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Preface

This book is intended for readers who have had a course in iso-differential calculus and it
can be used for a senior undergraduate course.

Chapter 1 deals with exact iso-differential equations, while first-order iso-differential
equations are studied in Chapter 2 and Chapter 3. Chapter 4 discusses iso-integral inequal-
ities.

Many iso-differential equations cannot be solved as finite combinations of elementary
functions. Therefore, it is important to know whether a given iso-differential equation has
a solution and if it is unique. These aspects of the existence and uniqueness of the solutions
for first-order initial value problems are considered in Chapter 5. Iso-differential inequal-
ities are discussed in Chapter 6. Continuity and differentiability of solutions with respect
to initial conditions are examined in Chapter 7. Chapter 8 extends existence-uniqueness
results and continuous dependence on initial data for linear iso-differential systems. Basic
properties of solutions of linear iso-differential systems are given in Chapter 9. Chapter 10
deals with the fundamental matrix solutions. In Chapter 11 necessary and sufficient condi-
tions are provided so that a linear iso-differential system has only periodic solutions. The
asymptotic behaviour of the solutions of linear systems is investigated in Chapter 12. Chap-
ters 13 and 14 are devoted on some aspects of the stability of solutions of iso-differential
systems.

The last major topic covered in this book is that of boundary value problems involving
second-order iso-differential equations. After linear boundary value problems are intro-
duced in Chapter 15, Green’s function and its construction is discussed in Chapter 16.

I will be very grateful to anybody who wants to inform me about errors or just
misprints, or wants to express criticism or other comments, to my e-mails svetlinge-
orgiev1@gmail.com, sgg2000bg@yahoo.com.

Svetlin Georgiev
Paris, France
August 15, 2014





Chapter 1

Exact Equations

Here we suppose

T̂ : R−→ (0,∞), T̂ ∈ C 1(R).

We consider the equation

M̂∧(x̂, ŷ)×̂d̂x̂+ N̂∧(x̂, ŷ)×̂d̂ŷ∧∧ = 0, (1)

or

M̂∧(x̂, ŷ)+ N̂∧(x̂, ŷ)
(

ŷ∧∧
)~

= 0,

where M and N are continuous functions having continuous partial derivatives My and Nx

in the rectangle

S =
{
(x,y) ∈ R2 : |x− x0| ≤ a, |y− y0| ≤ b

}
, 0 < a, b < ∞.

The equation (1) we can rewrite in the following form

(
M(x,y)

(
1− x

T̂ ′(x)
T̂ (x)

)
− yN(x,y)

T̂ ′(x)
T̂ (x)

)
dx+N(x,y)dy = 0.

Definition 1.0.1. The equation (1) is said to be exact if there exists a function u(x,y) such
that

ux(x,y) = M(x,y)
(

1− x T̂ ′(x)
T̂ (x)

)
− yN(x,y) T̂ ′(x)

T̂ (x)
, uy(x,y) = N(x,y). (2)

The nomenclature comes from the fact that(
M(x,y)

(
1− x T̂ ′(x)

T̂ (x)

)
− yN(x,y) T̂ ′(x)

T̂ (x)

)
dx+N(x,y)dy = ux(x,y)dx+uy(x,y)dy

is exactly the differential du.
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Once the equation (1) is exact its implicit solution is

u(x,y) =C, (3)

where C is an arbitrary constant.

If (1) is exact, then from (2) we have

uxy =
∂

∂y

(
M(x,y)

(
1− x T̂ ′(x)

T̂ (x)

)
− yN(x,y) T̂ ′(x)

T̂ (x)

)
= My(x,y)

(
1− x T̂ ′(x)

T̂ (x)

)
−N(x,y) T̂ ′(x)

T̂ (x)
− yNy(x,y)

T̂ ′(x)
T̂∗(x) ,

uyx = Nx(x,y).

Since My and Nx are continuous, we must have

uxy(x,y) = uyx(x,y),

i.e., the equation (1) to be exact it is necessary to have

My(x,y)
(

1− x
T̂ ′(x)
T̂ (x)

)
−N(x,y)

T̂ ′(x)
T̂ (x)

− yNy(x,y)
T̂ ′(x)

T̂ ∗ (x)
= Nx(x,y). (4)

Conversely, if M and N satisfy (4) then the equation (1) is exact. To establish this we shall
exhibit a function u satisfying (2). We integrate the both sides of the following equality

ux(x,y) = M(x,y)
(

1− x
T̂ ′(x)
T̂ (x)

)
− yN(x,y)

T̂ ′(x)
T̂ (x)

with respect to x, to obtain

u(x,y) =
∫ x

x0

(
M(s,y)

(
1− s

T̂ ′(s)
T̂ (s)

)
− yN(s,y)

T̂ ′(s)
T̂ (s)

)
ds+g(y). (5)

Here g(y) is an arbitrary function of y and plays the role of the constant of integration.
We shall obtain g by using the equation

uy(x,y) = N(x,y).

Indeed, we have

∂

∂y

∫ x

x0

(
M(s,y)

(
1− s

T̂ ′(s)
T̂ (s)

)
− yN(s,y)

T̂ ′(s)
T̂ (s)

)
ds+g′(y) = N(x,y), (6)

and since

Nx(x,y) = ∂2

∂x∂y

∫ x
x0

(
M(s,y)

(
1− s T̂ ′(s)

T̂ (s)

)
− yN(s,y) T̂ ′(s)

T̂ (s)

)
ds

= Nx(x,y)−My(x,y)
(

1− x T̂ ′(x)
T̂ (x)

)
−N(x,y) T̂ ′(x)

T̂ (x)
− yNy(x,y)

T̂ ′(x)
T̂ (x)

= 0,
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the function

N(x,y)− ∂

∂y

∫ x

x0

(
M(s,y)

(
1− s

T̂ ′(s)
T̂ (s)

)
− yN(s,y)

T̂ ′(s)
T̂ (s)

)
ds

must depends on y alone.

Therefore g can be obtained from (6), and finally the function u, satisfying (2), is given
by (5).

We summarize this important result in the following theorem.

Theorem 1.0.2. Let the functions M(x,y) and N(x,y) together with their partial derivatives
My(x,y) and Nx(x,y) be continuous in the rectangle S. Then the DE (1) is exact if and only
if the condition (4) is satisfied.

Obviously, in this result S may be replaced by any region which does not include any
”hole”.

The above proof of this theorem is, in fact, constructive, i.e., we can explicitly find a
solution of (1). For this, we compute g(y) from (6),

g(y) =
∫ y

y0
N(x, t)dx−

∫ x
x0

(
M(s,y)

(
1− s T̂ ′(s)

T̂ (s)

)
− yN(s,y) T̂ ′(s)

T̂ (s)

)
ds

+
∫ x

x0

(
M(s,y0)

(
1− s T̂ ′(s)

T̂ (s)

)
− y0N(s,y0)

T̂ ′(s)
T̂ (s)

)
ds+g(y0).

Therefore, from (5), it follows that

u(x,y) =
∫ y

y0

N(x, t)dt +
∫ x

x0

(
M(s,y0)

(
1− s

T̂ ′(s)
T̂ (s)

)
− y0N(s,y0)

T̂ ′(s)
T̂ (s)

)
ds+g(y0),

and hence the solution of the exact equation (1) is given by∫ y

y0

N(x, t)dt +
∫ x

x0

(
M(s,y0)

(
1− s

T̂ ′(s)
T̂ (s)

)
− y0N(s,y0)

T̂ ′(s)
T̂ (s)

)
ds =C, (7)

where C is an arbitrary constant.
Now we integrate the both sides of

uy(x,y) = N(x,y)

with respect to y, to obtain

u(x,y) =
∫ y

y0

N(x,s)ds+ f (x). (8)

Here f (x) is an arbitrary function of x and plays the role of the constant of integration. We
will obtain the function f by using the equality

ux(x,y) = M(x,y).
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We have
∂

∂x

∫ y

y0

N(x,s)ds+ f ′(x) = M(x,y), (9)

and because

My(x,y)−
∂2

∂x∂y

∫ y

y0

N(x,s)ds = My(x,y)−Nx(x,y) = 0,

the function

M(x,y)− ∂

∂x

∫ y

y0

N(x,s)ds

must depend on x alone. Therefore, the function f can be obtained from the equality (9),
from where

f (x) =
∫ x

x0

M(s,y)ds−
∫ y

y0

N(x,s)ds+
∫ y

y0

N(x0,s)ds+ f (x0).

Now, using (8), we get

u(x,y) =
∫ x

x0

M(s,y)ds+
∫ y

y0

N(x0,s)ds+ f (x0),

whereupon a solution of the exact equation (1) is given by the following equality∫ x

x0

M(s,y)ds+
∫ y

y0

N(x0,s)ds =C, (10)

where C is an arbitrary constant.

In (7) and (10) the choice of x0 and y0 is at our disposal, except that these must be
chosen so that the integrals remain proper.

Example 1.0.3. Let

S =
{
(x,y) ∈ R2 :

∣∣∣x− 1
2

∣∣∣≤ 1
2
, |y−1| ≤ 1

}
,

T̂ (x) = 1
x+2 , M(x,y) = yex, N(x,y) = 2ex, (x,y) ∈ S. Then

T̂ ′(x)−− 1
(x+2)2 ,

M(x,y)
(

1− x T̂ ′(x)
T̂ (x)

)
− yN(x,y) T̂ ′(x)

T̂ (x)

= yex
(

1− x
− 1

(x+2)2
1

x+2

)
− y2ex

− 1
(x+2)2

1
x+2

= yex
(

1+ x
x+2

)
+2yex 1

x+2

= 2yex.
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The equation (1) we can rewrite in the form

2yexdx+2exdy = 0. (11)

Since
∂

∂y

(
2yex

)
=

∂

∂x

(
2ex
)
= 2ex,

then the equation (11) is an exact equation.

Let u be a solution to the equation (11). Then

ux(x,y) = 2yex, (12)

uy(x,y) = 2ex. (13)

We integrate the equality (12) with respect to the variable x and we get

u(x,y) = 2y
∫ x

0 esds+g(y)

= 2yex−2y+g(y),
(14)

from where
uy(x,y) = 2ex−2+g′(y).

From the last equality and from (13) we obtain

2ex−2+g′(y) = 2ex

or
g′(y) = 2.

Therefore

g(y) = 2
∫ y

1
ds+g(1) = 2y−2+g(1).

Now, using (14), we get
u(x,y) = 2yex−2+g(1).

Consequently, a solution to the equation (11) is

2yex =C,

where C is an arbitrary constant.

Remark 1.0.4. Let us consider the equation

M(x,y)dx+N(x,y)dy = 0, (15)

where M and N are the functions from the last example. Then

∂

∂y
M(x,y) = ex 6= 2ex =

∂

∂x
N(x,y).

Therefore the equation (15) is not an exact equation.
Consequently, there are cases such that the initial equation is not an exact equation and

the corresponding iso-lift is an exact equation.
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Example 1.0.5. Let

S =
{
(x,y) ∈ R2 : |x−1| ≤ 1, |y−2| ≤ 2

}
,

T̂ (x) = x2 +1, M(x,y) = y+2xey, N(x,y) = x
(

1+ xey
)

. Then

T̂ ′(x) = 2x,

M(x,y)
(

1− x T̂ ′(x)
T̂ (x)

)
− yN(x,y) T̂ ′(x)

T̂ (x)

=
(

y+2xey
)(

1− x 2x
x2+1

)
− yx

(
1+ xey

)
2x

x2+1

=
(

y+2xey
)

1−x2

1+x2 −2x2y 1+xey

1+x2 ,

the equation (1) we can rewrite in the form

((
y+2xey

)1− x2

1+ x2 −2x2y
1+ xey

1+ x2

)
dx+ x

(
1+ xey

)
dy = 0.

We have
∂

∂y

((
y+2xey

)
1−x2

1+x2 −2x2y 1+xey

1+x2

)
=
(

1+2xey
)

1−x2

1+x2 −2x2 1+xey

1+x2 − 2x3yey

1+x2

= 1−3x2+2xey−4x3ey−2x3yey

1+x2 ,

∂

∂x

(
x
(

1+ xey
))

=
(

1+ xey
)
+ xey = 1+2xey.

Consequently the condition (4) is not satisfied.
Therefore the considered equation is not an exact equation.

Remark 1.0.6. If we consider the equation

M(x,y)dx+N(x,y)dy = 0, (16)

where M and N are the functions from the last example, we have

∂

∂y
M(x,y) =

∂

∂x
N(x,y) = 1+2xey.

Therefore the equation (16) is an exact equation.
Consequently, there are cases such that the initial equation is an exact equation and the

corresponding iso-lift is not an exact equation.
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Exercise 1.0.7. Let

S =
{
(x,y) ∈ R2 : |x−1| ≤ 1, |y−2| ≤ 2

}
,

T̂ (x) = ex, M(x,y) = xy, N(x,y) = x− y, (x,y) ∈ S. Determine the equation (1) and check
if it is an exact equation. If it is an exact equation, find an its solution.

Solution. We have
T̂ ′(x) = ex,

M(x,y)
(

1− x T̂ ′(x)
T̂ (x)

)
− yN(x,y) T̂ ′(x)

T̂ (x)

= xy
(

1− x ex

ex

)
− y(x− y) ex

ex

= xy(1− x)− y(x− y)

= y2− x2y.

Then the equation (1) we can rewrite in the form

(y2− x2y)dx+(x− y)dy = 0.

Since
∂

∂y
(y2− x2y) = 2y− x2 6= 1 =

∂

∂x
(x− y),

then the equation (1) is not an exact equation.

Exercise 1.0.8. Let

S =
{
(x,y) ∈ R2 : |x| ≤ 2, |y−1| ≤ 3

}
,

T̂ (x) = ex, M(x,y) = x2 + y2, N(x,y) = x+ y, (x,y) ∈ S. Determine the equation (1) and
check if it is an exact equation. If it is an exact equation, find an its solution.

Answer.
(x2− x3− xy2− xy)dx+(x+ y)dy = 0.

It is not an exact equations.

Exercise 1.0.9. Let

S =
{
(x,y) ∈ R2 :

∣∣∣x− 1
2

∣∣∣≤ 1
3
, |y| ≤ 2

}
,

T̂ (x) = ex, M(x,y) = y+xy+y2

1−x , N(x,y) = x+ y, (x,y) ∈ S. Determine the equation (1) and
check if it is an exact equation. If it is an exact equation, find an its solution.
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Solution. We have
T̂ ′(x) = ex,

M(x,y)
(

1− x T̂ ′(x)
T̂ (x)

)
− yN(x,y) T̂ ′(x)

T̂ (x)

= y+xy+y2

1−x (1− x)− y(x+ y)

= y+ xy+ y2− xy− y2

= y.

Then the equation (1) we can rewrite in the following form

ydx+(x+ y)dy = 0.

Since
∂

∂y
(y) = 1

∂

∂x
(x+ y),

then it is an exact equation.
Let u be an its solution. Then

ux(x,y) = y, (17)

uy(x,y) = x+ y. (18)

We integrate the equality (18) with respect to the variable y and we get

u(x,y) =
∫ y

0 (x+ s)ds+ f (x)

= xy+ y2

2 + f (x),

from here
ux(x,y) = y+ f ′(x).

From the last equality and (17) we obtain

y+ f ′(x) = y

or
f ′(x) = 0.

Therefore f (x) =C0, where C0 is a constant, and

u(x,y) = xy+
y2

2
+C0.

Consequently, a solution is
2xy+ y2 =C,

where C is a constant.
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Exercise 1.0.10. Let

S =
{
(x,y) ∈ R2 : |x| ≤ 1

2
, |y| ≤ 1

2

}
,

T̂ (x) = ex, M(x,y) = y+xy−y2

1−x , N(x,y) = x− y, (x,y) ∈ S. Determine the equation (1) and
check if it is an exact equation. If it is an exact equation, find an its solution.

Answer.
ydx+(x− y)dy = 0.

It is an exact equation. A solution is

2xy− y2 =C,

where C is an arbitrary constant.
Now we consider the equation

M(x,y)+N(x,y)×̂
(

ŷ∧∧
)~

= 0 (19)

or
M(x,y)×̂d̂x̂+N(x,y)×̂d̂ŷ∧∧ = 0,

where M and N are continuous functions having continuous partial derivatives My and Nx

in the rectangle S, defined in the begin of this chapter.
The equation (19) we can rewrite in the form(

M(x,y)(T̂ (x)− xT̂ ′(x))− yT̂ ′(x)N(x,y)
)

dx+ T̂ (x)N(x,y)dy = 0.

Definition 1.0.11. The equation (19) is said to be exact if there exists a function u(x,y)
such that

ux(x,y) = M(x,y)(T̂ (x)− xT̂ ′(x))− yT̂ ′(x)N(x,y), (20)

uy(x,y) = T̂ (x)N(x,y). (21)

The nomenclature comes from the fact that(
M(x,y)(T̂ (x)− xT̂ ′(x))− yT̂ ′(x)N(x,y)

)
dx+ T̂ (x)N(x,y)dy = ux(x,y)dx+uy(x,y)dy

is exactly the differential du.

Theorem 1.0.12. Let the functions M(x,y) and N(x,y) together with their partial deriva-
tives My(x,y) and Nx(x,y) be continuous in the rectangle S. Then the differential equation
(19) is exact if and only if the condition

My(x,y)(T̂ (x)− xT̂ ′(x))−2N(x,y)T̂ ′(x) = yNy(x,y)T̂ ′(x)+ T̂ (x)Nx(x,y) (22)

is satisfied. In the case when the equation (19) is an exact equation, then a solution of (19)
is given by∫ x

x0

(
M(s,y)(T̂ (s)− sT̂ ′(s))− y0T̂ (s)M(s,y0)

)
ds+ T̂ (x)

∫ y

y0

N(x, t)dt =C

or ∫ x

x0

(
M(s,y)(T̂ (s)− sT̂ ′(s))− yT̂ ′(s)N(s,y)

)
ds+ T̂ (x0)

∫ y

y0

N(x0, t)dt =C,

where C is a constant.
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Proof. Let us suppose that (19) is an exact equation. Then there exists a function u satis-
fying (20) and (21). Then

uxy(x,y) = My(x,y)(T̂ (x)− xT̂ ′(x))− T̂ ′(x)N(x,y)− yT̂ ′(x)Ny(x,y),

uyx(x,y) = T̂ ′(x)N(x,y)+ T̂ (x)Nx(x,y).

Since My(x,y) and Nx(x,y) are continuous functions in the rectangle S, then we must have

uxy(x,y) = uyx(x,y),

i.e., for (19) to be exact it is necessary that

My(x,y)(T̂ (x)− xT̂ ′(x))− T̂ ′(x)N(x,y)− yT̂ ′(x)Ny(x,)

= T̂ ′(x)N(x,y)+ T̂ (x)Nx(x,y).

Conversely, if M and N satisfy (22), then we integrate the equality (20) with respect to the
variable x and we get

u(x,y) =
∫ x

x0

(
M(s,y)(T̂ (s)− sT̂ ′(s))− yT̂ ′(s)N(s,y)

)
ds+g(y), (23)

here the function g is an arbitrary function of y and plays the role of the constant of inte-
gration. Now we differentiate the last equality with respect to the variable y and using (21),
we obtain

uy(x,y) = ∂

∂y

∫ x
x0

(
M(s,y)(T̂ (s)− sT̂ ′(s))− yT̂ ′(s)N(s,y)

)
ds+g′(y)

= T̂ (x)N(x,y),

from where

g′(y) =− ∂

∂y

∫ x
x0

(
M(s,y)(T̂ (s)− sT̂ ′(s))− yT̂ ′(s)N(s,y)

)
ds

+T̂ (x)N(x,y),

which we integrate with respect to the variable y and we go to

g(y) =−
∫ x

x0

(
M(s,y)(T̂ (s)− sT̂ ′(s))− yT̂ (s)N(s,y)

)
ds

+
∫ x

x0

(
M(s,y0)(T̂ (s)− sT̂ ′(s))− y0T̂ (s)N(s,y0)

)
ds

+T̂ (x)
∫ y

y0
N(x, t)dt +g(y0).
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From the last equality and from (23), we obtain

u(x,y) =
∫ x

x0

(
M(s,y)(T̂ (s)− sT̂ ′(s))− yT̂ (s)N(s,y)

)
ds

−
∫ x

x0

(
M(s,y)(T̂ (s)− sT̂ ′(s))− yT̂ (s)N(s,y)

)
ds

+
∫ x

x0

(
M(s,y0)(T̂ (s)− sT̂ ′(s))− y0T̂ (s)M(s,y0)

)
ds

+g(y0)+ T̂ (x)
∫ y

y0
N(x, t)dt

=
∫ x

x0

(
M(s,y0)(T̂ (s)− sT̂ ′(s))− y0T̂ (s)M(s,y0)

)
ds

+T̂ (x)
∫ y

y0
N(x, t)dt +g(y0).

Therefore, a solution of the exact equation (19) is given by

∫ x

x0

(
M(s,y0)(T̂ (s)− sT̂ ′(s))− y0T̂ (s)M(s,y0)

)
ds+ T̂ (x)

∫ y

y0

N(x, t)dt =C,

where C is a constant.

Now we integrate the equality (21) with respect to the variable y and we obtain

u(x,y) = T̂ (x)
∫ y

y0

N(x, t)dt + f (x). (24)

Here the function f is an arbitrary function of x and plays the role of the constant of inte-
gration. We differentiate the last equality with respect to the variable x and using (20) we
have

ux(x,y) = T̂ ′(x)
∫ y

y0
N(x, t)dt + T̂ (x) ∂

∂x

∫ y
y0

N(x, t)dt + f ′(x)

= M(x,y)(T̂ (x)− xT̂ ′(x))− yT̂ ′(x)N(x,y)

or

f ′(x) = M(x,y)(T̂ (x)− xT̂ ′(x))− yT̂ ′(x)N(x,y)

−T̂ ′(x)
∫ y

y0
N(x, t)dt− T̂ (x) ∂

∂x

∫ y
y0

N(x, t)dt,
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which we integrate with respect to the variable x and we obtain

f (x) =
∫ x

x0

(
M(s,y)(T̂ (s)− sT̂ ′(s))− yT̂ ′(s)N(s,y)

)
ds

−
∫ x

x0
T̂ (s) ∂

∂s

∫ y
y0

N(s, t)dtds+ f (x0)−
∫ x

x0
T̂ ′(s)

∫ y
y0

N(s, t)dtds

=
∫ x

x0

(
M(s,y)(T̂ (s)− sT̂ ′(s))− yT̂ ′(s)N(s,y)

)
ds−

∫ x
x0

T̂ ′(s)
∫ y

y0
N(s, t)dtds

−T̂ (x)
∫ y

y0
N(x, t)dt + T̂ (x0)

∫ y
y0

N(x0, t)dt +
∫ x

x0
T̂ ′(s)

∫ y
y0

N(s, t)dtds+ f (x0)

=
∫ x

x0

(
M(s,y)(T̂ (s)− sT̂ ′(s))− yT̂ ′(s)N(s,y)

)
ds

−T̂ (x)
∫ y

y0
N(x, t)dt + T̂ (x0)

∫ y
y0

N(x0, t)dt + f (x0).

From here and from (24), we get

u(x,y) =
∫ x

x0

(
M(s,y)(T̂ (s)− sT̂ ′(s))− yT̂ ′(s)N(s,y)

)
ds

+T̂ (x0)
∫ y

y0
N(x0, t)dt + f (x0).

Consequently, a solution of the exact equation (19) is given by∫ x

x0

(
M(s,y)(T̂ (s)− sT̂ ′(s))− yT̂ ′(s)N(s,y)

)
ds+ T̂ (x0)

∫ y

y0

N(x0, t)dt =C,

where C is a constant.

Remark 1.0.13. 1. Obviously, in this result S may be replaced by any region which does
not include any ”hole”.

2. The choice of x0 and y0 is at our disposal, except that these must be chosen so that the
integrals remain proper.

3. The function

∂

∂y

∫ x

x0

(
M(s,y)(T̂ (s)− sT̂ ′(s))− yT̂ ′(s)N(s,y)

)
ds− T̂ (x)N(x,y)

must depend on y alone.

4. The function

M(x,y)(T̂ (x)− xT̂ ′(x))− yT̂ ′(x)N(x,y)− T̂ ′(x)
∫ y

y0
N(x, t)dt− T̂ (x) ∂

∂x

∫ y
y0

N(x, t)dt

must depend on x alone.
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Example 1.0.14. Let

S = {(x,y) ∈ R2 : |x−1| ≤ 1, |y| ≤ 1},

T̂ (x) = x2 +1, M(x,y) = x− y, N(x,y) = x+ y, (x,y) ∈ S. Then

T̂ ′(x) = 2x,

M(x,y)(T̂ (x)− xT̂ ′(x))− yT̂ ′(x)N(x,y) = (x− y)(x2 +1−2x2)−2xy(x+ y)

= (1− x2)(x− y)−2xy(x+ y)

= x− x3− y+ x2y−2xy2−2x2y

=−x3− x2y−2xy2 + x− y,

T̂ (x)N(x,y) = (x2 +1)(x+ y)

= x3 + x2y+ x+ y.

Therefore, the equation (19) takes the form

(−x3− x2y−2xy2 + x− y)dx+(x3 + x2y+ x+ y)dy = 0.

Since
∂

∂y(−x3− x2y−2xy2 + x− y) =−x2−4xy−1

6= ∂

∂x(x
3 + x2y+ x+ y) = 3x2 +2xy+1,

the equation (19) is not an exact equation.

Example 1.0.15. Let

S = {(x,y) ∈ R2 : |x−4| ≤ 1, |y| ≤ 0},

T̂ (x) = 1+ x2, M(x,y) = 5x2y+3xy2+y
1−x2 , N(x,y) = x+ y, (x,y) ∈ S. Then

T̂ ′(x) = 2x,

M(x,y)(T̂ (x)− xT̂ ′(x))− yT̂ ′(x)N(x,y) = 5x2y+3xy2+y
1−x2 (1− x2)− y(x+ y)2x

= 5x2y+3xy2 + y−2x2y−2xy2

= 3x2y+ xy2 + y,

T̂ (x)N(x,y) = (x2 +1)(x+ y)

= x3 + x2y+ x+ y.
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Then the equation (19) takes the form

(3x2y+ xy2 + y)dx+(x3 + x2y+ x+ y)dy = 0.

Since
∂

∂y
(3x2y+ xy2 + y) =

∂

∂x
(x3 + x2y+ x+ y) = 3x2 +2xy+1,

then the equation (19) is an exact equation.
Therefore there exists a function u such that

ux(x,y) = 3x2y+ xy2 + y, (25)

uy(x,y) = x3 + x2y+ x+ y. (26)

We integrate the equality (25) with respect to the variable x and we obtain

u(x,y) =
∫ x

0 (3s2y+ sy2 + y)ds+g(y)

= x3y+ x2y2

2 + xy+g(y),

here the function g is an arbitrary function of y and plays the role of the constant of inte-
gration. From here, using (26), we get

uy(x,y) = x3 + x2y+ x+g′(y) = x3 + x2y+ x+ y

or
g′(y) = y,

whereupon

g(y) =
y2

2
+C0,

where C0 is a constant. Then

u(x,y) = x3y+
x2y2

2
+ xy+

y2

2
+C0

and
2x3y+ x2y2 +2xy+ y2 =C

is a solution to the equation (19). Here C is a constant.

Exercise 1.0.16. Let

S = {(x,y) ∈ R2 : |x| ≤ 1, |y| ≤ 1},

T̂ (x) = ex, M(x,y) = x2− y, N(x,y) = xy. Determine the equation (19) and check if it is an
exact equation. If it is an exact equation, find an its solution.

Answer.
ex(−x3− xy2 + x2− y+ xy)dx+ xyexdy = 0.

It is not an exact equation.
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Exercise 1.0.17. Let

S = {(x,y) ∈ R2 : |x−5| ≤ 1, |y| ≤ 1},

T̂ (x) = ex, M(x,y) =
3
2 y2+2xy+y

1−x , N(x,y) = x+ y, (x,y) ∈ S. Determine the equation (19)
and check if it is an exact equation. If it is an exact equation, find an its solution.

Answer. (1
2

y2 + xy+ y
)

exdx+ ex(x+ y)dy = 0.

It is an exact solution. An its solution is given by

2exxy+ exy2 =C,

where C is a constant.
Now we consider the equation

M(x,y∧)+N(x,y∧)×̂
(

y∧
)~

= 0 (27)

or
M(x,y∧)×̂d̂x̂+N(x,y∧)×̂d̂y∧ = 0,

where M and N are continuous functions having continuous partial derivatives My∧ and Nx

in the rectangle S, defined in the begin of this chapter.
The equation (27) we can rewrite in the form

M(x,y∧)(T̂ (x)− xT̂ ′(x))dx+N(x,y∧)T̂ 2(x)dy∧ = 0.

For convenience, below we will use the notation

M(x,y)(T̂ (x)− xT̂ ′(x))dx+N(x,y)T̂ 2(x)dy = 0.

Definition 1.0.18. The equation (27) is said to be exact if there exists a function u(x,y)
such that

ux(x,y) = M(x,y)(T̂ (x)− xT̂ ′(x)), uy(x,y) = N(x,y)T̂ 2(x).

The nomenclature comes from the fact that

M(x,y)(T̂ x)− xT̂ ′(x))dx+N(x,y)T̂ 2x)dy = ux(x,y)dx+uy(x,y)dy

is exactly the differential du.

Once the iso-differential equation (27) is exact its implicit solution is

u(x,y) =C,

where C is a constant.
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Theorem 1.0.19. Let the functions M(x,y) and N(x,y) together with their partial deriva-
tives My(x,y) and Nx(x,y) be continuous in the region S. Then the iso-differential equation
(27) is exact if and only if the condition

My(x,y)(T̂ (x)− xT̂ ′(x)) = Nx(x,y)T̂ 2(x)+2N(x,y)T̂ (x)T̂ ′(x) (28)

is satisfied. A solution to the exact equation (27) is given by

T̂ 2(x)
∫ y

y0

N(x, t)dt +
∫ x

x0

M(s,y0)(T̂ (s)− sT̂ ′(s))ds =C,

or

T̂ 2(x0)
∫ y

y0

N(x0, t)dt +
∫ x

x0

M(s,y)(T̂ (s)− sT̂ ′(s))ds =C,

where C is a constant.

Proof. Let us suppose that the equation (27) is an exact equation. Then there exists a
function u(x,y) such that

ux(x,y) = M(x,y)(T̂ (x)− xT̂ ′(x)), (29)

uy(x,y) = N(x,y)T̂ 2(x). (30)

Then we have
uxy(x,y) = My(x,y)(T̂ (x)− xT̂ ′(x))

and
uyx(x,y) = Nx(x,y)T̂ 2(x)+2N(x,y)T̂ (x)T̂ ′(x).

Since My(x,y) and Nx(x,y) are continuous functions in the region S we must have

uxy(x,y) = uyx(x,y).

Consequently the condition (28) is satisfied.
Conversely, if M and N satisfy the condition (28), then we integrate the equality (29)

with respect to the variable x and we get

u(x,y) =
∫ x

x0

M(s,y)(T̂ (s)− sT̂ ′(s))ds+g(y). (31)

Here the function g is an arbitrary function of y and plays the role of the constant of inte-
gration. We differentiate the last equality with respect to the variable y and using (30), we
obtain

uy(x,y) = ∂

∂y

∫ x
x0

M(s,y)(T̂ (s)− sT̂ ′(s))ds+g′(y) = N(x,y)T̂ 2(x),

whereupon

g′(y) = N(x,y)T̂ 2(x)− ∂

∂y

∫ x

x0

M(s,y)(T̂ (s)− sT̂ ′(s))ds. (32)
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We observe that the function on the right hand of the last equality must depend on y alone.
We integrate the equality (32) with respect to the variable y and we get

g(y) =
∫ y

y0
N(x, t)T̂ 2(x)dt−

∫ x
x0

M(s,y)(T̂ (s)− sT̂ ′(s))ds

+
∫ x

x0
M(s,y0)(T̂ (s)− sT̂ ′(s))ds+g(y0),

from the last equality and from (31) we have

u(x,y) =
∫ x

x0
M(s,y)(T̂ s)− sT̂ ′(s))ds+

∫ y
y0

N(x, t)T̂ 2(x)dt

−
∫ x

x0
M(s,y)(T̂ (s)− sT̂ ′(s))ds+

∫ x
x0

M(s,y0)(T̂ (s)− sT̂ ′(s))ds+g(y0)

= T̂ 2(x)
∫ y

y0
N(x, t)dt +

∫ x
x0

M(s,y0)(T̂ (s)− sT̂ ′(s))ds+g(y0).

Therefore. a solution of the exact equation (27) is given by

T̂ 2(x)
∫ y

y0

N(x, t)dt +
∫ x

x0

M(s,y0)(T̂ (s)− sT̂ ′(s))ds =C

for some constant C.

Now we integrate the equality (30) with respect to the variable y and we obtain

u(x,y) = T̂ 2(x)
∫ y

y0

N(x, t)dt + f (x), (33)

where the function f is an arbitrary function of y and plays the role of the constant of
integration. We differentiate the last equality with respect to the variable x and using (29),
we get

ux(x,y) = 2T̂ (x)T̂ ′(x)
∫ y

y0
N(x, t)dt + T̂ 2(x) ∂

∂x

∫ y
y0

N(x, t)dt + f ′(x)

= M(x,y)(T̂ (x)− xT̂ ′(x)),

from where

f ′(x) =−2T̂ (x)T̂ ′(x)
∫ y

y0
N(x, t)dt

−T̂ 2(x) ∂

∂x

∫ y
y0

N(x, t)dt +M(x,y)(T̂ (x)− xT̂ ′(x)).
(34)

From the last equality it follows that its right hand must depend on x alone. Now we
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integrate the equality (34) with respect to the variable x and we go to

f (x) =−2
∫ x

x0
T̂ (s)T̂ ′(s)

∫ y
y0

N(s, t)dtds−
∫ x

x0
T̂ 2(s) ∂

∂s

∫ y
y0

N(s, t)dtds

+
∫ x

x0
M(s,y)T̂ (s)− sT̂ ′(s))ds+ f (x0)

=−2
∫ x

x0
T̂ (s)T̂ ′(s)

∫ y
y0

N(s, t)dtds− T̂ 2(x)
∫ y

y0
N(x, t)dt

+T̂ 2(x0)
∫ y

y0
N(x0, t)dt +2

∫ x
x0

T̂ (s)T̂ ′(s)
∫ y

y0
N(s, t)dtds

+
∫ x

x0
M(s,y)(T̂ s)− sT̂ ′(s))ds+ f (x0)

=−T̂ 2(x)
∫ y

y0
N(x, t)dt + T̂ 2(x0)

∫ y
y0

N(x0, t)dt

+
∫ x

x0
M(s,y)(T̂ (s)− sT̂ ′(s))ds+ f (x0).

From the last equality and (33) we have

u(x,y) = T̂ 2(x)
∫ y

y0
N(x, t)dt− T̂ 2(x)

∫ y
y0

N(x, t)dt + T̂ 2(x0)
∫ y

y0
N(x0, t)dt

+
∫ x

x0
M(s,y)(T̂ (s)− sT̂ ′(s))ds+ f (x0)

= T̂ 2(x0)
∫ y

y0
N(x0, t)dt +

∫ x
x0

M(s,y)(T̂ (s)− sT̂ ′(s))ds+ f (x0).

Therefore, a solution of the exact equation (27) is given by

T̂ 2(x0)
∫ y

y0

N(x0, t)dt +
∫ x

x0

M(s,y)(T̂ (s)− sT̂ ′(s))ds =C

for some constant C.
We note that in this result S can be replaced by any region which does not include any

”hole”. Also, the choice of x0 and y0 is at our disposal, except that these must be chosen so
that the integrals remain proper.

Example 1.0.20. Let

S = {(x,y) ∈ R2 : |x| ≤ 1, |y| ≤ 1},

T̂ (x) = x2 +1, M(x,y) = x− y, N(x,y) = x+ y, (x,y) ∈ S. Then

T̂ ′(x) = 2x+1,

M(x,y)(T̂ (x)− xT̂ ′(x)) = (x− y)(x2 +1−2x2)

= (x− y)(1− x2)

=−x3 + x2y+ x− y,

N(x,y)T̂ (x) = (x+ y)(x2 +1)

= x3 + x2y+ x+ y.
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The equation (27) takes the form

(−x3 + x2y+ x+ y)dx+(x3 + x2y+ x+ y)dy = 0.

Since
∂

∂y(−x3 + x2y+ x+ y) = x2−1

6= ∂

∂x(x
3 + x2y+ x+ y) = 3x2 +2xy+1,

then it is not an exact equation.

Exercise 1.0.21. Let

S = {(x,y) ∈ R2 : |x−1| ≤ 3, |y| ≤ 4},

T̂ (x) = ex, M(x,y) = xy, N(x,y) = x+ y, (x,y) ∈ S. Determine the equation (27) and check
if it is an exact equation. If it is an exact equation, find an its solution.

Answer.
(xy− x2y)exdx+ e2x(x+ y)dy = 0.

It is not an exact equation.

Example 1.0.22. Let

S = {(x,y) ∈ R2 : |x−5| ≤ 1, |y| ≤ 2},

T̂ (x) = x2 +1, M(x,y) = 5x4y+2x3y2+2xy2+6x2y+y
1−x2 , N(x,y) = x+ y, (x,y) ∈ S. Then

T̂ ′(x) = 2x,

M(x,y)(T̂ (x)− xT̂ ′(x)) = 5x4y+2x3y2+2xy2+6x2y+y
1−x2 (1− x2)

= 5x4y+2x3y2 +2xy2 +6x2y+ y,

N(x,y)T̂ (x)2 = (x+ y)(x2 +1)2

= (x+ y)(x4 +2x2 +1)

= x5 + x4y+2x3 +2x2y+ x+ y,

then the equation (27) takes the form

(5x4y+2x3y2 +2xy2 +6x2y+ y)dx+(x5 + x4y+2x3 +2x2y+ x+ y)dy = 0.

Since
∂

∂y(5x4y+2x3y2 +2xy2 +6x2y+ y) = 5x4 +4x3y+4xy+6x2 +1

= ∂

∂x(x
5 + x4y+2x3 +2x2y+ x+ y),
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then the equation (27) is an exact equation. Therefore, there exists a function u(x,y) such
that

ux(x,y) = 5x4y+2x3y2 +2xy2 +6x2y+ y, (35)

uy(x,y) = x5 + x4y+2x3 +2x2y+ x+ y. (36)

We integrate the equality (35) with respect to the variable x and we get

u(x,y) =
∫ x

0 (5s4y+2s3y2 +2sy2 +6s2y+ y)ds+g(y)

= x5y+ x4

2 y2 + x2y2 +2x3y+ xy+g(y),

where the function g is an arbitrary function of y and plays the role of the constant of
integration.

We differentiate the last equality with respect to the variable y and using (36), we obtain

x5 + x4y+2x2y+2x3 + x+g′(y) = x5 + x4y+2x3 +2x2y+ x+ y

or
g′(y) = y,

from where

g(y) =
y2

2
+C0,

where C0 is a constant.
From here,

u(x,y) = x5y+
x4

2
y2 + x2y2 +2x3y+ xy+

y2

2
+C0,

and a solution is given by

2x5y+ x4y2 +2x2y2 +4x3y+2xy+ y2 =C,

where C is a constant.

Exercise 1.0.23. Let

S = {(x,y) ∈ R2 : |x−4| ≤ 1, |y| ≤ 2},

T̂ (x) = ex, M(x,y) = ex y+2xy−y2

1−x , N(x,y) = x− y, (x,y) ∈ S. Determine the equation (27)
and check if it is an exact equation. If it is an exact equation, find an its solution.

Answer.
e2x(y+2xy− y2)dx+ e2x(x− y)dy = 0.

It is an exact equation. A solution is given by

e2x(2xy− y2) =C

for some constant C.
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Now we consider the equation

M̂∧(x̂, ˆ̂y)+ N̂∧(x̂, ˆ̂y)×̂
(

y∨
)~

= 0 (37)

or
M̂∧(x̂, ˆ̂y)×̂d̂x̂+ N̂∧(x̂, ˆ̂y)×̂d̂y∨ = 0,

where M and N are continuous functions having continuous partial derivatives My∨ and Nx

in the region S, defined in the begin of this chapter.
The equation (37) we can rewrite in the form

M(x,y∨)
(

1− x
T̂ ′(x)
T̂ (x)

)
dx+N(x,y∨)T̂ (x)dy∨ = 0.

For convenience, below we will use the notation

M(x,y)
(

1− x
T̂ ′(x)
T̂ (x)

)
dx+N(x,y)T̂ (x)dy = 0.

Definition 1.0.24. The equation (37) is said to be exact if there exists a function u(x,y)
such that

ux(x,y) = M(x,y)
(

1− x T̂ ′(x)
T̂ (x)

)
, uy(x,y) = N(x,y)T̂ (x).

The nomenclature comes from the fact that

M(x,y)
(

1− x
T̂ ′(x)
T̂ (x)

)
dx+M(x,y)T̂ (x)dy = ux(x,y)dx+uy(x,y)dy

is exactly the differential du.

Once the iso-differential equation is an exact equation its implicit solution is

u(x,y) =C,

where C is a constant.

Theorem 1.0.25. Let the functions M(x,y) and N(x,y) together with their partial deriva-
tives My(x,y) and Nx(x,y) be continuous in the rectangle S. Then the iso-differential equa-
tion (37) is exact if and only if the condition

My(x,y)
(

1− x
T̂ ′(x)
T̂ (x)

)
= Nx(x,y)T̂ (x)+N(x,y)T̂ ′(x) (38)

is satisfied. A solution of the exact equation (37) is given by∫ x

x0

M(s,y0)
(

1− s
T̂ ′(s)
T̂ (s)

)
ds+ T̂ (x)

∫ y

y0

N(x,s)ds+ T̂ ′(x)
∫ y

y0

Nx(x,s)ds =C,

or

T̂ (x0)
∫ y

y0

M(x0, t)dt +
∫ x

x0

M(s, t)
(

1− s
T̂ ′(s)
T̂ (s)

)
ds =C,

where C is a constant.
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Proof. Let us suppose that the equation (37) is an exact equation. Then there exists a
function u(x,y) such that

ux(x,y) = M(x,y)
(

1− x
T̂ ′(x)
T̂ (x)

)
, (39)

uy(x,y) = N(x,y)T̂ (x). (40)

Then we have

uxy(x,y) = My(x,y)
(

1− x
T̂ ′(x)
T̂ (x)

)
and

uyx(x,y) = Nx(x,y)T̂ (x)+N(x,y)T̂ ′(x).

Since My(x,y) and Nx(x,y) are continuous functions in S, then we must have

uxy(x,y) = uyx(x,y)

or the condition (38) is satisfied.
Conversely, if M and N satisfy (38), then we integrate the equality (39) with respect to

the variable x and we get

u(x,y) =
∫ x

x0

M(s,y)
(

1− s
T̂ ′(s)
T̂ (s)

)
ds+g(y), (41)

where the function g is an arbitrary function of y and plays the role of the constant of
integration. We differentiate the last equality with respect to the variable y and using (40),
we get

∂

∂y

∫ x

x0

M(s,y)
(

1− s
T̂ ′(s)
T̂ (s)

)
ds+g′(y) = Nx(x,y)T̂ (x)+N(x,y)T̂ ′(x)

or

g′(y) = Nx(x,y)T̂ (x)+N(x,y)T̂ ′(x)− ∂

∂y

∫ x

x0

M(s,y)
(

1− s
T̂ ′(s)
T̂ (s)

)
ds.

From the last equality it follows that its right hand must depend on y alone and after we
integrate the last equality with respect to the variable y we obtain

g(y) = T̂ (x)
∫ y

y0
Nx(x,s)ds+ T̂ ′(x)

∫ y
y0

N(x,s)ds−
∫ x

x0
M(s,y)

(
1− s T̂ ′(s)

T̂ (s)

)
ds

+
∫ x

x0
M(s,y0)

(
1− s T̂ ′(s)

T̂ (s)

)
ds+g(y0).

From here and (41), we have

u(x,y) =
∫ x

x0
M(s,y)

(
1− s T̂ ′(s)

T̂ (s)

)
ds+ T̂ (x)

∫ y
y0

Nx(x,s)ds

+T̂ ′(x)
∫ y

y0
N(x,s)ds−

∫ x
x0

M(s,y)
(

1− s T̂ ′(s)
T̂ (s)

)
ds

+
∫ x

x0
M(s,y0)

(
1− s T̂ ′(s)

T̂ (s)

)
ds+g(y0)

=
∫ x

x0
M(s,y0)

(
1− s T̂ ′(s)

T̂ (s)

)
ds+ T̂ (x)

∫ y
y0

Nx(x,s)ds+ T̂ ′(x)
∫ y

y0
N(x,s)ds+g(y0).
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Consequently, a solution of the exact equation (37) is given by∫ x

x0

M(s,y0)
(

1− s
T̂ ′(s)
T̂ (s)

)
ds+ T̂ (x)

∫ y

y0

Nx(x,s)ds+ T̂ ′(x)
∫ y

y0

N(x,s)ds =C,

where C is a constant.
Now we integrate the equality (40) with respect to the variable y and we obtain

u(x,y) = T̂ (x)
∫ y

y0

N(x, t)dt + f (x), (42)

where f is an arbitrary function of x and plays the role of the constant of integration. We
differentiate the last equality with respect to the variable x and using (39), we get

ux(x,y) = T̂ ′(x)
∫ y

y0
N(x, t)dt + T̂ (x) ∂

∂x

∫ y
y0

N(x, t)dt + f ′(x)

= M(x,y)
(

1− x T̂ ′(x)
T̂ (x)

)
or

f ′(x) =−T̂ ′(x)
∫ y

y0

N(x, t)dt− T̂ (x)
∂

∂x

∫ y

y0

N(x, t)dt +M(x,y)
(

1− x
T̂ ′(x)
T̂ (x)

)
.

We observe that the right hand of the last equality must depend on x alone and we integrate
it with respect to the variable x, we go to

f (x) =−
∫ x

x0
T̂ ′(s)

∫ y
y0

N(s, t)dtds−
∫ x

x0
T̂ (x) ∂

∂s

∫ y
y0

N(s, t)dtds

+
∫ x

x0
M(s,y)

(
1− s T̂ ′(s)

T̂ (s)

)
ds+ f (x0)

=−T̂ (x)
∫ y

y0
N9x, t)dt + T̂ (x0)

∫ y
y0

N(x0, t)dt

−
∫ x

x0
T̂ (s) ∂

∂s

∫ y
y0

N(s, t)dtds+
∫ x

x0
T̂ (s) ∂

∂s

∫ y
y0

N9s, t)dtds

+
∫ x

x0
M(s,y)

(
1− s T̂ ′(s)

T̂ (s)

)
ds+ f (x0)

=−T̂ (x)
∫ y

y0
N(x, t)dt + T̂ (x0)

∫ y
y0

N(x0, t)dt +
∫ x

x0
M(s,y)

(
1− s T̂ ′(s)

T̂ (s)

)
ds.

From here and (42), it follows that

u(x,y) = T̂ (x)
∫ y

y0
N(x, t)dt− T̂ (x)

∫ y
y0

N(x, t)dt + T̂ (x0)
∫ y

y0
N(x0, t)dt

−
∫ x

x0
M(s,y)

(
1− s T̂ ′(s)

T̂ (s)

)
ds+ f (x0)

= T̂ (x0)
∫ y

y0
N(x0, t)dt +

∫ x
x0

M(s,y)
(

1− s T̂ ′(s)
T̂ (s)

)
ds+ f x0).

Consequently, a solution of the exact equation (37) is given by

T̂ (x0)
∫ y

y0

N(x0, t)dt +
∫ x

x0

M(s,y)
(

1− s
T̂ ′(s)
T̂ (s)

)
ds =C,
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where C is a constant.
We will note that the rectangle S can be replaced by any region which does not include

any ”hole”. Also, the choice of x0 and y0 is at our disposal, except that these must be chosen
so that the integrals remain proper.

Example 1.0.26. Let

S = {(x,y) ∈ R2 : |x−1| ≤ 1, |y| ≤ 1},

T̂ (x) = ex, M(x,y) = x+ y, N(x,y) = x− y, (x,y) ∈ S. Then

M(x,y)
(

1− x T̂ ′(x)
T̂ (x)

)
= (x+ y)

(
1− x ex

ex

)
= (x+ y)(1− x)

=−x2− xy+ x+ y,

N(x,y)T̂ (x) = (x− y)ex.

The equation (37) takes the form

(−x2− xy+ x+ y)dx+(x− y)eydy = 0.

Since
∂

∂y(−x2− xy+ x+ y) =−x+ y

6= ∂

∂x

(
(x− y)ey

)
= ey,

then it is not an exact equation.

Exercise 1.0.27. Let

S = {(x,y) ∈ R2 : |x| ≤ 1, |y| ≤ 1},

T̂ (x) = x2 +1, M(x,y) = x2− y, N(x,y) = xy, (x,y) ∈ S. Determine the equation (37) and
check if it is an exact equation.

Answer.
−x4 + x2y+ x2− y

1+ x2 dx+(x3y+ xy)dy = 0.

It is not an exact equation.

Example 1.0.28. Let

S = {(x,y) ∈ R2 : |x−5| ≤ 1, |y| ≤ 1},
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T̂ (x) = ex, M(x,y) = ex(y+xy)
1−x , N(x,y) = x, (x,y) ∈ S. Then

M(x,y)
(

1− x T̂ ′(x)
T̂ (x)

)
= ex(y+xy)

1−x (1− x)

= ex(y+ xy),

N(x,y)T̂ (x) = xex.

The equation (37) takes the form

ex(y+ xy)dx+ xexdy = 0.

Since
∂

∂y

(
ex(y+ xy)

)
= ex(x+1) =

∂

∂x

(
xex
)
,

then it is an exact equation. Then there exists a function u(x,y) such that

ux(x,y) = ex(y+ xy), (43)

uy(x,y) = xex. (44)

We integrate the equality (44) with respect to the variable y and we get

u(x,y) = xex
∫ y

0
dt + f (x) = xyex + f (x), (45)

where f is an arbitrary function of x and plays the role of the constant of integration. Now
we differentiate the last equality with respect to the variable x and using (43), we have

(x+1)yex + f ′(x) = ex(y+ xy)

or
f ′(x) = 0,

whereupon f (x) =C0, where C0 is a constant. From here and (45) we obtain that

u(x,y) = xyex +C0.

Consequently, a solution is given by

xyex =C

for some constant C.

Exercise 1.0.29. Let

S = {(x,y) ∈ R2 : |x−6| ≤ 2, |y| ≤ 2},

T̂ (x) = ex, M(x,y) = ex y+xy+ y2
2

1−x , N(x,y) = x+ y, (x,y) ∈ S. Determine the equation (37)
and check if it is an exact equation. If it is an exact equation, find an its solution.
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Answer.

ex
(

y+ xy+
y2

2

)
dx+(x+ y)exdy = 0.

It is an exact equation. A solution is given by

(2xy+ y2)ex =C

for some constant C.

Definition 1.0.30. For the equation (1) a non-zero function µ(x,y) is called an integrating
factor if the equivalent iso-differential equation

µ(x,y)
(

M(x,y)
(

1− x
T̂ ′(x)
T̂ (x)

)
− yN(x,y)

T̂ ′(x)
T̂ (x)

)
dx+µ(x,y)N(x,y)dy = 0 (46)

is an exact equation.

If u(x,y) =C, C is a constant, is a solution of the equation (1), then y′ computed from
(1) and the equality

ux(x,y)+ux(x,y)y′ = 0 (46′)

must be the same, i.e.,

y′ =−ux(x,y)
uy(x,y)

=−
M(x,y)

(
1− x T̂ ′(x)

T̂ (x)

)
− yN(x,y) T̂ ′(x)

T̂ (x)

N(x,y)

or
ux(x,y)

M(x,y)
(

1− x T̂ ′(x)
T̂ (x)

)
− yN(x,y) T̂ ′(x)

T̂ (x)

=
uy(x,y)
N(x,y)

= µ(x,y), (47)

where µ is some function of x and y. Thus we have

µ(x,y)
((

M(x,y)
(

1− x T̂ ′(x)
T̂ (x)

)
− yN(x,y) T̂ ′(x)

T̂ (x)

)
+N(x,y)y′

)
= ux(x,y)+uy(x,y)y′ = du

dx

(48)

and from here the iso-differential equation (46) is exact, and an integrating factor µ of (1)
is given by (47).

Theorem 1.0.31. If the iso-differential equation (1) has u(x,y) =C, C is a constant, as its
solution, it admits an infinite number of integrating factors.

Proof. Let φ(u) be any function of u. Since u(x,y) =C we have (48). From here

µ(x,y)φ(u)
(

M(x,y)
(

1− x T̂ ′(x)
T̂ (x)

)
− yN(x,y)T̂ ′(x)+N(x,y)y′

)
= φ(u)du

dx = d
dx

∫ u
0 φ(s)ds.

Hence, µ(x,y)φ(u) is an integrating factor of (1). Since φ is an arbitrary function, we have
established the result.
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The function µ(x,y) is an integrating factor of (1) provided (46) is exact, i.e., if and
only if

∂

∂y

(
µ(x,y)

(
M(x,y)

(
1− x

T̂ ′(x)
T̂ (x)

))
− yN(x,y)T̂ ′(x)

)
=

∂

∂x
(µ(x,y)N(x,y)).

This implies that the integrating factor of (1) must satisfy the equation

N(x,y)µx(x,y)−µy(x,y)
(

M(x,y)
(

1− x T̂ ′(x)
T̂ (x)

)
− yN(x,y)T̂ ′(x)

)
= µ(x,y)

((
My(x,y)

(
1− x T̂ ′(x)

T̂ (x)

)
−N(x,y)T̂ ′(x)− yNy(x,y)T̂ ′(x)

)
−Nx(x,y)

)
.

(49)
A solution of (49) gives an integrating factor of (1), but it is not easy to be found a solution
of the partial differential equation (49). However, a particular non-zero solution of (49) is
all we need for the solution of (46).

If we assume that
µ(x,y) = X(x)Y (y),

then from (49) we have

N(x,y) 1
X

dX
dx −

(
M(x,y)

(
1− x T̂ ′(x)

T̂ (x)

)
− yN(x,y)T̂ ′(x)

)
1
Y

dY
dy

= My(x,y)
(

1− x T̂ ′(x)
T̂ (x)

)
−N(x,y)T̂ ′(x)− yNy(x,y)T̂ ′(x).

(50)

Hence, if

My(x,y)
(

1− x T̂ ′(x)
T̂ (x)

)
−N(x,y)T̂ ′(x)− yNy(x,y)T̂ ′(x)

= N(x,y)g(x)−
(

M(x,y)
(

1− x T̂ ′(x)
T̂ (x)

)
− yN(x,y)T̂ ′(x)

)
h(y),

then (50) is satisfied provided

1
X

dX
dx

= g(x) and
1
Y

dY
dy

= h(y), (50′)

i.e.,
X(x) = e

∫
g(x)dx, Y (y) = e

∫
h(y)dy. (50′′)

We will illustrate this in the following example.

Example 1.0.32. Let

S = {(x,y) ∈ R2 : |x−5| ≤ 1, |y−7| ≤ 2},

T̂ (x) = ex, M(x,y) = xy+y−y2

1−x , N(x,y) = x, (x,y) ∈ S. We will search an integration factor
µ(x,y) in the form

µ(x,y) = xmyn, m,n ∈ R, (m,n) 6= (0,0).
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In this case the equation (1) takes the form(xy+ y− y2

1− x
(1− x)− yx

)
dx+ xdy = 0,

or
(y− y2)dx+ xdy = 0. (51)

We multiply the equation (51) with xmyn and we obtain

xmyn(y− y2)dx+ xm+1yndy = 0.

We will find m and n by the equation

∂

∂y

(
xmyn(y− y2)

)
=

∂

∂x

(
xm+1yn

)
or

nxmyn−1(y− y2)+ xmyn(1−2y) = (m+1)xmyn,

or
(n+1)xmyn− (n+2)xmyn+1 = (m+1)xmyn,

whereupon
n+1 = m+1, n+2 = 0,

i.e.,
m = n =−2.

Consequently

µ(x,y) =
1

x2y2 .

Then the considered equation takes the form

1− y
x2y

dx+
1

xy2 dy = 0,

which is an exact equation. Therefore there exists a function u(x,y) such that

ux(x,y) =
1− y
x2y

(52)

and
uy(x,y) =

1
xy2 , (53)

from where, after integrating (53) with respect to the variable y, we have

u(x,y) =− 1
xy

+ f (x),

where f is an arbitrary function of x and plays the role of the constant of integration. We
differentiate the last equality with respect to the variable x and using (52), we obtain

1
x2y

+ f ′(x) =
1

x2y
− 1

x2
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or

f ′(x) =− 1
x2 .

From here, after we integrate with respect to the variable x, we get

f (x) =
1
x
+C0

for some constant C0. Hence,

u(x,y) =
1
x
− 1

xy
+C0 =

y−1
xy

+C0

and a solution is given by
y(1−Cx) = 1

for some constant C.

One may also look for an integrating factor of the form µ = µ(v), where v is an function
of x and y. Then (49) takes the form

1
µ

dµ
dv

=
My(x,y)

(
1− x T̂ ′(x)

T̂ (x)

)
−N(x,y)T̂ ′(x)− yNy(x,y)T̂ (x)−Nx(x,y)

N(x,y)vx−
(

M(x,y)
(

1− x T̂ ′(x)
T̂ (x)

)
− yN(x,y)T̂ ′(x)

)
vy

. (54)

Thus if the expression on the right side of (54) is a function of v alone, say, φ(v) then the
integrating factor is given by

µ = e
∫

φ(v)dv. (55)

Below, some special classes of v and the corresponding function φ(v) are given.

1. v = x,

φ(x) =
My(x,y)

(
1− x T̂ ′(x)

T̂ (x)

)
−N(x,y)T̂ ′(x)− yNy(x,y)T̂ (x)−Nx(x,y)

N(x,y)
.

2. v = y,

φ(v) =
My(x,y)

(
1− x T̂ ′(x)

T̂ (x)

)
−N(x,y)T̂ ′(x)− yNy(x,y)T̂ (x)−Nx(x,y)

−M(x,y)
(

1− x T̂ ′(x)
T̂ (x)

)
+ yN(x,y)T̂ ′(x)

.

3. v = x− y,

φ(v) =
My(x,y)

(
1− x T̂ ′(x)

T̂ (x)

)
−N(x,y)T̂ ′(x)− yNy(x,y)T̂ (x)−Nx(x,y)

N(x,y)+
(

M(x,y)
(

1− x T̂ ′(x)
T̂ (x)

)
− yN(x,y)T̂ ′(x)

) .
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4. v = xy,

φ(v) =
My(x,y)

(
1− x T̂ ′(x)

T̂ (x)

)
−N(x,y)T̂ ′(x)− yNy(x,y)T̂ (x)−Nx(x,y)

yN(x,y)−
(

M(x,y)
(

x− x2 T̂ ′(x)
T̂ (x)

)
− xyN(x,y)T̂ ′(x)

) .

5. v = x
y ,

φ(v) = y2
My(x,y)

(
1− x T̂ ′(x)

T̂ (x)

)
−N(x,y)T̂ ′(x)− yNy(x,y)T̂ (x)−Nx(x,y)

yN(x,y)+
(

M(x,y)
(

x− x2 T̂ ′(x)
T̂ (x)

)
− xyN(x,y)T̂ ′(x)

) .

6. v = x2 + y2,

φ(v) =
My(x,y)

(
1− x T̂ ′(x)

T̂ (x)

)
−N(x,y)T̂ ′(x)− yNy(x,y)T̂ (x)−Nx(x,y)

2xN(x,y)−2y
(

M(x,y)
(

1− x T̂ ′(x)
T̂ (x)

)
− yN(x,y)T̂ ′(x)

) .

If in the above equalities the right hand is a function of v, then the equation (1) has inte-
grating factor µ given by (55).

Lemma 1.0.33. Suppose (1) is exact and has an integrating factor µ(x,y) (6= const), then
µ(x,y) =C is a solution to the equation (1).

Proof. In view of the hypothesis, the condition (49) implies that

N(x,y)µx(x,y)−µy(x,y)
(

M(x,y)
(

1− x
T̂ ′(x)
T̂ (x)

)
− yN(x,y)T̂ ′(x)

)
= 0.

Multiplying the equation (1) with µy(x,y) we get(
M(x,y)µy(x,y)

(
1− x T̂ ′(x)

T̂ (x)

)
− yµy(x,y)N(x,y) T̂ ′(x)

T̂ (x)

)
dx+N(x,y)µy(x,y)dy

= N(x,y)(µx(x,y)+µy(x,y)dy)

= N(x,y)dµ(x,y) = 0

and this implies the lemma.

Theorem 1.0.34. If µ1(x,y) and µ2(x,y) are two integrating factors of the iso-differential
equation (1) such that their ratio is not a constant, then µ1(x,y) =Cµ2(x,y) is a solution of
(1).

Proof. Clearly, the iso-differential equations(
µ1(x,y)M(x,y)

(
1− x

T̂ ′(x)
T̂ (x)

)
− yµ1(x,y)N(x,y)

T̂ ′(x)
T̂ (x)

)
dx+µ1(x,y)N(x,y)dy = 0,

(56)
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µ2(x,y)M(x,y)

(
1− x

T̂ ′(x)
T̂ (x)

)
− yµ2(x,y)N(x,y)

T̂ ′(x)
T̂ (x)

)
dx+µ2(x,y)N(x,y)dy = 0,

(57)
are exact.

Multiplying (57) by µ1(x,y)
µ2(x,y)

converts it to the exact equation (56) and the last lemma

implies that µ1(x,y)
µ2(x,y)

=C is a solution of (57), i.e., of (1).

