
C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

34811_fm — 2008/2/13 — Page i

A Survey of
Computational Physics

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

34811_fm — 2008/2/13 — Page ii

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

34811_fm — 2008/2/13 — Page iii

A Survey of
Computational Physics

In t roductory Computational Science

Rubin H. Landau

Manuel José Páez

Cristian C. Bordeianu

PRINCETON U N IV E R S I TY P R E S S • PR INCETON AND OXFORD

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

34811_fm — 2008/2/13 — Page iv

Copyright © 2008 by Princeton University Press

Published by Princeton University Press,
41 William Street, Princeton, New Jersey 08540

In the United Kingdom: Princeton University Press,
6 Oxford Street, Woodstock, Oxfordshire OX20 1TW

All Rights Reserved

ISBN: 978-0-691-13137-5
Library of Congress Control Number: 2007061029

British Library Cataloging-in-Publication Data is available

Printed on acid-free paper. ∞
pup.princeton.edu

Printed in the United States of America

1 3 5 7 9 10 8 6 4 2

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

34811_fm — 2008/2/13 — Page v

In memory of our parents

Bertha Israel Landau, Philip Landau, and Sinclitica Bordeianu

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

34811_fm — 2008/2/13 — Page vi

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

34811_fm — 2008/2/13 — Page vii

C O N T E N T S

Preface xxiii

1 Computational Science Basics 1

1.1 Computational Physics and Science 1
1.2 How to Read and Use This Book 3
1.3 Making Computers Obey; Languages (Theory) 6
1.4 Programming Warmup 8

1.4.1 Structured Program Design 10
1.4.2 Shells, Editors, and Execution 11
1.4.3 Java I/O, Scanner Class with printf 12
1.4.4 I/O Redirection 12
1.4.5 Command-Line Input 13
1.4.6 I/O Exceptions: FileCatchThrow.java 14
1.4.7 Automatic Code Documentation � 16

1.5 Computer Number Representations (Theory) 17
1.5.1 IEEE Floating-Point Numbers 18
1.5.2 Over/Underflows Exercises 24
1.5.3 Machine Precision (Model) 25
1.5.4 Determine Your Machine Precision 27

1.6 Problem: Summing Series 27
1.6.1 Numerical Summation (Method) 28
1.6.2 Implementation and Assessment 29

2 Errors & Uncertainties in Computations 30

2.1 Types of Errors (Theory) 30
2.1.1 Model for Disaster: Subtractive Cancellation 32
2.1.2 Subtractive Cancellation Exercises 33
2.1.3 Round-off Error in a Single Step 34
2.1.4 Round-off Error Accumulation After Many Steps 35

2.2 Errors in Spherical Bessel Functions (Problem) 36
2.2.1 Numerical Recursion Relations (Method) 36
2.2.2 Implementation and Assessment: Recursion Relations 38

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

34811_fm — 2008/2/13 — Page viii

viii contents

2.3 Experimental Error Investigation (Problem) 39
2.3.1 Error Assessment 43

3 Visualization Tools 45

3.1 Data Visualization 45
3.2 PtPlot: 2-D Graphs Within Java 46
3.3 Grace/ACE: Superb 2-D Graphs for Unix/Linux 51

3.3.1 Grace Basics 51
3.4 Gnuplot: Reliable 2-D and 3-D Plots 56

3.4.1 Gnuplot Input Data Format � 58
3.4.2 Printing Plots 59
3.4.3 Gnuplot Surface (3-D) Plots 60
3.4.4 Gnuplot Vector Fields 62
3.4.5 Animations from a Plotting Program (Gnuplot) � 64

3.5 OpenDX for Dicing and Slicing 65
3.6 Texturing and 3-D Imaging 65

4 Object-Oriented Programs: Impedance &
Batons 67

4.1 Unit I. Basic Objects: Complex Impedance 67
4.2 Complex Numbers (Math) 67
4.3 Resistance Becomes Impedance (Theory) 70
4.4 Abstract Data Structures, Objects (CS) 70

4.4.1 Object Declaration and Construction 72
4.4.2 Implementation in Java 73
4.4.3 Static and Nonstatic Methods 76
4.4.4 Nonstatic Methods 77

4.5 Complex Currents (Solution) 79
4.6 OOP Worked Examples 80

4.6.1 OOP Beats 80
4.6.2 OOP Planet 82

4.7 Unit II. Advanced Objects: Baton Projectiles � 85
4.8 Trajectory of a Thrown Baton (Problem) 86

4.8.1 Combined Translation and Rotation (Theory) 86
4.9 OOP Design Concepts (CS) 89

4.9.1 Including Multiple Classes 90
4.9.2 Ball and Path Class Implementation 92
4.9.3 Composition, Objects Within Objects 93
4.9.4 Baton Class Implementation 94

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

34811_fm — 2008/2/13 — Page ix

contents ix

4.9.5 Composition Exercise 95
4.9.6 Calculating the Baton’s Energy (Extension) 96
4.9.7 Examples of Inheritance and Object Hierarchies 98
4.9.8 Baton with a Lead Weight (Application) 99
4.9.9 Encapsulation to Protect Classes 100

4.9.10 Encapsulation Exercise 101
4.9.11 Complex Object Interface (Extension) 102
4.9.12 Polymorphism, Variable Multityping 104

4.10 Supplementary Exercises 105
4.11 OOP Example: Superposition of Motions 105
4.12 Newton’s Laws of Motion (Theory) 106
4.13 OOP Class Structure (Method) 106
4.14 Java Implementation 107

5 Monte Carlo Simulations (Nonthermal) 109

5.1 Unit I. Deterministic Randomness 109
5.2 Random Sequences (Theory) 109

5.2.1 Random-Number Generation (Algorithm) 110
5.2.2 Implementation: Random Sequence 113
5.2.3 Assessing Randomness and Uniformity 114

5.3 Unit II. Monte Carlo Applications 116
5.4 A Random Walk (Problem) 116

5.4.1 Random-Walk Simulation 116
5.4.2 Implementation: Random Walk 117

5.5 Radioactive Decay (Problem) 119
5.5.1 Discrete Decay (Model) 119
5.5.2 Continuous Decay (Model) 120
5.5.3 Decay Simulation 121

5.6 Decay Implementation and Visualization 122

6 Integration 123

6.1 Integrating a Spectrum (Problem) 123
6.2 Quadrature as Box Counting (Math) 123

6.2.1 Algorithm: Trapezoid Rule 125
6.2.2 Algorithm: Simpson’s Rule 126
6.2.3 Integration Error (Analytic Assessment) 128
6.2.4 Algorithm: Gaussian Quadrature 130
6.2.5 Integration Implementation and Error Assessment 132

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

34811_fm — 2008/2/13 — Page x

x contents

6.3 Experimentation 135
6.4 Higher-Order Rules (Algorithm) 135
6.5 Monte Carlo Integration by Stone Throwing 136

6.5.1 Stone Throwing Implementation 136
6.5.2 Integration by Mean Value (Math) 137

6.6 High-Dimensional Integration (Problem) 138
6.6.1 Multidimensional Monte Carlo 139
6.6.2 Error in Multidimensional Integration (Assessment) 139
6.6.3 Implementation: 10-D Monte Carlo Integration 139

6.7 Integrating Rapidly Varying Functions (Problem) 140
6.7.1 Variance Reduction (Method) 140
6.7.2 Importance Sampling (Method) 140
6.7.3 Von Neumann Rejection (Method) 141
6.7.4 Simple Gaussian Distribution 141

6.8 Nonuniform Assessment � 142
6.8.1 Implementation: Nonuniform Randomness � 142

7 Differentiation & Searching 146

7.1 Unit I. Numerical Differentiation 146
7.2 Forward Difference (Algorithm) 147
7.3 Central Difference (Algorithm) 148
7.4 Extrapolated Difference (Method) 149
7.5 Error Analysis (Assessment) 149
7.6 Second Derivatives (Problem) 151

7.6.1 Second-Derivative Assessment 151
7.7 Unit II. Trial-and-Error Searching 151
7.8 Quantum States in a Square Well (Problem) 152
7.9 Trial-and-Error Roots via the Bisection Algorithm 152

7.9.1 Bisection Algorithm Implementation 153
7.10 Newton–Raphson Searching (A Faster Algorithm) 154

7.10.1 Newton–Raphson Algorithm with Backtracking 156
7.10.2 Newton–Raphson Algorithm Implementation 157

8 Solving Systems of Equations with Matrices;
Data Fitting 158

8.1 Unit I. Systems of Equations and Matrix Computing 158
8.2 Two Masses on a String 159

8.2.1 Statics (Theory) 160
8.2.2 Multidimensional Newton–Raphson Searching 160

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

34811_fm — 2008/2/13 — Page xi

contents xi

8.3 Classes of Matrix Problems (Math) 163
8.3.1 Practical Aspects of Matrix Computing 165
8.3.2 Implementation: Scientific Libraries, World Wide Web 168
8.3.3 JAMA: Java Matrix Library 169
8.3.4 Exercises for Testing Matrix Calls 173
8.3.5 Matrix Solution of the String Problem 175
8.3.6 Explorations 175

8.4 Unit II. Data Fitting 176
8.5 Fitting an Experimental Spectrum (Problem) 176

8.5.1 Lagrange Interpolation (Method) 177
8.5.2 Lagrange Implementation and Assessment 178
8.5.3 Explore Extrapolation 179
8.5.4 Cubic Splines (Method) 179
8.5.5 Spline Fit of Cross Section (Implementation) 182

8.6 Fitting Exponential Decay (Problem) 182
8.6.1 Theory to Fit 182

8.7 Least-Squares Fitting (Method) 184
8.7.1 Least-Squares Fitting: Theory and Implementation 186
8.7.2 Exponential Decay Fit Assessment 188
8.7.3 Exercise: Fitting Heat Flow 189
8.7.4 Linear Quadratic Fit (Extension) 190
8.7.5 Linear Quadratic Fit Assessment 191
8.7.6 Nonlinear Fit of the Breit–Wigner Formula to a Cross

Section 191

9 Differential Equation Applications 194

9.1 Unit I. Free Nonlinear Oscillations 194
9.2 Nonlinear Oscillators (Models) 194
9.3 Types of Differential Equations (Math) 196
9.4 Dynamic Form for ODEs (Theory) 198
9.5 ODE Algorithms 200

9.5.1 Euler’s Rule 201
9.5.2 Runge–Kutta Algorithm 202
9.5.3 Adams–Bashforth–Moulton Predictor-Corrector 204
9.5.4 Assessment: rk2 versus rk4 versus rk45 205

9.6 Solution for Nonlinear Oscillations (Assessment) 207
9.6.1 Precision Assessment: Energy Conservation 208

9.7 Extensions: Nonlinear Resonances, Beats, and
Friction 209

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

34811_fm — 2008/2/13 — Page xii

xii contents

9.7.1 Friction: Model and Implementation 209
9.7.2 Resonances and Beats: Model and Implementation 210

9.8 Implementation: Inclusion of Time-Dependent
Force 211

9.9 Unit II. Binding A Quantum Particle 212
9.10 The Quantum Eigenvalue Problem (Theory) 212

9.10.1 Nucleon in a Box (Model) 213
9.11 Combined Algorithms: Eigenvalues via ODE

Solver Plus Search 214
9.11.1 Numerov Algorithm for the Schrödinger ODE � 216
9.11.2 Implementation: Eigenvalues via an ODE Solver Plus

Bisection Algorithm 218
9.12 Explorations 221
9.13 Unit III. Scattering, Projectiles, and Planetary

Orbits 222
9.14 Problem 1: Classical Chaotic Scattering 222

9.14.1 Model and Theory 222
9.14.2 Implementation 224
9.14.3 Assessment 225

9.15 Problem 2: Balls Falling Out of the Sky 225
9.16 Theory: Projectile Motion with Drag 226

9.16.1 Simultaneous Second-Order ODEs 227
9.16.2 Assessment 228

9.17 Problem 3: Planetary Motion 228
9.17.1 Implementation: Planetary Motion 229

10 Fourier Analysis: Signals and Filters 231

10.1 Unit I. Fourier Analysis of Nonlinear Oscillations 231
10.2 Fourier Series (Math) 232

10.2.1 Example 1: Sawtooth Function 234
10.2.2 Example 2: Half-wave Function 235

10.3 Summation of Fourier Series (Exercise) 235
10.4 Fourier Transforms (Theory) 236

10.4.1 Discrete Fourier Transform Algorithm 237
10.4.2 Aliasing and Anti-aliasing � 241
10.4.3 DFT for Fourier Series (Algorithm) 243
10.4.4 Assessments 244
10.4.5 DFT of Nonperiodic Functions (Exploration) 246

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

34811_fm — 2008/2/13 — Page xiii

contents xiii

10.5 Unit II. Filtering Noisy Signals 246
10.6 Noise Reduction via Autocorrelation (Theory) 246

10.6.1 Autocorrelation Function Exercises 249
10.7 Filtering with Transforms (Theory) 250

10.7.1 Digital Filters: Windowed Sinc Filters � 253
10.8 Unit III. Fast Fourier Transform Algorithm � 256

10.8.1 Bit Reversal 258
10.9 FFT Implementation 259
10.10 FFT Assessment 263

11 Wavelet Analysis & Data Compression 264

11.1 Unit I. Wavelet Basics 264
11.2 Wave Packets and Uncertainty Principle (Theory) 266

11.2.1 Wave Packet Assessment 268
11.3 Short-Time Fourier Transforms (Math) 268
11.4 The Wavelet Transform 269

11.4.1 Generating Wavelet Basis Functions 270
11.4.2 Continuous Wavelet Transform Implementation 273

11.5 Unit II. Discrete Wavelet Transform and
Multiresolution Analysis � 274
11.5.1 Pyramid Scheme Implementation � 279
11.5.2 Daubechies Wavelets via Filtering 283
11.5.3 DWT Implementation and Exercise 286

12 Discrete & Continuous Nonlinear Dynamics 289

12.1 Unit I. Bug Population Dynamics (Discrete) 289
12.2 The Logistic Map (Model) 289
12.3 Properties of Nonlinear Maps (Theory) 291

12.3.1 Fixed Points 291
12.3.2 Period Doubling, Attractors 292

12.4 Mapping Implementation 293
12.5 Bifurcation Diagram (Assessment) 294

12.5.1 Bifurcation Diagram Implementation 295
12.5.2 Visualization Algorithm: Binning 295
12.5.3 Feigenbaum Constants (Exploration) 297

12.6 Random Numbers via Logistic Map
(Exploration) � 297

12.7 Other Maps (Exploration) 298

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

34811_fm — 2008/2/13 — Page xiv

xiv contents

12.8 Signals of Chaos: Lyapunov Coefficients � 298
12.8.1 Shannon Entropy � 299

12.9 Unit I Quiz 300
12.10 Unit II. Pendulums Become Chaotic (Continuous) 302
12.11 Chaotic Pendulum ODE 302

12.11.1Free Pendulum Oscillations 303
12.11.2Solution as Elliptic Integrals 304
12.11.3 Implementation and Test: Free Pendulum 305

12.12 Visualization: Phase Space Orbits 305
12.12.1Chaos in Phase Space 307
12.12.2Assessment in Phase Space 311

12.13 Exploration: Bifurcations of Chaotic Pendulums 313
12.14 Alternative Problem: The Double Pendulum 315
12.15 Assessment: Fourier/Wavelet Analysis of Chaos 317
12.16 Exploration: Another Type of Phase Space Plot 317
12.17 Further Explorations 318
12.18 Unit III. Coupled Predator–Prey Models � 319
12.19 Lotka–Volterra Model 320

12.19.1LVM with Prey Limit 321
12.19.2LVM with Predation Efficiency 322
12.19.3LVM Implementation and Assessment 323
12.19.4Two Predators, One Prey (Exploration) 324

13 Fractals & Statistical Growth 326

13.1 Fractional Dimension (Math) 326
13.2 The Sierpiński Gasket (Problem 1) 327

13.2.1 Sierpiński Implementation 328
13.2.2 Assessing Fractal Dimension 328

13.3 Beautiful Plants (Problem 2) 329
13.3.1 Self-affine Connection (Theory) 330
13.3.2 Barnsley’s Fern Implementation 331
13.3.3 Self-affinity in Trees Implementation 332

13.4 Ballistic Deposition (Problem 3) 332
13.4.1 Random Deposition Algorithm 332

13.5 Length of the British Coastline (Problem 4) 334
13.5.1 Coastlines as Fractals (Model) 334
13.5.2 Box Counting Algorithm 335
13.5.3 Coastline Implementation and Exercise 336

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

34811_fm — 2008/2/13 — Page xv

contents xv

13.6 Correlated Growth, Forests, and Films (Problem 5) 338
13.6.1 Correlated Ballistic Deposition Algorithm 338

13.7 Globular Cluster (Problem 6) 339
13.7.1 Diffusion-Limited Aggregation Algorithm 339
13.7.2 Fractal Analysis of a DLA (or Pollock)

Graph (Assessment) 342
13.8 Fractal Structures in a Bifurcation Graph

(Problem 7) 343
13.9 Fractals from Cellular Automata 343
13.10 Perlin Noise Adds Realism � 345

13.10.1 Including Ray Tracing 348
13.11 Quiz 351

14 High-Performance Computing Hardware,
Tuning, and Parallel Computing 352

14.1 Unit I. High-Performance Computers (CS) 352
14.2 Memory Hierarchy 353
14.3 The Central Processing Unit 357
14.4 CPU Design: Reduced Instruction Set Computer 357
14.5 CPU Design: Multiple-Core Processors 358
14.6 CPU Design: Vector Processor 359
14.7 Unit II. Parallel Computing 360
14.8 Parallel Semantics (Theory) 361
14.9 Distributed Memory Programming 363

14.10 Parallel Performance 365
14.10.1Communication Overhead 367

14.11 Parallelization Strategy 368
14.12 Practical Aspects of Message Passing for MIMD 369

14.12.1High-Level View of Message Passing 370
14.13 Example of a Supercomputer: IBM Blue Gene/L 372
14.14 Unit III. HPC Program Optimization 374

14.14.1Programming for Virtual Memory (Method) 376
14.14.2Optimizing Programs; Java versus Fortran/C 376
14.14.3Experimental Effects of Hardware on

Performance 379
14.14.4Java versus Fortran/C 380

14.15 Programming for the Data Cache (Method) 385
14.15.1Exercise 1: Cache Misses 386

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

34811_fm — 2008/2/13 — Page xvi

xvi contents

14.15.2Exercise 2: Cache Flow 387
14.15.3Exercise 3: Large-Matrix Multiplication 388

15 Thermodynamic Simulations & Feynman
Quantum Path Integration 390

15.1 Unit I. Magnets via the Metropolis Algorithm 390
15.2 An Ising Chain (Model) 390
15.3 Statistical Mechanics (Theory) 393

15.3.1 Analytic Solutions 393
15.4 Metropolis Algorithm 394

15.4.1 Metropolis Algorithm Implementation 397
15.4.2 Equilibration, Thermodynamic Properties (Assessment) 397
15.4.3 Beyond Nearest Neighbors and 1-D (Exploration) 400

15.5 Unit II. Magnets via Wang–Landau Sampling � 400
15.6 Wang–Landau Sampling 403

15.6.1 WLS Ising Model Implementation 405
15.6.2 WLS Ising Model Assessment 408

15.7 Unit III. Feynman Path Integrals � 408
15.8 Feynman’s Space-Time Propagation (Theory) 408

15.8.1 Bound-State Wave Function ( Theory) 412
15.8.2 Lattice Path Integration (Algorithm) 413
15.8.3 Lattice Implementation 418
15.8.4 Assessment and Exploration 420

15.9 Exploration: Quantum Bouncer’s Paths � 421

16 Simulating Matter with Molecular Dynamics 424

16.1 Molecular Dynamics ( Theory) 424
16.1.1 Connection to Thermodynamic Variables 428
16.1.2 Setting Initial Velocity Distribution 429
16.1.3 Periodic Boundary Conditions and Potential Cutoff 429

16.2 Verlet and Velocity-Verlet Algorithms 431
16.3 1-D Implementation and Exercise 432
16.4 Trajectory Analysis 435
16.5 Quiz 436

17 PDEs for Electrostatics & Heat Flow 437

17.1 PDE Generalities 437
17.2 Unit I. Electrostatic Potentials 439

17.2.1 Laplace’s Elliptic PDE ( Theory) 439

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

34811_fm — 2008/2/13 — Page xvii

contents xvii

17.3 Fourier Series Solution of a PDE 440
17.3.1 Polynomial Expansion As an Algorithm 442

17.4 Solution: Finite-Difference Method 443
17.4.1 Relaxation and Overrelaxation 445
17.4.2 Lattice PDE Implementation 446

17.5 Assessment via Surface Plot 447
17.6 Alternate Capacitor Problems 448
17.7 Implementation and Assessment 450
17.8 Electric Field Visualization (Exploration) 452
17.9 Laplace Quiz 452

17.10 Unit II. Finite-Element Method � 453
17.11 Electric Field from Charge Density (Problem) 454
17.12 Analytic Solution 454
17.13 Finite-Element (Not Difference) Methods 455

17.13.1Weak Form of PDE 455
17.13.2Galerkin Spectral Decomposition 456

17.14 FEM Implementation and Exercises 460
17.15 Exploration 463
17.16 Unit III. Heat Flow via Time-Stepping

(Leapfrogging) 463
17.17 The Parabolic Heat Equation (Theory) 463

17.17.1Solution: Analytic Expansion 465
17.17.2Solution: Time-Stepping 466
17.17.3Von Neumann Stability Assessment 468
17.17.4Heat Equation Implementation 470

17.18 Assessment and Visualization 470
17.19 Improved Heat Flow: Crank–Nicolson Method 472

17.19.1Solution of Tridiagonal Matrix Equations � 474
17.19.2Crank–Nicolson Method Implementation

and Assessment 476

18 PDE Waves: String, Quantum Packet, and E&M 478

18.1 Unit I. Vibrating String 478
18.2 The Hyperbolic Wave Equation (Theory) 478

18.2.1 Solution via Normal-Mode Expansion 480
18.2.2 Algorithm: Time-Stepping 481
18.2.3 Wave Equation Implementation 483
18.2.4 Assessment and Exploration 484

18.3 Waves with Friction (Extension) 486

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

34811_fm — 2008/2/13 — Page xviii

xviii contents

18.4 Waves for Variable Tension and Density
(Extension) 487
18.4.1 Waves on a Catenary 488
18.4.2 Derivation of a Catenary Shape 488
18.4.3 Catenary and Frictional Wave Exercises 490

18.5 Unit II. Quantum Wave Packets 491
18.6 Time-Dependent Schrödinger Equation (Theory) 492

18.6.1 Finite-Difference Algorithm 493
18.6.2 Wave Packet Implementation and Animation 494

18.7 Wave Packets in Other Wells (Exploration) 496
18.8 Algorithm for the 2-D Schrödinger Equation 496
18.9 Unit III. E&M Waves via Finite-Difference

Time Domain � 499
18.10 Maxwell’s Equations 499
18.11 FDTD Algorithm 500

18.11.1 Implementation 503
18.11.2Assessment 504
18.11.3Extension: Circularly Polarized EM Waves 506

19 Solitons & Computational Fluid Dynamics 508

19.1 Unit I. Advection, Shocks, and Russell’s Soliton 508
19.2 Theory: Continuity and Advection Equations 509

19.2.1 Advection Implementation 510
19.3 Theory: Shock Waves via Burgers’ Equation 510

19.3.1 Algorithm: The Lax–Wendroff Method for Burgers’

Equation 511
19.3.2 Implementation and Assessment of Burgers’ Shock

Equation 513
19.4 Including Dispersion 514
19.5 Shallow-Water Solitons, the KdeV Equation 515

19.5.1 Analytic Soliton Solution 517
19.5.2 Algorithm for KdeV Solitons 518
19.5.3 Implementation: KdeV Solitons 519
19.5.4 Exploration: Solitons in Phase Space and Crossing 520

19.6 Unit II. River Hydrodynamics 521
19.7 Hydrodynamics, the Navier–Stokes

Equation (Theory) 521
19.7.1 Boundary Conditions for Parallel Plates 524
19.7.2 Analytic Solution for Parallel Plates 526

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

34811_fm — 2008/2/13 — Page xix

contents xix

19.7.3 Finite-Difference Algorithm and Overrelaxation 527
19.7.4 Successive Overrelaxation Implementation 529

19.8 2-D Flow over a Beam 530
19.9 Theory: Vorticity Form of the Navier–Stokes

Equation 530
19.9.1 Finite Differences and the SOR Algorithm 532
19.9.2 Boundary Conditions for a Beam 534
19.9.3 SOR on a Grid Implementation 536
19.9.4 Assessment 538
19.9.5 Exploration 539

20 Integral Equations in Quantum Mechanics 540

20.1 Unit I. Bound States of Nonlocal Potentials 540
20.2 Momentum-Space Schrödinger Equation (Theory) 541

20.2.1 Integral to Linear Equations (Method) 542
20.2.2 Delta-Shell Potential (Model) 544
20.2.3 Binding Energies Implementation 544
20.2.4 Wave Function (Exploration) 546

20.3 Unit II. Nonlocal Potential Scattering � 546
20.4 Lippmann–Schwinger Equation (Theory) 547

20.4.1 Singular Integrals (Math) 548
20.4.2 Numerical Principal Values 549
20.4.3 Reducing Integral Equations to Matrix-Equations

(Algorithm) 549
20.4.4 Solution via Inversion or Elimination 551
20.4.5 Scattering Implementation 552
20.4.6 Scattering Wave Function (Exploration) 553

Appendix A: Glossary 555

Appendix B: Installing Packages 562

B.1 Installing Java Developer’s Kit 564
B.2 Using Classes and Packages 565

B.2.1 Including Packages 565

Appendix C: OpenDX: Industrial-Strength Data
Visualization 568

C.1 Getting DX and Unix Running (for Windows) 569
C.2 Test Drive of DX Visual Programming 569

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

34811_fm — 2008/2/13 — Page xx

xx contents

C.3 DX Tools Summary 576
C.4 DX Data Structure and Storage 577
C.5 Sample Visual Programs 579

C.5.1 Sample 1: Linear Plot 579
C.5.2 Sample 2: Fourier Transform 580
C.5.3 Sample 3: Potential of a 2-D Capacitor 580
C.5.4 Sample 4: Vector Field Plots 581
C.5.5 Sample 5: 3-D Scalar Potentials 582
C.5.6 Sample 6: 3-D Functions, the Hydrogen Atom 585

C.6 Animations with OpenDX 586
C.6.1 Scripted Animation with OpenDX 588
C.6.2 Wave Packet and Slit Animation 591

Appendix D: An MPI Tutorial 593

D.1 Running on a Beowulf 593
D.2 Running MPI 597

D.2.1 MPI under the SGE Queueing System 598
D.2.2 MPI Under the Torque/PBS Queueing System 600
D.2.3 Running Parallel Jobs with Torque 602

D.3 Your First MPI Program: MPIhello.c 604
D.3.1 MPIhello.c Explained 605
D.3.2 Send/Receive Messages: MPImessage2.c 606
D.3.3 Receive More Messages: MPImessage3.c 608
D.3.4 Broadcast Messages 609
D.3.5 Exercise 610

D.4 Parallel Tuning 611
D.5 A String Vibrating in Parallel 614

D.5.1 MPIstring.c Exercise 617
D.6 Deadlock 618

D.6.1 Nonblocking Communication 619
D.6.2 Collective Communication 619

D.7 Bootable Cluster CD � 620
D.8 Parallel Computing Exercises 620
D.9 List of MPI Commands 621

Appendix E: Calling LAPACK from C 623

E.1 Calling LAPACK Fortran from C 624
E.2 Compiling C Programs with Fortran Calls 625

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

34811_fm — 2008/2/13 — Page xxi

contents xxi

Appendix F: Software on the CD 626

Appendix G: Compression via DWT
with Thresholding 635

G.1 More on Thresholding 637
G.2 Wavelet Implementation and Assessment 638

Bibliography 641

Index 651

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

34811_fm — 2008/2/13 — Page xxii

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

34811_fm — 2008/2/13 — Page xxiii

P R E FAC E

In the decade since two of us wrote the book Computational Physics (CP), we
have seen a good number of computational physics texts and courses come into
existence. This is good. Multiple texts help define a still-developing field and pro-
vide a choice of viewpoints and focus. After perusing the existing texts, we decided
that the most worthwhile contribution we could make was to extend our CP text
so that it surveys many of the topics we hear about at computational science con-
ferences. Doing that, while still keeping the level of presentation appropriate for
upper-division undergraduates or beginning graduate students, was a challenge.

As we look at what we have assembled here, we see more than enough material
for a full year’s course (details in Chapter 1, “Computational Science Basics”). When
overlapped with our new lower-division text, A First Course in Scientific Computing,
and when combined with studies in applied mathematics and computer science,
we hope to have created a path for undergraduate computational physics/science
education to follow.

The ensuing decade has also strengthened our view that the physics community
is well served by having CP as a prominent member of the broader computational
science and engineering (CSE) community. This view affects our book in two ways.
First, we present CP as a multidisciplinary field of study that contains elements
from applied mathematics and computer science, as well as physics. Accordingly,
we do not view the pages we spend on these subjects as space wasted not study-
ing physics but rather as essential components of a multidisciplinary education.
Second, we try to organize and present our materials according to the steps in the
scientific problem-solving paradigm that lie at the core of CSE:

Problem ↔ theory ↔ model ↔ method ↔ implementation ↔ assessment.

This format places the subject matter in its broader context and indicates how the
steps are applicable to a wider class of problems. Most importantly, educational
assessments and surveys have indicated that some students learn science, mathe-
matics, and technology better when they are presented together in context rather
than as separate subjects. (To some extent, the loss of “physics time” learning math
and CS is made up for by this more efficient learning approach.) Likewise, some
students who may not profess interest in math or CS are motivated to learn these
subjects by experiencing their practical value in physics problem solving.

Though often elegant, we view some of the new CP texts as providing more of
the theory behind CP than its full and practical multidisciplinary scope. While this
may be appropriate for graduate study, when we teach from our texts we advocate
a learn-by-doing approach that requires students to undertake a large number
of projects in which they are encouraged to make discoveries on their own. We
attempt to convey that it is the students’ job to solve each problem professionally,

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

34811_fm — 2008/2/13 — Page xxiv

xxiv preface

which includes understanding the computed results. We believe that this “blue-
collar” approach engages and motivates the students, encompasses the fun and
excitement of CP, and stimulates the students to take pride in their work.

As computers have become more powerful, it has become easier to use complete
problem-solving environments like Mathematica, Maple, Matlab, and Femlab to
solve scientific problems. Although these environments are often used for serious
work, the algorithms and numerics are kept hidden from the user, as if in a black
box. Although this may be a good environment for an experienced computational
scientist, we think that if you are trying to learn scientific computation, then you
need to look inside the black box and get your hands dirty. This is probably best
done through the use of a compiled language that forces you to deal directly with
the algorithm and requires you to understand the computer’s storage of numbers
and inner workings.

Notwithstanding our viewpoint that being able to write your own codes is
important for CP, we also know how time-consuming and frustrating debug-
ging programs can be, especially for beginners. Accordingly, rather than make
the reader write all their codes from scratch, we include basic programs to modify
and extend. This not only leaves time for exploration and analysis but also more
realistically resembles a working environment in which one must incorporate new
developments with preexisting developments of others.

The choice of Java as our prime programming language may surprise some
readers who know it mainly for its prowess in Web computing (we do provide
Fortran77, Fortran95, and C versions of the programs on the CD). Actually, Java
is quite good for CP education since it demands proper syntax, produces useful
error messages, and is consistent and intelligent in its handling of precision (which
C is not). And when used as we use it, without a strong emphasis on object orien-
tation, the syntax is not overly heavy. Furthermore, Java now runs on essentially
all computer systems in an identical manner, is the most used of all programming
languages, and has a universal program development environment available free
from Sun [SunJ], where the square brackets refer to references in the bibliography.
(Although we recommend using shells and jEdit [jEdit] for developing Java pro-
grams, many serious programmers prefer a development platform such as Eclipse
[Eclipse].) This means that practitioners can work just as well at home or in the
developing world. Finally, Java’s speed does not appear to be an issue for edu-
cational projects with present-day fast computers. If more speed is needed, then
conversion to C is straightforward, as is using the C and Fortran programs on
the CD.

In addition to multilanguage codes, the CD also contains animations, visualiza-
tions, color figures, interactive Java applets, MPI and PVM codes and tutorials, and
OpenDX codes. More complete versions of the programs, as well as programs left
for exercises, are available to instructors from RHL.There is also a digital library
version of the text containing streaming video lectures and interactive equations
under development.

Specific additions to this book, not found in our earlier CP text, include chap-
ters and appendices on visualization tools, wavelet analysis, molecular dynamics,
computational fluid dynamics, MPI, and PVM. Specific subjects added to this

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

34811_fm — 2008/2/13 — Page xxv

preface xxv

text include shock waves, solitons, IEEE floating-point arithmetic, trial-and-error
searching, matrix computing with libraries, object-oriented programming, chaotic
scattering, Lyapunov coefficients, Shannon entropy, coupled predator–prey sys-
tems, advanced PDE techniques (successive overrelaxation, finite elements, Crank–
Nicholson and Lax–Wendroff methods), adaptive-step size integrators, projectile
motion with drag, short-time Fourier transforms, FFT, Fourier filtering, Wang–
Landau simulations of thermal systems, Perlin noise, cellular automata, and waves
on catenaries.

Acknowledgments

This book and the courses it is based upon could not have been created without
financial support from the National Science Foundation’s CCLI, EPIC, and NPACI
programs, as well as from the Oregon State University Physics Department and
the College of Science. Thank you all and we hope you are proud.

Immature poets imitate;
mature poets steal.

— T. S. Elliot

Our CP developments have followed the pioneering path paved with the books of
Thompson, Koonin, Gould and Tobochnik, and Press et al.; indubitably, we have
borrowed material from them and made it our own. We wish to acknowledge the
many contributions provided by Hans Kowallik, who started as a student in our
CP course, continued as a researcher in early Web tutorials, and has continued
as an international computer journeyman. Other people have contributed in var-
ious places: Henri Jansen (early class notes), Juan Vanegas (OpenDX), Connelly
Barnes (OOP and PtPlot), Phil Carter and Donna Hertel (MPI), Zlatko Dimcovic
(improved codes and I/O), Joel Wetzel (improved figures and visualizations), Oscar
A. Restrepo (QMCbouncer), and Justin Elser (system and software support).

It is our pleasure to acknowledge the invaluable friendship, encouragement,
helpful discussions, and experiences we have had with our colleagues and students
over the years. We are particularly indebted to Guillermo Avendaño-Franco, Saturo
S. Kano, Bob Panoff, Guenter Schneider, Paul Fink, Melanie Johnson, Al Stetz, Jon
Maestri, David McIntyre, Shashikant Phatak, Viktor Podolskiy, and Cherri Pan-
cake. Our gratitude also goes to the reviewers Ali Eskanarian, Franz J. Vesely, and
John Mintmire for their thoughtful and valuable suggestions, and to Ellen Foos of
Princeton University Press for her excellent and understanding production work.
Heartfelt thanks goes to Vickie Kearn, our editor at Princeton University Press, for
her encouragement, insight, and efforts to keep this project alive in various ways.

In spite of everyone’s best efforts, there are still errors and confusing statements
for which we are responsible.

Finally, we extend our gratitude to the wives, Jan and Lucia, whose reliable
support and encouragement are lovingly accepted, as always.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

34811_fm — 2008/2/13 — Page xxvi

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 1

1

Computational Science Basics

Some people spend their entire lives reading but never get
beyond reading the words on the page; they don’t
understand that the words are merely stepping stones
placed across a fast-flowing river, and the reason they’re
there is so that we can reach the farther shore; it’s the other
side that matters.

— José Saramago

As an introduction to the book to follow, we start this chapter with a description of
how computational physics (CP) fits into the broader field of computational science,
and what topics we will present as the contents of CP. We then get down to basics and
examine computing languages, number representations, and programming. Related
topics dealing with hardware basics are found in Chapter 14, “High-Performance
Computing Hardware, Tuning, and Parallel Computing.”

1.1 Computational Physics
and Computational Science

This book adopts the view that CP is a subfield of computational science. This means
that CP is a multidisciplinary subject combining aspects of physics, applied math-
ematics, and computer science (CS) (Figure 1.1), with the aim of solving realistic
physics problems. Other computational sciences replace the physics with biology,
chemistry, engineering, and so on, and together face grand challenge problems
such as

Climate prediction Materials science Structural biology
Superconductivity Semiconductor design Drug design
Human genome Quantum chromodynamics Turbulence
Speech and vision Relativistic astrophysics Vehicle dynamics
Nuclear fusion Combustion systems Oil and gas recovery
Ocean science Vehicle signature Undersea surveillance

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 2

2 chapter 1

C
P

Physics

Figure 1.1 A representation of the multidisciplinary nature of computational physics both as

an overlap of physics, applied mathematics, and computer science and as a bridge among

the disciplines.

Although related, computational science is not computer science. Computer science
studies computing for its own intrinsic interest and develops the hardware and
software tools that computational scientists use. Likewise, applied mathematics
develops and studies the algorithms that computational scientists use. As much as
we too find math and computer science interesting for their own sakes, our focus is
on solving physical problems; we need to understand the CS and math tools well
enough to be able to solve our problems correctly.

As CP has matured, we have come to realize that it is more than the overlap
of physics, computer science, and mathematics (Figure 1.1). It is also a bridge
among them (the central region in Figure 1.1) containing core elements of it own,
such as computational tools and methods. To us, CP’s commonality of tools and a
problem-solving mindset draws it toward the other computational sciences and
away from the subspecialization found in so much of physics.

In order to emphasize our computational science focus, to the extent possible,
we present the subjects in this book in the form of a problem to solve, with
the components that constitute the solution separated according to the scientific
problem-solving paradigm (Figure 1.2 left). Traditionally, physics employs both
experimental and theoretical approaches to discover scientific truth (Figure 1.2
right). Being able to transform a theory into an algorithm requires significant
theoretical insight, detailed physical and mathematical understanding, and a
mastery of the art of programming. The actual debugging, testing, and organiza-
tion of scientific programs is analogous to experimentation, with the numerical
simulations of nature being essentially virtual experiments. The synthesis of

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 3

computational science basics 3

Experiment

T
h
e
o
ry

S
im

u
la

ti
o

n

Truth

Figure 1.2 Left: The problem-solving paradigm followed in this book. Right: Simulation

has been added to experiment and theory as a basic approach of science and its search

for underlying truths.

numbers into generalizations, predictions, and conclusions requires the insight
and intuition common to both experimental and theoretical science. In fact, the
use of computation and simulation has now become so prevalent and essen-
tial a part of the scientific process that many people believe that the scientific
paradigm has been extended to include simulation as an additional dimension
(Figure 1.2 right).

1.2 How to Read and Use This Book

Figure 1.3 maps out the CP concepts we cover in this book and the relations among
them. You may think of this concept map as the details left out of Figure 1.1. On
the left are the hardware and software components from computer science; in the
middle are the algorithms of applied mathematics; on the right are the physics
applications. Yet because CP is multidisciplinary, it is easy to argue that certain
concepts should be moved someplace else.

A more traditional way to view the materials in this text is in terms of its use in
courses. In our classes [CPUG] we use approximately the first third of the text, with
its emphasis on computing tools, for a course in scientific computing (after students
have acquired familiarity with a compiled language). Typical topics covered in the
10 weeks of such a course are given in Table 1.1. Some options are indicated in the
caption, and, depending upon the background of the students, other topics may
be included or substituted. The latter two-thirds of the text includes more physics,
and, indeed, we use it for a two-quarter (20-week) course in computational physics.
Typical topics covered for each term are given in Table 1.2. What with many of the
latter topics being research level, we suspect that these materials can easily be used
for a full year’s course as well.

For these materials to contribute to a successful learning experience, we assume
that the reader will work through the problem at the beginning of each chapter
or unit. This entails studying the text, writing, debugging and running programs,
visualizing the results, and then expressing in words what has been done and what

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 4

4 chapter 1

N-D      

trapezoid      

multiscale      

affect      

Computational Physics      

Partial Differential      
Equations      

Ordinary Differential      
Equations      

Molecular       
Dynamics (MD)      

Integral Equations      

Fourier  Analyses      

Nonlinear Systems     

Errors & Limits      

Linear Algebra      
Matrix Computing      

Scientific Libraries      

Performance Tuning      

Parallel Computing      

Integration      

Differentiation      

Eigenvalue Problems      

Computational       
Fluid Dynamics      

IEEE Floating Point      

Wavelet Analyses      

Software      Hardware      Numerics      Applications      

CS      CS      Math      Science      

Data Analysis      
Interpretation      

interpolation      

statistical fitting      

data structures      

Architecture      
Memory      

 Hierarchy      

finite differences      
elements      

Simulation      
Problem Solving      

Communication      

 Markup languages      

hyperbolic PDE      
wave equation      

elliptic PDE      
Poisson's equation      

parabolic PDE      
heat equation      

Operating Systems      

Monte Carlo       
Simulations      

Metropolis algorithm   

stochastics      

via      standard      

thus      

Visualization      

2-D, 3-D,N-D      

BC      

BC      

finite      

scale      

hardware      

via      Trial & Error Searching      

bisection algorithm      

Newton-Raphson      

nonlinear      

methods      

basis      
data      solution      

object oriented      

High Level Languages      
Compiled Languages      

procedural      

CS      

math-like      

within      

HPC      

storage      

communication      

scale      

tuned      

digital libe      

reports      

random #      

e.g.      

communications      

link      

Simulations      

link      

Figure 1.3 A concept map of the subjects covered in this book. The rectangular boxes

indicate major areas, the angular boxes indicate subareas, and the ovals give specifics.

can be concluded. Further exploring is encouraged. Although we recognize that
programming is a valuable skill for scientists, we also know that it is incredibly
exacting and time-consuming. In order to lighten the workload somewhat, we
provide “bare bones” programs in the text and on the CD. We recommend that
these be used as guides for the reader’s own programs or tested and extended to

TABLE 1.1
Topics for One Quarter (10 Weeks) of a scientific computing Course.∗

Week Topics Chapter Week Topics Chapter

1 OS tools, limits 1, (4) 6 Matrices, N-D search 8I

2 Errors, visualization 2, 3 7 Data fitting 8II

3 Monte Carlo, visualization 5, 3 8 ODE oscillations 9I

4 Integration, visualization 6, (3) 9 ODE eigenvalues 9II

5 Derivatives, searching 7I, II 10 Hardware basics 14I, III�
* Units are indicated by I, II, and III, and the visualization, here spread out into several laboratory

periods, can be completed in one. Options: week 3 on visualization; postpone matrix computing;
postpone hardware basics; devote a week to OOP; include hardware basics in week 2.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 5

computational science basics 5

TABLE 1.2
Topics for Two Quarters (20 Weeks) of a computational Physics Course.*

Computational Physics I Computational Physics II

Week Topics Chapter Week Topics Chapter

1 Nonlinear ODEs 9I, II 1 Ising model, Metropolis 15I
algorithm

2 Chaotic scattering 9III 2 Molecular dynamics 16

3 Fourier analysis, filters 10I, II 3 Project completions —

4 Wavelet analysis 11I 4 Laplace and Poisson PDEs 17I

5 Nonlinear maps 12I 5 Heat PDE 17III

6 Chaotic/double pendulum 12II 6 Waves, catenary, friction 18I

7 Project completion 12I, II 7 Shocks and solitons 19I

8 Fractals, growth 13 8 Fluid dynamics 19 II

9 Parallel computing, MPI 14II 9 Quantum integral equations 20I (II)

10 More parallel computing 14III 10 Feynman path integration 15III

* Units are indicated by I, II, and III. Options: include OpenDX visualization (§3.5, Appendix C);
include multiresolution analysis (11II); include FFT (10III) in place of wavelets; include FFT (10III)
in place of parallel computing; substitute Feynman path integrals (15III) for integral equations (20);
add several weeks on CFD (hard); substitute coupled predator-prey (12III) for heat PDE (17III);
include quantum wave packets (18II) in place of CFD; include finite element method (17II) in place
of heat PDE.

solve the problem at hand. As part of this approach we suggest that the learner
write up a mini lab report for each problem containing

Equations solved Numerical method Code listing
Visualization Discussion Critique

The report should be an executive summary of the type given to a boss or man-
ager; make it clear that you understand the materials but do not waste everyone’s
time.

One of the most rewarding uses of computers is visualizing and analyzing the
results of calculations with 2-D and 3-D plots, with color, and with animation.
This assists in the debugging process, hastens the development of physical and
mathematical intuition, and increases the enjoyment of the work. It is essential
that you learn to use visualization tools as soon as possible, and so in Chapter 3,
“Visualization Tools,” and Appendix C we describe a number of free visualization
tools that we use and recommend. We include many figures showing visualizations
(unfortunately just in gray scale), with color versions on the CD.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 6

6 chapter 1

We have tried to make the multifaceted contents of this book clearer by use of

C D

the following symbols and fonts:

in the margin Material on the CD
� Optional material

at line’s end End of exercise or problem
Monospace font Words as they would appear on a computer screen
Italic font Note at beginning of chapter to the reader about

what’s to follow
Sans serif font Program commands from drop-down menus

We also indicate a user–computer dialog via three different fonts on a line:

Monospace computer’s output > Bold monospace user’s command Comments

Code listings are formatted within a shaded box, with italic key words and bold
comments (usually on the right):

� �
f o r ( i = 0 ; i <= Nxmax ; i ++ ) { / / Comment : Fluid surface

u [ i ] [ Nymax] = u [ i ] [ Nymax−1] + V0∗h ;
w[ i ] [ Nymax−1] = 0 . ;

}

p u b l i c d o u b l e g e t I ( ) { r e t u r n ( 2 . / 5 . ) ∗ m ∗ r∗ r ; } / / Method get I
�

Note that we have tried to structure the codes so that a line is skipped before each
method, so that each logical structure is indented by two spaces, and so that the
ending brace } of a logical element is on a separate line aligned with the beginning
of the logic element. However, in order to conserve space, sometimes we do not
insert blank lines even though it may add clarity, sometimes the commands for
short methods or logical structures are placed on a single line, and usually we
combine multiple ending braces on the last line.

Although we try to be careful to define each term the first time it is used, we
also have included a glossary in Appendix A for reference. Further, Appendix B
describes the steps needed to install some of the software packages we recommend,
and Appendix F lists the names and functions of the various items on the CD.

1.3 Making Computers Obey; Languages (Theory)

Computers are incredibly fast, accurate, and stupid; humans are incred-
ibly slow, inaccurate, and brilliant; together they are powerful beyond
imagination.

— Albert Einstein

As anthropomorphic as your view of your computer may be, keep in mind that
computers always do exactly as they are told. This means that you must tell them

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 7

computational science basics 7

cp rm

Program Development

Shell

Utilities

Kernel

del

appletviewer

GUI

windows

Hardware

Figure 1.4 A schematic view of a computer’s kernel and shells.

exactly everything they have to do. Of course the programs you run may have such
convoluted logic that you may not have the endurance to figure out the details of
what you have told the computer to do, but it is always possible in principle. So
your first problem is to obtain enough understanding so that you feel well enough
in control, no matter how illusionary, to figure out what the computer is doing.

Before you tell the computer to obey your orders, you need to understand that
life is not simple for computers. The instructions they understand are in a basic
machine language1 that tells the hardware to do things like move a number stored in
one memory location to another location or to do some simple binary arithmetic.
Very few computational scientists talk to computers in a language computers can
understand. When writing and running programs, we usually communicate to
the computer through shells, in high-level languages ( Java, Fortran, C), or through
problem-solving environments (Maple, Mathematica, and Matlab). Eventually these
commands or programs are translated into the basic machine language that the
hardware understands.

A shell is a command-line interpreter, that is, a set of small programs run by a
computer that respond to the commands (the names of the programs) that you
key in. Usually you open a special window to access the shell, and this window
is called a shell as well. It is helpful to think of these shells as the outer layers of
the computer’s operating system (OS) (Figure 1.4), within which lies a kernel of
elementary operations. (The user seldom interacts directly with the kernel, except

1 The Beginner’s All-Purpose Symbolic Instruction Code (BASIC) programming language
of the original PCs should not be confused with basic machine language.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 8

8 chapter 1

possibly when installing programs or when building an operating system from
scratch.) It is the job of the shell to run programs, compilers, and utilities that do
things like copying files. There can be different types of shells on a single computer
or multiple copies of the same shell running at the same time.

Operating systems have names such as Unix, Linux, DOS, MacOS, and MS
Windows. The operating system is a group of programs used by the computer to com-
municate with users and devices, to store and read data, and to execute programs.
Under Unix and Linux, the OS tells the computer what to do in an elementary
way, while Windows includes various graphical elements as part of the operating
system (this increases speed at the cost of complexity). The OS views you, other
devices, and programs as input data for it to process; in many ways, it is the indis-
pensable office manager. While all this may seem complicated, the purpose of the
OS is to let the computer do the nitty-gritty work so that you can think higher-level
thoughts and communicate with the computer in something closer to your normal
everyday language.

When you submit a program to your computer in a high-level language, the com-
puter uses a compiler to process it. The compiler is another program that treats your
program as a foreign language and uses a built-in dictionary and set of rules to
translate it into basic machine language. As you can probably imagine, the final set
of instructions is quite detailed and long and the compiler may make several passes
through your program to decipher your logic and translate it into a fast code. The
translated statements form an object or compiled code, and when linked together
with other needed subprograms, form a load module. A load module is a complete
set of machine language instructions that can be loaded into the computer’s memory
and read, understood, and followed by the computer.

Languages such as Fortran and C use compilers to read your entire program
and then translate it into basic machine instructions. Languages such as BASIC
and Maple translate each line of your program as it is entered. Compiled languages
usually lead to more efficient programs and permit the use of vast subprogram
libraries. Interpreted languages give a more immediate response to the user and
thereby appear “friendlier.” The Java language is a mix of the two. When you
first compile your program, it interprets it into an intermediate, universal byte
code, but then when you run your program, it recompiles the byte code into a
machine-specific compiled code.

1.4 Programming Warmup

Before we go on to serious work, we want to ensure that your local computer is
working right for you. Assume that calculators have not yet been invented and that
you need a program to calculate the area of a circle. Rather than use any specific
language, write that program in pseudocode that can be converted to your favorite
language later. The first program tells the computer:2

2 Comments placed in the field to the right are for your information and not for the computer
to act upon.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 9

computational science basics 9

� �
C a l c u l a t e area of c i r c l e / / Do t h i s computer !

�

This program cannot really work because it does not tell the computer which circle
to consider and what to do with the area. A better program would be

� �
read radius / / Input
c a l c u l a t e area of c i r c l e / / Numerics
p r i n t area / / Output

�

The instruction calculate area of circle has no meaning in most computer lan-
guages, so we need to specify an algorithm, that is, a set of rules for the computer
to follow:

� �
read radius / / Input
PI = 3 .141593 / / Set constant
area = PI ∗ r ∗ r / / Algorithm
p r i n t area / / Output

�

This is a better program, and so let’s see how to implement it in Java (other language
versions are on the CD). In Listing 1.1 we give a Java version of our area program.
This is a simple program that outputs to the screen and has its input entered via
statements.

� �
/ / Area . java : Area of a c i r c l e , sample program

p u b l i c c l a s s Area
{

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] args ) { / / Begin main method

d o u b l e radius , circum , area , PI = 3 . 1 4 1 5 9 3 ; / / Declaration
i n t modelN = 1 ; / / Declare , assign integer

radius = 1 . ; / / Assign radius
circum = 2.∗ PI∗ radius ; / / Calculate circumference
area = radius ∗ radius ∗ PI ; / / Calculate area
System . out . p r i n t l n ("Program number = " + modelN ) ; / / number
System . out . p r i n t l n ("Radius = " + radius ) ; / / radius
System . out . p r i n t l n ("Circumference = " + circum ) ; / / circum
System . out . p r i n t l n ("Area = " + area ) ; / / area

} / / End main method
} / / End Area c l a s s
/∗
To Run :
>javac Area . java
>java Area
OUTPUT:
Program number = 1
Radius = 1 . 0
Circumference = 6 .283186
Area = 3 .141593
∗ /

�

Listing 1.1 The program Area.java outputs to the screen and has its input entered via

statements.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 10

10 chapter 1

1.4.1 Structured Program Design

Programming is a written art that blends elements of science, mathematics, and
computer science into a set of instructions that permit a computer to accomplish a
desired task. Now that we are getting into the program-writing business, you will
benefit from understanding the overall structures that you should be building into
your programs, in addition to the grammar of a computer language. As with other
arts, we suggest that until you know better, you follow some simple rules. A good
program should

• Give the correct answers.
• Be clear and easy to read, with the action of each part easy to analyze.
• Document itself for the sake of readers and the programmer.
• Be easy to use.
• Be easy to modify and robust enough to keep giving correct answers after

modifications are made.
• Be passed on to others to use and develop further.

One attraction of object-oriented programming (Chapter 4; “Object-Oriented
Programs: Impedance & Batons”) is that it enforces these rules automatically. An
elementary way to make any program clearer is to structure it with indentation,
skipped lines, and braces placed strategically. This is done to provide visual clues
to the function of the different program parts (the “structures” in structured
programming). Regardless of the fact that compilers ignore these visual clues,
human readers are aided by having a program that not only looks good but also
has its different logical parts visually evident. Even though the space limitations
of a printed page keep us from inserting as many blank lines as we would prefer,
we recommend that you do as we say and not as we do!

In Figure 1.5 we present basic and detailed flowcharts that illustrate a possible
program for computing projectile motion. A flowchart is not meant to be a detailed
description of a program but instead is a graphical aid to help visualize its logical
flow. As such, it is independent of a specific computer language and is useful for
developing and understanding the basic structure of a program. We recommend
that you draw a flowchart or (second best) write a pseudocode before you write a
program. Pseudocode is like a text version of a flowchart that leaves out details and
instead focuses on the logic and structures:

� �
Store g , Vo , and t h e t a
C a l c u l a t e R and T
Begin time loop

Pr i n t out "not yet fired" i f t < 0
Pr i n t out "grounded" i f t > T
Calculate , p r i n t x ( t ) and y ( t )
Pr i n t out e r r o r message i f x > R , y > H

End time loop End program
�

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 11

computational science basics 11

Initialize Constants

Basic Calculations

Loop over time

End

Store g, V0, θ

Calculate R, T

Loop over time

Calculate x(t), y(t)

Print x, y “Not Yet Fired”

End

“Grounded”

0 < t < T ?

t < 0 ?
NY

NY

Figure 1.5 A flowchart illustrating a program to compute projectile motion. On the left are

the basic components of the program, and on the right are some of its details. When writing a

program, first map out the basic components, then decide upon the structures, and finally fill

in the details. This is called top-down programming.

1.4.2 Shells, Editors, and Execution

1. To gain some experience with your computer system, use an editor to enter
the program Area.java that computes the area of a circle (yes, we know you
can copy it from the CD, but you may need some exercise before getting
down to work). Then write your file to disk by saving it in your home
(personal) directory (we advise having a separate subdirectory for each
week). Note: For those who are familiar with Java, you may want to enter
the program AreaScanner.java instead (described in a later section) that uses
some recent advances in Java input/output (I/O).

2. Compile and execute the appropriate version of Area.java.
3. Change the program so that it computes the volume 4

3πr
3 of a sphere. Then

write your file to disk by saving it in your home (personal) directory and
giving it the name AreaMod.java.

4. Compile and execute AreaMod (remember that the file name and class name
must agree).

5. Check that your changes are correct by running a number of trial cases. A
good input datum is r = 1 because then A= π. Then try r = 10.

6. Experiment with your program. For example, see what happens if you leave
out decimal points in the assignment statement for r, if you assign r equal
to a blank, or if you assign a letter to r. Remember, it is unlikely that you
will “break” anything by making a mistake, and it is good to see how the
computer responds when under stress.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 12

12 chapter 1

7. Revise Area.java so that it takes input from a file name that you have made
up, then writes in a different format to another file you have created, and then
reads from the latter file.

8. See what happens when the data type given to output does not match the
type of data in the file (e.g., data are doubles, but read in as ints).

9. Revise AreaMod so that it uses a main method (which does the input and
output) and a separate method for the calculation. Check that you obtain the
same answers as before.

1.4.3 Java I/O, Scanner Class with printf

In Java 1.5 and later, there is a new Scanner class that provides similar functionality
as the popular scanf and printf methods in the C language. In Listing 1.2 we give
a version of our area program incorporating this class. When using printf, you
specify how many decimal places are desired, remembering to leave one place for
the decimal point, another for the sign, and another to have some space before
the next output item. As in C, there is an f for fixed-point formatting and a d for
integers (digits):

System.out.printf("x = %6.3f, Pi = %9.6f, Age = %d %n", x, Math.PI, 39)

System.out.printf("x = %6.3f, "+" Pi = %9.6f, "+" Age = %d %n", x, Math.PI, 39)

x = 12.345, Pi = 3.142, Age = 39 Output from either

Here the %6.3f formats a double or a float to be printed in fixed-point notation
using 6 places overall, with 3 places after the decimal point (this leaves 1 place for
the decimal point, 1 place for the sign, and 1 space before the decimal point). The
directive %9.6f has 6 digits after the decimal place and 9 overall, while %d is for
integers (digits), which are written out in their entirety. The %n directive is used to
indicate a new line. Other directives are

\" double quote \0NNN octal value NNN \\ backslash
\a alert (bell) \b backspace \c no further output
\f form feed \n new line \r carriage return
\t horizontal tab \v vertical tab %% a single %

Notice in Listing 1.2 how we read from the keyboard, as well as from a file, and
output to both screen and file. Beware that unless you first create the file Name.dat,
the program will take exception because it cannot find the file.

1.4.4 I/O Redirection

Most programming environments assume that the standard (default) for input
is from the keyboard, and for output to the computer screen. However, you can

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 13

computational science basics 13

� �
/ / AreaScanner : examples of use of Scanner and p r i n t f (JDK 1 . 5 )
i m p o r t j ava . io . ∗ ; / / Standard I /O c l a s s e s
i m p o r t j ava . u t i l . ∗ ; / / and scanner c l a s s

p u b l i c c l a s s AreaScanner {
p u b l i c s t a t i c f i n a l d o u b l e PI = 3 . 1 4 1 5 9 3 ; / / Constants
p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) throws IOException , FileNotFoundException {
d o u b l e r , A; / / Declare var iables
Scanner sc1 = new Scanner ( System . in ) ; / / Connect to standard input
System . out . p r i n t l n ("Key in your name and r on 1 or more lines" ) ;
S t r i n g name = sc1 . next ( ) ; / / Read String
r = sc1 . nextDouble ( ) ; / / Read double
System . out . p r i n t f ("Hi " + name) ;
System . out . p r i n t f ("\n radius = " + r ) ;
System . out . p r i n t f ("\n\n Enter new name and r in Name.dat\n" ) ;
Scanner sc2 = new Scanner ( new F i l e ("Name.dat" ) ) ; / / Open f i l e
System . out . p r i n t f ("Hi %s\n" , sc2 . next ( ) ) ; / / Read , pr int l ine 1
r = sc2 . nextDouble ( ) ; / / Read l ine 2
System . out . p r i n t f ("r = %5.1f\n" , r ) ; / / Pr int l ine 2
A = PI ∗ r ∗ r ; / / Computation
System . out . p r i n t f ("Done, look in A.dat\n" ) ; / / Screen print
Pr i n t W r i t e r q = new Pr i n t W r i t e r ( new FileOutputStream ("A.dat" ) , t r u e ) ;
q . p r i n t f ("r = %5.1f\n" , r ) ; / / F i l e output
q . p r i n t f ("A = %8.3f\n" , A) ;
System . out . p r i n t f ("r = %5.1f\n" , r ) ; / / Screen output
System . out . p r i n t f ("A = %8.3f\n" , A) ;
System . out . p r i n t f ("\n\n Now key in your age as an integer\n" ) ; / / i n t input
i n t age = sc1 . n e x t I n t ( ) ; / / Read i n t
System . out . p r i n t f ( age + "years old , you don ’ t look i t !" ) ;
sc1 . c l o s e ( ) ; sc2 . c l o s e ( ) ; / / Close inputs

} / / End main
} / / End c l a s s

�

Listing 1.2 The program AreaScanner.java uses Java 1.5’s Scanner class for input and the

printf method for formatted output. Note how we input first from the keyboard and then from

a file and how different methods are used to convert the input string to a double or an integer.

easily change that. A simple way to read from or write to a file is via command-line
redirection from within the shell in which you are running your program:

% java A < infile.dat Redirect standard input

redirects standard input from the keyboard to the file infile.dat. Likewise,

% java A > outfile.dat Redirect standard output

redirects standard output from the screen to the file outfile.dat. Or you can put
them both together for complete redirection:

% java A < infile.dat > outfile.dat Redirect standard I/O

1.4.5 Command-Line Input

Although we do not use it often in our sample programs, you can also input data
to your program from the command line via the argument of your main method.
Remember how the main method is declared with the statement void main(String[ ]

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 14

14 chapter 1

argv). Because main methods are methods, they take arguments (a parameter list)
and return values. The word void preceding main means that no argument is
returned to the command that calls main, while String[ ] argv means that the
argument argv is an array (indicated by the [ ]) of the data type String. As an
example, the program CommandLineArgs.java in Listing 1.3 accepts and then uses
arguments from the command line

> java CommandLineArgs 2 1.0 TempFile

Here the main method is given an integer 2, a double 1.0, and a string TempFile,
with the latter to be used as a file name. Note that this program is not shy about
telling you what you should have done if you have forgotten to give it arguments.
Further details are given as part of the documentation within the program.

� �
/∗ CommandLineArgs . java : Accepts 2 or 3 arguments from command line , e . g . :

java CommandLineArgs anInt aDouble [ aString ] .
[ aString ] i s optional filename . See CmdLineArgsDemo on CD for f u l l documentation
Written by Zlatko Dimcovic ∗ /

p u b l i c c l a s s CommandLineArgs {

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] args ) {
i n t intParam = 0 ; / / Other values OK
d o u b l e doubleParam = 0 . 0 ; / / Defaults , args optional
S t r i n g fi lename = "baseName" ; / / Will form / read in r e s t
i f ( args . length == 2 || args . length == 3) { / / Demand 2 or 3 args

intParam = I n t e g e r . p a r s e I n t ( args [ 0 ] ) ;
doubleParam = Double . parseDouble ( args [ 1 ] ) ;
i f ( args . length == 3 ) f i lename = args [ 2 ] ; / / 3rd arg = filename
e l s e f i lename += "_i" + intParam + "_d" + doubleParam + ".dat" ;

}
e l s e { / / No else , e x i t with i n s t r u c t i o n

System . e r r . p r i n t l n ("\n\t Usage : java CmdLineArgs intParam doubleParam [ f i l e ]" ) ;
/ / "\n" not portable ; use pr int ln ( )

System . e r r . p r i n t l n ("\t 1st arg must be int , 2nd double (or int ) ,"
+ "\n\t (optional ) 3rd arg = string .\n" ) ;

System . e x i t ( 1 ) ;
} / / System . err , used to avoid a c c i d e n t a l r e d i r e c t
System . out . p r i n t l n ("Input arguments : intParam (1st ) = " + intParam

+ " , doubleParam (2nd) = " + doubleParam ) ;
i f ( args . length == 3) System . out . p r i n t l n ("String input : " +fi lename ) ;
e l s e i f ( args . length == 2) System . out . p r i n t l n ("No f i le , use" + fi lename ) ;
e l s e {

System . e r r . p r i n t l n ("\n\tERROR ! args . length must be 2 or 3.\n" ) ;
System . e x i t ( 1 ) ;

}
} }

�

Listing 1.3 The program CommandLineArgs.java (courtesy of Zlatko Dimcovic)

demonstrates how arguments can be transferred to a main program via the command line.

1.4.6 I/O Exceptions: FileCatchThrow.java

You may have noted that the programs containing file I/O have their main methods
declared with a statement of the form

main( String[] argv ) throws IOException

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 15

computational science basics 15

This is required by Java when programs deal with files. Exceptions occur when
something goes wrong during the I/O process, such as not finding a file, trying
to read past the end of a file, or interrupting the I/O process. In fact, you may
get more information of this sort reported back to you by including any of these
phrases:

FileNotFoundException EOFException InterruptedException

after the words throws IOException. As an instance, AreaScanner in Listing 1.2
contains

public static void main(String[] argv) throws IOException, FileNotFoundException

where the intermediate comma is to be noted. In this case we have added in the
class (subclass) FileNotFoundException.

Dealing with I/O exceptions is important because it prevents the computer
from freezing up if a file cannot be read or written. If, for example, a file is
not found, then Java will create an Exception object and pass it along (“throw
exception”) to the program that called this main method. You will have the error
message delivered to you after you issue the java command to run the main
method.

� �
/ / FileCatchThrow . java : throw , catch IO exception

i m p o r t j ava . io . ∗ ;

p u b l i c c l a s s FileCatchThrow {

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) { / / Begin main
d o u b l e r , circum , A, PI = 3 . 1 4 1 5 9 3 ; / / Declare , assign
r = 2 ;
circum = 2.∗ PI∗ r ; / / Calculate circum
A = Math . pow( r , 2 ) ∗ PI ; / / Calculate A
t r y {

Pr i n t W r i t e r q = new Pr i n t W r i t e r ( new FileOutputStream ("ThrowCatch . out" ) , t r u e ) ;
q . p r i n t l n ("r = " + r + " , length , A = " + circum + " , " +A) ; }
c a t c h ( IOException ex ) { ex . p r i n t S t a c k T r a c e ( ) ; } / / Catch

} }
�

Listing 1.4 FileCatchThrow.java reads from the file and handles the I/O exception.

Just how a program deals with (catches) the thrown exception object is beyond
the level of this book, although Listing 1.4 does give an example of the try-catch
construct. We see that while the declaration of the main method does not contain
any statement about an exception being thrown, in its place we have a try-catch
construct. The statements within the try block are executed, and if they throw an
exception, it is caught by the catch statement, which prints a statement to that
effect. In summary, if you use files, an appropriate throws IOException statement
is required for successful compilation.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 16

16 chapter 1

Package

Class TrapMethods

Field Summary

Constructor Summary

PREV

SUMMARY:

java.lang.Object

public

extends java.lang.Object

static double A

B

N

static double

static int

TrapMethods.java by RH Landau, trapezoid-rule integration with method calls

class

NESTED FIELD CONSTR METHOD

Class Tree Deprecated Index Help
CLASS NEXT CLASS

DETAIL: FIELD CONSTR METHOD

FRAMES NO FRAMES All  Classes

+––TrapMethods

TrapMethods

Figure 1.6 A sample of the automatic code documentation produced by running javadoc.

1.4.7 Automatic Code Documentation �

A nice feature of Java is that you can place comments in your code (always
a good idea) and then have Java use these comments to create a professional-
looking Hypertext Markup Language (HTML) documentation page (Figure 1.6).
The comments in your code must have the form

� �
/∗∗ DocDemo. java : with javadoc comments ∗ /
p u b l i c c l a s s TrapMethods {

p u b l i c s t a t i c f i n a l d o u b l e A = 0 . , B = 3 . ;
/∗∗ main method sums over points
c a l l s wTrap for trapezoid weight
c a l l s f ( y ) for integrand
@param N number of data points
@param A f i r s t endpoint
@param B second endpoint ∗ /

�

Here the comments begin with a /**, rather than the standard /*, and end with
the standard /*. As usual, Java ignores the text within a comment field. For this to
work, the comments must appear before the class or method that they describe and

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 17

computational science basics 17

TABLE 1.3
Tag Forms for javadoc

@author Loren Rose Before class

@version 12.3 Before class

@parameter sum Before method

@exception <exception name> Before method

@return weight for trap integration Before method

@see <class or method name> Before method

must contain key words, such as @param. The documentation page in Figure 1.6 is
named TrapMethods.html and is produced by operating on the TrapMethods.java
file with the javadoc command

% javadoc DocDemo.java Create documentation

Not visible in the figure are the specific definition fields produced by the @param
tags. Other useful tags are given in Table 1.3.

1.5 Computer Number Representations (Theory)

Computers may be powerful, but they are finite. A problem in computer design
is how to represent an arbitrary number using a finite amount of memory space
and then how to deal with the limitations arising from this representation. As a
consequence of computer memories being based on the magnetic or electronic
realization of a spin pointing up or down, the most elementary units of computer
memory are the two binary integers (bits) 0 and 1. This means that all numbers are
stored in memory in binary form, that is, as long strings of zeros and ones. As a
consequence, N bits can store integers in the range [0, 2N ], yet because the sign of
the integer is represented by the first bit (a zero bit for positive numbers), the actual
range decreases to [0, 2N−1].

Long strings of zeros and ones are fine for computers but are awkward for users.
Consequently, binary strings are converted to octal, decimal, or hexadecimal numbers
before the results are communicated to people. Octal and hexadecimal numbers
are nice because the conversion loses no precision, but not all that nice because our
decimal rules of arithmetic do not work for them. Converting to decimal numbers
makes the numbers easier for us to work with, but unless the number is a power
of 2, the process leads to a decrease in precision.

A description of a particular computer system normally states the word length,
that is, the number of bits used to store a number. The length is often expressed in
bytes, with

1 byte ≡ 1 B def= 8 bits.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 18

18 chapter 1

Memory and storage sizes are measured in bytes, kilobytes, megabytes, gigabytes,
terabytes, and petabytes (1015). Some care should be taken here by those who chose
to compute sizes in detail because K does not always mean 1000:

1 K def= 1 kB = 210 bytes = 1024 bytes.

This is often (and confusingly) compensated for when memory size is stated in K,
for example,

512 K = 29 bytes = 524, 288 bytes × 1 K
1024 bytes

.

Conveniently, 1 byte is also the amount of memory needed to store a single letter
like “a”, which adds up to a typical printed page requiring ∼3 kB.

The memory chips in some older personal computers used 8-bit words. This
meant that the maximum integer was 27 = 128 (7 because 1 bit is used for the sign).
Trying to store a number larger than the hardware or software was designed for
(overflow) was common on these machines; it was sometimes accompanied by an
informative error message and sometimes not. Using 64 bits permits integers in
the range 1–263 � 1019. While at first this may seem like a large range, it really
is not when compared to the range of sizes encountered in the physical world.
As a case in point, the ratio of the size of the universe to the size of a proton is
approximately 1041.

1.5.1 IEEE Floating-Point Numbers

Real numbers are represented on computers in either fixed-point or floating-point
notation. Fixed-point notation can be used for numbers with a fixed number of places
beyond the decimal point (radix) or for integers. It has the advantages of being able
to use two’s complement arithmetic and being able to store integers exactly.3 In the
fixed-point representation with N bits and with a two’s complement format, a
number is represented as

Nfix = sign × (αn2n +αn−12n−1 + · · ·+α020 + · · ·+α−m2−m), (1.1)

where n+m=N − 2. That is, 1 bit is used to store the sign, with the remaining
(N − 1) bits used to store the αi values (the powers of 2 are understood). The
particular values for N,m, and n are machine-dependent. Integers are typically
4 bytes (32 bits) in length and in the range

−2147483648 ≤ 4-B integer ≤ 2147483647.

3 The two’s complement of a binary number is the value obtained by subtracting the number
from 2N for an N -bit representation. Because this system represents negative numbers
by the two’s complement of the absolute value of the number, additions and subtractions
can be made without the need to work with the sign of the number.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 19

computational science basics 19

0

+10+38-10+38  10-45-10-45

O
ve

rf
lo

w
 

O
ve

rf
lo

w
 

Underflow 

tr
un

ca
tio

n

Figure 1.7 The limits of single-precision floating-point numbers and the consequences of

exceeding these limits. The hash marks represent the values of numbers that can be stored;

storing a number in between these values leads to truncation error. The shaded areas

correspond to over- and underflow.

An advantage of the representation (1.1) is that you can count on all fixed-point
numbers to have the same absolute error of 2−m−1 [the term left off the right-hand
end of (1.1)]. The corresponding disadvantage is that small numbers (those for
which the first string of α values are zeros) have large relative errors. Because in the
real world relative errors tend to be more important than absolute ones, integers
are used mainly for counting purposes and in special applications (like banking).

Most scientific computations use double-precision floating-point numbers
(64 b = 8 B). The floating-point representation of numbers on computers is a binary
version of what is commonly known as scientific or engineering notation. For
example, the speed of light c= +2.99792458× 10+8 m/s in scientific notation and
+0.299792458× 10+9 or 0.299795498 E09 m/s in engineering notation. In each of
these cases, the number in front is called the mantissa and contains nine significant
figures. The power to which 10 is raised is called the exponent, with the plus sign
included as a reminder that these numbers may be negative.

Floating-point numbers are stored on the computer as a concatenation
(juxtaposition) of the sign bit, the exponent, and the mantissa. Because only a finite
number of bits are stored, the set of floating-point numbers that the computer can
store exactly, machine numbers (the hash marks in Figure 1.7), is much smaller than
the set of real numbers. In particular, machine numbers have a maximum and a
minimum (the shading in Figure 1.7). If you exceed the maximum, an error condi-
tion known as overflow occurs; if you fall below the minimum, an error condition
known as underflow occurs. In the latter case, the software and hardware may be
set up so that underflows are set to zero without your even being told. In contrast,
overflows usually halt execution.

The actual relation between what is stored in memory and the value of a
floating-point number is somewhat indirect, with there being a number of spe-
cial cases and relations used over the years. In fact, in the past each computer
operating system and each computer language contained its own standards

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 20

20 chapter 1

TABLE 1.4
The IEEE 754 Standard for Java’s Primitive Data Types

Name Type Bits Bytes Range

boolean Logical 1 1
8 true or false

char String 16 2 ’\u0000’ ↔ ’\uFFFF’ (ISO Unicode characters)

byte Integer 8 1 −128 ↔ +127

short Integer 16 2 −32, 768 ↔ +32, 767

int Integer 32 4 −2, 147, 483, 648 ↔ +2, 147, 483, 647

long Integer 64 8 −9, 223, 372, 036, 854, 775, 808 ↔ 9, 223, 372, 036,
854, 775, 807

float Floating 32 4 ±1.401298 × 10−45 ↔ ±3.402923 × 10+38

double Floating 64 8 ±4.94065645841246544 × 10−324 ↔
±1.7976931348623157 × 10+308

for floating-point numbers. Different standards meant that the same program
running correctly on different computers could give different results. Even though
the results usually were only slightly different, the user could never be sure if the
lack of reproducibility of a test case was due to the particular computer being used
or to an error in the program’s implementation.

In 1987, the Institute of Electrical and Electronics Engineers (IEEE) and the
American National Standards Institute (ANSI) adopted the IEEE 754 standard
for floating-point arithmetic. When the standard is followed, you can expect
the primitive data types to have the precision and ranges given in Table 1.4.
In addition, when computers and software adhere to this standard, and most do
now, you are guaranteed that your program will produce identical results on dif-
ferent computers. However, because the IEEE standard may not produce the most
efficient code or the highest accuracy for a particular computer, sometimes you
may have to invoke compiler options to demand that the IEEE standard be strictly
followed for your test cases. After you know that the code is okay, you may want
to run with whatever gives the greatest speed and precision.

There are actually a number of components in the IEEE standard, and different
computer or chip manufacturers may adhere to only some of them. Normally a
floating-point number x is stored as

xfloat = (−1)s × 1.f × 2e−bias, (1.2)

that is, with separate entities for the sign s, the fractional part of the mantissa f ,
and the exponential field e. All parts are stored in binary form and occupy adjacent
segments of a single 32-bit word for singles or two adjacent 32-bit words for doubles.
The sign s is stored as a single bit, with s= 0 or 1 for a positive or a negative sign.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 21

computational science basics 21

TABLE 1.5
Representation Scheme for Normal and Abnormal IEEE Singles

Number Name Values of s, e, and f Value of Single

Normal 0< e < 255 (−1)s × 2e−127 × 1.f

Subnormal e= 0, f �= 0 (−1)s × 2−126 × 0.f

Signed zero (±0) e= 0, f = 0 (−1)s × 0.0

+∞ s= 0, e= 255, f = 0 +INF

−∞ s= 1, e= 255, f = 0 –INF

Not a number s= u, e= 255, f �= 0 NaN

Eight bits are used to stored the exponent e, which means that e can be in the
range 0 ≤ e≤ 255. The endpoints, e= 0 and e= 255, are special cases (Table 1.5).
Normal numbers have 0< e < 255, and with them the convention is to assume that
the mantissa’s first bit is a 1, so only the fractional part f after the binary point is
stored. The representations for subnormal numbers and the special cases are given
in Table 1.5.

Note that the values ±INF and NaN are not numbers in the mathematical sense,
that is, objects that can be manipulated or used in calculations to take limits and
such. Rather, they are signals to the computer and to you that something has gone
awry and that the calculation should probably stop until you straighten things
out. In contrast, the value −0 can be used in a calculation with no harm. Some
languages may set unassigned variables to −0 as a hint that they have yet to be
assigned, though it is best not to count on that!

The IEEE representations ensure that all normal floating-point numbers have
the same relative precision. Because the first bit is assumed to be 1, it does not
have to be stored, and computer designers need only recall that there is a phan-
tom bit there to obtain an extra bit of precision. During the processing of numbers
in a calculation, the first bit of an intermediate result may become zero, but this
is changed before the final number is stored. To repeat, for normal cases, the
actual mantissa (1.f in binary notation) contains an implied 1 preceding the binary
point.

Finally, in order to guarantee that the stored biased exponent e is always positive,
a fixed number called the bias is added to the actual exponent p before it is stored
as the biased exponent e. The actual exponent, which may be negative, is

p= e−bias. (1.3)

1.5.1.1 EXAMPLE: IEEE SINGLES REPRESENTATIONS

There are two basic, IEEE floating-point formats, singles and doubles. Singles or
floats is shorthand for single- precision floating-point numbers, and doubles is shorthand
for double-precision floating-point numbers. Singles occupy 32 bits overall, with 1 bit
for the sign, 8 bits for the exponent, and 23 bits for the fractional mantissa (which

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 22

22 chapter 1

gives 24-bit precision when the phantom bit is included). Doubles occupy 64 bits
overall, with 1 bit for the sign, 10 bits for the exponent, and 53 bits for the fractional
mantissa (for 54-bit precision). This means that the exponents and mantissas for
doubles are not simply double those of floats, as we see in Table 1.4. (In addition,
the IEEE standard also permits extended precision that goes beyond doubles, but this
is all complicated enough without going into that right now.)

To see this scheme in action, look at the 32-bit float representing (1.2):

s e f

Bit position 31 30 23 22 0

The sign bit s is in bit position 31, the biased exponent e is in bits 30–23, and the
fractional part of the mantissa f is in bits 22–0. Since 8 bits are used to store the
exponent e and since 28 = 256, e has the range

0 ≤ e≤ 255.

The values e= 0 and 255 are special cases. With bias = 12710, the full exponent

p= e10 − 127,

and, as indicated in Table 1.4, for singles has the range

−126 ≤ p≤ 127.

The mantissa f for singles is stored as the 23 bits in positions 22–0. For normal
numbers, that is, numbers with 0< e < 255, f is the fractional part of the mantissa,
and therefore the actual number represented by the 32 bits is

Normal floating-point number = (−1)s × 1.f × 2e−127.

Subnormal numbers have e= 0, f �= 0. For these, f is the entire mantissa, so the
actual number represented by these 32 bit is

Subnormal numbers = (−1)s × 0.f × 2e−126. (1.4)

The 23 bits m22–m0, which are used to store the mantissa of normal singles,
correspond to the representation

Mantissa = 1.f = 1 +m22 × 2−1 +m21 × 2−2 + · · ·+m0 × 2−23, (1.5)

with 0.f used for subnormal numbers. The special e= 0 representations used to
store ±0 and ±∞ are given in Table 1.5.

To see how this works in practice (Figure 1.7), the largest positive normal floating-
point number possible for a 32-bit machine has the maximum value for e (254) and

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 23

computational science basics 23

the maximum value for f :

Xmax = 01111 1111 1111 1111 1111 1111 1111 111
= (0)(1111 1111)(1111 1111 1111 1111 1111 111), (1.6)

where we have grouped the bits for clarity. After putting all the pieces together, we
obtain the value shown in Table 1.4:

s = 0, e= 1111 1110 = 254, p= e− 127 = 127,
f = 1.1111 1111 1111 1111 1111 111 = 1 + 0.5 + 0.25 + · · · � 2,

⇒ (−1)s × 1.f × 2p=e−127 � 2 × 2127 � 3.4× 1038. (1.7)

Likewise, the smallest positive floating-point number possible is subnormal (e= 0)
with a single significant bit in the mantissa:

0 0000 0000 0000 0000 0000 0000 0000 001.

This corresponds to

s = 0, e= 0, p= e− 126 = −126
f = 0.0000 0000 0000 0000 0000 001 = 2−23

⇒ (−1)s × 0.f × 2p=e−126 = 2−149 � 1.4× 10−45 (1.8)

In summary, single-precision (32-bit or 4-byte) numbers have six or seven decimal
places of significance and magnitudes in the range

1.4× 10−45 ≤ single precision ≤ 3.4× 1038

Doubles are stored as two 32-bit words, for a total of 64 bits (8 B). The sign
occupies 1 bit, the exponent e, 11 bits, and the fractional mantissa, 52 bits:

s e f f (cont.)

Bit position 63 62 52 51 32 31 0

As we see here, the fields are stored contiguously, with part of the mantissa f stored
in separate 32-bit words. The order of these words, and whether the second word
with f is the most or least significant part of the mantissa, is machine- dependent.
For doubles, the bias is quite a bit larger than for singles,

Bias = 11111111112 = 102310,

so the actual exponent p= e− 1023.
The bit patterns for doubles are given in Table 1.6, with the range and

precision given in Table 1.4. To repeat, if you write a program with doubles, then

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 24

24 chapter 1

TABLE 1.6
Representation Scheme for IEEE Doubles

Number Name Values of s, e, and f Value of Double

Normal 0< e < 2047 (−1)s × 2e−1023 × 1.f

Subnormal e= 0, f �= 0 (−1)s × 2−1022 × 0.f

Signed zero e= 0, f = 0 (−1)s × 0.0

+∞ s= 0, e= 2047, f = 0 +INF

−∞ s= 1, e= 2047, f = 0 −INF

Not a number s= u, e= 2047, f �= 0 NaN

64 bits (8 bytes) will be used to store your floating-point numbers. Doubles have
approximately 16 decimal places of precision (1 part in 252) and magnitudes in the
range

4.9× 10−324 ≤ double precision ≤ 1.8× 10308. (1.9)

If a single-precision number x is larger than 2128, a fault condition known as
an overflow occurs (Figure 1.7). If x is smaller than 2−128, an underflow occurs. For
overflows, the resulting number xc may end up being a machine-dependent pat-
tern, not a number (NAN), or unpredictable. For underflows, the resulting number
xc is usually set to zero, although this can usually be changed via a compiler option.
(Having the computer automatically convert underflows to zero is usually a good
path to follow; converting overflows to zero may be the path to disaster.) Because
the only difference between the representations of positive and negative numbers
on the computer is the sign bit of one for negative numbers, the same considerations
hold for negative numbers.

In our experience, serious scientific calculations almost always require at least 64-bit
(double-precision) floats. And if you need double precision in one part of your calcu-
lation, you probably need it all over, which means double-precision library routines
for methods and functions.

1.5.2 Over/Underflows Exercises

1. Consider the 32-bit single-precision floating-point number

s e f

Bit position 31 30 23 22 0

Value 0 0000 1110 1010 0000 0000 0000 0000 000

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 25

computational science basics 25

a. What are the (binary) values for the sign s, the exponent e, and the
fractional mantissa f . (Hint: e10 = 14.)

b. Determine decimal values for the biased exponent e and the true expo-
nent p.

c. Show that the mantissa of A equals 1.625000.
d. Determine the full value of A.

2. Write a program to test for the underflow and overflow limits (within a factor
of 2) of your computer system and of your computer language. A sample
pseudocode is

� �
under = 1 .
over = 1 .
begin do N times

under = under /2.
over = over ∗ 2 .
wri te out : loop number , under , over

end do
�

You may need to increase N if your initial choice does not lead to underflow
and overflow. (Notice that if you want to be more precise regarding the limits
of your computer, you may want to multiply and divide by a number smaller
than 2.)
a. Check where under- and overflow occur for single-precision floating-point

numbers (floats). Give answers as decimals.
b. Check where under- and overflow occur for double-precision floating-

point numbers (doubles).
c. Check where under- and overflow occur for integers. Note: There is no

exponent stored for integers, so the smallest integer corresponds to the
most negative one. To determine the largest and smallest integers, you
must observe your program’s output as you explicitly pass through the
limits. You accomplish this by continually adding and subtracting 1.
(Because integer arithmetic uses two’s complement arithmetic, you should
expect some surprises.)

1.5.3 Machine Precision (Model)

Amajor concern of computational scientists is that the floating-point representation
used to store numbers is of limited precision. In general for a 32-bit-word machine,
single-precision numbers are good to 6–7 decimal places, while doubles are good to 15–
16 places. To see how limited precision affects calculations, consider the simple
computer addition of two single-precision words:

7 + 1.0× 10−7 = ?

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 26

26 chapter 1

The computer fetches these numbers from memory and stores the bit patterns

7 = 0 10000010 1110 0000 0000 0000 0000 000, (1.10)

10−7 = 0 01100000 1101 0110 1011 1111 1001 010, (1.11)

in working registers (pieces of fast-responding memory). Because the exponents
are different, it would be incorrect to add the mantissas, and so the exponent of
the smaller number is made larger while progressively decreasing the mantissa
by shifting bits to the right (inserting zeros) until both numbers have the same
exponent:

10−7 = 0 01100001 0110 1011 0101 1111 1100101 (0)

= 0 01100010 0011 0101 1010 1111 1110010 (10) (1.12)

· · ·
= 0 10000010 0000 0000 0000 0000 0000 000 (0001101 · · · 0
⇒ 7 + 1.0× 10−7 = 7. (1.13)

Because there is no room left to store the last digits, they are lost, and after all this
hard work the addition just gives 7 as the answer (truncation error in Figure 1.7).
In other words, because a 32-bit computer stores only 6 or 7 decimal places, it
effectively ignores any changes beyond the sixth decimal place.

The preceding loss of precision is categorized by defining the machine precision
εm as the maximum positive number that, on the computer, can be added to the
number stored as 1 without changing that stored 1:

1c + εm
def= 1c, (1.14)

where the subscript c is a reminder that this is a computer representation of 1.
Consequently, an arbitrary number x can be thought of as related to its floating-
point representation xc by

xc = x(1 ± ε), |ε| ≤ εm,

where the actual value for ε is not known. In other words, except for powers of 2
that are represented exactly, we should assume that all single-precision numbers
contain an error in the sixth decimal place and that all doubles have an error in the
fifteenth place.And as is always the case with errors, we must assume that we do not
know what the error is, for if we knew, then we would eliminate it! Consequently,
the arguments we put forth regarding errors are always approximate, and that is
the best we can do.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 27

computational science basics 27

1.5.4 Determine Your Machine Precision

Write a program to determine the machine precision εm of your computer system
(within a factor of 2 or better). A sample pseudocode is

� �
eps = 1 .
begin do N times

eps = eps /2. / / Make smaller
one = 1 . + eps / / Write loop number , one , eps

end do
�

A Java implementation is given in Listing 1.5, while a more precise one is
ByteLimit.java on the instructor’s CD.

� �
/ / Limits . java : Determines machine precis ion

p u b l i c c l a s s Limits {

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] args ) {
f i n a l i n t N = 6 0 ;
i n t i ;
d o u b l e eps = 1 . , onePlusEps ;
f o r ( i = 0 ; i < N; i = i + 1) {

eps = eps / 2 . ;
onePlusEps = 1 . + eps ;
System . out . p r i n t l n ("onePlusEps = " +onePlusEps+" , eps = "+eps ) ;

} } }
�

Listing 1.5 The code Limits.java determines machine precision within a factor of 2. Note

how we skip a line at the beginning of each class or method and how we align the closing

brace vertically with its appropriate key word (in italics).

1. Determine experimentally the precision of single-precision floats.
2. Determine experimentally the precision of double-precision floats.

To print out a number in decimal format, the computer must make a conversion
from its internal binary format. This not only takes time, but unless the number is
a power of 2, there is a concordant loss of precision. So if you want a truly precise
indication of the stored numbers, you should avoid conversion to decimals and
instead print them out in octal or hexadecimal format (printf with \0NNN).

1.6 Problem: Summing Series

A classic numerical problem is the summation of a series to evaluate a function. As
an example, consider the infinite series for sinx:

sinx= x− x3

3!
+
x5

5!
− x7

7!
+ · · · (exact).

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 28

28 chapter 1

Your problem is to use this series to calculate sinx for x < 2π and x > 2π, with an
absolute error in each case of less than 1 part in 108. While an infinite series is exact
in a mathematical sense, it is not a good algorithm because we must stop summing
at some point. An algorithm would be the finite sum

sinx�
N∑

n=1

(−1)n−1x2n−1

(2n− 1)!
(algorithm). (1.15)

But how do we decide when to stop summing? (Do not even think of saying, “When
the answer agrees with a table or with the built-in library function.”)

1.6.1 Numerical Summation (Method)

Never mind that the algorithm (1.15) indicates that we should calculate
(−1)n−1x2n−1 and then divide it by (2n− 1)! This is not a good way to compute. On
the one hand, both (2n− 1)! and x2n−1 can get very large and cause overflows, even
though their quotient may not. On the other hand, powers and factorials are very
expensive (time-consuming) to evaluate on the computer. Consequently, a better
approach is to use a single multiplication to relate the next term in the series to the
previous one:

(−1)n−1x2n−1

(2n− 1)!
=

−x2

(2n− 1)(2n− 2)
(−1)n−2x2n−3

(2n− 3)!

⇒ nth term =
−x2

(2n− 1)(2n− 2)
× (n− 1)th term. (1.16)

While we want to ensure definite accuracy for sinx, that is not so easy to do. What
is easy to do is to assume that the error in the summation is approximately the last
term summed (this assumes no round-off error, a subject we talk about in Chapter 2,
“Errors & Uncertainties in Computations”). To obtain an absolute error of 1 part in
108, we then stop the calculation when

∣∣∣∣nth term
sum

∣∣∣∣< 10−8, (1.17)

where “term” is the last term kept in the series (1.15) and “sum” is the accumulated
sum of all the terms. In general, you are free to pick any tolerance level you desire,
although if it is too close to, or smaller than, machine precision, your calculation
may not be able to attain it. A pseudocode for performing the summation is

� �
term = x , sum = x , eps = 10^(−8) / / I n i t i a l i z e do

do term = −term∗x∗x / ( ( 2 n−1) + (2 n−2) ) ; / / New wrt old
sum = sum + term / / Add term
w h i l e abs ( term/sum) > eps / / Break i t e r a t i o n

end do
�

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 29

computational science basics 29

1.6.2 Implementation and Assessment

1. Write a program that implements this pseudocode for the indicated x
values. Present the results as a table with the headings

x imax sum |sum − sin(x)|/sin(x)

where sin(x) is the value obtained from the built-in function. The last column
here is the relative error in your computation. Modify the code that sums
the series in a “good way” (no factorials) to one that calculates the sum in a
“bad way” (explicit factorials).

2. Produce a table as above.
3. Start with a tolerance of 10−8 as in (1.17).
4. Show that for sufficiently small values of x, your algorithm converges (the

changes are smaller than your tolerance level) and that it converges to the
correct answer.

5. Compare the number of decimal places of precision obtained with that
expected from (1.17).

6. Without using the identity sin(x+ 2nπ) = sin(x), show that there is a range
of somewhat large values of x for which the algorithm converges, but that
it converges to the wrong answer.

7. Show that as you keep increasing x, you will reach a regime where the
algorithm does not even converge.

8. Now make use of the identity sin(x+ 2nπ) = sin(x) to compute sinx for large
x values where the series otherwise would diverge.

9. Repeat the calculation using the “bad” version of the algorithm (the one that
calculates factorials) and compare the answers.

10. Set your tolerance level to a number smaller than machine precision and
see how this affects your conclusions.

Beginnings are hard.
—Chaim Potok

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 30

2

Errors & Uncertainties in Computations

To err is human, to forgive divine.
— Alexander Pope

Whether you are careful or not, errors and uncertainties are a part of computation.
Some errors are the ones that humans inevitably make, but some are introduced
by the computer. Computer errors arise because of the limited precision with which
computers store numbers or because algorithms or models can fail. Although it stifles
creativity to keep thinking “error” when approaching a computation, it certainly is
a waste of time, and may lead to harm, to work with results that are meaningless
(“garbage”) because of errors. In this chapter we examine some of the errors and
uncertainties that may occur in computations. Even though we do not dwell on it,
the lessons of this chapter apply to all other chapters as well.

2.1 Types of Errors (Theory)

Let us say that you have a program of high complexity. To gauge why errors should
be of concern, imagine a program with the logical flow

start → U1 → U2 → · · · → Un → end, (2.1)

where each unit U might be a statement or a step. If each unit has probability p of
being correct, then the joint probability P of the whole program being correct is
P = pn. Let us say we have a medium-sized program with n= 1000 steps and that
the probability of each step being correct is almost one, p� 0.9993. This means that
you end up with P � 1

2 , that is, a final answer that is as likely wrong as right (not a
good way to build a bridge). The problem is that, as a scientist, you want a result
that is correct—or at least in which the uncertainty is small and of known size.

Four general types of errors exist to plague your computations:

Blunders or bad theory: typographical errors entered with your program or
data, running the wrong program or having a fault in your reasoning (theory),
using the wrong data file, and so on. (If your blunder count starts increasing,
it may be time to go home or take a break.)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 31

errors & uncertainties in computations 31

Random errors: imprecision caused by events such as fluctuations in electronics,
cosmic rays, or someone pulling a plug. These may be rare, but you have no
control over them and their likelihood increases with running time; while you
may have confidence in a 20-s calculation, a week-long calculation may have
to be run several times to check reproducibility.

Approximation errors: imprecision arising from simplifying the mathematics so
that a problem can be solved on the computer. They include the replacement of
infinite series by finite sums, infinitesimal intervals by finite ones, and variable
functions by constants. For example,

sin(x) =
∞∑

n=1

(−1)n−1x2n−1

(2n− 1)!
(exact)

�
N∑

n=1

(−1)n−1x2n−1

(2n− 1)!
= sin(x) + E(x,N), (algorithm) (2.2)

where E(x,N) is the approximation error and where in this case E is the series
from N + 1 to ∞. Because approximation error arises from the algorithm we
use to approximate the mathematics, it is also called algorithmic error. For
every reasonable approximation, the approximation error should decrease as
N increases and vanish in the N → ∞ limit. Specifically for (2.2), because the
scale for N is set by the value of x, a small approximation error requires
N 
 x. So if x and N are close in value, the approximation error will be
large.

Round-off errors: imprecision arising from the finite number of digits used to
store floating-point numbers. These “errors” are analogous to the uncertainty
in the measurement of a physical quantity encountered in an elementary
physics laboratory. The overall round-off error accumulates as the computer
handles more numbers, that is, as the number of steps in a computation
increases, and may cause some algorithms to become unstable with a rapid
increase in error. In some cases, round-off error may become the major com-
ponent in your answer, leading to what computer experts call garbage. For
example, if your computer kept four decimal places, then it will store 1

3 as
0.3333 and 2

3 as 0.6667, where the computer has “rounded off” the last digit
in 2

3 . Accordingly, if we ask the computer to do as simple a calculation as
2( 1

3 ) − 2
3 , it produces

2
(

1
3

)
− 2

3
= 0.6666 − 0.6667 = −0.0001 �= 0. (2.3)

So even though the result is small, it is not 0, and if we repeat this type of calcu-
lation millions of times, the final answer might not even be small (garbage begets
garbage).

When considering the precision of calculations, it is good to recall our discussion
in Chapter 1, “Computational Science Basics,” of significant figures and of scientific
notation given in your early physics or engineering classes. For computational

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 32

32 chapter 2

purposes, let us consider how the computer may store the floating-point number

a= 11223344556677889900 = 1.12233445566778899 × 1019. (2.4)

Because the exponent is stored separately and is a small number, we can assume
that it will be stored in full precision. In contrast, some of the digits of the mantissa
may be truncated. In double precision the mantissa of awill be stored in two words,
the most significant part representing the decimal 1.12233, and the least significant
part 44556677. The digits beyond 7 are lost. As we see below, when we perform
calculations with words of fixed length, it is inevitable that errors will be introduced
(at least) into the least significant parts of the words.

2.1.1 Model for Disaster: Subtractive Cancellation

A calculation employing numbers that are stored only approximately on the com-
puter can be expected to yield only an approximate answer. To demonstrate the
effect of this type of uncertainty, we model the computer representation xc of the
exact number x as

xc � x(1 + εx). (2.5)

Here εx is the relative error in xc, which we expect to be of a similar magnitude
to the machine precision εm. If we apply this notation to the simple subtraction
a= b− c, we obtain

a= b− c ⇒ ac � bc − cc � b(1 + εb) − c(1 + εc)

⇒ ac

a
� 1 + εb

b

a
− c

a
εc. (2.6)

We see from (2.6) that the resulting error in a is essentially a weighted average of
the errors in b and c, with no assurance that the last two terms will cancel. Of special
importance here is to observe that the error in the answer ac increases when we
subtract two nearly equal numbers (b� c) because then we are subtracting off the
most significant parts of both numbers and leaving the error-prone least-significant
parts:

ac

a

def= 1 + εa � 1 +
b

a
(εb − εc) � 1 +

b

a
max(|εb|, |εc|). (2.7)

This shows that even if the relative errors in b and c may cancel somewhat, they
are multiplied by the large number b/a, which can significantly magnify the error.
Because we cannot assume any sign for the errors, we must assume the worst [the
“max” in (2.7)].

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 33

errors & uncertainties in computations 33

If you subtract two large numbers and end up with a small one, there will
be less significance, and possibly a lot less significance, in the small one.

We have already seen an example of subtractive cancellation in the power series
summation for sinx� x−x3/3! + · · · for large x. A similar effect occurs for e−x �
1 −x+x2/2!−x3/3! + · · · for large x, where the first few terms are large but of
alternating sign, leading to an almost total cancellation in order to yield the final
small result. (Subtractive cancellation can be eliminated by using the identity e−x =
1/ex, although round-off error will still remain.)

2.1.2 Subtractive Cancellation Exercises

1. Remember back in high school when you learned that the quadratic equation

ax2 + bx+ c= 0 (2.8)

has an analytic solution that can be written as either

x1,2 =
−b±√

b2 − 4ac
2a

or x′
1,2 =

−2c
b±√

b2 − 4ac
. (2.9)

Inspection of (2.9) indicates that subtractive cancellation (and consequently
an increase in error) arises when b2 
 4ac because then the square root and
its preceding term nearly cancel for one of the roots.
a. Write a program that calculates all four solutions for arbitrary values of a,
b, and c.

b. Investigate how errors in your computed answers become large as
the subtractive cancellation increases and relate this to the known
machine precision. (Hint: A good test case employs a= 1, b= 1, c= 10−n,
n= 1, 2, 3, . . ..)

c. Extend your program so that it indicates the most precise solutions.
2. As we have seen, subtractive cancellation occurs when summing a series with

alternating signs. As another example, consider the finite sum

S
(1)
N =

2N∑
n=1

(−1)n n

n+ 1
. (2.10)

If you sum the even and odd values of n separately, you get two sums:

S
(2)
N = −

N∑
n=1

2n− 1
2n

+
N∑

n=1

2n
2n+ 1

. (2.11)

All terms are positive in this form with just a single subtraction at the end
of the calculation. Yet even this one subtraction and its resulting cancellation

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 34

34 chapter 2

can be avoided by combining the series analytically to obtain

S
(3)
N =

N∑
n=1

1
2n(2n+ 1)

. (2.12)

Even though all three summations S(1), S(2), and S(3) are mathematically
equal, they may give different numerical results.
a. Write a single-precision program that calculates S(1), S(2), and S(3).
b. Assume S(3) to be the exact answer. Make a log-log plot of the relative

error versus the number of terms, that is, of log10 |(S(1)
N −S

(3)
N )/S(3)

N | versus
log10(N). Start with N = 1 and work up to N = 1, 000, 000. (Recollect that
log10 x= lnx/ ln 10.) The negative of the ordinate in this plot gives an
approximate value for the number of significant figures.

c. See whether straight-line behavior for the error occurs in some region of
your plot. This indicates that the error is proportional to a power of N .

3. In spite of the power of your trusty computer, calculating the sum of even a
simple series may require some thought and care. Consider the two series

S(up) =
N∑

n=1

1
n
, S(down) =

1∑
n=N

1
n
.

Both series are finite as long asN is finite, and when summed analytically both
give the same answer. Nonetheless, because of round-off error, the numerical
value of S(up) will not be precisely that of S(down).
a. Write a program to calculate S(up) and S(down) as functions of N .
b. Make a log-log plot of (S(up) −S(down))/(|S(up)|+ |S(down)|) versus N .
c. Observe the linear regime on your graph and explain why the downward

sum is generally more precise.

2.1.3 Round-off Error in a Single Step

Let’s start by seeing how error arises from a single division of the computer
representations of two numbers:

a=
b

c
⇒ ac =

bc
cc

=
b(1 + εb)
c(1 + εc)

,

⇒ ac

a
=

1 + εb
1 + εc

� (1 + εb)(1− εc) � 1 + εb − εc,

⇒ ac

a
� 1 + |εb|+ |εc|. (2.13)

Here we ignore the very small ε2 terms and add errors in absolute value since we
cannot assume that we are fortunate enough to have unknown errors cancel each

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 35

errors & uncertainties in computations 35

other. Because we add the errors in absolute value, this same rule holds for multi-
plication. Equation (2.13) is just the basic rule of error propagation from elementary
laboratory work: You add the uncertainties in each quantity involved in an analysis
to arrive at the overall uncertainty.

We can even generalize this model to estimate the error in the evaluation of a
general function f(x), that is, the difference in the value of the function evaluated
at x and at xc:

E =
f(x) − f(xc)

f(x)
� df(x)/dx

f(x)
(x−xc). (2.14)

So, for

f(x) =
√

1 +x,
df

dx
=

1
2

1√
1 +x

(2.15)

⇒ E � 1
2

1√
1 +x

(x−xc). (2.16)

If we evaluate this expression for x= π/4 and assume an error in the fourth place
of x, we obtain a similar relative error of 1.5× 10−4 in

√
1 +x.

2.1.4 Round-off Error Accumulation After Many Steps

There is a useful model for approximating how round-off error accumulates in a
calculation involving a large number of steps. We view the error in each step as a
literal “step” in a random walk, that is, a walk for which each step is in a random
direction. As we derive and simulate in Chapter 5, “Monte Carlo Simulations,” the
total distance covered in N steps of length r, is, on the average,

R�
√
N r. (2.17)

By analogy, the total relative error εro arising after N calculational steps each with
machine precision error εm is, on the average,

εro �
√
N εm. (2.18)

If the round-off errors in a particular algorithm do not accumulate in a random
manner, then a detailed analysis is needed to predict the dependence of the error
on the number of steps N . In some cases there may be no cancellation, and the
error may increase as Nεm. Even worse, in some recursive algorithms, where the
error generation is coherent, such as the upward recursion for Bessel functions,
the error increases as N !.

Our discussion of errors has an important implication for a student to keep in
mind before being impressed by a calculation requiring hours of supercomputer
time. Afast computer may complete 1010 floating-point operations per second. This

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 36

36 chapter 2

means that a program running for 3 h performs approximately 1014 operations.
Therefore, if round-off error accumulates randomly, after 3 h we expect a relative
error of 107εm. For the error to be smaller than the answer, we need εm < 10−7,
which requires double precision and a good algorithm. If we want a higher-
precision answer, then we will need a very good algorithm.

2.2 Errors in Spherical Bessel Functions (Problem)

Accumulating round-off errors often limits the ability of a program to calcu-
late accurately. Your problem is to compute the spherical Bessel and Neumann
functions jl(x) and nl(x). These function are, respectively, the regular/irregular
(nonsingular/singular at the origin) solutions of the differential equation

x2f ′′(x) + 2xf ′(x) +
[
x2 − l(l+ 1)

]
f(x) = 0. (2.19)

The spherical Bessel functions are related to the Bessel function of the first kind
by jl(x) =

√
π/2xJn+1/2(x). They occur in many physical problems, such as the

expansion of a plane wave into spherical partial waves,

eik·r =
∞∑

l=0

il (2l+ 1)jl(kr)Pl(cos θ). (2.20)

Figure 2.1 shows what the first few jl look like, and Table 2.1 gives some explicit
values. For the first two l values, explicit forms are

j0(x) = +
sin x
x

, j1(x) = +
sin x
x2 − cos x

x
(2.21)

n0(x) = −cos x
x

. n1(x) = −cos x
x2 − sin x

x
. (2.22)

2.2.1 Numerical Recursion Relations (Method)

The classic way to calculate jl(x) would be by summing its power series for
small values of x/l and summing its asymptotic expansion for large x values. The
approach we adopt is based on the recursion relations

jl+1(x) =
2l+ 1
x

jl(x) − jl−1(x), (up), (2.23)

jl−1(x) =
2l+ 1
x

jl(x) − jl+1(x), (down). (2.24)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 37

errors & uncertainties in computations 37

0.0 2.0 4.0 6.0 8.0 10.0 12.0
x

0.0

0.2

0.4

0.6

0.8

1.0

j l (x)

l = 0 

l = 1

l = 3

Figure 2.1 The first four spherical Bessel functions jl (x ) as functions of x. Notice that for small x,

the values for increasing l become progressively smaller.

TABLE 2.1
Approximate Values for Spherical Bessel Functions of Orders 3, 5, and 8
(from Maple)

x j3(x) j5(x) j8(x)

0.1 +9.518519719 10−6 +9.616310231 10−10 +2.901200102 10−16

1 +9.006581118 10−3 +9.256115862 10−05 +2.826498802 10−08

10 −3.949584498 10−1 −5.553451162 10−01 +1.255780236 10+00

Equations (2.23) and (2.24) are the same relation, one written for upward recurrence
from small to large l values, and the other for downward recurrence to small l
values. With just a few additions and multiplications, recurrence relations permit
rapid, simple computation of the entire set of jl values for fixed x and all l.

To recur upward in l for fixed x, we start with the known forms for j0 and j1
(2.21) and use (2.23). As you will prove for yourself, this upward recurrence usually
seems to work at first but then fails. The reason for the failure can be seen from
the plots of jl(x) and nl(x) versus x (Figure 2.1). If we start at x� 2 and l = 0, we
will see that as we recur jl up to larger l values with (2.23), we are essentially
taking the difference of two “large” functions to produce a “small” value for jl.
This process suffers from subtractive cancellation and always reduces the precision.
As we continue recurring, we take the difference of two small functions with large
errors and produce a smaller function with yet a larger error. After a while, we are
left with only round-off error (garbage).

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 38

38 chapter 2

To be more specific, let us call j(c)l the numerical value we compute as an
approximation for jl(x). Even if we start with pure jl, after a short while the
computer’s lack of precision effectively mixes in a bit of nl(x):

j
(c)
l = jl(x) + εnl(x). (2.25)

This is inevitable because both jl and nl satisfy the same differential equation
and, on that account, the same recurrence relation. The admixture of nl becomes a
problem when the numerical value ofnl(x) is much larger than that of jl(x) because
even a minuscule amount of a very large number may be large. In contrast, if we use
the upward recurrence relation (2.23) to produce the spherical Neumann function
nl, there will be no problem because we are combining small functions to produce
larger ones (Figure 2.1), a process that does not contain subtractive cancellation.

The simple solution to this problem (Miller’s device) is to use (2.24) for downward
recursion of the jl values starting at a large value l = L. This avoids subtractive
cancellation by taking small values of jl+1(x) and jl(x) and producing a larger
jl−1(x) by addition. While the error may still behave like a Neumann function,
the actual magnitude of the error will decrease quickly as we move downward to
smaller l values. In fact, if we start iterating downward with arbitrary values for
j
(c)
L+1 and j

(c)
L , after a short while we will arrive at the correct l dependence for

this value of x. Although the numerical value of j(c)0 so obtained will not be correct
because it depends upon the arbitrary values assumed for j(c)L+1 and j(c)L , the relative
values will be accurate. The absolute values are fixed from the know value (2.21),
j0(x) = sinx/x. Because the recurrence relation is a linear relation between the jl
values, we need only normalize all the computed values via

jnormalized
l (x) = jcompute

l (x) × janalytic
0 (x)
jcompute
0 (x)

. (2.26)

Accordingly, after you have finished the downward recurrence, you obtain the final
answer by normalizing all j(c)l values based on the known value for j0.

2.2.2 Implementation and Assessment: Recursion Relations

A program implementing recurrence relations is most easily written using
subscripts. If you need to polish up on your skills with subscripts, you may want
to study our program Bessel.java in Listing 2.1 before writing your own.

1. Write a program that uses both upward and downward recursion to calculate
jl(x) for the first 25 l values for x= 0.1, 1, 10.

2. Tune your program so that at least one method gives “good” values (meaning
a relative error �10−10). See Table 2.1 for some sample values.

3. Show the convergence and stability of your results.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 39

errors & uncertainties in computations 39

4. Compare the upward and downward recursion methods, printing out l, j(up)
l ,

j(down)
l , and the relative difference |j(up)

l − j(down)
l |/|j(up)

l |+ |j(down)
l |.

5. The errors in computation depend on x, and for certain values of x, both up
and down recursions give similar answers. Explain the reason for this.

� �
/ / Bessel . java : Spherical Bessels via up and down recursion

i m p o r t j ava . io . ∗ ;

p u b l i c c l a s s B e s s e l { / / Global c l a s s var iables
p u b l i c s t a t i c d o u b l e xmax = 4 0 . , xmin = 0 . 2 5 , s tep = 0 . 1 ;
p u b l i c s t a t i c i n t order = 10 , s t a r t = 5 0 ;

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) throws IOException , FileNotFoundException {
d o u b l e x ;
Pr i n t W r i t e r w = new Pr i n t W r i t e r ( new FileOutputStream ("Bessel . dat" ) , t r u e ) ;
f o r ( x = xmin ; x <= xmax ; x += step ) w. p r i n t l n (" " +x+" "+down( x , order , s t a r t ) ) ;
System . out . p r i n t l n ("data stored in Bessel . dat" ) ;

} / / End main

p u b l i c s t a t i c d o u b l e down ( d o u b l e x , i n t n , i n t m) { / / Recur down
d o u b l e sca le , j [ ] = new d o u b l e [ s t a r t + 2 ] ;
i n t k ;
j [m + 1] = j [m] = 1 . ; / / S t a r t with anything
f o r ( k = m; k>0 ; k−−) j [ k−1] = ( ( 2 . ∗ k + 1 . ) /x )∗ j [ k ] − j [ k + 1 ] ;
s c a l e = ( Math . s i n ( x ) /x ) / j [ 0 ] ; / / Scale solut ion to known j [ 0 ]
r e t u r n j [ n ] ∗ s c a l e ;

}
}

�

Listing 2.1 Bessel.java determines spherical Bessel functions by downward recursion

(you should modify this to also work by upward recursion).

2.3 Experimental Error Investigation (Problem)

Numerical algorithms play a vital role in computational physics. Your problem is
to take a general algorithm and decide

1. Does it converge?
2. How precise are the converged results?
3. How expensive (time-consuming) is it?

On first thought you may think, “What a dumb problem! All algorithms converge if
enough terms are used, and if you want more precision, then use more terms." Well,
some algorithms may be asymptotic expansions that just approximate a function
in certain regions of parameter space and converge only up to a point. Yet even if a
uniformly convergent power series is used as the algorithm, including more terms
will decrease the algorithmic error but increase the round-off errors. And because
round-off errors eventually diverge to infinity, the best we can hope for is a “best”
approximation. Good algorithms are good not only because they are fast but also
because being fast means that round-off error does not have much time to grow.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 40

40 chapter 2

Let us assume that an algorithm takes N steps to find a good answer. As a rule
of thumb, the approximation (algorithmic) error decreases rapidly, often as the
inverse power of the number of terms used:

εapprox � α

Nβ
. (2.27)

Here α and β are empirical constants that change for different algorithms and may
be only approximately constant, and even then only as N → ∞. The fact that the
error must fall off for large N is just a statement that the algorithm converges.

In contrast to this algorithmic error, round-off error tends to grow slowly and
somewhat randomly with N . If the round-off errors in each step of the algorithm
are not correlated, then we know from previous discussion that we can model
the accumulation of error as a random walk with step size equal to the machine
precision εm:

εro �
√
Nεm. (2.28)

This is the slow growth withN that we expect from round-off error. The total error
in a computation is the sum of the two types of errors:

εtot = εapprox + εro (2.29)

εtot � α

Nβ
+

√
Nεm. (2.30)

For smallN we expect the first term to be the larger of the two but ultimately to be
overcome by the slowly growing round-off error.

As an example, in Figure 2.2 we present a log-log plot of the relative
error in numerical integration using the Simpson integration rule (Chapter 6,
“Integration”). We use the log10 of the relative error because its negative tells us the
number of decimal places of precision obtained.1 As a case in point, let us assume
A is the exact answer and A(N) the computed answer. If

A −A(N)
A � 10−9, then log10

∣∣∣∣A −A(N)
A

∣∣∣∣� −9. (2.31)

We see in Figure 2.2 that the error does show a rapid decrease for smallN , consistent
with an inverse power law (2.27). In this region the algorithm is converging. As N
is increased, the error starts to look somewhat erratic, with a slow increase on the
average. In accordance with (2.29), in this region round-off error has grown larger
than the approximation error and will continue to grow for increasing N . Clearly

1 Most computer languages use lnx= loge x. Yet since x= alogax, we have log10 x=
lnx/ ln 10.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 41

errors & uncertainties in computations 41

10 100

10
-13

10
-9

N

|e
rr

o
r|

Approximation Error

Round Off Error

Figure 2.2 A log-log plot of relative error versus the number of points used for a numerical

integration. The ordinate value of �10−14 at the minimum indicates that ∼14 decimal places

of precision are obtained before round-off error begins to build up. Notice that while the

round-off error does fluctuate, on the average it increases slowly.

then, the smallest total error will be obtained if we can stop the calculation at the
minimum near 10−14, that is, when εapprox � εro.

In realistic calculations you would not know the exact answer; after all, if you
did, then why would you bother with the computation? However, you may know
the exact answer for a similar calculation, and you can use that similar calculation
to perfect your numerical technique. Alternatively, now that you understand how
the total error in a computation behaves, you should be able to look at a table or,
better yet, a graph (Figure 2.2) of your answer and deduce the manner in which
your algorithm is converging. Specifically, at some point you should see that the
mantissa of the answer changes only in the less significant digits, with that place
moving further to the right of the decimal point as the calculation executes more
steps. Eventually, however, as the number of steps becomes even larger, round-off
error leads to a fluctuation in the less significant digits, with a gradual increase on
the average. It is best to quit the calculation before this occurs.

Based upon this understanding, an approach to obtaining the best approxima-
tion is to deduce when your answer behaves like (2.29). To do that, we call A the
exact answer and A(N) the computed answer after N steps. We assume that for
large enough values of N , the approximation converges as

A(N) � A +
α

Nβ
, (2.32)

that is, that the round-off error term in (2.29) is still small. We then run our computer
program with 2N steps, which should give a better answer, and use that answer to
eliminate the unknown A:

A(N) −A(2N) � α

Nβ
. (2.33)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 42

42 chapter 2

To see if these assumptions are correct and determine what level of precision is
possible for the best choice ofN , plot log10 |[A(N) −A(2N)]/A(2N)| versus log10N ,
similar to what we have done in Figure 2.2. If you obtain a rapid straight-line drop
off, then you know you are in the region of convergence and can deduce a value
for β from the slope. As N gets larger, you should see the graph change from a
straight-line decrease to a slow increase as round-off error begins to dominate. A
good place to quit is before this. In any case, now you understand the error in your
computation and therefore have a chance to control it.

As an example of how different kinds of errors enter into a computation, we
assume we know the analytic form for the approximation and round-off errors:

εapprox � 1
N2 , εro �

√
Nεm, (2.34)

⇒ εtot = εapprox + εro � 1
N2 +

√
Nεm. (2.35)

The total error is then a minimum when

dεtot
dN

=
−2
N3 +

1
2
εm√
N

= 0, (2.36)

⇒ N5/2 =
4
εm
. (2.37)

For a single-precision calculation (εm � 10−7), the minimum total error occurs when

N5/2 � 4
10−7 ⇒ N � 1099, ⇒ εtot � 4 × 10−6. (2.38)

In this case most of the error is due to round-off and is not approximation error.
Observe, too, that even though this is the minimum total error, the best we can do
is about 40 times machine precision (in double precision the results are better).

Seeing that the total error is mainly round-off error ∝√
N , an obvious way to

decrease the error is to use a smaller number of steps N . Let us assume we do this
by finding another algorithm that converges more rapidly with N , for example,
one with approximation error behaving like

εapprox � 2
N4 . (2.39)

The total error is now

εtot = εro + εapprox � 2
N4 +

√
Nεm. (2.40)

The number of points for minimum error is found as before:

dεtot
dN

= 0 ⇒ N9/2 ⇒ N � 67 ⇒ εtot � 9 × 10−7. (2.41)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 43

errors & uncertainties in computations 43

Figure 2.3 The error in the summation of the series for e−x versus N. The values of x increase

vertically for each curve. Note that a negative initial slope corresponds to decreasing error

with N, and that the dip corresponds to a rapid convergence followed by a rapid increase in

error. (Courtesy of J. Wiren.)

The error is now smaller by a factor of 4, with only 1
16 as many steps needed. Subtle

are the ways of the computer. In this case the better algorithm is quicker and, by
using fewer steps, it produces less round-off error.

Exercise: Repeat the error estimates for a double-precision calculation.

2.3.1 Error Assessment

We have already discussed the Taylor expansion of sinx:

sin(x) = x− x3

3!
+
x5

5!
− x7

7!
+ · · · =

∞∑
n=1

(−1)n−1x2n−1

(2n− 1)!
. (2.42)

This series converges in the mathematical sense for all values of x. Accordingly, a
reasonable algorithm to compute the sin(x) might be

sin(x) �
N∑

n=1

(−1)n−1x2n−1

(2n− 1)!
. (2.43)

While in principle it should be faster to see the effects of error accumulation in
this algorithm by using single-precision numbers, C and Java tend to use double-
precision mathematical libraries, and so it is hard to do a pure single-precision

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 44

44 chapter 2

computation. Accordingly, do these exercises in double precision, as you should
for all scientific calculations involving floating-point numbers.

1. Write a program that calculates sin(x) as the finite sum (2.43). (If you already
did this in Chapter 1, “Computational Science Basics,” then you may reuse
that program and its results here.)

2. Calculate your series for x≤ 1 and compare it to the built-in function
Math.sin(x) (you may assume that the built-in function is exact). Stop your
summation at an N value for which the next term in the series will be no
more than 10−7 of the sum up to that point,

|(−1)Nx2N+1|
(2N − 1)!

≤ 10−7

∣∣∣∣∣
N∑

n=1

(−1)n−1x2n−1

(2n− 1)!

∣∣∣∣∣ . (2.44)

3. Examine the terms in the series for x� 3π and observe the significant sub-
tractive cancellations that occur when large terms add together to give small
answers. [Do not use the identity sin(x+ 2π) = sinx to reduce the value of
x in the series.] In particular, print out the near-perfect cancellation around
n� x/2.

4. See if better precision is obtained by using trigonometric identities to keep
0 ≤ x≤ π.

5. By progressively increasing x from 1 to 10, and then from 10 to 100, use your
program to determine experimentally when the series starts to lose accuracy
and when it no longer converges.

6. Make a series of graphs of the error versus N for different values of x. (See
Chapter 3, “Visualization Tools.”) You should get curves similar to those in
Figure 2.3.

Because this series summation is such a simple, correlated process, the round-off
error does not accumulate randomly as it might for a more complicated computa-
tion, and we do not obtain the error behavior (2.32). We will see the predicted error
behavior when we examine integration rules in Chapter 6, “Integration.”

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 45

3

Visualization Tools

If I can’t picture it, I can’t understand it.
— Albert Einstein

In this chapter we discuss the tools needed to visualize data produced by simulations
and measurements. Whereas other books may choose to relegate this discussion to an
appendix, or not to include it at all, we believe that visualization is such an integral
part of computational science, and so useful for your work in the rest of this book, that
we have placed it right here, up front. (We do, however, place our OpenDx tutorial
in Appendix C since it may be a bit much for beginners.)

All the visualization tools we discuss are powerful enough for professional
scientific work and are free or open source. Commercial packages such as Mat-
lab, AVS, Amira, and Noesys produce excellent scientific visualization but are less
widely available. Mathematica and Maple have excellent visualization packages as
well, but we have not found them convenient when dealing with large numerical
data sets.1 The tools we discuss, and have used in preparing the visualizations for
the text, are

PtPlot: Simple 2-D plotting callable from within a Java program, or as stand-
alone application; part of the Ptolemy package. Being Java, it is universal for
all operating systems.

Gnuplot: 2-D and 3-D plotting, predominantly stand-alone. Originally for Unix
operating systems, with an excellent windows port also available.

Ace/gr (Grace): Stand-alone, menu-driven, publication-quality 2-D plotting for
Unix systems; can run under MS Windows with Cygwin.

OPenDX: Formerly IBM DataExplorer. Multidimensional data tool for Unix or
for Windows under Cygwin (tutorial in Appendix C).

3.1 Data Visualization

One of the most rewarding uses of computers is visualizing the results of
calculations. While in the past this was done with 2-D plots, in modern times it

1 Visualization with Maple and Mathematica is discussed in [L 05].

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 46

46 chapter 3

is regular practice to use 3-D (surface) plots, volume rendering (dicing and slicing),
and animation, as well as virtual reality (gaming) tools.These types of visualizations
are often breathtakingly beautiful and may provide deep insights into problems by
letting us see and “handle” the functions with which we are working. Visualization
also assists in the debugging process, the development of physical and mathemat-
ical intuition, and the all-around enjoyment of your work. One of the reasons for
visualization’s effectiveness may arise from the large fraction (∼10% direct and
∼50% with coupling) of our brain involved in visual processing and the advantage
gained by being able to use this brainpower as a supplement to our logical powers.

In thinking about ways to present your results, keep in mind that the point
of visualization is to make the science clearer and to communicate your work to
others. It follows then that you should make all figures as clear, informative, and
self-explanatory as possible, especially if you will be using them in presentations
without captions. This means labels for all curves and data points, a title, and labels
on the axes.2 After this, you should look at your visualization and ask whether there
are better choices of units, ranges of axes, colors, style, and so on, that might get the
message across better and provide better insight. Considering the complexity of
human perception and cognition, there may not be a single best way to visualize a
particular data set, and so some trial and error may be necessary to see what looks
best. Although all this may seem like a lot of work, the more often you do it the
quicker and better you get at it and the better you will be able to communicate your
work to others.

3.2 PtPlot: 2-D Graphs Within Java

PtPlot is an excellent plotting package that lets you plot directly from Java
programs.3 PtPlot is free, written in Java (and thus runs under Unix, Linux, Mac
OS, and MS Windows), is easy to use, and is actually part of Ptolemy, an entire com-
puting environment supported by the University of California Computer Science
Department. Figure 3.1 is an example of a PtPlot graph. Because PtPlot is not built
into Java, a Java program needs to import the PtPlot package and work with its
classes. You can download the most recent version over the Web.

The program EasyPtPlot.java in Listing 3.1 is an example of a how to construct
a simple graph of sin2(x) versus x with PtPlot (Figure 3.1 top). On line 2 we see the
statement import ptolemy.plot.*; that imports the PtPlot classes from the ptolemy
directory. (In order for this to work, you may have to modify your classpath
environmental variable or place the ptolemy directory in your working directory.)
PtPlot represents your plot as a Plot object, which we name plotObj and create on
line 9 (objects are discussed in Chapter 4, “Object-Oriented Programs: Impedance
& Batons”). We then add various features, step by step, to plotObj to make it just
the plot we want. As is standard with objects in Java, we first give the name of the
object and then modify it with “dot modifiers.” Rather than tell PtPlot what ranges

2 Although this may not need saying, place the independent variable x along the abscissa
(horizontal), and the dependent variable y = f(x) along the ordinate.

3 Connelly Barnes assisted in the preparation of this section.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 47

visualization tools 47

0.0

0.4

0.8

-4 -2 0 2 4

f(x) vsx 

x

f

Figure 3.1 Top: Output graph from the program EasyPtPlot.java. Bottom: Output PtPlot

window in which three data sets (set number = the first argument in addPoint) are placed in

one plot. Observe the error bars on two of the sets.

� �
/ / EasyPtPlot . java : Simple PtPlot appl ica t ion

2i m p o r t ptolemy . p l o t . ∗ ;

4p u b l i c c l a s s EasyPtPlot {
p u b l i c s t a t i c f i n a l d o u b l e Xmin = −5. , Xmax = 5 . ; / / Graph domain

6p u b l i c s t a t i c f i n a l i n t Npoint = 5 0 0 ;

8p u b l i c s t a t i c v o i d main ( S t r i n g [ ] args ) {
Pl o t plotObj = new Pl o t ( ) ; / / Create Plot object

10plotObj . s e t T i t l e ("f (x) vs x" ) ;
plotObj . setXLabel ("x" ) ;

12plotObj . setYLabel ("f (x)" ) ;
/ / plotObj . se tSize ( 4 0 0 , 300) ;

14/ / plotObj . setXRange (Xmin , Xmax) ;
/ / plotObj . addPoint ( i n t Set , double x , double y , boolean connect )

16d o u b l e xStep = (Xmax − Xmin ) / Npoint ;
f o r ( d o u b l e x = Xmin ; x <= Xmax ; x += xStep ) {

18d o u b l e y = Math . s i n ( x )∗Math . s i n ( x ) ;
plotObj . addPoint ( 0 , x , y , t r u e ) ;

20}
Pl o tAp p l i c a t i o n app = new Pl o tAp p l i c a t i o n ( plotObj ) ; / / Display Plot

22}
}

�

Listing 3.1 EasyPtPlot.java plots a function using the package PtPlot. Note that the Plot

Application object must be created to see the plot on the screen.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 48

48 chapter 3

to plot for x and y, we let it set the x and y ranges based on the data it is given. The
first argument, 0 here, is the data set number. By having different values for the
data set number, you can plot different curves on the same graph (there are two in
Figure 3.1 right). By having true as the fourth argument in myPlot .addPoint(0, x,
y, true), we are telling PtPlot to connect the plotted points. For the plot to appear
on the screen, line 21 creates a PlotApplication with the plot object as input.

We encourage you to make your plot more informative by including further
options in the commands or by using the pull-down menus in the PtPlot window
displaying your plot. The options are found in the description of the methods at
the PtPlot Web site [PtPlot] and include the following.

Calling PtPlot from Your Program

Plot myPlot = new Plot(); Name and create plot object myPlot
PlotApplication app

= new PlotApplication(myPlot); Display
myPlot . setTitle(“f(x) vs x”); Add title to plot
myPlot . setXLabel(“x”); Label x axis
myPlot . setYLabel(“f(x)”); Label y axis
myPlot . addPoint(0, x, y, true); Add (x, y) to set 0, connect points
myPlot . addPoint(1, x, y, false); Add (x, y) to set 1, no connect points
myPlot . addLegend(0, “Set 0”); Label data set 0 in legend
myPlot . addPointWithError

Bars(0, x, y, yLo, yHi, true); Plot (x, y− yLo), (x, y+ yHi) + error bars
myPlot . clear(0); Remove all points from data set 0
myPlot . clear(false); Remove data from all sets
myPlot . clear(true); Remove all points, default options
myPlot . setSize(500, 400); Set plot size in pixels (optional)
myPlot . setXRange(–10., 10.); Set an x range (default fit to data)
myPlot . setYRange(–8., 8.); Set a y range (default fit to data)
myPlot . setXLog(true); Use log scale for x axis
myPlot . setYLog(true); Use log scale for y axis
myPlot . setGrid(false); Turn off the grid
myPlot . setColor(false); Color in black and white
myPlot . setButtons(true); Display zoom-to-fit button on plot
myPlot . fillPlot(); Adjust x, y ranges to fit data
myPlot . setImpulses(true, 0); Lines from points to x axis, set 0
myPlot . setMarksStyle(“none,” 0); Draw none, points, dots, various, pixels
myPlot . setBars(true); Display data as bar charts
String s = myPlot . getTitle(); Extract title (or other properties)

Once you have a PtPlot application on your screen, explore some of the ways to
modify your plot from within the application window:

1. Examine the Edit pull-down menu (underlined letters are shortcuts). Select
Edit and pull it down.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 49

visualization tools 49

Figure 3.2 The Format submenu located under the Edit menu in a PtPlot application. This

submenu controls the plot’s basic features.

2. From the Edit pull-down menu, select Format. You should see a window
like that in Figure 3.2, which lets you control most of the options in your
graph.

3. Experiment with the Format menu. In particular, change the graph so that
only points are plotted, with the points being pixels and black, and with your
name in the title.

4. Select a central portion of your plot and zoom in on it by drawing a box
(with the mouse button depressed) starting from the upper-left corner and
then moving down before you release the mouse button. You zoom out by
drawing a box from the lower-right corner and moving up. You may also
resize your graph by selecting Special/Reset Axes or by resetting the x and
y ranges. And of course, if things get really messed up, you always have
the option of starting over by closing the Java window and running the java
command again.

5. Scrutinize the File menu and its options for printing your graphs, as well as
exporting them to files in Postscript (.ps) and other formats.

It is also possible to have PtPlot make graphs by reading data from a file in
which the x and y values are separated by spaces, tabs, or commas. There is even C D

the option of including PtPlot formatting commands in the file with data. The
program TwoPlotExample.java on the CD and its data file data.plt show how to
place two plots side by side and how to read in a data file containing error bars
with various symbols for the points. In its simplest form, PtPlot Data Format is just
a text file with a single (x, y) point per line. For example, Figure 3.1 was produced
from the data file PtPlotdat.plt:

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 50

50 chapter 3

Sample PtPlot Data file PtPlotdat.plt

� �
# This i s a comment : Sample data f o r Pt Pl o t T i t l e T e x t : Grade
I n f l a t i o n XRange : 0 ,5 YRange : −5, 6 Grid : on XLabel : Years in College
YLabel : GPA Marks : var ious NumSets : 3 Color : on DataSet : Data Set 0
Lines : o f f 0 , −5.4 1 , −4.1 2 , −3.2 3 , −2.3 4 , −2 DataSet : Data Set 1
Lines : on 0 , −3.6 , −4,−3 1 , −2.7 , −3, −2.5 2 , −1.8 , −2.4 ,−1.5 3 , −0.9 ,
−1.3 , −0.5 4 , 0 . 6 , 0 , 1 . 1 DataSet : Data Set 2 0 , 0 . 5 , −1,2 1 , 1 . 5 , 0 . 5 ,
2 2 , 2 . 5 , 1 . 5 , 4 3 , 3 . 5 , 2 . 5 , 5 4 , 4 . 5 , 3 , 6

�

To plot your data files directly from the command line, enter

> java ptolemy.plot.PlotApplication dataFile Plot data in dataFile

This causes the standard PtPlot window to open and display your data. If this does
not work, then your classpath variable may not be defined properly or PtPlot may
not be installed. See “Installing PtPlot” in Appendix B.

Reading in your data from the PtPlot window itself is an alternative. Either use
an already open window or issue Java’s run command:

> java ptolemy.plot.PlotApplication Open PtPlot window

To look at your data from the PtPlot window, choose File → Open → FileName. By
default, PtPlot will look for files with the suffix .plt or .xml. However, you may
enter any name you want or pull down the Filter menu and select * to see all your
files. The same holds for the File → SaveAs option. In addition, you may Export
your plot as an Encapsulated PostScript (.eps) file, a format useful for inserting in
printed documents. You may also use drawing programs to convert PostScript files
to other formats or to edit the output from PtPlot, but you should not change the
shapes or values of output to alter scientific conclusions.

As with any good plot, you should label your axes, add a title, and add what is
needed for it to be informative and clear. To do this, incorporate PtPlot commands
with your data or work in the PtPlot window with the pull-down menus under
Edit and Special. The options are essentially the same as the ones you would call
from your program:

TitleText: f(x) vs. x Add title to plot
XLabel: x Label x axis
YLabel: y Label y axis
XRange: 0, 12 Set x range (default: fit to data)
YRange: –3, 62 Set y range (default: fit to data)
Marks: none (Default) No marks at points, lines connects points
Marks: points or: dots, various, pixels
Lines: on/off Do not connect points with lines; default: on
Impulses: on/off Lines down from points to x axis; default: off
Bars: on/off Bar graph (turn off lines) default: off
Bars: width (, offset) Bar graph; bars of width and (optional) offset
DataSet: string Specify data set to plot; string appears in legend

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 51

visualization tools 51

x, y Specify a data point; comma, space, tab separators
move: x, y Do not connect this point to previous
x, y, yLo, yHi Plot (x, y− yLo), (x, y+ yHi) with error bars

If a command appears before DataSet directives, then it applies to all the data sets.
If a command appears after DataSet directives, then it applies to that data set only.

3.3 Grace/ACE: Superb 2-D Graphs for Unix/Linux

Our favorite package for producing publication-quality 2-D graphs from numerical
data is Grace/xmgrace. It is free, easy to work with, incredibly powerful, and has been
used for many of the (nicer) figures in our research papers and books. Grace is a
WYSIWYG tool that also contains powerful scripting languages and data analysis
tools, although we will not get into that. We will illustrate multiple-line plots, color
plots, placing error bars on data, multiple-axis options and such. Grace is derived
from Xmgr, aka ACE/gr, originally developed by the Oregon Graduate Institute
and now developed and maintained by the Weizmann Institute [Grace]. Grace is
designed to run under the Unix/Linux operating systems, although we have had
success using in on an MS Windows system from within the Cygwin [CYG] Linux
emulation.4

3.3.1 Grace Basics

To learn about Grace properly, we recommend that you work though some of the
tutorials available under its Help menu, study the user’s guide, and use the Web
tutorial [Grace]. We present enough here to get you started and to provide a quick
reference. The first step in creating a graph is to have the data you wish to plot
in a text (ASCII) file. The data should be broken up into columns, with the first
column the abscissa (x values) and the second column the ordinate (y values). The
columns may be separated by spaces or tabs but not by commas. For example, the C D

file Grace.dat on the CD and in the left column of Table 3.1 contains one abscissa
and one ordinate per line, while the file Grace2.dat in the right column of Table 3.1
contains one abscissa and two ordinates (y values) per line.

1. Open Grace by issuing the grace or xmgrace command from a Unix/
Linux/Cygwin command line (prompt):

> grace Start Grace from Unix shell

4 If you do this, make sure to have the Cygwin download include the xorg-x11-base package
in the X11 category (or a later version), as well as xmgrace.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 52

52 chapter 3

TABLE 3.1
Text Files Grace.dat and Grace2.dat∗

Grace.dat Grace2.dat
x y x y z

1 2 1 2 50
2 4 2 4 29
3 5 3 5 23
4 7 4 7 20
5 10 5 10 11
6 11 6 11 10
7 20 7 20 7
8 23 8 23 5
9 29 9 29 4

10 50 10 50 2
∗The text file Grace.dat (on the CD under

Codes/JavaCodes/Data) contains one x value
and one y value per line. The file Grace2.dat
contains one x value and two y values per line.

In any case, make sure that your command brings up the user-friendly
graphical interface shown on the left in Figure 3.3 and not the pure-text
command one.

2. Plot a single data set by starting from the menu bar on top. Then
a. Select progressively from the submenus that appear, Data/Import/ASCII.
b. The Read sets window shown on the right in Figure 3.3 appears.
c. Select the directory (folder) and file in which you have the data; in the

present case select Grace.dat.
d. Select Load as/Single set, Set type/XY and Autoscale on read/XY.
e. Select OK (to create the plot) and then Cancel to close the window.

3. Plot multiple data sets (Figure 3.3) is possible in step 2, only now
a. Select Grace2.dat, which contains two y values as shown in Table 3.1.
b. Change Load as to NXY to indicate multiple data sets and then plot.
Note: We suggest that you start your graphs off with Autoscale on read in
order to see all the data sets plotted. You may then change the scale if you
want, or eliminate some points and replot.

4. Label and modify the axis properties by going back to the main window.
Most of the basic utilities are under the Plot menu.
a. Select Plot/Axis properties.
b. Within the Axis Property window that appears, select Edit/X axis or Edit/Y

axis as appropriate.
c. Select Scale/Linear for a linear plot, or Scale/Logarithmic for a logarithmic

or semilog plot.
d. Enter your choice for Axis label in the window.
e. Customize the ticking and the numbers’ format to your heart’s desire.
f. Choose Apply to see your changes and then Accept to close the window.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 53

visualization tools 53

Figure 3.3 Left: The main Grace window, with the file Grace2.dat plotted with the title, subtitle,

and labels. Right: The data input window.

5. Title the graph, as shown on the left in Figure 3.3, by starting from the main
window and again going to the Plot menu.
a. Select Plot/Graph appearance.
b. From the Graph Appearance window that appears, select the Main tab

and from there enter the title and subtitle.
6. Label the data sets, as shown by the box on the left in Figure 3.3, by starting

from the main window and again going to the Plot menu.
a. Select Plot/Set Appearance.
b. From the Set Appearance window that appears, highlight each set from

the Select set window.
c. Enter the desired text in the Legend box.
d. Choose Apply for each set and then Accept.
e. You can adjust the location, and other properties, of the legend box from

Plot/Graph Appearance/Leg. box.
7. Plotting points as symbols (Figure 3.4 left) is accomplished by starting at

the main menu. Then
a. Select Plot/Set Appearance.
b. Select one of the data sets being plotted.
c. Under the Main/Symbol properties, select the symbol Type and Color.
d. Choose Apply, and if you are done with all the data sets, Accept.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 54

54 chapter 3

Figure 3.4 Left: A plot of points as symbols with no line. Right: A plot of points as symbols with

lines connecting the points and with error bars read from the file.

8. Including error bars (Figure 3.4 left) is accomplished by placing them in
the data file read into Grace along with the data points. Under Data/Read
Sets are, among others, these possible formats for Set type:

( X Y DX ), ( X Y DY ), ( X Y DX DX ), ( X Y DY DY ), ( X Y DX DX DY DY )

Here DX is the error in the x value, DY is the error in the y value, and repeated
values for DX or DY are used when the upper and lower error bars differ;
for instance, if there is only one DY, then the data point is Y ± DY, but if there
are two error bars given, then the data point is Y + DY1, −DY2. As a case in
point, here is the data file for ( X Y DY ):

X 1 2 3 4 5 6 7 8 9 10

Y 2 4 5 7 10 11 20 23 29 50

DY 3 2 3 3.6 2.6 5.3 3.1 3.9 7 8

9. Multiple plots on one page (Figure 3.5 left) are created by starting at the
main window. Then
a. Select Edit/Arrange Graphs.
b. An Arrange Graphs window (Figure 3.5 right) opens and provides the

options for setting up a matrix into which your graphs are placed.
c. Once the matrix is set up (Figure 3.5 left), select each space in sequence

and then create the graph in the usual way.
d. To prevent the graphs from getting too close to each other, go back to the

Arrange Graphs window and adjust the spacing between graphs.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 55

visualization tools 55

0 2 4 6 8 10
X values

0

10

20

30

40

50

Y
 v

al
ue

s

Points as symbols with 
error bars (X Y DY)

Line properties = dashed

0 2 4 6 8 10
0

10

20

30

40

50

0
0

0

0
0

Graph 2 

0 2 4 6 8 10
0

10

20

30

40

50

0 2 4 6
0

10

20

30

40

50

Figure 3.5 Left: Four graphs placed in a 2 × 2 matrix. Right: The window that opens under

Edit/Arrange Graphs and is used to set up the matrix into which multiple graphs are placed.

10. Printing and saving plots
a. To save your plot as a complete Grace project that can be opened again and

edited, from the main menu select File/Save As and enter a filename.agr
as the file name. It is a good idea to do this as a backup before printing
your plot (communication with a piece of external hardware is subject to
a number of difficulties, some of which may cause a program to “freeze
up” and for you to lose your work).

b. To print the plot, select File/Print Setup from the main window
c. If you want to save your plot to a file, select Print to file and then enter

the file name. If you want to print directly to a printer, make sure that
Print to file is not selected and that the selected printer is the one to which
you want your output to go (some people may not take kindly to your
stuff appearing on their desk, and you may not want some of your stuff
to appear on someone else’s desk).

d. From Device, select the file format that will be sent to the printer or saved.
e. Apply your settings when done and then close the Print/Device Setup

window by selecting Accept.
f. If now, from the main window, you select File/Print, the plot will be sent

to the printer or to the file. Yes, this means that you must “Print” the plot
in order to send it to a file.

If you have worked through the steps above, you should have a good idea of how
Grace works. Basically, you just need to find the command you desire under a menu
item. To help you in your search, in Table 3.2 we list the Grace menu and submenu
items.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 56

56 chapter 3

TABLE 3.2
Grace Menu and Submenu Items

Edit Data

Data sets Data set operations

Set operations sort, reverse, join, split, drop points

copy, move, swap Transformations

Arrange graphs expressions, histograms, transforms,

matrix, offset, spacing convolutions, statistical ops, interpolations

Overlay graphs Feature extraction

Autoscale graphs min/max, average, deviations, frequency,

Regions COM, rise/fall time, zeros

Hot links Import

Set/Clear local/fixed point Export

Preferences

Plot View

Plot appearance Show locator bar (default)

background, time stamp, font, color Show status bar (default)

Graph appearance Show tool bar (default)

style, title, labels, frame, legends Page setup

Set appearance Redraw

style, symbol properties, error bars Update all

Axis properties

labels, ticks, placement

Load/Save parameters

Window

Command Font tool

Point explorer Console

Drawing objects

3.4 Gnuplot: Reliable 2-D and 3-D Plots

Gnuplot is a versatile 2-D and 3-D graphing package that makes Cartesian, polar,
surface, and contour plots. Although PtPlot is good for 2-D plotting with Java,
only Gnuplot can create surface plots of numerical data. Gnuplot is classic open
software, available free on the Web, and supports many output formats.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 57

visualization tools 57

–6 –4 –2 0

30

20

10

0

–10

–20

–30
2 4 6

‘dat a. graph’
‘2. dat’
‘3. dat’

Figure 3.6 A Gnuplot graph for three data sets with impulses and lines.

Begin Gnuplot with a file of (x, y) data points, say, graph.dat. Next issue the
gnuplot command from a shell or from the Start menu. A new window with
the Gnuplot prompt gnuplot> should appear. Construct your graph by entering
Gnuplot commands at the Gnuplot prompt or by using the pull-down menus in
the Gnuplot window:

> gnuplot Start Gnuplot program
Terminal type set to ‘x11’ Type of terminal for Unix
gnuplot> The Gnuplot prompt
gnuplot> plot "graph.dat" Plot data file graph.dat

Plot a number of graphs on the same plot using several data files (Figure 3.6):

gnuplot> plot ‘graph.dat’ with impulses, ‘2.dat’, ‘3.dat’ with lines

The general form of the 2-D plotting command and its options are

plot {ranges} function {title} {style} {, function . . . } Command

with points Default. Plot a symbol at each point.
with lines Plot lines connecting the points.
with linespoint Plot lines and symbols.
with impulses Plot vertical lines from the x axis to points.
with dots Plot a small dot at each point (scatterplots).

For Gnuplot to accept the name of an external file, that name must be placed in
‘single’ or “double” quotes. If there are multiple file names, the names must be
separated by commas. Explicit values for the x and y ranges are set with options:

gnuplot> plot [xmin:xmax] [ymin:ymax] "file" Generic
gnuplot> plot [–10:10] [–5:30] "graph.dat" Explicit

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 58

58 chapter 3

3.4.1 Gnuplot Input Data Format �

The format of the data file that Gnuplot can read is not confined to (x, y) values.
You may also read in a data file as a C language scanf format string xy by invok-
ing the using option in the plot command. (Seeing that it is common for Linux/
Unix programs to use this format for reading files, you may want to read more
about it.)

plot ‘datafile’ { using { xy | yx | y } {"scanf string"} }

This format explicitly reads selected rows into x or y values while skipping past
text or unwanted numbers:

gnuplot> plot "data" using "%f%f" Default, 1st x, 2nd y.
gnuplot> plot "data" using yx "%f %f" Reverse, 1st y, 2nd x.
gnuplot> plot "data" xy using "%*f %f %*f %f" Use row 2,4 for x, y.
gnuplot> plot "data" using xy "%*6c %f%*7c%f"

This last command skips past the first six characters, reads one x, skips the next
seven characters, and then reads one y. It works for reading in x and y from files
such as

� �
t h e t a : −20.000000 Energy : −3.041676 t h e t a : −19.000000 Energy :
−3.036427 t h e t a : −18.000000 Energy : −3.030596 t h e t a : −17.000000
Energy : −3.024081 t h e t a : −16.000000 Energy : −3.016755

�

Observe that because the data read by Gnuplot are converted to floating-point
numbers, you use %f to read in the values you want.

Besides reading data from files, Gnuplot can also generate data from user-
defined and library functions. In these cases the default independent variable is x
for 2-D plots and (x, y) for 3-D ones. Here we plot the acceleration of a nonharmonic
oscillator:

gnuplot> k = 10 Set value for k
gnuplot> a(x) = .5*k*x**2 Analytic expression
gnuplot> plot [–10:10] a(x) Plot analytic function

A useful feature of Gnuplot is its ability to plot analytic functions along with
numerical data. For example, Figure 3.7 compares the theoretical expression for
the period of a simple pendulum to experimental data of the form

� �
# length (cm) period ( sec ) # length (cm) period ( sec )
10 0 . 8 60 1 . 6
20 0 . 9 70 1 . 7
30 1 . 2 80 1 . 8
40 1 . 3 90 1 . 9
50 1 . 5 100 2 . 0

�

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 59

visualization tools 59

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

10 20 30 40 50 60 70 80 90 100

"exp.data"
y(x)

Figure 3.7 A Gnuplot plot of data from a file plus an analytic function.

Note that the first line of text is ignored since it begins with a # . We plot with

gnuplot> g = 980 Set value for g
gnuplot> y(x) = 2*3.1416*sqrt(x/g) Period T = y, length L= x

gnuplot> plot "exp.data", y(x) Plot both data and function

3.4.2 Printing Plots

Gnuplot supports a number of printer types including PostScript. The safest way
to print a plot is to save it to a file and then print the file:

1. Set the “terminal type” for your printer.
2. Send the plot output to a file.
3. Replot the figure for a new output device.
4. Quit Gnuplot (or get out of the Gnuplot window).
5. Print the file with a standard print command.

For a more finished product, you can import Gnuplot’s output .ps file into a drawing
program such as CorelDraw or Illustrator and fix it up just right. To see what
types of printers and other output devices are supported by Gnuplot, enter the
set terminal command without any options into a gnuplot window. Here is an
example of creating a PostScript figure and printing it:

gnuplot> set terminal postscript Choose local printer type
Terminal type set to ‘postscript’ Gnuplot response
gnuplot> set term postscript eps Another option

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 60

60 chapter 3

gnuplot> set output "plt.ps" Send figure to file
gnuplot> replot Plot again so file is sent
gnuplot> quit Or get out of gnu window
% lp plt.ps Unix print command

3.4.3 Gnuplot Surface (3-D) Plots

A 2-D plot is fine for visualizing the potential field V (r) = 1/r surrounding a single
charge. However, when the same potential is expressed as a function of Cartesian
coordinates, V (x, y) = 1/

√
x2 + y2, we need a 3-D visualization. We get that by

creating a world in which the z dimension (mountain height) is the value of the
potential and x and y lie on a flat plane below the mountain. Because the surface
we are creating is a 3-D object, it is not possible to draw it on a flat screen, and
so different techniques are used to give the impression of three dimensions to our
brains. We do that by rotating the object, shading it, employing parallax, and other
tricks.

The surface (3-D) plot command is splot, and it is used in the same manner as
plot—with the obvious extension to (x, y, z). A surface (Figure 3.8) is specified by
placing the z(x, y) values in a matrix but without ever giving the x and y values
explicitly. The x values are the row numbers in the matrix and the y values are the
column values (Figure 3.8). This means that only the z values are read in and that
they are read in row by row, with different rows separated by blank lines:

row 1 (blank line) row 2 (blank line) row 3 . . . row N.

Here each row is input as a column of numbers, with just one number per line. For
example, 13 columns each with 25 z values would be input as a sequence of 25 data
elements, followed by a blank line, and then another sequence followed by a blank
line, and so on:

� �
0 . 0
0 .695084369397148
1.355305208363503
1.9461146066793003
. . .
−1.0605832625347442
−0.380140746321537
[ blank l i n e ]
0 . 0
0 .6403868757235301
1.2556172093991282
. . .
2 .3059977070286473
2.685151549102467

[ blank l i n e ]
2 .9987593603912095
. . .

�

Although there are no explicit x and y values given, Gnuplot plots the data with
the x and y assumed to be the row and column numbers.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 61

visualization tools 61

Z(x,y)

y

0

0

10

40

20
x

row 1 (z11, z12, ..
.)

row 2 (z21, z22, ..
.)

row 3 (z31, z32, ..
.)

row 4 (z41, z42, ..
.)

Figure 3.8 A surface plot z(x, y) = z (row, column) showing the input data format used for

creating it. Only z values are stored, with successive rows separated by blank lines and the

column values repeating for each row.

Versions 4.0 and above of Gnuplot have the ability to rotate 3-D plots
interactively. You may also adjust your plot with the command

gnuplot> set view rotx, rotz, scale, scalez

where 0 ≤ rotx ≤ 180◦ and 0 ≤ rotz ≤ 360◦ are angles in degrees and the scale fac-
tors control the size. Any changes made to a plot are made when you redraw the
plot using the replot command.

To see how this all works, here we give a sample Gnuplot session that we will
use in Chapter 17, “PDEs for Electrostatics & Heat Flow,” to plot a 3-D surface from
numerical data. The program Laplace.java contains the actual code used to output
data in the form for a Gnuplot surface plot.5

> gnuplot Start Gnuplot system from a shell
gnuplot> set hidden3d Hide surface whose view is blocked
gnuplot> set nohidden3d Show surface though hidden from view
gnuplot> splot ‘Laplace.dat’ with lines Surface plot of Laplace.dat with lines
gnuplot> set view 65,45 Set x and y rotation viewing angles
gnuplot> replot See effect of your change
gnuplot> set contour Project contours onto xy plane
gnuplot> set cntrparam levels 10 10 contour levels

5 Under Windows, there is a graphical interface that is friendlier than the Gnuplot
subcommands. The subcommand approach we indicate here is reliable and universal.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 62

62 chapter 3

gnuplot> set terminal epslatex Output in Encapsulated PostScript for LaTeX
gnuplot> set terminal PostScript Output in PostScript format for printing
gnuplot> set output "Laplace.ps" Plot output to be sent to file Laplace.ps

gnuplot> splot ‘Laplace.dat’ w l Plot again, output to file
gnuplot> set terminal x11 To see output on screen again
gnuplot> set title ‘Potential V(x,y) vs x,y’ Title graph
gnuplot> set xlabel ‘x Position’ Label x axis
gnuplot> set ylabel ‘y Position’ Label y axis
gnuplot> set zlabel ‘V(x,y)’; replot Label z axis and replot
gnuplot> help Tell me more
gnuplot> set nosurface Do not draw surface; leave contours
gnuplot> set view 0, 0, 1 Look down directly onto base
gnuplot> replot Draw plot again; may want to write to file
gnuplot> quit Get out of Gnuplot

3.4.4 Gnuplot Vector Fields

Even though it is simpler to compute a scalar potential than a vector field, vector
fields often occur in nature. In Chapter 17, “PDEs for Electrostatics & Heat Flow,”
we show how to compute the electrostatic potentialU(x, y) on an x+ y grid of spac-
ing ∆. Since the field is the negative gradient of the potential, E = −�∇U(x, y), and
since we solve for the potential on a grid, it is simple to use the central-difference
approximation for the derivative (Chapter 7 “Differentiation & Searching”) to
determine E:

Ex � U(x+ ∆, y) −U(x−∆, y)
2∆

=
Ui+1,j −Ui−1,j

2∆
, (3.1)

Ey � U(x, y+ ∆) −U(x, y−∆)
2∆

=
Ui,j+1 −Ui,j−1

2∆
. (3.2)

Gnuplot contains the vectors style for plotting vector fields as arrows of varying
lengths and directions (Figure 3.9).

> plot ‘Laplace_field.dat’ using 1:2:3:4 with vectors Vector plot

Here Laplace_field.data is the data file of (x, y, Ex, Ey) values, the explicit columns
to plot are indicated, and additional information can be provided to control arrow
types. What Gnuplot actually plots are vectors from (x, y) to (x+ ∆x, y+ ∆y),
where you input a data file with each line containing the (x, y,∆x,∆y) values.
Thousands of tiny arrows are not very illuminating (Figure 3.9 left), nor are over-
lapping arrows. The solution is to plot fewer points and larger arrows. On the right
in Figure 3.9 we plot every fifth point normalized to unit length via

∆x=
Ex

N
, ∆y =

Ey

N
, N =

√
E2

x +E2
y . (3.3)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 63

visualization tools 63

y

x

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

y

x

0

5

10

15

20

0 5 10 15 20

Figure 3.9 Two visualizations created by Gnuplot of the same electric field within and around

a parallel plate capacitor. The figure on the right includes equipotential surfaces and uses

one-fifth as many field points, and longer vectors, but of constant length. The x and y values

are the column and row indices.

The data file was produced with our Laplace.java program with the added lines

� �
ex = −( U[ i + 1 ] [ j ] − U[ i −1][ j ] ) ; / / Compute f i e l d components
ey = −( U[ i ] [ j +1] − U[ i ] [ j −1] ) ;
enorm = Math . s q r t ( ex∗ex + ey∗ey ) ; / / Normalization f a c t o r
w. p r i n t l n (" "+ i /5+" "+ j /5+" "+ex/enorm +" "+ey/enorm +" " ) ; / / Output

�

We have also been able to include contour lines on the field plots by adding more
commands:

gnuplot> unset key

gnuplot> set nosurface

gnuplot> set contour base

gnuplot> set cntrparam levels 10

gnuplot> set view 0,0,1,1

gnuplot> splot ‘Laplace_pot1.dat’ with lines

gnuplot> set terminal push

gnuplot> set terminal table

gnuplot> set out ‘equipot.dat’

gnuplot> replot

gnuplot> set out

gnuplot> set terminal pop

gnuplot> reset

gnuplot> plot ‘equipot.dat’ with lines

gnuplot> unset key

gnuplot> plot ‘equipot.dat’ with lines, ‘Laplace_field1.dat’ with vectors

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 64

64 chapter 3

By setting terminal to table and setting out to equipot.dat, the numerical data for
equipotential lines are saved in the file equipot.dat. This file can then be plotted
together with the vector field lines.

3.4.5 Animations from a Plotting Program (Gnuplot) �

An animation is a collection of images called frames that when viewed in sequence
convey the sensation of continuous motion. It is an excellent way to visualize the
time behavior of a simulation or a function f(x, t), as may occur in wave motion
or heat flow. In the Codes section of the CD, we give several sample animations of
the figures in this book and we recommend that you view them.

Gnuplot itself does not create animations. However, you can use it to create a
sequence of frames and then concatenate the frames into a movie. Here we create
an animated gif that, when opened with a Web browser, automatically displays the
frames in a rapid enough sequence for your mind’s eye to see them as a continu-
ous event. Although Gnuplot does not output .gif files, we outputted pixmap files
and converted them to gif’s. Because a number of commands are needed for each
frame and because hundreds or thousands of frames may be needed for a single
movie, we wrote the script MakeGifs.script to automate the process. (A script is a
file containing a series of commands that might normally be entered by hand to
execute within a shell. When placed in a script, they are executed as a single com-C D

mand.) The script in Listing 3.2, along with the file samp_color (both on the CD
under Codes/Animations_ColorImages/Utilities), should be placed in the directory
containing the data files (run.lmn in this case).

The #! line at the beginning tells the computer that the subsequent commands
are in the korn shell. The symbol $i indicates that i is an argument to the script.
In the present case, the script is run by giving the name of the script with three
arguments, (1) the beginning time, (2) the maximum number of times, and (3) the
name of the file where you wish your gifs to be stored:

% MakeGifs.script 1 101 OutFile Make gif from times 1 to 101 in OutFile

The> symbol in the script indicates that the output is directed to the file follow-
ing the >. The ppmquant command takes a pixmap and maps an existing set of
colors to new ones. For this to work, you must have the map file samp_colormap
in the working directory. Note that the increments for the counter, such as i=i+99,
should be adjusted by the user to coincide with the number of files to be read in,
as well as their names. Depending on the number of frames, it may take some time
to run this script. Upon completion, there should be a new set of files of the form
OutfileTime.gif, where Outfile is your chosen name and Time is a multiple of the
time step used. Note that you can examine any or all of these gif files with a Web
browser.

The final act of movie making is to merge the individual gif files into an animated
gif with a program such as gifmerge:

> gifmerge –10 *.gif > movie Merge all .gif files into movie

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 65

visualization tools 65

� �
# ! /bin/ksh

u n a l i a s rm
i n t e g e r i =$1
w h i l e t e s t i − l t $2
do

i f t e s t i − l t 10
then
p r i n t "set terminal pbm small color ; set output\"$3t=0000$i .ppm\"; set noxtics ; set

noytics ;
set size 1.0 , 1.0; set yrange [0 : .1 ] ;
plot ‘run.0000$i ’ using 1:2 w lines , ‘run.0000$i ’ using 1:3 w lines ;
" >data0000$i . gnu
gnuplot data0000$i . gnu
ppmquant −map samp_colormap $3t =0000 $ i .ppm>$3at =0000 $ i .ppm
ppmtogif −map samp_colormap $3at =0000 $ i .ppm > $30000$i . g i f
rm $3t =0000 $ i .ppm $3at =0000 $ i .ppm data0000$i . gnu
i = i +99
f i

i f t e s t i −gt 9 −a i − l t 1000
then
p r i n t "set terminal pbm small color ; set output\"$3t=00$i .ppm\"; set noxtics ; set

noytics ;
set size 1.0 , 1.0; set yrange [0 : .1 ] ;
plot ‘run.00$i ’ using 1:2 w lines , ‘run.00$i ’ using 1:3 w lines ;
" >data00$ i . gnu
gnuplot data00$ i . gnu
ppmquant −map samp_colormap $3t =00 $ i .ppm>$3at =00 $ i .ppm
ppmtogif −map samp_colormap $3at =00 $ i .ppm > $300$i . g i f
rm $3t =00 $ i .ppm $3at =00 $ i .ppm data00$i . gnu
i = i +100
f i

i f t e s t i −gt 999 −a i − l t 10000
then
p r i n t "set terminal pbm small color ; set output\"$3t=0$i .ppm\"; set noxtics ; set

noytics ;
set size 1.0 , 1.0; set yrange [0 : .1 ] ;
plot ‘run.0$i ’ using 1:2 w lines , ‘run.0$i ’ using 1:3 w lines ;
" >data0$ i . gnu
gnuplot data0$ i . gnu
ppmquant −map samp_colormap $3t =0 $ i .ppm>$3at =0 $ i .ppm
ppmtogif −map samp_colormap $3at =0 $ i .ppm > $30$i . g i f
rm $3t =0 $ i .ppm $3at =0 $ i .ppm data0$ i . gnu
i = i +100
f i

done
�

Listing 3.2 MakeGifs.script, a script for creating animated gifs.

Here the –10 separates the frames by 0.1 s in real time, and the * is a wildcard
that will include all .gif files in the present directory. Because we constructed the
.gif files with sequential numbering, gifmerge pastes them together in the proper
sequence and places them in the file movie, which can be viewed with a browser.

3.5 OpenDX for Dicing and Slicing

See Appendix C and the CD.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 66

66 chapter 3

3.6 Texturing and 3-D Imaging

In §13.10 we give a brief explanation of how the inclusion of textures (Perlin noise) in
a visualization can add an enhanced degree of realism. While it is a useful graphical
technique, it incorporates the type of correlations and coherence also present in
fractals and thus is in Chapter 13, “Fractals & Statistical Growth.” In a related vein,
in §13.10.1 we discuss the graphical technique of ray tracing and how it, especially
when combined with Perlin noise, can produce strikingly realistic visualizations.

Stereographic imaging creates a virtual reality in which your brain and eye see
objects as if they actually existed in our 3-D world. There are a number of techniques
for doing this, such as virtual reality caves in which the viewer is immersed in an
environment with images all around, and projection systems that project multiple
images, slightly displaced, such that the binocular vision system in your brain
(possibly aided by appropriate glasses) creates a 3-D image in your mind’s eye.

Stereographics is often an effective way to let the viewer see structures that might
otherwise be lost in the visualization of complex geometries, such as in molecular
studies or star creation. But as effective as it may be, stereo viewing is not widely
used in visualization because of the difficulty and expense of creating and viewing
images. Here we indicate how the low-end, inexpensive viewing technique known
as ChromaDepth [Chrom] can produce many of the same effects as high-end stereo
vision without the use of special equipment. Not only is the technique easy to view
and easy to publish, it is also easy to create [Bai 05]. Indeed, the OpenDX color
images (visible on the CD) work well with ChromaDepth.

ChromaDepth consists of two pieces: a simple pair of glasses and a display
methodology. The glasses contain very thin, diffractive gratings. One grating is
blazed so that it shifts colors on the red end of the spectrum more than on the
blue end, and this makes the red elements in the 3-D scene appear to be closer
to the viewer. This often works fine with the same color scheme used for coding
topographic maps or for scientific visualizations and so requires little or no extra
work. You just write your computer program so that it color-codes the output in a
linear rainbow spectrum based on depth. If you do not wear the glasses, you still
see the visualization, yet with the glasses on, the image appears to jump out at you.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 67

4

Object-Oriented Programs:
Impedance & Batons

This chapter contains two units dealing with object-oriented programming (OOP)
at increasing levels of sophistication. In most of the codes in this book we try to keep
our programming transparent to a wide class of users and to keep our Java examples
similar to the ones in C and Fortran. Accordingly, we have deliberately avoided the
use of advanced OOP techniques. Nevertheless, OOP is a key element in modern
programming, and so it is essential that all readers have at least an introductory
understanding of it. We recommend that you review Unit I so that you are comfortable
declaring, creating, and manipulating both static and dynamic objects. Unit II deals
with more advanced aspects of OOP and, while recommended, may be put off for later
reading, especially for those who are object-challenged at this stage in their computing
careers. (Connelly Barnes helped to prepare Unit II.)

4.1 Unit I. Basic Objects: Complex Impedance

Problem: We are given a circuit containing a resistor of resistanceR, an inductor of
inductance L, and a capacitor of capacitance C (Figure 4.1 left). All three elements
are connected in series to an alternating voltage sourceV (t) = V0 cos ωt. Determine
the magnitude and time dependence of the current in this circuit as a function of
the frequency ω.

We solve this RLC circuit for you and assign as your particular problem that you
repeat the calculation for a circuit in which there are two RLC circuits in parallel
(Figure 4.1 right). Assume a single value for inductance and capacitance, and three
values for resistance:

L= 1000 H, C =
1

1000
F, R=

1000
1.5

,
1000
2.1

,
1000
5.2

Ω. (4.1)

Consider frequencies of applied voltage in the range 0< ω < 2/
√
LC = 2/s.

4.2 Complex Numbers (Math)

Complex numbers are useful because they let us double our work output with
only the slightest increase in effort. This is accomplished by manipulating them as

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 68

68 chapter 4

R R 2R

L L 2L

C C 2C

Figure 4.1 Left: An RLC circuit connected to an alternating voltage source. Right: Two RLC

circuits connected in parallel to an alternating voltage. Observe that one of the parallel

circuits has double the values of R, L, and C as does the other.

if they were real numbers and then separating the real and imaginary parts at the
end of the calculation. We define the symbol z to represent a number with both real
and imaginary parts (Figure 4.2 left):

z = x+ iy, Re z = x, Im z = y. (4.2)

Here i def=
√−1 is the imaginary number, and the combination of real plus imag-

inary numbers is called a complex number. In analogy to a vector in an imaginary
2-D space, we also use polar coordinates to represent the same complex number:

r =
√
x2 + y2, θ = tan−1(y/x), (4.3)

x= r cos θ, y = r sin θ. (4.4)

The essence of the computing aspect of our problem is the programming of
the rules of arithmetic for complex numbers. This is an interesting chore because
while most computer languages contain all the rules for real numbers, you must
educate them as to the rules for complex numbers (Fortran being the well-educated
exception). Indeed, since complex numbers are not primitive data types like doubles
and floats, we will construct complex numbers as objects. We start with two complex
numbers, which we distinguish with subscripts:

z1 = x1 + i y1, z2 = x2 + i y2. (4.5)

Complex arithmetic rules derive from applying algebra to z’s Re and Im parts:

Addition: z1 + z2 = (x1 +x2) + i(y1 + y2), (4.6)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 69

object-oriented programs: impedance & batons 69

Im
 z

 =
 y

y

z(x,y)

Re z = x

r

x
θ

Figure 4.2 Left: Representation of a complex number as a vector in space. Right: An

abstract drawing, or what?

Subtraction: z1 − z2 = (x1 −x2) + i(y1 − y2), (4.7)

Multiplication: z1 × z2 = (x1 + iy1) × (x2 + iy2) (4.8)

= (x1x2 − y1y2) + i(x1y2 +x2y1)

Division:
z1
z2

=
x1 + iy1
x2 + iy2

× x2 − iy2
x2 − iy2

(4.9)

=
(x1x2 + y1y2) + i(y1x2 −x1y2)

x2
2 + y2

2
.

An amazing theorem by Euler relates the base of the natural logarithm system,
complex numbers, and trigonometry:

eiθ = cos θ+ i sin θ (Euler’s theorem). (4.10)

This leads to the polar representation of complex numbers (Figure 4.2 left),

z ≡ x+ iy = reiθ = r cos θ+ ir sin θ. (4.11)

Likewise, Euler’s theorem can be applied with a complex argument to obtain

ez = ex+iy = exeiy = ex(cos y+ i sin y). (4.12)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 70

70 chapter 4

4.3 Resistance Becomes Impedance (Theory)

We apply Kirchhoff’s laws to theRLC circuit in Figure 4.1 left by summing voltage
drops as we work our way around the circuit. This gives the differential equation
for the current I(t) in the circuit:

dV (t)
dt

=R
dI

dt
+L

d2I

dt2
+
I

C
, (4.13)

where we have taken an extra time derivative to eliminate an integral over the
current. The analytic solution follows by assuming that the voltage has the form
V (t) = V0 cos ωt and by guessing that the resulting current I(t) = I0e

−iωt will also
be complex, with its real part the physical current. Because (4.13) is linear in I , the
law of linear superposition holds, and so we can solve for the complex I and then
extract its real and imaginary parts:

I(t) =
1
Z
V0e

−iωt, Z =R+ i

(
1
ωC

−ωL

)
, (4.14)

⇒ I(t) =
V0

|Z|e
−i(ωt+θ) =

V0

|Z| [cos(ωt+ θ) − i sin(ωt+ θ)] , (4.15)

|Z| =
√
R2 +

(
1
ωC

−ωL

)2

, θ = tan−1
(

1/ωC −ωL

R

)
.

We see that the amplitude of the current equals the amplitude of the voltage divided
by the magnitude of the complex impedance, and that the phase of the current
relative to that of the voltage is given by θ.

The solution for the two RLC circuits in parallel (Figure 4.1 right) is analogous
to that with ordinary resistors. Two impedances in series have the same current
passing through them, and so we add voltages. Two impedances in parallel have
the same voltage across them, and so we add currents:

Zser = Z1 +Z2,
1

Zpar
=

1
Z1

+
1
Z2
. (4.16)

4.4 Abstract Data Structures, Objects (CS)

What do you see when you look at the abstract object on the right of Figure 4.2? Some
readers may see a face in profile, others may see some parts of human anatomy,
and others may see a total absence of artistic ability. This figure is abstract in the
sense that it does not try to present a true or realistic picture of the object but rather
uses a symbol to suggest more than meets the eye. Abstract or formal concepts

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 71

object-oriented programs: impedance & batons 71

pervade mathematics and science because they make it easier to describe nature.
For example, we may define v(t) as the velocity of an object as a function of time.
This is an abstract concept in the sense that we cannot see v(t) but rather just infer
it from the changes in the observable position. In computer science we create an
abstract object by using a symbol to describe a collection of items. In Java we have
built- in or primitive data types such as integers, floating-point numbers, Booleans,
and strings. In addition, we may define abstract data structures of our own creation
by combining primitive data types into more complicated structures called objects.
These objects are abstract in the sense that they are named with a single symbol yet
they contain multiple parts.

To distinguish between the general structure of objects we create and the set
of data that its parts contain, the general object is called a class, while the object
with specific values for its parts is called an instance of the class, or just an object.
In this unit our objects will be complex numbers, while at other times they may be
plots, vectors, or matrices. The classes that we form will not only contain objects
(data structures) but also the associated methods for modifying the objects, with
the entire class thought of as an object.

In computer science, abstract data structures must possess three properties:

1. Typename: Procedure to construct new data types from elementary pieces.
2. Set values: Mechanism for assigning values to the defined data type.
3. Set operations: Rules that permit operations on the new data type (you

would not have gone to all the trouble of declaring a new data type unless
you were interested in doing something with it).

In terms of these properties, when we declare a “complex” variable to have real
and imaginary parts, we satisfy property 1. When we assign doubles to the parts,
we satisfy property 2. And when we define addition and subtraction, we satisfy
property 3.

Before we examine how these properties are applied in our programs, let us
review the structure we have been using in our Java programs. When we start
our programs with a declaration statement such as double x, this tells the Java
compiler the kind of variable x is, so that Java will store it properly in memory
and use proper operations on it. The general rule is that every variable we use in a
program must have its data type declared. For primitive (built-in) data types, we declare
them to be double, float, int, char, long, short,or boolean. If our program employs
some user-defined abstract data structures, then they too must be declared. This
declaration must occur even if we do not define the meaning of the data structure
until later in the program (the compiler checks on that). Consequently, when our
program refers to a number z as complex, the compiler must be told at some point
that there are both a real part x and an imaginary part y that make up a complex
number.

The actual process of creating objects in your Java program requires nonstatic
class variables and methods. This means we leave out the word static in declaring
the class and class variables. If the class and class variables are no longer static,
they may be thought of as dynamic. Likewise, methods that deal with objects may

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 72

72 chapter 4

be either static or dynamic. The static ones take objects as arguments, much like
conventional mathematical functions. In contrast, dynamic methods accomplish
the same end by modifying or interacting with the objects. Although you can deal
with objects using static methods, you must use dynamic (nonstatic) methods to
enjoy the full power of object-oriented programming.

4.4.1 Object Declaration and Construction

Though we may assign a name like x to an object, because objects have multiple
components, you cannot assign one explicit value to the object. It follows then, that
when Java deals with objects, it does so by reference; that is, the name of the variable
refers to the location in memory where the object is stored and not to the explicit values
of the object’s parts. To see what this means in practice, the class file Complex.java
in Listing 4.1 adds and multiplies complex numbers, with the complex numbers
represented as objects.

� �
/ / Complex . java : Creates "Complex" c l a s s with s t a t i c members

2

p u b l i c c l a s s Complex {
4p u b l i c d o u b l e re , im ; / / Nonstatic c l a s s var iables

6p u b l i c Complex ( ) { re = 0 ; im = 0 ; } / / Default const ruc tor

8p u b l i c Complex ( d o u b l e x , d o u b l e y ) { re = x ; im = y ; } / / Full const ruc tor

10p u b l i c s t a t i c Complex add ( Complex a , Complex b ) { / / S t a t i c add method
Complex temp = new Complex ( ) ; / / Create Complex temp

12temp . re = a . re + b . re ;
temp . im = a . im + b . im ;

14r e t u r n temp ;
}

16

p u b l i c s t a t i c Complex mult ( Complex a , Complex b ) { / / S t a t i c mult method
18Complex temp = new Complex ( ) ; / / Create Complex temp

temp . re = a . re ∗ b . re − a . im ∗ b . im ;
20temp . im = a . re ∗ b . im + a . im ∗ b . re ;

r e t u r n temp ;
22}

24p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) { / / Main method
Complex a , b ; / / Declare 2 Complex objec ts

26a = new Complex ( ) ; / / Create the objec ts
b = new Complex ( 4 . 7 , 3 . 2 ) ;

28Complex c = new Complex ( 3 . 1 , 2 . 4 ) ; / / Declare , c r e a t e in 1
System . out . p r i n t l n ("a ,b=("+a . re+" ,"+a . im+") , ("+b . re+" ,"+b . im+") ," ) ;

30System . out . p r i n t l n ("c = ("+c . re+ " , " +c . im+ ")" ) ;
a = add ( b , c ) ; / / Perform ari thmet ic

32System . out . p r i n t l n ( "b + c = (" +a . re+ " , " +a . im+ ") , " ) ;
a = mult ( b , c ) ;

34System . out . p r i n t l n ( "b*c = (" +a . re+ " , " +a . im+ ")" ) ;
}

36}
�

Listing 4.1 Complex.java defines the object class Complex. This permits the use of complex

data types (objects). Note the two types of Complex constructors.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 73

object-oriented programs: impedance & batons 73

4.4.2 Implementation in Java

1. Enter the program Complex.java by hand, trying to understand it as best you
are able. (Yes, we know that you can just copy it, but then you do not become
familiar with the constructs.)

2. Observe how the word Complex is a number of things in this program. It is
the name of the class (line 3), as well as the name of two methods that create
the object (lines 6 and 10). Methods, such as these, that create objects are
called constructors. Although neophytes view these multiple uses of the name
Complex as confusing, more experienced users often view it as elegant and
efficient. Look closely and take note that this program has nonstatic variables
(the word static is not on line 4).

3. Compile and execute this program and check that the output agrees with the
results you obtain by doing a hand calculation.

The first thing to notice about Complex.java is that the class is declared on line 3
with the statement

public class Complex { 3

The main method is declared on line 24 with the statement

public static void main(String[] argv) 24

These are the same techniques you have seen before. However, on line 4 we see
that the variables re and im are declared for the entire class with the statement

public double re, im; 4

Although this is similar to the declaration we have seen before for class variables,
observe that the word static is absent. This indicates that these variables are inter-
active or dynamic, that is, parts of an object. They are dynamic in the sense that
they will be different for each specific object (instance of the class) created. That is,
if we define z1 and z2 to be Complex objects, then the variables re and im each will
be different for z1 and z2.

We extract the component parts of our complex object by dot operations, much
like extracting the components of a physical vector by taking dot products of it
with unit vectors along each axis:

z1.re real part of object z1 z1.im imaginary part of object z1
z2.re real part of object z2 z2.im imaginary part of object z2

This same dot notation is used to access the methods of objects, as we will see shortly.
On line 6 in Listing 4.1 we see a method Complex declared with the statement

public Complex() 6

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 74

74 chapter 4

On line 8 we see a method Complex declared yet again, but with a different
statement:

public Complex(double x, double y) 8

Some explanation is clearly in order! First, notice that both of these methods are
nonstatic (the word static is absent). In fact, they are the methods that construct
our complex number object, which we call Complex. Second, notice that the name
of each of these methods is the same as the name of the class, Complex.1 They are
spelled with their first letters capitalized, rather than with the lowercase letters
usually used for methods, and because these objects have the same name as the
class that contains them.

The two Complex methods are used to construct the object, and for this reason are
called constructors. The first Complex constructor on line 6 is seen to be a method
that takes no argument and returns no value (yes, this appears rather weird, but be
patient). When Complex is called with no argument, as we see on line 18, the real
and imaginary parts of the complex number (object) are automatically set to zero.
This method is called the default constructor since it does what Java would otherwise
do automatically (by default) when first creating an object, namely, set all its compo-
nent parts initially to zero. We have explicitly included it for pedagogical purposes.

Exercise: Remove the default constructor (on line 6 with no argument)
from Complex.java and check that you get the same result for the call to
Complex().

