6) can be
achieved by a single step in the evolution of a suitable
cellular automaton. After  steps, the width of the pattern
shown here is about . (See also page 119.)

â Continuous systems. See page 1128.

â Page 662 · Logic circuits. The rules for the cellular automaton
shown here are 

The initial conditions are given by

and in terms of these initial conditions the cellular automaton
must be run for  steps in order
to find the result. 

â Page 663 · RAM. The rules for the cellular automaton shown
here are

The initial conditions are divided into two parts: instructions
on the left and memory on the right. Given a list of  and 
values for successive memory locations, the right-hand initial
conditions are . To access
location  the left-hand initial conditions must contain

inserted in a repetitive  background. If  is , a  will be
written to location ; if it is , a  will be written; and if it is ,
the contents of location  will be read and sent back to the left. 

Emulating Cellular Automata with Other Systems

â Page 664 · Mobile automata. Given the rules for an
elementary cellular automaton in the form used on page 867, the
following will construct a mobile automaton which emulates it:

The ordering in  defines a mapping of symbolic cell
values onto colors. Given a list of initial cell colors for the
cellular automaton, the initial conditions for the mobile
automaton are given by 
surrounded by ’s, with the active cell being placed initially
just before the first . 

_} ! q[0, {x}], {_, q[0, {x_}], _} ! r[1, x], {_, q[0, {}], x_} !
r[1, x], {_, q[_, {___, x_}], _} ! x, {_, q[_, {}], x_} ! x,
{_, x_, q[0, _]} ! x, {_, _, q[n_, {}]} ! q[n - 1, {}],
{_, _, q[n_, {x___, _}]} ! q[n - 1, {x}], {q[_, {}], _, _} ! w,
{q[0, {__, x_}], p[y_, _], _} ! p[x, y], {q[0, {__, x_}], y_, _} !
p[x, y], {p[_, x_], p[y_, _], _} ! p[x, y], {p[_, x_], u, _} ! x,
{p[_, x_], y_, _} ! p[x, y], {_, p[x_, _], _} ! x, {w, u, _} ! u,
{w, x_, _} ! w, {_, w, x_} ! x, {_, r[rn_, x_], _} ! x,
{_, u, r[_, _]} ! u, {_, x_, r[rn_, _]} ! r[rn, x], {_, x_, _} ! x}]

s[x_, y__] ! {r[1, x], y} u

g[ i[1], p_, m_] :=
{{_, p, _} ! p + 1, {_, 0, p} ! m+ 2, {_, _, p} ! m+ 3}

g[ i[2], p_, m_] :=
{{_, p, _} ! p + 1, {p, 0, _} ! m+ 5, {p, _, _} ! m+ 6}

g[d[1, q_], p_, m_] := {{m+ 2 Ï m+ 3, p, _} ! q, {m+ 1,
p, _} ! p, {0, p, _} ! p + 1, {_, m+ 2 Ï m+ 3, p} ! m+ 1}

g[d[2, q_], p_, m_] := {{_, p, m+ 5 Ï m+ 6} ! q, {_, p,
m+ 4} ! p, {_, p, 0} ! p + 1, {p, m+ 5 Ï m+ 6, _} ! m+ 4}

RMToCA[prog_] := With[{m = Length[prog]}, Flatten[
{MapIndexed[g[#1, First[#2], m] &, prog], {{0, 0 Ï m+ 1,

m+ 3} ! m+ 2, {0, m+ 1, _} ! 0, {0, 0, m+ 1} ! 0,
{_, _, x : (m+ 1 Ï m+ 3)} ! x, {_, m+ 1 Ï m+ 3, _} ! m+ 2,
{m+ 6, 0 Ï m+ 4, 0} ! m+ 5, {_, m+ 4, 0} ! 0,
{m+ 4, 0, 0} ! 0, {x : (m+ 4 Ï m+ 6), _, _} ! x,
{_, m+ 4 Ï m+ 6, _} ! m+ 5, {_, x_, _} ! x}}]]

m
m+ 7

a
b
Join[Table[m+ 2, {a}], {1}, Table[m+ 5, {b}]]

{{_, 0, 3 Ï 8} ! 5, {_, 0, 2 Ï 7} ! 8, {_, 1, 4 Ï 9} ! 9,
{_, 1, 3 Ï 8} ! 4, {_, 1, 2 Ï 7} ! 8, {_, 10, 4 Ï 9} ! 3,
{_, 10, 3 Ï 8} ! 7, {_, 10, 2 Ï 7} ! 2, {5 Ï 6, 1, 0} ! 9,
{5 Ï 6, 10, 0} ! 3, {5 Ï 6, 1, _} ! 6, {5 Ï 6, 10, _} ! 5,
{_, 2 Ï 3 Ï 4 Ï 5, _} ! 10, {_, 6 Ï 7 Ï 8 Ï 9, _} ! 1, {_, x_, _} ! x}

3
0

t
Sqrt[Log[2, 3] t]

{{0, 1, 1 Ï 3} ! 1, {0, 3, 3} ! 3, {1, 0, 0 Ï 1 Ï 3} ! 1,
{1, 1, 3} ! 4, {1, 3, 0} ! 3, {1, 3, 3} ! 2, {2, 1, 3} ! 3,
{2, 3, 0} ! 2, {2, 0, _} ! 4, {3, 3, 0} ! 3, {4, 0, 0 Ï 1 Ï 2 Ï 4} ! 2,
{4, 3, 3} ! 3, {4, 1, 3} ! 1, {4, 3, 0} ! 4, {_, _, _} ! 0}

Flatten[Block[{And, Or}, Map[{0, 2 (# + 1)} &, expr, {-1}] //.
{! x_ " {0, x, 0}, And[x__] " {0, 0, 1, 0, x, 1, 3, 0, 0},

Or[x__] " {0, 0, 1, 0, x, 0, 1, 3, 0}}]]

Length[ list //. {0, x__} ! {x}] - 1

{{2, 4 Ï 8, 2 Ï 11, _, _} ! 2, {11 Ï 10, 4 Ï 8, 2 Ï 11, _, _} ! 11,
{2, 4 Ï 8, _, _, _} ! 10, {11 Ï 10, 4 Ï 8, _, _, _} ! 2,
{2, 0, _, _, _} ! 2, {11, 0, _, _, _} ! 11,
{3 Ï 7 Ï 6, _, 10, _, _} ! 1, {x : (3 Ï 7 Ï 6), _, _, _, _} ! x,
{_, _, 6, 4, 10} ! 5, {_, _, 6, 8, 10} ! 9, {_, 3, _, 10, _} ! 4,
{_, 7, _, 10, _} ! 8, {_, _, 1, _, x : (5 Ï 9)} ! x, {1, _, _, _, _} ! 1,
{_, _, 1, _, _} ! 1, {_, _, _, _, 1} ! 1, {_, _, x : (4 Ï 8 Ï 0), _, _} ! x}

0 1

Flatten[ list /. {1 ! {8, 1}, 0 ! {4, 1}}]
n

Flatten[{0, i, IntegerDigits[n, 2] /. {1 ! {0, 11}, 0 ! {0, 2}}}]
{0, 1} i 7 1

n 3 0 6
n

vals = {x, p[0], q[0, 0], q[0, 1], q[1, 0], q[1, 1], p[1]}

CAToMA[rules_] := Table[(# ! Replace[#, {{q[a_, b_], p[c_],
p[d_]} " {q[c, {a, c, d} /. rules], 1}, {q[a_, b_], p[c_], x} "
{q[c, {a, c, 0} /. rules], 1}, {q[_, _], x, x} ! {p[0], -1},
{q[_, _], q[_, a_], p[_]} ! {p[a], -1}, {x, q[_, a_], p[_]} !
{p[a], -1}, {x, x, p[_]} ! {q[0, 0], 1}, {_, _, _} !
{x, 0}}] &)[vals0IntegerDigits[ i, 7, 3] + 11], {i, 0, 73 - 1}]

vals

Flatten[{p[0], Map[p, list], p[0]}]
x

p[0]
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â Page 665 ·  Turing machines. Given the rules for an
elementary cellular automaton in the form used on page 867,
the following will construct a Turing machine which
emulates it:

Given a list of initial cell colors for the cellular automaton, the
initial tape for the Turing machine consists of

 surrounded by ’s, with the head of
the Turing machine on the first  in state . 

For specific cellular automata it is often possible to
construct smaller Turing machines, as on pages 707 and
1119. By combining identical cases in rules and writing
rules as compositions of ones with smaller neighborhoods
one can for example readily construct Turing machines
with 4 states and 3 colors that emulate 166 of the
elementary cellular automata.

â Page 667 · Sequential substitution systems. Given the rules
for an elementary cellular automaton in the form used on
page 867, the following will construct a sequential
substitution system which emulates it:

The initial condition  for the sequential
substitution system corresponds to a single black cell
surrounded by white cells in the cellular automaton. 

â Page 667 · Tag systems. Given the rules for an elementary
cellular automaton in the form used on page 867, the
following will construct a tag system which emulates it:

The initial condition for the tag system that corresponds to a
single black cell in the cellular automaton is

. Given a list of all steps in the
evolution of the tag system,  picks out
successive steps in the cellular automaton evolution.

â Page 668 · Symbolic systems. Given the rules for an
elementary cellular automaton in the form used on page 867
(with ), the following will construct a symbolic
system which emulates it:

The initial condition for the symbolic system is given by

Step  in the cellular automaton corresponds to step
 in the symbolic system.

Note that the succession of states shown here depends on the
detailed order in which rules are applied (see page 898). It is
also possible to construct symbolic systems with the so-called
confluence property, in which results from any fixed number
of steps of cellular automaton evolution can be found by
applying rules in any possible order (see page 1036). 

â Page 669 · Cyclic tag systems. From a tag system which
depends only on its first element, with rules given as in the
note below, the following constructs a cyclic tag system
emulating it:

The initial condition for the tag system can be converted
using . The list representing the complete history of
the resulting cyclic tag system can then be interpreted
using

This construction is relevant to the proof of the universality
of rule 110 starting on page 678.

â Page 669 · Multicolor Turing machines. Given rules in the
form on page 888 for a Turing machine with  states and 
colors the following yields an equivalent Turing machine
with  states
(always less than ) and 2 colors:

Some of these states are usually unnecessary, and in the
main text such states have been pruned. Given an initial
condition  the initial condition for the 2-color
Turing machine is

CAToTM[rules_] :=
{{q[a_, b_], c : ( 0 Ï 1)} " {q[b, c], {a, b, c} /. rules, 1},
{q[_, _], x} ! {p[0], 0, -1}, {p[a_], b : ( 0 Ï 1)} !
{p[b], a, -1}, {p[_], x} ! {q[0, 0], 0, 1}}

Join[{0, 0}, list, {0, 0}] x
0 q[0, 0]

CAToSSS[rules_] := Join[rules /.
( {a_, b_, c_} ! d_) ! {1, 2 a, 2 b, 2 c} ! {2 d, 1, 2 b, 2 c},

{{1, 0, 0} ! {0, 0}, {0} ! {1, 0, 0, 0}}]

{0, 0, 2, 0, 0}

CAToTS[rules_] := {2, {{s[x_], s[y_]} "
{d[x, y], d[x, y]}, {d[w_, x_], d[y_, z_]} "
{s[{w, x, y} /. rules], s[{x, y, z} /. rules]},

{s[x_], d[y_, z_]} " {s[0], s[0], s[{0, y, z} /. rules]},
{d[x_, y_], s[z_]} " {s[{x, y, 0} /. rules], s[0], s[0]}}}

{s[0], s[0], s[1], s[0], s[0]}
Cases[ list, {__s}]

{0, 0, 0} ! 0

Flatten[{Array[p[x_][#1][#2][#3] !
p[x[{##} /. rules]][#2][#3] &, {2, 2, 2}, 0] /. {0 ! p, 1 ! q},

{r[x_] ! p[r[p][p]][x], p[x_][p][p][r] ! x[p][p][r]}}]

Fold[#1[#2] &, r[p][p], init /. {0 ! p, 1 ! q}][p][p][r]

t
t ( t + Length[ init] + 3)

TS1ToCT [{n_, subs_}] := With[{k = Length[subs]},
Join[Map[v[Last[#], k] &, subs], Table[{}, {k (n - 1)}]]]

u[ i_, k_] := Table[If[ j 2 i + 1, 1, 0], { j , k}]

v[ list_, k_] := Flatten[Map[u[#, k] &, list]]

v[ list, k]

Map[Map[Position[#, 1]01, 11 - 1 &, Partition[#, k]] &,
Take[history, {1, -1, n k}]]

s k

With[{c = Ceiling[Log[2, k]]}, ( ( 3 2c) + 2 c - 7) s]
6.03 k s

TMToTM2[rule_, s_, k_] := (# /. MapIndexed[
#1 ! First[#2] &, Union[Map[#01, 11 &, #]]] &)[

With[{b = Ceiling[Log[2, k]] - 1}, Flatten[Table[
{Table[{Table[{{m, i, n, d}, c} ! {{m, Mod[ i, 2n-1], n - 1,

d}, Quotient[ i, 2n-1], 1}, {n, 2, b}, {i, 0, 2n - 1}], Table[
{{m, i, 1, d}, c} ! {{m, -1, 1, d}, i, d}, {i, 0, 1}], Table[
{{m, -1, n, d}, c} ! {{m, -1, n+ 1, d}, c, d}, {n, b - 1}],
{{m, -1, b, d}, c} ! {{0, 0, m}, c, d}}, {d, -1, 1, 2}],

Table[{{i, n, m}, c} ! {{i + 2n c, n+ 1, m}, c, -1},
{n, 0, b - 1}, {i, 0, 2n - 1}], With[{r = 2b}, Table[
If[ i + r c > k, {}, Cases[rule, ( {m, i + r c} ! {x_, y_, z_}) !
{{i, b, m}, c} ! {{x, Mod[y, r], b, z}, Quotient[y, r],
1}]], {i, 0, r - 1}]]}, {m, s}, {c, 0, 1}]]]]

{i, list, n}

With[{b = Ceiling[Log[2, k]]},
{i, Flatten[IntegerDigits[ list, 2, b]], b n}]
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â Page 670 · One-element-dependence tag systems. Writing the
rule  from page 895
as  the evolution of a tag
system that depends only on its first element is obtained from

Given a Turing machine in the form used on page 888 the
following will construct a tag system that emulates it:

A Turing machine in state  with a blank tape corresponds to
initial condition  for the tag system. The
configuration of the tape on each side of the head in the
Turing machine evolution can be obtained from the tag
system evolution using

â Page 672 · Register machines. Given the rules for a Turing
machine in the form used on page 888, a register machine
program to emulate the Turing machine can be obtained by
techniques analogous to those used in compilers for practical
computer languages. Here  creates a program
segment for each element of the Turing machine rule, and

 resolves addresses and links the segments together. 

A blank initial tape for the Turing machine corresponds to
initial conditions  for the register machine.
(Assuming that the Turing machine starts in state 1, with a 0
under its head, other initial conditions can be encoded just by
taking the values of cells on the left and right to give the
digits of the numbers that are initially in the first two

registers.) Given the list of successive configurations of the
register machine, the steps that correspond to successive
steps of Turing machine evolution can be obtained from

The program given above works for Turing machines with any
number of states, but it requires some simple extensions to
handle more than two possible colors for each cell. Note that
for a Turing machine with  states, the length of the register
machine program generated is between  and .

â Register machines with many registers. It turns out that a
register machine with any number of registers can always be
emulated by a register machine with just two registers. The
basic idea is to encode the list of values of all the registers in
the multiregister machine in the single number given by

and then to have this number be the value at appropriate
steps of the first register in the 2-register machine. The
program in the multiregister machine can be converted to a
program for the 2-register machine according to

The initial conditions for the 2-register machine are given by
 and the results corresponding to each

step in the evolution of the multiregister machine appear whenever
register 2 in the 2-register machine is incremented from 0. 

â Computations with register machines. As an example, the
following program for a 3-register machine starting with
initial condition  will compute :

â Page 673 · Arithmetic systems. Given the program for a
register machine with  registers in the form on page 896, an
arithmetic system which emulates it can be obtained from

{3, {{0, _, _} ! {0, 0}, {1, _, _} ! {1, 1, 0, 1}}}
{3, {0 ! {0, 0}, 1 ! {1, 1, 0, 1}}}

TS1EvolveList[rule_, init_, t_] :=
NestList[TS1Step[rule, #] &, init, t]

TS1Step[{n_, subs_}, {}] = {}

TS1Step[{n_, subs_}, list_] :=
Drop[Join[ list, First[ list] /. subs], n]

TMToTS1[rules_] :=
{2, Union[Flatten[rules /. ( {i_, u_} ! { j_, v_, r_}) "

{Map[#[ i] ! {#[ i, 1], #[ i, 0]} &, {a, b, c, d}], If[r 2 1,
{a[ i, u] ! {a[ j], a[ j]}, b[ i, u] ! Table[b[ j], {4}], c[ i, u] !
Flatten[{Table[b[ j], {2 v}], Table[c[ j], {2 - u}]}],
d[ i, u] ! {d[ j]}}, {a[ i, u] ! Table[a[ j], {2 - u}],
b[ i, u] ! {b[ j]}, c[ i, u] ! Flatten[{c[ j], c[ j],

Table[d[ j], {2 v}]}], d[ i, u] ! Table[d[ j], {4}]}]}]]}

i
{a[ i], a[ i], c[ i]}

Cases[history, x : {a[_], ___} "
Apply[{#1, Reverse[#2]} &, Map[

Drop[IntegerDigits[Count[x, #], 2], -1] &, {_b, _d}]]]

TMCompile

TMToRM

TMToRM[rules_] := Module[{segs, adrs}, segs =
Map[TMCompile, rules]; adrs = Thread[Map[First, rules] !
Drop[FoldList[Plus, 1, Map[Length, segs]], -1]];

MapIndexed[#1 /. {dr[r_, n_] " d[r, n+ First[#2]],
dm[r_, z_] " d[r, z /. adrs]} &, Flatten[segs]]]

TMCompile[_ ! z : {_, _, 1}] := f [z, {1, 2}]

TMCompile[_ ! z : {_, _, -1}] := f [z, {2, 1}]

f [{s_, a_, _}, {ra_, rb_}] := Flatten[{i[3], dr[ra, -1],
dr[3, 3], i[ra], i[ra], dr[3, -2], If[a 2 1, i[ra], {}], i[3],
dr[rb, 5], i[rb], dr[3, -1], dr[rb, 1], dm[rb, {s, 0}],
dr[rb, -6], i[rb], dr[3, -1], dr[rb, 1], dm[rb, {s, 1}]}]

{1, {0, 0, 0}}

( Flatten[Partition[Complement[#, # - 1], 1, 2]] &)[
Position[ list, {_, {_, _, 0}}]]

s
34 s 36 s

RMEncode[ list_] :=
Product[Prime[ j]^ list0j1, { j , Length[ list]}]

RMToRM2[prog_] :=
Module[{segs, adrs}, segs = MapIndexed[seg, prog];

adrs = FoldList[Plus, 1, Map[Length, segs]];
MapIndexed[#1 /. {ds[r_, s_] " d[r, adrs0s1],

dr[r_, j_] " d[r, j + First[#2]]} &, Flatten[segs]]]
seg[ i[r_], {a_}] := With[{p = Prime[r]},

Flatten[{Table[ i[2], {p}], dr[1, -p], i[1],
dr[2, -1], Table[dr[1, 1], {p + 1}]}]]

seg[d[r_, n_], {a_}] := With[{p = Prime[r]}, Flatten[{i[2], dr[
1, 5], i[1], dr[2, -1], dr[1, 1], ds[1, n], Table[{If[m 2 p - 1,
ds[1, a], dr[1, 3 p + 2 -m]], Table[ i[1], {p}], dr[2, -p],
Table[dr[1, 1], {2 p -m - 1}], ds[1, a + 1]}, {m, p - 1}]}]]

{1, {RMEncode[ list], 0}}

{n, 0, 0} {Round[�!!!!n ], 0, 0}
{d[1, 4], i[1], d[1, 15], i[2], d[1, 6], d[1, 11], i[1],

d[2, 7], d[3, 7], d[1, 15], d[3, 4], i[3], d[2, 12], d[3, 4]}

nr

RMToAS[prog_, nr_] := With[{p = Length[prog], g =
Product[Prime[ j], { j , nr}]}, {p g, Sort[Flatten[MapIndexed[
With[{n = First[#2] - 1}, #1 /. {i[r_] " Table[n+ j p !

( 1+ n+Prime[r] ( -n+#) &), { j , 0, g - 1}], d[r_, k_] "
Table[n+ j p ! If[Mod[ j , Prime[r]] 2 0, -1+ k + ( -n+

#) /Prime[r] &, # + 1 &], { j , 0, g - 1}]}] &, prog]]]}]
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The rules for the arithmetic system are represented so that the
system from page 122 becomes for example

. If the register machine
starts at instruction  with values  in its registers, then the
corresponding arithmetic system starts with the number

 where .
The evolution of the arithmetic system is given by 

Given a value  obtained in the evolution of the arithmetic
system, the state of the register machine to which it
corresponds is 

Note that it is possible to have each successive step involve
only multiplication, with no addition, at the cost of using
considerably larger numbers overall. 

â History. The correspondence between arithmetic systems and
register machines was established (using a slightly different
approach) by Marvin Minsky in 1962. Additional work was
done by John Conway, starting around 1971. Conway
considered fraction systems based on rules of the form

With the choice 

starting at  the result for  is as shown below,
where  gives
exactly the primes. 

(Compare the discussion of universality in integer equations
on page 786.)

â Multiway systems. It is straightforward to emulate a -color
multiway system with a 2-color one, just by encoding
successive colors by strings like ,  and

 that have no overlaps. (Compare page 1033.)

The Rule 110 Cellular Automaton

â History. The fact that 1D cellular automata can be universal
was discussed by Alvy Ray Smith in 1970—who set up an 18-
color nearest-neighbor cellular automaton rule capable of
emulating Marvin Minsky’s 7-state 4-color universal Turing
machine (see page 706). (Roger Banks also mentioned in 1970

a 17-color cellular automaton that he believed was universal.)
But without any particular reason to think it would be
interesting, almost nothing was done on finding simpler
universal 1D cellular automata. In 1984 I suggested that
cellular automata showing what I called class 4 behavior
should be universal—and I identified some simple rules
(such as ,  totalistic code 20) as explicit candidates.
A piece published in Scientific American in 1985 describing
my interest in finding simple 1D universal cellular automata
led me to receive a large number of proofs of the fact (already
well known to me) that 1D cellular automata can in principle
emulate Turing machines. In 1989 Kristian Lindgren and
Mats Nordahl constructed a 7-color nearest-neighbor cellular
automaton that could emulate Minsky’s 7,4 universal Turing
machine, and showed that in general a rule with 
colors could emulate an -state -color Turing machine
(compare page 658). Following my ideas about class 4
cellular automata I had come by 1985 to suspect that rule 110
must be universal. And when I started working on the
writing of this book in 1991, I decided to try to establish this
for certain. The general outline of what had to be done was
fairly clear—but there were an immense number of details to
be handled, and I asked a young assistant of mine named
Matthew Cook to investigate them. His initial results were
encouraging, but after a few months he became increasingly
convinced that rule 110 would never in fact be proved
universal. I insisted, however, that he keep on trying, and
over the next several years he developed a systematic
computer-aided design system for working with structures in
rule 110. Using this he was then in 1994 successfully able to
find the main elements of the proof. Many details were filled
in over the next year, some mistakes were corrected in 1998,
and the specific version in the note below was constructed in
2001. Like most proofs of universality, the final proof he
found is conceptually quite straightforward, but is filled with
many excruciatingly elaborate details. And among these
details it is certainly possible that a few errors still remain.
But if so, I believe that they can be overcome by the same
general methods that have been used in the proof so far.
Quite probably a somewhat simpler proof can be given, but
as discussed on page 722 it is essentially inevitable that
proofs of universality must be at least somewhat
complicated. In the future it should be possible to give a
proof in a form that can be checked completely by computer.
(The initial conditions in the note below quite soon become
too large to run explicitly on any existing computer.) And in
addition, with sufficient effort, I believe one should be able to
construct an automated system that will allow many
universality proofs of this general kind to be found almost
entirely by computer (compare page 810). 

{2, {0 " ( 3 # /2 &), 1 " ( 3 (# + 1)/2 &)}}
n regs

n+ Table[Prime[ i]^reg0i1, {i, nr}] p - 1 p = Length[prog]

ASEvolveList[{n_, rules_}, init_, t_] :=
NestList[(Mod[#, n] /. rules)[#] &, init, t]

m

{Mod[m, p] + 1, Map[Last, FactorInteger[
Product[Prime[ i], {i, nr}]Quotient[m, p]]] - 1}

FSEvolveList[fracs_, init_, t_] :=
NestList[First[Select[fracs #, IntegerQ, 1]] &, init, t]

fracs = {17 /91, 78 /85, 19/51, 23/38, 29/33, 77 /29, 95/
23, 77 /19, 1/17, 11/13, 13/11, 15/14, 15/2, 55/1}

2 Log[2, list]
Rest[Log[2, Select[ list, IntegerQ[Log[2, #]] &]]]

0

20

40

0 200 400 600 800 1000

k

"AAABBB" "AAABAB"
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k = 2 r = 2

s + k + 2
s k
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â Page 683 · Initial conditions. The following takes the rules
for a cyclic tag system in the form used on page 895 (with the
restrictions in the note below), together with the initial
conditions for the tag system, and yields a specification of
initial conditions in rule 110 which will emulate it. This
specification gives a list of three blocks  and the
final initial conditions consist of an infinite repetition of 
blocks, followed by , followed by an infinite repetition of

 blocks. The  blocks act like “clock pulses”,  encodes
the initial conditions for the tag system and the  blocks
encode the rules for the tag system.

 yields blocks of lengths .
But even 
already yields blocks of lengths . The
picture below shows what happens if one chops these blocks
into rows and arranges these in 2D arrays. In the first two
blocks, much of what one sees is just padding to prevent clock
pulses on the left from hitting data in the middle too early on
any given step. The part of the middle block that actually
encodes an initial condition grows like . The
core of the right-hand block grows approximately like

, but to make a
block that can just be repeated without shifts, between 1 and
30 repeats of this core can be needed.

â Page 689 · Tag systems. The discussion in the main text and
the construction above require a cyclic tag system with
blocks that are a multiple of 6 long, and in which at least
one block is added at some point in each complete cycle. By
inserting  in the definition of

 from page 1113 one can construct a cyclic tag
system of this kind to emulate any one-element-dependence
tag system.

Class 4 Behavior and Universality

â 2-neighbor rules. Among 3-color 2-neighbor rules class 4
behavior seems to be comparatively rare; the picture at the top
of the facing page shows an example with rule number 2144.
 
 
 
 
 

{b1, b2, b3}

b1

b2

b3 b1 b2

b3

CTToR110[rules_ /;
Select[rules, Mod[Length[#], 6] 9 0 &] 2 {}, init_] :=

Module[{g1, g2, g3, nr = 0, x1, y1, sp}, g1 = Flatten[
Map[If[# === {}, {{{2}}}, {{{1, 3, 5 - First[#]}}, Table[

{4, 5 - #0n1}, {n, 2, Length[#]}]}] &, rules] /. a_Integer "
Map[{d[#011, #021], s[#031]} &, Partition[c[a], 3]], 4];

g2 = g1 = MapThread[If[#1 === #2 === {d[22, 11], s3}, {d[
20, 8], s3}, #1] &, {g1, RotateRight[g1, 6]}]; While[Mod[

Apply[Plus, Map[#01, 21 &, g2]], 30] 9 0, nr ++; g2 = Join[
g2, g1]]; y1 = g201, 1, 21 - 11; If[y1 < 0, y1 += 30]; Cases[

Last[g2]021, s[d[x_, y1], _, _, a_] " ( x1 = x + Length[a])];
g3 = Fold[sadd, {d[x1, y1], {}}, g2]; sp = Ceiling[5 Length[

g3021] / ( 28 nr) + 2]; {Join[Fold[sadd, {d[17, 1], {}},
Flatten[Table[{{d[sp 28 + 6, 1], s[5]}, {d[398, 1], s[5]},
{d[342, 1], s[5]}, {d[370, 1], s[5]}}, {3}], 1]]021, bg[

4, 11]], Flatten[Join[Table[bgi, {sp 2 + 1+ 24 Length[ init]}],
init /. {0 ! init0, 1 ! init1}, bg[1, 9], bg[6, 60 - g201, 1, 11+
g301, 11+ If[g201, 1, 21 < g301, 21, 8, 0]]]], g3021}]

s[1] = struct[ {3, 0, 1, 10, 4, 8}, 2];

s[2] = struct[{3, 0, 1, 1, 619, 15}, 2];

s[3] = struct[{3, 0, 1, 10, 4956, 18}, 2];

s[4] = struct[{0, 0, 9, 10, 4, 8}];

s[5] = struct[{5, 0, 9, 14, 1, 1}];

{c[1], c[2]} = Map[Join[{22, 11, 3, 39, 3, 1}, #] &,
{{63, 12, 2, 48, 5, 4, 29, 26, 4, 43, 26, 4, 23, 3, 4, 47, 4, 4},
{87, 6, 2, 32, 2, 4, 13, 23, 4, 27, 16, 4}}];

{c[3], c[4], c[5]} = Map[Join[#, {4, 17, 22, 4,
39, 27, 4, 47, 4, 4}] &, {{17, 22, 4, 23, 24, 4, 31, 29},
{17, 22, 4, 47, 18, 4, 15, 19}, {41, 16, 4, 47, 18, 4, 15, 19}}]

{init0, init1} = Map[IntegerDigits[216 (# + 432 1049), 2] &,
{246005560154658471735510051750569922628065067661,
1043746165489466852897089830441756550889834709645}]

bgi = IntegerDigits[9976, 2]

bg[s_, n_] := Array[bgi01+Mod[# - 1, 14]1 &, n, s]

ev[s[d[x_, y_], pl_, pr_, b_]] := Module[{r, pl1, pr1}, r =
Sign[BitAnd[2^ListConvolve[{1, 2, 4}, Join[bg[pl - 2, 2], b,

bg[pr, 2]]], 110]]; pl1 = (Position[r - bg[pl + 3, Length[r]],
1 Ï -1] /. {} ! {{Length[r]}})01, 11; pr1 = Max[pl1,

(Position[r - bg[pr + 5 - Length[r], Length[r]], 1 Ï -1] /. {} !
{{1}})0-1, 11]; s[d[x + pl1 - 2, y + 1], pl1+Mod[pl + 2, 14],

1+Mod[pr + 4, 14] + pr1 - Length[r], Take[r, {pl1, pr1}]]]

struct[{x_, y_, pl_, pr_, b_, bl_}, p_Integer : 1] := Module[
{gr = s[d[x, y], pl, pr, IntegerDigits[b, 2, bl]], p2 = p + 1},
Drop[NestWhile[Append[#, ev[Last[#]]] &, {gr},
If[Rest[Last[#]] === Rest[gr], p2--]; p2 > 0 &], -1]]

sadd[{d[x_, y_], b_}, {d[dx_, dy_], st_}] :=
Module[{x1 = dx - x, y1 = dy - y, b2, x2, y2}, While[y1 > 0,
{x1, y1} += If[Length[st] 2 30, {8, -30}, {-2, -3}]];

b2 = First[Cases[st, s[d[x3_, -y1], pl_, _, sb_] "
Join[bg[pl - x1 - x3, x1 + x3], x2 = x3 + Length[sb];
y2 = -y1; sb]]]; {d[x2, y2], Join[b, b2]}]

CTToR110[{{}}, {1}] {7204, 1873, 7088}

CTToR110[{{0, 0, 0, 0, 0, 0}, {}, {1, 1, 1, 1, 1, 1}, {}}, {1}]
{105736, 34717, 95404}

180 Length[ init]

500 (Length[Flatten[rules]] + Length[rules])

k = 6 Ceiling[Length[subs] /6]
TS1ToCT
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â Totalistic rules. It is straightforward to show that totalistic
cellular automata can be universal. Explicit simple
candidates include ,  rules with codes 20 and 52, as
well as the various ,  class 4 rules shown in
Chapter 3. 

â Page 693 · 2D cellular automata. Universality was essentially
built in explicitly to the underlying rules for the 2D cellular
automaton constructed by John von Neumann in 1952 as a
model for self-reproduction. For among the 29 possible states
allowed for each cell were ones set up to behave quite
directly like components for practical electronic computers
like the EDVAC—as well as to grow new memory areas and
so on. In the mid-1960s Edgar Codd showed that a system
similar to von Neumann’s could be constructed with only 8
possible states for each cell. Then in 1970 Roger Banks
managed to show that the 2-state 5-neighbor symmetric 2D
rule 4005091440 was able to reproduce all the same logical
elements. (This system, like rule 110, requires an infinite
repetitive background in order to support universality.)
Following the invention of the Game of Life, considerable
work was done in the early 1970s to identify structures that
could be used to make the analog of logic circuits. John
Conway worked on an explicit proof of universality based on
emulating register machines, but this was apparently never
completed. Yet by the 1980s it had come to be generally
believed that the Game of Life had in fact been proved
universal. No particularly rigorous treatments of the system
were given, and the mere existence of configurations that can
act for example like logic gates was often assumed
immediately to imply universality. From the discoveries I
have made, I have no doubt at all that the Game of Life is in
the end universal, and indeed I believe that the kind of
elaborate behavior needed to support various components is
in fact good evidence for this. But the fact remains that a
complete and rigorous proof of universality has apparently
still never been given for the Game of Life. Particularly in
recent years elaborate constructions have been made of for
example Turing machines. But so far they have always had

only a fixed number of elements on their tape, which is not
sufficient for universality. Extending constructions is often
very tricky; much as in rule 110 it is easy for there to be subtle
bugs associated with rare mismatches in the placement of
structures and timing of interactions. The pictures below
nevertheless show a rather simple implementation of a NAND

gate in Life. The input comes from the left encoded as the
presence or absence of spaceships 92 cells apart. The
spaceships are converted to gliders. When only one glider is
present, a new spaceship emerges on the right as the output.
But when two gliders are present, their collision forms a wall,
which prevents output of the spaceship.

If one considers rules with more than two colors, it becomes
straightforward to emulate standard logic circuits. The
pictures below show how 1D cellular automata can be
implemented in the 4-color WireWorld cellular automaton of
Brian Silverman from 1987, whose rules find the new value of
a cell from its old value  and the number  of its 8 neighbors
that are 1’s according to

k = 2 r = 2
k = 3 r = 1

a u

a /. {0 ! 0, 1 ! 2, 2 ! 3, 3 " If[0 < u < 3, 1, 3]}

rule 30

rule 90 rule 110
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The Threshold of Universality in Cellular Automata

â Claims of non-universality. Over the years, there have been
a few erroneous claims of proofs that universality is
impossible in particular kinds of simple cellular automata.
The basic mistake is usually to make the implicit assumption
that computation must be done in some rather specific way—
that does not happen to be consistent with the way we have
for example seen that it can be done in rule 110. 

â Page 700 · Rule 73.  on a white background yields a
pattern that contains the last structure shown here.

â Page 700 · Rule 30. For the first background shown, no initial
region up to size 25 yields a truly localized structure, though
for example  starts off growing quite slowly.

â Rule 41. Various rules like rule 41 below can perhaps be
viewed as having localized structures—though ones that
apparently always travel in the same direction at the same
speed. None of the first million initial conditions for rule 41
yield unbounded growth, though some can still generate
fairly wide patterns, as in the pictures below. (The initial
condition consisting  repeated, followed by ,
followed by  repeated nevertheless yields a region
that grows forever.)

â Page 702 · Rule emulations. The network below shows
which quiescent symmetric elementary rules can emulate
which with blocks of length 8 or less. (Compare page 269.)

In all cases things are set up so that several steps in one rule
emulate a single step in another. The examples shown in
detail in the main text all have the feature that the block size

 and number of steps  are matched, so that  (where

the range  for elementary rules). It is also possible to set
up emulations where this equality does not hold—and
indeed some of the cases listed in the main text and shown in
the picture above are of this type. In those where  there
are more cells that are in principle determined by a given set
of initial blocks—but the outermost of these cells are ignored
when the outcome for a particular cell is deduced. In cases
where  there are more initial cells whose values are
specified—but the outermost of these turn out to be
irrelevant in determining the outcome for a particular cell.
This lack of dependence makes it somewhat inevitable that
the only rules that end up being emulated in this way are
ones with very simple behavior. 

In any 1D cellular automaton the color of a particular cell can
always be determined from the colors  steps back of a block
of  cells (compare pages 605 and 960). But such a block
corresponds in a sense to a horizontal slice through the cone
of previous cell colors. And it turns out also to be possible to
determine the color of a particular cell from slices at
essentially any rational angle corresponding to a propagation
speed less than . So this means that one can consider
encodings based on blocks that have a kind of staircase
shape—as in the rule 45 example shown.

â Encodings. Generalizing the setup in the main text one can say
that a cellular automaton  can emulate  if there is some
encoding function  that encodes the initial conditions  for 
as initial conditions for , and which has an inverse that decodes
the outcome for  to give the outcome for . With evolution
functions  and  the requirement for the emulation to work is

In the main text the encoding function is taken to have the form
—where  are say —

with the result that the decoding function for emulations that
work is . 

An immediate generalization is to allow  to have a form
like  in which several blocks
are in effect allowed to serve as possible encodings for a
single cell value. Another generalization is to allow blocks at
a variety of angles (see above). In most cases, however,
introducing these kinds of slightly more complicated
encodings does not fundamentally seem to expand the set of
rules that a given rule can emulate. But often it does allow the
emulations to work with smaller blocks. And so, for example,
with the setup shown in the main text, rule 54 can emulate
rule 0 only with blocks of length . But if either multiple
blocks or  are allowed,  can be reduced to 4, with 
being  and

 in the two cases.

1 73 1097 7407

150

20072
36

232
132104

4

18

126
122

164

32
160

54
50

178

108
76

204

22

94

146

90

0

128

b t r t = b

r = 1

r t < b

r t > b

t
2 r t + 1

r

i j
f aj j

i
i j

fi fj

fj [aj ] 2 InverseFunction[f][fi[f[aj ]]]

Flatten[a /. rules] rules {1 ! {1, 1}, 0 ! {0, 0}}

Partition[a" , b] /. Map[Reverse, rules]

rules
{1 ! {1, 1}, 1 ! {1, 0}, 0 ! {0, 0}}

b = 6
d = 1 b rules
{1 ! {1, 1, 1, 1}, 0 ! {0, 0, 0, 0}, 0 ! {0, 1, 1, 1}}

{0 ! {0, 1, 0, 0}, 1 ! {0, 0, 1, 0}}
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Various questions about encoding functions  have been
studied over the past several decades in coding theory. The
block-based encodings discussed so far here correspond to
block codes. Convolutional codes (related to sequential
cellular automata) are the other major class of codes studied
in coding theory, but in their usual form these do not seem
especially useful for our present purposes.

In the most general case the encoding function can involve an
arbitrary terminating computation (see page 1126). But types of
encoding functions that are at least somewhat powerful yet can
realistically be sampled systematically may perhaps include
those based on neighbor-dependent substitution systems, and
on formal languages (finite automata and generalizations). 

â Logic operations and universality. Knowing that the circuits
in practical computers use only a small set of basic logic
operations—often just —it is sometimes assumed that if
a particular system could be shown to emulate logic
operations like , then this would immediately establish
its universality. But at least on the face of it, this is not correct.
For somehow there also has to be a way to store arbitrarily
large amounts of data—and to apply suitable combinations
of  operations to it. Yet while practical computers have
elaborate circuits containing huge numbers of 
operations, we now know that for example simple cellular
automata that can be implemented with just a few 
operations (see page 619) are enough. And from what I have
discovered in this book, it may well be that in fact most
systems capable of supporting even a single  operation
will actually turn out to be universal. But the point is that in
any particular case this will not normally be an easy matter to
demonstrate. (Compare page 807.) 

Universality in Turing Machines and Other Systems

â Page 706 ·  Minsky’s Turing machine. The universal Turing
machine shown was constructed by Marvin Minsky in 1962.
If the rules for a one-element-dependence tag system are
given in the form  (compare page 1114),
the initial conditions for the Turing machine are

surrounded by ’s, with the head on the leftmost , in state
. An element  in the tag system corresponds to halting of

the Turing machine. The different cases in the rules for the
tag system are laid out on the left in the Turing machine. Each
step of tag system evolution is implemented by having the

head of the Turing machine scan as far to the left as it needs
to get to the case of the tag system rule that applies—then
copy the appropriate elements to the end of the sequence on
the right. Note that although the Turing machine can emulate
any number of colors in the tag system, it can only emulate
directly rules that delete exactly 2 elements at each step. But
since we know that at least with sufficiently many colors
such tag systems are universal, it follows that the Turing
machine is also universal.

â History. Alan Turing gave the first construction for a
universal Turing machine in 1936. His construction was
complicated and had several bugs. Claude Shannon showed
in 1956 that 2 colors were sufficient so long as enough states
were used. (See page 669; conversion of Minsky’s machine
using this method yields a  machine.) After Minsky’s
1962 result, comparatively little more was published about
small universal Turing machines. In the 1980s and 1990s,
however, Yurii Rogozhin found examples of universal Turing
machines for which the number of states and number of
colors were: , , , , , , and

. The smallest product of these numbers is 24
(compare note below), and the rule he gave in this case is:

Note that these results concern Turing machines which can
halt (see page 1137); the Turing machines that I consider do
not typically have this feature. 

â Page 707 ·  Rule 110 Turing machines. Given an initial
condition for rule 110, the initial condition for the Turing
machine shown here is obtained as  with ’s
on the left and ’s on the right. The Turing machine

with  states and  possible colors also emulates rule
110 when started from  surrounded by ’s.
The ,  Turing machine

started from  with ’s on the left and ’s on
the right generates a shifted version of rule 110. Note that this
Turing machine requires only 8 out of the 12 possible cases in
its rules to be specified.

â Rule 60 Turing machines. One can emulate rule 60 using
the 8-case ,  Turing machine (with initial condition

 surrounded by ’s)

f

Nand

Nand

Nand
Nand

Nand

Nand

{2, {{0, 1}, {0, 1, 1}}}

TagToMTM[{2, rule_}, init_] :=
With[{b = FoldList[Plus, 1, Map[Length, rule] + 1]},
Drop[Flatten[{Reverse[Flatten[{1, Map[{Map[

{1, 0, Table[0, {b0# + 11}]} &, #], 1} &, rule], 1}]],
0, 0, Map[{Table[2, {b0# + 11}], 3} &, init]}], -1]]

0 2
1 -1

{43, 2}

{24, 2} {10, 3} {7, 4} {5, 5} {4, 6} {3, 10}
{2, 18}

Prepend[4 list, 0] 1
0

{{1, 2} ! {2, 2, -1}, {1, 1} ! {1, 1, -1}, {1, 0} ! {3, 1, 1},
{2, 2} ! {4, 0, -1}, {2, 1} ! {1, 2, -1}, {2, 0} ! {2, 1, -1},
{3, 2} ! {3, 2, 1}, {3, 1} ! {3, 1, 1}, {3, 0} ! {1, 0, -1},
{4, 2} ! {2, 2, 1}, {4, 1} ! {4, 1, 1}, {4, 0} ! {2, 2, -1}}

s = 4 k = 3
Prepend[ list + 1, 1] 0

s = 3 k = 4
{{1, 0} ! {1, 2, 1}, {1, 1} ! {2, 3, 1},
{1, 2} ! {1, 0, -1}, {1, 3} ! {1, 1, -1}, {2, 0} ! {1, 3, 1},
{2, 1} ! {3, 3, 1}, {3, 0} ! {1, 3, 1}, {3, 1} ! {3, 2, 1}}

Append[ list, 0] 0 2

s = 3 k = 3
Append[ list + 1, 1] 0

{{1, 2} ! {2, 2, 1}, {1, 1} ! {1, 1, 1},
{1, 0} ! {3, 1, -1}, {2, 2} ! {2, 1, 1}, {2, 1} ! {1, 2, 1},
{3, 2} ! {3, 2, -1}, {3, 1} ! {3, 1, -1}, {3, 0} ! {1, 0, 1}}
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or by using the 6-case ,  Turing machine (with
initial condition  with ’s on the left and ’s
on the right)

This second Turing machine is directly analogous to the one
for rule 110 on page 707. Random searches suggest that
among ,  Turing machines roughly one in 25 million
reproduce rule 60 in the same way as the machines discussed
here. (See also page 665.) 

â Turing machine enumeration. Of the 4096 ,  Turing
machines (see page 888) 560 are distinct after taking account
of obvious symmetries and equivalences. Ignoring machines
which cannot escape from one of their possible states or
which yield motion in only one direction or cells of only one
color leaves a total of 237 cases. If one now ignores machines
that do not allow the head to move more than one step in one
of the two directions, that always yield the same color when
moving in a particular direction, or that always leave the tape
unchanged, one is finally left with just 25 distinct cases.

Of the 2,985,984 ,  machines, 125,294 survive after
taking account of obvious symmetries and equivalences,
while imposing analogs of the other conditions above yields
in the end 16,400 distinct cases. For ,  machines, the
first two numbers are the same, but the final number of
distinct cases is 48,505.

â States versus colors. The total number of possible Turing
machines depends on the product . The number of distinct
machines that need to be considered increases as  increases
for given  (see note above).  or  always yield
trivial behavior. The fraction of machines that show non-
repetitive behavior seems to increase roughly like

 (see page 888). More complex behavior—and
presumably also universality—seems however to occur
slightly more often with larger  than with larger . 

â s=2, k=2 Turing machines. As illustrated on page 761, even
extremely simple Turing machines can have behavior that
depends in a somewhat complicated way on initial
conditions. Thus, for example, with the rule

the head moves to the right whenever the initial condition
consists of odd-length blocks of 1’s separated by single 0’s;
otherwise it stays in a fixed region.

â Page 709 · Machine 596440. For any list of initial colors ,
it turns out that successive rows in the first  steps of the
compressed evolution pattern turn out to be given by
 

 
 

Inside the right-hand part of this pattern the cell values can
then be obtained from an upside-down version of the rule 60
additive cellular automaton, and starting from a sequence of

’s the picture below shows that a typical rule 60 nested
pattern can be produced, at least in a limited region. 

The presence of glitches on the right-hand edge of the whole
pattern means, however, that overall there is nothing as
simple as nested behavior—making it conceivable that
(possibly with analogies to tag systems) behavior complex
enough to support universality can occur. The plot below
shows the distances between successive outward glitches on
the right-hand side; considerable complexity is evident. 

â Page 710 · s=3, k=2 Turing machines. Compare page 763 and
particularly the discussion of machine 600720 on page 1145. 

â Tag systems. Marvin Minsky showed in 1961 that one-
element-dependence tag systems (see page 670) can be
universal. Hao Wang in 1963 constructed an example that
deletes just 2 elements at each step and adds at most 3
elements—but has a large number of colors. I suspect that
universal examples with blocks of the same size exist with
just 3 colors.

â Encoding sequences by integers. In many constructions it is
useful to be able to encode a list of integers of any length by a
single integer. (See e.g. page 1127.) One way to do this is by using
the Gödel number .
An alternative is to use the Chinese Remainder Theorem. Given

 or any list
of integers that are all relatively prime and above  (the
integers in  are assumed positive)

yields a number  such that . Based on this 

s = 2 k = 4
Append[3 list, 0] 0 1

{{1, 3} ! {2, 2, 1}, {1, 2} ! {1, 3, -1}, {1, 1} ! {1, 0, -1},
{1, 0} ! {1, 1, 1}, {2, 3} ! {2, 1, 1}, {2, 0} ! {1, 2, 1}}

s = 3 k = 3

s = 2 k = 2

s = 3 k = 2

s = 2 k = 3

s k
k

s k s = 1 k = 1

(s - 1) ( k - 1)

k s

{{1, 0} ! {1, 1, -1}, {1, 1} ! {2, 1, 1},
{2, 0} ! {1, 0, -1}, {2, 1} ! {1, 0, 1}}

init
t

NestList[Join[{0}, Mod[1+Rest[FoldList[Plus, 0, #]], 2],
{{0}, {1, 1, 0}}0Mod[Apply[Plus, #], 2] + 11] &, init, t]

1

0
5

10
15
20
25

50 100 150 200 250 300 350

Product[Prime[ i]^ list0i1, {i, Length[ list]}]

p = Array[Prime, Length[ list], PrimePi[Max[ list]] + 1]
Max[ list]

list

CRT[ list_, p_] :=
With[{m = Apply[Times, p]}, Mod[Apply[Plus,

MapThread[#1 (m/#2)^EulerPhi[#2] &, {list, p}]], m]]

x Mod[x, p] 2 list

LE[ list_] := Module[{n = Length[ list], i = Max[MapIndexed[
#1 - #2 &, PrimePi[ list]]] + 1}, CRT[PadRight[

list, n+ i], Join[Array[Prime[ i +#] &, n], Array[Prime, i]]]]
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will yield a number  that can be decoded into a list of length
 using essentially the so-called Gödel  function

â Register machines. The results of page 100 suggest that with
2 registers and up to 8 instructions no universal register
machines (URMs) exist. Using the method of page 672 one
can construct a URM with 3 registers and 175 instructions (or
2 registers and 4694 instructions) that emulates the universal
Turing machine on page 706. Using work by Ivan Korec from
the 1980s and 1990s one can also construct URMs which
directly emulate other register machines. An example with 8
registers and 41 instructions is:

or

Given any register machine, one first applies the function
 from page 1114, then takes the resulting program

and initial condition and finds an initial condition for the
URM using

For the first example on page 98 this gives
. The process of emulation is quite

slow, with each emulated step in this example taking about
20 million URM steps. 

â Recursive functions. The general recursive functions from
page 907 provided an early example of universality (see page
907). That such functions are universal can be demonstrated
by showing for example that they can emulate any tag
system. With the state of a 2-color tag system encoded as an
integer according to  the
following takes the rule for any such tag system (in the first
form from page 894) and yields a primitive recursive function
that emulates a single step in its evolution:

 
 

(For tag system (a) from page 94 this yields a primitive
recursive function of size 325.) The result of  steps of
evolution is in general given in terms of this function  by

, or equivalently . Any fixed
number of steps of evolution can thus be emulated by
applying a primitive recursive function. But if one wants to
find out what happens after an arbitrarily large number of
steps, one needs to use the  operator, yielding a general
recursive function. (So for example  returns
the smallest  for which the tag system reaches state —and
never returns if the tag system does not halt.) Note that the
same basic approach can be used to emulate Turing machines
with recursive functions; the Turing machine configuration

 can be encoded by a integer such as

â Lambda calculus. Formulations of recursive function theory
from the 1920s and before tended to be based on making explicit
definitions like those in the note above. But in the so-called
lambda calculus of Alonzo Church from around 1930 what were
instead used were pure functions such as 
and —of
just the kind now familiar from Mathematica. Note that the
explicit names of (“bound”) variables in such pure functions are
never significant—which is why in Mathematica one can for
example use . (See page 907.) 

The definitions in the note above involve both symbolic
functions and literal integers. In the so-called pure lambda
calculus integers are represented by symbolic expressions.
The typical way this is done is to say that a function 
corresponds to an integer  if  yields 
(see note below).

â Page 711 · Combinators. After it became widely known in
the 1910s that  could be used to build up any expression
in basic logic (see page 1173) Moses Schönfinkel introduced
combinators in 1920 with the idea of providing an analogous
way to build up functions—and to remove any mention of
variables—particularly in predicate logic (see page 898).
Given the combinator rules

the setup was that any function  would be written as some
combination of  and —which Schönfinkel referred to
respectively as “fusion” and “constancy”—and then the
result of applying the function to an argument  would be

x
n Β

Mod[x, Prime[Rest[NestList[NestWhile[# + 1 &,
# + 1, Mod[x, Prime[#]] 2 0 &] &, 0, n]]]]

{d[4, 40], i[5], d[3, 9], i[3], d[7, 4], d[5, 14], i[6],
d[3, 3], i[7], d[6, 2], i[6], d[5, 11], d[6, 3], d[4, 35],
d[6, 15], i[4], d[8, 16], d[5, 21], i[1], d[3, 1], d[5, 25],
i[2], d[3, 1], i[6], d[5, 32], d[1, 28], d[3, 1], d[4, 28],
i[4], d[6, 29], d[3, 1], d[5, 24], d[2, 28], d[3, 1],
i[8], i[6], d[5, 36], i[6], d[3, 3], d[6, 40], d[4, 3]}

RMToRM2

R2ToURM[prog_, init_] := Join[ init, With[
{n = Length[prog]}, {1+ LE[Reverse[prog] /. {i[x_] ! x,

d[x_, y_] ! 4+ 2 n+ x - 2 y}], n+ 1, 0, 0, 0, 0}]]

{0, 0, 211680, 3, 0, 0, 0, 0}

FromDigits[Reverse[ list] + 1, 3]

TSToPR[{n_, rule_}] := Fold[Apply[c, Flatten[{#1, Array[p, #
2], c[r[z, c[r[p[1], s], c[r[z, p[2]], c[r[z, r[c[s, z], c[r[c[s,
c[s, z]], z], p[2]]]], p[2]]], p[1]]], p[#2]]}]] &, c[c[r[p[1],
s], p[1], c[r[p[1], r[z, c[s, c[s, s]]]], c[c[r[z, c[r[p[1], s],
c[r[z, c[s, z]], c[r[p[1], r[z, c[r[p[1], s], c[r[z, p[2]], c[
r[z, r[c[s, z], c[r[c[s, c[s, z]], z], p[2]]]], p[2]]], p[1]]]],
p[2], p[3]]], p[1]]], p[1], p[1]], p[1]], p[2]]], p[n+ 1],

MapIndexed[c[r[z, c[r[p[1], p[4]], p[2], p[3], p[4]]], c[r[z,
r[c[s, z], c[r[c[s, c[s, z]], z], p[2]]]], p[Length[#2] + 1]], #
1011, #1021] &, Nest[Partition[#, 2] &, Table[Nest[c[s, #] &
z, FromDigits[Reverse[IntegerDigits[ i, 2, n] /. rule] + 1, 3]],
{i, 0, 2�n - 1}], n - 1], {0, n - 1}]], Range[n, 1, -1]]

t
f

Nest[f , init, t] r[p[1], f][t, init]

Μ
m[r[p[1], f]][ init]

t {}

{s, list, n}
2^FromDigits[Reverse[Take[ list, n - 1]]]

3^FromDigits[Take[ list, {n+ 1, -1}]] 5^ list0n17s

s = Function[x, x + 1]
plus = Function[{x, y}, If[x 2 0, y, s[plus[x - 1, y]]]]

s = # + 1 &

fn

n fn[a][b] Nest[a, b, n]

Nand

crules = {�[x_][y_][z_] ! x[z][y[z]], �[x_][y_] ! x}

f
� �

x
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given by . (Multiple arguments were handled
for example as  in what became known as
“currying”.) A very simple example of a combinator is

, which corresponds to the identity function, since
 yields  for any . (In general any combinator

of the form  will also work.) Another example of a
combinator is , for which 
yields . 

With the development of lambda calculus in the early 1930s it
became clear that given any expression  such as

 with a list of variables  such as  one can
always find a combinator equivalent to a lambda function
such as , and
it turns out that this can be done simply using

So this shows that any lambda function can in effect be written
in terms of combinators, without anything analogous to
variables ever explicitly having to be introduced. And based
on the result that lambda functions can represent recursive
functions, which can in turn represent Turing machines (see
note above), it has been known since the mid-1930s that
combinators are universal. The rule 110 combinator on page
713 provides however a much more direct proof of this. 

The usual approach to working with combinators involves
building up arithmetic constructs from them. This typically
begins by using so-called Church numerals (based on work
by Alonzo Church on lambda calculus), and defining a
combinator  to correspond to an integer  if

 yields . (The  on page 103
can thus be considered a Church numeral for 2 since

 is .) This can be achieved by taking  to be
 where

With this setup one then finds

(Note that  is , and that by analogy
 corresponds to ,  to ,  to ,

and so on.) 

Another approach involves representing integers directly as
combinator expressions. As an example, one can take  to be

represented just by . And one can then convert
any Church numeral  to this representation by applying

. To go the other way, one uses the
result that for all Church numerals  and ,

 is also a Church numeral—as can be seen
recursively by noting its equality to ,
where as above  is . And from this it follows
that  can be converted to the Church numeral for

 by applying 

Using this one can find from the corresponding results for
Church numerals combinator expressions for , 
and —with sizes 377, 378 and 382 respectively. It
seems certain that vastly simpler combinator expressions
will also work, but searches indicate that if  has size less
than 4,  must have size at least 8. (Searches based on
other representations for integers have also not yielded
much. With  represented by , however,

 serves as a decrement function, and with 
represented by , 
serves as a doubling function.

â Page 712 · Combinator properties. The size of a combinator
expression is conveniently measured by its . If the
evolution of a combinator expression reaches a fixed point,
then the expression generated is always the same (Church-
Rosser property). But the behavior in the course of the
evolution can depend on how the combinator rules are
applied; here  is used at each step, as in the
symbolic systems of page 896. The total number of
combinator expressions of successively greater sizes is

 (or in general
; see page 897). Of these,

 are themselves fixed
points. Of combinator expressions up to size 6 all evolve to
fixed points, in at most  steps respectively
(compare case (a)); the largest fixed points have sizes

 (compare case (b)). At size 7, all but 2 of the
16,896 possible combinator expressions evolve to fixed
points, in at most 12 steps (case (c)). The largest fixed point
has size 41 (case (d)).  (case (e)) and

 lead to expressions that grow like .
The maximum number of levels in these expressions (see

f [x] //. crules
f [x][y][z]

id = �[�][�]

id[x] //. crules x x
�[�][_]

b = �[�[�]][�] b[x][y][z] //. crules
x[y[z]]

expr
x[y[x][z]] vars {x, y, z}

Function[x, Function[y, Function[z, x[y[x][z]]]]]

ToC[expr_, vars_] := Fold[rm, expr, Reverse[vars]]

rm[v_, v_] = id

rm[f_[v_], v_] /; FreeQ[f , v] = f

rm[h_, v_] /; FreeQ[h, v] = �[h]

rm[f_[g_], v_] := �[rm[f , v]][rm[g, v]]

en n
en[a][b] //. crules Nest[a, b, n] −

−[a][b] a[a[b]] en

Nest[ inc, zero, n]

zero = �[�]

inc = �[�[�[�]][�]]

plus = �[�[�]][�[�[�[�[�]]]][�[�[�]]]]

times = �[�[�]][�]

power = �[�[�[�[�][�]]]][�]

power[x][y] //. crules y[x]
x[x[y]] y x2

x[y[x]] xx y x[y][x] xy x

n

Nest[�, �, n]
x

�[�[�[�][�]][�[�]]][�[�]]

x y
Nest[�, �, n][x][y]

Nest[�, �, n - 1][y][x[y]]
x[y] power[y][x]

Nest[�, �, n]
n

�[�[�[�[�[�][�]][�[�[�[�[�]][�]][�[�][�]]]]][
�[�[�[�[�]][�]][�[�[�[�]][�]][�[�][�]]]]]][�[�[�[�]][
�[�[�[�]][�[�[�[�[�[�[�[�[�[�][�]][�[�]]][�[�]]][�[�[�[
�[�]][�]][�[�][�]]]]][�[�[�[�[�]][�]][�[�[�[�]][�]][�[�][
�]]]]]][�[�[�[�[�[�][�]][�[�[�[�[�]][�[�[�[�[�][�]]]][�[
�[�]][�[�[�[�[�[�]][�]]]][�[�[�][�]][�[�]]]]]]][�[�[�]][�[
�[�][�]][�[�]]]]]]][�[�[�[�[�][�]][�[�[�]]]][�[�[�]]]]]][
�[�[�]]]]]]]][�[�[�]][�[�[�[�][�]][�[�[�[�[�]][�]][�[�][
�]]]]][�[�[�[�[�]][�]][�[�[�[�]][�]][�[�][�]]]]]]]]][
�[�[�[�]][�[�[�[�]][�]]]]]]][�[�[�][�]]]]][�[�[�]]]

plus times
power

inc
plus

n Nest[�, �[�][�], n]
�[�[�[�]][�]][�] n

Nest[�[�], �[�], n] �[�[�][�]][�[�[�[�]]]]

LeafCount

expr /. crules

{2, 4, 16, 80, 448, 2688, 16896, 109824, ?}

2n Binomial[2 n - 2, n - 1] /n
{2, 4, 12, 40, 144, 544, 2128, 8544, ?}

{1, 1, 2, 3, 4, 7}

{1, 2, 3, 4, 6, 10}

�[�[�]][�][�][�][�]

�[�][�][�[�]][�][�] 2t/2
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page 897) grows roughly linearly, although 
reaches 14 after 26 and 25 steps, then stays there. At size 8,
out of all 109,824 combinator expressions it appears that 49
show exponential growth, and many more show roughly
linear growth.  goes to a fixed point of
size 80.  (case (i)) increases rapidly to
size 7050 but then repeats with period 3.

 (case (j)) grows to a maximum size of
1263, but then after 98 steps evolves to a fixed point of size
17. For  (case (k)) the size at step  is
given by

Examples with similar behavior are ,
 and . Among

those with roughly exponential growth but seemingly
random fluctuations are ,

 and .

â Single combinators. As already noted by Moses Schönfinkel
in 1920, it is possible to set up combinator systems with just a
single combinator. In such cases, combinator expressions can
be viewed as binary trees without labels, equivalent to
balanced strings of parentheses (see page 989) or sequences
of 0’s and 1’s. One example of a single combinator system can
be found using , and has combinator
rules (whose order matters):

The smallest initial conditions in this case that lead to
unbounded growth are of size 14; two are versions of those
for ,  combinators above, while the third is

.

The forms  and  appear to be the simplest that can
be used for  and ;  and , for example, do not work.

â Page 714 ·  Cellular automaton combinators. With  and
 representing respectively cell values  and , a

combinator  for which  gives the new value of
a single cell in an elementary cellular automaton with rule
number  can be constructed as

where

The resulting combinator has size 61, but for specific rules
somewhat smaller combinators can be found—an example
for rule 90 is 
with size 16.

To emulate cellular automaton evolution one starts by
encoding a list of cell values by the single combinator

where 

One can recover the original list by using

In terms of the combinator  a single complete step of cellular
automaton evolution can be represented by

where there is padding with  on either side. With this setup
 steps of evolution are given simply by . With

an initial condition of  cells, this then takes roughly
 steps of combinator evolution. 

â Testing universality. One can tell that a symbolic system is
universal if one can find expressions that act like the  and 
combinators, so that, for example, for some expression ,

 evolves to x[z][y[z]]. 

â Criteria for universality. See page 1126. 

â Classes of systems. This chapter has shown that various
individual systems with fixed rules exhibit universality when
suitable initial conditions are chosen. One can also consider
whole classes of systems in which rules as well as initial
conditions can be chosen. And then one can say for example
that as a class of systems cellular automata are universal, but
neighbor-independent substitution systems are not.
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NOTES FOR CHAPTER 12

The Principle of Computational Equivalence

Basic Framework

â All is computation. The early history of science includes
many examples of attempts to treat all aspects of the universe
in a uniform way. Some were more successful than others.
“All is fire” was never definite enough to lead to much, but
“all is number” can be viewed as an antecedent to the whole
application of mathematics to science, and “all is atoms” to
the atomic theory of matter and quantum mechanics. My “all
is computation” will, I believe, form the basis for a fruitful
new direction in science. It should be pointed out, however,
that it is wrong to think that once one has described
everything as, say, computation, then there is nothing more
to do. Indeed, the phenomenon of computational
irreducibility discussed in this chapter specifically implies
that in many cases irreducible work has to be done in order to
find out how any particular system will behave.

Outline of the Principle

â Note for mathematicians. The way I discuss the Principle of
Computational Equivalence is in a sense opposite to what
would be typical in modern mathematics. For rather than
starting with very specific definitions and then expanding
from these, I start from general intuition and then use this to
come up with more specific results. In the years to come there
will no doubt be many attempts to formulate parts of the
Principle of Computational Equivalence in ways that are
closer to the traditions of modern mathematics. But at least at
first, I suspect that huge simplifications will be made, with
the result that all sorts of misleading conclusions will
probably be reached, perhaps in some cases even seemingly
contradicting the principle. 

â History. As I discuss elsewhere, aspects of the Principle of
Computational Equivalence have many antecedents. But the
complete principle is presented for the first time in this book, and
is the result of thinking I did in the late 1980s and early 1990s.

â Page 717 · Church’s Thesis. The idea that any computation
that can be done at all can be done by a universal system such
as a universal Turing machine is often referred to as Church’s
Thesis. Following the introduction of so-called primitive
recursive functions (see page 907) in the 1880s, there had by
the 1920s emerged the idea that perhaps any reasonable
function could be computed using the small set of operations
on which primitive recursive functions are based. This notion
was supported by the fact that certain modifications to these
operations were found to allow only the exact same set of
functions. But the discovery of the Ackermann function in
the late 1920s (see page 906) showed that there are reasonable
functions that are not primitive recursive. The proof of
Gödel’s Theorem in 1931 made use of so-called general
recursive functions (see page 1121) as a way to represent
possible functions in arithmetic. And in the early 1930s the
two basic idealizations used in foundational studies of
mathematical processes were then general recursive
functions and lambda calculus (see page 1121). By 1934 these
were known to be equivalent, and in 1935 Alonzo Church
suggested that either of them could be used to do any
mathematical calculation which could effectively be done. (It
had been noted that many specific kinds of calculations could
be done within such systems—and that processes like
diagonalization led to operations of a seemingly rather
different character.) In 1936 Alan Turing then introduced the
idea of Turing machines, and argued that any mathematical
process that could be carried out in practice, say by a person,
could be carried out by a Turing machine. Turing proved that
his machines were exactly equivalent in their computational
capabilities to lambda calculus. By the 1940s Emil Post had
shown that the string rewriting systems he had studied were
also equivalent, and as electronic computers began to be
developed it became quite firmly established that Turing
machines provided an appropriate idealization for what
computations could be done. From the 1940s to 1960s many
different types of systems—almost all mentioned at some
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point or another in this book—were shown to be equivalent
in their computational capabilities. (Starting in the 1970s, as
discussed on page 1143, emphasis shifted to studies not of
overall equivalence but instead equivalence with respect to
classes of transformations such as polynomial time.) 

When textbooks of computer science began to be written some
confusion developed about the character of Church’s Thesis:
was it something that could somehow be deduced, or was it
instead essentially just a definition of computability? Turing
and Post seem to have thought of Church’s Thesis as
characterizing the “mathematicizing power” of humans, and
Turing at least seems to have thought that it might not apply to
continuous processes in physics. Kurt Gödel privately
discussed the question of whether the universe could be
viewed as following Church’s Thesis and being “mechanical”.
And starting in the 1950s a few physicists, notably Richard
Feynman, asked about fundamental comparisons between
computational and physical processes. But it was not until the
1980s—perhaps particularly following some of my work—that
it began to be more widely realized that Church’s Thesis
should best be considered a statement about nature and about
the kinds of computations that can be done in our universe.
The validity of Church’s Thesis has long been taken more or
less for granted by computer scientists, but among physicists
there are still nagging doubts, mostly revolving around the
perfect continua assumed in space and quantum mechanics in
the traditional formalism of theoretical physics (see page 730).
Such doubts will in the end only be put to rest by the explicit
construction of a discrete fundamental theory along the lines I
discuss in Chapter 9. 

The Content of the Principle

â Page 719 · Character of principles. Examples of principles
that can be viewed in several ways include the Principle of
Entropy Increase (Second Law of Thermodynamics), the
Principle of Relativity, Newton’s Laws, the Uncertainty
Principle and the Principle of Natural Selection. The Principle
of Entropy Increase, for example, is partly a law of nature
relating to properties of heat, partly an abstract fact about
ensembles of dynamical systems, and partly a foundation for
the definition of entropy. In this case and in others, however,
the most important role of a principle is as a guide to
intuition and understanding.

â Page 720 · Oracles. Following his introduction of Turing
machines Alan Turing tried in 1937 to develop models that
would somehow allow the ultimate result of absolutely every
conceivable computation to be determined. And as a step
towards this, he introduced the idea of oracles which would

give results of computations that could not be found by any
Turing machine in any limited number of steps. He then
noted, for example, that if an oracle were set up that could
answer the question for a particular universal system of
whether that system would ever halt when given any specific
input, then with an appropriate transformation of input this
same oracle could also answer the question for any other
system that can be emulated by the universal system. But it
turns out that this is no longer true if one allows systems
which themselves can access the oracle in the course of their
evolution. Yet one can then imagine a higher-level oracle for
these systems, and indeed a whole hierarchy of levels of
oracles—as studied in the theory of degrees of unsolvability.
(Note that for example to answer the question of whether or
not a given Turing machine always halts can require a
second-order oracle, since it is a  question in the sense of
page 1139.)

â Initial conditions. Oracles are usually imagined as being
included in the internal rules for a system. But if there are an
infinite number of elements that can be specified in the initial
condition—as in a cellular automaton—then a table for an
oracle could also be given in the initial conditions. 

â Page 722 · Criteria for universality. To be universal a system
must in effect be able to emulate any feature of any system.
So at some level any feature can be thought of as a criterion
for universality. Some features—like the possibility of
information transmission—may be more obvious than
others, but despite occasional assertions to the contrary in the
scientific literature none is ever the whole story. Since any
given universal system must be able to emulate any other
universal system it follows that within any such system it
must in a sense be possible to find any known universal
system. But inevitably the encoding will sometimes be very
complicated. And in practice if there are many simple rules
that are universal they cannot all be related by simple
encodings. (See also the end of Chapter 11.)

â Page 722 · Encodings. One can prevent an encoding from
itself introducing universality by insisting, for example, that
it be primitive recursive (see page 907) or always involve
only a bounded number of steps. One can also do this—as in
the rule 110 proof in the previous chapter—by having
programs and data be encoded separately, and appear, say, as
distinct parts of the initial conditions for the system one is
studying. (See also page 1118.)

â Density of universal systems. One might imagine that it
would be possible to make estimates of the overall density of
universal systems, perhaps using arguments like those for
the density of primes, or for the density of algorithmically

#2
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random sequences. But as it turns out I know of no way to
make any such estimates. If one has shown that various
simple rules are universal, then it follows that rules which
generalize these must also be universal. But even from this I
do not know, for example, how to prove that the density of
universal rules cannot decrease when rules become more
complicated. 

â Page 723 · Proving universality. The question of whether a
system is universal is in general undecidable. Using a
specific mathematical axiom system such as Peano
arithmetic or set theory it may also be that there is no proof
that can be given. (It is straightforward to construct
complicated examples where this is the case.) In practice it
seems to get more difficult to prove universality when the
structure of a system gets simpler. Current proofs of
universality all work by showing how to emulate a known
universal system. Some level of checking can be done by
tracing the emulation of random initial conditions for the
universal system. In the future it seems likely that
automated theorem-proving methods should help in finding
proofs of universality. 

â Page 724 · History. There are various precedents in
philosophy and mysticism for the idea of encoding all
possible knowledge of some kind in a single object. An
example in computation theory is the concept emphasized by
Gregory Chaitin of a number whose th digit specifies
whether a computation with initial condition  in a particular
system will ever halt. This particular number is far from
being computable (see page 1128), as a result of the
undecidability of the halting problem (see page 754). But a
finite version in which one looks at results after a limited
number of steps is similar to my concept of a universal object.
(See also page 1067.) 

â Page 725 · Universal objects. A more direct way to create a
universal object is to set up, say, a 4D array in which two
of the dimensions range respectively over possible 1D
cellular automaton rules and over possible initial
conditions, while the other two dimensions correspond to
space and time in the evolution of each cellular automaton
from each initial condition. (Compare the parameter space
sets of page 1006.)

â Page 725 · Block occurrences. The pictures below show at
which step each successive block of length up to 8 first
appears in evolution according to various cellular automaton
rules starting from a single black cell. For rule 30, the
numbers of steps needed for each block of lengths 1 through
10 to appear at least once is .
(See also page 871.)

 

 

The Validity of the Principle

â Page 729 · Continuum and cardinality. Some notion of a
distinction between continuous and discrete systems has
existed since antiquity. But in the 1870s the distinction
became more precise with Georg Cantor’s characterization of
the total numbers of possible objects of various types in terms
of different orders of infinity (see page 1162). The total
number of possible integers corresponds to the smallest level
of infinity, usually denoted . The total number of possible
lists of integers of given finite length—and thus the number
of possible rational numbers—turns out also to be . The
reason is that it is always possible to encode any finite list of
integers as a single integer, as discussed on page 1120. (A
way to do this for pairs of non-negative integers is to use

.) But for real numbers
the story is different. Any real number  can be represented
as a set of integers using for example

but except when  is rational this list is not finite. Since the
number of possible subsets of a set with  elements is , the
number of possible real numbers is . And using Cantor’s
diagonal argument (see note below) one can then show that
this must be larger than . (The claim that there are no sets
intermediate in size between  and  is the so-called
continuum hypothesis, which is known to be independent of
the standard axioms of set theory, as discussed on page 1155.)
Much as for integers, finite lists of real numbers can be
encoded as single real numbers—using for example roughly

—so that the
number of such lists is . (Space-filling curves yield a more
continuous version of such an encoding.) But unlike for
integers the same turns out to be true even for infinite lists of
real numbers. (The function  above can for example be used
to specify the order in which to sample elements in

). The total number of possible functions of real
numbers is ; the number of continuous such functions
(which can always be represented by a list of coefficients for a
series) is however only .

In systems like cellular automata, finite arrangements of
black cells on a background of white cells can readily be
specified by single integers, so the number of them is . But
infinite configurations of cells are like digit sequences of real
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numbers (as discussed on page 869 they correspond more
precisely to elements in a Cantor set), so the number of them
is . Continuous cellular automata (see page 155) also have

 possible states.

â Computable reals. The stated purpose of Alan Turing’s
original 1936 paper on computation was to introduce the
notion of computable real numbers, whose th digit for any 
could be found by a Turing machine in a finite number of
steps. Real numbers used in any explicit way in traditional
mathematics are always computable in this sense. But as
Turing pointed out, the overwhelming majority of all
possible real numbers are not computable. For certainly there
can be no more computable real numbers than there are
possible Turing machines. But with his discovery of
universality, Turing established that any Turing machine can
be emulated by a single universal Turing machine with
suitable initial conditions. And the point is that any such
initial conditions can always be encoded as an integer.

As examples of non-computable reals that can readily be
defined, Turing considered numbers whose successive digits
are determined by the eventual behavior after an infinitely
long time of a universal system with successive possible
initial conditions (compare page 964). With two possible
forms of behavior  or  for initial condition , an
example of such a number is . Closely
related is the total probability for each form of behavior,
given for example by .
I suspect that many limiting properties of systems like
cellular automata in general correspond to non-computable
reals. An example is the average density of black cells after an
arbitrarily long time. For many rules, this converges rapidly
to a definite value; but for some rules it will wiggle forever as
more and more initial conditions are included in the average.

â Diagonal arguments. Similar arguments were used by Georg
Cantor in 1891 to show that there must be more real numbers
than integers and by Alan Turing in 1936 to show that the
problem of enumerating computable real numbers is
unsolvable. One might imagine that it should be possible to set
up a function  which if given successive integers  would
give the th base 2 digit in every possible real number. But
what about the number whose th digit is ? This is
still a real number, yet it cannot be generated by  for any
—thus showing that there are more real numbers than

integers. Analogously, one might imagine that it should be
possible to have a function  which enumerates all
possible programs that always halt, and specifies a digit in
their output when given input . But what about the program
with output ? This program always halts, yet it does
not correspond to any possible value of —even though

universality implies that any program should be encodable by
a single integer . And the only possible conclusion from this is
that  cannot in fact be implemented as a program that
always halts—thus demonstrating that the computable real
numbers cannot explicitly be enumerated. (Closely related is
the undecidability of the problem discussed on page 1137 of
whether a system halts given any particular input.) (See also
pages 907 and 1162.)

â Continuous computation. Various models of computation
that involve continuous elements have been proposed since
the 1930s, and unlike those with discrete elements they have
often not proved ultimately equivalent. One general class of
models based on the work of Alan Turing in 1936 follow the
operation of standard digital computers, and involve looking
at real numbers in terms of digits, and using discrete
processes to generate these digits. Such models inevitably
handle only computable reals (in the sense defined above),
and can never do computations beyond those possible in
ordinary discrete systems. Functions are usually considered
computable in such models if one can take the procedure for
finding the digits of  and get a procedure for finding the
digits of . And with this definition all standard
mathematical functions are computable—even those from
chaos theory that excavate digits rapidly. (It seems possible
however to construct functions computable in this sense
whose derivatives are not computable.) The same basic
approach can be used whenever numbers are represented by
constructs with discrete elements (see page 143), including
for example symbolic formulas.

Several times since the 1940s it has been suggested that
models of computation should be closer to traditional
continuous mathematics, and should look at real numbers as
a whole, not in terms of their digit or other representations.
In a typical case, what is done is to generalize the register
machines of page 97 to have registers that hold arbitrary real
numbers. It is then usually assumed, however, that the
primitive operations performed on these registers are just
those of ordinary arithmetic, with the result that only a very
limited set of functions (not including for example the
exponential function) can be computed in a finite number of
steps. Introducing other standard mathematical functions as
primitives does not usually help much, unless one somehow
gives the system the capability to solve any equation
immediately (see below). (Other appropriate primitives may
conceivably be related to the solubility of Hilbert’s Thirteenth
Problem and the fact that any continuous function with any
number of arguments can be written as a one-argument
function of a sum of a handful of fixed one-argument
functions applied to the arguments of the original function.) 
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Most of the types of programs that I have discussed in this
book can be generalized to allow continuous data, often just by
having a continuous range of values for their elements (see e.g.
page 155). But the programs themselves normally remain
discrete, typically involving discrete choices made at discrete
steps. If one has a table of choices, one can imagine
generalizing this to a function of a real number. But to specify
this function one normally has no choice but to use some type
of finite formula. And to set up any kind of continuous
evolution, the most obvious approach is to use traditional
mathematical ideas of calculus and differential equations (see
page 161). This leads to models in which possible
computations are assumed, say, to correspond to combinations
of differential equations—as in Claude Shannon’s 1941
general-purpose analog computer. And if one assumes—as is
usually implicitly done in traditional mathematics—that any
solutions that exist to these equations can somehow always be
found then at least in principle this allows computations
impossible for discrete systems to be done.

â Initial conditions. Traditional mathematics tends to assume
that real numbers with absolutely any digit sequence can be
set up. And if this were the case, then the digits of an initial
condition could for example be the table for an oracle of the
kind discussed on page 1126—and even a simple shift
mapping could then yield output that is computationally
more sophisticated than any standard discrete system. But
just as in my discussion of chaos theory in Chapter 7, any
reasonably complete theory must address how such an initial
condition could have been constructed. And presumably the
only way is to have another system that already violates the
Principle of Computational Equivalence.

â Constructible reals. Instead of finding successive digits
using systems like Turing machines, one can imagine
constructing complete real numbers using idealizations of
mechanical processes. An example studied since antiquity
involves finding lengths or angles using a ruler and compass
(i.e. as intersections between lines and circles). However, as
was shown in the 1800s, this method can yield only numbers
formed by operating on rationals with combinations of ,

 and . (Thus it is impossible with ruler and
compass to construct  and “square the circle” but it is
possible to construct 17-gons or other -gons for which

 contains only ,  and
.) Linkages consisting of rods of integer lengths always

trace out algebraic curves (or algebraic surfaces in 3D) and in
general allow any algebraic number (as represented by )
to be constructed. (Linkages were used by the late 1800s not
only in machines such as steam engines, but also in devices
for analog computation. More recently they have appeared in

robotics.) Note that above degree 4, algebraic numbers
cannot in general be expressed in radicals involving only

,  and  (see page 945). 

â Page 732 · Equations. For any purely algebraic equation
involving real numbers it is possible to find a bound on the
size of any isolated solutions it has, and then to home in on
their actual values. But as discussed on page 786, nothing
similar is true for equations involving only integers, and in
this case finding solutions can in effect require following the
evolution of a system like a cellular automaton for infinitely
many steps. If one allows trigonometric functions, any
equation for integers can be converted to one for real
numbers; for example  for integers is equivalent
to  for
real numbers.

â Page 732 · ODEs. The method of compressing time using
algebraic transformations works not only in partial but also
in ordinary differential equations. 

â Emulating discrete systems. Despite it often being assumed
that continuous systems are computationally more
sophisticated than discrete ones, it has in practice proved
surprisingly difficult to make continuous systems emulate
discrete ones. Some integer functions can readily be obtained
by supplying integer arguments to continuous functions, so
that for example  corresponds to  or

,

(As another example,  corresponds to
.) And in this way the discrete system

 from page 122 can be
emulated by the continuous iterated map

. This approach can then be
applied to the universal arithmetic system on page 673,
establishing that continuous iterated maps can in principle
emulate discrete universal systems. A similar result
presumably holds for ordinary and therefore also partial
differential equations (PDEs). One might expect, however,
that it should be possible to construct a PDE that quite
directly emulates a system like a cellular automaton. And to
do this approximately is not difficult. For as suggested by the
bottom row of pictures on page 732 one can imagine having
localized structures whose interactions emulate the rules of
the cellular automaton. And one can set things up so that
these structures exhibit the analog of attractors, and evolve
towards one of a few discrete states. But the problem is that
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in finite time one cannot expect that they will precisely reach
such states. (This is somewhat analogous to the issue of
asymptotic particle states in the foundations of quantum
field theory.) And this means that the overall state of the
system will not be properly prepared for the next step of
cellular automaton evolution.

Generating repetitive patterns with continuous systems is
straightforward, but generating even nested ones is not. Page
147 showed how  has nested features, and
these are reflected in the distribution of eigenvalues for ODEs
containing such functions. Strange attractors for many
continuous systems also show various forms of Cantor sets
and nesting.

â Page 732 · Time and gravity. General relativity implies that
time can be affected by gravitational fields—and that for
example a process in a lower gravitational field will seem
to be going faster if it is looked at by an observer in a
higher gravitational field. (Related phenomena associated
with motion in special relativity are more difficult to
interpret in a static way.) But presumably there are effects
that prevent infinite speedups. For if, say, energy were
coming from a process at a constant rate, then an infinite
speedup would lead to infinite energy density, and thus
presumably to infinite gravitational fields that would
change the system.

At least formally, general relativity does nevertheless suggest
infinite transformations of time in various cases. For
example, to a distant observer, an object falling into a black
hole will seem to take an infinite time to cross the event
horizon—even though to the object itself only a finite time
will seem to have passed. One might have thought that this
would imply in reverse that to an observer moving with the
object the whole infinite future of the outside universe would
in effect seem to go by in a finite time. But in the simplest case
of a non-rotating black hole (Schwarzschild metric), it turns
out that an object will always hit the singularity at the center
before this can happen. In a rotating but perfectly spherical
black hole (Kerr metric), the situation is nevertheless
different, and in this case the whole infinite future of the
outside universe can indeed in principle be seen in the finite
time between crossing the outer and inner event horizons.
But for the reasons mentioned above, this very fact
presumably implies instability, and the whole effect
disappears if there is any deviation from perfect spherical
symmetry.

Even without general relativity there are already issues with
time and gravity. For example, it was shown in 1990 that
close encounters in a system of 5 idealized point masses can

lead to infinite accelerations which cause one mass to be able
to go infinitely far in a finite time.

â Page 733 · Human thinking. The discovery in this book that
even extremely simple programs can give rise to behavior
vastly more complex than expected casts suspicion on any
claim that programs are fundamentally unable to reproduce
features of human thinking. But complete evidence that
human thinking follows the Principle of Computational
Equivalence will presumably come only gradually as
practical computer systems manage to emulate more and
more aspects of human thinking. (See page 628.)

â Page 734 · Intermediate degrees. As discussed on page 753,
an important indication of computational sophistication in a
system is for its ultimate behavior to be undecidable, in the
sense that a limited number of steps in a standard universal
system cannot determine in general what the system will do
after an infinite number of steps, and whether, for example, it
will ever in some sense halt. Such undecidability is inevitable
in any system that is universal. But what about other
systems? So long as one only ever looks at the original input
and final output it turns out that one can construct a system
that exhibits undecidability but is not universal. One trivial
way to do so is to take a universal system but modify it so
that if it ever halts its output is discarded and, say, replaced
by its original input. The lack of meaningful output prevents
such a system from being universal, but the question of
whether the system halts is still undecidable. Nevertheless,
the pattern of this undecidability is just the same as for the
underlying universal system. So one can then ask whether it
is possible to have a system which exhibits undecidability,
but with a pattern that does not correspond to that of any
universal system. 

As I discuss on page 1137, almost all known proofs of
undecidability in practice work by reduction to the halting
problem for some universal system—this is, by showing that
if one could resolve whatever is supposed to be undecidable
then one could also solve the halting problem for a universal
system. But in 1956 Richard Friedberg and Albert Muchnik
both gave an intricate and abstract construction of a system
that has a halting problem which is undecidable but is not
reducible to the halting problem of any universal system.

The pictures at the top of the facing page show successive
steps in the evolution of an analog of their system. The input
is an integer that gives a position in either of the two rows of
cells at the bottom of each picture. All these cells are initially
white, but some eventually become black—and the system is
considered to halt for a particular input if the corresponding
cell ever becomes black.

Sin[x] +Sin[�!!!!2 x]
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The rules for the system are quite complicated, and in essence
work by progressively implementing a generalization of a
diagonal argument of the kind discussed on page 1128. Note
first that the configuration of cells in the rows at the bottom
of each picture can be thought of as successive finite
approximations to tables for an oracle (see page 1126) which
gives the solution to the halting problem for each possible
input to the system. To set up the generalized diagonal
argument one needs a way to list all possible programs. Any
type of program that supports universality can be used for
this purpose; the pictures shown use essentially the register
machines from page 97. Each row above the bottom one
corresponds in effect to a successive register machine—and
shows, if relevant, its output when given as input the integer
corresponding to that position in the row, together with the
complete bottom row of cells found so far. (A dot indicates
that the register machine does not halt.) The way the system
works is to put down new black cells in the bottom row in
just such a way as to arrange that for any register machine at
least the output shown will ultimately not agree with the
cells in the bottom row. As indicated by vertical gray lines,
there is sometimes temporary agreement, but this is always
removed within a finite number of steps.

The fact that no register machine can ever ultimately give
output that agrees everywhere with the bottom row of cells
then demonstrates that the halting problem for the system—
whose results appear in the bottom row—must be
undecidable. Yet if this halting problem were reducible to a
halting problem for a universal system, then by using its
results one should ultimately be able to solve the halting
problem for any system. However, even using the complete
bottom row of cells on the left it turns out that the
construction is such that no register machine can ever yield
results after any finite number of steps that agree everywhere
with the row of cells on the right—thus demonstrating that
the halting problem for the system is not reducible to the
halting problem for a universal system.

Note however that this result is extremely specific to looking
only at what is considered output from the system, and that
inside the system there are all sorts of components that are
definitely universal.

Explaining the Phenomenon of Complexity

â Definition of complexity. See page 557.

â Ingredients for complexity. With its emphasis on breaking
systems down to find their underlying elements traditional
science tends to make one think that any important overall
property of a system must be a consequence of some
specific feature of its underlying construction. But the
results of this section imply that for complexity this is not
the case. For as discussed on page 1126 there is no direct
structural criterion for sophisticated computation and
universality. And indeed most ways of ensuring that these
do not occur are in essence equivalent just to saying that
the overall behavior exhibits some specific regularity and is
therefore not complex.

â Relativism and equivalence. Although the notion has been
discussed since antiquity, it has become particularly common
in the academic humanities in the past few decades to believe
that there can be no valid absolute conclusions about the
world—only statements made relative to particular cultural
contexts. My emphasis of the importance of perception and
analysis might seem to support this view, and to some extent
it does. But the Principle of Computational Equivalence
implies that in the end essentially any method of perception
and analysis that can actually be implemented in our
universe must have a certain computational equivalence, and
must therefore at least in some respects come to the same
absolute conclusions. 
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Computational Irreducibility

â History. The notion that there could be fundamental limits
to knowledge or predictability has been discussed repeatedly
since antiquity. But most often it has been assumed that the
origin of this must be inadequacy in models, not difficulty in
working out their consequences. And indeed already in the
1500s with the introduction of symbolic algebra and the
discovery of formulas for solving cubic and quartic equations
the expectation began to develop that with sufficient
cleverness it should be possible to derive a formula for the
solution to any purely mathematical problem. Infinitesimals
were sometimes thought to get in the way of finite
understanding—but this was believed to be overcome by
calculus. And when mathematical models for natural
systems became widespread in the late 1600s it was generally
assumed that their basic consequences could always be
found in terms of formulas or geometrical theorems, perhaps
with fairly straightforward numerical calculations required
for connection to practical situations. In discussing
gravitational interactions between many planets Isaac
Newton did however comment in 1684 that “to define these
motions by exact laws admitting of easy calculation exceeds,
if I am not mistaken, the force of any human mind”. But in
the course of the 1700s and 1800s formulas were successfully
found for solutions to a great many problems in
mathematical physics (see note below)—at least when
suitable special functions (see page 1091) were introduced.
The three-body problem (see page 972) nevertheless
continued to resist efforts at general solution. In the 1820s it
was shown that quintic equations cannot in general be solved
in terms of radicals (see page 1137), and by the 1890s it was
known that degree 7 equations cannot in general be solved
even if elliptic functions are allowed. Around 1890 it was
then shown that the three-body problem could not be solved
in general in terms of ordinary algebraic functions and
integrals (see page 972). However, perhaps in part because of
a shift towards probabilistic theories such as quantum and
statistical mechanics there remained the conviction that for
relevant aspects of behavior formulas should still exist. The
difficulty for example of finding more than a few exact
solutions to the equations of general relativity was noted—
but a steady stream of results (see note below) maintained
the belief that with sufficient cleverness a formula could be
found for behavior according to any model. 

In the 1950s computers began to be used to work out
numerical solutions to equations—but this was seen mostly
as a convenience for applications, not as a reflection of any
basic necessity. A few computer experiments were done on
systems with simple underlying rules, but partly because

Monte Carlo methods were sometimes used, it was typically
assumed that their results were just approximations to what
could in principle be represented by exact formulas. And this
view was strengthened in the 1960s when solitons given by
simple formulas were found in some of these systems.

The difficulty of solving equations for numerical weather
prediction was noted even in the 1920s. And by the 1950s and
1960s the question of whether computer calculations would
be able to outrun actual weather was often discussed. But it
was normally assumed that the issue was just getting a better
approximation to the underlying equations—or better initial
measurements—not something more fundamental.

Particularly in the context of game theory and cybernetics the
idea had developed in the 1940s that it should be possible to
make mathematical predictions even about complex human
situations. And for example starting in the early 1950s
government control of economies based on predictions from
linear models became common. By the early 1970s, however,
such approaches were generally seen as unsuccessful, but it
was usually assumed that the reason was not fundamental,
but was just that there were too many disparate elements to
handle in practice. 

The notions of universality and undecidability that underlie
computational irreducibility emerged in the 1930s, but they
were not seen as relevant to questions arising in natural
science. Starting in the 1940s they were presumably the basis
for a few arguments made about free will and fundamental
unpredictability of human behavior (see page 1135),
particularly in the context of economics. And in the late 1950s
there was brief interest among philosophers in connecting
results like Gödel’s Theorem to questions of determinism—
though mostly there was just confusion centered around the
difficulty of finding countable proofs for statements about
the continuous processes assumed to occur in physics.

The development of algorithmic information theory in the
1960s led to discussion of objects whose information content
cannot be compressed or derived from anything shorter. But
as indicated on page 1067 this is rather different from what I
call computational irreducibility. In the 1970s computational
complexity theory began to address questions about overall
resources needed to perform computations, but concentrated
on computations that perform fairly specific known practical
tasks. At the beginning of the 1980s, however, it was noted
that certain problems about models of spin glasses were NP-
complete. But there was no immediate realization that this
was connected to any underlying general phenomenon.

Starting in the late 1970s there was increasing interest in
issues of predictability in models of physical systems. And it
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was emphasized that when the equations in such models are
nonlinear it often becomes difficult to find their solutions.
But usually this was at some level assumed to be associated
with sensitive dependence on initial conditions and the chaos
phenomenon—even though as we saw on page 1098 this
alone does not even prevent there from being formulas. 

By the early 1980s it had become popular to use computers to
study various models of natural systems. Sometimes the idea
was to simulate a large collection of disparate elements, say
as involved in a nuclear explosion. Sometimes instead the
idea was to get a numerical approximation to some fairly
simple partial differential equation, say for fluid flow.
Sometimes the idea was to use randomized methods to get a
statistical approximation to properties say of spin systems or
lattice gauge theories. And sometimes the idea was to work
out terms in a symbolic perturbation series approximation,
say in quantum field theory or celestial mechanics. With any
of these approaches huge amounts of computer time were
often used. But it was almost always implicitly assumed that
this was necessary in order to overcome the approximations
being used, and not for some more fundamental reason.

Particularly in physics, there has been some awareness of
examples such as quark confinement in QCD where it seems
especially difficult to deduce the consequences of a theory—
but no general significance has been attached to this.

When I started studying cellular automata in the early 1980s I
was quickly struck by the difficulty of finding formulas for
their behavior. In traditional models based for example on
continuous numbers or approximations to them there was
usually no obvious correspondence between a model and
computations that might be done about it. But the evolution
of a cellular automaton was immediately reminiscent of other
computational processes—leading me by 1984 to formulate
explicitly the concept of computational irreducibility.

No doubt an important reason computational irreducibility
was not identified before is that for more than two centuries
students had been led to think that basic theoretical science
could somehow always be done with convenient formulas.
For almost all textbooks tend to discuss only those cases that
happen to come out this way. Starting in earnest in the 1990s,
however, the influence of Mathematica has gradually led to
broader ranges of examples. But there still remains a very
widespread belief that if a theoretical result about the
behavior of a system is truly fundamental then it must be
possible to state it in terms of a simple mathematical formula.

â Exact solutions. Some notable cases where closed-form
analytical results have been found in terms of standard
mathematical functions include: quadratic equations (~2000

BC) ( ); cubic, quartic equations (1530s) ( ); 2-body
problem (1687) ( ); catenary (1690) ( ); brachistochrone
(1696) ( ); spinning top (1849; 1888; 1888) ( ;

; hyperelliptic functions); quintic equations
(1858) ( ); half-plane diffraction (1896) ( );
Mie scattering (1908) ( , , ); Einstein
equations (Schwarzschild (1916), Reissner-Nordström (1916),
Kerr (1963) solutions) (rational and trigonometric functions);
quantum hydrogen atom and harmonic oscillator (1927)
( , ); 2D Ising model (1944) ( , );
various Feynman diagrams (1960s–1980s) ( ); KdV
equation (1967) (  etc.); Toda lattice (1967) ( ); six-
vertex spin model (1967) (  integrals); Calogero-Moser
model (1971) ( ); Yang-Mills instantons
(1975) (rational functions); hard-hexagon spin model (1979)
( ); additive cellular automata (1984)
( ); Seiberg-Witten supersymmetric theory
(1994) ( ). When problems are originally
stated as differential equations, results in terms of integrals
(“quadrature”) are sometimes considered exact solutions—as
occasionally are convergent series. When one exact solution is
found, there often end up being a whole family—with much
investigation going into the symmetries that relate them. It is
notable that when many of the examples above were
discovered they were at first expected to have broad
significance in their fields. But the fact that few actually did
can be seen as further evidence of how narrow the scope of
computational reducibility usually is. Notable examples of
systems that have been much investigated, but where no exact
solutions have been found include the 3D Ising model,
quantum anharmonic oscillator and quantum helium atom. 

â Amount of computation. Computational irreducibility
suggests that it might be possible to define “amount of
computation” as an independently meaningful quantity—
perhaps vaguely like entropy or amount of information. And
such a quantity might satisfy laws vaguely analogous to the
laws of thermodynamics that would for example determine
what processes are possible and what are not. If one knew the
fundamental rules for the universe then one way in principle
to define the amount of computation associated with a given
process would be to find the minimum number of
applications of the rules for the universe that are needed to
reproduce the process at some level of description.

â Page 743 · More complicated rules. The standard rule for a
cellular automaton specifies how every possible block of cells
of a certain size should be updated at every step. One can
imagine finding the outcome of evolution more efficiently by
adding rules that specify what happens to larger blocks of
cells after more steps. And as a practical matter, one can look
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up different blocks using a method like hashing. But much as
one would expect from data compression this will only in the
end work more efficiently if there are some large blocks that
are sufficiently common. Note that dealing with blocks of
different sizes requires going beyond an ordinary cellular
automaton rule. But in a sequential substitution system—and
especially in a multiway system (see page 776)—this can be
done just as part of an ordinary rule. 

â Page 744 · Reducible systems. The color of a cell at step 
and position  can be found by starting with initial condition

then for rule 188 running the cellular automaton with rule

and for rule 60 running the cellular automaton with rule

â Speed-up theorems. That there exist computations that are
arbitrarily computationally reducible was noted in work on
the theory of computation in the mid-1960s. 

â Page 745 · Mathematical functions. The number of bit
operations needed to add two -digit numbers is of order .
The number of operations  needed to multiply them
increases just slightly more rapidly than  (see page 1093).
(Even if one can do operations on all digits in parallel it still
takes of order  steps in a system like a cellular automaton
for the effects of different digits to mix together—though see
also page 1149.) The number of operations to evaluate

 is of order  if  has  digits and  is small. Many
standard continuous mathematical functions just increase or
decrease smoothly at large  (see page 917). The main issue in
evaluating those that exhibit regular oscillations at large  is
to find their oscillation period with sufficient precision. Thus
for example if  is an integer with  digits then evaluating

 or  requires respectively finding  or
 to -digit precision. It is known how to evaluate  (see

page 912) and all standard elementary functions to -digit
precision using about  operations. (This can be
done by repeatedly making use of functional relations such
as  which express  as a polynomial
in ; such an approach is known to work for elementary,
elliptic, modular and other functions associated with

 and for example .)
Known methods for high-precision evaluation of special
functions—usually based in the end on series

representations—typically require of order 
operations, where  is often 2 or 3. (Examples of more
difficult cases include  and

, where logarithmic series can require an
exponential number of terms. Evaluation of  is
also difficult.) Any iterative procedure (such as ) that
yields a constant multiple more digits at each step will take
about  steps to get  digits. Roots of polynomials can
thus almost always be found with  in about

 operations. If one evaluates  or
 by effectively fitting functions to order 

polynomials the difficulty of getting results with -digit
precision typically increases like . An adaptive algorithm
such as Romberg integration reduces this to about .
The best-known algorithms for evaluating  (see
page 918) to fixed precision take roughly  operations—or

 operations if  is an -digit integer. (The evaluation is
based on the Riemann-Siegel formula, which involves sums
of about  cosines.) Unlike for continuous mathematical
functions, known algorithms for number theoretical
functions such as  or  typically
seem to require a number of operations that grows faster
with the number of digits  in  than any power of  (see
page 1090). 

â Formulas. It is always in principle possible to build up some
kind of formula for the outcome of any process of evolution,
say of a cellular automaton (see page 618). But for there to be
computational reducibility this formula needs to be simple
and easy to evaluate—as it is if it consists just of a few
standard mathematical functions (see note above; page 1098). 

â Page 747 · Short computations. Some properties include:

(a) The regions are bounded by the hyperbolas
 for successive integers . 

(d) There is approximate repetition associated with rational
approximations to  (for example with period 22), but never
precise repetition.

(e) The pattern essentially shows which  are divisors of ,
just as on pages 132 and 909.

(h)  extracts the digit associated with
 in the base 2 digit sequence of . 

(i) Like (e), except that colors at neighboring positions
alternate.

(l) See page 613. 

