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Preface
This book introduces the main ideas and the fundamental methods of the iso-differential
calculus for the iso-functions of several variables.

In Chapter 1 are discussed the structure of the iso-Euclidean spaces, the main concep-
tions for the iso-functions of the first, the second, the third, the fourth and the fifth kind
of n - variables, limits of the iso-real iso-valued iso-functions of several variables, the con-
tinuous iso-functions, the main ideas for the iso-partial derivatives of the first, the second,
the third, the fourth, the fifth, the sixth and the seventh kind of the iso-functions of several
variables, they are introduced the main approaches for the finding of the minima and the
maxima of the iso-functions of n variables.

In Chapter 2 are represented some of the most relevant results of the iso-integration
theory. The aim is to provide the reader with all that is needed to use the power of the
iso-integration.

In Chapter 3 we deal with the line and the surface iso-integrals.
Chapter 4 provides a sufficiently wide introduction to the theory of the iso-Fourier inte-

gral.
Chapter 5 is dedicated to some conceptions connected with the iso-Hilbert spaces. They

are defined some classes of iso-operators in the iso-Hilbert spaces and given some of their
properties.

In Chapter 6 is given a definition for the Santilli-Lie-isotopic power series and they are
deducted some of its properties.

I think, in fact, that it is useful for the reader to have a wide spectrum of context in
which these ideas play an important role and wherein even the technical and formal aspects
play a role. However, I have tried to keep the same spirit, always providing examples and
exercises to clarify the main presentation.

I will be very grateful to anybody who wants to inform me about errors or just
misprints, or wants to express criticism or other comments, to my e-mails svetlinge-
orgiev1@gmail.com, sgg2000bg@yahoo.com.

Svetlin Georgiev
Paris, France

May 25, 2014
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Chapter 1

Real-Valued Iso-Functions of Several
Variables

1.1. Structure of F̂Rn

Let T̂1 : R −→ R, T̂ : Rn −→ R be positive functions and Î1 =
1
T̂1

, Î = 1
T̂

. With F̂R we will
denote the space of the iso-real iso-numbers â = a

T̂1(a)
, a ∈ R. Some of the properties of

the space F̂R are studied in ”Foundations of Iso-Differential Calculus”, Vol. I, [1]. In this
chapter we study the iso-functions defined on subsets of the iso-real n - dimensional space
F̂Rn , which consists of all ordered n-tuples

x̂ = (x̂1, x̂2, . . . , x̂n) =
( x1

T̂ (x1,x2, . . . ,xn)
,

x2

T̂ (x1,x2, . . . ,xn)
, . . . ,

xn

T̂ (x1,x2, . . . ,xn)

)
,

of iso-real iso-numbers, called the iso-coordinates or the iso-components of X̂ . Here x =
(x1,x2, . . . ,xn) ∈ Rn. This space sometimes is called iso-Euclidean space.

In this section we introduce an algebraic structure of F̂Rn . We also consider its topolog-
ical properties, that is, properties that can be described in terms of a special class of subsets,
the iso-neighborhood in F̂Rn .

Definition 1.1.1. The iso-vector sum of

X̂ = (x̂1, x̂2, . . . , x̂n) and Ŷ = (ŷ1, ŷ2, . . . , ŷn)

is

(A1)X̂ + Ŷ = (x̂1 + ŷ1, x̂2 + ŷ2, . . . , x̂n + ŷn).
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If â is an iso-real iso-number, the iso-scalar multiple of X̂ by â is

(A2)

â×̂X̂ = a
T̂1(a)

T̂1(a)X̂ = aX̂ = a(x̂1, x̂2, . . . , x̂n)

= a
(

x1
T̂ (x1,x2,...,xn)

, x2
T̂ (x1,x2,...,xn)

, . . . , xn
T̂ (x1,x2,...,xn)

)
=
(

a x1
T̂ (x1,x2,...,xn)

,a x2
T̂ (x1,x2,...,xn)

, . . . ,a xn
T̂ (x1,x2,...,xn)

)
=
(

a
T̂1(a)

T̂1(a) x1
T̂ (x1,x2,...,xn)

, a
T̂1(a)

T̂1(a) x2
T̂ (x1,x2,...,xn)

, . . . , a
T̂1(a)

T̂1(a) xn
T̂ (x1,x2,...,xn)

)
= (â×̂x̂1, â×̂x̂2, . . . , â×̂x̂n).

Note that ”+” stands for the newly defined addition of members of F̂Rn and, in the right
”+”, for addition of iso-real iso-numbers. However, this can never lead to confusion, since
the meaning of ”+” can always be deducted from the symbols on either side of it. A similar
comment applies to the use of juxtaposition to indicate iso-scalar multiplication on the left
of (A2) and iso-multiplication of iso-real iso-numbers on the right.

Example 1.1.2. In F̂R3 , let T̂ (x) = x2
1+x2

2+3x2
3, x = (x1,x2,x3)∈R3, T̂1(y) = y2+1, y∈R.

Let also,
X = (−1,2,3), Y = (2,0,4).

Then
X̂ =

(
− 1

32 ,
2

32 ,
3

32

)
=
(
− 1

32 ,
1
16 ,

3
32

)
,

Ŷ =
(

2
52 ,

0
52 ,

4
52

)
=
(

1
26 ,0,

1
13

)
,

and from here

X̂ + Ŷ =
(
− 1

32
+

1
26

,
1
16

+0,
3
32

+
1
13

)
=
(
− 7

416
,

1
16

,
7

416

)
.

If 3̂ ∈ F̂R then 3̂ = 3
10 and

3̂×̂X̂ =
(
− 21

416
,

3
16

,
213
416

)
.

Exercise 1.1.3. In F̂R2 , let T̂ (x)= x2
1+1, x=(x1,x2)∈R2, T̂1(y)= y2+1, y∈R, X =(1,2),

Y = (−3,1). Find

X̂ , Ŷ , X̂ + Ŷ , 2̂×̂Ŷ , 3̂×̂(X̂ + Ŷ ).

Answer. X̂ =
(

1
2 ,1
)

, Ŷ =
(
− 3

10 ,
1

10

)
, X̂ +Ŷ =

(
1
5 ,

11
10

)
, 2̂×̂Ŷ =

(
−3

5 ,
1
5

)
, 2̂×̂(X̂ +Ŷ ) =(

2
5 ,

11
5

)
.
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Definition 1.1.4. If λ is a real number, the iso-multiplication of X̂ by λ is defined as follows

λ×̂X̂ = λT̂1(λ)X̂ = λT̂1(λ)
(

x1
T̂ (x1,x2,...,xn)

, x2
T̂ (x1,x2,...,xn)

, . . . , xn
T̂ (x1,x2,...,xn)

)
=
(

λT̂1(λ)
x1

T̂ (x1,x2,...,xn)
,λT̂1(λ)

x2
T̂ (x1,x2,...,xn)

, . . . ,λT̂1(λ)
xn

T̂ (x1,x2,...,xn)

)
.

Example 1.1.5. In F̂R4 , let T̂ (x) = x2
2 + 3, x = (x1,x2,x3,x4) ∈ R4, T̂1(y) = 1+ y2, y ∈ R.

Let also, X = (1,−1,2,3). Then

X̂ =
(

1
4 ,−

1
4 ,

1
2 ,

3
4

)
,

3×̂X̂ = 3T̂1(3)
(

1
4 ,−

1
4 ,

1
2 ,

3
4

)
= 30

(
1
4 ,−

1
4 ,

1
2 ,

3
4

)
=
(

15
2 ,−

15
2 ,15, 45

2

)
.

Exercise 1.1.6. In F̂R2 , let T̂ (x) = x2
1 + x2

2 +1, x = (x1,x2) ∈ R2, T̂1(y) = 1+ y4, y ∈ R. Let
also, X = (1,0), Y = (−1,−1). Find

2×̂X̂ + 3̂×̂Ŷ .

Answer. (16,−1).

Definition 1.1.7. If λ̂ is an iso-real iso-number, the multiplication of X̂ by λ̂ is defined as
follows

λ̂X̂ = λ

T̂1(x)
X̂ = λ

T̂1(x)

(
x1

T̂ (x1,x2,...,xn)
, x2

T̂ (x1,x2,...,xn)
, . . . , xn

T̂ (x1,x2,...,xn)

)
=
(

λ

T̂1(x)
x1

T̂ (x1,x2,...,xn)
, λ

T̂1(x)
x2

T̂ (x1,x2,...,xn)
, . . . , λ

T̂1(x)
xn

T̂ (x1,x2,...,xn)

)
.

Example 1.1.8. In F̂R5 , let T̂ (x) = x2
1 + x4

2 +1, x = (x1,x2,x3,x4,x5) ∈ R5, T̂1(y) = 1+ |y|,
y ∈ R, X = (1,−1,−1,0,1), Y = (1,0,1,1,1). We will find

4×̂(2̂X̂ + 3̂×̂Ŷ ).

We have

X̂ =
(

1
3 ,−

1
3 ,−

1
3 ,0,

1
3

)
, Ŷ =

(
1
2 ,0,

1
2 ,

1
2 ,

1
2

)
,

2̂X̂ = 2
T̂1(2)

(
1
3 ,−

1
3 ,−

1
3 ,0,

1
3

)
= 2

3

(
1
3 ,−

1
3 ,−

1
3 ,0,

1
3

)
=
(

2
9 ,−

2
9 ,−

2
9 ,0,

2
9

)
,

3̂×̂Ŷ = 3
T̂1(3)

ˆT1(3)
(

1
2 ,0,

1
2 ,

1
2 ,

1
2

)
=
(

3
2 ,0,

3
2 ,

3
2 ,

3
2

)
,

4̂×̂(2̂X̂ + 3̂×̂Ŷ ) = 4T̂1(4)
((

2
9 ,−

2
9 ,−

2
9 ,0,

2
9

)
+
(

3
2 ,0,

3
2 ,

3
2 ,

3
2

))
= 20

(
31
18 ,−

2
9 ,

23
18 ,

3
2 ,

31
18

)
=
(

310
9 ,−40

9 ,
230
9 ,30, 310

9

)
.
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Exercise 1.1.9. In F̂R3 , let T̂ (x) = x2
1+ |x2|+1, x = (x1,x2,x3) ∈R3, T̂1(y) = 1+ |y|, y ∈R,

X = (1,−1,−1), Y = (−1,−1,1). Find

2̂×̂(3̂X̂ +4×̂Ŷ ).

Answer.
(
−77

6 ,−
83
6 ,

77
6

)
.

Definition 1.1.10. If λ is a real number, the multiplication of X̂ by λ is defined as follows

λX̂ = λ

(
x1

T̂ (x1,x2,...,xn)
, x2

T̂ (x1,x2,...,xn)
, . . . , xn

T̂ (x1,x2,...,xn)

)
=
(

λ
x1

T̂ (x1,x2,...,xn)
,λ x2

T̂ (x1,x2,...,xn)
, . . . ,λ xn

T̂ (x1,x2,...,xn)

)
.

Example 1.1.11. In F̂R4 , let T̂ (x) = |x1|+ |x2|+ |x3|+ |x4|+ 4, x = (x1,x2,x3,x4) ∈ R4,
T̂1(y) = 3+ |y|, y ∈ R, X = (1,−1,0,0), Y = (0,1,−1,1). We will find

A = 2(4×̂Ŷ + 3̂×̂X̂)+ 2̂Ŷ .

We have
X̂ =

(1
6 ,−

1
6 ,0,0

)
, Ŷ =

(
0, 1

7 ,−
1
7 ,

1
7

)
,

4×̂Ŷ = 4T̂1(4)
(

0, 1
7 ,−

1
7 ,

1
7

)
= (0,4,−4,4),

3̂×̂Ŷ = 3
T̂1(3)

T̂1(3)
(1

6 ,−
1
6 ,0,0

)
=
(

1
2 ,−

1
2 ,0,0

)
,

4×̂Ŷ + 3̂×̂X̂ = (0,4,−4,4)+
(

1
2 ,−

1
2 ,0,0

)
=
(

1
2 ,

7
2 ,−4,4

)
,

2(4×̂Ŷ + 3̂×̂X̂) = 2
(

1
2 ,

7
2 ,−4,4

)
= (1,7,−8,8),

2̂Ŷ = 2
T̂1(2)

(
0, 1

7 ,−
1
7 ,

1
7

)
=
(

0, 2
35 ,−

2
35 ,

2
35

)
.

Then

A = (1,7,−8,8)+
(

0,
2

35
,− 2

35
,

2
35

)
=
(

1,
247
35

,−282
35

,
282
35

)
.

Exercise 1.1.12. In F̂R2 , let T̂ (x) = |x1|+ |x2|+1, x = (x1,x2)∈R2, T̂1(y) = 1+2|y|, y∈R,
X = (1,−1), Y = (1,1). Find

2̂(3̂×̂X̂ + 4̂Ŷ )−2×̂Ŷ .

Answer.
(

512
135 ,

404
135

)
.

If â and b̂ are elements of F̂R then

â×̂b̂ =
a

T̂1(a)
T̂1(a)

b
T̂1(b)

=
ab

T̂1(b)

10



and
b̂×̂â =

b
T̂1(b)

T̂1(b)
a

T̂1(a)
=

ab
T̂1(a)

.

In other words, when the isotopic element T̂1 does not coincide with some constant, the
iso-multiplication of the iso-real iso-numbers is not a commutative operation. Only in the
case when T̂1 ≡ const we have that the iso-multiplication of the iso-real iso-numbers is
commutative.

Below we will suppose that T̂1 is a positive constant.
The defined above operations have the following properties: let X̂ , Ŷ , Ẑ ∈ F̂Rn , â ∈ F̂R,

b̂ ∈ F̂R, a ∈ R, b ∈ R, then

1. X̂ + Ŷ = Ŷ + X̂ (the iso-vector addition is commutative),

2. X̂ +(Ŷ + Ẑ) = (X̂ + Ŷ )+ Ẑ (the iso-vector addition is associative),

3. (X̂ + Ŷ )+ Ẑ = X̂ +(Ŷ + Ẑ) (the iso-vector addition is distributive),

4. There is a unique vector 0̂≡ 0=(0,0, . . . ,0), called the zero iso-vector, such that X̂+0=
X̂ , 0 = (0,0, . . . ,0),

5. For each X̂ ∈ F̂Rn there is a unique iso-vector −X̂ such that X̂ +(−X̂) = 0̂,

6. 1X̂ = X̂ ,

7. 1×̂X̂ = T̂1(1)X̂ ,

8. â×̂(b̂×̂X̂) = (â×̂b̂)×̂X̂ ,

9. â×̂(b̂X̂) = (â×̂b̂)X̂ ,

10. â×̂(b×̂X̂) = (â×̂b)×̂X̂ ,

11. â×̂(bX̂) = (â×̂b)X̂ ,

12. â(b̂×̂X̂) = (âb̂)×̂X̂

13. â(b̂X̂) = (âb̂)X̂ ,

14. â(b×̂X̂) = (âb)×̂X̂ ,

15. â(bX̂) = (âb)X̂ ,

16. a×̂(b̂×̂X̂) = (a×̂b̂)×̂X̂ ,

17. a×̂(b̂X̂) = (a×̂b̂)X̂ ,

18. a×̂(b×̂X̂) = (a×̂b)×̂X̂ ,

19. a×̂(bX̂) = (a×̂b)X̂ ,

20. a(b̂×̂X̂) = (ab̂)×̂X̂ ,
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21. a(b̂X̂) = (ab̂)X̂ ,

22. a(b×̂X̂) = (ab)×̂X̂ ,

23. a(bX̂) = (ab)X̂ ,

24. (â+ b̂)×̂X̂ = â×̂X̂ + b̂×̂X̂ ,

25. (â+ b̂)X̂ = âX̂ + b̂X̂ ,

26. (a+ b̂)×̂X̂ = a×̂X̂ + b̂×̂X̂ ,

27. (a+ b̂)X̂ = aX̂ + b̂X̂ ,

28. (â+b)×̂X̂ = â×̂X̂ +b×̂X̂ ,

29. (â+b)X̂ = âX̂ +bX̂ ,

30. (a+b)×̂X̂ = a×̂X̂ +b×̂X̂ ,

31. (a+b)X̂ = aX̂ +bX̂ .

Clearly, 0̂ = (0,0, . . . ,0) and, if X̂ = (x̂1, x̂2, . . . , x̂n), then

−X̂ = (−x̂1,−x̂2, . . . ,−x̂n).

We write
X̂ +(−Ŷ ) = X̂− Ŷ .

The iso-point 0̂ is called the iso-origin.
When we wish to emphasize that we are regarding a member of F̂Rn as part of the

algebraic structure, we will speak of it as an iso-vector, otherwise, we will speak of it as an
iso-point.

Iso-Length, Iso-Distance and Inner Iso-Product

Definition 1.1.13. The iso-length of the iso-vector X̂ = (x̂1, x̂2, . . . , x̂n) is

|X̂ |̂= |X |
T̂ (X)

√
T̂1, X = (x1,x2, . . . ,xn), |X |

√
x2

1 + x2
2 + · · ·+ x2

n.

The iso-distance between the iso-points X̂ and Ŷ is

|X̂− Ŷ |̂.

In particular, |X̂ |̂ is the iso-distance between the iso-point X̂ and the iso-origin 0̂. If |X̂ |̂= Î1,
then the iso-vector X̂ is an iso-unit iso-vector.
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Example 1.1.14. In F̂R4 , let T̂ (x) = |x1|2 + 2, x = (x1,x2,x3,x4) ∈ R4, T̂1 = 3. Let also
X = (−1,2,1,−3), Y = (1,1,0,−1). Then

X̂ =
(
−1

3 ,
2
3 ,

1
3 ,−1

)
, Ŷ =

(
1
3 ,

1
3 ,0,−

1
3

)
,

|X̂ |̂=
√

15
3

√
3 =
√

5, |Ŷ |̂=
√

3
3

√
3 = 1,

X̂− Ŷ =
(
−2

3 ,
1
3 ,

1
3 ,−

2
3

)
, |X̂− Ŷ |̂=

√
10
6

√
3 =

√
30
6 .

Exercise 1.1.15. In F̂R2 , let T̂ (x) = |x1− x2|2 + 2, x = (x1,x2) ∈ R2, T̂1 = 4, X = (−1,2),
Y = (1,−1), Find

|X̂ |̂, |Ŷ |̂, |X̂− Ŷ |̂.

Answer. 2
√

5
11 ,

√
2

3 , 2
√

13
27 .

Definition 1.1.16. The inner iso-product of X̂ = (x̂1, x̂2, . . . , x̂n) and Ŷ = (ŷ1, ŷ2, . . . , ŷn) is

X̂ ·̂Ŷ = x̂1×̂ŷ1 + x̂2×̂ŷ2 + · · ·+ x̂n×̂ŷn

= x1
T̂ (X)

T̂1
y1

T̂ (Y )
+ x2

T̂ (X)
T̂1

y2
T̂ (Y )

+ · · · xn
T̂ (X)

T̂1
yn

T̂ (Y )
,

X = (x1,x2, . . . ,xn), Y = (y1,y2, . . . ,yn).

Example 1.1.17. In F̂R3 , let T̂ (x) = |x1 + x2 + x3|+ 3, x = (x1,x2,x3) ∈ R3, T̂1 = 2, X =
(1,−1,2), Y = (2,−3,4). We will find X̂ ·̂Ŷ . We have

T̂ (X) = 5, T̂ (Y ) = 6,

X̂ ·̂Ŷ = 1
5 2 2

6 +
−1
5 2−3

6 + 2
5 2 4

6 = 2
15 +

1
5 +

8
15 = 11

15 .

Exercise 1.1.18. In F̂R2 , let T̂ (x) = |x1|+ |x2|+4, x = (x1,x2) ∈ R2, T̂1 = 3, X = (1,−1),
Y = (2,2). Find

X̂ ·̂Ŷ .

Answer. 0.

From the definition of the inner iso-product it follows that it can be represented in the
form

X̂ ·̂Ŷ =
X ·Y

T̂ (X)T̂ (Y )
T̂1.

Lemma 1.1.19. (iso- Schwartz’s inequality) If X̂ and Ŷ are any two iso-vectors in F̂Rn , then

|X̂ ·̂Ŷ | ≤ |X̂ |×̂|Ŷ |,

with equality if and only if one of the iso-vectors is an iso-scalar iso-multiple of the other.
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Proof. We have

(A3) |X̂ ·̂Ŷ |=
∣∣∣ X ·Y

T̂ (X)T̂ (Y )
T̂1

∣∣∣= |X ·Y |
T̂ (X)T̂ (Y )

T̂1,

after we apply the classical Schwartz’s inequality we get

|X̂ ·̂Ŷ | ≤ |X ||Y |
T̂ (X)T̂ (Y )

T̂1 =
∣∣∣ X

T̂ (X)

∣∣∣T̂1

∣∣∣ Y
T̂ (Y )

∣∣∣= |X̂ |×̂|Ŷ |.
If X̂ = t̂×̂Ŷ for some t̂ ∈ F̂R, then

X̂ = tŶ or
X

T̂ (X)
= t

Y
T̂ (Y )

.

From here and (A3) we obtain

(A4)|X̂ ·̂Ŷ |= |tY ·Y |
T̂ 2(Y )

T̂1 = |t| |Y |
2

T̂ 2(Y )
T̂1.

On the other hand,

(A4)|X̂ |×̂|Ŷ |= |X |
T̂ (X)

T̂1
|Y |

T̂ (Y )
=
∣∣∣t Y

T̂ (Y )

∣∣∣T̂1
|Y |

T̂ (Y )
= |t| |Y |

2

T̂ 2(Y )
T̂1.

From (A3) and (A4) we conclude that

(A5)|X̂ ·̂Ŷ |= |X̂ |×̂|Ŷ |.

Now we suppose (A5). Then

|X ·Y |
T̂ (X)T̂ (Y )

T̂1 =
|X |

T̂ (X)
T̂1
|Y |

T̂ (Y )
,

therefore
|X ·Y |= |X ||Y |,

whereupon
X = tY

for some real number t. Consequently

X
T̂ (X)

=
t

T̂ (X)

T̂ (Y )
T̂1

T̂1
Y

T̂ (Y )
=

̂( tT̂ (Y )
T̂ (X)

)
×̂Ŷ .

Let

λ̂ =
̂( tT̂ (Y )
T̂ (X)

)
.

Then
X̂ = λ̂×̂Ŷ .
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Lemma 1.1.20. If X̂ and Ŷ are any two iso-vectors in F̂Rn , then

|X̂ ·̂Ŷ |̂ ≤ |X̂ |×̂|Ŷ |̂= |X̂ |̂×̂|Ŷ |,

with equality if and only if one of the iso-vectors is an iso-scalar iso-multiple of the other.

Proof. We have
|X̂ ·̂Ŷ |̂=

∣∣∣ X ·Y
T̂ (X)T̂ (Y )

T̂1

∣∣∣√T̂1 =
|X ·Y |

T̂ (X)T̂ (Y )
T̂

3
2

1 .

Now we apply the Schwartz’s inequality and we get

|X̂ ·̂Ŷ |̂ ≤ |X ||Y |
T̂ (X)T̂ (Y )

T̂
3
2

1 =
∣∣∣ X

T̂ (X)

∣∣∣T̂1

∣∣∣ Y
T̂ (Y )

∣∣∣√T̂1 = |X̂ |×̂|Ŷ |̂

=
∣∣∣ X

T̂ (X)

∣∣∣√T̂1T̂1

∣∣∣ Y
T̂ (Y )

∣∣∣= |X̂ |̂×̂|Ŷ |.
Also,

|X̂ ·̂Ŷ |̂= |X̂ |×̂|Ŷ |̂ ⇐⇒

|X̂ ·̂Ŷ |
√

T̂1 = |X̂ |×̂|Ŷ |
√

T̂1 ⇐⇒

|X̂ ·̂Ŷ |= |X̂ |×̂|Ŷ |
if and only if one of the iso-vectors is an iso-scalar iso-multiple of the other.

Lemma 1.1.21. If X̂ and Ŷ are any two iso-vectors in F̂Rn , then

|X̂ · Ŷ |̂ ≤ |X̂ ||Ŷ |̂= |X̂ |̂|Ŷ |,

with equality if and only if one of the iso-vectors is an iso-scalar iso-multiple of the other.

Proof. We have

|X̂ · Ŷ |̂=
∣∣∣ X

T̂ (X)
· Y

T̂ (Y )

∣∣∣√T̂1 =
|X ·Y |

T̂ (X)T̂ (Y )

√
T̂1 ≤ |X ||Y |

T̂ (X)T̂ (Y )

√
T̂1

=
∣∣∣ X

T̂ (X)

∣∣∣∣∣∣ Y
T̂ (Y )

∣∣∣√T̂1 = |X̂ ||Ŷ |̂=
∣∣∣ X

T̂ (X)

∣∣∣√T̂1

∣∣∣ Y
T̂ (Y )

∣∣∣= |X̂ |̂|Ŷ |.
Also,

|X̂ · Ŷ |̂= |X̂ ||Ŷ |̂ ⇐⇒∣∣∣ X
T̂ (X)
· Y

T̂ (Y )

∣∣∣√T̂1 =
∣∣∣ X

T̂ (X)

∣∣∣∣∣∣ Y
T̂ (Y )

∣∣∣√T̂1 ⇐⇒

|X ·Y |= |X ||Y |
if and only if there exists t ∈ R such that

X = tY ⇐⇒

X
T̂ (X)

= tT̂ (y)
T̂ (X)

1
T̂1

T̂1
Y

T̂ (Y )
⇐⇒

X̂ =
(̂

tT̂ (y)
T̂ (X)

)
×̂Ŷ .
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We note that
(̂

tT̂ (y)
T̂ (X)

)
∈ F̂R.

Exercise 1.1.22. If X̂ and Ŷ are any two iso-vectors in F̂Rn , then

|X̂ · Ŷ | ≤ |X̂ ||Ŷ |,

with equality if and only if one of the iso-vectors is an iso-scalar iso-multiple of the other.

Theorem 1.1.23. (Iso-Triangle Inequality) If X̂ and Ŷ are in F̂Rn , then

|X̂ + Ŷ |̂ ≤ |X̂ |̂+ |Ŷ |̂,

with equality if and only if one of the iso-vectors is a nonegative iso-scalar iso-multiple of
the other.

Proof. We have

|X̂ + Ŷ |̂=
∣∣∣ X

T̂ (X)
+ Y

T̂ (Y )

∣∣∣√T̂1 ≤
(∣∣∣ X

T̂ (X)

∣∣∣+ ∣∣∣ Y
T̂ (Y )

∣∣∣)√T̂1 = |X̂ |̂+ |Ŷ |̂.

Also,
|X̂ + Ŷ |̂= |X̂ |̂+ |Ŷ |̂ ⇐⇒∣∣∣ X

T̂ (X)
+ Y

T̂ (Y )

∣∣∣= ∣∣∣ X
T̂ (X)

∣∣∣+ ∣∣∣ Y
T̂ (Y )

∣∣∣
if and only if there exists t ≥ 0 such that

X
T̂ (X)

= t Y
T̂ (Y )

⇐⇒

X
T̂ (X)

= t
T̂1

T̂1
Y

T̂ (Y )
⇐⇒

X̂ = t̂×̂Ŷ .

We note that t̂ ∈ F̂R and t̂ ≥ 0.

Exercise 1.1.24. (Iso-Triangle Inequality) If X̂ and Ŷ are in F̂Rn , then

|X̂ + Ŷ | ≤ |X̂ |+ |Ŷ |,

with equality if and only if one of the iso-vectors is a nonegative iso-scalar iso-multiple of
the other.

Corollary 1.1.25. If X̂ , Ŷ and Ẑ are in F̂Rn , then

|X̂− Ẑ |̂ ≤ |X̂− Ŷ |̂+ |Ŷ − Ẑ |̂,

|X̂− Ẑ| ≤ |X̂− Ŷ |+ |Ŷ − Ẑ|.
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Corollary 1.1.26. If X̂ and Ŷ are in F̂Rn , then

|X̂− Ŷ |̂ ≥ ||X̂ |̂ − |Ŷ |̂|,

|X̂− Ŷ | ≥ ||X̂ |− |Ŷ ||.
The next theorem lists some of the properties of the iso-length, the iso-distance, and the

inner iso-product that follow directly from their definitions. We leave its proof to the reader.

Theorem 1.1.27. If X̂ , Ŷ and Ẑ are members of F̂Rn , and â ∈ F̂|R, then

1. |â×̂X̂ |̂= |â|×̂|X̂ |̂= |â|̂×̂|X̂ |,

2. |â×̂X̂ |= |â|×̂|X̂ |,

3. |âX̂ |̂= |â||X̂ |̂= |â|̂|X̂ |,

4. |âX̂ |= |â||X̂ |,

5. |a×̂X̂ |̂= |a|×̂|X̂ |̂,

6. |a×̂X̂ |= |a|×̂|X̂ |,

7. |aX̂ |̂= |a||X̂ |̂,

8. |aX̂ |= |a||X̂ |,

9. |X̂ |̂ ≥ 0̂, with equality if and only if X̂ = 0̂,

10. |X̂ | ≥ 0, with equality if and only if X̂ = 0̂,

11. |X̂− Ŷ |̂ ≥ 0, with equality if and only if X̂ = Ŷ ,

12. |X̂− Ŷ ≥ 0, with equality if and only if X̂ = Ŷ ,

13. X̂ ·̂Ŷ = Ŷ ·̂X̂ ,

14. X̂ · Ŷ = Ŷ · X̂ ,

15. X̂ ·̂(Ŷ + Ẑ) = X̂ ·̂Ŷ + X̂ ·̂Ẑ,

16. X̂ · (Ŷ + Ẑ) = X̂ · Ŷ + X̂ · Ẑ,

17. (â×̂X̂)·̂Ŷ = X̂ ·̂(â×̂Ŷ ) = â×̂(X̂ ·̂Ŷ ),

18. (âX̂)·̂Ŷ = X̂ ·̂(âŶ ) = â(X̂ ·̂Ŷ ),

19. (a×̂X̂)·̂Ŷ = X̂ ·̂(a×̂Ŷ ) = a×̂(X̂ ·̂Ŷ ),

20. (aX̂)·̂Ŷ = X̂ ·̂(aŶ ) = a(X̂ ·̂Ŷ ),

21. (â×̂X̂) · Ŷ = X̂ · (â×̂Ŷ ) = â×̂(X̂ · Ŷ ),

22. (âX̂) · Ŷ = X̂ · (âŶ ) = â(X̂ · Ŷ ),

23. (a×̂X̂) · Ŷ = X̂ · (a×̂Ŷ ) = a×̂(X̂ · Ŷ ),

24. (aX̂) · Ŷ = X̂ · (aŶ ) = a(X̂ · Ŷ ).
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Iso-Line Segments in F̂Rn

The equation of an iso-line through an iso-point X̂0 = (x̂0, ŷ0, ẑ0) in F̂R3 can be written
parametrically as

(A6)X̂ = X̂0 + t̂×̂Û , t̂ ∈ F̂R,

where Û = (û1, û2, û3) and û1, û2, and û3 are not all zero. We will write this in the iso-
coordinate form

x̂1 = x̂0 + t̂×̂û1,

x̂2 = ŷ0 + t̂×̂û2,

x̂3 = ẑ0 + t̂×̂û3,

or
x1

T̂ (x1,x2,x3)
= x0

T̂ (x0,y0,z0)
+ t u1

T̂ (u1,u2,u3)
,

x2
T̂ (x1,x2,x3)

= y0
T̂ (x0,y0,z0)

+ t u2
T̂ (u1,u2,u3)

,

x3
T̂ (x1,x2,x3)

= z0
T̂ (x0,y0,z0)

+ t u3
T̂ (u1,u2,u3)

.

We say that the iso-line is through X̂0 in the direction Û .
There are many ways to represent a given iso-line parameterically. For example,

X̂ = X̂0 + ŝ×̂V̂ , ŝ ∈ F̂R,

represents the same iso-line as (A6) if and only if V̂ = â×̂Û for some nonzero iso-real
iso-number â.

To write the parametric equation of an iso-line through two iso-points X̂0 and X̂1 in F̂R3 ,
we take Û = X̂1− X̂0, which yields

X̂ = X̂0 + t̂×̂(X̂1− X̂0) = t̂×̂X̂1 +(Î1− t̂)×̂X̂0, t̂ ∈ F̂R.

The iso-line segment consists of those iso-points for which 0̂≤ t̂ ≤ Î1.

Example 1.1.28. Let T̂ (x) = |x1|+ 1, x = (x1,x2,x3) ∈ R3, T̂1 = 2, X0 = (−1,3,1), U =
(2,−4,0). Then

X̂0 =
(
−1

2
,
3
2
,−1

2

)
, Û =

(2
3
,−4

3
,0
)
.

The iso-line segment is
X̂ = X̂0 + t̂×̂Û ,

which we can rewrite in the form

x1
|x1|+1 =−1

2 +
2
3 t,

x2
|x1|+1 = 3

2 −
4
3 t,

x3
|x1|+1 =−1

2 .
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1. case x1 ≥ 0. Then we have

x1 =
(
−1

2 +
2
3 t
)
(x1 +1),

x2 =
(

3
2 −

4
3 t
)
(x1 +1),

x3 =−1
2(x1 +1),

from where
x1 =

−3+4t
9−4t ,

x2 =
(9−8t)(15−4t)

36 ,

x3 =
4t−15

12 , t ∈
[

3
4 ,

9
4

)
.

2. case x1 ≤ 0. Then we have

x1 =
(
−1

2 +
2
3 t
)
(−x1 +1),

x2 =
(

3
2 −

4
3 t
)
(−x1 +1),

x3 =−1
2(−x1 +1),

whereupon we get
x1 =

4t−3
4t+3 ,

x2 =
9−8t
4t+3 ,

x3 =− 3
4t+3 , t ∈

(
−3

4 ,
3
4

]
.

Definition 1.1.29. Suppose that X̂0 and Û are in F̂Rn and Û 6= 0̂. Then the iso-line through
X̂0 in the direction of Û is the set of all iso-points in F̂Rn of the form

X̂ = X̂0 + t̂×̂Û , t̂ ∈ F̂R.

A set of iso-points of the form

X̂ = X̂0 + t̂×̂Û , t̂1 ≤ t̂ ≤ t̂2,

is called an iso-line segment. In particular, the iso-line segment from X̂0 to X̂1 is the set of
iso-points of the form

X̂ = X̂0 + t̂×̂(X̂1− X̂0) = t̂×̂X̂1 +(Î1− t̂)×̂X̂0, 0̂≤ t̂ ≤ Î1.
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Iso-neighborhood and Iso-open sets in F̂Rn

Having defined iso-distance in F̂Rn , we are now able to say what we mean by an iso-
neighborhood of an iso-point in F̂Rn .

Definition 1.1.30. If ε̂ > 0, ε̂-iso-neighborhood of an iso-point X̂0 in F̂Rn is the set

N̂ε(X̂0) = {X̂ ∈ F̂Rn : |X̂− X̂0 |̂< ε̂}.

In F̂R3 it is the inside, but not the surface of the iso-sphere of iso-radius ε̂ about X̂0.

Example 1.1.31. In F̂R3 , let T̂ (x) = |x1|+ |x2|+ |x3|+ 2, x = (x1,x2,x3) ∈ R3, X0 =
(−1,2,3), T̂1 = 4, ε = 3. Then

X̂0 =
(
−1

8 ,
1
4 ,

3
8

)
,

X̂ =
(

x1
|x1|+|x2|+|x3|+2 ,

x2
|x1|+|x2|+|x3|+2 ,

x3
|x1|+|x2|+|x3|+2

)
,

ε̂ = 3
4 .

From here

|X̂− X̂0 |̂< ε̂ ⇐⇒ |X̂− X̂0|2 < 3
4 ⇐⇒(

x1
|x1|+|x2|+|x3|+2 +

1
8

)2
+
(

x2
|x1|+|x2|+|x3|+2 −

1
4

)2
+
(

x3
|x1|+|x2|+|x3|+2 −

3
8

)2
< 9

64 ,

or
N̂ε(X̂0) =

{
(x1,x2,x3) ∈ R3 :

(
x1

|x1|+|x2|+|x3|+2 +
1
8

)2

+
(

x2
|x1|+|x2|+|x3|+2 −

1
4

)2
+
(

x3
|x1|+|x2|+|x3|+2 −

3
8

)2
< 9

64

}
.

Definition 1.1.32. The iso-open n - ball of radius r̂ about X̂0 is the set

B̂r̂(X̂0) = {X̂ : |X̂− X̂0 |̂< r̂}.

The iso-sphere Ŝr̂(X̂0) of radius r̂ and iso-centre X̂0 is the set

Ŝr̂(X̂0) = {X̂ : |X̂− X̂0|= r̂}.

Lemma 1.1.33. If X̂1 and X̂2 are in B̂r̂(X̂0) for some r̂ > 0, then so is every iso-point on the
iso-line segment from X̂1 to X̂2.