The Complex method on line 8 implements the standard way to construct complex
numbers. It is seen to take the two doubles x and y as input arguments, to set the
real part of the complex number (object) to x, to set the imaginary part to y, and
then to return to the place in the program that called it. This method is an additional
constructor for complex numbers but differs from the default constructor by taking
arguments. Inasmuch as the nondefault constructor takes arguments while the
default constructor does not, Java does not confuse it with the default constructor
even though both methods have the same name.

Okay, let us now take stock of what we have up to this point. On line 4 Com-
plex.java has declared the variables re and im that will be the two separate parts of
the created object. As each instance of each object created will have different values
for the object’s parts, these variables are referred to as instance variables. Because
the name of the class file and the names of the objects it creates are all the same, it is
sometimes useful to use yet another word to distinguish one from the other. Hence
the phrase instance of a class is used to refer to the created objects (in our example,
a, b, and c). This distinguishes them from the definition of the abstract data type.

1 These two nonstatic methods are special as they permit the parameters characterizing the
object that they construct to be passed via a new statement.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 75

object-oriented programs: impedance & batons 75

Look now at the main method to see how to go about creating objects using
the constructor Complex. In the usual place for declaring variables (line 25 in the
listing) we have the statement

Complex a, b; 25

Because the compiler knows that Complex is not one of its primitive (built-in) data
types, it assumes that it must be one that we have defined. In the present case, the
class file contains the nonstatic class named Complex, as well as the constructors for
Complex objects (data types). This means that the compiler does not have to look
very far to know what you mean by a complex data type. For this reason, when the
statement Complex a, b; on line 25 declares the variables a and b to be Complex
objects, the compiler knows that they are manifestly objects since the constructors
are not static.

Recall that declaring a variable type, such as double or int, does not assign a
value to the variable but instead tells the compiler to add the name of the variable to
the list of variables it will encounter. Likewise, the declaration statement Complex
a, b; lets the compiler know what type of variables these are without assigning
values to their parts. The actual creation of objects requires us to place numerical
values in the memory locations that have been reserved for them. Seeing that an
object has multiple parts, we cannot give all its parts initial values with a simple
assignment statement like a = 0, so something fancier is called for. This is exactly
why constructor methods are used. Specifically, on line 26 we have the object a
created with the statement

a = new Complex(); 26

and on line 27 we have the object b created with the statement

b = new Complex(4.7, 3.2); 27

Look at how the creation of a new object requires the command new to precede
the name of the constructor (Complex in this case). Also note that line 26 uses the
default constructor method to set both the re and im parts of a to zero, while line
27 uses the second constructor method to set the re part of b to 4.7 and the im part
of b to 3.2.

Just as we have done with the primitive data types of Java, it is possible to both
declare and initialize an object in one statement. Indeed, line 28 does just that for
object c with the statement

Complex c = new Complex(3.1, 2.4); 28

Notice how the data type Complex precedes the variable name c in line 28 because
the variable c has not previously been declared; future uses of c should not declare
or create it again.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 76

76 chapter 4

4.4.3 Static and Nonstatic Methods

Once our complex-number objects have been declared (added to the variable list)
and created (assigned values), it is easy to do arithmetic with them. First, we will
get some experience with object arithmetic using the traditional static methods,
and then in §4.4.4 we will show how to perform the same object arithmetic using
nonstatic methods.

We know the rules of complex arithmetic and complex trigonometry and now
will write Java methods to implement them. It makes sense to place these methods
in the same class file that defines the data type since these associated methods are
needed to manipulate objects of that data type. On line 31 in our main program we
see the statement

a = add(b, c); 31

This says to add the complex number b to the complex number c and then to store
the result “as” (in the memory location reserved for) the complex number a. You
may recall that we initially set the re and im parts of a to zero in line 26 using
the default Complex constructor. This statement will replace the initial zero values
with those computed in line 31. The method add that adds two complex numbers
is defined on lines 10–15. It starts with the statement

public static Complex add(Complex a, Complex b) 10

and is declared to be static with the two Complex objects (numbers) a and b as
arguments. The fact that the word Complex precedes the method’s name add signi-
fies that the method will return a Complex number object as its result. We have
the option of defining other names like complex_add or plus for this addition
method.

The calculational part of the add method starts on line 11 by declaring and
creating a temporary complex number temp that will contain the result of the
addition of the complex numbers a and b. As indicated before, the dot operator
convention means that temp.re will contain the re part of temp and that temp.im
will contain the imaginary part. Thus the statements on lines 12 and 13,

temp.re = a.re + b.re; 12
temp.im = a.im + b.im; 13

add the complex numbers a and b by extracting the real parts of each, adding them
together, and then storing the result as the re part of temp. Line 13 determines the
imaginary part of the sum in an analogous manner. Finally, the statement

return temp; 21

returns the object (complex number) temp as the value of add(Complex a, Com-
plex b). Because a complex number has two parts, both parts must be returned to
the calling program, and this is what return temp does.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 77

object-oriented programs: impedance & batons 77

4.4.4 Nonstatic Methods

The program ComplexDyn.java in Listing 4.2 also adds and multiplies complex
numbers as objects, but it uses what are called dynamic, nonstatic, or interactive
methods. This is more elegant and powerful, but less like, the traditional procedural
programming. To avoid confusion and to permit you to run both the static and
nonstatic versions without them interfering with each other, the nonstatic version
is called ComplexDyn, in contrast to the Complex used for the static method. Notice
how the names of the methods in ComplexDyn and Complex are the same, although
they go about their business differently.

� �
/ / ComplexDyn . java : Complex object c l a s s with nonsta t i c members

2

p u b l i c c l a s s ComplexDyn {
4p u b l i c d o u b l e re ; p u b l i c d o u b l e im ; / / Nonstatic c l a s s var iables

6p u b l i c ComplexDyn ( ) { re = 0 ; im = 0 ; } / / Default const ruc tor

8p u b l i c ComplexDyn ( d o u b l e x , d o u b l e y ) { re = x ; im = y ; } / / Constructor

10p u b l i c v o i d add ( ComplexDyn other ) / / Dynamic other + t h i s
{ t h i s . re = t h i s . re + other . re ; t h i s . im = t h i s . im + other . im ; }

12

p u b l i c v o i d mult ( ComplexDyn other ) { / / Dynamic other∗ t h i s
14ComplexDyn ans = new ComplexDyn ( ) ; / / Intermediate

ans . re = t h i s . re ∗ other . re − t h i s . im ∗ other . im ;
16ans . im = t h i s . re ∗ other . im + t h i s . im ∗ other . re ;

t h i s . re = ans . re ; / / Copy value into returned object
18t h i s . im = ans . im ;

}
20

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) { / / Indep s t a t i c Main object
22ComplexDyn a , b ; / / Declare 2 Complex objec ts

a = new ComplexDyn ( ) ; / / Create objec ts
24b = new ComplexDyn ( 4 . 7 , 3 . 2 ) ;

ComplexDyn c = new ComplexDyn ( 3 . 1 , 2 . 4 ) ; / / Declare , c r e a t e
26System . out . p r i n t l n ("a ,b=("+a . re+" , "+a . im+") ,("+b . re+" , "+ b . im+") ," ) ;

System . out . p r i n t l n ("c = (" +c . re+ " , " +c . im+ ")" ) ;
28c . add ( b ) ; / / Nonstatic add

a = c ;
30System . out . p r i n t l n ("b + c = (" + a . re + " , " + a . im + ") , " ) ;

c = new ComplexDyn ( 3 . 1 , 2 . 4 ) ;
32c . mult ( b ) ; / / Nonstatic mult

System . out . p r i n t l n ("b*c = (" + c . re + " , " + c . im + ")" ) ;
34}

}
�

Listing 4.2 ComplexDyn.java defines the object class ComplexDyn. This permits the use of

dynamic complex data objects, for example, as c.add(b).

Exercise

1. Enter the ComplexDyn.java class file by hand, trying to understand it in
the process. If you have entered Complex.java by hand, you may modify
that program to save some time (but be careful!).

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 78

78 chapter 4

2. Compile and execute this program and check that the output agrees with
the results you obtained in the exercises in §4.2.

Nonstatic methods go about their business by modifying the properties of the
objects to which they are attached (complex numbers in the present case). In fact, we
shall see that nonstatic methods are literally appended to the names of objects much
as the endings of verbs are modified when their tenses change. In a sense, when
the method is appended to an object, it creates a new object. To cite an instance, on
line 28 we see the operation

c.add(b); // Nonstatic addition 28

Study the way this statement says to take the complex number object c and modify
it using the add method that adds b to the object. This statement results in new
values for the parts of object c. Because object c is modified by this action, line 28
is equivalent to our static operation

c = add(c,b); // Static method equivalent 28

Regardless of the approach, since c now contains the sum c + b, if we want to use
c again, we must redefine it, as we do on line 31. On line 32 we take object c and
multiply it by b via

c.mult(b); // Nonstatic multiplication 32

This method changes c to c * b. Thus line 32 has the static method equivalence

c = mult(c, b); // Static method equivalent 32

We see from these two examples that nonstatic methods are called using the same
dot operator used to refer to instance variables of an object. In contrast, static meth-
ods take the object as arguments and do not use the dot operator. Thus we called
the static methods via add(c,b) and mult(c,b) and called the nonstatic methods via
c.add(b) and c.mult(b).

The static methods here do not need a dot operator since they are called from
within the class Complex or ComplexDyn that defined them. However, they would
need a dot operator if called from another class. For example, you may have seen
that the square root method is called Math.sqrt(x). This is actually the static method
sqrt from the class Math. You could call the static add(c,b) method of class Complex
by using Complex.add(c,b). This works within the program (class) Complex as well
but is not required. It is required, however, if add is called from other classes.

Observe now how the object-oriented add method has the distinctive form

public void add(ComplexDyn other) 10
{this.re = this.re + other.re; this.im = this.im + other.im;} 11

Line 10 tells us that the method add is nonstatic (the word static is absent), that no
value or object is returned (thevoid), and that there is one argument other of the type

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 79

object-oriented programs: impedance & batons 79

ComplexDyn. What is unusual about this nonstatic method is that it is supposed
to add two complex numbers together, yet there is only one argument given to the
method and no object is returned! Indeed, the assumption is that since the method
is nonstatic, it will be used to modify only the object to which it will be attached.
Hence it literally goes without saying that there is an object around for this method
to modify, and the this reference is used to refer to “this” calling object. In fact, the
reason the argument to the method is conventionally called other is to distinguish it
from the this object that the method will modify. (We are being verbose for clarity’s
sake: The word “this” may be left out of these statements without changing their
actions.) Consequently, when the object addition is done in line 11 with

this.re = this.re + other.re; // Addition of re parts of this and other 11

it is understood that re refers to the current object being modified (this), while
other refers to the “other” object being used to make the modifications.

4.5 Complex Currents (Solution)

1. Extend the class Complex.java or ComplexDyn.java by adding new methods
to subtract, take the modulus, take the complex conjugate, and determine the
phase of complex numbers.

2. Test your methods by checking that the following identities hold for a variety
of complex numbers:

z+ z = 2z, z+ z∗ = 2 Re z
z− z = 0, z− z∗ = 2 Im z (4.17)

zz∗ = |z|2, zz∗ = r2 (which is real)

Hint: Compare your output to some cases of pure real, pure imaginary, and
simple complex numbers that you are able to evaluate by hand.

3. Equation (4.14) gives the magnitude and phase of the current in a single RLC
circuit. Modify the given complex arithmetic program so that it performs the
required complex arithmetic.

4. Compute and then make a plot of the magnitude and phase of the current in
the circuit as a function of frequency 0 ≤ ω ≤ 2.

5. Construct a z(x, y) surface plot of the magnitude and phase of the current as
functions of both the frequency of the external voltage ω and of the resistance
R. Observe how the magnitude has a maximum when the external frequency
ω = 1/

√
LC . This is the resonance frequency.

6. Another approach is to make a 3-D visualization of the complexZ as a function
of a complex argument (Figure 4.3). Do this by treating the frequency ω = x+
iy as a complex number. You should find a sharp peak atx= Re(ω) = 1. Adjust
the plot so that you tell where Im(1/Z) changes sign. If you look closely at the
graph, you should also see that there is a maximum for a negative imaginary
value of ω. This is related to the length of the lifetime of the resonance.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 80

80 chapter 4

0

400

800
2

R

1 /  Z

1

0

400
R

800
2

0.5

–1

1

Figure 4.3 Left: A plot of 1/|Z| versus resistance R and frequency ω showing that the

magnitude of the current has a maximum at ω = 1. Right: A plot of the current’s phase versus

resistance R and frequency ω showing that below resonance,ω < 1, the current lags the

voltage, while above resonance the current leads the voltage.

7. Assessment: You should notice a resonance peak in the magnitude at the
same frequency for which the phase vanishes. The smaller the resistance R,
the more sharply the circuit should pass through resonance. These types of
circuits were used in the early days of radio to tune to a specific frequency.
The sharper the peak, the better the quality of reception.

8. The second part of the problem dealing with the two circuits in parallel is very
similar to the first part. You need to change only the value of the impedanceZ
used. To do that, explicitly perform the complex arithmetic implied by (4.16),
deduce a new value for the impedance, and then repeat the calculation of the
current.

4.6 OOP Worked Examples

Creating object-oriented programs requires a transition from a procedural
programming mindset, in which functions take arguments as input and produce
answers as output, to one in which objects are created, probed, transferred, and
modified. To assist you in the transition, we present here two sample procedural
programs and their OOP counterparts. In both cases the OOP examples are longer
but presumably easier to modify and extend.

4.6.1 OOP Beats

You obtain beats if you add together two sine functions y1 and y2 with nearly
identical frequencies,

y3(t) = y1(t) + y2(t) =A sin(30 t) +A sin(33 t). (4.18)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 81

object-oriented programs: impedance & batons 81

−2

−1

0

1

2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Superposition of Two Sine Waves

 x

Figure 4.4 Superposition of two waves with similar wave numbers (a PtPlot).

Beats look like a single sine wave with a slowly varying amplitude (Figure 4.4). In
Listing 4.3 we give Beats.java, a simple program that plots beats. You see here that
all the computation is done in the main program, with no methods called other
than those for plotting. On lines 14 and 15 the variables y1 and y2 are defined as
the appropriate functions of time and then added together on line 16 to form the
beats. Contrast this with the object-oriented program OOPBeats.java in Listing 4.4
that produces the same graph.

� �
/ / Beats . java : plots beats

2i m p o r t ptolemy . p l o t . ∗ ;

4p u b l i c c l a s s Beats {

6p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) {
d o u b l e y1 , y2 , y3 , x ;

8i n t i ;
x = 0 . ; / / I n i t i a l posi t ion

10Pl o t myPlot = new Pl o t ( ) ;
myPlot . s e t T i t l e ("Superposition of Two Sine Waves" ) ;

12myPlot . setXLabel (" x" ) ;
f o r ( i = 1 ; i < 5 0 1 ; i ++ ) {

14y1 = Math . s i n (30∗x ) ; / / Wave 1
y2 = Math . s i n (33∗x ) ; / / Wave 2

16y3 = y1 + y2 ; / / Sum of waves
myPlot . addPoint ( 0 , x , y3 , t r u e ) ;

18x = x + 0 . 0 1 ; / / Small increment in x
}

20Pl o tAp p l i c a t i o n app = new Pl o tAp p l i c a t i o n ( myPlot ) ;
} }

�

Listing 4.3 Beats.java plots beats using procedural programming. Contrast this with the

object-oriented program OOPBeats.java in Listing 4.4.

In this OOP version, the main program is at the very end, on lines 26–29. It is short
because all it does is create an OOPbeats object named sumsines on line 27 with
the appropriate parameters and then on line 28 sums the two waves by having
the method sumwaves modify the object. The constructor for an OOPbeats object is
given on line 7, followed by the sumwaves method. The sumwaves method takes

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 82

82 chapter 4

no arguments and returns no value; the waves are summed on line 19, and the
graph plotted all within the method.

� �
/ / OOPBeats . java : OOP Superposition 2 Sine waves

2i m p o r t ptolemy . p l o t . ∗ ;

4p u b l i c c l a s s OOPBeats {
p u b l i c d o u b l e A, k1 , k2 ;

6/ / Class Constructor
p u b l i c OOPBeats ( d o u b l e Ampl , d o u b l e freq1 , d o u b l e f req2 )

8{ A = Ampl ; k1 = freq1 ; k2 = freq2 ; }

10p u b l i c v o i d sumwaves ( ) { / / Sums 2 waves
i n t i ;

12d o u b l e y1 , y2 , y3 , x = 0 ;
Pl o t myPlot = new Pl o t ( ) ;

14myPlot . s e t T i t l e ("Superposition of two Sines" ) ;
myPlot . setXLabel (" x" ) ;

16f o r ( i = 1 ; i < 5 0 1 ; i ++ ) {
y1 = A∗Math . s i n ( k1∗x ) ; / / 1 s t Sine

18y2 = A∗Math . s i n ( k2∗x ) ; / / 2nd Sine
y3 = y1 + y2 ; / / Superpositon

20myPlot . addPoint ( 0 , x , y3 , t r u e ) ;
x = x + 0 . 0 1 ; / / Increment x

22}
Pl o tAp p l i c a t i o n app = new Pl o tAp p l i c a t i o n ( myPlot ) ;

24}

26p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) { / / Class instance
OOPBeats sumsines = new OOPBeats ( 1 . , 3 0 . , 3 3 . ) ; / / Instance

28sumsines . sumwaves ( ) ; / / Call sumsins ’ method
}

30}
�

Listing 4.4 OOPBeats.java plots beats using OOP. Contrast this with the procedural program

Beats.java in Listing 4.3.

4.6.2 OOP Planet

In our second example we add together periodic functions representing positions
versus time. One set describes the position of the moon as it revolves around a
planet, and the other set describes the position of the planet as it revolves about the
sun. Specifically, the planet orbits the sun at a radius R= 4 units with an angular
frequency ωp = 1 rad/s, while the moon orbits Earth at a radius r = 1 unit from the
planet and an angular velocity ωs = 14 rad/s. The position of the planet at time t
relative to the sun is described by

xp =R cos(ωp t), yp =R sin(ωp t). (4.19)

The position of the satellite, relative to the sun, is given by the sum of its position
relative to the planet and the position of the planet relative to the sun:

xs =xp + r cos(ωs t) =R cos(ωp t) + r cos(ωs t),

ys = yp + r sin(ωs t) =R sin(ωp t) + r sin(ωs t).

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 83

object-oriented programs: impedance & batons 83

-4

-2

0

2

4

-5 -4 -3 -2 -1 0 1 2 3 4 5

Motion of a satellite around a planet 

 x

 
y

Figure 4.5 The trajectory of a satellite as seen from the sun.

So again this looks like beating (if ωs � ωp and if we plot x or y versus t), except that
now we will make a parametric plot of x(t) versus y(t) to obtain a visualization of
the orbit. A procedural program Moon.java to do this summation and to produce
Figure 4.5 is in Listing 4.5.

� �
/ / Moon. java : moon orbi t ing a planet
i m p o r t ptolemy . p l o t . ∗ ;

p u b l i c c l a s s Moon {

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) {
d o u b l e Radius , wplanet , radius , wmoon, time , x , y ;
Radius = 4 . ; / / Planet
wplanet = 2 . ; / / Omega of planet
radius = 1 . ; / / Moon ’ s o r b i t r
wmoon = 1 4 . ; / / Oemga moon wrt planet
Pl o t myPlot = new Pl o t ( ) ;
myPlot . s e t T i t l e ("Motion of a moon around a planet " ) ;
myPlot . setXLabel (" x" ) ;
myPlot . se tYLabel (" y" ) ;
f o r ( time = 0 . ; time < 3 . 2 ; time = time + 0 . 0 2 ) {

x = Radius ∗Math . cos ( wplanet∗time ) + radius∗Math . cos (wmoon∗time ) ;
y = Radius ∗Math . s i n ( wplanet∗time ) + radius∗Math . s i n (wmoon∗time ) ;
myPlot . addPoint ( 0 , x , y , t r u e ) ;

}
P l o tAp p l i c a t i o n app = new Pl o tAp p l i c a t i o n ( myPlot ) ;

}
}

�

Listing 4.5 The procedural program Moon.java computes the trajectory of a satellite as seen

from the sun. You need to write your own OOP version of this program.

Exercise: Rewrite the program using OOP.

1. Define a mother class OOPlanet containing:

Radius Planet’s orbit radius
wplanet Planet’s orbit ω
(xp, yp) Planet’s coordinates
getX(double t), getY(double t) Planet coordinates methods
trajectory() Method for planet’s orbit

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 84

84 chapter 4

2. Define a daughter class OOPMoon containing:

radius Radius of moon’s orbit
wmoon Frequency of moon in orbit
(xm, ym) Moon’s coordinates
trajectory() Method for moon’s orbit relative to sun

3. The main program must contain one instance of the class planet and
another instance of the class Moon, that is, one planet object and one Moon
object.

4. Have each instance call its own trajectory method to plot the appropriate
orbit. For the planet this should be a circle, while for the moon it should
be a circle with retrogrades (Figure 4.5).

One solution, which produces the same results as the previous program, is the
program OOPlanet.java in Listing 4.6. As with OOPbeats.java, the main program
for OOPlanet.java is at the end. It is short because all it does is create an OOPMoon
object with the appropriate parameters and then have the moon’s orbit plotted by
applying the trajectory method to the object.

� �
/ / OOPPlanet . java : Planet orbi t ing Sun

2i m p o r t ptolemy . p l o t . ∗ ;

4p u b l i c c l a s s OOPPlanet {
d o u b l e Radius , wplanet , xp , yp ; / / Orbit r , omega , Planet coordinates

6

p u b l i c OOPPlanet ( ) { Radius = 0 . ; wplanet = 0 . ; } / / Default const ruc tor
8

p u b l i c OOPPlanet ( d o u b l e Rad , d o u b l e pomg) { Radius = Rad ; wplanet = pomg ; }
10

p u b l i c d o u b l e getX ( d o u b l e time ) / / Get x of planet a t time t
12{ r e t u r n Radius∗Math . cos ( wplanet∗time ) ; }

14p u b l i c d o u b l e getY ( d o u b l e time ) / / Get y of the planet a t time t
{ r e t u r n Radius∗Math . s i n ( wplanet∗time ) ; }

16

p u b l i c v o i d t r a j e c t o r y ( ) { / / Tra jec tory of the planet
18d o u b l e time ;

Pl o t myPlot = new Pl o t ( ) ;
20myPlot . s e t T i t l e ( "Motion of a planet around the Sun" ) ;

myPlot . setXLabel (" x" ) ;
22myPlot . se tYLabel (" y" ) ;

f o r ( time = 0 . ; time < 3 . 2 ; time = time + 0 . 0 2 ) {
24xp = getX ( time ) ;

yp = getY ( time ) ;
26myPlot . addPoint ( 0 , xp , yp , t r u e ) ; }

P l o tAp p l i c a t i o n app = new Pl o tAp p l i c a t i o n ( myPlot ) ;
28}

} / / Planet c l a s s ends
30

c l a s s OOPMoon e x t e n d s OOPPlanet { / / OOPMoon = daughter c l a s s of planet
32d o u b l e radius , wmoon, xm, ym; / / R, omega s a t e l l i t e , moon wrt Sun

34p u b l i c OOPMoon( ) { radius = 0 . ; wmoon = 0 . ; }

36p u b l i c OOPMoon( d o u b l e Rad , d o u b l e pomg, d o u b l e rad , d o u b l e momg) { / / Full Constr
Radius = Rad ; wplanet = pomg ; radius = rad ; wmoon = momg; }

38/ / Coordinates of moon r e l a t i v e to Sun
p u b l i c v o i d t r a j e c t o r y ( ) {

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 85

object-oriented programs: impedance & batons 85

40d o u b l e time ;
Pl o t myPlot = new Pl o t ( ) ;

42myPlot . s e t T i t l e ("Sate l l i te orbit about planet" ) ;
myPlot . setXLabel (" x" ) ;

44myPlot . se tYLabel (" y" ) ;
f o r ( time = 0 . ; time < 3 . 2 ; time = time + 0 . 0 2 ) {

46xm = getX ( time ) + radius∗Math . cos (wmoon∗time ) ;
ym = getY ( time ) + radius∗Math . s i n (wmoon∗time ) ;

48myPlot . addPoint ( 0 , xm, ym, t r u e ) ; }
P l o tAp p l i c a t i o n app = new Pl o tAp p l i c a t i o n ( myPlot ) ;

50}

52p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) {
d o u b l e Rad , pomg, rad , momg;

54Rad = 4 . ; / / Planet
pomg = 2 . ; / / Angular v e l o c i t y of planet

56rad = 1 . ; / / S a t e l l i t e o r b i t radius
momg = 1 4 . ; / / Ang . vel , s a t e l l i t e around planet

58/ / Uncomment next 2 l i n e s for planet t r a j e c t o r y and
/ / comment other two (Moon) l i n e s

60/ / OOPlanet earth = new OOPlanet ( Rad , pomg) ;
/ / earth . t r a j e c t o r y ( ) ;

62/ / next two l i n e s i f desire the Moon t r a j e c t o r y
/ / but previous two l i n e s must be commented

64OOPMoon Selene = new OOPMoon( Rad , pomg, rad , momg) ;
Selene . t r a j e c t o r y ( ) ;

66} }
�

Listing 4.6 OOPPlanet.java creates an OOPMoon object and then plots the moon’s orbit by

applying the trajectory method to the object.

What is new about this program is that it contains two classes, OOPlanet beginning
on line 4 and OOPMoon beginning on line 31. This means that when you compile
the program, you should obtain two class files, OOPlanet.class and OOPMoon.class.
Yet because execution begins in the main method and the only main method is in
OOPMoon, you need to execute OOPMoon.class to run the program:

% java OOPMoon Execute main method

Scan the code to see how the class OOPMoon is within the class OOPlanet and
is therefore a subclass. That being the case, OOPMoon is called a daughter class and
OOPlanet is called a mother class. The daughter class inherits the properties of the
mother class as well as having properties of its own. Thus, on lines 46 and 47,
OOPMoon uses the getX(time) and getY(time) methods from the OOPlanet class
without having to say OOPlanet.getX(time) to specify the class name.

4.7 Unit II. Advanced Objects: Baton Projectiles �
In this unit we look at more advanced aspects of OOP. These aspects are designed
to help make programming more efficient by making the reuse of already written
components easier and more reliable. The ideal is to permit this even for entirely
different future projects for which you will have no memory or knowledge of the
internal workings of the already written components that you want to reuse. OOP
concepts can be particularly helpful in complicated projects in which you need to add

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 86

86 chapter 4

new features without “breaking” the old ones and in which you may be modifying
code that you did not write.

4.8 Trajectory of a Thrown Baton (Problem)

We wish to describe the trajectory of a baton that spins as it travels through the
air. On the left in Figure 4.6 the baton is shown as as two identical spheres joined
by a massless bar. Each sphere has mass m and radius r, with the centers of the
spheres separated by a distance L. The baton is thrown with the initial velocity
(Figure 4.6 center) corresponding to a rotation about the center of the lower
sphere.

Problem: Write an OOP program that computes the position and velocity of the
baton as a function of time. The program should

1. plot the position of each end of the baton as a function of time;
2. plot the translational kinetic energy, the rotational kinetic energy, and the

potential energy of the baton, all as functions of time;
3. use several classes as building blocks so that you may change one building

block without affecting the rest of the program;
4. (optional) then be extended to solve for the motion of a baton with an

additional lead weight at its center.

4.8.1 Combined Translation and Rotation (Theory)

Classical dynamics describes the motion of the baton as the motion of its center
of mass (CM) (marked with an “X” in Figure 4.6), plus a rotation about the CM.
Because the translational and rotational motions are independent, each may be
determined separately, and because we ignore air resistance, the angular velocity
ω about the CM is constant.

The baton is thrown with an initial velocity (Figure 4.6 center). The simplest way
to view this is as a translation of the entire baton with a velocity V0 and a rotation
of angular velocity ω about the CM (Figure 4.6 right). To determine ω, we note that
the tangential velocity due to rotation is

vt =
1
2
ωL. (4.20)

For the direction of rotation as indicated in Figure 4.6, this tangential velocity is
added to the CM velocity at the top of the baton and is subtracted from the CM
velocity at the bottom. Because the total velocity equals 0 at the bottom and 2V0 at
the top, we are able to solve for ω:

1
2
ωL−V0 = 0 ⇒ V0 =

1
2
ωL, ⇒ ω =

2V0

L
. (4.21)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 87

object-oriented programs: impedance & batons 87

rr

L

X

a b

m ma b

X X

2v

v

0

0

mg

Figure 4.6 Left: The baton before it is thrown. “X” marks the CM. Center: The initial conditions

for the baton as it is thrown. Right: The baton spinning in the air under the action of gravity.

If we ignore air resistance, the only force acing on the baton is gravity, and it acts
at the CM of the baton (Figure 4.6 right). Figure 4.7 shows a plot of the trajectory
[x(t), y(t)] of the CM:

(xcm, ycm) =
(
V0xt, V0yt− 1

2
gt2
)
, (vx,cm, vy,cm) = (V0x, V0y − gt) ,

where the horizontal and vertical components of the initial velocity are

V0x = V0 cos θ, V0y = V0 sin θ.

Even though ω = constant, it is a constant about the CM, which itself travels along
a parabolic trajectory. Consequently, the motion of the baton’s ends may appear
complicated to an observer on the ground (Figure 4.7 right). To describe the motion
of the ends, we label one end of the baton a and the other end b (Figure 4.6 left).
Then, for an angular orientation φ of the baton,

φ(t) = ωt+φ0 = ωt, (4.22)

where we have taken the initial φ= φ0 = 0. Relative to the CM, the ends of the
baton are described by the polar coordinates

(ra, φa) =
(
L

2
, φ(t)

)
, (rb, φb) =

(
L

2
, φ(t) +π

)
. (4.23)

The ends of the baton are also described by the Cartesian coordinates

(x′
a, y

′
a) =

L

2
[cosωt, sinωt] , (x′

b, y
′
b) =

L

2
[cos(ωt+π), sin(ωt+π)] .

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 88

88 chapter 4

q

Figure 4.7 Left: The trajectory (x(t), y(t)) followed by the baton’s CM. Right: The applet

JParabola.java showing the entire baton as its CM follows a parabola.

The baton’s ends, as seen by a stationary observer, have the vector sum of the
position of the CM plus the position relative to the CM:

(xa, ya) =
[
V0xt+

L

2
cos(ωt), V0yt− 1

2
gt2 +

L

2
sin(ωt)

]
, (4.24)

(xb, yb) =
[
V0xt+

L

2
cos(ωt+π), V0yt− 1

2
gt2 +

L

2
sin(ωt+π)

]
.

If La and Lb are the distances of ma and mb from CM, then

La =
mb

ma +mb
, Lb =

ma

ma +mb
, ⇒ maLa =mbLb. (4.25)

The moment of inertia of the masses (ignoring the bar connecting them) is

Imasses =maL
2
a +mbL

2
b . (4.26)

If the bar connecting the masses is uniform with mass m and length L, then it has
a moment of inertia about its CM of

Ibar =
1
12
mL2. (4.27)

Because the CM of the bar is at the same location as the CM of the masses, the total
moment of inertia for the system is just the sum of the two:

Itot = Imasses + Ibar. (4.28)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 89

object-oriented programs: impedance & batons 89

The potential energy of the masses is

PEmasses = (ma +mb)gh= (ma +mb)g
(
V0 t sin θ− 1

2
gt2
)
, (4.29)

while the potential energy of the bar just has ma +mb replaced by m since both
share the same CM location. The rotational kinetic energy of rotation is

KErot =
1
2
Iω2, (4.30)

with ω the angular velocity and I the moment of inertia for either the masses or
the bar (or the sum). The translational kinetic energy of the masses is

KEtrans =
1
2
m
[
(V0 sin θ− g t)2 + (V0 cos θ)2

]
, (4.31)

with ma +mb replaced by m for the bar’s translational KE.
To get a feel for the interestingly complicated motion of a baton, we recommend C D

that the reader try out the applet JParabola on the CD (Fig. 4.7 right).

% appletviewer jcenterofmass.html

4.9 OOP Design Concepts (CS)

In accord with our belief that much of education is just an understanding of what
the words mean, we start by defining OOP as programming containing component
objects with four characteristics [Smi 91]:

Encapsulation: The data and the methods used to produce or access data are
encapsulated into entities called objects. For our problem, the data are initial
positions, velocities, and properties of a baton, and the objects are the baton
and its path. As part of the OOP philosophy, data are manipulated only via
distinct methods.

Abstraction: Operations applied to objects are assumed to yield standard results
according to the nature of the objects. To illustrate, summing two matrices
always gives another matrix. By incorporating abstraction into programming,
we concentrate more on solving the problem and less on the details of the
implementation.

Inheritance: Objects inherit characteristics (including code) from their ancestors
yet may be different from their ancestors.Abaton inherits the motion of a point
particle, which in this case describes the motion of the CM, and extends that
by permitting rotations about the CM. In addition, if we form a red baton, it
inherits the characteristics of a colorless baton but with the property of color
added to it.

Polymorphism: Methods with the same name may affect different objects dif-
ferently. Child objects may have member functions with the same name but

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 90

90 chapter 4

with properties differing from those of their ancestors (analogous to method
overload, where the method used depends upon the method’s arguments).

We now solve our baton problem using OOP techniques. Although it is also
possible to use the more traditional techniques of procedural programming, this
problem contains the successive layers of complexity that make it appropriate for
OOP. We will use several source (.java) files for this problem, each yielding a differ-
ent class file. Each class will correspond to a different physical aspect of the baton,
with additional classes added as needed. There will be a class Path.java to repre-
sent the trajectory of the CM, a class Ball.java to represent the masses on the ends
of the baton, and a class Baton.java to assemble the other classes into an object rep-
resenting a projected and spinning baton. Ultimately we will combine the classes
to solve our problem.

4.9.1 Including Multiple Classes

The codes Ball.java, Path.java, and Baton.java in Listings 4.7–4.9 produce three
class files. You may think of each class as an object that may be created, manipulated,
or destroyed as needed. (Recall that objects are abstract data types with multiple
parts.) In addition, since these classes may be shared with other Java classes, more
complicated objects may be constructed by using these classes as building blocks.

� �
/ / Bal l . java : I s o l a t e d Ball with Mass and Radius

2/ / " Object " c lass , no main method , c r e a t e s & probes objec ts

4p u b l i c c l a s s B a l l {
p u b l i c d o u b l e m, r ; / / Nonstatic var iables unique to bal l

6

B a l l ( d o u b l e mass , d o u b l e radius ) { m = mass ; r = radius ; } / / Constructor
8

p u b l i c d o u b l e getM ( ) { r e t u r n m; } / / Get mass
10

p u b l i c d o u b l e getR ( ) { r e t u r n r ; } / / Get radius
12

p u b l i c d o u b l e g e t I ( ) { r e t u r n ( 2 . / 5 . ) ∗m∗r∗r ; } / / Get I
14}

�

Listing 4.7 The class Ball representing the ball on the end of the baton.

To use class files that are not in your working directory, use the import command
to tell Java where to find them.2 For example, in Chapter 3, “Visualization Tools,”
we used import ptolemy.plot.* to tell Java to retrieve all class files found in the
ptolemy/plot directory. A complication arises here in that multiple class files may
contain more than one main method. That being the case, Java uses the first main
it finds, starting in the directory from which you issued the java command.

2 Actually, the Java compiler looks through all the directories in your classpath and imports
the first instance of the needed class that it finds.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 91

object-oriented programs: impedance & batons 91

� �
/ / Path . java : Parabolic Trajec tory Class

2

p u b l i c c l a s s Path {
4p u b l i c s t a t i c f i n a l d o u b l e g = 9 . 8 ; / / S t a t i c , same a l l Paths

p u b l i c d o u b l e v0x , v0y ; / / Non−s t a t i c , unique each Path
6

p u b l i c Path ( d o u b l e v0 , d o u b l e t h e t a ) { v0x = v0 ∗ Math . cos ( t h e t a∗Math . PI / 1 8 0 . ) ;
8v0y = v0 ∗ Math . s i n ( t h e t a ∗ Math . PI / 1 8 0 . ) ; }

10p u b l i c d o u b l e getX ( d o u b l e t ) { r e t u r n v0x ∗ t ; }

12p u b l i c d o u b l e getY ( d o u b l e t ) { r e t u r n v0y ∗ t − 0 .5∗g∗ t∗ t ; }
}

�

Listing 4.8 The class Path creating an object that represents the trajectory of the center

of mass.

� �
/ / Baton . java : Combines c l a s s e s to form Baton

2i m p o r t ptolemy . p l o t . ∗ ;

4p u b l i c c l a s s Baton {
p u b l i c d o u b l e L ; / / Nonstatic var iables unique ea baton

6p u b l i c d o u b l e w; / / Omega
p u b l i c Path path ; / / Path object

8p u b l i c B a l l b a l l ; / / Bal l object

10Baton ( Path p , B a l l b , d o u b l e L1 , d o u b l e w1) { path = p ; b a l l = b ; L = L1 ; w = w1 ; }

12p u b l i c d o u b l e getM ( ) { r e t u r n 2∗ b a l l . getM ( ) ; }

14p u b l i c d o u b l e g e t I ( ) { r e t u r n 2∗ b a l l . g e t I ( ) + 1 . / 2 .∗ b a l l . getM ( ) ∗L∗L ; }

16p u b l i c d o u b l e getXa ( d o u b l e t ) { r e t u r n path . getX ( t ) + L/2∗Math . cos (w∗ t ) ; }

18p u b l i c d o u b l e getYa ( d o u b l e t ) { r e t u r n path . getY ( t ) + L/2∗Math . s i n (w∗ t ) ; }

20p u b l i c d o u b l e getXb ( d o u b l e t ) { r e t u r n path . getX ( t ) − L/2∗ Math . cos (w∗ t ) ; }

22p u b l i c d o u b l e getYb ( d o u b l e t ) { r e t u r n path . getY ( t ) − L/2∗Math . s i n (w∗ t ) ; }

24p u b l i c s t a t i c v o i d main ( S t r i n g args [ ] ) { / / Main method
d o u b l e x , y ;

26Pl o t myPlot = new Pl o t ( ) ; / / Create Plot
B a l l myBall = new B a l l ( 0 . 5 , 0 . 4 ) ; / / Create Ball

28Path myPath = new Path ( 1 5 . , 3 4 . ) ; / / Create Path
Baton myBaton = new Baton ( myPath , myBall , 2 . 5 , 1 5 . ) ; / / Baton

30myPlot . s e t T i t l e ("y vs x" ) ;
myPlot . setXLabel ("x" ) ;

32myPlot . se tYLabel ("y" ) ;
f o r ( d o u b l e t = 0 . ; myPath . getY ( t ) >= 0 . ; t += 0 . 0 2 )

34{ x = myBaton . getXa ( t ) ;
y = myBaton . getYa ( t ) ;

36System . out . p r i n t l n ("t = " + t + " x = " + x + " y = " + y ) ;
myPlot . addPoint ( 0 , x , y , t r u e ) ; }

38Pl o tAp p l i c a t i o n app = new Pl o tAp p l i c a t i o n ( myPlot ) ;
} }

�

Listing 4.9 Baton.java combines ball and path classes to form a baton.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 92

92 chapter 4

In a project such as this where there are many different types of objects, it is a good
idea to define each object inside its own .java file (and therefore its own .class file)
and to place the main method in a file such as Main.java or ProjectName.java. This
separates individual objects from the helper codes that glue the objects together.
And since reading a well-written main method should give you a fair idea of what
the entire program does, you want to be able to find the main methods easily.

4.9.2 Ball and Path Class Implementation

The Ball class in Listing 4.7 creates an object representing a sphere of massm, radius
r, and moment of inertia I . It is our basic building block. Scrutinize the length of
the methods in Ball; most are short. Inasmuch as we will be using Ball as a building
block, it is a good idea to keep the methods simple and just add more methods to
create more complicated objects. Take stock of how similar Ball is to the Complex
class in its employment of dynamic (nonstatic) variables. In the present case, m and
r behave like the re and im dynamic variables in the Complex class in that they
too act by being attached to the end of an object’s name. As an example, myBall.m
extracts the mass of a ball object.

In Ball.java we have defined three dynamic methods, getM, getR, and getI.
When affixed to a particular ball object, these methods extract its mass, radius,
and moment of inertia, respectively. Dynamic methods are like dynamic variables
in that they behave differently depending on the object they modify. To cite an
instance, ball1.getR() and ball2.getR() return different values if ball1 and ball2
have different radii. The getI method computes and returns the moment of inertia
I = 2

5mr
2 of a sphere for an axis passing through its center. The methods getM

and getR are template methods; that is, they do not compute anything now but
are included to facilitate future extensions. To name an instance, if the Ball class
becomes more complex, you may need to sum the masses of its constituent parts in
order to return the ball’s total mass. With the template in place, you do that without
having to reacquaint yourself with the rest of the code first.

Look back now and count all the methods in the Ball class. You should find four,
none of which is a main method. This is fine because these methods are used by
other classes, one of which will have a main method.

Exercise: Compile the Ball class. If the Java compiler does not complain, you
know Ball.java contains valid code. Next try to run the byte code in Ball.class:

> java Ball // Run Ball.class

You should get an error message of the type java.lang.NoSuchMethodError, with
the word main at the end. This is Java’s way of saying you need a main method
to execute a class file.

Exercise: Be adventurous and make a main method for the Ball class. Because
we have not yet included Path and Baton objects, you will not be able to do

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 93

object-oriented programs: impedance & batons 93

much more than test that you have created the Ball object, but that is at least a
step in the right direction:

� �
p u b l i c s t a t i c v o i d main ( S t r i n g [ ] args ) {

B a l l myBall = new B a l l ( 3 . 2 , 0 . 8 ) ;
System . out . p r i n t l n ("M: " + myBall . getM ( ) ) ;
System . out . p r i n t l n ("R: " + myBall . getR ( ) ) ;
System . out . p r i n t l n ("I : " + myBall . g e t I ( ) ) ; }

�

This testing code creates a Ball object and prints out its properties by affixing
get methods to the object. Compile and run the modified Ball.java and thereby
ensure that the Ball class still works properly.

The class Path in Listing 4.8 creates an object that represents the trajectory
[(x(t), y(t)] of the center of mass. The class Path is another building block that
we will use to construct the baton’s trajectory. It computes the initial velocity com-
ponents V0x and V0y and stores them as the dynamic class variables v0x and v0y.
These variables need to be dynamic because each new path will have its own initial
velocity. The acceleration resulting from gravity is the constant g, which being the
same for all objects can be safely declared as a static variable independent of class
instance. Survey how Path.java stores g not only as a static variable but also as
a class variable so that its value is available to all methods in the class. The con-
structor method Path( ) of the class Path takes the polar coordinates (V0, θ) as
arguments and computes the components of the initial velocity, (v0x, v0y). This
too is a building-block class, so it does not need a main method.

Exercise: Use the main method below to test the class Path. Make a Path object
and find its properties at several different times. Remember, since this a test
code, it does not need to do anything much. Just making an object and checking
that it has the expected properties are enough.

� �
p u b l i c s t a t i c v o i d main ( S t r i n g [ ] args ) {

Path myPath = new Path ( 3 . 0 , 4 5 . 0 ) ;
f o r ( d o u b l e t = 0 . 0 ; t <= 4 . 0 ; t += 1 . 0 ) {

d o u b l e x = myPath . getX ( t ) ;
d o u b l e y = myPath . getY ( t ) ;
System . out . p r i n t l n ("t = " , t , " x = " , x , " y = " , y ) ; } }

�

4.9.3 Composition, Objects Within Objects

A good way to build a complex system is to assemble it from simpler parts. By
way of example, automobiles are built from wheels, engines, seats, and so forth,
with each of these parts being built from simpler parts yet. OOP builds programs
in much the same way. We start with the primitive data types of integers, floating-
point numbers, and Boolean variables and combine them into more complicated

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 94

94 chapter 4

data types called objects (what we did in combining two doubles into a Complex
object). Then we build more complicated objects from simpler objects, and so forth.

The technique of constructing complex objects from simpler ones is called com-
position. As a consequence of the simple objects being contained within the more
complex ones, the former are described by nonstatic class variables. This means that
their properties change depending upon which object they are within. When you
use composition to create more complex objects, you are working at a higher level of
abstraction. Ideally, composition hides the distracting details of the simpler objects
from your view so that you focus on the major task to be accomplished. This is
analogous to first designing the general form of a bridge before worrying about
the colors of the cables to be used.

4.9.4 Baton Class Implementation

Now that we have assembled the building-block classes, we combine them to create
the baton’s trajectory. We call the combined class Baton.java (Listing 4.9) and place
the methods to compute the positions of the ends of the baton relative to the CM
in it. Check first how the Baton class and its methods occupy lines 4–22, while the
main method is on lines 24–39. Whether the main method is placed first or last is a
matter of taste; Java does not care—but some programmers care very much. Look
next at how the Baton class contains the four dynamic class variables, L, w, path,
and ball. Being dynamic, their values differ for each baton, and since they are class
variables (not within any methods), they may be used by all methods in the class
without being passed as arguments.

The subobjects used to construct the baton object are created with the statements

public Path path; // Path subobject 7
public Ball ball; // Ball subobject 8

These statements tell Java that we are creating the variables path and ball to rep-
resent objects of the types Path and Ball. To do this, we must place the methods
defining Ball and Path in the directory in which we are creating a Baton. The Java
compiler is flexible enough for you to declare class variables in any order or even
pass classes as arguments.

The constructor Baton(Path p, Ball b, . . .) on line 10 takes the Path and Ball
objects as arguments and constructs the Baton object from them. On lines 7 and 8 it
assigns these arguments to the appropriate class variables path and ball. We create
a Baton from a Ball and a Path such that there is a Ball object at each end, with the
CM following the Path object:

Baton myBaton = new Baton(myPath, myBall, 0.5, 15.); 29

Study how the Baton constructor stores the Ball and Path objects passed to it inside
the Baton class even though Ball and Path belong to different classes.

On lines 12–22 we define the methods for manipulating baton objects. They all
have a get as part of their name. This is the standard way of indicating that a

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 95

object-oriented programs: impedance & batons 95

method will retrieve or extract some property from the object to which the method
is appended. For instance, Baton.getM returns 2m, that is, the sum of the masses
of the two spheres. Likewise, the getI method uses the parallel axes theorem to
determine the moment of inertia of the two spheres about the CM, I = 2Im + 1

2mL
2,

wherem and Im are the mass and moment of inertia of the object about its center of
mass. On lines 14–22 we define the methods getXa, getYa, getXb, and getYb. These
take the time t as an argument and return the coordinates of the baton’s ends. In
each method we first determine the position of the CM by calling path.getX or
path.getY and then add on the relative coordinates of the ends. On line 24 we
get to the main method. It starts by creating a Plot object myPlot, a Path object
myPath, and a Ball object myBall. In each case we set the initial conditions for the
object by passing them as arguments to the constructor (what is called after the new
command).

4.9.5 Composition Exercise

1. Compile and run the latest version of Baton.java. For this to be successful, you
must tell Java to look in the current directory for the class files correspond-
ing to Ball.java and Path.java. One way to do that is to issue the javac and
java commands with the -classpath option, with the location of the classes
following the option. Here the dot . is shorthand for “the current directory”:

> javac –classpath . Baton.java // Include current directory classes
> java –classpath . Baton // Include current directory classes

The program should run and plot the trajectory of one end of the baton as it
travels through the air (Figure 4.7).

2. If you want to have the Java compiler automatically include the current
directory in the classpath (and to avoid the –classpath . option), you need
to change your CLASSPATH environment variable to include the present
working directory.

3. On line 33 we see that the program executes a for loop over values of t for
which the baton remains in the air:

for (double t = 0.0; myPath.getY(t) >= 0.0; t += 0.02) 33

This says to repeat the loop as long as y(t) is positive, that is, as long as the
baton is in the air. Of course we could have had the for loop remain active
for times up to the hang time T , but then we would have had to calculate the
hang time! The weakness in our approach is that the loop will be repeated
indefinitely if y(t) never becomes negative.

4. Plot the trajectory of end b of the baton on the same graph that shows the
trajectory of end a. You may do this by copying and pasting the for loop for
a and then modifying it for b (making sure to change the data set number in
the call to PtPlot so that the two ends are plotted in different colors).

5. Use a PtPlot application to print out your graph.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 96

96 chapter 4

6. Change the mass of the ball variable to some large number, for instance, 50 kg,
in the Baton constructor method. Add print statements in the constructor and
the main program to show how the ball class variable and the myBall object
are affected by the new mass. You should find that ball and myBall both
reference the same object since they both refer to the same memory location.
In this way changes to one object are reflected in the other object.

In Java, an object is passed between methods and manipulated by reference. This
means that its address in memory is passed and not the actual values of all the
component parts of it. On the other hand, primitive data types like int and double
are manipulated by value:

� �
B a l l myBall = new B a l l ( 1 . 0 , 3 . 0 ) ; / / Create object
B a l l p = myBall ; / / Now p r e f e r s to same object
B a l l q = myBall ; / / Create another reference

�

At times we may actually say that objects are references. This means that when one
object is set equal to another, both objects point to the same location in memory
(the start location of the first component of the object). Therefore all three variables
myBall, p, and q in the above code fragment refer to the same object in memory. If
we change the mass of the ball, all three variables will reflect the new mass value.
This also works for object arguments: If you pass an object as an argument to a
method and the method modifies the object, then the object in the calling program
will also be modified.

4.9.6 Calculating the Baton’s Energy (Extension)

Extend your classes so that they plot the energy of the baton as a function of time.
Plot the kinetic energy of translation, the kinetic energy of rotation, and the potential
energy as functions of time:

1. The translational kinetic energy of the baton is the energy associated with the
motion of the center of mass. Write a getKEcm method in the Baton class that
returns the kinetic energy of translation KEcm(t) =mvcm(t)2/2. In terms of
pseudocode the method is

� �
Get present value of Vx .
Get present value of Vy .
Compute V^2 = Vx^2 + Vy^2.
Return mV^2/2.

�

Before you program this method, write getVx and getVy methods that extract
the CM velocity from a baton. Seeing as how the Path class already computes
xcm(t) and ycm(t), it is the logical place for the velocity methods. As a guide,
we suggest consulting the getX and getY methods.

2. Next we need the method getKEcm in the Baton class to compute KEcm(t).
Inasmuch as the method will be in the Baton class, we may call any of the

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 97

object-oriented programs: impedance & batons 97

methods in Baton, as well as access the path and ball subobjects there (sub-
objects because they reside inside the Baton object or class). We obtain the
velocity components by applying the getV methods to the path subobject
within the Baton object:

� �
p u b l i c d o u b l e getKEcm ( d o u b l e t ) {

d o u b l e vx = path . getVx ( t ) ;
d o u b l e vy = path . getVy ( t ) ;
d o u b l e v2 = vx ∗ vx + vy ∗ vy ;
r e t u r n getM ( ) ∗ v2 / 2 ; }

�

Even though the method is in a different class than the object, Java handles
this. Study how getM(), being within getKEcm, acts on the same object as does
getKEcm without explicitly specifying the object.

3. Compile the modified Baton and Path classes.
4. Modify Baton.java to plot the translational kinetic energy of the center of

mass as a function of time. Comment out the old for loops used for plotting
the positions of the baton’s ends and add the code

� �
f o r ( d o u b l e t = 0 . 0 ; myPath . getY ( t ) >= 0 . 0 ; t += 0 . 0 2 ) {

d o u b l e KEcm = myBaton . getKEcm ( t ) ;
myPlot . addPoint ( 0 , t , KEcm, t r u e ) ; }

�

Compile the modified Baton.java and check that your plot is physically rea-
sonable. The translational kinetic energy should decrease and then increase
as the baton goes up and comes down.

5. Write a method in the Baton class that computes the kinetic energy of rotation
about the CM, KEro = 1

2Iω
2. Call getI to extract the moment of inertia of the

baton and check that all classes still compile properly.
6. The potential energy of the baton PE(t) =mgycm(t) is that of a point particle

with the total mass of the baton located at the CM. Write a method in the Baton
class that computes PE. Use getM to extract the mass of the baton and use
path.g to extract the acceleration due to gravity g. To determine the height as
a function of time, write a method path.getY(t) that accesses the path object.
Make sure that the methods getKEcm, getKEr, and getPE are in the Baton
class.

7. Plot on one graph the translational kinetic energy, the kinetic energy of rota-
tion, the potential energy, and the total energy. The plots may be obtained
with commands such as

� �
f o r ( d o u b l e t = 0 . ; myPath . getY ( t ) >= 0 . ; t += 0 . 0 2 ) {

d o u b l e KEcm = myBaton . getKEcm ( t ) ; / / KE of CM
d o u b l e KEr = myBaton . getKEr ( t ) ; / / KE of r o t a t i o n
d o u b l e PE = myBaton . getPE ( t ) ; / / P o t e n t i a l
d o u b l e t o t a l = KEcm + KEr + PE ; / / Total Energy
myPlot . addPoint ( 0 , t , KEcm, t r u e ) ; / / To data s e t 0
myPlot . addPoint ( 1 , t , KEr , t r u e ) ; / / To data s e t 1
myPlot . addPoint ( 2 , t , PE , t r u e ) ; / / To data s e t 2
myPlot . addPoint ( 3 , t , t o t a l , t r u e ) ; } / / To data s e t 3

�

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 98

98 chapter 4

Check that all the plotting commands are object-oriented, with myPlot being
the plot object. Label your data sets with a myPlot.addLegend command out-
side the for loop and check that your graph is physically reasonable. The total
energy and rotational energies should both remain constant in time. However,
the gravitational potential energy should fluctuate.

4.9.7 Examples of Inheritance and Object Hierarchies

Up until this point we have built up our Java classes via composition, that is, by
placing objects inside other objects (using objects as arguments). As powerful as
composition is, it is not appropriate in all circumstances. As a case in point, you
may want to modify the Baton class to create similar, but not identical, objects such
as 3-D batons. A direct approach to extending the program would be to copy and
paste parts of the original code into a new class and then modify the new class.
However, this is error-prone and leads to long, complicated, repetitive code. The
OOP approach applies the concept of inheritance to allow us to create new objects
that inherit the properties of old objects but have additional properties as well. This
is how we create entire hierarchies of objects.

As an example, let us say we want to place red balls on the ends of the baton. We
make a new class RedBall that inherits properties from Ball by using the extend
command:

� �
p u b l i c c l a s s RedBall e x t e n d s B a l l {

. . .
�

As written, this code creates a RedBall class that is identical to the original Ball class.
The key word extends tells Java to copy all the methods and variables from Ball
into RedBall. In OOP terminology, the Ball class is the parent class or superclass, and
the RedBall class is the child class or subclass. It follows then that a class hierarchy
is a sort of family tree for classes, with the parent classes at the top of the tree. As
things go, children beget children of their own and trees often grow high.

To make RedBall different from Ball, we add the property of color:
� �

p u b l i c c l a s s RedBall e x t e n d s B a l l {

S t r i n g getColor ( )
{ r e t u r n "Red" ; }

d o u b l e getR ( )
{ r e t u r n 1 . 0 ; }

}
�

Now we append the getColor method to a RedBall to find out its color. Consider
what it means to have the getR method defined in both the Ball and RedBall classes.
We do this because the Java compiler assumes that the getR method in RedBall is

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 99

object-oriented programs: impedance & batons 99

more specialized, so it ignores the original method in the Ball class. In computer
science language, we would say that the new getR method overrides the original
method.

4.9.8 Baton with a Lead Weight (Application)

As a second example, we employ inheritance to create a class of objects representing
a baton with a weight at its center. We call this new class LeadBaton.java and make
it a child of the parent class Baton.java. Consequently, the LeadBaton class inherits
all the methods from the parent Baton class, in addition to having new ones of
its own:

� �
/ / LeadBaton : c l a s s inher i tance of methods from Baton

p u b l i c c l a s s LeadBaton {
p u b l i c d o u b l e M; / / Non−s t a t i c c l a s s var iables

LeadBaton ( Path p , B a l l b , d o u b l e L1 , d o u b l e w1, d o u b l e M1) {
s u p e r ( p , b , L1 , w1) ; / / Baton const ruc tor

M = M1;
}

p u b l i c d o u b l e getM ( )
{ r e t u r n s u p e r . getM ( ) + M; } / / Call getM in Baton

�

Here the nondefault constructor LeadBaton(. . .) takes five arguments, while the
Baton constructor takes only three. For the LeadBaton constructor to work, it must
call the Baton constructor in order to inherit the properties of a Baton. This is accom-
plished by use of the key word super, which is shorthand for look in the superclass
and which tells Java to look in the parent, or superclass, for the constructor. We
may also call methods with the super key word; to illustrate, super.getM() will call
the getM method from Baton in place of the getM method from LeadBaton. Finally,
because the LeadBaton class assigns new values to the mass, LeadBaton overrides
the getM method of Baton.

Exercise:

1. Run and create plots from the LeadBaton class. Start by removing the main
method from Baton.java and placing it in the file Main.java. Instead of
creating a Baton, now create a LeadBaton with

LeadBaton myBaton = new LeadBaton(myPath, myBall, 2.5, 15., 10.);

Here the argument “10.” describes a 10-kg mass at the center of the baton.
2. Compile and run the main method, remembering to use the option

“−classpath.” if needed. You should get a plot of the energies of the lead
baton versus time. Compare its energy to an ordinary baton’s and comment
on the differences.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 100

100 chapter 4

3. You should see now how OOP permits us to create many types of batons
with only slight modifications of the code. You can switch between a
Baton and a LeadBaton object with only a single change to main, a
modification that would be significantly more difficult with procedural
programming.

4.9.9 Encapsulation to Protect Classes

In the previous section we created the classes for Ball, Path, and Baton objects.
In all cases the Java source code for each class had the same basic structure: class
variables, constructors, and get methods. Yet classes do different things, and it is
common to categorize the functions of classes as either of the following.

Interface: How the outside world manipulates an object; all methods that are
applied to that object; or

Implementation: The actual internal workings of an object; how the methods
make their changes.

As applied to our program, the interface for the Ball class includes a constructor
Ball and the getM, getR, and getI methods. The interface for the Path class includes
a constructor Path and the getX and getY methods.

Pure OOP strives to keep objects abstract and to manipulate them only through
methods. This makes it easy to follow and to control where variables are changed
and thereby makes modifying an existing program easier and less error-prone. With
this purpose in mind, we separate methods into those that perform calculations and
those that cause the object to do things. In addition, to protect our objects from being
misused by outsiders, we invoke the private (in contrast to public) key word when
declaring class variables. This ensures that these variables may be accessed and
changed only from inside the class. Outside code may still manipulate our objects,
but it will have to do so by calling the methods we have tested and know will not
damage them.

Once we have constructed the methods and made the class variables private,
we have objects that are protected by having their internal codes entirely hidden
to outside users. As programmers, we may rewrite an object’s code as we want
and still have the same working object with a fixed interface for the rest of the
world. Furthermore, since the object’s interface is constant, even though we may
change the object, there is no need to modify any code that uses the object. This
is a great advance in the ability to reuse code and to use other people’s codes
properly.

This two-step process of creating and protecting abstract objects is known as
encapsulation.An encapsulated object may be manipulated only in a general manner
that keeps the irrelevant details of its internal workings safely hidden within. Just
what constitutes an “irrelevant detail” is in the eye of the programmer. In general,
you should place the private key word before every nonstatic class variable and

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 101

object-oriented programs: impedance & batons 101

then write the appropriate methods for accessing the relevant variables. This OOP
process of hiding the object’s variables is called data hiding.

4.9.10 Encapsulation Exercise

1. Place the private key word before all the class variables in Ball.java. This
accomplishes the first step in encapsulating an object. Print out myBall.m and
myBall.r from the main method. The Java compiler should complain because
the variables are now private (visible to Ball class members only) and the
main method is outside the Ball class.

2. Create methods that allow you to manipulate the object in an abstract way;
for example, to modify the mass of a Ball object and assign it to the private
class variable m, include the command myBall.setM(5.0). This is the sec-
ond step in encapsulation. We already have the methods getM, getR, and
getI, and the object constructor Ball, but they do not assign a mass to the
ball. Insofar as we have used a method to change the private variable m,
we have kept our code as general as possible and still have our objects
encapsulated.

3. When we write getM(), we are saying that M is the property to be retrieved from
a Ball object. Inversely, the method setM sets the property M of an object equal
to the argument that is given. This is part of encapsulation because with both
get and set methods on hand, you do not need to access the class variables
from outside the class. The use of get and set methods is standard practice in
Java. You do not have to write get and set methods for every class you create,
but you should create these methods for any class you want encapsulated. If
you look back at Chapter 3, “Visualization Tools,” you will see that the classes
in the PtPlot library have many get and set methods, for example, getTitle,
setTitle, getXLabel, and setXLabel.

4. Java’s interface key word allows us to specify an interface. Here BallInterface
defines an interface for Ball-like objects:

� �
p u b l i c i n t e r f a c e B a l l I n t e r f a c e {

p u b l i c d o u b l e getM ( ) ;
p u b l i c d o u b l e getR ( ) ;
p u b l i c d o u b l e g e t I ( ) ;

}
�

This interface does not do anything by itself, but if you modify Ball.java so
that public class Ball is replaced by public class Ball implements BallInter-
face, then the Java compiler will check that the Ball class has all the methods
specified in the interface. The Java commands interface and implements are
useful in having the compiler check that your classes have all the required
methods.

5. Add an arbitrary new method to the interface and compile Ball. If the method
is found in Ball.java, then the Ball class will compile without error.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 102

102 chapter 4

4.9.11 Complex Object Interface (Extension)

In Listing 4.10 we display KomplexInterface.java, our design for an interface for
complex numbers. To avoid confusion with the Complex objects, we call the new
objects Komplex. We include methods for addition, subtraction, multiplication,
division, negation, and conjugation, as well as get and set methods for the real,
imaginary, modulus, and phase. We include all methods in the interface and check
that javac compiles the interface without error. Remember, an interface must give
the arguments and return type for each method.

� �
/ / KomplexInterface : complex numbers via i n t e r f a c e

2

p u b l i c i n t e r f a c e KomplexInterface {
4p u b l i c d o u b l e getRe ( ) ;

p u b l i c d o u b l e getIm ( ) ;
6p u b l i c d o u b l e setRe ( ) ;

p u b l i c d o u b l e setIm ( ) ;
8/ / type = 0 : polar representat ion ; other : rec tangular

p u b l i c v o i d add ( Komplex other , i n t type ) ;
10p u b l i c v o i d sub ( Komplex other , i n t type ) ;

p u b l i c v o i d mult ( Komplex other , i n t type ) ;
12p u b l i c v o i d div ( Komplex other , i n t type ) ;

p u b l i c v o i d con j ( i n t type ) ; }
�

Listing 4.10 KomplexInterface.java is an interface for complex numbers and is used in

Komplex.java in Listing 4.11.

We still represent complex numbers in Cartesian or polar coordinates:

z = x+ iy = reiθ. (4.32)

Insofar as the complex number itself is independent of representation, we must
be able to switch between the rectangular or polar representation. This is useful
because certain manipulations are simpler in one representation than in the other;
for example, division is easier in polar represenation:

z1
z2

=
a+ ib

c+ id
=
ac+ bd+ i(bc− ad)

c2 + d2 =
r1e

iθ1

r2eiθ2
=
r1
r2
ei(θ1−θ2). (4.33)

Listings 4.11 and 4.12 are our implementation of an interface that permits
us to use either representation when manipulating complex numbers. There are
three files, Komplex, KomplexInterface, and KomplexTest, all given in the listings.
Because these classes call each other, each must be in a class by itself. However, for
the compiler to find all the classes that it needs, all three classes must be compiled
with the same javac command:

% javac Komplex.java KomplexInterface.java KomplexTest.java

% java KomplexTest // Run test

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 103

� �
/ / Komplex : Cartesian / polar complex via i n t e r f a c e

2/ / ’ type = 0 ’ −> polar representat ion , e lse rec tangular

4p u b l i c c l a s s Komplex imp l ements KomplexInterface {
p u b l i c d o u b l e mod, theta , re , im ;

6

p u b l i c Komplex ( ) { / / Default const ruc tor
8mod = 0 ; t h e t a = 0 ; re = 0 ; im = 0 ; }

10p u b l i c Komplex ( d o u b l e x , d o u b l e y , i n t type ) { / / Constructor
i f ( type == 0) {mod = x ; t h e t a = y ; } e l s e { re = x ; im = y ; } }

12

p u b l i c d o u b l e getRe ( ) { r e t u r n mod∗Math . cos ( t h e t a ) ; }
14

p u b l i c d o u b l e getIm ( ) { r e t u r n mod∗Math . s i n ( t h e t a ) ; }
16

p u b l i c d o u b l e setRe ( ) { re = mod∗Math . cos ( t h e t a ) ; r e t u r n re ; }
18

p u b l i c d o u b l e setIm ( ) { im = mod∗Math . s i n ( t h e t a ) ; r e t u r n im ; }
20

p u b l i c v o i d add ( Komplex other , i n t type ) {
22d o u b l e tempMod = 0 . ;

i f ( type == 0) {
24tempMod = Math . s q r t ( t h i s .mod∗ t h i s .mod + other .mod∗other .mod

+ 2∗ t h i s .mod∗other .mod∗Math . cos ( t h i s . theta−other . t h e t a ) ) ;
26t h i s . t h e t a = Math . atan2 ( t h i s .mod∗Math . s i n ( t h i s . t h e t a )

+ other .mod∗Math . s i n ( other . t h e t a ) , t h i s .mod∗Math . cos ( t h i s . t h e t a )
28+ other .mod∗Math . cos ( other . t h e t a ) ) ;

t h i s .mod = tempMod ;
30} e l s e { t h i s . re = t h i s . re + other . re ; t h i s . im = t h i s . im + other . im ; }

}
32

p u b l i c v o i d sub ( Komplex other , i n t type ) {
34i f ( type == 0) {

t h i s .mod = Math . s q r t ( t h i s .mod∗ t h i s .mod + other .mod∗other .mod −
362∗ t h i s .mod∗other .mod∗(Math . cos ( t h i s . t h e t a )∗Math . cos ( other . t h e t a )

+ Math . s i n ( t h i s . t h e t a )∗Math . s i n ( other . t h e t a ) ) ) ;
38t h i s . t h e t a = Math . atan ( ( t h i s .mod∗Math . s i n ( t h i s . t h e t a )

−other .mod∗Math . s i n ( other . t h e t a ) ) /( t h i s .mod∗Math . cos ( t h i s . t h e t a )
40−other .mod∗Math . cos ( other . t h e t a ) ) ) ;

} e l s e { t h i s . re = t h i s . re−other . re ; t h i s . im = t h i s . im−other . im ; }
42}

44p u b l i c v o i d div ( Komplex other , i n t type ) {
i f ( type == 0) { t h i s .mod = t h i s .mod/other .mod;

46t h i s . t h e t a = t h i s . theta−other . t h e t a ;
} e l s e { t h i s . re = ( t h i s . re∗other . re + t h i s . im∗other . im ) /

48( other . re∗other . re + other . im∗other . im ) ;
t h i s . im = ( t h i s . im∗other . re−t h i s . re∗other . im ) /

50( other . re∗other . re + other . im∗other . im ) ;
}

52}

54p u b l i c v o i d mult ( Komplex other , i n t type ) {
i f ( type == 0) {

56t h i s .mod = t h i s .mod∗other .mod;
t h i s . t h e t a = t h i s . t h e t a + other . t h e t a ;

58} e l s e {
Komplex ans = new Komplex ( ) ;

60ans . re = t h i s . re∗other . re−t h i s . im∗other . im ;
ans . im = t h i s . re∗other . im + t h i s . im∗other . re ;

62t h i s . re = ans . re ;
t h i s . im = ans . im ;

64}
}

66

p u b l i c v o i d con j ( i n t type ) {
68i f ( type == 0) { t h i s .mod = t h i s .mod; t h i s . t h e t a = −t h i s . t h e t a ; }

e l s e { t h i s . re = t h i s . re ; t h i s . im = −t h i s . im ; } }
70}

�

Listing 4.11 Komplex.java manipulates complex numbers using the interface

KomplexInterface in Listing 4.10.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 104

104 chapter 4

� �
/ / KomplexTest : t e s t KomplexInterface

2p u b l i c c l a s s KomplexTest {

4p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) {
Komplex a , e ;

6e = new Komplex ( ) ;
a = new Komplex ( 1 . , 1 . , 1 ) ;

8Komplex b = new Komplex ( 1 . , 2 . , 1 ) ;
System . out . p r i n t l n ("Cartesian : Re a = " + a . re + " , Im a = " + a . im + "" ) ;

10System . out . p r i n t l n ("Cartesian : Re b = " + b . re + " , Im b = " + b . im + "" ) ;
b . add ( a , 1 ) ;

12e = b ;
System . out . p r i n t l n ("Cartesian : e=b + a=" + e . re + " " + e . im + "" ) ;

14/ / Polar Version , uses get and s e t methods
a = new Komplex ( Math . s q r t ( 2 . ) , Math . PI / 4 . , 0 ) ; / / Polar via 0

16b = new Komplex ( Math . s q r t ( 5 . ) , Math . atan2 ( 2 . , 1 . ) , 0 ) ;
System . out . p r i n t l n ("Polar : Re a = " + a . getRe ( ) + " , Im a = " + a . getIm ( ) + "" ) ;

18System . out . p r i n t l n ("Polar : Re b = " + b . getRe ( ) + " , Im b = " + b . getIm ( ) + "" ) ;
b . add ( a , 0 ) ;

20e = b ;
System . out . p r i n t l n ("Polar e=b + a = " + e . getRe ( ) + " " + e . getIm ( ) + "" ) ;

22}
}

�

Listing 4.12 KomplexTest.java tests Komplex and KomplexInterface. All three classes must

be compiled with the same javac command.

You should observe how KomplexInterface requires us to have methods for
getting and setting the real and imaginary parts of Komplex objects, as well as
adding, subtracting, multiplying, dividing, and conjugating complex objects. (In
the comments we see the suggestion that there should also be methods for getting
and setting the modulus and phase.)

The class Komplex contains the constructors for Komplex objects. This differs
from our previous implementation Complex by having the additional integer vari-
able type. If type = 0, then the complex numbers are in polar representation, else
they are in Cartesian representation. So, for example, the method for arithmetic,
such as the add method on line 22, is actually two different methods depending
upon the value of type. In contrast, the get and set methods for real and imaginary
parts are needed only for the polar representation, and so the value of type is not
needed.

4.9.12 Polymorphism,Variable Multityping

Polymorphism allows a variable name declared as one type to contain other types
as needed while the program runs. The idea may be applied to both the class and
the interface. Class polymorphism allows a variable that is declared as one type to
contain types it inherits. To illustrate, if we declare myBaton of type Baton,

Baton myBaton;

then it will be valid to assign an object of type Baton to that variable, which is
what we have been doing all along. However, it is also permissible to assign a

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 105

object-oriented programs: impedance & batons 105

LeadBaton object to myBaton, and in fact it is permissible to assign any other class
that it inherits from the Baton class to that variable:

myBaton = Baton(myPath, myBall, 0.5, 15.); // Usual
myBaton = LeadBaton(myPath, myBall, 0.9, 20., 15.); // OK too
myBaton = LeadBaton(myPath, myBall, 0.1, 1.5, 80.); // Also OK

Polymorphism applies to the arguments of methods as well. If we declare an argu-
ment as type Baton, we are saying that the class must be a Baton or else some class
that is a child class of Baton. This is possible because the child classes will have the
same methods as the original Baton class (a child class may override a method or
leave it alone, but it may not eliminate it).

4.10 Supplementary Exercises

Use a Java interface to introduce another object corresponding to the polar
representation of complex numbers:

r =
√
x2 + y2, θ = tan−1(y/x), x= r cos θ, y = r sin θ.

1. Define a constructor Complex (r, theta, 1) that constructs the polar represen-
tation of a complex number from r and θ. (The 1 is there just to add a third
argument and thereby to make the constructor unique.)

2. Define a method (static or nonstatic) that permits conversion from the
Cartesian to the polar representation of complex numbers.

3. Define a method (static or nonstatic) that permits conversion from the polar
to the Cartesian representation of complex numbers.

4. Define methods (static or nonstatic) for addition, subtraction, multiplication,
and division of complex numbers in polar representation. (Hint: Multiplica-
tion and division are a snap for complex numbers in polar representation,
while addition and subtraction are easier for complex numbers in Cartesian
representation.)

4.11 OOP Example: Superposition of Motions

The isotropy of space implies that motion in one direction is independent of motion
in other directions. So, when a soccer ball is kicked, we have acceleration in the verti-
cal direction and simultaneous, yet independent, uniform motion in the horizontal
direction. In addition, Galilean invariance (velocity independence of Newton’s laws
of motion) tells us that when an acceleration is added to uniform motion, the dis-
tance covered due to the acceleration adds to the distance covered due to uniform
velocity.

Your problem is to describe motion in such a way that velocities and acceler-
ations in each direction are treated as separate entities or objects independent of

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 106

106 chapter 4

motion in other directions. In this way the problem is viewed consistently from
both the programming philosophy and the basic physics.

4.12 Newton’s Laws of Motion (Theory)

Newton’s second law of motion relates the force vector F acting on a massm to the
acceleration vector a of the mass:

F =ma, Fi =m
d2xi

dt2
, (i= 1, 2, 3). (4.34)

If the force in the x direction vanishes, Fx = 0, the equation of motion (4.34) has
a solution corresponding to uniform motion in the x direction with a constant
velocity v0x:

x= x0 + v0xt. (4.35)

Equation (4.35) is the base or parent object in our example. If the force in the y
direction also vanishes, then there will also be uniform y motion:

y = y0 + v0yt. (4.36)

We consider uniform x motion as a parent and view uniform y motion as a child.
Equation (4.34) tells us that a constant force in the x direction causes a constant

acceleration ax in that direction. The solution of the x equation of motion with
uniform acceleration is

x= x0 + v0xt+ 1
2axt

2. (4.37)

For projectile motion without air resistance, we usually have ax = 0 and ay = −g =
−9.8 m/s2:

y = y0 + v0yt− 1
2gt

2. (4.38)

This y motion is a child of the parent x motion.

4.13 OOP Class Structure (Method)

The class structure we use to solve our problem contains the objects

Parent class Um1D: 1-D uniform motion for given initial conditions,
Child class Um2D: uniform 2-D motion; child class of Um1D,
Child class Am2d: 2-D accelerated motion; child class of Um2D.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 107

object-oriented programs: impedance & batons 107

The member functions include

x: position after time t,
archive: creator of a file of position versus time.

For our projectile motion, encapsulation is a combination of the initial conditions
(x0, vx0) with the member functions used to compute x(t). Our member functions
are the creator of the class of uniform 1-D motion Um1D and the creator x(t) of
a file of x as a function of time t. Inheritance is the child class Um2D for uniform
motion in both the x and y directions, it being created from the parent class Um1D
of 1-D uniform motion. Abstraction is present (although not used powerfully) by
the simple addition of motion in the x and y directions. Polymorphism is present by
having the member function that creates the output file different for 1-D and 2-D
motions. In this implementation of OOP, the classAccm2D for accelerated motion in
two dimensions inherits uniform motion in two dimensions (which in turn inherits
uniform 1-D motion) and adds to it the attribute of acceleration.

4.14 Java Implementation

� �
/ / Accm2D . java OOP a c c e l e r a t e d motion in 2D

2i m p o r t j ava . io . ∗ ;

4c l a s s Um1D { / / Um1D c l a s s created
p r o t e c t e d d o u b l e d e l t ; / / So children may access data

6p r o t e c t e d i n t s teps ; / / Time steps for f i l e output
p r i v a t e d o u b l e x00 , vx , time ;

8

Um1D( d o u b l e x0 , d o u b l e dt , d o u b l e vx0 , d o u b l e t o t t ) {
10x00 = 0 ; / / Constructor Um1D, i n i t i a l i z e s

d e l t = dt ;
12vx = vx0 ;

time = t o t t ;
14s teps = ( i n t ) ( t o t t / d e l t ) ;

}
16

p r o t e c t e d d o u b l e x ( d o u b l e t t ) / / Creates x = xo + v∗dt
18{ r e t u r n ( x00 + t t ∗vx ) ; } / / Method x

20p u b l i c v o i d archive ( ) throws IOException , FileNotFoundException { / / Method archive
Pr i n t W r i t e r w = new Pr i n t W r i t e r ( new FileOutputStream ("unimot1D.dat" ) , t r u e ) ;

22i n t i ;
d o u b l e xx , t t ;

24t t = 0 . ;
f o r ( i = 1 ; i <= s teps ; i += 1) {

26xx = x ( t t ) ; / / Computes X = Xo + t∗v
w. p r i n t l n (" " + t t + " " + xx + " " ) ;

28t t = t t + d e l t ;
} } }

30

c l a s s Um2D e x t e n d s Um1D { / / Class Um2D = 2D child of UmD1
32p r i v a t e d o u b l e y00 , vy ;

/ / Um2D const ruc tor
34Um2D( d o u b l e x0 , d o u b l e dt , d o u b l e vx0 , d o u b l e t o t t , d o u b l e y0 , d o u b l e vy0 ) {

s u p e r ( x0 , dt , vx0 , t o t t ) ;
36y00 = y0 ;

vy = vy0 ;
38}

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 108

108 chapter 4

40p r o t e c t e d d o u b l e y ( d o u b l e t t ) { r e t u r n ( y00 + t t ∗vy ) ; }

42/ / Method archive : override Um1D. archive for 2D uniform motion
p u b l i c v o i d archive ( ) throws IOException , FileNotFoundException {

44Pr i n t W r i t e r q = new Pr i n t W r i t e r ( new FileOutputStream ("unimot2D.dat" ) , t r u e ) ;
i n t i ;

46d o u b l e xx , yy , t t ;
t t = 0 . ;

48f o r ( i = 1 ; i <= s teps ; i += 1) {
xx = x ( t t ) ;

50yy = y ( t t ) ; / / Data now x vs y
q . p r i n t l n (" " + yy + " " + xx + " " ) ;

52t t = t t + d e l t ;
} } }

54

p u b l i c c l a s s Accm2D e x t e n d s Um2D { / / Class Accm2D : child of Um2D
56p r i v a t e d o u b l e ax , ay ;

58Accm2D( d o u b l e x0 , d o u b l e dt , d o u b l e vx0 , d o u b l e t o t t , d o u b l e y0 ,
d o u b l e vy0 , d o u b l e accx , d o u b l e accy ) { / / Constructor Accm2D

60s u p e r ( x0 , dt , vx0 , t o t t , y0 , vy0 ) ;
ax = accx ;

62ay = accy ;
}

64p r o t e c t e d d o u b l e xy ( d o u b l e t t , i n t i ) { / / Method xy
d o u b l e dt2 , xxac , yyac ;

66dt2 = 0.5∗ t t ∗ t t ;
xxac = x ( t t ) + ax∗dt2 ;

68yyac = y ( t t ) + ay∗dt2 ;
i f ( i ==1) r e t u r n xxac ; e l s e r e t u r n yyac ;

70}
/ / Method archive : override Um2D. archive

72p u b l i c v o i d archive ( ) throws IOException , FileNotFoundException {
Pr i n t W r i t e r l = new Pr i n t W r i t e r ( new FileOutputStream ("accm2D.dat" ) , t r u e ) ;

74i n t i ;
d o u b l e t t , xxac , yyac ;

76t t = 0 . ;
f o r ( i = 1 ; i <= s teps ; i += 1) {

78xxac = xy ( t t , 1 ) ;
yyac = xy ( t t , 2 ) ;

80l . p r i n t l n (" " + xxac + " " + yyac + " " ) ;
t t = t t + d e l t ;

82} }

84p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) throws IOException , FileNotFoundException {
d o u b l e in ix , in iy , inivx , inivy , aclx , acly , dtim , t t o t a l ;

86i n i x = 0 . ; dtim = 0 . 1 ;
i n i v x = 1 4 . ; t t o t a l = 4 . ;

88i n i y = 0 . ; in ivy = 1 4 . ;
a c l x = 0 . ; a c l y = −9.8;

90Accm2D acmo2d = new Accm2D( in ix , dtim , inivx , t t o t a l , in iy , inivy , aclx , ac ly ) ;
acmo2d . archive ( ) ;

92} }
�

Listing 4.13 Accm2D.java is an OOP program for accelerated motion in two dimensions.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 109

5

Monte Carlo Simulations (Nonthermal)

Unit I of this chapter addresses the problem of how computers generate numbers that
appear random and how we can determine how random they are. Unit II shows how
to use these random numbers to simulate physical processes. In Chapter 6, “Integra-
tion,” we see show how to use these random numbers to evaluate integrals, and in
Chapter 15, “Thermodynamic Simulations & Feynman Quantum Path Inte-
gration,” we investigate the use of random numbers to simulate thermal processes
and the fluctuations in quantum systems.

5.1 Unit I. Deterministic Randomness

Some people are attracted to computing because of its deterministic nature; it’s nice
to have a place in one’s life where nothing is left to chance. Barring machine errors
or undefined variables, you get the same output every time you feed your program
the same input. Nevertheless, many computer cycles are used for Monte Carlo cal-
culations that at their very core include elements of chance. These are calculations
in which random numbers generated by the computer are used to simulate natu-
rally random processes, such as thermal motion or radioactive decay, or to solve
equations on the average. Indeed, much of computational physics’ recognition has
come about from the ability of computers to solve previously intractable problems
using Monte Carlo techniques.

5.2 Random Sequences (Theory)

We define a sequence of numbers r1, r2, . . . as random if there are no correlations
among the numbers. Yet being random does not mean that all the numbers in the
sequence are equally likely to occur. If all the numbers in a sequence are equally
likely to occur, then the sequence is said to be uniform, and the numbers can be
random as well. To illustrate, 1, 2, 3, 4, . . . is uniform but probably not random.
Further, it is possible to have a sequence of numbers that, in some sense, are random
but have very short-range correlations among themselves, for example,

r1, (1 − r1), r2, (1 − r2), r3, (1 − r3), . . .

have short-range but not long-range correlations.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 110

110 chapter 5

Mathematically, the likelihood of a number occurring is described by a distribu-
tion function P (r), where P (r) dr is the probability of finding r in the interval
[r, r+ dr]. A uniform distribution means that P (r) = a constant. The standard
random-number generator on computers generates uniform distributions between
0 and 1. In other words, the standard random-number generator outputs numbers
in this interval, each with an equal probability yet each independent of the previous
number. As we shall see, numbers can also be generated nonuniformly and still be
random.

By the nature of their construction, computers are deterministic and so cannot
create a random sequence. By the nature of their creation, computed random num-
ber sequences must contain correlations and in this way are not truly random.
Although it may be a bit of work, if we know rm and its preceding elements, it is
always possible to figure out rm+1. For this reason, computers are said to gener-
ate pseudorandom numbers (yet with our incurable laziness we won’t bother saying
“pseudo” all the time). While more sophisticated generators do a better job at hid-
ing the correlations, experience shows that if you look hard enough or use these
numbers long enough, you will notice correlations. A primitive alternative to gen-
erating random numbers is to read in a table of true random numbers determined
by naturally random processes such as radioactive decay or to connect the com-
puter to an experimental device that measures random events. This alternative is
not good for production work but may be a useful check in times of doubt.

5.2.1 Random-Number Generation (Algorithm)

The linear congruent or power residue method is the common way of generating
a pseudorandom sequence of numbers 0 ≤ ri ≤M − 1 over the interval [0,M − 1].
You multiply the previous random number ri−1 by the constant a, add another con-
stant c, take the modulus by M , and then keep just the fractional part (remainder)1

as the next random number ri+1:

ri+1
def= (a ri + c) modM = remainder

(
a ri + c

M

)
. (5.1)

The value for r1 (the seed) is frequently supplied by the user, and mod is a built-in
function on your computer for remaindering (it may be called amod or dmod). This
is essentially a bit-shift operation that ends up with the least significant part of the
input number and thus counts on the randomness of round-off errors to generate
a random sequence.

As an example, if c= 1, a= 4,M = 9, and you supply r1 = 3, then you obtain the
sequence

r1 = 3, (5.2)

1 You may obtain the same result for the modulus operation by subtracting M until any
further subtractions would leave a negative number; what remains is the remainder.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 111

monte carlo simulations (nonthermal) 111

0 50 100 150 200 250
x

0

50

100

150

200

250

y

0 50 100 150 200 250
x

Figure 5.1 Left: A plot of successive random numbers (x, y) = (ri, ri+ 1) generated with a

deliberately “bad” generator. Right: A plot generated with the library routine drand48.

r2 = (4 × 3 + 1)mod 9 = 13 mod 9 = rem
13
9

= 4, (5.3)

r3 = (4 × 4 + 1)mod 9 = 17 mod 9 = rem
17
9

= 8, (5.4)

r4 = (4 × 8 + 1)mod 9 = 33 mod 9 = rem
33
9

= 6, (5.5)

r5−10 = 7, 2, 0, 1, 5, 3. (5.6)

We get a sequence of length M = 9, after which the entire sequence repeats. If we
want numbers in the range [0, 1], we divide the r’s by M = 9:

0.333, 0.444, 0.889, 0.667, 0.778, 0.222, 0.000, 0.111, 0.555, 0.333.

This is still a sequence of length 9 but is no longer a sequence of integers. If random
numbers in the range [A,B] are needed, you only need to scale:

xi =A+ (B−A)ri, 0 ≤ ri ≤ 1, ⇒ A≤ xi ≤B. (5.7)

As a rule of thumb: Before using a random-number generator in your programs, you
should check its range and that it produces numbers that “look” random.

Although not a mathematical test, you should always make a graphical display
of your random numbers. Your visual cortex is quite refined at recognizing patterns
and will tell you immediately if there is one in your random numbers. For instance,
Figure 5.1 shows generated sequences from “good” and “bad” generators, and it is
clear which is not random (although if you look hard enough at the random points,
your mind may well pick out patterns there too).

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 112

112 chapter 5

The linear congruent method (5.1) produces integers in the range [0,M − 1] and
therefore becomes completely correlated if a particular integer comes up a sec-
ond time (the whole cycle then repeats). In order to obtain a longer sequence,
a and M should be large numbers but not so large that ari−1 overflows. On a
computer using 48-bit integer arithmetic, the built-in random-number generator
may use M values as large as 248 � 3 × 1014. A 32-bit generator may use M =
231 � 2 × 109. If your program uses approximately this many random numbers,
you may need to reseed the sequence during intermediate steps to avoid the cycle
repeating.

Your computer probably has random-number generators that are better than
the one you will compute with the power residue method. You may check this out
in the manual or the help pages (try the man command in Unix) and then test the
generated sequence. These routines may have names like rand, rn, random, srand,
erand, drand, or drand48.

We recommend a version of drand48 as a random-number generator. It generates
random numbers in the range [0, 1] with good spectral properties by using 48-bit
integer arithmetic with the parameters2

M = 248, c=B (base 16) = 13 (base 8), (5.8)

a= 5DEECE66D (base 16) = 273673163155 (base 8). (5.9)

To initialize the random sequence, you need to plant a seed in it. In Fortran you call
the subroutine srand48 to plant your seed, while in Java you issue the statement
Random randnum = new Random(seed); (see RandNum.java in Listing 5.1 for
details).

� �
/ / RandNum. java : random numbers via java . u t i l . Random . c l a s s
i m p o r t j ava . io . ∗ ; / / Location of PrintWriter
i m p o r t j ava . u t i l . ∗ ; / / Location of Random

p u b l i c c l a s s RandNum {
p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) throws IOException , FileNotFoundException {
Pr i n t W r i t e r q = new Pr i n t W r i t e r ( new FileOutputStream ("RandNum.DAT" ) , t r u e ) ;
l ong seed = 899432 ; / / I n i t i a l i z e 48 b i t generator
Random randnum = new Random( seed ) ;
i n t imax = 1 0 0 ; i n t i = 0 ;

/ / generate random numbers and s t o r e in data f i l e :
f o r ( i =1 ; i <= imax ; i ++ ) q . p r i n t l n ( randnum . nextDouble ( ) ) ;

System . out . p r i n t l n (" " ) ;
System . out . p r i n t l n ("RandNum Program Complete ." ) ;
System . out . p r i n t l n ("Data stored in RandNum.DAT" ) ;
System . out . p r i n t l n (" " ) ;

}
} / / End of c l a s s

�

Listing 5.1 RandNum.java calls the random-number generator from the Java utility class.

Note that a different seed is needed for a different sequence.

2 Unless you know how to do 48-bit arithmetic and how to input numbers in different bases,
it may be better to enter large numbers like M = 112233 and a= 9999.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 113

monte carlo simulations (nonthermal) 113

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

R
an

d
o

m
N

u
m

b
er

r

Sequence Number

Figure 5.2 A plot of a uniform pseudorandom sequence ri versus i. The points are connected

to make it easier to follow the order.

5.2.2 Implementation: Random Sequence

1. Write a simple program to generate random numbers using the linear
congruent method (5.1).

2. For pedagogical purposes, try the unwise choice: (a, c,M, r1) = (57, 1,
256, 10). Determine the period, that is, how many numbers are generated
before the sequence repeats.

3. Take the pedagogical sequence of random numbers and look for correlations
by observing clustering on a plot of successive pairs (xi, yi) = (r2i−1, r2i),
i= 1, 2, . . .. (Do not connect the points with lines.) You may “see” correlations
(Figure 5.1), which means that you should not use this sequence for serious
work.

4. Make your own version of Figure 5.2; that is, plot ri versus i.
5. Test the built-in random-number generator on your computer for correla-

tions by plotting the same pairs as above. (This should be good for serious
work.)

6. Test the linear congruent method again with reasonable constants like those
in (5.8) and (5.9). Compare the scatterplot you obtain with that of the built-in
random-number generator. (This, too, should be good for serious work.)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 114

114 chapter 5

TABLE 5.1
A Table of a Uniform Pseudorandom Sequence ri Generated by RandNum.java

0.04689502438508175 0.20458779675039795 0.5571907470797255 0.05634336673593088

0.9360668645897467 0.7399399139194867 0.6504153029899553 0.8096333704183057

0.3251217462543319 0.49447037101884717 0.14307712613141128 0.32858127644188206

0.5351001685588616 0.9880354395691023 0.9518097953073953 0.36810077925659423

0.6572443815038911 0.7090768515455671 0.5636787474592884 0.3586277378006649

0.38336910654033807 0.7400223756022649 0.4162083381184535 0.3658031553038087

0.7484798900468111 0.522694331447043 0.14865628292663913 0.1741881539527136

0.41872631012020123 0.9410026890120488 0.1167044926271289 0.8759009012786472

0.5962535409033703 0.4382385414974941 0.166837081276193 0.27572940246034305

0.832243048236776 0.45757242791790875 0.7520281492540815 0.8861881031774513

0.04040867417284555 0.14690149294881334 0.2869627609844023 0.27915054491588953

0.7854419848382436 0.502978394047627 0.688866810791863 0.08510414855949322

0.48437643825285326 0.19479360033700366 0.3791230234714642 0.9867371389465821

For scientific work we recommend using an industrial-strength random-number
generator. To see why, here we assess how bad a careless application of the power
residue method can be.

5.2.3 Assessing Randomness and Uniformity

Because the computer’s random numbers are generated according to a definite
rule, the numbers in the sequence must be correlated with each other. This can
affect a simulation that assumes random events. Therefore it is wise for you to
test a random-number generator to obtain a numerical measure of its uniformity
and randomness before you stake your scientific reputation on it. In fact, some
tests are simple enough for you to make it a habit to run them simultaneously
with your simulation. In the examples to follow, we test for either randomness or
uniformity.

1. Probably the most obvious, but often neglected, test for randomness and uni-
formity is to look at the numbers generated. For example, Table 5.1 presents
some output from RandNum.java. If you just look at these numbers, you will
know immediately that they all lie between 0 and 1, that they appear to differ
from each other, and that there is no obvious pattern (like 0.3333).

2. As we have seen, a quick visual test (Figure 5.2) involves taking this same list
and plotting it with ri as ordinate and ias abscissa. Observe how there appears
to be a uniform distribution between 0 and 1 and no particular correlation

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 115

monte carlo simulations (nonthermal) 115

between points (although your eye and brain will try to recognize some kind
of pattern).

3. A simple test of uniformity evaluates the kth moment of a distribution:

〈xk〉 =
1
N

N∑
i=1

xk
i . (5.10)

If the numbers are distributed uniformly, then (5.10) is approximately the
moment of the distribution function P (x):

1
N

N∑
i=1

xk
i �
∫ 1

0
dx xkP (x) � 1

k+ 1
+O

(
1√
N

)
. (5.11)

If (5.11) holds for your generator, then you know that the distribution is uni-
form. If the deviation from (5.11) varies as 1/

√
N , then you also know that the

distribution is random.
4. Another simple test determines the near-neighbor correlation in your random

sequence by taking sums of products for small k:

C(k) =
1
N

N∑
i=1

xi xi+k, (k = 1, 2, . . .). (5.12)

If your random numbers xi and xi+k are distributed with the joint probability
distribution P (xi, xi+k) and are independent and uniform, then (5.12) can be
approximated as an integral:

1
N

N∑
i=1

xi xi+k �
∫ 1

0
dx

∫ 1

0
dy xy P (x, y) =

1
4
. (5.13)

If (5.13) holds for your random numbers, then you know that they are uniform
and independent. If the deviation from (5.13) varies as 1/

√
N , then you also

know that the distribution is random.
5. As we have seen, an effective test for randomness is performed by mak-

ing a scatterplot of (xi = r2i, yi = r2i+1) for many i values. If your points
have noticeable regularity, the sequence is not random. If the points are ran-
dom, they should uniformly fill a square with no discernible pattern (a cloud)
(Figure 5.1).

6. Test your random-number generator with (5.11) for k = 1, 3, 7 and N =
100, 10, 000, 100, 000. In each case print out

√
N

∣∣∣∣∣ 1
N

N∑
i=1

xk
i − 1

k+ 1

∣∣∣∣∣ (5.14)

to check that it is of order 1.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 116

116 chapter 5

5.3 Unit II. Monte Carlo Applications

Now that we have an idea of how to use the computer to generate pseudorandom
numbers, we build some confidence that we can use these numbers to incorporate
the element of chance into a simulation. We do this first by simulating a random
walk and then by simulating an atom decaying spontaneously. After that, we show
how knowing the statistics of random numbers leads to the best way to evaluate
multidimensional integrals.

5.4 A Random Walk (Problem)

Consider a perfume molecule released in the front of a classroom. It collides ran-
domly with other molecules in the air and eventually reaches your nose even
though you are hidden in the last row. The problem is to determine how many
collisions, on the average, a perfume molecule makes in traveling a distanceR. You
are given the fact that a molecule travels an average (root-mean-square) distance rrms
between collisions.

5.4.1 Random-Walk Simulation

There are a number of ways to simulate a random walk with (surprise, surprise) different
assumptions yielding different physics. We will present the simplest approach for a 2-D
walk, with a minimum of theory, and end up with a model for normal diffusion. The research
literature is full of discussions of various versions of this problem. For example, Brownian
motion corresponds to the limit in which the individual step lengths approach zero with
no time delay between steps. Additional refinements include collisions within a moving
medium (abnormal diffusion), including the velocities of the particles, or even pausingC D

between steps. Models such as these are discussed in Chapter 13, “Fractals & Statistical
Growth,” and demonstrated by some of the corresponding applets on the CD.

In our random-walk simulation (Figure 5.3) an artificial walker takes sequential
steps with the direction of each step independent of the direction of the previous
step. For our model we start at the origin and takeN steps in the xy plane of lengths
(not coordinates)

(∆x1,∆y1), (∆x2,∆y2), (∆x3,∆y3), . . . , (∆xN ,∆yN ). (5.15)

Even though each step may be in a different direction, the distances along each
Cartesian axis just add algebraically (aren’t vectors great?). Accordingly, the radial
distance R from the starting point after N steps is

R2 = (∆x1 + ∆x2 + · · ·+ ∆xN )2 + (∆y1 + ∆y2 + · · ·+ ∆yN )2

= ∆x2
1 + ∆x2

2 + · · ·+ ∆x2
N + 2∆x1∆x2 + 2∆x1∆x3 + 2∆x2∆x1 + · · ·

+ (x→ y). (5.16)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 117

monte carlo simulations (nonthermal) 117

R

3

x1

y1

y2

1
2 4

N

v

v

v

Figure 5.3 Some of the N steps in a random walk that end up a distance R from the origin.

Notice how the ∆x’s for each step add algebraically.

If the walk is random, the particle is equally likely to travel in any direction at each
step. If we take the average of a large number of such random steps, all the cross
terms in (5.16) will vanish and we will be left with

R2
rms � 〈∆x2

1 + ∆x2
2 + · · ·+ ∆x2

N + ∆y2
1 + ∆y2

2 + · · ·+ ∆y2
N 〉

= 〈∆x2
1 + ∆y2

1〉 + 〈∆x2
2 + ∆y2

2〉 + · · ·
= N〈r2〉 =Nr2rms,

⇒ Rrms � √
Nrrms , (5.17)

where rrms =
√〈r2〉 is the root-mean-square step size.

To summarize, if the walk is random, then we expect that after a large number
of steps the average vector distance from the origin will vanish:

〈�R〉 = 〈x〉�i+ 〈y〉�j � 0. (5.18)

However, (5.17) indicates that the average scalar distance from the origin is
√
Nrrms,

where each step is of average length rrms. In other words, the vector endpoint will
be distributed uniformly in all quadrants, and so the displacement vector averages
to zero, but the length of that vector does not. For largeN values,

√
Nrrms �Nrrms

but does not vanish. In our experience, practical simulations agree with this theory,
but rarely perfectly, with the level of agreement depending upon the details of how
the averages are taken and how the randomness is built into each step.

5.4.2 Implementation: Random Walk

The program Walk.java on the instructor’s CD is our random-walk simulation. It’s
key element is random values for the x and y components of each step,

� �
x += ( randnum . nextDouble ( ) − 0 . 5 ) ;
y += ( randnum . nextDouble ( ) − 0 . 5 ) ;
sq [ i ] += x∗x + y∗y ; / / Radius

�

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 118

118 chapter 5

y

x

0 20 40

0

–10

–20

0

100

200

300

0 100 200 300

sqrt(N)

R

Figure 5.4 Left: A computer simulation of a random walk. Right: The distance covered in two

simulated walks of N steps using different schemes for including randomness. The theoretical

prediction (5.17) is the straight line.

Here we omit the scaling factor that normalizes each step to length 1. When using
your computer to simulate a random walk, you should expect to obtain (5.17) only
as the average displacement after many trials, not necessarily as the answer for each
trial. You may get different answers depending on how you take your random steps
(Figure 5.4 right).

Start at the origin and take a 2-D random walk with your computer.

1. To increase the amount of randomness, independently choose random values
for ∆x′ and ∆y′ in the range [−1, 1]. Then normalize them so that each step is
of unit length

∆x=
1
L

∆x′, ∆y =
1
L

∆y′, L=
√

∆x′2 + ∆y′2.

2. Use a plotting program to draw maps of several independent random walks,
each of 1000 steps. Comment on whether these look like what you would
expect of a random walk.

3. If you have your walker taking N steps in a single trial, then conduct a total
number K � √

N of trials. Each trial should have N steps and start with a
different seed.

4. Calculate the mean square distanceR2 for each trial and then take the average
of R2 for all your K trials:

〈R2(N) 〉 =
1
K

K∑
k=1

R2
(k)(N).

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 119

monte carlo simulations (nonthermal) 119

5. Check the validity of the assumptions made in deriving the theoretical result
(5.17) by checking how well

〈∆xi∆xj �=i〉
R2 � 〈∆xi∆yj〉

R2 � 0.

Do your checking for both a single (long) run and for the average over trials.
6. Plot the root-mean-square distance Rrms =

√〈R2(N)〉 as a function of
√
N .

Values ofN should start with a small number, whereR� √
N is not expected

to be accurate, and end at a quite large value, where two or three places of
accuracy should be expected on the average.

5.5 Radioactive Decay (Problem)

Your problem is to simulate how a small numberN of radioactive particles decay.3

In particular, you are to determine when radioactive decay looks like exponen-
tial decay and when it looks stochastic (containing elements of chance). Because
the exponential decay law is a large-number approximation to a natural process
that always ends with small numbers, our simulation should be closer to nature C D

than is the exponential decay law (Figure 5.5). In fact, if you go to the CD and
“listen” to the output of the decay simulation code, what you will hear sounds
very much like a Geiger counter, a convincing demonstration of the realism of the
simulation.

Spontaneous decay is a natural process in which a particle, with no external
stimulation, decays into other particles. Even though the probability of decay of
any one particle in any time interval is constant, just when it decays is a random
event. Because the exact moment when any one particle decays is random, it does
not matter how long the particle has been around or whether some other particles
have decayed. In other words, the probability P of any one particle decaying per
unit time interval is a constant, and when that particle decays, it is gone forever.
Of course, as the total number of particles decreases with time, so will the number
of decays, but the probability of any one particle decaying in some time interval is
always the same constant as long as that particle exists.

5.5.1 Discrete Decay (Model)

Imagine having a sample of N(t) radioactive nuclei at time t (Figure 5.5 inset).
Let ∆N be the number of particles that decay in some small time interval ∆t. We
convert the statement “the probability P of any one particle decaying per unit time
is a constant” into the equation

3 Spontaneous decay is also discussed in Chapter 8, “Solving Systems of Equations with
Matrices; Data Fitting,” where we fit an exponential function to a decay spectrum.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 120

120 chapter 5

0 400 800 1200

t

0

2

4

100,000

10,000

1,000

100

10

log[N(t)]

Figure 5.5 A sample containing N nuclei, each one of which has the same probability of

decaying per unit time (circle). Semilog plots of the results from several decay simulations.

Notice how the decay appears exponential (like a straight line) when the number of nuclei

is large, but stochastic for log N ≤ 2.0.

P =
∆N(t)/N(t)

∆t
= −λ, (5.19)

⇒ ∆N(t)
∆t

= −λN(t), (5.20)

where the constant λ is called the decay rate. Of course the real decay rate or
activity is ∆N(t)/∆t, which varies with time. In fact, because the total activity is
proportional to the total number of particles still present, it too is stochastic with an
exponential-like decay in time. [Actually, because the number of decays ∆N(t) is
proportional to the difference in random numbers, its stochastic nature becomes
evident before that of N(t).]

Equation (5.20) is a finite-difference equation in terms of the experimental measur-
ables N(t), ∆N(t), and ∆t. Although it cannot be integrated the way a differential
equation can, it can be solved numerically when we include the fact that the decay
process is random. Because the process is random, we cannot predict a single
value for ∆N(t), although we can predict the average number of decays when
observations are made of many identical systems of N decaying particles.

5.5.2 Continuous Decay (Model)

When the number of particles N → ∞ and the observation time interval ∆t→ 0,
an approximate form of the radioactive decay law (5.20) results:

∆N(t)
∆t

−→ dN(t)
dt

= −λN(t). (5.21)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 121

monte carlo simulations (nonthermal) 121

This can be integrated to obtain the time dependence of the total number of particles
and of the total activity:

N(t) =N(0)e−λt =N(0)e−t/τ , (5.22)

dN(t)
dt

=−λN(0)e−λt =
dN

dt
e−λt(0). (5.23)

We see that in this limit we obtain exponential decay, which leads to the
identification of the decay rate λ with the inverse lifetime:

λ=
1
τ
. (5.24)

So we see from its derivation that exponential decay is a good description of nature
for a large number of particles where ∆N/N � 0. The basic law of nature (5.19) is
always valid, but as we will see in the simulation, exponential decay (5.23) becomes
less and less accurate as the number of particles becomes smaller and smaller.

5.5.3 Decay Simulation

A program for simulating radioactive decay is surprisingly simple but not without
its subtleties. We increase time in discrete steps of ∆t, and for each time interval
we count the number of nuclei that have decayed during that ∆t. The simulation
quits when there are no nuclei left to decay. Such being the case, we have an outer
loop over the time steps ∆t and an inner loop over the remaining nuclei for each
time step. The pseudocode is simple:

� �
input N, lambda
t =0
w h i l e N > 0

DeltaN = 0
f o r i = 1 . .N

i f ( r _ i < lambda ) DeltaN = DeltaN + 1
end f o r
t = t +1

N = N − DeltaN
Output t , DeltaN , N

end w h i l e
�

When we pick a value for the decay rate λ= 1/τ to use in our simulation, we
are setting the scale for times. If the actual decay rate is λ= 0.3× 106 s−1 and if we
decide to measure times in units of 10−6 s, then we will choose random numbers 0 ≤
ri ≤ 1, which leads to λ values lying someplace near the middle of the range (e.g.,
λ� 0.3). Alternatively, we can use a value of λ= 0.3× 106 s−1 in our simulation
and then scale the random numbers to the range 0 ≤ ri ≤ 106. However, unless you
plan to compare your simulation to experimental data, you do not have to worry

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 122

122 chapter 5

� �
/ / Decay . java : Spontaneous decay simulation
i m p o r t j ava . io . ∗ ;
i m p o r t j ava . u t i l . ∗ ;

p u b l i c c l a s s Decay {
s t a t i c d o u b l e lambda = 0 . 0 1 ; / / Decay constant
s t a t i c i n t max = 1000 , time_max = 500 , seed = 68111 ; / / Params

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) throws IOException , FileNotFoundException {
i n t atom , time , number , nloop ;
d o u b l e decay ;
Pr i n t W r i t e r w = new Pr i n t W r i t e r ( new FileOutputStream ("decay .dat" ) , t r u e ) ;
number = nloop = max ; / / I n i t i a l value
Random r = new Random( seed ) ; / / Seed number generator
f o r ( time = 0 ; time <= time_max ; time++ ) { / / Time loop

f o r ( atom = 1 ; atom <= number ; atom++ ) { / / Decay loop
decay = r . nextDouble ( ) ;
i f ( decay < lambda ) nloop−−; / / A decay

}
number = nloop ;
w. p r i n t l n ( " " + time + " " + ( d o u b l e ) number/max) ;

}
System . out . p r i n t l n ("data stored in decay .dat" ) ;

} }
�

Listing 5.2 Decay.java simulates spontaneous decay in which a decay occurs if a random

number is smaller than the decay parameter.

about the scale for time but instead should focus on the physics behind the slopes
and relative magnitudes of the graphs.

5.6 Decay Implementation and Visualization

Write a program to simulate radioactive decay using the simple program in
Listing 5.2 as a guide. You should obtain results like those in Figure 5.5.

1. Plot the logarithm of the number left lnN(t) and the logarithm of the decay
rate ln ∆N(t) versus time. Note that the simulation measures time in steps of
∆t (generation number).

2. Check that you obtain what looks like exponential decay when you start with
large values forN(0), but that the decay displays its stochastic nature for small
N(0) [large N(0) values are also stochastic; they just don’t look like it].

3. Create two plots, one showing that the slopes of N(t) versus t are independent
of N(0) and another showing that the slopes are proportional to λ.

4. Create a plot showing that within the expected statistical variations, lnN(t)
and ln ∆N(t) are proportional.

5. Explain in your own words how a process that is spontaneous and random
at its very heart can lead to exponential decay.

6. How does your simulation show that the decay is exponential-like and not a
power law such as N = βt−α?

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 123

6

Integration

In this chapter we discuss numerical integration, a basic tool of scientific computation.
We derive the Simpson and trapezoid rules but just sketch the basis of Gaussian
quadrature, which, though our standard workhorse, is long in derivation. We do
discuss Gaussian quadrature in its various forms and indicate how to transform the
Gauss points to a wide range of intervals. We end the chapter with a discussion of
Monte Carlo integration, which is fundamentally different from other integration
techniques.

6.1 Integrating a Spectrum (Problem)

Problem: An experiment has measured dN(t)/dt, the number of particles per unit
time entering a counter. Your problem is to integrate this spectrum to obtain the
number of particlesN(1) that entered the counter in the first second for an arbitrary
decay rate

N(1) =
∫ 1

0

dN(t)
dt

dt. (6.1)

6.2 Quadrature as Box Counting (Math)

The integration of a function may require some cleverness to do analytically but is
relatively straightforward on a computer. A traditional way to perform numerical
integration by hand is to take a piece of graph paper and count the number of boxes
or quadrilaterals lying below a curve of the integrand. For this reason numerical inte-
gration is also called numerical quadrature even when it becomes more sophisticated
than simple box counting.

The Riemann definition of an integral is the limit of the sum over boxes as the
width h of the box approaches zero (Figure 6.1):

∫ b

a

f(x) dx= lim
h→0


h (b−a)/h∑

i=1

f(xi)


 . (6.2)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 124

124 chapter 6

a x i x i+1 x i+2 b
x

f(x)

Figure 6.1 The integral
∫ b
a f(x)dx is the area under the graph of f(x) from a to b. Here we

break up the area into four regions of equal widths h.

The numerical integral of a function f(x) is approximated as the equivalent of a
finite sum over boxes of height f(x) and width wi:

∫ b

a

f(x) dx�
N∑

i=1

f(xi)wi, (6.3)

which is similar to the Riemann definition (6.2) except that there is no limit to an
infinitesimal box size. Equation (6.3) is the standard form for all integration algo-
rithms; the function f(x) is evaluated at N points in the interval [a, b], and the
function values fi ≡ f(xi) are summed with each term in the sum weighted by wi.
While in general the sum in (6.3) gives the exact integral only whenN → ∞, it may
be exact for finiteN if the integrand is a polynomial. The different integration algo-
rithms amount to different ways of choosing the points and weights. Generally,
the precision increases as N gets larger, with round-off error eventually limiting
the increase. Because the “best” approximation depends on the specific behavior of
f(x), there is no universally best approximation. In fact, some of the automated inte-
gration schemes found in subroutine libraries switch from one method to another
and change the methods for different intervals until they find ones that work well
for each interval.

In general you should not attempt a numerical integration of an integrand that
contains a singularity without first removing the singularity by hand.1 You may be
able to do this very simply by breaking the interval down into several subintervals

1 In Chapter 20, “Integral Equations in Quantum Mechanics,” we show how to remove such
a singularity even when the integrand is unknown.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 125

integration 125

so the singularity is at an endpoint where an integration point is not placed or by
a change of variable:

∫ 1

−1
|x|f(x) dx=

∫ 0

−1
f(−x) dx+

∫ 1

0
f(x) dx, (6.4)

∫ 1

0
x1/3 dx=

∫ 1

0
3y3 dy, (y = x1/3), (6.5)

∫ 1

0

f(x) dx√
1 −x2

= 2
∫ 1

0

f(1 − y2) dy√
2 − y2

, (y2 = 1 −x). (6.6)

Likewise, if your integrand has a very slow variation in some region, you can speed
up the integration by changing to a variable that compresses that region and places
few points there. Conversely, if your integrand has a very rapid variation in some
region, you may want to change to variables that expand that region to ensure that
no oscillations are missed.

6.2.1 Algorithm: Trapezoid Rule

The trapezoid and Simpson integration rules use values of f(x) at evenly spaced
values of x. They use N points xi(i= 1, N) evenly spaced at a distance h apart
throughout the integration region [a, b] and include the endpoints. This means that
there are (N − 1) intervals of length h:

h=
b− a

N − 1
, xi = a+ (i− 1)h, i= 1, N, (6.7)

where we start our counting at i= 1. The trapezoid rule takes each integration
interval i and constructs a trapezoid of width h in it (Figure 6.2). This approximates
f(x) by a straight line in each interval i and uses the average height (fi + fi+1)/2
as the value for f . The area of each such trapezoid is

∫ xi+h

xi

f(x) dx� h(fi + fi+1)
2

=
1
2
hfi +

1
2
hfi+1. (6.8)

In terms of our standard integration formula (6.3), the “rule” in (6.8) is for N = 2
points with weights wi ≡ 1

2 (Table 6.1).
In order to apply the trapezoid rule to the entire region [a, b], we add the

contributions from each subinterval:

∫ b

a

f(x) dx� h

2
f1 +hf2 +hf3 + · · ·+hfN−1 +

h

2
fN . (6.9)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 126

126 chapter 6

f(x)

a

tr
a

p
 1

tr
a

p
 2

tr
a

p
 3

tr
a

p
 4

b
x

f(x)

parabola 1

a b
x

parabola  2

Figure 6.2 Right: Straight-line sections used for the trapezoid rule. Left: Two parabolas used in

Simpson’s rule.

You will notice that because the internal points are counted twice (as the end of
one interval and as the beginning of the next), they have weights of h/2 +h/2 = h,
whereas the endpoints are counted just once and on that account have weights of
only h/2. In terms of our standard integration rule (6.32), we have

wi =
{
h

2
, h, . . . , h,

h

2

}
(trapezoid rule). (6.10)

In Listing 6.1 we provide a simple implementation of the trapezoid rule.

6.2.2 Algorithm: Simpson’s Rule

For each interval, Simpson’s rule approximates the integrand f(x) by a parabola
(Figure 6.2 right):

f(x) � αx2 +βx+ γ, (6.11)

TABLE 6.1
Elementary Weights for Uniform-Step Integration Rules

Name Degree Elementary Weights

Trapezoid 1 (1, 1) h
2

Simpson’s 2 (1, 4, 1) h
3

3
8 3 (1, 3, 3, 1) 3

8h

Milne 4 (14, 64, 24, 64, 14) h
45

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 127

integration 127

� �
/ / Trap . java trapezoid−rule i n t e g r a t i o n of parabola

p u b l i c c l a s s Trap {
p u b l i c s t a t i c f i n a l d o u b l e A = 0 . , B = 3 . ; / / Constant endpoints
p u b l i c s t a t i c f i n a l i n t N = 1 0 0 ; / / N points ( not i n t e r v a l s )

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] args ) { / / Main does summation
d o u b l e sum , h , t , w;
i n t i ;
h = ( B − A) /(N − 1) ; / / I n i t i a l i z a t i o n
sum = 0 . ;
f o r ( i =1 ; i <= N; i = i + 1) { / / Trap rule

t = A + ( i −1) ∗ h ;
i f ( i ==1 || i ==N ) w = h / 2 . ; e l s e w = h ; / / End wt=h / 2
sum = sum + w ∗ t ∗ t ;

}
System . out . p r i n t l n (sum) ;

}
} / / OUTPUT 9.000459136822773

�

Listing 6.1 Trap.java integrates the function t2 via the trapezoid rule. Note how the step size

h depends on the interval and how the weights at the ends and middle differ.

with all intervals equally spaced. The area under the parabola for each interval is

∫ xi+h

xi

(αx2 +βx+ γ) dx=
αx3

3
+
βx2

2
+ γx

∣∣∣∣
xi+h

xi

. (6.12)

In order to relate the parameters α, β, and γ to the function, we consider an interval
from −1 to +1, in which case

∫ 1

−1
(αx2 +βx+ γ) dx=

2α
3

+ 2γ. (6.13)

But we notice that

f(−1) = α−β+ γ, f(0) = γ, f(1) = α+β+ γ,

⇒ α=
f(1) + f(−1)

2
− f(0), β =

f(1)− f(−1)
2

, γ = f(0).
(6.14)

In this way we can express the integral as the weighted sum over the values of the
function at three points:

∫ 1

−1
(αx2 +βx+ γ) dx=

f(−1)
3

+
4f(0)

3
+
f(1)

3
. (6.15)

Because three values of the function are needed, we generalize this result to our
problem by evaluating the integral over two adjacent intervals, in which case we

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 128

128 chapter 6

evaluate the function at the two endpoints and in the middle (Table 6.1):

∫ xi+h

xi−h

f(x) dx=
∫ xi+h

xi

f(x) dx+
∫ xi

xi−h

f(x) dx

� h

3
fi−1 +

4h
3
fi +

h

3
fi+1. (6.16)

Simpson’s rule requires the elementary integration to be over pairs of intervals,
which in turn requires that the total number of intervals be even or that the number
of points N be odd. In order to apply Simpson’s rule to the entire interval, we add
up the contributions from each pair of subintervals, counting all but the first and
last endpoints twice:

∫ b

a

f(x)dx� h

3
f1 +

4h
3
f2 +

2h
3
f3 +

4h
3
f4 + · · ·+ 4h

3
fN−1 +

h

3
fN . (6.17)

In terms of our standard integration rule (6.3), we have

wi =
{
h

3
,

4h
3
,

2h
3
,

4h
3
, . . . ,

4h
3
,
h

3

}
(Simpson’s rule). (6.18)

The sum of these weights provides a useful check on your integration:

N∑
i=1

wi = (N − 1)h. (6.19)

Remember, the number of points N must be odd for Simpson’s rule.

6.2.3 Integration Error (Analytic Assessment)

In general, you should choose an integration rule that gives an accurate answer
using the least number of integration points. We obtain a crude estimate of the
approximation or algorithmic error E and the relative error ε by expanding f(x) in
a Taylor series around the midpoint of the integration interval. We then multiply
that error by the number of intervals N to estimate the error for the entire region
[a, b]. For the trapezoid and Simpson rules this yields

Et =O

(
[b− a]3

N2

)
f (2), Es =O

(
[b− a]5

N4

)
f (4), εt,s =

Et,s

f
. (6.20)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 129

integration 129

We see that the third-derivative term in Simpson’s rule cancels (much like the
central-difference method does in differentiation). Equations (6.20) are illuminating
in showing how increasing the sophistication of an integration rule leads to an
error that decreases with a higher inverse power of N , yet is also proportional to
higher derivatives of f . Consequently, for small intervals and functions f(x) with
well-behaved derivatives, Simpson’s rule should converge more rapidly than the
trapezoid rule.

To model the error in integration, we assume that afterN steps the relative round-
off error is random and of the form

εro �
√
Nεm, (6.21)

where εm is the machine precision, ε∼ 10−7 for single precision and ε∼ 10−15 for
double precision (the standard for science). Because most scientific computations
are done with doubles, we will assume double precision. We want to determine an
N that minimizes the total error, that is, the sum of the approximation and round-off
errors:

εtot � εro + εapprox. (6.22)

This occurs, approximately, when the two errors are of equal magnitude, which we
approximate even further by assuming that the two errors are equal:

εro = εapprox =
Etrap,simp

f
. (6.23)

To continue the search for optimum N for a general function f , we set the scale of
function size and the lengths by assuming

f (n)

f
� 1, b− a= 1 ⇒ h=

1
N
. (6.24)

The estimate (6.23), when applied to the trapezoid rule, yields

√
Nεm � f (2)(b− a)3

fN2 =
1
N2 , (6.25)

⇒ N � 1
(εm)2/5 =

(
1

10−15

)2/5

= 106, (6.26)

⇒ εro �
√
Nεm = 10−12. (6.27)

The estimate (6.23), when applied to Simpson’s rule, yields

√
Nεm =

f (4)(b− a)5

fN4 =
1
N4 , (6.28)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 130

130 chapter 6

⇒N =
1

(εm)2/9 =
(

1
10−15

)2/9

= 2154, (6.29)

⇒ εro �
√
Nεm = 5 × 10−14. (6.30)

These results are illuminating in that they show how

• Simpson’s rule is an improvement over the trapezoid rule.
• It is possible to obtain an error close to machine precision with Simpson’s

rule (and with other higher-order integration algorithms).
• Obtaining the best numerical approximation to an integral is not achieved by

letting N → ∞ but with a relatively small N ≤ 1000.

6.2.4 Algorithm: Gaussian Quadrature

It is often useful to rewrite the basic integration formula (6.3) such that we separate
a weighting function W (x) from the integrand:

∫ b

a

f(x) dx≡
∫ b

a

W (x)g(x) dx�
N∑

i=1

wig(xi). (6.31)

In the Gaussian quadrature approach to integration, the N points and weights
are chosen to make the approximation error vanish if g(x) were a (2N − 1)-degree
polynomial. To obtain this incredible optimization, the points xi end up having a
specific distribution over [a, b]. In general, if g(x) is smooth or can be made smooth
by factoring out some W (x) (Table 6.2), Gaussian algorithms will produce higher
accuracy than the trapezoid and Simpson rules for the same number of points.
Sometimes the integrand may not be smooth because it has different behaviors in
different regions. In these cases it makes sense to integrate each region separately
and then add the answers together. In fact, some “smart” integration subroutines
decide for themselves how many intervals to use and what rule to use in each.

All the rules indicated in Table 6.2 are Gaussian with the general form (6.31).
We can see that in one case the weighting function is an exponential, in another a

TABLE 6.2
Types of Gaussian Integration Rules

Integral Name Integral Name
∫ 1

−1 f(y) dy Gauss
∫ 1

−1
F (y)√
1−y2

dy Gauss–Chebyshev
∫ ∞

−∞ e−y2
F (y) dy Gauss–Hermite

∫ ∞
0 e−yF (y) dy Gauss–Laguerre

∫ ∞
0

e−y
√

y
F (y) dy Associated Gauss–Laguerre

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 131

integration 131

TABLE 6.3
Points and Weights for four-point Gaussian
Quadrature

±yi wi

0.33998 10435 84856 0.65214 51548 62546

0.86113 63115 94053 0.34785 48451 37454

Gaussian, and in several an integrable singularity. In contrast to the equally spaced
rules, there is never an integration point at the extremes of the intervals, yet the
values of the points and weights change as the number of points N changes.
Although we will leave the derivation of the Gaussian points and weights to
the references on numerical methods, we note here that for ordinary Gaussian
(Gauss–Legendre) integration, the points yi turn out to be the N zeros of the Leg-
endre polynomials, with the weights related to the derivatives, PN (yi) = 0, and
wi = 2/([(1− y2

i )[P
′
N (yi)]2]. Subroutines to generate these points and weights are

standard in mathematical function libraries, are found in tables such as those in
[A&S 72], or can be computed. The gauss subroutines we provide on the CD also
scale the points to span specified regions. As a check that your points are correct,
you may want to compare them to the four-point set in Table 6.3.

6.2.4.1 MAPPING INTEGRATION POINTS

Our standard convention (6.3) for the general interval [a, b] is

∫ b

a

f(x) dx�
N∑

i=1

f(xi)wi. (6.32)

With Gaussian points and weights, the y interval −1< yi ≤ 1 must be mapped onto
the x interval a≤ x≤ b. Here are some mappings we have found useful in our
work. In all cases (yi, w

′
i) are the elementary Gaussian points and weights for the

interval [−1, 1], and we want to scale to x with various ranges.

1. [−1, 1] → [a, b] uniformly, (a+ b)/2 = midpoint:

xi =
b+ a

2
+
b− a

2
yi, wi =

b− a

2
w

′
i, (6.33)

⇒
∫ b

a

f(x) dx=
b− a

2

∫ 1

−1
f [x(y)] dy. (6.34)

2. [0 → ∞], a= midpoint:

xi = a
1 + yi

1 − yi
, wi =

2a
(1 − yi)2

w
′
i. (6.35)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 132

132 chapter 6

3. [−∞ → ∞], scale set by a:

xi = a
yi

1 − y2
i

, wi =
a(1 + y2

i )
(1 − y2

i )2
w

′
i. (6.36)

4. [b→ ∞], a+ 2b= midpoint:

xi =
a+ 2b+ ayi

1 − yi
, wi =

2(b+ a)
(1 − yi)2

w
′
i. (6.37)

5. [0 → b], ab/(b+ a) = midpoint:

xi =
ab(1 + yi)

b+ a− (b− a)yi
, wi =

2ab2

(b+ a− (b− a)yi)2
w

′
i. (6.38)

As you can see, even if your integration range extends out to infinity, there
will be points at large but not infinite x. As you keep increasing the number
of grid points N , the last xi gets larger but always remains finite.

6.2.5 Integration Implementation and Error Assessment

1. Write a double-precision program to integrate an arbitrary function numer-
ically using the trapezoid rule, the Simpson rule, and Gaussian quadrature.
For our assumed problem there is an analytic answer:

dN(t)
dt

= e−t ⇒ N(1) =
∫ 1

0
e−t dt= 1 − e−1.

2. Compute the relative error ε= |(numerical-exact)/exact| in each case. Present
your data in the tabular form

N εT εS εG

2 · · · · · · · · ·
10 · · · · · · · · ·

with spaces or tabs separating the fields. TryN values of 2, 10, 20, 40, 80, 160,
…. (Hint: Even numbers may not be the assumption of every rule.)

3. Make a log-log plot of relative error versusN (Figure 6.3). You should observe
that

ε� CNα ⇒ log ε= α logN + constant.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 133

integration 133

10 100

10–13

10–9

10–5

N

|e
rr

or
|

trapezoid

Simpson

Gaussian

10 100
N

10–9

10–7

10–5

10–3

10–1

|e
rr

or
|

trapezoid

Simpson

Gaussian

Figure 6.3 Log-log plot of the error in the integration of exponential decay using the

trapezoid rule, Simpson’s rule, and Gaussian quadrature versus the number of integration

points N. Approximately 15 decimal places of precision are attainable with double precision

(left ), and 7 places with single precision (right ).

This means that a power-law dependence appears as a straight line on a log-
log plot, and that if you use log10, then the ordinate on your log-log plot
will be the negative of the number of decimal places of precision in your
calculation.

4. Use your plot or table to estimate the power-law dependence of the error ε
on the number of points N and to determine the number of decimal places
of precision in your calculation. Do this for both the trapezoid and Simpson
rules and for both the algorithmic and round-off error regimes. (Note that it
may be hard to reach the round-off error regime for the trapezoid rule because
the approximation error is so large.)

In Listing 6.2 we give a sample program that performs an integration with Gaussian
points. The method gauss generates the points and weights and may be useful in
other applications as well.

� �
/ / IntegGauss . java : i n t e g r a t i o n via Gauss Quadrature
i m p o r t j ava . io . ∗ ; / / Location of PrintWriter

p u b l i c c l a s s IntegGauss {
s t a t i c f i n a l d o u b l e max_in = 1 0 0 1 ; / / Numb i n t e r v a l s
s t a t i c f i n a l d o u b l e vmin = 0 . , vmax = 1 . ; / / Int ranges
s t a t i c f i n a l d o u b l e ME = 2.7182818284590452354 E0 ; / / Euler ’ s const

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) throws IOException , FileNotFoundException {
i n t i ;
d o u b l e r e s u l t ;
Pr i n t W r i t e r t = new Pr i n t W r i t e r ( new FileOutputStream ("IntegGauss . dat" ) , t r u e ) ;
f o r ( i =3 ; i <= max_in ; i += 2) {

r e s u l t = gauss in t ( i , vmin , vmax) ;
t . p r i n t l n ("" + i + " " + Math . abs ( r e s u l t −1 + 1/ME) ) ;

}
System . out . p r i n t l n ("Output in IntegGauss . dat" ) ;

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 134

134 chapter 6

}

p u b l i c s t a t i c d o u b l e f ( d o u b l e x ) { r e t u r n ( Math . exp(−x ) ) ; } / / f ( x )

p u b l i c s t a t i c d o u b l e gauss in t ( i n t no , d o u b l e min , d o u b l e max) {
i n t n ;
d o u b l e quadra = 0 . , w[ ] = new d o u b l e [ 2 0 0 1 ] , x [ ] = new d o u b l e [ 2 0 0 1 ] ;
gauss ( no , 0 , min , max , x , w) ; / / Returns pts & wts
f o r ( n=0; n < no ; n++ ) quadra += f ( x [ n ] ) ∗w[ n ] ; / / Calculate i n t e g r a l
r e t u r n ( quadra ) ;

}

p u b l i c s t a t i c v o i d gauss ( i n t npts , i n t job , d o u b l e a , d o u b l e b ,
d o u b l e x [ ] , d o u b l e w[ ] ) {

i n t m = 0 , i = 0 , j = 0 ;
d o u b l e t = 0 . , t 1 = 0 . , pp = 0 . , p1 = 0 . , p2 = 0 . , p3 = 0 . ;
d o u b l e xi , eps = 3 . E−14; / / Accuracy : ADJUST!

m = ( npts + 1) /2;
f o r ( i =1 ; i <= m; i ++ ) {

t = Math . cos ( Math . PI ∗ ( ( d o u b l e ) i −0.25) / ( ( d o u b l e ) npts + 0 . 5 ) ) ;
t 1 = 1 ;
w h i l e ( ( Math . abs ( t−t 1 ) ) >= eps ) {

p1 = 1 . ; p2 = 0 . ;
f o r ( j =1 ; j <= npts ; j ++ ) {

p3 = p2 ; p2 = p1 ;
p1 = ( ( 2 . ∗ ( d o u b l e ) j −1)∗ t∗p2−(( d o u b l e ) j −1.)∗p3 ) / ( ( d o u b l e ) j ) ;

}
pp = npts ∗( t∗p1−p2 ) /( t∗ t −1.) ;
t 1 = t ; t = t1 − p1/pp ;

}
x [ i −1] = −t ; x [ npts−i ] = t ;
w[ i −1] = 2 ./( (1 . − t∗ t )∗pp∗pp ) ;
w[ npts−i ] = w[ i −1];
System . out . p r i n t l n (" x[ i -1]"+ x [ i −1] +" w " + w[ npts−i ] ) ;

}
i f ( job ==0) {

f o r ( i =0 ; i < npts ; i ++ ) {
x [ i ] = x [ i ]∗ ( b−a ) /2. + ( b + a ) / 2 . ;
w[ i ] = w[ i ]∗ ( b−a ) / 2 . ;

}
}
i f ( job ==1) {

f o r ( i =0 ; i < npts ; i ++ ) {
x i =x [ i ] ;
x [ i ] = a∗b ∗ ( 1 . + x i ) / ( b + a−(b−a )∗x i ) ;
w[ i ] = w[ i ]∗2 .∗ a∗b∗b / ( ( b + a−(b−a )∗x i ) ∗(b+a−(b−a )∗x i ) ) ;

}
}
i f ( job ==2) {

f o r ( i =0 ; i < npts ; i ++ ) {
x i =x [ i ] ;
x [ i ] = ( b∗x i + b + a + a ) / (1.− x i ) ;
w[ i ] = w[ i ] ∗2 .∗ ( a + b ) /((1. − x i ) ∗(1.− x i ) ) ;

}
}
r e t u r n ;

} }
�

Listing 6.2 IntegGauss.java integrates the function f(x) via Gaussian quadrature. The points

and weights are generated in the method gauss, which remains fixed for all applications.

Note that the parameter eps, which controls the level of precision desired, should be set by

the user, as should the value for job, which controls the mapping of the Gaussian points onto

arbitrary intervals (they are generated for −1 ≤ x≤ 1).

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 135

integration 135

6.3 Experimentation

Try two integrals for which the answers are less obvious:

F1 =
∫ 2π

0
sin(1000x) dx, F2 =

∫ 2π

0
sinx(100x) dx. (6.39)

Explain why the computer may have trouble with these integrals.

6.4 Higher-Order Rules (Algorithm)

As in numerical differentiation, we can use the known functional dependence of
the error on interval size h to reduce the integration error. For simple rules like
the trapezoid and Simpson rules, we have the analytic estimates (6.23), while for
others you may have to experiment to determine the h dependence. To illustrate, if
A(h) and A(h/2) are the values of the integral determined for intervals h and h/2,
respectively, and we know that the integrals have expansions with a leading error
term proportional to h2,

A(h) �
∫ b

a

f(x) dx+αh2 +βh4 + · · · , (6.40)

A

(
h

2

)
�
∫ b

a

f(x) dx+
αh2

4
+
βh4

16
+ · · · . (6.41)

Consequently, we make the h2 term vanish by computing the combination

4
3
A

(
h

2

)
− 1

3
A(h) �

∫ b

a

f(x) dx− βh4

4
+ · · · . (6.42)

Clearly this particular trick (Romberg’s extrapolation) works only if the h2 term
dominates the error and then only if the derivatives of the function are well behaved.
An analogous extrapolation can also be made for other algorithms.

In Table 6.1 we gave the weights for several equal-interval rules. Whereas the
Simpson rule used two intervals, the three-eighths rule uses three, and the Milne2

rule four. (These are single-interval rules and must be strung together to obtain a
rule extended over the entire integration range. This means that the points that end
one interval and begin the next are weighted twice.) You can easily determine the
number of elementary intervals integrated over, and check whether you and we
have written the weights right, by summing the weights for any rule. The sum is

2 There is, not coincidentally, a Milne Computer Center at Oregon State University, although
there no longer is a central computer there.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 136

136 chapter 6

the integral of f(x) = 1 and must equal h times the number of intervals (which in
turn equals b− a):

N∑
i=1

wi = h×Nintervals = b− a. (6.43)

6.5 Problem: Monte Carlo Integration
by Stone Throwing

Imagine yourself as a farmer walking to your furthermost field to add algae-eating
fish to a pond having an algae explosion. You get there only to read the instructions
and discover that you need to know the area of the pond in order to determine
the correct number of the fish to add. Your problem is to measure the area of this
irregularly shaped pond with just the materials at hand [G,T&C 06].

It is hard to believe that Monte Carlo techniques can be used to evaluate integrals.
After all, we do not want to gamble on the values! While it is true that other methods
are preferable for single and double integrals, Monte Carlo techniques are best when
the dimensionality of integrations gets large! For our pond problem, we will use a
sampling technique (Figure 6.4):

1. Walk off a box that completely encloses the pond and remove any pebbles
lying on the ground within the box.

2. Measure the lengths of the sides in natural units like feet. This tells you the
area of the enclosing box Abox.

3. Grab a bunch of pebbles, count their number, and then throw them up in the
air in random directions.

4. Count the number of splashes in the pond Npond and the number of pebbles
lying on the ground within your box Nbox.

5. Assuming that you threw the pebbles uniformly and randomly, the number
of pebbles falling into the pond should be proportional to the area of the pond
Apond. You determine that area from the simple ratio

Npond

Npond +Nbox
=
Apond

Abox
⇒ Apond =

Npond

Npond +Nbox
Abox. (6.44)

6.5.1 Stone Throwing Implementation

Use sampling (Figure 6.4) to perform a 2-D integration and thereby determine π:

1. Imagine a circular pond enclosed in a square of side 2 (r = 1).
2. We know the analytic area of a circle

∮
dA= π.

3. Generate a sequence of random numbers −1 ≤ ri ≤ +1.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 137

integration 137

Figure 6.4 Throwing stones in a pond as a technique for measuring its area. There is a tutorial

on this on the CD where you can see the actual “splashes” (the dark spots) used in an

integration.

4. For i= 1 to N , pick (xi, yi) = (r2i−1, r2i).
5. If x2

i + y2
i < 1, let Npond =Npond + 1; otherwise let Nbox =Nbox + 1.

6. Use (6.44) to calculate the area, and in this way π.
7. Increase N until you get π to three significant figures (we don’t ask much —

that’s only slide-rule accuracy).

6.5.2 Integration by Mean Value (Math)

The standard Monte Carlo technique for integration is based on the mean value
theorem (presumably familiar from elementary calculus):

I =
∫ b

a

dx f(x) = (b− a)〈f〉. (6.45)

The theorem states the obvious if you think of integrals as areas: The value of the
integral of some function f(x) between a and b equals the length of the interval
(b− a) times the mean value of the function over that interval 〈f〉 (Figure 6.5). The
integration algorithm uses Monte Carlo techniques to evaluate the mean in (6.45).
With a sequence a≤ xi ≤ b of N uniform random numbers, we want to determine
the sample mean by sampling the function f(x) at these points:

〈f〉 � 1
N

N∑
i=1

f(xi). (6.46)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 138

138 chapter 6

< f(x) >

f(x)

x

Figure 6.5 The area under the curve f(x) is the same as that under the dashed line y = 〈f 〉.

This gives us the very simple integration rule:

∫ b

a

dx f(x) � (b− a)
1
N

N∑
i=1

f(xi) = (b− a)〈f〉. (6.47)

Equation (6.47) looks much like our standard algorithm for integration (6.3) with the
“points” xi chosen randomly and with uniform weights wi = (b− a)/N . Because
no attempt has been made to obtain the best answer for a given value of N , this
is by no means an optimized way to evaluate integrals; but you will admit it is
simple. If we let the number of samples of f(x) approach infinity N → ∞ or if we
keep the number of samples finite and take the average of infinitely many runs,
the laws of statistics assure us that (6.47) will approach the correct answer, at least
if there were no round-off errors.

For readers who are familiar with statistics, we remind you that the uncertainty
in the value obtained for the integral I after N samples of f(x) is measured by
the standard deviation σI . If σf is the standard deviation of the integrand f in the
sampling, then for normal distributions we have

σI � 1√
N
σf . (6.48)

So for large N , the error in the value obtained for the integral decreases as 1/
√
N .

6.6 High-Dimensional Integration (Problem)

Let’s say that we want to calculate some properties of a small atom such as mag-
nesium with 12 electrons. To do that we need to integrate atomic wave functions
over the three coordinates of each of 12 electrons. This amounts to a 3 × 12 = 36-D

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 139

integration 139

integral. If we use 64 points for each integration, this requires about6436 � 1065 eval-
uations of the integrand. If the computer were fast and could evaluate the integrand
a billion times per second, this would take about 1056 s, which is significantly longer
than the age of the universe (∼1017 s).

Your problem is to find a way to perform multidimensional integrations so that
you are still alive to savor the answers. Specifically, evaluate the 10-D integral

I =
∫ 1

0
dx1

∫ 1

0
dx2 · · ·

∫ 1

0
dx10 (x1 +x2 + · · ·+x10)

2
. (6.49)

Check your numerical answer against the analytic one, 155
6 .

6.6.1 Multidimensional Monte Carlo

It is easy to generalize mean value integration to many dimensions by picking
random points in a multidimensional space. For example,

∫ b

a

dx

∫ d

c

dy f(x, y) � (b− a)(d− c)
1
N

N∑
i

f(xi) = (b− a)(d− c)〈f〉. (6.50)

6.6.2 Error in Multidimensional Integration (Assessment)

When we perform a multidimensional integration, the error in the Monte Carlo
technique, being statistical, decreases as 1/

√
N . This is valid even if the N points

are distributed overD dimensions. In contrast, when we use these sameN points to
perform aD-dimensional integration asD 1-D integrals using a rule such as Simp-
son’s, we use N/D points for each integration. For fixed N , this means that the
number of points used for each integration decreases as the number of dimensions
D increases, and so the error in each integration increases with D. Furthermore,
the total error will be approximately N times the error in each integral. If we put
these trends together and look at a particular integration rule, we will find that at
a value of D � 3–4 the error in Monte Carlo integration is similar to that of con-
ventional schemes. For larger values ofD, the Monte Carlo method is always more
accurate!

6.6.3 Implementation: 10-D Monte Carlo Integration

Use a built-in random-number generator to perform the 10-D Monte Carlo
integration in (6.49). Our program Int10d.java is available on the instructor’s CD.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 140

140 chapter 6

1. Conduct 16 trials and take the average as your answer.
2. Try sample sizes of N = 2, 4, 8, . . . , 8192.
3. Plot the error versus 1/

√
N and see if linear behavior occurs.

6.7 Integrating Rapidly Varying Functions (Problem)

It is common in many physical applications to integrate a function with an approx-
imately Gaussian dependence on x. The rapid falloff of the integrand means that
our Monte Carlo integration technique would require an incredibly large number
of points to obtain even modest accuracy. Your problem is to make Monte Carlo
integration more efficient for rapidly varying integrands.

6.7.1 Variance Reduction (Method)

If the function being integrated never differs much from its average value, then the
standard Monte Carlo mean value method (6.47) should work well with a large,
but manageable, number of points. Yet for a function with a large variance (i.e., one
that is not “flat”), many of the random evaluations of the function may occur where
the function makes a slight contribution to the integral; this is, basically, a waste
of time. The method can be improved by mapping the function f into a function
g that has a smaller variance over the interval. We indicate two methods here and
refer you to [Pres 00] and [Koon 86] for more details.

The first method is a variance reduction or subtraction technique in which we
devise a flatter function on which to apply the Monte Carlo technique. Suppose we
construct a function g(x) with the following properties on [a, b]:

|f(x) − g(x)| ≤ ε,

∫ b

a

dx g(x) = J. (6.51)

We now evaluate the integral of f(x) − g(x) and add the result to J to obtain the
required integral

∫ b

a

dx f(x) =
∫ b

a

dx [f(x) − g(x)] +J. (6.52)

If we are clever enough to find a simple g(x) that makes the variance of f(x) − g(x)
less than that of f(x) and that we can integrate analytically, we obtain more accurate
answers in less time.

6.7.2 Importance Sampling (Method)

A second method for improving Monte Carlo integration is called importance sam-
pling because it lets us sample the integrand in the most important regions. It derives

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 141

integration 141

from expressing the integral in the form

I =
∫ b

a

dx f(x) =
∫ b

a

dxw(x)
f(x)
w(x)

. (6.53)

If we now usew(x) as the weighting function or probability distribution for our random
numbers, the integral can be approximated as

I =
〈
f

w

〉
� 1
N

N∑
i=1

f(xi)
w(xi)

. (6.54)

The improvement from (6.54) is that a judicious choice of weighting functionw(x) ∝
f(x) makes f(x)/w(x) more constant and thus easier to integrate.

6.7.3 Von Neumann Rejection (Method)

A simple, ingenious method for generating random points with a probability dis-
tributionw(x) was deduced by von Neumann. This method is essentially the same
as the rejection or sampling method used to guess the area of a pond, only now
the pond has been replaced by the weighting function w(x), and the arbitrary box
around the lake by the arbitrary constant W0. Imagine a graph of w(x) versus x
(Figure 6.6). Walk off your box by placing the line W =W0 on the graph, with the
only condition being W0 ≥ w(x). We next “throw stones” at this graph and count
only those that fall into the w(x) pond. That is, we generate uniform distributions
in x and y ≡W with the maximum y value equal to the width of the box W0:

(xi,Wi) = (r2i−1,W0r2i). (6.55)

We then reject all xi that do not fall into the pond:

If Wi <w(xi), accept, If Wi >w(xi), reject. (6.56)

The xi values so accepted will have the weighting w(x) (Figure 6.6). The largest
acceptance occurs where w(x) is large, in this case for midrange x. In Chap-
ter 15, “Thermodynamic Simulations & Feynman Quantum Path Integration,” we
apply a variation of the rejection technique known as the Metropolis algorithm. This
algorithm has now become the cornerstone of computation thermodynamics.

6.7.4 Simple Gaussian Distribution

The central limit theorem can be used to deduce a Gaussian distribution via a simple
summation. The theorem states, under rather general conditions, that if {ri} is a

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 142

142 chapter 6

accept

reject

Figure 6.6 The Von Neumann rejection technique for generating random points with

weight w(x).

sequence of mutually independent random numbers, then the sum

xN =
N∑

i=1

ri (6.57)

is distributed normally. This means that the generatedxvalues have the distribution

PN (x) =
exp
[
− (x−µ)2

2σ2

]
√

2πσ2
, µ=N〈r〉, σ2 =N(〈r2〉 − 〈r〉2). (6.58)

6.8 Nonuniform Assessment �
Use the von Neumann rejection technique to generate a normal distribution of
standard deviation 1 and compare to the simple Gaussian method.

6.8.1 Implementation: Nonuniform Randomness �

In order for w(x) to be the weighting function for random numbers over [a, b], we
want it to have the properties

∫ b

a

dxw(x) = 1, [w(x)> 0], dP(x→ x+ dx) = w(x) dx, (6.59)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 143

integration 143

where dP is the probability of obtaining an x in the range x→ x+ dx. For the
uniform distribution over [a, b], w(x) = 1/(b− a).

Inverse transform/change of variable method �: Let us consider a change of
variables that takes our original integral I (6.53) to the form

I =
∫ b

a

dx f(x) =
∫ 1

0
dW

f [x(W )]
w[x(W )]

. (6.60)

Our aim is to make this transformation such that there are equal contributions
from all parts of the range in W ; that is, we want to use a uniform sequence
of random numbers forW . To determine the new variable, we start with u(r),
the uniform distribution over [0, 1],

u(r) =

{
1, for 0 ≤ r ≤ 1,
0, otherwise.

(6.61)

We want to find a mapping r ↔ x or probability function w(x) for which
probability is conserved:

w(x) dx= u(r) dr, ⇒ w(x) =
∣∣∣∣ drdx
∣∣∣∣u(r). (6.62)

This means that even though x and r are related by some (possibly) compli-
cated mapping, x is also random with the probability of x lying in x→ x+ dx
equal to that of r lying in r → r+ dr.

To find the mapping between x and r (the tricky part), we change variables
to W (x) defined by the integral

W (x) =
∫ x

−∞
dx′ w(x′). (6.63)

We recognizeW (x) as the (incomplete) integral of the probability density u(r)
up to some point x. It is another type of distribution function, the integrated
probability of finding a random number less than the value x. The function
W (x) is on that account called a cumulative distribution function and can also be
thought of as the area to the left of r = x on the plot of u(r) versus r. It follows
immediately from the definition (6.63) that W (x) has the properties

W (−∞) = 0; W (∞) = 1, (6.64)

dW (x)
dx

=w(x), dW (x) = w(x) dx= u(r) dr. (6.65)

Consequently, Wi = {ri} is a uniform sequence of random numbers, and we
just need to invert (6.63) to obtain x values distributed with probability w(x).

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 144

144 chapter 6

The crux of this technique is being able to invert (6.63) to obtain x=W−1(r).
Let us look at some analytic examples to get a feel for these steps (numerical
inversion is possible and frequent in realistic cases).

Uniform weight function w: We start with the familiar uniform distribution

w(x) =

{
1

b−a , if a≤ x≤ b,

0, otherwise.
(6.66)

After following the rules, this leads to

W (x) =
∫ x

a

dx′ 1
b− a

=
x− a

b− a
(6.67)

⇒ x= a+ (b− a)W ⇒ W−1(r) = a+ (b− a)r, (6.68)

where W (x) is always taken as uniform. In this way we generate uniform
random 0 ≤ r ≤ 1 and uniform random a≤ x≤ b.

Exponential weight: We want random points with an exponential distribution:

w(x) =

{
1
λe

−x/λ, for x > 0,

0, for x < 0,
W (x) =

∫ x

0
dx′ 1

λ
e−x′/λ = 1 − e−x/λ,

⇒ x=−λ ln(1−W ) ≡ −λ ln(1− r). (6.69)

In this way we generate uniform random r : [0, 1] and obtain x= −λ ln(1− r)
distributed with an exponential probability distribution for x > 0. Notice that
our prescription (6.53) and (6.54) tells us to use w(x) = e−x/λ/λ to remove the
exponential-like behavior from an integrand and place it in the weights and
scaled points (0 ≤ xi ≤ ∞). Because the resulting integrand will vary less, it
may be approximated better as a polynomial:

∫ ∞

0
dx e−x/λf(x) � λ

N

N∑
i=1

f(xi), xi = −λ ln(1− ri). (6.70)

Gaussian (normal) distribution: We want to generate points with a normal
distribution:

w(x′) =
1√
2πσ

e−(x′−x)2/2σ2
. (6.71)

This by itself is rather hard but is made easier by generating uniform dis-
tributions in angles and then using trigonometric relations to convert them
to a Gaussian distribution. But before doing that, we keep things simple by

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 145

integration 145

realizing that we can obtain (6.71) with mean x and standard deviation σ by
scaling and a translation of a simpler w(x):

w(x) =
1√
2π

e−x2/2, x′ = σx+x. (6.72)

We start by generalizing the statement of probability conservation for two
different distributions (6.62) to two dimensions [Pres 94]:

p(x, y) dx dy = u(r1, r2) dr1 dr2 ⇒ p(x, y) = u(r1, r2)
∣∣∣∣∂(r1, r2)
∂(x, y)

∣∣∣∣ .
We recognize the term in vertical bars as the Jacobian determinant:

J =
∣∣∣∣∂(r1, r2)
∂(x, y)

∣∣∣∣ def=
∂r1
∂x

∂r2
∂y

− ∂r2
∂x

∂r1
∂y

. (6.73)

To specialize to a Gaussian distribution, we consider 2πr as angles obtained
from a uniform random distribution r, and x and y as Cartesian coordinates
that will have a Gaussian distribution. The two are related by

x=
√

−2 ln r1 cos 2πr2, y =
√

−2 ln r1 sin 2πr2. (6.74)

The inversion of this mapping produces the Gaussian distribution

r1 = e−(x2+y2)/2, r2 =
1
2π

tan−1 y

x
, J = −e−(x2+y2)/2

2π
. (6.75)

The solution to our problem is at hand. We use (6.74) with r1 and r2 uniform
random distributions, and x and y are then Gaussian random distributions
centered around x= 0.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 146

7

Differentiation & Searching

In this chapter we add two more tools to our computational toolbox: numerical differ-
entiation and trial-and-error searching. In Unit I we derive the forward-difference,
central-difference, and extrapolated-difference methods for differentiation. They will
be used throughout the book, especially for partial differential equations. In Unit II
we devise ways to search for solutions to nonlinear equations by trial and error and
apply our new-found numerical differentiation tools there. Although trial-and-error
searching may not sound very precise, it is in fact widely used to solve problems where
analytic solutions do not exist or are not practical. In Chapter 8, “Solving Systems
of Equations with Matrices; Data Fitting,” we extend these search and differenti-
ation techniques to the solution of simultaneous equations using matrix techniques.
In Chapter 9, “Differential Equation Applications,” we combine trial-and-error
searching with the solution of ordinary differential equations to solve the quantum
eigenvalue problem.

7.1 Unit I. Numerical Differentiation

Problem: Figure 7.1 shows the trajectory of a projectile with air resistance. The
dots indicate the times t at which measurements were made and tabulated. Your
problem is to determine the velocity dy/dt≡ y′ as a function of time. Note that since
there is realistic air resistance present, there is no analytic function to differentiate,
only this table of numbers.

You probably did rather well in your first calculus course and feel competent at
taking derivatives. However, you may not ever have taken derivatives of a table of
numbers using the elementary definition

dy(t)
dx

def= lim
h→0

y(t+h) − y(t)
h

. (7.1)

In fact, even a computer runs into errors with this kind of limit because it is
wrought with subtractive cancellation; the computer’s finite word length causes the
numerator to fluctuate between 0 and the machine precision εm as the denominator
approaches zero.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 147

differentiation & searching 147

Central
y(t)

0
t

t +
 h

/2

t –
 h

/2

Forward

y(t)

0
t

t +
 h

Figure 7.1 Forward-difference approximation (slanted dashed line) and central-difference

approximation (horizontal line) for the numerical first derivative at point t. The central

difference is seen to be more accurate. ( The trajectory is that of a projectile with air

resistance.)

7.2 Forward Difference (Algorithm)

The most direct method for numerical differentiation starts by expanding a function
in a Taylor series to obtain its value a small step h away:

y(t+h) = y(t) +h
dy(t)
dt

+
h2

2!
d2y(t)
dt2

+
h3

3!
dy3(t)
dt3

+ · · · . (7.2)

We obtain the forward-difference derivative algorithm by solving (7.2) for y′(t):

dy(t)
dt

∣∣∣∣
fd

def=
y(t+h) − y(t)

h
. (7.3)

An approximation for the error follows from substituting the Taylor series:

dy(t)
dt

∣∣∣∣
fd

� dy(t)
dt

+
h

2
dy2(t)
dt2

+ · · · . (7.4)

You can think of this approximation as using two points to represent the function
by a straight line in the interval from x to x+h (Figure 7.1 left).

The approximation (7.3) has an error proportional to h (unless the heavens look
down upon you kindly and make y′′ vanish). We can make the approximation error
smaller by making h smaller, yet precision will be lost through the subtractive
cancellation on the left-hand side (LHS) of (7.3) for too small an h. To see how

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 148

148 chapter 7

the forward-difference algorithm works, let y(t) = a+ bt2. The exact derivative is
y′ = 2bt, while the computed derivative is

dy(t)
dt

∣∣∣∣
fd

� y(t+h) − y(t)
h

= 2bt+ bh. (7.5)

This clearly becomes a good approximation only for small h(h� 2t).

7.3 Central Difference (Algorithm)

An improved approximation to the derivative starts with the basic definition (7.1)
or geometrically as shown in Figure 7.1 on the right. Now, rather than making a
single step of h forward, we form a central difference by stepping forward half a step
and backward half a step:

dy(t)
dt

∣∣∣∣
cd

def=
y(t+h/2) − y(t−h/2)

h
. (7.6)

We estimate the error in the central-difference algorithm by substituting the Taylor
series for y(t±h/2) into (7.6):

y

(
t+

h

2

)
− y

(
t− h

2

)
�
[
y(t) +

h

2
y′(t) +

h2

8
y′′(t) +

h3

48
y′′′(t) + O(h4)

]

−
[
y(t) − h

2
y′(t) +

h2

8
y′′(t) − h3

48
y′′′(t) + O(h4)

]

=hy′(t) +
h3

24
y′′′(t) + O(h5),

⇒ dy(t)
dt

∣∣∣∣
cd

� y′(t) +
1
24
h2y′′′(t) + O(h4). (7.7)

The important difference between this algorithm and the forward difference from
(7.3) is that when y(t−h/2) is subtracted from y(t+h/2), all terms containing an
even power of h in the two Taylor series cancel. This make the central-difference
algorithm accurate to order h2 (h3 before division by h), while the forward differ-
ence is accurate only to order h. If the y(t) is smooth, that is, if y′′′h2/24 � y′′h/2,
then you can expect the central-difference error to be smaller. If we now return to
our parabola example (7.5), we will see that the central difference gives the exact
derivative independent of h:

dy(t)
dt

∣∣∣∣
cd

� y(t+h/2) − y(t−h/2)
h

= 2bt. (7.8)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 149

differentiation & searching 149

7.4 Extrapolated Difference (Method)

Because a differentiation rule based on keeping a certain number of terms in a
Taylor series also provides an expression for the error (the terms not included), we
can reduce the theoretical error further by forming a combination of algorithms
whose summed errors extrapolate to zero. One algorithm is the central-difference
algorithm (7.6) using a half-step back and a half-step forward. The second algorithm
is another central-difference approximation using quarter-steps:

dy(t, h/2)
dt

∣∣∣∣
cd

def=
y(t+h/4) − y(t−h/4)

h/2
� y′(t) +

h2

96
d3y(t)
dt3

+ · · · . (7.9)

A combination of the two eliminates both the quadratic and linear error terms:

dy(t)
dt

∣∣∣∣
ed

def=
4Dcdy(t, h/2)−Dcdy(t, h)

3
(7.10)

� dy(t)
dt

− h4y(5)(t)
4 × 16 × 120

+ · · · . (7.11)

Here (7.10) is the extended-difference algorithm, (7.11) gives its error, and Dcd
represents the central-difference algorithm. If h= 0.4 and y(5) � 1, then there will
be only one place of round-off error and the truncation error will be approximately
machine precision εm; this is the best you can hope for.

When working with these and similar higher-order methods, it is important
to remember that while they may work as designed for well-behaved functions,
they may fail badly for functions containing noise, as may data from computations
or measurements. If noise is evident, it may be better to first smooth the data or
fit them with some analytic function using the techniques of Chapter 8, “Solving
Systems of Equations with Matrices; Data Fitting,” and then differentiate.

7.5 Error Analysis (Assessment)

The approximation errors in numerical differentiation decrease with decreasing
step size h, while round-off errors increase with decreasing step size (you have
to take more steps and do more calculations). Remember from our discussion in
Chapter 2, “Errors & Uncertainties in Computations,” that the best approximation
occurs for an h that makes the total error εapprox + εro a minimum, and that as a
rough guide this occurs when εro � εapprox.

We have already estimated the approximation error in numerical differentiation
rules by making a Taylor series expansion of y(x+h). The approximation error with
the forward-difference algorithm (7.3) is O(h), while that with the central-difference

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 150

150 chapter 7

algorithm (7.7) is O(h2):

εfd
approx � y′′h

2
, εcd

approx � y′′′h2

24
. (7.12)

To obtain a rough estimate of the round-off error, we observe that differentiation
essentially subtracts the value of a function at argument x from that of the same
function at argument x+h and then divides by h : y′ � [y(t+h) − y(t)]/h. As h
is made continually smaller, we eventually reach the round-off error limit where
y(t+h) and y(t) differ by just machine precision εm:

εro � εm
h
. (7.13)

Consequently, round-off and approximation errors become equal when

εro � εapprox,

εm
h

� εfd
approx =

y(2)h

2
,

εm
h

� εcd
approx =

y(3)h2

24
,

⇒ h2
fd =

2εm
y(2) , ⇒ h3

cd =
24εm
y(3) .

(7.14)

We take y′ � y(2) � y(3) (which may be crude in general, though not bad for et or
cos t) and assume double precision, εm � 10−15:

hfd � 4 × 10−8, hcd � 3 × 10−5,

⇒ εfd � εm
hcd

� 3 × 10−8, ⇒ εcd � εm
hcd

� 3 × 10−11.
(7.15)

This may seem backward because the better algorithm leads to a larger h value.
It is not. The ability to use a larger h means that the error in the central-difference
method is about 1000 times smaller than the error in the forward-difference method.

We give a full program Diff.java on the instructor’s disk, yet the programming
for numerical differentiation is so simple that we need give only the lines

� �
FD = ( y ( t +h ) − y ( t ) ) /h ; / / forward d i f f
CD = ( y ( t +h/2) − y ( t−h/2) ) /h ; / / c e n t r a l d i f f
ED = ( 8∗ ( y ( t +h/4) − y ( t−h/4) ) − ( y ( t +h/2)−y ( t−h/2) ) ) /(3∗h ) ; / / extrap d i f f

�

1. Use forward-, central-, and extrapolated-difference algorithms to differentiate
the functions cos t and et at t= 0.1, 1., and 100.
a. Print out the derivative and its relative error E as functions of h. Reduce

the step size h until it equals machine precision h� εm.
b. Plot log10 |E| versus log10 h and check whether the number of decimal

places obtained agrees with the estimates in the text.
c. See if you can identify regions where truncation error dominates at large
h and round-off error at small h in your plot. Do the slopes agree with our
model’s predictions?

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 151

differentiation & searching 151

7.6 Second Derivatives (Problem)

Let’s say that you have measured the position y(t) versus time for a particle
(Figure 7.1). Your problem now is to determine the force on the particle. Newton’s
second law tells us that force and acceleration are linearly related:

F =ma=m
d2y

dt2
, (7.16)

where F is the force,m is the particle’s mass, and a is the acceleration. So if we can
determine the acceleration a(t) = d2y/dt2 from the y(t) values, we can determine
the force.

The concerns we expressed about errors in first derivatives are even more
valid for second derivatives where additional subtractions may lead to additional
cancellations. Let’s look again at the central-difference method:

dy(t)
dt

� y(t+h/2) − y(t−h/2)
h

. (7.17)

This algorithm gives the derivative at t by moving forward and backward from t
by h/2. We take the second derivative d2y/dt2 to be the central difference of the
first derivative:

d2y(t)
dt2

� y′(t+h/2) − y′(t−h/2)
h

� [y(t+h) − y(t)]− [y(t) − y(t−h)]
h2 (7.18)

=
y(t+h) + y(t−h) − 2y(t)

h2 . (7.19)

As we did for first derivatives, we determine the second derivative at tby evaluating
the function in the region surrounding t. Although the form (7.19) is more compact
and requires fewer steps than (7.18), it may increase subtractive cancellation by first
storing the “large” number y(t+h) + y(t−h) and then subtracting another large
number 2y(t) from it. We ask you to explore this difference as an exercise.

7.6.1 Second-Derivative Assessment

Write a program to calculate the second derivative of cos t using the central-
difference algorithms (7.18) and (7.19). Test it over four cycles. Start with h� π/10
and keep reducing h until you reach machine precision.

7.7 Unit II. Trial-and-Error Searching

Many computer techniques are well-defined sets of procedures leading to def-
inite outcomes. In contrast, some computational techniques are trial-and-error

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 152

152 chapter 7

algorithms in which decisions on what steps to follow are made based on the
current values of variables, and the program quits only when it thinks it has solved
the problem. (We already did some of this when we summed a power series until
the terms became small.) Writing this type of program is usually interesting because
we must foresee how to have the computer act intelligently in all possible situa-
tions, and running them is very much like an experiment in which it is hard to
predict what the computer will come up with.

7.8 Quantum States in a Square Well (Problem)

Probably the most standard problem in quantum mechanics1 is to solve for the
energies of a particle of mass m bound within a 1-D square well of radius a:

V (x) =

{−V0, for |x| ≤ a,

0, for |x| ≥ a.
(7.20)

As shown in quantum mechanics texts [Gott 66], the energies of the bound states
E = −EB < 0 within this well are solutions of the transcendental equations

√
10 −EB tan

(√
10 −EB

)
=
√
EB (even), (7.21)

√
10 −EB cotan

(√
10 −EB

)
=
√
EB (odd), (7.22)

where even and odd refer to the symmetry of the wave function. Here we have
chosen units such that h̄= 1, 2m= 1, a= 1, and V0 = 10. Your problem is to

1. Find several bound-state energies EB for even wave functions, that is, the
solution of (7.21).

2. See if making the potential deeper, say, by changing the 10 to a 20 or a 30,
produces a larger number of, or deeper bound states.

7.9 Trial-and-Error Roots via the Bisection Algorithm

Trial-and-error root finding looks for a value of x at which

f(x) = 0,

where the 0 on the right-hand side (RHS) is conventional (an equation such as
10 sinx= 3x3 can easily be written as10 sinx− 3x3 = 0). The search procedure starts

1 We solve this same problem in §9.9 using an approach that is applicable to almost any
potential and which also provides the wave functions. The approach of this section works
only for the eigenenergies of a square well.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 153

differentiation & searching 153

f(x)

x

x+1

x-2

x-1

x+4

x-3

+ 0 -

Figure 7.2 A graphical representation of the steps involved in solving for a zero of f (x ) using

the bisection algorithm (left ) and the Newton–Raphson method (right ). The bisection

algorithm takes the midpoint of the interval as the new guess for x, and so each step reduces

the interval size by one-half. The Newton–Raphson method takes the new guess as the zero of

the line tangent to f (x ) at the old guess. Four steps are shown for the bisection algorithm, but

only two for the more rapidly convergent Newton–Raphson method.

with a guessed value for x, substitutes that guess into f(x) (the “trial”), and then
sees how far the LHS is from zero (the “error”). The program then changes x based
on the error and tries out the new guess in f(x). The procedure continues until
f(x) � 0 to some desired level of precision, until the changes in x are insignificant,
or until it appears that progress is not being made.

The most elementary trial-and-error technique is the bisection algorithm. It is
reliable but slow. If you know some interval in which f(x) changes sign, then
the bisection algorithm will always converge to the root by finding progres-
sively smaller and smaller intervals in which the zero occurs. Other techniques,
such as the Newton–Raphson method we describe next, may converge more
quickly, but if the initial guess is not close, it may become unstable and fail
completely.

The basis of the bisection algorithm is shown on the left in Figure 7.2. We start
with two values of x between which we know a zero occurs. (You can determine
these by making a graph or by stepping through different x values and looking for
a sign change.) To be specific, let us say that f(x) is negative at x− and positive
at x+:

f(x−)< 0, f(x+)> 0. (7.23)

(Note that it may well be that x− > x+ if the function changes from positive to C D

negative as x increases.) Thus we start with the interval x+ ≤ x≤ x− within which

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 154

154 chapter 7

we know a zero occurs. The algorithm (given on the CD as Bisection.java) then
picks the new x as the bisection of the interval and selects as its new interval the
half in which the sign change occurs:

� �
x = ( xPlus + xMinus ) / 2
i f ( f ( x ) f ( xPlus ) > 0 ) xPlus = x

e l s e xMinus = x
�

This process continues until the value of f(x) is less than a predefined level of
precision or until a predefined (large) number of subdivisions occurs.

The example in Figure 7.2 on the left shows the first interval extending from
x− = x+1 to x+ = x−1. We then bisect that interval at x, and since f(x)< 0 at the
midpoint, we set x− ≡ x−2 = x and label it x−2 to indicate the second step. We then
use x+2 ≡ x+1 and x−2 as the next interval and continue the process. We see that
only x− changes for the first three steps in this example, but that for the fourth step
x+ finally changes. The changes then become too small for us to show.

7.9.1 Bisection Algorithm Implementation

1. The first step in implementing any search algorithm is to get an idea of what
your function looks like. For the present problem you do this by making a
plot of f(E) =

√
10 −EB tan(

√
10 −EB) −√

EB versus EB . Note from your
plot some approximate values at which f(EB) = 0. Your program should be
able to find more exact values for these zeros.

2. Write a program that implements the bisection algorithm and use it to find
some solutions of (7.21).

3. Warning: Because the tan function has singularities, you have to be careful.
In fact, your graphics program (or Maple) may not function accurately near
these singularities. One cure is to use a different but equivalent form of the
equation. Show that an equivalent form of (7.21) is

√
E cot(

√
10 −E) −√

10 −E = 0. (7.24)

4. Make a second plot of (7.24), which also has singularities but at different
places. Choose some approximate locations for zeros from this plot.

5. Compare the roots you find with those given by Maple or Mathematica.

7.10 Newton–Raphson Searching (A Faster Algorithm)

The Newton–Raphson algorithm finds approximate roots of the equation

f(x) = 0

more quickly than the bisection method. As we see graphically in Figure 7.2 on
the right, this algorithm is the equivalent of drawing a straight line f(x) �mx+ b
tangent to the curve at an x value for which f(x) � 0 and then using the intercept

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 155

differentiation & searching 155

of the line with the x axis at x= −b/m as an improved guess for the root. If the
“curve” were a straight line, the answer would be exact; otherwise, it is a good
approximation if the guess is close enough to the root for f(x) to be nearly linear.
The process continues until some set level of precision is reached. If a guess is in a
region where f(x) is nearly linear (Figure 7.2), then the convergence is much more
rapid than for the bisection algorithm.

The analytic formulation of the Newton–Raphson algorithm starts with an old
guess x0 and expresses a new guess x as a correction ∆x to the old guess:

x0 = old guess, ∆x= unknown correction (7.25)
⇒ x=x0 + ∆x= (unknown) new guess. (7.26)

We next expand the known function f(x) in a Taylor series around x0 and keep
only the linear terms:

f(x= x0 + ∆x) � f(x0) +
df

dx

∣∣∣∣
x0

∆x. (7.27)

We then determine the correction ∆x by calculating the point at which this linear
approximation to f(x) crosses the x axis:

f(x0) +
df

dx

∣∣∣∣
x0

∆x= 0, (7.28)

⇒ ∆x= − f(x0)
df/dx|x0

. (7.29)

The procedure is repeated starting at the improvedxuntil some set level of precision
is obtained.

The Newton–Raphson algorithm (7.29) requires evaluation of the derivative
df/dx at each value of x0. In many cases you may have an analytic expression
for the derivative and can build it into the algorithm. However, especially for
more complicated problems, it is simpler and less error-prone to use a numerical
forward-difference approximation to the derivative:2

df

dx
� f(x+ δx) − f(x)

δx
, (7.30)

where δx is some small change in x that you just chose [different from the ∆ used
for searching in (7.29)]. While a central-difference approximation for the derivative
would be more accurate, it would require additional evaluations of the f ’s, and
once you find a zero, it does not matter how you got there. On the CD we give the

2 We discuss numerical differentiation in Chapter 7, “Differentiation & Searching.”

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 156

156 chapter 7

Figure 7.3 Two examples of how the Newton–Raphson algorithm may fail if the initial guess is

not in the region where f (x ) can be approximated by a straight line. Left: A guess lands at a

local minimum/maximum, that is, a place where the derivative vanishes, and so the next

guess ends up at x = ∞. Right: The search has fallen into an infinite loop. Backtracking would

help here.

programs Newton_cd.java (also Listing 7.1) and Newton_fd.java,which implement
the derivative both ways.

� �
/ / Newton_cd . java : Newton−Raphson root finder , c e n t r a l d i f f d e r i v a t i v e

p u b l i c c l a s s Newton_cd {

p u b l i c s t a t i c d o u b l e f ( d o u b l e x ) { r e t u r n 2∗Math . cos ( x ) − x ; } / / function

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) {
d o u b l e x = 2 . , dx = 1e−2, F= f ( x ) , eps = 1e−6, df ;
i n t i t , imax = 1 0 0 ; / / Max no of i t e r a t i o n s permitted
f o r ( i t = 0 ; i t <= imax ; i t ++ ) {

System . out . p r i n t l n ("Iteration # = "+ i t +" x = "+x+" f (x) = "+F ) ;
df = ( f ( x + dx/2) − f ( x−dx/2) ) /dx ; / / Central d i f f deriv
dx = −F/df ;
x += dx ; / / New guess
F = f ( x ) ; / / Save for use
i f ( Math . abs ( F ) <= eps ) { / / Check for convergence

System . out . p r i n t l n ("Root found , tolerance eps = " + eps ) ;
b r e a k ;

} } } }
�

Listing 7.1 Newton_cd.java uses the Newton–Raphson method to search for a zero of the

function f (x ). A central-difference approximation is used to determine df /dx.

7.10.1 Newton–Raphson Algorithm with Backtracking

Two examples of possible problems with the Newton–Raphson algorithm are
shown in Figure 7.3. On the left we see a case where the search takes us to an x value
where the function has a local minimum or maximum, that is, where df/dx= 0.
Because ∆x= −f/f ′, this leads to a horizontal tangent (division by zero), and so
the next guess is x= ∞, from where it is hard to return. When this happens, you
need to start your search with a different guess and pray that you do not fall into

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 157

differentiation & searching 157

this trap again. In cases where the correction is very large but maybe not infinite,
you may want to try backtracking (described below) and hope that by taking a
smaller step you will not get into as much trouble.

In Figure 7.3 on the right we see a case where a search falls into an infinite loop
surrounding the zero without ever getting there. Asolution to this problem is called
backtracking. As the name implies, in cases where the new guess x0 + ∆x leads to
an increase in the magnitude of the function, |f(x0 + ∆x)|2 > |f(x0)|2, you should
backtrack somewhat and try a smaller guess, say, x0 + ∆x/2. If the magnitude of f
still increases, then you just need to backtrack some more, say, by trying x0 + ∆x/4
as your next guess, and so forth. Because you know that the tangent line leads to a
local decrease in |f |, eventually an acceptable small enough step should be found.

The problem in both these cases is that the initial guesses were not close enough
to the regions where f(x) is approximately linear. So again, a good plot may help
produce a good first guess. Alternatively, you may want to start your search with
the bisection algorithm and then switch to the faster Newton–Raphson algorithm
when you get closer to the zero.

7.10.2 Newton–Raphson Algorithm Implementation

1. Use the Newton–Raphson algorithm to find some energies EB that are solu-
tions of (7.21). Compare this solution with the one found with the bisection
algorithm.

2. Again, notice that the 10 in this equation is proportional to the strength of the
potential that causes the binding. See if making the potential deeper, say, by
changing the 10 to a 20 or a 30, produces more or deeper bound states. (Note
that in contrast to the bisection algorithm, your initial guess must be closer
to the answer for the Newton–Raphson algorithm to work.)

3. Modify your algorithm to include backtracking and then try it out on some
problem cases.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 158

8

Solving Systems of Equations
with Matrices; Data Fitting

Unit I of this chapter applies the trial-and-error techniques developed in Chapter 7,
“Differentiation & Searching,” to solve a set of simultaneous nonlinear equations.
This leads us into general matrix computing using scientific libraries. In Unit II we
look at several ways in which theoretical formulas are fit to data and see that these
often require the matrix techniques of Unit I.

8.1 Unit I. Systems of Equations
and Matrix Computing

Physical systems are often modeled by systems of simultaneous equations written
in matrix form. As the models are made more realistic, the matrices often become
large, and computers become an excellent tool for solving such problems. What
makes computers so good is that matrix manipulations intrinsically involve the
continued repetition of a small number of simple instructions, and algorithms exist
to do this quite efficiently. Further speedup may be achieved by tuning the codes
to the computer’s architecture, as discussed in Chapter 14, “High-Performance
Computing Hardware, Tuning, & Parallel Computing.”

Industrial-strength subroutines for matrix computing are found in well-
established scientific libraries. These subroutines are usually an order of magnitude
or more faster than the elementary methods found in linear algebra texts,1 are usu-
ally designed to minimize round-off error, and are often “robust,” that is, have a
high chance of being successful for a broad class of problems. For these reasons we
recommend that you do not write your own matrix subroutines but instead get them
from a library. An additional value of library routines is that you can often run the
same program either on a desktop machine or on a parallel supercomputer, with
matrix routines automatically adapting to the local architecture.

The thoughtful reader may be wondering when a matrix is “large” enough to
require the use of a library routine. While in the past large may have meant a

1 Although we prize the book [Pres 94] and what it has accomplished, we cannot recommend
taking subroutines from it. They are neither optimized nor documented for easy, stand-
alone use, whereas the subroutine libraries recommended in this chapter are.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 159

systems of equations with matrices; data fitting 159

θ θ

θ

θ

θ

θ

Figure 8.1 Left: Two weights connected by three pieces of string and suspended from a

horizontal bar of length L. The angles and the tensions in the strings are unknown. Right: A free

body diagram for one weight in equilibrium.

good fraction of your computer’s random-access memory (RAM), we now advise
that a library routine be used whenever the matrix computations are so numerically
intensive that you must wait for results. In fact, even if the sizes of your matrices are
small, as may occur in graphical processing, there may be library routines designed
just for that which speed up your computation.

Now that you have heard the sales pitch, you may be asking, “What’s the cost?”
In the later part of this chapter we pay the costs of having to find what libraries
are available, of having to find the name of the routine in that library, of having to
find the names of the subroutines your routine calls, and then of having to figure
out how to call all these routines properly. And because some of the libraries are
in Fortran, if you are a C programmer you may also be taxed by having to call a
Fortran routine from your C program. However, there are now libraries available
in most languages.

8.2 Two Masses on a String

Two weights (W1,W2) = (10, 20) are hung from three pieces of string with lengths
(L1, L2, L3) = (3, 4, 4) and a horizontal bar of lengthL= 8 (Figure 8.1). The problem
is to find the angles assumed by the strings and the tensions exerted by the strings.

In spite of the fact that this is a simple problem requiring no more than
first-year physics to formulate, the coupled transcendental equations that result
are inhumanely painful to solve analytically. However, we will show you how the
computer can solve this problem, but even then only by a trial-and-error technique
with no guarantee of success. Your problem is to test this solution for a variety of
weights and lengths and then to extend it to the three-weight problem (not as easy
as it may seem). In either case check the physical reasonableness of your solution;
the deduced tensions should be positive and of similar magnitude to the weights of

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 160

160 chapter 8

the spheres, and the deduced angles should correspond to a physically realizable
geometry, as confirmed with a sketch. Some of the exploration you should do is to
see at what point your initial guess gets so bad that the computer is unable to find
a physical solution.

8.2.1 Statics (Theory)

We start with the geometric constraints that the horizontal length of the structure
is L and that the strings begin and end at the same height (Figure 8.1 left):

L1 cos θ1 +L2 cos θ2 +L3 cos θ3 =L, (8.1)

L1 sin θ1 +L2 sin θ2 −L3 sin θ3 = 0, (8.2)

sin2 θ1 + cos2 θ1 = 1, (8.3)

sin2 θ2 + cos2 θ2 = 1, (8.4)

sin2 θ3 + cos2 θ3 = 1. (8.5)

Observe that the last three equations include trigonometric identities as indepen-
dent equations because we are treating sin θ and cos θ as independent variables;
this makes the search procedure easier to implement. The basics physics says that
since there are no accelerations, the sum of the forces in the horizontal and vertical
directions must equal zero (Figure 8.1 right):

T1 sin θ1 −T2 sin θ2 −W1 = 0, (8.6)

T1 cos θ1 −T2 cos θ2 = 0, (8.7)

T2 sin θ2 +T3 sin θ3 −W2 = 0, (8.8)

T2 cos θ2 −T3 cos θ3 = 0. (8.9)

Here Wi is the weight of mass i and Ti is the tension in string i. Note that since we
do not have a rigid structure, we cannot assume the equilibrium of torques.