(m) The pattern can be generated by a 2D substitution system
with rule {1 -> {{0, 0}, {0, 1}}, 0 -> {{1, 1}, {1, 0}}} (see page 583). 

(See also page 870.)

t
x

Flatten[With[{w = Max[Ceiling[Log[2, {t, x}]]]},
{2 Reverse[IntegerDigits[t, 2, w]] + 1,

5, 2 IntegerDigits[x, 2, w] + 2}]]

{{a : (1 Ï 3), 1 Ï 3, _} ! a, {_, 2 Ï 4, a : (2 Ï 4)} ! a,
{3, 5 Ï 10, 2} ! 6, {1, 5 Ï 7, 4} ! 0, {3, 5, 4} ! 7,
{1, 6, 2} ! 10, {1, 6 Ï 11, 4} ! 8, {3, 6 Ï 8 Ï 10 Ï 11, 4} ! 9,
{3, 7 Ï 9, 2} ! 11, {1, 8 Ï 11, 2} ! 9, {3, 11, 2} ! 8,
{1, 9 Ï 10, 4} ! 11, {_, a_ /; a > 4, _} ! a, {_, _, _} ! 0}

{{a : (1 Ï 3), 1 Ï 3, _} ! a, {_, 2 Ï 4, a : (2 Ï 4)} ! a,
{1, 5, 4} ! 0, {_, 5, _} ! 5, {_, _, _} ! 0}
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Even though standard mathematical functions are used, few
of the pictures can readily be generalized to continuous
values of  and . 

â Intrinsic limits in science. Before computational irreducibility
other sources of limits to science that have been discussed
include: measurement in quantum mechanics, prediction in
chaos theory and singularities in gravitation theory. As it
happens, in each of these cases I suspect that the supposed
limits are actually just associated with a lack of correct analysis
of all elements of the relevant systems. In mathematics,
however, more valid intrinsic limits—much closer to
computational irreducibility—follow for example from
Gödel’s Theorem.

The Phenomenon of Free Will

â History. Early in history it seems to have generally been
assumed that everything about humans must ultimately be
determined by unchangeable fate—which it was sometimes
thought could be foretold by astrology or other forms of
divination. Most Greek philosophers seem to have believed
that their various mechanical or moral theories implied rigid
determination of human actions. But especially with the
advent of the Christian religion the notion that humans can at
some level make free choices—particularly about whether to
do good or not—emerged as a foundational idea. (The idea
had also arisen in Persian and Hebrew religions and legal
systems, and was supported by Roman lawyers such as
Cicero.) How this could be consistent with God having
infinite power was not clear, although around 420 AD
Augustine suggested that while God might have infinite
knowledge of the future we as humans could not—yielding
what can be viewed as a very rough analog of my
explanation for free will. In the 1500s some early Protestants
made theological arguments against free will—and indeed
issues of free will remain a feature of controversy between
Christian denominations even today.

In the mid-1600s philosophers such as Thomas Hobbes
asserted that minds operate according to definite
mechanisms and therefore cannot exhibit free will. In the late
1700s philosophers such as Immanuel Kant—agreeing with
earlier work by Gottfried Leibniz—claimed instead that at
least some parts of our minds are free and not determined by
definite laws. But soon thereafter scientists like Pierre-Simon
Laplace began to argue for determinism throughout the
universe based on mathematical laws. And with the
increasing success of science in the 1800s it came to be widely
believed that there must be definite laws for all human

actions—providing a foundation for the development of
psychology and the social sciences.

In the early 1900s historians and economists emphasized that
there were at least not simple laws for various aspects of
human behavior. But it was nevertheless typically assumed
that methods based on physics would eventually yield
deterministic laws for human behavior—and this was for
example part of the inspiration for the behaviorist movement
in psychology in the mid-1900s. The advent of quantum
mechanics in the 1920s, however, showed that even physics
might not be entirely deterministic—and by the 1940s the
possibility that this might lead to human free will was being
discussed by physicists, philosophers and historians. Around
this time Karl Popper used both quantum mechanics and
sensitive dependence on initial conditions (see also page 971)
to argue for fundamental indeterminism. And also around
this time Friedrich Hayek (following ideas of Ludwig Mises
in the early 1900s) suggested—presumably influenced by
work in mathematical logic—that human behavior might be
fundamentally unpredictable because in effect brains can
explain only systems simpler than themselves, and can thus
never explain their own operation. But while this has some
similarity to the ideas of computational irreducibility in this
book it appears never to have been widely studied. 

Questions of free will and responsibility have been widely
discussed in criminal and other law since at least the 1800s
(see note below). In the 1960s and 1970s ideas from popular
psychology tended to diminish the importance of free will
relative to physiology or environment and experiences. In the
1980s, however, free will was increasingly attributed to
animals other than humans. Free will for computers and
robots was discussed in the 1950s in science fiction and to
some extent in the field of cybernetics. But following lack of
success in artificial intelligence it has for the most part not
been seriously studied. Sometimes it is claimed that Gödel’s
Theorem shows that humans cannot follow definite rules—
but I argue on page 1158 that this is not correct.

â Determinism in brains. Early investigations of internal
functioning in the brain tended to suggest considerable
randomness—say in the sequence of electrical pulses from a
nerve cell. But in recent years, with more extensive
measurement methods, there has been increasing evidence
for precise deterministic underlying rules. (See pages 976 and
1011.)

â Amounts of free will. In my theory the amount of free will
associated with a particular decision is in effect related to the
amount of computation required to arrive at it. In conscious
thinking we can to some extent scrutinize the processes we

x y
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use, and assess how much computation they involve. But in
unconscious thinking we cannot. And probably often these
just involve memory lookups with rather little computation.
But other unconscious abilities like intuition presumably
involve more sophisticated computation.

â Responsibility. It is often assumed that if there are definite
underlying rules for our brains then it cannot be meaningful
to say that we have any ultimate moral or legal
responsibility for our actions. For traditional ideas lead to
the notion that in this case all our actions must somehow be
thought of as the direct result of whatever external causes
(over which we have no control) are responsible for the
underlying rules in our brains and the environment in
which we find ourselves. But if the processes in our brains
are computationally irreducible then as discussed in the
main text their outcome can seem in many respects free of
underlying rules, making it reasonable to view the processes
themselves as what is really responsible for our actions. And
since these processes are intrinsic to us, it makes sense to
treat us as responsible for their effects. 

Several different theories are used in practical legal systems.
The theory popular from the behavioral sciences tends to
assume that human actions can be understood from
underlying rules for the brain, and that people should be
dealt with according to the rules they have—which can
perhaps be modified by some form of treatment. But
computational irreducibility can make it essentially
impossible to find what general behavior will arise from
particular rules—making it difficult to apply this theory. The
alternative pragmatic theory popular in rational philosophy
and economics suggests that behavior in legal matters is
determined through calculations based on laws and the
deterrents they provide. But here there is the issue that
computational irreducibility can make it impossible to
foresee what consequences a given law will have. Western
systems of law tend to be dominated by the moral theory that
people should somehow get what they deserve for choices
they made with free will—and my explanation now makes
this consistent with the existence of definite underlying rules
for the brain. 

Young children, animals and the insane are typically held less
responsible for their actions. And in a moral theory of law
this can be understood in my approach as a consequence of
the computations they do being less sophisticated—so that
their outcome is less free of the environment and of their
underlying rules. (In a pragmatic theory the explanation
would presumably be that less sophisticated computations
would not be up to the task of handling the elaborate system
of incentives that laws had defined.)

â Will and purpose. Things that are too predictable do not
normally seem free. But things that are too random also do
not normally seem to be associated with the exercise of a will.
Thus for example continual random twitching in our muscles
is not normally thought to be a matter of human will, even
though some of it is the result of signals from our brains. For
typically one imagines that if something is to be a genuine
reflection of human will then there must be some purpose to
it. In general it is very difficult to assess whether something
has a purpose (see page 829). But in capturing the most
obvious aspects of human will what seems to be most
important is at least short-term coherence and consistency of
action—as often exists in class 4, but not class 3, systems.

â Source of will. Damage to a human brain can lead to
apparent disappearance of the will to act, and there is some
evidence that one small part of the brain is what is crucial. 

Undecidability and Intractability

â History. In the early 1900s, particularly in the context of the
ideas of David Hilbert, it was commonly believed that there
should be a finite procedure to decide the truth of any
mathematical statement. That this is not the case in the
standard theory of arithmetic was in effect established by
Kurt Gödel in 1931 (see page 1158). Alonzo Church gave the
first explicit example of an undecidable problem in 1935
when he showed that no finite procedure in lambda calculus
could guarantee to determine the equivalence of two lambda
expressions. (A corollary to Gödel’s proof had in fact already
supplied another explicit undecidable problem by implying
that no finite procedure based on recursive functions could
decide whether a given primitive recursive function is
identically 0.) In 1936 Alan Turing then showed that the
halting problem for Turing machines could not be solved in
general in a finite number of steps by any Turing machine.
Some similar issues had already been considered by Emil
Post in the context of tag and multiway systems starting in
the 1920s, and in 1947 Post and Andrei Markov were able to
establish that an existing mathematical question—the word
problem for semigroups (see page 1141)—was undecidable.
By the 1960s undecidability was being found in all sorts of
systems, but most of the examples were too complicated to
seem of much relevance in practical mathematics or
computing. And apart from a few vague mentions in fields
like psychology, undecidability was viewed mainly as a
highly abstract curiosity of no importance to ordinary
science. But in the early 1980s my experiments on cellular
automata convinced me that undecidability is vastly more
common than had been assumed, and in my 1984 paper
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“Undecidability and intractability in theoretical physics” I
argued that it should be important in many issues in physics
and elsewhere. 

â Mathematical impossibilities. It is sometimes said that in the
1800s problems such as trisecting angles, squaring the circle,
solving quintics, and integrating functions like  were
proved mathematically impossible. But what was actually
done was just to show that these problems could not be
solved in terms of particular levels of mathematical
constructs—say square roots (as in ruler and compass
constructions discussed on page 1129), arbitrary roots, or
elementary transcendental functions. And in each case higher
mathematical constructs that seem in some sense no less
implementable immediately allow the problems to be solved.
Yet with undecidability one believes that there is absolutely
no construct that can explicitly exist in our universe that
allows the problem to be solved in any finite way. And unlike
traditional mathematical impossibilities, undecidability is
normally formulated purely in terms of ordinary integers—
making it in a sense necessary to collapse basic distinctions
between finite and infinite quantities if any higher-level
constructs are to be included.

â Page 755 · Code 1004600. In cases (c) and (d) steady growth
at about 0.035 and 0.039 cells per step (of which 28% on
average are non-white) is seen up to at least 20 million steps,
though there continue to be fluctuations as shown below.

â Halting problems. A classic example of a problem that is
known in general to be undecidable is whether a given
Turing machine will ever halt when started from a given
initial condition. Halting is usually defined by the head of the
Turing machine reaching a special halt state. But other
criteria can equally well be used—say the head reaching a
particular position (see page 759), or a certain pattern of
colors being formed on the tape. And in a system like a
cellular automaton a halting problem can be set up by asking
whether a cell at a particular position ever turns a particular
color, or whether, more globally, the complete state of the
system ever reaches a fixed point and no longer changes.

In practical computing, one usually thinks of computational
programs as being set up much like the register machines of
page 896 and halting when they have finished executing their
instructions. User interface and operating system programs
are not normally intended to halt in an explicit sense,
although without external input they often reach states that

do not change. Mathematica works by taking its input and
repeatedly applying transformation rules—a process which
normally reaches a fixed point that is returned as the answer,
but with definitions like  (  having no value)
formally does not.

â Proofs of undecidability. Essentially the same argument due
to Alan Turing used on page 1128 to show that most numbers
cannot be computable can also be used to show that most
problems cannot be decidable. For a problem can be thought
of as an infinite list of solutions for successive possible
inputs. But this is analogous to a digit sequence of a real
number. And since any program for a universal system can
be specified by an integer it follows that there must be many
problems for which no such program can be given.

To show that a particular problem like the halting problem is
undecidable one typically argues by contradiction, setting up
analogs of self-referential logic paradoxes such as “this
statement is false”. Suppose that one had a Turing machine

 that could solve the halting problem, in the sense that it
itself would always halt after a finite number of steps, but it
would determine whether any Turing machine whose
description it was given as input would ever halt. One way to
see that this is not possible is to imagine modifying  to
make a machine  that halts if its input corresponds to a
machine that does not halt, but otherwise goes into an
infinite loop and does not itself halt. For if one considers
feeding  as input to itself there is immediately no
consistent answer to the question of whether  halts—
leading to the conclusion that in fact no machine  could
ever exist in the first place. (To make the proof rigorous one
must add another level of self-reference, say setting up  to
ask  whether a Turing machine will halt when fed its own
description as input.) In the main text I argued that
undecidability is a consequence of universality. In the proof
above universality is what guarantees that any Turing
machine can successfully be described in a way that can be
fed as input to another Turing machine.

â Page 756 · Examples of undecidability. Once universality
exists in a system it is known from Gordon Rice’s 1953
theorem and its generalizations that most questions about
ultimate behavior will be undecidable unless their answers
are always trivially the same. Undecidability has been
demonstrated in various seemingly rather different types of
systems, most often by reduction to halting (termination)
problems for multiway systems.

In formal language theory, questions about regular languages
are always decidable, but ones about context-free languages
(see page 1103) are already often not. It is decidable whether
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such a language is finite, but not whether it contains every
possible string, is regular, is unambiguous, or is equivalent to
a language with a different grammar. 

In mathematical logic, it can be undecidable whether
statements are provable from a given axiom system—say
predicate logic or Peano arithmetic (see page 782). It is also
undecidable whether one axiom system is equivalent to
another—even for basic logic (see page 1170).

In algebra and related areas of mathematics problems of
equivalence between objects built up from elements that
satisfy relations are often in general undecidable. Examples
are word problems for groups and semigroups (see page
1141), and equivalence of finitely specified 4D manifolds (see
page 1051). (Equivalence for 3D manifolds is thought to be
decidable.) A related undecidable problem is whether two
integer matrices can be multiplied together in some sequence
to yield the zero matrix. It is also undecidable whether two
sets of relations specify the same group or semigroup. 

In combinatorics it is known in general to be undecidable
whether a given set of tiles can cover the plane (see page
1139). And from this follows the undecidability of various
problems about 2D cellular automata (see note below) and
spin systems. Also undecidable are many questions about
whether strings exist that satisfy particular constraints (see
below).

In number theory it is known to be undecidable whether
Diophantine equations have solutions (i.e. whether algebraic
equations have integer solutions) (see page 786). And this
means for example that it is in general undecidable whether
expressions that involve both algebraic and trigonometric
functions can be zero for real values of variables, or what the
values of integrals are in which such expressions appear as
denominators (compare page 916).

In computer science, general problems about verifying the
possible behavior of programs tend to be undecidable,
usually being directly related to halting problems. It is also
for example undecidable whether a given program is the
shortest one that produces particular output (see page 1067). 

It is in general undecidable whether a given system exhibits
universality—or undecidability.

â Undecidability in cellular automata. For 1D cellular
automata, almost all questions about ultimate limiting
behavior are undecidable, even ones that ask about average
properties such as density and entropy. (This results in
undecidability in classification schemes, as mentioned on
page 948.) Questions about behavior after a finite number of
steps, even with infinite initial conditions, tend to be

decidable for 1D cellular automata, and related to regular
languages (see page 957). In 2D cellular automata, however,
even questions about a single step are often undecidable.
Examples include whether any configurations are invariant
under the cellular automaton evolution (see page 942), and,
as established by Jarkko Kari in the late 1980s, whether the
evolution is reversible, or can generate every possible
configuration (see page 959). 

â Natural systems. Undecidable questions arise even in some
traditional classes of models for natural systems. For
example, in a generalized Ising model (see page 944) for a
spin system the undecidability of the tiling problem implies
that it is undecidable whether a given energy function leads
to a phase transition in the infinite size limit. Somewhat
similarly, the undecidability of equivalence of 4-manifolds
implies undecidability of questions about quantum gravity
models. In models based both on equations and other kinds
of rules the existence of formulas for conserved quantities is
in general undecidable. In models that involve continuous
quantities it can be more difficult to formulate undecidability.
But I strongly suspect that with appropriate definitions there
is often undecidability in for example the three-body
problem, so that the questions such as whether one of the
bodies in a particular scattering process will ever escape to
infinity are in general undecidable. In biology formal models
for neural processes often involve undecidability, so that in
principle it can be undecidable whether, say, there is any
particular stimulus that will lead to a given response. Formal
models for morphogenesis can also involve undecidability, so
that for example it can in principle be undecidable whether a
particular organism will ever stop growing, or whether a
given structure can ever be formed in some class of
organisms. (Compare page 407.)

â Undecidability in Mathematica. In choosing functions to
build into Mathematica I tried to avoid ones that would often
encounter undecidability. And this is why for example there
is no built-in function in Mathematica that tries to predict
whether a given program will terminate. But inevitably
functions like ,  and 
can run into undecidability—so that ultimately they have to
be limited by constructs such as  and

.

â Undecidability and sets. Functions that can be computed in
finite time by systems like Turing machines are often called
recursive (or effectively computable). Sets are called
recursive if there is a recursive function that can test
whether or not any given element is in them. Sets are
called recursively enumerable if there is a recursive
function that can eventually generate any element in them.

FixedPoint ReplaceRepeated FullSimplify

$IterationLimit
TimeConstraint
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The set of initial conditions for which a given Turing
machine halts is thus not recursive. But it turns out that
this set is recursively enumerable. And the reason is that
one can generate the elements in it by effectively
maintaining a copy of the Turing machine for each possible
initial condition, then following a procedure where for
example at step  one updates the one for initial condition

, and watches to see if it halts. Note
that while the complement of a recursive set is always
recursive, the complement of a recursively enumerable set
may not be recursively enumerable. (An example is the set
of initial conditions for which a Turing machines does not
halt.) Recursively enumerable sets are characteristically
associated with so-called  statements of the form 
(where  is recursive). (Asking whether a system ever
halts is equivalent to asking whether there exists a number
of steps  at which the system can be determined to be in
its halting state.) Complements of recursively enumerable
sets are characteristically associated with  statements of
the form —an example being whether a given
system never halts. (  and  statements are such that if
they can be shown to be undecidable, then respectively
they must be true or false, as discussed on page 1167.) If a
statement in minimal form involves  alternations of 
and  it is  if it starts with  and  if it starts
with . The  and  form the so-called arithmetic
hierarchy in which statements with larger  can be
constructed by allowing  to access an oracle for
statements with smaller  (see page 1126). (Showing that a
statement with  is undecidable does not establish that
it is always true or always false.) 

â Undecidability in tiling problems. The question of whether a
particular set of constraints like those on page 220 can be
satisfied over the whole 2D plane is in general undecidable.
For much as on page 943, one can imagine setting up a 1D
cellular automaton with the property that, say, the absence of
a particular color of cell throughout the 2D pattern formed by
its evolution signifies satisfaction of the constraints. But even
starting from a fixed line of cells, the question of whether a
given color will ever occur in the evolution of a 1D cellular
automaton is in general undecidable, as discussed in the
main text. And although it is somewhat more difficult to
show, this question remains undecidable even if one allows
any possible configuration of cells on the starting line. (There
are several different detailed formulations; the first explicit
proof of undecidability in a tiling problem was given by Hao
Wang in 1960; the version with no fixed cells by Robert
Berger in 1966 by setting up an elaborate emulation of a
register machine.) (See also page 943.) 

â Page 757 · Correspondence systems. Given a list of pairs 
with  the constraint to be satisfied is 

Thus for example  has
shortest solution . (One can have lists
instead of strings, replacing  by .)

Correspondence systems were introduced by Emil Post in
1945 to give simple examples of undecidability; he showed
that the so-called Post Correspondence Problem (PCP) of
satisfying their constraints is in general undecidable (see
below). With 2 string pairs PCP was shown to be decidable in
1981. It is known to be undecidable when 9 pairs are used,
but I strongly suspect that it is also undecidable with just 3
pairs. The undecidability of PCP has been used to establish
undecidability of many problems related to groups, context-
free languages, and other objects defined by relations (see
page 1141). Finding PCP solutions shorter than a given
length is known to be an NP-complete problem.

With  string pairs and  there
are  possible constraints (assuming no
strings of zero length), each being related to at most 
others by straightforward symmetries (or altogether  for
given ). The number of constraints which yield solutions of
specified lengths  for  and  are as follows
(the boxes at the end give the number of cases with no
solution): 

With , as  increases an exponentially decreasing
fraction of possible constraints have solutions; with  it
appears that a fraction more than 1/4 continue to do so.
With , it appears that if a solution exists, it must have
length  or less. With , the longest minimal solution
lengths for  are given above. (Allowing  yields no
greater lengths for these values of .) With , example
(l) yields a solution of length 112. The only possible longer

 case is , for which

n
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any possible solution must be longer than 200. With ,
 has minimal solution

length 120 and  has
minimal solution length 132.

A given constraint can fail to have a solution either because
the colors of cells at some point cannot be made to match, or
because the two strings can never have the same finite length
(as in ). To know that a solution exists in a
particular case, it is sufficient just to exhibit it. To know that
no solution is possible of any length, one must in effect have
a proof.

In general, one condition for a solution to exist is that
integer numbers of pairs can yield strings of the same
length, so that given the length differences

 there is a vector  of
non-negative integers such that . If only one color of
element ever appears this is the complete condition for a
solution—and for  solutions exist if 
and are then of length at least

. With two colors of
elements additional conditions can be constructed involving
counting elements of each color, or various blocks of
elements.

The undecidability of PCP can be seen to follow from the
undecidability of the halting problem through the fact that
the question of whether a tag system of the kind on page 93
with initial sequence  ever reaches a halting state (where
none of its rules apply) is equivalent to the question of
whether there is a way to satisfy the PCP constraint

Any PCP constraint can also immediately be related to the
evolution of a multiway tag system of the kind discussed in
the note below. Assuming that the upper string is never
shorter than the lower one, the rules for the relevant tag
system are given simply by

In the case of example (e) the existence of a solution of
length 24 can then be seen to follow from the fact that

 contains .

This correspondence with tag systems can be used in practice
to search for PCP solutions, though it is usually most efficient
to run tag systems that correspond both to moving forward
and backward in the string, and to see whether their results
ever agree. (In most PCP systems, including all the examples

shown except (a) and (g), one string is always systematically
longer than the other.) The tag system approach is normally
limited by the number of intermediate strings that may need
to be kept.

The pictures below show which possible sequences of up to 6
blocks yield upper and lower strings that agree in each of the
PCP systems in the main text. As indicated in the first picture
for the case of two blocks, each possible successively longer
sequence corresponds to a rectangle in the picture (compare
page 594). When a sequence of blocks leads to upper and
lower strings that disagree, the rectangle is left white. If the
strings agree so far, then the rectangle is colored with a gray
that is darker if the strings are closer in length. Rectangles
that are black (as visible in cases (a) and (b)) correspond to
actual PCP solutions where the strings are the same length.
Note that in case (c) the presence of only one color in either
block means that strings will always agree so far. In cases (m)
through (s) there is ultimately no solution, but as the pictures
indicate, in these specific PCP systems there are always
strings that agree as far as they have gone—it is just that they
never end up the same length. 

As one example of how one proves that a PCP constraint
cannot be satisfied, consider case (s). From looking at the
structure of the individual pairs one can see that if there is a
solution it must begin with pair 1 or pair 3, and end with pair
1. But in fact it cannot begin with pair 1 because this would
mean that the upper string would have to start off being
longer, then at some point cross over to being shorter.
However, the only way that such a crossover can occur is by
pair 3 appearing with its upper  aligned with its second
lower . Yet starting with pair 1, the upper string is longer by
2 s, and the pairs are such that the length difference must
always remain even—preventing the crossover from
occurring. This means that any solution must begin with pair
3. But this pair must then be followed by another pair 3,
which leaves  sticking out on the bottom. So how can
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this  be removed? The only way is to use the sequence
of pairs 2, 3, 3, 2—yet doing this will just produce another

 further on. And thus one concludes that there is no
way to satisfy these particular PCP constraints. 

One can generalize PCP to allow any number of colors, and
to require correspondence among any number of strings—
though it is fairly easy to translate any such generalization to
the 2-string 2-color case.

â Multiway tag systems. As an extension of ordinary
multiway systems one can generalize tag systems from page
93 to allow a list of strings at each step. Representing the
strings by lists, one can write rules in the form

so that the evolution is given by 

â Word problems. The question of whether a particular string
can be generated in a given multiway system is an example
of a so-called word problem. An original more specialized
version of this was posed by Max Dehn in 1911 for groups
and by Axel Thue in 1914 for semigroups. As discussed on
page 938 a finitely presented group or semigroup can be
viewed as a special case of a multiway system, in which the
rules of the multiway system are obtained from relations
between strings consisting of products of generators. The
word problem then asks if a given product of such generators
is equal to the identity element. Following work by Alan
Turing in the mid-1930s, it was shown in 1947 by Emil Post
from the undecidability of PCP that the word problem for
semigroups is in general undecidable. Andrei Markov gave a
specific example of this for a semigroup with 13 generators
and 33 relations, and by 1966 Gennadií Makanin had found
the simpler example

Using these relations as rules for a multiway system most
initial strings yield behavior that either dies out or becomes
repetitive. The shortest initial strings that give unbounded
growth are  and —though both of
these still eventually yield just exponentially increasing
numbers of distinct strings. In 1967 Yuri Matiyasevich
constructed a semigroup with 3 complicated relations that
has an undecidable word problem. It is not yet known
whether undecidability can occur in a semigroup with a
single relation. The word problem is known to be decidable
for commutative semigroups. 

The word problem for groups was shown to be undecidable
in the mid-1950s by Petr Novikov and William Boone. There

are however various classes of groups for which it is
decidable. Abelian groups are one example. Another are so-
called automatic groups, studied particularly in the 1980s, in
which equivalence of words can be recognized by a finite
automaton. (Such groups turn out to have definite
geometrical properties, and are associated with spaces of
negative curvature.) Even if a group ultimately has only a
finite number of distinct elements, its word problem (with
elements specified as products of generators) may still be
undecidable. Constructions of groups with undecidable
word problems have been based on setting up relations that
correspond to the rules in a universal Turing machine. With
the simplest such machine known in the past (see page 706)
one gets a group with 32 generators and 142 relations. But
with the universal Turing machine from page 707 one gets a
group with 14 generators and 52 relations. (In general 
generators and  relations are needed.) From the
results in this book it seems likely that there are still much
simpler examples—some of which could perhaps be found
by setting up groups to emulate rule 110. Note that groups
with just one relation were shown always to have decidable
word problems by Wilhelm Magnus in 1932.

For ordinary multiway (semi-Thue) systems, an example
with an undecidable word problem is known with 2 types of
elements and 5 very complicated rules—but I am quite
certain that much simpler examples are possible. (1-rule
multiway systems always have decidable word problems.) 

â Sequence equations. One can ask whether by replacing
variables by sequences one can satisfy so-called word or
string equations such as 

(with shortest solution ,
). Knowing about PCP and

Diophantine equations one might expect that in general this
would be undecidable. But in 1977 Gennadií Makanin gave a
complicated algorithm that solves the problem completely in
a finite number of steps (though in general triple exponential
in the length of the equation). 

â Fast algorithms. Most of the fast algorithms now known
seem to fall into a few general classes. The most common are
ones based on repetition or iteration, classic examples being
Euclid’s algorithm for  (page 915), Newton’s method for

 and the Gaussian elimination method for
. Starting in the 1960s it began to be realized that

fast algorithms could be based on nested or recursive
processes, and such algorithms became increasingly popular
in the 1980s. In most cases, the idea is recursively to divide
data into parts, then to do operations on these parts, and
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finally reassemble the results. An example is the algorithm of
Anatolii Karatsuba from 1961 for finding products of -digit
numbers (with ) by operating on their digits in the
nested pattern of page 608 (see also page 1093) according to

Other examples include the fast Fourier transform (page
1074) and related algorithms for , the quicksort
algorithm for , and many algorithms in fields such as
computational geometry. Starting in the 1980s fast algorithms
based on randomized methods (see page 1192) have also
become popular. But particularly from the discoveries in this
book, it seems likely that the very fastest algorithms for many
kinds of problems will not in the end have the type of regular
structure that characterizes almost all algorithms currently
used.

â Sorting networks. Any list can be sorted using
 by doing a fixed sequence of

comparisons of pairs 

(Different comparisons often do not interfere and so can be
done in parallel.) The pictures below show a few sequences
of pair comparisons that sort lists of length . 

The top two (both with 120 comparisons) have a repetitive
structure and correspond to standard sorting algorithms:
transposition sort and insertion sort. (Quicksort does not use
a fixed sequence of comparisons.) The first one on the bottom
(with 63 comparisons) has a nested structure and uses the
method invented by Kenneth Batcher in 1964:

The second one on the bottom also uses 63 comparisons,
while the last one is the smallest known for : it uses 60
comparisons and was invented by Milton Green in 1969. For

 the smallest numbers of comparisons known to work

are . (In
general all lists will be sorted correctly if lists of just 0’s and
1’s are sorted correctly; allowing even just one of these 
cases to be wrong greatly reduces the number of comparisons
needed.) For  the Batcher method is known to give
minimal length sequences of comparisons (for  the total
numbers of minimal sequences that work are

). The Batcher method in general requires
about  comparisons; it is known that in principle

 are sufficient. Various structures such as de Bruijn
and Cayley graphs can be used as the basis for sorting
networks, though it is my guess that typically the smallest
networks for given  will have no obvious regularity. (See
also page 832.) 

â Page 758 · Computational complexity theory. Despite its
rather general name, computational complexity theory has
for the most part been concerned with the quite specific issue
of characterizing how the computational resources needed to
solve problems grow with input size. From knowing explicit
algorithms many problems can be assigned to such classes as:

äNC: can be solved in a number of steps that increases like a 
polynomial in the logarithm of the input size if processing 
is done in parallel on a number of arbitrarily connected 
processors that increases like a polynomial in the input 
size. (Examples include addition and multiplication.)

äP (polynomial time): can be solved (with one processor) in 
a number of steps that increases like a polynomial in the 
input size. (Examples include evaluating standard 
mathematical functions and simulating the evolution of 
cellular automata and Turing machines.)

äNP (non-deterministic polynomial time): solutions can be 
checked in polynomial time. (Examples include many 
problems based on constraints as well as simulating the 
evolution of multiway systems and finding initial 
conditions that lead to given behavior in a cellular 
automaton.)

äPSPACE (polynomial space): can be solved with an 
amount of memory that increases like a polynomial in the 
input size. (Examples include finding repetition periods in 
systems of limited size.)

Central to computational complexity theory are a collection
of hypotheses that imply that NC, P, NP and PSPACE form a
strict hierarchy. At each level there are many problems
known that are complete at that level in the sense that all
other problems at that level can be translated to instances of
that problem using only computations at a lower level. (Thus,
for example, all problems in NP can be translated to instances
of any given NP-complete problem using computations in P.)

n
n = 2s

First[f [IntegerDigits[x, 2, n], IntegerDigits[y, 2, n], n/2]]

f [x_, y_, n_] :=
If[n < 1, x y, g[Partition[x, n], Partition[y, n], n]]

g[{x1_, x0_}, {y1_, y0_}, n_] :=
With[{z1 = f [x1, y1, n/2], z0 = f [x0, y0, n/2]},

z1 22 n + ( f [x0 + x1, y0 + y1, n/2] - z1 - z0) 2n + z0]

ListConvolve
Sort

Fold[PairSort, list, pairs]

PairSort[a_, p : {_, _}] := Block[{t = a}, t0p1 = Sort[t0p1]; t]

n = 16

Flatten[Reverse[Flatten[With[{m = Ceiling[Log[2, n]] - 1},
Table[With[{d = If[ i 2 m, 2t , 2i+1 - 2t]}, Map[

{0, d} + # &, Select[Range[n - d], BitAnd[# - 1, 2t] 2
If[ i 2 m, 0, 2t] &]]], {t, 0, m}, {i, t, m}]], 1]], 1]

n = 16

n < 16

{0, 1, 3, 5, 9, 12, 16, 19, 25, 29, 35, 39, 45, 51, 56, 60}

2n

n < 8
n < 5

{1, 6, 3, 13866}
n Log[n]2

n Log[n]

n
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â History. Ideas of characterizing problems by growth rates in
the computational resources needed to solve them were
discussed in the 1950s, notably in the context of operation
counts for numerical calculations, sizes of circuits for
switching and other applications, and theoretical lengths of
proofs. In the 1960s such ideas were increasingly formalized,
particularly for execution times on Turing machines, and in
1965 the suggestion was made that one should consider
computations feasible if they take times that grow like
polynomials in their input size. NP completeness (see below)
was introduced by Stephen Cook in 1971 and Leonid Levin
around the same time. And over the course of the 1970s a
great many well-known problems were shown to be NP-
complete. A variety of additional classes of computations—
notably ones like NC with various kinds of parallelism, ones
based on circuits and ones based on algebraic operations—
were defined in the 1970s and 1980s, and many detailed
results about them were found. In the 1980s much work was
also done on the average difficulty of solving NP-complete
problems—both exactly and approximately (see page 985).
When computational complexity theory was at its height in
the early 1980s it was widely believed that if a problem could
be shown, for example, to be NP-complete then there was
little chance of being able to work with it in a practical
situation. But increasingly it became clear that general
asymptotic results are often quite irrelevant in typical
problems of reasonable size. And certainly pattern matching
with  in Mathematica, as well as polynomial manipulation
functions like , routinely deal with problems
that are formally NP-complete.

â Lower bounds. If one could prove for example that 
then one would immediately have lower bounds on all NP-
complete problems. But absent such a result most of the
general lower bounds known so far are based on fairly
straightforward information content arguments. One cannot
for example sort  objects in less than about  steps since one
must at least look at each object, and one cannot multiply two

-digit numbers in less than about  steps since one must at
least look at each digit. (As it happens the fastest known
algorithms for these problems require very close to  steps.)
And if the output from a computation can be of size  then
this will normally take at least  steps to generate. Subtleties
in defining how big the input to a computation really is can
lead to at least apparently exponential lower bounds. An
example is testing whether one can match all possible
sequences with a regular expression that involves -fold
repetitions. It is fairly clear that this cannot be done in less
than about  steps. But this seems exponentially large if  is
specified by its digit sequence in the original input regular

expression. Similar issues arise in the problem of determining
truth or falsity in Presburger arithmetic (see page 1152). 

Diagonalization arguments analogous to those on pages 1128
and 1162 show that in principle there must exist functions
that can be evaluated only by computations that exceed any
given bound. But actually finding examples of such functions
that can readily be described as having some useful purpose
has in the past seemed essentially impossible.

If one sufficiently restricts the form of the underlying system
then it sometimes becomes possible to establish meaningful
lower bounds. For example, with deterministic finite
automata (see page 957), there are sequences that can be
recognized, but only by having exponentially many states.
And with DNF Boolean expressions (see page 1096) functions
like  are known to require exponentially many terms,
even—as discovered in the 1980s—if any limited number of
levels are allowed (see page 1096).

â Algorithmic complexity theory. Ordinary computational
complexity theory asks about the resources needed to run
programs that perform a given computation. But algorithmic
complexity theory (compare page 1067) asks instead about
how large the programs themselves need to be. The results of
this book indicate however that even programs that are very
small—and thus have low algorithmic complexity—can
nevertheless perform all sorts of complex computations.

â Turing machines. The Turing machines used here in effect
have tapes that extend only to the left, and have no explicit
halt states. (They thus differ from the Turing machines which
Marvin Minsky and Daniel Bobrow studied in 1961 in the

,  case and concluded all had simple behavior.) One
can think of each Turing machine as computing a function

 of the number  given as its input. The function is total
(i.e. defined for all ) if the Turing machine always halts;
otherwise it is partial (and undefined for at least some ).
Turing machines can be numbered according to the scheme
on page 888. The number of steps before a machine with
given rule halts can be computed from (see page 888)

Of the 4096 Turing machines with , , 748 never halt,
3348 sometimes halt and 1683 always halt. (The most rarely
halting are ones like machine 3112 that halt only when

.) The number of distinct functions  that can be
computed by such machines is 351, of which 149 are total. 17
machines compute ; none compute ; 17 compute 
and do not halt when —an example being 2575. Most
machines compute functions that involve digit manipulations

__

GroebnerBasis

P % NP

n n

n n

n
2n

2n

s

s s

Xor

s = 2 k = 2

f [x] x
x

x

Module[{s = 1, a, i = 1, d}, a[_] = 0; MapIndexed[a[#2011] =
#1 &, Reverse[IntegerDigits[x, 2]]]; Do[{s, a[ i], d} =

{s, a[ i]} /. rule; i -= d; If[ i 2 0, Return[t]], {t, tmax}]]

s = 2 k = 2

x = 4 j - 1 f [x]

x + 1 x + 2 x - 1
x = 0
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without traditional interpretations as mathematical functions. It
is quite common to find machines that compute almost the
same function: 1507 and 1511 disagree (where 1507 halts) only
for . If  is the number of steps to compute  then
the number of distinct pairs  is 492, or 230 for total

. In 164  does not increase with the number of digits  in
, in 295 it increases linearly, in 27 quadratically, and in 6

exponentially. For total  the corresponding numbers are 84,
136, 7, 3; the 3 machines with exponential growth are 378
(example (f) on page 761), 1953 and 2289; all compute trivial
functions. Machine 1447 (example (e)) computes the function
which takes the digit sequence of  and replaces its first

 0’s by 1’s.

Among the 2,985,984 Turing machines with , , at
least 2,550,972 sometimes halt, and about 1,271,304 always
do. The number of distinct functions that can be computed is
about 36,392 (or 75,726 for  pairs). 8934 machines
compute  (by 25 different methods, including ones like
machine 164850 that take exponential steps), 14 compute

, and none compute . Those machines that take
times that grow precisely like  all tend to compute very
straightforward functions which can be computed much
faster by other machines. 

Among the 2,985,984 Turing machines with , , at
least 2,760,721 sometimes halt, and about 974,595 always halt.
The number of distinct functions that can be computed is
about 315,959 (or 457,508 for  pairs). (The fact that
there are far fewer distinct functions in the ,  case is a
consequence of equivalences between states but not colors.) 

Among the  Turing machines with ,  about 80%
at least sometimes halt, and about 16% always do. Still none
compute . And no Turing machine of any size can
directly compute a function like ,  or  that
involves manipulating all digits in . 

â Functions. The plots below show the values of the functions
 for  from 0 to 1023 computed by the Turing machines on

pages 761 and 763. Many of the plots use logarithmic scales.
Rarely are the values close to their absolute maximum . 

â Machine 1507. This machine shows in some ways the most
complicated behavior of any ,  Turing machine. As
suggested by picture (k) it fails to halt if and only if its
configuration at some step matches  (in
the alternative form of page 888). For any input  one can test
whether the machine will ever halt using

This test takes at most  recursive steps, even though the
original machine can take of order  steps to halt. Among

,  machines there are 314 machines that do the same
computation as 1507, but none any faster.

â Page 763 · Properties. The maximum numbers of steps
increase with input size according to:

(a) 

(b) (does not halt for )

(c) 

(d) 

(h) (see note below)

(i) (does not halt for various )

(j) (does not halt for various )

(k) (does not halt for )

(l) 

â Longest halting times. The pictures below show the largest
numbers of steps  that it takes any machine of a
particular type to halt when given successive inputs . For

,  the largest results for all inputs of sizes 0 to 4 are
, all obtained with machine 1447. For 

the largest results are , achieved for  with
machines 378 and 1351. For ,  the largest results
for successive sizes are  (often
achieved by machine 600720; see below) and for , 

 (often achieved by machine 840971).
Note the similarity to the busy beaver problem discussed on
page 889.

x > 35 t[x] f [x]
{f [x], t[x]}

f [x] t[x] n
x

f [x]

x
3 + IntegerExponent[x + 1, 2]

s = 3 k = 2

{f [x], t[x]}
x + 1

x + 2 x + 3
2n

s = 2 k = 3

{f [x], t[x]}
s = 3 k = 2

232 s = 4 k = 2

x + 3
x2 2 x Mod[x, 2]
x

f [x] x

t[x]

(b), (c), (d) ( f ), (g), (h) (k)

(a) (e) ( i), ( j)

(d) (h) ( l)

(c) (g) (k)

(b) ( f ) ( j)

(a) (e) ( i)

s = 2 k = 2

{( 0) ..., {1, 1}, 1, ___}
x

u[{Reverse[IntegerDigits[x, 2]], 0}]

u[ list_] := v[Split[Flatten[ list]]]

v[{a_, b_ : {}, c_ : {}, d_ : {}, e_ : {}, f_ : {}, g___}] :=
Which[a 2 {1} || First[a] 2 0, True, c 2 {}, False,

EvenQ[Length[b]], u[{a, 1 - b, c, d, e, f , g}],
EvenQ[Length[c]], u[{a, 1 - b, c, 1, Rest[d], e, f , g, 0}],
e 2 {} || Length[d] > Length[b] + Length[a] - 2,
True, EvenQ[Length[e]], u[{a, b, c, d, f , g}],
True, u[{a, 1 - b, c, 1 - d, e, 1, Rest[f], g, 0}]]

n/3
n2

s = 3 k = 2

14 2^Floor[n/2] - 11+ 2 Mod[n, 2]

x = 1

2n - 1

(7 (1+Mod[n, 2]) 4^Floor[n/2] + 2 Mod[n, 2] - 7)/3

x > 53

x > 39

x = 1

5 (2n-2 - 1)

t[x]
x

s = 2 k = 2
{7, 17, 31, 49, 71} n > 4

2n+2 - 3 x = 2n - 1
s = 3 k = 2

{25, 53, 159, 179, 1021, 5419}
s = 2 k = 3

{35, 83, 843, 8335}
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â Growth rates. Some Turing machine can always be found that
has halting times that grow at any specified rate. (See page 103
for a symbolic system with halting times that grow like

.) As discussed on page 1162, if the growth rate
is too high then it may not be possible to prove that the
machines halt using, say, the standard axioms of arithmetic. The
maximum halting times above increase faster than the halting
times for any specific Turing machine, and are therefore
ultimately not computable by any single Turing machine.

â Machine 600720. (Case (h) of page 763.) The maximum
halting times for the first few sizes  are

These occur for inputs  and
correspond to outputs (each themselves maximal for given )

Such maxima often seem to occur when the input  has the
form  (and so has digits ). The
output  in such cases is always  where 

One then finds that  has the form
 for some ,

suggesting a connection with the number theory systems of
page 122. The corresponding halting time  is

 with

For  it then turns out that  is extremely close to
, and  to , for

some integer . 

It is very difficult in general to find traditional formulas for
 and . But if  involves no

consecutive 0’s then for example  can be obtained from 

(The corresponding expression for  is more complicated.)
A few special cases are:

How the halting times behave for large  is not clear. It is
certainly possible that they could increase like

, or , although for  a
better fit for  is just , with outputs increasing like

.

â Page 766 · NP completeness. Among the hundreds of
problems known to be NP-complete are:

äCan a non-deterministic Turing machine reach a certain 
state in a given number of steps?

äCan a multiway system generate a certain string in a given 
number of steps?

ä Is there an assignment of truth values to variables that 
makes a given Boolean expression true? (Satisfiability; 
related to minimal Boolean expressions of page 1095.)

äWill a given sequence of pair comparisons correctly sort 
any list (see page 1142)?

äWill a given pattern of origami folds yield an object that 
can be made flat?

äDoes a network have any parts that match a given 
subnetwork (see page 1038)? 

ä Is there a path shorter than some given length that visits all 
of some set of points in the plane? (Travelling salesman; 
related to the network layout problem of page 1031.)

ä Is there a solution of a certain size to an integer linear 
programming problem?

ä Is there any  such that ? (See page 
1090.)

äDoes a matrix have a permanent of given value?

ä Is there a way to satisfy tiling constraints in a finite region? 
(See page 984.)

ä Is there a string of some limited length that solves a 
correspondence problem?

ä Is there an initial condition to a cellular automaton that 
yields particular behavior after a given number of steps?

(In cases where numbers are involved, it is usually crucial
that these be represented by base 2 digit sequences, and not,
say, in unary.) Many NP-complete problems at first seem
quite unrelated. But often their equivalence becomes clear
just by straightforward identification of terms. And so for
example the equivalence of satisfiability to problems about
networks can be seen by identifying variables and clauses in
Boolean expressions respectively with connections and nodes
in networks.

One can get an idea of the threshold of NP completeness by
looking at seemingly similar problems where one is
NP-complete but the other is in P. Examples include:

Nest[2# &, 0, n]

n
{5, 159, 161, 1021, 5419, 315391,

1978213883, 1978213885, 3018415453261}

{1, 2, 5, 10, 26, 34, 106, 213, 426}

n

2^{3, 23, 24, 63, 148, 1148, 91148, 91149, 3560523} - 1

x
(20 4s - 2)/3 {1, 1, 0, 1, 0, ?, 1, 0}

f [x] 2u - 1
u = Nest[( 13 + ( 6 # + 8) (5/2)^

IntegerExponent[6 # + 8, 2]) /6 &, 1, s + 1]

6 u + 8
Nest[If[EvenQ[#], 5 # /2, # + 21] &, 14, m] m

t[x]
Last[Nest[h, {8, 4 s + 24}, s]] - 1

h[{i_, j_}] := With[{e = IntegerExponent[3 i + 4, 2]}, {13/6 +
( i + 4/3) (5/2)e+1, ( ( 154+ 75 ( i + 4/3) (5/2)e)2 -

16321 - 7860 i - 900 i2 + 3360 e)/3780 + j}]

s > 3 f [x]
3560523 (5/2)r t[x] 18865098979373 (5/2)2 r

r

f [x] t[x] IntegerDigits[x, 2]
f [x]

2^ ( b[Join[{1, 1}, #], Length[#]] &)[IntegerDigits[x, 2]] - 1

a[{l_, _}, r_] := ( {l + ( 5 r - 3 #) /2, #} &)[Mod[r, 2]]

a[{l_, 0}, 0] := {l + 1, 0}

a[{l_, 1}, 0] :=
( {( 13 +# ( 5 /2)^ IntegerExponent[#, 2]) /6, 0} &)[6 l + 2]

b[ list_, i_] := First[Fold[a, {Apply[Plus, Drop[ list, -i]], 0},
Apply[Plus, Split[Take[ list, -i], #1 2 #2 9 0 &], 1]]]

t[x]

f [4 s] = 4 s + 3

f [4 s + 1] = 2 f [2 s] + 1

f [2s - 1] = 2(10 s+5+3 (-1)s)/4 - 1

n

NestList[#2 &, 2, n] 22n

x = ( 20 4s - 2)/3
n ¦ 200 22.6 n

221.3 n

x < a Mod[x2, b] 2 c
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äFinding a Hamiltonian circuit that visits once every 
connection in a given network is NP-complete, but finding 
an Euler circuit that visits once every node is in P.

äFinding the longest path between two nodes in a network 
is NP-complete, but finding the shortest path is in P.

äDetermining satisfiability for a Boolean expression with 3 
variables in each clause is NP-complete, but for one with 2 
variables is in P. (The latter is like a network with only 2 
connections at each node.)

ä Solving quadratic Diophantine equations  is 
NP-complete, but solving linear ones  is in P.

äFinding a minimum energy configuration for a 2D Ising 
spin glass in a magnetic field is NP-complete, but is in P if 
there is no magnetic field.

äFinding the permanent of a matrix is NP-complete, but 
finding its determinant is in P.

It is not known whether problems such as integer factoring or
equivalence of networks under relabelling of nodes (graph
isomorphism) are NP-complete. It is known that in principle
there exist NP problems that are not in P, yet are not
NP-complete. 

â Natural systems. Finding minimum energy configurations
is formally NP-complete in standard models of natural
systems such as folding protein and DNA molecules (see
page 1003), collections of charges on a sphere (compare page
987), and finite regions of spin glasses (see page 944). As
discussed on page 351, however, it seems likely that in nature
true minima are very rare, and that instead what is usually
seen are just the results of actual dynamical processes of
evolution.

In quantum field theory and to a lesser extent quantum
mechanics and celestial mechanics, approximation schemes
based on perturbation series seem to require computations
that grow very rapidly with order. But exactly what this
implies about the underlying physical processes is not
clear.

â P versus NP questions. Most programs that are explicitly
constructed to solve specific problems tend at some level to
have rather simple behavior—often just repetitive or nested,
so long as appropriate number representations are used. And
it is this that makes it realistic to estimate asymptotic growth
rates using traditional mathematics, and to determine
whether the programs operate in polynomial time. But as the
pictures on page 761 suggest, arbitrary computational
systems—even Turing machines with very simple rules—can
exhibit much more complicated behavior with no clear
asymptotic growth rate. And indeed the question of whether

the halting times for a system grow only like a power of input
size is in general undecidable. And if one tries to prove a
result about halting times using, say, standard axioms of
arithmetic or set theory, one may find that the result is
independent of those axioms. So this makes it far from clear
that the general  question has a definite answer within
standard axiom systems of mathematics. If one day someone
were to find a provably polynomial time algorithm that
solves an NP-complete problem then this would establish
that . But it could well be that the fastest programs for
NP-complete problems behave in ways that are too
complicated to prove much about using the standard axioms
of mathematics.

â Non-deterministic Turing machines. Generalizing rules
from page 888 by making each right-hand side a list of
possible outcomes, the list of configurations that can be
reached after  steps is given by

â Page 767 · Implementation. Given a non-deterministic
Turing machine with rules in the form above, the rules for a
cellular automaton which emulates it can be obtained from

â Page 768 · Satisfiability. Given variables , ,
 representing whether at step  a non-deterministic

Turing machine is in state , the tape square at position  has
color , and the head is at position , the following CNF
expression represents the assertion that a Turing machine
with  states and  possible colors follows the specified
rules and halts after at most  steps:

 

a x2 + b y 2 c
a x + b y 2 c

P = NP

P = NP

t

NTMEvolve[rule_, inits_, t_Integer] := Nest[
Union[Flatten[Map[NTMStep[rule, #] &, #], 1]] &, inits, t]

NTMStep[rule_List, {s_, a_, n_}] /; 1 < n < Length[a] :=
Apply[{#1, ReplacePart[a, #2, n], n+#3} &,

Replace[{s, a0n1}, rule], {1}]

NDTMToCA[tm_] := Flatten[{{_, h, _} ! h, {s, _c, _} ! e, {s,
_, _} ! s, {_, s, c[ i_]} ! s[ i], {_, s, x_} ! x, {a[_, _], _s, _} ! s,
{_, a[x_, y_], s[ i_]} ! a[x, y, i], {x_, _s, _} ! x, {_, _, s[ i_]} !
s[ i], Map[Table[With[{b = (#0Min[Length[#], z]1 &)[
{x, #} /. tm]}, If[Last[b] 2 -1, {{a[_], a[x, #, z], e} ! h, {a[
_], a[x, #, z], s} ! a[x, #, z], {a[_], a[x, #, z], _} ! a[b021],
{a[x, #, z], a[w_], _} ! a[b011, w], {_, a[w_], a[x, #, z]} !
a[w]}, {{a[_], a[x, #, z], _} ! a[b021], {a[x, #, z], a[w_],
_} ! a[w], {_, a[w_], a[x, #, z]} ! a[b011, w]}]], {x,

Max[Map[#01, 11 &, tm]]}, {z, Max[Map[Length[#021] &,
tm]]}] &, Union[Map[#01, 21 &, tm]]], {_, x_, _} ! x}]

²[t, s] °[t, x, a]
±[t, n] t

s x
a n

stot ktot
t

NDTMToCNF[rules_, {s_, a_, n_}, t_] :=
{Table[Apply[Or, Table[²[ i, j], { j , stot}]], {i, t - 1}],
Table[! ²[ i, j] || ! ²[ i, k], {i, 0, t - 1}, { j , stot}, {k, j + 1, stot}],
Table[Apply[Or, Table[±[ i, j], { j , n+ i, Max[0, n - i], -2}]],
{i, 0, t}], Table[!±[ i, j] || !±[ i, k], {i, 0, t}, { j , n+ i, Max[0,
n - i], -2}, {k, j + 2, n+ i}], Table[Apply[Or, Table[°[ i, j , k],
{k, 0, ktot - 1}]], {i, 0, t - 1}, { j , Max[1, n - i], n+ i}],

Table[! °[ i, j , k] || ! °[ i, j , m], {i, 0, t - 1}, { j , Max[1, n - i],
n+ i}, {k, 0, ktot - 1}, {m, k + 1, ktot - 1}], ²[0, s],
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â Density of difficult problems. There are arguments that in
an asymptotic sense most instances chosen at random of
problems like limited-size PCP or tiling will be difficult to
solve. In a problem like satisfiability, however, difficult
instances tend to occur only on the boundary between cases
where the density of black or white squares implies that there
is usually satisfaction or usually not satisfaction. If one looks
at simple instances of problems (say PCP with short strings)
then my experience is that many are easy to solve. But just as
some fraction of cellular automata with very simple rules
show immensely complex behavior, so similarly it seems that
some fraction of even simple instances of many NP-complete
problems also tend to be difficult to solve.

â Page 770 · Rule 30 inversion. The total numbers of
sequences for  from 1 to 15 not yielding stripes of heights 1
and 2 are respectively

The sideways evolution of rule 30 discussed on page 601
implies that if one fills cells from the left rather than the right
then some sequence of length  will always yield any
given stripe of height . 

If the evolution of rule 30 can be set up as on page 704 to
emulate any Boolean function then the problem considered
here is immediately equivalent to satisfiability. 

â Systems of limited size. In the system 
from page 255 the repetition period  can be
computed using Euclid’s algorithm in at most about

 steps. In the system  from
page 257, the repetition period 
probably cannot always be computed in any polynomial of

 steps, since otherwise  could also be
computed in about this number of steps. (But see note below.)
In a cellular automaton with  cells, the problem of finding
the repetition period is in general PSPACE-complete—as
follows from the possibility of universality in the underlying
cellular automaton. And even in a case like rule 30 I suspect
that the period cannot be found much faster than by tracing
nearly  steps of evolution. (I know of no way for example

to break the computation into parts that can be done in
parallel.) With sufficiently simple behavior, a cellular
automaton repetition period can readily be determined in
some power of  steps. But even with an additive rule
and nested behavior, the period depends on quantities like

, which probably take more like 
steps to evaluate. (But see note below.)

â Page 771 · Quantum computers. In an ordinary classical
setup one typically describes the state of something like a 2-
color cellular automaton with  cells just by giving a list of 
color values. But the standard formalism of quantum theory
(see page 1058) implies that for an analogous quantum
system—like a line of  quantum spins each either up or
down—one instead has to give a whole vector of probability
amplitudes for each of the  possible complete underlying
spin configurations. And these amplitudes  are assumed to
be complex numbers with a continuous range of possible
values, subject only to the conventional constraint of unit
total probability . The evolution of
such a quantum system can then formally be represented by
successive multiplication of the vector of amplitudes by
appropriate  unitary matrices. 

In a classical system like a cellular automaton with  cells a
probabilistic ensemble of states can similarly be described by
a vector of  probabilities —now satisfying

, and evolving by multiplication with
 matrices having a single  in each row. (If the system

is reversible—as in the quantum case—then the matrices are
invertible.) But even if one assumes that all  states in the
ensemble somehow manage to evolve in parallel, it is still
fairly clear that to do reliable computations takes essentially
as much effort as evolving single instances of the underlying
system. For even though the vector of probabilities can
formally give outcomes for  different initial conditions, any
specific individual outcome could have probability as small
as —and so would take  trials on average to detect. 

The idea of setting up quantum analogs of systems like
Turing machines and cellular automata began to be pursued
in the early 1980s by a number of people, including myself.
At first it was not clear what idealizations to make, but by the
late 1980s—especially through the work of David Deutsch—
the concept had emerged that a quantum computer should
be described in terms of a network of basic quantum gates.
The idea was to have say  quantum spins (each representing
a so-called qubit), then to do computations much like in the
reversible logic systems of page 1097 or the sorting networks
of page 1142 by applying some appropriate sequence of
elementary operations. It was found to be sufficient to do
operations on just one and two spins at a time, and in fact it
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was shown that any  unitary matrix can be
approximated arbitrarily closely by a suitable sequence of for
example underlying 2-spin 
operations (assuming values 0 and 1), together with 1-spin
arbitrary phase change operations. Such phase changes can
be produced by repeatedly applying a single irrational
rotation, and using the fact that  will eventually
for some  come close to any given phase (see page 903).
From the involvement of continuous numbers, one might at
first imagine that it should be possible to do fundamentally
more computations than can be done say in ordinary discrete
cellular automata. But all the evidence is that—just as
discussed on page 1128—this will not in fact be possible if
one makes the assumption that at some level discrete must be
used to set up the initial values of probability amplitudes.

From the fact that the basic evolution of an -spin quantum
system in effect involves superpositions of  spin
configurations one might however still imagine that in finite
computations exponential speedups should be possible. And
as a potential example, consider setting up a quantum
computer that evaluates a given Boolean function—with its
initial configurations of spins encoding possible inputs to the
function, and the final configuration of a particular spin
representing the output from the function. One might
imagine that with such a computer it would be easy to solve
the NP-complete problem of satisfiability from page 768: one
would just start off with a superposition in which all 
possible inputs have equal amplitude, then look at whether
the spin representing the output from the function has any
amplitude to be in a particular configuration. But in an actual
physical system one does not expect to be able to find values
of amplitudes directly. For according to the standard
formalism of quantum theory all amplitudes do is to
determine probabilities for particular outcomes of
measurements. And with the setup described, even if a
particular function is ultimately satisfiable the probability for
a single output spin to be measured say as up can be as little
as —requiring on average  trials to distinguish from ,
just as in the classical probabilistic case. 

With a more elaborate setup, however, it appears sometimes to
be possible to spread out quantum amplitudes so as to make
different outcomes correspond to much larger probability
differences. And indeed in 1994 Peter Shor found a way to do
this so as to get quantum computers at least formally to factor
integers of size  using resources only polynomial in . As
mentioned in the note above, it becomes straightforward to
factor  if one can get the values of .
But these correspond to periodicities in the list

. Given  spins one can imagine using

their  possible configurations to represent each element of
. But now if one sets up a superposition of all these

configurations, one can compute , then
essentially use  to find periodicities—all with a
polynomial number of quantum gates. And depending on

 the resulting amplitudes show fairly large
differences which can then be detected in the probabilities for
different outcomes of measurements. 

In the mid-1990s it was thought that quantum computers
might perhaps give polynomial solutions to all NP problems.
But in fact only a very few other examples were found—all
ultimately based on very much the same ideas as factoring.
And indeed it now seems decreasingly likely that quantum
computers will give polynomial solutions to NP-complete
problems. (Factoring is not known to be NP-complete.) 

And even in the case of factoring there are questions about
the idealizations used. It does appear that only modest
precision is needed for the initial amplitudes. And it seems
that perturbations from the environment can be overcome
using versions of error-correcting codes. But it remains
unclear just what might be needed actually to perform for
example the final measurements required.

Simple physical versions of individual quantum gates have
been built using particles localized for example in ion traps.
But even modestly larger setups have been possible only in
NMR and optical systems—which show formal similarities
to quantum systems (and for example exhibit interference)
but presumably do not have any unique quantum advantage.
(There are other approaches to quantum computation that
involve for example topology of 4D quantum fields. But it is
difficult to see just what idealizations are realistic for these.)

â Circuit complexity. Any function with a fixed size of input
can be computed by a circuit of the kind shown on page 619.
How the minimal size or depth of circuit needed grows with
input size then gives a measure of the difficulty of the
computation, with circuit depth growing roughly like number
of steps for a Turing machine. Note that much as on page 662
one can construct universal circuits that can be arranged by
appropriate choice of parts of their input to compute any
function of a given input size. (Compare page 703.)

â Page 771 · Finding outcomes. If one sets up a function to
compute the outcome after  steps of evolution from some
fixed initial condition—say a single black cell in a cellular
automaton—then the input to this function need contain only

 digits. But if the evolution is computationally
irreducible then to find its outcome will involve explicitly
following each of its  steps—thereby effectively finding
results for each of the  possible arrangements of
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digits corresponding to numbers less than . Note that the
computation that is involved is not necessarily in either NP
or PSPACE.

â P completeness. If one allows arbitrary initial conditions in a
cellular automaton with nearest-neighbor rules, then to
compute the color of a particular cell after  steps in general
requires specifying as input the colors of all  initial cells
up to distance  away (see page 960). And if one always does
computations using systems that have only nearest-neighbor
rules then just combining  bits of information can take
up to  steps—even if the bits are combined in a way that is
not computationally irreducible. So to avoid this one can
consider systems that are more like circuits in which any
element can get data from any other. And given  elements
operating in parallel one can consider the class NC studied
by Nicholas Pippenger in 1978 of computations that can be
done in a number of steps that is at most some power of

. Among such computations are , , ,
 and  for integers, as well as determining

outcomes in additive cellular automata (see page 609). But I
strongly suspect that computational irreducibility prevents
outcomes in systems like rule 30 and rule 110 from being
found by computations that are in NC—implying in effect
that allowing arbitrary connections does not help much in
computing the evolution of such systems. There is no way yet
known to establish this for certain, but just as with NP and P
one can consider showing that a computation is P-complete
with respect to transformations in NC. It turns out that
finding the outcome of evolution in any standard universal
Turing machine or cellular automaton is P-complete in this
sense, since the process of emulating any such system by any
other one is in NC. Results from the mid-1970s established
that finding the output from an arbitrary circuit with  or

 gates is P-complete, and this has made it possible to show
that finding the outcome of evolution in various systems not
yet known to be universal is P-complete. A notable example
due to Cristopher Moore from 1996 is the 3D majority cellular
automaton with rule  (see
page 927); another example is the Ising model cellular
automaton from page 982.

Implications for Mathematics and Its Foundations

â History. Babylonian and Egyptian mathematics emphasized
arithmetic and the idea of explicit calculation. But Greek
mathematics tended to focus on geometry, and increasingly
relied on getting results by formal deduction. For being
unable to draw geometrical figures with infinite accuracy this
seemed the only way to establish anything with certainty.

And when Euclid around 330 BC did his work on geometry
he started from 10 axioms (5 “common notions” and 5
“postulates”) and derived 465 theorems. Euclid’s work was
widely studied for more than two millennia and viewed as a
quintessential example of deductive thinking. But in
arithmetic and algebra—which in effect dealt mostly with
discrete entities—a largely calculational approach was still
used. In the 1600s and 1700s, however, the development of
calculus and notions of continuous functions made use of
more deductive methods. Often the basic concepts were
somewhat vague, and by the mid-1800s, as mathematics
became more elaborate and abstract, it became clear that to
get systematically correct results a more rigid formal
structure would be needed. 

The introduction of non-Euclidean geometry in the 1820s,
followed by various forms of abstract algebra in the mid-
1800s, and transfinite numbers in the 1880s, indicated that
mathematics could be done with abstract structures that had
no obvious connection to everyday intuition. Set theory and
predicate logic were proposed as ultimate foundations for all
of mathematics (see note below). But at the very end of the
1800s paradoxes were discovered in these approaches. And
there followed an increasing effort—notably by David
Hilbert—to show that everything in mathematics could
consistently be derived just by starting from axioms and then
using formal processes of proof.

Gödel’s Theorem showed in 1931 that at some level this
approach was flawed. But by the 1930s pure mathematics
had already firmly defined itself to be based on the notion of
doing proofs—and indeed for the most part continues to do
so even today (see page 859). In recent years, however, the
increasing use of explicit computation has made proof less
important, at least in most applications of mathematics. 

â Models of mathematics. Gottfried Leibniz’s notion in the
late 1600s of a “universal language” in which arguments in
mathematics and elsewhere could be checked with logic can
be viewed as an early idealization of mathematics. Starting in
1879 with his “formula language” (Begriffsschrift) Gottlob
Frege followed a somewhat similar direction, suggesting that
arithmetic and from there all of mathematics could be built
up from predicate logic, and later an analog of set theory. In
the 1890s Giuseppe Peano in his Formulario project organized
a large body of mathematics into an axiomatic framework
involving logic and set theory. Then starting in 1910 Alfred
Whitehead and Bertrand Russell in their Principia
Mathematica attempted to derive many areas of mathematics
from foundations of logic and set theory. And although its
methods were flawed and its notation obscure this work did
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much to establish the idea that mathematics could be built up
in a uniform way.

Starting in the late 1800s, particularly with the work of
Gottlob Frege and David Hilbert, there was increasing
interest in so-called metamathematics, and in trying to treat
mathematical proofs like other objects in mathematics. This
led in the 1920s and 1930s to the introduction of various
idealizations for mathematics—notably recursive functions,
combinators, lambda calculus, string rewriting systems and
Turing machines. All of these were ultimately shown to be
universal (see page 784) and thus in a sense capable of
reproducing any mathematical system. String rewriting
systems—as studied particularly by Emil Post—are close to
the multiway systems that I use in this section (see page 938).

Largely independent of mathematical logic the success of
abstract algebra led by the end of the 1800s to the notion that
any mathematical system could be represented in algebraic
terms—much as in the operator systems of this section.
Alfred Whitehead to some extent captured this in his 1898
Universal Algebra, but it was not until the 1930s that the
theory of structures emphasized commonality in the axioms
for different fields of mathematics—an idea taken further in
the 1940s by category theory (and later by topos theory). And
following the work of the Bourbaki group beginning at the
end of the 1930s it has become almost universally accepted
that structures together with set theory are the appropriate
framework for all of pure mathematics. 

But in fact the Mathematica language released in 1988 is now
finally a serious alternative. For while it emphasizes
calculation rather than proof its symbolic expressions and
transformation rules provide an extremely general way to
represent mathematical objects and operations—as for
example the notes to this book illustrate.

(See also page 1176.)

â Page 773 · Axiom systems. In the main text I argue that there
are many consequences of axiom systems that are quite
independent of their details. But in giving the specific axiom
systems that have been used in traditional mathematics one
needs to take account of all sorts of fairly complicated details.

As indicated by the tabs in the picture, there is a hierarchy to
axiom systems in traditional mathematics, with those for
basic and predicate logic, for example, being included in all
others. (Contrary to usual belief my results strongly suggest
however that the presence of logic is not in fact essential to
many overall properties of axiom systems.)

As discussed in the main text (see also page 1155) one can
think of axioms as giving rules for transforming symbolic

expressions—much like rules in Mathematica. And at a
fundamental level all that matters for such transformations
is the structure of expressions. So notation like  and

, while convenient for interpretation, could equally
well be replaced by more generic forms such as  or

 without affecting any of the actual operation of the
axioms.

My presentation of axiom systems generally follows the
conventions of standard mathematical literature. But by
making various details explicit I have been able to put all
axiom systems in forms that can be used almost directly in
Mathematica. Several steps are still necessary though to get
the actual rules corresponding to each axiom system. First,
the definitions at the top of page 774 must be used to expand
out various pieces of notation. In basic logic I use the notation

 to stand for the pair of rules  and . (Note
that  has the precedence of  not .) In predicate logic
the tab at the top specifies how to construct rules (which in
this case are often called rules of inference, as discussed on
page 1155).  is the modus ponens or detachment
rule (see page 1155).  is the generalization rule.

 is applied to the axioms given to get a list of
rules. Note that while  in basic logic is used in the
underlying construction of rules,  in predicate logic is just
an abstract operator with properties defined by the last two
axioms given.

As is typical in mathematical logic, there are some subtleties
associated with variables. In the axioms of basic logic literal
variables like  must be replaced with patterns like  that
can stand for any expression. A rule like 
can then immediately be applied to part of an expression
using . But to apply a rule like 
requires in effect choosing some new expression for  (see
page 1155). And one way to represent this process is just to
have the pattern  and then to say that any
actual rule that can be used must match this pattern. The
rules given in the tab for predicate logic work the same way.
Note, however, that in predicate logic the expressions that
appear on each side of any rule are required to be so-called
well-formed formulas (WFFs) consisting of variables (such
as ) and constants (such as  or ) inside any number of
layers of functions (such as , , or ) inside a layer of
predicates (such as  or ) inside any number of layers of
logical connectives (such as  or ) or quantifiers (such as

 or ). (This setup is reflected in the grammar of the
Mathematica language, where the operator precedences for
functions are higher than for predicates, which are in turn
higher than for quantifiers and logical connectives—thus
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yielding for example few parentheses in the presentation of
axiom systems here.) 

In basic logic any rule can be applied to any part of any
expression. But in predicate logic rules can be applied only
to whole expressions, always in effect using

. The axioms below (devised by
Matthew Szudzik as part of the development of this book)
set up basic logic in this way.

â Basic logic. The formal study of logic began in antiquity (see
page 1099), with verbal descriptions of many templates for
valid arguments—corresponding to theorems of logic—being
widely known by medieval times. Following ideas of abstract
algebra from the early 1800s, the work of George Boole
around 1847 introduced the notion of representing logic in a
purely symbolic and algebraic way. (Related notions had
been considered by Gottfried Leibniz in the 1680s.) Boole
identified  with  and  with , then noted that
theorems in logic could be stated as equations in which  is
roughly  and  is —and that such equations can
be manipulated by algebraic means. Boole’s work was
progressively clarified and simplified, notably by Ernst
Schröder, and by around 1900, explicit axiom systems for
Boolean algebra were being given. Often they included most
of the 14 highlighted theorems of page 817, but slight
simplifications led for example to the “standard version” of
page 773. (Note that the duality between  and  is no
longer explicit here.) The “Huntington version” of page 773
was given by Edward Huntington in 1933, along with

The “Robbins version” was suggested by Herbert Robbins
shortly thereafter, but only finally proved correct in 1996 by
William McCune using automated theorem proving (see
page 1157). The “Sheffer version” based on  (see page
1173) was given by Henry Sheffer in 1913. The shorter
version was devised by David Hillman as part of the
development of this book. The shortest version is discussed
on page 808. (See also page 1175.)

In the main text each axiom defines an equivalence between
expressions. The tradition in philosophy and mathematical
logic has more been to take axioms to be true statements from
which others can be deduced by the modus ponens inference
rule  (see page 1155). In 1879 Gottlob Frege

used his diagrammatic notation to set up a symbolic
representation for logic on the basis of the axioms

Charles Peirce did something similar at almost the same
time, and by 1900 this approach to so-called propositional or
sentential calculus was well established. (Alfred Whitehead
and Bertrand Russell used an axiom system based on  and

 in their original 1910 edition of Principia Mathematica.) In
1948 Jan Lukasiewicz found the single axiom version

equivalent for example to 

It turns out to be possible to convert any axiom system that
works with modus ponens (and supports the properties of )
into a so-called equational one that works with equivalences
between expressions by using 

An analog of modus ponens for  is , and
with this Jean Nicod found in 1917 the single axiom

which was highlighted in the 1925 edition of Principia
Mathematica. In 1931 Mordechaj Wajsberg found the slightly
simpler 

Such an axiom system can be converted to an equational one
using

but then involves 4 axioms.

The question of whether any particular statement in basic
logic is true or false is always formally decidable, although in
general it is NP-complete (see page 768).

â Predicate logic. Basic logic in effect concerns itself with
whole statements (or “propositions”) that are each either 
or . Predicate logic on the other hand takes into account
how such statements are built up from other constructs—like
those in mathematics. A simple statement in predicate logic
is , where  is “for all” and

 is “there exists” (defined in terms of  on page 774)—and
this particular statement can be proved  from the axioms.
In general statements in predicate logic can contain arbitrary
so-called predicates, say  or , that are each either

 or  for given  and . When predicate logic is used
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as part of other axiom systems, there are typically axioms
which define properties of the predicates. (In real algebra, for
example, the predicate  satisfies .) But in pure
predicate logic the predicates are not assumed to have any
particular properties.

Notions of quantifiers like  and  were already discussed
in antiquity, particularly in the context of syllogisms. The first
explicit formulation of predicate logic was given by Gottlob
Frege in 1879, and by the 1920s predicate logic had become
widely accepted as a basis for mathematical axiom systems.
(Predicate logic has sometimes also been used as a model for
general reasoning—and particularly in the 1980s was the
basis for several initiatives in artificial intelligence. But for
the most part it has turned out to be too rigid to capture
directly typical everyday reasoning processes.)

Monadic pure predicate logic—in which predicates always
take only a single argument—reduces in effect to basic logic
and is not universal. But as soon as there is even one arbitrary
predicate with two arguments the system becomes universal
(see page 784). And indeed this is the case even if one
considers only statements with quantifiers ´ µ ´. (The
system is also universal with one two-argument function or
two one-argument functions.)

In basic logic any statement that is true for all possible
assignments of truth values to variables can always be
proved from the axioms of basic logic. In 1930 Kurt Gödel
showed a similar result for pure predicate logic: that any
statement that is true for all possible explicit values of
variables and all possible forms of predicates can always be
proved from the axioms of predicate logic. (This is often
called Gödel’s Completeness Theorem, but is not related to
completeness of the kind I discuss on page 782 and elsewhere
in this section.)

In discussions of predicate logic there is often much said
about scoping of variables. A typical issue is that in, say,

,  and  are dummy variables whose
specific names are not supposed to be significant; yet the
names become significant if, say,  is replaced by . In
Mathematica most such issues are handled automatically. The
axioms for predicate logic given here follow the work of
Alfred Tarski in 1962 and use properties of  to minimize
issues of variable scoping.

(See also higher-order logics on page 1167.)

â Arithmetic. Most of the Peano axioms are straightforward
statements of elementary facts about arithmetic. The last
axiom is a schema (see page 1156) that states the principle of
mathematical induction: that if a statement is valid for ,
and its validity for  implies its validity for , then

it follows that the statement must be valid for all . Induction
was to some extent already used in antiquity—for example in
Euclid’s proof that there are always larger primes. It began to
be used in more generality in the 1600s. In effect it expresses
the idea that the integers form a single ordered sequence, and
it provides a basis for the notion of recursion.

In the early history of mathematics arithmetic with integers
did not seem to need formal axioms, for facts like

 appeared to be self-evident. But in 1861
Hermann Grassmann showed that such facts could be
deduced from more basic ones about successors and
induction. And in 1891 Giuseppe Peano gave essentially the
Peano axioms listed here (they were also given slightly less
formally by Richard Dedekind in 1888)—which have been
used unchanged ever since. (Note that in second-order
logic—and effectively set theory—  and  can be defined
just in terms of ; see page 1160. In addition, as noted by Julia
Robinson in 1948 it is possible to remove explicit mention of

 even in the ordinary Peano axioms, using the fact that if
 then . Axioms 3,

4 and 6 can then be replaced by ,
 and . See

also page 1163.) 

The proof of Gödel’s Theorem in 1931 (see page 1158)
demonstrated the universality of the Peano axioms. It was
shown by Raphael Robinson in 1950 that universality is also
achieved by the Robinson axioms for reduced arithmetic
(usually called Q) in which induction—which cannot be
reduced to a finite set of ordinary axioms (see page 1156)—is
replaced by a single weaker axiom. Statements like

 can no longer be proved in the resulting system
(see pages 800 and 1169). 

If any single one of the axioms given for reduced arithmetic is
removed, universality is lost. It is not clear however exactly
what minimal set of axioms is needed, for example, for the
existence of solutions to integer equations to be undecidable
(see page 787). (It is known, however, that essentially nothing
is lost even from full Peano arithmetic if for example one
drops axioms of logic such as .)

A form of arithmetic in which one allows induction but
removes multiplication was considered by Mojzesz
Presburger in 1929. It is not universal, although it makes
statements of size  potentially take as many as about 
steps to prove (though see page 1143).

The Peano axioms for arithmetic seem sufficient to support
most of the whole field of number theory. But if as I believe
there are fairly simple results that are unprovable from these
axioms it may in fact be necessary to extend the Peano
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axioms to make certain kinds of progress even in practical
number theory. (See also page 1166.)

â Algebraic axioms. Axioms like  can be
used in at least three ways. First, as equations which can be
manipulated—like the axioms of basic logic—to establish
whether expressions are equal. Second, as on page 773, as
statements to be added to the axioms of predicate logic to
yield results that hold for every possible system described by
the axioms (say every possible semigroup). And third, as
definitions of sets whose properties can be studied—and
compared—using set theory. High-school algebra typically
treats axioms as equations. More advanced algebra often uses
predicate logic, but implicitly uses set theory whenever it
addresses for example mappings between objects. Note that
as discussed on page 1159 how one uses algebraic axioms can
affect issues of universality and undecidability. (See also page
1169.) 

â Groups. Groups have been used implicitly in the context of
geometrical symmetries since antiquity. In the late 1700s
specific groups began to be studied explicitly, mainly in the
context of permutations of roots of polynomials, and notably
by Evariste Galois in 1831. General groups were defined by
Arthur Cayley around 1850 and their standard axioms
became established by the end of the 1800s. The alternate
axioms given in the main text are the shortest known. The
first for ordinary groups was found by Graham Higman and
Bernhard Neumann in 1952; the second by William McCune
(using automated theorem proving) in 1992. For
commutative (Abelian) groups the first alternate axioms
were found by Alfred Tarski in 1938; the second by William
McCune (using automated theorem proving) in 1992. In this
case it is known that no shorter axioms are possible. (See
page 806.) Note that in terms of the  operator ,

, and . Ordinary group
theory is universal; commutative group theory is not (see
page 1159).

â Semigroups. Despite their simpler definition, semigroups
have been much less studied than groups, and there have for
example been about 7 times fewer mathematical publications
about them (and another 7 times fewer about monoids).
Semigroups were defined by Jean-Armand de Séguier in
1904, and beginning in the late 1920s a variety of algebraic
results about them were found. Since the 1940s they have
showed up sporadically in various areas of mathematics—
notably in connection with evolution processes, finite
automata and category theory.

â Fields. With  being  and  being  rational, real and
complex numbers are all examples of fields. Ordinary

integers lack inverses under , but reduction modulo a
prime  gives a finite field. Since the 1700s many examples of
fields have arisen, particularly in algebra and number theory.
The general axioms for fields as given here emerged around
the end of the 1800s. Shorter versions can undoubtedly be
found. (See page 1168.) 

â Rings. The axioms given are for commutative rings. With 
being  and  being  the integers are an example. Several
examples of rings arose in the 1800s in number theory and
algebraic geometry. The study of rings as general algebraic
structures became popular in the 1920s. (Note that from the
axioms of ring theory one can only expect to prove results
that hold for any ring; to get most results in number theory,
for example, one needs to use the axioms of arithmetic, which
are intended to be specific to ordinary integers.) For non-
commutative rings the last axiom given is replaced by

. Non-commutative rings already
studied in the 1800s include quaternions and square
matrices. 

â Other algebraic systems. Of algebraic systems studied in
traditional mathematics the vast majority are special cases of
either groups, rings or fields. Probably the most common
other examples are those based on lattice theory. Standard
axioms for lattice theory are (  is usually called meet, and 
join)

Boolean algebra (basic logic) is a special case of lattice theory,
as is the theory of partially ordered sets (of which the causal
networks in Chapter 9 are an example). The shortest single
axiom currently known for lattice theory has  79
and involves 7 variables. But I suspect that in fact a 
less than about 20 is enough.

(See also page 1171.) 

â Real algebra. A notion of real numbers as measures of space
or quantity has existed since antiquity. The development of
basic algebra gave a formal way to represent operations on
such numbers. In the late 1800s there were efforts—notably
by Richard Dedekind and Georg Cantor—to set up a general
theory of real numbers relying only on basic concepts about
integers—and these efforts led to set theory. For purely
algebraic questions of the kind that might arise in high-
school algebra, however, one can use just the axioms given
here. These add to field theory several axioms for ordering,
as well as the axiom at the bottom expressing a basic form of
continuity (specifically that any polynomial which changes
sign must have a zero). With these axioms one can prove
results about real polynomials, but not about arbitrary
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mathematical functions, or integers. The axioms were shown
to be complete by Alfred Tarski in the 1930s. The proof was
based on setting up a procedure that could in principle
resolve any set of real polynomial equations or inequalities.
This is now in practice done by  and other functions
in Mathematica using methods of cylindrical algebraic
decomposition invented in the 1970s—which work roughly
by finding a succession of points of change using .
(Note that with  variables the number of steps needed can
increase like .) (See the note about real analysis below.)

â Geometry. Euclid gave axioms for basic geometry around
300 BC which were used with fairly little modification for
more than 2000 years. In the 1830s, however, it was realized
that the system would remain consistent even if the so-called
parallel postulate was modified to allow space to be curved.
Noting the vagueness of Euclid’s original axioms there was
then increasing interest in setting up more formal axiom
systems for geometry. The best-known system was given by
David Hilbert in 1899—and by describing geometrical
figures using algebraic equations he showed that it was as
consistent as the underlying axioms for numbers. 

The axioms given here are illustrated below. They were
developed by Alfred Tarski and others in the 1940s and
1950s. (Unlike Hilbert’s axioms they require only first-order
predicate logic.) The first six give basic properties of
betweenness of points and congruence of line segments. The
second- and third-to-last axioms specify that space has two
dimensions; they can be modified for other dimensions. The
last axiom is a schema that asserts the continuity of space.
(The system is not finitely axiomatizable.)

The axioms given can prove most of the results in an
elementary geometry textbook—indeed all results that are
about geometrical figures such as triangles and circles
specified by a fixed finite number of points, but which do not
involve concepts like area. The axioms are complete and
consistent—and thus not universal. They can however be
made universal if axioms from set theory are added. 

â Category theory. Developed in the 1940s as a way to
organize constructs in algebraic topology, category theory
works at the level of whole mathematical objects rather than
their elements. In the basic axioms given here the variables
represent morphisms that correspond to mappings between
objects. (Often morphisms are shown as arrows in diagrams,

and objects as nodes.) The axioms specify that when
morphisms are composed their domains and codomains
must have appropriately matching types. Some of the
methodology of category theory has become widely used in
mathematics, but until recently the basic theory itself was not
extensively studied—and its axiomatic status remains
unclear. Category theory can be viewed as a formalization of
operations on abstract data types in computer languages—
though unlike in Mathematica it normally requires that
functions take a single bundle of data as an argument. 

â Set theory. Basic notions of finite set theory have been used
since antiquity—though became widespread only after their
introduction into elementary mathematics education in the
1960s. Detailed ideas about infinite sets emerged in the
1880s through the work of Georg Cantor, who found it
useful in studying trigonometric series to define sets of
transfinite numbers of points. Several paradoxes associated
with infinite sets were quickly noted—a 1901 example due
to Bertrand Russell being to ask whether a set containing all
sets that do not contain themselves in fact contains itself. To
avoid such paradoxes Ernst Zermelo in 1908 suggested
formalizing set theory using the first seven axioms given in
the main text. (The axiom of infinity, for example, was
included to establish that an infinite set such as the integers
exists.) In 1922 Abraham Fraenkel noted that Zermelo’s
axioms did not support certain operations that seemed
appropriate in a theory of sets, leading to the addition of
Thoralf Skolem’s axiom of replacement, and to what is
usually called Zermelo-Fraenkel set theory (ZF). (The
replacement axiom formally makes the subset axiom
redundant.) The axiom of choice was first explicitly
formulated by Zermelo in 1904 to capture the idea that in a
set all elements can be ordered, so that the process of
transfinite induction is possible (see page 1160). The non-
constructive character of the axiom of choice has made it
always remain somewhat controversial. It has arisen in
many different guises and been useful in proving theorems
in many areas of mathematics, but it has seemingly peculiar
consequences such as the Banach-Tarski result that a solid
sphere can be divided into six pieces (each a non-
measurable set) that can be reassembled into a solid sphere
twice the size. (The nine axioms with the axiom of choice are
usually known as ZFC.) The axiom of regularity (or axiom
of foundation) formulated by John von Neumann in 1929
explicitly forbids sets which for example can be elements of
themselves. But while this axiom is convenient in
simplifying work in set theory it has not been found
generally useful in mathematics, and is normally considered
optional at best.
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A few additional axioms have also arisen as potentially
useful. Most notable is the Continuum Hypothesis discussed
on page 1127, which was proved independent of ZFC by Paul
Cohen in 1963. (See also page 1166.)

Note that by using more complicated axioms the only
construct beyond predicate logic needed to formulate set
theory is . As discussed on page 1176, however, one cannot
avoid axiom schemas in the formulation of set theory given
here. (The von Neumann-Bernays-Gödel formulation does
avoid these, but at the cost of introducing additional objects
more general than sets.)

(See also page 1160.)

â General topology. The axioms given define properties of
open sets of points in spaces—and in effect allow issues like
connectivity and continuity to be discussed in terms of set
theory without introducing any explicit distance function. 

â Real analysis. The axiom given is Dedekind’s axiom of
continuity, which expresses the connectedness of the set of
real numbers. Together with set theory it allows standard
results about calculus to be derived. But as well as ordinary
real numbers, these axioms allow non-standard analysis with
constructs such as explicit infinitesimals (see page 1172).

â Axiom systems for programs. (See pages 794 and 1168.)

â Page 775 · Implementation. Given the axioms in the form

the proof shown here can be represented by

and applied using

â Page 776 · Proof structures. The proof shown is in a sense
based on very low-level steps, each consisting of applying a
single axiom from the original axiom system. But in practical
mathematics it is usual for proofs to be built up in a more
hierarchical fashion using intermediate results or lemmas. In
the way I set things up lemmas can in effect be introduced as
new axioms which can be applied repeatedly during a proof.
And in the case shown here if one first proves the lemma 

and treats it as rule 6, then the main proof can be shortened:

When one just applies axioms from the original axiom system
one is in effect following a single line of steps. But when one
proves a lemma one is in effect on a separate branch, which
only merges with the main proof when one uses the lemma.
And if one has nested lemmas one can end up with a proof
that is in effect like a tree. (Repeated use of a single lemma
can also lead to cycles.) Allowing lemmas can in extreme
cases probably make proofs as much as exponentially shorter.
(Note that lemmas can also be used in multiway systems.)

In the way I have set things up one always gets from one step
in a proof to the next by taking an expression and applying
some transformation rule to it. But while this is familiar from
algebraic mathematics and from the operation of Mathematica
it is not the model of proofs that has traditionally been used
in mainstream mathematical logic. For there one tends to
think not so much about transforming expressions as about
taking collections of true statements (such as equations

), and using so-called rules of inference to deduce other
ones. Most often there are two basic rules of inference: modus
ponens or detachment which uses the logic result

 to deduce the statement  from statements 
and , and substitution, which takes statements  and 
and deduces , where  is a logical variable in  (see
page 1151). And with this approach axioms enter merely as
initial true statements, leaving rules of inference to generate
successive steps in proofs. And instead of being mainly linear
sequences of results, proofs instead become networks in
which pairs of results are always combined when modus
ponens is used. But it is still always in principle possible to
convert any proof to a purely sequential one—though
perhaps at the cost of having exponentially many more steps.

À

s[1] = ( a_ Ñ a_) Ñ ( a_ Ñ b_) ! a;
s[2, x_] := b_ ! ( b Ñ b) Ñ ( b Ñ x); s[3] =

a_ Ñ ( a_ Ñ b_) ! a Ñ ( b Ñ b); s[4] = a_ Ñ ( b_ Ñ b_) ! a Ñ ( a Ñ b);
s[5] = a_ Ñ ( a_ Ñ ( b_ Ñ c_)) ! b Ñ ( b Ñ ( a Ñ c));

{{s[2, b], {2}}, {s[4], {}}, {s[2, (b Ñ b) Ñ ( ( a Ñ a) Ñ ( b Ñ b))],
{2, 2}}, {s[1], {2, 2, 1}}, {s[2, b Ñ b], {2, 2, 2, 2, 2, 2}},

{s[5], {2, 2, 2}}, {s[2, b Ñ b], {2, 2, 2, 2, 2, 1}},
{s[1], {2, 2, 2, 2, 2}}, {s[3], {2, 2, 2}},
{s[1], {2, 2, 2, 2}}, {s[4], {2, 2, 2}}, {s[5], {}},
{s[2, a], {2, 2, 1}}, {s[1], {2, 2}}, {s[3], {}}, {s[1], {2}}}
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â Substitution strategies. With the setup I am using each step
in a proof involves transforming an expression like 
using an expression like . And for this to happen  or 
must match some part  of  or . The simplest way this can
be achieved is for  or  to reproduce  when its variables
are replaced by appropriate expressions. But in general one
can make replacements not only for variables in  and , but
also for ones in . And in practice this often makes many
more matches possible. Thus for example the axiom 
cannot be applied directly to . But after the
replacement ,  matches  with ,
yielding the new theorem . These kinds of
substitutions are used in the proof on page 810. One
approach to finding them is so-called paramodulation, which
was introduced around 1970 in the context of automated
theorem-proving systems, and has been used in many such
systems (see page 1157). (Such substitutions are not directly
relevant to Mathematica, since it transforms expressions
rather than theorems or equations. But when I built SMP in
1981, its semantic pattern matching mechanism did use
essentially such substitutions.) 

â One-way transformations. As formulated in the main text,
axioms define two-way transformations. One can also set up
axiom systems based on one-way transformations (as in
multiway systems). For basic logic, examples of this were
studied in the mid-1900s, and with the transformations
thought of as rules of inference they were sometimes known
as “axiomless formulations”.

â Axiom schemas. An axiom like  is a single well-
formed formula in the sense of page 1150. But sometimes one
needs infinite collections of such individual axioms, and in
the main text these are represented by axiom schemas given
as Mathematica patterns involving objects like . Such
schemas are taken to stand for all individual axioms that
match the patterns and are well-formed formulas. The
induction axiom in arithmetic is an example of a schema. (See
the note on finite axiomatizability on page 1176.) Note that as
mentioned on page 1150 all the axioms given for basic logic
should really be thought of as schemas. 

â Reducing axiom details. Traditional axiom systems have
many details not seen in the basic structure of multiway
systems. But in most cases these details can be avoided—and
in the end the universality of multiway systems implies that
they can always be made to emulate any axiom system.

Traditional axiom systems tend to be based on operator
systems (see page 801) involving general expressions, not just
strings. But any expression can always be written as a string
using something like Mathematica . (See also page

1169.) Traditional axiom systems also involve symbolic
variables, not just literal string elements. But by using
methods like those for combinators on page 1121 explicit
mention of variables can always be eliminated.

â Proofs in practice. At some level the purpose of a proof is to
establish that something is true. But in the practice of modern
mathematics proofs have taken on a broader role; indeed
they have become the primary framework for the vast
majority of mathematical thinking and discourse. And from
this perspective the kinds of proofs given on pages 810 and
811—or typically generated by automated theorem
proving—are quite unsatisfactory. For while they make it
easy at a formal level to check that certain statements are
true, they do little at a more conceptual level to illuminate
why this might be so. And indeed the kinds of proofs
normally considered most mathematically valuable are ones
that get built up in terms of concepts and constructs that are
somehow expected to be as generally applicable as possible.
But such proofs are inevitably difficult to study in a uniform
and systematic way (though see page 1176). And as I argue in
the main text, it is in fact only for the rather limited kinds of
mathematics that have historically been pursued that such
proofs can be expected to be sufficient. For in general proofs
can be arbitrarily long, and can be quite devoid of what
might be considered meaningful structure.

Among practical proofs that show signs of this (and whose
mathematical value is thus often considered controversial)
most have been done with aid of computers. Examples
include the Four-Color Theorem (coloring of maps), the
optimality of the Kepler packing (see page 986), the
completeness of the Robbins axiom system (see page 1151)
and the universality of rule 110 (see page 678). 

In the past it was sometimes claimed that using computers is
somehow fundamentally incompatible with developing
mathematical understanding. But particularly as the use of
Mathematica has become more widespread there has been
increasing recognition that computers can provide crucial
raw material for mathematical intuition—a point made
rather forcefully by the discoveries in this book. Less well
recognized is the fact that formulating mathematical ideas in
a Mathematica program is at least as effective a way to
produce clarity of thinking and understanding as
formulating a traditional proof.

â Page 778 · Properties. The second rule shown has the
property that black elements always appear before white, so
that strings can be specified just by the number of elements of
each color that they contain—making the rule one of the
sorted type discussed on page 937, based on the difference
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vector . The question of whether a
given string can be generated is then analogous to finding
whether there is a solution with certain positivity properties
to a set of linear Diophantine equations. 

â Page 781 · NAND tautologies. At each step every possible
transformation rule in the axioms is applied wherever it can.
New expressions are also created by replacing each possible
variable with , where  and  are new variables, and by
setting every possible pair of variables equal in turn. The
longest tautology at step  is 

whose  grows like . The distribution of sizes of
statements generated at each step is shown below.

Even with the same underlying axioms the tautologies are
generated in a somewhat different order if one uses a
different strategy—say one based on paramodulation (see
page 1156). Pages 818 and 1175 discuss the sequence of all
NAND theorems listed in order of increasing complexity.

â Proof searching. To find a proof of some statement  in a
multiway system one can always in principle just start from

, evolve the system until it first generates , then pick out
the sequence of strings on the path from  to . But doing
this will usually involve building up a vast network of
strings. And although at some level computational
irreducibility and NP completeness (see page 766) imply that
in general only a limited amount of this computational work
can be saved, there are in practice quite often important
optimizations that can be made. For finding a proof of 
is like searching for a path satisfying the constraint of going
from  to . And just like in the systems based on constraints
in Chapter 5 one can usually do at least somewhat better than
just to look at every possible path in turn.

For a start, in generating the network of paths one only ever
need keep a single path that leads to any particular string;
just like in many of my pictures of multiway systems one can
in effect always drop any duplicate strings that occur. One
might at first imagine that if  and  are both short strings
then one could also drop any very long strings that are
produced. But as we have seen, it is perfectly possible for
long intermediate strings to be needed to get from  to .
Still, it is often reasonable to weight things so that at least at
first one looks at paths that involve only shorter strings.

In the most direct approach, one takes a string and at each
step just applies the underlying rules or axioms of the

multiway system. But as soon as one knows that there is a
path from a string  to a string , one can also imagine
applying the rule  to any string—in effect like a lemma.
And one can choose which lemmas to try first by looking for
example at which involve the shortest or commonest strings.

It is often important to minimize the number of lemmas one
has to keep. Sometimes one can do this by reducing every
lemma—and possibly every string—to some at least partially
canonical form. One can also use the fact that in a multiway
system if  and  then . 

If one wants to get from  to  the most efficient thing is to
use properties of  to avoid taking wrong turns. But except
in systems with rather simple structure this is usually
difficult to achieve. Nevertheless, one can for example
always in effect work forwards from , and backwards from

, seeing whether there is any overlap in the sets of strings
one gets.

â Automated theorem proving. Since the 1950s a fair amount
of work has been done on trying to set up computer systems
that can prove theorems automatically. But unlike systems
such as Mathematica that emphasize explicit computation
none of these efforts have ever achieved widespread success
in mathematics. And indeed given my ideas in this section
this now seems not particularly surprising.

The first attempt at a general system for automated theorem
proving was the 1956 Logic Theory Machine of Allen Newell
and Herbert Simon—a program which tried to find proofs in
basic logic by applying chains of possible axioms. But while
the system was successful with a few simple theorems the
searches it had to do rapidly became far too slow. And as the
field of artificial intelligence developed over the next few years
it became widely believed that what would be needed was a
general system for imitating heuristics used in human
thinking. Some work was nevertheless still done on applying
results in mathematical logic to speed up the search process.
And in 1963 Alan Robinson suggested the idea of resolution
theorem proving, in which one constructs ,
then typically writes this in conjunctive normal form and
repeatedly applies rules like  to try to
reduce it to , thereby proving given  that 
is . But after early enthusiasm it became clear that this
approach could not be expected to make theorem proving
easy—a point emphasized by the discovery of NP
completeness in the early 1970s. Nevertheless, the approach
was used with some success, particularly in proving that
various mechanical and other engineering systems would
behave as intended—although by the mid-1980s such
verification was more often done by systematic Boolean
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function methods (see page 1097). In the 1970s simple versions
of the resolution method were incorporated into logic
programming languages such as Prolog, but little in the way of
mathematical theorem proving was done with them. A notable
system under development since the 1970s is the Boyer-Moore
theorem prover Nqthm, which uses resolution together with
methods related to induction to try to find proofs of statements
in a version of LISP. Another family of systems under
development at Argonne National Laboratory since the 1960s
are intended to find proofs in pure operator (equational)
systems (predicate logic with equations). Typical of this effort
was the Otter system started in the mid-1980s, which uses the
resolution method, together with a variety of ad hoc strategies
that are mostly versions of the general ones for multiway
systems in the previous note. The development of so-called
unfailing completion algorithms (see page 1037) in the late
1980s made possible much more systematic automated
theorem provers for pure operator systems—with a notable
example being the Waldmeister system developed around
1996 by Arnim Buch and Thomas Hillenbrand.

Ever since the 1970s I at various times investigated using
automated theorem-proving systems. But it always seemed
that extensive human input—typically from the creators of
the system—was needed to make such systems actually find
non-trivial proofs. In the late 1990s, however, I decided to try
the latest systems and was surprised to find that some of
them could routinely produce proofs hundreds of steps long
with little or no guidance. Almost any proof that was easy to
do by hand almost always seemed to come out automatically
in just a few steps. And the overall ability to do proofs—at
least in pure operator systems—seemed vastly to exceed that
of any human. But as page 810 illustrates, long proofs
produced in this way tend to be difficult to read—in large
part because they lack the higher-level constructs that are
typical in proofs created by humans. As I discuss on page
821, such lack of structure is in some respects inevitable. But
at least for specific kinds of theorems in specific areas of
mathematics it seems likely that more accessible proofs can
be created if each step is allowed to involve sophisticated
computations, say as done by Mathematica. 

â Proofs in Mathematica. Most of the individual built-in
functions of Mathematica I designed to be as predictable as
possible—applying transformations in definite ways and
using algorithms that are never of fundamentally unknown
difficulty. But as their names suggest  and 
were intended to be less predictable—and just to do what
they can and then return a result. And in many cases these
functions end up trying to prove theorems; so for example

 must in effect
prove a theorem to get the result .

â Page 781 · Truth and falsity. The notion that statements can
always be classified as either true or false has been a common
idealization in logic since antiquity. But in everyday
language, computer languages and mathematics there are
many ways in which this idealization can fail. An example is

, which cannot reasonably be considered either true
or false unless one knows what ,  and  are. Predicate logic
avoids this particular kind of case by implicitly assuming
that what is meant is a general statement about all values of
any variable—and avoids cases like the expression  by
requiring all statements to be well-formed formulas (see page
1150). In Mathematica functions like  and  are
set up always to yield  or —but just by looking at
the explicit structure of a symbolic expression. 

Note that although the notion of negation seems fairly
straightforward in everyday language it can be difficult to
implement in computational or mathematical settings. And
thus for example even though it may be possible to establish
by a finite computation that a particular system halts, it will
often be impossible to do the same for the negation of this
statement. The same basic issue arises in the intuitionistic
approach to mathematics, in which one assumes that any
object one handles must be found by a finite construction.
And in such cases one can set up an analog of logic in which
one no longer takes . 

It is also possible to assume a specific number  of truth
values, as on page 1175, or to use so-called modal logics.

(See also page 1167.)

â Page 782 · Gödel’s Theorem. What is normally known as
“Gödel’s Theorem” (or “Gödel’s First Incompleteness
Theorem”) is the centerpiece of the paper “On Undecidable
Propositions of Principia Mathematica and Related Systems”
published by Kurt Gödel in 1931. What the theorem shows is
that there are statements that can be formulated within the
standard axiom system for arithmetic but which cannot be
proved true or false within that system. Gödel’s paper does
this first for the statement “this statement is unprovable”,
and much of the paper is concerned with showing how such
a statement can be encoded within arithmetic. Gödel in effect
does this by first converting the statement to one about
recursive functions and then—by using tricks of number
theory such as the beta function of page 1120—to one purely
about arithmetic. (Gödel’s main achievement is sometimes
characterized as the “arithmetization of metamathematics”:
the discovery that concepts such as provability related to the
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processes of mathematics can be represented purely as
statements in arithmetic.) (See page 784.)