Proof. From X̂1, X̂2 ∈ B̂r̂(X̂0) it follows that

|X̂1− X̂0 |̂< r̂, |X̂2− X̂0 |̂< r̂,

or ∣∣∣ X1

T̂ (X1)
− X0

T̂ (X0)

∣∣∣√T̂1 <
r
T̂1

,
∣∣∣ X2

T̂ (X2)
− X0

T̂ (X0)

∣∣∣√T̂1 <
r
T̂1

.
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The iso-line segment is given by

X̂ = t̂×̂X̂2 +(Î1− t̂)×̂X̂1, 0̂ < t̂ < T̂1

or
X

T̂ (X)
= t

X2

T̂ (X2)
+(1− t)

X1

T̂ (X1)
,

and from here

|X̂− X̂0 |̂=
∣∣∣ X

T̂ (X)
− X0

T̂ (X0)

∣∣∣√T̂1

=
∣∣∣t X2

T̂ (X2)
+(1− t) X1

T̂ (X1)
− t X0

T̂ (X0)
− (1− t) X0

T̂ (X0)

∣∣∣√T̂1

=
∣∣∣t( X2

T̂ (X2)
− X0

T̂ (X0)

)
+(1− t)

(
X2

T̂ (X2)
− X0

T̂ (X0)

)∣∣∣√T̂1

≤ t
∣∣∣ X2

T̂ (X2)
− X0

T̂ (X0)

∣∣∣√T̂1 +(1− t)
∣∣∣ X2

T̂ (X2)
− X0

T̂ (X0)

∣∣∣√T̂1

< t r
T̂1
+(1− t) r

T̂1
= r

T̂1
= r̂.

Definition 1.1.34. A sequence of iso-points {X̂l}∞
l=1 in F̂Rn converges to the limit X̂ if

lim
l−→∞

|X̂l− X̂ |̂= 0̂.

In this case we will write
lim

l−→∞

X̂l = X̂ .

Remark 1.1.35. Let Xl = (l +1, l +2, . . . , l +n). Then the sequence {Xl}∞
l=1 is not conver-

gent in Rn. Also, if T̂ (x) = x2
1 + x2

2 + · · ·+ x2
n +2, x = (x1,x2, . . . ,xn) ∈ Rn, then

X̂l =
(

l+1
(l+1)2+(l+2)2+···+(l+n)2+2 ,

l+2
(l+1)2+(l+2)2+···+(l+n)2+2 ,

. . . , l+n
(l+1)2+(l+2)2+···+(l+n)2+2

)
,

and the sequence {X̂l}∞
l=1 is convergent to (0,0, . . . ,0).

If Xl =
(

1
l ,

1
l , . . . ,

1
l

)
, then the sequence {Xl}∞

l=1 is a convergent sequence in Rn to

(0,0, . . . ,0). Also, if T̂ (x) = x4
1

1+x2
2
, x = (x1,x2, . . . ,xn) ∈ Rn\{(0,0, . . . ,0)}, then

X̂l =
(

l(l2 +1), l(l2 +1), . . . , l(l2 +1)
)

which is not a convergent sequence.

21



Theorem 1.1.36. Let X̂l = (x1l,x2l, . . . ,xnl), X̂ = (x1,x2, . . . ,xn). Then

lim
l−→∞

X̂l = X̂

if and only if
lim

l−→∞

x̂il = x̂i, i = 1,2, . . . ,n.

Proof. 1. Let
lim

l−→∞

X̂l = X̂

and ε̂ = ε

T̂1
> 0 be fixed. Then there exists L = L(ε̂) such that for every l > L we have

|X̂l− X̂ |̂< ε̂ or∣∣∣ Xl
T̂ (Xl)
− X

T̂ (X)

∣∣∣√T̂1 <
ε

T̂1
or

√
∑

n
i=1

(
xil

T̂ (Xl)
− xi

T̂ (X)

)2√
T̂1 <

ε

T̂1
,

whereupon ∣∣∣ xil
T̂ (Xl)
− xi

T̂ (X)

∣∣∣√T̂1, i = 1,2, . . . ,n, or

|x̂il− x̂i |̂< ε̂, i = 1,2, . . . ,n.

2. Let now
lim

l−→∞

x̂il = x̂i, i = 1,2, . . . ,n.

Let also, ε̂ = ε

T̂1
> 0 be arbitrarily chosen. Then there exists L = L(ε̂) > 0 such that

for every l > L we have

|x̂il− x̂i |̂< ε̂√
n , i = 1,2, . . . ,n, or∣∣∣ xil

T̂ (Xl)
− xi

T̂ (X)

∣∣∣√T̂1 <
ε√
nT̂1

, i = 1,2, . . . ,n,

(
xil

T̂ (Xl)
− xi

T̂ (X)

)2
T̂1 <

ε2

nT̂ 2
1
, i = 1,2, . . . ,n.

From here we obtain the following inequality

n

∑
i=1

( xil

T̂ (Xl)
− xi

T̂ (X)

)2
T̂1 <

ε2

T̂ 2
1
,

therefore
|X̂l− X̂ |̂< ε̂.
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Theorem 1.1.37. Let {Xl}∞
l=1 be a convergent sequence in Rn to the point Y , Y 6= 0, Xl 6= 0

for every l = 1,2, . . .. Let also, the sequence {T̂ (Xl)}∞
l=1 be a convergent sequence in Rn to

the origin. Then the sequence {X̂l}∞
l=1 is not a convergent sequence in F̂Rn .

Proof. Let us suppose that the sequence {X̂l}∞
l=1 is a convergent sequence in F̂Rn to the

element X̂ . We fix ε̂ > 0, ε̂ ∈ F̂R. Then there exists L = L(ε̂)> 0 such that

|X̂l− X̂ |̂< ε̂ for ∀l > L or∣∣∣ Xl
T̂ (Xl)
− X

T̂ (X)

∣∣∣√T̂1 <
ε

T̂1
for ∀l > L,

whereupon ∣∣∣ Xl

T̂ (Xl)

∣∣∣− ∣∣∣ X
T̂ (X)

∣∣∣< ε

T̂
3
2

1

for ∀l > L,

consequently

T̂ (Xl)>
|Xl|

ε

T̂
3
2

1

+
∣∣∣ X

T̂ (X)

∣∣∣ for ∀l > L,

which is a contradiction because
lim

l−→∞

T̂ (Xl) = 0

and
|Xl|

ε

T̂
3
2

1

+
∣∣∣ X

T̂ (X)

∣∣∣ > 0 for ∀l > L.

Therefore the sequence {X̂l}∞
l=1 is not a convergent sequence in F̂Rn .

Theorem 1.1.38. Let {Xl}∞
l=1 be a convergent sequence in Rn to the point X ∈ Rn, let also

{T̂ (Xl)}∞
l=1 be a convergent sequence to B ∈ Rn, B 6= 0. Then the sequence {X̂l}∞

l=1 is a
convergent sequence and

lim
l−→∞

X̂l =
X
B
.

Proof. We have
lim

l−→∞

X̂l = lim
l−→∞

Xl

T̂ (Xl)
=

liml−→∞ Xl

liml−→∞ T̂ (Xl)
=

X
B
.

Corollary 1.1.39. In addition, if T̂ : Rn −→R is a continuous function, then B = T̂ (X) and

lim
l−→∞

X̂l = X̂ .

Next theorem lists some of the properties of the convergent sequences that follow di-
rectly from the definition for convergent sequences.

Theorem 1.1.40. Let liml−→∞ X̂l = X̂0, liml−→∞ Ŷl = Ŷ0, then
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1. liml−→∞(X̂l± Ŷl) = X̂0 + Ŷ0,

2. liml−→∞ α̂×̂X̂l = α̂×̂X̂0,

3. liml−→∞ α×̂X̂l = α×̂X̂0,

4. liml−→∞ αX̂l = αX̂0,

5. liml−→∞ α̂X̂l = αX̂0.

Exercise 1.1.41. In F̂Rn , let T̂ (x) = ∑
n
i=1 |xi|3 +4, x = (x1,x2, . . . ,xn) ∈ Rn. Investigate for

convergence the sequence {X̂l}∞
l=1, where

1. Xl = (l, l−1, l−2, . . . , l−n),

2. Xl = (
√

l,
√

l +1,
√

l +2, . . . ,
√

l +n),

3. Xl = (
√

l +1−
√

l,2(
√

l +1−
√

l),3(
√

l +1−
√

l), . . . ,n(
√

l +1−
√

l)),

4. Xl = (
√

l2 +1− l,2(
√

l2 +1− l),3(
√

l2 +1− l), . . . ,n(
√

l2 +1− l)),

5. Xl =
(

1
2n

3
√

1− l3, 1
2n−1

3
√

1− l3, 1
2n−2

3
√

1− l3, . . . , 1
n+1

3
√

1− l3
)

.

Definition 1.1.42. A sequence {X̂l}∞
l=1 of elements of F̂Rn will be called a bounded se-

quence if there exists an iso-real iso-number M̂ ∈ F̂R such that

|X̂l |̂ ≤ M̂ for ∀l ∈ N.

Theorem 1.1.43. Let {Xl}∞
l=1 be a bounded sequence in Rn, let also the sequence

{T̂ (Xl)}∞
l=1 is a bounded below sequence in Rn by the positive constant P. Then the se-

quence {X̂l}∞
l=1 is a bounded sequence.

Proof. There exists a positive constant M such that

|Xl| ≤M.

Then
1

T̂ (Xl)
≤ 1

P

and

|X̂l |̂=
∣∣∣ Xl

T̂ (Xl)

∣∣∣√T̂1 =
|Xl|

T̂ (Xl)

√
T̂1 ≤

M
P

√
T̂1.

Consequently, the sequence {X̂l}∞
l=1 is a bounded sequence in F̂Rn .

Theorem 1.1.44. Let {Xl}∞
l=1 be a bounded below sequence in Rn by a positive constant,

let also the sequence {T̂ (Xl)}∞
l=1 is a sequence in Rn such that

lim
l−→∞

T̂ (Xl) = 0.

Then the sequence {X̂l}∞
l=1 is not a bounded sequence.
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Proof. Let us suppose that the sequence {X̂l}∞
l=1 is a bounded sequence in F̂Rn . There exist

a positive constant M ∈ R and a positive iso-real iso-number P̂ ∈ F̂R such that

|Xl| ≥M and |X̂l |̂ ≤ P̂

Then

P̂ =
P
T̂1
≥ |X̂l |̂=

|Xl|
T̂ (Xl)

√
T̂1 ≥

M
√

T̂1

T̂ (Xl)
,

whereupon

T̂ (Xl)≥
MT̂

3
2

1
P

,

which is a contradiction because the sequence {T̂ (Xl)}∞
l=1 is a convergent sequence to the

origin. Consequently, the sequence {X̂l}∞
l=1 is not a bounded sequence in F̂Rn .

Theorem 1.1.45. (Iso-Cauchy’s Convergence Criterion) A sequence {X̂l}∞
l=1 is convergent

if and only if for each ε̂ > 0, ε̂ ∈ F̂R, there exists L = L(ε̂)> 0 such that

|X̂ |l− X̂s |̂< ε̂ for ∀s, l > L.

Proof. We observe that
|X̂l− X̂s |̂< ε̂ ⇐⇒∣∣∣ Xl

T̂ (Xl)
− Xs

T̂ (Xs)

∣∣∣< ε

T̂
3
2

1

.

Therefore the criterion follows immediately from the classical Cauchy’s convergence crite-
rion applied for the sequence

{
Xl

T̂ (Xl)

}∞

l=1
.

Definition 1.1.46. If Ŝ is a nonempty subset of F̂Rn , then

d̂(Ŝ) = sup{|X̂− Ŷ |̂ : X̂ ,Ŷ ∈ Ŝ}

will be called the iso-diameter of Ŝ. If d̂(Ŝ)<∞, then Ŝ will be called bounded, if d̂(Ŝ) =∞,
Ŝ will be called unbounded.

Definition 1.1.47. A nonempty subset Â of F̂Rn will be called closed if every limit of every
sequence of elements of Ŝ is an element of Ŝ.

Remark 1.1.48. Since, if {Xl}∞
l=1 is a convergent sequence in Rn, there are cases such

that the corresponding lift {X̂l}∞
l=1 is not a convergent sequence in F̂Rn and the conversely.

Therefore, if S is a closed set in Rn, there are cases such that Ŝ is not a closed set in F̂Rn and
the conversely.
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1.2. Iso-real Iso-valued Iso-Functions of n Variables

Let D⊂ Rn and T̂ , f : D−→ R, T̂ (x)> 0 for every x ∈ D.
For x ∈ D we introduce the following notations

x
T̂ (x)

=
( x1

T̂ (x)
,

x2

T̂ (x)
, . . . ,

xn

T̂ (x)

)
,

and
xT̂ (x) = T̂ (x)x = (x1T̂ (x),x2T̂ (x), . . . ,xnT̂ (x)).

Definition 1.2.1. We will say that in the set D is defined the iso-function of the first kind or
the iso-map of the first kind f̂∧∧ if

ŷ := f̂∧(x̂) =
f (x)
T̂ (x)

, x ∈ D,

is a function(map) in the set D.
The element x ∈ D will be called the argument or the iso-independent variable of the

iso-function of the first kind, and its iso-image ŷ = f̂∧(x̂) will be called the iso-dependent
iso-variable or the iso-value of the iso-function of the first kind at the point x. The set

{ f̂∧(x̂) : x ∈ D}

will be called the iso-codomain of the iso-values of the iso-function of the first kind. The set
D will be called the domain of the iso-function of the first kind. The function f (x)

T̂ (x)
will be

called the iso-original of the iso-function of the first kind .

Example 1.2.2. Let D = R2, f (x) = x1x2, T̂ (x) = x2
1 + x2

2 +1, x ∈ D. Then

f̂∧(x̂) =
f (x)
T̂ (x)

=
x1x2

x2
1 + x2

2 +1
.

Remark 1.2.3. We will note that if f is not a function in D, then there is a possibility f̂∧∧

to be a function in D and the conversely.

Example 1.2.4. Let D = R2,

f (x) =



x1 x1 ≥ 1,x2 ≤ 1,

x1(x2 +1) x1 ≥ 1,x2 ≥ 1,

x1(x2 +1) x1 ≤ 1,x2 ≤ 1,

(x1 +1)(x2 +1) x1 ≥ 1,x2 ≥ 1.

Then f is not a function because

f (1,1) = 1, f (1,1) = 2, f (1,1) = 3, f (1,1) = 4.

26



Let

T̂ (x) =



1 x1 ≥ 1,x2 ≤ 1,

2 x1 ≥ 1,x2 ≥ 1,

3 x1 ≤ 1,x2 ≤ 1,

4 x1 ≤ 1,x2 ≥ 1.

We have that T̂ is not a function in D since

T̂ (1,1) = 1, T̂ (1,1) = 2, T̂ (1,1) = 3, T̂ (1,1) = 4.

On the other hand,

f̂∧(x̂) =
f (x)
T̂ (x)

=



x1 x1 ≥ 1,x2 ≤ 1,

x1(x2+1)
2 x1 ≥ 1,x2 ≥ 1,

x1(x2+2)
3 x1 ≤ 1,x2 ≤ 1,

(x1+1)(x2+1)
4 x1 ≥ 1,x2 ≤ 1.

We have that
f (1,1)
T̂ (1,1)

= 1

and

f (x1,1)
T̂ (x1,1)

=



x1 x1 ≥ 1,

x1 ≥ 1,

x1 x1 ≤ 1,

x1+1
2 x1 ≥ 1,

f (1,x2)

T̂ (1,x2)
=



1 x2 ≤ 1,

x2+1
2 x2 ≥ 1,

x2+2
3 x2 ≤ 1,

x2+1
2 x2 ≤ 1.

Therefore f̂∧∧ is a function.
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Let now

f (x) = x2
1 + x2

2 +1, x ∈ D,

T̂ (x) =


x2

1 +1 for x2 ≤ 1, x1 ∈ R,

x2
1 + x2

2 +1 for x2 ≥ 1, x1 ∈ R.

Then f : D−→ R is a function. On other hand,

f̂∧(x̂) =


x2

1+x2
2+1

x2
1+1 for x2 ≤ 1, x1 ∈ R,

x2
1+x2

2+1
x2

1+x2
2+2 for x2 ≥ 1, x1 ∈ R.

Since

f̂∧(x̂)∣∣∣
x2=1−

=
x2

1 +2
x2

1 +1
, f̂∧(x̂)∣∣∣

x2=1+

=
x2

1 +2
x2

1 +3
, x1 ∈ R,

then f̂∧∧ : D−→ R is not a function.

Exercise 1.2.5. Let D = R3, T̂ (x) = x2
1 + x2

2 + |x3|+ 2, f (x) = x2
1 − 2x1x2 + x2

3, x =
(x1,x2,x3) ∈ D. Find f̂∧(x̂).

Answer. x2
1−2x1x2+x2

3
x2

1+x2
2+|x3|+2 .

Exercise 1.2.6. Let D = R3, f (x) = |x1|−2|x2|+3x2
3−4,

T̂ (x) =



|x1− x2|+4 x1 ≤ 2, x2 ≤ 1, x3 ∈ R,

|x1|+3|x3|+4 x1 ≤ 2, x2 ≥ 1, x3 ∈ R,

|x1|+5 x1 ≥ 2, x2 ≤ 1, x3 ∈ R,

x2
1 +2x2−3x2

3 +5 x1 ≥ 2, x2 ≥ 1, x3 ∈ R.

Check if f̂∧(x̂) is a function.

Answer. No.

Definition 1.2.7. We will tell that in the set D is defined the iso-function of the second kind
or the iso-map of the second kind f̂∧ if xT̂ (x) ∈ D for every x ∈ D and

ŷ := f̂∧(x) =
f (xT̂ (x))

T̂ (x)
, x ∈ D,

is a function(map) in D.
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The element x will be called the argument of the iso-function of the second kind or the
independent variable, and its iso-image ŷ = f̂∧(x) will be called the iso-dependent iso-
variable or the iso-value of the iso-function of the second kind. The set

{ f̂∧(x) : x ∈ D}

will be called the iso-codomain of the iso-values of the iso-function of the second kind. The
set D will be called the domain of the iso-function of the second kind. The function f (xT̂ (x))

T̂ (x)
will be called the iso-original of the iso-function of the second kind.

Example 1.2.8. Let D = {(x1,x2) ∈ R2 : x2
1 + x2

2 ≤ 1}, f (x) = x1 + x2, T̂ (x) = x2
1+x2

2+2
10 ,

x ∈ D. Then

xT̂ (x) = (x1T̂ (x),x2T̂ (x)) =
(x1(x2

1 + x2
2 +2)

10
,
x2(x2

1 + x2
2 +2)

10

)
, x ∈ D.

Then

x2
1
(x2

1 + x2
2 +2)2

100
+ x2

2
(x2

1 + x2
2 +2)2

100
=

(x2
1 + x2

2 +2)2

100
(x2

1 + x2
2)≤

9
100

.

Consequently xT̂ (x) ∈ D and

f̂∧(x) = f (xT̂ (x))
T̂ (x)

=
f

(
10x1

x2
1+x2

2+2
,

10x2
x2
1+x2

2+2

)
x2
1+x2

2+2
10

= 10
x2

1+x2
2+2

(
10x1

x2
1+x2

2+2 +
10x2

x2
1+x2

2+2

)
= 100(x1+x2)

(x2
1+x2

2+2)2 .

Example 1.2.9. Let D = R2,

f (x) =


x1 + x2

2 +2 x1 ≤ 1, x2 ∈ R,

x1 +2x2
2 +1 x1 ≥ 1, x2 ∈ R,

Then f : D−→ R is not a function. Let us take

T̂ (x) =


2 x1 ≤ 1, x2 ∈ R,

1 x1 ≥ 1, x2 ∈ R.

29



For f̂∧(x) we have the representation

f̂∧(x) = f (xT̂ (x))
T̂ (x)

= f (x1T̂ (x),x2T̂ (x))
T̂ (x)

=


x1T̂ (x)+x2

2T̂ 2(x)+2
T̂ (x)

x1 ≤ 1, x2 ∈ R,

x1+2x2
2T̂ 2(x)+1
T̂ (x)

x1 ≥ 1, x2 ∈ R,

=


x1 +2x2

2 +1 x1 ≤ 1, x2 ∈ R,

x1 +2x2
2 +1 x1 ≥ 1, x2 ∈ R.

We have that f̂∧ : D−→ R is a function.

Example 1.2.10. Let D=R2, f (x) = x1+x2+1, x= (x1,x2)∈D. We have that f : D−→R
is a function. Let us take

T̂ (x) =


x2

1 +1 x1 ≤ 1, x2 ∈ R,

x2
1 +2 x1 ≥ 1, x2 ∈ R.

Then
f̂∧(x) = f (xT̂ (x))

T̂ (x)
= f (x1T̂ (x),x2T̂ (x))

T̂ (x)

=


x1T̂ (x)+x2T̂ (x)+1

T̂ (x)
x1 ≤ 1, x2 ∈ R,

x1T̂ (x)+x2T̂ (x)+2
T̂ (x)

x1 ≥ 1, x2 ∈ R,

=


x1 + x2 +

1
x2

1+1 x1 ≤ 1, x2 ∈ R,

x1 + x2 +
2

x2
1+x2

2
x1 ≥ 1, x2 ∈ R.

We note that f̂∧ : D−→ R is not a function.

Exercise 1.2.11. Let D = R2, f (x) = x1− 2x2 + 3, T̂ (x) = x2
1 + x2

2 + 2, x = (x1,x2) ∈ D.
Find f̂∧(x).

Answer. f̂∧(x) = x1−2x2 +
3

x2
1+x2

2+2 .

Definition 1.2.12. We will tell that in the set D is defined the iso-function of the third kind
or the iso-map of the third kind ˆ̂f if x

T̂ (x)
∈ D for every x ∈ D and

ŷ := f̂ (x̂) =
f
(

x
T̂ (x)

)
T̂ (x)

, x ∈ D,

is a function(map) in D.
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The element x will be called the argument of the iso-function of the third kind or the in-
dependent variable, and its iso-image ŷ= f̂ (x̂) will be called the iso-dependent iso-variable
or the iso-value of the iso-function of the third kind . The set

{ f̂ (x̂) : x ∈ D}

will be called the iso-codomain of the iso-values of the iso-function of the third kind. The

set D will be called the domain of the iso-function of the third kind. The function
f

(
x

T̂ (x)

)
T̂ (x)

will be called the iso-original of the iso-function of the third kind .

Example 1.2.13. Let D = R2, T̂ (x) = x2
1 + x2

2 +1, f (x) = x3
1 + x2. Then

f̂ (x̂) =
f

(
x

T̂ (x)

)
T̂ (x)

=
f

(
x1

T̂ (x)
,

x2
T̂ (x)

)
T̂ (x)

=

x3
1

T̂ 3(x)
+

x2
T̂ (x)

T̂ (x)

=
x3

1+x2T̂ 2(x)
T̂ 4(x)

=
x3

1+x2(x2
1+x2

2+1)2

(x2
1+x2

2+1)4 .

Example 1.2.14. Let D = R3,

f (x) =


x2

1 + x2
2 + x2

3 (x1,x2) ∈ R2, x3 ≤ 1,

1 (x1,x2) ∈ R2, x3 ≥ 1.

Then f : D−→ R is not a function. If we take

T̂ (x) =
{√

x2
1 + x2

2 + x2
3 (x1,x2) ∈ R2, x3 ≤ 1,1 (x1,x2) ∈ R2,x3 ≥ 1,

then

f̂ (x̂) =
f

(
x1

T̂ (x)
,

x2
T̂ (x)

,
x3

T̂ (x)

)
T̂ (x)

=


x2

1
x2

1+x2
2+x2

3
+

x2
2

x2
1+x2

2+x2
3
+

x2
1

x2
1+x2

2+x2
3

(x1,x2) ∈ R2, x3 ≤ 1,

1 (x1,x2) ∈ R2, x3 ≥ 1,

whereupon f̂ (x̂) = 1 for every (x1,x2,x3) ∈ D and therefore ˆ̂f : D−→ R is a function.

Exercise 1.2.15. Let D =R2, f (x) = x2
1−2x1x2, T̂ (x) = x2

1+1, x = (x1,x2)∈D. Find f̂ (x̂).

Answer. x2
1−2x1x2

(x2
1+1)3 .
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Exercise 1.2.16. Let D = R3, f (x) = x3
1−3x1x2 +4x4

1 + x5
2, x = (x1,x2,x3) ∈ D,

T̂ (x) =


√

x2
1 + x2

2 + x2
3 +4 (x1,x2) ∈ R2, x3 ≤ 2,

2+ 1
x2

1+1 (x1,x2) ∈ R2, x3 ≥ 2.

Check if ˆ̂f is a function.

Answer. No.

Definition 1.2.17. We will tell that in the set D is defined the iso-function of the fourth kind
or the iso-map of the fourth kind f∧ if xT̂ (x) ∈ D for every x ∈ D and

ŷ := f∧(x) = f
(

xT̂ (x)
)
, x ∈ D,

is a function(map) in D.
The element x will be called the argument of the iso-function of the fourth kind or the

independent variable, and its iso-image ŷ = f∧(x) will be called the iso-dependent iso-
variable or the iso-value of the iso-function of the fourth kind. The set

{ f∧(x) : x ∈ D}

will be called the iso-codomain of the iso-values of the iso-function of the fourth kind. The
set D will be called the domain of the iso-function of the fourth kind. The function f

(
xT̂ (x)

)
will be called the iso-original of the iso-function of the fourth kind.

Example 1.2.18. Let D = {x = (x1,x2) ∈R2 : x2
1+x2

2 ≤ 1}, f (x) = x1+x2
2, T̂ (x) = 1

10(x
2
1+

x2
2 +1), x ∈ D. Then for x ∈ D

xT̂ (x) = (x1T̂ (x),x2T̂ (x)),

x2
1T̂ 2(x)+ x2

2T̂ 2(x) = (x2
1 + x2

2)T̂
2(x) =

1
10

(x2
1 + x2

2 +1)(x2
1 + x2

2)≤
1
5
,

i.e. xT̂ (x) ∈ D. Therefore the function f∧ is well defined on D and

f∧(x) = x1T̂ (x)+ x2
2T̂ 2(x)

= (x1 + x2
2T̂ (x))T̂ (x)

=
(

x1 +
x2

2
10(x

2
1 + x2

2 +1)
)

1
10(x

2
1 + x2

2 +1)

=
x3

1x2
2+x1x4

2+x2
1x4

2+11x1x2
2+x6

2+x4
2+x2

1x2
2+x4

2+x2
2+10x3

1+10x1
100 .

Example 1.2.19. Let D = R2, f (x) = x2
1− x2, x = (x1,x2) ∈ D,

T̂ (x) =


|x1|+1 x1 ∈ R, x2 ≤ 1,

x2
1 + x2

2 +1 x1 ∈ R, x2 ≥ 1.
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Then f : D−→ R is a function. Also,

f∧(x) = f (xT̂ (x)) = f (x1T̂ (x),x2T̂ (x)) = f (x1T̂ (x),x2T̂ (x))

=


x2

1(|x1|+1)2− x2(|x1|+1) x1 ∈ R, x2 ≤ 1,

x2
1(x

2
1 + x2

2 +1)− x2(x2
1 + x2

2 +1) x1 ∈ R, x2 ≥ 1.

Consequently f∧ : D−→ R is not a function.

Exercise 1.2.20. Let D = R2, f (x) = x1− x2, T̂ (x) = |x1|+ |x2|+1, x = (x1,x2) ∈ D. Find
f∧(x).

Answer. (x1− x2)(|x1|+ |x2|+1).

Exercise 1.2.21. Let D = R2, T̂ (x) = x2
1 + x2

2 +4, x = (x1,x2) ∈ D,

f (x) =


x1−2x2 +3x2

1 x1 ∈ R, x2 ≤ 1,

x1 +4x2
2 x1 ∈ R, x2 ≥ 1.

Check if f and f∧ are functions.

Answer. No, No.

Definition 1.2.22. We will tell that in the set D is defined the iso-function of the fifth kind
or the iso-map of the fifth kind f∨ if xT̂ (x) ∈ D for every x ∈ D and

ŷ := f∨(x) = f (x̂) = f
( x

T̂ (x)

)
, x ∈ D,

is a function(map) in D. We will use the notation f∨.
The element x will be called the argument or the independent variable of the iso-function

of the fifth kind , and its iso-image ŷ = f∨(x) will be called the iso-dependent iso-variable
or the iso-value of the iso-function of the fifth kind. The set

{ f∨(x) : x ∈ D}

will be called the iso-codomain of the iso-values of the iso-function of the fifth kind . The
set D will be called the domain of the iso-function of the fifth kind

. The function f
(

x
T̂ (x)

)
will be called the iso-original of the iso-function of the fifth kind

.

Example 1.2.23. Let D = R2,

f (x) =



x1 + x2 x1 ≤ 1, x2 ≤ 2,

2x2 +1 x1 ≤ 1, x2 ≥ 2,

3x1 + x2
2 x1 ≥ 1, x2 ≤ 2,

x2
1 +2x1x2 x1 ≥ 1, x2 ≥ 2,
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T̂ (x) = x2
1 + x2

2 +1, x(x1,x2) ∈ D. Then

f∨(x) = f (x̂) = f
(

x
T̂ (x)

)
= f
(

x1
T̂ (x)

, x2
T̂ (x)

)

=



x1
T̂ (x)

+ x2
T̂ (x)

x1 ≤ 1, x2 ≤ 2,

2 x2
T̂ (x)

+1 x1 ≤ 1, x2 ≥ 2,

3 x1
T̂ (x)

+
x2

2
T̂ 2(x)

x1 ≥ 1, x2 ≤ 2,

x2
1

T̂ 2(x)
+2 x1

T̂ (x)
x2

T̂ (x)
x1 ≥ 1, x2 ≤ 2,

=



x1+x2
x2

1+x2
2+1 x1 ≤ 1, x2 ≤ 2,

2 x2
x2

1+x2
2+1 +1 x1 ≤ 1, x2 ≥ 2,

3 x1
x2

1+x2
2+1 +

x2
2

(x2
1+x2

2+1)2 x1 ≥ 1, x2 ≤ 2,

x2
1+2x1x2

x2
1+x2

2+1 x1 ≥ 1, x2 ≥ 2.

We have that f and f∨ are not functions.

Example 1.2.24. Let D = R2,

f (x) =


x3

1 +2x2
1 +3x2

2 +6x1x2 x1 ≤ 1, x2 ∈ R,

4x5
1−3x4

1 +2x6
2 +7x2

1x3
2 x1 ≥ 1, x2 ∈ R,

T̂ (x) =


6x2

1 +6x1x2 x1 ≤ 1, x2 ∈ R,

x5
1 +2x6

2 +7x3
2 x1 ≥ 1, x2 ∈ R.

We have that f and T̂ are not functions. On the other hand,

f∨(x) = f (x̂) = f
(

x1
T̂ (x)

, x2
T̂ (x)

)

=


x3

1
T̂ 3(x)
−2 x2

1
T̂ 2(x)

+3 x2
2

T̂ 2(x)
+6 x1

T̂ (x)
x2

T̂ (x)
x1 ≤ 1, x2 ∈ R,

4 x5
1

T̂ 5(x)
−3 x4

1
T̂ 4(x)

+2 x6
2

T̂ 6(x)
+7 x2

1
T̂ 2(x)

x3
2

T̂ 3(x)
, x1 ≥ 1, x2 ∈ R,

=


x3

1+(2x2
1+3x2

2+6x1x2)T̂ (x)
T̂ 3(x)

x1 ≤ 1, x2 ∈ R,

2x6
2+(4x5

1+7x2
1x3

2)T̂ (x)−3x4
1T̂ 2(x)

T̂ 6(x)
x1 ≥ 1, x2 ∈ R.
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We have that f∨ is a function.

Exercise 1.2.25. Let D = {(x1,x2) ∈ R : x1 ≥ 1,x2 ≥ 1},

f (x) =


x4

1 +3x2
1x2 + x1x7

2 + x2
1x2

2 1≤ x1 ≤ 2, x2 ∈ R,

x7
1−7x2

1x2 + x1x3
2 x1 ≥ 2, x2 ∈ R,

T̂ (x) = x1, x = (x1,x2) ∈ D. Find f∨(x), x ∈ D.

Answer.

f∨(x) =


1+3 x2

x1
+

x7
2

x7
1
+

x2
2

x2
1

1≤ x1 ≤ 2, x2 ∈ R,

1−7 x2
x1
+

x3
2

x3
1

x1 ≥ 2, x2 ∈ R.

Exercise 1.2.26. Let D =R, f (x) = 2x1x2, T̂ (x) = x2
1+x2

2+1, x = (x1,x2)∈D. Find f∨(x),
x ∈ D.

Answer. 2 x1x2
(x2

1+x2
2+1)2 .

Exercise 1.2.27. Let D = R2,

f (x) =


x2

1 +3x1x3
2 +6x4

2−4x1x2−5x1x4
2 x1 ≤ 1, x2 ∈ R,

x3
2 +3x2

1x2 +4x3
2 x1 ≥ 1, x2 ∈ R,

T̂ (x) =


x4

1 + x4
2 + x6

1 + x2
1x2

2 +2 x1 ≤ 1, x2 ∈ R,

x8
1 +7x2

1x2
2 +6x4

1x4
2 +5x10

1 +9 x1 ≥ 1, x2 ∈ R.

Check if f∨ is a function.

Answer. No.

Exercise 1.2.28. Let D = R3, f (x) = x3
1 + x2 + 3x1x2x3 + x4

3, T̂ (x) = x2
1 + x2

2 + x2
3, x =

(x1,x2,x3) ∈ D. Check if f∨ is a function.

Answer. Yes.

Definition 1.2.29. Let f̂ and ĝ are iso-functions of the first, the second, the third, the fourth
or the fifth kind, f̃ and g̃ are their iso-originals, respectively. Let also, a ∈ R and â = a

T̂1
.

We define

1. â×̂ f̂ = a f̃ ,

2. â f̂ = a
T̂1

f̃ ,

3. a×̂ f̂ = aT̂1 f̃ ,
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4. f̂ ± ĝ = f̃ ± g̃,

5. f̂ ×̂ĝ = f̃ T̂1g̃,

6. f̂ ĝ = f̃ g̃,

7. f̂ ↗ ĝ = 1
T̂1

f̂
ĝ .

Example 1.2.30. Let D+R2, f (x) = x2
1 + 2x1x2, g(x) = x1− x2, T̂ (x) = x2

1 + x2
2 + 1, x =

(x1,x2) ∈ D,, T̂1 = 4. We will find

A = f∨(x)×̂(2×̂ f̂∧(x̂)− 3̂×̂ĝ(x̂)).

We have
f∨(x) = f (x̂) = f

(
x1

T̂ (x)
, x2

T̂ (x)

)
=

x2
1

T̂ 2(x)
+2 x1

T̂ (x)
x2

T̂ (x)

=
x2

1+2x1x2

T̂ 2(x)

=
x2

1+2x1x2

(x2
1+x2

2+1)2 ,

f̂∧(x̂) = f (x)
T̂ (x)

=
x2

1+2x1x2

x2
1+x2

2+1 ,

ĝ(x̂) =
g

(
x

T̂ (x)

)
T̂ (x)

=
g

(
x1

T̂ (x)
,

x2
T̂ (x)

)
T̂ (x)

=
x1

T̂ (x)
− x2

T̂ (x)

T̂ (x)

= x1−x2
T̂ 2(x)

= x1−x2
(x2

1+x2
2+1)2 ,

3̂×̂ĝ(x̂) =
3x1−3x2

(x2
1 + x2

2 +1)2 ,

2×̂ f̂∧(x̂) = 2 ·4 · x2
1+2x1x2

(x2
1+x2

2+1)2

=
8x2

1+16x1x2

(x2
1+x2

2+1)2 ,

2×̂ f̂∧(x̂)− 3̂×̂ĝ(x̂) = 8x2
1+16x1x2

(x2
1+x2

2+1)2 − 3x1−3x2
(x2

1+x2
2+1)2

=
8x2

1+16x1x2−3x1+3x2

(x2
1+x2

2+1)2 ,
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A =
x2

1+2x1x2

(x2
1+x2

2+1)2 ·4 ·
8x2

1+16x1x2−3x1+3x2

(x2
1+x2

2+1)2

=
32x4

1+128x3
1x2−12x3

1−12x2
1x2+24x1x2

2
(x2

1+x2
2+1)4 .

Exercise 1.2.31. Let D = R2, f (x) = x1 + x2, T̂ (x) = x2
1 + x2

2 +1, x = (x1,x2) ∈ D. Find

f̂∧(x̂)+ 2̂×̂ f∧(x), x ∈ D.

Solution. We have

f̂∧(x̂) = f (x)
T̂ (x)

= x1+x2
x2

1+x2
2+1 ,

f∧(x) = f (xT̂ (x)) = f (x1T̂ (x),x2T̂ (x))

= x1(x2
1 + x2

2 +1)+ x2(x2
1 + x2

2 +1)

= (x1 + x2)(x2
1 + x2

2 +1),

2̂×̂ f∧(x) = 2(x1 + x2)(x2
1 + x2

2 +1),

f̂∧(x̂)+ 2̂×̂ f∧(x) = x1+x2
x2

1+x2
2+1 +2(x1 + x2)(x2

1 + x2
2 +1)

=
(x1+x2)(1+2(x2

1+x2+1)2)

x2
1+x2

2+1 .

Exercise 1.2.32. Let D =R2, T̂1 = 4, T̂ (x) = |x1|+2, f (x) = x2
1+x4

2, x = (x1,x2)∈D. Find

3̂ f̂∧(x̂)− 2̂×̂ f∧(x).

Answer.

3x2
1+3x4

2
4(|x1|+2) −2x2

1−8|x1|x2
1−8x2

1−4x4
1x4

2−48x2
1x4

2−16x2
1|x1|x4

2−32x4
2−32|x1|x4

2.