Exercise 1.0.35. Let

S = {(x,y) ∈ R2 : |x−7| ≤ 2, |y−10| ≤ 3},

T̂ (x) = ex, M(x,y) = x3y+x2y+y+xy
1−x , N(x,y) = x+ x3, (x,y) ∈ S. Determine the equation (1),

find an its integrating factor and an its solution.

Answer. The equation (1) is

(x2y+ y+1)dx+(x+ x3)dy = 0,

an its integrating factor is

µ(x,y) =
1

1+ x2 ,

an its solution is
xy+ tan−1(x) =C

for some constant C.

Exercise 1.0.36. Suppose that the equation (19) is an exact equation. Prove that T̂ (x) is
an integrating factor for the equation (1).

Definition 1.0.37. For the equation (19) a non-zero function µ(x,y) is called an integrating
factor if the equivalent equation

µ(x,y)
(

M(x,y)(T̂ (x)−xT̂ ′(x))−yT̂ ′(x)N(x,y)
)

dx+µ(x,y)T̂ (x)N(x,y)dy = 0 (57′)

is an exact equation.

If u(x,y) =C, for some constant C, is a solution to the equation (19), then y′ computed
from the equation (19) and (46′) must be the same, i.e.,

y′ =−ux(x,y)
uy(x,y)

=−M(x,y)(T̂ (x)− xT̂ ′(x))− yT̂ ′(x)N(x,y)
T̂ (x)N(x,y)

or
ux(x,y)

M(x,y)(T̂ (x)− xT̂ ′(x))− yT̂ ′(x)N(x,y)
=

uy(x,y)
T̂ (x)N(x,y)

= µ(x,y), (58)

where µ(x,y) is some function of x and y. Thus we have to have

µ(x,y)
(

M(x,y)(T̂ (x)− xT̂ ′(x))− yT̂ ′(x)N(x,y)
)
+µ(x,y)T̂ (x)N(x,y)y′

= ux(x,y)+uy(x,y)y′ =
du(x,y)

dx

(59)

and from here the equation (57′) is an exact equation, and an integrating factor µ(x,y) of
the equation (19) is given by (58).
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Theorem 1.0.38. If the iso-differential equation (19) has u(x,y) =C, C is a constant, as its
solution, then it admits an infinite number of integrating factors.

Proof. Let φ(u) be any continuous function of u. Since u(x,y) = C we have (59). From
here,

µ(x,y)φ(u)
(

M(x,y)(T̂ (x)− xT̂ ′(x))− yT̂ ′(x)N(x,y)
)
+µ(x,y)φ(u)T̂ (x)N(x,y)

= φ(u)du(x,y)
dx

= d
dx

∫ u
0 φ(s)ds.

Hence, µ(x,y)φ(u) is an integrating factor of (19). Since φ is an arbitrary function, then we
have established the result.

The function µ(x,y) is an integrating factor of (19) provided (57) is exact, i.e., if and
only if

∂

∂y

(
µ(x,y)

(
M(x,y)(T̂ (x)− xT̂ ′(x))− yT̂ ′(x)N(x,y)

))
= ∂

∂x

(
µ(x,y)T̂ (x)N(x,y)

)
.

This implies that an integrating factor of (19) must satisfy the equation

µx(x,y)T̂ (x)N(x,y)−µy(x,y)
(

M(x,y)
(

T̂ (x)− xT̂ ′(x)
)
− yT̂ ′(x)N(x,y)

)
= µ(x,y)

(
My(x,y)

(
T̂ (x)− xT̂ ′(x)

)
− T̂ ′(x)N(x,y)− yT̂ ′(x)Ny(x,y)

−T̂ ′(x)N(x,y)− T̂ (x)Nx(x,y)
)

= µ(x,y)
(

My(x,y)
(

T̂ (x)− xT̂ ′(x)
)
−2T̂ ′(x)N(x,y)

−yT̂ ′(x)Ny(x,y)− T̂ (x)Nx(x,y)
)
.

(60)

A solution of (60) gives an integrating factor of (19), but it is not easy to be found a solution
of the partial differential equation (60). However, a particular non-zero solution of (60) is
all we need for the solution of (19).

If we assume that µ(x,y) = X(x)Y (y), then from (60) we have

T̂ (x)N(x,y) 1
X(x)

dX(x)
dx −

(
M(x,y)

(
T̂ (x)− xT̂ ′(x)

)
− yT̂ ′(x)N(x,y)

)
1

Y (y)
dY (y)

dy

= My(x,y)
(

T̂ (x)− xT̂ ′(x)
)
−2T̂ ′(x)N(x,y)− yT̂ ′(x)Ny(x,y)− T̂ (x)Nx(x,y).

(61)

Hence,

T̂ (x)N(x,y)g(x)−
(

M(x,y)
(

T̂ (x)− xT̂ ′(x)
)
− yT̂ ′(x)N(x,y)

)
h(y)

= My(x,y)
(

T̂ (x)− xT̂ ′(x)
)
−2T̂ ′(x)N(x,y)− yT̂ ′(x)Ny(x,y)− T̂ (x)Nx(x,y),
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then (61) satisfied provided (50′) and (50′′).

Example 1.0.39. Let

S = {(x,y) ∈ R2 : |x−7| ≤ 1, |y−10| ≤ 3},

T̂ (x) = x2 +1, M(x,y) = 4x2y2+y2

1−x4 , N(x,y) = 3xy
2x2+2 . Then

M(x,y)
(

T̂ (x)− xT̂ ′(x)
)
− yT̂ ′(x)N(x,y)

= 4x2y2+y2

1−x4 (1− x2)−2xy 3xy
2x2+2

= 4x2y2+y2

1+x2 − 3x2y2

x2+1

= x2y2+y2

1+x2

= y2,

T̂ (x)N(x,y) = (x2 +1) 3xy
2x2+2 = 3

2 xy.

Then the equation (19) takes the form

y2dx+
3
2

xydy = 0. (62)

Since
∂

∂y
(y2) = 2y 6= ∂

∂x

(3
2

xy
)
=

3
2

y,

then the equation (19) is not an exact equation.
We will search an integrating factor of the equation (62) of the form µ(x,y) = X(x)Y (y).

We multiply (62) with µ(x,y) and we get

y2X(x)Y (y)dx+
3
2

xyX(x)Y (y)dy = 0.

We want

∂

∂y

(
y2X(x)Y (y)

)
= ∂

∂x

(
3
2 xyX(x)Y (y)

)
⇐⇒

2yX(x)Y (y)+ y2X(x)Y ′(y) = 3
2 yX(x)Y (y)+ 3

2 xyX ′(x)Y (y) =⇒

y
2 + y2 1

Y (y)
dY (y)

dy = 3
2 xy 1

X(x)
dX(x)

dx =⇒

1
2 + y 1

Y (y)
dY (y)

dy = 3
2 x 1

X(x)
dX(x)

dx .



34 Svetlin Georgiev

From here, it follows that there exists λ ∈ R such that

1
2 + y 1

Y (y)
dY (y)

dy = λ,

3
2 x 1

X(x)
dX(x)

dx = λ,

whereupon
X(x) =C1|x|

2
3 λ, Y (y) =C2|y|

2λ−1
2 .

In particular, for λ = 3
2 , we get an integrating factor

µ(x,y) = xy.

One may also look for an integrating factor of the form µ = µ(v), where v is known
function of x and y, then (60) leads to

1
µ(v)

dµ
dv

=
My(x,y)

(
T̂ (x)−xT̂ ′(x)

)
−2T̂ ′(x)N(x,y)−yT̂ ′(x)Ny(x,y)−T̂ (x)Nx(x,y)

vxT̂ (x)N(x,y)−vy

(
M(x,y)(T̂ (x)−xT̂ ′(x))−yT̂ ′(x)N(x,y)

) .

(63)

Thus, if the expression in (63) is a function of v alone, say, φ(v), then the integrating factor
is given by (55).

Some special classes of v and the corresponding φ(v) are given in the following table.

1. v = x,

φ(v) =
My(x,y)

(
T̂ (x)− xT̂ ′(x)

)
−2T̂ ′(x)N(x,y)− yT̂ ′(x)Ny(x,y)− T̂ (x)Nx(x,y)

T̂ (x)N(x,y)
.

2. v = y,

φ(v) =−
My(x,y)

(
T̂ (x)− xT̂ ′(x)

)
−2T̂ ′(x)N(x,y)− yT̂ ′(x)Ny(x,y)− T̂ (x)Nx(x,y)

M(x,y)
(

T̂ (x)− xT̂ ′(x)
)
− yT̂ ′(x)N(x,y)

.

3. v = x− y,

φ(v) =
My(x,y)

(
T̂ (x)− xT̂ ′(x)

)
−2T̂ ′(x)N(x,y)− yT̂ ′(x)Ny(x,y)− T̂ (x)Nx(x,y)

T̂ (x)N(x,y)+M(x,y)
(

T̂ (x)− xT̂ ′(x)
)
− yT̂ ′(x)N(x,y)

.

4. v = xy,

φ(v) =
My(x,y)

(
T̂ (x)− xT̂ ′(x)

)
−2T̂ ′(x)N(x,y)− yT̂ ′(x)Ny(x,y)− T̂ (x)Nx(x,y)

yT̂ (x)N(x,y)− x
(

M(x,y)
(

T̂ (x)− xT̂ ′(x)
)
− yT̂ ′(x)N(x,y)

) .
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5. v = x
y ,

φ(v) = y2
My(x,y)

(
T̂ (x)− xT̂ ′(x)

)
−2T̂ ′(x)N(x,y)− yT̂ ′(x)Ny(x,y)− T̂ (x)Nx(x,y)

yT̂ (x)N(x,y)− x
(

M(x,y)
(

T̂ (x)− xT̂ ′(x)
)
− yT̂ ′(x)N(x,y)

) .

6. v = x2 + y2,

φ(v) =
My(x,y)

(
T̂ (x)− xT̂ ′(x)

)
−2T̂ ′(x)N(x,y)− yT̂ ′(x)Ny(x,y)− T̂ (x)Nx(x,y)

2xT̂ (x)N(x,y)−2y
(

M(x,y)
(

T̂ (x)− xT̂ ′(x)
)
− yT̂ ′(x)N(x,y)

) .

If the expressions in the right hand are functions of v, then the equation (19) has integrating
factors given by (55).

Lemma 1.0.40. Suppose (19) is exact and has an integrating factor µ(x,y)(6= const), then
µ(x,y) =C, C is a constant, is a solution of the equation (19).

Proof. In view of hypothesis, the condition (60) implies

µx(x,y)T̂ (x)N(x,y)−µy(x,y)
(

M(x,y)
(

T̂ (x)− xT̂ ′(x)
)
− yT̂ ′(x)N(x,y)

)
= 0.

We multiply the equation (19) with µy(x,y) and using the last equality, we get

0 = µy(x,y)
(

M(x,y)
(

T̂ (x)− xT̂ ′(x)
)
− yT̂ ′(x)N(x,y)

)
+µy(x,y)T̂ (x)N(x,y)y′

= µx(x,y)T̂ (x)N(x,y)+µy(x,y)T̂ (x)N(x,y)y′

= T̂ (x)N(x,y)
(

µx(x,y)+µy(x,y)y′
)

= T̂ (x)N(x,y)dµ
dx ,

i.e., µ(x,y) =C, C is a constant, is a solution of (19).

Theorem 1.0.41. If µ1(x,y) and µ2(x,y) are two integrating factors of the equation (19)
such that their ratio is not a constant, then µ1(x,y) =Cµ2(x,y) is a solution of (19).

Proof. We have that the equations

µ1(x,y)
(

M(x,y)
(

T̂ (x)−xT̂ ′(x)
)
−yT̂ ′(x)N(x,y)

)
+ T̂ (x)µ1(x,y)N(x,y)y′= 0, (63′)

µ2(x,y)
(

M(x,y)
(

T̂ (x)−xT̂ ′(x)
)
−yT̂ ′(x)N(x,y)

)
+ T̂ (x)µ2(x,y)N(x,y)y′ = 0, (64)

are exact. Multiplying the equation (63′) with µ2(x,y)
µ1(x,y)

we obtain the exact equation (64).
From here and the last Lemma it follows that µ1(x,y) = Cµ2(x,y), C is a constant, is a
solution of (63′), i.e., of (19).
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Exercise 1.0.42. Suppose that (1) is an exact equation. Prove that 1
T̂ (x)

is an integrating
factor of (19).

Definition 1.0.43. For the equation (27) a non-zero function µ(x,y) is called an integrating
factor if the equivalent iso-differential equation

µ(x,y)M(x,y)
(

T̂ (x)− xT̂ ′(x)
)

dx+µ(x,y)N(x,y)T̂ 2(x)dy = 0 (65)

is an exact equation.

If u(x,y) =C, C is a constant, is a solution to the equation (27), then y′ computed from
(27) and (46′) must be the same, i.e.,

y′ =−ux(x,y)
uy(x,y)

=−
M(x,y)

(
T̂ (x)− xT̂ ′(x)

)
N(x,y)T̂ 2(x)

or
ux(x,y)

M(x,y)
(

T̂ (x)− xT̂ ′(x)
) =

uy(x,y)
N(x,y)T̂ 2(x)

= µ(x,y), (66)

where µ(x,y) is a function of x and y. Thus we have

µ(x,y)
(

M(x,y)
(

T̂ (x)− xT̂ ′(x)
)
+N(x,y)T̂ 2(x)y′

)
= µ(x,y)

(
ux(x,y)
µ(x,y) +

uy(x,y)
µ(x,y) y′

)
= ux(x,y)+uy(x,y)y′

= du(x,y)
dx ,

(67)

from here, the equation (65) is an exact equation and its integrating factor is given by (66).

Theorem 1.0.44. If the iso-differential equation (27) has u(x,y) =C, C is a constant, as its
solution, then it admits an infinite number of integrating factors.

Proof. Let φ(u) be any continuous function of u. Since u(x,y) = C we have the equation
(67). From here,

µ(x,y)φ(u)
(

M(x,y)
(

T̂ (x)− xT̂ ′(x)
)
+M(x,y)T̂ 2(x)y′

)
= φ(u)du(x,y)

dx

= d
dx

∫
0 φ(s)ds.

Hence, µ(x,y)φ(u) is an integrating factor of the equation (27) and since φ(u) is an arbitrary
continuous function of u, we have established the result.
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The function µ(x,y) is an integrating factor of (27) provided (65) is exact, i.e., if and
only if

∂

∂y

(
µ(x,y)M(x,y)

(
T̂ (x)− xT̂ ′(x)

))
= ∂

∂x

(
µ(x,y)N(x,y)T̂ 2(x)

)
⇐⇒

µy(x,y)M(x,y)
(

T̂ (x)− xT̂ ′(x)
)
+µ(x,y)My(x,y)

(
T̂ (x)− xT̂ ′(x)

)
= µx(x,y)N(x,y)T̂ 2(x)+µ(x,y)Nx(x,y)T̂ 2(x)+2µ(x,y)N(x,y)T̂ (x)T̂ ′(x).

Thus implies that an integrating factor of (27) must satisfy the equation

µx(x,y)N(x,y)T̂ 2(x)−µy(x,y)M(x,y)
(

T̂ (x)− xT̂ ′(x)
)

= µ(x,y)
(

My(x,y)
(

T̂ (x)− xT̂ ′(x)
)
−Nx(x,y)T̂ 2(x)−2N(x,y)T̂ (x)T̂ ′(x)

)
.

(68)

A solution of (68) gives an integrating factor of (27), but it is not easy to be found a solution
of the partial differential equation (68). However, a particular non-zero solution of (68) is
all we need for the solution of (27).

If we assume that µ(x,y) = X(x)Y (y), then from (68) we have

N(x,y)T̂ 2(x) 1
X(x)

dX(x)
dx −M(x,y)

(
T̂ (x)− xT̂ ′(x)

)
1

Y (y)
dY (y)

dy

= My(x,y)
(

T̂ (x)− xT̂ ′(x)
)
−Nx(x,y)T̂ 2(x)−2N(x,y)T̂ (x)T̂ ′(x).

(69)

Hence, if

N(x,y)T̂ 2(x)g(x)−M(x,y)
(

T̂ (x)− xT̂ ′(x)
)

h(y)

= My(x,y)
(

T̂ (x)− xT̂ ′(x)
)
−Nx(x,y)T̂ 2(x)−2N(x,y)T̂ (x)T̂ ′(x),

then (69) is satisfied provided (50′) and (50′′).

Example 1.0.45. Let

S = {(x,y) ∈ R2 : |x−10| ≤ 1, |y−6| ≤ 2},

T̂ (x) = x2 +1, M(x,y) = 1
1−x2 , N(x,y) = x

(x2+1)2 , (x,y) ∈ S. Then

M(x,y)
(

T̂ (x)− xT̂ ′(x)
)
= 1

1−x2 (1+ x2−2x2)

= 1
1−x2 (1− x2)

= 1,

N(x,y)T̂ 2(x) = x
(x2+1)2 (x2 +1)2

= x,
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and the equation (27) takes the form

dx+ xdy = 0. (70)

Since
∂

∂y
(1) = 0 6= 1 =

∂

∂x
(x),

then it is not an exact equation. We will search an integrating factor of the form µ(x,y) =
X(x)Y (y). We multiply (70) with µ(x,y) and we get

X(x)Y (y)dx+ xX(x)Y (y)dy = 0.

We want
∂

∂y

(
X(x)Y (y)

)
= ∂

∂x

(
xX(x)Y (y)

)
⇐⇒

X(x)Y ′(y) = X(x)Y (y)+ xX ′(x)Y (y) =⇒

1
Y (y)

dY (y)
dy = 1+ x 1

X(x)
dX(x)

dx ,

from where it follows that there exists λ ∈ R such that

1+ x
1

X(x)
dX(x)

dx
= λ,

1
Y (y)

dY (y)
dy

= λ,

whereupon
X(x) =C1|x|λ−1, Y (y) =C2eλy,

C1 and C2 are constant. In particular, for λ = 2, we have µ(x,y) = xe2y is an integrating
factor of (70).

One may also look for an integrating factor of the form µ = µ(v), where v is known
function of x and y. Then

1
µ(v)

dµ(v)
dv

=
My(x,y)

(
T̂ (x)− xT̂ ′(x)

)
−Nx(x,y)T̂ 2(x)−2N(x,y)T̂ (x)T̂ ′(x)

vxN(x,y)T̂ 2(x)− vyM(x,y)
(

T̂ (x)− xT̂ ′(x)
) . (71)

Thus, if the expression in the right side of (71) is a function of v alone, say φ(v), then the
integrating factor is given by (55).

Some special classes of v and the corresponding φ(v) are given in the following table.

1. v = x,

φ(v) =
My(x,y)

(
T̂ (x)− xT̂ ′(x)

)
−Nx(x,y)T̂ 2(x)−2N(x,y)T̂ (x)T̂ ′(x)

N(x,y)T̂ 2(x)
.

2. v = y,

φ(v) =−
My(x,y)

(
T̂ (x)− xT̂ ′(x)

)
−Nx(x,y)T̂ 2(x)−2N(x,y)T̂ (x)T̂ ′(x)

M(x,y)
(

T̂ (x)− xT̂ ′(x)
) .
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3. v = x− y,

φ(v) =
My(x,y)

(
T̂ (x)− xT̂ ′(x)

)
−Nx(x,y)T̂ 2(x)−2N(x,y)T̂ (x)T̂ ′(x)

N(x,y)T̂ 2(x)+M(x,y)
(

T̂ (x)− xT̂ ′(x)
) .

4. v = xy,

φ(v) =
My(x,y)

(
T̂ (x)− xT̂ ′(x)

)
−Nx(x,y)T̂ 2(x)−2N(x,y)T̂ (x)T̂ ′(x)

yN(x,y)T̂ 2(x)− xM(x,y)
(

T̂ (x)− xT̂ ′(x)
) .

5. v = x
y ,

φ(v) = y2
My(x,y)

(
T̂ (x)− xT̂ ′(x)

)
−Nx(x,y)T̂ 2(x)−2N(x,y)T̂ (x)T̂ ′(x)

yN(x,y)T̂ 2(x)+ xM(x,y)
(

T̂ (x)− xT̂ ′(x)
) .

6. v = x2 + y2,

φ(v) =
My(x,y)

(
T̂ (x)− xT̂ ′(x)

)
−Nx(x,y)T̂ 2(x)−2N(x,y)T̂ (x)T̂ ′(x)

2xN(x,y)T̂ 2(x)−2yM(x,y)
(

T̂ (x)− xT̂ ′(x)
) .

If the expressions of the right hand are functions of v alone, then (27) has integrating factors
given by (55).

Lemma 1.0.46. Suppose (27) is exact and has an integrating factor µ(x,y) ( 6= const), then
µ(x,y) =C, C is a constant, is a solution to the equation (27).

Proof. In view of the hypothesis, the condition (68) implies to

µx(x,y)N(x,y)T̂ 2(x)−µy(x,y)M(x,y)
(

T̂ (x)− xT̂ ′(x)
)
= 0

or

µy(x,y) =
µx(x,y)N(x,y)T̂ 2(x)

M(x,y)
(

T̂ (x)− xT̂ ′(x)
) .

Multiplying the equation (27) with µy(x,y), we find

0 = µy(x,y)M(x,y)
(

T̂ (x)− xT̂ ′(x)
)

dx+N(x,y)T̂ 2(x)µy(x,y)dy

= µx(x,y)N(x,y)T̂ 2(x)dx+N(x,y)T̂ 2(x)µy(x,y)dy

= N(x,y)T̂ 2(x)
(

µx(x,y)dx+µy(x,y)dy
)

= N(x,y)T̂ 2(x)dµ(x,y),

and this implies the lemma.
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Theorem 1.0.47. If µ1(x,y) and µ2(x,y) are two integrating factors of (27) such that their
ration is not a constant, then µ1(x,y) =Cµ2(x,y), C is a constant, is a solution of (27).

Proof. Clearly, the iso-differential equations

µ1(x,y)M(x,y)
(

T̂ (x)− xT̂ ′(x)
)

dx+µ1(x,y)N(x,y)T̂ 2(x)dy = 0, (72)

µ2(x,y)M(x,y)
(

T̂ (x)− xT̂ ′(x)
)

dx+µ2(x,y)N(x,y)T̂ 2(x)dy = 0, (73)

are exact. Multiplying (73) by µ1(x,y)
µ2(x,y)

converts it to the exact equation (72). Thus, the exact

equation (73) admits an integrating factor µ1(x,y)
µ2(x,y)

. From here and the last Lemma, it follows
that µ1(x,y) =Cµ2(x,y) is a solution of (73), i.e., of (27), C is an arbitrary constant.

Exercise 1.0.48. Suppose that (37) is an exact equation. Prove that 1
T̂ (x)

is an integrating
factor of (27).

Definition 1.0.49. For the equation (37) a non-zero function µ(x,y) is called an integrating
factor if the equivalent iso-differential equation

µ(x,y)M(x,y)
(

1− x
T̂ ′(x)
T̂ (x)

)
dx+µ(x,y)N(x,y)T̂ (x)dy = 0 (74)

is an exact equation.

If u(x,y) =C, C is a constant, is a solution of the equation (37), then y′ computed from
(37) and (46′) must be the same, i.e.,

y′ =−ux(x,y)
uy(x,y)

=−
M(x,y)

(
1− x T̂ ′(x)

T̂ (x)

)
N(x,y)T̂ (x)

or
ux(x,y)

M(x,y)
(

1− x T̂ ′(x)
T̂ (x)

) =
uy(x,y)

N(x,y)T̂ (x)
= µ(x,y) (75)

for some function µ(x,y). Thus we have

µ(x,y)M(x,y)
(

1− x T̂ ′(x)
T̂ (x)

)
dx+µ(x,y)N(x,y)T̂ (x)dy

= ux(x,y)dx+uy(x,y)dy

= du(x,y)

(76)

and from here, the equation (74) is an exact equation and the integrating factor of (37) is
given by (75).

Theorem 1.0.50. If the iso-differential equation (37) has u(x,y) =C, C is a constant, as its
solution, then it admits an infinite number of integrating factors.
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Proof. Let φ(u) be an arbitrary continuous function of u. Since u(x,y) =C we have (76).
From here

µ(x,y)φ(u)
(

M(x,y)
(

1− x T̂ ′(x)
T̂ (x)

)
+N(x,y)T̂ (x)y′

)
= φ(u)du(x,y)

dx

= d
dx

∫
0 φ(s)ds.

Hence, µ(x,y)φ(u) is an integrating factor of (37). Since φ(u) is an arbitrary continuous
function, we have established the theorem.

The function µ(x,y) is an integrating factor of (37) provided (74) is exact, i.e., if and
only if

∂

∂y

(
µ(x,y)M(x,y)

(
1− x T̂ ′(x)

T̂ (x)

))
= ∂

∂x

(
µ(x,y)N(x,y)T̂ (x)

)
⇐⇒

µy(x,y)M(x,y)
(

1− x T̂ ′(x)
T̂ (x)

)
+µ(x,y)My(x,y)

(
1− x T̂ ′(x)

T̂ (x)

)
= µx(x,y)N(x,y)T̂ (x)+µ(x,y)Nx(x,y)T̂ (x)+µ(x,y)N(x,y)T̂ ′(x).

This implies that an integrating factor of (37) must satisfy the equation

µx(x,y)N(x,y)T̂ (x)−µy(x,y)M(x,y)
(

1− x T̂ ′(x)
T̂ (x)

)
= µ(x,y)

(
My(x,y)

(
1− x T̂ ′(x)

T̂ (x)

)
−Nx(x,y)T̂ (x)−N(x,y)T̂ ′(x)

)
.

(77)

A solution of (77) gives an integrating factor of (37), but it is not easy to be found a solution
to the partial differential equation (77). However, a particular non-zero solution of (77) is
all we need for the solution of (37).

If we assume that µ(x,y) = X(x)Y (y), then from (77) we have

1
X(x)

dX(x)
dx N(x,y)T̂ (x)− 1

Y (y)
dY (y)

dy M(x,y)
(

1− x T̂ ′(x)
T̂ (x)

)
= My(x,y)

(
1− x T̂ ′(x)

T̂ (x)

)
−Nx(x,y)T̂ (x)−N(x,y)T̂ ′(x),

(78)

then (78) is satisfied provided (50′) and (50′′).

Example 1.0.51. Let

S = {(x,y) ∈ R2 : |x−10| ≤ 5, |y−10| ≤ 1},
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T̂ (x) = ex, M(x,y) = y
1−x e−y, N(x,y) = x2+2y

2x e−x−y, (x,y) ∈ S. Then

M(x,y)
(

1− x T̂ ′(x)
T̂ (x)

)
= y

1−x e−y(1− x)

= ye−y,

N(x,y)T̂ (x) = x2+2y
2x e−x−yex

= x2+2y
2x e−y,

the equation (37) takes the form

ye−ydx+
x2 +2y

2x
e−ydy = 0. (79)

Since
∂

∂y

(
ye−y

)
= (1− y)e−y

6= ∂

∂x

((
x2+y

2x

)
e−y
)
=
(

1
2 −

y
x2

)
e−y,

then it is not an exact equation. We will search an integrating factor of (79) of the form
µ(x,y) = X(x)Y (y). We multiply (79) with µ(x,y) and we find

ye−yX(x)Y (y)dx+
x2 +2y

2x
e−yX(x)Y (y)dy = 0.

We want
∂

∂y

(
ye−yX(x)Y (y)

)
= ∂

∂x

(
x2+2y

2x e−yX(x)Y (y)
)

⇐⇒

(1− y)e−yX(x)Y (y)+ ye−yX(x)Y ′(y)

=
(

1
2 −

y
x2

)
e−yX(x)Y (y)+ x2+2y

2x e−yX ′(x)Y (y) =⇒

x2+2y
2x2 X(x)Y (y)− yX(x)Y (y)+ yX(x)Y ′(y) = x2+2y

2x X ′(x)Y (y),

and
x2+2y

2x2 X(x)Y (y) = x2+2y
2x X ′(x)Y (y),

yX(x)Y (y) = yX(x)Y ′(y),

whereupon
X(x) =C1x, Y (y) =C2ey,

C1 and C2 are constants. In particular, µ(x,y) = xey is an integrating factor of (79).
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One may also look for an integrating factor of the form µ = µ(v), where v is known
function of x and y. Then (77) leads to

1
µ(v)

dµ
dv

=
My(x,y)

(
1− x T̂ ′(x)

T̂ (x)

)
−Nx(x,y)T̂ (x)−N(x,y)T̂ ′(x)

vxN(x,y)T̂ (x)− vyM(x,y)
(

1− x T̂ ′(x)
T̂ (x)

) . (80)

Thus, if the expression in the right side of (80) is a function of v alone, say, φ(v), then the
integrating factor is given by (55).

Some classes of v and the corresponding φ(v) are given in the following table.

1. v = x,

φ(v) =
My(x,y)

(
1− x T̂ ′(x)

T̂ (x)

)
−Nx(x,y)T̂ (x)−N(x,y)T̂ ′(x)

N(x,y)T̂ (x)
.

2. v = y,

φ(v) =−
My(x,y)

(
1− x T̂ ′(x)

T̂ (x)

)
−Nx(x,y)T̂ (x)−N(x,y)T̂ ′(x)

M(x,y)
(

1− x T̂ ′(x)
T̂ (x)

) .

3. v = x− y,

φ(v) =
My(x,y)

(
1− x T̂ ′(x)

T̂ (x)

)
−Nx(x,y)T̂ (x)−N(x,y)T̂ ′(x)

N(x,y)T̂ (x)+M(x,y)
(

1− x T̂ ′(x)
T̂ (x)

) .

4. v = xy,

φ(v) =
My(x,y)

(
1− x T̂ ′(x)

T̂ (x)

)
−Nx(x,y)T̂ (x)−N(x,y)T̂ ′(x)

yN(x,y)T̂ (x)− xM(x,y)
(

1− x T̂ ′(x)
T̂ (x)

) .

5. v = x
y ,

φ(v) = y2
My(x,y)

(
1− x T̂ ′(x)

T̂ (x)

)
−Nx(x,y)T̂ (x)−N(x,y)T̂ ′(x)

yN(x,y)T̂ (x)+ xM(x,y)
(

1− x T̂ ′(x)
T̂ (x)

) .

6. v = x2 + y2,

φ(v) =
My(x,y)

(
1− x T̂ ′(x)

T̂ (x)

)
−Nx(x,y)T̂ (x)−N(x,y)T̂ ′(x)

2xN(x,y)T̂ (x)−2yM(x,y)
(

1− x T̂ ′(x)
T̂ (x)

) .

If the expressions in the right hand are functions of v alone, then (37) has integrating factors
given by (55).

Lemma 1.0.52. Suppose (37) is exact and has an integrating factor µ(x,y) ( 6= const), then
µ(x,y) =C, C is a constant, is a solution to the equation (37).
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Proof. In view of hypothesis, the condition (77) implies that

µx(x,y)N(x,y)T̂ (x)−µy(x,y)M(x,y)
(

1− x
T̂ ′(x)
T̂ (x)

)
= 0.

Multiplying the equation (37) by µy(x,y) we find

µy(x,y)M(x,y)
(

1− x T̂ ′(x)
T̂ (x)

)
dx+µy(x,y)N(x,y)T̂ (x)dy

= µx(x,y)N(x,y)T̂ (x)dx+µy(x,y)N(x,y)T̂ (x)dy

= N(x,y)T̂ (x)
(

µx(x,y)dx+µy(x,y)dy
)

= N(x,y)T̂ (x)dµ(x,y)

= 0

and this implies the Lemma.

Theorem 1.0.53. If µ1(x,y) and µ2(x,y) are two integrating factors of (37) such that their
ratio is not a constant, then µ1(x,y) =Cµ2(x,y), C is a constant, is a solution of (37).

Proof. Clearly, the iso-differential equations

µ1(x,y)M(x,y)
(

1− x
T̂ ′(x)
T̂ (x)

)
dx+µ1(x,y)N(x,y)T̂ (x)dy = 0, (81)

µ2(x,y)M(x,y)
(

1− x
T̂ ′(x)
T̂ (x)

)
dx+µ2(x,y)N(x,y)T̂ (x)dy = 0, (82)

are exact. Multiplying of (81) by µ2(x,y)
µ1(x,y)

converts it to the exact equation (82). In other

words, the exact equation (81) admits an integrating factor µ2(x,y)
µ1(x,y)

and the last lemma implies
that µ1(x,y) =Cµ2(x,y) is a solution of (81), i.e., of (37).

Exercise 1.0.54. Suppose that (27) is an exact equation. Prove that T̂ (x) is an integrating
factor of (37).

Advanced Practical Exercises

Problem 1.0.55. Let

S =
{
(x,y) ∈ R2 : |x| ≤ 1, |y| ≤ 1

}
,

T̂ (x) = x+ 3, M(x,y) = x, N(x,y) = y. Determine the equation (1) and check if it is an
exact equation. If it is an exact equation, find an its solution.
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Answer.
x− y2

x+1
dx+ ydy = 0.

It is not an exact equation.

Problem 1.0.56. Let

S =
{
(x,y) ∈ R2 : |x| ≤ 1

4
, |y−1| ≤ 1

}
,

T̂ (x) = ex, M(x,y) = x2y+y3+2xy
1−x , N(x,y) = x2 + y2, (x,y) ∈ S. Determine the equation (1)

and check if it is an exact equation. If it is an exact equation, find an its solution.

Answer.
2xydx+(x2 + y2)dy = 0.

It is an exact equation.
A solution is

3x2y+ y3 =C,

where C is a constant.

Problem 1.0.57. Let

S =
{
(x,y) ∈ R2 : |x−a| ≤ b, |y− c| ≤ q

}
,

where a, b, c, q ∈ [0,∞), such that a > b+ 1, c > q. Let also, T̂ (x) = ex and M(x,y),
My(x,y) are continuous functions on S. Find a continuous function N, determined in S, so
that Ny(x,y) exists in S and it is a continuous function in S, and

My(x,y)(1− x) = Nx(x,y),

N(x,y) =−yNy(x,y), (x,y) ∈ S.

For such functions determine if the equation (1) is an exact equation.

Answer.
N(x,y) =

f (x)
y

,

where f is a continuous function on |x−a| ≤ b. The equation (1) is an exact equation.

Problem 1.0.58. Let

S = {(x,y) ∈ R2 : |x−1| ≤ 2, |y−3| ≤ 4},

T̂ (x) = ex, M(x,y) = x− y, N(x,y) = xy, (x,y) ∈ S. Determine the equation (19) and check
if it is an exact equation. If it is an exact equation, find an its solution.

Answer.
(−x3−2x2y2 + x2y+ x− y)dx+(xy+ x3y)dy = 0.

It is not an exact equation.
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Problem 1.0.59. Let

S = {(x,y) ∈ R2 : |x−4| ≤ 1, |y−1| ≤ 1},

T̂ (x) = ex, M(x,y) = y+2xy− 3
2 y2

1−x , N(x,y) = x− y, (x,y) ∈ S. Determine the equation (19)
and check if it is an exact equation. If it is an exact equation, find an its solution.

Answer.
ex
(
−1

2
y2 + xy+ y

)
dx+ ex(x− y)dy = 0.

It is an exact equation. An its solution is given by

2exxy− y2ex =C,

where C is a constant.

Problem 1.0.60. Let

S = {(x,y) ∈ R2 : |x| ≤ 2, |y| ≤ 3},

T̂ (x) = x2 +1, M(x,y) = xy, N(x,y) = x−2y, (x,y) ∈ S. Determine the equation (27) and
check if it is an exact equation. If it is an exact equation, find an its solution.

Answer.
(xy− x3y)dx+(x5−2x4y+2x3−4x2y+ x−2y)dy = 0.

It is not an exact equation.

Problem 1.0.61. Let
S = {(x,y) ∈ R2 : |x−5| ≤ 3, |y| ≤ 1},

T̂ (x) = e2x, M(x,y) = e2x y+4xy+2y2

1−2x , N(x,y) = x+y, (x,y) ∈ S. Determine the equation (27)
and check if it is an exact equation. If it is an exact equation, find an its solution.

Answer.
e4x(y+4xy+2y2)dx+ e4x(x+ y)dy = 0.

It is an exact equation. A solution is given by

e4x(2xy+ y2) =C,

where C is a constant.

Problem 1.0.62. Let

S = {(x,y) ∈ R2 : |x−2| ≤ 2, |y| ≤ 2},

T̂ (x) = ex, M(x,y) = x2− y2, N(x,y) = xy, (x,y) ∈ S. Determine the equation (37) and
check if it is an exact equation. If it is an exact equation, find an its solution.
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Answer.
(−x3 + xy2 + x2− y2)dx+ xyexdy = 0.

It is not an exact equation.

Problem 1.0.63. Let

S = {(x,y) ∈ R2 : |x−5| ≤ 1, |y| ≤ 3},

T̂ (x) = ex, M(x,y) = ex y2

2(1−x) , N(x,y) = y, (x,y) ∈ S. Determine the equation (37) and
check if it is an exact equation. If it is an exact equation, find an its solution.

Answer.
y2

2
exdx+ yexdy = 0.

It is an exact equation. A solution is given by

y2ex =C

for some constant C.

Problem 1.0.64. Let

S = {(x,y) ∈ R2 : |x−10| ≤ 2, |y−4| ≤ 1},

T̂ (x) = ex, M(x,y) = 2y3+2x2y2−y2+x2y3+2x3y2−2x2y
1−x , N(x,y) = x2y2 + 2x3y− 2x2, (x,y) ∈ S.

Determine the equation (1), find an its integrating factor and an its solution.

Answer. The equation (1) takes the form

(xy3 +2x2y2− y2)dx+(x2y2 +2x3y−2x2)dy = 0,

an its integrating factor is

µ(x,y) =
1

x2y2 exy,

an its solution is given by
exy(y+2x) =Cxy

for some constant C.

Problem 1.0.65. Show that u(x,y) = C, C is a constant, is the general solution of the
equation (1) if and only if(

M(x,y)
(

1− x
T̂ ′(x)
T̂ (x)

)
− yN(x,y)

T̂ ′(x)
T̂ (x)

)
uy(x,y) = N(x,y)ux(x,y).

Problem 1.0.66. Show that u(x,y) = C, C is a constant, is the general solution of the
equation (19) if and only if(

M(x,y)
(

T̂ (x)− xT̂ ′(x)
)
− yT̂ ′(x)N(x,y)

)
uy(x,y) = T̂ (x)N(x,y)ux(x,y).
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Problem 1.0.67. Show that u(x,y) = C, C is a constant, is the general solution of the
equation (27) if and only if

M9x,y)
(

T̂ (x)− xT̂ ′(x)
)

uy(x,y) = N(x,y)T̂ 2(x)ux(x,y).

Problem 1.0.68. Show that u(x,y) = C, C is a constant, is the general solution of the
equation (37) if and only if

M(x,y)
(

1− x
T̂ ′(x)
T̂ (x)

)
uy(x,y) = N(x,y)T̂ (x)ux(x,y).
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Elementary First-Order Equations

We suppose that T̂ : R−→ (0,∞), T̂ ∈ C 1(R). Let also

S = {(x,y) ∈ R2 : |x− x0| ≤ a, |y− y0| ≤ b},

where x0, y0 ∈ R, a, b ∈ R, a > 0, b > 0.
We consider the equation

X̂∧1 (x̂)×̂Ŷ1(ŷ)+ X̂∧2 (x̂)×̂Ŷ2(ŷ)×̂
(

ŷ∧(x̂)
)~

= 0. (1)

The equation (1) we can rewrite in the form

X1(x)
T̂ (x)

T̂ (x)
Y1

(
y

T̂ (x)

)
T̂ (x)

+ X2(x)
T̂ (x)

T̂ (x)
Y2

(
y

T̂ (x)

)
T̂ (x)

T̂ (x) y′(x)T̂ (x)−y(x)T̂ ′(x)

T̂ (x)

(
T̂ (x)−xT̂ ′(x)

) = 0 =⇒

X1(x)
T̂ (x)

Y1

(
y

T̂ (x)

)
+ X2(x)T̂ (x)

T̂ (x)−xT̂ ′(x)

(
y

T̂ (x)

)′
Y2

(
y

T̂ (x)

)
= 0.

We put

z =
y

T̂ (x)
.

Then

z′ =
dz
dx

and the equation (1) admits the following representation

X1(x)
T̂ (x)

Y1(z)+
X2(x)T̂ (x)

T̂ (x)− xT̂ ′(x)
Y2(z)z′ = 0.

We observe that in the last equation the variables are separated.

Definition 2.0.69. The iso-differential equation (1) is said to be separable.
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If X2(x)Y1(z) 6= 0 in S, then the solution of this exact equation is given by

∫ X1(x)
(

T̂ (x)− xT̂ ′(x)
)

X2(x)T̂ 2(x)
dx+

∫ Y2(z)
Y1(z)

dz =C, (2)

where C is a constant. Here the integrals are indefinite and constants of integration have
been absorbed in C.

The equation (2) contains all solutions of (1) for which
(

T̂ (x)− xT̂ ′(x)
)

X2(x)Y1(z) 6=

0. In fact, when we divide (1) by
(

T̂ (x)− xT̂ ′(x)
)

, X2(x), Y1(z) we may have lost some
solutions, and the ones which are not in (2) for some constant C must be coupled with (2)
to obtain all solutions of (1).

Example 2.0.70. Let T̂ (x) = ex, X1(x) = ex, X2(x) = x(1− x), Y1(y) = y(y−1), Y2(y) = 1.
Then

X1(x)
T̂ (x)

Y1(z) = ex

ex z(z−1)

= z(z−1),

X2(x)T̂ (x)
T̂ (x)−xT̂ ′(x)

Y2(z) =
x(1−x)ex

(1−x)ex

= x.

Then the equation (1) takes the form

z(z−1)+ xz′ = 0
∣∣∣· 1

xz(z−1)
, x 6=,z 6= 0,1,

from where
1
x

dx+
1

z(z−1)
dz = 0, x 6= 0,z 6= 0,1.

Consequently ∫ dx
x
+

∫ dz
z(z−1)

=C

or
x(z−1) =Cz.

Consequently the solutions of the considered equation are

x
(

y− ex
)
=Cy, y = 0.

Here C is a constant.

Exercise 2.0.71. Let

T̂ (x) = ex, X1(x) = xex, X2(x) = (1− x)(x2 +1), Y1(y) = siny, Y2(y) = cosy.

Determine the equation (1) and find its solutions.
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Solution. We have
X1(x)
T̂ (x)

Y1(z) = xex

ex sinz

= xsinz,

X2(x)T̂ (x)
T̂ (x)−xT̂ ′(x)

Y2(z) =
(1−x)(x2+1)ex

ex−xex cosz

= (1−x)(x2+1)ex

(1−x)ex cosz

= (x2 +1)cosz.

Then the equation (1) takes the form

xsinz+(x2 +1)cos(z)z′ = 0
∣∣∣· 1
(x2 +1)sinz

, z 6= kπ, k ∈ Z.

From here,
x

x2+1 dx+ cosz
sinz dz = 0 =⇒

∫ x
x2+1 dx+

∫ cosz
sinz dz =C =⇒

1
2
∫ d(x2+1)

x2+1 +
∫ d sinz

sinz =C =⇒

log
√

x2 +1+ log |sinz|=C =⇒√
x2 +1sinz =C (3)

or √
x2 +1sin

(
ye−x

)
=C. (4)

Here C is a constant. Since z = kπ, k ∈ Z, satisfy the equality (3) for C = 0, then the
solutions of the considered equations are given by (4).

Exercise 2.0.72. Let

T̂ (x) = ex, X1(x) = x3ex, X2(x) = (1− x)(x4 +1)ex, Y1(y) = cosy, Y2(y) = siny.

Determine the equation (1) and find its solutions.

Answer. The equation (1) takes the form

x3 cosz+(x4 +1)sin(z)z′ = 0.

Its solutions are given by

4
√

x4 +1 =C cos
(

ye−x
)
, C = const, y = (2k+1)

π

2
ex, k ∈ Z.

We consider the equation

X̂∧1 (x)×̂Ŷ1(ŷ)+ X̂∧2 (x)×̂Ŷ2(ŷ)×̂
(

ŷ∧(x̂)
)~

= 0, (5)
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which we can rewrite in the form

X1

(
xT̂ (x)

)
T̂ (x)

T̂ (x)
Y1

(
y

T̂ (x)

)
T̂ (x)

+ X2(xT̂ (x))
T̂ (x)

T̂ (x)
Y2

(
y

T̂ (x)

)
T̂ (x)

T̂ (x) y′T̂ (x)−yT̂ ′(x)

T̂ (x)

(
T̂ (x)−xT̂ ′(x)

) = 0 =⇒

X1

(
xT̂ (x)

)
T̂ (x)

Y1

(
y

T̂1(x)

)
+X2

(
xT̂ (x)

)
Y2

(
y

T̂ (x)

)
T̂ (x)

T̂ (x)−xT̂ ′(x)

(
y

T̂ (x)

)′
= 0.

We put z = y
T̂ (x)

. Then we get

X1

(
xT̂ (x)

)
T̂ (x)

Y1(z)+X2

(
xT̂ (x)

) T̂ (x)
T̂ (x)− xT̂ ′(x)

Y2(z)z′ = 0.

In the last equation the variables are separated.

Definition 2.0.73. The equation (5) is said to be separable.

If X2

(
xT̂ (x)

)
Y1(z) 6= 0 in S, then the solution of this exact equation is given by

∫ X1

(
xT̂ (x)

)(
T̂ (x)− xT̂ ′(x)

)
X2

(
xT̂ (x)

)
T̂ 2(x)

dx+
∫ Y2(z)

Y1(z)
dz =C, (6)

where C is a constant. Here both integrals are indefinite and constants of integration have
been absorbed in C.

The equality (6) contains all the solutions of the equation (5) for which
(

T̂ (x)−

xT̂ ′(x)
)

X2

(
xT̂ (x)

)
Y1(z) 6= 0. In fact, when we divide by

(
T̂ (x)− xT̂ ′(x)

)
, X2

(
xT̂ (x)

)
,

Y1(z) we might have lost some solutions, and the ones which are not in (6) for some con-
stant C must be coupled with (6) to obtain all solutions of (5).

Example 2.0.74. Let

T̂ (x) = ex, X1(x) = x2, X2(x) = x, Y1(y) = y2 +1, Y2(y) = y.
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Then

X1

(
xT̂ (x)

)
= x2T̂ 2(x)

= x2e2x,

X2

(
xT̂ (x)

)
= xT̂ (x)

= xex,

X1

(
xT̂ (x)

)
T̂ (x)

Y1(z) = x2e2x

ex (z2 +1)

= x2(z2 +1)ex,

X2

(
xT̂ (x)

)
T̂ (x)

T̂ (x)−xT̂ ′(x)
Y2(z) = xex ex

ex−xex z

= xz
1−x ex.

Then the equation (5) takes the form

x2(z2 +1)ex + x
1−x exzz′ = 0

∣∣∣· 1−x
xex(z2+1) ,x 6= 0, =⇒

x(1− x)dx+ z
z2+1 dz = 0 =⇒

∫
x(1− x)dx+

∫ z
1+z2 dz =C =⇒

1
2 x2− 1

3 x3 + log
√

z2 +1 =C z = y
ex =⇒

−x+ 1
2 x2− 1

3 x3 + log
√

y2 + e2x =C =⇒

−6x+3x2−2x3 + log
(

y2 + e2x
)3

=C,

where C is a constant. Also, x = 0 is a solution to the considered equation.

Exercise 2.0.75. Let

T̂ (x) = x2 +1, X1(x) = x3, X2(x) = x, Y1(y) = y4 +1, Y2(y) = y3.

Determine the equation (5) and find its solutions.
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Solution. We have

X1

(
xT̂ (x)

)
= x3T̂ 3(x)

= x3(x2 +1)3,

X2

(
xT̂ (x)

)
= xT̂ (x)

= x(x2 +1),

X1

(
xT̂ (x)

)
T̂ (x)

Y1(z) =
x3(x2+1)3

x2+1 (z4 +1)

= x3(x2 +1)2(z4 +1),

X2

(
xT̂ (x)

)
T̂ (x)

T̂ (x)−xT̂ ′(x)
Y2(z) = x(x2 +1)2 x2+1

x2+1−2x2 z3

= x(x2+1)2

1−x2 z3.

Then the equation (5) takes the form

x3(x2 +1)2(z4 +1)+ x(x2+1)2

1−x2 z2z′ = 0
∣∣∣· 1−x2

x(x2+1)2(z4+1) ,x 6= 0, =⇒

x2(1− x2)+ z3

1+z4 z′ = 0 =⇒

∫
x2(1− x2)dx+

∫ z3

1+z4 dz =C =⇒

1
3 x3− 1

5 x5 + 1
4 log(z4 +1) =C, z = y

x2+1 , =⇒

20x3−12x5 +15log y4+(x2+1)4

(x2+1)4 =C,

where C is a constant. Also, x = 0 is a solution.

Exercise 2.0.76. Let

T̂ (x) = x2 +1, X1(x) = x, X2(x) = 2x, Y1(y) = ey, Y2(y) = e2y.

Determine the equation (5) and find its solutions.

Answer. The equation (5) takes the form

xez +2
x(x2 +1)

1− x2 e2zz′ = 0.

Its solutions are given by
2arctanx− x+2e

y
x2+1 =C,
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where C is a constant. Also, x = 0 is a solution.

We consider the equation

X̂1(x̂)×̂Ŷ1(ŷ)+ X̂2(x̂)×̂Ŷ2(ŷ)×̂
(

ŷ∧(x̂)
)~

= 0, (7)

which we can rewrite into the following form

X1

(
x

T̂ (x)

)
T̂ (x)

T̂ (x)
Y1

(
y

T̂ (x)

)
T̂ (x)

+
X2

(
x

T̂ (x)

)
T̂ (x)

T̂ (x)
Y2

(
y

T̂ (x)

)
T̂ (x)

T̂ (x) T̂ (x)
T̂ (x)−xT̂ ′(x)

y′T̂ (x)−yT̂ ′(x)
T̂ 2(x)

= 0 =⇒

1
T̂ (x)

X1

(
x

T̂ (x)

)
Y1

(
y

T̂ (x)

)
+ T̂ (x)

T̂ (x)−xT̂ ′(x)
X2

(
x

T̂ (x)

)
Y2

(
y

T̂ (x)

)(
y

T̂ (x)

)′
= 0.

We put y
T̂ (x)

= z and we get

1
T̂ (x)

X1

( x
T̂ (x)

)
Y1(z)+

T̂ (x)
T̂ (x)− xT̂ ′(x)

X2

( x
T̂ (x)

)
Y2(z)z′ = 0,

in which the variables are separable.

Definition 2.0.77. The iso-differential equation (7) is said to be called separable.

If X2

(
x

T̂ (x)

)
Y1(z) 6= 0 in S, then the solution of this exact equation is given by

∫ X1

(
x

T̂ (x)

)
X2

(
x

T̂ (x)

) 1
T̂ 2(x)

(
T̂ (x)− xT̂ ′(x)

)
dx+

∫ Y2(z)
Y1(z)

dz =C (8)

where C is a constant. The equation (8) contains all the solutions of the equation (7) for
which X2

(
x

T̂ (x)

)(
T̂ (x)− xT̂ ′(x)

)
Y1(z) = 0. In fact, when we divide the equation (7) by

X2

(
x

T̂ (x)

)
, T̂ (x)− xT̂ ′(x), Y1(z) we might have lost some solutions, and the ones which are

not in (8) for some constant C must be coupled with (8) to obtain all solutions of (7).
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Example 2.0.78. Let T̂ (x) = ex, X1(x) = X2(x) = x, Y1(y) = cosy, Y2(y) = siny. Then

X1

(
x

T̂ (x)

)
= X2

(
x

T̂ (x)

)
= x

T̂ (x)

= xe−x,

1
T̂ (x)

X1

(
x

T̂ (x)

)
Y1(z) = 1

T̂ (x)
x

T̂ (x)
cosz

= xe−2x cosz,

T̂ (x)
T̂ (x)−xT̂ ′(x)

X2

(
x

T̂ (x)

)
Y2(z) =

T̂ (x)
T̂ (x)−xT̂ ′(x)

x
T̂ (x)

sinz

= x
T̂ (x)−xT̂ ′(x)

sinz

= x
ex−xex sinz

= xe−x

1−x sinz.

The equation (7) takes the form

xe−2x cosz+ xe−x

1−x sinzz′ = 0
∣∣∣ (1−x)ex

xcosz , x 6= 0,1,z 6= (2k+1)π

2 , k ∈ Z, =⇒

e−x(1− x)dx+ sinz
cosz dz = 0.

Therefore, when x 6= 0,1, z 6= (2k+1)π

2 , k ∈ Z, the solution is given by∫
e−x(1− x)dx+

∫ sinz
cosz dz =C =⇒

−
∫
(1− x)de−x−

∫ d(cosz)
cosz =C =⇒

−(1− x)e−x−
∫

e−xdx− log |cosz|=C =⇒

xe−x− log
∣∣∣cos

(
ye−x

)∣∣∣=C,

where C is a constant. We note, that x = 0, y = (2k+ 1)π

2 ex, k ∈ Z, are solutions to the
considered equation.

Exercise 2.0.79. Let T̂ (x) = ex, X1(x) = x2, X2(x) = x, Y1(y) = y2 +1, Y2(y) = 2y. Deter-
mine the equation (7) and find its solutions.

Answer. The equation (7) takes the form

x2(z2 +1)e−3x +2
xz

1− x
e−xz′ = 0.
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Its solutions are given by

x2e−2x + log
(

y2 + e2x
)2

=C,

where C is a constant. Also, x = 0 is a solution.

Exercise 2.0.80. Prove that the solutions of the equation

X∧1 (x)×̂Ŷ1(ŷ)+X∧2 (x)×̂Ŷ2(ŷ)×̂
(

ŷ∧(x̂)
)~

= 0

are given by (6) in the case when X2

(
xT̂ (x)

)
Y1(z)

(
T̂ (x)− xT̂ ′(x)

)
6= 0.

Exercise 2.0.81. Prove that the solutions of the equation

X∨1 (x)×̂Ŷ1(ŷ)+X∨2 (x)×̂Ŷ2(ŷ)×̂
(

ŷ∧(x̂)
)~

= 0

are given by (8) in the case when X2

(
x

T̂ (x)

)
Y1(z)

(
T̂ (x)− xT̂ ′(x)

)
6= 0.

We consider the equation

X̂∧1 (x̂)×̂Ŷ1(ŷ∧)+ X̂∧2 (x̂)×̂Ŷ2(ŷ∧)×̂
(

ŷ∧(x)
)~

= 0, (9)

which we can rewrite in the form

X1(x)
T̂ (x)

T̂ (x)
Y1

( y

(
xT̂ (x)

)
T̂ (x)

)
T̂ (x)

+X2(x)
T̂ (x)

T̂ (x)
Y2

( y

(
xT̂ (x)

)
T̂ (x)

)
T̂ (x)

y′
(

xT̂ (x)

)(
T̂ (x)+xT̂ ′(x)

)
T̂ (x)−y

(
xT̂ (x)

)
T̂ ′(x)

T̂ (x)

(
T̂ (x)−xT̂ ′(x)

) = 0

or

X1(x)
T̂ (x)

Y1

( y

(
xT̂ (x)

)
T̂ (x)

)
+X2(x)

T̂ (x)
T̂ (x)−xT̂ ′(x)

Y2

( y

(
xT̂ (x)

)
T̂ (x)

)
d
dx

( y

(
xT̂ (x)

)
T̂ (x)

)
= 0.

We put z =
y

(
xT̂ (x)

)
T̂ (x)

. Then the equation (9) admits the form

X1(x)
T̂ (x)

Y1(z)+X2(x)
T̂ (x)

T̂ (x)− xT̂ ′(x)
Y2(z)dx = 0,

in which the variables are separated.

Definition 2.0.82. The iso-differential equation (9) is said to be separable.



58 Svetlin Georgiev

If T̂ (x)− xT̂ ′(x) 6= 0, X2(x) 6= 0, Y1(z) 6= 0 in S, then the solutions of the equation (9)
are given by ∫ X1(x)

(
T̂ (x)− xT̂ ′(x)

)
X2(x)T̂ 2(x)

dx+
∫ Y2(z)

Y1(z)
dz =C, (10)

where C is a constant. Here both integrals are indefinite and constants of integration have
been absorbed in C.

In fact, when we divide by T̂ (x)− xT̂ ′(x), X2(x) and Y1(z) might have lost some solu-
tions of (9), and the ones which are not in (10) for some constant C must be coupled with
(10) to obtain all solutions of (9).

Exercise 2.0.83. Prove that the solutions of the following iso-differential equation

X̂∧1 (x̂)×̂Y1(ŷ∧)+ X̂∧2 (x̂)×̂Ŷ2(ŷ∧)×̂
(

ŷ∧(x)
)~

= 0

are given by ∫ X1(x)
(

T̂ (x)− xT̂ ′(x)
)

X2(x)T̂ (x)
dx+

∫ Y2(z)
Y1(z)

dz =C,

where C is a constant, in the case when X2(x) 6= 0, T̂ (x)− xT̂ ′(x) 6= 0, Y1(z) 6= 0 in S.

We consider the equation

X̂∧1 (x̂)×̂Ŷ1(y∧)+ X̂∧2 (x̂)×̂Ŷ2(y∧)×̂
(

y∧(x)
)~

= 0, (11)

which we can rewrite in the form

X1(x)
T̂ (x)

T̂ (x)
Y1

(
xT̂ (x)

)
T̂ (x)

+X2(x)
T̂ (x)

T̂ (x)
Y2

(
y

(
xT̂ (x)

))
T̂ (x)

T̂ (x)
y′
(

xT̂ (x)

)
T̂ (x)

(
T̂ (x)+xT̂ ′(x)

)
T̂ (x)−xT̂ ′(x)

= 0

or

X1(x)
T̂ (x)

Y1

(
y
(

xT̂ (x)
))

+X2(x)
T̂ (x)

(
T̂ (x)+xT̂ ′(x)

)
T̂ (x)−xT̂ ′(x)

Y2

(
y
(

xT̂ (x)
))

y′
(

xT̂ (x)
)
= 0.

We put y
(

xT̂ (x)
)
= z. Then the equation (11) admits the following representation

X1(x)
T̂ (x)

Y1(z)dx+
X2(x)T̂ (x)

T̂ (x)− xT̂ ′(x)
Y2(z)dz = 0,

in which the variables are separated.

Definition 2.0.84. The iso-differential equation (11) is said to be separable.
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When T̂ (x)− xT̂ ′(x) 6= 0, X2(x) 6= 0, Y1(z) 6= 0 in S, then the solutions of the iso-
differential equation are given by

∫ X1(x)
(

T̂ (x)− xT̂ ′(x)
)

X2(x)T̂ 2(x)
dx+

∫ Y2(z)
Y1(z)

dz =C, (12)

where C is a constant. In fact, when we divide by T̂ (x)− xT̂ ′(x), X2(x) and Y1(z) we might
have lost some solutions of the equation (11), and the ones which are not in (12) for some
constant C must be coupled with (12) to obtain all solutions of (11).

Exercise 2.0.85. Prove that the solutions of the equation

X̂∧1 (x̂)×̂Y1(y∧)+ P̂X∧2 (x̂)×̂Y2(y∧)×̂
(

y∧(x)
)~

= 0

are given by ∫ X1(x)
(

T̂ (x)− xT̂ ′(x)
)

X2(x)T̂ (x)
dx+

∫ Y2(z)
Y1(z)

dz =C,

where C is a constant, in the case when T̂ (x)− xT̂ ′(x) 6= 0, X2(x) 6= 0 and Y1(z) 6= 0 in S.

We consider the following iso-differential equation

X̂∧1 (x̂)×̂Ŷ1(y∨)×̂Ŷ1(y∨)+ X̂∧2 (x̂)×̂Ŷ2(y∨)
(

y∨(x)
)~

= 0, (13)

which we can rewrite in the form
X1(x)
T̂ (x)

T̂ (x)Y1(y∨)
T̂ (x)

+ X2(x)
T̂ (x)

T̂ (x)Y2(y∨)
T̂ (x)

d̂y∨(x)↗ d̂x̂ = 0,

or

X1(x)
T̂ (x)

Y1(y∨)+
X2(x)
T̂ (x)

Y2(y∨) 1
T̂ (x)

d̂y∨(x)
d̂x̂

= 0,

or

X1(x)
T̂ (x)

Y1(y∨)+
X2(x)
T̂ (x)

Y2(y∨) 1
T̂ (x)

T̂ (x)dy∨(x)
T̂ (x)dx̂

= 0,

or

T̂ (x)X1(x)Y1(y∨)+X2(x)Y2(y∨)
dy∨(x)

dx̂ = 0,

or

T̂ (x)X1(x)Y1(y∨)dx̂+X2(x)Y2(y∨)dy∨(x) = 0,

or

X1(x)
T̂ (x)−xT̂ ′(x)

T̂ (x)
Y1(y∨)dx+X2(x)Y2(y∨)dy∨ = 0.
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We put z = y∨(x). Then we obtain the following representation of the iso-differential equa-
tion (13)

X1(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
Y1(z)dx+X2(x)Y2(z)dz = 0,

in which the variables are separated.

Definition 2.0.86. The equation (13) is said to be separable.

In the case when T̂ (x)− xT̂ ′(x) 6= 0, X2(x) 6= 0 and Y1(z) 6= 0 in S, the solutions of the
equation (13) are given by

∫ X1(x)
(

T̂ (x)− xT̂ ′(x)
)

X2(x)T̂ (x)
dx+

∫ Y2(z)
Y1(z)

dz =C, (14)

where C is a constant. Here both integrals are indefinite and constants of integration have
been absorbed in C.

In fact, when we divide by T̂ (x)− xT̂ ′(x), X2(x) and Y1(z) we might have lost some of
the solutions of (13), and the ones which are not in (14) for some constant C should be
coupled with (14) to obtain all solutions of (13).

