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Preface

This book is intended for readers who have had a course in difference equations, iso-
differential calculus and it can be used for a senior undergraduate course.

Chapter 1 deals with the linear first-order iso-difference equations, equilibrium points,
eventually equilibrium points, periodic points and cycles.

In Chapter 2 are introduced the iso-difference calculus and the general theory of the
linear homogeneous and nonhomogeneous iso-difference equations.

In Chapter 3 are studied the systems of linear iso-difference equations and the linear
periodic systems.

Chapter 4 is devoted to the stability theory. They are considered the nonautonomous
linear systems, Lyapunov’s direct method, stability by linear approximation.

In Chapter 5 is considered the oscillation theory. They are defined the iso-self-adjoint
second-order iso-difference equations and they are given some of their properties. They are
considered some classes nonlinear iso-difference equations.

In Chapter 6 is studied the asymptotic behavior of some classes iso-difference equa-
tions.

Time scales iso-calculus is introduced in Chapter 7. They are given the main prop-
erties of the backward and forward jump iso-operators. They are considered the iso-
differentiation and iso-integration. They are introduced the iso-Hilger’s complex plane and
the iso-exponential function.

I will be very grateful to anybody who wants to inform me about errors or just
misprints, or wants to express criticism or other comments, to my e-mails svetlinge-
orgievl @gmail.com, sgg2000bg @yahoo.com.

Svetlin Georgiev

Paris, France
November 3, 2014

MA






Chapter 1

Introduction

1.1. Linear First-Order Iso-Difference Equations

Throughout of this book we will suppose that 7 : R — (0,0) and n, ng € N.

Definition 1.1.1. The first-order linear iso-difference equation will be called the equation

(1) =a(n) k(@) +8(n),  n>n,
(1)
x(ng) = xo,
where x is unknown function, a and g are given iso-functions of first, second, third, fourth
or fifth kind on N, x¢ is a given real number.

The equation (1) we can rewrite in the following form.

st s oz
X(no) = X0,

* x(n+1)=a(n)T(n+1)x(n) +T(n+1)g(n), n > ny,

x(ng) = xo.
Example 1.1.2. In the case when a and § are iso-functions of first kind, the equation (1)
we can rewrite in the form.

x(n—i—l)z%x(n)—i—f(n—i—l)?({:), n > ny,

x(ng) = xo.

Example 1.1.3. In the case when d is an iso-function of first kind and g is an iso-function
of fourth kind, the equation (1) we can rewrite in the form.

x(n+1) = Mx(n)—l—f"(n—{—l)g (nT (n)), n > ng,
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Example 1.1.4. In the case when a is an iso-function of third kind and g is an iso-function
of fourth kind, the equation (1) we can rewrite in the form.

x(n—l—l):w (n)+T(n+1)g (nT(n)), n > ng,

x(np) = xo.
One may obtain the solution of (1) by a simple iteration.
x(no+1) = a(no)T (no + 1)x(no) + T (no + 1)&(no)
= a(no) T (no+ 1)xo+ T (no+1)&(no),

x(ng+2) = a(ng+ DT (ng +2)x(no + 1) + T (no +2)g(ng+ 1)

a(no+ 1)1 (no+2) (a(no)T (no + 1)xo + T (no + 1)8(no) ) + T (no +2)g(no + 1)
= a(ng)a(ng + 1)T (ng + 1) T (ng +2)x0 + da(ng + 1)T (no +2)T (ng + 1)g(no)
+T (no+2)8(no +1).
We suppose that
x(no+k) =TTy a(no +i)T (no+i+ 1)xo
+T (no+k) X5 Hk Yang+ )T (no+j+1)g(no+i—1)+T(ng+k)g(ng+k—1)

forsome k € N, k > 2.
Hence,

x(ng+k+1) = a(no+ k)T (no+k+ 1)x(ng+k) +T(no+k+1)g(no +k)
=a(ng+k)T (n0+k+1)(n a(ng+1i)T (no+i+1)xg

+T (no+ k) Lo TTZ] d(no+ /)T (no + j+ 1)8(no+i— 1)+ T (no+ k)8 (no+k—1)>
+T (no+k+1)g(no +k)

=TTy a(no +i)T (no+i+1)xo

+T(no+k+1) Xl TThid(no + /)T (no+ j+ 1)&(no+i—1) + T (no + k+ 1)g(no + k)
forsome k e N, k > 2.

Example 1.1.5. Letng =1, xo =c¢, c € R, a(n) = (n+ 1)%, T(n)=n+1,neN. We

consider the equation (1) in the case when a is an iso-function of first kind and g = 0.
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We have
a(n)P(n+1)  (n+1) 25 (n+3)
T(n) - n+2
=n+1.

Then the equation (1) takes the form
x(n+1) = (n+1)x(n), neN,
x(1) =c.

We will find a solution of the obtained equation. We have

x(2) =2x(1)
=2c,
x(3) =3x(2)
=23c
=3lc.
We suppose that
x(n) =nlc

for some n € N, n > 3. Hence,
x(n+1) = (n+1)x(n)
= (n+1)nlc
=(n+1)l, n>3.

Example 1.1.6. Now we consider the equation (1) in the case when @ is an iso-function of

ﬁArst kind, g is an iso-function of fourth kind. Let ny =1, xo = % a(n) = % g(n)= #3\/5,
T(n)=nneN.
Then
amT(nt1) _ Zy(ntl)
T(n) - n
=2,
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The equation (1) takes the form

x(n+1) =2x(n)+3", n>1,

We will find a solution of the obtained equation. We have

x(2) = 2x(1) + 3!
=2.4+3!
=1+3!
=32-5.2,

x(3) =2x(2) + 32
=2(1+3") 432
=8+32
=8+32437-3°
=33-10

=33_52L

We suppose that
x(n) =3"-52""2

for some n > 3.

Hence,
x(n+1) =2x(n)+3"
=2(3"—-52""2) 43"
=23" 43" 521
=3t 5201
forneN.

Example 1.1.7. Letng =1, xo = ¢, c € R, T(n) =n, a(n) = n”?ez", neN, ais an iso-
function of first kind and § = 0. Then
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The equation (1) takes the form
x(n+1) = e x(n), x(1)=c.
We will find a solution of the obtained equation. We have

x(2) = e*x(1)

We suppose that

for some n € N. Then

1.2. Equilibrium Points

Let f : R — R. We define the following functions.

fwamr=f<f“)), () o= F (F(x(m))x(n)

T'(x(n))
Here we will investigate the iso-difference equation
x(n+1) = f'(x(n)),

which we can rewrite in the form fori =1

“”*”:f<fé2»>’

fori=2
x(n+1) = f (x(n)T (x(n))).
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Definition 1.2.1. A point x* in the domain of f', i = 1,2, and T is said to be an equilibrium
point of (2) if it is a fixed point of f', i.e., fi(x*) = x* or

/ (n)) =5 ) =

Definition 1.2.2. Let x be a point in the domain of f, i = 1,2, and T. If there exists a
positive integer r and an equilibrium point x* of (2) such that

fir(x):x*’ fir—l(x)?éx*,
then x is an eventually equilibrium point.

Definition 1.2.3. The equilibrium point x* of the equation (2) is stable if given € > 0 there
exists & > 0 such that |xo —x*| < & implies

|f™(xo) —x*| <e
forall n > 0. If x* is not stable, then it is called unstable.

Definition 1.2.4. The point x* is said to be attracting if there exists | > 0 such that
x(0) =x"[ <m
implies
lim x(n) =x".
n—soo

Ifn = oo, x* is called a global attractor or globally attracting.

Definition 1.2.5. The point x* is an asymptotically stable equilibrium point if it is stable
and attracting. If 1 = oo, x* is said to be globally asymptotically stable.

Theorem 1.2.6. Let x* be an equilibrium point of the equation

o0 =1 (7 0) *

Let also, f be continuously differentiable at ﬁ;*), T e C'(R), N < T(x), |T'(x)| < N for

all x € R, #;*) Vi (T?;*)> ‘ <M, W < 1. Then x* is asymptotically stable.

<Nj,

Proof. We note that there is an interval J = (x* —y,x* +7) such that

X
. <M
(7)1
for every x € J.

Really, let us suppose that for each open interval /,, = (x* — %,x* + %), for large n, there
is a point x,, € I, such that

Xn

f/(mn))‘ - M
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Since T is a continuous function on R and

Xy x*

lim " =
n=e () T(x)

9

and f” is a continuous function at =*—, it follows that

Ty
Jim_f' <T)(Cx)> =7 <T?x*)> '
M <lim; e ‘f/ (f&») ‘

- f'(f?;ﬂ)‘

<M,

Consequently,

which is a contradiction. This proves the statement.
For x(0) € J we have

(1) — x| = ’f({é?g)» _f(T)(Cx))‘

*

XO) X

= 1@l 7%

0) T(x)

=1/'(8)

< 1FE)IBOE 1 p/(e) o LD Fecl

01 PG Gl
=@ Faey + - Feote)

=17®)| (ko + P Bl ) fx(0) —x°

<M (5 + 57 1x(0) —x7|

_ M(1+MNs) 1x(0)

— N —x*’7
ie.,
M(1+ NN
(1)~ < MR ) e, @
: x(0) x* *
wherc.: § is between oy Ad 7 (0) and x*.
Since ML NN
(1+MNs) _ 1,
N

then (4) shows that x(1) is closer to x* than x(0). Consequently, x(1) € J.
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Now we suppose that

() — x| < MR 0 — ),

() — x| < MUENN) 3 1) —

for some n € N, i.e., we suppose that x(n) is closer to x* than x(n — 1) and x(0).
Now we consider

|x(n+1) —x*|.
We have
_ x¥| = x(n) _ x*
(n+1) =] = )f<f<x<n>>> f(f(x*))‘
— ¢ x(n)  __x*
P |7 ~ 79
= 1)l |7 — s + i — 7
Ta) ~ Ta) T Fam) T
g (K =x] | (g o [P alm) =7 )]
e =] L L E IR E) ()]
=@y 7 Femyte)
= '@l (i + Fitaoes ) o) =
<M+ 5) o) |
_ M(1+1\72N3) lx(n) — x*|,
i.e.,
o M(1+N2N3 *
el +1) ' < MOy
and, using (5), we get
Mn+l 1 N>N n+1
x(nt 1) — x| < A ENNIT oy,

Nn—H

x(n) <y )
T(x(n)) and %, &5 is between x(n) and x*.
Consequently, the inequalities (5) are valid for every n € N.

For € > 0 we let

Here &, is between

€

2M(1+NoN3)
N

o=

Thus
|x(0) —x*| < &
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implies that

M"(14+N2N3)"
‘x(”) _X*| < ( -;/nz 3) 2M(1+£N2N3)
N

M( 1 +N2N3) €
N 2M(1+N2N3)
N

<

€
2

<€

for all n € N. This conclusion suggests stability.

Furthermore,
lim fx(n) —x'| = 0,
and thus
nlglmx(n) =x",
we conclude asymptotic stability. 0

Theorem 1.2.7. Let x* be an equilibrium point of the equation

x(n+1) = f(x(n)T (x(n))). (3)

Let also, f is continuously differentiable at x*T (x*), | f'(x*T (x*))| <M, T € C'(R), T'(x) <
Ny, |T'(x)| < Ny for all x € R, M(Ny + |x*|Ny) < 1. Then x* is asymptotically stable.

Proof. We note that there is an interval J = (x* —v,x* +7) such that
f' 6T () <M

for all x € J.
Really, let us suppose that for each open interval /,, = (x* —
is a point x, € I, such that

Ly + 1) for large n, there
‘f’(an(xn))‘ >M.

Since f’ is a continuous function at x*7 (x*), T is continuous on R, we have that

A

lim f'(x,T(x,)) = f (x*T (x")).

n—-yo

Consequently,
M < 1imy— oo |/ (x0T (x))|

= (T ()]

<M,

which is a contradiction.
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For x(0) € J we have

= 1" @©)I(0)7 (x(0)) —*T (x7)]

= ©)[x(0)T(x(0)) —x*T (x(0)) +x°T (x(0)) —x*T (x"))|
< | ©)1 (|x(0) —x*|T (x(0)) + |x*||T (x(0)) — T'(x*)])

= £ (©)] (1x(0) —x*|T (x(0)) + &[T (1) [|x(0) — x*])

< M(Ny+ [ [N2) x(0) — x7],

h (1) '] < M(Ny + | [N2) (0) — ' (6)

Here & is between x(0)7 (x(0)) and x*T'(x*), and &, is between x(0) and x*.
Since
M(N; + |x*|N2) < 1,

then from (6) it follows that x(1) is closer to x* than x(0).
We suppose

x(n) — x| < M"(Ny + |x*|N2)"[x(0) — x7[,
|x(n) —x*| < M(Ny + |x*|N2)|x(n— 1) — x|
for some n € N.

Now we consider
|x(n+1)—x"|.

We have .
lx(n+1) —x*[ = | f(x(n)T (x(n))) — x|

= f(x(m)T (x(n))) = f(* T (x*))]

=11 €)Ilx(n)T (x(n)) —x*T (x*)]

= 11" (&) ()T (x(n)) =T (x(n)) +x* T (x(n)) —x*T (x*)]
< 1 €N (T (e () —x*| + || T (x(n)) = T (x*)])

= 1f (&) (T (x(m)) () — | + " |7 (E3) | x(m) — x°])

< M(Ni+ [x7[N2) [x(n) —x7],

where &; is between x(n)T (x(n)) and x*T'(x*), and &3 is between x(0) and x*.
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Now we apply (7) and we get
lx(n+1) —x*| < M" TNy + |x¥|N2)" T x(0) — x¥).

Consequently, (7) are valid for all n € N.
Let € > 0 be arbitrarily chosen and let

€
2M (N + |x*|N2)

Thus
|x(0) —x*| < &

implies that
[re(n) — x| < M (N1 + [x[N2)"[x(0) — x|

< M™(Ny 4+ |x*|N2)"

=M"(N + X |N2)" spr s o)

< M(Ny A+ 5 IN2) 5370 e

€
2
<E&

for all n € N. Therefore x* is stable.
Because

Tim_[x(n) 2| =0,

we conclude that

. ¥
nhglmx(n) =x",

therefore we have asymptotic stability. O

Theorem 1.2.8. Let x* be an equilibrium point of (3). Let also, f be continuously dif-

ferentiable at #;*), T € CY(R), N<T(x) <N, |T'(x)| <N forall x € R, < N3,

7 (#5)

T()

M, <

<M.If
M, MN,N;
— = >a
Ny N

for some positive real number a, then x* is unstable.

Proof. Let us suppose that x* is stable.
Let € > 0 be chosen so that € < a. Then there exists 8 = 8(¢) > 0 enough small such

that
X
=V (T@))‘ =M

M, <
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for all x € (x* — §,x* + 8) and the inequality

|xo —x*| < &

/ (700)

implies the inequality

—x*| < €lxg —x7.

Hence,

@) 4 D

/ IXO x\ / o [T (ED)|x* —xo]
> EI1F — 1 ©)x \W

M[}/\')}Nz ‘X*

>%—]xo—x*\— — o]

M MN,N-
= (Nfl_iﬁ 3) o —x*|

> alxp —x*|,

1.e.,
€>a,

E., 1 is between x( and x*

T( 0)
Consequently, the equlhbrlum point x* is unstable 0

Theorem 1.2.9. Let x* be an equilibrium point of (3'). Let also, f be continuously dif-
ferentiable at x*T (x*), T € C'(R), N < T(x) <Ny, |T'(x)| < N, for all x € R, M; <

7 (7)| v

MN —M|x*|N, > a
for some positive real number a, then x* is unstable.

Proof. Let us suppose that x* is stable.
Let € > 0 be chosen so that € < a. Then there exists 8 > 0 enough small such that

<|r(59) =

M, <
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for all x € (x* — §,x* + §) and the inequality |xo —x*| < & implies

’f(xof(xo)) —x*‘ < glxg —x*|.

Hence, A
elxo — x| > |f (x0T (x0)) —x*|
=|f(x0T (x0)) = f(x*T (x))]
= 1f'(€2)lx07 (x0) —x*T (x0) +x*T (x0) —x*T (x*))|
> | f(E2)IT (x0) xo —x*| = | f' (&2) | (|7 (x0) — T'(x"))
= | £'(82)IT (xo)lxo —x*| — £ (E2)|x*[| 7 (&3) | 1x* — xo
> (MyN — MIx*|N2) | —xo
> alx* —xo,

£>a,

which is a contradiction. Here &, is between xo7 (xo) and x37 (x*), &3 is between xq and
x*. ]
1.3. Periodic Points and Cycles

Definition 1.3.1. Let b be such that T?b) is in the domain of the function f. Then

(i) b is called a periodic point of " if for some k € N we have

b

k

= =b.
#(767)

The periodic orbit of b

o®= {be)’f<f"?b)> S (be)>}

is often called k-cycle.

(ii) b is called eventually k-periodic if for some m € N, f™ (%) is a k-periodic point,

fmk(f?b)) = (T?b))

Definition 1.3.2. Let b be a k-periodic point of f. Then b is

ie.,

(i) stable if it is stable fixed point of f*.
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(ii) asymptotically stable if it is an asymptotically stable fixed point of f*.
(iii) unstable if it is an unstable fixed point of f"*.

If b possesses a stability property, then we often speak of the stability of a k-cycle or a
periodic orbit

0" (b) = {x(O) _ be),x(l) iy (Té’b)> k1) = fe <TI(9b)> }

Theorem 1.3.3. Let

Ov(b) = {X(O),x(l), cee ax(ki 1)}
be a k-cycle of a continuously differentiable function f". Let also, T € C'(R), N < T (x) <

Ny, [T'(x)| < Ny forall x € R, ‘%‘ <N,

My < |f' (x(0)f'(x(1))... f'(x(k = 1)) <M.

Then the following statements hold.
(i) The k-cycle OV (b) is asymptotically stable if

M(1+N,N3)

<1
N

(i) The k-cycle OV (b) is unstable if

M;  MN,N3
— - >a
N N

for some positive real number a.
Definition 1.3.4. Let b be such that bT (b) is in the domain of the function f. Then
(i) b is called a periodic point of f" if for some k € N we have
7 (o () = b

The periodic orbit of b

is often called k-cycle.

(ii) b is called eventually k-periodic if for some m € N, f™ (bf"(b)) is a k-periodic point,
ie.,

(BT (b)) = (6T (1))
Definition 1.3.5. Let b be a k-periodic point of f. Then b is

(i) stable if it is stable fixed point of f*.
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(ii) asymptotically stable if it is an asymptotically stable fixed point of f*.
(iii) unstable if it is an unstable fixed point of f"*.

If b possesses a stability property, then we often speak of the stability of a k-cycle or a
periodic orbit

Theorem 1.3.6. Let
0" (b) = {x(0),x(1),...,x(k—1)}

be a k-cycle of a continuously differentiable function f". Let also, T € C'(R), N < T'(x) <
Ny, [T'(x)| < N> for all x € R, |bT (b)| < N3,

My < |f'(x(0))f (x(1)) ... f'(x(k— 1)) < M.
Then the following statements hold.
(i) The k-cycle O"(b) is asymptotically stable if

M(N] + ’b|N2) < 1.

(i) The k-cycle O"(b) is unstable if
MlN—M|b|N2 >a
for some positive real number a.

Lemma 1.3.7. Let ﬁ € [a,b] for every x € [a,b], f € C([a,b]). Let also, J = [c,d] C |a,D]

such that either

1) f(%) >candf(fgld)> <d, or

ss c d
(ii) f(f"(c)) < candf<f(d)) >d.
Then f" has a fixed point in (c,d).

Proof. (i) Assume that f (ﬁ) >cand f (%) < d. We define the map

)—x, x € [c,d].

Then g € C([c,d]) and
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From here and from the intermediate value theorem, it follows that there exists x* €
(¢,d) so that

or

(7)==

(ii) We assume that f (TEC)) <cand f (%) > d. Then

g(C):f(%)—KO,

g(d)zf(ﬁ) —d>0.

Hence, from the intermediate value theorem, we conclude that there exists x € (¢,d)
such that

Therefore

O]

Lemma 1.3.8. Let xT (x) € [a,b] for every x € [a,b], f € C([a,b]). Let also, J = [c,d] C [a,b]
such that either

() f(cT(c))>cand f(dT(d)) <d, or

(i) f(cT(c)) <cand f(dT(d)) > d.

Then f" has a fixed point in (c,d).

Proof. (i) Assume that f (cT'(c)) > c and f (dT(d)) < d. We define the map
g(x):=f(T(x))—x, x€lcd].

Then g € C([c,d]) and A
gle) = f(cT(c)) —c>0,

g(d) = f(dT(d))—d <0.

From here and from the intermediate value theorem, it follows that there exists x* €
(¢,d) so that

or
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(ii) We assume that f (¢T'(c)) < cand f (dT(d)) > d. Then
glc) = f(cf"(c)) —c<0,
g(d) = f(dT(d)) —d > 0.

Hence, from the intermediate value theorem, we conclude that there exists xx € (¢,d)
such that

Therefore

O]

Lemma 1.3.9. Let ﬁ € [a,b] for every x € [a,b), f € C([a,b)), [c,d]| C [a,b]. If f (%) >

d and (c,d) is fixed point-free for f", then f (ﬁ) > x for all x € (c,d).

Proof. Let us suppose that there is x; € (c,d) such that

then we get to a contradiction since the interval (c,d) is fixed point-free for the function fV.

If

Therefore
X1
f( = ) <X1.
T (x1)
We define the map
X
X) i =x— = , x € (x1,d).
sw)i=x—f (). xetna)
Then

gtx) =x1—f (7)) >0,

g(d) :d—f(led)> <0.

Hence, using the intermediate value theorem, we conclude that there is a point x; € (x1,d)

such that
X2
f< ~ ) = X2,
T (x2)

i.e., x; is an equilibrium point for £V, which is a contradiction because x; € (c,d) and the
interval (c,d) is fixed point-free for fV. O

Lemma 1.3.10. Let xT'(x) € [a,b] for every x € [a,b], f € C(|a,b]), [c,d] C [a,b]. If
f(dT(d)) > d and (c,d) is fixed point-free for f", then f (xT (x)) > x for all x € (c,d).
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Proof. We assume that there exists x; € (¢,d) so that

f (x1 T(xl )) <Xxi.
If
f (X] T(xl )) = X1,

then we obtain a contradiction because the interval (c¢,d) is fixed point-free for the consid-
ered function f”. Therefore

N

f(xlT(xl)) < Xi.
We consider the map
g(x) :=x—f(xT(x)), x € (x1,d).

We have R
gx)=x1—f(x1T(x1)) >0,

g(d)=d—f(dT(d)) <O0.

From here, using the intermediate value theorem, we conclude that there exists a point
x2 € (x1,d) such that
f(sz(xz)) =X,

i.e., x5 is an equilibrium point for £, which is a contradiction because x, € (c,d) and the
interval (c,d) is fixed point-free for f. O

Definition 1.3.11. The limit set Q" (xg) of the point xg is defined by

Qv(xo):{f:yeR,f"(AxO >—> — }
T(y) T (xo) )
Definition 1.3.12. The limit set Q" (xg) of the point xg is defined by

Q" (x0) = {yT(y) yER, ™ (XOT(XO)) T nj—eo )’T(Y)} .
Theorem 1.3.13. Let xp € R, f € C(R). Then the following statements hold true.

()

Q"(x0) = U {f" <fﬁo>> }

i=0n=i

(i) If

7 (70) = 7

Q" (yo) = Q" (x0)-

for some j €N, then

(iii) QY (x0) is closed and 0" (x) C Q" (xo) for every x € QY (x).

(iv) If 0V (xo) is bounded, then Q" (xg) is nonempty and bounded.
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Proof. (i) Let =2~ € Q" (xo) is arbitrarily chosen. Then

( )
f"(x0) . y

Txo) 7T

Therefore, for every i € NU {0} there exists enough large n; € N so that

7o <1 ()
{ (7 O>>}’

Because € QY(xo) was arbltrarlly chosen, we conclude that

T()
o U (2 .

7o =N (7)

Then for every i € NU {O} we have that

N (7))

from where

hence,

Let now

whereupon
X0 y
fn ( r > - T ,
T(x)) 77 T0)
; y v
1.€., m eQ (X()).
Because

T?y) eﬁ{fn (T?i»)}

was arbitrarily chosen, we conclude that

6{f ' (T&)} € 2'(x0)- )

From (8) and (9) we obtain
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(i) Let T?y) € QY (yp) is arbitrarily chosen. Then

7 Yo y
i = e =
/ <T(y0)> e

T(y)
Using
fj<Axo ): A)’O ’
T (xo) T (yo)
we get
ni+j [ _Xo — i [ F X
7 (i) =0 (7 (7))
= (725)
v
e )
ie., %y) € .Q.V(X()).
Because ﬁ € QY (yo) was arbitrarily chosen we get that

Q" (yo) C Q" (x0)-
Let ﬁ € QY (xo) is arbitrarily chosen. Then

(10)

T(x)
Hence,

Since

therefore, using (11), we obtain

;i Yo X
f <T<yo>> T Gy

€ QY (xo) was arbitrarily chosen, we conclude that

X
Because o

Q" (x0) C Q" (v0)-
From the last relation and from (10) it follows that

Q" (x0) = Q" (yo).
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U (7))

is a closed set for every i € NU{0}, and the intersection of closed sets is a closed set,
we conclude, using (i), that QY (x¢) is a closed set.

(iii) Since

X

7o € QY (xp) is arbitrarily chosen.Then

7 <TECJ(C)0)> e Ty (12

Let x; € OY(x) is arbitrarily chosen. Then there exists k € N such that

v+ (7))

Hence and (12) we find, using that f is continuous,

itk (%) = f~ (f"i (%))

o f* <ffx>>

Let now

= X1,
ie., x| € QY (XO).

Because x; € QY (x() was arbitrarily chosen we conclude that

0" ()C) cQY (X()).

(iv) We have that 0" (x) is a bounded set. Then there exists a constant M > 0 such that

X0

f <T(xo)>’ <M, neN. (13)

AxO
T(xo)

g [ Xo n X0 : :
a subsequence { fr (T (xo)>} of the sequence { f (T (xo))} which is convergent.

Therefore the sequence { Vs < )} is a bounded sequence. Hence, there exists

Consequently QY (xg) is nonempty.

Let now
y

7(y)

fn( &)) T sz)

S QV(XO).

Then

~>
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and since (13) holds, we conclude that

i ’<M.

T(y)

Because 775 € QY(xp) was arbitrarily chosen it follows that the set QY (xp) is a

bounded set.

O
Similarly, one can prove the following theorem.
Theorem 1.3.14. Let xp € R, f € C(R). Then the following statements hold true.
(@

Q"(x0) = U {7 (xo (x0)) 1.

i=0n=i

(i) If R

f7 (x0T (x0)) = yoT (o)
for some j €N, then
Q" (o) = Q" (x0)-

(iii) Q" (xo) is closed and O™ (x) C Q"(xo) for every x € Q" (xo).

(iv) If O"(xo) is bounded, then Q" (xg) is nonempty and bounded.

MA



Chapter 2

Linear Iso-Difference Equations of
Higher Order

2.1. Iso-Difference Calculus

Iso-difference calculus is the iso-discrete analogue of the familiar iso-differential and iso-
integral calculus. In this section we introduce some very basic properties of two operators
that are essential in the study of iso-difference equations.

Definition 2.1.1. The iso-difference operator is defined by

. _x(n+1)  x(n)
Ax(n) = T(n+1) - T(n)

Definition 2.1.2. The iso-shift operator is defined by

. _x(n+1)
Ex(n) = Tt )

We have

A

E?x(n) = E(Ex(n))
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We suppose that

for some k € N. Then

_ x(ntk+1)
T T (ntk+1) "

Consequently, (1) is valid for every k € N.
One may write

We define the operator

A
so that .
IMx(n) = 2"\(n)
— xn)
Ok
AN 2 7 (n)
=1 (3)
_ X(n)
o120
Therefore
Ax(n) = Ex(n) —I"x(n)
or
A—E -
and
E=A+"
Also,

_1 )E(n+2) _ 3c(n+l) _ fc(n+l) + Zc(n)
T(n+2) T(n+2)  T?*(n+1)  T%(n+1) * T2%(n)

_ x(n42) 5 x(n+1) + x(n)
T T2(n42) T2(n+1) ' T2(n)

= E%x(n) — 2E1"x(n) + (I™")

x(n).
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We suppose that

Ak = (E—fAA)k — i ( ]; ) (_1)1'Ek—i (i/\/\)i
i=0

for some k € N. We consider
A+l

We have
Ak+1 — (E_i/\/\)k""l
— (E—I") (E -

/f ) (—1)B= (Iw\)i

1

- (E-1)xko

l

_ [k pk+1 k\ prian 1\k kK \ g rianyk
_(O)E (1)E1 ot (DA JEIY)
k \ ~rs k \ » A k A
_ Ek]/\/\ 4 Ek71 (I/\/\)2 L (_1)/{ (IAA)k+1
0 1 k
o k+1 pk+1 k+1 Ak FAA 1Vk+1 k+1 AN k+1
_< 0 >E ) ESIM - 4 (1) 1 (")

=yt < k+1 )(1)iEk+l—i (Y.

1

_ ZiF:O ( k ) (_1)iEAk+1fi (f/\/\)i_zi_czo ( I; ) (_l)iEkﬂ' (jAA)iH

Therefore (2) is valid for all k € N.
Proposition 2.1.3. We have

n—1
]; Ax(k) = £"(A) — £ (fg).

Proof. R R R R
Yol Ax(k) = Ax(no) + Ax(ng+1) +-- -+ Ax(n—1)

k=ngo

(no) + x(no+2) (no+1)

T(no+1)  T(no) T(n0+2)_f(n0+1)+"'+
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Let
p(E) = apE* + a B 4o 4 g M

be a polynomial of degree k in E.

Then . ~ . .
p(E)b" = (aoEk+a1Ek_l + - a M) b

= agE*b" + i B - a M b

bn+k bn+1<—1
Tx T NiEo)

+---+ak%

="M (agh* +arb 1+ -+ g 17)

= """ p(b).

Exercise 2.1.4. Prove that

A(x(m)y(n) = x(n+ D)Ey(n) — x(m)Py(n)
— y(n+ 1)Ex(n) - y(m)I"x(n)
— x(n+1)Ey(n) - y(m)"x(n)

=y(n+ 1) Ex(n) —x(n)["y(n).
Exercise 2.1.5. Prove that
. x(n)) | BN 1 A
A = Ex(n) — ——1""x(n).
<y(n) y(n+1) y(n)
The iso-discrete analogue of the iso-indefinite integral in calculus is the iso-
antidifference operator A~!, defined as follows.

Definition 2.1.6. If AF (n) = 0, then

A

AN 0):=F(n)=c

for some arbitrary constant c.
Moreover, if AF (n) = f(n), then

A7 f(n) == F(n) +c,
for some arbitrary constant c. Hence,
AR f(n) = AF (n) = f(n),

A='AF(n) = A" f(n) = F(n) +c,

and
but

Here I is the identity.
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2.2. General Theory of Linear Iso-Difference Equations

Definition 2.2.1. The normal form of a kth order nonhomogeneous linear iso-difference
equation is given by

PN n+k)+pr ()" (n k= 1)+ + pe(n)9" (R) = g(n), (3)
where pi(n), i = 1,2,...,k, and g(n) are real-valued functions or iso-functions of first,

second, third, fourth or fifth kind, defined for n > ng, and py(n) # 0 for all n > ny. If g(n)
is identically zero, then (3) is said to be a homogeneous equation.

The equation (3) we can rewrite in the form

y(n+k) y(n+k—1) y(n)
F(ntk) +P1(”)m+ +Pk(”)T(n) =g(n)
Y(n+k)+p1(m)T (n+k) ;((Zii_ll)) + 4 pr(n) T (n+k) ;((';)) — T'(n+k)g(n),
Yntk) = —pr(m) P (n +) ?(’; :’;_11)) o= ) (4B ;((’;)) + 1 (n+K)g(n).

(4)
By letting n = 0 in (4) we obtain y(k) in terms of y(k — 1), y(k—2), ..., y(0). Explicitly,
we have

2(6) = = (O W R = == O (W3 5+ T (@500

Once y(k) is computed, we can go to the next step and evaluate y(k+ 1) by letting n = 1 in
(4). This yields

y(k) y(1)
(k) (1)

By repeating the above process, it is possible to evaluate all y(n) for n > k.

yk+1)=—pi ()T (k+1) — = ()T (k+1) +T(k+1)g(1).

~
~>

Nn—oo
n=ngp

Definition 2.2.2. A sequence {y,
satisfies the equation.

or simply y(n) is said to be a solution of (4) if it

Observe that if we specify the initial data of the equation, we are led to the correspond-
ing initial value problem.

y(n+k)+p1(n)f(n+k)m+'-‘+pk(n)f"(n+k) 7{((’,?) =T(n+k)g(n), n2>no,
(4)
y(mo) =ao,  y(o+1)=a;,  y(mo+k—1)=ac, (5)

where a;, i =0,1,2,...,k— 1 are real numbers.
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Example 2.2.3. Let k =3, pi(n) =n+1, po(n) =n, ps(n) =n—1, g(n) =0, n €N,
y(1)=1,y2)=1,y(3)=2. Then
T(n+3)=n+3+1
=n-+4,
T(n+3-1)=T([n+2)
=n+2+1
=n+3,
T(n+3-2)=T(n+1)
=n+1+1
=n+2,
T(n+3-3)=T(n)

=n+1.

The equation (4) takes the form

Y(n+3) = —(n+ 1)(n+4)222 ()2 1) (n 4 4)20

=~ 2) = Sl + 1) = B ).

We will find y(4) and y(5)
We have
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Example 2.24. Let k=2, pi(n) =n+2, po(n) =n—2, g(n) =0, T(n)=n>+1,neN,
y(1)=1,y(2) =2. Then

Tn+1)=(n+1)2+1
=n*+2n+1+1
=n>+2n+2,
T(n+2)=(n+2)2+1
=n’+4n+4+1
=n?+4n+5.

The equation (4) takes the form

Y(n+2) = —(n+2)(n> +4n+5) 38— (n—2)(n? +4n +5) 32

n242n+2 Ll
n n2 n . nz )
We will find y(3) and y(4).
We have
y(3) = =3.1042 — CU10, )
= —6y(2) +5y(1)
=—-6.2+5.1
=—12+45
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y(4) = —4.3y(3)

— 406
= 2.