Definition 1.2.33. Let f̂ is an iso-function of the first, the second, the third, the fourth or
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the fifth kind, f̃ is its iso-original. Then

f̂ 2̂ = f̂ ×̂ f̂ = f̃ T̂1 f̃ ,

f̂ 3̂ = f̂ 2̂×̂ f̂ = f̃ T̂1 f̃ T̂1 f̃ ,

· · ·

f̂ ˆn+1 = f̂ n̂×̂ f̂ ,

f̂ 2 = f̂ f̂ = f̃ f̃ = f̃ 2,

f̂ 3 = f̂ 2 f̂ = f̃ 2 f̃ = f̃ 3,

· · ·

f̃ n+1 = f̂ n f̂ = f̃ n f̃ = f̃ n+1, n ∈ N.

Exercise 1.2.34. Let D =R2, T̂1 = 2, T̂ (x) = 1+ |x2|, f (x) = x1−x2, x = (x1,x2)∈R. Find

A =
(

f̂∧(x̂)
)2̂
− 2̂×̂

(
f∧(x)

)2
.

Solution. We have

f̂∧(x̂) = f (x)
T̂ (x)

= x1−x2
1+|x2| ,(

f̂∧(x̂)
)2̂

= f̂∧(x̂)×̂ f̂∧(x̂)

= x1−x2
1+|x2|2

x1−x2
1+|x2|

= 2 (x1−x2)
2

(1+|x2|)2 ,

f∧(x) = f (xT̂ (x)) = f (x1T̂ (x),x2T̂ (x))

= x1T̂ (x)− x2T̂ (x)

= (x1− x2)T̂ (x) = (1+ |x2|)(x1− x2),

2̂×̂
(

f∧(x)
)2

= 2 f∧(x) f∧(x)

= 2(1+ |x2|)2(x1− x2)
2.
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Consequently

A = 2
(x1− x2)

2

(1+ |x2|)2 −2(1+ |x2|)2(x1− x2)
2.

Exercise 1.2.35. Let D = R2, T̂1 = 3, f (x) = x1 +2x2, T̂ (x) = x2
1 +1. Find

(
f∧(x)

)2̂
−
(

f∧(x)
)2

.

Answer. 2(x1 +2x2)
2(1+ x2

1)
2.

Definition 1.2.36. An iso-function ĥ of the first, the second, the third, the fourth or the fifth
kind will be called an iso-injection, an iso-surjection or an iso-bijection if its iso-original h̃
is an injection, a surjection or a bijection, respectively.

1.3. Limits of Iso-Real Iso-Valued Iso-Functions of n Variables

Let D ⊂ Rn and T̂ : D −→ R, T̂ (x) > 0 for every x ∈ D, f̂ : D −→ R is an iso-function of
the first, the second, the third, the fourth or the fifth kind and let f̃ be its iso-original.

Definition 1.3.1. The real number a will be called the left limit of f̂ at x0 ∈D if it is the left
limit of f̃ at x0.

Definition 1.3.2. The real number a will be called the right limit of f̂ at x0 ∈ D if it is the
right limit of f̃ at x0.

Definition 1.3.3. The real number a will be called the limit of f̂ at x0 ∈ D if it is the limit
of f̃ at x0.
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Example 1.3.4. Let D =R2, f (x) = 1−x2
1−2x2

2, T̂ (x) = 1+x2
1+x2

2, x = (x1,x2)∈D. Then

f̂∧(x̂) = f (x)
T̂ (x)

=
1−x2

1−2x2
2

1+x2
1+x2

2
,

f̂∧(x) = f (xT̂ (x))
T̂ (x)

= f (x1T̂ (x),x2T̂ (x))
T̂ (x)

=
1−x2

1(1+x2
1+x2

2)
2−2x2

2(1+x2
1+x2

2)
2

1+x2
1+x2

2
,

f̂ (x̂) =
f

(
x

T̂ (x)

)
T̂ (x)

=
x4

1+x4
2+1+x2

1+2x2
1x2

2
(1+x2

1+x2
2)

4 ,

f∧(x) = f (xT̂ (x))

= f (x1T̂ (x),x2T̂ (x))

= 1− x2
1(1+ x2

1 + x2
2)

2−2x2
2(1+ x2

1 + x2
2)

2.

Then

limx−→(1,1) f̂∧(x̂) = limx−→(1,1)
1−x2

1−2x2
2

1+x2
1+x2

2

=−2
3 ,

limx−→(1,1) f̂∧(x) = f (xT̂ (x))
T̂ (x)

= limx−→(1,1)
1−x2

1(1+x2
1+x2

2)
2−2x2

2(1+x2
1+x2

2)
2

1+x2
1+x2

2

=−26
3 ,

limx−→(1,1) f̂ (x̂) = limx−→(1,1)
x4

1+x4
2+1+x2

1+2x2
1x2

2
(1+x2

1+x2
2)

4

= 2
27 ,

limx−→(1,1) f∧(x) = limx−→(1,1)(1− x2
1(1+ x2

1 + x2
2)

2−2x2
2(1+ x2

1 + x2
2)

2)

=−26.

Exercise 1.3.5. Let D =R2, f (x) = x4
1+x2

2+7, T̂ (x) = 1+2x2
1+x2

2, x = (x1,x2) ∈D. Find

lim
x−→(2,−1)

f̂∧(x̂).
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Answer. 12
5 .

The theorem below follows immediately from the definition for the limit of an iso-
function, therefore we leave its proof to the reader.

Theorem 1.3.6. Let x0 ∈ D. Then there exists

lim
x−→x0,x∈D

f̂ (x) = a

if and only if there exist f̂ (x0 +0), f̂ (x0−0) and

f̂ (x0−0) = f̂ (x0 +0) = a.

Definition 1.3.7. We will say that the number b ∈ R is the limit of the iso-function f̂ when
x−→±∞ if it is the limit of its iso-original f̃ when x−→±∞.

The proof of the following theorems repeats the steps of the proof in the case n = 1(see
[1]).

Theorem 1.3.8. Let the iso-function f̂ has a limit a at the point x0 ∈ D. Then there exist
a neighbourhood U(x0) and a number b > 0 such that for every x ∈U(x0)∩D, x 6= x0, we
have

| f̂ (x)| ≤ b.

Theorem 1.3.9. Let limx−→x0 f̂ (x) = b, b 6= 0.

1. There exists a neighbourhood U(x0) such that for every x ∈U(x0)∩D, x 6= x0, we
have

| f̂ (x)|> |b|
2
,

2. If b > 0 then there exists a neighbourhood U(x0) such that for every x ∈U(x0)∩D,
x 6= x0, we have

f̂ (x)>
b
2
,

3. If b < 0 then there exists a neighbourhood U(x0) such that for every x ∈U(x0)∩D,
x 6= x0, we have

f̂ (x)<
b
2
.

Theorem 1.3.10. Let φ̂ : D−→ φ̂(D) and limx−→x0 f̂ (x) = a, limx−→x0 φ̂(x) = b and f̂ (x)≤
φ̂(x) for every x ∈ D. Then a≤ b.

Theorem 1.3.11. Let φ̂ : D−→ φ̂(D), ĝ : D−→ ĝ(D) and

lim
x−→x0

f̂ (x) = lim
x−→x0

φ̂(x) = a,

and
f̂ (x)≤ ĝ(x)≤ φ̂(x) ∀x ∈ D.

Then
lim

x−→x0
ĝ(x) = a.
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The following theorem lists some of the properties of the limit of an iso-function of the
first, the second, the third, the fourth or the fifth kind. Its proof follows from the definition
for the limit of an iso-function of the first, the second, the third, the fourth or the fifth kind .

Theorem 1.3.12. Let ĝ : D−→ ĝ(D) and f̂ has a limit at the iso-point x0 ∈ D. Then

1. limx−→x0( f̂ (x)± ĝ(x)) = limx−→x0 f̂ (x)± limx−→x0 f̂ (x),

2. limx−→x0( f̂ (x)×̂ĝ(x)) = limx−→x0 f̂ (x)×̂limx−→x0 ĝ(x),

3. limx−→x0( f̂ (x)ĝ(x)) = limx−→x0 f̂ (x)limx−→x0 ĝ(x),

4. limx−→x0( f̂ (x)i ĝ(x)) = limx−→x0 f̂ (x)i limx−→x0 ĝ(x), if limx−→x0 ĝ(x) 6= 0,

5. limx−→x0
f̂ (x)
ĝ(x) =

limx−→x0 f̂ (x)
limx−→x0 ĝ(x) , if limx−→x0 ĝ(x) 6= 0,

6. if | f̂ (x)| is bounded below and limx−→x0 ĝ(x) = 0, we have that limx−→x0( f̂ (x)i
ĝ(x)) = ∞,

7. if limx−→x0 f̂ (x) = a and limx−→x0 ĝ(x) = ∞, we have that limx−→x0( f̂ (x)i ĝ(x)) = 0.

Theorem 1.3.13. The limit limx−→x0 f̂ (x) = a exists if and only if for every ε > 0 there exists
a neighbourhood U(x0) such that for every x1,x2 ∈U(x0), x1 6= x0, x2 6= x0, we have

| f̂ (x1)− f̂ (x2)|< ε.

Definition 1.3.14. We say that the iso-function f̂ approaches ±∞ as x approaches x0 if its
iso-original approaches ±∞ as x approaches x0.

Exercise 1.3.15. Find limx−→(0,0) f̂∧(x̂), where

f (x) =
1− cos(x1x2)

x2
1x2

2
, T̂ (x) = x2

1 + x2
2 +1, x = (x1,x2) ∈ D = R2.

Answer. 1
2 .

Exercise 1.3.16. Find limx−→(0,0) f̂∧(x̂), where

f (x) =
log(1+ x1x2)

x1x2
, T̂ (x) = x2

1 + x2
2 +1, x = (x1,x2) ∈ D = R2.

Answer. 1.

Exercise 1.3.17. Find limx−→(∞,0) f̂∧(x̂), where

f (x) =
1

x2
1 + x2

2
, T̂ (x) = x2

1 + x2
2 +1, x = (x1,x2) ∈ D = R2.

Answer. 0.
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Exercise 1.3.18. Find limx−→∞ f̂∧(x̂), where

f (x) =
x1 sinx1

x4
1 + x4

2
, T̂ (x) = x2

1 + x2
2 +1, x = (x1,x2) ∈ D = R2.

Answer. 0.

Exercise 1.3.19. Find limx−→(∞,−∞) f̂∧(x̂), where

f (x) = x1x2, T̂ (x) =
1

x2
1 + x2

2 +1
, x = (x1,x2) ∈ D = R2.

1.4. Continuous Iso-Real Iso-Valued Iso-Functions of n Vari-
ables

Let D ⊂ Rn and T̂ : D −→ R, T̂ (x) > 0 for every x ∈ D, f̂ : D −→ R is an iso-function of
the first, the second, the third, the fourth or the fifth kind and let f̃ be its iso-original.

Definition 1.4.1. The iso-function f̂ will be called continuous at the point x0 ∈ D if its
iso-original is a continuous function at x0.

Definition 1.4.2. The iso-function f̂ will be called continuous function in D if it is a con-
tinuous function at every point of D.

Example 1.4.3. Let D = R2, f (x) = x2
1 + x2

2, T̂ (x) = 1+ x2
1 + x2

2. Then

f̂∧(x̂) = f (x)
T̂ (x)

=
x2

1+x2
2

1+x2
1+x2

2
,

f̂∧(x) = f (xT̂ (x))
T̂ (x)

= f (x1T̂ (x),x2T̂ (x))
T̂ (x)

= (x2
1 + x2

2)(1+ x2
1 + x2

2),

f̂ (x̂) =
f

(
x

T̂ (x)

)
T̂ (x)

=
f

(
x1

T̂ (x)
,

x2
T̂ (x)

)
T̂ (x)

=
x2

1+x2
2

(1+x2
1+x2

2)
3 ,

f∧(x) = f (xT̂ (x)) = f (x1T̂ (x),x2T̂ (x))

= (x2
1 + x2

2)(1+ x2
1 + x2

2)
3.

The iso-functions f̂∧∧, f̂∧, ˆ̂f and f∧ are continuous in D.
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Example 1.4.4. Let D = R2, f (x) = x3
1 + x3

2 +3, x = (x1,x2) ∈ D, and

T̂ (x) =


1 x1 ∈ R, x2 ≤ 1,

2 x1 ∈ R, x2 ≥ 1.

Then f is a continuous function in D. Then

f̂∧(x̂) =
f (x)
T̂ (x)

=


x3

1 + x3
2 +3 x1 ∈ R, x2 ≤ 1,

x3
1+x3

2+3
2 x1 ∈ R, x2 ≥ 1,

f̂∧(x) =
f (xT̂ (x))

T̂ (x)
=


x3

1 + x3
2 +3 x1 ∈ R, x2 ≤ 1,

8x3
1+8x3

2+3
2 x1 ∈ R, x2 ≥ 1,

f̂ (x̂) =
f
(

x
T̂ (x)

)
T̂ (x)

=


x3

1 + x3
2 +3 x1 ∈ R, x2 ≤ 1,

x3
1+x3

2+24
16 x1 ∈ R, x2 ≥ 1,

f∧(x) = f (xT̂ (x)) =


x3

1 + x3
2 +3 x1 ∈ R, x2 ≤ 1,

8x3
1 +8x3

2 +3 x1 ∈ R,x2 ≥ 1.

Then the iso-functions f̂∧∧, f̂∧, ˆ̂f and f∧ are not continuous functions at (x1,1), x1 ∈ R.

Exercise 1.4.5. Let D = R2, f (x1,x2) =
x1+x2
x2

1+x2
2

for (x1,x2) 6= (0,0), f (0,0) = 0, T̂ (x) =

1+ x2
1 + x2

2, x = (x1,x2) ∈ D. Check if f̂∧(x̂) is a continuous function in D.

Answer. Yes.

Exercise 1.4.6. Let D =R2, f (x) = (x1+x2)sin 1
x1

sin 1
x2

for x1x2 6= 0, f (0,x2) = f (x1,0) =
0, x1, x2 ∈R, T̂ (x) = 2+ |x1|+x2

2, x = (x1,x2) ∈D. Check if f̂∧(x̂) is a continuous function
in D.

Answer. f̂∧∧ is not a continuous function at every point (x1,x2) for which x1x2 = 0 and
x2

1 + x2
2 6= 0.

Below we list some of the properties of the continuous iso-functions of the first, the
second, the third, the fourth or the fifth kind. Their proofs repeat the proofs in the case
n = 1.

Theorem 1.4.7. Let ĝ : D−→ ĝ(D) and f̂ are continuous at x0, x0 ∈ D. Then

1. f̂ ± ĝ is continuous at x0,

2. f̂ ×̂ĝ is continuous at x0,

3. f̂ ĝ is continuous at x0,
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4. f̂ i ĝ is continuous at x0 if ĝ(x0) 6= 0,

5. f̂
ĝ is continuous at x0 if ĝ(x0) 6= 0

Theorem 1.4.8. Let f̂ is continuous at x0 ∈ D. Then

1. there exists a neighbourhood U(x0) such that for every x∈U(x0)∩D, x 6= x0, we have

| f̂ (x)|> | f̂ (x0)|
2

,

2. if f̂ (x0) > 0, there exists a neighbourhood U(x0) such that for every x ∈U(x0)∩D,
x 6= x0, we have

f̂ (x)>
f̂ (x0)

2
,

3. if f̂ (x0) < 0, there exists a neighbourhood U(x0) such that for every x ∈U(x0)∩D,
x 6= x0, we have

f̂ (x)<
f̂ (x0)

2
.

Definition 1.4.9. The iso-function f̂ of the first, the second, the third, the fourth or the fifth
kind will be called discontinuous at x0 ∈ D of the first kind if there exist

f̂ (x0−0), f̂ (x0 +0),

and
f̂ (x0−0) 6= f̂ (x0 +0).

Definition 1.4.10. The iso-function f̂ will be called discontinuous of the second kind at
x0 ∈ D if one of the both of the limits

f̂ (x0−0), f̂ (x0 +0)

does not exist. Here are included the cases

f̂ (x0−0) =±∞, f̂ (x0 +0) =±∞.

Theorem 1.4.11. Let K be a compact set in Rn and f̂ : K −→ D be a continuous function
in K. Then f̂ is bounded.

Definition 1.4.12. We will say that the iso-function f̂ : D−→R is uniformly continuous in
D if for every ε̂ ∈ F̂R, ε̂ > 0, there exists δ̂ = δ̂(ε̂)> 0, δ̂ ∈ F̂R, such that

| f̂ (x)− f̂ (x′)|̂< ε̂

whenever |x− x′ |̂< δ̂, x,x′ ∈ D.

Theorem 1.4.13. If f̂ is a continuous function on a compact set D ⊂ Rn then f̂ is an
uniformly continuous function on D.
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1.5. Iso-Partial Derivatives of Iso-Real Iso-Valued Iso-Functions
of n Variables

Let D⊂Rn and T̂ : D−→R, T̂ (x)> 0 for every x∈D. Here we suppose that f , T̂ : D−→R
are enough times differentiable functions with respect to their variables.

Definition 1.5.1. Let i ∈ {1,2, . . . ,n} be fixed. Then the iso-differential with respect to xi

we define as follows
∂̂xi(·) = T̂ (x)∂xi(·)dxi.

Using the above definition we can deduct the following iso-differentials.

1. The iso-differential with respect to xi of xi, i = 1,2, . . . ,n,

∂̂xi(x̂i) = T̂ (x)∂xi
xi

T̂ (x)
dxi

= T̂ (x) T̂ (x)dxi−xi∂xi T̂ (x)dxi

T̂ 2(x)

=
T̂ (x)−xi∂xi T̂ (x)

T̂ (x)
dxi.

2. The iso-differential with respect to xi of x j, for i 6= j, i, j = 1,2, . . . ,n,

∂̂xi(x̂ j) = T̂ (x)∂xi
x j

T̂ (x)
dxi

= T̂ (x)−x j∂xi T̂ (x)dxi

T̂ 2(x)

=
−x j∂xi T̂ (x)

T̂ (x)
dxi.

3. The iso-differential with respect to xi of an iso-function of the first kind

∂̂xi f̂∧(x̂) = T̂ (x)∂xi
f (x)
T̂ (x)

dxi

= T̂ (x) ∂xi f (x)T̂ (x)dxi− f (x)∂xi T̂ (x)dxi

T̂ 2(x)

=
∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)

T̂ (x)
dxi.

4. The iso-differential with respect to xi of an iso-function of the second kind

∂̂xi f̂∧(x) = T̂ (x)∂xi
f (xT̂ (x))

T̂ (x)
dxi

= T̂ (x)
∂xi f (xT̂ (x))∂xi (xiT̂ (x))T̂ (x)dxi+∑

n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)dxi− f (xT̂ (x))∂xi T̂ (x)dxi

T̂ 2(x)

=
∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))T̂ (x)+∑

n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

T̂ (x)
dxi.
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5. The iso-differential with respect to xi of an iso-function of the third kind

∂̂xi f̂ (x̂) = T̂ (x)∂xi

f

(
x

T̂ (x)

)
T̂ (x)

dxi

= T̂ (x)
∂xi f

(
x

T̂ (x)

)
∂xi

(
xi

T̂ (x)

)
T̂ (x)dxi+∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
∂xi

x j
T̂ (x)

T̂ (x)dxi− f

(
x

T̂ (x)

)
∂xi T̂ (x)dxi

T̂ 2(x)

=
∂xi f

(
x

T̂ (x)

)
T̂ (x)−xi∂xi T̂ (x)

T̂ (x)
−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x j

∂xi T̂ (x)

T̂ 2(x)
T̂ (x)− f

(
x

T̂ (x)

)
∂xi T̂ (x)

T̂ (x)
dxi

=
∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

T̂ 2(x)
dxi.

6. The iso-differential with respect to xi of an iso-function of the fourth kind

∂̂xi f∧(x) = T̂ (x)∂xi( f (xT̂ (x)))dxi

= T̂ (x)∂xi f (xT̂ (x))∂xi(xiT̂ (x))dxi + T̂ (x)+ T̂ (x)∑ j=1, j 6=i ∂x j f (xT̂ (x))dxi

= T̂ (x)∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))dxi + T̂ (x)∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)dxi.

7. The iso-differential with respect to xi of an iso-function of the fifth kind

∂̂xi f∨(x) = T̂ (x)∂xi f (x̂)

= T̂ (x)∂xi f
(

x
T̂ (x)

)
= T̂ (x)∂xi f

(
x

T̂ (x)

)
∂xi

xi
T̂ (x)

dxi + T̂ (x)∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
∂xi

x j

T̂ (x)
dxi

= T̂ (x)∂xi f
(

x
T̂ (x)

)
T̂ (x)−xiT̂xi (x)

T̂ 2(x)
dxi− T̂ (x)∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x j

T̂xi (x)
T̂ 2(x)

dxi

= ∂xi f
(

x
T̂ (x)

)
T̂ (x)−xiT̂xi (x)

T̂ (x)
dxi−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x j

T̂xi (x)
T̂ (x)

dxi

Definition 1.5.2. The first order iso-partial derivative of the first kind with respect to xi

will be defined as follows
(·)1~

xi
= ∂̂xi(·)↗ ∂̂xi(x̂i).

Using the above definition we have

1. The first order iso-partial derivative of the first kind with respect to xi of an iso-function
of the first kind

( f̂∧(x̂))1~
xi

= 1
T̂ (x)

∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)
T̂ (x)−xi∂xi T̂ (x)

.
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2. The first order iso-partial derivative of the first kind with respect xi of an iso-function of
the second kind

( f̂∧(x))1~
xi

= 1
T̂ (x)

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))T̂ (x)+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
.

3. The first order iso-partial derivative of the first kind with respect to xi of an iso-function
of the third kind

( f̂ (x̂))1~
xi

= 1
T̂ 2(x)

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
.

4. The first order iso-partial derivative of the first kind with respect to xi of an iso-function
of the fourth kind

( f∧(x))1~
xi

= T̂ (x)
∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))+∑

n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
.

5. The first order iso-partial derivative of the first kind with respect to xi of an iso-function
of the fifth kind

( f∨(x))1~(x) =
1

T̂ (x)

∂xi f
(

x
T̂ (x)

)
(T̂ (x)− xiT̂xi(x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

T̂ (x)− xi∂xi T̂ (x)
.

Example 1.5.3. Let D = R2, f (x) = x1 + x2, T̂ (x) = x2
1 + x2

2 +1, x = (x1,x2) ∈ D. Then

f̂∧(x̂) = f (x)
T̂ (x)

= x1+x2
x2

1+x2
2+1 ,

f̂∧(x) = f (xT̂ (x)
T̂ (x)

= f (x1T̂ (x),x2T̂ (x))
T̂ (x)

= x1 + x2,

f̂ (x̂) =
f

(
x

T̂ (x)

)
T̂ (x)

=
f

(
x1

T̂ (x)
,

x2
T̂ (x)

)
T̂ (x)

= x1+x2
(x2

1+x2
2+1)2 ,

f∧(x) = f (xT̂ (x)) = f (x1T̂ (x),x2T̂ (x)) = (x1 + x2)(x2
1 + x2

2 +1)

= x3
1 + x1x2

2 + x1 + x2x2
1 + x3

2 + x2.
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From here,

∂̂x1(x̂1) = T̂ (x)∂x1 x̂1dx1 = T̂ (x)∂x1
x1

T̂ (x)
dx1 = (x1 + x2)∂x1

x1
x2

1+x2
2+1 dx1 =

−x2
1+x2

2+1
x2

1+x2
2+1 dx1,

∂̂x1 f̂∧(x̂) = T̂ (x)∂x1 f̂∧(x̂)dx1 = (x2
1 + x2

2 +1)∂x1
x1+x2

x2
1+x2

2+1 dx1 =
−x2

1+x2
2−2x1x2+1

x2
1+x2

2+1 dx1,

∂̂x1 f̂∧(x) = T̂ (x)∂x1 f̂∧(x)dx1 = (x2
1 + x2

2 +1)∂x1(x1 + x2)dx1 = (x2
1 + x2

2 +1)dx1,

∂̂x1 f̂ (x̂) = T̂ (x)∂x1 f̂ (x̂)dx1

= (x2
1 + x+2 1)∂x1

(
x1+x2

(x2
1+x2

2+1)2

)
dx1 =

−3x2
1+x2

2−4x1x2+1
(x2

1+x2
2+1)2 dx1,

∂̂x1 f∧(x) = T̂ (x)∂x1 f∧(x)dx1 = (x2
1 + x2

2 +1)∂x1(x
3
1 + x1x2

2 + x1 + x2x2
1 + x3

2 + x2)dx1

= (x2
1 + x2

2 +1)(3x2
1 + x2

2 +2x1x2 +1)dx1.

Using the above computations we get(
f̂∧(x̂)

)1~

x1
= ∂̂x1 f̂∧(x̂)↗ ∂̂x1(x̂1) =

1
T̂ (x)

∂̂x1 f̂∧(x̂)

∂̂x1 (x̂)
=
−x2

1+x2
2−2x1x2+1

x4
2+2x2

2−x4
1+1 ,

(
f̂∧(x)

)1~

x1
= ∂̂x1 f̂∧(x)↗ ∂̂x1(x̂1) =

1
T̂ (x)

∂̂x1 f̂∧(x)

∂̂x1 (x̂1)
=

x2
1+x+2 1

−x2
1+x2

2+1 ,(
f̂ (x̂)

)1~

x1
= ∂̂x1 f̂ (x̂↗ ∂̂x1(x̂1) =

1
T̂ (x)

∂̂x1 f̂ (x̂)

∂̂x1 (x̂1)
=

−3x2
1+x2

2−4x1x2+1
(−x2

1+x2
2+1)(x2

1+x2
2+1)2 ,

(
f∧(x)

)1~

x1
= ∂̂x1 f∧(x)↗ ∂̂x1(x̂1) =

1
T̂ (x)

∂̂x1 f∧(x)

∂̂x1 (x̂1)
=

(x2
1+x2

2+1)(3x2
1+x2

2+2x1x2+1)
−x2

1+x2
2+1 .

Exercise 1.5.4. Let D = R2, f (x) = x2
1 + x2, T̂ (x) = x4

1 + x4
2 + 3, x = (x1,x2) ∈ D. Find(

f̂∧(x̂)
)1~

x2
.

Answer. x4
1−3x4

2−4x2
1x3

2+3
(x4

1+x4
2+3)(x4

1−3x4
2+3) .

Definition 1.5.5. The second order iso-partial derivative of the first kind we define as fol-
lows (

(·)1~
xi

)1~

xl
, i, l = 1,2, . . . ,n.

The third order iso-partial derivative of the first kind we define as follows((
(·)1~

xi

)1~

xl

)1~

xk
, i, l,k = 1,2, . . . ,n,

and so on.
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Definition 1.5.6. The first order iso-partial derivative of the second kind with respect to xi

will be defined as follows
(·)2~

xi
= ∂̂xi(·)↗ dxi.

Using the above definition we have

1. The first order iso-partial derivative of the second kind with respect to xi of an iso-
function of the first kind

( f̂∧(x̂))2~
xi

=
∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)

T̂ 2(x)
.

2. The first order iso-partial derivative of the second kind with respect to xi of an iso-
function of the second kind

( f̂∧(x))2~
xi

=
∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))T̂ (x)+∑

n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

T̂ 2(x)
.

3. The first order iso-partial derivative of the second kind with respect to xi of an iso-
function of the third kind

( f̂ (x̂))2~
xi

=
∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

T̂ 3(x)
.

4. The first order iso-partial derivative of the second kind with respect to xi of an iso-
function of the fourth kind

( f∧(x))2~
xi

= ∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x).

5. The first order iso-partial derivative of the second kind with respect to xi of an iso-
function of the fifth kind

( f∨(x))2~
xi

= ∂xi f
( x

T̂ (x)

) T̂ (x)− xiT̂xi(x)
T̂ 2(x)

−
n

∑
j=1, j 6=i

∂x j f
( x

T̂ (x)

)
x j

T̂xi(x)
T̂ 2(x)

Remark 1.5.7. In fact,

∂̂xi( f̂∧(x̂))↗ dxi = ( f̂∧(x̂))xi , ∂̂xi( f̂∧(x))↗ dxi = ( f̂∧(x))xi ,

∂̂xi( f̂ (x̂))↗ dxi = ( f̂ (x̂))xi , ∂̂xi( f∧(x))↗ dxi = ( f∧(x))xi .

Example 1.5.8. Let D = R2, f (x) = 2x1x2, T̂ (x) = 1+ x2
1 + x2

2, x = (x1,x2) ∈ D. Then

f̂∧(x̂) = f (x)
T̂ (x)

= 2 x1x2
1+x2

1+x2
2
,

f̂∧(x) = f (xT̂ (x))
T̂ (x)

= 2x1x2(1+ x2
1 + x2

2),

f̂ (x̂) =
f

(
x

T̂ (x)

)
T̂ (x)

= 2 x1x2
(x2

1+x2
2+1)3 ,

f∧(x) = f (xT̂ (x)) = 2x1x2(1+ x2
1 + x2

2).
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From here

∂̂x2( f̂∧(x̂)↗ dx2 = 2 ∂

∂x2

(
x1x2

1+x2
1+x2

2

)
= 2 x3

1−3x1x2
2+x1

(x2
1+x2

2+1)2 ,

∂̂x2( f̂∧(x))↗ dxi = 2 ∂

∂x2
(x1x2(1+ x2

1 + x2
2)) = 2x3

1 +6x1x2
2 +2x1,

∂̂x2( f̂ (x̂))↗ dx2 = 2 ∂

∂x2

(
x1x2

(x2
1+x2

2+1)3

)
= 2 x3

1−5x1x2
2+x1

(1+x2
1+x2

2)
4 ,

∂̂x2( f∧(x))↗ dx2 = 2 ∂

∂x2
(x1x2(1+ x2

1 + x2
2)) = 2(x2

1 + x2
2 +1)(x3

1 +5x1x2
2 + x1).

Exercise 1.5.9. Let D = R2, T̂ (x) = x2
1 + x2

2 + 3, f (x) = x1− 2x2, x = (x1,x2) ∈ D. Find
( f∧(x))2~

x1
.

Answer. −2x2
1x2−2x3

2−6x2 +2x2
1−4x1x2.

Definition 1.5.10. The second order iso-partial derivative of the second kind we define as
follows (

(·)2~
xi

)2~

xl
, i, l = 1,2, . . . ,n.

The third order iso-partial derivative of the second kind we define as follows((
(·)2~

xi

)2~

xl

)2~

xk
, i, l,k = 1,2, . . . ,n,

and so on.

Definition 1.5.11. The first order iso-partial derivative of the third kind with respect to xi

will be defined as follows
(·)3~

xi
= ∂xi(·)dxi↗ ∂̂xi(x̂i).

Using the above definition we have

1. The first order iso-partial derivative of the third kind with respect to xi of an iso-function
of the first kind

( f̂∧(x̂))3~
xi

= 1
T̂ 2(x)

∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)
T̂ (x)−xi∂xi T̂ (x)

.

2. The first order iso-partial derivative of the third kind with respect to xi of an iso-function
of the second kind

( f̂∧(x))3~
xi

= 1
T̂ 2(x)

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))T̂ (x)+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
.

3. The first order iso-partial derivative of the third kind with respect to xi of an iso-function
of the third kind

( f̂ (x̂))3~
xi

= 1
T̂ 3(x)

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
.
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4. The first order iso-partial derivative of the third kind with respect to xi of an iso-function
of the fourth kind

( f∧(x))3~
xi

= T̂ (x)
∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))+∑

n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
.

5. The first order iso-partial derivative of the third kind with respect to xi of an iso-function
of the fifth kind

( f∨(x))3~
xi

=
1

T̂ 2(x)

∂xi f
(

x
T̂ (x)

)
(T̂ (x)− xiT̂xi(x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

T̂ (x)− xiT̂xi(x)
.

Example 1.5.12. Let D = {(x1,x2) ∈ R2 : x1 ≥ 1,x2 ≥ 1}, f (x) = x1− x2, T̂ (x) = x1 + x2,
x = (x1,x2) ∈ D. Then

f̂∧(x̂) = f (x)
T̂ (x)

= x1−x2
x1+x2

,

f̂∧(x) = f (xT̂ (x))
T̂ (x)

= f (x1T̂ (x),x2T̂ (x))
T̂ (x)

= x1T̂ (x)−x2T̂ (x)
T̂ (x)

= x1− x2,

f̂ (x̂) =
f

(
x

T̂ (x)

)
T̂ (x)

=
f

(
x1

T̂ (x)
,

x2
T̂ (x)

)
T̂ (x)

=
x1

T̂ (x)
− x2

T̂ (x)

T̂ (x)
= x1−x2

(x1+x2)2 ,

f∧(x) = f (xT̂ (x)) = f (x1T̂ (x),x2T̂ (x)) = x1T̂ (x)− x2T̂ (x) = x2
1− x2

2,

x̂1 =
x1

T̂ (x)
= x1

x1+x2
.

From here

∂̂x1(x̂1) = T̂ (x)∂x1

(
x1

x1+x2

)
dx1 = (x1 + x2)

x2
(x1+x2)2 dx1 =

x2
x1+x2

dx1,

∂x1( f̂∧(x̂)) = ∂x1

(
x1−x2
x1+x2

)
= 2x2

(x1+x2)2 ,

∂x1( f̂∧(x)) = ∂x1(x1− x2) = 1,

∂x1( f̂ (x̂)) = ∂x1

(
x1−x2

(x1+x2)2

)
= −x1+3x2

(x1+x2)3 ,

∂x1( f∧(x)) = ∂x1(x
2
1− x2

2) = 2x1.
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Using the above computations we get

( f̂∧(x̂))3~
x1

= ∂x1( f̂∧(x̂))↗ ∂̂x1(x̂1) =
1

T̂ (x)
∂x1 ( f̂∧(x))

∂̂x1 (x̂1)
= 2

(x1+x2)2 ,

( f̂∧(x))3~
x1

= ∂x1( f̂∧(x))↗ ∂̂x1(x̂1) =
1

T̂ (x)
∂x1 ( f̂∧(x))

∂̂x1 (x̂1)
= 1

x2
,

( f̂ (x̂))3~
x1

= ∂x1( f̂ (x̂))↗ ∂̂x1(x̂1) =
1

T̂ (x)
∂x1 ( f̂ (x̂))

∂̂x1 (x̂1)
= −x1+3x2

x2(x1+x2)3 ,

( f∧(x))3~
x1

= ∂x1( f∧(x))↗ ∂̂x1(x̂1) =
1

T̂ (x)
∂x1 ( f∧(x)

) ∂̂x1(x̂1) = 2 x1
x2
.

Exercise 1.5.13. Let D = {(x1,x2) ∈ R2 : x1 ≥ 1,x2 ≥ 1}, f (x) = x2
1 + x2

2, T̂ (x) = x1 + x2,
x = (x1,x2) ∈ D. Find ( f∧(x))3~

x2
.

Answer. x1
(x1+x2)2(2x2

1+4x2
2+2x1x2)

.

Definition 1.5.14. The second order iso-partial derivative of the third kind we define as
follows (

(·)3~
xi

)3~

xl
, i, l = 1,2, . . . ,n.

The third order iso-partial derivative of the third kind we define as follows((
(·)3~

xi

)3~

xl

)3~

xk
, i, l,k = 1,2, . . . ,n,

and so on.

Definition 1.5.15. The first order iso-partial derivative of the fourth kind with respect to xi

will be defined as follows

(·)4~
xi

=
1

T̂ (x)
∂xi(·).

Using the above definition we have

1. The first order iso-partial derivative of the fourth kind with respect to xi of an iso-function
of the first kind

( f̂∧(x̂))4~
xi

=
∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)

T̂ 3(x)
.

2. The first order iso-partial derivative of the fourth kind with respect to xi of an iso-function
of the second kind

( f̂∧(x))4~
xi

=
∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))T̂ (x)+∑

n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

T̂ 3(x)
.

3. The first order iso-partial derivative of the fourth kind with respect to xi of an iso-function
of the third kind

( f̂ (x̂))4~
xi

=
∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

T̂ 4(x)
.
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4. The first order iso-partial derivative of the fourth kind with respect to xi of an iso-function
of the fourth kind

( f∧(x))4~
xi

=
∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))+∑

n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

T̂ (x)
.

5. The first order iso-partial derivative of the fourth kind with respect to xi of an iso-function
of fifth kind

( f∨(x))4~
xi

=
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

T̂ 3(x)
.

Example 1.5.16. Let D = {(x1,x2) ∈R2 : x1 ≥ 1,x2 ≥ 1}, f (x) = 2x1−x2, T̂ (x) = x1 +x2,
x = (x1,x2) ∈ D. Then

f̂∧(x̂) = f (x)
T̂ (x)

= 2x1−x2
x1+x2

,

f̂∧(x) = f (xT̂ (x))
T̂ (x)

= f (x1T̂ (x),x2T̂ (x))
T̂ (x)

= 2x1T̂ (x)−x2T̂ (x)
T̂ (x)

= 2x1− x2,

f̂ (x̂) =
f

(
x

T̂ (x)

)
T̂ (x)

=
f

(
x1

T̂ (x)
,

x2
T̂ (x)

)
T̂ (x)

=
2x1
T̂ (x)
− x2

T̂ (x)

T̂ (x)
= 2x1−x2

(x1+x2)2 ,

f∧(x) = f (xT̂ (x)) = f (x1T̂ (x),x2T̂ (x)) = 2x1T̂ (x)− x2T̂ (x) = (2x1− x2)(x1 + x2),

from here
∂x1( f̂∧(x̂)) = ∂x1

(
2x1−x2
x1+x2

)
= 3x2

(x1+x2)2 ,

∂x1( f̂∧(x)) = ∂x1(2x1− x2) = 2,

∂x1( f̂ (x̂)) = ∂x1

(
2x1−x2
(x1+x2)2

)
= −2x1+4x2

(x1+x2)3 ,

∂x1( f∧(x)) = ∂x1((2x1− x2)(x1 + x2)) = 4x1 + x2.