8.2.2 Multidimensional Newton–Raphson Searching

Equations (8.1)–(8.9) are nine simultaneous nonlinear equations. While linear
equations can be solved directly, nonlinear equations cannot [Pres 00]. You can
use the computer to search for a solution by guessing, but there is no guarantee of
finding one. We apply to our set the same Newton–Raphson algorithm as used to
solve a single equation by renaming the nine unknown angles and tensions as the

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 161

systems of equations with matrices; data fitting 161

subscripted variable yi and placing the variables together as a vector:

y =




x1

x2

x3

x4

x5

x6

x7

x8

x9




=




sin θ1
sin θ2
sin θ3
cos θ1
cos θ2
cos θ3
T1

T2

T3




. (8.10)

The nine equations to be solved are written in a general form with zeros on the
right-hand sides and placed in a vector:

fi(x1, x2, . . . , xN ) = 0, i= 1, N, (8.11)

f(y) =




f1(y)
f2(y)
f3(y)
f4(y)
f5(y)
f6(y)
f7(y)
f8(y)
f9(y)




=




3x4 + 4x5 + 4x6 − 8
3x1 + 4x2 − 4x3

x7x1 −x8x2 − 10
x7x4 −x8x5

x8x2 +x9x3 − 20
x8x5 −x9x6

x2
1 +x2

4 − 1
x2

2 +x2
5 − 1

x2
3 +x2

6 − 1




= 0. (8.12)

The solution to these equations requires a set of nine xi values that make all nine
fi’s vanish simultaneously. Although these equations are not very complicated (the
physics after all is elementary), the terms quadratic in xmake them nonlinear, and
this makes it hard or impossible to find an analytic solution. The search algorithm
is to guess a solution, expand the nonlinear equations into linear form, solve the
resulting linear equations, and continue to improve the guesses based on how close
the previous one was to making f = 0.

Explicitly, let the approximate solution at any one stage be the set {xi} and let
us assume that there is an (unknown) set of corrections {∆xi} for which

fi(x1 + ∆x1, x2 + ∆x2, . . . , x9 + ∆x9) = 0, i= 1, 9. (8.13)

We solve for the approximate ∆xi’s by assuming that our previous solution is close
enough to the actual one for two terms in the Taylor series to be accurate:

fi(x1 + ∆x1, . . . , x9 + ∆x9) � fi(x1, . . . , x9) +
9∑

j=1

∂fi

∂xj
∆xj = 0. i= 1, 9. (8.14)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 162

162 chapter 8

We now have a solvable set of nine linear equations in the nine unknowns ∆xi,
which we express as a single matrix equation

f1 + ∂f1/∂x1 ∆x1 + ∂f1/∂x2 ∆x2 + · · ·+ ∂f1/∂x9 ∆x9 = 0,

f2 + ∂f2/∂x1 ∆x1 + ∂f2/∂x2 ∆x2 + · · ·+ ∂f2/∂x9 ∆x9 = 0,

. . .

f9 + ∂f9/∂x1 ∆x1 + ∂f9/∂x2 ∆x2 + · · ·+ ∂f9/∂x9 ∆x9 = 0,




f1

f2

. . .

f9


+




∂f1/∂x1 ∂f1/∂x2 · · · ∂f1/∂x9

∂f2/∂x1 ∂f2/∂x2 · · · ∂f2/∂x9

. . .

∂f9/∂x1 ∂f9/∂x2 · · · ∂f9/∂x9







∆x1

∆x2

. . .

∆x9


= 0. (8.15)

Note now that the derivatives and the f ’s are all evaluated at known values of the
xi’s, so only the vector of the ∆xi values is unknown. We write this equation in
matrix notation as

f +F′∆x = 0, ⇒ F′∆x = −f , (8.16)

∆x =




∆x1

∆x2

. . .

∆x9


 , f =




f1

f2

. . .

f9


 , F′ =




∂f1/∂x1 · · · ∂f1/∂x9

∂f2/∂x1 · · · ∂f2/∂x9

. . .

∂f9/∂x1 · · · ∂f9/∂x9


 .

Here we use bold to emphasize the vector nature of the columns offi and∆xi values
and call the matrix of the derivatives F′ (it is also sometimes called J because it is
the Jacobian matrix).

The equation F′∆x = −f is in the standard form for the solution of a linear
equation (often written Ax = b), where ∆x is the vector of unknowns and b = −f .
Matrix equations are solved using the techniques of linear algebra, and in the
sections to follow we shall show how to do that on a computer. In a formal (and
sometimes practical) sense, the solution of (8.16) is obtained by multiplying both
sides of the equation by the inverse of the F′ matrix:

∆x = −F′−1f , (8.17)

where the inverse must exist if there is to be a unique solution. Although we are
dealing with matrices now, this solution is identical in form to that of the 1-D
problem, ∆x= −(1/f ′)f . In fact, one of the reasons we use formal or abstract
notation for matrices is to reveal the simplicity that lies within.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 163

systems of equations with matrices; data fitting 163

As we indicated for the single-equation Newton–Raphson method, while for our
two-mass problem we can derive analytic expressions for the derivatives ∂fi/∂xj ,
there are 9 × 9 = 81 such derivatives for this (small) problem, and entering them
all would be both time-consuming and error-prone. In contrast, especially for
more complicated problems, it is straightforward to program a forward-difference
approximation for the derivatives,

∂fi

∂xj
� fi(xj + ∆xj) − fi(xj)

δxj
, (8.18)

where each individual xj is varied independently since these are partial derivatives
and δxj are some arbitrary changes you input. While a central-difference approx-
imation for the derivative would be more accurate, it would also require more
evaluations of the f ’s, and once we find a solution it does not matter how accurate
our algorithm for the derivative was.

As also discussed for the 1-D Newton–Raphson method (§7.10.1), the method
can fail if the initial guess is not close enough to the zero of f (here all N of them)
for the f ’s to be approximated as linear. The backtracking technique may be applied
here as well, in the present case, progressively decreasing the corrections ∆xi until
|f |2 = |f1|2 + |f2|2 + · · ·+ |fN |2 decreases.

8.3 Classes of Matrix Problems (Math)

It helps to remember that the rules of mathematics apply even to the world’s
most powerful computers. For example, you should have problems solving equa-
tions if you have more unknowns than equations or if your equations are not
linearly independent. But do not fret. While you cannot obtain a unique solution
when there are not enough equations, you may still be able to map out a space
of allowable solutions. At the other extreme, if you have more equations than
unknowns, you have an overdetermined problem, which may not have a unique
solution. An overdetermined problem is sometimes treated using data fitting in
which a solution to a sufficient set of equations is found, tested on the unused
equations, and then improved if needed. Not surprisingly, this latter technique is
known as the linear least-squares method because it finds the best solution “on the
average.”

The most basic matrix problem is the system of linear equations you have to
solve for the two-mass problem:

Ax = b, AN×N xN×1 = bN×1, (8.19)

where A is a known N ×N matrix, x is an unknown vector of length N , and b is
a known vector of length N . The best way to solve this equation is by Gaussian
elimination or lower-upper (LU) decomposition. This yields the vector x without
explicitly calculating A−1. Another, albeit slower and less robust, method is to
determine the inverse of A and then form the solution by multiplying both sides

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 164

164 chapter 8

of (8.19) by A−1:

x = A−1b. (8.20)

Both the direct solution of (8.19) and the determination of a matrix’s inverse are
standards in a matrix subroutine library.

If you have to solve the matrix equation

Ax = λx, (8.21)

with x an unknown vector and λ an unknown parameter, then the direct solution
(8.20) will not be of much help because the matrix b = λx contains the unknowns
λ and x. Equation (8.21) is the eigenvalue problem. It is harder to solve than (8.19)
because solutions exist for only certain λ values (or possibly none depending on
A). We use the identity matrix to rewrite (8.21) as

[A−λI]x = 0, (8.22)

and we see that multiplication by [A−λI]−1 yields the trivial solution

x = 0 (trivial solution). (8.23)

While the trivial solution is a bona fide solution, it is trivial. A more interesting
solution requires the existence of a condition that forbids us from multiplying both
sides of (8.22) by [A−λI]−1. That condition is the nonexistence of the inverse, and
if you recall that Cramer’s rule for the inverse requires division by det[A−λI], it
is clear that the inverse fails to exist (and in this way eigenvalues do exist) when

det[A−λI] = 0. (8.24)

The λ values that satisfy this secular equation are the eigenvalues of (8.21).
If you are interested in only the eigenvalues, you should look for a matrix routine

that solves (8.24). To do that, first you need a subroutine to calculate the determi-
nant of a matrix, and then a search routine to zero in on the solution of (8.24).
Such routines are available in libraries. The traditional way to solve the eigenvalue
problem (8.21) for both eigenvalues and eigenvectors is by diagonalization. This is
equivalent to successive changes of basis vectors, each change leaving the eigenval-
ues unchanged while continually decreasing the values of the off-diagonal elements
of A. The sequence of transformations is equivalent to continually operating on the
original equation with a matrix U:

UA(U−1U)x=λUx, (8.25)

(UAU−1)(Ux) =λUx, (8.26)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 165

systems of equations with matrices; data fitting 165

until one is found for which UAU−1 is diagonal:

UAU−1 =



λ

′
1 · · · 0
0 λ

′
2 · · · 0

0 0 λ
′
3 · · ·

0 · · · λ
′
N


 . (8.27)

The diagonal values of UAU−1 are the eigenvalues with eigenvectors

xi = U−1êi; (8.28)

that is, the eigenvectors are the columns of the matrix U−1. A number of routines
of this type are found in subroutine libraries.

8.3.1 Practical Aspects of Matrix Computing

Many scientific programming bugs arise from the improper use of arrays.2 This may
be due to the extensive use of matrices in scientific computing or to the complexity
of keeping track of indices and dimensions. In any case, here are some rules of
thumb to observe.

Computers are finite: Unless you are careful, your matrices will use so much
memory that your computation will slow down significantly, especially if it
starts to use virtual memory. As a case in point, let’s say that you store data
in a 4-D array with each index having a physical dimension of 100: A[100] [100]
[100] [100]. This array of (100)4 64-byte words occupies �1 GB of memory.

Processing time: Matrix operations such as inversion require on the order ofN3

steps for a square matrix of dimensionN . Therefore, doubling the dimensions
of a 2-D square matrix (as happens when the number of integration steps is
doubled) leads to an eightfold increase in processing time.

Paging: Many operating systems have virtual memory in which disk space is
used when a program runs out of RAM (see Chapter 14, “High-Performance
Computing Hardware, Tuning, and Parallel Computing,” for a discussion of
how computers arrange memory). This is a slow process that requires writing
a full page of words to the disk. If your program is near the memory limit at
which paging occurs, even a slight increase in a matrix’s dimension may lead
to an order-of-magnitude increase in execution time.

Matrix storage: While we may think of matrices as multidimensional blocks of
stored numbers, the computer stores them as linear strings. For instance, a
matrix a[3][3] in Java and C is stored in row-major order (Figure 8.2 left):

a1,1 a1,2 a1,3 a2,1 a2,2 a2,3 a3,1 a3,2 a3,3 . . . ,

2 Even a vector V (N) is called an array, albeit a 1-D one.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 166

166 chapter 8

a h i

a cc

c

b

f

g h i

a e id g b h c f

f

f

g

g

h i

a b

d d

d

e e

eb

Row Major Column Major

Figure 8.2 Left: Row-major order used for matrix storage in C and Java.

Right: Column-major order used for matrix storage in Fortran. How successive matrix elements

are stored in a linear fashion in memory is shown at the bottom.

while in Fortran it is stored in column-major order (Figure 8.2 right):

a1,1 a2,1 a3,1 a1,2 a2,2 a3,2 a1,3 a2,3 a3,3 . . . .

It is important to keep this linear storage scheme in mind in order to write
proper code and to permit the mixing of Fortran and C programs.
When dealing with matrices, you have to balance the clarity of the oper-
ations being performed against the efficiency with which the computer
performs them. For example, having one matrix with many indices such as
V[L,Nre,Nspin,k,kp,Z,A] may be neat packaging, but it may require the com-
puter to jump through large blocks of memory to get to the particular values
needed (large strides) as you vary k, kp, and Nre. The solution would be to
have several matrices such as V1[Nre,Nspin,k,kp,Z,A], V2[Nre,Nspin,k,kp,Z,A],
and V3[Nre,Nspin,k,kp,Z,A].

Subscript 0: It is standard in C and Java to have array indices begin with the
value 0. While this is now permitted in Fortran, the standard has been to start
indices at 1. On that account, in addition to the different locations in memory
due to row-major and column-major ordering, the same matrix element is
referenced differently in the different languages:

Location Java/C Element Fortran Element

Lowest a[0][0] a(1,1)
a[0][1] a(2,1)
a[1][0] a(3,1)
a[1][1] a(1,2)
a[2][0] a(2,2)

Highest a[2][1] a(3,2)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 167

systems of equations with matrices; data fitting 167

Physical and logical dimensions: When you run a program, you issue com-
mands such as double a[3][3] or Dimension a(3,3) that tell the compiler how
much memory it needs to set aside for the array a. This is called physical
memory. Sometimes you may use arrays without the full complement of val-
ues declared in the declaration statements, for example, as a test case. The
amount of memory you actually use to store numbers is the matrix’s logical
size.
Modern programming techniques, such as those used in Java, C, and
Fortran90, permit dynamic memory allocation; that is, you may use variables
as the dimension of your arrays and read in the values of the variables at
run time. With these languages you should read in the sizes of your arrays at
run time and thus give them the same physical and logical sizes. However,
Fortran77, which is the language used for many library routines, requires the
dimensions to be specified at compile time, and so the physical and logical
sizes may well differ. To see why care is needed if the physical and logical sizes
of the arrays differ, imagine that you declared a[3][3] but defined elements
only up to a[2][2]. Then the a in storage would look like

a[1][1]’ a[1][2]’ a[1][3] a[2][1]’ a[2][2]’ a[2][3] a[3][1] a[3][2] a[3][3],

where only the elements with primes have values assigned to them. Clearly,
the defined a values do not occupy sequential locations in memory, and so
an algorithm processing this matrix cannot assume that the next element in
memory is the next element in your array. This is the reason why subroutines
from a library often need to know both the physical and logical sizes of your
arrays.

Passing sizes to subprograms �: This is needed when the logical and physical
dimensions of arrays differ, as is true with some library routines but probably
not with the programs you write. In cases such as those using external libraries,
you must also watch that the sizes of your matrices do not exceed the bounds
that have been declared in the subprograms. This may occur without an error
message and probably will give you the wrong answers. In addition, if you
are running a C program that calls a Fortran subroutine, you will need to pass
pointers to variables and not the actual values of the variables to the Fortran
subprograms (Fortran makes reference calls, which means it deals with pointers
only as subprogram arguments). Here we have a program possibly running
some data stored nearby:

� �
main / / In main program

dimension a ( 1 0 0 ) , b ( 4 0 0 )

funct ion Sample ( a ) / / In subroutine
dimension a ( 1 0 ) / / Smaller dimension
a ( 3 0 0 ) = 12 / / Out of bounds , but no message

�

One way to ensure size compatibility among main programs and subroutines
is to declare array sizes only in your main program and then pass those sizes
along to your subprograms as arguments.

Equivalence, pointers, references manipulations �: Once upon a time com-
puters had such limited memories that programmers conserved memory by

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 168

168 chapter 8

having different variables occupy the same memory location, the theory being
that this would cause no harm as long as these variables were not being used
at the same time. This was done by the use of Common and Equivalence
statements in Fortran and by manipulations using pointers and references in
other languages. These types of manipulations are now obsolete (the bane of
object-oriented programming) and can cause endless grief; do not use them
unless it is a matter of “life or death”!

Say what’s happening: You decrease programming errors by using self-
explanatory labels for your indices (subscripts), stating what your variables
mean, and describing your storage schemes.

Tests: Always test a library routine on a small problem whose answer you know
(such as the exercises in §8.3.4). Then you’ll know if you are supplying it with
the right arguments and if you have all the links working.

8.3.2 Implementation: Scientific Libraries, World Wide Web

Some major scientific and mathematical libraries available include the following.

NETLIB A WWW metalib of free ScaLAPACK Distributed memory
math libraries LAPACK

LAPACK Linear Algebra Pack JLAPACK LAPACK library in Java

SLATEC Comprehensive math and ESSL Engineering and Science
statistical pack Subroutine Library (IBM)

IMSL International Math and CERNLIB European Centre for
Statistical Libraries Nuclear Research Library

BLAS Basic Linear Algebra JAMA Java Matrix Library
Subprograms

NAG Numerical Algorithms LAPACK ++ Linear algebra in C++
Group (UK Labs)

TNT C++ Template Numerical GNU Scientific Full scientific libraries
Toolkit GSL in C and C++

Except for ESSL, IMSL, and NAG, all these libraries are in the public domain.
However, even the proprietary ones are frequently available on a central computer
or via an institutionwide site license. General subroutine libraries are treasures to
possess because they typically contain optimized routines for almost everything
you might want to do, such as

Linear algebra manipulations Matrix operations Interpolation, fitting
Eigensystem analysis Signal processing Sorting and searching
Solutions of linear equations Differential equations Roots, zeros, and extrema
Random-number operations Statistical functions Numerical quadrature

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 169

systems of equations with matrices; data fitting 169

You can search the Web to find out about these libraries or to download one if it
is not already on your computer. Alternatively, an excellent place to start looking
for a library is Netlib, a repository of free software, documents, and databases of
interest to computational scientists.

Linear Algebra Package (LAPACK) is a free, portable, modern (1990) library
of Fortran77 routines for solving the most common problems in numerical linear
algebra. It is designed to be efficient on a wide range of high-performance comput-
ers under the proviso that the hardware vendor has implemented an efficient set of
Basic Linear Algebra Subroutines (BLAS). In contrast to LAPACK, the Sandia, Los
Alamos, Air Force Weapons Laboratory Technical Exchange Committee (SLATEC)
library contains general-purpose mathematical and statistical Fortran routines and
is consequently more general. Nonetheless, it is not as tuned to the architecture of
a particular machine as is LAPACK.

Sometimes a subroutine library supplies only Fortran routines, and this requires
a C programmer to call a Fortran routine (we describe how to do that in
Appendix E). In some cases, C-language routines may also be available, but they
may not be optimized for a particular machine.

As an example of what may be involved in using a scientific library, consider the
SLATEC library, which we recommend. The full library contains a guide, a table
of contents, and documentation via comments in the source code. The subroutines
are classified by the Guide to Available Mathematical Software (GAMS) system.
For our masses-on-strings problem we have found the needed routines:

snsq-s, dnsq-d Find zero of n-variable, nonlinear function
snsqe-s, dnsqe-d Easy-to-use snsq

If you extract these routines, you will find that they need the following:

enorm.f j4save.f r1mach.f xerprn.f fdjac1.f r1mpyq.f
xercnt.f xersve.f fdump.f qform.f r1updt.f xerhlt.f

xgetua.f dogleg.f i1mach.f qrfac.f snsq.f xermsg.f

Of particular interest in these “helper” routines, are i1mach.f, r1mach.f, and d1mach.f.
They tell LAPACK the characteristic of your particular machine when the library is
first installed. Without that knowledge, LAPACK does not know when convergence
is obtained or what step sizes to use.

8.3.3 JAMA: Java Matrix Library

JAMA is a basic linear algebra package for Java developed at the U.S. National
Institute of Science (NIST) (see reference [Jama] for documentation). We recom-
mend it because it works well, is natural and understandable to nonexperts, is
free, and helps make scientific codes more universal and portable, and because not
much else is available. JAMA provides object-oriented classes that construct true

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 170

170 chapter 8

Matrix objects, add and multiply matrices, solve matrix equations, and print out
entire matrices in an aligned row-by-row format. JAMA is intended to serve as the
standard matrix class for Java.3 Because this book uses Java for its examples, we
now give some JAMA examples.

The first example is the matrix equation Ax = b for the solution of a set of linear
equations with x unknown. We take A to be 3 × 3, x to be 3 × 1, and b to be 3 × 1:

� �
d o u b l e [ ] [ ] array = { { 1 . , 2 . , 3 } , { 4 . , 5 . , 6 . } , { 7 . , 8 . , 1 0 . } } ;
Matrix A = new Matrix ( array ) ;
Matrix b = Matrix . random ( 3 , 1 ) ;
Matrix x = A. solve ( b ) ;
Matrix Residual = A. t imes ( x ) . minus ( b ) ;

�

Here the vectors and matrices are declared and created as Matrix variables, with
b given random values. We then solve the 3 × 3 linear system of equations Ax = b
with the single command Matrix x = A.solve(b) and compute the residual Ax−b
with the command Residual = A.times(x).minus(b).

Our second JAMA example arises in the solution for the principal-axes system
for a cube and requires us to find a coordinate system in which the inertia tensor
is diagonal. This entails solving the eigenvalue problem

I →
ω = λ�ω, (8.29)

where I is the original inertia matrix, �ω is an eigenvector, λ is an eigenvalue, and we
use arrows to indicate vectors. The program JamaEigen.java in Listing 8.1 solves
for the eigenvalues and vectors and produces output of the form
Input Matrix
0.66667 --0.25000 --0.25000

--0.25000 0.66667 --0.25000
--0.25000 --0.25000 0.66667

Eigenvalue: lambda.Re[] = 0.1666666666666665, 0.9166666666666666,
0.9166666666666666

Matrix with column eigenvectors First Eigenvector, Vec
--0.57735 --0.70711 --0.40825 -0.57735
--0.57735 0.70711 --0.40825 --0.57735
--0.57735 0.00000 0.81650 --0.57735

Does LHS = RHS?
--0.146225044865 --0.146225044865
--0.146225044865 --0.146225044865
--0.146225044865 --0.146225044865

Look at JamaEigen and notice how on line 9 we first set up the array I with all
the elements of the inertia tensor and then on line 10 create a matrix MatI with the
same elements as the array. On line 13 the eigenvalue problem is solved with the
creation of an eigenvalue object E via the JAMA command:

3 A sibling matrix package, Jampack [Jama] has also been developed at NIST and at the
University of Maryland, and it works for complex matrices as well.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 171

systems of equations with matrices; data fitting 171

� �
/∗ JamaEigen . java : eigenvalue problem with JAMA. JAMA must be in same d i r e c t o r y or

2included in CLASSPATH. Uses Matrix . c l a s s ; see Matrix . java or documentation ∗ /
i m p o r t Jama . ∗ ;

4i m p o r t j ava . io . ∗ ;

6p u b l i c c l a s s JamaEigen {

8p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) {
d o u b l e [ ] [ ] I = { {2 ./3 , −1./4 , −1./4} , { −1./4 ,2 ./3 , −1./4} , { −1 ./4 , −1 ./4 ,2 ./3} } ;

10Matrix MatI = new Matrix ( I ) ; / / Form Matrix from 2D arrays
System . out . p r i n t ( "Input Matrix" ) ;

12MatI . p r i n t ( 1 0 , 5 ) ; / / Jama Matrix pr int
EigenvalueDecomposition E = new EigenvalueDecomposition ( MatI ) ; / / Eigenvalue finder

14d o u b l e [ ] lambdaRe = E . getRealEigenvalues ( ) ; / / Real , Imag eigens
d o u b l e [ ] lambdaIm = E . getImagEigenvalues ( ) ; / / Imag eigens

16System . out . p r i n t l n ("Eigenvalues : \t lambda.Re[ ]="
+ lambdaRe [ 0 ] +" ,"+lambdaRe [ 1 ] +" , "+lambdaRe [ 2 ] ) ;

18Matrix V = E . getV ( ) ; / / Get matrix of eigenvectors
System . out . p r i n t ("\n Matrix with column eigenvectors " ) ;

20V. p r i n t ( 1 0 , 5 ) ;
Matrix Vec = new Matrix ( 3 , 1 ) ; / / E x t r a c t s ingle eigenvector

22Vec . s e t ( 0 , 0 , V. get ( 0 , 0 ) ) ;
Vec . s e t ( 1 , 0 , V. get ( 1 , 0 ) ) ;

24Vec . s e t ( 2 , 0 , V. get ( 2 , 0 ) ) ;
System . out . p r i n t ( "First Eigenvector , Vec" ) ;

26Vec . p r i n t ( 1 0 , 5 ) ;
Matrix LHS = MatI . t imes ( Vec ) ; / / Should get Vec as answer

28Matrix RHS = Vec . t imes ( lambdaRe [ 0 ] ) ;
System . out . p r i n t ( "Does LHS = RHS?" ) ;

30LHS . p r i n t ( 1 8 , 12) ;
RHS. p r i n t ( 1 8 , 12) ;

32} }
�

Listing 8.1 JamaEigen.java uses the JAMA matrix library to solve eigenvalue problems. Note

that JAMA defines and manipulates the new data type (object) Matrix, which differs from an

array but can be created from one.

EigenDecomposition E = new EigenDecomposition(MatI); 13

Then on line 14 we extract (get) a vector lambdaRe of length 3 containing the three
(real) eigenvalues lambdaRe[0], lambdaRe[1], lambdaRe[2]:

double[] lambdaRe = E.getRealEigenvalues(); 14

On line 18 we create a 3 × 3 matrix V containing the eigenvectors in the three
columns of the matrix with the JAMA command:

Matrix V = E.getV(); 18

which takes the eigenvector object E and gets the vectors from it. Then, on lines
22–24 we form a vector Vec (a 3 × 1 Matrix) containing a single eigenvector by
extracting the elements from V with a get method and assigning them with a set
method:

Vec.set(0,0,V.get(0,0)); 22

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 172

172 chapter 8

� �
/∗ JamaFit : JAMA matrix l i b e l e a s t−squares parabola f i t of y ( x ) = b0 + b1 x + b2 x^2

JAMA must be in same d i r e c t o r y as program , or included in CLASSPATH ∗ /

i m p o r t Jama . ∗ ;
i m p o r t j ava . io . ∗ ;

p u b l i c c l a s s JamaFit {

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) throws IOException , FileNotFoundException {
Pr i n t W r i t e r w = new Pr i n t W r i t e r ( new FileOutputStream ("jamafit . dat" ) , t r u e ) ;
d o u b l e [ ] x = { 1 . , 1 . 0 5 , 1 . 1 5 , 1 . 3 2 , 1 . 5 1 , 1 . 6 8 , 1 . 9 2 } ; / / Data
d o u b l e [ ] y = { 0 . 5 2 , 0 . 7 3 , 1 . 0 8 , 1 . 4 4 , 1 . 3 9 , 1 . 4 6 , 1 . 5 8 } ;
d o u b l e [ ] s i g = { 0 . 1 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 2 , 0 . 1 , 0 . 1 } ;
d o u b l e sig2 , s , sx , sxx , sy , sxxx , sxxxx , sxy , sxxy , rhl , xx , yy ;
d o u b l e [ ] [ ] Sx = new d o u b l e [ 3 ] [ 3 ] ; / / Create 3x3 array
d o u b l e [ ] [ ] Sy = new d o u b l e [ 3 ] [ 1 ] ; / / Create 3x1 array
i n t Nd = 7 , i ; / / Number of data points
s = sx = sxx = sy = sxxx = sxxxx = sxy = sxy = sxxy = 0 ;

f o r ( i =0 ; i <= Nd−1; i ++ ) { / / Generate matrix elements
s i g 2 = s i g [ i ]∗ s i g [ i ] ; s += 1./ s i g 2 ; sx += x [ i ]/ s i g 2 ;
sy += y [ i ]/ s i g 2 ; r h l = x [ i ]∗x [ i ] ; sxx += r h l / s i g 2 ;
sxxy += r h l∗y [ i ]/ s i g 2 ; sxy += x [ i ]∗y [ i ]/ s i g 2 ; sxxx += r h l∗x [ i ]/ s i g 2 ;
sxxxx += r h l∗ r h l / s i g 2 ;

}
Sx [ 0 ] [ 0 ] = s ; / / Assign arrays
Sx [ 0 ] [ 1 ] = Sx [ 1 ] [ 0 ] = sx ;
Sx [ 0 ] [ 2 ] = Sx [ 2 ] [ 0 ] = Sx [ 1 ] [ 1 ] = sxx ;
Sx [ 1 ] [ 2 ] = Sx [ 2 ] [ 1 ] = sxxx ;
Sx [ 2 ] [ 2 ] = sxxxx ; Sy [ 0 ] [ 0 ] = sy ; Sy [ 1 ] [ 0 ] = sxy ; Sy [ 2 ] [ 0 ] = sxxy ;
Matrix MatSx = new Matrix ( Sx ) ; / / Form Jama Matrices
Matrix MatSy = new Matrix ( 3 , 1 ) ;
MatSy . s e t ( 0 , 0 , sy ) ;
MatSy . s e t ( 1 , 0 , sxy ) ;
MatSy . s e t ( 2 , 0 , sxxy ) ;
Matrix B = MatSx . inverse ( ) . t imes ( MatSy ) ; / / Determine inverse
Matrix I t e s t = MatSx . inverse ( ) . t imes ( MatSx ) ; / / Test inverse
System . out . p r i n t ( "B Matrix via inverse" ) ; / / Jama print
B . p r i n t ( 1 6 , 14) ;
System . out . p r i n t ( "MatSx. inverse () . times(MatSx) " ) ;
I t e s t . p r i n t ( 1 6 , 14) ;
B = MatSx . so lve ( MatSy ) ; / / Direct solution too
System . out . p r i n t ( "B Matrix via direct" ) ;
B . p r i n t ( 1 6 , 1 4 ) ;

/ / E x t r a c t via Jama get & Print parabola c o e f f i c i e n t s
System . out . p r i n t l n ("FitParabola2 Final Results" ) ;
System . out . p r i n t l n ("\n" ) ;
System . out . p r i n t l n ("y(x) = b0 + b1 x + b2 x^2" ) ;
System . out . p r i n t l n ("\n" ) ;
System . out . p r i n t l n ("b0 = "+B . get ( 0 , 0 ) ) ;
System . out . p r i n t l n ("b1 = "+B . get ( 1 , 0 ) ) ;
System . out . p r i n t l n ("b2 = "+B . get ( 2 , 0 ) ) ;
System . out . p r i n t l n ("\n" ) ;
f o r ( i =0 ; i <= Nd−1; i ++ ) { / / Test f i t

s = B . get ( 0 , 0 ) + B . get ( 1 , 0 ) ∗ x [ i ] + B . get ( 2 , 0 ) ∗ x [ i ] ∗ x [ i ] ;
System . out . p r i n t l n ("i , x, y , yf i t = "+ i +" , "+x [ i ]+" , "+y [ i ]+" , "+s ) ;

}
f o r ( i =0 ; i < Nd; i ++) {

yy=B . get ( 0 , 0 ) +B . get ( 1 , 0 ) ∗x [ i ]+B . get ( 2 , 0 ) ∗x [ i ]∗x [ i ] ;
w. p r i n t l n (" "+x [ i ] + " " +yy + " "+y [ i ] ) ;

}
System . out . p r i n t l n ("Output in jamafit . dat" ) ;

} }
�

Listing 8.2 JamaFit.java performs a least-squares fit of a parabola to data using the JAMA

matrix library to solve the set of linear equations ax = b.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 173

systems of equations with matrices; data fitting 173

Our final JAMA example, JamaFit.java in Listing 8.2, demonstrates many of the
features of JAMA. It arises in the context of least-squares fitting, as discussed in §8.7
where we give the equations being used to fit the parabola y(x) = b0 + b1x+ b2x

2

to a set of ND measured data points (yi, yi ±σi). For illustration, the equation is
solved both directly and by matrix inversion, and several techniques for assigning
values to JAMA’s Matrix are used.

8.3.4 Exercises for Testing Matrix Calls

Before you direct the computer to go off crunching numbers on a million elements
of some matrix, it’s a good idea for you to try out your procedures on a small matrix,
especially one for which you know the right answer. In this way it will take you
only a short time to realize how hard it is to get the calling procedure perfectly
right! Here are some exercises.

1. Find the inverse of A =


+4 −2 +1

+3 +6 −4
+2 +1 +8


.

a. As a general procedure, applicable even if you do not know the analytic
answer, check your inverse in both directions; that is, check that AA−1 =
A−1A = I.

b. Verify that A−1 =
1

263


+52 +17 +2

−32 +30 +19
−9 −8 +30


.

2. Consider the same matrix A as before, now used to describe three simulta-
neous linear equations, Ax = b, or explicitly,

a11 a12 a13

a21 a22 a23

a31 a32 a33




x1

x2

x3


=


b1b2
b3


.

Here the vector b on the RHS is assumed known, and the problem is to solve
for the vector x. Use an appropriate subroutine to solve these equations for
the three different x vectors appropriate to these three different b values on
the RHS:

b1 =


+12

−25
+32


, b2 =


 +4

−10
+22


, b3 =


+20

−30
+40


.

The solutions should be

x1 =


+1

−2
+4


, x2 =


+0.312

−0.038
+2.677


, x3 =


+2.319

−2.965
+4.790


.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 174

174 chapter 8

3. Consider the matrix A =
(
α β

−β α

)
, where you are free to use any values

you want for α and β. Use a numerical eigenproblem solver to show that the
eigenvalues and eigenvectors are the complex conjugates

x1,2 =
(

+1
∓i
)
, λ1,2 = α∓ iβ.

4. Use your eigenproblem solver to find the eigenvalues of the matrix

A =


−2 +2 −3

+2 +1 −6
−1 −2 +0


 .

a. Verify that you obtain the eigenvalues λ1 = 5, λ2 = λ3 = −3. Notice that
double roots can cause problems. In particular, there is a uniqueness prob-
lem with their eigenvectors because any combination of these eigenvectors
is also an eigenvector.

b. Verify that the eigenvector for λ1 = 5 is proportional to

x1 =
1√
6


−1

−2
+1


 .

c. The eigenvalue −3 corresponds to a double root. This means that the cor-
responding eigenvectors are degenerate, which in turn means that they
are not unique. Two linearly independent ones are

x2 =
1√
5


−2

+1
+0


 , x3 =

1√
10


3

0
1


 .

In this case it’s not clear what your eigenproblem solver will give for
the eigenvectors. Try to find a relationship between your computed
eigenvectors with the eigenvalue −3 and these two linearly independent
ones.

5. Your model of some physical system results in N = 100 coupled linear
equations in N unknowns:

a11y1 + a12y2 + · · ·+ a1NyN = b1,

a21y1 + a22y2 + · · ·+ a2NyN = b2,

· · ·
aN1y1 + aN2y2 + · · ·+ aNNyN = bN .

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 175

systems of equations with matrices; data fitting 175

In many cases, the a and b values are known, so your exercise is to solve for
all the x values, taking a as the Hilbert matrix and b as its first row:

[aij ] = a =
[

1
i+ j− 1

]
=




1 1
2

1
3

1
4 · · · 1

100

1
2

1
3

1
4

1
5 · · · 1

101

. . .
1

100
1

101 · · · · · · 1
199



,

[bi] = b =
[
1
i

]
=




1
1
2

1
3

. . .

1
100



.

Compare to the analytic solution

y1

y2
. . .
yN


=




1
0
. . .
0


 .

8.3.5 Matrix Solution of the String Problem

We have now set up the solution to our problem of two masses on a string and have
the matrix tools needed to solve it. Your problem is to check out the physical rea-
sonableness of the solution for a variety of weights and lengths. You should check
that the deduced tensions are positive and that the deduced angles correspond to
a physical geometry (e.g., with a sketch). Since this is a physics-based problem, we
know that the sine and cosine functions must be less than 1 in magnitude and that
the tensions should be similar in magnitude to the weights of the spheres.

8.3.6 Explorations

1. See at what point your initial guess gets so bad that the computer is unable
to find a physical solution.

2. A possible problem with the formalism we have just laid out is that by
incorporating the identity sin2 θi + cos2 θi = 1 into the equations we may be

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 176

176 chapter 8

discarding some information about the sign of sin θ or cos θ. If you look at
Figure 8.1, you can observe that for some values of the weights and lengths,
θ2 may turn out to be negative, yet cos θ should remain positive. We can build
this condition into our equations by replacing f7 − f9 with f ’s based on the
form

f7 = x4 −
√

1 −x2
1, f8 = x5 −

√
1 −x2

2, f9 = x6 −
√

1 −x2
3. (8.30)

See if this makes any difference in the solutions obtained.
2.� Solve the similar three-mass problem. The approach is the same, but the

number of equations gets larger.

8.4 Unit II. Data Fitting

Data fitting is an art worthy of serious study by all scientists. In this unit we just
scratch the surface by examining how to interpolate within a table of numbers and
how to do a least-squares fit to data. We also show how to go about making a least-
squares fit to nonlinear functions using some of the search techniques and subroutine
libraries we have already discussed.

8.5 Fitting an Experimental Spectrum (Problem)

Problem: The cross sections measured for the resonant scattering of a neutron from
a nucleus are given in Table 8.1 along with the measurement number (index), the
energy, and the experimental error. Your problem is to determine values for the
cross sections at energy values lying between those measured by experiment.

You can solve this problem in a number of ways. The simplest is to numerically
interpolate between the values of the experimental f(Ei) given in Table 8.1. This
is direct and easy but does not account for there being experimental noise in the
data. A more appropriate way to solve this problem (discussed in §8.7) is to find
the best fit of a theoretical function to the data. We start with what we believe to be
the “correct” theoretical description of the data,

f(E) =
fr

(E−Er)2 + Γ2/4
, (8.31)

where fr, Er, and Γ are unknown parameters. We then adjust the parameters to
obtain the best fit. This is a best fit in a statistical sense but in fact may not pass
through all (or any) of the data points. For an easy, yet effective, introduction to
statistical data analysis, we recommend [B&R 02].

These two techniques of interpolation and least-squares fitting are powerful
tools that let you treat tables of numbers as if they were analytic functions and
sometimes let you deduce statistically meaningful constants or conclusions from
measurements. In general, you can view data fitting as global or local. In global fits,

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 177

systems of equations with matrices; data fitting 177

TABLE 8.1
Experimental Values for a Scattering Cross Section g(E) as a Function of Energy

i 1 2 3 4 5 6 7 8 9

Ei (MeV) [≡ xi] 0 25 50 75 100 125 150 175 200

g(Ei) (mb) 10.6 16.0 45.0 83.5 52.8 19.9 10.8 8.25 4.7

Error = ±σi (mb) 9.34 17.9 41.5 85.5 51.5 21.5 10.8 6.29 4.14

a single function in x is used to represent the entire set of numbers in a table like
Table 8.1. While it may be spiritually satisfying to find a single function that passes
through all the data points, if that function is not the correct function for describing
the data, the fit may show nonphysical behavior (such as large oscillations) between
the data points. The rule of thumb is that if you must interpolate, keep it local and
view global interpolations with a critical eye.

8.5.1 Lagrange Interpolation (Method)

Consider Table 8.1 as ordered data that we wish to interpolate. We call the inde-
pendent variable x and its tabulated values xi(i= 1, 2, . . .), and we assume that
the dependent variable is the function g(x), with tabulated values gi = g(xi). We
assume that g(x) can be approximated as a (n− 1)-degree polynomial in each
interval i:

gi(x) � a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1, (x� xi). (8.32)

Because our fit is local, we do not assume that one g(x) can fit all the data in the table
but instead use a different polynomial, that is, a different set of ai values, for each
region of the table. While each polynomial is of low degree, multiple polynomials
are used to span the entire table. If some care is taken, the set of polynomials
so obtained will behave well enough to be used in further calculations without
introducing much unwanted noise or discontinuities.

The classic interpolation formula was created by Lagrange. He figured out a
closed-form one that directly fits the (n− 1)-order polynomial (8.32) to n values of
the function g(x) evaluated at the points xi. The formula is written as the sum of
polynomials:

g(x) � g1λ1(x) + g2λ2(x) + · · ·+ gnλn(x), (8.33)

λi(x) =
n∏

j(�=i)=1

x−xj

xi −xj
=
x−x1

xi −x1

x−x2

xi −x2
· · · x−xn

xi −xn
. (8.34)

For three points, (8.33) provides a second-degree polynomial, while for eight
points it gives a seventh-degree polynomial. For example, here we use a four-point

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 178

178 chapter 8

Lagrange interpolation to determine a third-order polynomial that reproduces the
values x1−4 = (0, 1, 2, 4), f1−4 = (−12,−12,−24,−60):

g(x) =
(x− 1)(x− 2)(x− 4)
(0 − 1)(0− 2)(0− 4)

(−12) +
x(x− 2)(x− 4)

(1 − 0)(1− 2)(1− 4)
(−12)

+
x(x− 1)(x− 4)

(2 − 0)(2− 1)(2− 4)
(−24) +

x(x− 1)(x− 2)
(4 − 0)(4− 1)(4− 2)

(−60),

⇒ g(x) =x3 − 9x2 + 8x− 12. (8.35)

As a check we see that

g(4) = 43 − 9(42) + 32 − 12 = −60, g(0.5) = −10.125. (8.36)

If the data contain little noise, this polynomial can be used with some confidence
within the range of the data, but with risk beyond the range of the data.

Notice that Lagrange interpolation makes no restriction that the points in the
table be evenly spaced. As a check, it is also worth noting that the sum of the
Lagrange multipliers equals one,

∑n
i=1 λi = 1. Usually the Lagrange fit is made to

only a small region of the table with a small value of n, even though the formula
works perfectly well for fitting a high-degree polynomial to the entire table. The
difference between the value of the polynomial evaluated at some x and that of the
actual function is equal to the remainder

Rn � (x−x1)(x−x2) · · · (x−xn)
n!

g(n)(ζ), (8.37)

where ζ lies somewhere in the interpolation interval but is otherwise undeter-
mined. This shows that if significant high derivatives exist in g(x), then it cannot
be approximated well by a polynomial. In particular, if g(x) is a table of experimen-
tal data, it is likely to contain noise, and then it is a bad idea to fit a curve through
all the data points.

8.5.2 Lagrange Implementation and Assessment

Consider the experimental neutron scattering data in Table 8.1. The expected the-
oretical functional form that describes these data is (8.31), and our empirical fits to
these data are shown in Figure 8.3.

1. Write a subroutine to perform an n-point Lagrange interpolation using (8.33).
Treat n as an arbitrary input parameter. (You can also do this exercise with
the spline fits discussed in § 8.5.4.)

2. Use the Lagrange interpolation formula to fit the entire experimental spec-
trum with one polynomial. (This means that you must fit all nine data points

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 179

systems of equations with matrices; data fitting 179

with an eight-degree polynomial.) Then use this fit to plot the cross section
in steps of 5 MeV.

3. Use your graph to deduce the resonance energyEr (your peak position) and Γ
(the full width at half-maximum). Compare your results with those predicted
by our theorist friend, (Er,Γ) = (78, 55) MeV.

4. A more realistic use of Lagrange interpolation is for local interpolation with
a small number of points, such as three. Interpolate the preceding cross-
sectional data in 5-MeV steps using three-point Lagrange interpolation. (Note
that the end intervals may be special cases.)

This example shows how easy it is to go wrong with a high-degree-polynomial
fit. Although the polynomial is guaranteed to pass through all the data points,
the representation of the function away from these points can be quite unrealistic.
Using a low-order interpolation formula, say, n= 2 or 3, in each interval usually
eliminates the wild oscillations. If these local fits are then matched together, as
we discuss in the next section, a rather continuous curve results. Nonetheless, you
must recall that if the data contain errors, a curve that actually passes through them
may lead you astray. We discuss how to do this properly in §8.7.

8.5.3 Explore Extrapolation

We deliberately have not discussed extrapolation of data because it can lead to seri-
ous systematic errors; the answer you get may well depend more on the function
you assume than on the data you input. Add some adventure to your life and use
the programs you have written to extrapolate to values outside Table 8.1. Compare
your results to the theoretical Breit–Wigner shape (8.31).

8.5.4 Cubic Splines (Method)

If you tried to interpolate the resonant cross section with Lagrange interpolation,
then you saw that fitting parabolas (three-point interpolation) within a table may
avoid the erroneous and possibly catastrophic deviations of a high-order formula.
(A two-point interpolation, which connects the points with straight lines, may not
lead you far astray, but it is rarely pleasing to the eye or precise.) A sophisticated
variation of ann= 4 interpolation, known as cubic splines, often leads to surprisingly
eye-pleasing fits. In this approach (Figure 8.3), cubic polynomials are fit to the
function in each interval, with the additional constraint that the first and second
derivatives of the polynomials be continuous from one interval to the next. This
continuity of slope and curvature is what makes the spline fit particularly eye-
pleasing. It is analogous to what happens when you use the flexible spline drafting
tool (a lead wire within a rubber sheath) from which the method draws its name.

The series of cubic polynomials obtained by spline-fitting a table of data can be
integrated and differentiated and is guaranteed to have well-behaved derivatives.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 180

180 chapter 8

Figure 8.3 Three fits to cross-section data. Short dashed line: Lagrange interpolation using an

eight-degree polynomial that passes through all the data points but has nonphysical

oscillations between points; solid line: cubic splines (smooth but not accurate); dashed line:

Least-squares parabola fit (a best fit with a bad theory). The best approach is to do a

least-squares fit of the correct theoretical function, the Breit–Wigner method (8.31).

The existence of meaningful derivatives is an important consideration. As a case
in point, if the interpolated function is a potential, you can take the derivative
to obtain the force. The complexity of simultaneously matching polynomials and
their derivatives over all the interpolation points leads to many simultaneous linear
equations to be solved. This makes splines unattractive for hand calculation, yet
easy for computers and, not surprisingly, popular in both calculations and graphics.
To illustrate, the smooth curves connecting points in most “draw” programs are
usually splines, as is the solid curve in Figure 8.3.

The basic approximation of splines is the representation of the function g(x) in
the subinterval [xi, xi+1] with a cubic polynomial:

g(x) � gi(x), for xi ≤ x≤ xi+1, (8.38)

gi(x) = gi + g′
i(x−xi) +

1
2
g′′

i (x−xi)2 +
1
6
g′′′

i (x−xi)3. (8.39)

This representation makes it clear that the coefficients in the polynomial equal the
values of g(x) and its first, second, and third derivatives at the tabulated points
xi. Derivatives beyond the third vanish for a cubic. The computational chore is to

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 181

systems of equations with matrices; data fitting 181

determine these derivatives in terms of theN tabulated gi values. The matching of
gi at the nodes that connect one interval to the next provides the equations

gi(xi+1) = gi+1(xi+1), i= 1, N − 1. (8.40)

The matching of the first and second derivatives at each interval’s boundaries
provides the equations

g′
i−1(xi) = g′

i(xi), g′′
i−1(xi) = g′′

i (xi). (8.41)

The additional equations needed to determine all constants is obtained by matching
the third derivatives at adjacent nodes. Values for the third derivatives are found
by approximating them in terms of the second derivatives:

g′′′
i � g′′

i+1 − g′′
i

xi+1 −xi
. (8.42)

As discussed in Chapter 7, “Differentiation & Searching,” a central-difference approx-
imation would be better than a forward-difference approximation, yet (8.42) keeps
the equations simpler.

It is straightforward though complicated to solve for all the parameters in (8.39).
We leave that to other reference sources [Thom 92, Pres 94]. We can see, however,
that matching at the boundaries of the intervals results in only (N − 2) linear
equations for N unknowns. Further input is required. It usually is taken to be
the boundary conditions at the endpoints a= x1 and b= xN , specifically, the sec-
ond derivatives g′′(a) and g′′(b). There are several ways to determine these second
derivatives:

Natural spline: Set g′′(a) = g′′(b) = 0; that is, permit the function to have a slope
at the endpoints but no curvature. This is “natural” because the derivative
vanishes for the flexible spline drafting tool (its ends being free).

Input values for g′ at the boundaries: The computer uses g′(a) to approximate
g′′(a). If you do not know the first derivatives, you can calculate them
numerically from the table of gi values.

Input values for g′′ at the boundaries: Knowing values is of course better than
approximating values, but it requires the user to input information. If the
values of g′′ are not known, they can be approximated by applying a forward-
difference approximation to the tabulated values:

g′′(x) � [g(x3) − g(x2)]/[x3 −x2]− [g(x2) − g(x1)]/[x2 −x1]
[x3 −x1]/2

. (8.43)

8.5.4.1 CUBIC SPLINE QUADRATURE (EXPLORATION)

A powerful integration scheme is to fit an integrand with splines and then inte-
grate the cubic polynomials analytically. If the integrand g(x) is known only at its
tabulated values, then this is about as good an integration scheme as is possible;

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 182

182 chapter 8

if you have the ability to calculate the function directly for arbitrary x, Gaussian
quadrature may be preferable. We know that the spline fit to g in each interval is
the cubic (8.39)

g(x) � gi + g′
i(x−xi) +

1
2
g′′

i (x−xi)2 +
1
6
g′′′

i (x−xi)3. (8.44)

It is easy to integrate this to obtain the integral of g for this interval and then to sum
over all intervals:∫ xi+1

xi

g(x) dx�
(
gix+

1
2
g′

ix
2
i +

1
6
g′′

i x
3 +

1
24
g′′′

i x
4
)∣∣∣∣

xi+1

xi

, (8.45)

∫ xk

xj

g(x) dx=
k∑

i=j

(
gix+

1
2
g′

ix
2
i +

1
6
g′′

i x
3 +

1
24
g′′′

i x
4
)∣∣∣∣

xi+1

xi

. (8.46)

Making the intervals smaller does not necessarily increase precision, as subtractive
cancellations in (8.45) may get large.

8.5.5 Spline Fit of Cross Section (Implementation)

Fitting a series of cubics to data is a little complicated to program yourself, so we
recommend using a library routine. While we have found quite a few Java-based
spline applications available on the internet, none seemed appropriate for inter-
preting a simple set of numbers. That being the case, we have adapted the splint.c
and the spline.c functions from [Pres 94] to produce the SplineAppl.java programC D

shown in Listing 8.3 (there is also an applet version on the CD). Your problem now
is to carry out the assessment in § 8.5.2 using cubic spline interpolation rather than
Lagrange interpolation.

8.6 Fitting Exponential Decay (Problem)

Figure 8.4 presents actual experimental data on the number of decays ∆N of the
π meson as a function of time [Stez 73]. Notice that the time has been “binned” into
∆t= 10-ns intervals and that the smooth curve is the theoretical exponential decay
expected for very large numbers. Your problem is to deduce the lifetime τ of the
π meson from these data (the tabulated lifetime of the pion is 2.6× 10−8 s).

8.6.1 Theory to Fit

Assume that we start with N0 particles at time t= 0 that can decay to other par-
ticles.4 If we wait a short time ∆t, then a small number ∆N of the particles will
decay spontaneously, that is, with no external influences. This decay is a stochastic

4 Spontaneous decay is discussed further and simulated in § 5.5.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 183

systems of equations with matrices; data fitting 183

process, which means that there is an element of chance involved in just when a
decay will occur, and so no two experiments are expected to give exactly the same
results. The basic law of nature for spontaneous decay is that the number of decays
∆N in a time interval ∆t is proportional to the number of particles N(t) present at
that time and to the time interval

∆N(t) = −1
τ
N(t)∆t ⇒ ∆N(t)

∆t
= −λN(t). (8.47)

� �
/∗ SplineAppl . java : Application version of cubic spline f i t t i n g . I n t e r p o l a t e s

array x [ n ] , y [ n ] , x0 < x1 . . . < x ( n−1) . yp1 , ypn : y ’ a t ends evaluated i n t e r n a l l y
y2 [ ] : y" array ; yp1 , ypn > e30 for natural spline ∗ /

i m p o r t j ava . io . ∗ ;

p u b l i c c l a s s SplineAppl {

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) throws IOException , FileNotFoundException {
Pr i n t W r i t e r w = new Pr i n t W r i t e r ( new FileOutputStream ("Spline . dat" ) , t r u e ) ;
Pr i n t W r i t e r q = new Pr i n t W r i t e r ( new FileOutputStream ("Input . dat" ) , t r u e ) ;
d o u b l e x [ ] = { 0 . , 1 . 2 , 2 . 5 , 3 . 7 , 5 . , 6 . 2 , 7 . 5 , 8 . 7 , 9 . 9 } ; / / input
d o u b l e y [ ] = { 0 . , 0 . 9 3 , . 6 , −0 . 5 3 , −0 . 9 6 , −0 . 0 8 , 0 . 9 4 , 0 . 6 6 , −0 . 4 6 } ;
i n t i , n = x . length , np = 15 , klo , khi , k ;
d o u b l e y2 [ ] = new d o u b l e [ 9 ] , u [ ] = new d o u b l e [ n ] ;
d o u b l e h , b , a , Nfit , p , qn , s ig , un , yp1 , ypn , xout , yout ;
f o r ( i =0 ; i < n ; i ++ ) q . p r i n t l n (" " + x [ i ] + " " + y [ i ] + " " ) ;
Nf i t = 3 0 ; / / N output pts
yp1 = ( y[1]−y [ 0 ] ) /( x[1]−x [ 0 ] ) − ( y[2]−y [ 1 ] ) /( x[2]−x [ 1 ] ) +(y[2]−y [ 0 ] ) /( x[2]−x [ 0 ] ) ;
ypn = ( y [ n−1]−y [ n−2]) /( x [ n−1]−x [ n−2]) − ( y [ n−2]−y [ n−3])

/( x [ n−2]−x [ n−3]) + ( y [ n−1]−y [ n−3]) /( x [ n−1]−x [ n−3]) ;
i f ( yp1 > 0 . 9 9 e30 ) y2 [ 0 ] = u [ 0 ] = 0 . ; / / Natural

e l s e { y2 [ 0 ] = ( −0.5) ; u [ 0 ] = ( 3 / ( x[1]−x [ 0 ] ) ) ∗ ( ( y[1]−y [ 0 ] ) /( x[1]−x [ 0 ] )−yp1 ) ; }
f o r ( i =1 ; i <= n−2; i ++ ) { / / Decomposition loop

s i g = ( x [ i ]−x [ i −1]) /( x [ i + 1]−x [ i −1]) ;
p = s i g∗y2 [ i −1] + 2 . ;
y2 [ i ] = ( sig −1.)/p ;
u [ i ] = ( y [ i +1]−y [ i ] ) /( x [ i + 1]−x [ i ] ) −(y [ i ]−y [ i −1]) /( x [ i ]−x [ i −1]) ;
u [ i ] = ( 6 . ∗u [ i ] / ( x [ i +1]−x [ i −1])−s i g∗u [ i −1])/p ;

}
i f ( ypn > 0 . 9 9 e30 ) qn = un = 0 . ; / / Test for natural

e l s e { qn = 0 . 5 ; un = ( 3 / ( x [ n−1]−x [ n−2]) ) ∗(ypn−(y [ n−1]−y [ n−2]) /( x [ n−1]−x [ n−2]) ) ; }
y2 [ n−1] = ( un−qn∗u [ n−2]) /(qn∗y2 [ n−2] + 1 . ) ;
f o r ( k = n−2; k>= 0 ; k−−) y2 [ k ] = y2 [ k]∗y2 [ k + 1] + u [ k ] ;
f o r ( i =1 ; i <= Nf i t ; i ++ ) { / / i n i t i a l i z a t i o n ends , begin f i t

xout = x [ 0 ] + ( x [ n−1]−x [ 0 ] ) ∗( i −1)/( Nf i t ) ;
klo = 0 ; / / Bisect ion algor
khi = n−1; / / klo , khi bracket xout value
w h i l e ( khi−klo >1) { k = ( khi+klo ) >> 1 ; i f ( x [ k ] > xout ) khi =k ; e l s e klo = k ; }
h = x [ khi]−x [ klo ] ;
i f ( x [ k ] > xout ) khi = k ; e l s e klo = k ;
h = x [ khi]−x [ klo ] ; a = ( x [ khi]−xout ) /h ;
b = ( xout−x [ klo ] ) /h ;
yout = ( a∗y [ klo ] + b∗y [ khi ] + ( ( a∗a∗a−a )∗y2 [ klo ] + ( b∗b∗b−b )∗y2 [ khi ] ) ∗(h∗h ) / 6 . ) ;
w. p r i n t l n (" " + xout + " " + yout + " " ) ;

}
System . out . p r i n t l n ("data stored in Spline . dat" ) ;

} }
�

Listing 8.3 SplineAppl.java is an application version of an applet given on the CD that

performs a cubic spline fit to data. The arrays x[ ] and y[ ] are the data to fit, and the values

of the fit at Nfit points are output into the file Spline.dat.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 184

184 chapter 8

40 80 1200
t  [ns]

0

20

40

N
um

be
r N(t)

data

fit

Figure 8.4 A reproduction of the experimental measurement in [Stez 73] of the number of

decays of a π meson as a function of time. Measurements are made during time intervals of

10-ns length. Each “event” corresponds to a single decay.

Here τ = 1/λ is the lifetime of the particle, with λ the rate parameter. The actual
decay rate is given by the second equation in (8.47). If the number of decays ∆N is
very small compared to the number of particles N , and if we look at vanishingly
small time intervals, then the difference equation (8.47) becomes the differential
equation

dN(t)
dt

� −λN(t) =
1
τ
N(t). (8.48)

This differential equation has an exponential solution for the number as well as for
the decay rate:

N(t) =N0e
−t/τ ,

dN(t)
dt

= −N0

τ
e−t/τ =

dN(0)
dt

e−t/τ . (8.49)

Equation (8.49) is the theoretical formula we wish to “fit” to the data in Figure 8.4.
The output of such a fit is a “best value” for the lifetime τ .

8.7 Least-Squares Fitting (Method)

Books have been written and careers have been spent discussing what is meant by
a “good fit” to experimental data. We cannot do justice to the subject here and refer

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 185

systems of equations with matrices; data fitting 185

the reader to [B&R 02, Pres 94, M&W 65, Thom 92]. However, we will emphasize
three points:

1. If the data being fit contain errors, then the “best fit” in a statistical sense
should not pass through all the data points.

2. If the theory is not an appropriate one for the data (e.g., the parabola in
Figure 8.3), then its best fit to the data may not be a good fit at all. This is
good, for it indicates that this is not the right theory.

3. Only for the simplest case of a linear least-squares fit can we write down a
closed-form solution to evaluate and obtain the fit. More realistic problems are
usually solved by trial-and-error search procedures, sometimes using sophis-
ticated subroutine libraries. However, in §8.7.6 we show how to conduct such
a nonlinear search using familiar tools.

Imagine that you have measured ND data values of the independent variable y as
a function of the dependent variable x:

(xi, yi ±σi), i= 1, ND, (8.50)

where ±σi is the uncertainty in the ith value of y. (For simplicity we assume that
all the errors σi occur in the dependent variable, although this is hardly ever true
[Thom 92]). For our problem, y is the number of decays as a function of time, and xi

are the times. Our goal is to determine how well a mathematical function y = g(x)
(also called a theory or a model) can describe these data. Alternatively, if the theory
contains some parameters or constants, our goal can be viewed as determining the
best values for these parameters. We assume that the model function g(x) contains,
in addition to the functional dependence on x, an additional dependence uponMP

parameters {a1, a2, . . . , aMP
}. Notice that the parameters {am} are not variables,

in the sense of numbers read from a meter, but rather are parts of the theoretical
model, such as the size of a box, the mass of a particle, or the depth of a potential
well. For the exponential decay function (8.49), the parameters are the lifetime τ
and the initial decay rate dN(0)/dt. We indicate this as

g(x) = g(x; {a1, a2, . . . , aMP
}) = g(x; {am}). (8.51)

We use the chi-square (χ2) measure as a gauge of how well a theoretical function g
reproduces data:

χ2 def=
ND∑
i=1

(
yi − g(xi; {am})

σi

)2

, (8.52)

where the sum is over the ND experimental points (xi, yi ±σi). The definition
(8.52) is such that smaller values of χ2 are better fits, with χ2 = 0 occurring if the

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 186

186 chapter 8

theoretical curve went through the center of every data point. Notice also that the
1/σ2

i weighting means that measurements with larger errors5 contribute less to χ2.
Least-squares fitting refers to adjusting the parameters in the theory until a min-

imum in χ2 is found, that is, finding a curve that produces the least value for the
summed squares of the deviations of the data from the function g(x). In general,
this is the best fit possible or the best way to determine the parameters in a the-
ory. TheMP parameters {am,m= 1,MP } that make χ2 an extremum are found by
solving the MP equations:

∂χ2

∂am
= 0, ⇒

ND∑
i=1

[yi − g(xi)]
σ2

i

∂g(xi)
∂am

= 0, (m= 1,MP ). (8.53)

More usually, the function g(x; {am}) has a sufficiently complicated dependence
on the am values for (8.53) to produceMP simultaneous nonlinear equations in the
am values. In these cases, solutions are found by a trial-and-error search through
the MP -dimensional parameter space, as we do in §8.7.6. To be safe, when such a
search is completed, you need to check that the minimum χ2 you found is global
and not local. One way to do that is to repeat the search for a whole grid of starting
values, and if different minima are found, to pick the one with the lowest χ2.

8.7.1 Least-Squares Fitting: Theory and Implementation

When the deviations from theory are due to random errors and when these errors
are described by a Gaussian distribution, there are some useful rules of thumb to
remember [B&R 02]. You know that your fit is good if the value of χ2 calculated via
the definition (8.52) is approximately equal to the number of degrees of freedom
χ2 �ND −MP , where ND is the number of data points and MP is the number
of parameters in the theoretical function. If your χ2 is much less than ND −MP ,
it doesn’t mean that you have a “great” theory or a really precise measurement;
instead, you probably have too many parameters or have assigned errors (σi values)
that are too large. In fact, too small aχ2 may indicate that you are fitting the random
scatter in the data rather than missing approximately one-third of the error bars, as
expected for a normal distribution. If yourχ2 is significantly greater thanND −MP ,
the theory may not be good, you may have significantly underestimated your
errors, or you may have errors that are not random.

The MP simultaneous equations (8.53) can be simplified considerably if the
functions g(x; {am}) depend linearly on the parameter values ai, e.g.,

g (x; {a1, a2}) = a1 + a2x. (8.54)

5 If you are not given the errors, you can guess them on the basis of the apparent deviation
of the data from a smooth curve, or you can weigh all points equally by setting σi ≡ 1 and
continue with the fitting.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 187

systems of equations with matrices; data fitting 187

0

100

200

300

400

0 400 800 1200 1600 2000
x

y(x)

0.4

0.8

1.2

1.6

1 1.2 1.4 1.6 1.8 2
x

y(x)

Figure 8.5 Left: A linear least-squares best fit of data to a straight line. Here the deviation of

theory from experiment is greater than would be expected from statistics, or in other words, a

straight line is not a good theory for these data. Right: A linear least-squares best fit of different

data to a parabola. Here we see that the fit misses approximately one-third of the points, as

expected from the statistics for a good fit.

In this case (also known as linear regression and shown on the left in Figure 8.5)
there areMP = 2 parameters, the slope a2, and the y intercept a1. Notice that while
there are only two parameters to determine, there still may be an arbitrary number
ND of data points to fit. Remember, a unique solution is not possible unless the
number of data points is equal to or greater than the number of parameters. For
this linear case, there are just two derivatives,

∂g(xi)
∂a1

= 1,
∂g(xi)
∂a2

= xi, (8.55)

and after substitution, the χ2 minimization equations (8.53) can be solved [Pres 94]:

a1 =
SxxSy −SxSxy

∆
, a2 =

SSxy −SxSy

∆
, (8.56)

S =
ND∑
i=1

1
σ2

i

, Sx =
ND∑
i=1

xi

σ2
i

, Sy =
ND∑
i=1

yi

σ2
i

, (8.57)

Sxx =
ND∑
i=1

x2
i

σ2
i

, Sxy =
ND∑
i=1

xiyi

σ2
i

, ∆ = SSxx −S2
x. (8.58)

Statistics also gives you an expression for the variance or uncertainty in the deduced
parameters:

σ2
a1

=
Sxx

∆
, σ2

a2
=
S

∆
. (8.59)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 188

188 chapter 8

This is a measure of the uncertainties in the values of the fitted parameters arising
from the uncertainties σi in the measured yi values. A measure of the dependence
of the parameters on each other is given by the correlation coefficient:

ρ(a1, a2) =
cov(a1, a2)
σa1σa2

, cov(a1, a2) =
−Sx

∆
. (8.60)

Here cov(a1, a2) is the covariance of a1 and a2 and vanishes if a1 and a2 are inde-
pendent. The correlation coefficient ρ(a1, a2) lies in the range −1 ≤ ρ≤ 1, with a
positive ρ indicating that the errors in a1 and a2 are likely to have the same sign,
and a negative ρ indicating opposite signs.

The preceding analytic solutions for the parameters are of the form found in
statistics books but are not optimal for numerical calculations because subtractive
cancellation can make the answers unstable. As discussed in Chapter 2, “Errors
& Uncertainties in Computations,” a rearrangement of the equations can decrease
this type of error. For example, [Thom 92] gives improved expressions that measure
the data relative to their averages:

a1 = y− a2x, a2 =
Sxy

Sxx
, x=

1
N

Nd∑
i=1

xi, y =
1
N

Nd∑
i=1

yi

Sxy =
Nd∑
i=1

(xi −x)(yi − y)
σ2

i

, Sxx =
Nd∑
i=1

(xi −x)2

σ2
i

. (8.61)

In JamaFit.java in Listing 8.2 and on the CD, we give a program that fits a
parabola to some data. You can use it as a model for fitting a line to data, althoughC D

you can use our closed-form expressions for a straight-line fit. In Fit.java on the
instructor’s CD we give a program for fitting to the decay data.

8.7.2 Exponential Decay Fit Assessment

Fit the exponential decay law (8.49) to the data in Figure 8.4. This means finding
values for τ and ∆N(0)/∆t that provide a best fit to the data and then judging how
good the fit is.

1. Construct a table (∆N/∆ti, ti), for i= 1, ND from Figure 8.4. Because time
was measured in bins, ti should correspond to the middle of a bin.

2. Add an estimate of the error σi to obtain a table of the form (∆N/∆ti ±
σi, ti). You can estimate the errors by eye, say, by estimating how much the
histogram values appear to fluctuate about a smooth curve, or you can take
σi � √

events. (This last approximation is reasonable for large numbers, which
this is not.)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 189

systems of equations with matrices; data fitting 189

3. In the limit of very large numbers, we would expect a plot of ln |dN/dt| versus
t to be a straight line:

ln
∣∣∣∣∆N(t)

∆t

∣∣∣∣� ln
∣∣∣∣∆N0

∆t

∣∣∣∣− 1
τ

∆t.

This means that if we treat ln |∆N(t)/∆t| as the dependent variable and
time ∆t as the independent variable, we can use our linear fit results. Plot
ln |∆N/∆t| versus ∆t.

4. Make a least-squares fit of a straight line to your data and use it to deter-
mine the lifetime τ of the π meson. Compare your deduction to the tabulated
lifetime of 2.6× 10−8 s and comment on the difference.

5. Plot your best fit on the same graph as the data and comment on the
agreement.

6. Deduce the goodness of fit of your straight line and the approximate error in
your deduced lifetime. Do these agree with what your “eye” tells you?

8.7.3 Exercise: Fitting Heat Flow

The table below gives the temperature T along a metal rod whose ends are kept at
a fixed constant temperature. The temperature is a function of the distance x along
the rod.

xi (cm) 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Ti (C) 14.6 18.5 36.6 30.8 59.2 60.1 62.2 79.4 99.9

1. Plot the data to verify the appropriateness of a linear relation

T (x) � a+ bx. (8.62)

2. Because you are not given the errors for each measurement, assume that
the least significant figure has been rounded off and so σ ≥ 0.05. Use that to
compute a least-squares straight-line fit to these data.

3. Plot your best a+ bx on the curve with the data.
4. After fitting the data, compute the variance and compare it to the deviation

of your fit from the data. Verify that about one-third of the points miss the σ
error band (that’s what is expected for a normal distribution of errors).

5. Use your computed variance to determine the χ2 of the fit. Comment on the
value obtained.

6. Determine the variances σa and σb and check whether it makes sense to use
them as the errors in the deduced values for a and b.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 190

190 chapter 8

8.7.4 Linear Quadratic Fit (Extension)

As indicated earlier, as long as the function being fitted depends linearly on the
unknown parameters ai, the condition of minimum χ2 leads to a set of simultane-
ous linear equations for the a’s that can be solved on the computer using matrix
techniques. To illustrate, suppose we want to fit the quadratic polynomial

g(x) = a1 + a2x+ a3x
2 (8.63)

to the experimental measurements (xi, yi, i= 1, ND) (Figure 8.5 right). Because this
g(x) is linear in all the parameters ai, we can still make a linear fit even though
x is raised to the second power. [However, if we tried to a fit a function of the
form g(x) = (a1 + a2x) exp(−a3 x) to the data, then we would not be able to make
a linear fit because one of the a’s appears in the exponent.]

The best fit of this quadratic to the data is obtained by applying the minimum
χ2 condition (8.53) for Mp = 3 parameters and ND (still arbitrary) data points.
A solution represents the maximum likelihood that the deduced parameters
provide a correct description of the data for the theoretical function g(x). Equa-
tion (8.53) leads to the three simultaneous equations for a1, a2, and a3:

ND∑
i=1

[yi − g(xi)]
σ2

i

∂g(xi)
∂a1

= 0,
∂g

∂a1
= 1, (8.64)

ND∑
i=1

[yi − g(xi)]
σ2

i

∂g(xi)
∂a2

= 0,
∂g

∂a2
= x, (8.65)

ND∑
i=1

[yi − g(xi)]
σ2

i

∂g(xi)
∂a3

= 0,
∂g

∂a3
= x2. (8.66)

Note: Because the derivatives are independent of the parameters (the a’s), the a
dependence arises only from the term in square brackets in the sums, and because
that term has only a linear dependence on the a’s, these equations are linear
equations in the a’s.

Exercise: Show that after some rearrangement, (8.64)–(8.66) can be written as

Sa1 +Sxa2 +Sxxa3 =Sy, (8.67)

Sxa1 +Sxxa2 +Sxxxa3 =Sxy,

Sxxa1 +Sxxxa2 +Sxxxxa3 =Sxxy.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 191

systems of equations with matrices; data fitting 191

Here the definitions of the S’s are simple extensions of those used in
(8.56)–(8.58) and are programmed in JamaFit.java shown in Listing 8.2. After
placing the three parameters into a vector a and the three RHS terms in (8.67)
into a vector s, these equations assume the matrix form:

[α]a = S, (8.68)

[α] =



S Sx Sxx

Sx Sxx Sxxx

Sxx Sxxx Sxxxx


, a =



a1

a2

a3


, S =



Sy

Sxy

Sxxy


.

This is the exactly the matrix problem we solved in § 8.3.3 with the code
JamaFit.java given in Listing 8.2. The solution for the parameter vector a is
obtained by solving the matrix equations. Although for 3 × 3 matrices we can
write out the solution in closed form, for larger problems the numerical solution
requires matrix methods.

8.7.5 Linear Quadratic Fit Assessment

1. Fit the quadratic (8.63) to the following data sets [given as (x1, y1),
(x2, y2), . . .]. In each case indicate the values found for the a’s, the number of
degrees of freedom, and the value of χ2.
a. (0, 1)
b. (0, 1), (1, 3)
c. (0, 1), (1, 3), (2, 7)
d. (0, 1), (1, 3), (2, 7), (3, 15)

2. Find a fit to the last set of data to the function

y =Ae−bx2
. (8.69)

Hint: A judicious change of variables will permit you to convert this to a
linear fit. Does a minimum χ2 still have meaning here?

8.7.6 Nonlinear Fit of the Breit–Wigner Formula
to a Cross Section

Problem: Remember how we started Unit II of this chapter by interpolating the
values in Table 8.1, which gave the experimental cross section Σ as a function of
energy. Although we did not use it, we also gave the theory describing these data,
namely, the Breit–Wigner resonance formula (8.31):

f(E) =
fr

(E−Er)2 + Γ2/4
. (8.70)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 192

192 chapter 8

Your problem here is to determine what values for the parameters Er, fr, and Γ in
(8.70) provide the best fit to the data in Table 8.1.

Because (8.70) is not a linear function of the parameters (Er,Σ0,Γ), the three
equations that result from minimizing χ2 are not linear equations and so cannot
be solved by the techniques of linear algebra (matrix methods). However, in our
study of the masses on a string problem in Unit I, we showed how to use the
Newton–Raphson algorithm to search for solutions of simultaneous nonlinear
equations. That technique involved expansion of the equations about the previous
guess to obtain a set of linear equations and then solving the linear equations with
the matrix libraries. We now use this same combination of fitting, trial-and-error
searching, and matrix algebra to conduct a nonlinear least-squares fit of (8.70) to
the data in Table 8.1.

Recollect that the condition for a best fit is to find values of the MP parameters
am in the theory g(x, am) that minimize χ2 =

∑
i[(yi − gi)/σi]2. This leads to the

MP equations (8.53) to solve

ND∑
i=1

[yi − g(xi)]
σ2

i

∂g(xi)
∂am

= 0, (m= 1,MP ). (8.71)

To find the form of these equations appropriate to our problem, we rewrite our
theory function (8.70) in the notation of (8.71):

a1 = fr, a2 =ER, a3 = Γ2/4, x= E, (8.72)

⇒ g(x) =
a1

(x− a2)2 + a3
. (8.73)

The three derivatives required in (8.71) are then

∂g

∂a1
=

1
(x− a2)2 + a3

,
∂g

∂a2
=

−2a1(x− a2)
[(x− a2)2 + a3]2

,
∂g

∂a3
=

−a1

[(x− a2)2 + a3]2
.

Substitution of these derivatives into the best-fit condition (8.71) yields three simul-
taneous equations in a1, a2, and a3 that we need to solve in order to fit the ND = 9
data points (xi, yi) in Table 8.1:

9∑
i=1

yi − g(xi, a)
(xi − a2)2 + a3

= 0,
9∑

i=1

yi − g(xi, a)
[(xi − a2)2 + a3]2

= 0,

9∑
i=1

{yi − g(xi, a)} (xi − a2)
[(xi − a2)2 + a3]2

= 0. (8.74)

Even without the substitution of (8.70) for g(x, a), it is clear that these three equa-
tions depend on the a’s in a nonlinear fashion. That’s okay because in §8.2.2 we

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 193

systems of equations with matrices; data fitting 193

derived the N -dimensional Newton–Raphson search for the roots of

fi(a1, a2, . . . , aN ) = 0, i= 1, N, (8.75)

where we have made the change of variable yi → ai for the present problem. We
use that same formalism here for the N = 3 equations (8.74) by writing them as

f1(a1, a2, a3) =
9∑

i=1

yi − g(xi, a)
(xi − a2)2 + a3

= 0, (8.76)

f2(a1, a2, a3) =
9∑

i=1

{yi − g(xi, a)} (xi − a2)
[(xi − a2)2 + a3]2

= 0, (8.77)

f3(a1, a2, a3) =
9∑

i=1

yi − g(xi, a)
[(xi − a2)2 + a3]2

= 0. (8.78)

Because fr ≡ a1 is the peak value of the cross section,ER ≡ a2 is the energy at which
the peak occurs, and Γ = 2

√
a3 is the full width of the peak at half-maximum, good

guesses for the a’s can be extracted from a graph of the data. To obtain the nine
derivatives of the three f ’s with respect to the three unknown a’s, we use two
nested loops over i and j, along with the forward-difference approximation for the
derivative

∂fi

∂aj
� fi(aj + ∆aj) − fi(aj)

∆aj
, (8.79)

where ∆aj corresponds to a small, say ≤1%, change in the parameter value.

8.7.6.1 NONLINEAR FIT IMPLEMENTATION

Use the Newton–Raphson algorithm as outlined in §8.7.6 to conduct a nonlinear
search for the best-fit parameters of the Breit–Wigner theory (8.70) to the data in
Table 8.1. Compare the deduced values of (fr, ER,Γ) to that obtained by inspection
of the graph. The program Newton_Jama2.java on the instructor’s CD solves this
problem.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 194

9

Differential Equation Applications

Part of the attraction of computational problem solving is that it is easy to solve almost
every differential equation. Consequently, while most traditional (read “analytic”)
treatments of oscillations are limited to the small displacements about equilibrium
where the restoring forces are linear, we eliminate those restrictions here and reveal
some interesting nonlinear physics. In Unit I we look at oscillators that may be
harmonic for certain parameter values but then become anharmonic. We start with
simple systems that have analytic solutions, use them to test various differential-
equation solvers, and then include time-dependent forces and investigate nonlinear
resonances and beating.1 In Unit II we examine how a differential-equation solver
may be combined with a search algorithm to solve the eigenvalue problem. In Unit III
we investigate how to solve the simultaneous ordinary differential equations (ODEs)
that arise in scattering, projectile motion, and planetary orbits.

9.1 Unit I. Free Nonlinear Oscillations

Problem: In Figure 9.1 we show a massm attached to a spring that exerts a restoring
force toward the origin, as well as a hand that exerts a time-dependent external
force on the mass. We are told that the restoring force exerted by the spring is
nonharmonic, that is, not simply proportional to displacement from equilibrium,
but we are not given details as to how this is nonharmonic. Your problem is to
solve for the motion of the mass as a function of time. You may assume the motion
is constrained to one dimension.

9.2 Nonlinear Oscillators (Models)

This is a problem in classical mechanics for which Newton’s second law provides
us with the equation of motion

Fk(x) +Fext(x, t) =m
d2x

dt2
, (9.1)

1 In Chapter 12, “Discrete & Continuous Nonlinear Dynamics,” we make a related study
of the realistic pendulum and its chaotic behavior. Some special properties of nonlinear
equations are discussed in Chapter 19, “Solitons & Computational Fluid Dynamics.”

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 195

differential equation applications 195

F (x)k

F   (x,t)ext

Figure 9.1 A mass m attached to a spring with restoring force Fk(x) and with an external

agency (a hand) subjecting the mass to a time-dependent driving force as well.

where Fk(x) is the restoring force exerted by the spring and Fext(x, t) is the external
force. Equation (9.1) is the differential equation we must solve for arbitrary forces.
Because we are not told just how the spring departs from being linear, we are free
to try out some different models. As our first model, we try a potential that is a
harmonic oscillator for small displacements x and also contains a perturbation that
introduces a nonlinear term to the force for large x values:

V (x) � 1
2
kx2
(

1 − 2
3
αx

)
, (9.2)

⇒ Fk(x) = −dV (x)
dx

= −kx(1 −αx) =m
d2x

dt2
, (9.3)

where we have omitted the time-dependent external force. Equation (9.3) is
the second-order ODE we need to solve. If αx� 1, we should have essentially
harmonic motion.

We can understand the basic physics of this model by looking at the curves on
the left in Figure 9.2. As long as x < 1/α, there will be a restoring force and the
motion will be periodic (repeated exactly and indefinitely in time), even though it
is harmonic (linear) only for small-amplitude oscillations. Yet, as the amplitude of
oscillation gets larger, there will be an asymmetry in the motion to the right and
left of the equilibrium position. And if x > 1/α, the force will become repulsive and
the mass will “roll” down the potential hill.

As a second model of a nonlinear oscillator, we assume that the spring’s potential
function is proportional to some arbitrary even power p of the displacement x from
equilibrium:

V (x) =
1
p
kxp, ( p even). (9.4)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 196

196 chapter 9

x
Linear

Nonlinear

Unbound

Harmonic

Anharmonic

V(x)

V

p = 2

xx

V

p = 6

Linear Nonlinear

Harmonic Anharmonic

Figure 9.2 Left: The potential of an harmonic oscillator (solid curve) and of an oscillator with

an anharmonic correction (dashed curve). Right: The shape of the potential energy function

V(x) ∝ |x|p for different p values. The linear and nonlinear labels refer to restoring force

derived from these potentials.

We require an even p to ensure that the force,

Fk(x) = −dV (x)
dx

= −kxp−1, (9.5)

contains an odd power of p, which guarantees that it is a restoring force for positive
or negative x values. We display some characteristics of this potential on the right
in Figure 9.2. We see that p= 2 is the harmonic oscillator and that p= 6 is nearly
a square well with the mass moving almost freely until it hits the wall at x� ±1.
Regardless of the p value, the motion will be periodic, but it will be harmonic only
for p= 2. Newton’s law (9.1) gives the second-order ODE we need to solve:

Fext(x, t) − kxp−1 =m
d2x

dt2
. (9.6)

9.3 Types of Differential Equations (Math)

The background material in this section is presented to avoid confusion about
semantics. The well-versed reader may want to skim or skip it.

Order: A general form for a first-order differential equation is

dy

dt
= f(t, y), (9.7)

where the “order” refers to the degree of the derivative on the LHS. The
derivative or force function f(t, y) on the RHS, is arbitrary. For instance, even

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 197

differential equation applications 197

if f(t, y) is a nasty function of y and t such as

dy

dt
= −3t2y+ t9 + y7, (9.8)

this is still first order in the derivative. A general form for a second-order
differential equation is

d2y

dt2
+λ

dy

dt
= f

(
t,
dy

dt
, y

)
. (9.9)

The derivative function f on the RHS is arbitrary and may involve any power
of the first derivative as well. To illustrate,

d2y

dt2
+λ

dy

dt
= −3t2

(
dy

dt

)4

+ t9y(t) (9.10)

is a second-order differential equation, as is Newton’s law (9.1).
In the differential equations (9.7) and (9.9), the time t is the independent

variable and the position y is the dependent variable. This means that we are free
to vary the time at which we want a solution, but not the value of the solution
y at that time. Note that we often use the symbol y or Y for the dependent
variable but that this is just a symbol. In some applications we use y to describe
a position that is an independent variable instead of t.

Ordinary and partial: Differential equations such as (9.1) and (9.7) are ordinary
differential equations because they contain only one independent variable, in
these cases t. In contrast, an equation such as the Schrödinger equation

i
∂ψ(x,t)
∂t

= − 1
2m

[
∂2ψ

∂x2 +
∂2ψ

∂y2 +
∂2ψ

∂z2

]
+V (x)ψ(x,t) (9.11)

(where we have set h̄= 1) contains several independent variables, and this
makes it a partial differential equation (PDE). The partial derivative symbol ∂
is used to indicate that the dependent variable ψ depends simultaneously on
several independent variables. In the early parts of this book we limit ourselves
to ordinary differential equations. In Chapters 17–19 we examine a variety of
partial differential equations.

Linear and nonlinear: Part of the liberation of computational science is that we
are no longer limited to solving linear equations. A linear equation is one in
which only the first power of y or dny/dnt appears; a nonlinear equation may
contain higher powers. For example,

dy

dt
= g3(t)y(t) (linear),

dy

dt
= λy(t) −λ2y2(t) (nonlinear). (9.12)

An important property of linear equations is the law of linear superposition that
lets us add solutions together to form new ones. As a case in point, ifA(t) and

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 198

198 chapter 9

B(t) are solutions of the linear equation in (9.12), then

y(t) = αA(t) +βB(t) (9.13)

is also a solution for arbitrary values of the constantsα and β. In contrast, even
if we were clever enough to guess that the solution of the nonlinear equation
in (9.12) is

y(t) =
a

1 + be−λt
(9.14)

(which you can verify by substitution), things would be amiss if we tried to
obtain a more general solution by adding together two such solutions:

y1(t) =
a

1 + be−λt
+

a′

1 + b′e−λt
(9.15)

(which you can verify by substitution).
Initial and boundary conditions: The general solution of a first-order differen-

tial equation always contains one arbitrary constant. The general solution of a
second-order differential equation contains two such constants, and so forth.
For any specific problem, these constants are fixed by the initial conditions. For
a first-order equation, the sole initial condition may be the position y(t) at
some time. For a second-order equation, the two initial conditions may be the
position and velocity at some time. Regardless of how powerful the hardware
and software that you employ, the mathematics remains valid, and so you
must know the initial conditions in order to solve the problem uniquely.

In addition to the initial conditions, it is possible to further restrict the solu-
tions of differential equations. One such way is by boundary conditions that
constrain the solution to have fixed values at the boundaries of the solu-
tion space. Problems of this sort are called eigenvalue problems, and they are
so demanding that solutions do not always exist, and even when they do
exist, a trial-and-error search may be required to find them. In Unit II we
discuss how to extend the techniques of the present unit to boundary-value
problems.

9.4 Dynamic Form for ODEs (Theory)

Astandard form for ODEs, which has found use both in numerical analysis [Pres 94,
Pres 00] and in classical dynamics [Schk 94, Tab 89, J&S 98], is to express ODEs of
any order as N simultaneous first-order ODEs:

dy(0)

dt
= f (0)(t, y(i)), (9.16)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 199

differential equation applications 199

dy(1)

dt
= f (1)(t, y(i)), (9.17)

. . . (9.18)

dy(N−1)

dt
= f (N−1)(t, y(i)), (9.19)

where y(i) dependence in f is allowed but not any dependence on deriva-
tives dy(i)/dt. These equations can be expressed more compactly by use of the
N -dimensional vectors (indicated here in boldface) y and f :

dy(t)/dt= f(t,y),

y =




y(0)(t)

y(1)(t)

. . .

y(N−1)(t)



, f =




f (0)(t,y)

f (1)(t,y)

. . .

f (N−1)(t,y)



.

(9.19)

The utility of such compact notation is that we can study the properties of the
ODEs, as well as develop algorithms to solve them, by dealing with the single
equation (9.20) without having to worry about the individual components. To see
how this works, let us convert Newton’s law

d2x

dt2
=

1
m
F

(
t,
dx

dt
, x

)
(9.20)

to standard dynamic form. The rule is that the RHS may not contain any explicit
derivatives, although individual components of y(i) may represent derivatives. To
pull this off, we define the position x as the dependent variable y(0) and the velocity
dx/dt as the dependent variable y(1):

y(0)(t) def= x(t), y(1)(t) def=
dx

dt
=
d(0)
dt

. (9.21)

The second-order ODE (9.20) now becomes two simultaneous first-order ODEs:

dy(0)

dt
= y(1)(t),

dy(1)

dt
=

1
m
F (t, y(0), y(1)). (9.22)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 200

200 chapter 9

This expresses the acceleration [the second derivative in (9.20)] as the first derivative
of the velocity [y(2)]. These equations are now in the standard form (9.20), with the
derivative or force function f having the two components

f (0) = y(1)(t), f (1) =
1
m
F (t, y(0), y(1)), (9.23)

where F may be an explicit function of time as well as of position and velocity.
To be even more specific, applying these definitions to our spring problem (9.6),

we obtain the coupled first-order equations

dy(0)

dt
= y(1)(t),

dy(1)

dt
=

1
m

[
Fext(x, t) − ky(0)(t)p−1

]
, (9.24)

where y(0)(t) is the position of the mass at time t and y(1)(t) is its velocity. In the
standard form, the components of the force function and the initial conditions are

f (0)(t,y) = y(1)(t), f (1)(t,y) =
1
m

[
Fext(x, t) − k(y(0))p−1

]
,

y(0)(0) = x0, y(1)(0) = v0. (9.25)

Breaking a second-order differential equation into two first-order ones is not just
an arcane mathematical maneuver. In classical dynamics it occurs when transform-
ing the single Newtonian equation of motion involving position and acceleration
(9.1), into two Hamiltonian equations involving position and momentum:

dpi

dt
= Fi, m

dyi

dt
= pi. (9.26)

9.5 ODE Algorithms

The classic way to solve a differential equation is to start with the known ini-
tial value of the dependent variable, y0 ≡ y(t= 0), and then use the derivative
function f(t, y) to find an approximate value for y at a small step ∆t= h for-
ward in time; that is, y(t= h) ≡ y1. Once you can do that, you can solve the ODE
for all t values by just continuing stepping to larger times one small h at a time
(Figure 9.3).2 Error is always a concern when integrating differential equations
because derivatives require small differences, and small differences are prone to
subtractive cancellations and round-off error accumulation. In addition, because
our stepping procedure for solving the differential equation is a continuous extrap-
olation of the initial conditions, with each step building on a previous extrapolation,

2 To avoid confusion, notice that y(n) is the nth component of the y vector, while yn is the
value of y after n time steps. (Yes, there is a price to pay for elegance in notation.)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 201

differential equation applications 201

st
ep

 1
y0 y1 y2 h

time

t =
 a

t =
 b

y3 yN

st
ep

2

Figure 9.3 The steps of length h taken in solving a differential equation. The solution starts

at time t = a and is integrated to t = b.

this is somewhat like a castle built on sand; in contrast to interpolation, there are
no tabulated values on which to anchor your solution.

It is simplest if the time steps used throughout the integration remain constant
in size, and that is mostly what we shall do. Industrial-strength algorithms, such
as the one we discuss in §9.5.2, adapt the step size by making h larger in regions
where y varies slowly (this speeds up the integration and cuts down on round-off
error) and making h smaller in regions where y varies rapidly.

9.5.1 Euler’s Rule

Euler’s rule (Figure 9.4 left) is a simple algorithm for integrating the differential
equation (9.7) by one step and is just the forward-difference algorithm for the

Euler’s
Rule

y(t)

tn tn+1

h

∆

rk2

y(t)

tn tn+1

slope

tn+1/2

∆

Figure 9.4 Left: Euler’s algorithm for the forward integration of a differential equation for one

time step. The linear extrapolation with the initial slope is seen to cause the error ∆. Right: The

rk2 algorithm is also a linear extrapolation of the solution yn to yn+1, but with the slope (bold

line segment) at the interval’s midpoint. The error is seen to be much smaller.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 202

202 chapter 9

derivative:

dy(t)
dt

� y(tn+1) −y(tn)
h

= f(t,y), (9.27)

⇒ yn+1 � yn +hf(tn,yn), (9.28)

where yn
def= y(tn) is the value of y at time tn. We know from our discussion of

differentiation that the error in the forward-difference algorithm is O(h2), and so
this too is the error in Euler’s rule.

To indicate the simplicity of this algorithm, we apply it to our oscillator problem
for the first time step:

y
(0)
1 = x0 + v0h, y

(1)
1 = v0 +h

1
m

[Fext(t= 0) +Fk(t= 0)] . (9.29)

Compare these to the projectile equations familiar from first-year physics,

x= x0 + v0h+
1
2
ah2, v = v0 + ah, (9.30)

and we see that the acceleration does not contribute to the distance covered (no h2

term), yet it does contribute to the velocity (and so will contribute belatedly to the
distance in the next time step). This is clearly a simple algorithm that requires very
small h values to obtain precision. Yet using small values forh increases the number
of steps and the accumulation of round-off error, which may lead to instability.3

Whereas we do not recommend Euler’s algorithm for general use, it is commonly
used to start some of the more precise algorithms.

9.5.2 Runge–Kutta Algorithm

Even though no one algorithm will be good for solving all ODEs, the fourth-order
Runge–Kutta algorithm rk4, or its extension with adaptive step size, rk45, has
proven to be robust and capable of industrial-strength work. In spite of rk4 being
our recommended standard method, we derive the simpler rk2 here and just give
the results for rk4.

The Runge–Kutta algorithms for integrating a differential equation are based
upon the formal (exact) integral of our differential equation:

dy

dt
= f(t, y) ⇒ y(t) =

∫
f(t, y) dt (9.31)

3 Instability is often a problem when you integrate a y(t) that decreases as the integration
proceeds, analogous to upward recursion of spherical Bessel functions. In that case, and
if you have a linear problem, you are best off integrating inward from large times to small
times and then scaling the answer to agree with the initial conditions.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 203

differential equation applications 203

⇒ yn+1 = yn +
∫ tn+1

tn

f(t, y) dt. (9.32)

To derive the second-order Runge–Kutta algorithm rk2 (Figure 9.4 right, rk2.java
on the CD), we expand f(t, y) in a Taylor series about the midpoint of the integration
interval and retain two terms:

f(t, y) � f(tn+1/2, yn+1/2) + (t− tn+1/2)
df

dt
(tn+1/2) + O(h2). (9.33)

Because (t− tn+1/2) to any odd power is equally positive and negative over the
interval tn ≤ t≤ tn+1, the integral of (t− tn+1/2) in (9.32) vanishes and we obtain
our algorithm:

∫ tn+1

tn

f(t, y) dt� f(tn+1/2, yn+1/2)h+O(h3), (9.34)

⇒ yn+1 � yn +hf(tn+1/2, yn+1/2) + O(h3) (rk2). (9.35)

We see that while rk2 contains the same number of terms as Euler’s rule, it
obtains a higher level of precision by taking advantage of the cancellation of the
O(h) terms [likewise, rk4 has the integral of the t− tn+1/2 and (t− tn+1/2)3 terms
vanish]. Yet the price for improved precision is having to evaluate the derivative
function and y at the middle of the time interval, t= tn +h/2. And there’s the rub,
for we do not know the value of yn+1/2 and cannot use this algorithm to determine
it. The way out of this quandary is to use Euler’s algorithm for yn+1/2:

yn+1/2 � yn +
1
2
h
dy

dt
= yn +

1
2
hf(tn, yn). (9.36)

Putting the pieces all together gives the complete rk2 algorithm:

yn+1 � yn +k2, (rk2) (9.37)

k2 = hf
(
tn +

h

2
, yn +

k1

2

)
, k1 = h f(tn, yn), (9.38)

where we use boldface to indicate the vector nature of y and f . We see that the
known derivative function f is evaluated at the ends and the midpoint of the inter-
val, but that only the (known) initial value of the dependent variable y is required.
This makes the algorithm self-starting.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 204

204 chapter 9

As an example of the use of rk2, we apply it to our spring problem:

y
(0)
1 = y

(0)
0 +hf (0)

(
h

2
, y

(0)
0 + k1

)
� x0 +h

[
v0 +

h

2
Fk(0)

]
,

y
(1)
1 = y

(1)
0 +hf (1)

[
h

2
, y0 +

h

2
f(0, y0)

]
� v0 +

h

m

[
Fext

(
h

2

)
+Fk

(
y
(1)
0 +

k1

2

)]
.

These equations say that the position y(0) changes because of the initial velocity
and force, while the velocity changes because of the external force at t= h/2 and
the internal force at two intermediate positions. We see that the position now has
an h2 time dependence, which at last brings us up to the level of first-year physics.

rk4: The fourth-order Runge–Kutta method rk4 (Listing 9.1) obtains O(h4) pre-
cision by approximating y as a Taylor series up to h2 (a parabola) at the
midpoint of the interval. This approximation provides an excellent balance
of power, precision, and programming simplicity. There are now four gra-
dient (k) terms to evaluate with four subroutine calls needed to provide a
better approximation to f(t, y) near the midpoint. This is computationally
more expensive than the Euler method, but its precision is much better, and
the step sizeh can be made larger. Explicitly, rk4 requires the evaluation of four
intermediate slopes, and these are approximated with the Euler algorithm:

yn+1 = yn +
1
6
(k1 + 2k2 + 2k3 +k4),

k1 = hf(tn,yn), k2 = hf
(
tn +

h

2
,yn +

k1

2

)
,

k3 = hf
(
tn +

h

2
,yn +

k2

2

)
, k4 = hf(tn +h,yn +k3).

(9.39)

rk45: (rk45.java on the CD) A variation of rk4, known as the Runge–Kutta–
Fehlberg method or rk45 [Math 02], automatically doubles the step size and
tests to see how an estimate of the error changes. If the error is still within
acceptable bounds, the algorithm will continue to use the larger step size and
thus speed up the computation; if the error is too large, the algorithm will
decrease the step size until an acceptable error is found. As a consequence
of the extra information obtained in the testing, the algorithm obtains O(h5)
precision but often at the expense of extra computing time. Whether that
extra time is recovered by being able to use a larger step size depends upon
the application.

9.5.3 Adams–Bashforth–Moulton Predictor-Corrector

Another approach for obtaining high precision in an ODE algorithm uses the
solution from previous steps, say, yn−2 and yn−1, in addition to yn, to predict yn+1.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 205

differential equation applications 205

� �
/ / rk4 . java : 4 th order Runge−Kutta ODE Solver for a r b i t r a r y y ( t )
i m p o r t j ava . io . ∗ ;

p u b l i c c l a s s rk4 {

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) throws IOException , FileNotFoundException {
Pr i n t W r i t e r w = new Pr i n t W r i t e r ( new FileOutputStream ("rk4.dat" ) , t r u e ) ;
d o u b l e h , t , a = 0 . , b = 1 0 . ; / / Step size , time , endpoints
d o u b l e ydumb [ ] = new d o u b l e [ 2 ] , y [ ] = new d o u b l e [ 2 ] , fReturn [ ] = new d o u b l e [ 2 ] ;
d o u b l e k1 [ ] = new d o u b l e [ 2 ] , k2 [ ] = new d o u b l e [ 2 ] , k3 [ ] = new d o u b l e [ 2 ] ;
d o u b l e k4 [ ] = new d o u b l e [ 2 ] ;
i n t i , n = 1 0 0 ;
y [ 0 ] = 3 . ; y [ 1 ] = −5. ; / / I n i t i a l i z e
h = ( b−a ) /n ;
t = a ;

w. p r i n t l n ( t + " " + y [ 0 ] + " " + y [ 1 ] ) ; / / F i l e output
w h i l e ( t < b ) { / / Time loop

i f ( ( t + h ) > b ) h = b − t ; / / Last step
f ( t , y , fReturn ) ; / / Evaluate RHS’ s , return in fReturn
k1 [ 0 ] = h∗ fReturn [ 0 ] ; k1 [ 1 ] = h∗ fReturn [ 1 ] ; / / Compute function values
f o r ( i =0 ; i <= 1 ; i ++ ) ydumb[ i ] = y [ i ] + k1 [ i ] / 2 ;
f ( t + h/2 , ydumb, fReturn ) ;
k2 [ 0 ] = h∗ fReturn [ 0 ] ; k2 [ 1 ] = h∗ fReturn [ 1 ] ;
f o r ( i =0 ; i <= 1 ; i ++ ) ydumb[ i ] = y [ i ] + k2 [ i ] / 2 ;
f ( t + h/2 , ydumb, fReturn ) ;
k3 [ 0 ] = h∗ fReturn [ 0 ] ; k3 [ 1 ] = h∗ fReturn [ 1 ] ;
f o r ( i =0 ; i <= 1 ; i ++ ) ydumb[ i ] = y [ i ] + k3 [ i ] ;
f ( t + h , ydumb, fReturn ) ;
k4 [ 0 ] = h∗ fReturn [ 0 ] ; k4 [ 1 ] = h∗ fReturn [ 1 ] ;
f o r ( i =0 ; i <= 1 ; i ++)y [ i ]=y [ i ] + ( k1 [ i ]+2∗ ( k2 [ i ]+ k3 [ i ] ) +k4 [ i ] ) /6 ;
t = t + h ;

w. p r i n t l n ( t + " " + y [ 0 ] + " " + y [ 1 ] ) ; / / F i l e output
} / / End while loop
System . out . p r i n t l n ("Output in rk4 .dat" ) ;

}
/ / YOUR FUNCTION here

p u b l i c s t a t i c v o i d f ( d o u b l e t , d o u b l e y [ ] , d o u b l e fReturn [ ] )
{ fReturn [ 0 ] = y [ 1 ] ; / / RHS 1 s t eq

fReturn [ 1 ] = −100∗y[0]−2∗y [ 1 ] + 10∗Math . s i n (3∗ t ) ; } / / RHS 2nd
}

�

Listing 9.1 rk4.java solves an ODE with the RHS given by the method f( ) using a fourth-order

Runge–Kutta algorithm. Note that the method f( ), which you will need to change for each

problem, is kept separate from the algorithm, which it is best not to change.

(The Euler and rk methods use just the previous step.) Many of these methods
tend to be like a Newton’s search method; we start with a guess or prediction for
the next step and then use an algorithm such as rk4 to check on the prediction.
This yields a correction. As with rk45, one can use the difference between pre- C D

diction and correction as a measure of the error and then adjust the step size to
obtain improved precision [Math 92, Pres 00]. For those readers who may want
to explore such methods, ABM.java on the CD gives our implementation of the
Adams–Bashforth–Moulton predictor-corrector scheme.

9.5.4 Assessment: rk2 versus rk4 versus rk45

While you are free to do as you please, we do not recommend that you write
your own rk4 method unless you are very careful. We will be using rk4 for some

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 206

206 chapter 9

high-precision work, and unless you get every fraction and method call just right,
your rk4 may appear to work well but still not give all the precision that you shouldC D

have. Regardless, we recommend that you write your own rk2, as doing so will
make it clearer as to how the Runge–Kutta methods work, but without all the pain.
We give rk2, rk4, and rk45 codes on the CD and list rk4.java in Listing 9.1.

1. Write your own rk2 method. Design your method for a general ODE; this
means making the derivative function f(t, x) a separate method.

2. Use your rk2 solver in a program that solves the equation of motion (9.6) or
(9.24). Use double precision to help control subtractive cancellation and plot
both the position x(t) and velocity dx/dt as functions of time.

3. Once your ODE solver compiles and executes, do a number of things to check
that it is working well and that you know what h values to use.
a. Adjust the parameters in your potential so that it corresponds to a pure

harmonic oscillator (set p= 2 or α= 0). For this case we have an analytic
result with which to compare:

x(t) =A sin(ω0t+φ), v(t) = ω0A cos(ω0t+φ), ω0 =
√
k/m.

b. Pick values of k and m such that the period T = 2π/ω is a nice number
with which to work (something like T = 1).

c. Start with a step size h� T/5 and make h smaller until the solution looks
smooth, has a period that remains constant for a large number of cycles,
and agrees with the analytic result. As a general rule of thumb, we suggest
that you start with h� T/100, where T is a characteristic time for the
problem at hand. Here we want you to start with a large h so that you can
see a bad solution turn good.

d. Make sure that you have exactly the same initial conditions for the analytic
and numerical solutions (zero displacement, nonzero velocity) and then
plot the two together. It is good if you cannot tell them apart, yet that only
ensures that there are approximately two places of agreement.

e. Try different initial velocities and verify that a harmonic oscillator is
isochronous, that is, that its period does not change as the amplitude varies.

4. Now that you know you can get a good solution of an ODE with rk2, compare
the solutions obtained with the rk2, rk4, and rk45 solvers.

TABLE 9.1
Comparison of ODE Solvers for Different Equations

Equation No. Method Initial h No. of Flops Time (ms) Relative Error

(9.40) rk4 0.01 1000 5.2 2.2 × 10−8

rk45 1.00 72 1.5 1.8 × 10−8

(9.41) rk4 0.01 227 8.9 1.8 × 10−8

rk45 0.1 3143 36.7 5.7 × 10−11

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 207

differential equation applications 207

–7

–9

–13

lo
g 

|R
el

 E
rr

or
|

time

Error in rk4

N = 5000

N = 1000

N = 500

Figure 9.5 The log of the relative error (number of places of precision) obtained with rk4

using a differing number N of steps over the same time interval.

5. Make a table of comparisons similar to Table 9.1. There we compare rk4 and
rk45 for the two equations

2yy′′ + y2 − y′2 = 0, (9.40)
y′′ + 6y5 = 0, (9.41)

with initial conditions ([y(0), y′(0)] = (1, 1). Equation (9.40) yields oscillations
with variable frequency and has an analytic solution with which to com-
pare. Equation (9.41) corresponds to our standard potential (9.4), with p= 6.
Although we have not tuned rk45, the table shows that by setting its tolerance
parameter to a small enough number, rk45 will obtain better precision than
rk4 (Figure 9.5) but that it requires ∼10 times more floating-point operations
and takes ∼5 times longer.

9.6 Solution for Nonlinear Oscillations (Assessment)

Use your rk4 program to study anharmonic oscillations by trying powers in the
range p= 2–12 or anharmonic strengths in the range 0 ≤ αx≤ 2. Do not include any
explicit time-dependent forces yet. Note that for large values of p you may need
to decrease the step size h from the value used for the harmonic oscillator because
the forces and accelerations get large near the turning points.

1. Check that the solution remains periodic with constant amplitude and period
for a given initial condition and value of p or α regardless of how nonlinear

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 208

208 chapter 9

0

-4

0

4

Amplitude Dependence, p = 7

time

x(t)

Figure 9.6 Different periods for oscillations within the restoring potential V ∝ x7 depending

upon the amplitude.

you make the force. In particular, check that the maximum speed occurs at
x= 0 and that the minimum speed occurs at maximum x. The latter is a
consequence of energy conservation.

2. Verify that nonharmonic oscillators are nonisochronous, that is, that different
initial conditions (amplitudes) lead to different periods (Figure 9.6).

3. Explain why the shapes of the oscillations change for different p’s or α’s.
4. Devise an algorithm to determine the period T of the oscillation by recording

times at which the mass passes through the origin. Note that because the
motion may be asymmetric, you must record at least three times.

5. Construct a graph of the deduced period as a function of initial amplitude.
6. Verify that the motion is oscillatory but not harmonic as the initial energy

approaches k/6α2 or for p > 6.
7. Verify that for the anharmonic oscillator withE = k/6α2, the motion changes

from oscillatory to translational. See how close you can get to the separatrix
where a single oscillation takes an infinite time. (There is no separatrix for
the power-law potential.)

9.6.1 Precision Assessment: Energy Conservation

We have not explicitly built energy conservation into our ODE solvers. Nonetheless,
unless you have explicitly included a frictional force, it follows from the form of
the equations of motion that energy must be a constant for all values of p or α. That
being the case, the constancy of energy is a demanding test of the numerics.

1. Plot the potential energy PE(t) = V [x(t)], the kinetic energy KE(t) =mv2(t)/2,
and the total energy E(t) = KE(t) + PE(t), for 50 periods. Comment on the

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 209

differential equation applications 209

correlation between PE(t) and KE(t) and how it depends on the potential’s
parameters.

2. Check the long-term stability of your solution by plotting

− log10

∣∣∣∣E(t) −E(t= 0)
E(t= 0)

∣∣∣∣� number of places of precision

for a large number of periods (Figure 9.5). Because E(t) should be indepen-
dent of time, the numerator is the absolute error in your solution and when
divided byE(0), becomes the relative error (say 10−11). If you cannot achieve
11 or more places, then you need to decrease the value of h or debug.

3. Because a particle bound by a large-p oscillator is essentially “free” most of
the time, you should observe that the average of its kinetic energy over time
exceeds its average potential energy. This is actually the physics behind the
Virial theorem for a power-law potential:

〈KE〉 =
p

2
〈PE〉. (9.42)

Verify that your solution satisfies the Virial theorem. (Those readers who have
worked the perturbed oscillator problem can use this relation to deduce an
effective p value, which should be between 2 and 3.)

9.7 Extensions: Nonlinear Resonances,
Beats, and Friction

Problem: So far our oscillations have been rather simple. We have ignored friction
and assumed that there are no external forces (hands) influencing the system’s
natural oscillations. Determine

1. How the oscillations change when friction is included.
2. How the resonances and beats of nonlinear oscillators differ from those of

linear oscillators.
3. How introducing friction affects resonances.

9.7.1 Friction: Model and Implementation

The world is full of friction, and it is not all bad. For while friction may make
it harder to pedal a bike through the wind, it also tends to stabilize motion. The
simplest models for frictional force are called static, kinetic, and viscous friction:

F
(static)
f ≤ −µsN, F

(kinetic)
f = −µkN

v

|v| , F
(viscous)
f = −bv. (9.43)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 210

210 chapter 9

HereN is the normal force on the object under consideration,µ and b are parameters,
and v is the velocity. This model for static friction is appropriate for objects at rest,
while the model for kinetic friction is appropriate for an object sliding on a dry
surface. If the surface is lubricated, or if the object is moving through a viscous
medium, then a frictional force proportional to velocity is a better model.4

1. Extend your harmonic oscillator code to include the three types of friction in
(9.43) and observe how the motion differs for each.

2. Hint: For the simulation with static plus kinetic friction, each time the oscillator
has v = 0 you need to check that the restoring force exceeds the static force
of friction. If not, the oscillation must end at that instant. Check that your
simulation terminates at nonzero x values.

3. For your simulations with viscous friction, investigate the qualitative changes
that occur for increasing b values:

Underdamped: b < 2mω0 Oscillation within a decaying envelope
Critically damped: b= 2mω0 Nonoscillatory, finite time decay
Over damped: b > 2mω0 Nonoscillatory, infinite time decay

9.7.2 Resonances and Beats: Model and Implementation

All stable physical systems will oscillate if displaced slightly from their rest posi-
tions. The frequency ω0 with which such a system executes small oscillations about
its rest positions is called its natural frequency. If an external sinusoidal force is
applied to this system, and if the frequency of the external force equals the natural
frequencyω0, then a resonance may occur in which the oscillator absorbs energy from
the external force and the amplitude of oscillation increases with time. If the oscil-
lator and the driving force remain in phase over time, the amplitude will increase
continuously unless there is some mechanism, such as friction or nonlinearities, to
limit the growth.

If the frequency of the driving force is close to the natural frequency of the oscil-
lator, then a related phenomena, known as beating, may occur. In this situation there
is interference between the natural amplitude that is independent of the driving
force plus an amplitude due to the external force. If the frequency of the driver is
very close to the natural frequency, then the resulting motion,

x� x0 sinωt+x0 sinω0t=
(

2x0 cos
ω−ω0

2
t

)
sin

ω+ω0

2
t, (9.44)

looks like the natural vibration of the oscillator at the average frequency ω + ω0
2 , yet

with an amplitude 2x0 cos ω − ω0
2 t that varies with the slow beat frequency ω − ω0

2 .

4 The effect of air resistance on projectile motion is studied in Unit III of this chapter.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 211

differential equation applications 211

9.8 Implementation: Inclusion of
Time-Dependent Force

To extend our simulation to include an external force,

Fext(t) = F0 sinωt, (9.45)

we need to include some time dependence in the force function f(t,y) that occurs
in our ODE solver.

1. Add the sinusoidal time-dependent external force (9.45) to the space-
dependent restoring force in your program (do not include friction yet).

2. Start by using a very large value for the magnitude of the driving force
F0. This should lead to mode locking (the 500-pound-gorilla effect), where
the system is overwhelmed by the driving force and, after the transients
die out, the system oscillates in phase with the driver regardless of its
frequency.

3. Now lower F0 until it is close to the magnitude of the natural restoring force
of the system. You need to have this near equality for beating to occur.

4. Verify that for the harmonic oscillator, the beat frequency, that is, the num-
ber of variations in intensity per unit time, equals the frequency difference
(ω−ω0)/2π in cycles per second, where ω � ω0.

5. Once you have a value for F0 matched well with your system, make a series
of runs in which you progressively increase the frequency of the driving force
for the range ω0/10 ≤ ω ≤ 10ω0.

6. Make of plot of the maximum amplitude of oscillation that occurs as a function
of the frequency of the driving force.

7. Explore what happens when you make nonlinear systems resonate. If the
nonlinear system is close to being harmonic, you should get beating in place
of the blowup that occurs for the linear system. Beating occurs because the
natural frequency changes as the amplitude increases, and thus the natural
and forced oscillations fall out of phase. Yet once out of phase, the external
force stops feeding energy into the system, and the amplitude decreases;
with the decrease in amplitude, the frequency of the oscillator returns to its
natural frequency, the driver and oscillator get back in phase, and the entire
cycle repeats.

8. Investigate now how the inclusion of viscous friction modifies the curve of
amplitude versus driver frequency. You should find that friction broadens the
curve.

9. Explain how the character of the resonance changes as the exponent p in
the potential V (x) = k|x|p/p is made larger and larger. At large p, the mass
effectively “hits” the wall and falls out of phase with the driver, and so the
driver is less effective.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 212

212 chapter 9

9.9 Unit II. Binding A Quantum Particle

Problem: In this unit is we want to determine whether the rules of quantum
mechanics are applicable inside a nucleus. More specifically, you are told that
nuclei contain neutrons and protons (nucleons) with massmc2 � 940 MeV and that
a nucleus has a size of about 2 fm.5 Your explicit problem is to see if these experi-
mental facts are compatible, first, with quantum mechanics and, second, with the
observation that there is a typical spacing of several million electron volts (MeV)
between the ground and excited states in nuclei.

This problem requires us to solve the bound-state eigenvalue problem for the 1-
D, time-dependent Schrödinger equation. Even though this equation is an ODE,
which we know how to solve quite well by now, the extra requirement that we need
to solve for bound states makes this an eigenvalue problem. Specifically, the bound-
state requirement imposes boundary conditions on the form of the solution, which
in turn means that a solution exists only for certain energies, the eigenenergies or
eigenvalues.

If this all sounds a bit much for you now, rest assured that you do not need to
understand all the physics behind these statements. What we want is for you to gain
experience with the technique of conducting a numerical search for the eigenvalue in
conjunction with solving an ODE numerically. This is how one solves the numerical
ODE eigenvalue problem. In §20.2.1, we discuss how to solve the equivalent, but more
advanced, momentum-space eigenvalue problem as a matrix problem. In Chapter 18,
PDE Waves: String, Quantum Packet, and we study the related problem of the
motion of a quantum wave packet confined to a potential well. Further discussions of
the numerical bound-state problem are found in [Schd 00, Koon 86].

9.10 Theory: The Quantum Eigenvalue Problem

Quantum mechanics describes phenomena that occur on atomic or subatomic
scales (an elementary particle is subatomic). It is a statistical theory in which
the probability that a particle is located in a region dx around the point x is
P = |ψ(x)|2 dx, where ψ(x) is called the wave function. If a particle of energy E
moving in one dimension experiences a potential V (x), its wave function is deter-
mined by an ODE (a PDE if greater than 1-D) known as the time-independent
Schrödinger equation6:

−h̄2

2m
d2ψ(x)
dx2 +V (x)ψ(x) = Eψ(x). (9.46)

5 A fermi (fm) equals 10−13 cm = 10−15 m, and h̄c� 197.32 MeV fm.
6 The time-dependent equation requires the solution of a partial differential equation, as

discussed in Chapter 18, “PDE Waves: String, Quantum Packet, and E&M.”

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 213

differential equation applications 213

Although we say we are solving for the energyE, in practice we solve for the wave
vector κ. The energy is negative for bound states, and so we relate the two by

κ2 = −2m
h̄2 E =

2m
h̄2 |E|. (9.47)

The Schrödinger equation then takes the form

d2ψ(x)
dx2 − 2m

h̄2 V (x)ψ(x) = κ2ψ(x). (9.48)

When our problem tells us that the particle is bound, we are being told that it is
confined to some finite region of space. The only way to have a ψ(x) with a finite
integral is to have it decay exponentially asx→ ±∞ (where the potential vanishes):

ψ(x) →
{
e−κx, for x→ +∞,

e+κx, for x→ −∞.
(9.49)

In summary, although it is straightforward to solve the ODE (9.46) with the
techniques we have learned so far, we must also require that the solution ψ(x)
simultaneously satisfies the boundary conditions (9.49). This extra condition turns
the ODE problem into an eigenvalue problem that has solutions (eigenvalues) for only
certain values of the energy E. The ground-state energy corresponds to the small-
est (most negative) eigenvalue. The ground-state wave function (eigenfunction),
which we must determine in order to find its energy, must be nodeless and even
(symmetric) about x= 0. The excited states have higher (less negative) energies
and wave functions that may be odd (antisymmetric).

9.10.1 Model: Nucleon in a Box

The numerical methods we describe are capable of handling the most realistic
potential shapes. Yet to make a connection with the standard textbook case and to
permit some analytic checking, we will use a simple model in which the potential
V (x) in (9.46) is a finite square well (Figure 9.7):

V (x) =

{−V0 = −83 MeV, for |x| ≤ a= 2 fm,

0, for |x|> a= 2 fm,
(9.50)

where values of 83 MeV for the depth and 2 fm for the radius are typical for
nuclei (these are the units in which we solve the problem). With this potential

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 214

214 chapter 9

the Schrödinger equation (9.48) becomes

d2ψ(x)
dx2 +

(
2m
h̄2 V0 −κ2

)
ψ(x) = 0, for |x| ≤ a, (9.51)

d2ψ(x)
dx2 −κ2ψ(x) = 0, for |x|> a. (9.52)

To evaluate the ratio of constants here, we insert c2, the speed of light squared, into
both the numerator and the denominator [L 96, Appendix A.1]:

2m
h̄2 =

2mc2

(h̄c)2
� 2 × 940 MeV

(197.32 MeV fm)2
= 0.0483 MeV−1 fm−2. (9.53)

9.11 Combined Algorithms: Eigenvalues via
ODE Solver Plus Search

The solution of the eigenvalue problem combines the numerical solution of the ordi-
nary differential equation (9.48) with a trial-and-error search for a wave function
that satisfies the boundary conditions (9.49). This is done in several steps:

1. Start on the very far left at x= −Xmax � −∞, where Xmax 
 a. Assume that
the wave function there satisfies the left-hand boundary condition:

ψL(x= −Xmax) = e+κx = e−κXmax .

2. Use your favorite ODE solver to step ψL(x) in toward the origin (to the
right) from x= −Xmax until you reach the matching radius xmatch. The exact
value of this matching radius is not important, and our final solution should
be independent of it. On the left in Figure 9.7, we show a sample solution
with xmatch = −a; that is, we match at the left edge of the potential well. In
the middle and on the right in Figure 9.7 we see some guesses that do not
match.

3. Start on the very far right, that is, at x= +Xmax � +∞, with a wave function
that satisfies the right-hand boundary condition:

ψR(x= +κXmax) = e−κx = e−κXmax .

4. Use your favorite ODE solver (e.g., rk4) to step ψR(x) in toward the origin
(to the left) from x= +Xmax until you reach the matching radius xmatch. This
means that we have stepped through the potential well (Figure 9.7).

5. In order for probability and current to be continuous at x= xmatch, ψ(x) and
ψ′(x) must be continuous there. Requiring the ratio ψ′(x)/ψ(x), called the

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 215

differential equation applications 215

xmatch

0x

V(x)
–V0

–a a

0

0x

Low EHigh E

Figure 9.7 Left: Computed wave function and the square-well potential (bold lines). The

wave function computed by integration in from the left is matched to the one computed by

integration in from the right (dashed curve) at a point near the left edge of the well. Note

how the wave function decays rapidly outside the well. Right: A first guess at a wave function

with energy E that is 0.5% too low (dotted curve). We see that the left wave function does not

vary rapidly enough to match the right one at x = 500. The solid curve shows a second guess

at a wave function with energy E that is 0.5% too high. We see that now the left wave

function varies too rapidly.

logarithmic derivative, to be continuous encapsulates both continuity conditions
into a single condition and is independent of ψ’s normalization.

6. Even though we do not know ahead of time which energies E or κ values are
eigenvalues, we still need a starting value for the energy in order to use our
ODE solver. Such being the case, we start the solution with a guess for the
energy. A good guess for ground-state energy would be a value somewhat up
from that at the bottom of the well, E >−V0.

7. Because it is unlikely that any guess will be correct, the left- and right-wave
functions will not quite match at x= xmatch (Figure 9.7). This is okay because
we can use the amount of mismatch to improve the next guess. We measure
how well the right and left wave functions match by calculating the difference

∆(E, x) =
ψ′

L(x)/ψL(x) −ψ′
R(x)/ψR(x)

ψ′
L(x)/ψL(x) +ψ′

R(x)/ψR(x)

∣∣∣∣
x=xmatch

, (9.54)

where the denominator is used to avoid overly large or small numbers. Next
we try a different energy, note how much ∆(E) has changed, and use this to
deduce an intelligent guess at the next energy. The search continues until the
left- and right-wave ψ′/ψ match within some tolerance.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 216

216 chapter 9

9.11.1 Numerov Algorithm for the Schrödinger ODE �

We generally recommend the fourth-order Runge–Kutta method for solving ODEs,
and its combination with a search routine for solving the eigenvalue problem. In this
section we present the Numerov method, an algorithm that is specialized for ODEs
not containing any first derivatives (such as our Schrödinger equation). While this
algorithm is not as general as rk4, it is of O(h6) and thus speeds up the calculation
by providing additional precision.

We start by rewriting the Schrödinger equation (9.48) in the compact form,

d2ψ

dx2 + k2(x)ψ = 0, k2(x) def=
2m
h̄2



E+V0, for |x|< a,

E, for |x|> a,
(9.55)

wherek2 = −κ2 in potential-free regions. Observe that although (9.55) is specialized
to a square well, other potentials would have V (x) in place of −V0. The trick in
the Numerov method is to get extra precision in the second derivative by taking
advantage of there being no first derivative dψ/dx in (9.55). We start with the Taylor
expansions of the wave functions,

ψ(x+h) � ψ(x) +hψ(1)(x) +
h2

2
ψ(2)(x) +

h3

3!
ψ(3)(x) +

h4

4!
ψ(4)(x) + · · ·

ψ(x−h) � ψ(x) −hψ(1)(x) +
h2

2
ψ(2)(x) − h3

3!
ψ(3)(x) +

h4

4!
ψ(4)(x) + · · · ,

where ψ(n) signifies the nth derivative dnψ/dxn. Because the expansion ofψ(x−h)
has odd powers of h appearing with negative signs, all odd powers cancel when
we add ψ(x+h) and ψ(x−h) together:

ψ(x+h) +ψ(x−h) � 2ψ(x) +h2ψ(2)(x) +
h4

12
ψ(4)(x) + O(h6),

⇒ ψ(2)(x) � ψ(x+h) +ψ(x−h) − 2ψ(x)
h2 − h2

12
ψ(4)(x) + O(h4).

To obtain an algorithm for the second derivative we eliminate the fourth-derivative
term by applying the operator 1 + h2

12
d2

dx2 to the Schrödinger equation (9.55):

ψ(2)(x) +
h2

12
ψ(4)(x) + k2(x)ψ+

h2

12
d2

dx2 [k2(x)ψ(4)(x)] = 0.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 217

differential equation applications 217

� �
/ / QuantumNumerov . java : solves Schroed eq via Numerov + Bisect ion Algor

i m p o r t j ava . io . ∗ ;
i m p o r t ptolemy . p l o t . ∗ ;

p u b l i c c l a s s QuantumNumerov {

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) {
Pl o t myPlot = new Pl o t ( ) ;
myPlot . s e t T i t l e ("Schrodinger Eqn Numerov- Eigenfunction" ) ;
myPlot . setXLabel ("x" ) ;
myPlot . se tYLabel ("Y(x)" ) ;
myPlot . setXRange ( −1000 ,1000) ;
myPlot . se tColor ( f a l s e ) ;
P l o tAp p l i c a t i o n app = new Pl o tAp p l i c a t i o n ( myPlot ) ;
Pl o t myPlot1 = new Pl o t ( ) ;
myPlot1 . s e t T i t l e ("Schrodinger Eqn Numerov- Probability Density" ) ;
myPlot1 . setXLabel ("x" ) ;
myPlot1 . se tYLabel ("Y(x)^2" ) ;
myPlot1 . setXRange ( −1000 ,1000) ;
myPlot1 . setYRange ( −0 .004 ,0 .004 ) ;
myPlot1 . se tColor ( f a l s e ) ;
P l o tAp p l i c a t i o n app1 = new Pl o tAp p l i c a t i o n ( myPlot1 ) ;

i n t i , i s t e p , im , n , m, imax , nl , nr ;
d o u b l e dl =1e−8, h , min , max , e , e1 , de , xl0 , xr0 , xl , xr , f0 , f1 , sum , v , f a c t ;
d o u b l e ul [ ] = new d o u b l e [ 1 5 0 1 ] , ur [ ] = new d o u b l e [ 1 5 0 1 ] , k2l [ ] = new d o u b l e [ 1 5 0 1 ] ;
d o u b l e s [ ] = new d o u b l e [ 1 5 0 1 ] , k2r [ ] = new d o u b l e [ 1 5 0 1 ] ;
n = 1 5 0 1 ; m = 5 ; im = 0 ; imax = 1 0 0 ; x l0 = −1000; xr0 = 1000 ;
h = ( xr0−x l0 ) /(n−1) ;
min = −0.001; max = −0.00085; e = min ; de = 0 . 0 1 ;
ul [ 0 ] = 0 . 0 ; ul [ 1 ] = 0 . 0 0 0 0 1 ; ur [ 0 ] = 0 . 0 ; ur [ 1 ] = 0 . 0 0 0 0 1 ;
f o r ( i = 0 ; i < n ; ++ i ) { / / Set up the p o t e n t i a l k2

x l = x l0+ i ∗h ;
xr = xr0−i ∗h ;
k2l [ i ] = ( e−v ( x l ) ) ;
k2r [ i ] = ( e−v ( xr ) ) ;

}
im = 5 0 0 ; / / The matching point
nl = im+2; nr = n−im+1;
numerov ( nl , h , k2l , ul ) ; numerov ( nr , h , k2r , ur ) ;
f a c t = ur [ nr−2]/ul [ im ] ; / / Rescale the solution
f o r ( i = 0 ; i < nl ; ++ i ) ul [ i ] = f a c t ∗ul [ i ] ;
f 0 = ( ur [ nr−1]+ul [ nl−1]−ur [ nr−3]−ul [ nl −3]) /(2∗h∗ur [ nr −2]) ; / / Log deriv
i s t e p = 0 ; / / Bisect ion algor for the root
w h i l e ( Math . abs ( de ) > dl && i s t e p < imax ) {

e1 = e ;
e = ( min+max) /2;
f o r ( i = 0 ; i < n ; ++ i ) {

k2l [ i ] = k2l [ i ] + ( e−e1 ) ;
k2r [ i ] = k2r [ i ] + ( e−e1 ) ;

}
im=500;
nl = im+2; nr = n−im+1;
numerov ( nl , h , k2l , ul ) ; numerov ( nr , h , k2r , ur ) ;
f a c t =ur [ nr−2]/ul [ im ] ; / / Rescale solut ion
f o r ( i = 0 ; i < nl ; ++ i ) ul [ i ] = f a c t ∗ul [ i ] ;
f 1 = ( ur [ nr−1]+ul [ nl−1]−ur [ nr−3]−ul [ nl −3]) /(2∗h∗ur [ nr −2]) ; / / Log der
i f ( ( f0∗ f1 ) < 0) { max = e ; de = max−min ; }
e l s e { min = e ; de = max−min ; f0 = f1 ; }
i s t e p = i s t e p +1;

}
sum = 0 ;
f o r ( i = 0 ; i < n ; ++ i ) { i f ( i > im ) ul [ i ] = ur [ n−i −1]; sum = sum+ul [ i ]∗ ul [ i ] ; }
sum = Math . s q r t ( h∗sum) ;
System . out . p r i n t l n ("istep=" + i s t e p ) ;
System . out . p r i n t l n ("e= "+ e+" de= "+de ) ;
f o r ( i = 0 ; i < n ; i = i +m) {

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 218

218 chapter 9

x l = x l0+ i ∗h ;
ul [ i ] = ul [ i ]/sum ;
myPlot . addPoint ( 1 , xl , ul [ i ] , t r u e ) ;
myPlot1 . addPoint ( 1 , xl , ul [ i ]∗ ul [ i ] , t r u e ) ;

}
}

p u b l i c s t a t i c v o i d numerov ( i n t n , d o u b l e h , d o u b l e k2 [ ] , d o u b l e u [ ] ) {
i n t i ;
f o r ( i = 1 ; i <n−1; ++ i ) { u [ i +1]=(2∗u [ i ]∗(1 −5.∗h∗h/12.∗k2 [ i ] )

−(1.+h∗h/12.∗k2 [ i −1])∗u [ i −1]) /(1 .+ h∗h/12.∗k2 [ i + 1 ] ) ; }
}

p u b l i c s t a t i c d o u b l e v ( d o u b l e x ) {
d o u b l e v ;
i f ( Math . abs ( x ) <=500) v= −0.001;
e l s e v =0;
r e t u r n v ;

}
}

�

Listing 9.2 QuantumNumerov.java solves the 1-D time-independent Scrödinger equation

for bound-state energies using a Numerov method (rk4 also works, as we show in Listing 9.3).

We eliminate the ψ(4) terms by substituting the derived expression for the ψ(2):

ψ(x+h) +ψ(x−h) − 2ψ(x)
h2 + k2(x)ψ(x) +

h2

12
d2

dx2 [k2(x)ψ(x)] � 0.

Now we use a central-difference approximation for the second derivative of
k2(x)ψ(x)

h2 d
2[k2(x)ψ(x)]

dx2 � [(k2ψ)x+h − (k2ψ)x] + [(k2ψ)x−h − (k2ψ)x].

After this substitution we obtain the Numerov algorithm:

ψ(x+h) � 2[1− 5
12h

2k2(x)]ψ(x) − [1 + h2

12k
2(x−h)]ψ(x−h)

1 +h2k2(x+h)/12
. (9.56)

We see that the Numerov algorithm uses the values of ψ at the two previous steps
x and x−h to move ψ forward to x+h. To step backward in x, we need only to
reverse the sign of h. Our implementation of this algorithm, Numerov.java, is given
in Listing 9.2.

9.11.2 Implementation: Eigenvalues via an ODE Solver Plus
Bisection Algorithm

1. Combine your bisection algorithm search program with your rk4 or
Numerov ODE solver program to create an eigenvalue solver. Start with
a step size h= 0.04.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 219

differential equation applications 219

2. Write a subroutine that calculates the matching function ∆(E, x) as a func-
tion of energy and matching radius. This subroutine will be called by the
bisection algorithm program to search for the energy at which ∆(E, x= 2)
vanishes.

3. As a first guess, take E � 65 MeV.
4. Search until ∆(E, x) changes in only the fourth decimal place. We do this in

the code QuantumEigen.java shown in Listing 9.3.
5. Print out the value of the energy for each iteration. This will give you a feel

as to how well the procedure converges, as well as a measure of the precision
obtained. Try different values for the tolerance until you are confident that
you are obtaining three good decimal places in the energy.

6. Build in a limit to the number of energy iterations you permit and print out
when the iteration scheme fails.

7. As we have done, plot the wave function and potential on the same graph
(you will have to scale the potential to get them both to fit).

8. Deduce, by counting the number of nodes in the wave function, whether
the solution found is a ground state (no nodes) or an excited state (with
nodes) and whether the solution is even or odd (the ground state must be
even).

9. Include in your version of Figure 9.7 a horizontal line within the potential
indicating the energy of the ground state relative to the potential’s depth.

10. Increase the value of the initial energy guess and search for excited states.
Make sure to examine the wave function for each state found to ensure that
it is continuous and to count the number of nodes.

11. Add each new state found as another horizontal bar within the potential.
12. Verify that you have solved the problem, that is, that the spacing between

levels is on the order of MeV for a nucleon bound in a several-fermi
well.

� �
/ / QuantumEigen . java : solves Schroedinger eq via rk4 + Bisect ion Algor
i m p o r t j ava . io . ∗ ;

p u b l i c c l a s s QuantumEigen {
s t a t i c d o u b l e eps = 1E−6 ; / / Class var iables ; precis ion
s t a t i c i n t n_steps = 5 0 1 ; / / Number i n t steps

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) throws IOException , FileNotFoundException {
d o u b l e E = −17. , h = 0 . 0 4 ; / / I n i t i a l E in MeV, step s ize in fm
d o u b l e Emax , Emin , D i f f ;
i n t count , count_max = 1 0 0 ;
Emax = 1.1∗E ; Emin = E / 1 . 1 ;
f o r ( count =0; count <= count_max ; count++ ) { / / I t e r a t i o n loop

E = (Emax + Emin ) /2. ; / / Divide E range
D i f f = d i f f ( E , h ) ;
System . out . p r i n t l n ("E = " + E + " , L-R Log deriv(E) = " + D i f f ) ;
i f ( d i f f (Emax , h )∗D i f f > 0) Emax = E ; / / Bisect ion algorithm
e l s e Emin = E ;
i f ( Math . abs ( D i f f ) < eps ) b r e a k ;

}
p l o t ( E , h ) ;
System . out . p r i n t l n ("Final eigenvalue E = " + E ) ;
System . out . p r i n t l n ("iterations , max = " + count + " , " + count_max ) ;
System . out . p r i n t l n ("WF in QunatumL/R.dat , V in QuantumV.dat " ) ;

} / / End main
/ / Returns L−R log deriv

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 220

220 chapter 9

p u b l i c s t a t i c d o u b l e d i f f ( d o u b l e E , d o u b l e h )
throws IOException , FileNotFoundException {

d o u b l e l e f t , r ight , x ;
i n t ix , nL , nR , i_match ;
d o u b l e y [ ] = new d o u b l e [ 2 ] ;
i_match = n_steps /3; / / Matching radius
nL = i_match + 1 ;
y [ 0 ] = 1 . E−15; / / I n i t i a l wf on l e f t
y [ 1 ] = y [ 0 ]∗Math . s q r t (−E∗0 . 4 8 2 9 ) ;
f o r ( i x = 0 ; i x < nL + 1 ; i x ++) { x = h ∗ ( i x −n_steps /2) ; rk4 ( x , y , h , 2 , E ) ; }
l e f t = y [ 1 ] / y [ 0 ] ; / / Log d e r i v a t i v e
y [ 0 ] = 1 . E−15; / / − slope for even ; reverse for odd
y [ 1 ] = −y [ 0 ]∗Math . s q r t (−E∗0 . 4 8 2 9 ) ; / / I n i t i a l i z e R wf
f o r ( i x = n_steps ; i x > nL+1; ix−−){ x = h∗( i x+1−n_steps /2) ; rk4 ( x , y , −h , 2 , E ) ; }
r i g h t = y [ 1 ] / y [ 0 ] ; / / Log d e r i v a t i v e
r e t u r n ( ( l e f t − r i g h t ) /( l e f t + r i g h t ) ) ;

}

p u b l i c s t a t i c v o i d p l o t ( d o u b l e E , d o u b l e h ) / / Repeat i n t e g r a t i o n s for plot
throws IOException , FileNotFoundException {

Pr i n t W r i t e r L = new Pr i n t W r i t e r ( new FileOutputStream ("QuantumL.dat" ) , t r u e ) ;
Pr i n t W r i t e r R = new Pr i n t W r i t e r ( new FileOutputStream ("QuantumR.dat" ) , t r u e ) ;
Pr i n t W r i t e r Vx = new Pr i n t W r i t e r ( new FileOutputStream ("QuantumV.dat" ) , t r u e ) ;
d o u b l e l e f t , r ight , normL , x = 0 . ;
i n t ix , nL , nR , i_match , n_steps = 1501 ; / / Total no i n t e g r a t i o n steps
d o u b l e y [ ] = new d o u b l e [ 2 ] , yL [ ] [ ] = new d o u b l e [ 2 ] [ 5 0 5 ] ;
i_match = 5 0 0 ; / / Matching point
nL = i_match + 1 ;
y [ 0 ] = 1 . E−40; / / I n i t i a l wf on the l e f t
y [ 1 ] = −Math . s q r t (−E∗0 . 4 8 2 9 ) ∗y [ 0 ] ;
f o r ( i x = 0 ; i x <= nL ; i x ++ ) {

yL [ 0 ] [ i x ] = y [ 0 ] ; yL [ 1 ] [ i x ] = y [ 1 ] ;
x = h ∗ ( i x −n_steps /2) ;
rk4 ( x , y , h , 2 , E ) ;

} / / I n t e g r a t e to the l e f t
y [ 0 ] = −1.E−15; / / − slope : even ; reverse for odd
y [ 1 ] = −Math . s q r t (−E∗0 . 4 8 2 9 )∗y [ 0 ] ;
f o r ( i x = n_steps −1; i x >= nL + 1 ; ix−−) { / / I n t e g r a t e in

x = h ∗ ( i x + 1 −n_steps /2) ;
R . p r i n t l n ( x + " " + y [ 0 ] + " " + y [ 1 ] ) ; / / F i l e pr int
Vx . p r i n t l n ( x + " " + 1 . 7 E9∗V( x ) ) ; / / Scaled V
rk4 ( x , y , −h , 2 , E ) ;

}
x = x − h ;
R . p r i n t l n ( x + " " + y [ 0 ] + " " + y [ 1 ] ) ; / / F i l e pr int
normL = y [ 0 ] / yL [ 0 ] [ nL ] ; / / Renormalize L wf & d e r i v a t i v e
f o r ( i x = 0 ; i x <= nL ; i x ++ ) {

x = h ∗ ( ix−n_steps /2 + 1) ;
y [ 0 ] = yL [ 0 ] [ i x ]∗normL ;
y [ 1 ] = yL [ 1 ] [ i x ]∗normL ;
L . p r i n t l n ( x + " " + y [ 0 ] + " " + y [ 1 ] ) ; / / F i l e pr int
Vx . p r i n t l n ( x + " " + 1 . 7 E9∗V( x ) ) ; / / Pr int V

}
r e t u r n ;

}

p u b l i c s t a t i c v o i d f ( d o u b l e x , d o u b l e y [ ] , d o u b l e F [ ] , d o u b l e E )
{ F [ 0 ] = y [ 1 ] ; F [ 1 ] = −(0.4829) ∗(E−V( x ) )∗y [ 0 ] ; }

p u b l i c s t a t i c d o u b l e V( d o u b l e x )
{ i f ( Math . abs ( x ) < 1 0 . ) r e t u r n ( −16.) ; e l s e r e t u r n ( 0 . ) ; }

p u b l i c s t a t i c v o i d rk4 ( d o u b l e t , d o u b l e y [ ] , d o u b l e h , i n t Neqs , d o u b l e E ) {
i n t i ;
d o u b l e F [ ] = new d o u b l e [ Neqs ] , ydumb [ ] = new d o u b l e [ Neqs ] ;
d o u b l e k1 [ ] = new d o u b l e [ Neqs ] ; d o u b l e k2 [ ] = new d o u b l e [ Neqs ] ;
d o u b l e k3 [ ] = new d o u b l e [ Neqs ] ; d o u b l e k4 [ ] = new d o u b l e [ Neqs ] ;
f ( t , y , F , E ) ;

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 221

differential equation applications 221

f o r ( i =0 ; i <Neqs ; i ++) { k1 [ i ] = h∗F [ i ] ; ydumb[ i ] = y [ i ] + k1 [ i ] / 2 ; }
f ( t + h/2 , ydumb, F , E ) ;
f o r ( i =0 ; i <Neqs ; i ++) { k2 [ i ] = h∗F [ i ] ; ydumb[ i ] = y [ i ] + k2 [ i ] / 2 ; }
f ( t + h/2 , ydumb, F , E ) ;
f o r ( i =0 ; i <Neqs ; i ++) { k3 [ i ]= h∗F [ i ] ; ydumb[ i ] = y [ i ] + k3 [ i ] ; }
f ( t + h , ydumb, F , E ) ;
f o r ( i =0 ; i <Neqs ; i ++) { k4 [ i ]=h∗F [ i ] ; y [ i ]=y [ i ] + ( k1 [ i ]+2∗ ( k2 [ i ]+ k3 [ i ] ) +k4 [ i ] ) / 6 ; }

}
}

�

Listing 9.3 QuantumEigen.java solves the 1-D time-independent Schrödinger equation for

bound-state energies using the rk4 algorithm.

9.12 Explorations

1. Check to see how well your search procedure works by using arbitrary values
for the starting energy. For example, because no bound-state energies can lie
below the bottom of the well, tryE ≥ −V0, as well as some arbitrary fractions
of V0. In every case examine the resulting wave function and check that it is
both symmetric and continuous.

2. Increase the depth of your potential progressively until you find several
bound states. Look at the wave function in each case and correlate the number
of nodes in the wave function and the position of the bound state in the well.

3. Explore how a bound-state energy changes as you change the depth V0 of the
well. In particular, as you keep decreasing the depth, watch the eigenenergy
move closer to E = 0 and see if you can find the potential depth at which the
bound state has E � 0.

4. For a fixed well depth V0, explore how the energy of a bound state changes
as the well radius a is varied.

5. � Conduct some explorations in which you discover different combinations
of (V0, a) that give the same ground-state energies (discrete ambiguities).
The existence of several different combinations means that a knowledge
of ground-state energy is not enough to determine a unique depth of the
well.

6. Modify the procedures to solve for the eigenvalue and eigenfunction for odd
wave functions.

7. Solve for the wave function of a linear potential:

V (x) = −V0

{|x|, for |x|< a,

0, for |x|> a.

There is less potential here than for a square well, so you may expect smaller
binding energies and a less confined wave function. (For this potential, there
are no analytic results with which to compare.)

8. Compare the results obtained, and the time the computer took to get them,
using both the Numerov and rk4 methods.

9. Newton–Raphson extension: Extend the eigenvalue search by using the
Newton–Raphson method in place of the bisection algorithm. Determine how
much faster and more precise it is.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 222

222 chapter 9

9.13 Unit III. Scattering, Projectiles,
and Planetary Orbits

9.14 Problem 1: Classical Chaotic Scattering

Problem: One expects the classical scattering of a projectile from a barrier to
be a continuous process. Yet it has been observed in experiments conducted on
pinball machines (Figure 9.8 left) that for certain conditions, the projectile under-
goes multiple internal scatterings and ends up with a final trajectory that is
apparently unrelated to the initial one. Your problem is to determine if this pro-
cess can be modeled as scattering from a static potential or if there must be active
mechanisms built into the pinball machines that cause chaotic scattering.

Although this problem is easy to solve on the computer, the results have some chaotic
features that are surprising (chaos is discussed further in Chapter 12, “Discrete & Con-
tinuous Nonlinear Dynamics”). In fact, the applet Disper2e.html on the CD (created by
Jaime Zuluaga) that simulates this problem continues to be a source of wonderment for
readers as well as authors.

9.14.1 Model and Theory

Our model for balls bouncing off the electrically activated bumpers in pinball
machines is a point particle scattering from the stationary 2-D potential [Bleh 90]

V (x, y) = ±x2y2e−(x2+y2). (9.57)

This potential has four circularly symmetric peaks in the xy plane (Figure 9.8 right).
The two signs correspond to repulsive and attractive potentials, respectively (the
pinball machine contains only repulsive interactions). Because there are four peaks
in this potential, we suspect that it may be possible to have multiple scatterings in
which the projectile bounces back and forth among the peaks, somewhat as in a
pinball machine.

The theory for this problem is classical dynamics. Visualize a scattering exper-
iment in which a projectile starting out at an infinite distance from a target with
a definite velocity v and an impact parameter b (Figure 9.8 right) is incident on a
target. After interacting with the target and moving a nearly infinite distance from
it, the scattered particle is observed at the scattering angle θ. Because the potential
cannot recoil, the speed of the projectile does not change, but its direction does. An
experiment typically measures the number of particles scattered and then converts
this to a function, the differential cross section σ(θ), which is independent of the
details of the experimental apparatus:

σ(θ) = lim
Nscatt(θ)/∆Ω
Nin/∆Ain

. (9.58)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 223

differential equation applications 223

v

V(x,y)

x

y

b

v'

Figure 9.8 Left: A classic pinball machine in which multiple scatterings occur from the round

structures on the top. Right: Scattering from the potential V(x,y) = x2y2e−(x2+y2). The incident

velocity is v in the y direction, and the impact parameter (x value) is b. The velocity of the

scattered particle is v′, and its scattering angle is θ.

Here Nscatt(θ) is the number of particles per unit time scattered into the detector
at angle θ subtending a solid angle ∆Ω, Nin is the number of particle per unit time
incident on the target of cross-sectional area ∆Ain, and the limit in (9.58) is for
infinitesimal detector and area sizes.

The definition (9.58) for the cross section is the one that experimentalists use to
convert their measurements to a function that can be calculated by theory. We as
theorists solve for the trajectories of particles scattered from the potential (9.57) and
from them deduce the scattering angle θ. Once we have the scattering angle, we
predict the differential cross section from the dependence of the scattering angle
upon the classical impact parameter b [M&T 03]:

σ(θ) =
b∣∣dθ

db

∣∣ sin θ(b) . (9.59)

The surprise you should find in the simulation is that for certain parameters dθ/db
has zeros and discontinuities, and this leads to a highly variable, large cross section.

The dynamical equations to solve are just Newton’s law for the x and y motions
with the potential (9.57):

F=ma

−∂V

∂x
î− ∂V

∂y
ĵ=m

d2x
dt2

, (9.60)

∓ 2xye−(x2+y2)
[
y(1 −x2)̂i+x(1 − y2)ĵ

]
=m

d2x

dt2
î+m

d2y

dt2
ĵ. (9.61)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 224

224 chapter 9

The equations for the x and y motions are simultaneous second-order ODEs:

m
d2x

dt2
=∓ 2y2x(1 −x2)e−(x2+y2), (9.62)

m
d2y

dt2
=∓ 2x2y(1 − y2)e−(x2+y2). (9.63)

Because the force vanishes at the peaks in Figure 9.8, these equations tell us that the
peaks are at x= ±1 and y = ±1. Substituting these values into the potential (9.57)
yields Vmax = ±e−2, which sets the energy scale for the problem.

9.14.2 Implementation

In §9.16.1 we will also describe how to express simultaneous ODEs such as (9.62)
and (9.63) in the standard rk4 form. Even though both equations are independent,
we solve them simultaneously to determine the scattering trajectory [x(t), y(t)]. We
use the same rk4 algorithm we used for a single second-order ODE, only now the
arrays will be 4-D rather than 2-D:

dy(t)
dt

= f(t,y), (9.64)

y(0) def= x(t), y(1) def= y(t), (9.65)

y(2) def=
dx

dt
, y(3) def=

dy

dt
, (9.66)

where the order in which the y(i)s are assigned is arbitrary. With these definitions
and equations (9.62) and (9.63), we can assign values for the force function:

f (0) = y(2), f (1) = y(3), (9.67)

f (2) =
∓1
m

2y2x(1 −x2)e−(x2+y2) =
∓1
m

2y(1)2y(0)(1 − y(0)2)e−(y(0)2+y(1)2 ),

f (3) =
∓1
m

2x2y(1 − y2)e−(x2+y2) =
∓1
m

2y(0)2y(1)(1 − y(1)2)e−(y(0)2+y(1)2 ).

To deduce the scattering angle from our simulation, we need to examine the
trajectory of the scattered particle at an “infinite” separation from the target. To
approximate that, we wait until the scattered particle no longer feels the potential
(say |PE|/KE ≤ 10−10) and call this infinity. The scattering angle is then deduced
from the components of velocity,

θ = tan−1
(
vy

vx

)
= atan2(Vx, Vy). (9.68)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 225

differential equation applications 225

Here atan2 is a function in most computer languages that computes the arctan-
gent in the correct quadrant without requiring any explicit divisions (that can
blow up).

9.14.3 Assessment

1. Apply the rk4 method to solve the simultaneous second-order ODEs (9.62)
and (9.63) with a 4-D force function.

2. The initial conditions are (a) an incident particle with only a y component of
velocity and (b) an impact parameter b (the initial x value). You do not need
to vary the initial y, but it should be large enough such that PE/KE ≤ 10−10,
which means that the KE � E.

3. Good parameters are m= 0.5, vy(0) = 0.5, vx(0) = 0.0, ∆b= 0.05, −1 ≤ b≤ 1.
You may want to lower the energy and use a finer step size once you have
found regions of rapid variation.

4. Plot a number of trajectories [x(t), y(t)] that show usual and unusual behav-
iors. In particular, plot those for which backward scattering occurs, and
consequently for which there is much multiple scattering.

5. Plot a number of phase space trajectories [x(t), ẋ(t)] and [y(t), ẏ(t)]. How do
these differ from those of bound states?

6. Determine the scattering angle θ = atan2(Vx,Vy) by determining the veloc-
ity of the scattered particle after it has left the interaction region, that is,
PE/KE ≤ 10−10.

7. Identify which characteristics of a trajectory lead to discontinuities in dθ/db
and thus σ(θ).

8. Run the simulations for both attractive and repulsive potentials and for a
range of energies less than and greater than Vmax = exp(−2).

9. Time delay: Another way to find unusual behavior in scattering is to compute
the time delay T (b) as a function of the impact parameter b. The time delay
is the increase in the time it takes a particle to travel through the interaction
region after the interaction is turned on. Look for highly oscillatory regions
in the semilog plot of T (b), and once you find some, repeat the simulation
at a finer scale by setting b� b/10 (the structures are fractals, see Chapter 13,
“Fractals & Statistical Growth”).

9.15 Problem 2: Balls Falling Out of the Sky

Golf and baseball players claim that hit balls appear to fall straight down out of the
sky at the end of their trajectories (the solid curve in Figure 9.9). Your problem is to
determine whether there is a simple physics explanation for this effect or whether
it is “all in the mind’s eye.” And while you are wondering why things fall out of
the sky, see if you can use your new-found numerical tools to explain why planets
do not fall out of the sky.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 226

226 chapter 9

Figure 9.9 The trajectory of a projectile fired with initial velocity V0 in the θ direction. The solid

curve includes air resistance.

9.16 Theory: Projectile Motion with Drag

Figure 9.9 shows the initial velocity V0 and inclination θ for a projectile launched
from the origin. If we ignore air resistance, the projectile has only the force of gravity
acting on it and therefore has a constant acceleration g = 9.8 m/s2 in the negative
y direction. The analytic solutions to the equations of motion are

x(t) = V0xt, y(t) = V0yt− 1
2gt

2, (9.69)

vx(t) = V0x, vy(t) = V0y − gt, (9.70)

where (V0x, V0y) = V0(cos θ, sin θ). Solving for t as a function of x and substituting
it into the y(t) equation show that the trajectory is a parabola:

y =
V0y

V0x
x− g

2V 2
0x

x2. (9.71)

Likewise, it is easy to show (dashed curve in Figure 9.9) that without friction the
range R= 2V 2

0 sin θ cos θ/g and the maximum height H = 1
2V

2
0 sin2 θ/g.

The parabola of frictionless motion is symmetric about its midpoint and so does
not describe a ball dropping out of the sky. We want to determine if the inclusion
of air resistance leads to trajectories that are much steeper at their ends than at
their beginnings (solid curve in Figure 9.9). The basic physics is Newton’s second
law in two dimensions for a frictional force F(f) opposing motion, and a vertical
gravitational force −mgêy :

F(f) −mgêy =m
d2x(t)
dt2

, (9.72)

⇒ F (f)
x =m

d2x

dt2
, F (f)

y −mg =m
d2y

dt2
, (9.73)

where the bold symbols indicate vector quantities.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 227

differential equation applications 227

The frictional force F(f) is not a basic force of nature but rather a simple model
of a complicated phenomenon. We do know that friction always opposes motion,
which means it is in the direction opposite to velocity. One model assumes that the
frictional force is proportional to a power n of the projectile’s speed [M&T 03]:

F(f) = −km |v|n v
|v| , (9.74)

where the −v/|v| factor ensures that the frictional force is always in a direction
opposite that of the velocity. Physical measurements indicate that the power n is
noninteger and varies with velocity, and so a more accurate model would be a
numerical one that uses the empirical velocity dependence n(v). With a constant
power law for friction, the equations of motion are

d2x

dt2
= −k vn

x

vx

|v| ,
d2y

dt2
= −g− k vn

y

vy

|v| , |v| =
√
v2

x + v2
y. (9.75)

We shall consider three values for n, each of which represents a different model for
the air resistance: (1) n= 1 for low velocities; (2) n= 3

2 , for medium velocities; and
(3) n= 2 for high velocities.

9.16.1 Simultaneous Second-Order ODEs

Even though (9.75) are simultaneous second-order ODEs, we can still use our
regular ODE solver on them after expressing them in standard form

dy
dt

= y(t,y) (standard form). (9.76)

We pick y to be the 4-D vector of dependent variables:

y(0) = x(t), y(1) =
dx

dt
, y(2) = y(t), y(3) =

dy

dt
. (9.77)

We express the equations of motion in terms of y to obtain the standard form:

dy(0)

dt

(
≡ dx

dt

)
= y(1),

dy(1)

dt

(
≡ d2x

dt2

)
=

1
m
F (f)

x (y)

dy(2)

dt

(
≡ dy

dt

)
= y(3),

dy(3)

dt

(
≡ d2y

dt2

)
=

1
m
F (f)

y (y) − g.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 228

228 chapter 9

f

Figure 9.10 Left: The gravitational force on a planet a distance r from the sun. The x and y

components of the force are indicated. Right: Output from the applet Planet (on the CD)

showing the precession of a planet’s orbit when the gravitational force ∝ 1/r4.

And now we just read off the components of the force function f(t,y):

f (0) = y(1), f (1) =
1
m
F (f)

x , f (2) = y(3), f (3) =
1
m
F (f)

y − g.

9.16.2 Assessment

1. Modify your rk4 program so that it solves the simultaneous ODEs for
projectile motion (9.75) with friction (n= 1).

2. Check that you obtain graphs similar to those in Figure 9.9.
3. The model (9.74) with n= 1 is okay for low velocities. Now modify your

program to handle n= 3
2 (medium-velocity friction) and n= 2 (high-velocity

friction). Adjust the value of k for the latter two cases such that the initial force
of friction k vn

0 is the same for all three cases.
4. What is your conclusion about balls falling out of the sky?

9.17 Problem 3: Planetary Motion

Newton’s explanation of the motion of the planets in terms of a universal law of
gravitation is one of the great achievements of science. He was able to prove that
the planets traveled along elliptical paths with the sun at one vertex and to predict
periods of the motion accurately. All Newton needed to postulate was that the force
between a planet of mass m and the sun of mass M is

F (g) = −GmM

r2
. (9.78)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 229

differential equation applications 229

Here r is the planet-CM distance,G is the universal gravitational constant, and the
attractive force lies along the line connecting the planet and the sun (Figure 9.10
left). The hard part for Newton was solving the resulting differential equations
because he had to invent calculus to do it and then had go through numerous
analytic manipulations. The numerical solution is straightforward since even for
planets the equation of motion is still

f =ma =m
d2x
dt2

, (9.79)

with the force (9.78) having components (Figure 9.10)

fx =F (g) cos θ = F (g)x

r
, (9.80)

fy =F (g) sin θ = F (g) y

r
, (9.81)

r=
√
x2 + y2. (9.82)

The equation of motion yields two simultaneous second-order ODEs:

d2x

dt2
= −GM x

r3
,

d2y

dt2
= −GM y

r3
. (9.83)

9.17.1 Implementation: Planetary Motion

1. Assume units such that GM = 1 and use the initial conditions

x(0) = 0.5, y(0) = 0, vx(0) = 0.0, vy(0) = 1.63.

2. Modify your ODE solver program to solve (9.83).
3. You may need to make the time step small enough so that the elliptical orbit

closes upon itself, as it should, and the number of steps large enough such
that the orbits just repeat.

4. Experiment with the initial conditions until you find the ones that produce a
circular orbit (a special case of an ellipse).

5. Once you have obtained good precision, note the effect of progressively
increasing the initial velocity until the orbits open up and become hyperbolic.

6. Using the same initial conditions that produced the ellipse, investigate the
effect of the power in (9.78) being 1/r4 rather than 1/r2. You should find that
the orbital ellipse now rotates or precesses (Figure 9.10). In fact, as you should
verify, even a slight variation from an inverse square power law (as arises
from general relativity) causes the orbit to precess.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 230

230 chapter 9

9.17.1.1 EXPLORATION: RESTRICTED THREE-BODY PROBLEM

Extend the previous solution for planetary motion to one in which a satellite of tiny
mass moves under the influence of two planets of equal mass M = 1. Consider the
planets as rotating about their center of mass in circular orbits and of such large
mass that they are uninfluenced by the satellite. Assume that all motions remain in
the xy plane and that the units are such that G= 1.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 231

10

Fourier Analysis: Signals and Filters

In Unit I of this chapter we examine Fourier series and Fourier transforms, two
standard tools for decomposing periodic and nonperiodic motions. We find that as
implemented for numerical computation, both the series and the integral become a
discrete Fourier transform (DFT), which is simple to program. In Unit II we discuss
the subject of signal filtering and see that various Fourier tools can be used to reduce
noise in measured or simulated signals. In Unit III we present a discussion of the fast
Fourier transform (FFT), a technique that is so efficient that it permits evaluations
of DFTs in real time.

10.1 Unit I. Fourier Analysis of Nonlinear Oscillations

Consider a particle oscillating in the nonharmonic potential of equation (9.4):

V (x) =
1
p
k|x|p, (10.1)

for p �= 2, or for the perturbed harmonic oscillator (9.2),

V (x) =
1
2
kx2
(

1 − 2
3
αx

)
. (10.2)

While free oscillations in these potentials are always periodic, they are not truly
sinusoidal. Your problem is to take the solution of one of these nonlinear oscillators
and relate it to the solution

x(t) =A0 sin(ωt+φ0) (10.3)

of the linear harmonic oscillator. If your oscillator is sufficiently nonlinear to behave
like the sawtooth function (Figure 10.1 left), then the Fourier spectrum you obtain
should be similar to that shown on the right in Figure 10.1.

In general, when we undertake such a spectral analysis, we want to analyze the
steady-state behavior of a system. This means that the initial transient behavior has
had a chance to die out. It is easy to identify just what the initial transient is for
linear systems but may be less so for nonlinear systems in which the “steady state”
jumps among a number of configurations.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 232

232 chapter 10

t

–1

0

1

y(
t)

0 20
–1

0

1

Y
(

)

Figure 10.1 Left: A sawtooth function in time. Right: The Fourier spectrum of frequencies in

natural units contained in this sawtooth function.

10.2 Fourier Series (Math)

Part of our interest in nonlinear oscillations arises from their lack of study in
traditional physics courses even though linear oscillations are just the first approx-
imation to a naturally oscillatory system. If the force on a particle is always toward
its equilibrium position (a restoring force), then the resulting motion will be periodic
but not necessarily harmonic. A good example is the motion in a highly anharmonic
well p� 10 that produces an x(t) looking like a series of pyramids; this motion is
periodic but not harmonic.

In numerical analysis there really is no distinction between a Fourier integral
and a Fourier series because the integral is always approximated as a finite series.
We will illustrate both methods. In a sense, our approach is the inverse of the
traditional one in which the fundamental oscillation is determined analytically and
the higher-frequency overtones are determined by perturbation theory [L&L,M 76].
We start with the full (numerical) periodic solution and then decompose it into
what may be called harmonics. When we speak of fundamentals, overtones, and
harmonics, we speak of solutions to the linear boundary-value problem, for example,
of waves on a plucked violin string. In this latter case, and when given the correct
conditions (enough musical skill), it is possible to excite individual harmonics or
sums of them in the series

y(t) = b0 sinω0t+ b1 sin 2ω0t+ · · · . (10.4)

Anharmonic oscillators vibrate at a single frequency (which may vary with ampli-
tude) but not with a sinusoidal waveform. Expanding the oscillations in a Fourier
series does not imply that the individual harmonics can be excited (played).

You may recall from classical mechanics that the general solution for a vibrating
system can be expressed as the sum of the normal modes of that system. These

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 233

fourier analysis: signals and filters 233

expansions are possible because we have linear operators and, subsequently, the
principle of superposition: If y1(t) and y2(t) are solutions of some linear equation,
then α1y1(t) +α2y2(t) is also a solution. The principle of linear superposition does
not hold when we solve nonlinear problems. Nevertheless, it is always possible to
expand a periodic solution of a nonlinear problem in terms of trigonometric functions
with frequencies that are integer multiples of the true frequency of the nonlinear
oscillator.1 This is a consequence of Fourier’s theorem being applicable to any single-
valued periodic function with only a finite number of discontinuities. We assume
we know the period T , that is, that

y(t+T ) = y(t). (10.5)

This tells us the true frequency ω:

ω ≡ ω1 =
2π
T
. (10.6)

A periodic function (usually called the signal) can be expanded as a series of
harmonic functions with frequencies that are multiples of the true frequency:

y(t) =
a0

2
+

∞∑
n=1

(an cosnωt+ bn sinnωt) . (10.7)

This equation represents the signal y(t) as the simultaneous sum of pure tones of
frequency nω. The coefficients an and bn are measures of the amount of cosnωt
and sinnωt present in y(t), specifically, the intensity or power at each frequency is
proportional to a2

n + b2n.
The Fourier series (10.7) is a best fit in the least-squares sense of Chapter 8,

“Solving Systems of Equations with Matrices; Data Fitting,” because it minimizes∑
i[y(ti) − yi]2, where i denotes different measurements of the signal. This means

that the series converges to the average behavior of the function but misses the
function at discontinuities (at which points it converges to the mean) or at sharp
corners (where it overshoots). A general function y(t) may contain an infinite num-
ber of Fourier components, although low-accuracy reproduction is usually possible
with a small number of harmonics.

The coefficientsan and bn are determined by the standard techniques for function
expansion. To find them, multiply both sides of (10.7) by cosnωtor sinnωt, integrate
over one period, and project a single an or bn:

(
an

bn

)
=

2
T

∫ T

0
dt

(
cosnωt
sinnωt

)
y(t), ω

def=
2π
T
. (10.8)

1 We remind the reader that every periodic system by definition has a period T and conse-
quently a true frequency ω. Nonetheless, this does not imply that the system behaves like
sinωt. Only harmonic oscillators do that.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 234

234 chapter 10

As seen in the bn coefficients (Figure 10.1 right), these coefficients usually decrease
in magnitude as the frequency increases and can occur with a negative sign, the
negative sign indicating relative phase.

Awareness of the symmetry of the functiony(t)may eliminate the need to evaluate
all the expansion coefficients. For example,

• a0 is twice the average value of y:

a0 = 2 〈y(t)〉 . (10.9)

• For an odd function, that is, one for which y(−t) = −y(t), all of the coefficients
an ≡ 0 and only half of the integration range is needed to determine bn:

bn =
4
T

∫ T/2

0
dt y(t) sinnωt. (10.10)

However, if there is no input signal for t < 0, we do not have a truly odd
function, and so small values of an may occur.

• For an even function, that is, one for which y(−t) = y(t), the coefficient bn ≡ 0
and only half the integration range is needed to determine an:

an =
4
T

∫ T/2

0
dt y(t) cosnωt. (10.11)

10.2.1 Example 1: Sawtooth Function

The sawtooth function (Figure 10.1) is described mathematically as

y(t) =




t
T/2 , for 0 ≤ t≤ T

2 ,

t−T
T/2 , for T

2 ≤ t≤ T.
(10.12)

It is clearly periodic, nonharmonic, and discontinuous. Yet it is also odd and so can
be represented more simply by shifting the signal to the left:

y(t) =
t

T/2
, −T

2
≤ t≤ T

2
. (10.13)

Even though the general shape of this function can be reproduced with only a few
terms of the Fourier components, many components are needed to reproduce the
sharp corners. Because the function is odd, the Fourier series is a sine series and

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 235

fourier analysis: signals and filters 235

(10.8) determines the values

bn =
2
T

∫ +T/2

−T/2
dt sinnωt

t

T/2
=
ω

π

∫ +π/ω

−π/ω

dt sinnωt
ωt

π
=

2
nπ

(−1)n+1,

⇒ y(t) =
2
π

[
sinωt− 1

2
sin 2ωt+

1
3

sin 3ωt− · · ·
]
. (10.14)

10.2.2 Example 2: Half-wave Function

The half-wave function

y(t) =




sinωt, for 0< t < T/2,

0, for T/2< t < T,
(10.15)

is periodic, nonharmonic (the upper half of a sine wave), and continuous, but
with discontinuous derivatives. Because it lacks the sharp corners of the saw-
tooth function, it is easier to reproduce with a finite Fourier series. Equation (10.8)
determines

an =




−2
π(n2−1) , n even or 0,

0, n odd,
bn =




1
2 , n= 1,

0, n �= 1,

⇒ y(t) =
1
2

sinωt+
1
π

− 2
3π

cos 2ωt− 2
15π

cos 4ωt+ · · · . (10.16)

10.3 Exercise: Summation of Fourier Series

1. Sawtooth function: Sum the Fourier series for the sawtooth function up to
order n= 2, 4, 10, 20 and plot the results over two periods.
a. Check that in each case the series gives the mean value of the function at

the points of discontinuity.
b. Check that in each case the series overshoots by about 9% the value of the

function on either side of the discontinuity (the Gibbs phenomenon).
2. Half-wave function: Sum the Fourier series for the half-wave function up to

order n= 2, 4, 10 and plot the results over two periods. (The series converges
quite well, doesn’t it?)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 236

236 chapter 10

10.4 Fourier Transforms (Theory)

Although a Fourier series is the right tool for approximating or analyzing periodic
functions, the Fourier transform or integral is the right tool for nonperiodic functions.
We convert from series to transform by imagining a system described by a contin-
uum of “fundamental” frequencies. We thereby deal with wave packets containing
continuous rather than discrete frequencies.2 While the difference between series
and transform methods may appear clear mathematically, when we approximate
the Fourier integral as a finite sum, the two become equivalent.

By analogy with (10.7), we now imagine our function or signal y(t) expressed in
terms of a continuous series of harmonics:

y(t) =
∫ +∞

−∞
dω Y (ω)

eiωt

√
2π
, (10.17)

where for compactness we use a complex exponential function.3 The expansion
amplitude Y (ω) is analogous to the Fourier coefficients (an, bn) and is called the
Fourier transform ofy(t). The integral (10.17) is the inverse transform since it converts
the transform to the signal. The Fourier transform converts y(t) to its transformY (ω):

Y (ω) =
∫ +∞

−∞
dt
e−iωt

√
2π

y(t). (10.18)

The 1/
√

2π factor in both these integrals is a common normalization in quantum
mechanics but maybe not in engineering where only a single 1/2π factor is used.
Likewise, the signs in the exponents are also conventions that do not matter as long
as you maintain consistency.

If y(t) is the measured response of a system (signal) as a function of time, then
Y (ω) is the spectral function that measures the amount of frequency ω present in
the signal. [However, some experiments may measure Y (ω) directly, in which case
an inverse transform is needed to obtain y(t).] In many cases Y (ω) is a complex
function with positive and negative values and with significant variation in mag-
nitude. Accordingly, it is customary to eliminate some of the complexity of Y (ω)
by making a semilog plot of the squared modulus |Y (ω)|2 versus ω. This is called a

2 We follow convention and consider time t the function’s variable and frequency ω the
transform’s variable. Nonetheless, these can be reversed or other variables such as position
x and wave vector k may also be used.

3 Recollect the principle of linear superposition and that exp(iωt) = cosωt+ i sinωt. This
means that the real part of y gives the cosine series, and the imaginary part the sine series.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 237

fourier analysis: signals and filters 237

power spectrum and provides you with an immediate view of the amount of power
or strength in each component.

If the Fourier transform and its inverse are consistent with each other, we should
be able to substitute (10.17) into (10.18) and obtain an identity:

Y (ω)=
∫ +∞

−∞
dt
e−iωt

√
2π

∫ +∞

−∞
dω′ e

iω′t
√

2π
Y (ω′)=

∫ +∞

−∞
dω′
{∫ +∞

−∞
dt
ei(ω′−ω)t

2π

}
Y (ω′).

For this to be an identity, the term in braces must be the Dirac delta function:

∫ +∞

−∞
dt ei(ω′−ω)t = 2πδ(ω′ −ω). (10.19)

While the delta function is one of the most common and useful functions in theoret-
ical physics, it is not well behaved in a mathematical sense and misbehaves terribly
in a computational sense. While it is possible to create numerical approximations to
δ(ω′ −ω), they may well be borderline pathological. It is certainly better for you to
do the delta function part of an integration analytically and leave the nonsingular
leftovers to the computer.

10.4.1 Discrete Fourier Transform Algorithm

If y(t) or Y (ω) is known analytically or numerically, the integral (10.17) or (10.18)
can be evaluated using the integration techniques studied earlier. In practice, the
signal y(t) is measured at just a finite number N of times t, and these are what we
must use to approximate the transform. The resultant discrete Fourier transform is
an approximation both because the signal is not known for all times and because
we integrate numerically.4 Once we have a discrete set of transforms, they can be
used to reconstruct the signal for any value of the time. In this way the DFT can be
thought of as a technique for interpolating, compressing and extrapolating data.

We assume that the signal y(t) is sampled at (N + 1) discrete times (N time
intervals), with a constant spacing h between times:

yk
def= y(tk), k = 0, 1, 2, . . . , N, (10.20)

tk
def= kh, h= ∆t. (10.21)

In other words, we measure the signal y(t) once every hth of a second for a total
time T . This corresponds to period T and sampling rate s:

T
def= Nh, s=

N

T
=

1
h
. (10.22)

4 More discussion can be found in [B&H 95], which is devoted to just this topic.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 238

238 chapter 10

Regardless of the actual periodicity of the signal, when we choose a period T
over which to sample, the mathematics produces a y(t) that is periodic with
period T ,

y(t+T ) = y(t). (10.23)

We recognize this periodicity, and ensure that there are only N independent mea-
surements used in the transform, by requiring the first and last y’s to be the
same:

y0 = yN . (10.24)

If we are analyzing a truly periodic function, then the first N points should all
be within one period to guarantee their independence. Unless we make further
assumptions, these N independent input data y(tk) can determine no more than
N independent output Fourier components Y (ωk).

The time interval T (which should be the period for periodic functions) is
the largest time over which we consider the variation of y(t). Consequently, it
determines the lowest frequency,

ω1 =
2π
T
, (10.25)

contained in our Fourier representation of y(t). The frequencies ωn are determined
by the number of samples taken and by the total sampling time T =Nh as

ωn = nω1 = n
2π
Nh

, n= 0, 1, . . . , N. (10.26)

Here ω0 = 0 corresponds to the zero-frequency or DC component.
The DFT algorithm results from (1) evaluating the integral in (10.18) not from

−∞ to +∞ but rather from time 0 to time T over which the signal is measured, and
from (2) using the trapezoid rule for the integration5

Y (ωn) def=
∫ +∞

−∞
dt
e−iωnt

√
2π

y(t) �
∫ T

0
dt
e−iωnt

√
2π

y(t), (10.27)

�
N∑

k=1

h y(tk)
e−iωntk

√
2π

= h

N∑
k=1

yk
e−2πikn/N

√
2π

. (10.28)

5 The alert reader may be wondering what has happened to theh/2 with which the trapezoid
rule weights the initial and final points. Actually, they are there, but because we have set
y0 ≡ yN , two h/2 terms have been added to produce one h term.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 239

fourier analysis: signals and filters 239

To keep the final notation more symmetric, the step size h is factored from the
transform Y and a discrete function Yn is defined:

Yn
def=

1
h
Y (ωn) =

N∑
k=1

yk
e−2πikn/N

√
2π

. (10.29)

With this same care in accounting, and with dω → 2π/Nh, we invert the Yn’s:

y(t) def=
∫ +∞

−∞
dω

eiωt

√
2π
Y (ω) �

N∑
n=1

2π
Nh

eiωnt

√
2π

Y (ωn). (10.30)

Once we know theN values of the transform, we can use (10.30) to evaluate y(t) for
any time t. There is nothing illegal about evaluating Yn and yk for arbitrarily large
values of n and k, yet there is also nothing to be gained. Because the trigonometric
functions are periodic, we just get the old answer:

y(tk+N ) = y(tk), Y (ωn+N ) = Y (ωn). (10.31)

Another way of stating this is to observe that none of the equations change if we
replace ωnt by ωnt+ 2πn. There are still justN independent output numbers forN
independent inputs.

We see from (10.26) that the larger we make the timeT =Nh over which we sam-
ple the function, the smaller will be the frequency steps or resolution.6 Accordingly,
if you want a smooth frequency spectrum, you need to have a small frequency step
2π/T . This means you need a large value for the total observation time T . While the
best approach would be to measure the input signal for longer times, in practice a
measured signal y(t) is often extended in time (“padded”) by adding zeros for times
beyond the last measured signal, which thereby increases the value of T . Although
this does not add new information to the analysis, it does build in the experimen-
talist’s belief that the signal has no existence at times after the measurements are
stopped.

While periodicity is expected for Fourier series, it is somewhat surprising for
Fourier integrals, which have been touted as the right tool for nonperiodic functions.
Clearly, if we input values of the signal for longer lengths of time, then the inherent
period becomes longer, and if the repeat period is very long, it may be of little
consequence for times short compared to the period. If y(t) is actually periodic
with period Nh, then the DFT is an excellent way of obtaining Fourier series.
If the input function is not periodic, then the DFT can be a bad approximation
near the endpoints of the time interval (after which the function will repeat) or,
correspondingly, for the lowest frequencies.

The discrete Fourier transform and its inverse can be written in a concise and
insightful way, and be evaluated efficiently, by introducing a complex variable Z

6 See also §10.4.2 where we discuss the related phenomenon of aliasing.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 240

240 chapter 10

for the exponential and then raising Z to various powers:

yk =
√

2π
N

N∑
n=1

Z−nkYn, Z = e−2πi/N , (10.32)

Yn =
1√
2π

N∑
k=1

Znkyk, n= 0, 1, . . . , N, (10.33)

where Znk ≡ [(Z)n]k. With this formulation, the computer needs to compute only
powers of Z. We give our DFT code in Listing 10.1. If your preference is to avoid
complex numbers, we can rewrite (10.32) in terms of separate real and imaginary
parts by applying Euler’s theorem:

Z = e−iθ, ⇒ Z±nk = e∓inkθ = cosnkθ∓ i sinnkθ, (10.34)

where θ def= 2π/N . In terms of the explicit real and imaginary parts,

Yn =
1√
2π

N∑
k=1

[(cos(nkθ)Re yk + sin(nkθ) Im yk

+ i(cos(nkθ) Im yk − sin(nkθ)Re yk)] , (10.35)

yk =
√

2π
N

N∑
n=1

[(cos(nkθ) ReYn − sin(nkθ)Im Yn

+ i(cos(nkθ)Im Yn + sin(nkθ) ReYn )] . (10.36)

Readers new to DFTs are often surprised when they apply these equations to prac-
tical situations and end up with transforms Y having imaginary parts, even though
the signal y is real. Equation (10.35) shows that a real signal (Im yk ≡ 0) will yield
an imaginary transform unless

∑N
k=1 sin(nkθ) Re yk = 0. This occurs only if y(t)

is an even function over −∞ ≤ t≤ +∞ and we integrate exactly. Because neither
condition holds, the DFTs of real, even functions may have small imaginary parts.
This is not due to an error in programming and in fact is a good measure of the
approximation error in the entire procedure.

The computation time for a discrete Fourier transform can be reduced even
further by use of the fast Fourier transform algorithm. An examination of (10.32)
shows that the DFT is evaluated as a matrix multiplication of a vector of length N

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 241

fourier analysis: signals and filters 241

containing the Z values by a vector of length N of y value. The time for this DFT
scales like N2, while the time for the FFT algorithm scales as N log2N . Although
this may not seem like much of a difference, for N = 102−3, the difference of 103−5

is the difference between a minute and a week. For this reason, FFT is often used
for on-line analysis of data. We discuss FFT techniques in §10.8.

� �
/ / DFT. java : Discrete Fourier Transform
i m p o r t j ava . io . ∗ ;

p u b l i c c l a s s DFT {
s t a t i c f i n a l i n t N = 1000 , Np = N; / / Global constants
s t a t i c d o u b l e [ ] s i g n a l = new d o u b l e [N + 1 ] ;
s t a t i c d o u b l e twopi = 2 .∗Math . PI , sq2pi = 1./Math . s q r t ( twopi ) ;
s t a t i c d o u b l e h = twopi/N;

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) {
d o u b l e d f t r e a l [ ] = new d o u b l e [Np] , dftimag [ ] = new d o u b l e [Np ] ;
f ( s i g n a l ) ;
f o u r i e r ( d f t r e a l , dftimag ) ;

}

p u b l i c s t a t i c v o i d f o u r i e r ( d o u b l e d f t r e a l [ ] , d o u b l e dftimag [ ] ) {
d o u b l e rea l , imag ; / / Calc & plot Y(w)
i n t n , k ;
f o r ( n = 0 ; n < Np; n++ ) { / / Loop on frequency

r e a l = imag = 0 . ; / / Clear var iables
f o r ( k = 0 ; k < N; k++ ) { / / Loop for sums

r e a l += s i g n a l [ k]∗Math . cos ( ( twopi∗k∗n ) /N) ;
imag += s i g n a l [ k]∗Math . s i n ( ( twopi∗k∗n ) /N) ;

}
d f t r e a l [ n ] = r e a l ∗sq2pi ;
dftimag [ n ] = −imag∗sq2pi ;

}
}

p u b l i c s t a t i c v o i d f ( d o u b l e [ ] s i g n a l ) { / / I n i t i a l function
i n t i ;
d o u b l e s tep = twopi/N, x = 0 . ;
f o r ( i =0 ; i <= N; i ++ ) { s i g n a l [ i ] = 5.+10∗Math . s i n ( x + 2 . ) ; x += step ; }

}
}

�

Listing 10.1 DFT.java computes the discrete Fourier transform for the signal given in

the method f(signal [ ]). You will have to add output and plotting to see the results.

(The instructor’s version also does an inverse transform and plots the results

with PtPlot.)

10.4.2 Aliasing and Anti-aliasing (Assessment) �

The sampling of a signal by DFT for only a finite number of times limits the accu-
racy of the deduced high-frequency components present in the signal. Clearly,
good information about very high frequencies requires sampling the signal with
small time steps so that all the wiggles can be included. While a poor deduction
of the high-frequency components may be tolerable if all we care about are the
low-frequency ones, the high-frequency components remain present in the signal

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 242

242 chapter 10

-1

0

1

2 4 6

Figure 10.2 A plot of the functions sin(πt/2) and sin(2πt ). If the sampling rate is not high

enough, these signals will appear indistinguishable. If both are present in a signal (e.g., as a

signal that is the sum of the two) and if the signal is not sampled at a high enough rate, the

deduced low-frequency component will be contaminated by the higher-frequency

component.

and may contaminate the low-frequency components that we deduce. This effect
is called aliasing and is the cause of the moiré pattern distortion in digital images.