Example 2.2.5. Let k =3, pi(n) =n+4, pr(n) =n+5, p3(n) =n, T(n) =n, g(n)

neN y(1)=0,y(2) =1, y(3)=3. Then
T(n+3)=n+3
T(n+3-1)=T(n+2)
=n+2,
T(n+3-2)=T(n+1)
=n+1,

T(n+3-3)=T(n)

The equation (4) takes the form

Y(n+3) = —(n+4)(n+3)222 (0 45)(n+3)22E) (i 4-3)20

= =04 2) = R (o 1) = (04 3)y ()

We will find y(4), y(5) and y(6).
We have

=-23-121-40
=-20-12
=32,
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¥(6) = =%2y(5) — 5y(4) — 63(3)

= —2y(5) —12y(4) - 6y(3)
=—-%2200-12(-32)-6.3
=—1680+384—18

= —1314.
Exercise 2.2.6. Prove that the problem (4), (5) has unique solution.

In this section we will develop the general theory of kth-order linear homogeneous iso-
difference equations of the form

(n+k—1)

y y(n)
T(n+k—1)

+ -+ ()T (n+k) e =0, n=ne.

y(n+k)+pi(n)T(n+k)

~»

~—

(6)

First of all, we will give some important definitions.

Definition 2.2.7. The functions fi(n), f2(n), ..., fr(n) are said to be linearly dependent for
n > ny if there are constants ay, ay, ..., a,, not all zero, such that

arfi(n) +axfo(n)+---+af(n) =0,  n=>no. (7)

If a; # 0, then we may divide the equality (7) by a; to obtain
filn) = =G fi(n) = Zfo(n) =+ = T fioa(n) = L fipa(n) = = 2 ()

==Xz o filn).
(8)
The equation (8) says that each f; with nonzero coefficient is a linear combination of the
other f;’s.

Definition 2.2.8. The negation of linear dependence is linear independence. Explicitly
put, the functions fi(n), f2(n), ..., fr(n) are said to be linearly independent for n > ny if
whenever

aifi(n)+axfo(n)+---+afr(n) =0

for all n > ny, then we must have
ag=a=---=a,=0.
Example 2.2.9. Let us consider the functions
2" n2", 2", a>1.

We consider the equality
a2+ an2" +azn*2" =0
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for real numbers ay, ap and as.,
By dividing by 2" we get

a1—|—a2n—|—a3n2:0, n>1.

This is impossible unless az = 0, since a second-degree equation in n possesses at most two
solutions n > 1. Similarly, a, =0, whence a; =0, which establishes the linear independence
of the considered functions.

Definition 2.2.10. A set of k-linearly independent solutions of (4) is called a fundamental
set of solutions.

Definition 2.2.11. The Casoratian W (n) of the solutions x(n), x2(n), ..., x,(n) is given by

x1(n) x2(n) o x:(n)
W (n) = det xi(n+1) x2(n+1) x(n+1)
xl(n—‘i-”r—l) xz(n—.i-“r—l) xr(fl—‘i-.l‘”—l)

Example 2.2.12. We will find the Casoratian of the following functions
2
We have
4 n4" n*4"
W(n)=det | 4" (n41)4""" (n+1)%4"H!
4n+2 (n_|_2)4n+2 (n_|_2)24n+2
— (n+ 1)(n+2)243n+3 +n(n+ 1)243n+3 +n2(n+2)43n+3
—n?(n+ 1) — (n42)(n+1)243"+3 —n(n 4 2)243+3
=433 ((n+ D(n+2)2+n(n+1)2+n*(n+2)
2 (n+1) — (n+2)(n+ 1) —n(n+2)2)
= 4343 ((n+ 1) (n? +4n+4) +n(n*+2n+ 1) +n® +2n°
32 2 (2
n’—n"—(n+2)(n“+2n+1)—n(n —|—4n+4))
= 43n+3 (n3+4n2+4n+n2+4n+4+n3+2n2+n+n2

—(n3—|—2n2—|—n+2n2—|—4n+2)—n3—4n2—4n)

_ 43n+3(n3 +4n*+5n—n3 —4n* —5n —-2)
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— 43n+3 (_2)
— 72'26n+6
— _26n+7.
Example 2.2.13. Now we will find the Casoratian of the functions
(_2)1’1’ 2n’ 3.
We have

(=2)" 2" 3
W(n) =det | (=2)*t! 21 3

—2)
(_2)n+2 2n+2 3
= (=2)". 2" 342 (=2)" P2 3 (—2)" 22 3
—(=2)r2.2n 3 (—2)n 223 — (=2)r 1 2n 3
— 3(_1)n22n+1 + 3(_1)n22n+2 _ 3(_1)n22n+3
73(71)n22n+3 _ 3(71)n22n+2 + 3(71)712271-&-]
=3(—1)"22"*1(142-322-322-3.2+3)
— 3(_1)n22n+1 (_24)
— (_1)n+13222n+4‘
Example 2.2.14. Now we will find the Casoratian of the functions
0,3", 7"
We have
0,3" 7"
W(n) = det( 073n+1 7n+1 )
=0,3"7"t1 —0,3"+17"

=0,3"7"(7-0,3)

—0,3"7"6,7.
Exercise 2.2.15. Let k =2,
— (3n=2)(n+2) _ 2n(n+1)
P ==55mn P20 = G

T(n)=n+1, g(n)=0, neN.

Verify that {n,2"} is a fundamental set of solutions of (4).



34 Svetlin Georgiev

Solution. We have

T(n+2) _ (B3n—=2)(n+2) n+3
pl(”)f(nm = T wi3)(n-1) n—2
_ 3n-2
n—17
T (n+2) 2n(n+1) n43

p2(n) T (n=1)(n43) nt1

_ 2n

n—1°

Then the equation (4) takes the form.

3n—-2 2n
2)— — 1 =0.
§1+2) = 22y 1)+ 2y () )
First of all, we will check that n and 2" satisfy the equation (9).

Really,

(n+2)—¥=2(n+1)+2p= (n+2)(n—1)—(3n—2) (n+1)+2n*

n—1 n—1 n—1

_ n?4n—2-3n%—n+24+2n*
- n—1

=0,

2n+2_%2n+1+%2n:2n (4_2311—2_1_27;1)

n—1 n—1

—on 4n—4—6n+4+2n
- n—1

=0.

We note that n and 2" are linearly independent. Therefore {n,2"} is a fundamental set of
solutions of (4).

Exercise 2.2.16. Let k =3,
pi(n) =0,  pa(n)=-7%2,  p3(n) =622,

T(n)=n+2, g(n)=0, neN.
Prove that {1,(—3)",2"} are solutions of (4) and find their Casoratian.
Solution. We have

pi(n) ;E:E; 0,

T(n+3) _ +4 n+5
P2() 51y = ~Tiisnta
=7,

T(n+3) _ £nd3 nts
p3(n) =y = 055503

=6.
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Then the equation (4) takes the form

y(n+3)—=Ty(n+1)+6y(n)=0. (10)
Now we will check that 1, (—3)", 2" are solutions of (10).
We have
1-7+6=0,

(=3)"+3 —7(=3)"1 4 6(—3)" = (=3)"(—27+21+6)
=0,
o3 7 ot L 6.0n =27(23 —7.2+6)

=0.

Now we will compute their Casoratian.

1 (=3 2"
W(n)=det| 1 (=3)**1 2ntl
1 (_3)n+2 2n+2

= (—3)ntiom2 4 (L3ympntl y (_3)nt2gn
—(=3yrHIn (3 )2l (_3)npn+2
= (=3)".2"(—12+42+9+3—18—4)

— (=3)"2"(—34 + 14)

= (—20)(-3)"2".
Exercise 2.2.17. Let k = 3,

pi(n) =351 pa(n) =428, ps3(n) = 1224,

T(n)=n+5, g(n)=0, neN.

Prove that
¥, (-3
form a fundamental set of solutions of (4).

Exercise 2.2.18. Let k =2,

n*+1 N

pl(”) 0, pz(”) 2 +dn+5 (n) n”+1, g(”) 0, neN

Prove that the functions sin(n) and cos(n) form a fundamental set of solutions of the equa-
tion (4).
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Lemma 2.2.19. (iso-Abel’s lemma) Let

yi(n),  ya(m),  ,y(n)

be solutions of (6) and let W (n) be their Casoratian. Then for n > ny we have the following
formula.
L T(no+1+k—1i)

W(no+1) = (_l)klljlpk(no—i_l_i) T (no+1—1i)

W (no) (11)

foreveryl e N.
Proof. We have

yilno+1) ya(mo+1) ... y(no+1)
W(no+1) = det yi(no+2) y2(no+2) ... w(no+2)
yi(no+k) yalno+k) ... y(no+k)
Now we use that
a yj(no+k—1)

yj(no+k) = =T (no+k) ;pi(no)m-

Therefore

W(Yl()—f— 1)

yi(ng+1) yi(no+1)
yl(n0—|—2) yk(no-i-Z)
= det

) DT A -
—T o+ K) L pilno) Jimbied o —T(no+ k) T pilno) JimE=d
yi(np+1) y2(np+1) yi(np+1)

det yi(no+2) y2(no+2) yi(no+2)
=de

— et pe(noyi(no) =T pi(no)ya(ng) . =Tt pilno)yi(no)

yilno+1) ya(no+1) ... y(no+1)

T (no-+k) yi(no+2) ya(no+2) ... y(no+2)

:_pk(HO) T(no) det

nlmo)  yamo) .. (o)
y1(no) y2(no) . yi(no)

— (_l)kpk(n()) T(An0+k)det yl(n0+1) yz(l’lo—F 1) yk(n0+1)
T'(no)

yilno+k—1) ya(no+k—1) ... y(no+k—1)

= (=1)*pi(0) LW (o),
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ie.,
T(nog+k
W0+ 1) = (— 1) pi(n0) -2y )
T (no)
We suppose that
T(no+1—1+k)
no+1)= no+1—1)— Wi(ng+1—1
Wl 1) = (1) pyloo 1 1) 50 S EW o411
for some [ € N.
We will prove that
(no+l+k)
W(no+I[+1)= D*pr(ng+1)———W(ng+1).
(o +141) = (=1 prlg 1) =2 =W (o 1)
Really,
yi(no+14+1) ya(no+Ii+1) ... y(no+I+1)
W(no+1+1) = det yi(no+14+2) ya(mo+1+2) ... w(no+1+2)
yl(noi—;-.l—i—k) yz(nol—;—.l-ﬁ-k) yk(no.-i.-.l-i-k)
yi(ng+1+1) ye(no+1+1)
det yi(ng+1+2) Yi(no+1+2)
=de
~T(no+1+1) X 1p,(no+l)7”<(n"“f/ff 13 o Tl +1+ )X 1pl(no+l)y7k(<,']°j,’j,f 1;
yi(np+1+1) ye(no+1+1)
~det yi(ng+1+2) yilno+1+2)
(n0+l+k)pk(no+l) ‘f;‘”jf)) (no+l+k)l7k(n0+l)%
vilnp+I1+1) ya(mo+Ii+1) ... y(mo+I1+1)
n [+2 1+2) ... [+2
(g +D) (((:l+i+z)]<)det yl(noi +2) Y2(n0jrv +2) Yk(n09j +2)
y1(no+1) v(o+l) ... ylno+1)
yi(no+1) y2(no+1) yi(no+1)
. 1+1 1+1 1+1
(1) pi(ng +1) ((+1+)k)det )’1(”0"’." +1) Y2(n0.4.—. +1) yk(noj-. +1)
yi(no+Il+k—1) yr(no+i+k—1) ... w(nog+I+k—1)
=(*1)kpk(n0+l)ww(no+l)’
i.e.,
(no+l+k)
Who+I1+1)=(— (g +1)———Wi(ng+1).
(o +11) = (=1 prlg ) =2 =W o )
Consequently, forall / € N
no+I1+k—1
Wno-+1) = (~1) pyfng+1— 1) L0 JWno+1-1),

(n0+l—1)
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Hence,

W (no+1) = (—1)*pi(no+1— 1)%W(mo+l— 1)

[ (no+1+k— [ (ng+1+k—2
:(—1)kpk(no+l—1)%(—1)17%(’10+l—2)%w(’10+l—2)

[ (no+1+k—
= (—DMT, prlno+1— 1)%14/(%).

O]

Exercise 2.2.20. Suppose that p;(n) # 0 for all n > ny. Prove that the Casoratian W (n) # 0
for all n > ny if and only if W (ng) # 0.

Now we will find the relationship between the linear independence of the solutions and
their Casoratian.
Let

yin),  ya(n), ()

be solutions of (6). Suppose that for some constants
ai, as, ey ay and ng € N,

we have
ary1(n) +axy2(n) + -+ +agye(n) =0

for all n > ny. Then we generate the following k — 1 equations.

ary+1 (n+1iayr(n+11 - +ay(n+1)=0

ary1(n+2)+ay,(n+2)+---+ay(n+2) =0

apyi(n+k—1)+ay(n+k—1)+- +ay(n+k—1)=0.

Let
yi(n+1) yan+1) ... yln+1) a
v | e+ e werd || e
)’1(n—'i-'l‘<—1) yz(n—'i-'l.c—l) yk(n—.i-‘l'c—l) ak

Thus, we obtain
Y(n)a=0. (12)

‘We observe that
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The equation (12) has only the trivial solution, i.e.,
ay :azz...:ak:O,

if and only if the matrix Y (n) is nonsingular for n > ny, i.e., W(n) # 0 for all n > ny.
In this way we get to the following conclusion.

Theorem 2.2.21. The set of solutions

yl(n)v y2(”)7 ce yk(n)

of the equation (6) is a fundamental set if and only if for some ng € N the Casoratian
W(ng) # 0.

Theorem 2.2.22. (fundamental theorem) If py(n) # 0 for all n > ng. Then the equation (6)
has a fundamental set of solutions for n > ny.

Proof. Since the initial problem for the equation (6) has unique solution, then there are
solutions

yiln), o yan), o w(n)

such that
yilno+i—1)=1,

yi(no) = yi(no+1)

=yi(ng+i—2) =yi(no+1i)

Hence,

yi(no+k—1)=1.

It follows that
W(ng) =detl = 1.

Consequently, the set

i), »(n), ., w(n)}

is a fundamental set of solutions of the equation (6). O
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Exercise 2.2.23. (superposition principle) If

yin),  yan), s yi(n)

are solutions of the equation (6), prove that

y(n) = aryi(n) +azy>(n) + -+ aryr(n),
where a;, i = 1,2,...,r, are constants, is also solution of the equation (6).

Now let

i), ), ., w(n)}

be a fundamental set of solutions of (6) and let y(n) be any given solution of (6). Then
there are constants ay, as, ..., a; such that

k
y(n) = ; a;yi(n).

To show this, we use the notation (12) to write

where

Since Y (n) is nonsingular, it follows that

a=Y"'(n)j(n),

and, for n = ny,
a=Y""(no)s(no).

Exercise 2.2.24. Let S be the set of all solutions of the equation (6) with the operations +,
- defined as follows

@ (x+y)(n) =x(n)+y(n), forx,ye S, neN,
(ii) (ax)(n)=ax(n), forx € S, a is a constant.

Prove that
(Sv +7 )

is a linear vector space of dimension k.
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2.3. Linear Homogeneous Iso-Difference Equations with Con-
stant Coefficients

Here we will consider the equation (6) in the case when

T(n+k
i(n)A(niJr):ai:const, i=1,2,....k,
T(n+k—1)

for some k € N. In other words, here, in this section, we will consider the equation
y(n+k)+ayy(n+k—1)+ay(n+k—2)+---+ary(n) =0, n>n. (13)

We suppose that a; # 0.
We assume that the solutions of the equation (13) are in the form A", where A is a
complex number, i.e., we assume that

y(n) =A"

Then
y(n+1) =+

y(n+2) = A2

y(n+k) =Nk
Hence, using the equation (13), we get
A g A gV =0

or
Mg+ g =0. (14)

Definition 2.3.1. The equation (14) will be called the characteristic equation of the equa-
tion (13). Its roots will be called characteristic roots of the equation (13).

Because py # 0, none of the characteristic roots is equal to zero.

Example 2.3.2. Let us consider the equation
y(n+4)+12y(n+3)+6y(n+2)+7y(n+1)+y(n) =0.
We assume that its solutions are in the form y(n) = N". We have
y(n+1) = A y(n+2) =2, y(n+3) =", y(n+4) =14
which we put in the considered equation and we get
A 1203 Lol L T A =0,
whereupon the characteristic equation of the considered equation is

MH123 + 602+ 70 +1=0.
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Example 2.3.3. Let us consider the equation
y(n+3)—4y(n+2)—5y(n+1) —6y(n) =0.
We will suppose that its solutions are in the form y(n) = N". We have
y(n+3) =", y(n+2) =2 y(n41) = A"t

Hence,
N3 g2 st et =0,

from where
A4 -5 —6=0

is the characteristic equation of the considered equation.

Example 2.3.4. Let us consider the equation
¥(n+7)=Ty(n+5)—4y(n+4) =3y(n+1) +y(n) = 0.
We will assume that its solutions are in the form y(n) = A". Then
y(n+1) =1 y(n+2) = A2, y(n+3) =13, y(n+4) =\t
yr+5) =N yn+6)=A"C  y(n+7)=A"1,
which we put in the considered equation and we find
AT NS g4 3l L — 0,

or

A =T — A0 —3A+1=0
is the characteristic equation of the considered equation.

Exercise 2.3.5. Find the characteristic equation of the following equations
1) y(n+3)—=3y(n+2)—2y(n+1)—10y(n) =0,
2)  y(n+4)—y(n+3)—y(n+2)—yn+1)—yn) =0,
3) y(n+2)—10y(n+1)+9y(n) =0,
4) y(n+5)—6y(n+3)+y(n+1)=0,
5) 3y(n+3)—y(n+1)+y(n) =0,

6)  4y(ntz)—Ty(n) =0.
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Answer.
1) 7»3—37»2—2%—10:0,

2) MNP —A-A—-1=0,
3) A2 —10A+9 =0,
4 N-6A+r=0,
5) 3 —A+1=0,
6) 4\ —-7=0.
1. Case. Let the characteristic roots
A1, A2, e Ak
are distinct. We will show that the set
{\], 2 e it

is a fundamental set of solutions of the equation (13). Since

1 1 1
W (0) = M Moo M 7
T S

which is the Vandermonde determinant, we have

wo)= TT (-%).

1<i<j<k
Because all A;’s are distinct, it follows that
W(0) # 0.

This proves that
{M, P 3

is a fundamental set of solutions of the equation (13). Consequently, the general
solution of the equation (13) is

k
yn) =Y @ik,
i=1

where a;, i = 1,2,...,k, are complex numbers.
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Example 2.3.6. Let us consider the problem
y(n+2)+3y(n+1)+2y(n) =0, n>2,
y(0) =1,y(1)=2.
The characteristic equation is
A +30+2=0,

its roots are

We have
7\'1 7& 7\'27

from here, the general solution of the considered equation is

y(n) = ai(=1)"+a(=2)",

ay and ay are complex numbers. We will find the constants a| and a; using the initial

data. Namely,
1=y(0)=a;+a
2 :y(l) = —da —2a2,
ie.,
ar+ay=1
—a) —2ap; =2,

therefore
a) = 47 ay = —3.

In this way the general solution is

Example 2.3.7. Now we consider the problem

y(n+2)+9(n) =0, n>2,

The characteristic equation is
A2 +9=0,

its roots are

Ao = 43

Therefore
y(n) = a1 (3i)" +ax(—3i)".
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We will find a and a, using the initial data. We have

y(0)=a;+a,=0

y(1) = 3ia; — 3iay = 3,

or
ar+a =0
—
3iay —3ia, =3
a) = —dai
=
6ia; =3
1
a) = 2
=
1
a) = —72
1
{ L
1
a) = 5
From here,

Now we use that

. T, iein T
[ =cos5+isiny,
. T T
[=cos5 —isinsy,

nn

. AT : e
" =cos 5 +isinz,

(—i)"cos 5 —isin 2%,

—ii" = —icos 5t 4-sin 7F

2
i(—i)"icos "¢ +sin %%,
R T T U T
—ii" +i(—i)" = —icos T +sin T +icos 5 4-sin g
Y ain AT
=2sin 5.
Consequently,
nm
y(n) =3"sin—.
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Example 2.3.8. Now we consider the problem

y(n+3)=3y(n+2)+4y(n+1)—2y(n) =0, n>3,

y(0)=y(1)=0,  y2)=1.
The characteristic equation is

M-3R+ -2=0 —

M —3A 43 +A—1-1=0 —
AM-1D)-3AMA-1D)+(A-1)=0 =
A—1)A+A+1-3%+1)=0 =
A—1) (A2 —2A+2)=0 =

A =1, hMz=1=£i
The general solution is

y(n)=a(1)"+a(14+i)"+ax(1 —i)"

=a;+ay(14+i)"+a3(1—i0)",

where ay, ap and as are complex numbers. We will find a,, ay and as using the initial
data. We have
0=y(0)=a;+ar+a3

0=y(l)=a;+ax(14+i)+a3(1—1i)

1=y(2) =a1+a(1+i)* +a3(1—i)?
or

aj+ay+az3=0

ar+ax(1+i)+az(1—i)=0 =

ar+ai(1+i)+az(1-i)>=1

a) = —ax —as
—ag—a3+a2(1+i)+a3(1—i)20 —

—dy) —as +a2(1+i)2+a3(1 —i)2 =1

a) = —dy —ajs

iay —iaz =0 -

—day —as +a2(1 —l—i)2—i—a3(1 —i)2 =1
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a) = —daz —as
ap) = as —

—2az+as(1+2i—1+1-2i—1)=1

ay = —ax—as
a) = aj —
[ 2a3=1
( a) = —dy—as
_ 1
Clz——z —
1
(13——§
ar=1
1
a2——§
1
03——5

Consequently,

Now we use that
1+i= ﬁ(cos%—i—isin%) ,

l—i:ﬁ(cos§—isin%),
(1+i)"=2" (cosZE +isin )
(1—i)r=+2" (cos™® —isin %),

. Nn n
(1+0)"+(1—i)" =22 cos .
Consequently,
n nm
yn)=1-2 cos —~.

Exercise 2.3.9. Find the general solution of the following initial problem

y(n+3)=3y(n+2)+2y(n+1)+y(n) =0
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2. Case. Suppose that the distinct characteristic roots are A, Ay, ..., A, with multiplicities

my, ma, ..., m, with

.
Z m; = k s
i=1

respectively.

Proposition 2.3.10. The set

L n n ,'1_1 n ,'1_2 n
G,—{kl,< 1 >xl < " >xl ,...,(mi_l

is a fundamental set of solutions of the equation (13).

Proof. We have

1
Ai 1
wO)=| A 2Mi

mi—1  my—1qm—2
A A

1
= 2831 (m—2)! 7# 0.

231 (mi—2)!

i)

(=)

1

The proof that ( ’: > A;~" is a solution of the equation (13) we left to the reader as

exercise.

Theorem 2.3.11. The set

is a fundamental set of solutions of (13).

Proof. We have

1 0 U |
M 1 O
w(0)=| A 201 A2

M (e

= [Ti<icjck(Aj = Ag)™mimi.

O]

0

1
2,
(k—1)Ak=2

r

As A; # Aj, we conclude that W(0) # 0. Hence, the Casoratian W (n) # 0 for all

n > 0. Thus G is a fundamental set of solutions.

O]
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Corollary 2.3.12. The general solution of the equation (13) is given by
r
y(n) =Y A (aip+ann—+- -+ dim—1n™").
i=1

Example 2.3.13. Let us consider the initial problem

y(n+3)=3y(n+2)+3y(n+1)—yn)=0

The characteristic equation is
A =302 +30—1=0

or

(7\‘_ 1)3 :07

or
M=1, mp = 3.

Therefore the general solution is
y(n) = (a1 +an+azn*)1"

=a) +an+azn®.

We will find ay, ar and a3 using the initial data.

We have
y(0)=a; =1

y(l)=ai+ay+a3; =1

y(2) =a;+2a;+4a3 =1,

from where

a) = 1
ar+a3 =0
2ay+4a3; =0,
whereupon
ar=1
a =0
az =0.
Consequently,



50 Svetlin Georgiev

Example 2.3.14. Let us consider the initial problem.

y(n+3)—8y(n+2)+2ly(n+1)—18y(n) =0, nz3,

The characteristic equation is
A —8A24+21A—18=0 =
AP —8A2+ 90+ 12— 18 =0 —
IA—2)+AA2—8AL+12)=0 —
IA-2)+AA-2)A-6)=0 —
A=2)(A2—6AL+9)=0 —
(A—2)(A—3)2=0.

Therefore

The general solution is
y(n) =a;2" + (ay + azn)3".

We will find ay, ar and a3 using the initial data.

We have
ay+a; =0
2a1+3(ay+a3) =1 -
da, +9(a2 —|—2a3) =0
a) = —da
2a; —3a;+3a3 =1 -
da; —9a; +18az =0
a) = —6
a) = 6
asz = —%.
Consequently,

y(n) =—-62"+ <6 - in) 3"
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Example 2.3.15. Let us consider the initial problem

y(n+3) =5y(n+2)+8y(n+1) —4y(n) =0

The characteristic equation is
A =5 +8L—4=0 =
AN —dN 8L —4=0 =
MA—1)—4A-20+1)=0 ==
MA-1)—4A-1)2=0 ==
A—1DA—4r+4)=0 =
A—1)(A—-2)>=0.

Therefore
7\.1 = 1, 7\,273 =2.

The general solution is
y(n) =a+ (az + agn)2”.

We will find ay, ar and a3 using the initial data.

We have
y(0)=a;+ay=1
y(l)=a;+2(ay+a3) =1
y(2) =a; +4(ax+2a3) =1,
whereupon
a) = 1 —daq
ar+2—2a;+2a3=1 —

ar+4—4a;1+8az =1
azzl—al
—a; +2a3=—1 ——

—3a1+8az = -3
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a=1—a
ay =2az+1 —

—6az —3+8a; = —3

a2:1—a1
a; =2a3+1 —
a3 =0

a1:1

a2—0

a3:0,

ie.,
y(n) =1

Exercise 2.3.16. Find the general solution of the initial problem.

y(n+3)=9y(n+2)+27y(n+1) —27y(n) =0

2.4. Linear Nonhomogeneous Equations
Here we will investigate the equation

Y((’jf) — kg, n>no.

(4)

Definition 2.4.1. T(n+ k)g(n) is called the iso-forcing term, the iso-external term, the
iso-control, or the iso-input of the equation.

(n+k—1)

y A
A +oo ()T (n+k—1
T(n+k—1) Pulm)T (n+k=1)

y(n+k)+p1(n)T (n+k)

~>

Theorem 2.4.2. Ify;(n) and y,(n) are solutions of the equation (4), then

x(n) = yi(n) —ya(n)
is a solution of the equation

(n+k—1)

y y(n)
T(n+k—1)

-|--~-+pk(n)f"(n+k—1) o =0, n> nop.

y(n+k)+pi(n)T (n+k)

~»

~—
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Proof. We have

=

(k) +pr ()T (140 L 44 e ()T (k= 1) = T(n+K)g(n),

=

y2(ntk—=1)
T(n+k—1)

=

oot T+ k=12 = P(nt+k)gn),  n>no.

y2(n+k)+ pi(m)T (n+k) o

=

We subtract twice equations and we get

(1 (n+K) =y2(n+K)) 4 pa (n) T (n -+ ) L2

oot ()T (n+ k= 1)2020 — 4 kg (n) — T (n+k)g(n),

T(n)
whereupon
A x(n+k—1) R x(n)
k T k)oorm——=+ - T k—1)—%= =0, > ng.
kR 4 pr (T (1K) s e )T k= 1) nzno

Theorem 2.4.3. Any solution y(n) of the equation (4) may be written as

k
y(n) =y,(n)+ Z{aix[(n),

where {x1(n),xz2(n),...,xx(n)} is a fundamental set of solutions of the homogeneous equa-
tion (6), a;, i =1,2,...,k, are constants, y,(n) is a particular solution of (4).

Proof. We observe that y(n) —y,(n) is a solution to the homogeneous equation (6). Thus,

k
y(n) —yp(n) = ; aixi(n),

a;,i=1,2,...,k, are constants. O]

Example 2.4.4. Let k =2,

6(n>+2n+3) 5(n2+2)

r(n) = "mane s ) =a5%
T(n) =n*>+2, g(n):32ﬁ, neN.
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Then

T(n+2) _ 6(n*+2n+3) (n+2)>+2
T(n+1) n2+4n+6 (n+1)242

_ 6(n*42n+3) B2 44n+442
T n244n+6 n242n+142

_ 6(n*+2n+3) n’44n+6
T n2+4+4n+6 n242n+3

=06,

T(n+2) _ 5(n*+2) (n+2)*42
P2(0) 503" = ranse w2

_ 5(n*42) n’44n+6
T n24+4n+6) n?+2

=5,
(T (n+2) = FHoe (n? +4n +6)
=32(3").

Then the equation (4) takes the form

yt(n+2)+6y(n+1)+5y(n) =32(3").

We will check that
y(n) =3"
is its particular solution.
Indeed,

32 4 6(3"1) +5(3") =3"(32+6.3+5)

=32(3").
Now we will find a fundamental set of solutions of the equation

y(n+2)+6y(n+1)+5y(n)=0. (15)
The characteristic equation is
A*+6L+5=0.
We have
A =-5, A =—1.

Then

yi(n) =(=5)",  yan) =(=1)"
is a fundamental set of solutions of the equation (15). Consequently, the general solution
of the considered equation is given by

y(n) =a;(=5)"+axy(—1)"+3",

where ay and ay are constants.
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Example 2.4.5. Let k =3,
3(2n45 3(2n43
piln)= =G pa(m) =GR, ps(n) = 3,
Pmy=2n+1,  gn)=525  nel.
Then (n+3) (2n+5) 2(n+3)
T(nt3) _ 32n45) 2(n+3)+1
p1(n) Tn+2) — 2n+7 2(n+2)+1
_ 3(2n+5) 2n+7
2n+7 2n+5
= —3’
T(n+3) _ 3(2n43) 2n+7
p2(n) f(Z+1) = 57 2(n—7—T)+l
__3(2n43) 2047
— 2n+7 2n+3
=3,
T(n+3) _ 20412047
p3(n) Tn(,,) = _2217 2211
=1,
gm)T(n+3) = %(Zn +7)
=2"
The equation (4) takes the form
y(n+3)=3y(n+2)+3y(n+1)—y(n) =2".
We will check that
y(n) =2"
is its solution.
Indeed,
23 —32mt2 3 pntl _on = (23 —3.22432-1)
=2"(8—124+6—1)
=2"
Now we consider the homogeneous equation
y(n+3)—=3y(n+2)+3y(n+1)—y(n) =0. (16)

The characteristic equation is

A3 +30—1=0,
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ie.,

A—1)3=0.

Therefore
A =1

and a fundamental set of solutions of the equation (16) is
1, n, n’.
Consequently, the general solution of the considered equation is
y(n) =a +an+azn®+2",
where a1, ay and asz are constants.

Example 2.4.6. Let k =3,

pi(n) = —9:?190, pa(n) = 26:?1%, p3(n)=—24
g(n):6mi—?o,f(n):n+7, neN.
Then s
T(n+3) _ +9 n+743
pi(n) Ti2) —9aT0 T2
=_9 n+9 n+10
n+10 n+9
= —97
T(n+3) _ +8 nt10
pz(n) Tnrl) 26:+10 nn+7+1
_ 48 ntl0
= 26nn+10 nn+8
=26,
T(nt3) _ +7 n+10
p3(n) ) _24nn+10 r;;+7
=-24

The equation (4) takes the form

y(n+3)—9y(n+2)+26y(n+1) —24y(n) =6(5").

We will check that
y(n) =5"

n+7
n+10°
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is its particular solution.
Indeed,

573 —9(5"2) +26 (5"t1) —24(5") = 5" (125 —9.25+26.5 — 24)
=5"(125-225+130—24)
=6(5").
Now we consider the homogeneous equation
y(n+3)—9y(n+2)+26y(n+1) —24y(n) =0.
The characteristic equation is
A3 — 924260 —24=0 =
MO+ 14A+120-24=0 =
AMA?2 =9 +14)+12(A—2) =0 =
AMA=2)(A=9)+12(A-2)=0 ==
A—=2) (A2 =9\ +12)=0 ==

(A—2)(A—3)(A—4) =0.

Hence,
M =2, Ay =3, Az =4

A fundamental set of solutions of the equation (17) is
2" 3" 4,
Consequently, the general solution of the considered equation is
y(n) =a12" + ax3" + az4" + 5",
where ay, ay and asz are constants.

Exercise 2.4.7. Let k = 3,

pi(n) = -6, pa(n) = 122432, p3(n) = =8,

gn)=-320.  Tm)=n+1l.

Check if
y(n) =2"

is a solution to the equation (4). Find the general solution of the equation (4).
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Definition 2.4.8. A polynomial operator N (E ), where E is the iso-shift operator, is said to
be iso-annihilator of g(n) if
N(E)g(n) =0.

Example 2.4.9. Let T(n) =n+ 1, g(n) = n?,

2
N(E) :E—m, nenN.

Then

N(E)g(n) = (£~ 55 ) ()

= Egln) — 5 g (n)

= fi) ~ et

= iﬁﬁ - ((rfizl)):z n’

_ (1) (nt1)?

— n+2 n+2

=0.
Example 2.4.10. Let T'(n) = g(n) = €",

NE)=E—-e" neN.

Then

Example 2.4.11. Let T'(n) = n+10, a(n) = n+1,

bn) = sl 800 =0+,
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Then

A

N(E)g(n) = (a(n)E —b(n)) g(n)

_ (n+1)(n+10) (n+1)(n+10) (n_|_9)

n+11 (n+9)(n+11)

_ (n+1)(n+10)  (n+1)(n+10)

n+11 n+11

=0.

Assume now that N(E) is an annihilator of g(n) in (4). Applying N(E) on both sides
of (4) yields
N(E)p(E)y(n) = 0.