Using the above computations we get

( f̂∧(x̂))4~
x1

= 1
T̂ (x)

∂x1( f̂∧(x̂)) = 3x2
(x1+x2)3 ,

( f̂∧(x))4~
x1

= 1
T̂ (x)

∂x1( f̂∧(x)) = 2
x1+x2

,

( f̂ (x̂)4~
x1

= 1
T̂ (x)

∂x1 f̂ (x̂) = −2x1+4x2
(x1+x2)4 ,

( f∧(x)4~
x1

= 1
T̂ (x)

∂x1( f∧(x)) = 4x1+x2
x1+x2

.

Exercise 1.5.17. Let D = {(x1,x2) ∈ R2 : x1 ≥ 1,x2 ≥ 1}, f (x) = x1− x2, T̂ (x) = x1 + x2,
x = (x1,x2) ∈ D. Find ( f∧(x))4~

x1
.
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Answer. 2x1
x1+x2

.

Definition 1.5.18. The second order iso-partial derivative of the fourth kind we define as
follows (

(·)4~
xi

)4~

xl
, i, l = 1,2, . . . ,n.

The third order iso-partial derivative of the fourth kind we define as follows((
(·)4~

xi

)4~

xl

)4~

xk
, i, l,k = 1,2, . . . ,n

and so on.

Definition 1.5.19. The first order iso-partial derivative of the fifth kind with respect to xi

will be defined as follows

(·)5~
xi

=
∂̂xi(·)
∂̂xi(x̂i)

.

From the definition it follows

(·)5~
xi

=
∂̂xi(·)
∂̂xi(x̂i)

=
T̂ (x)∂xi(·)
T̂ (x)∂xi(x̂i)

=
∂xi(·)
∂xi(x̂i)

.

Using the above definition we have

1. The first order iso-partial derivative of the first kind with respect to xi of an iso-function
of the first kind

( f̂∧(x̂))5~
xi

=
∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
.

2. The first order iso-partial derivative of the fifth kind with respect to xi of an iso-function
of the second kind

( f̂∧(x))5~
xi

=
∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))T̂ (x)+∑

n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
.

3. The first order iso-partial derivative of the fifth kind with respect to xi of an iso-function
of the third kind

( f̂ (x̂))5~
xi

= 1
T̂ (x)

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
.

4. The first order iso-partial derivative of the fifth kind with respect to xi of an iso-function
of the fourth kind

( f∧(x))5~
xi

= T̂ 2(x)
∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))+∑

n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
.

5. The first order iso-partial derivative of the fifth kind with respect to xi of an iso-function
of the fifth kind

( f∨)5~
xi

=
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

T̂ (x)− xiT̂xi(x)
.
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Example 1.5.20. Let D = {(x1,x2) ∈R2 : x1 ≥ 1,x2 ≥ 1}, f (x) = x1−x2, T̂ (x) = 3x1 +x2,
x = (x1,x2) ∈ D. Then we have

f̂∧(x̂) = f (x)
T̂ (x)

= x1−x2
3x1+x2

,

f̂∧(x) = f (xT̂ (x))
T̂ (x)

= f (x1T̂ (x),x2T̂ (x))
T̂ (x)

= x1T̂ (x)−x2T̂ (x)
T̂ (x)

= x1− x2,

f̂ (x̂) =
f

(
x

T̂ (x)

)
T̂ (x)

=
f

(
x1

T̂ (x)
,

x2
T̂ (x)

)
T̂ (x)

=
x1

T̂ (x)
− x2

T̂ (x)

T̂ (x)
= x1−x2

(3x1+x2)2 ,

f∧(x) = f (xT̂ (x)) = f (x1T̂ (x),x2T̂ (x)) = x1T̂ (x)− x2T̂ (x) = (x1− x2)(3x1 + x2),

x̂1 =
x1

3x1+x2
,

and from here

∂x1( f̂∧(x̂)) = ∂x1

(
x1−x2
3x1+x2

)
= 4x2

(3x1+x2)2 ,

∂x1( f̂∧(x)) = ∂x1(x1− x2) = 1,

∂x1( f̂ (x̂)) = ∂x1

(
x1−x2

(3x1+x2)2

)
= −3x1+7x2

(3x1+x2)3 ,

∂x1( f∧(x)) = ∂x1((x1− x2)(3x1 + x2)) = 6x1−2x2,

∂x1(x̂1) = ∂x1

(
x1

3x1+x2

)
dx1 =

x2
(3x1+x2)2 dx1.

Using the above computations we get

( f̂∧(x̂))5~
x1

=
∂x1 f̂∧(x̂)
∂x1 (x̂1)

= 4,

( f̂∧(x))5~
x1

=
∂x1 f̂∧(x)
∂x1 (x̂1)

= (3x1+x2)
2

x2
,

( f̂ (x̂))5~
x1

=
∂x1 f̂ (x̂)
∂x1 (x̂1)

= −3x1+7x2
x2(3x1+x2)

,

( f∧(x))5~
x1

=
∂x1 f∧(x)
∂x1 (x̂1)

=
2(9x2

1−x2
2)(3x1+x2)
x2

.

Exercise 1.5.21. Let D = {(x1,x2) ∈ R2 : x1 ≥ 1,x2 ≥ 1}, f (x) = x1−5x2, T̂ (x) = x1 + x2,
x = (x1,x2) ∈ D. Find ( f̂∧(x̂))5~

x1
.

Answer. 6.

Definition 1.5.22. The second order iso-partial derivative of the fifth kind we define as
follows (

(·)5~
x5

)5~

xl
, i, l = 1,2, . . . ,n.
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The third order iso-partial derivative of the fifth kind we define as follows((
(·)5~

xi

)5~

xl

)5~

xk
, i, l,k = 1,2, . . . ,n

and so on.

Definition 1.5.23. The first order iso-partial derivative of the sixth kind with respect to xi

will be defined as follows

(·)6~
xi

=
∂̂xi(·)
dxi

.

We can rewrite it in the form
(·)6~

xi
= T̂ (x)∂xi(·).

Using the above definition we have

1. The first order iso-partial derivative of the sixth kind with respect to xi of an iso-function
of the first kind

( f̂∧(x̂))6~
xi

=
∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)

T̂ (x)
.

2. The first order iso-partial derivative of the sixth kind with respect to xi of an iso-function
of the second kind

( f̂∧(x))6~
xi

=
∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))T̂ (x)+∑

n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

T̂ (x)
.

3. The first order iso-partial derivative of the sixth kind with respect to xi of an iso-function
of the third kind

( f̂ (x̂))6~
xi

=
∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

T̂ 2(x)
.

4. The first order iso-partial derivative of the sixth kind with respect to xi of an iso-function
of the fourth kind

( f∧(x))6~
xi

= T̂ (x)∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))

+T̂ (x)∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x).

5. The first order iso-partial derivative of the sixth kind with respect to xi of an iso-function
of the fifth kind

( f∨(x))6~
xi

=
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

T̂ (x)
.
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Example 1.5.24. Let D = {(x1,x2) : x1 ≥ 0,x2 ≥ 0}, f (x) = x2
1 + 2x2, T̂ (x) = x1 + x2 + 1,

x = (x1,x2) ∈ D. Then

f̂∧(x̂) = f (x)
T̂ (x)

=
x2

1+2x2
x1+x2+1 ,

f̂∧(x) = f (xT̂ (x))
T̂ (x)

= f (x1T̂ (x),x2T̂ (x))
T̂ (x)

=
x2

1T̂ 2(x)+2x2T̂ (x)
T̂ (x)

= x3
1 + x2

1x2 + x2
1 +2x2,

f̂ (x̂) =
f

(
x

T̂ (x)

)
T̂ (x)

=
f

(
x1

T̂ (x)
,

x2
T̂ (x)

)
T̂ (x)

=

x2
1

T̂ 2(x)
+2 x2

T̂ (x)

T̂ (x)
=

x2
1+2x1x2+2x2

2+2x2
(x1+x2+1)3 ,

f∧(x) = f (xT̂ (x)) = f (x1T̂ (x),x2T̂ (x)) = x2
1T̂ (x)+2x2T̂ (x)

= (x3
1 + x2

1x2 + x2
1 +2x2)(x1 + x2 +1),

whereupon

( f̂∧(x̂))6~
x1

= T̂ (x)∂x1( f̂∧(x̂)) = (x1 + x2 +1)∂x1

(
x2

1+2x2
x1+x2+1

)
=

x2
1+2x1x2+2x1−2x2

x1+x2+1

( f̂∧(x))6~
x1

= T̂ (x)∂x1(T̂
∧(x)) = (x1 + x2 +1)∂x1(x

3
1 + x2

1x2 + x2
1 +2x2)

= (x1 + x2 +1)(3x2
1 +2x1x2 +2x1)

( f̂ (x̂))6~
x1

= T̂ (x)∂x1( f̂ (x̂)) = (x1 + x2 +1)∂x1

(
x2

1+2x1x2+2x2
2+2x2

(x1+x2+1)3

)
=
−x2

1−4x2
2−2x1x2+2x1−4x2
(x1+x2+1)3 ,

( f∧(x))6~
x1

= T̂ (x)∂x1( f∧(x)) = (x1 + x2 +1)∂x1((x
3
1 + x2

1x2 + x2
1 +2x2)(x1 + x2 +1))

= (x1 + x2 +1)(4x3
1 +6x2

1x2 +6x2
1 +2x1x2

2 +4x1x2 +2x1).

Exercise 1.5.25. Let D = {(x1,x2) : x1 ≥ 0,x2 ≥ 0, f (x) = x3
1 +2x1x2, T̂ (x) = x2

1 + x2 +1,
x = (x1,x2) ∈ D. Find ( f̂∧(x̂))6~

x2
.

Answer. x3
1+2x1

x2
1+x2+1 .

Definition 1.5.26. The second order iso-partial derivative of the sixth kind we define as
follows (

(·)6~
xi

)6~

xl
, i, l = 1,2, . . . ,n.

The third order iso-partial derivative of the sixth kind we define as follows((
(·)6~

xi

)6~

xl

)6~

xk
, i, l,k = 1,2, . . . ,n,

and so on.
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Definition 1.5.27. The first order iso-partial derivative of the seventh kind with respect to
xi will be defined as follows

(·)7~
xi

=
∂̂xi(·)
∂xi(x̂i)

.

Using the above definition we have

1. The first order iso-partial derivative of the seventh kind with respect to xi of an iso-
function of the first kind

( f̂∧(x̂))7~
xi

= T̂ (x) ∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)
T̂ (x)−xi∂xi T̂ (x)

.

2. The first order iso-partial derivative of the seventh kind with respect to xi of an iso-
function of the second kind

( f̂∧(x))7~
xi

= T̂ (x)
∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))T̂ (x)+∑

n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
.

3. The first order iso-partial derivative of the seventh kind with respect to xi of an iso-
function of the third kind

( f̂ (x̂))7~
xi

= T̂ 2(x)
∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
.

4. The first order iso-partial derivative of the seventh kind with respect to xi of an iso-
function of the fourth kind

( f∧(x))7~
xi

= T̂ 3(x)
∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))+∑

n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
.

5. The first order iso-partial derivative of the seventh kind with respect to xi of an iso-
function of the fifth kind

( f∨(x))7~
xi

= T̂ (x)
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

T̂ (x)− xiT̂xi(x)
.

Example 1.5.28. Let D= {(x1,x2)∈R2 : x1≥ 0,x2≥ 0}, f (x)= x1−x2
2, T̂ (x)= 1+x1+x2,
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x = (x1,x2) ∈ D. Then

f̂∧(x̂) = f (x)
T̂ (x)

=
x1−x2

2
1+x1+x2

,

f̂∧(x) = f (xT̂ (x))
T̂ (x)

= f (x1T̂ (x),x2T̂ (x))
T̂ (x)

=
x1T̂ (x)−x2

2T̂ 2(x)
T̂ (x)

= x1− x1x2
2− x3

2− x2
2,

f̂ (x̂) =
f

(
x

T̂ (x)

)
T̂ (x)

=
f

(
x1

T̂ (x)
,

x2
T̂ (x)

)
T̂ (x)

=
x1

T̂ (x)
− x2

2
T̂ 2(x)

T̂ (x)
=

x2
1−x2

2+x1x2+1
(x1+x2+1)3 ,

f∧(x) = f (xT̂ (x)) = f (x1T̂ (x),x2T̂ (x)) = x1T̂ (x)− x2
2T̂ 2(x)

= (x1 + x2 +1)(x1− x1x2
2− x2

2− x3
2),

x̂1 =
x1

T̂ (x)
= x1

1+x1+x2
,

whereupon

∂x1( f̂∧(x̂)) = ∂x1

(
x1−x2

2
1+x1+x2

)
=

1+x2+x2
2

1+x1+x2
,

∂x1( f̂∧(x)) = ∂x1(x1− x1x2
2− x2

2− x3
2) = 1− x2

2,

∂x1( f̂ (x̂)) = ∂x1

(
x2

1−x2
2+x1x2+1

(x1+x2+1)3

)
=
−x2

1+4x2
2+2x1+x2−3

(1+x1+x2)4 ,

∂x1( f∧(x)) = ∂x1((1+ x1 + x2)(x1− x1x2
2− x2

2− x3
2))

=−2x3
2−2x1x2

2−2x2
2 +2x1 + x2 +1,

∂x1(x̂1) = ∂x1(x̂1)dx1 =
1+x2

(1+x1+x2)2 dx1.

Using the above computations we get

( f̂∧(x̂)7~
x1

=
(1+x1+x2)

2(1+x2+x2
2)

1+x2
,

( f̂∧(x))7~
x1

= (1− x2)(1+ x1 + x2)
3,

( f̂ (x̂))7~
x1

=
−x2

1+4x2
2+2x1+x2−3

(1+x2)(1+x1+x2)
,

( f∧(x))7~
x1

=
(1+x1+x2)

3(−2x3
2−2x1x2

2−2x2
2+2x1+x2+1)

1+x2
.

Exercise 1.5.29. Let D = {(x1,x2) : x1 ≥ 0,x2 ≥ 0}, f (x) = 2x1 + x2
2, T̂ (x) = 1+ x1 + x2,

x = (x1,x2) ∈ D. Find ( f̂∧(x̂))7~
x1

.

Answer. (2+2x2−x2
2)(1+x1+x2)

1+x2
.
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Definition 1.5.30. The second order iso-partial derivative of the seventh kind we define as
follows (

(·)7~
xi

)7~

xl
, i, l = 1,2, . . . ,n.

The third order iso-partial derivative of the seventh kind we define as follows((
(·)7~

xi

)7~

xl

)7~

xk
, i, l,k = 1,2, . . . ,n,

and so on.

Remark 1.5.31. In the general case there is no equality between the mixed iso-partial
derivatives. We will consider the following example.

Example 1.5.32. Let D = {(x1,x2 ∈ R2 : x1 ≥ 1
3 ,x2 ≥ 1

3 ,x1 + x2 ≥ 1}, f (x) = x1, T̂ (x) =
x1 + x2. Then

( f̂∧(x̂))1~
x1

= 1
x1+x2

x1+x2−x1
x1+x2−x1

= 1
x1+x2

= 1
x1+x2

,

( f̂∧(x̂))1~
x2

= 1
x1+x2

−x1
x1+x2−x1

=− 1
x1+x2

,

( f̂∧(x̂))1~
x1
)1~

x2
= 1

x1+x2

(x1+x2)∂x2
1

x1+x2
x1+x2−x2

x1+x2

=− 1
x1(x1+x2)

,

(( f̂∧(x̂))1~
x2
)1~

x1
= 1

x1+x2

(x1+x2)
1

(x1+x2)
2

(x1+x2)
x1+x2−x2

x1+x2

= 1
x2(x1+x2)

.

Consequently
( f̂∧(x̂))1~

x1
)1~

x2
6= (( f̂∧(x̂))1~

x2
)1~

x1
.

We note that the function f̂ (x̂) is a continuously-differentiable function on D.

Definition 1.5.33. An iso-function of the first, the second, the third, the fourth or the fifth
kind will be called iso-differentiable of the first, third, fifth or seventh kind at the point
x0 ∈ D if its iso-original is differentiable at the same point and

T̂ (x0)− x0
i ∂xi T̂ (x

0) 6= 0, for ∀i = 1,2, . . . ,n.

Definition 1.5.34. An iso-function of the first, the second, the third, the fourth or the fifth
kind will be called iso-differentiable of the second, fourth or sixth kind at the point x0 ∈ D
if its iso-original is differentiable at the same point.

Definition 1.5.35. An iso-function of the first, the second, the third, the fourth or the fifth
kind will be called iso-differentiable of the first, the second, the third, the fourth, the fifth,
the sixth or the seventh kind on D if it is - iso-differentiable of the first, the second, the
third, the fourth, the fifth, the sixth or the seventh kind at every point of D.

Exercise 1.5.36. Let f̂ , ĝ : D −→ R be iso-functions of the first, the second, the third, the
fourth or the fifth kind, which are iso-differentiable of the first, the second, the third, the
fourth, the fifth, the sixth or the seventh kind at x ∈ D. Let also, a ∈ R, â ∈ F̂R. Prove
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1.
(

f̂ (x)± ĝ(x)
) j~

xi
= ( f̂ (x)) j~

xi ± (ĝ(x)) j~
xi .

2. (â×̂ f̂ (x)) j~
xi = â×̂( f̂ (x)) j~

xi .

3. (â f̂ (x)) j~
xi = â( f̂ (x)) j~

xi .

4. (a×̂ f̂ (x)) j~
xi = a×̂( f̂ (x)) j~

xi .

5. (a f̂ (x)) j~
xi = a( f̂ (x)) j~

xi .

6. ( f̂ (x)×̂ĝ(x)) j~
xi = ( f̂ (x)) j~

xi ×̂ĝ(x)+ f̂ (x)×̂(ĝ(x)) j~
xi .

7. ( f̂ (x)ĝ(x)) j~
xi = ( f̂ (x)) j~

xi ĝ(x)+ f̂ (x)(ĝ(x)) j~
xi .

8.
(

f̂ (x)↗ ĝ(x)
) j~

xi
=
(
( f̂ (x)) j~

xi ĝ(x)− f̂ (x)(ĝ(x)) j~
xi

)
↗ ĝ2(x).

9.
(

f̂ (x)
ĝ(x)

) j~

xi
=

( f̂ (x)) j~
xi ĝ(x)− f̂ (x)(ĝ(x)) j~

xi
ĝ2(x) , j=1, . . . , 7, i=1,. . . , n.

Exercise 1.5.37. Let f̂ : D−→ R be an iso-differentiable of the first, the second, the third,
the fourth, the fifth, the sixth or the seventh kind at x∈D iso-function of the first, the second,
the third, the fourth or the fifth kind. Prove that it is continuous at x.

Definition 1.5.38. Let f̂ be an iso-function of the first, the second, the third, the fourth or
the fifth kind, which is iso-differentiable of the first, the second, the third, the fourth, the
fifth, the sixth or the seventh kind at the point x0 ∈ D. With f̂~xi

(x0) will be denoted the
iso-partial derivative of the first, the second, the third, the fourth, the fifth, the sixth or the
seventh kind of f̂ at the point x0.

1. The total iso-differential of the first kind for an iso-differentiable of the i-th kind iso-
function of the j-th kind, i = 1,2,3,4,5,6,7, j = 1,2,3,4,5, is

d1 f̂ (x0) =
n

∑
i=1

f̂ i~
xi
(x0)×̂d̂x̂i,

2. The total iso-differential of the second kind for an iso-differentiable of the i-th kind
iso-function of the j-th kind, i = 1,2,3,4,5,6,7, j = 1,2,3,4,5, is

d2 f̂ (x0) = ∑
n
i=1 f̂ i~

xi
(x0)×̂dx̂i,

3. The total iso-differential of the third kind for an iso-differentiable of the i-th kind iso-
function of the j-th, i = 1,2,3,4,5,6,7, j = 1,2,3,4,5, is

d3 f̂ (x0) =
n

∑
i=1

f̂ i~
xi
(x0)dx̂i,

4. The total iso-differential of the fourth kind for an iso-differentiable of the i-th kind iso-
function of the j-th kind, i = 1,2,3,4,5,6,7, j = 1,2,3,4,5, is

d4 f̂ (x0) =
n

∑
i=1

f̂ i~
xi
(x0)d̂x̂i,
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5. The total iso-differential of the fifth kind for an iso-differentiable of the i-th kind iso-
function of the j-th , i = 1,2,3,4,5,6,7, j = 1,2,3,4,5, is

d5 f̂ (x0) =
n

∑
i=1

f̂ i~
xi
(x0)×̂d̂xi,

6. The total iso-differential of the sixth kind for an iso-differentiable of the i-th kind iso-
function of the j-th kind, i = 1,2,3,4,5,6,7, j = 1,2,3,4,5, is

d6 f̂ (x0) =
n

∑
i=1

f̂ i~
xi
(x0)×̂dxi,

7. The total iso-differential of the seventh kind for an iso-differentiable of the i-th kind
iso-function of the j-th kind, i = 1,2,3,4,5,6,7, j = 1,2,3,4,5, is

d7 f̂ (x0) =
n

∑
i=1

f̂ i~
xi
(x0)dxi,

8. The total iso-differential of the eighth kind for an iso-differentiable of the i-th kind iso-
function of the j-th kind, i = 1,2,3,4,5,6,7, j = 1,2,3,4,5, is

d8 f̂ (x0) =
n

∑
i=1

f̂ i~
xi
(x0)d̂xi.

Now we will give the explicit expressions of the iso-differentials of the iso-functions.

1. The total iso-differential of the first kind of the iso-differentiable of the first kind iso-
functions of the first kind is

d1( f̂∧(x̂)) = T̂1
1

T̂ 2(x) ∑
n
i=1

(
∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)

)
dxi.

2. The total iso-differential of the first kind of the iso-differentiable of the first kind iso-
functions of the second kind is

d1( f̂∧(x)) = T̂1
1

T̂ 2(x) ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

)
dxi.

3. The total iso-differential of the first kind of the iso-differentiable of the first kind iso-
functions of the third kind is

d1( f̂ (x̂)) = T̂1
1

T̂ 3(x) ∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xi∂xi T̂ (x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

)
dxi.
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4. The total iso-differential of the first kind of the iso-differentiable of the first kind iso-
functions of the fourth kind is

d1( f∧(x)) = T̂1∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

)
dxi.

5. The total iso-differential of the first kind of the iso-differentiable of the first kind iso-
functions of the fifth kind is

d1( f∨(x)) = T̂1
1

T̂ (x)∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
dxi

6. The total iso-differential of the first kind of the iso-differentiable of the second kind
iso-functions of the first kind is

d1( f̂∧(x̂)) = T̂1 ∑
n
i=1

(∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x))(T̂ (x)−xi∂xi T̂ (x))
T̂ 3(x)

dxi.

7. The total iso-differential of the first kind of the iso-differentiable of the second kind
iso-functions of the second kind is

d1( f̂∧(x))

= T̂1
1

T̂ 3(x) ∑
n
i=1

(
(∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x))(T̂ (x)− xi∂xi T̂ (x))

)
dxi.

8. The total iso-differential of the first kind of the iso-differentiable of the second kind
iso-functions of the third kind is

d1( f̂ (x̂)) = T̂1
1

T̂ 4(x) ∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xi∂xi T̂ (x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

)
(T̂ (x)− xi∂xi T̂ (x))dxi.

9. The total iso-differential of the first kind of the iso-differentiable of the second kind
iso-functions of the fourth kind is

d1( f∧(x)) = T̂1
1

T̂ (x) ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

)
(T̂ (x)− xi∂xi T̂ (x))dxi.
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10. The total iso-differential of the first kind of the iso-differentiable of the second kind
iso-functions of the fifth kind is

d1( f∨(x)) = T̂1
1

T̂ 3(x) ∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
(T̂ (x)− xiT̂xi(x))dxi.

11. The total iso-differential of the first kind of the iso-differentiable of the third kind iso-
functions of the first kind is

d1( f̂∧(x̂)) = T̂1
1

T̂ 3(x) ∑
n
i=1

(
∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)

)
dxi.

12. The total iso-differential of the first kind of the iso-differentiable of the third kind iso-
functions of the second kind is

d1( f̂∧(x)) = T̂1
1

T̂ 4(x) ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

)
dxi.

13. The total iso-differential of the first kind of the iso-differentiable of the third kind iso-
functions of the third kind is

d1( f̂ (x̂)) = T̂1
1

T̂ 4(x) ∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xi∂xi T̂ (x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

)
dxi.

14. The total iso-differential of the first kind of the iso-differentiable of the third kind iso-
functions of the fourth kind is

d1( f∧(x)) = T̂1 ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

)
dxi.

15. The total iso-differential of the first kind of the iso-differentiable of the third kind iso-
functions of the fifth kind is

d1( f∨(x)) = T̂1
1

T̂ 3(x) ∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
dxi

16. The total iso-differential of the first kind of the iso-differentiable of the fourth kind
iso-functions of the first kind is

d1( f̂∧(x̂)) = T̂1 ∑
n
i=1

(
∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)

)
(T̂ (x)−x1∂xi T̂ (x))

T̂ 4(x)
dxi.
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17. The total iso-differential of the first kind of the iso-differentiable of the fourth kind
iso-functions of the second kind is

d1( f̂∧(x)) = T̂1
1

T̂ 4(x) ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)

∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

)
(T̂ (x)− x1∂xi T̂ (x))dxi.

18. The total iso-differential of the first kind of the iso-differentiable of the fourth kind
iso-functions of the third kind is

d1( f̂ (x̂)) = T̂1
1

T̂ 5(x) ∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xi∂xi T̂ (x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

)
dxi.

19. The total iso-differential of the first kind of the iso-differentiable of the fourth kind
iso-functions of the fourth kind is

d1( f∧(x)) = T̂1
1

T̂ 2(x) ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

)
(T̂ (x)− x1∂xi T̂ (x))dxi.

20. The total iso-differential of the first kind of the iso-differentiable of the fourth kind
iso-functions of the fifth kind is

d1( f∨(x)) = T̂1
1

T̂ 4(x) ∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
(T̂ (x)− xiT̂xi(x))dxi.

21. The total iso-differential of the first kind of the iso-differentiable of the fifth kind iso-
functions of the first kind is

d1( f̂∧(x̂)) = T̂1
1

T̂ (x) ∑
n
i=1

(
∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)

)
dxi.

22. The total iso-differential of the first kind of the iso-differentiable of the fifth kind iso-
functions of the second kind is

d1( f̂∧(x)) = T̂1
1

T̂ (x) ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

)
dxi.

23. The total iso-differential of the first kind of the iso-differentiable of the fifth kind iso-
functions of the third kind is

d1( f̂ (x̂)) = T̂1
1

T̂ 2(x) ∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xi∂xi T̂ (x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

)
dxi.
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24. The total iso-differential of the first kind of the iso-differentiable of the fifth kind iso-
functions of the fourth kind is

d1( f∧(x)) = T̂1T̂ (x)∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

)
dxi.

25. The total iso-differential of the first kind of the iso-differentiable of the fifth kind iso-
functions of the fifth kind is

d1( f∨(x)) = T̂1
1

T̂ (x) ∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
dxi.

26. The total iso-differential of the first kind of the iso-differentiable of the sixth kind iso-
functions of the first kind is

d1( f̂∧(x̂)) = T̂1 ∑
n
i=1

(
∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)

)
(T̂ (x)−x1∂xi T̂ (x))

T̂ 2(x)
dxi.

27. The total iso-differential of the first kind of the iso-differentiable of the fifth kind iso-
functions of the second kind is

d1( f̂∧(x)) = T̂1
1

T̂ 2(x) ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

)
(T̂ (x)− x1∂xi T̂ (x))dxi.

28. The total iso-differential of the first kind of the iso-differentiable of the fifth kind iso-
functions of the third kind is

d1( f̂ (x̂)) = T̂1
1

T̂ 3(x) ∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xi∂xi T̂ (x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

)
(T̂ (x)− x1∂xi T̂ (x))dxi.

29. The total iso-differential of the first kind of the iso-differentiable of the fifth kind iso-
functions of the fourth kind is

d1( f∧(x)) = T̂1 ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

)
(T̂ (x)− x1∂xi T̂ (x))dxi.
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30. The total iso-differential of the first kind of the iso-differentiable of the sixth kind iso-
functions of the fourth kind is

d1( f∨(x)) = T̂1
1

T̂ 2(x) ∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
(T̂ (x)− xiT̂xi(x)).

31. The total iso-differential of the first kind of the iso-differentiable of the seventh kind
iso-functions of the first kind is

d1( f̂∧(x̂)) = T̂1 ∑
n
i=1

∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)
T̂ (x)

dxi.

32. The total iso-differential of the first kind of the iso-differentiable of the seventh kind
iso-functions of the second kind is

d1( f̂∧(x)) = T̂1
1

T̂ (x) ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

)
dxi.

33. The total iso-differential of the first kind of the iso-differentiable of the seventh kind
iso-functions of the third kind is

d1( f̂ (x̂)) = T̂1T̂ (x)∑
n
i=1 ∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xi∂xi T̂ (x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)dxi.

34. The total iso-differential of the first kind of the iso-differentiable of the seventh kind
iso-functions of the fourth kind is

d1( f∧(x)) = T̂1T̂ 2(x)∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

)
dxi.

35. The total iso-differential of the first kind of the iso-differentiable of the seventh kind
iso-functions of the fifth kind is

d1( f∨(x)) = T̂1 ∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
dxi.

36. The total iso-differential of the second kind of the iso-differentiable of the first kind
iso-functions of the first kind is

d2( f̂∧(x̂)) = T̂1
1

T̂ 3(x)
∑

n
i=1

(
∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)

)
dxi.
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37. The total iso-differential of the second kind of the iso-differentiable of the first kind
iso-functions of the second kind is

d2( f̂∧(x)) = T̂1
1

T̂ 3(x) ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

)
dxi.

38. The total iso-differential of the second kind of the iso-differentiable of the first kind
iso-functions of the third kind is

d2( f̂ (x̂)) = T̂1
1

T̂ 4(x) ∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xi∂xi T̂ (x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

)
dxi.

39. The total iso-differential of the second kind of the iso-differentiable of the first kind
iso-functions of the fourth kind is

d2( f∧(x)) = T̂1
1

T̂ (x) ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

)
dxi.

40. The total iso-differential of the second kind of the iso-differentiable of the first kind
iso-functions of the fifth kind is

d2( f∨(x)) = T̂1
1

T̂ 4(x) ∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
dxi.

41. The total iso-differential of the second kind of the iso-differentiable of the second kind
iso-functions of the first kind is

d2( f̂∧(x̂)) = T̂1
1

T̂ 4(x) ∑
n
i=1

(
∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)

)
(T̂ (x)− x1∂xi T̂ (x))dxi.

42. The total iso-differential of the second kind of the iso-differentiable of the second kind
iso-functions of the second kind is

d2( f̂∧(x)) = T̂1
1

T̂ 4(x) ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

)
(T̂ (x)− x1∂xi T̂ (x))dxi.

43. The total iso-differential of the second kind of the iso-differentiable of the second kind
iso-functions of the third kind is

d2( f̂ (x̂)) = T̂1
1

T̂ 5(x) ∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xi∂xi T̂ (x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

)
(T̂ (x)− x1∂xi T̂ (x))dxi.
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44. The total iso-differential of the second kind of the iso-differentiable of the second kind
iso-functions of the fourth kind is

d2( f∧(x)) = T̂1
1

T̂ 2(x) ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

)
(T̂ (x)− xiT̂xi)dxi.

45. The total iso-differential of the second kind of the iso-differentiable of the second kind
iso-functions of the fourth kind is

d2( f∧(x)) = T̂1
1

T̂ 4(x) ∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
(T̂ (x)− xiT̂xi)dxi.

46. The total iso-differential of the second kind of the iso-differentiable of the third kind
iso-functions of the first kind is

d2( f̂∧(x̂)) = T̂1
1

T̂ 4(x) ∑
n
i=1

(
∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)

)
dxi.

47. The total iso-differential of the second kind of the iso-differentiable of the third kind
iso-functions of the second kind is

d2( f̂∧(x)) = T̂1
1

T̂ 4(x) ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

)
dxi.

48. The total iso-differential of the second kind of the iso-differentiable of the third kind
iso-functions of the third kind is

d2( f̂ (x̂)) = T̂1
1

T̂ 5(x) ∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xi∂xi T̂ (x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

)
dxi.

49. The total iso-differential of the second kind of the iso-differentiable of the third kind
iso-functions of the fourth kind is

d2( f∧(x)) = T̂1
1

T̂ (x) ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

)
dxi.

50. The total iso-differential of the second kind of the iso-differentiable of the third kind
iso-functions of the fifth kind is

d2( f∧(x)) = T̂1
1

T̂ 4(x) ∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
dxi.
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51. The total iso-differential of the second kind of the iso-differentiable of the fourth kind
iso-functions of the first kind is

d2( f̂∧(x̂)) = T̂1
1

T̂ 5(x) ∑
n
i=1

(
∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)

)
(T̂ (x)− x1∂xi T̂ (x))dxi.

52. The total iso-differential of the second kind of the iso-differentiable of the fourth kind
iso-functions of the second kind is

( f̂∧(x))4~
xi

= T̂1
1

T̂ 5(x) ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

)
(T̂ (x)− x1∂xi T̂ (x))dxi.

53. The total iso-differential of the second kind of the iso-differentiable of the fourth kind
iso-functions of the third kind is

d2( f̂ (x̂)) = T̂1
1

T̂ 6(x) ∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xi∂xi T̂ (x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

)
(T̂ (x)− x1∂xi T̂ (x))dxi.

54. The total iso-differential of the second kind of the iso-differentiable of the fourth kind
iso-functions of the fourth kind is

d2( f∧(x)) = T̂1
1

T̂ 3(x) ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

)
(T̂ (x)− x1∂xi T̂ (x))dxi.

55. The total iso-differential of the second kind of the iso-differentiable of the fourth kind
iso-functions of the fifth kind is

d2( f∨(x)) = T̂1
1

T̂ 3(x) ∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
(T̂ (x)− xiT̂xi(x))dxi.

56. The total iso-differential of the second kind of the iso-differentiable of the fifth kind
iso-functions of the first kind is

d2( f̂∧(x̂)) = T̂1
1

T̂ 2(x) ∑
n
i=1

(
∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)

)
dxi.

57. The total iso-differential of the second kind of the iso-differentiable of the fifth kind
iso-functions of the second kind is

d2( f̂∧(x)) = T̂1
1

T̂ 2(x) ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

)
dxi.
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58. The total iso-differential of the second kind of the iso-differentiable of the fifth kind
iso-functions of the third kind is

d2( f̂ (x̂)) = T̂1
1

T̂ 3(x) ∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xi∂xi T̂ (x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

)
dxi.

59. The total iso-differential of the second kind of the iso-differentiable of the fifth kind
iso-functions of the fourth kind is

d2( f∧(x)) = T̂1 ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

)
dxi.

60. The total iso-differential of the second kind of the iso-differentiable of the fifth kind
iso-functions of the fifth kind is

d2( f∨(x)) = T̂1
1

T̂ 2(x) ∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)dxi.

61. The total iso-differential of the second kind of the iso-differentiable of the sixth kind
iso-functions of the first kind is

d2( f̂∧(x̂)) = T̂1
1

T̂ 3(x) ∑
n
i=1

(
∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)

)
(T̂ (x)− x1∂xi T̂ (x))dxi.

62. The total iso-differential of the second kind of the iso-differentiable of the sixth kind
iso-functions of the second kind is

d2( f̂∧(x)) = T̂1
1

T̂ 3(x) ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)

)
(T̂ (x)− x1∂xi T̂ (x))dxi.

63. The total iso-differential of the second kind of the iso-differentiable of the sixth kind
iso-functions of the third kind is

d2( f̂ (x̂)) = T̂1
1

T̂ 4(x) ∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xi∂xi T̂ (x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

)
(T̂ (x)− x1∂xi T̂ (x))dxi.

64. The total iso-differential of the second kind of the iso-differentiable of the sixth kind
iso-functions of the fourth kind is

d2( f∧(x)) = T̂1
1

T̂ (x) ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

)
(T̂ (x)− x1∂xi T̂ (x))dxi.
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65. The total iso-differential of the second kind of the iso-differentiable of the sixth kind
iso-functions of the fourth kind is

d2( f∨(x)) = T̂1
1

T̂ 3(x) ∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
(T̂ (x)− xiT̂xi(x))dxi.

66. The total iso-differential of the second kind of the iso-differentiable of the seventh kind
iso-functions of the first kind is

d2( f̂∧(x̂)) = T̂1
1

T̂ 2(x) ∑
n
i=1

(
∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)

)
dxi.

67. The total iso-differential of the second kind of the iso-differentiable of the seventh kind
iso-functions of the second kind is

d2( f̂∧(x)) = T̂1
1

T̂ 2(x) ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)

∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)|bigr)dxi.

68. The total iso-differential of the second kind of the iso-differentiable of the seventh kind
iso-functions of the third kind is

d2( f̂ (x̂)) = T̂1
1

T̂ 3(x) ∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xi∂xi T̂ (x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

)
dxi.