As an example, consider Figure 10.2 showing the two functions sin(πt/2) and
sin(2πt) for 0 ≤ t≤ 8, with their points of overlap in bold. If we were unfortunate
enough to sample a signal containing these functions at the times t= 0, 2, 4, 6, 8,
then we would measure y ≡ 0 and assume that there was no signal at all. How-
ever, if we were unfortunate enough to measure the signal at the filled dots in
Figure 10.2 where sin(πt/2) = sin(2πt), specifically, t= 0, 12

10 ,
4
3 , . . ., then our Fourier

analysis would completely miss the high-frequency component. In DFT jar-
gon, we would say that the high-frequency component has been aliased by the
low-frequency component. In other cases, some high-frequency values may be
included in our sampling of the signal, but our sampling rate may not be
high enough to include enough of them to separate the high-frequency com-
ponent properly. In this case some high-frequency signals would be included
spuriously as part of the low-frequency spectrum, and this would lead to spu-
rious low-frequency oscillations when the signal is synthesized from its Fourier
components.

More precisely, aliasing occurs when a signal containing frequency f is sam-
pled at a rate of s=N/T measurements per unit time, with s≤ f/2. In this case,
the frequencies f and f − 2s yield the same DFT, and we would not be able to
determine that there are two frequencies present. That being the case, to avoid

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 243

fourier analysis: signals and filters 243

aliasing we want no frequencies f > s/2 to be present in our input signal. This is
known as the Nyquist criterion. In practice, some applications avoid the effects of
aliasing by filtering out the high frequencies from the signal and then analyzing the
remaining low-frequency part. (The low-frequency sinc filter discussed in §10.7.1
is often used for this.) Even though this approach eliminates some high-frequency
information, it lessens the distortion of the low-frequency components and so may
lead to improved reproduction of the signal.

If accurate values for the high frequencies are required, then we will need to
increase the sampling rate sby increasing the numberN of samples taken within the
fixed sampling timeT =Nh. By keeping the sampling time constant and increasing
the number of samples taken, we make the time steph smaller, and this picks up the
higher frequencies. By increasing the number N of frequencies that you compute,
you move the higher-frequency components you are interested in closer to the
middle of the spectrum and thus away from the error-prone ends.

If we vary the the total time sampling time T =Nh but not the sampling rate
s=N/T = 1/h, we make ω1 smaller because the discrete frequencies

ωn = nω1 = n
2π
T

(10.37)

are measured in steps ofω1. This leads to a smoother frequency spectrum. However,
to keep the time step the same and thus not lose high-frequency information, we
would also need to increase the number ofN samples. And as we said, this is often
done, after the fact, by padding the end of the data set with zeros.

10.4.3 DFT for Fourier Series (Algorithm)

For simplicity let us consider the Fourier cosine series:

y(t) =
∞∑

n=0

an cos(nωt), ak =
2
T

∫ T

0
dt cos(kωt)y(t). (10.38)

Here T def= 2π/ω is the actual period of the system (not necessarily the period of
the simple harmonic motion occurring for a small amplitude). We assume that the
function y(t) is sampled for a discrete set of times

y(t= tk) ≡ yk, k = 0, 1, . . . , N. (10.39)

Because we are analyzing a periodic function, we retain the conventions used in
the DFT and require the function to repeat itself with period T =Nh; that is, we
assume that the amplitude is the same at the first and last points:

y0 = yN . (10.40)

This means that there are only N independent values of y being used as input.
For these N independent yk values, we can determine uniquely only N expansion

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 244

244 chapter 10

coefficients ak. If we use the trapezoid rule to approximate the integration in (10.38),
we determine the N independent Fourier components as

an � 2h
T

N∑
k=1

cos (nωtk) y(tk) =
2
N

N∑
k=1

cos
(

2πnk
N

)
yk, n= 0, . . . , N. (10.41)

Because we can determine only N Fourier components from N independent y(t)
values, our Fourier series for the y(t) must be in terms of only these components:

y(t) �
N∑

n=0

an cos(nωt) =
N∑

n=0

an cos
(

2πnt
Nh

)
. (10.42)

In summary, we sample the function y(t) at N times, t1, . . . , tN . We see that all
the values of y sampled contribute to each ak. Consequently, if we increase N in
order to determine more coefficients, we must recompute all the an values. In the
wavelet analysis in Chapter 11, “WaveletAnalysis & Data Compression,” the theory
is reformulated so that additional samplings determine higher Fourier components
without affecting lower ones.

10.4.4 Assessments

Simple analytic input: It is always good to do these simple checks before exam-
ining more complex problems. If your system has some Fourier analysis
packages (such as the graphing package Ace/gr), you may want to compare
your results with those from the packages. Once you understand how the
packages work, it makes sense to use them.

1. Sample the even signal

y(t) = 3 cos(ωt) + 2 cos(3ωt) + cos(5ωt).

Decompose this into its components; then check that they are essentially
real and in the ratio 3:2:1 (or 9:4:1 for the power spectrum) and that they
resum to give the input signal.

2. Experiment on the separate effects of picking different values of the step
size h and of enlarging the measurement period T =Nh.

3. Sample the odd signal

y(t) = sin(ωt) + 2 sin(3ωt) + 3 sin(5ωt).

Decompose this into its components; then check that they are essentially
imaginary and in the ratio 1:2:3 (or 1:4:9 if a power spectrum is plotted)
and that they resum to give the input signal.

4. Sample the mixed-symmetry signal

y(t) = 5 sin(ωt) + 2 cos(3ωt) + sin(5ωt).

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 245

fourier analysis: signals and filters 245

Decompose this into its components; then check that there are three of
them in the ratio 5:2:1 (or 25:4:1 if a power spectrum is plotted) and that
they resum to give the input signal.

5. Sample the signal

y(t) = 5 + 10 sin(t+ 2).

Compare and explain the results obtained by sampling (a) without the
5, (b) as given but without the 2, and (c) without the 5 and without
the 2.

6. In our discussion of aliasing, we examined Figure 10.2 showing the
functions sin(πt/2) and sin(2πt). Sample the function

y(t) = sin
(π

2
t
)

+ sin(2πt)

and explore how aliasing occurs. Explicitly, we know that the true trans-
form contains peaks at ω = π/2 and ω = 2π. Sample the signal at a rate
that leads to aliasing, as well as at a higher sampling rate at which there
is no aliasing. Compare the resulting DFTs in each case and check if your
conclusions agree with the Nyquist criterion.

Highly nonlinear oscillator: Recall the numerical solution for oscillations of a
spring with power p= 12 [see (10.1)]. Decompose the solution into a Fourier
series and determine the number of higher harmonics that contribute at least
10%; for example, determine then for which |bn/b1|< 0.1. Check that resuming
the components reproduces the signal.

Nonlinearly perturbed oscillator: Remember the harmonic oscillator with a
nonlinear perturbation (9.2):

V (x) =
1
2
kx2
(

1 − 2
3
αx

)
, F (x) = −kx(1 −αx). (10.43)

For very small amplitudes of oscillation (x� 1/α), the solution x(t) will
essentially be only the first term of a Fourier series.

1. We want the signal to contain “approximately 10% nonlinearity.” This
being the case, fix your value of α so that αxmax � 10%, where xmax is
the maximum amplitude of oscillation. For the rest of the problem, keep
the value of α fixed.

2. Decompose your numerical solution into a discrete Fourier spectrum.
3. Plot a graph of the percentage of importance of the first two, non-DC

Fourier components as a function of the initial displacement for 0<
x0 < 1/2α. You should find that higher harmonics are more important
as the amplitude increases. Because both even and odd components
are present, Yn should be complex. Because a 10% effect in amplitude
becomes a 1% effect in power, make sure that you make a semilog plot
of the power spectrum.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 246

246 chapter 10

4. As always, check that resumations of your transforms reproduce the
signal.

(Warning: The ω you use in your series must correspond to the true frequency of
the system, not just the ω of small oscillations.)

10.4.5 DFT of Nonperiodic Functions (Exploration)

Consider a simple model (a wave packet) of a “localized” electron moving through
space and time. A good model for an electron initially localized around x= 5 is a
Gaussian multiplying a plane wave:

ψ(x, t= 0) = exp

[
−1

2

(
x− 5.0
σ0

)2
]
eik0x. (10.44)

This wave packet is not an eigenstate of the momentum operator7 p= id/dx and
in fact contains a spread of momenta. Your problem is to evaluate the Fourier
transform,

ψ(p) =
∫ +∞

−∞
dx

eipx

√
2π
ψ(x), (10.45)

as a way of determining the momenta components in (10.44).

10.5 Unit II. Filtering Noisy Signals

You measure a signal y(t) that obviously contains noise. Your problem is to deter-
mine the frequencies that would be present in the signal if it did not contain noise. Of
course, once you have a Fourier transform from which the noise has been removed,
you can transform it to obtain a signal s(t) with no noise.

In the process of solving this problem we examine two simple approaches: the use of
autocorrelation functions and the use of filters. Both approaches find wide applications in
science, with our discussion not doing the subjects justice. However, we will see filters again
in the discussion of wavelets in Chapter 11, “Wavelet Analysis & Data Compression.”

10.6 Noise Reduction via Autocorrelation (Theory)

We assume that the measured signal is the sum of the true signal s(t), which we
wish to determine, plus the noise n(t):

y(t) = s(t) +n(t). (10.46)

7 We use natural units in which h̄= 1.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 247

fourier analysis: signals and filters 247

Our first approach to separating the signal from the noise relies on that fact that
noise is a random process and thus should not be correlated with the signal. Yet
what do we mean when we say that two functions are correlated? Well, if the two
tend to oscillate with their nodes and peaks in much the same places, then the
two functions are clearly correlated. An analytic measure of the correlation of two
arbitrary functions y(t) and x(t) is the correlation function

c(τ) =
∫ +∞

−∞
dt y∗(t)x(t+ τ) ≡

∫ +∞

−∞
dt y∗(t− τ)x(t), (10.47)

where τ , the lag time, is a variable. Even if the two signals have different magni-
tudes, if they have similar time dependences except for one lagging or leading the
other, then for certain values of τ the integrand in (10.47) will be positive for all
values of t. In this case the two signals interfere constructively and produce a large
value for the correlation function. In contrast, if both functions oscillate indepen-
dently, then it is just as likely for the integrand to be positive as to be negative, in
which case the two signals interfere destructively and produce a small value for the
integral.

Before we apply the correlation function to our problem, let us study some of its
properties. We use (10.17) to express c, y∗, andx in terms of their Fourier transforms:

c(τ) =
∫ +∞

−∞
dω′′ C(ω′′)

eiω′′t
√

2π
, y∗(t) =

∫ +∞

−∞
dω Y ∗(ω)

e−iωt

√
2π

,

x(t+ τ) =
∫ +∞

−∞
dω′ X(ω′)

e+iωt

√
2π

. (10.48)

Because ω, ω′, and ω′′ are dummy variables, other names may be used for these
variables without changing any results. When we substitute these representations
into the definition (10.47) and assume that the resulting integrals converge well
enough to be rearranged, we obtain

∫ +∞

−∞
dω′′ C(ω′′)eiω′′t =

1
2π

∫ +∞

−∞
dω

∫ +∞

−∞
dω′ Y ∗(ω)X(ω′)eiωτ2πδ(ω′ −ω)

=
∫ +∞

−∞
dωY ∗(ω)X(ω)eiωτ ,

⇒ C(ω) =
√

2π Y ∗(ω)X(ω), (10.49)

where the last line follows because ω′′ and ω are equivalent dummy variables.
Equation (10.49) says that the Fourier transform of the correlation function between
two signals is proportional to the product of the transform of one signal and the
complex conjugate of the transform of the other. (We shall see a related convolution
theorem for filters.)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 248

248 chapter 10

A special case of the correlation function c(τ) is the autocorrelation function A(τ).
It measures the correlation of a time signal with itself:

A(τ) def=
∫ +∞

−∞
dt y∗(t) y(t+ τ) ≡

∫ +∞

−∞
dt y(t) y∗(t− τ). (10.50)

This function is computed by taking a signal y(t) that has been measured over
some time period and then averaging it over time using y(t+ τ) as a weighting
function. This process is also called folding a function onto itself (as might be
done with dough) or a convolution. To see how this folding removes noise from
a signal, we go back to the measured signal (10.46), which was the sum of pure
signal plus noise s(t) +n(t). As an example, on the upper left in Figure 10.3 we
show a signal that was constructed by adding random noise to a smooth signal.
When we compute the autocorrelation function for this signal, we obtain a function
(upper right in Figure 10.3) that looks like a broadened, smoothed version of the
signal y(t). We can understand how the noise is removed by taking the Fourier
transform of s(t) +n(t) to obtain a simple sum of transforms:

Y (ω) =S(ω) +N(ω), (10.51){
S(ω)
N(ω)

}
=
∫ +∞

−∞
dt

{
s(t)
n(t)

}
e−iωt

√
2π

. (10.52)

Because the autocorrelation function (10.50) for y(t) = s(t) +n(t) involves the
second power of y, is not a linear function, that is, Ay �=As +An, but instead,

Ay(τ) =
∫ +∞

−∞
dt [s(t)s(t+ τ) + s(t)n(t+ τ) +n(t)n(t+ τ)] . (10.53)

If we assume that the noise n(t) in the measured signal is truly random, then it
should average to zero over long times and be uncorrelated at times t and t+ τ .
This being the case, both integrals involving the noise vanish, and so

Ay(τ) �
∫ +∞

−∞
dt s(t) s(t+ τ) =As(τ). (10.54)

Thus, the part of the noise that is random tends to be averaged out of the autocorre-
lation function, and we are left with the autocorrelation function of approximately
the pure signal.

This is all very interesting but is not the transformS(ω) of the pure signal that we
need to solve our problem. However, application of (10.49) with Y (ω) =X(ω) =
S(ω) tells us that the Fourier transform A(ω) of the autocorrelation function is
proportional to |S(ω)|2:

A(ω) =
√

2π |S(ω)|2. (10.55)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 249

fourier analysis: signals and filters 249

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
x10

3

0 5 10 15 20 25 30 35 40 45

Power Spectrum (with Noise)

Frequency

P

0

2

4

6

8

10

0 2 4 6 8 10 12

Function  y(t) + Noise After Low pass Filter

t (s)

y

0

2

4

6

8

10

0 2 4 6 8 10 12

Initial Function y(t) + Noise

t (s)

y

0.4

0.6

0.8

1.0

1.2

1.4

x10
2

0 2 4 6 8 10 12

Autocorrelation Function A(tau)

tau (s)

A

Figure 10.3 From bottom left to right: The function plus noise s(t) +n(t), the autocorrelation

function versus time, the power spectrum obtained from autocorrelation function, and the

noisy signal after passage through a lowpass filter.

The function |S(ω)|2 is the power spectrum we discussed in §10.4. For practical pur-
poses, knowing the power spectrum is often all that is needed and is easier to
understand than a complex S(ω); in any case it is all that we can calculate.

As a procedure for analyzing data, we (1) start with the noisy measured signal
and (2) compute its autocorrelation function A(t) via the integral (10.50). Because
this is just folding the signal onto itself, no additional functions or input is needed.
We then (3) perform a DFT on the autocorrelation functionA(t) to obtain the power
spectrum. For example, in Figure 10.3 we see a noisy signal (lower left), the auto-
correlation function (lower right), which clearly is smoother than the signal, and
finally, the deduced power spectrum (upper left). Notice that the broadband high-
frequency components characteristic of noise are absent from the power spectrum.
You can easily modify the sample program DFT.java in Listing 10.1 to compute
the autocorrelation function and then the power spectrum from A(τ). We present
a program NoiseSincFilter/Filter.java that does this on the CD.

10.6.1 Autocorrelation Function Exercises

1. Imagine that you have sampled the pure signal

s(t) =
1

1 − 0.9 sin t
. (10.56)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 250

250 chapter 10

Figure 10.4 Input signal f is filtered by h, and the output is g.

Although there is just a single sine function in the denominator, there is an
infinite number of overtones as follows from the expansion

s(t) � 1 + 0.9 sin t+ (0.9 sin t)2 + (0.9 sin t)3 + · · · . (10.57)

a. Compute the DFT S(ω). Make sure to sample just one period but to cover
the entire period. Make sure to sample at enough times (fine scale) to
obtain good sensitivity to the high-frequency components.

b. Make a semilog plot of the power spectrum |S(ω)|2.
c. Take your input signal s(t) and compute its autocorrelation functionA(τ)

for a full range of τ values (an analytic solution is okay too).
d. Compute the power spectrum indirectly by performing a DFT on the auto-

correlation function. Compare your results to the spectrum obtained by
computing |S(ω)|2 directly.

2. Add some random noise to the signal using a random number generator:

y(ti) = s(ti) +α(2ri − 1), 0 ≤ ri ≤ 1, (10.58)

whereα is an adjustable parameter. Try several values ofα, from small values
that just add some fuzz to the signal to large values that nearly hide the signal.
a. Plot your noisy data, their Fourier transform, and their power spectrum

obtained directly from the transform with noise.
b. Compute the autocorrelation function A(t) and its Fourier transform.
c. Compare the DFT of A(τ) to the power spectrum and comment on the

effectiveness of reducing noise by use of the autocorrelation function.
d. For what value of α do you essentially lose all the information in the

input?

The code Noise.java that performs similar steps is available on the CD.

10.7 Filtering with Transforms (Theory)

A filter (Figure 10.4) is a device that converts an input signal f(t) to an output signal
g(t) with some specific property for the latter. More specifically, an analog filter is
defined [Hart 98] as integration over the input function:

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 251

fourier analysis: signals and filters 251

g(t) =
∫ +∞

−∞
dτ f(τ)h(t− τ) def= f(t) ∗ h(t). (10.59)

The operation indicated in (10.59) occurs often enough that it is given the name
convolution and is denoted by an asterisk ∗. The function h(t) is called the response
or transfer function of the filter because it is the response of the filter to a unit impulse:

h(t) =
∫ +∞

−∞
dτ δ(τ)h(t− τ). (10.60)

Such being the case, h(t) is also called the unit impulse response function or Green’s
function. Equation (10.59) states that the output g(t) of a filter equals the input
f(t) convoluted with the transfer function h(t− τ). Because the argument of the
response function is delayed by a time τ relative to that of the signal in the integral
(10.59), τ is called the lag time. While the integration is over all times, the response
of a good detector usually peaks around zero time. In any case, the response must
equal zero for τ > tbecause events in the future cannot affect the present (causality).

The convolution theorem states that the Fourier transform of the convolution g(t)
is proportional to the product of the transforms of f(t) and h(t):

G(ω) =
√

2π F (ω)H(ω). (10.61)

The theorem results from expressing the functions in (10.59) by their transforms
and using the resulting Dirac delta function to evaluate an integral (essentially
what we did in our discussion of correlation functions). This is an example of how
some relations are simpler in transform space than in time space.

Regardless of the domain used, filtering as we have defined it is a linear process
involving just the first powers of f . This means that the output at one frequency
is proportional to the input at that frequency. The constant of proportionality
between the two may change with frequency and thus suppress specific frequen-
cies relative to others, but that constant remains fixed in time. Because the law
of linear superposition is valid for filters, if the input to a filter is represented as
the sum of various functions, then the transform of the output will be the sum
of the functions’ Fourier transforms. Because the transfer function may be com-
plex, H(ω) = |H(ω)| exp[iφ(ω)], the filter may also shift the phase of the input at
frequency ω by an amount φ.

Filters that remove or decrease high-frequency components more than they do
low-frequency components, are called lowpass filters. Those that filter out the low
frequencies are called highpass filters. A simple lowpass filter is the RC circuit on
the left in Figure 10.5, and it produces the transfer function

H(ω) =
1

1 + iωτ
=

1 − iωτ

1 +ω2τ2 , (10.62)

where τ =RC is the time constant. The ω2 in the denominator leads to a decrease
in the response at high frequencies and therefore makes this a lowpass filter (the

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 252

252 chapter 10

Figure 10.5 Left: An RC circuit arranged as a lowpass filter. Right: An RC circuit arranged as a

highpass filter.

iω affects only the phase). A simple highpass filter is the RC circuit on the right in
Figure 10.5, and it produces the transfer function

H(ω) =
iωτ

1 + iωτ
=
iωτ +ω2τ2

1 +ω2τ2 . (10.63)

H = 1 at large ω, yet H vanishes as ω → 0, which makes this a highpass filter.
Filters composed of resistors and capacitors are fine for analog signal processing.

For digital processing we want a digital filter that has a specific response function
for each frequency range. A physical model for a digital filter may be constructed
from a delay line with taps at various spacing along the line (Figure 10.6) [Hart 98].
The signal read from tap n is just the input signal delayed by time nτ , where the
delay time τ is a characteristic of the particular filter. The output from each tap
is described by the transfer function δ(t−nτ), possibly with scaling factor cn. As
represented by the triangle on the right in Figure 10.6, the signals from all taps are
ultimately summed together to form the total response function:

h(t) =
N∑

n=0

cn δ(t−nτ). (10.64)

In the frequency domain, the Fourier transform of a delta function is an exponential,
and so (10.64) results in the transfer function

H(ω) =
N∑

n=0

cn e
−i nωτ , (10.65)

where the exponential indicates the phase shift from each tap.
If a digital filter is given a continuous time signal f(t) as input, its output will

be the discrete sum

g(t) =
∫ +∞

−∞
dt′ f(t′)

N∑
n=0

cn δ(t− t′ −nτ) =
N∑

n=0

cn f(t−nτ). (10.66)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 253

fourier analysis: signals and filters 253

Σ
τ τ τ

Figure 10.6 A delay-line filter in which the signal at different time translations is scaled by

different amounts ci.

And of course, if the signal’s input is a discrete sum, its output will remain a discrete
sum. (We restrict ourselves to nonrecursive filters [Pres 94].) In either case, we see
that knowledge of the filter coefficients ci provides us with all we need to know
about a digital filter. If we look back at our work on the discrete Fourier transform
in §10.4.1, we can view a digital filter (10.66) as a Fourier transform in which we
use an N -point approximation to the Fourier integral. The cn’s then contain both
the integration weights and the values of the response function at the integration
points. The transform itself can be viewed as a filter of the signal into specific
frequencies.

10.7.1 Digital Filters: Windowed Sinc Filters (Exploration) �

Problem: Construct digital versions of highpass and lowpass filters and determine
which filter works better at removing noise from a signal.

A popular way to separate the bands of frequencies in a signal is with a windowed
sinc filter [Smi 99]. This filter is based on the observation that an ideal lowpass filter
passes all frequencies below a cutoff frequency ωc and blocks all frequencies above
this frequency. And because there tends to be more noise at high frequencies than
at low frequencies, removing the high frequencies tends to remove more noise than
signal, although some signal is inevitably lost. One use for windowed sinc filters is
in reducing aliasing by removing the high-frequency component of a signal before
determining its Fourier components. The graph on the lower right in Figure 10.7
was obtained by passing our noisy signal through a sinc filter (using the program
Filter.java given on the CD).

If both positive and negative frequencies are included, an ideal low-frequency
filter will look like the rectangular pulse in frequency space:

H(ω, ωc) = rect
(
ω

2ωc

)
rect(ω) =




1, if |ω| ≤ 1
2 ,

0, otherwise.
(10.67)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 254

254 chapter 10

2
x10

0.0

0.5

1.0

1.5

x10
3

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Windowed-sinc filter kernel

Sample number

A
m
p
l
i
t
u
d
e

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Windowed-sinc frequency response

Frequency

A
m
p
l
i
t
u
d
e

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Ideal frequency response

Frequency

A
m
p
l
i
t
u
d
e

2
x10

0.0

0.5

1.0

1.5

x10
3

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Truncated-sinc filter kernel

Sample number

A
m
p
l
i
t
u
d
e

Figure 10.7 Lower left: Frequency response for an ideal lowpass filter. Lower right:

Truncated-sinc filter kernel (time domain). Upper left: Windowed-sinc filter kernel. Upper right:

windowed-sinc filter frequency response.

Here rect(ω) is the rectangular function (Figure 10.8). Although maybe not obvi-
ous, a rectangular pulse in the frequency domain has a Fourier transform that is
proportional to the sinc function in the time domain [Smi 91, Wiki]

∫ +∞

−∞
dω e−iωtrect(ω) = sinc

(
t

2

)
def=

sin(πt/2)
πt/2

, (10.68)

where the π’s are sometimes omitted. Consequently, we can filter out the high-
frequency components of a signal by convoluting it with sin(ωct)/(ωct), a technique
also known as the Nyquist–Shannon interpolation formula. In terms of discrete
transforms, the time-domain representation of the sinc filter is

h[i] =
sin(ωci)
iπ

. (10.69)

All frequencies below the cutoff frequencyωc are passed with unit amplitude, while
all higher frequencies are blocked.

In practice, there are a number of problems in using this function as the filter.
First, as formulated, the filter is noncausal; that is, there are coefficients at negative
times, which is nonphysical because we do not start measuring the signal until
t= 0. Second, in order to produce a perfect rectangular response, we would have
to sample the signal at an infinite number of times. In practice, we sample at (M + 1)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 255

fourier analysis: signals and filters 255

Figure 10.8 The rectangle function rect(ω) whose Fourier transform is sinc(t ).

points (M even) placed symmetrically around the main lobe of sin(πt)/πt and then
shift times to purely positive values,

h[i] =
sin[2πωc(i−M/2)]

i−M/2
, 0 ≤ t≤M. (10.70)

As might be expected, a penalty is incurred for making the filter discrete; instead of
the ideal rectangular response, we obtain a Gibbs overshoot, with rounded corners
and oscillations beyond the corner.

There are two ways to reduce the departures from the ideal filter. The first is to
increase the length of times for which the filter is sampled, which inevitably leads
to longer compute times. The other way is to smooth out the truncation of the sinc
function by multiplying it with a smoothly tapered curve like the Hamming window
function:

w[i] = 0.54− 0.46 cos(2πi/M). (10.71)

In this way the filter’s kernel becomes

h[i] =
sin[2πωc(i−M/2)]

i−M/2

[
0.54− 0.46 cos(

2πi
M

)
]
. (10.72)

The cutoff frequency ωc should be a fraction of the sampling rate. The time length
M determines the bandwidth over which the filter changes from 1 to 0.

Exercise: Repeat the exercise that added random noise to a known signal, this
time using the sinc filter to reduce the noise. See how small you can make the
signal and still be able to separate it from the noise. (The code Noise.java that
performs these steps is on the instructor’s CD.)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 256

256 chapter 10

10.8 Unit III. Fast Fourier Transform Algorithm �
We have seen in (10.32) that a discrete Fourier transform can be written in the
compact form

Yn =
1√
2π

N∑
k=1

Znk yk, Z = e−2πi/N , n= 0, 1, . . . , N − 1. (10.73)

Even if the signal elements yk to be transformed are real, Z is always complex,
and therefore we must process both real and imaginary parts when computing
transforms. Because both n and k range over N integer values, the (Zn)k yk multi-
plications in (10.73) require some N2 multiplications and additions of complex
numbers. As N gets large, as happens in realistic applications, this geometric
increase in the number of steps slows down the algorithm.

In 1965, Cooley and Tukey discovered an algorithm8 that reduces the number
of operations necessary to perform a DFT from N2 to roughly N log2N [Co 65,
Donn 05]. Even though this may not seem like such a big difference, it represents
a 100-fold speedup for 1000 data points, which changes a full day of processing
into 15 min of work. Because of its widespread use (including cell phones), the fast
Fourier transform algorithm is considered one of the 10 most important algorithms
of all time.

The idea behind the FFT is to utilize the periodicity inherent in the definition
of the DFT (10.73) to reduce the total number of computational steps. Essentially,
the algorithm divides the input data into two equal groups and transforms only
one group, which requires ∼ (N/2)2 multiplications. It then divides the remaining
(nontransformed) group of data in half and transforms them, continuing the pro-
cess until all the data have been transformed. The total number of multiplications
required with this approach is approximately N log2N .

Specifically, the FFT’s time economy arises from the computationally expensive
complex factor Znk[= ((Z)n)k] being equal to the same cyclically repeated value as
the integers n and k vary sequentially. For instance, for N = 8,

Y0 =Z0y0 +Z0y1 +Z0 y2 +Z0 y3 +Z0 y4 +Z0 y5 +Z0 y6 +Z0 y7,

Y1 =Z0y0 +Z1y1 +Z2y2 +Z3 y3 +Z4 y4 +Z5 y5 +Z6 y6 +Z7 y7,

Y2 =Z0y0 +Z2y1 +Z4 y2 +Z6 y3 +Z8 y4 +Z10y5 +Z12y6 +Z14y7,

Y3 =Z0y0 +Z3y1 +Z6 y2 +Z9 y3 +Z12y4 +Z15y5 +Z18y6 +Z21y7,

8 Actually, this algorithm has been discovered a number of times, for instance, in 1942 by
Danielson and Lanczos [Da 42], as well as much earlier by Gauss.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 257

fourier analysis: signals and filters 257

Y4 =Z0y0 +Z4y1 +Z8 y2 +Z12y3 +Z16y4 +Z20y5 +Z24y6 +Z28y7,

Y5 =Z0y0 +Z5y1 +Z10y2 +Z15y3 +Z20y4 +Z25y5 +Z30y6 +Z35y7,

Y6 =Z0y0 +Z6y1 +Z12y2 +Z18y3 +Z24y4 +Z30y5 +Z36y6 +Z42y7,

Y7 =Z0y0 +Z7y1 +Z14y2 +Z21y3 +Z28y4 +Z35y5 +Z42y6 +Z49y7,

where we include Z0(≡1) for clarity. When we actually evaluate these powers of
Z, we find only four independent values:

Z0 = exp (0) = +1, Z1 = exp(−2π
8 i) = +

√
2

2 − i
√

2
2 ,

Z2 = exp(−2π
8 2i) = −i, Z3 = exp(−2π

8 3i) = −
√

2
2 − i

√
2

2 ,

Z4 = exp(−2π
8 4i) = −Z0, Z5 = exp(−2π

8 5i) = −Z1,

Z6 = exp(−2π
8 6i) = −Z2, Z7 = exp(−2π

8 7i) = −Z3,

Z8 = exp(−2π
8 8i) = +Z0, Z9 = exp(−2π

8 9i) = +Z1,

Z10 = exp(−2π
8 10i) = +Z2, Z11 = exp(−2π

8 11i) = +Z3,

Z12 = exp(−2π
8 11i) = −Z0, · · · .

(10.74)

When substituted into the definitions of the transforms, we obtain

Y0 =Z0y0 +Z0y1 +Z0y2 +Z0y3 +Z0y4 +Z0y5 +Z0y6 +Z0y7,

Y1 =Z0y0 +Z1y1 +Z2y2 +Z3y3 −Z0y4 −Z1y5 −Z2y6 −Z3y7,

Y2 =Z0y0 +Z2y1 −Z0y2 −Z2y3 +Z0y4 +Z2y5 −Z0y6 −Z2y7,

Y3 =Z0y0 +Z3y1 −Z2y2 +Z1y3 −Z0y4 −Z3y5 +Z2y6 −Z1y7,

Y4 =Z0y0 −Z0y1 +Z0y2 −Z0y3 +Z0y4 −Z0y5 +Z0y6 −Z0y7,

Y5 =Z0y0 −Z1y1 +Z2y2 −Z3y3 −Z0y4 +Z1y5 −Z2y6 +Z3y7,

Y6 =Z0y0 −Z2y1 −Z0y2 +Z2y3 +Z0y4 −Z2y5 −Z0y6 +Z2y7,

Y7 =Z0y0 −Z3y1 −Z2y2 −Z1y3 −Z0y4 +Z3y5 +Z2y6 +Z1y7,

Y8 =Y0.

We see that these transforms now require 8 × 8 = 64 multiplications of complex
numbers, in addition to some less time-consuming additions. We place these equa-
tions in an appropriate form for computing by regrouping the terms into sums and
differences of the y’s:

Y0 =Z0(y0 + y4) +Z0(y1 + y5) +Z0(y2 + y6) +Z0(y3 + y7),

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 258

258 chapter 10

Figure 10.9 The basic butterfly operation in which elements yp and yq are transformed into

yp + Z yq and yp − Z yq.

Y1 =Z0(y0 − y4) +Z1(y1 − y5) +Z2(y2 − y6) +Z3(y3 − y7),

Y2 =Z0(y0 + y4) +Z2(y1 + y5) −Z0(y2 + y6) −Z2(y3 + y7),

Y3 =Z0(y0 − y4) +Z3(y1 − y5) −Z2(y2 − y6) +Z1(y3 − y7),

Y4 =Z0(y0 + y4) −Z0(y1 + y5) +Z0(y2 + y6) −Z0(y3 + y7),

Y5 =Z0(y0 − y4) −Z1(y1 − y5) +Z2(y2 − y6) −Z3(y3 − y7),

Y6 =Z0(y0 + y4) −Z2(y1 + y5) −Z0(y2 + y6) +Z2(y3 + y7),

Y7 =Z0(y0 − y4) −Z3(y1 − y5) −Z2(y2 − y6) −Z1(y3 − y7),

Y8 =Y0.

Note the repeating factors inside the parentheses, with combinations of the form
yp ± yq. These symmetries are systematized by introducing the butterfly operation
(Figure 10.9). This operation takes the yp and yq data elements from the left wing
and converts them to the yp +Zyq elements in the upper- and lower-right wings.
In Figure 10.10 we show what happens when we apply the butterfly operations to
an entire FFT process, specifically to the pairs (y0, y4), (y1, y5), (y2, y6), and (y3, y7).
Notice how the number of multiplications of complex numbers has been reduced:
For the first butterfly operation there are 8 multiplications by Z0; for the second
butterfly operation there are 8 multiplications, and so forth, until a total of 24 mul-
tiplications is made in four butterflies. In contrast, 64 multiplications are required
in the original DFT (10.8).

10.8.1 Bit Reversal

The reader may have observed that in Figure 10.10 we started with 8 data elements
in the order 0–7 and that after three butterfly operators we obtained transforms in
the order 0, 4, 2, 6, 1, 5, 3, 7. The astute reader may may also have observed that
these numbers correspond to the bit-reversed order of 0–7.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 259

fourier analysis: signals and filters 259

Figure 10.10 The butterfly operations performing a FFT on four pairs of data.

Let us look into this further. We need 3 bits to give the order of each of the
8 input data elements (the numbers 0–7). Explicitly, on the left in Table 10.1 we
give the binary representation for decimal numbers 0–7, their bit reversals, and the
corresponding decimal numbers. On the right we give the ordering for 16 input
data elements, where we need 4 bits to enumerate their order. Notice that the order
of the first 8 elements differs in the two cases because the number of bits being
reversed differs. Notice too that after the reordering, the first half of the numbers
are all even and the second half are all odd.

The fact that the Fourier transforms are produced in an order corresponding to
the bit-reversed order of the numbers 0–7 suggests that if we process the data in
the bit-reversed order 0, 4, 6, 2, 1, 5, 3, 7, then the output Fourier transforms will be
ordered. We demonstrate this conjecture in Figure 10.11, where we see that to obtain
the Fourier transform for the 8 input data, the butterfly operation had to be applied
3 times. The number 3 occurs here because it is the power of 2 that gives the number
of data; that is, 23 = 8. In general, in order for a FFT algorithm to produce transforms
in the proper order, it must reshuffle the input data into bit-reversed order. As a case
in point, our sample program starts by reordering the 16 (24) data elements given
in Table 10.2. Now the 4 butterfly operations produce sequentially ordered output.

10.9 FFT Implementation

The first FFT program we are aware of was written in 1967 in Fortran IV by Norman
Brenner at MIT’s Lincoln Laboratory [Hi,76] and was hard for us to follow. Our

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 260

260 chapter 10

TABLE 10.1

Binary-Reversed 0–7

Decimal
Decimal Binary Reversal Reversal

0 000 000 0

1 001 100 4

2 010 010 2

3 011 110 6

4 100 001 1

5 101 101 5

6 110 011 3

7 111 111 7

Binary-Reversed 0–16

Decimal
Decimal Binary Reversal Reversal

0 0000 0000 0

1 0001 1000 8

2 0010 0100 4

3 0011 1100 12

4 0100 0010 2

5 0101 1010 10

6 0110 0110 6

7 0111 1110 14

8 1000 0001 1

9 1001 1001 9

10 1010 0101 5

11 1011 1101 13

12 1100 0011 3

13 1101 1011 11

14 1110 0111 7

15 1111 1111 15

(easier-to-follow) Java version of it is in Listing 10.2. Its input is N = 2n data to be
transformed (FFTs always require 2N input data). If the number of your input data
is not a power of 2, then you can make it so by concatenating some of the initial
data to the end of your input until a power of 2 is obtained; since a DFT is always
periodic, this just starts the period a little earlier. This program assigns complex
numbers at the 16 data points

ym =m+mi, m= 0, . . . , 15, (10.75)

reorders the data via bit reversal, and then makes four butterfly operations. The
data are stored in the array dtr[max][2], with the second subscript denoting real
and imaginary parts. We increase speed further by using the 1-D array data to make
memory access more direct:

data[1] = dtr[0][1], data[2] = dtr[1][1], data[3] = dtr[1][0], . . . ,

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 261

fourier analysis: signals and filters 261

Figure 10.11 Modified FFT.

which also provides storage for the output. The FFT transforms data using the
butterfly operation and stores the results back in dtr[][], where the input data were
originally.

TABLE 10.2
Reordering for 16 Data Complex Points

Order Input Data New Order Order Input Data New Order

0 0.0 + 0.0i 0.0 + 0.0i 8 8.0 + 8.0i 1.0 + 1.0i

1 1.0 + 1.0i 8.0 + 8.0i 9 9.0 + 9.0i 9.0 + 9.0i

2 2.0 + 2.0i 4.0 + 4.0i 10 10.0 + 10.i 5.0 + 5.0i

3 3.0 + 3.0i 12.0 + 12.0i 11 11.0 + 11.0i 13.0 + 13.0i

4 4.0 + 4.0i 2.0 + 2.0i 12 12.0 + 12.0i 3.0 + 3.0i

5 5.0 + 5.0i 10.0 + 10.i 13 13.0 + 13.0i 11.0 + 11.0i

6 6.0 + 6.0i 6.0 + 6.0i 14 14.0 + 14.i 7.0 + 7.0i

7 7.0 + 7.0i 14.0 + 14.0i 15 15.0 + 15.0i 15.0 + 15.0i

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 262

262 chapter 10

� �
/∗ FFT . java : FFT for complex numbers dtr [ ] [ ]

data1 [ i ] [ 0 ] , data1 [ i ] [ 1 ] = Re , Im parts of point [ i ] .
When done , Re , Im Fourier Transforms placed in same array
Required max = 2^m < 1024
dtr [ ] [ ] placed in array data [ ] : ∗ /

i m p o r t j ava . u t i l . ∗ ;
i m p o r t j ava . io . ∗ ;

p u b l i c c l a s s FFT {
p u b l i c s t a t i c i n t max = 2 1 0 0 ; / / Global var iables
p u b l i c s t a t i c i n t points = 1026 ; / / Can be increased
p u b l i c s t a t i c d o u b l e data [ ] = new d o u b l e [max ] ;
p u b l i c s t a t i c d o u b l e dtr [ ] [ ] = new d o u b l e [ points ] [ 2 ] ;

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) {
i n t i s ign , i , nn = 1 6 ; / / Power of 2
i s i g n = −1; / / −1 transform , +1 inverse transform
f o r ( i =0 ; i <nn ; i ++ ) { / / Form array

dtr [ i ] [ 0 ] = ( d o u b l e ) ( i ) ; / / Re part
dtr [ i ] [ 1 ] = ( d o u b l e ) ( i ) ; / / Im part
System . out . p r i n t l n ("dtr " + dtr [ i ] [ 0 ] + " im " + dtr [ i ] [ 1 ] ) ;

}
f f t ( nn , i s i g n ) ; / / Call FFT , use global dtr [ ] [ ]
f o r ( i =0 ; i <nn ; i ++) System . out . p r i n t l n ("i "+ i +" FT " +dtr [ i ] [ 0 ] +" "+dtr [ i ] [ 1 ] ) ;

}

p u b l i c s t a t i c v o i d f f t ( i n t nn , i n t i s i g n ) { / / FFT of dtr [ n ] [ 2 ]
i n t i , j , m, n , mmax, i s t e p ;
Double tempr , tempi , wr , wi , wstpr , wstpi , theta , s i n t h ;
n = 2∗nn ;
f o r ( i = 0 ; i <= nn ; i ++ ) { / / Original data in dtr to data

j = 2∗ i + 1 ;
data [ j ] = dtr [ i ] [ 0 ] ; / / Real dtr , odd data [ j ]
data [ j +1] = dtr [ i ] [ 1 ] ; / / Imag dtr , even data [ j +1]
System . out . p r i n t l n (" Input data " ) ;
System . out . p r i n t l n (" dt "+ j +"d "+data [ j ]+" "+ data [ j + 1 ] ) ;

}
j = 1 ; / / Place data in b i t reverse order
f o r ( i = 1 ; i <= n ; i = i +2 ) {

i f ( ( i−j ) <0 ) { / / Reorder equivalent to b i t reverse
tempr = data [ j ] ;
tempi = data [ j + 1 ] ;
data [ j ] = data [ i ] ;
data [ j +1] = data [ i + 1 ] ;
data [ i ] = tempr ;
data [ i +1] = tempi ;

}
m = n/2;
do { i f ( ( j−m) <=0 ) b r e a k ; j = j−m; m = m/2; }
w h i l e ( m−2>0 ) ; j = j +m;

} / / Pr int data and data to see reorder
System . out . p r i n t l n (" Bit - reversed data " ) ;
f o r ( i =1 ; i <=n ; i = i +2) System . out . p r i n t l n (" i " + i + " data [ i ] "+data [ i ] ) ;
mmax = 2 ;
w h i l e ( (mmax−n ) <0 ) { / / Begin transform

i s t e p = 2∗mmax;
t h e t a = 6 .2831853/( f l o a t ) ( i s i g n ∗mmax) ;
s i n t h = Math . s i n ( t h e t a / 2 . 0 ) ;
wstpr = −2.0∗ s i n t h∗ s i n t h ;
wstpi = Math . s i n ( t h e t a ) ;
wr = 1 . 0 ; wi = 0 . 0 ;
f o r (m=1; m <= mmax; m=m+2) {

f o r ( i =m; i <=n ; i = i + i s t e p ) {
j = i +mmax;
tempr = wr∗data [ j ]−wi∗data [ j + 1 ] ;
tempi = wr∗data [ j +1]+wi∗data [ j ] ;
data [ j ] = data [ i ]−tempr ;

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 263

fourier analysis: signals and filters 263

data [ j +1] = data [ i +1]−tempi ;
data [ i ] = data [ i ]+ tempr ;
data [ i +1] = data [ i +1]+ tempi ;

} / / For i
tempr = wr ;
wr = wr∗wstpr−wi∗wstpi+wr ;
wi = wi∗wstpr+tempr∗wstpi+wi ;

} / / For m
mmax = i s t e p ;

} / / While
f o r ( i =0 ; i <nn ; i ++) { j = 2∗ i +1 ; dtr [ i ] [ 0 ] = data [ j ] ; d tr [ i ] [ 1 ] = data [ j + 1 ] ; }

} }
�

Listing 10.2 FFT.java computes the FFT or inverse transform depending upon the sign of isign.

10.10 FFT Assessment

1. Compile and execute FFT.java. Make sure you understand the output.
2. Take the output from FFT.java, inverse-transform it back to signal space, and

compare it to your input. [Checking that the double transform is proportional
to itself is adequate, although the normalization factors in (10.32) should make
the two equal.]

3. Compare the transforms obtained with a FFT to those obtained with a DFT
(you may choose any of the functions studied before). Make sure to compare
both precision and execution times.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 264

11

Wavelet Analysis & Data Compression

Problem: You have sampled the signal in Figure 11.1 that seems to contain an
increasing number of frequencies as time increases. Your problem is to undertake a
spectral analysis of this signal that tells you, in the most compact way possible, how
much of each frequency is present at each instant in time. Hint: Although we want
the method to be general enough to work with numerical data, for pedagogical
purposes it is useful to know that the signal is

y(t) =




sin 2πt, for 0 ≤ t≤ 2,

5 sin 2πt+ 10 sin 4πt, for 2 ≤ t≤ 8,

2.5 sin 2πt+ 6 sin 4πt+ 10 sin 6πt, for 8 ≤ t≤ 12.

(11.1)

11.1 Unit I. Wavelet Basics

The Fourier analysis we used in §10.4.1 reveals the amount of the harmonic func-
tions sin(ωt) and cos(ωt) and their overtones that are present in a signal. An
expansion in periodic functions is fine for stationary signals (those whose forms
do not change in time) but has shortcomings for the variable form of our problem
signal (11.1). One such problem is that the Fourier reconstruction has all constituent
frequencies occurring simultaneously and so does not contain time resolution infor-
mation indicating when each frequency occurs. Another shortcoming is that all the
Fourier components are correlated, which results in more information being stored
than may be needed and no convenient way to remove the excess storage.

There are a number of techniques that extend simple Fourier analysis to nonsta-
tionary signals. In this chapter we include an introduction to wavelet analysis, a field
that has seen extensive development and application in the last decade in areas as
diverse as brain waves and gravitational waves. The idea behind wavelet analy-
sis is to expand a signal in a complete set of functions (wavelets), each of which
oscillates for a finite period of time and each of which is centered at a different
time. To give you a preview before we get into the details, we show four sample
wavelets in Figure 11.2. Because each wavelet is local in time, it is a wave packet1

1 We discuss wave packets further in §11.2.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 265

wavelet analysis & data compression 265

0 1 2 3 4 5 6 7 8 9

Figure 11.1 The time signal (11.1) containing an increasing number of frequencies as time

increases. The boxes are possible placements of windows for short-time Fourier transforms.

–1.0

–0.5

0.0

0.5

1.0

–6 –4 –2 0 2 4 6

t

P
s
i

0.0

1.0

–4 0 4
t

ψ

–1.0

0.0

1.0

–4 0
t

4

ψ

0 1000

0.1

0

–0.1

Daub4 e6

Figure 11.2 Four sample mother wavelets. Clockwise from top: Morlet (real part), Mexican

hat, Daub4 e6 (explained later), and Haar. Wavelet basis functions are generated by scaling

and translating these mother wavelets.

containing a range of frequencies. These wave packets are called wavelets because
they are small and do not extend for long times.

Although wavelets are required to oscillate in time, they are not restricted to
a particular functional form [Add 02]. As a case in point, they may be oscillating
Gaussians (Morlet: top left in Figure 11.2),

Ψ(t) = e2πite−t2/2σ2
= (cos 2πt+ i sin 2πt)e−t2/2σ2

(Morlet), (11.2)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 266

266 chapter 11

the second derivative of a Gaussian (Mexican hat, top right),

Ψ(t) = −σ2 d
2

dt2
e−t2/2σ2

=
(

1 − t2

σ2

)
e−t2/2σ2

, (11.3)

an up-and-down step function (lower left), or a fractal shape (bottom right). Such
wavelets are localized in both time and frequency; that is, they are large for just a
finite time and contain a finite range of frequencies. As we shall see, translating
and scaling one of these mother wavelets generates an entire set of child wavelet basis
functions, with each individual function covering a different frequency range at a
different time.

11.2 Wave Packets and the Uncertainty Principle (Theory)

A wave packet or wave train is a collection of waves added together in such a way
as to produce a pulse of width ∆t. As we shall see, the Fourier transform of a
wave packet is a pulse in the frequency domain of width ∆ω. We will first study
such wave packets analytically and then use others numerically. An example of a
simple wave packet is just a sine wave that oscillates at frequency ω0 forN periods
(Figure 11.3 left) [A&W 01]:

y(t) =




sinω0t, for |t|<N π
ω0

≡N T
2 ,

0, for |t|>N π
ω0

≡N T
2 ,

(11.4)

where we relate the frequency to the period via the usual ω0 = 2π/T . In terms of
these parameters, the width of the wave packet is

∆t=NT =N
2π
ω0
. (11.5)

The Fourier transform of the wave packet (11.4) is a straight-forward application
of the transform formula (10.18):

Y (ω) =
∫ +∞

−∞
dt
e−iωt

√
2π

y(t) =
−i√
2π

∫ Nπ/ω0

0
dt sinω0t sinωt

=
(ω0 +ω) sin

[
(ω0 −ω)Nπ

ω0

]
− (ω0 −ω) sin

[
(ω0 +ω)Nπ

ω0

]
√

2π(ω2
0 −ω2)

, (11.6)

where we have dropped a factor of −i that affects only the phase. While at first
glance (11.6) appears to be singular at ω = ω0, it just peaks there (Figure 11.3 right),
reflecting the predominance of frequency ω0. However, there are sharp corners in
the signal y(t) (Figure 11.3 left), and these give Y (ω) a width ∆ω.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 267

wavelet analysis & data compression 267

–1.0

0.0

1.0

–4 0 4

t

y

–1.0

0.0

0 10

Y

ω

Figure 11.3 Left: A wave packet in time corresponding to the functional form (11.4) with

ω0 = 5 and N = 6. Right: The Fourier transform in frequency of this same wave packet.

There is a fundamental relation between the widths ∆t and ∆ω of a wave packet.
Although we use a specific example to determine that relation, it is true in general.
While there may not be a precise definition of “width” for all functions, one can
usually deduce a good measure of the width (say, within 25%). To illustrate, if we
look at the right of Figure 11.3, it makes sense to use the distance between the first
zeros of the transform Y (ω) (11.6) as the width ∆ω. The zeros occur at

ω−ω0

ω0
= ± 1

N
⇒ ∆ω � ω−ω0 =

ω0

N
, (11.7)

where N is the number of cycles in our original wave packet. Because the wave
packet in time makes N oscillations each of period T , a reasonable measure of the
width ∆t of the signal y(t) is

∆t=NT =N
2π
ω0
. (11.8)

When the products of the frequency width (11.7) and the time width (11.8) are
combined, we obtain

∆t∆ω ≥ 2π. (11.9)

The greater-than sign is used to indicate that this is a minimum, that is, that y(t)
and Y (ω) extend beyond ∆t and ∆ω, respectively. Nonetheless, most of the signal
and transform should lie within the bound (11.9).

Arelation of the form (11.9) also occurs in quantum mechanics, where it is known
as the Heisenberg uncertainty principle, with ∆t and ∆ω being called the uncertainties
in t and ω. It is true for transforms in general and states that as a signal is made
more localized in time (smaller ∆t) the transform becomes less localized (larger
∆ω). Conversely, the signal y(t) = sinω0t is completely localized in frequency and
so has an infinite extent in time, ∆t� ∞.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 268

268 chapter 11

11.2.1 Wave Packet Assessment

Consider the following wave packets:

y1(t) = e−t2/2, y2(t) = sin(8t)e−t2/2, y3(t) = (1 − t2) e−t2/2.

For each wave packet:

1. Estimate the width ∆t. A good measure might be the full width at half-maxima
(FWHM) of |y(t)|.

2. Evaluate and plot the Fourier transform Y (ω).
3. Estimate the width ∆ω of the transform. A good measure might be the full

width at half-maxima of |Y (ω)|.
4. Determine the constant C for the uncertainty principle

∆t∆ω ≥ 2πC.

11.3 Short-Time Fourier Transforms (Math)

The constant amplitude of the functions sinωt and cosωt for all times can limit
the usefulness of Fourier transforms. Because these functions and their overtones
extend over all times with that constant amplitude, there is considerable overlap
among them, and thus the information present in various Fourier components is
correlated. This is undesirable for compressed data storage, where you want to
store a minimum number of data and want to be able to cut out some of these
data with just a minimal effect on the signal reconstruction.2 In lossless compression,
which reproduces the original signal exactly, you save space by storing how many
times each data element is repeated and where each element is located. In lossy
compression, in addition to removing repeated elements, you also eliminate some
transform components, consistent with the uncertainty relation (11.9) and with the
level of resolution required in the reproduction. This leads to a greater compression.

In §10.4.1 we defined the Fourier transform Y (ω) of a signal y(t) as

Y (ω) =
∫ +∞

−∞
dt
e−iωt

√
2π

y(t) = 〈ω |y 〉 . (11.10)

As is true for simple vectors, you can think of (11.10) as giving the overlap or scalar
product of the basis function exp(iωt)/

√
2π and the signal y(t) [notice that the

2 Wavelets have also proven to be a highly effective approach to data compression, with
the Joint Photographic Experts Group (JPEG) 2000 standard being based on wavelets. In
Appendix G we give a full example of image compression with wavelets.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 269

wavelet analysis & data compression 269

complex conjugate of the exponential basis function appears in (11.10)]. Another
view of (11.10) is as the mapping or projection of the signal into ω space. In this
case the overlap projects the amount of the periodic function exp(iωt)/

√
2π in the

signal y(t). In other words, the Fourier component Y (ω) is also the correlation
between the signal y(t) and the basis function exp(iωt)/

√
2π, which is what results

from filtering the signal y(t) through a frequency-ω filter. If there is no exp(iωt) in
the signal, then the integral vanishes and there is no output. If y(t) = exp(iωt), the
signal is at only one frequency, and the integral is accordingly singular.

The problem signal in Figure 11.1 clearly has different frequencies present at
different times and for different lengths of time. In the past this signal might have
been analyzed with a precursor of wavelet analysis known as the short-time Fourier
transform. With that technique, the signal y(t) is “chopped up” into different seg-
ments along the time axis, with successive segments centered about successive
times τ1, τ2, . . . , τN . For instance, we show three such segments in Figure 11.1.
Once we have the dissected signal, a Fourier analysis is made of each segment. We

are then left with a sequence of transforms
(
Y

(ST)
τ1 , Y

(ST)
τ2 , . . . , Y

(ST)
τN

)
, one for each

short-time interval, where the superscript (ST) indicates short time.
Rather than chopping up a signal, we express short-time Fourier transforming

mathematically by imagining translating a window function w(t− τ) by a time τ
over the signal in Figure 11.1:

Y (ST)(ω, τ) =
∫ +∞

−∞
dt

eiωt

√
2π

w(t− τ) y(t). (11.11)

Here the values of the translation time τ correspond to different locations of window
w over the signal, and the window function is essentially a transparent box of
small size on an opaque background. Any signal within the width of the window
is transformed, while the signal lying outside the window is not seen. Note that in
(11.11) the extra variable τ in the Fourier transform indicating the location of the
time around which the window was placed. Clearly, since the short-time transform
is a function of two variables, a surface or 3-D plot is needed to view the amplitude
as a function of both ω and τ .

11.4 The Wavelet Transform

The wavelet transform of a time signal y(t),

Y (s, τ) =
∫ +∞

−∞
dt ψ∗

s,τ (t)y(t) (wavelet transform), (11.12)

is similar in concept and notation to a short-time Fourier transform. Rather than
using exp(iωt) as the basis functions, we use wave packets or wavelets ψs,τ (t)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 270

270 chapter 11

localized in time, such as the those shown in Figure 11.2. Because each wavelet
is localized in time, each acts as its own window function. Because each wavelet is
oscillatory, each contains its own small range of frequencies.

Equation (11.12) says that the wavelet transform Y (s, τ) is a measure of the
amount of basis function ψs,τ (t) present in the signal y(t). The τ variable indicates
the time portion of the signal being decomposed, while the s variable is equivalent
to the frequency present during that time:

ω =
2π
s
, s=

2π
ω

(scale–frequency relation). (11.13)

Because it is key to much that follows, it is a good idea to think about (11.13) for a
while. If we are interested in the time details of a signal, then this is another way
of saying that we are interested in what is happening at small values of the scale s.
Equation (11.13) indicates that small values of s correspond to high-frequency com-
ponents of the signal. That being the case, the time details of the signal are in the
high-frequency, or low-scale, components.

11.4.1 Generating Wavelet Basis Functions

The conceptual discussion of wavelets is over, and it is time to get to work. We first
need a technique for generating wavelet bases, and then we need to discretize this
technique. As is often the case, the final formulation will turn out to be simple and
short, but it will be a while before we get there.

Just as the expansion of a function in a complete orthogonal set is not restricted
to any particular set, so the theory of wavelets is not restricted to any particular
wavelet basis, although there is some art involved in choosing the most appropriate
wavelets for a given signal. The standard way to generate a family of wavelet basis
functions starts with Ψ(t), a mother or analyzing function of the real variable t, and
then use this to generate daughter wavelets. As a case in point, let us start with the
mother wavelet

Ψ(t) = sin(8t)e−t2/2. (11.14)

We then generate the four wavelet basis functions displayed in Figure 11.4 by
scaling, translating, and normalizing this mother wavelet:

ψs,τ (t) def=
1√
s
Ψ
(
t− τ

s

)
=

1√
s

sin
[
8(t− τ)

s

]
e−(t−τ)2/2s2

. (11.15)

We see that larger or smaller values of s, respectively, expand or contract the mother
wavelet, while different values of τ shift the center of the wavelet. Because the
wavelets are inherently oscillatory, the scaling leads to the same number of oscilla-
tions occurring in different time spans, which is equivalent to having basis states

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 271

wavelet analysis & data compression 271

–1.0

–0.5

0.0

0.5

1.0

–6 –4 –2 0 2 4 6

t

s = 1, τ = 0

–1.0

0.0

1.0

–6 –4 –2 0 2 4 6

t

–1.0

0.0

1.0

–4 –2 0 2 4 6 8 10

t

s = 1, τ = 6

–0.6

0.0

0.6

–6 –4 –2 0 2 4 6

t

s = 2, τ = 0

Figure 11.4 Four wavelet basis functions generated by scaling (s) and translating (τ ) the

oscillating Gaussian mother wavelet. Clockwise from top: (s = 1, τ = 0), (s = 1/2, τ = 0), (s = 1,

τ = 6), and (s = 2, τ = 60). Note how s< 1 is a wavelet with higher frequency, while s> 1 has a

lower frequency than the s = 1 mother. Likewise, the τ = 6 wavelet is just a translated version

of the τ = 0 one directly above it.

with differing frequencies. We see that s < 1 produces a higher-frequency wavelet,
while s > 1 produces a lower-frequency one, both of the same shape. As we shall
see, we do not need to store much information to outline the large-time-scale s
behavior of a signal (its smooth envelope), but we do need more information to spec-
ify its short-time-scale s behavior (details). And if we want to resolve finer features
in the signal, then we will need to have more information on yet finer details. Here
the division by

√
s is made to ensure that there is equal “power” (or energy or

intensity) in each region of s, although other normalizations can also be found in
the literature. After substituting in the daughters, the wavelet transform (11.12) and
its inverse [VdB 99] are

Y (s, τ) =
1√
s

∫ +∞

−∞
dtΨ∗

(
t− τ

s

)
y(t) (wavelet transform), (11.16)

y(t) =
1
C

∫ +∞

−∞
dτ

∫ +∞

0
ds
ψ∗

s,τ (t)
s3/2 Y (s, τ) (inverse transform), (11.17)

where the normalization constant C depends on the wavelet used.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 272

272 chapter 11

0 2 4 6 8 10 12
–20

–10

0

10

20

Input Signal
Inverted Transform

S
i
g
n
a
l

Time  t

0

1

2
s

0

4

8

12

–1

0

1 Y

Figure 11.5 Left: Comparison of the input and reconstituted signal using Morlet wavelets. As

expected for Fourier transforms, the reconstruction is least accurate near the endpoints.

Right: The continuous wavelet spectrum obtained by analyzing the input signal (11.18) with

Morelet wavelets. Observe how at small values of time τ there is predominantly one

frequency present, how a second, higher-frequency (smaller-scale) component enters at

intermediate times, and how at larger times a still higher-frequency component enters.

Further observation indicates that the large-s component has an amplitude consistent with

the input. (Figure courtesy of Z. Dimcovic.)

The general requirements for a mother wavelet Ψ are [Add 02, VdB 99]

1. Ψ(t) is real.
2. Ψ(t) oscillates around zero such that its average is zero:

∫ +∞

−∞
Ψ(t) dt= 0.

3. Ψ(t) is local, that is, a wave packet, and is square-integrable:

Ψ(|t| → ∞) → 0 (rapidly),
∫ +∞

−∞
|Ψ(t)|2 dt <∞.

4. The transforms of low powers of t vanish, that is, the first p moments:

∫ +∞

−∞
t0 Ψ(t) dt=

∫ +∞

−∞
t1 Ψ(t) dt= · · · =

∫ +∞

−∞
tp−1 Ψ(t) dt= 0.

This makes the transform more sensitive to details than to general shape.

You can think of scale as being like the scale on a map (also discussed in §13.5.2
with reference to fractal analysis) or in terms of resolution, as might occur in pho-
tographic images. Regardless of the words, we will see in Chapter 12, “Discrete
& Continuous Nonlinear Dynamics,” that if we have a fractal, then we have a
self-similar object that looks the same at all scales or resolutions. Similarly, each

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 273

wavelet analysis & data compression 273

Figure 11.6 A signal is analyzed by starting with a narrow wavelet at the signal’s beginning

and producing a coefficient that measures the similarity of the signal to the wavelet. The

wavelet is successively shifted over the length of the signal. Then the wavelet is expanded

and the analysis repeated.

wavelet basis function in a set is self-similar to the others, but at a different scale or
location.

In summary, wavelet bases are functions of the time variable t, as well as of the
two parameters s and τ . The t variable is integrated over to yield a transform that
is a function of the time scale s (frequency 2π/s) and window location τ .

As an example of how we use the two degrees of freedom, consider the analysis
of a chirp signal sin(60t2) (Figure 11.6). We see that a slice at the beginning of the
signal is compared to our first basis function. (The comparison is done via the
convolution of the wavelet with the signal.) This first comparison is with a narrow
version of the wavelet, that is, at low scale, and yields a single coefficient. The
comparison at this scale continues with the next signal slice and ends when the
entire signal has been covered (the top row in Figure 11.6). Then the wavelet is
expanded, and comparisons are repeated. Eventually, the data are processed at all
scales and at all time intervals. The narrow signals correspond to a high-resolution
analysis, while the broad signals correspond to low resolution. As the scales get
larger (lower frequencies, lower resolution), fewer details of the time signal remain
visible, but the overall shape or gross features of the signal become clearer.

11.4.2 Continuous Wavelet Transform Implementation

We want to develop some intuition as to what wavelet transforms look like before
going on to apply them in unknown situations. Accordingly, modify the program

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 274

274 chapter 11

you have been using for the discrete Fourier transform so that it now computes the
continuous wavelet transform.

1. You will want to see the effect of using different mother wavelets.Accordingly,
write a method that calculates the mother wavelet for
a. a Morlet wavelet (11.2),
b. a Mexican hat wavelet (11.3),
c. a Haar wavelet (the square wave in Figure 11.2).

2. Try out your transform for the following input signals and see if the results
make sense:
a. A pure sine wave y(t) = sin 2πt,
b. A sum of sine waves y(t) = 2.5 sin 2πt+ 6 sin 4πt+ 10 sin 6πt,
c. The nonstationary signal for our problem (11.1)

y(t) =




sin 2πt, for 0 ≤ t≤ 2,

5 sin 2πt+ 10 sin 4πt, for 2 ≤ t≤ 8,

2.5 sin 2πt+ 6 sin 4πt+ 10 sin 6πt, for 8 ≤ t≤ 12.

(11.18)

d. The half-wave function

y(t) =

{
sinωt, for 0< t < T/2,

0, for T/2< t < T.

3. � Use (11.17) to invert your wavelet transform and compare the reconstructed
signal to the input signal (you can normalize the two to each other). On the
right in Figure 11.5 we show our comparison.

In Listing 11.1 we give our continuous wavelet transformation CWTzd.java [Lang].
Because wavelets, with their transforms in two variables, are somewhat hard to
grasp at first, we suggest that you write your own code and include a portion that
does the inverse transform as a check (this is in fact what we have done in the
instructor’s code Wavelets.java). In the next section we will describe the discrete
wavelet transformation that makes optimal discrete choices for the scale and time
translation parameters s and τ . Figure 11.5 shows the spectrum produced for the
input signal (11.1) in Figure 11.1. As was our goal, we see predominantly one fre-
quency at short times, two frequencies at intermediate times, and three frequencies
at longer times.

11.5 Unit II. Discrete Wavelet Transforms and
Multiresolution Analysis�

As was true for DFTs, if a time signal is measured at only N discrete times,

y(tm) ≡ ym, m= 1, . . . , N, (11.19)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 275

wavelet analysis & data compression 275

� �
/ / CWT_zd. java Continuous Wavelet Transform . Written by Ziatko Dimcovic
/ / Outputs transform . dat = TF , recSigNorm . dat =TF^{−1}
i m p o r t j ava . io . ∗ ;

p u b l i c c l a s s CWTzd { / / N. B . many c l a s s var iables
p u b l i c s t a t i c f i n a l d o u b l e PI = Math . PI ;
p u b l i c s t a t i c d o u b l e iT = 0 . 0 , fT = 1 2 . 0 , W = fT − iT ; / / i , f times
p u b l i c s t a t i c i n t N = 1 0 0 0 ; p u b l i c s t a t i c d o u b l e h = W/N; / / Steps
p u b l i c s t a t i c i n t noPtsSig = N, noS = 100 , noTau = 1 0 0 ; / / # of pts
p u b l i c s t a t i c d o u b l e iTau = 0 . , i S = 0 . 1 , tau = iTau , s = i S ;
/ / Need ∗very∗ small s steps for high−frequency , but only i f s i s small
/ / Thus increment s by multiplying by number c lose enough to 1
p u b l i c s t a t i c d o u b l e dTau = W/noTau , dS = Math . pow(W/iS , 1 ./ noS ) ;

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] args ) throws IOException , FileNotFoundException {
System . out . p r i n t f ("\nUsing:\n\ttau + dTau, dTau = % 3.3f (noTau = % d)"

+ "\n\t s*dS , dS = % 3.3f (noS = % d)% n % n" , dTau , noTau , dS , noS ) ;
S t r i n g transformData = "transform .dat" ; / / Data f i l e
d o u b l e [ ] s i g = new d o u b l e [ noPtsSig ] ; / / Signal
s i g n a l ( noPtsSig , s ig , f a l s e ) ;
d o u b l e [ ] [ ] Y = new d o u b l e [ noS ] [ noTau ] ; / / Transform
f o r ( i n t i = 0 ; i < noS ; i ++ , s ∗= dS ) { / / Scaling

tau = iT ;
f o r ( i n t j = 0 ; j < noTau ; j ++ , tau+=dTau ) / / Translat ion

Y[ i ] [ j ] = transform ( s , tau , s i g ) ;
} / / Pr int normalized TF to f i l e
Pr i n t W r i t e r wd = new Pr i n t W r i t e r ( new F i l e W r i t e r ( transformData ) , t r u e ) ;
d o u b l e maxY = 0 . 0 0 1 ;
f o r ( i n t i = 0 ; i < noS ; i ++)

f o r ( i n t j = 0 ; j < noTau ; j ++)
i f ( Y[ i ] [ j ] >maxY || Y[ i ] [ j ]<−1∗maxY )

maxY = Math . abs ( Y[ i ] [ j ] ) ; / / Find max Y
tau = iT ; s = i S ;
f o r ( i n t i = 0 ; i < noS ; i ++ , s∗=dS ) { / / Write data

f o r ( i n t j = 0 ; j < noTau ; j ++ , tau+=dTau ) { / / Transform
wd. p r i n t l n ( s + " " + tau + " " + Y[ i ] [ j ]/maxY) ; } / / Norm to max

tau = iT ;
wd. p r i n t l n ( ) ; / / For gnuplot 3D

}
wd. c l o s e ( ) ;

/ / Find inverse TF
S t r i n g recSigData = "recSig . dat" ;
Pr i n t W r i t e r wdRecSig=new Pr i n t W r i t e r ( new F i l e W r i t e r ( recSigData ) , t r u e ) ;
d o u b l e [ ] r e c S i g = new d o u b l e [ s i g . length ] ; / / Same resolut ion
d o u b l e t = 0 . 0 ;
f o r ( i n t r s = 0 ; r s < r e c S i g . length ; r s ++ , t += h ) {

r e c S i g [ r s ] = invTransform ( t , Y) ;
wdRecSig . p r i n t l n ( t + " " + r e c S i g [ r s ] ) ; / / Write data

}
wdRecSig . c l o s e ( ) ;
System . out . p r i n t l n ("\nDone.\n" ) ; } / / End main

p u b l i c s t a t i c d o u b l e transform ( d o u b l e s , d o u b l e tau , d o u b l e [ ] s i g ) {
d o u b l e i n t e g r a l = 0 . , t = iT ; / / " i n i t i a l time " = c l a s s var iable
f o r ( i n t i = 0 ; i < s i g . length ; i ++ , t +=h ) i n t e g r a l += s i g [ i ]∗ morlet ( t , s , tau )∗h ;
r e t u r n i n t e g r a l / Math . s q r t ( s ) ; }

p u b l i c s t a t i c d o u b l e invTransform ( d o u b l e t , d o u b l e [ ] [ ] Y) {
d o u b l e s = iS , tau = iTau , r e c S i g _ t = 0 ; / / Don ’ t change s t a t i c ’ s
f o r ( i n t i = 0 ; i < noS ; i ++ , s ∗= dS ) {

tau = iTau ;
f o r ( i n t j = 0 ; j < noTau ; j ++ , tau += dTau )

r e c S i g _ t += dTau∗dS ∗ Math . pow( s , −1.5)∗ Y[ i ] [ j ] ∗ morlet ( t , s , tau ) ;
}
r e t u r n r e c S i g _ t ; }

p u b l i c s t a t i c d o u b l e morlet ( d o u b l e t , d o u b l e s , d o u b l e tau ) { / / Mother
d o u b l e T = ( ( t−tau ) /s ) ;

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 276

276 chapter 11

r e t u r n Math . s i n (8∗T ) ∗ Math . exp ( −T∗T/2 ) ;
}

p u b l i c s t a t i c v o i d s i g n a l ( i n t noPtsSig , d o u b l e [ ] y , b o o l e a n p l o t I t ) {
d o u b l e t = 0 . 0 ; d o u b l e hs = W / noPtsSig ;
f o r ( i n t i = 0 ; i < noPtsSig ; i ++ , t +=hs ) {

d o u b l e t 1 = W/ 6 . , t2 = 4 .∗W/ 6 . ;
i f ( t >= iT && t <=t1 ) y [ i ] = Math . s i n (2∗ PI∗ t ) ;
e l s e i f ( t >=t1 && t <=t2 ) y [ i ] = 5 .∗Math . s i n (2∗ PI∗ t ) + 10 .∗Math . s i n (4∗ PI∗ t ) ;
e l s e i f ( t >=t2 && t <=fT )

y [ i ]=2 .5∗Math . s i n (2∗ PI∗ t ) +6.∗Math . s i n (4∗ PI∗ t ) +10∗Math . s i n (6∗ PI∗ t ) ;
e l s e {

System . e r r . p r i n t l n ("\n\tIn signal ( . . . ) : t out of range.\n" ) ;
System . e x i t ( 1 ) ;

} } }

p u b l i c s t a t i c v o i d setParameters ( i n t ptsTransf ) {N=ptsTransf ; h=W/N; noPtsSig = N; }

p u b l i c s t a t i c v o i d setParameters ( i n t ptsTau , i n t ptsS ) { noTau = ptsTau ; noS = ptsS ;
dTau = W/noTau ; dS = Math . pow(W/iS , 1 ./ noS ) ; }

p u b l i c s t a t i c v o i d setParameters ( i n t ptsTransf , i n t ptsTau , i n t ptsS ) {
N = ptsTransf ; h = W/N; noPtsSig = N;
noTau = ptsTau ; noS = ptsS ;
dTau = W/noTau ; dS = Math . pow(W/iS , 1 ./ noS ) ; }

} / / End c l a s s
�

Listing 11.1 CWTzd.java computes a normalized (11) continuous wavelet transform of the

signal data in input [ ] (here assigned as a sum of sine functions) using Morlet wavelets

(courtesy of Z. Dimcovic). The discrete wavelet transform (DWT) in Listing 11.2 is faster and

yields a compressed transform but is less transparent.

then we can determine only N independent components of the transform Y . The
trick is to compute only theN independent components required to reproduce the
input signal, consistent with the uncertainty principle. The discrete wavelet trans-
form (DWT) technique evaluates the transforms with discrete values for the scaling
parameter s and the time translation parameter τ :

ψj,k(t) =
Ψ
[
(t− k2j)/2j

]
√

2j
≡ Ψ

(
t/2j − k

)
√

2j
(DWT), (11.20)

s= 2j , τ =
k

2j
, k, j = 0, 1, . . . . (11.21)

Here j and k are integers whose maximum values are yet to be determined, and we
have assumed that the total time interval T = 1, so that time is always measured
in integer values. This choice of s and τ , based on powers of 2, is called a dyadic
grid arrangement and is seen to automatically perform the scalings and translations
at the different time scales that are at the heart of wavelet analysis.3 The discrete

3 Note that some references scale down with increasing j, in contrast to our scaling up.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 277

wavelet analysis & data compression 277

wavelet transform now becomes

Yj,k =
∫ +∞

−∞
dt ψj,k(t) y(t) �

∑
m

ψj,k(tm)y(tm)h (DWT), (11.22)

where the discreteness here refers to the wavelet basis set and not the time variable.
For an orthonormal wavelet basis, the inverse discrete transform is then

y(t) =
+∞∑

j, k=−∞
Yj,k ψj,k(t) (inverse DWT). (11.23)

This inversion will exactly reproduce the input signal at the N input points if we
sum over an infinite number of terms [Add 02]. Practical calculations will be less
exact.

Notice in (11.20) and (11.22) that we have kept the time variable t in the wavelet
basis functions continuous, even though s and τ are made discrete. This is useful
in establishing the orthonormality of the basis functions,

∫ +∞

−∞
dt ψ∗

j,k(t)ψj′,k′(t) = δjj′ δkk′ , (11.24)

where δm,n is the Kronecker delta function. Being normalized to 1 means that each
wavelet basis has “unit energy”; being orthogonal means that each basis function is
independent of the others. And because wavelets are localized in time, the different
transform components have low levels of correlation with each other. Altogether,
this leads to efficient and flexible data storage.

The use of a discrete wavelet basis makes it clear that we sample the input signal
at the discrete values of time determined by the integers j and k. In general, you
want time steps that sample the signal at enough times in each interval to obtain
the desired level of precision. A rule of thumb is to start with 100 steps to cover
each major feature. Ideally, the needed times correspond to the times at which the
signal was sampled, although this may require some forethought.

Consider Figure 11.7. We measure a signal at a number of discrete times within
the intervals (k or τ values) corresponding to the vertical columns of fixed width
along the time axis. For each time interval, we want to sample the signal at a
number of scales (frequencies or j values). However, as discussed in §11.2, the basic
mathematics of Fourier transforms indicates that the width ∆t of a wave packet
ψ(t) and the width ∆ω of its Fourier transform Y (ω) are related by an uncertainty
principle

∆ω∆t≥ 2π.

This relation constrains the number of times we can meaningfully sample a signal in
order to determine a number of Fourier components. So while we may want a high-
resolution reproduction of our signal, we do not want to store more data than are

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 278

278 chapter 11

Time

F
re

qu
en

cy

Figure 11.7 Time and frequency resolutions. Each box represents an equal portion of the

time–frequency plane but with different proportions of time and frequency.

needed to obtain that reproduction. If we sample the signal for times centered about
some τ in an interval of width ∆τ (Figure 11.7) and then compute the transform at
a number of scales s or frequencies ω = 2π/s covering a range of height ∆ω, then
the relation between the height and width is restricted by the uncertainty relation,
which means that each of the rectangles in Figure 11.7 has the same area∆ω∆t= 2π.
The increasing heights of the rectangles at higher frequencies means that a larger
range of frequencies should be sampled as the frequency increases. The premise
here is that the low-frequency components provide the gross or smooth outline
of the signal which, being smooth, does not require much detail, while the high-
frequency components give the details of the signal over a short time interval and
so require many components in order to record these details with high resolution.

Industrial-strength wavelet analyses do not compute explicit integrals but
instead apply a technique known as multiresolution analysis (MRA). We give an
example of this technique in Figure 11.8 and in the code DWT.java in Listing 11.2.
It is based on a pyramid algorithm that samples the signal at a finite number of
times and then passes it successively through a number of filters, with each filter
representing a digital version of a wavelet.

Filters were discussed in §10.7, where in (10.59) we defined the action of a linear
filter as a convolution of the filter response function with the signal. A comparison
of the definition of a filter to the definition of a wavelet transform (11.12) shows that
the two are essentially the same. Such being the case, the result of the transform
operation is a weighted sum over the input signal values, with each weight the
product of the integration weight times the value of the wavelet function at the

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 279

wavelet analysis & data compression 279

L

L

H H

LL

LHH

2

2

2

2

Data
Input

Figure 11.8 A multifrequency dyadic (power-of-2) filter tree used for discrete wavelet

transformation. The L boxes represent lowpass filters, while the H boxes represent highpass

filters, each of which performs a convolution (transform). The circles containing ↓2 filter out

half of the signal that enters them, which is called subsampling or factor-of-2 decimation.

integration point. Therefore, rather than tabulate explicit wavelet functions, a set of
filter coefficients is all that is needed for discrete wavelet transforms.

Because each filter in Figure 11.8 changes the relative strengths of the different
frequency components, passing the signal through a series of filters is equivalent,
in the wavelet sense, to analyzing the signal at different scales. This is the origin
of the name “multiresolution analysis.” Figure 11.8 shows how the pyramid algo-
rithm passes the signal through a series of highpass filters (H) and then through a
series of lowpass filters (L). Each filter changes the scale to that of the level below.
Notice too, the circles containing ↓2 in Figure 11.8. This operation filters out half
of the signal and so is called subsampling or factor-of-2 decimation. It is the way
we keep the areas of each box in Figure 11.7 constant as we vary the scale and
translation times. We consider subsampling further when we discuss the pyramid
algorithm.

In summary, the DWT process decomposes the signal into smooth information
stored in the low-frequency components and detailed information stored in the high-
frequency components. Because high-resolution reproductions of signals require
more information about details than about gross shape, the pyramid algorithm
is an effective way to compress data while still maintaining high resolution (we
implement compression in Appendix G). In addition, because components of dif-
ferent resolution are independent of each other, it is possible to lower the number of
data stored by systematically eliminating higher-resolution components. The use
of wavelet filters builds in progressive scaling, which is particularly appropriate
for fractal-like reproductions.

11.5.1 Pyramid Scheme Implementation �

We now wish to implement the pyramid scheme outlined in Figure 11.8. The filters
L andH will be represented by matrices, which is an approximate way to perform

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 280

280 chapter 11

Input
N Samples

N/2

N/4

N/8

2

N/2

N/4

N/8

2

c

c

c

c

d

d

d

d

(1)

(2)

(3)

(n)

(1)

(2)

(3)

(n)

Coefficients

Coefficients

Coefficients

Coefficients

CoefficientsCoefficients

Coefficients

Coefficients

L

L

L

L

H

H

H

H

Figure 11.9 The original signal is processed by high- and low-band filters, and the outputs

are downsampled with every other point kept. The process continues until there are only

two output points of high-band filtering and two points of low-band filtering. The total

number of output data equals the total number of signal points. It may be easier to

understand the output of such an analysis as the signal passed through various filters

rather than as a set of Fourier-like coefficients.

the integrations or convolutions. Then there is a decimation of the output by one-
half, and finally an interleaving of the output for further filtering. This process
simultaneously cuts down on the number of points in the data set and changes
the scale and the resolution. The decimation reduces the number of values of the
remaining signal by one half, with the low-frequency part discarded because the
details are in the high-frequency parts.

As indicated in Figure 11.9, the pyramid algorithm’s DWT successively (1)
applies the (soon-to-be-derived) c matrix (11.35) to the whole N -length vector,



Y0

Y1

Y2

Y3


=



c0 c1 c2 c3

c3 −c2 c1 −c0
c2 c3 c0 c1

c1 −c0 c3 −c2





y0

y1

y2

y3


 , (11.25)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 281

wavelet analysis & data compression 281

(2) applies it to the (N/2)-length smooth vector, (3) and then repeats until two
smooth components remain. (4) After each filtering, the elements are ordered, with
the newest two smooth elements on top, the newest detailed elements below, and
the older detailed elements below that. (5) The process continues until there are
just two smooth elements left.

To illustrate, here we filter and reorder an initial vector of length N = 8:




y1

y2

y3

y4

y5

y6

y7

y8




filter−→




s
(1)
1

d
(1)
1

s
(1)
2

d
(1)
2

s
(1)
3

d
(1)
3

s
(1)
4

d
(1)
4




order−→




s
(1)
1

s
(1)
2

s
(1)
3

s
(1)
4

d
(1)
1

d
(1)
2

d
(1)
3

d
(1)
4




filter−→




s
(2)
1

d
(2)
1

s
(2)
2

d
(2)
2

d
(1)
1

d
(1)
2

d
(1)
3

d
(1)
4




order−→




s
(2)
1

s
(2)
2

d
(2)
1

d
(2)
2

d
(1)
1

d
(1)
2

d
(1)
3

d
(1)
4




. (11.26)

The discrete inversion of a transform vector back to a signal vector is made using
the transpose (inverse) of the transfer matrix at each stage. For instance,



y0

y1

y2

y3


=



c0 c3 c2 c1

c1 −c2 c3 −c0
c2 c1 c0 c3

c3 −c0 c1 −c2





Y0

Y1

Y2

Y3


 . (11.27)

As a more realistic example, imagine that we have sampled the chirp signal
y(t) = sin(60t2) for 1024 times. The filtering process through which we place this
signal is illustrated as a passage from the top to the bottom in Figure 11.9. First the
original 1024 samples are passed through a single low band and a single high band
(which is mathematically equivalent to performing a series of convolutions). As
indicated by the down arrows, the output of the first stage is then downsampled
(the number reduced by a factor of 2). This results in 512 points from the high-
band filter as well as 512 points from the low-band filter. This produces the first-
level output. The output coefficients from the high-band filters are called {d(1)

i }
to indicate that they show details, and {s(1)i } to indicate that they show smooth
features. The superscript indicates that this is the first level of processing. The
detail coefficients {d(1)} are stored to become part of the final output.

In the next level down, the 512 smooth data {s(1)i } are passed through new
low- and high-band filters using a broader wavelet. The 512 outputs from each are
downsampled to form a smooth sequence {s(2)i } of size 256 and a detailed sequence
{d(2)

i } of size 256. Again the detail coefficients {d(2)} are stored to become part of the
final output. (Note that this is only half the size of the previously stored details.) The
process continues until there are only two numbers left for the detail coefficients
and two numbers left for the smooth coefficients. Since this last filtering is done

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 282

282 chapter 11

Figure 11.10 The filtering of the original signal at the top goes through the pyramid algorithm

and produces the outputs shown, in successive passes. The sampling is reduced by a factor of

2 in each step. Note that in the upper graphs we have connected the points to make the

output look continuous, while in the lower graphs, with fewer points, we have plotted the

output as histograms to make the points more evident.

with the broadest wavelet, it is of the lowest resolution and therefore requires the
least information.

In Figure 11.10 we show the actual effects on the chirp signal of pyramid filtering
for various levels in the processing. (The processing is done with four-coefficient
Daub4 wavelets, which we will discuss soon.) At the uppermost level, the Daub4
wavelet is narrow, and so convoluting this wavelet with successive sections of the
signal results in smooth components that still contain many large high-frequency
parts. The detail components, in contrast, are much smaller in magnitude. In the
next stage, the wavelet is dilated to a lower frequency and the analysis is repeated

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 283

wavelet analysis & data compression 283

on just the smooth (low-band) part. The resulting output is similar, but with coarser
features for the smooth coefficients and larger values for the details. Note that in
the upper graphs we have connected the points to make the output look continu-
ous, while in the lower graphs, with fewer points, we have plotted the output as
histograms to make the points more evident. Eventually the downsampling leads
to just two coefficients output from each filter, at which point the filtering ends.

To reconstruct the original signal (called synthesis or transformation) a reversed
process is followed: Begin with the last sequence of four coefficients, upsample
them, pass them through low- and high-band filters to obtain new levels of coef-
ficients, and repeat until all the N values of the original signal are recovered. The
inverse scheme is the same as the processing scheme (Figure 11.9), only now the
direction of all the arrows is reversed.

11.5.2 Daubechies Wavelets via Filtering

We should now be able to understand that digital wavelet analysis has been stan-
dardized to the point where classes of wavelet basis functions are specified not
by their analytic forms but rather by their wavelet filter coefficients. In 1988, the
Belgian mathematician Ingrid Daubechies discovered an important class of such
filter coefficients [Daub 95]. We will study just the Daub4 class containing the four
coefficients c0, c1, c2, and c3.

Imagine that our input contains the four elements {y1, y2, y3, y4} corresponding
to measurements of a signal at four times. We represent a lowpass filter L and a
highpass filter H in terms of the four filter coefficients as

L=
(
+c0 +c1 +c2 +c3

)
(11.28)

H =
(
+c3 −c2 +c1 −c0

)
. (11.29)

To see how this works, we form an input vector by placing the four signal elements
in a column and then multiply the input by L and H :

L



y0
y1
y2
y3


=

(
+c0 +c1 +c2 +c3

)


y0
y1
y2
y3


= c0y0 + c1y1 + c2y2 + c3y3,

H



y0
y1
y2
y3


=

(
+c3 −c2 +c1 −c0

)


y0
y1
y2
y3


= c3y0 − c2y1 + c1y2 − c0y3.

We see that if we choose the values of the ci’s carefully, the result of L acting on the
signal vector is a single number that may be viewed as a weighted average of the
four input signal elements. Since an averaging process tends to smooth out data,
the lowpass filter may be thought of as a smoothing filter that outputs the general
shape of the signal.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 284

284 chapter 11

In turn, we see that if we choose the ci values carefully, the result ofH acting on
the signal vector is a single number that may be viewed as the weighted differences
of the input signal. Since a differencing process tends to emphasize the variation in
the data, the highpass filter may be thought of as a detail filter that produces a large
output when the signal varies considerably, and a small output when the signal is
smooth.

We have just seen how the individual L and H filters, each represented by a
single row, output one number when acting upon an input signal containing four
elements in a column. If we want the output of the filtering process Y to contain
the same number of elements as the input (four y’s in this case), we just stack the
L and H filters together:



Y0

Y1

Y2

Y3


=



L

H

L

H






y0

y1

y2

y3


=



c0 c1 c2 c3

c3 −c2 c1 −c0
c2 c3 c0 c1

c1 −c0 c3 −c2






y0

y1

y2

y3


 . (11.30)

Of course the first and third rows of the Y vector will be identical, as will the second
and fourth, but we will get to that soon.

Now we go about determining the values of the filter coefficients ci by placing
specific demands upon the output of the filter. We start by recalling that in our
discussion of discrete Fourier transforms we observed that a transform is equivalent
to a rotation from the time domain to the frequency domain. Yet we know from
our study of linear algebra that rotations are described by orthogonal matrices, that
is, matrices whose inverses are equal to their transposes. In order for the inverse
transform to return us to the input signal, the transfer matrix must be orthogonal.
For our wavelet transformation to be orthogonal, we must have the 4 × 4 filter
matrix times its transpose equal to the identity matrix:



c0 c1 c2 c3

c3 −c2 c1 −c0
c2 c3 c0 c1

c1 −c0 c3 −c2





c0 c3 c2 c1

c1 −c2 c3 −c0
c2 c1 c0 c3

c3 −c0 c1 −c2


=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,

⇒ c20 + c21 + c22 + c23 = 1, c2c0 + c3c1 = 0. (11.31)

Two equations in four unknowns are not enough for a unique solution, so we now
include the further requirement that the detail filter H = (c3, −c0, c1, −c2) must
output a zero if the input is smooth. We define “smooth” to mean that the input is
constant or linearly increasing:

(
y0 y1 y2 y3

)
=
(
1 1 1 1

)
or

(
0 1 2 3

)
. (11.32)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 285

wavelet analysis & data compression 285

This is equivalent to demanding that the moments up to order p are zero, that is,
that we have an “approximation of order p.” Explicitly,

H
(
y0 y1 y2 y3

)
=H

(
1 1 1 1

)
=H

(
0 1 2 3

)
= 0,

⇒ c3 − c2 + c1 − c0 = 0, 0 × c3 − 1 × c2 + 2 × c1 − 3 × c0 = 0,

⇒ c0 =
1 +

√
3

4
√

2
� 0.483, c1 =

3 +
√

3
4
√

2
� 0.836, (11.33)

c2 =
3 −√

3
4
√

2
� 0.224, c3 =

1 −√
3

4
√

2
� −0.129. (11.34)

We now have our basic Daub4 filter coefficients. They can be used to process signals
with more than four elements by creating a square filter matrix of the needed
dimension that repeats these elements by placing the row versions of L and H
along the diagonal, with successive pairs displaced two columns to the right. For
example, for eight elements,




Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7




=




c0 c1 c2 c3 0 0 0 0

c3 −c2 c1 −c0 0 0 0 0

0 0 c0 c1 c2 c3 0 0

0 0 c3 −c2 c1 −c0 0 0

0 0 0 0 c0 c1 c2 c3

0 0 0 0 c3 −c2 c1 −c0
c2 c3 0 0 0 0 c0 c1

c1 −c0 0 0 0 0 c3 −c2







y0

y1

y2

y3

y4

y5

y6

y7




. (11.35)

Note that in order not to lose any information, the last pair on the bottom two rows
is wrapped over to the left. If you perform the actual multiplications indicated in
(11.35), you will note that the output has successive smooth and detailed information.
The output is processed with the pyramid scheme.

The time dependences of two Daub4 wavelets is displayed in Figure 11.11. To
obtain these from our filter coefficients, first imagine that an elementary wavelet
y1,1(t) ≡ ψ1,1(t) is input into the filter. This should result in a transform Y1,1 = 1.
Inversely, we obtain y1,1(t) by applying the inverse transform to a Y vector with a
1 in the first position and zeros in all the other positions. Likewise, the ith member
of the Daubechies class is obtained by applying the inverse transform to a Y vector C D

with a 1 in the ith position and zeros in all the other positions. Our code for doing
this is Scale.java and is on the CD.

On the left in Figure 11.11 is the wavelet for coefficient 6 (thus the e6 notation). On
the right in Figure 11.11 is the sum of two wavelets corresponding to the coefficients
10 and 58. We see that the two wavelets have different levels of scale as well as

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 286

286 chapter 11

–0.1

–0.06

–0.02

0.02

0.06

0.1

0 400 800 1200
–0.3

–0.1

0.1

0.3

0 400 800 1200

Figure 11.11 Left: The Daub4 e6 wavelet constructed by inverse transformation of the

wavelet coefficients. Right: The sum of Daub4 e10 and Daub4 1e58 wavelets of different

scale and time displacements.

different time positions. So even though the time dependence of the wavelets is
not evident when wavelet (filter) coefficients are used, it is there.

11.5.3 DWT Implementation and Exercise

Listing 11.2 gives our program for performing a DWT on the chirp signal y(t) =
sin(60t2). The method pyram calls the daube4 method to perform the DWT or
inverse DWT, depending upon the value of sign.

� �
/ / DWT. java : DUAB4 Wavelet TF ; input=indata . dat , output=outdata . dat
/ / sign = + 1 : DWT, −1: InvDWT, 2∗∗n input
i m p o r t j ava . io . ∗ ;

p u b l i c c l a s s DWT {
s t a t i c d o u b l e c0 , c1 , c2 , c3 ; / / Global var iables
s t a t i c i n t N = 1024 , n ; / / 2^n data points

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) throws IOException , FileNotFoundException {
Pr i n t W r i t e r w = new Pr i n t W r i t e r ( new FileOutputStream ("indata . dat" ) , t r u e ) ;
Pr i n t W r i t e r q = new Pr i n t W r i t e r ( new FileOutputStream ("outdata . dat" ) , t r u e ) ;
System . out . p r i n t l n ("DWT: input = indata .dat , output = outdata . dat" ) ;
i n t i , dn ;
d o u b l e xi , i n x i ; d o u b l e f [ ] = new d o u b l e [N + 1 ] ; / / Data vector
i n x i = 1 . / ( d o u b l e ) (N) ; / / For chirp 0 <= t <= 1
x i = 0 . ;
f o r ( i =1 ; i <= N; i ++ ) {

f [ i ] = chirp ( x i ) ; / / Change for other s ignal
x i = x i + i n x i ;
w. p r i n t l n (" " + x i + " " + f [ i ] + " " ) ; / / Indata . dat

}
n = N; / / number datapoints must = power of 2
pyram ( f , n , 1 ) ; / / DWTF (1 −> −1 for inverse )
/ / pyram ( f , n , −1) ; / / (1 −> −1 for inverse )

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 287

wavelet analysis & data compression 287

f o r ( i =1 ; i <= N; i ++ ) q . p r i n t l n (" " + i + " " + f [ i ]+ " " ) ;
} / / Main

p u b l i c s t a t i c v o i d pyram ( d o u b l e f [ ] , i n t n , i n t s ign ) { / / Pyramid
i n t nd , nend ;
d o u b l e sq3 , f sq2 ; / / sqr t ( 3 ) , 4 sqr t ( 2 )
i f ( n < 4) r e t u r n ; / / Too few data
sq3 = Math . s q r t ( 3 ) ;
f sq2 = 4 .∗Math . s q r t ( 2 ) ; / / DAUB4 c o e f f i c i e n t s
c0 = ( 1 . +sq3 ) /fsq2 ; c1 = ( 3 . +sq3 ) /fsq2 ; c2 = (3.− sq3 ) /fsq2 ; c3 = (1.− sq3 ) /fsq2 ;
nend = 4 ; / / Controls output ( 1 : 1 0 2 4 , 2 : 5 1 2 , e t c )
i f ( s ign >= 0) f o r ( nd=n ; nd >= nend ; nd /= 2) daube4 ( f , nd , s ign ) ;

e l s e f o r ( nd=4; nd <= n ; nd ∗= 2) daube4 ( f , nd , s ign ) ;
}

p u b l i c s t a t i c v o i d daube4 ( d o u b l e f [ ] , i n t n , i n t s ign ) {
/∗∗ Daubechies 4 DWT or 1 /DWT
∗ @param f [ ] : data containing DWT or 1 /DWT
∗ @param n : decimation a f t e r pyramidal algorithm
∗ @param sign : >=0 for DWT, @param sign : < 0 for inverse TF ∗ /

d o u b l e t r [ ] = new d o u b l e [ n + 1 ] ; / / Temporary var iable
i n t i , j , mp, mp1 ;
i f ( n < 4) r e t u r n ;

mp = n/2; mp1 = mp + 1 ; / / Midpoint Midpoint +1 of array
i f ( s ign >= 0) { / / DWT

j = 1 ;
f o r ( i = 1 ; j <= n−3; i ++ ) { / / Smooth then detai led f i l t e r s

t r [ i ] = c0∗ f [ j ] + c1∗ f [ j + 1 ] + c2∗ f [ j + 2 ] + c3∗ f [ j + 3 ] ;
t r [ i + mp] = c3∗ f [ j ] − c2∗ f [ j + 1 ] + c1∗ f [ j + 2 ] − c0∗ f [ j + 3 ] ;
j += 2 ; / / Downsampling

}
t r [ i ] = c0∗ f [ n−1] + c1∗ f [ n ] + c2∗ f [ 1 ] + c3∗ f [ 2 ] ; / / Low
t r [ i + mp] = c3∗ f [ n−1]−c2∗ f [ n ] + c1∗ f [1]− c0∗ f [ 2 ] ; / / High

} e l s e { / / inverse DWT
t r [ 1 ] = c2∗ f [mp] + c1∗ f [ n ] + c0∗ f [ 1 ] + c3∗ f [mp1 ] ; / / Low
t r [ 2 ] = c3∗ f [mp]−c0∗ f [ n ] + c1∗ f [1]− c2∗ f [mp1 ] ; / / High
f o r ( i =1 , j =3 ; i < mp; i ++ ) {

t r [ j ] = c2∗ f [ i ] + c1∗ f [ i + mp] + c0∗ f [ i + 1 ] + c3∗ f [ i + mp1 ] ;
j += 1 ; / / upsamplig c c o e f f i c i e n t s
t r [ j ] = c3∗ f [ i ]−c0∗ f [ i + mp] + c1∗ f [ i + 1]−c2∗ f [ i + mp1 ] ;
j += 1 ; / / upsampling d c o e f f i c i e n t s

} / / For
} / / Else

f o r ( i =1 ; i <= n ; i ++ ) f [ i ] = t r [ i ] ; / / Copy TF in array
} / / Daube4

p u b l i c s t a t i c d o u b l e chirp ( d o u b l e x i ) { d o u b l e y ; y = Math . s i n (60∗ x i∗x i ) ; r e t u r n y ; }
} / / Class

�

Listing 11.2 DWT.java computes the discrete wavelet transform using the pyramid algorithm

for the 2n signal values stored in f[ ] (here assigned as the chirp signal sin 60t2). The Daub4

digital wavelets are the basis functions, and sign = ±1 for transform/inverse.

1. Modify the program so that you output to a file the values for the input signal
that your code has read in. It is always important to check your input.

2. Try to reproduce the left of Figure 11.10 by using various values for the vari-
able nend that controls when the filtering ends. A value nend=1024 should
produce just the first step in the downsampling (top row in Figure 11.10).
Selecting nend=512 should produce the next row, while nend=4 should
output just two smooth and detailed coefficients.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 288

288 chapter 11

3. Reproduce the scale–time diagram shown on the right in Figure 11.10. This
diagram shows the output at different scales and serves to interpret the main
components of the signal and the time in which they appear. The time line at
the bottom of the figure corresponds to a signal of length 1 over which 256
samples were recorded. The low-band (smooth) components are shown on
the left, and the high-band components on the right.
a. The bottommost figure results when nend = 256.
b. The figure in the second row up results from nend = 128, and we have

the output from two filterings. The output contains 256 coefficients but
divides time into four intervals and shows the frequency components of
the original signal in more detail.

c. Continue with the subdivisions for nend = 64, 32, 16, 8, and 4.
4. For each of these choices except the topmost, divide the time by 2 and separate

the intervals by vertical lines.
5. The topmost spectrum is your final output. Can you see any relation between

it and the chirp signal?
6. Change the sign of sign and check that the inverse DWT reproduces the

original signal.
7. Use the code to visualize the time dependence of the Daubechies mother

function at different scales.
a. Start by performing an inverse transformation on the eight-component

signal [0,0,0,0,1,0,0,0]. This should yield a function with a width of about
5 units.

b. Next perform an inverse transformation on a unit vector with N = 32 but
with all components except the fifth equal to zero. The width should now
be about 25 units, a larger scale but still covering the same time interval.

c. Continue this procedure until you obtain wavelets of 800 units.
d. Finally, withN = 1024, select a portion of the mother wavelet with data in

the horizontal interval [590,800]. This should show self-similarity similar
to that at the bottom of Figure 11.11.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 289

12

Discrete & Continuous Nonlinear Dynamics

Nonlinear dynamics is one of the success stories of computational science. It has
been explored by mathematicians, scientists, and engineers, with computers as an
essential tool. The computations have led to the discovery of new phenomena such as
solitons, chaos, and fractals, as you will discover on your own. In addition, because
biological systems often have complex interactions and may not be in thermodynamic
equilibrium states, models of them are often nonlinear, with properties similar to those
of other complex systems.

In Unit I we develop the logistic map as a model for how bug populations achieve
dynamic equilibrium. It is an example of a very simple but nonlinear equation pro-
ducing surprising complex behavior. In Unit II we explore chaos for a continuous
system, the driven realistic pendulum. Our emphasis there is on using phase space as
an example of the usefulness of an abstract space to display the simplicity underlying
complex behavior. In Unit III we extend the discrete logistic map to nonlinear dif-
ferential models of coupled predator–prey populations and their corresponding phase
space plots.

12.1 Unit I. Bug Population Dynamics (Discrete)

Problem: The populations of insects and the patterns of weather do not appear to
follow any simple laws.1 At times they appear stable, at other times they vary peri-
odically, and at other times they appear chaotic, only to settle down to something
simple again. Your problem is to deduce if a simple, discrete law can produce such
complicated behavior.

12.2 The Logistic Map (Model)

Imagine a bunch of insects reproducing generation after generation. We start with
N0 bugs, then in the next generation we have to live with N1 of them, and after
i generations there are Ni bugs to bug us. We want to define a model of how
Nn varies with the discrete generation number n. For guidance, we look to the
radioactive decay simulation in Chapter 5, “Monte Carlo Simulations”, where the

1 Except maybe in Oregon, where storm clouds come to spend their weekends.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 290

290 chapter 12

discrete decay law, ∆N/∆t= −λN , led to exponential-like decay. Likewise, if we
reverse the sign of λ, we should get exponential-like growth, which is a good place
to start our modelling. We assume that the bug-breeding rate is proportional to the
number of bugs:

∆Ni

∆t
= λ Ni. (12.1)

Because we know as an empirical fact that exponential growth usually tapers off,
we improve the model by incorporating the observation that bugs do not live on
love alone; they must also eat. But bugs, not being farmers, must compete for
the available food supply, and this might limit their number to a maximum N∗
(called the carrying capacity). Consequently, we modify the exponential growth
model (12.1) by introducing a growth rate λ′ that decreases as the population Ni

approaches N∗:

λ= λ′(N∗ −Ni) ⇒ ∆Ni

∆t
= λ′(N∗ −Ni)Ni. (12.2)

We expect that when Ni is small compared to N∗, the population will grow expo-
nentially, but that as Ni approaches N∗, the growth rate will decrease, eventually
becoming negative if Ni exceeds N∗, the carrying capacity.

Equation (12.2) is one form of the logistic map. It is usually written as a relation
between the number of bugs in future and present generations:

Ni+1 =Ni +λ′ ∆t(N∗ −Ni)Ni, (12.3)

=Ni (1 +λ′ ∆tN∗)
[
1 − λ′ ∆t

1 +λ′ ∆tN∗
Ni

]
. (12.4)

The map looks simple when expressed in terms of natural variables:

xi+1 = µxi(1 −xi), (12.5)

µ
def= 1 +λ′ ∆tN∗, xi

def=
λ′ ∆t
µ

Ni � Ni

N∗
, (12.6)

where µ is a dimensionless growth parameter and xi is a dimensionless population
variable. Observe that the growth rate µ equals 1 when the breeding rate λ′ equals 0,
and is otherwise expected to be larger than 1. If the number of bugs born per
generation λ′ ∆t is large, then µ� λ′ ∆tN∗ and xi �Ni/N∗. That is, xi is essentially
a fraction of the carrying capacity N∗. Consequently, we consider x values in the
range 0 ≤ xi ≤ 1, where x= 0 corresponds to no bugs and x= 1 to the maximum
population. Note that there is clearly a linear, quadratic dependence of the RHS
of (12.5) on xi. In general, a map uses a function f(x) to map one number in a

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 291

discrete & continuous nonlinear dynamics 291

sequence to another,

xi+1 = f(xi). (12.7)

For the logistic map, f(x) = µx(1 −x), with the quadratic dependence of f on x
making this a nonlinear map, while the dependence on only the one variable xi

makes it a one-dimensional map.

12.3 Properties of Nonlinear Maps (Theory)

Rather than do some fancy mathematical analysis to determine the properties of
the logistic map [Rash 90], we prefer to have you study it directly on the computer
by plotting xi versus generation number i. Some typical behaviors are shown in
Figure 12.1. In Figure 12.1A we see equilibration into a single population; in Fig-
ure 12.1B we see oscillation between two population levels; in Figure 12.1C we see
oscillation among four levels; and in Figure 12.1D we see a chaotic system. The
initial population x0 is known as the seed, and as long as it is not equal to zero, its
exact value usually has little effect on the population dynamics (similar to what we
found when generating pseudorandom numbers). In contrast, the dynamics are
unusually sensitive to the value of the growth parameter µ. For those values of µ
at which the dynamics are complex, there may be extreme sensitivity to the initial
condition x0 as well as to the exact value of µ.

12.3.1 Fixed Points

An important property of the map (12.5) is the possibility of the sequence xi reach-
ing a fixed point at which xi remains or fluctuates about. We denote such fixed
points as x∗. At a one-cycle fixed point, there is no change in the population from
generation i to generation i+ 1; that is,

xi+1 = xi = x∗. (12.8)

Using the logistic map (12.5) to relate xi+1 to xi yields the algebraic equation

µx∗(1 −x∗) = x∗ ⇒ x∗ = 0 or x∗ =
µ− 1
µ

. (12.9)

The nonzero fixed point x∗ = (µ− 1)/µ corresponds to a stable population with a
balance between birth and death that is reached regardless of the initial population
(Figure 12.1A). In contrast, the x∗ = 0 point is unstable and the population remains
static only as long as no bugs exist; if even a few bugs are introduced, exponential
growth occurs. Further analysis (§12.8) tells us that the stability of a population is
determined by the magnitude of the derivative of the mapping function f(xi) at

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 292

292 chapter 12

0 10 20
0

0.4

0.8

A

0 10 20

B

0 10 20

C

0 10 20

D

xn

n n

Figure 12.1 The insect population xn versus the generation number n for various growth

rates. (A) µ= 2.8, a period-one cycle. If the fixed point is xn = 0, the system becomes extinct.

(B) µ= 3.3, a period-two cycle. (C) µ= 3.5, a period-four cycle. (D) µ= 3.8, a chaotic regime.

If µ < 1, the population goes extinct.

the fixed point [Rash 90]:

∣∣∣∣ dfdx
∣∣∣∣
x∗

< 1 (stable). (12.10)

For the one cycle of the logistic map (12.5), we have

df

dx

∣∣∣∣
x∗

= µ− 2µx∗ =

{
µ, stable at x∗ = 0 if µ < 1,

2 −µ, stable at x∗ = µ−1
µ if µ < 3.

(12.11)

12.3.2 Period Doubling, Attractors

Equation (12.11) tells us that while the equation for fixed points (12.9) may be
satisfied for all values of µ, the populations will not be stable if µ > 3. For µ > 3, the
system’s long-term population bifurcates into two populations (a two-cycle), an effect
known as period doubling (Figure 12.1B). Because the system now acts as if it were
attracted to two populations, these populations are called attractors or cycle points.
We can easily predict the x values for these two-cycle attractors by demanding that
generation i+ 2 have the same population as generation i:

xi = xi+2 = µxi+1(1 −xi+1) ⇒ x∗ =
1 +µ±

√
µ2 − 2µ− 3
2µ

. (12.12)

We see that as long as µ > 3, the square root produces a real number and thus that
physical solutions exist (complex or negative x∗ values are nonphysical). We leave
it to your computer explorations to discover how the system continues to double
periods as µ continues to increase. In all cases the pattern is the same: One of the
populations bifurcates into two.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 293

discrete & continuous nonlinear dynamics 293

12.4 Mapping Implementation

Program the logistic map to produce a sequence of population values xi as a
function of the generation number i. These are called map orbits. The assessment
consists of confirmation of Feigenbaum’s observations [Feig 79] of the differ-
ent behavior patterns shown in Figure 12.1. These occur for growth parameter
µ= (0.4, 2.4, 3.2, 3.6, 3.8304) and seed population x0 = 0.75. Identify the following
on your graphs:

1. Transients: Irregular behaviors before reaching a steady state that differ for
different seeds.

2. Asymptotes: In some cases the steady state is reached after only 20 gener-
ations, while for larger µ values, hundreds of generations may be needed.
These steady-state populations are independent of the seed.

3. Extinction: If the growth rate is too low, µ≤ 1, the population dies off.
4. Stable states: The stable single-population states attained for µ < 3 should

agree with the prediction (12.9).
5. Multiple cycles: Examine the map orbits for a growth parameter µ increasing

continuously through 3. Observe how the system continues to double periods
as µ increases. To illustrate, in Figure 12.1C with µ= 3.5, we notice a steady
state in which the population alternates among four attractors (a four-cycle).

6. Intermittency: Observe simulations for 3.8264< µ < 3.8304. Here the system
appears stable for a finite number of generations and then jumps all around,
only to become stable again.

7. Chaos: We define chaos as the deterministic behavior of a system displaying
no discernible regularity. This may seem contradictory; if a system is deter-
ministic, it must have step-to-step correlations (which, when added up, mean
long-range correlations); but if it is chaotic, the complexity of the behavior
may hide the simplicity within. In an operational sense, a chaotic system is
one with an extremely high sensitivity to parameters or initial conditions. This
sensitivity to even minuscule changes is so high that it is impossible to predict
the long-range behavior unless the parameters are known to infinite precision
(a physical impossibility).

The system’s behavior in the chaotic region is critically dependent on the
exact values ofµ andx0. Systems may start out with nearly identical values for
µ and x0 but end up with quite different ones. In some cases the complicated
behaviors of nonlinear systems will be chaotic, but unless you have a bug in
your program, they will not be random.2

a. Compare the long-term behaviors of starting with the two essentially
identical seeds x0 = 0.75 and x′

0 = 0.75(1 + ε), where ε� 2 × 10−14.

2 You may recall from Chapter 5, “Monte Carlo Simulations,” that a random sequence of
events does not even have step-by-step correlations.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 294

294 chapter 12

b. Repeat the simulation with x0 = 0.75 and two essentially identical survival
parameters, µ= 4.0 and µ′ = 4.0(1− ε). Both simulations should start off
the same but eventually diverge.

12.5 Bifurcation Diagram (Assessment)

Computing and watching the population change with generation number gives
a good idea of the basic dynamics, at least until it gets too complicated to dis-
cern patterns. In particular, as the number of bifurcations keeps increasing and
the system becomes chaotic, it is hard for us to see a simple underlying struc-
ture within the complicated behavior. One way to visualize what is going on is
to concentrate on the attractors, that is, those populations that appear to attract
the solutions and to which the solutions continuously return. A plot of these
attractors (long-term iterates) of the logistic map as a function of the growth
parameter µ is an elegant way to summarize the results of extensive computer
simulations.

A bifurcation diagram for the logistic map is given in Figure 12.2, while one for a
Gaussian map is given in Figure 12.3. For each value of µ, hundreds of iterations
are made to make sure that all transients essentially die out, and then the values
(µ, x∗) are written to a file for hundreds of iterations after that. If the system falls
into an n cycle for this µ value, then there should predominantly be n different
values written to the file. Next, the value of the initial populations x0 is changed
slightly, and the entire procedure is repeated to ensure that no fixed points are
missed. When finished, your program will have stepped through all the values
of growth parameter µ, and for each value of µ it will have stepped through all
the values of the initial population x0. Our sample program Bugs.java is shown in
Listing 12.1.

� �
/ / Bugs . java : Bifurcat ion diagram for l o g i s t i c map
i m p o r t j ava . io . ∗ ;

p u b l i c c l a s s Bugs {
s t a t i c d o u b l e m_min = 0 . 0 , m_max = 4 . , s tep =0.01 ; / / Class var iables

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) throws IOException , FileNotFoundException {
d o u b l e m, y ;
i n t i ; / / Output data to Bugs . dat
Pr i n t W r i t e r w = new Pr i n t W r i t e r ( new FileOutputStream ("Bugs . dat" ) , t r u e ) ;
f o r ( m = m_min ; m <= m_max ; m += step ) { / / mu loop

y = 0 . 5 ; / / Arbitrary seed
f o r ( i =1 ; i <=200; i ++ ) y = m∗y∗(1−y ) ; / / Transients
f o r ( i =201; i <=401; i ++ ) {
y = m∗y∗(1−y ) ;
w. p r i n t l n ( ""+ m+" "+ y ) ; }

}
System . out . p r i n t l n ("sorted data stored in Bugs . dat ." ) ;

} }
�

Listing 12.1 Bugs.java, the basis of a program for producing the bifurcation diagram of the

logistic map. A finished program requires finer grids, a scan over initial values, and removal of

duplicates.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 295

discrete & continuous nonlinear dynamics 295

1

0.8

0.6

0.4

0.2

0

X
*

1 2 3 3.5 4

µ

3.82 3.84 3.86

0.8

0.4

Logistics Map Bifurcation Diagram

Figure 12.2 The bifurcation plot, attractor populations versus growth rate, for the logistic map.

The inset shows some details of a three-cycle window.

12.5.1 Bifurcation Diagram Implementation

The last part of this problem is to reproduce Figure 12.2 at various levels of detail.
(You can listen to a sonification of this diagram on the CD or use one of the applet C D

there to create your own sonification.) While the best way to make a visualization of
this sort would be with visualization software that permits you to vary the intensity
of each individual point on the screen, we simply plot individual points and have
the density in each region determined by the number of points plotted there. When
thinking about plotting many individual points to draw a figure, it is important
to keep in mind that your screen resolution is ∼100 dots per inch and your laser
printer resolution may be 300 dots per inch. This means that if you plot a point
at each pixel, you will be plotting ∼3000 × 3000�10 million elements. Beware: This
can require some time and may choke a printer. In any case, printing at a finer
resolution is a waste of time.

12.5.2 Visualization Algorithm: Binning

1. Break up the range 1 ≤ µ≤ 4 into 1000 steps and loop through them. These
are the “bins” into which we will place the x∗ values.

2. In order not to miss any structures in your bifurcation diagram, loop through
a range of initial x0 values as well.

3. Wait at least 200 generations for the transients to die out and then print the
next several hundred values of (µ, x∗) to a file.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 296

296 chapter 12

1

0

–1

X

–1
0

0

b=1.0
b=4.0
b=5.0

Figure 12.3 A bifurcation plot for the Gaussian map. (Courtesy of W. Hager.)

4. Print your x∗ values to no more than three or four decimal places. You will
not be able to resolve more places than this on your plot, and this restriction
will keep your output files smaller by permitting you to remove duplicates.
It is hard to control the number of decimal places in the output with Java’s
standard print commands (although printf and DecimalFormat do permit
control). A simple approach is to multiply the xi values by 1000 and then
throw away the part to the right of the decimal point. Because 0 ≤ xn ≤ 1, this
means that 0 ≤ 100 ∗xn ≤ 1000, and you can throw away the decimal part by
casting the resulting numbers as integers:

Ix[i]= (int)(1000*x[i]) // Convert to 0 ≤ ints ≤ 1000

You may then divide by 1000 if you want floating-point numbers.
5. You also need to remove duplicate values of (x, µ) from your file (they just

take up space and plot on top of each other). You can do that in Unix/Linux
with the sort -u command.

6. Plot your file of x∗ versus µ. Use small symbols for the points and do not
connect them.

7. Enlarge sections of your plot and notice that a similar bifurcation dia-
gram tends to be contained within each magnified portion (this is called
self-similarity).

8. Look over the series of bifurcations occurring at

µk � 3, 3.449, 3.544, 3.5644, 3.5688, 3.569692, 3.56989, . . . . (12.13)

The end of this series is a region of chaotic behavior.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 297

discrete & continuous nonlinear dynamics 297

9. Inspect the way this and other sequences begin and then end in chaos. The
changes sometimes occur quickly, and so you may have to make plots over a
very small range of µ values to see the structures.

10. A close examination of Figure 12.2 shows regions where, with a slight increase
in µ, a very large number of populations suddenly change to very few popu-
lations. Whereas these may appear to be artifacts of the video display, this is
a real effect and these regions are called windows. Check that at µ= 3.828427,
chaos turns into a three-cycle population.

12.5.3 Feigenbaum Constants (Exploration)

Feigenbaum discovered that the sequence ofµk values (12.13) at which bifurcations
occur follows a regular pattern [Feig 79]. Specifically, it converges geometrically
when expressed in terms of the distance between bifurcations δ:

µk → µ∞ − c

δk
, δ = lim

k→∞
µk −µk−1

µk+1 −µk
. (12.14)

Use your sequence of µk values to determine the constants in (12.14) and compare
them to those found by Feigenbaum:

µ∞ � 3.56995, c� 2.637, δ � 4.6692. (12.15)

Amazingly, the value of the Feigenbaum constant δ is universal for all second-order
maps.

12.6 Random Numbers via
Logistic Map (Exploration) �

There are claims that the logistic map in the chaotic region (µ≥ 4),

xi+1 � 4xi(1 −xi), (12.16)

can be used to generate random numbers [P&R 95]. Although successive xi’s are
correlated, if the population for approximately every sixth generation is exam-
ined, the correlation is effectively gone and random numbers result. To make the
sequence more uniform, a trigonometric transformation is used:

yi =
1
π

cos−1(1 − 2xi). (12.17)

Use the random-number tests discussed in Chapter 5, “Monte Carlo Simulation,”
to test this claim.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 298

298 chapter 12

TABLE 12.1
Several Nonlinear Maps to Explore

Name f(x) Name f(x)

Logistic µx(1 −x) Tent µ(1 − 2 |x− 1/2|)
Ecology xeµ(1−x) Quartic µ[1 − (2x− 1)4]

Gaussian ebx2
+µ

12.7 Other Maps (Exploration)

Bifurcations and chaos are characteristic properties of nonlinear systems. Yet sys-
tems can be nonlinear in a number of ways. Table 12.1 lists four maps that generate
xi sequences containing bifurcations. The tent map derives its nonlinear depen-
dence from the absolute value operator, while the logistic map is a subclass of the
ecology map. Explore the properties of these other maps and note the similarities
and differences.

12.8 Signals of Chaos: Lyapunov Coefficients �
The Lyapunov coefficient λi provides an analytic measure of whether a system is
chaotic [Wolf 85, Ram 00, Will 97]. Physically, the coefficient is a measure of the
growth rate of the solution near an attractor. For 1-D maps there is only one such
coefficient, whereas in general there is a coefficient for each direction in space. The
essential assumption is that neighboring paths xn near an attractor have an n (or
time) dependence L∝ exp(λt). Consequently, orbits that have λ > 0 diverge and
are chaotic; orbits that have λ= 0 remain marginally stable, while orbits with λ < 0
are periodic and stable. Mathematically, the Lyapunov coefficient or exponent is
defined as

λ= lim
t→∞

1
t

log
L(t)
L(t0)

, (12.18)

where L(t) is the distance between neighboring phase space trajectories at time t.
We calculate the Lyapunov exponent for a general 1-D map,

xn+1 = f(xn), (12.19)

and then apply the result to the logistic map. To determine stability, we examine
perturbations about a reference trajectory x0 by adding a small perturbation and
iterating once [Mann 90, Ram 00]:

x̂0 = x0 + δx0, x̂1 = x1 + δx1. (12.20)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 299

discrete & continuous nonlinear dynamics 299

We substitute this into (12.19) and expand f in a Taylor series around x0:

x1 + δx1 = f(x0 + δx0) � f(x0) +
δf

δx

∣∣∣∣
x0

δx0 = x1 +
δf

δx

∣∣∣∣
x0

δx0,

⇒ δx1 �
(
δf

δx

)
x0

δx0. (12.21)

(This is the proof of our earlier statement about the stability of maps.) To deduce
the general result we examine one more iteration:

δx2 �
(
δf

δx

)
x1

δx1 =
(
δf

δx

)
x0

(
δf

δx

)
x1

δx0, (12.22)

⇒ δxn =
n−1∏
i=0

(
δf

δx

)
xi

δx0. (12.23)

This last relation tells us how trajectories differ on the average after n steps:

|δxn| = Ln|δx0|, Ln =
n−1∏
i=0

∣∣∣∣∣
(
δf

δx

)
xi

∣∣∣∣∣ . (12.24)

We now solve for the Lyapunov number L and take its logarithm to obtain the
Lyapunov exponent:

λ= ln(L) = lim
n→∞

1
n

n−1∑
i=0

ln

∣∣∣∣∣
(
δf

δx

)
xi

∣∣∣∣∣ . (12.25)

For the logistic map we obtain

λ=
1
n

n−1∑
i=0

ln |µ− 2µxi|, (12.26)

where the sum is over iterations.
The code LyapLog.java in Listing 12.2 computes the Lyapunov exponents for

the bifurcation plot of the logistic map. In Figure 12.4 left we show its output and
note the sign changes in λ where the system becomes chaotic, and abrupt changes
in slope at bifurcations. (A similar curve is obtained for the fractal dimension of the
logistic map, as indeed the two are proportional.)

12.8.1 Shannon Entropy �

Shannon entropy, like the Lyapunov exponent, is another analytic measure of
chaos. It is a measure of uncertainty that has proven useful in communication theory

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 300

300 chapter 12

� �
/ / LyapLog . java : Lyapunov coef for l o g i s t i c map

i m p o r t j ava . io . ∗ ;

p u b l i c c l a s s LyapLog {
s t a t i c d o u b l e m_min = 2 . 8 , m_max = 4 . , s tep = 0 .002 ;

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) throws IOException , FileNotFoundException {
d o u b l e m, y , suma , lyap [ ] = new d o u b l e [ 1 0 0 ] ;
i n t i ;
Pr i n t W r i t e r w = new Pr i n t W r i t e r ( new FileOutputStream ("log i s t i c . dat" ) , t r u e ) ;
Pr i n t W r i t e r q = new Pr i n t W r i t e r ( new FileOutputStream ("lyap .dat" ) , t r u e ) ;
System . out . p r i n t l n ("data stored in log i s t i c . dat and lyap .dat" ) ;
f o r ( m = m_min ; m <= m_max ; m += step ) { / / m loop

y = 0 . 5 ;
f o r ( i =1 ; i <= 2 0 0 ; i ++ ) y = m∗y∗(1−y ) ;
suma = 0 . ; / / Skip t r a n s i e n t s
f o r ( i =201; i <= 4 0 1 ; i ++ ) {

y = m∗y∗(1−y ) ;
suma = suma + Math . log ( Math . abs (m∗(1. −2.∗y ) ) ) ; / / Lyapunov
w. p r i n t l n ( m + " " + y ) ;

}
lyap [ ( i n t )m] = suma/401; / / Normalize Lyapunov exponent
q . p r i n t l n ( m + " " + lyap [ ( i n t )m] ) ;

} } }
�

Listing 12.2 LyapLog.java computes Lyapunov exponents for the bifurcation plot of the

logistic map as a function of growth rate. Note the fineness of the µ grid.

[Shannon 48, Ott 02, G,T&C 06] and led to the concept of information entropy.
Imagine that an experiment has N possible outcomes. If the probability of each
is p1, p2, . . . , pN , with normalization such that

∑N
i=1 pi = 1, the Shannon entropy is

defined as

SShannon = −
N∑

i=1

pi ln pi. (12.27)

If pi ≡ 0, there is no uncertainty and SShannon = 0, as you might expect. If allN out-
comes have equal probability, pi ≡ 1/N , we obtain SShannon = lnN , which diverges
slowly as N → ∞.

The code Entropy.java in Listing 12.3 computes the Shannon entropy for the the
logistic map as a function of the growth parameter µ. The results (Figure 12.4 left)
are seen to be quite similar to the Lyapunov exponent, again with discontinuities
occurring at the bifurcations.

12.9 Unit I Quiz

1. Consider the logistic map.
a. Make sketches of what a graph of population xi versus generation number
i would look like for extinction and for a period-two cycle.

b. Describe in words and possibly a diagram the relation between the
preceding two sketches and the bifurcation plot of xi versus i.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 301

discrete & continuous nonlinear dynamics 301

µ
3 3.2 3.4 3.6 3.8 4

λ

x

–0.5

0

0.5

1
Entropy

Lyapunov exponent

–0.4

0

0.4

0.8

3.5 3.6 3.7 3.8 3.9 4
µ

Figure 12.4 Left: Lyapunov exponent and bifurcation values for the logistic map as functions

of the growth rate µ. Right: Shannon entropy (reduced by a factor of 5) and the Lyapunov

coefficient for the logistic map.

2. Consider the tent map. Rather than compute this map, study it with just a piece
of paper.
a. Make sketches of what a graph of population xi versus generation number i

would look like for extinction, for a period-one cycle, and for a period-two
cycle.

b. Show that there is a single fixed point for µ > 1/2 and a period-two cycle
for µ > 1.

� �
/ / Entropy . java , Shannon entropy of l o g i s t i c map
i m p o r t j ava . io . ∗ ;
i m p o r t j ava . u t i l . ∗ ;

p u b l i c c l a s s Entropy {

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) throws IOException , FileNotFoundException {
Pr i n t W r i t e r w = new Pr i n t W r i t e r ( new FileOutputStream ("Entropy .dat" ) , t r u e ) ;
d o u b l e prob [ ] = new d o u b l e [ 1 0 0 1 ] ; / /

P r o b a b i l i t i e s
i n t nbin = 1000 , nmax = 100000 , j , n , i b i n ;
d o u b l e entropy , x , mu;
System . out . p r i n t l n ("Entropy output in Entropy .dat" ) ;
f o r ( mu = 3 . 5 ; mu <= 4 . ; mu = mu + 0 . 0 0 1 ) { / / Values of mu

f o r ( j =1 ; j < nbin ; j ++ ) prob [ j ] = 0 ;
x = 0 . 5 ;
f o r ( n=1; n <= nmax ; n++ ) {

x = mu∗x∗(1.−x ) ; / / L o g i s t i c map, Skip t r a n s i e n t s
i f ( n > 30000) { i b i n = ( i n t ) ( x∗nbin ) + 1 ; prob [ i b i n ] = prob [ i b i n ] + 1 ; }

}
entropy = 0 . ;
f o r ( i b i n = 1 ; i b i n <= nbin ; i b i n ++ ) i f ( prob [ i b i n ] >0)

entropy = entropy −(prob [ i b i n ]/nmax)∗Math . log ( prob [ i b i n ]/nmax) ;
w. p r i n t l n (" " + mu + " " + entropy ) ;

}
}

}
�

Listing 12.3 Entropy.java computes the Shannon entropy for the logistic map as a function

of growth parameter µ.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 302

302 chapter 12

12.10 Unit II. Pendulums Become Chaotic (Continuous)

In Unit I on bugs we discovered that a simple nonlinear difference equation yields
solutions that may be simple, complicated, or chaotic. Unit III will extend that model
to the differential form, which also exhibits complex behaviors. Now we search for
similar nonlinear, complex behaviors in the differential equation describing a realistic
pendulum. Because chaotic behavior may resemble noise, it is important to be confident
that the unusual behaviors arise from physics and not numerics. Before we explore
the solutions, we provide some theoretical background on the use of phase space plots
for revealing the beauty and simplicity underlying complicated behaviors. We also
provide two chaotic pendulum applets (Figure 12.5) for assistance in understandingC D

the new concepts. Our study is based on the description in [Rash 90], on the analytic
discussion of the parametric oscillator in [L&L,M 76], and on a similar study of the
vibrating pivot pendulum in [G,T&C 06].

Consider the pendulum on the left in Figure 12.5. We see a pendulum of length l
driven by an external sinusoidal torque f through air with a coefficient of drag α.
Because there is no restriction that the angular displacement θ be small, we call
this a realistic pendulum. Your problem is to describe the motion of this pendu-
lum, first when the driving torque is turned off but the initial velocity is large
enough to send the pendulum over the top, and then when the driving torque is
turned on.

12.11 Chaotic Pendulum ODE

What we call a chaotic pendulum is just a pendulum with friction and a driving torque
(Figure 12.5 left) but with no small-deflection-angle approximation. Newton’s laws
of rotational motion tell us that the sum of the gravitational torque −mgl sin θ, the
frictional torque −βθ̇, and the external torque τ0 cos ωt equals the moment of inertia
of the pendulum times its angular acceleration [Rash 90]:

I
d2θ

dt2
=−mgl sin θ−β

dθ

dt
+ τ0 cosωt, (12.28)

⇒ d2θ

dt2
=−ω2

0 sin θ−α
dθ

dt
+ f cosωt, (12.29)

where ω0 =
mgl

I
, α=

β

I
, f =

τ0
I
. (12.30)

Equation (12.29) is a second-order time-dependent nonlinear differential equa-
tion. Its nonlinearity arises from the sin θ, as opposed to the θ, dependence of

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 303

discrete & continuous nonlinear dynamics 303

m

I
θ

α

f l1
m1

θ
1

l2
θ2

m
2

Figure 12.5 Left: A pendulum of length l driven through air by an external sinusoidal torque.

The strength of the torque is given by f and that of air resistance by α. Right: A double

pendulum.

the gravitational torque. The parameter ω0 is the natural frequency of the sys-
tem arising from the restoring torque, α is a measure of the strength of friction,
and f is a measure of the strength of the driving torque. In our standard ODE
form, dy/dt= y (Chapter 9, “Differential Equation Applications”), we have two
simultaneous first-order equations:

dy(0)

dt
= y(1), (12.31)

dy(1)

dt
=−ω2

0 sin y(0) −αy(1) + f cosωt,

where y(0) = θ(t), y(1) =
dθ(t)
dt

. (12.32)

12.11.1 Free Pendulum Oscillations

If we ignore friction and external torques, (12.29) takes the simple form

d2θ

dt2
= −ω2

0 sin θ (12.33)

If the displacements are small, we can approximate sin θ by θ and obtain the linear
equation of simple harmonic motion with frequency ω0:

d2θ

dt2
� −ω2

0θ ⇒ θ(t) = θ0 sin(ω0t+φ). (12.34)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 304

304 chapter 12

In Chapter 9, “Differential Equation Applications,” we studied how nonlinearities
produce anharmonic oscillations, and indeed (12.33) is another good candidate for
such studies.As before, we expect solutions of (12.33) for the free realistic pendulum
to be periodic, but with a frequency ω � ω0 only for small oscillations. Further-
more, because the restoring torque, mgl sin θ �mgl(θ− θ3/3), is less than the mglθ
assumed in a harmonic oscillator, realistic pendulums swing slower (have longer
periods) as their angular displacements are made larger.

12.11.2 Solution as Elliptic Integrals

The analytic solution to the realistic pendulum is a textbook problem [L&L,M 76,
M&T 03, Schk 94], except that it is hardly a solution and hardly analytic. The “solu-
tion” is based on energy being a constant (integral) of the motion. For simplicity,
we start the pendulum off at rest from its maximum displacement θm. Because the
initial energy is all potential, we know that the total energy of the system equals
its initial potential energy (Figure 12.5),

E = PE(0) =mgl−mgl cos θm = 2mgl sin2
(
θm

2

)
. (12.35)

Yet since E = KE + PE is a constant, we can write for any value of θ

2mgl sin2 θm

2
=

1
2
I

(
dθ

dt

)2

+ 2mgl sin2 θ

2
,

⇒ dθ

dt
= 2ω0

[
sin2 θm

2
− sin2 θ

2

]1/2

⇒ dt

dθ
=

T0/π[
sin2(θm/2) − sin2(θ/2)

]1/2 ,

⇒ T

4
=
T0

4π

∫ θm

0

dθ[
sin2(θm/2) − sin2(θ/2)

]1/2 =
T0

4π sin θm
F

(
θm

2
,
θ

2

)
, (12.36)

⇒ T � T0

[
1 +

1
4

sin2 θm

2
+

9
64

sin4 θm

2
+ · · ·

]
, (12.37)

where we have assumed that it takes T/4 for the pendulum to travel from θ = 0
to θm. The integral in (12.36) is an elliptic integral of the first kind. If you think of
an elliptic integral as a generalization of a trigonometric function, then this is a
closed-form solution; otherwise, it’s an integral needing computation. The series
expansion of the period (12.37) is obtained by expanding the denominator and

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 305

discrete & continuous nonlinear dynamics 305

integrating it term by term. It tells us, for example, that an amplitude of 80◦ leads
to a 10% slowdown of the pendulum relative to the small θ result. In contrast, we
will determine the period empirically without the need for any expansions.

12.11.3 Implementation and Test: Free Pendulum

As a preliminary to the solution of the full equation (12.29), modify your rk4
program to solve (12.33) for the free oscillations of a realistic pendulum.

1. Start your pendulum at θ = 0 with θ̇(0) �= 0. Gradually increase θ̇(0) to increase
the importance of nonlinear effects.

2. Test your program for the linear case (sin θ → θ) and verify that
a. your solution is harmonic with frequency ω0 = 2π/T0, and
b. the frequency of oscillation is independent of the amplitude.

3. Devise an algorithm to determine the period T of the oscillation by counting
the time it takes for three successive passes of the amplitude through θ = 0.
(You need three passes because a general oscillation may not be symmetric
about the origin.) Test your algorithm for simple harmonic motion where you
know T0.

4. For the realistic pendulum, observe the change in period as a function of
increasing initial energy or displacement. Plot your observations along with
(12.37).

5. Verify that as the initial KE approaches 2mgl, the motion remains oscillatory
but not harmonic (Figure 12.8).

6. AtE = 2 mgl (the separatrix), the motion changes from oscillatory to rotational
(“over the top” or “running”). See how close you can get to the separatrix and
to its infinite period.

7. � Use the applet HearData (Figure 12.6) to convert your different oscilla- C D

tions to sound and hear the difference between harmonic motion (boring)
and anharmonic motion containing overtones (interesting).

12.12 Visualization: Phase Space Orbits

The conventional solution to an equation of motion is the position x(t) and the
velocity v(t) as functions of time. Often behaviors that appear complicated as
functions of time appear simpler when viewed in an abstract space called phase
space, where the ordinate is the velocity v(t) and the abscissa is the position x(t)
(Figure 12.7). As we see from the phase space figures, the solutions form geometric
objects that are easy to recognize. (We provide two applets on the CD, Pend1 and
Pend2, to help the reader make the connections between phase space shapes and
the corresponding physical motion.)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 306

306 chapter 12

Figure 12.6 The data screen (left ) and output screen (right ) of the applet HearData on the

CD. Columns of (ti, x(ti)) data are pasted into the data window, processed into the graph in

the output window, and then converted to sound that is played by Java.

The position and velocity of a free harmonic oscillator are given by the
trigonometric functions

x(t) =A sin(ωt), v(t) =
dx

dt
= ωA cos(ωt). (12.38)

When substituted into the total energy, we obtain two important results:

E= KE + PE =
(

1
2
m

)
v2 +

(
1
2
ω2m2

)
x2 (12.39)

=
ω2m2A2

2m
cos2(ωt) +

1
2
ω2m2A2 sin2(ωt) =

1
2
mω2A2. (12.40)

The first equation, being that of an ellipse, proves that the harmonic oscillator
follows closed elliptical orbits in phase space, with the size of the ellipse increasing
with the system’s energy. The second equation proves that the total energy is a
constant of the motion. Different initial conditions having the same energy start at
different places on the same ellipse and transverse the same orbits.

In Figures 12.7–12.10 we show various phase space structures. Study these figures
and their captions and note the following:

• The orbits of anharmonic oscillations will still be ellipselike but with angular
corners that become more distinct with increasing nonlinearity.

• Closed trajectories describe periodic oscillations [the same (x, v) occur again
and again], with clockwise motion.

• Open orbits correspond to nonperiodic or “running” motion (a pendulum
rotating like a propeller).

• Regions of space where the potential is repulsive lead to open trajectories in
phase space (Figure12.7 left).

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 307

discrete & continuous nonlinear dynamics 307

V(x)

xv(t)

x(t)

E1 E1

x(t)

v(t)

V(x)

x

E1

E2

E3

V(x)

xv(t)

x(t)

E1
E2

E3

Figure 12.7 Three potentials and their characteristic behaviors in phase space. The different

orbits correspond to different energies, as indicated by the limits within the potentials (dashed

lines). Notice the absence of trajectories in regions forbidden by energy conservation. Left: A

repulsive potential leads to open orbits in phase space characteristic of nonperiodic motion.

The phase space trajectories cross at the hyperbolic point in the middle, an unstable

equilibrium point. Middle: The harmonic oscillator leads to symmetric ellipses in phase space;

the closed orbits indicate periodic behavior, and the symmetric trajectories indicate a

symmetric potential. Right: A nonharmonic oscillator. Notice that the ellipselike trajectories

neither are ellipses nor are symmetric with respect to the v (t ) axis.

• As seen in Figure 12.8 left, the separatrix corresponds to the trajectory in
phase space that separates open and closed orbits. Motion on the separatrix
is indeterminant, as the pendulum may balance at the maxima of V (θ).

• Friction may cause the energy to decrease with time and the phase space orbit
to spiral into a fixed point.

• For certain parameters, a closed limit cycle occurs in which the energy pumped
in by the external torque exactly balances that lost by friction (Figure 12.8
right).

• Because solutions for different initial conditions are unique, different orbits
do not cross. Nonetheless, open orbits join at points of unstable equilibrium
(hyperbolic points in Figure 12.7 left) where an indeterminacy exists.

12.12.1 Chaos in Phase Space

It is easy to solve the nonlinear ODE (12.31) on the computer using our usual
techniques. However, it is not so easy to understand the solutions because they
are so rich in complexity. The solutions are easier to understand in phase space,
particularly if you learn to recognize some characteristic structures there. Actually,
there are a number of “tools” that can be used to decide if a system is chaotic
in contrast to just complex. Geometric structures in phase space is one of them,

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 308

308 chapter 12

rotating solutions

pendulum
falls
back

pendulum
starts
rotating

–4

V(θ)

–2

0

2

–2 0 2 4 6 8 10
θ

θ

Realistic Pendulum Limit Cycles

t

.

t

θ θ

Figure 12.8 Left: Phase space trajectories for a plane (i.e. 2-D) pendulum including “over

the top” or rotating solutions. The trajectories are symmetric with respect to vertical and

horizontal reflections through the origin. At the bottom of the figure is shown the

corresponding θ dependence of the potential. Right: Position versus time for two initial

conditions of a chaotic pendulum that end up with the same limit cycle, and the

corresponding phase space orbits. (Courtesy of W. Hager.)

and determination of the Lyupanov coefficient (discussed in §12.8) is another. Both
signal the simplicity lying within the complexity.

What may be surprising is that even though the ellipselike figures in phase
space were observed originally for free systems with no friction and no driving
torque, similar structures continue to exist for driven systems with friction. The
actual trajectories may not remain on a single structure for all times, but they are
attracted to them and return to them often. In contrast to periodic motion, which
corresponds to closed figures in phase space, random motion appears as a diffuse
cloud filling an entire energetically accessible region. Complex or chaotic motion
falls someplace in between (Figure 12.9 middle). If viewed for long times and for
many initial conditions, chaotic trajectories (flows) through phase space, while
resembling the familiar geometric figures, they may contain dark or diffuse bands
in places rather than single lines. The continuity of trajectories within bands means
that a continuum of solutions is possible and that the system flows continuously
among the different trajectories forming the band. The transitions among solutions
cause the coordinate space solutions to appear chaotic and are what makes them
hypersensitive to the initial conditions (the slightest change in which causes the
system to flow to nearby trajectories).

Pick out the following phase space structures in your simulations.

Limit cycles: When a chaotic pendulum is driven by a not-too-large driving
torque, it is possible to pick the magnitude for this torque such that after the
initial transients die off, the average energy put into the system during one
period exactly balances the average energy dissipated by friction during that

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 309

discrete & continuous nonlinear dynamics 309

0 100 200

–10

0

θ(0)=0.219
3 cycle

0 100 200
–2

0

2

θ(0)=0.725
1 cycle

0 100 200
–8

–4

0

4

θ(0)=–0.8
many cycle

–10 0

–2

0

2

–2 0 2
–1

0

1

–8 –4 0 4

–2

0

2

0 20 40
0

4

8

0

1

2

0

2

 
θ 

vs
 t

θ 
vs

 θ
.

Y
(ω

)

0 20 40 0 20 40

Figure 12.9 Position and phase space plots for a chaotic pendulum with ω0 = 1,α= 0.2,

f = 0.52, and ω = 0.666. The rightmost initial condition displays more of the broadband Fourier

spectrum characteristic of chaos. (Examples of chaotic behavior can be seen in

Figure 12.10.)

period (Figure 12.8 right):

〈f cosωt〉 =
〈
α
dθ

dt

〉
=
〈
α
dθ(0)
dt

cosωt
〉

⇒ f = α
dθ(0)
dt

. (12.41)

This leads to limit cycles that appear as closed ellipselike figures, yet the
solution may be unstable and make sporadic jumps between limit cycles.

Predictable attractors: Well-defined, fairly simple periodic behaviors that are
not particularly sensitive to the initial conditions. These are orbits, such as
fixed points and limit cycles, into which the system settles or returns to often.
If your location in phase space is near a predictable attractor, ensuing times
will bring you to it.

Strange attractors: Well-defined, yet complicated, semiperiodic behaviors that
appear to be uncorrelated with the motion at an earlier time. They are distin-
guished from predicable attractors by being fractal (Chapter 13, “Fractals &
Statistical Growth”) chaotic, and highly sensitive to the initial conditions
[J&S 98]. Even after millions of oscillations, the motion remains attracted to
them.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 310

310 chapter 12

–15 –10

–2

0

2
f = .52

0 200 400

–10

0

–10 0 10 20

–2

0

2
f = .54

0 200 400 600

time

0

20

x.

.

0 200 400 600 800
0

40

80

θ(0)=0.314, θ(0)=0.8, ω=0.697

0 20 40 60 80

–2

0

2

0 2 4

ω

6 8 10

20

40

0

.
θ(t)

θ(t)

θ(θ)

θ(θ)

θ(θ)

.

Y(ω))

time

θ(t)

Figure 12.10 Some examples of complicated behaviors of a realistic pendulum. In the top

three rows sequentially we see θ(t) behaviors, a phase space diagram containing regular

patterns with dark bands, and a broad Fourier spectrum. These features are characteristic of

chaos. In the bottom two rows we see how the behavior changes abruptly after a slight

change in the magnitude of the force and that for f = 0.54 there occur the characteristic

broad bands of chaos.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 311

discrete & continuous nonlinear dynamics 311

Chaotic paths: Regions of phase space that appear as filled-in bands rather than
lines. Continuity within the bands implies complicated behaviors, yet still
with simple underlying structure.

Mode locking: When the magnitude f of the driving torque is larger than that for
a limit cycle (12.41), the driving torque can overpower the natural oscillations,
resulting in a steady-state motion at the frequency of the driver. This is called
mode locking. While mode locking can occur for linear or nonlinear systems,
for nonlinear systems the driving torque may lock onto the system by exciting
its overtones, leading to a rational relation between the driving frequency and
the natural frequency:

ω

ω0
=
n

m
, n,m= integers. (12.42)

Butterfly effects: One of the classic quips about the hypersensitivity of chaotic
systems to the initial conditions is that the weather pattern in North America
is hard to predict well because it is sensitive to the flapping of butter-
fly wings in South America. Although this appears to be counterintuitive
because we know that systems with essentially identical initial conditions
should behave the same, eventually the systems diverge. The applet pend2
(Figure 12.11 bottom) lets you compare two simulations of nearly identical
initial conditions.As seen on the right in Figure 12.11, the initial conditions
for both pendulums differ by only 1 part in 917, and so the initial paths in
phase space are the same. Nonetheless, at just the time shown here, the pen-
dulums balance in the vertical position, and then one falls before the other,
leading to differing oscillations and differing phase space plots from this time
onward.

12.12.2 Assessment in Phase Space

The challenge in understanding simulations of the chaotic pendulum (12.31) is
that the 4-D parameter space (ω0, α, f, ω) is so immense that only sections of it
can be studied systematically. We expect that sweeping through driving frequency
ω should show resonances and beating; sweeping through the frictional force α
should show underdamping, critical damping, and overdamping; and sweeping
through the driving torque f should show mode locking (for the right values of ω).
All these behaviors can be found in the solution of your differential equation, yet
they are mixed together in complex ways.

In this assessment you should try to reproduce the behaviors shown in the phase
space diagrams in Figure 12.9 and in the applets in Figure 12.11. Beware: Because the
system is chaotic, you should expect that your results will be sensitive to the exact
values of the initial conditions and to the details of your integration routine. We
suggest that you experiment; start with the parameter values we used to produce
our plots and then observe the effects of making very small changes in parameters

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 312

312 chapter 12

Figure 12.11 Top row: Output from the applet Pend1 producing an animation of a chaotic

pendulum, along with the corresponding position versus time and phase space plots.

Right: the resulting Fourier spectrum produced by Pend1,Bottom row: output from the

applet Pend2 producing an animation of two chaotic pendula, along with the corresponding

phase space plots, and the final output with limit cycles (dark bands).

until you obtain different modes of behavior. Consequently, an inability to repro-
duce our results for the parameter values does not necessarily imply that something
is “wrong.”

1. Take your solution to the realistic pendulum and include friction, making α
an input parameter. Run it for a variety of initial conditions, including over-
the-top ones. Since no energy is fed to the system, you should see spirals.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 313

discrete & continuous nonlinear dynamics 313

2. Next, verify that with no friction, but with a very small driving torque, you
obtain a perturbed ellipse in phase space.

3. Set the driving torque’s frequency to be close to the natural frequencyω0 of the
pendulum and search for beats (Figure 12.6 right). Note that you may need to
adjust the magnitude and phase of the driving torque to avoid an “impedance
mismatch” between the pendulum and driver.

4. Finally, scan the frequency ω of the driving torque and search for nonlinear
resonance (it looks like beating).

5. Explore chaos: Start off with the initial conditions we used in Figure 12.9,

(x0, v0) = (−0.0885, 0.8), (−0.0883, 0.8), (−0.0888, 0.8).

To save time and storage, you may want to use a larger time step for plotting
than the one used to solve the differential equations.

6. Indicate which parts of the phase space plots correspond to transients. (The
applets on the CD may help you with this, especially if you watch the phase
space features being built up in time.)

7. Ensure that you have found:
a. a period-3 limit cycle where the pendulum jumps between three major

orbits in phase space,
b. a running solution where the pendulum keeps going over the top,
c. chaotic motion in which some paths in the phase space appear as bands.

8. Look for the “butterfly effect” (Figure 12.11 bottom). Start two pendulums off
with identical positions but with velocities that differ by 1 part in 1000. Notice
that the initial motions are essentially identical but that at some later time the
motions diverge.

12.13 Exploration: Bifurcations of Chaotic Pendulums

We have seen that a chaotic system contains a number of dominant frequencies and
that the system tends to “jump” from one to another. This means that the domi-
nant frequencies occur sequentially, in contrast to linear systems where they occur
simultaneously. We now want to explore this jumping as a computer experiment. If
we sample the instantaneous angular velocity θ̇ = dθ/dt of our chaotic simulation
at various instances in time, we should obtain a series of values for the frequency,
with the major Fourier components occurring more often than others.3 These are
the frequencies to which the system is attracted. That being the case, if we make a
scatterplot of the sampled θ̇s for many times at one particular value of the driving
force and then change the magnitude of the driving force slightly and sample the
frequencies again, the resulting plot may show distinctive patterns of frequencies.
That a bifurcation diagram similar to the one for bug populations results is one of
the mysteries of life.

3 We refer to this angular velocity as θ̇ since we have already used ω for the frequency of the
driver and ω0 for the natural frequency.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 314

314 chapter 12

0 1 2
0

2

f

|θ
(t

)|

Figure 12.12 A bifurcation diagram for the damped pendulum with a vibrating pivot (see

also the similar diagram for a double pendulum, Figure 12.14). The ordinate is |dθ/dt|, the

absolute value of the instantaneous angular velocity at the beginning of the period of the

driver, and the abscissa is the magnitude of the driving force f. Note that the heavy line results

from the overlapping of points, not from connecting the points (see enlargement in the

inset).

In the scatterplot in Figure 12.12, we sample θ̇ for the motion of a chaotic pen-
dulum with a vibrating pivot point (in contrast to our usual vibrating external
torque). This pendulum is similar to our chaotic one (12.29), but with the driving
force depending on sin θ:

d2θ

dt2
= −α dθ

dt
− (ω2

0 + f cosωt
)
sin θ. (12.43)

Essentially, the acceleration of the pivot is equivalent to a sinusoidal variation of g
or ω2

0 . Analytic [L&L,M 76, § 25–30] and numeric [DeJ 92, G,T&C 06] studies of this
system exist. To obtain the bifurcation diagram in Figure 12.12:

1. Use the initial conditions θ(0) = 1 and θ̇(0) = 1.
2. Set α= 0.1, ω0 = 1, and ω = 2, and vary 0 ≤ f ≤ 2.25.
3. For each value of f , wait 150 periods of the driver before sampling to permit

transients to die off. Sample θ̇ for 150 times at the instant the driving force
passes through zero.

4. Plot the 150 values of |θ̇| versus f .

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 315

discrete & continuous nonlinear dynamics 315

Figure 12.13 Photographs of a double pendulum built by a student in the OSU Physics

Department. The longer pendulum consists of two separated shafts so that the shorter one

can rotate through it. Both pendula can go over the top. We see the pendulum released

from rest and then moving quickly. The flash photography stops the motion in various stages.

(Photograph, R. Landau.)

12.14 Alternative Problem: The Double Pendulum

For those of you who have already studied a chaotic pendulum, an alternative
is to study a double pendulum without any small-angle approximation (Fig-
ure 12.5 right and Fig. 12.13, and animation DoublePend.mpg on the CD). A double C D

pendulum has a second pendulum connected to the first, and because each pen-
dulum acts as a driving force for the other, we need not include an external
driving torque to produce a chaotic system (there are enough degrees of freedom
without it).

The equations of motions for the double pendulum are derived most directly
from the Lagrangian formulation of mechanics. The Lagrangian is fairly simple but
has the θ1 and θ2 motions innately coupled:

L= KE −PE =
1
2
(m1 +m2)l21θ̇1

2
+

1
2
m2l

2
2θ̇2

2
(12.44)

+m2l1l2θ̇1θ̇2 cos(θ1 − θ2) + (m1 +m2)gl1 cos θ1 +m2gl2 cos θ2.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 316

316 chapter 12

.

0

0

4–8

2

2θ

θ

Angular Velocity versus Mass
10

0A
ng

ul
ar

V
el

oc
ity

of
Lo

w
er

P
en

du
lu

m

10 15
Mass of Upper Pendulum

Figure 12.14 Left: Phase space trajectories for a double pendulum with m1 = 10m2, showing

two dominant attractors. Right: A bifurcation diagram for the double pendulum displaying

the instantaneous velocity of the lower pendulum as a function of the mass of the upper

pendulum. (Both plots are courtesy of J. Danielson.)

The resulting dynamic equations couple the θ1 and θ2 motions:

(m1 +m2)l1θ̈1 +m2l2θ̈2 cos(θ1 − θ2) +m2l2θ̇2
2
sin(θ1 − θ2) (12.45)

+g(m1 +m2) sin θ1 = 0,

m2l2θ̈2 +m2l1θ̈1 cos(θ1 − θ2) −m2l1θ̇1
2
sin(θ1 − θ2) +mg sin θ2 = 0. (12.46)

Usually textbooks approximate these equations for small oscillations, which dimin-
ish the effects of the coupling. “Slow” and “fast” modes then result for in-phase and
antiphase oscillations, respectively, that look much like regular harmonic motions.
What’s more interesting is the motion that results without any small-angle restric-
tions, particularly when the pendulums have enough initial energy to go over the
top (Figure 12.13). On the left in Figure 12.14 we see several phase space plots for
the lower pendulum withm1 = 10m2. When given enough initial kinetic energy to
go over the top, the trajectories are seen to flow between two major attractors as
energy is transferred back and forth to the upper pendulum.

On the right in Figure 12.14 is a bifurcation diagram for the double pendulum.
This was created by sampling and plotting the instantaneous angular velocity θ̇2 of
the lower pendulum at 70 times as the pendulum passed through its equilibrium
position. The mass of the upper pendulum (a convenient parameter) was then
changed, and the process repeated. The resulting structure is fractal and indicates
bifurcations in the number of dominant frequencies in the motion. A plot of the
Fourier or wavelet spectrum as a function of mass is expected to show similar
characteristic frequencies.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 317

discrete & continuous nonlinear dynamics 317

12.15 Assessment: Fourier/Wavelet Analysis of Chaos

We have seen that a realistic pendulum experiences a restoring torque, τg ∝ sin θ �
θ− θ3/3! + θ5/5! + · · · , that contains nonlinear terms that lead to nonharmonic
behavior. In addition, when a realistic pendulum is driven by an external sinu-
soidal torque, the pendulum may mode-lock with the driver and so oscillate at a
frequency that is rationally related to the driver’s. Consequently, the behavior of the
realistic pendulum is expected to be a combination of various periodic behaviors,
with discrete jumps between modes.

In this assessment you should determine the Fourier components present in
the pendulum’s complicated and chaotic behaviors. You should show that a three-
cycle structure, for example, contains three major Fourier components, while a
five-cycle structure has five. You should also notice that when the pendulum goes
over the top, its spectrum contains a steady-state (DC) component.

1. Dust off your program for analyzing a y(t) into Fourier components. Alter-
natively, you may use a Fourier analysis tool contained in your graphics
program or system library (e.g., Grace and OpenDX).

2. Apply your analyzer to the solution of the chaotic pendulum for the cases
where there are one-, three-, and five-cycle structures in phase space. Deduce
the major frequencies contained in these structures.

3. Compare your results with the output of the Pend1 applet (Figure 12.11 top).
4. Try to deduce a relation among the Fourier components, the natural frequency
ω0, and the driving frequency ω.

5. A classic signal of chaos is a broadband, although not necessarily flat, Fourier
spectrum. Examine your system for parameters that give chaotic behavior
and verify this statement.

Wavelet Exploration: We saw in Chapter 11, “Wavelet Analysis & Data Compres-
sion”, that a wavelet expansion is more appropriate than a Fourier expansion for a
signal containing components that occur for finite periods of time. Because chaotic
oscillations are just such signals, repeat the Fourier analysis of this section using
wavelets instead of sines and cosines. Can you discern the temporal sequence of
the various components?

12.16 Exploration: Another Type of Phase Space Plot

Imagine that you have measured the displacement of some system as a function
of time. Your measurements appear to indicate characteristic nonlinear behaviors,
and you would like to check this by making a phase space plot but without going
to the trouble of measuring the conjugate momenta to plot versus displacement.
Amazingly enough, one may also plot x(t+ τ) versus x(t) as a function of time to
obtain a phase space plot [Abar 93]. Here τ is a lag time and should be chosen as

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 318

318 chapter 12

some fraction of a characteristic time for the system under study. While this may
not seem like a valid way to make a phase space plot, recall the forward difference
approximation for the derivative,

v(t) =
dx(t)
dt

� x(t+ τ) −x(t)
τ

. (12.47)

We see that plotting x(t+ τ) versus x(t) is equivalent to plotting v(t) versus x(t).

Exercise: Create a phase space plot from the output of your chaotic pendulum
by plotting θ(t+ τ) versus θ(t) for a large range of t values. Explore how the
graphs change for different values of the lag time τ . Compare your results to the
conventional phase space plots you obtained previously.

12.17 Further Explorations

1. The nonlinear behavior in once-common objects such as vacuum tubes and
metronomes is described by the van der Pool equation,

d2x

dt2
+µ(x2 −x2

0)
dx

dt
+ω2

0x= 0. (12.48)

The behavior predicted for these systems is self-limiting because the equation
contains a limit cycle that is also a predictable attractor. You can think of
(12.48) as describing an oscillator with x-dependent damping (the µ term). If
x > x0, friction slows the system down; if x < x0, friction speeds the system
up. Orbits internal to the limit cycle spiral out until they reach the limit cycle;
orbits external to it spiral in.

2. Duffing oscillator: Another damped, driven nonlinear oscillator is

d2θ

dt2
− 1

2
θ(1 − θ2) = −α dθ

dt
+ f cosωt. (12.49)

While similar to the chaotic pendulum, it is easier to find multiple attractors
for this oscillator [M&L 85].

3. Lorenz attractor: In 1962 Lorenz [Tab 89] was looking for a simple model for
weather prediction and simplified the heat transport equations to

dx

dt
= 10(y−x),

dy

dt
= −xz+ 28x− y,

dz

dt
= xy− 8

3
z. (12.50)

The solution of these simultaneous first-order nonlinear equations gave the
complicated behavior that has led to the modern interest in chaos (after
considerable doubt regarding the reliability of the numerical solutions).

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 319

discrete & continuous nonlinear dynamics 319

4. A 3-D computer fly: Make x+ y, x+ z, and y+ z plots of the equations

x= sin ay− z cos bx, y = z sin cx− cos dy, z = e sinx. (12.51)

Here the parameter e controls the degree of apparent randomness.
5. Hénon–Heiles potential: The potential and Hamiltonian

V (x, y) =
1
2
x2 +

1
2
y2 +x2y− 1

3
y3, H =

1
2
p2

x +
1
2
p2

y +V (x, y), (12.52)

are used to describe three interacting astronomical objects. The potential
binds the objects near the origin but releases them if they move far out. The
equations of motion follow from the Hamiltonian equations:

dpx

dt
= −x− 2xy,

dpy

dt
= −y−x2 + y2,

dx

dt
= px,

dy

dt
= py.

a. Numerically solve for the position [x(t), y(t)] for a particle in the Hénon–
Heiles potential.

b. Plot [x(t), y(t)] for a number of initial conditions. Check that the initial
condition E < 1

6 leads to a bounded orbit.
c. Produce a Poincaré section in the (y, py) plane by plotting (y, py) each time

an orbit passes through x= 0.

12.18 Unit III. Coupled Predator–Prey Models �
In Unit I we saw complicated behavior arising from a model of bug population dynam-
ics in which we imposed a maximum population. We described that system with a
discrete logistic map. In Unit II we saw complex behaviors arising from differen-
tial equations and learned how to use phase space plots to understand them. In this
unit we study the differential equation model describing predator–prey population
dynamics proposed by the American physical chemist Lotka [Lot 25] and the Italian
mathematician Volterra [Volt 26]. Differential equations are easy to solve numeri-
cally and should be a good approximation if populations are large. However, there
are equivalent discrete map versions of the model as well. Though simple, versions of
these equations are used to model biological systems and neural networks.

Problem: Is it possible to use a small number of predators to control a population of
pests so that the number of pests remains approximately constant? Include in your
considerations the interaction between the populations as well as the competition
for food and predation time.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 320

320 chapter 12

12.19 Lotka–Volterra Model

We extend the logistic map to the Lotka–Volterra Model (LVM) to describe two
populations coexisting in the same geographical region. Let

p(t) = prey density, P (t) = predator density. (12.53)

In the absence of interactions between the species, we assume that the prey
population p breeds at a per-capita rate of a, which would lead to exponential
growth:

dp

dt
= ap, ⇒ p(t) = p(0)eat. (12.54)

Yet exponential growth does not occur because the predatorsP eat more prey as the
prey numbers increase. The interaction rate between predator and prey requires
both to be present, with the simplest assumption being that it is proportional to
their joint probability:

Interaction rate = bpP.

This leads to a prey growth rate including both predation and breeding:

dp

dt
= a p− b p P, (LVM-I for prey). (12.55)

If left to themselves, predators P will also breed and increase their population. Yet
predators need animals to eat, and if there are no other populations to prey upon,
they will eat each other (or their young) at a per-capita mortality rate m:

dP

dt

∣∣∣∣
competition

= −mP, ⇒ P (t) = P (0)e−mt. (12.56)

However, once there are prey to interact with (read "eat") at the rate bpP , the
predator population will grow at the rate

dP

dt
= ε b p P −mP (LVM-I for predators), (12.57)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 321

discrete & continuous nonlinear dynamics 321

T

t

0

2

4

0 200 400

p(t)

P(t)

P

p

0

2

4

0 1 2

Figure 12.15 The populations of prey p and predator P from the Lotka–Volterra model. Left:

The time dependences of the prey p(t ) (solid) and the predators P(t ) (dashed). Right: Prey

population p versus predator population P. The different orbits in this “phase space plot”

correspond to different initial conditions.

where ε is a constant that measures the efficiency with which predators convert
prey interactions into food.

Equations (12.55) and (12.57) are two simultaneous ODEs and are our first
model. We solve them with the rk4 algorithm of Chapter 9, “Differential Equation
Applications”, after placing them in the standard dynamic form,

dy/dt= f(y, t),
y0 = p, f0 = a y0 − b y0 y1,

y1 = P, f1 = ε b y0 y1 −my1.

(12.58)

A sample code to do this is PredatorPrey.java and is given on the CD. Results from
our solution are shown in Figure 12.15. On the left we see that the two populations
oscillate out of phase with each other in time; when there are many prey, the preda-
tor population eats them and grows; yet then the predators face a decreased food
supply and so their population decreases; that in turn permits the prey population
to grow, and so forth. On the right in Figure 12.15 we plot a phase space plot (phase
space plots are discussed in Unit II) of P (t) versus p(t). A closed orbit here indi-
cates a limit cycle that repeats indefinitely. Although increasing the initial number
of predators does decrease the maximum number of pests, it is not a satisfactory
solution to our problem, as the large variation in the number of pests cannot be
called control.

12.19.1 LVM with Prey Limit

The initial assumption in the LVM that prey grow without limit in the absence of
predators is clearly unrealistic. As with the logistic map, we include a limit on prey

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 322

322 chapter 12

numbers that accounts for depletion of the food supply as the prey population
grows. Accordingly, we modify the constant growth rate a→ a(1− p/K) so that
growth vanishes when the population reaches a limit K, the carrying capacity,

dp

dt
= a p

(
1 − p

K

)
− b p P,

dP

dt
= ε b p P −mP (LVM-II). (12.59)

The behavior of this model with prey limitations is shown in Figure 12.16. We
see that both populations exhibit damped oscillations as they approach their
equilibrium values. In addition, and as hoped for, the equilibrium populations are
independent of the initial conditions. Note how the phase space plot spirals inward
to a single close limit cycle, on which it remains, with little variation in prey number.
This is control, and we may use it to predict the expected pest population.

12.19.2 LVM with Predation Efficiency

An additional unrealistic assumption in the original LVM is that the predators
immediately eat all the prey with which they interact. As anyone who has watched
a cat hunt a mouse knows, predators spend time finding prey and also chas-
ing, killing, eating, and digesting it (all together called handling). This extra time
decreases the rate bpP at which prey are eliminated. We define the functional response
pa as the probability of one predator finding one prey. If a single predator spends
time tsearch searching for prey, then

pa = b tsearch p ⇒ tsearch =
pa

bp
. (12.60)

If we call th the time a predator spends handling a single prey, then the effective
time a predator spends handling a prey is pa th. Such being the case, the total time
T that a predator spends finding and handling a single prey is

T = tsearch + thandling =
pa

bp
+ path ⇒ pa

T
=

bp

1 + bpth
,

where pa/T is the effective rate of eating prey. We see that as the number of prey
p→ ∞, the efficiency in eating them → 1. We include this efficiency in (12.59) by
modifying the rate b at which a predator eliminates prey to b/(1 + bpth):

dp

dt
= ap

(
1 − p

K

)
− bpP

1 + bpth
, (LVM-III). (12.61)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 323

discrete & continuous nonlinear dynamics 323

t

0

1

2

3

0 200 400

P

p

p

P

1

2

3

1 2.2

Figure 12.16 The Lotka–Volterra model of prey population p and predator population

P with a prey population limit. Left: The time dependences of the prey p(t ) (solid)

and the predators P(t ) (dashed). Right: Prey population p versus predator

population P.

To be more realistic about the predator growth, we also place a limit on the predator
carrying capacity but make it proportional to the number of prey:

dP

dt
=mP

(
1 − P

kp

)
, (LVM-III). (12.62)

Solutions for the extended model (12.61) and (12.62) are shown in Figure 12.17.
Observe the existence of three dynamic regimes as a function of b:

• small b: no oscillations, no overdamping,
• medium b: damped oscillations that converge to a stable equilibrium,
• large b: limit cycle.

The transition from equilibrium to a limit cycle is called a phase transition.
We finally have a satisfactory solution to our problem. Although the prey pop-

ulation is not eliminated, it can be kept from getting too large and from fluctuating
widely. Nonetheless, changes in the parameters can lead to large fluctuations or to
nearly vanishing predators.

12.19.3 LVM Implementation and Assessment

1. Write a program to solve (12.61) and (12.62) using the rk4 algorithm and the
following parameter values.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 324

324 chapter 12

t
0

400

0 400

P

p

P
o
p
u
la

ti
o
n

t

0

200

0
t

0 400

P

p

Figure 12.17 Lotka–Volterra model with predation efficiency and prey limitations. From left to

right: overdamping,b = 0.01; damped oscillations,b = 0.1, and limit cycle,b = 0.3.

Model a b E m K R

LVM-I 0.2 0.1 1 0.1 0 —

LVM-II 0.2 0.1 1 0.1 20.0 —

LVM-III 0.2 0.1 — 0.1 500.0 0.2

2. For each of the three models, construct
a. a time series for prey and predator populations,
b. phase space plots of predator versus prey populations.

3. LVM-I: Compute the equilibrium values for the prey and predator popula-
tions. Do you think that a model in which the cycle amplitude depends on the
initial conditions can be realistic? Explain.

4. LVM-II: Calculate numerical values for the equilibrium values of the prey
and predator populations. Make a series of runs for different values of prey
carrying capacity K. Can you deduce how the equilibrium populations vary
with prey carrying capacity?

5. Make a series of runs for different initial conditions for predator and prey
populations. Do the cycle amplitudes depend on the initial conditions?

6. LVM-III: Make a series of runs for different values of b and reproduce the
three regimes present in Figure 12.17.

7. Calculate the critical value for b corresponding to a phase transition between
the stable equilibrium and the limit cycle.

12.19.4 Two Predators, One Prey (Exploration)

1. Another version of the LVM includes the possibility that two populations of
predators P1 and P2 may “share” the same prey population p. Investigate the
behavior of a system in which the prey population grows logistically in the

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 325

discrete & continuous nonlinear dynamics 325

absence of predators:

dp

dt
= ap

(
1 − p

K

)
− (b1P1 + b2P2) p, (12.63)

dP

dt
= ε1b1pP1 −m1P1,

dP2

dt
= ε2b2pP2 −m2P2. (12.64)

a. Use the following values for the model parameters and initial conditions:
a= 0.2, K = 1.7, b1 = 0.1, b2 = 0.2, m1 =m2 = 0.1, ε1 = 1.0,
ε2 = 2.0, p(0) = P2(0) = 1.7, and P1(0) = 1.0.

b. Determine the time dependences for each population.
c. Vary the characteristics of the second predator and calculate the equilib-

rium population for the three components.
d. What is your answer to the question, “Can two predators that share the

same prey coexist?”
2. The nonlinear nature of the Lotka–Volterra model can lead to chaos and fractal

behavior. Search for chaos by varying the growth rates.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 326

13

Fractals & Statistical Growth

It is common to notice regular and eye-pleasing natural objects, such as plants and sea
shells, that do not have well-defined geometric shapes. When analyzed mathematically,
some of these objects have a dimension that is a fractional number, rather than an
integer, and so are called fractals. In this chapter we implement simple, statistical
models that generate fractals. To the extent that these models generate structures that
look like those in nature, it is reasonable to assume that the natural processes must
be following similar rules arising from the basic physics or biology that creates the
objects. Detailed applications of fractals can be found in [Mand 82, Arm 91, E&P 88,
Sand 94, PhT 88].

13.1 Fractional Dimension (Math)

Benoit Mandelbrot, who first studied fractional-dimension figures with supercom-
puters at IBM Research, gave them the name fractals [Mand 82]. Some geometric
objects, such as Koch curves, are exact fractals with the same dimension for all their
parts. Other objects, such as bifurcation curves, are statistical fractals in which ele-
ments of randomness occur and the dimension can be defined only locally or on the
average.

Consider an abstract object such as the density of charge within an atom. There
are an infinite number of ways to measure the “size” of this object. For example, each
moment 〈rn〉 is a measure of the size, and there is an infinite number of moments.
Likewise, when we deal with complicated objects, there are different definitions of
dimension and each may give a somewhat different value. In addition, the fractal
dimension is often defined by using a measuring box whose size approaches zero,
which is not practical for realistic applications.

Our first definition of the fractional dimension df (or Hausdorff–Besicovitch
dimension) is based on our knowledge that a line has dimension 1, a triangle has
dimension 2, and a cube has dimension 3. It seems perfectly reasonable to ask if
there is some mathematical formula that agrees with our experience with regular
objects yet can also be used for determining fractional dimensions. For simplicity,
let us consider objects that have the same length L on each side, as do equi-
lateral triangles and squares, and that have uniform density. We postulate that
the dimension of an object is determined by the dependence of its total mass

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 327

fractals & statistical growth 327

upon its length:

M(L) ∝ Ldf , (13.1)

where the power df is the fractal dimension. As you may verify, this rule works
with the 1-D, 2-D, and 3-D regular figures in our experience, so it is a reasonable
definition. When we apply (13.1) to fractal objects, we end up with fractional values
for df . Actually, we will find it easier to determine the fractal dimension not from
an object’s mass, which is extensive (depends on size), but rather from its density,
which is intensive. The density is defined as mass/length for a linear object, as
mass/area for a planar object, and as mass/volume for a solid object. That being
the case, for a planar object we hypothesize that

ρ=
M(L)
area

∝ Ldf

L2 ∝ Ldf −2. (13.2)

13.2 The Sierpiński Gasket (Problem 1)

To generate our first fractal (Figure 13.1), we play a game of chance in which we
place dots at points picked randomly within a triangle. Here are the rules (which
you should try out in the margins now).

1. Draw an equilateral triangle with vertices and coordinates:

vertex 1: (a1, b1); vertex 2: (a2, b2); vertex 3: (a3, b3).

2. Place a dot at an arbitrary point P = (x0, y0) within this triangle.
3. Find the next point by selecting randomly the integer 1, 2, or 3:

a. If 1, place a dot halfway between P and vertex 1.
b. If 2, place a dot halfway between P and vertex 2.
c. If 3, place a dot halfway between P and vertex 3.

4. Repeat the process using the last dot as the new P .

Mathematically, the coordinates of successive points are given by the formulas

(xk+1, yk+1) =
(xk, yk) + (an, bn)

2
, n= integer (1 + 3ri), (13.3)

where ri is a random number between 0 and 1 and where the integer function
outputs the closest integer smaller than or equal to the argument. After 15,000
points, you should obtain a collection of dots like those on the left in Figure 13.1.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 328

328 chapter 13

0

100

200

300

0 100 200 300

10,000 points

Figure 13.1 Left: A Sierpiński gasket containing 10,000 points constructed as a statistical

fractal. Each filled part of this figure is self-similar. Right: A Sierpiński gasket constructed by

successively connecting the midpoints of the sides of each equilateral triangle. (A–C) The first

three steps in the process.

13.2.1 Sierpiński Implementation

Write a program to produce a Sierpiński gasket. Determine empirically the fractal
dimension of your figure. Assume that each dot has mass 1 and that ρ= CLα. (You
can have the computer do the counting by defining an array box of all 0 values and
then change a 0 to a 1 when a dot is placed there.)

13.2.2 Assessing Fractal Dimension

The topology in Figure 13.1 was first analyzed by the Polish mathematician
Sierpiński. Observe that there is the same structure in a small region as there is
in the entire figure. In other words, if the figure had infinite resolution, any part
of the figure could be scaled up in size and would be similar to the whole. This
property is called self-similarity.

We construct a regular form of the Sierpiński gasket by removing an inverted
equilateral triangle from the center of all filled equilateral triangles to create the
next figure (Figure 13.1 right). We then repeat the process ad infinitum, scaling up
the triangles so each one has side r = 1 after each step. To see what is unusual about
this type of object, we look at how its density (mass/area) changes with size and

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 329

fractals & statistical growth 329

then apply (13.2) to determine its fractal dimension. Assume that each triangle has
mass m and assign unit density to the single triangle:

ρ(L= r) ∝ M

r2
=
m

r2
def= ρ0 (Figure 13.1A)

Next, for the equilateral triangle with side L= 2, the density

ρ(L= 2r) ∝ (M = 3m)
(2r)2

= 34mr2 =
3
4
ρ0 (Figure 13.1B)

We see that the extra white space in Figure 13.1B leads to a density that is 3
4 that of

the previous stage. For the structure in Figure 13.1C, we obtain

ρ(L= 4r) ∝ (M = 9m)
(4r)2

= (34)2
m

r2
=
(

3
4

)2

ρ0. (Figure 13.1C)

We see that as we continue the construction process, the density of each new
structure is 3

4 that of the previous one. Interesting. Yet in (13.2) we derived that

ρ∝ CLdf −2. (13.4)

Equation (13.4) implies that a plot of the logarithm of the density ρ versus the
logarithm of the length L for successive structures yields a straight line of slope

df − 2 =
∆ log ρ
∆ logL

. (13.5)

As applied to our problem,

df = 2 +
∆ log ρ(L)
∆ logL

= 2 +
log 1 − log 3

4

log1 − log 2
� 1.58496. (13.6)

As is evident in Figure 13.1, as the gasket grows larger (and consequently more
massive), it contains more open space. So even though its mass approaches infin-
ity as L→ ∞, its density approaches zero! And since a 2-D figure like a solid
triangle has a constant density as its length increases, a 2-D figure has a slope
equal to 0. Since the Sierpiński gasket has a slope df − 2 � −0.41504, it fills space to
a lesser extent than a 2-D object but more than a 1-D object does; it is a fractal with
dimension ≤1.6.

13.3 Beautiful Plants (Problem 2)

It seems paradoxical that natural processes subject to chance can produce objects
of high regularity and symmetry. For example, it is hard to believe that something
as beautiful and graceful as a fern (Figure 13.2 left) has random elements in it.
Nonetheless, there is a clue here in that much of the fern’s beauty arises from the
similarity of each part to the whole (self-similarity), with different ferns similar but
not identical to each other. These are characteristics of fractals. Your problem is to
discover if a simple algorithm including some randomness can draw regular ferns.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 330

330 chapter 13

Figure 13.2 Left: A fern after 30,000 iterations of the algorithm (13.10). If you enlarge this, you

will see that each frond has a similar structure. Right: A fractal tree created with the simple

algorithm (13.13)

If the algorithm produces objects that resemble ferns, then presumably you have
uncovered mathematics similar to that responsible for the shapes of ferns.

13.3.1 Self-affine Connection ( Theory)

In (13.3), which defines mathematically how a Sierpiński gasket is constructed,
a scaling factor of 1

2 is part of the relation of one point to the next. A more general
transformation of a point P = (x, y) into another point P ′ = (x′, y′) via scaling is

(x′, y′) = s(x, y) = (sx, sy) (scaling). (13.7)

If the scale factor s > 0, an amplification occurs, whereas if s < 0, a reduction occurs.
In our definition (13.3) of the Sierpiński gasket, we also added in a constant an. This
is a translation operation, which has the general form

(x′, y′) = (x, y) + (ax, ay) (translation). (13.8)

Another operation, not used in the Sierpiński gasket, is a rotation by angle θ:

x′ = x cos θ− y sin θ, y′ = x sin θ+ y cos θ (rotation). (13.9)

The entire set of transformations, scalings, rotations, and translations defines an
affine transformation (affine denotes a close relation between successive points). The
transformation is still considered affine even if it is a more general linear transfor-
mation with the coefficients not all related by a single θ (in that case, we can have
contractions and reflections). What is important is that the object created with these
rules turns out to be self-similar; each step leads to new parts of the object that bear
the same relation to the ancestor parts as the ancestors did to theirs. This is what
makes the object look similar at all scales.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 331

fractals & statistical growth 331

13.3.2 Barnsley’s Fern Implementation

We obtain a Barnsley’s fern [Barns 93] by extending the dots game to one in which
new points are selected using an affine connection with some elements of chance
mixed in:

(x, y)n+1 =




(0.5, 0.27yn), with 2% probability,

(−0.139xn + 0.263yn + 0.57
0.246xn + 0.224yn − 0.036), with 15% probability,

(0.17xn − 0.215yn + 0.408
0.222xn + 0.176yn + 0.0893), with 13% probability,

(0.781xn + 0.034yn + 0.1075
−0.032xn + 0.739yn + 0.27), with 70% probability.

(13.10)

To select a transformation with probability P , we select a uniform random number
0 ≤ r ≤ 1 and perform the transformation if r is in a range proportional to P :

P =




2%, r < 0.02,

15%, 0.02 ≤ r ≤ 0.17,

13%, 0.17< r ≤ 0.3,

70%, 0.3< r < 1.

(13.11)

The rules (13.10) and (13.11) can be combined into one:

(x, y)n+1 =




(0.5, 0.27yn), r < 0.02,

(−0.139xn + 0.263yn + 0.57
0.246xn + 0.224yn − 0.036), 0.02 ≤ r ≤ 0.17,

(0.17xn − 0.215yn + 0.408
0.222xn + 0.176yn + 0.0893), 0.17< r ≤ 0.3,

(0.781xn + 0.034yn + 0.1075,
−0.032xn + 0.739yn + 0.27), 0.3< r < 1.