Gödel originally based his theorem on Peano arithmetic (as
discussed in the context of Principia Mathematica), but
expected that it would in fact apply to any reasonable formal
system for mathematics—and in later years considered that
this had been established by thinking about Turing machines.
He suggested that his results could be avoided if some form
of transfinite hierarchy of formalisms could be used, and
appears to have thought that at some level humans and
mathematics do this (compare page 1167).

Gödel’s 1931 paper came as a great surprise, although the
issues it addressed were already widely discussed in the field
of mathematical logic. And while the paper is at a technical
level rather clear, it has never been easy for typical
mathematicians to read. Beginning in the late 1950s its results
began to be widely known outside of mathematics, and by
the late 1970s Gödel’s Theorem and various misstatements of
it were often assigned an almost mystical significance. Self-
reference was commonly seen as its central feature, and
connections with universality and computation were usually
missed. And with the belief that humans must somehow
have intrinsic access to all truths in mathematics, Gödel’s
Theorem has been used to argue for example that computers
can fundamentally never emulate human thinking.

The picture on page 786 can be viewed as a modern proof of
Gödel’s Theorem based on Diophantine equations.

In addition to what is usually called Gödel’s Theorem, Kurt
Gödel established a second incompleteness theorem: that the
statement that the axioms of arithmetic are consistent cannot
be proved by using those axioms (see page 1168). He also
established what is often called the Completeness Theorem
for predicate logic (see page 1152)—though here
“completeness” is used in a different sense.

â Page 783 · Properties. The first multiway system here
generates all strings that end in ; the third all strings that
end in . The second system generates all strings where the
second-to-last element is white, or the string ends with a run
of black elements delimited by white ones. 

â Page 783 · Essential incompleteness. If a consistent axiom
system is complete this means that any statement in the
system can be proved true or false using its axioms, and the
question of whether a statement is true can always be
decided by a finite procedure. If an axiom system is
incomplete then this means that there are statements that
cannot be proved true or false using its axioms—and which
must therefore be considered independent of those axioms.
But even given this it is still possible that a finite procedure

can exist which decides whether a given statement is true,
and indeed this happens in the theory of commutative
groups (see note below). But often an axiom system will not
only be incomplete, but will also be what is called essentially
incomplete. And what this means is that there is no finite set
of axioms that can consistently be added to make the system
complete. A consequence of this is that there can be no finite
procedure that always decides whether a given statement is
true—making the system what is known as essentially
undecidable. (When I use the term “undecidable” I normally
mean “essentially undecidable”. Early work on mathematical
logic sometimes referred to statements that are independent
as being undecidable.) 

One might think that adding rules to a system could never
reduce its computational sophistication. And this is correct if
with suitable input one can always avoid the new rules. But
often these rules will allow transformations that in effect
short-circuit any sophisticated computation. And in the
context of axiom systems, adding axioms can be thought of
as putting more constraints on a system—thus potentially in
effect forcing it to be simpler. The result of all this is that an
axiom system that is universal can stop being universal when
more axioms are added to it. And indeed this happens when
one goes from ordinary group theory to commutative group
theory, and from general field theory to real algebra.

â Page 784 · Predicate logic. The universality of predicate logic
with a single two-argument function follows immediately
from the result on page 1156 that it can be used to emulate
any two-way multiway system. 

â Page 784 · Algebraic axioms. How universality works with
algebraic axioms depends on how those axioms are being
used (compare page 1153). What is said in the main text here
assumes that they are being used as on page 773—with each
variable in effect standing for any object (compare page
1169), and with the axioms being added to predicate logic.
The first of these points means that one is concerned with
so-called pure group theory—and with finding results valid
for all possible groups. The second means that the
statements one considers need not just be of the form

, but can explicitly involve logic; an example is
Cayley’s theorem

With this setup, Alfred Tarski showed in 1946 that any
statement in Peano arithmetic can be encoded as a statement
in group theory—thus demonstrating that group theory is
universal, and that questions about it can be undecidable.
This then also immediately follows for semigroup theory
and monoid theory. It was shown for ring theory and field

?2?
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theory by Julia Robinson in 1949. But for commutative
group theory it is not the case, as shown by Wanda
Szmielew around 1950. And indeed there is a procedure
based on quantifier elimination for determining in a finite
number of steps whether any statement in commutative
group theory can be proved. (Commutative group theory is
thus a decidable theory. But as mentioned in the note above,
it is not complete—since for example it cannot establish the
theorem  which states that a group has just one
element. It is nevertheless not essentially incomplete—and
for example adding the axiom  makes it complete.)
Real algebra is also not universal (see page 1153), and the
same is for example true for finite fields—but not for
arbitrary fields.

As discussed on page 1141, word problems for systems such
as groups are undecidable. But to set up a word problem in
general formally requires going beyond predicate logic, and
including axioms from set theory. For a word problem relates
not, say, to groups in general, but to a particular group,
specified by relations between generators. Within predicate
logic one can give the relations as statements, but in effect
one cannot specify that no other relations hold. It turns out,
however, that undecidability for word problems occurs in
essentially the same places as universality for axioms with
predicate logic. Thus, for example, the word problem is
undecidable for groups and semigroups, but is decidable for
commutative groups.

One can also consider using algebraic axioms without
predicate logic—as in basic logic or in the operator systems of
page 801. And one can now ask whether there is then
universality. In the case of semigroup theory there is not. But
certainly systems of this type can be universal—since for
example they can be set up to emulate any multiway system.
And it seems likely that the axioms of ordinary group theory
are sufficient to achieve universality. 

â Page 784 · Set theory. Any integer  can be encoded as a set
using for example . And from this
a statement  in Peano arithmetic (with each variable
explicitly quantified) can be translated to a statement in set
theory by using

and then adding the statements below to provide
definitions (  is the set of non-negative integers,  is
an ordered triple, and  determines whether each triple in
a set  is of the form  specifying a single-
valued function).

This means that set theory can be used to prove any statement
that can be proved in Peano arithmetic. But it can also prove
other statements—such as Goodstein’s result (see note below),
and the consistency of arithmetic (see page 1168). An
important reason for this is that set theory allows not just
ordinary induction over sequences of integers but also
transfinite induction over arbitrary ordered sets (see below). 

â Page 786 · Universal Diophantine equation. The equation is
built up from ones whose solutions are set up to be integers
that satisfy particular relations. So for example the equation

 has solutions that are exactly those integers that
satisfy the relation . Similarly, assuming as in the
rest of this note that all variables are non-negative,

 has solutions that are exactly those integers that
satisfy , with  having some allowed value. From
various number-theoretical results many relations can readily
be encoded as integer equations:

where the last encoding uses the result on page 608. (Note
that any variable  can be forced to be non-negative by
including an equation , as on page 910.) 

Given an integer  for which  gives the cell
values for a cellular automaton, a single step of evolution
according say to rule 30 is given by

a 2 b
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n
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where (see page 871)

and  is assumed to be padded with 0’s at each end. The
corresponding form for rule 110 is

The final equation is then obtained from

where  through  have the meanings indicated in the main
text, and satisfy . Non-overlapping subsidiary variables
are introduced for  and , yielding a total of 79
variables.

Note that it is potentially somewhat easier to construct
Diophantine equations to emulate register machines—or
arithmetic systems from page 673—than to emulate cellular
automata, but exactly the same basic methods can be used. 

In the universal equation in the main text variables appear in
exponents. One can reduce such an exponential equation to a
pure polynomial equation by encoding powers using integer
equations. The simplest known way of doing this (see note
below) involves a degree 8 equation with 60 variables:

(This roughly uses the idea that solutions to Pell equations
grow exponentially, so that for example  has
solutions .) From this
representation of  the universal equation can be
converted to a purely polynomial equation with 2154
variables—which when expanded has 1683150 terms, total
degree 16 (average per term 6.8), maximum coefficient
17827424 and  16540206. 

Note that the existence of universal Diophantine equations
implies that any problem of mathematics—even, say, the
Riemann Hypothesis—can in principle be formulated as a
question about the existence of solutions to a Diophantine
equation. It also means that given any specific enumeration
of polynomials, there must be some universal polynomial 
which if fed the enumeration number of a polynomial ,

together with an encoding of the values of its variables, will
yield the corresponding value of  as a solution to . 

â Hilbert’s Tenth Problem. Beginning in antiquity various
procedures were developed for solving particular kinds of
Diophantine equations (see page 1164). In 1900, as one of his
list of 23 important mathematical problems, David Hilbert
posed the problem of finding a single finite procedure that
could systematically determine whether a solution exists to
any specified Diophantine equation. The original proof of
Gödel’s Theorem from 1931 in effect involves showing that
certain logical and other operations can be represented by
Diophantine equations—and in the end Gödel’s Theorem can
be viewed as saying that certain statements about
Diophantine equations are unprovable. The notion that there
might be universal Diophantine equations for which
Hilbert’s Tenth Problem would be fundamentally unsolvable
emerged in work by Martin Davis in 1953. And by 1961
Davis, Hilary Putnam and Julia Robinson had established
that there are exponential Diophantine equations that are
universal. Extending this to show that Hilbert’s original
problem about ordinary polynomial Diophantine equations
is unsolvable required proving that exponentiation can be
represented by a Diophantine equation, and this was finally
done by Yuri Matiyasevich in 1969 (see note above). 

By the mid-1970s, Matiyasevich had given a construction for
a universal Diophantine equation with 9 variables—though
with a degree of about . It had been known since the
1930s that any Diophantine equation can be reduced to one
with degree 4—and in 1980 James Jones showed that a
universal Diophantine equation with degree 4 could be
constructed with 58 variables. In 1979 Matiyasevich also
showed that universality could be achieved with an
exponential Diophantine equation with many terms, but
with only 3 variables. As discussed in the main text I believe
that vastly simpler Diophantine equations can also be
universal. It is even conceivable that a Diophantine equation
with 2 variables could be universal: with one variable
essentially being used to represent the program and input,
and the other the execution history of the program—with no
finite solution existing if the program does not halt. 

â Polynomial value sets. Closely related to issues of solving
Diophantine equations is the question of what set of positive
values a polynomial can achieve when fed all possible
positive integer values for its variables. A polynomial with a
single variable must always yield either be a finite set, or a
simple polynomial progression of values. But already the
sequence of values for  or even  seem
quite complicated. And for example from the fact that

 has solutions  it follows that
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the positive values of  are just
 (achieved when  is ).

This is the simplest polynomial giving , and
there are for example no polynomials with 2 variables, up to
4 terms, total degree less than 4, and integer coefficients
between -2 and +2, that give any of ,  or .
Nevertheless, from the representation for  in the note
above it has been shown that the positive values of a
particular polynomial with 26 variables, 891 terms and total
degree 97 are exactly the primes. (Polynomials with 42
variables and degree 5, and 10 variables and degree , are
also known to work, while it is known that one with 2
variables cannot.) And in general the existence of a universal
Diophantine equation implies that any set obtained by any
finite computation must correspond to the positive values of
some polynomial. The analog of doing a long computation to
find a result is having to go to large values of variables to find
a positive polynomial value. Note that one can imagine, say,
emulating the evolution of a cellular automaton by having
the th positive value of a polynomial represent the th step of
evolution. That universality can be achieved just in the
positive values of a polynomial is already remarkable. But I
suspect that in the end it will take only a surprisingly simple
polynomial, perhaps with just three variables and fairly low
degree. 

(See also page 1165.)

â Statements in Peano arithmetic. Examples include:

ä  is irrational:

äThere are infinitely many primes of the form :

äEvery even number (greater than 2) is the sum of two 
primes (Goldbach’s Conjecture; see page 135):

The last two statements have never been proved true or false,
and remain unsolved problems of number theory. The
picture shows spacings between  for which  is prime.

â Transfinite numbers. For most mathematical purposes it is
quite adequate just to have a single notion of infinity,
usually denoted . But as Georg Cantor began to emphasize
in the 1870s, it is possible to distinguish different levels of

infinity. Most of the details of this have not been widely
used in typical mathematics, but they can be helpful in
studying foundational issues. Cantor’s theory of ordinal
numbers is based on the idea that every integer must have a
successor. The next integer after all of the ordinary ones—
the first infinite integer—is given the name . In Cantor’s
theory  is still larger (though  is not), as are ,

 and . Any arithmetic expression involving 
specifies an ordinal number—and can be thought of as
corresponding to a set containing all integers up to that
number. The ordinary axioms of arithmetic do not apply, but
there are still fairly straightforward rules for manipulating
such expressions. In general there are many different
expressions that correspond to a given number, though
there is always a unique Cantor normal form—essentially a
finite sequence of digits giving coefficients of descending
powers of . However, not all infinite integers can be
represented in this way. The first one that cannot is , given
by the limit , or effectively  is the
smallest solution to . Subsequent solutions ( , ..., ,
..., , ...) define larger ordinals, and one can go on until one
reaches the limit , which is the first solution to .
Giving this ordinal a name, one can then go on again, until
eventually one reaches another limit. And it turns out that
in general one in effect has to introduce an infinite sequence
of names in order to be able to specify all transfinite
integers. (Naming a single largest or “absolutely infinite”
integer is never consistent, since one can always then talk
about its successor.) As Cantor noted, however, even this
only allows one to reach the lowest class of transfinite
numbers—in effect those corresponding to sets whose size
corresponds to the cardinal number . Yet as discussed on
page 1127, one can also consider larger cardinal numbers,
such as , considered in connection with the number of
real numbers, and so on. And at least for a while the
ordinary axioms of set theory can be used to study the sets
that arise.

â Growth rates. One can characterize most functions by their
ultimate rates of growth. In basic mathematics these might be

, , , ... or , , ..., or , , ..., or , , , ... To
go further one begins by defining an analog to the
Ackermann function of page 906:

 is then ,  is iterated power, and so on. Given
this one can now form the “diagonal” function 

and this has a higher growth rate than any of the  with
finite . This higher growth rate is indicated by the transfinite
index . And in direct analogy to the transfinite numbers
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discussed above one can then in principle form a hierarchy of
functions using operations like 

together with diagonalization at limit ordinals. In practice,
however, it gets more and more difficult to determine that the
functions defined in this way actually in a sense halt and
yield definite values—and indeed for  this can no longer
be proved using the ordinary axioms of arithmetic (see
below). Yet it is still possible to define functions with even
more rapid rates of growth. An example is the so-called busy
beaver function (see page 1144) that gives the maximum
number of steps that it takes for any Turing machine of size 
to halt when started from a blank tape. In general this
function must grow faster than any computable function, and
is not itself computable.

â Page 787 · Unprovable statements. After the appearance of
Gödel’s Theorem a variety of statements more or less directly
related to provability were shown to be unprovable in Peano
arithmetic and certain other axiom systems. Starting in the
1960s the so-called method of forcing allowed certain kinds
of statements in strong axiom systems—like the Continuum
Hypothesis in set theory (see page 1155)—to be shown to be
unprovable. Then in 1977 Jeffrey Paris and Leo Harrington
showed that a variant of Ramsey’s Theorem (see page
1068)—a statement that is much more directly
mathematical—is also unprovable in Peano arithmetic. The
approach they used was in essence based on thinking about
growth rates—and since the 1970s almost all new examples
of unprovability have been based on similar ideas. Probably
the simplest is a statement shown to be unprovable in Peano
arithmetic by Laurence Kirby and Jeff Paris in 1982: that
certain sequences  defined by Reuben Goodstein in 1944
are of limited length for all , where 

As in the pictures below,  is ,  is  and
 is .  increases quadratically for a

long time, with only element  finally being 0.
And the point is that in a sense  grows too
quickly for its finiteness to be provable in general in Peano
arithmetic.

The argument for this as usually presented involves rather
technical results from several fields. But the basic idea is

roughly just to set up a correspondence between elements of
 and possible proofs in Peano arithmetic—then to use the

fact that if one knew that  always terminated this would
establish the validity of all these proofs, which would in turn
prove the consistency of arithmetic—a result which is known
to be unprovable from within arithmetic. 

Every possible proof in Peano arithmetic can in principle be
encoded as an ordinary integer. But in the late 1930s Gerhard
Gentzen showed that if proofs are instead encoded as ordinal
numbers (see note above) then any proof can validly be
reduced to a preceding one just by operations in logic. To
cover all possible proofs, however, requires going up to the
ordinal . And from the unprovability of consistency one
can conclude that this must be impossible using the ordinary
operation of induction in Peano arithmetic. (Set theory,
however, allows transfinite induction—essentially induction
on arbitrary sets—letting one reach such ordinals and thus
prove the consistency of arithmetic.) In constructing  the
integer  is in effect treated like an ordinal number in Cantor
normal form, and a sequence of numbers that should precede
it are found. That this sequence terminates for all  is then
provable in set theory, but not Peano arithmetic—and in
effect  must grow like .) 

In general one can imagine characterizing the power of any
axiom system by giving a transfinite number  which
specifies the first function  (see note above) whose
termination cannot be proved in that axiom system (or
similarly how rapidly the first example of  must grow with

 to prevent  from being provable). But while it is
known that in Peano arithmetic , quite how to describe
the value of  for, say, set theory remains unknown. And in
general I suspect that there are a vast number of functions
with simple definitions whose termination cannot be proved
not just because they grow too quickly but instead for the
more fundamental reason that their behavior is in a sense too
complicated.

Whenever a general statement about a system like a Turing
machine or a cellular automaton is undecidable, at least some
instances of that statement encoded in an axiom system must
be unprovable. But normally these tend to be complicated
and not at all typical of what arise in ordinary mathematics.
(See page 1167.)

â Encodings of arithmetic. Statements in arithmetic are
normally written in terms of ,  and  (and logical
operations). But it turns out also to be possible to encode
such statements in terms of other basic operations. This was
for example done by Julia Robinson in 1949 with  (or )
and . And in the 1990s Ivan Korec and others
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showed that it could be done just with
 with  or any product of

primes—and that it could not be done with  a prime or
prime power. These operations can be thought of as finding
elements in nested Pascal’s triangle patterns produced by -
color additive cellular automata. Korec showed that finding
elements in the nested pattern produced by the  cellular
automaton with rule 
(compare page 886) was also enough. 

â Page 788 · Infinity. See page 1162.

â Page 789 · Diophantine equations. If variables appear only
linearly, then it is possible to use  (see page 944)
to find all solutions to any system of Diophantine
equations—or to show that none exist. Particularly from the
work of Carl Friedrich Gauss around 1800 there emerged a
procedure to find solutions to any quadratic Diophantine
equation in two variables—in effect by reduction to the Pell
equation  (see page 944), and then computing

. The minimal solutions can be large;
the largest ones for successive coefficient sizes are given
below. (With size  coefficients it is for example known that
the solutions must always be less than .).

There is a fairly complete theory of homogeneous quadratic
Diophantine equations with three variables, and on the basis
of results from the early and mid-1900s a finite procedure
should in principle be able to handle quadratic Diophantine
equations with any number of variables. (The same is not
true of simultaneous quadratic Diophantine equations, and
indeed with a vector  of just a few variables, a system

 of such equations could quite possibly show
undecidability.) 

Ever since antiquity there have been an increasing number of
scattered results about Diophantine equations involving
higher powers. In 1909 Axel Thue showed that any equation
of the form , where  is a homogeneous
irreducible polynomial of degree at least 3 (such as

) can have only a finite number of integer
solutions. (He did this by formally factoring  into
terms , then looking at rational approximations to the
algebraic numbers .) In 1966 Alan Baker then proved an
explicit upper bound on such solutions, thereby establishing
that in principle they can be found by a finite search
procedure. (The proof is based on having bounds for how
close to zero  can be for independent

algebraic numbers .) His bound was roughly
—but later work in essence reduced this, and by

the 1990s practical algorithms were being developed. (Even
with a bound of , rational approximations to real
number results can quickly give the candidates that need to
be tested.) 

Starting in the late 1800s and continuing ever since a series of
progressively more sophisticated geometric and algebraic
views of Diophantine equations have developed. These have
led for example to the 1993 proof of Fermat’s Last Theorem
and to the 1983 Faltings theorem (Mordell conjecture) that the
topology of the algebraic surface formed by allowing variables
to take on complex values determines whether a Diophantine
equation has only a finite number of rational solutions—and
shows for example that this is the case for any equation of the
form  with . Extensive work has been done
since the early 1900s on so-called elliptic curve equations such
as  whose corresponding algebraic surface has a
single hole (genus 1). (A crucial feature is that given any two
rational solutions to such equations, a third can always be
found by a simple geometrical construction.) By the 1990s
explicit algorithms for such equations were being developed—
with bounds on solutions being found by Baker’s method (see
above). In the late 1990s similar methods were applied to
superelliptic (e.g. ) and hyperelliptic (e.g. )
equations involving higher powers, and it now at least
definitely seems possible to handle any two-variable cubic
Diophantine equation with a finite procedure. Knowing
whether Baker’s method can be made to work for any
particular class of equations involves, however, seeing
whether certain rather elaborate algebraic constructions can be
done—and this may perhaps in general be undecidable. Most
likely there are already equations of degree 4 where Baker’s
method cannot be used—perhaps ones like .
But in recent years there have begun to be results by other
methods about two-variable Diophantine equations, giving,
for example, general upper bounds on the number of possible
solutions. And although this has now led to the assumption
that all two-variable Diophantine equations will eventually be
resolved, based on the results of this book I would not be
surprised if in fact undecidability and universality appeared in
such equations—even perhaps at degree 4 with fairly small
coefficients.

The vast majority of work on Diophantine equations has
been for the case of two variables (or three for some
homogeneous equations). No clear analog of Baker’s method
is known beyond two variables, and my suspicion is that
with three variables undecidability and universality may
already be present even in cubic equations.
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As mentioned in the main text, proving that even simple
specific Diophantine equations have no solutions can be very
difficult. Obvious methods involve for example showing that
no solutions exist for real variables, or for variables reduced
modulo some . (For quadratic equations Hasse’s Principle
implies that if no solutions exist for any  then there are no
solutions for ordinary integers—but a cubic like

 is a counterexample.) If one can find a
bound on solutions—say by Baker’s method—then one can
also try to show that no values below this bound are actually
solutions. Over the history of number theory the
sophistication of equations for which proofs of no solutions
can be given has gradually increased—though even now it is
state of the art to show say that  is the only solution
to .

Just as for all sorts of other systems with complex behavior,
some idea of overall properties of Diophantine equations can
be found on the basis of an approximation of perfect
randomness. Writing equations in the form

 the distribution of values of  will in
general be complicated (see page 1161), but as a first
approximation one can try taking it to be purely random.
(Versions of this for large numbers of variables are validated
by the so-called circle method from the early 1900s.) If  has
total degree  then with  the values of  will range
up to about . But with  variables the number of different
cases sampled for  will be . The assumption of perfect
randomness then suggests that for , more and more
cases with  will be seen as  increases, so that the
equation will have an infinite number of solutions. For ,
on the other hand, it suggests that there will often be no
solutions, and that any solutions that exist will usually be
small. In the boundary case  it suggests that even for
arbitrarily large  an average of about one solution should
exist—suggesting that the smallest solution may be very
large, and presumably explaining the presence of so many
large solutions in the  and  examples in the
main text. Note that even though large solutions may be rare
when  they must always exist in at least some cases
whenever there is undecidability and universality in a class
of equations. (See also page 1161.)

If one wants to enumerate all possible Diophantine equations
there are many ways to do this, assigning different weights to
numbers of variables, and sizes of coefficients and of
exponents. But with several ways I have tried, it seems that of
the first few million equations, the vast majority have no
solutions—and this can in most cases be established by fairly
elementary methods that are presumably within Peano
arithmetic. When solutions do exist, most are fairly small. But

as one continues the enumeration there are increasingly a few
equations that seem more and more difficult to handle.

â Page 790 · Properties. (All variables are assumed positive.)

ä . There are  
solutions, the one with smallest  being 

. Linear 
equations like this were already studied in antiquity. 
(Compare page 915.)

ä . Writing  in terms of distinct factors as , 
 gives a solution if it yields integers—which 

happens when  and .

ä  (Pell equation). As discussed on page 944, 
whenever  is not a perfect square, there are always an 
infinite number of solutions given in terms of 

. Note that even when the smallest 
solution is not very large, subsequent solutions can rapidly 
get large. Thus for example when , the second 
solution is already . 

ä  (Mordell equation). First studied in the 1600s, a 
complete theory of this so-called elliptic curve equation 
was only developed in the late 1900s—using fairly 
sophisticated algebraic number theory. The picture below 
shows as a function of  the minimum  that solves the 
equation. For , the only solution is ; for 

, it is . The density of cases with 
solutions gradually thins out as  increases (for 

 there are 2468 such cases). There are always 
only a finite number of solutions (for  the 
maximum is 12, achieved for ).

ä . Also an elliptic curve equation. 

ä . For most values of  (including 
specifically ) the continuous version of this equation 
defines a surface of genus 3, so there are at most a finite 
number of integer solutions. (An equation of degree  
generically defines a surface of genus .) 
Note that  is equivalent to  by a 
simple substitution. 

ä . The second smallest solution to 
 is . As for the equations above, 

there are always at most a finite number of integer 
solutions.

ä . For the homogenous case  the 
complete solution was found by Leonhard Euler in 1756. 
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ä . No solutions exist when ; for 
 or  infinite families of solutions are known. 

Particularly in its less strict form  with , , 
 positive or negative the equation was mentioned in the 

1800s and again in the mid-1900s; computer searches for 
solutions were begun in the 1960s, and by the mid-1990s 
solutions such as  for 
the case  had been found. Any solution to the 
difficult case  must have 

. (Note that 
 always has solutions except when 

, as mentioned on page 135.) 

â Large solutions. A few other 2-variable equations with fairly
large smallest solutions are:

ä :  

ä : 

ä :  

The equation  is known to have smallest non-trivial
solution .

â Nearby powers. One can potentially find integer equations
with large solutions but small coefficients by looking say for
pairs of integer powers close in value. The pictures below
show what happens if one computes  and  for many 
and , sorts these values, then plots successive differences.
The differences are trivially zero when , . Often
they are large, but surprisingly small ones can sometimes
occur (despite various suggestions from the so-called ABC
conjecture). Thus, for example, 
is a perfect square, as found by Noam Elkies in 1998.
(Another example is .)

â Page 791 · Unsolved problems. Problems in number theory
that are simple to state (say in the notation of Peano
arithmetic) but that so far remain unsolved include:

ä Is there any odd number equal to the sum of its divisors? 
(Odd perfect number; 4th century BC) (See page 911.)

äAre there infinitely many primes that differ by 2? (Twin 
Prime Conjecture; 1700s?) (See page 909.)

ä Is there a cuboid in which all edges and all diagonals are of 
integer length? (Perfect cuboid; 1719)

ä Is there any even number which is not the sum of two 
primes? (Goldbach’s Conjecture; 1742) (See page 135.)

äAre there infinitely many primes of the form ? 
(Quadratic primes; 1840s?) (See page 1162.) 

äAre there infinitely many primes of the form ? 
(Fermat primes; 1844)

äAre there no solutions to  other than 
? (Catalan’s Conjecture; 1844)

äCan every integer not of the form  be written as 
? (See note above.) 

äHow few th powers need be added to get any given 
integer? (Waring’s Problem; 1770)

(See also Riemann Hypothesis on page 918.)

â Page 791 · Fermat’s Last Theorem. That  has no
integer solutions for  was suggested by Pierre Fermat
around 1665. Fermat proved this for  around 1660;
Leonhard Euler for  around 1750. It was proved for 
and  in the early 1800s. Then in 1847 Ernst Kummer
used ideas of factoring with algebraic integers to prove it for
all . Extensions of this method gradually allowed more
cases to be covered, and by the 1990s computers had
effectively given proofs for all  up to several million.
Meanwhile, many connections had been found between the
general case and other areas of mathematics—notably the
theory of elliptic curves. And finally around 1995, building
on extensive work in number theory, Andrew Wiles managed
to give a complete proof of the result. His proof is long and
complicated, and relies on sophisticated ideas from many
areas of mathematics. But while the statement of the proof
makes extensive use of concepts from areas like set theory, it
seems quite likely that in the end a version of it could be
given purely in terms of Peano arithmetic. (By the 1970s it
had for example been shown that many classic proofs with a
similar character in analytic number theory could at least in
principle be carried out purely in Peano arithmetic.) 

â Page 791 · More powerful axioms. If one looks for example
at progressively more complicated Diophantine equations
then one can expect that one will find examples where more
and more powerful axiom systems are needed to prove
statements about them. But my guess is that almost as soon
as one reaches cases that cannot be handled by Peano
arithmetic one will also reach cases that cannot be handled by
set theory or even by still more powerful axiom systems. 

Any statement that one can show is independent of the
Peano axioms and at least not inconsistent with them one can
potentially consider adding as a new axiom. Presumably it is
best to add axioms that allow the widest range of new
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statements to be proved. But I strongly suspect that the set of
statements that cannot be proved is somehow sufficiently
fragmented that adding a few new axioms will actually make
very little difference. 

In set theory (see page 1155) a whole sequence of new axioms
have historically been added to allow particular kinds of
statements to be proved. And for several decades additional
so-called large cardinal axioms have been discussed, that in
effect state that sets exist larger than any that can be reached
with the current axioms of set theory. (As discussed on page
816 any axiom system that is universal must in principle be
able to prove any statement that can be proved in any axiom
system—but not with the kinds of encodings normally
considered in mathematical logic.)

It is notable, however, that if one looks at classic theorems in
mathematics many can actually be derived from remarkably
weak axioms. And indeed the minimal axioms needed to
obtain most of mathematics as it is now practiced are
probably much weaker than those on pages 773 and 774.

(If one considers for example theorems about computational
issues such as whether Turing machines halt, then it becomes
inevitable that to cover more Turing machines one needs
more axioms—and to cover all possible machines one needs
an infinite set of axioms, that cannot even be generated by
any finite set of rules.) 

â Higher-order logics. In ordinary predicate—or so-called
first-order—logic the objects  that  and  range over
are variables of the kind used as arguments to functions (or
predicates) such as . To set up second-order logic,
however, one imagines also being able to use  and 
where  is a function (say the head of ). And then in
third-order logic one imagines using  and  where 
appears in . 

Early formulations of axiom systems for mathematics made
little distinction between first- and second-order logic. The
theory of types used in Principia Mathematica introduced
some distinction, and following the proof of Gödel’s
Completeness Theorem for first-order logic in 1930 (see page
1152) standard axiom systems for mathematics (as given on
pages 773 and 774) began to be reformulated in first-order
form, with set theory taking over many of the roles of second-
order logic.

In current mathematics, second-order logic is sometimes
used at the level of notation, but almost never in its full form
beyond. And in fact with any standard computational system
it can never be implemented in any explicit way. For even to
enumerate theorems in second-order logic is in general
impossible for a system like a Turing machine unless one

assumes that an oracle can be added. (Note however that this
is possible in Henkin versions of higher-order logic that
allow only limited function domains.) 

â Truth and incompleteness. In discussions of the foundations
of mathematics in the early 1900s it was normally assumed
that truth and provability were in a sense equivalent—so that
all true statements could in principle be reached by formal
processes of proof from fixed axioms (see page 782). Gödel’s
Theorem showed that there are statements that can never be
proved from given axioms. Yet often it seemed inevitable just
from the syntactic structure of statements (say as well-formed
formulas) that each of them must at some level be either true
or false. And this led to the widespread claim that Gödel’s
Theorem implies the existence of mathematical statements that
are true but unprovable—with their negations being false but
unprovable. Over the years this often came to be assigned a
kind of mystical significance, mainly because it was implicitly
assumed that somehow it must still ultimately be possible to
know whether any given statement is true or false. But the
Principle of Computational Equivalence implies that in fact
there are all sorts of statements that simply cannot be decided
by any computational process in our universe. So for example,
it must in some sense be either true or false that a given Turing
machine halts with given input—but according to the
Principle of Computational Equivalence there is no finite
procedure in our universe through which we can guarantee to
know which of these alternatives is correct.

In some cases statements can in effect have default truth
values—so that showing that they are unprovable
immediately implies, say, that they must be true. An example
in arithmetic is whether some integer equation has no solution.
For if there were a solution, then given the solution it would be
straightforward to give a proof that it is correct. So if it is
unprovable that there is no solution, then it follows that there
must in fact be no solution. And similarly, if it could be shown
for example that Goldbach’s Conjecture is unprovable then it
would follow that it must be true, for if it were false then there
would have to be a specific number which violates it, and this
could be proved. Not all statements in mathematics have this
kind of default truth value. And thus for example the
Continuum Hypothesis in set theory is unprovable but could
be either of true or false: it is just independent of the axioms of
set theory. In computational systems, showing that it is
unprovable that a given Turing machine halts with given input
immediately implies that in fact it must not halt. But showing
that it is unprovable whether a Turing machine halts with
every input (a  statement in the notation of page 1139) does
not immediately imply anything about whether this is in fact
true or false. 

x ´x µx

f [x]
´f µf

f f [x]
´g µg g

g[f][x]

#2



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

1168

â Page 793 · Generalization in mathematics. Systems that
have evolved from the basic notion of numbers provide a
characteristic example of the process of progressive
generalization in mathematics. The main such systems and
their dates of earliest known reasonably formalized use
have been (see also page 901): positive integers (before
10,000 BC), rationals (3000 BC), square roots (2000 BC), other
roots (1800 BC), all integers (600 AD, 1600s), decimals (950
AD), complex numbers (1500s, 1800s), polynomials (1591),
infinitesimals (1635), algebraic numbers (1744), quaternions
(1843), Grassmann algebra (1844), ideals (1844, 1871),
octonions (~1845), Boolean algebra (1847), fields (1850s,
1871), matrices (1858), associative algebras (1870), axiomatic
real numbers (1872), vectors (1881), transfinite ordinals
(1883), transfinite cardinals (1883), operator calculus (1880s),
Boolean algebras (1890), algebraic number fields (1893),
rings (1897), p-adic numbers (1897), non-Archimedean fields
(1899), q-numbers (1926), non-standard integers (1930s),
non-standard reals (hyperreals) (1960), interval arithmetic
(1968), fuzzy arithmetic (1970s), surreal numbers (1970s).
New systems have usually been introduced in connection
with extending the domains of particular existing
operations. But in almost all cases the systems are set up so
as to preserve as many theorems as possible—a notion that
was for example made explicit in the Principle of
Permanence discussed by George Peacock in 1830 and
extended by Hermann Hankel in 1869.

â Page 794 · Cellular automaton axioms. The first 4 axioms are
general to one-dimensional cellular automata. The next 8 are
specific to rule 110. The final 3 work whenever patterns are
embedded in a background of white cells. The universality of
rule 110 presumably implies that the axiom system given is
universal. (A complete proof would require handling various
issues about boundary conditions.) 

If the last 2 axioms are dropped any statement can readily be
proved true or false essentially just by running rule 110 for a
finite number of steps equal to the number of nested  plus

 in the statement. In practice, a large number of steps can
however be required. As an example the statement

asserts that a particular localized structure occurs in the
evolution of rule 110 from a single black cell. But page 38
shows that this happens for the first time after 2867 steps. (A
proof of this without lemmas would probably have to be of
length at least 32,910,300.)

The axioms as they are stated apply to any rule 110 evolution,
regardless of initial conditions. One can establish that the
statement at the bottom on the right cannot be proved either
true or false from the axioms by showing that it is true for
some initial conditions and false for others. Note from page
279 that the sequence  cannot occur in rule 110 evolution
except as an initial condition. So this means that the
statement is false if the initial condition is  and true if the
initial condition is .

â Practical programs. Any equivalence between programs in
a programming language can be thought of as a theorem.
Simple examples in Mathematica include:

One can set up axiom systems say by combining definitions
of programming languages with predicate logic (as done by
John McCarthy for LISP in 1963). And for programs whose
structure is simple enough it has sometimes been possible to
prove theorems useful for optimization or verification. But in
the vast majority of cases this has been essentially impossible
in practice. And I suspect that this is a reflection of
widespread fundamental unprovability. In setting up
programs with specific purposes there is inevitably some
computational reducibility (see page 828). But I suspect that
enough computational irreducibility usually remains to
make unprovability common when one asks about all
possible forms of behavior of the program. 

â Page 796 · Rules. The examples shown here (roughly in
order of increasing complexity) correspond respectively to
cases (a), (k), (b), (q), (p), (r), (o), (d) on page 798.

â Page 797 · Consistency. Any axiom system that is universal
can represent the statement that the system is consistent.
But normally such a statement cannot be proved true or
false within the system itself. And thus for example Kurt
Gödel showed this in 1931 for Peano arithmetic (in his so-
called second incompleteness theorem). In 1936, however,
Gerhard Gentzen showed that the axioms of set theory
imply the consistency of Peano arithmetic (see page 1160).
In practical mathematics set theory is always taken to be
consistent, but to set up a proof of this would require
axioms beyond set theory.

â Page 798 · Properties. For most of the rules shown, there
ultimately turn out to be quite easy characterizations of what
strings can be produced.

ä (a) At step , the only new string produced is the one 
containing  black elements.

á

É?Ê

� ��¶ (µa (µb � a³ (�³ (�³ (�³ (�³
(�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³

(�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³
(�³ (�³ (�³ (�³ (�³b)))))))))))))))))))))))))))))))))))))

First[Prepend[p, q]] === q

Join[Join[p, q], r] === Join[p, Join[q, r]]

Partition[Union[p], 1] === Split[Union[p]]

t
t
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ä (b) All strings of length  containing exactly one black cell 
are produced—after at most  steps.

ä (c) All strings containing even-length runs of white cells 
are produced.

ä (d) The set of strings produced is complicated. The last 
length 4 string produced is , after 16 steps; the last 
length 6 one is , after 26 steps. 

ä (e) All strings that begin with a black element are 
produced.

ä (f) All strings that end with a white element but contain at 
least one black element, or consist of all white elements 
ending with black, are produced. Strings of length  take  
steps to produce.

ä (g) The same strings as in (f) are produced, but now a 
string of length  with  black elements takes  
steps.

ä (h) All strings appear in which the first run of black 
elements is of length 1; a string of length  with  black 
elements appears after  steps.

ä (i) All strings containing an odd number of black elements 
are produced; a string of length  with  black cells occurs 
at step .

ä (j) All strings that end with a black element are produced.

ä (k) Above length 1, the strings produced are exactly those 
starting with a white element. Those of length  appear 
after at most  steps.

ä (l) The same strings as in (k) are produced, taking now at 
most  steps.

ä (m) All strings beginning with a black element are 
produced, after at most  steps.

ä (n) The set of strings produced is complicated, and seems 
to include many but not all that do not end with .

ä (o) All strings that do not end in  are produced.

ä (p) All strings are produced, except ones in which every 
element after the first is white.  takes 14 steps. 

ä (q) All strings are produced, with a string of length  with 
 white elements taking  steps.

ä (r) All strings are ultimately produced—which is 
inevitable after the lemmas  and  appear at 
steps 12 and 13. (See the first rule on page 778.)

â Page 800 · Non-standard arithmetic. Goodstein’s result from
page 1163 is true for all ordinary integers. But since it is
independent of the axioms of arithmetic there must be objects
that still satisfy the axioms but for which it is false. It turns out

however that any such objects must in effect be infinite. For
any set of objects that satisfy the axioms of arithmetic must
include all finite ordinary integers, since each of these can be
reached just by using  repeatedly. And the axioms then turn
out to imply that any additional objects must be larger than all
these integers—and must therefore be infinite. But for any
such truly infinite objects operations like  and  cannot be
computed by finite procedures, making it difficult to describe
such objects in an explicit way. Ever since the work of Thoralf
Skolem in 1933 non-standard models of arithmetic have been
discussed, particularly in the context of ultrafilters and
constructs like infinite trees. (See also page 1172.) 

â Page 800 · Reduced arithmetic. (See page 1152.) Statements
that can be proved with induction but are not provable only
with Robinson’s axioms are: ; ;

; ; ;
; ; .

â Page 800 · Generators and relations. In the axiom systems of
page 773, a single variable can stand for any element—much
like a Mathematica pattern object such as . In studying
specific instances of objects like groups one often represents
elements as products of constants or generators, and then for
example specifies the group by giving relations between
these products. In traditional mathematical notation such
relations normally look just like ordinary axioms, but in fact
the variables that appear in them are now assumed to be
literal objects—like  in Mathematica—that are generically
taken to be unequal. (Compare page 1159.)

â Page 801 · Comparison to multiway systems. Operator
systems are normally based on equations, while multiway
systems are based on one-way transformations. But for
multiway systems where each rule  is accompanied by
its reverse , and such pairs are represented say by

, an equivalent operator system can
immediately be obtained either from 

or from (compare page 1172)

where now objects like  and  are treated as constants—
essentially functions with zero arguments. With slightly more
effort multiway systems with ordinary one-way rules can
also be converted to operator systems. Converting from
operator systems to multiway systems is more difficult,
though ultimately always possible (see page 1156).

As discussed on page 898, one can set up operator evolution
systems similar to symbolic systems (see page 103) that have

n
2 n - 1

n n

n m n+m - 1

n m
n+m - 1

n m
n+m - 1

n
3 n - 3

2 n+ 1

3 n+ 1

n
m n+ 2 m

Ø

+ 6

x 9 Øx x + y 2 y + x
x + ( y + z) 2 ( x + y) + z 0 + x 2 x µx (Øx + y 2 z ¶ y 9 z)
x 6y 2 y 6x x 6 ( y 6z) 2 ( x 6y)6z x 6 ( y + z) 2 x 6y + x 6z

x_

x

p ! q
q ! p

"AAB" · "BBAA"

Apply[Equal,
Map[Fold[#2[#1] &, x, Characters[#]] &, rules, {2}], {1}]

Append[Apply[Equal,
Map[( Fold[f , First[#], Rest[#]] &)[Characters[#]] &,

rules, {2}], {1}], f [f [a, b], c] 2 f [a, f [b, c]]]

"A" "B"

! !
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essentially the same relationship to operator systems as
sequential substitution systems do to multiway systems. (See
also page 1172.)

â Page 802 · Operator systems. One can represent the possible
values of expressions like  by rule numbers
analogous to those used for cellular automata. Specifying an
operator  (taken in general to have  arguments with 
possible values) by giving the rule number  for ,
the rule number for an expression with variables  can be
obtained from

â Truth tables. The method of finding results in logic by
enumerating all possible combinations of truth values seems
to have been rediscovered many times since antiquity. It
began to appear regularly in the late 1800s, and became
widely known after its use by Emil Post and Ludwig
Wittgenstein in the early 1920s.

â Page 803 · Proofs of axiom systems. One way to prove that an
axiom system can reproduce all equivalences for a given
operator is to show that its axioms can be used to transform
any expression to and from a unique standard form. For then
one can start with an expression, convert it to standard form,
then convert back to any expression that is equivalent. We saw
on page 616 that in ordinary logic there is a unique DNF
representation in terms of ,  and  for any expression,
and in 1921 Emil Post used essentially this to give the first
proof that an axiom system like the first one on page 773 can
completely reproduce all theorems of logic. A standard form in
terms of  can be constructed essentially by direct
translation of DNF; other methods can be used for the various
other operators shown. (See also page 1175.)

Given a particular axiom system that one knows reproduces
all equivalences for a given operator one can tell whether a
new axiom system will also work by seeing whether it can be
used to derive the axioms in the original system. But often
the derivations needed may be very long—as on page 810.
And in fact in 1948 Samuel Linial and Emil Post showed that
in general the problem is undecidable. They did this in effect
by arguing (much as on page 1169) that any multiway system
can be emulated by an axiom system of the form on page 803,
then knowing that in general it is undecidable whether a
multiway system will ever reach some given result. (Note
that if an axiom system does manage to reproduce logic in
full then as indicated on page 814 its consequences can
always be derived by proofs of limited length, if nothing else
by using truth tables.)

Since before 1920 it has been known that one way to disprove
the validity of a particular axiom system is to show that with

 truth values it allows additional operators (see page
805). (Note that even if it works for all finite  this does not
establish its validity.) Another way to do this is to look for
invariants that should not be present—seeing if there are
features that differ between equivalent expressions, yet are
always left the same by transformations in the axiom system.
(Examples for logic are axiom systems which never change
the size of an expression, or which are of the form 
where  begins or ends with .) 

â Junctional calculus. Expressions are equivalent when
 is the same, and this canonical form

can be obtained from the axiom system of page 803 by
flattening using , sorting using ,
and removing repeats using . The operator can be
either  or  (8 or 14). With  there are 9 operators that
yield the same results:

With  there are 3944 such operators (see below). No single
axiom can reproduce all equivalences, since such an axiom
must of the form , yet  cannot contain variables
other than , and so cannot for example reproduce .

â Equivalential calculus. Expressions with variables  are
equivalent if they give the same results for

With  variables, there are thus  equivalence classes of
expressions (compared to  for ordinary logic). The
operator can be either  or  (6 or 9). With  there
are no operators that yield the same results; with 

 work (see
below). The shortest axiom system that works up to  is

. With modus ponens as the rule of inference, the
shortest single-axiom system that works is known to be

. Note that equivalential calculus
describes the smallest non-trivial group, and can be viewed
as an extremely minimal model of algebra. 

â Implicational calculus. With  the operator can be
either 2 or 11 ( ), with  , and
with  any of 16 possibilities. (Operators exist for any

.) No single axiom, at least with up to 7 operators and 4
variables, reproduces all equivalences. With modus ponens
as the rule of inference, the shortest single-axiom system
that works is known to be . Using
the method of page 1151 this can be converted to the
equational form

f [f [p, q], p]

f n k
u f [p, q, ?]

vars

With[{m = Length[vars]}, FromDigits[
Block[{f = Reverse[IntegerDigits[u, k, kn]]0FromDigits[

{##}, k] + 11 &}, Apply[Function[Evaluate[vars], expr],
Reverse[Array[IntegerDigits[# - 1, k, m] &, km]], {1}]], k]]

And Or Not

Nand

k > 2
k

{expr 2 a}
Flatten[expr] a

Union[Level[expr, {-1}]]

( aÆb)Æc 2 aÆ ( bÆc) aÆb 2 bÆa
aÆa 2 a

And Or k = 3

{13203, 15633, 15663, 16401,
17139, 18063, 19539, 19569, 19599}

k = 4

expr 2 a expr
a aÆb Ð bÆa

vars

Mod[Map[Count[expr, #, {-1}] &, vars], 2]

n 2n

22n

Xor Equal k = 3
k = 4

{458142180, 1310450865, 2984516430, 3836825115}

k = 2
{( aÆb)Æa Ð b}

{( aÆb)Æ ( ( cÆb)Æ ( aÆc))}

k = 2
Implies k = 3 {2694, 9337, 15980}

k = 4
k

{( ( aÆb)Æc)Æ ( ( cÆa)Æ ( d Æa))}

{( ( aÆb)Æc)Æ ( ( cÆa)Æ ( d Æa)) Ð d Æd,
( aÆa)Æb Ð b, ( aÆb)Æb Ð ( bÆa)Æa}
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from which the validity of the axiom system in the main text
can be established. 

â Page 803 · Operators on sets. There is always more than one
operator that yields a given collection of equivalences. So for
ordinary logic both  and  work. And with  any
of the 12 operators

also turn out to work. One can see why this happens by
considering the analogy between operations in logic and
operations on sets. As reflected in their traditional
notations—and emphasized by Venn diagrams—  ( ), 
( ) and  correspond directly to  ( ), 
( ) and . If one starts from the single-element
set  then applying ,  and 
one always gets either  or . And applying

 to these two elements gives
the same results and same equivalences as  applied to

 and . But if one uses instead  then starts
with  and  one gets any of  and in
general with  one gets any of the  elements in
the powerset 

But applying  to these
elements still always produces the same equivalences as with

. Yet now . And so one therefore has a
representation of Boolean algebra of size . For ordinary
logic based on  it turns out that there are no other finite
representations (though there are other infinite ones). But if
one works, say, with  then there are for example
representations of size 3 (see above). And the reason for this
is that with  the function 
corresponding to  only ever gets to the 3 elements

. Indeed, in general with operators ,
 and  one gets to  elements, while with operators
 and  one gets to  elements.

(One might think that one could force there only ever to be
two elements by adding an axiom like .
But all this actually does is to force there to be only two
objects analogous to  and .)

â Page 805 · Implementation. Given an axiom system in the
form  one can find rule
numbers for the operators  with  values for each
variable that are consistent with the axiom system by using

For  this involves checking nearly  or 4 billion cases,
though many of these can often be avoided, for example by
using analogs of the so-called Davis-Putnam rules. (In
searching for an axiom system for a given operator it is in
practice often convenient first to test whether each candidate
axiom holds for the operator one wants.) 

â Page 805 · Properties. There are  possible forms for
binary operators with  possible values for each argument.
There is always at least some operator that satisfies the
constraints of any given axiom system—though in a case
like  it has . Of the 274,499 axiom systems of the
form  where  involves  up to 6 times, 32,004
allow only operators , while 964 allow only . The
only cases of 2 or less operators that appear with  are

. (See
page 1174.)

â Page 806 · Algebraic systems. Operator systems can be
viewed as algebraic systems of the kind studied in
universal algebra (see page 1150). With a single two-
argument operator (such as ) what one has is in general
known as a groupoid (though this term means something
different in topology and category theory); with two such
operators a ringoid. Given a particular algebraic system, it
is sometimes possible—as we saw on page 773—to reduce
the number of operators it involves. But the number of
systems that have traditionally been studied in
mathematics and that are known to require only one
2-argument operator are fairly limited. In addition to basic
logic, semigroups and groups, there are essentially only the
rather obscure examples of semilattices, with axioms

, central groupoids,
with axioms , and squags (quasigroup
representations of Steiner triple systems), with axioms

 or equivalently
. (Ordinary quasigroups

are defined by  with ,  unique for
given , —so that their table is a Latin square; their
axioms can be set up with 3 operators as

.) 

Pages 773 and 774 indicate that most axiom systems in
mathematics involve operators with at most 2 arguments
(there are exceptions in geometry). (Constants such as  or 
can be viewed as 0-argument operators.) One can
nevertheless generalize say to polyadic groups, with
3-argument composition and analogs of associativity such as

Another example is the cellular automaton axiom system of
page 794; see also page 886. (A perhaps important

Nand Nor k = 4

{1116699, 169585339, 290790239, 459258879,
1090522958, 1309671358, 1430343258, 1515110058,
2184380593, 2575151445, 2863760025, 2986292093}

And © Or
ª Not Intersection Å Union
Ä Complement

{1} Union Intersection Complement
{} {1}

Complement[s, Intersection[a, b]]
a Ñ b

True False s = {1, 2}
{1} {2} {{}, {1}, {2}, {1, 2}}

s = Range[n] 2n

Distribute[Map[{{}, {#}} &, s], List, List, List, Join]

Complement[s, Intersection[a, b]]

a Ñ b k = 2n

2n

Nand

Implies

s = {1, 2} Union[Complement[s, a], b]
a ¶ b

{{1}, {2}, {1, 2}} Implies
And Or 2n - 1
Xor Equal 2^ ( 2 Floor[n/2])

a 2 b ª b 2 c ª c 2 a

True False

{f [a, f [a, a]] Ð a, f [a, b] Ð f [b, a]}
f [x, y] k

Module[{c, v}, c = Apply[Function,
{v = Union[Level[axioms, {-1}]], Apply[And, axioms]}];

Select[Range[0, kk2
- 1], With[{u = IntegerDigits[#, k, k2]},

Block[{f}, f [x_, y_] := u0-1 - k x - y1;
Array[c, Table[k, {Length[v]}], 0, And]]] &]]

k = 4 164

kk2

k

a Ð b k = 1
{? Ð a} ? Æ

{6, 9} {1, 7}
k = 2

{{}, {10}, {12}, {1, 7}, {3, 12}, {5, 10}, {6, 9}, {10, 12}}

Æ

{aÆ ( bÆc) Ð ( aÆb)Æc, aÆb Ð bÆa, aÆa Ð a}
{( bÆa)Æ ( aÆc) Ð b}

{aÆb Ð bÆa, aÆa Ð a, aÆ ( aÆb) Ð b}
{aÆ ( ( bÆ ( bÆ ( ( ( cÆc)Æd)Æc)))Æa) Ð d}

{aÆc Ð b, d Æa Ð b} c d
a b

{a 
aÆb Ð b, aÆb�Ö �b Ð a, aÆ ( a 
b) Ð b, ( a�Ö �b)Æb Ð a}

1 Ë

f [f [a, b, c], d, e] Ð f [a, f [b, c, d], e] Ð f [a, b, f [c, d, e]]
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generalization is to have expressions that are arbitrary
networks rather than just trees.) 

â Symbolic systems. By introducing constants (0-argument
operators) and interpreting  as function application one
can turn any symbolic system such as 
from page 103 into an algebraic system such as

. Doing this for the combinator system
from page 711 yields the so-called combinatory algebra

.

â Page 806 · Groups and semigroups. With  possible values
for each variable, the forms of operators allowed by axiom
systems for group theory and semigroup theory correspond
to multiplication tables for groups and semigroups with 
elements. Note that the first group that is not commutative
(Abelian) is the group  with  elements. The total
number of commutative groups with  elements is just 

(Relabelling of elements makes the number of possible
operator forms up to  times larger.) (See also pages 945,
1153 and 1173.)

â Forcing of operators. Given a particular set of forms for
operators one can ask whether an axiom system can be found
that will allow these but no others. As discussed in the note
on operators on sets on page 1171 some straightforwardly
equivalent forms will always be allowed. And unless one
limits the number of elements  it is in general undecidable
whether a given axiom system will allow no more than a
given set of forms. But even with fixed  it is also often not
possible to force a particular set of forms. And as an example
of this one can consider commutative group theory. The basic
axioms for this allow forms of operators corresponding to
multiplication tables for all possible commutative groups
(see note above). So to force particular forms of operators
would require setting up axioms satisfied only by specific
commutative groups. But it turns out that given the basic
axioms for commutative group theory any non-trivial set of
additional axioms can always be reduced to a single axiom of
the form  (where exponentiation is repeated
application of ). Yet even given a particular number of
elements , there can be several distinct groups satisfying

 for a given exponent . (The groups can be written as
products of cyclic ones whose orders correspond to the
possible factors of .) (Something similar is also known in
principle to be true for general groups, though the hierarchy
of axioms in this case is much more complicated.)

â Model theory. In model theory each form of operator that
satisfies the constraints of a given axiom system is called a

model of that axiom system. If there is only one inequivalent
model the axiom system is said to be categorical—a notion
discussed for example by Richard Dedekind in 1887. The
Löwenheim-Skolem theorem from 1915 implies that any
axiom system must always have a countable model. (For an
operator system such a model can have elements which are
simply equivalence classes of expressions equal according to
the axioms.) So this means that even if one tries to set up an
axiom system to describe an uncountable set—such as real
numbers—there will inevitably always be extra countable
models. Any axiom system that is incomplete must always
allow more than one model. The model intended when the
axiom system was originally set up is usually called the
standard model; others are called non-standard. In arithmetic
non-standard models are obscure, as discussed on page 1169.
In analysis, however, Abraham Robinson pointed out in 1960
that one can potentially have useful non-standard models, in
which there are explicit infinitesimals—much along the lines
suggested in the original work on calculus in the late 1600s.

â Pure equational logic. Proofs in operator systems always
rely on certain underlying rules about equality, such as the
equivalence of  and , and of  and

. And as Garrett Birkhoff showed in 1935, any
equivalence between expressions that holds for all possible
forms of operator must have a finite proof using just these
rules. (This is the analog of Gödel’s Completeness Theorem
from page 1152 for pure predicate logic.) But as soon as one
introduces actual axioms that constrain the operators this is
no longer true—and in general it can be undecidable whether
or not a particular equivalence holds.

â Multiway systems. One can use ideas from operator systems
to work out equivalences in multiway systems (compare page
1169). One can think of concatenation of strings as being an
operator, in terms of which a string like  can be written

. (The arguments to  should strictly be distinct
constants, but no equivalences are lost by allowing them to be
general variables.) Assuming that the rules for a multiway
system come in pairs , , like ,

, these can be written as statements about
operators, like . The basic properties of
concatenation then also imply that .
And this means that the possible forms for the operator 
correspond to possible semigroups. Given a particular such
semigroup satisfying axioms derived from a multiway system,
one can see whether the operator representations of particular
strings are equal—and if they are not, then it follows that the
strings can never be reached from each other through
evolution of the multiway system. (Such operator
representations are a rough analog for multiway systems of

Æ

−[x][y] ! x[x[y]]

(−Æa)Æb Ð aÆ ( aÆb)

{( (�Æa)Æb)Æc Ð ( aÆc)Æ ( bÆc), (�Æa)Æb Ð a}

k

k

S3 k = 6
k

Apply[Times,
Map[PartitionsP[Last[#]] &, FactorInteger[k]]]

k !

k

k

an 2 1
Æ

k
an 2 1 n

n

u 2 v v 2 u u 2 v
u 2 v /. a ! b

"ABB"
f [f [a, b], b] Æ

p ! q q ! p "AB" ! "AAA"
"AAA" ! "AB"

f [a, b] 2 f [f [a, a], a]
f [f [a, b], c] 2 f [a, f [b, c]]

Æ
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truth tables.) As an example, with the multiway system
 some possible forms of operators are shown

below. (In this case these are the commutative semigroups.
With , elements 6 out of the total of 8 possible semigroups
appear; with , 63 out of 113, and with , 1140 out of
3492—all as shown on page 805.) (See also page 952.)

Taking  to be each of these operators, one can work out a
representation for any given string like  by for
example constructing the expression  and
finding its value for each of the  possible pairs of values of

 and . Then for each successive operator, the sets of strings
where the arrays of values are the same are as shown below.

Ultimately the sets of strings equivalent under the multiway
system are exactly those containing particular numbers of
black and white elements. But as the pictures above suggest,
only some of the distinctions between sets of strings are ever
captured when any specific form for the operator is used.

Just as for operator systems, any bidirectional multiway
system will allow a certain set of operators. (When there are
multiple rules in the multiway system, tighter constraints are
obtained by combining them with .) And the pattern of
results for simple multiway systems is roughly similar to
those on page 805 for operator systems—although, for
example, the associativity of concatenation makes it
impossible for example to get the operators for  and
basic logic. 

â Page 806 · Logic in languages. Human languages always
seem to have single words for AND, OR and NOT. A few have
distinct words for OR and XOR: examples are Latin with vel
and aut and Finnish with vai and tai. NOR is somewhat rare,
though Dutch has noch and Old English ne. (Modern English
has only the compound form neither ... nor.) But remarkably
enough it appears that no ordinary language has a single
word for NAND. The reason is not clear. Most people seem to
find it difficult to think in terms of NAND (NAND is for
example not associative, but then neither is NOR). And NAND

on the face of it rarely seems useful in everyday situations.

But perhaps these are just reflections of the historical fact that
NAND has never been familiar from ordinary languages. 

Essentially all computer languages support AND, OR and
NOT as ways to combine logical statements; many support
AND, OR and XOR as bitwise operations. Circuit design
languages like Verilog and VHDL also support NAND, NOR

and XNOR. (NAND is the operation easiest to implement with
CMOS FETs—the transistors used in most current chips; it
was also implemented by pentode vacuum tubes.) Circuit
designers sometimes use the linguistic construct “p nand q”. 

The Laws of Form presented by George Spencer Brown in
1969 introduce a compact symbolic notation for NAND with
any number of arguments and in effect try to develop a way
of discussing NAND and reasoning directly in terms of it.
(The axioms normally used are essentially the Sheffer ones
from page 773.)

â Page 806 · Properties. Page 813 lists theorems satisfied by
each function.  are commutative
(orderless) so that , while 
are associative (flat), so that . (Compare
page 886.)

â Notations. Among those in current use are (highlighted
ones are supported directly in Mathematica):

The grouping of terms is normally inferred from precedence
of operators (typically ordered , , , , , , , ),
or explicitly indicated by parentheses, function brackets, or
sometimes nested underbars or dots. So-called Polish
notation given second-to-last above avoids all explicit
delimiters (see page 896). 

â Page 807 · Universal logical functions. The fact that
combinations of  or  are adequate to reproduce any
logical function was noted by Charles Peirce around 1880,
and became widely known after the work of Henry Sheffer in
1913. (See also page 1096.)  and  are the only 2-input
functions universal in this sense. (  can for example

"AB" · "BA"

k = 2
k = 3 k = 4

(a) (b) (c) (d) (e) ( f ) (g) (h) ( i)

Æ

"ABAA"
f [f [f [a, b], a], a]

k2

a b

… …

… … …

… … …

… … … …

…

… … …

… … … …

… … …

…

(i)

(h)

(g)

( f )

(e)

(d)

(c)

(b)

(a)

And

Nand

{0, 1, 6, 7, 8, 9, 14, 15}
aÆb Ð bÆa {0, 6, 8, 9, 10, 12, 14, 15}

aÆ ( bÆc) Ð ( aÆb)Æc

True T 1 � Û �

False F 0 � Ú �

Not[p] ¨ p p
_

~p pç -p ! p Ü p N p �(negation)

And[p, q] p © q p &�q p Þq p q p && q K p q �(conjunction)

Or[p, q] p ª q p + q p || q A p q �(disjunction)

Xor[p, q] p Ò q p«q p 
 q p è q J p q �( inequivalence)

Implies[p, q] p ¶ q p ß q p º q If [p, q] C p q �(material implication)

Equal[p, q] p Ð q p ¸ q p Ý q p · q p ~ q E p q �(material equivalence; 
xnor)

Nand[p, q] p Ñ q p Ï q p�Ü q (p�q) D p q �(Sheffer stroke; 
alternative denial)

Nor[p, q] p Ó q páq X p q �( joint denial)

2 ¨ Ñ © Ò Ó ª ¶

Nand Nor

Nand Nor
{Equal}
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reproduce only functions ,  only
functions , and  only
functions .) For 3-input functions,
corresponding to elementary cellular automaton rules, 56 of
the 256 possibilities turn out to be universal. Of these, 6 are
straightforward generalizations of  and . Other
universal functions include rules 1, 45 and 202
( ), but not 30, 60 or 110. For large  roughly 1/4
of all -input functions are universal. (See also page 1175.) 

â Page 808 · Searching for logic. For axiom systems of the form
 one finds: 

 allows the  operator 15552 for
which the NAND theorem  is not true.

 allows the  operator 95356335
for which even  is not true. Of the 100 cases that
remain when , the 25 inequivalent under renaming of
variables and reversing arguments of  are

Of these I was able in 2000—using automated theorem
proving—to show that the ones given as (g) and (h) in the
main text are indeed axiom systems for logic. (My proof
essentially as found by Waldmeister is given on page 810.) 

If one adds  to any of the other 23 axioms above
then in all cases the resulting axiom system can be shown to
reproduce logic. But from any of the 23 axioms on their own I
have never managed to derive . Indeed, it seems
difficult to derive much at all from them—though for
example I have found a fairly short proof of 
from .

It turns out that the first of the 25 axioms allows the 
operator  and so cannot be
logic. Axioms 3, 19 and 23 allow similar operators, leaving 19
systems as candidate axioms for logic.

It has been known since the 1940s that any axiom system for
logic must have at least one axiom that involves more than 2
variables. The results above now show that 3 variables
suffice. And adding more variables does not seem to help.
The smallest axiom systems with more than 3 variables that
work up to  are of the form .
All turn out also to work at , but fail at . And with 6
NANDs (as in (g) and (h)) no system of the form 
works even up to . 

For axiom systems of the form :

With 2 variables the inequivalent cases that remain are

but all of these allow the  operator

and so cannot correspond to basic logic. With 3 variables, all
32 cases with 6 NANDs are equivalent to ,
which is axiom system (f) in the main text. With 7 NANDs
there are 8 inequivalent cases:

and of these at least 5 and 6 can readily be proved to be
axioms for logic.

Any axiom system must consist of equivalences valid for the
operator it describes. But the fact that there are fairly few
short such equivalences for  (see page 818) implies that
there can be no axiom system for  with 6 or less NANDs
except the ones discussed above. 

â Two-operator logic. If one allows two operators then one
can get standard logic if one of these operators is forced to be

 and the other is forced to be ,  or —or in
fact any of operators 1, 2, 4, 7, 8, 11, 13, 14 from page 806.

A simple example that allows  and either  or  is the
Robbins axiom system from page 773. Given the first two
axioms (commutativity and associativity) it turns out that no
shorter third axiom will work in this case (though ones such as

 of the same size do work).

Much as in the single-operator case, to reproduce logic two pairs
of operators must be allowed for , none for , 12 for

, and so on. Among single axioms, the shortest that works
up to  is . The shortest that

{9, 10, 12, 15} {Implies}
{10, 11, 12, 13, 14, 15} {Equal, Implies}
{8, 9, 10, 11, 12, 13, 14, 15}

Nand Nor

If[a 2 1, b, c] n
n

{? Ð a}

2 variables 3 variables
number of Æ

total systems
allow Ñ

allow only Ñ etc. for k=2
allow only Ñ etc. for k<3
allow only Ñ etc. for k<4

2 3 4 5 6

4 16 80 448 2688
0 5 44 168 1532
0 0 2 12 76
0 0 0 0 0
0 0 0 0 0

2 3 4 5 6

54 405 3402 30618 288684
0 9 124 744 8764
0 0 12 84 868
0 0 8 16 296
0 0 0 0 100

{( ( bÆb)Æa)Æ ( aÆb) Ð a} k = 3
(pÆp)Æq Ð ( pÆq)Æq

{( ( ( bÆa)Æc)Æa)Æ ( aÆc) Ð a} k = 4
pÆq Ð qÆp

k = 4
Æ

{(b Æ (b Æ (aÆa))) Æ (aÆ (b Æc)),
(b Æ (b Æ (aÆa))) Æ (aÆ (cÆb)), (b Æ (b Æ (aÆb))) Æ (aÆ (b Æc)),
(b Æ (b Æ (aÆb))) Æ (aÆ (cÆb)), (b Æ (b Æ (aÆc))) Æ (aÆ (cÆb)),
(b Æ (b Æ (b Æa))) Æ (aÆ (b Æc)), (b Æ (b Æ (b Æa))) Æ (aÆ (cÆb)),
(b Æ (b Æ (cÆa))) Æ (aÆ (b Æc)), (b Æ ( (aÆb) Æb)) Æ (aÆ (b Æc)),
(b Æ ( (aÆb) Æb)) Æ (aÆ (cÆb)), (b Æ ( (aÆc) Æb)) Æ (aÆ (cÆb)),
((b Æc) Æa) Æ (b Æ (b Æ (aÆb))), ( (b Æc) Æa) Æ (b Æ (b Æ (aÆc))),
( (b Æc) Æa) Æ (b Æ ( (aÆa) Æb)), ((b Æc) Æa) Æ (b Æ ( (aÆb) Æb)),
((b Æc) Æa) Æ (b Æ ( (aÆc) Æb)), ((b Æc) Æa) Æ (b Æ ( (b Æa) Æb)),
((b Æc) Æa) Æ (b Æ ( (cÆa) Æb)), ((b Æc) Æa) Æ (cÆ (cÆ (aÆb))),
( (b Æc) Æa) Æ (cÆ (cÆ (aÆc))), ( (b Æc) Æa) Æ (cÆ ( (aÆa) Æc)),
((b Æc) Æa) Æ (cÆ ( (aÆb) Æc)), ( (b Æc) Æa) Æ (cÆ ( (aÆc) Æc)),
((b Æc) Æa) Æ (cÆ ( (b Æa) Æc)), ( (b Æc) Æa) Æ (cÆ ( (cÆa) Æc))}

aÆb Ð bÆa

pÆq Ð qÆp

(pÆp)Æ ( pÆq) Ð p
{( bÆ ( bÆ ( bÆa)))Æ ( aÆ ( bÆc)) Ð a}

k = 6
1885760537655023865453442036

k = 2 {( ( ( bÆc)Æd)Æa)Æ ( aÆd) Ð a}
k = 3 k = 4

{? Ð a}
k = 4

{? Ð a, aÆb Ð bÆa}

2 variables 3 variables
number of Æ

total systems
allow Ñ

allow only Ñ etc. for k=2
allow only Ñ etc. for k<3
allow only Ñ etc. for k<4

4 5 6 7 8

4 16 80 448 2688
0 5 44 168 1532
0 4 20 160 748
0 0 0 64 16
0 0 0 48 16

4 5 6 7 8

54 405 3402 30618 288684
0 9 124 744 8764
0 8 80 736 6248
0 0 32 416 2752
0 0 32 384 2368

{( aÆb)Æ ( aÆ ( bÆ ( aÆb))),
( aÆb)Æ ( aÆ ( bÆ ( bÆb))), ( aÆ ( bÆb))Æ ( aÆ ( bÆ ( bÆb)))}

k = 6
1885760537655125429738480884

(aÆb)Æ ( aÆ ( bÆc))

{(aÆa) Æ (b Æ (b Æ (aÆc))), (aÆb) Æ (aÆ (b Æ (aÆb))), (aÆb) Æ (aÆ (b Æ (aÆc))),
(aÆb) Æ (aÆ (b Æ (b Æb))), (aÆb) Æ (aÆ (b Æ (b Æc))),
(aÆb) Æ (aÆ (b Æ (cÆc))), (aÆb) Æ (aÆ (cÆ (aÆc))), (aÆb) Æ (aÆ (cÆ (cÆc)))}

Nand
Nand

Not And Or Implies

Not And Or

f [g[f [a, g[f [a, b]]]], g[g[b]]] Ð b

k = 2 k = 3
k = 4

k = 2 (¨ (¨ (¨ b ª a) ª ¨ ( a ª b))) Ð a
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works up to  is . It is
known, however, that at least 3 variables must appear in order
to reproduce logic, and an example of a single axiom with 4
variables that has been found recently to work is

.

â Page 808 · History. (See page 1151.) (c) was found by Henry
Sheffer in 1913; (e) by Carew Meredith in 1967. Until this
book, very little work appears to have been done on finding
short axioms for logic in terms of . Around 1949
Meredith found the axiom system

In 1967 George Spencer Brown found (see page 1173)

and in 1969 Meredith also gave the system 

â Page 812 · Theorem distributions. The picture below shows
which of the possible theorems from page 812 hold for each
of the numbered standard mathematical theories from page
805. The theorem close to the right-hand end valid in many
cases is . The lack of regularity in this
picture can be viewed as a sign that it is difficult to tell which
theorems hold, and thus in effect to do mathematics.  

â Page 814 · Multivalued logic. As noted by Jan Lukasiewicz
and Emil Post in the early 1920s, it is possible to generalize
ordinary logic to allow  values , say with
0 being , and 1 being . Standard operations in logic can
be generalized as , ,

, ,
,

. An alternative
generalization for  is .
The function  used in the main
text turns out to be universal for any . Axiom systems can be
set up for multivalued logic, but they are presumably more
complicated than for ordinary  logic. (Compare page 1171.)

The idea of intermediate truth values has been discussed
intermittently ever since antiquity. Often—as in the work of
George Boole in 1847—a continuum of values between 0 and
1 are taken to represent probabilities of events, and this is the
basis for the field of fuzzy logic popular since the 1980s.

â Page 814 · Proof lengths in logic. As discussed on page 1170
equivalence between expressions can always be proved by
transforming to and from canonical form. But with 

variables a DNF-type canonical form can be of size —and
can take up to at least  proof steps to reach. And indeed if
logic proofs could in general be done in a number of steps
that increases only like a polynomial in  this would mean
that the NP-complete problem of satisfiability could also be
solved in this number of steps, which seems very unlikely
(see page 768).

In practice it is usually extremely difficult to find the absolute
shortest proof of a given logic theorem—and the exact length
will depend on what axiom system is used, and what kinds
of steps are allowed. In fact, as mentioned on page 1155, if
one does not allow lemmas some proofs perhaps have to
become exponentially longer. The picture below shows in
each of the axiom systems from page 808 the lengths of the
shortest proofs found by a version of Waldmeister (see page
1158) for all 582 equivalences (see page 818) that involve two
variables and up to 3 NANDs on either side.

The longest of these are respectively
 and occur for theorems 

Note that for systems that do not already have it as an axiom,
most theorems use the lemma  which takes
respectively  steps to prove.

â Page 818 · NAND theorems. The total number of expressions
with  NANDs and  variables is: 
(see page 897). With  and  from 0 to 7 the number of
these  for all values of variables is

, with the first few distinct ones
being (see page 781)

k = 3 (¨ (¨ ( a ª b) ª ¨ b) ª ¨ (¨ a ª a)) Ð b

{(¨ (¨ ( c ª b) ª ¨ a) ª ¨ (¨ (¨ d ª d) ª ¨ a ª c)) Ð a}

Nand

{( aÆ ( bÆc))Æ ( aÆ ( bÆc)) Ð
( ( cÆa)Æa)Æ ( ( bÆa)Æa), ( aÆa)Æ ( bÆa) Ð a}

{( aÆa)Æ ( ( bÆb)Æb) Ð a,
aÆ ( bÆc) Ð ( ( ( cÆc)Æa)Æ ( ( bÆb)Æa))Æ ( ( ( cÆc)Æa)Æ ( ( bÆb)Æa))}

{aÆ ( bÆ ( aÆc)) Ð aÆ ( bÆ ( bÆc)), ( aÆa)Æ ( bÆa) Ð a, aÆb Ð bÆa}

( pÆp)Æp Ð pÆ ( pÆp)

k Range[0, 1, 1/ ( k - 1)]
False True

Not[a_] = 1 - a And[a_, b_] = Min[a, b]
Or[a_, b_] = Max[a, b] Xor[a_, b_] = Abs[a - b]
Equal[a_, b_] = 1 -Abs[a - b]
Implies[a_, b_] = 1 -UnitStep[a - b] ( a - b)

Not Not[a_] := Mod[( k - 1) a + 1, k] / ( k - 1)
Nand[a_, b_] := Not[And[a, b]]

k

k = 2

n

2n

2n

n

0

20

40

0 100 200 300 400 500

0

20

40

60

0 100 200 300 400 500

0
20
40

0 100 200 300 400 500

0

20

40

60

80

0 100 200 300 400 500

0

20

40

60

0 100 200 300 400 500

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500

0

20

40

60

80

100

120

140

160

180

0 100 200 300 400 500

0
20
40

0 100 200 300 400 500

(e)

(d)

(c)

(b)

(a)

(h)

(g)

( f )

{57, 94, 42, 57, 55, 53, 179, 157}

{( ( (aÑ a) Ñ b) Ñ b) Ð ( ( (aÑ b) Ñ a) Ñ a),
(aÑ (aÑ (aÑ a))) Ð (aÑ ( (aÑ b) Ñ b)), (( (aÑ a) Ñ a) Ñ a) Ð

( ( (aÑ a) Ñ b) Ñ a), (( (aÑ a) Ñ b) Ñ b) Ð ( ( (aÑ b) Ñ a) Ñ a),
(aÑ ( (b Ñ b) Ñ a)) Ð (b Ñ ( (aÑ a) Ñ b)), ((aÑ a) Ñ a) Ð ( (b Ñ b) Ñ b),
((aÑ a) Ñ a) Ð ( (b Ñ b) Ñ b), ((aÑ a) Ñ a) Ð ( (b Ñ b) Ñ b)}

( a Ñ b) Ð ( b Ñ a)
{6, 1, 8, 49, 8, 1, 119, 118}

n s Binomial[2 n, n] sn+1 / ( n+ 1)
s = 2 n

True
{0, 0, 4, 0, 80, 108, 2592, 7296}

{( p Ñ p) Ñ p, ( ( ( p Ñ p) Ñ p) Ñ p) Ñ p, ( ( ( p Ñ p) Ñ p) Ñ q) Ñ q}
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The number of unequal expressions obtained is
 (compare page 1096), with the first

few distinct ones being 

Most of the axioms from page 808 are too long to appear
early in the list of theorems. But those of system (d) appear at
positions  and those of (e) at .

(See also page 1096.)

â Page 819 · Finite axiomatizability. It is known that the axiom
systems (such as Peano arithmetic and set theory) given with
axiom schemas on pages 773 and 774 can be set up only with
an infinite number of individual axioms. But because such
axioms can be described by schemas they must all have
similar forms, so that even though the definition in the main
text suggests that each corresponds to an interesting theorem
these theorems are not in a sense independently interesting.
(Note that for example the theory of specifically finite groups
cannot be set up with a finite number even of schemas—or
with any finite procedure for checking whether a given
candidate axiom should be included.) 

â Page 820 · Empirical metamathematics. One can imagine a
network representing some field of mathematics, with nodes
corresponding to theorems and connections corresponding to
proofs, gradually getting filled in as the field develops.
Typical rough characterizations of mathematical results—
independent of their detailed history—might then end up
being something like the following:

ä lemma: short theorem appearing at an intermediate stage 
in a proof

ä corollary: theorem connected by a short proof to an 
existing theorem

ä easy theorem: theorem having a short proof

ädifficult theorem: theorem having a long proof

ä elegant theorem: theorem whose statement is short and 
somewhat unique

ä interesting theorem (see page 817): theorem that cannot 
readily be deduced from earlier theorems, but is well 
connected

äboring theorem: theorem for which there are many others 
very much like it

äuseful theorem: theorem that leads to many new ones 

äpowerful theorem: theorem that substantially reduces the 
lengths of proofs needed for many others

ä surprising theorem: theorem that appears in an otherwise 
sparse part of the network of theorems

ädeep theorem: theorem that connects components of the 
network of theorems that are otherwise far away

ä important theorem: theorem that allows a broad new area 
of the network to be reached.

The picture below shows the network of theorems associated
with Euclid’s Elements. Each stated theorem is represented by
a node connected to the theorems used in its stated proof.
(Only the shortest connection from each theorem is shown
explicitly.) The axioms (postulates and common notions) are
given in the first column on the left, and successive columns
then show theorems with progressively longer proofs.
(Explicit annotations giving theorems used in proofs were
apparently added to editions of Euclid only in the past few
centuries; the picture below extends the usual annotations in
a few cases.) The theorem with the longest proof is the one
that states that there are only five Platonic solids. 

â Speedups in other systems. Multiway systems are almost
unique in being able to be sped up just by adding “results”
already derived in the multiway system. In other systems,
there is no such direct way to insert such results into the rules
for the system.

â Character of mathematics. Since at least the early 1900s
several major schools of thought have existed:

äFormalism (e.g. David Hilbert): Mathematics studies formal 
rules that have no intrinsic meaning, but are relevant 
because of their applications or history. 

äPlatonism (e.g. Kurt Gödel): Mathematics involves trying 
to discover the properties of a world of ideal mathematical 
forms, of which we in effect perceive only shadows.

äLogicism (e.g. Gottlob Frege, Bertrand Russell): 
Mathematics is an elaborate application of logic, which is 
itself fundamental.

ä Intuitionism (e.g. Luitzen Brouwer): Mathematics is a 
precise way of handling ideas that are intuitive to the 
human mind.

The results in this book establish a new point of view
somewhere between all of these.

â Invention versus discovery in mathematics. One generally
considers things invented if they are created in a somewhat
arbitrary way, and discovered if they are identified by what

{2, 3, 3, 7, 10, 15, 12, 16}

{p, p Ñ p, p Ñ q, (p Ñ p) Ñ p, (p Ñ q) Ñ p, (p Ñ p) Ñ q}

{3, 15, 568} {855, 4}

0 5 10 15 20 25 30
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seems like a more inexorable process. The results of this
section thus strongly suggest that the basic directions taken
by mathematics as currently practiced should mostly be
considered invented, not discovered. The new kind of science
that I describe in this book, however, tends to suggest forms
of mathematics that involve discovery rather than invention.

â Ordering of constructs. One can deduce some kind of
ordering among standard mathematical constructs by seeing
how difficult they are to implement in various systems—such
as cellular automata, Turing machines and Diophantine
equations. My experience has usually been that addition is
easiest, followed by multiplication, powers, Fibonacci
numbers, perfect numbers and then primes. And perhaps
this is similar to the order in which these constructs appeared
in the early history of mathematics. (Compare page 640.) 

â Mathematics and the brain. A possible reason for some
constructs to be more common in mathematics is that they
are somehow easier for human brains to manipulate. Typical
human experience makes small positive integers and simple
shapes familiar—so that all human brains are at least well
adapted to such constructs. Yet of the limited set of people
exposed to higher mathematics, different ones often seem to
think in bizarrely different ways. Some think symbolically,
presumably applying linguistic capabilities to algebraic or
other representations. Some think more visually, using
mechanical experience or visual memory. Others seem to
think in terms of abstract patterns, perhaps sometimes with
implicit analogies to musical harmony. And still others—
including some of the purest mathematicians—seem to think
directly in terms of constraints, perhaps using some kind of
abstraction of everyday geometrical reasoning.

In the history of mathematics there are many concepts that
seem to have taken surprisingly long to emerge. And
sometimes these are ones that people still find hard to grasp.
But they often later seem quite simple and obvious—as with
many examples in this book. 

It is sometimes thought that people understand concepts in
mathematics most easily if they are presented in the order in
which they arose historically. But for example the basic
notion of programmability seems at some level quite easy
even for young children to grasp—even though historically it
appeared only recently.

In designing Mathematica one of my challenges was to use
constructs that are at least ultimately easy for people to
understand. Important criteria for this in my experience
include specifying processes directly rather than through
constraints, the explicitness in the representation of input
and output, and the existence of small, memorable,

examples. Typically it seems more difficult for people to
understand processes in which larger numbers of different
things happen in parallel. (Notably,  normally seems
more difficult to understand than .) Tree structures
such as Mathematica expressions are fairly easy to
understand. But I have never found a way to make general
networks similarly easy, and I am beginning to suspect that
they may be fundamentally difficult for brains to handle.

â Page 821 · Frameworks. Symbolic integration was in the
past done by a collection of ad hoc methods like substitution,
partial fractions, integration by parts, and parametric
differentiation. But in Mathematica  is now almost
completely systematic, being based on structure theorems for
finding general forms of integrals, and on general
representations in terms of  and other functions. (In
recognizing, for example, whether an expression involving a
parameter can have a pole undecidable questions can in
principle come up, but they seem rare in practice.) Proofs are
essentially always still done in an ad hoc way—with a few
minor frameworks like enumeration of cases, induction, and
proof by contradiction (reductio ad absurdum) occasionally
being used. (More detailed frameworks are used in specific
areas; an example are -  arguments in calculus.) But
although still almost unknown in mainstream mathematics,
methods from automated theorem proving (see page 1157)
are beginning to allow proofs of many statements that can be
formulated in terms of operator systems to be found in a
largely systematic way (e.g. page 810). (In the case of
Euclidean geometry—which is a complete axiom system—
algebraic methods have allowed complete systematization.)
In general, the more systematic the proofs in a particular area
become, the less relevant they will typically seem compared
to the theorems that they establish as true. 

Intelligence in the Universe

â Page 822 · Animism. Attributing abstract human qualities
such as intelligence to systems in nature is a central part of
the idea of animism, discussed on page 1195.

â Page 822 · The weather. Almost all the intricate variations
of atmospheric temperature, pressure, velocity and humidity
that define the weather we see are in the end determined by
fairly simple underlying rules for fluid behavior. (Details of
phase changes in water are also important, as are features of
topography, ocean currents, solar radiation levels and
presumably land use.) Our everyday personal attempts to
predict the weather tend to be based just on looking at local
conditions and then recalling what happened when we saw
these conditions before. But ever since the mid-1800s
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synoptic weather maps of large areas have been available
that summarize conditions in terms of features like fronts
and cyclones. And predictions made by looking at simple
trends in these features tend at least in some situations to
work fairly well. Starting in the 1940s more systematic efforts
to predict weather were made by using computers to run
approximations to fluid equations. The approximations have
improved as larger computers have become available. But
even though millions of discrete samples are now used, each
one typically still represents something much larger then for
example a single cloud. Yet ever since the 1970s, the approach
has had at least some success in making predictions up to
several days in advance. But although there has been gradual
improvement it is usually assumed that—like in the Lorenz
equations—the phenomenon of chaos must make forecasts
that are based on even slightly different initial measurements
eventually diverge exponentially (see page 972). Almost
certainly this does indeed happen in at least some critical
situations. But it seems that over most of a typical weather
map there is no such sensitivity—so that in the end the
difficulties of weather prediction are probably much more a
result of computational irreducibility and of the sophisticated
kinds of computations that the Principle of Computational
Equivalence implies should often occur even in simple fluids. 

â Page 822 · Defining intelligence. The problem of defining
intelligence independent of specific education and culture
has been considered important for human intelligence testing
since the beginning of the 1900s. Charles Spearman
suggested in 1904 that there might be a general intelligence
factor (usually called g) associated with all intellectual tasks.
Its nature was never very clear, but it was thought that its
value could be inferred from performance on puzzles
involving numbers, words and pictures. By the 1980s,
however, there was increasing emphasis on the idea that
different types of human tasks require different types of
intelligence. But throughout the 1900s psychologists
occasionally tried to give general definitions of intelligence—
initially usually in terms of learning or problem-solving
capabilities; later more often in terms of adaptation to
complex environments. 

Particularly starting at the end of the 1800s there was great
interest in whether animals other than humans could be
considered intelligent. The most common general criterion
used was the ability to show behavior based on conceptual or
abstract thinking rather than just simple instincts. More
specific criteria also included ability to use tools, plan
actions, use language, solve logical problems and do
arithmetic. But by the mid-1900s it became increasingly clear
that it was very difficult to interpret actual observations—

and that unrecognized cues could for example often account
for the behavior seen.

When the field of artificial intelligence began in the mid-
1900s there was some discussion of appropriate definitions of
intelligence (see page 1099). Most focused on mathematical
or other problem solving, though some—such as the Turing
test—emphasized everyday conversation with humans. 

â Page 823 · Mimesis. The notion of inanimate analogs of
memory—such as impressions in wax—was discussed for
example by Plato in antiquity. 

â Page 823 · Defining life. Greek philosophers such as
Aristotle defined life by the presence of some form of soul,
and the idea that there must be a single unique feature
associated with life has always remained popular. In the
1800s the notion of a “life force” was discussed—and thought
to be associated perhaps with chemical properties of
protoplasm, and perhaps with electricity. The discovery from
the mid-1800s to the mid-1900s of all sorts of elaborate
chemical processes in living systems led biologists often to
view life as defined by its ability to maintain fixed overall
structure while achieving chemical functions such as
metabolism. When the Second Law of Thermodynamics was
formulated in the mid-1800s living systems were usually
explicitly excluded (see page 1021), and by the 1930s
physicists often considered local entropy decrease a defining
feature of life. Among geneticists and soon mathematicians
self-reproduction was usually viewed as the defining feature
of life, and following the discovery of the structure of DNA
in 1953 it came to be widely believed that the presence of self-
replicating elements must be fundamental to life. But the
recognition that just copying information is fairly easy led in
the 1960s to definitions of life based on the large amounts of
information encoded in its genetic material, and later to ones
based on the apparent difficulty of deriving this information
(see page 1069). And perhaps in part reacting to my
discoveries about cellular automata it became popular in the
1980s to mention adaptation and essential interdependence
of large numbers of different kinds of parts as further
necessary characteristics of life. Yet in the end every single
general definition that has been given both includes systems
that are not normally considered alive, and excludes ones
that are. (Self-reproduction, for example, suggests that flames
are alive, but mules are not.)

One of the features that defines life on Earth is the presence
of DNA, or at least RNA. But as one looks at smaller
molecules they become less specific to living systems. It is
sometimes thought significant that living systems perpetuate
the use of only one chirality of molecules, but actually this
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can quite easily be achieved by various forms of non-
chemical input without life. 

The Viking spacecraft that landed on Mars in the 1970s tried
specific tests for life on soil samples—essentially whether
gases were generated when nutrients were added, whether
this behavior changed if the samples were first heated, and
whether molecules common in terrestrial life were present.
The tests gave confusing results, presumably having to do
not with life, but rather with details of martian soil chemistry

â Origin of life. Fossil traces of living cells have been found
going back more than 3.8 billion years—to perhaps as little as
700 million years after the formation of the Earth. There were
presumably simpler forms of life that preceded the advent of
recognizable cells, and even if life arose more than once it is
unlikely that evidence of this would remain. (One sees many
branches in the fossil record—such as organisms with
dominant symmetries other than fivefold—but all seem to
have the same ancestry.) 

From antiquity until the 1700s it was widely believed that
smaller living organisms arise spontaneously in substances
like mud, and this was not finally disproved until the 1860s.
Controversy surrounding the theory of biological evolution
in the late 1800s dissuaded investigation of non-biological
origins for life, and at the end of the 1800s it was for example
suggested that life on Earth might have arisen from spores of
extraterrestrial origin. In the 1920s the idea developed that
electrical storms in the atmosphere of the early Earth could
lead to production of molecules seen in living systems—and
this was confirmed by the experiment of Stanley Miller and
Harold Urey in 1953. The molecules obtained were
nevertheless still fairly simple—and as it turns out most of
them have now also been found in interstellar space. Starting
in the 1960s suggestions were made for the chemical and
other roles of constituents of the crust as well as atmosphere.
Schemes for early forms of self-replication were invented
based on molecules such as RNA and on patterns in clay-like
materials. (The smallest known system that independently
replicates itself is a mycoplasma bacterium with about
580,000 base pairs and perhaps 470 genes. Viroids can be as
small as 10,000 atoms but require a host for replication.) In
the 1970s it then became popular to investigate complicated
cycles of chemical reactions that seemed analogous to ones
found in living systems. But with the advent of widespread
computer simulations in the 1980s it became clear that all
sorts of features normally associated with life were actually
rather easy to obtain. (See note above.) 

â Page 824 · Self-reproduction. That one can for example make
a mold that will produce copies of a shape has been known

since antiquity (see note above). The cybernetics movement
highlighted the question of what it takes for self-
reproduction to occur autonomously, and in 1952 John von
Neumann designed an elaborate 2D cellular automaton that
would automatically make a copy of its initial configuration
of cells (see page 876). In the course of the 1950s suggestions
of several increasingly simple mechanical systems capable of
self-reproduction were made—notably by Lionel Penrose.
The phenomenon in the main text was noticed around 1961
by Edward Fredkin (see page 877). But while it shows some
of the essence of self-reproduction, it lacks many of the more
elaborate features common in biological self-reproduction. In
the 1980s, however, such features were nevertheless
surprisingly often present in computer viruses and worms.
(See also page 1092.)

â Page 825 · Extraterrestrial life. Conditions thermally and
chemically similar to those on Earth have presumably existed
on other bodies in the solar system. Venus, Mars, Europa (a
moon of Jupiter) and Titan (a moon of Saturn) have for
example all probably had liquid water at some time. But
there is so far no evidence for life now or in the past on any of
these. Yet if life had arisen one might expect it to have
become widespread, since at least on Earth it has managed to
spread to many extremes of temperature, pressure and
chemical composition. On several occasions structures have
been found in extraterrestrial rocks that look somewhat like
small versions of microorganism fossils (most notably in 1996
in a meteorite from Mars discovered in Antarctica). But
almost certainly these structures have nothing to do with life,
and are instead formed by ordinary precipitation of minerals.
And although even up to the 1970s it was thought that life
might well be found on Mars, it now seems likely that there is
nothing quite like terrestrial life anywhere else in our solar
system. (Even if life is found elsewhere it might still have
originally come from Earth, say via meteorites, since
dormant forms such as spores can apparently survive for
long periods in space.)

Away from our solar system there is increasing evidence that
most stars have planets with a distribution of sizes—so
presumably conditions similar to Earth are fairly common.
But thus far it has not been possible to see—say in planetary
atmospheres—whether there are for example molecules
similar to ones characteristically found in life on Earth. 

â Forms of living systems. This book has shown that even
with underlying rules of some fixed type a vast range of
different forms can often be produced. And this makes it
reasonable to expect that with appropriate genetic programs
the chemical building blocks of life on Earth should in
principle allow a vast range of forms. But the comparative
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weakness of natural selection (see page 391) has meant that
only a limited set of such forms have actually been explored.
And from the experience of this book I suspect that what
others might even be nearby is effectively impossible to
foresee. The appearance in engineering of forms somewhat
like those in living systems should not be taken to imply that
other forms are fundamentally difficult to produce; instead I
suspect that it is more a reflection of the copying of living
systems for engineering purposes. The overall morphology
of living systems on Earth seems to be greatly affected by
their basically gelatinous character. So even systems based on
solids or gases would likely not be recognized by us as life. 

â Page 825 · History. Although Greek philosophers such as
Democritus believed that there must be an infinite number of
worlds all with inhabitants like us, the prevailing view in
antiquity—later supported by theological arguments—was
that the Earth is special, and the only abode of life. However,
with the development of Copernican ideas in the 1600s it
came to be widely though not universally believed, even in
theological circles, that other planets—as well as the Moon—
must have inhabitants like us. Many astronomers attributed
features they saw on the Moon to life if not intelligence, but
in the late 1800s, after it was found that the Moon has no
atmosphere, belief in life there began to wane. Starting in the
1870s, however, there began to be great interest in life on
Mars, and it was thought—perhaps following the emphasis
on terrestrial canal-building at the time—that a vast network
of canals on Mars had been observed. And although in 1911
the apparent building of new canals on Mars was still being
soberly reported by newspapers, there was by the 1920s
increasing skepticism. The idea that lichens might exist on
Mars and be responsible for seasonal changes in color
nevertheless became popular, especially after the discovery
of atmospheric carbon dioxide in 1947. Particularly in the
1920s there had been occasional claims of extraterrestrial
radio signals (see page 1188), but by the 1950s interest in
extraterrestrial intelligence had largely transferred to science
fiction (see page 1190). Starting in the late 1940s many
sightings were reported of UFOs believed to be alien
spacecraft, but by the 1960s these were increasingly
discredited. It had been known since the mid-1800s that
many other stars are much like the Sun, but it was not until
the 1950s that evidence of planets around other stars began to
accumulate. Following a certain amount of discussion in the
physics community in the 1950s, the first explicit search for
extraterrestrial intelligence with a radio telescope was done
in 1960 (see page 1189). In the 1960s landings of spacecraft on
the Moon confirmed the absence of life there—though
returning Apollo astronauts were still quarantined to guard

against possible lunar microbes. And despite substantial
expectations to the contrary, when spacecraft landed on Mars
in 1976 they found no evidence of life there. Some searches
for extraterrestrial signals have continued in the radio
astronomy community, but perhaps because of its association
with science fiction, the topic of extraterrestrial intelligence
has generally not been popular with professional scientists.
With the rise of amateur science on the web and the
availability of low-cost radio telescope components the late
1990s may however have seen a renewal of serious interest.

â Page 826 · Bird songs. Essentially all birds produce calls of
some kind, but complex songs are mainly produced by male
songbirds, usually in breeding season. Their general form is
inherited, but specifics are often learned through imitation
during a fixed period of infancy, leading birds in local areas
to have distinctive songs. The songs sometimes seem to be
associated with attracting mates, and sometimes with
defining territory—but often their function is unclear, even
when one bird seems to sing in response to another. (There
are claims, however, that parrots can learn to have
meaningful conversations with humans.) The syrinxes of
songbirds have two membranes, which can vibrate
independently, in a potentially complex way. A specific
region in bird brains appears to coordinate singing; the
region contains a few tens of thousands of nerve cells, and is
larger in species with more complex songs. 

Famous motifs from human music are heard in bird songs
probably more often than would be expected by chance. It
may be that some common neural mechanism makes the
motifs seem pleasing to both birds and humans. Or it could
be that humans find them pleasing because they are familiar
from bird songs. 

â Page 826 · Whale songs. Male whales can produce complex
songs lasting tens of minutes during breeding season. The
songs often include rhyme-like repeating elements. At a
given time all whales in a group typically sing almost the
same song, which gradually changes. The function of the
song is quite unclear. It has been claimed that its frequencies
are optimized for long-range transmission in the ocean, but
this appears not to be the case. In dolphins, it is known that
one dolphin can produce patterns of sound that are repeated
by a specific other dolphin.

â Page 826 · Animal communication. Most animals that live in
groups have the capability to produce at least a few specific
auditory, visual (e.g. gestures and displays), chemical (e.g.
pheromones) or other signals in response to particular
situations such as danger. Some animals have also been
found to produce much more complex and varied signals.
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For example it was discovered in the 1980s that elephants can
generate elaborate patterns of sounds—but at frequencies
below human hearing. Animals such as octopuses and
particularly cuttlefish can show complex and changing
patterns of pigmentation. But despite a fair amount of
investigation it remains unclear whether these represent
more than just simple responses to the environment.

â Page 826 · Theories of communication. Over the course of
time the question of what the essential features of
communication are has been discussed from many different
angles. It appears to have always been a common view that
communication somehow involves transferring thoughts
from one mind to another. Even in antiquity it was
nevertheless recognized that all sorts of aspects of language
are purely matters of convention, so that shared conventions
are necessary for verbal communication to be possible. In the
1600s the philosophical idea that the only way to get
information with certainty is from the senses led to emphasis
on observable aspects of communication, and to the
conclusion that there is no way to tell whether an accurate
transfer of abstract thoughts has occurred between one mind
and another. In the late 1600s Gottfried Leibniz nevertheless
suggested that perhaps a universal language—modelled on
mathematics—could be created that would represent all
truths in an objective way accessible to any mind (compare
page 1149). But by the late 1800s philosophers like Charles
Peirce had developed the idea that communication must be
understood purely in terms of its observable features and
effects. Three levels of so-called semiotics were then
discussed. The first was syntax: the grammatical or other
structure of a sequence of verbal or other elements. The
second was semantics: the standardized meaning or
meanings of the sequence of elements. And the third was
pragmatics: the observable effect on those involved in the
communication. In the early 1900s, the logical positivism
movement suggested that perhaps a universal language or
formalism based on logic could be developed that would
allow at least scientific truths to be communicated in an
unambiguous way not affected by issues of pragmatics—and
that anything that could not be communicated like this was
somehow meaningless. But by the 1940s it came to be
believed—notably by Ludwig Wittgenstein—that ordinary
language, with its pragmatic context, could in the end
communicate fundamentally more than any formalized
logical system, albeit more ambiguously.

Ever since antiquity work has been done to formalize
grammatical and other rules of individual human languages. In
the early 1900s—notably with the work of Ferdinand de
Saussure—there began to be more emphasis on the general

question of how languages really operate, and the point was
made that the verbal elements or signs in a language should be
viewed as somehow intermediate between tangible entities like
sounds and abstract thoughts and concepts. The properties of
any given sign were recognized as arbitrary, but what was then
thought to be essential about a language is the structure of the
network of relations between signs—with the ultimate meaning
of any given sign inevitably depending on the meanings of
signs related to it (as later emphasized in deconstructionism). By
the 1950s anthropological studies of various languages—
notably by Benjamin Whorf—had encouraged the idea that
concepts that did not appear to fit in certain languages simply
could not enter the thinking of users of those languages.
Evidence to the contrary (notably about past and future among
Hopi speakers) eroded this strong form of the so-called Sapir-
Whorf hypothesis, so that by the 1970s it was generally believed
just that language can have an influence on thinking—a
phenomenon definitely seen with mathematical notation and
computer languages. Starting in the 1950s, especially with the
work of Noam Chomsky, there were claims of universal features
in human languages—independent of historical or cultural
context (see page 1103). But at least among linguists these are
generally assumed just to reflect common aspects of verbal
processing in the human brain, not features that must
necessarily appear in any conceivable language. (And it remains
unclear, for example, to what extent non-verbal forms of
communication such as music, gestures and visual ornament
show the same grammatical features as ordinary languages.)