2.5. Method of Variation of Constants

Here we consider the equation

y(1+2) ) - 1) £ o) T ) = T 2. >
(18)
and the corresponding homogeneous equation
42+ p ) ) i) T ) =0 nz (1)

We suppose that y; (n) and y;(n) are linearly independent solutions of the equation (18’).
We will search functions u;(n) and u(n) so that

y(n) =ur(n)y1(n) + uz(n)y2(n),  n=>no,
is a solution of the equation (18) and

Auy(n)y1(n+1) +Auz(n)ys(n) =0, n > no,

where
Auy(n) =ui(n+1) —u(n), Auz(n) =upr(n+1) —uz(n).
We have
yl(n+2)+p1(n)my1(n+1)+p2(n)T(;(:)2)y1(n) =0, n>ny, (19)
yz(n+2)+P1(n)myz(n+l)+p (n)T(;(:)z) »(n) =0, n>ng (20)
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Also, for n > ny,
yn+1)=ui(n+ Dy (n+1)+ur(n+1)y2(n+1)
=(ui(n+1)—ui(n)yi(n+1)+ui(n)yi(n+1)
+(ur(n+1) —uz(n)) y2(n+ 1) +uz(n)y2(n+1)
=Aui(n)y1(n+1)+Auz(n)y2(n+1) +ur(n)y1(n+1) +uz(n)y2(n+1)

=ui(n)y1(n+1)+uz(n)y2(n+1),

yn+1) =ui(n)yi(n+1) +ua(n)ya(n+1), (21)

yn+2)=ui(n+2)yi(n+2) +ur(n+2)y2(n+2)

= (n+2)—ui(n+1)y1(n+2)+ui(n+ 1)y (n+2)

+(ua(n+2) —up(n+ 1)) y2(n+2) +up(n+1)y2(n+2)

=Auy(n+1)y1(n+2) +Auzy(n+1)y2(n+1) +ur(n+ 1)y (n +2) +ua(n+1)y2(n+2)
=ui(n+1)y1(n+2)+ur(n+1)y2(n+2)
=(u(n+1)—ui(n))yi(n+2)+ui(n)y(n+2)

+(ua(n+1) —uz(n)) y2(n+2) +uz(n)y2(n+2)

= Aur(n)y1(n+2) + Aup(n)y2(n+2) +ur (n)y1 (n+2) + ua (n)y2(n +2),
i.e.,
y(n+2) = Aui(n)y1(n+2) + Auz(n)y2(n+2) +ur (n)yi (n+2) + uz(n)y2(n +2). (22)
Now we put (21) and (22) in (18) and we find

Auy(n)y1(n+2) +Aua (n)y2(n+2)

+ur(n)yr(n+2) +uz(n)yz(n+2)

+p1(n) ;gm (w1 (M)y1 (n+1) + uz(n)ya (n+1))

p2(n) B (a1 (m)y () + 2 (1)y2 ()

=T(n+2)g(n),
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or
Auy(n)y1(n+2) +Aus (n)y>(n+2)

() (y1(n-+2) + pr () T2y (14 1) + pa(n) T2y, () )

+uz(n) <Y2 (n+2)+ pi1(n) T(T"(:)Z Ly, (n+1) + pa(n) T(T"(:)z )yz(n))
=T(n+2)g(n),
now we use (19) and (20), and we get

Auy(n)y1(n+2) + Auz(n)y2(n+2) = T'(n+2)g(n), n>ny.
In this way for u;(n) and uy(n) we get the system
{ Aui(n)y1(n+1)+Auz(n)y2(n+1) =0

Auyi (n)y1(n+2) +Auy(m)y2(n+2) = T (n+2)g(n).

‘We have

) 0 y2(n+1)
T(n+2)g(n) y2(n+2)

Auy(n) = W(n+1)

Wt

Auy(n) =

_ nint )T (n+1)g(n)

= W(n+1) ’
i.e.,

Ay (n) = — T(n+1v2/y(zn(flr)l)g(n)

Ays(n) = yl(’l'i“])v)(Tn(_x’i')l)g(")7

whereupon

n— T(r+1 r+1)g(r
ul(n) = _Zr:é ( +I/I)/y(2r(+—1i_) )a( )7

Mz(i’l) = Z’:;é YI(V‘F;;(];(;:'I"‘)I)g(r)
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2.6. Some Nonlinear Iso-Difference Equations

1. Iso-Riccati equations.
Here we consider the equation

—

PN+ 1)FNR) + p(n)3 (n+ 1) +q(n)3"(7) =0, (23)

where p and g are given functions, y is unknown.

The equation (23) we can rewrite in the following form

y(n+1) y(n) y(n+1) y(n) _

T PV T T°
or

y(n+1)y(n) + p(m)T (n)y(n+1) +q(n)T (n+1)y(n) = 0. (24)
To solve the equation (24) we let
1
2(n) = )W7

whereupon

: T 1 Flnt1)— =0

FOECES)) +p(n) (”)m +q(n)T(n+ )m =0,

L+ p(m)T(n)z(n) +q(m)T (n+1)z(n+1) =0,
i.e., we obtain a linear iso-difference equation.

The corresponding nonhomogeneous iso-Riccati equation is

—

Y (n+ 15" (A) + p(n)9" (n+1) +q(n)9"(7) = g(n),
where g is a given function. This equation we can rewrite in the form

(n)

y(n+1) y

Tx(n+1)

y(n+1) y(n)
T(n+1)T(n)

+p(n) +4q(n) =g(n),

y(n+1)y(n)+ p(n)T (n)y(n+1) +q(n)T (n+1)g(n) = g(n)T(n)T (n+1).

To solve the equation (25) we set
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Then

yin+1)= i(n+1) —pn+ DT (n+1),

vy 1) = (20— p() P (0)) (22— p(n+ )T (n+ 1))

Ep — k)T (ot D — p() T (n) S

+pm)p(n+ DT (n)T (n+1),

whereupon the equation (25) takes the form

Z(:(:)Z) - p(”"‘l)rf(n—i- I)Z(:(:)l) _P(n)f(n) é(n+2)

+p(m)p(n+ DT ()T (n+1)

=pm)T(n) (L5~ pln+ DT (n+1))

+q(m)T (n+1) (L = p(n) T ()

=g(n)T(n)T(n+1),

2t Dol 1) - g = g 0 4 1),

2(n+2)=T(m+1)(p(n+1)—q(n))z(n+1) —g(n)T (n)T (n+1)z(n) = 0.

2. The Iso-Pielou Logistic Equation.

Here we consider the equation

— ol (7)

P+l) = T1 2 ) (26)

where o and [ are constants.

Definition 2.6.1. The equation (26) is called iso-Pielou logistic equation.

We can rewrite it in the following form
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or Pt
T(n+1
o———x(n)
x(n+1) = T(ng
1+ T(n)x(n)
Let
2(n)’
Then
(n+1) 1
x = ,
2(n+1)
the equation (27) takes the form
T(n+1) 1
1 %y
= .
z(n+1) R OED)
or s
T(n+1
L %
= >
Ant 1) 2(n) + 70
or .
T 1
z(n) + AB =a (fH_ )z(n—i—l).
T(n) T(n)

3. Equations of general Riccati type

Here we consider the equations

= a(n)"(A)+b(n)
c(n)&"(A) +d(n)’

where ¢(n) # 0, a(n)d(n) —b(n)c(n) # 0 for all n > 0.

The equation (28) we can rewrite in the form

or

x(n+1)=T(n+1) (

To solve this equation we set

c(n)x(n) +d(n)T (n) = y(;z(:)l)
Hence, .
(px(m) = 2D gyt ),

(28)
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N (1) din)
1 y(n+1) d(n) .
x(n) = — T(n
WZew S
Therefore ( ) ( )
1 ynr+2) d A
1)= — T 1
) = G Dy ) yrety
and (n42) _ d(nt1)
1 d(n+1) 4
i)~ o L+ 1)
- a(n) (i Sy’ — &g 7)) +0(n)7 1)
:T(n+1) ( ) ) y(n(Jri) ) 9
¥(n)
or
y(n+2)—dn+DT(n+1)yn+1)
=T (n+ De(n+1) (4aty(n+1) — U7 (n)y(n) + b(n) T (w)y(n) )
or
Yn+2) = d(n+ )T+ Dy(n+1) = T(n+ 1) LLa(m)y(n+1)
~T(m)T (n+ 1)UL a(n)d(n)y(n)
+T ()T (n+1)b(n)c(n+1)y(n),
or
y(n+2) — F(n+1) (d(n+ 1) - C%”a(n))y(m 1)
+P ()T (n+1)e(n+1) (% —b(n))y(n) —0.
4. Here we consider the iso-difference equation
—\ " —_— rn 7
(" e+0) " (3 k=D)L @) =g,
which we can rewrite in the form
<y(n+k)>” (y(nﬂLk—l))r2 (y(n)>”‘“ (n)
= = DY = = n
Ttk)) \Fatrk—1) (n) 8
or
Y +K)" ((n+k=1))" ... (y(n))™"
(29)
=gm)T()T(n+1)...T(n+k).
Let

z(n) =log(y(n)).,
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Then
z(n+1)=log(y(n+1)),

z(n+2)log(y(n+2)),

z(n+k) =log(y(n+k)).
Hence, using (29),

log ((y(n+k))" (v(n+k—1))"=...(y(n))"*")

=log (gm)T(M)T(n+1)...T(n+k)),

> log (y(1+K))" +log (y(n+k — 1))" + -+ +log (y(n)/**
—log (s(n)T ()T (n+1)... 7 (n+k)),
. rilog(y(n+k))+nrlog(y(n+k—1)) 4+ rep1log(y(n))
—log ()T ()T (n+1)... 7 (n+k)),

rizin+k)+rzn+k—1)+--+rip1z(n)

=log (gm)T(MT(n+1)...T(n+k)).

MA



Chapter 3

Systems of Linear Iso-Difference
Equations

3.1. The Basic Theory
Here we consider the system
(1) 9"@) =A(n)9"(7) +g(n),

where A(n) = (aij(n))f-"j:l is k x k matrix function,

yi(n) yi(n+1) gi(n)
s = | 2 s = | RO g = | 20
Yi(n) Yi(n+1) gk(n)

g(n) is given real-valued function or iso-function of first, second, third, fourth or fifth kind.
The system (1) we can rewrite in the form

F(n+1) Finy T
s+ 1) = LA 0)+ T+ ). )
The corresponding homogeneous system is
s+ 1) = S DAy @)

Now we will establish the existence and uniqueness of solutions of (2).

Theorem 3.1.1. For each xy € R* and ng € N there exists a unique solution x(n,ngy,xo) of
the system (2) such that
x(ng,ng,xp) = xo.
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Proof. From (2) we have

x(no+1,n0,x0) = %A(no)x(%)

I (no+1

x(no+2,n0,30) = F(TA(mo 4 1)x(no + 1)

o (n0+2) (n0+1)
= kD) T A(ng+ 1)A(no)xo

L0+2) 4 (10 + 1)A (o) xo.-

T (no)

We suppose that
n =
3)

x(ng + k,ng,xo)
i=0

for some k € N.
Now we consider
x(no+k+1,n0,x0).

We have, using (3),
7T("°+k+l)A(no +k)x(no+k)

x(no +k+1,n0,x0) = Tk

Lokt 1) L0 k) g 1y 4 ) [T L A + i)x0

~ Tlotk) T(mo)

P e [ )y

Consequently, the formula (3) is valid for all k € N
The formula (3) gives the unique solution with desired properties

Definition 3.1.2. The solutions
yi(n),  y2(n), sy Yk(n)

of the system (2) are said to be linearly independent for n > ny if whenever

ciyi1(n) +cay2(n)+ -+ cxyr(n) =0

foralln > ny, thenc; =0,i=1,2,... k.
Let ®(n) be a k x k matrix whose columns are solutions of the system (2). we will write

cb(n) = [yl(l’l),yz(l’l),. - ayk(n)]'
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From here,

Pn+1)=[yi(n+1),y2(n+1),...,y(n+1)]

= [T Ay (n), B A )y (), .., T A () ()

o O OB ORRAL)

_ T(n+1)
- f(n) A(n)q)(n),

i.e., ®(n) satisfies the iso-difference equation

T(n+1
P(n+1) = w
T (n)
The solutions y; (n), y2(n), ..., yx(n) are linearly independent for n > ny if and only if the
matrix ®(n) is nonsingular.

A(n)®(n). (4)

Definition 3.1.3. If ®(n) is a matrix that is nonsingular for all n > ny and satisfies the
equation (4), then it is said to be a fundamental matrix for the system (2).

Theorem 3.1.4. Let C be a nonsingular matrix. If ®(n) is a fundamental matrix of the
system (2), then ®(n)C is a fundamental matrix of (2).

Proof. We multiply the equation (4) by the matrix C and we get

T(n+1)

P(n+1)C= )

A(n)®(n)C,
i.e., ®(n)C satisfies the equation (4).

Because ®(n) is a fundamental matrix of (2), then it is a nonsingular matrix. Hence,
®(n)C is a nonsingular matrix.

Consequently, ®(n)C is a fundamental matrix of (2). O

We note that the matrix

' n n—ngp—1
®(n) = I(n) [T A(mo+i)

T(no) i=0

with ®(ng) =1, is a fundamental matrix of (2).
Exercise 3.1.5. Prove that there is a unique solution ¥ (n) of the equation (4) with ¥(ng) = I.
Let ®(n) be a fundamental matrix of the system (2). For m, n € N we define the matrix
®(n,m) := d(n)® (m).

Below we will investigate the properties of the matrix ®(n,m).
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1. @ (n,m) = ®(m,n).
Really,

2. ®(n,m) =P(n,r)®(r,m).
Really,

3. For m < n we have

Really,
®(n,m) = ®(n)® ! (m)

_ T yn—no—1 [ F(m) m—ng—1 R
- T|(,,)Hi:00 A(no-l-z)(f(no) | A(n0+z))

= 2 A(mo)A(no+1) ... A(n— 1) H (A(no)A(no +1)....A(m— 1)) "

= 200 A (1) A~V (ng) ... A(m—1)A~ (m— DA(m)A(m+1) ... A(n—1)

= T A(m)A(m+1)... A(n—1)

= T0) pprmt g (i),

Corollary 3.1.6. The unique solution y(n,ng,yo) of the system (2) with y(ng,ng,yo) = yo is
given by
}’(”,”0,)’0) = CI)(I’I,, ”0)}’0-

Corollary 3.1.7. (iso-Abel’s formula) For k € N we have

n+k

det®(n+k) = Hdet (n+1i))detd(n). (5)
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Proof. From the equation (4) we get

det®(n+ 1) T;"(:)“ det(A(n)d(n))

T ;"(:)k) det(A(n))det(D(n)).
Hence,

detd(n-+2) = F 2 det(A(n+ 1))det(®(n +1))

— ;Ezﬁi det(A(n+1) )%det(f&(n))det@(n))

= T%’}Zf Ldet(A(n+ 1))det(A(n))det(D(n)).
Now we suppose that for some k € N we have (5).
We consider

det(®(n+k+1)).

‘We have

det(n+k+1) = LeHE D det(A(n -+ ) Pdet(®(n + )

— T;'}jﬂ)n T;"(:)k) [15=, det(A(n+i))det(A(n + k)det(®(n))

['(n+k .
= % [T5_ det(A(n+i))det(P(n)).
Therefore the iso-Abel’s formula (5) is valid for every k € N. O

Using the iso-Abel’s formula one can prove the following corollaries.

Corollary 3.1.8. The fundamental matrix ®(n) is nonsingular for all n > ny if and only if
®(ng) is nonsingular.

Corollary 3.1.9. The solutions
yin),  »), ... w(n)
of the system (2) are linearly independent for n > ny if and only if ®(ny) is nonsingular.
Corollary 3.1.10. There are k linearly independent solutions of the system (2) for n > ny.
Proposition 3.1.11. Let y;(n) and y>(n) be solutions of the system (2). Then
y1(n) +y2(n)

is a solution of the system (2).
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Proof. Let
y(n) =yi1(n) +y2(n).

Then
y(n+1)=yi(n+1)+y(n+1)

= Tl A(myi (n) + T Am)ya(n)

Proposition 3.1.12. Let y|(n) be a solution of the system (2) and c is a constant. Then
cyi(n)
is a solution of the system (2).

Proof. Let

Then

An immediate sequence of the last two proposition is that if
i),  y2(n), o (n)
are also solutions of (2), then so is any linear combination
y(n) = ciy1(n) +cay2(n) + -+ cxyi(n),
wherec; € C,i=1,2,... k.

Definition 3.1.13. Let {y;(n)}%_, is any linearly independent set of solutions of the system
(2), then the general solution of the system (2) is defined to be

yw—imm» (6)

where c; € C,i=1,2,...,k, and at least one c; # 0.
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The expression (6) may be written

where
@(n) = [y1(n),y2(n),. .., yi(n)]

is a fundamental matrix,

With y,(n) we will denote any particular solution of the system (1). The following result
gives us an approach to find the general solution of the system (1).

Theorem 3.1.14. Any solution y(n) of the system (1) can be written as

Z ciyi(n) +yp(n

wherec; € C,i=1,2,... k.
Proof. Let
z(n) =y(n) _yp(n)-

Then
z(n+1)=yn+1)—y,(n+1)

= T(f”(:)l)A(n)y(n) +T(n+1)g(n)

~ T DA )y (n) — T (n+ 1)g(n)

= LA (n)z(n),

i.e., z(n) is a solution to the system (2). Then

k
n) = ;Ciyi(”)

wherec; € C,i=1,2,...,k.
Consequently,

n) = iici)’i(”)

or

ZQ)’: +}’p
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Proposition 3.1.15. A particular solution of the system (1) may be written as
" A
yp(n) =Y, @(n,r+1)T(n+1)g(r)
r=ngo
with y,(ng) = 0.

Proof. We have
n
yp(nt+1) =Y ®(n+1,r+1)T(n+1)g(r). (7)
r=ngp

We note that
dn+1,r+1)=dn+1)d ' (r+1)

— Tt D) A () (n) D (r 4+ 1)

= Tt D) A () (n, r+ 1).

From here and (7), it follows

yp(n+1) =Y} ®n+1,r+1)T(n+1)g(r) +P(n+1,n+1)T(n+1)g(n)

- T Z’r’ o A(m)®(n,r+1)g(r) +T(n+1)g(n)

T(n+1 A
= i Ay (n) + T (n+ Dg(n),
i.e., y,(n) is a solution to the system (1). O
Using the above result we can conclude that the unique solution of the system (1) for

which y(ng) = yo, is given by

n—1
y(n,n0,0) = ®(n,n0)yo+ Y, ®(n,r+1)T(n+1)g(r),

r=ng

which we can rewrite in the form

y(n,n9,y0) = ;((,Z))) =0 A(no +i)yo

FEI A T 2 A+ 1) (e 1)g(r)
Exercise 3.1.16. Rewrite the last formula in the case when A = const.
Exercise 3.1.17. Rewrite the formula (8) in the case when T = const, A # const.

Exercise 3.1.18. Rewrite the formula (8) in the case when T = const, A = const.
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Exercise 3.1.19. Using the formula (8) prove that the initial problem for the system (1) has
unique solution.

Exercise 3.1.20. Rewrite the formula (8) in the case when g is an iso-function of third kind.

Exercise 3.1.21. Rewrite the formula (8) in the case when A is an iso-function of fourth
kind.

Exercise 3.1.22. Rewrite the formula (8) in the case when A and g are iso-functions of third
kind.

Example 3.1.23. Let T(n) =n+1,

2 2 2 0
Amy="510 3 1 |, gm=5( 1], neN,
01 3 1
1
yo=| 1
1

Then A
T(n+1)=n+1+1

=n-+2,

2 2 =2
—(o3 1 |,
01 3
0
T(n+1)g(n):(n+2)n—}r2 1
1
0
= 1

Therefore the system (1) takes the form

2 2
yn+1)=10 3 1 |yn)+| 1
0 1
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2 2 2 0
B=|(03 1], gam=[1].
01 3 1

The general solution of the considered system is given by

Let

n—1
y(l’l) = Bnyo + Z Bn—r—]gl (I’) (9)
r=0
We will find B" using the Putzer algorithm. For more details for the Putzer algorithm we
refer the reader to the appendix.

We have ;
B" =Y, xj(n)M(j—1)

=x1(n)M(0) +x2(n)M (1) +x3(n)M(2)

() ra(M(1) + (M),
- B" = xy(n)I +x2(m)M(1) +x3(n)M(2). (10)

Now we consider

We have

det(B—M)=| 0 3-L 1

=2-M)B-A)2-(2-1)
= (2-1)(G-1-1)
=2-MB-A-1)B3-71+1)

=(4-M(2-1)>%
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Therefore
det(B—A)=0 =
(4-12-1)?2=0 =
A =4, A =A3=2.
Hence,

M(1) = (B—MI)M(0)

= (B-4I)I

-2 2 =2 -2 2 =2
= 0 -1 1 0 -1 1
0 1 -1 0 1 -1
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= BM(2) —2M(2),

BM(2) = 2M(2).

From (10) we get
B! = BB"
= B(x1 (n)] + x2(n)M(1) +x3(n)M(2))
= x1(n)B +x2(n)BM(1) +x3(n) BM(2)
=x1(n)(M(1)+4I) +x2(n)(M(2) +2M(1)) +x3(n)(2M(2))
= 4y () +x1 (n)M(1) + 32 ()M (2) + 22 ()M (1) + 2x3 (n) M (2)

= 4xi (n)I + (x1(n) +2x2(n))M(1) + (x2(n) +2x3(n))M(2),

- B = dxy ()1 + (x1(n) 4+ 2x2(n) )M (1) + (x2(n) + 2x3(n) )M (2). (11)

On the other hand,
B =Y xj(n+ 1)M(j—1)
=x1(n+ 1)M(0) +x2(n+ 1)M(1) +x3(n+ 1)M(2)
=xi(n+ DI+ x(n+1)M(1) +x3(n+1)M(2)
From here and (11) we get
xi(n+1) =4x;(n)
x(n+1) =2x(n) (12)

x3(n+1) =2x3(n).

Also,
B'=1
= )j:oxj«))M(j —-1)
=x1(0)M(0) +x2(0)M (1) +x3(0)M(2)
=x1(0)] +x2(0)M (1) +x3(0)M(2),
whereupon
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In this way, using (12), we obtain the initial problems

xi(n+1) =4x(n)
x2(n+1) =2x2(n)

x3(n+1) =2x3(n),

L X1 (0) = I,XQ(O) ZX3(0) =0.
We consider the initial problem

xi(n+1)=4x;(n)
x1(0) = 1.

For its general solution we have

Now we consider the initial problem
x(n+1) =2x(n)+x1(n)
x(0)=0

or

x(n+1)=2x(n)+4"

X2 (0) =0.

For its general solution we have the representation
n—1 n—1
XQ(I’l) = Zr:O (Hi:r-H 2) 47
_ vin—1lAan—r—1n2r
=y

—1 -1
—on Z?:O or

_ An—11-2"
=2""7=
=2rl(on 1)
— 22n—1 _ 2n—1‘

Now we consider the initial problem

xz(n+1) =2x3(n) +x2(n)

X3(0) =0
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or
x3(n+1) =2x3(n) 221 21

x3(0) =0.
For its general solution we have the following representation
xa(n) = Do (151, 2) (221 =27
— Z’:;é 2n—r—] (22r—1 _ 2r—1)
— on—1 Z:l;é 2-r (22r71 _ 2r71)
— 2n—1 Z,:;é (2r—1 . 2—1)
—yn=2 Z:l;(; or _pn=2 Z:l;é 1
— 2n7222"f—11 _ n2n72
— 22n—2 o 2n—2 o nzn—Z
=222 — (n+1)2" 2

Consequently, using (10),

1 00 -2 2 =2
B'=4"{ 0 1 0 |+0»!-2o"H) 0o -1 1
0 0 1 0 1 -1
4 -8 8
+(2* 2= (n+1273) [ 0 2 -2
0 -2 2
(22 —n2") (—2*"-2"(2n+3)) (2*"+2"(2n+3))
— 0 (22n _ n2n—l) n2n—l
0 nznfl (22n _ nznfl)
Hence,
(2" —n2")  (-2"-2"(2n+3)) (2*"42"(2n+3)) 1
B'yo = 0 (22 —n2v 1) n2"! 1
0 n2"! (221 —n2"71) 1

(13)

2% —n2"
— 22n
22n
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(22" —n2") (—2""-2"(2n+3)) (2*"+2"(2n+3))

B'g(r) = 0 (221 —n2m71) n2n1
0 n2"! (22 —n2m1)
0
— 22n
22}1
0
Bn—r—lg(},.) —_ 22(n—r—1)
22(n—r—1)
0
— 22n—2 2—2r
2721’
0
— 22n72 4=
4—}"
0
Z:«l— 1 anrflg(r) 22n-2 Z:l:é 4=
4-r
0
14"
22n—2 l—i
147"
=
0
_ 4"—1
47y
3
From here, (9) and (13), we get
22n n2" 0
y(n) = 92n + 22"3—1
2n 22 _q
2 3
2% — 2"
22n+2_1

22n+3271
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Exercise 3.1.24. Let T'(n) =n+1,

1 -2 3 0
Amy="510 1 2], g=5(1 |,
0 0 1 0
2
Yo = —1 s neN
—1
Find the general solution of the system (1).
3.2. Linear Periodic Systems
Here we will investigate the system
T(n+1
s 1) =" gy, nez @
T(n)

where 7'(-) and A(-) are periodic with a period N, i.e.,
T(n+N)=T(n), A(n+N)=A(n), nel.
Proposition 3.2.1. If ©(n) is a fundamental matrix of (2), then so is (n+ N).

Proof. We have, forn € Z,

~>

®(n+N) = %A(n +N)®(n+N)

O]

Proposition 3.2.2. If ®(n) is a fundamental matrix of (2), then there exists a nonsingular
matrix C so that
P(n+N)=P(n)C, nez.

Proof. Since ®(n+ N) and ®(n) are fundamental matrices of (2), then there exists a non-
singular matrix C such that
®(n+N)=®(n)C

forn € 7Z. O

Proposition 3.2.3. If ®(n) is a fundamental matrix of (2), then for every n € 7 we have

®(n+N,N) = P(n,0).



Systems of Linear Iso-Difference Equations 83

Proof. From the last proposition it follows that there exists a nonsingular matrix C such
that
®(n+N)=®(n)C, neZ.

Hence, for n = 0, we get

Therefore

O]

Theorem 3.2.4. For every fundamental matrix ®(n) of the system (2) there exist a nonsin-
gular periodic matrix P(n) wit period N and a nonsingular matrix B such that

®(n) = P(n)B".
Proof. Let C be a nonsingular matrix such that
®(n+N)=®(n)C.
Let now B be a nonsingular matrix such that
BY=cC.

‘We define the matrix
P(n) =®(n)B™".

Then
P(n+N)=®(n+N)B "N

=®(n)CB "N

=®(n)BVNB N
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i.e., P(n) is a nonsingular N periodic matrix. From the definition of P we have

®(n) = P(n)B".

Definition 3.2.5. The matrix C = BY is called the iso-monodromy matrix.

Definition 3.2.6. The eigenvalues A of the matrix B will be called the iso-Floquet exponents
of the system (2). The corresponding eigenvalues XN of the matrix BN will be called the iso-
Floquet multipliers of the system (2).

Proposition 3.2.7. If ®(n) and ¥ (n) are fundamental matrices of the system (2) such that
P(n+N)=P(n)C,

Y(n+N)=Y¥(n)E,
then C and E are similar.

Proof. We consider the matrices ®(n,ng) and ¥(n,no).

We have
®(n,ng) = ®(n)®@ ! (ny),

¥ (n,no) =¥ (n)¥" (no),
D(ng,no) =¥(no,no) = 1.
Since ®(n,np) and ¥(n,np) are fundamental matrices of the system (2) and the problem

K(n+1) = Lf"(:)l)A(n)K(n)

K(n()) =1

has unique solution, we get
@(I’l,no) = lP(I’l,no).

From here,
()@ (ng) = ¥ ()W (no)
Y(n) = CD(n)CI)*l(no)‘P(nO).
Hence,

¥(n+N)=®n+N)D ! (n)¥(no) =

¥(n)C = ®(n)EDP ! (ny)¥(ny) =

®(n)@ ! (no) ¥ (no)C = ®(n)ED ! (no) ¥ (no) —
1 (np)¥(no)C = E® ! (ng)¥(no) =

C = (D (n)¥(np)) ' E® " (n9)¥(no).
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Consequently,
C~E.

O]

Theorem 3.2.8. A complex number A is a Floquet exponent of the system (2) if and only if
there is a nontrivial solution of (2) of the form A'q(n), ¢(n+ N) = g(n) for all n.

Proof. Let A is a Floquet multiplier of the system (2). Then

det(B—A) =0
Let xo € R¥ be chosen so that
(B —-M )X() = 0,
1.e.,
BX() = 7\.)6().
Hence,
B%xy = B(Bx)
= B(Axo)
= ABxp
= A2xp.
We suppose that
B"xp = \'x (14)

for some n € N.
B""xg = B(B"xo)
= B(A"'xp)
= A'"Bxg

— }LnJrle‘

Consequently, the equality (14) is valid for all n € N.
Using (14), we get
P(n)B"xo = P(n)N"xo

= N'"P(n)xo,
whereupon
x(n,np,x0) = ®(n,ng)xo

= P(n)B”xO

= 7&”P(l’l>)€0.
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Let

Then
x(n,np,x0) = N'q(n).
Because P(n+ N) = P(n) we have that

q(n+N) = q(n),

and from here,
x(n+N,ng,xo) = x(n,ngp,xp).

Let now
Mq(n),  q(n+N)=q(n)#0,

is a solution of the system (2).
Then

N'q(n) = @(n,ng)xo,  xo #0.

Hence, using that
®(n,n9) = P(n)B",

we get
A'q(n) = P(n)B"xo,

which implies that
NN g(n) = P(n)B" ™V x. (15)

On the other hand
AN g(n) = WNNg(n)

= AVP(n)B"xo.
From here and (15) we find
P(n)B"™Nxy = AV P(n)B"xo

or
P(n)B" (B —A"1)xg = 0.

Since xg # 0, we conclude that
det (P(n)B" (BY —A"I)) =0,

hence,
det(BY — A1) =0,
i.e., A is a Floquet exponent of (2). O

Corollary 3.2.9. The system (2) has a periodic solution of period N if and only if it has a
Floquet multiplier equal to 1.
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Proof. Let (2) has a solution ¢(n) with period N. Then

q(n+N) =q(n)

and

1"g(n)
is a solution of (2). From here and from the previous theorem, it follows that 1 is a Floquet
multiplier of (2).

Let now (2) has a Floquet multiplier 1. Then, from the last theorem, it follows that (2)
has a solution 1"¢(n), g(n) = g(n+N), i.e. (2) has a periodic solution with period N. [

Corollary 3.2.10. There is a Floquet multiplier of the system (2) equal to —1 if and only if
the system (2) has a periodic solution with period 2N.

Proof. Let (2) has multiplier equal to —1. Then

is a solution of (2).
Let

Then
y(n+2N) = (—=1)"*Ng(n+2N)

= (=1)"(=1)*gq(n+N)
= (=1)"q(n)

=y(n),

i.e., y is 2N periodic solution of (2).

Let now y is 2N periodic solution of (2). Because the system (2) is N periodic, then
we can consider it as 2N periodic. Since (2) has 2N periodic solution, then it has Floquet
multiplier equal to 1. Hence, it follows that it has and multiplier equal to —1. 0

MA






Chapter 4

Stability Theory

4.1. Basic Notations

Here we consider the system
x(n+1) = f(n,x(n)),  x(no) = xo, (1)

where x(n) € R¥, f: N x R¥ — R*, We suppose that f(n,x) is continuous function in x.
Let R¥ is endowed with a norm || - .

Definition 4.1.1. (i) The system (1) is said to be autonomous if

f(n,x(n)) = f(x(n))-

(ii) The system (1) is said to be periodic if for alln € 7
f(n+N,x) = f(n,x)
for some N € N.
(iii) A point x* € R¥ is called an equilibrium point of the system (1) if
fln,x")=x*
for all n > ny.

(iv) The equilibrium point x* of the system (1) is said to be stable if given € > 0 and ny > 0
there exists & = 8(€,ng) such that the inequality

[|xo —x*|| < &
implies
|[x(n, mo,x0) —x*[| <€

for all n > ny, uniformly stable if & may be chosen independent of ny, unstable if it is
not stable.
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(V) The equilibrium point x* of the system (1) is said to be attracting if there exists u = u(ng)
so that the inequality
[lro —x"[| <m
implies
nli‘l'{lmX(l’l,n(),XO) = X*a

uniformly attracting if the choice of u is independent of ny.

(vi) The equilibrium point x* of the system (1) is said to be asymptotically stable if it is
stable and attracting, and uniformly asymptotically stable if it is uniformly stable
and uniformly attracting.

(vii) The equilibrium point x* of the system (1) is said to be exponentially stable if there
exist 8 >0, M >0, andm € (0,1) such that

[bx(r,m0,%0) —x7[| < M|xo — x|,

whenever
[|xo —x*|| < d.

(viii) A solution x(n,ng,xo) of the system (1) is said to be bounded if for some positive
constant M we have
|[x(n,n0,x0)|| <M

for all n > ng, where the constant M may depend on each solution.
Remark 4.1.2. If u=ocoin (v) and (vi) or 8 = oo in (vii) the corresponding stability property
is said to be global.

4.2. Nonautonomous Linear Systems

In this section we will investigate the stability of the system

n+1)=An)%" ("),  n>ny, (2)
or A
x(n+1)= WA(n)x(n), n > ny, x(ng) = xo. (2)

We suppose that ®(n) is its fundamental matrix. Without loss of generality we suppose that
®(ng) = I. Then the solution x(n,ng,xp) of (2) for which x(ng,ng,xp) = xo is given by

x(n,ng,x0) = P(n)xo.

Theorem 4.2.1. Let ||D(n)|| < M for some positive constant M and for every n > ng. Then
the zero solution of (2) is stable.
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Proof. Let € > 0 be arbitrarily chosen. Let also,

5=—.
M
Then the inequality
ol | < 8= -
0 M
implies
(.m0, x0)| = [|B(m)o |
< [|@(n)][|1xoll
< M|xol|
<My
=E¢.

Therefore the zero solution is stable.
Theorem 4.2.2. [f there exists a constant M > 0 such that
|| ®(n,m)|| <M
Sor ng <m < n < oo, then the zero solution of (2) is uniformly stable.
Proof. We will note that for every n > ny we have
®(n,ng) = ®(n)® ! (ng) = ®(n).

From here and from (3) it follows that for every n € N, n > ng, we have

| ®(n)[| <M.
Let € > 0 be arbitrarily chosen. Let also,
€
d=—.
M

Then for every solution x(n,n9,xp) the inequality

lxoll < =
M
implies
’ [x(rn,m9,%0) | = [|(n)xol
< || ()| Ixoll
< Ell@n)|
<Em

|
o™
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whereupon, since the choice of 8 does not depend on ng, we conclude that the zero solution
is uniformly stable. O
Theorem 4.2.3. If
lim /@ (n)[| =0,
n—-yo0

then the zero solution is asymptotically stable.