(13.12)

Although (13.10) makes the basic idea clearer, (13.12) is easier to program.
The starting point in Barnsley’s fern (Figure 13.2) is (x1, y1) = (0.5, 0.0), and the

points are generated by repeated iterations. An important property of this fern is
that it is not completely self-similar, as you can see by noting how different the
stems and the fronds are. Nevertheless, the stem can be viewed as a compressed

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 332

332 chapter 13

copy of a frond, and the fractal obtained with (13.10) is still self-affine, yet with a
dimension that varies in different parts of the figure.

13.3.3 Self-affinity in Trees Implementation

Now that you know how to grow ferns, look around and notice the regularity in
trees (such as in Figure 13.2 right). Can it be that this also arises from a self-affine
structure? Write a program, similar to the one for the fern, starting at (x1, y1) =
(0.5, 0.0) and iterating the following self-affine transformation:

(xn+1, yn+1) =




(0.05xn, 0.6yn), 10% probability,

(0.05xn,−0.5yn + 1.0), 10% probability,

(0.46xn − 0.15yn, 0.39xn + 0.38yn + 0.6), 20% probability,

(0.47xn − 0.15yn, 0.17xn + 0.42yn + 1.1), 20% probability,

(0.43xn + 0.28yn,−0.25xn + 0.45yn + 1.0), 20% probability,

(0.42xn + 0.26yn,−0.35xn + 0.31yn + 0.7), 20% probability.
(13.13)

13.4 Ballistic Deposition (Problem 3)

There are a number of physical and manufacturing processes in which particles are
deposited on a surface and form a film. Because the particles are evaporated from
a hot filament, there is randomness in the emission process yet the produced films
turn out to have well-defined, regular structures. Again we suspect fractals. Your
problem is to develop a model that simulates this growth process and compare
your produced structures to those observed.

13.4.1 Random Deposition Algorithm

The idea of simulating random depositions was first reported in [Vold 59], which
includes tables of random numbers used to simulate the sedimentation of moist
spheres in hydrocarbons. We shall examine a method of simulation [Fam 85] that
results in the deposition shown in Figure 13.3. Consider particles falling onto and
sticking to a horizontal line of length L composed of 200 deposition sites. All parti-
cles start from the same height, but to simulate their different velocities, we assume
they start at random distances from the left side of the line. The simulation consists
of generating uniform random sites between 0 and L and having a particle stick to
the site on which it lands. Because a realistic situation may have columns of aggre-
gates of different heights, the particle may be stopped before it makes it to the line,
or it may bounce around until it falls into a hole. We therefore assume that if the
column height at which the particle lands is greater than that of both its neighbors,

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 333

fractals & statistical growth 333

Length

S
ur

fa
ce

 H
ei

gh
t

0
0

200

200

Figure 13.3 A simulation of the ballistic deposition of 20,000 particles on a substrate of length

200. The vertical height increases with the length of deposition time so that the top is the final

surface.

it will add to that height. If the particle lands in a hole, or if there is an adjacent
hole, it will fill up the hole. We speed up the simulation by setting the height of the
hole equal to the maximum of its neighbors:

1. Choose a random site r.
2. Let the array hr be the height of the column at site r.
3. Make the decision:

hr =

{
hr + 1, if hr ≥ hr−1, hr > hr+1,

max[hr−1, hr+1], if hr < hr−1, hr < hr+1.
(13.14)

Our sample simulation is Fractals/Film.java on the CD (FilmDim.java on the
instructor’s CD), with the essential loop:

� �
i n t spot = random . n e x t I n t ( 2 0 0 ) ; i f ( spot == 0) {

i f ( c o a s t [ spot ] < c o a s t [ spot +1] ) c o a s t [ spot ] = c o a s t [ spot + 1 ] ;
e l s e c o a s t [ spot ]++ ;

} e l s e i f ( spot == c o a s t . length − 1) {
i f ( c o a s t [ spot ] < c o a s t [ spot −1]) c o a s t [ spot ] = c o a s t [ spot −1];
e l s e c o a s t [ spot ]++ ;

} e l s e i f ( c o a s t [ spot ] < c o a s t [ spot −1] && c o a s t [ spot ] < c o a s t [ spot +1] )
{

i f ( c o a s t [ spot −1] > c o a s t [ spot +1] ) c o a s t [ spot ] = c o a s t [ spot −1];
e l s e c o a s t [ spot ] = c o a s t [ spot + 1 ] ;

} e l s e c o a s t [ spot ]++ ;
�

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 334

334 chapter 13

The results of this type of simulation show several empty regions scattered through-
out the line (Figure 13.3), which is an indication of the statistical nature of the process
while the film is growing. Simulations by Fereydoon reproduced the experimen-
tal observation that the average height increases linearly with time and produced
fractal surfaces. (You will be asked to determine the fractal dimension of a similar
surface as an exercise.)

13.5 Length of the British Coastline (Problem 4)

In 1967 Mandelbrot [Mand 67] asked a classic question, “How long is the coast of
Britain?” If Britain had the shape of Colorado or Wyoming, both of which have
straight-line boundaries, its perimeter would be a curve of dimension 1 with finite
length. However, coastlines are geographic not geometric curves, with each portion
of the coast often statistically self-similar to the entire coast yet on a reduced scale. In
the latter cases the perimeter may be modeled as a fractal, in which case the length
is either infinite or meaningless. Mandelbrot deduced the dimension of the west
coast of Great Britain to be df = 1.25. In your problem we ask you to determine
the dimension of the perimeter of one of our fractal simulations.

13.5.1 Coastlines as Fractals (Model)

The length of the coastline of an island is the perimeter of that island. While the
concept of perimeter is clear for regular geometric figures, some thought is required
to give it meaning for an object that may be infinitely self-similar. Let us assume
that a map maker has a ruler of length r. If she walks along the coastline and
counts the number of times N that she must place the ruler down in order to cover
the coastline, she will obtain a value for the length L of the coast as Nr. Imag-
ine now that the map maker keeps repeating her walk with smaller and smaller
rulers. If the coast was a geometric figure or a rectifiable curve, at some point the
length L would become essentially independent of r and would approach a con-
stant. Nonetheless, as discovered empirically by Richardson [Rich 61] for natural
coastlines, such as those of South Africa and Britain, the perimeter appears to be a
function of r:

L(r) =Mr1−df , (13.15)

where M and df are empirical constants. For a geometric figure or for Colorado,
df = 1 and the length approaches a constant as r → 0. Yet for a fractal with df > 1,
the perimeter L→ ∞ as r → 0. This means that as a consequence of self-similarity,
fractals may be of finite size but have infinite perimeters. Physically, at some point
there may be no more details to discern as r → 0 (say, at the quantum or Compton
size limit), and so the limit may not be meaningful.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 335

fractals & statistical growth 335

13.5.2 Box Counting Algorithm

Consider a line of length L broken up into segments of length r (Figure 13.4 left).
The number of segments or “boxes” needed to cover the line is related to the size
r of the box by

N(r) =
L

r
=
C

r
, (13.16)

whereC is a constant. Aproposed definition of fractional dimension is the power of
r in this expression as r → 0. In our example, it tells us that the line has dimension
df = 1. If we now ask how many little circles of radius r it would take to cover or
fill a circle of area A (Figure 13.4 middle), we will find that

N(r) = lim
r→0

A

πr2
⇒ df = 2, (13.17)

as expected. Likewise, counting the number of little spheres or cubes that can be
packed within a large sphere tells us that a sphere has dimension df = 3. In general,
if it takesN little spheres or cubes of side r → 0 to cover some object, then the fractal
dimension df can be deduced as

N(r) = C

(
1
r

)df

= C ′ sdf (as r → 0), (13.18)

2r

80400
0

40

100

Figure 13.4 Examples of the use of box counting to determine fractal dimension. On the left

the perimeter is being covered, in the middle an entire figure is being covered, and on the

right a “coastline” is being covered by boxes of two different sizes (scales).

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 336

336 chapter 13

logN(r) = logC − df log(r) (as r → 0), (13.19)

⇒ df = − lim
r→0

∆N(r)
∆r

. (13.20)

Here s∝ 1/r is called the scale in geography, so r → 0 corresponds to an infinite
scale. To illustrate, you may be familiar with the low scale on a map being 10,000
m to a centimeter, while the high scale is 100 m to a centimeter. If we want the map
to show small details (sizes), we need a map of high scale.

We will use box counting to determine the dimension of a perimeter, not of an
entire figure. Once we have a value for df , we can determine a value for the lengthC D

of the perimeter via (13.15). (If you cannot wait to see box counting in action, on the
CD you will find an applet Jfracdim that goes through all the steps of box counting
before your eyes and even plots the results.)

13.5.3 Coastline Implementation and Exercise

Rather than ruin our eyes using a geographic map, we use a mathematical one.
Specifically, with a little imagination you will see that the top portion of Figure 13.3

square (m = 2.00)

coastline (m = 1.3)

straight line (m = 1.02)

log(scale)

lo
g(

N
um

be
r 

bo
xe

s)

20

15

10

5

0
–4 –3.5 –3 –2.5 –2 –1.5 –1

Figure 13.5 Dimensions of a line, box, and coastline determined by box counting.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 337

fractals & statistical growth 337

looks like a natural coastline. Determine df by covering this figure, or one you have
generated, with a semitransparent piece of graph paper1, and counting the number
of boxes containing any part of the coastline (Figures 13.4 and 13.5).

1. Print your coastline graph with the same physical scale (aspect ratio) for the
vertical and horizontal axes. This is required because the graph paper you
will use for box counting has square boxes and so you want your graph to
also have the same vertical and horizontal scales. Place a piece of graph paper
over your printout and look though the graph paper at your coastline. If you
do not have a piece of graph paper available, or if you are unable to obtain
a printout with the same aspect ratio for the horizontal and vertical axes,
add a series of closely spaced horizontal and vertical lines to your coastline
printout and use these lines as your graph paper. (Box counting should still
be accurate if both your coastline and your graph paper are have the same
aspect ratios.)

2. The vertical height in our printout was 17 cm, and the largest division on our
graph paper was 1 cm. This sets the scale of the graph as 1:17, or s= 17 for the
largest divisions (lowest scale). Measure the vertical height of your fractal,
compare it to the size of the biggest boxes on your “piece” of graph paper,
and thus determine your lowest scale.

3. With our largest boxes of 1 cm × 1 cm, we found that the coastline passed
through N = 24 large boxes, that is, that 24 large boxes covered the coastline
at s= 17. Determine how many of the largest boxes (lowest scale) are needed
to cover your coastline.

4. With our next smaller boxes of 0.5 cm × 0.5 cm, we found that 51 boxes cov-
ered the coastline at a scale of s= 34. Determine how many of the midsize
boxes (midrange scale) are needed to cover your coastline.

5. With our smallest boxes of 1 mm × 1 mm, we found that 406 boxes covered
the coastline at a scale of s= 170. Determine how many of the smallest boxes
(highest scale) are needed to cover your coastline.

6. Equation (13.20) tells us that as the box sizes get progressively smaller, we
have

logN � logA+ df log s,

⇒ df � ∆ logN
∆ log s

=
logN2 − logN1

log s2 − log s1
=

log(N2/N1)
log(s2/s1)

.

Clearly, only the relative scales matter because the proportionality constants
cancel out in the ratio. A plot of logN versus log s should yield a straight line.
In our example we found a slope of df = 1.23. Determine the slope and thus
the fractal dimension for your coastline. Although only two points are needed

1 Yes, we are suggesting a painfully analog technique based on the theory that trauma leaves
a lasting impression. If you prefer, you can store your output as a matrix of 1 and 0 values
and let the computer do the counting, but this will take more of your time!

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 338

338 chapter 13

to determine the slope, use your lowest scale point as an important check.
(Because the fractal dimension is defined as a limit for infinitesimal box sizes,
the highest scale points are more significant.)

7. As given by (13.15), the perimeter of the coastline

L∝ s1.23−1 = s0.23. (13.21)

If we keep making the boxes smaller and smaller so that we are looking at
the coastline at higher and higher scale and if the coastline is self-similar at
all levels, then the scale s will keep getting larger and larger with no limits
(or at least until we get down to some quantum limits). This means

L∝ lim
s→∞ s0.23 = ∞. (13.22)

Does your fractal lead to an infinite coastline? Does it make sense that a small
island like Britain, which you can walk around, has an infinite perimeter?

13.6 Correlated Growth, Forests,
and Films (Problem 5)

It is an empirical fact that in nature there is increased likelihood that a plant will
grow if there is another one nearby (Figure 13.6 left). This correlation is also valid
for the “growing” of surface films, as in the previous algorithm. Your problem is
to include correlations in the surface simulation.

13.6.1 Correlated Ballistic Deposition Algorithm

A variation of the ballistic deposition algorithm, known as the correlated ballistic
deposition algorithm, simulates mineral deposition onto substrates on which den-
drites form [Tait 90]. We extend the previous algorithm to include the likelihood
that a freshly deposited particle will attract another particle. We assume that the
probability of sticking P depends on the distance d that the added particle is from
the last one (Figure 13.6 right):

P = c dη. (13.23)

Here η is a parameter and c is a constant that sets the probability scale.2 For our
implementation we choose η = −2, which means that there is an inverse square
attraction between the particles (decreased probability as they get farther apart).

2 The absolute probability, of course, must be less than one, but it is nice to choose c so that
the relative probabilities produce a graph with easily seen variations.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 339

fractals & statistical growth 339

i
i+1d

Figure 13.6 Left: A view that might be seen in the undergrowth of a forest or a correlated

ballistic deposition. Right: The probability of particle i+ 1 sticking in some column depends on

the distance d from the previously deposited particle i.

As in our study of uncorrelated deposition, a uniform random number in the
interval [0, L] determines the column in which the particle will be deposited. We
use the same rules about the heights as before, but now a second random number
is used in conjunction with (13.23) to decide if the particle will stick. For instance, if
the computed probability is 0.6 and if r < 0.6, the particle will be accepted (sticks);
if r > 0.6, the particle will be rejected.

13.7 Globular Cluster (Problem 6)

Consider a bunch of grapes on an overhead vine. Your problem is to determine
how its tantalizing shape arises. In a flash of divine insight, you realize that these
shapes, as well as others such as those of dendrites, colloids, and thin-film structure,
appear to arise from an aggregation process that is limited by diffusion.

13.7.1 Diffusion-Limited Aggregation Algorithm

A model of diffusion-limited aggregation (DLA) has successfully explained the
relation between a cluster’s perimeter and mass [W&S 83]. We start with a 2-D
lattice containing a seed particle in the middle, draw a circle around the particle,
and place another particle on the circumference of the circle at some random angle.
We then release the second particle and have it execute a random walk, much
like the one we studied in Chapter 5, “Monte Carlo Simulations,” but restricted to
vertical or horizontal jumps between lattice sites. This is a type of Brownian motion
that simulates diffusion. To make the model more realistic, we let the length of each

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 340

340 chapter 13

� �

i m p o r t j ava . io . ∗ ; / / Location of PrintWriter
i m p o r t j ava . u t i l . ∗ ; / / Location of Random
i m p o r t j ava . lang . ∗ ; / / Location of Math

p u b l i c c l a s s COLUMN {

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) throws IOException , FileNotFoundException {
Pr i n t W r i t e r q = new Pr i n t W r i t e r ( new FileOutputStream ("COLUMN.DAT" ) , t r u e ) ;
l ong seed = 971761 ; / / I n i t i a l i z e 48 b i t random number generator
Random randnum = new Random( seed ) ; / / Next random : randnum . nextDouble ( )
i n t max = 100000 , npoints = 2 0 0 ; / / Number i t e r a t i o n s , spaces
i n t i = 0 , d i s t = 0 , r = 0 , x = 0 , y = 0 , oldx = 0 , oldy = 0 ;
d o u b l e pp = 0 . 0 , prob = 0 . 0 ;
i n t h i t [ ] = new i n t [ 2 0 0 ] ;
f o r ( i = 0 ; i < npoints ; i ++) h i t [ i ] = 0 ; / / Clear array
oldx = 1 0 0 ;
oldy = 0 ;
f o r ( i = 1 ; i <= max ; i ++) {
r = ( i n t ) ( npoints∗randnum . nextDouble ( ) ) ;
x = r−oldx ;
y = h i t [ r]−oldy ;
d i s t = x∗x + y∗y ;
i f ( d i s t == 0) prob = 1 . 0 ; / / Sticking prob depends on x to l a s t p a r t i c l e

e l s e prob = 9.0/ d i s t ; / / nu = −2.0 , c = 0 . 9
pp = randnum . nextDouble ( ) ;

i f ( pp < prob ) {
i f ( r >0 && r <( npoints −1) ) {

i f ( ( h i t [ r ] >= h i t [ r −1]) && ( h i t [ r ] >= h i t [ r +1] ) ) h i t [ r ]++ ;
e l s e i f ( h i t [ r −1] > h i t [ r + 1 ] ) h i t [ r ] = h i t [ r −1];
e l s e h i t [ r ] = h i t [ r + 1 ] ;

oldx = r ;
oldy = h i t [ r ] ;
q . p r i n t l n ( r+" "+ h i t [ r ] ) ;
}

}
}
System . out . p r i n t l n (" " ) ;
System . out . p r i n t l n ("COLUMN Program Complete ." ) ;
System . out . p r i n t l n ("Data stored in COLUMN.DAT" ) ;
System . out . p r i n t l n (" " ) ;

}
} / / End of c l a s s

�

Listing 13.1 Column.java simulates correlated ballistic deposition of minerals onto substrates

on which dendrites form.

step vary according to a random Gaussian distribution. If at some point during its
random walk, the particle encounters another particle within one lattice spacing,
they stick together and the walk terminates. If the particle passes outside the circle
from which it was released, it is lost forever. The process is repeated as often as
desired and results in clusters (Figure 13.7 and applet dla).

1. Write a subroutine that generates random numbers with a Gaussian distri-
bution.3

2. Define a 2-D lattice of points represented by the array grid[400][400] with
all elements initially zero.

3 We indicated how to do this in § 6.8.1.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 341

fractals & statistical growth 341

Figure 13.7 Left: A globular cluster of particles of the type that might occur in a colloid. Right:

The applet Dla2en.html on the CD lets you watch these clusters grow. Here the cluster is at

the center of the circle, and random walkers are started at random points around the circle.

3. Place the seed at the center of the lattice; that is, set grid[199][199]=1.
4. Imagine a circle of radius 180 lattice spacings centered at grid[199][199].

This is the circle from which we release particles.
5. Determine the angular position of the new particle on the circle’s circumfer-

ence by generating a uniform random angle between 0 and 2π.
6. Compute the x and y positions of the new particle on the circle.
7. Determine whether the particle moves horizontally or vertically by gener-

ating a uniform random number 0< rxy < 1 and applying the rule

if

{
rxy < 0.5, motion is vertical,

rxy > 0.5, motion is horizontal.
(13.24)

8. Generate a Gaussian-weighted random number in the interval [−∞,∞]. This
is the size of the step, with the sign indicating direction.

9. We now know the total distance and direction the particle will move. It
jumps one lattice spacing at a time until this total distance is covered.

10. Before a jump, check whether a nearest-neighbor site is occupied:
a. If occupied, the particle stays at its present position and the walk is over.
b. If unoccupied, the particle jumps one lattice spacing.
c. Continue the checking and jumping until the total distance is covered,

until the particle sticks, or until it leaves the circle.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 342

342 chapter 13

Figure 13.8 Number 8 by the American painter Jackson Pollock. (Used with permission,

Neuberger Museum, State University of New York.) It has been found that Pollock’s paintings

exhibit a characteristic fractal structure. See if you can determine the fractal dimensions

within this painting.

11. Once one random walk is over, another particle can be released and the
process repeated. This is how the cluster grows.

Because many particles are lost, you may need to generate hundreds of thousands
of particles to form a cluster of several hundred particles.

13.7.2 Fractal Analysis of a DLA (or Pollock)
Graph; Assessment

A cluster generated with the DLA technique is shown in Figure 13.7. We wish to
analyze it to see if the structure is a fractal and, if so, to determine its dimension.
(As an alternative, you may analyze the fractal nature of the Pollock painting in
Figure 13.8, a technique used to determine the authenticity of this sort of art.) As a
control, simultaneously analyze a geometric figure, such as a square or circle, whose
dimension is known. The analysis is a variation of the one used to determine the
length of the coastline of Britain.

1. If you have not already done so, use the box counting method to determine
the fractal dimension of a simple square.

2. Draw a square of length L, small relative to the size of the cluster, around the
seed particle. (Small might be seven lattice spacings to a side.)

3. Count the number of particles within the square.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 343

fractals & statistical growth 343

4. Compute the density ρ by dividing the number of particles by the number of
sites available in the box (49 in our example).

5. Repeat the procedure using larger and larger squares.
6. Stop when the cluster is covered.
7. The (box counting) fractal dimension df is estimated from a log-log plot of the

density ρ versus L. If the cluster is a fractal, then (13.2) tells us that ρ∝ Ldf −2,
and the graph should be a straight line of slope df − 2.

The graph we generated had a slope of −0.36, which corresponds to a fractal dimen-
sion of 1.66. Because random numbers are involved, the graph you generate will
be different, but the fractal dimension should be similar. (Actually, the structure is
multifractal, and so the dimension varies with position.)

13.8 Fractal Structures in a
Bifurcation Graph (Problem 7)

Recollect the project involving the logistics map where we plotted the values of
the stable population numbers versus the growth parameter µ. Take one of the
bifurcation graphs you produced and determine the fractal dimension of different
parts of the graph by using the same technique that was applied to the coastline of
Britain.

13.9 Fractals from Cellular Automata

We have already indicated in places how statistical models may lead to fractals. There is
a class of statistical models known as cellular automata that produce complex behaviors
from very simple systems. Here we study some.

Cellular automata were developed by von Neumann and Ulam in the early 1940s
(von Neumann was also working on the theory behind modern computers then).
Though very simple, cellular automata have found applications in many branches
of science [Peit 94, Sipp 96]. Their classic definition is [Barns 93]:

A cellular automaton is a discrete dynamical system in which space, time, and the
states of the system are discrete. Each point in a regular spatial lattice, called a cell, can
have any one of a finite number of states, and the states of the cells in the lattice are
updated according to a local rule. That is, the state of a cell at a given time depends
only on its won state one time step previously, and the states of its nearby neighbors
at the previous time step. All cells on the lattice are updated synchronously, and so
the state of the entice lattice advances in discrete time steps.

The program CellAut.java given on the CD creates a simple 1-D cellular automa-
ton that grows on your screen. A cellular automaton in two dimensions consists
of a number of square cells that grow upon each other. A famous one, invented by

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 344

344 chapter 13

Conway in the 1970s, is Conway’s Game of Life. In this, cells with value 1 are alive,
while cells with value 0 are dead. Cells grow according to the following rules:

1. If a cell is alive and if two or three of its eight neighbors are alive, then the cell
remains alive.

2. If a cell is alive and if more than three of its eight neighbors are alive, then the
cell dies because of overcrowding.

3. If a cell is alive and only one of its eight neighbors is alive, then the cell dies
of loneliness.

4. If a cell is dead and more than three of its neighbors are alive, then the cell
revives.

A variation on the Game of Life is to include a “rule one out of eight” that a cell
will be alive if exactly one of its neighbors is alive, otherwise the cell will remain
unchanged. The program OutofEight.java (Listing 13.2) starts with one live cell at
the center of the 3-D array cell[34][34][2] and grows on your screen from there.

� �
/ / Game of the l i f e with 1 out of 8 rule
i m p o r t j ava . io . ∗ ;
p u b l i c c l a s s OutofEight {

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) throws IOException {
i n t c e l l [ ] [ ] [ ] = new i n t [ 3 4 ] [ 3 4 ] [ 2 ] , i , r , j , a l i v e ;

f o r ( j = 0 ; j < 3 3 ; j ++ ) { / / I n i t i a l s t a t e of c e l l s
f o r ( i = 0 ; i < 3 3 ; i ++ ) c e l l [ j ] [ i ] [ 0 ] = 0 ;
c e l l [ 1 6 ] [ 1 6 ] [ 0 ] = 1 ;
f o r ( i = 0 ; i < 3 3 ; i ++) System . out . p r i n t (" "+ c e l l [ j ] [ i ] [ 0 ] ) ;
System . out . p r i n t l n ("" ) ;

} / / j
f o r ( r = 0 ; r < 1 0 ; r++ ) {

f o r ( j = 1 ; j < 3 2 ; j ++ ) {
f o r ( i = 1 ; i < 3 2 ; i ++ ) {

a l i v e =0;
i f ( c e l l [ i −1][ j ] [ 0 ] == 1 ) a l i v e = a l i v e + 1 ;
i f ( c e l l [ i + 1 ] [ j ] [ 0 ] == 1 ) a l i v e = a l i v e + 1 ;
i f ( c e l l [ i ] [ j −1][0] == 1 ) a l i v e = a l i v e + 1 ;
i f ( c e l l [ i ] [ j + 1 ] [ 0 ] == 1 ) a l i v e = a l i v e + 1 ;
i f ( c e l l [ i −1][ j −1][0] == 1 ) a l i v e = a l i v e + 1 ;
i f ( c e l l [ i + 1 ] [ j −1][0] == 1 ) a l i v e = a l i v e + 1 ;
i f ( c e l l [ i −1][ j + 1 ] [ 0 ] == 1 ) a l i v e = a l i v e + 1 ;
i f ( c e l l [ i + 1 ] [ j + 1 ] [ 0 ] == 1 ) a l i v e = a l i v e + 1 ;
i f ( c e l l [ i ] [ j ] [ 0 ] == 0 && a l i v e == 1 ) c e l l [ i ] [ j ] [ 1 ] = 1 ;

} / / i
} / / j
f o r ( j =0 ; j <33; j ++) { f o r ( i =0 ; i <33; i ++) c e l l [ j ] [ i ] [ 0 ] = c e l l [ j ] [ i ] [ 1 ] ; }
System . out . p r i n t l n ("Press any key to continue " ) ;
f o r ( j = 0 ; j < 3 3 ; j ++ ) {

f o r ( i = 0 ; i <33; i ++ ) {
i f ( c e l l [ j ] [ i ] [ 1 ] == 1) System . out . p r i n t ("X" ) ;

e l s e System . out . p r i n t (" " ) ;
}
System . out . p r i n t l n ("" ) ;

} / / j
System . in . read ( ) ;
} / / r

} }
�

Listing 13.2 OutofEight.java is an extension of Conway’s Game of Life in which cells always

revive if one out of eight neighbors is alive.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 345

fractals & statistical growth 345

Figure 13.9 The rules for two versions of the Game of Life, given graphically on the top row,

create the gaskets below. (Output of this sort is obtained from the applet JCellAut on

the CD.)

In 1983 Wolfram developed the statistical mechanics of cellular automata and
indicated how one can be used to generate a Sierpiński gasket [Wolf 83]. Since we
have already seen that a Sierpiński gasket exhibits fractal geometry (§13.2), this
represents a microscopic model of how fractals may occur in nature. This model
uses eight rules, given graphically at the top of Figure 13.9, to generate new cells C D

from old. We see all possible configurations for three cells in the top row, and
the begetted next generation in the row below. At the bottom of Figure 13.9 is
a Sierpiński gasket of the type created by the applet JCellAut on the CD (under
Applets). This plays the game and lets you watch and control the growth of the
gasket.

13.10 Perlin Noise Adds Realism �
We have already seen in this chapter how statistical fractals are able to generate objects
with a striking resemblance to those in nature. This appearance of realism may be
further enhanced by including a type of coherent randomness known as Perlin noise.
The resulting textures so resemble those of clouds, smoke, and fire that one cannot help
but wonder if a similar mechanism might also be occurring in nature. The technique
we are about to discuss was developed by Ken Perlin of New York University, who
won an Academy Award (an Oscar) in 1997 for it and has continued to improve it
[Perlin]. This type of coherent noise has found use in important physics simulations
of stochastic media [Tick 04], as well as in video games and motion pictures (Tron).

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 346

346 chapter 13

(x , y )

(x, y)
(x , y )

(x , y )

(x , y )

0

00
0

1

1

1 1

(x, y)

(x , y )00

0

0

(x , y )0 1

(x , y )01

(x , y )1 1

g

g
g

g1

1

2

2

3

3

p p

pp

Figure 13.10 Left: The rectangular grid used to locate a square in space and a

corresponding point within the square. As shown with the arrows, unit vectors gi with random

orientation are assigned at each grid point. Right: A point within each square is located by

drawing the four pi. The gi vectors are the same as on the left.

The inclusion of Perlin noise in a simulation adds both randomness and a type
of coherence among points in space that tends to make dense regions denser and
sparse regions sparser. This is similar to our correlated ballistic deposition simula-
tions (§13.6.1) and related to chaos in its long-range randomness and short-range
correlations. We start with some known function of x and y and add noise to it. For
this purpose Perlin used the mapping or ease function (Figure 13.11 right)

f(p) = 3p2 − 2p3. (13.25)

As a consequence of its S shape, this mapping makes regions close to 0 even closer
to 0, while making regions close to 1 even closer (in other words, it increases the
tendency to clump, which shows up as higher contrast). We then break space up
into a uniform rectangular grid of points (Figure 13.10 left) and consider a point
(x, y) within a square with vertices (x0, y0), (x1, y0), (x0, y1), and (x1, y1). We next
assign unit gradients vectors g0–g3 with random orientation at each grid point. A
point within each square is located by drawing the four pi vectors (Figure13.10
right):

p0 = (x−x0)i+ (y− y0)j, p1 = (x−x1)i+ (y− y0)j, (13.26)

p2 = (x−x1)i+ (y− y1)j, p3 = (x−x0)i+ (y− y1)j. (13.27)

Next the scalar products of the p′s and the g′s are formed:

s= p0 ·g0, t= p1 ·g1, v = p2 ·g2, u= p3 ·g3. (13.28)

As shown on the left in Figure 13.11, the numbers s, t, u, and v are assigned to
the four vertices of the square and represented there by lines perpendicular to the
square with lengths proportional to the values of s, t,u, and v (which can be positive
or negative).

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 347

fractals & statistical growth 347

(x
, y

)

(x
, y

)
0

0

(x
, y

)

0
1

(x
, y

)
0

1

(x
, y

)

1

1

s

t
u

v

1

3p
2p

2
3

p00

1

Figure 13.11 Left: The numbers s, t,u, and v are represented by perpendiculars to the four

vertices, with lengths proportional to their values. Right: The function 3p2 − 2p3 is used as a

map of the noise at a point like (x,y) to others close by.

The actual mapping proceeds via a number of steps (Figure 13.12):

1. Transform the point (x, y) to (sx, sy),

sx = 3x2 − 2x3, sy = 3y2 − 2y3. (13.29)

2. Assign the lengths s, t, u, and v to the vertices in the mapped square.
3. Obtain the height a (Figure 13.12) via linear interpolation between s and t.

(x,
y)

(x
, y

)0
0

(x
, y

)
0

1 (x
, y

)0
1

(x
, y

)
1

1

s

t

u v

s

t

u v

s
, s

(

)
x

y

a

b

noise
cc

Figure 13.12 Left : The point (x, y ) is mapped to point (sx, xy). Right : Using (13.29). Then

three linear interpolations are performed to find c, the noise at (x, y ).

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 348

348 chapter 13

y

x

Figure 13.13 After the addition of Perlin noise, the random scatterplot on the left

becomes the clusters on the right.

4. Obtain the height b via linear interpolation between u and v.
5. Obtain sy as a linear interpolation between a and b.
6. The vector c so obtained is now the two components of the noise at (x, y).

Perlin’s original C code to accomplish this mapping (along with other goodies)
is found in [Perlin]. It takes as input the plot of random points (r2i, r2i+1) on the
left in Figure 13.13 (which is the same as Figure 5.1) and by adding coherent noise
produces the image on the right in Figure 13.13. The changes we made from the
original program are (1) including an int before the variables p[], start, i, and j, and
(2) adding # include <time.h> and the line srand(time(NULL)); at the beginning of
method init( ) in order to obtain different random numbers each time the program
runs. The main method of the C program we used is below. The program outputs
a data file that we visualized with OpenDX to produce the image montania.tiff on
the right in Figure 13.13.

13.10.1 Including Ray Tracing

Ray tracing is a technique that renders an image of a scene by simulating the way
rays of light actually travel [Pov-Ray]. To avoid tracing rays that do not contribute
to the final image, ray-tracing programs start at the viewer, trace rays backward
onto the scene, and then back again onto the light sources. You can vary the location
of the viewer and light sources and the properties of the objects being viewed, as
well as atmospheric conditions such as fog, haze, and fire.

As an example of what can be done, on the left in Figure 13.14 we show the out-
put from the ray-tracing program Pov-Ray [Pov-Ray], using as input the coherent
random noise on the right in Figure 13.13. The program options we used are given
in Listing 13.3 and are seen to include commands to color the islands, to include

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 349

fractals & statistical growth 349

Figure 13.14 Left: The output from the Pov-Ray ray-tracing program that took as input the

2-D coherent random noise plot in Figure 13.13 and added height and fog. Right: An image

of a surface of revolution produced by Pov-Ray in which the marblelike texture is created by

Perlin noise.

waves, and to give textures to the sky and the sea. Pov-Ray also allows the possi-
bility of using Perlin noise to give textures to the objects to be created. For example,
the stone cup on the right in Figure 13.14 has a marblelike texture produced by
Perlin noise.

� �
main ( ) {

i n t m, n ;
f l o a t hol , x , ym, ve [ 2 ] ;
FILE ∗pf ;
y = 0 . 2 ;
pf = fopen ("mountain1 .dat" , "w" ) ;
f o r ( n=0; n<50; n++ ) {

x = 0 . 1 ;
ve [ 1 ] = y∗n ;
f o r ( m=0; m<50; m++ ) {

ve [ 0 ] = x∗m; / / Coordinates point between 0 1
hol = noise2 ( ve ) ;
f p r i n t f ( pf , "%f\n" , hol ) ;

}
}
f c l o s e ( pf ) ;

}
�

� �
/ / Islands . pov Pov−Ray program to c r e a t e Islands , by Manuel J Paez
plane {

<0 , 1 , 0 > , 0 / / Sky
pigment { c o l o r rgb <0 , 0 , 1> }
s c a l e 1
r o t a t e <0 , 0 , 0>
t r a n s l a t e y∗0 .2

}
g l o b a l _ s e t t i n g s {

adc_bai lout 0 .00392157
assumed_gamma 1 . 5
noise_generator 2

}
# d e c l a r e I s l a n d _ t e x t u r e = t e x t u r e {

pigment {

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 350

350 chapter 13

gradient <0 , 1 , 0> / / V e r t i c a l d i r e c t i o n
color_map { / / Color the is lands

[ 0 . 1 5 c o l o r rgb <1 , 0 . 9 6 8 6 2 7 , 0> ]
[ 0 . 2 c o l o r rgb <0.886275 , 0 . 7 3 3 3 3 3 , 0.180392 > ]
[ 0 . 3 c o l o r rgb <0.372549 , 0 . 6 4 3 1 3 7 , 0.0823529 > ]
[ 0 . 4 c o l o r rgb <0.101961 , 0 . 5 8 8 2 3 5 , 0.184314 > ]
[ 0 . 5 c o l o r rgb <0.223529 , 0 . 6 6 6 6 6 7 , 0.301961 > ]
[ 0 . 6 c o l o r rgb <0.611765 , 0 . 8 8 6 2 7 5 , 0.0196078 > ]
[ 0 . 6 9 c o l o r rgb <0.678431 , 0 . 9 2 1 5 6 9 , 0.0117647 > ]
[ 0 . 7 4 c o l o r rgb <0.886275 , 0 . 8 8 6 2 7 5 , 0.317647 > ]
[ 0 . 8 6 c o l o r rgb <0.823529 , 0 . 7 9 6 0 7 8 , 0.0196078 > ]
[ 0 . 9 3 c o l o r rgb <0.905882 , 0 . 5 4 5 0 9 8 , 0.00392157 > ]
}

}
f i n i s h {

ambient r g b f t <0.2 , 0 . 2 , 0 . 2 , 0 . 2 , 0.2 >
d i f f u s e 0 . 8

}
}
camera { / / Camera c h a r a c t e r i s t i c s and l o c a t i o n

p e r s p e c t i v e
l o c a t i o n <−15, 6 , −20> / / Location
sky <0 , 1 , 0>
d i r e c t i o n <0 , 0 , 1>
r i g h t <1.3333 , 0 , 0>
up <0 , 1 , 0>
look_at <−0.5 , 0 , 4> / / Look at point
angle 36

}
l i g h t _ s o u r c e {<−10, 20 , −25>, rgb <1 , 0 . 7 3 3 3 3 3 , 0 .00392157 >} / / Light

# d e c l a r e I s l a n d s = h e i g h t _ f i e l d { / / Takes gif , finds heights
g i f "d:\pov\montania . g i f" / / Windows d i r e c t o r y
s c a l e <50 , 2 , 50>
t r a n s l a t e <−25, 0 , −25>

}
o b j e c t { / / Islands

I s l a n d s
t e x t u r e {

I s l a n d _ t e x t u r e
s c a l e 2

}
}
box { / / Upper box face = sea

<−50, 0 , −50>, <50 , 0 . 3 , 50> / / 2 opposite v e r t i c e s
t r a n s l a t e <−25, 0 , −25>
t e x t u r e { / / Simulate waves

normal {
spotted
0 . 4
s c a l e <0.1 , 1 , 0.1 >

}
pigment { c o l o r rgb <0.164706 , 0 . 5 5 6 8 6 3 , 0.901961 > }

}
}
fog { / / A constant fog

fog_type 1
d i s t a n c e 30

rgb <0.984314 , 1 , 0.964706 >
}

�

Listing 13.3 Islands.pov in the Codes/Animations/Fractals/ directory gives the Pov-Ray

ray-tracing commands needed to convert the coherent noise random plot of Figure 13.13

into the mountainlike image on the left in Figure 13.14.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 351

fractals & statistical growth 351

13.11 Quiz

1. Recall how box counting is used to determine the fractal dimension of
an object. Imagine that the result of some experiment or simulation is an
interesting geometric figure.
a. What might be the physical/theoretical importance of determining that

this object is a fractal?
b. What might be the importance of determining its fractal dimension?
c. Why is it important to use more than two sizes of boxes?
d. Below is a figure composed of boxes of side 1.

1 1 1
1 1 1
1 1 1

Use box counting to determine the fractal dimension of this figure.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 352

14

High-Performance Computing Hardware,
Tuning, and Parallel Computing

In this chapter and in Appendix D we discuss a number of topics associated with high-
performance computing (HPC). If history can be our guide, today’s HPC hardware
and software will be on desktop machines a decade from now. In Unit I we discuss
the theory of a high-performance computer’s memory and central processor design.
In Unit II we examine parallel computers. In Appendix D we extend Unit II by
giving a detailed tutorial on use of the message-passing interface (MPI) package,
while a tutorial on an earlier package, Parallel virtual machine (PVM), is provided
on the CD. In Unit III we discuss some techniques for writing programs that areC D

optimized for HPC hardware, such as virtual memory and cache. By running the
short implementations given in Unit III, you will experiment with your computer’s
memory and experience some of the concerns, techniques, rewards, and shortcomings
of HPC.

HPC is a broad subject, and our presentation is brief and given from a practitioner’s
point of view. The text [Quinn 04] surveys parallel computing and MPI from a
computer science point of view. References on parallel computing include [Sterl 99,
Quinn 04, Pan 96, VdeV 94, Fox 94]. References on MPI include Web resources
[MPI, MPI2, MPImis] and the texts [Quinn 04, Pach 97, Lusk 99]. More recent
developments, such as programming for multicore computers, cell computers, and
field-programmable gate accelerators, will be discussed in future books.

14.1 Unit I. High-Performance Computers (CS)

By definition, supercomputers are the fastest and most powerful computers avail-
able, and at this instant, the term “supercomputers” almost always refers to parallel
machines. They are the superstars of the high-performance class of computers. Unix
workstations and modern personal computers (PCs), which are small enough in
size and cost to be used by a small group or an individual, yet powerful enough for
large-scale scientific and engineering applications, can also be high-performance
computers. We define high-performance computers as machines with a good balance
among the following major elements:

• Multistaged (pipelined) functional units.
• Multiple central processing units (CPUs) (parallel machines).

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 353

high-performance computing hardware 353

• Multiple cores.
• Fast central registers.
• Very large, fast memories.
• Very fast communication among functional units.
• Vector, video, or array processors.
• Software that integrates the above effectively.

As a simple example, it makes little sense to have a CPU of incredibly high speed
coupled to a memory system and software that cannot keep up with it (the present
state of affairs).

14.2 Memory Hierarchy

An idealized model of computer architecture is a CPU sequentially executing a
stream of instructions and reading from a continuous block of memory. To illustrate,
in Figure 14.1 we see a vector A[ ] and an array M[ ][ ] loaded in memory and
about to be processed. The real world is more complicated than this. First, matrices
are not stored in blocks but rather in linear order. For instance, in Fortran it is in
column-major order:

M(1,1) M(2,1) M(3,1) M(1,2) M(2,2) M(3,2) M(1,3) M(2,3) M(3,3),

while in Java and C it is in row-major order:

M(0,0) M(0,1) M(0,2) M(1,0) M(1,1) M(1,2) M(2,0) M(2,1) M(2,2).

Second, the values for the matrix elements may not even be in the same physical
place. Some may be in RAM, some on the disk, some in cache, and some in the
CPU. To give some of these words more meaning, in Figures 14.2 and 14.3 we show
simple models of the memory architecture of a high-performance computer. This
hierarchical arrangement arises from an effort to balance speed and cost with fast,
expensive memory supplemented by slow, less expensive memory. The memory
architecture may include the following elements:

CPU: Central processing unit, the fastest part of the computer. The CPU consists
of a number of very-high-speed memory units called registers containing the
instructions sent to the hardware to do things like fetch, store, and operate
on data. There are usually separate registers for instructions, addresses, and
operands (current data). In many cases the CPU also contains some specialized
parts for accelerating the processing of floating-point numbers.

Cache (high-speed buffer): A small, very fast bit of memory that holds instruc-
tions, addresses, and data in their passage between the very fast CPU registers
and the slower RAM. This is seen in the next level down the pyramid in
Figure 14.3. The main memory is also called dynamic RAM (DRAM), while the

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 354

354 chapter 14

A(1)

A(2)

A(3)

A(N)

M(1,1)

M(2,1)

M(3,1)

M(N,N)

M(N,1)

M(1,2)

M(2,2)

M(3,2)

CPU

Figure 14.1 The logical arrangement of the CPU and memory showing a Fortran array A(N)

and matrix M(N, N) loaded into memory.

A(1)

A(2)

A(3)

A(N)

M(1,1)

M(2,1)

M(3,1)

M(N,N)

M(N,1)

M(1,2)

M(2,2)

M(3,2)

Swap Space

Page N

RAM

Page 1

Page 2

Page 3

A(1) ... A(16) A(2032) ... A(2048)

Data Cache

Registers

CPU

Figure 14.2 The elements of a computer’s memory architecture in the process of handling

matrix storage.

cache is called static RAM (SRAM). If the cache is used properly, it eliminates
the need for the CPU to wait for data to be fetched from memory.

Cache and data lines: The data transferred to and from the cache or CPU are
grouped into cache lines or data lines. The time it takes to bring data from
memory into the cache is called latency.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 355

high-performance computing hardware 355

Main Store

cache

cache

RAM

CPU

32
TB

@
11

1M
b/

s

2 
M

B

2 
G

B

32
 K

B

6
GB/s

Figure 14.3 Typical memory hierarchy for a single-processor, high-performance computer

(B = bytes, K, M, G, T = kilo, mega, giga, tera).

RAM: Random-access memory or central memory is in the middle memory in
the hierarchy in Figure 14.3. RAM can be accessed directly, that is, in random
order, and it can be accessed quickly, that is, without mechanical devices. It is
where your program resides while it is being processed.

Pages: Central memory is organized into pages, which are blocks of memory
of fixed length. The operating system labels and organizes its memory pages
much like we do the pages of a book; they are numbered and kept track of
with a table of contents. Typical page sizes are from 4 to 16 kB.

Hard disk: Finally, at the bottom of the memory pyramid is permanent storage
on magnetic disks or optical devices. Although disks are very slow compared
to RAM, they can store vast amounts of data and sometimes compensate for
their slower speeds by using a cache of their own, the paging storage controller.

Virtual memory: True to its name, this is a part of memory you will not find in
our figures because it is virtual. It acts like RAM but resides on the disk.

When we speak of fast and slow memory we are using a time scale set by the clock
in the CPU. To be specific, if your computer has a clock speed or cycle time of 1 ns,
this means that it could perform a billion operations per second if it could get its
hands on the needed data quickly enough (typically, more than 10 cycles are needed
to execute a single instruction). While it usually takes 1 cycle to transfer data from
the cache to the CPU, the other memories are much slower, and so you can speed
your program up by not having the CPU wait for transfers among different levels
of memory. Compilers try to do this for you, but their success is affected by your
programming style.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 356

356 chapter 14

D

C
A

B

Figure 14.4 Multitasking of four programs in memory at one time in which the programs are

executed in round-robin order.

As shown in Figure 14.2 for our example, virtual memory permits your program
to use more pages of memory than can physically fit into RAM at one time. A
combination of operating system and hardware maps this virtual memory into
pages with typical lengths of 4–16 KB. Pages not currently in use are stored in
the slower memory on the hard disk and brought into fast memory only when
needed. The separate memory location for this switching is known as swap space
(Figure 14.2). Observe that when the application accesses the memory location for
M[i][j], the number of the page of memory holding this address is determined by
the computer, and the location of M[i][j] within this page is also determined. A page
fault occurs if the needed page resides on disk rather than in RAM. In this case
the entire page must be read into memory while the least recently used page in
RAM is swapped onto the disk. Thanks to virtual memory, it is possible to run
programs on small computers that otherwise would require larger machines (or
extensive reprogramming). The price you pay for virtual memory is an order-of-
magnitude slowdown of your program’s speed when virtual memory is actually
invoked. But this may be cheap compared to the time you would have to spend to
rewrite your program so it fits into RAM or the money you would have to spend
to buy a computer with enough RAM for your problem.

Virtual memory also allows multitasking, the simultaneous loading into mem-
ory of more programs than can physically fit into RAM (Figure 14.4). Although the
ensuing switching among applications uses computing cycles, by avoiding long
waits while an application is loaded into memory, multitasking increases the total
throughout and permits an improved computing environment for users. For exam-
ple, it is multitasking that permits a windows system to provide us with multiple
windows. Even though each window application uses a fair amount of memory,
only the single application currently receiving input must actually reside in mem-
ory; the rest are paged out to disk. This explains why you may notice a slight delay
when switching to an idle window; the pages for the now active program are being
placed into RAM and the least used application still in memory is simultaneously
being paged out.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 357

high-performance computing hardware 357

TABLE 14.1
Computation of c= (a+ b)/(d ∗ f)

Arithmetic Unit Step 1 Step 2 Step 3 Step 4

A1 Fetch a Fetch b Add —

A2 Fetch d Fetch f Multiply —

A3 — — — Divide

14.3 The Central Processing Unit

How does the CPU get to be so fast? Often, it employs prefetching and pipelining;
that is, it has the ability to prepare for the next instruction before the current one has
finished. It is like an assembly line or a bucket brigade in which the person filling
the buckets at one end of the line does not wait for each bucket to arrive at the other
end before filling another bucket. In the same way a processor fetches, reads, and
decodes an instruction while another instruction is executing. Consequently, even
though it may take more than one cycle to perform some operations, it is possible
for data to be entering and leaving the CPU on each cycle. To illustrate, Table 14.1
indicates how the operation c= (a+ b)/(d ∗ f) is handled. Here the pipelined arith-
metic units A1 and A2 are simultaneously doing their jobs of fetching and operating
on operands, yet arithmetic unit A3 must wait for the first two units to complete
their tasks before it has something to do (during which time the other two sit idle).

14.4 CPU Design: Reduced Instruction Set Computer

Reduced instruction set computer (RISC) architecture (also called superscalar) is a
design philosophy for CPUs developed for high-performance computers and now
used broadly. It increases the arithmetic speed of the CPU by decreasing the
number of instructions the CPU must follow. To understand RISC we contrast it
with complex instruction set computer (CISC), architecture. In the late 1970s, proces-
sor designers began to take advantage of very-large-scale integration (VLSI) which
allowed the placement of hundreds of thousands of devices on a single CPU
chip. Much of the space on these early chips was dedicated to microcode programs
written by chip designers and containing machine language instructions that set
the operating characteristics of the computer. There were more than 1000 instruc-
tions available, and many were similar to higher-level programming languages
like Pascal and Forth. The price paid for the large number of complex instructions
was slow speed, with a typical instruction taking more than 10 clock cycles. Fur-
thermore, a 1975 study by Alexander and Wortman of the XLP compiler of the IBM
System/360 showed that about 30 low-level instructions accounted for 99% of the
use with only 10 of these instructions accounting for 80% of the use.

The RISC philosophy is to have just a small number of instructions available
at the chip level but to have the regular programmer’s high level-language, such

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 358

358 chapter 14

as Fortran or C, translate them into efficient machine instructions for a particular
computer’s architecture. This simpler scheme is cheaper to design and produce,
lets the processor run faster, and uses the space saved on the chip by cutting down
on microcode to increase arithmetic power. Specifically, RISC increases the number
of internal CPU registers, thus making it possible to obtain longer pipelines (cache)
for the data flow, a significantly lower probability of memory conflict, and some
instruction-level parallelism.

The theory behind this philosophy for RISC design is the simple equation
describing the execution time of a program:

CPU time = no.instructions× cycles/instruction× cycle time. (14.1)

Here “CPU time” is the time required by a program, “no. instructions” is the total
number of machine-level instructions the program requires (sometimes called the
path length), “cycles/instruction” is the number of CPU clock cycles each instruc-
tion requires, and “cycle time” is the actual time it takes for one CPU cycle. After
viewing (14.1) we can understand the CISC philosophy, which tries to reduce CPU
time by reducing no. instructions, as well as the RISC philosophy, which tries to
reduce CPU time by reducing cycles/instruction (preferably to one). For RISC to
achieve an increase in performance requires a greater decrease in cycle time and
cycles/instruction than the increase in the number of instructions.

In summary, the elements of RISC are the following.

Single-cycle execution for most machine-level instructions.
Small instruction set of less than 100 instructions.
Register-based instructions operating on values in registers, with memory

access confined to load and store to and from registers.
Many registers, usually more than 32.
Pipelining, that is, concurrent processing of several instructions.
High-level compilers to improve performance.

14.5 CPU Design: Multiple-Core Processors

The year preceding the publication of this book has seen a rapid increase in the
inclusion of dual-core, or even quad-core, chips as the computational engine of
computers. As seen in Figure 14.5, a dual-core chip has two CPUs in one integrated
circuit with a shared interconnect and a shared level-2 cache. This type of config-
uration with two or more identical processors connected to a single shared main
memory is called symmetric multiprocessing, or SMP. It is likely that by the time you
read this book, 16-core or greater chips will be available.

Although multicore chips were designed for game playing and single precision,
they should also be useful in scientific computing if new tools, algorithms, and
programming methods are employed. These chips attain more speed with less
heat and more energy efficiency than single-core chips, whose heat generation
limits them to clock speeds of less than 4 GHz. In contrast to multiple single-core

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 359

high-performance computing hardware 359

CPU Core
and

L1 Caches

CPU Core
and

L1 Caches

Bus Interface
and

L2 Caches

Dual CPU Core Chip

Figure 14.5 Left: A generic view of the Intel core-2 dual-core processor, with CPU-local level-1

caches and a shared, on-die level-2 cache (courtesy of D. Schmitz). Right: The AMD Athlon 64

X2 3600 dual-core CPU (Wikimedia Commons).

chips, multicore chips use fewer transistors per CPU and are thus simpler to make
and cooler to run.

Parallelism is built into a multicore chip because each core can run a different
task. However, since the cores usually share the same communication channel and
level-2 cache, there is the possibility of a communication bottleneck if both CPUs
use the bus at the same time. Usually the user need not worry about this, but the
writers of compilers and software must so that your code will run in parallel. As
indicated in our MPI tutorial in Appendix D, modern Intel compilers make use of
each multiple core and even have MPI treat each core as a separate processor.

14.6 CPU Design: Vector Processor

Often the most demanding part of a scientific computation involves matrix oper-
ations. On a classic (von Neumann) scalar computer, the addition of two vectors
of physical length 99 to form a third ultimately requires 99 sequential additions
(Table 14.2). There is actually much behind-the-scenes work here. For each element
i there is the fetch of a(i) from its location in memory, the fetch of b(i) from its loca-
tion in memory, the addition of the numerical values of these two elements in a CPU
register, and the storage in memory of the sum in c(i). This fetching uses up time
and is wasteful in the sense that the computer is being told again and again to do
the same thing.

When we speak of a computer doing vector processing, we mean that there are
hardware components that perform mathematical operations on entire rows or
columns of matrices as opposed to individual elements. (This hardware can also
handle single-subscripted matrices, that is, mathematical vectors.) In the vector

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 360

360 chapter 14

TABLE 14.2
Computation of Matrix [C] = [A] + [B]

Step 1 Step 2 · · · Step 99

c(1) = a(1)+ b(1) c(2) = a(2) + b(2) · · · c(99) = a(99)+ b(99)

TABLE 14.3
Vector Processing of Matrix [A] + [B] = [C]

Step 1 Step 2 Step 3 · · · Step Z

c(1) = a(1)+ b(1)
c(2) = a(2)+ b(2)

c(3) = a(3)+ b(3)
· · ·

c(Z) = a(Z) + b(Z)

processing of [A] + [B] = [C], the successive fetching of and addition of the elements
A and B are grouped together and overlaid, and Z � 64–256 elements (the section
size) are processed with one command, as seen in Table 14.3. Depending on the
array size, this method may speed up the processing of vectors by a factor of about
10. If allZ elements were truly processed in the same step, then the speedup would
be ∼ 64–256.

Vector processing probably had its heyday during the time when computer man-
ufacturers produced large mainframe computers designed for the scientific and
military communities. These computers had proprietary hardware and software
and were often so expensive that only corporate or military laboratories could
afford them. While the Unix and then PC revolutions have nearly eliminated these
large vector machines, some do exist, as well as PCs that use vector processing in
their video cards. Who is to say what the future holds in store?

14.7 Unit II. Parallel Computing

There is little question that advances in the hardware for parallel computing are
impressive. Unfortunately, the software that accompanies the hardware often seems
stuck in the 1960s. In our view, message passing has too many details for applica-
tion scientists to worry about and requires coding at a much, or more, elementary
level than we prefer. However, the increasing occurrence of clusters in which the
nodes are symmetric multiprocessors has led to the development of sophisticated
compilers that follow simpler programming models; for example, partitioned global
address space compilers such as Co-Array Fortran, Unified Parallel C, and Titanium. In
these approaches the programmer views a global array of data and then manipu-
lates these data as if they were contiguous. Of course the data really are distributed,

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 361

high-performance computing hardware 361

but the software takes care of that outside the programmer’s view. Although the
program may not be as efficient a use of the processors as hand coding, it is a lot
easier, and as the number of processors becomes very large, one can live with a
greater degree of inefficiency. In any case, if each node of the computer has a num-
ber of processors with a shared memory and there are a number of nodes, then
some type of a hybrid programming model will be needed.

Problem: Start with the program you wrote to generate the bifurcation plot for
bug dynamics in Chapter 12, “Discrete & Continuous Nonlinear Dynamics,” and
modify it so that different ranges for the growth parameter µ are computed simul-
taneously on multiple CPUs. Although this small a problem is not worth investing
your time in to obtain a shorter turnaround time, it is worth investing your time
into it gain some experience in parallel computing. In general, parallel computing
holds the promise of permitting you to obtain faster results, to solve bigger prob-
lems, to run simulations at finer resolutions, or to model physical phenomena more
realistically; but it takes some work to accomplish this.

14.8 Parallel Semantics (Theory)

We saw earlier that many of the tasks undertaken by a high-performance com-
puter are run in parallel by making use of internal structures such as pipelined
and segmented CPUs, hierarchical memory, and separate I/O processors. While
these tasks are run “in parallel,” the modern use of parallel computing or parallelism
denotes applying multiple processors to a single problem [Quinn 04]. It is a com-
puting environment in which some number of CPUs are running asynchronously
and communicating with each other in order to exchange intermediate results and
coordinate their activities.

For instance, consider matrix multiplication in terms of its elements:

[B] = [A][B] ⇒ Bi,j =
N∑

k=1

Ai,kBk,j . (14.2)

Because the computation ofBi,j for particular values of i and j is independent of the
computation of all the other values, each Bi,j can be computed in parallel, or each
row or column of [B] can be computed in parallel. However, because Bk,j on the
RHS of (14.2) must be the “old” values that existed before the matrix multiplication,
some communication among the parallel processors is required to ensure that they
do not store the “new” values of Bk,j before all the multiplications are complete.
This [B] = [A][B] multiplication is an example of data dependency, in which the
data elements used in the computation depend on the order in which they are
used. In contrast, the matrix multiplication [C] = [A][B] is a data parallel operation
in which the data can be used in any order. So already we see the importance of
communication, synchronization, and understanding of the mathematics behind
an algorithm for parallel computation.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 362

362 chapter 14

The processors in a parallel computer are placed at the nodes of a communication
network. Each node may contain one CPU or a small number of CPUs, and the
communication network may be internal to or external to the computer. One way
of categorizing parallel computers is by the approach they employ in handling
instructions and data. From this viewpoint there are three types of machines:

• Single-instruction, single-data (SISD): These are the classic (von Neumann)
serial computers executing a single instruction on a single data stream before
the next instruction and next data stream are encountered.

• Single-instruction, multiple-data (SIMD): Here instructions are processed
from a single stream, but the instructions act concurrently on multiple data
elements. Generally the nodes are simple and relatively slow but are large in
number.

• Multiple instructions, multiple data (MIMD): In this category each proces-
sor runs independently of the others with independent instructions and data.
These are the types of machines that employ message-passing packages, such
as MPI, to communicate among processors. They may be a collection of work-
stations linked via a network, or more integrated machines with thousands
of processors on internal boards, such as the Blue Gene computer described
in §14.13. These computers, which do not have a shared memory space, are
also called multicomputers. Although these types of computers are some of the
most difficult to program, their low cost and effectiveness for certain classes
of problems have led to their being the dominant type of parallel computer
at present.

The running of independent programs on a parallel computer is similar to the
multitasking feature used by Unix and PCs. In multitasking (Figure 14.6 left) several
independent programs reside in the computer’s memory simultaneously and share
the processing time in a round robin or priority order. On a SISD computer, only
one program runs at a single time, but if other programs are in memory, then it
does not take long to switch to them. In multiprocessing (Figure 14.6 right) these
jobs may all run at the same time, either in different parts of memory or in the
memory of different computers. Clearly, multiprocessing becomes complicated if
separate processors are operating on different parts of the same program because

D

C
A

B
A

C DD

BA

Figure 14.6 Left: Multitasking of four programs in memory at one time. On a SISD computer

the programs are executed in round robin order. Right: Four programs in the four separate

memories of a MIMD computer.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 363

high-performance computing hardware 363

then synchronization and load balance (keeping all the processors equally busy)
are concerns.

In addition to instructions and data streams, another way of categorizing parallel
computation is by granularity. A grain is defined as a measure of the computational
work to be done, more specifically, the ratio of computation work to communication
work.

• Coarse-grain parallel: Separate programs running on separate computer
systems with the systems coupled via a conventional communication net-
work. An illustration is six Linux PCs sharing the same files across a network
but with a different central memory system for each PC. Each computer can
be operating on a different, independent part of one problem at the same
time.

• Medium-grain parallel: Several processors executing (possibly different)
programs simultaneously while accessing a common memory. The processors
are usually placed on a common bus (communication channel) and commu-
nicate with each other through the memory system. Medium-grain programs
have different, independent, parallel subroutines running on different proces-
sors. Because the compilers are seldom smart enough to figure out which
parts of the program to run where, the user must include the multitasking
routines in the program.1

• Fine-grain parallel: As the granularity decreases and the number of nodes
increases, there is an increased requirement for fast communication among
the nodes. For this reason fine-grain systems tend to be custom-designed
machines. The communication may be via a central bus or via shared memory
for a small number of nodes, or through some form of high-speed network for
massively parallel machines. In the latter case, the compiler divides the work
among the processing nodes. For example, different for loops of a program
may be run on different nodes.

14.9 Distributed Memory Programming

An approach to concurrent processing that, because it is built from commodity
PCs, has gained dominant acceptance for coarse- and medium-grain systems is
distributed memory. In it, each processor has its own memory and the processors
exchange data among themselves through a high-speed switch and network. The
data exchanged or passed among processors have encoded to and from addresses and
are called messages. The clusters of PCs or workstations that constitute a Beowulf 2 are

1 Some experts define our medium grain as coarse grain yet this distinction changes with
time.

2 Presumably there is an analogy between the heroic exploits of the son of Ecgtheow
and the nephew of Hygelac in the 1000 C.E. poem Beowulf and the adventures of us

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 364

364 chapter 14

Figure 14.7 Two views of modern parallel computing (courtesy of Yuefan Deng).

examples of distributed memory computers (Figure 14.7). The unifying characteris-
tic of a cluster is the integration of highly replicated compute and communication
components into a single system, with each node still able to operate indepen-
dently. In a Beowulf cluster, the components are commodity ones designed for
a general market, as are the communication network and its high-speed switch
(special interconnects are used by major commercial manufacturers, but they do
not come cheaply). Note: A group of computers connected by a network may also
be called a cluster but unless they are designed for parallel processing, with the
same type of processor used repeatedly and with only a limited number of pro-
cessors (the front end) onto which users may log in, they are not usually called a
Beowulf.

The literature contains frequent arguments concerning the differences among
clusters, commodity clusters, Beowulfs, constellations, massively parallel systems,
and so forth [Dong 05]. Even though we recognize that there are major differences
between the clusters on the top 500 list of computers and the ones that a university
researcher may set up in his or her lab, we will not distinguish these fine points in
the introductory materials we present here.

For a message-passing program to be successful, the data must be divided
among nodes so that, at least for a while, each node has all the data it needs to run
an independent subtask. When a program begins execution, data are sent to all
the nodes. When all the nodes have completed their subtasks, they exchange data
again in order for each node to have a complete new set of data to perform the next
subtask. This repeated cycle of data exchange followed by processing continues
until the full task is completed. Message-passing MIMD programs are also
single-program, multiple-data programs, which means that the programmer writes
a single program that is executed on all the nodes. Often a separate host program,

common folk assembling parallel computers from common elements that have sur-
passed the performance of major corporations and their proprietary, multi-million-dollar
supercomputers.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 365

high-performance computing hardware 365

which starts the programs on the nodes, reads the input files and organizes the
output.

14.10 Parallel Performance

Imagine a cafeteria line in which all the servers appear to be working hard and
fast yet the ketchup dispenser has some relish partially blocking its output and
so everyone in line must wait for the ketchup lovers up front to ruin their food
before moving on. This is an example of the slowest step in a complex process
determining the overall rate. An analogous situation holds for parallel processing,
where the “relish” may be the issuing and communicating of instructions. Because
the computation cannot advance until all the instructions have been received, this
one step may slow down or stop the entire process.

As we soon will demonstrate, the speedup of a program will not be significant
unless you can get ∼90% of it to run in parallel, and even then most of the speedup
will probably be obtained with only a small number of processors. This means
that you need to have a computationally intense problem to make parallelization
worthwhile, and that is one of the reasons why some proponents of parallel com-
puters with thousands of processors suggest that you not apply the new machines
to old problems but rather look for new problems that are both big enough and
well-suited for massively parallel processing to make the effort worthwhile.

The equation describing the effect on speedup of the balance between serial and
parallel parts of a program is known as Amdahl’s law [Amd 67, Quinn 04]. Let

p= no. of CPUs T1 = 1-CPU time, Tp = p-CPU time. (14.3)

The maximum speedup Sp attainable with parallel processing is thus

Smax
p =

T1

Tp
→ p. (14.4)

This limit is never met for a number of reasons: Some of the program is serial, data
and memory conflicts occur, communication and synchronization of the processors
take time, and it is rare to attain a perfect load balance among all the processors. For
the moment we ignore these complications and concentrate on how the serial part
of the code affects the speedup. Let f be the fraction of the program that potentially
may run on multiple processors. The fraction 1 − f of the code that cannot be run
in parallel must be run via serial processing and thus takes time:

Ts = (1 − f)T1 (serial time). (14.5)

The time Tp spent on the p parallel processors is related to Ts by

Tp = f
T1

p
. (14.6)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 366

366 chapter 14

Percent Parallel

S
pe

ed
up

p = 2

p
=

in
fin

ity
p
 =

 1
6

Amdahl's Law

0

4

8

0 20% 40% 60% 80%

Figure 14.8 The theoretical speedup of a program as a function of the fraction of the

program that potentially may be run in parallel. The different curves correspond to different

numbers of processors.

That being so, the speedup Sp as a function of f and the number of processors is

Sp =
T1

Ts +Tp
=

1
1 − f + f/p

(Amdahl’s law). (14.7)

Some theoretical speedups are shown in Figure 14.8 for different numbers p of
processors. Clearly the speedup will not be significant enough to be worth the
trouble unless most of the code is run in parallel (this is where the 90% of your in-
parallel figure comes from). Even an infinite number of processors cannot increase
the speed of running the serial parts of the code, and so it runs at one processor
speed. In practice this means many problems are limited to a small number of
processors and that often for realistic applications only 10%–20% of the computer’s
peak performance may be obtained.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 367

high-performance computing hardware 367

14.10.1 Communication Overhead

As discouraging as Amdahl’s law may seem, it actually overestimates speedup
because it ignores the overhead for parallel computation. Here we look at
communication overhead. Assume a completely parallel code so that its
speedup is

Sp =
T1

Tp
=

T1

T1/p
= p. (14.8)

The denominator assumes that it takes no time for the processors to communi-
cate. However, it take a finite time, called latency, to get data out of memory
and into the cache or onto the communication network. When we add in this
latency, as well as other times that make up the communication time Tc, the speedup
decreases to

Sp � T1

T1/p+Tc
< p (with communication time). (14.9)

For the speedup to be unaffected by communication time, we need to have

T1

p

 Tc ⇒ p� T1

Tc
. (14.10)

This means that as you keep increasing the number of processorsp, at some point the
time spent on computationT1/pmust equal the timeTc needed for communication,
and adding more processors leads to greater execution time as the processors wait
around more to communicate. This is another limit, then, on the maximum number
of processors that may be used on any one problem, as well as on the effectiveness
of increasing processor speed without a commensurate increase in communication
speed.

The continual and dramatic increases in CPU speed, along with the widespread
adoption of computer clusters, is leading to a changing view as to how to
judge the speed of an algorithm. Specifically, the slowest step in a process is
usually the rate-determining step, and the increasing speed of CPUs means
that this slowest step is more and more often access to or communication
among processors. Such being the case, while the number of computational
steps is still important for determining an algorithm’s speed, the number and
amount of memory access and interprocessor communication must also be
mixed into the formula. This is currently an active area of research in algorithm
development.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 368

368 chapter 14

14.11 Parallelization Strategy

A typical organization of a program for both serial and parallel tasks is

Main task program

Main routine

Serial subroutine a

Parallel sub 1 Parallel sub 2 Parallel sub 3

Summation task

The user organizes the work into units called tasks, with each task assigning
work (threads) to a processor. The main task controls the overall execution as well
as the subtasks that run independent parts of the program (called parallel sub-
routines, slaves, guests, or subtasks). These parallel subroutines can be distinctive
subprograms, multiple copies of the same subprogram, or even for loops.

It is the programmer’s responsibility to ensure that the breakup of a code into
parallel subroutines is mathematically and scientifically valid and is an equivalent
formulation of the original program.As a case in point, if the most intensive part of a
program is the evaluation of a large Hamiltonian matrix, you may want to evaluate
each row on a different processor. Consequently, the key to parallel programming is
to identify the parts of the program that may benefit from parallel execution. To do
that the programmer should understand the program’s data structures (discussed
below), know in what order the steps in the computation must be performed, and
know how to coordinate the results generated by different processors.

The programmer helps speed up the execution by keeping many processors
simultaneously busy and by avoiding storage conflicts among different parallel
subprograms. You do this load balancing by dividing your program into subtasks of
approximately equal numerical intensity that will run simultaneously on different
processors. The rule of thumb is to make the task with the largest granularity

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 369

high-performance computing hardware 369

(workload) dominant by forcing it to execute first and to keep all the processors
busy by having the number of tasks an integer multiple of the number of processors.
This is not always possible.

The individual parallel threads can have shared or local data. The shared data
may be used by all the machines, while the local data are private to only one
thread. To avoid storage conflicts, design your program so that parallel subtasks
use data that are independent of the data in the main task and in other parallel tasks.
This means that these data should not be modified or even examined by different
tasks simultaneously. In organizing these multiple tasks, reduce communication
overhead costs by limiting communication and synchronization. These costs tend to
be high for fine-grain programming where much coordination is necessary. How-
ever, do not eliminate communications that are necessary to ensure the scientific or
mathematical validity of the results; bad science can do harm!

14.12 Practical Aspects of Message Passing for MIMD

It makes sense to run only the most numerically intensive codes on parallel
machines. Frequently these are very large programs assembled over a number of
years or decades by a number of people. It should come as no surprise, then, that the
programming languages for parallel machines are primarily Fortran90, which has
explicit structures for the compiler to parallelize, and C. (We have not attained good
speedup with Java in parallel and therefore do not recommend it for parallel com-
puting.) Effective parallel programming becomes more challenging as the number
of processors increases. Computer scientists suggest that it is best not to attempt
to modify a serial code but instead to rewrite it from scratch using algorithms and
subroutine libraries best suited to parallel architecture. However, this may involve
months or years of work, and surveys find that ∼70% of computational scientists
revise existing codes [Pan 96].

Most parallel computations at present are done on a multiple-instruction,
multiple-data computers via message passing. In Appendix D we give a tutorial
on the use of MPI, the most common message-passing interface. Here we outline
some practical concerns based on user experience [Dong 05, Pan 96].

Parallelism carries a price tag: There is a steep learning curve requiring inten-
sive effort. Failures may occur for a variety of reasons, especially because
parallel environments tend to change often and get “locked up” by a
programming error. In addition, with multiple computers and multiple oper-
ating systems involved, the familiar techniques for debugging may not be
effective.

Preconditions for parallelism: If your program is run thousands of times
between changes, with execution time in days, and you must significantly
increase the resolution of the output or study more complex systems, then par-
allelism is worth considering. Otherwise, and to the extent of the difference,
parallelizing a code may not be worth the time investment.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 370

370 chapter 14

The problem affects parallelism: You must analyze your problem in terms of
how and when data are used, how much computation is required for each
use, and the type of problem architecture:

• Perfectly parallel: The same application is run simultaneously on different
data sets, with the calculation for each data set independent (e.g., running
multiple versions of a Monte Carlo simulation, each with different seeds,
or analyzing data from independent detectors). In this case it would be
straightforward to parallelize with a respectable performance to be expected.

• Fully synchronous: The same operation applied in parallel to multiple parts
of the same data set, with some waiting necessary (e.g., determining positions
and velocities of particles simultaneously in a molecular dynamics simula-
tion). Significant effort is required, and unless you balance the computational
intensity, the speedup may not be worth the effort.

• Loosely synchronous: Different processors do small pieces of the computa-
tion but with intermittent data sharing (e.g., diffusion of groundwater from
one location to another). In this case it would be difficult to parallelize and
probably not worth the effort.

• Pipeline parallel: Data from earlier steps processed by later steps, with some
overlapping of processing possible (e.g., processing data into images and then
into animations). Much work may be involved, and unless you balance the
computational intensity, the speedup may not be worth the effort.

14.12.1 High-Level View of Message Passing

Although it is true that parallel computing programs may become very compli-
cated, the basic ideas are quite simple. All you need is a regular programming
language like C or Fortran, plus four communication statements:3

send: One processor sends a message to the network. It is not necessary to
indicate who will receive the message, but it must have a name.

receive: One processor receives a message from the network. This processor
does not have to know who sent the message, but it has to know the message’s
name.

myid: An integer that uniquely identifies each processor.
numnodes: An integer giving the total number of nodes in the system.

Once you have made the decision to run your program on a computer cluster,
you will have to learn the specifics of a message-passing system such as MPI
(Appendix D). Here we give a broader view. When you write a message-passing
program, you intersperse calls to the message-passing library with your regular
Fortran or C program. The basic steps are

1. Submit your job from the command line or a job control system.

3 Personal communication, Yuefan Deng.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 371

high-performance computing hardware 371

Compute

Create

Create

Compute

Receive

Receive

Receive

Compute

Receive

Send

Master

compute

send

compute

send

compute

receive

send

compute

send

Slave 1

compute

send

compute

send

compute

receive

send

compute

send

Slave 2

T
im

e

Figure 14.9 A master process and two slave processes passing messages. Notice how this

program has more sends than receives and consequently may lead to results that depend on

order of execution, or may even lock up.

2. Have your job start additional processes.
3. Have these processes exchange data and coordinate their activities.
4. Collect these data and have the processes stop themselves.

We show this graphically in Figure 14.9 where at the top we see a master process
create two slave processes and then assign work for them to do (arrows). The pro-
cesses then communicate with each other via message passing, output their data
to files, and finally terminate.

What can go wrong: Figure 14.9 also illustrates some of the difficulties:

• The programmer is responsible for getting the processes to cooperate and for
dividing the work correctly.

• The programmer is responsible for ensuring that the processes have the
correct data to process and that the data are distributed equitably.

• The commands are at a lower level than those of a compiled language, and
this introduces more details for you to worry about.

• Because multiple computers and multiple operating systems are involved,
the user may not receive or understand the error messages produced.

• It is possible for messages to be sent or received not in the planned order.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 372

372 chapter 14

• A race condition may occur in which the program results depend upon the
specific ordering of messages. There is no guarantee that slave 1 will get its
work done before slave 2, even though slave 1 may have started working
earlier (Figure 14.9).

• Note in Figure 14.9 how different processors must wait for signals from
other processors; this is clearly a waste of computer time and a potential
for problems.

• Processes may deadlock, that is, wait for a message that never arrives.

14.13 Example of a Supercomputer: IBM Blue Gene/L

Whatever figures we give to describe the latest supercomputer will be obsolete
by the time you read them. Nevertheless, for the sake of completeness and to set
the scale for the present, we do it anyway. At the time of this writing, the fastest
computer, in some aggregate sense, is the IBM Blue Gene series [Gara 05]. The
name reflects its origin in a computer originally intended for gene research that is
now sold as a general-purpose supercomputer (after approximately $600 million
in development costs).

A building-block view of Blue Gene is given in Figure 14.10. In many ways
this is a computer built by committee, with compromises made in order to bal-
ance cost, cooling, computing speed, use of existing technologies, communication
speed, and so forth. As a case in point, the CPUs have dual cores, with one for
computing and the other for communication. This reflects the importance of com-
munication for distributed-memory computing (there are both on- and off-chip
distributed memories). And while the CPU is fast at 5.6 GFLOPs, there are faster
ones available, but they would generate so much heat that it would not be possi-
ble to obtain the extreme scalability up to 216 = 65,536 dual-processor nodes. The
next objective is to balance a low cost/performance ratio with a high performance/
watt ratio.

Observe that at the lowest level Blue Gene contains two CPUs (dual cores) on
a chip, with two chips on a card, with 16 cards on a board, with 32 boards in a
cabinet, and up to 64 cabinets for a grand total of 65,536 CPUs (Figure 14.10). And
if a way can be found to make all these chips work together for the common good
on a single problem, they would turn out a peak performance of 360 × 1012 floating-
point operations per second (360 tFLOPs). Each processor runs a Linux operating
system (imagine what the cost in both time and money would be for Windows!)
and utilizes the hardware by running a distributed memory MPI with C, C++, and
Fortran90 compilers; this is not yet a good place for Java.

Blue Gene has three separate communication networks (Figure 14.11). At the
heart of the memory system is a 64 × 32 × 32 3-D torus that connects all the
memory blocks; Figure 14.11a shows the torus for 2 × 2 × 2 memory blocks. The
links are made by special link chips that also compute; they provide both direct
neighbor–neighbor communications as well as cut through communication across
the network. The result of this sophisticated network is that there is approximately
the same effective bandwidth and latencies (response times) between all nodes,

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 373

high-performance computing hardware 373

Chip
(2 processors)

Card
(2 chips)

Board
(16 cards)

Cabinet
(32 boards)

2.8/5.6 Gflops
4 MB

11.2 Gflops
1 GB DDR

80 Gflops
16 GB DDR

System
(64 cabinets)

5.7 Tflops
512 GB

360 Tflops
32TB

Figure 14.10 The building blocks of Blue Gene (adapted from [Gara 05]).

(c)

(a)

(b)
Gigabit Ethernet I/O node

Fast Ethernet

Compute nodes

JTAG

FGPA

Figure 14.11 (a) A 3-D torus connecting 2 × 2 × 2 memory blocks. (b) The global collective

memory system. (c) The control and GB-Ethernet memory system (adapted from [Gara 05]).

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 374

374 chapter 14

yet in order to obtain high speed, it is necessary to keep communication local. For
node-to-node communication a rate of 1.4 Gb/s = 1/10−9 s = 1 ns is obtained.

The latency ranges from 100 ns for 1 hop, to 6.4 µs for 64 hops between proces-
sors. The collective network in Figure 14.11b is used to communicate with all the
processors simultaneously, what is known as a broadcast, and does so at 4 b/cycle.
Finally, the control and gigabit ethernet network (Figure 14.11c) is used for I/O
to communicate with the switch (the hardware communication center) and with
ethernet devices. Its total capacity is greater than 1 tb (= 1012)

¯
/s.

The computing heart of Blue Gene is its integrated circuit and the associated
memory system (Figure 14.12). This is essentially an entire computer system on a
chip containing, among other things,

• two PowerPC 440s with attached floating-point units (for rapid processing
of floating-point numbers); one CPU is for computing, and one is for I/O.

• a RISC architecture CPU with seven stages, three pipelines, and 32-b, 64-way
associative cache lines,

• variable memory page size,
• embedded dynamic memory controllers,
• a gigabit ethernet adapter,
• a total of 512 MB/node (32 tB when summed over nodes),
• level-1 (L1) cache of 32 kB, L2 cache of 2 kB, and L3 cache of 4 MB.

14.14 Unit III. HPC Program Optimization

The type of optimization often associated with high-performance or numerically inten-
sive computing is one in which sections of a program are rewritten and reorganized
in order to increase the program’s speed. The overall value of doing this, especially
as computers have become so fast and so available, is often a subject of controversy
between computer scientists and computational scientists. Both camps agree that
using the optimization options of compilers is a good idea. However, computa-
tional scientists tend to run large codes with large amounts of data in order to solve
real-world problems and often believe that you cannot rely on the compiler to do
all the optimization, especially when you end up with time on your hands waiting
for the computer to finish executing your program. Here are some entertaining, yet
insightful, views [Har 96] reflecting the conclusions of those who have reflected
upon this issue:

More computing sins are committed in the name of efficiency (without necessarily
achieving it) than for any other single reason—including blind stupidity.

— W.A. Wulf

We should forget about small efficiencies, say about 97% of the time: premature
optimization is the root of all evil.

— Donald Knuth

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 375

high-performance computing hardware 375

440 core

CPU 1

Blue Gene/L ASIC

440 core

L1
D-cache

L1
I-cache

L1
I-cache

L1
D-cache

CPU 2

Snoop

Scratch
SRAM

Locks

L3 cache (embedded DRAM)

Main store

Bus
interface

Bus
interface

L2W L2WL2R L2R

Figure 14.12 The single-node memory system (adapted from [Gara 05]).

The best is the enemy of the good.

— Voltaire

Rule 1: Do not do it.

Rule 2 (for experts only): Do not do it yet.

Do not optimize as you go: Write your program without regard to possible opti-
mizations, concentrating instead on making sure that the code is clean, correct,
and understandable. If it’s too big or too slow when you’ve finished, then you can
consider optimizing it.

Remember the 80/20 rule: In many fields you can get 80% of the result with 20%
of the effort (also called the 90/10 rule—it depends on who you talk to). Whenever
you’re about to optimize code, use profiling to find out where that 80% of execution
time is going, so you know where to concentrate your effort.

Always run “before” and “after” benchmarks: How else will you know that your
optimizations actually made a difference? If your optimized code turns out to be only

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 376

376 chapter 14

slightly faster or smaller than the original version, undo your changes and go back to
the original, clear code.
Use the right algorithms and data structures: Do not use an O(n2) DFT algorithm to do
a Fourier transform of a thousand elements when there’s an O(n logn) FFT available.
Similarly, do not store a thousand items in an array that requires an O(n) search when
you could use an O(logn) binary tree or an O(1) hash table.

14.14.1 Programming for Virtual Memory (Method)

While paging makes little appear big, you pay a price because your program’s run
time increases with each page fault. If your program does not fit into RAM all at
once, it will run significantly slower. If virtual memory is shared among multiple
programs that run simultaneously, they all can’t have the entire RAM at once, and
so there will be memory access conflicts, in which case the performance of all the
programs will suffer. The basic rules for programming for virtual memory are as
follows.

1. Do not waste your time worrying about reducing the amount of memory used
(the working set size) unless your program is large. In that case, take a global
view of your entire program and optimize those parts that contain the largest
arrays.

2. Avoid page faults by organizing your programs to successively perform their
calculations on subsets of data, each fitting completely into RAM.

3. Avoid simultaneous calculations in the same program to avoid competition
for memory and consequent page faults. Complete each major calculation
before starting another.

4. Group data elements close together in memory blocks if they are going to be
used together in calculations.

14.14.2 Optimizing Programs; Java versus Fortran/C

Many of the optimization techniques developed for Fortran and C are also relevant
for Java applications. Yet while Java is a good language for scientific programming
and is the most universal and portable of all languages, at present Java code runs
slower than Fortran or C code and does not work well if you use MPI for parallel
computing (see Appendix D). In part, this is a consequence of the Fortran and C
compilers having been around longer and thereby having been better refined to
get the most out of a computer’s hardware, and in part this is also a consequence of
Java being designed for portability and not speed. Since modern computers are so
fast, whether a program takes 1s or 3s usually does not matter much, especially in

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 377

high-performance computing hardware 377

comparison to the hours or days of your time that it might take to modify a program
for different computers. However, you may want to convert the code to C (whose
command structure is very similar to that of Java) if you are running a computation
that takes hours or days to complete and will be doing it many times.

Especially when asked to, Fortran and C compilers look at your entire code as
a single entity and rewrite it for you so that it runs faster. (The rewriting is at a
fairly basic level, so there’s not much use in your studying the compiler’s output
as a way of improving your programming skills.) In particular, Fortran and C
compilers are very careful in accessing arrays in memory. They also are careful to
keep the cache lines full so as not to keep the CPU waiting with nothing to do. There
is no fundamental reason why a program written in Java cannot be compiled to
produce an highly efficient code, and indeed such compilers are being developed
and becoming available. However, such code is optimized for a particular computer
architecture and so is not portable. In contrast, the byte code (.class file) produced
by Java is designed to be interpreted or recompiled by the Java Virtual Machine (just
another program). When you change from Unix to Windows, for example, the Java
Virtual Machine program changes, but the byte code is the same. This is the essence
of Java’s portability.

In order to improve the performance of Java, many computers and browsers run
a Just-in-Time (JIT) Java compiler. If a JIT is present, the Java Virtual Machine feeds
your byte code Prog.class to the JIT so that it can be recompiled into native code
explicitly tailored to the machine you are using. Although there is an extra step
involved here, the total time it takes to run your program is usually 10–30 times
faster with a JIT as compared to line-by-line interpretation. Because the JIT is an
integral part of the Java Virtual Machine on each operating system, this usually
happens automatically.

In the experiments below you will investigate techniques to optimize both
Fortran and Java programs and to compare the speeds of both languages for the
same computation. If you run your Java code on a variety of machines (easy to do
with Java), you should also be able to compare the speed of one computer to that
of another. Note that a knowledge of Fortran is not required for these exercises.

14.14.2.1 GOOD AND BAD VIRTUAL MEMORY USE (EXPERIMENT)

To see the effect of using virtual memory, run these simple pseudocode examples
on your computer (Listings 14.1–14.4). Use a command such as time to measure the
time used for each example. These examples call functions force12and force21. You
should write these functions and make them have significant memory requirements
for both local and global variables.

� �
f o r j = 1 , n ; { f o r i = 1 , n ; {

f12 ( i , j ) = f o r c e 1 2 ( pion ( i ) , pion ( j ) ) / / F i l l f12
f21 ( i , j ) = f o r c e 2 1 ( pion ( i ) , pion ( j ) ) / / F i l l f21
f t o t = f12 ( i , j ) + f21 ( i , j ) } } / / F i l l f t o t

�

Listing 14.1 BAD program, too simultaneous.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 378

378 chapter 14

You see (Listing 14.1) that each iteration of the for loop requires the data and
code for all the functions as well as access to all the elements of the matrices and
arrays. The working set size of this calculation is the sum of the sizes of the arrays
f12(N,N), f21(N,N), and pion(N) plus the sums of the sizes of the functions force12
and force21.

A better way to perform the same calculation is to break it into separate
components (Listing 14.2):

� �
f o r j = 1 , n ; { f o r i = 1 , n ; f12 ( i , j ) = f o r c e 1 2 ( pion ( i ) , pion ( j ) ) }
f o r j = 1 , n ; { f o r i = 1 , n ; f21 ( i , j ) = f o r c e 2 1 ( pion ( i ) , pion ( j ) ) }
f o r j = 1 , n ; { f o r i = 1 , n ; f t o t = f12 ( i , j ) + f21 ( i , j ) }

�

Listing 14.2 GOOD program, separate loops.

Here the separate calculations are independent and the working set size, that is, the
amount of memory used, is reduced. However, you do pay the additional overhead
costs associated with creating extra for loops. Because the working set size of the
first for loop is the sum of the sizes of the arrays f12(N, N) and pion(N), and of
the function force12, we have approximately half the previous size. The size of the
last for loop is the sum of the sizes for the two arrays. The working set size of the
entire program is the larger of the working set sizes for the different for loops.

As an example of the need to group data elements close together in memory or
common blocks if they are going to be used together in calculations, consider the
following code (Listing 14.3):

� �
Common zed , y l t ( 9 ) , part ( 9 ) , zpart1 ( 5 0 0 0 0 ) , zpart2 ( 5 0 0 0 0 ) , med2 ( 9 )

f o r j = 1 , n ; y l t ( j ) = zed ∗ part ( j ) /med2 ( 9 ) / / Discontinuous var iables
�

Listing 14.3 BAD Program, discontinuous memory.

Here the variables zed, ylt, and part are used in the same calculations and are
adjacent in memory because the programmer grouped them together in Common
(global variables). Later, when the programmer realized that the array med2 was
needed, it was tacked onto the end of Common.All the data comprising the variables
zed, ylt, and part fit onto one page, but the med2 variable is on a different page
because the large array zpart2(50000) separates it from the other variables. In
fact, the system may be forced to make the entire 4-kB page available in order to
fetch the 72 B of data in med2. While it is difficult for a Fortran or C programmer to
ensure the placement of variables within page boundaries, you will improve your
chances by grouping data elements together (Listing 14.4):

� �
Common zed , y l t ( 9 ) , par t ( 9 ) , med2 ( 9 ) , zpart1 ( 5 0 0 0 0 ) , zpart2 ( 5 0 0 0 0 )

f o r j = 1 , n ; y l t ( j ) = zed∗part ( j ) /med2( J ) / / Continuous
�

Listing 14.4 GOOD program, continuous memory.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 379

high-performance computing hardware 379

14.14.3 Experimental Effects of Hardware on Performance

In this section you conduct an experiment in which you run a complete program in several
languages and on as many computers as are available. In this way you explore how a
computer’s architecture and software affect a program’s performance.

Even if you do not know (or care) what is going on inside a program, some
optimizing compilers are smart and caring enough to figure it out for you and then
go about rewriting your program for improved performance. You control how
completely the compiler does this when you add optimization options to the compile
command:

> f90 –O tune.f90

Here –O turns on optimization (O is the capital letter “oh,” not zero). The actual
optimization that is turned on differs from compiler to compiler. Fortran and C
compilers have a bevy of such options and directives that let you truly customize
the resulting compiled code. Sometimes optimization options make the code run
faster, sometimes not, and sometimes the faster-running code gives the wrong
answers (but does so quickly).

Because computational scientists may spend a good fraction of their time run-
ning compiled codes, the compiler options tend to become quite specialized. As
a case in point, most compilers provide a number of levels of optimization for
the compiler to attempt (there are no guarantees with these things). Although the
speedup obtained depends upon the details of the program, higher levels may give
greater speedup, as well as a concordant greater risk of being wrong.

The Forte/Sun Fortran compiler options include

–O Use the default optimization level (–O3)
–O1 Provide minimum statement-level optimizations
–O2 Enable basic block-level optimizations
–O3 Add loop unrolling and global optimizations
–O4 Add automatic inlining of routines from the same source file
–O5 Attempt aggressive optimizations (with profile feedback)

For the Visual Fortran (Compaq, Intel) compiler under windows, options are
entered as /optimize and for optimization are

/optimize:0 Disable most optimizations
/optimize:1 Local optimizations in the source program unit
/optimize:2 Global optimization, including /optimize:1

/optimize:3 Additional global optimizations; speed at cost of code size:
loop unrolling, instruction scheduling, branch code
replication, padding arrays for cache

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 380

380 chapter 14

/optimize:4 Interprocedure analysis, inlining small procedures
/optimize:5 Activate loop transformation optimizations

The gnu compilers gcc, g77, g90 accept –O options as well as

–malign–double Align doubles on 64-bit boundaries
–ffloat–store For codes using IEEE-854 extended

precision
–fforce–mem, –fforce–addr Improves loop optimization
–fno–inline Do not compile statement functions inline
–ffast–math Try non-IEEE handling of floats
–funsafe–math–optimizations Speeds up float operations; incorrect results

possible
–fno–trapping–math Assume no floating-point traps generated
–fstrength–reduce Makes some loops faster
–frerun–cse–after–loop

–fexpensive–optimizations

–fdelayed–branch

–fschedule–insns

–fschedule–insns2

–fcaller–saves

–funroll–loops Unrolls iterative DO loops
–funroll–all–loops Unrolls DO WHILE loops

14.14.4 Java versus Fortran/C

The various versions of the program tune solve the matrix eigenvalue problem

Hc = Ec (14.11)

for the eigenvalues E and eigenvectors c of a Hamiltonian matrix H. Here the
individual Hamiltonian matrix elements are assigned the values

Hi,j =

{
i, for i= j,

0.3|i−j|, for i �= j,
=




1 0.3 0.14 0.027 . . .

0.3 2 0.3 0.9 . . .

0.14 0.3 3 0.3 . . .

. . .


 . (14.12)

Because the Hamiltonian is almost diagonal, the eigenvalues should be close to
the values of the diagonal elements and the eigenvectors should be close to N -
dimensional unit vectors. For the present problem, the H matrix has dimension
N ×N � 2000 × 2000 = 4, 000, 000, which means that matrix manipulations should

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 381

high-performance computing hardware 381

take enough time for you to see the effects of optimization. If your computer has a
large supply of central memory, you may need to make the matrix even larger to
see what happens when a matrix does not all fit into RAM.

We find the solution to (14.11) via a variation of the power or Davidson method.
We start with an arbitrary first guess for the eigenvector c and use it to calculate
the energy corresponding to this eigenvector,4

c0 �




1

0
...

0


 , E � c†

0Hc0

c†
0c0

, (14.13)

where c†
0 is the row vector adjoint of c0. Because H is nearly diagonal with diagonal

elements that increases as we move along the diagonal, this guess should be close
to the eigenvector with the smallest eigenvalue. The heart of the algorithm is the
guess that an improved eigenvector has the kth component

c1|k � c0|k +
[H−EI]c0|k
E−Hk,k

, (14.14)

where k ranges over the length of the eigenvector. If repeated, this method con-
verges to the eigenvector with the smallest eigenvalue. It will be the smallest
eigenvalue since it gets the largest weight (smallest denominator) in (14.14) each
time. For the present case, six places of precision in the eigenvalue are usually
obtained after 11 iterations. Here are the steps to follow:

• Vary the variable err in tune that controls precision and note how it affects
the number of iterations required.

• Try some variations on the initial guess for the eigenvector (14.14) and see if
you can get the algorithm to converge to some of the other eigenvalues.

• Keep a table of your execution times versus technique.
• Compile and execute tune.f90 and record the run time. On Unix systems,

the compiled program will be placed in the file a.out. From a Unix shell, the
compilation, timing, and execution can all be done with the commands

> f90 tune.f90 Fortran compilation
> cc –lm tune.c C compilation, gcc also likely
> time a.out Execution

Here the compiled Fortran program is given the (default) name a.out, and
the time command gives you the execution (user) time and system time in
seconds to execute a.out.

4 Note that the codes refer to the eigenvector c0 as coef.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 382

382 chapter 14

• As indicated in §14.14.3, you can ask the compiler to produce a version of
your program optimized for speed by including the appropriate compiler
option:

> f90 –O tune.f90

Execute and time the optimized code, checking that it still gives the same
answer, and note any speedup in your journal.

• Try out optimization options up to the highest levels and note the run time
and accuracy obtained. Usually –O3 is pretty good, especially for as simple a
program as tune with only a main method. With only one program unit we
would not expect –O4 or –O5 to be an improvement over –O3. However, we
do expect –O3, with its loop unrolling, to be an improvement over –O2.

• The program tune4 does some loop unrolling (we will explore that soon). To
see the best we can do with Fortran, record the time for the most optimized
version of tune4.f90.

• The program Tune.java in Listing 14.5 is the Java equivalent of the Fortran
program tune.f90.

• To get an idea of what Tune.java does (and give you a feel for how hard life
is for the poor computer), assume ldim =2 and work through one iteration of
Tune by hand. Assume that the iteration loop has converged, follow the code
to completion, and write down the values assigned to the variables.

• Compile and execute Tune.java. You do not have to issue the time command
since we built a timer into the Java program (however, there is no harm in
trying it). Check that you still get the same answer as you did with Fortran
and note how much longer it takes with Java.

• Try the –O option with the Java compiler and note if the speed changes (since
this just inlines methods, it should not affect our one-method program).

• You might be surprised how much slower Java is than Fortran and that the
Java optimizer does not seem to do much good. To see what the actual Java
byte code does, invoke the Java profiler with the command

> javap –c Tune

This should produce a file, java.prof for you to look at with an editor. Look
at it and see if you agree with us that scientists have better things to do with
their time than trying to understand such files!

• We now want to perform a little experiment in which we see what happens
to performance as we fill up the computer’s memory. In order for this exper-
iment to be reliable, it is best for you to not to be sharing the computer with
any other users. On Unix systems, the who –a command shows you the other
users (we leave it up to you to figure out how to negotiate with them).

• To get some idea of what aspect of our little program is making it so slow,
compile and run Tune.java for the series of matrix sizes ldim = 10, 100, 250,
500, 750, 1025, 2500, and 3000. You may get an error message that Java is out
of memory at 3000. This is because you have not turned on the use of virtual
memory. In Java, the memory allocation pool for your program is called the

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 383

high-performance computing hardware 383

heap and it is controlled by the –Xms and –Xmx options to the Java interpreter
java:

–Xms256m Set initial heap size to 256 MB
–Xmx512m Set maximum heap size to 512 MB

� �
/ / Tune . java : eigenvalue solut ion for performace tuning

p u b l i c c l a s s Tune {

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) {
f i n a l i n t Ldim = 2 0 5 1 ;
i n t i , j , i t e r = 0 ;
d o u b l e [ ] [ ] ham = new d o u b l e [ Ldim ] [ Ldim ] ; d o u b l e [ ] coef = new d o u b l e [ Ldim ] ;
d o u b l e [ ] sigma = new d o u b l e [ Ldim ] ; d o u b l e time , err , ener , ovlp , s tep = 0 . ;
time = System . currentTimeMil l i s ( ) ; / / I n i t i a l i z e time

f o r ( i = 1 ; i <= Ldim−1; i ++ ) { / / I n i t matrix & vector
f o r ( j = 1 ; j <= Ldim−1; j ++ ) {

i f ( Math . abs ( j−i ) >10) ham[ j ] [ i ] = 0 . ;
e l s e ham[ j ] [ i ] = Math . pow( 0 . 3 , Math . abs ( j−i ) ) ;

}
ham[ i ] [ i ] = i ; coef [ i ] = 0 . ;

}
coef [ 1 ] = 1 . ; e r r = 1 . ; i t e r = 0 ; / / S t a r t i t e r a t i o n
w h i l e ( i t e r < 15 && e r r > 1 . e−6) {

i t e r = i t e r + 1 ; ener = 0 . ; ovlp = 0 . ;
f o r ( i = 1 ; i <= Ldim−1; i ++ ) { / / Compute E & normalize

ovlp = ovlp + coef [ i ]∗ coef [ i ] ; sigma [ i ] = 0 . ;
f o r ( j = 1 ; j <= Ldim−1; j ++) sigma [ i ] = sigma [ i ]+ coef [ j ]∗ham[ j ] [ i ] ;
ener = ener + coef [ i ]∗ sigma [ i ] ;

}
ener = ener/ovlp ;
f o r ( i = 1 ; i <= Ldim−1; i ++ ) { coef [ i ] = coef [ i ]/Math . s q r t ( ovlp ) ;

sigma [ i ] = sigma [ i ]/Math . s q r t ( ovlp ) ; }
e r r = 0 . ;
f o r ( i = 2 ; i <= Ldim−1; i ++ ) { / / Update

s tep = ( sigma [ i ] − ener∗coef [ i ] ) /( ener−ham[ i ] [ i ] ) ;
coef [ i ] = coef [ i ] + s tep ; e r r = e r r + step∗s tep ;

}
e r r = Math . s q r t ( e r r ) ;
System . out . p r i n t l n ("iter , ener , err " + i t e r + " , " + ener + " , " + e r r ) ;

}
time = ( System . currentTimeMil l i s ( ) − time ) / 1 0 0 0 . ; / / Elapsed time
System . out . p r i n t l n ("time = " + time + "s" ) ;

} }
�

Listing 14.5 Tune.java is meant to be numerically intensive enough to show the results of

various types of optimizations. The program solves the eigenvalue problem iteratively for a

nearly diagonal Hamiltonian matrix using a variation of the power method.

• Make a graph of run time versus matrix size. It should be similar to
Figure 14.13, although if there is more than one user on your computer while
you run, you may get erratic results. Note that as our matrix becomes larger
than ∼1000 × 1000 in size, the curve sharply increases in slope with execu-
tion time, in our case increasing like the third power of the dimension. Since
the number of elements to compute increases as the second power of the

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 384

384 chapter 14

Ti
m

e 
(s

ec
o

n
d

s) Java, Solaris

Execution  Time  vs  Matrix  Size

Matrix Dimension

100 100010

Fortran, Solaris

Matrix Dimension

100 1000 10,000

1 1

0.01

10 10

100

1000

10,000

100

0.1
0.1

Figure 14.13 Running time versus dimension for an eigenvalue search using Tune.java and

tune.f90.

dimension, something else is happening here. It is a good guess that the
additional slowdown is due to page faults in accessing memory. In particu-
lar, accessing 2-D arrays, with their elements scattered all through memory,
can be very slow.

• Repeat the previous experiment with tune.f90 that gauges the effect of
increasing the ham matrix size, only now do it for ldim = 10, 100, 250,
500, 1025, 3000, 4000, 6000,…. You should get a graph like ours. Although
our implementation of Fortran has automatic virtual memory, its use will
be exceedingly slow, especially for this problem (possibly a 50-fold increase
in time!). So if you submit your program and you get nothing on the screen
(though you can hear the disk spin or see it flash busy), then you are probably
in the virtual memory regime. If you can, let the program run for one or two
iterations, kill it, and then scale your run time to the time it would have taken
for a full computation.

• To test our hypothesis that the access of the elements in our 2-D array ham [i][j]
is slowing down the program, we have modified Tune.java into Tune4.java
in Listing 14.6.

• Look at Tune4.java and note where the nested for loop over i and j now
takes step of ∆i= 2 rather the unit steps in Tune.java. If things work as
expected, the better memory access of Tune4.java should cut the run time
nearly in half. Compile and execute Tune4.java. Record the answer in your
table.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 385

high-performance computing hardware 385

� �
/ / Tune4 . java : matrix algebra program , basic optimization

p u b l i c c l a s s Tune4 {

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) {
f i n a l i n t Ldim = 2 0 5 1 ;
i n t i , j , i t e r = 0 ;
d o u b l e [ ] [ ] ham = new d o u b l e [ Ldim ] [ Ldim ] ; d o u b l e [ ] diag = new d o u b l e [ Ldim ] ;
d o u b l e [ ] coef = new d o u b l e [ Ldim ] ; d o u b l e [ ] sigma = new d o u b l e [ Ldim ] ;
d o u b l e err , ener , ovlp , ovlp1 , ovlp2 , s tep = 0 . , f a c t , time , t , t1 , t2 , u ;
time = System . currentTimeMil l i s ( ) ; / / Store i n i t i a l time
f o r ( i = 1 ; i <= Ldim−1; i ++ ) { / / Set up Hamiltonian

f o r ( j = 1 ; j <= Ldim−1; j ++ ) i f ( Math . abs ( j−i ) >10) ham[ j ] [ i ] = 0 . ;
e l s e ham[ j ] [ i ] = Math . pow( 0 . 3 , Math . abs ( j−i ) ) ;

} / / I t e r a t e towards solut ion
f o r ( i =1 ; i <Ldim−1; i ++) {ham[ i ] [ i ] = i ; coef [ i ] = 0 . ; diag [ i ] = ham [ i ] [ i ] ; }
coef [ 1 ] = 1 . ; e r r = 1 . ; i t e r = 0 ;
w h i l e ( i t e r < 15 && e r r > 1 . e−6) { / / Compute current energy & normalize

i t e r = i t e r + 1 ; ener = 0 . ; ovlp1 = 0 . ; ovlp2 = 0 . ;
f o r ( i = 1 ; i <= Ldim−2; i = i + 2 ) {

ovlp1 = ovlp1 + coef [ i ]∗ coef [ i ] ;
ovlp2 = ovlp2 + coef [ i +1]∗ coef [ i +1] ;
t 1 = t2 = 0 . ;
f o r ( j =1 ; j <= Ldim−1; j ++ ) { t1 = t1 + coef [ j ]∗ham[ j ] [ i ] ;

t 2 = t2 + coef [ j ]∗ham[ j ] [ i + 1 ] ; }
sigma [ i ] = t1 ; sigma [ i + 1] = t2 ;
ener = ener + coef [ i ]∗ t 1 + coef [ i +1]∗ t 2 ;

}
ovlp = ovlp1 + ovlp2 ;
ener = ener/ovlp ;
f a c t = 1./Math . s q r t ( ovlp ) ;
coef [ 1 ] = f a c t ∗coef [ 1 ] ;
e r r = 0 . ; / / Update & e r r o r norm
f o r ( i = 2 ; i <= Ldim−1; i ++) { t = f a c t ∗coef [ i ] ; u = f a c t ∗sigma [ i ]−ener∗ t ;

s tep = u/( ener−diag [ i ] ) ; coef [ i ] = t + step ; e r r = e r r + step∗s tep ; }
e r r = Math . s q r t ( e r r ) ;
System . out . p r i n t l n ("iter , ener , err "+ i t e r +" , " + ener + " , " + e r r ) ;

}
time = ( System . currentTimeMil l i s ( ) − time ) /1000;
System . out . p r i n t l n ("time = " + time + "s" ) ; / / Elapsed time

} }
�

Listing 14.6 Tune4.java does some loop unrolling by explicitly writing out two steps of a for

loop (steps of 2.) This results in better memory access and faster execution.

• In order to cut the number of calls to the 2-D array in half, we employed a
technique know as loop unrolling in which we explicitly wrote out some of the
lines of code that otherwise would be executed implicitly as the for loop went
through all the values for its counters. This is not as clear a piece of code as
before, but it evidently, permits the compiler to produce a faster executable.
To check that Tune andTune4 actually do the same thing, assume ldim =4 and
run through one iteration of Tune4.java by hand. Hand in your manual trial.

14.15 Programming for the Data Cache (Method)

Data caches are small, very fast memory used as temporary storage between the
ultrafast CPU registers and the fast main memory. They have grown in importance

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 386

386 chapter 14

as high-performance computers have become more prevalent. For systems that use
a data cache, this may well be the single most important programming considera-
tion; continually referencing data that are not in the cache (cache misses) may lead
to an order-of-magnitude increase in CPU time.

As indicated in Figures 14.2 and 14.14, the data cache holds a copy of some
of the data in memory. The basics are the same for all caches, but the sizes are
manufacturer-dependent. When the CPU tries to address a memory location, the
cache manager checks to see if the data are in the cache. If they are not, the manager
reads the data from memory into the cache, and then the CPU deals with the data
directly in the cache. The cache manager’s view of RAM is shown in Figure 14.14.

When considering how a matrix operation uses memory, it is important to con-
sider the stride of that operation, that is, the number of array elements that are
stepped through as the operation repeats. For instance, summing the diagonal
elements of a matrix to form the trace

TrA=
N∑

i=1

a(i, i) (14.15)

involves a large stride because the diagonal elements are stored far apart for large
N. However, the sum

c(i) = x(i) +x(i+ 1) (14.16)

has stride 1 because adjacent elements of x are involved. The basic rule in
programming for a cache is

• Keep the stride low, preferably at 1, which in practice means.
• Vary the leftmost index first on Fortran arrays.
• Vary the rightmost index first on Java and C arrays.

14.15.1 Exercise 1: Cache Misses

We have said a number of times that your program will be slowed down if the
data it needs are in virtual memory and not in RAM. Likewise, your program will
also be slowed down if the data required by the CPU are not in the cache. For
high-performance computing, you should write programs that keep as much of
the data being processed as possible in the cache. To do this you should recall that
Fortran matrices are stored in successive memory locations with the row index
varying most rapidly (column-major order), while Java and C matrices are stored
in successive memory locations with the column index varying most rapidly
(row-major order). While it is difficult to isolate the effects of the cache from other
elements of the computer’s architecture, you should now estimate its importance
by comparing the time it takes to step through the matrix elements row by row to
the time it takes to step through the matrix elements column by column.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 387

high-performance computing hardware 387

Cache

Virtual Memory

256 lines of 128b (32KB)

Figure 14.14 The cache manager’s view of RAM. Each 128-B cache line is read into one of

four lines in cache.

By actually running on machines available to you, check that the two simple
codes in Listing 14.7 with the same number of arithmetic operations take signifi-
cantly different times to run because one of them must make large jumps through
memory with the memory locations addressed not yet read into the cache:

� �
x ( j ) = m( 1 , j ) / / Sequential column reference

�

� �
f o r j = 1 , 9 9 9 9 ;

x ( j ) = m( j , 1 ) / / Sequential row reference
�

Listing 14.7 Sequential column and row references.

14.15.2 Exercise 2: Cache Flow

Test the importance of cache flow on your machine by comparing the time it takes
to run the two simple programs in Listings 14.8 and 14.9. Run for increasing column
size idim and compare the times for loop A versus those for loop B. A computer
with very small caches may be most sensitive to stride.

� �
Dimension Vec ( idim , jdim ) / / S t r ide 1 fetch ( f90 )

f o r j = 1 , jdim ; { f o r i =1 , idim ; Ans = Ans + Vec ( i , j )∗Vec ( i , j ) }
�

Listing 14.8 GOOD f90, BAD Java/C Program; minimum, maximum stride.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 388

388 chapter 14

� �
Dimension Vec ( idim , jdim ) / / St r ide jdim fetch ( f90 )

f o r i = 1 , idim ; { f o r j =1 , jdim ; Ans = Ans + Vec ( i , j )∗Vec ( i , j ) }
�

Listing 14.9 BAD f90, GOOD Java/C Program; maximum, minimum stride.

Loop A steps through the matrix Vec in column order. Loop B steps through in
row order. By changing the size of the columns (the rightmost Fortran index), we
change the step size (stride) taken through memory. Both loops take us through all
the elements of the matrix, but the stride is different. By increasing the stride in any
language, we use fewer elements already present in the cache, require additional
swapping and loading of the cache, and thereby slow down the whole process.

14.15.3 Exercise 3: Large-Matrix Multiplication

As you increase the dimensions of the arrays in your program, memory use
increases geometrically, and at some point you should be concerned about
efficient memory use. The penultimate example of memory usage is large-matrix
multiplication:

[C] = [A]× [B], (14.17)

cij =
N∑

k=1

aik × bkj . (14.18)

� �
f o r i = 1 , N; { / / Row

f o r j = 1 , N; { / / Column
c ( i , j ) = 0 . 0 / / I n i t i a l i z e
f o r k = 1 , N; {

c ( i , j ) = c ( i , j ) + a ( i , k ) ∗b ( k , j ) } } } / / Accumulate sum
�

Listing 14.10 BAD f90, GOOD Java/C Program; maximum, minimum stride.

This involves all the concerns with different kinds of memory. The natural way to
code (14.17) follows from the definition of matrix multiplication (14.18), that is, as a
sum over a row ofA times a column ofB. Try out the two code in Listings 14.10 and
14.11 on your computer. In Fortran, the first code has B with stride 1, but C with
stride N . This is corrected in the second code by performing the initialization in
another loop. In Java and C, the problems are reversed. On one of our machines, we
found a factor of 100 difference in CPU times even though the number of operations
is the same!

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 389

high-performance computing hardware 389

� �
f o r j = 1 , N; { / / I n i t i a l i z a t i o n

f o r i = 1 , N; {
c ( i , j ) = 0 . 0 }
f o r k = 1 , N; {

f o r i = 1 , N; { c ( i , j ) = c ( i , j ) + a ( i , k ) ∗b ( k , j ) } } }
�

Listing 14.11 GOOD f90, BAD Java/C Program; minimum, maximum stride.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 424

16

Simulating Matter with
Molecular Dynamics

Problem: Determine whether a collection of argon molecules placed in a box will
form an ordered structure at low temperature.

You may have seen in your introductory classes that the ideal gas law can be derived from
first principles if gas molecules are treated as billiard balls bouncing off the walls but not
interacting with each other. We want to extend this model so that we can solve for the
motion of every molecule in a box interacting with every other molecule via a potential. We
picked argon because it is an inert element with a closed shell of electrons and so can be
modeled as almost-hard spheres.

16.1 Molecular Dynamics (Theory)

Molecular dynamics (MD) is a powerful simulation technique for studying the physi-
cal and chemical properties of solids, liquids, amorphous materials, and biological
molecules. Even though we know that quantum mechanics is the proper theory
for molecular interactions, MD uses Newton’s laws as the basis of the technique
and focuses on bulk properties, which do not depend much on small-r behav-
iors. In 1985 Car and Parrinello showed how MD can be extended to include
quantum mechanics by applying density functional theory to calculate the force
[C&P 85]. This technique, known as quantum MD, is an active area of research
but is beyond the realm of the present chapter.1 For those with more interest
in the subject, there are full texts [A&T 87, Rap 95, Hock 88] on MD and good
discussions [G,T&C 06, Thij 99, Fos 96], as well as primers [Erco] and codes,
[NAMD, Mold, ALCMD] available on-line.

MD’s solution of Newton’s laws is conceptually simple, yet when applied to a
very large number of particles becomes the “high school physics problem from
hell.” Some approximations must be made in order not to have to solve the
1023–1025 equations of motion describing a realistic sample but instead to limit the
problem to ∼106 particles for protein simulations and ∼108 particles for materials
simulations. If we have some success, then it is a good bet that the model will
improve if we incorporate more particles or more quantum mechanics, something
that becomes easier as computing power continues to increase.

1 We thank Satoru S. Kano for pointing this out to us.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 425

simulating matter with molecular dynamics 425

In a number of ways, MD simulations are similar to the thermal Monte Carlo
simulations we studied in Chapter 15, “Thermodynamic Simulations & Feynman
Quantum Path Integration,” Both typically involve a large numberN of interacting
particles that start out in some set configuration and then equilibrate into some
dynamic state on the computer. However, in MD we have what statistical mechanics
calls a microcanonical ensemble in which the energyE and volumeV of theN particles
are fixed. We then use Newton’s laws to generate the dynamics of the system. In
contrast, Monte Carlo simulations do not start with first principles but instead
incorporate an element of chance and have the system in contact with a heat bath
at a fixed temperature rather than keeping the energy E fixed. This is called a
canonical ensemble.

Because a system of molecules is dynamic, the velocities and positions of the
molecules change continuously, and so we will need to follow the motion of each
molecule in time to determine its effect on the other molecules, which are also
moving. After the simulation has run long enough to stabilize, we will compute
time averages of the dynamic quantities in order to deduce the thermodynamic
properties. We apply Newton’s laws with the assumption that the net force on
each molecule is the sum of the two-body forces with all other (N − 1) molecules:

m
d2ri

dt2
=Fi(r0, . . . , rN−1) (16.1)

m
d2ri

dt2
=

N−1∑
i<j=0

fij , i= 0, . . . , (N − 1). (16.2)

In writing these equations we have ignored the fact that the force between argon
atoms really arises from the particle–particle interactions of the 18 electrons and
the nucleus that constitute each atom (Figure 16.1). Although it may be possible to
ignore this internal structure when deducing the long-range properties of inert ele-
ments, it matters for systems such as polyatomic molecules that display rotational,
vibrational, and electronic degrees of freedom as the temperature is raised.2

We assume that the force on molecule i derives from a potential and that the
potential is the sum of central molecule–molecule potentials:

Fi(r0, r1, . . . , rN−1) = −∇riU(r0, r1, . . . , rN−1), (16.3)

U(r0, r1, . . . , rN−1) =
∑
i<j

u(rij) =
N−2∑
i=0

N−1∑
j=i+1

u(rij), (16.4)

⇒ fij = −du(rij)
drij

(
xi −xj

rij
êx +

yi − yj

rij
êy +

zi − zj

rij
êz

)
. (16.5)

Here rij = |ri − rj | = rji is the distance between the centers of molecules i and j,
and the limits on the sums are such that no interaction is counted twice. Because

2 We thank Saturo Kano for clarifying this point.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 426

426 chapter 16

+ +

Figure 16.1 The molecule–molecule effective interaction arises from the many-body

interaction of the electrons and nucleus in one electronic cloud with the electrons and

nucleus in another electron cloud. (The size of the nucleus at the center is highly

exaggerated relative to the size of the molecule, and the electrons are really just points.)

we have assumed a conservative potential, the total energy of the system, that is, the
potential plus kinetic energies summed over all particles, should be conserved over
time. Nonetheless, in a practical computation we “cut the potential off” [assume
u(rij) = 0] when the molecules are far apart. Because the derivative of the potential
produces an infinite force at this cutoff point, energy will no longer be precisely
conserved. Yet because the cutoff radius is large, the cutoff occurs only when the
forces are minuscule, and so the violation of energy conservation should be small
relative to approximation and round-off errors.

In a first-principles calculation, the potential between any two argon atoms arises
from the sum over approximately 1000 electron–electron and electron–nucleus
Coulomb interactions. A more practical calculation would derive an effective
potential based on a form of many-body theory, such as Hartree–Fock or density
functional theory. Our approach is simpler yet. We use the Lennard–Jones potential,

u(r) = 4ε
[(σ

r

)12
−
(σ
r

)6
]
, (16.6)

f(r) = −du

dr
=

48ε
r2

[(σ
r

)12
− 1

2

(σ
r

)6
]
r. (16.7)

TABLE 16.1
Parameter Values and Scales for the Lennard-Jones Potential

Quantity Mass Length Energy Time Temperature

Unit m σ ε
√
mσ2/ε ε/kB

Value 6.7 × 10−26 kg 3.4 × 10−10 m 1.65 × 10−21 J 4.5 × 10−12 s 119 K

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 427

simulating matter with molecular dynamics 427

repulsive

attraction

0.8 1 1.2
r

1.4 1.6 1.8 2

Lennard-Jones
10

u(r)

0

Figure 16.2 The Lennard-Jones potential. Note the sign change at r = 1 and the minimum at

r � 1.1225 (natural units). Note too that because the r axis does not extend to r = 0, the very

high central repulsion is not shown.

Here the parameter ε governs the strength of the interaction, and σ determines
the length scale. Both are deduced by fits to data, which is why this is called a
“phenomenological” potential.

Some typical values for the parameters, and corresponding scales for the vari-
ables, are given in Table 16.1. In order to make the program simpler and to avoid
under- and overflows, it is helpful to measure all variables in the natural units
formed by these constants. The interparticle potential and force then take the forms

u(r) = 4
[

1
r12

− 1
r6

]
, f(r) =

48
r

[
1
r12

− 1
2r6

]
. (16.8)

The Lennard-Jones potential is seen in Figure 16.2 to be the sum of a long-range
attractive interaction ∝ 1/r6 and a short-range repulsive one ∝ 1/r12. The change
from repulsion to attraction occurs at r = σ. The minimum of the potential occurs
at r = 21/6σ = 1.1225σ, which would be the atom–atom spacing in a solid bound by
this potential. The repulsive 1/r12 term in the Lennard-Jones potential (16.6) arises
when the electron clouds from two atoms overlap, in which case the Coulomb
interaction and the Pauli exclusion principle keep the electrons apart. The 1/r12

term dominates at short distances and makes atoms behave like hard spheres. The
precise value of 12 is not of theoretical significance (although it’s being large is)
and was probably chosen because it is 2 × 6.

The 1/r6 term dominates at large distances and models the weak van der Waals
induced dipole–dipole attraction between two molecules.3 The attraction arises
from fluctuations in which at some instant in time a molecule on the right tends
to be more positive on the left side, like a dipole ⇐. This in turn attracts the nega-
tive charge in a molecule on its left, thereby inducing a dipole ⇐ in it. As long as

3 There are also van der Waals forces that cause dispersion, but we are not considering those
here.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 428

428 chapter 16

the molecules stay close to each other, the polarities continue to fluctuate in syn-
chronization ⇐⇐ so that the attraction is maintained. The resultant dipole–dipole
attraction behaves like 1/r6, and although much weaker than a Coulomb force, it
is responsible for the binding of neutral, inert elements, such as argon for which
the Coulomb force vanishes.

16.1.1 Connection to Thermodynamic Variables

We assume that the number of particles is large enough to use statistical mechanics
to relate the results of our simulation to the thermodynamic quantities (the simu-
lation is valid for any number of particles, but the use of statistics requires large
numbers). The equipartition theorem tells us that for molecules in thermal equilib-
rium at temperature T , each molecular degree of freedom has an energy kBT/2
on the average associated with it, where kB = 1.38× 10−23 J/K is Boltzmann’s
constant. A simulation provides the kinetic energy of translation4:

KE =
1
2

〈
N−1∑
i=0

v2
i

〉
. (16.9)

The time average of KE (three degrees of freedom) is related to temperature by

〈KE〉 =N
3
2
kBT ⇒ T =

2〈KE〉
3kBN

. (16.10)

The system’s pressure P is determined by a version of the Virial theorem,

PV =NkBT +
w

3
, w =

〈
N−1∑
i<j

rij · fij
〉
, (16.11)

where the Virialw is a weighted average of the forces. Note that because ideal gases
have no interaction forces, their Virial vanishes and we have the ideal gas law. The
pressure is thus

P =
ρ

3N
(2〈KE〉 +w) , (16.12)

where ρ=N/V is the density of the particles.

4 Unless the temperature is very high, argon atoms, being inert spheres, have no rotational
energy.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 429

simulating matter with molecular dynamics 429

Figure 16.3 Left: Two frames from the animation of a 1-D simulation that starts with uniformly

spaced atoms. Note how an image atom has moved in from the bottom after an atom

leaves from the top. Right: Two frames from the animation of a 2-D simulation showing the

initial and an equilibrated state. Note how the atoms start off in a simple cubic arrangement

but then equilibrate to a face-centered-cubic lattice. In all cases, it is the interatomic forces

that constrain the atoms to a lattice.

16.1.2 Setting Initial Velocity Distribution

Even though we start the system off with a velocity distribution characteristic of
some temperature, since the system is not in equilibrium initially (some of the
assigned KE goes into PE), this is not the true temperature of the system [Thij 99].
Note that this initial randomization is the only place where chance enters into our
MD simulation, and it is there to speed the simulation along. Once started, the time
evolution is determined by Newton’s laws, in contrast to Monte Carlo simulations
which are inherently stochastic. We produce a Gaussian (Maxwellian) velocity dis-
tribution with the methods discussed in Chapter 5, “Monte Carlo Simulations.”
In our sample code we take the average 1

12

∑12
i=1 ri of uniform random numbers

0 ≤ ri ≤ 1 to produce a Gaussian distribution with mean 〈r〉 = 0.5. We then subtract
this mean value to obtain a distribution about 0.

16.1.3 Periodic Boundary Conditions and Potential Cutoff

It is easy to believe that a simulation of 1023 molecules should predict bulk proper-
ties well, but with typical MD simulations employing only 103–106 particles, one
must be clever to make less seem like more. Furthermore, since computers are
finite, the molecules in the simulation are constrained to lie within a finite box,
which inevitably introduces artificial surface effects from the walls. Surface effects
are particularly significant when the number of particles is small because then a
large fraction of the molecules reside near the walls. For example, if 1000 particles
are arranged in a 10 × 10 × 10 × 10 cube, there are 103–83 = 488 particles one unit

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 430

430 chapter 16

4

5

32

14

5

32

1 4

5

32

1

4

5

32

14

5

32

1 4

5

32

1

4

5

32

14

5

32

1 4

5

32

1

Figure 16.4 The infinite space generated by imposing periodic boundary conditions on the

particles within the simulation volume (shaded box). The two-headed arrows indicate how a

particle interacts with the nearest version of another particle, be that within the simulation

volume or an image. The vertical arrows indicate how the image of particle 4 enters when

particle 4 exits.

from the surface, that is, 49% of the molecules, while for 106 particles this fraction
falls to 6%.

The imposition of periodic boundary conditions (PBCs) strives to minimize the
shortcomings of both the small numbers of particles and of artificial boundaries.
Even though we limit our simulation to an Lx ×Ly ×Lz box, we imagine this box
being replicated to infinity in all directions (Figure 16.4). Accordingly, after each
time-integration step we examine the position of each particle and check if it has left
the simulation region. If it has, then we bring an image of the particle back through
the opposite boundary (Figure 16.4):

x ⇒
{
x+Lx, if x≤ 0,

x−Lx, if x > Lx.
(16.13)

Consequently, each box looks the same and has continuous properties at the edges.
As shown by the one-headed arrows in Figure 16.4, if a particle exits the simulation
volume, its image enters from the other side, and so balance is maintained.

In principle a molecule interacts with all others molecules and their images, so
even though there is a finite number of atoms in the interaction volume, there
is an effective infinite number of interactions [Erco]. Nonetheless, because the
Lennard–Jones potential falls off so rapidly for large r, V (r = 3σ) � V (1.13σ)/200,

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 431

simulating matter with molecular dynamics 431

far-off molecules do not contribute significantly to the motion of a molecule, and
we pick a value rcut � 2.5σ beyond which we ignore the effect of the potential:

u(r) =

{
4
(
r−12 − r−6

)
, for r < rcut,

0, for r > rcut.
(16.14)

Accordingly, if the simulation region is large enough for u(r > Li/2) � 0, an atom
interacts with only the nearest image of another atom.

The only problem with the cutoff potential (16.14) is that since the derivative
du/dr is singular at r = rcut, the potential is no longer conservative and thus energy
conservation is no longer ensured. However, since the forces are already very small
at rcut, the violation will also be very small.

16.2 Verlet and Velocity-Verlet Algorithms

Arealistic MD simulation may require integration of the 3-D equations of motion for
1010 time steps for each of 103–106 particles. Although we could use our standard
rk4 ODE solver for this, time is saved by using a simple rule embedded in the pro-
gram. The Verlet algorithm uses the central-difference approximation (Chapter 7,
“Differentiation & Searching”) for the second derivative to advance the solutions
by a single time step h for all N particles simultaneously:

Fi[r(t), t] =
d2ri

dt2
� ri(t+h) + ri(t−h) − 2ri(t)

h2 , (16.15)

⇒ ri(t+h) � 2ri(t) − ri(t−h) +h2Fi(t) + O(h4), (16.16)

where we have setm= 1. (Improved algorithms may vary the time step depending
upon the speed of the particle.) Notice that even though the atom–atom force does
not have an explicit time dependence, we include a t dependence in it as a way of
indicating its dependence upon the atoms’ positions at a particular time. Because
this is really an implicit time dependence, energy remains conserved.

Part of the efficiency of the Verlet algorithm (16.16) is that it solves for the position
of each particle without requiring a separate solution for the particle’s velocity.
However, once we have deduced the position for various times, we can use the
central-difference approximation for the first derivative of ri to obtain the velocity:

vi(t) =
dri
dt

� ri(t+h) − ri(t−h)
2h

+ O(h2). (16.17)

Note, finally, that because the Verlet algorithm needs r from two previous steps, it
is not self-starting and so we start it with the forward difference,

r(t= −h) � r(0)−hv(0) +
h2

2
F(0). (16.18)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 432

432 chapter 16

Velocity-Verlet Algorithm: Another version of the Verlet algorithm, which we rec-
ommend because of its increased stability, uses a forward-difference approximation
for the derivative to advance both the position and velocity simultaneously:

ri(t+h) � ri(t) +hvi(t) +
h2

2
Fi(t) + O(h3), (16.19)

vi(t+h) �vi(t) +ha(t) + O(h2) (16.20)

�vi(t) +h

[
Fi(t+h) +Fi(t)

2

]
+ O(h2). (16.21)

Although this algorithm appears to be of lower order than (16.16), the use of
updated positions when calculating velocities, and the subsequent use of these
velocities, make both algorithms of similar precision.

Of interest is that (16.21) approximates the average force during a time step as
[Fi(t+h) +Fi(t)]/2. Updating the velocity is a little tricky because we need the
force at time t+h, which depends on the particle positions at t+h. Consequently,
we must update all the particle positions and forces to t+h before we update any
velocities, while saving the forces at the earlier time for use in (16.21). As soon as
the positions are updated, we impose periodic boundary conditions to ensure that
we have not lost any particles, and then we calculate the forces.

16.3 1-D Implementation and Exercise

On the CD you will find a folder MDanimations that contains a number of 2-D
animations (movies) of solutions to the MD equations. Some frames from theseC D

animations are shown in Figure 16.3. We recommend that you look at them in order
to better visualize what the particles do during an MD simulation. In particular,
these simulations use a potential and temperature that should lead to a solid or
liquid system, and so you should see the particles binding together.

� �
/ / MD. java , Molecular Dyanmics via Lennard−Jones potent ia l , v e l o c i t y Verlet algorithm
i m p o r t j ava . io . ∗ ;
i m p o r t j ava . u t i l . ∗ ;

p u b l i c c l a s s MD {
s t a t i c i n t L , Natom = 8 , Nmax = 5 1 3 ; / / Class var iables
s t a t i c d o u b l e x [ ] = new d o u b l e [Nmax] , fx [ ] [ ] = new d o u b l e [Nmax ] [ 2 ] ;

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) throws IOException , FileNotFoundException {
i n t t1 , t2 , i , Itemp , t , Nstep =5000 , Nprint =100 , Ndim=1;
d o u b l e h = 0 . 0 0 0 4 , hover2 , PE , KE, T , T i n i t = 1 0 . 0 , vx [ ] = new d o u b l e [Nmax ] ;
L = ( i n t ) Math . pow( 1 . ∗Natom , 1 ./Ndim) ;
Natom = ( i n t ) Math . pow( L , Ndim) ;
System . out . p r i n t l n ("Natom = "+Natom+" L= "+L+"" ) ;
i = −1;
f o r ( i n t i x = 0 ; i x <= L−1; i x ++ ) { / / Set up l a t t i c e of side L

i = i +1;
x [ i ] = i x ; / / I n i t i a l v e l o c i t i e s
vx [ i ] =(Math . random ( ) +Math . random ( ) +Math . random ( ) +Math . random ( ) +Math . random ( )

+Math . random ( ) +Math . random ( ) +Math . random ( ) +Math . random ( ) +

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 433

simulating matter with molecular dynamics 433

Math . random ( ) +Math . random ( ) +Math . random ( ) ) /12. −0.5 ;
vx [ i ] = vx [ i ]∗Math . s q r t ( T i n i t ) ; / / Scale v with temperature
System . out . p r i n t l n ("in i t vx = "+vx [ i ] ) ;

}
t 1 = 0 ; t2 = 1 ; / / t , t +h indices
hover2 = h / 2 . ;
t = 0 ;
KE = 0 . 0 ; PE = 0 . 0 ; / / i n i t i a l KE & PE v
PE = Forces ( t1 , PE ) ;
f o r ( i = 0 ; i <= Natom−1; i ++ ) KE=KE+( vx [ i ]∗vx [ i ] ) /2 ;
System . out . p r i n t l n ( t +" PE= "+PE+" KE = "+KE+" PE+KE = "+(PE+KE) ) ;
f o r ( t = 1 ; t < Nstep ; t ++ ) {

f o r ( i = 0 ; i <= Natom−1; i ++ ) { / / Main loop
PE = Forces ( t1 , PE ) ; / / Velocity Verlet
x [ i ] = x [ i ] + h∗( vx [ i ] + hover2∗ fx [ i ] [ t 1 ] ) ;
i f ( x [ i ] <= 0 . ) x [ i ] = x [ i ] + L ; / / PBC
i f ( x [ i ] >= L) x [ i ] = x [ i ] − L ;

}
PE = Forces ( t2 , PE ) ;
KE = 0 . ;
f o r ( i = 0 ; i <= Natom−1; i ++) {

vx [ i ] = vx [ i ] + hover2 ∗( fx [ i ] [ t 1 ] + fx [ i ] [ t 2 ] ) ;
KE = KE + ( vx [ i ]∗vx [ i ] ) /2 ;

}
T = 2 .∗KE / ( 3 . ∗Natom) ;
i f ( t%Nprint ==0) System . out . p r i n t l n ( t +" PE ="+PE+" KE = "+KE+" PE+KE = "+(PE+KE) ) ;
Itemp = t1 ; / / Time t and t +h
t 1 = t2 ; t2 = Itemp ;
}

}
/ / Force = c l a s s var iable

p u b l i c s t a t i c d o u b l e Forces ( i n t t , d o u b l e PE ) {
i n t i , j ;
d o u b l e f i j x , r2 , invr2 =0 , dx , r2cut = 9 . ;
PE = 0 . ; / / I n i t i a l i z e
f o r ( i =0 ; i <= Natom−1; i ++) { fx [ i ] [ t ] = 0 . ; }
f o r ( i = 0 ; i <= Natom−2; i ++) {

f o r ( j = i +1; j <=Natom−1; j ++) {
dx = x [ i ]−x [ j ] ;
i f ( Math . abs ( dx ) > 0.50∗L) { dx = dx − s ign ( L , dx ) ; } / / PBC
r2 = dx∗dx ;
i f ( r2 < r2cut ) { / / Cut off

i f ( r2 == 0 . ) r2 = 0 . 0 0 0 1 ;
invr2 = 1./ r2 ;
f i j x = 4 8 .∗ ( Math . pow( invr2 , 3 ) −0.5)∗Math . pow( invr2 , 3 ) ;
f i j x = f i j x ∗ invr2∗dx ;
fx [ i ] [ t ] = fx [ i ] [ t ] + f i j x ;
fx [ j ] [ t ] = fx [ j ] [ t ] − f i j x ;
PE = PE + 4∗Math . pow( invr2 , 3 ) ∗( Math . pow( invr2 , 3 ) − 1 . ) ;

}
}

}
r e t u r n PE ;
}

p u b l i c s t a t i c d o u b l e s ign ( d o u b l e a , d o u b l e b )
{ i f ( b >= 0 . ) r e t u r n Math . abs ( a ) ; e l s e r e t u r n −Math . abs ( a ) ; }

}
�

Listing 16.1 MD.java performs a 1-D MD simulation with too small a number of large time

steps for just a few particles. To be realistic the user should change the parameters and the

number of random numbers added to form the Gaussian distribution.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 434

434 chapter 16

1.50E–19

1.00E–19

5.00E–20

0.00E+00

–5.00E–20

–1.00E–19

–1.50E–19

E
n

er
g

y 
(J

)

–2.00E–19

Time (sec)  (5000 steps)

Energy vs Time
for 36 particles in a 2D box, initialy at 150 K

2E–12 4E–12 6E–12 8E–12 1E–11 1.2E–110
2E–13 4E–13 6E–13 8E–13 1E–12 1.2E–120 1.4E–12

E
n

er
g

y 
(J

)

8.00E–19

6.00E–19

4.00E–19

2.00E–19

0.00E+00

–2.00E–19

–4.00E–19

–6.00E–19

–8.00E–19

–1.00E–18

–1.20E–18

–1.40E–18

Energy vs Time
for 300 particles 2D box, initialy at 150 k

Time (sec)  (568 steps)

Figure 16.5 The kinetic, potential, and total energy for a 2-D MD simulation with 36 particles

(left ), and 300 particles (right ), both with an initial temperature of 150 K. The potential energy

is negative, the kinetic energy is positive, and the total energy is seen to be conserved (flat).

The program MD.java implements an MD simulation in 1-D using the velocity–
Verlet algorithm. Use it as a model and do the following:

1. Ensure that you can run and visualize the 1-D simulation.
2. Place the particles initially at the sites of a face-centered-cubic (FCC) lattice,

the equilibrium configuration for a Lennard-Jones system at low temperature.
The particles will find their own ways from there. An FCC lattice has four
quarters of a particle per unit cell, so an L3 box with a lattice constant L/N
contains (parts of) 4N3 = 32, 108, 256, . . . particles.

3. To save computing time, assign initial particle velocities corresponding to a
fixed-temperature Maxwellian distribution.

4. Print the code and indicate on it which integration algorithm is used, where
the periodic boundary conditions are imposed, where the nearest image
interaction is evaluated, and where the potential is cut off.

5. A typical time step is ∆t= 10−14 s, which in our natural units equals 0.004.
You probably will need to make 104–105 such steps to equilibrate, which cor-
responds to a total time of only 10−9 s (a lot can happen to a speedy molecule
in 10−9 s). Choose the largest time step that provides stability and gives results
similar to Figure 16.5.

6. The PE and KE change with time as the system equilibrates. Even after that,
there will be fluctuations since this is a dynamic system. Evaluate the time-
averaged energies for an equilibrated system.

7. Compare the final temperature of your system to the initial temperature.
Change the initial temperature and look for a simple relation between it and
the final temperature (Figure 16.6).

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 435

simulating matter with molecular dynamics 435

0

100

200

300

F
in

al
 T

em
pe

ra
tu

re
 (

K
)

200 E-19100 E-19

Initial KE(j)

P

1

2

0
0 0.1 0.2 0.3

T

Figure 16.6 Left: The temperature after equilibration as a function of initial kinetic energy for

a simulation with 36 particles in two dimensions. Right: The pressure versus temperature for a

simulation with several hundred particles. (Courtesy of J. Wetzel.)

16.4 Trajectory Analysis

1. Modify your program so that it outputs the coordinates and velocities of some
particles throughout the simulation. Note that you do not need as many time
steps to follow a trajectory as you do to compute it and so you may want to
use the mod operator %100 for output.

2. Start your assessment with a 1-D simulation at zero temperature. The particles
should remain in place without vibration. Increase the temperature and note
how the particles begin to move about and interact.

3. Try starting off all your particles at the minima in the Lennard-Jones potential.
The particles should remain bound within the potential until you raise the
temperature.

4. Repeat the simulations for a 2-D system. The trajectories should resemble
billiard ball–like collisions.

5. Create an animation of the time-dependent locations of several particles. C D

6. Calculate and plot as a function of temperature the root-mean-square
displacement of molecules:

Rrms =
√〈

|r(t+ ∆t) − r(t)|2
〉
, (16.22)

where the average is over all the particles in the box. Verify that for a liquid
R2

rms grows linearly with time.
7. Test your system for time-reversal invariance. Stop it at a fixed time, reverse

all the velocities, and see if the system retraces its trajectories back to the
initial configuration.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 436

436 chapter 16

Figure 16.7 A simulation of a projectile shot into a group of particles. (Courtesy of J. Wetzel.)

16.5 Quiz

1. We wish to make an MD simulation by hand of the positions of particles 1
and 2 that are in a 1-D box of side 8. For an origin located at the center of the
box, the particles are initially at rest and at locations xi(0) = −x2(0) = 1. The
particles are subject to the force

F (x) =




10, for |x1 −x2| ≤ 1,

−1, for 1 ≤ |x1 −x2| ≤ 3,

0, otherwise.

(16.23)

Use a simple algorithm to determine the positions of the particles up until the
time they leave the box. Make sure to apply periodic boundary conditions.
Hint: Since the configuration is symmetric, you know the location of particle 2
by symmetry and do not need to solve for it. We suggest the Verlet algorithm
(no velocities) with a forward-difference algorithm to initialize it. To speed
things along, use a time step of h= 1/

√
2.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 390

15

Thermodynamic Simulations &
Feynman Quantum Path Integration

In Unit I of this chapter we describe how magnetic materials are simulated by using
the Metropolis algorithm to solve the Ising model. This extends the techniques studied
in Chapter 5, “Monte Carlo Simulations,” to thermodynamics. Not only do thermo-
dynamic simulations have important practical applications, but they also give us
insight into what is “dynamic” in thermodynamics. In Unit II we describe a new
Monte Carlo algorithm known as Wang–Landau sampling that in the last few years
has shown itself to be far more efficient than the 50-year-old Metropolis algorithm.
Wang–Landau sampling is an active subject in present research, and it is nice to
see it fitting well into an elementary textbook. Unit III applies the Metropolis algo-
rithm to Feynman’s path integral formulation of quantum mechanics [F&H 65]. The
theory, while the most advanced to be found in this book, forms the basis for field-
theoretic calculations of quantum chromodynamics, some of the most fundamental
and most time-consuming computations in existence. Basic discussions can be found
in [Mann 83, MacK 85, M&N 87], with a recent review in [Potv 93].

15.1 Unit I. Magnets via the Metropolis Algorithm

Ferromagnets contain finite-size domains in which the spins of all the atoms point in
the same direction. When an external magnetic field is applied to these materials,
the different domains align and the materials become “magnetized.” Yet as the
temperature is raised, the total magnetism decreases, and at the Curie temperature
the system goes through a phase transition beyond which all magnetization vanishes.
Your problem is to explain the thermal behavior of ferromagnets.

15.2 An Ising Chain (Model)

As our model we consider N magnetic dipoles fixed in place on the links of a
linear chain (Figure 15.1). (It is a straightforward generalization to handle 2-D and
3-D lattices.) Because the particles are fixed, their positions and momenta are not
dynamic variables, and we need worry only about their spins. We assume that the
particle at site i has spin si, which is either up or down:

si ≡ sz,i = ±1
2
. (15.1)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 391

thermodynamic simulations & feynman quantum path integration 391

E = + J

E = – J

Figure 15.1 A 1-D lattice of N spins. The interaction energy V = ±J between

nearest-neighbor pairs is shown for aligned and opposing spins.

Each configuration of the N particles is described by a quantum state vector

|αj〉 = |s1, s2, . . . , sN 〉 =
{

±1
2
, ±1

2
, . . .

}
, j = 1, . . . , 2N . (15.2)

Because the spin of each particle can assume any one of two values, there are 2N

different possible states for theN particles in the system. Since fixed particles cannot
be interchanged, we do not need to concern ourselves with the symmetry of the
wave function.

The energy of the system arises from the interaction of the spins with each other
and with the external magnetic fieldB. We know from quantum mechanics that an
electron’s spin and magnetic moment are proportional to each other, so a magnetic
dipole–dipole interaction is equivalent to a spin–spin interaction. We assume that
each dipole interacts with the external magnetic field and with its nearest neighbor
through the potential:

Vi = −Jsi · si+1 − gµb si · B. (15.3)

Here the constant J is called the exchange energy and is a measure of the strength
of the spin–spin interaction. The constant g is the gyromagnetic ratio, that is, the
proportionality constant between a particle’s angular momentum and magnetic
moment. The constant µb = eh̄/(2mec) is the Bohr magneton, the basic measure for
magnetic moments.

Even for small numbers of particles, the 2N possible spin configurations gets
to be very large (220 > 106), and it is expensive for the computer to examine them
all. Realistic samples with ∼1023 particles are beyond imagination. Consequently,
statistical approaches are usually assumed, even for moderate values of N . Just

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 392

392 chapter 15

how large N must be for this to be accurate is one of the things we want you to
explore with your simulations.

The energy of this system in state αk is the expectation value of the sum of the
potential V over the spins of the particles:

Eαk
=
〈
αk

∣∣∣∑
i

Vi

∣∣∣αk

〉
= −J

N−1∑
i=1

sisi+1 −Bµb

N∑
i=1

si. (15.4)

An apparent paradox in the Ising model occurs when we turn off the external mag-
netic field and thereby eliminate a preferred direction in space. This means that the
average magnetization should vanish even though the lowest energy state would
have all spins aligned. The answer to this paradox is that the system with B = 0 is
unstable. Even if all the spins are aligned, there is nothing to stop their spontaneous
reversal. Indeed, natural magnetic materials have multiple finite domains with all
the spins aligned, but with the different domains pointing in different directions.
The instabilities in which domains change direction are called Bloch-wall transi-
tions. For simplicity we assume B = 0, which means that the spins interact just
with each other. However, be cognizant of the fact that this means there is no
preferred direction in space, and so you may have to be careful how you cal-
culate observables. For example, you may need to take an absolute value of the
total spin when calculating the magnetization, that is, to calculate 〈|∑i si|〉 rather
than 〈∑i si〉.

The equilibrium alignment of the spins depends critically on the sign of the
exchange energy J . If J > 0, the lowest energy state will tend to have neighboring
spins aligned. If the temperature is low enough, the ground state will be a ferro-
magnet with all the spins aligned. If J < 0, the lowest energy state will tend to have
neighbors with opposite spins. If the temperature is low enough, the ground state
will be a antiferromagnet with alternating spins.

The simple 1-D Ising model has its limitations. Although the model is accu-
rate in describing a system in thermal equilibrium, it is not accurate in describing
the approach to thermal equilibrium (nonequilibrium thermodynamics is a difficult
subject for which the theory is not complete). Second, as part of our algorithm
we postulate that only one spin is flipped at a time, while real magnetic materials
tend to flip many spins at a time. Other limitations are straightforward to improve,
for example, the addition of longer-range interactions, the motion of the centers,
higher-multiplicity spin states, and two and three dimensions.

A fascinating aspect of magnetic materials is the existence of a critical tem-
perature, the Curie temperature, above which the gross magnetization essentially
vanishes. Below the Curie temperature the quantum state of the material has
long-range order extending over macroscopic dimensions; above the Curie tem-
perature there is only short-range order extending over atomic dimensions. Even
though the 1-D Ising model predicts realistic temperature dependences for the
thermodynamic quantities, the model is too simple to support a phase transition.
However, the 2-D and 3-D Ising models do support the Curie temperature phase
transition.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 393

thermodynamic simulations & feynman quantum path integration 393

15.3 Statistical Mechanics (Theory)

Statistical mechanics starts with the elementary interactions among a system’s par-
ticles and constructs the macroscopic thermodynamic properties such as specific
heats. The essential assumption is that all configurations of the system consistent
with the constraints are possible. In some simulations, such as the molecular
dynamics ones in Chapter 16, “Simulating Matter with Molecular Dynamics,” the
problem is set up such that the energy of the system is fixed. The states of this type
of system are described by what is called a microcanonical ensemble. In contrast, for
the thermodynamic simulations we study in this chapter, the temperature, volume,
and number of particles remain fixed, and so we have what is called a canonical
ensemble.

When we say that an object is at temperature T , we mean that the object’s atoms
are in thermodynamic equilibrium at temperature T such that each atom has an
average energy proportional to T . Although this may be an equilibrium state, it is a
dynamic one in which the object’s energy fluctuates as it exchanges energy with its
environment (it is thermodynamics after all). Indeed, one of the most illuminating
aspects of the simulation we shall develop is its visualization of the continual and
random interchange of energy that occurs at equilibrium.

The energy Eαj of state αj in a canonical ensemble is not constant but is
distributed with probabilities P (αj) given by the Boltzmann distribution:

P(Eαj , T ) =
e−Eαj

/kBT

Z(T )
, Z(T ) =

∑
αj

e−Eαj
/kBT . (15.5)

Here k is Boltzmann’s constant, T is the temperature, and Z(T ) is the partition
function, a weighted sum over states. Note that the sums in (15.5) are over the
individual states or configurations of the system. Another formulation, such as the
Wang–Landau algorithm in Unit II, sums over the energies of the states of the system
and includes a density-of-states factor g(Ei) to account for degenerate states with
the same energy. While the present sum over states is a simpler way to express
the problem (one less function), we shall see that the sum over energies is more
efficient numerically. In fact, in this unit we even ignore the partition functionZ(T )
because it cancels out when dealing with the ratio of probabilities.

15.3.1 Analytic Solutions

For very large numbers of particles, the thermodynamic properties of the 1-D Ising
model can be solved analytically and determine [P&B 94]

U = 〈E〉 (15.6)

U

J
= −N tanh

J

kBT
= −N eJ/kBT − e−J/kBT

eJ/kBT + e−J/kBT
=



N, kBT → 0,

0, kBT → ∞.
(15.7)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 394

394 chapter 15

The analytic results for the specific heat per particle and the magnetization are

C(kBT ) =
1
N

dU

dT
=

(J/kBT )2

cosh2(J/kBT )
(15.8)

M(kBT ) =
NeJ/kBT sinh(B/kBT )√

e2J/kBT sinh2(B/kBT ) + e−2J/kBT

. (15.9)

The 2-D Ising model has an analytic solution, but it was not easy to derive [Yang 52,
Huang 87]. Whereas the internal energy and heat capacity are expressed in terms of
elliptic integrals, the spontaneous magnetization per particle has the rather simple
form

M(T ) =




0, T > Tc

(1+z2)1/4(1−6z2+z4)1/8
√

1−z2 , T < Tc,
(15.10)

kTc � 2.269185J, z = e−2J/kBT , (15.11)

where the temperature is measured in units of the Curie temperature Tc.

15.4 Metropolis Algorithm

In trying to devise an algorithm that simulates thermal equilibrium, it is important
to understand that the Boltzmann distribution (15.5) does not require a system to
remain in the state of lowest energy but says that it is less likely for the system to
be found in a higher-energy state than in a lower-energy one. Of course, as T → 0,
only the lowest energy state will be populated. For finite temperatures we expect
the energy to fluctuate by approximately kBT about the equilibrium value.

In their simulation of neutron transmission through matter, Metropolis,
Rosenbluth, Teller, and Teller [Metp 53] invented an algorithm to improve the
Monte Carlo calculation of averages. This Metropolis algorithm is now a cornerstone
of computational physics. The sequence of configurations it produces (a Markov
chain) accurately simulates the fluctuations that occur during thermal equilibrium.
The algorithm randomly changes the individual spins such that, on the average,
the probability of a configuration occurring follows a Boltzmann distribution. (We
do not find the proof of this trivial or particularly illuminating.)

The Metropolis algorithm is a combination of the variance reduction technique
discussed in §6.7.1 and the von Neumann rejection technique discussed in §6.7.3.
There we showed how to make Monte Carlo integration more efficient by sampling
random points predominantly where the integrand is large and how to generate
random points with an arbitrary probability distribution. Now we would like to
have spins flip randomly, have a system that can reach any energy in a finite number

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 395

thermodynamic simulations & feynman quantum path integration 395

of steps (ergodic sampling), have a distribution of energies described by a Boltz-
mann distribution, yet have systems that equilibrate quickly enough to compute
in reasonable times.

The Metropolis algorithm is implemented via a number of steps. We start with
a fixed temperature and an initial spin configuration and apply the algorithm
until a thermal equilibrium is reached (equilibration). Continued application of
the algorithm generates the statistical fluctuations about equilibrium from which
we deduce the thermodynamic quantities such as the magnetization M(T ). Then
the temperature is changed, and the whole process is repeated in order to deduce
the T dependence of the thermodynamic quantities. The accuracy of the deduced
temperature dependences provides convincing evidence for the validity of the algo-
rithm. Because the possible 2N configurations of N particles can be a very large
number, the amount of computer time needed can be very long. Typically, a small
number of iterations �10N is adequate for equilibration.

The explicit steps of the Metropolis algorithm are as follows.

1. Start with an arbitrary spin configuration αk = {s1, s2, . . . , sN}.
2. Generate a trial configuration αk+1 by

a. picking a particle i randomly and
b. flipping its spin.1

3. Calculate the energy Eαtr of the trial configuration.
4. If Eαtr ≤ Eαk

, accept the trial by setting αk+1 = αtr.
5. If Eαtr >Eαk

, accept with relative probability R = exp(−∆E/kBT ):
a. Choose a uniform random number 0 ≤ ri ≤ 1.

b. Set αk+1 =



αtr, if R ≥ rj (accept),

αk, if R< rj (reject).

The heart of this algorithm is its generation of a random spin configurationαj (15.2)
with probability

P(Eαj
, T ) ∝ e−Eαj

/kBT . (15.12)

The technique is a variation of von Neumann rejection (stone throwing in § 6.5) in
which a random trial configuration is either accepted or rejected depending upon
the value of the Boltzmann factor. Explicitly, the ratio of probabilities for a trial
configuration of energy Et to that of an initial configuration of energy Ei is

R =
Ptr

Pi
= e−∆E/kBT , ∆E = Eαtr −Eαi

. (15.13)

1 Large-scale, practical computations make a full sweep in which every spin is updated once
and then use this as the new trial configuration. This is found to be more efficient and
useful in removing some autocorrelations. (We thank G. Schneider for this observation.)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 396

396 chapter 15

Figure 15.2 A 1-D lattice of 100 spins aligned along the ordinate. Up spins are indicated by

circles, and down spins by blank spaces. The iteration number (“time”) dependence of the

spins is shown along the abscissa. Even though the system starts with all up spins (a “cold”

start), the system is seen to form domains as it equilibrates.

If the trial configuration has a lower energy (∆E ≤ 0), the relative probability will
be greater than 1 and we will accept the trial configuration as the new initial con-
figuration without further ado. However, if the trial configuration has a higher
energy (∆E > 0), we will not reject it out of hand but instead accept it with relative
probability R = exp(−∆E/kBT )< 1. To accept a configuration with a probabil-
ity, we pick a uniform random number between 0 and 1, and if the probability
is greater than this number, we accept the trial configuration; if the probability is
smaller than the chosen random number, we reject it. (You can remember which
way this goes by letting Eαtr → ∞, in which case P → 0 and nothing is accepted.)
When the trial configuration is rejected, the next configuration is identical to the
preceding one.

How do you start? One possibility is to start with random values of the spins
(a “hot” start). Another possibility (Figure 15.2) is a “cold” start in which you
start with all spins parallel (J > 0) or antiparallel (J < 0). In general, one tries to
remove the importance of the starting configuration by letting the calculation run a
while (�10N rearrangements) before calculating the equilibrium thermodynamic
quantities. You should get similar results for hot, cold, or arbitrary starts, and by
taking their average you remove some of the statistical fluctuations.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 397

thermodynamic simulations & feynman quantum path integration 397

15.4.1 Metropolis Algorithm Implementation

1. Write a program that implements the Metropolis algorithm, that is, that
produces a new configuration αk+1 from the present configuration αk.
(Alternatively, use the program Ising.java shown in Listing 15.1.)

2. Make the key data structure in your program an array s[N] containing the
values of the spins si. For debugging, print out + and − to give the spin at
each lattice point and examine the pattern for different trial numbers.

3. The value for the exchange energy J fixes the scale for energy. Keep it fixed
at J = 1. (You may also wish to study antiferromagnets with J = −1, but first
examine ferromagnets whose domains are easier to understand.)

4. The thermal energy kBT is in units of J and is the independent variable. Use
kBT = 1 for debugging.

5. Use periodic boundary conditions on your chain to minimize end effects. This
means that the chain is a circle with the first and last spins adjacent to each
other.

6. Try N � 20 for debugging, and larger values for production runs.
7. Use the printout to check that the system equilibrates for

a. a totally ordered initial configuration (cold start); your simulation should
resemble Figure 15.2.

b. a random initial configuration (hot start).

15.4.2 Equilibration, Thermodynamic Properties (Assessment)

1. Watch a chain of N atoms attain thermal equilibrium when in contact with a
heat bath. At high temperatures, or for small numbers of atoms, you should
see large fluctuations, while at lower temperatures you should see smaller
fluctuations.

2. Look for evidence of instabilities in which there is a spontaneous flipping of
a large number of spins. This becomes more likely for larger kBT values.

3. Note how at thermal equilibrium the system is still quite dynamic, with
spins flipping all the time. It is this energy exchange that determines the
thermodynamic properties.

4. You may well find that simulations at small kBT (say, kBT � 0.1 forN = 200)
are slow to equilibrate. Higher kBT values equilibrate faster yet have larger
fluctuations.

5. Observe the formation of domains and the effect they have on the total energy.
Regardless of the direction of spin within a domain, the atom–atom interac-
tions are attractive and so contribute negative amounts to the energy of the
system when aligned. However, the ↑↓ or ↓↑ interactions between domains
contribute positive energy. Therefore you should expect a more negative
energy at lower temperatures where there are larger and fewer domains.

6. Make a graph of average domain size versus temperature.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 398

398 chapter 15

� �
/ / Ising . java : 1−D Ising model with Metropolis algorithm
i m p o r t j ava . io . ∗ ; / / Location of PrintWriter
i m p o r t j ava . u t i l . ∗ ; / / Location of Random

p u b l i c c l a s s I s i n g {
p u b l i c s t a t i c i n t N = 1 0 0 0 ; / / Number of atoms
p u b l i c s t a t i c d o u b l e B = 1 . , mu = . 3 3 , J = . 2 0 , k = 1 . , T = 1 0 0 0 0 0 0 0 0 . ;

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) throws IOException , FileNotFoundException {
Random randnum = new Random( 5 0 0 7 6 7 ) ; / / Seed random generator
Pr i n t W r i t e r q = new Pr i n t W r i t e r ( new FileOutputStream ("ising . dat" ) , f a l s e ) ;
i n t i , j , M = 5 0 0 0 ; / / Number of spin f l i p s
d o u b l e [ ] s t a t e = new d o u b l e [N] ; d o u b l e [ ] t e s t = s t a t e ;
d o u b l e ES = energy ( s t a t e ) , p , ET ; / / State , t e s t ’ s energy
f o r ( i =0 ; i < N ; i ++ ) s t a t e [ i ] = −1.; / / Set i n i t i a l s t a t e
f o r ( j =1 ; j <= M ; j ++ ) { / / Change s t a t e and t e s t

t e s t = s t a t e ;
i = ( i n t ) ( randnum . nextDouble ( ) ∗( d o u b l e )N) ; / / Fl ip random atom
t e s t [ i ] ∗= −1.;
ET = energy ( t e s t ) ;
p = Math . exp ( ( ES−ET ) /(k∗T ) ) ;
i f ( p >= randnum . nextDouble ( ) ) { s t a t e = t e s t ; ES = ET ; } / / Test t r i a l
q . p r i n t l n ( ES ) ; / / Output energy to f i l e

}
q . c l o s e ( ) ;

}

p u b l i c s t a t i c d o u b l e energy ( d o u b l e [ ] S ) { / / Method to c a l c energy
d o u b l e FirstTerm = 0 . , SecondTerm = 0 . ;
i n t i ; / / Sum of energy
f o r ( i =0 ; i <= (N−2) ; i ++ ) FirstTerm += S [ i ]∗S [ i + 1 ] ;
FirstTerm ∗= −J ;
f o r ( i =0 ; i <= (N−1) ; i ++ ) SecondTerm += S [ i ] ;
SecondTerm ∗= −B∗mu;
r e t u r n ( FirstTerm + SecondTerm ) ;

} }
�

Listing 15.1 Ising.java implements the Metropolis algorithm for a 1-D Ising chain.

Thermodynamic Properties: For a given spin configuration αj , the energy and
magnetization are given by

Eαj = −J
N−1∑
i=1

sisi+1, Mj =
N∑

i=1

si. (15.14)

The internal energy U(T ) is just the average value of the energy,

U(T ) = 〈E〉, (15.15)

where the average is taken over a system in equilibrium. At high temperatures
we expect a random assortment of spins and so a vanishing magnetization. At
low temperatures when all the spins are aligned, we expect M to approach N/2.
Although the specific heat can be computed from the elementary definition

C =
1
N

dU

dT
, (15.16)

the numerical differentiation may be inaccurate since U has statistical fluctuations.
A better way to calculate the specific heat is to first calculate the fluctuations in

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 399

thermodynamic simulations & feynman quantum path integration 399

kT kT

–0.8

–0.4

0.0
0 2 4 0 2 4

0.1

0.2

0.3

0

1
EC

M

0.5

Figure 15.3 Simulation results for the energy, specific heat, and magnetization of a 1-D lattice

of 100 spins as a function of temperature.

energy occurring during M trials and then determine the specific heat from the
fluctuations:

U2 =
1
M

M∑
t=1

(Et)2, (15.17)

C =
1
N2

U2 − (U)2

kBT 2 =
1
N2

〈E2〉 − 〈E〉2
kBT 2 . (15.18)

1. Extend your program to calculate the internal energyU and the magnetization
M for the chain. Do not recalculate entire sums when only one spin changes.

2. Make sure to wait for your system to equilibrate before you calculate thermo-
dynamic quantities. (You can check that U is fluctuating about its average.)
Your results should resemble Figure 15.3.

3. Reduce statistical fluctuations by running the simulation a number of times
with different seeds and taking the average of the results.

4. The simulations you run for smallN may be realistic but may not agree with
statistical mechanics, which assumesN � ∞ (you may assume thatN � 2000
is close to infinity). Check that agreement with the analytic results for the
thermodynamic limit is better for large N than small N .

5. Check that the simulated thermodynamic quantities are independent of initial
conditions (within statistical uncertainties). In practice, your cold and hot start
results should agree.

6. Make a plot of the internal energy U as a function of kBT and compare it
to the analytic result (15.7).

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 400

400 chapter 15

7. Make a plot of the magnetization M as a function of kBT and compare it to
the analytic result. Does this agree with how you expect a heated magnet to
behave?

8. Compute the energy fluctuations U2 (15.17) and the specific heat C (15.18).
Compare the simulated specific heat to the analytic result (15.8).

15.4.3 Beyond Nearest Neighbors and 1-D (Exploration)

• Extend the model so that the spin–spin interaction (15.3) extends to next-
nearest neighbors as well as nearest neighbors. For the ferromagnetic case,
this should lead to more binding and less fluctuation because we have
increased the couplings among spins and thus increased the thermal inertia.

• Extend the model so that the ferromagnetic spin–spin interaction (15.3)
extends to nearest neighbors in two dimensions, and for the truly ambitious,
three dimensions (the code Ising3D.java is available for instructors). Con-
tinue using periodic boundary conditions and keep the number of particles
small, at least to start [G,T&C 06].

1. Form a square lattice and place
√
N spins on each side.

2. Examine the mean energy and magnetization as the system equilibrates.
3. Is the temperature dependence of the average energy qualitatively different

from that of the 1-D model?
4. Identify domains in the printout of spin configurations for small N .
5. Once your system appears to be behaving properly, calculate the heat capacity

and magnetization of the 2-D Ising model with the same technique used for
the 1-D model. Use a total number of particles of 100 ≤N ≤ 2000.

6. Look for a phase transition from ordered to unordered configurations by
examining the heat capacity and magnetization as functions of tempera-
ture. The former should diverge, while the latter should vanish at the phase
transition (Figure 15.4).

Exercise: Three fixed spin- 1
2 particles interact with each other at temperature

T = 1/kb such that the energy of the system is

E = −(s1 s2 + s2 s3).

The system starts in the configuration ↑↓↑. Do a simulation by hand that uses
the Metropolis algorithm and the series of random numbers 0.5, 0.1, 0.9, 0.3 to
determine the results of just two thermal fluctuations of these three spins.

15.5 Unit II. Magnets via Wang–Landau Sampling �
In Unit I we used a Boltzmann distribution to simulate the thermal properties of
an Ising model. There we described the probabilities for explicit spin states α with

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 401

thermodynamic simulations & feynman quantum path integration 401

–80000

–40000

40000

0

0 2 4 6 8 10

E

CV

M

kT

2-D Ising
Model

Figure 15.4 The energy, specific heat, and magnetization as a function of temperature for a

2-D lattice with 40,000 spins. The values of C and E have been scaled to fit on the same plot

as M. (Courtesy of J. Wetzel.)

energyEα for a system at temperature T and summed over various configurations.
An equivalent formulation describes the probability that the system will have the
explicit energy E at temperature T :

P(Ei, T ) = g(Ei)
e−Ei/kBT

Z(T )
, Z(T ) =

∑
Ei

g(Ei) e−Ei/kBT . (15.19)

Here kB is Boltzmann’s constant, T is the temperature, g(Ei) is the number of states
of energy Ei (i= 1, . . . ,M ), Z(T ) is the partition function, and the sum is still over
all M states of the system but now with states of the same energy entering just
once owing to g(Ei) accounting for their degeneracy. Because we again apply the
theory to the Ising model with its discrete spin states, the energy also assumes only
discrete values. If the physical system had an energy that varied continuously, then
the number of states in the interval E → E+ dE would be given by g(E) dE and
g(E) would be called the density of states. As a matter of convenience, we call g(Ei)
the density of states even when dealing with discrete systems, although the term
“degeneracy factor” may be more precise.

Even as the Metropolis algorithm has been providing excellent service for more
than 50 years, recent literature shows increasing use of Wang–Landau sampling
(WLS) [WL 04, Clark]. Because WLS determines the density of states and the

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 402

402 chapter 15

associated partition function, it is not a direct substitute for the Metropolis algo-
rithm and its simulation of thermal fluctuations. However, we will see that WLS
provides an equivalent simulation for the Ising model.2 Nevertheless, there are
cases where the Metropolis algorithm can be used but WLS cannot, computa-
tion of the ground-state function of the harmonic oscillator (Unit III) being an
example.

The advantages of WLS is that it requires much shorter simulation times than
the Metropolis algorithm and provides a direct determination of g(Ei). For these
reasons it has shown itself to be particularly useful for first-order phase transitions
where systems spend long times trapped in metastable states, as well as in areas
as diverse as spin systems, fluids, liquid crystals, polymers, and proteins. The time
required for a simulation becomes crucial when large systems are modeled. Even
a spin lattice as small as 8 × 8 has 264 � 1.84× 1019 configurations, and it would be
too expensive to visit them all.

In Unit I we ignored the partition function when employing the Metropolis
algorithm. Now we focus on the partition function Z(T ) and the density-of-states
function g(E). Because g(E) is a function of energy but not temperature, once it
has been deduced, Z(T ) and all thermodynamic quantities can be calculated from
it without having to repeat the simulation for each temperature. For example, the
internal energy and the entropy are calculated directly as

U(T ) def= 〈E〉 =

∑
Ei
Ei g(Ei) e−Ei/kBT∑

Ei
g(Ei) e−Ei/kBT

, (15.20)

S = kBT ln g(Ei). (15.21)

The density of states g(Ei) will be determined by taking the equivalent of a ran-
dom walk in energy space. We flip a randomly chosen spin, record the energy of
the new configuration, and then keep walking by flipping more spins to change
the energy. The table H(Ei) of the number of times each energy Ei is attained is
called the energy histogram (an example of why it is called a histogram is given
in Figure 15.5 on the right). If the walk were continued for a very long time, the
histogram H(Ei) would converge to the density of states g(Ei). Yet with 1019–1030

steps required even for small systems, this direct approach is unrealistically inef-
ficient because the walk would rarely ever get away from the most probable
energies.

Clever idea number 1 behind the Wang–Landau algorithm is to explore more of
the energy space by increasing the likelihood of walking into less probable configu-
rations. This is done by increasing the acceptance of less likely configurations while
simultaneously decreasing the acceptance of more likely ones. In other words, we
want to accept more states for which the density g(Ei) is small and reject more
states for which g(Ei) is large (fret not these words, the equations are simple).
To accomplish this trick, we accept a new energy Ei with a probability inversely

2 We thank Oscar A. Restrepo of the Universidad de Antioquia for letting us use some of his
material here.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 403

thermodynamic simulations & feynman quantum path integration 403

 0

 

 10

 20

 30

 40

-2 -1
 

0
 

1
 

2

lo
g 

g(
E

)

E/N

 0

 4000

 8000

12000

–2 –1
 

0
 

1
 

2

H
(E

)

E/N

Figure 15.5 Left: Logarithm of the density of states log g(E) ∝ S versus the energy per

particle for a 2-D Ising model on an 8 × 8 lattice. Right: The histogram H(E) showing the

number of states visited as a function of the energy per particle. The aim of WLS is to make

this function flat.

proportional to the (initially unknown) density of states,

P(Ei) =
1

g(Ei)
, (15.22)

and then build up a histogram of visited states via a random walk.
The problem with clever idea number 1 is that g(Ei) is unknown. WLS’s clever

idea 2 is to determine the unknown g(Ei) simultaneously with the construction
of the random walk. This is accomplished by improving the value of g(Ei) via
the multiplication g(Ei) → f g(Ei), where f > 1 is an empirical factor. When this
works, the resulting histogram H(Ei) becomes “flatter” because making the small
g(Ei) values larger makes it more likely to reach states with small g(Ei) values. As
the histogram gets flatter, we keep decreasing the multiplicative factor f until it is
satisfactory close to 1. At that point we have a flat histogram and a determination
of g(Ei).

At this point you may be asking yourself, “Why does a flat histogram mean
that we have determined g(Ei)?” Flat means that all energies are visited equally,
in contrast to the peaked histogram that would be obtained normally without the
1/g(Ei) weighting factor. Thus, if by including this weighting factor we produce
a flat histogram, then we have perfectly counteracted the actual peaking in g(Ei),
which means that we have arrived at the correct g(Ei).

15.6 Wang–Landau Sampling

The steps in WLS are similar to those in the Metropolis algorithm, but now with
use of the density-of-states function g(Ei) rather than a Boltzmann factor:

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 404

404 chapter 15

1. Start with an arbitrary spin configuration αk = {s1, s2, . . . , sN} and with
arbitrary values for the density of states g(Ei) = 1, i= 1, . . . ,M , where
M = 2N is the number of states of the system.

2. Generate a trial configuration αk+1 by
a. picking a particle i randomly and
b. flipping i’s spin.

3. Calculate the energy Eαtr of the trial configuration.
4. If g(Eαtr) ≤ g(Eαk

), accept the trial, that is, set αk+1 = αtr.
5. If g(Eαtr)> g(Eαk

), accept the trial with probability P = g(Eαk
)/(g(Eαtr):

a. choose a uniform random number 0 ≤ ri ≤ 1.

b. set αk+1 =

{
αtr, if P ≥ rj (accept),
αk, if P < rj (reject).

This acceptance rule can be expressed succinctly as

P(Eαk
→ Eαtr) = min

[
1,
g(Eαk

)
g(Eαtr)

]
, (15.23)

which manifestly always accepts low-density (improbable) states.
6. One we have a new state, we modify the current density of states g(Ei) via

the multiplicative factor f :

g(Eαk+1) → f g(Eαk+1), (15.24)

and add 1 to the bin in the histogram corresponding to the new energy:

H(Eαk+1) →H(Eαk+1) + 1. (15.25)

7. The value of the multiplier f is empirical. We start with Euler’s number
f = e= 2.71828, which appears to strike a good balance between very large
numbers of small steps (small f ) and too rapid a set of jumps through energy
space (large f ). Because the entropy S = kB ln g(Ei) → kB [ln g(Ei) + ln f ],
(15.24) corresponds to a uniform increase by kB in entropy.

8. Even with reasonable values for f , the repeated multiplications in (15.24)
lead to exponential growth in the magnitude of g. This may cause floating-
point overflows and a concordant loss of information [in the end, the
magnitude of g(Ei) does not matter since the function is normalized]. These
overflows are avoided by working with logarithms of the function values,
in which case the update of the density of states (15.24) becomes

ln g(Ei) → ln g(Ei) + ln f. (15.26)

9. The difficulty with storing ln g(Ei) is that we need the ratio of g(Ei) values
to calculate the probability in (15.23). This is circumvented by employing

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 405

thermodynamic simulations & feynman quantum path integration 405

the identity x= exp(ln x) to express the ratio as

g(Eαk
)

g(Eαtr)
= exp

[
ln
g(Eαk

)
g(Eαtr)

]
= exp [ln g(Eαk

)]− exp
[
ln g(Eαtr)

]
. (15.27)

In turn, g(Ek) = f × g(Ek) is modified to ln g(Ek) → ln g(Ek) + ln f .
10. The random walk in Ei continues until a flat histogram of visited energy

values is obtained. The flatness of the histogram is tested regularly (every
10,000 iterations), and the walk is terminated once the histogram is suffi-
ciently flat. The value of f is then reduced so that the next walk provides a
better approximation to g(Ei). Flatness is measured by comparing the vari-
ance in H(Ei) to its average. Although 90%–95% flatness can be achieved
for small problems like ours, we demand only 80% (Figure 15.5):

If
Hmax −Hmin

Hmax +Hmin
< 0.2, stop, let f →

√
f (ln f → ln f/2). (15.28)

11. Then keep the generated g(Ei) and reset the histogram values h(Ei) to zero.
12. The walks are terminated and new ones initiated until no significant cor-

rection to the density of states is obtained. This is measured by requiring
the multiplicative factor f � 1 within some level of tolerance; for example,
f ≤ 1 + 10−8. If the algorithm is successful, the histogram should be flat
(Figure 15.5) within the bounds set by (15.28).

13. The final step in the simulation is normalization of the deduced density of
states g(Ei). For the Ising model with N up or down spins, a normalization
condition follows from knowledge of the total number of states [Clark]:

∑
Ei

g(Ei) = 2N ⇒ g(norm)(Ei) =
2N∑

Ei
g(Ei)

g(Ei). (15.29)

Because the sum in (15.29) is most affected by those values of energy where
g(Ei) is large, it may not be precise for the low-Ei densities that contribute
little to the sum. Accordingly, a more precise normalization, at least if your
simulation has done a good job in occupying all energy states, is to require
that there are just two grounds states with energies E = −2N (one with all
spins up and one with all spins down):

∑
Ei=−2N

g(Ei) = 2. (15.30)

In either case it is good practice to normalize g(Ei) with one condition and
then use the other as a check.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 406

406 chapter 15

x
y

Figure 15.6 The numbering scheme used for our 8 × 8 2-D lattice of spins.

15.6.1 WLS Ising Model Implementation

We assume an Ising model with spin–spin interactions between nearest neighbors
located in an L×L lattice (Figure 15.6). To keep the notation simple, we set J = 1
so that

E = −
N∑

i↔j

σiσj , (15.31)

where ↔ indicates nearest neighbors. Rather than recalculate the energy each time
a spin is flipped, only the difference in energy is computed. For example, for eight
spins in a 1-D array,

−Ek = σ0σ1 +σ1σ2 +σ2σ3 +σ3σ4 +σ4σ5 +σ5σ6 +σ6σ7 +σ7σ0, (15.32)

where the 0–7 interaction arises because we assume periodic boundary conditions.
If spin 5 is flipped, the new energy is

−Ek+1 = σ0σ1 +σ1σ2 +σ2σ3 +σ3σ4 −σ4σ5 −σ5σ6 +σ6σ7 +σ7σ0, (15.33)

and the difference in energy is

∆E = Ek+1 −Ek = 2(σ4 +σ6)σ5. (15.34)

This is cheaper to compute than calculating and then subtracting two energies.
When we advance to two dimensions with the 8 × 8 lattice in Figure 15.6, the

change in energy when spin σi,j flips is

∆E = 2σi,j(σi+1,j +σi−1,j +σi,j+1 +σi,j−1), (15.35)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 407

thermodynamic simulations & feynman quantum path integration 407

which can assume the values −8,−4, 0, 4, and 8. There are two states of minimum
energy −2N for a 2-D system withN spins, and they correspond to all spins point-
ing in the same direction (either up or down). The maximum energy is +2N , and
it corresponds to alternating spin directions on neighboring sites. Each spin flip on
the lattice changes the energy by four units between these limits, and so the values
of the energies are

Ei = −2N, −2N + 4, −2N + 8, . . . , 2N − 8, 2N − 4, 2N. (15.36)

These energies can be stored in a uniform 1-D array via the simple mapping

E′ = (E+ 2N)/4 ⇒ E′ = 0, 1, 2, . . . , N. (15.37)

Listing 15.2 displays our implementation of Wang–Landau sampling to calculate
the density of states and internal energy U(T ) (15.20). We used it to obtain the
entropy S(T ) and the energy histogram H(Ei) illustrated in Figure 15.5. Other
thermodynamic functions can be obtained by replacing the E in (15.20) with the
appropriate variable. The results look like those in Figure 15.4. A problem that may
be encountered when calculating these variables is that the sums in (15.20) can
become large enough to cause overflows, even though the ratio would not. You
work around that by factoring out a common large factor; for example,∑

Ei

X(Ei) g(Ei) e−Ei/kBT = eλ
∑
Ei

X(Ei) eln g(Ei)−Ei/kBT−λ, (15.38)

where λ is the largest value of ln g(Ei) −Ei/kBT at each temperature. The factor
eλ does not actually need to be included in the calculation of the variable because
it is present in both the numerator and denominator and so cancels out.

� �
/ / Wang Landau algorithm for 2−D spin system
/ / Author : Oscar A. Restrepo , Universidad de Antioquia , Medellin , Colombia

i m p o r t j ava . io . ∗ ;

p u b l i c c l a s s WangLandau {
p u b l i c s t a t i c i n t L = 8 , N =(L∗L) , sp [ ] [ ] = new i n t [ L ] [ L ] ; / / Grid size , spins
p u b l i c s t a t i c i n t h i s t [ ] = new i n t [N+1] , p r h i s t [ ] = new i n t [N+ 1 ] ; / / Histograms
p u b l i c s t a t i c d o u b l e S [ ] = new d o u b l e [N+ 1 ] ; / / Entropy = log g ( E )
p u b l i c s t a t i c i n t iE ( i n t e ) { r e t u r n ( e+2∗N) /4; }

p u b l i c s t a t i c v o i d WL( ) {
d o u b l e fac , Hinf =1. e10 , Hsup= 0 . , del taS , t o l =1. e−8; / / f , his t , entropy , t o l
d o u b l e height , ave , percent ; / / Hist height , avg hist , % < 20%
i n t i , xg , yg , j , i t e r , Eold , Enew ; / / Grid posit ions , energies
i n t ip [ ] = new i n t [ L ] , im [ ] = new i n t [ L ] ; / / BC R or down, L or up
height = Math . abs (Hsup−Hinf ) / 2 . ; / / I n i t i a l i z e histogram
ave = (Hsup+Hinf ) / 2 . ; / / about average of histogram
percent = height / ave ;
f o r ( i =0 ; i <L ; i ++) f o r ( j =0 ; j <L ; j ++) sp [ i ] [ j ] = 1 ; / / I n i t i a l spins
f o r ( i =0 ; i <L ; i ++) { ip [ i ] = i +1; im [ i ] = i −1; } / / Case plus , mimus
ip [ L−1] = 0 ; im [ 0 ] = L−1; / / Borders
Eold = −2∗N; / / I n i t i a l i z e energy
f o r ( j = 0 ; j <=N; j ++ ) S [ j ] = 0 ; / / Entropy i n i t i a l i z e d
i t e r = 0 ; f a c = 1 ; / / I n i t i a l f a c t o r ln e
w h i l e ( f a c > t o l ) {

i t e r ++;
i = ( i n t ) ( Math . random ( ) ∗N) ; / / S e l e c t random spin

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 408

408 chapter 15

xg = i%L ; yg = i /L ; / / Local ize grid point
Enew = Eold + 2∗( sp [ ip [ xg ] ] [ yg ] + sp [ im [ xg ] ] [ yg ] + sp [ xg ] [ ip [ yg ] ]

+ sp [ xg ] [ im [ yg ] ] ) ∗ sp [ xg ] [ yg ] ; / / Change energy
del taS = S [ iE (Enew) ] − S [ iE ( Eold ) ] ; / / Change entropy
i f ( de l taS <= 0 || Math . random ( ) < Math . exp(−del taS ) ) { Eold = Enew ;

sp [ xg ] [ yg ] ∗= −1; } / / Fl ip spin
h i s t [ iE ( Eold ) ]++ ; / / Change histogram , add 1 , update
S [ iE ( Eold ) ] += f a c ; / / Change entropy
i f ( i t e r %10000 == 0) { / / Check f l a t n e s s every 10000 sweeps

f o r ( j = 0 ; j <= N; j ++) {
i f ( j == 0 ) { Hsup = 0 ; Hinf = 1 e10 ; } / / I n i t i a l i z e new histogram
i f ( h i s t [ j ] == 0 ) c o n t i n u e ; / / Energies never v i s i t e d
i f ( h i s t [ j ] > Hsup ) Hsup = h i s t [ j ] ;
i f ( h i s t [ j ] < Hinf ) Hinf = h i s t [ j ] ;

}
height = Hsup−Hinf ;
ave = Hsup+Hinf ;
percent = height/ave ;
i f ( percent < 0 . 2 ) { / / Histogram f l a t ?