Exercise 2.0.87. Prove that the solutions of the equation

X̂1(x̂)Ŷ1(y∨)+ X̂2(x̂)×̂Ŷ2(y∨)
(

y∨(x)
)~

= 0

are given by ∫ X1(x)
(

T̂ (x)− xT̂ ′(x)
)

X2(x)T̂ 2(x)
dx+

∫ Y2(z)
Y1(z)

dz =C,

where C is a constant, in the case when T̂ (x)− xT̂ ′(x) 6= 0, X2(x) 6= 0, Y1(z) 6= 0 in S.

Now we consider the equation

X̂∧1 (x̂)×̂Ŷ1(ŷ(x̂))+ X̂∧2 (x̂)×̂Ŷ2(ŷ(x̂))×̂
(

ŷ(x̂)
)~

= 0, (15)

which we can rewrite in the following form
X1(x)
T̂ (x)

Y1(ŷ(x̂))
T̂ (x)

+ X2(x)
T̂ (x)

T̂ (x)Y2(ŷ(x̂))
T̂ (x)

T̂ (x)d̂ŷ(x̂)↗ d̂x̂ = 0,

or

X1(x)
T̂ (x)

Y1(ŷ(x̂))+
X2(x)
T̂ (x)

Y2(ŷ(x̂)) 1
T̂ (x)

d̂ŷ(x̂)
d̂x̂

= 0,

or

X1(x)
T̂ (x)

Y1(ŷ(x̂))dx̂+X2(x)Y2(ŷ(x̂))dŷ(x̂) = 0,

or

X1(x)
T̂ (x)−xT̂ ′(x)

T̂ (x)
Y1(ŷ(x̂))dx+X2(x)Y2(ŷ(x̂))dŷ(x̂) = 0.
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We put z = ŷ(x̂). Then the equation (15) admits the following representation

X1(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
Y1(z)dx+X2(x)Y2(z)dz = 0,

which is an equation with separated variables.

Definition 2.0.88. The equation (15) is said to be separable.

When T̂ (x)− xT̂ ′(x) 6= 0, X2(x) 6= 0 and Y1(z) 6= 0 in S, then the solutions of the iso-
differential equation (15) are given by

∫ X1(x)
(

T̂ (x)− xT̂ ′(x)
)

X2(x)T̂ (x)
dx+

∫ Y2(z)
Y1(z)

dz =C, (16)

where C is a constant. Here both integrals are indefinite integrals and constants of integra-
tion have been absorbed in C.

In fact, when we divide by T̂ (x)− xT̂ ′(x), X2(x) and Y1(z) we might have lost some of
the solutions of (15), and the ones which are not (16) for some constant C must be coupled
with (16) to obtain all solutions of (15).

Exercise 2.0.89. Prove that the solutions of the equation

X̂∧1 (x̂)Ŷ1(ŷ(x̂))+ X̂∧2 (x̂)×̂Ŷ2(ŷ(x̂))×̂
(

ŷ(x̂)
)~

= 0

are given by ∫ X1(x)
(

T̂ (x)− xT̂ ′(x)
)

X2(x)T̂ 2(x)
dx+

∫ Y2(z)
Y1(z)

dz =C,

where C is a constant, in the case when T̂ (x)− xT̂ ′(x) 6= 0, X2(x) 6= 0 and Y1(z) 6= 0 in S.

Now we consider the equation

M(x, ŷ)+ N̂(x, ŷ)×̂(x̂)′×̂
(

ŷ∧∧
)~

= 0, (17)

where M(x, ŷ) and N(x, ŷ) are homogeneous functions of the same degree, say, n.

Definition 2.0.90. The iso-differential equation (17) is said to be homogeneous.

The equation (17) we can rewrite in the following form

M(x, ŷ)+
N(x, ŷ)
T̂ (x)

T̂ (x)
T̂ (x)− xT̂ ′(x)

T̂ 2(x)

(
ŷ
)′ T̂ (x)

T̂ (x)− xT̂ ′(x)
= 0

or
M(x, ŷ)+N(x, ŷ)

(
ŷ
)′

= 0.

We put ŷ = z and we get
M(x,z)+N(x,z)z′ = 0.
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Using that M(x,z) and N(x,z) are homogeneous functions of degree n, from the last equa-
tion we find

xnM
(

1,
z
x

)
+ xnN

(
1,

z
x

)
z′ = 0. (18)

In (18) we use the substitution z(x) = xv(x) and we find

xnM(1,v)+ xnN(1,v)(v+ xv′) = 0

or
xn
(

M(1,v)+ vN(1,v)
)
+ xn+1N(1,v)v′ = 0. (19)

In this way we reduce the equation (17) to a separable equation. The equation (19) admits
the integrating factor

µ =
1

xn+1
(

M(1,v)+ vN(1,v)
) =

1
xM(x, ŷ)+ yN(x, ŷ)

(20)

provided xM(x, ŷ)+ yN(x, ŷ) 6= 0.

Exercise 2.0.91. Prove that (20) is an integrating factor for the equation (19).

The vanishing of xM(1,v)+ yN(1,v) implies that (19) is simply

xn+1N(1,v)v′ = xN(x, ŷ)v′ = 0,

for which the integrating factor is 1
xN(x,ŷ) . Thus, in this case the general solution of (17) is

ŷ(x) =Cx or y(x) =CxT̂ (x),

where C is a constant.

Example 2.0.92. Let T̂ (x) = ex, M(x,y) =−x2− xy− y2, N(x,y) = x2, x 6= 0. Then

M(x, ŷ) =−x2− xŷ− ŷ2, N(x, ŷ) = x2.

The equation (17) takes the form

−x2− xŷ− ŷ2 + x2
(

ŷ
)′

= 0.

We put z = ŷ and we get
−x2− xz− z2 + x2z′ = 0

or

z′ =
x2 + xz+ z2

x2 = 1+
z
x
+
( z

x

)2
.

Let v = z
x . Therefore

z = xv, z′ = xv′+ v
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and
v′x+ v = 1+ v+ v2 =⇒

xv′ = 1+ v2 =⇒

dv
1+v2 =

dx
x =⇒

arctanv = log |x|+C =⇒

arctan
(

y
xex

)
= log |x|+C

is the general solution of the considered equation. Here C is a constant.

Exercise 2.0.93. Let T̂ (x) = ex, M(x,y) = −y− xe
y
x , N(x,y) = x, x 6= 0. Find the general

solution of the equation (17).

Answer.
e−

y
xex + log |x|=C,

where C is a constant.
Now we suppose that the functions M(x,y) and N(x,y) in (17) satisfy the condition

−M(x,y)
N(x,y)

= f
(a1x+b1y+ c1

a2x+b2y+ c2

)
in which a1, a2, b1, b2, c1 and c2 are constants. If c1 and c2 are not both zero, then it can be
converted to a homogeneous equation by means of the transformation

x = u+h, y = v+ k,

where h and k are the solutions of the system of simultaneous linear equations

a1h+b1k+ c1 = 0

a2h+b2k+ c2 = 0.
(20′)

and the resulting homogeneous equation

dv
du

= f
(a1u+b1v

a2u+b2v

)
can be solved easily.

However, the system (20′) can be solved for h and k provided

∆ = a1b2−a2b1 6= 0.

If ∆ = 0, then a1x+b1y is proportional to a2x+b2y, and hence (17) is of the form

z′ = f (αx+βz),

which can be solved easily by using the substitution

αx+βz = q.



64 Svetlin Georgiev

Example 2.0.94. Let T̂ (x) = x2 +1,

M(x,y)
N(x,y)

=− 2x+3y
3x+2y+4

.

Then the equation (17) we can represent in the form

z′ =
2x+3z

3x+2z+4
. (21)

We put
x = u+h, z = v+ k,

where h and k satisfy the system

2h+3k = 0

3h+2k+4 = 0
=⇒

h =−3
2 k

3h+2k+4 = 0
=⇒

h =−13
5

k = 8
5 .

From here,
x = u− 13

5

z = v+ 8
5

=⇒
u = x+ 13

5

v = z− 8
5 = y

x2+1 −
8
5 .

Then the equation (21) admits the representation

v′ =
2u+3v
3u+2v

.

We set
v
u
= q or v = qu,

whereupon
v′ = q′u+q

and

q′u+q =
2+3q
3+2q

or

q′u =
2−2q2

3+2q
. (22)

Therefore
3+2q

2(1−q2)
dq =

du
u
, q 6=±1.

From here, for q 6=±1, ∫ 3+2q
2(1−q2)

dq =
∫ du

u
+C1.
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Consequently, for q 6=±1,

−5
4 log |1−q|+ 1

4 log |1+q|= log |u|+C1 =⇒

log 1
|1−q|5 + log |1+q|= logu4 +C2, C2 = 4C1, =⇒

1+q =C3u4(1−q)5, C3 = eC2sign(1−q), =⇒

u+ v =C3(u− v)5 =⇒

x+1+ y
x2+1 =C3

(
x+ 21

5 −
y

x2+1

)5
.

Here C1 is a constant.
Also, q =±1 are solutions of (22), therefore

x+1+
y

x2 +1
= 0, x− y

x2 +1
+

21
5

= 0

are solutions of the considered equation (17).
Consequently the solutions of the considered equation (17) are given by

x+1+ y
x2+1 =C3

(
x+ 21

5 −
y

x2+1

)5
,

x+1+ y
x2+1 = 0, x− y

x2+1 +
21
5 = 0.

Example 2.0.95. Let T̂ (x) = ex,

M(x,y)
N(x,y)

=− x+ y
3x+3y+2

.

Then the equation (17) we can represent in the following form

z′ =
x+ z

3x+3z+2
.

Since
(x,z) = 3(x,z),

we set
u = x+ z,

whereupon
z′ = u′−1

and
u′−1 =

u
3u+1

or
u′ =

1+4u
1+3u

. (23)
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For u 6=−1
4 we get

1+3u
1+4u du = dx =⇒

∫ 1+3u
1+4u du =

∫
dx+C1 =⇒

3
4 u+ 1

16 log |1+4u|= x+C1 =⇒

12u+ log |1+4u|= 16x+C2, C2 = 16C1

or
12
(

x+ ye−x
)
+ log

∣∣∣1+4
(

x+ ye−x
)∣∣∣= 16x+C2

is a solution of the equation (17). Here C1 is a constant.
Also, u =−1

4 is a solution to the equation (23), therefore

1+4
(

x+ ye−x
)
= 0

is a solution of the equation (17).
Consequently, the solutions of the equation (17) are given by

12
(

x+ ye−x
)
+ log

∣∣∣1+4
(

x+ ye−x
)∣∣∣= 16x+C, 1+4

(
x+ ye−x

)
= 0,

where C is a constant.

Exercise 2.0.96. Let T̂ (x) = ex,

M(x,y)
N(x,y)

=−1
2

(x+ y−1
x+2

)2
.

Find the general solution of the equation (17).

Answer.
2tan−1 y−3ex

xex +2ex = log |x+2|+C,

where C is a constant.

Exercise 2.0.97. Let T̂ (x) = ex,

M(x,y)
N(x,y)

=− x+ y+1
2x+2y+1

.

Find the general solution of (17).

Answer.
x+2ye−x + log |x+ ye−x|=C, x+ ye−x = 0,

where C is a constant.
Sometimes, it is possible to introduce a new set of variables given by the equations

u = φ(x,y), v = ψ(x,y), (24)
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which convert a given iso-differential equation into a form that can be solved rather easily.
We assume that

∂(u,v)
∂(x,y)

6= 0

over a region in R2, which implies that there is no functional relationship between u and
v. Thus, if (u0,v0) is the image of (x0,y0) under the transformation (24), then it can be
uniquely solved for x and y in a neighborhood of the point (x0,y0). This leads to the inverse
transformation

x = x(u,v), y = y(u,v). (25)

The relations (24) and (25) can be used to convert some iso-differential equation in terms
of u and v, which hopefully can be solved explicitly. Finally, replacement of u and v in
terms of x and y by using (24) leads to an implicit solution of the considered iso-differential
equation.

Example 2.0.98. Let T̂ (x) = ex,

M(x,y)
N(x,y)

=− 3x5

y(y2− x3)
.

The equation (17) takes the following form

z′ =
3x5

z(z2− x3)
. (26)

Let
u = x3, v = z2.

We have

∂(u,v)
∂(x,z)

= det
(

∂u
∂x

∂v
∂x

∂u
∂z

∂v
∂z

)
= det

(
3x2 0
0 2z

)
6= 0 in R2\{(0,0)}.

Also, we have
v′(u) = dv

du = dz2

dx3 =
2zdz

3x2dx =
2z
3x2 z′,

z′ = 3x2

2z v′.

From here and (26) we obtain
2z
3x2 z′ =

2x3

z2− x3

or
v′ =

2u
v−u

=
2

v
u −1

. (27)

We set v
u
= q or v = qu,

whereupon
v′ = q′u+q.
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From the last expression and (27) we get

q′u+q =
2

q−1
,

and

q′u =−q2−q−2
q−1

(28)

and for u 6= 0, q 6= 1,2,

q−1
(q−2)(q+1)dq =−du

u =⇒

∫ q−1
(q−2)(q+1)dq =−

∫ du
u +C1 =⇒

2
3 log |q+1|+ 1

3 log |q−2|=− log |u|+C1 =⇒

log
(
(q+1)2|q−2|

)
=−3log |u|+C2, C2 = 3C1, =⇒

(q+1)2(q−2)u3 =C3, C3 = eC2sign((q−2)u) =⇒(
y2e−2x + x3

)2(
y2e−2x−2x3

)
=C3

is a solution of (17), where C1 is a constant.
Also, q =−1,2 are solutions of (28), from where

y2e−2x + x3 = 0, y2e−2x−2x3 = 0

are solutions of the equation (17).
Consequently, the solutions of the equation (17) are given by(

y2e−2x + x3
)2(

y2e−2x−2x3
)
=C,

where C is a constant.

Exercise 2.0.99. Let T̂ (x) = ex,

M(x,y)
N(x,y)

=
2x+ y
x+5y

.

Find the solutions of (17) using the transformation

u = x− z, v = x+2z.

Answer.
2x2 +2xye−x +5y2e−2x =C,

where C is a constant.
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Exercise 2.0.100. Let T̂ (x) = ex,

M(x,y)
N(x,y)

=
x+2y
y−2x

.

Find the solutions of the equation (17) using the transformation

x = r cosθ, z = r sinθ,

where z = ŷ.

Answer. √
x2 + y2e−2x =Ce2tan−1 ye−x

x ,

where C is a constant.

Advanced Practical Exercises

Problem 2.0.101. Let

T̂ (x) = ex, X1(x) = (x2−1)(x+2)ex, X2(x) =−(x−1)2, Y1(y) = y2+1, Y2(y) = y.

Determine the equation (1) and find its solutions.

Answer. The equation (1) takes the form

(x2−1)(x+2)(z2 +1)+(x−1)zz′ = 0.

Its solutions are given by

2x3 +9x2 +6log
(

y2 + e2x
)
=C, x = 1,

where C is a constant.

Problem 2.0.102. Let

T̂ (x) = ex, X1(x) = X2(x) = x, Y1(y) = y6 +1, Y2(y) = y5.

Determine the equation (5) and find its solution.

Answer. The equation (5) takes the form

x(z6 +1)+
xex

1− x
z5z′ = 0.

Its solutions are given by

6x
(

e−x−1
)
+ log

(
y6 + e6x

)
=C,

where C is a constant. Also, x = 0 is a solution.
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Problem 2.0.103. Let T̂ (x) = ex, X1(x) =X2(x) = x, Y1(y) = y3+1, Y2(y) = 1
3 y2. Determine

the equation (7) and find its solutions.

Answer. The equation (7) takes the form

x(z3 +1)e−2x +
1
3

xz2

1− x
e−xz′ = 0.

Its solutions are given by

xe−x + log
∣∣∣y3 + e3x

∣∣∣=C,

where C is a constant. Also, x = 0 and y =−ex are its solutions.

Problem 2.0.104. Prove that the solutions of the equation

X̂∧1 (x̂)×̂Ŷ1(ŷ)+ X̂∧2 (x̂)×̂Y2(ŷ)×̂
(

ŷ∧(x̂)
)~

= 0

are given by ∫ X1(x)
X2(x)

T̂ (x)− xT̂ ′(x)
T̂ 3(x)

dx+
∫ Y2(z)

Y1(z)
dz =C,

where C is a constant, in the case when X2(x)
(

T̂ (x)− xT̂ ′(x)
)

Y1(z) 6= 0.

Problem 2.0.105. Prove that the solutions of the equation

X̂1(x̂)Ŷ1(ŷ)+X2(x)×̂Y2(ŷ)×̂
(

ŷ∧(x̂)
)~

= 0

are given by ∫ X1

(
x

T̂ (x)

)
X2(x)

T̂ (x)− xT̂ ′(x)
T̂ 5(x)

dx+
∫ Y2(z)

Y1(z)
dz =C,

where C is a constant, in the case when X2(x)
(

T̂ (x)− xT̂ ′(x)
)

Y1(z) 6= 0.

Problem 2.0.106. Prove that the solutions of the following iso-differential equation

X̂∧1 (x̂)Y1(ŷ∧)+ X̂∧2 (x̂)×̂Ŷ2(ŷ∧)×̂
(

ŷ∧(x)
)~

= 0

are given by ∫ X1(x)
(

T̂ (x)− xT̂ ′(x)
)

X2(x)T̂ 2(x)
dx+

∫ Y2(z)
Y1(z)

dz =C,

where C is a constant, in the case when X2(x) 6= 0, T̂ (x)− xT̂ ′(x) 6= 0, Y1(z) 6= 0 in S. Here
z = ŷ∧(x).
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Problem 2.0.107. Prove that the solutions of the equation

X̂∧1 (x̂)Y1(y∧)+ X̂∧2 (x̂)×̂Y2(y∧)×̂
(

y∧(x)
)~

= 0

are given by ∫ X1(x)
(

T̂ (x)− xT̂ ′(x)
)

X2(x)T̂ 2(x)
dx+

∫ Y2(z)
Y1(z)

dz =C,

where C is a constant, T̂ (x)− xT̂ ′(x) 6= 0, X2(x) 6= 0 and Y1(z) 6= 0 in S. Here z = y∧(x).

Problem 2.0.108. Prove that the solutions of the equation

X∨1 (x̂)Ŷ1(y∨)+ X̂∨2 (x̂)×̂Ŷ2(y∨)
(

y∨(x)
)~

= 0

are given by ∫ X1(x)(
(

T̂ (x)− xT̂ ′(x)
)

X2(x)T̂ (x)
dx+

∫ Y2(z)
Y1(z)

dz =C,

where C is a constant, in the case when T̂ (x)− xT̂ ′(x) 6= 0, X2(x) 6= 0 and Y1(z) 6= 0 in S.
Here z = y∨(x).

Problem 2.0.109. Prove that the solutions of the equation

X̂∧1 (x)Ŷ1(ŷ(x̂))+ X̂∧2 (x̂)×̂Ŷ2(ŷ(x̂))×̂
(

ŷ(x̂)
)~

= 0

are given by ∫ X1

(
xT̂ (x)

)(
T̂ (x)− xT̂ ′(x)

)
X2(x)T̂ 2(x)

dx+
∫ Y2(z)

Y1(z)
dz =C,

where C is a constant, in the case when T̂ (x)− xT̂ ′(x) 6= 0, X2(x) 6= 0 and Y1(z) 6= 0 in S.
Here z = ŷ(x̂).

Problem 2.0.110. Let T̂ (x) = x2 +1, M(x,y) =−y− xsin y−x
x , N(x,y) = x, x 6= 0. Find the

general solution of the equation (17).

Answer.

tan
y− x3− x
2x3 +2x

=Cx,

where C is a constant.

Problem 2.0.111. Let T̂ (x) = ex,

M(x,y)
N(x,y)

=− 3x− y−5
−x+3y+7

.

Find the general solution of (17).
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Answer. (
x+ ye−x +1

)2(
ye−x− x+3

)
=C,

where C is a constant.

Problem 2.0.112. Let T̂ (x) = ex,

M(x,y)
N(x,y)

=−(2x2 +3y2−7)x
(3x2 +2y2−8)y

.

Find the solutions of the equation (17) using the transformation

u = x2, v = z2,

where z = ŷ.

Answer. (
x2− y2e−2x−1

)5
=C

(
x2 + y2e−2x−3

)
,

where C is a constant.



Chapter 3

First-Order Linear Equations

In this chapter we will suppose that

T̂ ∈ C 1(R), T̂ (x)> 0 for ∀x ∈ R. (1)

Let also, J be an interval in R.
We consider the equation(

ŷ∧∧
)~

= â∧(x̂)×̂ŷ∧∧+ b̂∧(x̂), (2)

where the functions a,b ∈ C (J).
The equation (2) we can rewrite in the following form

y′(x)T̂ (x)−y(x)T̂ ′(x)

T̂ (x)

(
T̂ (x)−xT̂ ′(x)

) = a(x)
T̂ (x)

T̂ (x) y(x)
T̂ (x)

+ b(x)
T̂ (x)

,

or
y′(x)T̂ (x)− y(x)T̂ ′(x)

T̂ (x)− xT̂ ′(x)
= a(x)y(x)+b(x),

or
y′(x)T̂ (x)− y(x)T̂ ′(x) = a(x)

(
T̂ (x)− xT̂ ′(x)

)
y(x)+b(x)

(
T̂ (x)− xT̂ ′(x)

)
,

or
y′(x)T̂ (x) =

(
a(x)

(
T̂ (x)− xT̂ ′(x)

)
+ T̂ ′(x)

)
y(x)+b(x)

(
T̂ (x)− xT̂ ′(x)

)
,

or

y′(x) =
(

a(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
+

T̂ ′(x)
T̂ (x)

)
y(x)+b(x)

T̂ (x)− xT̂ ′(x)
T̂ (x)

. (3)

Definition 3.0.113. The equation (2) will be called first-order linear iso-differential equa-
tion.

The corresponding homogeneous equation

y′(x) =
(

a(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
+

T̂ ′(x)
T̂ (x)

)
y(x) (4)



74 Svetlin Georgiev

obtained by taking b(x) = 0 in (2)can be solved by separating the variables, i.e.,

dy
y

=
(

a(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
+

T̂ ′(x)
T̂ (x)

)
dx

and now integrating it to obtain

y(x) =Ce
∫(

a(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

+ T̂ ′(x)
T̂ (x)

)
dx
, (5)

where C is a constant.
In dividing (4) by y we have lost the solution y(x)≡ 0, which is called trivial solution.

However, it is included in (5) with C = 0.
If x0 ∈ J, then the function

y(x) = y0e
∫ x

x0

(
a(t) T̂ (t)−tT̂ ′(t)

T̂ (t)
+ T̂ ′(t)

T̂ (t)

)
dt

clearly satisfies the equation (3) in J and passes through the point (x0,y0). Thus, if it is the
solution of the initial value problem (4), (6), where

y(x0) = y0. (6)

To find the solution of the iso-differential equation (2) we shall use the method of
variation of parameters due to Lagrange. In (5) we assume that C is a function of x, i.e.,

y(x) =C(x)e
∫(

a(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

+ T̂ ′(x)
T̂ (x)

)
dx

(7)

and search for C(x) so that (7) becomes a solution of the iso-differential equation (2). For
this, substituting (7) in (3) we find

C′(x)e
∫(

a(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

+ T̂ ′(x)
T̂ (x)

)
dx
+C(x)

(
a(x) T̂ (x)−xT̂ ′(x)

T̂ (x)
+ T̂ ′(x)

T̂ (x)

)
e
∫(

a(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

+ T̂ ′(x)
T̂ (x)

)
dx

=
(

a(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

+ T̂ ′(x)
T̂ (x)

)
C(x)e

∫(
a(x) T̂ (x)−xT̂ ′(x)

T̂ (x)
+ T̂ ′(x)

T̂ (x)

)
dx
+b(x) T̂ (x)−xT̂ ′(x)

T̂ (x)
,

whereupon

C′(x) = b(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
e
−
∫(

a(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

+ T̂ ′(x)
T̂ (x)

)
dx
.

Then

C(x) =
∫

b(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
e
−
∫(

a(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

+ T̂ ′(x)
T̂ (x)

)
dx

dx+C1,

where C1 is a constant.
Now substituting this C(x) in (7), we find the solution (2) as

y(x) = e
∫(

a(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

+ T̂ ′(x)
T̂ (x)

)
dx(

C1

+
∫

b(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

e
−
∫(

a(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

+ T̂ ′(x)
T̂ (x)

)
dx

dx
) (8)
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Definition 3.0.114. The function (8) will be called the general solution of (2).

From (8) the solution of the initial value problem (2), (6), where x0 ∈ J, is easily
obtained as

y(x) = e
∫ x

x0

(
a(t) T̂ (t)−tT̂ ′(t)

T̂ (t)
+ T̂ ′(t)

T̂ (t)

)
dt(

y0 +
∫ x

x0

b(t)
T̂ (t)− tT̂ ′(t)

T̂ (t)
e
−
∫ t

x0

(
a(s) T̂ (s)−sT̂ ′(s)

T̂ (s)
+ T̂ ′(s)

T̂ (s)

)
ds

dt
)
.

Example 3.0.115. Let T̂ (x) = ex, a(x) = x, b(x) = ex+ x2
2 −

x3
6 . Then

T̂ (x)−xT̂ ′(x)
T̂ (x)

= ex−xex

ex = 1− x,

T̂ ′(x)
T̂ (x)

= ex

ex = 1.

The equation (2) takes the form

y′ =
(

x(1− x)+1
)

y+ ex+ x2
2 −

x3
6 (1− x)

y′ = (1+ x− x2)y+(1− x)ex+ x2
2 −

x3
6 .

Then

y(x) = e
∫(

1+x− x2
2

)
dx(

C+
∫
(1− x)ex+ x2

2 −
x3
6 e
−
∫(

1+x− x2
2

)
dx

dx
)

= ex+ x2
2 −

x3
6

(
C+

∫
(1− x)ex+ x2

2 −
x3
3 e−x− x2

2 + x3
6 dx
)

= ex+ x2
2 −

x3
6

(
C+ x− x2

2

)
,

where C is a constant, is the solution of the considered equation.

Exercise 3.0.116. Let T̂ (x) = ex,

a(x) =
4− x

x(1− x)
, b(x) =− 2x2 +4

x(1− x)
, x 6= 0,1.

Find the solution of (2) for which

lim
x−→1

y(x) = 1.

Answer. y(x) =−x4 + x2 +1.

Exercise 3.0.117. Let a, b ∈ C (J). Prove that

y(x) = e
∫(

a(x) T̂ (x)−xT̂ ′(x)
T̂ 2(x)

+ T̂ ′(x)
T̂ (x)

)
dx(

C

+
∫

b(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

e
−
∫(

a(x) T̂ (x)−xT̂ ′(x)
T̂ 2(x)

+ T̂ ′(x)
T̂ (x)

)
dx

dx
)
,
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where C is a constant, is the general solution to the equation(
ŷ∧∧
)~

= â∧(x̂)ŷ∧∧+ b̂∧(x̂).

Exercise 3.0.118. Let a,b ∈ C (J). Prove that

y(x) = e
∫(

a

(
x

T̂ (x)

)(
T̂ (x)−xT̂ ′(x)

)
+1

)
dx(

C+

∫
b
(

x
T̂ (x)

)(
T̂ (x)− xT̂ ′(x)

)
e
−
∫(

a

(
x

T̂ (x)

)(
T̂ (x)−xT̂ ′(x)

)
+1

)
dx

dx
)

is the general solution to the equation(
ŷ∧∧
)~

= â(x̂)×̂y(x)+ b̂(x̂).

Here C is a constant.

Exercise 3.0.119. Let a,b ∈ C (J). Prove that

y(x) = e
∫(

a(x)

(
T̂ (x)−xT̂ ′(x)

)
+ T̂ ′(x)

T̂ (x)

)
dx(

C

+
∫

b(x)
(

T̂ (x)− xT̂ ′(x)
)

e
−
∫(

a(x)

(
T̂ (x)−xT̂ ′(x)

)
+ T̂ ′(x)

T̂ (x)

)
dx

dx
)
,

where C is a constant, is the general solution to the equation(
ŷ∧∧
)~

= a(x)y(x)+b(x).

Certain nonlinear first-order iso-differential equations can be reduced to linear equa-
tions by an appropriate change of variables. For example, it is always possible for the
iso-Bernoulli equations(

ŷ∧∧
)~

= â∧(x̂)×̂ŷ∧∧+ b̂∧(x̂)×̂
(

ŷ∧∧
)n̂

, (9)

where n ∈ N, n 6= 1. This equation we can rewrite in the following form

y′T̂ (x)− yT̂ ′(x)

T̂ (x)
(

T̂ (x)− xT̂ ′(x)
) = a(x)

y
T̂ (x)

+
b(x)
T̂ (x)

T̂ (x)
yn

T̂ (x)
,

or
y′T̂ (x)− yT̂ ′(x)
T̂ (x)− xT̂ ′(x)

= a(x)y+b(x)yn,

or
y′T̂ (x)− yT̂ ′(x) = a(x)

(
T̂ (x)− xT̂ ′(x)

)
y+b(x)

(
T̂ (x)− xT̂ ′(x)

)
yn,
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or

y′T̂ (x) =
(

a(x)
(

T̂ (x)− xT̂ ′(x)
)
+ T̂ ′(x)

)
y+b(x)

(
T̂ (x)− xT̂ ′(x)

)
yn,

or

y′ =
(

a(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
+

T̂ ′(x)
T̂ (x)

)
y+b(x)

T̂ (x)− xT̂ ′(x)
T̂ (x)

yn. (10)

In (9), the cases n = 0,1 are excluded because in these cases this equation is obviously
linear.

The equation (10) is equivalent to the equation

y−ny′ =
(

a(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
+

T̂ ′(x)
T̂ (x)

)
y1−n +b(x)

T̂ (x)− xT̂ ′(x)
T̂ (x)

. (11)

We put z = y1−n. Then

z′ = (1−n)y−ny′

or

y−ny′ =
z′

1−n
.

From here, the equation (11) admits the following form

z′ = (1−n)
(

a(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
+

T̂ ′(x)
T̂ (x)

)
z+(1−n)b(x)

T̂ (x)− xT̂ ′(x)
T̂ (x)

, (12)

which is a linear iso-differential equation. For the general solution of the equation (12) we
have the following representation

z = e
(1−n)

∫(
a(x) T̂ (x)−xT̂ ′(x)

T̂ (x)
+ T̂ ′(x)

T̂ (x)

)
dx(

C+

(1−n)
∫

b(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

e
(n−1)

∫(
a(x) T̂ (x)−xT̂ ′(x)

T̂ (x)
+ T̂ ′(x)

T̂ (x)

)
dx

dx
)
,

where C is a constant. Hence, for the general solution of the iso-differential equation (9)
we have, y 6= 0,

y = e
∫(

a(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

+ T̂ ′(x)
T̂ (x)

)
dx(

C+

(1−n)
∫

b(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

e
(n−1)

∫(
a(x) T̂ (x)−xT̂ ′(x)

T̂ (x)
+ T̂ ′(x)

T̂ (x)

)
dx

dx
) 1

1−n
,

also y = 0 is a solution of (9).
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Example 3.0.120. Let T̂ (x) = ex, a(x) =− x+1
x(1−x) , b(x) = x

1−x , x 6= 0,1. Then

T̂ (x)−xT̂ ′(x)
T̂ (x)

= ex−xex

ex

= 1− x,

T̂ ′(x)
T̂ (x)

= 1,

a(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

+ T̂ ′(x)
T̂ (x)

=− x+1
x(1−x)(1− x)+1

=−1
x ,

b(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

= x
1−x(1− x)

= x.

The equation (9) takes the form

y′ =−1
x

y+ xy2. (13)

We note that y = 0 is an its solution.
For y 6= 0, using (13), we get

y−2y′ =−1
x

y−1 + x.

We set z = y−1. Then

z′ =
1
x

z− x

and
z = e

∫ 1
x dx
(

C−
∫

xe−
∫ 1

x dxdx
)
= x
(

C−
∫

dx
)
=Cx− x2,

where C is a constant. Consequently

y =
1

Cx− x2 , C 6= x.

Exercise 3.0.121. Let T̂ (x) = ex, a(x) = cosx
1−x , b(x) = cosx

1−x , x 6= 1. Determine the equation
(9) and find its general solution.

Answer. The equation (9) admits the following form

y′ =
(

cosx
)

y+
(

cosx
)

y4.

y = 0 is an its solution and its general solution is given by

y =
1(

Ce−3sinx−1
) 1

3
, C 6= e3sinx,

where C is a constant.
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Exercise 3.0.122. Prove that

y = e
∫(

a(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

+ T̂ ′(x)
T̂ (x)

)
dx(

C+

(1−n)
∫

b(x) T̂ (x)−xT̂ ′(x)
T̂ n+1(x)

e
(n−1)

∫(
a(x) T̂ (x)−xT̂ ′(x)

T̂ (x)
+ T̂ ′(x)

T̂ (x)

)
dx

dx
) 1

1−n
,

where C is a constant, is the general solution to the equation(
ŷ∧∧
)~

= â∧(x̂)×̂ŷ∧(x̂)+ b̂∧(x̂)×̂
(

ŷ∧∧
)n

.

Other nonlinear iso-differential equation is the iso-Riccati equation(
ŷ∧∧
)~

= â∧(x̂)×̂ŷ∧∧+ b̂∧(x̂)×̂
(

ŷ∧∧
)2̂

+ ĉ∧(x̂), (14)

where c ∈ C (J).
The equation (14) we can represent into the form

y′T̂ (x)− yT̂ ′(x)
T̂ (x)

(
T̂ (x)− xT̂ ′(x)

)
= a(x)

y
T̂ (x)

+b(x)
y2

T̂ (x)
+

c(x)
T̂ (x)

or
y′T̂ (x)− yT̂ ′(x)
T̂ (x)− xT̂ ′(x)

= a(x)y+b(x)y2 + c(x),

or
y′T̂ (x)− yT̂ ′(x) = a(x)

(
T̂ (x)− xT̂ ′(x)

)
y+b(x)

(
T̂ (x)− xT̂ ′(x)

)
y2

+c(x)
(

T̂ (x)− xT̂ ′(x)
)
,

or
y′T̂ (x) =

(
a(x)

(
T̂ (x)− xT̂ ′(x)

)
+ T̂ ′(x)

)
y+b(x)

(
T̂ (x)− xT̂ ′(x)

)
y2

+c(x)
(

T̂ (x)− xT̂ ′(x)
)
,

or
y′ =

(
a(x) T̂ (x)−xT̂ ′(x)

T̂ (x)
+ T̂ ′(x)

T̂ (x)

)
y+b(x) T̂ (x)−xT̂ ′(x)

T̂ (x)
y2 + c(x) T̂ (x)−xT̂ ′(x)

T̂ (x)
.

If one solution y1(x) of the iso-Riccati equation (14) is known, then the substitution

y = y1(x)+ z−1 or y1(x)− y =−z−1

converts it into a first-order linear iso-differential equation in z. Indeed, we have

y′ = y′1(x)−
1
z2 z′,
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or
1
z2 z′ = y′1(x)− y′

=
(

a(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

+ T̂ ′(x)
T̂ (x)

)(
y1(x)− y

)
+b(x) T̂ (x)−xT̂ ′(x)

T̂ (x)

(
y1(x)− y

)(
y1(x)+ y

)
=
(

a(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

+ T̂ ′(x)
T̂ (x)

)(
−1

z

)
+b(x) T̂ (x)−xT̂ ′(x)

T̂ (x)

(
−1

z

)(
2y1(x)+ 1

z

)
=
((

a(x)+2b(x)y1(x)
)

T̂ (x)−xT̂ ′(x)
T̂ (x)

+ T̂ ′(x)
T̂ (x)

)(
−1

z

)
−b(x) T̂ (x)−xT̂ ′(x)

T̂ (x)
1
z2 ,

or
z′ =−

((
a(x)+2b(x)y1(x)

)
T̂ (x)−xT̂ ′(x)

T̂ (x)
+ T̂ ′(x)

T̂ (x)

)
z

−b(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

.

Example 3.0.123. Let T̂ (x) = ex,

a(x) =
2x+1
x−1

, b(x) =
1

1− x
, c(x) =

1+ x2

1− x
, x 6= 1.

Then the equation (14) takes the form

y′ =−2xy+ y2 +1+ x2.

We note that y1(x) = x is its particular solution. Let y = x+ 1
z . Then

y′ = 1− z′
z2 ,

1− z′
z2 =−2x

(
x+ 1

z

)
+
(

x+ 1
z

)2
+1+ x2,

z′ =−1,

z =−x+C,

where C is a constant.
Therefore the general solution of (14) is given by

y = x+
1

C− x
, x 6=C.
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Exercise 3.0.124. Let T̂ (x) = 1+ x2,

a(x) =− 1+3x2

x(1− x2)
, b(x) =−1+ x2

1− x2 , c(x) = 4
1+ x2

x2(1− x2)
, x 6= 0,±1.

Determine the equations (14) and its general solution.

Solution. We have

T̂ (x)− xT̂ ′(x) = x2 +1−2x2

= 1− x2,

a(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

+ T̂ ′(x)
T̂ (x)

=− 1+3x2

x(1−x2)
1−x2

1+x2 +
2x

1+x2

=− 1+3x2

x(1+x2)
+ 2x

1+x2

= −1−3x2+2x2

x(1+x2)

=−1
x ,

b(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

=−1+x2

1−x2
1−x2

1+x2

=−1,

c(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

= 4 1+x2

x2(1−x2)
1−x2

1+x2

= 4
x2 .

Then the equation (14) can be represented in the following form

y′(x) =−1
x

y(x)− y2(x)+
4
x2 . (15)

We will search a particular solution of the equation (15) in the form

y1(x) =
a
x
,

where a is a constant. We put y1(x) in (15) and we get

− a
x2 =− a

x2 −
a2

x2 +
4
x2

or
a2 = 4.

Let
y1(x) =

2
x
.
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We set
y(x) = y1(x)+ 1

z(x)

= 2
x +

1
z(x) .

Then

y′(x) =− 2
x2 −

z′(x)
z2(x)

.

From here, using (15), we get

− 2
x2 − z′(x)

z2(x) =−
1
x

(
2
x +

1
z(x)

)
−
(

2
x +

1
z(x)

)2
+ 4

x2 =⇒

− 2
x2 − z′(x)

z2(x) =−
2
x2 − 1

xz(x) −
4
x2 − 4

xz(x) +
1

z2(x) +
4
x2 =⇒

− z′(x)
z2(x) −

5
xz(x) +

1
z2(x) =⇒

z′(x) = 5
x z(x)−1,

which is a linear equation. For its general solution we have

z(x) = e5
∫ dx

x

(
C−

∫
e−5

∫ dx
x dx
)

= x5
(

C−
∫ 1

x5 dx
)

= x5
(

C+ 1
4x4

)
=Cx5 + x

4 .

From here,

y(x) =
2
x
+

4
4Cx5 + x

is the general solution to the equation (14). Here C is a constant.

Exercise 3.0.125. Let T̂ (x) = 1+ x4,

a(x) =
1+2x−3x4 +2x5

1−3x4 , b(x) =− 1+ x4

x(1−3x4)
, c(x) =−x(1+ x4)

1−3x4 , x 6= 0,± 4√3.

Determine the equation (14) and find its general solution.

Answer. The equation (14) can be represented in the following form

y′(x) =
2x+1

x
y(x)− 1

x
y2(x)− x.

Its general solution is given by

y(x) = x+
x

x+C
, C 6=−x,
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C is a constant. Also,
y(x) = x

is an its solution.
Let

T̂ : [p,q]−→ [c,d], T̂ (x)> 0, xT̂ (x) ∈ [c,d] for ∀x ∈ [p,q], T̂ ∈ C 1([p,q]), (16)

g(x) = xT̂ (x), x ∈ [p,q], is strictly increasing(decreasing) in [p,q]. (17)

We have that g ∈ C 1([p,q]) and there exists φ1 : [c,d]−→ [p,q] such that

φ1 ∈ C 1([c,d]), φ1

(
g(x)

)
= x for ∀x ∈ [p,q].

If we set
z := xT̂ (x), x ∈ [p,q],

then
z ∈ [c,d], x = φ1(z).

Now we consider the equation(
ŷ∧(x̂)

)~
= â∧(x̂)×̂ŷ∧(x)+ b̂∧(x̂), (18)

where a, b ∈ C 1([p,q]).

Definition 3.0.126. The equation (18) will be called first-order linear iso-differential equa-
tion.

The equation (18) we can rewrite in the following form

y′
(

xT̂ (x)

)(
T̂ (x)+xT̂ ′(x)

)
T̂ (x)−y

(
xT̂ (x)

)
T̂ ′(x)

T̂ (x)

(
T̂ (x)−xT̂ ′(x)

) = a(x)
T̂ (x)

T̂ (x)
y

(
xT̂ (x)

)
T̂ (x)

+ b(x)
T̂ (x)

or
y′
(

xT̂ (x)

)(
T̂ (x)+xT̂ ′(x)

)
T̂ (x)−y

(
xT̂ (x)

)
T̂ ′(x)

T̂ (x)

(
T̂ (x)−xT̂ ′(x)

) = a(x)
y

(
xT̂ (x)

)
T̂ (x)

+b(x),

or

y′
(

xT̂ (x)
)(

T̂ (x)+ xT̂ ′(x)
)

T̂ (x)− y
(

xT̂ (x)
)

T̂ ′(x) = a(x)
(

T̂ (x)− xT̂ ′(x)
)

y
(

xT̂ (x)
)

+b(x)
(

T̂ (x)− xT̂ ′(x)
)
,

or

y′
(

xT̂ (x)
)(

T̂ (x)+ xT̂ ′(x)
)

T̂ (x) =
(

a(x)
(

T̂ (x)− xT̂ ′(x)
)
+ T̂ ′(x)

)
y
(

xT̂ (x)
)

+b(x)
(

T̂ (x)− xT̂ ′(x)
)
,
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or

y′
(

xT̂ (x)
)
=

a(x)

(
T̂ (x)−xT̂ ′(x)

)
+T̂ ′(x)(

T̂ (x)+xT̂ ′(x)

)
T̂ (x)

y
(

xT̂ (x)
)
+

b(x)

(
T̂ (x)−xT̂ ′(x)

)
(

T̂ (x)+xT̂ ′(x)

)
T̂ (x)

. (19)

Let

ψ1(z) :=
a

(
φ1(z)

)(
T̂

(
φ1(z)

)
−φ1(z)T̂ ′

(
φ1(z)

))
+T̂ ′
(

φ1(z)

)
(

T̂

(
φ1(z)

)
+φ1(z)T̂ ′

(
φ1(z)

))
T̂

(
φ1(z)

) ,

ψ2(z) :=
b

(
φ1(z)

)(
T̂

(
φ1(z)

)
−φ1(z)T̂ ′

(
φ1(z)

))
(

T̂

(
φ1(z)

)
+φ1(z)T̂ ′

(
φ1(z)

))
T̂

(
φ1(z)

) .
Then the equation (19) we can rewrite as follows

y′(z) = ψ1(z)y(z)+ψ2(z).

Its general solution is given by

y(z) = e
∫

ψ1(z)dz
(

C+
∫

e−
∫

ψ1(z)dz
ψ2(z)dz

)
,

where C is a constant.

Exercise 3.0.127. Suppose (16), (17), and consider the equation(
ŷ∧(x)

)~
= â∧(x)×̂ŷ∧(x)+ b̂∧(x̂),

where a, b ∈ C 1([p,q]). Deduct its general solution.

Solution. The given equation we can rewrite in the following form

y′
(

xT̂ (x)

)(
T̂ (x)+xT̂ ′(x)

)
−y

(
xT̂ (x)

)
T̂ ′(x)

T̂ (x)

(
T̂ (x)−xT̂ ′(x)

) = a
(

xT̂ (x)
)

T̂ (x)
y

(
xT̂ (x)

)
T̂ (x)

+ b(x)
T̂ (x)

or
y′
(

xT̂ (x)

)(
T̂ (x)+xT̂ ′(x)

)
−y

(
xT̂ (x)

)
T̂ ′(x)

T̂ (x)

(
T̂ (x)−xT̂ ′(x)

) = a
(

xT̂ (x)
)

y
(

xT̂ (x)
)
+ b(x)

T̂ (x)
,

or
y′
(

xT̂ (x)
)(

T̂ (x)+ xT̂ ′(x)
)

T̂ (x)− y
(

xT̂ (x)
)

T̂ ′(x)

= a
(

xT̂ (x)
)

T̂ (x)
(

T̂ (x)− xT̂ ′(x)
)

y
(

xT̂ (x)
)
+b(x)

(
T̂ (x)− xT̂ ′(x)

)
,

or

y′
(

xT̂ (x)
)(

T̂ (x)+ xT̂ ′(x)
)

T̂ (x)

=
(

a
(

xT̂ (x)
)

T̂ (x)
(

T̂ (x)− xT̂ ′(x)
)
+ T̂ ′(x)

)
y
(

xT̂ (x)
)
+b(x)

(
T̂ (x)− xT̂ ′(x)

)
,
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or
y′
(

xT̂ (x)
)
=
(

a
(

xT̂ (x)
)

T̂ (x)−xT̂ ′(x)
T̂ (x)+xT̂ ′(x)

+ T̂ ′(x)

T̂ (x)

(
T̂ (x)−xT̂ ′(x)

))y
(

xT̂ (x)
)

+b(x) T̂ (x)−xT̂ ′(x)

T̂ (x)

(
T̂ (x)+xT̂ ′(x)

) .
We set

ψ3(z) = a(z)
T̂

(
φ1(z)

)
−φ1(z)T̂ ′

(
φ1(z)

)
T̂

(
φ1(z)

)
+φ1(z)T̂ ′

(
φ1(z)

) +
T̂ ′
(

φ1(z)

)
T̂

(
φ1(z)

)(
T̂

(
φ1(z)

)
−φ1(z)T̂ ′

(
φ1(z)

)) .
We obtain the equation

y′(z) = ψ3(z)y(z)+ψ2(z).

Its general solution is given by

y(z) = e
∫

ψ3(z)dz
(

C+
∫

ψ2(z)e−
∫

ψ3(z)dzdz
)
,

where C is a constant.

Exercise 3.0.128. Suppose (16), (17), and consider the equation(
y∧(x)

)~
= â∧(x̂)×̂y∧(x)+b∧(x̂),

where a, b ∈ C ([p,q]). Deduct its general solution.

Solution. The given equation we can rewrite in the form

y′
(

xT̂ (x)
)

T̂ (x)
(

T̂ (x)+ xT̂ ′(x)
)

T̂ (x)− xT̂ ′(x)
=

a(x)
T̂ (x)

T̂ (x)y
(

xT̂ (x)
)
+b(x)

or
y′
(

xT̂ (x)
)

T̂ (x)
(

T̂ (x)+ xT̂ ′(x)
)

T̂ (x)− xT̂ ′(x)
= a(x)y

(
xT̂ (x)

)
+b(x),

or

y′
(

xT̂ (x)
)
= a(x)

T̂ (x)− xT̂ ′(x)

T̂ (x)
(

T̂ (x)+ xT̂ ′(x)
)y
(

xT̂ (x)
)
+b(x)

T̂ (x)− xT̂ ′(x)

T̂ (x)
(

T̂ (x)+ xT̂ ′(x)
) .

We set

ψ4(z) = a
(

φ1(z)
) T̂

(
φ1(z)

)
−φ1(z)T̂ ′

(
φ1(z)

)
T̂

(
φ1(z)

)(
T̂

(
φ1(z)

)
+φ1(z)T̂ ′

(
φ1(z)

)) ,

ψ5(z) = b
(

φ1(z)
) T̂

(
φ1(z)

)
−φ1(z)T̂ ′

(
φ1(z)

)
T̂

(
φ1(z)

)(
T̂

(
φ1(z)

)
+φ1(z)T̂ ′

(
φ1(z)

)) .
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Then we obtain the equation

y′(z) = ψ4(z)y(z)+ψ5(z).

Its general solution is given by

y(z) = e
∫

ψ4(z)dz
(

C+
∫

e−
∫

ψ4(z)dz
ψ5(z)dz

)
,

where C is a solution.
Below we will suppose (16), (17).
Now we consider the equation(

ŷ∧(x)
)~

= â∧(x̂)×̂y∧(x)+ b̂∧(x̂), (20)

where a, b ∈ C ([p,q]).
The equation (20) we can rewrite in the following form.

y′
(

xT̂ (x)
)(

T̂ (x)+ xT̂ ′(x)
)
− y
(

xT̂ (x)
)

T̂ ′(x)

T̂ (x)
(

T̂ (x)− xT̂ ′(x)
) =

a(x)
T̂ (x)

T̂ (x)y
(

xT̂ (x)
)
+

b(x)
T̂ (x)

or

y′
(

xT̂ (x)
)(

T̂ (x)+ xT̂ ′(x)
)

T̂ (x)− y
(

xT̂ (x)
)

T̂ ′(x)

T̂ (x)− xT̂ ′(x)
= a(x)T̂ (x)y

(
xT̂ (x)

)
+b(x),

or
y′
(

xT̂ (x)
)(

T̂ (x)+ xT̂ ′(x)
)

T̂ (x)− y
(

xT̂ (x)
)

T̂ ′(x)

= a(x)T̂ (x)
(

T̂ (x)− xT̂ ′(x)
)

y
(

xT̂ (x)
)
+b(x)

(
T̂ (x)− xT̂ ′(x)

)
,

or
y′
(

xT̂ (x)
)(

T̂ (x)+ xT̂ ′(x)
)

T̂ (x)

=
(

a(x)T̂ (x)
(

T̂ (x)− xT̂ ′(x)
)
+ T̂ ′(x)

)
y
(

xT̂ (x)
)
+b(x)

(
T̂ (x)− xT̂ ′(x)

)
,

or
y′
(

xT̂ (x)
)
=
(

a(x) T̂ (x)−xT̂ ′(x)
T̂ (x)+xT̂ ′(x)

+ T̂ ′(x)

T̂ (x)

(
T̂ (x)+xT̂ ′(x)

))y
(

xT̂ (x)
)

+b(x) T̂ (x)−xT̂ ′(x)

T̂ (x)

(
T̂ (x)+xT̂ ′(x)

) .
We set

ψ6(z) = a
(

φ1(z)
) T̂

(
φ1(z)

)
−φ1(z)T̂ ′

(
φ1(z)

)
T̂

(
φ1(z)

)(
T̂

(
φ1(z)

)
+φ1(z)T̂ ′

(
φ1(z)

))

+
T̂ ′
(

φ1(z)

)
T̂

(
φ1(z)

)(
T̂

(
φ1(z)

)
+φ1(z)T̂ ′

(
φ1(z)

)) .
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Then the equation (20) admits the following representation

y′(z) = ψ6(z)y(z)+ψ2(z).

Its general solution is

y(z) = e
∫

ψ6(z)dz
(

C+
∫

ψ2(z)e−
∫

ψ6(z)dzdz
)
,

where C is a constant.

Definition 3.0.129. The equation (20) will be called first-order linear iso-differential equa-
tion.

Exercise 3.0.130. Let a, b ∈ C ([p,q]). Determine the equation(
ŷ∧(x)

)~
= a∧(x̂)y∧(x)+ b̂(x̂) (21)

and find its general solution.

Definition 3.0.131. The equation (21) will be called first-order linear iso-differential equa-
tion.

Answer. The equation (21) can be represented in the following form.

y′
(

xT̂ (x)
)
=
(

a(x) T̂ (x)−xT̂ ′(x)
T̂ (x)+xT̂ ′(x)

+ T̂ ′(x)

T̂ (x)

(
T̂ (x)+xT̂ ′(x)

))y
(

xT̂ (x)
)

+b
(

x
T̂ (x)

)
T̂ (x)−xT̂ ′(x)

T̂ (x)

(
T̂ (x)+xT̂ ′(x)

) .
We set

ψ7(z) = b
(

φ1(z)

T̂
(

φ1(z)
)) T̂

(
φ1(z)

)
−φ1(z)T̂ ′

(
φ1(z)

)
T̂
(

φ1(z)
)(

T̂
(

φ1(z)
)
+φ1(z)T̂ ′

(
φ1(z)

)) .
Then the equation (21) we can rewrite in the following form.

y′(z) = ψ6(z)y(z)+ψ7(z).

Its general solution is given by

y(z) = e
∫

ψ6(z)dz
(

C+
∫

ψ7(z)e−
∫

ψ6(z)dzdz
)
.

Exercise 3.0.132. Let a, b ∈ C ([p,q]). Determine the equation(
ŷ∧(x)

)~
= a(x̂)×̂y∧(x)+b(x) (22)

and find its general solution.
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Definition 3.0.133. The equation (22) will be called first-order linear iso-differential equa-
tion.

Answer. The equation (22) we can represent in the following form.

y′
(

xT̂ (x)
)
=
(

a
(

x
T̂ (x)

) T̂ (x)

(
T̂ (x)−xT̂ ′(x)

)
T̂ (x)+xT̂ ′(x)

+ T̂ ′(x)

T̂ (x)

(
T̂ (x)+xT̂ ′(x)

))y
(

xT̂ (x)
)

+b(x) T̂ (x)−xT̂ ′(x)
T̂ (x)+xT̂ ′(x)

.

Let

ψ8(z) = a
(

φ1(z)

T̂

(
φ1(z)

))T̂
(

φ1(z)
) T̂

(
φ1(z)

)
−φ1(z)T̂ ′

(
φ1(z)

)
T̂

(
φ1(z)

)
+φ1(z)T̂ ′

(
φ1(z)

)

+
T̂ ′
(

φ1(z)

)
T̂

(
φ1(z)

)(
T̂

(
φ1(z)

)
+φ1(z)T̂ ′

(
φ1(z)

)) ,

ψ9(z) = b
(

φ1(z)
) T̂

(
φ1(z)

)
−φ1(z)T̂ ′

(
φ1(z)

)
T̂

(
φ1(z)

)
+φ1(z)T̂ ′

(
φ1(z)

) .
Then the equation (22) we can rewrite in the form.

y′(z) = ψ8(z)y(z)+ψ9(z).

Its general solution is given by

y(z) = e
∫

ψ8(z)dz
(

C+
∫

e−
∫

ψ8(z)dz
ψ9(z)dz

)
,

where C is a constant.
Now we consider the equation(

y∧(x)
)~

= â∧(x̂)×̂ŷ∧(x)+ b̂∧(x̂), (23)

where a, b ∈ C ([p,q]).

Definition 3.0.134. The equation (23) will be called first-order linear iso-differential equa-
tion.

The equation (23) we rewrite as follows.

y′
(

xT̂ (x)
)

T̂ (x)
(

T̂ (x)+ xT̂ ′(x)
)

T̂ (x)− xT̂ ′(x)
=

a(x)
T̂ (x)

T̂ (x)
y
(

xT̂ (x)
)

T̂ (x)
+

b(x)
T̂ (x)
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or
y′
(

xT̂ (x)
)

T̂ (x)
(

T̂ (x)+ xT̂ ′(x)
)

T̂ (x)− xT̂ ′(x)
= a(x)

y
(

xT̂ (x)
)

T̂ (x)
+

b(x)
T̂ (x)

,

or
y′
(

xT̂ (x)
)

T̂ (x)
(

T̂ (x)+ xT̂ ′(x)
)
= a(x) T̂ (x)−xT̂ ′(x)

T̂ (x)
y
(

xT̂ (x)
)

+b(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

,

or

y′
(

xT̂ (x)
)
= a(x)

T̂ (x)− xT̂ ′(x)

T̂ 2(x)
(

T̂ (x)+ xT̂ ′(x)
)y
(

xT̂ (x)
)
+b(x)

T̂ (x)− xT̂ ′(x)

T̂ 2(x)
(

T̂ (x)+ xT̂ ′(x)
) .

Let

ψ10(z) = a
(

φ1(z)
) T̂

(
φ1(z)

)
−φ1(z)T̂ ′

(
φ1(z)

)
T̂ 2

(
φ1(z)

)(
T̂

(
φ1(z)

))
+φ1(z)T̂ ′

(
φ1(z)

) ,

ψ11(z) = b
(

φ1(z)
) T̂

(
φ1(z)

)
−φ1(z)T̂ ′

(
φ1(z)

)
T̂ 2

(
φ1(z)

)(
T̂

(
φ1(z)

))
+φ1(z)T̂ ′

(
φ1(z)

) .
Then we obtain the equation

y′(z) = ψ10(z)y(z)+ψ11(z).

Its general solution is given by

y(z) = e
∫

ψ10(z)dz
(

C+
∫

ψ11(z)e−
∫

ψ10(z)dzdz
)
,

where C is a constant.

Exercise 3.0.135. Let a, b ∈ C ([p,q]). Find the general solution of the following iso-
Bernoulli equation (

ŷ∧(x)
)~

= â∧(x̂)×̂
(

ŷ∧(x)
)2̂

+b(x)×̂y∧(x).

Exercise 3.0.136. Let a, b ∈ C ([p,q]). Find the general solution of the following iso-
Bernoulli equation (

y∧(x)
)~

= a∧(x)
(

y∧(x)
)4̂

+ b̂(x̂)×̂y∧(x).

Exercise 3.0.137. Let a, b, c ∈ C ([p,q]). Let also, y1(x) be a particular solution to the
iso-Riccati equation (

ŷ∧(x)
)
= a(x)×̂

(
ŷ∧(x)

)2̂
+ b̂(x)×̂y∧(x)+ ĉ(x̂).
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Prove that
y(x) = y1(x)+

1
y2(x)

transforms it to an iso-Bernoulli equation with respect to y2(x).

Exercise 3.0.138. Let a, b, c ∈ C ([p,q]). Let also, y1(x) be a particular solution to the
iso-Riccati equation (

y∧(x)
)
= â(x̂)×̂

(
y∧(x)

)2̂
+ b̂(x)×̂y∧(x)+ ĉ(x̂).

Prove that
y(x) = y1(x)+

1
y2(x)

transforms it to an iso-Bernoulli equation with respect to y2(x).

Let

T̂ : [p,q]−→ [c,d], T̂ (x)> 0, x
T̂ (x)
∈ [c,d] for ∀x ∈ [p,q],

T̂ ∈ C 1([p,q]),
(24)

h(x)=
x

T̂ (x)
, x∈ [p,q] is strictly increasing(decreasing) in [p,q]. (25)

We have that h ∈ C 1([p,q]) and there exists φ2 : [c,d]−→ [p,q] such that

φ2 ∈ C 1([c,d]), φ2

(
h(x)

)
= x for ∀x ∈ [p,q].

If we set
z1 :=

x
T̂ (x)

, x ∈ [p,q],

then
z1 ∈ [c,d], x = φ2(z1).

Below we will suppose (24), (25).
Now we consider the equation(

ŷ(x̂)
)~

= â∧(x̂)×̂ŷ(x̂)+ b̂∧(x̂), (26)

where a, b ∈ C ([p,q]).

Definition 3.0.139. The equation (26) will be called first-order linear iso-differential equa-
tion.

The equation (26) we can represent as follows.

y′
(

x
T̂ (x)

)(
T̂ (x)− xT̂ ′(x)

)
− y
(

x
T̂ (x)

)
T̂ (x)T̂ ′(x)

T̂ 2(x)
(

T̂ (x)− xT̂ ′(x)
) =

a(x)
T̂ (x)

T̂ (x)
y
(

x
T̂ (x)

)
T̂ (x)

+
b(x)
T̂ (x)



First-Order Linear Equations 91

or
y′
(

x
T̂ (x)

)(
T̂ (x)− xT̂ ′(x)

)
− y
(

x
T̂ (x)

)
T̂ (x)T̂ ′(x)

T̂ 2(x)
(

T̂ (x)− xT̂ ′(x)
) = a(x)

y
(

x
T̂ (x)

)
T̂ (x)

+
b(x)
T̂ (x)

,

or
y′
(

x
T̂ (x)

)(
T̂ (x)− xT̂ ′(x)

)
− y
(

x
T̂ (x)

)
T̂ (x)T̂ ′(x)

= a(x)T̂ (x)
(

T̂ (x)− xT̂ ′(x)
)

y
(

x
T̂ (x)

)
+b(x)T̂ (x)

(
T̂ (x)− xT̂ ′(x)

)
,

or

y′
(

x
T̂ (x)

)(
T̂ (x)− xT̂ ′(x)

)
=
(

a(x)T̂ (x)
(

T̂ (x)− xT̂ ′(x)
)
+ T̂ (x)T̂ ′(x)

)
y
(

x
T̂ (x)

)
+b(x)T̂ (x)

(
T̂ (x)− xT̂ ′(x)

)
,

or

y′
( x

T̂ (x)

)
=
(

a(x)T̂ (x)+
T̂ (x)T̂ ′(x)

T̂ (x)− xT̂ ′(x)

)
y
( x

T̂ (x)

)
+b(x)T̂ (x).

Let

τ1(z1) = a
(

φ2(z1)
)

T̂
(

φ2(z1)
)
+

T̂

(
φ2(z1)

)
T̂ ′
(

φ2(z1)

)
T̂

(
φ2(z1)

)
−φ2(z1)T̂ ′

(
φ2(z1)

) ,
τ2(z1) = b

(
φ2(z1)

)
T̂
(

φ2(z1)
)
.

Then the equation (26) admits the form

y′(z1) = τ1(z1)y(z1)+ τ2(z1).

Its general solution is given by

y(z1) = e
∫

τ1(z1)dz1
(

C+
∫

τ2(z1)e−
∫

τ1(z1)dz1dz1

)
,

where C is a constant.

Exercise 3.0.140. Let a, b ∈ C ([p,q]). Consider the equation(
ŷ(x̂)

)~
= â(x̂)×̂ŷ(x̂)+ b̂(x̂).

Find its general solution.