69. The total iso-differential of the second kind of the iso-differentiable of the seventh kind
iso-functions of the fourth kind is

d2( f∧(x)) = T̂1 ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

)
dxi.

70. The total iso-differential of the second kind of the iso-differentiable of the seventh kind
iso-functions of the fifth kind is

d2( f∨(x)) = T̂1
1

T̂ (x) ∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
dxi.

71. The total iso-differential of the third kind of the iso-differentiable of the first kind iso-
functions of the first kind is

d3( f̂∧(x̂)) = 1
T̂ 3(x)

∑
n
i=1

(
∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)

)
dxi.

73



72. The total iso-differential of the third kind of the iso-differentiable of the first kind iso-
functions of the second kind is

d3( f̂∧(x)) = 1
T̂ 3(x) ∑

n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

)
dxi.

73. The total iso-differential of the third kind of the iso-differentiable of the first kind iso-
functions of the third kind is

d3( f̂ (x̂)) = 1
T̂ 4(x) ∑

n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xi∂xi T̂ (x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

)
dxi.

74. The total iso-differential of the third kind of the iso-differentiable of the first kind iso-
functions of the fourth kind is

d3( f∧(x)) = 1
T̂ (x) ∑

n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

)
dxi.

75. The total iso-differential of the third kind of the iso-differentiable of the first kind iso-
functions of the fifth kind is

d3( f∨(x)) = 1
T̂ 4(x) ∑

n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
dxi.

76. The total iso-differential of the third kind of the iso-differentiable of the second kind
iso-functions of the first kind is

d3( f̂∧(x̂)) = 1
T̂ 4(x) ∑

n
i=1

(
∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)

)
(T̂ (x)− x1∂xi T̂ (x))dxi.

77. The total iso-differential of the third kind of the iso-differentiable of the second kind
iso-functions of the second kind is

d3( f̂∧(x)) = 1
T̂ 4(x) ∑

n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

)
(T̂ (x)− x1∂xi T̂ (x))dxi.

78. The total iso-differential of the third kind of the iso-differentiable of the second kind
iso-functions of the third kind is

d3( f̂ (x̂)) = 1
T̂ 5(x) ∑

n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xi∂xi T̂ (x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

)
(T̂ (x)− x1∂xi T̂ (x))dxi.
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79. The total iso-differential of the third kind of the iso-differentiable of the second kind
iso-functions of the fourth kind is

d3( f∧(x)) = 1
T̂ 2(x) ∑

n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

)
(T̂ (x)− xiT̂xi)dxi.

80. The total iso-differential of the third kind of the iso-differentiable of the second kind
iso-functions of the fourth kind is

d3( f∧(x)) = 1
T̂ 4(x) ∑

n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
(T̂ (x)− xiT̂xi)dxi.

81. The total iso-differential of the third kind of the iso-differentiable of the third kind
iso-functions of the first kind is

d3( f̂∧(x̂)) = 1
T̂ 4(x) ∑

n
i=1

(
∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)

)
dxi.

82. The total iso-differential of the third kind of the iso-differentiable of the third kind
iso-functions of the second kind is

d3( f̂∧(x)) = 1
T̂ 4(x) ∑

n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

)
dxi.

83. The total iso-differential of the third kind of the iso-differentiable of the third kind
iso-functions of the third kind is

d3( f̂ (x̂)) = 1
T̂ 5(x) ∑

n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xi∂xi T̂ (x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

)
dxi.

84. The total iso-differential of the third kind of the iso-differentiable of the third kind
iso-functions of the fourth kind is

d3( f∧(x)) = 1
T̂ (x) ∑

n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

)
dxi.

85. The total iso-differential of the third kind of the iso-differentiable of the third kind
iso-functions of the fifth kind is

d3( f∧(x)) = 1
T̂ 4(x) ∑

n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
dxi.

75



86. The total iso-differential of the third kind of the iso-differentiable of the fourth kind
iso-functions of the first kind is

d3( f̂∧(x̂)) = 1
T̂ 5(x) ∑

n
i=1

(
∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)

)
(T̂ (x)− x1∂xi T̂ (x))dxi.

87. The total iso-differential of the third kind of the iso-differentiable of the fourth kind
iso-functions of the second kind is

d3( f̂∧(x))4~
xi

= 1
T̂ 5(x) ∑

n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

)
(T̂ (x)− x1∂xi T̂ (x))dxi.

88. The total iso-differential of the third kind of the iso-differentiable of the fourth kind
iso-functions of the third kind is

d3( f̂ (x̂)) = 1
T̂ 6(x) ∑

n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xi∂xi T̂ (x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

)
(T̂ (x)− x1∂xi T̂ (x))dxi.

89. The total iso-differential of the third kind of the iso-differentiable of the fourth kind
iso-functions of the fourth kind is

d3( f∧(x)) = 1
T̂ 3(x) ∑

n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

)
(T̂ (x)− x1∂xi T̂ (x))dxi.

90. The total iso-differential of the third kind of the iso-differentiable of the fourth kind
iso-functions of the fifth kind is

d3( f∨(x)) = 1
T̂ 3(x) ∑

n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
(T̂ (x)− xiT̂xi(x))dxi.

91. The total iso-differential of the third kind of the iso-differentiable of the fifth kind iso-
functions of the first kind is

d3( f̂∧(x̂)) = 1
T̂ 2(x) ∑

n
i=1

(
∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)

)
dxi.

92. The total iso-differential of the third kind of the iso-differentiable of the fifth kind iso-
functions of the second kind is

d3( f̂∧(x)) = 1
T̂ 2(x) ∑

n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

)
dxi.
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93. The total iso-differential of the third kind of the iso-differentiable of the fifth kind iso-
functions of the third kind is

d3( f̂ (x̂)) = 1
T̂ 3(x) ∑

n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xi∂xi T̂ (x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

)
dxi.

94. The total iso-differential of the third kind of the iso-differentiable of the fifth kind iso-
functions of the fourth kind is

d3( f∧(x)) = ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

)
dxi.

95. The total iso-differential of the third kind of the iso-differentiable of the fifth kind iso-
functions of the fifth kind is

d3( f∨(x)) = 1
T̂ 2(x) ∑

n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)dxi.

96. The total iso-differential of the third kind of the iso-differentiable of the sixth kind
iso-functions of the first kind is

d3( f̂∧(x̂)) = 1
T̂ 3(x) ∑

n
i=1

(
∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)

)
(T̂ (x)− x1∂xi T̂ (x))dxi.

97. The total iso-differential of the third kind of the iso-differentiable of the sixth kind
iso-functions of the second kind is

d3( f̂∧(x)) = 1
T̂ 3(x) ∑

n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)

)
(T̂ (x)− x1∂xi T̂ (x))dxi.

98. The total iso-differential of the third kind of the iso-differentiable of the sixth kind
iso-functions of the third kind is

d3( f̂ (x̂)) = 1
T̂ 4(x) ∑

n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xi∂xi T̂ (x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

)
(T̂ (x)− x1∂xi T̂ (x))dxi.

99. The total iso-differential of the third kind of the iso-differentiable of the sixth kind
iso-functions of the fourth kind is

d3( f∧(x)) = 1
T̂ (x) ∑

n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

)
(T̂ (x)− x1∂xi T̂ (x))dxi.
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100. The total iso-differential of the third kind of the iso-differentiable of the sixth kind
iso-functions of the fourth kind is

d3( f∨(x)) = 1
T̂ 3(x) ∑

n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
(T̂ (x)− xiT̂xi(x))dxi.

101. The total iso-differential of the third kind of the iso-differentiable of the seventh kind
iso-functions of the first kind is

d3( f̂∧(x̂)) = 1
T̂ 2(x) ∑

n
i=1

(
∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)

)
dxi.

102. The total iso-differential of the third kind of the iso-differentiable of the seventh kind
iso-functions of the second kind is

d3( f̂∧(x)) = 1
T̂ 2(x) ∑

n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)

∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

)
dxi.

103. The total iso-differential of the third kind of the iso-differentiable of the seventh kind
iso-functions of the third kind is

d3( f̂ (x̂)) = 1
T̂ 3(x) ∑

n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xi∂xi T̂ (x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

)
dxi.

104. The total iso-differential of the third kind of the iso-differentiable of the seventh kind
iso-functions of the fourth kind is

d3( f∧(x)) = ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

)
dxi.

105. The total iso-differential of the third kind of the iso-differentiable of the seventh kind
iso-functions of the fifth kind is

d3( f∨(x)) = 1
T̂ (x) ∑

n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
dxi.

106. The total iso-differential of the fourth kind of the iso-differentiable of the first kind
iso-functions of the first kind is

d4( f̂∧(x̂)) = 1
T̂ 2(x) ∑

n
i=1

(
∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)

)
dxi.
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107. The total iso-differential of the fourth kind of the iso-differentiable of the first kind
iso-functions of the second kind is

d4( f̂∧(x)) = 1
T̂ 2(x) ∑

n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

)
dxi.

108. The total iso-differential of the fourth kind of the iso-differentiable of the first kind
iso-functions of the third kind is

d4( f̂ (x̂)) = 1
T̂ 3(x) ∑

n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xi∂xi T̂ (x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

)
dxi.

109. The total iso-differential of the fourth kind of the iso-differentiable of the first kind
iso-functions of the fourth kind is

d4( f∧(x)) = ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

)
dxi.

110. The total iso-differential of the fourth kind of the iso-differentiable of the first kind
iso-functions of the fifth kind is

d4( f∨(x)) = 1
T̂ (x)∑

n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
dxi

111. The total iso-differential of the fourth kind of the iso-differentiable of the second kind
iso-functions of the first kind is

d4( f̂∧(x̂)) = ∑
n
i=1

(∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x))(T̂ (x)−xi∂xi T̂ (x))
T̂ 3(x)

dxi.

112. The total iso-differential of the fourth kind of the iso-differentiable of the second kind
iso-functions of the second kind is

d4( f̂∧(x)) = 1
T̂ 3(x) ∑

n
i=1

(
(∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x))(T̂ (x)− xi∂xi T̂ (x))

)
dxi.

113. The total iso-differential of the fourth kind of the iso-differentiable of the second kind
iso-functions of the third kind is

d4( f̂ (x̂)) = 1
T̂ 4(x) ∑

n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xi∂xi T̂ (x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

)
(T̂ (x)− xi∂xi T̂ (x))dxi.
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114. The total iso-differential of the fourth kind of the iso-differentiable of the second kind
iso-functions of the fourth kind is

d4( f∧(x)) = 1
T̂ (x) ∑

n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

)
(T̂ (x)− xi∂xi T̂ (x))dxi.

115. The total iso-differential of the fourth kind of the iso-differentiable of the second kind
iso-functions of the fifth kind is

d4( f∨(x)) = 1
T̂ 3(x) ∑

n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
(T̂ (x)− xiT̂xi(x))dxi.

116. The total iso-differential of the fourth kind of the iso-differentiable of the third kind
iso-functions of the first kind is

d4( f̂∧(x̂)) = 1
T̂ 3(x) ∑

n
i=1

(
∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)

)
dxi.

117. The total iso-differential of the fourth kind of the iso-differentiable of the third kind
iso-functions of the second kind is

d4( f̂∧(x)) = 1
T̂ 4(x) ∑

n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

)
dxi.

118. The total iso-differential of the fourth kind of the iso-differentiable of the third kind
iso-functions of the third kind is

d4( f̂ (x̂)) = 1
T̂ 4(x) ∑

n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xi∂xi T̂ (x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

)
dxi.

119. The total iso-differential of the fourth kind of the iso-differentiable of the third kind
iso-functions of the fourth kind is

d4( f∧(x)) = ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

)
dxi.

120. The total iso-differential of the fourth kind of the iso-differentiable of the third kind
iso-functions of the fifth kind is

d4( f∨(x)) = 1
T̂ 3(x) ∑

n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
dxi.
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121. The total iso-differential of the fourth kind of the iso-differentiable of the fourth kind
iso-functions of the first kind is

d4( f̂∧(x̂)) = ∑
n
i=1

(
∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)

)
(T̂ (x)−x1∂xi T̂ (x))

T̂ 4(x)
dxi.

122. The total iso-differential of the fourth kind of the iso-differentiable of the fourth kind
iso-functions of the second kind is

d4( f̂∧(x)) = 1
T̂ 4(x) ∑

n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

)
(T̂ (x)− x1∂xi T̂ (x))dxi.

123. The total iso-differential of the fourth kind of the iso-differentiable of the fourth kind
iso-functions of the third kind is

d4( f̂ (x̂)) = 1
T̂ 5(x) ∑

n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xi∂xi T̂ (x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

)
dxi.

124. The total iso-differential of the fourth kind of the iso-differentiable of the fourth kind
iso-functions of the fourth kind is

d4( f∧(x)) = 1
T̂ 2(x) ∑

n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

)
(T̂ (x)− x1∂xi T̂ (x))dxi.

125. The total iso-differential of the fourth kind of the iso-differentiable of the fourth kind
iso-functions of the fifth kind is

d4( f∨(x)) = 1
T̂ 4(x) ∑

n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
(T̂ (x)− xiT̂xi(x))dxi.

126. The total iso-differential of the fourth kind of the iso-differentiable of the fifth kind
iso-functions of the first kind is

d4( f̂∧(x̂)) = 1
T̂ (x) ∑

n
i=1

(
∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)

)
dxi.

127. The total iso-differential of the fourth kind of the iso-differentiable of the fifth kind
iso-functions of the second kind is

d4( f̂∧(x)) = 1
T̂ (x) ∑

n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

)
dxi.
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128. The total iso-differential of the fourth kind of the iso-differentiable of the fifth kind
iso-functions of the third kind is

d4( f̂ (x̂)) = 1
T̂ 2(x) ∑

n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xi∂xi T̂ (x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

)
dxi.

129. The total iso-differential of the fourth kind of the iso-differentiable of the fifth kind
iso-functions of the fourth kind is

d4( f∧(x)) = T̂ (x)∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

)
dxi.

130. The total iso-differential of the fourth kind of the iso-differentiable of the fifth kind
iso-functions of the fifth kind is

d4( f∨(x)) = 1
T̂ (x) ∑

n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
dxi.

131. The total iso-differential of the fourth kind of the iso-differentiable of the sixth kind
iso-functions of the first kind is

d4( f̂∧(x̂)) = ∑
n
i=1

(
∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)

)
(T̂ (x)−x1∂xi T̂ (x))

T̂ 2(x)
dxi.

132. The total iso-differential of the fourth kind of the iso-differentiable of the fifth kind
iso-functions of the second kind is

d4( f̂∧(x)) = 1
T̂ 2(x) ∑

n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

)
(T̂ (x)− x1∂xi T̂ (x))dxi.

133. The total iso-differential of the fourth kind of the iso-differentiable of the fifth kind
iso-functions of the third kind is

d4( f̂ (x̂)) = 1
T̂ 3(x) ∑

n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xi∂xi T̂ (x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

)
(T̂ (x)− x1∂xi T̂ (x))dxi.
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134. The total iso-differential of the fourth kind of the iso-differentiable of the fifth kind
iso-functions of the fourth kind is

d4( f∧(x)) = ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

)
(T̂ (x)− x1∂xi T̂ (x))dxi.

135. The total iso-differential of the fourth kind of the iso-differentiable of the sixth kind
iso-functions of the fourth kind is

d4( f∨(x)) = 1
T̂ 2(x) ∑

n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
(T̂ (x)− xiT̂xi(x)).

136. The total iso-differential of the fourth kind of the iso-differentiable of the seventh kind
iso-functions of the first kind is

d4( f̂∧(x̂)) = ∑
n
i=1

∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)
T̂ (x)

dxi.

137. The total iso-differential of the fourth kind of the iso-differentiable of the seventh kind
iso-functions of the second kind is

d4( f̂∧(x)) = 1
T̂ (x) ∑

n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

)
dxi.

138. The total iso-differential of the fourth kind of the iso-differentiable of the seventh kind
iso-functions of the third kind is

d4( f̂ (x̂)) = T̂ (x)∑
n
i=1 ∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xi∂xi T̂ (x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)dxi.

139. The total iso-differential of the fourth kind of the iso-differentiable of the seventh kind
iso-functions of the fourth kind is

d4( f∧(x)) = T̂ 2(x)∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

)
dxi.

140. The total iso-differential of the fourth kind of the iso-differentiable of the seventh kind
iso-functions of the fifth kind is

d4( f∨(x)) = ∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
dxi.
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141. The total iso-differential of the fifth kind of the iso-differentiable of the first kind
iso-functions of the first kind is

d5( f̂∧(x̂)) = T̂1 ∑
n
i=1

∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)
T̂ (x)−xi∂xi T̂ (x)

dxi.

142. The total iso-differential of the fifth kind of the iso-differentiable of the first kind
iso-functions of the second kind is

d5( f̂∧(x))

= T̂1 ∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))T̂ (x)+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

143. The total iso-differential of the fifth kind of the iso-differentiable of the first kind
iso-functions of the third kind is

d5( f̂ (x̂))

= T̂1 ∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

144. The total iso-differential of the fifth kind of the iso-differentiable of the first kind
iso-functions of the fourth kind is

d5( f∧(x))

= T̂1T̂ 2(x)∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

145. The total iso-differential of the fifth kind of the iso-differentiable of the first kind
iso-functions of the fifth kind is

d5( f∧(x))

= T̂1 ∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xiT̂xi (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

146. The total iso-differential of the fifth kind of the iso-differentiable of the second kind
iso-functions of the first kind is

d5( f̂∧(x̂)) = T̂1 ∑
n
i=1

∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)
T̂ (x)

dxi.

147. The total iso-differential of the fifth kind of the iso-differentiable of the second kind
iso-functions of the second kind is

d5( f̂∧(x))

= T̂1 ∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))T̂ (x)+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

T̂ (x)
dxi.

84



148. The total iso-differential of the fifth kind of the iso-differentiable of the second kind
iso-functions of the third kind is

d5( f̂ (x̂))

= T̂1 ∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

T̂ 2(x)
dxi.

149. The total iso-differential of the fifth kind of the iso-differentiable of the second kind
iso-functions of the fourth kind is

d5( f∧(x))

= T̂1T̂ (x)∑
n
i=1 ∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))+∑

n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)dxi.

150. The total iso-differential of the fifth kind of the iso-differentiable of the second kind
iso-functions of the fifth kind is

d5( f∧(x)) = T̂1
1

T̂ (x) ∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
dxi.

151. The total iso-differential of the fifth kind of the iso-differentiable of the third kind
iso-functions of the first kind is

d5( f̂∧(x̂)) = T̂1
1

T̂ (x) ∑
n
i=1

∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)
T̂ (x)−xi∂xi T̂ (x)

dxi.

152. The total iso-differential of the fifth kind of the iso-differentiable of the third kind
iso-functions of the second kind is

d5( f̂∧(x))

= T̂1 ∑
n
i=1

1
T̂ (x)

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))T̂ (x)+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

153. The total iso-differential of the fifth kind of the iso-differentiable of the third kind
iso-functions of the third kind is

d5( f̂ (x̂))

= T̂1
1

T̂ 2(x) ∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

154. The total iso-differential of the fifth kind of the iso-differentiable of the third kind
iso-functions of the fourth kind is

d5( f∧(x))

= T̂1T̂ 2(x)∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.
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155. The total iso-differential of the fifth kind of the iso-differentiable of the third kind
iso-functions of the fifth kind is

d5( f∧(x))

= T̂1
1

T̂ (x) ∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xiT̂xi (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

156. The total iso-differential of the fifth kind of the iso-differentiable of the fourth kind
iso-functions of the first kind is

d5( f̂∧(x̂)) = T̂1 ∑
n
i=1

∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)
T̂ 2(x)

dxi.

157. The total iso-differential of the fifth kind of the iso-differentiable of the fourth kind
iso-functions of the second kind is

d5( f̂∧(x))

= T̂1 ∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))T̂ (x)+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

T̂ 2(x)
dxi.

158. The total iso-differential of the fifth kind of the iso-differentiable of the fourth kind

iso-functions of the third kind is

d5( f̂ (x̂))

= T̂1 ∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

T̂ 3(x)
dxi.

159. The total iso-differential of the fifth kind of the iso-differentiable of the fourth kind
iso-functions of the fourth kind is

d5( f∧(x))

= T̂1 ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))+∑

n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

)
dxi.

160. The total iso-differential of the fifth kind of the iso-differentiable of the fourth kind
iso-functions of the fifth kind is

d5( f∧(x))

= T̂1
1

T̂ 2(x) ∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
dxi.

161. The total iso-differential of fifth kind of the iso-differentiable of the fifth kind iso-
functions of the first kind is

d5( f̂∧(x̂)) = T̂1T̂ (x)∑
n
i=1

∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)
T̂ (x)−xi∂xi T̂ (x)

dxi.
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162. The total iso-differential of the fifth kind of the iso-differentiable of the fifth kind
iso-functions of the second kind is

d5( f̂∧(x))

= T̂1T̂ (x)∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))T̂ (x)+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

163. The total iso-differential of the fifth kind of the iso-differentiable of the fifth kind
iso-functions of the third kind is

d5( f̂ (x̂))

= T̂1 ∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

164. The total iso-differential of the fifth kind of the iso-differentiable of the fifth kind
iso-functions of the fourth kind is

d5( f∧(x))

= T̂1T̂ 3(x)∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

165. The total iso-differential of the fifth kind of the iso-differentiable of the fifth kind
iso-functions of the fifth kind is

d5( f∧(x))

= T̂1T̂ (x)∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xiT̂xi (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)

T̂ (x)−x1∂xi T̂ (x)
dxi.

166. The total iso-differential of the fifth kind of the iso-differentiable of the sixth kind
iso-functions of the first kind is

d5( f̂∧(x̂)) = T̂1 ∑
n
i=1

(
∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)

)
dxi.

167. The total iso-differential of fifth kind of the iso-differentiable of the sixth kind iso-
functions of the second kind is

d5( f̂∧(x)) = T̂1 ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

)
dxi.

168. The total iso-differential of the fifth kind of the iso-differentiable of the sixth kind
iso-functions of the third kind is

d5( f̂ (x̂))

= T̂1 ∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

T̂ (x)
dxi.
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169. The total iso-differential of the fifth kind of the iso-differentiable of the sixth kind
iso-functions of the fourth kind is

d5( f∧(x)) = T̂1T̂ 2(x)∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

)
dxi.

170. The total iso-differential of fifth kind of the iso-differentiable of the sixth kind iso-
functions of the fifth kind is

d5( f∧(x))

= T̂1 ∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
dxi.

171. The total iso-differential of the fifth kind of the iso-differentiable of the seventh kind
iso-functions of the first kind is

d5( f̂∧(x̂)) = T̂1T̂ (x)∑
n
i=1

∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)
T̂ (x)−xi∂xi T̂ (x)

dxi.

172. The total iso-differential of fifth kind of the iso-differentiable of the seventh kind iso-
functions of the second kind is

d5( f̂∧(x))

= T̂1T̂ (x)∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))T̂ (x)− f (xT̂ (x))∂xi T̂ (x)+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

173. The total iso-differential of the fifth kind of the iso-differentiable of the seventh kind
iso-functions of the third kind is

d5( f̂ (x̂))

= T̂1 ∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

(T̂ (x)−xi∂xi T̂ (x))
dxi.

174. The total iso-differential of fifth kind of the iso-differentiable of the seventh kind iso-
functions of the fourth kind is

d5( f∧(x))

= T̂1T̂ 3(x)∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

175. The total iso-differential of the fifth kind of the iso-differentiable of the seventh kind
iso-functions of the fifth kind is

d5( f∧(x))

= T̂1T̂ 2(x)∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xiT̂xi (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.
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176. The total iso-differential of the sixth kind of the iso-differentiable of the first kind
iso-functions of the first kind is

d6( f̂∧(x̂)) = T̂1
1

T̂ (x) ∑
n
i=1

∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)
T̂ (x)−xi∂xi T̂ (x)

dxi.

177. The total iso-differential of the sixth kind of the iso-differentiable of the first kind
iso-functions of the second kind is

d6( f̂∧(x))

= 1
T̂ (x)

T̂1 ∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))T̂ (x)− f (xT̂ (x))∂xi T̂ (x)+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

178. The total iso-differential of the sixth kind of the iso-differentiable of the first kind
iso-functions of the third kind is

d6( f̂ (x̂))

= 1
T̂ 2(x)

T̂1 ∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

179. The total iso-differential of the sixth kind of the iso-differentiable of the first kind
iso-functions of the fourth kind is

d6( f∧(x))

= T̂ (x)T̂1 ∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

180. The total iso-differential of the sixth kind of the iso-differentiable of the first kind
iso-functions of the fifth kind is

d6( f∨(x))

= T̂1
1

T̂ (x) ∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xiT̂xi (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

181. The total iso-differential of the sixth kind of the iso-differentiable of the second kind
iso-functions of the first kind is

d6( f̂∧(x̂)) = T̂1 ∑
n
i=1

∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)
T̂ 2(x)

dxi.

182. The total iso-differential of the sixth kind of the iso-differentiable of the second kind
iso-functions of the second kind is

d6( f̂∧(x))

= T̂1 ∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))T̂ (x)∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

T̂ 2(x)
dxi.
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183. The total iso-differential of the sixth kind of the iso-differentiable of the second kind
iso-functions of the third kind is

d6( f̂ (x̂))

= T̂1 ∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

T̂ 3(x)
dxi.

184. The total iso-differential of the sixth kind of the iso-differentiable of the second kind
iso-functions of the fourth kind is

d6( f∧(x))

= T̂1 ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))+∑

n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)dxi.

185. The total iso-differential of the sixth kind of the iso-differentiable of the second kind
iso-functions of the fourth kind is

d6( f∨(x))

= T̂1
1

T̂ 2(x) ∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
dxi.

186. The total iso-differential of the sixth kind of the iso-differentiable of the third kind
iso-functions of the first kind is

d6( f̂∧(x̂)) = 1
T̂ 2(x)

T̂1 ∑
n
i=1

∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)
T̂ (x)−xi∂xi T̂ (x)

dxi.

187. The total iso-differential of the sixth kind of the iso-differentiable of the third kind
iso-functions of the second kind is

d6( f̂∧(x))

= 1
T̂ 2(x)

T̂1 ∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))T̂ (x)+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

188. The total iso-differential of the sixth kind of the iso-differentiable of the third kind
iso-functions of the third kind is

d6( f̂ (x̂))

= 1
T̂ 3(x)

T̂1 ∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

189. The total iso-differential of the sixth kind of the iso-differentiable of the third kind
iso-functions of the fourth kind is

d6( f∧(x))

= T̂ (x)T̂1 ∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.
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190. The total iso-differential of the sixth kind of the iso-differentiable of the third kind
iso-functions of the fifth kind is

d6( f∨(x))

= T̂1
1

T̂ 2(x) ∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xiT̂xi (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

191. The total iso-differential of the sixth kind of the iso-differentiable of the fourth kind
iso-functions of the first kind is

d6( f̂∧(x̂)) = T̂1 ∑
n
i=1

∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)
T̂ 3(x)

dxi.

192. The total iso-differential of the sixth kind of the iso-differentiable of the fourth kind
iso-functions of the second kind is

d6( f̂∧(x))

= T̂1 ∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))T̂ (x)+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

T̂ 3(x)
dxi.

193. The total iso-differential of the sixth kind of the iso-differentiable of the fourth kind
iso-functions of the third kind is

d6( f̂ (x̂))

= T̂1 ∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

T̂ 4(x)
dxi.

194. The total iso-differential of the sixth kind of the iso-differentiable of the fourth kind
iso-functions of the fourth kind is

d6( f∧(x))

= T̂1 ∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

T̂ (x)
dxi.

195. The total iso-differential of the sixth kind of the iso-differentiable of the fourth kind
iso-functions of the fifth kind is

d6( f∨(x))

= T̂1
1

T̂ 3(x) ∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
dxi.

196. The total iso-differential of the sixth kind of the iso-differentiable of the fifth kind
iso-functions of the first kind is

d6( f̂∧(x̂)) = T̂1 ∑
n
i=1

∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)
T̂ (x)−xi∂xi T̂ (x)

dxi.
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197. The total iso-differential of the sixth kind of the iso-differentiable of the fifth kind
iso-functions of the second kind is

d6( f̂∧(x))

= T̂1 ∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))T̂ (x)+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

198. The total iso-differential of the sixth kind of the iso-differentiable of the fifth kind
iso-functions of the third kind is

d6( f̂ (x̂))

= 1
T̂ (x)

T̂1 ∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

199. The total iso-differential of the sixth kind of the iso-differentiable of the fifth kind
iso-functions of the fourth kind is

d6( f∧(x))

= T̂ 2(x)T̂1 ∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

200. The total iso-differential of the sixth kind of the iso-differentiable of the fifth kind
iso-functions of the fifth kind is

d6( f∨(x))

= T̂1 ∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xiT̂xi (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

201. The total iso-differential of the sixth kind of the iso-differentiable of the sixth kind
iso-functions of the first kind is

d6( f̂∧(x̂)) = T̂1 ∑
n
i=1

∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)
T̂ (x)

dxi.

202. The total iso-differential of the sixth kind of the iso-differentiable of the sixth kind
iso-functions of the second kind is

d6( f̂∧(x))

= T̂1 ∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))T̂ (x)+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

T̂ (x)
dxi.

203. The total iso-differential of the sixth kind of the iso-differentiable of the sixth kind
iso-functions of the third kind is

d6( f̂ (x̂))

= T̂1 ∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

T̂ 2(x)
dxi.
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204. The total iso-differential of the sixth kind of the iso-differentiable of the sixth kind
iso-functions of the fourth kind is

d6( f∧(x))

= T̂ (x)T̂1 ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))+∑

n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

)
dxi.

205. The total iso-differential of the sixth kind of the iso-differentiable of the sixth kind
iso-functions of the fifth kind is

d6( f∨(x))

= T̂1
1

T̂ (x) ∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
dxi.

206. The total iso-differential of the sixth kind of the iso-differentiable of the seventh kind
iso-functions of the first kind is

d6( f̂∧(x̂)) = T̂1 ∑
n
i=1

∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)
T̂ (x)−xi∂xi T̂ (x)

dxi.

207. The total iso-differential of the sixth kind of the iso-differentiable of the seventh kind
iso-functions of the second kind is

d6( f̂∧(x))

= T̂1 ∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))T̂ (x)+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

208. The total iso-differential of the sixth kind of the iso-differentiable of the seventh kind
iso-functions of the third kind is

d6( f̂ (x̂))

= T̂1 ∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

T̂ (x)(T̂ (x)−xi∂xi T̂ (x))
dxi.

209. The total iso-differential of the sixth kind of the iso-differentiable of the seventh kind
iso-functions of the fourth kind is

d6( f∧(x))

= T̂ 2(x)T̂1 ∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

210. The total iso-differential of the sixth kind of the iso-differentiable of the seventh kind
iso-functions of the fourth kind is

d6( f∨(x))

= T̂1T̂ (x)∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xiT̂xi (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.
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211. The total iso-differential of the seventh kind of the iso-differentiable of the first kind
iso-functions of the first kind is

d7( f̂∧(x̂)) = 1
T̂ (x) ∑

n
i=1

∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)
T̂ (x)−xi∂xi T̂ (x)

dxi.

212. The total iso-differential of the seventh kind of the iso-differentiable of the first kind
iso-functions of the second kind is

d7( f̂∧(x))

= 1
T̂ (x) ∑

n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))T̂ (x)− f (xT̂ (x))∂xi T̂ (x)+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

213. The total iso-differential of seventh kind of the iso-differentiable of the first kind iso-
functions of the third kind is

d7( f̂ (x̂))

= 1
T̂ 2(x) ∑

n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

214. The total iso-differential of the seventh kind of the iso-differentiable of the first kind
iso-functions of the fourth kind is

d7( f∧(x))

= T̂ (x)∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

215. The total iso-differential of the seventh kind of the iso-differentiable of the first kind
iso-functions of the fifth kind is

d7( f∨(x))

= 1
T̂ (x) ∑

n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xiT̂xi (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

216. The total iso-differential of the seventh kind of the iso-differentiable of the second
kind iso-functions of the first kind is

d7( f̂∧(x̂)) = ∑
n
i=1

∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)
T̂ 2(x)

dxi.

217. The total iso-differential of the seventh kind of the iso-differentiable of the second
kind iso-functions of the second kind is

d7( f̂∧(x))

= ∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))T̂ (x)∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

T̂ 2(x)
dxi.
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218. The total iso-differential of the seventh kind of the iso-differentiable of the second
kind iso-functions of the third kind is

d7( f̂ (x̂))

= ∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

T̂ 3(x)
dxi.

219. The total iso-differential of the seventh kind of the iso-differentiable of the second
kind iso-functions of the fourth kind is

d7( f∧(x))

= ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))+∑

n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)dxi.

220. The total iso-differential of the seventh kind of the iso-differentiable of the second
kind iso-functions of the fourth kind is

d7( f∨(x))

= 1
T̂ 2(x) ∑

n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
dxi.

221. The total iso-differential of the seventh kind of the iso-differentiable of the third kind
iso-functions of the first kind is

d7( f̂∧(x̂)) = 1
T̂ 2(x) ∑

n
i=1

∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)
T̂ (x)−xi∂xi T̂ (x)

dxi.

222. The total iso-differential of the seventh kind of the iso-differentiable of the third kind
iso-functions of the second kind is

d7( f̂∧(x))

= 1
T̂ 2(x) ∑

n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))T̂ (x)+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

223. The total iso-differential of the seventh kind of the iso-differentiable of the third kind
iso-functions of the third kind is

d7( f̂ (x̂))

= 1
T̂ 3(x) ∑

n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

224. The total iso-differential of the seventh kind of the iso-differentiable of the third kind
iso-functions of the fourth kind is

d7( f∧(x))

= T̂ (x)∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.
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225. The total iso-differential of the seventh kind of the iso-differentiable of the third kind
iso-functions of the fifth kind is

d7( f∨(x))

= 1
T̂ 2(x) ∑

n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xiT̂xi (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

226. The total iso-differential of the seventh kind of the iso-differentiable of the fourth kind
iso-functions of the first kind is

d7( f̂∧(x̂)) = ∑
n
i=1

∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)
T̂ 3(x)

dxi.

227. The total iso-differential of the seventh kind of the iso-differentiable of the fourth kind
iso-functions of the second kind is

d7( f̂∧(x))

= ∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))T̂ (x)+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

T̂ 3(x)
dxi.

228. The total iso-differential of the seventh kind of the iso-differentiable of the fourth kind
iso-functions of the third kind is

d7( f̂ (x̂))

= ∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

T̂ 4(x)
dxi.

229. The total iso-differential of the seventh kind of the iso-differentiable of the fourth kind
iso-functions of the fourth kind is

d7( f∧(x))

= ∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

T̂ (x)
dxi.

230. The total iso-differential of the seventh kind of the iso-differentiable of the fourth kind
iso-functions of the fifth kind is

d7( f∨(x))

= 1
T̂ 3(x) ∑

n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
dxi.

231. The total iso-differential of the seventh kind of the iso-differentiable of the fifth kind
iso-functions of the first kind is

d7( f̂∧(x̂)) = ∑
n
i=1

∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)
T̂ (x)−xi∂xi T̂ (x)

dxi.
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232. The total iso-differential of the seventh kind of the iso-differentiable of the fifth kind
iso-functions of the second kind is

d7( f̂∧(x))

= ∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))T̂ (x)+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

233. The total iso-differential of the seventh kind of the iso-differentiable of the fifth kind
iso-functions of the third kind is

d7( f̂ (x̂))

= 1
T̂ (x) ∑

n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

234. The total iso-differential of the seventh kind of the iso-differentiable of the fifth kind
iso-functions of the fourth kind is

d7( f∧(x))

= T̂ 2(x)∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

235. The total iso-differential of the seventh kind of the iso-differentiable of the fifth kind
iso-functions of the fifth kind is

d7( f∨(x))

= ∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xiT̂xi (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

236. The total iso-differential of the seventh kind of the iso-differentiable of the sixth kind
iso-functions of the first kind is

d7( f̂∧(x̂)) = ∑
n
i=1

∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)
T̂ (x)

dxi.

237. The total iso-differential of the seventh kind of the iso-differentiable of the sixth kind
iso-functions of the second kind is

d7( f̂∧(x))

= ∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))T̂ (x)+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

T̂ (x)
dxi.

238. The total iso-differential of the seventh kind of the iso-differentiable of the sixth kind
iso-functions of the third kind is

d7( f̂ (x̂))

= ∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

T̂ 2(x)
dxi.
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239. The total iso-differential of the seventh kind of the iso-differentiable of the sixth kind
iso-functions of the fourth kind is

d7( f∧(x))

= T̂ (x)∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))+∑

n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

)
dxi.

240. The total iso-differential of the seventh kind of the iso-differentiable of the sixth kind
iso-functions of the fifth kind is

d7( f∨(x))

= 1
T̂ (x) ∑

n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
dxi.

241. The total iso-differential of the seventh kind of the iso-differentiable of the seventh
kind iso-functions of the first kind is

d7( f̂∧(x̂)) = ∑
n
i=1

∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)
T̂ (x)−xi∂xi T̂ (x)

dxi.

242. The total iso-differential of the seventh kind of the iso-differentiable of the seventh
kind iso-functions of the second kind is

d7( f̂∧(x))

= ∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))T̂ (x)+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

243. The total iso-differential of the seventh kind of the iso-differentiable of the seventh
kind iso-functions of the third kind is

d7( f̂ (x̂))

= ∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

T̂ (x)(T̂ (x)−xi∂xi T̂ (x))
dxi.