System . out . p r i n t l n (" iter "+ i t e r +" log ( f ) "+ f a c ) ;
f o r ( j =0 ; j <=N; j ++ ) { p r h i s t [ j ] = h i s t [ j ] ; h i s t [ j ] = 0 ; } / / Save h i s t
f a c ∗= 0 . 5 ; / / Equivalent to log ( sqr t ( f ) )

} } } }

p u b l i c s t a t i c v o i d IntEnergy ( ) throws IOException , FileNotFoundException {
d o u b l e T , maxL, Ener , U, sumdeno , sumnume, exponent = 0 ; / / Temp, max lambda
i n t i ;
Pr i n t W r i t e r b = new Pr i n t W r i t e r ( new FileOutputStream ("IntEnergy .dat" ) , t r u e ) ;
f o r ( T = 0 . 2 ; T <= 8 . 0 ; T += 0 . 2 ) { / / S e l e c t lambda max

Ener = −2∗N;
maxL = 0 . 0 ; / / I n i t i a l i z e
f o r ( i =0 ; i <N; i ++ ) { i f ( S [ i ] ! = 0 && ( S [ i ]−Ener/T ) >maxL) maxL = S [ i ]−Ener/T ;

Ener = Ener +4; }
sumdeno = sumnume = 0 ;
Ener = −2∗N;
f o r ( i =0 ; i <N; i ++ ) {

i f ( S [ i ] != 0 ) exponent = S [ i ]−Ener/T−maxL;
sumnume += Ener∗Math . exp ( exponent ) ;
sumdeno += Math . exp ( exponent ) ;
Ener = Ener+ 4 . 0 ;

}
U = sumnume/sumdeno/N;
b . p r i n t l n (" "+T+" "+U) ;
System . out . p r i n t l n ("Output data in IntEnergy .dat" ) ;

}
}

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) throws IOException , FileNotFoundException {
Pr i n t W r i t e r q = new Pr i n t W r i t e r ( new FileOutputStream ("wanglandau.dat" ) , t r u e ) ;
i n t order , j ;
d o u b l e del taS = 0 . 0 ;

WL( ) ; / / Call Wang Landau algorithm
f o r ( j =0 ; j <= N; j ++ ) {

order = j ∗4 − 2∗N;
de l taS = S [ j ] − S [ 0 ] + Math . log ( 2 ) ;
i f ( S [ j ] != 0 ) q . p r i n t l n (" "+ 1.∗ order/N +" " + del taS+" "+ p r h i s t [ j ] ) ;

}
IntEnergy ( ) ;
System . out . p r i n t l n ("Output data in wanglandau.dat" ) ;

} } / / Main , c l a s s
�

Listing 15.2 WangLandau.java simulates the 2-D Ising model using Wang–Landau sampling

to compute the density of states and from that the internal energy.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 409

thermodynamic simulations & feynman quantum path integration 409

15.6.2 WLS Ising Model Assessment

Repeat the assessment conducted in §15.4.2 for the thermodynamic properties of
the Ising model but use WLS in place of the Metropolis algorithm.

15.7 Unit III. Feynman Path Integrals �
Problem: As is well known, a classical particle attached to a linear spring undergoes
simple harmonic motion with a position in space as a function of time given by
x(t) =A sin(ω0t+φ). Your problem is to take this classical space-time trajectory
x(t) and use it to generate the quantum wave function ψ(x, t) for a particle bound
in a harmonic oscillator potential.

15.8 Feynman’s Space-Time Propagation (Theory)

Feynman was looking for a formulation of quantum mechanics that gave a more
direct connection to classical mechanics than does Schrödinger theory and that
made the statistical nature of quantum mechanics evident from the start. He fol-
lowed a suggestion by Dirac that Hamilton’s principle of least action, which can
be used to derive classical mechanics, may be the h̄→ 0 limit of a quantum least-
action principle. Seeing that Hamilton’s principle deals with the paths of particles
through space-time, Feynman posultated that the quantum wave function describ-
ing the propagation of a free particle from the space-time point a= (xa,ta) to the
point b= (xb, tb) can expressed as [F&H 65]

ψ(xb, tb) =
∫
dxaG(xb, tb;xa, ta)ψ(xa, ta), (15.39)

where G is the Green’s function or propagator

G(xb, tb;xa, ta) ≡G(b, a) =
√

m

2πi(tb − ta)
exp
[
i
m(xb −xa)2

2(tb − ta)

]
. (15.40)

Equation (15.39) is a form of Huygens’s wavelet principle in which each point on
the wavefront ψ(xa, ta) emits a spherical wavelet G(b; a) that propagates forward
in space and time. It states that a new wavefront ψ(xb, tb) is created by summation
over and interference with all the other wavelets.

Feynman imagined that another way of interpreting (15.39) is as a form of
Hamilton’s principle in which the probability amplitude (wave function ψ) for
a particle to be at B is equal to the sum over all paths through space-time originat-
ing at time A and ending at B (Figure 15.7). This view incorporates the statistical
nature of quantum mechanics by having different probabilities for travel along

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 410

410 chapter 15

Time

A

B
t b

x b x a

t a

Position

Figure 15.7 A collection of paths connecting the initial space-time point A to the final point

B. The solid line is the trajectory followed by a classical particle, while the dashed lines are

additional paths sampled by a quantum particle. A classical particle somehow “knows”

ahead of time that travel along the classical trajectory minimizes the action S.

the different paths. All paths are possible, but some are more likely than others.
(When you realize that Schrödinger theory solves for wave functions and considers
paths a classical concept, you can appreciate how different it is from Feynman’s
view.) The values for the probabilities of the paths derive from Hamilton’s classical
principle of least action:

The most general motion of a physical particle moving along the classical
trajectory x̄(t) from time ta to tb is along a path such that the action S[x̄(t)] is
an extremum:

δS[x̄(t)] = S[x̄(t) + δx(t)]−S[x̄(t)] = 0, (15.41)

with the paths constrained to pass through the endpoints:

δ(xa) = δ(xb) = 0.

This formulation of classical mechanics, which is based on the calculus of variations,
is equivalent to Newton’s differential equations if the action S is taken as the line
integral of the Lagrangian along the path:

S[x̄(t)] =
∫ tb

ta

dtL [x(t), ẋ(t)] , L= T [x, ẋ]−V [x]. (15.42)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 411

thermodynamic simulations & feynman quantum path integration 411

HereT is the kinetic energy,V is the potential energy, ẋ= dx/dt, and square brackets
indicate a functional3 of the function x(t) and ẋ(t).

Feynman observed that the classical action for a free particle (V = 0),

S[b, a] =
m

2
(ẋ)2 (tb − ta) =

m

2
(xb −xa)2

tb − ta
, (15.43)

is related to the free-particle propagator (15.40) by

G(b, a) =
√

m

2πi(tb − ta)
eiS[b,a]/h̄. (15.44)

This is the much sought connection between quantum mechanics and Hamilton’s
principle. Feynman then postulated a reformulation of quantum mechanics that
incorporated its statistical aspects by expressing G(b, a) as the weighted sum over
all paths connecting a to b,

G(b, a) =
∑
paths

eiS[b,a]/h̄ (path integral). (15.45)

Here the classical action S (15.42) is evaluated along different paths (Figure 15.7),
and the exponential of the action is summed over paths. The sum (15.45) is called
a path integral because it sums over actions S[b, a], each of which is an integral (on
the computer an integral and a sum are the same anyway). The essential connec-
tion between classical and quantum mechanics is the realization that in units of
h̄� 10−34 Js, the action is a very large number, S/h̄≥ 1020, and so even though all
paths enter into the sum (15.45), the main contributions come from those paths
adjacent to the classical trajectory x̄. In fact, because S is an extremum for the clas-
sical trajectory, it is a constant to first order in the variation of paths, and so nearby
paths have phases that vary smoothly and relatively slowly. In contrast, paths
far from the classical trajectory are weighted by a rapidly oscillating exp(iS/h̄),
and when many are included, they tend to cancel each other out. In the classical
limit, h̄→ 0, only the single classical trajectory contributes and (15.45) becomes
Hamilton’s principle of least action! In Figure 15.8 we show an example of a
trajectory used in path-integral calculations.

3 A functional is a number whose value depends on the complete behavior of some function
and not just on its behavior at one point. For example, the derivative f ′(x) depends on
the value of f at x, yet the integral I[f ] =

∫ b

a
dx f(x) depends on the entire function and

is therefore a functional of f .

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 412

412 chapter 15

-40 -20 0 20 40

Position

0

0.05

0.1

0.15

0.2

P
ro

ba
bi

lit
y

quantum
classical

0 20 40 60 80 100

Time

-2

-1

0

1

2

P
os

iti
on

Figure 15.8 Left: The probability distribution for the harmonic oscillator ground state as

determined with a path-integral calculation (the classical result has maxima at the two

turning points). Right: A space-time trajectory used as a quantum path.

15.8.1 Bound-State Wave Function (Theory)

Although you may be thinking that you have already seen enough expressions for
the Green’s function, there is yet another one we need for our computation. Let us
assume that the Hamiltonian H̃ supports a spectrum of eigenfunctions,

H̃ψn = Enψn,

each labeled by the index n. Because H̃ is Hermitian, the solutions form a complete
orthonormal set in which we may expand a general solution:

ψ(x, t) =
∞∑

n=0

cn e
−iEnt ψn(x), cn =

∫ +∞

−∞
dxψ∗

n(x)ψ(x, t= 0), (15.46)

where the value for the expansion coefficients cn follows from the orthonormality
of the ψn’s. If we substitute this cn back into the wave function expansion (15.46),
we obtain the identity

ψ(x, t) =
∫ +∞

−∞
dx0

∑
n

ψ∗
n(x0)ψn(x)e−iEntψ(x0, t= 0). (15.47)

Comparison with (15.39) yields the eigenfunction expansion for G:

G(x, t;x0, t0 = 0) =
∑

n

ψ∗
n(x0)ψn(x)e−iEnt. (15.48)

We relate this to the bound-state wave function (recall that our problem is to
calculate that) by (1) requiring all paths to start and end at the space position
x0 = x, (2) by taking t0 = 0, and (3) by making an analytic continuation of (15.48)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 413

thermodynamic simulations & feynman quantum path integration 413

to negative imaginary time (permissable for analytic functions):

G(x,−iτ ;x, 0) =
∑

n

|ψn(x)|2e−Enτ = |ψ0|2e−E0τ + |ψ1|2e−E1τ + · · ·

⇒ |ψ0(x)|2 = lim
τ→∞ eE0τG(x,−iτ ;x, 0) . (15.49)

The limit here corresponds to long imaginary times τ , after which the parts of ψ
with higher energies decay more quickly, leaving only the ground state ψ0.

Equation (15.49) provides a closed-form solution for the ground-state wave func-
tion directly in terms of the propagator G. Although we will soon describe how to
compute this equation, look now at Figure 15.8 showing some results of a computa-
tion. Although we start with a probability distribution that peaks near the classical
turning points at the edges of the well, after a large number of iterations we end
up with a distribution that resembles the expected Gaussian. On the right we see
a trajectory that has been generated via statistical variations about the classical
trajectory x(t) =A sin(ω0t+φ).

15.8.2 Lattice Path Integration (Algorithm)

Because both time and space are integrated over when evaluating a path integral,
we set up a lattice of discrete points in space-time and visualize a particle’s trajectory
as a series of straight lines connecting one time to the next (Figure 15.9). We divide
the time between points A and B into N equal steps of size ε and label them with
the index j:

ε
def=

tb − ta
N

⇒ tj = ta + jε (j = 0, N). (15.50)

Although it is more precise to use the actual positions x(tj) of the trajectory at the
times tj to determine the xjs (as in Figure 15.9), in practice we discretize space
uniformly and have the links end at the nearest regular points. Once we have a
lattice, it is easy to evaluate derivatives or integrals on a link4:

dxj

dt
� xj −xj−1

tj − tj−1
=
xj −xj−1

ε
, (15.51)

Sj �Lj ∆t� 1
2
m

(xj −xj−1)2

ε
−V (xj)ε, (15.52)

where we have assumed that the Lagrangian is constant over each link.

4 Even though Euler’s rule has a large error, it is often use in lattice calculations because of
its simplicity. However, if the Lagrangian contains second derivatives, you should use the
more precise central-difference method to avoid singularities.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 414

414 chapter 15

h

ti

tb xi

xi

ta

D

C

A

B

X a

tb B

A

xb = xN

xj xj
’

ta

tj

Xa

Figure 15.9 Left: A path through the space-time lattice that starts and ends at xa = xb. The

action is an integral over this path, while the path integral is a sum of integrals over all paths.

The dotted path BD is a transposed replica of path AC. Right: The dashed path joins the initial

and final times in two equal time steps; the solid curve uses N steps each of size ε. The position

of the curve at time tj defines the position xj.

Lattice path integration is based on the composition theorem for propagators:

G(b, a) =
∫
dxj G(xb, tb;xj , tj)G(xj , tj ;xa, ta) (ta < tj , tj < tb). (15.53)

For a free particle this yields

G(b, a) =
√

m

2πi(tb − tj)

√
m

2πi(tj − ta)

∫
dxj e

i(S[b,j]+S[j,a])

=
√

m

2πi(tb − ta)

∫
dxj e

iS[b,a], (15.54)

where we have added the actions since line integrals combine as S[b, j] +S[j, a] =
S[b, a]. For the N -linked path in Figure 15.9, equation (15.53) becomes

G(b, a) =
∫
dx1 · · · dxN−1 e

iS[b,a], S[b, a] =
N∑

j=1

Sj , (15.55)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 415

thermodynamic simulations & feynman quantum path integration 415

where Sj is the value of the action for link j. At this point the integral over the single
path shown in Figure 15.9 has become anN -term sum that becomes an infinite sum
as the time step ε approaches zero.

To summarize, Feynman’s path-integral postulate (15.45) means that we sum
over all paths connecting A to B to obtain Green’s function G(b, a). This means
that we must sum not only over the links in one path but also over all the dif-
ferent paths in order to produce the variation in paths required by Hamilton’s
principle. The sum is constrained such that paths must pass through A and B and
cannot double back on themselves (causality requires that particles move only for-
ward in time). This is the essence of path integration. Because we are integrating
over functions as well as along paths, the technique is also known as functional
integration.

The propagator (15.45) is the sum over all paths connecting A to B, with each
path weighted by the exponential of the action along that path, explicitly:

G(x, t;x0, t0) =
∑∫
dx1 dx2 · · · dxN−1e

iS[x,x0], (15.56)

S[x, x0] =
N−1∑
j=1

S[xj+1, xj ] �
N−1∑
j=1

L (xj , ẋj) ε, (15.57)

where L(xj , ẋj) is the average value of the Lagrangian on link j at time t= jε. The
computation is made simpler by assuming that the potentialV (x) is independent of
velocity and does not depend on other x values (local potential). Next we observe
that G is evaluated with a negative imaginary time in the expression (15.49) for
the ground-state wave function. Accordingly, we evaluate the Lagrangian with
t= −iτ :

L (x, ẋ) = T −V (x) = +
1
2
m

(
dx

dt

)2

−V (x), (15.58)

⇒ L

(
x,

dx

−idτ
)

= −1
2
m

(
dx

dτ

)2

−V (x). (15.59)

We see that the reversal of the sign of the kinetic energy in L means that L now
equals the negative of the Hamiltonian evaluated at a real positive time t= τ :

H

(
x,
dx

dτ

)
=

1
2
m

(
dx

dτ

)2

+V (x) = E, (15.60)

⇒ L

(
x,

dx

−idτ
)

= −H
(
x,
dx

dτ

)
. (15.61)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 416

416 chapter 15

In this way we rewrite the t-path integral of L as a τ -path integral of H and so
express the action and Green’s function in terms of the Hamiltonian:

S[j+ 1, j] =
∫ tj+1

tj

L(x, t) dt=−i
∫ τj+1

τj

H(x, τ) dτ, (15.62)

⇒ G(x,−iτ ;x0, 0) =
∫
dx1 . . . dxN−1 e

− ∫ τ
0 H(τ ′)dτ ′

, (15.63)

where the line integral of H is over an entire trajectory. Next we express the path
integral in terms of the average energy of the particle on each link, Ej = Tj +Vj ,
and then sum over links5 to obtain the summed energy E :

∫
H(τ) dτ �

∑
j

εEj = εE({xj}), (15.64)

E({xj}) def=
N∑

j=1

[
m

2

(
xj −xj−1

ε

)2

+V

(
xj +xj−1

2

)]
. (15.65)

In (15.65) we have approximated each path link as a straight line, used Euler’s
derivative rule to obtain the velocity, and evaluated the potential at the midpoint
of each link. We now substitute thisG into our solution (15.49) for the ground-state
wave function in which the initial and final points in space are the same:

lim
τ→∞

G(x,−iτ, x0 = x, 0)∫
dxG(x,−iτ, x0 = x, 0)

=

∫
dx1 · · · dxN−1 exp

[− ∫ τ

0 Hdτ
′]∫

dx dx1 · · · dxN−1 exp
[− ∫ τ

0 Hdτ
′]

⇒ |ψ0(x)|2 =
1
Z

lim
τ→∞

∫
dx1 · · · dxN−1 e

−εE , (15.66)

Z = lim
τ→∞

∫
dx dx1 · · · dxN−1e

−εE . (15.67)

The similarity of these expressions to thermodynamics, even with a partition func-
tion Z, is no accident; by making the time parameter of quantum mechanics
imaginary, we have converted the time-dependent Schrödinger equation to the
heat diffusion equation:

i
∂ψ

∂(−iτ) =
−∇2

2m
ψ ⇒ ∂ψ

∂τ
=

∇2

2m
ψ. (15.68)

5 In some cases, such as for an infinite square well, this can cause problems if the trial link
causes the energy to be infinite. In that case, one can modify the algorithm to use the
potential at the beginning of a link

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 417

thermodynamic simulations & feynman quantum path integration 417

It is not surprising then that the sum over paths in Green’s function has each path
weighted by the Boltzmann factor P = e−εE usually associated with thermody-
namics. We make the connection complete by identifying the temperature with the
inverse time step:

P = e−εE = e−E/kBT ⇒ kBT =
1
ε

≡ h̄

ε
. (15.69)

Consequently, the ε→ 0 limit, which makes time continuous, is a “high-
temperature” limit. The τ → ∞ limit, which is required to project the ground-state
wave function, means that we must integrate over a path that is long in imaginary
time, that is, long compared to a typical time h̄/∆E. Just as our simulation of the
Ising model in Unit I required us to wait a long time while the system equilibrated,
so the present simulation requires us to wait a long time so that all but the ground-
state wave function has decayed. Alas, this is the solution to our problem of finding
the ground-state wave function.

To summarize, we have expressed the Green’s function as a path integral that
requires integration of the Hamiltonian along paths and a summation over all the
paths (15.66). We evaluate this path integral as the sum over all the trajectories in a
space-time lattice. Each trial path occurs with a probability based on its action, and
we use the Metropolis algorithm to include statistical fluctuation in the links, as if
they are in thermal equilibrium. This is similar to our work with the Ising model in
Unit I, however now, rather than reject or accept a flip in spin based on the change
in energy, we reject or accept a change in a link based on the change in energy.
The more iterations we let the algorithm run for, the more time the deduced wave
function has to equilibrate to the ground state.

In general, Monte Carlo Green’s function techniques work best if we start with a
good guess at the correct answer and have the algorithm calculate variations on our
guess. For the present problem this means that if we start with a path in space-time
close to the classical trajectory, the algorithm may be expected to do a good job
at simulating the quantum fluctuations about the classical trajectory. However, it
does not appear to be good at finding the classical trajectory from arbitrary locations
in space-time. We suspect that the latter arises from δS/h̄ being so large that the
weighting factor exp(δS/h̄) fluctuates wildly (essentially averaging out to zero)
and so loses its sensitivity.

15.8.2.1 A TIME-SAVING TRICK

As we have formulated the computation, we pick a value of x and perform an
expensive computation of line integrals over all space and time to obtain |ψ0(x)|2
at one x. To obtain the wave function at another x, the entire simulation must be
repeated from scratch. Rather than go through all that trouble again and again, we
will compute the entire x dependence of the wave function in one fell swoop. The
trick is to insert a delta function into the probability integral (15.66), thereby fixing

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 418

418 chapter 15

the initial position to be x0, and then to integrate over all values for x0:

|ψ0(x)|2 =
∫
dx1 · · · dxN e−εE(x,x1,...) (15.70)

=
∫
dx0 · · · dxNδ(x−x0) e−εE(x,x1,...). (15.71)

This equation expresses the wave function as an average of a delta function over
all paths, a procedure that might appear totally inappropriate for numerical com-
putation because there is tremendous error in representing a singular function on
a finite-word-length computer. Yet when we simulate the sum over all paths with
(15.71), there will always be some x value for which the integral is nonzero, and we
need to accumulate only the solution for various (discrete) x values to determine
|ψ0(x)|2 for all x.

To understand how this works in practice, consider path AB in Figure 15.9 for
which we have just calculated the summed energy. We form a new path by having
one point on the chain jump to point C (which changes two links). If we replicate
sectionAC and use it as the extensionAD to form the top path, we see that the path
CBD has the same summed energy (action) as path ACB and in this way can be
used to determine |ψ(x′

j)|2. That being the case, once the system is equilibrated, we
determine new values of the wave function at new locations x′

j by flipping links to
new values and calculating new actions. The more frequently some xj is accepted,
the greater the wave function at that point.

15.8.3 Lattice Implementation

The program QMC.java in Listing 15.3 evaluates the integral (15.45) by finding the
average of the integrand δ(x0 −x) with paths distributed according to the weight-
ing function exp[−εE(x0, x1, . . . , xN )]. The physics enters via (15.73), the calculation
of the summed energy E(x0, x1, . . . , xN ). We evaluate the action integral for the
harmonic oscillator potential

V (x) =
1
2
x2 (15.72)

and for a particle of mass m= 1. Using a convenient set of natural units, we mea-
sure lengths in

√
1/mω ≡√h̄/mω = 1 and times in 1/ω = 1. Correspondingly, the

oscillator has a period T = 2π. Figure 15.8 shows results from an application of
the Metropolis algorithm. In this computation we started with an initial path close
to the classical trajectory and then examined 1

2 million variations about this path.
All paths are constrained to begin and end at x= 1 (which turns out to be somewhat
less than the maximum amplitude of the classical oscillation).

When the time difference tb − ta equals a short time like 2T , the system has not
had enough time to equilibrate to its ground state and the wave function looks like
the probability distribution of an excited state (nearly classical with the probability

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 419

thermodynamic simulations & feynman quantum path integration 419

highest for the particle to be near its turning points where its velocity vanishes).
However, when tb − ta equals the longer time 20T , the system has had enough time
to decay to its ground state and the wave function looks like the expected Gaussian
distribution. In either case (Figure 15.8 right), the trajectory through space-time
fluctuates about the classical trajectory. This fluctuation is a consequence of the
Metropolis algorithm occasionally going uphill in its search; if you modify the
program so that searches go only downhill, the space-time trajectory will be a very
smooth trigonometric function (the classical trajectory), but the wave function,
which is a measure of the fluctuations about the classical trajectory, will vanish!
The explicit steps of the calculation are

1. Construct a grid of N time steps of length ε (Figure 15.9). Start at t= 0 and
extend to time τ =Nε [this means N time intervals and (N + 1) lattice points
in time]. Note that time always increases monotonically along a path.

2. Construct a grid ofM space points separated by steps of size δ. Use a range ofx
values several time larger than the characteristic size or range of the potential
being used and start with M �N .

3. When calculating the wave function, any x or t value falling between lattice
points should be assigned to the closest lattice point.

4. Associate a position xj with each time τj , subject to the boundary conditions
that the initial and final positions always remain the same, xN = x0 = x.

5. Choose a path of straight-line links connecting the lattice points corresponding
to the classical trajectory. Observe that the x values for the links of the path
may have values that increase, decrease, or remain unchanged (in contrast to
time, which always increases).

6. Evaluate the energy E by summing the kinetic and potential energies for each
link of the path starting at j = 0:

E(x0, x1, . . . , xN ) �
N∑

j=1

[
m

2

(
xj −xj−1

ε

)2

+V

(
xj +xj−1

2

)]
. (15.73)

7. Begin a sequence of repetitive steps in which a random position xj associated
with time tj is changed to the position x′

j (pointC in Figure 15.9). This changes
two links in the path.

8. For the coordinate that is changed, use the Metropolis algorithm to weigh the
change with the Boltzmann factor.

9. For each lattice point, establish a running sum that represents the value of the
wave function squared at that point.

10. After each single-link change (or decision not to change), increase the running
sum for the new x value by 1. After a sufficiently long running time, the sum
divided by the number of steps is the simulated value for |ψ(xj)|2 at each
lattice point xj .

11. Repeat the entire link-changing simulation starting with a different seed. The
average wave function from a number of intermediate-length runs is better
than that from one very long run.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 420

420 chapter 15

� �
/ /QMC. java : Quantum MonteCarlo Feynman path i n t e g r a t i o n
i m p o r t j ava . io . ∗ ; / / Location of PrintWriter
i m p o r t j ava . u t i l . ∗ ; / / Location of Random
i m p o r t j ava . lang . ∗ ; / / Location of Math

p u b l i c c l a s s QMC {
p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) throws IOException , FileNotFoundException {
Pr i n t W r i t e r q = new Pr i n t W r i t e r ( new FileOutputStream ("QMC.DAT" ) , t r u e ) ;
i n t N = 100 , M = 101 , T r i a l s = 25000 , s e e d T r i a l s = 2 0 0 ; / / t grid , x ( odd )
d o u b l e path [ ] = new d o u b l e [N] , x s c a l e = 1 0 . ;
l ong prop [ ] = new long [M] , seed = 10199435 ;
f o r ( i n t count = 0 ; count < s e e d T r i a l s ∗10 ; count += 10) {

Random randnum = new Random( seed + count ) ;
d o u b l e change = 0 . , newE = 0 . , oldE = 0 . ;
f o r ( i n t i =0 ; i < N; i ++ ) path [ i ] = 0 . ; / / I n i t i a l path
oldE = energy ( path ) ; / / Find E of path
f o r ( i n t i =0 ; i < T r i a l s ; i ++ ) { / / Pick random element

i n t element = randnum . n e x t I n t (N) ;
change = 1 . 8 ∗ ( 0 . 5 − randnum . nextDouble ( ) ) ;
path [ element ] += change ; / / Change path
newE = energy ( path ) ; / / Find new E
i f ( newE > oldE && Math . exp(−newE + oldE )

<= randnum . nextDouble ( ) ) path [ element]−=change ; / / Reject
f o r ( i n t j =0 ; j < N; j ++ ) { / / Add p r o b a b i l i t i e s

element = ( i n t ) Math . round ( (M−1)∗( path [ j ]/ x s c a l e + . 5 ) ) ;
i f ( element < M && element >=0) prop [ element ]++ ;

}
oldE = newE ;

} / / t loop
} / / Seed loop
f o r ( i n t i =0 ; i < M; i ++ ) q . p r i n t l n ( x s c a l e ∗( i −(M−1)/2)

+ " " + ( d o u b l e ) prop [ i ] / ( ( d o u b l e ) T r i a l s ∗( d o u b l e ) s e e d T r i a l s ) ) ;
System . out . p r i n t l n (" " ) ;
System . out . p r i n t l n ("QMC Program Complete ." ) ;
System . out . p r i n t l n ("Data stored in QMC.DAT" ) ;
System . out . p r i n t l n (" " ) ;
}

p u b l i c s t a t i c d o u b l e energy ( d o u b l e path [ ] ) {
i n t i = 0 ;
d o u b l e sum = 0 . ;
f o r ( i =0 ; i < path . length −2; i ++ )

{sum += ( path [ i +1] − path [ i ] ) ∗( path [ i +1] − path [ i ] ) ; }
sum += path [ i +1]∗ path [ i + 1 ] ;
r e t u r n sum ;

} } / / End c l a s s
�

Listing 15.3 QMC.java solves for the ground-state probability distribution via a Feynman path

integration using the Metropolis algorithm to simulate variations about the classical trajectory.

15.8.4 Assessment and Exploration

1. Plot some of the actual space-time paths used in the simulation along with
the classical trajectory.

2. For a more continuous picture of the wave function, make the x lattice spacing
smaller; for a more precise value of the wave function at any particular lattice
site, sample more points (run longer) and use a smaller time step ε.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 421

thermodynamic simulations & feynman quantum path integration 421

3. Because there are no sign changes in a ground-state wave function, you can
ignore the phase, assume ψ(x) =

√
ψ2(x), and then estimate the energy via

E =
〈ψ|H |ψ〉

〈ψ|ψ〉 =
ω

2〈ψ|ψ〉
∫ +∞

−∞
ψ∗(x)

(
− d2

dx2 +x2
)
ψ(x) dx,

where the space derivative is evaluated numerically.
4. Explore the effect of making h̄ larger and thus permitting greater fluctuations

around the classical trajectory. Do this by decreasing the value of the exponent
in the Boltzmann factor. Determine if this makes the calculation more or less
robust in its ability to find the classical trajectory.

5. Test your ψ for the gravitational potential (see quantum bouncer below):

V (x) =mg|x|, x(t) = x0 + v0t+ 1
2gt

2.

15.9 Exploration: Quantum Bouncer’s Paths �
Another problem for which the classical trajectory is well known is that of a quantum
bouncer. Here we have a particle dropped in a uniform gravitational field, hitting
a hard floor, and then bouncing. When treated quantum mechanically, quantized
levels for the particle result [Gibbs 75, Good 92, Whine 92, Bana 99, Vall 00]. In
2002 an experiment to discern this gravitational effect at the quantum level was
performed by Nesvizhevsky et al. [Nes 02] and described in [Schw 02]. It consisted
of dropping ultracold neutrons from a height of 14 µm unto a neutron mirror and
watching them bounce. It found a neutron ground state at 1.4 peV.

We start by determining the analytic solution to this problem for stationary
states and then generalize it to include time dependence.6 The time-independent
Schrödinger equation for a particle in a uniform gravitation potential is

− h̄2

2m
d2ψ(x)
dx2 +mxg ψ(x) =E ψ(x), (15.74)

ψ(x≤ 0) = 0, (boundary condition). (15.75)

The boundary condition (15.75) is a consequence of the hard floor atx= 0. Achange
of variables converts (15.74) to a dimensionless form,

d2ψ

dz2 − (z− zE)ψ= 0, (15.76)

z = x

(
2gm2

h̄2

)1/3

, zE = E

(
2

h̄2mg2

)1/3

. (15.77)

This equation has an analytic solution in terms of Airy functions Ai(z) [L 96]:

ψ(z) =Nn Ai(z− zE), (15.78)

6 Oscar A. Restrepo assisted in the preparation of this section.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 422

422 chapter 15

0

0.2

0.4

0.6

0 2 4 6

z

QMC

Analytic

| (z)|
2

Figure 15.10 The Airy function squared (continuous line) and the Quantum Monte Carlo

solution |ψ0(q)|2 (dashed line) after a million trajectories.

where Nn is a normalization constant and zE is the scaled value of the energy. The
boundary condition ψ(0) = 0 implies that

ψ(0) =NE Ai(−zE) = 0, (15.79)

which means that the allowed energies of the system are discrete and correspond
to the zeros zn of the Airy functions [Pres 00] at negative argument. To simplify the
calculation, we take h̄= 1, g = 2, and m= 1

2 , which leads to z = x and zE = E.
The time-dependent solution for the quantum bouncer is constructed by forming

the infinite sum over all the discrete eigenstates, each with a time dependence
appropriate to its energy:

ψ(z, t) =
∞∑

n=1

CnNn Ai(z− zn)e−iEn t/h̄, (15.80)

where the Cn’s are constants.
Figure 15.10 shows the results of solving for the quantum bouncer’s ground-state

probability |ψ0(z)|2 using Feynman’s path integration. The time increment dt and
the total time twere selected by trial and error in such a way as to make |ψ(0)|2 � 0
(the boundary condition). To account for the fact that the potential is infinite for
negative x values, we selected trajectories that have positive x values over all their
links. This incorporates the fact that the particle can never penetrate the floor. Our
program is given in Listing 15.4, and it yields the results in Figure 15.10 after using
106 trajectories and a time step ε= dτ = 0.05. Both results were normalized via a

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 423

thermodynamic simulations & feynman quantum path integration 423

trapezoid integration. As can be seen, the agreement between the analytic result
and the path integration is satisfactory.

� �
/ / QMCbouncer . java : quantum bouncer wavefunction via path i n t e g r a t i o n
/ / Author : Oscar Restrepo , Universidad de Antioquia
i m p o r t j ava . io . ∗ ;
i m p o r t j ava . u t i l . ∗ ;

p u b l i c c l a s s QMCbouncer {
s t a t i c i n t max = 300000 , N = 1 0 0 ; / / T r a j e c t o r i e s , array
s t a t i c d o u b l e dt = 0 . 0 5 , g = 2 . 0 ; / / Time step , gravi ty

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) throws IOException , FileNotFoundException {
Pr i n t W r i t e r q = new Pr i n t W r i t e r ( new FileOutputStream ("bouncer . dat" ) , t r u e ) ;

d o u b l e change , newE , oldE , norm , h , f i r s t l a s t , maxx , path [ ] = new d o u b l e [ 1 0 1 ] ;
i n t prop [ ] = new i n t [ 2 0 1 ] , i , j , element , e le , maxel ; / / P r o b a b i l i t i e s
h = 0 . 0 0 ;
f o r ( j = 0 ; j <= N; j ++ ) { path [ j ] = 0 . 0 ; prop [ j ] = 0 ; } / / I n i t i a l i z e
oldE = energy ( path ) ; / / I n i t i a l E
maxel = 0 ;
f o r ( i = 0 ; i < max ; i ++ ) {

element = ( i n t ) ( Math . random ( ) ∗N) ;
i f ( element !=0 && element != N ) { / / Ends not allowed

change = ( ( Math . random ( ) −0.5) ∗20 . ) / 1 0 . ; / /−1 to 1
i f ( path [ element ] + change > 0 . ) { / / No negative paths

path [ element ] += change ;
newE = energy ( path ) ; / / New t r a j e c t o r y E
i f (newE>oldE && Math . exp(−newE+oldE ) <= Math . random ( ) )

{ path [ element ] −= change ; } / / Link r e j e c t e d
e l e = ( i n t ) ( path [ element ]∗1 2 5 0 . / 1 0 0 . ) ; / / Scale changed
i f ( e l e >= maxel ) maxel= e l e ; / / Scale change 0 to N
i f ( element !=0 ) prop [ e l e ]++ ;
oldE = newE ; / / For next c i c l e

} } }
maxx = 0 . 0 ;
f o r ( i = 1 ; i < N; i ++ ) i f ( path [ i ] >= maxx ) maxx=path [ i ] ; / / Norm
norm = 0 . ;
h = maxx/maxel ;
f i r s t l a s t = h∗0.5∗ ( prop [ 0 ] + prop [ maxel ] ) ;
f o r ( i =1 ; i <= maxel ; i ++ ) norm = norm+prop [ i ] ; / / Trap rule
norm = norm∗h + f i r s t l a s t ;
f o r ( i =0 ; i <=maxel ; i ++) q . p r i n t l n (" "+h∗ i +" "+( d o u b l e ) ( prop [ i ] ) /norm ) ;
System . out . p r i n t l n ("data stored in bouncer . dat \n" ) ;

} / / main

s t a t i c d o u b l e energy ( d o u b l e a r r [ ] ) { / / E of path
i n t i ;
d o u b l e sum = 0 . ;
f o r ( i = 0 ; i < N; i ++ ) / / KE, PE

{sum += 0.5∗Math . pow( ( a r r [ i +1]−a r r [ i ] ) /dt , 2 ) + g ∗ ( a r r [ i ] + a r r [ i +1] ) / 2 . ; }
/ / Linear V

r e t u r n (sum) ;
} }

�

Listing 15.4 QMCbouncer.java uses Feynman path integration to compute the path of a

quantum particle in a gravitational field.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 424

16

Simulating Matter with
Molecular Dynamics

Problem: Determine whether a collection of argon molecules placed in a box will
form an ordered structure at low temperature.

You may have seen in your introductory classes that the ideal gas law can be derived from
first principles if gas molecules are treated as billiard balls bouncing off the walls but not
interacting with each other. We want to extend this model so that we can solve for the
motion of every molecule in a box interacting with every other molecule via a potential. We
picked argon because it is an inert element with a closed shell of electrons and so can be
modeled as almost-hard spheres.

16.1 Molecular Dynamics (Theory)

Molecular dynamics (MD) is a powerful simulation technique for studying the physi-
cal and chemical properties of solids, liquids, amorphous materials, and biological
molecules. Even though we know that quantum mechanics is the proper theory
for molecular interactions, MD uses Newton’s laws as the basis of the technique
and focuses on bulk properties, which do not depend much on small-r behav-
iors. In 1985 Car and Parrinello showed how MD can be extended to include
quantum mechanics by applying density functional theory to calculate the force
[C&P 85]. This technique, known as quantum MD, is an active area of research
but is beyond the realm of the present chapter.1 For those with more interest
in the subject, there are full texts [A&T 87, Rap 95, Hock 88] on MD and good
discussions [G,T&C 06, Thij 99, Fos 96], as well as primers [Erco] and codes,
[NAMD, Mold, ALCMD] available on-line.

MD’s solution of Newton’s laws is conceptually simple, yet when applied to a
very large number of particles becomes the “high school physics problem from
hell.” Some approximations must be made in order not to have to solve the
1023–1025 equations of motion describing a realistic sample but instead to limit the
problem to ∼106 particles for protein simulations and ∼108 particles for materials
simulations. If we have some success, then it is a good bet that the model will
improve if we incorporate more particles or more quantum mechanics, something
that becomes easier as computing power continues to increase.

1 We thank Satoru S. Kano for pointing this out to us.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 425

simulating matter with molecular dynamics 425

In a number of ways, MD simulations are similar to the thermal Monte Carlo
simulations we studied in Chapter 15, “Thermodynamic Simulations & Feynman
Quantum Path Integration,” Both typically involve a large numberN of interacting
particles that start out in some set configuration and then equilibrate into some
dynamic state on the computer. However, in MD we have what statistical mechanics
calls a microcanonical ensemble in which the energyE and volumeV of theN particles
are fixed. We then use Newton’s laws to generate the dynamics of the system. In
contrast, Monte Carlo simulations do not start with first principles but instead
incorporate an element of chance and have the system in contact with a heat bath
at a fixed temperature rather than keeping the energy E fixed. This is called a
canonical ensemble.

Because a system of molecules is dynamic, the velocities and positions of the
molecules change continuously, and so we will need to follow the motion of each
molecule in time to determine its effect on the other molecules, which are also
moving. After the simulation has run long enough to stabilize, we will compute
time averages of the dynamic quantities in order to deduce the thermodynamic
properties. We apply Newton’s laws with the assumption that the net force on
each molecule is the sum of the two-body forces with all other (N − 1) molecules:

m
d2ri

dt2
=Fi(r0, . . . , rN−1) (16.1)

m
d2ri

dt2
=

N−1∑
i<j=0

fij , i= 0, . . . , (N − 1). (16.2)

In writing these equations we have ignored the fact that the force between argon
atoms really arises from the particle–particle interactions of the 18 electrons and
the nucleus that constitute each atom (Figure 16.1). Although it may be possible to
ignore this internal structure when deducing the long-range properties of inert ele-
ments, it matters for systems such as polyatomic molecules that display rotational,
vibrational, and electronic degrees of freedom as the temperature is raised.2

We assume that the force on molecule i derives from a potential and that the
potential is the sum of central molecule–molecule potentials:

Fi(r0, r1, . . . , rN−1) = −∇riU(r0, r1, . . . , rN−1), (16.3)

U(r0, r1, . . . , rN−1) =
∑
i<j

u(rij) =
N−2∑
i=0

N−1∑
j=i+1

u(rij), (16.4)

⇒ fij = −du(rij)
drij

(
xi −xj

rij
êx +

yi − yj

rij
êy +

zi − zj

rij
êz

)
. (16.5)

Here rij = |ri − rj | = rji is the distance between the centers of molecules i and j,
and the limits on the sums are such that no interaction is counted twice. Because

2 We thank Saturo Kano for clarifying this point.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 426

426 chapter 16

+ +

Figure 16.1 The molecule–molecule effective interaction arises from the many-body

interaction of the electrons and nucleus in one electronic cloud with the electrons and

nucleus in another electron cloud. (The size of the nucleus at the center is highly

exaggerated relative to the size of the molecule, and the electrons are really just points.)

we have assumed a conservative potential, the total energy of the system, that is, the
potential plus kinetic energies summed over all particles, should be conserved over
time. Nonetheless, in a practical computation we “cut the potential off” [assume
u(rij) = 0] when the molecules are far apart. Because the derivative of the potential
produces an infinite force at this cutoff point, energy will no longer be precisely
conserved. Yet because the cutoff radius is large, the cutoff occurs only when the
forces are minuscule, and so the violation of energy conservation should be small
relative to approximation and round-off errors.

In a first-principles calculation, the potential between any two argon atoms arises
from the sum over approximately 1000 electron–electron and electron–nucleus
Coulomb interactions. A more practical calculation would derive an effective
potential based on a form of many-body theory, such as Hartree–Fock or density
functional theory. Our approach is simpler yet. We use the Lennard–Jones potential,

u(r) = 4ε
[(σ

r

)12
−
(σ
r

)6
]
, (16.6)

f(r) = −du

dr
=

48ε
r2

[(σ
r

)12
− 1

2

(σ
r

)6
]
r. (16.7)

TABLE 16.1
Parameter Values and Scales for the Lennard-Jones Potential

Quantity Mass Length Energy Time Temperature

Unit m σ ε
√
mσ2/ε ε/kB

Value 6.7 × 10−26 kg 3.4 × 10−10 m 1.65 × 10−21 J 4.5 × 10−12 s 119 K

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 427

simulating matter with molecular dynamics 427

repulsive

attraction

0.8 1 1.2
r

1.4 1.6 1.8 2

Lennard-Jones
10

u(r)

0

Figure 16.2 The Lennard-Jones potential. Note the sign change at r = 1 and the minimum at

r � 1.1225 (natural units). Note too that because the r axis does not extend to r = 0, the very

high central repulsion is not shown.

Here the parameter ε governs the strength of the interaction, and σ determines
the length scale. Both are deduced by fits to data, which is why this is called a
“phenomenological” potential.

Some typical values for the parameters, and corresponding scales for the vari-
ables, are given in Table 16.1. In order to make the program simpler and to avoid
under- and overflows, it is helpful to measure all variables in the natural units
formed by these constants. The interparticle potential and force then take the forms

u(r) = 4
[

1
r12

− 1
r6

]
, f(r) =

48
r

[
1
r12

− 1
2r6

]
. (16.8)

The Lennard-Jones potential is seen in Figure 16.2 to be the sum of a long-range
attractive interaction ∝ 1/r6 and a short-range repulsive one ∝ 1/r12. The change
from repulsion to attraction occurs at r = σ. The minimum of the potential occurs
at r = 21/6σ = 1.1225σ, which would be the atom–atom spacing in a solid bound by
this potential. The repulsive 1/r12 term in the Lennard-Jones potential (16.6) arises
when the electron clouds from two atoms overlap, in which case the Coulomb
interaction and the Pauli exclusion principle keep the electrons apart. The 1/r12

term dominates at short distances and makes atoms behave like hard spheres. The
precise value of 12 is not of theoretical significance (although it’s being large is)
and was probably chosen because it is 2 × 6.

The 1/r6 term dominates at large distances and models the weak van der Waals
induced dipole–dipole attraction between two molecules.3 The attraction arises
from fluctuations in which at some instant in time a molecule on the right tends
to be more positive on the left side, like a dipole ⇐. This in turn attracts the nega-
tive charge in a molecule on its left, thereby inducing a dipole ⇐ in it. As long as

3 There are also van der Waals forces that cause dispersion, but we are not considering those
here.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 428

428 chapter 16

the molecules stay close to each other, the polarities continue to fluctuate in syn-
chronization ⇐⇐ so that the attraction is maintained. The resultant dipole–dipole
attraction behaves like 1/r6, and although much weaker than a Coulomb force, it
is responsible for the binding of neutral, inert elements, such as argon for which
the Coulomb force vanishes.

16.1.1 Connection to Thermodynamic Variables

We assume that the number of particles is large enough to use statistical mechanics
to relate the results of our simulation to the thermodynamic quantities (the simu-
lation is valid for any number of particles, but the use of statistics requires large
numbers). The equipartition theorem tells us that for molecules in thermal equilib-
rium at temperature T , each molecular degree of freedom has an energy kBT/2
on the average associated with it, where kB = 1.38× 10−23 J/K is Boltzmann’s
constant. A simulation provides the kinetic energy of translation4:

KE =
1
2

〈
N−1∑
i=0

v2
i

〉
. (16.9)

The time average of KE (three degrees of freedom) is related to temperature by

〈KE〉 =N
3
2
kBT ⇒ T =

2〈KE〉
3kBN

. (16.10)

The system’s pressure P is determined by a version of the Virial theorem,

PV =NkBT +
w

3
, w =

〈
N−1∑
i<j

rij · fij
〉
, (16.11)

where the Virialw is a weighted average of the forces. Note that because ideal gases
have no interaction forces, their Virial vanishes and we have the ideal gas law. The
pressure is thus

P =
ρ

3N
(2〈KE〉 +w) , (16.12)

where ρ=N/V is the density of the particles.

4 Unless the temperature is very high, argon atoms, being inert spheres, have no rotational
energy.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 429

simulating matter with molecular dynamics 429

Figure 16.3 Left: Two frames from the animation of a 1-D simulation that starts with uniformly

spaced atoms. Note how an image atom has moved in from the bottom after an atom

leaves from the top. Right: Two frames from the animation of a 2-D simulation showing the

initial and an equilibrated state. Note how the atoms start off in a simple cubic arrangement

but then equilibrate to a face-centered-cubic lattice. In all cases, it is the interatomic forces

that constrain the atoms to a lattice.

16.1.2 Setting Initial Velocity Distribution

Even though we start the system off with a velocity distribution characteristic of
some temperature, since the system is not in equilibrium initially (some of the
assigned KE goes into PE), this is not the true temperature of the system [Thij 99].
Note that this initial randomization is the only place where chance enters into our
MD simulation, and it is there to speed the simulation along. Once started, the time
evolution is determined by Newton’s laws, in contrast to Monte Carlo simulations
which are inherently stochastic. We produce a Gaussian (Maxwellian) velocity dis-
tribution with the methods discussed in Chapter 5, “Monte Carlo Simulations.”
In our sample code we take the average 1

12

∑12
i=1 ri of uniform random numbers

0 ≤ ri ≤ 1 to produce a Gaussian distribution with mean 〈r〉 = 0.5. We then subtract
this mean value to obtain a distribution about 0.

16.1.3 Periodic Boundary Conditions and Potential Cutoff

It is easy to believe that a simulation of 1023 molecules should predict bulk proper-
ties well, but with typical MD simulations employing only 103–106 particles, one
must be clever to make less seem like more. Furthermore, since computers are
finite, the molecules in the simulation are constrained to lie within a finite box,
which inevitably introduces artificial surface effects from the walls. Surface effects
are particularly significant when the number of particles is small because then a
large fraction of the molecules reside near the walls. For example, if 1000 particles
are arranged in a 10 × 10 × 10 × 10 cube, there are 103–83 = 488 particles one unit

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 430

430 chapter 16

4

5

32

14

5

32

1 4

5

32

1

4

5

32

14

5

32

1 4

5

32

1

4

5

32

14

5

32

1 4

5

32

1

Figure 16.4 The infinite space generated by imposing periodic boundary conditions on the

particles within the simulation volume (shaded box). The two-headed arrows indicate how a

particle interacts with the nearest version of another particle, be that within the simulation

volume or an image. The vertical arrows indicate how the image of particle 4 enters when

particle 4 exits.

from the surface, that is, 49% of the molecules, while for 106 particles this fraction
falls to 6%.

The imposition of periodic boundary conditions (PBCs) strives to minimize the
shortcomings of both the small numbers of particles and of artificial boundaries.
Even though we limit our simulation to an Lx ×Ly ×Lz box, we imagine this box
being replicated to infinity in all directions (Figure 16.4). Accordingly, after each
time-integration step we examine the position of each particle and check if it has left
the simulation region. If it has, then we bring an image of the particle back through
the opposite boundary (Figure 16.4):

x ⇒
{
x+Lx, if x≤ 0,

x−Lx, if x > Lx.
(16.13)

Consequently, each box looks the same and has continuous properties at the edges.
As shown by the one-headed arrows in Figure 16.4, if a particle exits the simulation
volume, its image enters from the other side, and so balance is maintained.

In principle a molecule interacts with all others molecules and their images, so
even though there is a finite number of atoms in the interaction volume, there
is an effective infinite number of interactions [Erco]. Nonetheless, because the
Lennard–Jones potential falls off so rapidly for large r, V (r = 3σ) � V (1.13σ)/200,

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 431

simulating matter with molecular dynamics 431

far-off molecules do not contribute significantly to the motion of a molecule, and
we pick a value rcut � 2.5σ beyond which we ignore the effect of the potential:

u(r) =

{
4
(
r−12 − r−6

)
, for r < rcut,

0, for r > rcut.
(16.14)

Accordingly, if the simulation region is large enough for u(r > Li/2) � 0, an atom
interacts with only the nearest image of another atom.

The only problem with the cutoff potential (16.14) is that since the derivative
du/dr is singular at r = rcut, the potential is no longer conservative and thus energy
conservation is no longer ensured. However, since the forces are already very small
at rcut, the violation will also be very small.

16.2 Verlet and Velocity-Verlet Algorithms

Arealistic MD simulation may require integration of the 3-D equations of motion for
1010 time steps for each of 103–106 particles. Although we could use our standard
rk4 ODE solver for this, time is saved by using a simple rule embedded in the pro-
gram. The Verlet algorithm uses the central-difference approximation (Chapter 7,
“Differentiation & Searching”) for the second derivative to advance the solutions
by a single time step h for all N particles simultaneously:

Fi[r(t), t] =
d2ri

dt2
� ri(t+h) + ri(t−h) − 2ri(t)

h2 , (16.15)

⇒ ri(t+h) � 2ri(t) − ri(t−h) +h2Fi(t) + O(h4), (16.16)

where we have setm= 1. (Improved algorithms may vary the time step depending
upon the speed of the particle.) Notice that even though the atom–atom force does
not have an explicit time dependence, we include a t dependence in it as a way of
indicating its dependence upon the atoms’ positions at a particular time. Because
this is really an implicit time dependence, energy remains conserved.

Part of the efficiency of the Verlet algorithm (16.16) is that it solves for the position
of each particle without requiring a separate solution for the particle’s velocity.
However, once we have deduced the position for various times, we can use the
central-difference approximation for the first derivative of ri to obtain the velocity:

vi(t) =
dri
dt

� ri(t+h) − ri(t−h)
2h

+ O(h2). (16.17)

Note, finally, that because the Verlet algorithm needs r from two previous steps, it
is not self-starting and so we start it with the forward difference,

r(t= −h) � r(0)−hv(0) +
h2

2
F(0). (16.18)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 432

432 chapter 16

Velocity-Verlet Algorithm: Another version of the Verlet algorithm, which we rec-
ommend because of its increased stability, uses a forward-difference approximation
for the derivative to advance both the position and velocity simultaneously:

ri(t+h) � ri(t) +hvi(t) +
h2

2
Fi(t) + O(h3), (16.19)

vi(t+h) �vi(t) +ha(t) + O(h2) (16.20)

�vi(t) +h

[
Fi(t+h) +Fi(t)

2

]
+ O(h2). (16.21)

Although this algorithm appears to be of lower order than (16.16), the use of
updated positions when calculating velocities, and the subsequent use of these
velocities, make both algorithms of similar precision.

Of interest is that (16.21) approximates the average force during a time step as
[Fi(t+h) +Fi(t)]/2. Updating the velocity is a little tricky because we need the
force at time t+h, which depends on the particle positions at t+h. Consequently,
we must update all the particle positions and forces to t+h before we update any
velocities, while saving the forces at the earlier time for use in (16.21). As soon as
the positions are updated, we impose periodic boundary conditions to ensure that
we have not lost any particles, and then we calculate the forces.

16.3 1-D Implementation and Exercise

On the CD you will find a folder MDanimations that contains a number of 2-D
animations (movies) of solutions to the MD equations. Some frames from theseC D

animations are shown in Figure 16.3. We recommend that you look at them in order
to better visualize what the particles do during an MD simulation. In particular,
these simulations use a potential and temperature that should lead to a solid or
liquid system, and so you should see the particles binding together.

� �
/ / MD. java , Molecular Dyanmics via Lennard−Jones potent ia l , v e l o c i t y Verlet algorithm
i m p o r t j ava . io . ∗ ;
i m p o r t j ava . u t i l . ∗ ;

p u b l i c c l a s s MD {
s t a t i c i n t L , Natom = 8 , Nmax = 5 1 3 ; / / Class var iables
s t a t i c d o u b l e x [ ] = new d o u b l e [Nmax] , fx [ ] [ ] = new d o u b l e [Nmax ] [ 2 ] ;

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) throws IOException , FileNotFoundException {
i n t t1 , t2 , i , Itemp , t , Nstep =5000 , Nprint =100 , Ndim=1;
d o u b l e h = 0 . 0 0 0 4 , hover2 , PE , KE, T , T i n i t = 1 0 . 0 , vx [ ] = new d o u b l e [Nmax ] ;
L = ( i n t ) Math . pow( 1 . ∗Natom , 1 ./Ndim) ;
Natom = ( i n t ) Math . pow( L , Ndim) ;
System . out . p r i n t l n ("Natom = "+Natom+" L= "+L+"" ) ;
i = −1;
f o r ( i n t i x = 0 ; i x <= L−1; i x ++ ) { / / Set up l a t t i c e of side L

i = i +1;
x [ i ] = i x ; / / I n i t i a l v e l o c i t i e s
vx [ i ] =(Math . random ( ) +Math . random ( ) +Math . random ( ) +Math . random ( ) +Math . random ( )

+Math . random ( ) +Math . random ( ) +Math . random ( ) +Math . random ( ) +

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 433

simulating matter with molecular dynamics 433

Math . random ( ) +Math . random ( ) +Math . random ( ) ) /12. −0.5 ;
vx [ i ] = vx [ i ]∗Math . s q r t ( T i n i t ) ; / / Scale v with temperature
System . out . p r i n t l n ("in i t vx = "+vx [ i ] ) ;

}
t 1 = 0 ; t2 = 1 ; / / t , t +h indices
hover2 = h / 2 . ;
t = 0 ;
KE = 0 . 0 ; PE = 0 . 0 ; / / i n i t i a l KE & PE v
PE = Forces ( t1 , PE ) ;
f o r ( i = 0 ; i <= Natom−1; i ++ ) KE=KE+( vx [ i ]∗vx [ i ] ) /2 ;
System . out . p r i n t l n ( t +" PE= "+PE+" KE = "+KE+" PE+KE = "+(PE+KE) ) ;
f o r ( t = 1 ; t < Nstep ; t ++ ) {

f o r ( i = 0 ; i <= Natom−1; i ++ ) { / / Main loop
PE = Forces ( t1 , PE ) ; / / Velocity Verlet
x [ i ] = x [ i ] + h∗( vx [ i ] + hover2∗ fx [ i ] [ t 1 ] ) ;
i f ( x [ i ] <= 0 . ) x [ i ] = x [ i ] + L ; / / PBC
i f ( x [ i ] >= L) x [ i ] = x [ i ] − L ;

}
PE = Forces ( t2 , PE ) ;
KE = 0 . ;
f o r ( i = 0 ; i <= Natom−1; i ++) {

vx [ i ] = vx [ i ] + hover2 ∗( fx [ i ] [ t 1 ] + fx [ i ] [ t 2 ] ) ;
KE = KE + ( vx [ i ]∗vx [ i ] ) /2 ;

}
T = 2 .∗KE / ( 3 . ∗Natom) ;
i f ( t%Nprint ==0) System . out . p r i n t l n ( t +" PE ="+PE+" KE = "+KE+" PE+KE = "+(PE+KE) ) ;
Itemp = t1 ; / / Time t and t +h
t 1 = t2 ; t2 = Itemp ;
}

}
/ / Force = c l a s s var iable

p u b l i c s t a t i c d o u b l e Forces ( i n t t , d o u b l e PE ) {
i n t i , j ;
d o u b l e f i j x , r2 , invr2 =0 , dx , r2cut = 9 . ;
PE = 0 . ; / / I n i t i a l i z e
f o r ( i =0 ; i <= Natom−1; i ++) { fx [ i ] [ t ] = 0 . ; }
f o r ( i = 0 ; i <= Natom−2; i ++) {

f o r ( j = i +1; j <=Natom−1; j ++) {
dx = x [ i ]−x [ j ] ;
i f ( Math . abs ( dx ) > 0.50∗L) { dx = dx − s ign ( L , dx ) ; } / / PBC
r2 = dx∗dx ;
i f ( r2 < r2cut ) { / / Cut off

i f ( r2 == 0 . ) r2 = 0 . 0 0 0 1 ;
invr2 = 1./ r2 ;
f i j x = 4 8 .∗ ( Math . pow( invr2 , 3 ) −0.5)∗Math . pow( invr2 , 3 ) ;
f i j x = f i j x ∗ invr2∗dx ;
fx [ i ] [ t ] = fx [ i ] [ t ] + f i j x ;
fx [ j ] [ t ] = fx [ j ] [ t ] − f i j x ;
PE = PE + 4∗Math . pow( invr2 , 3 ) ∗( Math . pow( invr2 , 3 ) − 1 . ) ;

}
}

}
r e t u r n PE ;
}

p u b l i c s t a t i c d o u b l e s ign ( d o u b l e a , d o u b l e b )
{ i f ( b >= 0 . ) r e t u r n Math . abs ( a ) ; e l s e r e t u r n −Math . abs ( a ) ; }

}
�

Listing 16.1 MD.java performs a 1-D MD simulation with too small a number of large time

steps for just a few particles. To be realistic the user should change the parameters and the

number of random numbers added to form the Gaussian distribution.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 434

434 chapter 16

1.50E–19

1.00E–19

5.00E–20

0.00E+00

–5.00E–20

–1.00E–19

–1.50E–19

E
n

er
g

y 
(J

)

–2.00E–19

Time (sec)  (5000 steps)

Energy vs Time
for 36 particles in a 2D box, initialy at 150 K

2E–12 4E–12 6E–12 8E–12 1E–11 1.2E–110
2E–13 4E–13 6E–13 8E–13 1E–12 1.2E–120 1.4E–12

E
n

er
g

y 
(J

)

8.00E–19

6.00E–19

4.00E–19

2.00E–19

0.00E+00

–2.00E–19

–4.00E–19

–6.00E–19

–8.00E–19

–1.00E–18

–1.20E–18

–1.40E–18

Energy vs Time
for 300 particles 2D box, initialy at 150 k

Time (sec)  (568 steps)

Figure 16.5 The kinetic, potential, and total energy for a 2-D MD simulation with 36 particles

(left ), and 300 particles (right ), both with an initial temperature of 150 K. The potential energy

is negative, the kinetic energy is positive, and the total energy is seen to be conserved (flat).

The program MD.java implements an MD simulation in 1-D using the velocity–
Verlet algorithm. Use it as a model and do the following:

1. Ensure that you can run and visualize the 1-D simulation.
2. Place the particles initially at the sites of a face-centered-cubic (FCC) lattice,

the equilibrium configuration for a Lennard-Jones system at low temperature.
The particles will find their own ways from there. An FCC lattice has four
quarters of a particle per unit cell, so an L3 box with a lattice constant L/N
contains (parts of) 4N3 = 32, 108, 256, . . . particles.

3. To save computing time, assign initial particle velocities corresponding to a
fixed-temperature Maxwellian distribution.

4. Print the code and indicate on it which integration algorithm is used, where
the periodic boundary conditions are imposed, where the nearest image
interaction is evaluated, and where the potential is cut off.

5. A typical time step is ∆t= 10−14 s, which in our natural units equals 0.004.
You probably will need to make 104–105 such steps to equilibrate, which cor-
responds to a total time of only 10−9 s (a lot can happen to a speedy molecule
in 10−9 s). Choose the largest time step that provides stability and gives results
similar to Figure 16.5.

6. The PE and KE change with time as the system equilibrates. Even after that,
there will be fluctuations since this is a dynamic system. Evaluate the time-
averaged energies for an equilibrated system.

7. Compare the final temperature of your system to the initial temperature.
Change the initial temperature and look for a simple relation between it and
the final temperature (Figure 16.6).

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 435

simulating matter with molecular dynamics 435

0

100

200

300

F
in

al
 T

em
pe

ra
tu

re
 (

K
)

200 E-19100 E-19

Initial KE(j)

P

1

2

0
0 0.1 0.2 0.3

T

Figure 16.6 Left: The temperature after equilibration as a function of initial kinetic energy for

a simulation with 36 particles in two dimensions. Right: The pressure versus temperature for a

simulation with several hundred particles. (Courtesy of J. Wetzel.)

16.4 Trajectory Analysis

1. Modify your program so that it outputs the coordinates and velocities of some
particles throughout the simulation. Note that you do not need as many time
steps to follow a trajectory as you do to compute it and so you may want to
use the mod operator %100 for output.

2. Start your assessment with a 1-D simulation at zero temperature. The particles
should remain in place without vibration. Increase the temperature and note
how the particles begin to move about and interact.

3. Try starting off all your particles at the minima in the Lennard-Jones potential.
The particles should remain bound within the potential until you raise the
temperature.

4. Repeat the simulations for a 2-D system. The trajectories should resemble
billiard ball–like collisions.

5. Create an animation of the time-dependent locations of several particles. C D

6. Calculate and plot as a function of temperature the root-mean-square
displacement of molecules:

Rrms =
√〈

|r(t+ ∆t) − r(t)|2
〉
, (16.22)

where the average is over all the particles in the box. Verify that for a liquid
R2

rms grows linearly with time.
7. Test your system for time-reversal invariance. Stop it at a fixed time, reverse

all the velocities, and see if the system retraces its trajectories back to the
initial configuration.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 436

436 chapter 16

Figure 16.7 A simulation of a projectile shot into a group of particles. (Courtesy of J. Wetzel.)

16.5 Quiz

1. We wish to make an MD simulation by hand of the positions of particles 1
and 2 that are in a 1-D box of side 8. For an origin located at the center of the
box, the particles are initially at rest and at locations xi(0) = −x2(0) = 1. The
particles are subject to the force

F (x) =




10, for |x1 −x2| ≤ 1,

−1, for 1 ≤ |x1 −x2| ≤ 3,

0, otherwise.

(16.23)

Use a simple algorithm to determine the positions of the particles up until the
time they leave the box. Make sure to apply periodic boundary conditions.
Hint: Since the configuration is symmetric, you know the location of particle 2
by symmetry and do not need to solve for it. We suggest the Verlet algorithm
(no velocities) with a forward-difference algorithm to initialize it. To speed
things along, use a time step of h= 1/

√
2.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 437

17

PDEs for Electrostatics & Heat Flow

17.1 PDE Generalities

Physical quantities such as temperature and pressure vary continuously in both
space and time. Such being our world, the function or field U(x, y, z, t) used to
describe these quantities must contain independent space and time variations. As
time evolves, the changes inU(x, y, z, t) at any one position affect the field at neigh-
boring points. This means that the dynamic equations describing the dependence
of U on four independent variables must be written in terms of partial derivatives,
and therefore the equations must be partial differential equations (PDEs), in contrast
to ordinary differential equations (ODEs).

The most general form for a PDE with two independent variables is

A
∂2U

∂x2 + 2B
∂2U

∂x∂y
+C

∂2U

∂y2 +D
∂U

∂x
+E

∂U

∂y
= F, (17.1)

where A, B, C, and F are arbitrary functions of the variables x and y. In the table
below we define the classes of PDEs by the value of the discriminant d in the second
row [A&W 01], with the next two rows being examples:

Elliptic Parabolic Hyperbolic

d=AC −B2 > 0 d=AC −B2 = 0 d=AC −B2 < 0

∇2U(x) = −4πρ(x) ∇2U(x, t) = a ∂U/∂t ∇2U(x, t) = c−2∂2U/∂t2

Poisson’s Heat Wave

We usually think of a parabolic equation as containing a first-order derivative in
one variable and a second-order derivative in the other; a hyperbolic equation as
containing second-order derivatives of all the variables, with opposite signs when
placed on the same side of the equal sign; and an elliptic equation as containing
second-order derivatives of all the variables, with all having the same sign when
placed on the same side of the equal sign.

After solving enough problems, one often develops some physical intuition as
to whether one has sufficient boundary conditions for there to exist a unique solu-
tion for a given physical situation (this, of course, is in addition to requisite initial
conditions). For instance, a string tied at both ends and a heated bar placed in an

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 438

438 chapter 17

TABLE 17.1
The Relation Between Boundary Conditions and Uniqueness for PDEs

Boundary Elliptic Hyperbolic Parabolic
Condition (Poisson Equation) (Wave Equation) (Heat Equation)

Dirichlet open surface Underspecified Underspecified Unique and stable (1-D)

Dirichlet closed surface Unique and stable Overspecified Overspecified

Neumann open surface Underspecified Underspecified Unique and Stable (1-D)

Neumann closed surface Unique and stable Overspecified Overspecified

Cauchy open surface Nonphysical Unique and stable Overspecified

Cauchy closed surface Overspecified Overspecified Overspecified

infinite heat bath are physical situations for which the boundary conditions are
adequate. If the boundary condition is the value of the solution on a surrounding
closed surface, we have a Dirichlet boundary condition. If the boundary condition is
the value of the normal derivative on the surrounding surface, we have a Neumann
boundary condition. If the value of both the solution and its derivative are speci-
fied on a closed boundary, we have a Cauchy boundary condition. Although having
an adequate boundary condition is necessary for a unique solution, having too
many boundary conditions, for instance, both Neumann and Dirichlet, may be an
overspecification for which no solution exists.1

Solving PDEs numerically differs from solving ODEs in a number of ways. First,
because we are able to write all ODEs in a standard form,

dy(t)
dt

= f(y, t), (17.2)

with t the single independent variable, we are able to use a standard algorithm, rk4
in our case, to solve all such equations. Yet because PDEs have several independent
variables, for example, ρ(x, y, z, t), we would have to apply (17.2) simultaneously
and independently to each variable, which would be very complicated. Second,
since there are more equations to solve with PDEs than with ODEs, we need more
information than just the two initial conditions [x(0), ẋ(0)]. In addition, because each
PDE often has its own particular set of boundary conditions, we have to develop a
special algorithm for each particular problem.

1 Although conclusions drawn for exact PDEs may differ from those drawn for the finite-
difference equations, they are usually the same; in fact, Morse and Feshbach [M&F 53]
use the finite-difference form to derive the relations between boundary conditions and
uniqueness for each type of equation shown in Table 17.1 [Jack 88].

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 439

pdes for electrostatics & heat flow 439

100
100 V

0 V

50

0

0
10

20
30

0
10

y

y

X

X

V(x, y)

20
30

v

Figure 17.1 Left: The shaded region of space within a square in which we want to determine

the electric potential. There is a wire at the top kept at a constant 100V and a grounded wire

(dashed) at the sides and bottom. Right: The electric potential as a function of x and y. The

projections onto the shaded xy plane are equipotential surfaces or lines.

17.2 Unit I. Electrostatic Potentials

Your problem is to find the electric potential for all points inside the charge-free
square shown in Figure 17.1. The bottom and sides of the region are made up of
wires that are “grounded” (kept at 0 V). The top wire is connected to a battery that
keeps it at a constant 100 V.

17.2.1 Laplace’s Elliptic PDE ( Theory)

We consider the entire square in Figure 17.1 as our boundary with the voltages
prescribed upon it. If we imagine infinitesimal insulators placed at the top corners
of the box, then we will have a closed boundary within which we will solve our
problem. Since the values of the potential are given on all sides, we have Neu-
mann conditions on the boundary and, according to Table 17.1, a unique and stable
solution.

It is known from classical electrodynamics that the electric potentialU(x) arising
from static charges satisfies Poisson’s PDE [Jack 88]:

∇2U(x) = −4πρ(x), (17.3)

where ρ(x) is the charge density. In charge-free regions of space, that is, regions
where ρ(x) = 0, the potential satisfies Laplace’s equation:

∇2U(x) = 0. (17.4)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 440

440 chapter 17

Both these equations are elliptic PDEs of a form that occurs in various applications.
We solve them in 2-D rectangular coordinates:

∂2U(x, y)
∂x2 +

∂2U(x, y)
∂y2 =

{
0, Laplace’s equation,

−4πρ(x), Poisson’s equation.
(17.5)

In both cases we see that the potential depends simultaneously on x and y. For
Laplace’s equation, the charges, which are the source of the field, enter indirectly
by specifying the potential values in some region of space; for Poisson’s equation
they enter directly.

17.3 Fourier Series Solution of a PDE

For the simple geometry of Figure 17.1 an analytic solution of Laplace’s equation

∂2U(x, y)
∂x2 +

∂2U(x, y)
∂y2 = 0 (17.6)

exists in the form of an infinite series. If we assume that the solution is the product of
independent functions of x and y and substitute the product into (17.6), we obtain

U(x, y) =X(x)Y (y) ⇒ d2X(x)/dx2

X(x)
+
d2Y (y)/dy2

Y (y)
= 0. (17.7)

Because X(x) is a function of only x, and Y (y) of only y, the derivatives in (17.7)
are ordinary as opposed to partial derivatives. Since X(x) and Y (y) are assumed to
be independent, the only way (17.7) can be valid for all values of x and y is for each
term in (17.7) to be equal to a constant:

d2Y (y)/dy2

Y (y)
=−d2X(x)/dx2

X(x)
= k2, (17.8)

⇒ d2X(x)
dx2 + k2X(x) = 0,

d2Y (y)
dy2 − k2Y (y) = 0. (17.9)

We shall see that this choice of sign for the constant matches the boundary con-
ditions and gives us periodic behavior in x. The other choice of sign would give
periodic behavior in y, and that would not work with these boundary conditions.

The solutions for X(x) are periodic, and those for Y (y) are exponential:

X(x) =A sin kx+B cos kx, Y (y) = Ceky +De−ky. (17.10)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 441

pdes for electrostatics & heat flow 441

The x= 0 boundary condition U(x= 0, y) = 0 can be met only if B = 0. The x= L
boundary condition U(x= L, y) = 0 can be met only for

kL= nπ, n= 1, 2, . . . . (17.11)

Such being the case, for each value of n there is the solution

Xn(x) =An sin
(nπ
L
x
)
. (17.12)

For each value of kn that satisfies the x boundary conditions, Y (y) must satisfy the
y boundary condition U(x, 0) = 0, which requires D = −C:

Yn(y) = C(ekny − e−kny) ≡ 2C sinh
(nπ
L
y
)
. (17.13)

Because we are solving linear equations, the principle of linear superposition holds,
which means that the most general solution is the sum of the products:

U(x, y) =
∞∑

n=1

En sin
(nπ
L
x
)

sinh
(nπ
L
y
)
. (17.14)

The En values are arbitrary constants and are fixed by requiring the solution to
satisfy the remaining boundary condition at y = L, U(x, y = L) = 100 V:

∞∑
n=1

En sin
nπ

L
x sinhnπ = 100 V. (17.15)

We determine the constants En by projection: Multiply both sides of the equation
by sinmπ/Lx, with m an integer, and integrate from 0 to L:

∞∑
n

En sinhnπ
∫ L

0
dx sin

nπ

L
x sin

mπ

L
x=

∫ L

0
dx 100 sin

mπ

L
x. (17.16)

The integral on the LHS is nonzero only for n=m, which yields

En =

{
0, for n even,

4(100)
nπ sinh nπ , for n odd.

(17.17)

Finally, we obtain the potential at any point (x, y) as

U(x, y) =
∞∑

n=1,3,5,...

400
nπ

sin
(nπx
L

) sinh(nπy/L)
sinh(nπ)

. (17.18)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 442

442 chapter 17

0

20

0

20

40

0

100

x y

V(x, y)

Figure 17.2 The analytic (Fourier series) solution of Laplace’s equation showing

Gibbs-overshoot oscillations near x = 0. The solution shown here uses 21 terms, yet the

oscillations remain even if a large number of terms is summed.

17.3.1 Polynomial Expansion As an Algorithm

It is worth pointing out that even though a product of separate functions of x and y
is an acceptable form for a solution to Laplace’s equation, this does not mean that
the solution to realistic problems will have this form. Indeed, a realistic solution
can be expressed as an infinite sum of such products, but the sum is no longer
separable. Worse than that, as an algorithm, we must stop the sum at some point,
yet the series converges so painfully slowly that many terms are needed, and so
round-off error may become a problem. In addition, the sinh functions in (17.18)
overflow for large n, which can be avoided somewhat by expressing the quotient
of the two sinh functions in terms of exponentials and then taking a large n limit:

sinh(nπy/L)
sinh(nπ)

=
enπ(y/L−1) − e−nπ(y/L+1)

1 − e−2nπ
→ enπ(y/L−1). (17.19)

A third problem with the “analytic” solution is that a Fourier series converges
only in the mean square (Figure 17.2). This means that it converges to the average of
the left- and right-hand limits in the regions where the solution is discontinuous
[Krey 98], such as in the corners of the box. Explicitly, what you see in Figure 17.2
is a phenomenon known as the Gibbs overshoot that occurs when a Fourier series
with a finite number of terms is used to represent a discontinuous function. Rather

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 443

pdes for electrostatics & heat flow 443

i, j+1

i-1, j

i, j-1

i, j i+1, j

y

x

Figure 17.3 The algorithm for Laplace’s equation in which the potential at the point

(x, y) = (i, j)∆ equals the average of the potential values at the four nearest-neighbor points.

The nodes with white centers correspond to fixed values of the potential along the

boundaries.

than fall off abruptly, the series develops large oscillations that tend to overshoot
the function at the corner. To obtain a smooth solution, we had to sum 40,000 terms,
where, in contrast, the numerical solution required only hundreds of iterations.

17.4 Solution: Finite-Difference Method

To solve our 2-D PDE numerically, we divide space up into a lattice (Figure 17.3)
and solve for U at each site on the lattice. Since we will express derivatives in
terms of the finite differences in the values of U at the lattice sites, this is called
a finite-difference method. A numerically more efficient, but also more complicated
approach, is the finite-element method (Unit II), which solves the PDE for small
geometric elements and then matches the elements.

To derive the finite-difference algorithm for the numeric solution of (17.5), we
follow the same path taken in § 7.1 to derive the forward-difference algorithm for
differentiation. We start by adding the two Taylor expansions of the potential to
the right and left of (x, y) and above and below (x, y):

U(x+ ∆x, y) =U(x, y) +
∂U

∂x
∆x+

1
2
∂2U

∂x2 (∆x)2 + · · · , (17.20)

U(x−∆x, y) =U(x, y) − ∂U

∂x
∆x+

1
2
∂2U

∂x2 (∆x)2 − · · · . (17.21)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 444

444 chapter 17

All odd terms cancel when we add these equations, and we obtain a central-
difference approximation for the second partial derivative good to order ∆4:

∂2U(x, y)
∂x2 � U(x+ ∆x, y) +U(x−∆x, y) − 2U(x, y)

(∆x)2
, (17.22)

∂2U(x, y)
∂y2 � U(x, y+ ∆y) +U(x, y−∆y) − 2U(x, y)

(∆y)2
. (17.23)

Substituting both these approximations in Poisson’s equation (17.5) leads to a finite-
difference form of the PDE:

U(x+ ∆x, y) +U(x−∆x, y) − 2U(x, y)
(∆x)2

+
U(x, y+ ∆y) +U(x, y−∆y) − 2U(x, y)

(∆y)2
= −4πρ.

We assume that the x and y grids are of equal spacings ∆x= ∆y = ∆, and so the
algorithm takes the simple form

U(x+ ∆, y) +U(x−∆, y) +U(x, y+ ∆) +U(x, y−∆) − 4U(x, y) = −4πρ.
(17.24)

The reader will notice that this equation shows a relation among the solutions at
five points in space. When U(x, y) is evaluated for the Nx x values on the lattice
and for the Ny y values, we obtain a set of Nx ×Ny simultaneous linear algebraic
equations for U[i][j] to solve. One approach is to solve these equations explicitly as
a (big) matrix problem. This is attractive, as it is a direct solution, but it requires
a great deal of memory and accounting. The approach we follow here is based on
the algebraic solution of (17.24) for U(x, y):

U(x, y) � 1
4

[U(x+ ∆, y) +U(x−∆, y) +U(x, y+ ∆) +U(x, y−∆)]

+πρ(x, y)∆2, (17.25)

where we would omit the ρ(x) term for Laplace’s equation. In terms of discrete
locations on our lattice, the x and y variables are

x= x0 + i∆, y = y0 + j∆, i, j = 0, . . . , Nmax-1, (17.26)

where we have placed our lattice in a square of side L. The finite-difference
algorithm (17.25) becomes

Ui,j =
1
4

[Ui+1,j +Ui−1,j +Ui,j+1 +Ui,j−1] +πρ(i∆, j∆)∆2. (17.27)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 445

pdes for electrostatics & heat flow 445

This equation says that when we have a proper solution, it will be the average of
the potential at the four nearest neighbors (Figure 17.3) plus a contribution from
the local charge density. As an algorithm, (17.27) does not provide a direct solution
to Poisson’s equation but rather must be repeated many times to converge upon
the solution. We start with an initial guess for the potential, improve it by sweeping
through all space taking the average over nearest neighbors at each node, and keep
repeating the process until the solution no longer changes to some level of precision
or until failure is evident. When converged, the initial guess is said to have relaxed
into the solution.

Areasonable question with this simple an approach is, “Does it always converge,
and if so, does it converge fast enough to be useful?” In some sense the answer to
the first question is not an issue; if the method does not converge, then we will
know it; otherwise we have ended up with a solution and the path we followed
to get there does not matter! The answer to the question of speed is that relaxation
methods may converge slowly (although still faster than a Fourier series), yet we
will show you two clever tricks to accelerate the convergence.

At this point it is important to remember that our algorithm arose from express-
ing the Laplacian ∇2 in rectangular coordinates. While this does not restrict us
from solving problems with circular symmetry, there may be geometries where it
is better to develop an algorithm based on expressing the Laplacian in cylindrical
or spherical coordinates in order to have grids that fit the geometry better.

17.4.1 Relaxation and Overrelaxation

There are a number of ways in which the algorithm (17.25) can be iterated so
as to convert the boundary conditions to a solution. Its most basic form is the
Jacobi method and is one in which the potential values are not changed until an
entire sweep of applying (17.25) at each point is completed. This maintains the
symmetry of the initial guess and boundary conditions. A rather obvious improve-
ment on the Jacobi method employs the updated guesses for the potential in
(17.25) as soon as they are available. As a case in point, if the sweep starts in
the upper-left-hand corner of Figure 17.3, then the leftmost (i –1, j) and top-
most (i, j – 1) values of the potential used will be from the present generation of
guesses, while the other two values of the potential will be from the previous
generation:

U
(new)
i,j =

1
4

[
U

(old)
i+1,j +U

(new)
i−1,j +U

(old)
i,j+1 +U

(new)
i,j−1

]
(Gauss–Seidel method) (17.28)

This technique, known as the Gauss–Seidel (GS) method, usually leads to accelerated
convergence, which in turn leads to less round-off error. It also uses less memory
as there is no need to store two generations of guesses. However, it does distort
the symmetry of the boundary conditions, which one hopes is insignificant when
convergence is reached.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 446

446 chapter 17

A less obvious improvement in the relaxation technique, known as successive
overrelaxation (SOR), starts by writing the algorithm (17.25) in a form that
determines the new values of the potential U (new) as the old values U (old) plus
a correction or residual r:

U
(new)
i,j = U

(old)
i,j + ri,j . (17.29)

While the Gauss–Seidel technique may still be used to incorporate the updated
values in U (old) to determine r, we rewrite the algorithm here in the general form:

ri,j ≡U
(new)
i,j −U

(old)
i,j

=
1
4

[
U

(old)
i+1,j +U

(new)
i−1,j +U

(old)
i,j+1 +U

(new)
i,j−1

]
−U

(old)
i,j . (17.30)

The successive overrelaxation technique [Pres 94, Gar 00] proposes that if conver-
gence is obtained by adding r to U , then even more rapid convergence might be
obtained by adding more or less of r:

U
(new)
i,j = U

(old)
i,j +ωri,j , (SOR), (17.31)

where ω is a parameter that amplifies or reduces the residual. The nonaccelerated
relaxation algorithm (17.28) is obtained with ω = 1, accelerated convergence (over-
relaxation) is obtained with ω ≥ 1, and underrelaxation is obtained with ω < 1.
Values of 1 ≤ ω ≤ 2 often work well, yet ω > 2 may lead to numerical instabilities.
Although a detailed analysis of the algorithm is needed to predict the optimal value
for ω, we suggest that you explore different values for ω to see which one works
best for your particular problem.

17.4.2 Lattice PDE Implementation

In Listing 17.1 we present the code LaplaceLine.java that solves the square-wire
problem (Figure 17.1). Here we have kept the code simple by setting the length of
the box L=Nmax∆ = 100 and by taking ∆ = 1:

U(i,Nmax) = 99 (top), U(1, j) = 0 (left),

U(Nmax, j) = 0 (right), U(i, 1) = 0 (bottom),
(17.32)

We run the algorithm (17.27) for a fixed 1000 iterations. A better code would vary ∆
and the dimensions and would quit iterating once the solution converges to some
tolerance. Study, compile, and execute the basic code.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 447

pdes for electrostatics & heat flow 447

� �
/∗ LaplaceLine . java : Laplace eqn via f i n i t e dif ference mthd

wire in a grounded box , Output for 3D gnuplot ∗ /
i m p o r t j ava . io . ∗ ;

p u b l i c c l a s s LaplaceLine {
s t a t i c i n t Nmax = 1 0 0 ; / / Size of box

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) throws IOException , FileNotFoundException {
d o u b l e V [ ] [ ] = new d o u b l e [Nmax] [Nmax ] ;
i n t i , j , i t e r ;
Pr i n t W r i t e r w = new Pr i n t W r i t e r ( new FileOutputStream ("LaplaceLine . dat" ) , t r u e ) ;
f o r ( i =0 ; i <Nmax; i ++) f o r ( j =0 ; j <Nmax; j ++) V[ i ] [ j ] = 0 . ; / / I n i t i a l i z e
f o r ( i =0 ; i < Nmax; i ++ ) V[ i ] [ 0 ] = 1 0 0 . ; / / V[ i ] [ 0 ] = 100 V
f o r ( i t e r =0; i t e r < 1 0 0 0 ; i t e r ++ ) { / / I t e r a t i o n s

f o r ( i =1 ; i < (Nmax−1) ; i ++ ) { / / x−d i r e c t i o n
f o r ( j =1 ; j < (Nmax−1) ; j ++ ) / / y−d i r e c t i o n

{ V[ i ] [ j ] = (V[ i + 1 ] [ j ] + V[ i −1][ j ] + V[ i ] [ j +1] + V[ i ] [ j −1]) / 4 . ; }
}

}
f o r ( i =0 ; i < Nmax ; i = i + 2) { / / Data in gnuplot format

f o r ( j =0 ; j < Nmax; j = j + 2) {w. p r i n t l n ("" + V[ i ] [ j ] + "" ) ; }
w. p r i n t l n ("" ) ; / / Blank l ine separates rows for gnuplot

}
System . out . p r i n t l n ("data stored in LaplaceLine . dat" ) ;

} } / / End main , c l a s s
�

Listing 17.1 LaplaceLine.java solves Laplace’s equation via relaxation. The various

parameters need to be adjusted for an accurate solution.

17.5 Assessment via Surface Plot

After executing LaplaceLine.java, you should have a file with data in a format
appropriate for a surface plot like Figure 17.1. Seeing that it is important to visualize
your output to ensure the reasonableness of the solution, you should learn how to
make such a plot before exploring more interesting problems. The 3-D surface plots
we show in this chapter were made with both gnuplot and OpenDX (Appendix C).
Below we repeat the commands used for Gnuplot with the produced output
file:

> gnuplot Start Gnuplot system from a shell
gnuplot> set hidden3d Hide surface whose view is blocked
gnuplot> set unhidden3d Show surface though hidden from view
gnuplot> splot ‘Laplace.dat’ with lines Surface plot of Laplace.dat with lines
gnuplot> set view 65,45 Set x and y rotation viewing angles
gnuplot> replot See effect of your change
gnuplot> set contour Project contours onto xy plane
gnuplot> set cntrparam levels 10 10 contour levels
gnuplot> set terminal PostScript Output in PostScript format for printing
gnuplot> set output "Laplace.ps" Output to file Laplace.ps
gnuplot> splot ‘Laplace.dat’ w l Plot again, output to file
gnuplot> set terminal x11 To see output on screen again

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 448

448 chapter 17

gnuplot> set title ‘Potential V(x,y) vs x,y’ Title graph
gnuplot> set xlabel ‘x Position’ Label x axis
gnuplot> set ylabel ‘y Position’ Label y axis
gnuplot> set zlabel ‘V(x,y)’; replot Label z axis and replot
gnuplot> help Tell me more
gnuplot> set nosurface Do not draw surface; leave contours
gnuplot> set view 0, 0, 1 Look down directly onto base
gnuplot> replot Draw plot again; may want to write to file
gnuplot> quit Get out of Gnuplot

Here we have explicitly stated the viewing angle for the surface plot. Because
Gnuplot 4 and later versions permit you to rotate surface plots interactively, we
recommend that you do just that to find the best viewing angle. Changes made
to a plot are seen when you redraw the plot using the replot command. For this
sample session the default output for your graph is your terminal screen. To print
a paper copy of your graph we recommend first saving it to a file as a PostScript
document (suffix .ps) and then printing out that file to a PostScript printer. You
create the PostScript file by changing the terminal type to Postscript, setting the
name of the file, and then issuing the subcommand splot again. This plots the
result out to a file. If you want to see plots on your screen again, set the ter-
minal type back to x11 again (for Unix’s X Windows System) and then plot it
again.

17.6 Alternate Capacitor Problems

We give you (or your instructor) a choice now. You can carry out the assessment
using our wire-plus-grounded-box problem, or you can replace that problem with a
more interesting one involving a realistic capacitor or nonplanar capacitors. We now
describe the capacitor problem and then move on to the assessment and exploration.

Elementary textbooks solve the capacitor problem for the uniform field confined
between two infinite plates. The field in a finite capacitor varies near the edges
(edge effects) and extends beyond the edges of the capacitor (fringe fields). We
model the realistic capacitor in a grounded box (Figure 17.4) as two plates (wires)
of finite length. Write your simulation such that it is convenient to vary the grid
spacing ∆ and the geometry of the box and plate. We pose three versions of this
problem, each displaying somewhat different physics. In each case the boundary
condition V = 0 on the surrounding box must be imposed for all iterations in order
to obtain a unique solution.

1. For the simplest version, assume that the plates are very thin sheets of con-
ductors, with the top plate maintained at 100 V and the bottom at −100 V.
Because the plates are conductors, they must be equipotential surfaces,
and a battery can maintain them at constant voltages. Write or modify the

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 449

pdes for electrostatics & heat flow 449

100 V

–100 V
(X, Y)

d

w

L

L

0
20

40
60

80
100 0

20
40

60
80

100

–100

0

100

100
80
60
40
20

0
-20
-40
-60
-80

V(x, y)

xy

Figure 17.4 Left: A simple model of a parallel-plate capacitor within a box. A realistic model

would have the plates close together, in order to condense the field, and the enclosing

grounded box so large that it has no effect on the field near the capacitor. Right: A numerical

solution for the electric potential for this geometry. The projection on the xy plane gives the

equipotential lines.

+ + + + + + + + + + + + + + + + + + + + +

− − − − − − − − − − − − − − − − − − − − −

+
+ +

−  −

+
+ 

− −−

100 V

-100V

Figure 17.5 A guess as to how charge may rearrange itself on finite conducting plates.

given program to solve Laplace’s equation such that the plates have fixed
voltages.

2. For the next version of this problem, assume that the plates are composed of a
line of dielectric material with uniform charge densitiesρon the top and −ρon
the bottom. Solve Poisson’s equation (17.3) in the region including the plates,
and Laplace’s equation elsewhere. Experiment until you find a numerical
value for ρ that gives a potential similar to that shown in Figure 17.6 for
plates with fixed voltages.

3. For the final version of this problem investigate how the charges on a capacitor
with finite-thickness conducting plates (Figure 17.5) distribute themselves.
Since the plates are conductors, they are still equipotential surfaces at 100
and −100 V, only now they have a thickness of at least 2∆ (so we can see

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 450

450 chapter 17

the difference between the potential near the top and the bottom surfaces
of the plates). Such being the case, we solve Laplace’s equation (17.4) much
as before to determine U(x, y). Once we have U(x, y), we substitute it into
Poisson’s equation (17.3) and determine how the charge density distributes
itself along the top and bottom surfaces of the plates. Hint: Since the elec-
tric field is no longer uniform, we know that the charge distribution also
will no longer be uniform. In addition, since the electric field now extends
beyond the ends of the capacitor and since field lines begin and end on
charge, some charge may end up on the edges and outer surfaces of the plates
(Figure 17.4).

4. The numerical solution to our PDE can be applied to arbitrary bound-
ary conditions. Two boundary conditions to explore are triangular and
sinusoidal:

U(x) =




200x/w, for x≤ w/2,

100(1 −x/w), for x≥ w/2,
U(x) = 100 sin

(
2πx
w

)
.

5. Square conductors: You have designed a piece of equipment consisting of
a small metal box at 100 V within a larger grounded one (Figure 17.8). You
find that sparking occurs between the boxes, which means that the electric
field is too large. You need to determine where the field is greatest so that you
can change the geometry and eliminate the sparking. Modify the program
to satisfy these boundary conditions and to determine the field between the
boxes. Gauss’s law tells us that the field vanishes within the inner box because
it contains no charge. Plot the potential and equipotential surfaces and sketch
in the electric field lines. Deduce where the electric field is most intense and
try redesigning the equipment to reduce the field.

6. Cracked cylindrical capacitor: You have designed the cylindrical capacitor
containing a long outer cylinder surrounding a thin inner cylinder (Figure 17.8
right). The cylinders have a small crack in them in order to connect them to
the battery that maintains the inner cylinder at −100 V and outer cylinder at
100 V. Determine how this small crack affects the field configuration. In order
for a unique solution to exist for this problem, place both cylinders within a
large grounded box. Note that since our algorithm is based on expansion of
the Laplacian in rectangular coordinates, you cannot just convert it to a radial
and angle grid.

17.7 Implementation and Assessment

1. Write or modify the CD program to find the electric potential for a capacitor
within a grounded box. Use the labeling scheme on the left in Figure 17.4.

2. To start, have your program undertake 1000 iterations and then quit. During
debugging, examine how the potential changes in some key locations as you
iterate toward a solution.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 451

pdes for electrostatics & heat flow 451

0 10 20 30 40
0

10
20

30
40

–100

0

100 V(x, y)

x
y

Figure 17.6 Left: A Gnuplot visualization of the computed electric potential for a capacitor

with finite width plates. Right: An OpenDX visualization of the charge distribution along one

plate determined by evaluating ∇2V(x, y) (courtesy of J. Wetzel). Note the “lightening rod”

effect of charge accumulating at corners and points.

3. Repeat the process for different step sizes ∆ and draw conclusions regarding
the stability and accuracy of the solution.

4. Once your program produces reasonable solutions, modify it so that it
stops iterating after convergence is reached, or if the number of itera-
tions becomes too large. Rather than trying to discern small changes in
highly compressed surface plots, use a numerical measure of precision,
for example,

trace =
∑

i

|V[i][i]|,

which samples the solution along the diagonal. Remember, this is a simple
algorithm and so may require many iterations for high precision. You should
be able to obtain changes in the trace that are less than 1 part in 104. (The
break command or a while loop is useful for this type of test.)

5. Equation (17.31) expresses the successive overrelaxation technique in which
convergence is accelerated by using a judicious choice of ω. Determine by
trial and error the approximate best value of ω. You will be able to double the
speed.

6. Now that the code is accurate, modify it to simulate a more realistic capac-
itor in which the plate separation is approximately 1

10 of the plate length.
You should find the field more condensed and more uniform between the
plates.

7. If you are working with the wire-in-the-box problem, compare your numer-
ical solution to the analytic one (17.18). Do not be surprised if you need to
sum thousands of terms before the analytic solution converges!

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 452

452 chapter 17

17.8 Electric Field Visualization (Exploration)

Plot the equipotential surfaces on a separate 2-D plot. Start with a crude, hand-C D

drawn sketch of the electric field by drawing curves orthogonal to the equipotential
lines, beginning and ending on the boundaries (where the charges lie). The regions
of high density are regions of high electric field. Physics tells us that the electric
field E is the negative gradient of the potential:

E = −∇U(x, y) = −∂U(x, y)
∂x

ε̂x − ∂U(x, y)
∂y

ε̂y, (17.33)

where ε̂i is a unit vector in the i direction. While at first it may seem that some work
is involved in determining these derivatives, once you have a solution for U(x, y)
on a grid, it is simple to use the central-difference approximation for the derivative
to determine the field, for example:

Ex � U(x+ ∆, y) −U(x−∆, y)
2∆

=
Ui+1,j −Ui−1,j

2∆
. (17.34)

Once you have a data file representing such a vector field, it can be visualized by
plotting arrows of varying lengths and directions, or with just lines (Figure 17.7).
This is possible in Maple and Mathematica [L 05] or with vectors style in
Gnuplot2. where N is a normalization factor.

17.9 Laplace Quiz

You are given a simple Laplace-type equation

∂u

∂x
+
∂u

∂y
= −ρ(x, y),

where x and y are Cartesian spatial coordinates and ρ(x, y) is the charge density in
space.

1. Develop a simple algorithm that will permit you to solve for the potential
u between two square conductors kept at fixed u, with a charge density ρ
between them.

2. Make a simple sketch that shows with arrows how your algorithm works.
3. Make sure to specify how you start and terminate the algorithm.

2 The Gnuplot command plot "Laplace_field.dat" using 1:2:3:4 with Vectors plots variable-
length arrows at (x, y) with components Dx ∝ Ex and Dy ∝ Ey. You determine empirically
what scale factor gives you the best visualization (nonoverlapping arrows). Accordingly,
you output data lines of the form (x, y, Ex/N, Ey/N)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 453

pdes for electrostatics & heat flow 453

Figure 17.7 Left: Computed equipotential surfaces and electric field lines for a realistic

capacitor. Right: Equipotential surfaces and electric field lines mapped onto the surface for a

3-D capacitor constructed from two tori (see OpenDX in Appendix C).

Figure 17.8 Left: The geometry of a capacitor formed by placing two long, square cylinders

within each other. Right: The geometry of a capacitor formed by placing two long, circular

cylinders within each other. The cylinders are cracked on the side so that wires can enter the

region.

4. Thinking outside the box�: Find the electric potential for all points outside
the charge-free square shown in Figure 17.1. Is your solution unique?

17.10 Unit II. Finite-Element Method �
In this unit we solve a simpler problem than the one in Unit I (1-D rather than 2-D),
but we do it with a less simple algorithm (finite element). Our usual approach to PDEs
in this text uses finite differences to approximate various derivatives in terms of the
finite differences of a function evaluated upon a fixed grid. The finite-element method

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 454

454 chapter 17

element

node X0

Ua

Ub

X = a

X = b
XN

Figure 17.9 Two metal plates with a charge density between them. The dots are the nodes xi,

and the lines connecting the nodes are the finite elements.

(FEM), in contrast, breaks space up into multiple geometric objects (elements), deter-
mines an approximate form for the solution appropriate to each element, and then
matches the solutions up at the domain edges.

The theory and practice of FEM as a numerical method for solving partial differen-
tial equations have been developed over the last 30 years and still provide an active
field of research. One of the theoretical strengths of FEM is that its mathematical
foundations allow for elegant proofs of the convergence of solutions to many deli-
cate problems. One of the practical strengths of FEM is that it offers great flexibility
for problems on irregular domains or highly varying coefficients or singularities.
Although finite differences are simpler to implement than FEM, they are less robust
mathematically and less efficient in terms of computer time for big problems. Finite
elements in turn are more complicated to implement but more appropriate and pre-
cise for complicated equations and complicated geometries. In addition, the same
basic finite-element technique can be applied to many problems with only minor
modifications and yields solutions that may be evaluated for any value of x, not just
those on a grid. In fact, the finite-elements method with various preprogrammed
multigrid packages has very much become the standard for large-scale practical
applications. Our discussion is based upon [Shaw 92, Li, Otto].

17.11 Electric Field from Charge Density (Problem)

You are given two conducting plates a distance b− a apart, with the lower one
kept at potential Ua, the upper plate at potential Ub, and a uniform charge density
ρ(x) placed between them (Figure 17.9). Your problem is to compute the electric
potential between the plates.

17.12 Analytic Solution

The relation between charge density ρ(x) and potential U(x) is given by Poisson’s
equation (17.5). For our problem, the potential U changes only in the x direction,

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 455

pdes for electrostatics & heat flow 455

and so the PDE becomes the ODE:

d2U(x)
dx2 = −4πρ(x) = −1, 0< x < 1, (17.35)

where we have set ρ(x) = 1/4π to simplify the programming. The solution we want
is subject to the Dirichlet boundary conditions:

U(x= a= 0) = 0, U(x= b= 1) = 1, (17.36)

⇒ U(x) = −x

2
(x− 3). (17.37)

Although we know the analytic solution, we shall develop the finite-element
method for solving the ODE as if it were a PDE (it would be in 2-D) and as if
we did not know the solution. Although we will not demonstrate it, this method
works equally well for any charge density ρ(x).

17.13 Finite-Element (Not Difference) Methods

In a finite-element method, the domain in which the PDE is solved is split into finite
subdomains, called elements, and a trial solution to the PDE in each subdomain is
hypothesized. Then the parameters of the trial solution are adjusted to obtain a best
fit (in the sense of Chapter 8, “Solving Systems of Equations with Matrices; Data
Fitting”) to the exact solution. The numerically intensive work is in finding the best
values for these parameters and in matching the trial solutions for the different
subdomains. A FEM solution follows six basic steps [Li]:

1. Derivation of a weak form of the PDE. This is equivalent to a least-squares
minimization of the integral of the difference between the approximate and
exact solutions.

2. Discretization of the computational domains.
3. Generation of interpolating or trial functions.
4. Assembly of the stiffness matrix and load vector.
5. Implementation of the boundary conditions.
6. Solution of the resulting linear system of equations.

17.13.1 Weak Form of PDE

Finite-difference methods look for an approximate solution of an approximate PDE.
Finite-element methods strive to obtain the best possible global agreement of an

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 456

456 chapter 17

approximate trial solution with the exact solution. We start with the differential
equation

−d2U(x)
dx2 = 4πρ(x). (17.38)

A measure of overall agreement must involve the solution U(x) over some region
of space, such as the integral of the trial solution. We can obtain such a measure
by converting the differential equation (17.38) to its equivalent integral or weak
form. We assume that we have an approximate or trial solution Φ(x) that vanishes
at the endpoints, Φ(a) = Φ(b) = 0 (we satisfy the boundary conditions later). We
next multiply both sides of the differential equation (17.38) by Φ:

−d2U(x)
dx2 Φ(x) = 4πρ(x)Φ(x). (17.39)

Next we integrate (17.39) by parts from a to b:

−
∫ b

a

dx
d2U(x)
dx2 Φ(x) =

∫ b

a

dx 4πρ(x) Φ(x), (17.40)

−dU(x)
dx

Φ(x) |ba +
∫ b

a

dx
dU(x)
dx

Φ′(x) =
∫ b

a

dx 4πρ(x) Φ(x),

⇒
∫ b

a

dx
dU(x)
dx

Φ′(x) =
∫ b

a

dx 4πρ(x) Φ(x). (17.41)

Equation (17.41) is the weak form of the PDE. The unknown exact solution U(x)
and the trial function Φ are still to be specified. Because the approximate and exact
solutions are related by the integral of their difference over the entire domain, the
solution provides a global best fit to the exact solution.

17.13.2 Galerkin Spectral Decomposition

The approximate solution to a weak PDE is found via a stepwise procedure. We
split the full domain of the PDE into subdomains called elements, find approximate
solutions within each element, and then match the elemental solutions onto each
other. For our 1-D problem the subdomain elements are straight lines of equal
length, while for a 2-D problem, the elements can be parallelograms or triangles
(Figure 17.9). Although life is simpler if all the finite elements are the same size,
this is not necessary. Indeed, higher precision and faster run times may be obtained
by picking small domains in regions where the solution is known to vary rapidly,
and picking large domains in regions of slow variation.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 457

pdes for electrostatics & heat flow 457

x0 x1 xN-1. . .

10 N. . .

Figure 17.10 Left: A set of overlapping basis functions φi. Each function is a triangle from xi−1

to xi+1. Middle: A Piecewise-linear function. Right: A piecewise-quadratic function.

The critical step in the finite-element method is expansion of the trial solution U
in terms of a set of basis functions φi:

U(x) �
N−1∑
j=0

αjφj(x). (17.42)

We choseφi’s that are convenient to compute with and then determine the unknown
expansion coefficients αj . Even if the basis functions are not sines or cosines, this
expansion is still called a spectral decomposition. In order to satisfy the boundary
conditions, we will later add another term to the expansion. Considerable study
has gone into the effectiveness of different basis functions. If the sizes of the finite
elements are made sufficiently small, then good accuracy is obtained with simple
piecewise-continuous basis functions, such as the triangles in Figure 17.10. Specifi-
cally, we use basis functions φi that form a triangle or “hat” between xi−1 and xi+1
and equal 1 at xi:

φi(x) =




0, for x < xi−1, or x > xi+1,
x−xi−1

hi−1
, for xi−1 ≤ x≤ xi,

xi+1−x
hi

, for xi ≤ x≤ xi+1,

(hi = xi+1 −xi). (17.43)

Because we have chosenφi(xi) = 1, the values of the expansion coefficientsαi equal
the values of the (still-to-be-determined) solution at the nodes:

U(xi) �
N−1∑
i=0

αiφi(xi) = αiφi(xi) = αi, (17.44)

⇒ U(x) �
N−1∑
j=0

U(xj)φj(x). (17.45)

Consequently, you can think of the hat functions as linear interpolations between
the solution at the nodes.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 458

458 chapter 17

17.13.2.1 SOLUTION VIA LINEAR EQUATIONS

Because the basis functions φi in (17.42) are known, solving for U(x) involves
determining the coefficients αj , which are just the unknown values of U(x) on the
nodes. We determine those values by substituting the expansions for U(x) and
Φ(x) into the weak form of the PDE (17.41) and thereby convert them to a set of
simultaneous linear equations (in the standard matrix form):

Ay = b. (17.46)

We substitute the expansion U(x) �∑N−1
j=0 αjφj(x) into the weak form (17.41):

∫ b

a

dx
d

dx


N−1∑

j=0

αjφj(x)


 dΦ
dx

=
∫ b

a

dx4πρ(x)Φ(x).

By successively selecting Φ(x) = φ0, φ1, . . . , φN−1, we obtainN simultaneous linear
equations for the unknown αj ’s:

∫ b

a

dx
d

dx


N−1∑

j=0

αjφj(x)


 dφi

dx
=
∫ b

a

dx 4πρ(x)φi(x), i= 0, . . . , N − 1. (17.47)

We factor out the unknown αj ’s and write out the equations explicitly:

α0

∫ b

a

φ′
0φ

′
0 dx+α1

∫ b

a

φ′
0φ

′
1 dx+ · · ·+αN−1

∫ b

a

φ′
0φ

′
N−1 dx=

∫ b

a

4πρφ0 dx,

α0

∫ b

a

φ′
1φ

′
0 dx+α1

∫ b

a

φ′
1φ

′
1 dx+ · · ·+αN−1

∫ b

a

φ′
1φ

′
N−1 dx=

∫ b

a

4πρφ1 dx,

. . .

α0

∫ b

a

φ′
N−1φ

′
0 dx+α1

∫
· · ·+αN−1

∫ b

a

φ′
N−1φ

′
N−1 dx=

∫ b

a

4πρφN−1 dx.

Because we have chosen the φi’s to be the simple hat functions, the derivatives are
easy to evaluate analytically (otherwise they can be done numerically):

dφi,i+1

dx
=




0, x < xi−1, or xi+1 < x,

1
hi−1

, xi−1 ≤ x≤ xi,

−1
hi
, xi ≤ x≤ xi+1,




0, x < xi, or xi+2 < x

1
hi
, xi ≤ x≤ xi+1,

−1
hi+1

, xi+1 ≤ x≤ xi+2.

(17.48)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 459

pdes for electrostatics & heat flow 459

The integrals to evaluate are

∫ xi+1

xi−1

dx(φ
′
i)

2 =
∫ xi

xi−1

dx
1

(hi−1)2
+
∫ xi+1

xi

dx
1
h2

i

=
1

hi−1
+

1
hi
,

∫ xi+1

xi−1

dxφ
′
iφ

′
i+1 =

∫ xi+1

xi−1

dxφ
′
i+1φ

′
i =
∫ xi+1

xi

dx
−1
h2

i

= − 1
hi
,

∫ xi+1

xi−1

dx (φ
′
i+1)

2 =
∫ xi+1

xi

dx (φ
′
i+1)

2 =
∫ xi+1

xi

dx
+1
h2

i

= +
1
hi
.

We rewrite these equations in the standard matrix form (17.46) with y constructed
from the unknown αj ’s, and the tridiagonal stiffness matrix A constructed from
the integrals over the derivatives:

y =




α0

α1

. . .

αN−1


 , b =




∫ x1

x0
dx 4πρ(x)φ0(x)∫ x2

x1
dx 4πρ(x)φ1(x)

. . .∫ xN

xN−1
dx4πρ(x)φN−1(x)



, (17.49)

A=




1
h0

+ 1
h1

− 1
h1

− 1
h0

0 . . .

− 1
h1

1
h1

+ 1
h2

− 1
h2

0 . . .

0 − 1
h2

1
h2

+ 1
h3

− 1
h3

. . .

. . . . . . − 1
hN−1

− 1
hN−2

1
hN−2

+ 1
hN−1



. (17.50)

The elements in A are just combinations of inverse step sizes and so do not change
for different charge densities ρ(x). The elements in b do change for different ρ’s, but
the required integrals can be performed analytically or with Gaussian quadrature
(Chapter 6, “Integration”). Once A and b are computed, the matrix equations are
solved for the expansion coefficients αj contained in y.

17.13.2.2 DIRICHLET BOUNDARY CONDITIONS

Because the basis functions vanish at the endpoints, a solution expanded in them
also vanishes there. This will not do in general, and so we add the particular solution
Uaφ0(x), which satisfies the boundary conditions [Li]:

U(x) =
N−1∑
j=0

αjφj(x) +UaφN (x) (satisfies boundary conditions), (17.51)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 460

460 chapter 17

where Ua = U(xa). We substitute U(x) −Uaφ0(x) into the weak form to obtain
(N + 1) simultaneous equations, still of the form Ay = b but now with

A =




A0,0 · · · A0,N−1 0

. . .

AN−1,0 · · · AN−1,N−1 0

0 0 · · · 1


 , b′ =




b0 −A0,0Ua

. . .

bN−1 −AN−1,0Ua

Ua


 . (17.52)

This is equivalent to adding a new element and changing the load vector:

b′i = bi −Ai,0Ua, i= 1, . . . , N − 1, b′N = Ua. (17.53)

To impose the boundary condition at x= b, we again add a term and substitute
into the weak form to obtain

b′i = bi −Ai,N−1Ub, i= 1, . . . , N − 1 b′N = Ub. (17.54)

We now solve the linear equations Ay = b′. For 1-D problems, 100–1000 equations
are common, while for 3-D problems there may be millions. Because the number of
calculations varies approximately as N2, it is important to employ an efficient and
accurate algorithm because round-off error can easily accumulate after thousands
of steps. We recommend one from a scientific subroutine library (see Chapter 8,
“Solving Systems of Equations with Matrices; Data Fitting”).

17.14 FEM Implementation and Exercises

In Listing 17.2 we give our program LaplaceFEM.java that determines the FEM
solution, and in Figure 17.11 we show that solution. We see on the left that three
elements do not provide good agreement with the analytic result, whereas N = 11
elements produces excellent agreement.

1. Examine the FEM solution for the choice of parameters

a= 0, b= 1, Ua = 0, Ub = 1.

2. Generate your own triangulation by assigning explicit x values at the nodes
over the interval [0, 1].

3. Start with N = 3 and solve the equations for N values up to 1000.
4. Examine the stiffness matrix A and ensure that it is triangular.
5. Verify that the integrations used to compute the load vector b are accurate.
6. Verify that the solution of the linear equation Ay = b is correct.
7. Plot the numerical solution for U(x) for N = 10, 100, and 1000 and compare

with the analytic solution.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 461

pdes for electrostatics & heat flow 461

1

0
0 1

U

x

N = 3(sc
aled)

N = 11

Figure 17.11 Exact (line) versus FEM solution (points) for the two-plate problem for N = 3 and

N = 11 finite elements.

8. The log of the relative global error (number of significant figures) is

E = log10

∣∣∣∣∣ 1
b− a

∫ b

a

dx
UFEM(x) −Uexact(x)

Uexact(x)

∣∣∣∣∣ .
Plot the global error versus x for N = 10, 100, and 1000.

� �
/∗ LaplaceFEM3 . java , solut ion of 1D Poisson equation

using F i n i t e Element Method with Galerkin approximation ∗ /
i m p o r t Jama . ∗ ;
i m p o r t j ava . io . ∗ ;

p u b l i c c l a s s LaplaceFEM3 {

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) throws IOException , FileNotFoundException {
Pr i n t W r i t e r w = new Pr i n t W r i t e r ( new FileOutputStream ("fem3.dat" ) , t r u e ) ;
Pr i n t W r i t e r q = new Pr i n t W r i t e r ( new FileOutputStream ("fem3t . dat" ) , t r u e ) ;
Pr i n t W r i t e r t = new Pr i n t W r i t e r ( new FileOutputStream ("fem3e.dat" ) , t r u e ) ;
i n t i , j ; i n t N = 1 1 ;
d o u b l e u [ ] = new d o u b l e [N] , A[ ] [ ] = new d o u b l e [N] [N] , b [ ] [ ] = new d o u b l e [N] [ 1 ] ;
d o u b l e x2 [ ] = new d o u b l e [ 2 1 ] , u_fem [ ] = new d o u b l e [ 2 1 ] , u_exact [ ] =new d o u b l e

[ 2 1 ] ;
d o u b l e e r r o r [ ] = new d o u b l e [ 2 1 ] , x [ ] = new d o u b l e [N] , h = 1 . / (N−1) ;
f o r ( i =0 ; i <= N−1; i ++ ) {

x [ i ] = i ∗h ;
System . out . p r i n t l n ("" + x [ i ] + "" ) ;

}
f o r ( i =0 ; i <= N−1; i ++ ) { / / I n i t i a l i z e

b [ i ] [ 0 ] = 0 . ;
f o r ( j =0 ; j <= N−1; j ++ ) A[ i ] [ j ] = 0 . ;

}

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 462

462 chapter 17

f o r ( i =1 ; i <= N−1; i ++ ) {
A[ i −1][ i −1] = A[ i −1][ i −1] + 1./h ;
A[ i −1][ i ] = A[ i −1][ i ] − 1./h ;
A[ i ] [ i −1] = A[ i −1][ i ] ;
A[ i ] [ i ] = A[ i ] [ i ] + 1 ./h ;
b [ i −1][0] = b [ i −1][0] + i n t 2 ( x [ i −1] , x [ i ] ) ;
b [ i ] [ 0 ] = b [ i ] [ 0 ] + i n t 1 ( x [ i −1] , x [ i ] ) ;

}

f o r ( i =1 ; i <= N−1; i ++ ) { / / D i r i c h l e t BC @ l e f t end
b [ i ] [ 0 ] = b [ i ] [0] −0.∗A[ i ] [ 0 ] ;
A[ i ] [ 0 ] = 0 . ;
A[ 0 ] [ i ] = 0 . ;

}
A[ 0 ] [ 0 ] = 1 . ;
b [ 0 ] [ 0 ] = 0 . ;
f o r ( i =1 ; i <= N−1; i ++ ) { / / D i r i c h l e t bc @ r i g h t end

b [ i ] [ 0 ] = b [ i ] [0] −1.∗A[ i ] [N−1];
A[ i ] [N−1] = 0 . ;
A[N−1][ i ] = 0 . ;

}
A[N−1][N−1] = 1 . ;
b [N−1][0] = 1 . ;
Matrix A1 = new Matrix (A) ; / / Jama matrix object
Matrix b1 = new Matrix ( b ) ;
A1 . p r i n t ( 1 6 , 14) ; / / Jama print A1
b1 . p r i n t ( 1 6 , 14) ; / / Jama print b1
Matrix s o l = A1 . solve ( b1 ) ; / / Jama solves l i n e a r system
s o l . p r i n t ( 1 6 , 14) ; / / Jama print solut ion
f o r ( i =0 ; i <= N−1; i ++ ) u [ i ] += s o l . get ( i , 0 ) ; / / Get solut ion
f o r ( i =0 ; i <= 2 0 ; i ++ ) x2 [ i ]=0 .05∗ i ;
f o r ( i =0 ; i <= x2 . length −1; i ++ ) {

u_fem [ i ] = numerical ( x , u , x2 [ i ] ) ;
u_exact [ i ] = exac t ( x2 [ i ] ) ;
q . p r i n t l n (" " + 0.05∗ i + " " + u_exact [ i ] + " " ) ;
w. p r i n t l n (" " + 0.05∗ i + " " + u_fem [ i ] + " " ) ;
e r r o r [ i ] = u_fem [ i ]−u_exact [ i ] ; / / Global e r r o r
t . p r i n t l n (" " + 0.05∗ i + " " + e r r o r [ i ] + " " ) ;

}
}

p u b l i c s t a t i c d o u b l e i n t 1 ( d o u b l e min , d o u b l e max) { / / Simpson
i n t n , no = 1 0 0 0 ;
d o u b l e i n t e r v a l , sum = 0 . , x ;
i n t e r v a l = ( ( max −min ) /(no−1) ) ;
f o r ( n=2; n < no ; n += 2) { / / Loop odd points

x = i n t e r v a l ∗ ( n−1) ;
sum += 4 ∗ f ( x )∗ l i n 1 ( x , min , max) ;

}
f o r ( n=3; n < no ; n += 2) { / / Loop even points

x = i n t e r v a l ∗ ( n−1) ;
sum += 2 ∗ f ( x )∗ l i n 1 ( x , min , max) ;

}
sum += f ( min )∗ l i n 1 ( min , min , max) + f (max)∗ l i n 1 (max , min , max) ;
sum ∗= i n t e r v a l / 6 . ;
r e t u r n (sum) ;

}

p u b l i c s t a t i c d o u b l e i n t 2 ( d o u b l e min , d o u b l e max) {
i n t n , no = 1 0 0 0 ;
d o u b l e i n t e r v a l , sum = 0 . , x ;
i n t e r v a l = ( ( max −min ) /(no−1) ) ;
f o r ( n = 2 ; n < no ; n += 2) { / / Loop odd points

x = i n t e r v a l ∗ ( n−1) ;
sum += 4 ∗ f ( x )∗ l i n 2 ( x , min , max) ;

}
f o r ( n=3; n < no ; n += 2) { / / Loop even points

x = i n t e r v a l ∗ ( n−1) ;

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 463

pdes for electrostatics & heat flow 463

sum += 2 ∗ f ( x )∗ l i n 2 ( x , min , max) ;
}
sum += f ( min )∗ l i n 2 ( min , min , max) + f (max)∗ l i n 2 (max , min , max) ;
sum ∗= i n t e r v a l / 6 . ;
r e t u r n (sum) ;

}

p u b l i c s t a t i c d o u b l e i n t 1 f ( d o u b l e min , d o u b l e max) { / / 2nd Simpson
d o u b l e xm, sum ;
xm = ( min + max) ∗ 0 . 5 ;
sum = (max−min ) ∗( f ( min )∗ l i n 1 ( min , min , max)

+ 4∗ f (xm)∗ l i n 1 (xm, min , max) + f (max)∗ l i n 1 (max , min , max) ) /6;
r e t u r n sum ;

}

p u b l i c s t a t i c d o u b l e i n t 2 f ( d o u b l e min , d o u b l e max) {
d o u b l e xm, sum ;
xm = ( min + max) ∗ 0 . 5 ;
sum = (max−min ) ∗( f ( min )∗ l i n 2 ( min , min , max)

+ 4∗ f (xm)∗ l i n 2 (xm, min , max) + f (max)∗ l i n 2 (max , min , max) ) / 6 . ;
r e t u r n sum ;

}

p u b l i c s t a t i c d o u b l e l i n 1 ( d o u b l e x , d o u b l e x1 , d o u b l e x2 ) / / Hat funcs
{ r e t u r n ( x−x1 ) /( x2−x1 ) ; }

p u b l i c s t a t i c d o u b l e l i n 2 ( d o u b l e x , d o u b l e x1 , d o u b l e x2 )
{ r e t u r n ( x2−x ) /( x2−x1 ) ; }

p u b l i c s t a t i c d o u b l e f ( d o u b l e x ) / / RHS of the equation
{ r e t u r n 1 . ; }

p u b l i c s t a t i c d o u b l e numerical ( d o u b l e x [ ] , d o u b l e u [ ] , d o u b l e xp ) {
i n t i , N = 1 1 ; / / i n t e r p o l a t e numerical solut ion
d o u b l e y ; y = 0 . ;
f o r ( i =0 ; i <= N−2; i ++ ) {

i f ( xp >=x [ i ] && xp <= x [ i + 1] ) y = l i n 2 ( xp , x [ i ] ,
x [ i + 1 ] )∗u [ i ] + l i n 1 ( xp , x [ i ] , x [ i + 1 ] ) ∗u [ i + 1 ] ;

}
r e t u r n y ;
}

p u b l i c s t a t i c d o u b l e exac t ( d o u b l e x ) { / / Analytic solut ion
d o u b l e u ;
u = −x∗(x−3.) /2. ;

r e t u r n u ;
}

}
�

Listing 17.2 LaplaceFEM.java provides a finite-element method solution of the 1-D Laplace

equation via a Galerkin spectral decomposition. The resulting matrix equations are solved

with Jama. Although the algorithm is more involved than the solution via relaxation

(Listing 17.1), it is a direct solution with no iteration required.

17.15 Exploration

1. Modify your program to use piecewise-quadratic functions for interpolation
and compare to the linear function results.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 464

464 chapter 17

K

Figure 17.12 A metallic bar insulated along its length with its ends in contact with ice.

2. Explore the resulting electric field if the charge distribution between the plates
has the explicit x dependences

ρ(x) =
1
4π




1
2 −x,

sinx,

1 at x= 0, −1 at x= 1 (a capacitor).

17.16 Unit III. Heat Flow via Time-Stepping (Leapfrogging)

Problem: You are given an aluminum bar of length L= 1 m and width w aligned
along the x axis (Figure 17.12). It is insulated along its length but not at its ends.
Initially the bar is at a uniform temperature of 100 K, and then both ends are placed
in contact with ice water at 0 K. Heat flows out of the noninsulated ends only. Your
problem is to determine how the temperature will vary as we move along the
length of the bar at later times.

17.17 The Parabolic Heat Equation (Theory)

A basic fact of nature is that heat flows from hot to cold, that is, from regions of
high temperature to regions of low temperature. We give these words mathematical
expression by stating that the rate of heat flow H through a material is proportional
to the gradient of the temperature T across the material:

H = −K∇T (x, t), (17.55)

where K is the thermal conductivity of the material. The total amount of heat Q(t)
in the material at any one time is proportional to the integral of the temperature
over the material’s volume:

Q(t) =
∫
dxCρ(x)T (x, t), (17.56)

where C is the specific heat of the material and ρ is its density. Because energy
is conserved, the rate of decrease in Q with time must equal the amount of heat

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 465

pdes for electrostatics & heat flow 465

flowing out of the material. After this energy balance is struck and the divergence
theorem applied, the heat equation results:

∂T (x, t)
∂t

=
K

Cρ
∇2T (x, t). (17.57)

The heat equation (17.57) is a parabolic PDE with space and time as independent
variables. The specification of this problem implies that there is no temperature
variation in directions perpendicular to the bar (y and z), and so we have only one
spatial coordinate in the Laplacian:

∂T (x, t)
∂t

=
K

Cρ

∂2T (x, t)
∂x2 . (17.58)

As given, the initial temperature of the bar and the boundary conditions are

T (x, t= 0) = 100 K, T (x= 0, t) = T (x= L, t) = 0 K. (17.59)

17.17.1 Solution: Analytic Expansion

Analogous to Laplace’s equation, the analytic solution starts with the assumption
that the solution separates into the product of functions of space and time:

T (x, t) =X(x)T (t). (17.60)

When (17.60) is substituted into the heat equation (17.58) and the resulting equation
is divided by X(x)T (t), two noncoupled ODEs result:

d2X(x)
dx2 + k2X(x) = 0,

dT (t)
dt

+ k2 C

Cρ
T (t) = 0, (17.61)

where k is a constant still to be determined. The boundary condition that the
temperature equals zero at x= 0 requires a sine function for X :

X(x) =A sin kx. (17.62)

The boundary condition that the temperature equals zero at x= L requires the sine
function to vanish there:

sin kL= 0 ⇒ k = kn = nπ/L, n= 1, 2, . . . . (17.63)

The time function is a decaying exponential with k in the exponent:

T (t) = e−k2
nt/Cρ, ⇒ T (x, t) =An sin knxe

−k2
nt/Cρ, (17.64)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 466

466 chapter 17

where n can be any integer and An is an arbitrary constant. Since (17.58) is a linear
equation, the most general solution is a linear superposition of all values of n:

T (x, t) =
∞∑

n=1

An sin knx e
−k2

nt/Cρ. (17.65)

The coefficients An are determined by the initial condition that at time t= 0 the
entire bar has temperature T = 100 K:

T (x, t= 0) = 100 ⇒
∞∑

n=1

An sin knx= 100. (17.66)

Projecting the sine functions determines An = 4T0/nπ for n odd, and so

T (x, t) =
∞∑

n=1,3,...

4T0

nπ
sin knxe

−k2
nKt/(Cρ). (17.67)

17.17.2 Solution: Time-Stepping

As we did with Laplace’s equation, the numerical solution is based on converting
the differential equation to a finite-difference (“difference”) equation. We discretize
space and time on a lattice (Figure 17.13) and solve for solutions on the lattice sites.
The horizontal nodes with white centers correspond to the known values of the
temperature for the initial time, while the vertical white nodes correspond to the
fixed temperature along the boundaries. If we also knew the temperature for times
along the bottom row, then we could use a relaxation algorithm as we did for
Laplace’s equation. However, with only the top row known, we shall end up with
an algorithm that steps forward in time one row at a time, as in the children’s game
leapfrog.

As is often the case with PDEs, the algorithm is customized for the equation being
solved and for the constraints imposed by the particular set of initial and boundary
conditions. With only one row of times to start with, we use a forward-difference
approximation for the time derivative of the temperature:

∂T (x, t)
∂t

� T (x, t+ ∆t) −T (x, t)
∆t

. (17.68)

Because we know the spatial variation of the temperature along the entire top row
and the left and right sides, we are less constrained with the space derivative as
with the time derivative. Consequently, as we did with the Laplace equation, we
use the more accurate central-difference approximation for the space derivative:

∂2T (x, t)
∂x2 � T (x+ ∆x, t) +T (x−∆x, t) − 2T (x, t)

(∆x)2
. (17.69)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 467

pdes for electrostatics & heat flow 467

x

t
i+1,ji,j

i,j+1

i-1,j

Figure 17.13 The algorithm for the heat equation in which the temperature at the location

x = i∆x and time t = (j+ 1)∆t is computed from the temperature values at three points of an

earlier time. The nodes with white centers correspond to known initial and boundary

conditions. (The boundaries are placed artificially close for illustrative purposes.)

Substitution of these approximations into (17.58) yields the heat difference equation

T (x, t+ ∆t) −T (x, t)
∆t

=
K

Cρ

T (x+ ∆x, t) +T (x−∆x, t) − 2T (x, t)
∆x2 . (17.70)

We reorder (17.70) into a form in which T can be stepped forward in t:

Ti,j+1 = Ti,j + η [Ti+1,j +Ti−1,j − 2Ti,j ] , η =
K∆t
Cρ∆x2 , (17.71)

where x= i∆x and t= j∆t. This algorithm is explicit because it provides a solution
in terms of known values of the temperature. If we tried to solve for the temper-
ature at all lattice sites in Figure. 17.13 simultaneously, then we would have an
implicit algorithm that requires us to solve equations involving unknown values
of the temperature. We see that the temperature at space-time point (i, j+ 1) is
computed from the three temperature values at an earlier time j and at adjacent
space values i± 1, i. We start the solution at the top row, moving it forward in time
for as long as we want and keeping the temperature along the ends fixed at 0 K
(Figure 17.14).

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 468

468 chapter 17

 

0
40

80

 0
 

10

0

80

T

t
x

20
10

–10
0

10
0

time

tem
perature

positio
n 0

100

80

60

40

20

0

30

10

time

20

tem
perature

100

80

60

40

20

0

–10

10
0

20

positio
n

30
20

Figure 17.14 A numerical calculation of the temperature versus position and versus time, with

isotherm contours projected onto the horizontal plane on the left and with a red-blue color

scale used to indicate temperature on the right (the color is visible on the figures on the CD).

17.17.3 Von Neumann Stability Assessment

When we solve a PDE by converting it to a difference equation, we hope that the
solution of the latter is a good approximation to the solution of the former. If the
difference-equation solution diverges, then we know we have a bad approximation,
but if it converges, then we may feel confident that we have a good approximation
to the PDE. The von Neumann stability analysis is based on the assumption that
eigenmodes of the difference equation can be written as

Tm,j = ξ(k)j eikm∆x, (17.72)

where x=m∆x and t= j∆t, but i=
√−1 is the imaginary number. The constant

k in (17.72) is an unknown wave vector (2π/λ), and ξ(k) is an unknown complex
function. View (17.72) as a basis function that oscillates in space (the exponential)
with an amplitude or amplification factor ξ(k)j that increases by a power of ξ for each
time step. If the general solution to the difference equation can be expanded in terms
of these eigenmodes, then the general solution will be stable if the eigenmodes are
stable. Clearly, for an eigenmode to be stable, the amplitude ξ cannot grow in time
j, which means |ξ(k)|< 1 for all values of the parameter k [Pres 94, Anc 02].

Application of a stability analysis is more straightforward than it might appear.
We just substitute the expression (17.72) into the difference equation (17.71):

ξj+1eikm∆x = ξj+eikm∆x + η
[
ξjeik(m+1)∆x + ξj+eik(m−1)∆x − 2ξj+eikm∆x

]
.

After canceling some common factors, it is easy to solve for ξ:

ξ(k) = 1 + 2η[cos(k∆x) − 1]. (17.73)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 469

pdes for electrostatics & heat flow 469

In order for |ξ(k)|< 1 for all possible k values, we must have

η =
K∆t
Cρ∆x2 <

1
2
. (17.74)

This equation tells us that if we make the time step ∆t smaller, we will always
improve the stability, as we would expect. But if we decrease the space step ∆x
without a simultaneous quadratic increase in the time step, we will worsen the
stability. The lack of space-time symmetry arises from our use of stepping in time
but not in space.

In general, you should perform a stability analysis for every PDE you have to
solve, although it can get complicated [Pres 94]. Yet even if you do not, the lesson
here is that you may have to try different combinations of ∆x and ∆t variations until
a stable, reasonable solution is obtained. You may expect, nonetheless, that there
are choices for ∆x and ∆t for which the numerical solution fails and that simply
decreasing an individual ∆x or ∆t, in the hope that this will increase precision,
may not improve the solution.

� �
/ / EqHeat . java : Solve heat equation via f i n i t e di f ferences
i m p o r t j ava . io . ∗ ; / / Import IO l i b r a r y

p u b l i c c l a s s EqHeat { / / Class constants in MKS units
p u b l i c s t a t i c f i n a l i n t Nx = 11 , Nt = 3 0 0 ; / / Grid s i z e s
p u b l i c s t a t i c f i n a l d o u b l e Dx = 0 . 0 1 , Dt = 0 . 1 ; / / Step s i z e s
p u b l i c s t a t i c f i n a l d o u b l e KAPPA = 2 1 0 . ; / / Thermal conductivi ty
p u b l i c s t a t i c f i n a l d o u b l e SPH = 9 0 0 . ; / / S p e c i f i c heat
p u b l i c s t a t i c f i n a l d o u b l e RHO = 2 7 0 0 . ; / / Al density

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) throws IOException , FileNotFoundException {
i n t ix , t ;
d o u b l e T [ ] [ ] = new d o u b l e [Nx ] [ 2 ] , cons ;
Pr i n t W r i t e r q = new Pr i n t W r i t e r ( new FileOutputStream ("EqHeat . dat" ) , t r u e ) ;
f o r ( i x =1; i x < Nx−1; i x ++ ) T [ i x ] [ 0 ] = 1 0 0 . ; / / I n i t i a l i z e
T [ 0 ] [ 0 ] = 0 . ; T [ 0 ] [ 1 ] = 0 . ; / / Except the ends
T [Nx−1][0] = 0 . ; T [Nx−1][1] = 0 . ;
cons = KAPPA/(SPH∗RHO)∗Dt/(Dx∗Dx) ; / / In tegra t ion f a c t o r
System . out . p r i n t l n ("constant = " + cons ) ;
f o r ( t =1 ; t <= Nt ; t ++ ) { / / t loop

f o r ( i x =1; i x < Nx−1; i x ++)
{ T [ i x ] [ 1 ] = T [ i x ] [ 0 ] + cons ∗(T [ i x + 1 ] [ 0 ] + T [ ix −1][0] −2.∗T [ i x ] [ 0 ] ) ; }

i f ( t %10==0 || t ==1 ) { / / Save every N steps
f o r ( i x = 0 ; ix <Nx ; i x ++ ) q . p r i n t l n ( T [ i x ] [ 1 ] ) ;
q . p r i n t l n ( ) ; / / Blank l ine ends row

}
f o r ( i x = 1 ; ix <Nx−1; i x ++ ) T [ i x ] [ 0 ] = T [ i x ] [ 1 ] ; / / New to old

} / / End t loop
System . out . p r i n t l n ("data stored in EqHeat . dat" ) ;

} / / End main
} / / End c l a s s

�

Listing 17.3 EqHeat.java solves the heat equation for a 1-D space and time by leapfrogging

(time-stepping) the initial conditions forward in time. You will need to adjust the parameters to

obtain a solution like those in the figures.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 470

470 chapter 17

17.17.4 Heat Equation Implementation

Recollect that we want to solve for the temperature distribution within an
aluminum bar of length L= 1 m subject to the boundary and initial conditions

T (x= 0, t) = T (x= L, t) = 0 K, T (x, t= 0) = 100 K. (17.75)

The thermal conductivity, specific heat, and density for Al are

K = 237 W/(mK), C = 900 J/(kg K), ρ= 2700 kg/m3. (17.76)

1. Write or modify EqHeat.java in Listing 17.3 to solve the heat equation.
2. Define a 2-D array T[101][2] for the temperature as a function of space and

time. The first index is for the 100 space divisions of the bar, and the second
index is for present and past times (because you may have to make thousands
of time steps, you save memory by saving only two times).

3. For time t= 0 ( j = 1), initialize T so that all points on the bar except the ends
are at 100 K. Set the temperatures of the ends to 0 K.

4. Apply (17.68) to obtain the temperature at the next time step.
5. Assign the present-time values of the temperature to the past values:

T[i][1] = T[i][2], i = 1, . . . , 101.

6. Start with 50 time steps. Once you are confident the program is running
properly, use thousands of steps to see the bar cool smoothly with time. For
approximately every 500 time steps, print the time and temperature along
the bar.

17.18 Assessment and Visualization

1. Check that your program gives a temperature distribution that varies
smoothly along the bar and agrees with the boundary conditions, as in
Figure 17.14.

2. Check that your program gives a temperature distribution that varies
smoothly with time and attains equilibrium. You may have to vary the time
and space steps to obtain well-behaved solutions.

3. Compare the analytic and numeric solutions (and the wall times needed to
compute them). If the solutions differ, suspect the one that does not appear
smooth and continuous.

4. Make surface plots of temperature versus position for several times.
5. Better yet, make a surface plot of temperature versus position versus time.
6. Plot the isotherms (contours of constant temperature).
7. Stability test: Check (17.74) that the temperature diverges in t if η > 1

4 .
8. Material dependence: Repeat the calculation for iron. Note that the stability

condition requires you to change the size of the time step.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 471

pdes for electrostatics & heat flow 471

0
40

80 0

20

40
0

50

100

x
t

T(x,t)

Figure 17.15 Temperature versus position and time when two bars at differing temperatures

are placed in contact at t = 0. The projected contours show the isotherms.

9. Initial sinusoidal distribution sin(πx/L): Compare to the analytic solution,

T (x, t) = sin(πx/L)e−π2Kt/(L2Cρ).

10. Two bars in contact: Two identical bars 0.25 m long are placed in contact
along one of their ends with their other ends kept at 0 K. One is kept in a heat
bath at 100 K, and the other at 50 K. Determine how the temperature varies
with time and location (Figure 17.15).

11. Radiating bar (Newton’s cooling): Imagine now that instead of being insu-
lated along its length, a bar is in contact with an environment at a temperature
Te. Newton’s law of cooling (radiation) says that the rate of temperature
change due to radiation is

∂T

∂t
= −h(T −Te), (17.77)

where h is a positive constant. This leads to the modified heat equation

∂T (x, t)
∂t

=
K

Cρ

∂2T

∂2x
−hT (x, t). (17.78)

Modify the algorithm to include Newton’s cooling and compare the cooling
of this bar with that of the insulated bar.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 472

472 chapter 17

17.19 Improved Heat Flow: Crank–Nicolson Method

The Crank–Nicolson method [C&N 47] provides a higher degree of precision for
the heat equation (17.57). This method calculates the time derivative with a central-
difference approximation, in contrast to the forward-difference approximation used
previously. In order to avoid introducing error for the initial time step, where only
a single time value is known, the method uses a split time step,3 so that time is
advanced from time t to t+ ∆t/2:

∂T

∂t

(
x, t+

∆t
2

)
� T (x, t+ ∆t) −T (x, t)

∆t
+O(∆t2). (17.79)

Yes, we know that this looks just like the forward-difference approximation for the
derivative at time t+ ∆t, for which it would be a bad approximation; regardless, it
is a better approximation for the derivative at time t+ ∆t/2, though it makes the
computation more complicated. Likewise, in (17.68) we gave the central-difference
approximation for the second space derivative for time t. For t= t+ ∆t/2, that
becomes

2(∆x)2
∂2T

∂x2

(
x, t+

∆t
2

)
(17.80)

� [T (x−∆x, t+ ∆t) − 2T (x, t+ ∆t) + T (x+ ∆x, t+ ∆t)]

+ [T (x−∆x, t) − 2T (x, t) +T (x+ ∆x, t)]+O(∆x2).

In terms of these expressions, the heat difference equation is

Ti,j+1 −Ti,j =
η

2
[Ti−1,j+1 − 2Ti,j+1 +Ti+1,j+1 +Ti−1,j − 2Ti,j +Ti+1,j ] ,

x= i∆x, t= j∆t, η =
K∆t
Cρ∆x2 . (17.81)

We group together terms involving the same temperature to obtain an equation
with future times on the LHS and present times on the RHS:

−Ti−1, j+1 +
(

2
η

+ 2
)
Ti, j+1 −Ti+1, j+1 = Ti−1, j +

(
2
η

− 2
)
Ti, j +Ti+1, j .

(17.82)

3 In §18.6.1 we develop another split-time algorithm for solution of the Schrödinger equation,
where the real and imaginary parts of the wave function are computed at times that differ
by ∆t/2.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 473

pdes for electrostatics & heat flow 473

This equation represents an implicit scheme for the temperature Ti,j , where the
word “implicit” means that we must solve simultaneous equations to obtain the full
solution for all space. In contrast, an explicit scheme requires iteration to arrive at the
solution. It is possible to solve (17.82) simultaneously for all unknown temperatures
(1 ≤ i≤N ) at times j and j+ 1. We start with the initial temperature distribution
throughout all of space, the boundary conditions at the ends of the bar for all times,
and the approximate values from the first derivative:

Ti, 0, known, T0, j , known, TN, j ,known,

T0, j+1 = T0, j = 0, TN, j+1 = 0, TN, j = 0.

We rearrange (17.82) so that we can use these known values of T to step the
j = 0 solution forward in time by expressing (17.82) as a set of simultaneous linear
equations (in matrix form):




( 2
η + 2

) −1

−1
( 2

η + 2
) −1

−1
( 2

η + 2
) −1

. . . . . . . . .

−1
( 2

η + 2
) −1

−1
( 2

η + 2
)







T1,j+1

T2,j+1

T3,j+1)

...

Tn−2,j+1

Tn−1,j+1




=




T0,j+1 +T0,j +
( 2

η − 2
)
T1,j +T2,j

T1,j +
( 2

η − 2
)
T2,j +T3,j

T2,j +
( 2

η − 2
)
T3,j +T4,j

...

Tn−3,j +
( 2

η − 2
)
Tn−2,j +Tn−1,j

Tn−2,j +
( 2

η − 2
)
Tn−1,j +Tn,j +Tn,j+1




. (17.83)

Observe that the T ’s on the RHS are all at the present time j for various positions,
and at future time j+ 1 for the two ends (whose T s are known for all times via
the boundary conditions). We start the algorithm with the Ti,j=0 values of the
initial conditions, then solve a matrix equation to obtain Ti,j=1. With that we know

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 474

474 chapter 17

all the terms on the RHS of the equations (j = 1 throughout the bar and j = 2
at the ends) and so can repeat the solution of the matrix equations to obtain the
temperature throughout the bar for j = 2. So again we time-step forward, only
now we solve matrix equations at each step. That gives us the spatial solution
directly.

Not only is the Crank–Nicolson method more precise than the low-order time-
stepping method of Unit III, but it also is stable for all values of ∆t and ∆x. To
prove that, we apply the von Neumann stability analysis discussed in §17.17.3 to
the Crank–Nicolson algorithm by substituting (17.71) into (17.82). This determines
an amplification factor

ξ(k) =
1 − 2η sin2(k∆x/2)
1 + 2η sin2(k∆x/2)

. (17.84)

Because sin2() is positive-definite, this proves that |ξ| ≤ 1 for all ∆t, ∆x, and k.

17.19.1 Solution of Tridiagonal Matrix Equations �

The Crank–Nicolson equations (17.83) are in the standard [A]x = b form for linear
equations, and so we can use our previous methods to solve them. Nonetheless,
because the coefficient matrix [A] is tridiagonal (zero elements except for the main
diagonal and two diagonals on either side of it),




d1 c1 0 0 · · · · · · · · · 0

a2 d2 c2 0 · · · · · · · · · 0

0 a3 d3 c3 · · · · · · · · · 0

· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · aN−1 dN−1 cN−1

0 0 0 0 · · · 0 aN dN







x1

x2

x3

. . .
xN−1

xN




=




b1

b2

b3

. . .
bN−1

bN



,

a more robust and faster solution exists that makes this implicit method as fast as
an explicit one. Because tridiagonal systems occur frequently, we now outline the
specialized technique for solving them [Pres 94]. If we store the matrix elements
ai,j using both subscripts, then we will need N2 locations for elements and N2

operations to access them. However, for a tridiagonal matrix, we need to store
only the vectors {di}i=1,N , {ci}i=1,N , and {ai}i=1,N , along, above, and below the
diagonals. The single subscripts on ai, di, and ci reduce the processing from N2 to
(3N − 2) elements.

We solve the matrix equation by manipulating the individual equations until
the coefficient matrix is upper triangular with all the elements of the main diagonal
equal to 1. We start by dividing the first equation by d1, then subtract a2 times the

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 475

pdes for electrostatics & heat flow 475

first equation,




1 c1
d1

0 0 · · · · · · · · · 0

0 d2 − a2c1
d1

c2 0 · · · · · · · · · 0

0 a3 d3 c3 · · · · · · · · · 0

· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · aN−1 dN−1 cN−1

0 0 0 0 · · · 0 aN dN







x1

x2

x3

. . .

·
xN




=




b1
d1

b2 − a2b1
d1

b3

. . .

·
bN



,

and then dividing the second equation by the second diagonal element,




1 c1
d1

0 0 · · · · · · · · · 0

0 1 c2
d2−a2

c1
a1

0 · · · · · · 0

0 a3 d3 c3 · · · · · · · · · 0

· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 aN−1 dN−1 cN−1

0 0 0 0 · · · 0 aN dN







x1

x2

x3

. . .

·
xN




=




b1
d1

b2−a2
b1
d1

d2−a2
c1
d1

b3

. . .

·
bN



.

Assuming that we can repeat these steps without ever dividing by zero, the system
of equations will be reduced to upper triangular form,




1 h1 0 0 · · · 0
0 1 h2 0 · · · 0
0 0 1 h3 · · · 0

0 · · · · · · . . . . . . · · ·
0 0 0 0 · · · · · ·
0 0 0 · · · 0 1







x1

x2

x3

. . .

·
xN




=




p1

p2

p3

. . .

·
pN



,

where h1 = c1/d1 and p1 = b1/d1. We then recur for the others elements:

hi =
ci

di − aihi−1
, pi =

bi − aipi−1

di − aihi−1
. (17.85)

Finally, back substitution leads to the explicit solution for the unknowns:

xi = pi −hixi−1; i= n− 1, n− 2, . . . , 1, xN = pN . (17.86)

In Listing 17.4 we give the program HeatCNTridiag.java that solves the heat
equation using the Crank–Nicolson algorithm via a triadiagonal reduction.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 476

476 chapter 17

� �
/ / HeatCNTridiag . java : heat equation via Crank−Nicholson
/ / Output in gnuplot 3D grid format
i m p o r t j ava . io . ∗ ;

p u b l i c c l a s s HeatCNTridiag {

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) throws IOException , FileNotFoundException {
Pr i n t W r i t e r w = new Pr i n t W r i t e r ( new FileOutputStream ("HeatCNTriD .dat" ) , t r u e ) ;
i n t Max =51 , i , j , n=50 , m=50;
d o u b l e Ta [ ] = new d o u b l e [Max] , Tb [ ] = new d o u b l e [Max] , Tc [ ] = new d o u b l e [Max ] ;
d o u b l e Td [ ] = new d o u b l e [Max] , a [ ] = new d o u b l e [Max] , b [ ] = new d o u b l e [Max ] ;
d o u b l e c [ ] = new d o u b l e [Max] , d [ ] =new d o u b l e [Max] , t [ ] [ ] = new d o u b l e [Max ] [ Max ] ;
d o u b l e width = 1 . 0 , height = 0 . 1 , c t = 1 . 0 , k , r , h ; / / Rectangle W & H
d o u b l e x [ ] = new d o u b l e [Max] , Pi = 3 . 1 4 1 5 9 2 6 5 3 5 ;

f o r ( i = 0 ; i < n ; i ++ ) t [ i ] [ 0 ] = 0 . 0 ; / / I n i t i a l i z e
f o r ( i = 1 ; i < m; i ++ ) t [ 0 ] [ i ] = 0 . 0 ;
h = width / ( n − 1 ) ; / / Compute step s i z e s and constants
k = height / ( m − 1 ) ;
r = c t ∗ c t ∗ k / ( h ∗ h ) ;
f o r ( j = 1 ; j <= m; j ++ ) { t [ 1 ] [ j ] = 0 . 0 ; t [ n ] [ j ] = 0 . 0 ; } / / BCs
f o r ( i = 2 ; i <= n−1 ; i ++ ) t [ i ] [ 1 ] = Math . s i n ( Pi ∗ h ∗ i ) ; / / ICs
f o r ( i = 1 ; i <= n ; i ++ ) Td [ i ] = 2 . + 2./ r ;
Td [ 1 ] = 1 . ; Td[ n ] = 1 . ;
f o r ( i = 1 ; i <= n − 1 ; i ++ ) { Ta [ i ] = −1.0; Tc [ i ] = −1.0 ; } / / Off diagonal
Ta [ n−1] = 0 . 0 ; Tc [ 1 ] = 0 . 0 ; Tb [ 1 ] = 0 . 0 ; Tb [ n ] = 0 . 0 ;
f o r ( j = 2 ; j <= m; j ++ ) {

f o r ( i = 2 ; i <= n−1; i ++) Tb [ i ] = t [ i −1][ j −1]+ t [ i + 1 ] [ j −1]+(2/r −2) ∗ t [ i ] [ j −1];
Tr id iag ( a , d , c , b , Ta , Td , Tc , Tb , x , n ) ; / / Solve system
f o r ( i = 1 ; i <= n ; i ++ ) t [ i ] [ j ] = x [ i ] ;

}
f o r ( j =1 ; j <=m; j ++) {

f o r ( i = 1 ; i <= n ; i ++ ) w. p r i n t l n (""+ t [ i ] [ j ]+"" ) ;
w. p r i n t l n ( ) ; / / Empty l ine for gnuplot

}
System . out . p r i n t l n ("data stored in HeatCNTridiag . dat" ) ;

}

p u b l i c s t a t i c v o i d Tridiag ( d o u b l e a [ ] , d o u b l e d [ ] , d o u b l e c [ ] , d o u b l e b [ ] ,
d o u b l e Ta [ ] , d o u b l e Td [ ] , d o u b l e Tc [ ] , d o u b l e Tb [ ] , d o u b l e x [ ] , i n t n ) {

i n t i , Max = 5 1 ;
d o u b l e h [ ] = new d o u b l e [Max] , p [ ] = new d o u b l e [Max ] ;
f o r ( i = 1 ; i <= n ; i ++) { a [ i ] = Ta [ i ] ; b [ i ] = Tb [ i ] ; c [ i ] = Tc [ i ] ; d [ i ] =Td[ i ] ; }
h [ 1 ] = c [ 1 ] /d [ 1 ] ; p [ 1 ] = b [ 1 ] /d [ 1 ] ;
f o r ( i = 2 ; i <= n ; i ++ ) {

h [ i ]= c [ i ] / ( d [ i ]−a [ i ]∗h [ i −1]) ; p [ i ] = ( b [ i ]−a [ i ]∗p [ i −1]) /(d [ i ]−a [ i ]∗h [ i −1]) ; }
x [ n ] = p [ n ] ;
f o r ( i = n − 1 ; i >= 1 ; i−− ) x [ i ] = p [ i ] − h [ i ]∗x [ i + 1 ] ;

}
}

�

Listing 17.4 HeatCNTridiag.java is the complete program for solution of the heat equation

in one space dimension and time via the Crank–Nicolson method. The resulting matrix

equations are solved via a technique specialized to tridiagonal matrices.

17.19.2 Crank–Nicolson Method Implementation
and Assessment

Use the Crank–Nicolson method to solve for the heat flow in the metal bar in §17.16.

1. Write a program using the Crank–Nicolson method to solve the heat equation
for at least 100 time steps.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 477

pdes for electrostatics & heat flow 477

2. Solve the linear system of equations (17.83) using either JAMA or the special
tridiagonal algorithm.

3. Check the stability of your solution by choosing different values for the time
and space steps.

4. Construct a contoured surface plot of temperature versus position and versus
time.

5. Compare the implicit and explicit algorithms used in this chapter for relative
precision and speed. You may assume that a stable answer that uses very
small time steps is accurate.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 478

18

PDE Waves: String, Quantum Packet, and E&M

In this chapter we explore the numerical solution of a number of PDEs known as wave
equations. We have two purposes in mind. First, especially if you have skipped the
discussion of the heat equation in Chapter 17, “PDES for Electrostatics & Heat
Flow,” we wish to give another example of how initial conditions in time are treated
with a time-stepping or leapfrog algorithm. Second, we wish to demonstrate that once
we have a working algorithm for solving a wave equation, we can include considerably
more physics than is possible with analytic treatments. Unit I deals with a number of
aspects of waves on a string. Unit II deals with quantum wave packets, which have
their real and imaginary parts solved for at different (split) times. Unit III extends
the treatment to electromagnetic waves that have the extra complication of being
vector waves with interconnected E and H fields. Shallow-water waves, dispersion,
and shock waves are studied in Chapter 19, “Solitons and Computational Fluid
Dynamics.”

18.1 Unit I. Vibrating String

Problem: Recall the demonstration from elementary physics in which a string tied
down at both ends is plucked “gently” at one location and a pulse is observed to
travel along the string. Likewise, if the string has one end free and you shake it
just right, a standing-wave pattern is set up in which the nodes remain in place
and the antinodes move just up and down. Your problem is to develop an accurate
model for wave propagation on a string and to see if you can set up traveling- and
standing-wave patterns.1

18.2 The Hyperbolic Wave Equation (Theory)

Consider a string of lengthL tied down at both ends (Figure 18.1 left). The string has
a constant density ρ per unit length, a constant tension T , is subject to no frictional
forces, and the tension is high enough that we may ignore sagging due to gravity.
We assume that the displacement of the string y(x, t) from its rest position is in the
vertical direction only and that it is a function of the horizontal location along the
string x and the time t.

1 Some similar but independent studies can also be found in [Raw 96].

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 479

pde waves: string, quantum packet, and e&m 479

L

y(x,t)

x
θ

∆

∆

Figure 18.1 Left: A stretched string of length L tied down at both ends and under high

enough tension to ignore gravity. The vertical disturbance of the string from its equilibrium

position is y(x, t). Right: A differential element of the string showing how the string’s

displacement leads to the restoring force.

To obtain a simple linear equation of motion (nonlinear wave equations are
discussed in Chapter 19, “Solitons & Computational Fluid Dynamics”), we assume
that the string’s relative displacement y(x, t)/L and slope ∂y/∂x are small. We
isolate an infinitesimal section ∆x of the string (Figure 18.1 right) and see that
the difference in the vertical components of the tension at either end of the string
produces the restoring force that accelerates this section of the string in the vertical
direction. By applying Newton’s laws to this section, we obtain the familiar wave
equation:

∑
Fy = ρ∆x

∂2y

∂t2
, (18.1)

∑
Fy = T sin θ(x+ ∆x) −T sin θ(x) =T

∂y

∂x

∣∣∣∣
x+∆x

−T
∂y

∂x

∣∣∣∣
x

� T
∂2y

∂x2 ,

⇒ ∂2y(x, t)
∂x2 =

1
c2
∂2y(x, t)
∂t2

, c=

√
T

ρ
, (18.2)

where we have assumed that θ is small enough for sin θ � tan θ = ∂y/∂x. The exis-
tence of two independent variables x and t makes this a PDE. The constant c is the
velocity with which a disturbance travels along the wave and is seen to decrease
for a heavier string and increase for a tighter one. Note that this signal velocity c is
not the same as the velocity of a string element ∂y/∂t.

The initial condition for our problem is that the string is plucked gently and
released. We assume that the “pluck” places the string in a triangular shape with
the center of triangle 8

10 of the way down the string and with a height of 1:

y(x, t= 0) =

{
1.25x/L, x≤ 0.8L,

(5 − 5x/L), x > 0.8L,
(initial condition 1). (18.3)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 480

480 chapter 18

Because (18.2) is second-order in time, a second initial condition (beyond initial
displacement) is needed to determine the solution. We interpret the “gentleness”
of the pluck to mean the string is released from rest:

∂y

∂t
(x, t= 0) = 0, (initial condition 2). (18.4)

The boundary conditions have both ends of the string tied down for all times:

y(0, t) ≡ 0, y(L, t) ≡ 0, (boundary conditions). (18.5)

18.2.1 Solution via Normal-Mode Expansion

The analytic solution to (18.2) is obtained via the familiar separation-of-variables
technique. We assume that the solution is the product of a function of space and a
function of time:

y(x, t) =X(x)T (t). (18.6)

We substitute (18.6) into (18.2), divide by y(x, t), and are left with an equation that
has a solution only if there are solutions to the two ODEs:

d2T (t)
dt2

+ω2T (t) = 0,
d2X(x)
dt2

+ k2X(x) = 0, k
def=

ω

c
. (18.7)

The angular frequency ω and the wave vector k are determined by demanding that
the solutions satisfy the boundary conditions. Specifically, the string being attached
at both ends demands

X(x= 0, t) =X(x= l, t) = 0 (18.8)

⇒ Xn(x) =An sin knx, kn =
π(n+ 1)

L
, n= 0, 1, . . . . (18.9)

The time solution is

Tn(t) = Cn sinωnt+Dn cosωnt, ωn = nck0 = n
2πc
L
, (18.10)

where the frequency of this nth normal mode is also fixed. In fact, it is the single
frequency of oscillation that defines a normal mode. The initial condition (18.3) of
zero velocity, ∂y/∂t(t= 0) = 0, requires the Cn values in (18.10) to be zero. Putting
the pieces together, the normal-mode solutions are

yn(x, t) = sin knx cosωnt, n= 0, 1, . . . . (18.11)

Since the wave equation (18.2) is linear in y, the principle of linear superposition
holds and the most general solution for waves on a string with fixed ends can be

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 481

pde waves: string, quantum packet, and e&m 481

written as the sum of normal modes:

y(x, t) =
∞∑

n=0

Bn sin knx cosωnt. (18.12)

(Yet we will lose linear superposition once we include nonlinear terms in the wave
equation.) The Fourier coefficient Bn is determined by the second initial condition
(18.3), which describes how the wave is plucked:

y(x, t= 0) =
∞∑
n

Bn sinnk0x. (18.13)

Multiply both sides by sinmk0x, substitute the value of y(x, 0) from (18.3), and
integrate from 0 to l to obtain

Bm = 6.25
sin(0.8mπ)
m2π2 . (18.14)

You will be asked to compare the Fourier series (18.12) to our numerical solution.
While it is in the nature of the approximation that the precision of the numerical
solution depends on the choice of step sizes, it is also revealing to realize that the
precision of the analytic solution depends on summing an infinite number of terms,
which can be done only approximately.

18.2.2 Algorithm: Time-Stepping

As with Laplace’s equation and the heat equation, we look for a solution y(x, t)
only for discrete values of the independent variables x and t on a grid (Figure 18.2):

x= i∆x, i= 1, . . . , Nx, t= j∆t, j = 1, . . . , Nt, (18.15)

y(x, t) = y(i∆x, i∆t) def= yi,j . (18.16)

In contrast to Laplace’s equation where the grid was in two space dimensions, the
grid in Figure 18.2 is in both space and time. That being the case, moving across
a row corresponds to increasing x values along the string for a fixed time, while
moving down a column corresponds to increasing time steps for a fixed position.
Even though the grid in Figure 18.2 may be square, we cannot use a relaxation
technique for the solution because we do not know the solution on all four sides.
The boundary conditions determine the solution along the right and left sides,
while the initial time condition determines the solution along the top.

As with the Laplace equation, we use the central-difference approximation to
discretize the wave equation into a difference equation. First we express the second
derivatives in terms of finite differences:

∂2y

∂t2
� yi,j+1 + yi,j−1 − 2yi,j

(∆t)2
,

∂2y

∂x2 � yi+1,j + yi−1,j − 2yi,j

(∆x)2
. (18.17)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 482

482 chapter 18

X

i, j-1

i-1, j i, j i+1, j

i, j+1

t

Figure 18.2 The solutions of the wave equation for four earlier space-time points are used to

obtain the solution at the present time. The boundary and initial conditions are indicated by

the white-centered dots.

Substituting (18.17) in the wave equation (18.2) yields the difference equation

yi,j+1 + yi,j−1 − 2yi,j

c2(∆t)2
=
yi+1,j + yi−1,j − 2yi,j

(∆x)2
. (18.18)

Notice that this equation contains three time values: j+1 = the future, j = the
present, and j−1 = the past. Consequently, we rearrange it into a form that permits
us to predict the future solution from the present and past solutions:

yi,j+1 = 2yi,j − yi,j−1 +
c2

c′2
[yi+1,j + yi−1,j − 2yi,j ] , c′ def=

∆x
∆t

. (18.19)

Here c′ is a combination of numerical parameters with the dimension of velocity
whose size relative to c determines the stability of the algorithm. The algorithm
(18.19) propagates the wave from the two earlier times, j and j− 1, and from three
nearby positions, i− 1, i, and i+ 1, to a later time j+ 1 and a single space position
i (Figure 18.2).

As you have seen in our discussion of the heat equation, a leapfrog method is
quite different from a relaxation technique. We start with the solution along the
topmost row and then move down one step at a time. If we write the solution
for present times to a file, then we need to store only three time values on the
computer, which saves memory. In fact, because the time steps must be quite small

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 483

pde waves: string, quantum packet, and e&m 483

to obtain high precision, you may want to store the solution only for every fifth or
tenth time.

Initializing the recurrence relation is a bit tricky because it requires displace-
ments from two earlier times, whereas the initial conditions are for only one time.
Nonetheless, the rest condition (18.3) when combined with the forward-difference
approximation lets us extrapolate to negative time:

∂y

∂t
(x, 0) � y(x, 0) − y(x,−∆t)

∆t
= 0, ⇒ yi,0 = yi,1. (18.20)

Here we take the initial time as j = 1, and so j = 0 corresponds to t= −∆t.
Substituting this relation into (18.19) yields for the initial step

yi,2 = yi,1 +
c2

c′2
[yi+1,1 + yi−1,1 − 2yi,1] (t= ∆t only). (18.21)

Equation (18.21) uses the solution throughout all space at the initial time t= 0 to
propagate (leapfrog) it forward to a time ∆t. Subsequent time steps use (18.19) and
are continued for as long as you like.

As is also true with the heat equation, the success of the numerical method
depends on the relative sizes of the time and space steps. If we apply a von
Neumann stability analysis to this problem by substituting ym,j = ξj exp(ikm∆x),
as we did in §17.17.3, a complicated equation results. Nonetheless, [Pres 94] shows
that the difference-equation solution will be stable for the general class of transport
equations if

c≤ c′ = ∆x/∆t (Courant condition). (18.22)

Equation (18.22) means that the solution gets better with smaller time steps but
gets worse for smaller space steps (unless you simultaneously make the time step
smaller). Having different sensitivities to the time and space steps may appear
surprising because the wave equation (18.2) is symmetric in x and t, yet the
symmetry is broken by the nonsymmetric initial and boundary conditions.

Exercise: Figure out a procedure for solving for the wave equation for all times
in just one step. Estimate how much memory would be required.

Exercise: Try to figure out a procedure for solving for the wave motion with a
relaxation technique. What would you take as your initial guess, and how would
you know when the procedure has converged?

18.2.3 Wave Equation Implementation

The program EqString.java in Listing 18.1 solves the wave equation for a string of
length L= 1 m with its ends fixed and with the gently plucked initial conditions.
Note that our use of L= 1 violates our assumption that y/L� 1 but makes it easy

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 484

484 chapter 18

� �
/ / EqString . java : Leapfrog solution of wave equation , gnuplot output
i m p o r t j ava . io . ∗ ;

p u b l i c c l a s s EqString {
f i n a l s t a t i c d o u b l e rho = 0 . 0 1 , ten = 4 0 . , max = 1 0 0 . ;

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) throws IOException , FileNotFoundException {
i n t i , k ;
d o u b l e x [ ] [ ] = new d o u b l e [ 1 0 1 ] [ 3 ] , r a t i o , c , c1 ;
Pr i n t W r i t e r w = new Pr i n t W r i t e r ( new FileOutputStream ("EqString . dat" ) , t r u e ) ;
c = Math . s q r t ( ten/rho ) ; / / Propagation speed
c1 = c ; / / CFL c r i t e r i a
r a t i o = c∗c /( c1∗c1 ) ;
f o r ( i =0 ; i < 8 1 ; i ++ ) x [ i ] [ 0 ] = 0.00125∗ i ; / / I n i t i a l conds
f o r ( i =81; i < 1 0 1 ; i ++ ) x [ i ] [ 0 ] = 0.1 −0.005∗( i −80) ;
f o r ( i =0 ; i < 1 0 1 ; i ++ ) w. p r i n t l n ("" + x [ i ] [ 0 ] + "" ) ; / / F i r s t time step

w. p r i n t l n ("" ) ;
f o r ( i =1; i <100; i ++) x [ i ] [ 1 ] =x [ i ] [ 0 ] + 0 . 5 ∗ r a t i o ∗( x [ i +1 ] [0 ]+ x [ i −1][0]−2∗x [ i ] [ 0 ] ) ;

f o r ( k =1; k < max ; k++ ) { / / Later time steps
f o r ( i =1 ; i < 1 0 0 ; i ++ ) x [ i ] [ 2 ] = 2 .∗ x [ i ] [ 1 ]

−x [ i ] [ 0 ] + r a t i o ∗( x [ i + 1 ] [ 1 ] + x [ i −1][1] − 2∗x [ i ] [ 1 ] ) ;
f o r ( i =0 ; i < 1 0 1 ; i ++ ) { x [ i ] [ 0 ] = x [ i ] [ 1 ] ; x [ i ] [ 1 ] = x [ i ] [ 2 ] ; }
i f ( ( k%5) == 0) { / / Pr int every 5 th point

f o r ( i =0 ; i < 1 0 1 ; i ++ ) w. p r i n t l n ("" + x [ i ] [ 2 ] + "" ) ; / / Gnuplot 3D
w. p r i n t l n ("" ) ; / / Empty l ine for gnuplot

}
}
System . out . p r i n t l n ("data in EqString .dat , gnuplot format" ) ;

} }
�

Listing 18.1 EqString.java solves the wave equation via time stepping for a string of length

L = 1 m with its ends fixed and with the gently plucked initial conditions. You will need to

modify this code to include new physics.

to display the results; you should try L= 1000 to be realistic. The values of density
and tension are entered as constants, ρ= 0.01 kg/m and T = 40 N, with the space
grid set at 101 points, corresponding to ∆ = 0.01 cm.

18.2.4 Assessment and Exploration

1. Solve the wave equation and make a surface plot of displacement versus time
and position.

2. Explore a number of space and time step combinations. In particular, try steps
that satisfy and that do not satisfy the Courant condition (18.22). Does your
exploration conform with the stability condition?

3. Compare the analytic and numeric solutions, summing at least 200 terms in
the analytic solution.

4. Use the plotted time dependence to estimate the peak’s propagation velocity
c. Compare the deduced c to (18.2).

5. Our solution of the wave equation for a plucked string leads to the formation
of a wave packet that corresponds to the sum of multiple normal modes of
the string. On the right in Figure 18.3 we show the motion resulting from the
string initially placed in a single normal mode (standing wave),

y(x, t= 0) = 0.001 sin 2πx,
∂y

∂t
(x, t= 0) = 0.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 485

pde waves: string, quantum packet, and e&m 485

Figure 18.3 The vertical displacement as a function of position x and time t. A string initially

placed in a standing wave on a string with friction. Notice how the standing wave moves up

and down with time. (Courtesy of J. Wiren.)

Modify the program to incorporate this initial condition and see if a normal
mode results.

6. Observe the motion of the wave for initial conditions corresponding to the
sum of two adjacent normal modes. Does beating occur?

7. When a string is plucked near its end, a pulse reflects off the ends and bounces
back and forth. Change the initial conditions of the model program to one
corresponding to a string plucked exactly in its middle and see if a traveling
or a standing wave results.

8. � Figure 18.4 shows the wave packets that result as a function of time for
initial conditions corresponding to the double pluck indicated on the left in
the figure. Verify that initial conditions of the form

y(x, t= 0)
0.005

=




0, 0.0 ≤ x≤ 0.1,

10x− 1, 0.1 ≤ x≤ 0.2,

−10x+ 3, 0.2 ≤ x≤ 0.3,

0, 0.3 ≤ x≤ 0.7,

10x− 7, 0.7 ≤ x≤ 0.8,

−10x+ 9, 0.8 ≤ x≤ 0.9,

0, 0.9 ≤ x≤ 1.0

lead to this type of a repeating pattern. In particular, observe whether the
pulses move or just oscillate up and down.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 486

486 chapter 18

Two Initial Pulses

y(x, t)

t

x

0

Figure 18.4 The vertical displacement as a function of position and time of a string initially

plucked simultaneously at two points, as shown by arrows. Note that each initial peaks break

up into waves traveling to the right and to the left. The traveling waves invert on reflection

from the fixed ends. As a consequence of these inversions, the t � 12 wave is an inverted t = 0
wave.

18.3 Waves with Friction (Extension)

The string problem we have investigated so far can be handled by either a numerical
or an analytic technique. We now wish to extend the theory to include some more
realistic physics. These extensions have only numerical solutions.

Real plucked strings do not vibrate forever because the real world contains
friction. Consider again the element of a string between x and x+ dx (Figure 18.1
right) but now imagine that this element is moving in a viscous fluid such as air.
An approximate model has the frictional force pointing in a direction opposite
the (vertical) velocity of the string and proportional to that velocity, as well as
proportional to the length of the string element:

Ff � −2κ ∆x
∂y

∂t
, (18.23)

where κ is a constant that is proportional to the viscosity of the medium in which
the string is vibrating. Including this force in the equation of motion changes the
wave equation to

∂2y

∂t2
= c2

∂2y

∂x2 − 2κ
ρ

∂y

∂t
. (18.24)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 487

pde waves: string, quantum packet, and e&m 487

In Figure 18.3 we show the resulting motion of a string plucked in the middle when
friction is included. Observe how the initial pluck breaks up into waves traveling
to the right and to the left that are reflected and inverted by the fixed ends. Because
those parts of the wave with the higher velocity experience greater friction, the
peak tends to be smoothed out the most as time progresses.

Exercise: Generalize the algorithm used to solve the wave equation to now
include friction and check if the wave’s behavior seems physical (damps in
time). Start with T = 40 N and ρ= 10 kg/m and pick a value of κ large enough
to cause a noticeable effect but not so large as to stop the oscillations. As a check,
reverse the sign of κ and see if the wave grows in time (which would eventually
violate our assumption of small oscillations).

18.4 Waves for Variable Tension and Density (Extension)

We have derived the propagation velocity for waves on a string as c=
√
T/ρ. This

says that waves move slower in regions of high density and faster in regions of high
tension. If the density of the string varies, for instance, by having the ends thicker
in order to support the weight of the middle, then cwill no longer be a constant and
our wave equation will need to be extended. In addition, if the density increases,
then so will the tension because it takes greater tension to accelerate a greater mass.
If gravity acts, then we will also expect the tension at the ends of the string to be
higher than in the middle because the ends must support the entire weight of the
string.

To derive the equation for wave motion with variable density and tension, con-
sider again the element of a string (Figure 18.1 right) used in our derivation of
the wave equation. If we do not assume the tension T is constant, then Newton’s
second law gives

F =ma (18.25)

⇒ ∂

∂x

[
T (x)

∂y(x, t)
∂x

]
∆x= ρ(x)∆x

∂2u(x, t)
∂t2

(18.26)

⇒ ∂T (x)
∂x

∂y(x, t)
∂x

+T (x)
∂2y(x, t)
∂x2 = ρ(x)

∂2y(x, t)
∂t2

. (18.27)

If ρ(x) and T (x) are known functions, then these equations can be solved with just
a small modification of our algorithm.

In §18.4.1 we will solve for the tension in a string due to gravity. Readers inter-
ested in an alternate easier problem that still shows the new physics may assume

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 488

488 chapter 18

that the density and tension are proportional:

ρ(x) = ρ0e
αx, T (x) = T0e

αx. (18.28)

While we would expect the tension to be greater in regions of higher density (more
mass to move and support), being proportional is clearly just an approximation.
Substitution of these relations into (18.27) yields the new wave equation:

∂2y(x, t)
∂x2 +α

∂y(x, t)
∂x

=
1
c2
∂2y(x, t)
∂t2

, c2 =
T0

ρ0
. (18.29)

Here c is a constant that would be the wave velocity if α= 0. This equation is
similar to the wave equation with friction, only now the first derivative is with
respect to x and not t. The corresponding difference equation follows from using
central-difference approximations for the derivatives:

yi,j+1 = 2yi,j − yi,j−1 +
αc2(∆t)2

2∆x
[yi+1,j − yi,j ] +

c2

c′2
[yi+1,j + yi−1,j − 2yi,j ],

yi,2 = yi,1 +
c2

c′2
[yi+1,1 + yi−1,1 − 2yi,1] +

αc2(∆t)2

2∆x
[yi+1,1 − yi,1]. (18.30)

18.4.1 Waves on a Catenary

Up until this point we have been ignoring the effect of gravity upon our string’s
shape and tension. This is a good approximation if there is very little sag in the
string, as might happen if the tension is very high and the string is light. Even if
there is some sag, our solution for y(x, t) could be used as the disturbance about
the equilibrium shape. However, if the string is massive, say, like a chain or heavy
cable, then the sag in the middle caused by gravity could be quite large (Figure 18.5),
and the resulting variation in shape and tension needs to be incorporated into the
wave equation. Because the tension is no longer uniform, waves travel faster near
the ends of the string, which are under greater tension since they must support the
entire weight of the string.

18.4.2 Derivation of a Catenary Shape

Consider a string of uniform density ρ acted upon by gravity. To avoid confusion
with our use of y(x) to describe a disturbance on a string, we call u(x) the equilib-
rium shape of the string (Figure 18.5). The statics problem we need to solve is to
determine the shape u(x) and the tension T (x). The inset in Figure 18.5 is a free-
body diagram of the midpoint of the string and shows that the weight W of this
section of arc length s is balanced by the vertical component of the tension T . The

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 489

pde waves: string, quantum packet, and e&m 489

x

u

D

T

T0

W

dx

ds

ds

Figure 18.5 Left: A uniform string suspended from its ends in a gravitational field assumes a

catenary shape. Right: A force diagram of a section of the catenary at its lowest point. The

tension now varies along the string.

horizonal tension T0 is balanced by the horizontal component of T :

T (x) sin θ=W = ρgs, T (x) cos θ = T0, (18.31)

⇒ tan θ= ρgs/T0. (18.32)

The trick is to convert (18.32) to a differential equation that we can solve. We do
that by replacing the slope tan θ by the derivative du/dx and taking the derivative
with respect to x:

du

dx
=
ρg

T0
s, ⇒ d2u

dx2 =
ρg

T0

ds

dx
. (18.33)

Yet since ds=
√
dx2 + du2, we have our differential equation

d2u

dx2 =
1
D

√
dx2 + du2

dx
=

1
D

√
1 +
(
du

dx

)2

, (18.34)

D=T0/ρg, (18.35)

where D is a combination of constants with the dimension of length. Equation
(18.34) is the equation for the catenary and has the solution [Becker 54]

u(x) =D cosh
x

D
. (18.36)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 490

490 chapter 18

Here we have chosen the x axis to lie a distanceD below the bottom of the catenary
(Figure 18.5) so that x= 0 is at the center of the string where y =D and T = T0.
Equation (18.33) tells us the arc length s=Ddu/dx, so we can solve for s(x) and,
via (18.31), for the tension T (x):

s(x) =D sinh
x

D
, ⇒ T (x) = T0

ds

dx
= ρgu(x) = T0 cosh

x

D
. (18.37)

It is this variation in tension that causes the wave velocity to change for different
positions on the string.

18.4.3 Catenary and Frictional Wave Exercises

We have given you the program EqString.java (Listing 18.1) that solves the wave
equation. Modify it to produce waves on a catenary including friction or for
the assumed density and tension given by (18.28) with α= 0.5, T0 = 40 N, and
ρ0 = 0.01 kg/m. (The instructor’s CD contains the programs CatFriction.java and
CatString.java that do this.)

1. Look for some interesting cases and create surface plots of the results.
2. Explain in words how the waves dampen and how a wave’s velocity appears

to change. The behavior you obtain may look something like that shown in
Figure 18.6.

3. Normal modes: Search for normal-mode solutions of the variable-tension
wave equation, that is, solutions that vary as

u(x, t) =A cos(ωt) sin(γx).

Try using this form to start your program and see if you can find standing
waves. Use large values for ω.

4. When conducting physics demonstrations, we set up standing-wave patterns
by driving one end of the string periodically. Try doing the same with your
program; that is, build into your code the condition that for all times

y(x= 0, t) =A sinωt.

Try to vary A and ω until a normal mode (standing wave) is obtained.
5. (For the exponential density case.) If you were able to find standing waves,

then verify that this string acts like a high-frequency filter, that is, that there
is a frequency below which no waves occur.

6. For the catenary problem, plot your results showing both the disturbance
u(x, t) about the catenary and the actual height y(x, t) above the horizontal
for a plucked string initial condition.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 491

pde waves: string, quantum packet, and e&m 491

u(x,t)

t = 1

2

3

4

5

6

x

Figure 18.6 The wave motion of a plucked catenary with friction. (Courtesy of Juan

Vanegas.)

7. Try the first two normal modes for a uniform string as the initial conditions
for the catenary. These should be close to, but not exactly, normal modes.

8. We derived the normal modes for a uniform string after assuming that k(x) =
ω/c(x) is a constant. For a catenary without too muchxvariation in the tension,
we should be able to make the approximation

c(x)2 � T (x)
ρ

=
T0 cosh(x/d)

ρ
.

See if you get a better representation of the first two normal modes if you
include some x dependence in k.

18.5 Unit II. Quantum Wave Packets

Problem: An experiment places an electron with a definite momentum and position
in a 1-D region of space the size of an atom. It is confined to that region by some
kind of attractive potential. Your problem is to determine the resultant electron
behavior in time and space.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 492

492 chapter 18

18.6 Time-Dependent Schrödinger Equation (Theory)

Because the region of confinement is the size of an atom, we must solve this problem
quantum mechanically. Nevertheless, it is different from the problem of a particle
confined to a box considered in Chapter 9, “Differential Equation Applications,”
because now we are starting with a particle of definite momentum and position. In
Chapter 9 we had a time-independent situation in which we had to solve the eigen-
value problem. Now the definite momentum and position of the electron imply
that the solution is a wave packet, which is not an eigenstate with a uniform time
dependence of exp(−iωt). Consequently, we must now solve the time-dependent
Schrödinger equation.

We model an electron initially localized in space at x= 5 with momentum
k0 (h̄= 1 in our units) by a wave function that is a wave packet consisting of a
Gaussian multiplying a plane wave:

ψ(x, t= 0) = exp

[
−1

2

(
x− 5
σ0

)2
]
eik0x. (18.38)

To solve the problem we must determine the wave function for all later times. If
(18.38) were an eigenstate of the Hamiltonian, its exp(−iωt) time dependence can be
factored out of the Schrödinger equation (as is usually done in textbooks). However,
H̃ψ �= Eψ for this ψ, and so we must solve the full time-dependent Schrödinger
equation. To show you where we are going, the resulting wave packet behavior is
shown in Figures 18.7 and 18.8.