The rise of communications technology in the early 1900s led
to work on quantitative theories of communication, and for
example in 1928 Ralph Hartley suggested that an objective
measure of the information content of a message with 
possible forms is . (Similar ideas arose around the
same time in statistics, and in fact there had already been
work on probabilistic models of written language by Andrei
Markov in the 1910s.) In 1948 Claude Shannon suggested
using a measure of information based on , and there
quickly developed the notion that this could be used to find
the fundamental redundancy of any sequence of data,
independent of its possible meaning (compare page 1071).
Human languages were found on this basis to have
substantial redundancy (see page 1086), and it has sometimes
been suggested that this is important to their operation—
allowing errors to be corrected and details of different users
to be ignored. (There are also obvious features which reduce
redundancy—for example that in most languages common
words tend to be short. One can also imagine models of the
historical development of languages which will tend to lead
to redundancy at the level of Shannon information.)

n
Log[n]

p Log[p]



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

1182

â Mathematical notation. While it is usually recognized that
ordinary human languages depend greatly on history and
context, it is sometimes believed that mathematical notation
is somehow more universal. But although it so happens that
essentially the same mathematical notation is in practice used
all around the world by speakers of every ordinary language,
I do not believe that it is in any way unique or inevitable, and
in fact I think it shows most of the same issues of dependence
on history and context as any ordinary language.

As a first example, consider the case of numbers. One can
always just use  copies of the same symbol to represent an
integer —and indeed this idea seems historically to have
arisen independently quite a few times. But as soon as one
tries to set up a more compact notation there inevitably seem
to be many possibilities. And so for example the Greek and
Roman number systems were quite different from current
Hindu-Arabic base-10 positional notation. Particularly from
working with computers it is often now assumed that base-2
positional notation is somehow the most natural and
fundamental. But as pages 560 and 916 show, there are many
other quite different ways to represent numbers, each with
different levels of convenience for different purposes. And it
is fairly easy to see how a different historical progression
might have ended up making another one of these seem the
most natural.

The idea of labelling entities in geometrical diagrams by
letters existed in Babylonian and Greek times. But perhaps
because until after the 1200s numbers were usually also
represented by letters, algebraic notation with letters for
variables did not arise until the late 1500s. The idea of having
notation for operators emerged in the early 1600s, and by the
end of the 1600s, notably with the work of Gottfried Leibniz,
essentially all the basic notation now used in algebra and
calculus had been established. Most of it was ultimately
based on shortenings and idealizations of ordinary language,
an important early motivation just being to avoid
dependence on particular ordinary languages. Notation for
mathematical logic began to emerge in the 1880s, notably
with the work of Giuseppe Peano, and by the 1930s it was
widely used as the basis for notation in pure mathematics.

In its basic structure of operators, operands, and so on,
mathematical notation has always been fairly systematic—
and is close to being a context-free language. (In many ways
it is like a simple idealization of ordinary language, with
operators being like verbs, operands nouns, and so on.) And
while traditional mathematical notation suffers from some
inconsistencies and ambiguities, it was possible in
developing Mathematica  to set up something
very close that can be interpreted uniquely in all cases.

Mathematical notation works well for things like ordinary
formulas that involve a comparatively small number of basic
operations. But there has been no direct generalization for
more general constructs and computations. And indeed my
goal in designing Mathematica was precisely to provide a
uniform notation for these (see page 852). Yet to make this
work I had to use names derived from ordinary language to
specify the primitives I defined. 

â Computer communication. Most protocols for exchanging
data between computers have in the end traditionally had
rather simple structures—with different pieces of
information usually being placed at fixed positions, or at
least being arranged in predefined sequences—or sometimes
being given in name-value pairs. A more general approach,
however, is to use tree-structured symbolic expressions of the
kind that form the basis for Mathematica—and now in essence
appear in XML. In the most general case one can imagine
directly exchanging a representation of a program, that is run
on the computer that receives it, and induces whatever effect
one wants. A simple example from 1984 is PostScript, which
can specify a picture by giving a program for constructing it;
a more sophisticated example from the late 1990s is client-
side Java. (Advanced forms of data compression can also be
thought of as working by sending simple programs.) But a
practical problem in exchanging arbitrary programs is the
difficulty of guarding against malicious elements like viruses.
And although at some level most communications between
present-day computers are very regular and structured, this
is often obscured by compression or encryption. 

When a program is sent between computers it is usually
encoded in a syntactically very straightforward way. But
computer languages intended for direct use by humans
almost always have more elaborate syntax that is a simple
idealization of ordinary human language (see page 1103).
There are in practice many similarities between different
computer languages. Yet except in very low-level languages
few of these are necessary consequences of features or
limitations of actual computers. And instead most of them
must be viewed just as the results of shared history—and the
need to fit in with human cognitive abilities.

â Meaning in programs. Many issues about meaning arise for
computer languages in more defined versions of the ways
they arise for ordinary languages. Input to a computer
language will immediately fail to be meaningful if it does not
conform to a certain definite syntax. Before the input can
have a chance of specifying meaningful action there are often
all sorts of issues about whether variables in it refer to entities
that can be considered to exist. And even if this is resolved,
one can still get something that is in effect nonsense and does

n
n

StandardForm
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not usefully run. In most traditional computer languages it is
usually the case that most programs chosen at random will
just crash if run, often as a result of trying to write to memory
outside the arrays they have allocated. In Mathematica, there
is almost no similar issue, and programs chosen at random
tend instead just to return unchanged. (Compare page 101.)

For the kinds of systems like cellular automata that I have
discussed in this book programs chosen at random do very
often produce some sort of non-trivial behavior. But as
discussed in the main text there is still an issue of when this
behavior can reasonably be considered meaningful. 

For some purposes a more direct analog of messages is not
programs or rules for systems like cellular automata but instead
initial conditions. And one might imagine that the very process
of running such initial conditions in a system with appropriate
underlying rules would somehow be what corresponds to their
meaning. But if one was just given a collection of initial
conditions without any underlying rules one would then need
to find out what underlying rules one was supposed to use in
order to determine their meaning. Yet the system will always do
something, whatever rules one uses. So then one is back to
defining criteria for what counts as meaningful behavior in
order to determine—by a kind of generalization of
cryptanalysis—what rules one is supposed to use. 

â Meaning and regularity. If one considers something to show
regularity one may or may not consider it meaningful. But if
one considers something random then usually one will also
consider it meaningless. For to say that something is
meaningful normally implies that one somehow comes to a
conclusion from it. And this typically implies that one can
find some summary of some aspect of it—and thus some
regularity. Yet there are still cases where things that are
presumably quite random are considered meaningful—
prices in financial markets being one example.

â Page 828 · Forms of artifacts. Much as in biological evolution,
once a particular engineering construct has been found to
work it normally continues to be used. Examples with
characteristic forms include (in rough order of their earliest
known use): arrowheads, boomerangs, saws, boxes, stairs,
fishhooks, wheels, arches, forks, balls, kites, lenses, springs,
catenaries, cogs, screws, chains, trusses, cams, linkages,
propellers, clocksprings, parabolic reflectors, airfoils,
corrugation, zippers, and geodesic domes. It is notable that not
even nested shapes are common, though they appear in cross-
sections of rope (see page 874), as well as in address decoder
trees on chips—and have recently been used in broadband
antennas. (Some self-similarity is also present in standard log-
periodic antennas.) When several distinct components are

involved, more complicated structures are not uncommon—as
in escapements, and many bearings and joints. More complex
shapes for single elements sometimes arise when an analog of
area maximization is desired—as with tire treads or fins in
devices such as heat exchangers. Quadratic residue sequences

 (see page 1081) are used to give profiles for
acoustic diffusers that operate uniformly over a range of
frequencies. Musical instruments can have fairly complicated
shapes maintained for historical reasons to considerable
precision. Some knots can also be thought of as objects with
complex forms. It is notable that elaborate types of mechanical
motion (and sometimes surprising phenomena in general) are
often first implemented in toys. Examples are early mechanical
automata and model airplanes, and modern executive toys
claiming to illustrate chaos theory through linkages, magnets
or fluid systems. Complex trajectories (compare page 972)
have sometimes been proposed or used for spacecraft. (See
also notes on ornamental art on page 872.)

â Page 828 · Recognizing artifacts. Various situations require
picking out artifacts automatically. One example is finding
buildings or machines from aerial reconnaissance images;
another is finding boat or airplane wreckage on an ocean
floor from sonar data. In both these cases the most common
approach is to look for straight edges. Outdoor security
systems also often need ways to distinguish animals and
wind-induced motion from intentional human activity—and
tend to have fairly simple procedures for doing this. 

To recognize a regular crystal as not being a carefully cut
artifact can take specific knowledge. The same can be true of
patterns produced by wind on sand or rocks. Lenticular
clouds are sometimes mistaken for UFOs on account of their
regular shape. The exact cuboid form of the monolith in the
movie 2001 was intended to suggest that it was an artifact. 

Recognizing artifacts can be a central—and controversial—
issue in prehistoric archeology. Sometimes human bones are
found nearby. And sometimes chemical analysis suggests
controlled fire—as with charcoal or baked clay. But to tell
whether for example a piece of rock was formed naturally or
was carefully made to be a stone tool can in general be very
difficult. And a large part of the way this has been done in
practice is just through comparison with known examples that
fit into an overall pattern of gradual historical change. In
recent decades there has been increasing emphasis on trying to
understand and reproduce the whole process of making and
using artifacts. And in the field of lithic analysis there are
beginning to be fairly systematic ways to recognize for
example the effects of the hundreds of orderly impacts needed
to make a typical flint arrowhead by knapping. (Sometimes it
is also possible to recognize microscopic features characteristic

Mod[Range[n]2, n]
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of particular kinds of use or wear—and it is conceivable that in
the future analysis of trillions of atomic-scale features could
reveal all sorts of details of the history of an object.)

To tell whether or not some arrangement of soil or rocks is an
artifact can be extremely difficult—and there are many
notorious cases of continuing controversy. Beyond looking
for similarities to known examples, a typical approach is just
to look for correlations with topographic or other features
that might reveal some possible purpose. 

â Artifacts in data. In fields like accounting and experimental
science it is usually a sign of fraud if primary data is being
created for a purpose, rather than merely being reported. If a
large amount of numerical data has been made up by a
person this can be detectable through statistical deviations
from expected randomness—particularly in structural details
such as frequency of digits. (So-called artifacts can also be the
unintentional result of details of methods used to obtain or
process data.)

In numerical computations effects are often called artifacts if
they are believed not to be genuine features of an underlying
mathematical system, but merely to reflect the computational
scheme used. Such effects are usually first noticed through
unexpected regularities in some detail of output. But in cases
like chaos theory it remains unclear to what extent complex
behavior seen in computations is an artifact (see page 920).

â Animal artifacts. Structures like mollusc shells, radiolarian
skeletons and to some extent coral are formed through
processes of growth like those discussed in Chapter 8.
Structures like spider webs, wasp nests, termite mounds, bird
nests and beaver dams rely on behavior determined by
animal brains. (Even spider webs end up looking quite
different if psychoactive drugs are administered to the
spider.) And much like human artifacts, many of these
structures tend to be distinguished by their comparative
geometrical simplicity. In a few cases—particularly with
insects—somewhat complicated forms are seen, but it seems
likely that these are actually produced by rather simple local
rules like those in aggregation systems (see page 1011). 

â Molecular biology. DNA sequences of organisms can be
thought of as artifacts created by biological evolution, and
current data suggests that they contain some long-range
correlations not present in typical random sequences. Most
likely, however, these have fairly simple origins, perhaps being
associated with iterative splicing of subsequences. And in the
few thousand proteins currently known, standard statistical
tests reveal no significant overall regularities in their
sequences of up to a few thousand amino acids. (Some of the
20 standard amino acids do however occur more frequently

than others.) Nevertheless, if one looks at overall shapes into
which these proteins fold, there is some evidence that the same
patterns of behavior are often seen. But probably such patterns
would also occur in purely random proteins—at least if their
folding happened in the same cellular apparatus. (See page
1003.) Note that the antibodies of the immune system are
much like short random proteins—whose range of shapes
must be sufficient to match any antigen. (See also page 1194.) 

â Messages in DNA. Science fiction has sometimes suggested
that an extraterrestrial source of life might have left some form
of message in the DNA sequences of all terrestrial organisms,
but to get evidence of this would seem to require extensive
other knowledge of the source. (See also page 1190.)

â Decompilers. Trying to reverse engineer source code in a
programming language like C from machine code output by
compilers involves in effect trying to deduce higher-level
purposes from lower-level computational steps. And
normally this can be done with any reliability only when the
machine code represents a fairly direct translation that has
not been extensively rearranged or optimized. 

â Page 828 · Complexity and theology. See page 861.

â Page 829 · Purpose in archeology. Ideas about the purpose
of archeological objects most often ultimately tend to come
from comparisons to similar-looking objects in use today. But
great differences in typical beliefs and ways of life can make
comparisons difficult. And certainly it is now very hard for
us to imagine just what range of purposes the first known
stone tools from 2.6 million years ago might have been put
to—or what purpose the arrays of dots or handprints in cave
paintings from 30,000 BC might have had. And even when it
comes to early buildings from perhaps 10,000 BC it is still
difficult to know just how they were used. Stone circles like
Stonehenge from perhaps 3000 BC presumably served some
community purpose, but beyond that little can convincingly
be said. Definite geographical or astronomical alignments
can be identified for many large prehistoric structures, but
whether these were actually intentional is almost never clear.
After the development of writing starting around 4000 BC,
purposes can often be deduced from inscriptions and other
written material. But still to work out for example the
purpose of the Antikythera device from around 100 BC is
very difficult, and depends on being able to trace a long
historical tradition of astronomical clocks and orreries.

â Dead languages. Particularly over the past century or so,
most of the known written human languages from every
point in history have successfully been decoded. But to do
this has essentially always required finding a case where
there is explicit overlap with a known language—say a
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Rosetta stone with the same text in multiple languages, or at
least words or proper names that are transliterated. As in
cryptanalysis, it is sometimes remarkable how small an
amount of text is needed to find a decoding scheme. But
usually what is done relies critically on the slowness with
which human languages change, and the comparatively
limited number of different basic ways in which they work.

â Teleology. There is a common tendency to project human
purposes onto natural objects and events—and this is for
example almost universally done by young children. Ancient
beliefs often held that things in nature are set up by a variety
of gods for a variety of purposes. By 400 BC, following ideas
of Anaxagoras, Socrates and Plato discussed the notion that
things in nature might in effect be optimally designed for
coherent purposes by a single mind. Around 350 BC Aristotle
claimed that a full explanation of anything should include its
purpose (or so-called final cause, or telos)—but said that for
systems in nature this is often just to make the final forms of
these systems (their so-called formal cause). The rise of
monotheistic religions led to the widespread belief that the
universe and everything in it was created for definite
purposes by a single god. But the development of
mathematical science in the 1600s—and its focus on
mechanisms (“efficient causes”)—led away from ascribing
explicit purposes to physical systems. In the mid-1700s David
Hume then claimed on philosophical grounds that we
fundamentally have no basis for ascribing purposes to any
kind of natural system—though in the 1790s Immanuel Kant
argued that even though we cannot know whether there
really are such purposes, it is still often necessary for us to
think in terms of them. And in fact the notion that systems in
biology are so complex that they must have been intelligently
designed for a purpose remained common. In the late 1800s
Darwinian evolution nevertheless suggested that no such
purposeful design was necessary—though in a sense it again
introduced a notion of purpose associated with optimization
of fitness. Ever since the 1700s economics had been discussed
in terms of purposeful activities of rational agents. In the
early 1900s there were however general attempts to develop
mechanistic explanations in the social sciences, but by the
mid-1900s purpose was again widely discussed, especially in
economics. And in fact, even in physics, a notion of purpose
had actually always been quite common. For whenever a
physical system satisfies any kind of implicit equation, this
defines a constraint that can be viewed as corresponding to
some kind of purpose. (See page 940.) That something like a
notion of purpose is being used has been more widely
recognized for variational principles like the Principle of
Least Action in mechanics from the mid-1700s. Results in the

late 1900s in astrophysics and cosmology seemed to suggest
that for us to exist our universe must satisfy all sorts of
constraints—and to avoid explaining this in terms of purpose
the Anthropic Principle was introduced (see page 1026).
What I do in this book goes significantly further than
traditional science in getting rid of notions of purpose from
investigations of nature. For I essentially always consider
systems that are based on explicit evolution rules rather than
implicit constraints. And in fact I argue that simple programs
constructed without known purposes are what one needs to
study to find the kinds of complex behavior we see.

â Possible purposes. As part of asking whether the rules for a
system are somehow minimal for a given purpose, one can
ask what properties the system has that could reasonably be
considered a purpose at all. In general one tends to talk of
purpose only when doing so allows one to give a simpler
description of some aspect of behavior than just describing
the behavior directly. But whether one can give a simple
description can depend greatly on the framework in which
one is operating. And so, for example, while the digits of 
have a simple description in terms of traditional
mathematics, the results in Chapter 4 suggest that outside of
this framework they normally do not. And what this means
is that if one saw a system that had the property of
generating the digits of  one would be unlikely to think that
this could represent a meaningful purpose—unless one
happened to be operating in traditional mathematics. And so
similarly, one would be unlikely to think that generating the
center column from rule 30 could represent any sort of
meaningful purpose—unless one was operating within the
framework that I have developed in this book. 

â Page 830 · Purposeful computation. See page 638.

â Page 832 · Doubling rules. Rule (a) is 

and takes  steps to yield  given input
. Rule (b) is

and takes  steps. Rule (c) is ,  rule 
and takes  steps. 

â Page 833 · Searching. No symmetric ,  rule yields
doubling. General rules can show subtle bugs; rule

 for example first fails at . The total
number of ,  rules that need to be searched can
easily be reduced from  to . Several different rules that
work can behave identically, since up to 6 of the 27 cases in
each rule are not sampled with the initial conditions used. In
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{{0, 2, _} ! 5, {5, 3, _} ! 5, {5, _, _} ! 1,
{_, 5, _} ! 1, {_, 2, _} ! 3, {_, 3, 2} ! 2, {_, 1, 2} ! 4,
{_, 4, _} ! 3, {4, 3, _} ! 4, {4, 0, _} ! 2, {_, x_, _} ! x}

2 n2 + n Table[1, {2 n}]
Append[Table[1, {n - 1}], 2]

{{_, 2, _} ! 3, {_, 1, 2} ! 2, {3, 0, _} ! 1,
{3, _, _} ! 3, {_, 3, _} ! 1, {_, x_, _} ! x}

3 n k = 3 r = 1 5407067979
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1340716537107 n = 24
k = 3 r = 1
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rules that work, between 8 and 19 cases lead to a change in
the color of a cell, with 14 cases being the most common. 

â Page 833 · Properties. The number of steps increases
irregularly but roughly quadratically with  in rule (a), and
roughly linearly in (d) and (e). Rule (b) in the end repeats
every 128 steps. The center of the complex pattern in both (d)
and (e) emulates  rule 90.

â Other functions. The first three pictures below show rules
that yield  (no  rules yield ,  or ), and the last
picture  (corresponding to doubling with initial
conditions analogous to page 639). 

â Page 834 · Minimal cellular automata for sequences. Given
any particular sequence of black and white cells one can look
for the simplest cellular automaton which generates that
sequence as its center column when evolving from a single
black cell (compare page 956). The pictures below show the
lowest-numbered cellular automaton rules that manage to
generate repetitive sequences containing black cells with
successively greater separations .

Elementary ( , ) cellular automata can be found only
up to separations . But ,  cellular automata can
be found for all separations up to 15, as well as 17, 19 and 23.
(Note that for example in the  case the lowest-
numbered rule exhibits a complex 350-step transient away
from the center column.) 

The pictures below show the lowest-numbered cellular
automata that generate respectively powers of two, squares
and the nested Thue-Morse sequence of page 83 (compare
rule 150). Of the 4 billion ,  cellular automata none
turn out to be able to produce for example sequences
corresponding to the cubes, powers of 3, Fibonacci numbers,
primes, digits of , or concatenation sequences.

If one looks not just at specific sequences, but instead at all 
possible sequences of length , one can ask how many cellular
automaton rules (say with , ) one has to go through in
order to generate every one of these. The pictures below show
on the left the last rules needed to generate any sequence of each
successive length—and on the right the form of the sequence (as
well as its continuation after length ). Since some different
rules generate the same sequences (see page 956) one needs to
go through somewhat more than  rules to get every sequence
of length . The sequences shown below can be thought of as
being in a sense the ones of each length that are the most
difficult to generate—or have the highest algorithmic
information content. (Note that the sequence  is the first
one that cannot be generated by any of the 256 elementary
cellular automata; the first sequence that cannot be generated by
any ,  cellular automata is probably of length 26.) 

â Other examples. Minimal systems achieving particular
purposes are shown on page 619 for Boolean functions
evaluated with NANDs, pages 759 and 889 for Turing
machines, page 1142 for sorting networks, and page 1035 for
firing squad synchronization. 

â Page 834 · Minimal theories. Particularly in fundamental
physics it has been found that the correct theory is often the
minimal one consistent with basic observations. Yet barring
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supernatural intervention, the laws of physics embodied in
such a theory presumably cannot be considered to have been
created for any particular purpose. (See page 1025.)

â Page 835 · Earth from space. Human activity has led to a few
large simple geometrical structures that are visually
noticeable from space. One is the almost-straight 30-mile
railroad causeway built in 1959 that divides halves of the
Great Salt Lake in Utah where the water is colored blue and
orange. Another is the almost-circular 12-mile-diameter
national park created in 1900 that encloses ungrazed
vegetation on the Egmont Volcano in New Zealand. On the
scale of a few miles, there is also rectilinear arrangement of
fields in the U.S. Midwest, as well as straight-line political
boundaries with different agriculture on each side. Large
geometrical patterns of logging were for example briefly
visible after snow in 1961 near Cochrane, Canada—as
captured by an early weather satellite. Perfectly straight
sections of roads (such as the 90-mile Balladonia-Caiguna
road in Australia), as well as the 4-mile-diameter perfectly
circular Fermilab accelerator ring are not so easy to see. The
Great Wall of China from 200 BC follows local topography
and so is not straight. 

Some of the most dramatic geometrical structures—such as the
dendritic fossil drainage pattern in south Yemen or the
bilaterally symmetric coral reefs around islands like Bora Bora—
are not artifacts. The same is true of fields of parallel sand dunes,
as well as of almost-circular structures such as the 40-mile-
diameter impact crater in Manicouagan, Canada (highlighted
by an annular lake) and the 30-mile-diameter Richat structure in
the Sahara desert of Mauritania. On the Moon, the 50-mile-
diameter crater Tycho is also almost circular—and has 1000-mile
almost-straight rays coming out from it. 

At night, lights of cities are obvious—notably hugging the
coast of the Mediterranean—as are fire plumes from oil rigs.
In addition, in some areas, sodium streetlamps make the light
almost monochromatic. But it would seem difficult to be sure
that these were artifacts without more information. In
western Kansas there is however a 200-mile square region
with light produced by a strikingly regular grid of towns—
many at the centers of square counties laid out around 1870
in connection with land grants for railroad development. In
addition, there is an isolated 1000-mile straight railroad built
in the late 1800s across Kazakhstan between Aktyubinsk and
Tashkent, with many towns visible at night along it. There are
also 500-mile straight railroads built around the same time
between Makat and Nukus, and Yaroslavl and Archangel. All
these railroads go through flat empty terrain that previously
had only a few nomadic inhabitants—and no settlements to
define a route. But in many ways such geometrical forms

seem vastly simpler to imagine producing than for example
the elaborate pattern of successive lightning strikes visible
especially in the tropics from space.

â Page 835 · Astronomical objects. Stars and planets tend to
be close to perfect spheres. Lagrange points and resonances
often lead to simple geometrical patterns of orbiting bodies.
(The orbits of most planets in our solar system are also close
to perfect circles; see page 973.) Regular spirograph-like
patterns can occur for example in planetary nebulas formed
by solar mass exploding stars. Unexplained phenomena that
could conceivably be at least in part artifacts include gamma
ray bursts and ultra high-energy cosmic rays. The local
positions of stars are generally assumed to be random. 88
constellations are usually named—quite a few presumably
already identified by the Babylonians and Sumerians around
2000 BC.

â Page 835 · Natural radio emissions. Each of the few million
lightning flashes that occur on the Earth each day produce
bursts of radio energy. At kilohertz frequencies reflection
from the ionosphere allows these signals to propagate up to
thousands of miles around the Earth, leading to continual
intermittent crackling and popping. Particularly at night
such signals can also travel within the ionosphere, but
different frequencies travel at different rates, leading to so-
called tweeks involving ringing or pinging. Signals can
sometimes travel through the magnetosphere along magnetic
field lines from one hemisphere to the other, yielding so-
called whistlers with frequencies that fall off in a highly
regular way with time. (Occasionally the signals can also
travel back and forth between hemispheres, giving more
complex results.) Radio emission can also occur when
charged particles from the Sun excite plasma waves in the
magnetosphere. And particularly at dawn or when an aurora
is present an elaborate chorus of different elements can be
produced—and heard directly on a VLF radio receiver. 

Sunspots and solar flares make the Sun the most intense
radio source in the solar system. Artificial radio signals from
the Earth come next. The interaction of the solar wind with
the magnetosphere of Jupiter produces radio emissions that
exhibit variations reminiscent of gusting.

Outside the solar system, gas clouds show radio emission at
discrete gigahertz frequencies from rotational transitions in
molecules and spin-flip transitions in hydrogen atoms. (The
narrowest lines come from natural masers and have widths
around 1 kHz.) The cosmic microwave background, and
processes such as thermal emission from dust, radiation from
electrons in ionized gases, and synchrotron radiation from
relativistic electrons in magnetic fields yield radio emissions
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with characteristic continuous frequency spectra. A total of
over a million radio sources inside and outside our galaxy
have now been catalogued, most with frequency spectra
apparently consistent with known natural phenomena.
Variations of source properties on timescales of months or
years are not uncommon; variations of signals on timescales
of tens of minutes can be introduced by propagation through
turbulence in the interstellar medium.

Most radio emission from outside the solar system shows
little apparent regularity. The almost perfectly repetitive
signals from pulsars are an exception. Pulsars appear to be
rapidly rotating neutron stars—perhaps 10 miles across—
whose magnetic fields trap charged particles that produce
radio emissions. When they first form after a supernova
pulsars have millisecond repetition rates, but over the course
of a few million years they slow to repetition rates of seconds
through a series of glitches, associated perhaps with cracking
in their solid crusts or perhaps with motion of quantized
vortices in their superfluid interiors. Individual pulses from
pulsars show some variability, presumably largely reflecting
details of plasma dynamics in their magnetospheres.

â Page 835 · Artificial radio signals. In current technology
radio signals are essentially always based on carriers of the
form  with frequencies . When radio was first
developed around 1900 information was normally encoded
using amplitude modulation (AM) . In the 1940s
it also became popular to use frequency modulation (FM)

, and in the 1970s pulse code modulation
(PCM) (pulse trains for ). All such
methods yield signals that remain roughly in the range of
frequencies  where  is the data rate in . But
in the late 1990s—particularly for the new generation of
cellular telephones—it began to be common to use spread
spectrum CDMA methods, in which many signals with the
same carrier frequency are combined. Each is roughly of the
form , where  is a pseudonoise
(PN) sequence generated by a linear feedback shift register
(LFSR) (see page 1084); the idea is that by using a different
PN sequence for each signal the corresponding  can be
recovered even if thousands are superimposed.

The radio spectrum from about 9 kHz to 300 GHz is divided
by national and international legislation into about 460 bands
designated for different purposes. And except when spread
spectrum methods are used, most bands are then divided into
between a few and a few thousand channels in which signals
with identical structures but different frequencies are sent.

If one steps through frequencies with an AM radio scanner,
one sometimes hears intelligible speech—from radio or TV

broadcasts, or two-way radio communication. But in many
frequency bands one hears instead either very regular or
seemingly quite random signals. (A few bands allocated for
example to distress signals or radio astronomy are normally
quiet.) The regular signals come from such sources as
navigation beacons, time standards, identification
transponders and radars. Most have characteristic almost
perfectly repetitive forms (radar pulses, for example,
typically have the chirped form )—and some
sound uncannily like pulsars. When there are seemingly
random signals some arise say from transmission of analog
video (though this typically has very rigid overall structure
associated with successive lines and frames), but most are
now associated with digital data. And when CDMA methods
are used there can be spreading over a significant range of
frequencies—with regularities being recognizable only if one
knows or can cryptanalyze LFSR sequences. 

In general to send many signals together one just needs to
associate each with a function  orthogonal to all other
functions  (see page 1072). Current electronics (with
analog elements such as phase-locked loops) make it easy to
handle functions , but other functions can yield better
data density and perhaps better signal propagation. And as
faster digital electronics makes it easier to implement these it
seems likely that it will become less and less common to have
simple carriers with definite frequencies. 

In addition, there is a continuing trend towards greater
spatial localization of signals—whether by using phased
arrays or by explicitly using technologies like fiber optics.

At present, the most intense overall artificial radio emission
from the Earth is probably the 50 or 60 Hz hum from power
lines. The most intense directed signals are probably from
radars (such as those used for ballistic missile detection) that
operate at a few hundred megahertz and put megawatts of
power into narrow beams. (Some such systems are however
being replaced by lower-power phased array systems.)

â Page 835 · SETI. First claims of extraterrestrial radio signals
were made by Nikola Tesla in 1899. More widely believed
claims were made by Guglielmo Marconi in 1922, and for
several years searches were done—notably by the U.S.
military—for signals presumed to be coming from Mars. But
it became increasingly accepted that in fact nothing beyond
natural radio emissions such as whistlers (see note above)
were actually being detected.

When galactic radio emission was first noticed by Karl
Jansky in 1931 it seemed too random to be of intelligent
origin. And when radio astronomy began to develop it
essentially ignored extraterrestrial intelligence. But in 1959
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Giuseppe Cocconi and Philip Morrison analyzed the
possibility of interstellar radio communication, and in 1960
Frank Drake used a radio telescope to look for explicit signals
from two nearby stars.

In 1965 a claim was made that there might be intensity
variations of intelligent origin in radio emission from the
quasar CTA-102—but this was quickly retracted. Then in
1967 when the first pulsar was discovered it was briefly
thought that perhaps its precise 1.33730113-second repetition
rate might be of intelligent origin.

Since the 1960s around a hundred different SETI (search for
extraterrestrial intelligence) experiments have been done.
Most use the same basic scheme: to look for signals that show
a narrow band of frequencies—say only 1 Hz wide—perhaps
changing in time. (The corresponding waveform is thus
required to be an almost perfect sinusoid.) Some concentrate
on specific nearby stars, while others look at the whole sky, or
test the stream of data from all observations at a particular
radio telescope, sometimes scanning for repetitive trains of
pulses rather than single frequencies. The best current
experiments could successfully detect radio emission at the
level now produced on Earth only from about 10 light years
away—or from about the nearest 10 stars. The detection
distance increases like the square root of the signal strength,
covering all  stars in our galaxy when the signal uses the
total power output of a star.

Most SETI has been done with specially built systems or with
existing radio telescopes. But starting in the mid-1990s it
became possible to use standard satellite receivers, and there
are now plans to set up a large array of these specifically for
SETI. In addition, it is now possible to use software instead of
hardware to implement SETI signal-processing algorithms—
both traditional ones and presumably much more general
ones that can for example pick out much weaker signals. 

Many SETI experiments look for signals in the so-called
“water hole” between the 1420 MHz frequency associated
with the 21 cm line of hydrogen and the 1720 MHz frequency
associated with hydroxyl (OH). But although there are now
practical constraints associated with the fact that on Earth
only a few frequency regions have been left clear for radio
astronomy I consider this to be a remarkable example of
reliance on details of human intellectual development.

Already in the early 1960s it was suggested that lasers
instead of radio could be used for interstellar
communication, and there have been various attempts to
detect interstellar optical pulses. Other suggested methods of
communication have included optical solitons, neutrinos and
as-yet-unknown faster-than-light quantum effects.

It is sometimes suggested that there must be fundamental
limits to detection of radio signals based on such issues as
collection areas, noise temperatures and signal degradation.
But even existing technology has provided a steady stream of
examples where limits like these have been overcome—most
often by the use of more sophisticated signal processing.

â Detection methods. Ways to identify computational origins
include looking for repeatability in apparently random
signals and comparing with output from large collections of
possible simple programs. At a practical level, the one-
dimensional character of data from radio signals makes it
difficult for us to apply our visual systems—which remain
our most powerful general-purpose analysis tools.

â Higher perception and analysis. See page 632.

â Page 837 · Messages to send. The idea of trying to send
messages to extraterrestrials has existed since at least the early
1800s. The proposed content and medium of the messages has
however steadily changed, usually reflecting what seemed to
be the most significant human achievements of the time—yet
often seeming quaint within just a few decades.

Starting in the 1820s various scientists (notably Carl Friedrich
Gauss) suggested signalling the Moon by using such schemes
as cutting clearings in a forest to illustrate the Pythagorean
theorem or reflecting sunlight from mirrors in different
countries placed so as to mimic an observed constellation of
stars. In the 1860s, with the rise of telegraphy, schemes for
sending flashes of light to Mars were discussed, and the idea
developed that mathematics should somehow be the basic
language used. In the 1890s radio signals were considered,
and were tried by Nikola Tesla in 1899. Discussion in the
1920s led to the idea of sending radio pulses that could be
assembled into a bitmap image, and some messages intended
for extraterrestrials were probably sent by radio enthusiasts.

There is a long history of attempts to formulate universal
languages (see page 1181). The Lincos language of Hans
Freudenthal from 1960 was specifically designed for
extraterrestrial communication. It was based on predicate
logic, and attempted to use this to build up first mathematics,
then science, then a general presentation of human affairs. 

When the Pioneer 10 spacecraft was launched in 1972 it
carried a physical plaque designed by Carl Sagan and others.
The plaque is surprisingly full of implicit assumptions based
on details of human intellectual development. For example, it
has line drawings of humans—whose interpretation
inevitably seems very specific to our visual system and
artistic culture. It also has a polar plot of the positions of 14
pulsars relative to the Sun, with the pulsars specified by
giving their periods as base 2 integers—but with trailing
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zeros inserted to cover inadequate precision. Perhaps the
most peculiar element, however, is a diagram indicating the
21 cm transition in hydrogen—by showing two abstract
quantum mechanical spin configurations represented in a
way that seems completely specific to the particular details of
human mathematics and physics. In 1977 the Voyager
spacecraft carried phonograph records that included bitmap
images and samples of spoken languages and music.

In 1974 the bitmap image below was sent as a radio signal
from the Arecibo radio telescope. At the left-hand end is a
version of the pattern of digits from page 117—but distorted
so it has no obvious nested structure. There follow atomic
numbers for various elements, and bitvectors for components
of DNA. Next are idealized pictures of a DNA molecule, a
human, and the telescope. All these parts seem to depend
almost completely on detailed common conventions—and I
suspect that without all sorts of human context their meaning
would be essentially impossible to recognize. 

In all, remarkably few messages have been sent—perhaps in
part because of concerns that they might reveal us to
extraterrestrial predators (see page 1191). There has also been
a strong tendency to make messages hard even for humans to
understand—perhaps on the belief that they must then be
more scientific and more universal. 

The main text argues that it will be essentially impossible to
give definitive evidence of intelligence. Schemes that might
however get at least some distance include sending:

äwaveforms made of simple underlying elements;

ä long complicated sequences that repeat precisely; 

ä a diversity of kinds of sequences;

ä something complicated that satisfies simple constraints.

Examples of the latter include pattern-avoiding sequences
(see page 944), magic squares and other combinatorial
designs, specifications of large finite groups, and maximal
length linear feedback shift register sequences (see page
1084). Notably, the last of these are already being transmitted
by GPS satellites and CDMA communications systems. (If
cases could be found where the sequences as a whole were
forced not to have any obvious regularities, then pattern-
avoiding sequences might perhaps be good since they have
constraints that are locally fairly easy to recognize.)

Extrapolation of trends in human technology suggest that it
will become ever easier to detect weak signals that might be
assumed distorted beyond recognition or swamped by noise. 

â Page 838 · P versus NP. Given a constraint, it may be an NP-
complete problem to find out what object satisfies it. So it
may be difficult to generate the object from the constraint.
But if one allows oneself to generate the object in any way at
all, this may still be easy, even if . 

â Science fiction. Inhabitants of the Moon were described in
stories by Lucian around 150 AD and Johannes Kepler in
1634—and in both cases were closely modelled on terrestrial
organisms. Interest in fiction about extraterrestrials increased
greatly at the end of the 1800s—perhaps because by then few
parts of the Earth remained unexplored. And as science
fiction developed, accounts of the future sometimes treated
extraterrestrials as commonplace—and sometimes did not
mention them at all. Most often extraterrestrials have been
easy to recognize, being little more than simple combinations
of terrestrial animals (and occasionally plants)—though
fairly often with extra features like telepathy. Some stories
have nevertheless explored extraterrestrial intelligence based
for example on solids, gases or energy fields. An example is
Fred Hoyle’s 1957 The Black Cloud in which a large cloud of
hydrogen gas achieves intelligence by exchanging
electromagnetic signals between rocks whose surface
molecular configurations store memories. 

The most common fictional scenario for first contact with
extraterrestrials is the arrival of spacecraft—often induced by
us having passed a technology threshold such as radio,
nuclear explosions or faster-than-light travel. Other scenarios
sometimes considered include archeological discovery of
extraterrestrial artifacts and receipt of radio signals.

In the movie 2001 a black cuboid with side ratios 1:4:9
detected on the Moon through its anomalous magnetic
properties sends a radio pulse in response to sunlight. Later
there are also a few frames of flashing octahedra, presumably
intended to be extraterrestrial artifacts, or perhaps
extraterrestrials themselves.

In The Black Cloud intelligence is suggested by responsiveness
to radio stimuli. Communication is established—as often in
science fiction—by the intelligence interpreting material that
we supply, and then replying in the same format.

The movie Contact centers on a radio signal with several
traditional SETI ideas: it is transmitted at  MHz, and
involves a sequence of primes to draw attention, an
amplified TV signal from Earth and a description of a
machine to build.

P % NP
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The various Star Trek television series depict many
encounters with “new life and new civilizations”. Sometimes
intelligence is seen not associated with something that is
considered a lifeform.

Particularly in short stories various scenarios have been
explored where it is difficult ever to recognize intelligence.
These include one-of-a-kind beings that have nothing to
communicate with, as well as beings with inner intellectual
activity but no effect on the outside world. When there are
extraterrestrials substantially more advanced than humans
few efforts have been made to describe their motives and
purposes directly—and usually what is emphasized is just
their effects on humans. 

(See also page 1184.)

â Page 839 · Practical arguments. If extraterrestrials exist at all
an obvious question—notably asked by Enrico Fermi in the
1940s—is why we have not encountered them. For there
seems no fundamental reason that even spacecraft could not
colonize our entire galaxy within just a few million years.

Explanations suggested for apparent absence include:

äExtraterrestrials are visiting, but we do not detect them;

äExtraterrestrials have visited, but not in recorded history;

äExtraterrestrials choose to exist in other dimensions;

ä Interstellar travel is somehow infeasible;

äColonization is somehow ecologically limited;

äPhysical travel is not worth it; only signals are ever sent.

Explanations for apparent lack of radio signals include:

äBroadcasting is avoided for fear of conquest;

äThere are active efforts to prevent us being contaminated;

äExtraterrestrials have no interest in communicating;

äRadio is the wrong medium;

äThere are signals, but we do not understand them.

The so-called Drake equation gives a straightforward upper
bound on the number of cases of extraterrestrial intelligence
that could have arisen in our galaxy through the same basic
chain of circumstances as humans. The result is a product of:
rate of formation of suitable stars; fraction with planetary
systems; number of Earth-like planets per system; fraction
where life develops; fraction where intelligence develops;
fraction where technology develops; time communicating
civilizations survive. It now seems fairly certain that there are
at least hundreds of millions of Earth-like planets in our
galaxy. Biologists sometimes argue that intelligence is a rare
development—though in the Darwinian approach it certainly

has clear benefit. In addition, particularly in the Cold War
period, it was often said that technological civilizations
would quickly tend to destroy themselves, but now it seems
more likely that intelligence—once developed—will tend to
survive indefinitely, at least in machine form. 

It is obviously difficult to guess the possible motivations of
extraterrestrials, but one might expect that—just as with
humans—different extraterrestrials would tend to do
different things, so that at least some would choose to send
out signals if not spacecraft. Out of about 6 billion humans,
however, it is notable that only extremely few choose, say, to
explore life in the depths of the oceans—though perhaps this
is just because technology has not yet made it easy to do. In
human history a key motivator for exploration has been
trade. But trade requires that there be things of value to
exchange; yet it is not clear that with sufficiently advanced
technology there would be. For if the fundamental theory of
physics is known, then everything about what is possible in
our universe can in principle be worked out purely by a
computation. Often irreducible work will be required, which
one might imagine it would be worthwhile to trade. But as a
practical matter, it seems likely that there will be vastly more
room to do more extensive computations by using smaller
components than by trading and collaborating with even
millions of other civilizations. (It is notable that just a couple
of decades ago, it was usually assumed that extraterrestrials
would inevitably want to use large amounts of energy, and so
would eventually for example tap all the output of a star. But
seeing the increasing emphasis on information rather than
mechanical work in human affairs this now seems much less
clear.)

Extrapolating from our development, one might expect that
most extraterrestrials would be something like immortal
disembodied minds. And what such entities might do has to
some extent been considered in the context of the notion of
heaven in theology and art. And it is perhaps notable that
while such activities as music and thought are often
discussed, exploration essentially never is. 

â Physics as intelligence. From the point of view of traditional
thinking about intelligence in the universe it might seem like
an extremely bizarre possibility that perhaps intelligence
could exist at a very small scale, and in effect have spread
throughout the universe, building as an artifact everything
we see. But at least with a broad interpretation of intelligence
this is at some level exactly what the Principle of
Computational Equivalence suggests has actually happened.
For it implies that even at the smallest scales the laws of
physics will show the same computational sophistication that
we normally associate with intelligence. So in some sense this
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supports the theological notion that there might be a kind of
intelligence that permeates our universe. (See page 1195.)

Implications for Technology

â Covering technology. In writing this book I have tried to
achieve some level of completeness in covering the obvious
scientific implications of my ideas. But to cover technological
implications at anything like the same level would require at
least as long a book again. And in my experience many of the
intellectually most interesting aspects of technology emerge
only when one actually tries to build technology for real—
and they are often in a sense best captured by the technology
itself rather than by a book about it.

â Page 840 · Applications of randomness. Random drawing of
lots has been used throughout recorded history as an
unbiased way to distribute risks or rewards. Also common
have been games of chance (see page 968). Randomness is in
general a convenient way to allow local decisions to be made
while maintaining overall averages. In biological organisms
it is used in determining sex of offspring, as well as in
achieving uniform sampling, say in foraging for food.
(Especially in antiquity, all sorts of seemingly random
phenomena have been used as a basis for fortune telling.)

The notion of taking random samples as a basis for making
unbiased deductions has been common since the early 1900s,
notably in polling and market research. And in the past few
decades explicit randomization has become common as a
way of avoiding bias in cases such as clinical trials of drugs. 

In the late 1800s it was noted in recreational mathematics that
one could find the value of  by looking at randomly
dropped needles. In the early 1900s devices based on
randomness were built to illustrate statistics and probability
(see page 312), and were used for example to find the form of
the Student t-distribution. With the advent of digital
computers in the mid-1940s Monte Carlo methods (see page
968) were introduced, initially as a way to approximate
processes like neutron diffusion. (Similar ideas had been
used in 1901 by Kelvin to study the Boltzmann equation.)
Such methods became increasingly popular, especially for
simulating systems like telephone networks and particle
detectors that have many heterogeneous elements—as well
as in statistical physics. In the 1970s they also became widely
used for high-dimensional numerical integration, notably for
Feynman diagram evaluation in quantum electrodynamics.
But eventually it was realized that quasi-Monte Carlo
methods based on simple sequences could normally do
better than ones based on pure randomness (see page 1085). 

A convenient way to tell whether expressions are equal is to
evaluate them with random numerical values for variables.
(Care must be taken with branch cuts and bounding intervals
for inexact numbers.) In the late 1970s it was noted that by
evaluating  for several random
integers  one can with high probability quickly deduce

. (In the 1960s it had been noted that one can factor
polynomials by filling in random integers for variables and
factoring the resulting numbers.) And in the 1980s many
such randomized algorithms were invented, but by the mid-
1990s it was realized that most did not require any kind of
true randomness, and could readily be derandomized and
made more predictable. (See page 1085.)

There are all sorts of situations where in the absence of
anything better it is good to use randomness. Thus, for
example, many exploratory searches in this book were done
randomly. And in testing large hardware and software
systems random inputs are often used.

Randomness is a common way of avoiding pathological cases
and deadlocks. (It requires no communication between
components so is convenient in parallel systems.) Examples
include message routing in networks, retransmission times after
ethernet collisions, partitionings for sorting algorithms, and
avoiding getting stuck in minimization procedures like simulated
annealing. (See page 347.) As on page 333, it is common for
randomness to add robustness—as for example in cellular
automaton fluids, or in saccadic eye movements in biology.

In cryptography randomness is used to make messages look
typical of all possibilities (see page 598). It is also used in
roughly the same way in hashing (see page 622). Such
randomness must be repeatable. But for cryptographic keys it
should not be. And the same is true when one picks unique
IDs, say to keep track of repeat web transactions with a low
probability of collisions. Randomness is in effect also used in
a similar way in the shotgun method for DNA sequencing, as
well as in creating radar pulses that are difficult to forge. (In
biological organisms random diversity in faces and voices
may perhaps have developed for similar reasons.)

The unpredictability of randomness is often useful, say for
animals or military vehicles avoiding predators (see page
1105). Such unpredictability can also be used in simulating
human or natural processes, say for computer graphics,
videogames, or mock handwriting. Random patterns are
often used as a way to hide regularities—as in camouflage,
security envelopes, and many forms of texturing and
distressing. (See page 1077.)

In the past, randomness was usually viewed as a thing to be
avoided. But with the spread of computers and consumer
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electronics that normally operate predictably, it has become
increasingly popular as an option. 

Microscopic randomness is implicitly used whenever there is
dissipation or friction in a system, and generally it adds
robustness to the behavior that occurs in systems. 

â Page 841 · Self-assembly. Given elements (such as pieces of
molecules) that fit together only when certain specified
constraints are satisfied it is fairly straightforward to force,
say, cellular automaton patterns to be generated, as on page
221. (Notable examples of such self-assembly occur for
instance in spherical viruses.) 

â Page 841 · Nanotechnology. Popular since the late 1980s,
especially through the work of Eric Drexler, nanotechnology
has mostly involved investigation of several approaches to
making essentially mechanical devices out of small numbers
of atoms. One approach extrapolates chip technology, and
studies placing atoms individually on solid surfaces using for
example scanning probe microscopy. Another extrapolates
chemical synthesis—particularly of fullerenes—and considers
large molecules made for example out of carbon atoms. And
another involves for example setting up fragments of DNA to
try to force particular patterns of self-assembly. Most likely it
will eventually be possible to have a single universal system
that can manufacture almost any rigid atomic-scale structure
on the basis of some kind of program. (Ribosomes in biological
cells already construct arbitrary proteins from DNA
sequences, but ordinary protein shapes are usually difficult to
predict.) Existing work has tended to concentrate on trying to
make rather elaborate components suitable for building
miniature versions of familiar machines. The discoveries in
this book imply however that there are much simpler
components that can also be used to set up systems that have
behavior with essentially any degree of sophistication. Such
systems can either have the kind of chemical and mechanical
character most often considered in nanotechnology, or can be
primarily electronic, for example along the lines of so-called
quantum-dot cellular automata. Over the next several decades
applications of nanotechnology will no doubt include much
higher-capacity computers, active materials of various kinds,
and cellular-scale biomedical devices. 

â Page 842 · Searching for technology. Many inventions are
made by pure ingenuity (sometimes aided by mathematical
calculation) or by mimicking processes that go on in nature.
But there are also cases where systematic searches are done.
Notable examples were the testing of thousands of materials
as candidate electric light bulb filaments by Thomas Edison
in 1879, and the testing of 606 substances for chemotherapy
by Paul Ehrlich in 1910. For at least fifty years it has now

been quite routine to test many hundreds or thousands of
substances in looking, say, for catalysts or drugs with
particular functions. (Other kinds of systematic searches
done include ones for metal alloys, cooking recipes and plant
hybrids.) Starting in the late 1980s the methods of
combinatorial chemistry (see note below) began to make it
possible to do biochemical tests on arrays of millions of
related substances. And by the late 1990s, similar ideas were
being used for example in materials science: in a typical case
an array of different combinations of substances is made by
successively spraying through an appropriate sequence of
masks, with some physical or chemical test then applied to
all the samples.

In the late 1950s maximal length shift register sequences
(page 1084) and some error-correcting codes (page 1101) were
found by systematic searches of possible polynomials. Most
subsequent codes, however, have been found by explicit
mathematical constructions. Optimal circuit blocks for
operations such as addition and sorting (see page 1142) have
occasionally been found by searches, but are more often
found by explicit construction, progressive improvement or
systematic logic minimization (see page 1097). In some
compilers searches are occasionally done for optimal
sequences of instructions to implement particular simple
functions. And in recent years—notably in the building of
Mathematica—optimal algorithms for operations such as
function evaluation and numerical integration have
sometimes been found through searches. In addition, my
1984 identification of rule 30 as a randomness generator was
the result of a small-scale systematic search. 

Particularly since the 1970s, many systematic methods have
been tried for optimizing engineering designs by computer.
Usually they are based on iterative improvement rather than
systematic search. Some rely on linear programming or
gradient descent. Others use methods such as simulated
annealing, neural networks and genetic algorithms. But as
discussed on page 342, except in very simple cases, the
results are usually far from any absolute optimum. (Plant and
animal breeding can be viewed as a simple form of
randomized search done since the dawn of civilization.)

â Page 843 · Methodology in this book. Much of what is
presented in this book comes from systematic enumeration of
all possible systems of particular types. However, sometimes
I have done large searches for systems (see e.g. page 112).
And especially in Chapter 11 I have occasionally explicitly
constructed systems that show particular features. 

â Chemistry. Chemical compounds are a little like cellular
automata and other kinds of programs. For even though
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the basic physical laws relevant to chemical compounds
have been known since the early 1900s, it remains
extremely difficult to predict the actual properties of a
given compound. And I suspect that the ultimate reason
for this—just as in the case of simple programs—is
computational irreducibility.

For a single molecule, the minimum energy configuration
can presumably always be found by a limited amount of
computational work—though potentially increasing rapidly
with the number of atoms. But if one allows progressively
more molecules computational irreducibility can make it
take progressively more computational work to see what
will happen. And much as in determining whether
constraints like those on page 213 can be satisfied for an
infinite region, it can take an infinite amount of
computational work to determine bulk properties of an
infinite collection of molecules. Thus in practice it has
typically been difficult to predict for example boiling and
particularly melting points (see note below). So this means
in the end that most of chemistry must be based on facts
determined experimentally about specific compounds that
happen to have been studied.

There are currently about 10 million compounds listed in
standard chemical databases. Of these, most were first
identified as extracts from biological or other natural
systems. In trying to discover compounds that might be
useful say as drugs the traditional approach was to search
large libraries of compounds, then to study variations on
those that seemed promising. But in the 1980s it began to be
popular to try so-called rational design in which molecules
were created that could at least to some extent specifically
be computed to have relevant shapes and chemical
functions. Then in the 1990s so-called combinatorial
chemistry became popular, in which—somewhat in
imitation of the immune system—large numbers of possible
compounds were created by successively adding at random
several different possible amino acids or other units. But
although it will presumably change in the future it remained
true in 2001 that half of all drugs in use are derived from
just 32 families of compounds.

Doing a synthesis of a chemical is much like constructing a
network by applying a specified sequence of
transformations. And just like for multiway systems it is
presumably in principle undecidable whether a given set of
possible transformations can ever be combined to yield a
particular chemical. Yet ever since the 1960s there have been
computer systems like LHASA that try to find synthesis
pathways automatically. But perhaps because they lack even
the analog of modern automated theorem-proving methods,

such systems have never in practice been extremely
successful.

â Interesting chemicals. The standard IUPAC system for
chemical nomenclature assigns a name to essentially any
possible compound. But even among hydrocarbons with
fairly few atoms not all have ever been considered interesting
enough to list in standard chemical databases. Thus for
example the following compares the total number of
conceivable alkanes (paraffins) to the number actually listed
in the 2001 standard Beilstein database: 

Any tree with up to 4 connections at each node can in
principle correspond to an alkane with chemical formula
CnH2n+2. The total number of such trees—studied since
1875—increases roughly like . If every node has
say 4 connections, then eventually one gets dendrimers that
cannot realistically be constructed in 3D. But long before
this happens one runs into many alkanes that presumably
exist, but apparently have never explicitly been studied.
The small unbranched ones (methane, ethane, propane,
butane, pentane, etc.) are all well known, but ones with
more complicated branching are decreasingly known. In
coal and petroleum a continuous range of alkanes occur.
Branched octanes are used to reduce knocking in car
engines. Biological systems contain many specific alkanes—
often quite large—that happen to be produced through
chemical pathways in biological cells. (The  and

 unbranched alkanes are for example known to serve
as ant pheromones.)

In general the main way large molecules have traditionally
ended up being considered chemically interesting is if they
occur in biological systems—or mimic ones that do. Since the
1980s, however, molecules such as the fullerenes that instead
have specific regular geometrical shapes have also begun to
be considered interesting. 

â Alkane properties. The picture on the facing page shows
melting points measured for alkanes. (Note that even when
alkanes are listed in chemical databases—as discussed
above—their melting points may not be given.) Unbranched
alkanes yield melting points that increase smoothly for 
even and for  odd. Highly symmetrical branched alkanes
tend to have high melting points, presumably because they
pack well in space. No reliable general method for
predicting melting points is however known (see note
above), and in fact for large  alkanes tend to form jellies
with no clear notion of melting.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
total 1 1 1 2 3 5 9 18 35 75 159 355 802 1858 4347 10359

listed 1 1 1 2 3 5 9 18 35 75 68 108 60 60 41 62

2.79n n-5/2

n = 11
n = 13
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Things appear somewhat simpler with boiling points, and as
noticed by Harry Wiener in 1947 (and increasingly discussed
since the 1970s) these tend to be well fit as being linearly
proportional to the so-called topological index given by the
sum of the smallest numbers of connections visited in getting
between all pairs of carbon atoms in an alkane molecule.

â Page 843 · Components for technology. The Principle of
Computational Equivalence suggests that a vast range of
systems in nature can all ultimately be used to make
computers. But it is remarkable to what extent even the
components of present-day computer systems involve
elements of nature originally studied for quite different
reasons. Examples include electricity, semiconductors (used
for chips), ferrites (used for magnetic storage), liquid crystals
(used for displays), piezoelectricity (used for microphones),
total internal reflection (used for optical fibers), stimulated
emission (used for lasers) and photoconductivity (used for
xerographic printing).

â Future technology. The purposes technology should serve
inevitably change as human civilization develops. But at least
in the immediate future many of these purposes will tend to
relate to the current character of our bodies and minds. For
certainly technology must interface with these. But
presumably as time progresses it will tend to become more
integrated, with systems that we have created eventually
being able to fit quite interchangeably into our usual
biological or mental setup. At first most such systems will
probably tend either to be based on standard engineering, or
to be quite direct emulations of human components that we
see. But particularly by using the ideas and methods of this
book I suspect that significant progressive enhancements will
be possible. And probably there will be many features that
are actually quite easy to take far beyond the originals. One
example is memory and the recall of history. Human memory
is in many ways quite impressive. Yet for ordinary physical
objects we are used to the idea that they remember little of
their history, for at a macroscopic level we tend to see only

the coarsest traces. But at a microscopic scale something like
the surface of a solid has in at least some form remarkably
detailed information about its history. And as technological
systems get smaller it should become possible to read and
manipulate this. And much as in the discussion at the end of
Chapter 10 the ability to interact at such a level will yield
quite different experiences, which in turn will tend to suggest
different purposes to pursue with technology. 

Historical Perspectives

â Page 844 · Human uniqueness. The idea that there is
something unique and special about humans has deep roots
in Judeo-Christian tradition—and despite some dilution
from science remains a standard tenet of Western thought
today. Eastern religions have however normally tended to
take a different view, and to consider humans as just one of
many elements that make up the universe as a whole. (See
note below.)

â Page 845 · Animism. Belief in animism remains strong in
perhaps several hundred million indigenous people around
the world. In its typical form, it involves not only explaining
natural phenomena by analogy to human behavior but also
assuming that they can be influenced as humans might be,
say by offerings or worship. (See also page 1177.)

Particularly since Edward Tylor in 1871 animism has often
been thought of as the earliest identifiable form of religion.
Polytheism is then assumed to arise when the idea of
localized spirits associated with individual natural objects is
generalized to the idea of gods associated with types of
objects or concepts (as for example in many Roman beliefs).
Following their rejection in favor of monotheism by
Judaism—and later Christianity and Islam—such ideas have
however tended to be considered primitive and pagan. In
Europe through the Middle Ages there nevertheless
remained widespread belief in animistic kinds of
explanations. And even today some Western superstitions
center on animism, as do rituals in countries like Japan.
Animism is also a key element of the New Age movement of
the 1960s, as well as of such ideas as the Gaia Hypothesis.

Particularly since the work of Jean Piaget in the 1940s, young
children are often said to go through a phase of animism, in
which they interact with complex objects much as if they
were alive and human.

â Page 845 · Universe as intelligent. Whether or not something
like thinking can be attributed to the universe has long been
discussed in philosophy and theology. Theism and the
standard Western religions generally attribute thinking to a
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person-like God who governs the universe but is separate
from it. Deism emphasizes that God can govern the universe
only according to natural laws—but whether or not this
involves thinking is unclear. Pantheism generally identifies the
universe and God. In its typical religious form in Eastern
metaphysics—as well as in philosophical idealism—the
contents of the universe are identified quite directly with the
thoughts of God. In scientific pantheism the abstract order of
the universe is identified with God (often termed “Nature’s
God” or “Spinoza’s God”), but whether this means that
thinking is involved in the operation of the universe is not
clear. (See also pages 822 and 1191.)

â Non-Western thinking. Some of my conclusions in this
book may seem to resonate with ideas of Eastern thinking.
For example, what I say about the fundamental similarity of
human thinking to other processes in nature may seem to fit
with Buddhism. And what I say about the irreducibility of
processes in nature to short formal rules may seem to fit with
Taoism. Like essentially all forms of science, however, what I
do in this book is done in a rational tradition—with limited
relation to the more mystical traditions of Eastern thinking. 

â Aphorisms. Particularly from ancient and more fragmentary
texts aphorisms have survived that may sometimes seem at
least vaguely related to this book. (An example from the pre-
Socratics is “everything is full of gods”.) But typically it is
impossible to see with any definiteness what such aphorisms
might really have been intended to mean.

â Postmodernism. Since the mid-1960s postmodernism has
argued that science must have fundamental limitations,
based on its general belief that any single abstract system
must somehow be as limited—and as arbitrary in its
conclusions—as the context in which it is set up. My work
supports the notion that—despite implicit assumptions made
especially in the physical sciences—context can in fact be
crucial to the choice of subject matter and interpretation of
results in science (see e.g. page 1105). But the Principle of
Computational Equivalence suggests at some level a
remarkable uniformity among systems, that allows all sorts
of general scientific statements to be made without
dependence on context. It so happens that some of these
statements then imply intrinsic general limitations on
science—but even the very fact that such statements can be
made is in a sense an example of successful generality in
science that goes against the conclusions of postmodernism.
(See also page 1131.)

â Microcosm. The notion that a human mind might somehow
be analogous to the whole universe was discussed by Plato
and others in antiquity, and known in the Middle Ages. But it

was normally assumed that this was something fairly unique
to the human mind—and nothing with the generality of the
Principle of Computational Equivalence was ever imagined.

â Human future. The Principle of Computational Equivalence
and the results of this book at first suggest a rather bleak view
of the end point of the development of technology. As I argued
in Chapter 10 computers will presumably be able to emulate
human thinking. And particularly using the methods of this
book one will be able to use progressively smaller physical
components as elements of computers. So before too long it
will no doubt be possible to implement all the processes of
thinking that go on in a single human—or even in billions of
humans—in a fairly small piece of material. Each piece of
human thinking will then correspond to some microscopic
pattern of changes in the atoms of the material. In the past one
might have assumed that these changes would somehow
show fundamental evidence of representing sophisticated
human thinking. But the Principle of Computational
Equivalence implies that many ordinary physical processes are
computationally just as sophisticated as human thinking. And
this means that the pattern of microscopic changes produced
by such processes can at some level be just as sophisticated as
those corresponding to human thinking. So given, say, an
ordinary piece of rock in which there is all sorts of complicated
electron motion this may in a fundamental sense be doing no
less than some system of the future constructed with
nanotechnology to implement operations of human thinking.
And while at first this might seem to suggest that the rich
history of biology, civilization and technology needed to reach
this point would somehow be wasted, what I believe instead is
that this just highlights the extent to which such history is
what is ultimately the defining feature of the human condition.

â Philosophical implications. The Principle of Computational
Equivalence has implications for many issues long discussed
in the field of philosophy. Most important are probably those
in epistemology (theory of knowledge). In the past, it has
usually been assumed that if we could only build up in our
minds an adequate model of the world, then we would
immediately know whatever we want about the world. But
the Principle of Computational Equivalence now implies that
even given a model it may be irreducibly difficult to work out
its consequences. In effect, computational irreducibility
introduces a new kind of limit to knowledge. And it implies
that one needs a criterion more sophisticated than immediate
predictability to assess a scientific theory—since when
computational irreducibility is present this will inevitably be
limited. In the past, it has sometimes been assumed that
truths that can be deduced purely by operations like those in
logic must somehow always be trivial. But computational
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irreducibility implies that in general they are not. Indeed it
implies that even once the basic laws are known there are still
an endless series of questions that are worth investigating in
science. It is often assumed that one cannot learn much about
the world just by studying purely formal systems—and that
one has to rely on empirical input. But the Principle of
Computational Equivalence implies that at some level there
are inevitably common features across both abstract and
natural systems. In ontology (theory of being) the Principle of
Computational Equivalence implies that special components
are vastly less necessary than might have been thought. For it
shows that all sorts of sophisticated characteristics can
emerge from the very same kinds of simple components. (My
discussion of fundamental physics in Chapter 9 also suggests
that no separate entities beyond simple rules are needed to
capture space, time or matter.) Arguments in several areas of
philosophy involve in effect considering fundamentally
different intelligences. But the Principle of Computational
Equivalence implies that in fact above a certain threshold

there is an ultimate equivalence between possible
intelligences. In addition, the Principle of Computational
Equivalence implies that all sorts of systems in nature and
elsewhere will inevitably exhibit features that in the past
have been considered unique to intelligence—and this has
consequences for the mind-body problem, the question of
free will, and recognition of other minds. It has often been
thought that traditional logic—and to some extent
mathematics—are somehow fundamentally special and
provide in a sense unique foundations. But the Principle of
Computational Equivalence implies that in fact there are a
huge range of other formal systems, equivalent in their
ultimate richness, but different in their details, and in the
questions to which they naturally lead. In philosophy of
science the Principle of Computational Equivalence forces a
new methodology based on formal experiments—that is
ultimately the foundation for the whole new kind of science
that I describe in this book. 
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extraterrestrial artifacts in, 834
geometrical patterns in, 1187
Greek, 861
and history of computing, 1107
and history of statistics, 1082
measurement errors in, 967
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as knots in the ether, 1028
in models of space, 1028
as source of randomness, 967
and thermodynamics, 445, 1019

ATP, and definition of life, 825
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Authentication, and hashing, 1100
Autoactive decay processes, 905
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Avalanches

in sandpile models, 989
in snow, 993

Average-case difficulty, 1143
Averaging

in diffusion equation, 1024
and Gaussian distributions, 976
as source of continuity, 327
as source of uniformity, 353

Avoidable patterns (repetition-free 
sequences), 944

Axelrod, Robert M. (USA, 1943– )
and prisoner’s dilemma, 1104

Axiom of choice, 774, 1154
and additive functions, 953

Axiom of infinity, 1154
Axiom of replacement, 1154
Axiom schemas, 1156, 1176
Axiom systems

based on multiway systems, 1173
for basic logic, 808
for cellular automata, 794, 1168
and defining complexity, 1068
effect of expanding, 1159
enumeration of, 809
for extended set theory, 1167
forcing an operator in, 1172
general structure of, 1150
vs. generators and relations, 1169
interpreting algebraic, 1153, 1159
model theory of, 1172
for multivalued logic, 1175
and operator evolution systems, 

898
for operator systems, 801
and P=NP, 1146
proving correctness of, 802, 1170
sampled by mathematics, 795
table of in mathematics, 773
theorems holding in simple, 812
and Turing machines, 1145
and universality proofs, 1127
as way to handle infinity, 788

Axiomatic quantum field theory, 
1057, 1065

Axiomless formulations
of logic, 1156

Axons, of nerve cells, 1075

B particles
time reversal violation for, 1019

Babbage, Charles (England, 
1791–1871)

and computers, 1107
and universality, 1110

Babylonian mathematics
and calculation, 1149
and computing , 911
and computing Sqrt, 913
current influence of, 792

and definition of math, 859
and labelling in geometry, 1182
and math in science, 859
numbers in, 901
and primes, 908
rules in, 875

Babylonians
and constellations, 1187
military drill of, 875
and rule 30 artifacts, 42

Bachelier, Louis (France, 1870–1946)
and randomness in markets, 1014

Bachet’s problem (operator 
representations), 916

Back-biased zener diodes, 970
Backpropagation

in neural networks, 1102
Backtracking

in  problem, 904
in cellular automata, 1089
and proof searching, 1157
in rule 30, 605
in satisfying constraints, 941
in tiling problems, 217

Backus, John (USA, 1924– )
and computer languages, 1104

Backus-Naur form, 1104
Backward evolution in CAs, 435
Bacon, Roger (England, ~1219 – 

~1292)
and math in science, 859

Bacteria
genetic programs of, 1002
smallest self-replicating, 1179

Bag model
as mechanistic model, 1026

Bak, Per (Denmark/USA, 1947– )
and self-organized criticality, 989

Baker, Alan (England, 1939– )
and Diophantine equations, 1164

Baker’s method
and Diophantine equations, 1164

Baker’s transformation (tent map), 
150

Balance equations (rate equations), 
984

Balanced binary trees, 897, 898
Balanced delimiters, 989
Ball rolling

in bistable system, 341
as source of randomness, 970

Balladonia-Caiguna road, 1187
Ballistics tables

and history of computing, 1107
Balls

cyclic tag systems made with, 895
packing of, 349, 986

Bamboos, growth of, 1004
Banach-Tarski result

in set theory, 1154
Bands, in Moire patterns, 1078
Bandwidth

in perception, 1079
of radio signals, 1188

Banks, E. Roger (USA, 1944– )
and 1D universal CA, 1115
and 2D universal CA, 1117

Barnacles, patterns on, 385
Barnsley, Michael F. (England/

USA, 1946– )
and parameter space sets, 1006
and pictures of ferns, 1005

Base 1 (unary), 560, 1070
Base 2 (binary), 116

and chaos experiments, 919

history of, 902
as natural notation, 1182
in practical computers, 1108

Base 6, powers of 3 in, 614, 903
Base 10 (decimal), 116

and chaos experiments, 919
powers of 2 in, 614, 749

Base 16 (hex), digits of  in, 912
Base 60

and history of numbers, 902
Base -2 notation, 902
Bases (number), 116

complex, 932, 933
conversions between, 1094
Fibonacci, 560, 892, 902
generalized, 902
locality of powers in, 1093
and normal numbers, 912
and substitution systems, 891

Basic forms
in image compression, 574

BASIC language
and history of computing, 1108
and register machines, 101

Basins of attraction
boundaries of, 1101
for cellular automata, 276
and phase transitions, 341

Basis functions
in data compression, 574

Basket star, nested pattern in, 1008
Batcher, Kenneth E. (USA, 1935– )

and sorting networks, 1142
Bats, auditory system of, 1079
Battles

instabilities in infantry, 1014
Bayesian inference, 595, 1083
Bays, Carter (USA, 1940– )

and 3D class 4 CAs, 949
bcc (body-centered cubic), 930

and deformable packing, 988
Voronoi diagram, 987

BDDs (binary decision diagrams), 
1097

Beacons, extraterrestrial, 836
Beam buckling

and chaos theory, 971
Bearings

characteristic shapes of, 1183
Beat notes, 146, 1079
Beatty sequences, 890
Beauty, see Art
Beaver dams

as animal artifacts, 1184
Beehives (in Game of Life), 964
Beehives (made by bees), 1011
Beeler, Michael D. (USA, 1944– )

and 2D Turing machines, 930
Begriffsschrift, of Frege, 1149
Behaviorism, 1099, 1135
Beilstein database, 1194
Bell, Alexander Graham (USA, 

1847–1922)
and speech sounds, 1080

Bell, David I. (USA/Australia, 
1953– )

and structures in Life, 965
Bell, John S. (England/Switzerland, 

1928–1990)
and quantum mechanics, 1058

Bell curve (Gaussian), 977
Bell Laboratories, xiii
Bell’s inequalities, 1064

history of, 1058
in quantum field theory, 1065
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Belousov, Boris P. (Russia, 
1893–1970)

and oscillatory chemical 
reactions, 1013

Bénard convection, 1000
as repetitive behavior, 988

Bendix, Peter B. (USA, 1946– )
and Knuth-Bendix procedure, 

1037
Benford, Frank (USA, 1883–1948)

and leading digits, 914
Benford’s Law, 914

and powers, 903
Bennett, Charles H. (USA, 1943– )

and logical depth, 1069
in Preface, xiii
and reversibility of computation, 

1020
and sphere packing, 985

Bentley, Wilson A. (USA, 
1865–1931)

and snowflakes, 992
Berger, Robert (USA, 1938– )

and non-periodic tilings, 943
and undecidability in tiling, 1139

Berlekamp, Elwyn R. (USA, 1940– )
and Berlekamp-Massey 

algorithm, 1087
Berlekamp’s algorithm (for Factor), 

1192
Bernoulli, Daniel (Netherlands/

Switzerland, 1700–1782)
and molecular theory of gases, 

1019
BernoulliB (Bernoulli numbers)

difficulty of evaluating, 1134
BesselI (modified Bessel function)

and continued fractions, 914
and Egyptian fractions, 915

BesselJ (Bessel function)
asymptotics of, 917
curve of, 145
and Klein-Gordon equation, 922
in Mie scattering, 1133
and transcendental numbers, 912

BesselY (Bessel function of second 
kind)

in Mie scattering, 1133
Beta (volatility)

of prices in markets, 1015
Beta decay

parity violation in, 1019
and quantum field theory, 1057

 in proteins, 1003
Bethe lattice, see Tree
Bianchi classification

for Einstein equations, 1053
Bianchi identity, 1049
Bias

randomness to avoid, 841, 1192
Bible

and origins of complexity, 861
randomness generation in, 968
and understanding nature, 876

Bibliographic information
on my papers, 881
in this book, 850

Bibliometrics
for axiom systems, 1153
for cellular automata, 878

Biedenharn-Elliott identity (for  
symbols), 1055

Bifurcations
and chaos theory, 972

and fluid flow, 998
in rate equations, 984

Big bang model
and basic cosmology, 1055
and thermodynamics, 1021

Billiards model, 971, 1022
and thermodynamics, 446

Billion (as 1,000,000,000), 849
Billowing (in clouds), 1001
Binary alloys, 985
Binary cellular automata, 53

see also Elementary cellular 
automata

Binary-coded decimal (BCD), 919
Binary-coded ternary, 560, 1070
Binary counter

in non-periodic tiling, 219
pattern made by, 117
Turing machine acting as, 888
see also Digit sequences

Binary decision diagrams, 1097
Binary mixtures of circles, 350, 985
Binary numbers, 116

history of, 902
see also Base 2
see also Digit sequences

Binary operators
axioms for, 805
and generalized additivity, 952
number of, 1171
possible Boolean, 806

Binary power method, 1093
Binary star system

randomness in, 313
Binary trees

balanced, 897, 898
as combinator expressions, 1123
infinite, 196
space of possible, 405, 1006
and symbolic expressions, 897

Binomial (binomial coefficients)
article of mine on, 882
and associative CAs, 956
and balanced parentheses, 989
and Cantor set, 890
and computational reducibility, 

747
and continuous CA, 922
and correspondence systems, 

1139
encoded as integer equation, 1160
and encodings of arithmetic, 1164
and entropy of particles in box, 

1022
equations involving, 945
and Fibonacci, 890
modulo k, 955
and nested patterns, 610
and number of conserving CAs, 

1023
and number of expressions, 897, 

1175
and primitive recursion, 907
and rule 90 pattern, 870
and Sierpinski pattern, 931
and trinomial coefficients, 1091

Binomial distribution
and basic statistics, 1083
and pegboard, 312

Biological evolution, 383–399, 
1001–1003

CA idealization of, 391
compared to technology 

evolution, 398, 1183
and definition of life, 824

and features of proteins, 1003
and form of DNA sequences, 1184
and intelligence, 822
and leaf shapes, 1005
major new features in, 1003
optimization strategies in, 985
of perception, 634, 1105
and shell shapes, 415
see also Natural selection

Biological growth, 400–422
Eden model for, 978
history of studies of, 1003
see also Growth

Biological systems
compared to physical ones, 967
and definition of complexity, 1069
and extraterrestrial life, 1179
organization through partitioning 

in, 457
in relativity theory, 1042
and thermodynamic behavior, 

453, 1021
Biology, 383–428

and argument by design, 861
attitudes in, 1001
defining features of, 824
vs. engineering, 393, 1004
Gaussian distribution in, 977
history of complexity in, 1001
mathematics in, 859
as molecular engineering, 842
molecules used in, 1194
Occam’s razor in, 1025
physics applied to, 1003
probabilistic models in, 1082
purposes of systems in, 1185
randomness applied in, 1192
randomness seen in, 326, 970
regularities in, 384
summary of relations to, 8, 863
undecidability in, 1138

Biomedical applications, 9, 842
Biomedical devices

and nanotechnology, 1193
Biomedical image processing, 1076
Biometric data

randomness in, 970, 1014
Biprism

and non-periodic tiling in 3D, 943
Birds

vs. airplanes, 1100
color vision in, 1075
nests of as artifacts, 1184
patterns in flocks of, 1011
pigmentation patterns of, 426
songs of, 826, 1180

Birkhoff, Garrett (USA, 1911–1996)
and equational logic, 1172

Bismuth hopper crystals, 993
Bistable systems, 341

see also Metastable states
Bit reversal

systems based on, 125
in Walsh transforms, 1073

BitAnd (bitwise AND)
in Batcher sort, 1142
in CA implementation, 865
integer equation for, 1160
patterns generated by, 871
and rule 90 pattern, 870
and Sierpinski pattern, 931
and zero boundaries, 951

Bitmaps
compression of, 560

images as, 1108
lines in, 916

BitOr (bitwise OR)
integer equation for, 1160
iteration of, 906
patterns generated by, 871
and representing integers, 916
and weighted randomness, 976

Bitpacking
and cellular automata, 866

Bits
in numbers, 116
in practical computers, 1108
see also Digit sequences

Bitslicing
and cellular automata, 866

Bitwise functions
iterated, 906, 921
and logic in computer languages, 

1173
patterns generated by, 871

Bitwise implementation
of cellular automata, 866
of rule 30 center column, 871

BitXor (bitwise XOR)
and Gray code, 901
iteration of, 906
and nim, 939
patterns generated by, 871
and representing integers, 916
and Sierpinski pattern, 931
sounds from, 1080

Bivalve shells, 1008
Black, Fischer (USA, 1938–1995)

and options pricing, 1015
Black Cloud (science fiction), 1190
Black holes, 1053

as dual to particles, 1045
gravity theories without, 1054
Hawking radiation from, 1062
and history of gravity, 1048
and singularities in PDEs, 923
and singularity theorems, 1053
as source of decoherence, 1063
and string theory duality, 1029
and time in computation, 1130

Black-Scholes model, 1015
Blackbody radiation

and quantum theory, 1056
Blinker (in Game of Life), 964
Blinker ship (in Game of Life), 964
Block (in Game of Life), 964
Block (scoping construct)

and notes programs, 854
and sorting networks, 1142

Block cellular automata, 459–464
converting to ordinary CAs, 1023
implementation of, 1023
number of rules for, 1023
repetition periods in, 1023
for Schrödinger equation, 1060
and visual perception, 580

Block concatenation systems 
(correspondence systems), 757, 
1139

Block diagrams
and computer interfaces, 1103

Block encoding, 563
maximal compression in, 1071

Block maps
as cellular automata, 878, 961

Blocking transformations
in CAs, 269, 701, 1118
and renormalization, 955

Β sheets
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Blocks
conservation laws for, 1022
in error-correcting codes, 1101
frequencies of, 590, 1068, 1084
in rule 30 pattern, 569, 725, 871, 

1127
visual patterns of repeating, 582

Blood vessels
branching pattern of, 413

Blotting paper
spreading on as diffusion, 978

Bluff bodies in fluid flow, 998
Blum, Lenore C. (USA, 1942– )

in Preface, xiii
and random generators, 1090

Blum, Manuel (USA, 1938– )
in Preface, xiii
and random generators, 1090

BMP format, compression in, 1070
Boat

fluid flow past, 996
on ocean as random system, 301

Bobrow, Daniel G. (USA, 1935– )
and simple Turing machines, 1143

Body-centered cubic (bcc), 930
and deformable packing, 988
Voronoi diagram, 987

Bohm, David J. (USA/England, 
1917–1992)

and discreteness of space, 1027
and hidden variables, 1058

Bohm-Aharanov effect, 1059
Bohr, Niels H. D. (Denmark, 

1885–1962)
and quantum theory, 1056

Boiling
as discrete transition, 337
models of, 994
as phase transition, 981, 983

Boiling points
of alkanes, 1195
difficulty of computing, 1194

Boltzmann, Ludwig E. (Austria, 
1844–1906)

and statistical mechanics, 1019
Boltzmann equation

and H theorem, 1020
Monte Carlo studies of, 1192

Boltzmann factors
and  noise, 969
and Ising model, 982
and path integrals, 1061

Bones
development of, 1010
facial, 1010
formation of, 420
growth of, 417, 421

Bonnet shell, 415
Book of Changes

and substitution systems, 893
Book of Kells

nested patterns in, 873
Boole, George (England/Ireland, 

1815–1864)
and axioms for logic, 1151
and Boolean functions, 1097
and continuous logic, 1175
and model for thought, 1099

Boolean algebra, 1151
as example of lattice theory, 1153
as generalizing numbers, 1168
representations of, 1171
see also Logic

Boolean expressions, 1095
for cellular automata, 616, 869, 884

and defining complexity, 1069
history of, 1097
and learning theory, 1102
lower bounds in, 1143
minimizing, 1095
minimizing as NP-complete, 1145
satisfiability of, 768

Boolean functions
16 basic possible, 806
emulated by CAs, 662
emulated by rule 30, 704
generated by finite automata, 

1097
number of, 1096
and quantum computers, 1148
represented by perceptrons, 1102

Boolean hypercube
and layout of networks, 1031

Boolean networks, 936
and Nand expressions, 1096
as precursors to my work, 879

Boomerangs
characteristic shapes of, 1183

Boone, William W. (USA, 
1920–1983)

and word problem for groups, 
1141

Bootstrap hypothesis (in particle 
physics), 1044

Bora Bora
symmetric shape of, 1187

Borel, F. E. J. Emile (France, 
1871–1956)

and defining randomness, 1068
and normal numbers, 912

Born interpretation (in quantum 
mechanics), 1058

Borrows, in subtraction, 870
Bose-Einstein condensation, 1058
Bosons, spin-statistics of, 1046
Botany, 400–412

classification in, 1004
growth processes in, 400

Bouncing of objects
and randomness, 312, 971

Boundaries
of 2D CA patterns, 929
and image processing, 1077
motion of in 2D CAs, 335

Boundary cases
in CA classification, 240
and computational difficulty, 

1147
and undecidability, 948

Boundary conditions
in CA implementations, 866, 951
random, 947
and shift registers, 1088

Boundary layer (in fluid flow), 997
Boundary value problems

for additive CAs, 601
as constraint satisfaction, 940
in PDEs, 923

Bounded depth logic, 1096
Bounded fan-in logic, 1096
Bourbaki group, 1150
Bowditch figures, 917
Box counting, and dimensions, 933
Boyer-Moore theorem prover, 1158
Brachiopod, form of opened, 385
Brachistochrone

as exactly soluble, 1133
Brackets

balanced sequences of, 897
and symbolic systems, 103

Brady, Allen H. (USA, 1934– )
and 2D Turing machines, 930

Bragg reflection, 1082
Brain

of birds and bird songs, 826, 1180
computational equivalence of, 

721, 844
determinism in, 1135
and free will, 750
mathematics and the, 1177
memory in, 624
physiology of human, 1098
repetitive rhythms in, 1011
source of will in, 1136
and speech generation, 826
and universals in language, 1181
visual processing in, 580

Brain coral
maze-like patterns in, 1013

Brainteasers, 1104
Branch cuts (in complex plane)

and equality testing, 1192
Branching

in animals, 413, 1008
history of models of, 1005
in plants, 400, 1004
as producing nesting, 357
in proofs, 1155
and study of form, 967
in substitution systems, 84

Branching processes
and multiway systems, 938

Branching programs
register machines as, 97

Bravais, Auguste (France, 
1811–1863)

and phyllotaxis, 1007
Bravais, Louis F. (France, 1801–1843)

and phyllotaxis, 1007
Bravais lattices, 929
Bray, William C. (USA, 1879–1946)

and oscillatory chemical 
reactions, 1013

Breadth-first recursion
in substitution systems, 1033

Breakdown
as source of randomness, 302, 970
of vacuum, 1062

Breakers, patterns of, 997
Breeding season

bird songs in, 1180
whale songs in, 1180

Bresenham’s algorithm, 916
Bricks patterns

and CA updating, 885
as origin of ornament, 872
see also Block cellular automata

Brillouin zones, 987
and CA lattices, 929

British Museum, 873
Brittle materials, 994
Broadband noise, 586

in electronics, 968
and SETI, 1189

Broadcasting
and extraterrestrials, 836

Broadwell, James E. (USA, 1921– )
and CA fluids, 999

Broccoli shape, 385
Broglie, Louis-V.-P.-R. de (France, 

1892–1987)
and wave-particle duality, 1056

Bronchioles
branching pattern of, 413, 1008

Bronze Age ornament, 873

Brouwer, Luitzen E. J. (Netherlands, 
1881–1966)

and character of math, 1176
Brownian motion

randomness in, 302
see also Random walks

Bruns, E. Heinrich (Germany, 
1848–1919)

and three-body problem, 972
Bubbles

as artificial-looking, 828
in boiling, 994
in evolving foams, 1039

Buch, Arnim (Germany, 1969– )
and automated proofs, 1158

Buchberger, Bruno (Austria, 1942– )
and Gröbner basis approach, 1037
in Preface, xiii

Buckling, and chaos theory, 971
Buddhism, 1196
Buffon’s needle (for evaluating ), 

1192
Bugs

in CA programs, 866
in first universal TM, 1119
intuition from, 46, 872
and proofs about programs, 1168
in proofs of universality, 1117
in purposeful CA, 1185
in random generators, 320
in theorems, 899

Buildings, purposes of early, 1184
Built-in cellular automaton 

function, 867
Bumpy roads

and chaos theory, 304
Buntrock, Jürgen (Germany, 1958– )

and long-running TMs, 889
Burger’s equation, 925
Burgess Shale fossil, 385
Burks, Arthur W. (USA, 1915– )

and cellular automata, 876
in Preface, xiii

Bush, Vannevar (USA, 1890–1974)
and differential analyzer, 1107

Business cycles
iterated maps as models of, 918
theories of, 1015
and time series, 1083

Business systems
and complexity research, 863

Busy Beaver Problem
and growth rates, 1163
for register machines, 896
for symbolic systems, 897
for Turing machines, 889, 1144

Butterflies
opposite wings of, 1013
pigmentation patterns of, 389

Butterfly network, 905
Byzantine style, 873

C (programming language)
and chaos experiments, 919
as example of language, 1109
and history of computing, 1108
and my first CA experiments, 864
my use of, 854, 899
programs for CAs, 865
and register machines, 101

C curve
from 1D substitution system, 892
from 2D substitution system, 190

C60, and spherical networks, 1049
Cabala (universal object), 1127
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Cabbage, phyllotaxis in, 409
Cable (wire rope)

and nesting in, 874
Cactus

phyllotaxis in, 409
regular shape of, 385

CAD (cylindrical algebraic 
decomposition), 1154

Caesar, Julius (Italy, 100–44 BC)
and cryptography, 1085

Caesar ciphers, 1085
Cages (small girth networks), 1029
Cahn-Hilliard equation, 980
Calabi-Yau manifolds, 1028, 1052
Calcite, hopper crystals in, 993
Calculators

chaos experiments on, 919
and history of computing, 1107
reverse Polish notation in, 896

Calculus
axioms for, 774
and computational reducibility, 

1132
and continuous computation, 

1129
equations based on, 161
history of notation for, 1182
and natural selection, 394
origin of word, 925
proofs in, 1177
role in history of science, 44
see also Propositional logic

Calculus of variations
and geodesics, 1049

Calculus ratiocinator
of Leibniz, 1149

California Institute of Technology, 
xiii

Calligraphy, Kufi, 874
Calls, of birds, 1180
Calogero-Moser model, 1133
Camouflage

stripes of zebras as, 1012
use of randomness in, 1192
and visual perception, 1077

Campbell, John H. (USA, 1938– )
and patterns on shells, 1012
in Preface, xiii

Cams
characteristic shapes of, 1183
for randomness generation, 969

Canalizing behavior (class 2 Boolean 
networks), 936

Canals, on Earth and Mars, 1180
Cancers

from DNA errors, 970
see also Tumor growth

Cannon balls, packing of, 986
Canonical ensemble

in 2D Ising model, 982
and path integrals, 1061

Canonical forms
establishing axioms with, 1170
in multiway systems, 1036
in proof searching, 1157
and proofs in logic, 1175
see also Confluence

Canonical quantization, 1057
of gravity, 1054

Canonical systems
see Multiway systems

Canons, rules for musical, 875
Cantor, Georg F. L. P. (Germany, 

1845–1918)
and Cantor set, 893

and the continuum, 1127
and definition of dimension, 1030
and diagonal arguments, 1128
and digit sequences, 902
and history of numbers, 901
and real numbers, 1153
and set theory, 1154
and transfinite numbers, 1162

Cantor normal form
and Goodstein sequences, 1163
for ordinal numbers, 1162

Cantor pairing function ( ), 1127
Cantor set

attractors as forming, 959
and CA cardinality, 1128
and CA state space, 869, 958
from continuous systems, 1130
generating function for, 1092
properties of, 890
Sarkovskii’s theorem for, 955
and shift registers, 975
spectrum of, 586, 1081
from substitution system, 83

Cantor’s diagonal argument, 1127
Capacity (dimension), 959
Capillaries, branching in, 413, 1008
Capital Asset Pricing Model 

(CAPM), 1015
Caps on sphere, areas of, 1050
Carbon dioxide

and life on Mars, 1180
Cardinality

and the continuum, 1127
Cardinals

as generalizing numbers, 1168
as transfinite numbers, 1162

Cards
shuffling of, 968, 974
for storing programs, 1107

CarmichaelLambda
and linear congruential periods, 

974
and quadratic generators, 975

Carnot, Sadi N. L. (France, 
1796–1832)

and thermodynamics, 1019
Carpets

and 2D cellular automata, 929
Sierpinski, 188

Carrier frequencies, 835, 1188
Carrot leaves, 385, 1006
Carry digits

in arithmetic, 124
non-locality of, 730
in powers, 1093, 1112
in subtraction, 870
and Turing machines, 760

Cars
engine knocking in, 1194
evolution in, 1003
as randomness analogy, 304
traffic models, 1014
turning tracks of, 418

Cartesianism
and matter in space, 1028
see also Descartes, René

Cartilage
as precursor of bone, 1010

Cartoons
and visual perception, 1076

Cartwright, Mary L. (England, 
1900–1998)

and chaos theory, 971
CAs, see Cellular automata
Cascades of eddies, 997

Casimir, Hendrik B. G. 
(Netherlands, 1909–2000)

and electron model, 1044
Casimir effect, 1062

and uniform spectra, 988
Casinos

and randomness of dice, 969
Castel del Monte

and nested architectural forms, 
874

Catalan, Eugène C. (Belgium, 
1814–1894)

and iterated aliquot sums, 911
Catalan (Catalan’s constant)

and dimer problem, 959
from rational integral, 916

Catalan numbers (Binomial)
and balanced parentheses, 989
and Cantor set, 890
and number of expressions, 897

Catalan’s Conjecture, 1166
Catalysis

repeatable randomness in, 976
Catalysts, searching for, 1193
Catastrophe theory

and biological form, 1004
and curved surfaces, 1009
discreteness from, 984
in rate equations, 984
summary of relations to, 12

Catch
and context-free parsing, 1103
and pointer-based encoding, 1071
and testing invariances, 1022
and testing reversibility, 1017

Categoricity
of axiom systems, 799, 1172

Category theory
axioms for, 774
history of, 1154
and idealization of math, 1150
and spin networks, 1055

Catenary
characteristic shape of, 1183
as exactly soluble, 1133

Caterpillars, eating paths of, 1011
Catfish

pigmentation pattern of, 426
Cats, patterns in tortoiseshell, 1014
Cauchy functional equation, 953
Cauchy problem

vs. constraints, 940
for general relativity, 1053

Cauchy surfaces, 1041
Cauliflower shape, 385
Causal invariance, 503

and concept of motion, 522, 529
and distributed computing, 1035
and emulated CAs, 1035
and gauge invariance, 527
for networks, 515
and quantum phenomena, 542
in simulating mobile automata, 

1034
Causal networks

and cosmology, 1056
curvature in, 534
difficulty of deducing, 493
as directed graphs, 1033
from evolution history, 1033
exponential growth in, 496
and general relativity, 1053
as Hasse diagrams, 1033
history of, 1032
implementation of, 1033

and information transmission, 
520

invariance of, 503
loops in, 494
from mobile automata, 488, 1033
from multiway systems, 507
vs. multiway systems, 1037
in network evolution, 514
and perceived spacetime, 516
and posets, 1040
random, 1052
and replacement orders, 501
reversibility in, 495
slices through, 516
from substitution systems, 497
and torsion, 1052

Causality
and Bell’s inequalities, 1065
and free will, 1136

Causes
compared to regularities, 352

Caustics
and classical limits, 1059
discreteness from, 984

Cave paintings
interpretation of, 839
purposes of, 1184
recognition of, 874
and visual perception, 1076

Cayley, Arthur (England, 
1821–1895)

and group theory, 1153
and iterated maps, 918

Cayley graphs, 938
cellular automata on, 930
and hyperbolic space, 1050
limiting geometry of, 1051
and network constraints, 1032
and sorting networks, 1142

Cayley’s theorem
as example theorem, 1159

CCITT compression standard, 1070
CCSR (Center for Complex Systems 

Research), xiii
CDC 7600 computer, 854
CDMA

and radio signals, 1188
and SETI, 1190
and shift registers, 1086

CDs (compact discs)
bandwidth of, 1079

Ceiling (integer above)
basic example of, 854

Celestial bodies, and fate, 752
Celestial mechanics

and Bohr atom, 1056
and computational irreducibility, 

1133
difficulty of computation in, 1146
randomness in, 314
and three-body problem, 972

Cell complexes, 1050
Cell division

in embryos, 1009
in networks, 1039
in plants, 1004
randomness in, 970

Cells (biological)
adhesion of, 418
fossils of early, 1179
migration of, 418
programmed death of, 419
sensory, 577
shapes of, 1007
shapes of in plants, 404

s
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types of, 1002
and Voronoi diagrams, 987

Cellular arrays, 877
see also Cellular automata

Cellular automata
1D, 53–65
2D, 170–181
3D, 182–183
for  problem, 904
5-neighbor 2D, 927
9-neighbor 2D, 927
additive

see Additive cellular automata
and aggregation, 994
from algebraic systems, 886
algorithmic information in, 1067
with associative rules, 956
asynchronous

see Sequential cellular automata
at-angle evolution of, 1118
attractors in, 275
axioms for, 794, 1168
and biological form, 1004
block

see Block cellular automata
blocking transformations in, 269, 

701
Boolean formulas for, 616, 869, 

1096
cardinality of, 1127
and causal invariance, 1035
and chaos history, 972
circles from, 334
classes of, 231–249
compared to Go, 875
and complexity in biology, 1001
and complexity research, 862
compositions of, 886
computational irreducibility in, 

740
computational reducibility in, 744
computations in, 638–641
conservation laws in, 458, 1023
continuous, 155–160
continuous models of, 976
continuum limits of, 327
and cowrie patterns, 1012
and cryptography, 603
crystals growth and, 369
in d dimensions, 927
and data compression, 569
deducing rules for, 1089
density conservation in, 459
density transitions in, 341
difference patterns in 2D, 950
diffusion equation from, 1024
and dimensions of networks, 1030
for doubling, 832
elementary

see Elementary cellular 
automata

emulated by cyclic tag systems, 
668

emulated by mobile automata, 
664, 1112

emulated by other systems, 
664–673

emulated by PDEs, 1129
emulated by substitution systems, 

666, 1035
emulated by symbolic systems, 

668, 1113
emulated by tag systems, 667, 

1113
emulated by TMs, 665, 765, 1113

emulating logic circuits, 662, 1112
emulating mobile automata, 657, 

1111
emulating multiplication, 661, 

1112
emulating non-deterministic 

Turing machines, 1146
emulating other systems, 656–663
emulating register machines, 661, 

1112
emulating substitution systems, 

659, 1111
emulating Turing machines, 658, 

1111
equivalences of rules, 883
evolution as P computation, 1142
experiments on, 112
factorization of, 956
for finding primes, 640, 1109
finite-size, 258
firing squad problem in, 1035
formulas for evolution of, 1134
fractals in, 25, 58

see also Additive cellular 
automata

and fracture, 995
games between, 1105
Gray code sequence of, 352
from groups, 887
growth rules for 2D, 928
halting problems for, 1137
hand computation of, 42
hardware simulators for, 928
for hash codes, 622
history of, 48, 876
history of 2D, 928
history of my work on, 880
history of universal, 1115
ideal gas modelled by, 445
implementation of

see CellularAutomaton
implementation of 1D, 865
implementation of 2D, 927
implementation of general, 886, 

927
implementation of totalistic, 886
invariant states in, 348
invertible

see Reversible cellular automata
as iterated bitwise maps, 921
of limited size, 258, 961
as mappings, 959
and math morphology, 1077
meaning of, 1183
memory of, 621
minimal for given sequences, 1186
and modelling history, 992
modelling with, 366
as models for crystal growth, 369
as models for fracture, 375
as models for space, 472
as models in finance, 431
as models of fluids

see Cellular automaton fluids
and models of traffic, 1014
with more colors, 107
from multiplication tables, 614
my first pictures of, 19, 864
my first use of, 17
Nand forms for, 619, 1096
and nanotechnology, 841
nearby rules in, 948
neighborhoods for 2D, 928

nesting in, 25, 58
see also Additive cellular 

automata
on networks, 930, 936
non-computability in, 1128
NP completeness in, 767
number of symmetric, 886
origins of nesting in, 270
outcome of evolution in, 753
and P completeness, 1149
as parallel computers, 1109
and patterns on shells, 389
perceptrons for, 1102
with periodic initial conditions, 

267
perturbations on, 325
phase transitions in, 339
and pigmentation patterns, 427
possible sequences from, 1186
from powers, 1093
for powers of 3, 903
probabilistic, 591
purpose in, 830
quantum analogs of, 1147
quantum-dot, 1193
for quantum systems, 1060
r=1

see Elementary cellular 
automata

r=1/2, 806, 885
r=3/2, 1088
with random initial conditions, 

224–228
random initial conditions for 2D, 

246
random mutations in, 391
as randomness generators, 973
and reaction-diffusion, 427, 1013
and regular languages, 1138
repetitive behavior in, 267
reversible

see Reversible cellular automata
rotational invariance in 2D, 473
as rule-based systems, 860
rule numbering for, 53
in sandpile models, 989
for Schrödinger equation, 1060
second-order

see Reversible cellular automata
and self-gravitating systems, 1021
self-reproducing, 1179
from semigroups, 887
sequences of rules in, 241
sequential, 1034
and shell patterns, 423, 1012
and shift registers, 975, 1088
smooth shapes in, 333
spectra of, 1082
speed of light in, 518
for squaring, 639, 1109
state space of, 869, 958
states vs. digit sequences, 950
as statistical tests, 596
structures in, 281–296
structures in as particles, 525
and study of form, 967
surjective, 280
symmetry in 2D, 927
synchronization in, 1035
as syntax checkers, 1109
technology applications of, 841
as texture generators, 578, 1078
thermodynamic behavior in, 443
three-color, 60
and tiling problems, 1139

time vs. space in, 481
as too rigid for ultimate theory, 

467
totalistic

see Totalistic cellular automata
ultimate theory of physics and, 

1026
undecidability in, 753, 1136, 1138
universal, 644–656, 675
universal 2D, 693
for Voronoi diagrams, 987
weighted totalistic, 427

Cellular automaton fluids, 378–382
as application of randomness, 

1192
compressible flow in, 1000
detailed issues with, 999
and generalized fluid flow, 1000
history of, 999
my papers on, 882
on square grids, 999

Cellular logic systems, 877
Cellular spaces

see Cellular automata
Cellular structures

and networks, 1039
from superposed waves, 984

Cellular telephones
radio signals from, 1188
and shift registers, 1086

CellularAutomaton (in Mathematica), 
867

framework for, 886
Cellulose

and rigidity of plants, 1004
Celtic art, 43, 873
Census data

and soundex system, 1100
as source of randomness, 968

Center for Complex Systems 
Research, xiii

Center-surround cells
in visual system, 1075

Central groupoids, 1171
Central Limit Theorem, 329, 976

and differences in 2D CAs, 950
history of, 977
and nesting, 990
and typical data, 1083

Central pattern generators (in 
animals), 1011

Ceremonial functions, 830
Cerenkov light, 984
CFD (computational fluid 

dynamics), 1000
Chain (unbranched) hydrocarbons, 

1194
Chains

in evaluation, 907
in hashing, 1100
in posets, 1041

Chains (metal)
characteristic shapes of, 1183

Chaitin, Gregory J. (USA/
Argentina, 1947– )

and algorithmic randomness, 
1068

and experimental math, 899
in Preface, xiii
and randomness in arithmetic, 

1067
and universal objects, 1127

Chaitin-Kolmogorov complexity
see Algorithmic information

Chalk, fracture in, 994
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Champernowne, David G. 
(England, 1912–2000)

and normal numbers, 912
Champernowne number, 913

continued fraction of, 915
Change of variables

and amount of computation, 732
Changes, in initial conditions, 252
Chaos (book), 971
Chaos theory

artifacts in computations on, 1184
audio studies of, 1080
and Bianchi IX cosmology, 1053
and computational irreducibility, 

1133
and computer experiments, 899
and continuous computation, 

1128
and divergence of geodesics, 1049
executive toys illustrating, 1183
and financial markets, 1015
and fluid flow, 381
and free will, 752, 971, 1135
and hard sphere gases, 1022
history of, 971
and history of complexity 

research, 862
and history of numbers, 901
and history of randomness, 968
in iterated maps, 149–155
as limit on science, 1135
and Lyapunov exponents in CAs, 

950
and my work on CAs, 19
in ODEs, 922
and origin of randomness, 

304–314
and QCD, 1061
and quantum measurement, 1063
and recognizing chaos, 972
and solar system, 973
summary of relations to, 13
and thermodynamics, 1020
in three-body problem, 972
and turbulence, 997
and weather prediction, 1178

Chaperone molecules, 988
Characteristic polynomials

and CA entropies, 958
Characteristica universalis (universal 

language), 1109, 1149
Charcoal, in archeology, 1183
Charge

conservation of, 527, 1022
and gauge invariance, 1045
quantization of, 528, 1046

Charge carriers
and thermal noise, 968

Chartres, maze at, 873
Chaté, Hugues (France, 1961– )

and CA classes, 948
and continuous CAs, 922

ChebyshevT (Chebyshev 
polynomials)

and logistic map formulas, 1098
Checkerboard

generated by rule 250, 25
as updating pattern, 982

Cheetah
pigmentation pattern of, 426

Chemical kinetics
rate equations in, 984

Chemical networks
and origin of life, 1179

Chemical perception, 1105

Chemical processes
and animal growth, 419
and animal pigmentation, 427
and plant growth, 409
randomness from, 970
and reaction-diffusion, 1012, 1013

Chemical synthesis
basic theory for, 1194
and nanotechnology, 1193

Chemistry
as analog of science in this book, 

843
arguments for atoms in, 876
and computational irreducibility, 

1193
and definition of life, 825
interesting compounds in, 1194
of martian soil, 1179
networks with analogies in, 1040
success of math in, 859

Chemotherapy
search for compounds for, 1193

Chervil (cow parsley)
shape of wild, 385

Chess, programs for, 1099
Chi-rho page (of Book of Kells), 873
Child development, 1102

history of, 1099
and language, 630

Children
and animism, 1195
and concept of programs, 1177
and free will, 1136
and purposes in nature, 1185
randomness in games of, 968
recognition of intelligence in, 825

China, Pascal’s triangle in, 870
Chinese lattice, 874
Chinese Remainder Theorem

and encoding of lists, 1120
and GCD array, 1093

Chips (integrated circuits)
and Boolean minimization, 1097
and history of CAs, 877
and history of computing, 1108
and Nand, 1173
randomness sources on, 970

Chirality of molecules
and definition of life, 1178

Chirping (of radar pulses), 1188
Chladni figures, 984
Chloroplast, form of, 385
Choice, axiom of, 774, 1154
Chomsky, Noam (USA, 1928– )

and generative grammars, 939
and models of language, 1104
and universals in language, 1181

Chomsky hierarchy (of formal 
languages), 939

Chords (musical), 917
in audio for CAs, 869
perception of, 587, 1079
waveforms of, 146

Chorus (natural radio signals), 1187
Christianity

and free will, 1135
rejecting animism, 1195

Christoffel symbols, 1049
Chromatic number

of networks, 1029
Chromaticity values, 1074
Chromosomes

random distribution into, 970
Chunks (in short-term memory), 

1102

Church, Alonzo (USA, 1903–1995)
and Church’s Thesis, 1125
and defining randomness, 1068
and lambda calculus, 1121
and models of computation, 879
and number combinators, 1122
and origins of universality, 1110
and undecidability, 1136

Church numerals
in combinators, 1122
in symbolic systems, 897

Church-Rosser property, 1036
for combinators, 1122
for symbolic systems, 898

Church’s Thesis, 1125
Cicero, M. Tullius (Italy, 106–43 BC)

and free will, 1135
Cilia, symmetries in, 1007
Ciphers, 598

see also Cryptography
Circadian rhythms, 1011
Circle method (in number theory), 

1165
Circle packings, 349

history of, 985
with unequal circles, 350

Circles
areas of, 1050
and constructible reals, 1129
lattice points inside, 910
in ornamental art, 873

Circuits (logic)
and computational complexity 

theory, 1148
and DNF, 1095
layout of, 985
minimal sizes of, 1096, 1143
multilevel minimization in, 1096
and names for operators, 1173
as network system analog, 193
optimal blocks in, 1193
and P completeness, 1149
in practical computers, 1108
as representing functions, 1095
use of Nand in, 806

Circular (cyclic) boundary 
conditions, 255

Circular growth
in 2D cellular automaton, 178, 979
in 2D random walks, 329
in aggregation systems, 331, 978

Circular reflector
caustics from, 984
chaos from, 311

Circular shapes
of heavenly bodies, 875

Circumference (of networks), 1029
Cirrus clouds

pattern formation in, 947
Cissoids, 875
Citations

for cellular automata, 878
in this book, 850

Cities
growth patterns of, 1014
lack of nesting in, 874
pattern of lights of, 1187

Civet, pigmentation pattern of, 426
Clam shell, growth of, 414
Class 1 behavior, 231

and non-universality, 694
as origin of uniformity, 353
and reversible CAs, 1018

Class 2 behavior, 231
attractors in, 275

in class 3 systems, 269
and limited size, 255
and non-universality, 694
in reversible CAs, 1018
and transition graphs, 962

Class 3 behavior, 231
in 2D cellular automata, 248
attractors in, 278
class 2 behavior in, 269
in continuous CAs, 922
in early neural nets, 1102
and finite-size periods, 258
and fracture patterns, 995
localized structures in, 526
in power cellular automata, 1093
randomness in, 261
in reversible CAs, 1018
and transition graphs, 962
universality in, 698
see also Rule 30, 90, etc.