Proof. From (4) we get

lim,, e ||x(n,10,x0)|| < Mlim,,_, ||D(n)]|

=0.

Therefore the zero solution of (2) is attracting and since it is stable, we conclude that the
zero solution is asymptotically stable. O

Theorem 4.2.4. If there exists positive constant M andm € (0,1) such that
[|®(n,m)|| <MM"™  for  np<m<n<eco.
Then the zero solution is uniformly asymptotically stable.

Proof. From the previous theorems it follows that the zero solution is uniformly stable.
Let now € > 0 be arbitrarily chosen so that € < M. We take y =1 and N so that

N €
< —.
N M

Because m € (0, 1)we can choose N enough large. Consequently, the inequality

[xol| <1
ol
implies |lx(n,n0,%0)|| = ||@(n,n0)x0)|
< Mo
< MY
<My
=

for n > ng+ N. Therefore the zero solution is uniformly asymptotically stable solution. []

Theorem 4.2.5. If the zero solution of the system (2) is stable, then there exists a positive
constant M > 0 such that
@)l <M

forn>ny > 0.
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Proof. Let € > 0 be arbitrarily chosen. Because the zero solution is stable, we have that
there exists 6 = 8(€,np) > 0 such that the inequality

[xol| < 8
implies
[|x(n,no,x0)|| <€
or
[|D(n)xol| <&
forn > ng > 0.
We observe that |
S||x0|| < 1.

Hence, for n > ny > 0,
||@(n)]| = supgj < [|P(n)E]]

= §SUD|(|<s |[@(n)x0]|

<3
Let
€= Mo.
Then for every n > ny > 0 we have that
||P(n)]| <M.

O]

Theorem 4.2.6. If the zero solution of the system (2) is uniformly stable, then there exists
a positive constant M such that
|| (n,m)|| <M

for every n > m > ny.

Proof. Since the zero solution is uniformly stable then it is stable. Therefore there exists a
positive constant M such that
| (n)]| <My

for every n > ng.
Hence, for every n > m > ng we have

1@ (n,m)|| = ||@(n) " (m)|
< [[@(n)[[[@~ (m)]],

from where
||@(n,m)][[|@(m)|| < ||P(n)]|
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and
||®(n,m)|[||®(m)|| < M,

for every n > m > ng and because ||®(m)|| < M, for every m > ny we conclude that there
exists a constant M > 0 such that

|D(n,m)|| <M
for every n > m > ny > 0. O
Theorem 4.2.7. [f the zero solution of the system (2) is asymptotically stable, then

li P =0.
Jim_[|(n)]| =0
Proof. Because the zero solution of the system (2) is asymptotically stable, then it is stable
and attracting.

Since the zero solution is attracting when there exists y = u(ng) > 0 so that

[xol| <

implies
lim x(n,ng,xp) =0
n—-yoo
or
lim ®(n)xp =0.

n—po0

We observe that

1
Ll < 1.
u
Then
||@(n) || = supyy,| <1 [|P(n)xo]
= 4 SUP| o[ <u || P ()0 |
= 1 SUP| o[ <u [ [X(1,70,0) ]
hence,
lim, . ||®(n)|| = ilimnﬁw SUP| |y, <y | X (1,10, x0) ||
=0.

O

Theorem 4.2.8. If the zero solution of the system (2) is uniformly asymptotically stable,
then there exist positive constants M and | € (0, 1) such that

|| ®(n,m)|| < Mn™"

forng <m < n < oo,
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Proof. Because the zero solution of (2) is uniformly asymptotically stable, then it is uni-
formly stable. Therefore there exists a positive constant M such that

||®(n,m)|| <M

for every n > m > ny.
From the uniform attractivity, it follows that there exists u > 0 such that for € € (0,1)
there exists N so that
[ ®(n,n0)[| <&

forn > ny+N.
Then for n € [ng+mN,ng + (m+ 1)N],

||®(n,no)|| = ||®(n,no +mN)P(ng+mN,ng+Mn—1)...P(no+N,no)||
< ||®(n,ng +mN)||||®(no +mN,ng+mN —1)||...||®(no + N,nop)||

< Mgﬂ‘l

Here
="
= n

I
o™
=)~

O

Corollary 4.2.9. The zero solution of the system (2) is stable if and only if all solutions of
(2) are bounded.

Corollary 4.2.10. The zero solution of the system (2) is exponentially stable if and only if
it is uniformly asymptotically stable.

Now we will consider the case when

T(n+1
04D 4y = a,
T(n)
i.e., we will consider the system
y(n+1) = Ay(n). (5)

In this case we have
d(n) =A", neN.

Theorem 4.2.11. The zero solution of the system (5) is stable if and only if p(A) < 1 and
the eigenvalues of unit modulus are semisimple.



96

Svetlin Georgiev

Proof. Let

where

A=PJP !,

J= diag(]l,Jz, N ,Jr)

is the Jordan form of the matrix A and

We have that the zero solution of (5) is stable if and only if there exists a positive constant

M such that

or

Hence, if

we get

‘We note that

where

Al

0
J?

0
0

We observe that J!' is unbounded if [A;| > 1 orir |A;| = 1 and J; is not 1 x 1 matrix.

Let

(

A 10 ... 0 0
0 % I ... 0 0
0 0 &% ... 0 0
0 0 0 ... A 1
0 0 0 ... 0 N

| D(n)]] < M,
A" = [[(PIP=)"]]
=||PJ"P~|| < M.

M,

M=_—"1
[PIIP~]

<M.
J"=diag(J{,J5,...,J0),

n n—1 n
e (L)

Y

n
o [
0 Y

p\,,| < 1.

Also, let [ € N is arbitrarily chosen. Then

’ki‘nnl = nle(logl)‘-z")n

— e O
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Therefore, if |A;| < 1, we get
J' — e 0.

O

Using the arguments of the proof of the above theorem, one can prove the following
theorem.

Theorem 4.2.12. The zero solution of (5) is asymptotically stable if and only if p(A) < 1.
Example 4.2.13. We consider the case k = 2. In this case
A— < app apn ) .
a axn

The characteristic equation of the matrix A is

0 = det(A — AJ)

_lan—A arn

|l ay a—22—A ' —

(a11 *7\.)(6122 — ?\.) —apaz = 0 <

A% — (a1 +an)h+anan —apnay =0

or

A% — (trA)A + detA = 0. (6)

Let
p1 = —trA, p2 = detA.

Then we get the equation
A+ pih+pr =0.

We will search conditions for the parameters p| and p; so that
’7\,1|<1, ‘7\.2‘<1,
where Ny and Ay are the roots of the equation (6).

1. Case. A, €R, ie,

Pi—4p2>0.
We have
AE= \/lm
Moo= 3 .
Let

—P1+\/P%—4P2 —p1—\/Pi—4p2
7\,1 : A

2 : 2= 2.
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Then
A <1, | <1 =
(pi—4p2>0
|—p1+y/pT—4pa| <2 —
| [—P1—/Pi—4p| <2
(pi—4p2>0
—2+p1<\/p%—4p2<2+p1
—2+P1<—m<2+1717
whereupon
24+ p1 >0, —24+p1 <0
or
Ip1] <2.

In this way we obtain the system

2—4pr, >0
P1 P2 =
Ip1| <2

pr—4py <2+p

p}—4p, <2—py,

i

ie.,

P —4py <4d+4p +p?

Pt —4py <d—4p +p?
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or

or

or

2. Case. p? —4py <0. Then

from where

Since

we get

or

p2

pt—4p2 >0
Ip1] <2
O0<pi+p2+1

0< 1—P1+P2a

I1+p1+p2>0
1—p1+p2>0

<1

1+p1+p2>0 (7)

l—pi+p2>0.

Mo =

O0<p

—p1%iy/4pr—p?

2 )

M| = A

2 2
_p1 | 4p2—py
=3T3

‘7\,1’2’7\Q|<1
0<pr<l

pi<4p:

h < 1

—2/p2 <p1 <2y/p2.

Now we will see that from the system (8) we can obtain the system (7).
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Really,
l+pi+p2>1-2\/p2+p2

=(1-yp2)?

> 0,
l=pi+p2>1-2\/pi+p2
(- P

> 0.

Consequently, the zero solution of the considered system is asymptotically stable if

detA < 1
1+ (trA) +detA >0

1 —(trA) +detA >0

or
[trA] < 14detA < 2.

Let A be an eigenvalue of the matrix A of multiplicity m and &;, &, ..., &, be the
generalized eigenvectors which correspond to A, i.e.,

A =G
A& =M + &

ALy =M+ 6

Agm = X&m + &m—l .

The span of the generalized eigenvectors corresponding to A will be denoted with Ej and it
is called the generalized eigenspace of the eigenvalue A of A. If A; and A, are eigenvalues
of the matrix A such that A; # A,, then we have that

Ey (Ex, = 9.
We note that each eigenspace E; includes the zero vector.

Definition 4.2.14. The matrix A will be called hyperbolic if it has not any eigenvalues which
lie on the unit circle.
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Now we suppose that the matrix A is a hyperbolic matrix.

Let
Ay ={M,Apy . A}
such that
A <1, 1<i<ty,
Ay ={ M1, M40, A}
such that

A > 1, r+1<i<n.

The eigenspace spanned by the eigenvalues in Ay is denoted by W*, where

The eigenspace spanned by the eigenvalues in A, is denoted by W*, where
n
wh={J M.
i=r+1

Theorem 4.2.15. Let A be a hyperbolic matrix. If x(n) is a solution to the system (5) with
x(0) € W¥, then x(n) € W* for every n € N and

nhjlwx(n) =0.

Proof. We note that

AE), =E,.
From here we conclude that

AWS = W*,
Therefore

x(n) e W?
forall n € N.

Because x(0) € W*, then we have for it the following representation
r

x(0) = Z ciGi,

i=1

where c¢;, 1 <i < r, are constants.
Let
J=P AP

be the Jordan normal form of the matrix A. We can rewrite J in the following form

(s O
(55

where J; has the eigenvalues in A, and J,, has the eigenvalues in A,,.
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Also, we have
aj
ap

E=Pt=| a

Consequently,
x(n) = A"x(0)

=PJP 'Y, ci&;
=PJ"Y"_, ;P YE;

=PI"Y!_ ci&;

VA
:PZi—l<0 0>

—>nﬂoo 07

because J!! —;, o 0. O

Theorem 4.2.16. Let A be a hyperbolic matrix. If x(n) is a solution of the system (5) with
x(0) € W, then x(n) € W" for each n and

n1_1>n1 wx(n) =0.

Proof. We note that

AW" =W,
Therefore

x(n) e W"
for each n.

Let now
J=P 'AP

be the Jordan normal form of the matrix A. For it we have the representation
A
1=(% 1)

n

x(0) = Z ciis

i=r+1

Because x(0) € W, we have that
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where &;, r+1 < i < n, are the generalized eigenvectors corresponding to the elements in
Ay
Let _
&=r'g

Then
x(n) =A"x(0)

= PJ"P~'x(0)
=PJ"P' YL, o

=PJ"Y" o

n 0 0
:P):i:r+1 < 0 J )

P n—s—oc0 07

because J, —,—_ 0. O
Now we consider the system (5) in the case when
A(n+N)=A(n)

for some N € N.

In this case, if ®(n,np) is the fundamental matrix for the system (5), then there exist a
constant matrix B, whose eigenvalues are called the Floquet exponents, and a nonsingular
matrix P(n,no) such that

P(n—I_N:nO) :P(Yl,l’lo).

If B" is bounded, then the fundamental matrix ®(n,ng) is bounded.
If

lim B" =0,

n—-poo

then
lim ®(n,np) =0.

n—-yoo

Therefore we have the following result.

Theorem 4.2.17. The zero solution of the system (5) is
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(i) stable if and only if the Floquet exponents have modulus less than or equal to 1, those
of modulus 1 are semisimple.

(ii) asymptotically stable if and only if all the Floquet exponents lie inside the unit disk.

4.3. Phase Space Analysis

Here we study the stability properties of the second-order linear autonomous systems

x1(n+1)=ajx;(n) +apx(n)

x2(n+1) = azxi(n) +axnxs(n)

or
x(n+1) =Ax(n), 9)

a= (o) = (1) = (2070

Definition 4.3.1. We will say that the point x* is an equilibrium point of the system (9) if

Ax* =x*

or
(A—I)x" =0.

If A —1 is a nonsingular matrix, then x* is the unique equilibrium point of the system

©)-
If A —1 is a singular matrix, then there is a family of equilibrium points for the system

9).
Let
J=P AP

be the Jordan normal form of A.
Let A; and A, be the roots of the equation

det(A—AI) =0.
1. Case. A, M, € R, Ay 75 M.

In this case J has the form.

2.Case. A\ =M =AcR

In this case J has the form
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3. Case. A,A; € C\R,
7\,1’2:06:|:IB, OC,BER.

(5 a)

In this case J has the form.

We set

y(n) =P~ 'x(n)
or

x(n) = Py(n).
Then

x(n+1)=Py(n+1)
and the system (9) takes the form

Py(n+1) =APy(n)

or
y(n+1) =P 'APy(n),
or
y(n+1)=Jy(n).
Let

_( Yo
= < ¥20 )
1. Case. 7\,1,7\.2 e R, 7\,1 75 7\,2.

In this case
(e )= 2 ) ()

or
{ yi(n+1)=Ayi(n)
y2(n+1) = Aya(n).
Hence,
< yi(n) ) _ < Miyio )
y2(n) A3y20
From here,
i) _ (2" (0
ya(n) <7~1> (y10>'
If
(M| > [Aal,
then
tim 22 g,




106 Svetlin Georgiev

If
A1 < Azl
then
m P2l _
n—ee |y (n)]

2.Case. A =M =Ac R

In this case

or
yi(n) = N'yio+nh""yy
ya(n) = Ny.
Thus ) N
: »n) 1 "y20
limy, . yi(n) lim, o, NMy1o+nht~lyz
_1; Ay20
= lim, o, Ay10+ny20

=0.

3. Case. A\, € C\R,
7\,1’2:0(:|:l'B, OC,BGR.

In this case
yi(n) = |A1]" (¢) cos(nw) + ¢, sin(nw))

y2(n) = |A1]" (—cy sin(nw) 4 ¢, cos(nw)) ,

and using the initial data we find

yi(n) = [M]" (yiocos(nw) + yosin(nw))

y2(n) = |A1]" (—y10sin(nw) + yap cos(nw)),

w=tan"! (g)

If |A1| < 1, then the equilibrium point is asymptotically stable.

where

If |A;| > 1, then the equilibrium point is unstable.
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4.4. Lyapunov’s Direct Method
We begin our investigations with the iso-difference equation
x(n
X(n+1)=f<A() ) (10)

T (x(n))
where f: G — RF, G C R, is continuous.

Example 4.4.1. Let

Then

_ x1(n)x2(n)
x(n+1) =200 iy

We assume that x* is an equilibrium point of the equation (10), i.e.,

()

Example 4.4.2. Let k =2 and

fi(F95) = xi(n) + 201 () (),

§2 (T?)EZ’,Z))) = x%(n) —2x1(n)xy(n).

We will find the equilibrium points of the system (10).
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Let (x7,x3) be an equilibrium point of (10). Then
{ xi(n) +2x7(n)x3(n) = x7(n)
xi%(n) = 2x} ()3 (n) = x5 (n),

whereupon

Example 4.4.3. Let k =2 and

x(n) \ _ _xi(n)
1 (riky ) = i
We will find the equilibrium points of (10).
Let (x{(n),x3(n)) be an equilibrium point of (10). Then

L) -
o — A1)
=
iy =)

¥} (n) S 1 %2
1+x’1‘2(n)(1+x72(n))2 xl(n)( +x1 (I’l))

{ xj(n)=0
x3(n) =0

We consider

= (14a20) (14200 (1 +5720)°) =
1= 14x2(n) (14+x2(n) > +2(n) + x4 (n) (1 +x:2(n))
0=x2(n) (14+x:2(n)” +x:2(n) + x4 (n) (1 +x12(n))
0=x72(n) (14 (1+272() "+ (1+x2(n) " x2(m))

xj(n)=0.
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Consequently, the unique equilibrium point of (10) is
Xi(n) = x3(n) = 0.

Example 4.4.4. Let k =2 and

fi(725) =xi() (7 + 5 (n) + 3 ()

£ (725 ) = xa(n) (4 +4xa () 3 )

We will find the equilibrium points of the system (10).
Let (xj(n),x5(n)) be an equilibrium point of the considered system. Then

xj(n) (7+5x3(n) +25%(n)) = x7(n)

x5(n) (4 +4x7(n) +xTz(n)) =x5(n).

From here
xi(n) =x3(n) =0
or
7+5x5(n) +x5%(n) = 1
44-4xi(n) +x2(n) =1,
or
x1(n) =x3(n) =0,
or
6+ 5x3(n) +x3%(n) =0
3+4x7(n) +x7%(n) =0,
or
xi(n) =x3(n) =0,
or

xj(n) =—1,x{(n) =-3

x5 (n) = =3,x5(n) = —2.

Consequently, the equilibrium points of the considered system are
(070)7 (_37_1)’ (_37_3)7 (_27_1)7 (_27_3)'
Exercise 4.4.5. Let k =2 and
x(n) \ _
fi(725) = xi(m) 2+ 22(n))

£ (75 ) = xa(m) (3421 ().

Find the equilibrium points of the system (10).
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Answer. (0,0), (—2,—1).

Definition 4.4.6. Let V : R — R be a real-valued function. The variation of V relative to
(10) is defined as follows

and

We note that if
AV (x) <0,

then 'V is nonincreasing along the solutions of (10).

Example 4.4.7. Let us consider the system

x1(n+1) = x3(n) — 2x (n)x2(n)

Let also,
V(x) =2x7+3x3 - 1.

Then
AV (x(n)) = V(x(n+1)) — V (x(n)

=2 () — 21 ()xa(m))* + 323 (m)x3 () — 1
—2x3(n) —3x3(n) + 1
= 2x}(n) — 8x3 (n)x2(n) + 83 ()3 (n) + 3x3 (n)x3 (n)
—2x7(n) = 3x3(n)
= 2x}(n) — 8x3(n)x2(n) + 11x3 (n)x3 (n) — 2x3(n) — 3x3(n).
Example 4.4.8. Let us consider the system
xi(n+1) =x1(n)+3x2(n)
X (n+1) = xa(n).

Let also,
V(x) = x} 4+ 2x1x,.
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Then
AV (x(n)) = V(x(n+1)) =V (x(n))

= (x1(n) +3x2(n))* +2 (x1 (1) +3x2() ) 2 (n)
—x3(n) — 2% ()2 ()
= x3(n) + 6x1 (n)x2(n) +9x3(n) + 2x; (n)x2(n)
+6x3(n) —x7(n) — 2x1(n)x2 ()
= 15x3(n) + 6x1 (n)x2(n).
Definition 4.4.9. The function V is said to be a Lyapunov function on a subset Y of R if

(i) V is continuous on'Y,

(ii) AV (x) <0, whenever ﬁ and f (T?x)) belong to'Y.

Example 4.4.10. Let k =2 and
x(n) ) _
fi (i) =200

x(n) _ axy(n)
f2 (f(xm») = Tpn “PERBAO

Then the system (10) takes the form

xi(n+1) =x(n)

xn+1) = 155

We will find the equilibrium points of the considered system.
Let xj(n),x;(n) is an equilibrium point. Then

whereupon

Therefore
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or
o= 1+ Bxy*(n)

!

a—1=px*(n)

I

for (a—1)B >0, B#0.

Consequently, the equilibrium points of the considered system are

a—1
(o,i B)

for (a—1)B >0, B#0.

Let
V(x) =x}+x3.

Then
AV (x(n)) =V (x(nl)) = V(x(n))
= x%(n+ 1) —I-x%(n—i- 1) —x7(n) —x5(n)

xz n

= x3(n) + 2 g — X n) — 53 ()
_ .2 2
_“mwuﬁ%nzl)

Hence,

az
pgm 1 =0

We conclude that for

o<1, (a=1)p>0, PB#0,

we have AV (x(n)) <0, i.e., V is a Lyapunov function in neighborhoods of the equilibrium
points.

Example 4.4.11. Let k =2 and

fi (T?)EZZ))) = 2x2(n) — 2x2(n)x3(n)

£ (2905 ) = bt () -2 ()3 ).
Then the system (10) takes the form

x1(n+1) = 2x2(n) — 2x2(n)x3 (n)

xm+1)= %xl (n) +x1(n)x3(n).
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We will find the equilibrium points of the considered system.
Let (xj(n),x3(n)) is an equilibrium point. Then

or

{ 2:3(n) — xj(n) = 2x3(n)x}* (n)

223 (n) —xi (n) = 2x; (n)x5% (n),
whereupon
X (m)x37 (n) = x3(n)x” ()
Therefore
x1(n) = x3(n) =0

or

The equilibrium points of the considered system are

A

Let
V(x) = x} +4x3.
Then
AV (x(m)) = V (xln-+ 1))~V (x(m)
= A1+ 1)+ 43 (n+ 1) — B (n) — 43 (n)
= (2x2(n) = 2x2(n)xj (n))?
+4 (%xl (n)+x; (n)x% (n))2
—xi(n) —4x3(n)

= 4x3(n) — 8x3 (n)x3 (n) + 433 (n)x{ (n)

2 () 4423 () (n) + 43 (m)x ()
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Consequently, if
X+ <1,

then AV (x(n)) <O0.

With B(x, r) we will denote the open ball in R* of radius » and center x defined by

B(x,r) = {yE RE: [x—y|| < r}.
For convenience, below B(0, r) will be denoted by B(r).
Definition 4.4.12. We say that the real-valued function V is positive definite at x* if
(i) V(x") =0,

(i) V(x) > 0 forall x € B(x*,r), x # x*, for some r > 0.

Example 4.4.13. Let

Then
V(4)=0

and V (x) > 0 for all x € B(4,2), x # 4. Therefore V is positive definite at x* = 4.

Example 4.4.14. Let k =2 and
V(x) =x7 +x3.

Then
V(0)=0

and V(x) > 0 for every x € B(0,1), x # 0. Consequently V is positive definite at 0.

Theorem 4.4.15. (Iso-Lyapunov stability theorem) Let V is a Lyapunov function for (10) in
a neighborhood Y of the equilibrium point x* and V is positive definite at x*, then x* is sta-

ble. If, in addition, AV (x) < 0 whenever ﬁ, f (ﬁ) €Y, x £ x*, then x* is asymptotically
stable. Moreover, if G=Y = R¥ and

V(x) = as |x][ — oo (11)
then x* is globally asymptotically stable.

Proof. Let 3; > 0 be chosen such that

B(x*,B1) C G[Y.

We have that
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and since f and 7' are continuous, then there is B> > 0 such that if x € B(x*, ;) we have
that
(505 ) €00
- x*,B1).
7x) 1

0<8§l32.

Let now

We define the function
y(e) = min{V (x) : & < [[x —x[| < Bi}.

Because V is positive definite at x* we have V(x*) = 0. Therefore there exists 6 € (0,¢€)
such that

V() < w(e)
whenever

[lx —x*|] < 8.

Now we suppose that there exist xo € B(x*,0) and a natural number m such that x(r) €

B(x*,€) for 1 <r<mandx(m+1) ¢ B(x*,€). Since

x(m) € B(x*,€) C B(x",B),

it follows that x(m + 1) € B(x*, 1), whereupon, using the definition of the function y, we
conclude that
V(x(m+1)) = y(e).

On the other hand, we have

V{x(m+1)) <V(x(m)) < y(e),

which is a contradiction.

Therefore, if xo € B(x*,9), then x(n) € B(x*,€) for all n > 0. From here, it follows that
x* is stable.

Now we suppose that AV (x) < 0 whenever %, f (ﬁ) €Y, x # x*. We have that if
xo € B(x*,9), then x(n) € B(x*,€) for all n € N. We assume that the sequence {x(n)}_,
does not converge to x*. Therefore, there exists a subsequence {x(n;)}?, that converges

toy € R¥. Let E C B(x*,B;) be an open neighborhood of y, x* ¢ E. We define on E the

function
dUt)

and using that AV (x) < 0, we have that 4(x) < 1 for all x € E. Let now 1 € (h(y), 1). Then
there exists o0 > 0 such that x € B(y,a) implies A(x) <. In this way

v (7 (s ) ) <nv (o)
<NV (x(n; — 1))
<..

< nni+lV()C0).
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Consequently,
lim V(x(n;)) =0.

nj—»>o0

Since V is continuous, we have that

lim V(x(n))=V(y),

nj—>o0

therefore

whereupon

Now we suppose that G = Y = R¥,
We assume that there exists an unbounded solution x(n) of (10). Therefore, there exists
a subsequence {x(n;)} so that

x(n;) — o0 as n; — oo,
From here and (11) we conclude that
V(x(n;)) — 0 as nj — oo,

which is a contradiction because V (xg) > V(x(n;)) for all i € N. Therefore x* is globally
asymptotically stable. 0

Exercise 4.4.16. IfV is a Lyapunov function on the set
{xeR*:||x|| > o}
for some a. > 0 and (11) holds, prove that all solutions of (10) are bounded.
Hint. Use the last part of the proof of the Lyapunov stability theorem.
Definition 4.4.17. Let V be a positive Lyapunov function on a subset G of R*. We define
E={xeG:AV(x)=0}.
Let M be the maximal invariant subset of E, i.e., M is the unit of all invariant subsets of E.

Theorem 4.4.18. (Iso-LaSalle’s invariance principle) We suppose thatV is positive definite
Lyapunov function for (10) in G C R¥. Then for every bounded solution x(n) of (10) which
remains in G for all n € N, there exists a number b such that

+{n)
Tal)

—>MﬂV*1(b) as n—s oo,
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Proof. Let x(n) be a bounded solution of (10) in G C R* with x(0) = xo and x(n) remains
in G for all n € N. We have that

QY (XO) CcG.

Also, if y € QV(xo) then
x(ni) y
T T m——e o
T (x(ni)) T(y)

for some subsequence n; € N. Since V is nonincreasing and bounded below, we have

Y () =

for some number b. Because V is continuous, we have

v (T)(C(()))> eV %) |

Therefore
Y
()
T(y)

whereupon, since ﬁ € QY (xo) was arbitrarily chosen,

V(@' (x0)) = b,
i.e.,

QY (x0) c V7 (b).

Also,

AV (&y)) =0

for every ﬁ € QY(xo).
Consequently,

QY (X()) CE.
Since QY (xo) is invariant, we conclude that
QY (X()) CM.

Therefore
x(n)
T (x(n))

— e QY (x0) CM(\V (D).
O

Theorem 4.4.19. Let f(0) =0,V € C(Y), Y is a neighborhood of the origin, AV is positive

definite in Y whenever L f i)

V(a;) > 0. Then the zero solution of (10) is unstable.

€Y, and there exists a sequence a; — ;. 0 with
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Proof. Let AV (x) > 0 forx € B(r),x#0, V(0) =0.
We suppose that the zero solution is stable.
Then for € > 0 there exists 6 € (0,€) such that the inequality

[Ixol| <8
implies
[Ix(n,0,x0)| <e,  neN.

Let xo = a; for some j € N such that AV (xo) > 0 and ||xp|| < 6. Since V is continuous we
have that V (x(n)) is compact. Therefore V (x(n)) is bounded above. Also, from AV > 0 in
Y we have that V (x(n)) is increasing. Therefore there exists

lim V(x(n)) =0,

n—soo

which is impossible because

0<V(x) < lim V(x(n)).

n—-yo0

Consequently, the zero solution is unstable. O

Example 4.4.20. Let

h (Té?,z))) = 2x(n) — x2(n)x3 (n)

f (TEZEEQ))) = x1(n) +2x (n)x%(n).
Then the system (10) takes the form
xi(n+1)=2x(n)—x; (n)x%(n)
x(n+1)=x1(n)+2x; (n)x%(n).

We will investigate the zero equilibrium point for stability. For this aim we will search a
function

V(x1,x2) = ax} + bx3,

a,b € R, so that V(x) > 0 in an enough small neighborhood of 0, x # 0, and the sign of
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AV (x(n)) to be constant on a neighborhood of the zero. We have
AV (x(n))=V(x(n+1)) =V (x(n))
=axt(n+1) +bx3(n+1) —ax}(n) — bx3(n)
=a(2xy(n) — xz(n)x%(n))2 +b (x1(n) +2x1 (n)x3 (n))2
—a(n) — b3 (n)
= 4ax3(n) — 4ax?(n)x3(n) + ax3(n)x}(n)
53 (n) + 4633 ()3 (1) + 4533 () ()
—axi(n) — bxj(n)
= (b—a)xi(n) + (4a—Db)x3(n) +4(b — a)xi (n)x3(n)
+ax3(n)x}(n) + 4bx3 (n)x3(n).

Ifa=b > 0we have that V(0) =0, V(x) > 0 in a neighborhood of 0, x # 0, and
AV (x(n)) = 3ax3(n) + ax3 (n)x} (n) +dax}(n)x3(n) > 0

for x #£0.

Consequently, the zero equilibrium point of the considered system is unstable.

If we take a, b € R such that
b>a>0,

then
4db—a>0

and
V(x(n)) >0, AV (x(n)) >0 for  x#0.

In this case, again the zero equilibrium point is unstable.

Example 4.4.21. Let k =2 and

fi (T?)E?Z))) = x1(n) = 2x3 (n)x5(n),

x(n) \ _
f (f(x(n))) = x2(n).
The systems (10) takes the form

xi(n+1)=x;(n)— Zx? (n)x‘z‘ (n)

x(n+1) =x2(n).
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We will investigate the zero equilibrium point for stability. For this aim we will search a
function
V(x) = ax? + bx3, a,beR,

so that V(x) > 0, x # 0, in a neighborhood of the origin, and the sign of AV (x(n)) to be
constant on a neighborhood of the zero.
We have
AV (x(n)) = V(x(n+1)) =V (x(n))
=ax?(n+1)+bx3(n+1) —ax3(n) — bx3(n)
= a(x(n) — 26 (M) () + b3 (n)
—axi(n) — bx3(n)
= ax}(n) —2ax8(n)x3(n) + 4ax}®(n)x3 (n) — ax?(n)
— 20§ () (n) (x4 (m)¥5(m) — 1).

Consequently, for a > 0 we have thatV (x) > 0, x # 0 in a neighborhood of the origin, and
AV (x(n)) <0 in an enough small neighborhood of the zero.
Therefore the zero equilibrium point of the considered system is stable.

Example 4.4.22. Let k =2 and
x(n) \ _ _ax
1 (7)) = vty

x(n) b
S (f(x(n))) =1m=2m @bER

Then the system (10) takes the form

ax
Xl(n+ 1) = T%Z(n),

bxl
x(n+1)= 1+x§1(n)'

We will investigate the zero equilibrium point for stability.
Let
V(x) =x}+x3.

Then V (x) > 0 for x # 0. Also,
AV (x(n)) =V (x(n+1)) = V(x(n))

=x2(n+1)+x3(n+1)—x3(n) —x3(n)

(n 3 (n
=a (1+)2€%((1)1))2 +b? (1+;1c§(;1))2 —xj(n) —x3(n)

.2 b2 2 a?
=xy(n) ((1+x%<n)>2 - 1) +x3(n) (<1+x%(n>>2 - 1) '
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Therefore

1. Ifb2—1§0, a’>—1<0, we have
AV(x) <0

in a neighborhood of the origin, hence the zero equilibrium point of the considered
system is stable.

2. Isz— 1 <0, a®2—1<0, we have that
AV (x) <0, x#£0,

in a neighborhood of the origin. In this case the zero equilibrium point is asymptoti-
cally stable.

3. IfU is an arbitrary chosen neighborhood of the origin with diameter €. then if b > 142,
a > 1+¢€2 we have that AV (x) > 0, x # 0. Therefore for b > 1 and a > 1 the zero
equilibrium point of the considered system is unstable.

Exercise 4.4.23. Let k =2 and

fi (F225) = 20(n) — 20(n) (S(n) +B(n))

(n) \ _ 2 2
b2 (ffx?n))) = 4x(n) —4xi(n) (xi(n) +x3(n)) .
Prove that the zero equilibrium point of the system (10) is asymptotically stable.
Exercise 4.4.24. Let k =2 and

fi (795 =xi(m) ] ()3 ()

2 () = =)

Prove that the zero equilibrium point of the system (10) is stable.

Now we will investigate the equation

x(n+1) = f (T (x(n))x(n)), (12)
where f : G — R¥ is continuous function.

Example 4.4.25. Let k =3 and

fi(x)
fx)=1{ £
f3(x)
X1
=| x |, x = (x1,%2,X3),
X3

T(x)=1+x}4+x3+x3.
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Then R
xi1T(x) =x1(14+x7 +x3 +23)
=X +x?+x1x%+x1x§,
0T (x) = x2(14+x3 +x3 +x2)
=X +XQX% erg Jerx%,
63T (x) = x3(14+x3 +x3 +x32)
=X3 —i—x%)g +X%X3 +x§,
xT (x) = (1T (x), %7 (x),x3T (x))
Hence, )
A AT ()
FEmT(x(n) = | f2(x(n)T(x(n)))
S3(x(n)T (x(n)))

x1(n) +27 (n) +x1 ()3 (n) +x1(n)x3 (n)
= | x(n) +x2(n)xi(n) +x5(n) +x2(n)x3 (n)
3() + ()3 n) + 23 n)es() ()
In this way the equation (12) takes the form

x1(n+1) = x1(n) +x7(n) +x1(n)x3 (1) +x1(n)x3(n)
x2(n+1) = xa(n) +x2(n)x (1) + 13 (1) +x2(n)3 ()

x3(n41) = x3(n) +x7 (n)x3(n) +x3(n)x3(n) + 3 (n).
Exercise 4.4.26. Let k =2 and

flx) = < A0 > T(x)=x}+1.

X1 +x2
Find the equation (12).
Let x* be an equilibrium point of the equation (12), i.e.,
f(*T () =x"

Definition 4.4.27. Let V : RK — R be a real-valued function. The variation of V relative
to (12) is defined as follows.

=V(x(n+1)) =V(x(n)).
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If AV (x) <0, then V is nonincreasing along the solutions of the equation (12).

Definition 4.4.28. The function V is said to be a Lyapunov function on a subset Y of R¥ if
(i) V is continuous on'Y,

(i) AV (x) <0, whenever xT'(x) and f(xT (x)) belong to Y.

Exercise 4.4.29. Let V is a Lyapunov function for (12) in a neighborhood Y of the equi-
librium point x* and it is positive definite at x*. Prove that x* is stable. If, in addition,
AV (x) < O whenever xT (x), f(xT(x)) €Y, x # x*, prove that x* is asymptotically stable.
Moreover, if G=Y = R¥ and

Vx) = as lx][ — e, (13)
prove that x* is globally asymptotically stable.