The time and space evolution of a quantum particle is described by the 1-D
time-dependent Schrödinger equation,

i
∂ψ(x, t)
∂t

= H̃ψ(x, t) (18.39)

i
∂ψ(x, t)
∂t

=− 1
2m

∂2ψ(x, t)
∂x2 +V (x)ψ(x, t), (18.40)

where we have set 2m= 1 to keep the equations simple. Because the initial wave
function is complex (in order to have a definite momentum associated with it), the
wave function will be complex for all times. Accordingly, we decompose the wave
function into its real and imaginary parts:

ψ(x, t) = R(x, t) + i I(x, t), (18.41)

⇒ ∂R(x, t)
∂t

=− 1
2m

∂2I(x, t)
∂x2 +V (x)I(x, t), (18.42)

∂I(x, t)
∂t

= +
1

2m
∂2R(x, t)
∂x2 −V (x)R(x, t), (18.43)

where V (x) is the potential acting on the particle.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 493

pde waves: string, quantum packet, and e&m 493

0

20

x

t

Figure 18.7 The position as a function of time of a localized electron confined to a square

well (computed with the code SqWell.java available on the instructor’s CD). The electron is

initially on the right with a Gaussian wave packet. In time, the wave packet spreads out and

collides with the walls.

0

10

x

t

x

t

8
10

0
10

20

60

70
80

10

10

6
4

2
0

Tim
e

8

Position0
10

20

30

40

50

60

70

10
5
080

00
5

Figure 18.8 The probability density as a function of time for an electron confined to a 1-D

harmonic oscillator potential well. On the left is a conventional surface plot from Gnuplot,

while on the right is a color visualization from OpenDX.

18.6.1 Finite-Difference Algorithm

The time-dependent Schrödinger equation can be solved with both implicit (large-
matrix) and explicit (leapfrog) methods. The extra challenge with the Schrödinger
equation is to ensure that the integral of the probability density

∫ +∞
−∞ dx ρ(x, t)

remains constant (conserved) to a high level of precision for all time. For our project
we use an explicit method that improves the numerical conservation of probability
by solving for the real and imaginary parts of the wave function at slightly different
or “staggered” times [Ask 77, Viss 91, MLP 00]. Explicitly, the real part R is deter-
mined at times 0, ∆t, . . ., and the imaginary part I at 1

2∆t, 3
2∆t, . . . . The algorithm

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 494

494 chapter 18

is based on (what else?) the Taylor expansions of R and I :

R

(
x, t+

1
2
∆t
)

=R

(
x, t− 1

2
∆t
)

+ [4α+V (x) ∆t]I(x, t)

−2α[I(x+ ∆x, t) + I(x−∆x, t)], (18.44)

where α= ∆t/2(∆x)2. In discrete form with Rt=n∆t
x=i∆x, we have

Rn+1
i =Rn

i − 2
{
α
[
In
i+1 + In

i−1
]− 2 [α+Vi ∆t] In

i

}
, (18.45)

In+1
i = In

i + 2
{
α
[
Rn

i+1 +Rn
i−1
]− 2 [α+Vi ∆t]Rn

i

}
, (18.46)

where the superscript n indicates the time and the subscript i the position.
The probability density ρ is defined in terms of the wave function evaluated at

three different times:

ρ(t) =



R2(t) + I

(
t+ ∆t

2

)
I
(
t− ∆t

2

)
, for integer t,

I2(t) +R
(
t+ ∆t

2

)
R
(
t− ∆t

2

)
, for half-integer t.

(18.47)

Although probability is not conserved exactly with this algorithm, the error is two
orders higher than that in the wave function, and this is usually quite satisfactory.
If it is not, then we need to use smaller steps. While this definition of ρ may seem
strange, it reduces to the usual one for ∆t→ 0 and so can be viewed as part of
the art of numerical analysis. You will investigate just how well probability is con-
served. We refer the reader to [Koon 86, Viss 91] for details on the stability of the
algorithm.

18.6.2 Wave Packet Implementation and Animation

In Listing 18.2 you will find the program Harmos.java that solves for the motion
of the wave packet (18.38) inside a harmonic oscillator potential. The program
Slit.java on the instructor’s CD solves for the motion of a Gaussian wave packet as
it passes through a slit (Figure 18.10). You should solve for a wave packet confined
to the square well:

V (x) =




∞, x < 0, or x > 15,

0, 0 ≤ x≤ 15.

1. Define arrays psr[751][2] and psi[751][2] for the real and imaginary parts of
ψ, and Rho[751] for the probability. The first subscript refers to the x position
on the grid, and the second to the present and future times.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 495

pde waves: string, quantum packet, and e&m 495

2. Use the values σ0 = 0.5, ∆x= 0.02, k0 = 17π, and ∆t= 1
2∆x2.

3. Use equation (18.38) for the initial wave packet to define psr[ j][1] for all j at
t= 0 and to define psi[ j][1] at t= 1

2∆t.
4. Set Rho[1] = Rho[751] = 0.0 because the wave function must vanish at the

infinitely high well walls.
5. Increment time by 1

2∆t. Use (18.45) to compute psr[ j][2] in terms of psr[ j][1],
and (18.46) to compute psi[ j][2] in terms of psi[ j][1].

6. Repeat the steps through all of space, that is, for i= 2–750.
7. Throughout all of space, replace the present wave packet (second index equal

to 1) by the future wave packet (second index 2).
8. After you are sure that the program is running properly, repeat the time-

stepping for ∼5000 steps.

� �
/ / Harmos . java : t−dependent Schro eqn , for wavepacket in harmonic o s c i l l a t o r V
i m p o r t j ava . io . ∗ ;

p u b l i c c l a s s Harmos {

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) throws IOException , FileNotFoundException {
Pr i n t W r i t e r w = new Pr i n t W r i t e r ( new FileOutputStream ("Harmos.dat" ) , t r u e ) ;
d o u b l e psr [ ] [ ] = new d o u b l e [ 7 5 1 ] [ 2 ] , ps i [ ] [ ] = new d o u b l e [ 7 5 1 ] [ 2 ] ;
d o u b l e p2 [ ] = new d o u b l e [ 7 5 1 ] , v [ ] = new d o u b l e [ 7 5 1 ] , dx =0 .02 , k0 , dt , x , pi ;
i n t i , n , max = 7 5 0 ;
pi = 3 .14159265358979323846 ; k0 = 3.0∗ pi ; dt = dx∗dx / 4 . 0 ; x = −7.5; / / i . c .
f o r ( i =0 ; i < max ; i ++) {

psr [ i ] [ 0 ] = Math . exp ( −0.5∗(Math . pow ( ( x / 0 . 5 ) , 2 . ) ) ) ∗ Math . cos ( k0∗x ) ; / / RePsi
ps i [ i ] [ 0 ] = Math . exp ( −0.5∗(Math . pow ( ( x / 0 . 5 ) , 2 . ) ) ) ∗ Math . s i n ( k0∗x ) ; / / ImPsi
v [ i ] = 5 .0∗ x∗x ; / / P o t e n t i a l
x = x + dx ;

}
f o r ( n=0; n < 20000 ; n++) { / / Propagate in time

f o r ( i =1 ; i < max−1; i ++ ) { / / RePsi
psr [ i ] [ 1 ] = psr [ i ] [ 0 ] − dt ∗( ps i [ i + 1 ] [ 0 ] + ps i [ i −1][0]

−2.∗ ps i [ i ] [ 0 ] ) /(dx∗dx ) +dt∗v [ i ]∗ psi [ i ] [ 0 ] ;
p2 [ i ] = psr [ i ] [ 0 ] ∗ psr [ i ] [ 1 ] + ps i [ i ] [ 0 ] ∗ psi [ i ] [ 0 ] ;

}
f o r ( i =1 ; i < max−1; i ++ ) { ps i [ i ] [ 1 ] = ps i [ i ] [ 0 ] + dt ∗( psr [ i + 1 ] [ 1 ]

+ psr [ i −1][1] −2.∗psr [ i ] [ 1 ] ) /(dx∗dx )−dt∗v [ i ]∗ psr [ i ] [ 1 ] ; } / / ImPsi
i f ( ( n == 0) || ( n%2000 == 0) ) { / / Output every 2000 steps

f o r ( i =0 ; i <max ; i = i +10 ) w. p r i n t l n (""+(p2 [ i ]+0 .0015∗v [ i ] ) +"" ) ;
w. p r i n t l n ("" ) ;

}
f o r ( i =0 ; i <max ; i ++ ) { ps i [ i ] [ 0 ] = ps i [ i ] [ 1 ] ; psr [ i ] [ 0 ] = psr [ i ] [ 1 ] ; }

}
System . out . p r i n t l n ("data saved in Harmos.dat" ) ;

} }
�

Listing 18.2 Harmos.java solves the time-dependent Schrödinger equation for a particle

described by a Gaussian wave packet moving within a harmonic oscillator potential.

1. Animation: Output the probability density after every 200 steps for use in
animation. C D

2. Make a surface plot of probability versus position versus time. This should
look like Figure 18.7 or 18.8.

3. Make an animation showing the wave function as a function of time.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 496

496 chapter 18

4. Check how well the probability is conserved for early and late times by deter-
mining the integral of the probability over all of space,

∫ +∞
−∞ dx ρ(x), and seeing

by how much it changes in time (its specific value doesn’t matter because that’s
just normalization).

5. What might be a good explanation of why collisions with the walls cause the
wave packet to broaden and break up? (Hint: The collisions do not appear
so disruptive when a Gaussian wave packet is confined within a harmonic
oscillator potential well.)

18.7 Wave Packets in Other Wells (Exploration)

1-D Well: Now confine the electron to lie within the harmonic oscillator
potential:

V (x) =
1
2
x2 (−∞ ≤ x≤ ∞).

Take the momentum k0 = 3π, the space step ∆x= 0.02, and the time step
∆t= 1

4∆x2. Note that the wave packet broadens yet returns to its initial shape!
2-D Well �: Now confine the electron to lie within a 2-D parabolic tube

(Figure 18.9):

V (x, y) = 0.9x2, −9.0 ≤ x≤ 9.0, 0 ≤ y ≤ 18.0.

The extra degree of freedom means that we must solve the 2-D PDE:

i
∂ψ(x, y, t)

∂t
= −

(
∂2ψ

∂x2 +
∂2ψ

∂y2

)
+V (x, y)ψ. (18.48)

Assume that the electron’s initial localization is described by the 2-D Gaussian
wave packet:

ψ(x, y, t= 0) = eik0xx eik0yy exp
[
− (x−x0)2

2σ2
0

]
exp
[
− (y− y0)2

2σ2
0

]
. (18.49)

Note that you can solve the 2-D equation by extending the method we just
used in 1-D or you can look at the next section where we develop a special
algorithm.

18.8 Algorithm for the 2-D Schrödinger Equation

One way to develop an algorithm for solving the time-dependent Schrödinger
equation in 2-D is to extend the 1-D algorithm to another dimension. Rather than
do that, we apply quantum theory directly to obtain a more powerful algorithm

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 497

pde waves: string, quantum packet, and e&m 497

x

y

100 300 500

Figure 18.9 The probability density as a function of x and y of an electron confined to a 2-D

parabolic tube. The electron’s initial localization is described by a Gaussian wave packet in

both the x and y directions. The times are 100, 300, and 500 steps.

[MLP 00]. First we note that equation (18.48) can be integrated in a formal sense
[L&L,M 76] to obtain the operator solution:

ψ(x, y, t) =U(t)ψ(x, y, t= 0) (18.50)

U(t) = e−iH̃t, H̃ = −
(
∂2

∂x2 +
∂2

∂y2

)
+V (x, y),

where U(t) is an operator that translates a wave function by an amount of time
t and H̃ is the Hamiltonian operator. From this formal solution we deduce that a
wave packet can be translated ahead by time ∆t via

ψn+1
i,j = U(∆t)ψn

i,j , (18.51)

where the superscripts denote time t= n∆t and the subscripts denote the two
spatial variables x= i∆x and y = j∆y. Likewise, the inverse of the time evolution
operator moves the solution back one time step:

ψn−1 = U−1(∆t)ψn = e+iH̃∆tψn. (18.52)

While it would be nice to have an algorithm based on a direct application of (18.52),
the references show that the resulting algorithm is not stable. That being so, we base
our algorithm on an indirect application [Ask 77], namely, the relation between the
difference in ψn+1 and ψn−1:

ψn+1 = ψn−1 + [e−iH̃∆t − e+iH̃∆t]ψn, (18.53)

where the difference in sign of the exponents is to be noted. The algorithm derives
from combining the O(∆x2) expression for the second derivative obtained from

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 498

498 chapter 18

the Taylor expansion,

∂2ψ

∂x2 � −1
2
[
ψn

i+1,j +ψn
i−1,j − 2ψn

i,j

]
, (18.54)

with the corresponding-order expansion of the evolution equation (18.53). Sub-
stituting the resulting expression for the second derivative into the 2-D time-
dependent Schrödinger equation results in2

ψn+1
i,j = ψn−1

i,j − 2i
[(

4α+ 1
2∆tVi,j

)
ψn

i,j −α
(
ψn

i+1,j +ψn
i−1,j +ψn

i,j+1 +ψn
i,j−1

)]
,

whereα= ∆t/2(∆x)2. We convert this complex equations to coupled real equations
by substituting in the wave function ψ =R+ iI ,

Rn+1
i,j =Rn−1

i,j + 2
[(

4α+ 1
2∆tVi,j

)
In
i,j −α

(
In
i+1,j + In

i−1,j + In
i,j+1 + In

i,j−1
)]
,

In+1
i,j = In−1

i,j − 2
[(

4α+ 1
2∆tVi,j

)
Rn

i,j +α
(
Rn

i+1,j +Rn
i−1,j +Rn

i,j+1 +Rn
i,j−1

)]
.

This is the algorithm we use to integrate the 2-D Schrödinger equation. To determine
the probability, we use the same expression (18.47) used in 1-D.

18.8.0.1 EXPLORATION: A BOUND AND DIFFRACTED 2-D PACKET

1. Determine the motion of a 2-D Gaussian wave packet within a 2-D harmonic
oscillator potential:

V (x, y) = 0.3(x2 + y2), −9.0 ≤ x≤ 9.0, −9.0 ≤ y ≤ 9.0. (18.55)

2. Center the initial wave packet at (x, y) = (3.0,−3) and give it momentum
(k0x, k0y) = (3.0, 1.5).

3. Young’s single-slit experiment has a wave passing through a small slit with
the transmitted wave showing interference effects. In quantum mechanics,
where we represent a particle by a wave packet, this means that an interfer-
ence pattern should be formed when a particle passes through a small slit.
Pass a Gaussian wave packet of width 3 through a slit of width 5 (Figure 18.10)
and look for the resultant quantum interference.

2 For reference sake, note that the constants in the equation change as the dimension of
the equation changes; that is, there will be different constants for the 3-D equation, and
therefore our constants are different from the references!

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 499

pde waves: string, quantum packet, and e&m 499

Figure 18.10 The probability density as a function of position and time for an electron

incident upon and passing through a slit.

18.9 Unit III. E&M Waves via Finite-Difference
Time Domain �

Problem: You are given a 1-D resonant cavity with perfectly conducting walls. An
initial electric pulse with the shape

Ex(z = 3) = exp

[
1
2

(
40 − t

12

)2
]

cos(2πft), 0 ≤ t≤ T, (18.56)

is placed in this cavity. Determine the motion of this pulse at all later times for
T = 10−8 s and f = 700 MHz.

Simulations of electromagnetic waves are of tremendous practical importance. Indeed,
the fields of nanotechnology and spintronics rely heavily upon such simulations. The basic
techniques used to solve for electromagnetic waves are essentially the same as those we used
in Units I and II for string and quantum waves: Set up a grid in space and time and then
step the initial solution forward in time one step at a time. For E&M simulations, this
technique is known as the finite difference time domain (FDTD) method. What is new
for E&M waves is that they are vector fields, with the variations of one generating the other,
so that the components of E and B are coupled to each other. Our treatment of FDTD does
not do justice to the wealth of physics that can occur, and we recommend [Sull 00] for a
more complete treatment and [Ward 04] (and their Web site) for modern applications.

18.10 Maxwell’s Equations

The description of electromagnetic (EM) waves via Maxwell’s equations is given
in many textbooks. For propagation in just one dimension (z) and for free space
with no sinks or sources, four coupled PDEs result:

�∇ ·E = 0 ⇒ ∂Ex(z, t)
∂x

= 0 (18.57)

�∇ ·H = 0 ⇒ ∂Hy(z, t)
∂y

= 0, (18.58)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 500

500 chapter 18

x

y

z

Ex Hy

Ex
Hy

t

Figure 18.11 A single electromagnetic pulse traveling along the z axis. The two pulses

correspond to two different times, and the coupled electric and magnetic fields are

indicated by solid and dashed curves, respectively.

∂E
∂t

= +
1
ε0
�∇ ×H ⇒ ∂Ex

∂t
= − 1

ε0

∂Hy(z, t)
∂z

, (18.59)

∂H
∂t

= − 1
µ0

�∇ ×E ⇒ ∂Hy

∂t
= − 1

µ0

∂Ex(z, t)
∂z

. (18.60)

As indicated in Figure 18.11, we have chosen the electric field E(z, t) to oscillate (be
polarized) in the x direction and the magnetic field H(z, t) to be polarized in the
y direction. As indicated by the bold arrow in Figure 18.11, the direction of power
flow for the assumed transverse electromagnetic (TEM) wave is given by the right-
hand rule for E×H. Note that although we have set the initial conditions such that
the EM wave is traveling in only one dimension (z), its electric field oscillates in a
perpendicular direction (x) and its magnetic field oscillates in yet a third direction
(y); so while some may call this a 1-D wave, the vector nature of the fields means
that the wave occupies all three dimensions.

18.11 FDTD Algorithm

We need to solve the two coupled PDEs (18.59) and (18.60) appropriate for our
problem. As is usual for PDEs, we approximate the derivatives via the central-
difference approximation, here in both time and space. For example,

∂E(z, t)
∂t

� E(z, t+ ∆t
2 ) −E(z, t− ∆t

2 )
∆t

, (18.61)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 501

pde waves: string, quantum packet, and e&m 501

z

t

n

n+1

n+1/2

n-1/2

k k+
1

k+
1/

2

k-
1/

2

Hy

Ex

Figure 18.12 The scheme for using the known values of Ex and Hy at three earlier times and

three different space positions to obtain the solution at the present time. Note that the values

of Ex are determined on the lattice of filled circles, corresponding to integer space indices

and half-integer time indices. In contrast, the values of Hy are determined on the lattice of

open circles, corresponding to half-integer space indices and integer time indices.

∂E(z, t)
∂z

� E(z+ ∆z
2 , t) −E(z− ∆z

2 , t)
∆z

. (18.62)

We next substitute the approximations into Maxwell’s equations and rearrange
the equations into the form of an algorithm that advances the solution through
time. Because only first derivatives occur in Maxwell’s equations, the equations
are simple, although the electric and magnetic fields are intermixed.

As introduced by Yee [Yee 66], we set up a space-time lattice (Figure 18.12) in
which there are half-integer time steps as well as half-integer space steps. The
magnetic field will be determined at integer time sites and half-integer space sites
(open circles), and the electric field will be determined at half-integer time sites
and integer space sites (filled circles). Because the fields already have subscripts
indicating their vector nature, we indicate the lattice position as superscripts, for
example,

Ex(z, t) → Ex(k∆z, n∆t) → Ek,n
x . (18.63)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 502

502 chapter 18

Maxwell’s equations (18.59) and (18.60) now become the discrete equations

E
k,n+1/2
x −E

k,n−1/2
x

∆t
=−H

k+1/2,n
y −H

k−1/2,n
y

ε0∆z
,

H
k+1/2,n+1
y −H

k+1/2,n
y

∆t
=−E

k+1,n+1/2
x −E

k,n+1/2
x

µ0∆z
.

To repeat, this formulation solves for the electric field at integer space steps (k)
but half-integer time steps (n), while the magnetic field is solved for at half-integer
space steps but integer time steps.

We convert these equations into two simultaneous algorithms by solving forEx

at time n+ 1
2 , and Hy at time n:

Ek,n+1/2
x =Ek,n−1/2

x − ∆t
ε0 ∆z

(
Hk+1/2,n

y −Hk−1/2,n
y

)
, (18.64)

Hk+1/2,n+1
y =Hk+1/2,n

y − ∆t
µ0∆z

(
Ek+1,n+1/2

x −Ek,n+1/2
x

)
. (18.65)

The algorithms must be applied simultaneously because the space variation of Hy

determines the time derivative of Ex, while the space variation of Ex determines
the time derivative of Hy (Figure 18.12). This algorithm is more involved than our
usual time-stepping ones in that the electric fields (filled circles in Figure 18.12) at
future times t= n+ 1

2 are determined from the electric fields at one time step earlier
t= n− 1

2 , and the magnetic fields at half a time step earlier t= n. Likewise, the
magnetic fields (open circles in Figure 18.12) at future times t= n+ 1are determined
from the magnetic fields at one time step earlier t= n, and the electric field at half
a time step earlier t= n+ 1

2 . In other words, it is as if we have two interleaved
lattices, with the electric fields determined for half-integer times on lattice 1 and
the magnetic fields at integer times on lattice 2.

Although these half-integer times appear to be the norm for FDTD methods
[Taf 89, Sull 00], it may be easier for some readers to understand the algorithm by
doubling the index values and referring to even and odd times:

Ek,n
x = Ek,n−2

x − ∆t
ε0∆z

(
Hk+1,n−1

y −Hk−1,n−1
y

)
, k even, n odd, (18.66)

Hk,n
y =Hk,n−2

y − ∆t
µ0∆z

(
Ek+1,n−1

x −Ek−1,n−1
x

)
, k odd, n even. (18.67)

This makes it clear thatE is determined for even space indices and odd times, while
H is determined for odd space indices and even times.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 503

pde waves: string, quantum packet, and e&m 503

We simplify the algorithm and make its stability analysis simpler by normalizing
the electric fields to have the same dimensions as the magnetic fields,

Ẽ =
√
µ0

ε0
E. (18.68)

The algorithm (18.64) and (18.65) now becomes

Ẽ
k,n+1/2
x = Ẽ

k,n−1/2
x +β

(
H

k−1/2,n
y −H

k+1/2,n
y

)
, (18.69)

Hk+1/2,n+1
y =Hk+1/2,n

y +β
(
Ẽk,n+1/2

x − Ẽk+1,n+1/2
x

)
, (18.70)

β =
c

∆z/∆t
, c=

1√
ε0µ0

. (18.71)

Here c is the speed of light in a vacuum and β is the ratio of the speed of light to
grid velocity ∆z/∆t.

The space step ∆z and the time step ∆t must be chosen so that the algorithm is
stable. The scales of the space and time dimensions are set by the wavelength and
frequency, respectively, of the propagating wave. As a minimum, we want at least
10 grid points to fall within a wavelength:

∆z ≤ λ

10
. (18.72)

The time step is then determined by the Courant stability condition [Taf 89, Sull 00]
to be

β =
c

∆z/∆t
≤ 1

2
. (18.73)

As we have seen before, (18.73) implies that making the time step smaller improves
precision and maintains stability, but making the space step smaller must be accom-
panied by a simultaneous decrease in the time step in order to maintain stability
(you should check this).

18.11.1 Implementation

In Listing 18.3 we provide a simple implementation of the FDTD algorithm for a
z lattice of 200 sites. The initial condition corresponds to a Gaussian pulse in time
for the E field, located at the midpoint of the z lattice (in ∆t and ∆z units):

Ex(z = 100, t) = exp

[
1
2

(
40 − t

12

)2
]
. (18.74)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 504

504 chapter 18

� �
/ / FDTD. java FDTD solution of Maxwell ’ s equations in 1−D
i m p o r t j ava . io . ∗ ;
i m p o r t j ava . u t i l . ∗ ;

p u b l i c c l a s s FDTD {
p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) throws IOException , FileNotFoundException {

d o u b l e dx , dt , beta , c0 ;
i n t time = 100 , max = 200 , i , n , j , k ;
beta = 0 . 5 ; / / beta = c / ( dz / dt ) < 0 . 5 for s t a b i l i t y
d o u b l e Ex [ ] = new d o u b l e [max+ 1 ] ; d o u b l e Hy[ ] = new d o u b l e [max+ 1 ] ; / / Ex & Hy

/ / Gaussian Pulse Variables
i n t m = max/2; / / Pulse in center of space
d o u b l e t = 40 , width = 1 2 . ; / / Center , width of the pulse
Pr i n t W r i t e r w =new Pr i n t W r i t e r ( new FileOutputStream ("E.dat" ) , t r u e ) ;
Pr i n t W r i t e r q =new Pr i n t W r i t e r ( new FileOutputStream ("H.dat" ) , t r u e ) ;

/ / I n t i a l conditions
f o r ( k = 1 ; k < max ; k++ ) Ex [ k ] = Hy[ k ] = 0 . ;

f o r ( n = 0 ; n < time ; n++ ) {
f o r ( k = 1 ; k < max ; k++ ) Ex [ k ] = Ex [ k ] + beta ∗ ( Hy[ k−1]−Hy[ k ] ) ; / / Eq 1
Ex [m] = Ex [m] + Math . exp ( −0.5∗(( t−n ) /width ) ∗ ( ( t−n ) /width ) ) ; / / Pulse
f o r ( j = 0 ; j < max−1; j ++) Hy[ j ] = Hy[ j ] + beta ∗ ( Ex [ j ]−Ex [ j +1] ) ; / / Eq 2

}
f o r ( k = 0 ; k < max ; k++ ) {

w. p r i n t l n (""+k+" "+Ex [ k]+" " +Hy[ k]+" " ) ;
q . p r i n t l n (""+k+" "+Hy[ k]+" " ) ;

}
} }

�

Listing 18.3 FDTD.java solves Maxwell’s equations via FDTD time stepping (finite-difference

time domain) for linearly polarized wave propagation in the z direction in free space.

The algorithm then steps out in time for as long you the user desires (although
it makes no sense to have the pulse extend beyond the integration region). Note
that the initial condition (18.74) is somewhat unusual in that it is imposed over
the time period during which the E and H fields are being stepped out in time.
However, the initial pulse dies out quickly, and so, for example, is not present in
the simulation results seen at t= 100 in Figure 18.13.

Our implementation is also unusual in that we have not imposed boundary
conditions on the solution. Of course a unique solution to a PDE requires proper
boundary conditions, so it must be that our finite lattice size is imposing effective
boundary conditions (something to be explored in the assessment).

18.11.2 Assessment

1. Impose boundary conditions such that all fields vanish on the boundaries.
Compare the solutions so obtained to those without explicit conditions for
times less than and greater than those at which the pulses hit the walls.

2. Examine the stability of the solution for different values of ∆z and ∆t and
thereby test the Courant condition (18.73).

3. Extend the algorithm to include the effect of entering, propagating through,
and exiting a dielectric material placed within the z integration region.
a. Ensure that you see both transmission and reflection at the boundaries.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 505

pde waves: string, quantum packet, and e&m 505

0

0.4

0.8

-1

0

1

0 40 80 120 160 200

Ex

Hy

z

Figure 18.13 The E and H fields at time 100 propagating outward in free space from an initial

electrical pulse at z = 50. The arrows indicate the directions of propagation with time.

b. Investigate the effect of a dielectric with an index of refraction less
than 1.

4. The direction of propagation of the pulse is given E×H, which depends on
the relative phase between the E and H fields. (With no initial H field, we
obtain pulses both to the right and the left.)
a. Modify the algorithm such that there is an initial H pulse as well as an

initial E pulse, both with a Gaussian times a sinusoidal shape.
b. Verify that the direction of pulse propagation changes if theE andH fields

have relative phases of 0 or π.
5. Investigate the resonator modes of a wave guide by picking the initial

conditions corresponding to plane waves with nodes at the boundaries.
6. Determine what happens when you try to set up standing waves with

wavelengths longer than the size of the integration region.
7. Simulate unbounded propagation by building in periodic boundary condi-

tions into the algorithm.
8. � Place a medium with periodic permittivity in the integration volume. This

should act as a frequency-dependent filter, which does not propagate certain
frequencies at all.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 506

506 chapter 18

-1 
0 

1

-1

 0

 1

 0

 100

 200

-1 0 1

-1

 0

 1

 0

 100

 200
E H

x x

y y

z z

Figure 18.14 The E and H fields at time 100 for a circularly polarized EM wave in free space.

18.11.3 Extension: Circularly Polarized EM Waves

We now extend our treatment to EM waves in which the E and H fields, while
still transverse and propagating in the z direction, are not restricted to linear
polarizations along just one axis. Accordingly, we add to (18.59) and (18.60):

∂Hx

∂t
=

1
µ0

∂Ey

∂z
, (18.75)

∂Ey

∂t
=

1
ε0

∂Hx

∂z
. (18.76)

When discretized in the same way as (18.64) and (18.65), we obtain

Hk+1/2,n+1
x =Hk+1/2,n

x +
∆t

µ0 ∆z
(
Ek+1,n+1/2

y −Ek,n+1/2
y

)
, (18.77)

Ek,n+1/2
y =Ek,n−1/2

y +
∆t
ε0 ∆z

(
Hk+1/2,n

y −Hk−1/2,n
y

)
. (18.78)

To produce a circularly polarized traveling wave, we set the initial conditions:

Ex = cos
(
t− z

c
+φy

)
, Hx =

√
ε0
µ0

cos
(
t− z

c
+φy

)
, (18.79)

Ey = cos
(
t− z

c
+φx

)
, Hy =

√
ε0
µ0

cos
(
t− z

c
+φx +π

)
. (18.80)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 507

pde waves: string, quantum packet, and e&m 507

We take the phases to beφx = π/2 andφy = 0, so that their differenceφx −φy = π/2,
which leads to circular polarization. We include the initial conditions in the same
manner as we did the Gaussian pulse, only now with these cosine functions.

Listing 18.4 gives our implementation EMcirc.java for waves with transverse
two-component E and H fields. Some results of the simulation are shown in
Figure 18.14, where you will note the difference in phase between E and H.

� �
/ / EMcirc . java : FDTD Propgation of c i r c u l a r l y polarized EM wave
i m p o r t j ava . io . ∗ ;
i m p o r t j ava . u t i l . ∗ ;

p u b l i c c l a s s EMcirc {

p u b l i c s t a t i c d o u b l e Exini ( i n t tim , d o u b l e x , d o u b l e phx ) / / I n i t i a l Ex
{ r e t u r n Math . cos ( tim−2∗Math . PI∗x /200. +phx ) ; }

p u b l i c s t a t i c d o u b l e Eyini ( i n t tim , d o u b l e x , d o u b l e phy ) / / I n i t i a l Ey
{ r e t u r n Math . cos ( tim−2∗Math . PI∗x /200. +phy ) ; }

p u b l i c s t a t i c d o u b l e Hxini ( i n t tim , d o u b l e x , d o u b l e phy ) / / I n i t a l Hx
{ r e t u r n Math . cos ( tim−2∗Math . PI∗x /200. +phy+Math . PI ) ; }

p u b l i c s t a t i c d o u b l e Hyini ( i n t tim , d o u b l e x , d o u b l e phx ) / / I n i t i a l Hy
{ r e t u r n Math . cos ( tim−2∗Math . PI∗x /200.0 +phx ) ; }

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) throws IOException , FileNotFoundException {
d o u b l e dx , dt , beta , c0 , phx , phy ;
i n t time = 100 , max = 200 , i , n , j , k ;
phx = 0.5∗Math . PI ; phy = 0 . 0 ; / / Phase , di f ference i s pi / 2
beta = 0 . 1 ; / / beta = c / ( dz / dt ) < 0 . 5 for s t a b i l i t y
d o u b l e Ex [ ] = new d o u b l e [max+ 1 ] ; d o u b l e Hy[ ] = new d o u b l e [max+ 1 ] ; / / Ex , Hy
d o u b l e Ey [ ] = new d o u b l e [max+ 1 ] ; d o u b l e Hx [ ] = new d o u b l e [max+ 1 ] ; / / Ey , Hx
f o r ( i =0 ; i < max ; i ++) { Ex [ i ] = 0 ; Ey [ i ] = 0 ; Hx[ i ] = 0 ; Hy[ i ] = 0 ; } / / I n i t i a l i z e
f o r ( k = 0 ; k < max ; k++) / / I n i t i a l i z e

{ Ex [ k]= Exini ( 0 , ( d o u b l e ) k , phx ) ; Ey [ k]= Eyini ( 0 , ( d o u b l e ) k , phy ) ;
Hx[ k]= Hxini ( 0 , ( d o u b l e ) k , phy ) ; Hy[ k]= Hyini ( 0 , ( d o u b l e ) k , phx ) ; }

Pr i n t W r i t e r w = new Pr i n t W r i t e r ( new FileOutputStream ( "Efield . dat" ) , t r u e ) ;
Pr i n t W r i t e r q = new Pr i n t W r i t e r ( new FileOutputStream ( "Hfield . dat" ) , t r u e ) ;
f o r ( n = 0 ; n < time ; n++ ) {

f o r ( k = 1 ; k < max ; k++ ) { / / New Ex , Ey
Ex [ k ] = Ex [ k ] + beta ∗ (Hy[ k−1] − Hy[ k ] ) ;
Ey [ k ] = Ey [ k ] + beta ∗ (Hx[ k ] − Hx[ k−1]) ;

}
f o r ( j = 0 ; j < max−1; j ++ ) { / / New Hx, Hy

Hy[ j ] = Hy[ j ] + beta ∗ ( Ex [ j ] − Ex [ j + 1 ] ) ;
Hx[ j ] = Hx[ j ] + beta ∗ ( Ey [ j +1] − Ey [ j ] ) ;

}
} / / Time
f o r ( k = 0 ; k < max ; k = k+4 ) { / / Plot every 4 points

w. p r i n t l n (""+0.0+" "+0.0+" "+k+" "+Ex [ k]+" "+Ey [ k]+" "+ 0 . 0 ) ;
q . p r i n t l n (""+0.0+" "+0.0+" "+k+" "+Hx[ k]+" "+Hy[ k]+" "+ 0 . 0 ) ;

} } }
�

Listing 18.4 EMcirc.java solves Maxwell’s equations via FDTD time-stepping for circularly

polarized wave propagation in the z direction in free space.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 508

19

Solitons & Computational Fluid Dynamics

In Unit I of this chapter we discuss shallow-water soliton waves. This extends the
discussion of waves in Chapter 18, “PDE Waves: String, Quantum Packet, and
E&M,” by progressively including nonlinearities, dispersion, and hydrodynamic
effects. In Unit II we confront the more general equations of computational fluid
dynamics (CFD) and their solutions.1 The mathematical description of the motion of
fluids, though not a new subject, remains a challenging one. The equations are com-
plicated and nonlinear, there are many degrees of freedom, the nonlinearities may lead
to instabilities, analytic solutions are rare, and the boundary conditions for realistic
geometries (like airplanes) are not intuitive. These difficulties may explain why fluid
dynamics is often absent from undergraduate and even graduate physics curricula.
Nonetheless, as an essential element of the real world that also has tremendous practi-
cal importance, we encourage its study. We recommend [F&W 80, L&L,F 87] for those
interested in the derivations, and [Shaw 92] for more details about the computations.

19.1 Unit I. Advection, Shocks, and Russell’s Soliton

In 1834, J. Scott Russell observed on the Edinburgh-Glasgow canal [Russ 44]:

I was observing the motion of a boat which was rapidly drawn along a narrow chan-
nel by a pair of horses, when the boat suddenly stopped—not so the mass of water in
the channel which it had put in motion; it accumulated round the prow of the vessel
in a state of violent agitation, then suddenly leaving it behind, rolled forward with
great velocity, assuming the form of a large solitary elevation, a rounded, smooth and
well-defined heap of water, which continued its course along the channel apparently
without change of form or diminution of speed. I followed it on horseback, and over-
took it still rolling on at a rate of some eight or nine miles an hour, preserving its
original figure some thirty feet long and a foot to a foot and a half in height. Its height
gradually diminished, and after a chase of one or two miles I lost it in the windings of
the channel. Such, in the month of August 1834, was my first chance interview with
that singular and beautiful phenomenon….

Russell also noticed that an initial arbitrary waveform set in motion in the channel
evolves into two or more waves that move at different velocities and progressively
move apart until they form individual solitary waves. In Figure 19.2 we see a single
steplike wave breaking up into approximately eight of these solitary waves (also

1 We acknowledge some helpful reading of Unit I by Satoru S. Kano.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 509

solitons & computational fluid dynamics 509

called solitons). These eight solitons occur so frequently that some consider them the
normal modes for this nonlinear system. Russell went on to produce these solitary
waves in a laboratory and empirically deduced that their speed c is related to the
depth h of the water in the canal and to the amplitude A of the wave by

c2 = g(h+A), (19.1)

where g is the acceleration due to gravity. Equation (19.1) implies an effect not found
for linear systems, namely, that waves with greater amplitudesA travel faster than
those with smaller amplitudes. Observe that this is similar to the formation of shock
waves but different from dispersion in which waves of different wavelengths have
different velocities. The dependence of con amplitudeA is illustrated in Figure 19.3,
where we see a taller soliton catching up with and passing through a shorter one.

Problem: Explain Russell’s observations and see if they relate to the formation
of tsunamis. The latter are ocean waves that form from sudden changes in the
level of the ocean floor and then travel over long distances without dispersion or
attenuation until they wreak havoc on a distant shore.

19.2 Theory: Continuity and Advection Equations

The motion of a fluid is described by the continuity equation and the Navier–Stokes
equation [L&L,M 76]. We will discuss the former here and the latter in §19.7 of Unit
II. The continuity equation describes conservation of mass:

∂ρ(x, t)
∂t

+ �∇ · j = 0, j def= ρv(x, t). (19.2)

Here ρ(x, t) is the mass density, v(x, t) is the velocity of the fluid, and the product
j = ρv is the mass current. As its name implies, the divergence �∇ · j describes the
spreading of the current in a region of space, as might occur if there were a current
source. Physically, the continuity equation (19.2) states that changes in the density
of the fluid within some region of space arise from the flow of current in and out
of that region.

For 1-D flow in the x direction and for a fluid that is moving with a constant
velocity v = c, the continuity equation (19.2) takes the simple form

∂ρ

∂t
+
∂(cρ)
∂x

= 0, (19.3)

∂ρ

∂t
+ c

∂ρ

∂x
= 0. (19.4)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 510

510 chapter 19

This equation is known as the advection equation, where the term “advection” is used
to describe the horizontal transport of a conserved quantity from one region of space
to another due to a velocity field. For instance, advection describes dissolved salt
transported in water.

The advection equation looks like a first-derivative form of the wave equation,
and indeed, the two are related. A simple substitution proves that any function
with the form of a traveling wave,

u(x, t) = f(x− ct), (19.5)

will be a solution of the advection equation. If we consider a surfer riding along
the crest of a traveling wave, that is, remaining at the same position relative to the
wave’s shape as time changes, then the surfer does not see the shape of the wave
change in time, which implies that

x− ct= constant ⇒ x= ct+ constant. (19.6)

The speed of the surfer is therefore dx/dt= c, which is a constant. Any function
f(x− ct) is clearly a traveling wave solution in which an arbitrary pulse is carried
along by the fluid at velocity c without changing shape.

19.2.1 Advection Implementation

Although the advection equation is simple, trying to solve it by a simple differenc-
ing scheme (the leapfrog method) may lead to unstable numerical solutions. As we
shall see when we look at the nonlinear version of this equation, there are better
ways to solve it. Listing 19.1 presents our code for solving the advection equation
using the Lax–Wendroff method (a better method).

19.3 Theory: Shock Waves via Burgers’ Equation

In a later section we will examine use of the KdeV equation to describe Russell’s
solitary waves. In order to understand the physics contained in that equation, we
study some terms in it one at a time. To start, consider Burgers’ equation [Burg 74]:

∂u

∂t
+ εu

∂u

∂x
= 0, (19.7)

∂u

∂t
+ ε

∂(u2/2)
∂x

= 0, (19.8)

where the second equation is the conservative form. This equation can be viewed as
a variation on the advection equation (19.4) in which the wave speed c= εu is pro-
portional to the amplitude of the wave, as Russell found for his waves. The second

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 511

solitons & computational fluid dynamics 511

nonlinear term in Burgers’ equation leads to some unusual behaviors. Indeed, John
von Neumann studied this equation as a simple model for turbulence [F&S].

� �
/ / AdvecLax . java Lax−Wendroff solut ion of advection eq
i m p o r t j ava . io . ∗ ;

p u b l i c c l a s s AdvecLax {
p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) throws IOException , FileNotFoundException {

Pr i n t W r i t e r w = new Pr i n t W r i t e r ( new FileOutputStream ("numerical . dat" ) , t r u e ) ;
Pr i n t W r i t e r q = new Pr i n t W r i t e r ( new FileOutputStream ("in i t i a l . dat" ) , t r u e ) ; / / i c
Pr i n t W r i t e r r = new Pr i n t W r i t e r ( new FileOutputStream ("exact . dat" ) , t r u e ) ;
i n t m = 100 , i , j , n ; ;
d o u b l e u [ ] = new d o u b l e [m + 1 ] , u0 [ ] = new d o u b l e [m + 1 ] ;
d o u b l e uf [ ] = new d o u b l e [m + 1 ] , c = 1 . ; / / Wave speed
d o u b l e x , dx , dt , T_f ina l , beta = 0 . 8 ; / / beta = c∗dt / dx
dx = 1./m; dt = beta∗dx/c ; T _ f i n a l = 0 . 5 ;
n = ( i n t ) ( T _ f i n a l /dt ) ; System . out . p r i n t l n ("" + n + "" ) ;
f o r ( i =0 ; i < m−1; i ++ ) {

x = i ∗dx ;
u0 [ i ] = Math . exp(−300.∗ ( x−0.12) ∗(x−0.12) ) ; / / Gaussian i n i t i a l data
q . p r i n t l n ("" + 0.01∗ i + " " + u0 [ i ] + " " ) ;
uf [ i ] = Math . exp ( −300.∗(x−0.12−c∗T _ f i n a l ) ∗(x−0.12−c∗T _ f i n a l ) ) ; / / Exact

r . p r i n t l n ("" + 0.01∗ i + " " + uf [ i ] + " " ) ;
}

f o r ( j =1 ; j < n ; j ++ ) {
f o r ( i =0 ; i < m−1; i ++ ) { / / Lax−Wendroff scheme

u [ i + 1] = (1.− beta∗beta )∗u0 [ i + 1] −
( 0 . 5∗ beta ) ∗(1.− beta )∗u0 [ i +2] + ( 0 . 5∗ beta ) ∗ (1 .+ beta )∗u0 [ i ] ;
u [ 0 ] = 0 . ; u [m−1] = 0 . ;
u0 [ i ] = u [ i ] ;

} }
f o r ( j =0 ; j < m−1; j ++ ) {w. p r i n t l n (" "+0.01∗ j +" "+u [ j ]+" " ) ; }
System . out . p r i n t l n ("Solution saved in numerical . dat" ) ;

} }
�

Listing 19.1 AdvecLax.java solves the advection equation via the Lax–Wendroff scheme.

In the advection equation (19.4), all points on the wave move at the same speed
c, and so the shape of the wave remains unchanged in time. In Burgers’ equation
(19.7), the points on the wave move (“advect”) themselves such that the local speed
depends on the local wave’s amplitude, with the high parts of the wave moving
progressively faster than the low parts. This changes the shape of the wave in time;
if we start with a wave packet that has a smooth variation in height, the high parts
will speed up and push their way to the front of the packet, thereby forming a sharp
leading edge known as a shock wave [Tab 89]. A shock wave solution to Burgers’
equation with ε= 1 is shown in Figure 19.1.

19.3.1 Algorithm: The Lax–Wendroff Method for
Burgers’ Equation

We first solve Burgers’ equation (19.4) via the usual approach in which we express
the derivatives as central differences. This leads to a leapfrog scheme for the future

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 512

512 chapter 19

0

20
0

12

0

4

x t

u(x,t)

Figure 19.1 Formation of a shock wave. Wave height versus position for increasing times as

visualized with Gnuplot (left) and with OpenDX (right).

solution in terms of present and past ones:

u(x, t+ ∆t) =u(x, t−∆t) −β

[
u2(x+ ∆x, t) −u2(x−∆x, t)

2

]
,

ui,j+1 =ui,j−1 −β

[
u2

i+1,j −u2
i−1,j

2

]
, β =

ε

∆x/∆t
. (19.9)

Here u2 is the square of u and is not its second derivative, and β is a ratio of con-
stants known as the Courant–Friedrichs–Lewy (CFL) number. As you should prove
for yourself, β < 1 is required for stability.

While we have used a leapfrog method with success in the past, its low-order
approximation for the derivative becomes inaccurate when the gradients can get
large, as happens with shock waves, and the algorithm may become unstable
[Pres 94]. The Lax–Wendroff method attains better stability and accuracy by retaining
second-order differences for the time derivative:

u(x, t+ ∆t) � u(x, t) +
∂u

∂t
∆t+

1
2
∂2u

∂t2
∆t2. (19.10)

To covert (19.10) to an algorithm, we use Burgers’ equation ∂u/∂t= −ε∂(u2/2)/∂x
for the first-order time derivative. Likewise, we use this equation to express the
second-order time derivative in terms of space derivatives:

∂2u

∂t2
=
∂

∂t

[
−ε ∂

∂x

(
u2

2

)]
= −ε ∂

∂x

∂

∂t

(
u2

2

)
(19.11)

=−ε ∂

∂x

(
u
∂u

∂t

)
= ε2

∂

∂x

[
u
∂

∂x

(
u2

2

)]
.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 513

solitons & computational fluid dynamics 513

We next substitute these derivatives into the Taylor expansion (19.10) to obtain

u(x, t+ ∆t) = u(x, t) −∆tε
∂

∂x

(
u2

2

)
+

(∆t)2

2
ε2

∂

∂x

[
u
∂

∂x

(
u2

2

)]
.

We now replace the outer x derivatives by central differences of spacing ∆x/2:

u(x, t+ ∆t) =u(x, t) − ∆tε
2
u2(x+ ∆x, t) −u2(x−∆x, t)

2∆x
+

(∆t)2 ε2

2

× 1
2∆x

[
u

(
x+

∆x
2
, t

)
∂

∂x
u2
(
x+

∆x
2
, t

)
−u

(
x− ∆x

2
, t

)

∂

∂x
u2
(
x− ∆x

2
, t

)]
.

Next we approximate u(x±∆x/2, t) by the average of adjacent grid points,

u(x± ∆x
2
, t) � u(x, t) +u(x±∆x, t)

2
,

and apply a central-difference approximation to the second derivatives:

∂u2(x±∆x/2, t)
∂x

=
u2(x±∆x, t) −u2(x, t)

±∆x
.

Finally, putting all these derivatives together yields the discrete form

ui,j+1 = ui,j − β

4
(
u2

i+1,j −u2
i−1,j

)
+
β2

8
[
(ui+1,j +ui,j)

(
u2

i+1,j −u2
i,j

)
−(ui,j +ui−1,j)

(
u2

i,j −u2
i−1,j

)]
, (19.12)

where we have substituted the CFL number β. This Lax–Wendroff scheme is
explicit, centered upon the grid points, and stable for β < 1 (small nonlinearities).

19.3.2 Implementation and Assessment of
Burgers’ Shock Equation

1. Write a program to solve Burgers’ equation via the leapfrog method.
2. Define arrays u0[100] and u[100] for the initial data and the solution.
3. Take the initial wave to be sinusoidal, u0[i]= 3 sin(3.2x), with speed c= 1.
4. Incorporate the boundary conditions u[0]=0 and u[100]=0.
5. Keep the CFL number β < 1 for stability.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 514

514 chapter 19

6. Now modify your program to solve Burgers’ shock equation (19.8) using
the Lax–Wendroff method (19.12).

7. Save the initial data and the solutions for a number of times in separate files
for plotting.

8. Plot the initial wave and the solution for several time values on the same
graph in order to see the formation of a shock wave (like Figure 19.1).

9. Run the code for several increasingly large CFL numbers. Is the stability
condition β < 1 correct for this nonlinear problem?

10. Compare the leapfrog and Lax–Wendroff methods. With the leapfrog
method you should see shock waves forming but breaking up into ripples
as the square edge develops. The ripples are numerical artifacts. The Lax–
Wendroff method should give a a better shock wave (square edge), although
some ripples may still occur.

The listing below presents the essentials of the Lax–Wendroff method.
� �

p u b l i c c l a s s Shock {
p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv )

throws IOException , FileNotFoundException {
Pr i n t W r i t e r w = new Pr i n t W r i t e r ( new FileOutputStream ("Shock .dat" ) , t r u e ) ;
Pr i n t W r i t e r q = new Pr i n t W r i t e r ( new FileOutputStream ("In i t i a l . dat" ) , t r u e ) ;
i n t m = 100 , i , j , n ; / / Number grid points
d o u b l e u [ ] = new d o u b l e [m+1] , u0 [ ] = new d o u b l e [m+ 1 ] ; / / solut ions
d o u b l e eps i lon = 1 . 0 , beta = 0 . 1 ; / / Speed , CFL number
d o u b l e x , dx , dt , T _ f i n a l = 0 . 1 5 ;
dx =2./m; dt = beta∗dx/eps i lon ; / / Space , time steps
n = ( i n t ) ( T _ f i n a l /dt ) ; System . out . p r i n t l n (""+n+"" ) ;
f o r ( i =0 ; i < m−1; i ++ ) {

x = i ∗dx ;
u0 [ i ] = 3 . 0 ∗ Math . s i n ( 3 .2∗ x ) ;
q . p r i n t l n ("" + 0.01∗ i + " " + u0 [ i ] + " " ) ;

}
f o r ( j = 1 ; j < n ; j ++) { / / Lax−Wendroff scheme

f o r ( i = 0 ; i < m−1; i ++ ) {
u [ i +1] = u0 [ i +1]− ( Math . pow( u0 [ i + 2 ] , 2 )−Math . pow( u0 [ i ] , 2 ) ) ∗ (0 .25∗ beta ) +

( ( ( u0 [ i +2] + u0 [ i + 1 ] ) / 2 . ) ∗(Math . pow( u0 [ i +2] , 2 )
− Math . pow( u0 [ i +1] , 2 ) ) − ( ( u0 [ i +1] + u0 [ i ] ) / 2 . )
∗(Math . pow( u0 [ i +1] , 2 ) − Math . pow( u0 [ i ] , 2 ) ) ) ∗0.25∗ beta∗beta ;

u [ 0 ] = 0 . ; u [m−1]=0. ;
u0 [ i ] = u [ i ] ; / / Shif t new to old

}
}
f o r ( j =0 ; j <m−1; j ++ ) w. p r i n t l n (" "+0.01∗ j +" "+u [ j ]+" " ) ;
System . out . p r i n t l n ("Solution in Shock .dat" ) ; / / Gnu 3−D format

} } / / End main , End c l a s s
�

19.4 Including Dispersion

We have just seen that Burgers’ equation can turn an initially smooth wave into a
square-edged shock wave. An inverse wave phenomenon is dispersion, in which a
waveform disperses or broadens as it travel through a medium. Dispersion does
not cause waves to lose energy and attenuate but rather to lose information with
time. Physically, dispersion may arise when the propagating medium has structures
with a spatial regularity equal to some fraction of a wavelength. Mathematically,

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 515

solitons & computational fluid dynamics 515

dispersion may arise from terms in the wave equation that contain higher-order
space derivatives. For example, consider the waveform

u(x, t) = e±i(kx−ωt) (19.13)

corresponding to a plane wave traveling to the right (“traveling” because the
phase kx−ωt remains unchanged if you increase xwith time). When this u(x, t) is
substituted into the advection equation (19.4), we obtain

ω = ck. (19.14)

This equation is an example of a dispersion relation, that is, a relation between
frequency ω and wave vector k. Because the group velocity of a wave

vg =
∂ω

∂k
, (19.15)

the linear dispersion relation (19.14) leads to all frequencies having the same group
velocity c and thus dispersionless propagation.

Let us now imagine that a wave is propagating with a small amount of dispersion,
that is, with a frequency that has somewhat less than a linear increase with the wave
number k:

ω � ck−βk3. (19.16)

Note that we skip the even powers in (19.16), so that the group velocity,

vg =
dω

dk
� c− 3βk2, (19.17)

is the same for waves traveling to the left the or the right. If plane-wave solutions
like (19.13) were to arise from a wave equation, then (as verified by substitution)
the ω term of the dispersion relation (19.16) would arise from a first-order time
derivative, the ck term from a first-order space derivative, and the k3 term from a
third-order space derivative:

∂u(x, t)
∂t

+ c
∂u(x, t)
∂x

+β
∂3u(x, t)
∂x3 = 0. (19.18)

We leave it as an exercise to show that solutions to this equation do indeed have
waveforms that disperse in time.

19.5 Shallow-Water Solitons, the KdeV Equation

In this section we look at shallow-water soliton waves. Though including some com-
plications, this subject is fascinating and is one for which the computer has been C D

absolutely essential for discovery and understanding. In addition, we recommend
that you look at some of the soliton animation we have placed in the animations folder
on the CD.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 516

516 chapter 19

8

2

1

0

0 20
40 60

0

4 t

X

8

7 6 5 4 3 2 1

Figure 19.2 A single two-level waveform at time zero progressively breaks up into eight

solitons (labeled) as time increases. The tallest soliton (1) is narrower and faster in its motion to

the right.

We want to understand the unusual water waves that occur in shallow, narrow
channels such as canals [Abar, 93, Tab 89]. The analytic description of this “heap
of water” was given by Korteweg and deVries (KdeV) [KdeV 95] with the partial
differential equation

∂u(x, t)
∂t

+ εu(x, t)
∂u(x, t)
∂x

+µ
∂3u(x, t)
∂x3 = 0. (19.19)

As we discussed in §19.1 in our study of Burgers’ equation, the nonlinear term
εu ∂u/∂t leads to a sharpening of the wave and ultimately a shock wave. In contrast,
as we discussed in our study of dispersion, the ∂3u/∂x3 term produces broaden-
ing. These together with the ∂u/∂t term produce traveling waves. For the proper
parameters and initial conditions, the dispersive broadening exactly balances the
nonlinear narrowing, and a stable traveling wave is formed.

KdeV solved (19.19) analytically and proved that the speed (19.1) given by
Russell is in fact correct. Seventy years after its discovery, the KdeV equation
was rediscovered by Zabusky and Kruskal [Z&K 65], who solved it numeri-
cally and found that a cos(x/L) initial condition broke up into eight solitary
waves (Figure 19.2). They also found that the parts of the wave with larger
amplitudes moved faster than those with smaller amplitudes, which is why the
higher peaks tend to be on the right in Figure 19.2. As if wonders never cease,

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 517

solitons & computational fluid dynamics 517

8

6

4

2

0
0 40 80

X

t

120

Figure 19.3 Two shallow-water solitary waves crossing each other (computed with the code

SolCross.java on the instructor’s CD). The taller soliton on the left catches up with and

overtakes the shorter one at t � 5.

Zabusky and Kruskal, who coined the name soliton for the solitary wave, also
observed that a faster peak actually passed through a slower one unscathed
(Figure 19.3).

19.5.1 Analytic Soliton Solution

The trick in analytic approaches to these types of nonlinear equations is to substitute
a guessed solution that has the form of a traveling wave,

u(x, t) = u(ξ = x− ct). (19.20)

This form means that if we move with a constant speed c, we will see a constant
wave form (but now the speed will depend on the magnitude ofu). There is no guar-
antee that this form of a solution exists, but it is a lucky guess because substitution
into the KdeV equation produces a solvable ODE and its solution:

−c ∂u
∂ξ

+ ε u
∂u

∂ξ
+µ

d3u

dξ3
= 0, (19.21)

u(x, t) =
−c
2

sech2
[
1
2
√
c(x− ct− ξ0)

]
, (19.22)

where ξ0 is the initial phase. We see in (19.22) an amplitude that is proportional to
the wave speed c, and a sech2 function that gives a single lumplike wave. This is a
typical analytic form for a soliton.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 518

518 chapter 19

19.5.2 Algorithm for KdeV Solitons

The KdeV equation is solved numerically using a finite-difference scheme with the
time and space derivatives given by central-difference approximations:

∂u

∂t
� ui,j+1 −ui,j−1

2∆t
,

∂u

∂x
� ui+1,j −ui−1,j

2∆x
. (19.23)

To approximate ∂3u(x, t)/∂x3, we expand u(x, t) to O(∆t)3 about the four points
u(x± 2∆x, t) and u(x±∆x, t),

u(x±∆x, t) � u(x, t) ± (∆x)
∂u

∂x
+

(∆x)2

2!
∂2u

∂2x
± (∆x)3

3!
∂3u

∂x3 , (19.24)

which we solve for ∂3u(x, t)/∂x3. Finally, the factor u(x, t) in the second term of
(19.19) is taken as the average of three x values all with the same t:

u(x, t) � ui+1,j +ui,j +ui−1,j

3
. (19.25)

These substitutions yield the algorithm for the KdeV equation:

ui,j+1 �ui,j−1 − ε

3
∆t
∆x

[ui+1,j +ui,j +ui−1,j ] [ui+1,j −ui−1,j ]

−µ ∆t
(∆x)3

[ui+2,j + 2ui−1,j − 2ui+1,j −ui−2,j ] . (19.26)

To apply this algorithm to predict future times, we need to know u(x, t) at present
and past times. The initial-time solution ui,1 is known for all positions i via the
initial condition. To find ui,2, we use a forward-difference scheme in which we
expand u(x, t), keeping only two terms for the time derivative:

ui,2 �ui,1 − ε∆t
6 ∆x

[ui+1,1 +ui,1 +ui−1,1] [ui+1,1 −ui−1,1]

−µ

2
∆t

(∆x)3
[ui+2,1 + 2ui−1,1 − 2ui+1,1 −ui−2,1] . (19.27)

The keen observer will note that there are still some undefined columns of points,
namely, u1,j , u2,j , uNmax−1,j , and uNmax,j , where Nmax is the total number of grid
points. A simple technique for determining their values is to assume that u1,2 =
1 and uNmax,2 = 0. To obtain u2,2 and uNmax−1,2, assume that ui+2,2 = ui+1,2 and
ui−2,2 = ui−1,2 (avoid ui+2,2 for i=Nmax − 1, and ui−2,2 for i= 2). To carry out
these steps, approximate (19.27) so that

ui+2,2 + 2ui−1,2 − 2ui+1,2 −ui−2,2 → ui−1,2 −ui+1,2.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 519

solitons & computational fluid dynamics 519

The truncation error and stability condition for our algorithm are related:

E(u) = O[(∆t)3] + O[∆t(∆x)2] , (19.28)

1
(∆x/∆t)

[
ε|u| + 4

µ

(∆x)2

]
≤ 1 . (19.29)

The first equation shows that smaller time and space steps lead to a smaller approx-
imation error, yet because round-off error increases with the number of steps, the
total error does not necessarily decrease (Chapter 2, “Errors & Uncertainties in
Computations). Yet we are also limited in how small the steps can be made by the
stability condition (19.29), which indicates that making ∆x too small always leads
to instability. Care and experimentation are required.

19.5.3 Implementation: KdeV Solitons

Modify or run the program Soliton.java in Listing 19.2 that solves the KdeV
equation (19.19) for the initial condition

u(x, t= 0) =
1
2

[
1 − tanh

(
x− 25

5

)]
,

with parameters ε= 0.2 and µ= 0.1. Start with ∆x= 0.4 and ∆t= 0.1. These
constants are chosen to satisfy (19.28) with |u| = 1.

1. Define a 2-D array u[131][3] with the first index corresponding to the position
x and the second to the time t. With our choice of parameters, the maximum
value for x is 130 × 0.4 = 52.

2. Initialize the time to t= 0 and assign values to u[i][1].
3. Assign values to u[i][2], i = 3, 4, . . . , 129, corresponding to the next time inter-

val. Use (19.27) to advance the time but note that you cannot start at i= 1 or
end at i= 131 because (19.27) would include u[132][2] and u[–1][1], which
are beyond the limits of the array.

4. Increment the time and assume that u[1][2] = 1 and u[131][2] = 0. To obtain
u[2][2] and u[130][2], assume that u[i+2][2] = u[i+1][2] and u[i–2][2] =
u[i–1][2]. Avoid u[i+2][2] for i = 130, and u[i–2][2] for i = 2. To do this,
approximate (19.27) so that (19.28) is satisfied.

5. Increment time and compute u[i][ j] for j = 3 and for i = 3, 4, . . . , 129, using
equation (19.26). Again follow the same procedures to obtain the missing
array elements u[2][ j] and u[130][ j] (set u[1][ j] = 1. and u[131][ j] = 0). As
you print out the numbers during the iterations, you will be convinced that
it was a good choice.

6. Set u[i][1] = u[i][2] and u[i][2] = u[i][3] for all i. In this way you are ready to
find the next u[i][j] in terms of the previous two rows.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 520

520 chapter 19

7. Repeat the previous two steps about 2000 times. Write your solution to a file
after approximately every 250 iterations.

8. Use your favorite graphics tool (we used Gnuplot) to plot your results as a
3-D graph of disturbance u versus position and versus time.

9. Observe the wave profile as a function of time and try to confirm Russell’s
observation that a taller soliton travels faster than a smaller one.

� �
/ / Soliton . java : Solves Kortewg−deVries Equation
i m p o r t j ava . io . ∗ ;

p u b l i c c l a s s S o l i t o n {
s t a t i c d o u b l e ds = 0 . 4 ; / / Delta x
s t a t i c d o u b l e dt = 0 . 1 ; / / Delta t
s t a t i c i n t max = 2 0 0 0 ; / / Time steps
s t a t i c d o u b l e mu = 0 . 1 ; / / Mu from KdeV equation
s t a t i c d o u b l e eps = 0 . 2 ; / / Epsilon from KdeV eq

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) throws IOException , FileNotFoundException {
i n t i , j , k ;
d o u b l e a1 , a2 , a3 , fac , time , u [ ] [ ] = new d o u b l e [ 1 3 1 ] [ 3 ] ;
Pr i n t W r i t e r w = new Pr i n t W r i t e r ( new FileOutputStream ("soliton . dat" ) , t r u e ) ;
f o r ( i =0 ; i < 1 3 1 ; i ++ ) { u [ i ] [ 0 ] = 0 . 5∗ ( 1 . − ( ( Math . exp ( 2∗ ( 0 . 2∗ ds∗ i − 5 . ) ) −1)

/(Math . exp ( 2∗ ( 0 . 2∗ ds∗ i − 5 . ) ) + 1) ) ) ; } / / I n i t i a l wave
u [ 0 ] [ 1 ] = 1 . ; u [ 0 ] [ 2 ] = 1 . ; u [ 1 3 0 ] [ 1 ] = 0 . ; u [ 1 3 0 ] [ 2 ] = 0 . ; / / End points
f a c = mu∗dt /( ds∗ds∗ds ) ;
time = dt ;
f o r ( i =1 ; i < 1 3 0 ; i ++ ) { / / F i r s t time step

a1 = eps∗dt ∗(u [ i + 1 ] [ 0 ] + u [ i ] [ 0 ] + u [ i −1] [0 ] ) / ( ds ∗ 6 . ) ;
i f ( i >1 && i < 129) a2 = u [ i + 2 ] [ 0 ] + 2 .∗u [ i −1][0] − 2 .∗u [ i + 1 ] [ 0 ] − u [ i −2 ] [ 0 ] ;
e l s e a2 = u [ i −1][0] − u [ i + 1 ] [ 0 ] ;
a3 = u [ i + 1][0] −u [ i −1 ] [ 0 ] ;
u [ i ] [ 1 ] = u [ i ] [ 0 ] − a1∗a3 − f a c∗a2 / 3 . ;

}
f o r ( j =1 ; j < max ; j ++ ) { / / Other time steps

time += dt ;
f o r ( i =1 ; i < 1 3 0 ; i ++ ) {

a1 = eps∗dt ∗(u [ i + 1 ] [ 1 ] + u [ i ] [ 1 ] + u [ i −1] [1 ] ) / ( 3 . ∗ ds ) ;
i f ( i >1 && i < 129) a2 = u [ i + 2 ] [ 1 ] + 2 .∗u [ i −1][1] − 2 .∗u [ i + 1 ] [ 1 ] −u [ i −2 ] [ 1 ] ;
e l s e a2 = u [ i −1][1] − u [ i + 1 ] [ 1 ] ;
a3 = u [ i + 1 ] [ 1 ] − u [ i −1 ] [ 1 ] ;
u [ i ] [ 2 ] = u [ i ] [ 0 ] − a1∗a3 − 2 .∗ f a c∗a2 / 3 . ;

}
f o r ( k =0; k < 1 3 1 ; k++) { u [ k ] [ 0 ] = u [ k ] [ 1 ] ; u [ k ] [ 1 ] = u [ k ] [ 2 ] ; }
i f ( j %200 == 0) { f o r ( k =0; k < 1 3 1 ; k += 2) w. p r i n t l n ("" + u [ k ] [ 2 ] + "" ) ;

w. p r i n t l n ( "" ) ; } / / For gnuplot , every 200 th step

}
System . out . p r i n t l n ("data stored in soliton . dat" ) ;

} }
�

Listing 19.2 Soliton.java solves the KdeV equation for 1-D solitons corresponding to a “bore”

initial conditions.

19.5.4 Exploration: Solitons in Phase Space and Crossing

1. Explore what happens when a tall soliton collides with a short one.
a. Start by placing a tall soliton of height 0.8 at x= 12 and a smaller soliton

in front of it at x= 26:

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 521

solitons & computational fluid dynamics 521

u(x, t= 0) = 0.8
[
1 − tanh2

(
3x
12

− 3
)]

+ 0.3
[
1 − tanh2

(
4.5x
26

− 4.5
)]

.

b. Do they reflect from each other? Do they go through each other? Do they
interfere? Does the tall soliton still move faster than the short one after the
collision (Figure 19.3)?

2. Construct phase–space plots [u̇(t) versus u(t)] of the KdeV equation for vari-
ous parameter values. Note that only very specific sets of parameters produce
solitons. In particular, by correlating the behavior of the solutions with your
phase–space plots, show that the soliton solutions correspond to the separa-
trix solutions to the KdeV equation. In other words, the stability in time for
solitons is analogous to the infinite period for a pendulum balanced straight
upward.

19.6 Unit II. River Hydrodynamics

Problem: In order to give migrating salmon a place to rest during their arduous
upstream journey, the Oregon Department of Environment is thinking of placing
objects in several deep, wide, fast-flowing streams. One such object is a long beam of
rectangular cross section (Figure 19.4 left), and another is a set of plates (Figure 19.4
right). The objects are far enough below the surface so as not to disturb the surface
flow, and far enough from the bottom of the stream so as not to disturb the flow
there either.

Your problem is to determine the spatial dependence of the stream’s velocity
and, specifically, whether the wake of the object will be large enough to provide a
resting place for a meter-long salmon.

19.7 Hydrodynamics, the Navier–Stokes
Equation (Theory)

We continue with the assumption made in Unit I that water is incompressible and
thus that its density ρ is constant. We also simplify the theory by looking only
at steady-state situations, that is, ones in which the velocity is not a function of
time. However, to understand how water flows around objects, like our beam, it is
essential to include the complication of frictional forces (viscosity).

For the sake of completeness, we repeat here the first equation of hydrodynamics,
the continuity equation (19.2):

∂ρ(x, t)
∂t

+ �∇ · j = 0, j def= ρv(x, t). (19.30)

Before proceeding to the second equation, we introduce a special time derivative,
the hydrodynamic derivative Dv/Dt, which is appropriate for a quantity contained

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 522

522 chapter 19

surface

bottom bottom

surface
River River

xx

y
y

L

H
L

Figure 19.4 Cross-sectional view of the flow of a stream around a submerged beam (left )

and two parallel plates (right ). Both beam and plates have length L along the direction of

flow. The flow is seen to be symmetric about the centerline and to be unaffected at the

bottom and surface by the submerged object.

in a moving fluid [F&W 80]:

Dv
Dt

def= (v · �∇)v +
∂v
∂t
. (19.31)

This derivative gives the rate of change, as viewed from a stationary frame, of
the velocity of material in an element of fluid and so incorporates changes due to
the motion of the fluid (first term) as well as any explicit time dependence of the
velocity. Of particular interest is that Dv/Dt is second order in the velocity, and
so its occurrence reflects nonlinearities into the theory. You may think of these
nonlinearities as related to the fictitious (inertial) forces that would occur if we
tried to describe the motion in the fluid’s rest frame (an accelerating frame).

The material derivative is the leading term in the Navier–Stokes equation,

Dv
Dt

= ν∇2v − 1
ρ
�∇P (ρ, T, x), (19.32)

∂vx

∂t
+

z∑
j=x

vj
∂vx

∂xj
= ν

z∑
j=x

∂2vx

∂x2
j

− 1
ρ

∂P

∂x
,

∂vy

∂t
+

z∑
j=x

vj
∂vy

∂xj
= ν

z∑
j=x

∂2vy

∂x2
j

− 1
ρ

∂P

∂y
,

∂vz

∂t
+

z∑
j=x

vj
∂vz

∂xj
= ν

z∑
j=x

∂2vz

∂x2
j

− 1
ρ

∂P

∂z
. (19.33)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 523

solitons & computational fluid dynamics 523

Here ν is the kinematic viscosity,P is the pressure, and (19.33) shows the derivatives
in Cartesian coordinates. This equation describes transfer of the momentum of the
fluid within some region of space as a result of forces and flow (think dp/dt= F),
there being a simultaneous equation for each of the three velocity components.
The v · ∇v term in Dv/Dt describes transport of momentum in some region of
space resulting from the fluid’s flow and is often called the convection or advection
term.2 The �∇P term describes the velocity change as a result of pressure changes,
and the ν∇2v term describes the velocity change resulting from viscous forces
(which tend to dampen the flow).

The explicit functional dependence of the pressure on the fluid’s density and
temperatureP (ρ, T, x) is known as the equation of state of the fluid and would have to
be known before trying to solve the Navier–Stokes equation. To keep our problem
simple we assume that the pressure is independent of density and temperature,
which leaves the four simultaneous partial differential equations (19.30) and (19.32)
to solve. Because we are interested in steady-state flow around an object, we assume
that all time derivatives of the velocity vanish. Because we assume that the fluid
is incompressible, the time derivative of the density also vanishes, and (19.30) and
(19.32) become

�∇ ·v ≡
∑

i

∂vi

∂xi
= 0, (19.34)

(v · �∇)v = ν∇2v − 1
ρ
�∇P. (19.35)

The first equation expresses the equality of inflow and outflow and is known as
the condition of incompressibility. In as much as the stream in our problem is much
wider than the width (z dimension) of the beam and because we are staying away
from the banks, we will ignore the z dependence of the velocity. The explicit PDEs
we need to solve are then:

∂vx

∂x
+
∂vy

∂y
= 0, (19.36)

ν

(
∂2vx

∂x2 +
∂2vx

∂y2

)
= vx

∂vx

∂x
+ vy

∂vx

∂y
+

1
ρ

∂P

∂x
, (19.37)

ν

(
∂2vy

∂x2 +
∂2vy

∂y2

)
= vx

∂vy

∂x
+ vy

∂vy

∂y
+

1
ρ

∂P

∂y
. (19.38)

2 We discuss pure advection in §19.1. In oceanology or meteorology, convection implies the
transfer of mass in the vertical direction where it overcomes gravity, whereas advection
refers to transfer in the horizontal direction.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 524

524 chapter 19

L

H

Figure 19.5 The boundary conditions for two thin submerged plates. The surrounding box is

the integration volume within which we solve the PDEs and upon whose surface we impose

the boundary conditions. In practice the box is much larger than L and H.

19.7.1 Boundary Conditions for Parallel Plates

The plate problem is relatively easy to solve analytically, and so we will do it! This
will give us some experience with the equations as well as a check for our numerical
solution. To find a unique solution to the PDEs (19.36)–(19.38), we need to specify
boundary conditions. As far as we can tell, picking boundary conditions is some-
what of an acquired skill, and it becomes easier with experience (similar to what
happens after solving hundreds of electrostatics problems). Some of the boundary
conditions apply to the flow at the surfaces of submerged objects, while others
apply to the “box” or tank that surrounds the fluid. As we shall see, sometimes
these boundary conditions relate to the velocities directly, while at other times they
relate to the derivatives of the velocities.

We assume that the submerged parallel plates are placed in a stream that is
flowing with a constant velocity V0 in the horizontal direction (Figure 19.4 right).
If the velocity V0 is not too high or the kinematic viscosity ν is sufficiently large,
then the flow should be smooth and without turbulence. We call such flow laminar.
Typically, a fluid undergoing laminar flow moves in smooth paths that do not close
on themselves, like the smooth flow of water from a faucet. If we imagine attaching
a vector to each element of the fluid, then the path swept out by that vector is
called a streamline or line of motion of the fluid. These streamlines can be visualized
experimentally by adding a colored dye to the stream. We assume that the plates
are so thin that the flow remains laminar as it passes around and through them.

If the plates are thin, then the flow upstream of them is not affected, and we can
limit our solution space to the rectangular region in Figure 19.5. We assume that
the length L and separation H of the plates are small compared to the size of the

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 525

solitons & computational fluid dynamics 525

stream, so the flow returns to uniform as we get far downstream from the plates.
As seen in Figure 19.5, there are boundary conditions at the inlet where the fluid
enters our solution space, at the outlet where it leaves, and at the stationary plates.
In addition, since the plates are far from the stream’s bottom and surface, we may
assume that the dotted-dashed centerline is a plane of symmetry, with identical
flow above and below the plane. We thus have four different types of boundary
conditions to impose on our solution:

Solid plates: Since there is friction (viscosity) between the fluid and the plate
surface, the only way to have laminar flow is to have the fluid’s velocity equal
to the plate’s velocity, which means both are zero:

vx = vy = 0.

Such being the case, we have smooth flow in which the negligibly thin plates
lie along streamlines of the fluid (like a “streamlined” vehicle).

Inlet: The fluid enters the integration domain at the inlet with a horizontal veloc-
ity V0. Since the inlet is far upstream from the plates, we assume that the fluid
velocity at the inlet is unchanged:

vx = V0, vy = 0.

Outlet: Fluid leaves the integration domain at the outlet. While it is totally rea-
sonable to assume that the fluid returns to its unperturbed state there, we are
not told what that is. So, instead, we assume that there is a physical outlet at
the end with the water just shooting out of it. Consequently, we assume that
the water pressure equals zero at the outlet (as at the end of a garden hose)
and that the velocity does not change in a direction normal to the outlet:

P = 0,
∂vx

∂x
=
∂vy

∂x
= 0.

Symmetry plane: If the flow is symmetric about the y = 0 plane, then there
cannot be flow through the plane and the spatial derivatives of the velocity
components normal to the plane must vanish:

vy = 0,
∂vy

∂y
= 0.

This condition follows from the assumption that the plates are along stream-
lines and that they are negligibly thin. It means that all the streamlines are
parallel to the plates as well as to the water surface, and so it must be that
vy = 0 everywhere. The fluid enters in the horizontal direction, the plates do
not change the vertical y component of the velocity, and the flow remains
symmetric about the centerline. There is a retardation of the flow around the
plates due to the viscous nature of the flow and due to the v = 0 boundary
layers formed on the plates, but there are no actual vy components.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 526

526 chapter 19

19.7.2 Analytic Solution for Parallel Plates

For steady flow around and through the parallel plates, with the boundary
conditions imposed and vy ≡ 0, the continuity equation (19.36) reduces to

∂vx

∂x
= 0. (19.39)

This tells us that vx does not vary with x. With these conditions, the Navier–Stokes
equations (19.38) in x and y reduce to the linear PDEs

∂P

∂x
= ρν

∂2vx

∂y2 ,
∂P

∂y
= 0. (19.40)

(Observe that if the effect of gravity were also included in the problem, then the
pressure would increase with the depth y.) Since the LHS of the first equation
describes the x variation, and the RHS the y variation, the only way for the equation
to be satisfied in general is if both sides are constant:

∂P

∂x
= C, ρν

∂2vx

∂y2 = C. (19.41)

Double integration of the second equation with respect to y and replacement of the
constant by ∂P/∂x yields

ρν
∂vx

∂y
=
∂P

∂x
y+C1, ⇒ ρνvx =

∂P

∂x

y2

2
+C1y+C2,

whereC1 andC2 are constants. The values ofC1 andC2 are determined by requiring
the fluid to stop at the plate, vx(0) = vx(H) = 0, where H is the distance between
plates. This yields

ρν vx(y) =
1
2
∂P

∂x

(
y2 − yH

)
. (19.42)

Because ∂P/∂y = 0, the pressure does not vary with y. The continuity and
smoothness of P over the region,

∂2P

∂x∂y
=

∂2P

∂y∂x
= 0, (19.43)

are a consequence of laminar flow. Such being the case, we may assume that ∂P/∂x
has no y dependence, and so (19.42) describes a velocity profile varying as y2.

A check on our numerical CFD simulation ensures that it also gives a parabolic
velocity profile for two parallel plates. To be even more precise, we can determine

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 527

solitons & computational fluid dynamics 527

∂P/∂x for this problem and thereby produce a purely numerical answer for com-
parison. To do that we examine a volume of current that at the inlet starts out with
0 ≤ y ≤H . Because there is no vertical component to the flow, this volume ends up
flowing between the plates. If the volume has a unit z width, then the mass flow
(mass/unit time) at the inlet is

Q(mass/time) = ρ× 1 ×H × dx

dt
= ρHvx = ρHV0. (19.44)

When the fluid is between the plates, the velocity has a parabolic variation in height
y. Consequently, we integrate over the area of the plates without changing the net
mass flow between the plates:

Q=
∫
ρvxdA= ρ

∫ H

0
vx(y) dy =

1
2ν
∂P

∂x

(
H3

3
− H3

2

)
. (19.45)

Yet we know that Q= ρHV0, and substitution gives us an expression for how the
pressure gradient depends upon the plate separation:

∂P

∂x
= −12

ρνV0

H2 . (19.46)

We see that there is a pressure drop as the fluid flows through the plates and
that the drop increases as the plates are brought closer together (the Bernoulli
effect). To program the equations, we assign the values V0 = 1 m/s (�2.24 mi/h),
ρ= 1 kg/m3 (≥air), ν = 1 m2/s (somewhat less viscous than glycerin), andH = 1 m
(typical boulder size):

∂P

∂x
= −12 ⇒ vx = 6y(1 − y). (19.47)

19.7.3 Finite-Difference Algorithm and Overrelaxation

Now we develop an algorithm for solution of the Navier–Stokes and continuity
PDEs using successive overrelaxation. This is a variation of the method used in
Chapter 17, “PDEs for Electrostatics & Heat Flow,” to solve Poisson’s equation.
We divide space into a rectangular grid with the spacing h in both the x and y
directions:

x= ih, i= 0, . . . , Nx; y = jh, j = 0, . . . , Ny.

We next express the derivatives in (19.36)–(19.38) as finite differences of the val-
ues of the velocities at the grid points using central-difference approximations.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 528

528 chapter 19

For ν = 1 m2/s and ρ= 1 kg/m3, this yields

vx
i+1,j − vx

i−1,j + vy
i,j+1 − vy

i,j−1 = 0,

vx
i+1,j + vx

i−1,j + vx
i,j+1 + vx

i,j−1 − 4vx
i,j

=
h

2
vx

i,j

[
vx

i+1,j − vx
i−1,j

]
+
h

2
vy

i,j

[
vx

i,j+1 − vx
i,j−1

]
+
h

2
[Pi+1,j −Pi−1,j ] ,

vy
i+1,j + vy

i−1,j + vy
i,j+1 + vy

i,j−1 − 4vy
i,j

=
h

2
vx

i,j

[
vy

i+1,j − vy
i−1,j

]
+
h

2
vy

i,j

[
vy

i,j+1 − vy
i,j−1

]
+
h

2
[Pi,j+1 −Pi,j−1] .

Since vy ≡ 0 for this problem, we rearrange terms to obtain for vx:

4vx
i,j = vx

i+1,j + vx
i−1,j + vx

i,j+1 + vx
i,j−1 − h

2
vx

i,j

[
vx

i+1,j − vx
i−1,j

]

−h

2
vy

i,j

[
vx

i,j+1 − vx
i,j−1

]− h

2
[Pi+1,j −Pi−1,j ] . (19.48)

We recognize in (19.48) an algorithm similar to the one we used in solving Laplace’s
equation by relaxation. Indeed, as we did there, we can accelerate the convergence
by writing the algorithm with the new value of vx given as the old value plus a
correction (residual):

vx
i,j = vx

i,j + ri,j , r
def= v

x(new)
i,j − v

x(old)
i,j (19.49)

⇒ r=
1
4

{
vx

i+1,j + vx
i−1,j + vx

i,j+1 + vx
i,j−1 − h

2
vx

i,j

[
vx

i+1,j − vx
i−1,j

]

− h

2
vy

i,j

[
vx

i,j+1 − vx
i,j−1

]− h

2
[Pi+1,j −Pi−1,j ]

}
− vx

i,j . (19.50)

As done with the Poisson equation algorithm, successive iterations sweep the inte-
rior of the grid, continuously adding in the residual (19.49) until the change becomes
smaller than some set level of tolerance, |ri,j |< ε.

A variation of this method, successive overrelaxation, increases the speed at which
the residuals approach zero via an amplifying factor ω:

vx
i,j = vx

i,j +ω ri,j (SOR). (19.51)

The standard relaxation algorithm (19.49) is obtained with ω = 1, an accelerated
convergence (overrelaxation) is obtained with ω ≥ 1, and underrelaxation occurs for
ω < 1. Values ω > 2 lead to numerical instabilities and so are not recommended.
Although a detailed analysis of the algorithm is necessary to predict the optimal

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 529

solitons & computational fluid dynamics 529

value forω, we suggest that you test different values forω to see which one provides
the fastest convergence for your problem.

19.7.4 Successive Overrelaxation Implementation

Here is a program fragment that implements SOR for vx and vy :

1. Use the program twoplates.java on the disk, or write your own, to solve the
Navier–Stokes equation for the velocity of a fluid in 2-D flow. Represent the
x and y components of the velocity by the arrays vx[Nx][Ny] and vy[Nx][Ny].

2. Specialize your solution to the rectangular domain and boundary conditions
indicated in Figure 19.5.

3. Use of the following parameter values,

ν= 1 m2/s, ρ= 1 kg/m3, (flow parameters),

Nx = 400, Ny = 40, h= 1, (grid parameters),

leads to the equations

∂P

∂x
= −12,

∂P

∂y
= 0, vx =

3j
20

(
1 − j

40

)
, vy = 0.

4. For the relaxation method, output the iteration number and the computed vx

and then compare the analytic and numeric results.
5. Repeat the calculation and see if SOR speeds up the convergence.

� �
omega = 0 . 5 5 ; i t e r =0; e r r = 1 . ; / / SOR param ,
i t e r a t i o n no , e r r o r w h i l e ( ( e r r > 0 . 1 ) && ( i t e r <=100) ) {

e r r = 0 . 0 ;
f o r ( i =1 ; i <Nx ; i ++) { / / x sweep

f o r ( j =1 ; j <Ny; j ++) { / / y sweep
vx [ i + 1 ] [ j ]= vx [ i −1][ j ]+vy [ i ] [ j −1]−vy [ i ] [ j + 1 ] ;
r1=omega∗( vx [ i + 1 ] [ j ]+ vx [ i −1][ j ]+ vx [ i ] [ j +1]+vx [ i ] [ j −1]
− 0 .5∗ vx [ i ] [ j ]∗ ( vx [ i + 1 ] [ j ]−vx [ i −1][ j ] )−
0 .5∗vy [ i ] [ j ]∗ ( vx [ i ] [ j +1]−vx [ i ] [ j −1])
− 0 . 5∗ ( P [ i + 1 ] [ j ]−P[ i −1][ j ] ) ) /4.0−vx [ i ] [ j ] ;
vx [ i ] [ j ] += r1 ;
r2=omega∗(vy [ i + 1 ] [ j ]+vy [ i −1][ j ]+vy [ i ] [ j +1]+vy [ i ] [ j −1]
−0.5∗vx [ i ] [ j ]∗ ( vy [ i + 1 ] [ j ]−vy [ i −1][ j ] )
−0.5∗vy [ i ] [ j ]∗ ( vy [ i ] [ j +1]−vy [ i ] [ j −1])
−0.5∗(P [ i ] [ j +1]−P[ i ] [ j −1]) ) /4.0−vy [ i ] [ j ] ;

vy [ i ] [ j ] += r2 ;
i f ( Math . abs ( r1 ) > e r r ) e r r = Math . abs ( r1 ) ;
i f ( Math . abs ( r2 ) > e r r ) e r r = Math . abs ( r2 ) ;

}
}

i t e r ++;
}

�

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 530

530 chapter 19

19.8 2-D Flow over a Beam

Now that the comparison with an analytic solution has shown that our CFD sim-
ulation works, we return to determining if the beam in Figure 19.4 might produce
a good resting place for salmon. While we have no analytic solution with which to
compare, our canoeing and fishing adventures have taught us that standing waves
with fish in them are often formed behind rocks in streams, and so we expect there
will be a standing wave formed behind the beam.

19.9 Theory: Vorticity Form of the
Navier–Stokes Equation

We have seen how to solve numerically the hydrodynamics equations

�∇ ·v = 0, (v · �∇)v = −1
ρ
�∇P + ν∇2v. (19.52)

These equations determine the components of a fluid’s velocity, pressure, and den-
sity as functions of position. In analogy to electrostatics, where one usually solves
for the simpler scalar potential and then takes its gradient to determine the more
complicated vector field, we now recast the hydrodynamic equations into forms
that permit us to solve two simpler equations for simpler functions, from which
the velocity is obtained via a gradient operation.3

We introduce the stream function u(x) from which the velocity is determined by
the curl operator:

v def= �∇ ×u(x) = ε̂x

(
∂uz

∂y
− ∂uy

∂z

)
+ ε̂y

(
∂ux

∂z
− ∂uz

∂x

)
. (19.53)

Note the absence of the z component of velocity v for our problem. Since �∇ · (�∇ ×
u) ≡ 0, we see that any v that can be written as the curl of u automatically satisfies
the continuity equation �∇ ·v = 0. Further, since v for our problem has only x and
y components, u(x) needs to have only a z component:

uz ≡ u ⇒ vx =
∂u

∂y
, vy = −∂u

∂x
. (19.54)

(Even though the vorticity has just one component, it is a pseudoscalar and not a
scalar because it reverses sign upon reflection.) It is worth noting that in 2-D flows,
the contour lines u= constant are the streamlines.

3 If we had to solve only the simpler problem of irrotational flow (no turbulence), then we
would be able to use a scalar velocity potential, in close analogy to electrostatics [Lamb 93].
For the more general rotational flow, two vector potentials are required.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 531

solitons & computational fluid dynamics 531

The second simplifying function is the vorticity field w(x), which is related phys-
ically and alphabetically to the angular velocity ω of the fluid. Vorticity is defined
as the curl of the velocity (sometimes with a − sign):

w def= �∇ ×v(x). (19.55)

Because the velocity in our problem does not change in the z direction, we have

wz =
(
∂vy

∂x
− ∂vx

∂y

)
. (19.56)

Physically, we see that the vorticity is a measure of how much the fluid’s velocity
curls or rotates, with the direction of the vorticity determined by the right-hand
rule for rotations. In fact, if we could pluck a small element of the fluid into space
(so it would not feel the internal strain of the fluid), we would find that it is rotating
like a solid with angular velocity ω ∝ w [Lamb 93]. That being the case, it is useful
to think of the vorticity as giving the local value of the fluid’s angular velocity
vector. If w = 0, we have irrotational flow.

The field lines of w are continuous and move as if attached to the particles of
the fluid. A uniformly flowing fluid has vanishing curl, while a nonzero vorticity
indicates that the current curls back on itself or rotates. From the definition of the
stream function (19.53), we see that the vorticity w is related to it by

w = �∇ ×v = �∇ × (�∇ ×u) = �∇(�∇ ·u) − ∇2u, (19.57)

where we have used a vector identity for �∇ × (�∇ ×u). Yet the divergence �∇ ·u = 0
since u has only a z component that does not vary with z (or because there is no
source for u). We have now obtained the basic relation between the stream function
u and the vorticity w:

�∇2u = −w. (19.58)

Equation (19.58) is analogous to Poisson’s equation of electrostatics, ∇2φ= −4πρ,
only now each component of vorticity w is a source for the corresponding compo-
nent of the stream function u. If the flow is irrotational, that is, if w = 0, then we
need only solve Laplace’s equation for each component of u. Rotational flow, with
its coupled nonlinearities equations, leads to more interesting behavior.

As is to be expected from the definition of w, the vorticity form of the Navier–
Stokes equation is obtained by taking the curl of the velocity form, that is, by
operating on both sides with �∇×. After significant manipulations we obtain

ν∇2w = [(�∇ ×u) · �∇]w. (19.59)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 532

532 chapter 19

This and (19.58) are the two simultaneous PDEs that we need to solve. In 2-D, with
u and w having only z components, they are

∂2u

∂x2 +
∂2u

∂y2 = −w, (19.60)

ν

(
∂2w

∂x2 +
∂2w

∂y2

)
=
∂u

∂y

∂w

∂x
− ∂u

∂x

∂w

∂y
. (19.61)

So after all that work, we end up with two simultaneous, nonlinear, elliptic PDEs
for the functions w(x, y) and u(x, y) that look like a mixture of Poisson’s equation
with the frictional and variable-density terms of the wave equation. The equation
for u is Poisson’s equation with source w and must be solved simultaneously with
the second. It is this second equation that contains mixed products of the derivatives
of u and w and thus introduces nonlinearity.

19.9.1 Finite Differences and the SOR Algorithm

We solve (19.60) and (19.61) on an Nx ×Ny grid of uniform spacing h with

x= i∆x= ih, i= 0, . . . , Nx, y = j∆y = jh, j = 0, . . . , Ny.

Since the beam is symmetric about its centerline (Figure 19.4 left), we need the
solution only in the upper half-plane. We apply the now familiar central-difference
approximation to the Laplacians of u and w to obtain the difference equation

∂2u

∂x2 +
∂2u

∂y2 � ui+1,j +ui−1,j +ui,j+1 +ui,j−1 − 4ui,j

h2 . (19.62)

Likewise, for the first derivatives,

∂u

∂y

∂w

∂x
� ui,j+1 −ui,j−1

2h
wi+1,j −wi−1,j

2h
. (19.63)

The difference form of the vorticity Navier–Stokes equation (19.60) becomes

ui,j =
1
4
(
ui+1,j +ui−1,j +ui,j+1 +ui,j−1 +h2wi,j

)
, (19.64)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 533

solitons & computational fluid dynamics 533

wi,j =
1
4
(wi+1,j +wi−1,j +wi,j+1 +wi,j−1) − R

16
{[ui,j+1 −ui,j−1]

× [wi+1,j −wi−1,j ]− [ui+1,j −ui−1,j ] [wi,j+1 −wi,j−1]} , (19.65)

R=
1
ν

=
V0h

ν
(in normal units). (19.66)

Note that we have placed ui,j and wi,j on the LHS of the equations in order to
obtain an algorithm appropriate to solution by relaxation.

The parameter R in (19.66) is related to the Reynolds number. When we solve the
problem in natural units, we measure distances in units of grid spacing h, velocities
in units of initial velocity V0, stream functions in units of V0h, and vorticity in units
ofV0/h. The second form is in regular units and is dimensionless. ThisR is known as
the grid Reynolds number and differs from the physicalR, which has a pipe diameter
in place of the grid spacing h.

The grid Reynolds number is a measure of the strength of the coupling of the
nonlinear terms in the equation. When R is small, the viscosity acts as a fric-
tional force that damps out fluctuations and keeps the flow smooth. When the
physicalR is large (R� 2000), physical fluids undergo phase transitions from lam-
inar to turbulent flow in which turbulence occurs at a cascading set of smaller
and smaller space scales [Rey 83]. However, simulations that produce the onset of
turbulence have been a research problem since Reynolds first experiments in 1883
[Rey 83, F&S], possibly because laminar flow simulations are stable against small
perturbations and some large-scale “kick” appears necessary to change laminar to
turbulent flow. Recent research along these lines have been able to find unstable,
traveling-wave solutions to the Navier–Stokes equations, and the hope is that these
may lead to a turbulent transition [Fitz 04].

As discussed in §19.7.3, the finite-difference algorithm can have its convergence
accelerated by the use of successive overrelaxation (19.64):

ui,j = ui,j +ω r
(1)
i,j , wi,j = wi,j +ω r

(2)
i,j (SOR). (19.67)

Here ω is the overrelaxation parameter and should lie in the range 0< ω < 2 for
stability. The residuals are just the changes in a single step, r(1) = unew −uold and
r(2) = wnew −wold:

r
(1)
i,j =

1
4

(ui+1,j +ui−1,j +ui,j+1 +ui,j−1 +wi,j)−ui,j , (19.68)

r
(2)
i,j =

1
4

(
wi+1,j +wi−1,j +wi,j+1 +wi,j−1 − R

4
{[ui,j+1 −ui,j−1]

× [wi+1,j −wi−1,j ]− [ui+1,j −ui−1,j ] [wi,j+1 −wi,j−1]}
)

−wi,j .

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 534

534 chapter 19

O
u
tl
e
t

dw/dx = 0

du/dx = 0vx = du/dy = V0

w = 0

In
le

t

Half
Beam

Surface

vx = du/dy = V0 w = 0

y

x

vy = -du/dx = 0

center line

w = u = 0 w = u = 0

u = 0

u = 0

vy = -du/dx = 0

A

B

C

E

F

G

H

D

Figure 19.6 Boundary conditions for flow around the beam in Figure 19.4. The flow is

symmetric about the centerline, and the beam has length L in the x direction (along flow).

19.9.2 Boundary Conditions for a Beam

A well-defined solution of these elliptic PDEs requires a combination of (less than
obvious) boundary conditions on u and w. Consider Figure 19.6, based on the
analysis of [Koon 86]. We assume that the inlet, outlet, and surface are far from the
beam, which may not be evident from the not-to-scale figure.

Freeflow: If there were no beam in the stream, then we would have free flow
with the entire fluid possessing the inlet velocity:

vx ≡ V0, vy = 0, ⇒ u= V0y, w = 0. (19.69)

(Recollect that we can think of w = 0 as indicating no fluid rotation.) The
centerline divides the system along a symmetry plane with identical flow
above and below it. If the velocity is symmetric about the centerline, then its
y component must vanish there:

vy = 0, ⇒ ∂u

∂x
= 0 (centerline AE). (19.70)

Centerline: The centerline is a streamline with u= constant because there is
no velocity component perpendicular to it. We set u= 0 according to (19.69).
Because there cannot be any fluid flowing into or out of the beam, the normal
component of velocity must vanish along the beam surfaces. Consequently,
the streamlineu= 0 is the entire lower part of Figure 19.6, that is, the centerline

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 535

solitons & computational fluid dynamics 535

and the beam surfaces. Likewise, the symmetry of the problem permits us to
set the vorticity w = 0 along the centerline.

Inlet: At the inlet, the fluid flow is horizontal with uniform x component V0 at
all heights and with no rotation:

vy = −∂u

∂x
= 0, w = 0 (inlet F), vx =

∂u

∂y
= V0. (19.71)

Surface: We are told that the beam is sufficiently submerged so as not to dis-
turb the flow on the surface of the stream. Accordingly, we have free-flow
conditions on the surface:

vx =
∂u

∂y
= V0, w = 0 (surface G). (19.72)

Outlet: Unless something truly drastic is happening, the conditions on the far
downstream outlet have little effect on the far upstream flow. A convenient
choice is to require the stream function and vorticity to be constant:

∂u

∂x
=
∂w

∂x
= 0 (outlet H). (19.73)

Beamsides: We have already noted that the normal component of velocity vx

and stream functionuvanish along the beam surfaces. In addition, because the
flow is viscous, it is also true that the fluid “sticks” to the beam somewhat and
so the tangential velocity also vanishes along the beam’s surfaces. While these
may all be true conclusions regarding the flow, specifying them as boundary
conditions would overrestrict the solution (see Table 17.1 for elliptic equations)
to the point where no solution may exist. Accordingly, we simply impose the
no-slip boundary condition on the vorticity w. Consider a grid point (x, y) on
the upper surface of the beam. The stream functionu at a point (x, y+h) above
it can be related via a Taylor series in y:

u(x, y+h) = u(x, y) +
∂u

∂y
(x, y)h+

∂2u

∂y2 (x, y)
h2

2
+ · · · . (19.74)

Because w has only a z component, it has a simple relation to ∇ ×v:

w ≡ wz =
∂vy

∂x
− ∂vx

∂y
. (19.75)

Because of the fluid’s viscosity, the velocity is stationary along the beam top:

vx =
∂u

∂y
= 0 (beam top). (19.76)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 536

536 chapter 19

Because the current flows smoothly along the top of the beam, vy must also
vanish. In addition, since there is no x variation, we have

∂vy

∂x
= 0 ⇒ w = −∂vx

∂y
= −∂2u

∂y2 . (19.77)

After substituting these relations into the Taylor series (19.74), we can solve
for w and obtain the finite-difference version of the top boundary condition:

w � −2
u(x, y+h) −u(x, y)

h2 ⇒ wi,j = −2
ui,j+1 −ui,j

h2 (top). (19.78)

Similar treatments applied to other surfaces yield the following boundary
conditions.

u = 0; w = 0 Centerline EA

u = 0, wi,j = −2(ui+1,j −ui,j)/h2 Beam back B

u = 0, wi,j = −2(ui,j+1 −ui,j)/h2 Beam top C

u = 0, wi,j = −2(ui−1,j −ui,j)/h2 Beam front D

∂u/∂x = 0, w = 0 Inlet F

∂u/∂y = V0, w = 0 Surface G

∂u/∂x = 0, ∂w/∂x = 0 Outlet H

19.9.3 SOR on a Grid Implementation

Beam.java in Listing 19.3 is our solution of the vorticity form of the Navier–Stokes
equation. You will notice that while the relaxation algorithm is rather simple, some
care is needed in implementing the many boundary conditions. Relaxation of the
stream function and of the vorticity is done by separate methods, and the file output
format is that for a Gnuplot surface plot.

� �
/ / Beam . java solves Navier−Stokes equations for flow over pla te
i m p o r t j ava . io . ∗ ;
i m p o r t j ava . u t i l . ∗ ;

p u b l i c c l a s s Beam {
s t a t i c i n t Nxmax = 7 0 ; s t a t i c i n t Nymax = 2 0 ; / / Grid parameters
s t a t i c d o u b l e u [ ] [ ] = new d o u b l e [Nxmax + 1 ] [Nymax + 1 ] ; / / Stream
s t a t i c d o u b l e w[ ] [ ] = new d o u b l e [Nxmax + 1 ] [Nymax + 1 ] ; / / V o r t i c i t y
s t a t i c d o u b l e V0 = 1 . ; s t a t i c d o u b l e R ; / / I n i t i a l v , Reynold ’ s #
s t a t i c d o u b l e omega = 0 . 1 ; / / Relaxation parameter
s t a t i c i n t IL = 1 0 ; s t a t i c i n t H = 8 ; s t a t i c i n t T = 8 ; / / Geometry
s t a t i c d o u b l e h = 1 . ; s t a t i c d o u b l e nu = 1 . ; / / h , v i s c o s i t y

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) throws IOException , FileNotFoundException {
Pr i n t W r i t e r q = new Pr i n t W r i t e r ( new FileOutputStream ("flow1 .dat . dat" ) , t r u e ) ;
i n t i , j , i t e r ;
i t e r = 0 ; / / Number of i t e r a t i o n s

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 537

solitons & computational fluid dynamics 537

R = V0∗h/nu ; / / Reynold number in normal units
borders ( ) ;
w h i l e ( i t e r <= 400) { i t e r ++ ; r e l a x ( ) ; }

f o r ( i =0 ; i <= Nxmax ; i ++ ) { / / Output for gnuplot 3D
f o r ( j =0 ; j <= Nymax ; j ++ ) {

q . p r i n t l n (" " + u [ i ] [ j ] / (V0∗h ) + " " ) ; / / Stream in V0h
}
q . p r i n t l n ("" ) ; / / Empty l ine for gnuplot

}
System . out . p r i n t l n ("data stored in flow1 .dat" ) ;

} / / End main

p u b l i c s t a t i c v o i d borders ( ) { / / I n i t i a l i z e stream , v o r t i c i t y , s e t s BC
i n t i , j ;
f o r ( i =0 ; i <= Nxmax ; i ++ ) { / / I n i t i a l i z e stream function

f o r ( j =0 ; j <= Nymax ; j ++ ) / / And v o r t i c i t y
{ w[ i ] [ j ] = 0 . ; u [ i ] [ j ] = j ∗V0 ; }

}
f o r ( i =0 ; i <= Nxmax ; i ++ ) { / / Fluid surface

u [ i ] [ Nymax] = u [ i ] [ Nymax−1] + V0∗h ;
w[ i ] [ Nymax−1] = 0 . ;

}
f o r ( j =0 ; j <= Nymax ; j ++ ) { u [ 1 ] [ j ] = u [ 0 ] [ j ] ; w[ 0 ] [ j ] = 0 . ; } / / I n l e t
f o r ( i =0 ; i <= Nxmax ; i ++ ) { / / Centerline

i f ( ( i <= IL ) ||( i >=IL + T ) ) { u [ i ] [ 0 ] = 0 . ; w[ i ] [ 0 ] = 0 . ; }
}

f o r ( j =1 ; j <= Nymax−1; j ++ ) { / / Outlet
w[Nxmax ] [ j ] = w[Nxmax−1][ j ] ;
u [Nxmax ] [ j ] = u [Nxmax−1][ j ] ;

} } / / Borders

p u b l i c s t a t i c v o i d beam ( ) { / / BC for beam
i n t i , j ;
f o r ( j =0 ; j <= H; j ++ ) { / / Beam sides

w[ IL ] [ j ] = −2∗u [ IL −1][ j ] / ( h∗h ) ; / / Front side
w[ IL + T ] [ j ] = −2∗u [ IL + T + 1 ] [ j ] / ( h∗h ) ; / / Back side

}
f o r ( i =IL ; i <= IL + T ; i ++ ) w[ i ] [H−1] = −2∗u [ i ] [H] / ( h∗h ) ; / / Top
f o r ( i =IL ; i <= IL + T ; i ++ ) {

f o r ( j =0 ; j <= H; j ++ ) {
u [ IL ] [ j ] = 0 . ; / / Front
u [ IL + T ] [ j ] = 0 . ; / / Back
u [ i ] [H] = 0 ; / / Top

} } }

p u b l i c s t a t i c v o i d r e l a x ( ) { / / Method to r e l a x stream
i n t i , j ;
d o u b l e r1 , r2 ;
beam ( ) ; / / Reset conditions at beam
f o r ( i =1 ; i <= Nxmax−1; i ++ ) { / / Relax stream function

f o r ( j =1 ; j <= Nymax−1; j ++ ) {
r1 = omega∗ ( ( u [ i + 1 ] [ j ] + u [ i −1][ j ] + u [ i ] [ j + 1 ] + u [ i ] [ j −1]

+ h∗h∗w[ i ] [ j ] ) ∗ ( 1 . / 4 . )−u [ i ] [ j ] ) ;
u [ i ] [ j ] += r1 ;

}
}

f o r ( i =1 ; i < Nxmax−1; i ++ ) { / / Relax v o r t i c i t y
f o r ( j =1 ; j < Nymax−1; j ++ ) {

r2 = omega∗ ( (w[ i + 1 ] [ j ] + w[ i −1][ j ] + w[ i ] [ j + 1 ] + w[ i ] [ j −1]−
(R/ 4 . ) ∗ ( ( u [ i ] [ j + 1]−u [ i ] [ j −1]) ∗(w[ i + 1 ] [ j ]−w[ i −1][ j ] )−
( u [ i + 1 ] [ j ]−u [ i −1][ j ] ) ∗(w[ i ] [ j +1]−w[ i ] [ j −1]) ) ) /4 . −w[ i ] [ j ] ) ;

w[ i ] [ j ] += r2 ;
} } } }

�

Listing 19.3 Beam.java solves the Navier–Stokes equation for the flow over a plate.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 538

538 chapter 19

10
5 0 –5

0

Stream Flow

5

10
X

15

20

60

40
Y

30
20

10 0

50

10
5 –50

70

Stream Flow

20

15

10

5

0

Y

60

50

40

30

20

10
0

0

Stream Flow20

15

10

5

0

–5

0
10

70
60

50
40

30
20

x y

0 2
4

6 8
10 12

14
16

18

Figure 19.7 Left: Gnuplot surface plot with contours of the stream function u for R = 5.

Right: Contours of stream function for R = 1 visualized with colors by OpenDX.

19.9.4 Assessment

1. Use Beam.java as a basis for your solution for the stream function u and the
vorticity w using the finite-differences algorithm (19.64).

2. A good place to start your simulation is with a beam of size L= 8h, H = h,
Reynolds number R= 0.1, and intake velocity V0 = 1. Keep your grid small
during debugging, say, Nx = 24 and Ny = 70.

3. Explore the convergence of the algorithm.
a. Print out the iteration number and u values upstream from, above, and

downstream from the beam.
b. Determine the number of iterations necessary to obtain three-place

convergence for successive relaxation (ω = 0).
c. Determine the number of iterations necessary to obtain three-place conver-

gence for successive overrelaxation (ω � 0.3). Use this number for future
calculations.

4. Change the beam’s horizontal placement so that you can see the undisturbed
current entering on the left and then developing into a standing wave. Note
that you may need to increase the size of your simulation volume to see the
effect of all the boundary conditions.

5. Make surface plots including contours of the stream function u and the
vorticity w. Explain the behavior seen.

6. Is there a region where a big fish can rest behind the beam?
7. The results of the simulation (Figure 19.7) are for the one-component stream

functionu. Make several visualizations showing the fluid velocity throughout
the simulation region. Note that the velocity is a vector with two components

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 539

solitons & computational fluid dynamics 539

x

y

v

0

12

6

40 80

w(x,y)

x
y

0

-1

0

50 0

20

Figure 19.8 Left: The velocity field around the beam as represented by vectors. Right: The

vorticity as a function of x and y. Rotation is seen to be largest behind the beam.

(or a magnitude and direction), and both degrees of freedom are interesting
to visualize. A plot of vectors would work well here (Gnuplot and OpenDX
make vector plots for this purpose, Mathematica has plotfield, and Maple has
fieldplot, although the latter two require some work for numerical data).

8. Explore how increasing the Reynolds number R changes the flow pattern.
Start atR= 0 and gradually increaseRwhile watching for numeric instabili-
ties. To overcome the instabilities, reduce the size of the relaxation parameter
ω and continue to larger R values.

9. Verify that the flow around the beam is smooth for small R values, but that
it separates from the back edge for large R, at which point a small vortex
develops.

19.9.5 Exploration

1. Determine the flow behind a circular rock in the stream.
2. The boundary condition at an outlet far downstream should not have much

effect on the simulation. Explore the use of other boundary conditions there.

3. Determine the pressure variation around the beam.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 540

20

Integral Equations in Quantum Mechanics

The power and accessibility of high-speed computers have changed the view as to what
kind of equations are soluble. In Chapter 9, “Differential Equation Applications,”
and Chapter 12, “Discrete & Continuous Nonlinear Dynamics,” we saw how even
nonlinear differential equations can be solved easily and can give new insight into the
physical world. In this chapter we examine how the integral equations of quantum
mechanics can be solved for both bound and scattering states. In Unit I we extend
our treatment of the eigenvalue problem, solved as a coordinate-space differential
equation in Chapter 9, to the equivalent integral-equation problem in momentum
space. In Unit II we treat the singular integral equations for scattering, a more
difficult problem. After studying this chapter, we hope that the reader will view both
integral and differential equations as soluble.

20.1 Unit I. Bound States of Nonlocal Potentials

Problem: A particle undergoes a many-body interaction with a medium
(Figure 20.1) that results in the particle experiencing an effective potential at r
that depends on the wave function at the r′ values of the other particles [L 96]:

V (r)ψ(r) →
∫
dr′ V (r, r′)ψ(r′). (20.1)

This type of interaction is called nonlocal and leads to a Schrödinger equation that
is a combined integral and differential (“integrodifferential”) equation:

− 1
2µ

d2ψ(r)
dr2

+
∫
dr′ V (r, r′)ψ(r′) = Eψ(r). (20.2)

Your problem is to figure out how to find the bound-state energies E and wave
functions ψ for the integral equation in (20.2).1

1 We use natural units in which h̄≡ 1 and omit the traditional bound-state subscript n on E
and ψ in order to keep the notation simpler.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 541

integral equations in quantum mechanics 541

r ŕ

Figure 20.1 A dark particle moving in a dense multiparticle medium. The nonlocality of the

potential felt by the dark particle at r arises from the particle interactions at all r′.

20.2 Momentum-Space Schrödinger Equation (Theory)

One way of dealing with equation (20.2) is by going to momentum space where it
becomes the integral equation [L 96]

k2

2µ
ψ(k) +

2
π

∫ ∞

0
dpp2V (k, p)ψ(p) = Eψ(k), (20.3)

where we restrict our solution to l = 0 partial waves. In (20.3), V (k, p) is the
momentum-space representation (double Fourier transform) of the potential,

V (k, p) =
1
kp

∫ ∞

0
dr sin(kr)V (r) sin(pr), (20.4)

and ψ(k) is the (unnormalized) momentum-space wave function (the probability
amplitude for finding the particle with momentum k),

ψ(k) =
∫ ∞

0
drkrψ(r) sin(kr). (20.5)

Equation (20.3) is an integral equation for ψ(k), in contrast to an integral represen-
tation of ψ(k), because the integral in it cannot be evaluated until ψ(p) is known.
Although this may seem like an insurmountable barrier, we will transform this
equation into a matrix equation that can be solved with the matrix techniques
discussed in Chapter 8, “Solving Systems of Equations with Matrices; Data Fitting.”

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 542

542 chapter 20

Nk3k2k1k

Figure 20.2 The grid of momentum values on which the integral equation is solved.

20.2.1 Integral to Linear Equations (Method)

We approximate the integral over the potential as a weighted sum over N
integration points (usually Gauss quadrature2) for p= kj , j = 1, N :

∫ ∞

0
dpp2V (k, p)ψ(p) �

N∑
j=1

wjk
2
jV (k, kj)ψ(kj). (20.6)

This converts the integral equation (20.3) to the algebraic equation

k2

2µ
ψ(k) +

2
π

N∑
j=1

wjk
2
jV (k, kj)ψ(kj) = E. (20.7)

Equation (20.7) contains the N unknowns ψ(kj), the single unknown E, and the
unknown function ψ(k). We eliminate the need to know the entire function ψ(k) by
restricting the solution to the same values of ki as used to approximate the integral.
This leads to a set of N coupled linear equations in (N + 1) unknowns:

k2
i

2µ
ψ(ki) +

2
π

N∑
j=1

wjk
2
j V (ki, kj)ψ(kj) = Eψ(ki), i= 1, N. (20.8)

As a case in point, if N = 2, we would have the two simultaneous linear equations

k2
1

2µ
ψ(k1) +

2
π
w1k

2
1 V (k1, k1)ψ(k1) +w2k

2
2 V (k1, k2) =Eψ(k1),

k2
2

2µ
ψ(k2) +

2
π
w1k

2
1 V (k2, k1)ψ(k1) +w2k

2
2 V (k2, k2)ψ(k2) =Eψ(k2).

We write our coupled dynamic equations in matrix form as

[H][ψ] = E[ψ] (20.9)

2 See Chapter 6, “Integration,” for a discussion of numerical integration.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 543

integral equations in quantum mechanics 543

or as explicit matrices




k2
1

2µ + 2
πV (k1, k1)k2

1w1
2
πV (k1, k2)k2

2w2 · · · 2
πV (k1, kN )k2

NwN

2
πV (k2, k1)k2

1w1
2
πV (k2, k2)k2

2w2 + k2
2

2µ · · ·
. . .

· · · · · · · · · k2
N

2µ + 2
πV (kN , kN )k2

NwN




×




ψ(k1)

ψ(k2)

. . .

ψ(kN )


= E




ψ(k1)

ψ(k2)

. . .

ψ(kN )


 . (20.10)

Equation (20.9) is the matrix representation of the Schrödinger equation (20.3). The
wave function ψ(k) on the grid is the N × 1 vector

[ψ(ki)] =



ψ(k1)

ψ(k2)
. . .

ψ(kN )


 . (20.11)

The astute reader may be questioning the possibility of solving N equations for
(N + 1) unknowns. That reader is wise; only sometimes, and only for certain values
ofE (eigenvalues) will the computer be able to find solutions. To see how this arises,
we try to apply the matrix inversion technique (which we will use successfully for
scattering in Unit II). We rewrite (20.9) as

[H −EI][ψ] = [0] (20.12)

and multiply both sides by the inverse of [H −EI] to obtain the formal solution

[ψ] = [H −EI]−1[0]. (20.13)

This equation tells us that (1) if the inverse exists, then we have the trivial solution
for a nontrivial solution to exist, our ψ ≡ 0, which is not very interesting, and
(2) for a nontrivial solution to exist, our assumption that the inverse exists must be
incorrect. Yet we know from the theory of linear equations that the inverse fails to
exist when the determinant vanishes:

det[H −EI] = 0 (bound-state condition). (20.14)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 544

544 chapter 20

Equation (20.14) is the additional equation needed to find unique solutions to the
eigenvalue problem. Nevertheless, there is no guarantee that solutions of (20.14)
can always be found, but if they are found, they are the desired eigenvalues of (20.9).

20.2.2 Delta-Shell Potential (Model)

To keep things simple and to have an analytic answer to compare with, we consider
the local delta-shell potential:

V (r) =
λ

2µ
δ(r− b). (20.15)

This would be a good model for an interaction that occurs in 3-D when two par-
ticles are predominantly a fixed distance b apart. We use (20.4) to determine its
momentum-space representation:

V (k′, k) =
1
k′k

∫ ∞

0
sin(k′r′)

λ

2µ
δ(r− b) sin(kr) dr =

λ

2µ
sin(k′b) sin(kb)

k′k
. (20.16)

Beware: We have chosen this potential because it is easy to evaluate the momentum-
space matrix element of the potential. However, its singular nature in r space leads
to a very slow falloff in k space, and this causes the integrals to converge so slowly
that numerics are not as precise as we would like.

If the energy is parameterized in terms of a wave vector κ by E = −κ2/2µ, then
for this potential there is, at most, one bound state and it satisfies the transcendental
equation [Gott 66]

e−2κb − 1 =
2κ
λ
. (20.17)

Note that bound states occur only for attractive potentials and only if the attraction
is strong enough. For the present case this means that we must have λ < 0.

Exercise: Pick some values of b and λ and use them to verify with a hand
calculation that (20.17) can be solved for κ.

20.2.3 Binding Energies Implementation

An actual computation may follow two paths. The first calls subroutines to evaluate
the determinant of the [H −EI] matrix in (20.14) and then to search for those values
of energy for which the computed determinant vanishes. This provides E, but not
wave functions. The other approach calls an eigenproblem solver that may give
some or all eigenvalues and eigenfunctions. In both cases the solution is obtained
iteratively, and you may be required to guess starting values for both the eigenval-
ues and eigenvectors. In Listing 20.1 we present our solution of the integral equation

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 545

integral equations in quantum mechanics 545

for bound states of the delta-shell potential using the JAMA matrix library and the
gauss method for Gaussian quadrature points and weights.

� �
/ / Bound . java : Bound s t a t e s in momentum space for del ta s h e l l p o t e n t i a l
/ / uses JAMA and includes Gaussian i n t e g r a t i o n
i m p o r t Jama . ∗ ;

p u b l i c c l a s s Bound {
s t a t i c d o u b l e min = 0 . , max = 2 0 0 . , u = 0 . 5 , b =10. ; / / Class var iables

p u b l i c s t a t i c v o i d main ( S t r i n g [ ] args ) {
System . out . p r i n t l n ("M, lambda , eigenvalue" ) ;
f o r ( i n t M = 1 6 ; M <= 1 2 8 ; M += 8) {

f o r ( i n t lambda = −1024; lambda < 0 ; lambda /= 2) {
d o u b l e A[ ] [ ] = new d o u b l e [M] [M] , / / Hamiltonian

WR[ ] = new d o u b l e [M] , VR, / / RE eigenvalues , p o t e n t i a l
k [ ] = new d o u b l e [M] , w[ ] = new d o u b l e [M] ; / / Pts & wts
gauss (M, min , max , k , w) ; / / Call gauss i n t e g r a t i o n
f o r ( i n t i =0 ; i < M; i ++ ) / / Set Hamiltonian

f o r ( i n t j =0 ; j < M; j ++ ) {
VR = lambda/2/u∗Math . s i n ( k [ i ]∗b ) /k [ i ]∗Math . s i n ( k [ j ]∗b ) /k [ j ] ;
A[ i ] [ j ] = 2/Math . PI∗VR∗k [ j ]∗k [ j ]∗w[ j ] ;
i f ( i == j ) A[ i ] [ j ] += k [ i ]∗k [ i ]/2/u ;

}
EigenvalueDecomposition E = new EigenvalueDecomposition ( new Matrix (A) ) ;
WR = E . getRealEigenvalues ( ) ; / / RE eigenvalues

/ / Matrix V = E . getV ( ) ; / / Eigenvectors
f o r ( i n t j =0 ; j < M; j ++ ) i f (WR[ j ] < 0) {

System . out . p r i n t l n (M + " " + lambda + " " + WR[ j ] ) ;
b r e a k ;

} } } }

/ / Method gauss : pts & wts for Gauss quadrature , uniform [ a , b ]
p r i v a t e s t a t i c v o i d gauss ( i n t npts , d o u b l e a , d o u b l e b , d o u b l e [ ] x , d o u b l e [ ] w) {

i n t m = ( npts + 1) /2;
d o u b l e t , t1 , pp = 0 , p1 , p2 , p3 , eps = 3 . e−10; / / eps = accuracy
f o r ( i n t i =1 ; i <= m; i ++ ) {

t = Math . cos ( Math . PI ∗( i −0.25) /( npts + 0 . 5 ) ) ; t 1 = 1 ;
w h i l e ( ( Math . abs ( t−t 1 ) ) >=eps ) {

p1 = 1 . ; p2 = 0 . ;
f o r ( i n t j =1 ; j <= npts ; j ++ )

{ p3 = p2 ; p2 = p1 ; p1 = ( ( 2∗ j −1)∗ t∗p2−( j −1)∗p3 ) / j ; }
pp = npts ∗( t∗p1−p2 ) /( t∗ t −1) ;
t 1 = t ; t = t1 − p1/pp ;

}
x [ i −1] = −t ; x [ npts−i ] = t ;
w[ i −1] = 2./((1 − t∗ t )∗pp∗pp ) ; w[ npts−i ] = w[ i −1];

}
f o r ( i n t i =0 ; i < npts ; i ++ ) {

x [ i ] = x [ i ]∗ ( b−a ) /2. + ( b + a ) /2. ;
w[ i ] = w[ i ]∗ ( b−a ) /2. ;

} } }
�

Listing 20.1 Bound.java solves the Lippmann–Schwinger integral equation for bound states

within a delta-shell potential. The integral equations are converted to matrix equations using

Gaussian grid points, and they are solved with JAMA.

1. Write your own program, or modify the code on the CD, to solve the inte-
gral equation (20.9) for the delta-shell potential (20.16). Either evaluate the
determinant of [H −EI] and then find the E for which the determinant
vanishes or find the eigenvalues and eigenvectors for this H .

2. Set the scale by setting 2µ= 1 and b= 10.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 546

546 chapter 20

3. Set up the potential and Hamiltonian matricesV (i, j) andH(i, j) for Gaussian
quadrature integration with at least N = 16 grid points.

4. Adjust the value and sign of λ for bound states. A good approach is to start
with a large negative value for λ and then make it less negative. You should
find that the eigenvalue moves up in energy.

5. Try increasing the number of grid points in steps of 8, for example, 16, 24, 32,
64, . . ., and see how the energy changes.

6. Note: Your eigenenergy solver may return several eigenenergies. The true
bound state will be at negative energy and will be stable as the number of
grid points changes. The others are numerical artifacts.

7. Extract the best value for the bound-state energy and estimate its precision
by seeing how it changes with the number of grid points.

8. Check your solution by comparing the RHS and LHS in the matrix multipli-
cation [H][ψ] = E[ψ].

9. Verify that, regardless of the potential’s strength, there is only a single bound
state and that it gets deeper as the magnitude of λ increases.

20.2.4 Wave Function (Exploration)

1. Determine the momentum-space wave function ψ(k). Does it fall off at
k → ∞? Does it oscillate? Is it well behaved at the origin?

2. Determine the coordinate-space wave function via the Bessel transform

ψ(r) =
∫ ∞

0
dkψ(k)

sin(kr)
kr

k2. (20.18)

Does ψ0(r) fall off as you would expect for a bound state? Does it oscillate?
Is it well behaved at the origin?

3. Compare the r dependence of this ψ0(r) to the analytic wave function:

ψ0(r) ∝
{
e−κr − eκr, for r < b,

e−κr, for r > b.
(20.19)

20.3 Unit II. Nonlocal Potential Scattering �
Problem: Again we have a particle interacting with the nonlocal potential discussed
in Unit I (Figure 20.3 left), only now the particle has sufficiently high energy that
it scatters rather than binds with the medium. Your problem is to determine the
scattering cross section for scattering from a nonlocal potential.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 547

integral equations in quantum mechanics 547

r‘ k
k

k’
-k

-k’

m1

m2

Figure 20.3 Left: A projectile of momentum k (dark particle at r) scattering from a dense

medium. Right: The same process viewed in the CM system, where the k’s are CM momenta.

20.4 Lippmann–Schwinger Equation (Theory)

Because experiments measure scattering amplitudes and not wave functions, it is
more direct to have a theory dealing with amplitudes rather than wave functions.
An integral form of the Schrödinger equation dealing with the reaction amplitude
or R matrix is the Lippmann–Schwinger equation:

R(k′, k) = V (k′, k) +
2
π

P
∫ ∞

0
dp

p2V (k′, p)R(p, k)
(k2

0 − p2)/2µ
. (20.20)

As in Unit I, the equations are for partial wave l = 0 and h̄= 1. In (20.20) the
momentum k0 is related to the energy E and the reduced mass µ by

E =
k2
0

2µ
, µ=

m1m2

m1 +m2
, (20.21)

and the initial and final COM momentak andk′ are the momentum-space variables.
The experimental observable that results from a solution of (20.20) is the diagonal
matrix element R(k0, k0), which is related to the scattering phase shift δ0 and thus
the cross section:

R(k0, k0) = − tan δl
ρ

, ρ= 2µk0. (20.22)

Note that (20.20) is not just the evaluation of an integral; it is an integral equation
in which R(p, k) is integrated over all p, yet since R(p, k) is unknown, the integral
cannot be evaluated until after the equation is solved! The symbol P in (20.20) indi-
cates the Cauchy principal-value prescription for avoiding the singularity arising
from the zero of the denominator (we discuss how to do that next).

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 548

548 chapter 20

A

– k

– k k

k – k + e
k

Im k'

Im k' Im k'

Re k' Re k' Re k'

B C

Figure 20.4 Three different paths in the complex k′ plane used to evaluate line integrals when

there are singularities. Here the singularities are at k and −k, and the integration variable is k′.

20.4.1 Singular Integrals (Math)

A singular integral

G =
∫ b

a

g(k) dk, (20.23)

is one in which the integrand g(k) is singular at a point k0 within the interval [a, b]
and yet the integral G is still finite. (If the integral itself were infinite, we could not
compute it.) Unfortunately, computers are notoriously bad at dealing with infinite
numbers, and if an integration point gets too near the singularity, overwhelm-
ing subtractive cancellation or overflow may occur. Consequently, we apply some
results from complex analysis before evaluating singular integrals numerically.3

In Figure 20.4 we show three ways in which the singularity of an integrand can
be avoided. The paths in Figures 20.4A and 20.4B move the singularity slightly off
the real k axis by giving the singularity a small imaginary part ±iε. The Cauchy
principal-value prescription P (Figure 20.4C) is seen to follow a path that “pinches”
both sides of the singularity at k0 but does not to pass through it:

P
∫ +∞

−∞
f(k) dk = lim

ε→0

[∫ k0−ε

−∞
f(k) dk+

∫ +∞

k0+ε

f(k) dk

]
. (20.24)

The preceding three prescriptions are related by the identity∫ +∞

−∞

f(k) dk
k− k0 ± iε

= P
∫ +∞

−∞

f(k) dk′

k− k0
∓ iπf(k0), (20.25)

which follows from Cauchy’s residue theorem.

3 [S&T 93] describe a different approach using Maple and Mathematica.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 549

integral equations in quantum mechanics 549

20.4.2 Numerical Principal Values

A numerical evaluation of the principal value limit (20.24) is awkward because
computers have limited precision. A better algorithm follows from the theorem

P
∫ +∞

−∞

dk

k− k0
= 0. (20.26)

This equation says that the curve of 1/(k− k0) as a function of k has equal and
opposite areas on both sides of the singular point k0. If we break the integral up
into one over positive k and one over negative k, a change of variable k → −k
permits us to rewrite (20.26) as

P
∫ +∞

0

dk

k2 − k2
0

= 0. (20.27)

We observe that the principal-value exclusion of the singular point’s contribution
to the integral is equivalent to a simple subtraction of the zero integral (20.27):

P
∫ +∞

0

f(k) dk
k2 − k2

0
=
∫ +∞

0

[f(k) − f(k0)] dk
k2 − k2

0
. (20.28)

Notice that there is no P on the RHS of (20.28) because the integrand is no longer
singular at k = k0 (it is proportional to the df/dk) and can therefore be evaluated
numerically using the usual rules. The integral (20.28) is called the Hilbert transform
of f and also arises in inverse problems.

20.4.3 Reducing Integral Equations
to Matrix Equations (Algorithm)

Now that we can handle singular integrals, we can go about reducing the integral
equation (20.20) to a set of linear equations that can be solved with matrix meth-
ods. We start by rewriting the principal-value prescription as a definite integral
[H&T 70]:

R(k′, k) = V (k′, k) +
2
π

∫ ∞

0
dp

p2V (k′, p)R(p, k) − k2
0V (k′, k0)R(k0, k)

(k2
0 − p2)/2µ

. (20.29)

We convert this integral equation to linear equations by approximating the integral
as a sum over N integration points (usually Gaussian) kj with weights wj :

R(k, k0) �V (k, k0) +
2
π

N∑
j=1

k2
jV (k, kj)R(kj , k0)wj

(k2
0 − k2

j )/2µ

− 2
π
k2
0V (k, k0)R(k0, k0)

N∑
m=1

wm

(k2
0 − k2

m)/2µ
. (20.30)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 550

550 chapter 20

We note that the last term in (20.30) implements the principal-value prescription
and cancels the singular behavior of the previous term. Equation (20.30) contains
the (N + 1) unknowns R(kj , k0) for j = 0, N . We turn it into (N + 1) simultaneous
equations by evaluating it for (N + 1) k values on a grid (Figure 20.2) consisting of
the observable momentum k0 and the integration points:

k = ki =

{
kj , j = 1, N (quadrature points),

k0, i= 0 (observable point).
(20.31)

There are now (N + 1) linear equations for (N + 1) unknowns Ri ≡R(ki, k0):

Ri = Vi +
2
π

N∑
j=1

k2
jVijRjwj

(k2
0 − k2

j )/2µ
− 2
π
k2
0Vi0R0

N∑
m=1

wm

(k2
0 − k2

m)/2µ
. (20.32)

We express these equations in matrix form by combining the denominators and
weights into a single denominator vector D:

Di =




+ 2
π

wik
2
i

(k2
0 − k2

i )/2µ
, for i= 1, N,

− 2
π

∑N
j=1

wjk2
0

(k2
0 − k2

j )/2µ
, for i= 0.

(20.33)

The linear equations (20.32) now assume that the matrix form

R−DV R= [1−DV ]R= V, (20.34)

where R and V are column vectors of length N + 1:

[R] =



R0,0

R1,0
. . .

RN,0


 , [V ] =



V0,0

V1,0
. . .

VN,0


 . (20.35)

We call the matrix [1−DV ] in (20.34) the wave matrix F and write the integral
equation as the matrix equation

[F ][R] = [V ], Fij = δij −DjVij . (20.36)

With R the unknown vector, (20.36) is in the standard form AX =B, which can be
solved by the mathematical subroutine libraries discussed in Chapter 8, “Solving
Systems of Equations with Matrices; Data Fitting.”

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 551

integral equations in quantum mechanics 551

20.4.4 Solution via Inversion or Elimination

An elegant (but alas not efficient) solution to (20.36) is by matrix inversion:

[R] = [F ]−1[V ]. (20.37)
� �

/ / S c a t t . java : Soln of Lippmann Schwinger in p space for s c a t t e r i n g

i m p o r t Jama . ∗ ;
i m p o r t j ava . io . ∗ ;
i m p o r t j ava . u t i l . ∗ ;

p u b l i c c l a s s S c a t t {
p u b l i c s t a t i c v o i d main ( S t r i n g [ ] argv ) throws IOException , FileNotFoundException {

Pr i n t W r i t e r q = new Pr i n t W r i t e r ( new FileOutputStream ("sin2 .dat" ) , t r u e ) ;
i n t n , i , j , m, Row, Column , M = 3 0 0 ;
d o u b l e pot , lambda , sca le , ko , Temp, s h i f t , s h i f t a n , sin2 , k2 ;
d o u b l e pi = 3.1415926535897932384626 , b = 1 0 . , RN1, p o t l a s t = 0 . 0 ;
d o u b l e [ ] [ ] F = new d o u b l e [M] [M] ; d o u b l e [ ] k = new d o u b l e [M] ;
d o u b l e [ ] w = new d o u b l e [M] ; d o u b l e [ ]D = new d o u b l e [M] ; d o u b l e [ ] r =new d o u b l e [M] ;
d o u b l e [ ] V = new d o u b l e [M] ; d o u b l e [ ] [ ] P = new d o u b l e [M] [M] ;
d o u b l e [ ] [ ] L = new d o u b l e [M] [M] ; d o u b l e [ ] [ ]U = new d o u b l e [M] [M] ;
n = 2 6 ; s c a l e = n/2; pot = 0 . ;
s h i f t a n = 0 . ; lambda = 1 . 5 ; / / Set up Gauss points
Gauss . gauss ( n , 2 , 0 . , s ca le , k , w) ;
ko = 0 . 0 2 ;
f o r ( m=1;m<901;m++) { / / Set up D matrix

k [ n ] = ko ;
f o r ( i =0 ; i <= n−1; i ++ ) {

D[ i ]=2/ pi∗w[ i ]∗k [ i ]∗k [ i ] / ( k [ i ]∗k [ i ]−ko∗ko ) ;
}
D[ n ] = 0 . ;
f o r ( j =0 ; j <= n−1; j ++) D[ n]=D[ n]+w[ j ]∗ko∗ko/(k [ j ]∗k [ j ]−ko∗ko ) ;

D[ n ] = D[ n]∗( −2./ pi ) ;
f o r ( i =0 ; i <= n ; i ++ ) { / / Set up F matrix and V vector

f o r ( j =0 ; j <= n ; j ++ ) {
pot = −b∗b ∗ lambda ∗ Math . s i n ( b∗k [ i ] ) ∗ Math . s i n ( b∗k [ j ] ) /(k [ i ]∗b∗k [ j ]∗b ) ;
F [ i ] [ j ] = pot∗D[ j ] ;
i f ( i == j ) F [ i ] [ j ] = F [ i ] [ j ] + 1 . ;

}
V[ i ] = pot ;

} / / Change arrays into matrices
Matrix Fmat = new Matrix ( F , n+1 , n+1) ;
Matrix Vvec = new Matrix ( n+1 , 1 ) ;
Matrix Finv = Fmat . inverse ( ) ;
f o r ( i =0 ; i <= n ; i ++ ) Vvec . s e t ( i , 0 , V[ i ] ) ;
Matrix R = Finv . t imes ( Vvec ) ; / / Inver t matrix
RN1 = R . get ( n , 0 ) ; / / Get l a s t value of R

/ / Define phase s h i f t
s h i f t = Math . atan(−RN1∗ko ) ;
s in2 = Math . s i n ( s h i f t )∗Math . s i n ( s h i f t ) ;
q . p r i n t l n ( ko∗b + " " + sin2 ) ;
ko=ko + 0 . 2∗3 . 1 4 1 5 9 2 / 1 0 0 0 . 0 ;

}
System . out . p r i n t l n ("Output in sin2 .dat" ) ;

}
}

�

Listing 20.2 Scatt.java solves the Lippmann–Schwinger integral equation for scattering from

a delta-shell potential. The singular integral equations are regularized by a subtraction,

converted to matrix equations using Gaussian grid points, and then solved with JAMA.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 552

552 chapter 20

Because the inversion of even complex matrices is a standard routine in mathemat-
ical libraries, (20.37) is a direct solution for theRmatrix. Unless you need the inverse
for other purposes (like calculating wave functions), a more efficient approach is to
use Gaussian elimination to find an [R] that solves [F ][R] = [V ] without computing
the inverse.

20.4.5 Scattering Implementation

For the scattering problem, we use the same delta-shell potential (20.16) discussed
in §20.2.2 for bound states:

V (k′, k) =
−|λ|
2µk′k

sin(k′b) sin(kb). (20.38)

This is one of the few potentials for which the Lippmann–Schwinger equation
(20.20) has an analytic solution [Gott 66] with which to check:

tan δ0 =
λb sin2(kb)

kb−λb sin(kb) cos(kb)
. (20.39)

Our results were obtained with 2µ= 1, λ b= 15, and b= 10, the same as in [Gott 66].
In Figure 20.5 we give a plot of sin2 δ0 versus kb, which is proportional to the scatter-
ing cross section arising from the l = 0 phase shift. It is seen to reach its maximum
values at energies corresponding to resonances. In Listing 20.2 we present our pro-
gram for solving the scattering integral equation using the JAMA matrix library
and the gauss method for quadrature points. For your implementation:

1. Set up the matricesV[], D[],and F[][]. Use at leastN = 16 Gaussian quadrature
points for your grid.

2. Calculate the matrix F−1 using a library subroutine.
3. Calculate the vector R by matrix multiplication R= F−1V .
4. Deduce the phase shift δ from the i= 0 element of R:

R(k0, k0) =R0,0 = − tan δ
ρ

, ρ= 2µk0. (20.40)

5. Estimate the precision of your solution by increasing the number of grid
point in steps of two (we found the best answer for N = 26). If your phase
shift changes in the second or third decimal place, you probably have that
much precision.

6. Plot sin2 δ versus energy E = k2
0/2µ starting at zero energy and ending at

energies where the phase shift is again small. Your results should be similar
to those in Figure 20.5. Note that a resonance occurs when δl increases rapidly
through π/2, that is, when sin2 δ0 = 1.

7. Check your answer against the analytic results (20.39).

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 553

integral equations in quantum mechanics 553

0 2 4 6
0

1

kb

Analytic

Figure 20.5 The energy dependence of the cross section for l = 0 scattering from an

attractive delta-shell potential with λb = 15. The dashed curve is the analytic solution (20.39),

and the solid curve results from numerically solving the integral Schrödinger equation, either

via direct matrix inversion or via LU decomposition.

20.4.6 Scattering Wave Function (Exploration)

1. The F−1 matrix that occurred in our solution to the integral equation

R= F−1V = (1 −V G)−1V (20.41)

is actually quite useful. In scattering theory it is known as the wave matrix
because it is used in expansion of the wave function:

u(r) =N0

N∑
i=1

sin(kir)
kir

F (ki, k0)−1. (20.42)

Here N0 is a normalization constant and the R matrix gives standing-wave
boundary conditions. Plot u(r) and compare it to a free wave.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 554

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 555

Appendix A: Glossary

absolute value — The value of a quantity expressed as a positive number, for
example, |f(x)|.

accuracy — The degree of exactness provided by a description or theory. Accuracy
usually refers to an absolute quality, while precision usually refers to the number
of digits used to represent a number.

address — The numerical designation of a location in memory. An identifier, such
as a label, that points to an address in memory or a data source.

algorithm — A set of rules for solving a problem in a finite number of steps. Usually
independent of the software or hardware.

allocate — To assign a resource for use, often memory.
alphanumeric — The combination of alphabetic letters, numerical digits, and special

characters, such as %, $, and /.
analog — The mapping of a continuous physical observable to numbers, for

example, a car’s speed to the numbers on its speedometer.
animation —Aprocess in which motion is simulated by presenting a series of slightly

different pictures (frames) in succession.
append — To add on, especially at the end of an object or word.
application — A self-contained, executable program containing tasks to be per-

formed by a computer, usually for a practical purpose.
architecture — The overall design of a computer in terms of its major components:

memory, processor, I/O, and communication.
archive — To copy programs and data to an auxiliary medium or file system for

long-term, compact storage.
argument —Aparameter passed from one program part to another or to a command.
arithmetic unit — The part of the central processing unit that performs arithmetic.
array (matrix) — A group of numbers stored together in rows and columns that

may be referenced by one or more subscripts. Each number in an array is an
array element.

assignment statement — A command that sets a value to a variable or symbol.
B — The abbreviation for byte (8 bits).
b — The abbreviation for bit (binary digit).
background — (1) A technique of having a programming run at low priority (“in the

background”) while a higher-priority program runs “in the foreground.” (2) The
part of a video display not containing windows.

base — The radix of a number system. (For example, 10 is the radix of the decimal
system.)

basic machine language — Instructions telling the hardware to do basic a operation
such as store or add binary numbers.

batch — The running of programs without user interaction, often in the
background.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 556

556 appendix a

baud — The number of signal elements per unit time, often 1 bit per second.
binary — Related to the number system with base 2.
BIOS — Basic input/output system.
bit — Contraction of “binary digit”; digit 0 or 1 in binary representation.
Boolean algebra — A branch of symbolic logic dealing with logical relations as

opposed to numerical values.
boot — To “bootstrap”; to start a computer by loading the operating system.
branch — To pick a path within a program based on the values of variables.
bug — A mistake in a computer program or operating system; a malfunction.
bus — A communication channel (a bunch of wires) used for transmitting

information quickly among computer parts.
byte — Eight bits of storage. Java uses two bytes to store a single character in

extended unicode.
byte code — Compiled code read by all computer systems but still needing to be

interpreted (or recompiled); contained in a class file.
cache — Small, very fast memory used as temporary storage between very fast CPU

registers and main memory or between disk and RAM.
calling sequence — The data and setup needed to call a method or subprogram.
central processing unit (CPU) — The part of a computer that accepts and acts on

instructions; where calculations are done and communications controlled.
checkpoint — A statement within a program that stops normal execution and

provides output to assist in debugging.
checksum — The summation of digits or bits used to check the integrity of data.
child — An object created by a parent object.
class — (1) A group of objects or methods having a common characteristic. (2) A

collection of data types and associated methods. (3) An instance of an object. (4)
The byte code version of a Java program.

clock — Electronics that generate periodic signals to control execution.
code — A program or the writing of a program (often compiled).
column — The vertical line of numbers in an array.
column-major order — The method used by Fortran to store matrices in which the

leftmost subscript attains its maximum value before the subscript to the right is
incremented. (Java and C use row-major order.)

command — A computer instruction; a control signal.
command key — A keyboard key, or combination of keys, that performs a predefined

function.
compilation — The translation of a program written in a high-level language to

(more) basic language.
compiler — A program that translates source code from a high-level computer

language to more basic machine language.
concatenate — To join together two or more strings head to tail.
concurrent processing — The same as parallel processing; the simultaneous execution

of several related instructions.
conditional statement — A statement executed only under certain conditions.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 557

glossary 557

control character — A character that modifies or controls the running of a program
(e.g., control + c).

control statement — A statement within a program that transfers control to
another section of the program.

copy — To transfer data without removing the original.
CPU — See central processing unit.
crash — The abnormal termination of a program or a piece of hardware.
cycle time (clock speed) — The time needed for a CPU to execute a simple

instruction.
data — Information stored in numerical form; plural of datum.
data dependence — Occurs when two statements are addressing identical storage

locations.
dependence — Relation among program statements in which the results depend on

the order in which the statements are executed.
data type — Definitions that permit proper interpretation of a character string.
debug — To detect, locate, and remove mistakes in software or hardware.
default — The assumption made when no specific directive is given.
delete — To remove and leave no record.
DFT — Discrete Fourier transform.
digital — The representation of quantities in discrete form; contrast analog.
dimension of an array The number of elements that may be referenced by an array

index. The logical dimension is the largest value actually used by the program.
directory — A collection of files given their own name.
discrete — Related to distinct elements.
disk, disc — A circular magnetic medium used for storage.
double precision — The use of two memory words to store a number.
download — To transfer data from a remote computer to a local computer.
DRAM — See dynamic RAM. Contrast with SRAM.
driver — A set of instructions needed to transmit data to or from an external device.
dump — Data resulting from the listing of all information in memory.
dynamic RAM — Computer memory needing frequent refreshment.
E — A symbol for “exponent.” To illustrate, 1.97E2 = 1.97× 102.
element — An item of data within an array; a component of a language.
enable — To make a computer part operative.
ethernet — A high-speed local area network (LAN) composed of specific cable

technology and communication protocols.
executable program — A set of instructions that can be loaded into a computer’s

memory and executed.
executable statement — A statement that causes a certain computational action, such

as assigning a value to a variable.
fetch — To locate and retrieve information from storage.
FFT — Fast Fourier transform.
flash memory — Memory that does not require power to retain its contents.
floating point — The finite storage of numbers in scientific notation.
FLOP — Floating-point operations per second.
foreground — Running high-priority programs before lower-priority programs.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 558

558 appendix a

Fortran — Acronym for formula translation; a classic language.
fragmentation — File storage in many small, dispersed pieces.
garbage — Meaningless numbers, usually the result of error or improper

definition. Obsolete data in memory waiting to be removed (“collected”).
giga, G — Prefix indicating 1 billion, 109, of something (US).
GUI — Graphical user interface; a windows environment.
hard disk — A circular, spinning, storage device using magnetic memory.
hardware — The physical components of a computer system.
hashing — A transformation that converts keystrokes to data values.
heuristic — A trial-and-error approach to problem solving.
hexadecimal — Base 16; {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}.
hidden line surface — The part of a graphics object normally hidden from view.
high-level language — A programming language similar to normal language.
host computer — A central or remote computer serving other computers.
HPC — High-performance computing.
HTML — Hypertext markup language.
icon — A small on-screen symbol that activates an application.
increment — The amount added to a variable, especially an array index.
index — The symbol used to locate a variable in an array; the subscript.
infinite loop — The endless repetition of a set of instructions.
input — The introduction of data from an external device into main storage.
instructions — Commands to the hardware to do basic things.
instruction stack — The ordered group of instructions currently in use.
interpolation — Finding values between known values.
interpreter — A language translator that sequentially converts each line of source

code to machine code and immediately executes each line.
interrupt — A command that stops the execution of a program when an abnormal

condition is encountered.
iterate — To repeat a series of steps automatically.
jump — A departure from the linear processing of code; branch, transfer.
just-in-time compiler — A program that recompiles a Java class file into more

efficient machine code.
kernel — The inner or central part of a large program or of an operating system that

is not modified (much) when run on different computers.
kill — To delete or stop a process.
kilo, k — Prefix indicating 1 thousand, 103.
LAN — Local area network.
LAPACK — A linear algebra package (a subroutine library).
language — Rules, representations, and conventions used to communicate

information.
LHS — Left-hand side.
library (lib) — A collection of programs or methods usually on a related topic.
linking — Connecting separate pieces of code to form an executable program.
literal — A symbol that defines itself, such as the letter A.
load — To read information into a computer’s memory.
load module — A program that is loaded into memory and run immediately.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 559

glossary 559

log in (on) — To sign onto a computer; to begin a session.
loop — A set of instructions executed repeatedly as long as some condition is met.
low-level language — Machine-related commands not for humans.
machine language — Commands understood by computer hardware.
machine precision — The maximum positive number that, when added to the number

stored as 1, does not change it.
macro — A single higher-level statement resulting in several lower-level ones.
main method — The section of an application program where execution begins.
main storage — The fast electronic memory; physical memory.
mantissa — Significant digits in a floating-point number; for example, 1.2 in 1.2E3.
mega, M — A prefix denoting a million, or 1, 048, 576 = 220.
method — A subroutine used to calculate a function or manipulate data.
MIMD — Multiple-instruction, multiple-data computer.
modular programming — The technique of writing programs with many reusable

independent parts.
modulo (mod) — A function that yields a remainder after the division of numbers.
multiprocessors — Computers with more than one processor.
multitasking — The system by which several jobs reside in a computer’s memory

simultaneously; they may run in parallel or sequentially.
NAN — Not a number; a computer error message.
nesting — Embedding a group of statements within another group.
object — A software component with multiple parts or properties.
object-oriented programming — A modular programming style focused on classes of

data objects and associated methods to interact with the objects.
object program (code) — A program in basic machine language produced by

compiling a high-level language.
octal — Base 8; easy to convert to or from binary.
ODE — Ordinary differential equation.
1-D — One-dimensional.
operating system (OS) — The program that controls a computer and runs applica-

tions, processes I/O, and shells.
OOP — Object-oriented programming.
optimization — The modification of a program to make it run more quickly.
overflow — The result of trying to store too large a number.
package — A collection of related programs or classes.
page — A segment of memory that is read as a single block.
parallel (concurrent) processing — Simultaneous or independent processing in

different CPUs.
parallelization — Rewriting an existing program to run in parallel.
partition — The section of memory assigned to a program during its execution.
PC — Personal computer.
PDE — Partial differential equation.
physical memory — The fast electronic memory of a computer; main memory;

contrast with virtual memory.
physical record — The physical unit of data for input or output that may contain a

number of logical records.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 560

560 appendix a

pipeline (segmented) arithmetic units — An assembly-line approach to central pro-
cessing; the CPU simultaneously gathers, stores, and processes data.

pixel — A picture element; a dot on the screen. See also voxel.
Portable Document Format, .pdf — A document format developed by Adobe that is

of high quality and readable by an extended browser.
PostScript, .ps — A language developed by Adobe for printing high-quality text and

graphics.
precision — The degree of exactness with which a quantity is presented. High-

precision numbers are not necessarily accurate.
program — A set of instructions that a computer interprets and executes.
protocol — A set of rules or conventions.
pseudocode — A mixture of normal language and coding that provides a symbolic

guide to a program.
queue — An ordered group of items waiting to be acted upon in turn.
radix — The base number in a number system that is raised to powers.
RAM — Random-access (central) memory that is reached directly.
random access — Reading or writing memory independent of storage order.
record — A collection of data items treated as a unit.
recurrence/recursion — Repetition producing new values from previous ones.
registers — Very high-speed memory used by the central processing unit.
reserved words — Words that cannot be used in an application program.
RHS — Right-hand side.
RISC — A CPU design for a reduced instruction set computer.
row-major order — The method used by Java to store matrices in which the right-

most subscript varies most rapidly and attains its maximum value before the left
subscript is incremented.

run — To execute a program.
scalar — A data value or number, for example, π.
serial/scalar processing — Calculations in which numbers are processed in

sequence. Contrast with vector processing and parallel processing.
shell — A command-line interpreter; the part of the operating system where the

user enters commands.
SIMD — A single instruction, multiple-data computer.
simulation — The modeling of a real system by a computer program.
single precision — The use of one computer word to store a variable.
SISD — A single-instruction, single-data computer.
software — Programs or instructions.
source code — A program in a high-level language needing compilation to run.
SRAM — See static RAM.
Static RAM. — Memory that retains its contents as long as power is applied.

Contrast with DRAM.
stochastic — A process in which there is an element of chance.
stride — The number of array elements stepped through as an operation repeats.
string — A connected sequence of characters treated as a single object.
structure — The organization or arrangement of a program or a computer.
subprogram — Part of a program invoked by another program unit; a subroutine.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 561

glossary 561

supercomputer — The class of fastest and most powerful computers available.
superscalar — A later-generation RISC computer.
syntax — The rules governing the structure of a language.
TCP/IP — Transmission control protocol/internet protocol.
telnet — Protocols for computer–computer communications.
tera, T — Prefix indicating 1012.
top-down programming — Designing a program from the most general view of

the problem down to the specific subroutines.
unary — An operation that uses only one operand; monadic.
underflow — The result of trying to store too small a number.
unit — A device having a special function.
upload — Data transfer from a local to a remote computer; the opposite of

download.
URL — Universal resource locator; web address.
utility programs — Programs to enhance other programs or do chores.
vector — A group of N numbers in memory arranged in 1-D order.
vector processing — Calculations in which an entire vector of numbers is

processed with one operation.
virtual memory — Memory on the slow, hard disk and not in fast RAM.
visualization — Conversion of numbers to 2-D and 3-D pictures or graphs.
volume — A physical unit of a storage medium, such as a disk.
voxel — A volume element on a regular 3-D grid.
word — A unit of main storage, usually 1, 2, 4, 6, or 8 bytes.
word length — The amount of memory used to store a computer word.
WWW — World wide web.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 562

Appendix B: Installing PtPlot
& Java Developer’s Kit Packages

The first step in setting up PtPlot is to download the latest version and then uncom-
press it.1 The plotting package we call PtPlot is part of a larger Java project called
Ptolemy [PtPlot], all free for downloading. After you have properly unzipped or
untarred the PtPlot package, a directory such as ptplot5.6 should be created. The
number 5.6 here is the version number of the PtPlot package that we are now
using; there may be a newer version when you do your download. For our exam-
ples we have renamed the directory in which PtPlot resides as simply ptplot, with
no version number attached. On Unix, we assume that your ptplot directory will be
˜/java_packages/ptplot, where the ˜ indicates your home directory. On Windows,
we assume that your ptplot directory will be C:\ptplot.2 Advanced users may prefer
to keep the version number in the directory name or use a different organizational
system. However, if this is the first time that you have installed a Java package, we
recommend that you use the same directory names that we have.

Now that we have placed the PtPlot package in its own directory, we need to tell
Java where to find it. As a matter of convention, the Java compiler javac and the Java
interpreter java assume that the value of a variable named CLASSPATH contains the
information on where packages such as PtPlot are stored. This type of variable that
controls the environment in which programs run is called an environment variable.
Because the programs in the packages having already been compiled into class
files, the variable that directs Java to the classes is called CLASSPATH. To get PtPlot
to work under Java, you need to modify the CLASSPATH variable to include the
location where PtPlot is stored.

Windows 95: Open the autoexec.bat file (usually C:\autoexec.bat) in a text
editor such as Notepad. At the end of the file, add the line

SET CLASSPATH=%CLASSPATH%;C:\ptplot

Save the autoexec.bat file and restart your computer.
Windows 98/ME: Click Start and then Run under that. Key in the command name

msconfig and press Enter. The System Configuration Utility should appear. Select
the tab Autoexec.bat and look for a line that says SET CLASSPATH. If you
cannot find that line, click New and enter SET CLASSPATH = C:\ptplot. If the

1 If you have never done this before, you may want to do it with a friend who has. In
Windows, you use WinZip to unzip files. In Unix, try double-clicking on an icon of the
file, or decompress it from within a shell with gunzip and tar -xvf.

2 If you use the Windows automatic installer and you want to follow our examples verbatim,
you should install to C:\ptplot rather than C:\ptolemy\ptplot5.6.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 563

installing ptplot & java developer’s kit packages 563

SET CLASSPATH line already exists, select it, choose Edit, add a semicolon ; to
the end of the line, and then add C:\ptplot after the semicolon. The semicolon
is a separator that tells Java that it should look in more than one location for
class files. Make sure that the checkbox next to the CLASSPATH line is checked
and then click OK. Answer Yes when Windows asks you whether you want to
restart the computer.

Windows NT/2000/XP: Open the Control Panel (Start, Settings, Control Panel in
NT/2000, or Start, Control Panel in XP). Open the System icon (you may need
to switch to the Classic View in Windows XP). Under the System Properties
window, select the Advanced tab and choose Environment Variables. Two lists
should be shown. One contains environment variables just for you, and one
contains environment variables for all users on the system. On your personal
environment variable list, look for CLASSPATH. If you cannot find the CLASS-
PATH variable, click New and enter CLASSPATH for the variable name and
C:\ptplot for the value. If the CLASSPATH variable already exists, select it,
choose Edit, add a semicolon ; to the end of the current value, and then add
C:\ptplot after the semicolon. The semicolon is a separator that tells Java that
it should look in more than one location for class files. Click OK until you get
back to the Control Panel and then restart your machine.

Unix: We assume that you do not have system authority for your computer
and so will install PtPlot in your home directory. We suggest that you make a
subdirectory called java_packages in your home directory and install PtPlot
there:

> cd Change to my home directory
> mkdir java_packages Create subdirectory here
> mkdir java_packages/ptplot Create subdirectory in java_packages

If the˜ is used to represent your home directory, this assumes that you will be
installing the PtPlot package in the ˜/java_packages/ptplot/ directory.

Your CLASSPATH variable that needs updating is contained in the initiation
(init) file .cshrc in your home directory. Because this file name begins with a . it
is usually hidden from view. Beware: It is easy to mess up your .cshrc file and
end up in a quagmire where you cannot enter commands. For this reason we sug-
gest that you first create a backup copy of your .cshrc file in case anything goes
wrong:

> cp .cshrc .cshrc_bk Make a backup, just in case

Next, open the .cshrc file in a text editor. Because this file may contain some
very long lines that must be kept intact, if your text editor has an automatic
word wrap feature, make sure it is turned off. Next look for a line that starts
with setenv CLASSPATH. If you cannot find that line, add setenv CLASSPATH
˜/java_packages/ptplot on its own line at the end of your .cshrc file. If the setenv
CLASSPATH line already exists, add a colon : to the end of the existing line and
then add ˜/java_packages/ptplot after the colon. The colon is a separator that tells

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 564

564 appendix b

Java that it should look in more than one location for class files. Save your .cshrc
file and then close and reopen all the shells that you have open (or log off and then
back on).

Once you have the CLASSPATH variable set, you should make sure that it is
working. To check, go to a command prompt in a shell and enter

> echo %CLASSPATH% Windows check
> echo $CLASSPATH Unix check

The complete value for the CLASSPATH variable should be printed to the screen,
for example:

/home/jan/java/classes:/home/jan:/home/jan/mpi:/usr/local/mpiJava/

lib/classes:/home/jan/java_packages:/home/jab/java_packages/ptplot:

If your changes do not take, carefully follow the directions again, and if you still
have problems, ask for help.

At this point you are ready to try out PtPlot. Get the file EasyPtPlot.java
containing a sample plot program from the CD and enter

> javac EasyPtPlot.java Compile sample plot program
> java EasyPtPlot Run sample plot program

If the PtPlot package was installed correctly, you should get a nice graph on your
screen. If this does not work, ask for help.

B.1 Installing Java Developer’s Kit

Sun Microsystem’s Java Web site [SunJ] contains the latest (free) version of Java
Developer’s Kit (JDK) (Java SE or Java 2, presently JDK6.3). Though most operating
systems have all that is needed to run Java programs, you need the developer’s kit
to compile Java programs from a source file. The actual JDK tools occupy about
7 MB, with its (optional) documentation occupying more than 10 times as much
space (the documentation is in HTML). This means that you may want to install
only the tools if space is an issue.

On Windows computers, JDK is usually placed in C:\Program Files\Java\
jdk1.5\bin, while on Unix it is placed in /usr/local/jdk1.5. Once installed, you will
need to update the PATH and the CLASSPATH environment variables so that the
shell knows where to find the Java compiler and classes you make. This is essen-
tially the same procedure we used to include the PtPlot classes in CLASSPATH.
Under Windows go to the System Control Panel and then select the Environment
tab. Then add ;C:\jdk1.5\bin (or whatever file JDK was installed in) to the PATH
variable. Likewise, CLASSPATH needs to be added, for example,

> set CLASSPATH=C:\...

Finally, reboot Windows for the changes to take effect, or log off and on under
Unix.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 565

installing ptplot & java developer’s kit packages 565

TABLE B.1
Some of Java’s Packages and the Classes They Contain

Java Package Classes for

java.lang Basic elements of the Java language

java.util Utilities; random-number generators, date, time, and so on

java.awt Abstract Windowing Toolkit; creating graphical interfaces

java.applet Creating applets and interacting with browsers

java.beans Creating reusable software components

java.io Data input and output

B.2 Using Classes and Packages

Most of the programs we give as examples contain a single class in a file with a
.java or .class extension. That class contains a main method and possibly some
other methods. Just as we encourage you to modify old programs rather than write
all programs from scratch, so we encourage you to include in your new programs
methods that you and others have already written and debugged. Java contains a
large number of libraries consisting of collections of methods for various purposes,
and you should think of these libraries as toolboxes from which you can extract
individual tools needed for your programs. In fact, the object-oriented approach
of Java is specifically designed to make the reuse of components easier and
safer.

B.2.1 Including Packages

A collection of related methods is called a class, and a broader collection, a library
(such as the Math library). In strict Java naming convention, each method would
be in a class file, and the libraries would be called packages. In general, there are two
types of packages: the standard Java packages that constitute the Java language,
and user-defined packages that extend standard Java. The PtPlot package is an
example of a user-defined package. Some of the standard Java packages are given
in Table B.1.

Because these Java packages contain hundreds or thousands of classes, some
organization is necessary to keep track of what each method does. Java does this
with a hierarchical directory structure in which there are parent packages contain-
ing subpackages, with the subpackages containing more subpackages or various
classes. To make the name of each class unique, it is preceded by the names of

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 566

566 appendix b

the package and subpackages that contain this class. As an example, consider the
command

System.out.println

that we use to print a line of output on the screen. Here System is the name of the
class (classes begin with capital letters) containing many of Java’s methods. When
we give the combination System.out, we are referring to an object representing the
standard output stream. The final println that is affixed to System.out is the name
of the method that prints lines.

To summarize, the convention is to have the names of classes capitalized, while
the names of packages and methods are lowercase. This is relevant because the
System.out.println command is in the java.lang package, and so the proper full
name of the command is actually

java.lang.System.out.println

which contains the package name as well. Because java.lang is the most basic pack-
age, the Java compiler automatically looks there to find the methods we invoke.
This means we can, fortunately, omit the java.lang prefix. Technically, java is the
main package and lang is a subpackage, but it is easier to just say java.lang is the
package. We must admit that we sometimes find Java’s naming conventions over-
whelming. Nevertheless, we will use them when importing packages and using
methods from other classes, so some familiarity is helpful.

The classes from a package are included with the import command. It may be
given in one of two forms:

import <packageName>.<specific classes> // Import specific classes
import <packageName>.* // Import all classes from packageName

The import command tells the compiler to look in the package packageName for
methods that it might not find otherwise. However, for the importation to work,
the compiler must know where the package of classes and their methods are stored
on your particular computer. In other words, the compiler needs to know the path
to follow through the local disk memory to get to the directory or folder where the
classes are stored. For this purpose each computer system, be it Windows, Unix,
or Mac OS, has an environmental variable named CLASSPATH that contains the
explicit path to where the classes are stored on that particular computer. As we
show in Appendix B on installing PtPlot, you need to modify this variable before
your program can import the package.

Even though what follows is more advanced programming than we do in this
book, for completeness we indicate how you can create your own packages. This is
done by placing several classes in the same .java file and then including a package
command at the beginning of the file:

� �
p a c k a g e < mypackage_name >;
p u b l i c c l a s s < myclass1_name >

{ < normal c l a s s s t r u c t u r e , mult ip le methods OK > }
p u b l i c c l a s s <myclass2_name>

{ < normal c l a s s s t r u c t u r e , mult ip le methods OK > }
�

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 567

installing ptplot & java developer’s kit packages 567

Your package may be a collection of methods without any main method, for instance,
mathematical subroutines that are called from all the programs you write. However,
there must be one main method someplace if the program is to run since execution
always begins in a main method. Likewise, the main method must be a public
class.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 568

Appendix C: OpenDX: Industrial-Strength
Data Visualization

Most of the visualizations we use in this book are 2-D, y(x) plots, or 3-D, z(x, y)
(surface) plots. Some of the applications, especially the applets, use animations,
which may also be 2-D or 3-D. Samples are found on the CD. We use and recommend
Grace (2-D) and Gnuplot (2-D, 3-D) for stand-alone visualizations, and PtPlot for
visualizations callable from Java programs [L 05]. All have the power and flexibility
for scientific work, as well as being free or open source.

An industrial-strength tool for data visualization, which we also recommend, is
OpenDX, or DX for short.1 It was originally developed as IBM Data Explorer but has
now joined the ranks of open-source software [DX1, DX2] and is roughly equivalent
to the commercial package AVS. DX works under Linux, Unix, or a Linux emulator
(Cygwin) on a PC. The design goals of DX were to

• Run under many platforms with various data formats.
• Be user-friendly via visual programming, a modern technique in which pro-

grams are written by connecting lines between graphical objects, as opposed
to issuing textual commands (Figure C.3 right).

• Handle large multidimensional data sets via volume rendering of f(x, y, z)
as well as slicing and dicing of higher-dimensional data sets.

• Create attractive graphics without expensive hardware.
• Have a graphical user interface that avoids the necessity of learning many

commands.

The price to pay for all this power is the additional time spent learning how to do
new things. Nevertheless, it is important for students of computational physics to
get some experience with state-of-the-art visualization.

This appendix is meant as an introduction to DX. We use it to visualize some
commonly encountered data such as scalar and vector fields and 3-D probability
densities. DX can do much more than that, and, indeed, is a standard tool in visual-C D

ization laboratories around the world. However, the visualizations in this text are
just in gray, while DX uses color as a key element. Consequently, we recommend
that you examine the DX visualizations on the CD to appreciate their beauty and
effectiveness.

Analogous to the philosophy behind the Unix operating system, DX is a tool-
box containing tools that permit you to create visualizations customized to your
data. These visualizations may be created by command-line programming (for
experienced users) or by visual programming. Typically, six separate steps are

1 Juan Manuel Vanegas Moller and Guillermo Avendaño assisted in the preparation of this
appendix.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 569

industrial-strength data visualization 569

involved:

1. Store the data in a file using a standard format.
2. Use the Data Prompter to describe the data’s organization and to place that

description in a .general file.
3. Import the data into DX.
4. Chose a visualization method appropriate for the data type.
5. Create a visual program with the Visual Program Editor by networking

modules via drawn lines.
6. Create and manipulate an image.

C.1 Getting DX and Unix Running (for Windows)

If you do not have DX running on your computer, you can download it free from
the DX home page [DX1]. Once running, just issue the dx or DX command and the
system starts up. DX uses the Unix X-Windows system. If you are running under
MS Windows, then you will first need to start an X-server program and then start
DX at the resulting X-Windows prompt. We discussed this in Chapter 3, where we
recommended the free Unix shell emulator Cygwin [CYG].

In order to run DX with Cygwin, you must start your X server prior to launching
DX. You may also have to tell the X server where to place the graphical display:

> startxwin.sh Starts X server under Cygwin
> set environment DISPLAY localhost:0 Sets X11 display
> dx Starts DX; or start menu

Here we issued the dx command from an X11 window. This works if your PATH
variable includes the location of DX. We have had problems getting the dx com-
mand to work on some of our Cygwin installations, and in those cases we followed
the alternative approach of loading DX as a regular MS Windows application. To
do that, we first start the X11 server from a Cygwin bash shell with the command
startxwin.sh and then start DX from the Start menu. While both approaches work
fine, DX run from a Unix shell looks for your files within the Unix file system at
/home/userid, while DX run under Windows looks within the MS Windows file
system at C:\Documents and Settings\userid\My Documents\. Another approach,
which is easier but costs money, is to install a commercial X11 server such as X-
Win 32 [XWIN32] coupled with your DX. Opening DX through MS Windows then
automatically opens the X11 server with no effort on your part.

C.2 Test Drive of DX Visual Programming

Here we lead you through a test drive that creates a color surface plot with DX.
This is deliberately cookbook-style in order to get you on the road and running. We
then go on to provide a more systematic discussion and exploration of DX features,
but without all the details.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 570

570 appendix c

If you want to see some of the capabilities of DX without doing any work, look
at some of the built-in Samples accessible from the main menu (we recommend
ThunderStreamlines.net and RubberTube.net). Once the pretty picture appears,
go to Options/ViewControl/Mode and try out Rotate and Navigate. If you want
to see how the graphical program created the visualization, go to Windows/Open
Visual Program Editor and rearrange the program elements.

1. Prepare input data: Run the program ShockLax.java that describes shock
wave formation and produces the file Shock.dat we wish to visualize; alterna-
tively, copy the file ShockLax.dat from the CD (Codes/JavaCodes). If you are
running DX under Cygwin, you will need to copy this file to the appropriate
folder in /home/userid, where userid is your name on the computer.

2. Examine input data: Take note of the structure of the data in Shock.dat. It is
in a file format designed for creating a surface plot of z(x, y) with Gnuplot. It
contains a column of 25 data values, a blank line, and then another 25 values
followed by another blank lines, and so forth, for a total of 13 columns each
with 25 data values:

0.0

0.6950843693971483

1.355305208363503

1.9461146066793003
…

–1.0605832625347442

–0.380140746321537

(blank line)

0.0

0.6403868757235301

1.2556172093991282
…

2.3059977070286473

2.685151549102467

(blank line)

2.9987593603912095

· · ·

Recall that the data are the z values, the locations in the column are the x
values, and the column number gives the y values. The blank lines were put
in to tell Gnuplot that we are starting a new column.

3. Edit data: While you can leave the blank lines in the file and still produce a
DX visualization, they are not necessary because we explicitly told DX that
we have one column of 25 × 13 data elements. Try both and see!

4. Start DX: Either key in dx at the Unix prompt or start an X-Windows server
and then start DX. A Data Explorer main window (Figure C.1 left) should
appear.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 571

industrial-strength data visualization 571

Figure C.1 Left: The main Data Explorer window. Right: The Data Prompter window that opens

when you select Import Data.

5. Import data: Press the Import Data button in the main Data Explorer window.
The Data Prompter window (Figure C.1 right) appears after a flash and a bang.
Either key in the full path name of the data file (/home/mpaez/numerical.dat
in our case) or click on Select Data File from the File menu. We recommend
that after entering the file name, you depress the Browse Data button in the
Data Prompter. This gives you a window (Figure C.2 right) showing you what
DX thinks is in your data file. If you do not agree with DX, then you need to
find some way to settle the dispute.

6. Describe data: Press the Grid or Scattered file button in the Data Prompter
window. The window now expands (Figure C.2 left) to one that lets you pick
out a description of the data.
a. Select the leftmost Grid type, that is, the one with the regular array of small

squares.
b. For these data, select Single time step, which is appropriate because our

data contain only a single column with no explicit (x, y) values.
c. Because we have only the one z component to plot (a scalar field), set the

slider at 1.
d. Press the Describe Data button. This opens another window that tells DX

the structure of the data file. Enter 25 as the first entry for the Grid size, and
13 as the second entry. This describes the 13 groups of 25 data elements
in a single long column. Press the button Column.

e. Under the File menu, select Save as and enter a name with a .general
extension, for example, Shock.general. The file will contain

file = /home/mpaez/Shock.dat grid = 25 x 13 format = ascii
interleaving = field majority = column field = field0 structure =

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 572

572 appendix c

Figure C.2 Left: The expanded Data Prompter window obtained by selecting Grid or Scattered

File. Right: The File Browser window used to examine a data file.

scalar type = float dependency = positions positions = regular,
regular, 0, 1, 0, 1 end

Now close all the Data Prompter windows.
7. Program visualization with a visual editor: Next design the program for

your visualization by drawing lines to connect building blocks (modules).
This is an example of visual programming in which drawing a flowchart
replaces writing lines of code.
a. Press the button New Visual Program from the Data Explorer main window.

TheVisual Program Editor window appears (Figure C.3 left). There is a blank
space to the right known as the canvas, upon which you will draw, and a
set of Tools on the left. (We list the names of all the available tools in §C.3,
with their descriptions available from DX’s built-in user’s manual.)

b. Click on the + to the left of Import and Export. The box changes to

- and opens up a list of categories. Select Import so that it remains

highlighted and then click near the top of the canvas. This should place
the Import module on the canvas (Figure C.3 left).

c. Close Import and Export and open the Transformation box. Select AutoColor
so that it remains highlighted and then click below the Import module.
The AutoColor image that appears on the canvas will be used to color the
surface based on the z values.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 573

industrial-strength data visualization 573

Figure C.3 The Visual Program Editor with Tools or Categories on the left and the canvas on

the right. In the left window a single module has been selected from Categories, while in the

right window several modules have been selected and networked together.

Figure C.4 Left: The image resulting from selecting Execute Once in the Visual Program Editor.

Right: The same image after being rotated with the mouse reveals its rubber sheet nature.

d. Connect the output of Import to the left input of Autocolor by dragging
your mouse, keeping the left button pressed until the two are connected.

e. Close the Transformation box and look under Realization. Select Rubber-
Sheet (a descriptive name for a surface plot), place it on the canvas below
Autocolor, and connect the output of Autocolor to the left input tag of
RubberSheet.

f. Close the Realization box and look under the Rendering tool. Select Image
and connect its input to the output of RubberSheet. You should now have
a canvas (Figure C.3 right).

g. A quick double-click on the Import block should bring up the Import win-
dow. Push the Name button so that it turns green and ensure that the

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 574

574 appendix c

Figure C.5 Left: The AutoAxes Configuration window brought up as an Option from the Visual

Program Editor. Right: The final image with axes and labels.

.general file that you created previously appears under Value. If not, enter
it by hand. In our case it has the name "/home/mpaez/numer.general".
Next press the Apply button and then OK to close the window.

h. Return to the Visual Program Editor. On the menu across the top, press
Execute/Execute Once, and an image (Figure C.4 left) should appear.

8. Manipulating the image: Try grabbing and rotating the image with the
mouse. If that does not work, you need to tell DX what you want:
a. From the menu at the top of the Image window select Options; in the

drop-down window select Mode; in the next drop-down window select
Rotate. For instance, the rather flat-looking image on the left in Figure C.4
acquires depth when rotated to the image on the right.

b. Again select Options from the Image window’s menu (Figure C.5 left), but
this time select AutoAxes from the drop-down window. In the new window
key in Position in the X space and Time in the Y space. Press Apply/OK, and
an image (Figure C.5 right) should appear.

c. Now that you have the image you desire, you need to save it. From the
File menu of the Image window, select Save Image. A pop-up window
appears, from which you select Format, then the format you desire for the
image, then the Output file name, and finally Apply.

d. You want to ensure that the visual program is saved (in addition to the
data file). In the Image window select File/Save Program As (we selected
Shock2.net).

9. Improved scale: Often the effectiveness of a surface plot like Figure C.5 can
be improved by emphasizing the height variation of the surface. The height
is changed in DX by changing the scale:
a. Go to the Visual Program Editor, select Rendering/scale (Figure C.6 right).

Place the Scale icon between the RubberSheet and Image icons and
connect.

b. Double-click the Image icon, and a Scale window opens (Figure C.6 right).

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 575

industrial-strength data visualization 575

Figure C.6 On the left the Scale option is selected under Rendering and placed on the

canvas. Double-clicking on the Image icon produces the Scale window on the right. By

changing the second line under Value to [112], the z scale is doubled.

Figure C.7 The graph with a better scale for the z axis.

c. Change the second line under Value from [111] to [112] to double the z
scale. Press Apply/OK.

d. Select Execute, and then under Option, select Execute once. The improved
image in Figure C.7 appears.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 576

576 appendix c

C.3 DX Tools Summary

DX has built-in documentation that includes a QuickStart Guide, a User’s Guide, a
User’s Reference, a Programmer’s Reference, and an Installation and Configuration Guide.
Here we give a short summary of some of the available tools. Although you can find
all this information under the Tools categories in the Visual Program Editor, it helps
to know what you are looking for! The DX on-line help provides more information
about each tool. In what follows we list the tools in each category.
Categories

Annotation DXLink Debugging Flow control Import and export

Interactor Interface control Realization Rendering Special

Structuring Transformation Windows All

Annotation: adds various information to visualization

Annotation DXLink Debugging Flow control Import Export

AutoAxes AutoGlyph Caption ColorBar Format Glyph

Legend Parse Plot Ribbon Text Tube

DXLink: DX control from other programs

DXLInput DXLInputNamed DXLOutput

Debugging: analyzes program’s execution

Message Echo Print Describe System Trace

Usage Verify VisualObject

Flow Control: execution flow in a visual program

Done Execute First ForEachMember ForEachN GetGlobal

GetLocal Route SetGlobal SetLocal Switch

Import and Export: data flow and processing in a visual program

Export Import ImportSpreadsheet Include Partition ReadImage

Reduce Refine Slab Slice Stack Transpose

WriteImage

Interactor: interactive control of input to modules via an interface

FileSelector Integer IntegerList Reset Scalar ScalarList

Selector String SelectorList StringList Toggle Value

ValueList VectorList Vector

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 577

industrial-strength data visualization 577

Interface Control: control DX tools from within a visual program

ManageColormapEditor ManageControlPanel ManageImageWindow

ManageSequencer

Realization: create structures for rendering and display

AutoGrid ShowConnections Connect Construct Enumerate Grid

Isolate ShowBoundary MapToPlane Regrid RubberSheet Sample

Isosurface ShowPositions Band ShowBox Streakline Streamline

Rendering: create/modify an image

AmbientLight Arrange AutoCamera Camera ClipBox ClipPlane

Display FaceNormals Image Light Normals Overlay

Render Reorient Rotate Scale ScaleScreen Shade

Transform Translate UpdateCamera

Special: miscellaneous
Colormap Input Output Pick Probe

ProbeList Receiver Sequencer Transmitter

Structuring: manipulate DX data structures

Append Attribute ChangeGroupMember CopyContainer Collect Rename

Extract Replace ChangeGroupType CollectNamed Inquire List
Mark Remove CollectMultiGrid CollectSeries Select Unmark

Transformation: modify or add to an input Field

AutoColor AutoGrayScale Categorize CategoryStatistics Color Compute

Compute2 Convert DFT Direction DivCurl Equalize

FFT Filter Gradient Histogram Lookup Map

Measure Morph Post QuantizeImage Sort Statistics

Windows: create or supervise image windows

ReadImageWindow SuperviseState SuperviseWindow

C.4 DX Data Structure and Storage

Good organization or structuring of data is important for the efficient extraction
(mining) of signals from data. Data that are collected in fixed steps for the inde-
pendent variables, for example, y(x= 1), y(x= 2), . . ., y(x= 100), fit a regular grid.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 578

578 appendix c

Figure C.8 Geometric and file representations of 1-D, 2-D, and 3-D data sets. The letters a, b,

c, d, . . . represent numerical values that may be scalars or vectors.

The corresponding data are called regular data. The coordinates of a single datum
within a regular set can be generated from three parameters:

1. The origin of the data, for instance, the first datum at (x= 0, y = 0).
2. The size of the steps in each dimension for the independent variables, for

example, (∆x, ∆y).
3. The total number of data in the set, for example, N .

The data structures used by spreadsheets store dependent variables with their
associated independent variables, for instance, {x, y, z(x, y)}. However, as already
discussed for the Gnuplot surface plot (Figure 3.8 right), if the data are regular,
then storing the actual values of x and y is superfluous for visualization since only
the fact that they are evenly spaced matters. That being the case, regular data need
only contain the values of the dependent variable f(x, y) and the three parameters
discussed previously. In addition, in order to ensure the general usefulness of a data
set, a description of the data and its structure should be placed at the beginning of
the set or in a separate file.

Figure C.8 gives a geometric representation of 1-D, 2-D, and 3-D data structures.
Here each row of data is a group of lines, where each line ends with a return char-
acter. The columns correspond to the different positions in the row. The different
rows are separated by blank lines. For the 3-D structure, we separate values for the
third dimension by blank spaces from other elements in the same row.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 579

industrial-strength data visualization 579

Figure C.9 The visual program Simple_linear_plot.net on the left imports a simple linear data

file and produces the simple x+ y plot shown on the right.

C.5 Sample Visual Programs

We have included on the CD a number of DX programs we have found useful for
some of the problems in this book and which produce the visualizations we are
about to show. Because color is such an important part of these visualizations, we C D

suggest that you look at these visualizations on the CD as well. Although you are
free to try these programs, please note that you will first have to edit them so that
the file paths point to your directory, for example, /home/userid/DXdata, rather
than the named directories in the files.

C.5.1 Sample 1: Linear Plot

The visual program simple_linear_plot.net (Figure C.9 left) reads data from the file
simple_linear_data.dat and produces the simple linear plot shown on the right.
These data are the sums of four sine functions,

f(t) = 1.8 sin(25t) + 0.22 sin(38t) + 0.5 sin(47t) + 0.95 sin(66t), (3.1)

stored at regular values of t.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 580

580 appendix c

Figure C.10 The visual program on the left computes the discrete Fourier transform of the

function (3.1), read in as data, resulting in the plot on the right.