244. The total iso-differential of the seventh kind of the iso-differentiable of the seventh
kind iso-functions of the fourth kind is

d7( f∧(x))

= T̂ 2(x)∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

245. The total iso-differential of the seventh kind of the iso-differentiable of the seventh
kind iso-functions of the fourth kind is

d7( f∨(x))

= T̂ (x)∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xiT̂xi (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.
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246. The total iso-differential of the eighth kind of the iso-differentiable of the first kind
iso-functions of the first kind is

d8( f̂∧(x̂)) = ∑
n
i=1

∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)
T̂ (x)−xi∂xi T̂ (x)

dxi.

247. The total iso-differential of the eighth kind of the iso-differentiable of the first kind
iso-functions of the second kind is

d8( f̂∧(x))

= ∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))T̂ (x)+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

248. The total iso-differential of the the eighth kind of the iso-differentiable of the first kind
iso-functions of the third kind is

d8( f̂ (x̂))

= ∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

249. The total iso-differential of the eighth kind of the iso-differentiable of the first kind
iso-functions of the fourth kind is

d8( f∧(x))

= T̂ 2(x)∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

250. The total iso-differential of the eighth kind of the iso-differentiable of the first kind
iso-functions of the fifth kind is

d8( f∧(x))

= ∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xiT̂xi (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

251. The total iso-differential of the eighth kind of the iso-differentiable of the second kind
iso-functions of the first kind is

d8( f̂∧(x̂)) = ∑
n
i=1

∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)
T̂ (x)

dxi.

252. The total iso-differential of the eighth kind of the iso-differentiable of the second kind
iso-functions of the second kind is

d8( f̂∧(x))

= ∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))T̂ (x)+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

T̂ (x)
dxi.
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253. The total iso-differential of the eighth kind of the iso-differentiable of the second kind
iso-functions of the third kind is

d8( f̂ (x̂)) = ∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

T̂ 2(x)
dxi.

254. The total iso-differential of the eighth kind of the iso-differentiable of the second kind
iso-functions of the fourth kind is

d8( f∧(x))

= T̂ (x)∑
n
i=1 ∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))+∑

n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)dxi.

255. The total iso-differential of the eighth kind of the iso-differentiable of the second kind
iso-functions of the fifth kind is

d8( f∧(x)) = 1
T̂ (x) ∑

n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
dxi.

256. The total iso-differential of the eighth kind of the iso-differentiable of the third kind
iso-functions of the first kind is

d8( f̂∧(x̂)) = 1
T̂ (x) ∑

n
i=1

∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)
T̂ (x)−xi∂xi T̂ (x)

dxi.

257. The total iso-differential of the eighth kind of the iso-differentiable of the third kind
iso-functions of the second kind is

d8( f̂∧(x))

= ∑
n
i=1

1
T̂ (x)

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))T̂ (x)+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

258. The total iso-differential of the eighth kind of the iso-differentiable of the third kind
iso-functions of the third kind is

d8( f̂ (x̂))

= 1
T̂ 2(x) ∑

n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

259. The total iso-differential of the eighth kind of the iso-differentiable of the third kind
iso-functions of the fourth kind is

d8( f∧(x))

= T̂ 2(x)∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.
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260. The total iso-differential of the eighth kind of the iso-differentiable of the third kind
iso-functions of the fifth kind is

d8( f∧(x))

= 1
T̂ (x) ∑

n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xiT̂xi (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

261. The total iso-differential of the eighth kind of the iso-differentiable of the fourth kind
iso-functions of the first kind is

d8( f̂∧(x̂)) = ∑
n
i=1

∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)
T̂ 2(x)

dxi.

262. The total iso-differential of the eighth kind of the iso-differentiable of the fourth kind
iso-functions of the second kind is

d8( f̂∧(x))

= ∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))T̂ (x)+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

T̂ 2(x)
dxi.

263. The total iso-differential of the eighth kind of the iso-differentiable of the fourth kind
iso-functions of the third kind is

d8( f̂ (x̂))

= ∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

T̂ 3(x)
dxi.

264. The total iso-differential of the eighth kind of the iso-differentiable of the fourth kind
iso-functions of the fourth kind is

d8( f∧(x))

= ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))+∑

n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

)
dxi.

265. The total iso-differential of the eighth kind of the iso-differentiable of the fourth kind
iso-functions of the fifth kind is

d8( f∧(x))

= 1
T̂ 2(x) ∑

n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
dxi.

266. The total iso-differential of the eighth kind of the iso-differentiable of the fifth kind
iso-functions of the first kind is

d8( f̂∧(x̂)) = T̂ (x)∑
n
i=1

∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)
T̂ (x)−xi∂xi T̂ (x)

dxi.
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267. The total iso-differential of the eighth kind of the iso-differentiable of the fifth kind
iso-functions of the second kind is

d8( f̂∧(x))

= T̂ (x)∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))T̂ (x)+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

268. The total iso-differential of the eighth kind of the iso-differentiable of the fifth kind
iso-functions of the third kind is

d8( f̂ (x̂))

= ∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

269. The total iso-differential of the eighth kind of the iso-differentiable of the fifth kind
iso-functions of the fourth kind is

d8( f∧(x))

= T̂ 3(x)∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

270. The total iso-differential of the eighth kind of the iso-differentiable of the fifth kind
iso-functions of the fifth kind is

d8( f∧(x))

= T̂ (x)∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xiT̂xi (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)

T̂ (x)−x1∂xi T̂ (x)
dxi.

271. The total iso-differential of the eighth kind of the iso-differentiable of the sixth kind
iso-functions of the first kind is

d8( f̂∧(x̂)) = ∑
n
i=1

(
∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)

)
dxi.

272. The total iso-differential of the eighth kind of the iso-differentiable of the sixth kind
iso-functions of the second kind is

d8( f̂∧(x)) = ∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)− f (xT̂ (x))∂xi T̂ (x)

)
dxi.

273. The total iso-differential of the eighth kind of the iso-differentiable of the sixth kind
iso-functions of the third kind is

d8( f̂ (x̂))

= ∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

T̂ (x)
dxi.
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274. The total iso-differential of the eighth kind of the iso-differentiable of the sixth kind
iso-functions of the fourth kind is

d8( f∧(x)) = T̂ 2(x)∑
n
i=1

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

)
dxi.

275. The total iso-differential of the eighth kind of the iso-differentiable of the sixth kind
iso-functions of the fifth kind is

d8( f∧(x))

= ∑
n
i=1

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
dxi.

276. The total iso-differential of the eighth kind of the iso-differentiable of the seventh kind
iso-functions of the first kind is

d8( f̂∧(x̂)) = T̂ (x)∑
n
i=1

∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)
T̂ (x)−xi∂xi T̂ (x)

dxi.

277. The total iso-differential of the eighth kind of the iso-differentiable of the seventh kind
iso-functions of the second kind is

d8( f̂∧(x))

= T̂ (x)∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))T̂ (x)− f (xT̂ (x))∂xi T̂ (x)+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

278. The total iso-differential of the eighth kind of the iso-differentiable of the seventh kind
iso-functions of the third kind is

d8( f̂ (x̂))

= ∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xi∂xi T̂ (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)− f

(
x

T̂ (x)

)
T̂ (x)∂xi T̂ (x)

(T̂ (x)−xi∂xi T̂ (x))
dxi.

279. The total iso-differential of the eighth kind of the iso-differentiable of the seventh kind
iso-functions of the fourth kind is

d8( f∧(x))

= T̂ 3(x)∑
n
i=1

∂xi f (xT̂ (x))(T̂ (x)+xi∂xi T̂ (x))+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.

280. The total iso-differential of the eighth kind of the iso-differentiable of the seventh kind
iso-functions of the fifth kind is

d8( f∧(x))

= T̂ 2(x)∑
n
i=1

∂xi f

(
x

T̂ (x)

)
(T̂ (x)−xiT̂xi (x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi (x)

T̂ (x)−xi∂xi T̂ (x)
dxi.
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Definition 1.5.39. The second order total iso-differential of the (i, j)-kind of an iso-
function f̂ is defined as follows

d∧i (d j( f̂ )) = di(T̂ d j( f̂ )), i, j = 1,2, . . . ,8.

The third order total iso-differential of the (l, i, j)-kind of an iso-function f̂ is defined as
follows

d∧l (d
∧
i (d j( f̂ ))) = dl(T̂ di(T̂ d j( f̂ ))), l, i, j = 1,2, . . . ,8

and so on.

Exercise 1.5.40. Let f̂ , ĝ : D −→ R be iso-functions of the first, the second, the third, the
fourth or the fifth kind, which are iso-differentiable at x ∈ D of the first, the second, the
third, the fourth, the fifth, the sixth or the seventh kind. Let also, a ∈ R, â ∈ F̂R. Prove

1. d j( f̂ (x)± ĝ(x)
)
= d j( f̂ (x))±d j(ĝ(x))

j~
xi .

2. d j(â×̂ f̂ (x)) = â×̂d j( f̂ (x)).

3. d j(â f̂ (x)) = âd j( f̂ (x)).

4. d j(a×̂ f̂ (x)) = a×̂d j( f̂ (x)).

5. d j(a f̂ (x)) = ad j( f̂ (x)).

6. d j( f̂ (x)×̂ĝ(x)) = d j( f̂ (x))×̂ĝ(x)+ f̂ (x)×̂d j(ĝ(x)).

7. d j( f̂ (x)ĝ(x)) = d j( f̂ (x))ĝ(x)+ f̂ (x)d j(ĝ(x)).

8 d j

(
f̂ (x)↗ ĝ(x)

)
=
(

d j( f̂ (x))ĝ(x)− f̂ (x)d j(ĝ(x))
)
↗ ĝ2(x).

9. d j

(
f̂ (x)
ĝ(x)

)
=

d j( f̂ (x))ĝ(x)− f̂ (x)d j(ĝ(x))
ĝ2(x) , j = 1, . . . ,8, i = 1, . . . ,n.

Remark 1.5.41. The iso- derivatives of the first, the second, the third, the fourth, the fifth,
the sixth or the seventh kind of the iso-composite iso-functions of the first, the second, the
third, the fourth or the fifth kind can be computed using the definition of the iso-composite
iso-functions, the iso-derivatives and the rules for computation of the derivatives of com-
posite functions.

Definition 1.5.42. Let f̂ : D −→ R be an iso-function of the first, the second, the third,
the fourth or the fifth kind, which is iso-differentiable of the first, the second, the third, the
fourth, the fifth, the sixth or the seventh kind at x ∈ D. Let also, Ŷ = (ŷ1, ŷ2, . . . , ŷn) ∈ F̂Rn .
Then the directional iso-derivative of f̂ is defined as follows

∂̂ f̂ (x)↗ ∂̂Ŷ = ∑
n
i=1( f̂ (x)) j~

xi ×̂ŷi or

∂̂ f̂ (x)
∂̂Ŷ

= ∑
n
i=1( f̂ (x)) j~

xi ŷi, j = 1,2, . . . ,7.
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Definition 1.5.43. Let f̂ : D −→ R be an iso-function of the first, the second, the third,
the fourth or the fifth kind, which is iso-differentiable of the first, the second, the third, the
fourth, the fifth, the sixth or the seventh kind at x ∈D. Then the iso-gradient of f̂ of the j-th
kind, j = 1,2, . . .7, is defined as follows

∇̂
j f̂ (x) =

(
( f̂ ) j~

x1
,( f̂ ) j~

x2
, . . . ,( f̂ ) j~

xn

)
.

Homogeneous iso-functions

Let D⊂ Rn and T̂ : D−→ R, T̂ (x)> 0 for every x ∈ D.

Definition 1.5.44. An iso-function of the first, the second, the third, the fourth or the fifth
kind, defined on D⊂Rn, will be called a homogeneous iso-function of degree n at the point
x0 ∈ D if its iso-original is a homogeneous function of degree n at the point x0.

Theorem 1.5.45. Let f̂∧∧ is defined on D, f is homogeneous of degree n at the point x ∈D,
T̂ is homogeneous of degree m at the point x ∈ D. Then f̂∧∧ is homogeneous of degree
n−m.

Proof. Let t belongs to an enough small neighborhood of 1. Then

f (tx)
T̂ (tx)

=
tn f (x)
tmT̂ (x)

= tn−m f (x)
T̂ (x)

.

Corollary 1.5.46. In addition, if f and T̂ are differentiable at x, then we have the following
iso- Euler equality

n

∑
i=1

xi∂xi

( f (x)
T̂ (x)

)
= (n−m)

f (x)
T̂ (x)

.

Theorem 1.5.47. Let f̂∧ is defined on D, f is homogeneous of degree n at the point x ∈ D,
T̂ is homogeneous of degree m at the point x ∈ D. Then f̂∧ is homogeneous of degree
m(n−1)+n.

Proof. Let t belongs to an enough small neighbourhood of 1. Then

f (txT̂ (tx))
T̂ (tx)

=
f (tm+1xT̂ (x)

tmT̂ (x)
=

tn(m+1) f (xT̂ (x))
tmT̂ (x)

= tm(n−1)+n f (xT̂ (x))
T̂ (x)

.

Corollary 1.5.48. In addition, if f and T̂ are differentiable at x, then we have the following
iso- Euler equality

n

∑
i=1

xi∂xi

( f (xT̂ (x))
T̂ (x)

)
= (m(n−1)+n)

f
(

x
T̂ (x)

)

T̂ (x)
.
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Theorem 1.5.49. Let ˆ̂f is defined on D, f is homogeneous of degree n at the point x ∈
D, T̂ is homogeneous of degree m at the point x ∈ D. Then ˆ̂f is homogeneous of degree
−(n+1)m+n.

Proof. Let t belongs to an enough small neighbourhood of 1. Then

f
(

tx
T̂ (tx)

)
T̂ (tx)

=
f
(

tx
tmT̂ (x)

)
tmT̂ (x)

=
f
(

t1−m x
T̂ (x)

)
tmT̂ (x)

=
tn(1−m)

tm

f
(

x
T̂ (x)

)
T̂ (x)

= t−(n+1)m+n
f
(

x
T̂ (x)

)
T̂ (x)

.

Corollary 1.5.50. In addition, if f and T̂ are differentiable at x, then we have the following
iso- Euler equality

n

∑
i=1

xi∂xi

( f
(

x
T̂ (x)

)
T̂ (x)

)
= (−(n+1)m+n)

f
(

x
T̂ (x)

)
T̂ (x)

.

Theorem 1.5.51. Let f∧ is defined on D, f is homogeneous of degree n at the point x ∈ D,
T̂ is homogeneous of degree m at the point x ∈ D. Then f∧ is homogeneous of degree
(m+1)n.

Proof. Let t belongs to an enough small neighbourhood of 1. Then

f (txT̂ (tx)) = f (tm+1xT̂ (x)) = t(m+1)n f (xT̂ (x)).

Corollary 1.5.52. In addition, if f and T̂ are differentiable at x, then we have the following
iso- Euler equality

n

∑
i=1

xi∂xi( f (xT̂ (x))) = (m+1)n f (xT̂ (x)).

Theorem 1.5.53. Let f∨ is defined on D, f is homogeneous of degree n at the point x ∈ D,
T̂ is homogeneous of degree m at the point x ∈ D. Then f∨ is homogeneous of degree
n(1−m).

Proof. Let t belongs to an enough small neighbourhood of 1. Then

f
( tx

T̂ (tx)

)
= f
( tx

tmT̂ (x)

)
= f
(

t1−m x
T̂ (x)

)
= tn(1−m) f

( x
T̂ (x)

)
.

Corollary 1.5.54. In addition, if f and T̂ are differentiable at x, then we have the following
iso- Euler equality

n

∑
i=1

xi∂xi

(
f
( x

T̂ (x)

))
= n(1−m) f

( x
T̂ (x)

)
.
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1.6. Minima and Maxima of Iso-Functions of n Iso-Variables

Let D⊂ Rn and T̂ : D−→ R, T̂ (x)> 0 for every x ∈ D, and x0 ∈ D.

Definition 1.6.1. We will say that the iso-point x̂ ∈ F̂Rn is a local extreme iso-point of the
iso-function f̂ of the first, the second, the third, the fourth or the fifth kind if the point x is a
local extreme point of its iso-original f̃ .

For x ∈ D we introduce the following quantities.

Ai(x) = 1
T̂ 2(x)

(
∂xi f (x)T̂ (x)− f (x)∂xi T̂ (x)

)
,

Bi(x) = 1
T̂ 2(x)

(
∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x jT̂xi(x)− f (xT̂ (x))∂xi T̂ (x)

)
,

Ci(x) = 1
T̂ 3(x)

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)− f

(
x

T̂ (x)

)
∂xi T̂ (x)T̂ (x)

)
,

Di(x) = ∂xi f (xT̂ (x))(T̂ (x)+ xiT̂xi(x))

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x),

Ei(x) = 1
T̂ 2(x)

(
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

)
, i = 1,2, . . . ,n.

In fact, we have

Ai(x) = ∂xi f̂∧(x̂), Bi(x) = ∂xi f̂∧(x), Ci(x) = ∂xi f̂ (x̂),

Di(x) = ∂xi f∧(x), Ei(x) = ∂xi f∨(x), x ∈ D, i = 1,2, . . . ,n.

Theorem 1.6.2. Let f , T̂ : D −→ R be differentiable functions at x0 ∈ D and x0 is a local
extreme point of f̂∧∧. Then

fxi(x
0)T̂ (x0) = f (x0)T̂xi(x

0), i = 1,2, . . . ,n.

Proof. Since x0 is a local extreme point of f̂∧∧ then x0 is a local extreme point of the
function f (x)

T̂ (x)
. Because f and T̂ are differentiable at x0 and T̂ (x) > 0 for every x ∈ D, then

f (x)
T̂ (x)

is a differentiable function at x0. From here, using that x0 is a local extreme point of
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f (x)
T̂ (x)

, we get

Ai(x0) = 0 ⇐⇒ fxi (x
0)T̂ (x0)− f (x0)T̂xi (x

0)

T̂ 2(x0)
= 0 ⇐⇒

fxi(x
0)T̂ (x0) = f (x0)T̂xi(x

0), i = 1,2, . . . ,n.

Theorem 1.6.3. Let f , T̂ : D −→ R be differentiable functions at x0 and x0T̂ (x0) ∈ D, re-
spectively. Let also, x0 is a local extreme point of f̂∧. Then

∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x jT̂xi(x)

= f (xT̂ (x))∂xi T̂ (x), i = 1,2, . . . ,n.

Proof. Since x0 is a local extreme point of f̂∧ then x0 is a local extreme point of f (xT̂ (x))
T̂ (x)

.

Because f is differentiable at x0T̂ (x0) and T̂ is differentiable at x0, and T̂ (x)> 0 for every
x ∈ D, then f (xT̂ (x))

T̂ (x)
is differentiable at x0. From here, using that x0 is a local extreme point

of f (xT̂ (x))
T̂ (x)

, we get

Bi(x0) = 0 ⇐⇒

∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x jT̂xi(x)

− f (xT̂ (x))∂xi T̂ (x) = 0, i = 1,2, . . . ,n.

Theorem 1.6.4. Let f , T̂ : D−→ R be differentiable at x0 and x0

T̂ (x0)
, respectively. Let also,

x0 is a local extreme point of ˆ̂f . Then

∂xi f
(

x
T̂ (x)

)
(T̂ (x)− xiT̂xi(x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

= f
(

x
T̂ (x)

)
∂xi T̂ (x)T̂ (x), i = 1,2, . . . ,n.

Proof. Since x0 is a local extreme point of ˆ̂f then x0 is a local extreme point of
f

(
x

T̂ (x)

)
T̂ (x)

.

Because f is a differentiable function at x0

T̂ (x0)
and T̂ is a differentiable function at x0, and

T̂ (x0) > 0, then the function
f

(
x

T̂ (x)

)
T̂ (x)

is a differentiable function at x0. Using that x0 is a

108



local extreme point of
f

(
x

T̂ (x)

)
T̂ (x)

, we get

Ci(x0) = 0 ⇐⇒

∂xi f
(

x
T̂ (x)

)
(T̂ (x)− xiT̂xi(x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

− f
(

x
T̂ (x)

)
∂xi T̂ (x)T̂ (x) = 0, i = 1,2, . . . ,n.

Theorem 1.6.5. Let f , T̂ : D −→ R be differentiable functions at x0 and x0T̂ (x0), respec-
tively. Let also x0 is a local extreme point of f∧. Then

∂xi f (xT̂ (x))(T̂ (x)+ xiT̂xi(x)) =−∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x),

i = 1,2, . . . ,n.

Proof. Since x0 is a local extreme point of f∧ then x0 is a local extreme point of f (xT̂ (x)).
Therefore

Di(x0) = 0 ⇐⇒

∂xi f (xT̂ (x))(T̂ (x)+ xiT̂xi(x))+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x) = 0, i = 1,2, . . . ,n.

Theorem 1.6.6. Let f , T̂ : D−→R be differentiable functions at x0 and x0

T̂ (x0)
, respectively.

Let also x0 is a local extreme point of f∨. Then

∂xi f
(

x
T̂ (x)

)
(T̂ (x)− xiT̂xi(x)) = ∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x), i = 1,2, . . . ,n.

Proof. Since x0 is a local extreme point of f∨ then x0 is a local extreme point of f
(

x
T̂ (x)

)
.

Therefore

Ei(x0) = 0 ⇐⇒

∂xi f
(

x
T̂ (x)

)
(T̂ (x)− xiT̂xi(x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x) = 0, i = 1,2, . . . ,n.

Remark 1.6.7. If f , T̂ : D −→ R are twice differentiable function at x ∈ D, we introduce
the following quantities

Ai j(x) = ∂x j Ai(x), Bi j(x) = ∂x j Bi(x), Ci j(x) = ∂x jCi(x),

Di j(x) = ∂x j Di(x), Ei j(x) = ∂x j Ei(x), i, j = 1,2, . . . ,n.
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Using some basic facts concerning the local extreme of the real-valued functions one
can prove the following theorems.

Theorem 1.6.8. Let f , T̂ : D−→R be twice continuously-differentiable functions at x0 ∈D
and

fxi(x
0)T̂ (x0) = f (x0)T̂xi(x

0), i = 1,2, . . . ,n.

If
n

∑
i j=1

Ai j(x0)dxidx j

is a positive(negative) definite quadratic form, then x0 is a local minimum(maximum) point
of f̂∧∧.

Theorem 1.6.9. Let f , T̂ : D−→R be twice continuously-differentiable functions at x0 and
x0T̂ (x0) ∈ D, respectively. Let also,

∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x jT̂xi(x)

= f (xT̂ (x))∂xi T̂ (x), i = 1,2, . . . ,n.

If
n

∑
i, j=1

Bi j(x0)dxidx j

is a positive(negative) definite quadratic form, then x0 is a local minimum(maximum) point
of f̂∧.

Theorem 1.6.10. Let f , T̂ : D −→ R be twice continuously-differentiable at x0 and x0

T̂ (x0)
,

respectively. Let also,

∂xi f
(

x
T̂ (x)

)
(T̂ (x)− xiT̂xi(x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)

= f
(

x
T̂ (x)

)
∂xi T̂ (x)T̂ (x), i = 1,2, . . . ,n.

If
n

∑
i j=1

Ci j(x0)dxidx j

is a positive(negative) definite quadratic form, then then x0 is a local minimum(maximum)
point of ˆ̂f .

Theorem 1.6.11. Let f , T̂ : D −→ R be twice continuously-differentiable functions at x0

and x0T̂ (x0), respectively. Let also,

∂xi f (xT̂ (x))(T̂ (x)+ xiT̂xi(x)) =−∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x),

i = 1,2, . . . ,n.
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If
n

∑
i j=1

Di j(x0)dxidx j

is a positive(negative) definite quadratic form, then then x0 is a local minimum(maximum)
point of f̂∧.

Theorem 1.6.12. Let f , T̂ : D −→ R be twice continuously-differentiable functions at x0

and x0

T̂ (x0)
, respectively. Let also,

∂xi f
(

x
T̂ (x)

)
(T̂ (x)− xiT̂xi(x)) = ∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x), i = 1,2, . . . ,n.

If
n

∑
i j=1

Ei j(x0)dxidx j

is a positive(negative) definite quadratic form, then then x0 is a local minimum(maximum)
point of f̂∨.

Now we will use the following notations x = (x1,x2, . . . ,xl), y = (y1,y2, . . . ,ym) =
(xm+1,xm+2, . . . ,xn), l +m = n. We fix a point (x0,y0) ∈ D. We put

D̃1 = {(x,y) ∈ D : x0
i −ai ≤ xi ≤ x0

i +ai,

y0
j −b j ≤ y j ≤ y0

j +b j, i = 1,2, . . . , l, j = 1,2, . . . ,m},

where ai, b j, i = 1,2, . . . , l, j = 1,2, . . . ,m are enough small positive constants.
We suppose that the iso-function f̂ of the first, the second, the third, the fourth or the

fifth kind, and the functions Gi, i = 1,2, . . . ,m, are defined and continuously-differentiable
on D̃1. We introduce the set

D̃2 = {(x,y) ∈ D1 : Gi(x,y) = 0, i = 1,2, . . . ,m}.

We assume that (x0,y0), (x0T̂ (x0,y0),y0T̂ (x0,hy0)),
(

x0

T̂ (x0,y0)
, y0

T̂ (x0,hy0)

)
∈ D̃2, and

(A7)

Gi(x0,y0) = 0, i = 1,2, . . . ,m,

∂(G1,G2,...,Gm)
∂(y1,y2,...,ym)

= det


∂G1
∂y1

∂G1
∂y2

· · · ∂G1
∂ym

∂G2
∂y1

∂G2
∂y2

· · · ∂G2
∂ym

· · ·
∂Gm
∂y1

∂Gm
∂y2

· · · ∂Gm
∂ym

(x0,y0) 6= 0.

Let (x0,y0) is a local extreme point of f̂ . We define the function

φ(x,y) = f̂ (x,y)+
n

∑
i=1

λiGi(x,y).

The iso- Lagrange multipliers are the constants λi, i = 1,2, . . . ,m. Then the iso-Lagrange
multipliers can be determined by the following system
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1. (in the case when f̂ is an iso-function of the first kind )



fxi (x
0,y0)T̂ (x0,y0)− f (x0,y0)T̂xi (x

0,y0)

T̂ 2(x0,y0)
+∑

m
k=1 λkGkxi(x

0,y0) = 0, i = 1,2, . . . , l,

fy j (x
0,y0)T̂ (x0,y0)− f (x0,y0)T̂y j (x

0,y0)

T̂ 2(x0,y0)
+∑

m
k=1 λkGky j(x

0,y0) = 0, j = 1,2, . . . ,m,

Gi(x0,y0) = 0 i = 1,2, . . . ,m.

2. (in the case when f̂ is an iso-function of the second kind )



1
T̂ 2(x0,y0)

(
fxi(x

0T̂ (x0,y0),y0T̂ (x0,y0))(T̂ (x0,y0)+ x0
i T̂xi(x

0,y0))

+∑
n
j=1, j 6=i fx j(x

0T̂ (x0,y0),y0T̂ (x0,y0))x0
j T̂xi(x

0,y0)T̂ (x0,y0)

− f (x0T̂ (x0,y0),y0T̂ (x0,y0))T̂xi(x
0,y0)

)
+∑

m
k=1 λkGkxi(x

0,y0) = 0, i = 1,2, . . . , l,

1
T̂ 2(x0,y0)

(
fy j(x

0T̂ (x0,y0),y0T̂ (x0,y0))(T̂ (x0,y0)+ y0
j T̂xi(x

0,y0))

+∑
n
j=1, j 6=i fy j(x

0T̂ (x0,y0),y0T̂ (x0,y0))y0
j T̂yi(x

0,y0)T̂ (x0,y0)

− f (x0T̂ (x0,y0),y0T̂ (x0,y0))T̂y j(x
0,y0)

)
+∑

m
k=1 λkGky j(x

0,y0) = 0, j = 1,2, . . . ,m,

Gi(x0,y0) = 0, i = 1,2, . . . ,m,

112



3. (in the case when f̂ is an iso-function of the third kind )



1
T̂ 3(x0,y0)

(
fxi

(
x0

T̂ (x0,y0)
, y0

T̂ (x0,y0)

)
(T̂ (x0,y0)− x0

i T̂xi(x
0,y0))

− f
(

x0

T̂ (x0,y0)
, y0

T̂ (x0,y0)

)
T̂ (x0,y0)T̂xi(x

0,y0)

−∑
n
j=1, j 6=i fx j

(
x0

T̂ (x0,y0)
, y0

T̂ (x0,y0)

)
x0

j T̂xi(x
0,y0)

)
+∑

m
k=1 λkGkxi(x

0,y0) = 0, i = 1,2, . . . , l,

1
T̂ 3(x0,y0)

(
fy j

(
x0

T̂ (x0,y0)
, y0

T̂ (x0,y0)

)
(T̂ (x0,y0)− y0

j T̂xi(x
0,y0))

− f
(

x0

T̂ (x0,y0)
, y0

T̂ (x0,y0)

)
T̂y j(x

0,y0)T̂ (x0,y0)

−∑
n
j=1, j 6=i fy j

(
x0

T̂ (x0,y0)
, y0

T̂ (x0,y0)

)
y0

j T̂yi(x
0,y0)

)
+∑

m
k=1 λkGky j(x

0,y0) = 0, j = 1,2, . . . ,m,

Gi(x0,y0) = 0, i = 1,2, . . . ,m,

4. (in the case when f̂ is an iso-function of the fourth kind )



fxi(x
0T̂ (x0,y0),y0T̂ (x0,y0))(T̂ (x0,y0)+ x0

i T̂xi(x
0,y0))

+∑
n
j=1, j 6=i fx j(x

0T̂ (x0,y0),y0T̂ (x0,y0))x0
j T̂xi(x

0,y0)

+∑
m
k=1 λkGkxi(x

0,y0) = 0,

i = 1,2, . . . , l,

fy j(x
0T̂ (x0,y0),y0T̂ (x0,y0))(T̂ (x0,y0)+ y0

j T̂y j(x
0,y0))

+∑
n
j=1, j 6=i fy j(x

0T̂ (x0,y0),y0T̂ (x0,y0))y0
j T̂yi(x

0,y0)

+∑
m
k=1 λkGky j(x

0,y0) = 0,

j = 1,2, . . . ,m,

Gi(x0,y0) = 0, i = 1,2, . . . ,m.
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5. (in the case when f̂ is an iso-function of the fifth kind )

1
T̂ 2(x0,y0)

(
fxi

(
x0

T̂ (x0,y0)
, y0

T̂ (x0,y0)

)
(T̂ (x0,y0)− x0

i T̂xi(x
0,y0))

−∑
n
j=1, j 6=i fx j

(
x0

T̂ (x0,y0)
, y0

T̂ (x0,y0)

)
x0

j T̂xi(x
0,y0)

)
+∑

m
k=1 λkGkxi(x

0,y0) = 0, i = 1,2, . . . , l,

1
T̂ 2(x0,y0)

(
fy j

(
x0

T̂ (x0,y0)
, y0

T̂ (x0,y0)

)
(T̂ (x0,y0)− y0

j T̂xi(x
0,y0))

−∑
n
j=1, j 6=i fy j

(
x0

T̂ (x0,y0)
, y0

T̂ (x0,y0)

)
y0

j T̂yi(x
0,y0)

)
+∑

m
k=1 λkGky j(x

0,y0) = 0, j = 1,2, . . . ,m,

Gi(x0,y0) = 0, i = 1,2, . . . ,m.

Now we will give some conditions for the existence of the constrained extreme values.
In addition, we suppose that f ,Gk : D1 −→ R, k = 1,2, . . . ,m, are twice continuously-
differentiable functions. Since (A7), the system

l

∑
i=1

G jxidxi +
m

∑
k=1

G jyk dyk = 0

has an unique solution

dyk =
m

∑
i=1

αikdxi, k = 1,2, . . . ,m.

Then

1. for the iso-functions of the first kind

d2
φ(x0,y0) =

m

∑
i, j=1

Ai j(x0,y0)dxdx j +
n

∑
i, j=m+1

Ai j(x0,y0)
( m

∑
l=1

αlidxl

)( m

∑
l=1

αl jdxl

)
,

2. for the iso-functions of the second kind

d2
φ(x0,y0) =

m

∑
i, j=1

Bi j(x0,y0)dxdx j +
n

∑
i, j=m+1

Bi j(x0,y0)
( m

∑
l=1

αlidxl

)( m

∑
l=1

αl jdxl

)
,

3. for the iso-functions of the third kind

d2
φ(x0,y0) =

m

∑
i, j=1

Ci j(x0,y0)dxdx j +
n

∑
i, j=m+1

Ci j(x0,y0)
( m

∑
l=1

αlidxl

)( m

∑
l=1

αl jdxl

)
,
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4. for the iso-functions of the fourth kind

d2
φ(x0,y0) =

m

∑
i, j=1

Di j(x0,y0)dxdx j +
n

∑
i, j=m+1

Di j(x0,y0)
( m

∑
l=1

αlidxl

)( m

∑
l=1

αl jdxl

)
.

5. for the iso-functions of the fifth kind

d2
φ(x0,y0) =

m

∑
i, j=1

Ei j(x0,y0)dxdx j +
n

∑
i, j=m+1

Ei j(x0,y0)
( m

∑
l=1

αlidxl

)( m

∑
l=1

αl jdxl

)
.

If d2φ(x0,y0) is a positive(negative) definite quadratic form, then (x0,y0) is a mini-
mum(maximum) point of the iso-function f̂ .

Exercise 1.6.13. Let D =R2, f (x) = 2−2x2
1−x2

2, T̂ (x) = x2
1+2, x = (x1,x2) ∈D. Find the

minima and the maxima of f̂∧∧ on the ellipse

2(x1−1)2 +(x2−1)2 = 1.

Now we will formulate the mean value theorems for the iso-functions of n variables.

1. The mean value theorem for the iso-functions of the first kind

f̂∧(x̂1)− f̂∧(x̂2) =
n

∑
i=1

fxi(x
0)T̂ (x0)− f (x0)T̂xi(x

0)

T̂ 2(x0)
(x1

i − x0
i ),

2. The mean value theorem for the iso-functions of the second kind

f̂∧(x1)− f̂∧(x2) = ∑
n
i=1

1
T̂ 2(x0)

(
∂xi f (x0T̂ (x0))(T̂ (x0)+ x0

i ∂x0
i
T̂ (x0))T̂ (x0)

+∑
n
j=1, j 6=i ∂x j f (x0T̂ (x0))x jT̂xi(x

0)− f (x0T̂ (x0))∂xi T̂ (x
0)
)
(x1

i − x2
i ).

3. The mean value theorem for the iso-functions of the third kind

f̂ (x̂1)− f̂ (x̂2)

= ∑
n
i=1

1
T̂ 3(x0)

(
∂xi f

(
x0

T̂ (x0)

)
(T̂ (x0)− x0

i T̂xi(x
0))

−∑
n
j=1, j 6=i ∂x j f

(
x0

T̂ (x0)

)
x0

j T̂xi(x
0)− f

(
x0

T̂ (x0)

)
∂xi T̂ (x

0)T̂ (x0)
)
(x1

i − x2
i ).

4. The mean value theorem for the iso-functions of the fourth kind

f∧(x1)− f∧(x2) = ∑
n
i=1

(
∂xi f (x0T̂ (x0))(T̂ (x0)+ x0

i T̂xi(x
0))

+∑
n
j=1, j 6=i ∂x j f (x0T̂ (x0))x0

j∂xi T̂ (x
0)
)
(x1

i − x2
i ),
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5. The mean value theorem for the iso-functions of the fifth kind

f∨(x1)− f∨(x2)

= ∑
n
i=1

1
T̂ 2(x0)

(
∂xi f

(
x0

T̂ (x0)

)
(T̂ (x0)− x0

i T̂xi(x
0))

−∑
n
j=1, j 6=i ∂x j f

(
x0

T̂ (x0)

)
x0

j T̂xi(x
0)
)
(x1

i − x2
i ).

where x0 belongs to the line from x1 to x2 and x0 6= x1,x2. Here x1,x2 ∈ D are arbi-
trarily chosen.

Corollary 1.6.14. If f , T̂ : D−→ R are differentiable functions and

fxi(x)T̂ (x)− f (x)T̂xi(x) = 0 for ∀x ∈ D, i = 1,2, . . . ,n,

then f̂∧∧ is a constant in D.

Corollary 1.6.15. If f , T̂ : D−→R are differentiable functions, xT̂ (x) ∈D for every x ∈D,
and

∂xi f (xT̂ (x))(T̂ (x)+ xi∂xi T̂ (x))T̂ (x)

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x jT̂xi(x)− f (xT̂ (x))∂xi T̂ (x) = 0 for ∀x ∈ D, i = 1,2, . . . ,n,

then f̂∧ is a constant in D.

Corollary 1.6.16. If f , T̂ : D −→ R are differentiable functions, x
T̂ (x)
∈ D for every x ∈ D,

and

∂xi f
(

x
T̂ (x)

)
(T̂ (x)− xiT̂xi(x))

−∑
n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x)− f

(
x

T̂ (x)

)
∂xi T̂ (x)T̂ (x) = 0 for ∀x ∈ D, i = 1,2, . . . ,n,

then ˆ̂f is a constant in D.

Corollary 1.6.17. If f , T̂ : D−→R are differentiable functions, xT̂ (x) ∈D for every x ∈D,
and

∂xi f (xT̂ (x))(T̂ (x)+ xiT̂xi(x))

+∑
n
j=1, j 6=i ∂x j f (xT̂ (x))x j∂xi T̂ (x) = 0 for ∀x ∈ D, i = 1,2, . . . ,n,

then f is a constant in D.