Exercise 4.4.30. LetV is a Lyapunov function on the set
{xeRF: [|x]| > a}
for some o> 0 and (13) holds. Prove that all solutions of (12) are bounded.

Definition 4.4.31. Let V be a positive Lyapunov function for (12) on a subset G of R¥. We
define
E={G:AV(x)=0}.

With M we will denote the maximal invariant subset of E.

Exercise 4.4.32. We suppose that V is a positive definite Lyapunov function for (12) in
G C RK. Prove that for every bounded solution x(n) of (12) which remains in G for all
n € N, there exists a constant ¢ such that

N

x(n)T (x(n)) —n—se MﬂVﬁl (c).

Exercise 4.4.33. Let f(0) =0,V € C(Y), Y is a neighborhood of the origin, AV is positive
definite in Y whenever xT (x), f(xT (x)) € Y, and there exists a sequence a; —; o O with
V(a;) > 0. Prove that the zero solution of (12) is unstable.

4.5. Stability by Linear Approximation
Here we investigate the system

P+ 1) =Am)FR) +g (n, 5" () , (14)

where A(n) is k x k matrix for all n € N(J{0}, g : NU{0} x G — R¥, G C R¥, is a contin-
uous function.
The system (14) we can rewrite in the form

yn+1) y(n) n
Fnrr) A *g("“ )
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or .

Before our stability analysis of (14) we will consider an important lemma, which is a dis-
crete analogue of the so-called Gronwall inequality.

Lemma 4.5.1. (discrete analogue of Gronwall inequality) Let z(n) and h(n) be two se-
quences of real numbers, n > ny > 0, and h(n) > 0. If

n—1
z2(n) <M (z(no) + Z h(j)Z(j)>
J=no

for some M > 0, then

z(n) < z(no) IT=, (1+Mh(})),

2(n) < z(ng)eZia ™M) > g,
Proof. Let
u(n) =M (M(HO) + ni h(i)”(i)) » u(no) = z(no)-
We have o
u(ng+ 1) = M(u(ng) + h(no)u(ny))
= M(z(no) +h(no)z(no))
and since

z2(no+1) < M(z(no) + h(no)z(no)),
we conclude that
z(no+1) <u(ng+1).
Now we suppose that
2(no+k) < u(no+k)

for some k € N.
We will prove that
Z(no+k+1) <u(ng+k+1).

Really,
z(no+k+1) <M (Z(”lo) +yek h(j)“(j))
< M () + £ h(i)u()))
=u(ngp+k+1).

Therefore

z(n) <u(n)
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for all n > ny.
Using the definition of u(n) we have

u(n+1) = u(n) = M (u(n0) + £}y, h()u()) = M (u(no) + £z}, h()u() )

= Mh(n)u(n),
or
u(n+1) = (14+Mh(n))u(n), n>np.
Consequently,
n—1
u(n) = [T (1+Mh(}))u(no).
J=no

Hence, since z(n) < u(n) and z(ng) = u(nop),
n—1
z(n) <z(no) [T (1+Mh(j)).

J=no

Now, using that
1+ Mh(j) < M)

we conclude that _
2(n) < z(no) T}, €M)

n—1 .
— Z(no)eMZj:nO h(])

Theorem 4.5.2. We suppose that

(7))

uniformly as Hﬁ“ —0and T(n+1) <T(n), T(n) > P for all n > ng. If the zero
solution of the system

(1) = T(f’il(:)”sz(n) (15)

is uniformly asymptotically stable, then the zero solution of the system (14) is exponentially
stable.

Proof. Let ®(n,m) is the fundamental matrix of the system (15). Because the zero solution
of (15) is uniformly asymptotically stable, we conclude that

||®(n,m)|| < MM, n>m>ny

for some M >0 andn € (0,1).
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For the solution of the system (14) we have the following representation

_ S(mn = IV ()
y0m0.30) = @l . @+ 0P+ g (575 ).

from where

Iy = [[ @t o)+ Z3l i+ PG+ e (5,35 )|

< 10 no)yol | +||Z1=L, @, i+ D7+ 1)g (7,38 )|

< 11(n o) lloll + X, || @0, 4+ DTG+ g (7, 52|

T(j)

< (1D, m0) ol |+ E, 119+ DI || 76+ g (5.4 ) |

|

= M0 ||yo|| +1~ Zj nOMT]" JHT (j+1)g (.17 (()))

<Mm* "oy\y0|y+Mz] M = IHT j+1)g <J, 2d)

)

ie., ol < 3 ]Z’;an T(j+1)g (Ja;((JJDH
We have that /

[+ (55| <#/175]
whenever

HH o Iy()I<8

and since T'(j + 1) < T'(j) for all j > ng, we conclude that

HT(jJrl)g (j, ;((’])>> H <e|ly(j)l|

whenever ||y(j)|| < 8.
From here and (16), we get

n—1
Iy(m)]] < M~ [[yol|+n~" Y Mm"elly(j)|
J=no
whenever ||y(j)|| < d, or

n—1
Ny < Mnyoll+n Y M0 el[y()]]

J=no

(16)



Stability Theory 127
whenever ||y(j)|| < 9.
We put

zn)=n""ly@Il,  n=no.

Then
n—1
a(n) <M (Z(”o) +en' ), z(j)) :
J=no
Now we will use the discrete analogue of the Gronwall inequality, we find
n—1
z(n) <z(no) [T (1+eMn™")
J=no
or
B B n—1 .
n "yl < [T (1+en~'M),
J=no
or
— M) =10

[y(m)]] < mr=ro]yo|| ML

= [[yol[(n +em)™"e.
Let ]

—-n
e ——.
< M
Then
n+eM <1.
Consequently,
[y < lyoll

for all n > ny > 0. In this way we obtain exponential stability. 0

Corollary 4.5.3. Let A
7T(11+ 1)A(n) =B,
T(n)

where B is k X k constant matrix. If p(B) < 1, then the zero solution of (14) is exponentially

stable.

MA






Chapter 5

Oscillation Theory

5.1. Three-Term Iso-Difference Equations
We consider the three-term iso-difference equation
(A) =2 (A)+ p()F (n—k) =0, neN, (1)

p(n) is a sequence defined forn € N, k € N.
The equation (1) we can rewrite in the form

x(n+1)  x(n) x(n—k)
Fat) 7o) PV Fmor) O
x(n—}—l)—T(;(:)l) ( )+§EZ:3 (n)x(n—k) =0

Definition 5.1.1. A nontrivial solution x(n) is said to be oscillatory around zero if for every
N € N there exists n > N such that

x(n)x(n+1) <O0.
Otherwise, the solution is said to be nonoscillatory.

Definition 5.1.2. The solution x(n) is said to be oscillatory around an equilibrium point x*
if x(n) — x* is oscillatory around the zero.

Firstly we will investigate the solutions of the following associated iso-difference in-
equalities.

x(n+1)— (Yzl(:)l)x(n) + 7{E’rf__llc;p(n)x(n —k) <0, (2)
x(n+1)— T(Yil(:)l)x(n) + mp(n)x(n —k) > 0. (3)
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Theorem 5.1.3. Let

limsup, .. T(n) = qi, liminf, .7 (n) = ¢,
4)
Dkt~
q k =
Let also,
kkqllc+l
.. < .
hminfp(n) < ks e @
Then

(i) the inequality (2) has no eventually positive solution.
(ii) the inequality (3) has no eventually negative solution.

Proof. (i) We assume the contrary, that is, there exists a solution x(n) of the inequality
(2) that is eventually positive. Therefore there exists a natural number N; such that
x(n) > 0foralln > Nj.

Dividing (2) by x(n), we find, for n > Ny,

x(n) T (n) +T(n—k)p(n) x(n) =0
> Xk 1) g pn) x(n—k)
FORSE “)<f<n> k) 2) > ®)
Let ( )
z(n) :== )
Then

x(n—k) x(n—k+1) x(n—1)

x(n)  — x(n—k+1) x(n—k+2) " x(n)

=zln—k)zln—k+1)...z2(n—1).

Substituting into the inequality (5) we get

gf(n+1)<Al __pln) z(n—k)z(n—k—i—l)...z(n—l)), n>Ni.

T(n) T(n—k) ©

The condition (4) implies that there exists a positive integer N, such that p(n) > 0
for all n > N,.

Let

N := max{N,,N; +k}.
Then, forn > N,

x(n+1)— T(f’:l(jl_)l)x(n) < —p(n)%x(n—k) <0
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(n)

Consequently, % is nonincreasing.
Thus w
_ ) Tw
Z(n) - 7 x(n+1)
T(n+1) ot
T(n)
= Tnt1)
Let

q :=liminfz(n).
n—soo

Then, from (6), we get

1

. 1 _ 1
limsup,_ .. z(n) — Timinf, .z(n)

.
liminf, . 7 (n)

<limsup, . T(n+ 1)(

—liminf,_ e <T€n(i)k)z(n—k— 1)...z2(n— 1)))

— 1 _p gk
_ql(q2 q|q>7

1.€.,
1 1 _pk
q < 91 <112 th )
I R
=5 P
which yields
keoq 1
Pq < @ g
— N4
9q
or
q19—q2
p< T2 7
e )
Let
_N9d—q2
= gt
Then

k+1 k
1N 1 g —(q19—q2) (k+1)gq
l (Q) =4 ey

_ 1 19— (019—q)(k+1)
Q@ qk+2

_ 1 q1g—(k+1)q1g+q2(k+1)
- Q@ qk+2

_ 1 —kqig+gqa(k+1)
- Q@ qk+2 9
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I'q)=0 <+

1 —kqig+qa(k+1) __ 0
@ qk+2 -

—kq1q+q2(k+1)=0 =

2 k+1
N

)

q:

2|

Also,

I"(q) = 1 —kq1gd" P —(kqig+qa (k+1)) (k+2)g" !
)=, Pz

_ 1 —kqig—(kqi1g+q (k+1)) (k+2)
- Q@ qk+3

_ 1 —kq1g—k(k+2)q19—qa (k+1)(k+2)
- 9 qk+3

_ 1 —k(k+3)q19—q2 (k+1)(k+2)

q qk+3 )

7 (ﬂki> _ 1 (kD) (k+3)gp—(k+1) (k+2)go

q k q92 qlﬂ)k+3
q1 k
_ (k+1)(2k+5)
(‘LZ@)H}
q; k

<0.

Therefore /(g) attains its maximum at

Hence,

From here and (7) we get

< - -
P=@ernFr
which is a contradiction.
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(ii) The proof of part (if) is left to the reader as exercise. The proof of this part repeat the
main idea of the proof of the part (i).
O

Corollary 5.1.4. If the conditions (4) and (4') hold, then every solution of (1) oscillates.

Proof. We assume the contrary.
Let x(n) be an eventually positive solution of (1). Then the inequality (2) has an even-
tually positive solution, which is a contradiction with the part (i) of the previous theorem.
Let x(n) be an eventually negative solution of (1). Then the inequality (3) has an
eventually negative solution, which is a contradiction with the part (ii) of the previous
theorem. O

Theorem 5.1.5. Let

limsup7'(n) = q1, liminf7 (n) = g,
n—-oo n—-po0

the positive constant a be chosen so that

q2

a——1>0.
q1
If
aq; —q1
supp(n) < ,
neN 6]2ak+1

then (1) has a nonoscillatory solution.

Proof. We divide the equation (1) by x(n) and we get

x(n—&—l)_f(n—i—l) T(n+1) nx(n—k)_
x(n) T (n) * T(n—k)p( ) x(n) 0
We set (n)
z(n) == St )
Then

x(n=k) _ _x(n—k) x(n—k+1)
x(n) x(n—k+1)  x(n)

x(n—k) x(n—k+1) x(n—k+2) x(n—1)

= x(n—k+1) x(n—k+2) x(n—k+3) " x(n)

=zln—k)z(n—k+1)...z2(n—1).

Thus we get the equation

p(n)z(n—k)z(n—k—1)...z2(n—1)=0

or

—T(n+1)< ) z(n—k)z(n—k+1)...z(n—1)). (8)



134 Svetlin Georgiev

We will prove that the equation (8) has a positive solution. For this aim we will construct
such solution.

Let
1-k)=z2-k) =...=z(0)=a> 1L > 22,
92 q1
We have
1
2n) = — 1 p(n) ’
z7(1) = - 1
(1) T(z)(f(‘w—Tff‘jk)z(l—k)z(z—k)...z(O))
_ 1
70) (7t 75
)
>_ 1
(5
_ 1
e (1-p(1)at)”
Because
a®2 1
p(n) < o'y
q1
a2
S leklﬂ
1
_ 1
=7
or
p(n)a* <1 (10)
for every n € N.
From here and (9), we get
2(1) 2 o
?
—
T q
Also,
zZ(1) =+ L
(1) T(z)(ﬁ f’(’f'}k}z(l7k)z(27k)...z(0))
< _ 1
" ela) .

1
Z(1-p(1)ak)’
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Since
a2
p(]) < %;I;k+1 -
1
|
akp(l) < a‘“ﬁ —
a1
L1
—akp(l) > —a“‘qz —

= e
2a
El-dp)z} =
1 a
S =dp1) =
Hence and (11) we get
z(l)<a
Consequently,
q2
—=<z(l)<a
q (1)<
We assume that
2 - z(m) <a
q1
for some m € N.
We will prove that
a <z(m+1)<a.
q1
Really, we have
z(m+1) = - 1
( ) T(m+2)(f(rr:+])7ffrfyrj»T4l»)k) z(erlfk)...z(m))
>_ 1
= q1<éfp('gl)ak> (12)

1
%(l—p(m-‘rl)ak) )

From (10) we have
p(m+1)d < 1.

From here and from (12) we obtain
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Also,
z m+ 1 < %
( )< q (ﬁ7[7<y;]+l)“k)
(13)
_ 1
o (1=p(m+1)ak)
We note that
al2 1
1—pm+1)adc>1-— %
q1
1
=5, —
Zg
k 1
= (1—p(m+1)a*) > Z—f%
_1
a’
whereupon, using (13),
z(m+1) <a.
Therefore
» <zim+1)<a.
q1
Consequently,
q2
—<z(n)<a
q ()
for every n € N.
Now we let
x(1)=1,
_ X
x(2) - )26(71)7
— x(2)
and SO on.
In this way we obtain that x(n) is a nonoscillatory solution of (1). O
5.2. Iso-Self-Adjoint Second-Order Equations
In this section we consider the equation
A(p(n—1)Ax(n—1)) +q(n)2" () =0, (14)

where p(n) and ¢(n) are given functions forn € N, p(n) > 0 forn € N.
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We have

Then the equation (14) we can rewrite in the following form

(n=1) x(n—1)

A (1) — B () — B x(n) + £t

72(n+1) T2(n) 72(n)

()
or
p(m)x(n+1)+ 72 (n+1) (_p<n71>+z}<zn(gq<n)r<n>)x<n)
i2 n n—
—0—%)((11 —1)=0.
Let

pr(n) i=T2(n+ 1) (2oLl

2 (n+1)p(n—1
pa(n) = Pl
Then the equation (14) takes the form

p(n)x(n+1)+ pi(n)x(n) + p2(n)x(n—1) = 0. (14)

Theorem 5.2.1. Let x;(n) and x;(n) be two linearly independent solutions of the equation
(14). Then x1(n) and x2(n) cannot have a common zero, that is, if x| (r) = 0 then x2(r) # 0.

Proof. Let us assume that x; (n) and x(n) have a common zero ri. Then

)q(r]) :xZ(}’]) =0



138 Svetlin Georgiev

and for their Casoratian we have

W(r) =

X1(r1) x2(r1> '
xi(ri+1) x(ri+1)

0 0
xl(rl + 1) xz(rl + 1)

=0,
which is a contradiction because x(n) and x;(n) are linearly independent. O

Definition 5.2.2. A solution x(n), n > ng > 0, of the equation (14) has a generalized zero
at r > ny, if either x(r) = 0 or x(r — 1)x(r) < 0.

Theorem 5.2.3. Let x| (n) and x(n) be two linearly independent solutions of the equation
(14). If x1(n) has a zero at ny and a generalized zero at ny > ny, then x, must have a
generalized zero in (ny,n).

Proof. We assume that
X1 (l’ll) =0
and
xi1(np —1)x1(n2) <0 or  x(ny)=0.

We suppose that n, is the first generalized zero of x; (n) greater than n;. Also, we suppose

that
x1(n) >0 for ny <n<np,

X1 (nz) S 0.

Since x;(n;) = 0 and x; (n), x,(n) are linearly independent, then x,(n;) # 0.

We assume that x,(n) has no generalized zeros in (ny,n;]. Then x;(n) is either positive
in [ny,n2] or negative in [ny,na].

Without loss of generality we suppose that x,(n) > 0 in [n,n,).

Now we choose a positive real number M and r € (n,n;) such that

x2(r) = Mx;(r)

and
x2(n) > Mx (n) in [n1,mn2].

We note that
x(n) =x2(n) —Mx(n)

is also a solution of (14). For it we have
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x(r—=1Dx(r+1)=(x2(r—1)=Mx;(r—1)) (x2(r+1) — Mx;(r+1))

>0 for r>ni.
Also,

p(Nx(r+1)+T%(r+1) <_P(’*1)+;(2’()r)*q(r)f(r)>x(r)

/2 & &
PP 1) =0

and since x(r) = 0, we get

T2 (r+1)p(r—1)

p(r)x(r+1)+ F2(r—1)

x(r—1)=0,

. T2(r+-1)p(r—1)
T2(r—1)

Because p(n) > 0, T%(n) > 0, from the last equality we find that

p(r)x(r+1)=— x(r—1).

x(r+1)x(r—1) <0,
which is a contradiction. O

Exercise 5.2.4. Let x;(n) and x;(n) be two linearly independent solutions of (14). If x| (n)
has a generalized zeros at ny and ny > ny, prove that x(n) must have a generalized zero in
[n1,ma).

Hint. Use the proof of the previous theorem.

Theorem 5.2.5. If there exists a subsequence

p(nc—1) + p(ne) — q(ni) T (ng)) <0,
with ny — o0 as k — oo, then every solution of the equation (14) oscillates.

Proof. We assume the contrary. Then there exists a nonoscillatory solution x(n) of the
equation (14). Without loss of generality, we suppose that x(n) > 0 for n > N.
Then, because

p(ne— 1)+ p(n) — () T (nge) <0,

we get

A p(nk — 1)+ p(me) — q(m) T ()
T2 (g +1) <— 72(ng) >X(7lk) >0,

whereupon

PO+ 1) + T2y + 1) (- Pt aIT 00 ) o

f"z(nk+l)p(nk—])

+—FmD x(ng—1) >0,

which is a contradiction. O
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Let
p3(n) :=—pi(n).
Then the equation (14) we can rewrite as follows

p(n)x(n+1) + pa(n)x(n—1) = p3(n)x(n), (14)

whereupon

pn)s(n-+1) | pafm)s(n—1)
pslasln)  ps(nala)

Definition 5.2.6. The iso-Riccati transformation is defined as follows

=1 (14)

_ p3(n+1)x(n—l—1).

)=k D)

Then
dn—1) = Rty

x(n) 7 pa(n+)

x(n+1) _ pz(l’l-‘rl) (n)

In this way the equation (14) takes the form

pa(n+1) 1 B
p3(n+ 1)Z<n>+z(n— 1) L
Let
o(n) = pa(n+1)
© op3(n+1)

Therefore for the equation (14) we obtain the following representation

=1. (15)

Theorem 5.2.7. Let
p(n—1)+p(n)—q(n)T(n) >0
for every n € N. Then every solution of (14) is nonoscillatory if and only if every solution
z(n) of (15) is positive for n > N, for some N > 0.
Proof. Since
p(n—1)+p(n)—q(n)T(n) >0 for  VneN,

then
—pi(n) >0 for VneN

and because p(n) > 0 for every n € N, we conclude that

_pi(n+1)

>0
pa(n+1)
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for every n € N.

Consequently, every solution of (14) is nonoscillatory if and only if

_pl(n—i— Dx(n+1)

) = =k D)

is nonoscillatory for n > N, for some N > 0.

Theorem 5.2.8. If
c(n) >a(n) >0

foralln € N, and z(n) > 0 is a solution to the equation

then the equation

has a solution

forallneN.

Proof. Because c(n) > 0 and z(n) > 0 for every n € N, we have that, using (15),

z(n—1) =1

for all n € N, whereupon
z(n—1)>1

foralln e N.
We choose y(0) such that
y(0) >2z(0) > 1.

Then, from (15) and (16), it follows that

foralln € N.
We choose y(1) as follows

Since

then

(15)

(16)

(18)
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from here and from (18) we obtain

Because
a(1) < e(1),
from (19) we conclude that
y(1) = 2(1)
From (18) we find
1 1

or
_ <) S~
y(1) = a(l)z(lHa(l)z(O) a(1)y(0)’

Now we put n =2 in (17) and we obtain

a2)y(2)+ O c(2)z(2) + D)
From
y(1) = 2(1)
it follows that
LI
y(1) (1)

and from (20) we get

and since

we conclude that

From (20) we find

z(1) (1)
or (2) 1 !
(2) = @2(2) Ta@0)  a2y()’

and so on, we construct y(n) inductively.

Theorem 5.2.9. Let a > 0 be arbitrarily chosen. If

A

Tz(n) (p(n) +pn—1)—¢q(n+ 1)T(n+ 1)) <(a —8)p(n+2)f"2(n+ 1)

for some € > 0 and for all n > N, then every solution of (14) is oscillatory.
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Proof. If € > a, then the result follows from the previous results.

Let now € € (0,a).

We assume that the equation (14) has a nonoscillatory solution. Then the equation (15)
has a positive solution z(n) forn > N.

From the assumption of the theorem we have

72(n) (p(n) + p(n+1) —q(n+ 1T (n+1)) e
T2(n+1)p(n+2) . '

Then

o) = B

__ pa(ntl)
— pi(ntl)

72 (n+2)p(n+2)
72(n)
2, n)+p(n+1)—q(n+1)T (n+1
T2(n+2)(—”( )+ +ﬁ>(ﬂl)+ )T (n+ ))

T2 (n+1)p(n+2)
72(n) (p(n)+p(n+1)—q(n+1)T (n+1))

> _1

a—¢’

From here and from the previous theorem, it follows that the equation

1 1
=1 21
e ORe 1)
has a solution y(n), n > N, such that
y(n) >z(n) > 1
foralln > N.
Now we define a positive sequence x(n) inductively, as follows,
1
x(n+1)= \/ﬁy( )x(n), n>N, x(N)=1
Then (1)
x(n—+
y(n)=+va—¢ ,
x(n)

which we substitute in (21) and we get

I ——x(n+1) x(n—-1)
PEPAL x(n) +\/cﬁx(n)_l

x(n+1)—+va—ex(n)+x(n—1) =0, n>N, (22)

whose characteristic equation is

M—Va—er+1=0
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and its characteristic roots are

A2

)

_ Va—exie
_f.

Therefore the solutions of the equation (22) are oscillatory.

Consequently, y(n) is oscillatory, which is a contradiction. O

Theorem 5.2.10. Let a > 4 be arbitrarily chosen. If

T%(n) (p(n) +p(n+1)—q(n+ )T (n+1)) > ap(n+2)T*(n+1)

forn > N, then every solution of (14) is nonoscillatory.

Proof. We have that

o
T p(n-2)

72 (n+2) (7 p(n)+p(n+le)(—nzi()11;rl)f(n+l))

p(n+2)T?(n+1)
(p(n)+p(n+1)fq(n+1)T(n+1))f‘z(n)

<

Q=

Now we will construct inductively a positive solution z(n) of the equation (15) as follows.
Let

_a+Va®—4a

z(N) 5

and

Then, if we assume that

a++Va*—4a
B S —
Z(N+k) > 5
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for some k € N, we have

ZN+k+1) = 13 (1 - z(NlJrk)>

2
a (1 - a+\/m>

_a<1_2<a¢ﬂa>>

4a

:a<1—@>

2a

_ a2a—a+\/a2—4a
- 2a

_ atVa’—4a

= g s
Consequently, for every n > N, we have

o) > a++va?—4da
- 2 .

Since we construct for every N € N a positive solution of (15) for every n > N, then
every solution of (14) is nonoscillatory. O

5.3. Nonlinear Iso-Difference Equations

In this section we will investigate the oscillatory behavior of the following nonlinear iso-
difference equation

x(n+1)  x(n)

x(n—k) \
Py T P <T<x<n—k>>) =0 =

where n > N, k,N € N.
The equation (23) we can rewrite in the following form

T(n)x(n+1)

. x(n—k) \
Frte ) —atn) ) o) (T))> ~o. (24)

(x(n—k

Theorem 5.3.1. Let p := liminf, .. p(n) > 0 and there exists lim, T (n) = M < oo,
M > 0. We suppose that f is continuous on R and satisfies the following conditions

mfo@)>ax¢a

fl=%
(ii) liminf,_ @ =L 0<L <o,

T(x)
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(iii) pL > kﬂkﬂ ifk>1and pL>1ifk=0.

(

Then every solution of (23) oscillates.

Proof. We assume the contrary.
Let x(n) be a nonoscillatory solution of (23).
Without loss of generality we suppose that x(n) > 0 for n > N. Because

o)

for n > N, we conclude that

Therefore
x(n+1)  x(n)

T(n+1) T(n)

x(n)
whereupon ")
Hence, there exist

is decreasing.

#@:1_0
v ()
and
lim x(n) =¢c>0
n—-voo
From here,
1 _
lim A( ) _ lim =2 = i p(n)f(Ax(n k) )
BT 1) Ty PO F i)
or (- %)
x(n—
0= 1 = ,
P <T<x<n—k>>>
from where

If ¢ # 0, then using (i), we conclude that

q(ﬁb)>o
(i)

lim x(n) =0.

n—-yoo

or

Consequently, ¢ = 0 and



Oscillation Theory 147

We divide (24) by x(n) and we get

Px(n+1) ()T(n)f< x(n—k) >

T(n+1)x(n) : Py \Fx(n—n))
ket ()T (n+ 1
x(n)T (n+
) = F et 1
Then

or

1 T(n—k) x(n—k) )
—=1- -1 —k - 25
z(n) plm)z(n=1)...2(n )x(n—k) ! <T(x(n—k)) (25)
Let
ri= I}nglolofz(n).
Then
N G T(n—k)  ( x(n—k) >>
1 f— =1 f{1-— —1)...z2(n—k -
mint iy = limint (1= plo)zn—1) 0 00 (T(x(n—k))
or .
- <1 —prkL
,
or
A r—1
pr'L < ,
,
or .
v —
PL= (26)
We suppose that &k > 1.
Let ]
r_
l(r) = rkT, k Z 1.
Then Lo p
(r) = =
_ r=(k+1)(r—1)
- rk+2
_ k+1—kr
= T2

k+1—kr=0 =
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Also,

l”(r) _ (ktklfzkr)/

—kr* 2 — (k1 —kr) (k+2)F !
r2k+4

—kr—(k+1—kr)(k+2)
2T

— (k1) (k+2) —kr+k(k+2)r
polami

—(k+1) (k+2)+k(k+1)r
r2k+1 I

k (I%I)ZkJrl

<0.

Consequently,

Hence and (26) we conclude that

kk

L< ——o——
PE= ey e

which is a contradiction.
Let k = 0. Then, using (26),

which is a contradiction.

Theorem 5.3.2. Suppose that p; >0, ki € N, 1 <i<m,

(ngE

(pit+ki) #m+1,
i—=1

and let
{gi(n) : 1 <i<m}
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be a set of sequences of real numbers such that
liminfgq;(n) > p;, 1 <i<m.
n—-voo

If the linear difference inequality

x(n+1)  x(n) ¢ o x(n—k;)
T(n+1) T(n)+,;ql( )T(n—ki)

<0, neN, (27)
has an eventually positive solution x(n), then the corresponding limiting equation
m
y(n+1)=y(n)+ Y piy(n—ki+1)=0 (28)
i=1
also has an eventually positive solution.

Proof. 1. Case. Letk; =1, 1 <i <m. Then (27) and (28) take the forms

{(n-&- ) n
T(n+1)  T(n)

+Zt 1611 n <0

}’l —=

y(n+1)=y(n)+ X, piy(n) =0,

or

x(n1) < <1—Zq, ) f’(:)” x(n). (29)

yin+1)= (1—2;9,) (30)

Let x(n) be an eventually positive solution of the inequality (29). Then, from (29), it
follows that for sufficiently large n we have

m
Zqi(n) <1.
i=1
Because
liminfg;(n) > p;, 1<i<m,
n—-voo

we have that for any € > 0 there exists N > 0 such that

€
0<pi<gi(n)+— for n>N.
m

This implies that
0<Yr pi <Y, (qi(n)+%)

=Yiligi(n)+

<l+e for n>N.
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Since € > 0 was arbitrarily chosen, we conclude that

m
0<Y pi<l
i=1
But we have that o,
Y pi#1
i=1
Hence,
m
0< Zpi < 1.

i=1

Therefore the equation (30) has a positive solution.

2. Case. Let
k = max{ky,ko,...,ky} > 1.

Let also, R
u(n) = M
T(n)x(n—1)
Then . .
x(n—k;)T(n—1) __ x(nfk,-)T(nfk,-qu)x(n k41T (n—k;+2)
x(n=V)T(n—k;) ~ x(n—ki+1)T (n—k;) T (n—ki+1)x(n—k;+2)
x(n—2)T(n—1)
(n—1)T(n—2)

— 1 1 1
T uln—ki+1) u(n—ki+2) " u(n—1)

k-1 _ 1
=i -
Then the inequality (27) we can rewrite as follows

un+1) <l—Zq,

i=1 =

Let
u :=limsupu(n),
n—->oo0

then from (31) we get

k-fl
i 1
limsupu(n+ 1) < limsup (1 — E qi(n
i=1 j:1

n—-> oo n—po0 M(n - -j)

from where
m
u<l-— Zpl_u*kﬂrl
i=1
or

ua
u—1+ Z’p,-bfk"Jrl <O0.
i=1

)

(31)
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Let "
/’l(?\) =A—1+ Zp,?\ik’drl.
i=1

Because
h(0) = oo and h(A) <0,

we have that 4(A) has a positive root. From here we conclude that (28) has a positive

solution
O
Now we consider the equation
x(n+1 x(n L x(n—k;
A( ) _ A()+Zp,-fi<A(‘)>—o, (32)
T T A" \Tah—k)

where p; > 0, k; € N, f; are continuous functionson R, 1 <i < m.

Theorem 5.3.3. Suppose that there exists

0< lim T(n) <oo
n—-yoo

and the following hold
) pi>0keN 1<i<n,

m

Y (pitki) #m+1,

i=1

(ii) f;, 1 <i<mare continuous on R,

forx#0,1<i<m,

(iii)
e
lim (Z(x)>21, 1<i<m,
x—0 f’(x)
(iv)
m ki 1 ki+1
Zpi( 1) L.

Then every solution of (32) oscillates.

Proof. We suppose that the equation (32) has a nonoscillatory solution x(r). Without loss
of generality we assume that x(n) is eventually positive solution of the equation (32). Then,
from (32), we have

x(n+1) x(n) _ m r x(n—k;)
T(ntl) T —Liz pifi (T(x(”*ki)))

<0

)
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ie., ) g noinincreasing. Therefore there exists

(n)

and since there exists

we conclude that there exists

nhjlmx(n) =c.

We assume that ¢ # 0. Then from (32) we obtain

0=1lim, .. ;ifl)) —lim, e

N—

P pilimy e i (L

=y pifi (7).

c .

On the other hand, since ¢ # 0, we have

therefore

which is a contradiction.

Consequently,
lim x(n) = 0.
n—-voo
Let now )
x(n—k;
pif (ﬂx(n—k,-)))
a(n) = — G
T(I’l*ki)

Then the equation (32) takes the following form

Tr1) Tm) =2 F0—k)

x(n+1)  x(n) _|_§" l_(n)m:(), (33)

For ¢;(n), 1 <i<m, we have, using (iii),

liminfgq;(n) > p;, 1 <i<m.

n—seo
From here and from the previous theorem it follows that the corresponding limiting equation
has an eventually positive solution.

But from the condition (iv) it follows that every solution of the corresponding limiting
equation oscillates, which is a contradiction. O

MA



Chapter 6

Asymptotic Behavior of
Iso-Difference Equations

Here we will study the system

where

D(n) = diag(A1(n), 2(n), ..., A(n)),

Ai(n) #£0,i=1,2,... k,foralln > ng >0, and B(n) is a k x k matrix defined for n > ny > 0.
The systems (1) and (2) we can rewrite in the forms
y(n)

yintl) oo ,
Fnr 1) = (D(n) + B( ))T(n)

and

x(n+1) ;
T(n+1) =D(n)

x(n+1)= T(Yil(:)l)

D(n)x(n). (2)

The fundamental matrix of the system (2) is given by

®(n) = diag <]‘[ Tr+1), o), 11 T+ .. 11 T(f“)xn(r)>.

An T(r) s T(r) r=ny  1(r)

Let S is a subset of the set {1,2,...,k}.
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We define
@ (n) =:=diag(u (n),u2(n),. .., (n)),
where
§ iy TT’*%,(r) it ies,
pi(n) =
0 otherwise.

Also, we define
D, (n) :=P(n) — Py (n).

Definition 6.0.4. The system (2) is said to possess an ordinary dichotomy if there exists a
constant M such that

() ||@1(n)@(m)|| < M for n>m > ny,
(i) || @2 (n)@ " (m)|| < M for m > n > ny.

We will note, fori =1,2,...,k, we have

Hn 1 T r+])7\.,(l’) — f‘(j’lo-‘rl)}\'l (n()) ;(no

r=no T T(n()) (I’l()

ﬁgxz(noﬂ)... L 3. (n—1)

_ T(n) ypn—19.
= Flug) Uiz M(7)-

Therefore we can rewrite ®(n) as follows

()_7{ dlag<1‘[x1 hxz(r>,...,ﬁxk(r)>.

r=ng r=ng r=ng

Example 6.0.5. Let k=3, T'(n) =e¢™", ng = 1,

1
I+ 00
D(n) = 0 10
0 0 n
Here
M(n) =147
n+3
n+2>
7»2(11):1,
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Then

i As(n) =TT r
=123...(n—1)

:(l’l—l)',

From here
®(n) = diag (e "2 et e (n— 1))

n+2 0

50
=e " 0 1 0
0 0 (n—1)
det®(n) = e " 112 (n— 1)1

Now we will find @~ (n). For this aim we have a need of the following quantities.