Class 4 behavior, 231, 235–239
in 2D cellular automata, 248, 948
in 3-color 2-neighbor CAs, 1116
in 3-color totalistic CAs, 948
in 3D cellular automata, 949
attractors in, 278
as between class 2 and 3, 240
in continuous CAs, 244, 922
and defining complexity, 1069
and extraterrestrials, 839
fluctuations in, 960
and history of universality, 1115
number of structures in, 1047
particle collisions in, 540
in reversible CAs, 440, 1018
structures in, 281–296
and universality, 691
see also Rule 110, etc.

Class field theory
and almost integers, 915

Classes, theory of (in foundations of 
math), 1151, 1171

Classes of cellular automata, 
231–249

chaos in, 250
entropies in, 960
frequencies of, 948
history of, 948
undecidability of, 948

Classes of systems
universality of, 1123

Classification
in biology, 1003
of plants, 1004

Classification schemes
undecidability of, 1138

Classifier systems (sequential 
substitution systems), 894

Clausius, Rudolf J. E. (Germany, 
1822–1888)

and thermodynamics, 1019
Clay

in archeology, 1183
self-replication in, 1179

Clebsch-Gordan coefficients
and spin networks, 1055

Cliques, and discrete packings, 987
Clock

and Descartes on complexity, 861
as model of planets, 860
as seed for random generator, 970

Clocksprings
characteristic shapes of, 1183

Closed curve
as origin of repetition, 355
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Closed forms, 1133
for 3-body problem, 972
for logistic map, 1098
for nested patterns, 610
see also Exact solutions
see also Formulas

Closed systems
thermodynamics in, 455

Clothes, parametrizations of, 1010
Clothoid curve, 418
Cloud seeding, 992
Cloud streets

discreteness in, 984
as repetitive, 988

Clouds
patterns of, 377
snowflake formation in, 372, 992
turbulent convection in, 1001
and weather prediction, 1178

Club of Rome (world models), 862
Cluster analysis

and Voronoi diagrams, 987
Clusters

in aggregation systems, 332, 978
in diffusion-limited aggregation, 

994
in sphere packings, 986

Clusters (in networks), 510, 1039
total numbers of, 1029

CM-1 (Connection Machine) 
computer, 854

CMOS FETs, and Nand, 1173
CNF (Conjunctive Normal Form), 

1095
and satisfiability, 1146

Coal
and interesting chemicals, 1194

Coarse-graining
and defining randomness, 1068
history of, 1020
in thermodynamics, 448

Coarsening
in cellular structures, 1039

Coastlines
origin of shapes of, 1001

Coats of animals, patterns on, 426
COBOL

and history of computing, 1108
Coccolithophorid, shape of, 385
Cocconi, Giuseppe (Italy/USA/

Switzerland, 1914– )
and SETI, 1189

Cochlea
and audio perception, 1079

Cochrane, Canada
and patterns from space, 1187

Cockle shell, growth of, 415
Codd, Edgar F. (USA, 1923– )

and universal CAs, 1117
Code

in notes to this book, 854
see also Programs

Code (hash), 622
Code (machine), 101
Code 10, and my CA history, 882
Code 12, and Ulam systems, 929
Code 20

attractors in, 958
as candidate for universality, 1115
excluded blocks in, 958
halting probability in, 964
persistent structures in, 281, 284
transient lengths in, 964

Code 52
as candidate for universality, 692
phase transition in, 981

Code 52 (2D), domains in, 980
Code 111 (2D), domains in, 980
Code 177, randomness from, 64
Code 204 (2D)

self-reproduction in, 824
Code 224 (2D), see Game of Life
Code 237, nesting in, 65
Code 293 (2D), domains in, 980
Code 294

localized structures in, 526
Code 295 (2D), domains in, 980
Code 357

persistent structures in, 282, 286
from simple seed, 69

Code 420
as additive CA, 886
nesting in, 63

Code 468 (2D), isotropy in, 473
Code 600, repetition in, 62, 69
Code 686, and Ulam systems, 929
Code 686 (2D), isotropy in, 473
Code 746 (2D)

circular shape from, 178, 334, 979
interior of, 929
isotropy in, 473

Code 843
and computational reducibility, 

738
Code 867, examples based on, 868
Code 870

and computational reducibility, 
738

Code 912, randomness in, 64
Code 920 (2D), domains in, 980
Code 942 (2D)

nested pattern from, 171
slices through, 928

Code 948, nesting in, 65
Code 976 (2D)

domains in, 336, 980
phase transition in, 340

Code 1041, complex behavior in, 66
Code 1329

persistent structures in, 282
from simple seed, 62

Code 1599
complex behavior in, 69, 70
and computational irreducibility, 

738, 740
and free will, 750

Code 1635
complex behavior in, 66, 67

Code 1659, class 4 behavior in, 238
Code 1749, nesting in, 65
Code 1815

class 4 behavior in, 236
and universality, 692

Code 1893
localized structures in, 526
nested domains in, 360

Code 2007, class 4 behavior in, 237
Code 2040, randomness in, 64
Code 2043, class 4 behavior in, 239
Code 2049

complex behavior in, 66, 68
Code 2058, from simple seed, 69
Code 3702 (2D)

examples based on, 868
Code 29408

shape produced by, 980
Code 174826

shape produced by, 929, 980

Code 175850
shape produced by, 980

Code 1004600
and undecidability, 754, 1137

Code books
and cryptography, 1085
in sound compression, 1080

Codes
error-correcting, 1101
Huffman, 564
Shannon-Fano, 1069
for totalistic CAs, 60
for Turing machines, 888
see also Cryptography

Codewords
in block encoding, 563
in error-correcting codes, 1101
self-delimiting, 1071

Coding theory
algebraic, 1101
and block emulations, 1119

CoefficientList
and Sierpinski pattern, 931

Coffee grains, 986
Cognition, see Thinking
Cogs, characteristic shapes of, 1183
Cohen, Paul J. (USA, 1934– )

and continuum hypothesis, 1155
Coherence

and definition of purpose, 830
and human will, 1136

Coherent states (in quantum 
theory), 1059

Coherent structures
in QCD, 1061
in turbulent fluids, 997
see also Localized structures

Coiling, in animals, 413
Coin tossing

randomness from, 305, 971
in water, 971

Coincidences
and randomness, 967

Coins
maze patterns on, 873
packing of identical, 349

Cold War
and beliefs about SETI, 1191

Collagen
repetitive structure of, 1003

Collatz problem, 904
see also  problem

Collect
analog in Boolean formulas, 1095

Collective behavior
general theory of, 3

Collectives
and defining randomness, 1068

Collisions
and chaos theory, 971
on inspirational cover, 17
law for in rule 110, 964
of planets, 973
in rule 110, 684
of structures in rule 110, 294
and thermodynamic model, 445

Colonization of galaxy, 839
Color

and pictures in this book, 851
vision, 577, 1074

Color charges, and QCD, 1057
Coloration of animals, 426, 1012
Coloring of networks, 1029, 1031
Combinatorial chemistry, 1193, 1194
Combinatorial optimization, 985

Combinatorial physics, 1027
Combinatorial topology, 1051
Combinatorics

posets in, 1041
and substitution systems, 893
undecidability in, 1138

Combinators
behavior of, 712
emulating cellular automata, 1123
emulating rule 110, 713
halting in, 897
history of, 1121
and history of universality, 1110
as idealization of math, 1150
and network systems, 936
as precursors to my work, 879
properties of, 1122
single universal, 1123
and symbolic systems, 102, 898
as symbolic systems, 711
as universal systems, 711
and variables in axioms, 1156

Combinatory algebra, 1172
Comet orbits

and Gaussian distribution, 977
Common subexpressions

in equation solutions, 945
in multilevel logic, 1096
and networks, 1040
and speedups, 1094

Communication
animal, 1180
between computers, 1182
and definition of intelligence, 826
of effects in CAs, 252
with ETs in science fiction, 1191
theories of, 1181
and use of language, 630

Communications systems
and data compression, 549, 560
and layout of networks, 1031
and shift registers, 878
simulations of, 968
and theories of communication, 

1181
Commutative, see Orderless
Commutative Boolean functions, 

1173
Commutative diagrams

in category theory, 1154
Commutative groups

axioms for, 773, 1153
decidability for, 1160
enumeration of, 805
and forcing by axioms, 1172
incompleteness of theory, 1160
shortest axioms for, 806
total number of, 1172
see also Abelian groups

Commutative monoids
enumeration of, 952
and generalized additivity, 952

Commutative rings, 1153
Commutative semigroups

Cayley graphs of, 938
enumeration of, 805, 1173
word problems in, 1141

Commutativity
of And, 817
and generalized additivity, 952
in operator systems, 801
of Or, 817
proof in Nand axioms, 775
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and speedups in evolution, 1095
unprovability in reduced 

arithmetic, 800
Commuting operations

and causal invariance, 1036
Companding

in sound compression, 1080
Comparative anatomy

and studies of form, 967
Competition

in phase transitions, 983
between programs, 1105

Compile, and CA evolution, 865
Compiled languages, 1109
Compiler generators, 1104
Compilers

for functional languages, 898
optimal code searches in, 1193
and register machines, 1114

Compiling, see Emulation
Complement

and finite set theory, 1171
Complement cellular automaton, 

883
Complete bases

for data, 1072
for logic, 1173

Complete graphs
and planarity tests, 1045

Completely connected sets
and discrete packings, 987

Completeness
vs. Incompleteness Theorem, 1159
meanings of, 1152
in multiway systems, 782, 797
of number representations, 1070
in predicate logic, 1152
of real algebra, 1154
see also Universality 

(computational)
Completeness theorem

for equational logic, 1172
for first-order logic, 1167

Completion
algorithms for, 1037
and automated proofs, 1158
in multiway systems, 782

Complex analysis
and growth shapes, 1010
and S matrix theory, 1057

Complex bases, 932
Complex maps, 933
Complex numbers

and branching patterns, 1005
cellular automata based on, 886
as defining poset, 1041
and multiway systems, 939
not related to complexity, 1069
as number generalizations, 1168
powers of, 1094
and Sierpinski pattern, 931

Complex plane
nested patterns in, 1093

Complex rules
with simple behavior, 351

Complex systems research
and defining complexity, 1069
history of, 20
organizational structure of, 862

Complexity
adaptive value of, 1002
and animism, 845
applications of, 841
biology as prime example of, 383

in biology vs. thermodynamics, 
1003

compared to randomness, 557
definition of, 557–559
and definition of life, 824
explaining in biology, 396
explaining phenomenon of, 

735–737
formula size as measuring, 1096
history of definitions of, 1068
of human thinking, 628
of individual integers, 916
ingredients for, 1131
limited by natural selection, 392
as limited in biology, 391
of logic circuits, 1096
and lossy compression, 574
of math formulas, 1068
in mathematics, 772
in models, 364
mystery of in nature, 2
and Principle of Computational 

Equivalence, 719
of proofs in math, 777
from random initial conditions, 

228
in rule 110, 39
and science, 861
as special to humans, 844
and theology, 861
of Turing machine rules, 1119
in Turing machines, 709
and universality, 643

Complexity engineering, 882
Complexity theory

history of, 862
summary of relations to, 13

Complexity theory (computational 
complexity theory), 1142

Composite heads
in symbolic expressions, 896

Compositeness
of elementary particles, 1044

Composition (music)
with substitution systems, 1080

Compositions
of cellular automata, 886
of functions, 896
of polynomials in iterated maps, 

1098
Compound leaves, 1005
Compounds, chemical, 1194
Compressible flow (in fluids)

see Supersonic flow
Compression

audio, 1080
of CA patterns, 562
and computational reducibility, 

746, 1134
and computer communication, 

1182
of data, 560–576
in extraterrestrial signals, 836
lossy, 572
maximal in block encoding, 1071
in mobile automata, 72, 488
and recognition of meaning, 827
software for, 1069

Compton scattering, 1060
Computability, see Decidability
Computable reals, 1128
Computation

analog, 730, 1128
in cellular automata, 638–641
as conceptual foundation, 5

continuous, 730, 1128
efficiency of, 758
math notation for, 1182
minimal systems for specific, 832
not for definite tasks, 715
notion of, 637–714
reversible, 1018
and thermodynamic behavior, 

444
thermodynamics of, 1018, 1020
universality as basis for study of, 

674
see also Computing
see also Programs

Computation universality
history of, 1109
see also Universality

Computational complexity theory, 
758, 1142

and computational irreducibility, 
1132

of computing , 912
and defining randomness, 1068
and definition of complexity, 1069
of math function evaluation, 1134
and Principle of Computational 

Equivalence, 766
summary of relations to, 14

Computational Equivalence, 
Principle of, 715–846

see also Principle of 
Computational Equivalence

Computational fluid dynamics, 1000
and Navier-Stokes, 996

Computational geometry
and nearest neighbors, 1101
recursive algorithms in, 1142
and Voronoi diagrams, 987

Computational irreducibility, 
737–750

and chemistry, 1193
and complexity, 748
and computational complexity 

theory, 1148
and epistemology, 1196
and extraterrestrial trade, 1191
and free will, 750
and Gödel’s Theorem, 788
history of, 1132
and human responsibility, 1136
and intractability, 758
introduction to, 6
and limits of science, 1135
in mathematics, 779
my discovery of, 881
in operator systems, 815
origins of, 1133
and Principle of Computational 

Equivalence, 738
in QED, 1060
and three-body problem, 972
ubiquity of, 745
and weather prediction, 1178

Computational learning theory, 
1102

Computational neuroscience
and visual perception, 1076

Computational reducibility, 738
in additive CAs, 1094
and associative evolution, 1094
as basis for existing science, 741
and compression, 746
and engineering, 829
and exact solutions, 1133
examples of, 744, 747

in network of theorems, 821
and regularities, 746

Computational science, 44
Computational work

and computational irreducibility, 
739

Computer-aided design (CAD)
and discrete surfaces, 1050

Computer algebra
and computer experiments, 899
and Feynman diagrams, 1057
and gravity theory, 1048
see also Algebraic computation

Computer art, 11
Computer-assisted proofs

see Automated theorem proving
Computer experiments

basic, 23
and chaos theory, 899
and computational irreducibility, 

1132
and continuous systems, 167
and ergodicity, 1020
and iterated maps, 919
lack of meaningful, 898
and learning about this book, 856
methodology of, 108–113
my first on CAs, 880
my need to do more, 20
on natural selection, 1002
problems with chaos in, 919
and solitons, 899
and symbolic computation, 899
and theorems, 899
for this book, 46, 111, 854

Computer graphics
and discrete surfaces, 1050
and history of modelling, 992
and models of plant growth, 1005
and models of shell shapes, 1008
and nesting, 934
and substitution systems, 893
surface roughness in, 996
textures in, 1077
use of randomness in, 841, 1192

Computer interfaces
graphical vs. language, 631
history of, 1102

Computer languages
and context-free grammars, 939
and history of computing, 1108
and human thinking, 627
influence on thinking of, 1181
logic primitives in, 1173
and P equivalence, 764
redundancy in, 1086
and universality, 642
see also Languages (computer)

Computer programs
in notes, 853
see also Programs

Computer science
education and this book, 855
structure of algorithms in, 990
summary of relations to, 10, 863
undecidability in, 1138

Computer simulations
see Simulations

Computerized data taking, 992
Computers

communication between, 1182
and definition of intelligence, 822
and discoveries in this book, 46
free will for, 1135
future of, 1196

Π
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future technology of, 841
historical cost of using, 45
and history of CAs, 876
physical components in, 1195
quantum, 1147
randomness in, 970
and rule-based systems, 860
and universality, 642
used in creation of book, 854

Computing
causal invariance in distributed, 

1035
history of, 1107
intuition from, 40, 46, 872
number representations in, 1070
see also Computation

Concatenation
as semigroup operation, 938, 1172

Concatenation sequences, 913
block statistics in, 594
continued fractions for, 915
difficulty of CAs producing, 1186
and pointer-based encoding, 1072
sounds from, 1080

Conchoids (math curves), 875
Concurrent systems

and causal invariance, 1035
Condensates

topological defects in, 1045
Conditional entropies

and texture discrimination, 1077
Conditional probabilities

and Bayes’s theorem, 1083
Cone cells, in color vision, 1074
Cone shells

growth of, 414
neurotoxins from, 1011
patterns on, 423

Cones, in Lorentzian spaces, 1051
Confinement in QCD, 1061
Confluence, 1036

for combinators, 1122
and generalized aggregation 

rules, 979
getting using completion, 1037
in multiway systems, 507
in symbolic systems, 1113
see also Canonical forms
see also Church-Rosser property

Conformal mappings
and flatness in growth, 1007
and hypergeometric functions, 

1092
and transformation of biological 

forms, 1010
Conformal transformations

and gauge invariance, 1045
Conformations of proteins, 1184
Congruence

in axioms of geometry, 1154
Conifers, branching in, 1004
Conjugacy

in additive systems, 952
and CA conservation laws, 1023
in iterated maps, 921

Conjugate systems
and reversible cellular automata, 

961
Conjunction

as name for And, 1173
Conjunctions

in human languages, 1173
starting sentences with, 849
as words for logic functions, 1173

Conjunctive Normal Form (CNF), 
1095

and resolution method, 1157
Connected clusters

in percolation theory, 983
Connection Machine computer

my use of, 854, 881
Connections (on fiber bundles), 1045
Connectives

possible Boolean, 806
in well-formed formulas, 1150

Connectivity
of branching patterns, 1006
in network evolution, 1039
of networks, 1029

Conscious thinking
and free will, 1135
in visual perception, 582

Consciousness
and quantum theory, 1058, 1063
see also Intelligence
see also Thinking

Conservation laws, 458–464
in cellular automaton fluids, 379
finding in CAs, 1022
for particles in 2D CA, 445
in PDEs, 923
in physics, 1022
for quantum probabilities, 1059
in three-body problem, 972
topological, 1045
undecidability of, 1138
for vector quantities, 1024

Conserved quantities
from algebraic structures, 1023

Conserved traits, 395
Consistency

of arithmetic, 1160, 1163
of axiom systems, 1168
in multiway systems, 797

Consistency of action
and human will, 1136

Consonants
sound of, 1079
and soundex system, 1100

Constancy, color, 1074
Constancy (K) combinator, 1121
Constants

mathematical, 136–144
in operator systems, 1169

Constants of motion
in three-body problem, 972
see also Conserved quantities

Constellations
patterns of, 583, 1187
and SETI, 1189

Constraints
in 1D systems, 940
axioms as, 803
as basis for uniformity, 354
biological schemes for satisfying, 

985
and concept of purpose, 829, 1185
in correspondence systems, 1139
Darwinian evolution and, 386
defining networks using, 483
as determining spacetime 

networks, 482
difficulties in modelling with, 368
enumerating cases satisfying, 959
and mathematical thinking, 1177
vs. mechanisms, 940
in multiway systems, 766
as NP problems, 1142
on operators, 1172

PDEs as, 923
for periodic behavior in CAs, 954
and Principle of Computational 

Equivalence, 729
probability of violating, 343
problem of satisfying, 342–351
producing complexity with, 351
proofs as systems based on, 1157
and quasicrystal growth, 994
in random systems

see Markov random fields
rule 30 repetition as, 266
satisfied by operators, 805
self-assembly and, 1011, 1193
systems based on, 210–221
undecidability of satisfying, 756
and undecidability of tiling, 1139

Constructibility
and intuitionism, 1158

Constructible reals, 1129
Constructions

of 48-gon, 873
vs. computer experiments, 108
and purposes, 830
rules in geometrical, 875
of universal CA, 648, 675

Constructive proofs
and computer experiments, 899

Consumer electronics
use of randomness in, 1192
use of statistics in, 1082

Contact (movie)
extraterrestrial contact in, 1190

Context
and recognition of purpose, 830
and theories of communication, 

1181
Context-free languages, 939, 1103

math notation as, 1182
parentheses and, 989
patterns generated by, 1091
PCP and, 1139
pumping lemma for, 944
random, 1084
rule 184 as recognizing, 1109
undecidability in, 1137

Context-sensitive languages, 939
Continental drift

as non-math theory, 859
Continued fraction map (Gauss 

map), 914, 955
Continued fractions, 143, 914–915

and billiard systems, 971
computation of, 914
and digital slopes, 916
and encoding of reals, 1127
generalized, 914
history of, 915
and iterated maps, 919
and multiplication systems, 903
and Pell equation, 944
and phyllotaxis, 411
as precursors to my work, 878
and quadratic Diophantine 

equations, 1164
and sine curves, 147

ContinuedFraction, 914
see also Continued fractions

Continuity
and axioms of topology, 1155
of CA mappings, 869
and confusion about Gödel’s 

Theorem, 1132
and the continuum, 1127

and difficulty of computer 
experiments, 899

discreteness from, 337
in genetic programs, 1002
in geometry axioms, 1154
and mathematical intuition, 925
in natural selection and 

engineering, 394
nesting as historical 

counterexamples in, 934
origins of, 327–336, 463–464
origins of in fluids, 379
and Principle of Computational 

Equivalence, 729
of space, 472

Continuous cellular automata, 
155–160

additive, 1092
cardinality of, 1128
classification of, 948
history of, 921
implementation of, 921
as models of boiling, 994
as models of phyllotaxis, 1007
and probabilistic rules, 976
for quantum mechanics, 1059
with random initial conditions, 

243
Continuous computation, 730, 1128
Continuous functions

additivity of, 953
cellular automaton maps as, 961
evaluation of, 1134
number of, 1127

Continuous models
of crystal growth, 993
of fracture, 995

Continuous Pascal’s triangle, 922
Continuous systems

and Church’s Thesis, 1126
vs. discrete systems, 167
emulating discrete, 731, 1129
isotropy in, 980
in physics, 729
and undecidability, 1138

Continuous truth values, 1175
Continuous variables

invention of, 901
models with, 368

Continuum, the, 1127
Continuum equations

see Partial differential equations
Continuum Hypothesis, 1127

in set theory, 1155
and truth from incompleteness, 

1167
unprovability of, 1163

Continuum limits
different forms of, 1023
for diffusion equation, 1024
of networks, 1030

Contours
in landscapes, 1001
in visual perception, 578

Contractive mappings, 277, 959
Contradictions

and proofs of undecidability, 1137
as scheme for proofs, 1177

Control theory
and artificial intelligence, 1099
and complex behavior, 841
and cybernetics, 862
time series in, 1083

Convection, 1000
and history of pattern, 947
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maze patterns in, 1013
patterns of, 377
repeatable randomness in, 976
repetitive cells in, 988
and snowflake development, 372

Convention in languages, 1181
Convergence

of fractal dimensions, 933
of isotropy in finite differences, 

980
of iterated maps, 918
of metric expansion, 1050
in multiway systems, 507, 1036
in natural selection, 392
in negotiation processes, 430
of PDE solutions, 924
in plant phyllotaxis, 410

Convergent evolution, 397
Convergent series

as exact solutions, 1133
Conversation

and defining intelligence, 1178
Convolution

in visual perception, 1075, 1076
see also ListConvolve

Convolutional codes
and CA encodings, 1119

Conway, John H. (England/USA, 
1937– )

and 2D Turing machines, 930
and arithmetic recurrences, 1115
and Game of Life, 877, 880, 949
and iterated run-length encoding, 

905
and non-periodic tilings, 943
in Preface, xiii
and recursive sequences, 907
and universality of Life, 1117

Cook, Matthew (USA, 1970– )
and cyclic tag systems, 895
and polyomino tiling, 943
in Preface, xii
and rule 110, 1115

Cook, Stephen A. (USA/Canada, 
1939– )

and NP completeness, 1143
Cooking recipes, 1193
Cooley-Tukey transform, 1074
Cooperation

theories of evolution of, 1104
Coordinate singularities

in general relativity, 1048, 1053
Coordinates

and multiway strings, 1036
for network nodes, 478

Copernican astronomy
and extraterrestrial life, 1180
and history of gravity, 1047
vs. ideas of this book, 844

Copy operations
and Nand expressions, 1096

Coral, as animal artifacts, 1184
Coral reefs, symmetry of, 1187
Coralbells (plant), 1006
Córdoba, Great Mosque of, 873
Core collapse

in self-gravitating systems, 1021
Core memory

of early computer, 864
Cores, of elementary particles, 527
Corn, structure of, 385
Corner-overlapping patterns, 941
Corners, in code 976, 980
Cornu spiral, 418

Corollaries
defining features of, 1176

Coronas (in splashes), 988, 1000
Corpuscular theories, 876, 1024
Correlation entropy, 959
Correlations

in 2D Ising model, 982
and Bell’s inequalities, 1064
and CA difference patterns, 950
in CA evolution, 953
in class 3 CAs, 949
and defining communication, 827
and defining complexity, 1069
between digits, 902
in DNA sequences, 1184
in H theorem, 1020
in human languages, 1086
in noise with given spectrum, 969
and non-standard diffusion 

processes, 1024
in phase transitions, 989
in quantum theory, 543
in random environments, 304
and random networks, 1039
in random patterns, 584
and randomness tests, 595, 1085
and spectra, 587, 1082
in stirring and shaking, 969
in visual textures, 1078
see also ListCorrelate

Correspondence systems (PCP)
NP completeness in, 1145
and undecidability, 757, 1139

Corrugation
in ammonite septa, 1008
in animal development, 418
characteristic shape of, 1183
in tissue sheets, 413

Cortex
auditory, 1079
sensorimotor, 1099
visual, 580

Cos (cosine)
and area of circle on sphere, 1050
and Bell’s inequalities, 1064
and limit of  symbols, 1055
and logistic map formulas, 1098
and nested radicals, 915
and tent map, 919

Cosets
and state transition graphs, 963

Cosh
in solution of catenary, 1133
in solution of logistic map, 1098

Cosine transform
in data compression, 1070, 1074

Cosmas (Italy, ~1210 – ~1235)
and mosaic patterns, 873

Cosmati mosaic work, 873
Cosmic microwave background

and alignment of time, 1022
as analog of ether, 1042
and galaxy formation, 1021
and history of gravity, 1048
and initial conditions, 1026
origin of uniformity of, 1055
as source of radio noise, 1187

Cosmic rays
particles produced by, 1044, 1047
as possible artifacts, 1187

Cosmological principle (uniformity 
of universe), 1055

Cosmological term (in Einstein 
equations), 1052

and inflationary universe, 1055
and vacuum solutions, 1053

Cosmology
and Anthropic Principle, 1185
basic issues in, 1055
and Einstein equations, 1053
and ether in, 1042
formation of galaxies in, 1021
and history of gravity, 1048
my work in, 17, 864
network models of, 1056
and Second Law, 1020, 1021
and simple initial conditions, 1026
topological defects in, 1045
see also Universe

Cot (cotangent), and shift map, 919
Coth

continued fraction for, 914
and solution of Ising model, 982

Countable models
of operator systems, 1172

Counter
Turing machine acting as, 888

Counter machines (register 
machines), 97–102, 896

Counterfactuals (quantum values), 
1064

Counterpoint, rules of musical, 875
Countries

of people in the index, 852
Coupled map lattices, 155–160, 922

see also Continuous cellular 
automata

Coupling constants
in quantum field theory, 1057
and renormalization group, 955

Coupon collector’s test, 1085
Courant condition (for PDEs), 924
Covalent forces

and virtual electrons, 1060
Cover

of inspirational book, 17, 864
of this book, 851

Covers
in Boolean minimization, 1095

Cow parsley, shape of, 385
Cowe, Russell J. (UK, 1946– )

and shell patterns, 1012
Cowfish

pigmentation pattern of, 426
Cowrie shells

growth of, 415, 1008
patterns on, 1012

CP violation (time reversal 
violation), 1019

CPT invariance, 1019
Crackling

in natural radio emissions, 1187
Cracks

nesting of, 988
randomness of, 374

Craters
circular shapes of, 1187
as landscape elements, 1001

Creation myths, as models, 992
Creeping flow, 377
Crete, maze at Knossos on, 873
Criminal law, free will in, 1135
Crinkling, patterns of, 996
Critical exponent

in 2D Ising model, 982
Critical pairs

in completion algorithms, 1037

Critical phenomena
and nesting, 989
and phase transitions, 981
and scale invariance, 955

Crossovers, in genetics, 970
Crosstalk

and Walsh functions, 1073
Crowds, motion of people in, 1014
Crumpling, patterns of, 996
Crushing (of solids), 995

nesting in, 988
and sphere packing, 986

Crust (of Earth)
and origin of life, 1179
patterns on, 1001

Crutchfield, James P. (USA, 1955– )
and Markov models, 1084
in Preface, xiii

Cryptanalysis
of additive cellular automata, 601
and dead languages, 1185
and defining randomness, 1068
history of, 1086
and history of computing, 1107
of linear congruential generators, 

1089
and meaning of programs, 1183
and rule 30 NP completeness, 770
of shift registers, 1087
of Vigenère ciphers, 599

Cryptography, 598–606
as application of randomness, 

1192
and defining randomness, 1068
with digit sequences, 1089
electronic randomness for, 968
as example of technology, 840
and hashing, 1100
history of, 1085
and history of complexity, 49
as process based on rules, 875
quantum, 1058
random keys for, 970
and recognizing meaning, 827
and shift registers, 878, 1086

Crystal growth, 369–373
history of, 993
models of, 993

Crystal lattices
systems on, 169, 929

Crystals
as artificial-looking, 828
Brillouin zones in, 988
diffraction patterns in, 1082
effect of seeds on, 992
formation as phase transition, 983
fracture in, 374
hopper, 993
lack of continuum limit for, 327
as not artifacts, 1183
randomness in shapes of, 373
as self-organizing systems, 824
shapes of, 929
trivalent network and, 1030

Csc (cosecant)
and Moire patterns, 1078

Cube-free sequences, 944
Thue-Morse and, 890

Cube network, 476
transformed to tetrahedron, 1038

Cube roots
and Cantor set generating 

function, 1092
digits of, 141
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Cubes
equations involving sums of, 945
produced by CAs, 1186

Cubic equations
and computational reducibility, 

1132
Diophantine, 1164
as exactly soluble, 1133
iterative solutions to, 1101
size of solutions to, 945

Cubic graphs
see Networks, trivalent

Cubic lattices
cellular automata on, 182
class 4 rules on, 949
as crystal lattices, 929
random walks on, 977
Voronoi diagrams for, 987

Cuboid
and 3D cellular automata, 927

Cucumber leaves, 1006
Cultural relativism

not connected to relativity, 1042
Culture

and character of perception, 635
and defining intelligence, 1178
and recognizing intelligence, 825
and response to events, 827

Curie point, in Ising model, 981
Curl, and vector potential, 1045
Curry, Haskell B. (USA, 1900–1982)

and combinators, 898
Currying

and combinators, 1122
of function arguments, 896

Curvature
of curves, 1049
curves defined by, 418, 1009
in differential geometry, 1048
of fronts in crystal growth, 993
gauge fields as, 1045
of growing tissue, 1007
higher-dimensional, 1009
in non-integer dimensions, 1051
in plant growth, 412
in rivers, 1001
singularities in, 1053

Curves
curvature of, 1049
Lissajous, 917
mathematical, 145–148
space-filling, 893

Cusps, in light caustics, 984
Custering

in 2D cellular automata, 877
Cut elimination in proofs, 1155
Cuttlefish

communication by, 1181
pigmentation pattern of, 426

Cybernetics
and biology, 1004
and computational irreducibility, 

1132
and definition of complexity, 1068
and free will for machines, 1135
history of, 862
and models of thinking, 1099
as precursor to my work, 879
and self-reproduction, 1179
summary of relations to, 14

Cycles
in attractors, 958
longest in networks, 1029, 1031
in random networks, 963
and repetition periods, 950

in shift rules, 963
shortest in networks, 1029
in state transition graphs, 961

Cyclic, see Repetitive
Cyclic addition systems, 255, 950

state transition graphs for, 961
Cyclic boundary conditions

in CA implementation, 866
periods in CAs with, 950

Cyclic groups
decomposition into, 1172

Cyclic multiplication, 257, 950
state transition graphs for, 961

Cyclic negation
in multivalued logic, 1175

Cyclic shift instructions, 951
Cyclic subgroups

and nested patterns, 956
Cyclic tag systems, 95

emulated by rule 110, 678
emulated by tag systems, 1113
emulating cellular automata, 668
emulating tag systems, 669, 1116
generalizations of, 895
implementation of, 895
mechanical version of, 895
and pointer-based encoding, 1071
random initial conditions in, 949
randomness generation in, 920
vs. shift registers, 1088

Cyclones (in weather), 1178
Cyclotomic (cyclotomic 

polynomials)
and shift register periods, 975
and solution of logistic map, 1098

Cylinders
in curved space, 1050
and definition of Ricci tensor, 534
fluid flow past, 996

Cylindrical algebraic 
decomposition, 1154

Cypress leaves, 1006

D0L systems, 82–85
see also Substitution systems, 

neighbor-independent
D1L systems, 85–87
da Vinci, Leonardo (Italy, 

1452–1519)
and fluid turbulence, 997
and geometrical rules, 878
and math in science, 859
and phyllotaxis, 1007
and rule-based pictures, 875
and theory of lunes, 873

Daedalus, as designer of maze, 873
Daisies

phyllotaxis in, 409
regular form of, 385

Damping
and attractors, 957
of fluid perturbations, 381

Dante Alighieri (Italy, 1265–1321)
and rhyming schemes, 875

Dappled patterns
from 2D cellular automata, 428

Darwin, Charles R. (England, 
1809–1882)

and Origin of Species, 1001
and origins of complexity, 861

Darwinian evolution, 386
summary of relations to, 14
see also Natural selection

Data
analysis of, 548

artifacts in, 1184
information content of, 1181
recognizing meaning in, 826

Data compression, 560–576
history of, 1069
lossy, 572
practicalities of, 1069
two-dimensional, 567
see also Compression

Data Encryption Standard (DES), 
1085

and history of CAs, 960
as randomness generator, 975

Data processing
and history of computing, 1107

Data structures
and network systems, 936

Databases
as analogy for memory, 621
of chemical compounds, 1194

Dataflow systems
and causal invariance, 1035

Dates, conventions for in book, 851
Daubechies wavelets, 1074
Davis, H. Chandler (USA/Canada, 

1926– )
and dragon curves, 893

Davis, Martin D. (USA, 1928– )
and Diophantine equations, 1161
in Preface, xiii

Davis-Putnam rules, 1171
Dawn chorus

natural radio signals and, 1187
DCT (discrete cosine transform), 

1074
de Broglie, Louis-V.-P.-R. (France, 

1892–1987)
and wave-particle duality, 1056

de Bruijn, Nicolaas G. (Netherlands, 
1918– )

and maximal sequences, 1089
de Bruijn networks, 940

and CA attractors, 957
and local conservation laws, 1023
for shift registers, 1089
and sorting networks, 1142

de Moivre, Abraham (France/
England, 1667–1754)

and Gaussian distribution, 977
de Morgan’s law (in logic), 817
Dead languages, 1184
Dead time

in randomness generators, 303
Deadlocks

using randomness to avoid, 841, 
1192

Dean’s Eye cathedral window, 873
Debugging

intuition from, 872
and proofs about programs, 1168

Decidability, 753
see also Undecidability

Decimal numbers, 116
recurring, 138

Decimation
in additive CA patterns, 955
and self-similarity in rule 90, 870

Decimation systems, 909
and firing squad problem, 1035

Decision analysis
and causal networks, 1033

Decision making
and game theory, 1104

Decision problem
and history of universality, 1110

Decision procedures
see also Algorithms
see also Undecidability

Deck of cards
perfect shuffle of, 974

Decoding, see Cryptanalysis
Decoherence (in quantum 

mechanics), 1063
Decompilers, 1184
Deconstructionism

and limitations of science, 1196
and postmodernism, 1196
and theories of communication, 

1181
Decorative art, 43, 872

see also Art
Decrement function

combinators for, 1122
Decrement-jump instructions

in register machines, 97
Dedekind, J. W. Richard (Germany, 

1831–1916)
and axioms for arithmetic, 1152
and categoricity of models, 1172
and primitive recursion, 907
and real numbers, 1153

DedekindEta
difficulty of evaluating, 1134

Deduction
automated mathematical, 1157
of cellular automaton rules, 1089
in mathematics, 775
of rules from data, 592
see also Intelligence
see also Perception

Deep inelastic scattering, 1044
Deep theorem, definition of, 1176
Defects

as localized structures, 990
topological, 1045

Deficient numbers, 910
Definability

of operations in arithmetic, 1163
Definitions

and character of principles, 1126
of existing sciences, 863
of intelligence, 822, 1178
of life, 823, 1178
of mathematics, 859
of purpose, 829

Deformable objects, packing of, 988
Degrees of unsolvability (arithmetic 

hierarchy), 1126, 1139
Dehn, Max W. (Germany, 

1878–1952)
and word problem for groups, 

1141
Deism, 1196
Deity, see God

 (del), and isotropy, 980
Delay equations

and road traffic flow, 1014
Delay lines

and history of CAs, 877
Delayed choice experiments, 1059
Delete

and Boolean minimization, 1095
and recursive sequence, 906

DeleteCases
and minimal finite automata, 957
and pattern-avoiding sequences, 

944
Delimiters

balanced and nesting, 989
Delta functions, and spectra, 1081
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Deltas (of rivers), nesting in, 988
Democratic hypothesis (in particle 

physics), 1044
Democritus (Greece, ~460 – 

~370 BC)
and atomism, 876
and extraterrestrial life, 1180

Demodulation (substitution)
in proofs, 1155

Dendrimers, 1194
Dendrites, in nerve cells, 1075
Dendritic crystal growth, 371, 993
Dendritic erosion patterns, 1001
Dendritic patterns

in 2D cellular automata, 171
in 2D substitution systems, 188

Denominators
and continuous CA background, 

922
minimal in rational numbers, 950

Densest packings, 986
Density

of circle packings, 986
of difficult problems, 1147
in percolation theory, 983
in tag systems, 894
of universal systems, 1126

Density in cellular automata, 265, 
953

conservation of, 458
diffusion of in block, 463
estimates of, 953
as non-computable, 1128
phase transition in, 341
undecidability of limiting, 1138

Density perturbations
and sound in fluids, 1000

Dentin, mammoth ivory, 873
Denudation (in landscapes), 1001
Deposition

and landscape structure, 1001
see also Aggregation systems

Depth
for combinator expressions, 1123
and Horton stream order, 1001
and symbolic systems, 897

Depth-first recursion
in substitution systems, 1033

Depth-first traversal
of backtracking trees, 1089

Depths
of logic expressions, 1096, 1148

Derandomization
of randomized algorithms, 1192

Derivations
in formal languages, 1103
in mathematics, 775

Derivative (differential derivative)
as composite head, 896
and relation to DigitCount, 902

Derivatives (financial), 1015
DES (Data Encryption Standard), 

1085
and history of CAs, 960
as randomness generator, 975

Desborough Mirror, 873
Descartes, René (France/

Netherlands, 1596–1650)
and complexity in biology, 861
and discrete space, 1027
and equiangular spirals, 1008
and snowflakes, 992
and sums of three squares, 910
and theoretical biology, 1003
and Turing test, 1099

Deserts, landscape in, 1001
Design in nature

and origin of complexity, 861
and teleology, 1185

Det (determinant)
and Hadamard matrices, 1073
metric related to volume by, 1050
and NC computations, 1149
and polynomial time, 1146
and testing for dimension, 1031
and zeta functions, 959

Detachment rule
in axioms, 1150
and proofs, 1155

Determinism
and fate, 967
and free will, 750, 1135
and Gödel’s Theorem, 1132
vs. probability in models, 588

Deterministic chaos
recognizing, 972
see also Chaos theory

Deterrents, 1136
Deutsch, David (England, 1953– )

in Preface, xiii
and quantum computers, 1147

Development (in biology), 400–428
see also Growth

Developmental constraints
on forms of organisms, 387

Developmental pathways
invariance of in evolution, 395

/dev/random (randomness pool), 
970

DFA (deterministic finite 
automaton), 957

see also Finite automata
Diabolus in musica (tritone), 917
Diagnosis

and causal networks, 1033
Diagonal arguments, 1128

and Ackermann function, 907
and computational complexity, 

1143
and the continuum, 1127

Diagonal bands, in rule 30, 28
Diagonalization

and Church’s Thesis, 1125
and growth rates, 1162
and recursive functions, 908

Diameters of networks, 1029
Diamond shape

generated by CAs, 171
Diatoms, forms of, 385, 1011
Dice

and legal randomness, 1068
randomness from, 305, 968, 969, 

971
Dicotyledons (plants)

branching in, 1004
symmetries in, 1007

Dictionaries
as lookup mechanism, 622

Dictionary-based encoding, 565, 
1071

Difference approximations
see Finite differences

Difference engines, 1107
Difference patterns in CAs, 251

probabilistic estimates of, 953
properties of, 949
for reversible rules, 1018

Difference tables, patterns in, 1091
Difference vectors

in multiway system states, 937

Differential analyzer, 1107
Differential equations

for almost periodic functions, 917
attractors in, 961
compression of time in, 732
and continuous computation, 732, 

1129
and curves from curvature, 1009
exact solutions to, 1133
existence of solutions to, 940
and financial markets, 1015
for fluid convection, 971
for GegenbauerC, 1091
for geodesics, 1049
machines for solving, 1107
modelling with, 366
for noisy vacuum tubes, 971
numbers generated from, 916
ordinary, 922
partial, 161–164
renormalization group, 955
second-order CAs and, 1018
and special functions, 1092
and time series, 1083
and universality, 1129
and weather prediction, 1178
see also Partial differential 

equations
Differential geometry, 1048

and shell growth, 1009
Differential growth

in animals, 421
and folding, 417
history of, 1010
in horns, 413
in shells, 414

Differentiation (biological)
in biological evolution, 386

Differentiation (mathematical)
and computability, 1128

Diffie, Whitfield (USA, 1944– )
and cryptography, 1089
in Preface, xiii

Diffraction
exactly soluble problems in, 1133
and image processing, 1077
path integral theory of, 1061
patterns from, 1082

Diffuse reflection
and surface roughness, 996

Diffusion
and biological growth, 419
in block cellular automata, 463
in continuous CAs, 156
and crystal growth, 993
and harmonic growth, 1008
in model of boiling, 994
non-standard, 1024
of plant hormones, 404
in plant phyllotaxis, 1007

Diffusion equation, 163
derivation of in CAs, 1024
emerging from block CAs, 464
minimal approximation to, 1024
origin of, 922
as parabolic equation, 940
and path integrals, 1057
and random walks, 978
and Schrödinger equation, 1060

Diffusion-limited aggregation 
(DLA), 979, 994

and biological form, 1004
and lightning, 995
and randomness tests, 1085

Digestive systems
branching structures in, 1008

Digit count sequences, 905
Digit reversal systems, 125–127, 905
Digit sequences, 116–127, 136–142

and 2D substitution systems, 931
amplification of, 308
arbitrary operations on, 1091
and arithmetic coding, 1071
and chaos theory, 149–155, 

307–314
in complex bases, 933
of complex numbers, 1094
computable, 1128
and computational reducibility, 

743, 747
computing nth elements of, 912
in computing powers, 615
conversion between bases, 1094
correlations within, 902
cryptography with, 1089
and data compression, 560
and diagonal arguments, 1128
evidence for randomness in, 912
and fast evolution rules, 1094
Fibonacci, 560
and formulas for nesting, 608
history of, 902, 1182
and history of chaos theory, 971
and history of computing, 1107
implementation of, 901
in iterated maps, 149
leading elements in, 914
and linear congruential 

generators, 318
for mathematical functions, 1134
multiplicative, 902
and multiway systems, 207
for negative numbers, 942
nested, 913
non-locality in, 124
in non-periodic tiling pattern, 219
normal, 912
operations in terms of, 731
as origins of nesting, 358
of , 136
of  and universe, 1027
of  as precursors, 878
on Pioneer 10 plaque, 1189
of powers, 614, 903
as procedures for making 

numbers, 143
randomness in, 967
of rational numbers, 138
reversal and Walsh functions, 

1073
reversal of, 905

see also Digit reversal systems
robustness of, 920
self-delimiting, 560
of square roots, 139
and substitution systems, 891
for transfinite numbers, 1162
and trees, 891
and Turing machines, 760
see also Sequences

Digital computation
compared to analog, 730, 1128

Digital electronics
as avoiding noise, 302
and practical computers, 1108

Digital filters (FIR)
and sequential CAs, 1035

Digital image processing
see Image processing
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DigitCount, 902
and  problem, 904
and additive CAs, 1092
basic example of, 854
and computational reducibility, 

747
in densities from rule 90, 953
as inverse recursive sequence, 906
and nested networks, 1037
and operator representations, 916
and recursive sequences, 131, 906
and rule 90 pattern, 870
and solution of logistic map, 1098
and Thue-Morse sequence, 890

Dilation, time, see Time dilation
Dilation (in mathematical 

morphology), 1077
Dimensional analysis

and fluid flow, 996
and Kolmogorov spectrum, 997
and Planck length, 1027

Dimensions
above 3 and reality in math, 860
of attractors in CAs, 958
in axioms of geometry, 1154
definitions of, 1030
differential geometry of non-

integer, 1051
fractal, 933
general effects of, 170
in network systems, 936
of networks, 478, 533
of physical space, 515
of posets, 1041

Dimer problem, 959
Diminished fifth, curve of, 146
Diophantine equations

and algorithmic randomness, 
1067

assuming randomness in, 1165
and axiom systems, 1166
as constraint systems, 944
cubic, 1164
enumeration of, 1165
Hilbert’s Tenth Problem and, 1161
history of, 1164
largest solutions for quadratic, 

1164
linear and polynomial time, 1146
and Moire patterns, 1078
and multiway systems, 1157
NP completeness and quadratic, 

1146
table of, 790
and undecidability, 787, 1138
universal, 786, 1164

Diophantus (Egypt, ~246 – 
~330 AD)

and Diophantine equations, 944
Diploid cells

and randomness in biology, 970
Dirac, Paul A. M. (England, 

1902–1984)
and history of quantum 

mechanics, 1056
Dirac delta functions, 1081
Dirac equation

discretization of, 1060
as simple model, 1025

Directed acyclic graphs (DAGs)
causal networks as, 1033

Directed network systems, 1040
Directed percolation (probabilistic 

cellular automaton), 591, 976

Directional entropies
in cellular automata, 960

Directional reversibility
in cellular automata, 1017

Dirichlet domains, 987
and CA lattices, 929

Disassemblers (decompilers), 1184
Discharge tubes

randomness from, 969
Discontinuities

and catastrophe theory, 1009
and phase transitions, 981

Discontinuous functions, 901, 918
Discord, perfect (tritone), 917
Discrete packings, 987
Discrete space, 472

history of in math, 1050
history of in physics, 1027
and quantum gravity, 1055

Discreteness
and atomism, 876
averaging out of, 327
in computer programs, 976
in models vs. continuous, 368
origins of, 337
and Principle of Computational 

Equivalence, 729
in space, 984

Discretization, of PDEs, 924
Discrimination

learning of in neural nets, 1102
Disjunction, as name for Or, 1173
Disjunctive Normal Form (DNF), 

616, 1095
lower bounds on Xor in, 1143
multilevel, 1096
and proof lengths in logic, 1175
and proofs of axiom systems, 1170

Disk (computer) traffic
randomness from, 970

Disks, packing of, 350
Dislocations

patterns of in fracture, 375
Dispersion relations

and repetitive behavior, 988
Display hacks

for nested patterns, 932
as precursors to my work, 879

Displays
of 3D cellular automata, 927
and history of computing, 1108
lines on digital, 916
studying CAs using, 46

Dissipative structures
and history of complexity, 862
and reaction-diffusion, 1013

Distances
defined by geodesics, 1048
defined on networks, 478
general properties of, 1030
non-symmetric and torsion, 1052

Distribute, and powersets, 1171
Distributed computing

and causal invariance, 1035
and computer experiments, 899

Distributive laws (in logic), 817
Distributivity

and additive CAs, 952
Districting

and Voronoi diagrams, 987
Dithering, 1077
Divaricate patterns on shells, 423
Divergence in chaos theory, 153, 

307, 921
Divergent series, in QED, 1060

Diversity
of animal shapes, 421
in biological organisms, 395
in branching patterns, 402
of leaf shapes, 401

Divide ( )
and NC computations, 1149
in terms of digits, 139

Divide-and-conquer algorithms, 
1094, 1141

Divination (fortune-telling), 1135
Divine proportion (GoldenRatio), 

890
Divisibility

as defining poset, 1041
of numbers, 132
see also GCD

Division in groups, 1153
Divisors

and cycles in shift rules, 963
distribution of, 909
and maximal periods, 950

DivisorSigma (number of divisors), 
135, 910

iteration of, 911
DLA

see Diffusion-limited aggregation
DNA

 noise in, 969
in Arecibo radio message, 1190
and definition of complexity, 1069
and definition of life, 825, 1178
as evolutionary artifact, 1184
extraterrestrial messages in, 1184
fingerprinting, 970
and genetic programs, 1002
and nanotechnology, 1193
NP completeness in, 1146
random changes in, 970
use of randomness in, 1192

DNF, see Disjunctive Normal Form
Do (DO loop)

for computing factorial, 1110
Documentation length

as definition of complexity, 1069
Dodecahedron

in deformable packings, 988
elongated, 930
network of, 476, 1049
rhombic, 929, 986, 987
rhombo-hexagonal, 930
trapezoid-rhombic, 986

Dogs, and sense of smell, 827
Dolphins

communication by, 1180
and sense of fluid motion, 827

Domains
in 2D cellular automata, 335
effective rules for in CAs, 980
and repetitive behavior, 356

Domino problems, 211–221
approximate solutions to, 345
enumeration in, 959
undecidability in, 1139
see also Tilings

Don’t care elements (in Boolean 
formulas), 1095

Doodles, rule-based, 875
Dot (dot product)

as associative function, 1094
and differential geometry, 1048

Dot-coms
as speculative stocks, 1015

Double-angle formulas
and iterated maps, 1098

Double exponential growth
in primitive recursive functions, 

908
Double negation, law of, 817
Doubling

using cellular automata, 832
using combinators, 1122

Doubling map
and chaos theory, 149, 306
computational difficulty in, 1147
periods in, 257
see also Shift map

Draft lottery, randomness of, 969
Drag coefficients, 998

for airplanes, 997
Dragon curves, 189, 893, 932
Drainage patterns

and landscape structure, 1001
seen from space, 1187

Drake, Frank D. (USA, 1930– )
and SETI, 1189

Drake equation, 1191
Drawing lots, 968, 1192
Drawing straws, 968
Drexler, K. Eric (USA, 1955– )

and nanotechnology, 1193
Drill (military), use of rules in, 875
Drip tips of leaves, 1005
Drop (drop elements)

basic example of, 853
Droplets

in 2D cellular automata, 980
Drops, in water streams, 984
Drugs

and brain function, 1099
from cone shells, 1011
origins of current, 1194
random trials of, 1192
searching for, 842, 1193
and spider webs, 1184

Drums
as sending signals, 827
sound from, 1079

DSolve
see also Differential equations
see also Partial differential 

equations
Duality

between And and Or, 1151
between evolution and causal 

network, 496
between particles and extended 

objects, 1044
in string theory, 1029

Ductile materials, 994
Duhem, Pierre M. M. (France, 

1861–1916)
and chaos theory, 971

Dummy variables
in predicate logic, 1152

Dunes (sand)
repetitive patterns of, 1187

Dungeons & Dragons
shapes of dice in, 971

Duplication formulas (functional 
relations)

and function evaluation, 1134
and logistic map formulas, 1098

Dürer, Albrecht (Germany, 
1471–1528)

and parametrizing growth, 1010
Dust, as seed for crystals, 369, 992
Dutch, logic operations in, 1173
Dyadic order

for Walsh functions, 1073
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Dyadic pure predicate logic, 1152
Dynamic programming

and CA implementation, 869
and recursive sequences, 906

Dynamic spin systems, 982
Dynamic triangulation

and quantum gravity, 1054
Dynamical symmetry breaking, 

1047
Dynamical systems theory

and 1D constraints, 941
and cellular automata, 960
and continued fractions, 915
and digit sequences, 901
finite automata in, 958
and history of CAs, 877
and history of chaos theory, 971
and history of complexity, 862
and my work on CAs, 880
and ODEs, 922
and spectra in, 1081
summary of relations to, 14

 (exponential constant)
continued fraction for, 144
digits of, 142
as not from rational integral, 916
and random networks, 963

e-commerce
use of randomness in, 1192

E8 (group) lattice
isotropy of, 980
and sphere packings, 987

Eanna temple, 873
Ear lobes

folding in formation of, 417
Early computers

and cellular automata, 45
Early universe

particles surviving from, 1047
and thermodynamics, 1021

Ears
operation of, 585, 1079
see also Auditory perception

Earth
conditions for life on, 1179
and extrasolar planets, 1179
formation of the, 1179
origin of life on, 1179
viewed from space, 835, 1187

Earth-Moon-Sun system, 313, 972
Earthquakes

 noise in, 969
and fracture, 374

Earthworks, as artifacts, 1184
Eastern philosophy, 1195, 1196
ECAD, multilevel logic in, 1096
Ecology

and complexity research, 863
of extraterrestrial colonization, 

1191
iterated maps and models in, 918

Economics
applications to, 429–432
and complexity in science, 861
and computational irreducibility, 

1132
and extraterrestrial trade, 1191
and free will, 1135
history of models from, 1015
iterated maps and models in, 918
and notion of purpose, 1185
and pragmatic theory of law, 1136
quantitative laws in, 1014
successes of math in, 859

ed (text editor)
and regular expressions, 958
and substitution systems, 894

Eddies, in fluid flow, 376
Eddington, Arthur S. (England, 

1882–1944)
and models of the universe, 1025

Eddy viscosities, 997
Eden, Murray (USA, 1920– )

and aggregation systems, 978
Eden model, 331, 978

see also Aggregation systems
Edge detection in images, 1077

and scale invariance, 1076
Edgerton, Harold E. (USA, 

1903–1990)
and splashes, 1000

Edison, Thomas A. (USA, 
1847–1931)

and searching for materials, 1193
Education

and defining intelligence, 1178
and exact solutions, 1133
and recognizing intelligence, 825
and the science in this book, 855

EDVAC (computer)
and early CA, 1117

EEG, 1099
Eel, pigmentation pattern of, 426
Effective computability

see Decidability
Effectively computable sets, 1138
Efficiency of computations, 758
Efficient causes, 1185
Efficient Market Hypothesis, 432, 

1015
Egg

randomness in fertilization of, 970
Egmont volcano

circular shape around, 1187
Egyptian art, 873
Egyptian fractions, 915
Egyptian mathematics, 1149

and evaluation chains, 1095
and , 911

Egyptian pyramids, 874
Ehrlich, Paul (Germany, 1854–1915)

and chemotherapy, 1193
Eigenvalues

and dimension of networks, 1031
of distance matrices, 1031
and entropies of CAs, 958
and fractal dimensions for 

additive rules, 955
of nested systems, 1081
nesting in pattern of, 1130
of random matrices, 918, 977

Eikonal approximation, 1061
Einstein, Albert (Germany/

Switzerland/USA, 1879–1955)
and EPR experiment, 1058
and general relativity, 1047
and math in science, 860
and particles as gravity, 1054
and quantum theory, 1056
and special relativity, 1041
and unified field theory, 1028

Einstein equations, 1052
exact solutions to, 1133
as examples of PDEs, 161, 923
history of, 1047
matter vs. space in, 1028
quantization of, 1054
specifying curvature of space, 531
vacuum solutions to, 1053

Einstein-Hilbert action
and spin networks, 1055

Einstein-Podolsky-Rosen (EPR) 
experiment, 1064

Elasticity theory, and fracture, 995
Electric breakdown, 302, 995

see also Lightning
Electric fields

particle production in, 1062
Electric light bulb filaments, 1193
Electricity

as defining feature of life, 1178
Electromagnetic fields

and gauge invariance, 1045
quantization of, 1056
and radioactive randomness, 970
and relativistic invariance, 1041
theories of based on space, 1028
as ultimate constituents, 1024
and virtual photons, 1060

Electromagnetic radiation
and information transmission, 

1069
Electromagnetic signals

see Radio signals
Electromechanical machines

as computers, 1107
and finite automata, 958

Electron diffraction
and visualizing fracture, 995

Electron levels
in nested potentials, 1081

Electron-photon scattering, 1060
Electronic computers

and Church’s Thesis, 1125
history of, 1107
and history of universality, 1110
numbers in history of, 902
and proofs of universality, 1117

Electronic design
and Boolean formulas, 1097

Electronic noise, 302, 968
randomness from, 969

Electronics
making reliable, 981
and studying complexity, 862

Electrons
discovery of, 1024, 1044
as initiators of randomness, 303
lack of intuition about, 537
limits on sizes of, 1044
magnetic moment of in QED, 1060
mass of, 1046
in practical computers, 1108
theories of structure of, 1044
wave-particle duality of, 1056

Elegant theorem
definition of, 1176

Element, in set theory, 1155
Elementary cellular automata, 53, 

883
emulation of rules by, 705
legal rules for, 948
my first pictures of, 19, 864
with random initial conditions, 

232, 424
rule equivalences, 883
table of Boolean forms for, 884
uniqueness of patterns from, 956
as universal logic functions, 1174
see also Cellular automata
see also Rule 30, Rule 90, etc.

Elementary functions
difficulty of evaluating, 1134
and math impossibilities, 1137

numbers generated from, 916
vs. special functions, 1092

Elementary particles, 525–530
decays and time quantization, 

1032
detection of, 969
discovery dates of, 1043
as dual to black holes, 1045
enumerating in networks, 1045
interactions between, 539
known types of, 1043
and limit of networks, 1030
masses of, 528, 1046
motion of, 528
motion of along geodesics, 531
motion of through network, 536
quantum threads between, 544
searching for additional, 1047
spin of, 1046
in unified field theory, 1028
upper limits on mass of, 1047

Elements, of Euclid, 909
Elephants

communication by, 1181
Elkies, Noam D. (USA, 1966– )

and nearby powers, 1166
in Preface, xiii

Elliott 903 computer
my use of, 854, 864

Elliptic curves
and Diophantine equations, 1164, 

1165
and Fermat’s Last Theorem, 1166

Elliptic equations (PDEs), 923, 940
Elliptic functions

and background for PDE, 924
difficulty of evaluating, 1134
and logistic map formulas, 1098

EllipticK (elliptic integral)
in 2D Ising model, 982, 1133

EllipticTheta (elliptic theta functions)
and algebraic equations, 1092
as generating function, 1092
nested patterns from, 1093
and quintic equations, 945, 1133
and runs of digits, 914

Embeddings of networks, 193, 476, 
1031

Embryos
development of, 417, 419, 1009
history of study of, 1004, 1010
pigmentation precursors in, 425
randomness in, 970

Emergence
of order from randomness, 223

Emergent behavior
general theory of, 3

Emotions, and learning, 1102
Empirical mathematics

see Experimental mathematics
Empiricism

and theories of communication, 
1181

and visual perception, 1076
Emulation

between cellular automata, 1118
and computational irreducibility, 

742
rates of, 765
by universal CA, 652
and universality, 642
see also entries for specific systems

Encoding
arithmetic, 1071
of arithmetic by set theory, 1160
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block, 563
dictionary-based, 565
Huffman, 564
in mathematics, 815
pointer-based, 565
run-length, 560
theory of cellular automaton, 1118
of three colors by two, 655, 1111
in universal CA, 652
and universality proofs, 1126

Encryption, see Cryptography
Encyclopedia Britannica

leaf shapes in first edition of, 1005
Endogenous randomness

see Intrinsic randomness 
generation

Endomorphisms
cellular automata as, 959
and generalized additivity, 952

Endpapers in this book, 851
Energy

and advanced technology, 1191
in gravity theory, 537
heat as form of, 1019

Energy conditions
and general relativity, 1053

Energy conservation
in cellular automata, 458
in Einstein equations, 1052
in Ising model CAs, 982
in network evolution, 529
in PDE, 923
in physics, 1022
and thermodynamics, 445
in three-body problem, 972

Energy levels
in nested potentials, 1081

Energy minimization
and adaptation, 823
in chemistry, 1194
and NP completeness, 1146
in proteins, 988, 1003
and purpose, 831
and quasicrystals, 994

Energy-momentum tensor
in Einstein equations, 1052

Engineering
avoiding complexity in, 723
vs. biological evolution, 393
vs. biological forms, 1004, 1180
and computational reducibility, 

829
correctness proofs in, 1157
fracture as issue in, 995
future of, 840
historical forms in, 828, 1183
and history of complexity, 862
intuition from, 40
optimization of designs in, 1193
of universal systems, 678
and universality proofs, 698
used in building computers, 822

English
and cryptanalysis, 599
frequency of letters in, 1069
hashing of words in, 1100
logic operations in, 1173
redundancy of, 1086

ENIAC (computer)
and digits of , 911
and history of computing, 1107

Enigma rotor machine, 1085
Ensembles

evolution of in CAs, 278
in Ising model, 982

in rule 37R, 457
in statistical mechanics, 1020
in statistics, 593

Entanglement (in quantum theory), 
544

as basic quantum effect, 1059
and Bell’s inequalities, 1064

Entrails of goats
and fortune-telling, 968

Entropy
as algebraic number in CA, 958
analogy of to amount of 

computation, 1133
vs. biological complexity, 1003
in block encoding, 1071
in cellular automata, 958
as defining CA classes, 960
and definition of life, 1178
estimation of, 959, 1084
history of, 1019
and Lyapunov exponents, 960
measure, 959
origins of increasing, 441–457
of particles in box, 1022
and redundancy of text, 1086
and repetitive CA behavior, 954
of rule 30 mapping, 1087
and self-organization, 948
spacetime, 960
temporal, 960
in thermodynamic systems, 448
undecidability of in CAs, 958, 

1138
see also Second Law of 

Thermodynamics
Entscheidungsproblem (decision 

problem), 1110
Enumeration of

alkanes, 1194
balanced parenthesis strings, 989
CA periodic points, 954
CAs to find doubling rules, 832
cases in proofs, 1177
commutative monoids, 952
cycles in shift rules, 963
finite automata, 957
programs, 758
reachable states in CAs, 958
string constraints, 1140
surjective cellular automata, 959
tiling configurations, 959
Turing machines, 888, 1120

Envelopes
masking patterns on, 1077

Environmental sciences
math morphology in, 1077
and systems theory, 862

Epicureans
and atomism, 876
and complexity, 861
and contents of space, 1028

Epicurus (Greece, 341–270 BC)
and randomness, 967

Epicycles
as examples of models, 992

Epistemology
and computational irreducibility, 

1132
and Gödel’s Theorem, 1167
implications for, 1196
and models vs. reality, 365, 991

EPR (Einstein-Podolsky-Rosen) 
experiment, 1064

(transfinite ordinal), 1162
and unprovability in arithmetic, 

1163
-  arguments, 1177

Equal ( )
calculus of expressions, 1170
in multivalued logic, 1175
non-universality of, 1174
truth tables for, 802

Equality testing
randomized methods in, 1192

Equational logic
automated proofs in, 1158
proofs in, 1172

Equational systems
vs. modus ponens, 1151
operator systems as, 801
see also Operator systems

Equations
antidiffusion, 923
axioms as, 1153
computation based on, 731
and concept of purpose, 1185
as constraints, 940
and defining mathematics, 860
as defining numbers, 916
in different axiom systems, 812
difficulties in models with, 368
difficulties of solving, 1129
in history of science, 44
integer

see Diophantine equations
linear, 940
ordinary differential, 922
partial differential, 161–164
sequence, 1141
for sequences, 944, 1141
for snowflakes, 372
of state and gravity, 1053
for strings, 944, 1141
time vs. space in, 1032
undecidability of integer, 787
see also Burger’s equation
see also Differential equations
see also Diffusion equation
see also Diophantine equations
see also Dirac equation
see also Einstein equations
see also Functional equation
see also Hodgkin-Huxley equation
see also KdV equation
see also Klein-Gordon equation
see also KPZ equation
see also Kuramoto-Sivashinsky 

equation
see also Laplace equation
see also Lorenz equations
see also Maxwell’s equations
see also Navier-Stokes equations
see also Nonlinear Schrödinger 

equation
see also Partial differential 

equations
see also Polynomial equations
see also Quartic equations
see also Quintic equations
see also Schrödinger equation
see also Sine-Gordon equation
see also Transcendental equations
see also van der Pol equation
see also Wave equation

Equiangular spirals
generated from curvature, 418
in shells, 1008

Equidistribution
and concatenation sequences, 913
of digit sequences, 912
of sequences, 903
statistical test for, 1084
in three-squares problem, 910

Equilibrium
approach to, 449
in chemical reactions, 984
in early universe, 1055
in Ising model, 982
and quantum measurement, 1063
in random networks, 1038
in self-gravitating systems, 1021
in thermodynamic systems, 450

Equivalence
in context-free languages, 1138
between logic expressions, 775
of NP-complete problems, 1145
in operator systems, 801
Principle of Computational

see Principle of Computational 
Equivalence

topological of manifolds, 1051
undecidability in problems of, 

1138
see also Universality

Equivalence operations
and confluence, 1036

Equivalence principle, 530, 1047
and gravitational energy, 1054
and particle production, 1062

Equivalential calculus, 803, 1170
possible models of, 805
theorems in, 813

Eratosthenes (Egypt, 276–195 BC)
and prime sieve, 909

Erector sets
and history of CAs, 876

Erf (error function)
in diffusion equation, 1024

Ergodic theory, history of, 1020
Ergodicity

in dynamic spin systems, 982
of hard sphere gas, 1022
and Lissajous figures, 917
and rule 37R, 457
in search process, 347
vs. Second Law, 1020

Ermentrout, G. Bard (USA, 1954– )
and patterns on shells, 1012

ERNIE (randomness generator), 969
Erosion

and landscape structure, 1001
in mathematical morphology, 

1077
Error-correcting codes, 1101

and data compression, 1069
found by searches, 1193
and Hadamard matrices, 1073
and quantum computers, 1148
and sphere packings, 986
and Voronoi diagrams, 987

Error-diffusion algorithm, 1077
Errors of measurement

and history of statistics, 1082
and origin of randomness, 967

Escapements
characteristic shapes of, 1183

Escher, Maurits C. (Netherlands, 
1898–1972)

and ornamental art, 874
Esperanto (artificial language), 1103
Espresso (Boolean minimization 

program), 1097
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Essential incompleteness, 1159
Essential singularities

in QED perturbation theory, 1060
Essential undecidability, 1159
Estimation

of entropies, 959
in statistics, 1083

Ethane, 1194
Ether (physics)

atoms as knots in, 1044
as content of space, 1028
discrete model for, 1027
history of, 1024
and theory of light, 1041

Ethernet, randomization in, 1192
Ethics

and free will, 750
and responsibility, 1136

Euclid (?Egypt, ~300 BC)
and axioms for geometry, 1154
and foundations of math, 1149
and math in science, 859
and mathematical induction, 1152
and nature of space, 1028
and perfect numbers, 911
and primes, 909
theorem network of, 1176
and theory of lunes, 873

Euclidean geometry
systematic proofs in, 1177

Euclid’s algorithm
and ContinuedFraction, 915
and GCD, 1093
as iterative algorithm, 1141
running time of, 1147

Euler, Leonhard (Switzerland/
Russia/Germany, 1707–1783)

and continued fractions, 914, 915
and a cubic Diophantine 

equation, 1165
and differential geometry, 1009
and equations for geodesics, 1049
and Fermat’s Last Theorem, 1166
and number theory, 878
and perfect numbers, 911
and primes, 909

Euler circuits
and polynomial time, 1146

EulerGamma (Euler’s constant)
and Egyptian fractions, 915
and growth of DivisorSigma, 910
as not from rational integral, 916
as transcendental number, 912

EulerPhi (totient)
and cycles in shift rules, 963
and cyclic multiplication, 950
and encoding of lists, 1120
and GCD pattern, 1093
and RSA cryptography, 1090
and shift register periods, 975

Euler’s formula
for planar networks, 1038
and spherical networks, 1049

Europa
and extraterrestrial life, 1179

Evaluation schemes
and recursive sequences, 906

Evens and Odds game, 1105
Event horizons

and black hole formation, 1053
and particle production, 1062
and time and computation, 1130

Events, causal network of, 488
Evil, and free will, 1135
Evoked potentials, 1098

Evolution theory
summary of relations to, 14
see also Biological evolution

Exact solutions, 1133
for additive CAs, 610, 951
and computational irreducibility, 

1132
for dimer problem, 959
for hard hexagon model, 959
for Ising model, 982
for iterated map periodic points, 

955
for Kondo model, 1057
lack of for 3-body problem, 972
for logistic map, 1098
and math functions, 610
for multiway systems, 1168
to Navier-Stokes equations, 996
for shift map, 919
for Turing machines, 1144
see also Closed forms

Excess (flicker) noise, 969
see also  noise

Excitable media, 1013
Excluded blocks

from 1D constraints, 941
in cellular automata, 278, 958
in code 20, 958

Excluded middle
law of in logic, 817, 1158

Exclusion principle (in quantum 
theory), 1059

Executive toys
and chaos theory, 1183
plasma-filled globes as, 995

Exhaustive search, 217, 343
and cryptanalysis, 604
and mechanism vs. purpose, 838
for optimal programs, 842

Existence of solutions
to constraints, 940
to Navier-Stokes equations, 997
in PDEs, 923

Exists ( )
in predicate logic, 1151
and r.e. sets, 1139

Exogenous randomness, 301–314
in cellular automata, 947

Exoskeleton in arthropods, 1011
Exp (exponential function)

and canonical ensemble, 982
continued fractions for, 144
difficulty of evaluating, 1134
digits of values of, 141
in Gaussian distribution, 976
as non-computable, 1128
and path integrals, 1061

Expand, Boolean analog of, 1095
Expansion of universe, 1055

and arrow of time, 1021
and cosmological term, 1052
and Einstein equations, 1053
and network evolution, 530
and particle production, 1062
and relativity history, 1048
and thermodynamics, 455

Experience
and perception, 547, 634

Experimental design
and Hadamard matrices, 1073

Experimental mathematics
foundations of, 793
and foundations of math, 821
history of, 899
practical methods in, 1090

summary of relations to, 14
this book as work of, 863
see also Computer experiments

Experiments
and computational irreducibility, 

748
crucial for this book, 23–39
detecting fraud in, 1184
experience of modelling and, 991
and learning from this book, 856
problems with chaos, 919
repeatable randomness in, 326, 

976
and thermodynamic initial 

conditions, 444
ExpIntegralEi (exponential integral)

and Egyptian fractions, 915
Explicitness

in design of Mathematica, 1177
importance of, 880

Exploratory computer experiments, 
46

Exponent, of groups, 1172
Exponential distribution

in laws for human behavior, 1014
of mobile automaton periods, 887

Exponential divergence
in chaos theory, 921

Exponential growth
in biology, 1010
in combinators, 713, 1123
in Makanin’s algorithm, 1141
of modes in PDEs, 988
in multiway systems, 207
in primitive recursion, 908
in proof sizes, 1155
in substitution systems, 82, 890
in Turing machines, 762, 1144

Exponential system, periods in, 257
Export

and image compression, 1074
Expressions

number of Nand, 1175
numbering of, 1170
representing integers, 916
representing numbers, 143
structure of symbolic, 896
in symbolic systems, 102

EXPTIME (exponential time), 1143
Extended objects in quantum field 

theory, 1057
ExtendedGCD

and linear congruential 
cryptanalysis, 1089

and linear Diophantine equations, 
944, 1164

Extensive quantities
in cellular automata, 1022

Extrapolation of data, 549
Extrasolar planets, 1179
Extraterrestrial intelligence, 822

history of, 1180
messages to send, 1189
and perception, 550
perception by, 635
search for, 1188

Extraterrestrial life, 825, 1179
Extreme value distribution

as general result, 977
for random walks, 978

Extrinsic curvature
and Einstein equations, 1052
and initial value general 

relativity, 1053
Extrinsic randomness, 301–314

Eyes
appearance of data to, 577
of flies, 385
randomness in saccades of, 1011, 

1192

Fabric, wrinkling of, 996
Face-centered cubic (fcc)

lattice, 930
sphere packing, 986
Voronoi diagram, 987

Faces (geometrical)
in deformable packings, 988
and discrete spaces, 1051
in planar networks, 1038

Faces (human)
development of bones in, 1010
parametrization of, 1010
random variations in, 1192
recognition of, 626

Faceted crystal growth, 370
Factor (polynomial factorization)

analog for Boolean formulas, 1095
and cycles in shift rules, 963
and quadratic congruential 

generators, 975
randomized algorithm for, 1192
and shift register periods, 975

Factorial ( )
encoded as integer equation, 1160
and examples of universality, 

1110
and hypersphere volume, 1050
leading digits in, 914
and number of reversible block 

cellular automata, 1023
number with digits at, 914
and QED perturbation series, 

1060
as recursive sequence, 906
and transcendental numbers, 914
see also Gamma

Factorial2 (double factorial)
and isotropic tensors, 980

Factories
and self-reproducing systems, 876

FactorInteger (integer factorization)
and arithmetic system encoding, 

1115
basic methods for, 1090
difficulty of evaluating, 1134
and Fermat’s Last Theorem, 1166
and multiplicative digit 

sequences, 902
and MultiplicativeOrder, 1147
and NP completeness, 1146
and number of commutative 

groups, 1172
and quantum computers, 1148
running times for, 1090
unique domains for, 915

Factorization
of cellular automata, 956

False
definition from And and Not, 817

Falsifiability of models, 365
Faltings theorem (Mordell 

conjecture), 1164
Family trees

and substitution systems, 893
Fano, Robert M. (USA, 1917– )

and data compression, 1069
Farey sequences, 916
Farm animals, growth of, 1010
Fast algorithms, 1141
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Fast Fourier transform (FFT)
recursive algorithm for, 1142
see also Fourier

Fast Walsh transform, 1073
Fastest programs, 760
Fate, vs. randomness, 967, 1135
Fax, data compression in, 1070
fcc (face-centered cubic)

lattice, 930
sphere packing, 986
Voronoi diagram, 987

Feasible computations, 1143
see also Polynomial time

Feathers, coloration of, 1012
Feature detection

as basis for perception, 549
in human visual system, 577

Fedorov, Evgraf S. (Russia, 
1853–1919)

and shapes of 3D domains, 929
Feedback

control and cybernetics, 862
in growth of bones, 1010
in visual system, 1075

Feedback shift registers, 974
see also Shift registers

Feigenbaum, Mitchell J. (USA, 
1944– )

and computer experiments, 899
and iterated maps, 921
in Preface, xiii

Feigenbaum’s constant, 913
Fejes Tóth, László (Hungary, 1915– )

and circle packing, 985
Fermat, Pierre de (France, 

1601–1665)
and Fermat’s Last Theorem, 1166
and primes, 909

Fermat primes conjecture
as unsolved problem, 1166

Fermat’s Last Theorem, 1166
and Diophantine equations, 1164
as having long proof, 779
and number theory history, 910
and sparse solutions, 945

Fermat’s little theorem, 909
Fermat’s principle (in optics), 1061
Fermi, Enrico (Italy/USA, 

1901–1954)
and computer experiments, 879, 

899
and extraterrestrial contact, 1191
and statistical mechanics, 1020

Fermi-Pasta-Ulam experiment, 1020
Fermilab, circular shape of, 1187
Fermions

and basic quantum effects, 1059
and classical limits, 1059
spin-statistics of, 1046

Ferns
branching in, 401, 1004
and iterated function systems, 

1005
Ferrite core memory, 864
Ferrites

as components in technology, 
1195

Ferrofluids
maze-like patterns in, 1013
phyllotaxis-like patterns in, 1007

Ferromagnetic materials
Ising model for, 981
phase transitions in, 981

Fertilization, randomness in, 970

Feynman, Carl R. (USA, 1962– )
and cryptanalysis of rule 30, 1087
in Preface, xiii

Feynman, Richard P. (USA, 
1918–1988)

and cryptanalysis of rule 30, 1087
and discrete quantum models, 

1060
and discreteness of space, 1027
and path integrals, 1057
and physics and computation, 

1126
in Preface, xii, xiii, xiv

Feynman diagrams, 1060
exact calculations of, 1133
history of, 1057
Monte Carlo methods in, 1192
not as mechanistic model, 1026
in QCD, 1061
for quantum gravity, 1054
and random networks, 1039
vs. space networks, 1040
and spin networks, 1055

FFT (fast Fourier transform)
digit reversal sequences in, 905
implementation of, 1074
multiplication using, 1093
recursive algorithm for, 1142
see also Fourier

Fiber bundles
and continuum limits of 

networks, 1030
and gauge theories, 1045

Fiber optics, vs. broadcasting, 1188
Fibers (biological)

and folding of tissue, 417
Fibonacci, Leonardo (Pisano) (Italy, 

~1170 – ~1250)
and digital numbers, 902
and Fibonacci numbers, 891
and rabbit populations, 1002
and tables of primes, 910
and trees, 893

Fibonacci (Fibonacci sequence)
difficulty of making with CAs, 

1186
and entropy in rule 32, 958
generalized, 891
generalized for randomness 

generation, 975
generating function for, 1091
as initial condition for rule 60, 

1091
leading digits in, 914
and multiway system states, 205
and multiway systems based on 

numbers, 939
number with digits at, 914, 1070
in ordering of math constructs, 

1177
and plant phyllotaxis, 1006
and polyominoes, 943
as precursors to my work, 878
properties of, 890
and prosody, 875
and randomness generators, 975
and recursion history, 907
as recursive sequence, 128
and rule 150 pattern, 885
as solution to Diophantine 

equation, 1161
and spectral maxima, 1081
and substitution systems, 82, 890
as term in continued fraction, 913

uniform distribution mod 1, 904
as values of polynomial, 1161

Fibonacci multiway system, 205
Fibonacci number representation, 

560, 1070
and multicolor encodings, 1111
as non-power base, 902
and substitution systems, 892

Fibonacci substitution system, 83
and cyclic tag system, 895
and cyclic tag systems, 96
in music, 875
and Penrose tilings, 932
properties of, 890
and sine curves, 147
spectrum of, 586, 1081
two-dimensional, 932

Field Museum of Natural History, 
1011

Field operators
measurement of, 1065

Field theory (in abstract algebra), 
1153

axioms for, 773
decidability with ordering 

predicates, 1159
and generalizing numbers, 1168
universality of, 1159
see also Finite fields

Field theory (physics)
history of, 1024
nonlinear PDE as, 923
quantum, 1061
see also Quantum field theory

Fields (agricultural)
patterns of from space, 1187

Fifths (musical chords)
curves of, 146
perfect, 1079

Fig leaves, 1005
Figurate numbers, 911
Filters (for data)

cellular automata as, 225
in visual perception, 1076

Filters in posets, 1040
Final cause, 1185
Final theory

see Ultimate theory of physics
Financial systems

applications to, 429–432
data from as source of 

randomness, 969
history of models of, 1015
meaning of random data in, 1183
simulations of, 968
using randomness to verify 

contracts in, 968
FindMinimum

and network layouts, 1031
FindRoot

difficulty of evaluating, 1134
iterative algorithm for, 1141

Fine structure constant ( )
numerology for, 1025
and perturbation theory, 1057

Fine tuning
and self-organized criticality, 989

Fingerprints
origin of patterns in, 1013
randomness in, 1014

Fingers, formation of human, 419
Finite automata

and attractors for CAs, 277
and Boolean functions, 1097
and CA encodings, 1119

and defining complexity, 1069
and formulas for nesting, 608
and groups, 1141
history of, 958
lower bounds in, 1143
minimization of, 957
as networks, 957
probabilistic, 1084
and regular languages, 939
and semigroups, 1153
and soundex system, 1100
spectra of, 1081
and substitution systems, 891, 

931, 1091
total number of, 957

Finite axiomatizability, 1176
Finite complement languages, 941

2D generalizations, 959
and excluded blocks, 958
and repetition in 1D CAs, 954

Finite differences
and CA diffusion, 1024
and continuous CAs, 921
explicit schemes and sequential 

cellular automata, 1035
and history of CAs, 876
isotropy in, 980
methods based on, 940
neighborhood compared to 

cellular automata, 928
for PDEs, 924
and reaction-diffusion, 1013

Finite element methods, 940
Finite fields

as not universal, 1160
see also Additive cellular automata
see also Field theory (in abstract 

algebra)
Finite groups

axioms for, 1176
Cayley graphs of, 1032
as extraterrestrial messages, 1190
rules for, 938

Finite impulse response
and sequential CAs, 1035

Finite-size scaling
in Ising models, 983

Finite-size systems, 255–260, 961
Finite state machines

see Finite automata
Finitely presented groups

see Groups
Finitistic mathematics, 1158
Finkelstein, David R. (USA, 1929– )

and discreteness of space, 1027
in Preface, xiii

Finnish, logic operations in, 1173
Fins (heat exchanger)

characteristic shapes of, 1183
Fire

as artifact, 1183
as basis for universe, 1125
as visible from space, 1187

Firing of neurons
in neural networks, 1102
repeatable randomness in, 976

Firing squad problem (in cellular 
automata), 876, 1035

First digits, 914
of powers, 903

First Law of Thermodynamics, 1019
First-order phase transitions, 981
Fisher, Ronald A. (England, 

1890–1962)
and random number tables, 968
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Fisher-Tippett distribution, 977
Fishes

color vision in, 1075
iterated maps for populations of, 

918
pigmentation patterns of, 389, 426
shapes of related by 

transformations, 1010
Fishhooks

characteristic shapes of, 1183
Fit (least-squares fit), 1083
Fitness

optimization of in biology, 386
and purpose, 1185

Fitting, of models, 589, 1083
Fitting of clothes

and allometry, 1010
FitzGerald, George F. (Ireland, 

1851–1901)
and relativity theory, 1041

FitzGerald-Lorentz contraction, 
1041

Five-body problem, 1130
Five-fold symmetry

in biology, 1007
cellular automata with, 930
and Penrose tilings, 932, 943
in quasicrystals, 994

Five-neighbor rules (in CAs), 927
Fixed points

in 1D cellular automata, 224, 954
in 2D cellular automata, 954
as attractors, 276
of blocking transformations, 270, 

955
in combinator evolution, 712, 1122
for differential equations, 961
in Game of Life, 964
in iterated maps, 955, 961
in Mathematica, 1137
of pigmentation patterns, 427
in recursive evaluation, 906
of sandpile model, 989
and satisfying constraints, 348
in symbolic systems, 897
undecidability of, 1138

FixedPoint
and gradient descent, 985
undecidability in, 1138

FixedPointList
and length prefixed numbers, 

1070
and prime implicants, 1095

Flagellated microorganisms
random motion of, 970

Flames
as self-organizing systems, 824
as self-reproducing, 1178

Flash photography
and forms of splashes, 1000

Flat (associative)
and associative CAs, 886, 956
and Boolean functions, 1173
and confluence property, 1037
and fast evolution rules, 1094
and generalized additivity, 952
and sequential substitution 

systems, 894
Flat spectra, 1081
Flatness (geometry)

of growing sheets of tissue, 1007
Flatten

basic examples of, 853
and correspondence systems, 

1139

generalized to 2D, 931, 1073
generalized to any dimension, 932
and sequence equations, 944, 1141

Flatworm
pigmentation pattern on, 426

Flicker noise, 969
see also  noise

Flint arrowheads, 1183
Floating-point computation

and arithmetic coding, 1071
and chaos experiments, 919

Flocks of birds, patterns in, 1011
Floor (integer below)

basic example of, 854
and digital slopes, 916
encoded as integer equation, 1160
and nesting in sine curves, 917
and three-body problem, 973

Flory exponents, 978
Flow of fluids, 376–382

see also Fluid flow
Flowcharts

and causal networks, 1033
and computer interfaces, 1103
and defining complexity, 1069
and systems theory, 862

Flowering plants, growth of, 1004
Flowers

phyllotaxis in, 409, 1007
symmetries of, 1007

Floyd-Steinberg algorithm, 1077
Fluctuations

in cellular automata densities, 954
of entropies in class 4, 960
and initiating crystal growth, 992
in market prices, 429
order in universe as, 1020
in recursive sequences, 130
and shot noise, 968
spectrum of in turbulence, 997
in thermodynamics, 447
violating Second Law in rule 37R, 

453
Fluid convection

and Lorenz equations, 971
Fluid flow, 376–382

analog of in crowds, 1014
analog of in sand, 1001
as analogy for networks, 535
as analogy for quantum field 

theory, 1059
in bird songs, 826, 1180
in chaos toys, 1183
community studying, 1000
continuity of vs. space, 472
and continuous idealizations, 729
as continuous limit, 327
past cylinders, 998
discrete models for, 999
generalizations of, 1000
and intelligence, 822, 837
and memory, 823
minimal cellular automata 

showing continuity of, 464
as model for animal growth, 1010
and my work on CAs, 881
and random fertilization, 970
sensed by dolphins, 827
solving PDEs in, 924
two-dimensional, 999
and weather, 1177

Fluid turbulence, 376
and history of complexity, 862
see also Turbulence

Fluttering, 971

Flux tubes in QCD, 1061
Fluxions, invention of, 901
Fly eye, form of, 385
FM (frequency modulation)

in radio signals, 1188
FM synthesis

curves from, 918
sounds from, 1079

Foams
evolution of, 1039
model for ether as, 1027
and Voronoi diagrams, 987

Focusing
as origin of discreteness, 984

Fold
basic example of, 853
for computing factorial, 1110
and pairwise sorting, 1142
and paths in networks, 957
and primitive recursion, 907
in random recursive function, 908
and repeated squaring, 1094
and unwinding primitive 

recursion, 907
Folding, and forms of animals, 417
Folding map, 150
FoldList

basic example of, 853
and implementing proofs, 1155
and nested patterns, 931
and random walks, 977
and Sierpinski pattern, 931
understanding operation of, 1177

Folk theorem, in game theory, 1104
Fonts in this book, 852
Foods, odors in, 1105
Foot (animal), development of, 419
For (FOR loop)

for computing factorial, 1110
Foraging

randomness in, 1002, 1011, 1192
ForAll ( )

in predicate logic, 1151
Forces, and gauge invariance, 1045
Forcing

of nested patterns, 942
of operators, 1172

Forcing, method of
and unprovability, 1163

Forecasting
weather, 1178
see also Predictability

Forests of stunted trees
as additive cellular automata, 878

Forks
characteristic shapes of, 1183

Form
historical study of, 967
living vs. non-living, 1003
of organisms

see Growth
Form factors

and sizes of particles, 1044
Formal cause, 1185
Formal experiments

and philosophy of science, 1197
see also Computer experiments

Formal languages
and CA encodings, 1119
and constraint systems, 944
and my work on CAs, 881
of networks, 1040
and substitution systems, 893
undecidability in, 1137
see also Languages (abstract)

Formal logic, 1151
see also Logic

Formal power series
and regular languages, 957

Formal systems
as foundation of math, 1176
and foundations of science, 1197
in mathematics, 1150
transfinite hierarchy of, 1159

Formants, in speech sounds, 1079
Formatting hacks

and nested patterns, 932
Formula language, of Frege, 1149
Formulario project, of Peano, 1149
Formulas

analysis with, 606–620
based on Nand, 1097
Boolean, 616, 1095
for cellular automata, 869, 1134
and computational irreducibility, 

737
and computational reducibility, 

1134
constraints on, 945
for primes, 909
and Principle of Computational 

Equivalence, 728
in three-body problem, 972
see also Exact solutions

FORTRAN
and chaos experiments, 919
and computer language history, 

1104
as example of language, 1109
and history of computing, 1108
my use of, 854

Forts, nested architecture of, 874
Fortune-telling, 968, 1192
Fossil record

common features across, 395
and complexity in biology, 389
of early life, 1179
of leaf shapes, 1005
symmetries in, 1007

Foundations of mathematics, 
772–821

and history of universality, 1110
schools in, 1176
and SETI, 838

Foundations of modelling, 363
Foundations of science, 1196
Four-color printing

rosettes in, 1078
Four-Color Theorem

and coloring of networks, 1029
graph grammars in proof of, 1040
as having long proof, 779, 1156

Four-manifolds
equivalence of, 1051, 1138

Four squares problem, 910
Four-vectors

in relativity theory, 1042
Fourier, J. B. Joseph (France, 

1768–1830)
and Fourier analysis, 1072

Fourier (Fourier transform), 1074
of 2D nested patterns, 1082
and data compression, 1074
implemented by diffraction, 1077
and JacobiSymbol, 1081
multiplication using, 1093
of number theory functions, 911
and power spectra, 969
and quantum computers, 1148
and random walks, 977
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recursive algorithm for, 1142
and spectra, 1080

Fourier series, 917, 1072
Fowle, Frank F. (USA, 1877–1946)

and Walsh transforms, 1073
Fractal dimension, 933

of additive CAs, 870, 955, 1092
of Apollonian packing, 986
and defining complexity, 1069
as entropy, 959
of fracture surfaces, 995
of reversible CAs, 1018
of rule 90, 870
of strange attractors, 961
and texture discrimination, 1077
of Weierstrass functions, 918

Fractal geometry
and history of numbers, 901

Fractal network, 197
Fractals

and 1D substitution systems, 83
and  noise, 969
in 2D cellular automata, 171
and 2D substitution systems, 187
in additive cellular automata, 270
and biological form, 1004
in cellular automata, 58
and complex maps, 933
and computer experiments, 899
in Cosmati mosaics, 873
and fluid turbulence, 997
and general study of form, 967
history of, 934
and history of complexity, 862
and history of modelling, 992
in landscape structure, 1001
and my work on CAs, 19
in network evolution, 509
origins of, 357–360
and plant branching, 1005
as precursors to my work, 880
and price fluctuations, 1014
from random initial conditions, 

273
in rule 90, 25
in self-gravitating systems, 1021
snowflake shapes as, 371
summary of relations to, 15
and texture generation, 1077
see also Nesting

Fraction systems, 1115
Fractional integration

and  noise, 969
Fractional linear transformations

and continued fractions, 914
and nested patterns, 933

FractionalPart
and chaos theory, 308
and continuous CAs, 922
difficulty of evaluating, 1134
iterated map based on, 955
and Lorenz equations, 971
in model of boiling, 994
of powers, 121

Fractons, 1081
Fractran (universal fraction system), 

1115
Fracture, 374–375

history of, 995
models of, 995
phenomenology of, 994
as randomness source, 968
sound of, 1079

Fraenkel, Abraham A. (Germany/
Israel, 1891–1965)

and set theory, 1154
FrameMaker

and layout of this book, 852
Frameworks

for mathematical proofs, 1177
Fraud detection

in random data, 1184
Freckles, coloration of, 1012
Fredkin, Edward (USA, 1934– )

and CA self-reproduction, 1179
and cellular automata, 877, 879
and discreteness of space, 1027
in Preface, xiii
and reversible CAs, 1018
and universe as CA, 1026

Free group, network for, 196
Free semigroup, 938
Free will, 750–753

and chaos theory, 971
and computational irreducibility, 

1132
and defining randomness, 1067
implications for, 1197
and randomness, 967

Freeways
and growth of cities, 1014

Freezing, of water, 370
Frege, F. L. Gottlob (Germany, 

1848–1925)
and axioms for logic, 1151
and character of math, 1176
and foundations of math, 1149
and logic as basis for science, 860
and predicate logic, 1152

Frenet frames
and growth of shells, 1009

Frequencies
of blocks, 555, 1068, 1084
of leading digits, 914
in statistics, 589
of words, 1014

Frequency modulation (FM), 1188
Frequency spectra, 1080

and acoustic diffusers, 1183
in auditory perception, 585
in data compression, 1072
in human hearing, 1079
in musical notes, 917
in natural radio emissions, 1187
of noise, 968
of random walks, 977
and SETI, 835

Frequency test, 1084
FresnelC (Fresnel integral)

in half-plane diffraction, 1133
FresnelS (Fresnel integral)

and Cornu spiral, 1009
Freudenthal, Hans (Netherlands, 

1905–1990)
and Lincos language, 1189

Friction
origins of, 996
randomness in, 970, 1193
and self-organization, 947

Friedberg, Richard M. (USA, 1935– )
and intermediate degrees, 1130

Friedman, William F. (USA, 
1891–1969)

and cryptanalysis, 1086
Frogs

pigmentation patterns of, 426
and sound of Cantor set, 586

FromDigits
and additive CAs, 951
basic example of, 854
and carries, 1094
implementation of, 901
and recursive functions, 1121

Fronts (weather), 1178
Froths, evolution of, 1039
Fruit, packing of spherical, 986
Fruit flies

genetic programs of, 1002
Fuchsian groups

and hyperbolic space, 1050
Full shifts (in dynamical systems 

theory), 961
Fullerenes

and nanotechnology, 1193
as spherical networks, 1049
as synthesized molecules, 1194

FullForm
and axioms as strings, 1156
as parse tree, 1103

FullSimplify
and iterated maps, 1098
and proofs, 1158
and undecidability, 1138

Function, see Purpose
Function (pure function)

basic examples of, 853
and lambda calculus, 1121
and recursive functions, 907

Function evaluation
searches for optimal algorithms 

in, 1193
Functional analysis

and spectra, 1081
Functional equation

for additivity, 953
and function evaluation, 1134
for ModularLambda, 1093
and solving logistic map, 1098
for spectra, 1081

Functional integrals
see Path integrals

Functional iteration (iterated 
mapping), 149, 918

Functional languages
and combinators, 898

Functional operations
examples of in Mathematica, 853

FunctionExpand
and constructible reals, 1129

Functions
applied to digit sequences, 731
computed by TMs, 1144
history of concept of, 1109
mathematical, 145–148
notion of in mathematics, 898
possible Boolean, 806
rapidly growing, 1162
standard in mathematics, 1091
structural representations of, 896
systems based on symbolic, 102
see also Mathematical functions

Fundamental domains
and repetition, 607

Fundamental groups (of manifolds), 
1051

Fundamental theory
see Ultimate theory of physics

Fur, coloration of, 1012
Furrowing, in animal growth, 418
Fusion (S) combinator, 1121
Future, 1196

artifacts in, 829

data compression in, 836, 1069
extraterrestrials portrayed in, 

1190
of science in this book, xi, 856
of technology, 1195
see also Predictability

Fuzzy arithmetic
and generalizing numbers, 1168

Fuzzy logic, 1083, 1175
Fuzzy searching, 623

 (general intelligence factor), 1178
Gabor functions

in visual system, 1075
Gacs, Peter (USA, 1947– )

in Preface, xiii
and transitions in CAs, 981

Gaia Hypothesis, 1195
Galaxies

distribution of, 1021
and expansion of universe, 1055
formation of, 455, 1021
formation of and my work, 880
formation of and Voronoi 

diagrams, 987
patterns in, 835
and Second Law, 1021
and simple initial conditions, 1026

Galaxy
colonization of, 1191
radio emission in, 1188

Galena, hopper crystals in, 993
Galilean invariance

in cellular automata fluids, 999
in fundamental physics, 522
and relativity, 1042

Galilei, Galileo (Italy, 1564–1642)
and Galilean invariance, 1041
and math in science, 859
and models vs. reality, 991
and nature of gravity, 1047
and the nature of space, 1028
and theoretical biology, 1003

Galois, Evariste (France, 1811–1832)
and group theory, 1153
and quadratic continued 

fractions, 915
Galois fields, 1153

see also Finite fields
Galton board, randomness in, 312
Gambling

and defining randomness, 1068
and Gaussian distribution, 977
and randomness sources, 968