Solution. The given equation admits the following representation

y′
(

x
T̂ (x)

)(
T̂ (x)− xT̂ ′(x)

)
− y
(

x
T̂ (x)

)
T̂ (x)T̂ ′(x)

T̂ 2(x)
(

T̂ (x)− xT̂ ′(x)
) =

a
(

x
T̂ (x)

)
T̂ (x)

T̂ (x)
y
(

x
T̂ (x)

)
T̂ (x)

+
b
(

x
T̂ (x)

)
T̂ (x)
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or

y′
(

x
T̂ (x)

)(
T̂ (x)− xT̂ ′(x)

)
− y
(

x
T̂ (x)

)
T̂ (x)T̂ ′(x)

T̂ 2(x)
(

T̂ (x)− xT̂ ′(x)
) = a

( x
T̂ (x)

)y
(

x
T̂ (x)

)
T̂ (x)

+
b
(

x
T̂ (x)

)
T̂ (x)

,

or
y′
(

x
T̂ (x)

)(
T̂ (x)− xT̂ ′(x)

)
− y
(

x
T̂ (x)

)
T̂ (x)T̂ ′(x)

= a
(

x
T̂ (x)

)
T̂ (x)

(
T̂ (x)− xT̂ ′(x)

)
y
(

x
T̂ (x)

)
+b
(

x
T̂ (x)

)
T̂ (x)

(
T̂ (x)− xT̂ ′(x)

)
,

or

y′
(

x
T̂ (x)

)(
T̂ (x)− xT̂ ′(x)

)
=
(

a
(

x
T̂ (x)

)
T̂ (x)

(
T̂ (x)− xT̂ ′(x)

)
+ T̂ (x)T̂ ′(x)

)
y
(

x
T̂ (x)

)
+b
(

x
T̂ (x)

)
T̂ (x)

(
T̂ (x)− xT̂ ′(x)

)
,

or
y′
(

x
T̂ (x)

)
=
(

a
(

x
T̂ (x)

)
T̂ (x)+ T̂ (x)T̂ ′(x)

T̂ (x)−xT̂ ′(x)

)
y
(

x
T̂ (x)

)
+b
(

x
T̂ (x)

)
T̂ (x).

Let

τ3(z1) = a(z1)T̂
(

φ2(z1)
)
+

T̂

(
φ2(z1)

)
T̂ ′
(

φ2(z1)

)
T̂

(
φ2(z1)

)
−φ2(z1)T̂ ′

(
φ2(z1)

) ,
τ4(z1) = b(z1)T̂

(
φ2(z1)

)
.

Thus, we obtain the equation

y′(z1) = τ3(z1)y(z1)+ τ4(z1).

Its general solution is given by

y(z1) = e
∫

τ3(z1)dz1
(

C+
∫

τ4(z1)e−
∫

τ3(z1)dz1dz1

)
,

where C is a constant.

Exercise 3.0.141. Let a, b ∈ C ([p,q]). Consider the equation(
ŷ(x̂)

)~
= a(x)ŷ(x̂)+b(x).

Find its general solution.

Solution. We can rewrite the given equation as follows.

y′
(

x
T̂ (x)

)(
T̂ (x)− xT̂ ′(x)

)
− y
(

x
T̂ (x)

)
T̂ (x)T̂ ′(x)

T̂ 2(x)
(

T̂ (x)− xT̂ ′(x)
) = a(x)

y
(

x
T̂ (x)

)
T̂ (x)

+b(x)
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or
y′
(

x
T̂ (x)

)(
T̂ (x)− xT̂ ′(x)

)
− y
(

x
T̂ (x)

)
T̂ (x)T̂ ′(x)

= a(x)T̂ (x)
(

T̂ (x)− xT̂ ′(x)
)

y
(

x
T̂ (x)

)
+b(x)T̂ 2(x)

(
T̂ (x)− xT̂ ′(x)

)
,

or

y′
(

x
T̂ (x)

))(
T̂ (x)− xT̂ ′(x)

)
=
(

a(x)T̂ (x)
(

T̂ (x)− xT̂ ′(x)
)
+ T̂ (x)T̂ ′(x)

)
y
(

x
T̂ (x)

)
+b(x)T̂ 2(x)

(
T̂ (x)− xT̂ ′(x)

)
,

or

y′
( x

T̂ (x)

)
=
(

a(x)T̂ (x)+
T̂ (x)T̂ ′(x)

T̂ (x)− xT̂ ′(x)

)
y
( x

T̂ (x)

)
+b(x)T̂ 2(x).

Let
τ5(z1) = b

(
φ2(z1)

)
T̂ 2
(

φ2(z1)
)
.

Then we obtain the equation

y′(z1) = τ1(z1)y(z1)+ τ5(z1).

Its general solution is given by

y(z1) = e
∫

τ1(z1)dz1
(

C+
∫

e−
∫

τ1(z1)dz1τ5(z1)dz1

)
,

where C is a constant.
Now we consider the equation(

y∨(x)
)~

= a∨(x)×̂y∨(x)+b∨(x), (27)

where a, b ∈ C ([p,q]).

Definition 3.0.142. The equation (27) will be called first-order linear iso-differential equa-
tion.

The equation (27) we can rewrite in the following form.

1
T̂ (x)

y′
( x

T̂ (x)

)
= a
( x

T̂ (x)

)
T̂ (x)y

( x
T̂ (x)

)
+b
( x

T̂ (x)

)
or

y′
( x

T̂ (x)

)
= a
( x

T̂ (x)

)
T̂ 2(x)y

( x
T̂ (x)

)
+ T̂ (x)b

( x
T̂ (x)

)
.

Let
τ6(z1) = a(z1)T̂ 2

(
φ2(z1)

)
.

Thus, we get the equation
y′(z1) = τ6(z1)y(z1)+ τ4(z1).
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Its general solution is given by

y(z1) = e
∫

τ6(z1)dz1
(

C+
∫

τ4(z1)e−
∫

τ6(z1)dz1dz1

)
,

where C is a constant.
Now we consider the equation(

ŷ(x̂)
)~

= a(x)y∨(x)+b(x), (28)

where a, b ∈ C ([p,q]).

Definition 3.0.143. The equation (28) will be called first-order linear iso-differential equa-
tion.

The equation (28) we can rewrite in the following form

y
(

x
T̂ (x)

)′(
T̂ (x)− xT̂ ′(x)

)
− y
(

x
T̂ (x)

)
T̂ (x)T̂ ′(x)

T̂ 2(x)
(

T̂ (x)− xT̂ ′(x)
) = a(x)y

( x
T̂ (x)

)
+b(x)

or
y
(

x
T̂ (x)

)′(
T̂ (x)− xT̂ ′(x)

)
− y
(

x
T̂ (x)

)
T̂ (x)T̂ ′(x)

= a(x)T̂ 2(x)
(

T̂ (x)− xT̂ ′(x)
)

y
(

x
T̂ (x)

)
+b(x)T̂ 2(x)

(
T̂ (x)− xT̂ ′(x)

)
,

or

y
(

x
T̂ (x)

)′(
T̂ (x)− xT̂ ′(x)

)
=
(

a(x)T̂ 2(x)
(

T̂ (x)− xT̂ ′(x)
)
+ T̂ (x)T̂ ′(x)

)
y
(

x
T̂ (x)

)
+b(x)T̂ 2(x)

(
T̂ (x)− xT̂ ′(x)

)
,

or

y
( x

T̂ (x)

)′
=
(

a(x)T̂ 2(x)+
T̂ (x)T̂ ′(x)

T̂ (x)− xT̂ ′(x)

)
y
( x

T̂ (x)

)
+b(x)T̂ 2(x).

Let

τ7(z1) = a
(

φ2(z1)
)

T̂ 2(φ2(z1))+
T̂
(

φ2(z1)
)

T̂ ′
(

φ2(z1)
)

T̂
(

φ2(z1)
)
−φ2(z1)T̂ ′

(
φ2(z1)

) .
Then the equation (28) admits the following form

y′(z1) = τ7(z1)y(z1)+ τ5(z1).

Its general solution can be represented in the form

y(z1) = e
∫

τ7(z1)dz1
(

C+
∫

τ5(z1)e−
∫

τ7(z1)dz1dz1

)
,
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where C is a constant.
Now we consider the equation(

y∨(x)
)~

= â∧(x̂)×̂ŷ(x̂)+ b̂∧(x̂), (29)

where a, b ∈ C ([p,q]).

Definition 3.0.144. The equation (29) will be called first-order linear iso-differential equa-
tion.

The equation (29) we can rewrite as follows.

1
T̂ (x)

y′
( x

T̂ (x)

)
=

a(x)
T̂ (x)

T̂ (x)
y
(

x
T̂ (x)

)
T̂ (x)

+
b(x)
T̂ (x)

or

1
T̂ (x)

y
( x

T̂ (x)

)′
= a(x)

y
(

x
T̂ (x)

)
T̂ (x)

+
b(x)
T̂ (x)

,

or

y
( x

T̂ (x)

)′
= a(x)y

( x
T̂ (x)

)
+b(x).

Let
τ8(z1) = a

(
φ2(z1)

)
, τ9(z1) = b

(
φ2(z1)

)
.

Then we get the equation
y′(z1) = τ8(z1)y(z1)+ τ9(z1).

Its general solution is given by

y(z1) = e
∫

τ8(z1)dz1
(

C+
∫

τ9(z1)e−
∫

τ8(z1)dz1dz1

)
,

where C is a constant.

Exercise 3.0.145. Let a, b ∈ C (R), T̂ ∈ C 1(R), T̂ (x)> 0 for every x ∈ R and

A(x) := a(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

+ T̂ ′(x)
T̂ (x)
≥ c > 0,

∣∣∣B(x) := b(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

∣∣∣≤M < ∞,

where c and M are constants. Prove that there exists unique bounded solution y(x) of the
equation (

ŷ∧(x̂)
)~

= â∧(x̂)×̂ŷ∧(x̂)+ b̂∧(x̂).
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Solution. The given equation we can rewrite in the form.

y′(x) =
(

a(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
+

T̂ ′(x)
T̂ (x)

)
y(x)+b(x)

T̂ (x)− xT̂ ′(x)
T̂ (x)

or
y′(x) = A(x)y(x)+B(x). (30)

For its solution we have the representation

y(x) = e
∫ x

x0
A(t)dt

(
y0 +

∫ x

x0

B(t)e−
∫ t

x0
A(s)dsdt

)
, (31)

where x0 ∈ R is arbitrarily chosen and fixed. We will search y0 so that limx−→∞ y(x) = 0.
Since, for x > x0,

e
∫ x

x0
A(t)dt ≥ ec(x−x0) −→x−→∞ ∞,

then we put

y0 +
∫

∞

x0

B(t)e−
∫ t

x0
A(s)dsdt = 0

or
y0 =−

∫
∞

x0

B(t)e−
∫ t

x0
A(s)dsdt,

and from here
y(x) =−e

∫ x
x0

A(t)dt ∫ ∞

x B(t)e−
∫ t

x0
A(s)dsdt

=−
∫

∞

x B(t)e−
∫ t

x A(s)dsdt.

For x > x0 we have
|y(x)|=

∣∣∣−∫
∞

x B(t)e−
∫ t

x A(s)dsdt
∣∣∣

≤
∫

∞

x |B(t)|e−
∫ t

x A(s)dsdt

≤
∫

∞

x |B(t)|e−c(t−x)dt

≤M
∫

∞

x e−c(t−x)dt

= M
c < ∞.

Consequently, y(x) is a bounded solution to the considered equation.
Now we suppose that the considered equation has two bounded solutions y1(x) and

y2(x). Let
l(x) = y1(x)− y2(x).

Then l(x) is a bounded solution of the equation

y′(x) = A(x)y(x).

We have
l(x) = c1e

∫ x
x0

A(t)dt
.
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Then, for x > x0, we have

|l(x)| ≥ |c1|ec(x−x0) −→x−→∞ ∞,

which is a contradiction.

Advanced Practical Exercises

Problem 3.0.146. Let T̂ (x) = ex,

a(x) =
2

x−1
, b(x) =

x+ x2 + x3

x−1
, x 6= 1.

Find the general solution of the equation (2).

Answer. y(x) =Ce−x− x3 +2x2−5x+5, where C is a constant.

Problem 3.0.147. Let T̂ (x) = ex,

a(x) =
1−2x

(1− x)(1+2x)
, b(x) =

4x
(1− x)(1+2x)

, x 6=−1
2
,1.

Find the solutions of the equation (2).

Answer.
y(x) = (2x+1)

(
C+ log |2x+1|

)
+1,

where C is a constant.

Problem 3.0.148. Let a,b ∈ C (J). Prove that

y(x) = e
∫(

a

(
xT̂ (x)

)(
T̂ (x)−xT̂ ′(x)

)
+ T̂ ′(x)

T̂ (x)

)
dx(

C

+
∫

b(x)
(

T̂ (x)− xT̂ ′(x)
)

e
−
∫(

a

(
xT̂ (x)

)(
T̂ (x)−xT̂ ′(x)

)
+ T̂ ′(x)

T̂ (x)

)
dx

dx
)
,

where C is a constant, is the general solution to the equation(
ŷ∧∧
)~

= a∧(x)y(x)+b(x).

Problem 3.0.149. Let a,b ∈ C (J). Prove that

y(x) = e
∫(

a

(
xT̂ (x)

)(
T̂ (x)−xT̂ ′(x)

)
+ T̂ ′(x)

T̂ (x)

)
dx(

C

+
∫

b
(

xT̂ (x)
)(

T̂ (x)− xT̂ ′(x)
)

e
−
∫(

a

(
xT̂ (x)

)(
T̂ (x)−xT̂ ′(x)

)
+ T̂ ′(x)

T̂ (x)

)
dx

dx
)
,

where C is a constant, is the general solution to the equation(
ŷ∧∧
)~

= a∧(x)y(x)+b∧(x).
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Problem 3.0.150. Let a,b ∈ C (J). Prove that

y(x) = e
∫(

a

(
xT̂ (x)

)
T̂ (x)

(
T̂ (x)−xT̂ ′(x)

)
+ T̂ ′(x)

T̂ (x)

)
dx(

C

+
∫

b(x)
(

T̂ (x)− xT̂ ′(x)
)

e
−
∫(

a

(
xT̂ (x)

)
T̂ (x)

(
T̂ (x)−xT̂ ′(x)

)
+ T̂ ′(x)

T̂ (x)

)
dx

dx
)
,

where C is a constant, is the general solution to the equation(
ŷ∧∧
)~

= a∧(x)×̂y(x)+b(x).

Problem 3.0.151. Let a,b ∈ C (J). Prove that

y(x) = e
∫(

a

(
xT̂ (x)

)
T̂ (x)

(
T̂ (x)−xT̂ ′(x)

)
+ T̂ ′(x)

T̂ (x)

)
dx(

C

+
∫

b
(

xT̂ (x)
)(

T̂ (x)− xT̂ ′(x)
)

e
−
∫(

a

(
xT̂ (x)

)
T̂ (x)

(
T̂ (x)−xT̂ ′(x)

)
+ T̂ ′(x)

T̂ (x)

)
dx

dx
)
,

where C is a constant, is the general solution to the equation(
ŷ∧∧
)~

= a∧(x)×̂y(x)+b∧(x).

Problem 3.0.152. Let a,b ∈ C (J). Prove that

y(x) = e
∫(

a

(
xT̂ (x)

)(
T̂ (x)−xT̂ ′(x)

)
+ T̂ ′(x)

T̂ (x)

)
dx(

C

+
∫

b
(

xT̂ (x)
)

1
T̂ (x)

(
T̂ (x)− xT̂ ′(x)

)
e
−
∫(

a

(
xT̂ (x)

)(
T̂ (x)−xT̂ ′(x)

)
+ T̂ ′(x)

T̂ (x)

)
dx

dx
)
,

where C is a constant, is the general solution to the equation(
ŷ∧∧
)~

= a∧(x)y(x)+ b̂∧(x).

Problem 3.0.153. Let a,b ∈ C (J). Prove that

y(x) = e
∫(

a

(
xT̂ (x)

)
T̂ (x)

(
T̂ (x)−xT̂ ′(x)

)
+ T̂ ′(x)

T̂ (x)

)
dx(

C

+
∫

b
(

xT̂ (x)
)

1
T̂ (x)

(
T̂ (x)− xT̂ ′(x)

)
e
−
∫(

a

(
xT̂ (x)

)
T̂ (x)

(
T̂ (x)−xT̂ ′(x)

)
+ T̂ ′(x)

T̂ (x)

)
dx

dx
)
,

where C is a constant, is the general solution to the equation(
ŷ∧∧
)~

= a∧(x)×̂y(x)+ b̂∧(x).
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Problem 3.0.154. Let a ∈ C (I). Prove that

y(x) = T̂ (x)
(

C+
∫

a(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
dx
)
,

where C is a constant, is the general solution to the equation(
ŷ∧∧
)~

= a(x).

Problem 3.0.155. Let a, b ∈ C (J). Prove that

y = e
∫(

a(x)

(
T̂ (x)−xT̂ ′(x)

)
+ T̂ ′(x)

T̂ (x)

)
dx(

C+

(1−n)
∫

b(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

e
(n−1)

∫(
a(x)

(
T̂ (x)−xT̂ ′(x)

)
+ T̂ ′(x)

T̂ (x)

)
dx

dx
) 1

1−n
,

where C is a constant, is the general solution to the equation(
ŷ∧∧
)~

= a∧(x̂)×̂ŷ∧∧+ b̂∧(x̂)×̂
(

ŷ∧∧
)n̂

.

Problem 3.0.156. Let T̂ (x) = ex,

a(x) =
2x−1
1− x

, b(x) =
1

x−1
, c(x) =

5− x2

1− x
, x 6= 1.

Determine the equation (14) and find its general solution.

Answer. The equation (14) can be represented in the following form

y′(x) = x+2+
4

Ce4x−1
, C 6= e−4x,

C is a constant. Also,
y(x) = x+2

is an its solution.

Problem 3.0.157. Let T̂ (x) = ex,

a(x) =
1+2ex

x−1
, b(x) =

1
1− x

, c(x) =
ex + e2x

1− x
, x 6= 1.

Determine the equation (14) and find its general solution.

Answer. The equation (14) can be represented in the following form

y′(x) =−2exy(x)+ y2(x)+ ex + e2x.

Its general solution is given by

y(x) = ex− 1
C+ x

, C 6=−x,

C is a constant. Also,
y(x) = ex

is an its solution.





Chapter 4

Iso-Integral Inequalities

In this chapter we suppose that a is a positive real number, x0 ∈ R, T̂ ∈ C 1
(
|x− x0| ≤ a

)
,

T̂ (x)> 0 for every x : |x− x0| ≤ a.

Theorem 4.0.158. Let u(x), p(x) and q(x) be nonnegative continuous functions in the in-
terval |x− x0| ≤ a. Let also

T̂ (x)− xT̂ ′(x)≤ 0 for |x− x0| ≤ a, (1)

û∧(x̂)≤ p̂∧(x̂)+
∣∣∣∫̂ x

x0

q̂∧(t̂)×̂û∧(t̂)×̂d̂t̂
∣∣∣ (2)

for |x− x0| ≤ a. Then the following inequality holds.

û∧(x̂)≤ p̂∧(x̂)+
∣∣∣∫̂ x

x0

p̂∧(t̂)×̂q̂∧(t̂)×̂ê

∣∣∣∫ x
t q̂∧(ŝ)×̂d̂ŝ

∣∣∣
×̂d̂t̂

∣∣∣ (3)

for |x− x0| ≤ a.

Remark 4.0.159. Sometimes we will use the following representations of the inequalities
(2) and (3)

u(x)≤ p(x)+ T̂ (x)
∣∣∣∫ x

x0
q(t) T̂ (t)−tT̂ ′(t)

T̂ 2(t)
u(t)dt

∣∣∣,
u(x)≤ p(x)+ T̂ (x)

∣∣∣∫ x
x0

p(t)q(t) T̂ (t)−tT̂ ′(t)
T̂ 2(t)

e

∣∣∣∫ x
t q(s) T̂ (s)−sT̂ ′(s)

T̂ (s)
ds

∣∣∣
dt
∣∣∣

for |x− x0| ≤ a, respectively.

Remark 4.0.160. We note that in the exponential function in (3) we have a Riemann inte-
gral.

Remark 4.0.161. To prove (3) we can not apply directly the classical Gronwall’s-type
inequality. Conversely, from (3) we can obtain the classical Gronwall’s type inequality
when T̂ ≡ 1.
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Proof. Let x ∈ [x0,x0 +a]. Then the given inequality is

u(x)≤ p(x)− T̂ (x)
∫ x

x0

q(t)
T̂ (t)− tT̂ ′(t)

T̂ 2(t)
u(t)dt. (4)

We define

r(x) = T̂ (x)
∫ x

x0

q(t)
T̂ (t)− tT̂ ′(t)

T̂ 2(t)
u(t)dt.

Therefore, using (4),
u(x)≤ p(x)− r(x). (5)

Also,
r′(x) = T̂ ′(x)

∫ x
x0

q(t) T̂ (t)−tT̂ ′
′
(t)

T̂ 2(t)
u(t)dt + T̂ (x)q(x) T̂ (x)−xT̂ ′(x)

T̂ 2(x)
u(x)

= T̂ ′(x)
∫ x

x0
q(t) T̂ (t)−tT̂ ′(t)

T̂ 2(t)
u(t)dt +q(x) T̂ (x)−xT̂ ′(x)

T̂ (x)
u(x).

Using (1), (4) and (5), from the last inequality we get

r′(x)≥ T̂ ′(x)
T̂ (x)

r(x)+q(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

(
p(x)− r(x)

)
= T̂ ′(x)

T̂ (x)
r(x)+ p(x)q(x) T̂ (x)−xT̂ ′(x)

T̂ (x)
−q(x) T̂ (x)−xT̂ ′(x)

T̂ (x)
r(x),

from where

r′(x)−
( T̂ ′(x)

T̂ (x)
−q(x)

T̂ (x)− xT̂ ′(x)
T̂ (x)

)
r(x)≥ p(x)q(x)

T̂ (x)− xT̂ ′(x)
T̂ (x)

.

We multiply the last inequality with

e
−
∫ x

x0

(
T̂ ′(t)
T̂ (t)
−q(t) T̂ (t)−tT̂ ′(t)

T̂ (t)

)
dt
=

T̂ (x0)

T̂ (x)
e
∫ x

x0
q(t) T̂ (t)−tT̂ ′(t)

T̂ (t)
dt

and we get (
r(x) T̂ (x0)

T̂ (x)
e
∫ x

x0
q(t) T̂ (t)−tT̂ ′(t)

T̂ (t)
dt
)′

≥ p(x)q(x) T̂ (x)−xT̂ ′(x)
T̂ 2(x)

T̂ (x0)e
∫ x

x0
q(t) T̂ (t)−tT̂ ′(t)

T̂ (t)
dt
.

The last inequality we integrate from x0 to x and we obtain, using r(x0) = 0,

r(x) T̂ (x0)

T̂ (x)
e
∫ x

x0
q(t) T̂ (t)−tT̂ ′(t)

T̂ (t)
dt

≥ T̂ (x0)
∫ x

x0
p(t)q(t) T̂ (t)−tT̂ ′(t)

T̂ 2(t)
e
∫ t

x0
q(s) T̂ (s)−sT̂ ′(s)

T̂ (s)
dsdt

or

r(x)≥ T̂ (x)
∫ x

x0

p(t)q(t)
T̂ (t)− tT̂ ′(t)

T̂ 2(t)
e−

∫ x
t q(s) T̂ (s)−sT̂ ′(s)

T̂ (s)
dsdt.
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Now we apply (5) and we find

u(x)≤ p(x)− T̂ (x)
∫ x

x0

p(t)q(t)
T̂ (t)− tT̂ ′(t)

T̂ 2(t)
e−

∫ x
t q(s) T̂ (s)−sT̂ ′(s)

T̂ (s)
dsdt.

Now we will prove the assertion in the case when x ∈ [x0− a,x0]. In this case the given
inequality (2) has the following representation

u(x)≤ p(x)+ T̂ (x)
∫ x

x0

q(t)u(t)
T̂ (t)− tT̂ ′(t)

T̂ 2(t)
dt. (6)

We define

r1(x) = T̂ (x)
∫ x

x0

q(t)u(t)
T̂ (t)− tT̂ ′(t)

T̂ 2(t)
dt.

Then, using (6),
u(x)≤ p(x)+ r1(x) (7)

and, using (1) and (7),

r′1(x) = T̂ ′(x)
∫ x

x0
q(t)u(t) T̂ (t)−tT̂ ′(t)

T̂ 2(t)
dt + T̂ (x)q(x)u(x) T̂ (x)−xT̂ ′(x)

T̂ 2(x)

= T̂ ′(x)
T̂ (x)

r(x)+q(x)u(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

≥ T̂ ′(x)
T̂ (x)

r1(x)+q(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

(
p(x)+ r1(x)

)
=
(

T̂ ′(x)
T̂ (x)

+q(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

)
r1(x)+ p(x)q(x) T̂ (x)−xT̂ ′(x)

T̂ (x)
,

from where

r′1(x)−
(

T̂ ′(x)
T̂ (x)

+q(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

)
r1(x)≥ p(x)q(x) T̂ (x)−xT̂ ′(x)

T̂ (x)
=⇒

(
r′1(x)−

(
T̂ ′(x)
T̂ (x)

+q(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

)
r1(x)

)
T̂ (x0)

T̂ (x)
e−

∫ x
x0

q(t) T̂ (t)−tT̂ ′(t)
T̂ (t)

dt

≥ p(x)q(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

T̂ (x0)

T̂ (x)
e−

∫ x
x0

q(t) T̂ (t)−tT̂ ′(t)
T̂ (t)

dt

or (
r1(x)

T̂ (x0)

T̂ (x)
e−

∫ x
x0

q(t) T̂ (t)−tT̂ ′(t)
T̂ (t)

dt
)′

≥ p(x)q(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

T̂ (x0)

T̂ (x)
e−

∫ x
x0

q(t) T̂ (t)−tT̂ ′(t)
T̂ (t)

dt
.

Now we integrate the last inequality from x0 to x and since x≤ x0 we get, using r1(x0) = 0,

r1(x)
T̂ (x0)

T̂ (x)
e−

∫ x
x0

q(t) T̂ (t)−tT̂ ′(t)
T̂ (t)

dt

≤ T̂ (x0)
∫ x

x0
p(t)q(t) T̂ (t)−tT̂ ′(t)

T̂ 2(t)
e−

∫ t
x0

q(s) T̂ (s)−sT̂ ′(s)
T̂ (s)

dsdt,
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therefore

r1(x)≤ T̂ (x)
∫ x

x)
p(t)q(t)

T̂ (t)− tT̂ ′(t)
T̂ 2(t)

e−
∫ t

x q(s) T̂ (s)−sT̂ ′(s)
T̂ (s)

dsdt.

From the last inequality and (7) we obtain

u(x)≤ p(x)+ T̂ (x)
∫ x

x0

p(t)q(t)
T̂ (t)− tT̂ ′(t)

T̂ 2(t)
e−

∫ t
x q(s) T̂ (s)−sT̂ ′(s)

T̂ (s)
dsdt.

Corollary 4.0.162. If in the last theorem the function p(x)≡ 0, then u(x)≡ 0.

Corollary 4.0.163. If in the last theorem the function p(x) is nondecreasing in [x0,x0 +a]
and the function T̂ (x) is nonincreasing in [x0,x0 +a], then

u(x)≤ p(x)e−
∫ x

x0
q(s) T̂ (s)−sT̂ ′(s)

T̂ (s)
ds

for x ∈ [x0,x0 +a].

Proof. Since p is nondecreasing function in [x0,x0 +a], then

p(t)≤ p(x) for ∀t,x ∈ [x0,x0 +a], t ≤ x.

Because T̂ (x) is nonincreasing function in [x0,x0 +a], then

T̂ (t)≥ T̂ (x) for ∀t,x ∈ [x0,x0 +a], t ≤ x

or
1

T̂ (t)
≤ 1

T̂ (x)
for ∀t,x ∈ [x0,x0 +a], t ≤ x.

Therefore, from (3), we get for x ∈ [x0,x0 +a]

u(x)≤ p(x)− T̂ (x)
∫ x

x0
p(t)q(t) T̂ (t)−tT̂ ′(t)

T̂ 2(t)
e−

∫ x
t q(s) T̂ (s)−sT̂ ′(s)

T̂ (s)
dsdt

≤ p(x)− T̂ (x) p(x)
T̂ (x)

∫ x
x0

e−
∫ x

t q(s) T̂ (s)−sT̂ ′(s)
T̂ (s)

dsde
∫ t

x q(s) T̂ (s)−sT̂ ′(s)
T̂ (s)

ds

= p(x)− p(x)e−
∫ x

t q(s) T̂ (s)−sT̂ ′(s)
T̂ (s)

ds
∣∣∣t=x

t=x0

= p(x)− p(x)+ p(x)e−
∫ x

x0
q(s) T̂ (s)−sT̂ ′(s)

T̂ (s)
ds

= p(x)e−
∫ x

x0
q(s) T̂ (s)−sT̂ ′(s)

T̂ (s)
ds
.
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Corollary 4.0.164. If in the last Theorem the function p(x) is nonincreasing function for
x ∈ [x0−a,x0] and the function T̂ (x) is nondecreasing in [x0−a,x0], then

u(x)≤ p(x)e
∫ x

x0
q(t) T̂ (t)−tT̂ ′(t)

T̂ (t)
dt

for every x ∈ [x0−a,x0].

Proof. Since the function p(x) is nonincreasing function in [x0−a,x0], then

p(t)≤ p(x) for t,x ∈ [x0−a,x0], t ≥ x.

Because the function T̂ (x) is nondecreasing function in [x0−a,x0], then

T̂ (t)≥ T̂ (x) for ∀t,x ∈ [x0−a,x0], t ≥ x,

or
1

T̂ (t)
≤ 1

T̂ (x)
for ∀t,x ∈ [x0−a,x0], t ≥ x.

Consequently

p(t)
T̂ (t)

≤ p(x)
T̂ (x)

for ∀t,x ∈ [x0−a,x0], t ≥ x.

From here and (3), for x ∈ [x0−a,x0], we obtain

u(x)≤ p(x)− T̂ (x)
∫ x0

x p(t)q(t) T̂ (t)−tT̂ ′(t)
T̂ (t)

e−
∫ t

x q(s) T̂ (s)−sT̂ ′(s)
T̂ (s)

dsdt

≤ p(x)− T̂ (x) p(x)
T̂ (x)

∫ x0
x q(t) T̂ (t)−tT̂ ′(t)

T̂ (t)
e−

∫ t
x q(s) T̂ (s)−sT̂ ′(s)

T̂ (s)
dsdt

= p(x)+ p(x)
∫ x0

x e−
∫ t

x q(s) T̂ (s)−sT̂ ′(s)
T̂ (s)

dsde−
∫ t

x q(s) T̂ (s)−sT̂ ′(s)
T̂ (s)

ds

= p(x)+ p(x)e−
∫ t

x q(s) T̂ (s)−sT̂ ′(s)
T̂ (s)

ds
∣∣∣t=x0

t=x

= p(x)e
∫ x

x0
q(s) T̂ (s)−sT̂ ′(s)

T̂ (s)
ds
.

In fact we can reformulate the last Theorem as follows.

Theorem 4.0.165. Let u(x), p(x) and q(x) be nonnegative continuous functions in the in-
terval |x− x0| ≤ a, and T̂ (x)− xT̂ ′(x)≤ 0 for every x ∈ [x0−a,x0 +a]. If

u(x)≤ p(x)− T̂ (x)
∫ x

x0

q(t)u(t)
T̂ (t)− tT̂ ′(t)

T̂ 2(t)
dt
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for every x ∈ [x0,x0 +a], then

u(x)≤ p(x)− T̂ (x)
∫ x

x0

p(t)q(t)
T̂ (t)− tT̂ ′(t)

T̂ 2(t)
e−

∫ x
t q(s) T̂ (s)−sT̂ ′(s)

T̂ (s)
dsdt

for every x ∈ [x0,x0 +a]. If

u(x)≤ p(x)+ T̂ (x)
∫ x

x0

q(t)u(t)
T̂ (t)− tT̂ ′(t)

T̂ 2(t)
dt

for every x ∈ [x0−a,x0], then

u(x)≤ p(x)+ T̂ (x)
∫ x

x0

p(t)q(t)
T̂ (t)− tT̂ ′(t)

T̂ 2(t)
e−

∫ t
x q(s) T̂ (s)−sT̂ ′(s)

T̂ (s)
dsdt

for every x ∈ [x0−a,x0].

Exercise 4.0.166. Let u(x) and q(x) be nonnegative continuous functions in the interval
[x0,x0 +a], T̂ (x)− xT̂ ′(x)≤ 0 for every x ∈ [x0,x0 +a]. Let also,

u(x)≤ T̂ (x)− T̂ (x)
∫ x

x0

q(t)u(t)
T̂ (t)− tT̂ ′(t)

T̂ (t)
dt

for every x ∈ [x0,x0 +a]. Prove that

u(x)≤ T̂ (x)e−
∫ x

x0
q(s) T̂ (s)−sT̂ ′(s)

T̂ (s)
ds

for every x ∈ [x0,x0 +a].

Exercise 4.0.167. Let u(x) and q(x) be nonnegative continuous functions in the interval
[x0−a,x0], T̂ (x)− xT̂ ′(x)≤ 0 for every x ∈ [x0−a,x0]. Let also,

u(x)≤ T̂ (x)+ T̂ (x)
∫ x

x0

q(t)u(t)
T̂ (t)− tT̂ ′(t)

T̂ (t)
dt

for every x ∈ [x0−a,x0]. Prove that

u(x)≤ T̂ (x)e
∫ x

x0
q(s) T̂ (s)−sT̂ ′(s)

T̂ (s)
ds

for every x ∈ [x0−a,x0].

Theorem 4.0.168. Let u(x), p(x) and q(x) be nonnegative continuous functions in the in-
terval |x− x0| ≤ a, T̂ (x)− xT̂ ′(x)≥ 0 for every x ∈ [x0−a,x0 +a]. If

u(x)≤ p(x)+ T̂ (x)
∫ x

x0

q(t)
T̂ (t)− tT̂ ′(t)

T̂ 2(t)
u(t)dt

for every x ∈ [x0,x0 +a], then

u(x)≤ p(x)+ T̂ (x)
∫ x

x0

p(t)q(t)
T̂ (t)− tT̂ ′(t)

T̂ 2(t)
e
∫ x

t q(s) T̂ (s)−sT̂ ′(s)
T̂ (s)

dsdt (3′)



Iso-Integral Inequalities 107

for every x ∈ [x0,x0 +a]. If

u(x)≤ p(x)+ T̂ (x)
∫ x0

x
q(t)

T̂ (t)− tT̂ ′(t)
T̂ 2(t)

u(t)dt

for x ∈ [x0−a,x0], then

u(x)≤ p(x)+ T̂ (x)
∫ x0

x
q(t)p(t)

T̂ (t)− tT̂ ′(t)
T̂ 2(t)

e
∫ t

x q(s) T̂ (s)−sT̂ ′(s)
T̂ (s)

dsdt (3′′)

for every x ∈ [x0−a,x0].

Proof. We will prove the assertion in the case when x ∈ [x0,x0 +a]. The proof in the case
x ∈ [x0−a,x0] is similar.

Let

r(x) =
∫ x

x0

q(t)
T̂ (t)− tT̂ ′(t)

T̂ 2(t)
u(t)dt.

Then
u(x)≤ p(x)+ T̂ (x)r(x) (8)

and, using (8),

r′(x) = u(x)q(x) T̂ (x)−xT̂ ′(x)
T̂ 2(x)

≤ q(x) T̂ (x)−xT̂ ′(x)
T̂ 2(x)

(
p(x)+ T̂ (x)r(x)

)
= p(x)q(x) T̂ (x)−xT̂ ′(x)

T̂ 2(x)
+q(x) T̂ (x)−xT̂ ′(x)

T̂ (x)
r(x),

or

r′(x)−q(x)
T̂ (x)−0xT̂ ′(x)

T̂ (x)
r(x)≤ p(x)q(x)

T̂ (x)− xT̂ ′(x)
T̂ 2(x)

,

from where (
r′(x)−q(x) T̂ (x)−xT̂ ′(x)

T̂ (x)
r(x)

)
e−

∫ x
x0

q(t) T̂ (t)−tT̂ ′(t)
T̂ (t)

dt

≤ p(x)q(x) T̂ (x)−xT̂ ′(x)
T̂ 2(x)

e−
∫ x

x0
q(t) T̂ (t)−tT̂ ′(t)

T̂ (t)
dt
,

or (
r(x)e−

∫ x
x0

q(t) T̂ (t)−tT̂ ′(t)
T̂ (t)

dt
)′
≤ p(x)q(x) T̂ (x)−xT̂ ′(x)

T̂ 2(x)
e−

∫ x
x0

q(t) T̂ (t)−tT̂ ′(t)
T̂ (t)

dt
,

which we integrate from x0 to x and we get

r(x)e−
∫ x

x0
q(t) T̂ (t)−tT̂ ′(t)

T̂ (t)
dt ≤

∫ x
x0

p(t)q(t) T̂ (t)−tT̂ ′(t)
T̂ 2(t)

e−
∫ t

x0
q(s) T̂ (s)−sT̂ ′(s)

T̂ (s)
dsdt,

or

r(x)≤
∫ x

x0

p(t)q(t)
T̂ (t)− tT̂ ′(t)

T̂ 2(t)
e
∫ x

t q(s) T̂ (s)−sT̂ ′(s)
T̂ (s)

dsdt.
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From the last inequality and (8) we get

u(x)≤ p(x)+ T̂ (x)
∫ x

x0

p(t)q(t)
T̂ (t)− tT̂ ′(t)

T̂ 2(t)
e
∫ x

t q(s) T̂ (s)−sT̂ ′(s)
T̂ (s)

dsdt.

Corollary 4.0.169. If in the last theorem p(x) ≡ 0 in [x0 − a,x0 + a], then u(x) ≡ 0 in
[x0−a,x0 +a].

Corollary 4.0.170. If in the last theorem p(x) is increasing in [x0,x0 + a] and T̂ (x) is de-
creasing in [x0,x0 +a], then

u(x)≤ p(x)e
∫ x

x0
q(s) T̂ (s)−sT̂ ′(s)

T̂ (s)
ds for ∀x ∈ [x0,x0 +a].

Proof. Since p(x) is an increasing function in [x0,x0 +a], then

p(t)≤ p(x) for ∀t,x ∈ [x0,x0 +a], t ≤ x.

Because T̂ (x) is a decreasing function in [x0,x0 +a], we have

T̂ (t)≥ T̂ (x) for ∀t,x ∈ [x0,x0 +a], t ≤ x,

from where
1

T̂ (t)
≤ 1

T̂ (x)
for ∀t,x ∈ [x0,x0 +a], t ≤ x.

Consequently

p(t)
T̂ (t)

≤ p(x)
T̂ (x)

for t,x ∈ [x0,x0 +a], t ≤ x.

From here and (3′) we conclude

u(x)≤ p(x)+ T̂ (x) p(x)
T̂ (x)

∫ x
x0

q(t) T̂ (t)−tT̂ ′(t)
T̂ (t)

e
∫ x

t q(s) T̂ (s)−sT̂ ′(s)
T̂ (s)

dsdt

= p(x)− p(x)e
∫ x

t q(s) T̂ (s)−sT̂ ′(s)
T̂ (s)

ds
∣∣∣t=x

t=x0

= p(x)− p(x)+ p(x)e
∫ x

x0
q(s) T̂ (s)−sT̂ ′(s)

T̂ (s)
ds

= p(x)e
∫ x

x0
q(s) T̂ (s)−sT̂ ′(s)

T̂ (s)
ds
.

for every x ∈ [x0−a,x0].

Corollary 4.0.171. If in the last theorem p(x) is a decreasing function in [x0− a,x0] and
T̂ (x) is an increasing function in [x0−a,x0], then

u(x)≤ p(x)e
∫ x0

x q(s) T̂ (s)−sT̂ ′(s)
T̂ (s)

ds for ∀x ∈ [x0−a,x0].
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Proof. Since p(x) is a decreasing function in [x0−a,x0], then

p(t)≤ p(x) for ∀t,x ∈ [x0−a,x0], t ≥ x.

Because T̂ (x) is an increasing function in [x0−a,x0], we have

T̂ (t)≥ T̂ (x) for ∀t,x ∈ [x0−a,x0], t ≥ x,

or
1

T̂ (t)
≤ 1

T̂ (x)
for ∀t,x ∈ [x0−a,x0], t ≥ x.

Therefore
p(t)
T̂ (t)

≤ p(x)
T̂ (x)

for ∀t,x ∈ [x0−a,x0], t ≥ x.

From here and (3′′)

u(x)≤ p(x)+ T̂ (x) p(x)
T̂ (x)

∫ x0
x q(t) T̂ (t)−tT̂ ′(t)

T̂ (t)
e
∫ t

x q(s) T̂ (s)−sT̂ ′(s)
T̂ (s)

dsdt

= p(x)+ p(x)e
∫ t

x q(s) T̂ (s)−sT̂ ′(s)
T̂ (s)

ds
∣∣∣t=x0

t=x

= p(x)+ p(x)e
∫ x0

x q(s) T̂ (s)−sT̂ ′(s)
T̂ (s)

ds− p(x)

= p(x)e
∫ x0

x q(s) T̂ (s)−sT̂ ′(s)
T̂ (s)

ds for ∀x ∈ [x0−a,x0].





Chapter 5

Existence and Uniqueness of
Solutions

In this chapter (x0,y0) ∈ R2, D is a domain in R2 containing the point (x0,y0), J is an
interval in R containing x0, T̂ (x) ∈ C 1(J), T̂ (x) > 0 for every x ∈ J. We begin to develop
the theory of existence and uniqueness of solutions of the initial value problem(

ŷ∧(x̂)
)~

= f̂∧(x̂, ŷ∧(x̂)), x ∈ J, (1′)

y(x0) = y0, (2)

where f will be assumed to be continuous in the domain D.
The equation (1′) can be rewritten in the following form

y′(x)T̂ (x)−y(x)T̂ ′(x)

T̂ (x)

(
T̂ (x)−xT̂ ′(x)

) = f (x,y(x))
T̂ (x)

, x ∈ J,

or
y′(x)T̂ (x)− y(x)T̂ ′(x) = f (x,y(x))

(
T̂ (x)− xT̂ ′(x)

)
, x ∈ J,

or

y′(x) = y(x)
T̂ ′(x)
T̂ (x)

+ f (x,y)
T̂ (x)− xT̂ ′(x)

T̂ (x)
, x ∈ J. (1)

Definition 5.0.172. We will say that a function y(x) is a solution to the initial value problem
(1), (2) if

1. y(x0) = y0,

2. y′(x) exists for all x ∈ J,

3. for all x ∈ J the points (x,y(x)) ∈ D,

4. y′(x) = y(x) T̂ ′(x)
T̂ (x)

+ f (x,y(x)) T̂ (x)−xT̂ ′(x)
T̂ (x)

for all x ∈ J.
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If f (x,y(x)) is not continuous, then the nature of the solutions of (1) is quite arbitrary.
For example, let

f (x,y(x)) =
4(y(x)−2)

x(1− x)
− y(x)

1− x
, T̂ (x) = ex,

and (x0,y(x0)) = (0,0). Then the equation (1) admits the representation

y′(x) = y(x)+
(

4(y(x)−2)
x(1−x) −

y(x)
1−x

)
(1− x)

= y(x)+4 y(x)−2
x − y(x)

= 4
x (y(x)−2),

its general solution is
y(x) = 2+Cx4, (3)

where C is a constant. From here, we conclude that

y(0) = 2 6= 0,

therefore the considered initial value problem has no any solution. If we take (x0,y(x0)) =
(0,2), then every function (2) will be a solution of the considered initial value problem.

We shall need the following result to prove existence, uniqueness, and several other
properties of the solutions of the initial value problem (1), (2).

Theorem 5.0.173. Let f (x,y(x)) be continuous function in the domain D, then any solution
of the initial value problem (1), (2) is also a solution of the integral equation

y(x) = y0 +
∫ x

x0

(
y(t)

T̂ ′(t)
T̂ (t)

+ f (t,y(t))
T̂ (t)− tT̂ ′(t)

T̂ (t)

)
dt (4)

and conversely.

Proof. An integration of the equation (1) yields

y(x)− y(x0) =
∫ x

x0

(
y(t)

T̂ ′(t)
T̂ (t)

+ f (t,y(t))
T̂ (t)− tT̂ ′(t)

T̂ (t)

)
dt.

Conversely, if y(x) is any solution of (4), then

y(x0) = y0,

and since f (x,y(x)) is a continuous function in D and T̂ is a continuous function in J, then
y(x) is a continuous function in J and we can differentiate (4), from where we find

y′(x) = y(x)
T̂ ′(x)
T̂ (x)

+ f (x,y(x))
T̂ (x)− xT̂ ′(x)

T̂ (x)
.
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We shall solve the integral equation (4) by using the method of successive approxima-
tions due to Picard. For this reason, let y0(x) be any continuous function, we often take
y0(x) ≡ y0, which we will suppose to be initial approximation of the unknown solution of
(4), then we define y1(x) as follows

y1(x) = y0 +
∫ x

x0

(
y0(t)

T̂ ′(t)
T̂ (t)

+ f (t,y0(t))
T̂ (t)− tT̂ ′(t)

T̂ (t)

)
dt.

We pick this y1(x) as our next approximation and substitute this for y(x) in the right side of
(4) and call it y2(x),

y2(x) = y0 +
∫ x

x0

(
y1(t)

T̂ ′(t)
T̂ (t)

+ f (t,y1(t))
T̂ (t)− tT̂ ′(t)

T̂ (t)

)
dt.

Continuing in this way, the (m+ 1)st approximation ym+1(x) is obtained from ym(x) by
means of the relation

ym+1(x) = y0 +
∫ x

x0

(
ym(t)

T̂ ′(t)
T̂ (t)

+ f (t,ym(t))
T̂ (t)− tT̂ ′(t)

T̂ (t)

)
dt, m = 0,1,2, . . . .

(5)
If the sequence {ym(x)}∞

m=1 converges uniformly to a continuous function y(x) in the inter-
val J and for all x ∈ J the points (x,ym(x)) ∈ D, then we may pass to the limit in both sides
of (5), to obtain

y(x) = limm−→∞ ym+1(x)

= y0 + limm−→∞

∫ x
x0

(
ym(t)

T̂ ′(t)
T̂ (t)

+ f (t,ym(t))
T̂ (t)−tT̂ ′(t)

T̂ (t)

)
dt

= y0 +
∫ x

x0

(
y(t) T̂ ′(t)

T̂ (t)
+ f (t,y(t)) T̂ (t)−tT̂ ′(t)

T̂ (t)

)
dt,

so that y(x) is the desired solution.

Example 5.0.174. Let J = [−1,1], D = {(x,y) : −1 ≤ x ≤ 1, y ∈ R}, T̂ |(x) = ex,
f (x,y(x)) = y(x), y(0) = 1. We will find the first four approximation.

We pick
y0(x)≡ y0 = 1,

y1(x) = 1+
∫ x

0 (2− t)y0(t)dt

= 1+
∫ x

0 (2− t)dt

= 1+2x− x2

2 ,

y2(x) = 1+
∫ 1

0 (2− t)y1(t)dt

= 1+
∫ x

0 (2− t)
(

1+2t− t2

2

)
dt

= 1+
∫ x

0

(
2+3t−3t2 + t3

2

)
dt

= 1+2x+ 3
2 x2− x3 + x4

8 ,
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y3(x) = 1+
∫ x

0 (2− t)
(

1+2t + 3
2 t2− t3 + t4

8

)
dt

= 1+
∫ x

0

(
2+3t + t2− 7

2 t3 + 5
4 t4− t5

8

)
dt

= 1+2x+ 3
2 x2 + x3

3 −
7
8 x4 + 1

4 x5− x6

48 .

Example 5.0.175. Let J = R, D = R2, f (x,y(x)) = −2y(x)
1−x , T̂ (x) = ex, y(0) = 1. Then the

equation (1) we can represent in the form

y′(x) = y(x)−2 y(x)
1−x(1− x)

= y(x)−2y(x)

=−y(x).

Then
y0(x)≡ y0 = 1,

y1(x) = 1−
∫ x

0 y0(t)dt

= 1− x,

y2(x) = 1−
∫ x

0 y1(t)dt

= 1−
∫ x

0 (1− t)dt

= 1− x+ x2

2 ,

y3(x) = 1−
∫ x

0

(
1− t + t2

2

)
dt

= 1− x+ x2

2 −
x3

3! .

We assume that

ym(x) = 1− x+
x2

2
− x3

3!
+ · · ·+(−1)m xm

m!
.

Then
ym+1(x) = 1−

∫ x
0

(
1− t + t2

2 −
t3

3! + · · ·+(−1)m T m

m!

)
dt

= 1− x+ x2

2 −
x3

3! + · · ·+(−1)m+1 xm+1

(m+1)! .

Therefore

ym(x) =
m

∑
i=0

(−1)i xi

i!
, m = 0,1,2, . . . .

From here,
lim

m−→∞
ym(x) = e−x.
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Consequently
y(x) = e−x

is a solution to the considered problem.

Exercise 5.0.176. Let J = R, D = R2, T̂ (x) = e2x, f (x,y(x)) = xy(x), y(0) = 1. Find the
first three approximations of the solution of the problem (1), (2).

Exercise 5.0.177. Let J = R, D = R2, T̂ (x) = ex, f (x,y(x)) = x+ y(x), y(0) = 2. Find the
first two approximations of the solution of the problem (1), (2).

Below we will suppose that a and b are positive real numbers. Let P be positive real
number such that

|T̂ ′(x)|
T̂ (x)

≤ P,
|T̂ (x)− xT̂ ′(x)|

T̂ (x)
≤ P for ∀x ∈ [x0−a,x0 +a].

Theorem 5.0.178. Let the following conditions be satisfied

(i) f (x,y) is continuous in the closed rectangle S : |x−x0| ≤ a, |y−y0| ≤ b and hence there
exists a M > 0 such that | f (x,y)| ≤M for all (x,y) ∈ S,

(ii) f (x,y) satisfies a uniform Lipschitz condition

| f (x,y1)− f (x,y2)| ≤ L|y1− y2|

for all (x,y1), (x,y2) in the closed rectangle S,

(iii) y0(x) is continuous in |x− x0| ≤ a, and |y0(x)− y0| ≤ b.

Then the sequence {ym(x)}∞
m=1 generated by Picard iterative scheme (5) converges to the

unique solution y(x) of the initial value problem (1), (2). This solution is valid in the
interval Jh : |x−x0| ≤ h, where h=min

{
a, b

P(b+|y0|+M)

}
. Further, for all x∈ Jh the following

error estimate holds

|y(x)− ym(x)| ≤ Ne(P+PL)h min
{

1,
((P+PL)h)m

m!

}
, m = 0,1,2, . . . , (6)

where
max
x∈Jh
|y1(x)− y0(x)| ≤ N.

Remark 5.0.179. This Theorem is called a local existence theorem since it guarantees a
solution only in the neighborhood of the point (x0,y0).

Proof. We will show that the successive approximations ym(x) defined by (5) exist as con-
tinuous function in Jh and (x,ym(x)) ∈ S for all x ∈ Jh. Since y0(x) is a continuous function
for all x such that |x−x0| ≤ a, the function F0(x) = f (x,y0(x)) is continuous function in Jh,
and hence y1(x) is continuous in Jh.
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Also,
|y1(x)− y0|=

∣∣∣∫ x
x0

(
y0(t)

T̂ ′(t)
T̂ (t)

+ f (t,y0(t))
T̂ (t)−tT̂ ′(t)

T̂ (t)

)
dt
∣∣∣

≤
∣∣∣∫ x

x0

(
|y0(t)| |T̂

′(t)|
T̂ (t)

+ | f (t,y0(t))| |T̂ (t)−tT̂ ′(t)|
T̂ (t)

)
dt
∣∣∣

≤
∣∣∣∫ x

x0

(
(b+ |y0|)P+MP

)
dt
∣∣∣

= P(b+ |y0|+M)|x− x0|

≤ P(b+ |y0|+M)h

≤ b.

Assuming that the assertion is true for ym(x), m≥ 1, then it is sufficient to prove that it is also
true for ym+1(x). For this, since ym(x) is continuous in Jh, the function Fm(x) = f (x,ym(x))
is also continuous function in Jh. Moreover,

|ym+1(x)− y0|=
∣∣∣∫ x

x0

(
ym(t)

T̂ ′(t)
T̂ (t)

+ f (t,ym(t))
T̂ (t)−tT̂ ′(t)

T̂ (t)

)
dt
∣∣∣

≤
∣∣∣∫ x

x0

(
|ym(t)| |T̂

′(t)|
T̂ (t)

+ | f (t,ym(t))| |T̂ (t)−tT̂ ′(t)|
T̂ (t)

)
dt
∣∣∣

≤
∣∣∣∫ x

x0

(
(b+ |y0|)P+MP

)
dt
∣∣∣

≤ P(b+ |y0|+M)|x− x0|

≤ P(b+ |y0|+M)h

≤ b.

Now we will prove that the sequence {ym(x)}∞
m=1 converges uniformly in Jh. Since y1(x)

and y0(x) are continuous in Jh, there exists a constant N > 0 such that

|y1(x)− y0(x)| ≤ N for ∀x ∈ Jh.

Also, for every x ∈ Jh, we have

|y2(x)− y1(x)|=
∣∣∣∫ x

x0

(
(y1(t)− y0(t))

T̂ ′(t)
T̂ (t)

+( f (t,y1(t))− f (t,y0(t)))
T̂ (t)−tT̂ ′(t)

T̂ (t)

)
dt
∣∣∣

≤
∣∣∣∫ x

x0

(
|y1(t)− y0(t)| |T̂

′(t)|
T̂ (t)

+ | f (t,y1(t))− f (t,y0(t))| |T̂ (t)−tT̂ ′(t)|
T̂ (t)

)
dt
∣∣∣

≤
∣∣∣∫ x

x0

(
|y1(t)− y0(t)| |T̂

′(t)|
T̂ (t)

+L|y1(t)− y0(t)| |T̂ (t)−tT̂ ′(t)|
T̂ (t)

)
dt
∣∣∣

≤
∣∣∣∫ x

x0
(NP+LNP)dt

∣∣∣
= NP(1+L)|x− x0|.
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Supposing that

|ym(x)− ym−1(x)| ≤ N

(
(P+LP)|x− x0|

)m−1

(m−1)!
, x ∈ Jh, (7)

for some m ∈ N.
We will prove that

|ym+1(x)− ym(x)| ≤ N

(
(P+LP)|x− x0|

)m

m!
, x ∈ Jh.

Really,

|ym+1(x)− ym(x)|

=
∣∣∣∫ x

x0

(
(ym(t)− ym−1(t))

T̂ ′(t)
T̂ (t)

+( f (t,ym(t))− f (t,ym−1(t)))
T̂ (t)−tT̂ ′(t)

T̂ (t)

)
dt
∣∣∣

≤
∣∣∣∫ x

x0

(
|ym(t)− ym−1(t)| |T̂

′(t)|
T̂ (t)

+ | f (t,ym(t))− f (t,ym−1(t))| |T̂ (t)−tT̂ ′(t)|
T̂ (t)

)
dt
∣∣∣

≤
∣∣∣∫ x

x0

(
|ym(t)− ym−1(t)| |T̂

′(t)|
T̂ (t)

+L|ym(t)− ym−1(t)| |T̂ (t)−tT̂ ′(t)|
T̂ (t)

)
dt
∣∣∣

≤
∣∣∣∫ x

x0
(P+PL)|ym(t)− ym−1(t)|dt

∣∣∣
≤ N(P+PL)m+1

∣∣∣∫ x
x0

(t−x0)
m

m! dt
∣∣∣

= N(P+PL)m+1 |x−x0|m+1

(m+1)! .

Thus inequality (7) is true for all m ∈ N.
Next, since

N ∑
∞
m=1

(
(P+PL)|x−x0|

)m−1

(m−1)! ≤ N ∑
∞
m=0

(
(P+PL)h

)m

m!

= Ne(P+PL)h < ∞,

we have that the series

y0(x)+
∞

∑
m=1

(ym(x)− ym−1(x))

converges absolutely and uniformly in the interval Jh, and hence its partial sums

y1(x),y2(x), . . . ,ym(x), . . .

converge to a continuous function in this interval, i.e.,

y(x) = lim
m−→∞

ym(x).
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As we have seen above we have that y(x) is a solution to the problem (1), (2).
To prove that y(x) is the only solution, we assume that z(x) is also a solution to the

initial value problem (1), (2) which exists in the interval Jh and (x,z(x)) ∈ S for all x ∈ Jh.
The hypothesis (ii) is applicable and we have

|y(x)− z(x)| ≤
∣∣∣∫ x

x0

(
|y(t)− z(t)| T̂

′(t)
T̂ (t)

+ | f (t,y(t))− f (t,z(t))| |T̂ (t)−tT̂ ′(t)|
T̂ (t)

)
dt
∣∣∣

≤
∣∣∣∫ x

x0

(
P|y(t)− z(t)|+LP|y(t)− z(t)|

)
dt
∣∣∣

= (P+LP)
∣∣∣∫ x

x0
|y(t)− z(t)|dt

∣∣∣, x ∈ Jh.

Consequently
|y(x)− z(x)|= 0

for all x ∈ Jh.
Finally, we will obtain the error bound (6).
For n > m the inequality (7) gives

|yn(x)− ym(x)|= |yn(x)− yn−1(x)+ yn−1(x)− yn−2(x)+ · · ·+ ym+1(x)− ym(x)|

≤ ∑
n−1
k=m |yk+1(x)− yk(x)|

≤ N ∑
n−1
k=m

(
(P+LP)|x−x0|

)k

k!

≤ N ∑
n−1
k=m

(
(P+PL)h

)k

k!

= N
(
(P+PL)h

)m
∑

n−−m−1
k=0

(
(P+PL)h

)k

(m+k)!

(
1

(m+k)! ≤
1

m!k!

)

≤ N

(
(P+PL)h

)m

m! ∑
n−m−1
k=0

(
(P+PL)h

)k

k!

≤ N

(
(P+PL)h

)m

m! e(P+PL)h,
(8)

and hence as n−→ ∞, we get

|y(x)− ym(x)| ≤ N

(
(P+PL)h

)m

m!
e(P+PL)h

in Jh.
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The inequality (8) provides

|yn(x)− ym(x)| ≤ N ∑
n−1
k=m

(
(P+PL)h

)k

k!

≤ N ∑
∞
k=0

(
(P+PL)h

)k

k!

= Ne(P+PL)h,

and as n−→ ∞, we find
|y(x)− ym(x)| ≤ Ne(P+PL)h

in Jh.

Example 5.0.180. Let f (x,y) = −(x+ y(x)), T̂ (x) = ex, y(0) = 1. Then the equation (1)
we can rewrite in the following form

y′(x) = y(x)− x(1− x)− y(x)(1− x)

= xy(x)+ x(x−1).

Its general solution is

y(x) = ex
(

C+
∫

x(x−1)e−xdx
)

= ex
(

C− (x2− x)e−x +
∫
(2x−1)e−xdx

)
= ex

(
C− (x2− x)e−x− (2x−1)e−x +2

∫
e−xdx

)
= ex

(
C− (x2 + x−1)e−x−2e−x

)
=Cex− x2− x−1.

From here,
y(0) =C−1 = 1,

therefore
C = 2.

Consequently
y(x) = 2ex− x2− x−1

is the solution of the considered initial value problem, which is defined for every x ∈ R.
Now we will apply the last Theorem.
The function

f (x,y) = xy+ x2− x
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is a continuous function in the rectangle S : |x| ≤ a, |y−1| ≤ b, and

| f (x,y)|= |xy+ x2− x|

≤ |x||y|+ |x|2 + |x|

≤ a(b+1)+a2 +a

= a2 +2a+ab = M.

For all (x,y1), (x,y2) ∈ S we have

| f (x,y1)− f (x,y2)|= |xy1 + x2− x− xy2− x2 + x|

= |xy1− xy2|

= |x||y1− y2|

≤ a|y1− y2|,

i.e., the function f satisfies a uniform Lipschitz condition with L = a.
Also, y0(x)≡ 1 in |x| ≤ a and

|y0(x)−1|= 0≤ b,

|T̂ ′(x)|
T̂ (x)

= ex

ex = 1,

|T̂ (x)−xT̂ ′(x)|
T̂ (x)

= |1− x|

≤ |x|+1

≤ a+1,

therefore P = a+1.
Thus, there exists a unique solution of the considered initial value problem in the inter-

val

|x| ≤ h = min
{

a,
b

(a+1)(a2 +ab+2a+b+1)

}
.

We have y0(x)≡ 1 and

|y(x)− y0(x)|= |2ex− x2− x−1−1|

≤ 2ex + x2 + |x|+2

≤ 2eh +h2 +h+2 = N.
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Further, the iterative scheme for the considered initial value problem takes the form

ym+1(x) = 1+
∫ x

0

(
tym(t)+ t(t−1)

)
dt

= 1− x2

2 + x3

3 +
∫ x

0 tym(t)dt,

y1(x) = 1− x2

2 + x3

3 +
∫ x

0 tdt

= 1+ x3

3 ,

|y(x)− y1(x)| ≤ Ne(P+PL)h min{1,(P+PL)h}, x ∈ Jh,

y2(x) = 1− x2

2 + x3

3 +
∫ x

0 t
(

1+ t3

3

)
dt

= 1+ x3

3 + x5

15 ,

|y(x)− y2(x)| ≤ Ne(P+PL)h min
{

1, (P+PL)2h2

2

}
, x ∈ Jh.