C.5.2 Sample 2: Fourier Transform

As discussed in Chapter 10,“Fourier Analysis; Signals and Filters,” the discrete
Fourier transform (DFT) and the fast Fourier transform (FFT) are standard tools
used to analyze oscillatory signals. DX contains modules for both tools. On the left
in Figure C.10 you see how we have extended our visual program to calculate the
DFT. The right side of Figure C.10 shows the resulting discrete Fourier transform
with the expected four peaks at ω = 25, 38, 47, and 66 rad/s, as expected from
the function (3.1). Note how in the visual program we passed the data through a
Compute module to convert it from doubles to floats. This is necessary because
DX’s DFT accepts only floats. After computing the DFT, we pass the data through
another Compute module to take the absolute value of the complex transform, and
then we plot them.

C.5.3 Sample 3: Potential of a 2-D Capacitor

While a vector quantity such as the electric field may be more directly related to
experiment than a scalar potential, the potential is simpler to visualize. This is
what we did in Chapter 17, “PDEs for Electrostatics and Heat Flow,” with the pro-
gram Lapace.java when we solved Laplace’s equation numerically. Some output

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 581

industrial-strength data visualization 581

Figure C.11 The visual program on the left produces visualization of the electric potential on

a 2-D plane containing a capacitor. Colors represent different potential values.

from that simulation is used in the DX visualization of the electric potential in a
plane containing a finite parallel-plate capacitor (Figure C.11). The visual program
Laplace.net1 shown on the left creates the visualization, with the module AutoColor
coloring each point in the plane according to its potential value.

Another way to visualize the same potential field is to plot the potential as the
height of a 3-D surface, with the addition of the surface’s color being determined
by the value of the potential. The visual program Laplace.net_2 on the left in Fig-
ure C.12 produces the visualization on the right. The module RubberSheet creates
the 3-D surface from potential data. The range of colors can be changed, as well as
the opacity of the surface, through the use of the Colormap and Color modules. The
ColorBar module is also included to show how the value of the potential is mapped
to each color in the plot.

C.5.4 Sample 4: Vector Field Plots

Visualization of the scalar field V (x, y) required us to display one number at each
point in a plane. A visualization of the vector electric field E(x, y) = −�∇V requires
us to display three numbers at each point. In addition to it being more work to
visualize a vector field, the increased complexity of the visualization may make the
physics less clear even if the mathematics is more interesting. This is for you, and
your mind’s eye, to decide.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 582

582 appendix c

Figure C.12 The visual program on the left produces the surface plot of the electric potential

on a 2-D plane containing a capacitor. The surface height and color vary in accord with the

values of the potential.

DX makes the plotting of vector fields easy by providing the module Gradient
to compute the gradient of a scalar field. The visual program Laplace.net_3 on the
left in Figure C.13 produces the visualization of the capacitor’s electric field shown
on the right. Here the AutoGlyph module is used to visualize the vector nature of
the field as small vectors (glyphs), and the Isosurface module is used to plot the
equipotential lines. If the 3-D surface of the potential were used in place of the lines,
much of the electric field would be obstructed.

C.5.5 Sample 5: 3-D Scalar Potentials

We leave it as an exercise for you to solve Laplace’s equation for a 3-D capacitor
composed of two concentric tori. Although the extension of the simulation from
2-D to 3-D is straightforward, the extension of the visualization is not. To illustrate,
instead of equipotential lines, there are now equipotential surfaces V (x, y, z), each
of which is a solid figure with other surfaces hidden within. Likewise, while we can
again use the Gradient module to compute the electric field, a display of arrows
at all points in space is messy. Such being the case, one approach is to map the
electric field onto a surface, with a display of only those vectors that are parallel
or perpendicular to the surface. Typically, the surface might be an equipotential
surface or the xy or yz plane. Because of the symmetry of the tori, the planes
appear to provide the best visualization.

The visual program Laplace-3d.net_1 on the left in (Figure C.14) plots an electric
field mapped onto an equipotential surface. The visualization on the right shows

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 583

industrial-strength data visualization 583

Figure C.13 The visual program on the left produces the electric field visualization on

the right.

Figure C.14 The visual program on the left plots a torus as a surface and maps the electric

field onto this surface. The visualization on the right results.

that the electric field is perpendicular to the surface but does not provide infor-
mation about the behavior of the field in space. The program Laplace-3d.net_2
(Figure C.15) plots the electric field on the y+ z plane going through the tori. The

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 584

584 appendix c

sh
ap

e 
= 

[4
00

 2
5]

op
ac

ity
 =

 0
.3

inq
uir

y =
 "p

os
itio

n 
gr

idc
ou

nt
s"

fo
rm

at
 =

 "g
en

er
al"

dim
en

sio
n 

= 
"y

"
(a.1–1)/2

typ
e 

= 
"s

pif
fy"

sh
ap

e 
= 

50

sc
ale

 =
 1

.0

Figure C.15 The visual program at the top plots two equipotential surfaces in yellow and

green, as well as the electric field on a y+ z plane going through the tori. The blue and red

surfaces are the charged tori. The image on the far right is a close-up of the middle image.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 585

industrial-strength data visualization 585

fo
rm

at
 =

 “g
en

er
al”

dir
ec

tio
n 

= 
"o

ff–
to

p"

co
lor

 =
  “

or
an

ge
”

Figure C.16 The visual program on the left produces the surface plot of constant probability

density for the 3-D state on the right.

plane is created by the module Slab. In addition, an equipotential surface surround-
ing each torus is plotted, with the surfaces made semitransparent in order to view
their relation to the electric field. The bending of the arrows is evident in the closeup
on the far right.

C.5.6 Sample 6: 3-D Functions, the Hydrogen Atom

The electron probability density ρnlm(r, θ, φ) (calculated by H_atom_wf.java) is a
scalar function that depends on three spatial variables [Libb 03]. Yet because the
physical interpretation of a density is different from that of a potential, different
visualization techniques are required. One way of visualizing a density is to draw
3-D surfaces of constant density. Because the density has a single fixed value, the
surfaces indicates regions of space that have equal likelihood of having an electron
present. The visual program H_atom_prob_density.net_1 produced the visualiza-
tion in Figure C.16. This visualization does an excellent job of conveying the shape
and rotational symmetry of the state but does not provide information about the
variation of the density throughout space.

A modern technique for visualizing densities is volume rendering. This method,
which is DX’s default for 3-D scalar functions, represents the density as a translucent

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 586

586 appendix c

fo
rm

at
 =

 "g
en

er
al"

dir
ec

tio
n 

= 
"to

p"

Figure C.17 The visual program on the left produces the 3-D cloud density on the right.

cloud or gel with light shining through it. The program H_atom_prob_density.net_2
produces the electron cloud shown in Figure C.17. We see a fuzziness and a color
change indicative of the variation of the density, but no abrupt edges. However, in
the process we lose the impression of how the state fills space and of its rotational
symmetry. In addition, our eye equates the fuzziness with a low-quality image, both
because it is less sharp and because the colors are less intense. We now alleviate
that shortcoming.

As we have seen with the electric field, visualizing the variation of a field along
two planes is a good way to convey its 3-D nature. Because the electron cloud is
rotationally symmetric about the z axis, we examine the variation along the xy
and yz planes (the xz plane is equivalent to the yz one). Figure C.18 shows the
visualization obtained with the visual program H_atom_prob_density.net_3. Here
Slab modules are used to create the 2-D plots of the density on the two planes, and
the planes are made semitransparent for ease of interpretation. This visualization
is clearly an improvement over those in Figure C.17, both in sharpness and in
conveying the 3-D nature of the density.

C.6 Animations with OpenDX

An animation is a collection of images called frames that when viewed in sequence
convey the sensation of continuous motion. It is an excellent way to visualize the
behavior in time of a simulation or of a function f(x, t), as might occur in wave

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 587

industrial-strength data visualization 587

inq
uir

y =
 "p

os
itio

n 
gr

idc
ou

nt
s"

dim
en

sio
n 

= 
"z

"

dim
en

sio
n 

= 
"y

"

dir
ec

tio
n 

= 
"to

p"

(a.1–1)/2 (a.1–1)/2

op
ac

ity
 =

 0
.6

inq
uir

y =
 "p

os
itio

n 
gr

idc
ou

nt
s"

fo
rm

at
 =

 "g
en

er
al"

Figure C.18 The visual program on the left produces the 3-D probability density on the right.

The density is plotted only on the surface of the xy and yz planes, with both planes made

semitransparent.

Figure C.19 Left: The visual DX program used to create an animation of the formation

of a soliton wave. The arrows on the Sequence Control are used to move between the frames.

Right: Nine frames from the DX animation.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 588

588 appendix c

motion or heat flow. In the Codes section of the CD, we give several sample ani-
mations of the figures in this book and we recommend that you try them out to see
how effective animation is as a tool.

The easiest animation format to view is an animated gif, which can be viewed
with any Web browser. (The file ends with the familiar .gif extender but has aC D

series of images that load in sequence.) Otherwise, animations tend to be in mul-
timedia/video file formats such as MPEG, DivX, mp3, yuv, ogg, and avi. Not all
popular multimedia players such as RealPlayer, Windows Media Player, and Quick-
Time player play all formats, so you may need to experiment. We have found that
the free multimedia players VLC and ImageMagick work well for various audio
and video formats, as well as for DVDs, VCDs, and streaming protocols (the player
starts before all the media are received).

A simple visual program to create animations of the formation of solitons (Chap-
ter 19, “Solitons and Computational Fluid Dynamics”) with OpenDX is shown on
the left in Figure C.19. The new item here is the Sequencer module, which provides
motion control (it is found under Tools/Special). As its name implies, Sequencer
produces a sequence of integers corresponding to the frame numbers in the anima-
tion (the user sets the minimum, maximum, increment, and starting frame number).
It is connected to the Format module, which is used to create file names given the
three input values: (1) soliton, (2) the output of the Sequencer, and (3) a .general
for the suffix. The Import module is used to read in the series of data files as the
frame number increases.

On the right in Figure C.19 we show a series of eight frames that are merged
to form the animation (a rather short animation). They are plots of the data files
soliton001.dat, soliton002.dat, . . . soliton008.dat, with one file for each frame and
with a specified Field in each file imported at each time step. The Sequencer outputs
the integer 2, and the output string from the Format becomes soliton002.general.
This string is then input to Import as the name of the .general file to read in. In this
way we import and image a whole series of files.

C.6.1 Scripted Animation with OpenDX

By employing the scripting ability of OpenDX, it is possible to generate multiple
images with the Visual Editor being invoked only for the first image. The multiple
images can then be merged into a movie. Here we describe the steps followed to
create an .mpg movie:

1. Assemble a sequence of data files, one for each frame of the movie.
2. Use OpenDX to create an image file from the first data file.Also create .general

and .net files.
3. Employ OpenDX with the –script option invoked to create a script. Read in

the data file and the .net file and create a .jpg image. (Other image types
are also possible, but this format produces good quality without requiring
excessive disk space.)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 589

industrial-strength data visualization 589

Figure C.20 Left: Use of the Visual Program Editor to produce the image of a wave packet

that passes through a slit. Right: The visual program used to produce frames for an OpenDX

animation.

4. Merge the .jpg image files into a movie by using a program such as Mplayer
in Linux. We suggest producing the movie in the .avi or .mpg format.

To illustrate these steps, assume that you have a solution to Laplace’s equation
for a two-plate capacitor, with the voltage on the plates having a sinusoidal time
dependence. Data files lapl000.dat, lapl001.dat, . . . , lapl120.dat are produced in
the Gnuplot 3-D format, each corresponding to a different time. To produce the
first OpenDX image, lapl000.dat is copied to data.dat, which is a generic name
used for importing data into OpenDX, and the file lapl.general describing the data
is saved:

� �
f i l e = /home/mpaez/data . dat grid = 50 x 50 format = a s c i i
i n t e r l e a v i n g = f i e l d major i ty = column f i e l d = f i e l d 0 s t r u c t u r e =
s c a l a r type = f l o a t dependency = p o s i t i o n s p o s i t i o n s = regular ,
regular , 0 , 1 , 0 , 1 end

�

Next, the Visual Program Editor is used to create the visual program (Figure C.20
right), and the program is saved as the file lapl.net.

To manipulate the first image so that the rest of them have the same appearance,
we assembled the visual program in Figure C.20.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 590

590 appendix c

1. In the Control panel, double-click FileSelector and enter the path and name
(lapl.general) of the .general file saved in the previous step.

2. The images should be plotted to the same scale for the movie to look con-
tinuous. This means you do not want autoscale on. Select AutoColor and
expand the box. For min select –100 and for max select 100. Do the same in
RubberSheet. This sets the scale for all the figures.

3. From the rotate icon, select axis, enter x, and in rotation enter –85. For the
next axis button enter y, and in the next rotation button enter 10.0. These
angles ensure a good view of the figure.

4. To obtain a better figure, on the Scale icon change the default scale from [1 1
1] to [1 4 3].

5. Next the internal DX script dat2image.sh is written by using the Script option.
6. Now we write an image to the disk. Select WriteImage and in the second box

enter image as the name of a generic image. Then for format select tiff to
create image.tiff.

7. You now have a script that can be used to convert other data files to images.

We have scripted the basic DX procedure for producing an image from data. To
repeat the process for all the frames that will constitute a movie, we have written
a separate shell script called dat2image.sh (it is on the CD) that

1. Individually copies each data file to a generic file data.dat, which is what DX
uses as input with lapl.general.

2. Then OpenDX is called via
dx -script lapl.net

to generate images on the disk.
3. The tiff image image.tiff is transformed to the jpg format with names such

as image.001. jpg, image.002. jpg, and so on (on Linux this is done with
convert).

4. The Linux program MPlayer comes with an encoder called mencoder that
takes the . jpg files and concatenates them into an .avi movie clip that you
can visualize with Linux programs such as Xine, Kaffeine, and MPlayer. The
last-mentioned program can be downloaded for Windows, but it works only
in the System Symbol window or shell:

> mplayer -loop 0 output.avi

You will see the film running continuously. This file is called dat2image.sh
and is given in Listing C.1. To run it in Linux,

> sh dat2image.sh

� �
do
i f t e s t $ i − l t 10

then
cp $ { p r e f i x }00 $ i . dat data . dat
dx −s c r i p t l a p l . net
convert image . t i f f image . 0 0 $ i . jpg

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 591

industrial-strength data visualization 591

e l i f t e s t $ i − l t 100
then
cp $ { p r e f i x }0 $ i . dat data . dat
dx −s c r i p t l a p l . net
convert image . t i f f image . 0 $ i . jpg

e l i f t e s t $ i − l t 1000
then
cp $ { p r e f i x } $ i . dat data . dat
dx −s c r i p t l a p l . net
convert image . t i f f image . $ i . jpg

f i
i = ‘ expr $ i + 1 ‘

done
mencoder"mf:// image . * . jpg" −mf fps =25 −o output . avi −ovc lavc

−l avcopts vcodec=mpeg4
�

Listing C.1 The shell script dat2image.sh creates an animation. The script is executed by

entering its name at a shell prompt.

In each step of this shell script, the script copies a data file, for example,
lapl014.dat in the fifteenth iteration, to the generic file data.dat. It then calls dx
in a script option with the generic file lapl.net. An image image.14.tiff is produced
and written to disk. This file is then transformed to image.14.jpg using the Linux
convert utility. Once you have 120 .jpg files, Mplayer is employed to make the .avi
animation, which can be visualized with the same Mplayer software or with any
other that accepts .avi format, for example, Kaffeine, Xine, and MPlayer in Linux.
In Windows you have to download MPlayer for Windows, which works only in the
DOS shell (system symbol window). To use our program, you have to edit lapl.net
to use your file names. Ensure that lapl.general and file data.dat are in the same
directory.

C.6.2 Wave Packet and Slit Animation

On the left in Figure C.20 we show frames from an OpenDX movie that visual-
izes the solution of the Schrödinger equation for a Gaussian wave packet passing
through a narrow slit. There are 140 frames (slit001.dat– slit140.dat), with each
generated after five time iterations, with 45 × 30 data in a column. A separate
program generates the data file SlitBarrier.dat that has only the potential (the bar-
rier with the slit). The images produced by these programs are combined into one
showing the wave packet and the potential. On the left side of the visual program:

• Double-click FileSelector and enter /home/mpaez/slit.general, the path, and
the name of the file in the Control Panel under Import name.

• Double-click AutoColor and enter 0.0 for min; for max enter 0.8.
• Double-click RubberSheet and repeat the last step for min and max.
• Double-click the left Scale icon and change [111] to [113].
• Double-click WriteImage and write the name of the generic image slitimage

and format = tiff.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 592

592 appendix c

On the right side of the visual program:

• Double-click Import and enter the path and the .general file name /home/
mpaez/SlitBarrier.general.

• Double-click AutoColor and select 0.0 for min (use expand) and 0.8 for max.
• Double-click the right-hand Scale and enter [1 1 2]. The scale for the barrier

is smaller than the one for the wave packet so that the barrier does not hide
too much of the wave packet.

In this scheme we use the Image icon to manipulate the image to obtain the best
view. This needs to be done just once.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 593

Appendix D: An MPI Tutorial

In this appendix we present a tutorial on the use of MPI on a small Beowulf cluster
composed of Unix or Linux computers.1 This follows our philosophy of “learning while
doing.” Our presentation is meant to help the user from the ground up, something
that might not be needed if you were working at a central computing center with a
reasonable level of support. Although your problem is still to take the program you
have written to generate the bifurcation plot for bug populations and run different
ranges of µ values simultaneously on several CPUs, in a more immediate sense
your task is to get the experience of running MPI, to understand some of the MPI
commands within the programs, and then to run a timing experiment. In §D.9 at the
end of the appendix we give a listing and a brief description of the MPI commands and
data types. General information about MPI is given in [MPI], detailed information
about the syntax of MPI commands appears in [MPI2], and other useful material
can be found in [MPImis]. The standard reference on the C language is [K&R 88],
although we prefer [OR]. MPI is very much the standard software protocol for parallel
computing and is at a higher level than its predecessor PVM [PVM] (which has its
own tutorial on the CD).

While in the past we have run Java programs with a version of MPI, the
difference in communication protocols used by MPI and Java have led to poor per-
formance or to additional complications needed to improve performance [Fox 03].
In addition, you usually would not bother parallelizing a program unless it requires
very large amounts of computing time, and those types of programs are usually
written in Fortran or C (both for historical reasons and because Java is slower). So it
makes sense for us to use Fortran or C for our MPI examples. We will use C because
it is similar to Java.

D.1 Running on a Beowulf

A Beowulf cluster is a collection of independent computers each with its own mem-
ory and operating system that are connected to each other by a fast communication
network over which messages are exchanged among processors. MPI is a library of
commands that make communication between programs running on the different
computers possible. The messages are sent as data contained in arrays. Because
different processors do not directly access the memory on some other computer,
when a variable is changed on one computer, it is not changed automatically in

1 This material was developed with the help of Kristopher Wieland, Kevin Kyle, Dona Hertel,
and Phil Carter. Some of the other materials derive from class notes from the Ohio Super
Computer Center, which were written in part by Steve Gordon.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 594

594 appendix d

Front End Machines

SchedSchedSched

2

3

5

4

MPI_COMM_WOLRD1
0

Figure D.1 A schematic view of a cluster (cloud) connected to front-end machines (box).

the other copies of the program running on other processors. This is an example of
where MPI comes into play.

In Figure D.1 we show a typical, but not universal, configuration for a Beowulf
cluster. Almost all clusters have the common feature of using MPI for communi-
cation among computers and Unix/Linux for the operating system. The cluster
in Figure D.1 is shown within a cloud. The cloud symbolizes the grouping and
connection of what are still independent computers communicating via MPI (the
lines). The MPI_COMM_WORLD within the cloud is an MPI data type containing
all the processors that are allowed to communicate with each other (in this case
six). The box in Figure D.1 represents the front end or submit hosts. These are the
computers from which users submit their jobs to the Beowulf and later work with
the output from the Beowulf. We have placed the front-end computers outside the
Beowulf cloud, although they could be within. This type of configuration frees the
Beowulf cluster from administrative chores so that it can concentrate on number
crunching, and is useful when there are multiple users on the Beowulf.

Finally, note that we have placed the letters “Sched” within the front-end
machines. This represents a configuration in which these computers are also run-
ning some type of a scheduler, grid engine, or queueing system that oversees the
running of jobs submitted to MPI by a number of users. For instance, if we have
a cluster of 20 computers and user A requests 10 machines and user B requests
8 machines, then the grid engine will permit both users to run simultaneously
and assign their jobs to different computers. However, if user A has requested 16
machines and user B 8, then the grid engine will make one of the users wait until
the other finishes their work.

Some setup is required before you can run MPI on several computers at once. If
someone has already done this for you, then you may skip the rest of this section
and move on to § D.3. Our instructions have been run on a cluster of Sun computers
running Solaris Unix (in a later section we discuss how to do this using the Torque
scheduler on a Linux system). You will have to change the computer names and
such for your purposes, but the steps should remain the same.

• First you need to have an active account on each of the computers in the
Beowulf cluster.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 595

an mpi tutorial 595

• Open a shell on one of the machines designated for users to sign onto (the
front end). You do not have to be sitting at the front end but instead can use
ssh or telnet. Make the directory mpi in your home directory:

> cd ˜ Change to home directory
> mkdir output Screen output gets stored here first
> mkdir output/error Place to store error messages
> mkdir mpi A place to store your mpi stuff

• You need to have your Beowulf account configured so that Unix can find the
MPI commands that you issue from the command line or from your programs.
When you log onto the computer, the operating system reads a configuration
file .cshrc residing in your home directory. It contains the places where the
operating system looks for commands. (We are assuming here that you are
using either cshell or tcshell, if not, then modify your .login, which should
work regardless of the shell.) When a file name begins with a dot, it is usu-
ally hidden from view when you list the files, but it can be seen with the
command ls -la. The list of places where Unix looks for commands is an
environmental variable called PATH, and it should include the current ver-
sion of the mpich-n.m/bin directory where the scripts for MPI reside. For us
this is

/usr/local/cluster/mpich-1.2.6/bin This should be in your PATH

Here the directory name cluster and 1.2.6 may need to be replaced by the
name and number on your local system.

• Because the .cshrc file controls your environment, having an error in this file
can lead to a nonfunctional computer. And since the format is rather detailed
and unforgiving, it is easy to make mistakes. So before you work on your
existing .cshrc file, make a backup copy of it:

> cp .cshrc .cshrc_bk

You can use this backup file as a reference or copy it back to .cshrc if things
get to be too much of a mess. If you have really messed things up, your system
administrator may have to copy the file back for you.

• Edit your .cshrc file so that it contains a line in which setenv PATH includes
/usr/local/cluster/mpich-1.2.6/bin. If you do not have a .cshrc file, just
create one. Find a line containing setenv PATH and add this in after one
of the colons, making sure to separate the path names with colons. As an
example, the .cshrc file for user rubin is

� �
# @( # ) cshrc 1 . 1 1 89/11/29 SMI umask 022

setenv PATH /usr/ l o c a l /bin :/ opt/SUNWspro/bin :/ opt/SUNWrtvc/bin :
/opt/SUNWste/bin :/ usr/bin/X11 :/ usr/openwin/bin :/ usr/dt/bin :/ usr/ucb /:
/usr/ccs/bin /:/ usr/bin :/ bin :/ usr/sbin /:/ sbin :
/usr/ l o c a l / c l u s t e r /mpich−1.2.6/ bin : setenv PAGER l e s s setenv
CLASSPATH /home/rubin :/home/rubin/dev/java/chapmanjava/ c l a s s e s /:
/home/rubin/dev/565/ javacode /:
/home/rubin/dev/565/ c u r r p r o j /:/home/rubin :/home/rubin/mpiJava :
/usr/ l o c a l /mpiJava/ l i b / c l a s s e s :
s e t prompt="%~::%m> "

�

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 596

596 appendix d

• If you are editing your .login file, enter as the last line in the file:

set path = $path /usr/local/cluster/mpich-1.2.6/bin

• Because dot files are read by the system when you first log on, you will have
to log off and back on for your changes to take effect. (Alternatively, you can
use the source command to avoid logging off and on.) Once you have logged
back on, check the values of the PATH environmental variable:

> echo $PATH From Unix shell, tells you what Unix thinks

• Let us now take a look at what is done to the computers to have them run as
a Beowulf cluster. On Unix systems the “slash” directory / is the root or top
directory. Change the directory to /

> cd / Change to root directory

You should see files there, such as the kernel and the devices, that are
part of the operating system. You should not modify these files, as that
could cause real problems (it is the sort of thing that hackers and system
administrators do).

• MPI is a local addition to the operating system. We have MPI and the Sun Grid
Engine (SGE) in the /usr/local/cluster directory. Here the first / indicates
the root directory and usr is the directory name under the root. Change the
directory to /usr/local/cluster, or wherever MPI is kept on your system, and
notice the directories scripts and mpich-1.2.6 (or maybe just a link to mpich).
Feel free to explore these directories. The directory scripts contains various
scripts designed to make running your MPI programs easier. (Scripts are
small programs containing shell commands that are executed in order when
the file is run.)

• In the mpich-1.2.6 directory you will notice that there are examples in C, C++,
and Fortran. Feel free to copy these to your home directory and try them:

> cp -r examples /home/userid/mpi

where userid is your name. We encourage you to try out the examples,
although some may need modification to work on your local system.

• Further documentation can be found in

/usr/local/cluster/mpich-1.2.6/doc/mpichman-chp4.pdf MPI documentation
/usr/local/cluster/sge/doc/SGE53AdminUserDoc.pdf SGE documentation
/usr/local/cluster/sge/doc/SGE53Ref.pdf SGE reference
man qstat Manual page on qstat

• Copy the script run_mpi.sh from the Codes/MPIcodes directory on the CD
to your personal mpi directory. This script contains the commands needed to
run a program on the cluster.

• Copy the file /usr/local/cluster/mpich/share/machines.solaris to your
home directory and examine it. (The solaris extender is there because we
are using the Solaris version of the Unix operating system on our Beowulf;
you may need to change this for your local system.) This file contains a list

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 597

an mpi tutorial 597

of all the computers that are on the Beowulf cluster and available to MPI for
use (though there is no guarantee that all the machines are operative):

� �
# Change t h i s f i l e to conta in the machines t h a t you want to use
# to run MPI j o b s on . Format : 1 host per l i n e , e i t h e r hostname
# or hostname : n , where n i s the number of processors .
# hostname should be the same as output from "hostname" command
paul
rose
tomek
manuel

�

D.2 Running MPI

If you are the only one working on a Beowulf cluster, then it may make sense to
submit your jobs directly to MPI. However, if there is the possibility that a number
of people may be using the cluster, or that you may be submitting a number of
jobs to the cluster, then it is a good idea to use some kind of a queue management
system to look after your jobs. This can avoid the inefficiency of having different
jobs compete with each other for time and memory or having the entire cluster
“hang” because a job has requested a processor that is not available. In this section
we describe the use of the Sun Grid Engine [SGE]. In a later section we describe the
use of the Torque/Portable Batch System (PBS) scheduler on a Linux system; the two
are similar in purpose and commands, work under many operating systems, and
are free.

On the left in Figure D.2 is a schematic view of how a C program containing
MPI commands is executed. On the right in this figure is a schematic view of how a
scheduling system takes an executable program and runs it under MPI on several
systems. When a program is submitted to a cluster via a management system, the
system installs a copy of the same program on each computer assigned to run the
program.

There are a number of scripts that interpret the MPI commands you give within
your programs (the commands are not part of the standard Fortran or C language),
and then call the standard compilers. These scripts are called wrappers because
they surround the standard compilers as a way of extending them to include MPI
commands:

mpicc C compiler mpicxx C++ compiler
mpif77 Fortran 77 compiler mpif90 Fortran 90 compiler
mpiifort Intel Fortran compilers mpiicc Intel C compiler

Typically you compile your programs on the front end of the Beowulf, or the master
machines, but not on the execution nodes. You use these commands just as you use
regular compiler commands, only now you may include MPI commands in your
source program:

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 598

598 appendix d

MPIpi.c

cc MPIpi.c

> mpicc MPIpi.c

MPI_COMM

Linux

MPI

Scheduler

Linux

Linux MPIpi.o

Figure D.2 Left: A schematic view of the MPI command MPI_COMM contained within the C

program MPI.c. On the outer wrapper, the program is compiled with the shell command

mpicc, which expands the MPI commands and invokes the C compiler cc. Right: A schematic

view of how a scheduler runs the executable program MPIpi.o under MPI and on several

Linux CPUs.

> mpicc –o name name.c Compile name.c with MPI wrapper script
> mpif77 –o name name.f Compile name.f with MPI wrapper script

D.2.1 MPI under the SGE Queueing System

Table D.1 lists some of the key number of Sun grid engine commands used to
execute compiled programs. Other queueing systems have similar commands. The
usual method of executing a program at the prompt runs only on the local computer.
In order to run on a number of machines, the program needs to be submitted to the
queue management system. We show this in Listing D.1, which uses the run_mpi.sh
script and the qsub command to submit jobs to run in batch mode:

> qsub run_mpi.sh name Submit name to run on cluster

This command returns a job ID number, which you should record to keep track
of your program. Note that in order for this script to work, both runMPI.sh and
the program name must be in the current directory. If you need to pass param-
eters to your program, place the program name as well as the parameters in
quotes:

> qsub run_mpi.sh "name -r 10" Parameters and program name in quotes

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 599

an mpi tutorial 599

TABLE D.1
Some Common SGE Commands

Command Action

qsub myscript Submit batch script or job myscript

qhost Show job/host status

qalter <job_id> Change parameters for job in queue

qdel job_id Remove job_id

qstat Display status of batch jobs

qstat -f Full listing for qstat

qstat -u <username> User only for qstat

qmon X-Window front end (integrated functionality)

� �
# You may want to modify the parameters f o r
# " -N" ( job queue name) , " -pe" ( queue type and number of requested CPUs) ,
# "myjob" ( your compiled executab le ) .

# You can compile you code , f o r example myjob . c ( ∗ . f ) , with GNU mpicc or
# mpif77 compilers as fo l lows :
# "mpicc -o myjob myjob . c" or "mpif77 -o myjob myjob . f"

# You can monitor your j o b s with command
# "qstat -u your_username" or "qstat - f" to see a l l queues .
# To remove your job , run "qdel job_id"
# To k i l l running job , use "qdel - f job_id"

# −−−−−−At t e n t i o n : #$ i s a s p e c i a l CODINE symbol , not a comment −−−−−
#
# The name , which w i l l i d e n t i f y your job in the queue system
#$ −N MPI_job
#
# Queue request , mpich . You can s p e c i f y the number of requested CPUs ,
# f o r example , from 2 to 3
#$ −pe class_mpi 4−6
#
# −−−−−−−−−−−−−−−−−−−−−−−−−−−
#$ −cwd
#$ −o $HOME/output/$JOB_NAME−$JOB_ID
#$ −e $HOME/output/ e r r o r /$JOB_NAME−$JOB_ID . e r r o r
#$ −v MPIR_HOME=/usr/ l o c a l / c l u s t e r /mpich −1.2.6
# −−−−−−−−−−−−−−−−−−−−−−−−−−−

echo "Got $NSLOTS slots ."

# Don ’ t modify the line below i f you don ’ t know what i t i s
$MPIR_HOME/bin/mpirun −np $NSLOTS $1

�

Listing D.1 The script runMPI.sh used to run an MPI program.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 600

600 appendix d

D.2.1.1 STATUS OF SUBMITTED PROGRAMS

After your program is successfully submitted, SGE places it in a queue where
it waits for the requested number of processors to become available. SGE then
executes the program on the cluster and directs the output to a file in the output sub-
directory within your home directory. The program itself uses MPI and C/Fortran
commands. In order to check the status of your submitted program, use qstat along
with your job ID number:

> qstat 1263 Tell me the status of Job 1263
job-ID prior name user state submit/start at queue master ja-task-ID

1263 0 Test_MPI_J dhertel qw 07/20/2005 12:13:51

This is a typical qstat output. The qw in the state column indicates that the program
is in the queue and waiting to be executed.

> qstat 1263 Same as above, but at later time
job-ID prior name user state submit/start at queue master ja-task-ID

1263 0 Test_MPI_J dhertel t 07/20/2005 12:14:06 eigen11.q MASTER

1263 0 Test_MPI_J dhertel t 07/20/2005 12:14:06 eigen11.q SLAVE

1263 0 Test_MPI_J dhertel t 07/20/2005 12:14:06 eigen12.q SLAVE

1263 0 Test_MPI_J dhertel t 07/20/2005 12:14:06 eigen3.q SLAVE

1263 0 Test_MPI_J dhertel t 07/20/2005 12:14:06 eigen5.q SLAVE

1263 0 Test_MPI_J dhertel t 07/20/2005 12:14:06 eigen8.q SLAVE

Here the program has been assigned a set of nodes (eigenN is the name of the
computers), with the last column indicating whether that node is a master, host,
slave, or guest (to be discussed further in §D.3.1). At this point the state column
will have either a t, indicating transfer, or an r, indicating running.

The output from your run is sent to the file Test_MPI.<jobID>.out in the output
subdirectory within your home directory. Error messages are sent to a correspond-
ing file in the error subdirectory. Of course you can still output to a file in the
current working directory, as well as input from a file.

D.2.2 MPI Under the Torque/PBS Queueing System

Most Beowulf clusters use Linux, a version of the Unix operating system that runs
on PC architecture. A popular, commercially supported version of Linux that runs
well for CPUs using 64-bit words is SUSE [SUSE]. We have used this setup with MPI
libraries, Intel compilers, and the cluster edition of the Math Kernel Library [Intel].
Although we could run the SGE scheduler and resource manager on this system,
the compilers come with the Torque open source resource manager [Torque], which
works quite well. Torque is based on and uses the same commands as Portable Batch
System [PBS]. In this section we give a tutorial on the use of Torque for submitting

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 601

an mpi tutorial 601

jobs to MPI.2 As we shall see, the steps and commands are very similar to those for
SGE and follow the system outlined in Figure D.2.

D.2.2.1 RUNNING SERIAL JOBS WITH TORQUE

Sometimes you may have a serial job that runs too long for you to wait for its
completion, or maybe you want to submit a number of long jobs and not have
them compete with each other for resources. Either case can be handled by using
the queueing system usually used for parallel processing, only now with multiple
jobs on just one computer. In this case there are no MPI commands to deal with,
but just three torque commands and a shell script that initiates your program:

qsub Submit jobs to queue via Torque
qstat Check status of jobs in queue
qdel Delete a submitted job
script Shell script that initiates program

Note that you cannot give Torque a complied binary program to run but rather just
a shell script3 that calls your executable. This is probably for security and reliability.
For example:

> icc SerProg.c –o SerProg Intel C Compiler, out to SerProg

> qsub SerProg Submit SerProg to queue
qsub: file must be an ascii script Torque’s output
> qsub script1 Submit a script that calls SerProg

JobID = 12; output from SerProg Successful submission

Here is a simple script1 for initiating the serial job in the file SerProg (you should
copy this into a file so you can use it):

� �
#!/ bin/bash

cd $PBS_O_WORKDIR
./ SerProg

�

Observe the #!/bin/bash statement at the beginning of the script.Astatement of this
form is required to tell the operating system which shell (command line interpreter)
to use. This line is for the bash shell, with other choices including tcsh and ksh. The
next command cd $PBS_O_WORKDIR (which you should not modify) sets a PBS
environmental variable so that the script looks in the current working directory.

2 We thank Justin Elser for setting up this system and for preparing the original form of this
section.

3 Recall that a shell script is just a file containing commands that would otherwise be entered
at a shell’s prompt. When the file name is given execution permission and entered as a
command, all the commands within the file are executed.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 602

602 appendix d

The last command, ./SerProg, contains the name of the file you wish to execute
and is the only line you should modify. (The ./ means the current directory, but
you can also use ../SerProg for a file one directory up.)

As we indicated before, once you have submitted a job to Torque, you can log
off (to get a mug of your favorite beverage) and the job will remain in the compute
queue or continue to run. Alternatively, you may want to submit the job to a cluster
machine different from the one on which you are working, log off from that one,
and then continue working on your present machine. The job will run remotely
with other users still able to run on that remote machine. (Other than a possible
slowdown in speed, they may not even realize that they are sharing it with you.)
Before you log off, it is probably a good idea to determine the status of your jobs
in the queue. This is done with the qstat command:

> qstat What is queue’s status?
JobID Name User Time Use S Queue Reply
170.phy ScriptName Justin 0 R batch

> qdel 170 Delete (kill) my job

This output indicates that Justin’s job has id 170 (the .phy indicates the server
phy), that it was submitted via the script ScriptName, that it is in the state R for
running (Q if queued, E if executing), and that it is in the batch queue (default). You
can delete your job by issuing the qdel command with your JobID.

If your program normally outputs to a file, then it will still output to that file
under Torque. However, if your program outputs to stdout (the screen), the output
will be redirected to the file ScriptName.oJobID and any errors will be redirected to
the file ScriptName.eJobID. Here ScriptName is the shell script you used to submit
the job, and JobID is the ID given to it by Torque. For example, here is the output
from the long list command ll:

> ll Unix long list command
total 32

-rwxr-xr-x 1 q users 17702 2006-11-15 16:38 SerProg

-rw-r–r– 1 q users 1400 2006-11-15 16:38 SerProg.c

-rw-r–r– 1 q users 585 2006-11-15 16:39 ScriptName

-rw——- 1 q users 0 2006-11-15 16:39 ScriptName.e164

-rw——- 1 q users 327 2006-11-15 16:39 ScriptName.o164

D.2.3 Running Parallel Jobs with Torque

The basic Torque steps for submitting a script and ascertaining its status are the
same for parallel jobs as for serial jobs, only now the script must have more com-
mands in it and must call MPI. The first thing that must be done is to create a
Multiprocessors Daemon (MPD) secretword (not your password) so that Torque can
keep multiple jobs separate from all the others:

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 603

an mpi tutorial 603

> cd $HOME Dotfiles stored in your home directory
> echo "MPD_SECRETWORD=MySecretword" » .mpd.conf Replace MySecretword

> chmod 600 .mpd.conf Change permission for file .mpd.conf

Note that you do not really need to remember your secretword because Torque
uses it “behind the scenes”; you just need to have it stored in the file .mpd.conf
in your home directory. (This file is not normally visible because it begins with
a dot.)

� �
#!/ bin/bash
#
# Al l l i n e s s t a r t i n g with "#PBS" are PBS commands
#
# Request 2 nodes with 2 processor per node ( ppn ) (= 4 processors )
# ppn can e i t h e r be 1 or 2
#
#PBS −l nodes =2:ppn=2
#
# Set wall c lock max time to 0 hours , 15 minutes and 0 seconds
#PBS −l wallt ime = 0 0 : 1 5 : 0 0
#
# cd to working d i r e c t o r y
cd $PBS_O_WORKDIR
# name of executab le
myprog=MPIpi
#
# Number of processors i s $NP
NP=4
#
# Run MYPROG with appropriate mpirun s c r i p t
mpirun −r ssh −n $NP $myprog
#
# make sure to e x i t the s c r i p t , e l s e job won ’ t finish properly
exit 0

�

Listing D.2 The script TorqueScript.sh used to submit an MPI program.

In Listing D.2 and on the CD we give the script TorqueScript.sh used to submit C D

MPI jobs to the Torque scheduler. The script is submitted to Torque from a shell via
the qsub command:

> qsub TorqueScript.sh

Observe again that the script must start with the line #!/bin/bash, to indicate which
shell it should run under, and that the lines beginning with #PBS are commands to
the Torque scheduler, not comments! The lines

myprog=MPIpi

mpirun -r ssh -n $NP $myprog

in the script run the compiled version of the program MPIpi.c, which is also on the
CD. Here NP is the total number of processors you want to run on, and its value is
written into the script. You will need to change MPIpi to the name of the compiled
program you wish to run. (As long as the line $PBS_O_WORKDIR precedes this one,

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 604

604 appendix d

Torque knows that your program is in the working directory.) The line

#PBS -l nodes=2:ppn=2

tells Torque to reserve two computers (nodes) with two processors per node (ppn) for
a total of four processors. This value of ppn is appropriate for dual-core computers
with two CPUs on their chips. If you have computers with four cores on each chip,
then you should set ppn=4. If you want to use only one processor per machine, for
example, to gauge the speedup from multiple cores, then set ppn=1. Even though
we have reserved nodes*ppn processors for Torque to use, the actual number of
processors used by MPI is given by the variable NP in the call

mpirun -r ssh -n NP myprog

Accordingly, we must set the value for NP as ≤nodes*ppn within the script. The
maximum wall clock time that your job can run is set to 15 min via

#PBS -l walltime=00:15:00

This is actual run time, not the total time in the queue, and so this clock does not
start ticking until the job starts executing. In general it is a good idea to use a
walltime command with about twice the time you expect your job to run just in
case something goes wrong. (Not only is this a nice thing to do for others, but it
can also keep you from wasting a finite resource or waiting around forever.) Next
observe that the mpirun command, which starts MPI, has the argument -r ssh.
This is required on our installation for the machines to be able to communicate
with each other using ssh and scp rather than the default rsh and rcp. The latter
are less secure. Finally, the script ends with exit 0. This gives the script exit status 0
and thus provides a graceful ending. Graceless endings may not give the operating
system enough time to clear your output files from buffers, which means that you
may not see all your output!

D.3 Your First MPI Program: MPIhello.c

Listing D.3 gives the simple MPI program MPIhello.c. It has each of the pro-
cessors print Hello World, followed by the processor’s rank. Compile MPIhello.c
using:

> mpicc MPIhello.c -o hello Compilation via compiler wrapper

After successful compilation, an executable file hello should be in the directory in
which you did the compilation. The program is executed via the script run_mpi.sh
either directly or by use of the management command qsub:

> run_mpi.sh hello Run directly under MPI
> qsub run_mpi.sh hello Run under management system

This script sets up the running of the program on the 10 processors, with processor
0 the host and processors 1–9 the guests.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 605

an mpi tutorial 605

� �
/ / MPIhello . c has each processor p r i n t s hello to screen
# include "mpi.h"
# include < s t d i o . h>

i n t main ( i n t argc , c h a r ∗argv [ ] ) {
i n t myrank ;
MPI_Init ( &argc , &argv ) ; / / I n i t i a l i z e MPI
MPI_Comm_rank( MPI_COMM_WORLD, &myrank ) ; / / Get CPU ’ s rank
p r i n t f ( "Hello World from processor %d\n" , myrank ) ;
MPI_Final ize ( ) ; / / F i n a l i z e MPI
r e t u r n 0 ;

}
�

Listing D.3 MPIhello.c gets each processor to say hello via MPI.

D.3.1 MPIhello.c Explained

Here is what is contained in MPIhello.c:

• The inclusion of MPI headers via the #include "mpi.h" statement on lines
2–3. These are short files that assist the C compiler by telling it the type of argu-
ments that MPI functions use for input and output without giving any details
about the functions. (In Fortran we used include "/usr/local/cluster/mpich-
2.1.6/include/mpif.h" after the program line.)

• The main method is declared with an int main(int argc, char *argv[]) state-
ment, where argc is a pointer to the number of arguments and argv is a
pointer to the argument vector passed to main when you run the program
from a shell. (Pointers are variable types that give the locations in memory
where the values of the variables reside rather than the variables’ actual val-
ues.) These arguments are passed to MPI to tell it how many processors you
desire.

• The int myrank statement declares the variable myrank, which stands for
the rank of the computer. Each processor running the program is assigned
a unique number called its rank by MPI. This is how you tell the difference
among identical programs running on different CPUs.

• The processor that executes the highest level of the program is called the host
or master, and all other machines are called guests or slaves. The host always has
myrank = 0, while all the other processors, based on who responds first, have
their processor numbers assigned to myrank. This means that myrank = 1 for
the first guest to respond, 2 for the second, and so on. Giving each processor
a unique value for myrank is a critical element in parallel processing.

• The MPI_init() and MPI_Finalize() commands in MPIhello.c initialize and
terminate MPI, respectively.All MPI programs must have these lines, with the
MPI commands always placed between them. The MPI_Init(&argv, &argc)
function call takes two arguments, both beginning with a & that indicates a
pointer. These arguments are used for communication between the operating
system and MPI.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 606

606 appendix d

• The MPI_Comm_rank(MPI_COMM_WORLD, &myrank) call returns a differ-
ent value for rank for each processor running the program. The first argument
is a predefined constant telling MPI which grouping of processors to commu-
nicate with. Unless you have set up groups of processors, just use the default
communicator MPI_COMM_WORLD. The second argument is an integer that is
returned with the rank of the individual program.

When MPIhello.c is executed, each processor prints its rank to the screen. Notice
that it does not print the ranks in order and that the order will probably be different
each time you run the program. Take a look at the output (in the file output/MPI_job-
xxxx). It should look something like this:

� �
"Hello , world !" from node 3 of 4 on eigen3 . s c i e n c e . oregonsta te . l o c a l
"Hello , world !" from node 2 of 4 on eigen2 . s c i e n c e . oregonsta te . l o c a l
Node 2 repor t ing
"Hello , world !" from node 1 of 4 on eigen1 . s c i e n c e . oregonsta te . l o c a l
"Hello , world !" from node 0 of 4 on eigen11 . s c i e n c e . oregonsta te . l o c a l

�

If the processing order matters for proper execution, call MPI_Barrier(
MPI_COMM_WORLD ) to synchronize the processors. It is similar to inserting a
starting line at a relay race; a processor stops and waits at this line until all the
other processors reach it, and then they all set off at the same time. However, mod-
ern programming practice suggests that you try to design programs so that the
processors do not have to synchronize often. Having a processor stop and wait
obviously slows down the number crunching and consequently removes some of
the advantage of parallel computing. However, as a scientist it is more important
to have correct results than fast ones, and so do not hesitate to insert barriers if
needed.

Exercise: Modify MPIhello.c so that only the guest processors say hello. Hint:
What do the guest processors all have in common?

D.3.2 Send/Receive Messages: MPImessage2.c

Sending and receiving data constitute the heart of parallel computing. Guest
processors need to transmit the data they have processed back to the host, and
the host has to assemble the data and then assign new work to the guests. An
important aspect of MPI communication is that if one processor sends data,
another processor must receive those data. Otherwise, the sending processor may
wait indefinitely for a signal that its data have been received or the receiving
processor may wait indefinitely until it receives the data it is programmed to
expect.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 607

an mpi tutorial 607

Argument Name Use in MPI_Send and MPI_Recv

msg Pointer (& in front) to array to be sent/received

msg_size Size of array sent; may be bigger than actual size

MPI_TYPE Predefined constant indicating variable type within array,
other possible constants: MPI_INTEGER, MPI_DOUBLE

dest Rank of processor receiving message

tag Number that uniquely identifies a message

comm A communicator, for example, predefined constant
MPI_COMM_WORLD

source Rank of processor sending message; if receiving messages
from any source, use predefined constant MPI_ANY_SOURCE

status Pointer to variable type MPI_Status containing status info

� �
/ / MPImessage2 . c : source node sends message to dest
# include "mpi.h"
# include < s t d i o . h>

i n t main ( i n t argc , c h a r ∗argv [ ] ) {
i n t rank , msg_size = 6 , tag = 10 , source = 0 , dest = 1 ;

MPI_Status s t a t u s ;
MPI_Init ( &argc , &argv ) ; / / I n i t i a l i z e MPI
MPI_Comm_rank( MPI_COMM_WORLD, &rank ) ; / / Get CPU ’ s rank
i f ( rank == source ) {

c h a r ∗msg = "Hello" ;
p r i n t f ("Host about to send message : %s\n" ,msg) ; / / Send , may block t i l l recieved
MPI_Send ( msg , msg_size , MPI_CHAR, dest , tag , MPI_COMM_WORLD ) ;

}
e l s e i f ( rank == dest ) {

c h a r b u f f e r [ msg_size + 1 ] ; / / Receive
MPI_Recv ( &buffer , msg_size , MPI_CHAR, source , tag , MPI_COMM_WORLD, &s t a t u s ) ;
p r i n t f ("Message recieved by %d: %s\n" , rank , b u f f e r ) ;

}
p r i n t f ("NODE %d done.\n" , rank ) ; / / All nodes pr int
MPI_Final ize ( ) ; / / F i n a l i z e MPI
r e t u r n 0 ;

}
�

Listing D.4 MPImessage2.c uses MPI commands to both send and receive messages. Note

the possibility of blocking, in which the program waits for a message.

There is a basic MPI command MPI_Send to send a message from a source node,
and another basic command MPI_Recv is needed for a destination node to receive
it. The message itself must be an array even if there is only one element in the array.
We see these commands in use in MPImessage2.c in Listing D.4. This program
accomplishes the same thing as MPIhello.c but with send and receive commands.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 608

608 appendix d

The host sends the message and prints out a message, while the guests print out
when they receive a message. The forms of the commands are

MPI_Send(msg, msg_size, MPI_TYPE, dest, tag, MPI_COMM_WORLD); Send
MPI_Recv(msg, msg_size, MPI_TYPE, source, tag, comm, status); Receive

The arguments and their descriptions are given in §D.3.2. The criteria for success-
fully sending and receiving a message are

1. The sender must specify a valid destination rank, and the processor with that
rank must call MPI_recv.

2. The receiver must specify a valid source rank or MPI_ANY_SOURCE.
3. The send and receive communicators must be the same.
4. The tags must match.
5. The receiver’s message array must be large enough to hold the array.

Exercise: Modify MPImessage2.c so that all processors say hello.

D.3.3 Receive More Messages: MPImessage3.c

� �
/ / MPImessage3 . c : guests send rank to the host , who p r i n t s them
# include "mpi.h"
# include < s t d i o . h>

i n t main ( i n t argc , c h a r ∗argv [ ] ) {
i n t rank , s ize , msg_size = 6 , tag = 10 , host = 0 , n [ 1 ] , r [ 1 ] , i ; / / 1−D Arrays

MPI_Status s t a t u s ;
MPI_Init ( &argc , &argv ) ; / / I n i t i a l i z e MPI
MPI_Comm_rank( MPI_COMM_WORLD, &rank ) ; / / Get CPU ’ s rank
MPI_Comm_size ( MPI_COMM_WORLD, &s i z e ) ; / / Get number of CPUs
i f ( rank != host ) {

n [ 0 ] = rank ;
p r i n t f ("node %d about to send message\n" , rank ) ;
MPI_Send ( &n , 1 , MPI_INTEGER , host , tag , MPI_COMM_WORLD ) ;

}
e l s e {

f o r ( i = 1 ; i < s i z e ; i ++ ) {
MPI_Recv ( &r , 1 , MPI_INTEGER , MPI_ANY_SOURCE, tag , MPI_COMM_WORLD, &s t a t u s ) ;
p r i n t f ("Message recieved : %d\n" , r [ 0 ] ) ; }

}
MPI_Final ize ( ) ; / / F i n a l i z e MPI
r e t u r n 0 ;

}
�

Listing D.5 MPImessage3.c contains MPI commands that have each guest processor send

a message to the host processor who then prints out the rank of that guest.

A bit more advanced use of message passing is shown by MPImessage3.c in List-
ing D.5. Here each guest sends a message to the host who then prints out the rank
of the guest that sent the message. The host loops through all the guests since oth-
erwise it would stop looking for more messages after the first one arrives. The host
calls MPI_Comm_size to determine the number of processors.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 609

an mpi tutorial 609

D.3.4 Broadcast Messages

If we used the same technique to send a message from one node to several other
nodes, we would have to loop over calls to MPI_Send. In MPIpi.c in Listing D.6,
we see an easy way to send a message to all the other nodes.

� �
/ / MPIpi . c computes pi in p a r a l l e l by stone throwing
# include "mpi.h" # include < s t d i o . h> # include <math . h>

d o u b l e f ( d o u b l e ) ;

i n t main ( i n t argc , c h a r ∗argv [ ] ) {
i n t n , myid , numprocs , i , namelen ;
d o u b l e PI25DT = 3.141592653589793238462643 ;
d o u b l e mypi , pi , h , sum , x , s tartwtime = 0 . , endwtime ;
c h a r processor_name [ MPI_MAX_PROCESSOR_NAME ] ;

MPI_Init ( &argc , &argv ) ;
MPI_Comm_size ( MPI_COMM_WORLD, &numprocs ) ;
MPI_Comm_rank( MPI_COMM_WORLD, &myid ) ;
MPI_Get_processor_name ( processor_name , &namelen ) ;
f p r i n t f ( stdout ,"Process %d of %d is on %s\n" , myid , numprocs , processor_name ) ;
f f l u s h ( stdout ) ;
n = 10000 ; / / Default # of r e c t a n g l e s
i f ( myid == 0 ) startwtime = MPI_Wtime ( ) ;
MPI_Bcast ( &n , 1 , MPI_INT , 0 , MPI_COMM_WORLD ) ;
h = 1 . / ( d o u b l e ) n ;
sum = 0 . ;
f o r ( i = myid + 1 ; i <= n ; i += numprocs ) { / / B e t t e r i f worked back

x = h ∗ ( ( d o u b l e ) i − 0 . 5 ) ;
sum += f ( x ) ;

}
mypi = h ∗ sum ;
MPI_Reduce ( &mypi , &pi , 1 , MPI_DOUBLE, MPI_SUM, 0 , MPI_COMM_WORLD ) ;
i f ( myid == 0) {

endwtime = MPI_Wtime ( ) ;
p r i n t f ("pi is approximately %.16f , Error is %.16f\n" , pi , fabs ( pi − PI25DT ) ) ;
p r i n t f ("wall clock time = %f\n" , endwtime−startwtime ) ;
f f l u s h ( stdout ) ;

}
MPI_Final ize ( ) ;
r e t u r n 0 ;

}

d o u b l e f ( d o u b l e a ) { r e t u r n ( 4 . / ( 1 . + a∗a ) ) ; } / / Function f ( a )
�

Listing D.6 MPIpi.c uses a number of processors to compute π by a Monte Carlo rejection

(stone throwing).

This simple program computes π in parallel using the Monte Carlo “stone throw-
ing” technique discussed in Chapter 5, “Monte Carlo Simulation.” Notice the
new MPI commands:

• MPI_Wtime is used to return the wall time in seconds (the time as given
by a clock on the wall). This is useful when computing speedup curves
(Figure D.3).

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 610

610 appendix d

0

40

80

120

160

200

1 2 3 4 5 6 7 8 9 10

Number of Processors

MPIpi.c

E
x
e
c
u
ti
o
n

T
im

e
(s

e
c
)

0 5 10 15 20

Number of Processors

0

50

100

150

200

250

300

E
x
e
c
u
ti
o
n

T
im

e

TuneMPI

Figure D.3 Execution time versus number of processors. Left: For the calculation of π with

MPIpi.c. Right: For the solution of an eigenvalue problem with TuneMPI.c. Note that the

single-processor result here does not include the overhead for running MPI.

• MPI_Bcast sends out data from one processor to all the others. In our case the
host broadcasts the number of iterations to the guests, which in turn replace
their current values of n with the one received from the host.

• MPI_Allreduce is a glorified broadcast command. It collects the values of the
variable mypi from each of the processors, performs an operation on them
with MPI_SUM, and then broadcasts the result via the variable pi.

D.3.5 Exercise

On the left in Figure D.3 we show our results for the speedup obtained by calculating
π in parallel with MPIpi.c. This exercise leads you through the steps required to
obtain your own speedup curve:

1. Two versions of a parallel program are possible. In the active host version the
host acts just like a guest and does some work. In the lazy host version the
host does no work but instead just controls the action. Does MPIpi.c contain
an active or a lazy host? Change MPIpi.c to the other version and record the
difference in execution times.

2. Make a plot of the time versus the number of processors required for
the calculation of π.

3. Make a speedup plot, that is, a graph of the computation time divided by the
time for one processor versus the number of processors.

4. Record how long each of your runs takes and how accurate the answers are.
Does round-off error enter in? What could you do to get a more accurate
value for π?

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 611

an mpi tutorial 611

D.4 Parallel Tuning

Recall the Tune program with which we experimented in Chapter 14,
“High-Performance Computing Hardware, Tuning, and Parallel Computing,” to
determine how memory access for a large matrix affects the running time of pro-
grams. You may also recall that as the size of the matrix was made larger, the
execution time increased more rapidly than the number of operations the program
had to perform, with the increase coming from the time it took to transfer the
needed matrix elements in and out of central memory.

Because parallel programming on a multiprocessor also involves a good deal
of data transfer, the Tune program is also a good teaching tool for seeing how
communication costs affect parallel computations. Listing D.7 gives the program
TuneMPI.c, which is a modified version of the Tune program in which each row of
the large-matrix multiplication is performed on a different processor using MPI:

[H]N×N × [Ψ]N×1 =




⇒ rank 1 ⇒
⇒ rank 2 ⇒
⇒ rank 3 ⇒
⇒ rank 1 ⇒
⇒ rank 2 ⇒
⇒ rank 3 ⇒
⇒ rank 1 ⇒

. . .




N×N

×




ψ1 ⇓
ψ2 ⇓
ψ3 ⇓
ψ4 ⇓
ψ5 ⇓
ψ6 ⇓
ψ7 ⇓
. . .




N×1

. (D.4.1)

Here the arrows indicate how each row of H is multiplied by the single column of
Ψ, with the multiplication of each row performed on a different processor (rank).
The assignment of rows to processors continues until we run out of processors, and
then it starts all over again. Since this multiplication is repeated for a number of
iterations, this is the most computationally intensive part of the program, and so it
makes sense to parallelize it.

On the right in Figure D.3 is the speedup curve we obtained by running
TuneMPI.c. However, even if the matrix is large, the Tune program is not compu-
tationally intensive enough to overcome the cost of communication among nodes
inherent in parallel computing. Consequently, to increase computing time we have
inserted an inner for loop over k that takes up time but accomplishes nothing
(we’ve all had days like that). Slowing down the program should help make the
speedup curve more realistic.

� �
/∗ TuneMPI . c : a matrix algebra program to be tuned for performace
N X N Matrix speed t e s t s using MPI ∗ /

# include "mpi.h"
# include < s t d i o . h>
# include <time . h>
# include <math . h>

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 612

612 appendix d

i n t main ( i n t argc , c h a r ∗argv [ ] ) {
MPI_Status s t a t u s ;
t ime_t syst ime_i , sys t ime_f ;
i n t N = 200 , MAX = 15 , h = 1 , myrank , nmach , i , j , k , i t e r = 0 ;
l ong d i f f t i m e = 0 l ;
d o u b l e ERR = 1 . 0 e−6, dummy = 2 . , timempi [ 2 ] , ham[N] [N] , coef [N] , sigma [N] ;
d o u b l e ener [ 1 ] , e r r [ 1 ] , ovlp [ 1 ] , mycoef [ 1 ] , mysigma [ 1 ] , myener [ 1 ] , myerr [ 1 ] ;
d o u b l e myovlp [ 1 ] , s tep = 0 . 0 ;

/ / MPI I n i t i a l i z a t i o n
MPI_Init (&argc , &argv ) ;
MPI_Comm_rank( MPI_COMM_WORLD, &myrank ) ;
MPI_Comm_size ( MPI_COMM_WORLD, &nmach ) ;
MPI_Barrier ( MPI_COMM_WORLD ) ;
i f ( myrank == 0 ) {

timempi [ 0 ] = MPI_Wtime ( ) ; / / Store i n i t i a l time
sys t ime_ i = time (NULL) ;

}
p r i n t f ("\n\t Processor %d checking in . . . \n" , myrank ) ;
f f l u s h ( stdout ) ;
f o r ( i = 1 ; i < N; i ++ ) { / / Set up Hamiltonian and s t a r t i n g vector

f o r ( j = 1 ; j < N; j ++ ) {
i f ( abs ( j−i ) > 10 ) ham[ j ] [ i ] = 0 . 0 ;

e l s e ham[ j ] [ i ] = pow( 0 . 3 , abs ( j−i ) ) ;
}
ham[ i ] [ i ] = i ;
coef [ i ] = 0 . 0 ;

}
coef [ 1 ] = 1 . 0 ;
e r r [ 0 ] = 1 . 0 ;
i t e r = 0 ;
i f ( myrank == 0 ) { / / S t a r t i t e r a t i n g towards the solution

p r i n t f ( "\nIteration #\tEnergy\t\tERR\t\tTotal Time\n" ) ;
f f l u s h ( stdout ) ;

}
w h i l e ( i t e r < MAX && e r r [ 0 ] > ERR ) { / / S t a r t while loop

i t e r = i t e r + 1 ;
mycoef [ 0 ] = 0 . 0 ;
ener [ 0 ] = 0 . 0 ; myener [ 0 ] = 0 . 0 ;
ovlp [ 0 ] = 0 . 0 ; myovlp [ 0 ] = 0 . 0 ;
e r r [ 0 ] = 0 . 0 ; myerr [ 0 ] = 0 . 0 ;
f o r ( i = 1 ; i < N; i ++) {

h = ( i n t ) ( i ) %(nmach−1)+1 ;
i f ( myrank == h ) {

myovlp [ 0 ] = myovlp [0 ]+ coef [ i ]∗ coef [ i ] ;
mysigma [ 0 ] = 0 . 0 ;
f o r ( j = 1 ; j < N; j ++ ) mysigma [ 0 ] = mysigma [ 0 ] + coef [ j ]∗ham[ j ] [ i ] ;
myener [ 0 ] = myener [0 ]+ coef [ i ]∗mysigma [ 0 ] ;
MPI_Send ( &mysigma , 1 , MPI_DOUBLE, 0 , h , MPI_COMM_WORLD ) ;

}
i f ( myrank == 0 ) {

MPI_Recv ( &mysigma , 1 , MPI_DOUBLE, h , h , MPI_COMM_WORLD, &s t a t u s ) ;
sigma [ i ]=mysigma [ 0 ] ;

}
} / / End of for ( i . . .
MPI_Allreduce ( &myener , &ener , 1 , MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD ) ;
MPI_Allreduce ( &myovlp , &ovlp , 1 , MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD ) ;
MPI_Bcast ( &sigma , N−1, MPI_DOUBLE, 0 , MPI_COMM_WORLD ) ;
ener [ 0 ] = ener [ 0 ] / ( ovlp [ 0 ] ) ;
f o r ( i = 1 ; i < N; i ++) {

h = ( i n t ) ( i ) %(nmach−1)+1 ;
i f ( myrank == h ) {

mycoef [ 0 ] = coef [ i ]/ s q r t ( ovlp [ 0 ] ) ;
mysigma [ 0 ] = sigma [ i ]/ s q r t ( ovlp [ 0 ] ) ;
MPI_Send ( &mycoef , 1 , MPI_DOUBLE, 0 , nmach+h+1 , MPI_COMM_WORLD ) ;
MPI_Send ( &mysigma , 1 , MPI_DOUBLE, 0 , 2∗nmach+h+1 , MPI_COMM_WORLD ) ;

}
i f ( myrank == 0) {

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 613

an mpi tutorial 613

MPI_Recv ( &mycoef , 1 , MPI_DOUBLE, h , nmach+h+1 , MPI_COMM_WORLD, &s t a t u s ) ;
MPI_Recv ( &mysigma , 1 , MPI_DOUBLE, h , 2∗nmach+h+1 , MPI_COMM_WORLD, &s t a t u s ) ;
coef [ i ]= mycoef [ 0 ] ;
sigma [ i ]=mysigma [ 0 ] ;

}
} / / End of for ( i . . .

MPI_Bcast ( &sigma , N−1, MPI_DOUBLE, 0 , MPI_COMM_WORLD ) ;
MPI_Bcast ( &coef , N−1, MPI_DOUBLE, 0 , MPI_COMM_WORLD ) ;
f o r ( i = 2 ; i < N ; i ++ ) {

h = ( i n t ) ( i ) %(nmach−1) +1;
i f ( myrank == h ) {

s tep = ( sigma [ i ] − ener [ 0 ]∗ coef [ i ] ) /( ener [0]−ham[ i ] [ i ] ) ;
mycoef [ 0 ] = coef [ i ] + s tep ;
myerr [ 0 ] = myerr [ 0 ] + pow( step , 2 ) ;
f o r ( k= 0 ; k <= N∗N; k++ ) / / Slowdown loop

{ dummy = pow(dummy,dummy) ; dummy = pow(dummy, 1 . 0 /dummy) ; }
MPI_Send ( &mycoef , 1 , MPI_DOUBLE, 0 , 3∗nmach+h+1 , MPI_COMM_WORLD ) ;

} / / end of i f ( myrank . .
i f ( myrank == 0) {

MPI_Recv(&mycoef , 1 , MPI_DOUBLE, h ,3∗nmach+h+1 , MPI_COMM_WORLD, &s t a t u s ) ;
coef [ i ]= mycoef [ 0 ] ;

}
} / / End of for ( i . . .
MPI_Bcast ( &coef , N−1, MPI_DOUBLE, 0 , MPI_COMM_WORLD ) ;
MPI_Allreduce ( &myerr , &err , 1 , MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD ) ;
e r r [ 0 ] = s q r t ( e r r [ 0 ] ) ;
i f ( myrank==0 ) { p r i n t f ("\t#%d\t%g\t%g\n" , i t e r , ener [ 0 ] , e r r [ 0 ] ) ;

f f l u s h ( stdout ) ; }
} / / End while
i f ( myrank == 0) {

sys t ime_f = time (NULL) ; / / Output elapsed time
d i f f t i m e = ( ( l ong ) sys t ime_f ) − ( ( l ong ) sys t ime_ i ) ;
p r i n t f ( "\n\tTotal wall time = %d s\n" , d i f f t i m e ) ;
f f l u s h ( stdout ) ;
timempi [ 1 ] = MPI_Wtime ( ) ;
p r i n t f ("\n\tMPItime= %g s\n" , ( timempi[1]− timempi [ 0 ] ) ) ;
f f l u s h ( stdout ) ;

}
MPI_Final ize ( ) ;

}
�

Listing D.7 The C program TuneMPI.c is a parallel version of Tune.java, which we used to test

the effects of various optimization modifications.

D.4.0.1 TUNEMPI.C EXERCISE

1. Compile TuneMPI.c:

> mpicc TuneMPI.c -lm -o TuneMPI Compilation

Here -lm loads the math library and -o places the object in TuneMPI. This is
the base program. It will use one processor as the host and another one to do
the work.

2. To determine the speedup with multiple processors, you need to change the
run_mpi.sh script. Open it with an editor and find a line of the form

#$ -pe class_mpi 1-4 A line in run_mpi.sh script

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 614

614 appendix d

The last number on this line tells the cluster the maximum number of proces-
sors to use. Change this to the number of processors you want to use. Use a
number from 2 to 10; starting with one processor leads to an error message, as
that leaves no processor to do the work. After changing run_mpi.sh, run the
program on the cluster. With the SEG management system this is done via

> qsub run_mpi.sh TuneMPI Submit to queue via SGE

3. You are already familiar with the scalar version of the Tune program. Find the
scalar version of Tune.c (and add the extra lines to slow the program down)
or modify the present one so that it runs on only one processor. Run the scalar
version of TuneMPI and record the time it takes. Because there is overhead
associated with running MPI, we expect the scalar program to be faster than
an MPI program running on a single processor.

4. Open another window and watch the processing of your MPI jobs on the host
computer. Check that all the temporary files are removed.

5. You now need to collect data for a plot of running time versus number of
machines. Make sure your matrix size is large, say, with N=200 and up. Run
TuneMPI on a variable number of machines, starting at 2, until you find no
appreciable speedup (or an actual slowdown) with an increasing number of
machines.

6. Warning: While you will do no harm running on the Beowulf when others
are also running on it, in order to get meaningful, repeatable speedup graphs,
you should have the cluster all to yourself. Otherwise, the time it takes to
switch jobs around and to set up and drop communications may slow down
your runs significantly. A management system should help with this. If you
are permitted to log in directly to the Beowulf machines, you can check what
is happening via who:

> rsh rose who Who is running on rose?
> rsh rubin who Who is running on rubin?
> rsh emma who Who is running on emma?

7. Increase the matrix size in steps and record how this affects the speedups.
Remember, once the code is communications-bound, distributing it over many
processors probably will make it run slower, not faster!

D.5 A String Vibrating in Parallel

The program MPIstring.c given in Listing D.8 is a parallel version of the solution of
the wave equation (eqstring.c) discussed in Chapter 18, “PDE Waves: String, Wave
Packet, and Electromagnetic.” The algorithm calculates the future ([2]) displace-
ment of a given string element from the present ([1]) displacements immediately to
the left and right of that section, as well as the present and past ([0]) displacements
of that element. The program is parallelized by assigning different sections of the
string to different nodes.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 615

an mpi tutorial 615

� �
/ / Code l i s t i n g for MPIstring . c
# include < s t d i o . h>
# include <math . h>
# include "mpi.h"
# def ine maxt 10000 / / Number of time steps to take
# def ine L 10000 / / Number of divis ions of the s t r i n g
# def ine rho 0 . 0 1 / / Density per length ( kg /m)
# def ine ten 4 0 . 0 / / Tension (N)
# def ine d e l t a t 1 . 0 e−4 / / Delta t ( s )
# def ine d e l t a x . 0 1 / / Delta x (m)
# def ine skip 50 / / Number of time steps to skip before print ing
/∗ Need sqrt ( ten / rho ) <= del tax / d e l t a t for a s t a b l e solut ion

Decrease d e l t a t for more accuracy , c ’ = del tax / d e l t a t ∗ /

main ( i n t argc , c h a r ∗argv [ ] ) {
c o n s t d o u b l e s c a l e = pow( d e l t a t /del tax , 2 ) ∗ ten/rho ;
i n t i , j , k , myrank , numprocs , s t a r t , stop , avgwidth , maxwidth , len ;
d o u b l e l e f t , r ight , startwtime , i n i t \ _ s t r i n g ( i n t index ) ;
FILE ∗out ;

MPI_Init ( &argc , &argv ) ;
MPI_Comm_rank( MPI_COMM_WORLD, &myrank ) ; / / Get my rank
MPI_Comm_size ( MPI_COMM_WORLD, &numprocs ) ; / / Number of processors
MPI_Status s t a t u s ;

i f ( myrank == 0) {
s tartwtime = MPI_Wtime ( ) ;
out = fopen ("eqstringmpi . dat" ,"w" ) ;

}
/ / assign s t r i n g to each node 1 s t and l a s t points (0 and L−1) −must =0 , e l s e e r r o r

/ / Thus L−2 segments for numprocs processors
avgwidth = ( L−2)/numprocs ;
s t a r t = avgwidth∗myrank +1;
i f ( myrank < numprocs − 1) stop = avgwidth ∗(myrank+1) ;
e l s e stop = L−2;
i f ( myrank == 0) maxwidth = L−2 − avgwidth ∗( numprocs−1) ;
e l s e maxwidth = 0 ;
d o u b l e r e s u l t s [ maxwidth ] ; / / Holds print for master
len = stop − s t a r t ; / / Length of the array − 1
d o u b l e x [ 3 ] [ len + 1 ] ;
f o r ( i = s t a r t ; i <= stop ; i ++) x [ 0 ] [ i−s t a r t ] = i n i t _ s t r i n g ( i ) ;
x [ 1 ] [ 0 ] = x [ 0 ] [ 0 ] + 0 . 5 ∗ s c a l e ∗( x [ 0 ] [ 1 ] + i n i t _ s t r i n g ( s t a r t −1)−2.∗x [ 0 ] [ 0 ] ) ; / / 1 s t step
x [ 1 ] [ len ] = x [ 0 ] [ len ] +0.5∗ s c a l e ∗( i n i t _ s t r i n g ( stop +1)+x [ 0 ] [ len −1]−2.0∗x [ 0 ] [ len ] ) ;
f o r ( i = 1 ; i < len ; i ++)

{ x [ 1 ] [ i ] = x [ 0 ] [ i ] + 0 .5∗ s c a l e ∗( x [ 0 ] [ i +1] + x [ 0 ] [ i −1] − 2 .0∗ x [ 0 ] [ i ] ) ; }
f o r ( k =1; k<maxt ; k++) { / / Later time steps

i f ( myrank == 0) { MPI_Send ( &x [ 1 ] [ len ] , 1 , MPI_DOUBLE, 1 , 1 , MPI_COMM_WORLD) ;
l e f t = 0 . 0 ; } / / Send to R, get from L

e l s e i f ( myrank < numprocs − 1) MPI_Sendrecv(&x [ 1 ] [ len ] , 1 ,
MPI_DOUBLE, myrank+1 , 1 , &l e f t , 1 , MPI_DOUBLE, myrank−1, 1 , MPI_COMM_WORLD, &s t a t u s ) ;

e l s e MPI_Recv ( &l e f t , 1 , MPI_DOUBLE, myrank−1, 1 , MPI_COMM_WORLD, &s t a t u s ) ;
i f ( myrank == numprocs − 1) { / / Send to L & get from R

MPI_Send ( &x [ 1 ] [ 0 ] , 1 , MPI_DOUBLE, myrank−1, 2 , MPI_COMM_WORLD ) ;
r i g h t = 0 . 0 ;

}
e l s e i f ( myrank > 0) MPI_Sendrecv ( &x [ 1 ] [ 0 ] , 1 , MPI_DOUBLE, myrank−1, 2 ,

&r ight , 1 , MPI_DOUBLE, myrank+1 , 2 , MPI_COMM_WORLD, &s t a t u s ) ;
e l s e MPI_Recv ( &r ight , 1 , MPI_DOUBLE, 1 , 2 , MPI_COMM_WORLD, &s t a t u s ) ;
x [ 2 ] [ 0 ] = 2 .∗ x [ 1 ] [ 0 ] − x [ 0 ] [ 0 ] + s c a l e ∗ ( x [ 1 ] [ 1 ] + l e f t − 2 .∗ x [ 1 ] [ 0 ] ) ;
f o r ( i = 1 ; i < len ; i ++)

{ x [ 2 ] [ i ] = 2 .∗ x [ 1 ] [ i ] − x [ 0 ] [ i ] + s c a l e ∗( x [ 1 ] [ i +1]+x [ 1 ] [ i −1]−2.∗x [ 1 ] [ i ] ) ; }
x [ 2 ] [ len ] = 2 .∗ x [ 1 ] [ len ] − x [ 0 ] [ len ] + s c a l e ∗( r i g h t +x [ 1 ] [ len −1] −2.∗x [ 1 ] [ len ] ) ;
f o r ( i = 0 ; i <= len ; i ++) { x [ 0 ] [ i ] = x [ 1 ] [ i ] ; x [ 1 ] [ i ] = x [ 2 ] [ i ] ; }
i f ( k%skip == 0) { / / Pr int using gnuplot 3D grid format

i f ( myrank != 0) MPI_Send(&x [ 2 ] [ 0 ] , len +1 , MPI_DOUBLE, 0 , 3 , MPI_COMM_WORLD) ;
e l s e {

f p r i n t f ( out ,"%f\n" , 0 . 0 ) ; / / Left edge of ( always 0)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 616

616 appendix d

f o r ( i =0 ; i < avgwidth ; i ++ ) f p r i n t f ( out ,"%f\n" , x [ 2 ] [ i ] ) ;
f o r ( i =1 ; i < numprocs−1; i ++ ) {

MPI_Recv ( r e s u l t s , avgwidth , MPI_DOUBLE, i , 3 , MPI_COMM_WORLD, &s t a t u s ) ;
f o r ( j = 0 ; j < avgwidth ; j ++) f p r i n t f ( out , "%f\n" , r e s u l t s [ j ] ) ;

}
MPI_Recv ( r e s u l t s , maxwidth , MPI_DOUBLE, numprocs−1, 3 , MPI_COMM_WORLD, &s t a t u s ) ;

f o r ( j =0 ; j < maxwidth ; j ++ ) f p r i n t f ( out ,"%f\n" , r e s u l t s [ j ] ) ;
f p r i n t f ( out ,"%f\n" , 0 . 0 ) ; / / R edge
f p r i n t f ( out ,"\n" ) ; / / Empty l ine for gnuplot

}
}

}
i f ( myrank == 0)

p r i n t f ("Data stored in eqstringmpi . dat\nComputation time : %f s\n" ,
MPI_Wtime ( )−startwtime ) ;

MPI_Final ize ( ) ;
e x i t ( 0 ) ;

}

d o u b l e i n i t _ s t r i n g ( i n t index ) {
i f ( index < ( L−1)∗4/5) r e t u r n 1 .0∗ index / ( ( L−1)∗4/5) ;
r e t u r n 1 . 0∗ ( L−1−index ) / ( ( L−1)−(L−1)∗4/5) ;

/ / Half of a sine wave
}

�

Listing D.8 MPIstring.c solves the wave equation for a string using several processors via MPI

commands.

Notice how the MPI_Recv() and MPI_Send() commands require a pointer as
their first argument, or an array element. When sending more than one element of
an array to MPI_Send(), send a pointer to the first element of the array as the first
argument, and then the number of elements as the second argument. Observe near
the end of the program how the MPI_Send() call is used to send len + 1 elements
of the 2-D array x[][], starting with the element x[2][0]. MPI sends these elements
in the order in which they are stored in memory. In C, arrays are stored in row-
major order with the first element of the second row immediately following the
last element of the first row, and so on. Accordingly, this MPI_Send() call sends len
+ 1 elements of row 2, starting with column 0, which means all of row 2. If we had
specified len + 5 elements instead, MPI would have sent all of row 2 plus the first
four elements of row 3.

In MPIstring.c, the calculated future position of the string is stored in row 2 of
x[3][len + 1], with different sections of the string stored in different columns. Row
1 stores the present positions, and row 0 stores the past positions. This is different
from the column-based algorithm used in the serial program eqstring.c, follow-
ing the original Fortran program, which was column-, rather than row-based. This
was changed because MPI reads data by rows. The initial displacement of the
string is given by the user-supplied function init_string(). Because the first time
step requires only the initial displacement, no message passing is necessary. For
later times, each node sends the displacement of its rightmost point to the node
with the next highest rank. This means that the rightmost node (rank = numprocs

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 617

an mpi tutorial 617

–1) does not send data and that the master (rank = 0) does not receive data. Com-
munication is established via the MPI_Sendrecv() command, with the different
sends and receives using tags to ensure proper delivery of the messages.

Next in the program, the nodes (representing string segments) send to and
receive data from the segment to their right. All these sends and receives have
a tag of 2. After every 50 iterations, the master collects the displacement of each
segment of the string and outputs it. Each slave sends the data for the future time
with a tag of 3. The master first outputs its own data and then calls MPI_Recv() for
each node, one at a time, printing the data it receives.

D.5.1 MPIstring.c Exercise

1. Ensure that the input data (maxt, L, scale, skip) in MPIstring.c are the same
as those in eqstring.c.

2. Ensure that init_string() returns the initial configuration used in eqstring.c.
3. Compile and run eqstring.c via

> gcc eqstring.c -o eqstring -lm Compile C code
> ./eqstring Run in present directory

4. Run both programs to ensure that they produce the same output. (In Unix
this is easy to check with the diff command.)

� �
/ / deadlock−f ixed . c : MPI deadlock . c without deadlock by Phil Carter
# include < s t d i o . h>
# include "mpi.h"
# def ine MAXLEN 100

main ( i n t argc , c h a r ∗argv [ ] ) {
i n t myrank , numprocs , torank , i ;
c h a r tosend [MAXLEN] , rece ived [MAXLEN] ;
MPI_Status s t a t u s ;
MPI_Init ( &argc , &argv ) ;
MPI_Comm_rank( MPI_COMM_WORLD, &myrank ) ;
MPI_Comm_size ( MPI_COMM_WORLD, &numprocs ) ;
i f ( myrank == numprocs − 1 ) torank = 0 ;

e l s e torank = myrank + 1 ; / / Save s t r i n g to send in tosend :
s p r i n t f ( tosend , "Message sent from node %d to node %d\n" , myrank , torank ) ;
f o r ( i = 0 ; i < numprocs ; i ++ ) {

i f ( myrank == i ) MPI_Send ( tosend , MAXLEN, MPI_CHAR, torank , i , MPI_COMM_WORLD) ;
e l s e i f ( myrank == i +1 || ( i == numprocs − 1 && myrank == 0) )

MPI_Recv ( received , MAXLEN, MPI_CHAR, i , i , MPI_COMM_WORLD, &s t a t u s ) ;
}
p r i n t f ("%s" , rece ived ) ; / / Pr int s t r i n g a f t e r successful rece ive
MPI_Final ize ( ) ;
e x i t ( 0 ) ;

}
�

Listing D.9 The MPI program MPIdeadlock.c illustrates deadlock (waiting to receive). The

code MPIdeadlock-fixed.c in Listing D.6 removes the block.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 618

618 appendix d

D.6 Deadlock

It is important to avoid deadlock when using the MPI_Send() and MPI_Recv() com-
mands. Deadlock occurs when one or more nodes wait for a nonoccurring event
to take place. This can arise if each node waits to receive a message that is not sent.
Compile and execute deadlock.c:

> mpicc deadlock.c -o deadlock Compile
> qsub run_mpi.sh deadlock Execute

Take note of the job ID returned, which we will call xxxx. Wait a few seconds and
then look at the output of the program:

> cat output/MPI_job-xxxx Examine output

The output should list how many nodes (slots) were assigned to the job. Because
all these nodes are now deadlocked, we have to cancel this job:

> qdel xxxx Cancel deadlocked job
> qdel all Alternate cancel

There are a number of ways to avoid deadlock. The program MPIstring.c used
the function MPI_Sendrecv() to handle much of the message passing, and this
does not cause deadlock. It is possible to use MPI_Send() and MPI_Recv(), but
you should be careful to avoid deadlock, as we do in MPIdeadlock-fixed.c in
Listing D.6.

� �
/ / deadlock−f ixed . c : MPI deadlock . c without deadlock by Phil Carter
# include < s t d i o . h>
# include "mpi.h"
# def ine MAXLEN 100

main ( i n t argc , c h a r ∗argv [ ] ) {
i n t myrank , numprocs , torank , i ;
c h a r tosend [MAXLEN] , rece ived [MAXLEN] ;
MPI_Status s t a t u s ;
MPI_Init ( &argc , &argv ) ;
MPI_Comm_rank( MPI_COMM_WORLD, &myrank ) ;
MPI_Comm_size ( MPI_COMM_WORLD, &numprocs ) ;
i f ( myrank == numprocs − 1 ) torank = 0 ;

e l s e torank = myrank + 1 ; / / Save s t r i n g to send in tosend :
s p r i n t f ( tosend , "Message sent from node %d to node %d\n" , myrank , torank ) ;
f o r ( i = 0 ; i < numprocs ; i ++ ) {

i f ( myrank == i ) MPI_Send ( tosend , MAXLEN, MPI_CHAR, torank , i , MPI_COMM_WORLD) ;
e l s e i f ( myrank == i +1 || ( i == numprocs − 1 && myrank == 0) )

MPI_Recv ( received , MAXLEN, MPI_CHAR, i , i , MPI_COMM_WORLD, &s t a t u s ) ;
}
p r i n t f ("%s" , rece ived ) ; / / Pr int s t r i n g a f t e r successful rece ive
MPI_Final ize ( ) ;
e x i t ( 0 ) ;

}
�

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 619

an mpi tutorial 619

D.6.1 Nonblocking Communication

MPI_Send() and MPI_Recv(), as we have said, are susceptible to deadlock because
they block the program from continuing until the send or receive is finished. This
method of message passing is called blocking communication. One way to avoid
deadlock is to use nonblocking communication such as MPI_Isend(), which returns
before the send is complete and thus frees up the node. Likewise, a node can call
MPI_Irecv(), which does not wait for the receive to be completed. Note that a node
can receive a message with MPI_Recv() even if it was sent using MPI_Isend(),
and similarly, receive a message using MPI_Irecv() even if it was sent with
MPI_Send().

There are two ways to determine whether a nonblocking send or receive is
finished. One is to call MPI_Test(). It is your choice as to whether you want to wait
for the communication to be completed (e.g., to ensure that all string segments are
at current time and not past time). To wait, call MPI_Wait(), which blocks execution
until communication is complete. When you start a nonblocking send or receive,
you get a request handle of data type MPI_Request to identify the communication
you may need to wait for. A disadvantage of using nonblocking communication
is that you have to ensure that you do not use the data being communicated until
the communication has been completed. You can check for this using MPI_Test()
or wait for completion using MPI_Wait().

Exercise: Rewrite MPIdeadlock.c so that it avoids deadlock by using nonblock-
ing communication. Hint: Replace MPI_Recv() by MPI_Irecv().

D.6.2 Collective Communication

MPI contains several commands that automatically and simultaneously exchange
messages among multiple nodes. This is called collective communication, in contrast
to point-to-point communication between two nodes. The program MPIpi.c has
already introduced the MPI_Reduce() command. It receives data from multiple
nodes, performs an operation on the data, and stores the result on one node. The
program tuneMPI.c used a similar function MPI_Allreduce() that does the same
thing but stores the result on every node. The latter program also used MPI_Bcast(),
which allows a node to send the same message to multiple nodes.

Collective commands communicate among a group of nodes specified by a
communicator, such as MPI_COMM_WORLD. For example, in MPIpi.c we called
MPI_Reduce() to receive results from every node, including itself. Other collective
communication functions include MPI_Scatter(), which has one node send mes-
sages to every other node. This is similar to MPI_Bcast(), but the former sends
a different message to each node by breaking up an array into pieces of specified

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 620

620 appendix d

lengths and sending the pieces to nodes. Likewise, MPI_Gather() gathers data from
every node (including the root node) and places it in an array, with data from node
0 placed first, followed by node 1, and so on. A similar function, MPI_Allgather(),
stores the data on every node rather than just the root node.

D.7 Bootable Cluster CD �
One of the difficulties in learning how to parallel compute is the need for a par-
allel computer. Even though there may be many computers around that you may
be able to use, knitting them all together into a parallel machine takes time and
effort. However, if your interest is in learning about and experiencing distributed
parallel computing, and not in setting up one of the fastest research machines
in the world, then there is an easy way. It is called a bootable cluster CD (BCCD)
and is a file on a CD. When you start your computer with the CD in place, you
are given the option of having the computer ignore your regular operating sys-
tem and instead boot from the CD into a preconfigured distributed computing
environment. The new system does not change your system but rather is a nonde-
structive overlay on top of the existing hardware that runs a full-fledged parallel
computing environment on just about any workstation-class system, including
Macs. You boot up every machine you wish to have on your cluster this way, and if
needed, set up a domain name system (DNS) and dynamic host configuration pro-
tocol (DHCP) servers, which are also included. Did we mention that the system is
free? [BCCD]

D.8 Parallel Computing Exercises

1. Bifurcation plot: If you have not yet done so, take the program you wrote to
generate the bifurcation plot for bug populations and run different ranges of
µ values simultaneously on several CPUs.

2. Processor ring: Write a program in which
a. a set of processors are arranged in a ring.
b. each processor stores its rank in MPI_COMM_WORLD in an integer.
c. each processor passes this rank on to its neighbor on the right.
d. each processor keeps passing until it receives its rank back.

3. Ping pong: Write a program in which two processors repeatedly pass a
message back and forth. Insert timing calls to measure the time taken for
one message and determine how the time taken varies with the size of the
message.

4. Broadcast: Have processor 1 send the same message to all the other processors
and then receive messages of the same length from all the other processors.
How does the time taken vary with the size of the messages and the number
of processors?

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 621

an mpi tutorial 621

D.9 List of MPI Commands

MPI Data Types and Operators
MPI defines some of its own data types. The following are data types used as

arguments to MPI commands.

• MPI_Comm: A communicator, used to specify group of nodes, most com-
monly MPI_COMM_WORLD for all the nodes.

• MPI_Status: A variable holding status information returned by functions
such as MPI_Recv().

• MPI_Datatype: A predefined constant indicating the type of data being
passed in a function such as MPI_Send() (see below).

• MPI_O: A predefined constant indicating the operation to be performed on
data in functions such as MPI_Reduce() (see below).

• MPI_Request: A request handle to identify a nonblocking send or receive,
for example, when using MPI_Wait() or MPI_Test().

Predefined Constants: MPI_Op and MPI_Datatype
For a more complete list of constants used in MPI, see

http://www-unix.mcs.anl.gov/mpi/www/www3/Constants.html.

MPI_OP Description MPI_Datatype C Data Type

MPI_MAX Maximum MPI_CHAR char

MPI_MIN Minimum MPI_SHORT short

MPI_SUM Sum MPI_INT int

MPI_PROD Product MPI_LONG long

MPI_LAND Logical and MPI_FLOAT float

MPI_BAND Bitwise and MPI_DOUBLE double

MPI_LOR Logical or MPI_UNSIGNED_CHAR unsigned char

MPI_BOR Bitwise or MPI_UNSIGNED_SHORT unsigned short

MPI_LXOR Logical exclusive or MPI_UNSIGNED unsigned int

MPI_BXOR Bitwise exclusive or MPI_UNSIGNED_LONG unsigned long

MPI_MINLOC Find node’s min and rank

MPI_MAXLOC Find node’s max and rank

MPI Commands
Below we list and identify the MPI commands used in this appendix. For the
syntax of each command, along with many more MPI commands, see http://www-
unix.mcs.anl.gov/mpi/www/, where each command is a hyperlink to a full
description.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 622

622 appendix d

Basic MPI Commands

• MPI_Send: Sends a message.
• MPI_Recv: Receives a message.
• MPI_Sendrecv: Sends and receives a message.
• MPI_Init: Starts MPI at the beginning of the program.
• MPI_Finalize: Stops MPI at the end of the program.
• MPI_Comm_rank: Determines a node’s rank.
• MPI_Comm_size: Determines the number of nodes in the communicator.
• MPI_Get_processor_name: Determines the name of the processor.
• MPI_Wtime: Returns the wall time in seconds since an arbitrary time in the

past.
• MPI_Barrier: Blocks until all the nodes have called this function.

Collective Communication

• MPI_Reduce: Performs an operation on all copies of a variable and stores the
result on a single node.

• MPI_Allreduce: Like MPI_Reduce, but stores the result on all the nodes.
• MPI_Gather: Gathers data from a group of nodes and stores them on one

node.
• MPI_Allgather: Like MPI_Gather but stores the result on all the nodes.
• MPI_Scatter: Sends different data to all the other nodes (opposite of

MPI_Gather).
• MPI_Bcast: Sends the same message to all the other processors.

Nonblocking Communication

• MPI_Isend: Begins a nonblocking send.
• MPI_Irecv: Begins a nonblocking receive.
• MPI_Wait: Waits for an MPI send or receive to be completed.
• MPI_Test: Tests for the completion of a send or receive.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 623

Appendix E: Calling LAPACK from C

Calling a Fortran-based matrix library from Fortran is less trouble than calling it
from some other language. However, if you refuse to be a Fortran programmer, then
there are often C and Java implementations of Fortran libraries available, such as
JAMA, JLAPACK, LAPACK++, and TNT, for use from these languages.

Some of our research projects have required us to have Fortran and C programs
calling each other, and, after some experimentation, we have had success doing it
[L&F 93]. Care is needed in accounting for the somewhat different ways compilers
store subroutine names, for the quite different ways they store arrays with more
than one subscript, and for the different data types available in the two languages.

The first thing you must do is ensure that the data types of the variables in
the two languages are matched. The matching data types are given in Table E.1.
Note that if the data are stored in arrays, the C calling program must convert to
the storage scheme used in the Fortran subroutine before you can call the Fortran
subroutine (and then convert back to the C scheme after the subroutine does its job
if you have overwritten the original array and intend to use it again).

When a function is called in the C language, usually the actual value of the argu-
ment is passed to the function. In contrast, Fortran passes the address in memory
where the value of the argument is to be found (a reference pass). If you do not ensure
that both languages have the same passing protocol, your program will process the
numerical value of the address of a variable as if it were the actual value of the vari-
able (we are willing to place a bet on the correctness of the result). Here are some
procedures for calling Fortran from C:

1. Use pointers for all the arguments in your C program. Generally this is done
with the address operator &.

2. Do not have your program make calls such as sub(1, N) where the actual
value of the constant 1 is fed to the subroutine. Instead, assign the value 1 to
a variable and feed that variable (actually a pointer to it) to the subroutine.
For example:

� �
one = 1 . / / Assign value to var iable
sub ( one ) / / All Fortran c a l l s are reference c a l l s
sub(&one ) / / In C, make pointer e x p l i c i t

�

This is important because the value 1 in the Fortran subroutine call is actu-
ally the address where the value 1 is stored. If the subroutine modifies that
variable, it will modify the value of 1 every place in your program!

3. Depending on the particular operating system you are using, you may have to
append an underscore _ to the called Fortran subprogram names; for exam-
ple, sub(one, N) → sub_(one, N). Generally, the Fortran compiler appends
an underscore automatically to the names of its subprograms, while the C
compiler does not (but you’ll need to experiment).

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 624

624 appendix e

TABLE E.1
Matching Data Types in C and Fortran

C Fortran C Fortran

Char Character Unsigned int Logical*4

Signed char Integer*1 Float Real (Real*4)

Unsigned char Logical*1 Structure of two floats Complex

Short signed int Integer*2 Double Real*8

Short unsigned int Logical*2 Structure of two doubles Complex*16

Signed int (long int) Integer*4 Char[n] Character*n

4. Use lowercase letters for the names of external functions. The exception is
when the Fortran subprogram being called was compiled with a -U option,
or the equivalent, for retaining uppercase letters.

E.1 Calling LAPACK Fortran from C
� �

/ / Calling LAPACK from C to solve AX=B
# include < s t d i o . h>} / / I /O
headers # def ine s i z e 100 / / Dimension of Hilbert matrix

main ( ) {
i n t i , j , c1 , c2 , pivot [ s i z e ] , ok ;
d o u b l e matrix [ s i z e ] [ s i z e ] , help [ s i z e ∗ s i z e ] , r e s u l t [ s i z e ] ;
c1 = s i z e ; / / Pointers for function c a l l
c2 = 1 ; / / Numbers as var iables
f o r ( i = 0 ; i < c1 ; i ++ ) { / / Create Hilbert matrix

f o r ( j = 0 ; j < c1 ; j ++ ) matrix [ i ] [ j ] = 1 . 0 / ( i + j +1) ;
r e s u l t [ i ] = 1 . / ( i +1) ; / / Create solut ion vector

}
f o r ( i =0 ; i < s i z e ; i ++) { f o r ( j =0 ; j < s i z e ; j ++) help [ j + s i z e ∗ i ] = matrix [ j ] [ i ] ; }
dgesv_(&c1 , &c2 , help , &c1 , pivot , r e s u l t , &c1 , &ok ) ;
f o r ( j =0 ; j < s i z e ; j ++ ) p r i n t f ("%e\n" , r e s u l t [ j ] ) ;

}
�

Notice here that the call to the Fortran subroutine dgesv is made as
� �

dgesv_(&c1 , &c2 , help , &c1 , pivot , r e s u l t , &c1 , &ok )
�

That is, lowercase letters are used and an underscore is added to the subroutine
name. In addition, we convert the matrix A,

� �
f o r ( i =0 ; i < s i z e ; i ++ ) / / Matrix transformation

f o r ( j =0 ; j < s i z e ; j ++ )
help [ j + s i z e ∗ i ] = matrix [ j ] [ i ] ;

�

This changes C’s row-major order to Fortran’s column-major order.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 625

calling LAPACK from C 625

E.2 Compiling C Programs with Fortran Calls

Multilanguage programs are actually created when the compiler links the object
files together. The tricky part is that while Fortran automatically includes its math
library, if your final linking is done with the C compiler, you may have to explicitly
include the Fortran library as well as others. Here we give some examples that have
worked at one time or another on one machine or another; you probably will need
to read the user’s guide and experiment to get this to work with your system:

> cc -O call.c f77sub.o -lm -ldxml DEC extended mathlibe
> cc -O call.c f77sub.o -L/usr/lang/SC0.0 -lF77 Link, SunOS
> cc -O c_fort c_fort.o area_f.o -lxlf Link, AIX
> gcc -Wall call.c /usr/lib/libm.a -o call gcc explicit
> gcc -Wall call.c -lm -o call gcc shorthand version of above

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 626

Appendix F: Software on the CD

JavaCodes Contents by Section

Section Program Description

1.4 AreaScanner Java 1.5 scanner
class

1.4.2 Area First program

1.5.4 Limits Machine precision

1.5.4 ByteLimit Precise machine
precision

2.2.2 Bessel Bessel function
recurrence

3.2 EasyPtPlot Simple use
of PtPlot

3.2 TwoPlotExample Two plots,
one graph

4.4 Complex Complex number
objects

4.4.4 ComplexDyn Dynamic complex
objects

4.6.1 Beats Procedural beats
4.6.1 OOPBeats Objective beats

4.6.2 Moon Procedural moon
orbits

4.6.2 OOPMoon Objective moon
orbits

4.6.2 OOPlanet Objective moon
orbits

5.2.2 RandNum Java random
utility

5.4.2 Walk Random-walk
simulation

5.6 Decay Spontaneous
decay

6.6.3 Int10d 10-D Monte Carlo
integral

Section Program Description

6.2.1 Trap Trapezoid rule
integration

6.2.5 IntegGauss Gaussian quadrature

7.5 Diff Numerical
differentiation

7.9 Bisection Bisection root
finding

7.10 Newton_cd Newton–Raphson
roots

7.10 Newton_fd Newton–Raphson
roots

8.3.3 JamaEigen JAMA eigenvalues

8.3.3 JamaFit JAMA least-squares
fit

8.5.5 SplineAppl Cubic spline fit

8.7.1 Fit Linear least-squares
fit

8.2.2 Newton_Jama2 Newton–Raphson
search

14.14.4 Tune, Tune4 Optimization
testing

9.5.2 rk2, rk4 2nd, 4th O
Runge-Kutta

9.5.2 rk45 Adaptive step
rk solver

9.5.2 ABM Predictor-corrector
solver

9.11 Numerov Quantum bound
states

9.11 QuantumEigen rk quantum bound
states

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 627

software on the CD 627

JavaCodes Contents by Section Continued

Section Program Description

10.4.1 DFT Discrete Fourier
transform

10.6 Filter Autocorrelation
filtering

10.7 Noise Filtering

11.4.2 CWT Continuous
wavelet TF

11.5.2 Scale, Daub4 Generate Daub4
wavelets

G DaubCompress Wavelet compression

G DaubMariana Wavelet image
compression

12.5 Bugs Bifurcation diagram

12.8 LyapLog Lyapunov exponents

12.8.1 Entropy Shannon logistic
entropy

12.19 PredatorPrey Lotka–Volterra model

13.4.1 Film, FilmDim Random deposition

13.9 CellAut, Cellular automata
OutofEight

13.9 LifeGame Game of Life

16.3 MD 1-D MD simulation

17.4.2 LaplaceLine Finite differential
Laplace equation

17.14 LaplaceFEM Finite element
Laplace equation

Section Program Description

17.17.4 EqHeat Heat equation
via leapfrog

17.19.1 HeatCNTridiag Crank–Nicolson
heat equation

18.2.3 EqString Waves on a string

18.4.3 CatString/Friction Catenary waves
CPI TwoDsol 2-D, Sine–Gordon

solitons

18.6.2 SqWell, Harmos Quantum wave
packets

18.6.2 Slit Wave packet
through slit

19.9.3 Beam 2-D Navier–Stokes
fluid

19.1 AdvecLax Advection

19.3.1 Shock Shock waves

19.5 SolCross Solitary waves
crossing

19.5.3 Soliton KdeV solitons

20.2.3 Bound Bound integral
equation

20.4.5 Scatt Scattering integral
equation

15.2 Ising, Ising3D Ising model

15.8.3 QMC Feynman path
integration

15.9 QMCbouncer Quantum bouncer

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 628

628 appendix e

JavaCodes Contents by Name

Program Section Description

ABM 9.5.2 Predictor-corrector
solver

AdvecLax 19.1 Advection

Area 1.4.2 First program

AreaScanner 1.4 Java 1.5 scanner
class

Beam 19.9.3 2-D Navier–Stokes
fluid

Beats 4.6.1 Procedural beats

Bessel 2.2.2 Bessel function
recurrence

Bisection 7.9 Bisection root
finding

Bound 20.2.3 Bound integral
equation

Bugs 12.5 Bifurcation diagram

ByteLimit 1.5.4 Precise machine
precision

CatString/Friction 18.4.3 Catenary waves

CellAut 13.9 Cellular automata

Complex 4.4 Complex number
objects

ComplexDyn 4.4.4 Dynamic complex
objects

CWT 11.4.2 Continuous
wavelet TF

DaubCompress G Wavelet compression

DaubMariana G Wavelet image
compression

Daub4 11.5.2 Generate Daub4
wavelets

Decay 5.6 Spontaneous decay

DFT 10.4.1 Discrete Fourier
transform

Diff 7.5 Numerical
differentiation

EasyPtPlot 3.2 Simple use of PtPlot

Program Section Description

Entropy 12.8.1 Shannon logistic
entropy

EqHeat 17.17.4 Heat equation
via leapfrog

EqString 18.2.3 Waves on a string

Film, FilmDim 13.4.1 Random deposition

Filter 10.6 Autocorrelation
filtering

Fit 8.7.1 Linear
least–squares fit

HeatCNTridiag 17.19.1 Crank–Nicolson
heat equation

IntegGauss 6.2.5 Gaussian quadrature

Int10d 6.6.3 10-D Monte Carlo
integral

Ising, Ising3D 15.2 Ising model

JamaEigen 8.3.3 JAMA eigenvalues

JamaFit 8.3.3 JAMA Least-square
fit

LaplaceFEM 17.14 Finite element
Laplace equation

LaplaceLine 17.4.2 Finite differential
Laplace equation

LifeGame 13.9 Game of Life

Limits 1.5.4 Machine precision

LyapLog 12.8 Lyapunov exponents

MD 16.3 1-D MD simulation

Moon 4.6.2 Procedural moon
orbits

Newton_cd 7.10 Newton–Raphson
roots

Newton_fd 7.10 Newton–Raphson
roots

Newton_Jama2 8.2.2 Newton–Raphson
search

Noise 10.7 Filtering

Numerov 9.11 Quantum bound
states

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 629

software on the CD 629

JavaCodes Contents by Name Continued

Program Section Description

OOPBeats 4.6.1 Objective beats

OOPMoon 4.6.2 Objective moon
orbits

OOPlanet 4.6.2 Objective moon
orbits

OutofEight 13.9 Cellular
automata

objects

RandNum 5.2.2 Java random
utility

PredatorPrey 12.19 Lotka–Volterra
model

QMC 15.8.3 Feynman path
integration

QMCbouncer 15.9 Quantum
bouncer

QuantumEigen 9.11 rk quantum
bound

states

rk2, rk4 9.5.2 2nd- and
4th-order

Runge–Kutta

rk45 9.5.2 Adaptive step rk
solver

Scale 11.5.2 Generate Daub4
wavelets

Program Section Description

Scatt 20.4.5 Scattering
integral

equation

Shock 19.3.1 Shock waves

Slit 18.6.2 Wave packet
through slit

SolCross 19.5 Solitary waves
crossing

Soliton 19.5.3 KdeV solitons

SplineAppl 8.5.5 Cubic spline fit

SqWell, Harmos 18.6.2 Quantum wave
packets

Trap 6.2.1 Trapezoid rule
integration

Tune, Tune4 14.14.4 Optimization
testing

TwoDsol CPI 2-D,
Sine-Gordon

solitons

TwoPlotExample 3.2 More involved
PtPlot

Walk 5.4.2 Random walk
simulation

Animations Contents
(requires player VLC or QuickTime for mpeg, avi; browser for gifs)

Directory Chapter Directory Chapter

DoublePendulum (also two pendulums; 12 Fractals (see also applets) 13
see also applets)

MapleWaveMovie (need Maple; 18 Laplace (DX movie) 17
includes source files)

MD 16 TwoSlits (includes DX source files) 18

2-Dsoliton (includes DX source files) 18, 19 Utilities (scripts, colormaps) 3

Waves (animated gifs need browser) 18

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 630

630 appendix e

Ccodes Contents by Name

Program Section Description Program Section Description

accm2d.cpp 4.11 OOP example int_10d.c 6.6.3 10-D Monte Carlo
integral

AdvecLax.c 19.1 Advection invfour.c 10.4.1 Inverse Fourier
transform

area.c 1.4.2 First program ising.c 15.2 Ising model

Beam.c 19.9.3 2-D Navier–Stokes laplace.c 17.4.2 Finite differential
fluid Laplace equation

bessel.c 2.2.2 Bessel function laplaceAnal.c 17.4.2 Analytic solution for
recurrence Laplace equation

bound.c 20.2.3 Bound integral LaplaceSOR.c 17.4.2 Finite differential
equation Laplace equation

bugs.c 12.5 Bifurcation diagram limit.c 1.5.4 Machine precision

call.c 5.2.2 Calls random lineq.c 8.3.3 Linear equations
numbers as matrices

column.c 13.4.1 Fractal deposition MD1D.c 16.3 1-D MD simulation

CWT3.c 11.4.2 Continuous numerov.c 9.11 Quantum bound
wavelet TF states

Daub4.c 11.4.2 Discrete wavelet TF over.c 1.5.4 Overflow limits

Daub4Compress.c 11.4.2 Discrete wavelet TF pond.c 6.5 Monte Carlo
integration

decay.c 5.6 Spontaneous decay qmc.c 15.8.3 Feynman path
integration

diff.c 7.5 Numerical random.c 5.2.2 Java random
differentiation utility

dla.c 13.7.1 Diffusion–limited rk4.c 9.5.2 2nd- and 4th-order
agregation Runge–Kutta

eqheat.c 17.17.4 Heat equation via rk45.c 9.5.2 Adaptive step rk
leapfrog solver

eqstring.c 18.2.3 Waves on a string shms.cpp 4.11 OOP example

exp-bad.c 1.6 Summing series Shock.c 19.3.1 Shock waves

exp-good.c 1.6 Summing series sierpin.c 13.2 Sierpiński gasket

fern.c 13.3.2 Fractal fern soliton.c 19.5.3 KdeV solitons

film.c 13.4.1 Random deposition SplineAppl.c 8.5.5 Cubic spline fit

fit.c 8.7.1 Linear least-squares tree.c 13.3.3 Fractal tree
fit

fourier.c 10.4.1 Discrete Fourier twodsol.c CPI 2-D, Sine–Gordon
transform solitons

gauss.c 6.2.5 Gaussian quadrature unim1d.cpp 4.11 OOP example

HeatCNTridiag.c 17.19.1 Crank–Nicolson heat unimot2d.cpp 4.11 OOP example
equation

integ.c 6.2.5 Integration walk.c 5.4.2 Random-walk
simulation

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 631

software on the CD 631

Applets Directory Contents
(see index.html; requires browser or Java appletviewer)

Applet Chapter Applet Chapter

The chaotic pendulum 12 Four-centers chaotic scattering 12

Planetary orbits 9 Waves on a string, normal mode 18

Cellular automata for Sierpiński 13 Solitons 18

Spline interpolation 8 Relativistic scattering —

Lagrange interpolation 8 Young’s two slit interference 18

Wavelet compression 11 Starbrite (H-R diagram) —

HearData: a sound player for data — Photoelectric effect —

Visualizing physics with Sound — Create Lissajous figures —

Wavepacket-wavepacket collision movies 18 Heat equation 17

Coping with Unix — Wave function (SqWell ), (HarmOs) 18

Wave function (Asym), (PotBarrier) 18 Fractals (Sierpiński) (fern) (tree) 13

Fractals (film) (column) (dla) 13 Feynman path integrals 15

Fortran95codes Contents by Name

Program Section Description

AdvecLax.f95 19.1 Advection

BeamFlow.f95 19.9.3 2-D Navier–Stokes
fluid

bessel.f95 2.2.2 Bessel function
recurrence

CWTRHL.f95 11.4.2 Continuous
wavelet TF

DAUB4.f95 G Wavelet compression

decay.f95 5.6 Spontaneous decay

diff.f95 7.5 Numerical
differentiation

eqheat.f95 17.17.4 Heat equation
via leapfrog

eqstring.f95 18.2.3 Waves on a string

exp-bad.f95 1.6 Series summation

Program Section Description

exp-good.f95 1.6 Series summation

fit.f95 8.7.1 Linear least–squares
fit

harmos.f95 18.6.2 Quantum wave
packets

HeatCNTridiag.f9517.19.1 Crank–Nicolson
heat equation

int10d.f95 6.6.3 10-D Monte Carlo
integral

integ.f95 6.2.5 Gaussian quadrature

Ising3D.f95 15.2 Ising model

lagrange.f95 8.5.1 Lagrange
interpolation

LaplaceSOR.f95 17.4.2 Finite differential
Laplace equation

limit.f95 1.5.4 Machine precision

(continued)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 632

632 appendix e

Fortran95codes Contents by Name (continued)

Program Section Description

MDrhl.f95 16.3 1-D MD simulation

Newton_cd.f95 7.10 Newton–Raphson
roots

Newton_fd.f95 7.10 Newton–Raphson
roots

overflow.f95 1.5.4 Machine precision

pond.f95 6.5 Monte Carlo
integration

qmc.f95 15.8.3 Feynman path
integration

random.f95 5.2.2 Java random
utility

rk4.f95 9.5.2 4th-order
Runge–Kutta

rk45.f95 9.5.2 Adaptive step rk
solver

Program Section Description

scatt.f95 20.4.5 Scattering integral
equation

shock.f95 19.3.1 Shock waves

slit.f95 18.6.2 Wave packet
through slit

soliton.f95 19.5.3 KdeV solitons

Spline.f95 8.5.5 Cubic spline fit

sqwell.f95 18.6.2 Quantum wave
packets

tune.f95 14.14.4 Optimization
testing

twodsol.f95 CPI 2-D Sine–Gordon
solitons

twoplates.f95 19.9.3 2-D Navier–Stokes
fluid

walk.f95 5.4.2 Random-walk
simulation

MPIcodes Contents

Program Description Program Description

MPIhello.c First MPI program MPIdeadlock.c Deadlock examples

MPIdeadlock-fixed.c Fixed deadlocks MPImessage2.c Send and receive messages

MPImessage3.c More messages MPIpi.c Parallel computation of π

MPIstring.c Parallel string equation run_mpi.sh Template script for grid engine

TuneMPI.c Optimization tuning for MPI

Fortran77codes Contents by Name

Program Section Description

area.f 1.4.2 First program

bessel.f 2.2.2 Bessel function
recurrence

bound.f 20.2.3 Bound integral
equation

bugs.f 12.5 Bifurcation diagram

complex.f 4.4 Complex number
objects

Program Section Description

decay.f 5.6 Spontaneous decay

diff.f 7.5 Numerical
differentiation

eqheat.f 17.17.4 Heat equation
via leapfrog

eqstring.f 18.2.3 Waves on a string

exp-bad.f 1.6 Series summation

(continued)

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 633

software on the CD 633

Fortran77codes Contents by Name (continued)

Program Section Description

exp-good.f 1.6 Series summation

fit.f 8.7.1 Linear least–
squares fit

fourier.f 10.4.1 Discrete Fourier
transform

gauss.f 6.2.5 Gaussian quadrature
harmos.f 18.6.2 Quantum wave

packets
int10d.f 6.6.3 10-D Monte Carlo

integral
integ.f 6.2.5 Gaussian quadrature
ising.f 15.2 Ising model

lagrange.f 8.5.1 Lagrange
interpolation

laplace.f 17.4.2 Finite differential
Laplace equation

limit.f 1.5.4 Machine precision

over.f 1.5.4 Machine precision

pond.f 6.5 Monte Carlo
integration

Program Section Description

qmc.f 15.8.3 Feynman path
integration

random.f 5.2.2 Java random
utility

rk4.f 9.5.2 4th-order
Runge–Kutta

scatt.f 20.4.5 Scattering integral
equation

slit.f 18.6.2 Wave packet
through slit

soliton.f 19.5.3 KdeV solitons
spline.f 8.5.5 Cubic spline fit
sqwell.f 18.6.2 Quantum wave

packets

twodsol.f CPI 2-D Sine–Gordon
solitons

walk.f 5.4.2 Random-walk
simulation

PVMcodes Contents

Program Description Program Description

bugs.f Serial bifurcation input Simple input file
mapping

Makefile Makefile for master/ PVMbugsMaster.c Bifurcation master (C)
worker program

PVMbugsMaster.f Bifurcation master PVMbugsSlave.c Bifurcation worker (C)
(Fortran)

PVMbugsSlave.f Bifurcation worker PVMcommunMaster.c Communications master
(Fortran)

PVMcommunSlave.c Communications worker PVMmonteMaster.c Monte Carlo integration
master

PVMmonteSlave1.c Monte Carlo integration PVMmonteSlave2.c Monte Carlo integration
worker 1 worker 2

PVMmonteSlave3.c Monte Carlo integration PVMmonteSlave4.c Monte Carlo integration
worker 4 worker 4

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 634

634 appendix e

OpenDX Contents

Color DX Figures

DXdata

.DS_Store custom_linear_plot.cfg custom_linear_plot.net custom_linear_plot2.cfg

custom_linear_plot2.net H_atom_prob_density-3D0.dat laplace-colormap.cm laplace_3d.cfg

H_atom_prob_density-3P1.general H_atom_prob_density.cfg H_atom_prob_density.cm H_atom_prob_density.net

H_atom_prob_density-3D0.general laplace.cfg laplace.net laplace3d-colormap.cm

laplace_3d-rings.dat laplace_3d-rings.general shock.dat laplace_3d.dat

laplace_3d.general laplace_3d.net laplace_dx.dat laplace_dx.general

shock.cfg H_atom_prob_density-3P1.dat shock.general shock.net

simple_linear_data.dat simple_linear_data.general simple_linear_plot.cfg simple_linear_plot.net

DXjava

.DS_store H_atom_wf.java laplace.java laplace_3d.java

laplace_3d_v1.java laplace_circular.java simple_2d_data.java simple_linear_data.java

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 635

Appendix G: Compression via DWT
with Thresholding

An important application of discrete wavelet transformation is image compression.
Anyone who has stored high-resolution digital images or videos knows that such
files can be very large. DWT can reduce image size significantly with just a minimal
loss of quality by storing only a small number of smooth components and only
as many detailed components as needed for a fixed resolution. To compress an
image, we compute and store the DWT of each row of the image, setting all wavelet
coefficients smaller than a certain threshold to zero (thresholding). When the image is
needed, the inverse wavelet transform is used to reconstruct each row of the original
image. For example, Table G.1 shows file sizes resulting from using DWT for image
compression. We note (columns 1 and 2) that there is a factor-of-2 reduction in
size arising from storing the DWT rather than the data themselves, and that this is
independent of the threshold criteria (it still stores the zeros). After the compression
program WinZip removes the zeros (columns 3 and 4), we note that the DWT file is
a factor of 3 smaller than the compressed original, and a factor of 11 smaller than
the noncompressed original.

A usual first step in dealing with digital images is to convert from one picture
format to another.1 We started with a 3073 × 2304 pixel (picture element) jpg (Joint
Photographic Experts Group) color image. For our example (Figure G.1 left) we
reduced the image size to 512 × 512 (a power of 2) and converted it to gray scale. You
can do this with the free program IrfanView [irfanview] (Windows), the GNU image
editor The Gimp (Unix/Linux) [Gimp], or Netpbm [Netpbm]. We used Netpbm’s
utility jpegtopnm to convert the .jpg to the portable gray map image in Netpbm
format:

> jpegtopnm marianabw.jpg > mariana.pnm Convert jpeg to pnm

If you open mariana.pnm (available on the CD), you will find strings such as C D

P5

512 512

255

yvttsojgrvv|yngcawbRQ] . . .

This format is not easy to work with, so we converted it to mariana,

> pnmtopnm -plain mariana.pnm>mariana Convert pnm format to integers

Except for the first three lines that contain information about the internal code
(width, height, 0 for black, and 255 for white), we now have integers:

1 We thank Guillermo Avendanño-Franco for help with image programs.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 636

636 appendix e

TABLE G.1
Compression of a Data File Using DWT with a 20% Cutoff Threshold

Original File DWT Reconstructed WinZipped Original WinZipped DWT

25,749 11,373 7,181 2,447

Figure G.1 Left: The original picture of Mariana. Middle: The reconstituted picture for a

compression ratio of 8 (ε= 9). Right: The reconstituted picture for a compression ratio of 46

(ε= 50). The black dots in the images are called “salt and pepper" and can be eliminated.

� �
P2
512 512
255
143 174 209 235 249 250 250 255 255 255 255 255 255 255 255 255 255
255 255 255 255 254 253 253 254 254 255 255 255 255 255 255 255 255
. . .

�

Because Java is not very flexible with I/O formats, we wrote a small C program to
convert mariana to the one-column format mariana.dat:

� �
# include < s t r i n g . h>
# include < s t d l i b . h>

/ / Reads mariana . dat in decimal a s c i i , form 1−column mariana . dat
main ( ) {

i n t i , j , k ;
c h a r cd [ 1 0 ] , c ;
FILE ∗pf , ∗pout ;
pf=fopen ("mariana" , "r" ) ;
pout=fopen ("mariana .dat" ,"w" ) ;
f s c a n f ( pf ,"%s",&cd ) ; p r i n t f ("%s\n" , cd ) ;
f s c a n f ( pf ,"%s",&cd ) ; p r i n t f ("%s\n" , cd ) ;
f s c a n f ( pf ,"%s",&cd ) ; p r i n t f ("%s\n" , cd ) ;
f s c a n f ( pf ,"%s",&cd ) ; p r i n t f ("%s\n" , cd ) ;
f o r ( k = 0 ; k < 5 1 2 ; k++ ) {

f o r ( j = 0 ; j < 5 1 2 ; j ++ ) f s c a n f ( pf ,"%d",& i ) ; f p r i n t f ( pout ,"%d\n" , i ) ;
}
f c l o s e ( pf ) ; f c l o s e ( pout ) ;

}
�

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 637

compression via DWT with thresholding 637

Now that we have an accessible file format, we compress and expand it:

1. Read the one-column file and form the array fg[512][512] containing all the
information about the image.

2. Use the program DaubMariana.java on the CD to apply the Daubechies
4-wavelet transform to each row of fg. This forms a new 2-D array containing
the transformed matrix.

3. Use DaubMariana.java again, now transforming each column of the trans-
formed matrix and saving the result in a different array.

4. Compress the image by selecting the tolerance level eps=9 and eliminating
all signals that are smaller than eps:
if abs(fg[i][j]) < eps, fg[i][j]=0

5. Apply the inverse wavelet transform to the modified array, column by column
and then row by row.

6. Save the reconstituted image to Marianarec via output redirection:
> java DaubMariana > Marianarec

7. The program also creates the file comp-info.dat containing information about
the compression:

� �
Number of nonzero c o e f s before compression : 262136
I f abs ( coef ) <9 coef =0
Number of nonzero c o e f f i c i e n t s a f t e r compression : 32753
Compression r a t i o :8 .003419534088481

�

If the program is compiled and run again, the resulting output will contain
the compression image in a file with many zeros:

� �
P2
512 512
255
143 1543 2296 −405 594 −311 50 68 444 −375 0 20 0 274 −138 423

371 −19 −51 −100 24 0 118 120 62 −59 404 −111 61 −82 306 −255
204 0 81 −60 0 −29 83 −214 55 −12 −34 24 −32 46 −37 29 −14 45 47
. . .
0 0 0 0 0 0 16 −24 0 0 0 −13 0 −32 0 0 0 0 0 9 −29 28 −21 13
0 −11 0 18 9 −18 0 −11 11 0 0 0 0 0 10 −20 0 0 0 0 −11 0 0
0 0 0 0 0 27 −29 0 −18 0 21 24 −54 15 0 0 0 0 0 0 0 0 0 0 0
−12 9 −9 9 0 19 0 0 0 0 0 0 −9 0 0 0 0 0 0 0 72 −53 0 0 0 0
0 0 44 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −12 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −19 0 11 0 −18
. . .

�

Although this is an image file, it is not meant for viewing as an image (it will
be mainly black).

G.1 More on Thresholding

Often in practical applications, a good number of the wavelet coefficients are nearly
equal to zero. When these coefficients are set to zero via some thresholding scheme

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 638

638 appendix e

[D&J 94], DWT files containing long strings of zeros result. Through a type of com-
pression known as entropy coding, the amount of memory needed to store files of
this sort can be greatly reduced.

Before we go on to compression algorithms, it is important to note that there are
different types of thresholding. In hard thresholding, a rather arbitrary tolerance is
selected, and any wavelet coefficient whose absolute value is below this tolerance
is set to zero. Presumably, these small numbers have only small effects on the
image. In soft thresholding, a tolerance h is selected, and, as before, any wavelet
coefficient whose absolute value is below this tolerance is set to zero. However, all
other entries d are replaced with sign(d) | |d| −h|. Soft thresholding can be thought
of as a translation of the signal toward zero by the amount h. Finally, in quantile
thresholding, a percentage p of entries are selected, and p percent of those entries
with the smallest absolute values are set to zero.

DWT with thresholding is useful in analyzing signals and for compressing sig-
nals so that less memory is needed to store the transforms than to store the original
signals. However, we have yet to take advantage of the frequent occurrence of zeros
as wavelet coefficients. Huffman entropy coding is well suited for compressing data
that contain many zeros. With this method, an integer sequence q is changed to a
shorter sequence e that is stored as 8-bit integers. Strings of zeros are coded by the
numbers 1–100, 105, and 106, while nonzero integers in q are coded by 101–104 and
107–254. The idea is to use two or three numbers for coding, with the first being
a signal that a large number or a long zero sequence is coming. Entropy coding is
designed so that the numbers that are expected to appear the most often in q need
the least amount of space in e.

A step in compression, known as quantization, converts a sequencew of floating-
point numbers to a sequence q of integers. The simplest technique is to round the
floats to the nearest integer. Another option is to multiply each number in w by
a constant k and then round to the nearest integer. Quantization is called lossy
because information is lost when a float is converted to an integer. In Table G.1 we
showed the effect of compression using the WinZip data compression algorithm.
This is a hybrid of LZ77 and Huffman coding also known as Deflate.

G.2 Wavelet Implementation and Assessment

1. Write a program to plot Daub4 wavelets. (Our sample program is Daub4.java.)
Observe the behavior of the wavelet functions for different values of the
coefficients. In order to do this, place a 1 in the coefficient vector for the
wavelet structure you want and place 0’s in all other locations. Then perform
the inverse transform to produce the physical domain representation of the
wavelet.

2. Run the code Daub4.java for different threshold values.
3. Run the code DaubCompress.java that uses other functions to give input data.
4. Write a Java program or applet that compresses a512 × 512 image using Daub4

wavelets. To do this, extend method wt1 so that it performs a 2-D wavelet
transform. Note that you may need some methods from the java.awt.image

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 639

compression via DWT with thresholding 639

package to plot the images. First, create an Image object using Image img. The
MemoryImageSource class is used to create an image from an array of pixel
values using the constructor MemoryImageSource(int w, int h, int pix[ ], int
depls, int scan). Here w and h are the dimensions of the image, pix[ ] is
an array containing the pixels values, depls is the deployment of data in
pix[ ], and scan is the length of a row in pix[ ]. Finally, draw the image using
drawImage(Image img, int x, int y, this), where x and y are the coordinates
of the left corner of the image. Alternatively, you can use a program such as
Matlab or Maple to display images from an array of integers.

5. Modify the program DaubCompress.java so that it outputs the DWT to a file.
6. Pick a different function to analyze, the more complicated the better.
7. Plot the resulting DWT data in a meaningful way.
8. Show in your plots the effects of increasing the threshold parameter in order

to cut out more of the smaller transform values.
9. Examine the reconstituted signal for various threshold values including zero

and note the effect of the cutoff on the image quality.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 640

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 641

B IBL IOGRAPHY

[Abar 93] Abarbanel, H. D. I., M. I. Rabinovich, and M. M. Sushchik (1993).
Introduction to Nonlinear Dynamics for Physicists, World Scientific, Singapore.

[A&S 72] Abramowitz, M., and I. A. Stegun (1972). Handbook of Mathematical
Functions, 10th Ed., U.S. Government Prnting Office, Washington, DC.

[Add 02] Addison, P. S. (2002). The Illustrated Wavelet Transform Handbook, Institute
of Physics Publishing, Bristol and Philadelphia, PA.

[ALCMD] Morris, J., D. Turner, and K.-M. Ho. AL_CMD, Ames Laboratory Classical
Molecular Dynamics, cmp.ameslab.gov/cmp/CMP_Theory/cmd/alcmd_source.html.

[A&T 87] Allan, M. P., and J. P. Tildesley (1987). Computer Simulations of Liquids,
Oxford Science Publications, Oxford, UK.

[Amd 67] Amdahl, G. (1967). Validity of the single-processor approach to achieving
large-scale computing capabilities, Proc. AFIPS., 30, 483.

[Anc 02] Ancona, M. G. (2002). Computational Methods for Applied Science and
Engineering, Rinton Press, Princeton, NJ.

[A&W 01] Arfken, G. B., and H. J. Weber (2001). Mathematical Methods for Physicists,
Harcourt/Academic Press, San Diego.

[Argy 91] Argyris, J., M. Haase, and J. C. Heinrich (1991). Finite element approximation
to two-dimensional Sine–Gordon solitons, Comput. Methods Appl. Mech. Eng. 86, 1.

[Arm 91] Armin, B., and H. Shlomo, Eds. (1991). Fractals and Disordered Systems,
Springer-Verlag, Berlin.

[Ask 77] Askar, A., and A. S. Cakmak (1977). Explicit integration method for the
time-dependent Schrödinger equation for collision problems, J. Chem. Phys. 68, 2794.

[Bai 05] Bailey, M. OSU ChromaDepth Scientific Visualization Gallery,
web.engr.oregonstate.edu/˜mjb/chromadepth/.

[Bana 99] Banacloche, J. G. (1999). A quantum bouncing ball, Am. J. Phys. 67, 776.
[Barns 93] Barnsley, M. F., and L. P. Hurd (1993). Fractal Image Compression, A. K.

Peters, Wellesley, MA.
[Becker 54] Becker, R. A. (1954). Introduction to Theoretical Mechanics, McGraw-Hill,

New York.
[Berry] Berryman, A. A. Predator-Prey Dynamics, classes.entom.wsu.edu/543/.
[B&R 02] Bevington, P. R., and D. K. Robinson (2002). Data Reduction and Error

Analysis for the Physical Sciences, 3rd Ed., McGraw-Hill, New York.
[Bin 01] Binder, K., and D. W. Heermann (2001). Monte Carlo Methods,

Springer-Verlag, Berlin.
[Bleh 90] Bleher, S., C. Grebogi, and E. Ott (1990). Bifurcations in chaotic scattering,

Phys. D, 46, 87.
[Burg 74] Burgers, J. M. (1974). The Non-Linear Diffusion Equation: Asymptotic

Solutions and Statistical Problems, Reidel, Boston.
[DX2] Braun, J. R. Ford, and D. Thompson (2001). OpenDX: Paths to Visualization,

Visualization and Imagery Solutions, Missoula, MT.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 642

642 bibliography

[B&H 95] Briggs, W. L., and V. E. Henson (1995). The DFT: An Owner’s Manual,
SIAM, Philadelphia.

[C&P 85] R. Car, and M. Parrinello (1985). Unified approach for molecular dynamics and
density-functional theory, Phys. Rev. Lett. 55, 2471.

[C&P 88] Carrier, G. F., and C. E. Pearson (1988). Partial Differential Equations,
Academic Press, San Diego.

[C&L 81] Christiansen, P. L., and P. S. Lomdahl (1981). Numerical solutions of 2 + 1
dimensional Sine–Gordon solitons Phys. 2D, 482.

[CPUG] CPUG, Computational physics degree program for undergraduates, Oregon
State University, www.physics.oregonstate.edu/CPUG.

[C&N 47] Crank, J., and P. Nicolson (1946). A practical method for numerical
evaluation of solutions of partial differential equations of the heat conduction type, Proc.
Cambridge Phil. Soc. 43, 50.

[C&O 78] Christiansen, P. L., and O. H. Olsen (1978). Ring-shaped quasi-soliton
solutions to the two- and three-dimensional Sine–Gordon equation, Phys. Lett. 68A, 185;
(1979) Phys. Scr. 20, 531.

[Chrom] ChromaDepth Technologies, www.chromatek.com/.
[Clark] Clark University, Statistical and Thermal Physics Curriculum Development

Project, stp.clarku.edu/; Density of States of the 2D Ising Model,
stp.clarku.edu/simulations/ising/wanglandau.html.

[Co 65] Cooley, J. W., and J. W. Tukey, (1965). An algorithm for the machine calculation of
complex Fourier series, Math. Comput. 19, 297.

[Cour 28] Courant, R., K. Friedrichs, and H. Lewy (1928). Über die partiellen
Differenzengleichungen der mathematischen Physik, Math. Ann. 100, 32.

[Cre 81] Creutz, M., and B. Freedman (1981). A statistical approach to quantum
mechanics, Ann. Phys. (N.Y.) 132, 427.

[CYG] Cygwin, a Linux-like environment for Windows, x.cygwin.com/.
[Da 42] Danielson, G. C., and C. Lanczos (1942). Some improvements in practical

Fourier analysis and their application to X-ray scattering from liquids, J. Franklin Inst.
233, 365.

[Daub 95] Daubechies, I. (1995). Wavelets and other phase domain localization methods,
Proc. Int. Cong. Math. Basel, 1, 2 56, Birkhäuser.

[DeJ 92] De Jong, M. L. (1992). Chaos and the simple pendulum, Phys. Teacher 30, 115.
[DeV 95] DeVries, P. L. (1996). Resource letter CP-1: Computational Physics, Am. J.

Phys. 64, 364.
[Dong 05] Dongarra, J., T. Sterling, H. Simon, and E. Strohmaier (2005).

High-performance computing, IEEE/AIP Comput. Sci. Eng. 7, 51.
[Donn 05] Donnelly, D., and B. Rust (2005). The fast Fourier transform for

experimentalists, IEEE/AIP Comput. Sci. Eng. 7, 71.
[D&J 94] Donoho, D. L., and I. M. Johnstone (1994). Ideal denoising in an orthonormal

basis chosen from a library of bases, Compt. Rend. Acad. Sci. Paris Ser. A, 319, 1317.
[DX1] Dx, Open DX, The open source software project based on IBM’s Visualization

Data Explorer, www.opendx.org/.
[Jtut] Eck, D., (2002), Introduction to Programming Using Java, Version 4 (a free

textbook), math.hws.edu/javanotes/.
[Eclipse] Eclipse, an open development platform, www.eclipse.org/.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 643

bibliography 643

[Erco] Ercolessi, F., A Molecular Dynamics Primer, www.ud.infn.it/˜ercolessi/md/.
[E&P 88] Eugene, S. H., and M. Paul (1988). Multifractal phenomena in physics and

chemistry, Nature 335, 405.
[F&S] Falkovich, G., and K. R. Sreenivasan (2006). Lesson from hydrodynamic

turbulence, Phys. Today 59, 43.
[Fam 85] Family, F., and T. Vicsek (1985). Scaling of the active zone in the Eden process

on percolation networks and the ballistic deposition model, J. Phys. A 18, L75.
[Feig 79] Feigenbaum, M. J. (1979). The universal metric properties of nonlinear

transformations, J. Stat. Phys. 21, 669.
[F&W 80] Fetter, A. L., and J. D. Walecka (1980). Theoretical Mechanics of Particles and

Continua, McGraw-Hill, New York.
[F&H 65] Feynman, R. P., and A. R. Hibbs (1965). Quantum Mechanics and Path

Integrals, McGraw-Hill, New York.
[Fitz 04] Fitzgerald, R. (2004). New experiments set the scale for the onset of turbulence in

pipe flow, Phys. Today 57, 21.
[Fos 96] Fosdick L. D, E. R. Jessup, C. J. C. Schauble, and G. Domik (1996). An

Introduction to High Performance Scientific Computing, MIT Press, Cambridge, MA.
[Fox 03] Fox, G. (2003). HPJava: A data parallel programming alternative, IEEE/AIP

Comput. Sci, Eng. 5, 60.
[Fox 94] Fox, G. (1994). Parallel Computing Works! Morgan Kaufmann, San Diego.
[Gara 05] Gara, A., M. A. Blumrich, D. Chen, G. L.-T. Chiu, P. Coteus, M. E.

Giampapa, R. A. Haring, P. Heidelberger, D. Hoenicke, G. V. Kopcsay, T. A. Liebsch,
M. Ohmacht, B. D. Steinmacher-Burow, T. Takken, and P. Vranas, Overview of the
Blue Gene/L system architecure (2005). IBM J. Res. Dev. 49, 195.

[Gar 00] Garcia, A. L. (2000). Numerical Methods for Physics, 2nd Ed., Prentice Hall,
Upper Saddle River, NJ.

[Gibbs 75] Gibbs, R. L. (1975). The quantum bouncer, Am. J. Phys. 43, 25–28.
[Good 92] Goodings, D. A., and T. Szeredi (1992), The quantum bouncer by the path

integral method, Am. J. Phys. 59, 924–930.
[Gimp] GIMP, the GNU image manipulation program, www.gimp.org/.
[GNU] Gnuplot, a portable command-line driven interactive data and function

plotting utility, www.gnuplot.info/.
[Gold 67] Goldberg, A., H. M. Schey, and J. L. Schwartz (1967). Computer-generated

motion pictures of one-dimensional quantum-mechanical transmission and reflection
phenomena, Am. J. Phys. 35, 177.

[Gos 99] Goswani, J. C., and A. K. Chan (1999). Fundamentals of Wavelets, John Wiley,
New York.

[Gott 66] Gottfried, K. (1966), Quantum Mechanics, Benjamin, New York.
[G,T&C 06] Gould, H., J. Tobochnik, and W. Christian (2006). An Introduction to

Computer Simulation Methods, 3rd Ed., Addison-Wesley, Reading, MA.
[Grace] Grace; A WYSIWYG 2D plotting tool for the X Window System (descendant

of ACE/gr, Xmgr), plasma-gate.weizmann.ac.il/Grace/.
[Graps 95] Graps, A. (1995). An introduction to wavelets, IEEE/AIP Comput. Sci. Eng.

2, 50.
[BCCD] Gray, P., and T. Murphy (2006). Something wonderful this way comes, Comput.

Sci. Eng. 8, 82; bccd.cs.uni.edu/.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 644

644 bibliography

[Gurney] Gurney, W. S. C., and R. M. Nisbet (1998). Ecological Dynamics, Oxford
University Press, Oxford, UK.

[H&T 70] Haftel, M. I., and F. Tabakin (1970). Off-shell effects in nuclear matter, Nucl.
Phys. 158, 1.

[Har 96] Hardwich, J. Rules for Optimization, www.cs.cmu.edu/˜jch/java.

[Hart 98] Hartmann, W. M. (1998). Signals, Sound, and Sensation, AIP Press,
Springer-Verlag, New York.

[Hi,76] Higgins, R. J. (1976). Fast Fourier transform: An introduction with some
minicomputer experiments, Am. J. Phys. 44, 766.

[Hock 88] Hockney, R.W., and J. W. Eastwood (1988). Computer Simulation Using
Particles, Adam Hilger, Bristol, UK.

[Huang 87] Hunag, K. (1987). Statistical Mechanics, John Wiley, New York.
[Intel] Intel Cluster Tools, www3.intel.com/cd/software/products/asmo-na/

eng/cluster/244171.htm; Intel Compilers, www3.intel.com/cd/
software/products/asmo-na/eng/compilers/284264.htm.

[irfanview] irfanview, www.irfanview.com/.
[Jack 88] Jackson, J. D. (1988). Classical Electrodynamics, 3rd Ed., John Wiley, New

York.
[Jama] JAMA, a Java matrix package; Java Numerics, math.nist.gov/

javanumerics/jama/.
[J&S 98] José, J. V, and E. J. Salatan (1988). Classical Dynamics, Cambridge University

Press, Cambridge, UK.
[jEdit] jEdit, a mature programmer’s text editor, www.jedit.org/.
[K&R 88] Kernighan, B., and D. Ritchie (1988). The C Programming Language, 2nd

Ed., Prentice Hall, Englewood Cliffs, NJ.
[Koon 86] Koonin, S. E. (1986). Computational Physics, Benjamin, Menlo Park, CA.
[KdeV 95] Korteweg, D. J., and G. deVries (1895). On the change of form of long waves

advancing in a rectangular canal, and on a new type of long stationary waves, Phil. Mag.
39, 4.

[Krey 98] Kreyszig, E. (1998). Advanced Engineering Mathematics, 8th Ed., John Wiley,
New York.

[Kutz] Kutz N., Scientific Computing, www.amath.washington.edu/
courses/581-autumn-2003/.

[Lamb 93] Lamb, H. (1993). Hydrodynamics, 6th Ed., Cambridge University Press,
Cambridge, UK.

[L&L,F 87] Landau, L. D., and E. M. Lifshitz (1987). Fluid Mechanics, 2nd Ed.,
Butterworth-Heinemann, Oxford, UK.

[L&L,M 76] Landau, L. D., and E. M. Lifshitz (1976). Quantum Mechanics,
Pergamon, Oxford, UK.

[L&L,M 77] Landau, L. D., and E. M. Lifshitz (1976). Mechanics, 3rd Ed.,
Butterworth-Heinemann, Oxford, UK.

[L 05] Landau, R. H. (2005), A First Course in Scientific Computing, Princeton
University Press, Princeton, NJ.

[L 96] Landau, R. H. (1996). Quantum Mechanics II: A Second Course in Quantum
Theory, 2nd Ed., John Wiley, New York.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 645

bibliography 645

[L&F 93] Landau, R. H., and P. J. Fink (1993). A Scientist’s and Engineer’s Guide to
Workstations and Supercomputers, John Wiley, New York.

[Lang] Lang, W. C., and K. Forinash (1998). Time-frequency analysis with the continuous
wavelet transform, Am. J. Phys. 66, 794.

[LAP 00] Anderson, E., Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A.
Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen (2000).
LAPACK User’s Guide, 3rd Ed., SIAM, Philadelphia, netlib.org.

[Li] Li, Z., Numerical Methods for Partial Differential Equations—Finite Element Method,
www4.ncsu.edu/˜zhilin/TEACHING/MA587/.

[Libb 03] Liboff, R. L. (2003). Introductory Quantum Mechanics, Addison Wesley,
Reading, MA.

[Lot 25] Lotka, A. J. (1925). Elements of Physical Biology, Williams & Wilkins, Baltimore.
[MacK 85] MacKeown, P. K. (1985). Evaluation of Feynman path integrals by Monte

Carlo methods, Am. J. Phys. 53, 880.
[Lusk 99] Lusk, W. E., and A. Skjellum (1999). Using MPI: Portable Parallel

Programming with the Message-Passing Interface, 2nd Ed., MIT Press, Cambridge, MA.
[M&N 87] MacKeown, P. K., and D. J. Newman (1987). Computational Techniques in

Physics, Adam Hilger, Bristol, UK.
[MLP 00] Maestri, J. J. V., R. H. Landau, and M. J. Paez (2000). Two-particle Schrödinger

equation animations of wave packet–wave packet scattering, Am. J. Phys. 68, 1113.
[Mallat 89] Mallat, P. G. (1982). A theory for multiresolution signal decomposition: The

wavelet representation, IEEE Transa. Pattern Anal. Machine Intelligence, 11, 674.
[Mand 67] Mandelbrot, B. (1967). How long is the coast of Britain? Science, 156, 638.
[Mand 82] Mandelbrot, B. (1982). The Fractal Geometry of Nature, Freeman, San

Francisco, p.29.
[Mann 90] Manneville, P. (1990). Dissipative Structures and Weak Turbulence,

Academic Press, San Diego.
[Mann 83] Mannheim, P. D. (1983). The physics behind path integrals in quantum

mechanics, Am. J. Phys. 51, 328.
[M&T 03] Marion, J. B., and S. T. Thornton (2003). Classical Dynamics of Particles and

Systems, 5th Ed., Harcourt Brace Jovanovich, Orlando, FL.
[Math 02] Mathews, J. (2002). Numerical Methods for Mathematics, Science, and

Engineering, Prentice Hall, Upper Saddle River, NJ.
[Math 92] Mathews, J. (1992). Numerical Methods for Mathematics, Science, and

Engineering, Prentice Hall, Englewood Cliffs, NJ.
[M&W 65] Mathews, J., and R. L. Walker (1965). Mathematical Methods of Physics,

Benjamin, Reading, MA.
[MW] Mathworks, Matlab Wavelet Toolbox, www.mathworks.com/.
[Metp 53] Metropolis, M., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E.

Teller (1953). Equation of state calculations by fast computing machines, J. Chem. Phys.
21, 1087.

[Mold] Refson, K. Moldy, A General-Purpose Molecular Dynamics Simulation Program,
www.earth.ox.ac.uk/˜keithr/moldy.html.

[M&L 85] Moon, F. C., and G.-X. Li (1985). Fractal basin boundaries and homoclinic
orbits for periodic motion in a two-well potential, Phys. Rev. Lett. 55, 1439.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 646

646 bibliography

[M&F 53] Morse, P. M., and H. Feshbach (1953). Methods of Theoretical Physics,
McGraw-Hill, New York.

[MPI] Math. and Computer Science Division, Argonne National Laboratory (2006).
The Message Passing Interface (MPI) Standard (updated May 9, 2006),
www-unix.mcs.anl.gov/mpi/.

[MPI2] Mathematics and Computer Science Division, Argonne National Laboratory
(2004). Web Pages for MPI and MPE (updated August 4, 2004),
www-unix.mcs.anl.gov/mpi/www.

[MPImis] Academic Computing and Communications Center, University of Illinois
at Chicago (2004). Argo Beowulf Cluster: MPI Commands and Examples (updated
December 3, 2004), www.uic.edu/depts/accc/hardware/argo/mpi_routines.html.

[NAMD] Nelson, M., W. Humphrey, A. Gursoy, A. Dalke, L. Kale, R. D. Skeel, and
K. Schulten (1996). NAMD—Scalable Molecular Dynamics, J. Supercomput. Appl.
High Performance Comput., www.ks.uiuc.edu/Research/namd/.

[NSF] Nation Science Foundation Supercomputer Centers: Cornell Theory Center,
www.tc.cornell.edu; National Center for Supercomputing Applications,
www.ncsa.uiuc.edu; Pittsburgh Supercomputing Center, www.psc.edu; San Diego
Supercomputing Center, www.sdsc.edu; National Center for Atmospheric
Research, www.ucar.edu.

[Nes 02] Nesvizhevsky, V. V., H. G. Borner, A. K. Petukhov, H. Abele, S. Baessler,
F. J. Ruess, T. Stoferle, A. Westphal, A. M. Gagarski, G. A. Petrov, and A. V.
Strelkov, (2002). Quantum states of neutrons in the Earth’s gravitational field, Nature
415, 297.

[Netpbm] Netpbm, a package of graphics programs and programming library,
netpbm.sourceforge.net/doc/.

[Ott 02] Ott, E. (2002). Chaos in Dynamical Systems, Cambridge University Press,
Cambridge, UK.

[Otto] Otto A., Numerical Simulations of Fluids and Plasmas, what.gi.alaska.edu/
ao/sim/chapters/chap6.pdf.

[OR] Oualline, S. (1997). Practical C Programming, O’Reilly and Associates,
Sebastopol.

[Pach 97] Pacheco, P. S. (1997). Parallel Programming with MPI, Morgan Kaufmann,
San Diego.

[Pan 96] Pancake, C. M. (1996). Is Parallelism for You? IEEE Comput. Sci. Eng. 3, 18.
[PBS] Portable Batch System, www.openpbs.org/.
[P&D 81] Pedersen, N. F., and A. Davidson (1981). Chaos and noise rise in Josephson

junctions, Appl. Phys. Lett. 39, 830.
[Peit 94] Peitgen, H.-O., H. Jürgens, and D. Saupe (1992). Chaos and Fractals,

Springer-Verlag, New York.
[Penn 94] Penna, T. J. P. (1994). Fitting curves by simulated annealing, Comput. Phys.

9, 341.
[Perlin] Perlin, K. NYU Media Research Laboratory, mrl.nyu.edu/˜perlin.
[P&R 95] Phatak, S. C., and S. S. Rao (1995). Logistic map: A possible random-number

generator, Phys. Rev. E 51, 3670.
[PhT 88] Physics Today, Special issue on chaos, December 1988.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 647

bibliography 647

[P&W 91] Pinson, L. J., and R. S. Wiener (1991). Objective-C Object-Oriented
Programming Techniques, Addison-Wesley, Reading, MA.

[P&B 94] Plischke, M., and B. Bergersen (1994). Equilibrium Statistical Physics, 2nd
Ed., World Scientific, Singapore.

[Polikar] Polikar, R., The Wavelet Tutorial, users.rowan.edu/˜polikar/WAVELETS/
WTtutorial.html.

[Potv 93] Potvin, J. (1993). Computational quantum field theory, Comput. Phys. 7, 149.
[Pov-Ray] Persistence of Vision Raytracer, www.povray.org.
[Pres 94] Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling (1994).

Numerical Recipes, Cambridge University Press, Cambridge, UK.
[Pres 00] Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling (2000).

Numerical Recipes in C++, 2nd Ed., Cambridge University Press, Cambridge, UK.
[PtPlot] PtPlot, a 2-D data plotter and histogram tool implemented in Java,

ptolemy.eecs.berkeley.edu/java/ptplot/.
[PVM] A. Geist, A, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam

(1994). PVM: Parallel Virtual Machine—A User’s Guide and Tutorial for Networked
Parallel Computing, Oak Ridge National Laboratory, Oak Ridge, TN.

[Quinn 04] Quinn, M. J. (2004). Parallel Programming in C with MPI and OpenMP,
McGraw Hill, New York.

[Ram 00] Ramasubramanian, K., and M. S. Sriram (2000). A comparative study of
computation of Lyapunov spectra with different algorithms, Physica D 139, 72.

[Rap 95] Rapaport, D.C (1995). The Art of Molecular Dynamics Simulation, Cambridge
University Press, Cambridge, UK.

[Rash 90] Rasband, S. N. (1990). Chaotic Dynamics of Nonlinear Systems, John Wiley,
New York.

[Raw 96] Rawitscher, G., I. Koltracht, H. Dai, and C. Ribetti (1996). The vibrating
string: A fertile topic for teaching scientific computing, Comput. Phys. 10, 335.

[R&M93] Reitz, J. R., F. J. Milford, and Christy, R. W. (1993). Foundations of
Electromagnetic Theory, 4th Ed., Addison-Wesley, Reading, MA.

[Rey 83] Reynolds, O. (1883). An experimental investigation of the circumstances which
determine whether the motion of water in parallel channels shall be direct or sinuous and of
the law of resistance in parallel channels, Proc. R. Soc. Lond. 35, 84.

[Rhei 74] Rheinbold, W. C. (1974). Methods for Solving Systems of Nonlinear Equations,
SIAM, Philadelphia.

[Rich 61] Richardson. L. F. (1961). Problem of contiguity: An appendix of statistics of
deadly quarrels, Gen. Systems Yearbook, 6, 139.

[Riz] Riznichenko G. Y., Mathematical Models in Biophysics,
www.biophysics.org/education/galina.pdf.

[Rowe 95] Rowe, A. C. H., and P. C. Abbott (1995). Daubechies Wavelets and
Mathematica, Comput. Phys. 9, 635–548.

[Russ 44] Russell, J. S. (1844), Report of the 14th Meeting of the British Association for the
Advancement of Science, John Murray, London.

[Sand 94] Sander, E., L. M. Sander, and R. M. Ziff (1994). Fractals and fractal
correlations, Comput. Phys. 8, 420.

[Schk 94] Scheck, F. (1994). Mechanics, from Newton’s Laws to Deterministic Chaos, 2nd
Ed., Springer-Verlag, New York.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 648

648 bibliography

[Schd 00] Schmid, E. W., G. Spitz, and W. Lösch (2000). Theoretical Physics on the
Personal Computer, 2nd Ed., Springer-Verlag, Berlin.

[Shannon 48] Shannon, C. E. (1948). A mathematical theory of communication, Bell
System Tech. J. 27, 379.

[Shar] Sharov, A., Quantitative Population Ecology, www.gypsymoth.
ento.vt.edu/˜sharov/PopEcol/.

[Shaw 92] Shaw C. T. (1992), Using Computational Fluid Dynamics, Prentice Hall,
Englewood Cliffs. NJ.

[S&T 93] Singh, P. P., and W. J. Thompson (1993), Exploring the complex plane: Green’s
functions, Hilbert transforms, analytic continuation, Comput. Phys. 7, 388.

[Sipp 96] Sipper., M. (1997). Evolution of Parallel Cellular Machines Springer-Verlag,
Heidelberg; www.cs.bgu.ac.il/˜sipper/ca.html; Cellular Automata, cell-auto.com/.

[Smi 91] Smith, D. N. (1991). Concepts of Object-Oriented Programming, McGraw-Hill,
New York.

[Smi 99] Smith, S. W. (1999). The Scientist and Engineer’s Guide to Digital Signal
Processing, California Technical Publishing, San Diego.

[Sterl 99] Sterling, T., J. Salmon, D. Becker, and D. Savarese (1999), How to Build a
Beowulf, MIT Press, Cambridge, MA.

[Stez 73] Stetz, A., J. Carroll, N. Chirapatpimol, M. Dixit, G. Igo, M. Nasser, D.
Ortendahl, and V. Perez-Mendez (1973). Determination of the axial vector form factor
in the radiative decay of the pion, LBL 1707. Paper presented at the Symposium of the
Division of Nuclear Physics, Washington, DC, April 1973.

[Sull 00] Sullivan, D. (2000). Electromagnetic Simulations Using the FDTD Methods,
IEEE Press, New York.

[SunJ] Sun Java Developer’s site, java.sun.com/.
[SGE] Sun N1 Grid Engine, www.sun.com/software/gridware/.
[SUSE] The openSUSE Project, en.opensuse.org/Welcome_to_openSUSE.org.
[Tab 89] Tabor, M. (1989). Chaos and Integrability in Nonlinear Dynamics, John Wiley,

New York.
[Taf 89] Taflove, A., and S. Hagness. (2000). Computational Electrodynamics: The Finite

Difference Time Domain Method, 2nd Ed., Artech House, Boston.
[Tait 90] Tait, R. N., T. Smy, and M. J. Brett (1990). A ballistic deposition model for films

evaporated over topography, Thin Solid Films 187, 375.
[Thij 99] Thijssen J. M. (1999). Computational Physics, Cambridge University Press,

Cambridge, UK.
[Thom 92] Thompson, W. J. (1992), Computing for Scientists and Engineers, John Wiley,

New York.
[Tick 04] Tickner, J. (2004), Simulating nuclear particle transport in stochastic media

using Perlin noise functions, Nuclear Instrum. Methods B, 203, 124.
[Torque] TORQUE Resource Manager, www.clusterresources.com/pages/products/

torque-resource-manager.php.
[UCES] Undergraduate Computational Engineering and Science,

www.krellinst.org/UCES/.
[Vall 00] Vallée, O. (2000). Comment on a quantum bouncing ball by Julio Gea Banacloche,

Am. J. Phys. 68, 672.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 649

bibliography 649

[VdeV 94] van de Velde, E. F. (1994). Concurrent Scientific Computing,
Springer-Verlag, New York.

[VdB 99] van den Berg, J. C., Ed. (1999). Wavelets in Physics, Cambridge University
Press, Cambridge. UK.

[Vida 99] Vidakovic, B. (1999). Statistical Modeling by Wavelets, John Wiley, New York.
[Viss 91] Visscher, P. B. (1991). A fast explicit algorithm for the time-dependent

Schrödinger equation, Comput. Phys. 5, 596.
[Vold 59] Vold, M. J. (1959), Microscopic and macroscopic compaction of cohesive powders,

J. Colloid. Sci. 14, 168.
[Volt 26] Volterra, V. (1926), Variazioni e fluttuazioni del numero d’individui in specie

animali conviventi, Mem. R. Accad. Naz. dei Lincei. Ser. VI, 2.
[Ward 04] Ward, D. W, and K. A. Nelson (2004). Finite Difference Time Domain (FDTD)

Simulations of Electromagnetic Wave Propagation Using a Spreadsheet, ArXiv Phys.
0402091, 1–8.

[WL 04] Landau, D. P, S.-H. Tsai, and M. Exler (2004). A new approach to Monte Carlo
simulations in statistical physics: Wang–Landau sampling, Am. J. Phys. 72, 1294.
Landau, D. P, and F. Wang (2001). Determining the density of states for classical
statistical models: A random walk algorithm to produce a flat histogram, Phys. Rev. E
64, 056101.

[WW 04] Warburton, R. D. H., and J. Wang (2004). Analysis of asymptotic projectile
motion with air resistance using the Lambert W function, Am. J. Phys. 72, 1404.

[Whine 92] Whineray, J. (1992). An energy representation approach to the quantum
bouncer, Am. J. Phys. 60, 948–950.

[Wiki] Wikipedia, the free encyclopedia, en.wikipedia.org/.
[Will 97] Williams, G. P. (1997). Chaos Theory Tamed, Joseph Henry Press, Washington,

DC.
[W&S 83] Witten, T. A., and L. M. Sander (1981). Diffusion-limited aggregation, a

kinetic critical phenomenon, Phys. Rev. Lett. 47, 1400; (1983); Diffusion-limited
aggregation in three dimensions, Phys. Rev. B 27, 5686.

[Wolf 85] Wolf, A., J. B. Swift, H. L. Swinney, and J. A. Vastano, (1985). Determining
Lyapunov exponents from a time series, Physica D, 16, 285.

[Wolf 83] Wolfram S. (1983). Statistical mechanics of cellular automata, Rev. Mod. Phys.
55, 601.

[XWIN32] X-Win32, a focused PC X server, www.starnet.com/products/xwin32/.
[Yang 52] Yang, C. N. (1952). The Spontaneous Magnetization of a Two-Dimensional

Ising Model, Phys. Rev. 85, 809.
[Yee 66] Yee, K. (1966). Numerical solution of initial value problems involving Maxwell’s

equations in isotropic media, IEEE Trans. Antennas Propagation AP-14, 302.
[Z&K 65] Zabusky, N. J., and M. D. Kruskal (1965). Interaction of “solitons” in a

collisionless plasma and the recurrence of initial states, Phys. Rev. Lett. 15, 240.
[Zucker] Zucker, M., The Perlin noise FAQ;

www.cs.cmu.edu/˜mzucker/code/perlin-noise-math-faq.html; see also Jönsson, A.,
Generating Perlin Noise, www.angelcode.com/dev/perlin/perlin.asp.

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 650

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 651

Index

Abstract data structures,
70

Abstraction, 70, 89, 93,
107

Accuracy, 18, 555
ACE/gr, 51–56
Adams-Bashforth-

Moulton, 204
Address, see

Memory 555
Advection, 508–510
Airy functions, 421
Algorithm, 9, 11, 555
Alias, 241
Amdahl’s law, 365
Analog, 555

filters, 250
Animations, 5, 64, 312,

314, 428, 432, 494,
495, 515, 555, 568,
586–592, 627

Antiferromagnet, 392
Applets, 222, 228, 565,

627
Architecture, 158, 169,

352–363, 368, 374,
376, 378, 555, see also
Memory

Arithmetic unit, 357–360,
555

Arrays, 165, 555,
dimension, 557,
see also Matrices

Asymptotes, 293
Attractors, 292–294, 313

predictable, 309
strange, 309

Autocorrelation function,
246–250

awt, 565

Backtracking, 156, 163
Ballistic deposition,

332–333, 338–339
correlated, 338–339

Base, 20, 556
BASIC beginner’s code,

7n
Basic machine language,

7, 556
Batch, 556, 598
Beating, 210
Beowulf, 363, 593
Bessel functions, 36–39,

202, 546
Bias, 20
Bifurcation, 292–300,

313–315
diagram, 294
dimension of, 343

Binary numbers, 17, 556
Binary point, 19
Binning, 295
Bisection algorithm,

152–154
Bits, 17, 556

reversal, 258
Block walls, 392
Blocking, 619
Blue Gene, see IBM Blue,

373
Boltzmann distribution,

393
Boolean, 19, 556
Bootable cluster, 620
Bound states, 152–154,

211–221, 225, 408,
411–420, 435, 540–545

Boundary conditions,
198, 429, 437

Box counting, 335–337,
342

Box–Muller method,
141–145

Break command, 451
Broadcast, 373, 609
Buffers, 354, 603, 604
Burgers’ equation,

510–514
Bus, 362, 556
Butterfly operation, 258
Byte, 17, 556

code, 8, 376, 556

C language, 8, 58,
624–627

Cache, 385, 556
data, 385
misses, 385–387
programming for,

385–388
Canonical ensemble, 393,

425
Capacitors, 67, 448–452
Catenary, 488–491
CD contents, 626
Cellular automata,

343–345
Central difference, 148
Central processing unit,

see CPU, 353
Central storage, 354
Chaos, 289–299, 302,

307–315
Fourier analysis of, 317
of pendulum, 302
in phase space, 307–312

Chi squared measure,
186

Child, 106, 556

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 652

652 index

CISC, 357
Classes, 71–102, 556,

565–567
daughter, 85, 99
member, 106
multiple, 90, 104
structure, 106
superclass, 99
variables, 71–93, 100

CLASSPATH, 562
Column-major order,

165, 353, 556
Command-line

interpreter, 7
Communications, 368,

593–621
collective, 619
time, 365

Communicator, 605
Compilers, 8, 556, 566

just-in-time, 377, 558
Complex numbers, 67
Composition, 93, 95
Compression, 264, 635

lossless, 268
Computational

physics, 1
science, 1, 2

Concurrent processing,
see Parallel
computing, 557

Constructors, 73–100
default, 74

Convolution, 248, 250
Correlations, 246, 248,

338
auto, 246
coefficient, 187
growth, 338

Courant stability
condition, 502, 504,
512, 513

Course grain parallel,
362

Covariance, 187

CPU, 352–355, 357–360,
366, 372, 376,
385–386, 556

RISC, 357
time, 358

Crank-Nicolson method,
472–475

Cubic splines, see
Splines, 179

Cumulative distribution,
143

Curie temperature, 392
Curve fitting, see Data

fitting, 176
Cycle time, 358, 557
Cygwin, 568

Data
cache, see Cache 385
compression, 264, 635
dependency, 362, 557
encapsulation, 89
fitting, 176
hiding, 101
parallel, 362
structures, 70
types, 18, 69, 71, 96, 557

Daughter class, 85
Deadlock, 372, 618
Decay

exponential, 119, 184
spontaneous, 184

Density of states, 400
Dependency, 362, 557
Deposition, 332

ballistic, 333
correlated ballistic, 337

Derivatives, 146–151, 197
central difference, 148,

151, 413n, 431
error in, 149
extrapolated

difference, 149
forward difference,

147, 201

second, 151, 180, 200,
216, 431

Differential equations,
194–229

algorithms, 200
boundary conditions,

198
dynamical form, 198
Euler’s rule, 201
initial conditions, 198
order, 196
partial, see PDEs 437
Runge–Kutta

algorithm, 202
types of, 196, 437

Differentiation, see
Derivatives 147

Diffusion-limited
aggregation, 339

Digital, 18, 557
Dimension, 557

array, 165
fractional, 326–329,

335–337, 342
Hausdorf-Besicovitch,

326
logical, 167
physical, 165, 167
schemes, 166

Directories, 90, 95, 557,
565

Discrete Fourier
transform, 237–243,
249

Dispersion, 427, 509,
514–516

relation, 509, 515
Distributed memory, 363
Documentation, Java, 16
Dot operator, 73, 76, 77
Double

pendulum, 315–317
precision, 18, 25, 557

Doubles, 19, 96
Drag, see Friction 226
DRAM, 354

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 653

index 653

drand, 114
Driving force, 211
Duffing oscillator, 318
DX, see OpenDX 45

Eigenvalues, 164, 170,
174, 198, 212–221,
245, 491, 540

Electrostatic potential,
439

Elliptic integral, 304
Encapsulation, 89, 100,

106
Entropy, 299
Environmental variables,

562, 595
Equations

Korteweg–de Vries, 515
Burgers’, 510
differential, 194
discrete, 119, 290
integral, 540, 541, 547
of motion, 226
Schrödinger, 212, 318,

492
Van der Pool, 318

Ergodic, 395
Errors, 30–44

algorithm, 30, 40, 128
approximation, see

Algorithm 30
in differentiation, 149
empirical, 39, 132
in integration, 128, 132
minimum, 42
multiplicative, 34
N-D integration, 139
random, 30
roundoff, 28, 31, 34–36,

39, 41, 42, 44, 110,
124, 129, 132, 138,
149, 200, 201, 518

total, 39, 40
types of, 30

Euler’s rule, 201–203,
413n, 416

Exceptions, 13
Exchange energy, 391
Exponential decay, 119,

184
Extinction, 293
Extract part, 91, 97
Extrapolated difference,

148

Fast Fourier transform,
see FFT 256

Feigenbaum constants,
297

Ferromagnet, 392
Fetch, 360
Feynman

path integrals, 408–423
postulates, 411
propagator, 408

FFT, 241, 256–263
Filters

analog, 250
digital, 252, 283
sinc, 253
windowed, 253

Fine grain parallel, 362
Finite

difference equation,
120

difference time
domain, 499–506

differences, 120, 443,
493, 527, 532

elements, 453–463
Fitting, 176–193

best, 176
global, 185
goodness, 186
least squares, 184–193
linear least square,

186–191
Newton-Raphson, 193
nonlinear, 191–193

Fixed points in maps,
291, 307

Fixed-point numbers, 18

Floating-point numbers,
18–24, 31, 558

FLOPS, 206, 372, 558
Fluid Dynamics, 508–539
Fortran, 8, 627

vs Java, 380
Forward difference, see

Derivatives 147
Fourier

autocorrelation
relation, 249

discrete transform, see
Discrete Fourier
transform 237

fast transform, see FFT
256

of half-wave, 235
integral, 236
PDE solution via, 440
of sawtooth, 234
series, 231, 235
short-time transform,

268
theorem, 232
transform, 231, 236,

580, see also FFT
Fractals, 326–350

coastline, 334
dimension, see

Dimension 326
plants, 329, 331, 332
Pollock painting, 342

Friction, 209–210, 307,
309, 317, 521, 533

in oscillations, 209, 211
in waves, 483, 486, 487
in pendulum, 302–308
in projectile motion,

226–228
Functional, 408

integration, 411–423

Galerkin decomposition,
456–459

Game of Life, 343
Garbage, 30, 558

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 654

654 index

Gaussian
distribution, 144
elimination, 551
quadrature, 130–132

Gibbs overshoot, 235, 254
Global array languages,

361
Glossary, 555–561
Gnuplot, 45, 56–65, 447,

492, 520, 538, 568, 570
prompt, 57

Grace, 51–56
Granularity, 362
Green’s function, 250,

408
Grid engine, 594, 597
Grid points, 132, 503,

512, 513, 519, 546, 551
Growth models, 289–297,

319–345
Guests, 367, 598–610

Hénon–Heiles potential,
318

Half-wave function, 235
Hamilton’s principle, 408
Hardware, 352–388
Harmonics, 232
Heap, 383
Heat bath, 424
Heat equation, 463–476
Hexadecimal, 558
High performance

computing, 352–388
Hilbert transform, 549
Host, 605–613
HPC, see High

performance
computing 375

HTML, 16, 564
Huygens’s principle, 408
Hyperbolic point, 307

I/O, see Input/output 13
IBM Blue Gene, 372–374

IEEE floating point,
18–19

Impedance, 70
import, 90
Importance sampling,

140
Inheritance, see Objects

89
Initial conditions, 198
Input/Output (I/O),

12–14
streams, 566

Instances, 71–74
Instructions

stack, 353, 558
streams, 362

Integral equations,
541–553

Integration, 123–145
error in, 128–132
from splines, 181
Gaussian quadrature,

130
mapping points, 131
Monte Carlo, 136–145
multi-dimensional, 138
rejection techniques

for, 136
Simpson’s rule,

126–129
trapezoid rule, 125–129
variance reduction, 140
via mean value, 137
via von Neumann

rejection, 140
Integro-differential

equation, 540
Interface, 102, 105
Intermittency, 293
Interpolation

Lagrange, 177–179
splines, 179

Interpreter, 8, 558
Inverse, 164
Ising model, 390–407

2-D, 393, 400

Jacobi method, 445
Jacobian matrix, 162
JAMA, 168, 170–173, 187,

190, 193, 463, 545,
551, 552, 623

Java
vs Fortran, 380
developer’s kit, 564
I/O, 12
matrix storage, 353
programs on CD, 626
virtual machine, 376

javadoc, 16
JDK, 562, 564
Just-In-Time compiler,

377

Kernel, 7, 408, 558
Korteweg-de Vries

equation, 515

Lag time, 246
Lagrange interpolation,

177–179
Languages

BASIC, 7
compiled, 8, 556, 557
computer, 6
high-level, 7, 558
interpreted, 8
low-level, 6–7, 559

LAPACK, 168, 623, 624
Laplace’s equation,

439–463, 531
Latency, 354, 366, 373
Lattice computations,

390, 413n, 414, 421
Lattice points, see Grid

points 390
Lax-Wendroff algorithm,

511–514
Leap frog, see Time

stepping 463
Least-squares fitting,

184–193
Length of coastline, 334

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 655

index 655

Libraries, see Subroutines
169

Limit cycles, 308
Linear

algebra, 158, 170
congruent method, 110
least square fitting, 186
regression, 186
superposition, 197

Link, 8
Lippmann–Schwinger

equation, 547
Load, 8

balancing, 367
module, 8

Logical size, 167
Logistic map, 289–297
Loop unrolling, 383, 385
Lorenz attractor, 318
Lotka-Volterra model,

320–324
Lyapunov coefficients,

298–300

Machine
numbers, 18
precision, 25, 26,

245–559
Magnetic materials,

390–407
Mantissa, 18, 559
Master and slave, 605,

see also Tasks 650
Matrices, 158–176, 555

column-major order,
165

diagonalization, 164
equations, 547
inversion, 162, 163,

551–553
row-major order, 165,

560
subroutine libraries,

168–173
tri-diagonal, 474

Maxwell’s Equations,
499–506

Mean value theorem, 137
Memory, 352–357, 378

architecture, 158, 353
conflicts, 365, 375
distributed, 363
dynamic allocation, 167
heap, 383
pages, 165
virtual, 165, 356

Message passing,
362–363, 368–372,
593–620

Methods
dynamic, 91
override, 99
static/nonstatic, see

Static/Nonstatic 76
Metropolis algorithm,

394–398, 400, 413
Microcanonical

ensemble, 393, 424
Microcode, 357
Miller’s device, 37
MIMD, 362, 368, 559
Mode locking, 211, 308
Molecular dynamics,

423–436
Momentum space,

540–553
Monte Carlo

error in, 139
integration, 136–145
simulations, 35, 109,

116, 119, 136–145, 339,
390, 394, 417, 424,
429, 609 see also
Metropolis

Mother class, 85
MPI, 593–622

commands, 621
Multiple-core processors,

358
Multiresolution analysis,

274

Multitasking, 356–357,
367–368

NAN, 24
Navier-Stokes equation,

509, 521–532
Netlib, 169
Newton-Raphson

algorithm, 154–157,
160–193, 221

backtracking, 156
N-dimensional,

160–163
Nodes, 179, 362
Noise

Perlin addition, 345
reduction, 246

Nonlinear
dynamics, 289–324
maps, 291, 298
ODE, 197
oscillations, see

Oscillations 194
Nonlocal potentials, 540,

547
Nonstatic, see

Static/Nonstatic 71
Normal

distribution, 144
mode expansions, 232,

440, 480
numbers, 19

Numbers
binary, 17
complex, 67–70, 79, 102
fixed-point, 17, 18
floating-point, 18–24,

558
hexadecimal, 17, 558
IEEE, 19
machine, 18
normal/subnormal, 19
octal, 17
ranges of, 19–24
representations of,

18–24

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 656

656 index

representations
(continued)

uniform, 116
Numerov method,

216–219
Nyquist criterion, 242
Nyquist-Shannon

interpolation, 254

Objects, 67–72, 559
code, 8
composition, 93, 95, 98
hierarchies, 98
inheritance, 98, 99, 107
oriented programs, 67,

80–108
properties, 71

Octal numbers, 17
ODEs, 196–207, 216–219

second order, 227
One cycle population,

291
OOP, see Objects oriented

programs 80
OpenDX, 45, 65, 347, 452,

492, 538, 568–592
Operands, 353
Operating system, 7
Optimization, 39, 158,

169, 207, 375–388,
611, 614, 627

Oscillations
anharmonic/harmonic,

194, 206, 232
damped, 209, 210
driven, 210
Fourier analysis of, 232
from errors, 177, 179,

254
in phase space, 306
isochronous, 206
nonlinear, 194–229, 232
of pendulum, 302–318
populations, 291

other.object, 78

Over relaxation, see
Relaxation 446

Overdetermined, 163
Overflows, 18, 24
Overhead, 365, 368, 378,

609, 614

Packages, 562–567
Padding of signals, 243
Page, 165, 354

fault, 355
Parallel computing, 352,

360–374, 593–622
Beowulf, 593
granularity, 362
master, slave, 369
message passing, 368
performance, 364
subroutines, 362, 367
tuning, 611
types of, 361

Parent class, 99, 106
Partial differential

equations, see PDEs
437

Path integration, 390,
411–423

PDEs, 197, 437–539
elliptic, 439
explicit solution of, 493
hyperbolic, 478
implicit solution, 493
parabolic, 437, 464
types of, 437
weak form of, 455

Pendulum, 302–316
analytic solution, 304
bifurcation diagram,

313
chaotic, 302, 309, 313

Performance, see Tuning
378

Period doubling, see
Bifurcation 292

Periodic boundary
conditions, 429

Perlin noise, 345–350
Phantom bit, 20
Phase space, 302,

305–312, 315–317,
320, 321, 520

Phase transitions, 390
Pipelined CPU, 357
Planetary motion, 229
Plots, 45–65

animation, 64
complex, 60
contour, 56, 61
field, 62
parametric, 83
surface, 56, 60, 447, 584
vector, 62, 583

Pointers, 167, 605
Poisson’s equation,

439–440, 443–445, 454
Polymorphism, 89, 105
Population dynamics,

289–297, 301, 319–324
PostScript, 447, 560
.ps, see PostScript 447
Potentials

delta shell, 544
Lennard-Jones, 426
momentum space, 544

Pov-Ray, 348
Power spectrum, 249
Precision

machine, 25
tests of, 208

Predator-prey models,
319–324

Predictor-corrector
methods, 205

Primitive data types, 70
Principal values, 549
printf, 12
Private objects, 100
Problem solving

paradigm, 2
Programming, 8, 9

design, 10
for parallel, 368

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 657

index 657

structured, 10
for virtual memory, 356
visual, 579

Programs, 626
Projectile motion, 86,

225–228
Propagator, 409
Pseudocode, 8, 9, 28, 560
Pseudorandom, see

Random numbers 110
PtPlot, 46–51, 562
Pyramid FFT, 279

Quadrature, 123
Quantum

bouncer, 421
mechanics, 152, 216
scattering, 546
see also Bound states,

Scattering

Race condition, 372
Radioactive decay, 119
Radix, 18
RAM, 165, 354–386, 556,

560
Random numbers,

109–116, 297, 329
generators, 110, 297
linear congruent, 110
nonuniform, 141
tests of, 114–115
for random walk, 40,

116–118, 338–339,
401–402

Rank, 605
Ray tracing, 348
Recursion, 36–38, 202,

560
Reference calls, 72, 96,

624
Registers, 25, 353, 386,

560
Rejection techniques,

136, 396

Relaxation, 445–446, 451,
527–538

Rendering, 572
Resonances, 79, 210
Reynolds number, 533
RISC, 357–374, 560
rk4/rk45, 202–203, 205,

224
RLC circuits, 67
Romberg extrapolation,

136
Root mean square,

116–117
Row-major order, 165,

560
Runge-Kutta, 202–203,

205

Sampling, 136, 237, 395
importance, 140

Sawtooth function, 234
scanf, 12, 58
Scattering, 546, 553
Scheduler, 594
Schrödinger equation,

212–221, 492, 497,
540–553,

time dependent, 492,
see also Quantum 650

Script, 64, 590, 591, 596,
598, 601–603

Searching, see Trial and
error 215

Section size, 360
Secular equation, 164
Seeds, 110, 291
Self

affine connection, 329
affinity, 329, 332
limiting, 318
similar, 296, 328, 329

Separatrix, 208, 305, 520
Serial computing, 362,

365, 366, 368, 560,
600, 616

Series summation, 27

Shannon Entropy, 299
Shells, 7
Shock waves, 508–515
Sierpiński gasket,

327–329, 343
Sign bit, 22
Signal processing, 246
Significant figures/parts,

31
SIMD, 362
Simpson’s rule, 127, 128
Sinc filter, 253
Single precision, 18, 25
single, see Single

precision 19
Singular integrals, 548
SISD, 362
SLATEC, 168, 169
Slave, 369, 605
SMP, 360, 361
Solitons, 508–520

crossing, 520
KdeV, 517
water wave, 515

Speedup, 610
Splines, 179

natural, 180
Spontaneous decay, 119,

121, 182, 184, 187, 290
SRAM, 354
Stable states, 293
Static/Nonstatic

methods, 71–79, 91,
101

Statistical Mechanics,
393, 424–429

Stochastic, see Monte
Carlo 119

Strange attractors, 309
Stride, 386, 388, 561

see also Matrices 650
Subnormal numbers, 19
Subroutines, 8, 561

libraries, 158, 168–173,
623–625

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .



−1
0
1

ALLpup_06.04 — 2008/2/15 — Page 658

658 index

Subscripts, see
Dimension 166

Subtractive cancellation,
32–34, 37, 44, 147,
182, 187, 200, 206, 548

Successive
over-relaxation, see
Relaxation 528

Supercomputers,
352–374, 561

Superscalar, 357, 561
Swap space, 354–357
Symmetric multi

processor, see SMP
360

Tasks, 361–368
Template methods, 91
Text editor, 563
Thermodynamics,

390–407, 416, 424,
428–429

this.object, 78
Three body problem, 229
Threshold in

compression, 635,
637–638

Time delay, 225
Time stepping, 463,

465–468, 478,
482–484, 493–496,
510, 512–514

Top-down
programming, 9

Transients, 211, 293, 294,
296, 312, 314

Trapezoid rule, 125–126
Trial and error, 146,

151–157, 161–163,
184, 185, 191–193,
198, 214–216,
219–222, 395, 396,

398, 402, 417, 422,
451, 455

Trivial solutions, 164, 543
Tuning, see Optimization

375
Two cycle, 292
Two’s complement, 18,

25
Typename, see Data 71

Uncertainty principle,
266

Underflows, 18, 24
Uniform

distribution, 109–110,
115–116, 131, 144, 297

sequences, 110, 116
tests, 114–116
weights, 144

Unix, 569

Value pass, 72
Van der Pool equation,

318
Variables

class, 71–101
dynamic, 91
multitype, 105
static/nonstatic, 91

Variance, 140, 187
reduction, 140, 394

Vector processors, 359
Vectors, 360, 452, 561

fields, 499
Velocity Verlet

algorithm, 431
Verlet algorithm, 431
Virtual machine, 376
Virtual memory, 165,

354–356, 375–378
Viscosity, 521, 533
Visual programming, 569

Visualization, 5, 45–65,
295, 568–592

of vectors, 452
Volume rendering, 46,

586
von Neumann

rejection, 140, 396
stability assessment,

434, 450, 468–470,
473, 475, 482, 483,
485, 502, 503

Vorticity, 530–538

Wang-Landau Sampling
(WLS), 400–407

Wave
electromagnetic, 478,

499–506
equation, 478–481, 491
functions, 412, 418, 546,

553
on catenary, 488–491
on string, 478–491
packets, 236, 478,

491–499,
shallow water, 515,
see also Wavelets 650

Wavelets, 264–288
basis sets, 270
Daubechies, 283
discrete transform

(DWT), 274, 287
for compression, 635
multiresolution

analysis, 274
transform, 269, 273

Weak form of PDE, 455
Word length, 17
Worker, see Slave 605
Working set size, 376
Wrappers, 597

C O P Y R I G H T  2 0 0 8 ,  P R I N C ET O N U N I V E R S I T Y  P R E S S

E VA L U A T I O N  C O P Y  O N L Y.  N O T  F O R  U S E  I N  C O U R S E S .