Game of Go, 875
Game of Life

and history of 2D CAs, 928
and history of CAs, 877
and history of complexity, 50
implementation of, 949
persistent structures in, 964
as precursor to my work, 880
random initial conditions in, 249
unbounded growth in, 965
universality in, 693, 1117

Game theory, 1104
and computational irreducibility, 

1132
and laws in economics, 1014
and models of markets, 1015
and relation to cybernetics, 862

Games
and AI, 1099
and history of CAs, 877
and multiway systems, 939
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between programs, 1105
randomness in, 968
rules in, 875

Games of chance
and defining randomness, 1067
and history of statistics, 1082
randomness in, 305, 968, 1192
and tests of randomness, 1084

Gaming regulations, 969
Gamma (gamma function)

argument structures for, 896
and curves from curvature, 1009
emulating If, 1129
from rational integrals, 916
as special function, 1092
and transcendental numbers, 912
see also Factorial

Gamma ray bursts, 1187
Gamuts, color, 1074
Gap test, 1085
Gaps, between primes, 133, 909
Garbage collection

in network systems, 199, 935
Garden of Eden

in cellular automata, 876, 961
Gardner, Martin (USA, 1914– )

and Game of Life, 877
Gas clouds

as source of radio emissions, 1187
Gases

CA idealization of, 446
and chaos theory, 971
discrete models for, 999
extraterrestrials based on, 1180, 

1190
flow of, 376

see also Fluid flow
as main application of Second 

Law, 451
thermodynamic theories of, 1019

Gasket, see Sierpinski pattern
Gastrulation (biological folding), 

417, 1009
Gates

in practical computers, 1108
quantum, 1147
reversible logic, 1098
see also Boolean functions

Gauge bosons, 1043
Gauge invariance, 1045

and causal invariance, 527
Gauge theories

origin of, 1028
and quantum history, 1057

Gauss, J. Carl Friedrich (Germany, 
1777–1855)

and Central Limit Theorem, 977
and curvature of surfaces, 1049
and Diophantine equations, 1164
and experimental math, 899
and extraterrestrials, 1189
and iterated maps, 919
and primes, 909
and sphere packings, 985, 986

Gauss circle problem, 910
Gauss map, and iterated maps, 919
Gaussian curvature

and biological growth, 1009
as invariant quantity, 1049

Gaussian distributions
as assumed in statistics, 1083
and Central Limit Theorem, 976
of constraint violations, 984
in laws of human behavior, 1014
vs. non-standard diffusion, 1024

not from self-avoiding walks, 978
as PDE initial conditions, 163
of price fluctuations, 1014
in quantitative traits, 1003
from random walks, 329
in visual system responses, 1075

Gaussian elimination
as iterative algorithm, 1141

Gauss’s law
in cellular automata, 1023

GCD (greatest common divisor)
as associative function, 1094
and computational reducibility, 

747
and correspondence systems, 

1140
and cyclic addition periods, 950
encoded as integer equation, 1160
and Euclid’s algorithm, 915
and FactorInteger, 1090
iterative algorithm for, 1141
and limited size periods, 257
pattern from, 613, 1093
and primitive recursion, 907
and sine curves, 917
sounds from, 1080

Gears
and computing devices, 1107

Geese, patterns in flocks of, 1011
Gegenbauer, Leopold B. (Austria, 

1849–1903)
and GegenbauerC, 1091

GegenbauerC (Gegenbauer 
polynomials)

history of, 1091
and isotropy measures, 980
and rule 150 pattern, 612
and trinomial coefficients, 1091

Geiger counters, 969
Gels, in living systems, 1180
Gemstones

as faceted crystals, 370
synthetic, 993

Genealogical trees
as nested, 988
from substitution systems, 893, 

1002
General intelligence factor, 1178
General-purpose computers

and history of universality, 1110
and universality, 642

General recursive functions, 907, 
1121

and Church’s Thesis, 1125
General relativity

and animal growth models, 1010
difficulty of solving, 1132
and gauge invariance, 1045
history of, 1048
need for explicit matter in, 537
as simple physical model, 1025
and space vs. contents, 1028
as theory of gravity, 530
and time and computation, 1130
and time travel, 1043
and ultimate theory of physics, 

1025
variants of, 1048
with varying spacetime 

dimension, 1056
General systems theory

and history of complexity, 862
summary of relations to, 15

Generalization
in human thinking, 627
in mathematics, 792, 821, 1168

Generalization rule
in axioms, 1150

Generalized mobile automata, 76
Generating function

for additive cellular automata, 951
for balanced parentheses, 989
for cycles, 958
for DigitCount, 902
for Fibonacci, 890
modulo 2, 1092
for nested patterns, 1091
for regular languages, 957
for Thue-Morse sequence, 890
for Thue-Morse spectrum, 1081

Generative grammars, 938
Generators

in groups, 1141
and relations, 1169

Generic behavior
in chaos theory, 971

Genes
as analogs of functions in 

software, 1003
as components of genetic 

programs, 1002
Genetic algorithms, 1002

and combinatorial optimization, 
985

for design optimization, 1193
and sequential substitution 

systems, 894
Genetic analysis

and multiway systems, 938
Genetic code

and theoretical biology, 1004
Genetic networks

and Boolean networks, 936
Genetic programming

and methods of prediction, 1105
Genetic programs

and cell positions, 1009
compared to laws of physics, 397
as foundation of biology, 383
and growth of animals, 419
and parts of animals, 417
searching for in biology, 842
smooth variations in, 394
structure of, 1002

Genetic sequences
matching of, 1101

Genetics
and definition of life, 1178
discrete features of, 1003
and mollusc shell patterns, 1012
randomness assumed in, 970
use of simple rules in, 860

Genomes, as programs, 383
Gentzen, Gerhard (Germany, 

1909–1945)
and consistency of arithmetic, 

1168
and transfinite induction, 1163

Genus
of algebraic surfaces, 1164
of networks, 1045

Geodesic balls, volumes of, 1050
Geodesic deviation

and Riemann tensor, 1049
Geodesic domes

characteristic shapes of, 1183
and curved space, 532
and spherical networks, 1049

Geodesics
and definition of dimension, 1031
distance defined by, 1048
divergence of and chaos, 971
in flat space, 1048
and paths of particles, 531
on surfaces, 1049

Geographic cycle (in landscapes), 
1001

Geological fractures, 374, 995
Geometric mean

of continued fraction terms, 914
Geometric series

and branching patterns, 1005
Geometrical constructions

and history of universality, 1109
of real numbers, 1129
rules in, 875

Geometrical forms
in aggregation systems, 979
of artifacts, 835
in astronomy, 1187
in biology, 384
and diversity in biology, 395
on Earth seen from space, 1187
molecules made for their, 1194
of shocks in fluids, 1000

Geometrical optics, 1061
Geometrical Play

of Leonardo da Vinci, 875
Geometrical substitution systems, 

189–192
implementation of, 933
visualizing evolution of, 933

Geometry
of animal shapes, 421
applied to biology, 1004
of attractors for ODEs, 961
axioms for, 774, 1154
as basis for science, 44
of branching patterns, 401
of cellular automaton lattices, 929
curvature in, 532
curves in Greek, 875
differential, 1048
as historical basis of math, 792
labelling in diagrams, 1182
and math in science, 859
network of theorems in Euclid’s, 

1176
non-universality in, 784
and origin of math, 859
in parametrizing biological forms, 

1010
of plant phyllotaxis, 409
and proof in math, 1149
puzzles, 875
reasoning in terms of, 1177
rules for planet motion using, 860
of shell shapes, 417
space as uniform in early, 1028
of space of CA rules, 948
theorems and computational 

irreducibility, 1132
Geomorphology, 1001
Geons

and matter from gravity, 1054
and unified field theory, 1028

Gestalt (in psychology), 1076
Gestures

in animal communication, 1180
grammatical rules for, 1181

Gibbs, J. Willard (USA, 1839–1903)
and statistical mechanics, 1020
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Gibbs phenomenon, 917
and experimental math, 899
and image compression, 1074

Gibbs-Thomson effect, 993
GIF compression, 1070
Gila monster

pigmentation pattern of, 426
Gilbreth, Frank B. (USA, 1868–1924)

and causal networks, 1033
Gilbreth, Lillian E. M. (USA, 

1878–1972)
and causal networks, 1033

Gilgamesh, Epic of, 873
Ginger leaves, 1006
Giraffe

pigmentation pattern of, 426
Girth, of networks, 1029
Glaisher, James W. L. (England, 

1848–1928)
and binomials mod k, 870

Glare filters (polarizers), 1064
Glass (material)

as amorphous material, 994
fracture in, 994

Gleick, James W. (USA, 1954– )
and chaos theory, 972

Glider gun
in code 1329, 288
in Game of Life, 965
in rule 110, 293, 964

Gliders, 284
in continuous CAs, 160
and emulation of Nand, 1117
in Game of Life, 249, 964
in rule 110, 292, 964
see also Localized structures

Global minima, 347
Global Positioning System, see GPS
Globular clusters

and thermodynamics, 1021
Glueballs (in QCD), 1061
Gluons (in QCD), 1057

confinement of, 1061
Glycerine, viscosity of, 996
Gnomons

and Euclid’s algorithm, 915
and forms of growth, 1008
and substitution systems, 932

Go, game of, 875
Goats, fortune-telling from, 968
God

and character of space, 1028
and complexity, 861
and free will, 1135
identified with universe, 1196
and objects in nature, 828
and origin of complexity, 3
and phenomena in astronomy, 

834
and physics as intelligence, 1191
and purpose for universe, 1185
as source of complexity in 

biology, 1001
and ultimate theory of physics, 

1025
and universe as intelligent, 1196
see also Religion
see also Theology

Gödel, Kurt F. (Austria/USA, 
1906–1978)

and character of math, 1176
and consistency of arithmetic, 

1168
and defining computability, 1126
and experiment in math, 899

and Gödel’s Theorem, 879, 1158
and origins of universality, 1110
and predicate logic, 1152
and register machines, 896
and undecidability, 1136

Gödel  function, 1121
and primitive recursion, 908

Gödel numbers
and encoding lists, 1120
and history of universality, 1110

Gödel’s Completeness Theorem, 
1152, 1167

for equational logic, 1172
Gödel’s Theorem, 1158

and arithmetic systems, 673
and Church’s Thesis, 1125
and determinism, 1132
and Diophantine equations, 1161
encoding of statements in, 785
encodings used in, 816
and free will, 1135
and history of math, 1149
and history of universality, 1110
as limitation on math, 7, 1135
practical relevance of, 791
as precursor to my work, 879
proof of using rule 110, 786
and truth, 1167
and universality of arithmetic, 

784, 1152
and unprovable statements, 782
use of recursive functions in, 907

Gods
animism and, 1195
as source of randomness, 967

Goethe, Johann W. v. (Germany, 
1749–1832)

and morphology, 1004
Golay, Marcel J. E. (USA, 1902–1989)

and error-correcting codes, 1101
and hexagonal CAs, 928

Golay codes
and sphere packings, 987

Golay neighborhood (hexagonal 
cellular automata), 928

Gold, hopper crystals in, 993
Goldbach, Christian (Russia, 

1690–1764)
and polynomials for primes, 909

Goldbach’s Conjecture, 135, 911
stated in Peano arithmetic, 1162
true if unprovable, 1167
as unsolved problem, 1166

GoldenRatio
and 2D substitution systems, 932
and entropy in rule 32, 958
and Fibonacci encoding, 1070
and general study of form, 967
and growth rate of multiway 

system, 205
and Penrose tilings, 932
as Pisot number, 903
and plant phyllotaxis, 408, 1006
properties of, 890
and running time of Euclid’s 

algorithm, 1147
and spectra, 1081

Golf balls, and circle packings, 985
Golomb, Solomon W. (USA, 1932– )

and nonlinear shift registers, 878
and polyominoes, 943
in Preface, xiii
and shift registers, 879, 1088

Goodstein, Reuben L. (England, 
1912–1985)

and Goodstein sequences, 1163
Goodstein sequences

proofs about in set theory, 1160
and unprovability, 1163

Goosefoot leaves, 1006
Gosper, R. William (USA, 1943– )

and dragon curves, 893
and experimental math, 899
and Game of Life, 965
in Preface, xiii

Gothic windows
nesting in, 873, 874

Government control
and computational irreducibility, 

1132
Government regulation

of games of chance, 1084
GPS (Global Positioning System)

and SETI, 1190
and shift registers, 1086
and time dilation, 524, 1042

Gradient descent
implementation of, 985
in neural networks, 1102
for satisfying constraints, 344

Gradualism
in biological evolution, 395

Grain patterns
and repeatable randomness, 976

Grains (in solids)
evolution of, 1039
and Voronoi diagrams, 987

Grammar-checking software, 1104
Grammars

and concept of programs, 860
context-free, 939, 1103
context-sensitive, 939
of formal languages, 938
of human languages, 630, 1103, 

1181
of math expressions, 1150
of ornament, 872
random, 1084
and redundancy, 1086
regular, 939
as systems based on rules, 875
and Turing machines, 961
two-dimensional, 1104
unrestricted, 939

Grand unified models (in physics), 
1025, 1043

Granular materials
flow in, 1001
packing in, 986

Grape leaves, 401, 1006
Graph-based systems, 193–203
Graph grammars, 1040
Graph isomorphism

and NP completeness, 1146
Graph layout, 193
Graph theory

and discrete packings, 987
and planarity of networks, 1045

Graphical interfaces, 1102
Graphical representation of time, 

1031
Graphical user interfaces

as alternative to language, 631
and history of computing, 1108

Graphics
as basis for analysis, 111
production of in this book, 851

Graphics3D
and 3D cellular automata, 927

Graphs
for attractors, 277
cellular automata on, 930, 936
small, 194
see also Networks

Grass
growth of, 1004
and Kant on complexity, 861

Grassmann, Hermann G. (Germany, 
1809–1877)

and axioms for arithmetic, 1152
Grassmann algebra

as generalizing numbers, 1168
Gravitational waves

detectors of, 1048
and speed of light, 1041
in vacuum, 536, 1053

Gravitons, 1054
as particles, 1043
and space vs. matter, 1028

Gravity, 530–537
CPT violation in, 1019
in early universe, 1021
history of, 1047
n-body systems subject to, 1021
particle production by, 1062
randomness in systems under, 

313
and time and computation, 1130
in ultimate theory of physics, 469
and vacuum fluctuations, 1062

Gray, Alfred (USA, 1939–1998)
and parametric curves, 1009
in Preface, xiii

Gray code, 901
and concatenation sequences, 913
and constraint satisfaction, 984
and math functions, 731
as ordering of CAs, 352, 885
and ordering of Walsh functions, 

1073
Gray levels, dithering to get, 1077
Great Chain of Being, 1197
Great circles

as geodesics, 1049, 1050
Great Mosque of Córdoba, 873
Great Pyramid, 874
Great Wall of China, 1187
Greek art, 43, 873
Greek biology, 1003
Greek embryology, 1010
Greek grammars, 875
Greek mathematics

and labelling in geometry, 1182
and proof, 1149
rules in, 875

Greek mineralogy, 993
Greek number system, 1182
Greek philosophy

and atomism, 876
and complexity, 861
and definition of life, 1178
and extraterrestrial life, 1180
and free will, 1135
and math in science, 859
and universality, 1109

Greek physics
and ultimate theories, 1024

Green, Milton W. (USA, 1926– )
and sorting networks, 1142

Greenberg, James M. (USA, 1940– )
and reaction-diffusion, 1013
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Green’s functions
for additive systems, 952
for cellular automata, 950

grep, and regular expressions, 958
Grids

cellular automata on, 169
lines at slopes on, 916
superimposing, 613, 1078
visible from space, 1187

Grigorchuk, Rostislav I. (Ukraine/
Russia, 1953– )

and intermediate growth groups, 
938

GroebnerBasis
and completion algorithms, 1037
and NP completeness, 1143

Gromov, Mikhael L. (Russia/
France/USA, 1943– )

in Preface, xiii
and random groups, 938

Ground state
of quantum field theories, 1062
of spin systems, 944

Groupoids, 1171
Groups (mathematical), 1153

and abstraction in math, 792
axioms for, 773
axioms for finite, 1176
and CA conservation laws, 1023
CAs based on, 887, 956
Cayley graphs of, 1032
commutative

see Commutative groups
constraints defining, 945
decidability with commutativity, 

1159
emulating Peano arithmetic, 1159
enumeration of, 805
and forcing by axioms, 1172
and gauge theories, 1045
from generators and relations, 

1169
inessential incompleteness of, 800
limiting geometry of, 1051
and multiway systems, 938
number of, 945
and operators allowed by axioms, 

1172
and particles in physics, 528
PCP and undecidability in, 1139
polyadic, 1171
random, 938
shortest axioms for, 806
and sphere packings, 986
symmetry for lattices, 980
theorems in pure theory of, 1159
undecidability of equivalence of, 

1138
universality of, 784, 1159
word problem for, 1141

Growth
as amplifying randomness, 970
of animals, 413–422
of crystals, 369–373
of cyclic tag systems, 96
Eden model for, 331, 978
general constraints on, 1010
general schemes for, 1011
history of studies in biology, 1003
and maintaining flatness, 1007
parametrizations of, 1010
of plants, 400–413
of sheets of tissue, 412
undecidability of continued, 1138

Growth and Form (book), 1004

Growth inhibition
in plant phyllotaxis, 409
in snowflake growth, 370

Growth rates
in computational complexity 

theory, 1143
and curvature in networks, 533
general theory of, 1162
in multiway systems, 205, 937
and network dimensions, 478, 

1030
of number of trivalent networks, 

1029
in recursive functions, 908
in substitution systems, 890
in symbolic systems, 897
in Turing machines, 761, 1145
see also Differential growth

Growth rules
for 1D cellular automata, 24
for 2D cellular automata, 928

Growth totalistic rules, 928
Grzegorczyk hierarchy, 906
GUIs (graphical user interfaces), 

1103
and history of computing, 1108

Gullies (in landscapes), 1001
Gustatory (taste) sense, 1105
Gusting of wind, 1001

H theorem of Boltzmann, 1020
Haar wavelets, 1074
Hackers

and precursors to my work, 879
and universe as computer, 860

Hadamard, Jacques S. (France, 
1865–1963)

and chaos theory, 971
and Hadamard matrices, 1073

Hadamard matrices, 1073
Hadamard order

for Walsh functions, 1073
Hadrons

as particles, 1043
in QCD, 1061

Hailstone numbers (  
problem), 904

Hair cells, in inner ear, 585, 1079
Hair follicles

and animal coloration, 1012
Haken, Hermann P. J. (Germany, 

1927– )
and reaction-diffusion, 1013

Hales, Stephen (England, 
1677–1761)

and leaf growth, 1005
Hales, Thomas C. (USA, 1958– )

and sphere packings, 986
Halftoning, 1077
Halite (rock salt) hopper crystals, 

993
Halting

in aggregation systems, 979
in function definitions, 1163
longest times for, 1144
in one-way TMs, 759, 1143
in register machines, 896
in small Turing machines, 1119
in symbolic systems, 897
in Turing machines, 889

Halting probabilities
and algorithmic randomness, 

1067
for code 20, 964

for Turing machines, 1143
and universal objects, 1127

Halting problems, 1137
analog of, 754
axioms for proofs about, 1167
for cellular automata, 1137
and correspondence systems, 

1140
and integer equations, 788
in Mathematica, 1138
for multiway systems, 1137
and negation, 1158
and oracles, 1126
proofs of undecidability of, 1137
and proving undecidability, 1130
and sets, 1139
in specific axiom systems, 1163
trivial for primitive recursion, 907
for Turing machines, 1137
undecidability of, 1128, 1136

Halton (digit reversal) sequences, 
905

Hamiltonian paths
and NP completeness, 1146
trivalent networks with, 1029

Hamiltonians
in discrete quantum systems, 1060
for PDEs, 923

Hamming, Richard W. (USA, 
1915–1998)

and error-correcting codes, 1101
Hamming codes, 1101
Hamming distance

and error correction, 1101
and layout of networks, 1031

Hamming weight (DigitCount), 902
Handles on networks, 527, 1045
Handprints

purpose of in cave paintings, 1184
Handwriting, randomness in, 1192
Hankel, Hermann (Germany, 

1839–1873)
and generalization in math, 1168

Haploid cells
and randomness in biology, 970

Hard hexagon model
and 2D entropies, 959
as exactly soluble, 1133

Hard sphere gas, 1022
and CA fluids history, 999
CA idealization of, 446
and chaos theory, 971
on inspirational book cover, 864
with stationary scattering, 312
and thermodynamics, 1020

Hard square models (lattice gases), 
999

Hardware
for 1D cellular automata, 868
for 2D cellular automata, 928
structure of computer, 1108

Hardy, G. Harold (England, 
1877–1947)

and Goldbach’s Conjecture, 911
and iterated maps, 919

Harmonic analysis
of substitution systems, 1081
and Walsh functions, 1073

Harmonic analyzer, 1107
Harmonic functions

and flatness in tissue growth, 
1007, 1010

Harmonic oscillator
as exactly soluble, 1133

Harmony (musical)
and math thinking, 1177
perception of, 1079

Harmony in nature, 967
Harrington, Leo A. (USA, 1946– )

and unprovable statements, 1163
Hartley, Ralph V. L. (USA, 

1888–1970)
and information theory, 1181

Hartman, Hyman (USA, 1936– )
and CA classes, 948
in Preface, xiii

Harvard Mark I computer, 1107
Hashing, 622, 1100

as application of randomness, 
1192

to speed up evolution, 1134
Hasse diagrams of posets

and causal networks, 1040
Hasse’s algorithm (  problem), 

904
Hasse’s Principle

for Diophantine equations, 1165
Hastings, Stuart P. (USA, 1937– )

and reaction-diffusion, 1013
Hauptvermutung (of combinatorial 

topology), 1051
Hausdorff dimension, 933, 958, 1030
Hawking, Stephen W. (England, 

1942– )
and black hole radiation, 1062

Hawking radiation, 1062
and uniform spectra, 988

Hayek, Friedrich A. (Austria/
England/USA/Germany, 
1899–1992)

and free will, 1135
hcp (hexagonal close packing), 986
Head size, in animal growth, 421
Heads (of expressions), 896

depth of in trees, 897
as type specifications, 898

Hearing, 585–588
of elephants, 1181
human, 1079

Heart (human)
 noise in beating of, 969

as excitable medium, 1013
modelling and history of CAs, 878

Hearts of palm, 1004
Heat

analogies with computation, 726
character of, 445
history of theories of, 1019

Heat bath, and 2D Ising model, 982
Heat capacities

and quantum history, 1056
Heat exchangers

geometrical forms of, 1183
Heated fluids

and convection, 1000
Heaven

and form of extraterrestrials, 1191
Heavenly bodies, perfection of, 875
Hebb, Donald O. (Canada, 

1904–1985)
and neural networks, 1099

Hebrew religion
and free will, 1135

Hedlund, Gustav A. (USA, 
1904–1993)

in Preface, xiii
and shift-commuting block maps, 

878
and surjective CAs, 960
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Heights of humans
distribution of, 977, 1003

Heighway, John E. (USA, 1930– )
and dragon curves, 893

Heisenberg, Werner K. (Germany, 
1901–1976)

and matrix mechanics, 1056
Heliozoan, pattern formed in, 385
Helium

lack of quantum solution to, 1133
randomness in convection of, 976

Helix, in shell models, 1008
Hellman, Martin E. (USA, 1945– )

and math cryptography, 1089
Helmholtz, Hermann L. F. v. 

(Germany, 1821–1894)
and sound perception, 1080

Henkin semantics (for higher-order 
logics), 1167

Heptagons
hyperbolic tiling with, 1050
and negative curvature, 532

Herbs
leaf shapes for identifying, 1005

Herds
and randomness in markets, 1015

Heredity
use of simple rules in, 860

HermiteH (Hermite polynomials)
in solution of harmonic oscillator, 

1133
Hero (Heron) (Egypt, ~62 AD)

and computing devices, 1107
Heterostructures, 1082
Hewlett-Packard calculators

reverse Polish in, 896
Hexagonal cellular automata

and fluid flow, 378
implementation of, 992
as models of crystal growth, 369
and momentum conservation, 

1024
number of rules in, 928

Hexagonal close packing, 986
Hexagonal lattice

of animal pigment cells, 1012
circle packings in, 349, 985
of circles in ornament, 873
of deformable objects, 988
enumeration on, 959
implementation of CAs on, 992
isotropy on, 980
and  1D CA, 885
random walks on, 329
and shapes of cells, 1007
Turing machines on, 930

Hexagonal prism, 929
Hexagrams, of I Ching, 893
Hidden Markov models, 590, 1084
Hidden units

in neural networks, 1102
Hidden-variables theories, 543, 

1058, 1064
Hierarchies

as avoiding thermodynamics, 453
in computational complexity 

theory, 1142
and defining complexity, 1069
in embryo development, 419
of function growth rates, 1163
and history of complexity, 862
in probabilistic models, 1084
and randomness in markets, 1015

Higgs field
and expansion of universe, 1055

and notion of ether, 1042
particle associated with, 1047
and particle masses, 1047

High-energy collisions
Monte Carlo simulation of, 968

High-level programming
and programs in notes, 854

High-school algebra
axioms of, 1153

Higher-order logics, 1167
Higher organisms

phenomenon of existence of, 398
Highest common factor

see GCD (greatest common 
divisor)

HighLife (2D class 4 CA), 949
Higman, Graham (England, 1917– )

and axioms for groups, 1153
Hilbert, David (Germany, 

1862–1943)
and axioms for geometry, 1154
and character of math, 1176
and Diophantine equations, 1161
and foundations of math, 1149
and general relativity, 1052
and math in science, 859
and metamathematics, 1150
and space-filling curves, 893
and undecidability, 1136
and zeros of zeta function, 918

Hilbert space
in quantum theory, 1059

Hilbert’s Tenth Problem, 1161
Hilbert’s Thirteenth Problem, 1128
Hill climbing, 346
Hillenbrand, Thomas (Germany, 

1970– )
and automated proofs, 1158

Hillman, David (USA, 1955– )
and axioms for logic, 1151
in Preface, xii

Hindu-Arabic number system, 902, 
1182

Hindu temples, nesting in, 874
Hinton, Geoffrey E. (England/

USA/Canada, 1947– )
and neural networks, 1100

Hippocampus (in brain), 1102
Hippocrates of Chios (Greece, 

~460 BC)
and embryology, 1010

Hiss
sound of random sequence, 585

Historians, and free will, 1135
Historical perspectives, 844–846

see also history items in specific 
entries

History
accidents of in universe, 505
as central to human condition, 

846, 1196
of complexity research, 862
computations done in human, 837
of definition of sciences, 863
effect on math of, 792
as explaining axiom systems, 816
general comments about, 850
of life on Earth, 387, 825
of math and ease of concepts, 1177
recorded by physical objects, 1195
role of in biological evolution, 388
theory of and chaos, 971
uniqueness of for universe, 504

History register, see Shift registers

Hobbes, Thomas (England, 
1588–1679)

and free will, 1135
and nature of space, 1028

Hodgkin-Huxley equation
as example of PDE, 161

Hofmeister, Wilhelm F. B. 
(Germany, 1824–1877)

and phyllotaxis, 1007
Hofstadter, Douglas R. (USA, 

1945– )
and recursive sequences, 880, 907

Hokusai, Katsushika (Japan, 
1760–1849)

and fluid turbulence, 997
Hölder exponents, 959
Holland, John H. (USA, 1929– )

and genetic algorithms, 985
in Preface, xiii

Homeobox genes, 419, 1010
Homoclinic tangles, 972
Homogeneity, origins of, 353
Homogeneous structures

see Cellular automata
Homomorphisms

and generalized additivity, 952
Homoplectic processes (extrinsic 

randomness generation), 973
Homotopy

and structures in networks, 1046
and topological defects, 1045

Homunculus hypothesis, 1010
Honda, Hisao (Japan, 1943– )

and branching in plants, 1005
Honeycomb

form of, 1011
length minimization in, 988

Hooke, Robert (England, 1635–1703)
and snowflakes, 992

Hopfield, John J. (USA, 1933– )
and neural networks, 1100, 1102
in Preface, xiii

Hopi language
and Sapir-Whorf hypothesis, 1181

Hopper crystals, 993
Horizon problem (in cosmology), 

1055
Hormones

in brains, 1099
in plants, 404

Horn shell, growth of, 415
Horner form

and evaluation of powers, 1093
Horns (animal)

as artificial-looking, 828
compared to antlers, 1008
growth of, 413

Horse races
as source of randomness, 968

Horton stream order (in tributaries), 
1001

Hours-minutes-seconds
origin of, 902

Hoyle, Fred (England, 1915–2001)
and extraterrestrials, 1190

HP 700
and creation of this book, 854

HP calculators
reverse Polish notation in, 896

Huffman, David A. (USA, 
1925–1999)

and data compression, 1069
Huffman coding, 564

adaptive, 1069

implementation of, 1071
and JPEG compression, 1074

Human behavior
and computational irreducibility, 

1132
free will in, 750–753, 1135
and game theory, 1104
laws of, 1014
Occam’s razor for, 1025

Human condition
defining features of, 1196
scientific approaches to, 845

Human form
parametrizations of, 1010

Human history
vs. biological evolution, 399

Human languages
see Languages (human)

Human relics in archeology, 1183
Human thinking, 620–631

and constructs in math, 1177
emulation by computers of, 733
and Gödel’s Theorem, 1159
and Principle of Computational 

Equivalence, 733, 1130
Human will, see Free will
Humanities

relativism in, 1131
summary of relations to, 9, 863

Humans
artifacts of early, 1184
defining properties of intelligence 

of, 822
and future technology, 1195, 1196
genetic programs of, 383, 1002
height distributions of, 977, 1003
making randomness, 306, 970
mathematical power of, 1126
as only intelligence, 822
uniqueness of, 844, 1195
visual system of, 577
weight distributions of, 977

Humboldt, F. W. H. Alexander v. 
(Germany, 1769–1859)

and branching in plants, 1004
Hume, David (Scotland, 1711–1776)

and purposes in nature, 1185
Humidity, and weather, 1177
Huntington, Edward V. (USA, 

1874–1952)
and axioms for logic, 1151

Huntington axioms for logic, 773, 
1151

Hurwitz numbers, 914
Hydraulic jump, 377
Hydrocarbons

considered interesting, 1194
Hydrodynamics, see Fluid flow
Hydrogen atom

as exactly soluble, 1133
and history of quantum theory, 

1056
Hydrology

and forms of landscapes, 1001
Hyena

pigmentation pattern of, 426
Hyperbolic equations, 923, 940
Hyperbolic space, 1049
Hypercube

Boolean, 1095
and trivalent networks, 1029

Hypercycles
and origin of life, 1179

Hyperelliptic Diophantine 
equations, 1164

r = 1/2
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Hyperelliptic functions
in solution of spinning top, 1133

Hypergeometric functions
asymptotic behavior of, 917
and continued fractions, 914
and curves from curvature, 1009
and nested patterns, 612

Hypergeometric1F1
in Calogero-Moser model, 1133

Hypergeometric2F1
and caps on hyperspheres, 1050
and quintic equations, 945
in Seiberg-Witten model, 1133
and special functions, 1092
and Thue-Morse sequence, 1092
and trinomial coefficients, 1091

HypergeometricPFQ
and  symbols, 1055
difficulty of evaluating, 1134
from rational integral, 916

Hypergraphs, 1029
Hyperreals

as generalizing numbers, 1168
Hypersonic flow

see Supersonic flow
Hypersphere, volume of, 479, 1050
Hyphenation

lack of in this book, 852

I-1 base, 932
I Ching

and substitution systems, 893
IBM 370 computer, my use of, 854
IBM 7090 computer, and , 911
ICBMs

radar used by, 970
radars for detecting, 1188

Ice
hopper crystals in, 993
snowflake crystals of, 370

Ice-ray style of Chinese lattice, 874
Icosahedral group, 938
Icosahedral symmetry

in quasicrystals, 994
Icosahedron

clusters in sphere packing, 986
and GoldenRatio, 891

IDEA cryptographic system, 1086
Ideal forms, and Platonism, 1176
Ideal gas, CA idealization of, 446
Idealism

and free will, 1135
and history of universality, 1109
and logic as foundation, 860
and models of math, 1149
and nature of space, 1028
and theories of communication, 

1181
and universe as intelligence, 1196

Idealizations
of mathematics, 776
in modelling, 364
and Principle of Computational 

Equivalence, 728
in traditional science, 736
and ultimate theory of physics, 

465
Ideals (algebraic)

as generalizing numbers, 1168
Idempotence

of And, 817
in operator systems, 801
of Or, 817

Identity cellular automaton, 883

Identity function
in combinators, 1122

IEEE floating-point standard
and chaos experiments, 919

If (conditional)
emulated by Gamma, 1129

Illative logic
and symbolic systems, 102

ILLIAC IV, and history of CAs, 877
Illinois, University of, xiii
Illusions, visual, 1076
Image compression

lossless, 560
lossy, 572

Image processing
by averaging, 1073
history of, 1077
and history of 2D CAs, 877, 928
and visual perception, 1076
and Walsh transforms, 1073

Imaginary time formalism, 1043
as example of model feature, 992

Imitation
and bird songs, 1180
see also Emulation

Immune system
and Boolean networks, 936
and combinatorial chemistry, 

1194
and growth of animals, 418
randomness in, 970, 1002
shape space in, 1184

Impact craters
as landscape elements, 1001

Implementation
see also Emulation
see also entries for specific systems

Implicants
in Boolean formulas, 1095

Implicational calculus, 803, 1170
models in, 1171
possible models of, 805
theorems in, 813

Implicit rules
constraints as, 210, 940

Implies ( )
axioms for, 803
axioms in terms of, 1151
in multivalued logic, 1175
non-confluence of, 1037
non-universality of, 1174
and structure of proofs, 1155
truth tables for, 802

Impossibilities, mathematical, 1137
Impulse response

for additive systems, 952
spectrum of, 1081

Incompleteness, 782
essential, 1159
in multiway systems, 783, 797
of Robinson arithmetic, 1169
see also Gödel’s Theorem

Inconsistency
in axiom systems, 781
in multiway systems, 797

Increment function
in combinators, 1122
in register machines, 97
in Turing machines, 1144

Incremental improvement
and natural selection, 392

Incremental programming, 894
Independence

from axioms, 1167
of axioms, 803

from more powerful axioms, 1166
of theorems in logic, 818

Independence results
since Gödel’s Theorem, 1163

Indeterminism
and free will, 750, 1135

Index
features of this, 852
names in this, 852

Indian studies of prosody, 875
Indigenous peoples

and animism, 1195
Indo-European languages, 1103
Induction (mathematical)

and automated proofs, 1158
in axioms of arithmetic, 1152
and recursive sequences, 907
in reduced arithmetic, 800
as scheme for proofs, 1177
statements unprovable without, 

1169
Induction (scientific)

and experimental math, 899
and ultimate theory of physics, 

466
Inequivalence

as name for Xor, 1173
Inertia

and uniformity of space, 1028
Inertial motion, 521
Infeasible computations, 1143
Inference

of cellular automaton rules, 1089
statistical, 589

Inference rules, in proofs, 1151
Infinite acceleration

in 5-body problem, 1130
Infinite evolution

and undecidability, 755
Infinite impulse response

cellular automata as, 1035
Infinite loops

in Mathematica, 1137
and proving undecidability, 1137

Infinite objects
and non-standard arithmetic, 

1169
Infinite patterns

generated in finite time, 732
Infinite trees

and symbolic systems, 898
Infinitesimals

and computational irreducibility, 
1132

as generalizing numbers, 1168
and non-standard analysis, 1172
and PDEs, 161

Infinities, in QED, 1057
Infinity ( )

and the continuum, 1127
forms of, 1162
and symbolic representation, 788
and transfinite numbers, 1162
and undecidability, 788

Inflationary universe, 1026, 1055
Information

in axiom systems, 819
in block encoding, 1071
in cellular automata, 959
and definition of life, 1178
in multicolor encodings, 1111
and radiation in rule 37R, 455
in theorems of logic, 818
and thermodynamics, 1020

Information content
algorithmic, 1067
vs. amount of computation, 1133
of biological organisms, 1002
entropy as, 960
and history of chaos theory, 971
in initial conditions, 920
and lower bounds, 1143
measures of, 1181

Information dimension, 959
Information-preserving data 

compression, 560
Information theory

algorithmic, 1067
and cryptography, 1086
and data compression, 1069
and defining complexity, 1068
and defining randomness, 1068
and human languages, 1181

Information transmission
and causal networks, 520
in cellular automata, 252
in class 4 systems, 281
and data compression, 1069
and error-correcting codes, 1101
in financial markets, 1015
limited by speed of light, 518
in PDEs, 923, 925
and quantum entanglement, 1065
and universality, 694

Initial conditions
for cellular automaton fluids, 381
and complexity, 41
and computability, 1129
finding as NP problem, 1142
information content in, 920
as input for computations, 637
nested in rule 184, 272
NP completeness of finding, 769
and oracles, 1126, 1129
periodic, 266
persistent structures from, 283
and Principle of Computational 

Equivalence, 724
random, 223–296
randomness from, 304–314
for rule 110 universality, 689
sensitive dependence on, 153
sensitivity to, 250–252
sets of for Turing machines, 1139
shape dependence on, 179
and thermodynamics, 443
and time travel, 1043
for Turing machines, 710
and undecidability, 756
for the universe, 1026

Initial value problems
in general relativity, 1053
in PDEs, 940

Injectivity
in cellular automata, 959

Ink
and printing of this book, 852
spreading of as diffusion, 978

Inner, and associative CAs, 956
InputForm

for programs in notes, 854
Insanity, and free will, 1136
Inscribed circles, 986
Insert (insert element)

and random networks, 1038
Insertion sort, 1142
Instabilities

in CA evolution, 950
and chaos theory, 153, 971, 972
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in crowds of people, 1014
in financial systems, 430
of fluid vortex sheets, 997
in numerical PDEs, 924
in numerical turbulence, 997
in PDEs, 988
and quantum measurement, 542
in reaction-diffusion, 1013
and the Second Law, 1020
in self-gravitating systems, 1021
in splashes, 1000

Instantons, in path integrals, 1057
Instincts

and defining intelligence, 1178
Institute for Advanced Study, xiii
Institutions

and complexity research, 862
role of in science, 857

Instruments (musical)
as nonlinear oscillators, 971
sounds produced by, 1079

Insurance
and history of statistics, 1082

Integer equations, 790, 944
and undecidability, 787
see also Diophantine equations

Integer factoring, 1090
see also FactorInteger

Integer functions
patterns generated by, 870

Integer linear programming
NP completeness of, 1145

Integer sequences, 123, 128–131
IntegerDigits

basic examples of, 854
and computational reducibility, 

747
concatenation of, 913
implementation of, 901
and rule 90 pattern, 870
and substitution systems, 889, 891
and sums of three squares, 910

IntegerExponent
and  problem, 904
and additive CA attractors, 963
behavior of, 911
and binomial coefficients, 870
and cyclic multiplication, 950
and decimation systems, 909
and period doubling, 892
and a recursive sequence, 906
relation to DigitCount of, 902
and rule 150 pattern, 885
and spectra, 1081
and symbolic systems, 897
TM computation of, 1144
and TM enumeration, 1139
and Turing machine 600720, 1145
and Turing machine for 

increment, 759
IntegerQ (integer test)

and fraction systems, 1115
Integers

algorithmically simple, 916
as encodings of lists, 1120
and human experience, 1177
number of, 1127
as ordered set, 1152
represented by symbolic 

expressions, 1121
transfinite, 1162

Integrability
of PDEs, 1023
in three-body problem, 972

Integrals, as exact solutions, 1133

Integrate
and distance in curved space, 

1048
impossibilities in, 1137
numbers generated by, 916
systematic methods for, 1177

Integrated circuits, see Chips
Intelligence

analysis using human, 620
and Anthropic Principle, 1026
attributed to universe, 1195
definition of, 822, 1178
in Drake equation, 1191
extraterrestrial, 635, 822
machine, 628, 1099
and Maxwell’s demon, 1021
and philosophical implications, 

1197
physics as showing, 1191
as special feature of humans, 844
testing of, 1104, 1178
in the universe, 822
see also Thinking

Intelligent design
and complexity, 861
and teleology, 1185

Intentionality, see Purpose
Interdependence

and definition of life, 1178
Interestingness

of chemicals, 1194
in mathematics, 793, 816
of theorems in general, 821, 1176
of theorems in logic, 817

Interfaces (boundaries)
effective rules for in CA, 980

Interfaces (computer)
and concept of halting, 1137
graphical vs. language, 631
history of, 1102

Interference
and quantum computers, 1148
in quantum mechanics, 1059, 1062
of string updates, 503

Interferometer, device like, 311
Intermediate degrees (in 

computation theory), 734, 1130
Intermediate growth groups, 938, 

945
Intermediate steps

in multilevel logic, 1096
in proofs, 811, 1155, 1157
in solving PCP, 1140

Intermittency, and  noise, 969
Internationalism

in mathematical notation, 1182
Internet businesses

and speculative stocks, 1015
Interpolation

of CA patterns, 1092
and fitting models, 1084

Interpretability
axiom system encoding, 816

Interpretation of quantum 
mechanics, 1058

Interpreted languages, 1109
Interrupts (computer)

as source of randomness, 970
Intersection

and finite set theory, 1171
Interstellar radio communication, 

1189
Interstellar space

molecules in, 1179
turbulence in, 1188

Interstices, packings that use, 986
Interval, maps on the

see Iterated maps
Interval arithmetic

and generalizing numbers, 1168
Intractability (computational), 

758–771
and cryptography, 1089

Intrinsic curvature, 1049
Intrinsic randomness generation, 

315–326
and continuum behavior, 333
early reactions to, 971
in early universe, 1056
experiments showing, 976
in financial systems, 432
in fluid flow, 382
in fluttering, 971
and free will, 752
in Ising models, 982
my first paper on, 882
in quantum systems, 543, 1063
in reversible conserving systems, 

462
and Second Law, 450
see also Randomness generators

Intrinsically defined curves, 1009
Introspection, and free will, 1135
Intuition

and computer experiments, 856
and continuous math, 925
development of my, 21
in human thinking, 627
mathematical and proofs, 1156
mechanism for in brain, 1136
need for new, 39–41
about objects in nature, 828
from practical computing, 716, 

872
and Principle of Computational 

Equivalence, 726
and ultimate theory of physics, 

468
Intuitionism

as foundation of math, 1176
Intuitionistic logic

and double negation, 1158
and Peano arithmetic, 1152

Invagination
in animal development, 418, 1009

Invariances
and cellular automata state 

transition graphs, 963
Invariant configurations

in 1D cellular automata, 941, 954
in 2D cellular automata, 942, 954
as attractors, 276
in Game of Life, 964
and satisfying constraints, 348
undecidability of, 1138

Invariant entropy (spacetime 
entropy), 960, 961

Invariant interval (in relativity 
theory), 1042

Invariants
and axiom system proofs, 1170
in dynamical systems, 961
for knots, 1046
see also Conserved quantities

Inventions
vs. discoveries in math, 1176
for randomness generation, 969

Inverse problems
and NP completeness, 771
and perception, 551

Inverse square law for gravity, 536, 
1047

InverseFunction
and CA encodings, 1118

Invertible cellular automata
see Reversible cellular automata

Involute of circle, 418
Involutions

cellular automata as, 1017
Ion traps, for quantum gates, 1148
Ionosphere

radio emissions from, 1187
IQ (intelligence quotient), 1178

tests, 1104
Iran, ornamental art in, 874
Iraq, ornamental art in, 873
Iris (eye) patterns

randomness of, 1014
Iron Age, ornamental art from, 873
Irrational numbers

and 3D non-periodic tiling, 943
generating additive systems, 953
generating quantum gates, 1148
and idealized billiards, 1022
iterated multiplication by, 903
and musical chords, 1079
in Peano arithmetic, 1162

Irreducibility
see Computational Irreducibility

Irreducible representations (of 
groups)

and isotropy, 980
and spin, 1046

Irregularities, see Regularities
Irreversibility

in data compression, 572–576
and memory, 625
in physical systems, 441–457
and quantum measurement, 1063

Ising, Ernst (Germany/USA, 
1900–1998)

and Ising model, 981
Ising model, 981

exact solution of 2D, 1133
ground state of, 944
and history of CAs, 876
lack of exact 3D solution, 1133
and lattice gas models, 999
and my work on CAs, 880
and P completeness, 1149
phase transition in, 982
as precursor to my work, 879
as probabilistic model, 1083
and randomness tests, 1085
undecidability in, 1138
see also Spin systems

Islam
and ornamental art, 872
as rejecting animism, 1195

Islamic art, 43
Isocorrelation textures, 1078
Isomers (variant molecular 

structures), 1194
Isotropic tensor, 980
Isotropy

in aggregation systems, 978
in biological growth, 1007, 1010
in code 746 CA, 334
of differences in 2D CAs, 950
in discrete systems, 980
in physics and CAs, 473
of random walks, 977
of sums of squares, 910

Iterated aliquot sums, 911
Iterated bitwise operations, 906
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Iterated division
and continued fractions, 143

Iterated function systems, 191
and pictures of ferns, 1005

Iterated maps, 149–155
algebraic iterates in, 1098
attractors in, 961
of bit operations, 921
from CA densities, 953
on the Cantor set, 869
complex, 933
and computation universality, 

1129
and computer experiments, 899
emulating discrete systems, 1129
as evidence of determinism, 972
and financial markets, 1015
and fluid flow, 998
history of, 918
and history of chaos, 971
and history of complexity, 49
of integers, 122
in Newton’s method, 1101
periodic points in, 955
as precursors to my work, 879
and QCD, 1061
and recurrence relations, 906
spectra in, 1080
and substitution systems, 921
two-dimensional, 921

Iterated morphisms (substitution 
systems), 893

Iterated radicals, 915
and GoldenRatio, 891

Iterated rules
sizes of formulas for, 1096

Iterated run-length encoding, 905
Iteration

as basis for algorithms, 1141
compared to repetition, 990
examples of in Mathematica, 853

Iteration theory
and iterated maps, 918

$IterationLimit
and avoiding undecidability, 1138

Iterative automata
see Cellular automata

Iterative improvement
for engineering designs, 1193
in satisfying constraints, 344

IUPAC chemical nomenclature, 
1194

J combinator, 1123
Jacobi, Carl G. J. (Germany, 

1804–1851)
and sums of four squares, 910

JacobiP (Jacobi polynomial)
and trinomial coefficients, 1091

JacobiSN (Jacobi elliptic function)
asymptotic oscillation of, 917
and background for PDE, 924
and logistic map formulas, 1098
in solution of spinning top, 1133

JacobiSymbol
and Hadamard matrices, 1073
and quadratic residues, 1090
and spectra, 1081

Jacquard, Joseph-Marie (France, 
1752–1834)

and programmable looms, 1107
Jamming-resistant radio

and shift registers, 878
Jansky, Karl G. (USA, 1905–1950)

and radio astronomy, 1188

Japanese work on CAs, 877
Java (computer language)

and chaos experiments, 919
and computer communication, 

1182
as example of language, 1109
and register machines, 101

Jellies, large alkanes as, 1194
Jen, Erica (USA, 1952– )

in Preface, xiii
and rule 30, 871

Jet stream, 1001
Jets, turbulence in, 377
Jevons, W. Stanley (England, 

1835–1882)
and logic machines, 1107

Job, Book of
and understanding nature, 876

Johnson noise, 968
Join, in lattice theory, 1153
Join (join lists)

as associative function, 1094
basic example of, 853
evaluation chains based on, 1095
theorems about, 1168

Joint denial, as name for Nor, 1173
Joints

characteristic shapes of, 1183
Jones, James P. (USA/Canada, 

1941– )
and Diophantine equations, 1161

Josephus problem, 909
Joule, James P. (England, 1818–1889)

and nature of heat, 1019
JPEG compression, 573, 1074
Judaism

and free will, 1135
and human uniqueness, 1195
as rejecting animism, 1195

Judgement
as crucial in modelling, 365
in social sciences, 9

Julesz, Bela (Hungary/USA, 1928– )
and texture perception, 1076

Julia, Gaston M. (France, 1893–1978)
and iterated maps, 879

Julia sets, 933, 934
analog of in tree space set, 1006

Junctional calculus, 803, 1170
possible models of, 805
theorems in, 813

Jupiter
and extraterrestrial life, 1179
radio emissions from, 1187
Red Spot of, 377, 999

K combinator, 711, 1121
 particle
and time reversal violation, 1019

 non-planar graph, 527
Kabala (universal object), 1127
Kaluza, Theodor F. E. (Germany, 

1885–1954)
and notions of space, 1028

Kampé de Fériet hypergeometric 
functions, 1009

Kaneko, Kunihiko (Japan, 1956– )
and continuous CAs, 922
in Preface, xiii

Kansas, grid of towns in, 1187
Kant, Immanuel (Germany, 

1724–1804)
and complexity in biology, 861
and free will, 1135
and purposes in nature, 1185

Karatsuba, Anatolii A. (Russia, 
1937– )

and multiplication, 1142
Kardar-Parisi-Zhang (KPZ) 

equation, 925
Kari, Jarkko J. (Finland/USA, 

1964– )
and undecidability in 2D cellular 

automata, 1138
Kármán, Theodore von (Hungary/

Germany/USA, 1881–1963)
and vortex streets, 998

Karnaugh maps, 1097
Kasiski, Friedrich W. (Poland, 

1805–1881)
and cryptanalysis, 1086

Kauffman, Stuart A. (USA, 1939– )
and Boolean networks, 936
in Preface, xiii

Kazakhstan
straight railroad in, 1187

KdV equation
as exactly soluble, 1133

Kells, Book of, 873
Kelvin (William Thomson) 

(Scotland, 1824–1907)
and harmonic analyzer, 1107
and minimum area packings, 988
and models of space, 1027
and Monte Carlo methods, 1192
and thermodynamics, 1019
and vortices in ether, 1044

Kelvin-Helmholtz instabilities, 988
Kepler, Johannes (Germany, 

1571–1630)
and 2-body problem, 972
and computers, 1107
and Fibonacci numbers, 891
and inhabitants of Moon, 1190
and rules of nature, 860
and snowflakes, 992
and sphere packings, 986

Keratin
repetitive structure of, 1003

Kernels, in visual perception, 579
Kerr solution

as exact solution, 1133
and time and computation, 1130

Key sequences
in cryptography, 598

Keyboard characters
for programs in notes, 854

Keystrokes
number to create this book, xiv
as source of randomness, 970

Khinchin (Khinchin’s constant), 914
Kidney ducts, branching in, 1008
Kinetic theory

and diffusion equation, 1024
and thermodynamics, 1019

"Kingdom was lost"
and chaos theory, 971

Kingdoms of organisms, 1003
Kingsnake

pigmentation pattern of, 426
Kirby, Laurence A. S. (England/

USA, 1952– )
and unprovable statements, 1163

Kirkpatrick, E. Scott (USA, 1941– )
in Preface, xiii
and simulated annealing, 985

Kites, characteristic shapes of, 1183
Kleene star (RepeatedNull), 957

Klein, Oskar (Sweden/Denmark/
USA, 1894–1977)

and notions of space, 1028
Klein-Gordon equation

discretization of, 1060
vs. sine-Gordon, 922

Kleinian groups
and circle packings, 986

KleinInvariantJ (modular elliptic 
function)

and almost integers, 915
Knapping (of stone tools), 1183
Kneading, randomness in, 306
Kneading sequences, 955
Knossos, maze at, 873
Knots

Alexander moves in, 1038
as complex artifacts, 1183
as constructed by rules, 875
in ether as atoms, 1028, 1044
model of atoms as, 1024
as not in 1D systems, 927
theory of, 1046

Knuth, Donald E. (USA, 1938– )
and dragon curves, 893
and Knuth-Bendix procedure, 

1037
in Preface, xiii
and tests of randomness, 1084

Knuth-Bendix procedure, 1037
Koch, N. F. Helge von (Sweden, 

1870–1924)
and nested curves, 934

Koch curve, 191, 933
history of, 934

Kolakoski, William G. (USA, 
1944–1997)

and cyclic tag systems, 895
Kollectiv (collective)

and defining randomness, 1068
Kolmogorov, Andrei N. (Russia, 

1903–1987)
and algorithmic randomness, 

1068
and fluid turbulence, 997

Kolmogorov complexity
see Algorithmic information

Kondo model, 1057
Koran, calligraphy from the, 874
Korec, Ivan (Slovakia, 1943–1998)

and encodings of arithmetic, 1163
and register machines, 1121

KPZ (Kardar-Parisi-Zhang) 
equation, 925

Krohn-Rhodes decompositions, 
1069

Kronecker product, 1073
KroneckerDelta

and orthogonal bases, 1072
Kufi calligraphy, 874
Kummer, Ernst E. (Germany, 

1810–1893)
and Fermat’s Last Theorem, 1166

Kuramoto-Sivashinsky equation, 
925

Kuratowski’s theorem, 1045
Kurdyumov, Georgii L. (Russia, 

1953– )
and transitions in CAs, 981

L-shaped tiles, 932
L systems, 82–87

2D, 187–189
and biological models, 1004

K0

K3,3
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and plant branching, 1005
see also Substitution systems

Labyrinth, pattern of, 873
Labyrinthine patterns

from 2D cellular automata, 427
in code 746, 334

Lag systems, 894
Lagrange, J. Louis (La Grange) 

(Italy/Germany/France, 
1736–1813)

and continued fractions, 915
Lagrange points

simple geometry of, 1187
in three-body problems, 972

Lagrangian density
in general relativity, 1053
for PDEs, 923
in quantum field theory, 1061

LaguerreL (Laguerre polynomials)
in hydrogen atom, 1133

Lambda calculus, 1121
and Church’s Thesis, 1125
and combinators, 1122
confluence in, 1036
and history of universality, 1110
as idealization of math, 1150
undecidability in, 1136

Lamé equations, 995
Laminar fluid flow, 376

in the atmosphere, 1001
Laminated sphere packings, 986
Land grants

and regular grid patterns, 1187
Land use

effects on weather of, 1177
Landau, Lev D. (Russia, 1908–1968)

and fluid turbulence, 997
Landau-Ginzburg equation, 925
Landscapes (abstract)

constraint satisfaction on, 346
for memory, 1101

Landscapes (geological), 1001
Langton, Christopher G. (USA, 

1948– )
and 2D Turing machines, 930
and CA classes, 948
in Preface, xiii

Langton’s ant (2D Turing machine), 
931

Language games, 1181
Language of mathematics

and science, 859
Languages (abstract)

as attractors in TMs, 961
context-free, 939, 1091, 1103
context-sensitive, 939
regular, 939
universal and Leibniz, 1149
unrestricted, 939
see also Formal languages

Languages (computer), 1103
as examples of software, 1108
functional and combinators, 898
and history of computing, 1108
intuition from existence of, 872
logic programming, 1158
Mathematica, 853
meaning in, 1182
notion of types in, 898
for parallel computing, 1035
thinking in, 1104
universals in, 1182
see also Computer languages

Languages (human), 1103
as analogy in atomism, 876

animals trained to use, 826
center in brain, 1099
conventional aspect of, 1181
and cryptanalysis, 599
and defining intelligence, 822, 

1178
frequency of words in, 1014
and history of universality, 1109
influence of on thinking, 1181
information content in, 1181
logic in everyday, 806, 1173
and math thinking, 1177
reasons for features of, 1181
recognizing meaning in, 826
redundancy of, 1086, 1181
relativity hypothesis in, 1181
rules for and programs, 860
rules in grammar for, 875
and theories of communication, 

1181
and thinking, 630
translation of and AI, 1100
translation of and universality, 

643
understanding dead, 1184
and Zipf’s law, 1014

Laplace, Pierre-Simon (France, 
1749–1827)

and Central Limit Theorem, 977
and determinism, 1135

Laplace equation
as constraint, 940
and diffusion-limited 

aggregation, 994
and flatness of growing tissue, 

1007
and network dimensions, 1031

Laplacian, in curved space, 1050
LARC computer

and gas simulation, 864
Large cardinal axioms, 1167
Lasers

as technology components, 1195
Latencies, in circuits, 1095
Latent heat

and crystal growth, 370, 372
Lateral inhibition

and pigmentation patterns, 427
in plant phyllotaxis, 409
in snowflake growth, 370

Latin, logic operations in, 1173
Latin squares

and quasigroups, 1171
as satisfying constraints, 945

Lattice dynamical systems, 155–160, 
922

see also Continuous cellular 
automata

Lattice gases, 999
enumeration in, 959
see also Cellular automaton fluids
see also Spin systems

Lattice gauge theories, 1057, 1061
and computational irreducibility, 

1133
and discrete space, 1027
and quantum gravity, 1054

Lattice models
see also Cellular automata
see also Spin systems

Lattice packings, 987
Lattice points

numbers inside spheres, 910

Lattice theory
axioms for, 1153
and posets, 1041

Lattice vectors
and linear congruential 

generators, 974
LatticeReduce

and digit sequence cryptanalysis, 
1089

Lattices
isotropic behavior on, 980
lines at slopes on, 916
possible, 929
random walks on, 329, 977, 978

Law of large numbers, 976
Laws (human)

and defining randomness, 1068
and free will, 1135
and regularities in radio 

spectrum, 1188
and responsibility, 1136

Laws of Form, and Nand, 1173
Laws of physics

vs. mathematics, 772
vs. programs in biology, 397
and ultimate theory, 470

Layout of networks, 193
NP completeness of, 1145

LCDs, see Liquid crystals
LCGs

see Linear congruential generators
LCM (lowest common multiple)

and Lissajous figures, 917
and Riemann Hypothesis, 918

Leading digits, 914
and number compression, 1070
of powers, 903

Leaf shapes, see Leaves
LeafCount (expression size)

and algebraic expressions, 945
and combinator expressions, 1122
and number of recursive 

functions, 908
and symbolic systems, 897
for universal Diophantine 

equation, 1161
Learning

of bird songs, 1180
of computer languages, 1104
and defining intelligence, 823, 

1178
human, 626
models of, 1099, 1102
the science in this book, 855
as trick in evolution, 1002

Learning curves, 1014, 1102
Least squares fitting, 1082, 1083
Leaves

arrangements of (phyllotaxis), 
408–412, 1006

evolutionary theories of, 1005
flatness in growth of, 1008
growth of, 401, 412, 1005
shapes of, 401–407, 1005

LED segments, and textons, 1076
Leech lattice

isotropy of, 980
and sphere packings, 987

Leftmost innermost evaluation, 906
Leg (animal), development of, 419
Legendre, Adrien-Marie (France, 

1752–1833)
and sums of three squares, 910

LegendreP (Legendre polynomials)
and isotropy measures, 980
in solution of Mie scattering, 1133

Lehmer, Derrick H. (USA, 
1905–1991)

and linear congruential 
generators, 974

Lehr, Eduard (Germany, ~1932)
and parametric curves, 1009

Leibniz, Gottfried W. v. (Germany, 
1646–1716)

and binary numbers, 902
and calculators, 1107
and free will, 1135
and I Ching, 893
and idealizations of math, 1149
and logic, 1099
and logic as basis for science, 860
and math notation, 1182
and the nature of space, 1028
and origins of universality, 1109
and symbolic logic, 1151
and universal language, 1181

Lemmas
defining characteristics of, 1176
and lengths of proofs, 1175
in proof of axiom for logic, 811
in proof searching, 1157
in structure of proofs, 1155

Lempel, Abraham (Israel, 1936– )
and data compression, 1069

Lempel-Ziv encoding, 565
Lemur

pigmentation pattern on, 426
Length, basic example of, 853
Lenses

characteristic shapes of, 1183
Lenticular clouds, 1183
Lenz, Wilhelm (Germany, 

1888–1957)
and Ising model, 981

Leonardo da Vinci
see da Vinci, Leonardo

Leopard
pigmentation pattern of, 426

Leptons, as types of particle, 1043
Less ( )

encoded as integer equation, 1160
Letters

frequencies of in English, 1069
visual perception of, 1076

Lettuce
ammonite septa like, 1008
growth of, 413

Leucippus (Greece, ~480 – ~420 BC)
and atomism, 876

Levin, Leonid A. (Russia/USA, 
1948– )

and NP completeness, 1143
in Preface, xiii
and transitions in CAs, 981

Lévy, Paul P. (France, 1886–1971)
and nested C curve, 893, 934

Lévy flights, 969
lex, and regular languages, 958
Lexical analysis

and regular languages, 958
LFSRs (linear feedback shift 

registers)
see Shift registers

LHASA (chemical synthesis 
software), 1194

Li, Wentian (USA, 1959– )
and CA classes, 948
in Preface, xiii

<
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Lichens, on Mars, 1180
Lichtenberg figures, 995
Lie groups

and additive systems, 953
and sphere packings, 987

Life
definition of, 557, 823, 1178
and definition of complexity, 1069
on Earth, 825
and history of complexity, 50
on Mars, 1179
origin of, 1179

Life, Game of, see Game of Life
Life force, 1178
Life insurance

and history of statistics, 1082
Lifeforms, alien, 825
LIFO (last-in first-out) stacks

and context-free languages, 939
Light

caustics in, 984
perception of, 577
and quantum history, 1056

Light bulb filaments, 842
Light cones, 519

for cellular automata, 949
differential geometry of, 1051
and random causal networks, 

1052
Light levels

and object recognition, 1076
Lightning

and origin of life, 1179
pattern of from space, 1187
randomness in, 995
as source of radio emissions, 1187

Lights of cities
patterns of from space, 1187

Likelihood, maximum, 589, 1083
Lily pads, 401
Limit cycles

for differential equations, 961
in iterated maps, 961
see also Repetitive behavior

Limit ordinals, 1162
Limitations of science, 6, 748, 846

and ultimate theory of physics, 
471

Limited size systems, 255–260, 267
Limits

of cellular automaton rules, 948
and fractal dimensions, 933
of networks as space, 1030
undecidability of, 1138
see also Continuum limits

Lincoln cathedral, 873
Lincos language, 1189
Lindenmayer, Aristid (USA/

Netherlands, 1925–1989)
and L systems, 893
and plant branching, 1005
in Preface, xiii

Lindgren, Kristian (Sweden, 1960– )
in Preface, xiii
and universal CAs, 1115

Line defects, 1045
Line-printer output

of my early cellular automata, 19
Linear algebra

and CA invariances, 1022, 1023
and dimensions of networks, 1031
and models of memory, 1101

Linear cellular automata
see also Additive cellular automata
see also Elementary cellular 

automata
Linear codes, 1101
Linear congruential generators, 318, 

974
based on powers of 3, 903
and chaos on calculators, 920
cryptanalysis of, 1089
historical use of, 968
and randomized algorithms, 1085
as shift register analogs, 975

Linear differential equations
and time series, 1083

Linear differential operators, 953
Linear Diophantine equations, 944, 

1164
and polynomial time, 1146

Linear equations, 940
as defining rationals, 916
and free field theories, 1061

Linear feedback shift registers
see Shift registers

Linear filters
in sound compression, 1080
and spectra, 1082
in visual perception, 1076

Linear models
and computational irreducibility, 

1132
in statistics, 589

Linear predictive coding
in sound compression, 1080

Linear programming
NP completeness of integer, 1145
for optimizing designs, 1193

Linear recurrences, 891, 906
and additive CAs, 1018
and history of CAs, 878
and time series, 1083
see also Linear congruential 

generators
Linear stability analysis, 988
Linear systems, vs. nonlinear, 940
Linearity

compared to additivity, 952
in quantum mechanics, 541, 1060

LinearSolve
iterative algorithm for, 1141
and LFSR cryptanalysis, 1087
and linear systems, 940
and NC computations, 1149

Linguistics
see Languages (human)

Linial (Gulden), Samuel (USA, 
1927– )

and underivability of logic 
axioms, 1170

Linkages
in chaos toys, 1183
characteristic shapes of, 1183
and constructible reals, 1129
for randomness generation, 969

Linked lists, for Game of Life, 949
Linker, for register machines, 1114
Linnik’s problem, 910
Linux

and creation of this book, 854
Liquid crystals

as components in technology, 
1195

phase transitions in, 981
topological defects in, 1045

Liquid-gas phase transitions, 981

Liquids
flow of, 376

see also Fluid flow
LISP (computer language)

grammar of, 1104
and network systems, 936
representing expressions in, 897
theorems about, 1158, 1168

Lissajous figures, 917
List manipulation

examples of in Mathematica, 853
Listable

and implementing CAs, 866
ListConvolve

and aggregation systems, 978
and autocorrelation, 1080
basic example of, 853
and CellularAutomaton, 886
and elementary CAs, 865
and fast evolution rules, 1094
and general CAs, 886
and hexagonal CAs, 992
and image processing, 1077
and integer multiplication, 1093
and Ising model, 981
and multidimensional CAs, 927
recursive algorithm for, 1142
in sandpile models, 989
and Sierpinski pattern, 931
and visual perception, 1076

ListCorrelate
and additive CAs, 870, 952
and visual feature extraction, 1077

ListPlay, and sound output, 1080
Lists

encoded as integers, 1120, 1127
see also Sequences

Lithic analysis, 1183
Little group (spacetime 

symmetries), 1046
Littlewood, John E. (England, 

1885–1977)
and chaos theory, 971
and Goldbach’s Conjecture, 911
and iterated maps, 919
and numbers of primes, 910

Livermore (Lawrence Radiation 
Laboratory), 864

Lizards
pigmentation patterns of, 426

Local conservation laws, 1023
see also Conservation laws

Local minima, 346
Localization

in class 1 and 2, 252
as origin of repetition, 355

Localization (of eigenstates)
and randomness tests, 1085

Localized structures
and  problem, 904
in class 4 systems, 281–296
in code 20 CA, 285
in code 357 CA, 286
in code 1329 CA, 287
in continuous CAs, 160, 244
as engineering components, 678
finding in 2D CAs, 965
and long-range communication, 

252
in network evolution, 525
origins of, 990
and particles in physics, 525
in PDEs, 164, 1129
in presence of randomness, 526
in QCD, 1061

from random initial conditions, 
228

in reversible CAs, 440
in rule 30 CA, 700
in rule 37R CA, 455
in rule 45 CA, 701
and rule 110 axiom system, 1168
in rule 110 CA, 31, 292, 964
same in different 2D rules, 949
in three dimensions, 949
in turbulent fluids, 997
in Turing machines, 888
and universality, 692
see also Gliders

Locomotion in animals, 1011
Log (logarithm)

algebraic independence of, 1164
computation of nth digits in, 912
and computational reducibility, 

744, 747
continued fractions for, 144
digits of, 141
leading digits in, 914
randomness in digits of, 967
as source of randomness, 968
uniform distribution mod 1, 904
and Weber’s law, 1014

Log-periodic antennas, 1183
Logarithmic growth

of number representations, 1070
Logarithmic law

for leading digits, 914
Logarithmic series, 1134
Logarithmic spiral, 418
Logging

and messages to Moon, 1189
regular patterns of, 1187

Logic
as applied to math, 780
axioms for, 773, 808
and combinators, 711, 898
and communication, 1181
and computational irreducibility, 

1196
and defining intelligence, 1178
difficult notation in, 1104
and discreteness in programs, 976
as example of lattice theory, 1153
as example of rules, 875
and finite set theory, 1171
as foundation of math, 1176
history of, 1097, 1099, 1151
history of notation for, 1182
and history of universality, 1109
in human languages, 1173
in human thinking, 627
implications for, 1197
interesting theorems in, 816
lengths of proofs in, 1175
machines for doing, 1107
multilayer, 1096
multivalued, 814, 1175
and natural science, 860
non-universality of basic, 784
as not mainstream math, 859
possible models of, 805
in practical computers, 1108
and quantum mechanics, 1058
reversible, 1097
shortest And, Or axioms for, 1174
shortest Nand axioms for, 808
ternary, 814
and Thue on substitution systems, 

893
see also Predicate logic
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Logic circuits
emulated by CAs, 662, 1112
emulated by Game of Life, 1117
and universality, 1119

Logic expressions
see Boolean expressions

Logic minimization, 1095
compared to searching, 1193

Logic programming languages, 1158
Logic Theory Machine, 1157
Logical depth

and defining complexity, 1069
for Turing machines, 1144

Logical functions
see Boolean functions

Logical positivism
and theories of communication, 

1181
Logical rules, see Rules
Logicism

as foundation of math, 1176
LogIntegral (logarithmic integral )

and distribution of primes, 133, 
909

and Zeta, 918
Logistic differential equation

and iterated maps, 918
Logistic map, 920

closed forms for iterates of, 1098
and continuous CAs, 922
and history of chaos theory, 971
see also Iterated maps

Logistics
and causal networks, 1033
and complex systems, 862

Lognormal distribution
for human weights, 977, 1003
and multiplicative processes, 977

Logo (computer language)
and 2D TMs, 930, 931

Long division, 139
Long-term memory, 1102
Long-time tails

in molecular dynamics, 999
and shaking, 969

Longest paths
and NP completeness, 1146

Looms
and history of computer, 1107

Loop general relativity, 1048
Loop quantum gravity, 1054

and spin networks, 1055
Loop switching method

and network layout, 1031
Lorentz, Hendrik A. (Netherlands, 

1853–1928)
and relativity theory, 1041

Lorentz contraction, 1041
Lorentz gas, 1022
Lorentz transformations, 1041, 1042
Lorentzian spaces, 1051
Lorenz, Edward N. (USA, 1917– )

and chaos theory, 971
and complex ODE, 879
and experimental math, 899
and fluid turbulence, 998
in Preface, xiii

Lorenz equations
as giving strange attractor, 922
and history of chaos theory, 971
and Lissajous figures, 917
and weather prediction, 1178

Los Alamos
and history of CAs, 877
and my work on CAs, xiii, 880

Lossless data compression, 560
Lossy data compression, 572
Lotka, Alfred J. (USA, 1880–1949)

and oscillatory chemical 
reactions, 1013

Lotteries, 969
Lovelace, A. Ada (Byron) K. 

(England, 1815–1852)
and universality, 1110

Low-level languages
and practical computing, 1109
and register machines, 101

Löwenheim-Skolem theorem, 1172
Lower bounds

on computations, 761, 1143
on parity, 1096
on sorting algorithms, 1142

LPC, in sound compression, 1080
Lucas, F. Edouard A. (France, 

1842–1891)
and binomials mod k, 870

Lucas-Lehmer test, for primes, 911
Lucas numbers, 891
Lucian (Greece, 120 – ~180 AD)

and inhabitants of Moon, 1190
Lucretius, Titus Carus (Italy, ~95 – 

~55 BC)
and atomism, 876
and models based on rules, 860

Lukasiewicz, Jan (Poland, 
1878–1956)

and axioms for logic, 1151
and multivalued logic, 1175

Lukasiewicz representation, 896
Lunes

and ornamental art, 872
theory of, 873

Lungs, branching in, 1008
Lyapunov exponents

in cellular automata, 950
and entropies, 960
in iterated maps, 921
probabilistic estimates of, 953

LZW compression, 565, 1069, 1072

MacArthur Foundation, xiii
Mach, Ernst (Austria/Czech., 

1838–1916)
and Mach’s Principle, 1047, 1053
and origins of relativity, 1042

Mach numbers, 997
Machiavelli, Niccolò (Italy, 

1469–1527)
and rules for military drill, 875

Machine 1447
function computed by, 761
and longest halting times, 1144

Machine 1507
as complicated TM, 1144
function computed by, 761

Machine 596440
as candidate for universality, 709
properties of, 1120

Machine 600720
behavior of, 763
and longest halting times, 1144
properties of, 1145

Machine code
and history of computing, 1109
and implementation of CAs, 866
of programs by Alan Turing, 1013
and register machines, 97

Machine integers
and linear congruential 

generators, 974

Machine intelligence, 628, 1099
Machine numbers

for Turing machines, 888
Machines

see also Register machines
see also Turing machines

Machining plans
and Voronoi diagrams, 987

Macintosh
and computer interfaces, 1102

Magic Eye random dot stereograms, 
1076

Magic squares
as defined by constraints, 945
for SETI, 1190

Magnetic chaos toys, 1183
Magnetic field

compared to gravitational, 530
and gauge invariance, 1045

Magnetic moments
and size of particles, 1044

Magnetic monopoles, 1046
Magnetization

in Ising model, 981
phase transition in, 981

Magnetosphere
radio signals from, 827, 835, 1187

Magnus, Wilhelm (Germany/USA, 
1907–1990)

and word problem for groups, 
1141

Mainframes (computers)
random generators on, 320, 974

Maintainability of software
and defining complexity, 1069

Majority cellular automaton
and P completeness, 1149

Majorization of functions (growth 
rates), 1162

Makanin, Gennadií S. (Russia, 
1938– )

and sequence equations, 1141
and undecidable word problems, 

1141
Malacology (study of molluscs), 

1008
Mallow leaves, 1006
Mammoth ivory, 873
Man, see Humans
Management

of machines that think, 629
Management science

and Boolean networks, 936
and defining complexity, 1069
and history of complexity, 862

Mandelbrot, Benoit B. (France/
USA, 1924– )

and branching models, 1005
and computer experiments, 899
and financial processes, 1014
and fractal landscapes, 1001
and fractals, 880, 934
and history of complexity, 862
and Mandelbrot set, 934
in Preface, xiii
and random walks, 990

Mandelbrot set, 934
as precursor to my work, 880
and tree space set, 407, 1006

Manicouagan, Canada
circular crater in, 1187

Manifolds
in differential geometry, 1048

discrete approximations to, 1050
undecidability in equivalence of, 

1051, 1138
Manneville, Paul (France, 1946– )

and CA classes, 948
and continuous CAs, 922

Manufacturing
causal network systems for, 1032

Many-fingered time, 1035
Many-to-one mappings, 960
Many-worlds models, 1035

for quantum mechanics, 1063
Map, basic example of, 853
MapAt

and implementing proofs, 1155
and representation of TMs, 888

MapIndexed
basic example of, 853
and causal networks, 1033

Mappings
on Cantor set, 869
cellular automata as, 959
complex, 933
functions as, 898
history of iterated, 918
iterated, 149–155
from linear congruences, 974
local and linear, 953
many-to-one, 960
piecewise linear, 921

Marconi, Guglielmo (Italy, 
1874–1937)

and SETI, 1188
Margolus, Norman H. (USA, 1955– )

and 2D CA simulators, 928
in Preface, xiii

Mark I computer, 1107
Market research

and random sampling, 1192
Markets, price fluctuations in, 429
Markov, Andrei A. (Russia, 

1903–1979)
and sequential substitution 

systems, 894
and statistics of language, 1181
and undecidability, 1136
and word problem for 

semigroups, 1141
Markov partitions

and digit sequences, 901
Markov processes, 1084

and  problem, 904
and finite automata, 958
and game strategies, 1105
history of, 1181
spectra of, 1081
as statistical models, 590

Markov random fields
and texture discrimination, 1077
and visual perception, 584

Markov systems (sequential 
substitution systems), 894

Marr, David C. (England/USA, 
1945–1980)

and visual perception, 1076
Mars

question of life on, 1179, 1180
sending messages to, 1189
as source of radio signals, 1188

Martin, Olivier C. (USA/France, 
1958– )

and additive CAs, 951
as coauthor of paper, 881
in Preface, xii, xiii
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Martin-Löf, Per E. R. (Sweden, 
1942– )

and randomness, 1068
Martingales (gambling systems), 

1068
Marxen, Heiner (Germany, 1957– )

and Turing machines, 889
Masers, natural, 1187
Masking

of sounds, 587
visual with textures, 1077

Mass
of elementary particles, 1046
equality of inertial and 

gravitational, 1047
in relativity theory, 1041
in Schwarzschild solution, 1053
in ultimate theory of physics, 528

Massey, James L. (USA/
Switzerland, 1934– )

and Berlekamp-Massey 
algorithm, 1087

Massively parallel computers
and history of CAs, 877

Massless particles
and speed of light, 1041
spin states of, 1046

Master equations
in cellular automata, 953

Matching
of networks, 1038
and paramodulation, 1156
of parentheses, 1091
of strings, 1038, 1101

MatchQ (test for matching)
and constraint systems, 941

Material equivalence
as name for Equal, 1173

Material implication
as name for Implies, 1173

Materialism, and free will, 1135
Materials

fracture in, 994
search-based discoveries of, 1193

Mates, and bird songs, 1180
Mathematica

algorithms in discovered by 
searches, 1193

analysis of internal code of, 1003
and authoring system for book, 

852
avoidance of data types in, 898, 

1154
axiom systems in, 1150
as basis for discoveries, 46
cellular automata in, 867
chaos experiments with, 919
computation of  with, 911
computation of PrimePi in, 909
computation of PrimeQ in, 909
and computer communication, 

1182
and computer experiments, 113, 

899
and concept of halting, 1137
confluence of rules in, 1037
creation of, 20
and creation of this book, xii
and creation of this index, 852
curves of math functions in, 145
and definition of math, 859
design of for human use, 1177
diversity of universality in, 644
evaluation order in, 898, 906
as example of language, 1109

and examples in education, 1133
and experimental math, 899
function names in index, 852
general notes about, 853
generic inequality of symbols in, 

1169
grammar of, 631
history of my work on, 864, 881
and human thinking, 627
as idealization of math, 1150
infinite loops in, 1137
and math insight vs. proofs, 1156
mathematical functions in, 1092
mathematical notation in, 1104
minimal model for, 102
name of, 859
as necessary skill, 856, 857
as notation for computation, 1182
notations for logic in, 1173
NP completeness in, 1143
number of names in, 1103
number representation in, 1070
operator precedence in, 1150
patterns

see Patterns (in Mathematica)
patterns and network evolution, 

1037
patterns and operator systems, 

898
and pictures in this book, 851
proofs and design of, 1158
pure functions in, 1121
random programs in, 1183
randomness generation in, 317, 

973
scoping of variables in, 1152
and sequential substitution 

systems, 894
size compared to genomes, 383
structure of, 1103
and structure of proofs, 1155
symbolic expressions in, 896
theorem proving and, 1158
theorems about, 1168
thinking in, 1104
ultimate theory of physics in, 468
undecidability in, 1138
as universal system, 642
universality in, 1110
and use of digit sequences, 902
use of hashing in, 1100

Mathematica Book, 853
writing style in, 849

Mathematical constants, 136–144
Mathematical equations

as foundation for science, 1
in history of science, 44
see also Equations

Mathematical formulas
and computational irreducibility, 

737
and engineering, 829
as results of models, 368
and science education, 1133

Mathematical functions, 145–148
as computable, 1128
difficulty of evaluating, 1134
evaluated by CAs, 639
evaluation of as P computations, 

1142
interpretation of TMs as, 1144
see also Standard mathematical 

functions
Mathematical impossibilities, 1137
Mathematical induction, 1152

Mathematical logic
combinators in, 898
and defining complexity, 1068
and DNF, 1097
history of, 1150
and history of universality, 1110
and intermediate degrees, 734
and neural networks, 1099
and problem of free will, 1135
structure of proofs in, 1151
undecidability in, 1138
unfamiliarity of notation in, 853
see also Foundations of 

mathematics
Mathematical models

history of, 992
and Principle of Computational 

Equivalence, 728
Mathematical morphology, 1077
Mathematical notation, 1182

grammar of, 1104
influence on thinking of, 1181
for logic, 1173
vs. Mathematica, 853
relations vs. axioms in, 1169

Mathematical physics
functions of, 145

Mathematical theories
distributions of theorems in, 1175

Mathematicizing power
and Church’s Thesis, 1126

Mathematics
analysis using, 606–620
applied to biological form, 1004
axioms in, 773
as central in education, 855
and continuity of space, 472
definition of, 859
in economic systems, 1015
and extraterrestrial intelligence, 

837, 1189
as foundation for science, 1
and history of complexity, 862
history of in science, 5, 859
and human intelligence, 822
idealizations of, 795, 1149
implications for, 772–821
invention vs. discovery in, 1176
and models of thinking, 629
new results in this book in, 863
notation in, 853
numbers in, 116
ordering of constructs in, 1177
and PDEs, 161
in physics, 433
vs. physics, 821
self-limiting of, 792
set theory in education, 1154
in social sciences, 9
summary of relations to, 7, 863
and systems with constraints, 221
types of theorems in, 1176
use of rules in, 875
see also Foundations of 

mathematics
MathieuC (Mathieu function)

asymptotic oscillation of, 917
MathLink

and CA programs, 865
and computer experiments, 899
and creation of this book, 854

Mating, and defining species, 1003
Matiyasevich, Yuri (Russia, 1947– )

and Diophantine equations, 1161

in Preface, xiii
and word problem for 

semigroups, 1141
Matrices

and 2D substitution systems, 933
and cryptanalysis, 602
as generalizing numbers, 1168
Hadamard, 1073
mappings of, 921
and non-commutative rings, 1153
random, 977
satisfying constraints, 945
and solving linear systems, 940

Matrix mechanics, 1056
Matrix memories, 1101
MatrixPower

and CA entropies, 958
and correlation functions, 1082
and Fibonacci, 890
and substitution systems, 890
and undecidability, 1138

Matter
as distinct from space, 1028
in Einstein equations, 1052
as generating curvature, 532, 536

Mauritania, Richat hole in, 1187
Max (maximum)

as associative, 1094
related to Or, 952

Maximal periods
of cellular automata, 950, 1088
of linear congruences, 974
of random generators, 318
of shift registers, 975
and symmetries, 950

Maximal principles
variational principles, 1185

Maximum entropy method, 1083
Maximum likelihood, 589, 1083
Maximum-of-t test, 1085
Maxwell, James Clerk (Scotland/

England, 1831–1879)
and chaos theory, 971
and electromagnetism, 1041
and fluttering of paper, 971
and gauge invariance, 1045
and Maxwell’s demon, 1021
and statistical mechanics, 1019
and stochastic models, 968

Maxwell’s demon, 1021
Maxwell’s equations

as examples of PDEs, 161
and relativistic invariance, 1041
as simple physical models, 1025

May, Robert M. (Australia/USA/
England, 1936– )

and chaos theory, 971
Maze designs, 873, 875
Maze-like patterns, 1013

from 2D cellular automata, 427
in code 746, 334
in visual cortex, 1075

Mazoyer, Jacques (France, 1947– )
and firing squad problem, 1035

McCarthy, John (USA, 1927– )
and theorems in LISP, 1168

McCulloch, Warren S. (USA, 
1898–1972)

and neural networks, 880, 1099
and universality, 1110

McCulloch-Pitts models, 1099
and finite automata, 958

McCune, William W. (USA, 1953– )
and axioms for groups, 1153
and axioms for logic, 1151
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Mean curvature, 1009
Mean field theory

for cellular automata, 953
and rate equations, 984
for self-avoiding walks, 978

Meander patterns (mazes), 873
Meanders (in rivers), 1001
Meaning

of axiom systems, 797
and intelligence, 826
in languages, 1181
in programs, 1182
and regularity, 1183
of the universe, 1027

Measure entropy
for cellular automata, 959
computing, 1084
spacetime, 960

Measure theory
and defining randomness, 1067

Measurement
in quantum theory, 542, 1062
in thermodynamics, 448, 1020

Measures
and fractal dimensions, 934
and spectra, 1081

Mechanical automata, 1183
Mechanical calculators, 1110
Mechanical computers, 1107
Mechanical devices

as not universal, 643
Mechanical perception, 1105
Mechanical processes

for real numbers, 1129
Mechanical systems

for cyclic tag systems, 895
proofs in, 1157
randomness in, 969
and repetitive motion, 829
self-reproducing, 1179

Mechanical toys
randomness in, 969

Mechanics
and history of mathematics in 

science, 859
Mechanisms

captured in models, 367
compared to purposes, 830
in programs and nature, 297
for randomness, 299

Mechanistic explanations
for complexity in nature, 861
in physics, 860, 1026

Medians
and robust statistics, 1083

Medical applications, 9, 842
Medicinal plants

leaf shapes for, 1005
Medieval logic, 1151
Mediterranean

patterns of lights around, 1187
Meet (in lattice theory), 1153
Meier, Willi (Switzerland, 1948– )

and cryptanalysis of rule 30, 1087
MeijerG (Meijer G function)

and Integrate, 1177
Meinhardt, Hans (Germany, 1938– )

and patterns on shells, 1012
in Preface, xiii
and reaction-diffusion, 1013

Meiosis, 970
Melting

of ice, 372
as phase transition, 981

Melting points
of alkanes, 1194
difficulty of computing, 1194

MemberQ (list membership test)
in aggregation systems, 978

Memo functions, 869, 906
Memory (animal)

in lower organisms, 623
and shell patterns, 1012

Memory (computer)
emulated by CA, 663
and history of computing, 1108
in practical computers, 1108
and PSPACE completeness, 1142

Memory (extraterrestrial)
in Black Cloud, 1190

Memory (human), 1102
and free will, 753, 1136
and future technology, 1195
and human intelligence, 823
and human thinking, 621
inanimate analogs of, 1178
visual, 623
and weather prediction, 1177

Memory-based encoding, 565
Menger, Karl (Austria/USA, 

1902–1985)
and nested patterns, 934

Mental functions, 1099
see also Brain

Menu interfaces, 1102
vs. languages, 631

Mercury
advance of perihelion of, 1047

Meredith, Carew A. (Ireland, 
1904–1976)

and axioms for logic, 1175
Meredith axioms

for logic, 808, 1175
Merging, in multiway systems, 937
Meristems (in plants), 409, 1004
Mersenne, Marin (France, 

1588–1648)
and primes, 909

Mersenne primes
and perfect numbers, 911

Mertens Conjecture, 910
Mesh generation

and discrete spaces, 1050
and Voronoi diagrams, 987

Mesons (in particle physics), 1057
spins of, 1046

Mesopotamian art, 43, 873
Mesoscopic systems

and quantum theory, 1058
Metabolism

and definition of life, 1178
Metamathematics, 1150

empirical, 1176
and Gödel’s Theorem, 1158

Metaphysics, implications for, 1196
Metastable states

and phase transitions, 341
and quantum measurement, 1063

Meteorites, and origin of life, 1179
Meteorology

and history of chaos theory, 971
Meter

speed of light and defining, 1041
Meter in poetry, rules for, 875
Methane, 1194
Method of lines, for PDEs, 924
Methodology

of computer experiments, 108
and definition of math, 860

development of my, 21
of math in science, 859
for studying sequences, 1091
in this book, 1193

Metric
in differential geometry, 1048
for Lorentzian spaces, 1051
for numerical data, 1101
Riemann tensor expansion of, 

1049
in space of CA rules, 948
in space of CA states, 869
in unified field theory, 1028
volume density from, 1050

Metric spaces, networks as, 1030
Metric tensors, 1048
Metrics

for complexity of software, 1069
Michelson, Albert A. (USA, 

1852–1931)
and experimental math, 899
and Michelson-Morley 

experiment, 1041
Michelson-Morley experiment, 1041
Microcanonical ensemble

for 2D Ising model, 982
Microcosm, 1196
Microorganisms

random motion of, 970
Microprocessors

randomness instructions in, 970
Microsoft Windows

and creation of this book, 854
Microspine, pattern from, 385
Microwave background radiation

see Cosmic microwave 
background

Middle A, frequency of, 1079
Middle Ages

animism in, 1195
concept of microcosm in, 1196
understanding of nature in, 876

Middle-square method, 975
for molecular dynamics, 864

Midwest, field patterns in, 1187
Mie scattering

as exactly soluble, 1133
Military camouflage, 1077
Military cryptography, 1085

and shift registers, 878, 1088
Military drill, use of rules in, 875
Military GPS (P-code), 1086
Military secrets

and history of complexity, 49
Military SETI, 1188
Military vehicles

use of randomness by, 1192
Millen, Jonathan K. (USA, 1942– )

and code 20 CA, 877
Miller, Stanley L. (USA, 1930– )

and origin of life, 1179
Miller-Rabin algorithm (for 

PrimeQ), 1192
Millipedes

locomotion patterns of, 1011
Mimesis, 1178
Mind

see also Brain
see also Thinking

Mind-body problem, 1197
Minds

of extraterrestrials, 1191
and free will, 1135

in inanimate objects, 822
and theories of communication, 

1181
Mineralogy

and forms of crystals, 993
Minimal surfaces

computing forms of, 1009
and deformable packings, 988
vs. Einstein equations, 1052
and general study of form, 967
and radiolarians, 1011
as shapes of exoskeletons, 1011

Minimal systems
for particular purposes, 1186
for particular sequences, 1186
see also Shortest programs

Minimal theories, 1186
Minimality

and recognition of purpose, 831
Minimization

of Boolean formulas, 617, 1095
of energy, 940
of finite automata, 957
as model of drainage, 1001
of multilevel logic, 1096
and variational principles, 1185

Minkowski, Hermann (Germany, 
1864–1909)

and relativity theory, 1042
Minkowski space, 1051

and quantum field theory, 1061
as solving Einstein equations, 

1053
Minors (in networks), 1045
Minotaur, home of the, 873
Minsky, Marvin L. (USA, 1927– )

and discreteness of space, 1027
in Preface, xiii
and register machines, 896, 1115
and simple Turing machines, 879, 

889, 1143
and tag systems, 1120
and universal Turing machine, 

1115, 1119
Miracles

and ultimate theory of physics, 
1025

Mirror, as amplifier, 310
Mises, Ludwig E. von (Austria/

USA, 1881–1973)
and free will, 1135

Mises, Richard von (Austria/USA, 
1883–1953)

and defining randomness, 1068
Missiles, radar pulses used by, 970
MIT

and my work on CAs, 880
and Paterson worms, 930
and precursors to my work, 879
and work on nesting, 934

Mitotic cell division, 970
Mixed states (in quantum theory), 

1062
Mixing

of initial conditions in rule 30, 976
Mobile automata, 71–77

2D, 931
2D and causal networks, 1033
active cell motion in, 887
causal-invariant systems for, 1033
causal networks from, 1033
emulated by CAs, 657, 1111
emulating CAs, 664, 1112
experiments on, 112
generalized, 76
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implementation of, 887
implementation of generalized, 

887
on networks, 1040
random initial conditions in, 949
reversible, 1018
and time in universe, 486

Möbius transformations
and complex maps, 933
and continued fractions, 914
and elliptic functions, 1093

Mod (modulo)
and algebraic forms for CA rules, 

885
basic example of, 854
and computational reducibility, 

747
computed by rule 132, 638
and cyclic addition systems, 950
difficulty of evaluating, 1134
emulated by continuous 

functions, 1129
encoded as integer equation, 1160
and formulas for repetition, 607
and idealized billiards, 1022
and primitive recursion, 907
in rolling motion, 971
TMs to compute, 1144

Mod 1
uniform distribution, 904
see also FractionalPart

Mod 2 rule, 25
see also Rule 90

Mod  rules, 870, 952
see also Additive cellular automata

Modal logic, 1158
Model theory (in mathematical 

logic), 1172
of operator systems, 805
and Peano arithmetic, 1169

Models
based on grammars, 1084
based on programs, 860
compared to reality, 991
complexity of, 1068, 1083
of data, 550
and epistemology, 1196
general issues about, 363–369, 857
history of making, 992
of mathematics, 776
mechanistic for physics, 1026
origins of physical, 1025
personal experiences of, 991, 992
and Principle of Computational 

Equivalence, 728
probabilistic, 588
programs as more than, 434
rarity of new, 368
undecidability in, 1138
of universe, 466

see also Ultimate theory of 
physics

see also Simulations
Modems

data compression in, 1070
Modes, in PDEs, 988
Modesty

and clarity of explanation, 849
Modular addition, 255, 950

state transition graphs for, 961
Modular functions

difficulty of evaluating, 1134
and nested patterns, 1093

Modular groups, 933

Modular multiplication, 257, 950
state transition graphs for, 961

ModularLambda
and nested patterns, 1093

Modulo arithmetic
system based on, 255
see also Mod

Modus ponens, 1150, 1151
and equational axioms, 1151
and equivalential calculus, 1170
and implicational calculus, 1170

MoebiusMu
difficulty of evaluating, 1134
and distribution of primes, 910
and maximal periods, 950

Moire patterns, 1078
Molding profiles

as examples of patterns, 874
Molds

and self-reproduction, 1179
Molecular biology

and complexity in biology, 390
and recognition of purpose, 1184

Molecular chaos assumption
and H theorem, 1020

Molecular dynamics
and cellular automaton fluids, 378
computer simulations of, 999
fluid equations from, 996, 999
and fracture processes, 995
and inspirational book cover, 864
as precursor to my work, 879

Molecules
and Brownian motion, 302
defining life, 1178
in fluids, 376
idealized in CA fluids, 379
and quantum theory, 1056
in smell, 1105
unpredictable properties of, 1194
vibrational modes of, 1081

Mollusc shells, see Shells
Molluscs

classified by shell patterns, 1012
pigmentation patterns of, 389

Moments of data, 1083
Moments of inertia

and isotropy, 980
Momentum

basic mechanism for, 537
Momentum conservation

in 2D cellular automata, 1024
in cellular automaton fluids, 379
in Einstein equations, 1052
in network evolution, 529
in physics, 1022

Monadic pure predicate logic, 1152
Monads

models for space with, 1028
Monasteries

ornamental art from, 873
Monocotyledons (plants)

branching in, 1004
symmetries in, 1007

Monoids
axioms for, 773
enumeration of, 805
and generalized additivity, 952
and multiway systems, 938
vs. semigroups, 1153
universality of, 1159

Monolith in 2001, 1183
Monopodial branching (in plants), 

400

Monotheism
and rejection of animism, 1195
and teleology, 1185

Monster Group, 938
and sphere packings, 987

Monte Carlo methods
aggregation systems as, 332
as application of randomness, 

1192
for CA conservation laws, 1022
and computational irreducibility, 

1132
and digit reversal, 905
in Ising models, 982
in lattice gauge theories, 1061
and probabilistic models, 1083
quasi-randomness in, 1085
for satisfying constraints, 344
and stochastic models, 968

Moon
circular craters on, 1187
circular shape of, 861, 875
computing orbit of, 313, 1107
sending signals to, 1189
supposed life on, 1180, 1190
and three-body problem, 972
times of rising of, 973

Moore, Cristopher (USA, 1968– )
and P completeness, 1149

Moore, Edward F. (USA, 1925– )
and 2D cellular automata, 928

Moore neighborhood (for 2D 
cellular automata), 177, 928

Moorish (Islamic) art, 874
Moral responsibility, 1136
Moral theories, and free will, 1135
Moray eel

pigmentation pattern of, 426
Mordell conjecture, 1164
Mordell equation, 1165
Morning glory leaves, 1006
Morphisms

in category theory, 1154
of words, 82–87
see also Substitution systems

Morphogenesis (in biology), 
400–422, 1003

undecidability in models of, 1138
Morphogenesis (of landscapes), 

1001
Morphogens, 1004
Morphology

of biological systems, 386
history of, 1004
mathematical, 1077

Morphometrics, 1010
Morrison, Philip (USA, 1915– )

and SETI, 1189
Morse, H. C. Marston (USA, 

1892–1977)
and substitution systems, 893

Morse code, 1069
Morse-Thue sequence, 83

see also Thue-Morse sequence
Mortality problem for matrices, 1138
Mosaics, 873
Moseley, Henry (England, 

1801–1872)
and shell shapes, 1008

Mosses, growth of, 1004
Motion

absolute, 1042
of class 4 structures, 281
concept of in physics, 521

Motivation
Occam’s razor for, 1025
and thinking, 629

Motor skills, memory for, 1102
Mountains, patterns of, 1001
Mouse motion

miles of in creating this book, xiv
as source of randomness, 970

Movie effects
and substitution systems, 893

MP3 sound compression, 1080
Mu-law sound encoding, 1080

 operator (in general recursion), 
907, 1121

Muchnik, Albert A. (Russia, 1934– )
and intermediate degrees, 1130

Mud
and spontaneous generation, 1179

Mug (circular reflector)
caustics from, 984

Mules
as not self-reproducing, 1178

Mullins, William W. (USA, 
1927–2001)

and dendritic growth, 993
Multichannel analysis

in SETI, 1189
Multifractals

generalized dimensions for, 959
and history of fractals, 934

Multilayer logic, 1096
Multinomial (multinomial 

coefficients)
and additive CAs, 1092
patterns generated by, 870

Multiplication
CAs based on generalized, 886
computation of, 1093
in digit sequences, 118
lower bound on, 1143
NC algorithms for, 1142
number of steps required for, 1134
performed by CAs, 661, 1112
recursive algorithm for, 1142
see also Times

Multiplication systems, 257
reversibility in, 1018
state transition graphs for, 961

Multiplication tables
CAs based on, 614, 886
consistent with axioms, 805
for groups, 945, 1172
see also Operator systems

Multiplicative digit sequences, 902
Multiplicative processes

and lognormal distribution, 977
MultiplicativeOrder

and additive CAs, 951, 1133
and cyclic multiplication, 950
difficulty of computing, 1147
and digits of rationals, 912
and linear congruence periods, 

974
as period in doubling system, 257
and quantum computers, 1148

Multipole moments
and isotropy, 980

Multiregister machines, 1114
Multiresolution analysis, 1074
Multispin coding (bitwise 

optimization)
and cellular automata, 866

Multivalued logic, 814, 1175
Multivariate hypergeometric 

functions, 916, 1092
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Multiverse (many-worlds), 1035, 
1063

Multiway systems, 204–209
based on numbers, 939
and branching of time, 504
canonical forms in, 1036
causal invariance in, 507
vs. causal networks, 1037
and cell division in animals, 1009
and chemical synthesis, 1194
compared to sequential 

substitution systems, 204
completion algorithms for, 1037
computational reducibility in, 

1134
confluence in, 1036
convergence in, 1036
emulated by predicate logic, 1159
emulated by TMs, 765
emulating multicolor, 1115
equivalences in, 1172
frequency of behavior in, 938
generating Euclidean spaces, 1036
and Gödel’s Theorem, 782
halting problems for, 1137
history of, 938
limited size versions of, 939
as models of math, 776
multidimensional, 939
and NP completeness, 1145
vs. operator systems, 1169
and quantum mechanics, 771
random initial conditions in, 949
randomness in, 205
reversible, 1018
sampling of as axiom systems, 795
searching for paths in, 1157
simulation as NP problem, 1142
spacetime networks from, 1036
states generated by, 207
and string matching, 1101
terminating and confluence, 1036
in terms of operators, 1172
undecidability in, 1136, 1137
word problems in, 1141

Multiway tag systems, 1141
and correspondence systems, 

1140
Munching foos

as precursors to my work, 879
Munching squares program, 871
Municipal districting

and Voronoi diagrams, 987
Muon

mass of, 528, 1046
models of, 1044
as type of particle, 1043

Murray, James D. (England/USA, 
1931– )

in Preface, xiii
and reaction-diffusion, 1013

Muscles
CA models for, 878
control of, 625, 1099
as excitable medium, 1013
patterns of cells in, 385, 1007
randomness in twitching of, 1011

Music
and auditory perception, 585
in bird and whale songs, 826, 1180
chords in, 917
and extraterrestrials, 1191
frequencies in, 1079
grammatical rules in, 875, 1181
and math thinking, 1177

scores from programs, 1080
on Voyager spacecraft, 1190

Musical chairs, randomness in, 968
Musical instruments

and nonlinear oscillators, 971
shapes of, 1183

Mutations (biological)
effects of, 390

Mutual information
and defining complexity, 1069

Mycoplasma bacterium, 1179
Myhill, John R. (USA, 1923–1987)

and firing squad problem, 1035
Myhill-Nerode theorem (minimal 

finite automata), 957
Mysticism

and combinatorics, 1082
and non-Western thinking, 1196
and universal objects, 1127