1 0
— p,—n+l
=y e
=(n—1)le !
0 0
_ _ ,—n+l1
Or2 ¢ 0 (n—1)!
=0,
01
— ,—n+l
diz=e 0 0‘
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Therefore

Let

Then

0 0
_ _ ,—n+l
021 = e 0 (n—1)!
n+2 0
— —n+1 3
dn=e 0 (n—1)!

O3 = —e "1 50
0O O
=0,
0 0
_ ,—n+l1
031 =e ] 0'
:0’
n+2 O
_ _ ,—n+l1 3
032 e 0 ‘
207
2
_ ,—n+l1 3
033 =e o 1 ‘
— %efnirl.

(n—1)le "+l 0
0 2 (n—1)le " H! 0
0 0 n3i267n+1
S={1}.

D1 (n) = diag(ui (n), ua(n),p3(n)),
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where

1(n)

pi(n) = (1) H;l;ll M (r)

— e—n—i—l anl r+3

r=1 r42
_ ntlnt2
;’-12(”):07
p3(n) =0,
because 2,3 ¢ S.
Consequently,
efn+1n3i2 0 0
D (n) = 0 0o 0|,
0 00
Py (n) = D(n) — P (n)
e—n+1n3i2 0 0 e—”‘f‘lw 0
= 0 el 0 - 0 0
0 0 (n—1)let! 0 0
0 0 0
— 0 e ntl 0 ,
0 0 (n—1)lenH!
e t1ni2 g @ =45 00
@ (n)® ! (m) = 0 00 0o 1 0
1
0 00 0 O =)
2 —n+l
3(’Zn++2)e 00
= 0 0 0 |,
0 00
0 0 0 a0
Oy (n)d ' (m)=| 0 et 0 0 1
0 0 (n—1)lent! 0 0
0 0 0
—| 0 e ! 0
1)
0 0 e
Hence,
[[®1(n)® '(m)|| <1 for n>m>1,
[|[@x(n)® (m)|| <1 for m>n>1
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Exercise 6.0.6. Let S = {2}. Find ®(n) and ®,(n) in the above example.
Exercise 6.0.7. Let S = {2,3}. Find ®(n) and ®,(n) in the above example.

Theorem 6.0.8. We suppose that the system (2) possess an ordinary dichotomy and

oo

Then for each bounded solution x(n) of (2) there is a bounded solution of (1) which is given
by

¥() = x(n) + =), @1 ()@ (4 1) LB () ()
(3)
— X7 (@ (4 1) LB ).

The converse also holds: for each bounded solution y(n) of (1) there is a bounded solution

x(n) of (2).

Proof. Let x(n) be a bounded solution of (2).
Let M be a positive constant such that

||®y (n) P (m)|| <M for n>m> ny,

|[®2(n)@ Y (m)|| <M for  m>n>ny.

We construct a sequence {y;(n)};, as follows

i1 () = x(n) + £, @1 ()@ G+ D) IEELBG)()
(4)
~ X7 (@ (4 DI B(wi().

Because x(n) is a bounded solution of (2) for n € [ng, ), we have that there exists a constant
¢ such that

lx(n)| < ¢ on [no, ).

Hence,
yi(n)[<er on  [ng,00).

We assume that there exists a positive constant ¢; such that
yi(n) <ci on [ng,e0)

for some i € N.
We will prove that there is a positive constant ¢; 11 such that

[yit1(n)] < cit on [ng, ).
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Really,
i ()] = () + £, @1 ()@~ (G D TEELBG)vi())
X7, @2(m) @ (1) LB

< l|x(n)|+ X

£, @1 ()@ (+ ) LB ()|

[ 2@ G+ DI B

< |x(m) + L,

1 ()@ (j+ IR B()yi()

YT,

So(m) @ (j+ 1) LB (i)

< ()| + E ) (|01 ) G+ 1] || 2B G)|| i)
FE7 @20 G+ D)1 T8 B )| i)

LD B(j)| | e+ MET,

Sa+MYi || 75

]"o

e

Tl p(j)

=t MYjen || 75

J=no

=Cit1-

Consequently, y;(n) is bounded for each i.
Also,

'ﬂ>

ya(n) = yi(n) + X, @1 ()@ (+ 1) LB ()

— X7, 2@ i+ DI BN (),

whereupon

ya(n) = yi(n) = Tz, @1 ()@~ (j4+ 1) BB )y ()

— X7 @@ (4 DI B(j)n ()
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and
(n) = yi(m)| = |32, @1 ()@~ G+ D) T B ()i ()
y2(n) =yi ()| = |Ljz,, P1(m) @ (j+ 1) =By (j
o TG+D) p s ;
X ®a(m) @ (D) LB ()|
< |, @i G+ )L B(n ()]
=, D2(n)® ! (j+ 1) TELB( )y
+Z]:n 2(”) (]+ ) () (])yl(J)
<Y @@ G+ DB )|
57| @2 @ (+ )IEELB()yi ())
<2ib[[@rm@ G+ )| S8 () | Ivi (1)
X[ @2 (4 )| ||| SB[ 19 ()]
< ez, [T BG)|| +emrzy, || e ) |
ie.,
[y2(n) — |<CMZ )H

J=no

We assume that

J+1 H)

1(n) = y(n) < e1 <M )
J=no
for some k € N.
We will prove that

oo

Vir2(n) = yig1(n)] < e (M Z

J=no

A +1>B(j)H)"“
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Really,
V2 (n) = yeer () = x(n) + £, @1 ()@ (1) T By ()
— L7, @2(m) @ (o DBy ()

—x(n) = L2, @1 ()@~ (j+ D LB )

+ X @a ()@ (1) LB )

= o @1 (M@ (4 DIEELB() (e () = 34 (1)

— X7 @2 ()@ (D IELB() e (/) = (),

whereupon

Ver2(n) =y ()] = |Ei, @1 ()@ (j+ 1)%3(1)@“1(]) = (7))

~ X7, @2 (o DI B() 01 ()~ )|

<

i, @1 )@ G+ DI B() (i ()~ ()|

[T 2@ (o DI B0 rir (1)~ )

< 2ih @1 m@ ! Gt D LB e () )|

B (n) &~ (j+ D)L B() (e (1) — ()|

YT,

1 (@~ (j+ 1) ||| 552 B0) [ 0041 (G) =)

n—1
< Zj:n()

S2(m) @™ (4 1) ||| 2B || 01 () =360

+ X

<myr) P B()||| 01 () =36 ))

EESLB() || 31 (1) = 300) |+ MET,

P03 01 () =)

70
T(fj(;;)B(j)‘Dk

=MYin,

<ceMY?

J=no

0| (M7,

B0 DM '

=1 (M7,

Consequently, the inequality (5) is valid for every k € N.
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We choose ng enough large so that

Mji{oHT(fjJ;)l)B(j)H<n<1.

(

Then, using the inequality (5), we get, for k € N,

k1 (n) = ye(n)] < em,

from where .
Yoot ki (n) —yi(n)| < cr Xiim
< o0,

Therefore

gk

(Vk+1(1) —yr(n))
k

1

converges uniformly for n > nyg.
Let
y(n) = yi(n) + X2 (i1 (n) — yi(n))

= lim,-ﬂwy,-(n).
Letting i — oo in (4) we obtain (3).
Let now y(n) is a bounded solution of (1). Then, since

= TG+1) .
¥ ||| <o
i Il T()
as in above, it follows that there exists a bounded solution of the system
T(n+1) T(n+1)
n)=——-—=MDOmn)+Bn))yn) ————=Bn)yn
) = i (P B ) = = By ()
or R
T(n+1)
yin) = D)

Theorem 6.0.9. Let the system (2) possess an ordinary dichotomy and

nlil)looq)l (n) =0.

Let also, R
= || T 1
y 1D gyl < o
n=mo |l T(n)
Then for each bounded solution x(n) of (2) there corresponds a bounded solution y(n) of

(1) such that
y(n) = x(n) +o(1).
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Proof. Let x(n) be bounded solution of the system (2). Then

¥() = x(n) + =), @1 ()@ (4 1) LBy ()

oo F(j+1 .
— X7 P2(m) @ (+ 1) LBy ()
is a bounded solution of the system (1). Then there exists a positive constant L such that
[yl < L.

Also, because the system (2) possess an ordinary dichotomy, there exists a positive constant
M such that

||® (n) @ (m)|| <M for n>m > no,
and
|| Dy (n) @ (m)|| <M for m>n> n.

Let m € N which will be determined below. Then

¥(n) = x(m) + Zh @1 ()@~ (4 1) BBy ()
+ o0 @1 ()@ G+ DI B()y())
— X7, 2@ (+ 1) LB ().
Let
W(n) = Ximh @1 ()@ (j+ 1) LB () ()
— X7 @2 (m)®! (j+ ) I B()y().

Then
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We will estimate W(n). We have

()| = [£1, @1 ()@ (j+ DI B()y()

X7, ®a(m) @ (+ ) I B(j)y ()|

< | @ e G+ )T B()Y()

B @@+ 1)L B( ()|

< Tib[ @@ G+ DI B() )|

X[ @2 @ (4 1) “*”wa\

T(j)

<zi[eme v [ 0|

me 41|

L % s0)[[[bw]

Q*.”B(j)H

<MLy || 0

f(J H+MLZ

_ w || TG+ py s
S L

)

1.e., .
T(j+1)

o) < M Y || FEm )|

Let € > 0 be arbitrarily chosen. Because

Z T(TjJ)l)B(”H <

then there exists enough large m € N so that

€

= T(+1
MLY H(ﬁ )B(j)H <z
j=m T(]) 2
Consequently, for enough large m we have that
€

() < 5

Hence, using that
lim ®;(n) =0,

n—-yoo
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we conclude that for enough large n we have

¥(n) = x(n) +o(1).

Now we make the following change of the variables.

n—1
n) = [T x(r)z(n)

r=ny
for a specifici, 1 <i<k.
Then
y(n+1) H Ai(r)z(n+1).

r=ngp

In this way the system (1) takes the form.

n n—1
H Ai(r)z(n+1) T(Tj;l) (D(n)+B(n)) H Ai(r)z(n)

r=np ( ) r=nyg

or

Let

In this way we obtain the system
zZ(n+1) =

and the associated unperturbed system is

T(n+1)
T(n)

If there exist constants ¢ > 0 and K > 0 such that for each pair A;, A;, i # j, either

Z(n+1)= Di(n)z(n).

n

l,-(r)
Aj(r)

— oo as n—> +oo (6)

r=0

and

forall 0 <n; <ny,
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or
12

Ai(r
1 (r)

rey | A1)

for all 0 < n; < ny, then the system (2) possess an ordinary dichotomy and

<K

lim ®;(n) = 0.

n—yo0

Now we suppose (6), (7) and (8). In addition, if

Z o] HT%I)B(”)H <o

then the system (1) has a fundamental set of k solutions such that
n—1
yiln) = (i+o(0) [TM(),  i=1,2,0. 0.k,

r=ng

where
e; =(0,0,...,0,1,0,...,0).

Exercise 6.0.10. Let k=2, T(n)=n+1,n€N,

wo-(%,2,). s (4

).

EEECRN

Find the asymptotic estimates for a fundamental set of solutions of the system (1).

MA



Chapter 7

Time Scales Iso-Calculus

7.1. Basic Definitions

A time scale is an arbitrary nonempty closed subset of the real numbers.

The sets R, Z, N, i.e., the real numbers, the integers, the natural numbers are examples
of time scales.

The sets

(0,1], (4,5), Q, C

are not time scales. Here Q is the set of the rational numbers, C denotes the set of the
complex numbers.

Throughout of this book we will denote a time scale by the symbol T.

Also, we will suppose, throughout of this book, that

)

T:T — (0,0), 0

€T, IT(tyeT  for VI,teT,

is a given isotopic element.

Definition 7.1.1. Fort € T we define the forward jump iso-operator 6 :T — T as follows

5(1) ::inf{se T:§= T?s) >i= th)}

and if t # 400 we have to have &(t) # +oo.
Remark 7.1.2. We will note that for every t € T we have that

6(1) o !

T(6(r) ~ T(1)
Example 7.1.3. Let T=R, T(t) =>4 1, t € T. For s € T we consider the inequality

> <~

_s _r
241 2+1

s(t2+1) > t(s?+1) =

ts? — (12 +1)s+1 <0.
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1. Case. t > 0.

1.1. Case. 1 € (0,1]. In this case

Therefore
G6(t)=t
1.2. Case. 1 € [1,0). In this case
1
RS (,t) .
t
Consequently
R 1
o) =—.
0=+
2. Case. t < 0.

2.1. Case. t € [—1,0). In this case

and .
6(t)=-.

0=

2.2. Case. t € (—oco,—1]. In this case
&)
selt,—|.
t
Then
6(r)=t
3. Case. t = 0. In this case
6(0)=0

Example 7.1.4. Let T = N\{1}, T(¢t) = > + 1. Then, using the previous example, we have
that s € (1,1).

Also, we note thatt > 2. From here % ¢ N. We note that 1 is the smallest natural number
so that + < 1. Then &(t) = 1.

Definition 7.1.5. Fort € T we define the backward jump iso-operator p : T — T as follows

p(r) = Sup{se“h fé) <i= th)}

and if t # too we have to have P(t) # oo



Time Scales Iso-Calculus 169

Remark 7.1.6. We will note that for every t € T we have

A

p(t) < !

T(p(1)) ~ T(r)

Example 7.1.7. Let T = [0,0), f"(t) =*+1,teT.
We consider the inequality.

5
21 <

et =
s(tP+1) < (s + 1)t =
ts? — (12 +1)s+1 > 0.

We note that
ts? — (2 4+ 1)s+1=0

if and only if

s=t1 or S = —.

1. Case. ¢ € (0,1]. Thent <} and

Since P(t) # +oo, then

2. Case. t € (1,00). Then 1 <t. In this case

< (0)U(=)

Because P(t) # oo, we conclude that

3. Case. t =0. Then p(0) does not exist.

Example 7.1.8. Let T =N\{1}, T(t) =t>+ 1, t € T. Then for everyt € T we have that
t > 2. Using the previous example, we have that

se 0.0 (1,00) .

Ift =2, then since 1 ¢ T, we conclude that p(t) does not exist.
Ift >2, thenp(t) =1 —1.

Definition 7.1.9. If

6 o 1 . .
F60) > oy e will say that t is iso-right-scattered.
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o p(1) e . e
Definition 7.1.10. If 70 < T e will say that t is iso-left-scattered.

Definition 7.1.11. Ift <supT and T?ég)) = th)’ then t is called iso-right-dense.

o : pl) _ & ; iso-left-
Definition 7.1.12. Ift > infT and 760 — Ta then t is called iso-left-dense.

Definition 7.1.13. Points that are iso-right-dense and iso-left-dense at the same time are
called iso-dense.

Definition 7.1.14. If T has an iso-left-scattered minimum m, then we define
T := T\{m}.

Otherwise, T* :=T.

Definition 7.1.15. The graininess iso-function we define as follows

() =6(t) —r.

Definition 7.1.16. If f : T — R is a function, then we define the functions

£19(t) = f(;’(i’)))’
120(t) = f(8(NT (1)),

Example 7.1.17. Let T = [0,0), T(t) = >+ 1, f(t) =t>+t+ 1, t € T. We will compute
i), £9(), i=1,2,3,4,5 1T

1. Case. t € [0,1]. In this case, using the previous examples, we have that

6(t) =1
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We have

=+t +3+1+1
=042 424341 +1
=142 4+ 241+ 1,

o 130
f3c(t): (TT(Et)))

2
U I
_ <r2+1> gt
12+1

(P (P 41)?
B (2+1)3

_ 2442241
(2+1)3

_ 448437441
(t2+1)3 9

e =r(53)

_ 43432441
(2+1)2
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2. Case. 1 € [1,00). In this case, using the previous examples, we have

We have

_ (D2 (P )+
=t

_ 22 1P e
— t2

_ AP435 4111
= 2 )

1 1
_ <r<r2+1>) +,(,2+1)“
- 1241

P2 (P 1)+
- 12(12+1)3
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(A s SRR
22 +1)?

2P ]
- 12(r2+1)3 ’

6(1) )

f46(t) :f (f(t)

_ 992 B 4241
- t2 ([2+1)2 9

£2o(1) = f(8(1))

Example 7.1.18. Let T={2n:nc N}, T(t) =7t +5, f(t) =t +3,t € T. Then
O -
5> =

G(t):inf{seT: =
6(t):inf{s€’]l‘:ﬁ>7tt?}.

Let us consider the inequality.
T s
s(Tt+5) > t(7s+5) —
Tst+5s > Tst + 5t =
s>t
Therefore
6(1)=1+2.
Hence,
6() _ 1+2
T(r) — 7+5°

&()T(t) = (t+2)(7t +5)
=72+ 5t + 141 + 10

= 71>+ 19t + 10,
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flfs(t) _ f(TG((tl)))

J(1+2)
7t+5

__ t42+43
- Tt+5

__ 145
— Tt+50

F28(1) = f(6(n)T (1))
= f(7t*+ 19t +10)
=7t +19t +10+3

=712+ 191 + 13,

=/ (55)

_ 142
— Tt+5 +3

_ 22t+17
 Tt+5 0

f(0) = £(6(1))
= f(t+2)
=t+2+4+3

=t+5.

Example 7.1.19. Let T={3n+2:n € N}, T(t) =t>+t, f(t) =t + 1. We will find &(t) for
n > 3. We have

5 —1 .S _r

GQ)—Hﬁ{SGT.T®Z>Tm} =

6(t):inf{s€'JI‘: > >t2tﬁ}

s2+s
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We consider the inequality.

s(t241) > t(s> +5) —
st 4-st > s> + st —
st(t—s5)>0 =

t>s.

Therefore 6(t) = 5. Now we will find £'°(t) and £>°(t), n > 3. We have

Example 7.1.20. Let T = {7Tn+2:n € N}, T(t) = 2> +1¢, f(t) =t +7,t € T. We will find
6(t) for n > 4. We have

6(t) =€ {s eT: T‘(‘S) > sz)} =
6(t) :inf{seT: A > ﬁ}
We consider the inequality.

S >

2524

_r
212+t

s(2t2 +1) > 1(25% +5) =

2st? + st > 2ts> + st =
st(t—s5)>0 =
t>s.

Consequently 6(t) =9. Hence,
&(t)T (1) =9(2t> +1) = 18¢> +9r,

(e}

=

6 _ 9
T(r) = 262+t
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We will find £26(t) and f36(t) for n > 4. We have
17000 = (6T (1))
= f(18t>+9r)

= 18249t +7,

R (29
ren =)

9
_ f(212+/>
212+t

9
— 224
212+t

_ 147247149
(22+41)?

Throughout this book we make the assumption that a, b € T, often we suppose that
a < b. Then we define the interval [a,b] in T as follows

[a,b] :={r€T:a<t<b}.
Open interval and half-open intervals, and etc., are defined accordingly.
7.2. Iso-Differentiation
Definition 7.2.1. We assume that f : T — R is a function and let t € T*. Then we de-

fine fA(t) to be the number(provided it exists) such that: for every € > 0, there exists a
neighborhood U of t, i.e., U = (t — 8,t +8) (T for some & > 0, so that

6([) s
1 Sl 72 AT R
. <T( ¢ ) (T(“)) “ Aol <e  for  vseu.
T(l‘) AGA(t s
T(6() T(s)

—

We call fA(t) the iso-delta(or iso-Hilger) derivative of f at t.

Moreover, we say that f is iso-delta(or iso-Hilger) differentiable(or in short: iso-
differentiable) on T provided f exists for all t € TX. The function f*:TX — R is then
called iso-delta derivative of f on T*.

Theorem 7.2.2. The iso-delta derivative is well defined.

Proof. Lett € T*. We suppose that f : T — R is a given function and it has two iso-delta
derivatives at the point #, f(¢) and f5(¢).

Let also, € > 0 be arbitrarily chosen. Then there exist §; = 8;(€) > 0 and 8, = 8,(¢) >0
such that for every s; € (t — 91,7+ 8;)(\T and s, € (t — 83,1+ ;) (T we have

e f(T?%{)f;) _fgff;n) )

o) 7(6()  T(sy)

F(75 )£ (72 A
) ) ) <5
T(&(1) T(s2)

€
<73,

)|
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Let 8 = min{J;,d,}. Then for every s € (r — 3, +8) (T we have

6() \_¢f s .

1 M_]Mm

T 80 __ s 2
T(&(1) T(s)

<

}t)f<T(6c(sf(>t))) f( ) fA( )
7(6(r)) T(f)

~|
STl

From here, for every s € (t — 8,7 +3) T, we get

VEORSE0l

. 6(1) s _6(1) s A
=ﬁ®1%m%&&».ﬂ) J“%V?)fw>ﬂm
T(8() T(s) T(8(r) T(s)

f (1) —f(== f _8() f :
< Tét)(T(G((’f(g)(T) fA() le)(T(G‘E’t(i;)(T() fA()
1(6(r)  T(s) T60)  T(s)
<:+5=

Because € > 0 was arbitrarily chosen, we conclude that
fi@) = 50).
O

Remark 7.2.3. Sometimes, it is convenient to have f*(t) also defined at a point t € T\T¥.
At such a point we use the same definition as in above.

Example 7.2.4. Let f(t) = o. = const for every t € T. We will see that
fAy=0  for VreT~

Really, for every € > 0 and for every & > 0 we have, for s € (t —8,t +8)(T,

i) ) _ ga | e
T 80 _ — )| = T(0) 80 __ s
(COO] &) 76)
=10| <e.

Example 7.2.5. Let f(t) =t, t € T. Then for everye > 0and 3> 0, fors € (t—98,t+8) T,

we have
60) \_ o s 66) s
1 f(f@g@) /() | o [l TE T
G6(t s G(1 K
T w79 Ol 70 -y 1O
IR
= |7t~ 7ig| =0 <
Consequently
A 1
()%=
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Example 7.2.6. Let f(t) =t%,t € T, T : T — (0,) be a continuous function. Then

8(1) \_ o s 821 2
T A € ) e ), et 1 P60 70
My—s¢ T(r) 6 s = My —sy T() S0 _ s
GO 7(6()  T(s)

6 _ s 6() | s
= lim 1 (f(ﬁ(l)) T(S)) (T(é(’))+f(5))
= MMs— 75 S0

T(8(1)) T(s)

_ 1 &(1) o
=0 (T«sm) t T(r))

Consequently

Theorem 7.2.7. Let f : T — R is a function, T : T — (0,0) is continuous, t € TX. If f
is iso-delta differentiable at t, then f is continuous at .

T(1)

Proof. Let € > 0 be arbitrarily chosen. Then there exists § = 8(€) > 0 such that for every
s€ (t—9,1+38)NT we have

8(t) s

7(8(r))  T(s)

I

6([) t

T(6(r)  T(r)

f(T%Q))) _f(ﬁ) = AT () (ﬁé??» _ﬁﬂ <&

)
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Then for every s € (r — 8,7 + ) we have
() =1 (75)| = (755) —7 (7)) + (7)) — £ (7
‘f(ng )= (755) =070 (et 755)
+A0T0) (et — 757) +/ (7lr) =/ (i)
=|r () =1 (#85) - 010 (7585~ 75)
- (7 (stetn) ~1 () 7070 (55555 - 7))
+AOT0 (75 - 75|
<1 (7iaim) —7 (55) =070 (5855~ 755
+|1 (i)~ () P07 0 (76505~ 75|
+ 20| 70) |5t - 535
<e |73y~ 70| |70y ~ T YOIT()
=¢|7050y ~ 70t 7 7| TE TR0~ T YOI ()
<e| 7y — 70| & |7 ~ 79| €| Teey 7| SO0
<2e| ;20 ot ‘ Aot
ie., R
(75) = (75)| <[st0t0y ~ 7|+ ¥l ol
Because € > 0 was arbitrarily chosen, then we conclude that f is continuous at TL 0
Theorem 7.2.8. Let T € C(T) and f : T — R is a function. If f is continuous at 0L

t € T® andt is iso-right-scattered, then f is iso-differentiable at t and

.
fgﬂszf<A$9_i@®)
Tl T
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Proof. By continuity

lim . f(f?% >_f(7>) _ 1 f<T?c§8) >_f<fiz>).

) )
e 10 BRI S 7) R M
T6@) T() I(6(r) T1()

Hence, given € > 0, there is a neighborhood U of ¢ such that

60\ _ (s 60) \ _ 4f
1 f(m:») f(ﬂs)) 1 f(mn)) f(ﬂz))
T (1) S0 _ s T(1) o0t
76() T T6() T

<€

for all s € U. From here, we get the desired result. O

Theorem 7.2.9. Let f: T — R is a function. Ift € T is iso-right dense, then f is iso-
differentiable at t if and only if the limit

1)1 s

T~ T

lim
s—t

exists as a finite number. In this case

A1) = - 1imf<Ttt)t) _f<ffs>>.

T(;) s—t O T

Proof. Assume that f is iso-differentiable at ¢ and ¢ is iso-right-dense. Then

6(1) t

T(6() T(1)
Let € > 0 be arbitrarily chosen. Since f is iso-differentiable at ¢, there is a neighborhood U

of t such that '
th) d (mf) ! S(fm) _ AW

for all s € U, s # t. Hence, we obtain the desired result

) = tim f(f?r>t>_f(ffs>)_

s T (1) 0 70

The remaining part of the proof is left to the reader as exercise. 0

Theorem 7.2.10. Let f: T — R is a function and t € T*. If f is iso-differentiable at t,

then ) ) A
1 (7im) = (77) +70 (Feiey ~70) 70
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Proof. We have

5(1)
10 w79

|
)

ol
)

Example 7.2.11. Let T =[0,1], T(t) = > + 1, f(t) =t> =2t + 1,1 € T*. Then
6(r)=t

and .
T(6(t)=0*(t)+1=1>+1,

6(r) _ ot _ ¢t

T6(0) — 241 TGy’
i.e., every pointt € [0,1] is iso-right dense. Therefore

A — ) ~/(i)
)= T()hm m———

)2+2%—1

— 1 fim,_,, (i) —2atg+1- (g()
7

T(r) ﬁ

1 g, (i) (g i) 2 )
lim
(e W0

— 1 g s
= 7 1M (f(r) T 2)

Example 7.2.12. Let T=N, T(t) =t + 1, f(t) =t*>+1,t € T, Firstly, we will find &(t). We
have

6(:):inf{seT ()> (I)} =

6(t)zinf{s€’]1‘:s‘%l>lfl}.
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Let us consider the inequality.

s(t+1)>t(s+1) =

St+8 > st+t <~
s>1.
Therefore
6(1)=t+1.
Since
6(t)  t+1  t+1 t t

%+ — for VteT,

T6(r) Ta+1) 427 T(r) +1

we conclude that every t € T is iso-right scattered.
Now we will find f(t). We have, since all points of T are iso-right scattered,

1 f(f?eggn) _f<f2r>>'

Ay
T(8(1))
Also,
6(1) t+1 t+1

T(6() T@+1) t+2’
f(TZEZ))) = /(i)

= (1) + 4

(D2 D) (142)
(1+2)?

22141243142
o (t+2)?

26245143
(42?0
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Consequently, using (1),

2:2+5z;37 2t2+t2
fA(l‘) — 1 @+ (141)

1 [E3
=+ 2 r+1

1 (20245t43) (12 4+2t+1)— (202 +1) (> +41+4)

1+1 1)2—1(1+2
+ (41222 0D

2644434202+ 563 41002 451432 +-6t+3— (264 4863+ 812 +13 +41% +4t)
(t+1)2(+2) (122t +1—-12—21)

249834152+ 11143214 =93 — 1212 —4¢

- (t+1)2(1+2)
_ 3247143
EGEIGEE
Example 7.2.13. Let T=N, T(t) =t +2, f(t) =t + 1, t € T. Firstly, we will find &(t). We

have
6(t):{sET:SJ%2>t+L2}.
We consider the inequality.

N t
42~ 2 -

s(t+2) >t(s+2) =

st+2s > st 42t =
s >1.
Consequently
6(t1)=t+1.
Since
6(r)  t+1 _t+l7é t 0t
T(6() Ta+1) t+37 T(@) t+2

we conclude that all points of T are iso-right scattered. To find fA(t) we will use (1). For
this aim we have a need of the following quantities.

f(T?f%)) =/ ()
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Therefore

2+4 242

fA (l‘) _ 13 112

T 42 i+l
+ 37 1+2

1 (2t44)(t+2)—(2t42)(¢+3)

T2 (D) (e+2)—1(t+3)

1 202 44r+41+8— (212461 +2146)
12421 +142—12 -3¢

t+2

2
2(t+2)

_ 1
42

Theorem 7.2.14. Let f, g : T — R are iso-differentiable at t € T*. Then the sum f+g :
T — R is iso-differentiable at t and

(F+8)°) = A1) +20).

Proof. Let € > 0 be arbitrarily chosen. Then there exists a neighborhood of ¢ such that

forall s € U.

EIRE A
6W0) 7
6(1) s
1 g(w»)’g(ﬁ) A
f(z)%_g )] <5
60) 7

Therefore for all s € T we have

(F+8) (7o )~ (f+8) (755 A A
th) (T(o{(:()&) (T()) _fA(t) _gA(t)
T(6() T(s)
f _6() —£(7 R o 20 ) _g . )
- () iy il eli)
1(6(1) T(s) 7(6(1) (s
o) f75) 4 o0 ) ()
< T%t) (T(ffét(lé)_AET(s)) —fA(l‘) 4 j‘%t) (T(;r()))) Agm) —gA(t)
T(6() T(s) T(6() T(s)
<543
=E&.

O

Theorem 7.2.15. Let f : T — R is iso-differentiable at t € T*. Then for any constant o,
o #£ 0, the function o.f : T — R is iso-differentiable at t and

(o)A (1) = af>(1).
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Proof. Let € > 0 be arbitrarily chosen. Then there exists a neighborhood U of the point ¢
€

such that 5t
1 f(TZé(B) )_f(ﬁ> —fA(t) < =

)
A G(I) s
IO 50— o

for every s € T. Then, for every s € U, we have

@) (7)) (55) .z

1 T(6()) 7(s) A

70 Ac{(t) - —of2(t)
OO

f _6(1) — (= .
T(6() T(s)

= o

s

< |oc\|%‘

=¢&.
O

Exercise 7.2.16. Let f, g: T — R are iso-differentiable at t € T*. Prove that f —g: T —
R is iso-differentiable at t and

(F—g)20) = A1) - g20).

Exercise 7.2.17. Let f : T — R is iso-differentiable at t € T*. Prove that for every constant
Q, the functions

oxf, af, axf
are iso-differentiable at t.

Theorem 7.2.18. Let f, g: T — R be iso-differentiable at t, t € T*. Then fg: T — Ris
iso-differentiable at t and

(F2)(0) = A0 (TZEZ))) i (Tw Aoy=r (%) MO+ 0 (th)) |

Proof. Since f and g are iso-differentiable at 7, then they are continuous at the point =~

T4
Therefore

L (el ) (eam )~/ ()¢ ()

7 0
T® W) 76

1(52)r(75) (& ) ()5

P08 (28 () 0

The second part of the proof we left to the reader for exercise. O
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Exercise 7.2.19. Let f, g, h: T — R are iso-differentiable at t, t € T*. We will find

(Feh)X(1).
We have that fg : T — R is iso-differentiable at t and from here it follows that (fg)h :
T — R is iso-differentiable at t. Hence,

(Fen)E = (f)%h (705 ) + £ (7 ) 8 (765 ) Ho()

= 10)e (7t ) 1 (e )+ (i) 0 (st )+ () (65 ) 100

Exercise 7.2.20. Let fT — R be iso-differentiable at t € T*. We will find ( fz)A(t).
We have

(F2) = (F)20)

=107 (76sip) +1 () 1@

=120) (£ (55) + £ (75555) )

Exercise 7.2.21. Let f : T — R be iso-differentiable at t € T*. We will find ( f3)A(t).
Because f, f>: T —s R are iso-differentiable att, then f> : T — R is iso-differentiable
att € T¥. Therefore

(F20) = (£20)2 )

= (PROf (7525 ) + 12 (7)) £
=20 (£ (77) £ (sia5)) +7* () £40

=120 (1 () + 7 () +/ (75563

Exercise 7.2.22. Let f : T — R be iso-differentiable at t € T*. Prove that

0 =10 (r(55) -+ (75) + (7o)

foreveryn e N, n> 2.

Theorem 7.2.23. Let f : T — R be iso-differentiable at t € T*. Let also,

! (th)>f (TZ%)) 70

Then % : T — R is iso-differentiable at t and

Ny 1 A
oSt
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Proof. Since f is iso-differentiable at ¢ then f is continuous at =—. Then

ot
T(t)

) s
7(6(1)) f(-?))

— e v sy S ()
i) ()

Theorem 7.2.24. Let f, g : T — R are iso-differentiable at t € T*. Let also,

g(fio)g(féiiﬁ 70

Then Jé : T — R is iso-differentiable at t and
A A A
< f>A(t):f (g (7)) ~ £ () £40)

¢ g <#r>> g (f?éim)

8
Proof. We have that é : T — R is iso-differentiable at . From here, f é :T— Ris
iso-differentiable at ¢. Hence,

=fA(f)<§<,>>+f<TE,>) (1)

7(6(1))

O]

Definition 7.2.25. For a function f: T — R we shall talk about the second iso-derivative
2% or fA2 provided f2 is iso-differentiable on T = (T™)* with iso-derivative

A= s (fA)A:’]I‘K2 —R.

Similarly we define higher order iso-derivatives fAn (T — R, neN.
Fort € T we define

82(1) =6(6()),  p(t)=p(p(r)),
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and 6" (t) and p"(t), n € N, are defined accordingly. For convenience, we also put

6%(1) =1, pl(r) =1, A= T = T.

Example 7.2.26. Let T =N, T'(t) =2t + 3, t € T. Firstly we will find 6(t) and p(t), t > 2.
We have

6(t):inf{s€'ﬂ‘:ﬁ>%} —

6([):inf{s€’]I‘:Ts+3 > 2,’?}
We consider the inequality.

S 1
7513~ 513 —

2st +3s > 2st + 3t <=

s >1.

Therefore 6(t) =t + 1.
Also,

A — U i S
p(r) =sup {s eT: o < f(t)} =

A — .S t
p(r) =sup{seT: 55 <55}
We consider the inequality.
o < i —
2543 > 243

2st +3s < 2st + 3t <=

s <t.

Consequently
p(r)=t—1.
Now we will find 6> (t) and p(t), t > 3.
We have
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and

Now we will compute fA(t) and & (1), t>2.