Exercise 5.0.181. Discuss the existence and uniqueness of the solutions of the initial value
problem (1), (2) in the case when

T̂ (x) = e4x + x2 +1, f (x,y) = x2−3y2, y(1) = 2.

Definition 5.0.182. If the solution of the initial value problem (1), (2) exists in the entire
interval |x− x0| ≤ a, we say that the solution exists globally.

The next result is called a global existence theorem.

Theorem 5.0.183. Let the following conditions be satisfied

(i) f (x,y) is continuous in the strip T : |x− x0| ≤ a, |y|< ∞,

(ii) f (x,y) satisfies a uniform Lipschitz condition in T ,

(iii) y0(x) is continuous in |x− x0| ≤ a.

Then the sequence {ym(x)}∞
m=1 generated by Picard iterative scheme exists in the entire

interval |x− x0| ≤ a, and converges to the unique solution y(x) of the initial value problem
(1), (2).

Proof. For any continuous function y0(x) in |x− x0| ≤ a, as in the proof of the local ex-
istence Theorem, can be established the existence of each ym(x) in |x− x0| ≤ a satisfying
|ym(x)| < ∞. Also, as in the proof of the previous Theorem we have that the sequence
{ym(x)(}∞

m=1 converges to y(x) in |x− x0| ≤ a, replacing h by a throughout the proof and
recalling that the function f (x,y) satisfies the Lipschitz condition in the strip T .

Corollary 5.0.184. Let f (x,y) be continuous in R2 and satisfies a uniform Lipschitz condi-
tion in each strip Ta : |x| ≤ a, |y|< ∞, with the Lipschitz constant La. Then the initial value
problem (1), (2) has a unique solution which exists for all x.
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Proof. For any x there exists an a> 0 such that |x−x0| ≤ a. From here and from T ⊂ Ta+|x0|,
it follows that the function f (x,y) satisfies the conditions of the previous Theorem in the
strip T . Hence, the result follows for any x.

Exercise 5.0.185. Discuss the existence and uniqueness of the solutions of the initial value
problem (1), (2) in the case when

T̂ (x) = x2 +1, f (x,y) = y2, y(0) = 0.

We will note that there exist positive constants M1 and M2 such that

∣∣∣ T̂ ′(x)
T̂ (x)

∣∣∣≤M1,
∣∣∣1− x

T̂ ′(x)
T̂ (x)

∣∣∣≤M2 for x ∈ [x0−a,x0 +a].

Theorem 5.0.186. (iso-Peano’s existence theorem) Let f is defined, continuous and
bounded function on the strip T = {(x,y) ∈ R2 : |x− x0| ≤ a, |y| < ∞}. Then the Cauchy
problem (1), (2) has a bounded solution y(x) which is defined on |x− x0| ≤ a and

|y(x)| ≤
(

1+ eaM1
)
(|y0|+ sup

(x,y)∈V
| f (x,y)|M2a) for ∀x ∈ [x0−a,x0 +a].

Remark 5.0.187. We can consider our main result as a continuation of the well - known
Peano’s Theorem.

If we put

g(x,y) = y(x)
T̂ ′(x)
T̂ (x)

+ f (x,y(x))
(

1− x
T̂ ′(x)
T̂ (x)

)
,

then g is unbounded function on the strip T . Therefore we can not apply the classical
Peano’s Theorem for the Cauchy problem (1), (2), because g has to be bounded on T .

Proof. Since f is a bounded function on T then there exists a positive constant M such that

| f (x,y)| ≤M for (x,y) ∈ T.

We will prove our main result for x ∈ [x0,x0 +a]. In the same way one can prove the main
result for x ∈ [x0−a,x0].

For x ∈ [x0,x0 +a] we define the sequence {ym(x)}∞
m=1 as follows

ym(x) = y0 for x ∈
[
x0,x0 +

a
m

]
,

ym(x) = y0 +
∫ x− a

m
x0

(
ym(t)

T̂ ′(t)
T̂ (t)

+ f (t,ym(t))
(

1− t T̂ ′(t)
T̂ (t)

))
dt for

x ∈
[
x0 + k a

m ,x0 +(k+1) a
m

]
, k = 1,2, . . . ,m−1.

For this sequence we have
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1. Let m ∈ N is arbitrary chosen.

If x ∈
[
x0,x0 +

a
m

]
then

|ym(x)|= |y0|.

If x /∈
[
x0,x0+

a
m

]
and x ∈

[
x0+k a

m ,x0+(k+1) a
m

]
for some k = 1,2, . . . ,m−1, then

|ym(x)|=
∣∣∣y0 +

∫ x− a
m

x0

(
ym(t)

T̂ ′(t)
T̂ (t)

+ f (t,ym(t))
(

1− t T̂ ′(t)
T̂ (t)

))
dt
∣∣∣

≤ |y0|+
∫ x− a

m
x0

(
|ym(t)|

∣∣∣ T̂ ′(t)
T̂ (t)

∣∣∣+ | f (t,ym(t))|
∣∣∣1− t T̂ ′(t)

T̂ (t)

∣∣∣)dt

≤ |y0|+
∫ x− a

m
x0

(M1|ym(t)|+MM2)dt

= |y0|+M1
∫ x− a

m
x0
|ym(t)|dt +MM2

(
x− a

m − x0

)
≤ |y0|+M1

∫ x− a
m

x0
|ym(t)|dt +MM2

(
x0 +(k+1) a

m −
a
m − x0

)
≤ |y0|+MM2a+M1

∫ x− a
m

x0
|ym(t)|dt,

i.e. for x ∈
[
x0 + k a

m ,x0 +(k+1) a
m

]
we have

|ym(x)| ≤ |y0|+MM2a+M1
∫ x− a

m
x0
|ym(t)|dt

≤ |y0|+MM2a+M1
∫ x

x0
|ym(t)|dt.

From here and the Gronwall’s inequality we get

|ym(x)| ≤ |y0|+MM2a+M1
∫ x

x0
(|y0|+MM2a)eM1(x−t)dt

= |y0|+MM2a+ eM1xM1(|y0|+MM2a)
∫ x

x0
e−M1tdt

= |y0|+MM2a+ eM1x(|y0|+MM2a)
(

e−M1x0− e−M1x
)

≤ |y0|+MM2a+ eM1(x−x0)(|y0|+MM2a)

≤ |y0|+MM2a+ eaM1(|y0|+MM2a)

= (1+ eaM1)(|y0|+MM2a) =: M3 for x ∈
[
x0 + k a

m ,x0 +(k+1) a
m

]
,

for some k = 1,2, . . . ,m−1.

Consequently for every x ∈ [x0,x0 +a] we have

|ym(x)| ≤M3 (9)

for every m ∈ N.

Therefore the sequence {ym(x)}∞
m=1 is uniformly bounded on [x0,x0 +a].
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2. Let x1,x2 ∈ [x0,x0 +a] and m ∈ N is arbitrarily chosen. Then

1. case. x1,x2 ∈
[
x0,x0 +

a
m

]
. Then

ym(x1) = ym(x2) = y0,

and therefore
|ym(x2)− ym(x1)|= 0.

2. case. Let x1 ∈
[
x0,x0 +

a
m

]
, x2 /∈

[
x0,x0 +

a
m

]
. Then there exists k ∈ {1,2, . . . ,

m−1}, such that x2 ∈
[
x0 + k a

m ,x0 +(k+1) a
m

]
and

ym(x1) = y0,

ym(x2) = y0 +
∫ x2− a

m
x0

(
ym(t)

T̂ ′(t)
T̂ (t)

+ f (t,ym(t))
(

1− t T̂ ′(t)
T̂ (t)

))
dt,

from here,

|ym(x2)− ym(x1)|=
∣∣∣∫ x2− a

m
x0

(
ym(t)

T̂ ′(t)
T̂ (t)

+ f (t,ym(t))
(

1− t T̂ ′(t)
T̂ (t)

))
dt
∣∣∣

≤
∫ x2− a

m
x0

(
|ym(t)|

∣∣∣ T̂ ′(t)
T̂ (t)

∣∣∣+ | f (t,ym(t))|
∣∣∣1− t T̂ ′(t)

T̂ (t)

∣∣∣)dt

≤MM2

(
x2− a

m − x0

)
+M1

∫ x2− a
m

x0
|ym(t)|dt

now we use that x1 ∈
[
x0,x0 +

a
m

]
≤MM2(x2− x1)+M1

∫ x2− a
m

x0

|ym(t)|dt,

i.e.

|ym(x2)− ym(x1)| ≤MM2(x2− x1)+M1

∫ x2− a
m

x0

|ym(t)|dt.

From here and (9) we obtain

|ym(x2)− ym(x1)| ≤MM2(x2− x1)+M1M3
∫ x2− a

m
x0

dt

= MM2(x2− x1)+M1M3

(
x2− a

m − x0

)
≤ (MM2 +M1M3)(x2− x1).

3. case. Let x1,x2 /∈
[
x0,x0 +

a
m

]
. Without loss of generality we can suppose that

x1 ≤ x2. Let

x1 ∈
[
x0 + k

a
m
,x0 +(k+1)

a
m

]
, x2 ∈

[
x0 + i

a
m
,x0 +(i+1)

a
m

]
, k ≤ i,
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k, i ∈ {1,2, . . . ,m−1}.
Then

ym(x2) = y0 +
∫ x2− a

m
x0

(
ym(t)

T̂ ′(t)
T̂ (t)

+ f (t,ym(t))
(

1− t T̂ ′(t)
T̂ (t)

))
dt,

ym(x1) = y0 +
∫ x1− a

m
x0

(
ym(t)

T̂ ′(t)
T̂ (t)

+ f (t,ym(t))
(

1− t T̂ ′(t)
T̂ (t)

))
dt,

ym(x2)− ym(x1) =
∫ x2− a

m
x1− a

m

(
ym(t)

T̂ ′(t)
T̂ (t)

+ f (t,ym(t))
(

1− t T̂ ′(t)
T̂ (t)

))
dt,

|ym(x2)− ym(x1)|=
∣∣∣∫ x2− a

m
x1− a

m

(
ym(t)

T̂ ′(t)
T̂ (t)

+ f (t,ym(t))
(

1− t T̂ ′(t)
T̂ (t)

))
dt
∣∣∣

≤
∫ x2− a

m
x1− a

m

(
|ym(t)|

∣∣∣ T̂ ′(t)
T̂ (t)

∣∣∣+ | f (t,ym(t))|
∣∣∣1− t T̂ ′(t)

T̂ (t)

∣∣∣)dt

≤M1
∫ x2− a

m
x1− a

m
|ym(t)|dt +MM2

∫ x2− a
m

x1− a
m

dt

= M1
∫ x2− a

m
x1− a

m
|ym(t)|dt +MM2(x2− x1)

now we apply (9)

≤M1M3
∫ x2− a

m
x1− a

m
dt +MM2(x2− x1)

= (M1M3 +MM2)(x2− x1).

From 1, 2, and 3 cases follows that for every x1,x2 ∈ [x0,x0 +a] we have

|ym(x2)− ym(x1)| ≤ (M1M3 +MM2)|x2− x1| for ∀m ∈ N. (10)

Let ε > 0 is arbitrary chosen and fixed. Let δ = ε

MM2+M1M3
. Then if x1,x2 ∈ [x0,x0 + a],

|x1− x2|< δ, using (10), we get

|ym(x2)− ym(x1)| ≤ (M1M3 +MM2)|x2− x1|

< (M1M3 +MM2)δ = ε.

Consequently {ym(x)}∞
m=1 is equip-continuous family on [x0,x0 +a].

Therefore there exists a subsequence {ymp(x)}∞
p=1 of the sequence {ym(x)}∞

m=1 which
is uniformly convergent to y(x) on [x0,x0 +a].

For ymp(x), x ∈ [x0,x0 +a], we have

ymp(x) = y0 +
∫ x− a

mp
x0

(
ymp(t)

T̂ ′(t)
T̂ (t)

+ f (t,ymp(t))
(

1− t T̂ ′(t)
T̂ (t)

))
dt

= y0 +
∫ x

x0

(
ymp(t)

T̂ ′(t)
T̂ (t)

+ f (t,ymp(t))
(

1− t T̂ ′(t)
T̂ (t)

))
dt

+
∫ x− a

mp
x

(
ymp(t)

T̂ ′(t)
T̂ (t)

+ f (t,ymp(t))
(

1− t T̂ ′(t)
T̂ (t)

))
dt.

(11)
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Since f is a continuous and bounded function on T we have

limp−→∞

∫ x
x0

(
ymp(t)

T̂ ′(t)
T̂ (t)

+ f (t,ymp(t))
(

1− t T̂ ′(t)
T̂ (t)

))
dt

=
∫ x

x0

(
y(t) T̂ ′(t)

T̂ (t)
+ f (t,y(t))

(
1− t T̂ ′(t)

T̂ (t)

))
dt.

(12)

Also, ∣∣∣∫ x− a
mp

x

(
ymp(t)

T̂ ′(t)
T̂ (t)

+ f (t,ymp(t))
(

1− t T̂ ′(t)
T̂ (t)

))
dt
∣∣∣

≤
∫ x

x− a
mp

(
|ymp(t)|

∣∣∣ T̂ ′(t)
T̂ (t)

∣∣∣+ | f (t,ymp(t))|
∣∣∣1− t T̂ ′(t)

T̂ (t)

∣∣∣)dt

≤M1
∫ x

x− a
mp
|ymp(t)|dt +MM2

a
mp

now we use (9)
≤ (M1M3 +MM2)

a
mp
−→p−→∞ 0.

From here and (11), (12), when p−→ ∞, we get

y(x) = y0 +
∫ x

x0

(
y(t)

T̂ ′(t)
T̂ (t)

+ f (t,y(t))
(

1− t
T̂ ′(t)
T̂ (t)

))
dt

for every x ∈ [x0,x0 +a]. Therefore y is a solution of the Cauchy problem (1), (2) which is
defined on [x0,x0 +a]. From (9) follows that |y(x)| ≤M3 for every x ∈ [x0,x0 +a].

Corollary 5.0.188. Let f (x,y) be continuous in S, and hence there exists a M > 0 such
that | f (x,y)| ≤M for all (x,y) ∈ S. Then the initial value problem (1), (2) has at least one
solution in Jh.

Proof. The proof is the same as that of the proof of iso-Peano’s existence theorem with
some obvious changes.

Definition 5.0.189. (ε-approximate solution) A function y(x) defined in J is said to be an
ε-approximate solution of the iso-differential equation (1) if

1. y(x) is continuous for all x ∈ J,

2. for all x ∈ J the points (x,y(x)) ∈ D,

3. y(x) has piecewise continuous derivative in J which may fail to be defined only for a
finite number of points, say x1, x2, . . ., xk,

4.
∣∣∣y′(x)− y(x) T̂ ′(x)

T̂ (x)
− f (x,y) T̂ (x)−xT̂ ′(x)

T̂ (x)

∣∣∣≤ ε for all x ∈ J, x 6= xi, i = 1,2, . . . ,k.

The existence of an ε-approximate solution is provided in the following theorem.

Theorem 5.0.190. Let f (x,y) be continuous in S and hence there exists a M > 0 such that
| f (x,y)| ≤M for every (x,y) ∈ S. Then for all ε > 0, there exists an ε-approximate solution
y(x) of the iso-differential equation (1) in the interval Jh such that y(x0) = y0.
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Proof. Because the function f (x,y) is a continuous function in the closed rectangle S, it is
uniformly continuous in this rectangle. Thus, for a given ε > 0 there exists δ = δ(ε)> 0 so
that

| f (x,y)− f (x1,y1)| ≤ ε,∣∣∣y T̂ ′(x)
T̂ (x)

+ f (x,y) T̂ (x)−xT̂ ′(x)
T̂ (x)

− y1
T̂ ′(x1)

T̂ (x1)
− f (x1,y1)

T̂ (x1)−x1T̂ ′(x1)

T̂ (x1)

∣∣∣≤ ε

for all (x,y), (x1,y1) ∈ S such that

|x− x1| ≤ δ and |y− y1| ≤ δ.

We shall construct an ε-approximate solution in the interval [x0,x0 +h]. A similar process
will define it in the interval [x0−h,x0].

For this aim, we divide the interval [x0,x0 +h] into m parts

x0 < x1 < x2 . . . < xm = x0 +h

such that

xi− xi−1 ≤min
{

δ,
δ

P(|y0|+b+M)

}
, i = 1,2, . . . ,m. (13)

Now we define a function y(x) in the interval [x0,x0 +h] in the following manner

y(x) = y(xi−1)+(x− xi−1)
(

y(xi−1)
T̂ ′(xi−1)

T̂ (xi−1)
+ f (xi−1,y(xi−1))

T̂ (xi−1)−xi−1T̂ ′(xi−1)

T̂ (xi−1)

)
,

xi−1 ≤ x≤ xi, i = 1,2, . . . ,m.
(14)

Obviously, this function y(x) is continuous and has a piecewise continuous derivative

y′(x) = y(xi−1)
T̂ ′(xi−1)

T̂ (xi−1)
+ f (xi−1,y(xi−1)

T̂ (xi−1)− xi−1T̂ ′(xi−1)

T̂ (xi−1)
,

xi−1 < x < xi, i = 1,2, . . . ,m, which fails to be defined only at the points xi, i = 1,2, . . . ,m−
1. Since in each subinterval [xi−1,xi], i = 1,2, . . . ,m, the function y(x) is a straight line, to
prove that (x,y(x)) ∈ S it suffices to show that

|y(xi)− y0| ≤ b

for all i = 1,2, . . . ,m.
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For this reason, in (14) let i = 1 and x = x1 to obtain

y(x1) = y0 +(x− x1)
(

y0
T̂ ′(x0)

T̂ (x0)
+ f (x0,y0)

T̂ (x0)−x0T̂ ′(x0)

T̂ (x0)

)
,

|y(x1)− y0|=
∣∣∣(x− x1)

(
y0

T̂ ′(x0)

T̂ (x0)
+ f (x0,y0)

T̂ (x0)−x0T̂ ′(x0)

T̂ (x0)

)∣∣∣
≤ (x1− x0)

(
|y0| |T̂

′(x0)|
T̂ (x0)

+ | f (x0,y0)| |T̂ (x0)−x0T̂ ′(x0)|
T̂ (x0)

)
≤ (x1− x0)(P|y0|+MP)

≤ hP(M+ |y0|)

≤ hP(b+ |y0|+M)

≤ b
P(b+|y0|+M)P(b+ |y0|+M)

= b.

Now let the assertion be true for i = 1,2, . . . ,k−1 < m−1, then from (14)

y(x1)− y0 = (x1− x0)
(

y0
T̂ ′(x0)

T̂ (x0)
+ f (x0,y0)

T̂ (x0)−x0T̂ ′(x0)

T̂ (x0)

)
,

y(x2)− y(x1) = (x2− x1)
(

y(x1)
T̂ ′(x1)

T̂ (x1)
+ f (x1,y(x1))

T̂ (x1)−x1T̂ ′(x1)

T̂ (x1)

)
,

· · ·

y(xk)− y(xk−1) = (xk− xk−1)
(

y(xk−1)
T̂ ′(xk−1)

T̂ (xk−1)
+ f (xk−1,y(xk−1))

T̂ (xk−1)−xk−1T̂ ′(xk−1)

T̂ (xk−1)

)
.

From here,

y(xk)− y0 = ∑
k
l=1(xl− xl−1)

(
y(xl−1)

T̂ ′(xl−1)

T̂ (xl−1)
+ f (xl−1,y(xl−1))

T̂ (xl−1)−xl−1T̂ ′(xl−1)

T̂ (xl−1)

)
,

which gives

|y(xk)− y0| ≤ ∑
k
l=1(xl− xl−1)

(
|y(xl−1)| |T̂

′(xl−1)|
T̂ (xl−1)

+ | f (xl−1,y(xl−1))| |T̂ (xl−1)−xl−1T̂ ′(xl−1)|
T̂ (xl−1)

)
≤ ∑

k
l=1(xl− xl−1)

(
(b+ |y0|)P+MP

)
= P(M+b+ |y0|)∑

k
l=1(xl− xl−1)

= P(M+b+ |y0|)(xk− x0)

≤ P(M+b+ |y0|)h

≤ P(M+b+ |y0|) b
P(M+b+|y0|)

= b.
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Finally, if xi−1 < x < xi, then from (13) and (14)

|y(x)− y(xi−1)|= (x− xi)
∣∣∣y(xi−1)

T̂ ′(xi−1)

T̂ (xi−1)
+ f (xi−1,y(xi−1))

T̂ (xi−1)−xi−1T̂ ′(xi−1)

T̂ (xi−1)

∣∣∣
≤ (x− xi)

(
|y(xi−1)| |T̂

′(xi−1)|
T̂ (xi−1)

+ | f (xi−1,y(xi−1))| |T̂ (xi−1)−xi−1T̂ ′(xi−1)|
T̂ (xi−1)

)
≤ (xi− xi−1)

(
(|y0|+b)P+MP

)
≤ δ

P(|y0|+b+M)P(M+ |y0|+b)

= δ.

Therefore∣∣∣y′(x)− y(x) T̂ ′(x)
T̂ (x)
− f (x,y(x)) T̂ (x)−xT̂ ′(x)

T̂ (x)

∣∣∣
=
∣∣∣y(xi−1)

T̂ ′(xi−1)

T̂ (xi−1)
+ f (xi−1,y(xi−1))

T̂ (xi−1)−xi−1T̂ ′(xi−1)

T̂ (xi−1)
− y(x) T̂ ′(x)

T̂ (x)
− f (x,y(x)) T̂ (x)−xT̂ ′(x)

T̂ (x)

∣∣∣
≤ ε

for all x ∈ Jh, x 6= xi, i = 1,2, . . . ,m− 1. This completes the proof that y(x) is an ε-
approximate solution of the iso-differential equation (1).

This method of constructing an approximate solution is said to be iso-Cauchy-Euler
method.

Theorem 5.0.191. (iso-Cauchy-Peano’s existence theorem) Let f (x,y) be continuous in S
and hence there exists a M > 0 such that | f (x,y)| ≤M for every (x,y) ∈ S. Then the initial
value problem (1), (2) has at least one solution in Jh.

Proof. We shall prove the assertion for the interval [x0,x0 +h].
Let {εm}∞

m=1 be a monotonically decreasing sequence of positive numbers such that

lim
m−→∞

εm = 0.

For each εm we construct an εm-approximate solution ym(x).
As in the proof of the theorem for existence of ε-approximate solutions we have

|ym(x)| ≤ b+ |y0|

for every m∈N and for every x∈ Jh. In other words, the sequence {ym(x)}∞
m=1 is uniformly

bounded in Jh.
Let x, x∗ ∈ [x0,x0 +h]. Then

|ym(x)− ym(x∗)| ≤
∣∣∣∫ x∗

x

(
|ym(t)| |T̂

′(t)|
T̂ (t)

+ | f (t,ym(t))| |T̂ (t)−tT̂ ′(t)|
T̂ (t)

)
dt
∣∣∣

≤
∣∣∣∫ x∗

x

(
P(|y0|+b)+MP

)
dt
∣∣∣

≤ P(M+b+ |y0|)|x− x∗|
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and from this it follows that the sequence {ym(x)}∞
m=1 is equip-continuous.

Consequently the sequence {ym(x)}∞
m=1 contains a subsequence {ymp(x)}∞

p=1 which
converges uniformly in [x0,x0 +h] to a continuous function y(x). We define

em(x) =


y′m(x)− ym(x)

T̂ ′(x)
T̂ (x)
− f (x,ym(x))

T̂ (x)−xT̂ ′(x)
T̂ (x)

at the points where y′m(x) exists

0 otherwise.

Then

ym(x) = y0 +
∫ x

x0

(
ym(t)

T̂ ′(t)
T̂ (t)

+ f (t,ym(t))+ em(t)
)

dt (15)

and
|em(x)| ≤ εm.

Since f (x,y) is continuous in S and ymp(x) converges to y(x) uniformly in [x0,x0 + h], the
function f (x,ymp(x)) converges to f (x,y(x)) uniformly in [x0,x0 +h]. Thus, by replacing m
by mp in (15) and letting p−→∞, we become that y(x) is a solution to the integral equation
(4).

Remark 5.0.192. We suppose that all conditions of the iso-Cauchy-Peano’s existence the-
orem are satisfied. Further, let the initial value problem (1), (2) has a solution y(x) in an
interval J = (α,β). We have

|y(x2)− y(x1)| ≤ P(M+ |y0|+b)|x2− x1|

for every x1, x2 ∈ J. Therefore
y(x2)− y(x1)−→ 0

as x1,x2 −→ α+. Thus, by the Cauchy criterion of convergence we have that

lim
x−→α+

y(x)

exists.
A similar argument holds for

lim
x−→β−

y(x).

Theorem 5.0.193. Let all conditions of the iso-Cauchy-Peano’s existence theorem be sat-
isfied. Let also, y(x) be a solution of the initial value problem (1), (2) in the interval
J = (α,β). Then y(x) can be extended over the interval (α,β+ γ] ([α− γ,β)) for some
γ > 0.

Proof. We define the function y1(x) as follows.

y1(x) = y(x) for x ∈ (α,β),

y1(β) = y(β−0).
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We observe that for all x ∈ (α,β] we have

y1(x) = y(β−0)+
∫ x

β

(
y1(t)

T̂ ′(t)
T̂ (t)

+ f (t,y1(t))
T̂ (t)−tT̂ ′(t)

T̂ (t)

)
dt

= y(x0)+
∫

β

x0

(
y1(t)

T̂ ′(t)
T̂ (t)

+ f (t,y1(t))
T̂ (t)−tT̂ ′(t)

T̂ (t)

)
dt

+
∫ x

β

(
y1(t)

T̂ ′(t)
T̂ (t)

+ f (t,y1(t))
T̂ (t)−tT̂ ′(t)

T̂ (t)

)
dt

= y(x0)+
∫ x

x0

(
y1(t)

T̂ ′(t)
T̂ (t)

+ f (t,y1(t))
T̂ (t)−tT̂ ′(t)

T̂ (t)

)
dt.

Therefore the left-hand derivative y′1(β−0) exists and

y′1(β−0) = y1(β)
T̂ ′(β)
T̂ (β)

+ f (β,y1(β))
T̂ (β)−βT̂ ′(β)

T̂ (β)
.

Thus, y1(x) is a continuation of y(x) in the interval (α,β].
Let y2(x) be a solution to the problem

y′(x) = y(x) T̂ ′(x)
T̂ (x)

+ f (x,y(x)) T̂ (x)−xT̂ ′(x)
T̂ (x)

,

y(β) = y1(β),

existing in the interval [β,β+ γ] for some γ > 0.
We define the function

y3(x) =


y1(x) x ∈ (α,β],

y2(x) x ∈ [β,β+ γ],

which is a continuation of y(x) in the interval (α,β+ γ].
Also,

y3(x) = y0 +
∫ x

x0

(
y3(t)

T̂ ′(t)
T̂ (t)

+ f (t,y3(t))
T̂ (t)− tT̂ ′(t)

T̂ (t)

)
dt

for every x ∈ (α,β+ γ], because for all x ∈ [β,β+ γ] we have

y3(x) = y(β−0)+
∫ x

β

(
y3(t)

T̂ ′(t)
T̂ (t)

+ f (t,y3(t))
T̂ (t)−tT̂ ′(t)

T̂ (t)

)
dt

= y0 +
∫

β

x0

(
y3(t)

T̂ ′(t)
T̂ (t)

+ f (t,y3(t))
T̂ (t)−tT̂ ′(t)

T̂ x(t)

)
dt

+
∫ x

β

(
y3(t)

T̂ ′(t)
T̂ (t)

+ f (t,y3(t))
T̂ (t)−tT̂ ′(t)

T̂ (t)

)
dt

= y0 +
∫ x

x0

(
y3(t)

T̂ ′(t)
T̂ (t)

+ f (t,y3(t))
T̂ (t)−tT̂ ′(t)

T̂ (t)

)
dt.
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Exercise 5.0.194. Let T̂ (x)= x2+1, f (x,y)= x+y. Find the maximum interval of existence
of the solutions to the problem (1), (2) in the case when (x0,y0) = (0,0).

Exercise 5.0.195. Let T̂ (x) = x2 + 1, f (x,y) = x+ xy+ y2. Find the maximum interval of
existence of the solutions to the problem (1), (2) in the case when (x0,y0) = (0,1).

Exercise 5.0.196. Let T̂ (x) = x4 +1, f (x,y) = xy. Find the maximum interval of existence
of the solutions to the problem (1), (2) in the case when (x0,y0) = (1,1).

Theorem 5.0.197. (iso-Lipschitz uniqueness theorem) Let f (x,y) be continuous and satis-
fies a uniform Lipschitz condition in S with a Lipschitz constant L. Then the problem (1),
(2) has at most one solution in |x− x0| ≤ a.

Proof. We suppose that the problem (1), (2) has two solutions y1(x) and y2(x), x ∈ [x0−
a,x0 +a]. Then

y1(x) = y0 +
∫ x

x0

(
y1(t)

T̂ ′(t)
T̂ (t)

+ f (t,y1(t))
T̂ (t)−tT̂ ′(t)

T̂ (t)

)
dt,

y2(x) = y0 +
∫ x

x0

(
y2(t)

T̂ ′(t)
T̂ (t)

+ f (t,y2(t))
T̂ (t)−tT̂ ′(t)

T̂ (t)

)
dt,

whereupon

y1(x)− y2(x) =
∫ x

x0

(
(y1(t)− y2(t))

T̂ ′(t)
T̂ (t)

+( f (t,y1(t))− f (t,y2(t)))
T̂ (t)− tT̂ ′(t)

T̂ (t)

)
dt,

and

|y1(x)− y2(x)| ≤
∣∣∣∫ x

x0

(
|y1(t)− y2(t)| |T̂

′(t)|
T̂ (t)

+ | f (t,y1(t))− f (t,y2(t))| |T̂ (t)−tT̂ ′(t)|
T̂ (t)

)
dt
∣∣∣

≤
∣∣∣∫ x

x0

(
P|y1(t)− y2(t)|+LP|y1(t)− y2(t)|

)
dt

= P(1+L)
∣∣∣∫ x

x0
|y1(t)− y2(t)|dt

∣∣∣.
From the last inequality and Gronwall’s type inequality we conclude that

|y1(x)− y2(x)|= 0 in [x0−a,x0 +a].

Theorem 5.0.198. (iso-Peano’s uniqueness theorem) Let f (x,y) be continuous in

S+ = {(x,y) ∈ R2 : x0 ≤ x≤ x0 +a, |y− y0| ≤ b}

and nonincreasing in y for all [x0,x0 +a]. Let also,

T̂ ′(x)≤ 0, T̂ (x)− xT̂ ′(x)≥ 0 for ∀x ∈ [x0,x0 +a].

Then the problem (1), (2) has at most one solution in [x0,x0 +a].
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Proof. Let the problem (1), (2) has two solutions y1(x) and y2(x) in [x0,x0+a] which differ
in [x0,x0 +a]. We assume that

y2(x)> y1(x) in (x1,x1 + ε)⊂ [x0,x0 +a],

while y1(x) = y2(x) for x∈ [x0,x1], i.e., x1 is the greatest lower bound of the set A consisting
of those x for which y2(x) > y1(x). This greatest lower bound of the set A exists because
the set A is bounded below by x0 at least. Thus for every x ∈ (x1,x1 + ε) we have

f (x,y1(x))≥ f (x,y2(x)),

f (x,y1(x))
T̂ (x)−xT̂ ′(x)

T̂ (x)
≥ f (x,y2(x))

T̂ (x)−xT̂ ′(x)
T̂ (x)

,

y1(x)
T̂ ′(x)
T̂ (x)
≥ y2(x)

T̂ ′(x)
T̂ (x)

,

whereupon
y1(x)

T̂ ′(x)
T̂ (x)

+ f (x,y1(x))
T̂ (x)−xT̂ ′(x)

T̂ (x)

≥ y2(x)
T̂ ′(x)
T̂ (x)

+ f (x,y2(x))
T̂ (x)−xT̂ ′(x)

T̂ (x)

for all x ∈ (x1,x1 + ε), and from here

y′1(x)≥ y′2(x) for ∀x ∈ (x1,x1 + ε).

Hence the function
z(x) = y2(x)− y1(x)

is nonincreasing function in (x1,x1 + ε).
Because

z(x1) = y2(x1)− y1(x1) = 0

we obtain
z(x)≤ z(x1) = 0 in (x1,x1 + ε)

or
y2(x)≤ y1(x) in (x1,x1 + ε).

This contradiction proves that

y1(x) = y2(x) for ∀x ∈ [x0,x0 +a].

Theorem 5.0.199. (iso-Peano’s uniqueness theorem) Let f (x,y) be continuous in S+ and
nondecreasing in y for every x ∈ [x0,x0 +a]. Let also,

T̂ ′(x)≤ 0, T̂ (x)− xT̂ ′(x)≤ 0 for ∀x ∈ [x0,x0 +a].

Then the problem (1), (2) has at most one solution in [x0,x0 +a].
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Proof. Let the problem (1), (2) has two solutions y1(x) and y2(x) in [x0,x0+a] which differ
in [x0,x0 +a]. Let

y2(x)> y1(x) in (x1,x1 + ε)⊂ [x0,x0 +a],

and
y2(x) = y1(x) for ∀x ∈ [x0,x1].

Therefore for every x ∈ (x1,x1 + ε) we have

f (x,y2(x))≥ f (x,y1(x)),

f (x,y1(x))
T̂ (x)−xT̂ ′(x)

T̂ (x)
≥ f (x,y2(x))

T̂ (x)−xT̂ ′(x)
T̂ (x)

,

y1(x)
T̂ ′(x)
T̂ (x)
≥ y2(x)

T̂ ′(x)
T̂ (x)

,

whereupon

y1(x)
T̂ ′(x)
T̂ (x)

+ f (x,y1(x))
T̂ (x)−xT̂ ′(x)

T̂ (x)

≥ y2(x)
T̂ ′(x)
T̂ (x)

+ f (x,y2(x))
T̂ (x)−xT̂ ′(x)

T̂ (x)

for every x ∈ (x1,x1 + ε). Consequently

y′1(x)≥ y′2(x) for ∀x ∈ (x1,x1 + ε)

and then the function
z(x) = y2(x)− y1(x)

is nonincreasing function in (x1,x1 + ε), therefore

y2(x)− y1(x)≤ y2(x1)− y1(x1) = 0 for ∀x ∈ (x1,x1 + ε),

which is a contradiction. From here we conclude that y1(x) = y2(x) for every x ∈ [x0,x0 +
a].

Lemma 5.0.200. (iso-Osgood’s lemma) Let w(z) be continuous function in [0,∞), w(0) =
0, z+w(z)> 0 in (0,∞), z+w(z) be increasing function in [0,∞), and

lim
ε−→0+

∫ a

ε

dz
z+w(z)

= ∞. (16)

Let u(x) be a nonnegative continuous function in [0,a]. Then the inequality

u(x)≤ P
∫ x

0
(u(t)+w(u(t)))dt, 0 < x≤ a, (17)

implies that u(x)≡ 0 in [0,a].
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Proof. We define the function
v(x) = max

0≤t≤x
u(t)

and assume that v(x)> 0 for 0 < x≤ a. Then

u(t)≤ v(x) for ∀t ∈ [0,x].

Because u(x) is a continuous function in [0,a] then there exists x1 ∈ [0,x] such that

v(x) = u(x1).

Therefore, using that z+w(z) is an increasing function in [0,∞),

v(x) = u(x1)≤ P
∫ x1

0 (u(t)+w(u(t)))dt

≤ P
∫ x1

0 (v(t)+w(v(t)))dt

≤ P
∫ x

0 (v(t)+w(v(t)))dt.

Let

v(x) = P
∫ x

0
(v(t)+w(v(t)))dt.

We have
v(x)≥ 0, v(x)≤ v(x),

and
v′(x) = P(v(x)+w(v(x)))

≤ P(v(x)+w(v(x))),

and since
v(x)+w(v(x))≥ 0,

then
v′(x)

P(v(x)+w(v(x)))
.

Consequently for 0 < δ < a we have∫ a

δ

dv(x)
P(v(x)+w(v(x)))

≤
∫ a

δ

dx,

whereupon

limδ−→0+
∫ a

δ

dv(x)
P(v(x)+w(v(x))) = limδ−→0+

∫ v(a)
v(δ)

dy
P(y+w(y))

≤ a,

which contradicts with (16). Consequently u(x)≡ 0 in [0,a].
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Theorem 5.0.201. (iso-Osgood’s uniqueness theorem) Let f (x,y) be continuous in S+ and
for all (x,y1), (x,y2) ∈ S+ it satisfies

| f (x,y1)− f (x,y2)| ≤ w(|y1− y2|),

where w(z) satisfies all conditions of the iso-Osgood’s lemma. Then the problem (1), (2)
has at most one solution in [x0,x0 +a].

Proof. Let y1(x) and y2(x) are two solutions of the problem (1), (2) in [x0,x0 +a]. Then, if

z(x) = |y1(x)− y2(x)|, x ∈ [x0,x0 +a],

we have

z(x) =
∣∣∣∫ x

x0

(
(y1(t)− y2(t))

T̂ ′(t)
T̂ (t)

+( f (t,y1(t))− f (t,y2(t)))
T̂ (t)−tT̂ ′(t)

T̂ (t)

)
dt
∣∣∣

≤
∫ x

x0

(
|y1(t)− y2(t)| |T̂

′(t)|
T̂ (t)

+ | f (t,y1(t))− f (t,y2(t))| |T̂ (t)−tT̂ ′(t)|
T̂ (t)

)
dt

≤
∫

x0
(P|y1(t)− y2(t)|+Pw(|y1(t)− y2(t)|))dt

= P
∫ x

x0
(z(t)+w(z(t)))dt.

Let
u(x) = z(x0 + x).

Therefore
u(x)≤ P

∫ x0+x
x0

(z(t)+w(z(t)))dt

= P
∫ x

0 (z(x0 + t)+w(z(x0 + t)))dt

= P
∫ x

0 (u(t)+w(u(t)))dt.

Consequently u(x) satisfies the iso-Osgood’s lemma, from where u(x) ≡ 0 in [0,a], i.e.,
y1(x) = y2(x) in [x0,x0 +a].

Lemma 5.0.202. (iso-Nagumo’s lemma) Let u(x) be nonnegative continuous function in
[x0,x0 +a] and u(x0) = 0, and let u(x) be differentiable at x = x0 with u′(x0) = 0. Then

∫ x

x0

u(t)dt ≤ a
∫ x

x0

u(t)
t− x0

dt, x ∈ [x0,x0 +a],

and the inequality

u(x)≤
∫ x

x0

u(t)
t− x0

dt, x ∈ [x0,x0 +a],

implies that u(x) = 0 in [x0,x0 +a].
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Proof. Let

g(x) =
∫ x

x0

u(t)dt−a
∫ x

x0

u(t)
t− x0

dt, x ∈ [x0,x0 +a].

Since

lim
x−→x0

u(x)
x− x0

= u′(x0) = 0,

then the integral ∫ x

x0

u(t)
t− x0

dt

exists for x ∈ [x0,x0 +a].
Also,

g′(x) = u(x)−a
u(x)

x− x0
= u(x)

x− x0−a
x− x0

≤ 0

for every x ∈ [x0,x0 +a]. Therefore g is a nonincreasing function in [x0,x0 +a], whereupon

g(x)≤ g(x0) for ∀x ∈ [x0,x0 +a],

or ∫ x

x0

u(t)dt ≤ a
∫ x

x0

u(t)
t− x0

dt

for every x ∈ [x0,x0 +a].
Let now

v(x) =
∫ x

x0

u(t)
t− x0

dt, x ∈ [x0,x0 +a].

Then
u(x)≤ v(x), x ∈ [x0,x0 +a],

and
v′(x) = u(x)

x−x0

≤ v(x)
x−x0

, x ∈ [x0,x0 +a].

Consequently
d
dx

(
v(x)
x−x0

)
= v′(x)(x−x0)−v(x)

(x−x0)2

≤ 0

or the function

l(x) =
v(x)

x− x0

is a nonincreasing function in [x0,x0 +a] and since l(x0) = 0, we have that

v(x)≤ 0 in [x0,x0 +a],

from where
v(x) = 0 in [x0,x0 +a].

Consequently u(x) = 0 in [x0,x0 +a].
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Theorem 5.0.203. (iso-Nagumo’s theorem) Let P(a+1)≤ 1, f (x,y) be continuous in S+
and for all (x,y1), (x,y2) ∈ S+ it satisfies

| f (x,y1)− f (x,y2)| ≤ k|x− x0|−1|y1− y2|, x 6= x0. k ≤ 1.

Then the problem (1), (2) has at most one solution in [x0,x0 +a].

Proof. Let y1(x) and y2(x) are two solutions of the problem (1), (2) in [x0,x0 + a]. Then
for x ∈ [x0,x0 +a] we have

|y1(x)− y2(x)| ≤
∫ x

x0

(
|y1(t)− y2(t)| |T̂

′(t)|
T̂ (t)

+ | f (t,y1(t))− f (t,y2(t))| |T̂ (t)−tT̂ ′(t)|
T̂ (t)

)
dt

≤
∫ x

x0

(
P|y1(t)− y2(t)|+ k(t− y0)

−1|y1(t)− y2(t)|P
)

dt

≤ P
∫ x

x0
|y1(t)− y2(t)|dt +P

∫ x
x0

|y1(t)−y2(t)|
t−x0

dt

≤ aP
∫ x

x0

|y1(t)−y2(t)|
t−x0

dt +P
∫ x

x0

|y1(t)−y2(t)|
t−x0

dt

= (a+1)P
∫ x

x0

|y1(t)−y2(t)|
t−x0

dt

≤
∫ x

x0

|y1(t)−y2(t)|
t−x0

dt.

Let
u(x) = |y1(x)− y2(x)|, x ∈ [x0,x0 +a].

Then u(x0) = 0 and from the mean value theorem we have

u′(x0) = limh−→0
u(x0+h)−u(x0)

h

= limh−→0
|y1(x0)+hy′1(x0+θ1h)+y2(x0)−hy′2(x0+θ2h)|

h

= (sgnh) limh−→0 |y′1(x0 +θ1h)− y′2(x0 +θ2h)|

= 0, 0 < θ1,θ2 < 1.

Then the conditions of iso-Nagumo’s lemma are satisfied and u(x) = 0, i.e., y1(x) = y2(x)
in [x0,x0 +a].

Advanced Practical Exercises

Problem 5.0.204. Let J = R, D = R2, T̂ (x) = e−x, f (x,y(x)) = x2y(x), y(0) = 1. Find the
first three approximations of the solution of the problem (1), (2).

Problem 5.0.205. Let J = R, D = R2, T̂ (x) = e3x, f (x,y(x)) = x− 2y(x), y(0) = 1. Find
the first three approximations of the solution of the problem (1), (2).
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Problem 5.0.206. Discuss the existence and uniqueness of the solutions of the initial value
problem (1), (2) in the case when

1) T̂ (x) = x2 +1, f (x,y) = y2, y(0) = 0.

2) T̂ (x) = x2 +1, f (x,y) = x−2y, y(0) = 1,

3) T̂ (x) = ex + x2 +2, f (x,y) = x−3y, y(0) = 2,

4) T̂ (x) = e−x, f (x,y) = ex+y, y(0) =−1,

5) T̂ (x) = 1+ x2 + x4, f (x,y) = 2x−6y, y(0) = 0,

6) T̂ (x) = e−3x, f (x,y) = x2− y2, y(0) = 1.

Problem 5.0.207. Let (x0,y0) ∈ R2, a, b ∈ C (R). Prove that the initial value problem(
ŷ∧(x̂)

)~
= â∧(x̂)×̂ŷ∧(x̂)+ b̂∧(x̂),

y(x0) = y0

has unique continuous solution which is defined in R.

Problem 5.0.208. Let (x0,y0) ∈ R2, a, b ∈ C (R). Prove that the initial value problem(
ŷ∧(x̂)

)~
= a∧(x)×̂ŷ∧(x̂)+b∧(x),

y(x0) = y0

has unique continuous solution which is defined in R.

Problem 5.0.209. Let (x0,y0) ∈ R2, y0 6= 0, a, b ∈ C (R). Prove that the initial value
problem (

ŷ∧(x̂)
)~

= â∧(x̂)×̂ŷ∧(x̂)+ b̂∧(x̂)×̂
(

ŷ∧(x̂)
)2̂

,

y(x0) = y0

has unique continuous solution which is defined in R.

Problem 5.0.210. Let T̂ (x) = ex, f (x,y) = x+ y. Find the maximum interval of existence
of the solutions to the problem (1), (2) in the case when (x0,y0) = (0,0).

Problem 5.0.211. Let T̂ (x) = ex, f (x,y) = x− y2. Find the maximum interval of existence
of the solutions to the problem (1), (2) in the case when (x0,y0) = (1,0).

Problem 5.0.212. Let T̂ (x) = ex, f (x,y) = xy− x2− y2. Find the maximum interval of
existence of the solutions to the problem (1), (2) in the case when (x0,y0) = (1,1).
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Problem 5.0.213. Let T̂ (x) = ex, f (x,y) = y2. Solve the initial value problem for (1) in the
case when y(0) = 1. Find also the largest interval on which the solution is defined.

Problem 5.0.214. Let T̂ (x) = ex, f (x,y) =− x+y2

y(1−x) , y(0) = 1. Show that the solution of the
initial value problem (1), (2) , can not be extended beyond the interval (−1,1).



Chapter 6

Iso-Differential Inequalities

Let D is a domain in R2, a > 0, x0 ∈R, J = [x0,x0+a), T̂ ∈ C 1(J), T̂ (x)> 0 in J, f ∈ C (D).

Definition 6.0.215. (solution of iso-differential inequality) A function y(x) is said to be a
solution of the iso-differential inequality(

ŷ∧(x̂)
)~

> f̂∧(x̂, ŷ∧(x̂)) (1′)

or

y′(x)> y(x)
T̂ ′(x)
T̂ (x)

+ f (x,y(x))
T̂ (x)− xT̂ ′(x)

T̂ (x)
(1)

in J if

1. y′(x) exists for all x ∈ J,

2. for all x ∈ J the points (x,y(x)) ∈ D,

3. y′(x)> y(x) T̂ ′(x)
T̂ (x)

+ f (x,y(x)) T̂ (x)−xT̂ ′(x)
T̂ (x)

for all x ∈ J.

The solutions of the iso-differential inequalities

y′(x)≥ y(x)
T̂ ′(x)
T̂ (x)

+ f (x,y(x))
T̂ (x)− xT̂ ′(x)

T̂ (x)
,

y′(x)< y(x)
T̂ ′(x)
T̂ (x)

+ f (x,y(x))
T̂ (x)− xT̂ ′(x)

T̂ (x)
,

y′(x)≤ y(x)
T̂ ′(x)
T̂ (x)

+ f (x,y(x))
T̂ (x)− xT̂ ′(x)

T̂ (x)
,

are defined analogously.
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Example 6.0.216. Let T̂ (x) = ex, f (x,y) = 1, J =
(

3
2 ,1
)

. Then y(x) = 1− x is a solution
of the iso-differential inequality (1) in J. Really,

T̂ ′(x)
T̂ (x)

= 1,

y(x) T̂ ′(x)
T̂ (x)

= 1− x,

f (x,y) T̂ (x)−xT̂ ′(x)
T̂ (x)

= 1− x,

y′(x) =−1.

Then the iso-differential inequality (1) takes the form

−1 > 1− x+1− x ⇐⇒

2x > 3.

Our first result for iso-differential inequalities is stated in the following theorem.

Theorem 6.0.217. (basic theorem for the iso-differential inequalities) Let T̂ (x)−xT̂ ′(x)≥
0 for every x ∈ J, y1(x) and y2(x) be the solutions of the iso-differential inequalities

y′1(x)≤ y1(x)
T̂ ′(x)
T̂ (x)

+ f (x,y1(x))
T̂ (x)− xT̂ ′(x)

T̂ (x)
, (2)

y′2(x)> y2(x)
T̂ ′(x)
T̂ (x)

+ f (x,y2(x))
T̂ (x)− xT̂ ′(x)

T̂ (x)
(3)

on J, respectively. Then the inequality

y1(x0)< y2(x0)

implies that
y1(x)< y2(x) for ∀x ∈ J. (4)

Proof. We suppose that (4) is not true. Then we define the set

A = {x : x ∈ J, y1(x)≥ y2(x)}.

From our assumption it follows that A 6= Ø.
Let x∗ be the greatest lower bound of the set A. Then x0 < x∗ and

y1(x∗)≥ y2(x∗).

Let us assume that
y1(x∗)> y2(x∗).

Because y1(x) and y2(x) are continuous functions in J then there exists a ε > 0 such that

y1(x∗− ε)≥ y2(x∗− ε),
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which is a contradiction with the definition of x∗. Consequently

y1(x∗) = y2(x∗).

Let h < 0. We have
y1(x∗+h)< y2(x∗+h),

and hence
y′1(x

∗−0) = limh−→0
y1(x∗+h)−y1(x∗)

h

= limh−→0
y1(x∗+h)−y2(x∗)

h

≥ limh−→0
y2(x∗+h)−y2(x∗)

h

= y′2(x
∗−0),

i.e.,
y′1(x

∗−0)≥ y′2(x
∗−0). (5)

From (2) we get

y′1(x
∗)≤ y1(x∗)

T̂ ′(x∗)
T̂ (x∗)

+ f (x∗,y1(x∗))
T̂ (x∗)− x∗T̂ ′(x∗)

T̂ (x∗)
,

from where, using (5),

y1(x∗)
T̂ ′(x∗)
T̂ (x∗)

+ f (x∗,y1(x∗))
T̂ (x∗)−x∗T̂ ′(x∗)

T̂ (x∗)
≥ y′2(x

∗−0). (6′)

On the other hand, from (3) we have

y′2(x
∗−0)> y2(x∗)

T̂ ′(x∗)
T̂ (x∗)

+ f (x∗,y2(x∗))
T̂ (x∗)− x∗T̂ ′(x∗)

T̂ (x∗)
,

whereupon, using (6′),

y2(x∗)
T̂ ′(x∗)
T̂ (x∗)

+ f (x∗,y2(x∗))
T̂ (x∗)−x∗T̂ ′(x∗)

T̂ (x∗)

< y1(x∗)
T̂ ′(x∗)
T̂ (x∗)

+ f (x∗,y1(x∗))
T̂ (x∗)−x∗T̂ ′(x∗)

T̂ (x∗)

= y2(x∗)
T̂ ′(x∗)
T̂ (x∗)

+ f (x∗,y2(x∗))
T̂ (x∗)−x∗T̂ ′(x∗)

T̂ (x∗)
,

and since T̂ (x∗)− x∗T̂ ′(x∗)≥ 0 we get the contradiction

f (x∗,y2(x∗))< f (x∗,y2(x∗)).

Consequently
A = Ø,

from where we conclude that

y1(x)< y2(x) in J.
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Exercise 6.0.218. Let T̂ (x)− xT̂ ′(x) ≤ 0 for every x ∈ J, y1(x) and y2(x) be the solutions
of the iso-differential inequalities (2) and (3) on J, respectively. Prove that the inequality

y1(x0)< y2(x0)

implies that
y1(x)< y2(x) for ∀x ∈ J.

Corollary 6.0.219. Let T̂ (x)− xT̂ ′(x)≥ 0 in the interval J. Let also,

(i) y(x) be a solution of the initial value problem

y′(x) =−y(x) T̂ ′(x)
T̂ (x)

+ f (x,y(x)) T̂ (x)−xT̂ ′(x)
T̂ (x)

in (x0,x0 +a),

y(x0) = y0,

(6)

(ii) y1(x) and y2(x) be the solutions of the iso-differential inequalities

y′1(x)< y1(x)
T̂ ′(x)
T̂ (x)

+ f (x,y1(x))
T̂ (x)− xT̂ ′(x)

T̂ (x)
, (7)

y′2(x)> y2(x)
T̂ ′(x)
T̂ (x)

+ f (x,y2(x))
T̂ (x)− xT̂ ′(x)

T̂ (x)
(8)

in J, respectively,

(iii) y1(x0)≤ y0 ≤ y2(x0).

Then
y1(x)< y(x)< y2(x)

for all x ∈ (x0,x0 +a).

Proof. We shall prove that

y(x)< y2(x) for ∀x ∈ (x0,x0 +a).

1. case y0 < y2(x0). Then from the last theorem we have that

y(x)< y2(x) in (x0,x0 +a).

2. case y0 = y2(x0).

Let
z(x) = y2(x)− y(x).
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Then
z(x0) = y2(x0)− y(x0) = 0,

z′(x) = y′2(x)− y′(x),

z′(x0) = y′2(x0)− y′(x0)

> y2(x0)
T̂ ′(x0)

T̂ (x0)
+ f (x0,y2(x0))

T̂ (x0)−x0T̂ ′(x0)

T̂ (x0)

−y(x0)
T̂ ′(x0)

T̂ (x0)
− f (x0,y(x0))

T̂ (x0)−x0T̂ ′(x0)

T̂ (x0)

= 0,

therefore the function z is an increasing function to the right of x0 in a sufficiently
small interval [x0,x0 + δ]. Consequently y(x) < y2(x) for all x ∈ (x0,x0 + δ], from
where

y(x0 +δ)< y2(x0 +δ).

Now the last theorem gives that

y(x)< y2(x) in [x0 +δ,x0 +a).

Since δ can be chosen sufficiently small, then

y(x)< y2(x) in (x0,x0 +a).

Exercise 6.0.220. Prove that

y1(x)< y(x) in (x0,x0 +a).

Exercise 6.0.221. Let T̂ (x)− xT̂ ′(x)≥ 0 in the interval J. Let also,

(i) y(x) be a solution of the initial value problem (6),

(ii) y1(x) and y2(x) be the solutions of the iso-differential inequalities (7) and (8) in J,
respectively,

(iii) y1(x0)≤ y0 ≤ y2(x0).

Prove that
y1(x)< y(x)< y2(x)

for all x ∈ (x0,x0 +a).

Exercise 6.0.222. Let T̂ (x) = ex, f (x,y) = −y+y2+x2

1−x , x ∈ (0,1), y(0) = 1. Prove that

1+
x3

3
< y(x)< tan

(
x+

π

4

)
, x ∈ (0,1),

where y(x) is the solution of the initial value problem (6) in (0,1).
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Theorem 6.0.223. Let T̂ (x)− xT̂ ′(x)≥ 0, T̂ ′(x)≤ 0, T̂ (x)−xT̂ ′(x)
T̂ (x)

≤ P in J for some positive
constant P, and for all (x,y), (x,z) ∈ D such that x≥ x0, y≥ z, we have

f (x,y)− f (x,z)≤ L(y− z),

for some positive constant L. Let also,

(i) y(x) be a solution to the initial value problem (6),

(ii) y1(x) and y2(x) be solutions to the iso-differential inequalities (2) and (3) on J, respec-
tively.

(iii) y1(x0)≤ y0 ≤ y2(x0).

Then
y1(x)≤ y(x)≤ y2(x) for ∀x ∈ J.

Proof. Let ε > 0, λ > LP. Let also,

z1(x) = y1(x)− εeλ(x−x0), x ∈ J.

Then
z1(x0) = y1(x0)− ε < y1(x0)

and
z′1(x) = y′1(x)− ελeλ(x−x0)

≤ y1(x)
T̂ ′(x)
T̂ (x)

+ f (x,y1(x))
T̂ (x)−xT̂ ′(x)

T̂ (x)
− ελeλ(x−x0).

(9)

On the other hand, from the definition of the function z1(x) we have

z1(x)≤ y1(x) in J.

Then
f (x,y1(x))− f (x,z1(x))≤ L(y1(x)− z1(x))

or
f (x,y1(x))≤ f (x,z1(x))+L(y1(x)− z1(x)) in J.

From the last inequality and (9) we become

z′1(x)≤ z1(x)
T̂ ′(x)
T̂ (x)

+( f (x,z1(x))+L(y1(x)− z1(x)))
T̂ (x)−xT̂ ′(x)

T̂ (x)
− ελeλ(x−x0)

= z1(x)
T̂ ′(x)
T̂ (x)

+ f (x,z1(x))
T̂ (x)−xT̂ ′(x)

T̂ (x)
+Lεeλ(x−x0) T̂ (x)−xT̂ ′(x)

T̂ (x)
− ελeλ(x−x0)

≤ z1(x)
T̂ ′(x)
T̂ (x)

+ f (x,z1(x))
T̂ (x)−xT̂ ′(x)

T̂ (x)
+LPeε(x−x0)− ελeλ(x−x0)

< z1(x)
T̂ ′(x)
T̂ (x)

+ f (x,z1(x))
T̂ (x)−xT̂ ′(x)

T̂ (x)
,
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i.e.,
z′1(x)< z1(x)

T̂ ′(x)
T̂ (x)

+ f (x,z1(x))
T̂ (x)−xT̂ ′(x)

T̂ (x)
in J,

z1(x0)< y(x0).

(10)

Let now
z2(x) = y2(x)+ εeλ(x−x0), x ∈ J.

Then
z2(x)> y2(x) in J.

Therefore
f (x,z2(x))− f (x,y2(x))≤ L(z2(x)− y2(x)) in J,

from where
f (x,y2(x))≥ f (x,z2(x))+L(y2(x)− z2(x)) in J.

Also, using the last inequality,

z′2(x) = y′2(x)+ ελeλ(x−x0)

> y2(x)
T̂ ′(x)
T̂ (x)

+ f (x,y2(x))
T̂ (x)−xT̂ ′(x)

T̂ (x)
+ ελeλ(x−x0)

≥ y2(x)
T̂ ′(x)
T̂ (x)

+( f (x,z2(x))+L(y2(x)− z2(x)))
T̂ (x)−xT̂ ′(x)

T̂ (x)
+ ελeλ(x−x0)

≥ z2(x)
T̂ ′(x)
T̂ (x)

+ f (x,z2(x))
T̂ (x)−xT̂ ′(x)

T̂ (x)
−Lεeλ(x−x0) T̂ (x)−xT̂ ′(x)

T̂ (x)
+ ελeλ(x−x0)

≥ z2(x)
T̂ ′(x)
T̂ (x)

+ f (x,z2(x))
T̂ (x)−xT̂ ′(x)

T̂ (x)
−LεPeλ(x−x0)+ ελeλ(x−x0)

> z2(x)
T̂ ′(x)
T̂ (x)

+ f (x,z2(x))
T̂ (x)−xT̂ ′(x)

T̂ (x)
,

i.e.,
z′2(x)> z2(x)

T̂ ′(x)
T̂ (x)

+ f (x,z2(x))
T̂ (x)−xT̂ ′(x)

T̂ (x)
in J,

z2(x0)> y2(x0).

(11)

From (10) and (11) it follows that the functions z1(x) and z2(x) satisfy all conditions of the
basic theorem for the iso-differential inequalities. Therefore

z1(x)< y(x)< z2(x) in (x0,x0 +a),

i.e.
y1(x)− εeλ(x−x0) < y(x)< y2(x)+ εeλ(x−x0) in (x0,x0 +a),

from here, when ε−→ 0,

y1(x)≤ y(x)≤ y2(x) in J.
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Corollary 6.0.224. Let for every points (x,y), (x,z) ∈ D such that x≥ x0, we have

| f (x,y)− f (x,z)| ≤ L|y− z| (12)

for some positive constant L, −P ≤ T̂ ′(x)
T̂ (x)
≤ 0, 0 ≤ T̂ (x)−xT̂ ′(x)

T̂ (x)
≤ P in J for some positive

constant P.
Let also,

(i) y be a solution to the initial value problem (6),

(ii) y1(x) and y2(x) be solutions to the iso-differential inequalities (2) and (3) on J, respec-
tively,

(iii) y1(x0) = y0 = y2(x0).

Then for every x1 ∈ J, x1 > x0, either y1(x1) < y(x1) (y(x1) < y2(x1)) or y1(x) = y(x)
(y2(x) = y(x)) for ∀x ∈ [x0,x1].

Proof. From (12) we have that if y≥ z then

−L(y− z)≤ f (x,y)− f (x,z)≤ L(y− z).

Therefore all conditions of the last theorem are fulfilled. Consequently

y1(x)≤ y(x)≤ y2(x) for ∀x ∈ J.

Also, we have

y′(x)− y′1(x) = y(x) T̂ ′(x)
T̂ (x)

+ f (x,y(x)) T̂ (x)−xT̂ ′(x)
T̂ (x)

− y′1(x)

≥ y(x) T̂ ′(x)
T̂ (x)

+ f (x,y(x)) T̂ (x)−xT̂ ′(x)
T̂ (x)

−y′1(x)
T̂ ′(x)
T̂ (x)
− f (x,y1(x))

T̂ (x)−xT̂ ′(x)
T̂ (x)

= (y(x)− y1(x))
T̂ ′(x)
T̂ (x)

+( f (x,y(x))− f (x,y1(x)))
T̂ (x)−xT̂ ′(x)

T̂ (x)

≥−(y(x)− y1(x))P−LP(y(x)− y1(x))

=−P(1+L)(y(x)− y1(x)),

from where
(y(x)− y1(x))′+P(1+L)(y(x)− y1(x))≥ 0,

and (
eP(1+L)x(y(x)

)′
≥ 0,

From the last inequality, when x≤ x1, we get∫ x

x1

(
eP(1+L)x(y(x)

)′
dx≤ 0,
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or
eP(1+L)x(y(x)− y1(x))≤ eP(1+L)x1(y(x1)− y1(x1)). (13)

Then, if y(x1) = y1(x1), using (13), we have that for every x ∈ [x0,x1]

y(x)≤ y1(x),

whereupon
y(x) = y1(x) for ∀x ∈ [x0,x1].

Definition 6.0.225. A solution r(x) (ρ(x)) of the initial value problem (6) which exists
in J = [x0,x0 + a) is said to be maximal(minimal) if for an arbitrary solution y(x) of (6)
existing in J, the inequality y(x)≤ r(x) (ρ(x)≤ y(x)) holds for all x ∈ J.