Mythology
as models, 992
and origin of complexity, 861

n-body problem
gravitational, 1021

 algorithms
and associative evolution, 1095
in automaton minimization, 957
in evaluating powers, 1093
in Fourier transforms, 1074
for multiplication, 1142
for , 912
for PrimeQ, 1090
in sorting, 1142
in Walsh transforms, 1073
see also Computational complexity 

theory
Nakaya, Ukichiro (Japan, 

1900–1962)
and snowflakes, 992

Name-value pairs, 1182
Named theorems in logic, 817
Names

of functions as symbolic 
expressions, 896

in the index, 852
lookup by sound, 623
of variables in math logic, 1150

Nand ( )
axioms for, 803, 808, 1151
emulated by Life, 1117
expression trees, 619, 1096
forms for cellular automata, 619
interesting theorems for, 819
lengths of proofs involving, 1175
as motivating combinators, 1121
in multivalued logic, 1175
as operation on sets, 1171
and reversible logic, 1098
single axiom for, 808
tautologies based on, 781, 1157
theorems for, 1175
truth table for, 802
as universal function, 807, 1096, 

1173
and universality, 1119
words in languages for, 1173

Nanotechnology, 1193
cellular automata and, 841, 869
and human future, 1196
and new forms of perception, 

1106
summary of relations to, 15

Napier, John (Scotland, 1550–1617)
and binary numbers, 902

Naskhi Arabic script, 874
Natural equations (curves defined 

by curvature), 1009
Natural language

see Languages (human)
Natural language query systems, 

1100
Natural order

for Walsh functions, 1073
Natural selection

Biological evolution, 415
difficulties in simulating, 1002
as engineering, 842
vs. engineering, 393
and extraterrestrial life, 1180
as force of limited power, 392
and games, 1104
history of, 1001
and leaf arrangements, 408
as non-math theory, 859
as not producing complexity, 392
of orbits in solar system, 973
as origin of complexity, 383, 861
and pigmentation patterns, 423, 

1012
as predictive theory, 397
and Principle of Computational 

Equivalence, 1002
and purpose, 831, 1185
and shapes of leaves, 404
and shapes of shells, 417, 1008
and shell patterns, 425
summary of relations to, 14
and teleology, 1185
vs. thermodynamics, 1003
value of intelligence in, 1191

Natural theology
and history of complexity, 861
and intelligent universe, 1195

Nature
compared to artifacts, 40, 828, 967
computations in, 716
mimicked by technology, 1193
undecidability in, 1138
universality in, 718

Nature, article of mine in, 882
Nature’s God, 1196
Nautilus shell

chamber structure of, 1008
growth of, 414
shape of, 385

Navier-Stokes equations, 996
and computational fluid 

dynamics, 1000
vs. Einstein equations, 535
next-order corrections to, 997
simplified versions of, 997
singularities in, 923
as subsonic approximations, 997
in two dimensions, 999

Navigation beacons
radio signals from, 1188

NC (computational complexity 
class), 1142, 1149

and Boolean minimization, 1096
NDFA (non-deterministic finite 

automaton), 957
see also Finite automata

NDSolve
and curves from curvature, 1009
difficulty of evaluating, 1134
and PDEs, 924
and Sitnikov problem, 973
and three-body problem, 972

NDTM
see Non-deterministic Turing 

machines
Nearest-neighbor algorithms, 1101
Nebulas, patterns in, 835, 1187
Necklaces

and maximal periods, 950
and shift rules, 963

Needle, Buffon’s for , 1192
Needle-like crystals, 372
Negation

in multivalued logic, 1175
in multiway systems, 796
notion of, 780, 1158

Negative bases, 902
power CAs and, 1093

Negative numbers
representation of, 902, 942

Negatively curved space, 531
and automatic groups, 1141
and chaos theory, 971
divergence of geodesics on, 1049
and hyperbolic networks, 1049

Negotiations
and price determination, 430

Neighbor-dependent substitution 
systems, 85–87

Neighbor-independent network 
rules, 509, 1037

Neighbor-independent substitution 
systems, 82–85

Neighborhoods
possible in cellular automata, 929
symmetry classes of, 928

Neon discharge tubes
randomness from, 969

Nerve cells, 1075
determinism in, 1135
as excitable media, 1013
and feature extraction, 623
in inner ear, 1079
and mollusc shell patterns, 1012
monitoring with sound, 1080
repeatable randomness in, 976
and song generation in birds, 1180
structure of and free will, 751
in visual system, 578
and Weber’s law, 1014

Nest
basic example of, 853
and branching patterns, 1006
constructing expressions with, 

897
and lambda calculus integers, 

1121
and recursive functions, 1121

Nested expressions, 102
Nested radicals, 915
Nested sequences

block frequencies in, 594, 1084
compression of, 566
as initial conditions, 272, 956
pointer-based encoding of, 1071
shown in scan lines, 892

Nested tilings, 219
Nesting

and  noise, 969
in 2D cellular automata, 171
in 2D substitution systems, 187
in additive cellular automata, 955
in animal skeletons, 420
at phase transitions, 983
and auditory perception, 586
as basis for algorithms, 1141
in biological systems, 384
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in bitwise functions, 871
in cellular automata, 25, 57
and circle packings, 986
and computational reducibility, 

741
in continuous systems, 1130
in Cosmati mosaics, 873
in curves from curvature, 1009
in cyclic tag systems, 96
and defining arithmetic, 1164
in digit count sequences, 905
in digit sequences, 117, 913
display hacks for, 871, 932
in eddies in fluids, 997
in elliptic functions, 1093
in erosion patterns, 1001
in firing squad problem, 1035
in flocks of birds, 1011
in forms of artifacts, 1183
formulas for, 608
in Game of Life, 965
with general associative rules, 956
history of, 934
and history of math, 735
in Ising model, 983
in iterated maps, 921, 961
and lack of universality, 694, 734
in lists, 931, 989
in mobile automata, 73
in multiway systems, 207, 937
and musical scores, 1080
in networks, 197, 509
in Newton iteration, 1101
and Nim, 939
as only recently familiar, 1106
origins of, 357–360
in ornamental art, 872
in pattern-avoiding sequences, 

944
in patterns of cracks, 995
and Principle of Computational 

Equivalence, 722
from projections of lattices, 932
in quasicrystals, 994
from random initial conditions, 

273
recognizing visual, 582
in recursive sequences, 130
in rule 45, 701
in rule 90, 25, 270
in sequential substitution 

systems, 91
in snowflakes, 371
in sorting networks, 1142
in structure of attractors, 959
in substitution systems, 83
in symbolic systems, 104
in systems based on numbers, 988
in Turing machines, 79, 1119
and visual uniformity, 1078
in Walsh functions, 1073
in Weierstrass functions, 918
see also Fractals

NestList
basic example of, 853
in CA evolution, 865
and random walks, 977
understanding operation of, 1177

NestWhile
and computation of , 912
and concatenation sequences, 913
and context-free parsing, 1103
and encoding of lists, 1121
and general recursion, 907

NestWhileList
and length prefixed numbers, 

1070
and network distances, 1031

Nets of polyhedra, 476
Network constraint systems, 483, 

1032
and self-assembly, 1011

Network systems, 193–203
dimensions in, 936
implementation of, 935
random initial conditions in, 949
sequential, 936

Networks
algebraic systems based on, 1172
approximating flat space, 477
approximating spheres, 1049
for attractors, 276
and Boolean functions, 619, 1096, 

1097
of CA emulations, 1118
causal invariance for, 515
and Cayley graphs, 1032
cellular automata on, 930, 936
chemical analogies for, 1040
and chemical properties, 1195
and chemical synthesis, 1194
chromatic number of, 1029
circumference of, 1029
colored, 1029, 1039
coloring of and dimension, 1031
coloring of and planarity, 1040
conditions for planarity of, 1045
connectedness of, 1039
of contacts between circles, 986
from continuous space, 533
from continuous systems, 1031
continuum limits of, 1030
and cosmological horizon 

problem, 1055
curvature in, 532
and cybernetics, 862
de Bruijn, 940
defined by constraints, 482
diameter of, 1029
as difficult to understand, 1177
dimensions of and growth rates, 

478
eigenvalues of distance matrix 

for, 1031
evolution of, 508–515
face distribution in random, 1038
Feynman diagrams as, 1060
girth of, 1029
growth rates on, 1031
homogenous, 1032
implementation of, 1031, 1037
layouts of, 193, 476, 1031
localized structures in, 525, 1045
and Markov processes, 590, 1084
mobile automata on, 1040
as models of space, 475–480
molecules as, 1194
from multiway systems, 209
Nand, 1096
nested, 197
non-overlapping, 515
non-planarity in planar, 527
NP completeness of equivalence 

of, 1146
NP completeness of matching in, 

1038, 1145
NP completeness of path finding 

in, 1146
number of replacements for, 1038

numbers of trivalent, 1029
overlaps in, 515
planar, 1038
planarity in evolution of, 515
and quantum information, 544
random, 963, 1038
random causal, 1052
random replacements in, 1038
random walks on, 1030
relations between types of, 1037
replacements in directed, 1040
reversible evolution of, 1040
rules for getting to any, 1038
of shift register states, 1089
of signs in languages, 1181
sorting, 1142
state transition, 961
substitution systems, 508–515
symbolic representation of, 1040
symbolic systems based on, 898
and systems theory, 862
of theorems in math, 820, 1176
trivalent as covering all, 476
trivalent examples of, 476
trivalent in 3D, 1030
see also Boolean networks

Neumann, Bernhard H. (England/
Australia, 1909– )

and axioms for groups, 1153
Neural networks, 1102

for bird songs, 826
for design optimization, 1193
and finite automata, 958
history of, 1099
and history of CAs, 878
and history of statistics, 1083
and history of universality, 1110
and memory, 624
and my work on CAs, 880
as rule-based systems, 860
and undecidability, 1138
and visual perception, 1076

Neurons
in brain, 1098
in cybernetics, 862
properties of, 1075
repeatable randomness in, 976
see also Nerve cells

Neurotoxins
from cone shells, 1011

Neurotransmitters, 1099
Neutral traits, 399
Neutrinos, 1043

identified with gravitons, 1054
limit on number of, 1047
and parity violation, 1019
for SETI, 1189
and speed of light, 1041

Neutron diffusion
Monte Carlo of, 968, 1192

Neutron stars
radio signals from, 835, 1188

New Age movement
and animism, 1195

New moons, 973
New Zealand

circular shape in, 1187
Newcomb, Simon (USA, 1835–1909)

and leading digits, 914
Newell, Allen (USA, 1927–1992)

and automated proofs, 1157
Newspapers

reporting canals on Mars, 1180
Newton, Isaac (England, 1642–1727)

and 2-body problem, 972

and calculus, 901
and color vision, 1075
and computational irreducibility, 

1132
and invariance of mechanical 

laws, 1041
and law of gravity, 1047
and math in science, 859, 860
and nature of space, 1028
in quote by Kant, 861
and theology, 861

Newtonian physics
and determinism, 967

Newton’s Laws
character of as principle, 1126

Newton’s method
attractor basins in, 1101
for computing square roots, 913
and gradient descent, 985
and iterated maps, 918
as iterative algorithm, 1141

NeXT (computer)
and creation of this book, 854

Nicod, Jean (France, 1893–1924)
and axioms for logic, 1151

Night sky
observed darkness of, 455
and Olbers’ paradox, 1021

Nilpotent groups
Cayley graphs of, 1032

Nim (game), 939
Nine-neighbor CA rules, 927
NIntegrate

difficulty of evaluating, 1134
NK models (random Boolean 

networks), 936
NLS equation, 925
NMR

and quantum computers, 1148
Noise

effect of on transition to 
turbulence, 996

effect on CAs of, 325, 976
in electronic devices, 302, 968
in natural radio emissions, 1187
produced by crack propagation, 

374
radio in galaxy, 836
and time series, 1083
in vacuum tubes, 971
see also Randomness

Nomography (Hilbert’s thirteenth 
problem), 1128

Non-Abelian groups
CAs based on, 887, 956
and charge quantization, 1046
in gauge theories, 1045, 1057
see also Groups (mathematical)

Non-Abelian plane waves, 1061
Non-Archimedean fields

as generalizing numbers, 1168
Non-commutative geometry

and general relativity, 1048
Non-compact groups

and tachyon spin, 1046
Non-computability

of entropies, 958
of fractal dimension, 933
see also Undecidability

Non-computable patterns
from constraints, 943

Non-computable reals, 1128
Non-constructibility

and additive functions, 953
in set theory, 1154
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Non-determinism
and multiway systems, 939

Non-deterministic finite automata, 
957

Non-deterministic polynomial time 
(NP), 1142

Non-deterministic Turing machines
and aggregation systems, 979
emulated by CAs, 766, 1146

Non-equilibrium thermodynamics
and history of complexity, 862

Non-Euclidean geometry, 1149
and abstraction in math, 792
and history of space, 1028

Non-locality
and Bell’s inequalities, 1064
in digit sequences, 730

Non-measurable sets, 1154
Non-overlapping networks, 515
Non-overlapping strings, 503, 1033

and completion algorithms, 1037
total number of, 1036

Non-periodic crystals 
(quasicrystals), 994

Non-periodic tilings, 219
Non-standard analysis, 1172

and axioms of analysis, 1155
Non-standard arithmetic, 800, 1169
Non-standard integers

as generalizing numbers, 1168
Non-verbal communication, 1181
Non-Western thinking, 1196
Noncontradiction law, in logic, 817
Nonlinear differential equations

and history of complexity, 862
for ModularLambda, 1093
and special functions, 1092

Nonlinear dynamics
summary of relations to, 15

Nonlinear feedback shift registers, 
1088

and cryptography, 1085
and history of CAs, 878
as precursors to my work, 879
see also Shift registers

Nonlinear field theories
topological defects in, 1045

Nonlinear maps
in complex plane, 933
on the interval, 918

Nonlinear models
and time series, 1083

Nonlinear oscillators
arrays of, 921
and history of chaos, 971

Nonlinear Schrödinger equation, 
925

Nonlinear wave equations, 165, 923
Nonlinearity

and computational irreducibility, 
1133

and equation solving, 940
and interactions in field theory, 

1061
in PDEs, 923

Noodles, and chaos theory, 306
Nor ( )

as universal function, 807, 1173
words for in languages, 1173

Nordahl, Mats G. (Sweden, 1958– )
in Preface, xiii
and universal CAs, 1115

Normal algorithms (sequential 
substitution systems), 894

Normal coordinates
and Riemann tensor, 1049

Normal distribution
see Gaussian distributions

Normal forms
in multiway systems, 1036
see also Canonical forms

Normal modes
of nested systems, 1081

Normal numbers, 912
and concatenation sequences, 913
and defining randomness, 1068

Normal ordering (in quantum field 
theory), 1062

Norms of tensors, 1050
Nose (human), 1105
Not ( )

in multivalued logic, 1175
and satisfiability, 1146
table for, 806
theorems involving, 817
words in languages for, 1173

Notation
for chemical compounds, 1194
in logic, 1173
mathematical, 1182
for numbers, 1182
for operators, 1182
for symbolic expressions, 896
used in this book, 852

Notes (musical), 585, 1080
Noughts-and-crosses (tic-tac-toe), 

939
Nouns

in human languages, 1103
in mathematical notation, 1182

Novikov, Petr S. (Russia, 1901–1975)
and word problem for groups, 

1141
NP (non-deterministic polynomial 

time), 1142
NP completeness, 766, 1145

and approximate solutions, 984
and automated proofs, 1157
in Boolean minimization, 1096
in cellular automata, 767
and combinatorial optimization, 

985
and cryptography, 1086, 1089
density of difficulty in, 1147
of finding addition chains, 1095
of finding discrete packings, 987
of finding network genus, 1045
of finite PCP, 1139
of knot equivalence, 1046
in Mathematica, 1143
and network evolution rules, 1038
and proof lengths in logic, 1175
and proof searching, 1157
and quantum computers, 771, 

1148
relation to undecidability of, 769
in rule 30, 770
of satisfiability, 768
and systems in nature, 1146
of tensor simplification, 1048
of tiling problems, 942, 984

Nqthm (theorem prover), 1158
NSolve

difficulty of evaluating, 1134
NTSC television signals

bandwidth of, 1079
Nuclear explosions

and computer simulations, 1133

and extraterrestrial contact, 1190
patterns of, 377

Nuclear physics
and quantum theory, 1056

Nucleation of crystals, 992
Nucleus (atomic)

discovery of, 1044
forces in, 1057
spins of, 1046

NullSpace
and CA conservation laws, 1022

Number classes
and transfinite numbers, 1162

Number conservation
in cellular automata, 458
in cellular automaton fluids, 379

Number representations, 142
and data compression, 561
length prefixed, 1070
in symbolic systems, 897

Number theory, 135
and acoustic diffusers, 1183
analytic, 909
and cryptography, 1090
and Diophantine encodings, 1160
and Diophantine equations, 1164
evaluating functions from, 1134
experimental math in, 899
functions in, 1092
history of, 909
and history of complexity, 862
and history of iterated maps, 919
and linear congruential 

generators, 974
network of theorems in, 820
and origin of substitution 

systems, 893
and Peano axioms, 1152
and quadratic congruential 

generators, 975
spectra in, 1081
and Turing machine 600720, 1145
undecidability in, 791, 1138
unsolved problems in, 1166

Numbering
of CA rules, 866, 883
of TM rules, 888, 1143

Numbers
bases of, 116
chaos theory and, 309
and computational reducibility, 

743
equivalence problem for, 916, 

1138
generalizations of, 1168
historical notation for, 1182
history of, 901
models based on, 365
natural distributions of, 1070
normal, 912
operator representations for, 916
prime, 132
and Pythagoreans, 859
recognition of, 1089
systems based on, 115–168
tree representations for, 916

Numbers games, 969
Numerical analysis

and chaos experiments, 919
and continuous CAs, 921
for differential equations, 924
and repeatability, 898

Numerical computation
artifacts in, 1184
characterizing difficulty of, 1143

in fluid flow, 996
of gravitational fields, 1053
and history of computing, 1108
and weather prediction, 1178

Numerical data, lookup of, 1101
Numerical integration

Monte Carlo methods in, 1192
searches for optimal algorithms 

in, 1193
Numerology, 1025
Nuts, segregation of mixed, 986

Object-oriented programming, 867
Object recognition, 624
Objects

described by axiom systems, 797
and image compression, 1074

Observables
in quantum mechanics, 1056

Observational errors
and Gaussian distribution, 977
and origin of randomness, 967

Observers
and Anthropic Principle, 1026
computational abilities of, 737
definition of particles for, 1062
and origin of causal networks, 487

Occam’s razor, 1025
Ocean currents, and weather, 1177
Ocean waves, 1001

as example of randomness, 301
nested breaking of, 997
pattern formation in, 947
repetitive behavior in, 988

Oceans
exploration of, 1191
finding artifacts under, 1183
whale songs in, 1180

Ocelot
pigmentation pattern of, 426

OCR (optical character recognition)
and cellular automata, 877

Octahedra
extraterrestrial in 2001, 1190
truncated, 930, 987

Octanes, 1194
Octaves (in music), 917, 1079
Octonions

as generalizing numbers, 1168
Octopus

communication by, 1181
form of tentacles of, 385
visual system of, 1075

Ocular dominance stripes
CA model for, 1012
maze-like patterns in, 1013
in visual system, 1075

OddQ (test for odd numbers)
and nested patterns, 931
and rule 132, 638

Odds and Evens game, 1105
ODEs, 922

see also Ordinary differential 
equations

Odlyzko, Andrew M. (USA, 1949– )
and additive CAs, 951
as coauthor of paper, 881
in Preface, xiii
and zeros of zeta function, 918

Odometer
and history of computing, 1107

Odor perception, 1105
and experience of dogs, 827

Offset lists
in general cellular automata, 927

Ó
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OH (hydroxyl) frequency, 1189
Oil and water, separation of, 980
Oil fires

patterns in, 377
visible from space, 1187

Olaus Magnus (Sweden/Italy, 
1490–1568)

and snowflakes, 992
Olbers’ paradox, 1021
Old English

logic operations in, 1173
Olfactory perception, 1105

and experience of dogs, 827
Olive shell, growth of, 415

 (omega) (halting probability), 
1067

(first transfinite ordinal), 1162
One-sided additivity

and cryptography, 1088
repetition from, 954

One-time pad (in cryptography), 
1086

One-to-one mapping (injective), 960
Ones

expressing numbers with, 916
number of (DigitCount), 902

Onsager, Lars (USA, 1903–1976)
and 2D Ising model, 982

Onto cellular automata, 280, 959
Ontology

implications for, 1197
and notions of space, 1028

Opcodes
in practical computers, 1108
in register machines, 896

Open sets
and axioms of topology, 1155

Open systems
and thermodynamics, 455

Operating systems
and concept of halting, 1137
and history of computing, 1108
in practical computers, 1108

Operation counts in computations, 
1143

Operator representations
for integers, 916

Operator systems, 801
automated proofs in, 1158
evolution rules for, 898
frameworks for proofs in, 1177
vs. multiway systems, 1169

Operators
as generalizing numbers, 1168
notation for, 1182
possible Boolean, 806
precedence of, 1104
precedence of in math, 1150
in quantum theory, 1056

Optic nerve, 1075
Optical amplifier, 310
Optical character recognition (OCR)

and history of CAs, 877
Optical computing

CA implemented with, 869
and quantum computers, 1148

Optical fibers
as technology component, 1195

Optical illusions, 1076
Optical SETI, 1189
Optics

and history of math in science, 859
path integral in, 1061

Optimal algorithms, 1141
Optimal evaluation chains, 1095

Optimality
and defining purpose, 829
and models of markets, 1015

Optimization
combinatorial, 985
and complexity in biology, 398
of designs in engineering, 1193
intuition about in programs, 872
and Occam’s razor, 1025
in plant leaf arrangements, 408

Optimized circuit blocks, 1193
Optimizers

and proofs about programs, 1168
search strategies in, 1193

Options, market prices of, 1015
Or ( )

axioms in terms of, 1151
and Boolean formulas, 1095
calculus of expressions, 1170
emulated by CAs, 662, 1112
encoded as integer equation, 1160
in multivalued logic, 1175
and P completeness, 1149
and satisfiability, 1146
table for, 806
theorems involving, 817
words in languages for, 1173

Oracles (in computation theory), 
1126

and arithmetic hierarchy, 1139
based on infinite tables, 720
and intermediate degrees, 1131
and non-standard arithmetic, 

1169
and second-order logic, 1167

Orbits
in Bohr atom, 1056
of comets and Gaussians, 977
and history of computing, 1107
randomness in, 313
as simple shapes, 1187
in three-body problem, 972

Order
emergence from randomness, 223

Order diagrams of posets
and causal networks, 1040

Order of updates
in sequential CAs, 1034
in sequential substitution 

systems, 894
in string rewriting, 497
in symbolic systems, 898
see also Causal invariance

Order parameters
in phase transitions, 981

Ordered fields, axioms for, 1153
Orderless (commutative)

and associative CAs, 956
Boolean functions, 1173
and generalized additivity, 952
and speedups in evolution, 1095

Orders of infinity, 1127, 1162
Ordinal numbers

and encoding of proofs, 1163
as generalizing numbers, 1168
and notions of infinity, 1162

Ordinary differential equations 
(ODEs), 922

for chemical processes, 1013
Oresme, Nicole (France, 

~1320–1382)
and time as a dimension, 1031

Organic molecules
production of, 1179

Organization
see Self-organization

Organizational structures
and history of complexity, 862
and Occam’s razor, 1025

Organogenesis in plants, 409
Organs

and biological evolution, 389, 
1002

separate rules for different, 383
Origami (paperfolding)

NP completeness in, 1145
rules in, 875

Origin of Species, 1001
Ornament

examples of, 43
grammatical rules in, 1181
and notion of purpose, 830
rules in, 872
and theory of form, 967

Orreries, 1184
Orthogonal bases, 1072

and image compression, 573
and radio signals, 1188

Oscillations
in chemical reactions, 1013
of density in rule 73, 954
in fluid flow, 998
in math functions, 917, 1134
origins of, 354–356
in PDEs, 988

Oscillators
in Game of Life, 964
nonlinear, 971
in quantum history, 1056

Oseen, C. William (Sweden, 
1879–1944)

and fluid flow past spheres, 998
Oster, George F. (USA, 1940– )

and patterns on shells, 1012
in Preface, xiii

Other minds
problem of recognizing, 1197

Otter (theorem-proving system), 
1158

Outer
and branching patterns, 1005
and enumerating expressions, 897
and metrics on surfaces, 1048
and shape tensors, 980

Outer totalistic rules
in cellular automata, 928

Outlying data, 1083
Overlaps

in networks, 510
in strings, 503, 1033

Overshooting
in gradient descent, 985

Ozsváth-Schücking rotating 
vacuum, 1053

P = NP problem, 765
and SETI, 1190
and systems in nature, 770
undecidability of, 1146

P (polynomial time), 1142
p-adic numbers

as generalizing numbers, 1168
P-code for GPS, 1086
P completeness, 1149
Packard, Norman H. (USA, 1954– )

and CA classes, 948
as coauthor of paper, 882
in Preface, xiii

Packings
of bits in CA implementation, 866
of deformable objects, 988
discrete, 987
history of circle, 985
and shapes of cells, 1007
of spheres, 349

PadLeft, and initial conditions, 866
Painlevé, Paul (France, 1863–1933)

and Painlevé functions, 1092
Painlevé functions

and 2D Ising model, 982
and nonlinear ODEs, 1092
and random matrices, 977

Paintings
and concept of intelligence, 838

Pair annihilation
and nested patterns, 358
nesting from, 989

Pair correlations
and isotropy measures, 980

Pair production
in vacuum fluctuations, 1062

Pairing functions ( ), 1127
Pairwise sorting algorithms, 1142
Palatine Chapel, 873
Paleolithic art, 43, 873
Palermo, Sicily, 873
Paley, Raymond E. A. C. (England/

USA, 1907–1933)
and Walsh transforms, 1073

Paley, William (England, 1743–1805)
and natural theology, 861

Paley family
of Hadamard matrices, 1073

Paley order
for Walsh functions, 1073

Palindrome systems, 125–127
Palindromes

in period-doubling sequences, 
892

Palm trees
growth of, 1004
phyllotaxis in, 409

Pandas, patterns on, 426, 1013
Pangolins

patterns in scales of, 1007
Panini (India, ~500 BC)

and grammars, 875
Pantheism, 1196

and physics as intelligence, 1192
Paper

crumpling of, 996
fluttering of, 971

Paperfolding
and dragon curve, 932
rules in, 875
sequences from, 892

Parabolic equations, 925, 940
Parabolic reflectors

characteristic shapes of, 1183
Paraboloids

geodesics on, 531
plant stem tips as, 1007

Paradoxes
and Gödel’s Theorem, 1159
and history of math, 1149
in set theory, 1154
and undecidability proofs, 1137

Paraffins, 1194
Parallel bit operations, 866
Parallel computation

in cellular automata, 1109
and creation of this book, 854
difficulty of understanding, 1177

(
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and history of CAs, 876
and implementing CAs, 868
and machine intelligence, 1100
of mathematical functions, 1134
and memory lookup, 622
and my work on CAs, 46
and NC, 1142
and network evolution, 1035
and P completeness, 1149
randomized methods in, 1192
of repetition periods, 1147
vs. sequential, 765
in sorting networks, 1142
and work on CA fluids, 999

Parallel postulate
in Euclidean geometry, 1154

Parallel transport (in curved 
spaces), 1049

on networks, 1051
Parallel universes

and branching in time, 1035
Parallel updating

in CA programs, 866
perceived by observer, 487

Parameter estimation, 1083
Parameter space sets

for activator-inhibitor systems, 
428

for animal shapes, 421
for CA patterns, 956
for CA rules, 948
for continuous CAs, 158, 243, 922
for iterated maps, 921
and Mandelbrot set, 934
for shell growth, 415
for shell shapes, 1008
for trees, 405–407, 1006
and universal objects, 1127

Parametric differentiation
as framework for integrals, 1177

Parametric surfaces
in shell models, 1008

Paramodulation
as step in proof, 1156

Parasitism
and biological evolution, 1002

Parastichies (phyllotaxis spirals), 
1007

Parentheses
language of balanced, 939, 1103
pattern from balanced, 1091
pattern of balanced, 989
and single combinators, 1123

Paris, Jeffrey B. (England, 1944– )
and unprovable statements, 1163

Paris-Harrington theorem
unprovability of, 1163

Parity function (Xor)
DNF for, 1096
from rule 132, 638

Parity sequence, 83, 890
see also Thue-Morse sequence

Parity violation, 1019
difficult to get from gravity, 1054

Parrots, communication with, 1180
Parsley, shape of cow, 385
Partial differential equations 

(PDEs), 161–164
for 3D tearing-free growth, 1010
compression of time in, 732
computation with, 732
conservation laws in, 1023
derived from CAs, 1024
Einstein equations as, 1053
emulating cellular automata, 1129

existence of solutions to, 940
for fluid flow, 996
and fracture processes, 995
higher-dimensional, 923
higher-order, 940
and history of CAs, 877
isotropy in, 980
and noisy cellular automata, 976
nonlinear studied by Turing, 1012
origin of, 923
and quantum field theories, 1061
in quantum theory, 1056
for reaction-diffusion, 1012
repetitive behavior in, 988
and self-reproduction models, 876
for solidification fronts, 993
for surfaces from curvature, 1009
and universality, 1129

Partial fractions
as framework for integrals, 1177

Partial functions
general recursive as, 907
in Turing machines, 1143

Partial quotients
in continued fractions, 914

Partially additive rules
repetitive behavior in, 954
spacetime entropies for, 960

Partially ordered sets (posets), 1040
as example in lattice theory, 1153

Particle accelerators
and discovery of particles, 1044
time dilation in, 524

Particle counting
and history of CAs, 877

Particle detectors
Monte Carlo studies of, 1192

Particle physics
my work in, 17, 864
relativistic invariance in, 1043
time reversal violation in, 1019

Particle production
in vacuum field theory, 1062

Particle showers
as examples of nesting, 988
multiway system models for, 938
stochastic models for, 968

Particles
thermodynamic behavior with, 

443
see also Defects
see also Elementary particles
see also Localized structures

Partition
and 1D constraints, 940
basic example of, 853
and counting blocks, 1022
and implementation of CAs, 867
and recursive multiplication 

algorithm, 1142
Partition function

and phase transitions, 981
PartitionsP (number of partitions)

and number of commutative 
groups, 1172

Parton model
as mechanical model, 1026

Pascal, Blaise (France, 1623–1662)
and arbitrary number bases, 902
and his calculator, 1107
and Pascal’s triangle, 870

Pascal’s triangle
and associative CAs, 956
for continuous moduli, 922
and encodings of arithmetic, 1164

history of, 870
and nested patterns, 610, 870
as precursor to my work, 878
and prosody, 875

Passerines (songbirds)
songs of, 1180

Passwords, as random seeds, 970
Patch entropies, 960
Patches of texture, 578
Patching, of programs, 872
Patent, related to rule 30, 973
Paterson, Michael S. (England, 

1942– )
and 2D Turing machines, 880, 930

Paterson worms
as precursors to my work, 880

Path independence, see Confluence
Path integrals

history of, 1057
in quantum field theory, 1061
for quantum gravity, 1054
and random networks, 1039
and statistical mechanics, 1061

Path metric spaces
networks as, 1030

Paths
representing substitution 

systems, 892
Paths in multiway systems

convergence of, 1036
independence on, 507
and non-determinism, 765

Paths in symbolic systems
dependence on, 898

Pattern-avoiding sequences, 944
as extraterrestrial signals, 1190
vs. Ramsey theory, 1068

Pattern formation
in biology, 422–428
history of, 947
and history of complexity, 862
in physics, 369–382
from randomness, 223
see also Cellular automata, etc.

Pattern matching
and game strategies, 1105
see also Matching

Pattern recognition, 549
Patterns (in Mathematica)

with __ as NP-complete, 1143
basic examples of, 854
and human thinking, 1103
and implementing CAs, 867
and network evolution, 1037
and proof strategies, 1156

Patterns (visual), perception of, 577
Patterns of pigmentation, 422–429
PCE

see Principle of Computational 
Equivalence

PCP (Post Correspondence 
Problem), 757, 1139

PCs (personal computers)
and history of computing, 1108
my use of, 854

PDEs, 161–164
see also Partial differential 

equations
PDF

and production of this book, 852
PDP-1 computer

and history of CAs, 877
and munching squares, 871

PDP-7 computer
and history of CAs, 877

Peacock
pigmentation pattern of, 426

Peacock, George (England, 
1791–1858)

and generalization in math, 1168
Peaks, in spectra, 586
Peano, Giuseppe (Italy, 1858–1932)

and axioms for arithmetic, 1152
and foundations of math, 1149
and math notation, 1182
and space-filling curves, 893

Peano arithmetic
axioms for, 773, 1152
emulating with groups, 1159
encoding proofs by ordinals, 1163
and Fermat’s Last Theorem, 1166
and finite axiomatizability, 1176
and Gödel’s Theorem, 1159
and Goodstein sequences, 1163
non-standard models for, 1169
and proofs of universality, 1127
undecidability of consistency of, 

1168
see also Arithmetic

Pebbles
coming to surface of sand, 986
and origin of word "calculus", 925
prehistoric computing with, 1107

Peephole set (parameter space set 
for trees), 407, 935, 1006

Pegboards
randomness in, 312, 968

Peirce, Charles S. (USA, 1839–1914)
and axioms for logic, 1151
and Nand, 1173
and theories of communication, 

1181
Pell equation, 944

and equation for Power, 1161
properties of, 1165
and quadratic Diophantine 

equations, 1164
Pendulum, attractor for, 275
Penny Matching game, 1105
Penrose, Lionel S. (England, 

1898–1972)
and mechanical self-

reproduction, 1179
Penrose, Roger (England, 1931– )

and discreteness of space, 1027
and Penrose tiles, 932, 943
and polyomino tilings, 943
in Preface, xiii
and spin networks, 1055

Penrose tilings, 932
cellular automata on, 930, 1028
diffraction patterns of, 1082
see also Quasicrystals

Pentagons
in deformable packings, 988
and Fibonacci numbers, 891
and GoldenRatio, 891
as inducing curvature, 532
lattices from, 930
see also Five-fold symmetry

Pentodes
and Nand operation, 1173

Perception, 547–635
atomic-scale, 1195
auditory, 585–588
in biological evolution, 1105
and branching in time, 505
and extraterrestrial intelligence, 

836
and familiarity of features, 1105
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higher forms of, 632–635
and Principle of Computational 

Equivalence, 722
and recognizing meaning, 826
relations to NP completeness, 771
of time in universe, 487
traditional idealization of, 736

Perceptrons, 1076, 1099, 1102
Percolation

and Boolean networks, 937
as model of drainage, 1001
as phase transition, 983
and structure of class 4, 948

Percussion instruments, 1079
Perfect cuboid

as unsolved problem, 1166
Perfect fifth (musical chord)

curve of, 146
perception of, 1079

Perfect numbers, 911
and iterated aliquot sums, 911
in ordering of math constructs, 

1177
unsolved problem about, 1166
and zeros of sequence, 135

Perfect shuffles, 974
Perfumes, odors in, 1105
Period 3 in iterated maps, 955
Period-doubling sequence

in iterated maps, 921
spectrum of, 1081
from substitution sequence, 892

Periodic behavior
origins of, 354–356
see also Repetitive behavior

Periodic points
enumeration of, 958
enumeration of in CAs, 954
in shift rules, 963

Periodic structures
see Localized structures

Periods, see Repetition periods
Periods (number type), 916
Periostracum, 1011
Peristalsis

as repetitive process, 1011
Periwinkle shell, growth of, 415
perl (computer language), 894
Permanence, Principle of, 1168
Permanents

and NP completeness, 1145
Permutation test, 1085
Permutations

and group theory, 1153
and reversible block CAs, 1023
and reversible mobile automata, 

1018
in sestina rhymes, 875

Perpetual motion machines
in quantum field theory, 1062
in thermodynamics, 447

Perrin sequence (generalized 
Fibonacci sequence), 891

Perron numbers, 958
Persian (Islamic) art, 874
Persian gardens

and nested patterns, 874
Persian religions

and free will, 1135
Persistent structures

in class 4 systems, 281–296
see also Localized structures

Personal computers (PCs)
and history of computing, 1108
my use of, 854

Perturbation series
computational difficulty in, 1146
and computational irreducibility, 

1133
in quantum electrodynamics, 

1056, 1060
Perturbations

continual in CAs, 947
and effect on turbulence, 996
in initial conditions, 250
and randomness generation, 323
sensitivity of complexity to, 1002

Peru, mazes in, 873
Petals (in flowers)

arrangement of, 409
growth of, 412

Petersen network
examples of drawing, 476

Petri nets
and causal invariance, 1035
and causal networks, 1033

Petroleum, 1194
PGP cryptographic system, 1086
Phase factors

and gauge invariance, 1045
Phase-locked loops, 1188
Phase space

of cellular automata, 278
for finite-size systems, 961

Phase transitions, 981, 983
in cellular automata, 339
in continuous CAs, 948
discreteness from, 337
and inflationary universe, 1055
in Ising model, 982
melting in alkanes as, 1194
from molecular dynamics, 999
and nesting, 989
in one dimension, 983
in percolation, 983
in probabilistic CAs, 591, 976
and randomness tests, 1085
and scale invariance, 955
undecidability of, 1138
and uniformity, 354

Phases
and localized structures, 990
of matter as analogy for cellular 

automaton classes, 235
separation of in 2D CA, 336

Phelan, Robert J. (USA, 1933– )
and minimum area packings, 988

Pheromones
alkanes as, 1194
and animal communication, 1180

 (phi), see GoldenRatio
Philippines

as source of shells, 1011
Philosopher’s stone

and alchemy, 861
as universal object, 1127

Philosophy
discussion of math in, 860
and human thinking, 1099
and idea of math in science, 859
implications for, 1196
of language, 1181
and pragmatic theory of law, 1136
and quantum mechanics, 1058, 

1135
structure of proofs in, 1151
summary of relations to, 10, 863
and theories of communication, 

1181
and universe as intelligent, 1195

and visual perception, 1076
writing style in, 849

Philosophy of science
issues of modelling in, 991
and methodology of this book, 

1197
Phoenician art, 43, 873
Phonemes

in sound compression, 1080
Photoconductivity

as element in technology, 1195
Photoelectric effect

in quantum theory, 1056
Photographs

and concept of intelligence, 838
Photons

and Bell’s inequalities, 1064
history of, 1056
randomness from, 970
as source of decoherence, 1063
as type of particles, 1043
and vacuum fluctuations, 1062
zero mass of, 1046

Photorealistic graphics
textures in, 1077

Photoshop (software)
and image processing, 1077

Phrases, in human languages, 1103
Phyla of organisms, 1003
Phyllotaxis, 408–412, 1006

purpose invented for, 387
Physical constants

numerology for, 1025
Physicists

and Church’s Thesis, 1126
and defining life, 1178
and effectiveness of math, 860
and free will, 1135
and measuring complexity, 1069
note for, 1043
and quantum measurement, 1058
and SETI, 1180
and study of complexity, 862
and studying hearing, 1080

Physics, 369–382, 433–545
avoidance of complexity in, 862
and Church’s Thesis, 1126
compared to math, 821
conserved quantities in, 1022
continuous systems in, 729
fundamental, 433–545
and laws of human behavior, 1135
learning compared to science in 

this book, 856
vs. mathematics, 1026
mechanistic explanations in, 860
methods applied to biology, 1003
my early work in, 18
notions of purpose in, 1185
as origin of PDEs, 923
and Principle of Computational 

Equivalence, 720
quantum, 537, 1056
reversibility of laws of, 435, 1019
satisfying constraints in, 349
success of math in, 859
summary of relations to, 8, 863
textbooks and Second Law, 1020
ultimate theory of

see Ultimate theory of physics
Physiology

and free will, 1135
see also Biology

Pi ( )
approximations to, 912

block frequencies in digits, 594
Buffon’s needle and, 1192
computation of nth digits in, 912
continued fraction for, 143, 914
difficulty of evaluating, 1134
digit sequence of, 136
as early example of complexity, 48
frequencies of digits in, 912
generating as purpose, 1185
and history of randomness, 967
and random networks, 963
rational approximations to, 1134
from rational integral, 916
as rule 60 initial condition, 1091
and SETI, 836, 1190
 questions, 1126
 sets, 1139

Piaget, Jean (Switzerland, 
1896–1980)

and animism in children, 1195
Piano

CA cells as keys on, 869
frequencies on, 1079

Pictures
as alternative to notation, 853
deductions from, 577
printing of in this book, 852

Pie charts
of classes of behavior, 948

Piecewise linear maps, 921
Piecewise linear spaces (cell 

complexes), 1050
Piezoelectricity

as element in technology, 1195
Pigmentation patterns (of 

organisms), 422–429
communication through, 1181
and complexity in biology, 384
randomness in, 970
in similar organisms, 389

Pilot waves (hidden variables), 1058
Pinball

and randomness from initial 
conditions, 312

Pinecones, phyllotaxis in, 409
Pingala (India, ~200 BC)

and Fibonacci numbers, 890
Pingala’s method

for computing powers, 1093
Pink ( ) noise, 969

see also  noise
Pioneer 10 spacecraft, 1189
Pions (in particle physics), 1057
Pipelining

in CA implementation, 868
Pippenger, Nicholas J. (USA/

Canada, 1947– )
and NC computations, 1149

Pisot numbers, 903, 1081
Pitch, in auditory perception, 585
Pitting (hoppering) in crystals, 993
Pitts, Walter H. (USA, 1923–1969)

and neural networks, 880, 1099
and universality, 1110

Pixels
in bitmaps, 1108
displays made from, 46
and printing of this book, 852

PKZIP (compression program), 1069
Planar Feynman diagrams

and QCD, 1040
and quantum gravity, 1054
and random networks, 1039

Planar networks, 195, 1038

Φ

Π

#2
#n

1/f
1/f
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Planarity
vs. dimension for networks, 1038
generalizations of, 1045
and network evolution, 515
particles and in networks, 526

Planck, Max K. E. L. (Germany, 
1858–1947)

and quantum theory, 1056
Planck length

and discrete space, 1027
in early universe, 1056

Planck’s constant, 1061
Plane geometry, axioms for, 774
Plane waves

in QCD, 1061
superpositions of, 984

Planes
in linear congruential patterns, 

974
Planetary nebulas, 1187
Planets

as approximate spheres, 1187
extrasolar, 1179
formation of, 455
new and gravity theory, 1047
orbits and role of God, 861
rules for motion of, 860
as systems modelled, 366
in three-body problem, 973

Plankton, forms of, 1011
Planning

and defining intelligence, 1178
Plant breeding

as randomized algorithm, 1193
Plant geography

and branching types, 1004
Plants

classification of, 1004
diversity of pollen in, 1011
growth compared to animals, 420
growth of, 400–413
and history of substitution 

systems, 893
hormones in, 404
hybrids of, 1193
as models for extraterrestrials, 

1190
as origin of ornament, 872
shapes of and math, 859
symmetries of, 1007

Plaque
on Pioneer 10 spacecraft, 1189

PLAs (Programmable Logic 
Arrays), 1095, 1097

Plasma dynamics
and electric breakdown, 995
and natural radio emissions, 1187
and pulsar signals, 1188

Plato (Greece, 427–347 BC)
and microcosm, 1196
and mimesis, 1178
and the nature of space, 1028
and primes, 909, 910
and purpose in nature, 1185

Platonic solids
proof of in Euclid’s Elements, 1176

Platonism
as foundation of math, 1176

Play
in audio representation of cellular 

automata, 869
Player pianos

and history of universality, 1110
as programmable machines, 1107

Plot3D, metric for surface in, 1048

Plouffe, Simon (Canada, 1956– )
and computation of , 912
in Preface, xiii

Pluperfect numbers, 911
Plus ( )

combinator for, 1122
and NC computations, 1149
primitive recursive definition of, 

907
see also Addition

PN (pseudonoise) sequences, 1084
see also Shift registers

Podolsky, Boris (USA, 1896–1966)
and EPR experiment, 1058

Poetry
and Fibonacci numbers, 891
rules in, 875

Poincaré, J. Henri (France, 
1854–1912)

and 3-body problem, 972
and cell complexes, 1050
and chaos theory, 971
and iterated maps, 918
and notion of complexity, 1068
and Poincaré recurrence, 1022

Poincaré disk (negatively curved 
space), 1049

Poincaré recurrence
in cellular automata, 267
and thermodynamics, 1022

Point defects, 1045
Point location

and Voronoi diagrams, 987
Pointer-based encoding, 565

implementation of, 1071
and memory, 1100

Pointers
and hashing, 622, 1100
in implementation of CAs, 866

Poisson’s equation
and Einstein equations, 1052

Poker test, 1085
Polar plots

and shapes of leaves, 1006
Polarization

and Bell’s inequalities, 1064
as spin direction, 1046

Poles (in complex plane)
undecidability of, 1177

Polish notation
for expressions, 896
in logic, 1173

Political boundaries
as visible from space, 1187

Political history
and human languages, 1103

Politzer, H. David (USA, 1949– )
and particle masses, 1047
in Preface, xiv

Pollard, John M. (England, 1941– )
and integer factoring, 1090

Pollard rho method, 1090
Pollen

and Brownian motion, 302
and circle packings, 985
forms of, 385, 1011

Polling
as application of randomness, 

1192
Pólya, George (Hungary/

Switzerland/USA, 1887–1985)
and zeta function zeros, 918

Polyadic groups, 1171
Polycrystalline materials, 993

PolyGamma (polygamma functions)
from sums, 917

Polygenes, 1003
Polygons

and constructible reals, 1129
produced by 2D CAs, 929
regular allowing tilings, 943
in Voronoi diagrams, 987

Polyhedra
as Plato’s model for space, 1028
as shapes of dice, 971
as shapes of pollen grains, 1011
in Voronoi diagrams, 987

PolyLog (polylogarithms)
and computing nth digits, 912
and Feynman diagrams, 1060, 

1133
as special functions, 1092

POLYLOGTIME
and P completeness, 1149

Polymers
hydrocarbon, 1194
as self-avoiding walks, 978
smell of, 1105

Polynomial algebra
axioms for, 1153

Polynomial equations
and algebraic numbers, 916
and EllipticTheta, 1092
lack of universality in, 731
solutions to, 912
see also Quartic equations
see also Quintic equations

Polynomial factoring, see Factor
Polynomial growth

in substitution systems, 890
Polynomial space (PSPACE), 1142
Polynomial time (P) computations, 

762, 1142
and cryptography, 1086
and defining randomness, 1068

PolynomialMod
and additive CAs, 951, 1094
and rule 90, 870
and shift registers, 975

PolynomialReduce
for Boolean minimization, 1096

PolynomialRemainder
and lists with flat spectra, 1081

Polynomials
and additive CAs, 610, 951
canonical forms of, 1037
and continued fractions, 914
and difference tables, 1091
digit sequences from, 914
as generalizing numbers, 1168
generating primes with, 909
iterated, 1098
iteration to find roots of, 1101
machines for computing, 1107
as models, 1083
and nested patterns, 610
sets of values taken on by, 1161
and shift registers, 975
universal, 1161

Polyominoes, 943
Polytopes

in color space, 1074
and trivalent networks, 1029

Pomeau, Yves (France, 1942– )
and cellular automaton fluids, 999
in Preface, xiii

Pompeii, maze patterns at, 873
Pond snail shell, growth of, 415

Ponzano, Giorgio E. (Italy, 1939– )
and spin networks, 1055

Popcorn
segregation of sizes in, 986

Popper, Karl R. (Austria/New 
Zealand/England, 1902–1994)

and free will, 1135
Popping

in natural radio emissions, 1187
Population count (DigitCount), 902
Population studies

and history of complexity, 861
and history of statistics, 1082

Pores in sphere packings, 986
Posets (partially ordered sets), 1040

as example in lattice theory, 1153
Position

and aggregation models, 978
basic example of, 853
and nested patterns, 931

Positional information
in embryo development, 1010

Positional notation
for numbers, 116, 1182

Positivism
and character of math, 1176
and Frege, 1149
and logic as a foundation, 860
and math in science, 859
and theories of communication, 

1181
Post, Emil L. (USA, 1897–1954)

and axiom systems in logic, 1170
and models of computation, 879
and models of math, 1150
and multivalued logic, 1175
and multiway systems, 938
and origins of universality, 1110
and Post Correspondence 

Problem, 1139
and tag systems, 879, 894
and truth tables, 1170
and undecidability, 1136
and undecidability of word 

problem, 1141
and underivability of logic 

axioms, 1170
and universality, 1125

Post Correspondence Problem 
(PCP), 757, 1139

density of difficult instances of, 
1147

Post tag systems, see Tag systems
Postmodernism, 1196
Post’s problem

and intermediate degrees, 1130
PostScript (page description 

language)
and computer communication, 

1182
and production of this book, 852

Power, see Powers
Power cellular automata, 1093
Power-free sequences (repetition-

free sequences), 944
Power laws

for crushed rock, 995
and fractal dimensions, 933
in spectra, 969
for turbulent fluid flow, 997
Zipf’s law as example of, 1014

Power lines
radio emissions from, 1188

Power of axiom systems
and ordinal numbers, 1163
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Power spectra
of natural processes, 969
properties of, 1080
see also Spectra

Power towers
and Ackermann function, 906
and symbolic systems, 897

Power trees, 615
PowerMod

and randomized primality 
testing, 1192

and RSA cryptography, 1090
Powers

combinator for, 1122
of complex numbers, 1094
computation of, 615, 1093
computational reducibility in, 749
digit sequences of, 119, 614, 749
encoded as integer equation, 1161
fractional parts of, 121, 903
and linear congruential 

generators, 318
with nearby values, 1166
in ordering of math constructs, 

1177
and primitive recursion, 907
see also Arrow function (nested 

power)
Powers of 2

cellular automaton for, 614, 749
Powers of 3

cellular automaton for, 661
digits in, 119, 903
and linear congruential 

generators, 318
Powers of 3/2

in continuous CAs, 157
digits in, 903

Powersets
and cardinality of reals, 1127
in finite set theory, 1171

Practical computers
and concept of halting, 1137
and discrete models, 369
emulated by CAs, 661
history of, 1107
intuition from, 716
and universality, 644
workings of, 1108

Pragmatic theory of law, 1136
Pragmatics

and theories of communication, 
1181

Pre-Socratics
aphorism from, 1196

Precedence
in context-free languages, 1103
in math notation, 1182
of operators in logic, 1173
of operators in WFFs, 1150

Precession
in perihelion of Mercury, 1047

Precipitation
and extraterrestrial rocks, 1179

Predators
avoiding by randomness, 1192
extraterrestrial, 1190
operating not by prediction, 1105

Predestination, and free will, 1135
Predicate logic, 1151

automated proofs in, 1158
axioms based on, 1159
axioms for, 773
as basis for Lincos language, 1189
and CA axioms, 794

combinators and, 1121
as foundation for math, 1149
higher-order, 1167
and proofs about programs, 1168
universality in, 784, 1159

Predicates
in well-formed formulas, 1150

Predictability
in biological evolution, 397
and computational irreducibility, 

737
and engineering, 829
and free will, 751
of melting points, 1194
and non-universality, 695
as preventing complexity, 40
and Principle of Computational 

Equivalence, 6
as requirement for science, 1196
of robots in science fiction, 629
and thermodynamics, 447
of weather, 1177

Prediction
of data, 549
evolving methods for, 1105
and game strategies, 1105

Prefetching
of data in CA implementation, 868

Prefixed number representation, 
1070

Prefixes
and pointer-based encoding, 1071

Pregeometry, 1027
Prehistoric structures

identifying purposes of, 1184
Premium bonds (lottery)

randomness in, 969
Prepend (prepend element)

theorems about, 1168
Presburger, Mojzesz (Poland, 1904 – 

~1943)
and axioms for arithmetic, 1152

Presburger arithmetic, 1152
algorithms for, 1143

Price fluctuations in markets, 429
Prigogine, Ilya (Belgium/USA, 

1917– )
in Preface, xiii
and reaction-diffusion, 1013

Primal sketch, 1076
Primary colors, 577, 1075
Primates

auditory perception in, 1079
Prime (prime numbers), see Primes
Prime implicants

in Boolean formulas, 1095
PrimePi (prime count), 133, 909

and encoding of lists, 1120
and Zeta, 918

PrimeQ (primality test), 909
encoded as integer equation, 1160
and integer factoring, 1090
randomized methods for, 1192
and shift register periods, 975

Primes
and arithmetic systems, 1115
CA for producing, 640, 1109
and complexity history, 48
distribution of, 133, 909
and doubling system periods, 258
and encoding lists, 1120
and extraterrestrials, 837, 1190
of the form , 1162
from fraction system, 1115
and hashing, 1100

history of, 908
largest known, 909
leading digits in, 914
and linear congruence periods, 

974
Lucas-Lehmer test for, 911
and multiplicative digits, 902
in ordering of math constructs, 

1177
and periods of limited size 

systems, 256
as precursors to my work, 878
and primitive recursion, 907, 908
and quadratic congruential 

generators, 975
and register machines, 1114
as rule 60 initial condition, 1091
sequence of, 132–135, 909
simplest CA for producing, 1186
tables of, 910
trapezoidal, 911
as values of polynomials, 1162
and Zeta, 148, 918

Primitive cells, and CA lattices, 929
Primitive operations

in logic, 807, 1096
and natural phenomena, 18
and universality, 642

Primitive polynomials
and shift register periods, 975

Primitive recursive functions, 907
and Church’s Thesis, 1125
undecidability in, 1136
and universality, 1121

Princeton (Institute for Advanced 
Study), xiii

Principal curvatures, 1049
Principia (of Newton), 859
Principia Mathematica (of Whitehead 

and Russell)
and foundations of math, 1149
and Gödel’s Theorem, 1158
logic axioms in, 1151
and orders of logic, 1167
as origin of tag systems, 894

Principle of Computational 
Equivalence, 715–846

antecedents to, 1125
and computational complexity 

theory, 766
and computational irreducibility, 

738
and concept of microcosm, 1196
and continuity, 729
and epistemology, 1196
and future of computers, 841
and future of technology, 1196
and Gödel’s Theorem, 782
historical perspectives on, 

844–846
and human uniqueness, 844
implications for ontology, 1197
implications for philosophy, 1196
implications for technology, 840
initial conditions violating, 1129
introduction to, 5
and mathematicians, 1125
and mathematics, 772
and modelling, 728
and natural selection, 1002
and operator systems, 815
and origin of complexity, 736
outline of, 716–719
and philosophy of science, 1197
and postmodernism, 1196

process of understanding, 856
and quantum measurement, 1064
and thermodynamics, 444
and ubiquity of intelligence, 822
and universe as intelligent, 1191
validity of, 726–735

Principle of Entropy Increase
character of as principle, 1126
see also Second Law of 

Thermodynamics
Principle of Equivalence (for 

gravity), 530
Principle of Least Action, 1185
Principle of Least Effort

and Zipf’s law, 1014
Principle of Natural Selection

character of as principle, 1126
see also Natural Selection

Principle of Permanence, 1168
Principle of Relativity

character of as principle, 1126
see also Relativity theory

Printing
color gamut in, 1074
and halftoning, 1077
rosettes in 4-color, 1078
of this book, 852

Prions, 988
Prisoner’s Dilemma, 1104
Probabilistic cellular automata, 325, 

591, 976
classification of, 948
and continuous CAs, 922

Probabilistic estimates
in cellular automata, 953
in multiway systems, 937

Probabilistic models, 588
aggregation systems as, 332
and external randomness, 299
Probabilistic CAs, 299
of written languages, 1181

Probabilistic substitution systems, 
1084

Probabilities
in block encoding, 1071
and entropies, 959
as intermediate truth values, 1175
origin of, 1083
in quantum computers, 1147
in quantum theory, 541, 1058

Probability distributions
and fractal dimensions, 934
for random walk, 977

Probability theory
and defining randomness, 1067
foundations of, 967

Problem-solving
and defining intelligence, 1178

Procedural computer languages, 
627

Procedures, see Programs
Process charts (flowcharts)

and causal networks, 1032
Processors

in practical computers, 1108
Product

and spectra, 1081
see also Multiplication

Production systems
and computer languages, 1104
and formal languages, 939
see also Multiway systems
see also Sequential substitution 

systems
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ProductLog
and concatenation sequences, 913

Program counter
in register machines, 98

Program machines (register 
machines), 97–102, 896

Programmability
and history of math, 1177
of machines, 1107
and universality, 642

Programmable logic arrays (PLAs), 
1095, 1097

Programmed cell death, 419
Programmed trading systems, 431
Programming

and proofs of universality, 698
and study of programs in the 

notes, 854
Programming languages

see Languages (computer)
Programming paradigms

in Mathematica, 853
Programs

behavior of simple, 23–39
and biological systems, 383
compared to constraints, 342
compared to nature, 297
continuous, 1129
discreteness in, 976
as foundation for science, 3
history of concepts related to, 860
and human thinking, 628
making models based on, 368, 992
in notes to this book, 853, 854
in practical computers, 1108
proving theorems about, 1168
random, 23, 101
as reproducing the universe, 465
see also Algorithms
see also Cellular automata, etc.
see also Computation

Projection method
for Penrose tilings, 932

Prolog (computer language), 1158
Pronunciation

lookup based on, 623
Proof theory

and number theory, 1166
Proofs, 775

as application of rules, 875
of axiom system correctness, 1170
and computer experiments, 899
and definition of math, 860
encoded by ordinals, 1163
general frameworks for, 1177
of halting for TMs, 1145
importance of relative to 

theorems, 1177
inference rules in, 1151
lengths of, 1143
lengths of in logic, 1175
of NP completeness, 1145
of , 1146
role of in current math, 1156
searching for, 1157
of shortest axiom for logic, 811
structures of, 1155
of undecidability, 1137
of undecidability of PCP, 1140
and universal language of 

Leibniz, 1109
of universality, 664–673, 722, 1127
of universality by computer, 1115

of universality of Life, 1117
of universality of rule 110, 

678–689, 1116
Propagation

of class 4 structures, 281
of effects in CAs, 252, 950
of effects in PDEs, 923

Propellers
characteristic shapes of, 1183

Proper time (in relativity theory), 
1042, 1051

Proportion, theory of in art, 872
Propositional logic, 1151

axioms for, 773, 803
see also Logic

Prosody (study of verse)
and Fibonacci numbers, 891

Protein folding
and biological evolution, 1003
and NP completeness, 1146
and optimization, 988
randomness in, 1184

Proteins
as biological artifacts, 1184
made from genes, 1002
and nanotechnology, 1193
shapes of, 1003
statistics of sequences in, 1184
symmetries in shapes of, 1007

Protestantism, and free will, 1135
Protists

pattern in, 385
see also Radiolarians

Protocols, for computers, 1182
Protons

decay of, 1025
size of, 472, 1044

Protoplasm, 1178
Protozoa

as fairly optimal organisms, 398
Prouhet, Eugène (France, 

1817–1867)
and Thue-Morse sequence, 893

Prouhet-Thue-Morse sequence
see Thue-Morse sequence

Prusinkiewicz, Przemyslaw 
(Poland/Canada, 1952– )

and branching in plants, 1005
Pseudocode

avoidance by use of Mathematica, 
853

PseudoInverse
and matrix memories, 1101

Pseudonoise (PN) sequences, 1084
and CDMA signals, 1188
see also Shift registers

Pseudorandom generators, 317
historical use of, 968
and history of complexity, 49
as precursors to my work, 879
randomness tests on, 1085
see also Intrinsic randomness 

generation
see also Random number 

generators
Pseudospectral methods for PDEs, 

924
PSPACE (polynomial space) 

computations, 1142
PSPACE completeness

of automaton minimization, 957
and periods of CAs, 1147

Psychiatry
and history of complexity, 862

Psychoactive drugs
and spider webs, 1184

Psychology
and defining intelligence, 1178
history of, 1099, 1135
mentions of undecidability in, 

1136
systems to emulate, 629
and visual perception, 1076

Psychophysics, 1076
experimental difficulties in, 1077

Ptolemy (Egypt, ~100 – ~170 AD)
and math in science, 859
and models based on rules, 860

Public-key cryptography, 1086
and quadratic congruential 

generators, 975
Publication counts

for axiom systems, 1153
for cellular automata, 878

Publication dates
conventions for, 851

Publicon
and authoring this book, 852

Puffer train (in Game of Life), 965
Pulsar (in Game of Life), 964
Pulsar puffer (in Game of Life), 965
Pulsars

and general relativity, 1048
and history of SETI, 1189
on Pioneer 10 plaque, 1189
radio emissions from, 1188
thought to be intelligent, 835

Pulse code modulation (PCM), 1188
Pumping lemmas (for formal 

languages), 944
Punched cards

and history of computing, 1107
and history of universality, 1110

Pure functions
and lambda calculus, 1121
see also Function

Pure gravity, 1053
Pure mathematics

foundations of, 1150
Pure states (in quantum theory), 

1062
Purpose

in archeology, 1184
in biological evolution, 387
compared to mechanism, 831
and defining randomness, 1068
definition of, 829
for extraterrestrials in science 

fiction, 1191
and free will, 1136
of natural systems, 1185
Occam’s razor for, 1025
in physics, 1185, 1187
possible, 1185
of science, 861
technology as achieving, 843
of whale songs, 1180

Putnam, Hilary W. (USA, 1926– )
and Diophantine equations, 1161

Puzzles
based on rules, 875
and constraints, 210
and intelligence, 822, 1178
patterns in, 1104
training animals to solve, 826
use of base 2 in, 902

Pylos tablet, maze pattern on, 873

Pyramids
rules for building from stone, 874
Sierpinski, 172

Pythagoras (Italy, ~560 – ~480 BC)
and math in science, 859, 860
and perfect numbers, 911
and rules in music, 875

Pythagorean theorem
sending signals based on, 1189

Pythagorean triples
and Moire patterns, 1078
as satisfying constraints, 945

Pythagoreans
and aliquot sums, 910
and irrationality of , 912
and music, 1080
and numerology, 1025
and primes, 908

Python
pigmentation pattern of, 426

Q, see Robinson arithmetic
q-hypergeometric functions

in hard hexagon problem, 1133
q-numbers

as generalizing numbers, 1168
QCD (quantum chromodynamics), 

1057, 1061
and computational irreducibility, 

1133
and experience of models in, 991
as simple physical model, 1025

QED
see Quantum electrodynamics

QSPR (quantitative structure-
property relations), 1195

Quadratic congruential generators, 
975

Quadratic Diophantine equations, 
944

NP completeness of, 1146
Quadratic equations

as exactly soluble, 1133
Quadratic forms

and Diophantine equations, 1164
Quadratic functions

in Turing machines, 1144
Quadratic irrationals

and constructible reals, 1129
and continued fraction map, 955
and Penrose tilings, 932
and spectra, 1081
see also Sqrt (square root)

Quadratic maps, 921
and history of chaos, 971

Quadratic primes conjecture
as unsolved problem, 1166

Quadratic programming
and circle packings, 986

Quadratic residue sequences, 1090
in acoustic diffusers, 1183
and flat spectra, 1081
NP completeness in, 1145

Quadratures
as exact solutions, 1133

Quadrics
fit to curved surfaces, 1049

Quadtrees, 568, 1101
Quality factor

in image compression, 573
Quantifier elimination

and commutative groups, 1160
and real algebra, 1154

Quantifiers
higher-order, 1167

P % NP
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in predicate logic, 1151
in well-formed formulas, 1150

Quantitative traits, 1003
Quantization

and discreteness of networks, 528
of volume in spin networks, 1055

Quantized vortices
in neutron stars, 1188

Quantum chaos, 1056
and decoherence, 1064

Quantum chromodynamics
see QCD

Quantum computers, 1147
and NP completeness of factoring, 

1090
and quantum history, 1058
vs. Turing machines, 771

Quantum cosmology, 1026, 1063
Quantum cryptography, 1058
Quantum-dot cellular automata, 

1193
Quantum electrodynamics (QED)

as analogy for quantum gravity, 
1054

effective coupling in, 1062
Feynman diagrams in, 1060
history of, 1056
Monte Carlo methods in, 1192
and point electrons, 1044

Quantum field theory, 1061
and computational irreducibility, 

1133
difficulty of computations in, 1146
and discrete space, 1027
and energy conditions, 1053
and gravity, 1054
and knot theory, 1046
measurement in, 1065
and origins of mass, 1046
particles in, 540
planar diagrams in, 1040
and quantum computers, 1148
and quantum measurement, 1064
and random networks, 1038
simple effective theories in, 1026
and space as background, 1028
and ultimate theory of physics, 

1025
and uniform spectra, 988
vacuum fluctuations in, 1062

Quantum fluctuations
and noise, 969

Quantum gravity, 1054
and discrete space, 1027
and Hawking radiation, 1062
history of, 1025
path integrals in, 1057
as source of decoherence, 1063
and space vs. contents, 1028
and spin networks, 1055
undecidability in models of, 1138

Quantum groups
and spin networks, 1055

Quantum information theory, 1058
Quantum measurement, 542, 1062

vs. computational irreducibility, 
1135

and multiway systems, 1036
Quantum mechanics, 537–545

and atomism, 876
Brillouin zones in, 988
and character of programs, 538
and Church’s Thesis, 1126
discretization of, 1059
and existence of formulas, 1132

and free will, 752, 1135
and gauge invariance, 1045
history of, 1056
and history of randomness, 967
and history of statistics, 1082
and mechanistic explanations, 860
and new types of perception, 1106
and NP completeness, 771
and origins of Second Law, 1020
and PDEs, 923
on Pioneer 10 plaque, 1190
and randomness, 303, 539, 970
search for defining features of, 

1059
in ultimate theory of physics, 469
and use of abstract models, 1026
and wave-particle duality, 1044

Quantum numbers
and network tangles, 527

Quantum potential, 1065
Quarantine of astronauts, 1180
Quark confinement

and computational irreducibility, 
1133

Quarks
confinement of, 1061
as example of model, 992
masses of, 1046
and particle history, 1025
and QCD, 1057
as types of particle, 1043

Quartic equations
and computational reducibility, 

1132
as exactly soluble, 1133
size of solutions to, 945

Quartz, hopper crystals in, 993
Quasars, and SETI, 1189
Quasi-Monte Carlo methods

and digit reversal, 905
as randomness application, 1192
and statistical tests, 1085

Quasicrystals, 994
diffraction patterns in, 1082
spectra in, 1080

Quasigroups, 945, 1171
Quasiperfect numbers, 911
Quasiperiodicity

in combinations of sines, 146
and turbulence, 998

Quaternions
and abstraction in math, 792
cellular automata based on, 886
as generalizing numbers, 1168
as non-commutative rings, 1153

Qubits (in quantum systems), 1147
Queen Anne’s Lace, 1006
Quicksort algorithm, 1142
Quincunx board

randomness in, 312
Quine-McCluskey procedure, 1095
Quintic equations, 945

as exactly soluble, 1133
numbers defined by, 916
solving as impossibility, 1137
unsolvability of, 1132

Quotient
basic example of, 854
and computational reducibility, 

747
encoded as integer equation, 1160

Qur’an, calligraphy from, 874

Rabbit (Fibonacci) sequences, 891
Racah coefficients, see  symbols

Radar
random pulses for, 970, 1192
as source of radio signals, 1188

Radiation
of structures from rule 37R, 456
and thermodynamics, 1021
in vacuum field theory, 1062

Radicals
continued fractions for, 144
digit sequences for, 139
and linkages, 1129
nested, 915
and periodic points of iterated 

maps, 955
solving equations in, 945
see also Quadratic irrationals
see also Root
see also Sqrt

Radio astronomy
noise in, 1187
and SETI, 835, 1180, 1188

Radio noise, 302
and SETI, 836

Radio signals
extraterrestrial, 835, 1180
of human origin, 1188
of natural origin, 1187
and shift registers, 1086

Radioactive decay
and quantum field theory, 1057
randomness in, 970
relativity theory applied to, 1043

Radiolarians
and circle packings, 985
forms of, 385, 1011
skeletons as animal artifacts, 1184

Radix of numbers
see Bases (number)

Radó, Tibor (Hungary/USA, 
1895–1965)

and Busy Beaver Problem, 889
Railroads

as speculative stocks, 1015
as visible from space, 1187

RAM (random-access memory)
emulated by CA, 663, 1112

Ramanujan, Srinivasa A. (India/
England, 1887–1920)

and almost integers, 915
and divisor sequences, 910, 911
and experimental math, 899

Ramsey theory, 1068
unprovability related to, 1163

RAND Corporation
and random number table, 968

Random
as intrinsic randomness 

generator, 317
Random-access memory (RAM)

emulated by CA, 663, 1112
Random-dot stereograms, 1076
Random groups, 938
Random initial conditions, 223–296

for CA doing computations, 1109
as origin of randomness, 304–314
in reversible CAs, 438
in systems other than CAs, 949

Random mappings, 937, 963
Random matrices, 977
Random models

see Probabilistic models
Random networks, 480, 963, 1038
Random number generators, 317, 

974
and history of complexity, 49

and iterated maps, 919
as precursors to my work, 879
see also Randomness generators

Random packings, 986
Random phase approximation

in path integrals, 1061
Random programs

and complexity in biology, 388
crashing of, 1183
on practical computers, 101
typical behavior of, 23

Random proteins, 1184
Random rules

typical behavior of, 23, 723
Random sequences

spectra of, 587
weighted, 976

Random trees, 1084
Random walks

and  problem, 904
and continuous behavior, 327
and diffusion-limited 

aggregation, 979, 994
from digits of , 136, 912
and dimensions of networks, 1030
with exponential waiting, 969
and fracture patterns, 995
isotropy of, 980
in iterative improvements, 985
in mobile automata, 75
and nesting, 990
and path integrals, 1057
of prices in markets, 1014
and randomness tests, 1085
in rule 30 pattern, 871
self-avoiding, 978
spectrum of, 1082

Randomization
on inspirational book cover, 17, 

864
in mechanical systems, 968
in semiconductor devices, 970

Randomized algorithms, 1085, 1142
Randomness

algorithmic, 1067
applications of, 1192
in astronomy, 313
in biological pigmentation 

patterns, 1013
in biology, 970
in boiling, 994
cells in animals generating, 1011
in class 3 systems, 261
in combinator evolution, 713
compared to complexity, 557
in computer systems, 970
continual injection of, 947
in crumpling of paper, 996
in cyclic tag systems, 96
and data compression, 572
definition of, 316, 552–556
deterministic behavior from, 979
dictionary definition of, 1068
in digit of square roots, 139
in digits of , 138
in digits of powers, 119
in distribution of primes, 134
in early universe, 1021
from the environment, 301–304
evolution from, 223–296
as explained by chaos theory, 971
of facts in math, 820
in financial markets, 429, 1014
in fluid flow, 376
in forms of crystals, 3736 j
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in fracture, 374
and free will, 752
generated by Mathematica, 973
in heartbeats, 1002
history of defining, 1067
human generation of, 1104
increasing popularity of, 1192
from initial conditions, 304–314
intrinsic generation of, 315–326
and irreversibility in physics, 442
mechanical sources of, 968
mechanisms for, 299–326
in mobile automata, 74
in multiway systems, 205
in network systems, 202, 936
and NP completeness in rule 30, 

770
in ocean surfaces, 1001
in operation of brain, 1135
in optical system, 310
and origin of continuity, 327
paper of mine on, 882
and percolation theory, 983
in physiological processes, 1011
in primitive recursive functions, 

908
in protein sequences, 1184
in quantum chaos, 1056
and quantum measurement, 1063
in quantum systems, 539, 970, 

1064
randomized algorithms as tests 

for, 1085
in recursive sequences, 130
in register machines, 100
repeatable intrinsic, 323
in rolling dice, 305
in rule 30, 27
in sequential substitution 

systems, 92
in solar system, 973
in statistics, 593
in substitution systems, 88
in tag systems, 94
tests of, 1067, 1084
in three-body problem, 314
in TM running times, 762
in tossing coins, 305
in turbulent fluid flow, 379
in Turing machines, 79
in Turing machines in 2D, 184
ultimate definition of, 1068
in universe that branches, 506
and visual perception, 583

Randomness generators
cellular automaton, 975
cryptographic, 975
failures of, 969
generalized Fibonacci, 975
linear congruential, 974
quadratic congruential, 975
shift register, 974
see also Random number 

generators
RANDU (random number 

generator), 974
Range, basic example of, 853
Rankine, William J. M. (Scotland, 

1820–1872)
and vortices in ether, 1044

Raspberries, phyllotaxis in, 409
Raster, in CA graphics, 865
Raster displays

lines on digital, 916

RasterGraphics
and CA graphics, 868

Rate equations, 984
Rational agents

and game theory, 1104
and notion of purpose, 1185

Rational choice theory
and responsibility, 1136

Rational design, in chemistry, 1194
Rational expectations

difficulty of testing for, 1015
in economics, 429

Rational functions
of complex variables, 933
as generating functions, 1091
integrals of, 916
and periodic points, 959
and regular languages, 958

Rational maps, 918
and Apollonian packings, 986

Rational numbers
approximation by, 915
digit sequences of, 138, 912, 1084
number of, 1127
pattern based on, 950
and periodic iterated maps, 955
and randomness from initial 

conditions, 307
and spectra, 1081

Rationalism
and math in science, 860

Rationality
bounded of players, 1104

Raup, David M. (USA, 1933– )
and shapes of shells, 1008

Ray, John (England, 1627–1705)
and natural theology, 861

Rayleigh number, 1000
Rayleigh speed, 995
Rayleigh-Taylor instabilities

and repetitive behavior, 988
Rays (fish)

patterns in teeth of, 1007
r.e. (recursively enumerable) sets, 

1138
r.e. degrees (arithmetic hierarchy), 

1139
Reachable states, 275, 957

see also Attractors
Reaction-diffusion processes, 1012

and animal growth, 419
and animal pigmentation, 427, 

1004, 1013
and cellular automata, 427
and complexity research, 862
and history of CAs, 878
modes in, 1013
and pattern formation, 947
and plant growth, 409
and shell patterns, 1012

Reaction rate equations, 984
Reactions (chemical)

repeatable randomness in, 976
and undecidability, 1194

Reading distance
and texture recognition, 1076

Real algebra
axioms for, 773, 1153
as not universal, 1160

Real analysis, axioms for, 1155
Real numbers

and computability, 1128
constructible, 1129
countable models of, 1172
number of, 1127

and randomness from initial 
conditions, 308

Turing computable, 1128
RealDigits (digits of real number)

implementation of, 901
and weighted random sequences, 

976
Reasoning

automated
see Automated theorem 

proving
automated mathematical, 1157
predicate logic as model for, 1152
see also Intelligence
see also Thinking

Rebooting, random seed after, 970
Receptors

in auditory system, 1079
in color vision, 1075
other types of, 1105
in visual system, 577, 1075

Reciprocals
digit sequences of, 730
and Egyptian fractions, 915

Recognition
of artifacts, 828, 1183
of CA patterns, 621
of extraterrestrial intelligence, 825
of formal languages, 939
of objects, 1076
of randomness, 317
see also Perception

Recombination
and randomness in biology, 970

Record (phonograph)
for extraterrestrials, 1190

Recreational computing
Game of Life in, 949
and history of CAs, 877
and history of complexity, 50
and universality of Life, 693

Recreational logic
and combinators, 898

Recreational mathematics
complexity in, 49
and number theory, 910
randomness in, 1192

Rectangular numbers, 909
Recurrence relations, 128–131

for Fibonacci numbers, 891
and iterated maps, 906
linear, 906
numbers from, 916
and square roots, 913
and time series, 1083

Recurrent, see Repetitive
Recurring decimals, 138, 912
Recursion

in backtracking algorithm, 1089
as basis for algorithms, 1141
compared to nesting, 990
and history of CAs, 877
induction as basis for, 1152
in substitution system rules, 1033
see also Fractals
see also Nesting

Recursion relations, 128
Recursive axiomatizability, 1176
Recursive functions

and Church’s Thesis, 1125
emulating tag systems, 1121
emulating Turing machines, 1121
general, 907
as idealization of math, 1150
not primitive recursive, 908

primitive, 907
and proof of Gödel’s Theorem, 

1158
and recursive sets, 1138
undecidability in, 1136
universality of, 1121

Recursive sequences, 128–131
history of, 907
inverse of, 906
sounds from, 1080
see also Nested sequences
see also Substitution systems

Recursive sets, 1138
Recursive subdivision

and data compression, 568
implementation of, 1072
and lossy compression, 572
and substitution systems, 187

Recursively enumerable (r.e.) sets, 
1138

Red shift
and brightness of night sky, 1021

Reduced arithmetic
see Robinson arithmetic

Reducibility
see Computational reducibility

Reductio ad absurdum
as scheme for proofs, 1177

Reduction, see Emulation
Reduction of colors

in cellular automata, 655
in Turing machines, 669, 1113

Reduction of wave packets, 1063
Reduction ordering

in completion algorithms, 1037
Reductionism

as theme of existing science, 3
Redundancy

and cryptanalysis, 600, 1086
in data, 1069, 1181
in error-correcting codes, 1101
in extraterrestrial signals, 836
in languages, 1181
and role of analysis, 549

Redundancy laws (in logic), 817
Reed-Muller codes, 1073
References, in this book, 850
Reflexes, vs. free will, 752
Reformation (religious)

and free will, 1135
Refractive indices, 1041
Regge, Tullio E. (Italy, 1931– )

and discrete spacetime, 1054
and spin networks, 1055

Regge calculus
and discrete space, 1027
variational principle for, 1052

Register machines, 97–102
for computing Sqrt, 1114
continuous versions of, 1128
emulated by arithmetic systems, 

673, 1114
emulated by CAs, 661, 1112
emulating TMs, 671, 1114
encoded with Diophantine 

equations, 1161
halting of, 896, 1137
halting problem for, 1131
history of, 896
implementation of, 896
and intermediate degrees, 1131
and Life universality, 1117
with many registers, 1114
random initial conditions for, 949
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small universal, 1121
and undecidability of tiling, 1139

Registers, shift, see Shift registers
Regular expressions, 957

matching of with repeats, 1143
Regular language complexity (finite 

automaton size), 958
Regular languages

analogs for networks, 1040
decidability of, 1137
and finite automata, 957
production rules for, 939
pumping lemma for, 944
and relations to CAs, 1138
rule 132 as recognizer for, 1109
see also Finite automata

Regularities
in biology, 384
compared to causes, 352
and computational reducibility, 

746
inevitable and Ramsey theory, 

1068
and lack of universality, 735
and meaning, 826, 1183
and perception, 549
and practical empirical math, 

1090
in solar system, 313, 973
study of as purpose of science, 861

Regularity
axiom of in set theory, 1154

Reidemeister moves (for knots), 
1046

Reif, Frederick (USA, 1927– )
and inspirational book cover, 864

Reissner-Nordström solution, 1133
Relations

in groups, 1141
in semigroups, 938

Relatively prime numbers
pattern of, 613

Relativism, 1131
Relativity, linguistic, 1181
Relativity theory, 516–524

and Bell’s inequalities, 1065
and CPT invariance, 1019
history of, 1041
as introducing spacetime, 481
mechanism leading to, 522
and models of electron, 1044
and origin of uncertainty 

principle, 1058
posets in, 1041
and space vs. contents, 1028
standard treatment of, 1042
and time and computation, 1130

Reliability analysis, 977
Religion

and conflict with Darwinian 
evolution, 1001

and origins in animism, 1195
and Principle of Computational 

Equivalence, 845
see also Christianity, etc.
see also God
see also Theology

Renormalization, 1057
and discrete space, 1027
and electron self-energy, 1044
lack of in quantum gravity, 1054

Renormalization group, 955
and levels in ultimate theory, 471
and nesting, 989
and particle masses, 1046

and phase transitions, 983
and simple effective laws, 1026

Rényi, Alfréd (Hungary, 1921–1970)
and generalized entropies, 959

Rényi dimensions, 934
Repeatability

in computer experiments, 898
in intrinsic randomness 

generation, 323, 976
of turbulent flow, 382

Repeated squaring
applied to general rules, 1094
and computing powers, 615, 1093
for powers of 2, 749

RepeatedNull (...)
in regular expressions, 957

Repeats
and cryptanalysis, 599
finding maximal, 1071

Repetition periods
in block cellular automata, 1023
of digits in rationals, 912
of finite-size CAs, 260
for linear congruential generators, 

974
longest in cellular automata, 1088
maximal in CAs, 951
for mobile automata, 887
and PSPACE completeness, 1142, 

1147
of shift registers, 975
of stripes in rule 30, 871
in systems with symmetries, 950
see also Periodic points

Repetitive behavior
in animals, 1011
as basis for algorithms, 1141
in bird songs, 827
in cellular automata, 57, 954
in cellular automata in 2D, 954
in combinator evolution, 1123
and computational reducibility, 

739
in continuous systems, 988
in digit sequences, 138
in DNA, 970
as exception to Second Law, 453
as familiar feature, 1106
in finite-size systems, 255, 267
formula for, 607
and history of math, 735
in human radio signals, 835
and lack of universality, 734
and local constraints, 213
and mechanical engineering, 829
in mobile automata, 72
in numbers, 988
origins of, 354–356
in ornamental art, 872
in PDEs, 988
and Poincaré recurrence, 1022
and Principle of Computational 

Equivalence, 722
recognizing visually, 582
in rule 30, 268, 700
in rule 250, 25
in sorting networks, 1142
structures with

see Localized structures
in three-body problem, 972
in Turing machines, 79
in whale songs, 1180

Repetitive initial conditions, 266, 
954

and CA cryptography, 1087
perturbations in, 701

Repetitive sequences
block frequencies in, 1084
as initial conditions, 266
shortest programs for, 1186

ReplaceAll (/.)
basic examples of, 854
in implementing CAs, 867
and network evolution, 1038
and symbolic systems, 896

ReplaceList
and multiway systems, 937
and multiway tag systems, 1141
and traversing networks, 957

Replacements
for networks, 509
order of, 894

see also Order of updates
for strings

see Sequential substitution 
systems

ReplacePart
basic example of, 853
and initial conditions, 865

ReplaceRepeated (//.)
and symbolic systems, 898
and undecidability, 1138

Representation
and communication, 631
and definition of meaning, 827

Representation of numbers, 142
for data compression, 560
with Egyptian fractions, 915
as nested radicals, 915
as operator trees, 916
see also Bases (number)
see also Continued fractions
see also Digit sequences

Representations
of Boolean algebra, 1171
of operator systems, 805

Representing, see Emulation
Reproduction

see Self-reproduction
Reproduction curves

and iterated maps, 918
Reptiles, color vision in, 1075
Reptiles (nested tilings), 932
Resistors

 noise in, 969
and on-chip randomness, 970

Resolution
of printed pictures in book, 852

Resolution theorem proving, 1157
Resonant scattering

and 3-body problem, 973
Responsibility

and free will, 1135, 1136
Responsiveness

as definition of life, 823
Rest (rest of list)

basic example of, 853
Resultant

and CAD in real algebra, 1154
Retail store utilization

and Voronoi diagrams, 987
Retina (of eye)

pattern of cells in, 1007
structure of, 1075
and visual perception, 577

Retinoic acid
in embryo development, 1009

Return maps
and history of iterated maps, 918
and recognizing chaos, 972

Reversal, of digit sequences, 905
Reversal-addition systems, 125–127, 

905
Reverse engineering, 1184
Reverse evolution

backtracking in CA, 1089
Reverse mathematics, 1167
Reverse Polish notation, 896
Reversibility, 435–441

of CAs at an angle, 1017
in causal networks, 495
of cellular automata

see Reversible cellular automata
of computation, 1018
in evolution of networks, 1040
in mappings, 960
in mobile automata, 1018
in multiway systems, 1018
and phase transitions, 983
and quantum computers, 1147
and quantum measurement, 542
in systems based on numbers, 

1018
testing cellular automata for, 1017
and thermodynamic 

irreversibility, 442
undecidability of, 1138
see also Irreversibility

Reversible  problem, 905
Reversible cellular automata, 

436–441
block, 460
classification of, 1018
and dynamical systems theory, 

961
emulated by ordinary CAs, 1018
history of, 1018
implementing, 1017
inverse rules for, 1017
and irreversible behavior, 452
from multiplication, 1093
number of, 1017
testing for, 1017
testing for 2D, 1017
and texture generation, 1078
three-color, 436

Reversible logic, 1097
and quantum computers, 1147

Reviews of Modern Physics
my CA paper in, 880

Rewrite systems
and history of universality, 1110
for networks, 198, 508
sequential substitution systems 

as, 88, 894
see also Multiway systems
see also Sequential substitution 

systems
Reynolds, Osborne (Ireland/

England, 1842–1912)
and Reynolds numbers, 996

Reynolds numbers, 376, 380, 996
Rhombic dodecahedron, 929, 987
Rhombo-hexagonal dodecahedron, 

930
Rhymes

rules for in poetry, 875
in whale songs, 1180

Rhythm, rules for, 875
Ribbets, as sound of Cantor set, 586
Ribosomes, 1193
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Ricci scalar curvature, 533
and constraints on tissue growth, 

1010
and discretization of space, 1051
in expansion of metric, 1050
and volumes of spheres, 1050

Ricci tensor, 534
and Einstein equations, 1052
implementation of, 1049
for spacetime, 534

Rice, Henry G. (USA, 1920– )
and Rice’s theorem, 1137

Richardson, Lewis F. (England/
Scotland, 1881–1953)

and fluid turbulence, 997
Richat structure

circular shape of, 1187
Ricker, William E. (Canada, 

1908–2001)
and iterated map for fish 

populations, 918
Riemann, G. F. Bernhard (Germany, 

1826–1866)
and discrete space, 1027
and distribution of primes, 918
and nested curves, 934
and Riemann tensor, 1049

Riemann Hypothesis
and curve of zeta function, 148
and density of primes, 909
as Diophantine equation, 1161

Riemann mapping theorem
and growth shapes, 1010

Riemann tensor, 1049
difficulties with in networks, 1051
as form of curvature, 536
implementation of, 1049

Riemann zeta function, 148, 918
see also Zeta

Riemannian spaces, 1048
RiemannSiegelZ, 918

curve of, 148
Riemann-Siegel formula, 1134
Riesz, Frigyes (Hungary, 1880–1956)

and Riesz products, 1081
Riesz products, 1081
Rigid bodies

and analogy to quantum 
mechanics, 1059

Rigid rods
networks made from, 1031

Ring theory, 1153
axioms for, 773
and generalizing numbers, 1168
universality of, 784, 1159

Ringoids, 1171
Riots, instabilities in, 1014
Ripples

on ocean surfaces, 1001
as repetitive behavior, 988

Risch structure theorem, 1177
Rise time, of sounds, 1079
Risk, in financial systems, 1015
Risk functions

in parameter estimation, 1083
Rivers

and landscape structure, 1001
as showing nesting, 359, 988

RNA
and definition of life, 1178
and origin of life, 1179

RNGs
see Random number generators

Road traffic
 noise in, 969

flow instabilities in, 1014
Roads

straight visible from space, 1187
Robbins, Herbert E. (USA, 

1915–2001)
and axioms for logic, 1151

Robbins axioms (for logic), 773, 
1151, 1174

in terms of Nand, 808
Robinson, Abraham (England/

Israel/USA, 1918–1974)
and non-standard analysis, 1172

Robinson, J. Alan (USA, 1930– )
and resolution theorem proving, 

1157
Robinson, Julia B. (USA, 1919–1985)

and axioms for arithmetic, 1152
and Diophantine equations, 1161
and encodings of arithmetic, 1163
in Preface, xiii
and undecidability of field theory, 

1160
Robinson, Raphael M. (USA, 

1911–1995)
and axioms for arithmetic, 1152
and non-periodic tilings, 943
in Preface, xiii

Robinson arithmetic
axioms for, 773
incompleteness in, 800
universality in, 1152
unprovable statements in, 1169

Robotics
and history of complexity, 862
linkages in, 1129
and mobile turtles, 930

Robots
in fiction vs. humans, 629
free will for, 1135

Robust statistics, 1083
Robustness

in biology from randomness, 1002
from randomness, 1192
of software and complexity, 1069

Rock, Paper, Scissors game, 1105
Rock carvings

recognition of art in, 874
Rocks

as computationally equivalent to 
humans, 1196

crushing of, 988, 995
patterns of in landscapes, 1001
shaped by wind, 1183

Rogozhin, Yurii (Moldova, 1949– )
and Turing machines, 1119

Rolling of objects, as generating 
randomness, 305

Roman architecture
and nesting, 874

Roman art, 43, 873
Roman law, and free will, 1135
Roman military drill, 875
Roman number system, 1182
Roman numerals, 902
Roman religions

and animism, 1195
Romberg integration, 1134
Rome (Italy), mosaics in, 872
Root (polynomial root)

and continued fractions, 914
and entropies of CAs, 958
and fractal dimensions for 

additive rules, 956

and generalized special functions, 
1092

and hard hexagon model, 959
and linkages, 1129
and origin of group theory, 1153

Root finding
attractor basins in, 1101
and iterated maps, 918
see also Newton’s method

Root vectors
and sphere packings, 987

Roots, linguistic, 1100
Rope, nesting in, 874, 1183
Rose window

of Lincoln cathedral, 873
Rosen, Nathan (USA/Israel, 

1909–1995)
and EPR experiment, 1058

Rosenblatt, Frank (USA, 1928–1971)
and perceptrons, 1099

Rosenblueth, Arturo (Mexico, 
1900–1970)

and reaction-diffusion, 1013
Rosetta stone, 1185
Rosette patterns, 873

in four-color printing, 1078
RoShamBo game, 1105
RotateLeft

basic example of, 853
in CA evolution, 865

Rotating vacuum solution to 
Einstein equations, 1053

Rotation
absolute definition of, 1047
particle production in, 1062

Rotation group
and spin, 1046
and spin networks, 1055

Rotational symmetry
in cellular automaton rules, 928
see also Isotropy
see also Symmetry

Roth, Klaus F. (England, 1925– )
and rational approximations, 915

Rotor machines
for cryptography, 1085

Roughness
in aggregation systems, 978
of crystal surfaces, 993
effect on splashes of, 1000
effects of microscopic, 996
in fracture surfaces, 994
in random walk boundaries, 977
and randomness from initial 

conditions, 305
of surfaces, 1077
of surfaces and repeatable 

randomness, 976
Roulette

randomness in, 306, 968, 969
Roundoff errors

and chaos experiments, 919
and continuous CAs, 921
in molecular dynamics, 864
see also Numerical analysis

Routing in networks, 1192
RSA cryptography, 1086, 1090
Rucker, Rudy v. B. (USA, 1946– )

and 2D Turing machines, 930
in Preface, xiii

Rugs
and 2D cellular automata, 929

Rule ( )
basic examples of, 854

Rule 0
block emulation of, 702
as having simple behavior, 57
with random initial conditions, 

224
Rule 1

as first rule with period 2, 1186
Rule 2

as having simple behavior, 57
Rule 3, half-speed growth in, 57
Rule 4

attractor for, 275
as first rule with period 1, 1186
as having simple behavior, 57
as not universal, 694
with random initial conditions, 

225
as statistical test, 597

Rule 7
conserved quantities in, 1022
as having simple behavior, 57

Rule 12
conserved quantities in, 1022

Rule 14, as not universal, 695
Rule 15

block emulation of, 702
as reversible system, 436

Rule 18
nested domains in, 360
repetitive behavior in, 954
spacetime entropy for, 960
temporal sequences in, 960

Rule 22
algebraic form for, 947
attractor network sizes in, 958
block emulations in, 702
density in, 947, 951
evolution of density in, 265
and Game of Life, 965
initial conditions giving 

randomness in, 951
Lyapunov exponent in, 949
nested pattern from, 58
nesting and randomness in, 263
probabilistic estimates in, 953
with random initial conditions, 

227
sensitive dependence in, 251
sources of randomness compared 

in, 262
spacetime entropy for, 960

Rule 30
adjacent columns in, 1087
algebraic form for, 869
as algorithm from search, 1193
as analogy for quantum 

measurement, 1063
asymmetry of, 29
attractors in, 280
averaging of pattern from, 353
backtracking tree for, 1089
block frequencies in center 

column of, 594
blocks in pattern from, 569, 725, 

871, 1127
Boolean form for, 616, 869
center column of, 871
compression of pattern from, 562
and computational irreducibility, 

745
conserved quantities in, 1022
cryptography with, 603, 1087
density in, 947, 953
diagonal stripes in, 871
directional reversibility in, 1017
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directional sampling in, 1087
effect of perturbations in, 325
efficient implementation of center 

column, 871
emulated by mobile automaton, 

664
emulated by substitution system, 

666
emulated by symbolic system, 668
emulated by tag system, 667
emulated by Turing machine, 665
emulated by universal CA, 647
emulated by WireWorld, 1117
emulating logical functions, 704
emulating rule for rule 90, 703
encoded as integer equation, 1160
on endpapers of book, 851
as example of art hard to 

recognize, 874
examples from 

CellularAutomaton, 868
and extraterrestrial signals, 836
finite-size behavior of, 259, 963, 

1088
as generator of hash codes, 1100
history of, 112, 880, 882
initial condition sequence for, 324
intrinsic randomness generation 

in, 315
inversion of, 1087, 1147
localized structures in, 700
Lyapunov exponent in, 949
mapping for, 870
mixing of initial conditions in, 976
as not showing purpose, 830
and NP completeness, 770, 1090
numbers of cells in picture of, 874
one-sided additivity of, 604
and P completeness, 1149
pattern forced by constraints, 221
patterns on repetitive 

backgrounds, 700
periods in limited regions, 260, 

951
as practical randomness 

generator, 975
predecessors in, 1087, 1147
probabilistic density estimates in, 

953
probabilistic version of, 976
PSPACE completeness of periods 

in, 1147
purpose of, 1185
and Random, 317
with random initial conditions, 

227
and randomness tests, 1085
reactions of scientists to, 872
repetition of columns in, 1087
repetitive behavior in, 267, 954
sensitive dependence in, 251
with shift-register boundary 

conditions, 1088
sideways evolution of, 604
simple behavior in, 266
from single cell, 27, 59
sizes of BDDs for, 1097
slow growth in, 1118
sources of randomness in, 261
spectrum of, 1082
square root of, 956
state transition graph for, 963
as surjective CA, 959
technological applications of, 843
temporal sequences in, 960

tiling based on, 943
tiling generating pattern of, 221
triangles in pattern of, 871
universality of, 734

Rule 32, entropy in, 958
Rule 37R

as candidate for universality, 692
localized structures in, 440
period of cycles in, 1022
properties of, 1018
radiation from, 456
repetition period for, 457
as violating Second Law, 453

Rule 41
block emulations in, 702
localized structures in, 1118
spectrum of, 1082

Rule 45
with alternating steps reversed, 

885
block emulations in, 702
cryptography with, 1087
finite-size behavior of, 963, 1088
in limited regions, 260, 951
localized structures in, 701
Lyapunov exponent in, 949, 1088
nesting in, 701
periods in limited regions, 260
properties of pattern, 885
as randomness generator, 976
repetitive behavior in, 954
from single cell, 59
state transition graph for, 963
as surjective CA, 959
temporal sequences in, 960

Rule 48, block emulation of, 702
Rule 50

block emulation of, 702
generating repetitive pattern, 57
repetitive behavior in, 954
repetitive domains in, 356

Rule 51
block emulation of, 702
as complement rule, 883
as not universal, 694
as reversible system, 435

Rule 54
block emulations in, 702, 1118
as candidate for universality, 696
enumeration of initial conditions 

for, 697
excluded blocks in, 958
localized structures in, 696
from random initial conditions, 

696
repetitive domains in, 356
spacetime entropy for, 960
spectrum of, 1082

Rule 56
conserved quantities in, 1022

Rule 57
as first rule with period 3, 1186
as statistical test, 597

Rule 60
algebraic analysis of, 951
and computational reducibility, 

744
and cryptography, 600
as difference table generator, 1091
emulated by TMs, 1119
finite-size behavior of, 963
firing squad problem and, 1035
formula for pattern from, 608
generating function for, 1091

from iterated bitwise operations, 
906

with math functions as initial 
conditions, 1091

methods for generating pattern 
from, 931

with nested initial conditions, 
1091

nested pattern from, 58
pattern forced by constraints, 220
pattern generated by substitution 

system, 187
periods in limited regions, 951
reachable states in, 963
related to TM 596440, 1120
sequential analog of, 1034
and shift registers, 974
and similarity of rules to rule 110, 

872
sounds from, 1080
state transition graph for, 963
as statistical test, 597
temporal sequences in, 960
tiling generating pattern of, 220
see also Additive cellular automata
see also Rule 90
see also Sierpinski pattern

Rule 62
enumerating multiples of 3, 641
as not universal, 695
repetitive domains in, 356

Rule 67R
irregular growth in, 1018
pattern produced by, 438

Rule 73
with alternating steps reversed, 

885
as candidate for universality, 699
conserved quantities in, 1022
density oscillations in, 954
information transmission in, 699
localized structures in, 700
properties of pattern, 885
from random initial conditions, 

699
from single cell, 59
unbounded growth in, 700, 1118
walls in, 699

Rule 85, as reversible system, 436
Rule 86, sizes of BDDs for, 1097
Rule 90

as additive rule, 952
algebraic analysis of, 951
attractors in, 280
backtracking tree for, 1089
block emulation of, 702
blocking transformations in, 270
Boolean form for, 869
Boolean function for, 616
compression of pattern from, 562
conserved quantities in, 1022
in Cosmati mosaics, 873
density in, 953
directional reversibility in, 1017
effect of perturbations in, 325
emulated by mobile automaton, 

664
emulated by rule 45, 701
emulated by rule 126, 269
emulated by substitution system, 

666
emulated by symbolic system, 668
emulated by tag system, 667
emulated by Turing machine, 665
emulated by universal CA, 646

emulated by WireWorld, 1117
emulation of by itself, 270
evolution of density in, 265
finite automaton for pattern in, 

609
finite-size behavior of, 259, 963
formula for pattern in, 610
fractal dimension of pattern, 870
fractal pattern in, 25, 270
generating function for, 1091
history of in my work, 880
and linear feedback shift registers, 

877
mapping for, 870
nested initial conditions for, 956
nested pattern in, 25, 270
network in pattern of, 197
as not universal, 695
as origin of nested patterns, 358
origin of self-similarity in, 270
periods in limited regions, 260
probabilistic density estimates in, 

953
probabilistic version of, 976
random initial conditions for, 265
repetitive behavior in, 954
rule for emulated by rule 30, 703
sequential analog of, 1034
sizes of BDDs for, 1097
sources of randomness in, 264
spacetime entropy for, 960
state transition graph for, 963
striped patterns in, 870
substitution system for pattern in, 

609
as surjective CA, 959
technological applications of, 843
temporal sequences in, 960
two-dimensional analog of, 1092
vs. Ulam systems, 929
see also Additive cellular automata
see also Rule 60
see also Sierpinski pattern

Rule 90R
nesting in, 1018
pattern produced by, 438
and reversible behavior, 452
and spacetime symmetry, 485

Rule 94
block emulations in, 702
compression of pattern from, 562
and difficulty in deducing rules 

from behavior, 467
as generating even numbers, 641
nesting and randomness in, 951

Rule 102, and rule 110, 872
Rule 103

half-speed growth in, 57
as rule with simple behavior, 57

Rule 105
Boolean formula for iterations of, 

1096
nested pattern in, 58

Rule 107
Nand expression for, 1097

Rule 108
attractors in, 278, 958
as not universal, 694
with random initial conditions, 

225
Rule 109

generating repetitive pattern, 57
Rule 110

algebraic form for, 869
annihilation of structures in, 359
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approximate nesting in, 359
attractors in, 279, 958
axiom system for, 1168
background in, 291, 964
block emulations in, 702
Boolean form for, 869
character of universality proof of, 

1156
collisions of structures in, 294
and computational irreducibility, 

746
conserved quantities in, 964, 1022
constructions in, 681
in cover image, 851
density with random initial 

conditions, 947
domains in, 356
emulated by combinators, 713
emulated by integer equation, 