Since

6()  _ 1+l t
T 245 = 213 =

(t+1)(2t+3) >1(2t+5) =
26> 43t 4+ 2t +3 > 212+ 5¢ —

3>0,

we conclude that every pointt > 2, t € T, is iso-right scattered. From here

6(1)
£ = ;f(ffaém)’f(%)
T(t) 6() _ it
T(6() T()

1 S(EEs) ()
243 %72}?

t+1 t
_ 1 72%5 +2- 2043 —2
- +1 ot
243 2045 243

1
2430

and

0= ()"0

Al o) .

— 1 fA(ch”sz))_fA(th)) 2)
T RO —
7(6(1) 1)

WatOEae)

i+1 T
243 2(+5 2143
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We note X
fA ( t+1 ) _ 1
= 51t 1
2t+5 227t+?+3
— 2t+5
T 2t42+61+15
__ 2t45
T O8t+17

A aE) =5

243
T 2t+6t+9

__ 2t43
— 8r+9°

From here, using (2), we get

f&z( ) _ 1 s

- =S
2t+3 245 2+3

_ 2t+5 (214-5)(8t49)—(2t+3)(8t+17)
T (8t4+17)(8t49) (r4+1)(2t43)—1(21+5)

2t+5 16124181 +401+45—1612—34r—241—51
(8t+17)(8t+9) 2124 3t+2t+3-212—5t¢

—4:t—10
(8t+17)(8t+9)

. A2 . . . .
Example 7.2.27. Now we will compute t** on arbitrary continuous time-scale T in the case
when t is iso-right scattered and

We have

1 __ 1
(ztim)_*(7ta)

1

=70 lim,__, R GRS
70 T0)
1 1
_ 1 "(o0m) ()
T S
1(6(r)) 1T(r)
7 7 (1)
— T(ﬁ(t)) T(%)fT(TFGEt)O
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7.3. Iso-Integration

Definition 7.3.1. A function f : T — R is called iso-regulated provided its right-sided
limits exist(finite)at all iso-right-dense points in T and its left-sided limits exist(finite)at all
iso-left-dense points in T.

Theorem 7.3.2. Every iso-regulated function on a compact interval is bounded.

Proof. Let us suppose that f : [a,b] — R is iso-regulated and unbounded. Then there
exists a sequence {r};_, such that

|f(tn)] > n. (3)

Since {t,}_; C [a,b], then there exists a convergent subsequence {t,, };~_;,1.e.,
lim £, =t (4)
k—o0

for some 1y € [a,b]. Because {t,,};_; C T and T is closed, then we have that 7y € T. Since
(4), we conclude that #y is not isolated point. Therefore there exists either a subsequence
that tends to 7y from above or a subsequence that tends to 7y from below. Let us assume that
there exists a subsequence {1,, };>_, which tends to 7y from above. Because f is iso-regulated
we have that

lim £ (1) = f(10)
k—o0
and f (1) is finite. On the other hand, using (3), we get
Lf (tu )| > 1
which is a contradiction. Therefore the function f is bounded. ]

Definition 7.3.3. A function f : T — R is called iso-rd-continuous provided it is continu-
ous at iso-right-dense points in T and its left-sided limits exist(finite) at iso-left-dense points
in T. The set of iso-rd-continuous functions f : T — R will be denoted with

ard = ard(T) = a‘rd(TaR)'

The set of functions f : T — R that are iso-differentiable and whose iso-derivatives are
iso-rd-continuous is denoted by

arld = &‘rld(T) = a‘rld(TaR)'

Exercise 7.3.4. Let f : T — R is continuous. Prove that f is iso-rd-continuous.
Exercise 7.3.5. Let f : T — R is iso-rd-continuous. Prove that f is iso-regulated.

Definition 7.3.6. A continuous function f : T — R is called iso-pre-differentiable with
region of iso-differentiation D, provided D C T, T*\D is countable and contains no iso-
right-scattered elements of T, and f is iso-differentiable at each t € D.
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Theorem 7.3.7. (mean value theorem) Let f and g be real-valued functions defined on T,
both iso-pre-differentiable with D. Then the inequality

‘fA(t)‘SgA(t) for  VreD (5)

'f (TZ%)) -/ (T@))‘ = ’g (TZ%)) ¢ %)1

Proof. Let € > 0 and ¢t € D be arbitrarily chosen. Then there exists a neighborhood U of
the point ¢ such that

implies

foreveryt € D.

6([) s
1 S (ren) —/ (755)
70 EON—S — 20| <, (6)
T(6(r))  T(s)
(1) s
1 8\ 7 —8\ 74 A
_ (T( E’))) (T( )) —gA(t) < (7)
T(;) AGA(f) __s
T(6(r))  T(s)

forallse U.
Now we consider the inequality (6). We have

AcAsA(t) . s A
A L)1) .
T(6(t))

N

(s)

)|

for every s € U, from where

1 f<T?<§2))))f<TES)>e< o)

7 S(t ;
1O 6w~ 79

for any s € U.
From the inequality (7) we get

T(6() T(s)
forVse U.
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From the last inequality, (5) and (8), we find
1 )/ ai) | i
: <|fR()] < g7 (r
D — ()‘ (t)
&(1) s
A GO RANIT]
< ‘gA(t)‘ <et % (T( é()f))_!”)
761 76)
for every s € U. Hence, when s — ¢,
6() \_ p(_t 6() \ _ t
1 £ (rtsim) ~f (7f0) | ¢ (r6oir) ¢ (715)
T(l‘) 6() _ 1 = T(t) 6() _ 1
(&) 1) (&)  T(t)
from where
(7o)~ ()| = (i)~ ()|
T(6(1)) T())| " \T(6(1)) T(1)
O

Definition 7.3.8. Assume that f is iso-regulated. Any function F which is iso-pre-

differentiable with region of i

so-differentiation D such that

holds for all t € D, is called iso-pre-antiderivative of f.
We define indefinite iso-integral of an iso-regulated function f by

where C is an arbitrary constant and F is an iso-pre-antiderivative of f.

We define the iso-Cauchy

forallr, s €T.
Example 7.3.9. We will find

Since

we get

A

/f(t)&t =F(t)+C,

integral by
[ 10d=F5) -
T 1
/ o
A 1
(t) - T([)’

where C is arbitrary constant.
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Example 7.3.10. We will find

Because

we conclude that

T 1 6(r) t s 2
/ ) <f<6<r>> N f(r))”" e

where C is arbitrary constant.

Example 7.3.11. Let T={Tn+3:n €N}, T(t) =t +1, f(t) =t +2,g(t) =1> +4,t € T.
Firstly, we will find 6(t). We have

6(t):inf{s€']T: s >#} =

6(r)=inf{seT: > 5}.
We consider the inequality.
EEES _r —
s+1 t+1

s(t+1)>t(s+1) =

s>1.
Consequently
6(1)=1+7.
Therefore
6(t)  t+7  t+7
T(6(1) T@+7) t+8
Since 0
ou L
ey ~ o
7
> =

(t+7)(t+1)>1t(t+8) —

7>0,

we conclude that all points of the time scale T are iso-right-scattered.
Now we will find
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Because all points of T are iso-right-scattered, we have

Hence,

Also,

) = f(f?ég»)’f(%)

T(t O _
® 7(6() T()
6 51
_ 1 Few T g2
S - O R
T(6(1) T(1)
61 _ t
_ 1 16w 70
S SO
T(6(r)) T(r)
_ 1
o+l

1 \A
(71)

5(1) QA
| feuy ! T0
T@) S0 __

T(8(t)) T(r)

_1 tl
Li%“ A+
t+1 [EA

t+8  1+1

8 1l

1 26+15 — 21+1

t+1 (+7)+1)—t(t+8)
(t+8)(t+1)

(1+8)(2t4+1)—(t+1)(2t+15)
(r+38) (2t+15) (2t41) (2 +8t+7—12—8t)

48 2621+ 161+8— (262 4+21+15¢+15)
7 (20+1)(20+15)

t+8 =7

7 (2t4+1)(2t+15)

148
(2r+1)(21+15)

g(f?ﬁ%))) = (i)
~ ()4

(t47)>+4(1+8)?
(t+8)2

12+ 141+49+4(1% +16t+64)
(t+8)2

_ 524+78+305
(t+8)2
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2
~ ()" +4

_ P4A(e+1)?
— (t+1)?

2 44(2 42t +1)
(1+1)2

5624 8t+4
(t-+1)2

Then

51247814305 _ 5t2+81-+4
1 (1+8)2 (1+1)2
- 1 (=
=+ +8 1+l

(502 +78t+305) (141)% — (52 +814+4) (1+8)?
7(t+8)(t+1)

(5124781 4305) (1242t +1)— (5628t +4) (> 4+ 16t 4-64)
7(t48)(t+1)2

— S5t 41003 452+ 7863+ 15612+ 78¢+305¢+610+305
7(t+8)(t+1)2

5t4+80r3 4320124813 4 128124512+ 412+ 641 +256
7(t+8)(t+1)2

_ 14£241121+49
7(t+8)(t+1)?

_ 202416147
(1+8)(r+1)% "

From here,
At =1+cC,

T2 416147 A 42

Theorem 7.3.12. If f € Cyq and t € T, then

Ao [ 6() 1t
~””AT‘<T«xn> 0

)50

t

T(r)

Proof. Let F be an iso-pre-antiderivative of f. Then
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for all t € T¥. Also,

]ﬁ('))f(T)AT:F(Tﬁ;Z)))*F<TEI)>

1) T(t)

Example 7.3.13. Let T = {9n+5:n € N}, T(¢t) =3t +5, f(t) =t> +2t +3,t € T.
Firstly, we will find 6(t). We have

6(1) :inf{s eT: ﬁ 0]
6(:):inf{seﬂr:+ > AL}.
We consider the inequality.
5
s(3t+5) > t(3s+5) =
3st +5s > 3st + 5t =

s>t

Consequently

Then
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Hence,
n 19

TEr @ 20+ 3)A0) = (5155 — 5s) (P +204+3)(31 +9)

3t+5

9)(31-+5)—1(31+32
(N ABH32) (12 1 0y 4 3)

32451427t +45—312 =32t (2
= 31132 (t"+21+3)

_45(42t+3)
— T 3132

__ 45124904135
- 3t+32 :

Remark 7.3.14. We note that if f € Cy, then
T A = £(1),
T AAmAt=ft)—f(s) for  Vs;teT.
Theorem 7.3.15. Ifa,b € T, and f, g € Ca, then
~.b R ~.b ~ ~.b R
| to+sendi= [ rode+ [ g

Proof. Let F and G are iso-pre-antiderivatives of f and g, respectively. Then

T ()M = F(b) — Fl(a),

Also, R
(F+G)* (1) = FA(t) + G*(1)
= f(t)+5().
Consequently F + G is an iso-pre-antiderivative of [+ g.
Hence,
~b R t=b
Ja(f(0) +8(2))Ar = (F +) (1)

= (F+G)(b)—(F+G)(a)
=F(b)+G(b)—F(a)—G(a)

= F(b) — F(a) + G(b) — G(a)

= ]Zf(f)& + ]Zg(t)&.
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Theorem 7.3.16. Leta, be T, . €R, and f € Gd, then
~ Db

[ i —af s

Proof. Let F be an iso-pre-antiderivative of f. Then

and o
/ f(t)At = F(b) — F(a).
From the properties of the iso—derisative, we have
aFA (1) = (aF)2 ).

From here and (9), we get
(0F)3(r) = ouf (1),
i.e., F is an iso-pre-antiderivative of o f. Consequently

~b N t=b
Jalaf) )3 = (@F)(0)|

=oF (b) —oF(a)

— o(F(b) — F(a)

— o]l f()Ar.

Theorem 7.3.17. Leta, b €T, and f € Crd, then

]Zf(t)&t = —]:f(t)&.

Proof. Let F be an iso-pre-antiderivative of f. Then, using the definition for iso-pre-
antiderivative, we get

= —[,f(0)Ar.

Theorem 7.3.18. Leta, b, c€ T, and f € @}d. Then

]if(t)& = ]:f(t)& + ]if(t)&t.
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Proof. Let F be an iso-pre-antiderivative of f. Then
~b A
Jof (0)At = F(b) — F(a)

= F(b)—F(c)+F(c)— F(a)

PR 0A+ T A

Theorem 7.3.19. Ifa € T and f € Cyq, then

/ f(H)Ar=o0.

a

Proof. Let F' be an iso-pre-antiderivative of f. Then
Juf 0)At = F(a) ~ F(a)

=0.

Theorem 7.3.20. Leta, b € T, and f, g € Cyq. Then

[ s (320 Y as= row e [ 1 (s )i

Proof. Since

Agy — b 6(1) L) A
o0 = 08 (700 ) +1 (7 ) €40

we get
To (P (722) + 7 () 40)) A = Tatre) A0
t=b
=(fe)0)| _
= (f8)(b) ~ (f8)(@)
Hence,

[ s (20 Yare [ 1 (565 ) o= o0 - vsa.

whereupon we get the desired result.

Theorem 7.3.21. Leta, b€ T, and f, g € Cq. Then

]Zf (TZEZ))) A0Od = (f2)(b) — (f2) (@)~ ]zfﬁ\mg (th)) A
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Proof. Since

00 =1 (gea ) £ 0+5%0e (555 ).

T(6(1)) 1(r)
we get ) ) ,
To (£ (705 ) 20+ £ 008 (7)) Ar = Talre) (0)Ar
= (20|
= (f8)(b) = (f&)(a)
Hence,
b A . ~b
[t (o ) 0= [ 08 (55 ) b= 01~ () o).
from where we get the desired result. O

Theorem 7.3.22. Leta, be T, f, g € Ca, and

[f()[ <g(r) on  [a,b)
Then

5(1)

?(‘ﬁ”) f(T)AT
T(1)

<

foreveryt € [a,b).

Proof. Let F be an iso-pre-antiderivative of f and G be an iso-pre-antiderivative of g. Then
‘Fﬁ(z)‘ <GMt) on  refab)

From the last inequality and from the mean value theorem, it follows

‘F <ch§2>>> F <r2r>)' = ‘G (TZEZ))) ‘G<fzz>>

(1) ‘

)

whereupon

for every 7 € [a,D). O
Definition 7.3.23. Ifa € T, supT = o, and f is iso-rd-continuous on [a,), then we define
the improper iso-integral by

~b

]mf(t)& = lim F(0)é

provided the limit exists, and we say that the improper iso-integral converges in this case.
If this limit does not exist, then we say that the improper iso-integral diverges.
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Exercise 7.3.24. Evaluate the iso-integral
]m A
at?’

Theorem 7.3.25. (chain rule) Assume g : R — R is continuous, g : T — R is iso-
differentiable on T*, and f : R — R is continuously differentiable. Then there exists ¢

in the real interval [ﬁ, T?ég))] with

when T = N.

(fog) () = f(s(c))&(t). (10)

Proof. Let us fix 7 € T*. Firstly, we consider the case when 7 is iso-right-scattered. In this

case
60 VY p (g (ot
(fog)h(t) = th)f(g (T(Giég%z ;t()g (m))) .
If

then we get that A A
(fog)*()=0 and  g%(r)=0,

and so (10) holds for any c in the interval {

Hence, we can assume that

Then

rain)) /(7)) 8+t ) ¢

t 6(1) t

T
S( s _ _
g(f«sm) 8\7m F6()  T0)

where & is between g (ﬁ) and g (f?&gz)))‘ Since g : R — R is continuous, then there

L 6([) i| — . . .
70 760) such that g(c) = &, which gives the desired result.

Let now ¢ is iso-right-dense. In this case

#(s(s)) #(e(7im))

exists ¢ €

(F-8)20) = gy iy ==
., T6GR)) A (s(5)) slet) s (+t0)
T )l o 2
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where &; is between g (ﬁ) and g (ﬁ) . By the continuity of g we get that

lim gs :g(l‘).

s—t

Hence, using (11), we get A A
(Fo8)*(t) = f'(8(1))8*(0).
O

Theorem 7.3.26. (chain rule) Let T € C(T), f: R — R be continuously differentiable
and suppose g : T — R is iso-differentiable. Then fog: T — R is iso-differentiable and
the formula

n N 1 , "() ~
(Fogl () =) [ 1 (g (Tw T (T;;» _ T;)) gA<z>) dh
Proof. First of all we note that
#eti) (e g )) = £ i

= (s (statm) ~# (1)) 1o (ne (st ) + (1 = s (55 ) o

Letr € T* and € > 0 be given. Since g is iso-differentiable at ¢, there exists a neighborhood

U, of t such that .
8 (ff% ) ~8 (m)

holds.

*

—gA(t) <E€

for all s € Uy, where

* i
8 S P @t 17 B)lan)’

o =hg (ﬁé&)) +(1=hjg (ﬁ) ’

15 (s) -5 ()
=g () + (1= 1)e (745 )
Moreover, f is continuous on R, and therefore it is uniformly continuous on closed subsets

of R, and g is continuous as it is iso-differentiable. Hence, there exists a neighborhood U,
of ¢ such that

fl("g(f?&i»)+<1_h>g(ﬁ>)_f/ (hg<f?§2>>>+(l_h)g< Ez)))’

< —£
2+t (1))

~|

or

|f (OC)—f(B)’ < m
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for all s € Us.
We then define U = U; (U, and let s € U. Then we have

‘(f"g) (T?(EEB))) —(feg) (W) - (Tﬁg)) - m) 0 f/(B)dh‘

~¢(7ty)) Jo £'(@dn— (7505 — 7t ) £(0) o £ (B)ah
( ) < ())) (6(1)) )

= ‘(g (TZEEZ))) -8 (ffs)) - (TZEE?)) - ﬁ) gﬁ(l)) Jo f/(at)dh

(5205 ) S0 (00— @) a|

<|(s (7n) —2 (755) ~ (e — 7iy) 0) | o 17 (@l

s = 55| |0 I 1 (@) — £ (B

<o |70 - 25| 0 17 @) lan+ | 50k - 75| |2 0| o 17/ (o) £(B)

x| 6() s | plyp 6() s | ([ex A Lygroo _ ff
<e|pos - g | 1 @ldn o+ o = 2| (6 4+ |2 0)]) J3 1/ (0) — £(B)
<o |72 — 2| o | (@)ldh+ § | 70 —
=" |16)  T(s)|70 2{7(6(n)  T(s)

e| 60) s + £ 60 s

2{1(6(n) T Z2[T6(@0)  T(s)

(5([) s

=EF60) 7o)

Therefore f o g is iso-differentiable at ¢ and its iso-derivative is

(fog)t) =g () fy f'(B)dh

) 60 ) _of 1 5
:gA(z)fol / (g (% +hg(r<cér()t§> gg (r))) (TZEEZ)) — ﬁ) dh

T(6()) T

=0l 1 (8 (765) +180) (statsy — 755) )
O

Let v: T — R be a strictly increasing function such that T = v(T) is also time scale.

By & we denote the iso-jump function on T, and by A we denote the iso-derivative on T.
Also, T = v(T).
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Exercise 7.3.27. Prove that

M

voG =060V

under the hypotheses of the above paragraph.

Exercise 7.3.28. Let T = {lln+1:n €N}, T(t) =t+1, v(t) =t +2, t € T. Find 6(t),
6(t), t € T. Prove that

Il
(o}

voG oVv.

Exercise 7.3.29. Let T = {13n+11:n €N}, T(t) =t +7, v(t) =t>*+t+2, t € T. Find
6(t), 6(¢), t € T. Prove that

o
Il
(o}

Vo oV.

Exercise 7.3.30. Let T = {1ln+1:n €N}, T(t) =t>+1, v(t) =t +2, t € T. Find 6(¢),
6(t), t € T. Prove that

I
(o}

vob oVv.

Exercise 7.3.31. Let T={3n+12:n € N}, T(t) =t +1, f(t) =t +4, g(t) =2t + 1, v(t) =
3t+5teT.

(i) Find 6(t), 6(t), t € T.
(i) Find f2(t), g (1), t € T.

(iii) Find ) A
vos(t)+2f2 (1) -3¢ (),  teT.

(iv) Prove that

O

voG=G6ov.
Exercise 7.3.32. Assume that v : T — R is strictly increasing and T = v(T).
(i) Letw:T — R Ifwg(v(t))and VA(t) exist for t € T*, then

(wov)A = (Wg ov) VA,

(ii) Prove that

at points where V2is different from zero.

(iii) If f : T — R is an iso-rd-continuous function and v is iso-differentiable with iso-rd-
continuous iso-derivative, then for a, b € T

~V(b) ~

~ b A
/ S (VA () Ar = / » (fov™l) (s)As.
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7.4. Iso-Hilger’s Complex Plane

Let T : C — (0,0).

Definition 7.4.1. For h > 0 we define the iso-Hilger complex numbers, the iso-Hilger real
axis, the iso-Hilger alternating axis, and the iso-Hilger imaginary circle as

C,,::{zec;ﬁ;é—ﬁh)},

B . . 1
Rh.—{zeCh, R and ﬁ>_hf(h)}’

respectively.

Definition 7.4.2. Let h > 0 and z € Cj,. We define the iso-Hilger real part of z by

Rey(z) :=

and the iso-Hilger imaginary part of 7 by

Arg (ihT(h) + 1)

~ T(z)
Imy(z) := =
n(2) nF )
We note that Rey,(z) and Imy,(z) satisfy
1 ~ T ~ T
———— < Rep(z) <o and - <Imy(z) < ——.
KT (h) n(2) KT (h) W) < KT ()

Definition 7.4.3. Let — hTTE o <w< h;zh). We define the iso-Hilger purely imaginary num-
ber ?w by

6: . eiw% 1

= T

Proposition 7.4.4. Let T € C'(R). Then

. _ Re(z)
Jim, Ren(z) = T(z)

for every z € C.



Time Scales Iso-Calculus 207

Proof. Letz=a-+ib, a, b € R. Then

2 __at+iby
FhT(h) = $20T (h)
__ahT(h) | .bhT(h)
=T Ui

z hT(h)"‘l:ahT( )+1+ th(/’l)

T(2) T(z) T(z) °
Y, _ ahj(h) .bhj(h)
A(Z)hT(hH—l’ 0 414270 ‘

| {ant ) 2 R
_\/< 1) P,

_a_pf _a_ _a_ T2 () M
4 Afz)hf"(h)+1‘ _ 2T (1) (5 T (0)+ 75T () ) 4202 T o2 ET

ah(h) 2 4 22120
2\/( <>“> 720)

= TL(IZ)T(O)
_ Re(g) £
) T(O)
Hence,
= hT (h)+1|-1
hthO Reh(z) = lln’lh*)o 1) hT(h)
| | ht (w+1]
= MMh—0 7)) Th ()
e(2) 4
_ l;(i) 1(0)
1(0)
_ Re(z)
1@
i.e.,
lim Rey(z) RAG(Z).
= 7(2)
O
Proposition 7.4.5. Let T € C'(R). Then
lim llmh( )= l_IrAn(z)
h—0 T(z)

for every z € C.
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Proof. Let z = a+ib, where a, b € C. We have

o ilmy, (z) %

itmy,(2) = T (h) &————

(5) = Arg(TEZ)hT(h)+l>

Im (2 50

_ Are (o558

KT (h)
Since
Re( Z hT(h)+1) LG
T(2) TN T() ’
. _ KT (h) LY )
ng)hT(h)H’ —\/(a o +1) +RE0,
we have .
7
a——~+1
Arg <7A"§ )h (h)+ 1> = arccos 1@ -
z T (h) 1212 (h)
\/(“ T 1) b
From here
ah;((g)wtl

hT(jz) )+b2h2T2(7()h)

- (i (o)

0 )
()
LT (R 5 1272 (h)
( e “) T
L0 (T W (0 2 [ TR0 h))
(aT(Iz)+ahT’(h)) (ahf<h>+1)2+hzhzf2(h>( ) “) ( o TR ) ( () “)b (”ﬂ() P2
f(z) T(«”) f(«”) TZ(Z) hT(h) 2 /127-2(;,)
( +1) +p2 75
() 72(z)
X o) 2 p2 1212 ()
(a5 1) oty
(a@_)'_ah ))bZhZT (h) ( h (h)+1>b2 ]’l (h)_l_]zT(h)T/()
T(z) 2) 72(z) T(z) 72(z) 2(z)

hT(h ( hT(h i h2T (h >

7(0)
—7h—0 bmv
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ie.,
. d Z . T(0)
lim —Arg|( ——hT(h)+1 ) =b——.
modh' e <T(z) ") ) T(2)
Consequently
~ ‘Arg<%lzf(ll)+l)
. CIN . Aove TR
llmh_>0 zImh (Z) = llmh_>() T(h) 7

lArg(%hf(h)+l)

.Arg(ﬁhf(hﬂl) . Arg(ihT(h)+l)+l

=iT(0)limj_pe 0 & T(Z)fz(h)

N Arg hT (h)+1
=iT(0)limy_, (Tf)z(h) )

. d Arg(ﬁhf(h)—&-l)fz(h)—Zf(h)T’(h)Arg(ﬁhT(h)—H)
=iT(0)limy_ 0 :

O]

Y T(@z)
- lT(O) TZ(O)
_ b
I 2P
— ilm(z)
R ®)

Corollary 7.4.6. Let T € C'(R). Then for every z € C we have

Z
T(z)

lim (R%h (2)+ ?Ifnh (Z)> —

h—0

Example 7.4.7. Let h=2, T(z) = |z] + 2, z € C.
Then, if z=1-+1, we have
T(z)=|1+i|+2

=VIZ4+12+42
=V2+2,
T(h) = 2| +2

=4

)
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. 1 +i 8+1‘71
Reh(Z) = \/E+28

) 82-v2) g4 8

2\f))1

_ 4e—v2)+1+402-v2)i] -1
= 8

_|(9-4v2)+(8—4v2)i| -1
- 8

_ VOV (8-4v2P 1
- 8

V/81-72V2432+64—64v/2+32—1
= 8

_ 4/209-136v/2—1

=

fz)hf(h) +1=(9—4v2)+ (8 —4V2)i,
%hT(hH—l‘ = /209 - 136v2,

~|

— 9-4v2
Arg( i )h ['(h)+ 1) = arccos ——=t—,

n arccos 72(9);4;/36\5
Iy (7) = —2-102

Ifw=73, then
?3 "3%71
13 - 4%

Example 7.4.8. Let h =3, T(z) = |z|*>+ 1,z € C.
If 7 =2i, then
#(z) = 202+ 1

=4+1

=5,
T(h)=3>+1
= 10,

hT (h) =3.10

= 30,
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4 A _ 2
FighT () +1=33.10+1
=1+ 12i,

FhT () +1] = [1+12i]

Arg ( 2T (h) + 1) = arccos ﬁ

Therefore
Re(z) = Y153,
A arccos#
Imh( ) = 30m .
Ifw=4, then
?3 6141% 1
i=10 3

= %0 (egi — 1) .
Example 7.4.9. Let h=4, T(z) = |z]> +2, z€ C. Let also, 7 = 1 +2i. Then

T(z) = [1+2i*+2

=|12+22|+2
=17,
T(h)=|4?|+2
=18,

hT (h) =4.18
=72,

7 _ 1420
FhT () +1= 1527241

=24 144

79 4 144
=Tt
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4 7 _ |79 144 -
st () +1] = |2+ 13

79

Arg ( 2 hT (h) + 1) = arccos —L—

7

Therefore

Ifw=125, then

Exercise 7.4.10. Let T(z) = |z|*+ 1, z€ C, h=35. Find

A

Res(3+i), Ims(4—i),  il0.

Theorem 7.4.11. If — -~ <w < -~ then

hT (h) hT (h)’

3 ? 4 7°(h) sin? wh
w| = i =

: 2 27 (h)

Proof. We have

A 12 . 2

Q | T _1

iw| =|T(h)*—,
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o o
ij(lT)—]e twﬁ_]

_f2
=1(h)—; ;

o h iwa
]—emm—e v T(l1)+1
h2

2(h)

2—cos B _jgin P _cog W 4 jgin Wh

) T(h T(h T(h T(h
=T (h) (h) (}22 (h) (h)

2(2/’) (1 —cos TVEZ))

I
[\
~»

Definition 7.4.12. For z, w € C, we define iso-circle plus as follows

A z w Z
+ =

7o T R T W

Example 7.4.13. Leth =2, T(z1) = |z1]*+ 1, 21 €C, z=1+i, w=1—i. Then
T(z)=[1+i+1
=124+ 12+1
=3,

z 140

3

=1°+12+1
=3,
w1
Tow) — 3
=53k
T(h)=2]>+1
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Example 7.4.14. Leth=4,T(z)) = 21> +4,21 €C, z=2—i,w= 1 +i. Then
T(z)=]2—i>+4

=22+12+4
=9,

z 22—
T(z) 9

_ 2 1.
=9 39b

=12+12+4
=6,

w1+
Tw) ~ 6
=5t g
T(h) =[4]*+4
=20,

7 1 . 1 1 . 1 . 1 2
= 15 + 151 +80 (37 + 370 — 550 — 547%)

7 1 . 1 1 .
:ﬁ+ﬁl+80(ﬁ+§1)

7, 1:, 80 , 40
= tiititogl
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Example 7.4.15. Leth=3, T(z)) = |z1| + 1, 21 € C, z=3+4i, w = 3 — 4i. Then
T(z)=|3+4i|+1

=V32+42+1

T(w)=|3—4i|4+1=/32+(—4)2+1

=5+1

Z
T(z)

Theorem 7.4.16. We suppose that for every w € C the equation = w has unique solu-
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tion z € C. Then (Cp,,®) is an Abelian group.

Proof. Let z, w € Cj, be arbitrarily chosen. Then z&w is a complex number and

1 w 1
o7 W@ T 7w O
2 KT w_pT
LH AT () £0, 1+ g (h) £0
Hence,
- Z w4z w 7
L+ (2w T () =1+ (75 + 725 + 75 7T () ) W (k)
= LT () 7+ T () 725 (1 + sz)hT(h)>
_ i w =
- (1+hT(h)m)) (1+ f(w)hT(h)>
#0,
ie.,
Pw € (flh
Also,
Ny = 2 w . w T
W=7 1 7m + 7 T )
= 7w T 7 T w70 ()
=wdz.

Let now z; € @h be arbitrarily chosen. We will search w; € @h so that

716w, = 0.
‘We have )
— _2 w1 Z1 wi
0= 73 T Foury T 76 oy 1 () =
__Z . wi 21 A~
T(Zl) - f(W1) <1+ fZ[)hT(h)> N
I
w o 7(z1)
Tw) 1tz hf(h)

T(z1)
The last equation has unique solution w; € C. We note that
7

WP () =1 — — 1@

1

1+ﬁ}l)hr(h)

£0.

Consequently w; € Cp.
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Exercise 7.4.17. Show that & on C}, satisfies the associative law.

Throughout of this book we will suppose that (C’h, @) is an Abelian group.

In the last theorem we saw that if z € Cy,, then the additive inverse of z under the opera-
tion & is

Example 7.4.19. Leth =2, T(z)) = |z1|>+ 1,21 €C, z=2+i, w=2—1i. Then

T(z)=2+i>+1

=224+12+1

=224+12+1
=6,
w2
Tw) — 6
=5~
T(h)=2]>+1
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_ 1 24
2 1345i

_ 1 _(2+){3-50)
= T 2(13-5)(13+50)

_ 126-10i+13i45

2 169+25
__3143i
= 77388 o

w=— -
© 1+(3—40)25 1+10-3;
_ 1. 2-i
- 213-5i

L1 -34S0
— 2(13-5i)(13+5i)

= _ 126410i=13i45
— 727 169425

_31-3i
388

w= b b+ (350 + (b ) (325

_ Lyl 3135 (2+)(31-3)
6 388 3 388

31-3i _ 562—6i4+31i4+3

1,1
=316~ 38 3 388

1 1. 31-3i  565425i
5!~ 7388 3 388

_ 1, 1; 93-9i+325¢15i
315! 1164

- 1164

— =30478i
- 11ed
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Example 7.4.20. Leth=2,T(z)) = 21> +2 21 €C, z=1i, w = —i. Then

T(z)=i*+2
—142

=3,

z 1

Fm) — 3b

1 i(1+40)
3 (1—4)(1+4)

—__4 , 18 (4 1
—_51+511+4’( 51"’51’)
—_ 4 ,18: 16; 4
=51 t5l 53]
__ 8,2

= —351 t 31!
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Proof. We have

1(z)
— _2 __ T(z) _z T?Z) ~
T(z) 1+ sz) nT(h)  T(z) 1+f(zz) T (h) hT(h)

Proof. We have

7@ @)
_ e T _ ol p
- sz) 1+T;tv)hf(h) sz) 1+thv)hf(h)hT(h)

_ FatT@ fw  Ton T Fon "L )

1+%hi(h)

I 7 i (1)

Definition 7.4.23. Let z € C;,. The the iso-generalized square of 7 is defined by

We have the following representation

O S
T() 1+55hT(h)
2
_ ()
15T (h)

Example 7.4.24. Leth =2, T(z1) = |z1|*>+ 10, z1 € C, z= 1 +i. Then
T (h) = 2|+ 10

=12

)
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T(z)=[1+i*>+10

=124+12+410

z 1+i

12

Hence,

(1+0)° =

1 (140)?

144 14+2+2i

1 142+
— 144 3+42i

1 2

T 144 3420

1 i(3—-2i)

T T2 (3+20)(3-2)

_ 1 3i-28
— 72942

Example 7.4.25. Let z € C,. Then

= 7(m> hT (h)

=T (h).

Definition 7.4.26. For z € C), we define the iso-cylindrical transformation

1 7 A
En(z) = WLog (1 + f"(z)hT(h)) _

For h = 0 we define
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7.5. The Iso Exponential Function

Here we suppose that 1 : T — [0,00), T : R — (0,0).

Definition 7.5.1. We say that a function p : T — R is iso-regressive provided

1+ T?;EZZ)) W(OT(h(t)) A0  for  all  teT*

The set of all iso-regressive and iso-rd-continuous functions f : T — R will be denoted in
this book with

A

R = QA{(T) = j{,(TJR)

Exercise 7.5.2. Prove that ﬁ is an Abelian group under the iso-circle plus defined by

~ . p@) q(t) p(t)  q(t) )
' 5y T T o) Ty T

forallt € TX p, g € QA( This group will be called the iso-regressive group.

Exercise 7.5.3. Prove that if p, ¢ € R, then pdq and the function &p defined by

for all t € T* are also elements of R.

Definition 7.5.4. We define the iso-circle minus & on R by

forallt € T
Exercise 7.5.5. Let p € R. Prove that
pSp=0.