Theorem 6.0.226. Let f (x,y) be continuous in S+ = {(x,y) : x0≤ x≤ x0+a, |y−y0| ≤
b} and hence there exists a M > 0 such that | f (x,y)| ≤ M for all (x,y) ∈ S+. Let also,
T̂ (x)−xT̂ ′(x)≥ 0 in [x0,x0+a), |T̂

′(x)|
T̂ (x)

≤ P, T̂ (x)−xT̂ ′(x)
T̂ (x)

≤ P in [x0,x0+a). Then there exists
a maximal solution r(x) and a minimal solution ρ(x) of the initial value problem (6) in the
interval [x0,x0 +α), where

α =
{

a,
2b

2P(b+ |y0|+M)+b

}
.

Proof. We will prove the existence of a maximal solution.
Let

0 < ε≤ b
2
.

Let us consider the initial value problem

y′(x) = y(x) T̂ ′(x)
T̂ (x)

+ f (x,y(x)) T̂ (x)−xT̂ ′(x)
T̂ (x)

+ ε in [x0,x0 +a),

y(x0) = y0.

(14)

We define

Sε = {(x,y) ∈ R2 : x0 ≤ x≤ x0 +a, |y− (y0 + ε)| ≤ b
2
}.

We have that
Sε ⊂ S+,

because
b
2 ≥ |y− (y0 + ε)|

= |y− y0− ε|

≥ |y− y0|− ε,
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or
|y− y0| ≤ b

2 + ε

≤ b
2 +

b
2

= b.

Also, for every (x,y) ∈ S+ we have∣∣∣y(x) T̂ ′(x)
T̂ (x)

+ f (x,y) T̂ (x)−xT̂ ′(x)
T̂ (x)

+ ε

∣∣∣≤ |y(x)| |T̂ ′(x)|T̂ (x)
+ | f (x,y)| |T̂ (x)−xT̂ ′(x)|

T̂ (x)
+ ε

≤ P(b+ |y0|)+MP+ ε

≤ P(b+ |y0|+M)+ b
2 .

From here and from the iso-Cauchy-Peano’s existence theorem it follows that the problem
(14) has a solution y(x,ε) which is defined in [x0,x0 +α).

Let now
0 < ε2 < ε1 < ε.

We have
y(x0,ε2) = y0 + ε2 < y0 + ε1 = y(x0,ε1),

y′(x,ε2) = y(x) T̂ ′(x)
T̂ (x)

+ f (x,y(x)) T̂ (x)−xT̂ ′(x)
T̂ (x)

+ ε2,

y′(x,ε1) = y(x) T̂ ′(x)
T̂ (x)

+ f (x,y(x)) T̂ (x)−xT̂ ′(x)
T̂ (x)

+ ε1

> y(x) T̂ ′(x)
T̂ (x)

+ f (x,y(x)) T̂ (x)−xT̂ ′(x)
T̂ (x)

+ ε2.

From here and from the basic theorem for the iso-differential inequalities it follows that

y(x,ε2)< y(x,ε1) for ∀x ∈ [x0,x0 +α).

Using the proof of the iso-Cauchy-Peano’s existence theorem we have that the sequence
{y(x,ε)}ε>0 is equip-continuous and uniformly bounded.

Let {εn}∞
n=1 be a sequence of positive real numbers such that

lim
n−→∞

εn = 0

and the corresponding sequence {y(x,εn)}∞
n=1 of solutions of (14) is defined in [x0,x0 +α).

We have

y(x,εn) = y0 + εn +
∫ x

x0

(
y(t) T̂ ′(t)

T̂ (t)
+ f (t,y(t)) T̂ (t)−tT̂ ′(t)

T̂ (t)

)
dt,

y0 = y(x0,0)< y0 + εn,

y′(x,εn) = y(x) T̂ ′(x)
T̂ (x)

+ f (x,y(x)) T̂ (x)−xT̂ ′(x)
T̂ (x)

+ εn

> y(x) T̂ ′(x)
T̂ (x)

+ f (x,y(x)) T̂ (x)−xT̂ ′(x)
T̂ (x)

.
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From here and from the basic theorem for the iso-differential inequalities it follows that

y(x)< y(x,εn) in [x0,x0 +α).

Consequently

y(x)≤ lim
n−→∞

y(x,εn) := r(x) for ∀x ∈ [x0,x0 +α).

Exercise 6.0.227. Let T̂ (x) = ex, f (x,y) = |y|
1
2−y

1−x , (x0,y0) = (0,0). Prove that the functions

r(x) =


x2

4 for x ∈ [0,1),

0 for x ∈ (−1,0],

ρ(x) =


0 for x ∈ [0,1),

− x2

4 for x ∈ (−1,0]

are a maximal and a minimal solution, respectively, to the initial value problem (6) in
(−1,1).

Theorem 6.0.228. Let r(x) be a maximal solution to the initial value problem (6) in J,
J = [x0,x0 +a). Let also, y(x) be a solution to the iso-differential inequality (2) in J. If

y(x0)≤ y0

then
y(x)≤ r(x) in J.

Proof. Let x1 ∈ [x0,x0 + a). Let also ε > 0 be chosen enough small. We consider the
problem

y′(x) = y(x) T̂ ′(x)
T̂ (x)

+ f (x,y(x))+ ε in J,

y(x0) = y0.

(15)

Let r(x,ε) be a maximal solution of the problem (15) in the interval J. We have that

lim
ε−→0

r(x,ε) = r(x)

uniformly in [x0,x1].
Since

y(x0)≤ y0 < y0 + ε,

y′(x)≤ y(x) T̂ ′(x)
T̂ (x)

+ f (x,y(x)) T̂ (x)−xT̂ ′(x)
T̂ (x)

< y(x) T̂ ′(x)
T̂ (x)

+ f (x,y(x)) T̂ (x)−xT̂ ′(x)
T̂ (x)

+ ε
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and

r′(x,ε) = r(x,ε)
T̂ ′(x)
T̂ (x)

+ f (x,r(x,ε))
T̂ (x)− xT̂ ′(x)

T̂ (x)
,

then from the basic theorem for the iso-differential inequalities it follows that

y(x)< r(x,ε) in [x0,x1],

whereupon
y(x)≤ lim

ε−→0
r(x,ε) = r(x).

Advanced Practical Exercises

Problem 6.0.229. Let T̂ (x) = ex, f (x,y) = y2

x−1 , y(x) be a solution of the initial value prob-
lem (6) with y(0) = y0, 0 < y0 < 1. Prove that

y0 < y(x)≤ 1 for ∀x ∈ (0,∞).

Problem 6.0.230. Let T̂ (x) = ex, f (x,y) = x+y−y2

x−1 , y be a solution to the initial value prob-
lem (6) with y(0) = 1, J = (0,1). Prove that

1+ x < y(x)<
1

1− x
in J.

Problem 6.0.231. Let T̂ (x) = 1+ x2, f (x,y) = 2|y|
1
2 (1+x2)−2xy

1−x2 , (x0,y0) = (0,0). Prove that
the functions

r(x) =


x2 for x ∈ [0,1),

0 for (−1,0],

ρ(x) =


0 for x ∈ [0,1),

−x2 for x ∈ (−1,0],

are a maximal and a minimal solution, respectively, in (−1,1), to the initial value problem
(6).



Chapter 7

Continuous Dependence on Initial
Conditions

Let D be a domain in R2 containing the points (x0,y0) and (x1,y1), J be an interval in R,
T̂ ∈ C 1(J), T̂ (x)> 0 for every x ∈ J, f ∈ C (D).

Theorem 7.0.232. Let the following conditions be satisfied.

(i) f (x,y) is bounded by M in the domain D, where M is some positive constant,

(ii) f (x,y) satisfies a uniform Lipschitz condition

| f (x,y)− f (x,z)| ≤ L|y− z| for ∀(x,y),(x,z) ∈ D,

for some positive constant L.

(iii) g(x,y) is continuous and bounded by M1 in the domain D, where M1 is some positive
constant,

(iv) y(x) is the solution of the initial value problem

y′(x) = y(x)
T̂ ′(x)
T̂ (x)

+ f (x,y(x))
T̂ (x)− xT̂ ′;(x)

T̂ (x)
in J, (1)

y(x0) = y0, (2)

(v) z(x) is the solution of the initial value problem

z′(x) = z(x)
T̂ ′(x)
T̂ (x)

+( f (x,z(x))+g(x,z(x)))
T̂ (x)− xT̂ ′(x)

T̂ (x)
in J,

z(x1) = y1,

(vi) |T̂
′(x)|

T̂ (x)
≤ P, |T̂ (x)−xT̂ ′(x)|

T̂ (x)
≤ P for every x ∈ J.
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Then
|y(x)− z(x)| ≤

(
|y0− y1|+(M+M1)P|x0− x1|+P

∣∣∣∫ x0
x1
|z(t)|dt

∣∣∣
+ M1

1+L

)
eP(1+L)|x−x0|− M1

1+L

for all x ∈ J.

Proof. We have

y(x) = y0 +
∫ x

x0

(
y(t) T̂ ′(t)

T̂ (t)
+ f (t,y(t)) T̂ (t)−tT̂ ′(t)

T̂ (t)

)
dt,

z(x) = y1 +
∫ x

x1

(
z(t) T̂ ′(t)

T̂ (t)
+( f (t,z(t))+g(t,z(t))) T̂ (t)−tT̂ ′(t)

T̂ (t)

)
dt

= y1 +
∫ x

x1
g(t,z(t)) T̂ (t)−tT̂ ′(t)

T̂ (t)
dt +

∫ x
x0

z(t) T̂ ′(t)
T̂ (t)

dt +
∫ x0

x1
z(t) T̂ ′(t)

T̂ (t)
dt

+
∫ x

x0
f (t,z(t)) T̂ (t)−tT̂ ′(t)

T̂ (t)
dt +

∫ x0
x1

f (t,z(t)) T̂ (t)−tT̂ ′(t)
T̂ (t)

dt

for every x ∈ J.
Therefore

|z(x)− y(x)|=
∣∣∣(y1− y0)

+
∫ x

x0

(
(y(t)− z(t)) T̂ ′(t)

T̂ (t)
+( f (t,y(t))− f (t,z(t))) T̂ (t)−tT̂ ′(t)

T̂ (t)

)
dt

+
∫ x0

x1
z(t) T̂ ′(t)

T̂ (t)
dt +

∫ x0
x1

f (t,z(t)) T̂ (t)−tT̂ ′(t)
T̂ (t)

dt +
∫ x

x1
g(t,z(t)) T̂ (t)−tT̂ ′(t)

T̂ (t)
dt
∣∣∣

≤ |y0− y1|+
∣∣∣∫ x

x0

(
|y(t)− z(t)| |T̂

′(t)|
T̂ (t)

+ | f (t,y(t))− f (t,z(t))| |T̂ (t)−tT̂ ′(t)|
T̂ (t)

)
dt
∣∣∣

+
∣∣∣∫ x0

x1
|z(t)| |T̂

′(t)|
T̂ (t)

dt
∣∣∣+ ∣∣∣∫ x0

x1
| f (t,z(t))| |T̂ (t)−tT̂ ′(t)|

T̂ (t)
dt
∣∣∣

+
∣∣∣∫ x

x1
|g(t,z(t))| |T̂ (t)−tT̂ ′(t)|

T̂ (t)
dt
∣∣∣

≤
(
|y0− y1|+(M+M1)P|x0− x1|+P

∣∣∣∫ x0
x1
|z(t)|dt

∣∣∣)
+M1P|x− x0|+P(1+L)

∣∣∣∫ x
x0
|y(t)− z(t)|dt

∣∣∣,
i.e.,

|z(x)− y(x)| ≤
(
|y0− y1|+(M+M1)P|x0− x1|+P

∣∣∣∫ x0
x1
|z(t)|dt

∣∣∣)
+M1P|x− x0|+P(1+L)

∣∣∣∫ x
x0
|y(t)− z(t)|dt

∣∣∣
for all x ∈ J.
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From the last inequality and the classical Gronwall’s-type inequality we conclude the
assertion.

Theorem 7.0.233. Let the following conditions be satisfied.

(i) f (x,y) is continuous and bounded by M in a domain D containing the point (x0,y0),

(ii) ∂

∂y f (x,y) exists, continuous and bounded by L in D,

(iii) |T̂
′(x)|

T̂ (x)
≤ P, |T̂ (x)−xT̂ ′(x)|

T̂ (x)
≤ P in an interval J, containing the point x0,

(iv) the solution y(x,x0,y0) of the initial value problem (1), (2) exists in the interval J.

Then

(i) the solution y(x,x0,y0) is differentiable with respect to y0 and

z(x) =
∂y
∂y0

(x,x0,y0)

is the solution of the initial value problem

z′(x) = z(x) T̂ ′(x)
T̂ (x)

+ ∂ f
∂y (x,y(x,x0,y0))z(x)

z(x0) = z0.

(3)

(ii) the solution y(x,x0,y0) is differentiable with respect to x0 and z(x) = ∂y(x,x0,y0)
∂x0

is the
solution of the equation (3), satisfying the initial data

z(x0) =−y(x0)
T̂ ′(x0)

T̂ (x0)
− f (x0,y0)

T̂ (x0)− x0T̂ ′(x0)

T̂ (x0)
.

The equation (3) is called the variational equation corresponding to the solution y(x,x0,y0).

Proof. (i) Let (x0,y1) ∈ D be such that the solution y(x,x0,y1) of the initial value problem
for the equation (1) with initial data y(x0) = y1 exists in the interval J1. Then for all
x ∈ J2 = J∩ J1 the previous theorem implies that

|y(x,x0,y0)− y(x,x0,y1)| ≤ |y0− y1|eP(1+L)|x−x0|,

i.e.,
|y(x,x0,y0)− y(x,x0,y1)| −→ 0

when
|y0− y1| −→ 0.
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Now for all x ∈ J2 we have

y(x,x0,y0)− y(x,x0,y1)− z(x)(y0− y1)

=
∫ x

x0

(
y(t,x0,y0)

T̂ ′(t)
T̂ (t)

+ f (t,y(t,x0,y0))
T̂ (t)−tT̂ ′(t)

T̂ (t)

−y(t,x0,y1)
T̂ ′(t)
T̂ (t)
− f (t,y(t,x0,y1))

T̂ (t)−tT̂ ′(t)
T̂ (t)

−z(t)(y0− y1)
T̂ ′(t)
T̂ (t)
− ∂ f

∂y (y,y(t,x0,y0))
T̂ (t)−tT̂ ′(t)

T̂ (t)
z(t)(y0− y1)

)
dt

=
∫ x

x0

(
(y(t,x0,y0)− y(t,x0,y1))

T̂ ′(t)
T̂ (t)

+
(

f (t,y(t,x0,y0))− f (t,y(t,x0,y1))
)

T̂ (t)−tT̂ ′(t)
T̂ (t)

−z(t)(y0− y1)
T̂ ′(t)
T̂ (t)
− ∂ f

∂y (t,y(t,x0,y0))
T̂ (t)−tT̂ ′(t)

T̂ (t)
z(t)(y0− y1)

)
dt

=
∫ x

x0

(
∂ f
∂y (t,y(t,x0,y0))

(
y(t,x0,y0)− y(t,x0,y1)− z(t)(y0− y1)

)
T̂ (t)−tT̂ ′(t)

T̂ (t)

+
(

y(t,x0,y0)− y(t,x0,y1)− z(t)(y0− y1)
)

T̂ ′(t)
T̂ (t)

)
dt

=
∫ x

x0

(
y(t,x0,y0)− y(t,x0,y1)− z(t)(y0− y1)

)(
∂ f
∂y (t,y(t,x0,y0))

T̂ (t)−tT̂ ′(t)
T̂ (t)

+ T̂ ′(t)
T̂ (t)

)
dt

+
∫ x

x0
δ{y(t,x0,y0),y(t,x0,y1)}dt,

where
δ{y(t,x0,y0),y(t,x0,y1)} −→ 0

when
|y(t,x0,y0)− y(t,x0,y1)| −→ 0,

i.e., as
|y0− y1| −→ 0.

Hence,
|y(x,x0,y0)− y(x,x0,y1)− z(x)(y0− y1)|

≤ P(L+1)
∣∣∣∫ x

x0
|y(t,x0,y0)− y(t,x0,y1)− z(t)(y0− y1)|dt

∣∣∣
+o(|y0− y1|),

from where

|y(x,x0,y0)− y(x,x0,y1)− z(x)(y0− y1)| ≤ o(|y0− y1|)e(1+L)P|x−x0|.

Thus
|y(x,x0,y0)− y(x,x0,y1)− z(x)(y0− y1)| −→ 0

as
|y0− y1| −→ 0.
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(ii) Let (x1,y0) ∈ D be such that x1 ∈ J and the solution y(x,x1,y0) of the initial value
problem for the equation (1) with initial data y(x1) = y0 exists in an interval J2. Then
for all x ∈ J3 = J∩ J2, using the last theorem, we have

|y(x,x0,y0)− y(x,x1,y0)| ≤
(

MP|x0− x1|+P
∣∣∣∫ x0

x1

|y(t,x1,y0)|dt
∣∣∣)eP(1+L)|x−x0|,

from here
|y(x,x0,y0)− y(x,x1,y0)| −→ 0

when
|x0− x1| −→ 0.

Now for all x ∈ J3 we have

y(x,x0,y0)− y(x,x1,y0) =
∫ x

x0

(
y(t,x0,y0)

T̂ ′(t)
T̂ (t)

+ f (t,y(t,x0,y0))
T̂ (t)−tT̂ ′(t)

T̂ (t)

)
dt

−
∫ x

x1

(
y(t,x1,y0)

T̂ ′(t)
T̂ (t)

+ f (t,y(t,x1,y0))
T̂ (t)−tT̂ ′(t)

T̂ (t)

)
dt

=
∫ x

x0

(
(y(t,x0,y0)− y(t,x1,y0))

T̂ ′(t)
T̂ (t)

+( f (t,y(t,x0,y0))− f (t,y(t,x1,y0)))
T̂ (t)−tT̂ ′(t)

T̂ (t)

)
dt

+
∫ x1

x0

(
y(t,x1,y0)

T̂ ′(t)
T̂ (t)

+ f (t,y(t,x1,y0))
T̂ (t)−tT̂ ′(t)

T̂ (t)

)
dt

=
∫ x

x0

(
(y(t,x0,y0)− y(t,x1,y0))

T̂ ′(t)
T̂ (t)

+ ∂ f
∂y (t,y(t0,x0,y0))(y(t,x0,y0)− y(t,x1,y0))

T̂ (t)−tT̂ ′(t)
T̂ (t)

)
dt

+
∫ x1

x0

(
y(t,x1,y0)

T̂ ′(t)
T̂ (t)

+ f (t,y(t,x1,y0))
T̂ (t)−tT̂ ′(t)

T̂ (t)

)
dt

+
∫ x

x0
δ{y(t,x0,y0),y(t,x1,y0)}

=
∫ x

x0
(y(t,x0,y0)− y(t,x1,y0))

(
T̂ ′(t)
T̂ (t)

+ ∂ f
∂y (t,y(t,x0,y0))

T̂ (t)−tT̂ ′(t)
T̂ (t)

)
dt

+
∫ x1

x0

(
y(t,x1,y0)

T̂ ′(t)
T̂ (t)

+ f (t,y(t,x1,y0))
T̂ (t)−tT̂ ′(t)

T̂ (t)

)
dt

+
∫ x

x0
δ{y(t,x0,y0),y(t,x1,y0)}dt,

where
δ{y(t,x0,y0),y(t,x1,y0)} −→ 0

when
|x0− x1| −→ 0.
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Consequently∫ x
x0
(y(t,x0,y0)− y(t,x1,y0))

(
T̂ ′(t)
T̂ (t)

+ ∂ f
∂y (t,y(t,x0,y0))

T̂ (t)−tT̂ ′(t)
T̂ (t)

)
dt

+
∫ x1

x0

(
y(t,x1,y0)

T̂ ′(t)
T̂ (t)

+ f (t,y(t,x1,y0))
T̂ (t)−tT̂ ′(t)

T̂ (t)

)
dt

+
∫ x

x0
δ{y(t,x0,y0),y(t,x1,y0)}dt

+
∫ x1

x0

(
y0

T̂ ′(x0)

T̂ (x0)
+ f (x0,y0)

T̂ (x0)−x0T̂ ′(x0)

T̂ (x0)

)
dt

−(x0− x1)
∫ x

x0

(
z(t) T̂ ′(t)

T̂ (t)
+ ∂ f

∂y (t,y(t,x0,y0))z(t)
)

dt

=
∫ x

x0

(
y(t,x0,y0)− y(t,x1,y0)− (x0− x1)z(t)

)(
T̂ ′(t)
T̂ (t)

+ ∂ f
∂y (t,x0,y0)

T̂ (t)−tT̂ ′(t)
T̂ (t)

)
dt

+
∫ x1

x)

(
(y(t,x1,y0)+ y0)

T̂ ′(t)
T̂ (t)

+( f (t,y(t,x0,y0))+ f (x0,y0))
T̂ (t)−tT̂ ′(t)

T̂ (t)

)
dt

+
∫ x

x0
δ{y(t,x0,y0),y(t,x1,y0)}dt

for all x ∈ J3.

From the last inequality it follows that there exist C1 = C1(P,L,M) > 0, C2 =
C2(P,L,M) such that

|y(t,x0,y0)− y(t,x1,y0)− z(x)(x0− x1)|

≤C1

∣∣∣∫ x
x0
|y(t,x0,y0)− y(t,x1,y0)− (x0− x1)z(t)|dt +C2o(|x0− x1|)

for all x ∈ J3, from where it follows that there exists C3 =C3(P,L,M)> 0 such that

|y(t,x0,y0)− y(t,x1,y0)− (x0− x1)z(x)| ≤C3o(|x0− x1|).

Example 7.0.234. Let T̂ (x) = ex, f (x,y) = y, (x0,y0) = (0,1). Then the initial value prob-
lem (1), (2)admits the following representation

y′(x) = y(x)(2− x),

y(0) = 1,

its solution is
y(x,x0,y0) = e2x− x2

2 .

The derivative z(x) = ∂y
∂x0

(y,x0,y0) satisfies the initial value problem

z′(x) = 2z(x)

z(0) = 1,
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therefore
z(x) = e2x.

Exercise 7.0.235. Let T̂ (x) = ex, f (x,y) = 2y, (x0,y0) = (0,1), y(x,x0,y0) be the solution
of the initial value problem (1), (2) in J = [0,1). Find

z(x) =
∂y
∂x0

(x,x0,y0).

Answer. e3x.
Finally, we shall consider the initial value problem

y′(x,λ) = y(x,λ) T̂ ′(x)
T̂ (x)

+ f (x,y(x,λ),λ) T̂ (x)−xT̂ ′(x)
T̂ (x)

,

y(x0,λ) = y0(λ),

(4)

where λ ∈ R is a parameter.
The proof of the following theorem is very similar to earlier results.

Theorem 7.0.236. Let the following conditions be satisfied.

(i) f (x,y,λ) is continuous and bounded by M in a domain D ⊂ R3 containing the point
(x0,y0,λ0).

(ii) ∂ f (x,y,λ)
∂y , ∂ f (x,y,λ)

∂λ
exist, continuous and bounded, respectively, by L and L1 in D.

Then

(i) there exist positive numbers h and ε such that given any λ in the interval |λ−λ0| ≤ ε,
there exists a unique solution y(x,λ) of the initial value problem (4) in the interval
|x− x0| ≤ h.

(ii) the solution y(x,λ) is differentiable with respect to λ and

z(x,λ) =
∂y(x,λ)

∂λ

is the solution of the initial value problem

z′(x,λ) = z(x,λ) T̂ ′(x)
T̂ (x)

+
(

∂ f
∂y (x,y(x,λ),λ)z(x,λ)+

∂ f
∂λ
(x,y(x,λ),λ)

)
T̂ (x)−xT̂ ′(x)

T̂ (x)
,

z(x0,λ) = y′0(λ).

If λ is such that |λ−λ0|is sufficiently small then we have a first-order approximation of the
solution y(x,λ) given by

y(x,λ)' y(x,λ0)+(λ−λ0)
(

∂y
∂λ
(x,λ)

)∣∣∣
λ=λ0

= y(x,λ0)+(λ−λ0)z(x,λ0).
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Example 7.0.237. Let T̂ (x) = ex, f (x,y,λ) = λy2−y+1
1−x , λ≥ 0, (x0,y0) = (0,0). Then

y T̂ ′(x)
T̂ (x)

= y,

f (x,y,λ) T̂ (x)−xT̂ ′(x)
T̂ (x)

= λy2−y+1
1−x (1− x)

= λy2− y+1,

from here
y′ = λy2 +1,

y(0) = 0.

Its general solution is

y(x,λ) =
1√
λ

tan(
√

λx).

We will find z(x,0). It satisfies the initial value problem

z′(x,0) = x2,

z(0,0) = 0.

Consequently

z(x,0) =
x3

3
.

Exercise 7.0.238. Let T̂ (x) = ex, f (x,y,λ) = λ(x+y2)
1−x , (x0,y0) = (0,1). Find

∂y
∂λ

(x,y,λ)∣∣∣
λ=0

.

Answer. e2x− x−1.

Exercise 7.0.239. Let T̂ (x) = ex, f (x,y,λ) = 2x+λy2−y
1−x , (x0,y0) = (0,λ−1). Find

∂y
∂λ

(x,y,λ)∣∣∣
λ=0

.

Answer. x5

5 −
2
3 x3 + x+1.

Exercise 7.0.240. Let T̂ (x) = ex, f (x,y,λ) = y2+xy3

1−x , (x0,y0) = (2,λ). Find

∂y
∂λ

(x,y,λ)∣∣∣
λ=0

.

Answer. ex−2.
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Exercise 7.0.241. Let T̂ (x) = ex, f (x,y,λ) = y+λx2e−y

x(1−x) , (x0,y0) = (1,1). Find

∂y
∂λ

(x,y,λ)∣∣∣
λ=0

.

Answer. x(e−1− e−x).

Exercise 7.0.242. Let T̂ (x) = ex, f (x,y,λ) = −y+y2+λxy3

1−x , (x0,y0) = (0,1+λ). Find

∂y
∂λ

(x,y,λ)∣∣∣
λ=0

.

Answer. 1−x−log(1−x)
(1−x)2 .





Chapter 8

Existence and Uniqueness of
Solutions of Systems

Here we suppose that T̂ 1 ∈ C (J), T̂ (x)> 0 for every x ∈ J, where J is an interval.
We consider a system of first-order iso-differential equations of the form(

û∧1 (x̂)
)~

= ĝ∧1 (x̂, û
∧
1 (x̂), û

∧
2 (x̂), . . . , û

∧
n (x̂))(

û∧2 (x̂)
)~

= ĝ∧2 (x̂, û
∧
1 (x̂), û

∧
2 (x̂), . . . , û

∧
n (x̂))

· · ·(
û∧n (x̂)

)~
= ĝ∧n (x̂, û

∧
1 (x̂), û

∧
2 (x̂), . . . , û

∧
n (x̂)),

(1′)

which we can rewrite in the form

u′1(x) = u1(x)
T̂ ′(x)
T̂ (x)

+g1(x1,u1(x),u2(x), . . . ,un(x))
T̂ (x)−xT̂ ′(x)

T̂ (x)

u′2(x) = u2(x)
T̂ ′(x)
T̂ (x)

+g2(x1,u1(x),u2(x), . . . ,un(x))
T̂ (x)−xT̂ ′(x)

T̂ (x)

. . .

u′n(x) = un(x)
T̂ ′(x)
T̂ (x)

+gn(x1,u1(x),u2(x), . . . ,un(x))
T̂ (x)−xT̂ ′(x)

T̂ (x)
.

(1)

Throughout, we shall assume that the functions g1, g2, . . ., gn, are continuous in some
domain E of (n+1)-dimensional space Rn+1.

Definition 8.0.243. By a solution of the iso-differential system (1) in the interval J we
mean a set of n-functions u1(x), u2(x), . . ., un(x) such that

1. u′1(x), u′2(x), . . ., u′n(x) exist for all x ∈ J,
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2. for all x ∈ J the points
(x,u1(x),u2(x), . . . ,un(x)) ∈ E,

3.

u′i(x) = ui(x)
T̂ ′(x)
T̂ (x)

+gi(x,u1(x),u2(x), . . . ,un(x))
T̂ (x)− xT̂ ′(x)

T̂ (x)
for all x ∈ J, i = 1,2, . . . ,n.

In addition to the iso-differential system (1) there may also be given initial conditions
of the form

u1(x0) = u0
1, u2(x0) = u0

2, . . . ,un(x0) = u0
n, (2)

where x0 is a specified value of x in the interval J, and

u0
1, u0

2, . . . ,u
0
n

are prescribed numbers such that

(x0,u0
1,u

0
2, . . . ,u

0
n) ∈ E.

The iso-differential system (1) together with the initial conditions (2) forms an initial value
problem.

To study the existence and uniqueness of the solutions of (1), (2) there are two possible
approaches, either directly imposing sufficient conditions on the functions g1, g2, . . ., gn,
and proving the results, or alternatively using vector notations to write (1), (2) in a compact
form and then proving the results. We shall prefer to use the second approach since then
the proofs are very similar to the scalar case.

By setting

u(x) = (u1(x),u2(x), . . . ,un(x)),

T̂ ′(x)
T̂ (x)

u(x) =
(

T̂ ′(x)
T̂ (x)

u1(x),
T̂ ′(x)
T̂ (x)

u2(x), . . . ,
T̂ ′(x)
T̂ (x)

un(x)
)
,

g(x,u) = (g1(x,u),g2(x,u), . . . ,gn(x,u)),

T̂ (x)−xT̂ ′(x)
T̂ (x)

g(x,u) =
(

T̂ (x)−xT̂ ′(x)
T̂ (x)

g1(x,u),
T̂ (x)−xT̂ ′(x)

T̂ (x)
g2(x,u),

. . . , T̂ (x)−xT̂ ′(x)
T̂ (x)

gn(x,u)
)
,

and agreeing that differentiation and integration to be performed component-wise, i.e.,

u′(x) = (u′1(x),u
′
2(x), . . . ,u

′
n(x)),

∫ b
a u(x)dx =

(∫ b
a u1(x)dx,

∫ b
a u2(x)dx, . . . ,

∫ b
a un(x)dx

)
,

the problem (1), (2) can be written as

u′(x) =
T̂ ′(x)
T̂ (x)

u(x)+g(x,u)
T̂ (x)− xT̂ ′(x)

T̂ (x)
, (3)
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u(x0) = u0. (4)

We define

||u||= max
J

n

∑
i=1
|ui(x)|.

Definition 8.0.244. The function g(x,u) is said to be continuous in E if each of its compo-
nents is continuous in E.

Definition 8.0.245. The function g(x,u) is defined to be uniformly Lipschitz continuous in
Eif there exists a nonnegative constant L(Lipschitz constant) such that

||g(x,u)−g(x,v)|| ≤ L||u− v|| (5)

for all (x,u) and (x,v) in the domain E.

Example 8.0.246. Let

g(x,u) = (a11u1 +a12u2,a21u1 +a22u2)

and E = R3. Then, for (x,u), (x,v) ∈ E we have

g(x,u)−g(x,v) = (a11(u1− v1)+a12(u2− v2),a21(u1− v1)+a22(u2− v2)),

||g(x,u)−g(x,v)||= ||(a11(u1− v1)+a12(u2− v2),a21(u1− v1)+a22(u2− v2))||

≤maxx∈J

(
|a11(u1− v1)+a12(u2− v2)|+ |a21(u1− v1)+a22(u2− v2)|

)
≤maxx∈J

(
|a11||u1− v1|+ |a12||u2− v2|+ |a21||u1− v1|+ |a22||u2− v2|

)
= maxx∈J

(
(|a11|+ |a21|)|u1− v1|+(|a12|+ |a22|)|u2− v2|

)
≤maxx∈J{|a11 + |a21|, |a12|+ |a22|}maxx∈J(|u1− v1|+ |u2− v2|)

= maxx∈J{|a11 + |a21|, |a12|+ |a22|}||u− v||,
therefore

L = max
x∈J
{|a11 + |a21|, |a12|+ |a22|}.

The following result provides sufficient conditions for the function g(x,u) to satisfy the
Lipschitz condition.

Theorem 8.0.247. Let the domain E be convex and for all (x,u) ∈ E the partial derivatives
∂g
∂uk

, k = 1,2, . . . ,n, exist and ∣∣∣∣∣∣∂g
∂u

∣∣∣∣∣∣≤ L,

where ∣∣∣∣∣∣∂g
∂u

∣∣∣∣∣∣= max
j

max
E

n

∑
i=1

∣∣∣ ∂gi

∂u j
(x,u)

∣∣∣.
Then the function g(x,u) satisfies the Lipschitz condition (5) in E with Lipschitz constant L.
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Proof. Let (x,u) and (x,v) be fixed points in E. Then since E is convex for all 0 ≤ t ≤ 1
the points

(x,v+ t(u− v)) ∈ E.

Then the vector-valued function

G(t) = g(x,v+ t(u− v)), 0≤ t ≤ 1,

is well defined, also

G′(t) = (u1− v1)
∂g
∂u1

(x,v+ t(u− v))

+(u2− v2)
∂g
∂u2

(x,v+ t(u− v))

+ . . .

+(un− vn)
∂g
∂un

(x,v+ t(u− v))

=
(
(u1− v1)

∂g1
∂u1

(x,v+ t(u− v)),(u1− v1)
∂g2
∂u1

(x,v+ t(u− v)), . . . ,(u1− v1)
∂gn
∂u1

(x,v+ t(u− v))
)

+
(
(u2− v2)

∂g1
∂u2

(x,v+ t(u− v)),(u2− v2)
∂g2
∂u2

(x,v+ t(u− v)), . . . ,(u2− v2)
∂gn
∂u2

(x,v+ t(u− v))
)

+ · · ·

+
(
(un− vn)

∂g1
∂un

(x,v+ t(u− v)),(un− vn)
∂g2
∂un

(x,v+ t(u− v)), . . . ,(un− vn)
∂gn
∂un

(x,v+ t(u− v))
)
,

||G′(t)||= maxE ∑
n
i=1

∣∣∣∑n
j=1(u j− v j)

∂gi
∂u j

(x,v+ t(u− v))
∣∣∣

≤maxE ∑
n
i=1 ∑

n
j=1 |u j− v j|

∣∣∣ ∂gi
∂u j

(x,v+ t(u− v))
∣∣∣

≤
(

max j maxE ∑
n
i=1

∣∣∣ ∂gi
∂u j

(x,v+ t(u− v))
∣∣∣)maxJ ∑

n
j=1 |u j− v j|

=
∣∣∣∣∣∣ ∂g

∂u

∣∣∣∣∣∣||u− v||

≤ L||u− v||.

Now from the relation

g(x,u)−g(x,v) = G(1)−G(0) =
∫ 1

0
G′(t)dt,
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we find that
||g(x,u)−g(x,v)||=

∣∣∣∣∣∣∫ 1
0 G′(t)dt

∣∣∣∣∣∣
≤

∫ 1
0 ||G′(t)||dt

≤
∫ 1

0 L||u− v||dt

= L||u− v||.

Example 8.0.248. Let

g(x,u) = (g1(x,u),g2(x,u))

= (a11(x)u1(x)+a12(x)u2(x),a21(x)u1(x)+a22(x)u2(x)).

Then
∂g
∂u1

(x,u) = (a11(x),a21(x)),

∂g
∂u2

(x,u) = (a12(x),a22(x)).

Then ∣∣∣∣∣∣∂g
∂u

∣∣∣∣∣∣= max
{

max
J

(|a11(x)|+ |a21(x)|),max
J

(|a21(x)|+ |a22(x)|)
}
.

Therefore the function g(x,u) satisfies the Lipschitz condition with the Lipschitz constant

L = max
{

max
J

(|a11(x)|+ |a21(x)|),max
J

(|a21(x)|+ |a22(x)|)
}
.

If g(x,u) is continuous in the domain E, then any solution of the initial value problem
(3), (4) is also a solution of the integral equation

u(x) = u0 +
∫ x

x0

( T̂ ′(t)
T̂ (t)

u(t)+g(t,u(t))
T̂ (t)− tT̂ ′(t)

T̂ (t)

)
dt (6)

and conversely.
To find a solution of the integral equation (6) the iso-Picard method of successive ap-

proximations is equally useful. Let u0(x) be any continuous function which we assume to
be an initial approximation of the solution, then we define approximations successively by

um+1(x) = u0+
∫ x

x0

( T̂ ′(t)
T̂ (t)

um(t)+g(t,um(t))
T̂ (t)− tT̂ ′(t)

T̂ (t)

)
dt, m = 0,1,2, . . . , (7)

and, as before, if the sequence {um(x)}∞
m=1 converges uniformly to a continuous function

u(x) in some interval J containing the point x0 and for all x∈ J the points (x,u(x))∈ E, then
this function u(x) will be a solution of the integral equation (6).
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Below we will suppose that

|T̂ ′(x)|
T̂ (x)

≤ P,
|T̂ (x)− xT̂ ′(x)|

T̂ (x)
≤ P

for all x in the interval J.
Now we shall state several results for the initial value problem (3), (4) which are anal-

ogous to those proved in the earlier chapters for the scalar case.

Theorem 8.0.249. (local existence theorem) Let the following conditions hold.

(i) g(x,u) is continuous in

Ω = {(x,u) ∈ Rn+1 : |x− x0| ≤ a, ||u−u0|| ≤ b}

and hence there exists a M > 0 such that

||g(x,u)|| ≤M

for all (x,u) ∈Ω,

(ii) g(x,u) satisfies the uniform Lipschitz condition (5) in Ω,

(iii) u0(x) is a continuous function in the interval |x− x0| ≤ a and

||u0(x)−u0|| ≤ b.

Then the sequence {um(x)}∞
m=1 generated by the iso-Picard iterative scheme (7) converges

to the unique solution u(x) of the problem (3), (4). This solution is valid in the interval

Jh = {x ∈ R : |x− x0| ≤ h},

where
h = min

{
a,

b
P(b+ |y0|+M)

}
.

Further, for all x ∈ Jh, the following error estimate holds

||u(x)−um(x)|| ≤ Ne(P+PL)h min
{

1,
((P+PL)h)m

m!

}
, m = 0,1,2, . . . ,

where
||u1(x)−u0(x)|| ≤ N.

Theorem 8.0.250. (global existence theorem) Let the following conditions hold.

(i) g(x,u) is continuous in

∆ = {(x,u) ∈ Rn+1 : |x− x0| ≤ a, ||u||< ∞},

(ii) g(x,u) satisfies the uniform Lipschitz condition (5) in ∆,
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(iii) u0(x) is continuous in |x− x0| ≤ a.

Then the sequence {um(x)}∞
m=1 generated by the iso-Picard iterative scheme (7) exists in

the entire interval |x− x0| ≤ a, and converges to the unique solution u(x) of the problem
(3), (4).

Corollary 8.0.251. Let g(x,u) be continuous function in Rn+1 and satisfies the uniform
Lipschitz condition (5) in each

∆a = {(x,u) ∈ Rn+1 : |x| ≤ a, ||u||< ∞}

with the Lipschitz constant La. Then the problem (3), (4) has a unique solution, which
exists for all x ∈ R.

Theorem 8.0.252. (iso-Peano’s existence theorem) Let g(x,u) be continuous and bounded
in ∆. Then the problem (3), (4) has at least one solution in the interval |x− x0| ≤ a.

Definition 8.0.253. (ε-approximate solution) Let g(x,u) be continuous in the domain E.
A function u(x) defined in the interval J is said to be an ε-approximate solution of the
iso-differential system (3) if

1. u(x) is a continuous function in the interval J,

2. for all x ∈ J the points (x,u(x)) ∈ E,

3. u(x) has a piecewise continuous derivative in the interval J which may fail to be defined
only for a finite number of points, say, x1, x2, . . ., xk,

4. ∣∣∣∣∣∣u′(x)−u(x)
T̂ ′(x)
T̂ (x)

−g(x,u(x))
T̂ (x)− xT̂ ′(x)

T̂ (x)

∣∣∣∣∣∣≤ ε

for all x ∈ J, x 6= xi, i = 1,2, . . . ,k.

Theorem 8.0.254. Let g(x,u) be continuous in Ω, and hence there exists a M > 0 such that

||g(x,u)|| ≤M

for all (x,u) ∈ Ω. Then for any ε > 0 there exists an ε-approximate solution u(x) of the
iso-differential system (3) in the interval Jh such that

u(x0) = u0.

Theorem 8.0.255. (iso-Cauchy-Peano’s existence theorem) Let g(x,u) be continuous in Ω

and hence there exists a M > 0 such that |g(x,u)| ≤M for every point (x,y) ∈Ω. Then the
initial value problem (3), (4) has at least one solution in Jh.

Theorem 8.0.256. (continuation of solutions) Assume that g(x,u) is continuous in E and
u(x) is a solution of the problem (3), (4) in the interval J. Then u(x) can be extended as a
solution of the initial value problem (3), (4) to the boundary of E.
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Corollary 8.0.257. Assume that g(x,u) is continuous in

E1 = {(x,u) ∈ E : x0 ≤ x < x0 +a, a < ∞, ||u||< ∞}.

If u(x) is any solution of the initial value problem (3), (4), then the largest interval of the
existence of the solution u(x) is either [x0,x0 +a] or [x0,x0 +α), α < a, and

||u(x)|| −→ ∞

as x−→ x0 +α.

Theorem 8.0.258. (continuous dependence on initial conditions) Let the following condi-
tions hold.

(i) g(x,u) is continuous and bounded by M in the domain E containing the points (x0,u0)
and (x1,u1),

(ii) g(x,u) satisfies the uniform Lipschitz condition (5) in E,

(iii) h(x,u) is continuous and bounded by M1 in E,

(iv) u(x) and v(x) are the solutions of the initial value problem (3), (4) and

v′(x) = v(x) T̂ ′(x)
T̂ (x)

+g(x,v(x)) T̂ (x)−xT̂ ′(x)
T̂ (x)

+h(x,v(x)) T̂ (x)−xT̂ ′(x)
T̂ (x)

,

v(x1) = u1,

respectively, which exist in the interval J containing the points x0 and x1.

Then for all x ∈ J, the following inequality holds

||u(x)− v(x)|| ≤
(
||u0−u1||+(M+M1)P|x0− x1|+P

∣∣∣∣∣∣∫ x0
x1
|v(t)|dt

∣∣∣∣∣∣
+ M1

1+L

)
eP(1+L)|x−x0|− M1

1+L .

Theorem 8.0.259. (differentiation with respect to initial conditions) Let the following con-
ditions be satisfied.

(i) g(x,u) is continuous and bounded by M in the domain E containing the point (x0,u0),

(ii) the matrix ∂g
∂u(x,u) exists and is continuous, and bounded by L in the domain E,

(iii) the solution u(x,x0,u0) of the initial value problem (3), (4) exists in an interval J
containing x0.

Then the following hold.

(i) The solution u(x,x0,u0) is differentiable with respect to u0, and for all j, 1 ≤ j ≤ n,
v j(x) = ∂u

∂u0
j
(x,x0,u0) is the solution of the following initial value problem

v′(x) = v(x) T̂ ′(x)
T̂ (x)

+ ∂g
∂u(x,u(x,x0,u0))v(x),

v(x0) = e j = (0,0, . . . ,0,1,0, . . . ,0).
(8)
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(ii) The solution u(x,x0,u0) is differentiable with respect to x0 and v(x) = ∂u(x,x0,u0)
∂x0

is the
solution of the iso-differential system (8), satisfying the initial condition

v(x0) =−u0 T̂ ′(x0)

T̂ (x0)
−g(x0,u0)

T̂ (x0)− x0T̂ ′(x0)

T̂ (x0)
.

Theorem 8.0.260. Let the following conditions be satisfied.

(i) g(x,u,λ) is continuous and bounded by M in a domain E ⊂Rn+m+1 containing the point
(x0,u0,λ0),

(ii) the matrix ∂g(x,u,λ)
∂u exists and is continuous, an bounded by L in E

(iii) the n×m matrix ∂g(x,u,λ)
∂u exists and is continuous, an bounded by L1 in E,

Then the following hold.

(i) There exist positive numbers h and ε such that for any λsatisfying

||λ−λ
0|| ≤ ε,

there exists a unique solution u(x,λ) to the following initial value problem

u′(x,λ) = u(x,λ) T̂ ′(x)
T̂ (x)

+ f (x,u(x,λ)) T̂ (x)−xT̂ ′(x)
T̂ (x)

,

u(x0,λ) = u0,

(9)

in the interval |x− x0| ≤ h.

(ii) The solution u(x,λ) is differentiable with respect to λ and for each j, 1 ≤ j ≤ m,
v j(x,λ) = ∂u(x,λ)

∂λ j
is the solution of the following initial value problem

v′(x,λ) = v(x,λ) T̂ ′(x)
T̂ (x)

+ ∂g
∂u(x,u(x,λ),λ)v(x,λ)

T̂ (x)−xT̂ ′(x)
T̂ (x)

+ ∂g
∂λ j

(x,u(x,λ),λ) T̂ (x)−xT̂ ′(x)
T̂ (x)

,

v(x0,λ) = 0.





Chapter 9

General Properties of Linear Systems

Here we will suppose that T̂ ∈ C 1(J), T̂ (x)> 0 for every x ∈ J, where J is an interval.
We will consider the system

u′(x) =
(

A(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
+

T̂ ′(x)
T̂ (x)

)
u(x)+b(x)

T̂ (x)− xT̂ ′(x)
T̂ (x)

, (1)

where A(x) is a n× n matrix with elements ai j(x), b(x) is a n× 1 vector with components
bi(x), and u(x) is n×1 unknown vector with components u− i(x).

The existence and uniqueness of the solutions of the iso-differential system (1) together
with the initial condition

u(x0) = u0 (2)

in the interval J containing x0 follows from the previous chapter provided the functions
ai j(x), bi(x), 1≤ i, j≤ n, are continuous in the interval J which we shall assume throughout.

The principle of the superposition is stated as follows.
Let u(x) is a solution to the iso-differential system

u′(x) =
(

A(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
+

T̂ ′(x)
T̂ (x)

)
u(x)+b1(x)

T̂ (x)− xT̂ ′(x)
T̂ (x)

and v(x) is a solution to the system

v′(x) =
(

A(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
+

T̂ ′(x)
T̂ (x)

)
v(x)+b2(x)

T̂ (x)− xT̂ ′(x)
T̂ (x)

,

then
φ(x) = c1u(x)+ c2v(x),

where c1 and c2 are real constants, is a solution of the following iso-differential system

φ
′(x) =

(
A(x)

T̂ (x)− xT̂ ′(x)
T̂ (x)

+
T̂ ′(x)
T̂ (x)

)
φ(x)+

(
c1b1(x)+ c2b2(x)

) T̂ (x)− xT̂ ′(x)
T̂ (x)

.
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For this we have

φ′(x) = c1u′(x)+ c2v′(x)

= c1

(
A(x) T̂ (x)−xT̂ ′(x)

T̂ (x)
+ T̂ ′(x)

T̂ (x)

)
u(x)+ c1b1(x) T̂ (x)−xT̂ ′(x)

T̂ (x)

+c2

(
A(x) T̂ (x)−xT̂ ′(x)

T̂ (x)
+ T̂ ′(x)

T̂ (x)

)
v(x)+ c2b2(x) T̂ (x)−xT̂ ′(x)

T̂ (x)

=
(

A(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

+ T̂ ′(x)
T̂ (x)

)
(c1u(x)+ c2v(x))

+
(

c1b1(x)+ c2b2(x)
)

T̂ (x)−xT̂ ′(x)
T̂ (x)

=
(

A(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

+ T̂ ′(x)
T̂ (x)

)
φ(x)+

(
c1b1(x)+ c2b2(x)

)
T̂ (x)−xT̂ ′(x)

T̂ (x)
.

In particular, if
b1(x) = b2(x)≡ 0,

i.e., u(x) and v(x) are solutions of the homogeneous iso-differential system

u′(x) =
(

A(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
+

T̂ ′(x)
T̂ (x)

)
u(x), (3)

then
c1u(x)+ c2v(x)

is also a solution.
Thus, solutions of the homogeneous iso-differential system (3) form a vector space.
Further, if

b1(x) = b2(x), c1 = 1,c2 =−1,

and u(x) is a solution of (1), then v(x) is also a solution of (1) if and only if

u(x)− v(x)

is a solution of (3).
Thus, the general solution of (1) is obtained by adding to a particular solution of (1)

the general solution of the corresponding homogeneous system (3).
To find the dimension of the vector space of the solutions of (3) we need to define the

concept for linear independence and dependence of vector-valued functions.

Definition 9.0.261. The vector-valued functions

u1(x),u2(x), . . . ,um(x)

defined in the interval J are said to be linearly independent in J, if the relation

c1u1(x)+ c2u2(x)+ · · ·+ cmum(x) = 0
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for all x ∈ J implies that
c1 = c2 = · · ·= cm = 0.

Conversely, these functions are said to be linearly independent if there exist constants

c1,c2, . . . ,cm

not all zero such that
c1u1(x)+ c2u2(x)+ · · ·+ cmum(x) = 0

for all x ∈ J.

Let the functions
u1(x),u2(x), . . . ,um(x)

be linearly dependent in the interval J and ck 6= 0 for some k ∈ {1,2, . . . ,m}. Then we have

uk(x) =−c1

ck
u1(x)−·· ·− ck−1

c1
uk−1(x)− ck+1

ck
uk+1(x)−·· ·− cm

ck
um(x),

i.e., uk(x) (and hence at least one of these functions) can be expressed as a linear combina-
tion of the remaining m−1 functions, so that

uk(x) = c1u1(x)+ · · ·+ ck−1uk−1(x)+ ck+1uk+1(x)+ · · ·+ cmum(x),

then obviously these functions are linearly dependent. Hence, if two functions are linearly
dependent in the interval J, then each one of these functions is identically equal to a con-
stant times the other function, while if two functions are linearly independent, then it is
impossible to express either function as a constant times the other.

Example 9.0.262. The functions

1, x, x2, · · · , xm−1

are linearly independent in the interval J.
Really, we suppose that

c1 + c2x+ c3x2 + · · ·+ cmxm−1 = 0 (4)

in an interval J and any ck were not zero. Then the equation (4) could hold for at most
m−1 values of x, whereas it must hold for all x ∈ J.

Therefore the considered functions are linearly independent.

Example 9.0.263. The functions

u1(x) =
(

ex

ex

)
, u2(x) =

(
e2x

3e2x

)
are linearly independent in every interval J. Indeed,

c1

(
ex

ex

)
+ c2

(
e2x

3e2x

)
= 0
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implies that
c1ex + c2e2x = 0

c1ex +3c2e2x = 0,

which is possible if
c1 = c2 = 0.

Example 9.0.264. The functions

u1(x) =
(

sinx
cosx

)
, u2(x) =

(
0
0

)
are linearly dependent in every interval J. Let c1 = 0, c2 = 1. Then

0
(

sinx
cosx

)
+1
(

0
0

)
= 0

in every interval J.

Definition 9.0.265. For the given n vector-valued functions

u1(x), u2(x), · · · , un(x)

the determinant W (u1,u2, . . . ,un)(x) or W (x), defined by∣∣∣∣∣∣∣∣
u1

1(x) u2
1(x) · · · un

1(x)
u1

2(x) u2
2(x) · · · un

2(x)
· · · · · · · · · · · ·

u1
n(x) u2

n(x) · · · un
n(x)

∣∣∣∣∣∣∣∣
is called the Wronskian of these functions.

Theorem 9.0.266. If the Wronskian W (x) of n vector-valued functions

u1(x), u2(x), , · · · , un(x)

is different from zero for at least one point in an interval J, then these functions are linearly
independent in J.

Proof. Let
u1(x), u2(x), , · · · , un(x)

be linearly dependent in J, then there exist n constants

c1, c2, . . . , cn,

such that
n

∑
i=1

ciui(x) = 0 in J.
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From here
n

∑
i=1

ui
k(x)ci = 0 in J

for all k, 1≤ k ≤ n, has a nontrivial solution, which is possible if and only if W (x) = 0 for
every x ∈ J. But W (x) 6= 0 for at least one point x in the interval J, and, therefore

u1(x), u2(x), , · · · , un(x)

can not be linearly independent.

Theorem 9.0.267. Let
u1(x), u2(x), . . . , un(x)

be linearly independent solutions of the iso-differential systems (3) in the interval J. Then
W (x) 6= 0 for all x ∈ J.

Proof. Let x0 be a point in J where W (x0) = 0. Then there exists constants

c1, c2, . . . , cn

not all zero such that
n

∑
i=1

ciui(x0) = 0.

Since

u(x) =
n

∑
i=1

ciui(x)

is a solution of (3) , and u(x0) = 0, from the uniqueness of the solutions it follows that

u(x) =
n

∑
i=1

ciui(x) = 0

in the interval J. However, the functions

u1(x), u2(x), , · · · , un(x)

are linearly independent J so we must have

c1 = c2 = · · ·= cn = 0,

which is a contradiction.

Theorem 9.0.268. (iso-Abel’s formula) Let

u1(x), u2(x), , · · · , un(x)

be the solutions of the iso-differential system (3) in the interval J and x0 ∈ J. Then for all
x ∈ J we have

W (x) =
W (x0)

T̂ n(x0)
T̂ n(x)e

∫ x
x0

TrA(t) T̂ (t)−tT̂ ′(t)
T̂ (t)

dt
.
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Proof. The derivative of the Wronskian W (x) can be written as

W ′(x) =
n

∑
i=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u1
1(x) · · · un

1(x)
· · · · · · · · ·

u1
i−1(x) · · · un

i−1(x)
u′1i (x) · · · u′ni (x)

u1
i+1(x) · · · un

i+1(x)
· · · · · · · · ·

u1
n(x) · · · un

n(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (5)

In the ith determinant of the right hand side of (5) we use the iso-differential system (3) to
replace u j

i (x) by

n

∑
k=1

(
aik(x)

T̂ (x)− xT̂ ′(x)
T̂ (x)

+
T̂ ′(x)
T̂ (x)

)
u j

k(x)

and multiply the first row by

ai1(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
+

T̂ ′(x)
T̂ (x)

,

the second row by

ai2(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
+

T̂ ′(x)
T̂ (x)

,

and so on, then subtract their sum from the ith row, to get

W ′(x) =
(

TrA(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
+n

T̂ ′(x)
T̂ (x)

)
W (x). (6)

Integration of the first-order iso-differential equation (6) from x0 to x gives the required
relation.

Example 9.0.269. Let T̂ (x) = ex,

A(x) =

(
1

x−1 0
x2+2x+1

(x−1)(x2+2x−1)
x2−3

(x−1)(x2+2x−1)

)
, x 6= 1,−1±

√
2.
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Then
T̂ ′(x) = ex,

T̂ (x)−xT̂ ′(x)
T̂ (x)

= ex−xex

ex

= 1− x,

T̂ ′(x)
T̂ (x)

= ex

ex

= 1,

a11(x)
T̂ (x)−xT̂ ′(x)

T̂ (x)
+ T̂ ′(x)

T̂ (x)
= 1

x−1(1− x)+1

= 0,

a12(x)
T̂ (x)−xT̂ ′(x)

T̂ (x)
+ T̂ ′(x)

T̂ (x)
= 0(1− x)+1

= 1,

a21(x)
T̂ (x)−xT̂ ′(x)

T̂ (x)
+ T̂ ′(x)

T̂ (x)
= x2+2x+1

(x−1)(x2+2x−1)(1− x)+1

=− x2+2x+1
x2+2x−1 +1

=− 2
x2+2x−1 ,

a22(x)
T̂ (x)−xT̂ ′(x)

T̂ (x)
+ T̂ ′(x)

T̂ (x)
= x2−3

(x−1)(x2+2x1)
(1− x)+1

= −x2+3
x2+2x−1 +1

= 2(x+1)
x2+2x−1 .

In this way we obtain the system

u′1(x) = u2(x)

u′2(x) =− 2
x2+2x−1 u1(x)+

2(x+1)
x2+2x−1 u2(x).

From here
(x2 +2x−1)u′2(x) =−2u1(x)+2(x+1)u2(x)

or

u1(x) =−
x2 +2x−1

2
u′2(x)+(x+1)u2(x),
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whereupon

u′1(x) =−2x+2
2 u′2(x)− x2+2x−1

2 u′′2(x)+u2(x)+(x+1)u′2(x)

=− x2+2x−1
2 u′′2(x)+u2(x).

Therefore

−x2 +2x−1
2

u′′2(x)+u2(x) = u2(x)

or
u′′2(x) = 0.

Consequently
u2(x) = c1 + c2x,

where c1 and c2 are real constants.
Also,

u1(x) =− x2+2x−1
2 c2 +(x+1)(c1 + c2x)

=
(
−x2−2x+1

2 + x2 + x
)

c2 + c1(x+1)

= c1(x+1)+ c2
x2+1

2 ,

whereas

u(x) =
(

c1(x+1)+ c2
x2+1

2
c1 + c2x

)
.

For
c1 = 1, c2 = 0

we get

u1(x) =
(

x+1
1

)
,

for
c1 = 0, c2 = 2

we have

u2(x) =
(

x2 +1
2x

)
.

Therefore

W (u1,u2)(x) =
∣∣∣∣ x+1 x2 +1

1 2x

∣∣∣∣
= 2x(x+1)− (x2 +1)

= x2 +2x−1.
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From iso-Abel’s formula we have

W (x) =W (x0)e
∫ x

x0

(
TrA(t) T̂ (t)−tT̂ ′(t)

T̂ (t)
+2 T̂ ′(t)

T̂ (t)

)
dt

= (x2
0 +2x0−1)e

∫ x
x0

2(t+1)
t2+2t−1

dt

= (x2
0 +2x0−1)e

∫ x
x0

d(t+1)2

(t+1)2−2
dt

= (x2
0 +2x0−1) x2+2x−1

x2
0+2x0−1

= x2 +2x−1.

Exercise 9.0.270. Let T̂ (x) = ex,

A(x) =

(
1

x−1
1−e−x

x−1
1

x−1 0

)
.

Find two linearly independent solutions u1(x), u2(x) of the system (3) and W (u1,u2)(x).
Check your answer using the definition of the Wronskian and the iso-Abel’s formula.

Exercise 9.0.271. Let the solutions

u1(x), u2(x), . . . , un(x)

of the system (3) satisfy the initial conditions

ui(x0) = ei, i = 1,2, . . . ,n,

which are defined in an interval J, where

ei = (0,0, . . . ,0,1,0, . . . ,0), i = 1,2, . . . ,n.

Prove that they are linearly independent in the interval J.

Exercise 9.0.272. The Wronskian of n functions

y1(x), y2(x), , . . . , yn(x)

which are (n−1)-times differentiable in an interval J is defined by the determinant

W (y1,y2, . . . ,yn)(x) =

∣∣∣∣∣∣∣∣
y1(x) y2(x) · · · yn(x)
y′1(x) y′2(x) · · · y′n(x)
· · · · · · · · · · · ·

y(n−1)
1 (x) y(n−1)

2 (x) · · · y(n−1)
n (x)

∣∣∣∣∣∣∣∣ .
Prove the following.
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(i) If W (y1,y2, . . . ,yn)(x) is different from zero for at least one point in J, then the functions

y1(x), y2(x), , . . . , yn(x)

are linearly independent.

(ii) If the functions
y1(x), y2(x), , . . . , yn(x)

are linearly dependent in J, then the Wronskian

W (y1,y2, . . . ,yn)(x) = 0 in J.

(iii) The converse of (i) as well as of (ii) is not necessary true.

(iv) If
W (y1,y2, . . . ,yn)(x) = 0 in J,

but for some set of (n−1), y’s(say, without loss of generality, all but yn(x))

W (y1,y2, . . . ,yn−1(x)) 6= 0

for all x ∈ J, then the functions

y1(x), y2(x), , . . . , yn(x)

are linearly dependent in J.

Exercise 9.0.273. Prove that any solution u(x) of the iso-differential system (3) satisfying
the initial data

u(x0) = u0

can be written as
n

∑
i=1

u0
i ui(x),

where ui(x), 1 ≤ i ≤ n, is the solution of the initial value problem for the iso-differential
system (3) with initial conditions

ui(x0) = ei, i = 1,2, . . . ,n,

ei = (0,0, . . . ,0,1,0, . . . ,0)

for i = 1,2, . . . ,n.

Exercise 9.0.274. Let T̂ (x) = ex,

A(x) =

 1
x−1 0 1

x−1
1

x−1
1

x−1 0
0 1

x−1
1

x−1

 ,
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x 6= 1. Let u(x), v(x) and w(x) be the solutions of the iso-differential system (3) satisfying

u(0) = 1, u′(0) = 0, u′′(0) = 0,

v(0) = 0, v′(0) = 1, v′′(0) = 0,

w(0) = 0, w′(0) = 0, w′′(0) = 1.

Without solving the iso-differential system (3), show that

(i) u′(x) =−w(x),

(ii) v′(x) = u(x),

(iii) w′(x) = v(x),

(iv) W (u,v,w) = u3− v3 +w3 +3uvw = 1.





Chapter 10

Fundamental Matrix Solution

Here we will suppose that T̂ ∈ C 1(J), T̂ (x)> 0 for every x ∈ J, where J is an interval in R.
We will investigate the system

u′(x) =
(

A(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
+

T̂ ′(x)
T̂ (x)

)
u(x), (1)

where A(x) is n× n matrix with elements ai j(x), which are continuous functions in the
interval J, 1≤ i, j ≤ n.