785, 1161
emulated by TM, 707, 1119
emulated by WireWorld, 1117
and extraterrestrials, 839
finite-size behavior of, 963
in limited regions, 260, 1088
mapping for, 870
my first work on, 881
and P completeness, 1149
periods in limited regions, 260
persistent structures in, 292, 964
phases of background in, 990
and Principle of Computational 

Equivalence, 718
from random initial conditions, 

229, 290, 677
reactions of scientists to, 872
regular expression for, 957
repetitive behavior in, 954
as showing purpose, 830
and similarity of rules to rule 60, 

872
from single cell, 32–39
sizes of BDDs for, 1097
spectrum of, 1082
state transition graph for, 963
and technology, 841
typical behavior of, 676
universality of, 675–691
and word problem for groups, 

1141
Rule 121

Nand expression for, 1097
Rule 122R

different initial conditions in, 451
as example of thermodynamic 

behavior, 442
Rule 123

as rule with simple behavior, 57
Rule 124, as variant of rule 110, 693
Rule 126

algebraic form for, 947
attractors in, 279, 958
blocks in evolution of, 278
density evolution in, 953
density with random initial 

conditions, 947
emulating rule 90, 269
entropy of, 958
excluded blocks in, 958
Lyapunov exponent in, 949
with random initial conditions, 

226
regular expression for, 957
repetitive behavior in, 267

sensitive dependence in, 251
spectrum of, 1082

Rule 127
as rule with simple behavior, 57

Rule 128
attractors in, 277, 958
block emulation of, 702
as rule with simple behavior, 57

Rule 129
enumerating powers of 2, 641
nested pattern in, 58

Rule 132
attractors in, 278, 958
computing parity with, 638
finite-size behavior of, 962
and regular languages, 1109
state transition graph for, 962

Rule 136, block emulation of, 702
Rule 137, as variant of rule 110, 693
Rule 144

computations done by, 1109
Rule 146

block emulation of, 702
invariant states in, 348

Rule 148, block emulation of, 702
Rule 150

as additive rule, 952
blocking transformations in, 271
conserved quantities in, 1023
density with random initial 

conditions, 947
finite automaton for pattern in, 

609
formula for iterations of, 1096
formula for pattern in, 610
generating function for, 1091
local conservation laws in, 1023
nested pattern in, 58, 271
as not universal, 695
as origin of nested patterns, 358
origin of nesting in, 271
properties of pattern from, 885
with random initial conditions, 

227
represented by Nands, 1096
as rule for code 976 interface, 980
spacetime entropy for, 960
substitution system for pattern in, 

609
as surjective CA, 959
two-dimensional analog of, 1092
see also Additive cellular automata

Rule 150R
fractal dimension of, 1018
generating function for, 1018
nested pattern in, 439
and spacetime symmetry, 485

Rule 152
computations done by, 1109

Rule 154R
pattern produced by, 439
properties of, 1018

Rule 160
attractors in, 278, 958
with random initial conditions, 

224
Rule 170

block emulation of, 702
conservation of density in, 458
finite-size behavior of, 963
local conservation laws in, 1023
mapping for, 870
as reversible system, 436
as shift rule, 883

state transition graph for, 963
see also Shift map

Rule 172
conserved quantities in, 1022

Rule 173R
nesting in, 1018
pattern produced by, 438

Rule 176, block emulation of, 702
Rule 182

algebraic form for, 947
density with random initial 

conditions, 947
with random initial conditions, 

227
Rule 184

attractors in, 278, 958
and block emulations, 702
blocking transformations in, 271
computation done by, 1109
conservation of density in, 458
and context-free languages, 1109
local conservation laws in, 1023
nested initial conditions for, 272
nested patterns in, 272, 359
and nesting in phase transitions, 

989
as not universal, 695
phase transition in, 338
and sandpile models, 990
as statistical test, 597

Rule 188
and computational reducibility, 

744
Rule 190

enumerating multiples of 4, 641
Rule 192, block emulation of, 702
Rule 193, as variant of rule 110, 693
Rule 204

block emulation of, 702
conservation of density in, 458
as identity rule, 883
as reversible system, 436

Rule 214R
randomness in, 439
symmetry between past and 

future in, 437
Rule 218

different behavior in, 952
with random initial conditions, 

225
Rule 225

as analog of fluid turbulence, 382
nested pattern in, 58
nesting and randomness in, 951
properties of pattern from, 885

Rule 232
with random initial conditions, 

225
spectrum of, 1082

Rule 236, density evolution in, 953
Rule 238, block emulation of, 702
Rule 240

block emulation of, 702
as reversible system, 436
as shift rule, 883

Rule 250
algebraic form for, 869
backtracking tree for, 1089
Boolean form for, 869
mapping for, 870
as not universal, 694
Or additivity of, 952
as producing checkerboard, 25
with random initial conditions, 

224

Rule 254
algebraic form for, 869
backtracking tree for, 1089
as basic example of CA, 24
Boolean form for, 616, 869
emulated by universal CA, 645
finite-size behavior of, 962
as having a purpose, 831
invariant states in, 348
as irreversible system, 435
mapping for, 870
Nand expression for, 1097
with random initial conditions, 

224
sizes of BDDs for, 1097
state transition graph for, 962

Rule 255
attractor for, 275
as rule with simple behavior, 57

Rule equivalences, 883
Rule numbers

for general cellular automata, 927
for operator systems, 1170
for Turing machines, 888

Ruler-and-compass constructions, 
1129, 1137

Rules
and axioms, 1150
for cellular automata, 24
elementary

see Elementary cellular 
automata

growth totalistic, 928
history of concept of, 874
in Mathematica, 627, 854, 1103
parameter space of, 948
totalistic, 60
see also Programs

Rules of inference
and structure of proofs, 1155

Run-length encoding, 560
in faxes, 1070
implementation of, 1070
iterated, 905
as number representation, 914
two-dimensional, 1072

Run length test, 1085
Run lengths

patterns from, 1091
and Ramsey theory, 1068
and statistical analysis, 595

Run tests
for linear congruential generators, 

974
Running times

of FactorInteger, 1090
of Turing machines, 761
see also Computational complexity 

theory
Runoff

and landscape structure, 1001
Runs up test, 1085
Russell, Bertrand A. W. (England, 

1872–1970)
and axioms for logic, 1151
and character of math, 1176
and foundations of math, 1149
and paradoxes in set theory, 1154
and Principia Mathematica, 894
and theory of types, 898

Russell, John Scott (Scotland, 
1808–1882)

and solitons, 899
Russell’s paradox

in set theory, 1154
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Russian peasant method
for computing powers, 1093

Russian work on cellular automata, 
877

Rutherford, Ernest (New Zealand/
Canada, 1871–1937)

and atomic nuclei, 1044
Rytin, Maxim (Russia, 1975– )

and concatenation sequences, 913

s, sound of letter, 1079
S-boxes, in DES, 960, 1086
S combinator, 711, 1121
S expressions, number of, 989
S matrices

and discrete quantum mechanics, 
1060

in particle physics, 1057
 (group)
CA based on, 887, 956
as first non-commutative group, 

1172
Saccadic eye movements, 1192
Sagan, Carl E. (USA, 1934–1996)

and Pioneer 10 plaque, 1189
Sahara desert

Richat structure in, 1187
Salamander

pigmentation pattern on, 426
Salem, James (USA, 1962– )

as coauthor of paper, 882
in Preface, xiii

Salt, hopper crystals in, 993
Salt Lake

features seen from space, 1187
Sand

apparent continuity of, 327
and Chladni figures, 984
fluid phenomena in, 1001
patterns from wind in, 1183
settling in, 986

Sand dunes
maze-like patterns in, 1013
repetitive patterns of, 1187
and waves on sand, 1001

Sander, Leonard M. (USA, 1941– )
and diffusion-limited 

aggregation, 994
in Preface, xiii

Sandpile model, 989
Sanskrit, rules in grammar for, 875
Santa Fe Institute, 862, 882
Sapir-Whorf hypothesis

and communication, 1181
and math in science, 860

Sarkovskii’s theorem, 955
Satisfiability

with 2 and 3 variables, 1146
density of difficult instances of, 

1147
emulating Turing machines, 1146
NP completeness of, 767
and proof lengths in logic, 1175
and quantum computers, 1148

Satisfying constraints, 210–221
problem of, 342–351
see also Constraints

Saturn
and extraterrestrial life, 1179

Saussure, Ferdinand de 
(Switzerland, 1857–1913)

and concept of language, 1181
Saws, characteristic shapes of, 1183
Sawtooth functions

and Thue-Morse sequence, 1081

Scalar curvature, 533
see also Ricci scalar curvature

Scales (in music), 917
Scales (mathematical)

in continuum limit of networks, 
1030

and fractal dimensions, 933
see also Limits

Scales (of animals)
coloration of, 1012
phyllotaxis-like patterns in, 1007

Scaling
in additive cellular automata, 270
and dimension, 933
of eddy sizes in turbulence, 997
and origins of nesting, 357, 989
and renormalization group, 955
of visual perception, 1076
see also Nesting

Scanning probe microscopy
and crystal surfaces, 993
for nanotechnology, 1193

Scapula (shoulder blade)
for fortune-telling, 968

Scents, odors in, 1105
Schemas (axiom), 1156

and finite axiomatizability, 1176
Schemas for algorithms, 990
Schickard, Wilhelm (Germany, 

1592–1635)
and origin of computers, 1107

Schild ladder, 1051
Scholasticism

and argument by design, 861
and history of logic, 1099

Scholes, Myron S. (USA, 1941– )
and options pricing, 1015

Schönfinkel, Moses I. (Germany/
Russia, 1889 – ~1942)

and combinators, 879, 1121
and origins of universality, 1110
and single combinators, 1123
and symbolic systems, 898

Schoute, Johannes C. (Netherlands, 
1877–1942)

and phyllotaxis, 1007
Schreger lines

in mammoth dentin, 873
Schröder, F. W. K. Ernst (Germany, 

1841–1902)
and axioms of logic, 1151

Schrödinger, Erwin R. J. A. 
(Austria/Switzerland/
Germany/Ireland, 1887–1961)

and quantum mechanics, 1056
Schrödinger equation

discretization of, 1060
as example of PDE, 161
and gauge invariance, 1045
lack of chaos in, 1063
and nested potentials, 1081
and path integrals, 1057

Schroeder diffusers
quadratic residue diffusers, 1183

Schwarzschild, Karl (Germany, 
1873–1916)

and Einstein equations, 1053
Schwarzschild solution, 1130, 1133
Science

education, 855
limits to, 6, 748, 1135, 1196
math as foundation of, 859

Science Citation Index
papers on CAs in, 878

Science fiction
and artificial intelligence, 1099
and extraterrestrials, 1180, 1190
and extraterrestrials in 2001, 1183
and free will for computers, 1135
and messages in DNA, 1184
and parallel universes, 1035
robots in, 629
and universe as computer, 1026

Scientific American
article of mine in, 881, 882
and CA universality proofs, 1115
and history of CAs, 877

Scientific computing
fundamental issues in, 1133
history of, 1107
summary of relations to, 16

Scientific experiments
repeatability of, 326

Scientific literature
models in the, 368

Scientific pantheism, 1196
Scoping of variables, 1150, 1152
Scores (musical), 1080
Screw dislocations, 993
Screw shell, 1008
Screws

characteristic shapes of, 1183
Scribbles

as source of randomness, 970
Scroll patterns, 872
Sea urchin, form of, 385
Search-and-replace systems, 88

see also Sequential substitution 
systems

Search trees (backtracking), 1089
Searching

for axioms of logic, 1174
for cryptographic keys, 603
Darwinian evolution as, 386
for doubling CAs, 1185
to find examples for this book, 

111, 393
for non-periodic tilings, 220
for optimal cellular automata, 834
for proofs, 1157
to satisfy constraints, 343, 941
in technology development, 842, 

1193
for ultimate theory of physics, 466

Sec (secant), curve of, 145
Sech

in solution of KdV equation, 1133
in solution of Toda lattice, 1133

Second Law of Thermodynamics, 
441–457

avoided by rule 37R, 453
character of as principle, 1126
and cosmology, 1021
and definition of life, 1178
history of, 1019
limitations of, 451
and microscopic instability, 1020
and my work on CAs, 880
and open systems, 455
and quantum measurement, 1063
and radiation, 1021
and self-organization, 947
textbook treatments of, 1020

Second-order logic, 1167
and arithmetic axioms, 1152

Second-order phase transitions, 981
Secrecy systems, see Cryptography
Security envelopes

randomness in, 1192

Security systems
cryptographic, 598
and recognizing artifacts, 1183

SeedRandom, 973
Seeds

for crystals, 369
for random generators, 970

Segmentation in animals, 417
Segregation diagram (for I Ching), 

893
Séguier, Jean-Armand de (France, 

1862–1937)
and semigroups, 1153

Seiberg-Witten model
as exactly soluble, 1133

Sejnowski, Terrence J. (USA, 1947– )
and neural networks, 1100
in Preface, xiii

Sekerka, Robert F. (USA, 1937– )
and dendritic growth, 993

Select (select elements)
basic example of, 853

Selection, see Natural selection
Selective availability (timing 

encryption in GPS), 1086
Self-adjoint approximations

and second-order CAs, 1018
Self-assembly, 1011, 1193
Self-avoiding walks, 978
Self-delimiting digit sequences, 560
Self-energy

and corrections to mass, 1046
of electron, 1044
in QED, 1057

Self-gravitating systems, 1021
and my work on CAs, 880
and Voronoi diagrams, 987

Self-limiting growth
in plants, 1006

Self-organization, 223
and attractors, 275
and definition of life, 824
and gravitational systems, 1021
history of, 947
and history of complexity, 862
and persistent structures, 282
and reaction-diffusion, 1013
and rule 37R, 455
and Second Law, 1021
summary of relations to, 16

Self-organized criticality, 989
confusion about, 969

Self-reference
and Gödel’s Theorem, 1159
and proofs of undecidability, 1137
see also Recursion

Self-reproduction
and cellular automata, 961
and definition of life, 824, 1178
history of, 1179
and history of CA universality, 

1117
and history of CAs, 876

Self-similarity
and  noise, 969
in cellular automata, 58
and dimension, 933
of Gaussian distribution, 977
in growth of shells, 414, 1008
history of, 934
in networks, 509
origin of in additive CAs, 270, 955
origins of, 357–360
with random initial conditions, 

273

S3
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in rule 90, 25, 870
in substitution systems, 83
see also Fractals
see also Nesting

Semantics, and semiotics, 1181
Semi-Thue systems

see Multiway systems
Semiconductor devices

 noise in, 969
randomness in, 303, 970

Semiconductors
as components in technology, 

1195
crystal growth of industrial, 993
and history of computing, 1108

Semigroups
axiom for, 773
CAs based on, 886, 956
constraints defining, 945
enumeration of, 805
history of, 1153
and invertible multiway systems, 

1018
Krohn-Rhodes decomposition of, 

1069
and multiway systems, 938, 1172
and nesting in associative cellular 

automata, 956
number of, 945
undecidability of equivalence of, 

1138
undecidability of word problem 

for, 1136
universality of, 1159
word problem for, 1141
see also Commutative semigroups

Semilattices, 1171
Semiotics, 1181
Sensitive dependence

on angles in plant phyllotaxis, 412
on branching parameters, 405
in cellular automata, 250–254
and computational irreducibility, 

1133
in fluid flow, 381
and free will, 1135
and history of chaos theory, 971
vs. intrinsic randomness, 261, 322
in iterated maps, 153
in Lorenz equations, 998
in ODEs, 922
as origin of randomness, 309–314
in quantum mechanics, 1063
of snowflakes on seeds, 992
and weather prediction, 1178
see also Chaos theory

Sensorimotor cortex, 1099
Sensory input

and perception, 1105
and thinking, 1098

Sentences (in human languages), 
1103

Sentential calculus
see also Logic
see also Propositional calculus

Septa, in chambered shells, 1008
Septic (degree 7) equations, 1132
Sequence equations, 944, 1141
Sequence homomorphisms 

(substitution systems), 893
Sequences

analysis of
see Analysis

encoded as integers, 1120
integers as fundamental, 1152

practical methods for studying, 
1091

recursive, 128–131
see also Digit sequences
see also Lists

Sequencing of events in universe, 
497

Sequency order
for Walsh functions, 573, 1073

Sequential automata
see Mobile automata

Sequential cellular automata, 1034
and convolutional codes, 1119
and texture generation, 1078

Sequential machines
history of, 958
see also Finite automata

Sequential network systems, 936
Sequential substitution systems, 

88–92
and causal networks, 499
computational reducibility in, 

1134
emulated by CAs, 660, 1111
emulating CAs, 667, 1113
generalized to 2D, 192
and genetic programs, 1002
history of, 894
implementation of, 893
vs. multiway systems, 204, 894
vs. operator evolution systems, 

1170
random initial conditions in, 949
vs. sequential CAs, 1034

Serial test, 1085
Series, and Sierpinski pattern, 931
Series expansions

and continuous functions, 1127
in QED, 1060
of special functions, 1134
and three-body problem, 972

Sestina, and rules for poetry, 875
Set entropy, 959
Set theory, 1154

additional axioms for, 1167
axioms for, 774
and consistency of arithmetic, 

1168
and continuum hypothesis, 1127
emulating arithmetic, 1160
and Fermat’s Last Theorem, 1166
finite, 1171
and finite axiomatizability, 1176
as foundation for math, 1149
and Goodstein sequences, 1163
and history of universality, 1110
needed for word problems, 1160
and proofs of universality, 1127
and proving , 1146
selection of axioms for, 800
and transfinite numbers, 1162

SETI (search for extraterrestrial 
intelligence), 822

and higher perception, 635
history of, 1188
messages to send in, 1189
practical arguments in, 1191

Sets
operators on, 1171
recursive, 1138
and undecidability, 1138

Settling, of granular materials, 986

Sex
and biological evolution, 386, 985, 

1002
random determination for 

offspring, 1192
Sextic (degree 6) equations, 945
Sferics (natural radio signals), 1187
Shadowing property of chaotic 

systems, 920
Shafarevich-Tate group, 1164
Shaking

of granular materials, 986
as source of randomness, 968, 969

Shallit, Jeffrey O. (USA/Canada, 
1957– )

and continued fractions, 914
Shannon, Claude E. (USA, 

1916–2001)
and analog computers, 1129
and Boolean algebra, 1097
and coding theory, 1069
and cryptography, 1086
and information theory, 1071, 

1181
and statistical mechanics, 1020
and Turing machines, 1119

Shannon-Fano codes, 1069
Shannon information

for cellular automata, 959
and evolution of languages, 1181
and thermodynamics, 1020
see also Measure entropy
see also Redundancy

Shape space, of antibodies, 1184
Shapes

from aggregation systems, 979
of animals, 421
in complex maps, 933
and human experience, 1177
of leaves, 401–407, 1005
limiting in cellular automata, 929
parametrization of, 980
possible from growth, 1010
smooth from 2D CAs, 980
variation in 2D CAs, 179

Shared subexpressions
in equation solutions, 945
in multilevel logic, 1096
and networks, 1040
and speedups, 1094

Sharks, patterns in teeth of, 1007
Sharpening

and image processing, 1077
Shattering of solids, 995
Shaw, Robert S. (USA, 1946– )

and chaos theory, 971
in Preface, xiii

Sheep, fortune-telling from, 968
Sheffer, Henry M. (USA, 1883–1964)

and axioms for logic, 1151, 1175
and Nand, 1173

Sheffer axioms
and Laws of Form, 1173
for logic, 773, 808

Sheffer stroke
as name for Nand, 1173

Shell patterns, 423
biology of, 1011
and cellular automata, 389
purpose invented for, 387

Shells
as animal artifacts, 1184
biology of, 1008
collecting, 1011
history of studying, 1008

internal, 1008
natural selection of shapes, 417
shapes of, 414–417

Shepherdson, John C. (England, 
1926– )

and register machines, 896
Shift-commuting block maps

as cellular automata, 961
and history of CAs, 878
see also Cellular automata

Shift instructions
and CA boundary conditions, 951
and CA implementation, 866

Shift map, 149
and computer experiments, 919
exact iterates of, 919
history of, 961
and origin of randomness, 308
see also Doubling map
see also Rule 170

Shift registers
applications of, 1086
block frequencies in, 594
and CDMA signals, 1188
and cryptography, 1085
and extraterrestrial messages, 

1190
flat spectra from, 1081
and history of CAs, 877
vs. linear congruences, 975
linear feedback, 1086
nonlinear feedback, 1088
as precursors to my work, 879
as random generators, 968, 974
searching for long period, 1193
sequences from, 1084

Shift rules
in cellular automata, 883
state transition graphs for, 963

Ships, fracture as issue for, 995
Shipwrecks, recognizing, 1183
Shocks

in CA fluids, 1000
in continuous fluids, 997
in numerical solutions of PDEs, 

924
as origin of discreteness, 984
picture of in fluids, 377
as singularities in PDEs, 923

Shor, Peter W. (USA, 1959– )
in Preface, xiii
and quantum computing, 1148

Short descriptions
of general data, 553

Shortcuts
and computational reducibility, 

738
and math proofs, 779
and NP completeness, 1148

Shortest descriptions
and algorithmic information, 1067
in block encoding, 1071
for integers, 916

Shortest paths
and distance on networks, 478
geodesics as, 1048
and polynomial time, 1146
see also Geodesics

Shortest programs
and algorithmic information, 1067
for particular sequences, 1186
undecidability of, 1138
see also Smallest programs

Shot noise, 968
in premium bond lottery, 969
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Shotgun method
as application of randomness, 

1192
Shub, Michael I. (USA, 1943– )

and quadratic pseudorandom 
generators, 1090

Shuffle-exchange process, 905
Shuffling (of cards), 968, 974
Sierpinski, Waclaw (Poland, 

1882–1969)
and nested curves, 934

Sierpinski carpet, 933
Sierpinski pattern

and 2D substitution system, 187
in Cosmati mosaics, 873
formula for, 608
history of, 934
methods for generating, 931
network based on, 197
in network evolution, 509
and recursive multiplication 

algorithm, 1142
and rule 90, 25, 870
see also Rule 60
see also Rule 90

Sierpinski pyramid, 172
Sieve of Eratosthenes, 132, 909

cellular automaton for, 640
 sets, 1139

Signal processing
for SETI, 1189
and Walsh transforms, 1073

Signals
artificial radio, 1188
from pulsars, 1188
recognizing intelligent, 835

Signature
of spacetime metrics, 1051

Significance (statistical), 594
Signs in languages, 1181
Silicon crystal, fracture of, 374
Silverman, Brian (Canada, 1957– )

in Preface, xiii
and WireWorld CA, 1117

Similarities
in memory, 625
between natural systems, 298

Simon, Herbert A. (USA, 1916–2001)
and automated proofs, 1157

Simple behavior
origins of, 351–361
and Principle of Computational 

Equivalence, 719
Simple groups

classification of finite, 945
Simple programs

crucial experiment on, 23–50
modelling with, 363–369
and searching for technology, 842
world of, 51–113

Simplex
and trivalent networks, 1029

Simplicial complexes, 1050
and approximating space, 1051
and quantum gravity, 1054

Simplicity
of human artifacts, 828
in scientific models, 1025
in ultimate theory of physics, 470, 

1026
see also Simple behavior

Simplification
Boolean, 1095
of iterated map formulas, 1098

Simplify
and proofs, 1158
and real algebra, 1154
see also FullSimplify

Simulated annealing, 985
as application of randomness, 

1192
for design optimization, 1193

Simulation games
and history of CAs, 877

Simulations
computational complexity of, 

1148
and computational irreducibility, 

742
as computationally expensive, 872
of financial markets, 1015
and history of complexity, 862
randomness in, 968, 1192
of rule 90 by rule 126, 269
of ultimate theory of physics, 466
see also Emulation
see also Models

Simultaneity
in relativity theory, 523
and spacelike slices, 1041
in the universe, 486

Sin (sine)
as basis for radio signals, 1188
and computational reducibility, 

747
and constructible reals, 1129
curve of, 145
curves with curvature from, 418
difficulty of evaluating, 1134
emulating Mod, 1129
in form for iterated map, 921
and formulas for repetition, 607
and Fourier analysis, 1072
and Fourier series, 917
and logistic map formulas, 1098
and musical notes, 1080
and orthogonal bases, 1072
and uniform distribution mod 1, 

904
and universal equations, 1129
and Weierstrass functions, 918

Sinai, Yakov G. (Russia/USA 
1935– )

and ergodicity of billiards, 1022
Sine-Gordon equation, 163
Single-cell recording, 1075
Singularities

in Navier-Stokes equations, 997
in PDEs, 164, 923
in spacetime and computation 

speeds, 1130
Singularity theorems (in general 

relativity), 1048, 1053
Sinh

in solving 2D Ising model, 982, 
1133

SinIntegral, curve of, 145
SIS (program for logic 

minimization), 1096
Sitnikov, Kirill A. (Russia, 1926– )

and 3-body problem, 973
Six-vertex model

as exactly soluble, 1133
SixJSymbol (  symbol)

and spin networks, 1055
SK machines, and combinators, 898
Skeletons

forms of animal, 420
of radiolarians, 1011

Skepticism, and teleology, 1185
Sketches

and visual perception, 1076
Skewes number

and numbers of primes, 910
Skewing transformations, 933
Skin

pattern of cells in, 1007
see also Pigmentation patterns

Skolem, A. Thoralf (Norway, 
1887–1963)

and non-standard arithmetic, 
1169

and set theory, 1154
Skulls

process of growth of, 1010
related by transformations, 1010

Skunk
pigmentation pattern of, 426

Slash-dot (/.)
basic examples of, 854

Sleep, 1100
Sliding-block codes

as cellular automata, 961
Slime molds, spiral waves in, 1013
Slopes

digital representation of, 916
Slot (#)

and projection function, 907
Slow dynamics

in 2D cellular automaton, 336
Slow ship (in Game of Life), 964
Smale, Stephen (USA, 1930– )

and chaos theory, 971
in Preface, xiii

Small changes in initial conditions
see Sensitive dependence

Small programs
and computational complexity 

theory, 758
crucial experiment on, 23–50
world of, 51–113

Small universal Turing machines, 
707, 1119

Smallest programs
and algorithmic complexity 

theory, 1143
and recognition of purpose, 832
for single CA steps, 884
see also Shortest programs

Smell
and experience of dogs, 827
sense of, 1105

Smith, Alvy Ray, III (USA, 1943– )
and branching in plants, 1005
and L systems, 893
in Preface, xiii
and universal CAs, 1115

Smith, Cyril S. (USA, 1903–1992)
and cellular structures, 1039

Smoke patterns, 377
Smoothing

and image processing, 1077
Smoothness

origin of, 327
see also Continuity

SMP (forerunner of Mathematica)
evaluation of recursive functions 

in, 906
in my personal timeline, 864
my use of, 854
and origins of this book, 18
semantic patterns in, 1156
and tiering of function 

arguments, 896

Smullyan, Raymond M. (USA, 
1919– )

and combinators, 898
Snail shell, growth of, 415
Snakes

pigmentation patterns on, 426
SNOBOL (computer language), 894
Snow, character of, 993
Snowflake pattern

and 2D cellular automaton, 171
and 2D substitution system, 188

Snowflakes, 370
that are the same, 992
history of studies of, 992
issues in modelling, 364, 366
as motivating question, 17

SO(3), and spin networks, 1055
SO(8) lattice, isotropy of, 980
SO(d), and spin, 1046
Soap bubbles, packings of, 988
Soap films

vs. Einstein equations, 1052
fluid flow in, 999
in packings, 988
shapes of, 1009
turbulence in, 377

Soap foams, evolution of, 1039
Soccer ball

as defining curved space, 532
as spherical network, 1049

Social animals
and communication, 1180

Social sciences
and complex systems, 862
and defining complexity, 1068
and game theory, 1104
Gaussian distribution in, 977
historical foundations for, 1135
and history of statistics, 1082
mechanistic explanations in, 1185
quantitative laws in, 1014
summary of relations to, 9, 863

Socrates (Greece, ~470–399 BC)
and purpose in nature, 1185

Sofic systems, 958
Softshell

pigmentation pattern on, 426
Software

defining complexity of, 1069
design of as motivation, 18
for experiments in this book, 856
vs. genetic programs, 383, 1003
and history of computing, 1108
intuition from, 872
in practical computers, 1108
used in producing book, 852

Soil samples
tests for life in martian, 1179

Solar, see Sun
Solar system

randomness in, 973
see also Planets

Solid mechanics
as model for animal growth, 1010

Solid-state physics
and quantum theory, 1056

Solids
atomic-scale features on, 1193
breaking of, 374–375
extraterrestrials based on, 1180, 

1190
growth of crystals of, 369
history preserved in, 1184, 1195
and memory, 823
modelled with springs, 374
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and repeatable randomness, 976
surfaces of and crystal growth, 

993
Solitons

and computational irreducibility, 
1132

and conservation laws in PDEs, 
1023

and elementary particles, 1044
and experimental math, 899
and Fermi-Pasta-Ulam 

experiment, 1020
optical for SETI, 1189
and sine-Gordon equation, 163
slowing of randomization by, 970
as topological defects, 1045

Solomonoff, Ray J. (USA, 1926– )
and algorithmic randomness, 

1068
Solutions, exact, 1133
Sonar data, 1183
Songs

of birds, 826, 1180
of whales, 826, 1180

Sonic booms, 984
Sonification

and auditory perception, 1080
of cellular automata, 869

Sophistication of computations
see Principle of Computational 

Equivalence
Sort

algorithms for, 1142
lower bound on, 1143
and multiway system, 1036
networks for, 1142
NP completeness in verifying 

algorithms for, 1145
randomized algorithms for, 1192
and sequential substitution 

system, 894
and simple model of space, 518
in states of multiway systems, 937
and substitution system, 502

Souls
as defining features of life, 1178

Sound
in 2D, 923
and animal communication, 1180
emitted in fracture processes, 995

Sound compression, 1080
lossy, 572

Sound effects
and auditory perception, 1079

Sound perception, 585–588
Sound representation

for cellular automata, 869
Sound waves, in fluids, 1000
Soundex system, 1100
Sounds, properties of, 1079
Space

continuity of in geometry, 1154
curved, 531
defining dimension of, 1030
and defining motion, 521
history of discrete, 1027
locality in, 518
and matter, 474, 1028
and motion of particles, 529
with negative curvature, 1049
as a network, 475–480, 530–537
as stable background, 517
in ultimate theory of physics, 468, 

472–486, 516–524
see also Geometry

Space (outer)
features of Earth from, 835, 1187

Space complexity, 1142
Space-filling curves

and the continuum, 1127
and defining dimension, 1030
and image compression, 1072
parametrization of, 935
and paths of caterpillars, 1011
and storage of strings, 1101
and substitution systems, 893

Space groups, 929
Space networks, 475–480

evolution of, 508–515
Spacecraft

complex trajectories for, 1183
as first contact with 

extraterrestrials, 1190
and general relativity, 1048
landings on Moon of, 1180
plaques on, 1190
self-reproducing, 876
supposed sightings of alien, 1180

Spacefiller (in Game of Life), 965
Spacelike hypersurfaces, 1041

and initial value general 
relativity, 1053

Spacelike slices, 1041
in causal networks, 516

Spaceship gun (in Game of Life), 965
Spaceships (in Game of Life), 964

and emulating Nand, 1117
Spacetime

curvature in, 534
see also Gravity
see also Space

Spacetime code, 1027
Spacetime entropies, 960

and repetitive behavior, 954
and rule 30 encryption, 1087

Spacings
of random matrix eigenvalues, 

977
of zeros in sine functions, 917
of zeros in zeta function, 918

Spain, ornamental art in, 873, 874
Spanning trees

and drainage patterns, 1001
Sparks

as source of randomness, 302, 969
Sparse computation

in Game of Life, 949
Spatial entropy, 958
Spearman, Charles E. (England, 

1863–1945)
and defining intelligence, 1178

Special functions (of mathematical 
physics), 1092

and computational reducibility, 
1132

curves from, 145
difficulty of evaluating, 1134

Special-purpose devices
for cellular automata, 868
and shift registers, 974

Special relativity
see Relativity theory

Species (biological), 1003
Spectra

of cellular automata, 1082
and defining randomness, 1068
in natural systems, 969
of nested 2D patterns, 1082
of nested mechanical systems, 

1081

of noise, 968
of number theory functions, 911
properties of, 1080
of random walks, 977
and recognizing chaos, 972
of substitution systems, 586, 1080
of Weierstrass functions, 918

Spectra (atomic)
and quantum history, 1056

Spectral test
for linear congruential generators, 

974
Spectrum (radio), uses of, 1188
Speculative markets, 430, 1015
Speech

compression of, 1080
generation of in brains, 826
and hidden Markov models, 1084
recognition of, 1100
as recognizable radio signal, 1188
sounds of, 585, 1079

Speed of light, 1041
and causal networks, 520
expansion of universe at, 1056
and information transmission, 

518
invariance of, 523
and quantum effects, 543
and speed of gravity, 1047

Speed of sound, 997
Speed-up theorems, 1134
Speedups

and computational irreducibility, 
743

in multiway systems, 1176
in Turing machines, 764

Spell-checking systems, 1100
Spelling, and soundex system, 623
Spencer Brown, George (England/

USA, 1923– )
and axioms for logic, 1175
and Laws of Form, 1173

Sperm, 970
Sphere packing, 986

and codes, 1101
and cores of proteins, 1003
difficulty of, 349
and isotropy of lattices, 980
and lattices, 930
and pollen grains, 1011
and radiolarians, 1011
random, 986

Spheres
configurations of charges on, 1146
d-dimensional, 1091
and defining scalar curvature, 534
lattice points inside, 910
vs. Lorentzian spaces, 1051
networks approximating, 480
volumes of, 1050

Spherical networks, 1049
SphericalHarmonicY

and isotropy measures, 980
Spider webs

as animal artifacts, 1184
patterns in, 1011

Spike trains (for neurons), 1075
repeatability of, 976

Spin (in quantum theory), 1046
and Bell’s inequalities, 1064
of elementary particles, 1043
in quantum computers, 1147

Spin-flip transitions, 1187
Spin foams, 1055

Spin glasses
and Boolean networks, 937
and computational irreducibility, 

1132
ground states of, 944
NP completeness in, 1146

Spin networks, 1055
and discrete space, 1027
and loop quantum gravity, 1054

Spin-statistics connection, 1046
Spin systems

vs. cellular automaton fluids, 999
and computational irreducibility, 

1133
and discrete quantum mechanics, 

1060
as systems based on constraints, 

944
undecidability in, 1138
see also Ising model
see also Lattice gases

Spines on shells, 1008
Spinning

as source of randomness, 970
Spinning top

as exactly soluble, 1133
Spinodal decomposition, 980
Spinors, 1046

as basic quantum feature, 1059
as formulation of general 

relativity, 1048
Spinoza’s God, 1196
Spiral galaxies, 1021
Spiral waves

in reaction-diffusion CAs, 1013
Spirals

in animal horns, 413
in constraint searches, 941
and general study of form, 967
in hopper crystals, 993
vs. nesting, 357
in plant phyllotaxis, 408
in shells, 1008
as space-filling curves, 935
and substitution systems, 192

Spirits, and animism, 845, 1195
Spirograph-like patterns

in astronomy, 1187
Splashes, 377

as art, 839
as fluid phenomena, 1000
repetitive patterns in, 988

Splicing, in DNA sequences, 1184
Splines, 1084
Split (split list)

basic example of, 853
and cyclic tag systems, 895
and iterative run-length 

encoding, 905
and minimal finite automata, 957
and nested patterns, 931
and run-length encoding, 1070
in sparse Life, 949
and Turing machine 1507, 1144

Spontaneous generation (of life), 
1179

Spontaneous magnetization
in Ising model, 981

Spontaneous organization, 223
Spontaneous symmetry breaking

and particle masses, 1047
in phase transitions, 983

Sporadic groups, 945
Spores, as origin of life, 1179
Spots, origin of on animals, 428
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Spread spectrum communications, 
1086, 1188

Springs
characteristic shapes of, 1183
nested arrangements of, 1081

Sqrt (square root)
and computational reducibility, 

747
computing, 141, 913
and constructible reals, 1129
continued fractions for, 144
cryptanalysis of, 1089
digit sequences under, 731
digits of, 139
and generating function for rule 

150R, 1018
as growth rate for mobile 

automaton, 72
as growth rate for rule 225, 885
as growth rate for TM, 888
and Julia sets, 933
machine for computing, 1107
nested, 915
and random walks, 977
randomness in digits of, 967
register machine for, 1114
and standard deviation of 

Gaussian, 977
see also Quadratic irrationals
see also  for specific 

Squags (Steiner quasigroups), 1171
enumeration of, 805

Squalls
as origins of randomness, 301

Square-free sequences, 944
and cyclic tag systems, 895

Square lattices
cellular automata on, 170
isotropy on, 980
random walks on, 329
TMs on, 184

Square roots
of cellular automata, 956

Squares
numbers as sums of, 135, 910

Squaring
cellular automaton for, 639, 1109
digit sequences under, 731
and quadratic congruential 

generators, 975
repeated for powers, 615, 1093
sequences, 1090
Turing machines for, 1144
see also Quadratic residue 

sequences
Squaring the circle, 1137
Squashy objects, packing of, 988
Squid, visual system of, 1075
Staatliche Museum, Berlin, 873
Stability

in financial systems, 430
of matter, 1059
from randomness, 266
topological, 1045

Stable state
from random initial conditions, 

224
Stacks

and context-free languages, 939
Stadium

and quantum chaos, 1056
in whimsical description, 850

Staffelbach, Othmar J. (Switzerland, 
1952– )

and cryptanalysis of rule 30, 1087

Staircases
in block emulations, 1118
characteristic shapes of, 1183

Standard deviation
of Gaussian distribution, 976

Standard mathematical functions, 
1091

computational reducibility of, 744
and continuous computation, 731, 

1128
curves from, 145
and digit cryptography, 1089
and exact solutions, 1133
vs. normal numbers, 912
patterns from, 747, 870
and rational integrals, 916
and three-body problem, 972
see also Mathematical functions

Standard Model (of particle 
physics), 1025

elementary particles in, 1043
and gauge theories, 1045
origins of mass in, 1047

StandardForm
issues in designing, 1182
for programs in notes, 854

Star forts
nested architecture of, 874

Star Trek, extraterrestrials in, 1191
Starfish

shape of, 385
symmetries in, 1007

Stars
as approximate spheres, 1187
formation of, 455, 1021
in general relativity, 1053
as parts of giant artifacts, 834
with planets, 1179
suitable for extraterrestrials, 1191
in three-body problem, 973
total light from in night sky, 1021

State space
of cellular automata, 275, 869, 959

State transition graphs
for cellular automata, 961
for Markov processes, 1084
for shift registers, 1089

States
of cellular automata, 865
in quantum theory, 1056

States of matter
as analogy for CA classes, 235

Stationary phase approximation
in path integrals, 1061

Statistical estimates
in cellular automata, 953

Statistical fluctuations
and shot noise, 968

Statistical independence
and Central Limit Theorem, 976

Statistical mechanics
book about as early inspiration, 

17, 864
and complexity in science, 861
and defining randomness, 1067
emergence of simple laws in, 1025
and existence of formulas, 1132
and financial markets, 1015
foundations of and randomness, 

967
Gaussian distributions in, 977
history of, 1020
and history of statistics, 1082
models for fracture from, 995
Monte Carlo methods in, 1192

origins of irreversibility in, 441
and path integrals, 1061
and pattern formation, 947
phase transitions in, 981
summary of relations to, 16
use of in studying CAs, 961

Statistics, 588–596
complexity of models in, 1068
and cryptanalysis, 1085
of data in 2D, 591
and defining randomness, 1067
history of, 1082
of human behavior, 1014
and isocorrelation textures, 1078
and neural networks, 1100
of proteins, 1184
of rule 30 center column, 871
as tests for fraud, 1184
and texture discrimination, 1077
as way to avoid complexity, 861
as way to avoid randomness, 967
of written languages, 1181

Steam engines
linkages in, 1129
and thermodynamics, 1019

Steel, fracture in, 994
Stein, Paul R. (USA, 1924–1990)

and iterated maps, 918
Steiner quasigroups (squags), 1171
Steiner triple systems, 1171
Stems of plants, 400

vs. antlers, 1008
Stereograms, random dot, 1076
Stevens, Peter S. (USA, 1936– )

and patterns in nature, 967
StieltjesGamma

difficulty of evaluating, 1134
Stigmergy (local rules for animals), 

1184
and aggregation systems, 1011

Still Lifes (persistent structures in 
Life), 964

Stimulated emission, 1195
Stimulus-response

as definition of life, 823
and human thinking, 1099
undecidability in, 1138
Weber’s law in, 1014

StirlingS1 (Stirling numbers)
pattern generated by, 870

StirlingS2 (Stirling numbers)
pattern generated by, 870

Stirring
as source of randomness, 969

Stochastic analysis, 587, 1081
Stochastic differential equations

and cybernetics, 862
Stochastic models, 968

and external randomness, 299
see also Probabilistic models

Stock market prices, 429, 1014
Stokes, George G. (England, 

1819–1903)
and fluid flow past a sphere, 998

Stokes lines
for mathematical functions, 917

Stone, Paper, Scissors game, 1105
Stone Age

art, 839, 874
stone circles, 1184
stone tools, 1183

Stoneham, Richard G. (USA, 
1920–1996)

and normal numbers, 912
Stonehenge, 829, 1184

Stopping problems
see Halting problems

Stored-program computers, 1108
and history of universality, 1110

Storms
as origins of randomness, 301

Strange attractors
for differential equations, 961
vs. thermodynamics, 1020
see also Chaos theory
see also Class 3 behavior

Strategies
for combinatorial optimization, 

985
in game theory, 1104
for theorem proving, 1158

Strawberries, phyllotaxis in, 409
Stream ciphers, 598

and randomness generators, 975
Streamlined objects in fluid flow, 

998
Streams

and landscape structure, 1001
Streetlamps

visible from space, 1187
Stress-energy tensor

in Einstein equations, 1052
Stress patterns, around cracks, 995
Stretching, and randomness, 306
String concatenation systems 

(correspondence systems), 757, 
1139

String equations, 944, 1141
String figures

as constructed by rules, 875
String matching, 1101
String rewriting systems, 88, 894

and Church’s Thesis, 1125
and history of universality, 1110
as idealization of math, 1150
see also Multiway systems
see also Sequential substitution 

systems
String theory (in physics)

and models of particles, 1044
and nature of space, 1028
not related to strings of elements, 

1033
particle types in, 1047
and quantum gravity, 1054
and quantum history, 1058
as ultimate theory of physics, 1025

StringJoin
and correspondence systems, 

1139
StringLength

and correspondence systems, 
1140

StringPosition
and generalized substitution 

systems, 1033
StringReplace

and multiway systems, 937
vs. sequential substitution 

systems, 894
and substitution systems, 889

StringReplacePart
and generalized substitution 

systems, 1033
and multiway systems, 937

Strings
of balanced parentheses, 989
matching of in memory, 621
in multiway systems, 937
non-overlapping, 503, 1033

�!!!!n n
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overlaps in, 503
undecidability of problems about, 

1138
Strings (physical)

in musical instruments, 1079
Stripes

origin of on animals, 429
and transition in rule 184, 338

Striping (bitslicing)
and implementing CAs, 866

Stroke (Sheffer)
as notation for Nand, 1173

Strong coupling
and path integrals, 1061

Strong interactions (in particle 
physics), 1025, 1057

Strouhal number, 998
Structural landforms, 1001
Structural stability

and history of chaos, 971
Structuralism

and theories of communication, 
1181

Structurally-stable defects, 1045
Structure-property relationships for 

chemicals, 1194
Structure theorems

and integrals, 1177
Structure transformations

in symbolic systems, 102
Structures

in class 4 systems, 281–296
form of in architecture, 967
theory of in math, 1150
see also Localized structures

Student t-distribution
found by Monte Carlo methods, 

1192
Stunted trees

as additive cellular automata, 878
Sturgis, Howard E. (USA, 

1936–1990)
and register machines, 896

Sturmian sequences, 1081
and block frequencies, 1084
and Fibonacci substitution 

system, 890
SU(2)

and spin, 1046
and spinors, 1059

SU(2) U(1) model, 1025
SU(3)

as gauge group in QCD, 1057
SU(n)

and 1/n expansion, 1040
and discrete quantum theory, 

1060
Subclasses, within class 4 CAs, 948
Subdivision

and data compression, 568
Subdivision systems (substitution 

systems), 82
2D, 187

Subformula property
and arrangement of proofs, 1155

Subgraph matching
and network evolution, 1038
NP completeness of, 1145

Subjective contours in visual 
perception, 578

Sublimation
as phase transition, 981

Subordinate clauses, 1104
Suborganisms

and biological evolution, 1002

Subsequences
frequencies of, 1084
repeating, 1072

Subset relation
as generating posets, 1041

Subshifts of finite type (finite 
complement languages), 941

2D generalizations of, 959
and excluded blocks in CAs, 958
and repetitive states in CAs, 954

Substitution
and structure of proofs, 775, 1155
see also ReplaceAll

Substitution ciphers, 1085
Substitution systems, 82–87

2D, 187–192
and animal growth, 420
and attractor structures, 959
as basic origin of nesting, 357
and billiard trajectories, 971
and CA encodings, 1119
and causal networks, 497
and computational reducibility, 

1134
and continued fractions, 914
d-dimensional, 932, 1091
and data compression, 568
and digit sequences, 891
in embryo development, 1009
emulated by CAs, 659, 1111
emulated by TMs, 765
emulating CAs, 666
with equal block frequencies, 594
and evaluation chains, 1095
finite automata for patterns from, 

1091
formulas for patterns from, 608
and genealogical trees, 1002
as generators of digit sequences, 

913
geometrical, 189–192

see also Geometrical 
substitution systems

that get to any string, 1035
history of, 893
implementation of, 889
implementation of generalized, 

1033
initial conditions from, 272
in iterated run-length encoding, 

905
and lines on rasters, 916
as model of crushing, 986, 996
in music, 875, 1080
neighbor-dependent, 85–87
neighbor-dependent 2D, 192, 935
neighbor-independent, 82–85
neighbor-independent 2D, 187
network, 508–515
for non-periodic tiling, 942
order of replacements in, 501
and paths, 892
and pattern-avoiding sequences, 

944
and plant branching, 400, 1005
probabilistic, 1084
random, 969
random initial conditions in, 949
randomness in, 88
relation to cyclic tag systems, 895
relation to iterated maps, 921
relation to multiplication, 903
relation to tag systems, 93
for rule 90 pattern, 609
for rule 150 pattern, 609

sequential, 88–92
see also Sequential substitution 

systems
and shapes of leaves, 401
and sine curves, 147, 917
space of possible, 406
spectra of, 586, 1080
and systems based on constraints, 

942
and texture generation, 1077
and visual perception, 583
and Walsh functions, 1073
see also Multiway systems

SubsuperscriptBox
and nested patterns, 932

Successor function
in arithmetic axioms, 1152

Succulents, phyllotaxis in, 409
Sugars, and definition of life, 825
Sum, numbers generated from, 917
Sum (totalistic) rules, 60
Sumerians

art of, 43, 873
and constellations, 1187

Summaries of data, 548
Sun

bending of light by, 1048
circular shape of, 861, 875
radiation from and weather, 1177
radio signals from, 1187
as source of radio noise, 1187

Sun Microsystems, xiii, 854, 881
Sundial shell, growth of, 415
Sundman, Karl F. (Finland, 

1873–1949)
and three-body problem, 972

Sunspots
 spectrum of, 969

radio noise from, 1187
Superconductors

phase transition in, 981
phyllotaxis-like patterns in, 1007

Supercooling
and crystallization, 992

Superelliptic Diophantine 
equations, 1164

Superexponential growth
and real algebra, 1154
in TM running times, 763

Superfluidity
in neutron stars, 1188
phase transition in, 981

Supergravity theories
and space vs. contents, 1028

Superimposing grids at different 
angles, 1078

Supernatural being
as creator of complexity, 3, 861
and free will, 752
see also God

Supernovas, 1188
Superposition

in cellular automata, 952
and nested patterns, 955
and PDEs, 923
and quantum computers, 1148
in quantum theory, 541, 1058
of waves, 988

Supersonic flow, 377
in CA fluids, 1000
past cylinders, 999
and Navier-Stokes equations, 997
sonic booms from, 984
see also Shocks

Superstitions, and animism, 1195

Superstrings, see String theory
Supersymmetry

as basis for models, 1025
particles in models with, 1043, 

1047
and quantum gravity, 1054
and vacuum fluctuations, 1062

Supervised learning, 1102
Surface tension

and crystal growth, 993
and packing, 988
in radiolarians, 1011
and soap foams, 1039

Surfaces
of crystals, 993
curvature of, 1049
discretization of, 1050
geodesics on, 531, 1049
metrics for, 1048
and repeatable randomness, 976
roughness of, 996
see also Solids

Surjectivity
in cellular automata, 280, 959
undecidability of, 1138

Surreal numbers
as generalizing numbers, 1168
and runs of digits, 914

Suture lines, in skulls, 1010
Swell on oceans

as repetitive behavior, 988
Swindale, Nicholas V. (England/

Canada, 1951– )
and pigmentation patterns, 1012

Switch engine (in Game of Life), 965
Switching circuits

and Boolean functions, 1097
and causal networks, 1033

Sycamore leaves, 401, 1006
Syllogisms, 875, 1151

and quantifiers, 1152
Symbiosis

and biological evolution, 1002
Symbolic algebra

and computational reducibility, 
1132

see also Algebra
Symbolic computation

and proof in operator systems, 
801

see also Computer algebra
Symbolic descriptions

and discreteness in programs, 976
Symbolic dynamics

and arithmetic coding, 1071
and cellular automata, 960
and history of CAs, 878
and history of iterated maps, 919
and origin of substitution 

systems, 893
Symbolic expressions

and computer communication, 
1182

in Mathematica, 1103
to represent integers, 1121
structure of, 896

Symbolic formulas
for cellular automata, 869
and computability, 1128
and history of universality, 1109
for iterated maps, 1098
see also Exact solutions

Symbolic integration, 1177
Symbolic logic, see Logic
Symbolic notation, 1182

�
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Symbolic programming
in Mathematica, 853

Symbolic representation
of infinity, 788

Symbolic systems, 102
based on networks, 898
combinators as, 711
confluence in, 1036, 1113
emulating CAs, 668, 1113
history of, 898
implementation of, 896
and operator systems, 1172
test for universality of, 1123
tree representation of, 897
and valuation functions, 916

Symmetric cellular automata
in 1D, 886
in 2D, 928

Symmetric differences
and second-order CAs, 1018

Symmetric graphs, 1032
Symmetric matrices

in neural networks, 1102
Symmetry

in aggregation systems, 979
in alkane molecules, 1194
in biological organisms, 1007
and CA discrete space, 1027
and constraints on network rules, 

509
of crystals, 993
of exact solutions, 1133
in fossil organisms, 1179
and general study of form, 967
and isotropy on lattices, 980
and maximum periods, 950
in ornamental art, 872
of particles in physics, 528
and phase transitions, 981, 983
in plants, 1007
in quasicrystals, 994
of random biological patterns, 

1013
in snowflakes, 992
between space and time, 485
and sphere packings, 987
and state transition graphs, 962
of tilings, 943

Synapses, 1075
and memory, 1102
randomness in, 970

Synchronic linguistics, 1181
Synchronization

in practical computing, 1035
in the universe, 486

Synchrotron radiation, 1187
Synergetics

and history of complexity, 862
and reaction-diffusion, 1013

Synoptic weather maps, 1178
Syntax

CA as checker of, 1109
for computer communication, 

1182
and context-free languages, 1103
of formal languages, 939
of math, 1150
and semiotics, 1181

Synthesis (chemical), 1194
Synthesizers (audio)

waveforms in, 1079
Syracuse problem (  problem), 

904
Syrinxes of songbirds, 1180
System identification, 550, 1083

Systems theory
definitions of complexity in, 1069
and history of complexity, 862
summary of relations to, 15

Systolic arrays
and history of CAs, 877

Szmielew, Wanda M. (Poland/USA, 
1918–1976)

and commutative groups, 1160
Szudzik, Matthew P. (USA, 1973– )

and axioms for logic, 1151
in Preface, xii

T violation (time reversal violation), 
1019

T1 and T2 processes in networks, 
1038

Table, basic examples of, 853
Tables

for Boolean formulas, 1095
leading digits in, 914
of primes, 910
of random numbers, 968
see also Multiplication tables

Tabulating machines, 1107
Tachyons, 1041

spin of, 1046
Taffy

as chaos theory example, 306
fracture in, 994

Tag systems, 93–94
cyclic, 95

see also Cyclic tag systems
density in, 894
emulated by correspondence 

systems, 1140
emulated by recursive functions, 

1121
emulated by universal TM, 706, 

1119
emulating CAs, 667, 1113
emulating TMs, 670, 1114
implementation of, 894
multiway, 1141
one-element-dependence, 1114
as precursors to my work, 879
random initial conditions in, 949
and TM 596440, 1120
undecidability in, 1136
uniform, 82

see also Substitution systems
universality in simple, 1120
universality of one-element 

dependence, 1120
Tail recursion

and recursive functions, 907
Tails (of data), 1083
Taj Mahal

nesting in gardens of, 874
Take (take elements)

basic example of, 853
Tally sticks

and application of randomness, 
968

Tan, curve of, 145
Tang, Chao (USA, 1958– )

and self-organized criticality, 989
Tangencies

in circle packings, 986
in ornamental art, 873

Tanh
in neural network models, 1102
and solving Ising model, 982

Taoism, 1196
Tape, of Turing machine, 78

Tapir, pigmentation pattern of, 426
Taps in shift registers, 975
Tarski, Alfred (Poland/USA, 

1902–1983)
and axioms for geometry, 1154
and axioms for groups, 1153
and axioms for predicate logic, 

1152
and real algebra, 1154
and undecidability of group 

theory, 1159
Taste, sense of, 1105
Tate-Shafarevich group, 1164
Tau lepton

mass of, 1046
as type of particle, 1043

Tautologies
based on Nand, 781, 1157

Tautology, laws of, 817
Tea leaves, 968
Tearing of materials, 995
Technical analysis

of financial markets, 1015
Technology

components used in, 1195
dating of jargon about, 849
discussions of in this book, 1192
future of, 832
history of vs. fossil record, 398
and human condition, 846
implications for, 840–843
new purposes for, 843
and Occam’s razor, 1025
optimization in advanced, 829
search-based development of, 

1193
as stimulus for basic science, 42
summary of relations to, 11, 863

TECO (text editor), 894
Tectonic activity, 1001
Teeth

folding in formation of, 417
patterns in ray and shark, 1007

Teichmüller spaces (parameter 
spaces), 1006

Telegraphy
and data compression, 1069
and SETI, 1189

Teleology, 1185
and argument by design, 861
and biological evolution, 387

Telepathy
as feature of extraterrestrials, 1190

Telephone
bandwidth of, 1079
development of, 1080
and sound compression, 1072

Telephone information services, 
1100

Telephone networks
Monte Carlo studies of, 1192

Teleportation, 1058
Telescopes

as analogy, 42
and SETI, 835

Television
bandwidth of, 1079
data compression for, 1072
as source of radio signals, 1188

Telos (final cause), 1185
Temperament (in music), 917, 1079
Temperature

of black holes, 1062
as characterizing equilibrium, 450
in crystal growth, 993

differences in convection, 1000
in Ising model, 982
repeatable randomness in, 976
and weather, 1177

Templates
for 2D constraints, 941
in aggregation systems, 978
and hash codes in neural 

networks, 624
in tilings, 213
in visual perception, 579

Temporal logics
and causal invariance, 1035

Temporal sequences
in cellular automata, 960

TensorRank
and tensors in differential 

geometry, 1049
Tensors

characterizing symmetry of 
pattern, 980

in differential geometry, 1049
duals of, 1050
Einstein equations and, 1052
manipulation of, 1048
norms of, 1050

Tent map, 150
exact iterates of, 919
and history of chaos theory, 971

Tent olive shell, pattern on, 423
Tent patterns on shells, 423
Tentacles

of octopus, 385
and spines on shells, 1008

Term rewrite systems
see Multiway systems

Termination
of function computations, 1163
in multiway systems, 1036
problems

see Halting problems
in symbolic systems, 897

Termite structures
and aggregation systems, 1011
as animal artifacts, 1184

Ternary, binary-coded, 1070
Ternary cellular automata, 60
Ternary logic, 814
Ternary operators, 1171
Terraces in crystals (hoppering), 993
Territories

defending and bird songs, 1180
and Voronoi diagrams, 987

Tertiary structure (of proteins), 
1003, 1184

Terza rima
and rules for poetry, 875

Tesla, Nikola (USA, 1856–1943)
and SETI, 1188, 1189

Tessellation automata
see Cellular automata

Tessellations
defined by constraints, 213
of fixed blocks, 582

Tests of models, 364
Tests of randomness, 1084

for digit sequences, 912
for rule 30, 871

Tetrad formulation of general 
relativity, 1048

Tetradecahedron, 930, 987, 988
Tetrahedral group ( )

with trivalent Cayley graph, 1032
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Tetrahedron
as cluster shape in sphere 

packings, 986
network as net of, 476
network transformed to cube, 

1038
as rigid 3D structure, 1031
in spin networks, 1055
as tip of plant stem, 1004

Tetrakaidecahedron
see Tetradecahedron

Tetration
and Ackermann function, 906
and halting in symbolic systems, 

897
and symbolic systems, 897

Text
compression of, 1084
in databases, 621
in practical computers, 1108
redundancy of, 1086

Text-based interfaces, 1102
Text editors, 88, 894
Textbooks

and computational irreducibility, 
1133

of computer science and Church’s 
Thesis, 1126

math in, 773
Textile cone shell, pattern on, 423
Textile making, rules in, 874
Textons

and texture perception, 1076
Texture perception, 577

history of, 1076
Textures

in biology, 387
generating, 841, 1078
of physical surfaces, 1077

Texturing
use of randomness in, 1192

Thallus, shape of, 385
Theism, 1195
Theology

and complexity, 3, 861
and form of extraterrestrials, 1191
and free will, 1135
and issues of modelling, 991
and teleology, 1185
and ultimate theory of physics, 

1025
and uniqueness of life on Earth, 

1180
and universe as intelligent, 1195
see also God
see also Religion

Theophrastus (Greece, ~371 – 
~287 BC)

and shapes of leaves, 1005
Theorems, 779

automated proving of, 1157
see also Automated theorem 

proving
character of different types, 820
vs. computer experiments, 899
and definition of math, 860
distributions of in fields of math, 

1175
general characterizations of, 1176
interesting ones in logic, 816
involving Nand, 818, 1175
in operator systems, 801
pattern of in logic, 812

pattern of in simple axiom 
systems, 812

of shortest axioms for logic, 811
Theoretical biology

and complexity, 861
history of, 1003
undecidability in, 1138

Theoretical science
and computational reducibility, 

749
traditional methods of, 737

Theory of being (ontology)
implications for, 1197

Theory of biology
possibilities for a, 397

Theory of computation, 753
Theory of everything, 1025
Theory of knowledge 

(epistemology)
implications for, 1196

Theory of structures
in mathematics, 1150

Theory of universe
see Ultimate theory of physics

Thermal diffusion
and randomization times, 970

Thermal equilibrium
in early universe, 1055
and Ising model, 982
see also Equilibrium

Thermal noise, 968
in microprocessors, 970

Thermal perception, 1105
Thermodynamic formalism (for 

dynamical systems), 959
Thermodynamic limit

for diffusion equation, 1024
and phase transitions, 983

Thermodynamics
analogies to computation, 726
vs. biological evolution, 1003
of computation, 1020
and crystal growth, 993
and defining life, 824, 1178
history of, 1019
and history of complexity, 862
Second Law of, 441–457

see also Second Law of 
Thermodynamics

vs. strange attractors, 1020
summary of relations to, 16

Theta functions, see EllipticTheta
Thinking

attributed to universe, 1195
communication and, 1181
emulation by computers of, 733
and foundations of math, 1176
and Gödel’s Theorem, 1159
in higher math, 1177
history of studying, 1099
human, 620–631
influence of language on, 1181
logic as representation of, 860
machines, 628
and Principle of Computational 

Equivalence, 733
and ultimate theory of universe, 

465
Thinking Machines Corporation, 

xiii, 881
Thirteenth problem (of Hilbert), 

1128
Thom, René F. (France, 1923– )

in Preface, xiii

and structure in animals, 1009
and theoretical biology, 1004

Thompson, D’Arcy W. (Scotland, 
1860–1948)

and forms in nature, 967
and growth processes, 1010
and leaf shapes, 1006
and theoretical biology, 1004

Thomson, William, see Kelvin
Threads between particles, 544
Three-body problem, 972

and computational irreducibility, 
1132

and history of chaos, 971
and history of complexity, 862, 

1068
as precursor to my work, 879
randomness in, 314
and undecidability, 1138

Three-dimensional
cellular automata, 182–183
networks, 195, 1030
wave equation, 923

Three squares problem, 910
Through

and recursive functions, 907
Throw

and context-free parsing, 1103
and pointer-based encoding, 1071
and testing invariances, 1022
and testing reversibility, 1017

Thue, Axel (Norway, 1863–1922)
and circle packings, 985
and Diophantine equations, 1164
and multiway systems, 938
and repetition-free sequences, 944
and substitution systems, 879, 893
and word problem for 

semigroups, 1141
Thue equations, 1164
Thue-Morse sequence, 890

atomic layers in, 1082
as cube-free sequence, 944
and cyclic tag systems, 895
generating function for, 1092
and period-doubling sequence, 

892
represented by special functions, 

1092
rule 60 applied to, 1091
simplest CA generating, 1186
spectrum of, 586, 1081
statistics of blocks in, 594
from substitution system, 83
and Walsh functions, 1073

Thunderstorms,  noise in, 969
Thwaites conjecture (  

problem), 904
Tic-tac-toe, network for, 939
Tidal forces

and Einstein equations, 1052
Tides, machine for predicting, 1107
TIFF format, compression in, 1070
Tiger, pigmentation pattern of, 426
Tilings, 211–221

from  squares, 1078
and aggregation systems, 979
approximate solutions of, 345
and cellular automata, 943, 1139
as cellular automaton lattices, 930
density of difficult cases of, 1147
diffraction patterns of, 1082
enumeration of, 959
of fixed blocks, 582
history of, 943

in hyperbolic space, 1050
as invariant states of 2D CAs, 349
and Ising models, 1138
and melting points, 1194
NP completeness in, 984, 1145
Penrose, 932

see also Penrose tilings
and reversibility of 2D CAs, 1017
Truchet, 875
undecidability in, 1138, 1139
see also Domino problems

Time
alignment of in universe, 1021
branching in, 504
compression in PDEs, 732
computation between moments 

of, 1033
and definition of motion, 521
discreteness in, 1032
graphical representation of, 1031
in gravity and computation, 1130
in Hopi language, 1181
network for in multiway systems, 

209
and randomness in causal 

networks, 494
in relation to space, 481–486
and single active cell, 487
in ultimate theory of physics, 

486–508, 516–524
Time-and-motion studies

and causal networks, 1033
Time complexity (in computational 

complexity theory), 1142
Time dilation (relativistic), 524
Time Machine (science fiction book), 

1031
Time reversal

in particle physics, 1019
and thermodynamics, 443, 1020

Time series analysis, 587, 1081, 1083
Time standards

as source of radio signals, 1188
Time travel, 1043

and character of time, 1031
and energy conditions, 1053

TimeConstraint
and avoiding undecidability, 1138

Timeline
of close approaches, 878
of my scientific activities, 864
of publications of mine, 881
of writing this book, 850

Times ( )
combinator for, 1122
and NC computations, 1149
in ordering of math constructs, 

1177
primitive recursive definition of, 

907
Tippett, Leonard H. C. (England, 

1902–1985)
and random number tables, 968

Tire treads
characteristic shapes of, 1183

Tit-for-tat strategy
in game theory, 1104

Titan, and extraterrestrial life, 1179
TMs, see Turing machines
Toda lattice

as exactly soluble, 1133
Toes (animal), formation of, 419
ToExpression, and parsing, 1103
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Toffoli, Tommaso (Italy/USA, 
1943– )

and 2D CA simulators, 928
and 2D cellular automata, 880
in Preface, xiii

Tokens, in formal languages, 1103
Tones, in music, 1079
Tongue, human, 1105
Tool use

and defining intelligence, 1178
Toom, Andrei (Russia/USA, 1942– )

and transitions in CAs, 981
Top (spinning)

as exactly soluble, 1133
Topochronology, 1027
Topography

and identifying artifacts, 1184
origins of, 1001
and weather, 1177

Topological defects, 1045
and localized structures, 990

Topological dimension, 1030
Topological entropy, 958, 959

computing, 1084
history of, 961

Topological equivalence
and reversible CAs, 961

Topological field theories
and defining dimension, 1031
and quantum computers, 1148
and spin networks, 1055

Topological indices
and chemical properties, 1195

Topological processes (T1 and T2)
in planar networks, 1038

Topological spacetime entropy, 960
Topological structure

and visual memory, 624
Topology

axioms for, 774, 1155
and biological form, 1004
and cellular automata, 930
and discrete space, 1050
and general relativity, 1052
of networks, 1045
and networks from continuous 

systems, 1031
of Schwarzschild solution, 1053
and texture perception, 1076

Topos theory
as idealization of math, 1150

Toppling, in sandpile model, 989
Torsion

in general relativity, 1052
in unified field theory, 1028

Tortoiseshell cats
patterns on, 1014

Tossing (of coins, etc.)
as source of randomness, 305, 968, 

970
ToString

and bracket sequences, 897
Total functions

primitive recursive as, 907
in Turing machines, 1143

Total recursive functions
see Primitive recursive functions

Totalistic cellular automata, 60
2D, 170
and CellularAutomaton, 867
implementation of, 886
as not reversible, 1017
number of, 886
and pigmentation patterns, 1012

with random initial conditions, 
233

universality in, 693, 1117
and visual feature extraction, 1077

Totient, see EulerPhi
Tournaments

of game programs, 1104
Towers of Hanoi puzzle, 893
Towns, see Cities
Toys

complex motion in, 1183
random motion in, 968

Tracery, in Gothic windows, 873
Tracks

made by turning vehicles, 418
Trading

effects of details of, 1015
with extraterrestrials, 1191
processes of, 430

Traffic flow
 noise in, 969

instabilities in road, 1014
Training

of animals, 825
and responses to events, 827

Trains of thought
and free will, 752

Transcendental equations
numbers defined by, 916
undecidability in, 1138
universality in, 731

Transcendental numbers, 912
constructed from digits, 914
continued fractions of, 144
digit sequences of, 136, 142
and Egyptian fractions, 915
as precursors to my work, 878
see also , , etc.

Transfer matrices, 983
Transfinite hierarchy of formalisms, 

1159
Transfinite induction, 1160

and Goodstein sequences, 1163
in set theory, 1154

Transfinite numbers, 1162
and abstraction in math, 792, 860, 

1149
as generalizing numbers, 1168

Transformation rules
and axioms, 1150
examples of in Mathematica, 854
in Mathematica, 627, 1103
in symbolic systems, 102

Transients
in class 4 systems, 282
in code 20 cellular automaton, 964
in Game of Life, 965
in halting register machines, 896
and irreversibility in rule 37R, 454
for mobile automata, 887
in state transition graphs, 961
in three-body problem, 973
and undecidability, 754

Transistors, and Nand, 1173
Transitions

in class 4 systems, 948
in continuous CAs, 244, 948
see also Phase transitions

Transitivity
and confluence property, 1036

Translations
of functions in logic, 807
between languages, 1086
between math systems, 816
see also Emulation

Transmutation, in alchemy, 861
Transponders

and radio signals, 1188
Transpose

and Ricci from Riemann tensor, 
1049

Transposition sort, 1142
Trapezoidal primes, 911
Travelling salesman problem, 985, 

1145
Tree, backtracking, 1089
Tree-like patterns

in 2D cellular automata, 171
in 2D substitution systems, 188
in crystals, 371
in rule 184, 359
see also Nesting

Tree networks
as having infinite dimension, 480

Trees
for address decoding on chips, 

1183
alkane molecules as, 1194
as alternative to hashing, 1100
in animal branching structures, 

1008
and attractor structure, 959
balanced binary, 897, 898
binary

see Binary trees
as combinator expressions, 1123
for computation of powers, 615
depth of in expressions, 897
and digit sequences, 891
dynamic, 936
evolving in symbolic systems, 897
expressions as, 897
in Huffman coding, 1071
in landscape structures, 1001
Mathematica expressions as, 989
Nand, 1096, 1157
networks forming, 196
as origins of nesting, 357
parse, 1103
random, 1084
in recursive evaluation, 907
for representing integers, 916
space of possible, 405
in state transition graphs, 961
and structure of proofs, 1155
and substitution systems, 84
in transition graphs for additive 

rules, 963
and understanding expressions, 

1177
Trees (botanical)

and Descartes on complexity, 861
forms of, 401
growth of, 1004

Trend-based weather prediction, 
1178

Triangle inequality
and definition of distance, 1030

Triangles
in discrete space, 1051
Lagrange points forming, 972
in ornamental art, 873
produced by cellular automaton 

evolution, 24, 225, 947
produced in rule 30, 28

Triangular lattice
cellular automata on, 930
percolation theory on, 983
random walks on, 329

Triangular waveform, 917

Triangulation
in GPS, 1086
and quantum gravity, 1054
of space, 533, 1050

Tributaries
building up rivers from, 359, 1001

TrigFactor, and sine curves, 917
Triggerfish

pigmentation pattern of, 426
Trigonometric equations

universality in, 731, 1129
Trigonometric functions

and shapes of leaves, 1006
and undecidability, 1138

Trigonometric series
machine for computing, 1107
nested functions from, 918
and origin of set theory, 1154
and spectra of nested sequences, 

1081
Trigonometric sum formulas

of Ramanujan, 911
Trillion (as 1,000,000,000,000), 849
Trillions of rules

in finding doubling CAs, 832
Trilobites

as examples of evolution, 1003
regularities in, 385

Trinomial coefficients, 1091
and rule 150 pattern, 611

Tripling cellular automata, 1186
Trisection of angles, 1137
Tritone (musical interval), 146, 917
Trivalent networks, see Networks
Troy, maze as logo for, 873
Truchet, Sébastien (Jean) (France, 

1657–1729)
and patterns from rules, 875

True
defined with Or and Not, 817
Nand statements equivalent to, 

781
True but unprovable statements, 

1167
TrueQ, and truth values, 1158
Truncated icosahedron

and spherical networks, 1049
Truncated octahedron

and 3D lattices, 930
Trusses

characteristic shapes of, 1183
Truth

and computational irreducibility, 
1196

and essential incompleteness, 
1159

and incompleteness, 1167
in math reached only by 

experiment, 899
and theories of communication, 

1181
and undecidability, 1136, 1139

Truth tables, 1170
vs. axioms, 802
in multiway systems, 1173
and satisfiability, 768

Truth values
intermediate, 1175
and lack thereof, 1158

Tubes
formation of inside animals, 417
in musical instruments, 1079

Tulip bulbs
and speculative markets, 1015

Tumbling of microorganisms, 970
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Tumor growth, 1011
aggregation system for, 978

Tuning, musical, 917
Tunnelling

as basic quantum effect, 1059
Turaev-Viro invariants, 1055
Turbulence, 376

as analogy for quantum field 
theory, 1059, 1061

in atmosphere, 1001
in convection, 1000
in flow of sand, 1001
vs. fracture roughness, 994
in gravitational fields, 1053
and history of complexity, 862
and history of randomness, 968
in interstellar medium, 1188
as motivating question, 17
numerical computation of, 924, 

997
in QCD field configurations, 1061
and snowflake differences, 992
sound of, 1079
as source of apparent intelligence, 

837
traditional models of, 997
in two dimensions, 999

Turing, Alan M. (England, 
1912–1954)

and animal pigmentation, 1012
and artificial intelligence, 1099
and computable numbers, 1128, 

1137
computer programs of, 1013
and continuous computation, 

1128
and defining computability, 1125
and diagonal arguments, 1128
and history of computers, 1107
and oracles, 1126
and origins of universality, 1110
and reaction-diffusion, 1012
and theoretical biology, 879, 1004
and Turing machines, 879, 889
and undecidability, 1136
and undecidability of word 

problem, 1141
and universal TM, 1119

Turing completeness
see Universality (computational)

Turing degrees (arithmetic 
hierarchy), 1139

Turing machines, 78–81
2D, 184–186
attitude of Gödel towards, 1159
attractors in, 961
axiom systems for, 1167
and Church’s Thesis, 1125
compared to circuits, 1148
and computable reals, 1128
computing increment, 758
emulated by CAs, 658, 1111
emulated by combinators, 1122
emulated by Life, 1117
emulated by recursive functions, 

1121
emulated by register machines, 

671, 1114
emulated by satisfiability, 1146
emulated by tag systems, 670, 

1114
emulating CAs, 665, 765, 1113
emulating more colors, 669, 1113, 

1119
emulating multiway systems, 765

emulating rule 60, 1119
emulating rule 110, 707, 1119
emulating substitution systems, 

765
enumeration of, 1120
evolution of as P computation, 

1142
functions computed by small, 

1143, 1144
and growth rates of functions, 

1163
growth rates of running times, 

1145
halting of one-way, 759
halting probabilities for, 1143
halting problem for, 1137
history of, 889
history of 2D, 930
and history of CAs, 876
history of universal, 1119
and history of universality, 1110
as idealization of math, 1150
implementation of, 888
implementation of 2D, 930
implementation of non-

deterministic, 1146
initial conditions for, 710
localized structures in, 888
longest halting times for, 1144
non-deterministic, 766, 939
number of, 888
one-way, 759
and oracles, 1126
and P completeness, 1149
paths in 3D from 2D, 931
as precursors to my work, 879
quantum analogs of, 1147
random initial conditions in, 949
and recursive sets, 1138
with rule 60-like behavior, 1120
running times of, 761, 1143
and second-order logic, 1167
simplest with complex behavior, 

708–709, 1120
small for elementary rules, 1113
state-color tradeoffs in, 888, 1120
symmetries of, 1120
and time in universe, 486
undecidability in, 1136
and universal CAs, 1115
universality in simple, 706–711
and word problem in groups, 

1141
Turing test (in AI), 1099, 1178
Turmites (2D Turing machines), 930
Turning machines (2D Turing 

machines), 930
Turns

and substitution system paths, 
892

Turtles
pigmentation patterns of, 426

Turtles (artificial)
and 2D Turing machines, 930
and 3D paths, 931

Tweeks (natural radio), 1187
Twin paradox, time dilation in, 524
Twin primes, 909

unsolved problem of, 1166
Twinning, in crystal growth, 993
Twins, biometrics of, 1014
Twistor formulation of general 

relativity, 1048
Twitching in muscles

and free will, 1136

Two-body problem, 313, 972
and computational reducibility, 

737
as exactly soluble, 1133
in general relativity, 1053

Two-cell neighborhood cellular 
automata, 885

Two-dimensional
cellular automata, 170–181
constraints, 211
data compression, 568
mobile automata, 931
networks, 195
random walks, 329
substitution systems, 187–192
systems in general, 169–221
template numbering, 941
Turing machines, 184–186
wave equation, 923

Two’s complement number 
representation, 902, 942

Tycho (crater)
circular shape of, 1187

Tylor, Edward B. (England, 
1832–1917)

and animism, 1195
Type theory

and category theory, 1154
Types, of functions and data, 898

U(1) (group)
and additive systems, 953

U-numbers (Ulam sequences), 908
UFOs, 1180, 1183
Ukraine, art from, 873
Ulam, Stanislaw M. (Poland/USA, 

1909–1984)
and CAs, 876, 877, 879
and generalized CAs, 928
and iterated maps, 918
in Preface, xiii
and Ulam sequences, 908

Ulam sequences, 908
Ulam’s problem (  problem), 

904
Ultimate theory of physics, 465–545

and amount of information, 1133
elementary particles in, 525–530
and extraterrestrial trade, 1191
general features of, 465–471
gravity in, 530–537
history of, 1024
mass in, 528
numerology and, 1025
quantum phenomena in, 537–545
searching for, 466
space in, 472–486, 516–524
and theology, 1025
time in, 486–508, 516–524
undecidability of consequences 

of, 1027
uniqueness of, 470
and universe as computer, 1026
verifiability of, 469

Ultrafilters
and non-standard arithmetic, 

1169
Ultraspherical functions

and rule 150 pattern, 612
Unary operations

and generalized additivity, 952
Unary representation of numbers, 

560, 1070
and CA fluids, 1000
historical use of, 1182

in lambda calculus, 1121
and NP completeness, 1145

Unbiased estimators
for entropy, 959, 1084

Unbounded growth
in class 4 systems, 289
in Game of Life, 965
in rule 110, 293

Uncertainty principle, 1058
as basic quantum effect, 1059
character of as principle, 1126
and vacuum fluctuations, 1062
and virtual particles, 1046

Unconscious thinking, 1136
Undecidability, 753–757

in algebra, 1138
of algorithmic randomness, 1067
of applicability of Baker’s 

method, 1164
of axiom system correctness, 1170
in biology, 1138
in cellular automata, 1138
in chemical synthesis, 1194
in classification of CAs, 948
in combinatorics, 1138
compared to math impossibility, 

1137
of completion algorithms, 1037
in computer science, 1138
of confinement in QCD, 1062
of consequences of ultimate 

theory, 1027
of context-free language 

equivalence, 1103
degrees of, 1139
density of, 1137
Diophantine equation with, 786
of entropy values, 958
of equivalence in operator 

systems, 802
of equivalence of manifolds, 1051
of forcing of operators, 1172
in game theory, 1105
of halting problem, 1128
history of, 1136
vs. independence, 1159
in lambda calculus, 1136
in Mathematica, 1138
in mathematical logic, 1138
mentioned in psychology, 1136
in multiway systems, 779, 1136
in nature, 1138
as not relevant to nature, 1132
vs. NP completeness, 769
in number theory, 1138
in operator systems, 815
of phase transitions, 1138
in physics, 1138
of P=NP problem, 1146
and proofs, 779
in quadratic Diophantine 

equations, 1164
and quantum measurement, 1064
in recursive functions, 1136
and sets, 1138
of structure equivalence in 

networks, 1045
of surjectivity for 2D CAs, 960
in symbolic integration, 1177
in tag systems, 1136
and three-body problem, 1138
in tiling problems, 942, 1139
of undecidability, 1138
of universality, 1127
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without universality, 734
in word problems, 1141

Undefined function values
in Turing machines, 1143

Unfailing completion algorithms, 
1037

and automated proofs, 1158
Unified field theory (of Einstein), 

1025, 1028
Unified models (in particle physics), 

1043
Uniform distribution

and iterated maps, 919
and linear congruential 

generators, 320
mod 1, 903
of multiplicative sequences, 903
and plant phyllotaxis, 1007
of powers, 903
of sequences, 904
of unbounded quantities, 1070

Uniform sampling
as application of randomness, 

1192
Uniform spectra, 1081

origins of, 988
Uniform tag systems, 893

see also Substitution systems
Uniformity

in hashing, 622
origins of, 353
in rule 254 cellular automaton, 24
visual approximations to, 1078

Union
basic example of, 853
and encoding integers as sets, 

1160
and finite set theory, 1171
in multiway systems, 937
theorems about, 1168

Uniqueness
of humans, 1195
in Navier-Stokes, 997
of patterns from CAs, 956
of solutions to equations, 940
of solutions to PDEs, 923
of ultimate theory of physics, 470

Unitarity (in quantum mechanics), 
1059

Unitary matrices
and quantum computers, 1147

Univalve shells, 1008
Universal algebra, 1171

of Whitehead, 1150
Universal cellular automata, 

644–656, 1110
history of, 1115
and rule 110, 675–691

Universal circuits, 1148
Universal computation

see Universality
Universal constructor, 1193
Universal Diophantine equations, 

786, 789, 1160
history of, 1161
and polynomial values, 1162

Universal languages
for extraterrestrial 

communication, 1189
and human thinking, 1099
and Leibniz, 1109, 1149
and logical positivism, 1181
and theories of communication, 

1181
Universal objects, 724, 1127

Universal primitives
for logic, 1173
for multivalued logic, 1175
for quantum computers, 1148
for reversible logic, 1098

Universal register machines, 1121
Universal spaces

see Cellular automata
Universal system

in nanotechnology, 1193
Universal Turing machines

and cellular automata, 1115
Minsky’s, 1119
and running times, 764
simple, 706

Universality (apparent)
history of, 967
of mathematics, 860
in models, 992
of natural systems, 298, 718
in nature and elsewhere, 4

Universality (computational), 5, 
642–644

and algorithmic information, 1067
of arithmetic systems, 673
automated proving of, 1127
in axiom systems, 784
of cellular automata, 644
of cellular automata in 2D, 693
and class 4 behavior, 691
in classes of systems, 1123
in combinators, 711
and complexity, 643
and computational irreducibility, 

742
in computer languages, 642
criteria for, 1126
in cyclic tag systems, 669
density of, 1126
difficulty of proving, 698, 722
in Diophantine equations, 1164
and financial markets, 1015
of general recursive functions, 907
of group theory, 1159
history of, 1109
implications of, 674
and intermediate degrees, 734
lack of with nesting, 734
lack of with repetition, 734
and language translation, 643
in Mathematica, 1110
of mobile automata, 664
and natural science, 643
as not relevant to nature, 1132
vs. NP completeness, 766
in operator systems, 815
and oracles, 1126
and P completeness, 1149
of Peano axioms, 1152
of predicate logic, 1159
and Principle of Computational 

Equivalence, 717
proofs of, 722
of pure predicate logic, 1152
of recursive functions, 1121
of register machines, 672
removed by adding axioms, 1159
and reversibility, 1019
of rule 30, 734
of sequential substitution 

systems, 667
of substitution systems, 666
of symbolic systems, 668
in tag systems, 667, 1120
in three-body problem, 972

threshold of, 675
threshold of in CAs, 694
in totalistic cellular automata, 693
in Turing machines, 665, 706–711
ubiquity of, 690, 718
and undecidability, 1137
undecidability of, 1127

Universality (critical phenomena)
in iterated maps, 921
and phase transitions, 983

Universality theorem
for zeta function, 918

Universals
in computer languages, 1182
and decoding dead languages, 

1185
in human languages, 1103, 1181

Universe
as an artifact, 1191
basic cosmology of, 1055
and Church’s Thesis, 1126
initial conditions for, 1026
mind as microcosm of, 1196
vacuum solutions for, 1053
wave function for, 1063
see also Cosmology

Universe, theory of
see Ultimate theory of physics

Unix operating system
and my early work, 864
random seeds in, 970
and regular expressions, 958

Unpredictability
and free will, 752
history of, 1132
in randomness from 

environment, 301
see also Predictability

Unprovability, see Undecidability
Unprovable statements

in math, 1163
about symbolic systems, 897

Unreliable components
and phase transitions, 981

Unrestricted grammars, 939
Unsolvability

Diophantine equation showing, 
786

in math, 1137
of quintic equations, 1132
of three-body problem, 972
see also Undecidability

Unsolved problems
in number theory, 789, 1162, 1166
paper of mine on, 882
in science of this book, 856

Unsupervised learning, 1102
Unwinding

of primitive recursion, 907
Upside-down visual images, 626
Ur-theory, 1027
Urban planning, see Cities
Urey, Harold C. (USA, 1893–1981)

and origin of life, 1179
URMs (universal register 

machines), 1121
Uruk, Mesopotamia, 873
U.S. government

and artificial intelligence, 1099
and cryptography, 975, 1085

User interfaces
and concept of halting, 1137
graphical vs. language, 631
history of, 1102

Utah
and features seen from space, 

1187

V1 visual cortex, 1075
Vacuum Einstein equations, 536, 

1053
Vacuum fluctuations, 540, 1062

and Bell’s inequalities, 1065
as source of decoherence, 1063

Vacuum polarization, 1062
Vacuum tubes

 noise in, 969
and Nand, 1173
randomness in, 303, 971

Valuation functions, for trees, 916
Valuation tables (truth tables)

in operator systems, 801, 1170
Value sets of polynomials, 1161
van der Corput, Johannes G. 

(Netherlands, 1890–1975)
and digit reversal sequences, 905

van der Pol, Balthazar (Netherlands, 
1889–1959)

and history of chaos, 971
van der Pol equation, 922, 971
van der Poorten, Alfred J. 

(Australia, 1942– )
and nested digit sequences, 913

van der Waerden’s Theorem
in Ramsey theory, 1068

Vants (2D Turing machines), 930
Variables

in mathematical logic, 1150
notation for, 1182
in programs in notes, 854
and pure functions, 1121
scoping of, 1152

Variance
and Central Limit Theorem, 976

Variational derivatives
in path integrals, 1061

Variational principles
as constraints, 940
for gravity, 1052
and notion of purpose, 1185

Vauban star forts
nested architecture of, 874

VAX 11/780 computer
my use of, 854, 864

VC (Vapnik-Chervonenkis) 
dimension, 1102

Vector fields
topological defects in, 1045

Vector potential
and gauge invariance, 1045

Vector quantities
conservation of, 1024

Vectors
as generalizing numbers, 1168

Vedic poetry
and Fibonacci numbers, 891

Vegetation bands
maze-like patterns in, 1013

Veins
in leaves, 404
and transportation in cities, 1014

Venn, John (England, 1834–1923)
and randomness in digits of , 

879, 912
Venn diagrams, 1171
Ventifacts (wind-sculpted forms), 

1001, 1183
Venus

and extraterrestrial life, 1179
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Verbal communication, 1181
Verbal processing in brains, 1181
Verbs

in human languages, 1103
in math notation, 1182

Verhulst equation
and iterated maps, 918

Verifiability
of models, 366
of ultimate theory of physics, 469

Verification
and theorems about programs, 

1168
Verilog, and logic operations, 1173
Vertex coloring (maximum clique)

and discrete packing, 987
VHDL, and logic operations, 1173
Vibrations

in auditory perception, 585
in musical instruments, 1079
nested of physical systems, 1081

Video
radio signals associated with, 

1188
Videogames

use of randomness in, 1192
Vietnam war, draft lottery in, 969
Vigenère, Blaise de (France, 

1523–1596)
and ciphers, 1085

Vigenère cipher, 599, 1085, 1086
Viking spacecraft, 1179
Villi (biology), formation of, 418
Vinogradov, Ivan M. (Russia, 

1891–1983)
and Goldbach’s Conjecture, 911

Viroids, 1179
Virtual particles

as basic quantum effect, 1059
in Feynman diagrams, 1060
and masses of particles, 1046
and persistent structures, 540
surrounding any particle, 1044
and vacuum fluctuations, 1062

Viruses
as fairly optimal organisms, 398
genetic programs of, 1002
self-assembly in, 1193
shapes of, 385

Viruses (computer), 1179, 1182
Viscosity

in 2D fluids, 999
effects of in fluids, 381, 996
and higher-order Lorenz 

equations, 998
in models of turbulence, 997
in quantum field theory, 1061

Visible lattice points, 613, 1093
Visual acuity, 1076
Visual cortex, 580, 1075
Visual illusions, 1076
Visual memory, 623
Visual perception, 577–584

assessing models with, 365
and color in this book, 851
in computer experiments, 111
difficulty of analyzing radio 

signals with, 1189
eye movements in, 1192
history of studies on, 1076
implementation in brain, 1075
and ocular dominance stripes, 

1013
and Stone Age paintings, 839

and styles of art, 872
and zebra as camouflaged, 1012

Visual presentation
and inadequacy of language, 631

Visual thinking
in mathematics, 1177

Vitamin A
in embryo development, 1009

VLF radio receiver, 1187
VLSI

Boolean formulas and, 1097
testing and randomized 

algorithms, 1085
Vocal tracts

and bird songs, 826
and sound compression, 1080

Vocoders, 1080
Voices, random variations in, 1192
Void

and Epicurean notion of space, 
1028

Volatility
of prices in markets, 1015

Volcanos
circular shapes of, 1187
as landscape elements, 1001

Voltage
and gauge invariance, 1045

Volumes
and metrics, 1050
of spheres in curved space, 1050

Volute shells, patterns on, 423
von Kármán, Theodore (Hungary/

Germany/USA, 1881–1963)
and vortex streets, 998

von Koch, N. F. Helge (Sweden, 
1870–1924)

and nested curves, 934
von Neumann, John (Hungary/

USA, 1903–1957)
and CAs, 876, 879, 928
and computers, 1108
and history of complexity, 862
and iterated maps, 919
and random generators, 975
and self-reproduction, 1179
and set theory, 1154
and thermodynamics of 

computation, 1020
and universal CAs, 1117
and use of universality, 1110

von Neumann-Bernays-Gödel set 
theory, 1155

von Neumann neighborhood (in 2D 
cellular automata), 170, 928

von Neumann’s Law
for random networks, 1039

Voronin, Sergei M. (Russia, 1946– )
and zeta function universality, 

918
Voronoi diagrams, 987

discrete, 987
and nearest-neighbor memories, 

1101
and polycrystalline materials, 993
and random networks, 1038
in sphere packing, 986

Voronoi region
and CA lattices, 929

Vortex atoms, in the ether, 1044
Vortex streets, 377, 998
Vortices

of Descartes, 1027
in flow of sand, 1001
in fluid flow, 376

and general study of form, 967
interactions between, 382, 998
as localized structures, 990
as topological defects, 1045

Vorticity-based models, 999
Vorticity patterns in fluids, 997
Vowels

sound of, 1079
and soundex system, 1100

Voyager spacecraft, 1190

W particle, 1046
Waddington, Conrad H. (England/

Scotland, 1905–1975)
and patterns on shells, 1012

Wagner’s theorem, 1045
Wainwright, Thomas E. (USA, 

1927– )
and molecular dynamics, 879, 999

Wajsberg, Mordechaj (Poland, 
1902 – ~1940)

and axioms for logic, 1151
Wakes in fluid flow, 376, 984, 998
Waldmeister (automated theorem 

prover), 1158, 1174
lengths of proofs from, 1175

Walker, Crayton C. (USA, 1932– )
and Boolean networks, 936

Walking
fluid flow when, 996
as repetitive process, 1011

Walks, random, see Random walks
Wallpaper

and 2D cellular automata, 929
Walras, M. E. Léon (France, 

1834–1910)
and math economics, 1015

Walsh, Joseph L. (USA, 1895–1973)
and Walsh transforms, 1073

Walsh transforms, 573, 1072
fast, 1073

Wang, Hao (China/USA, 
1921–1995)

and lag systems, 894
and tag systems, 1120
and undecidability in tiling, 1139

"Want of a nail..."
and chaos theory, 971

Waring, Edward (England, 
1736–1798)

and Waring’s Problem, 910
Waring’s Problem, 910

as unsolved problem, 1166
Warp drive

determining possibility of, 1027
and extraterrestrial contact, 1190

Wasp nests
as animal artifacts, 1184
form of, 385

Watchmaker
and argument by design, 861

Water
boiling of as discrete transition, 

337
and definition of life, 825
and extraterrestrial life, 1179
flow patterns of, 376
and landscape structure, 1001
stream breaking into drops, 984
viscosity of, 996

Water hole (SETI frequency band), 
1189

Watersheds
in memory landscape, 1101
and Voronoi diagrams, 987

Wave equation, 163
higher-dimensional, 923
as hyperbolic equation, 940
origin of, 923
transformation of time in, 732

Wave packet, collapse of the, 1063
Wave-particle duality, 1056

as basic quantum effect, 1058
and discrete space, 1027
and elementary particles, 1044

Wave theory of light, 1041
Waveforms

curves of, 146
in FM synthesis, 1079
for sound, 585

Wavelength distribution
in color vision, 1074

Wavelets, 1074
and substitution systems, 893
and texture generation, 1077

Waves
in fracture processes, 995
on ocean surfaces, 304, 1001
in quantum field theories, 1061
in quantum theory, 1056
and repetitive behavior, 355
superpositions of, 984
as yielding discreteness, 984

Wax impressions, 1178
Weaire, Denis L. (Ireland, 1942– )

and minimum area packings, 988
in Preface, xiii

Weak interactions (in particle 
physics), 1025, 1057

Wear, in stone tools, 1184
Weather, 1177

and bifurcations, 972
and forms of snowflakes, 992
as having a mind of its own, 822
maps, 1178
prediction and computational 

irreducibility, 1132
satellites images from, 1187

Weaving
as origin of ornament, 872
patterns for from CAs, 872
programming of patterns for, 

1107
rules in, 874

Web
and amateur science, 1180
randomness in transactions on, 

1192
Weber’s law, 1014
Webs (spider)

as animal artifacts, 1184
patterns in, 1011

Website
list of questions on, 856
and programs in the notes, 854
for this book, iv, 849

Weibull distribution, 977
Weierstrass, Karl T. W. (Germany, 

1815–1897)
and nested curves, 918, 934

Weierstrass functions, 918
and  noise, 969

WeierstrassP (Weierstrass function)
in solution of spinning top, 1133

Weighted cellular automata
implementation of, 1012

Weighted random sequences, 976
Weights

in additive cellular automata, 952
of connections to nerve cells, 1075
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of forms in image compression, 
574

in neural networks, 1102
Weights of humans

distribution of, 977, 1003
Weinberg-Salam model, 1025
Weizsäcker, Carl F. v. (Germany, 

1912– )
and discreteness of space, 1027

Welch, Terry A. (USA, 1939–1988)
and data compression, 1069

Well-formed formulas
in predicate logic, 1150
and truth values, 1158

Wells, Herbert G. (England, 
1866–1946)

and time travel, 1031
Westminster Abbey

decoration in, 873
Weyl, Hermann K. H. (Germany/

Switzerland/USA, 1885–1955)
and gauge invariance, 1045
and gauge theories of space, 1028

Weyl tensor, 1049
WFFs (well-formed formulas)

in predicate logic, 1150
and truth values, 1158

Whale songs, 826, 1180
Wheeler, John A. (USA, 1911– )

and discreteness of space, 1027
and geons, 1054

Wheels
characteristic shapes of, 1183

Wheels of fortune, 306
While (loop)

and decimation systems, 909
and pointer-based encoding, 1071
and Pollard rho factoring, 1090
and rule 110 proof, 1116
see also NestWhile

Whimsical descriptions, 850
Whisk ferns, 1004
Whistlers (radio signals), 1187

in early SETI, 1188
White noise, origins of, 969, 988
Whitehead, Alfred N. (England/

USA, 1861–1947)
and axioms for logic, 1151
and foundations of math, 1149
and math in science, 859
and Principia Mathematica, 894
and universal algebra, 1150

Whitney embedding theorem, 1045
Whorf, Benjamin L. (USA, 

1897–1941)
and language and thinking, 1181

Whorls, number of in shells, 1008
Wick rotation (in quantum field 

theory), 1043, 1061
Wiener, Harry (USA, 1924–1998)

and alkane boiling points, 1195
Wiener, Norbert (USA, 1894–1964)

and history of complexity, 862
and reaction-diffusion, 1013

Wiesenfeld, Kurt A. (USA, 1958– )
and self-organized criticality, 989

Wigner-Seitz cells
and CA lattices, 929
and Voronoi diagrams, 987

Wigner’s semicircle law, 977
Wiles, Andrew J. (England/USA, 

1953– )
and Fermat’s Last Theorem, 1166

Will
origins of free, 750

and purpose, 1136
see also Free will

Willow leaves, 1006
Wilson loops (in QCD), 1062
Wind

and desert landscapes, 1001
and ocean surfaces, 1001
patterns produced by, 1183
recognizing motion from, 1183
turbulence and gusting in, 1001

Wind chimes, 827
Wind-tree models (dynamic lattice 

gases), 999
Winding number, 1045
Windows (operating system)

and creation of this book, 854
Winfree, Arthur T. (USA, 1942– )

and reaction-diffusion, 1013
Winner-takes-all cellular automata, 

339
Wire chambers (particle detectors), 

969
Wire rope, and nested patterns, 874
WireWorld cellular automaton, 1117
Wisdom, Jack L. (USA, 1953– )

and chaos in solar system, 973
in Preface, xiii

Witten, Thomas A., Jr. (USA, 1944– )
and diffusion-limited 

aggregation, 994
Wittgenstein, Ludwig J. J. (Austria/

England, 1889–1951)
and philosophy of language, 1181
and truth tables, 1170

Wolfram Research, Inc.
and creation of this book, xii
and history of this book, 20
and my personal timeline, 864
as producers of Mathematica, 853

Wolpert, Lewis (England, 1929– )
and embryology, 1010
in Preface, xiii

Word chains (evaluation chains), 
1095

Word equations (sequence 
equations), 944, 1141

Word frequencies
and Zipf’s law, 1014

Word problems, 1141
and manifold equivalence, 1051
for semigroups and 

undecidability, 1136
undecidability in, 1138
and use of set theory, 1160

Word-processing software, 1108
Words

cube-free (and Thue-Morse 
sequence), 890

hashing of, 1100
number of in languages, 1103

Works of God
natural forms as, 872

World models
and systems theory, 862

World War II
cryptography after, 1085

Worm
Paterson’s, 930
self-reproducing computer, 1179

Worm shell, growth of, 415
Worship, and animism, 1195
Worthington, Arthur M. (England, 

1852–1916), 1000
Wozniakowski (digit reversal) 

sequences, 905

Wraparound system, 255
Wren, Christopher (England, 

1632–1723)
and shapes of shells, 1008

Wrinkling, 996
Writing, development of, 1184
Writing style, of this book, 849
Wulff shapes

in CA growth, 929
and CA lattices, 929

X chromosomes
and randomness in females, 1014

X-ray crystallography, 993
X-ray diffraction patterns, 1082
Xerographic printing, 1195
XML

and computer communication, 
1182

Xor ( )
axioms for, 803
calculus of expressions, 1170
confluence of, 1037
DNF representation of, 1096
emulated by rule 30, 703
lower bounds on in DNF, 1143
size of formula for, 1096
table for, 806
words in languages for, 1173

Xor rules
see also Additive cellular automata
see also Rule 90

yacc (compiler generator), 1104
Yang-Mills theories, 1045, 1057

instanton solutions to, 1133
Yemen

nested drainage pattern in, 1187
Yin and yang

and substitution systems, 893
Young, David A. (USA, 1942– )

and pigmentation patterns, 1012
Young, Thomas (England, 

1773–1829)
and color vision, 1075

Z particle
mass of, 1046
and number of neutrinos, 1047

Z transforms
and spectra of substitution 

systems, 1081
Zebras

correlation of two sides of, 1014
pigmentation patterns of, 426
stripes as camouflage for, 1012
stripes on as discrete, 337

Zeckendorff representation, 892, 
1070

Zener diodes
as source of randomness, 970

Zeno’s paradox
and discrete space, 1027

Zermelo, Ernst F. F. (Germany, 
1871–1953)

and set theory, 1154
Zermelo-Fraenkel set theory, 1154
Zero equivalence

undecidability of, 1138
Zero-point fluctuations, 1062

and model of electron, 1044
and notion of ether, 1042
and uniform spectra, 988

Zeros
of sine functions, 917
of zeta function, 918

Zeta (Riemann zeta function), 148, 
909

and density of relative primes, 
1093

difficulty of evaluating, 1134
and distribution of primes, 909
and Feynman diagrams, 1060
from rational integrals, 916
as special function, 1092

Zeta functions
for periodic points, 959

ZF (Zermelo-Fraenkel set theory), 
1154

ZFC (standard set theory), 1154
Zhabotinsky, Anatol M. (Russia/

USA, 1938– )
and oscillatory chemical 

reactions, 1013
Ziggurats, rules for building, 874
Zipf, George K. (USA, 1902–1950)

and Zipf’s law, 1014
Zipf’s law, 1014
Zippers

characteristic shapes of, 1183
Ziv, Jacob (Israel, 1931– )

and data compression, 1069
Zuse, Konrad (Germany, 1910–1995)

and universe as CA, 1026
Zygmund series, 918
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