Corollary 1.6.18. If f , T̂ : D −→ R are differentiable functions, x
T̂ (x)
∈ D for every x ∈ D,

and
∂xi f

(
x

T̂ (x)

)
(T̂ (x)− xiT̂xi(x))−∑

n
j=1, j 6=i ∂x j f

(
x

T̂ (x)

)
x jT̂xi(x) = 0

for ∀x ∈ D, i = 1,2, . . . ,n,

then f∨ is a constant in D.
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Now we suppose that f̂ is an iso-function of the first, the second, the third, the fourth or the
fifth kind, which iso-original is an enough times differentiable function in D. Then we can
formulate the iso-Taylor series for f̂ as follows.

1. The iso-Taylor series of the first kind

f̂ (x) = f̂ (x0)+ 1̂
1!×̂
(

∑
n
i=1(∂̂xi ↗ ∂̂xi x̂i×̂∆x̂i)

)
f̂ (x0)

+ 1̂
2!×̂
(

∑
n
i=1(∂̂xi ↗ ∂̂xi x̂i×̂∆x̂i)

)2̂
f̂ (x0)

+ · · ·

+ 1̂
m!×̂

(
∑

n
i=1(∂̂xi ↗ ∂̂xi x̂i×̂∆x̂i)

)n̂
f̂ (x0)

+ 1̂
(m+1)!×̂

(
∑

n
i=1(∂̂xi ↗ ∂̂xi x̂i×̂∆x̂i)

)n̂+1
f̂ (x0 +ξ∆x), ξ ∈ (0,1),

∆x̂i = x̂i− x̂0
i , ∆x̂ = (∆x̂1,∆x̂2, . . . ,∆x̂n).

2. The iso-Taylor series of the second kind

f̂ (x) = f̂ (x0)+ 1̂
1!×̂
(

∑
n
i=1(∂̂xi ↗ dxi×̂∆x̂i)

)
f̂ (x0)

+ 1̂
2!×̂
(

∑
n
i=1(∂̂xi ↗ dxi×̂∆x̂i)

)2̂
f̂ (x0)

+ · · ·

+ 1̂
m!×̂

(
∑

n
i=1(∂̂xi ↗ dxi×̂∆x̂i)

)n̂
f̂ (x0)

+ 1̂
(m+1)!×̂

(
∑

n
i=1(∂̂xi ↗ dxi×̂∆x̂i)

)n̂+1
f̂ (x0 +ξ∆x), ξ ∈ (0,1),

∆x̂i = x̂i− x̂0
i , ∆x̂ = (∆x̂1,∆x̂2, . . . ,∆x̂n).
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3. The iso-Taylor series of the third kind

f̂ (x) = f̂ (x0)+ 1̂
1!×̂
(

∑
n
i=1(dxi∂xi ↗ ∂̂xi x̂i×̂∆x̂i)

)
f̂ (x0)

+ 1̂
2!×̂
(

∑
n
i=1(dxi∂xi ↗ ∂̂xi x̂i×̂∆x̂i)

)2̂
f̂ (x0)

+ · · ·

+ 1̂
m!×̂

(
∑

n
i=1(dxi∂xi ↗ ∂̂xi x̂i×̂∆x̂i)

)n̂
f̂ (x0)

+ 1̂
(m+1)!×̂

(
∑

n
i=1(dxi∂xi ↗ ∂̂xi x̂i×̂∆x̂i)

)n̂+1
f̂ (x0 +ξ∆x), ξ ∈ (0,1),

∆x̂i = x̂i− x̂0
i , ∆x̂ = (∆x̂1,∆x̂2, . . . ,∆x̂n).

4. The iso-Taylor series of the fourth kind

f̂ (x) = f̂ (x0)+ 1̂
1!×̂
(

∑
n
i=1

(
1

T̂ (x)
∂xi×̂∆x̂i

))
f̂ (x0)

+ 1̂
2!×̂
(

∑
n
i=1

(
1

T̂ (x)
∂xi×̂∆x̂i

))2̂
f̂ (x0)

+ · · ·

+ 1̂
m!×̂

(
∑

n
i=1

(
1

T̂ (x)
∂xi×̂∆x̂i

))n̂
f̂ (x0)

+ 1̂
(m+1)!×̂

(
∑

n
i=1

(
∂xi×̂∆x̂i

))n̂+1
f̂ (x0 +ξ∆x), ξ ∈ (0,1),

∆x̂i = x̂i− x̂0
i , ∆x̂ = (∆x̂1,∆x̂2, . . . ,∆x̂n).
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5. The iso-Taylor series of the fifth kind

f̂ (x) = f̂ (x0)+ 1̂
1!×̂
(

∑
n
i=1

(
∂̂xi

∂̂xi x̂i
×̂∆x̂i

))
f̂ (x0)

+ 1̂
2!×̂
(

∑
n
i=1

(
∂̂xi

∂̂xi x̂i
×̂∆x̂i

))2̂
f̂ (x0)

+ · · ·

+ 1̂
m!×̂

(
∑

n
i=1

(
∂̂xi

∂̂xi x̂i
×̂∆x̂i

))n̂
f̂ (x0)

+ 1̂
(m+1)!×̂

(
∑

n
i=1

(
∂̂xi

∂̂xi x̂i
×̂∆x̂i

))n̂+1
f̂ (x0 +ξ∆x), ξ ∈ (0,1),

∆x̂i = x̂i− x̂0
i , ∆x̂ = (∆x̂1,∆x̂2, . . . ,∆x̂n).

6. The iso-Taylor series of the sixth kind

f̂ (x) = f̂ (x0)+ 1̂
1!×̂
(

∑
n
i=1

(
∂̂xi
dxi
×̂∆x̂i

))
f̂ (x0)

+ 1̂
2!×̂
(

∑
n
i=1

(
∂̂xi
dxi
×̂∆x̂i

))2̂
f̂ (x0)

+ · · ·

+ 1̂
m!×̂

(
∑

n
i=1

(
∂̂xi
dxi
×̂∆x̂i

))n̂
f̂ (x0)

+ 1̂
(m+1)!×̂

(
∑

n
i=1

(
∂̂xi
dxi
×̂∆x̂i

))n̂+1
f̂ (x0 +ξ∆x), ξ ∈ (0,1),

∆x̂i = x̂i− x̂0
i , ∆x̂ = (∆x̂1,∆x̂2, . . . ,∆x̂n).
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7. The iso-Taylor series of the seventh kind

f̂ (x) = f̂ (x0)+ 1̂
1!×̂
(

∑
n
i=1

(
∂̂xi

∂xi x̂i
×̂∆x̂i

))
f̂ (x0)

+ 1̂
2!×̂
(

∑
n
i=1

(
∂̂xi

∂xi x̂i
×̂∆x̂i

))2̂
f̂ (x0)

+ · · ·

+ 1̂
m!×̂

(
∑

n
i=1

(
∂̂xi

∂xi x̂i
×̂∆x̂i

))n̂
f̂ (x0)

+ 1̂
(m+1)!×̂

(
∑

n
i=1

(
∂̂xi

∂xi x̂i
×̂∆x̂i

))n̂+1
f̂ (x0 +ξ∆x), ξ ∈ (0,1),

∆x̂i = x̂i− x̂0
i , ∆x̂ = (∆x̂1,∆x̂2, . . . ,∆x̂n).

Definition 1.6.19. If f̂1, f̂2, . . ., f̂m are iso-functions of the first, the second, the third, the
fourth or the fifth kind, then a vector iso-function is

( f̂1, f̂2, . . . , f̂m).

Example 1.6.20. Let D = R2, T̂ (x) = 1+ x2
1 + x2

2, f1(x) = x2
1, f2(x) = x1 + x2, f3(x) = x2,

x = (x1,x2) ∈ D. Then

( f̂∧1 (x̂), f̂∧2 (x), f̂∧3 (x̂)) =
( x2

1

1+ x2
1 + x2

2
,(x1 + x2)(1+ x2

1 + x2
2),

x2

1+ x2
1 + x2

2

)
is a vector iso-function.

1.7. Advanced practical exercises

Problem 1.7.1. In F̂R4 , let T̂ (x) = x2
1 + x2

4, x = (x1,x2,x3,x4) ∈ R4, T̂1(y) = y4 + 1, y ∈ R,
X = (1,0,0,1), Y = (1,−2,−3,1). Find

X̂ , Ŷ , X̂ + Ŷ , 3̂×̂X̂ , 2̂×̂X̂ + Ŷ .

Answer. X̂ =
(

1
2 ,0,0,

1
2

)
, Ŷ =

(
1
2 ,−1,−3

2 ,
1
2

)
, X̂ + Ŷ =

(
1,−1,−3

2 ,1
)

, 3̂×̂Ŷ =(
3
2 ,−3,−9

2 ,
3
2

)
, 2̂×̂X̂ + Ŷ =

(
3
2 ,−1,−3

2 ,
3
2

)
.

Problem 1.7.2. Let D = R,

f (x) =


x4

1 +2x5
1x2 +7x3

2 x1 ≤ 1, x2 ∈ R,

x7
1−7x2

1x2 +6x3
2 x1 ≥ 1, x2 ∈ R,

T̂ (x) = x2, x = (x1,x2) ∈ R. Find f∨(x), x ∈ D.
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Answer.

f∨(x) =


x4

1
x4

2
+2 x5

1
x5

2
+7 x1 ≤ 1, x2 ∈ R,

x7
1

x7
2
−7 x2

1
x2

2
+6 x1 ≥ 1, x2 ∈ R.

Problem 1.7.3. In F̂R2 , let T̂ (x) = x4
1 + x4

2 + 2, x = (x1,x2) ∈ R2, T̂ (y) = 1+ y6, y ∈ R,
X = (1,1), Y = (−1,−1). Find

2̂×̂X̂ +3×̂Ŷ .

Answer.
(
−2185

4 ,−2185
4

)
.

Problem 1.7.4. In F̂R2 , let T̂ (x) = |x1|+ |x2|+2, x = (x1,x2) ∈ R2, T̂1(y) = 2+ |y|, y ∈ R,
X = (2,−1), Y = (−1,2). Find

3̂×̂(2̂X̂ +2×̂Ŷ ).

Answer.
(
−81

20 ,
369
40

)
.

Problem 1.7.5. In F̂R2 , let T̂ (x) = x2
1 + x2

2 + 2, x = (x1,x2) ∈ R2, T̂1(y) = 2+ |y|, y ∈ R,
X = (1,−1), Y = (−1,1). Find

2̂×̂(3X̂ + 2̂Ŷ )−3×̂(X̂− Ŷ ).

Answer.
(
−25

4 ,
25
4

)
.

Problem 1.7.6. In F̂R2 , let T̂ (x)= |x1|+2, x=(x1,x2)∈R2, T̂1 = 4, X =(−2,3), Y =(3,4).
Find

|X̂ |̂, |Ŷ |̂, |X̂− Ŷ |̂.

Answer.
√

13
2 , 2, 2

√
26
7 .

Problem 1.7.7. In F̂R3 , let T̂ (x) = x2
1 + x2

2 + 3, x = (x1,x2,x3) ∈ R3, T̂1 = 4, X(1,−1,2),
Y = (2,−1,3). Find

X̂ ·̂Ŷ .

Answer. 9
10 .

Problem 1.7.8. In F̂Rn , let T̂ (x) = ∑
n
i=1 |xi|5 + 1, x = (x1,x2, . . . ,xn) ∈ Rn. Investigate for

convergence the sequence {X̂l}∞
l=1, where

1. Xl =
(

l
2 ,

l−1
2 , l−2

2 , . . . , l−n
2

)
,

2. Xl = (
√

l,
√

l2 +1,
√

l2 +2, . . . ,
√

l2 +n),

3. Xl = (
√

l +1+
√

l,2(
√

l +1+
√

l),3(
√

l +1+
√

l), . . . ,n(
√

l +1+
√

l)),

4. Xl = ( 5
√

l2 +1− l,2( 5
√

l2 +1− l),3( 5
√

l2 +1− l), . . . ,n( 5
√

l2 +1− l)),

5. Xl =
(

1
3n

4
√

1+ l3, 1
3n−1

4
√

1+ l3, 1
3n−2

4
√

1+ l3, . . . , 1
2n+1

4
√

1+ l3
)

.
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Problem 1.7.9. Let D =R2, T̂ (x) = |x1|+4, f (x) = x1−x2, x = (x1,x2) ∈R2. Find f̂∧(x̂).

Answer. x1−x2
|x1|+4 .

Problem 1.7.10. Let D = R3, T̂ (x) = |x1|+ |x2|+ |x3|+3,

f (x) =



x1− x2 x1 ≤ 1, x2 ≤ 1, x3 ∈ R,

x2
1 + x2

3 +4 x1 ≤ 1, x2 ≤ 1, x3 ∈ R,

x2
1 +2x3 x1 ≥ 1, x2 ≤ 1, x3 ∈ R,

x2
1− x2

3 x1 ≥ 1, x2 ≥ 1, x3 ∈ R.

Check if f̂∧(x̂) is a function.

Answer. No.

Problem 1.7.11. Let D = R2, f (x) = x2
1 + x2, T̂ (x) = x2

2 +1, x = (x1,x2) ∈ D. Find f̂∧(x).

Answer. f̂∧(x) = x2
1x2

2 +2x2
1 + x2.

Problem 1.7.12. Let D = R2, f (x) = x3
1 +2x2−3x1x2,

T̂ (x) =


x2

1 + x2
2 +4 x1 ∈ R, x2 ≤ 3,

|x1|+5|x2|+4 x1 ∈ R, x2 ≥ 3.

Check if f̂∧(x) is a function.

Answer. No.

Problem 1.7.13. Let D = R2, f (x) = x2
1− x2, T̂ (x) = x2

1 +2, x = (x1,x2) ∈ D. Find f̂ (x̂).

Answer. x2
1−x2

1x2−2x2

(x2
1+2)3 .

Problem 1.7.14. Let D = R3, f (x) = x1−2x2 +3x2
2, x = (x1,x2) ∈ D,

T̂ (x) =


x2

1 +2x2
2 +3x2

3 +4 (x1,x2) ∈ R2, x3 ≤ 1,√
x1t + x4

2 + x4
3 +5 (x1,x2) ∈ R2, x3 ≥ 1.

Check if ˆ̂f is a function.

Answer. No.

Problem 1.7.15. Let D = R2, T̂ (x) = x2
1 + x2

2 + 3, f (x) = x2
1 + x2, x = (x1,x2) ∈ D. Find

f∧(x).

Answer. (x2
1 + x2

2 +3)(x4
1 + x2

1x2
2 +3x2

1 + x2).
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Problem 1.7.16. Let D = R2, f (x) = x3
1− x2

2, x = (x1,x2) ∈ D. Let also

T̂ (x) =


x2

1 + x2
2 +3 x1 ∈ R, x2 ≤ 1,

|x1|+ |x2|+2 x1 ∈ R, x2 ≥ 1.

Check if f∧ is a function.

Answer. No.

Problem 1.7.17. Let D = R2,

f (x) =


x4

1 + x1x2 + x1x3
2− x4

2− x1x2−5x1x4
2 x1 ≤ 1, x2 ∈ R,

x2 + x2
1x2 +4x4

2 x1 ≥ 1, x2 ∈ R,

T̂ (x) =


x2

1 + x2
2 + x4

1 +2x2
1x2

2 +2 x1 ≤ 1, x2 ∈ R,

x6
1 + x2

1x2
2 + x4

1x4
2 + x8

1 +9 x1 ≥ 1, x2 ∈ R.

Check if f∨ is a function.

Answer. No.

Problem 1.7.18. Let D = R3, f (x) = x3
1x3

2x3
3 + x2 + x1x2x3 + x7

3, T̂ (x) = x2
1 + x2

2 + x2
3 + 5,

x = (x1,x2,x3) ∈ D. Check if f∨ is a function.

Answer. Yes.

Problem 1.7.19. Let D =R2, T̂1 = 4, T̂ (x) = 2+x2
2, f (x) = x2

1−2x2, x = (x1,x2)∈D. Find

2̂×̂ f̂∧(x̂)−4×̂ f∧(x).

Answer.
2x2

1−4x2

x2
2 +2

+64x2
1 +64x2

1x2
2 +16x2

1x4
2−64x2−32x3

2.

Problem 1.7.20. Let D =R2, T̂1 = 2, f (x) = x1−2x2, T̂ (x) = x2
1 +x2

2 +4, x = (x1,x2) ∈D.
Find (

f∧(x)
)3̂
−
(

f∧(x)
)3

.

Answer. 3(x1−2x2)
3(x2

1 + x2
2 +4)3.

Problem 1.7.21. Let D =R2, T̂ (x) = 1+x2
1+x2

2, T̂ (x) = x3
1+x4

2+3, x = (x1,x2)∈D. Find

lim
x−→(1,1)

f̂∧(x̂).

Answer. 5
3 .
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Problem 1.7.22. Find limx−→(0,0) f̂∧(x̂), where

f (x) = x2
1 log(x2

1 + x2
2), T̂ (x) = x2

1 + x2
2 +1, x = (x1,x2) ∈ D = R2.

Answer. 0.

Problem 1.7.23. Find limx−→(1,1) f̂∧(x̂), where

f (x) =
ex1x2−1
x2

1x2
2−1

, T̂ (x) =
1
3
(x2

1 + x2
2 +1), x = (x1,x2) ∈ D = R2.

Answer. e.

Problem 1.7.24. Find limx−→∞ f̂∧(x̂), where

f (x) =
x2

1 + x2
2

x4
1 + x4

2
, T̂ (x) = x2

1 + x2
2 +1, x = (x1,x2) ∈ D = R2.

Answer. 0.

Problem 1.7.25. Find limx−→∞ f̂∧(x̂), where

f (x) = (x2
1 + x2

2)e
−(x1+x2), T̂ (x) = x2

1 + x2
2 +1, x = (x1,x2) ∈ D = R2.

Answer.0.

Problem 1.7.26. Let D = {(x1,x2) ∈ R2 : x1 ≥ 0, x2
1 + x2

2 6= 0}, T̂ (x) = 3+ x2
1 + x4

2,

f (x) =
log
(

x1 + ex2

)
√

x2
1 + x2

2

, x = (x1,x2) ∈ D.

Check if f̂∧∧ is a continuous function in D.

Answer. Yes.

Problem 1.7.27. Let D = R2, f (x) = x1− x2, T̂ (x) = x2
1 + x2

2 + 1, x = (x1,x2) ∈ D. Find(
f∧(x)

)1~

x2
.

Answer. (x2
1+x2

2+1)(x2
2−x2

1+2x1x2+1)
x2

1−x2
2+1 .

Problem 1.7.28. Let D = R2, f (x) = 2x1x2, T̂ (x) = x2
1 + x2

2 + 1, x = (x1,x2) ∈ D. Find
( f̂∧(x̂))2~

x1
.

Answer. 2 x3
2−3x2

1x2+x2

(x2
1+x2

2+1)2 .

Problem 1.7.29. Let D = {(x1,x2) ∈ R2 : x1 ≥ 1,x2 ≥ 1}, f (x) = x2
1 + x2

2, T̂ (x) = x1 + x2,
x = (x1,x2) ∈ R2. Find ( f̂∧(x̂))3~

x2
.
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Answer. −x2
1+x2

2+2x1x2
x1(x1+x2)2 .

Problem 1.7.30. Let D = {(x1,x2) ∈ R2 : x1 ≥ 1,x2 ≥ 1}, f (x) = x1− x2, T̂ (x) = x1 + x2,
x = (x1,x2) ∈ D. Find ( f∧(x))4~

x2
.

Answer. −2x2
x1+x2

.

Problem 1.7.31. Let D = {(x1,x2) ∈ R2 : x1 ≥ 2,x2 ≥ 3}, f (x) = x1−5x2, T̂ (x) = x1 + x2,
x = (x1,x2) ∈ D. Find ( f̂∧(x̂))5~

x2
.

Answer. −6.

Problem 1.7.32. Let D = {(x1,x2)∈R2 : x1 ≥ 0,x2 ≥ 0}, f (x) = x1+2x2
2, T̂ (x) = x2

1+x2
2+

1, x = (x1,x2) ∈ D. Find ( f∧(x))6~.

Answer.
(x2

1 + x2
2 +1)(8x3

1x2
2 +8x1x4

2 +8x1x2
2 +3x2

1 + x2
2 +1).

Problem 1.7.33. Let D = {(x1,x2) : x1 ≥ 0,x2 ≥ 0}, f (x) = x1− x2, T̂ (x) = 1+ x1 + x2,
x = (x1,x2) ∈ D. Find ( f̂∧(x̂))7~

x1
.

Answer. (1+2x2)(1+x1+x2)
1+x2

.

Problem 1.7.34. Let D = R3, T̂ (x) = x2
1 + x2

2 + x2
3 + 1, f (x) = x1x2x3. Find minima and

maxima of f̂∧∧, f̂∧, ˆ̂f , f∧ on the sphere x2
1 + x2

2 + x2
3 = 1.
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Chapter 2

Multiple Iso-Integrals

Let D ⊂ Rn be a bounded set, f : D −→ be an integrable on D function, T̂ : D −→ R be a
positive continuously-differentiable function such that

(A8)
M1 ≤ T̂ (x)≤M2, M1 ≤ |T̂ (x)− xiT̂xi(x)| ≤M2 for ∀x ∈ D,

xT̂ (x) ∈ D, x
T̂ (x)
∈ D for ∀x ∈ D, i = 1,2, . . . ,n,

for some positive constants M1 and M2.

2.1. Definition of Multiple Iso-Integrals

We suppose that f̂ is an iso-function of the first, the second, the third, the fourth or the fifth
kind.

Definition 2.1.1. The multiple iso-integral of the first kind of the iso-function f̂ over D is
defined as follows ∫̂ 1

D
f̂ (x)×̂d̂x̂,

where
d̂x̂ = d̂x̂1d̂x̂2 . . . d̂x̂n,

d̂x̂i = T̂ (x)dx̂i = T̂ (x)d
(

xi
T̂ (x)

)
=

T̂ (x)−xiT̂xi
T̂ (x)

dxi, i = 1,2, . . . ,n.

We can rewrite the multiple iso-integral of the first kind in the following manner∫̂ 1
DT̂ (x)×̂d̂x̂ =

∫
D

1
T̂ (x)

f̂ (x)T̂1 ∏
n
i=1

T̂ (x)−xiT̂xi (x)
T̂ (x)

dxi

= T̂1
∫

D f̂ (x) 1
T̂ (n+1)(x) ∏

n
i=1(T̂ (x)− xiT̂xi(x))dx, dx = dx1dx2 . . .dxn.

Since f is an integrable function and (A8) holds we have that every iso-functions f̂∧∧, f̂∧,
ˆ̂f , f∧ and f∨ are integrable functions. From here, using that T̂ satisfies (A8), we conclude

that the multiple iso-integral of the first kind of f̂ over D exists.
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Example 2.1.2. Let D= {(x1,x2)∈R2 : 0≤ x1≤ 2,0≤ x2≤ 2−x1}, T̂1 = 3, f (x) = x1+x2,
T̂ (x) = ex1+x2 , x = (x1,x2) ∈ D. Then

f̂∧(x̂) = f (x)
T̂ (x)

= x1+x2
ex1+x2 = (x1 + x2)e−(x1+x2),

T̂ (x)− x1T̂x1(x) = ex1+x2− x1ex1+x2 = (1− x1)ex1+x2 ,

T̂ (x)− x2T̂x2(x) = ex1+x2− x2ex1+x2 = (1− x2)ex1+x2 .

From here

I =
∫̂ 1

D f̂∧(x̂)×̂d̂x̂ = 3
∫ 2

0
∫ 2−x1

0 (x1 + x2)(1− x1)(1− x2)e−2(x1+x2)dx2dx1

= 3
∫ 2

0
∫ 2−x1

0 (x1 + x2− x2
1− x2

2 + x2
1x2 + x1x2

2−2x1x2)e−2(x1+x2)dx2dx1

=−3
2
∫ 2

0 (x1 + x2− x2
1− x2

2 + x2
1x2 + x1x2

2−2x1x2)e−2(x1+x2)
∣∣∣x2=1

x2=0
dx1

+3
2
∫ 2

0
∫ 2−x1

0 (1−2x2−2x1 + x3
1 +2x1x2)e−2(x1+x2)dx2dx1

=−3
2 e−4 ∫ 2

0 (−2+4x1−2x2
1)dx1 +

3
2
∫ 2

0 (x1− x2
1)e
−2x1dx1

+3
2
∫ 2

0
∫ 2−x1

0 (1−2x2−2x1 + x3
1 +2x1x2)e−2(x1+x2)dx2dx1

= 3
∫ 2

0 (x1−1)2e−4dx1 +
3
2
∫ 2

0 (x1− x2
1)e
−2x1dx1

+3
2
∫ 2

0
∫ 2−x1

0 (1−2x2−2x1 + x3
1 +2x1x2)e−2(x1+x2)dx2dx1.

l

Let
I1 = 3

∫ 2
0 (x1−1)2e−4dx1 +

3
2
∫ 2

0 (x1− x2
1)e
−2x1dx1,

J1 =
3
2
∫ 2

0
∫ 2−x1

0 (1−2x2−2x1 + x3
1 +2x1x2)e−2(x1+x2)dx2dx1.

Then

I1 = e−4(x1−1)3
∣∣∣x1=2

x1=0
−3

4(x1− x2
1)e
−2x1

∣∣∣x1=2

x1=0
+3

4
∫ 2

0 (1−2x1)e−2x1dx1

= 7
2 e−4 + 3

4
∫ 2

0 (1−2x1)e−2x1dx1

= 7
2 e−4− 3

8(1−2x1)e−2x1

∣∣∣x1=2

x1=0
+3

4
∫ 2

0 e−2x1dx1

= 37
8 e−4 + 3

8 −
3
8 e−2x1

∣∣∣x1=2

x1=0

= 17
4 e−4 + 3

4 .
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Now we consider J1. For it we have

J1 =−3
2
∫ 2

0 (1−2x2−2x1 + x2
1 +2x1x2)e−2(x1+x2)

∣∣∣x2=2−x1

x2=0
dx1

+3
4
∫ 2

0
∫ 2−x1

0 (−2+2x1)e−2(x1+x2)dx2dx1

=−3
4
∫ 2

0 (−3+4x1− x2
1)e
−4dx1 +

3
4
∫ 2

0 (x1−1)2e−2x1dx1

−3
4
∫ 2

0 (−1+ x1)e−2(x1+x2)
∣∣∣x2=2−x1

x2=0
dx1

=−3
4
∫ 2

0 (−3+4x1− x2
1)e
−4dx1 +

3
4
∫ 2

0 (x1−1)2e−2x1dx1

−3
4
∫ 2

0 (−1+ x1)e−4dx1 +
3
4
∫ 2

0 (−1+ x1)e−2x1dx1

=−3
4
∫ 2

0 (−4+5x1− x2
1)e
−4dx1 +

3
4
∫ 2

0 (x
2
1− x1)e−2x1dx1

=−3
4 e−4

(
−4x1 +

5
2 x2

1−
x3

1
3

)∣∣∣x1=2

x1=0
−3

8(x
2
1− x1)e−2x1

∣∣∣x1=2

x1=0

+3
8
∫ 2

0 (2x1−1)e−2x1dx1

=−1
4 e−4− 3

16(2x1−1)e−2x1

∣∣∣x1=2

x1=0
+3

8
∫ 2

0 e−2x1dx1

=−13
16 e−4− 3

16 −
3

16 e−2x1

∣∣∣x1=2

x1=0

=−e−4.

Consequently,

I = I1 + J1 =
13
4

e−4 +
3
4
.

Exercise 2.1.3. Let D = {(x1,x2) ∈ R3 : 0 ≤ x1 ≤ 3− 2x2,0 ≤ x2 ≤ 1}, T̂1 = 3, f (x) =
x2

1− x2, T̂ (x) = ex1 , x = (x1,x2) ∈ D. Compute∫̂ 1

D
f̂∧(x)×̂d̂x̂,

∫̂ 1

D
f∧(x)×̂d̂x̂.

Definition 2.1.4. The multiple iso-integral of the second kind of the iso-function f̂ over D
is defined as follows ∫̂ 2

D
f̂ (x)×̂dx̂,

where
dx̂ = dx̂1dx̂2 . . .dx̂n,

dx̂i = d
(

xi
T̂ (x)

)
=

T̂ (x)−xiT̂xi
T̂ 2(x)

dxi, i = 1,2, . . . ,n.
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We can rewrite the multiple iso-integral of the second kind in the following manner

∫̂ 1
DT̂ (x)×̂d̂x̂ =

∫
D

1
T̂ (x)

f̂ (x)T̂1 ∏
n
i=1

T̂ (x)−xiT̂xi (x)
T̂ 2(x)

dxi

= T̂1
∫

D f̂ (x) 1
T̂ 2n+1(x) ∏

n
i=1(T̂ (x)− xiT̂xi(x))dx, dx = dx1dx2 . . .dxn.

Since f is an integrable function and (A8) holds we have that every iso-functions f̂∧∧, f̂∧,
ˆ̂f , f∧ and f∨ are integrable functions. From here, using that T̂ satisfies (A8), we conclude

that the multiple iso-integral of the second kind of f̂ over D exists.

Example 2.1.5. Let D = {(x1,x2) : 0≤ x1 ≤ 1,0≤ x2 ≤ 2−x1}, f (x) = x1+x2, T̂ (x) = ex1 ,
T̂1 = 3, x = (x1,x2) ∈ D. Then

f∧(x) = f (xT̂ (x)) = f (x1T̂ (x),x2T̂ (x)) = (x1 + x2)ex1 ,

T̂ (x)− x1T̂x1(x) = ex1− x1ex1 = (1− x1)ex1 ,

T̂ (x)− x2T̂x2(x) = ex1 .

From here and from the definition for the multiple iso-integral of the second kind we get

∫̂ 2
f∧(x)×̂dx̂ = 3

∫ 1
0
∫ 2−x1

0 (x1 + x2)e−x1 (1−x1)ex1

e2x1
ex1

e2x1
dx2dx1

= 3
∫ 1

0
∫ 2−x1

0 (x1 + x2)(1− x1)e−3x1dx2dx1

= 3
∫ 1

0 x1(1− x1)(2− x1)e−3x1dx1 +3
∫ 1

0 (1− x1)e−3x1
∫ 2−x1

0 x2dx2dx1

= 3
∫ 1

0 x1(1− x1)(2− x1)e−3x1dx1 +
3
2
∫ 1

0 (1− x1)e−3x1x2
2

∣∣∣x2=2−x1

x2=0
dx1

= 3
2
∫ 1

0 (x
3
1− x2

1−4x1 +4)e−3x1dx1

=−1
2(x

3
1− x2

1−4x1 +4)e−3x1

∣∣∣x1=1

x1=0
+1

2
∫ 1

0 (3x2
1−2x1−4)e−3x1dx1

= 2− 1
6(3x2

1−2x1−4)e−3x1

∣∣∣x1=1

x1=0
+1

3
∫ 1

0 (3x1−1)e−3x1dx1

= 4
3 +

1
2 e−3− 1

9(3x1−1)e−3x1

∣∣∣x1=1

x1=0
+1

3
∫ 1

0 e−3x1dx1

= 11
9 + 5

18 e−3− 1
9 e−3x1

∣∣∣x1=1

x1=0

= 4
3 +

1
6 e−3.
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Exercise 2.1.6. Let D = {(x1,x2) : 0≤ x1 ≤ 3−x2,0≤ x2 ≤ 2}, f (x) = x2
1+x2

2, T̂ (x) = ex2 ,
x = (x1,x2) ∈ D, T̂1 = 3. Compute

∫̂ 2

D
f̂∧(x̂)×̂dx̂,

∫̂ 2

D
f̂∧(x)×̂dx̂,

∫̂ 2

D
f̂ (x̂)×̂dx̂,

∫̂ 2

D
f∧(x)×̂dx̂.

Definition 2.1.7. The multiple iso-integral of the third kind of the iso-function f̂ over D is
defined as follows

∫̂ 3

D
f̂ (x)×̂d̂x,

where

d̂x = d̂x1d̂x2 . . . d̂xn,

d̂xi = T̂ (x)dxi, i = 1,2, . . . ,n.

We can rewrite the multiple iso-integral of the third kind in the following manner

∫̂ 3
D f̂ (x)×̂d̂x =

∫
D

1
T̂ (x)

f̂ (x)T̂1T̂ n(x)dx = T̂1
∫

D f̂ (x)T̂ n−1(x)dx.

Since f is an integrable function and (A8) holds we have that every iso-functions f̂∧∧, f̂∧,
ˆ̂f , f∧ and f∨ are integrable functions. From here, using that T̂ satisfies (A8), we conclude

that the multiple iso-integral of the third kind of f̂ over D exists.

Example 2.1.8. Let D = {(x1,x2) ∈ R2 : 0 ≤ x1 ≤ 2,0 ≤ x2 ≤ 2− x1}, f (x) =
√

x2
1 +2x2,

T̂ (x) = ex2 , x = (x1,x2) ∈ D, T̂1 = 4. Then

f̂∧(x̂) =
f (x)
T̂ (x)

=
x2

1 +2x2

ex2
=
√

x2
1 +2x2e−x2 .

We will compute the iso-integral

I =
∫̂ 3

D
( f̂∧(x̂))2×̂d̂x.
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For it we have

I = 4
∫ 2

0
∫ 2−x1

0 (x2
1 +2x2)e−x2dx1dx2

= 4
∫ 2

0 x2
1
∫ 2−x1

0 e−x2dx2dx1 +8
∫ 2

0
∫ 2−x

0 x2e−x2dx2dx1

= 4
∫ 2

0 x2
1e−x2

∣∣∣x2=2−x1

x2=0
dx1 +8

∫ 2
0

(
−x2e−x2

∣∣∣x2=2−x1

x2=0

)
dx1

+8
∫ 2

0
∫ 2−x1

0 e−x2dx2dx1

= 4
∫ 2

0 x2
1

(
ex1−2−1

)
dx1 +8

∫ 2
0 (x1−2)ex1−2dx1

+8
∫ 2

0 e−x2

∣∣∣x2=2−x1

x2=0
dx1

= 4x2
1ex1−2

∣∣∣x1=2

x1=0
−4

3 x3
1

∣∣∣x1=2

x1=0
−8

∫ 2
0 x1ex1−2dx1

+8(x1−2)ex1−2
∣∣∣x1=2

x1=0
−8

∫ 2
0 ex1−2dx1−8

∫ 2
0 ex1−2dx1 +8

∫ 2
0 ex1−2dx1−16

= 16
3 +16e−2−8x1ex1−2

∣∣∣x1=2

x1=0
+8

∫ 2
0 ex1−2dx1

=−32
3 +16e−2 +8ex1−2

∣∣∣x1=2

x1=0

=−8
3 +8e−2.

Exercise 2.1.9. Let D = {(x1,x2) : 0 ≤ x1 ≤ x2
2 + 1,0 ≤ x2 ≤ 2}, f (x) = x2

1 + x2, T̂ (x) =
x2

1 + x2
2 +1, x = (x1,x2) ∈ D, T̂1 = 3. Compute

∫̂ 3

D
f (x̂)×̂d̂x.

Definition 2.1.10. The multiple iso-integral of the fourth kind of the iso-function f̂ over D
is defined as follows ∫̂ 4

D
f̂ (x)d̂x̂.

We can rewrite the multiple iso-integral of the fourth kind in the following manner

∫̂ 4
D f̂ (x)×̂d̂x =

∫
D

1
T̂ (x)

f̂ (x)∏
n
i=1

T̂ (x)−xiT̂xi (x)
T̂ (x)

dx

=
∫

D f (x) 1
T̂ n+1(x) ∏

n
i=1(T̂ (x)− xiT̂xi(x))dx.
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Remark 2.1.11. In fact, we have∫̂ 1

D
f̂ (x)×̂d̂x̂ = T̂1

∫̂ 4

D
f̂ (x)d̂x̂.

Therefore the multiple iso-integral of the fourth kind exists for every kind iso-functions f̂∧∧,
f̂∧, ˆ̂f , f∧ and f∨.

Definition 2.1.12. The multiple iso-integral of the fifth kind of the iso-function f̂ over D is
defined as follows ∫̂ 5

D
f̂ (x)dx̂.

We can rewrite the multiple iso-integral of the fifth kind in the following manner

∫̂ 5
D f̂ (x)dx̂ =

∫
D

1
T̂ (x)

f̂ (x)∏
n
i=1

T̂ (x)−xiT̂ 2
xi
(x)

T̂ 2(x)
dx

=
∫

D f (x) 1
T̂ 2n+1(x) ∏

n
i=1(T̂ (x)− xiT̂xi(x))dx.

Remark 2.1.13. In fact, we have∫̂ 2

D
f̂ (x)×̂dx̂ = T̂1

∫̂ 5

D
f̂ (x)dx̂.

Therefore the multiple iso-integral of the fifth kind exists for every iso-functions f̂∧∧, f̂∧, ˆ̂f ,
f∧ and f∨

Definition 2.1.14. The multiple iso-integral of the sixth kind of the iso-function f̂ over D
we define as follows ∫̂ 6

D
f̂ (x)×̂dx.

We can rewrite the multiple iso-integral of the sixth kind as follows∫̂ 6

D
f̂ (x)×̂dx = T̂1

∫
D

1
T̂ (x)

f̂ (x)dx.

Since f is an integrable function over D and T̂ satisfies (A8) we conclude that the multiple
iso-integral of the sixth kind exists for every iso-functions f̂∧∧, f̂∧, ˆ̂f , f∧ and f∨.