Definition 7.5.6. If p € R, then we define the iso-exponential function by
~t

ép(t,s) :=exp (/ En(r) (p(r))Ar) for s,t €T.
N

We can rewrite the iso-exponential function in the following form

~Lt

. - 1 o p(7) A A
8, (t,s) = exp (/sh(ﬂ:)f"(h(‘c))L g (1 + T(p(T))h(r)T(h(r))> m) .
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Below are some of the properties of the iso-exponential function.
1. If pe R, then the semigroup property
ép(t,r)é,(rs) =é,(t,s) for all rs,teT
is satisfied.

Proof. We have
&p(1,1)2y(1,5) = exp (I} ue)(p(e)Ac ) exp T &uco (p(0) v

= exp (] Eue) (P(2)Ac + [ &0 (p(1)) A1)

= ép(t,s)
O
2. éy(t,s) =1forallt,se T~
Proof. We have .

éo(t,s) =exp <f5§h(1) (O)Ar)

_ 1 A

= exp (i Log(DA)

= exp(0)

=1 for all s,t € T*.
]

3. ép(t,s) = ep(—lm for all s, t € TX.

Proof. For s, t € T* we have

p(t.5) = exp (] 8o (p(1)Ae)

— exp (_]fghm (p(r))Ar>

1
exp (-Tff-w(r) (P(T))AT)

_ 1
Zs)
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Definition 7.5.7. (iso-trigonometric functions) If +ip € Ca, +ip € R, then we define the
iso-trigonometric functions c0s, and sin, by
eip—2©€_jp

2i

eipt+eé_ip

COSp = 3 y Sy, =

We have

5, 1 \2 5 s \2
) &2 [ Pepté_yy éip—é_p
COs), +sin, = ( 5 + 57

o3 sa D 2 _os 5 . D
28 tety, ¢ 28ipe_ip+eZ;,

Exercise 7.5.8. Show Euler’s formula
8ip(t,10) = cdsp(t,19) + isin, (t,1o).

Definition 7.5.9. (iso-hyperbolic functions) If £p € Cra, £p € R, then we define the iso-
hyperbolic functions cosh,, and sinh,, by

€p —€_p

2

ept+e_p

cosh, = 7 sinh, =

We have

PO 2 PO 2
A2 A2 (4l , ép—é_,
cosh,, —sinh,, = ( 3 — 3

D PN V) o) A oA o)
_ ept2epé_pte, . é,—28pe_p+e
- 4

=épé_p.
Exercise 7.5.10. Let +p € Cog, £p € f{ Prove that
1) cosh,+sinh, = ¢,

2) cosh, —sinh, =¢é_,.

MA
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Appendix

8.1. The Discrete Analogue of the Putzer Algorithm

Let A = (a;;) is a real k x k matrix.
Here we will represent the Putzer algorithm to compute A”.
An eigenvalue of the matrix A is a real or complex number A such that

AE = AE

for some nonzero & € C*.
This relation we can rewrite in the form

(A—AE=0. (1)
The equation (1) has a nonzero solution if and only if
det(A—AI)=0
or
a2+ g A+ a, =0. (2)

Definition 8.1.1. The equation (2) is called the characteristic equation of the matrix A,
whose roots A are called the eigenvalues of A.

If A1, Ap, ..., Ay are the eigenvalues of A, then the equation (2) can be written as

k
p() = [T A—2)).
j==1
Theorem 8.1.2. (Cayley-Hamilton theorem) Every matrix A satisfies its characteristic
equation, i.e.,

p(4) = [T~ 21 =0
Jj=1

or
A a A g A+ = 0.
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We will search a representation of A” in the following form
Z xj(n)M(j—1),

where x;(n) are scalar functions, which will be determined below, and
M(j) = (A=MDM(j—1),
M(0)=1.

Hence,
Mn)=(A-AI)M(n—1)

= (A= dD)(A— Ay )M (n—2)

= (A= Md)(A—Xyr]) ... (A= MI)M(O)
— (A= M)A =Xy ])... (A=)

=TT (A—Ad).

From here, using the Cayley-Hamilton theorem, we have

k
=[1A-%1) =

,]:

—_

Consequently,

Therefore

We set n = 0 in (3) and we get
AV =1
= Y51 % (0)M(j 1)
=x1(0)M(0) +x2(0)M (1) + -+ x,(0)M(k— 1)

=X (0)I+X2(O)M(1) +--- —|—xk(0)M(k— 1),
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whereupon

From (3) we find
An+1 — AA"

= ATA (M~ 1) (5)

= Y5 xj(n)AM(j—1).

From the definition of M(j) we have
M(j) = (A=MDM(j—1)

=AM(j—1)=AM(j—1)

or
AM(j—=1) =M(j)+1M(j—1).

From here and (5) we obtain
A = YA () (M) + MM (- 1))
= Y5 xi(mM() + X Ajxj(m)M(j — 1)
=x1(n)M(1) +x2(n)M(2) + - - -+ x ()M (k)
+h1x1 (n)M(0) + Aaxa ()M (1) + - - 4 M ()M (k — 1)
= x1 () (M(1) + X1 M(0))
+x2(n) (M(2) +2aM(1))
e
+xi(n) (M (k) + MM (k—1)).

On the other hand,
AT =YEx(n+ DM (j— 1)

=x1(n+1)M0)+x2(n+1)M(1)+ - +x,(n+1)M(k—1).
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From the last equality and (6) we get
x1(n)(M(1) +AM(0)) +x2(n)(M(2) +AaM (1)) + - - +xx(n) (M (k) + MM (k— 1))
=xi(n+1)MO0)+x2(n+1)M(1)+ -+ +x,(n+1)M(k—1),

from where
(X1 (l’l—|— 1) =Aix (I’l)

x(n+1)=x1(n)+Axa(n)

xe(n+1) = xg—1(n) + Mx(n).

Using the last system and (4) we find the functions x;(n), j=1,2,... k.

Example 8.1.3. Let

We will find A”.
We have

~ O
L
w o |
—_
\_/
_|_
~
|
OO>)
|
O>)O
[
- oo
v

det(A —Al) =

4 -4 5-
=(1-2)2(5-A)+4(1-1)
=(1-0)((1=X)(5-1)+4)
=(1-1) (5—6L+A?+4)

=(1-M(3 -1
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det(A—AI)=0 —

Il
~

|
OOO_l>
o O O

|
#ON
~_

ATt =A A"

= A (x1 ()] +x2(n)M(1) + x3(n)M(2))
= x1 (n)A + x2 (n)AM(1) + x3(n)AM(2),
M(1) = (A=1)M(0)

—A-1I,



230 Svetlin Georgiev

Therefore

AT =y () (M(1) + 1) -x2(n) (M(2) +3M (1)) 4x3(n) (M(3) +3M(2))

=x1(n)+x1(n)M(1) +x2(n)M(2) 4 3x2(n)M (1) 4+ 3x3(n)M(2)

= x1(n)I + (x1(n) +3x2(n)) M(1) + (x2(n) + 3x3(n))M(2),

ie.,

AT =x ()T + (x1(n) +3x2(n)) M(1) + (x2(n) + 3x3(n))M(2).

On the other hand,
A =33 (e DM (j—1)
=x1(n+1)M(0)+x2(n+1)M(1) +x3(n+1)M(2)

=xi(n+ DI+x2(n+1)M(1) +x3(n+1)M(2).

From the last equality and (7) we get
xi(n+ DI4+x(n+1)M(1) +x3(n+1)M(2)

= x1(n)I + (x1(n) +3x2(n)) M(1) + (x2(n) +3x3(n)) M(2),

whereupon
x1(n+1) =x1(n)
x2(n+1) =3x(n) +x1(n)
x3(n+1) =3x3(n) +x2(n).
Also,
AV=1
=x1(0)] +x2(0)M (1) +x3(0)M(2)
From here
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In this way we obtain the initial problem

x1(n+1) =x(n)
x2(n+1) =3x(n) +x1(n)

x3(n+1) = 3x3(n) +x2(n),

X1 (0) = 1, XQ(O) — 0, X3 (0) =0.

We consider the initial problem

For its general solution we have

Now we consider the initial problem

x(n+1) =3x(n) +x1(n)

or

For its general solution we have
~1 —1
x2(n) = Yo (H;l:r+l 3)
_ vhn—1lan—r—1
= N Kt

— 3n71 Z:l;(} 3-r

ie.,

3"—1
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Now we consider the initial problem

x3(n+1)=3x3(n) +x2(n)

or

x3(0) =0,

from where for its general solution we get

x3(n) = X0 (IS 3) 352

_yn—1lan—r—13"-1
S e

n—1 _ —r
= 32 Z:}:é (1_3 )

=3 (o 1-Y3)

1

3n71 ( 1——3,1 )
= n— T
2 1-3

-5 (- 354

ie.,
2n—3 1
x3(n) = n4 3l 7
Consequently,
1 00 0 2 -1
At=(0 1 0 |+ 0 0 o0
00 1 4 —4 4
-4 0 -2
+(223 4+ 0 0 0
8 0 4
—(2n-3)3"t (3" —1) —n3!
= 0 1 0

4n3"! —2(3"—1) ((2n+3)3"1-1)
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Example 8.1.4. Let

210
A= 0 2 1
0 0 2
We will find A”.
We have

=(2-1)°%,

det(A—A)=(2—-1)?>=0 =
M=k =A=2,

A" =Y x(mM(j=1)

=x1(M)M(0) +x2(n)M(1) +x3(n)M(2)
= x1 () +x2(n)M(1) +x3(n)M(2),
M(1) = (A—MI1)M(0)

=(A-2NI

)
—
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Therefore

whereupon

=AM(2) —2M(2),

AM(2) =2M(2),

AP = A A"

= A (x (W) +x2(n)M(1) +x3(n)M(2))

=x1(n)A +x2(n)AM (1) +x3(n)AM(2)

=x1(n)(M(1)+2I) +x2(n)(M(2) +2M (1)) + x3(n)(2M(2))
=2x1(n)l +x;(n)M(1) +x2(n)M(2) + 2x2(n)M (1) + 2x3(n)M (2)

= 2x1 ()1 + (x1 (1) 4 2x2(n) )M (1) + (x2(n) + 2x3(n)) M (2).

xi(n+DI+x(n+1)M(1) +x3(n+1)M(2)

= 21 ()l + (x1 (n) + 2x2(n) )M (1) + (x2(n) + 2x3(n) )M (2).,

xi(n+1) =2x(n)
x2(n+1) =2x(n)+x1(n)

x3(n+1) = 2x3(n) +x2(n).
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Also,

from where
x1(0)=1,  x(0)=x3(0)=0.

In this way we obtain the initial problem
(xi(n+1) =2x(n)
x(n+1) =2x(n) +x(n)

x3(n+1) = 2x3(n) +x2(n)

x1(0) = I,XQ(O) = 0,)63(0) =0.

We consider the initial problem

For its general solution we have

Now we consider the problem

x(n+1) =2x(n) +x1(n)

or

For its general solution we have
x(n) = L5 (I15412) 2
— Z’:;(l) on—r=lor
_ anl 2n71
=0

=21
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Now we consider the initial problem
x3(n+1) =2x3(n) +x2(n)
X3 (0) =0

or
x3(n+1) =2x3(n) +n2" L.

X3 (0) =0

For its general solution we have
x3(n) = £ (T4, 2) 2!

_vn—1lAan—r—1_~r—1
=),"02 r2

— n—1
—n zzr:OF
_ An—2n(n—1)
_2n 2n n2
=n(n—1)2"73.
Consequently,
1 00 010
Ar=2" 0 1 0 |+n2"'| 0 0 1
0 0 1 0 0O
0 0 1
+n(n—1)2"3 0 0 0
0 0 0

2" n2" 1 p(n—1)2"3
= 0 2" n2n=!
0 0 2"

Exercise 8.1.5. Find A", where
11 -1 2
oL ) w as(2)
8.2. The Jordan Normal Form

Definition 8.2.1. We say that the k x k matrices A and B are similar if there exists a non-
singular matrix P such that
P 'AP=B.

We will write
A~ B.
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If A ~ B, then they have the same eigenvalues.

Definition 8.2.2. If a matrix A is similar to the diagonal matrix
D = diag(A1, A2, ..., k),
then A is said to be diagonalizable. In this case
AMyAg, .o Mg
are the eigenvalues of the matrix A.

We suppose that A is a diagonalizable matrix. Then there exists a nonsingular matrix P
such that
P 'AP = D = diag(A1,Aa,. .., A0).

Hence,
A=PDP !,

A =AA

= (PDP~")(PDP)

= PD*P .
We suppose that
A" = PD"P~! (8)
for some n € N.
We consider A",
We have
An+1 — AA"

=PDP ' (PD"P ')

:PD}’H-IP—I7
i.e., (8) is valid for all n € N.
Explicitly,
M0 ... 0
A p 0 A ... 0 1
0 0 ... A\

If a k x k matrix A is not diagonalizable, then it is similar to the Jordan form, i.e.,
P'AP =1,
where P is a nonsingular matrix,

J =diag(J1,J2,...,J;), 1<r<k

)
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A1 0 L..00
0 A 1 0

Ji = 0 0 7\41‘ 0 )
0 0 O Ai

Ji 18 §; X s; matrix,
,
Z N k.
i=1
Definition 8.2.3. J; is called a Jordan block.

Definition 8.2.4. The number r of Jordan blocks corresponding to one eigenvalue \ is
called geometric multiplicity of N, and this number equals the number of linearly indepen-
dent eigenvectors corresponding to A.

Definition 8.2.5. The algebraic multiplicity of an eigenvalue A is the number of times it is
repeated.

Definition 8.2.6. If the algebraic multiplicity is 1, then the eigenvalue is called simple.

Definition 8.2.7. If the geometric multiplicity of A is equal to its algebraic multiplicity, then
it is called semisimple.

Example 8.2.8. Let us consider the matrix

1 00 00O
03 000
A=]1 00 3 0 O
00041
00 O0O0 4

We will find the eigenvalues of A. We consider

1—-A 0 0 0 0
0 3—A 0 0 0
A—MN = 0 0 3—A 0 0 ,
0 0 0 4—Ar 1
0 0 0 0 4—X
from where
1—-A 0 0 0 0
0 3—A 0 0 0
det(A—A) = 0 0 3—A 0 0
0 0 0 4—X\ 1
0 0 0 0 4—X

=(1-MB-1)?*E-1)?,
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det(A—Al)=0 =
(1-2)(B-1)32(4-1)?*=0 =
M=1, A =3, A3 =4.

1. Ay = 1. The algebraic multiplicity of Ay is 1. Consequently, \; is a simple eigenvalue.
Also,

rang(A — A1) = rang

S O O OO
S O OO
S OO O
S W o oo
w = O O O

=4.
Therefore the geometric multiplicity of Ay is equal to 5 —4 = 1.

2. Ay = 3. The algebraic multiplicity of A, is equal fo 2. Also,

-2 00 0 O
0 00 O O
rangA—MI)=| 0 0 0 0 O
0 00 -1 1
0 00 0 -1

=3.

Hence, the geometric multiplicity of Ay is equal to 5—3 = 2. Consequently, A, is a
semisimple eigenvalue.

3. A3 = 4. The algebraic multiplicity of A3 is equal fo 2. Also,

-3 0 0 00

0O -1 0 00

rang(A—A3l)=rang| 0 0 -1 0 O
0 0 0 01

0 0 0 00

=4
Therefore the geometric multiplicity of A3 is equal to 5 —4 = 1.

Now, since
P AP =1,

then
AP =PJ.
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Let
P=(&1,8,...,&).

Then
AL =ME)

A& =ME+ &

Agn = 7"lgn "’gsvl-

Therefore &, is the only eigenvalue of A in the Jordan chain &y, &, ..., &,

Definition 8.2.9. The vectors &, &3, ..., &, are called generalized eigenvectors of A, and
they may be obtained by using the difference equation

(A=MDE =8&i1, i=2,3,...,51.

Repeating this process for the remainder of the Jordan blocks, we can find the general-
ized eigenvectors to the mth Jordan block using the equation

(A=), =Em_1, =23, 5m.

‘We note that

0 0 ... 0
0 J5 0 ... 0
=10 o m ... 0
0 0 0 Jr

Example 8.2.10. Let us consider the matrix

4 1 2
A= 0 2 —4
01 6
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whereupon

4—A 1 2

det(A—Al) = 0 2—-A —4
0 1 6—A

=@-N2-1)(6-1)+4(4—-2)
=@4-MN(2-7)(6—1)+4)
= (4—A)(A*> — 8L+ 16)
= (5_>“)37

det(A—AI)=0 =

(4-1)3=0 =

M=M=Ak=4.
0 1 2
rang(A—MI)=rang| 0 -2 —4
0 1 2

=1.

Consequently, there are two linearly independent eigenvectors which correspond to the
eigenvalue \; = 4.

Let
ai
E=|
as
Then

(A=MIE = (A-4D5

0 1 2 ap
= 0 -2 —4 a =0 —
0 1 2 a3
a+2a3=0
—2612 - 4613 =0
ay+2a; =0,

ie.,

a) = —2a3.
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Therefore
ai
E_, = —2613
as
Let
0 1
gl = —2 ) éz — -2
1 1
We will find
by
&G=| b
b3
using the equation
(A-4N& =&, =
0o 1 2 by 1
0 -2 —4 by | = -2
0o 1 2 b3 1
by+2b3=1
—2by —4b3 = =2
L by +2b3 =1.
Let
by =1, by =—1
Then
0
&= -1
1
Consequently,
P=(§1,8,8)
0 1 0

= -2 -2 -1
11 1
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Now we will find P~'. For this aim we have a need of the following quantities.

det(P) ==—-14+0-0+2-0
=1,

-2 -1
P11=' 1 1 ’
=—-2+4+1
=—1,

-2 -1
PIZZ—‘ 1 1 ‘
=—(-2+41)
=1,

-2 =2
P13—' 1 1 ’
=-242
=0,

1 0
P21=—’ 1 1 '
=1,

00
Pzz—' 0 1 ‘
=0-0
=0,
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1 0
P3L= 5 4
=—1-0
=1,
_ | 0 0
P = 2’
=—(0-0)
:O7
10 1
P33 = )
=042
=2.
Consequently,
pir p21 p3i
Pil:#(p) P2 pn P
P13 p23 P33
-1 -1 -1
= 1 0 0 ,
1 2
4 1 2 0 1 0
AP=| 0 2 —4 -2 -2 -1
01 6 1 1 1
0o 4 1
= -8 -8 —6 |,
4 4 5

-1 -1 -1 0 4 1
= 1 0 O -8 -8 —6
0 1 2 4 4 5
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Exercise 8.2.11. Let

0O 1 0 0
0 1 0
N; =

0O 0 O 1

0O 0 O 0
Then

J;i =ML+ N
Prove that
N =0.

1

Theorem 8.2.12. Let A be a k X k nonsingular matrix and let m be any natural number.
Then there exists some k X k matrix C such that C" = A.

Proof. Let P a nonsingular k x k matrix such that

P lAP=J
Ji 0 ... 0
o n o0
0o o0 ... J
We have
Ji = Nl; +N;
:ki<li+)%iN,~>.

‘We observe that
Li=exp(LlogJ;)

ot oo )

= exp (4 (loghit +1og (1+ £N:) ))
—exp (& (loghd + xS0 (1))
NS =0

1

L _1)s+1 A\
=exp (% (logkil—l—Z;’:f ( 13 (Mj) )) )
Consequently, the matrix L; is well-defined.
Also,

L' =J.

1
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Let now
Ly 0 ... 0
L 0 L, ... O
O 0 ... L,
Then
Lo ... 0
o o Ly ... 0
0O O L
Ji 0 0
_ 0 5 0
0 O Jr
=J
=P AP,
i.e.,
A=PL"P .
Let
C:=PLP".
Then
A=C"

8.3. A Norm of a Matrix

Let X be a vector space.

Definition 8.3.1. A real-vector function on the vector space X is called a norm, and denoted
by || -], if

@) ||x|| >0forallxeX,

x|| =0ifand only if x =0,
@) |[|Ax|| = |M||[x|| for all x € X and all scalars ),

(i) |pe+yl| < |]x|[ +[ly[| for all x, y € X.

Below we suppose that X is a vector space endowed with a norm || - ||.
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Definition 8.3.2. We will say a sequence {x,};_, of elements of X is convergent to the
element x € X if
lim ||x, —x|| =0.
n—-soo

Definition 8.3.3. Two norms ||-||1 and ||-||> in the vector space X are called equivalent if
there exist constants o, 3 > 0 such that

of xl |1 < [lxf|2 < Bllxll2
forallx € X.

Proposition 8.3.4. Let || - ||| and || - ||2 are two equivalent norms in X. Then, if {x,}_, is
a sequence of elements of X, we have

lim ||x,|[1 =0
n—soo

if and only if
lim ||x,|]» =0.
n—->oo
Let now the vector space R¥ is endowed with the norm || - ||. Then we can define a norm
of a k X k matrix A as follows
_ [|Ax]]
[|A|| = max .
lxll#0 | lxl|
We have
||A|| = max ||Ax|| = max ||Ax]|.
[Ix[]|Zeq1 [Ixl|=1

For a k x k matrix A we define
p(A) = max{|A|: A is an eigenvalue of A}

Let A is an eigenvalue of A. Then

Ax = \x,
[|Ax]] = [|Ax]|
= (A1l
Hence,
A<l =
dlAdl <Al =
A <TIA]].
Consequently,
p(A) < [IA]].

For x € R¥ we have
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1.
k k
— . All; =
Il =Yl VAl = mas Y o
2.
k
00 — ] Aoo: (7|
[xllo = max [xil, [lA]l lrgg(jglaul
3.

Y |
|[x][2 = <Zx12> , l|A]]2 = (p(ATA))i )

a=-(33)

Example 8.3.5. Let

Then
laii|+]an] =2+1=3,
lazi| + |axz| =2+3 =5.
Therefore
[|A[[1 =5.
Also,
lain| +laxn| =2+2=4,
|a12| + |a22| =14+3=4.
Consequently,

IA]|. = 4.

s (55)06)
“(3n)

8—A 4

det(ATA—AI) = ’ 4 102

’ = (A—10)(A—8)— 16

=\2 — 18\ + 64,
det(ATA—M) =0 —
A2 — 180 +64=0 =

9+v21
M = 221
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Therefore

9++v21

lAlls = (pa”4))* =/ =5

8.4. Continued Fractions

Let {a,};_, and {b,}>_, be two sequences of real or complex numbers.

Definition 8.4.1. A continued fraction is of the form

ai

bo+ Z 9)
bl + 172+—2“3
b3+' g
bn+
or in compact form
a ax das
bp+ ——— ... , 9
O b+ bot byt ©)
or
bo+K (“) : 9)
by
or
00 an
b() +Kn:1 (b) . (9)
n
Definition 8.4.2. The nth approximant of a continued fraction is defined as
A
C(n) = 50

bl+ h2+ by

— a

— b() + bl+ a) .
h2+"-+2—’;

The sequences A(n) and B(n) are called the nth partial numerator and the nth partial
denominator, respectively.
It is always supposed that ‘;gzg is in the reduced form, i.e., A(n) and B(n) are coprime,

in other words A(n) and B(n) have no common factors.

Definition 8.4.3. The continued fraction (9) is said to be convergent to a finite limit L if

lim C(n) =L.

n—-yoo

The continued fraction (9) is said to be divergent otherwise.
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Theorem 8.4.4. For the continued fraction (9) with nth approximant C(n) = ggzg we have

that A(n) and B(n) satisfy the difference equations

An)=b,A(n—1)+a,A(n—2), A(-1)=1, A(0) = by, (10)
B(n) =b,B(n—1)+a,B(n—2), B(—1) =0, B(0) =1, (11)
respectively.

Proof. To prove this result we will use mathematical induction on 7.

1. n=1. We have

_ bobitay
= 2o

ie.,
A(]) = bob] +ay,

B(1) =b;.
On the other hand, from (10) we get

A1) = b1A(0) + arA(-1)
=bob; +a;.

Also, using (11) we find
B(1) =b1B(0) +a;B(—1)

=b.
Therefore the result is valid for n = 1.
2. Now we suppose
A(m)=bu,A(m—1)+anA(m—2), A(—-1)=1, A(0) = by, (12)
B(m) =buB(m—1)+a,B(m—2), B(—1)=0, B(0) =1, (13)
for some m € N.

3. We will prove that
A(m+1)=by1A(m) +ap1A(m—1), A(-1)=1, A(0) = by, (12"

B(m+1) = by B(m) +amy B(m—1),  B(-1)=0, BO0)=1. (13

1) . . A . i
(m+1) 35 obtained from % by replacing b,, by b,, + Zm%:-

Firstly, we will note that g(m 1)
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Let
A(m+1)  A*(m)

B(m+1) B*(m)’

where
A*(m) = (bm+ gﬁ)A(m— 1)+ apA(m —2),

B*(m) = (bm+ ﬁ) B(m—1)+anB(m—2).

Now we consider A*(m). For it we have

A*(m) = 2 (bpbyi1A(m — 1)+ ap1A(m —1) 4 by 1anA(m —2))

bm+l
= 5o (b1 (bnA(m—1) +anA(m—2)) +am1A(m+1))
now we use (12)

= L (b1 A(m) + amy1A(m—1)),

bm+1

ie.,
1
A*(m) = P (bms1A(m) + amp1A(m—1)). (14)
m+1
For B*(m) we have

B*(m) = A— (bbb 1B(m—1) +apy 1 B(m—1) + apby 1 B(m—2))

bm+ 1

= L (byi1 (buB(m—1) +anB(m—2)) +an1B(m—1))

bm+1

now we use (13)

= 5o (bur1B(m) + a1 B(m—1)),

1.e.,
N 1
B*(m) = - (bps1B(m) +apr1B(m—1)). (15)
m+

From (14) and (15) we get

_ A(m)
B ﬁ(bmHA(’")""amHA(’"—l))

ﬁ(bmHB(mH“mﬂB(m*l))

_ bupiA(m)+am1A(m—1)
bm+lB(m)+am+lB(m_1) ’

whereupon we get (12') and (13').
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Let us consider the difference equation
x(n) —=bpx(n—1) —apx(n—2) =0, a # 0, neN,

whereupon, dividing this difference equation by x(n— 1), we get

x(n) B 4 x(n—2) _
x(n—1) 7" Tx(n—1) 0-
Let )
y(n) := Xn—1)
Then |
y(n)—bn—a,,y(n_l) =0
or .
any(n_ 1) =-b, —i—y(n),
)

Applying this formula repeatedly, we obtain

an an+1 an42

1=
yin=1) —by—1=byit _,

n+2+ ‘-

In this way we conclude that the converse of the preceding theorem is also true, i.e.,
every homogeneous second-order difference equation gives rise to an associated fraction.
Now we multiply (10) by B(n — 1) and we find

A()B(n—1)=b,A(n—1)B(n—1)+a,A(n—2)B(n—1), (16)
we multiply (11) by A(n — 1) and we get
B(n)A(n—1) =b,A(n—1)B(n—1)+a,B(n—2)A(n—1). (17)
We subtract (17) from (16) and we obtain
A()B(n—1)—Bm)A(n—1) =a, (A(n—2)B(n— 1) — B(n—2)A(n— 1)).

Let
u(n)=A(n)B(n—1)—B(n)A(n—1).

Then we get the difference equation
u(n) = —ayu(n—1), u(0) = —1, neN.

Consequently,
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from where dividing both sides by B(n)B(n— 1) we find

A(n) A(n-1) _ () ayaz...a
B(n)B(n—1)

A(n—1) ail A102...0p
M) = O s

Taking the antidifference A~! of both sides of the last expression, we get

or

A(n—1 — n aay...a,
o = (0 i)

A0 n—1 ajap...ax
_ Q‘f‘z (_1)k+13(12_21)3(1\k).

Consequently,

b k+1 a1a2 ag .
°+Z “ 1B

Definition 8.4.5. Two continued fractions K ( Z—”) and K < *> are said to be equivalent if

they have the same sequence of approximants. We will write
K(&)~k aj
b, b: )

Theorem 8.4.6. Let b, >0, n € NJ{0}. Then K (;7) is convergent if and only if the
infinite series Y, b, is divergent.

K <b1> N i B((r—ligz(r)'

1

Proof. We have that

Therefore K (é) converges if and only if the alternating series

i r+1
Yz r_f 0 (17)

r:I

converges.
Also, we have that

B(n) =B(n—2)+b,B(n—1), B(0) =1, B(1) =b,. (18)

We observe that
B(2) =B(0)+byB(1)

=1+b1b

> 0.
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We suppose that
B(k) >0

for some k € N.
We will prove that
B(k+1) > 0.

Really,
B(k+1) =B(k—1) + by 1B(k)
>0

because by >0, B(k—1) >0, B(k) > 0.
Consequently,
B(n) >0

foralln € N.
Hence and (18) we find

B(n)—B(n—2)>0 for  VneN,

or
B(n+1)>B(n—1) for  VneN,

whereupon
B(n)B(n+1) > B(n)B(n—1) for  VneN.
Thus
‘ (_1)n+l
B(n—1)B(n)

is monotonically decreasing.
Therefore the series (17') converges if and only if

lim B(n)B(n—1) = oo.

n—-po0

Let
v:=min{1,b;}.
Then

We suppose that

for some k € N. We will prove that
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Really,

Therefore

for every n € N.
Hence,

From here,

We suppose that

for some k € N.

B(k+1) = B(k— 1)+ by B(k)

> Y+brY

B(n—1)B(n) =B(n—1)(B(n—2)+byB(n—1))
=B(n—1)B(n—2)+b,B*(n—1)
>B(n—1)B(n—2)+b,y.

B(1)B(2) > B(1)B(0) + byy

> biy+boy

> b1y + by

= (b1 —I-bz)’yz.

B(k—1)B(k) > (b +by+ ...+ b)Y

We will prove that

Really,

B(k)B(k+1) > (b +by++- + b1 )Y

B(k)B(k+1) = B(k) (B(k—1) + bi1B(k))
= B(k)B(k— 1) + by1B(k)
> (b1 +bo+ -+ b)Y + b1V

= (bi+by+-+ b)Y

Consequently, for every n € N we have

If

B(n—1)B(n) > (b +bva+---+b,)Y.
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is convergent, then
lim B(n)B(n—1) =oo

n—-yo0

and K <i71n> converges.

On tho other hand, using the difference equation which B(n) satisfies, we have
B(n—1)+B(n)=B(n—1)+B(n—2)+b,B(n—1)
=B(n—2)+(1+b,)B(n—1)
<(1+by)B(n—2)+(14+b,)B(n—1)

=(1+b,)(B(n—2)+B(n—1)),

- B(n—1)+B(n) < (1+b,)(B(n—2)+B(n—1)).
Also: B(n—2)+B(n—1)=B(n—1)+B(n—3)+bp1B(n—2)
— B(n—3)+ (1 +b,_1)B(n—2)
< (I4bp-1)B(n—=3) + (1+bp—1)B(n—2)
= (14+b,_1)(B(n—3)+B(n—2)),
whereupon
B(n—1)+B(n) < (14+b,)(1+by_1)(B(n—3)+B(n—2))
and etc.,

B(n—1)+B(n) < (1+by)(1+by_1)...(1+b2)(B(0) + B(1))

= (14b,)1+bu_r)...(1+b)(1+by),

and using that
l+bi<é,  i=12,....n,

B(n—1)+B(n) <elreb2.. . e
_ hrtbatthy
Thus if
¥ b
n=1

converges to L, then
B(n—1)+B(n) <"
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Therefore,

< %eZL.
Consequently, if
nhll}le(n — I)B(n) 7& oo,
then the continued fraction diverges. O

8.5. Tools of Approximation

The main tools of approximating functions are the symbols ~ and O.
We start with the symbol O (big oh)

Definition 8.5.1. Let f(t) and g(t) be two functions defined on R or C. We say that
f)=0(g[), 1o,
if there exists a positive constant M such that

|F()] < Mg(2)]
forallt > 1.

Example 8.5.2. We will show that

n? " 1
() -olt). o
fort > 1.

For this aim we have to prove that there exists a positive constant M such that

n? 1
e AN
for every n > ny.
Let M = 1. Then ,
1
w S =
2 <t*+4nt —

t*—n**+n* >0
for every n > ng and for everyt > 1.

Proposition 8.5.3. The relation defined by O is not symmetric, i.e., if f = O(g), then it is
not necessarily true that g = O(f).
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Proof. We have that
¥ =0uY when  x — oo,

from here, it is evident,
4 2
X' # 0(x%) when  x — oo
O

Proposition 8.5.4. Let f = O(g) when x — oo, g = O(h) when x — co. Then f = O(h)
when x — oo,

Proof. Since f = O(g) when x — o, then there exists a positive constant M; such that
I <Mifgx)[  for  x>x.

Because g = O(h) when x — o, then there exists a positive constant M, such that
lg(x)| < M |h(x)] for X > Xp.

Therefore, for x > xp, we have

[f(x)] < Mg (x)]

< M (Ma|h(x)])

= MM, |h(x)|.
Consequently, f = O(h). O
Definition 8.5.5. If

i g =0

then we say that
fx)=o0(g(x)),  x—>eco.

Example 8.5.6. We will show that

1
sinh <> =o0(1) as X — oo,

X
Really,
on( L
tim, e ) g, (e5—et)
—1-1
—0.

Proposition 8.5.7. We have
o(f(x)) = f(x)o(1) as X — oo,
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Proof. Let
gx):=o(f(x)) as  x—e
Then
limx — oo@ 0,
f(x)
whereupon
8x)
lim £ =
x—oo ]
or @
gx
—~=o0(1 as X —> o0
7 W
Therefore
g(x) = f(x)o(1) as  x—>oo.
Using the definition of g we conclude that
o(f(x) = f(o(l)  as  x—ses.
O
Definition 8.5.8. If
lim @ =1,
x—e g(x)
then we say that f is asymptotic to g when x — oo. We will write
f~g as X —> oo,
Proposition 8.5.9. Let f ~ g as x — co. Then
LS -g)
e g(x)
Proof. Since f ~ g as x — oo, we have that
lim @ =1,
x—e g(x)
or _
lim, .f8-1=0 =
f(x) _
limy_ e (ﬁ—l) =0 =
)—8(x) _
lim, . xg(;;’ =0
O

O(f(x)) = f(x)0(1)  as  x—eo.



260 Svetlin Georgiev

Proof. Let
s =0(f(x) as x—ses.

Then there exists a positive constant M such that

g <Mif(x)]  as  x—eo
or

'?8 < My |1 as xX—>.
Consequently,

j}”g)):O(l) as X —> oo,
or

gx)=rf(x)0(1) as  x—>eo
or

O(f(x)) =f(x)O(1)  as  x—eo

MA
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