We have that any solution u(x) of the iso-differential system (1) for which

u(x0) = u0

can be written as

u(x) =
n

∑
i=1

u0
i ui(x),

where ui(x) is the solution of the initial value problem (1),

ui(x0) = ui, i = 1,2, . . . ,n, (1′)

ei = (0,0, . . . ,0,1,0, . . . ,0),

i = 1,2, . . . ,n.
In matrix notation this solution can be written as

u(x) = Φ(x,x0)u0,

where Φ(x,x0) is an n×n matrix whose ith column is ui(x).

Definition 10.0.275. The matrix Φ(x,x0) is said to be the principal fundamental matrix or
evolution matrix or transition matrix.

We have that Φ(x,x0) satisfies the initial value problem

Φ
′(x,x0) =

(
A(x)

T̂ (x)− xT̂ ′(x)
T̂ (x)

+
T̂ ′(x)
T̂ (x)

)
Φ(x,x0), (2)
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Φ(x0,x0) = I. (3)

The fact that the initial value problem (2), (3) has a unique solution Φ(x,x0) in the interval
J can be proved exactly as in the previous chapters. Moreover, the iterative scheme

Φm+1(x) = I +
∫ x

x0

(
A(t) T̂ (t)−tT̂ ′(t)

T̂ (t)
+ T̂ ′(t)

T̂ (t)

)
Φm(t)dt,

Φ0(x) = I,

converges to Φ(x,x0), and

Φ1(x) = I +
∫ x

x0

(
A(t) T̂ (t)−tT̂ ′(t)

T̂ (t)
+ T̂ ′(t)

T̂ (t)

)
Φ0(t)dt

= I +
∫ x

x0

(
A(t) T̂ (t)−tT̂ ′(t)

T̂ (t)
+ T̂ ′(t)

T̂ (t)

)
dt,

Φ2(x) = I +
∫ x

x0

(
A(t) T̂ (t)−tT̂ ′(t)

T̂ (t)
+ T̂ ′(t)

T̂ (t)

)
Φ1(t)dt

= I +
∫ x

x0

(
A(t) T̂ (t)−tT̂ ′(t)

T̂ (t)
+ T̂ ′(t)

T̂ (t)

)(
I +

∫ t
x0

(
A(s) T̂ (s)−sT̂ ′(s)

T̂ (s)
+ T̂ ′(s)

T̂ (s)

)
ds
)

dt

= I +
∫ x

x0

(
A(t) T̂ (t)−tT̂ ′(t)

T̂ (t)
+ T̂ ′(t)

T̂ (t)

)
dt

+
∫ x

x0

(
A(t) T̂ (t)−tT̂ ′(t)

T̂ (t)
+ T̂ ′(t)

T̂ (t)

)∫ t
x0

(
A(s) T̂ (s)−sT̂ ′(s)

T̂ (s)
+ T̂ ′(s)

T̂ (s)

)
dsdt,

and so on,

Φ(x,x0) = I +
∫ x

x0

(
A(t) T̂ (t)−tT̂ ′(t)

T̂ (t)
+ T̂ ′(t)

T̂ (t)

)
dt

+
∫ x

x0

∫ t
x0

(
A(t) T̂ (t)−tT̂ ′(t)

T̂ (t)
+ T̂ ′(t)

T̂ (t)

)(
A(s) T̂ (s)−sT̂ ′(s)

T̂ (s)
+ T̂ ′(s)

T̂ (s)

)
dsdt + · · · .

(4)

Definition 10.0.276. The series (4) is said to be iso-Peano-Baker series of the initial value
problem (2), (3).

Theorem 10.0.277. If Ψ(x) is a fundamental matrix of the iso-differential system (1), then
for any constant nonsingular n×n matrix C, the matrix Ψ(x)C is also a fundamental matrix
of the iso-differential system (1), and any fundamental matrix of (1) is of the form Ψ(x)C
for some constant nonsingular n×n matrix C.

Proof. We have

Ψ
′(x) =

(
A(x)

T̂ (x)− xT̂ ′(x)
T̂ (x)

+
T̂ ′(x)
T̂ (x)

)
Ψ(x),

and hence

Ψ
′(x)C =

(
A(x)

T̂ (x)− xT̂ ′(x)
T̂ (x)

+
T̂ ′(x)
T̂ (x)

)
Ψ(x)C,
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which is the same as

(Ψ(x)C)′ =
(

A(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
+

T̂ ′(x)
T̂ (x)

)
(Ψ(x)C),

i.e., Ψ(x) and Ψ(x)C both are solutions of the same matrix iso-differential system (1).
Further, since

detΨ(x) 6= 0

and
detC 6= 0

it follows that
det(Ψ(x)C) 6= 0

and hence Ψ(x)C is also a fundamental matrix solution of the iso-differential system (1).
Conversely, let Ψ1(x) and Ψ2(x) be two fundamental matrix solutions of (1). If

Ψ
−1
2 (x)Ψ1(x) =C(x)

or
Ψ1(x) = Ψ2(x)C(x),

then we have
Ψ
′
1(x) = Ψ

′
2(x)C(x)+Ψ2(x)C′(x)

or (
A(x) T̂ (x)−xT̂ ′(x)

T̂ (x)
+ T̂ ′(x)

T̂ (x)

)
Ψ1(x) =

(
A(x) T̂ (x)−xT̂ ′(x)

T̂ (x)
+ T̂ ′(x)

T̂ (x)

)
Ψ2(x)C(c)

+Ψ2(x)C′(x),

whereupon
Ψ2(x)C′(x) = 0

or
C′(x) = 0.

Therefore C(x) is a constant matrix.
Moreover, since Ψ1(x) and Ψ2(x) are nonsingular matrices, this constant matrix is also

nonsingular.

As a consequence of this theorem we find

Φ(x,x0) = Ψ(x)Ψ−1(x0)

and the solution of the initial value problem for (1) with

u(x0) = u0

can be written in the following form

u(x) = Ψ(x)Ψ−1(x0)u0.
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Since the product of matrices is not commutative, for a given constant nonsingular
matrix C, the matrix CΨ(x) need not be a fundamental matrix solution of the iso-differential
system (1).

Further, two different homogeneous systems cannot have the same fundamental matrix,
i.e. Ψ(x) determines the matrix

A(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
+

T̂ ′(x)
T̂ (x)

I

uniquely by the relation

A(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
+

T̂ ′(x)
T̂ (x)

I = Ψ
′(x)Ψ−1(x).

Now we differentiate the relation

Ψ(x)Ψ−1(x) = I,

and we obtain
Ψ
′(x)Ψ−1(x)+Ψ(x)

(
Ψ
−1(x)

)′
= 0,

and hence (
Ψ−1(x)

)′
=−Ψ−1(x)Ψ′(x)Ψ−1(x)

=−Ψ−1(x)
(

A(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

+ T̂ ′(x)
T̂ (x)

I
)
,

which is the same as

(4′)
((

Ψ−1(x)
)T)′

=−
(

AT (x) T̂ (x)−xT̂ ′(x)
T̂ (x)

+ T̂ ′(x)
T̂ (x)

)(
Ψ−1(x)

)T
.

Therefore,
(

Ψ−1(x)
)T

is a fundamental matrix of the following iso-differential system

(4) u′(x) =−
(

AT (x) T̂ (x)−xT̂ ′(x)
T̂ (x)

+ T̂ ′(x)
T̂ (x)

)
u(x).

Definition 10.0.278. The system (4) is said to be the iso-adjoint system of the iso-
differential system (1).

Theorem 10.0.279. If Ψ(x) is a fundamental matrix of the iso-differential system (1), then
χ(x) is a fundamental matrix of its iso-adjoint system (4) if and only if

χ
T (x)Ψ(x) =C, (5)

where C is a constant nonsingular n×n matrix.

Proof. If Ψ(x) is a fundamental matrix of the iso-differential system (1), then from (4′) it

follows that
(

Ψ−1(x)
)T

is a fundamental matrix of the iso-differential system (4). There-
fore there exists a constant nonsingular matrix D such that

χ(x) =
(

Ψ
−1(x)

)T
D,
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from where
Ψ

T (x)χ(x) = D,

which is the same as
χ

T (x)Ψ(x) = DT .

Therefore (5) holds with C = DT .
Conversely, if Ψ(x) is a fundamental matrix of (1) satisfying (5), then

Ψ
T (x)χ(x) =CT

and hence

χ(x) =
(

Ψ
T (x)

)−1
CT .

Consequently, χ(x) is a fundamental matrix of the iso-adjoint system (4).

Now we consider the system

u′(x) =
(

A(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
+

T̂ ′(x)
T̂ (x)

)
u(x)+

T̂ (x)− xT̂ ′(x)
T̂ (x)

b(x). (6)

We seek a vector-valued function v(x) such that

Φ(x,x0)v(x)

is a solution of (6).
We have

Φ′(x,x0)v(x)+Φ(x,x0)v′(x) =
(

A(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

+ T̂ ′(x)
T̂ (x)

)
Φ(x,x0)v(x)

+b(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

,

from where

Φ(x,x0)v′(x) = b(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)

or

v′(x) = Φ
−1(x,x0)b(x)

T̂ (x)− xT̂ ′(x)
T̂ (x)

.

Consequently

v(x) = v(x0)+
∫ x

x0

Φ
−1(t,x0)b(t)

T̂ (t)− tT̂ ′(t)
T̂ (t)

dt.

In this way the solution of (6) takes the form

u(x) = Φ(x,x0)v(x0)+Φ(x,x0)
∫ x

x0

Φ
−1(t,x0)b(t)

T̂ (t)− tT̂ ′(t)
T̂ (t)

dt.
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Exercise 10.0.280. Let T̂ (x) = ex. Solve the system (1) in the cases

1) A(x) =
( 1

1−x 0
2

1−x
3

1−x

)
, 2) A(x) =

(
0 2

1−x
5

1−x 0

)
.

Answer.

1)
u1(x) =C1ex +C2e5x

u2(x) =−C1ex +3C2e5x,
2)

u1(x) =C1e−x +C2e3x

u2(x) = 2C1e−x−2C2e3x,

where C1 and C2 are real constants.

Exercise 10.0.281. Let T̂ (x) = x2 +1, x 6=±1. Solve the system (1) in the cases

1) A(x) =

(
x+1
x−1 2 4x2−x+4

1−x2
1−x
1+x

1−x
1+x

)

2) A(x) =

(
1−x
1+x

1−x
1+x

−2 1+x+x2

1+x2
3x2−2x+3

1−x2

)
.

Answer.

1)
u1(x) = 2C1e3x−4C2e−3x

u2(x) =C1e3x +C2e−3x,

2)

u1(x) = e2x
(

C1 cosx+C2 sinx
)

u2(x) = e2x
(
(C1 +C2)cosx+(C2−C1)sinx

)
,

where C1 and C2 are real constants.

Exercise 10.0.282. Let T̂ (x) = e3x, x 6= 1
3 . Solve the system (1) in the cases

1) A(x) =
( 2

3x−1
6

3x−1
0 2

3x−1

)
,

2) A(x) =
( 4

3x−1
8

3x−1
2

3x−1
2

3x−1

)
.

Answer.

1)

u1(x) = ex
(

C1 cos(3x)+C2 sin(3x)
)

u2(x) = ex
(

C1 sin(3x)−C2 cos(3x)
)
,

2)
u1(x) =

(
2C2−C1)cos(2x)−

(
2C1 +C2

)
sin(2x)

u2(x) =C1 cos(2x)+C2 sin(2x),

where C1 and C2 are real constants.
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Exercise 10.0.283. Let T̂ (x) = ex2
, x 6=± 1√

2
. Solve the system (1) in the cases

1) A(x) =

(
2−2x
1−2x2

1−2x
1−2x2

− 1+2x
1−2x2

4−2x
1−2x2

)
,

2) A(x) =

(
3−2x
1−2x2 − 1+2x

1−2x2
4−2x
1−2x2 − 1+2x

1−2x2

)
.

Answer.

1)

u1(x) =
(

C1 +C2x
)

e3x

u2(x) =
(

C1 +C2 +C2x
)

e3x,

2)

u1(x) =
(

C1 +C2x
)

e3x

u2(x) =
(

2C1−C2 +2C2x
)

ex,

where C1 and C2 are real constants.

Exercise 10.0.284. Let T̂ (x) = (x2 +1)ex, x3 + x2 + x−1 6= 0. Solve the system (1) in the
cases

1) A(x) =

(
4x2+2x+4

x3+x2+x−1 − x2−2x+1
x3+x2+x−1

3x2+2x+3
x3+x2+x−1

2x
x3+x2+x−1

)
,

2) A(x) =

(
− 4x2−2x+4

x3+x2+x−1 −2 x2−x+1
x3+x2+x−1

4x2+2x+4
x3+x2+x−1 2 x2+x+1

x3+x2+x−1

)
.

Answer.

1)

u1(x) =
(

C1 +2C2x
)

e−x

u2(x) =
(

C1 +C2 +2C2x
)

e−x,

2)

u1(x) =
(

C1 +3C2x
)

e2x

u2(x) =
(

C2−C1−3C2x
)

e2x,

where C1 and C2 are real constants.

Exercise 10.0.285. Let T̂ (x) = ex, x 6= 1. Solve the system (6) in the cases

1) A(x) =
( 3

1−x
4

x−1
1

1−x
2

1−x

)
, b(x) =

( sinx
1−x
−2 cosx

1−x

)
,

2) A(x) =
( 1

1−x 0
0 1

1−x

)
, b(x) =

(
2 ex

1−x
−3 e4x

1−x

)
.
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Answer.

1)
u1(x) =C1ex +3C2e2x + cosx−2sinx

u2(x) =C1ex +2C2e2x +2cosx−2sinx,

2)
u1(x) =C1ex +C2e3x + xex− e4x

u2(x) =−C1ex +C2e3x− (x+1)ex−2e4x,

where C1 and C2 are real constants.



Chapter 11

Periodic Linear Systems

Definition 11.0.286. A function y(x) is said to be periodic of period ω > 0 if for all x in the
domain of the function y(x) we have

y(x+ω) = y(x). (1)

For example, the functions

2sinx+1, 3cos2 x+2

are periodic functions of period 2π.
Here we will suppose that ω > 0 is the smallest positive number for which (1) holds.

Definition 11.0.287. If all components ui(x), 1 ≤ i ≤ n, of a vector u(x) are periodic of
period ω, then the vector u(x) will be called periodic vector of period ω.

Definition 11.0.288. If all elements ai j(x), 1≤ i, j ≤ n, of a n×n matrix A(x) are periodic
of period ω, then the matrix A(x) will be called periodic matrix of period ω.

Below we will assume that T̂ ∈ C 1(R), T̂ (x)> 0 for every x ∈R and T̂ (x) is a periodic
function of period ω.

We will investigate the linear iso-differential system(
û∧(x̂)

)~
= Â∧(x̂)×̂û∧(x̂)+ b̂∧(x̂), (2′)

where A(x) is a n×n matrix with continuous elements, u(x) and b(x) are n×1 vector.
The system (2′) we can rewrite in the form

u′(x) =
(

A(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
+

T̂ ′(x)
T̂ (x)

)
u(x)+b(x)

T̂ (x)− xT̂ ′(x)
T̂ (x)

. (2)

Here we will provide certain characterizations for the existence of periodic solutions of
period ω of the system (2). We suppose that the matrix A(x) satisfies the conditions

A(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

∈ C (R),

A(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

= A(x+ω) T̂ (x+ω)−(x+ω)T̂ ′(x+ω)

T̂ (x+ω)

(3)
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for all x ∈ R, and b(x) satisfies the conditions

b(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

∈ C (R),

b(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

= b(x+ω) T̂ (x+ω)−(x+ω)T̂ ′(x+ω)

T̂ (x+ω)

(4)

for all x ∈ R.
To begin with we will provide necessary and sufficient conditions for the iso-differential

system (2) to have a periodic solution of period ω.

Theorem 11.0.289. Let the matrix A(x) and the function b(x) satisfy (3) and (4), respec-
tively. Then the iso-differential system (2) has a periodic solution of period ω if and only
if

u(0) = u(ω).

Proof. Let u(x) be a periodic solution of period ω of the iso-differential system (2). Then
from the definition for periodic function we get

u(0) = u(0+ω) = u(ω). (5)

Now we assume that u(x) is a solution to (2) for which (5) holds.
Let

v(x) = u(x+ω).

Then it follows that

v′(x) = u′(x+ω)

=
(

A(x+ω) T̂ (x+ω)−(x+ω)T̂ (x+ω)

T̂ (x+ω)
+ T̂ ′(x+ω)

T̂ (x+ω)

)
u(x+ω)+b(x+ω) T̂ (x+ω)−(x+ω)T̂ ′(x+ω)

T̂ (x+ω)

=
(

A(x) T̂ (x)−xT̂ (x)
T̂ (x)

+ T̂ ′(x)
T̂ (x)

)
u(x+ω)+b(x) T̂ (x)−xT̂ ′(x)

T̂ (x)

=
(

A(x) T̂ (x)−xT̂ (x)
T̂ (x)

+ T̂ ′(x)
T̂ (x)

)
v(x)+b(x) T̂ (x)−xT̂ ′(x)

T̂ (x)
,

i.e., v(x) is a solution of the iso-differential system (2). However, since

v(0) = u(ω) = u(0),

the uniqueness of the initial value problems implies that

v(x) = u(x)

and hence u(x) is periodic of period ω.

Corollary 11.0.290. Let the matrix A(x) satisfies the conditions (3). Further, let Ψ(x) be a
fundamental matrix of the iso-differential system

u′(x) =
(

A(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
+

T̂ ′(x)
T̂ (x)

)
u(x). (6)
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Then the iso-differential system (6) has a nontrivial periodic solution u(x) of period ω if
and only if

det
(

Ψ(0)−Ψ(ω)
)
= 0.

Proof. We have that the general solution of the iso-differential system (6) is

u(x) = Ψ(x)c,

where c is an arbitrary constant vector.
This u(x) is periodic if and only if

u(x+ω) = u(x) ⇐⇒

Ψ(x+ω)c = Ψ(x)c for ∀x ∈ R,

i.e., the system (
Ψ(0)−Ψ(ω)

)
c = 0

has a nontrivial solution vector c. Consequently

det
(

Ψ(0)−Ψ(ω)
)
= 0.

Corollary 11.0.291. Let the matrix A(x) and the vector b(x) satisfy the conditions (3) and
(4), respectively. Then the iso-differential system (2) has a unique periodic solution of
period ω if and only if the iso-differential system (6) does not have a periodic solution of
period ω other than the trivial one.

Proof. Let Ψ(x) be a fundamental matrix of the iso-differential system (6). Then the gen-
eral solution of the iso-differential system (2) can be written in the following way

u(x) = Ψ(x)c+
∫ x

0
Ψ(x)Ψ−1(t)b(t)

T̂ (t)− tT̂ ′(t)
T̂ (t)

dt,

where c is an arbitrary constant.
This u(x) is a periodic solution of period ω if and only if

u(0) = u(ω)

or

Ψ(0)c = Ψ(ω)c+
∫

ω

0
Ψ(x)Ψ−1(t)b(t)

T̂ (t)− tT̂ ′(t)
T̂ (t)

dt,

i.e., the system(
Ψ(0)−Ψ(ω)

)
c =

∫
ω

0
Ψ(x)Ψ−1(t)b(t)

T̂ (t)− tT̂ ′(t)
T̂ (t)

dt

has a unique solution vector c, which is possible if and only if

det
(

Ψ(0)−Ψ(ω)
)
6= 0.

Now the conclusion follows from the last corollary.
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Theorem 11.0.292. (iso-Floquet’s theorem) Let the matrix A(x) satisfies the conditions
(3). Further, let Ψ(x) be a fundamental matrix of the iso-differential system (6). Then the
following hold.

(i) The matrix
χ(x) = Ψ(x+ω)

is also a fundamental matrix of the iso-differential system (6).

(ii) There exists a periodic nonsingular matrix P(x) of period ω and a constant matrix R
such that

Ψ(x) = P(x)eRx.

Proof. (i) Since Ψ(x) is a fundamental matrix of the iso-differential system (6) then

χ′(x) = Ψ′(x+ω)

=
(

A(x+ω) T̂ (x+ω)−(x+ω)T̂ ′(x+ω)

T̂ (x+ω)
+ T̂ ′(x+ω)

T̂ (x+ω)

)
Ψ(x+ω)

=
(

A(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

+ T̂ ′(x)
T̂ (x)

)
Ψ(x+ω)

=
(

A(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

+ T̂ ′(x)
T̂ (x)

)
χ(x),

i.e., χ(x) is a solution matrix of the iso-differential system (6).

Further, since
detΨ(x+ω) 6= 0

for all x, we have that
detχ(x) 6= 0

for all x.

Hence, we conclude that χ(x) is a fundamental matrix of the iso-differential system
(6).

(ii) Since Ψ(x) and Ψ(x+ω) are both fundamental matrices of the iso-differential system
(6) then there exists a nonsingular constant matrix C such that

Ψ(x+ω) = Ψ(x)C.

Also, there exists a constant matrix R such that

C = eRω.

Consequently
Ψ(x+ω) = Ψ(x)eRω.

Let
P(x) = Ψ(x)e−Rx.
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Then
P(x+ω) = Ψ(x+ω)e−R(x+ω)

= Ψ(x+ω)e−Rωe−Rx

= Ψ(x)e−Rx

= P(x).

Hence, P(x) is periodic of period ω .

Since Ψ(x) and e−Rx are nonsingular, then

detP(x) 6= 0 in R.

Theorem 11.0.293. Let P(x) and R be the matrices obtained in the iso-Floquet’s theorem.
Then the transformation

u(x) = P(x)v(x)

reduces the iso-differential system (6) to the system

v′(x) = Rv(x).

Proof. We have

Ψ
′(x) =

(
A(x)

T̂ (x)− xT̂ ′(x)
T̂ (x)

+
T̂ ′(x)
T̂ (x)

)
Ψ(x),

from where (
P(x)eRx

)′
=
(

A(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
+

T̂ ′(x)
T̂ (x)

)
P(x)eRx,

or (
P′(x)+P(x)R

)
eRx =

(
A(x)

T̂ (x)− xT̂ ′(x)
T̂ (x)

+
T̂ ′(x)
T̂ (x)

)
P(x)eRx,

or

P′(x)+P(x)R =
(

A(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
+

T̂ ′(x)
T̂ (x)

)
P(x),

or

P′(x)+P(x)R−
(

A(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
+

T̂ ′(x)
T̂ (x)

)
P(x) = 0. (7)

Using the transformation
u(x) = P(x)v(x)

in the iso-differential system (6) we get

P′(x)v(x)+P(x)v′(x) =
(

A(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
+

T̂ ′(x)
T̂ (x)

)
P(x)v(x)
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or

P(x)v′(x)+
(

P′(x)−
(

A(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
+

T̂ ′(x)
T̂ (x)

)
P(x)

)
v(x) = 0. (8)

We multiply the equation (7) by v(x) and we get

P′(x)v(x)+P(x)Rv(x)−
(

A(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
+

T̂ ′(x)
T̂ (x)

)
P(x)v(x) = 0.

Now we compare the last equality with (8) and we find

v′(x) = Rv(x).

Let now the matrix A(x) satisfies the conditions (3), let Ψ(x) be a fundamental matrix
of the iso-differential system (6). Then there exists a nonsingular matrix M such that

Ψ(x) = Ψ1(X)M. (9)

Since
Ψ(x+ω) = Ψ(x)eRω,

then
Ψ(x+ω) = Ψ1(x)MeRω. (10)

Also, using (9),
Ψ(x+ω) = Ψ1(x+ω)M.

From the last equality and (10) it follows that

Ψ1(x+ω)M = Ψ1(x)MeRω

or
Ψ1(x+ω) = Ψ1(x)MeRωM−1. (11)

Hence, we conclude that every fundamental matrix Ψ1(x) of the iso-differential system (3)
determines a matrix

MeRωM−1,

which is a similar to the matrix eRω.
Conversely, if M is any constant nonsingular matrix, then there exists a fundamental

matrix Ψ1(x) of the iso-differential system (6) such that (11) holds.

Definition 11.0.294. Let A(x) satisfies the conditions (3), Ψ(x) be a fundamental matrix of
the iso-differential system (6). Then the nonsingular constant matrix C such that

Ψ(x+ω) = Ψ(x)C

will be called iso-monodromy matrix of the iso-differential system (6).
The eigenvalues of the matrix C are called iso-multipliers of (6).
The eigenvalues of the matrix R are called iso-exponents of (6).
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Let
σ1,σ2, . . . ,σn

and
λ1,λ2, . . . ,λn,

respectively, be the iso-multipliers and iso-exponents of the iso-differential system (6), then
we have the relation

σi = eλiω, 1≤ i≤ n.

Also, since the matrix C is nonsingular, none of the iso-multipliers

σ1,σ2, . . . ,σn

of the iso-differential system (6) is zero.
From the relation

Ψ(x+ω) = Ψ(x)eRω

we get
Ψ(ω) = Ψ(0)eRω

and hence we conclude that
σ1,σ2, . . . ,σn

are the eigenvalues of the matrix
Ψ
−1(0)Ψ(ω)

or the matrix Φ(ω,0) if
Ψ(x) = Φ(x,0),

i.e., Ψ(x) is the principal fundamental matrix of the iso-differential system (6).
We have, using the iso-Abel’s formula,

detΦ(ω,0) = ∏
n
i=1 σi

= detΦ(0,0)e
∫

ω

0 Tr

(
A(t) T̂ (t)−tT̂ ′(t)

T̂ (t)
+ T̂ ′(t)

T̂ (t)

)
dt

= e∑
n
i=1 λiω.

Theorem 11.0.295. Let A(x) satisfies the conditions (3). Then a complex number λ is an
exponent of the iso-differential system (6) if and only if there exists a nontrivial solution
of (6) of the form eλx p(x), where p(x+ω) = p(x). In particular, there exists a periodic
solution of (6) of period ω(2ω) if and only if there is a multiplier 1(−1) of (6).

Proof. Let
u(x) = eλx p(x), p(x+ω) = p(x),

is a nontrivial solution of the iso-differential system (6) for which

u(0) = u0.
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Then
u(x) = Φ(x,0)u0 = eλx p(x),

where Φ(x,0) is the principal fundamental matrix of (6).
Also, we have

u(x) = Φ(x,0)u0 = P(x)eRxu0,

where P(x) is a periodic matrix of period ω. Therefore

eλ(x+ω)p(x) = eλωeλx p(x)

= eλωP(x)eRxu0

= P(x)eR(x+ω)u0,

which is the same as
eλxeλω p(x) = P(x)eR(x+ω)u0

or
eλωP(x)eRxu0 = P(x)eR(x+ω)u0

or
P(x)eRx

(
eλωI− eRω

)
u0 = 0

and hence
det
(

eλωI− eRω

)
= 0,

i.e., λ is an exponent of the iso-differential system (6). Then we have

eRxu0 = eλxu0

for all x, and hence
P(x)eRxu0 = P(x)u0eλx.

We note that
u(x) = P(x)eRxu0

is the solution of (6).
The multiplier of (6) is 1 provided λ = 0, and therefore the solution eλx p(x) reduces to

p(x), which is a periodic of period ω.
The multiplier of (6) is −1 provided λ = πi

ω
, therefore the solution eλx p(x) reduces to

e
πix
ω p(x),

which is periodic of period 2ω.



Chapter 12

Asymptotic Behaviour of Solutions of
Linear Systems

In this chapter we will suppose that x0 ∈ R,

T̂ ∈ C 1([x0,+∞)), T̂ (x)> 0 for ∀x ∈ [x0,+∞).

We consider the iso-differential system

v′(x) =
(

A(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
+B(x)

T̂ (x)− xT̂ ′(x)
T̂ (x)

+
T̂ ′(x)
T̂ (x)

)
v(x), (1)

where A(x) and B(x) are n×n matrices with continuous elements ai j(x), bi j(x), 1≤ i, j≤ n,
respectively, in the interval [x0,+∞).

Theorem 12.0.296. Let all solutions of the iso-differential system

v′(x) =
(

A(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
+

T̂ ′(x)
T̂ (x)

)
v(x) (2)

be bounded in the interval [x0,+∞) and

∫
∞

x0

∣∣∣∣∣∣B(t) T̂ (t)− tT̂ ′(t)
T̂ (t)

∣∣∣∣∣∣dt < ∞. (3)

Then all solutions of the iso-differential system (1) are bounded in the interval [x0,+∞)
provided

liminf
x−→∞

∫ x

x0

Tr
(

A(t)
T̂ (t)− tT̂ ′(t)

T̂ (t)
+

T̂ ′(t)
T̂ (t)

)
dt >−∞ (4)

or

Tr
(

A(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
+

T̂ ′(x)
T̂ (x)

)
= 0 (5)

for every x ∈ [x0,+∞).
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Proof. Let Ψ(x) be a fundamental matrix of the iso-differential system (2). Since all solu-
tions of the iso-differential system (2) are bounded, we have

||Ψ(x)||< ∞.

From the iso-Abel’s formula we have

detΨ(x) = detΨ(x0)e
∫ x

x0
Tr

(
A(t) T̂ (t)−tT̂ ′(t)

T̂ (t)
+ T̂ ′(t)

T̂ (t)

)
dt

and hence
Ψ−1(x) = adjΨ(x)

detΨ(x)

= adjΨ(x)

detΨ(x0)e

∫ x
x0

Tr

(
A(t) T̂ (t)−tT̂ ′(t)

T̂ (t)
+

T̂ ′(x)
T̂ (x)

)
dt

.

From here and (4), (5) we get

||Ψ−1(x)||< ∞.

For the solution v(x) of the iso-differential system (1) we have that it satisfies the integral
equation

v(x) = Ψ(x)Ψ−1(x0)v0 +
∫ x

x0

Ψ(x)Ψ−1(t)B(t)
T̂ (t)− tT̂ ′(t)

T̂ (t)
v(t)dt (6)

provided v(x0) = v0.
Let

c = max
{

supx≥x0
||Ψ(x)||, supx≥x0

||Ψ−1(x)||
}
,

c0 = c||Ψ−1(x0)v0||.

Then, using (6), we have

||v(x)|| ≤ ||Ψ(x)||||Ψ−1(x0)v0||

+
∫ x

x0
||Ψ(x)||||Ψ−1(t)||

∣∣∣∣∣∣B(t) T̂ (t)−tT̂ ′(t)
T̂ (t)

∣∣∣∣∣∣||v(t)||dt

≤ c||Ψ−1(x0)v0||+ c2 ∫ x
x0

∣∣∣∣∣∣B(t) T̂ (t)−tT̂ ′(t)
T̂ (t)

∣∣∣∣∣∣||v(t)||dt.

= c0 + c2 ∫ x
x0

∣∣∣∣∣∣B(t) T̂ (t)−tT̂ ′(t)
T̂ (t)

∣∣∣∣∣∣||v(t)||dt.

The last inequality immediately implies that

||v(x)|| ≤ c0e
c2 ∫ x

x0

∣∣∣∣∣∣B(t) T̂ (t)−tT̂ ′(t)
T̂ (t)

∣∣∣∣∣∣dt
.

From here and (3) it follows that all solutions of the iso-differential system (1) are bounded
in the interval [x0,+∞).
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Theorem 12.0.297. Let all solutions of the iso-differential system

v′(x) =
(

A(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)

)
v(x) (7)

be bounded in the interval [x0,+∞) and∫
∞

x0

∣∣∣∣∣∣B(t) T̂ (t)− tT̂ ′(t)
T̂ (t)

+
T̂ ′(t)
T̂ (t)

∣∣∣∣∣∣dt < ∞. (8)

Then all solutions of the iso-differential system (1) are bounded in the interval [x0,+∞)
provided

liminf
x−→∞

∫ x

x0

Tr
(

A(t)
T̂ (t)− tT̂ ′(t)

T̂ (t)

)
dt >−∞ (9)

or

Tr
(

A(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)

)
= 0 (10)

for every x ∈ [x0,+∞).

Proof. Let Ψ1(x) be a fundamental matrix of the iso-differential system (7). Since all
solutions of the iso-differential system (7) are bounded, we have

||Ψ1(x)||< ∞.

From the iso-Abel’s formula we have

detΨ1(x) = detΨ1(x0)e
∫ x

x0
Tr

(
A(t) T̂ (t)−tT̂ ′(t)

T̂ (t)

)
dt

and hence
Ψ
−1
1 (x) = adjΨ1(x)

detΨ1(x)

= adjΨ1(x)

detΨ1(x0)e

∫ x
x0

Tr

(
A(t) T̂ (t)−tT̂ ′(t)

T̂ (t)

)
dt

.

From here and (9), (10) we get
||Ψ−1

1 (x)||< ∞.

For the solution v(x) of the iso-differential system (1) we have that it satisfies the integral
equation

v(x) = Ψ1(x)Ψ−1
1 (x0)v0 +

∫ x

x0

Ψ1(x)Ψ−1
1 (t)

(
B(t)

T̂ (t)− tT̂ ′(t)
T̂ (t)

+
T̂ ′(t)
T̂ (t)

)
v(t)dt (11)

provided v(x0) = v0.
Let

c1 = max
{

supx≥x0
||Ψ1(x)||, supx≥x0

||Ψ−1
1 (x)||

}
,

c2 = c1||Ψ−1
1 (x0)v0||.



204 Svetlin Georgiev

Then, using (11), we have

||v(x)|| ≤ ||Ψ1(x)||||Ψ−1
1 (x0)v0||

+
∫ x

x0
||Ψ1(x)||||Ψ−1

1 (t)||
∣∣∣∣∣∣B(t) T̂ (t)−tT̂ ′(t)

T̂ (t)
+ T̂ ′(t)

T̂ (t)

∣∣∣∣∣∣||v(t)||dt

≤ c1||Ψ−1
1 (x0)v0||+ c2

1
∫ x

x0

∣∣∣∣∣∣B(t) T̂ (t)−tT̂ ′(t)
T̂ (t)

+ T̂ ′(t)
T̂ (t)

∣∣∣∣∣∣||v(t)||dt

= c2 + c2
1
∫ x

x0

∣∣∣∣∣∣B(t) T̂ (t)−tT̂ ′(t)
T̂ (t)

+ T̂ ′(t)
T̂ (t)

∣∣∣∣∣∣||v(t)||dt.

The last inequality immediately implies that

||v(x)|| ≤ c2e
c2

1
∫ x

x0

∣∣∣∣∣∣B(t) T̂ (t)−tT̂ ′(t)
T̂ (t)

+ T̂ ′(t)
T̂ (t)

∣∣∣∣∣∣dt
.

From here and (8) it follows that all solutions of the iso-differential system (1) are bounded
in the interval [x0,+∞).

Theorem 12.0.298. Let the fundamental matrix Ψ(x) of the iso-differential system (2) be
such that

||Ψ(x)Ψ−1(x)|| ≤ c

for all x0 ≤ t ≤ x < ∞, where c is a positive constant. Let also, the condition (3) holds.
Then all solutions of the iso-differential system (1) are bounded in the interval [x0,+∞).
Moreover, if all solutions of the system (2) tend to zero as x−→ ∞, then all solutions of the
iso-differential system (1) tend to zero as x−→ ∞.

Proof. We have that the solutions v(x) of the iso-differential system (1) for which v(x0) =
v0 satisfy the integral equation (6). Therefore

||v(x)|| ≤ c||v0||+ c
∫ x

x0

∣∣∣∣∣∣B(t) T̂ (t)− tT̂ ′(t)
T̂ (t)

∣∣∣∣∣∣||v(t)||dt

and hence

||v(x)|| ≤ c||v0||e
c
∫

∞

x0

∣∣∣∣∣∣B(t) T̂ (t)−tT̂ ′(t)
T̂ (t)

∣∣∣∣∣∣|dt
:= M < ∞.

Thus each solution of the iso-differential system (1) is bounded in the interval [x0,∞).
Now, from the integral equation (6) we obtain

v(x) = Ψ(x)Ψ−1(x0)v0 +
∫ x1

x0
Ψ(x)Ψ−1(t)B(t) T̂ (t)−tT̂ ′(t)

T̂ (t)
v(t)dt

+
∫ x

x1
Ψ(x)Ψ−1(t)B(t) T̂ (t)−tT̂ ′(t)

T̂ (t)
v(t)dt,

therefore it follows that

||v(x)|| ≤ ||Ψ(x)||||Ψ−1(x0)||||v0||

+||Ψ(x)||
∫ x1

x0
||Ψ−1(t)||

∣∣∣∣∣∣B(t) T̂ (t)−tT̂ ′(t)
T̂ (t)

∣∣∣∣∣∣||v(t)||dt

+cM
∫

∞

x1

∣∣∣∣∣∣B(t) T̂ (t)−tT̂ ′(t)
T̂ (t)

∣∣∣∣∣∣dt.
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Let ε > 0 be a given number.
From the condition (3) it follows that the last term in the above inequality can be made

less than ε

2 by choosing x1 sufficiently large.
Also, since all solutions of the iso-differential system (2) tend to zero when x−→ ∞, it

is necessary that
||Ψ(x)|| −→ 0

as x−→ ∞.
Thus, the sum of the first two terms on the right side can be made arbitrarily small by

choosing x large enough, say, less than ε

2 . Hence,

||v(x)||< ε

for large x.
This immediately implies that

||v(x)|| −→ 0

as x−→ ∞.

Theorem 12.0.299. Let the fundamental matrix Ψ1(x) of the iso-differential system (7) be
such that

||Ψ1(x)Ψ−1
1 (x)|| ≤ c

for all x0 ≤ t ≤ x < ∞, where c is a positive constant. Let also, the condition (8) holds.
Then all solutions of the iso-differential system (1) are bounded in the interval [x0,+∞).
Moreover, if all solutions of the system (7) tend to zero as x−→ ∞, then all solutions of the
iso-differential system (1) tend to zero as x−→ ∞.

Proof. We have that the solutions v(x) of the iso-differential system (1) for which v(x0) =
v0 satisfy the integral equation (11). Therefore

||v(x)|| ≤ c||v0||+ c
∫ x

x0

∣∣∣∣∣∣B(t) T̂ (t)− tT̂ ′(t)
T̂ (t)

+
T̂ ′(t)
T̂ (t)

∣∣∣∣∣∣||v(t)||dt

and hence

||v(x)|| ≤ c||v0||e
c
∫

∞

x0

∣∣∣∣∣∣B(t) T̂ (t)−tT̂ ′(t)
T̂ (t)

+ T̂ ′(t)
T̂ (t)

∣∣∣∣∣∣|dt
:= M1 < ∞.

Thus each solution of the iso-differential system (1) is bounded in the interval [x0,∞).
Now, from the integral equation (11) we obtain

v(x) = Ψ1(x)Ψ−1
1 (x0)v0 +

∫ x1
x0

Ψ1(x)Ψ−1
1 (t)

(
B(t) T̂ (t)−tT̂ ′(t)

T̂ (t)
+ T̂ ′(t)

T̂ (t)

)
v(t)dt

+
∫ x

x1
Ψ1(x)Ψ−1

1 (t)
(

B(t) T̂ (t)−tT̂ ′(t)
T̂ (t)

+ T̂ ′(t)
T̂ (t)

)
v(t)dt,
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therefore it follows that

||v(x)|| ≤ ||Ψ1(x)||||Ψ−1
1 (x0)||||v0||

+||Ψ1(x)||
∫ x1

x0
||Ψ−1

1 (t)||
∣∣∣∣∣∣B(t) T̂ (t)−tT̂ ′(t)

T̂ (t)
+ T̂ ′(t)

T̂ (t)

∣∣∣∣∣∣||v(t)||dt

+cM1
∫

∞

x1

∣∣∣∣∣∣B(t) T̂ (t)−tT̂ ′(t)
T̂ (t)

+ T̂ ′(t)
T̂ (t)

∣∣∣∣∣∣dt.

Let ε > 0 be a given number.
From the condition (8) it follows that the last term in the above inequality can be made

less than ε

2 by choosing x1 sufficiently large.
Also, since all solutions of the iso-differential system (7) tend to zero when x−→ ∞, it

is necessary that
||Ψ1(x)|| −→ 0

as x−→ ∞.
Thus, the sum of the first two terms on the right side can be made arbitrarily small by

choosing x large enough, say, less than ε

2 . Hence,

||v(x)||< ε

for large x.
This immediately implies that

||v(x)|| −→ 0

as x−→ ∞.

Theorem 12.0.300. Let T̂ (x) and A(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

be periodic of period ω in the interval
[x0,+∞). Let also, the condition (3) holds. Then the following hold.

(i) All solutions of the iso-differential system (1) are bounded in the interval [x0,+∞) pro-
vided all solutions of (2) are bounded in [x0,+∞).

(ii) All solutions of the iso-differential system (1) tend to zero as x −→ ∞ provided all
solutions of (2) tend to zero as x−→ ∞.

Proof. Let Ψ(x) is a fundamental matrix of the iso-differential system (2). From the iso-
Floquet’s theorem it follows that

Ψ(x) = P(x)eRx,

where P(x) is a nonsingular periodic matrix of period ω and R is a constant matrix. Then
from (6) it follows that

v(x) = P(x)eR(x−x0)P−1(x0)v0 +
∫ x

x0
P(x)eRxe−RtP−1(t)B(t) T̂ (t)−tT̂ ′(t)

T̂ (t)
v(t)dt.
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Hence, it follows

||v(x)|| ≤ ||P(x)||||eRx||||e−Rx0P−1(x0)v0||

+
∫ x

x0
||P(x)||||eR(x−t)||||P−1(t)||

∣∣∣∣∣∣B(t) T̂ (t)−tT̂ ′(t)
T̂ (t)

∣∣∣∣∣∣||v(t)||dt
(12)

Because P(x) is nonsingular and periodic, detP(x) is periodic and is not vanish, i.e., it is
bounded away from zero in the interval [x0,+∞). Hence, P(x) and its inverse

P−1(x) =
adjP(x)
detP(x)

are bounded in the interval [x0,+∞).
Let

c3 = max{supx≥x0
||P(x)||,supx≥x0

||P−1(x)||},

c4 = c3||e−Rx0P−1(x0)v0||.

From (12) we get

||v(x)|| ≤ c4||eRx||+ c2
3

∫ x

x0

||eR(x−t)||
∣∣∣∣∣∣B(t) T̂ (t)− tT̂ ′(t)

T̂ (t)

∣∣∣∣∣∣||v(t)||dt. (13)

Since all solutions of the iso-differential system (2) are bounded, then it is necessary that

||eRx|| ≤ c5

for all x≥ x0, and from (13) it follows that

||v(x)|| ≤ c4c5 + c2
3c5

∫ x

x0

∣∣∣∣∣∣B(t) T̂ (t)− tT̂ ′(t)
T̂ (t)

∣∣∣∣∣∣dt,

which immediately gives that

||v(x)|| ≤ c4c5e
c2

3c5
∫ x

x0

∣∣∣∣∣∣B(t) T̂ (t)−tT̂ ′(t)
T̂ (t)

∣∣∣∣∣∣dt
.

On the other hand, if all solutions of the iso-differential system (2) tend to zero as x−→ ∞,
then there exist constants c6 and α such that

||eRx|| ≤ c6e−α(x−x0)

for all x≥ x0.
From here and (13) it follows

||v(x)|| ≤ c4c6e−αx + c2
3c6

∫ x

x0

e−α(x−t)
∣∣∣∣∣∣B(t) T̂ (t)− tT̂ ′(t)

T̂ (t)

∣∣∣∣∣∣||v(t)||dt,

which easily gives that

||v(x)|| ≤ c4c6e
c2

3c6
∫ x

x0

∣∣∣∣∣∣B(t) T̂ (t)−tT̂ ′(t)
T̂ (t)

∣∣∣∣∣∣dt−αx
.
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From the last inequality and (3) it follows that

v(x)−→ 0

as x−→ ∞.

Theorem 12.0.301. Let T̂ (x) and A(x) T̂ (x)−xT̂ ′(x)
T̂ (x)

be periodic of period ω in the interval
[x0,+∞). Let also, the condition (8) holds. Then the following hold.

(i) All solutions of the iso-differential system (1) are bounded in the interval [x0,+∞) pro-
vided all solutions of (7) are bounded in [x0,+∞).

(ii) All solutions of the iso-differential system (1) tend to zero as x −→ ∞ provided all
solutions of (7) tend to zero as x−→ ∞.

Proof. Let Ψ1(x) is a fundamental matrix of the iso-differential system (7). From the iso-
Floquet’s theorem it follows that

Ψ1(x) = P1(x)eR1x,

where P1(x) is a nonsingular periodic matrix of period ω and R1 is a constant matrix. Then
from (11) it follows that

v(x) = P1(x)eR1(x−x0)P−1
1 (x0)v0 +

∫ x
x0

P1(x)eR1xe−R1tP−1
1 (t)

(
B(t) T̂ (t)−tT̂ ′(t)

T̂ (t)
+ T̂ ′(t)

T̂ (t)

)
v(t)dt.

Hence, it follows

||v(x)|| ≤ ||P1(x)||||eR1x||||e−R1x0P−1
1 (x0)v0||

+
∫ x

x0
||P1(x)||||eR1(x−t)||||P−1

1 (t)||
∣∣∣∣∣∣B(t) T̂ (t)−tT̂ ′(t)

T̂ (t)
+ T̂ ′(t)

T̂ (t)

∣∣∣∣∣∣||v(t)||dt
(14)

Because P1(x) is nonsingular and periodic, detP1(x) is periodic and does not vanish, i.e., it
is bounded away from zero in the interval [x0,+∞). Hence, P1(x) and its inverse

P−1
1 (x) =

adjP1(x)
detP1(x)

are bounded in the interval [x0,+∞).
Let

c7 = max{supx≥x0
||P1(x)||,supx≥x0

||P−1
1 (x)||},

c8 = c7||e−R1x0P−1
1 (x0)v0||.

From (14) we get

||v(x)|| ≤ c8||eR1x||+ c2
7

∫ x

x0

||eR1(x−t)||
∣∣∣∣∣∣B(t) T̂ (t)− tT̂ ′(t)

T̂ (t)
+

T̂ ′(t)
T̂ (t)

∣∣∣∣∣∣||v(t)||dt. (15)

Since all solutions of the iso-differential system (7) are bounded, then it is necessary that

||eR1x|| ≤ c9
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for all x≥ x0, and from (15) it follows that

||v(x)|| ≤ c8c9 + c2
7c9

∫ x

x0

∣∣∣∣∣∣B(t) T̂ (t)− tT̂ ′(t)
T̂ (t)

+
T̂ ′(t)
T̂ (t)

∣∣∣∣∣∣dt,

which immediately gives that

||v(x)|| ≤ c8c9e
c2

7c9
∫ x

x0

∣∣∣∣∣∣B(t) T̂ (t)−tT̂ ′(t)
T̂ (t)

+ T̂ ′(t)
T̂ (t)

∣∣∣∣∣∣dt
.

On the other hand, if all solutions of the iso-differential system (7) tend to zero as x−→ ∞,
then there exist constants c10 and α1 such that

||eR1x|| ≤ c10e−α1(x−x0)

for all x≥ x0.
From here and (15) it follows

||v(x)|| ≤ c8c10e−α1x + c2
7c10

∫ x

x0

e−α1(x−t)
∣∣∣∣∣∣B(t) T̂ (t)− tT̂ ′(t)

T̂ (t)
+

T̂ ′(t)
T̂ (t)

∣∣∣∣∣∣||v(t)||dt,

which easily gives that

||v(x)|| ≤ c8c10e
c2

7c10
∫ x

x0

∣∣∣∣∣∣B(t) T̂ (t)−tT̂ ′(t)
T̂ (t)

+ T̂ ′(t)
T̂ (t)

∣∣∣∣∣∣dt−α1x
.

From the last inequality and (8) it follows that

v(x)−→ 0

as x−→ ∞.

Now we consider the iso-differential system

v′(x) =
(

A(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
+

T̂ ′(x)
T̂ (x)

)
+b(x)

T̂ (x)− xT̂ ′(x)
T̂ (x)

, (16)

where b(x) is a n×1 vector whose components are continuous in the interval [x0,+∞).

Theorem 12.0.302. Suppose every solution of the iso-differential system (2) is bounded
in the interval [x0,+∞). Then every solution of the iso-differential system (16) is bounded
provided at least one of its solutions is bounded.

Proof. Let u1(x) and u2(x) be two solutions of the iso-differential system (16). Then

φ(x) = u1(x)−u2(x)

is a solution of the iso-differential system (2) in the interval [x0,∞).
Hence,

u1(x) = φ(x)+u2(x), x ∈ [x0,+∞).

Now since φ(x) is bounded in the interval [x0,∞), if u2(x) is a bounded solution of the
iso-differential system (16), it immediately follows that u1(x) is also a bounded solution of
(16).
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Theorem 12.0.303. Suppose every solution of the iso-differential system (2) is bounded
in the interval [x0,∞), and the condition (4) or (5) holds. Then every solution of (16) is
bounded provided ∫

∞

x0

||b(t)||dt < ∞. (17)

Proof. Let Ψ(x) be a fundamental matrix of the iso-differential system (2). Since every
solution of (2) is bounded in the interval [x0,∞), we have that

||Ψ(x)|| and ||Ψ−1(x)||

are bounded in the interval [x0,∞). Thus, there exists a finite constant c > 0 such that

c = max{sup
x≥x0

||Ψ(x)||, sup
x≥x0

||Ψ−1(x)||}.

Hence, for any solution u(x) of the iso-differential system (16) such that u(x0) = u0, using
its integral representation, we have that

||u(x)|| ≤ c||Ψ−1(x0)u0||+ c2
∫ x

x0

∣∣∣∣∣∣b(t) T̂ (t)− tT̂ ′(t)
T̂ (t)

∣∣∣∣∣∣dt.

From here and (17) it follows that every solution of the iso-differential system (16) is
bounded in the interval [x0,+∞).



Chapter 13

Stability of Solutions

Here we will suppose that x0 ∈ R, u0 ∈ Rn,

T̂ ∈ C 1([x0,∞)), T̂ (x)> 0 for ∀x ∈ [x0,∞).

We will investigate the following initial value problem for iso-differential systems(
û∧(x̂)

)~
= ĝ∧(x̂, û∧(x̂)), (1′)

u(x0) = u0, (2)

where
u(x) = (u1(x),u2(x), . . . ,un(x)),

u0 = (u0
1,u

0
2, . . . ,u

0
n),

g(x,u) = (g1(x,u),g2(x,u), . . . ,gn(x,u)).

The iso-differential system (1′) we can rewrite in the following form.

u′(x) =
T̂ ′(x)
T̂ (x)

u(x)+g(x,u(x))
T̂ (x)− xT̂ ′(x)

T̂ (x)
. (1)

Below we will use the following notation

∆u0 = (∆u0
1,∆u0

2, . . . ,∆u0
n),

where ∆u0
i ∈ R, 1≤ i≤ n.

The following definitions were introduced by A. M. Lyapunov in 1892.

Definition 13.0.304. A solution u(x) = u(x,x0,u0) of the initial value problem (1), (2),
existing in the interval [x0,∞), is said to be stable or Lyapunov stable, or stable in the sense
of Lyapunov, if for each ε > 0 there is a δ = δ(ε,x0)> 0 such that the inequality

||∆u0||< δ

implies
||u(x,x0,u0 +∆u0)−u(x,x0,u0)||< ε

for every x ∈ [x0,∞).



212 Svetlin Georgiev

Definition 13.0.305. A solution u(x) = u(x,x0,u0) of the initial value problem (1), (2) is
said to be unstable if it is not stable.

Definition 13.0.306. A solution u(x) = u(x,x0,u0) of the initial value problem (1), (2)
is said to be asymptotically stable if it is stable and there exists a δ0 > 0 such that the
inequality

||∆u0||< δ0

implies that
||u(x,x0,u0 +∆u0)−u(x,x0,u0)|| −→ 0

as x−→ ∞.

We will note that the concepts of stability and boundedness are independent. We will
see this in the following example.

Example 13.0.307. Let n = 1, T̂ (x) = ex, x0 = 2, u0 ∈ R be arbitrary chosen,

g(x,u) =
u− x
x−1

.

Then
T̂ ′(x)
T̂ (x)

= 1,

T̂ (x)−xT̂ ′(x)
T̂ (x)

= ex−xex

ex

= 1− x.

Then the equation (1) takes the form

u′(x) = u+ u−x
x−1(1− x)

= u+ x−u

= x.

Consequently we consider the initial value problem

u′(x) = x x > 2,

u(2) = u0.

Its solution is

u(x) = u0−2+
x2

2
,

which is defined and unbounded in [2,∞).
Let ε > 0 be arbitrary chosen. Then for every δ ∈ (0,ε] the inequality

||∆u0||< δ
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implies
||u(x,x0,u0 +∆u0)−u(x,x0,u0)||= ||∆u0||

< δ

≤ ε.

Therefore this u(x) is stable in the sense of Lyapunov.

However, in the case of homogeneous linear iso-differential system

u′(x) =
(

A(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
+

T̂ ′(x)
T̂ (x)

)
u(x) (3)

the concepts of stability and boundedness are equivalent. We will see this in the following
theorem.

Theorem 13.0.308. All solutions of the iso-differential system (3) are stable if and only if
they are bounded.

Proof. Let Ψ(x) be a fundamental matrix of the iso-differential system (3). If all solutions
of (3) are bounded, then there exists a positive constant c such that

||Ψ(x)|| ≤ c

for all x≥ x0.
Let now ε > 0 be arbitrary chosen. We take

δ(ε) =
ε

c||Ψ−1(x0)||
> 0.

Then the inequality
||∆u0||< δ(ε)

implies

||u(x,x0,u0 +∆u0)−u(x,x0,u0)||= ||Ψ(x)Ψ−1(x0)(u0 +∆u0)−Ψ(x)Ψ−1(x0)u0||

= ||Ψ(x)Ψ−1(x0)∆u0||

≤ ||Ψ(x)||||Ψ−1(x0)||||∆u0||

≤ c||Ψ−1(x0)||||∆u0||

≤ cδ(ε)||Ψ−1(x0)||

= ε

c||Ψ−1(x0)||c||Ψ
−1(x0)||

= ε.
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Let now all solutions of (3) are stable. Then, in particular, the trivial solution is stable, i.e.,
u(x,x0,0) = 0 is stable. From here, for arbitrary chosen ε > 0, there exists a δ = δ(ε) > 0
such that the inequality

||∆u0||< δ

implies that
||u(x,x0,∆u0)||< ε

for all x≥ x0.
Since

u(x,x0,∆u0) = Ψ(x)Ψ−1(x0)∆u0

we find that
||Ψ(x)Ψ−1(x0)∆u0||< ε.

We choose

∆u0 =
δ

2
e j,

where
e j = (0,0, . . . ,0,1,0, . . . ,0).

Let ψ j(x) is the jth column of Ψ(x)Ψ−1(x0). Then

||Ψ(x)Ψ−1(x0)∆u0||= ||ψ j(x)|| δ2

< ε.

Therefore
||Ψ(x)Ψ−1(x0)||= max1≤ j≤n ||ψ j(x)||

≤ 2 ε

δ
.

From here, for any solution u(x,x0,u0) of the iso-differential system (3) we have

||u(x,x0,u0)||= ||Ψ(x)Ψ−1(x0)u0||

≤ ||Ψ(x)Ψ−1(x0)||||u0||

≤ 2 ε

δ
||u0||,

i.e., all solutions of (3) are bounded.

Theorem 13.0.309. Let Ψ(x) be a fundamental matrix of the iso-differential system (3).
Then all solutions of (3) are asymptotically stable if and only if

||Ψ(x)|| −→ 0 (4)

as x−→ ∞.
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Proof. We will note that every solution u(x,x0,u0) of the iso-differential system can be
represented in the form

u(x,x0,u0) = Ψ(x)Ψ−1(x0)u0.

Since Ψ(x) is continuous, then, using (4), it follows that there exists a constant c > 0 such
that

||Ψ(x)|| ≤ c

for all x]≥ x0. From here,

||u(x,x0,u0)||= ||Ψ(x)Ψ−1(x0)u0||

≤ ||Ψ(x)||||Ψ−1(x0)u0||

≤ c||Ψ−1(x0)u0||.

From the last inequality we conclude that all solutions of the iso-differential system are
bounded and therefore all solutions of (3) are stable.

Moreover, because

||u(x,x0,∆u0 +u0)−u(x,x0,u0)||= ||Ψ(x)Ψ−1(x0)∆u0||

≤ ||Ψ(x)||||Ψ−1(x0)∆u0|| −→ 0

as x−→ ∞, it follows that every solution of (3) is asymptotically stable.
Conversely, let all solutions of (3) are asymptotically stable. Then the trivial solution

u(x,x0,0) = 0 is asymptotically stable. Therefore

||u(x,x0,∆u0)|| −→ 0

as x−→ ∞, from where
||Ψ(x)|| −→ 0

as x−→ ∞.

Definition 13.0.310. A solution u(x) = u(x,x0,u0) of the initial value problem (1), (2) is
said to be uniformly stable, if for each δ = δ(ε) > 0 such that for any solution u1(x) =
u(x,x0,u1) of the initial value problem

u′(x) = T̂ ′(x)
T̂ (x)

u(x)+g(x,u(x)) T̂ (x)−xT̂ ′(x)
T̂ (x)

, x > x1,

u(x1) = u1,

the inequalities
x1 ≥ x0

and
||u1(x1)−u(x1)||< δ

imply that
||u1(x)−u(x)||< ε

for all x≥ x1.
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Theorem 13.0.311. Let Ψ(x) be a fundamental matrix of the iso-differential system (3).
Then all solutions of (3) are uniformly stable if and only if

||Ψ(x)Ψ−1(t)|| ≤ c, x0 ≤ t ≤ x < ∞, (5)

where c is a positive constant.

Proof. Let u(x) = u(x,x0,u0) be a solution of the iso-differential system (3). Then for any
x1 ≥ x0 we have

u(x) = Ψ(x)Ψ−1(x1)u(x1).

If
u1(x) = Ψ(x)Ψ−1(x1)u1(x1)

is any other solution of the iso-differential system (3), using the condition (5), we get

||u1(x)−u(x)||= ||Ψ(x)Ψ−1(x1)u1(x1)−Ψ(x)Ψ−1(x1)u(x1)||

= ||Ψ(x)Ψ−1(x1)(u1(x1)−u(x1))||

≤ ||Ψ(x)Ψ−1(x1)||||u1(x1)−u(x1)||

≤ c||u1(x1)−u(x1)||

(6)

for all x0 ≤ x1 ≤ x < ∞.
Let ε > 0 be arbitrarily chosen and x1 ≥ x0,

||u1(x1)−u(x1)||<
ε

c
.

Consequently, using (6), we have

||u1(x)−u(x)||< ε,

and hence the solution u(x) is uniformly stable.
Conversely, if all solutions of the iso-differential system (3) are uniformly stable, then

the trivial solution u(x,x0,0) = 0 is uniformly stable.
Let now ε> 0 be arbitrary chosen. Then there exists a δ= δ(ε)> 0 such that inequalities

x1 ≥ x0 and
||u1(x1)||< δ

imply the inequality
||u1(x)||< ε

for all x≥ x1.
In this way we obtain that

||Ψ(x)Ψ−1(x1)u1(x1)||< ε (7)

for all x≥ x1.
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Let

u1(x1) =
δ

2
e j,

where
e j = (0,0, . . . ,0,1,0, . . . ,0), j = 1,2, . . . ,n,

and ψ j(x) to be the jth column of Ψ(x)Ψ−1(x1). Then, from (7),

||Ψ(x)Ψ−1(x1)u1(x1)||= ||ψ j(x)||δ
2
< ε,

therefore
||Ψ(x)Ψ−1(x1)|| ≤max1≤ j≤n ||ψ j(x)||

≤ 2 ε

δ
,

and since x1 ≥ x0 was arbitrarily chosen, then (5) holds.

Example 13.0.312. Let n = 1, T̂ (x) = ex, x0 ≥ 2,

g(x,u(x)) =
(p(x)−1)u(x)

1− x
, x≥ 2,

where p(x) is a continuous function in the interval [x0,∞). We will find conditions for the
function p(x) so that the trivial solution of the initial value problem of (1), (2), x≥ x0 to be
uniformly stable.

We have

T̂ ′(x)
T̂ (x)

= ex

ex

= 1,

T̂ (x)−xT̂ ′(x)
T̂ (x)

= ex−xex

ex

= 1− x,

T̂ ′(x)
T̂ (x)

u(x)+ T̂ (x)−xT̂ ′(x)
T̂ (x)

g(x,u(x)) = u(x)+(1− x) (p(x)−1)u(x)
1−x

= u(x)+(p(x)−1)u(x)

= u(x)+ p(x)u(x)−u(x)

= p(x)u(x).

Consequently we obtain the initial value problem

u′(x) = p(x)u(x), x > x0,

u(x0) = u0,
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its solution is
u(x) = u0e

∫ x
x0

p(t)dt
.

Let
u1(x) = u1(x1)e

∫ x
x1

p(t)dt , x1 ≥ x0.

Let ε > 0 be arbitrarily chosen. We will search δ = δ(ε) > 0 such that the inequalities
x1 ≥ x0 and

||u1(x1)||< δ

imply the inequality ∣∣∣∣∣∣u1(x1)e
∫ x

x1
p(t)dt

∣∣∣∣∣∣< ε,

which is possible if and only if ∫ x

x1

p(t)dt (8)

to be bounded above for all x≥ x1 ≥ x0.
If (8) is bounded above by the real constant c1, then we can take

δ = δ(ε) =
ε

ec1
.

Exercise 13.0.313. Test the stability, asymptotic stability or instability for the trivial solu-
tion of the iso-differential system (3) in the cases

1) A(x) =
( 1

x−1 0
2

x−1
1

x−1

)
, 2) A(x) =

(
2

x−1
1−e2x

x−1
1

x−1
2

x−1

)
,

3) A(x) =

 1
x−1 0 1

x−1
1

x−1
1

x−1 0
2

x−1
7

x−1
6

x−1

 , 4) A(x) =

 0 1
1−x

1
x−1

1
x−1 0 0
0 2

1−x 0

 ,

5) A(x) =

 0 2
x−1

2
x−1

0 0 4
x−1

0 6
x−1

4
x−1

 .

Answer. 1) stable, 2) unstable, 3) asymptotically stable, 4) unstable, 5) unstable.
Now we will consider the iso-differential system

u′(x) =
(

A(x)
T̂ (x)− xT̂ ′(x)

T̂ (x)
+

T̂ ′(x)
T̂ (x)

)
u(x)+g(x,u(x))

T̂ (x)− xT̂ ′(x)
T̂ (x)

, x≥ x0,

(9)
in the case when A(x) is n×n matrix with continuous elements in the interval [x0,∞).

We will suppose that

||g(x,u(x))|| ≤ λ(x)||u(x)||, (10)

where λ(x) is a nonnegative function such that∫ x

x0

λ(t)
|T̂ (t)− tT̂ ′(t)|

T̂ (t)
dt < ∞.

We will note that the condition (10) implies that v(x)≡ 0 is a solution of (9).
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Theorem 13.0.314. Suppose that the solutions of the iso-differential system (3) are uni-
formly (uniformly and asymptotically) stable, and the function g(x,u(x)) satisfies the condi-
tion (10). Then the trivial solution of the iso-differential system (9) is uniformly( uniformly
and asymptotically) stable.

Proof. Since all solutions of the iso-differential system (3) are uniformly stable, then, if
Ψ(x) is a fundamental matrix of (3), there exists a constant c > 0 such that

||Ψ(x)Ψ−1(t)|| ≤ c

for all x0 ≤ t ≤ x < ∞.
If v(x) is a solution of (9) for which v(x1) = v1, x1 ≥ x0, then it satisfies the integral

equation

v(x) = Ψ(x)Ψ−1(x1)v1 +
∫ x

x1

Ψ(x)Ψ−1(t)g(t,v(t))
T̂ (t)− tT̂ ′(t)

T̂ (t)
dt.

Thus it follows that

||v(x)||=
∣∣∣∣∣∣Ψ(x)Ψ−1(x1)v1 +

∫ x
x1

Ψ(x)Ψ−1(t)g(t,v(t)) T̂ (t)−tT̂ ′(t)
T̂ (t)

dt
∣∣∣∣∣∣

≤ ||Ψ(x)Ψ−1(x1)v1||+
∫ x

x1
||Ψ(x)Ψ−1(t)||||g(t,v(t))|| |T̂ (t)−tT̂ ′(t)|

T̂ (t)
dt

≤ ||Ψ(x)Ψ−1(x1)||||v1||+ c
∫ x

x1
λ(t) |T̂ (t)−tT̂ ′(t)|

T̂ (t)
||v(t)||dt

≤ c||v1||+ c
∫ x

x1
λ(t) |T̂ (t)−tT̂ ′(t)|

T̂ (t)
||v(t)||dt,

from where

||v(t)|| ≤ c||v1||ec
∫ x

x1
|T̂ (t)−tT̂ ′(t)|

T̂ (t)
dt ≤ K||v1||, (11)

where

K = cec
∫ x

x1
|T̂ (t)−tT̂ ′(t)|

T̂ (t)
dt
.

Let now ε > 0 be arbitrarily chosen and let also

||v1|| ≤ K−1
ε.

Then, from (11), we get
||v(x)||< ε,

for all x≥ x1, i.e., the trivial solution of the iso-differential system (9) is uniformly stable.
Let now the solutions of the iso-differential system (9) are, in addition, asymptotically

stable. Then
||Ψ(x)|| −→ 0

as x−→ ∞.
Let ε > 0 be arbitrarily chosen.
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Then we can choose x2 large enough so that

||Ψ(x)Ψ−1(x0)v0|| ≤ ε

for all x≥ x2.
From here, for the solution v(x) = v(x,x0,v0), we have

||v(x)|| ≤ ||Ψ(x)Ψ−1(x0)v0||+
∫ x

x0
||Ψ(x)Ψ−1(t)||||g(t,v(t))|| |T̂ (t)−tT̂ ′(t)|

T̂ (t)
dt

≤ ε+ c
∫ x

x0

∫ x
x0

λ(t)||v(t)|| |T̂ (t)−tT̂ ′(t)|
T̂ (t)

dt, x≥ x2.

From this, we get

||v(x)|| ≤ cec
∫ x

x0
λ(t) |T̂ (t)−tT̂ ′(t)|

T̂ (t)
dt

≤ Lε, x≥ x2,

where

L = ec
∫ x

x0
λ(t) |T̂ (t)−tT̂ ′(t)|

T̂ (t)
dt
.

Since ε is arbitrary and L does not depend on ε and x2 we conclude that

||v(x)|| −→ 0

as x−→ ∞, i.e., the trivial solution of the iso-differential system (9) is, in addition, asymp-
totically stable.
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Lyapunov’s Direct Method for
Iso-Differential Systems

Let x0 ∈ R, T̂ ∈ C 1([x0,∞)), T̂ (x)> 0 in [x0,∞). For ρ > 0 we define the set

Sρ = {u ∈ Rn : ||u||< ρ}.

For M ⊂ Rn, N ⊂ Rm with C 1(M,N) we will denote the set of all continuous-
differentiable functions f : M −→N. With C (M,N) we will denote the set of all continuous
functions f : M −→ N.

Definition 14.0.315. A function φ(r) is said to belong to the class K if and only if φ ∈
C ([0,ρ],R+), φ(0) = 0, and φ(r) is strictly monotonically increasing in r.

Example 14.0.316. The function a(r) = 3r2 ∈K .

Definition 14.0.317. A real-valued function V (x,u) defined in [x0,∞)× Sρ is said to be
positive definite if and only if V (x,0)≡ 0, x≥ x0, and there exists a function a(r) ∈K such
that a(r)≤V (x,u), ||u||= r, (x,u) ∈ [x0,∞)×Sρ. It is negative definite if V (x,u)≤−a(r).

Example 14.0.318. The function

V (x,u1,u2) = (2+ sin2 x)u2
1 +(3+2cos2 x)u2

2

is positive definite in [0,∞)×R2.
Indeed, we have

V (x,0,0) = (2+ sin2 x)02 +(3+2cos2 x)02

= 0.

Also, if ||u||= r and a(r) = r2, we have

r2 ≤ 2u2
1 +3u2

2

≤ (2+ sin2 x)u2
1 +(3+2cos2 x)u2

2

=V (x,u1,u2).

Therefore the function V (x,u1,u2) is positive definite function in [x0,∞)×R2.
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Definition 14.0.319. A real-valued function V (x,u) defined in [x0,∞)× Sρ is said to be
decrescent if and only if V (x,0)≡ 0, x≥ x0, and there exists an h, 0 < h≤ ρ and a function
b(r) ∈K such that

V (x,u)≤ b(||u||)

for ||u||< h and x≥ x0.

Example 14.0.320. We consider the function

V (x,u1,u2) = (4+3sin2(2x))u2
1 +(5+ cos2(3x))u2

2

in [0,∞)×R2. Let b(r) = 15r2. Then

V (x,u1,u2)≤ 7u2
1 +6u2

2

≤ 7r2 +6r2

≤ 15r2

= b(r).

Here we will investigate the initial value problem

u′(x) =
T̂ ′(x)
T̂ (x)

u(x)+g(x,u(x))
T̂ (x)− xT̂ ′(x)

T̂ (x)
, x > x0, (1)

u(x0) = u0, (2)

where u0 ∈ Rn,

u(x) = (u1(x),u2(x), . . . ,un(x)),

g(x,u(x)) = (g1(x,u(x)),g2(x,u(x)), . . . ,gn(x,u(x)),

gi(x,u(x)) ∈ C ([x0,∞)×Sρ,R), i = 1,2, . . . ,n.
We will assume that V (x,u) ∈ C 1([x0,∞)×Sρ,R). Using the chain rule we get

dV
dx

(x,u) =
∂V
∂x

(x,u)+
N

∑
i=1

∂V
∂ui

(x,u)
dui(x)

dx
. (3)

Our interest is in the derivative of V (x,u) along a solution u(x) = u(x,x0,u0) of the
initial value problem (1), (2), in this case the equality (3) we can rewrite in the following
form.

dV
dx (x,u(x)) =

∂V
∂x (x,u(x))+∑

n
i=1

∂V
∂ui

(x,u(x))
(

gi(x,u(x))
T̂ (x)−xT̂ ′(x)

T̂ (x)
+ T̂ ′(x)

T̂ (x)
ui(x)

)
= ∂V

∂x (x,u(x))+
T̂ (x)−xT̂ ′(x)

T̂ (x)
gradV (x,u(x)) ·g(x,u(x))

+ T̂ ′(x)
T̂ (x)

gradV (x,u(x)) ·u(x) :=V ∗(x,u(x)).
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Obviously, the function V ∗(x,u(x)) we will connect with so called Lyapunov’ s function,
which plays important role in the investigation for stability of the trivial solution of the
iso-differential system (1).

Example 14.0.321. Let n = 1, T̂ (x) = ex, g(x,u) = u
1−x , x0 = 2, u0 = 1, V (x,u) = x2 +u2.

Then
T̂ ′(x)
T̂ (x)

= ex

ex

= 1,

T̂ (x)−xT̂ ′(x)
T̂ (x)

= ex−xex

ex

= 1− x,

∂V
∂x (x,u) = 2x,

∂V
∂u (x,u) = 2u,

u′(x) = u(x)+ u(x)
1−x(1− x)

= 2u(x).

We have the following initial value problem

u′(x) = 2u(x), x > 0,

u(0) = 1.

Its solution is
u(x) = e2x.

Consequently
V ∗(x,u(x)) = 2x+(1− x)2e2x e2x

1−x + e2x(2e2x)

= 2x+4e4x.

Theorem 14.0.322. If there exists a positive definite scalar function V (x,u) ∈ C 1([x0,∞)×
Sρ,R+), called a Lyapunov function, such that V ∗(x,u)≤ 0 in [x0,∞)×Sρ, then the trivial
solution of the iso-differential system (1) is stable.

Proof. Since V (x,u) is positive definite then there exists a function a ∈K such that

a(||u||)≤V (x,u)

for all (x,u) ∈ [x0,∞)×Sρ.
Let 0 < ε < ρ be given.
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Since V (x,u) is continuous in [x0,∞)×Sρ and V (x,0) = 0, then we can find a δ= δ(ε)>
0 such that the inequality

||u0||< δ

implies that
V (x,u0)< a(ε)

for every x ∈ [x0,∞).
Let us assume that the trivial solution of the iso-differential system (1) is unstable. Then

there exists a solution u(x) = u(x,x0,u0) of the iso-differential system (1) such that

||u0||< δ

and
||u(x1)||= ε

for some x1 > x0.
However, since

V ∗(x,u)≤ 0

for every (x,u) ∈ [x0,∞)×Sρ, we have

V (x1,u(x1))≤V (x0,u0),

and hence,
a(ε) = a(||u(x1)||)

≤V (x1,u(x1))

≤V (x0,u0)

< a(ε),

which is impossible.
Thus, if ||u0||< δ then

||u(x)||< ε

for all x≥ x0.
Therefore the trivial solution of (1) is stable.

Theorem 14.0.323. If there exists a positive definite and decrescent scalar function
V (x,u) ∈ C 1([x0,∞)× Sρ,R+) such that V ∗(x,u) is negative definite in [x0,∞)× Sρ, then
the trivial solution of the iso-differential system (1) is asymptotically stable.

Proof. Since all the conditions of the previous theorem are satisfied, the trivial solution of
(1) is stable. Consequently, for given 0 < ε < ρ, we suppose that there exist δ > 0 and
λ > 0, and a solution u(x) = u(x,x0,u0) of the iso-differential system (1), such that

λ≤ ||u(x)||< ε, x≥ x0, ||u0||< δ. (4)
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Because V ∗(x,u) is negative definite, then there exists a function a ∈K such that

V ∗(x,u(x))≤−a(||u(x)||).

From

||u(x)|| ≥ λ > 0

for x≥ x0, it follows that there exists a constant d > 0 such that

a(||u(x)||)≥ d

for x≥ x0. Hence, we have

V ∗(x,u(x))≤−d < 0, x≥ x0.

This implies that

V (x,u(x)) =V (x0,u0)+
∫ x

x0
V ∗(t,u(t))dt

≤V (x0,u0)− xd,

from the last inequality we conclude that for sufficiently large x the right side of the last
inequality will become negative, which contradicts with the fact that V (x,u) being positive
definite. Consequently, there is no such λ for which (4) holds.

Moreover, since V (x,u(x)) is positive definite and a decreasing function of x, and de-
crescent, it follows that

lim
x−→∞

V (x,u(x)) = 0.

Therefore,

lim
x−→∞

||u(x)||= 0,

which implies that the trivial solution of the iso-differential system (1) is asymptotically
stable.

Example 14.0.324. Let n = 2, T̂ (x) = ex, x0 = 2,

g1(x,u1,u2) =
u2−u1
1−x ,

g2(x,u1,u2) =
(2+e−x)u1+u2

x−1 .
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Then

T̂ ′(x)
T̂ (x)

= ex

ex

= 1,
T̂ (x)−xT̂ ′(x)

T̂ (x)
= ex−xex

ex

= 1− x,

T̂ ′(x)
T̂ (x)

u1(x)+g1(x,u1(x),u2(x))
T̂ (x)−xT̂ ′(x)

T̂ (x)
= u1(x)+

u2(x)−u1(x)
1−x (1− x)

= u1(x)+u2(x)−u1(x)

= u2(x),

T̂ ′(x)
T̂ (x)

u2(x)+g2(x,u1(x),u2(x))
T̂ (x)−xT̂ ′(x)

T̂ (x)
= u2(x)+

(2+e−x)u1(x)+u2(x)
x−1 (1− x)

= u2(x)−u1(x)(2+ e−x)−u2(x)

=−u1(x)(2+ e−x).

In this way we obtain the iso-differential system

u′1(x) = u2(x)

u′2(x) =−(2+ e−x)u1(x).
(5)

Let us consider the function

V (x,u1,u2) = (2+ e−x)u2
1 +u2

2.

We have
V (x,u1(x),u2(x)) ∈ C 1([2,∞)×Sρ,R+),

V (x,0,0) = (2+ e−x)02 +02

= 0,

V (x,u1(x),u2(x))≥ ||u||2.

Therefore the function V (x,u1(x),u2(x)) is positive definite in [2,∞)×Sρ.
Also,

∂V
∂x (x,u1(x),u2(x)) =−e−xu2

1(x),

∂V
∂u1

(x,u1(x),u2(x)) = 2(2+ e−x)u1(x),

∂V
∂u2

(x,u1(x),u2(x)) = 2u2(x).
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Then

V ∗(x,u1(x),u2(x)) =−e−xu2
1(x)+2(2+ e−x)u1(x)

(
u2(x)−u1(x)

1−x (1− x)+u1(x)
)

+2u2(x)
(
(2+e−x)u1(x)+u2(x)

x−1 (1− x)+u2(x)
)

=−e−xu2
1(x)+2(2+ e−x)u1(x)(u2(x)−u1(x)+u1(x))

+2u2(x)
(
−(2+ e−x)u1(x)−u2(x)+u2(x)

)
=−e−xu2

1(x)+2(2+ e−x)u1(x)u2(x)−2(2+ e−x)u1(x)u2(x)

=−e−xu2
1(x)

≤ 0

in [2,∞)×R2.
Therefore the trivial solution of the iso-differential system (5) is stable.

Example 14.0.325. Let n = 2, T̂ (x) = 1+ x2, x0 = 2,

g1(x,u1,u2) =
−(2u1+u2)(1+x2)−2xu1

x2−1 ,

g2(x,u1,u2) =
(u1−2u2)(1+x2)−2xu2

1−x2 .

Then

T̂ ′(x)
T̂ (x)

= 2x
1+x2 ,

T̂ (x)−xT̂ ′(x)
T̂ (x)

= 1+x2−2x2

1+x2

= 1−x2

1+x2 ,

T̂ ′(x)
T̂ (x)

u1(x)+g1(x,u1(x),u2(x))
T̂ (x)−xT̂ ′(x)

T̂ (x)
= 2x

1+x2 iu1(x)+
(2u1(x)+u2(x))(1+x2)−2xu1(x)

x2−1
1−x2

1+x2

= 2x
1+x2 u1(x)− (2u1(x)+u2(x))(1+x2)+2xu1(x)

1+x2

=−2u1(x)−u2(x),

T̂ ′(x)
T̂ (x)

u2(x)+g2(x,u1(x),u2(x))
T̂ (x)−xT̂ ′(x)

T̂ (x)
= 2x

1+x2 u2(x)+
(u1(x)−2u2(x))(1+x2)−2xu2(x)

1−x2
1−x2

1+x2

= 2x
1+x2 u2(x)+

(u1(x)−2u2(x))(1+x2)−2xu2(x)
1+x2

= u1(x)−2u2(x).
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In this way we obtain the following iso-differential system

u′1(x) =−2u1(x)−u2(x)

u′2(x) = u1(x)−2u2(x).
(6)

Let us consider the function
V (x,u1,u2) = u2

1 +u2
2.

We have
V ∈ C 1([2,∞)×Sρ,R+),

V (x,0,0) = 0,

V (x,u1,u2)≥ ||u||2,

therefore the function V (x,u1,u2) is positive definite in [2,∞)×Sρ.
Also,

V ∗(x,u1(x),u2(x)) = 2u1(x)
(
−(2u1(x)+u2(x))(1+x2)−2xu1(x)

1−x2
1−x2

1+x2 +
2x

1+x2 u1(x)
)

+2u2(x)
(
(u1(x)−2u2(x))(1+x2)−2xu2(x)

1−x2
1−x2

1+x2 +
2x

1+x2 u2(x)
)

=−2u1(x)(2u1(x)+u2(x))+2u2(x)(u1(x)−2u2(x))

= 4(u2
1(x)+u2

2(x))

in [2,∞)×R2.
Consequently the trivial solution of the iso-differential system (6) is asymptotically sta-

ble.

Theorem 14.0.326. If there exists a scalar function V (x,u) ∈ C 1([x0,∞)×Sρ,R) such that

(i) |V (x,u)| ≤ b(||u||) for all (x,u) ∈ [x0,∞)×Sρ, where b ∈K ,

(ii) for every δ > 0 there exists and u0 with ||u0||< δ such that V (x0,u0)< 0,

(iii) V ∗(x,u)≤−a(||u||) for (x,u) ∈ [x0,∞)×Sρ, where a ∈K ,

then the trivial solution of the iso-differential system (1) is unstable.

Proof. Let the trivial solution of (1) is stable. Then for every ε > 0 such that ε < ρ, there
exists a δ = δ(ε)> 0 such that ||u0||< δ implies that

||u(x)||= ||u(x,x0,u0)||< ε

for all x≥ x0.
Let u0 be such that

||u0||< δ (7)
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and
V (x0,u0)< 0.

Since (7) we have
||u(x)||< ε.

Hence, the condition (i) gives

|V (x,u(x))| ≤ b(||u(x)||)< b(ε) (8)

for all x≥ x0.
Now from (iii), it follows that V (x,u(x)) is a decreasing function, and therefore

V (x,u(x))≤V )(x0,u0)< 0

for every x≥ x0.
Consequently

|V (x,u(x))| ≥ |V (x0,u0)|.

From the last inequality and (i) we obtain

||u(x)|| ≥ b−1(|V (x0,u0)|). (9)

Now we apply the condition (iii) and we get

V ∗(x,u(x))≤−a(||u(x)||),

from where, for x≥ x0, ∫ x

x0

V ∗(t,u(t))dt ≤−
∫ x

x0

a(||u(t)||)dt

or
V (x,u(x))≤V (x0,u0)−

∫ x

x0

a(||u(t)||)dt. (10)

From (9) we get
a(||u(x)||)≥ a

(
b−1(|V (x0,u0)|)

)
.

Thus, we obtain, using (9) and (10),

V (x,u(x))≤V (x0,u0)−
∫ x

x0
a
(

b−1(|V (x0,u0)|)
)

dt

=V (x0,u0)− (x− x0)a
(

b−1(|V (x0,u0)|)
)
,

from where
lim

x−→∞
V (x,u(x)) =−∞,

which contradicts with (8).
Consequently the trivial solution of (1) is unstable.
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Theorem 14.0.327. If there exists a positive definite and decrescent scalar function
V (x,u) ∈ C 1([x0,∞)× Sρ,R+) such that V ∗(x,u) ≤ 0 in [x0,∞)× Sρ, then the trivial so-
lution of the iso-differential system (1) is uniformly stable.

Proof. Because V (x,u) is positive definite and decrscent, there exist functions a,b ∈ K
such that

a(||u||)≤V (x,u)≤ b(||u||)

for all (x,u) ∈ [x0,∞)×Sρ.
For each ε, 0 < ε < ρ, let δ = δ(ε)> 0 be chosen so that

b(δ)< a(ε).

Suppose that the trivial solution of the iso-differential system (1) does not uniformly stable.
Then there exists some x2 > x1 such that the inequalities x1 ≥ x0 and ||u(x1)|| < δ imply
that

||u(x2)||= ε.

Integrating the inequality
V ∗(x,u(x))≤ 0

from x1 to x, x≥ x1, we get
V (x,u(x))≤V (x1,u(x1))

and from here, for x = x2, we have

a(ε) = a(||u(x2)||)

≤V (x2,u(x2))

≤V (x1,u(x1))

≤ b(||u(x1)||)

≤ b(δ)

< a(ε),

which is a contradiction. Therefore the trivial solution of (1) is uniformly stable.

Advanced Practical Exercises

Problem 14.0.328. Show that the function

V (x,u1,u2) = (u2
1 +u2

2)cos2 x

is decrescent in [0,∞)×R2.
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Problem 14.0.329. Show that the function

V (x,u1,u2) = u2
1 + e−xu2

2

is decrescent in [0,∞)×R2.

Problem 14.0.330. Show that the function

V (x,u1,u2) = u2
1 + exu2

2

is positive definite but not decrescent in [0,∞)×R2.

Problem 14.0.331. Show that the function

V (x,u1,u2) =
(

1+ cos2 x+ e−2x
)
(u4

1 +u4
2)

is positive definite and decrescent in [0,∞)×R2.

Problem 14.0.332. Let n = 1, T̂ (x) = ex,

g(x,u) =

(
sin(logx)+ cos(logx)−a−1

)
u

1− x
,

x0 = 2.
Consider the function

V (x,u) = u2e
2

(
a−sin(logx)

)
x
.

Show the following.

(i) The function V (x,y) is positive definite but not decrescent in [0,∞)×R.

(ii) The trivial solution of (1) is stable.

Problem 14.0.333. Let n = 2, T̂ (x) = ex, x0 = 2,

g(x,u) =
xsinx−2x−u

1− x
.

Consider the function
V (x,u) = u2e

∫ x
2 (2t−sin t)dt .

Show the following.

(i) The function V (x,u) is positive definite but not decrescent in [2,∞)×R.

(ii) V ∗(x,y)≤−λV (x,y) for all x≥ λ > 0.

(iii) The trivial solution of (1) is asymptotically stable.
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Problem 14.0.334. Let n = 1, T̂ (x) = ex, x0 = 2,

g1(x,u1,u2) =
−u1+xu2−x2u1(u2

1+u2
2)

1−x ,

g2(x,u1,u2) =
−u2−xu1−x2u2(u2

1+u2
2)

1−x .

Show that the trivial solution of (1) is stable.

Problem 14.0.335. Let n = 1, T̂ (x) = ex, x0 = 2,

g1(x,u1,u2) =
−u1+xu2−(1+x2)u1(u2

1+u2
2)

1−x ,

g2(x,u1,u2) =
−u2−xu1−(1+x2)u2(u2

1+u2
2)

1−x .

Show that the trivial solution of (1) is asymptotically stable.

Problem 14.0.336. Let n = 1, T̂ (x) = ex, x0 = 2,

g1(x,u1,u2) =
−u1+xu2+(1+x2)u1(u2

1+u2
2)

1−x ,

g2(x,u1,u2) =
−u2−xu1+(1+x2)u2(u2

1+u2
2)

1−x .

Show that the trivial solution of (1) is unstable.



Chapter 15

Second Order Linear Iso-Differential
Equations

We suppose that J is an interval in R, T̂ (x) ∈ C 2(J), T̂ (x) > 0 for every x ∈ J. Let also
p1(x), p2(x) ∈ C (J).

Here we will consider the following second-order linear iso-differential equation((
ŷ∧(x̂)

)~)~
+ p̂∧1 (x̂)×̂

(
ŷ∧(x̂)

)~
+ p̂∧2 (x̂)×̂ŷ∧(x̂) = 0. (1)

Definition 15.0.337. The equation (1) will be called second-order linear iso-differential
equation.

The equation (1) we can rewrite in the following form

y′′(x)+ y′(x)
(

p1(x)
T̂ (x)−xT̂ ′(x)

T̂ (x)
− T̂ (x)T̂ ′(x)−xT̂ ′2(x)−xT̂ (x)T̂ ′(x)

T̂ (x)(T̂ (x)−xT̂ ′(x))

)
+y(x)

(
−T̂ 2(x)T̂ ′′(x)+T̂ (x)T̂ ′2(x)−xT̂ ′3(x)

T̂ 2(x)(T̂ (x)−xT̂ ′(x))

−p1(x)
T̂ ′(x)(T̂ (x)−xT̂ ′(x))

T̂ 2(x)
+ p2(x)

(T̂ (x)−xT̂ ′(x))2

T̂ 2(x)

)
= 0.

Let
p(x) = p1(x)

T̂ (x)−xT̂ ′(x)
T̂ (x)

− T̂ (x)T̂ ′(x)−xT̂ ′2(x)−xT̂ (x)T̂ ′(x)
T̂ (x)(T̂ (x)−xT̂ ′(x))

,

q(x) = −T̂ 2(x)T̂ ′′(x)+T̂ (x)T̂ ′2(x)−xT̂ ′3(x)
T̂ 2(x)(T̂ (x)−xT̂ ′(x))

−p1(x)
T̂ ′(x)(T̂ (x)−xT̂ ′(x))

T̂ 2(x)
+ p2(x)

(T̂ (x)−xT̂ ′(x))2

T̂ 2(x)
.

Consequently the equation (1) we can rewrite in the form

y′′(x)+ p(x)y′(x)+q(x)y(x) = 0.

The equation (1) is exact if

y′′(x)+ p(x)y′(x)+q(x)y(x) =
(

y′(x)+ f (x)y(x)
)′
, (2)
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where f (x) is a differentiable function in J.
Expanding (2) we get

y′′(x)+ p(x)y′(x)+q(x)y(x) = y′′(x)+ f (x)y′(x)+ f ′(x)y(x),

from where we obtain the system

f (x) = p(x)

f ′(x) = q(x).

Therefore
p′(x) = q(x),

which is equivalent of (
T̂ (x)(T̂ (x)− xT̂ ′(x))

(
1

T̂ (x)(T̂ (x)−xT̂ ′(x))

)′)′
+p′1(x)

T̂ (x)−xT̂ ′(x)
T̂ (x)

+ p1(x)
(

T̂ (x)−xT̂ ′(x)
T̂ (x)

)′
= p2(x)

(T̂ (x)−xT̂ ′(x))2

T̂ 2(x)
− p1(x)

T̂ ′(x)(T̂ (x)−xT̂ ′(x))
T̂ 2(x)

− T̂ ′′(x)T̂ 2(x)−T̂ (x)T̂ ′2(x)+xT̂ ′3(x)
T̂ 2(x)

or (
T̂ (x)(T̂ (x)− xT̂ ′(x))

(
1

T̂ (x)(T̂ (x)−xT̂ ′(x))

)′)′
+p′1(x)

T̂ (x)−xT̂ ′(x)
T̂ (x)

− xp1(x)
T̂ ′′(x)
T̂ (x)

= p2(x)
(T̂ (x)−xT̂ ′(x))2

T̂ 2(x)
− T̂ ′′(x)T̂ 2(x)−T̂ (x)T̂ ′2(x)+xT̂ ′3(x)

T̂ 2(x)
.

Now we consider the equation((
ŷ∧(x̂)

)~)~
+ p̂∧1 (x̂)×̂

(
ŷ∧(x̂)

)~
+ p̂∧2 (x̂)×̂ŷ∧(x̂) = h(x), (3)

where h(x) is a differentiable function in J.
The equation (3) we can rewrite in the form

y′′(x)+ p(x)y′(x)+q(x)y(x) = h(x)
(T̂ (x)− xT̂ ′(x))2

T̂ (x)
.

If the equation (3) is an exact equation then there exists a differentiable function f (x) in the
interval J such that (

y′(x)+ f (x)y(x)
)′

= h(x)
(T̂ (x)− xT̂ ′(x))2

T̂ (x)
,
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whereupon

y′(x)+ f (x)y(x) =
∫

h(x)
(T̂ (x)− xT̂ ′(x))2

T̂ (x)
dx+C,

here C is a real constant.

Example 15.0.338. Let T̂ (x) = ex,

p1(x) = 1−2x2

x(1−x)2 , p2(x) = −1+2x−x3

x2(1−x)3 ,

h(x) = x2e−x

(1−x)2 .

Then
p(x) = e2x+xe2x+xe2x

e2x(1−x) + 1−2x2

x(1−x)2
ex−xex

ex

= −1+2x
1−x + 1−2x2

x(1−x)

= −x+2x2+1−2x2

x(1−x)

= 1
x ,

q(x) = −1+2x−x3

x2(1−x)3
(ex−xex)2

e2x − 1−2x2

x(1−x)2
ex(ex−xex)

e2x

− exe2x−exe2x+xe3x

e2x(ex−xex)

= −1+2x−x3

x2(1−x) −
1−2x2

x(1−x) −
x

1−x

= −1+2x−x3−x+2x3−x3

x2(1−x)

=− 1
x2 ,

h(x) (T̂ (x)−xT̂ ′(x))2

T̂ (x)
= x2e−x

(1−x)2
e2x(1−x)2

ex

= x2.

In this way the equation (3) takes the form

y′(x)+
1
x

y′(x)− 1
x2 y(x) = x2

or

y′′(x)+
xy′(x)− y(x)

x2 = x2,

or (
y′(x)+

y(x)
x

)′
= x2,
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whereupon

y′(x)+
1
x

y(x) =
1
3

x3 +C,

or
y′(x) =−1

x
y(x)+

1
3

x3 +C.

Therefore
y(x) = 1

x

(
C1 +

∫(1
3 x3 +C

)
xdx
)

= 1
x

(
C1 +

1
15 x5 + C

2 x2
)

=C1
1
x +C2x+ 1

15 x4,

where C2 =
1
2C and C, and C1 are real constants.

If the equation (1) is not exact, then we will seek an integrating factor z(x) that will
make it exact. In other words, we multiply (1) with twice continuous-differentiable function
z(x) in the interval J and we get

z(x)y′′(x)+ z(x)p(x)y′(x)+ z(x)q(x)y(x) = 0. (4)

If (4) is an exact equation, then there exist differentiable functions f (x) and g(x) in the
interval Jsuch that

z(x)y′′(x)+ z(x)p(x)y′(x)+ z(x)q(x)y(x) =
(

f (x)y′(x)+g(x)y(x)
)′

or

z(x)y′′(x)+ z(x)p(x)y′(x)+ z(x)q(x)y(x) = f (x)y′′(x)+( f ′(x)+g(x))y′(x)+g′(x)y(x).

Therefore we obtain the system

z(x) = f (x)

z(x)p(x) = f ′(x)+g(x)

z(x)q(x) = g′(x).

From the last system we obtain

z′(x) = f ′(x) = z(x)p(x)−g(x) =⇒

z′(x)− z(x)p(x)+g(x) = 0.

We differentiate the last equality with respect to the variable x and we get

z′′(x)− (z(x)p(x))′+g′(x) = 0 =⇒

z′′(x)− (z(x)p(x))′+ z(x)q(x) = 0. (5)
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The equation (5) is a second-order iso-differential equation in z(x) and it can be written

z′′(x)+q1(x)z′(x)+q2(x)z(x) = 0, (6)

where
q1(x) =−p(x)

q2(x) =−p′(x)+q(x).
(7)

The equation (5) is the adjoint equation of the equation (1). To see this, we observe that
the equation (1) can be written in the form.(

u′1(x)
u′2(x)

)
=

(
0 1
−q(x) −p(x)

)(
u1(x)
u2(x)

)
and its adjoint is (

v′1(x)
v′2(x)

)
=

(
0 q(x)
−1 p(x)

)(
v1(x)
v2(x)

)
,

or
v′1(x) = q(x)v2(x)

v′2(x) =−v1(x)+ p(x)v2(x),

from where
v1(x) =−v′2(x)+ p(x)v2(x)

and (
−v′2(x)+ p(x)v2(x)

)′
= q(x)v2(x) =⇒

−v′′2(x)+ p′(x)v2(x)+ p(x)v′2(x) = q(x)v2(x) =⇒

v′′2(x)+q1(x)v′2(x)+q2(x)v2(x) = 0,

which is the same as the iso-differential equation (6).

Definition 15.0.339. When an iso-differential equation and its adjoint are the same, it is
said to be self-adjoint.

Thus the equation (1) is self-adjoint if

q1(x) = p(x)

q2(x) = q(x).

In such a situation, the relations (7) give

p(x) = 0

q2(x) = q(x).

Thus the self-adjoint equation takes the form

y′′(x)+q(x)y(x) = 0. (8)

Moreover, any self-adjoint equation can be written in the form (8).
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Exercise 15.0.340. Let T̂ (x) = ex,

p1(x) =
−x2− x+1
(1− x)2 , p2(x) =

x+2
(1− x)2 .

Verify that the iso-differential equation (1) is an exact equation and find its general solution.

Solution. We have
p(x) = −e2x+xe2x+xe2x

ex(ex−xex) + −x2−x+1
(1−x)2

ex−xex

ex

= 2x−1
1−x + −x2−x+1

1−x

= −x2+x
1−x

= x,

q(x) = x+2
(1−x)2

(ex−xex)2

e2x − −x2−x+1
(1−x)2

ex(ex−xex)
e2x

− e3x−e3x+xe3x

e2x(ex−xex)

= x+2+ x2+x−1
1−x −

x
1−x

= x+2− x−1

= 1.

Thus, the iso-differential equation (1) takes the form

y′′(x)+ xy′(x)+ y(x) = 0

or
y′′(x)+(xy(x))′ = 0,

or (
y′(x)+ xy(x)

)′
= 0,

whereupon
y′(x) =−xy(x)+C,

its general solution is

y(x) = e−
x2
2

(
C1 +C

∫
e

x2
2 dx
)
,

where C and C1 are real constants.

Remark 15.0.341. If the equation (1) is self-adjoint, then

p(x) = 0 =⇒

p1(x)
T̂ (x)−xT̂ ′(x)

T̂ (x)
+ −T̂ (x)T̂ ′(x)+xT̂ ′2(x)+xT̂ (x)T̂ ′′(x)

T̂ (x)(T̂ (x)−xT̂ ′(x))
= 0
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or

p1(x) =
T̂ (x)T̂ ′(x)− xT̂ ′2(x)− xT̂ (x)T̂ ′′(x)

(T̂ (x)− xT̂ ′(x))2
,

from where
q(x) = p2(x)

(T̂ (x)−xT̂ ′(x))2

T̂ 2(x)

− T̂ (x)T̂ ′(x)−xT̂ ′2(x)−xT̂ (x)T̂ ′′(x)
(T̂ (x)−xT̂ ′(x))2

(T̂ (x)−xT̂ ′(x))T̂ ′(x)
T̂ 2(x)

− T̂ ′′(x)T̂ 2(x)−T̂ (x)T̂ ′2(x)+xT̂ ′3(x)
T̂ 2(x)(T̂ (x)−xT̂ ′(x))

= p2(x)
(T̂ (x)−xT̂ ′(x))2

T̂ 2(x)
− T̂ (x)T̂ ′2(x)−xT̂ ′3(x)−xT̂ (x)T̂ ′(x)T̂ ′′(x)

T̂ 2(x)(T̂ (x)−xT̂ ′(x))

− T̂ ′′(x)T̂ 2(x)−T̂ (x)T̂ ′2(x)+xT̂ ′3(x)
T̂ 2(x)(T̂ (x)−xT̂ ′(x))

= p2(x)
(T̂ (x)−xT̂ ′(x))2

T̂ 2(x)
− T̂ ′′(x)T̂ (x)−xT̂ ′(x)T̂ ′′(x)

T̂ (x)(T̂ (x)−xT̂ ′(x))

= p2(x)
(T̂ (x)−xT̂ ′(x))2

T̂ 2(x)
− T̂ ′′(x)

T̂ (x)
.

Consequently the equation (1) is self-adjoint if

p1(x) =
T̂ (x)T̂ ′(x)−xT̂ ′2(x)−xT̂ (x)T̂ ′′(x)

(T̂ (x)−xT̂ ′(x))2 ,

q(x) = p2(x)
(T̂ (x)−xT̂ ′(x))2

T̂ 2(x)
− T̂ ′′(x)

T̂ (x)
.

(9)

Below we will investigate the self-adjoint equation (8), i.e., we will suppose (9).

Theorem 15.0.342. (iso-Sturm’s comparison theorem) If α, β ∈ J are consecutive zeros
of the nontrivial solution y(x) of the self-adjoint iso-differential equation (8), and if q(x)
is a continuous function in J and q(x) ≥ q(x), then every nontrivial solution z(x) of the
iso-differential equation

z′′(x)+q(x)z(x) = 0 (10)

has a zero in (α,β).

Proof. We multiply the equation (8) by z(x) and we get

y′′(x)z(x)+q(x)y(x)z(x) = 0. (11)

Now we multiply the equation (10) by y(x) and we obtain

z′′(x)y(x)+q(x)y(x)z(x) = 0. (12)

We subtract from (11) the equation (12) and we go to

y′′(x)z(x)− z′′(x)y(x)+(q(x)−q(x))y(x)z(x) = 0,
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which is the same as(
y′(x)z(x)− z′(x)y(x)

)′
+(q(x)−q(x))y(x)z(x) = 0.

Since y(α) = y(β) = 0 we have

y′(β)z(β)− y′(α)z(α)+
∫

β

α

(q(x)−q(x))y(x)z(x)dx = 0.

Without loss of generality we can suppose that y(x)> 0 in (α,β). From here, since y(α) = 0
and y(β) = 0 we have that

y′(α)> 0, y′(β)< 0.

If we assume that z(x)> 0 in the interval (α,β), then

y′(β)z(β)< 0,

y′(α)z(α)> 0,

and from here
y′(β)z(β)− y′(α)z(α)< 0. (13)

Also,
y(x)z(x)> 0 in (α,β),

q(x)−q(x)≤ 0 in (α,β),

therefore ∫
β

α

(q(x)−q(x))y(x)z(x)dx≤ 0.

From the last inequality and (13) it follows that

y′(β)z(β)− y′(α)z(α)+
∫

β

α

(q(x)−q(x))y(x)z(x)dx < 0,

which is a contradiction.
Let us assume that z(x)< 0 in (α,β).
Then

y′(β)z(β)> 0,

y′(α)z(α)< 0,

y′(β)z(β)− y′(α)z(α)> 0, (14)

also,
y(x)z(x)≤ 0 in (α,β)

and ∫
β

α

(q(x)−q(x))y(x)z(x)dx≥ 0,
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from the last inequality and the inequality (14) it follows that

y′(β)z(β)− y′(α)z(α)+
∫

β

α

(q(x)−q(x))y(x)z(x)dx > 0,

which is a contradiction.
Consequently z(x) cannot be of fixed sign in (α,β), i.e., there exists x1 ∈ (α,β) such

that z(x1) = 0.

Lemma 15.0.343. (Picone’s identity) Let the functions

y, z, py′, p1z′

be differentiable in the interval J and z(x) 6= 0 in J. Then the following identity holds.(y
z
(zpy′− yp1z′)

)′
= y(py′)′− y2

z
(p1z′)′+(p− p1)y′2 + p1

(
y′− y

z
z′
)2

.

Proof. We have(
y
z (zpy′− yp1z′)

)′
=
(

y
z

)′
(zpy′− yp1z′)+ y

z (zpy′− yp1z′)′

= y′z−yz′

z2 (zpy′− yp1z′)+ y
z

(
z′py′+ z(py′)′− y′(p1z′)− y(p1z′)′

)
=
(

y′
z − y z′

z2

)
(zpy′− yp1z′)+ y z′

z py′+ y(py′)′− yy′
z (p1z′)− y2

z (p1z′)′

= p(y′)2− y′
z yp1z′− yp z′

z y′+ y2 p1
z2 (z′)2

+ y
z z′py′+ y(py′)′− yy′

z (p1z′)− y2

z (p1z′)′

= p(y′)2−2 yy′
z (p1z′)+ y2 p1

z2 (z′)2 + y(py′)′− y2

z (p1z′)′

= p(y′)2 + p1

(
y2 (z′)2

z2 −2y y′
z z′+ y′2− y′2

)
+ y(py′)′− y2

z (p1z′)′

= (p− p1)(y′)2 + p1

(
y z′

z − y′
)2

+ y(py′)′− y2

z (p1z′)′.

Theorem 15.0.344. (iso-Sturm-Picone’s theorem) If α, β ∈ J are the consecutive zeros of
a nontrivial solution y(x) of (8), and if q(x) is continuous in J and q(x) ≥ q(x) in [α,β],
then every nontrivial solution z(x) of the equation

z′′(x)+q(x)z(x) = 0

has a zero in [α,β].
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Proof. Let z(x) 6= 0 in [α,β]. Then from the Picone’s identity we have(y
z
(zy′− yz′)

)′
= (q−q)y2 +

(
y′− y

z
z′
)2

.

Integrating the above identity from α to β and using that y(α) = y(β) = 0 we get∫
β

α

(
(q−q)y2 +

(
y′− y

z
z′
)2)

dx = 0,

which is a contradiction unless

q(x)≡ q(x) in [α,β],

y′(x)− y(x)
z(x) z′(x) = 0 in [α,β].

The last identity is the same as (y(x)
z(x)

)′
= 0

and hence
y(x)
z(x)
≡ const.

However, since y(α) = 0, this constant must be zero, therefore y(x) ≡ 0 in [α,β]. This
contradiction implies that there exists a x1 ∈ [α,β] such that z(x1) = 0.

Corollary 15.0.345. (iso-Sturm-Picone’s theorem) If y1(x) and y2(x) are two linearly in-
dependent solutions of the equation (8) in the interval J, then their zeros are interlaced, i.e.
between two consecutive zeros of one there is exactly one zero of the other.

Proof. Since y1(x) and y2(x) cannot be common zeros, then the iso-Sturm-Picone’s the-
orem implies that y2(x) has at least one zero between two consecutive zeros of y1(x).
Interchanging y1(x) and y2(x) we conclude that y2(x) has at most one zero between two
consecutive zeros of y1(x).

Theorem 15.0.346. The only solution of the equation (8) which vanishes infinitely often in
J1 = [α,β] is the trivial solution.

Proof. We suppose that the solution y(x) of (8) has infinite number of zeros in the interval
J1. The set of the zeros of y(x) then will have a limit point x∗ ∈ J1. Then there exists a
sequence {xm}∞

m=1 of zeros of y∗ which converges to x∗, xm 6= x∗.
From the continuity of the solution y(x) implies that

y(x∗) = lim
m−→∞

y(xm) = 0.

Also, from the differentiability of the solution y(x), we have

y′(x∗) = lim
m−→∞

y(xm)− y(x∗)
xm− x∗

= 0.
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Consequently
y(x∗) = y′(x∗) = 0.

Then from the uniqueness of the solutions it follows that

y(x)≡ 0 in J1.

Now we will consider the equation

y′′(x)+q(x)y(x) = r(x) (15)

in the interval J1 = [α,β], where q(x) and r(x) are continuous functions in J1.
Together with the equation (15) we shall consider the boundary conditions.

l1(y) = a0y(α)+a1y′(α)+b0y(β)+b1y′(β) = A,

l2(y) = c0y(α)+ c1y′(α)+d0y(β)+d1y′(β) = B,
(16)

where ai, bi, ci di, i = 0,1, and A, B are given constants.
Throughout, we will suppose that there does not exist a constant c such that

(a0,a1,b0,b1) = c(c0,c1,d0,d1).

Definition 15.0.347. The boundary value problem (15), (16) is called nonhomogeneous
two point linear boundary value problem.

Definition 15.0.348. The homogeneous equation (8) together with the homogeneous
boundary conditions

l1(y) = 0, l2(y) = 0 (17)

will be called a homogeneous boundary value problem.

Boundary conditions (16) are quite general and, in particular, include the

(i) first boundary conditions (Dirichlet’s boundary conditions)

y(α) = A, y(β) = B, (18)

(ii) second boundary conditions (mixed boundary conditions)

y(α) = A, y′(β) = B, (19)

or
y′(α) = A, y(β) = B,m (20)

(iii) separated boundary conditions (third boundary conditions)

a0y(α)+a1y′(α) = A

d0y(β)+d1y′(β) = B,
(21)

where a2
0 +a2

1 6= 0 and d2
0 +d2

1 6= 0,
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(iv) periodic boundary conditions

y(α) = y(β), y′(α) = y′(β). (22)

Theorem 15.0.349. Let y1(x) and y2(x) be any two linearly independent solutions of the
equation (8). Then the homogeneous boundary value problem (8), (17) has only the trivial
solution if and only if

∆ =

∣∣∣∣ l1(y1(x)) l1(y2(x))
l2(y1(x)) l2(y2(x))

∣∣∣∣ 6= 0.

Proof. Any solution of the equation (8) can be written as

y(x) = c1y1(x)+ c2y2(x),

where c1 and c2 are real constants.
This is a solution of the homogeneous boundary value problem (8), (17) if and only if

l1(y(x)) = l1(c1y1(x)+ c2y2(x))

= c1l1(y1(x))+ c2l1(y2(x))

= 0,

l2(y(x)) = l2(c1y1(x)+ c2y2(x))

= c1l2(y1(x))+ c2l2(y2(x))

= 0,

i.e., if and only if the system

c1l1(y1(x))+ c2l1(y2(x)) = 0

c1l2(y1(x))+ c2l2(y2(x)) = 0

has only the trivial solutions.
Consequently the problem (8), (17) has only the trivial solution if and only if ∆ 6= 0.

Corollary 15.0.350. The homogeneous boundary value problem (8), (17) has an infinite
number of nontrivial solutions if and only if ∆ = 0.

Theorem 15.0.351. The nonhomogeneous boundary value problem (15), (16) has a unique
solution if and only if the homogeneous boundary problem (8), (17) has only the trivial
solution.

Proof. Let y1(x) and y2(x) be any two linearly independent solutions of the equation (8)
and z(x) be a particular solution of (15). Then the general solution of (15) is given by

y(x) = c1y1(x)+ c2y2(x)+ z(x),
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where c1 and c2 are real constants.
This y(x) is a solution of the problem (15), (16) if and only if

l1(y(x)) = c1l1(y1(x))+ c2l1(y2(x))+ l1(z(x))

= A,

l2(y(x)) = c1l1(y1(x))+ c2l1(y2(x))+ l2(z(x))

= B.

The last system has a unique solution if and only if ∆ 6= 0, i.e., if and only if the homo-
geneous boundary problem (8), (17) has only the trivial solution.





Chapter 16

Green’s Functions

We suppose that J = [α,β], α, β ∈ R, α < β, T̂ ∈ C 1(J), T̂ (x)> 0 for every x ∈ J.
We will investigate the equations((

ŷ∧(x̂)
)~)~

+ p̂∧1 (x̂)×̂
(

ŷ∧(x̂)
)~

+ p̂∧2 (x̂)×̂ŷ∧(x̂) = 0 (1′)

and ((
ŷ∧(x̂)

)~)~
+ p̂∧1 (x̂)×̂

(
ŷ∧(x̂)

)~
+ p̂∧2 (x̂)×̂ŷ∧(x̂) = ĥ∧(x̂), (2′)

where p1(x), p2(x), h(x) ∈ C (J).
The equations (1′) and (2′) we can rewrite in the form

y′′(x)+ p(x)y′(x)+q(x)y(x) = 0 (1)

and
y′′(x)+ p(x)y′(x)+q(x)y(x) = r(x), (2)

where
p(x) = p1(x)

T̂ (x)−xT̂ ′(x)
T̂ (x)

− T̂ (x)T̂ ′(x)−xT̂ ′2(x)−xT̂ (x)T̂ ′(x)
T̂ (x)(T̂ (x)−xT̂ ′(x))

,

q(x) = −T̂ 2(x)T̂ ′′(x)+T̂ (x)T̂ ′2(x)−xT̂ ′3(x)
T̂ 2(x)(T̂ (x)−xT̂ ′(x))

−p1(x)
T̂ ′(x)(T̂ (x)−xT̂ ′(x))

T̂ 2(x)
+ p2(x)

(T̂ (x)−xT̂ ′(x))2

T̂ 2(x)
,

r(x) = h(x) (T̂ (x)−xT̂ ′(x))2

T̂ (x)
.

For y ∈ C 1(J) we define

l1(y) = a0y(α)+a1y′(α)+b0y(β)+b1y′(β),

l2(y) = c0y(α)+ c1y′(α)+d0y(β)+d1y′(β),

where ai, bi, ci, di, i = 0,1, are given real constants, and there does not exist a constant c
such that

(a0,a1,b0,b1) = c(c0,c1,d0,d1).
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We will consider the equation (1) under the boundary conditions

l1(y) = 0, l2(y) = 0. (3)

Below we will suppose that the problem (1), (3) has only the trivial solution.

Definition 16.0.352. (Green’s function) Green’s function G(x, t) for the boundary problem
(1), (3) is defined in [α,β]× [α,β] and satisfies the following properties.

(i) G(x, t) is continuous in [α,β]× [α,β].

(ii) ∂G
∂x (x, t) is continuous in the triangles α≤ x≤ t ≤ β and α≤ t ≤ x≤ β, moreover,

∂G
∂x

(t+, t)− ∂G
∂x

(t−, t) = 1,

where

∂G
∂x

(t+, t) = lim
x−→t,x>t

∂G
∂x

(x, t),
∂G
∂x

(t−, t) = lim
x−→t,x<t

∂G
∂x

(x, t).

(iii) For every t ∈ [α,β], the function z(x) = G(x, t) is a solution of the equation (1) in the
intervals [α, t) and (t,β].

(iv) For every t ∈ [α,β], the function z(x) = G(x, t) satisfies the boundary conditions (3).

Theorem 16.0.353. There exists a unique Green’s function G(x, t) for the problem (1), (3).

Proof. Let y1(x) and y2(x) be two linearly independent solutions of the equation (1). Then,
using the property (iii) of the Green’s function G(x, t), we conclude that there exist func-
tions λ1(t), λ2(t), µ1(t) and µ2(t) such that

G(x, t) =


y1(x)λ1(t)+ y2(x)λ2(t), α≤ x≤ t,

y2(x)µ1(t)+ y2(x)µ2(t), t ≤ x≤ β.

Since G(x, t) is a continuous function in [α,β]× [α,β], we get

y1(x)λ1(t)+ y2(x)λ2(t) = y1(x)µ1(t)+ y2(x)µ2(t), (4)

Also,

∂G
∂x

(x, t) =


y′1(x)λ1(t)+ y′2(x)λ2(t), α≤ x≤ t,

y′1(x)µ1(t)+ y′2(x)µ2(t), t ≤ x≤ β.

From here,
∂G
∂x (t

−, t) = y′1(t)λ1(t)+ y′2(t)λ2(t),

∂G
∂x (t

+, t) = y′1(t)µ1(t)+ y′2(t)µ2(t).

From the last expressions and the second property of the Green’s function G(x, t) we get

y′1(t)(µ1(t)−λ1(t))+ y′2(t)(µ2(t)−λ2(t)) = 1. (5)
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Let

ν1(t) = µ1(t)−λ1(t),

ν2(t) = µ2(t)−λ2(t).
(6)

Then, using (4) and (5), we obtain the system

y1(t)ν1(t)+ y2(t)ν2(t) = 0

y′1(t)ν1(t)+ y′2(t)ν2(t) = 1.

Since y1(x) and y2(x) are linearly independent in [α,β], then the Wronskian

W (y1(t),y2(t)) =
∣∣∣∣ y1(t) y2(t)

y′1(t) y′2(t)

∣∣∣∣ 6= 0

for every t ∈ [α,β]. Thus the system (6) uniquely determines the functions ν1(t) and ν2(t)
for every t ∈ [α,β].

From (6) it follows

µ1(t) = ν1(t)+λ1(t)

µ2(t) = ν2(t)+λ2(t).

In this way we can rewrite the Green’s function G(x, t) in the following way

G(x, t) =


y1(x)λ1(t)+ y2(x)λ2(t), α≤ x≤ 1,

y1(x)λ1(t)+ y2(x)λ2(t)

+y1(x)ν1(t)+ y2(x)ν2(t), t ≤ x≤ β.

From the property (iv) of the Green’s function G(x, t) we find that

l1(G(x, t)) = 0, l2(G(x, t)) = 0.

Let us consider

l1(G(x, t)) = 0.
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We have

0 = l1(G(x, t))

= a0G(α, t)+a1
∂G
∂x (α, t)+b0G(β, t)+b1

∂G
∂x (β, t)

= a0

(
y1(α)λ1(t)+ y2(α)λ2(t)

)
+a1

(
y′1(α)λ1(t)+ y′2(α)λ2(t)

)
+b0

(
y1(β)λ1(t)+ y2(β)λ2(t)+ y1(β)ν1(t)+ y2(β)ν2(t)

)
+b1

(
y′1(β)λ1(t)+ y′2(β)λ2(t)+ y′1(β)ν1(t)+ y′2(β)ν2(t)

)
=
(

a0y1(α)+a1y′1(α)+b0y1(β)+b1y′1(β)
)

λ1(t)

+
(

a0y2(α)+a1y′2(α)+b0y2(β)+b1y′2(β)
)

λ2(t)

+b0y1(β)ν1(t)+b0y2(β)ν2(t)

+b1y′1(β)ν1(t)+b1y′2(β)ν2(t)

= l1(y1(x))λ1(t)+ l1(y2(x))λ2(t)

+b0(y1(β)ν1(t)+ y2(β)ν2(t))

+b1(y′1(β)ν1(t)+ y′2(β)ν2(t)),

from where

l1(y1(x))λ1(t)+ l1(y2(x))λ2(t)

=−b0(y1(β)ν1(t)− y2(β)ν2(t))−b1(y′1(β)ν1(t)− y′2(β)ν2(t)).

As in above, using that

l2(G(x, t)) = 0,

we get

l2(y1(x))λ1(t)+ l2(y2(x))λ2(t)

=−d0(y1(β)ν1(t)− y2(β)ν2(t))−d1(y′1(β)ν1(t)− y′2(β)ν2(t)).
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Thus we obtain the system

l1(y1(x))λ1(t)+ l1(y2(x))λ2(t)

=−b0(y1(β)ν1(t)+ y2(β)ν2(t))−b1(y′1(β)ν1(t)+ y′2(β)ν2(t))

l2(y1(x))λ1(t)+ l2(y2(x))λ2(t)

=−d0(y1(β)ν1(t)+ y2(β)ν2(t))−d1(y′1(β)ν1(t)+ y′2(β)ν2(t)).

(7)

Since the problem (1), (3) has only the trivial solution, it follows that the system (7)
uniquely determines λ1(t) and λ2(t).

Theorem 16.0.354. The unique solution of the problem (2), (3) can be represented by

y(x) =
∫

β

α
G(x, t)r(t)dt

=
∫ x

α
G(x, t)r(t)dt +

∫
β

x G(x, t)r(t)dt.

Proof. Since G(x, t) is differentiable with respect to x in each of the intervals, we find

y′(x) = G(x,x)r(x)+
∫ x

α

∂G
∂x (x, t)r(t)dt

−G(x,x)r(x)+
∫

β

x
∂G
∂x (x, t)r(t)dt

=
∫ x

α

∂G
∂x (x, t)r(t)dt +

∫
β

x
∂G
∂x (x, t)r(t)dt

=
∫

β

α

∂G
∂x (x, t)r(t)dt.

(8)

Also, because ∂G
∂x (x, t) is a continuous function of (x, t) in the triangles α ≤ t ≤ x ≤ β,

α≤ x≤ t ≤ β, then for any point (s,s) on the diagonal of the square, i.e., t = x it is necessary
to have

∂G
∂x

(s,s−) =
∂G
∂x

(s+,s)

and
∂G
∂x

(s,s+) =
∂G
∂x

(s−,s).

Now we differentiate the equality (8) with respect to x and we get

y′′(x) = ∂G
∂x (x,x

−)r(x)+
∫ x

α

∂2G
∂x2 (x, t)r(t)dt

− ∂G
∂x (x,x

+)r(x)+
∫

β

x
∂2G
∂x2 (x, t)r(t)dt,

or
y′′(x) =

(
∂G
∂x (x,x

−)− ∂G
∂x (x,x

+)
)

dx

+
∫

β

α

∂2G
∂x2 (x, t)r(t)dt.
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Using the property (ii) of the Green’s function G(x, t), from the last equality, we get

y′′(x) = r(x)+
∫

β

α

∂2G
∂x2 (x, t)r(t)dt.

Therefore
y′′(x)+ p(x)y′(x)+q(x)y(x)

= r(x)+
∫

β

α

(
∂2G
∂x2 (x, t)+ p(x) ∂G

∂x (x, t)+q(x)G(x, t)
)

r(t)dt

= r(x).

Consequently y(x) is a solution to the equation (2).
Also, using the property (iv) of the Green’s function G(x, t),

l1(y(x) = l1
(∫

β

α
G(x, t)r(t)dt

)
=

∫
β

α
L1(G(x, t))r(t)dt

= 0,

l2(y(x) = l2
(∫

β

α
G(x, t)r(t)dt

)
=

∫
β

α
l2(G(x, t))r(t)dt

= 0.

Example 16.0.355. Let

T̂ (x) = ex, p1(x) =−
2x−1
(1− x)2 , p2(x) =

2
(1− x)2 .

We will consider the periodic boundary conditions

y(0) = y(π),

y′(0) = y′(π).

We have
p(x) = −e2x+xe2x+xe2x

ex(ex−xex) − 2x−1
(1−x)2

ex−xex

ex

= 2x−1
1−x −

2x−1
1−x

= 0,
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q(x) = 2
(1−x)2

(ex−xex)2

e2x + 2x−1
(1−x)2

ex(ex−xex)
ex

− e3x−e3x+xe3x

e2x(ex−xex)

= 2
(1−x)2 (1− x)2 + 2x−1

(1−x)2 (1− x)− x
1−x

= 2+ 2x−1
1−x −

x
1−x

= 2+ x−1
1−x

= 2−1

= 1.

Thus the equation (1) takes the form

y′′(x)+ y(x) = 0.

Two linearly independent solutions are

y1(x) = cosx, y2(x) = sinx.

We will search Green’s function in the form

G(x, t) =


λ1(t)cosx+λ2(t)sinx, 0≤ x≤ t,

µ1(t)cosx+µ2(t)sinx, t ≤ x≤ π.

From the properties (i) and (ii) of the Green’s function we get the system

λ1(t)cos t +λ2(t)sin t = µ1(t)cos t +µ2(t)sin t

−µ1(t)sin t +µ2(t)cos tλ1(t)cos t−λ2(t)cos t = 1.

Let
ν1(t) = µ1(t)−λ1(t)

ν2(t) = µ2(t)−λ2(t).

Thus we obtain the system

ν1(t)cos t +ν2(t)sin t = 0

−ν1(t)sin t +ν2(t)cos t = 1,

whereupon
ν1(t) =−sin t,

ν2(t) = cos t.
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Therefore
µ1(t) = λ1(t)− sin t,

µ2(t) = λ2(t)+ cos t.

Consequently

G(x, t) =


λ1(t)cosx+λ2(t)sinx, 0≤ x≤ t,

λ1(t)cosx+λ2(t)sinx− cosxsin t + sinxcos t.

From the boundary conditions we find

λ1(t) =−λ1(t)+ sin t

or
λ1(t) =

1
2

sin t

and
λ2(t) =−λ2(t)− cos t

or
λ2(t) =−

1
2

cos t.

Consequently

G(x, t) =


1
2 sin(t− x), 0≤ x≤ t,

−1
2 sin(t− x), t ≤ x≤ π.
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et des Animaux. 14, 418-443.

[117] Verhulst, F. (1989). Nonlinear Differential Equations and Dynamical Systems, New
York: Springer-Verlag.

[118] Watson, G. N. (1966). A Treatise on the Theory of Bessel Functions, 2nd ed. Cam-
bridge: Cambridge University Press.

[119] Weinberger, H. (1999). An example of blowup produced by equal diffusions. J. Diff.
Eqns. To appear.

[120] Weissert, T. (1997). The Genesis of Simulation in Dynamics: Pursuing the Fermi-
Ulam-Pasta Problem. New York: Springer-Verlag.

[121] Weyl, H. (1952). Space Time Matter, H. L. Brose, trans. New York: Dover Publica-
tions, Inc.

[122] Wiggins, S. W. (1988). Global Bifurcations and Chaos. New York: Springer-Verlag.



262 References

[123] Wiggins, S. W. (1990). Introduction to Applied Nonlinear Dynamical Systems and
Chaos. New York: Springer-Verlag.

[124] Whittaker, E. T. and G. N. Watson (1927). A Course of Modern Analysis, 1996
reprint. Cambridge: Cambridge University Press.

[125] Winkel, R. (1998). A transfer principle in the real plane from non-singular algebraic
curves to polynomial vector fields. http://www.iram.rwth-aachen.de/winkel/.

[126] Yagasaki, K. (1994). Chaos in a pendulum with feedback control. Nonlinear Dyn. 6,
125-142.

[127] Yakubovich, V. A. and V. M. Starzhinskii (1975). Linear Differential Equations with
Periodic Coefficients, D. Louvish, trans. New York: John Wiley & Sons.