Example 2.1.15. Let D = {(x1,x2) : 0≤ x1 ≤ 4− x2,0≤ x2 ≤ 2}, f (x) = x1 +4x2, T̂ (x) =
e−x1 , x = (x1,x2) ∈ D, T̂1 = 2. We will compute

I =
∫̂ 6

D
f (x̂)×̂dx.

We have

f (x̂) = f
( x

T̂ (x)

)
= f
( x1

T̂ (x)
,

x2

T̂ (x)

)
=

x1

T̂ (x)
+4

x2

T̂ (x)
= (x1 +4x2)ex1 ,
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and
I = 2

∫ 2
0
∫ 4−x2

0 ex1(x1 +4x2)ex1dx1dx2

= 2
∫ 2

0
∫ 4−x2

0 x1e2x1dx1dx2 +8
∫ 2

0 x2
∫ 4−x2

0 e2x1dx1dx2

=
∫ 2

0

(
x1e2x1

∣∣∣x1=4−x2

x1=0

)
dx2−

∫ 2
0
∫ 4−x2

0 e2x1dx1dx2

+4
∫ 2

0 x2e2x1

∣∣∣x1=4−x2

x1=0
dx2

=
∫ 2

0 (4− x2)e8−2x2dx2− 1
2
∫ 2

0 e2x1

∣∣∣x1=4−x2

x1=0
dx2

+4
∫ 2

0 x2e8−x2dx2−4
∫ 2

0 x2dx2

=−1
2(4− x2)e8−2x2

∣∣∣x2=2

x2=0
−1

2
∫ 2

0 e8−2x2dx2

−1
2
∫ 2

0 e8−2x2dx2 +1−2x2e8−2x2

∣∣∣x2=4

x2=0

+2
∫ 2

0 e8−2x2dx2−2x2
2

∣∣∣x2=2

x2=0

=−e4 +2e8−15− 1
2 e8−2x2

∣∣∣x2=2

x2=0

=−3
2 e4 + 5

2 e8−15.

Exercise 2.1.16. Let D = {(x1,x2) ∈R2 : 0≤ x1 ≤ 3,0≤ x2 ≤ 3−2x1}, f (x) = x2
1 +2x1x2,

T̂ (x) = x1 + x2, x = (x1,x2) ∈ D, T̂1 = 4. Compute∫̂ 6

D
f̂∧(x)×̂dx.

Definition 2.1.17. The multiple iso-integral of the seventh kind of the iso-function f̂ over
D is defined as follows ∫̂

D
f̂ (x)d̂x.

We can represent the multiple iso-integral of the seventh kind in the following way.∫̂
D

f̂ (x)d̂x =
∫

D

1
T̂ (x)

f̂ (x)T̂ n(x)dx =
∫

D
T̂ n−1(x) f̂ (x)dx.

Remark 2.1.18. In fact, we have∫̂ 3

D
f̂ (x)×̂d̂x = T̂1

∫̂ 7

D
f̂ (x)d̂x.
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Consequently the multiple iso-integral of the seventh kind exists for every iso-functions f̂∧∧,
f̂∧, ˆ̂f , f∧ and f∨.

Definition 2.1.19. The multiple iso-integral of the eighth kind of the iso-function f̂ over D
is defined as follows ∫̂ 8

D
f̂ (x)dx.

We can represent the multiple iso-integral of the eighth kind in the following way

∫̂ 8

D
f̂ (x)dx =

∫
D

1
T̂ (x)

f̂ (x)dx.

Because f is an integrable function and T̂ satisfies (A8) we have that the multiple iso-
integral of the eighth kind exists for every iso-functions f̂∧∧, f̂∧, ˆ̂f , f∧ and f∨.

Example 2.1.20. Let D = {(x1,x2) ∈ R2 : 0 ≤ x1 ≤ 1,0 ≤ x2 ≤ 1− x1}, f (x) = 2x2
1 + x2,

T̂ (x) = ex2 , x = (x1,x2) ∈ D, T̂1 = 2. Then

f∧(x) = f (xT̂ (x)) = f (x1T̂ (x),x2T̂ (x) = 2x2
1T̂ 2(x)+ x2T̂ (x) = 2x2

1e2x2 + x2ex2 .

From here ∫̂ 8
D f̂ (x)dx =

∫ 1
0
∫ 1−x1

0
1

ex2 (2x2
1e2x2 + x2ex2)dx2dx1

=
∫ 1

0
∫ 1−x1

0 (2x2
1ex2 + x2)dx2dx1

=
∫ 1

0

(
2x2

1ex2

∣∣∣x2=1−x1

x2=0
+

x2
2

2

∣∣∣x2=1−x1

x2=0

)
dx1

= 2
∫ 1

0 x2
1e1−x1dx1 +

1
2
∫ 1

0 (1− x1)
2dx1

=−2x2
1e1−x1

∣∣∣x1=1

x1=0
−4

∫ 1
0 x1e1−x1dx1− (1−x1)

3

6

∣∣∣x1=1

x1=0

=−11
6 +4x1e1−x1

∣∣∣x1=1

x1=0
−4

∫ 1
0 e1−x1dx1

= 13
6 +4e1−x1

∣∣∣x1=1

x1=0

= 37
6 −4e.

Exercise 2.1.21. Let D = {(x1,x2) ∈ R2 : 0 ≤ x1 ≤ 3,0 ≤ x2 ≤ 4− x2
1}, f (x) = x1 + x2

2,
T̂ (x) = x1 + x2, T̂1 = 3. Compute ∫̂ 8

D
f̂∧(x)dx.

-
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Definition 2.1.22. The multiple iso-integral of the ninth kind of the iso-function f̂ over D
is defined in the following manner

∫ 9

D
f̂ (x)×̂d̂x̂.

The multiple iso-integral of the ninth kind of the iso-function f̂ over D can be repre-
sented as follows ∫ 9

D f̂ (x)×̂d̂x̂ =
∫

D f̂ (x)T̂1 ∏
n
i=1

T̂ (x)−xiT̂xi (x)
T̂ (x)

dx

= T̂1
∫

D f̂ (x) 1
T̂ n(x) ∏

n
i=1(T̂ (x)− xiT̂xi(x))dx.

Because f is an integrable function over D and T̂ satisfies (A8) then the multiple iso-integral
of the ninth kind exists for every iso-functions f̂∧∧, f̂∧, ˆ̂f , f∧ and f∨.

Example 2.1.23. Let D = {(x1,x2) ∈ R2 : 0 ≤ x1 ≤ 1,0 ≤ x2 ≤ 2x1}, f (x) = 2x1 + 3x2,
T̂ (x) = ex1 , x = (x1,x2) ∈ D, T̂1 = 3. Then

f∧(x) = f (xT̂ (x)) = f (x1T̂ (x),x2T̂ (x)) = 2x1T̂ (x)+3x2T̂ (x) = (2x1 +3x2)ex1 ,

T̂ (x)− x1T̂x1(x) = ex1− x1ex1 = (1− x1)ex1 ,

T̂ (x)− x2T̂x2(x) = ex1 .

From here ∫ 9
D f∧(x)×̂d̂x̂ = 3

∫ 1
0
∫ 2x1

0 (2x1 +3x2)ex1 1
e2x1

(1− x1)e2x1dx2dx1

= 3
∫ 1

0
∫ 2x1

0

(
(2x1−2x2

1)+3x2(1− x1)
)

ex1dx2dx1

= 12
∫ 1

0 (x
2
1− x3

1)e
x1dx1 +9

∫ 1
0 (1− x1)ex1 x2

2
2

∣∣∣x2=2x1

x2=0
dx1

= 12(x2
1− x3

1)e
x1

∣∣∣x1=1

x1=0
+6

∫ 1
0 (−x1 +3x2

1)e
x1dx1

= 6(−x1 +3x2
1)e

x1

∣∣∣x1=1

x1=0
−6

∫ 1
0 (−1+6x1)ex1dx1

= 12e−6(−1+6x1)ex1

∣∣∣x1=1

x1=0
+36

∫ 1
0 ex1dx1

=−18e−6+36ex1

∣∣∣x1=1

x1=0

= 18e−42.
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Exercise 2.1.24. Let D = {(x1,x2) ∈ R:0 ≤ x1 ≤ 2x2 + 1,0 ≤ x2 ≤ 1}, f (x) = x1 + x2,
T̂ (x) = x1 + x2 +1, x = (x1,x2) ∈ D, T̂1 = 4. Compute

∫ 9

D
f̂ (x̂)×̂d̂x̂.

Definition 2.1.25. The multiple iso-integral of the tenth kind of the iso-function f̂ is defined
as follows

∫ 10

D
f̂ (x)×̂dx̂.

The multiple iso-integral of the tenth kind can be represented in the form

∫ 10
D f̂ (x)×̂dx̂ =

∫
D f̂ (x)T̂1 ∏

n
i=1

T̂ (x)−xiT̂x1 (x)
T̂ 2(x)

dx

= T̂1
∫

D f̂ (x) 1
T̂ 2n(x) ∏

n
i=1(T̂ (x)− xiT̂xi(x))dx.

Since f is an integrable function over D and T̂ satisfies (A8) then the multiple iso-integral
of the tenth kind exists for all iso-functions f̂∧∧, f̂∧, ˆ̂f , f∧ and f∨.

Example 2.1.26. Let D = {(x1,x2) ∈ R2 : 0 ≤ x1 ≤ 1,0 ≤ x2 ≤ x1}, f (x) = x1, T̂ (x) =
1

1+x1+x2
, x = (x1,x2) ∈ D, T̂1 = 2. Then

f̂∧(x̂) = f (x)
T̂ (x)

= x1(1+ x1 + x2),

T̂ (x)− x1T̂x1(x) =
1

1+x1+x2
+ x1

(1+x1+x2)2 =
1+2x1+x2
(1+x1+x2)2 ,

T̂ (x)− x2T̂x2(x) =
1

1+x1+x2
+ x2

(1+x1+x2)2 =
1+x1+2x2
(1+x1+x2)2 .
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From here,

∫ 10
D f̂∧(x̂)×̂dx̂ = 2

∫ 1
0
∫ x1

0 x1(1+ x1 + x2)(1+ x1 + x2)
4 (1+2x1+x2)(1+x1+2x2)

(1+x1+x2)4 dx2dx1

= 2
∫ 1

0
∫ x1

0 x1(1+ x1 + x2)(1+2x1 + x2)(1+ x1 +2x2)dx2dx1

= 2
∫ 1

0
∫ x1

0 (x1 +4x2
1 +5x3

1 +2x4
1)dx2dx1

+2
∫ 1

0
∫ x1

0 (4x1x2 +11x2
1x2 +5x1x2

2 +7x3
1x2 +2x1x3

2 +7x2
1x2

2)dx2dx1

= 2
∫ 1

0 (x
2
1 +4x3

1 +5x4
1 +2x5

1)dx1

+
∫ 1

0

(
4x1x2

2 +11x2
1x2

2 +
10
3 x1x3

2 +7x3
1x2

2 + x1x4
2 +

14
3 x2

1x3
2

)∣∣∣x2=x1

x2=0
dx1

=
(

2
3 x3

1 +2x4
1 +2x5

1 +
2
3 x6

1

)∣∣∣x1=1

x1=0
+
∫ 1

0

(
4x3

1 +
43
3 x4

1 +
38
3 x5

1

)
dx1

= 16
3 +

(
x4

1 +
43
15 x5

1 +
19
9 x6

1

)∣∣∣x1=1

x1=0

= 509
45 .

Exercise 2.1.27. Let D = {(x1,x2) ∈ R2 : 0 ≤ x1 ≤ 2,0 ≤ x2 ≤ 3x1 + 1}, f (x) = x1 + x2,
T̂ (x) = x2

1 + x2
2 +1, x = (x1,x2) ∈ D, T̂1 = 4. Compute

∫ 10

D
f̂∧(x̂)×̂dx̂,

∫ 10

D
f∧(x)×̂dx̂.

Definition 2.1.28. The multiple iso-integral of the eleventh kind of the iso-function f̂ is
defined as follows ∫ 11

D
f̂ (x)×̂d̂x.

The multiple iso-integral of the eleventh kind can be represented in the following man-
ner ∫ 11

f̂ (x)×̂d̂x =
∫

D
f̂ (x)T̂1T̂ n(x)dx = T̂1

∫
D

f̂ (x)T̂ n(x)dx.

Because f is an integrable function over D and T̂ satisfies (A8) then the multiple iso-integral
of the eleventh kind exists for all iso-functions f̂∧∧, f̂∧, ˆ̂f , f∧ and f∨.

Example 2.1.29. Let D = {(x1,x2) ∈ R2 : 0 ≤ x1 ≤ 1,0 ≤ x2 ≤ 2x1}, f (x) = x1 + 7x2,
T̂ (x) = ex1+x2 , x = (x1,x2) ∈ D, T̂1 = 2. Then

f∧(x) = f (xT̂ (x)) = f (x1T̂ (x),x2T̂ (x)) = x1T̂ (x)+7x2T̂ (x) = (x1 +7x2)ex1+x2 .
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From here, ∫ 11
D f∧(x)×̂d̂x = 2

∫ 1
0
∫ 2x2

0 (x1 +7x2)ex1+x2e2(x1+x2)dx2dx1

= 2
∫ 1

0
∫ 2x1

0 (x1 +7x2)e3(x1+x2)dx2dx1

= 2
∫ 1

0 x1e3x1
∫ 2x1

0 e3x2dx2dx1 +14
∫ 1

0 e3x1
∫ 2x1

0 x2e3x2dx2dx1

= 2
3
∫ 1

0 x1e3x1e3x2

∣∣∣x2=2x1

x2=0
dx1 +

14
3
∫ 1

0 e3x1x2e3x2

∣∣∣x2=2x1

x2=0
dx1

−14
3
∫ 1

0 e3x1
∫ 2x1

0 e3x2dx2dx1

= 10
∫ 1

0 x1e9x1dx1− 2
3
∫ 1

0 x1e3x1dx1− 14
9
∫ 1

0 e3x1e3x2

∣∣∣x2=2x1

x2=0
dx1

= 10
9 x1e9x1

∣∣∣x1=1

x1=0
−8

3
∫ 1

0 e9x1dx1− 2
9 x1e3x1

∣∣∣x1=1

x1=0
+16

9
∫ 1

0 e3x1dx1

= 10
9 e9− 2

9 e3− 8
27 e9x1

∣∣∣x1=1

x1=0
+16

27 e3x1

∣∣∣x1=1

x1=0

= 22
27 e9 + 10

27 e3− 8
27 .

Exercise 2.1.30. Let D = {(x1,x2) ∈R2 : 0≤ x1 ≤ 2x2+1,0≤ x2 ≤ 1}, f (x) = x2
1+x2+1,

T̂ (x) = x2
1 + x2

2 +1, x = (x1,x2) ∈ D, T̂1 = 12. Compute∫ 11

D
f̂ (x̂)×̂d̂x.

Definition 2.1.31. The multiple iso-integral of the twelfth kind of the iso-function f̂ over D
is defined in the following manner ∫ 12

D
f̂ (x)d̂x̂.

The multiple iso-integral of the twelfth kind of the iso-function f̂ over D can be repre-
sented as follows ∫ 12

D f̂ (x)d̂x̂ =
∫

D f̂ (x)∏
n
i=1

T̂ (x)−xiT̂xi (x)
T̂ (x)

dx

=
∫

D f̂ (x) 1
T̂ n(x) ∏

n
i=1(T̂ (x)− xiT̂xi(x))dx.

Remark 2.1.32. In fact, we have∫ 9

D
f̂ (x)×̂d̂x̂ = T̂1

∫ 12

D
f̂ (x)d̂x,

therefore the multiple iso-integral of the twelfth kind exists for all iso-functions f̂∧∧, f̂∧, ˆ̂f ,
f∧ and f∨.
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Definition 2.1.33. The multiple iso-integral of the thirteenth kind of the iso-function f̂ is
defined as follows ∫ 13

D
f̂ (x)dx̂.

The multiple iso-integral of the thirteenth kind can be represented in the form∫ 13
D f̂ (x)dx̂ =

∫
D f̂ (x)∏

n
i=1

T̂ (x)−xiT̂x1 (x)
T̂ 2(x)

dx =
∫

D f̂ (x) 1
T̂ 2n(x) ∏

n
i=1(T̂ (x)− xiT̂xi(x))dx.

Remark 2.1.34. In fact, we have∫ 10

D
f̂ (x)×̂dx̂ = T̂1

∫ 13

D
f̂ (x)dx̂.

therefore the multiple iso-integral of the thirteenth kind exists for all iso-functions f̂∧∧, f̂∧,
ˆ̂f , f∧ and f∨.

Definition 2.1.35. The multiple iso-integral of the fourteenth kind of the iso-function f̂
over D is defined as follows ∫ 14

D
f̂ (x)×̂dx.

For the multiple iso-integral of the fourteenth kind we have the following representation∫ 14

D
f̂ (x)×̂dx = T̂1

∫
D

f̂ (x)dx.

Because f is an integrable function over D and T̂ satisfies (A8) the multiple iso-integral of
the fourteenth kind exists for all iso-functions f̂∧∧, f̂∧, ˆ̂f , f∧ and f∨.

Definition 2.1.36. The multiple iso-integral of the fifteenth kind of the iso-function f̂ is
defined as follows ∫ 15

D
f̂ (x)d̂x.

The multiple iso-integral of the fifteenth kind can be represented in the following man-
ner ∫ 15

D
f̂ (x)d̂x =

∫
D

f̂ (x)T̂ n(x)dx.

Remark 2.1.37. In fact, we have∫ 11
D f̂ (x)×̂d̂x = T̂1

∫ 15
D f̂ (x)d̂x.

Below we will use the following notation

Pi(x) = T̂ (x)− xiT̂xi(x), i = 1,2, . . . ,n,

P(x) = ∏
n
i=1(T̂ (x)− xiT̂xi(x)),

and the following notation for the multiple iso-integral of the j-th kind, j = 1,2, . . . ,15, for
the iso-function f̂ over D ∫ i

D
f̂ (x)~i x.
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2.2. Properties of Multiple Iso-Integrals

Let g be an integrable function on D, h be a continuous function on D and c ∈ R.
We now list some of the properties of the multiple iso-integrals.

1.
∫ i

D( f̂ (x)+ ĝ(x))~i x =
∫ i

D f̂ (x)~i x+
∫ i

D ĝ(x)~i x, i = 1,2, . . . ,15.

2.
∫ i

D ĉ×̂ f̂ (x)~i x = ĉ×̂
∫ i

D f̂ (x)~i x, i = 1,2, . . . ,15.

3.
∫ i

D ĉ f̂ (x)~i x = ĉ
∫ i

D f̂ (x)~i x, i = 1,2, . . . ,15.

4.
∫ i

D c×̂ f̂ (x)~i x = c×̂
∫ i

D f̂ (x)~i x, i = 1,2, . . . ,15.

5.
∫ i

D c f̂ (x)~i x = c
∫ i

D f̂ (x)~i x, i = 1,2, . . . ,15.

6. If f (x)≥ g(x) for every x ∈ D, then if P(x)≥ 0 for every x ∈ D, we have∫ i

D
f̂ (x)~i x≤

∫ i

D
g(x)~i x, i = 1,2, . . . ,15.

7. If f (x)≤ g(x) for every x ∈ D and P(x)≤ 0 for every x ∈ D, then∫ i

D
f̂ (x)~i x≥

∫ i

D
ĝ(x)~i x

for i = 1,2,4,5,9,10,12,13, and∫ i

D
f̂ (x)~i x≤

∫ i

D
ĝ(x)~i x

for i = 3,6,7,8,11,14,15.

8.
∣∣∣∫̂ 1

D f̂ (x)×̂d̂x̂
∣∣∣≤ T̂1

∫
D

1
T̂ n+1(x)

| f̂ (x)P(x)|dx.

9.
∣∣∣∫̂ 2

D f̂ (x)×̂dx̂
∣∣∣≤ T̂1

∫
D

1
T̂ 2n+1(x)

| f̂ (x)P(x)|dx.

10.
∣∣∣∫̂ 3

D f̂ (x)×̂d̂x
∣∣∣≤ T̂1

∫
D T̂ n−1(x)| f̂ (x)|dx.

11.
∣∣∣∫̂ 4

D f̂ (x)d̂x̂
∣∣∣≤ ∫

D
1

T̂ n+1(x)
| f̂ (x)P(x)|dx.

12.
∣∣∣∫̂ 5

D f̂ (x)dx̂
∣∣∣≤ ∫

D
1

T̂ 2n+1(x)
| f̂ (x)P(x)|dx.

13.
∣∣∣∫̂ 6

D f̂ (x)×̂dx
∣∣∣≤ T̂1

∫
D

1
T̂ (x)
| f̂ (x)|dx.

13.
∣∣∣∫̂ 7

D f̂ (x)d̂x
∣∣∣≤ ∫

D T̂ n−1(x)| f̂ (x)|dx.

14.
∣∣∣∫̂ 8

D f̂ (x)dx =
∫

D T̂ (x)| f̂ (x)|dx.
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15.
∣∣∣∫ 9

D f̂ (x)×̂d̂x̂
∣∣∣≤ T̂1

∫
D

1
T̂ n(x)
| f̂ (x)P(x)|dx.

16.
∣∣∣∫ 10

D f̂ (x)×̂d̂x
∣∣∣≤ T̂1

∫
D

1
T̂ 2n(x)

| f̂ (x)P(x)|dx.

17.
∣∣∣∫ 11

D f̂ (x)×̂d̂x
∣∣∣≤ T̂1

∫
D T̂ n(x)| f̂ (x)|dx.

18.
∣∣∣∫ 12

D f̂ (x)d̂x̂
∣∣∣≤ ∫

D
1

T̂ n(x)
| f̂ (x)P(x)|dx.

19.
∣∣∣∫ 13

D f̂ (x)dx̂
∣∣∣≤ ∫

D
1

T̂ 2n(x)
| f̂ (x)P(x)|dx.

20.
∣∣∣∫ 14

D f̂ (x)×̂dx
∣∣∣≤ T̂1

∫
D | f̂ (x)|dx.

21.
∣∣∣∫ 15

D f̂ (x)d̂x
∣∣∣≤ ∫

D T̂ n(x)| f̂ (x)|dx.

22. (the iso-integral form of the mean value theorem)∫ i

D
ĥ(x)×̂ f̂ (x)~i x = ĥ(x0)×̂

∫ i

D
f̂ (x)~i x

for some x0 ∈ D, i = 1,2, . . . ,15.

23. (the iso-integral form of the mean value theorem)∫ i

D
ĥ(x) f̂ (x)~i x = ĥ(x0)

∫ i

D
f̂ (x)~i x

for some x0 ∈ D, i = 1,2, . . . ,15.

24. (the iso-integral form of the mean value theorem)

∫̂ !

D
f̂ (x)×̂d̂x̂ = T̂1Pj(x0)

∫
D

f̂ (x)
n

∏
i=1,i 6= j

Pi(x)dx, j = 1,2, . . . ,n,

for some x0 ∈ D.

25. (the iso-integral form of the mean value theorem)

∫̂ 1

D
f̂ (x)×̂d̂x̂ = T̂1P(x0)

∫
D

1
T̂ n+1(x)

f̂ (x)dx.

for some x0 ∈ D.

26. (the iso-integral form of the mean value theorem)

∫̂ 1

D
f̂ (x)×̂d̂x̂ = T̂1

1
T̂ l(x0)

∫
D

1
T̂ n+1−l(x)

f̂ (x)P(x)dx, l = 1, . . . ,n+1,

for some x0 ∈ D.
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27. (the iso-integral form of the mean value theorem)

∫̂ 2

D
f̂ (x)×̂dx̂ = T̂1Pj(x0)

∫
D

f̂ (x)
1

T̂ 2n+1(x)

n

∏
i=1,i 6= j

Pi(x)dx, j = 1,2, . . . ,n,

for some x0 ∈ D.

28. (the iso-integral form of the mean value theorem)

∫̂ 2

D
f̂ (x)×̂dx̂ = T̂1P(x0)

∫
D

f̂ (x)
1

T̂ 2n+1(x)
dx,

for some x0 ∈ D.

29. (the iso-integral form of the mean value theorem)

∫̂ 2

D
f̂ (x)×̂dx̂ = T̂1

1
T̂ l(x0)

∫
D

f̂ (x)
1

T̂ 2n+1−l(x)
P(x)dx, l = 1,2, . . . ,2n+1,

for some x0 ∈ D.

30. (the iso-integral form of the mean value theorem)

∫̂ 3

D
f̂ (x)×̂d̂x = T̂1T̂ l(x0)

∫
D

f̂ (x)T̂ n−1−l(x)dx, l = 1,2, . . . ,n−1,

for some x0 ∈ D.

31. (the iso-integral form of the mean value theorem)

∫̂ 4

D
f̂ (x)d̂x̂ = Pj(x0)

∫
D

f̂ (x)
n

∏
i=1,i6= j

Pi(x)dx, j = 1,2, . . . ,n,

for some x0 ∈ D.

32. (the iso-integral form of the mean value theorem)

∫̂ 4

D
f̂ (x)d̂x̂ = P(x0)

∫
D

1
T̂ n+1(x)

f̂ (x)dx.

for some x0 ∈ D.

33. (the iso-integral form of the mean value theorem)

∫̂ 4

D
f̂ (x)d̂x̂ =

1
T̂ l(x0)

∫
D

1
T̂ n+1−l(x)

f̂ (x)P(x)dx, l = 1, . . . ,n+1,

for some x0 ∈ D.
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34. (the iso-integral form of the mean value theorem)

∫̂ 5

D
f̂ (x)dx̂ = Pj(x0)

∫
D

f̂ (x)
1

T̂ 2n+1(x)

n

∏
i=1,i 6= j

Pi(x)dx, j = 1,2, . . . ,n,

for some x0 ∈ D.

35. (the iso-integral form of the mean value theorem)

∫̂ 5

D
f̂ (x)dx̂ = P(x0)

∫
D

f̂ (x)
1

T̂ 2n+1(x)
dx,

for some x0 ∈ D.

36. (the iso-integral form of the mean value theorem)

∫̂ 5

D
f̂ (x)dx̂ =

1
T̂ l(x0)

∫
D

f̂ (x)
1

T̂ 2n+1−l(x)
P(x)dx, l = 1,2, . . . ,2n+1,

for some x0 ∈ D.

37. (the iso-integral form of the mean value theorem)

∫̂ 6

D
f̂ (x)×̂dx = T̂1

1
T̂ (x0)

∫
D

f̂ (x)dx,

for some x0 ∈ D.

38. (the iso-integral form of the mean value theorem)

∫̂ 7

D
f̂ (x)d̂x = T̂ l(x0)

∫
D

T̂ n−1(x) f̂ (x)dx, l = 1,2, . . . ,n−1,

for some x0 ∈ D.

39. (the iso-integral form of the mean value theorem)

∫̂ 8

D
f̂ (x)dx =

1
T̂ (x0)

∫
D

f̂ (x)dx.

for some x0 ∈ D.

40. (the iso-integral form of the mean value theorem)

∫̂ 9

f̂ (x)×̂d̂x̂ = T̂1Pj(x0)
∫

D

1
T̂ n(x)

f̂ (x)
n

∏
i=1,i 6= j

Pi(x)dx, j = 1,2, . . . ,n,

for some x0 ∈ D.
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41. (the iso-integral form of the mean value theorem)∫̂ 9

f̂ (x)×̂d̂x̂ = T̂1P(x0)
∫

D

1
T̂ n(x)

f̂ (x)dx,

for some x0 ∈ D.

42. (the iso-integral form of the mean value theorem)∫̂ 9

f̂ (x)×̂d̂x̂ = T̂1
1

T̂ l(x0)

∫
D

1
T̂ n−l(x)

f̂ (x)P(x)dx, l = 1,2, . . . ,n,

for some x0 ∈ D.

43. (the iso-integral form of the mean value theorem)∫ 10
f̂ (x)×̂dx̂ = T̂1Pj(x0)

∫
D

f̂ (x)
1

T̂ 2n(x)

n

∏
i=1,i 6= j

Pi(x)dx, j = 1,2, . . . ,n,

for some x0 ∈ D.

44. (the iso-integral form of the mean value theorem)∫ 10
f̂ (x)×̂dx̂ = T̂1P(x0)

∫
D

f̂ (x)
1

T̂ 2n(x)
dx,

for some x0 ∈ D.

45. (the iso-integral form of the mean value theorem)∫ 10
f̂ (x)×̂dx̂ = T̂1

1
T̂ l(x0)

∫
D

f̂ (x)
1

T̂ 2n−l(x)
P(x)dx, l = 1,2, . . . ,2n,

for some x0 ∈ D.

46. (the iso-integral form of the mean value theorem)∫ 11

D
f̂ (x)×̂d̂x = T̂1T̂ l(x0)

∫
D

f̂ (x)T̂ n−l(x)dx, l = 1,2, . . . ,n,

for some x0 ∈ D.

47. (the iso-integral form of the mean value theorem)∫ 12

D
f̂ (x)d̂x̂ = Pj(x0)

∫
D

f̂ (x)
1

T̂ 2n(x)

n

∏
i=1,i 6= j

Pi(x)dx, j = 1,2, . . . ,n,

for some x0 ∈ D.

48. (the iso-integral form of the mean value theorem)∫ 12

D
f̂ (x)d̂x̂ = P(x0)

∫
D

f̂ (x)
1

T̂ n(x)
dx,

for some x0 ∈ D.
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49. (the iso-integral form of the mean value theorem)∫ 12

D
f̂ (x)d̂x̂ =

1
T̂ l(x0)

∫
D

f̂ (x)
1

T̂ n−l(x)
P(x)dx, l = 1,2, . . . ,n,

for some x0 ∈ D.

50. (the iso-integral form of the mean value theorem)∫ 13

D
f̂ (x)dx̂ = Pj(x0)

∫
D

f̂ (x)
1

T̂ 2n(x)

n

∏
i=1,i 6= j

Pi(x)dx, j = 1,2, . . . ,n,

for some x0 ∈ D.

51. (the iso-integral form of the mean value theorem)∫ 13

D
f̂ (x)dx̂ = P(x0)

∫
D

f̂ (x)
1

T̂ 2n(x)
dx,

for some x0 ∈ D.

52. (the iso-integral form of the mean value theorem)∫ 13

D
f̂ (x)dx̂ =

1
T̂ l(x0)

∫
D

f̂ (x)
1

T̂ 2n−l(x)
P(x)dx, l = 1,2, . . . ,2n,

for some x0 ∈ D.

53. (the iso-integral form of the mean value theorem)∫ 15

D
f̂ (x)d̂x = T̂ l(x0)

∫
D

f̂ (x)T̂ n−l(x)dx, l = 1,2, . . . ,n,

for some x0 ∈ D.

54. If D1, D2 ⊂ D, D1
⋂

D2 = Ø, F̂∧∧, f̂∧, ˆ̂f , f∧, f∨ are defined on D1 and D2 then∫ i

D1
⋃

D2

f̂ (x)~i x =
∫ i

D1

f̂ (x)~i x+
∫ i

D2

f̂ (x)~i x.

55. If the measure of D, µ(D), is equal to zero then∫ i

D
f̂ (x)~i x = 0.

56. Let D1 ⊂D and f̂∧∧, f̂∧, ˆ̂f , f∧, f∨ are defined on D1. Then if P(x)≥ 0 for every x ∈D
we have

(A9)
∫ i

D1
f̂ (x)~i x≤

∫ i
D f̂ (x)~i x, i = 1,2, . . . ,15,

if P(x) ≤ 0 for every x ∈ D, then we can not make the conclusion (A9) for i =
1,2,4,5,9,10,12,13.
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Definition 2.2.1. The iso-volume of the first kind of D is defined as follows∫̂ 1

D
1×̂d̂x̂.

Definition 2.2.2. The iso-volume of the second kind of D is defined as follows∫̂ 2

D
1×̂dx̂.

Definition 2.2.3. The iso-volume of the third kind of D is defined as follows∫̂ 3

D
1×̂d̂x.

Definition 2.2.4. The iso-volume of the fourth kind of D is defined as follows∫̂ 4

D
1d̂x̂.

Definition 2.2.5. The iso-volume of the fifth kind of D is defined as follows∫̂ 5

D
1dx̂.

Definition 2.2.6. The iso-volume of the sixth kind of D is defined as follows∫̂ 6

D
1×̂dx.

Definition 2.2.7. The iso-volume of the seventh kind of D is defined as follows∫̂ 7

D
1d̂x.

Definition 2.2.8. The iso-volume of the eighth kind of D is defined as follows∫̂ 8

D
1dx.

Definition 2.2.9. The iso-volume of the ninth kind of D is defined as follows∫ 9

D
1×̂d̂x̂.

Definition 2.2.10. The iso-volume of the tenth kind of D is defined as follows∫ 10

D
1×̂dx̂.

Definition 2.2.11. The iso-volume of the eleventh kind of D is defined as follows∫ 11

D
1×̂d̂x.
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Definition 2.2.12. The iso-volume of the twelfth kind of D is defined as follows∫ 12

D
1d̂x̂.

Definition 2.2.13. The iso-volume of the thirteenth kind of D is defined as follows∫ 13

D
1dx̂.

Definition 2.2.14. The iso-volume of the fourteenth kind of D is defined as follows∫ 14

D
1×̂dx.

Definition 2.2.15. The iso-volume of the fifteenth kind of D is defined as follows∫ 15

D
1d̂x.

Definition 2.2.16. The iso-volume of the sixteenth kind of D is defined as follows∫̂ 1

D
T̂ (x)×̂d̂x̂.

Definition 2.2.17. The iso-volume of the seventeenth kind of D is defined as follows∫̂ 2

D
T̂ (x)×̂dx̂.

Definition 2.2.18. The iso-volume of the eighteenth kind of D is defined as follows∫̂ 3

D
T̂ (x)×̂d̂x.

Definition 2.2.19. The iso-volume of the nineteenth kind of D is defined as follows∫̂ 4

D
T̂ (x)d̂x̂.

Definition 2.2.20. The iso-volume of the twentieth kind of D is defined as follows∫̂ 5

D
T̂ (x)dx̂.

Definition 2.2.21. The iso-volume of the twenty-first kind of D is defined as follows∫̂ 6

D
T̂ (x)×̂dx.

Definition 2.2.22. The iso-volume of the twenty-second kind of D is defined as follows∫̂ 7

D
T̂ (x)d̂x.
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Definition 2.2.23. The iso-volume of the twenty-third kind of D is defined as follows

∫̂ 8

D
T̂ (x)dx.

Definition 2.2.24. The iso-volume of the twenty-fourth kind of D is defined as follows∫ 9

D
T̂ (x)×̂d̂x̂.

Definition 2.2.25. The iso-volume of the twenty-fifth kind of D is defined as follows∫ 10

D
T̂ (x)×̂dx̂.

Definition 2.2.26. The iso-volume of the twenty-sixth kind of D is defined as follows∫ 11

D
T̂ (x)×̂d̂x.

Definition 2.2.27. The iso-volume of the twenty-seventh kind of D is defined as follows∫ 12

D
T̂ (x)d̂x̂.

Definition 2.2.28. The iso-volume of the twenty-eighth kind of D is defined as follows∫ 13

D
T̂ (x)dx̂.

Definition 2.2.29. The iso-volume of the twenty-ninth kind of D is defined as follows∫ 14

D
T̂ (x)×̂dx.

Definition 2.2.30. The iso-volume of the thirtieth kind of D is defined as follows∫ 15

D
T̂ (x)d̂x.

Sometimes, after we reduce the multiple iso-integrals to the multiple integrals it is suit-
able to be made a change of the variables.

Example 2.2.31. Let D = {(x1,x2) ∈ R2 : 1 ≤ x2
1 + x2

2 ≤ 4}, T̂ (x) =
√

x2
1 + x2

2, f (x) =

x2
1 + x2

2, x = (x1,x2) ∈ D, T̂1 = 2. Then

f∧(x) = f (xT̂ (x)) = f (x1T̂ (x),x2T̂ (x)) = x2
1T̂ 2(x)+ x2

2T̂ 2(x) = (x2
1 + x2

2)
2.

From here

I =
∫̂ 3

D
f∧(x)×̂d̂x = 2

∫
D
(x2

1 + x2
2)

2(x2
1 + x2

2)
1
2 dx = 2

∫
D
(x2

1 + x2
2)

5
2 dx.
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Now we make the following change of the variables

x1 = ρcosφ, x2 = ρsinφ, 1≤ ρ≤ 2, 0≤ φ≤ 2π.

Then for I we have

I = 2
∫ 2

1
∫ 2π

0 ρ5dφdρ = 4π
∫ 2

1 ρ5dρ = 4π
ρ6

6

∣∣∣ρ=2

ρ=1
= 128

3 π.

Exercise 2.2.32. Let D = {(x1,x2) ∈ R2 : 0 ≤ x2
1 + 2x1x2 ≤ 8}, f (x) = x4

1 + x2
2, T̂ (x) =

x2
1 + x2

2 +1, x = (x1,x2) ∈ D, T̂1 = 4. Compute

∫̂ 4

D
f̂ (x̂)d̂x̂.

2.3. Advanced Practical Exercises

Problem 2.3.1. Let D = {x = (x1,x2) : x1 + x2 ≤ 1,−1 ≤ x1 ≤ 1,0 ≤ x2}, T̂1 = 4, f (x) =
x2

1−2x1x2, T̂ (x) = x2
1 + x2

2 +1, x = (x1,x2) ∈ D. Compute

∫̂ 1

D
f̂∧(x̂)×̂d̂x̂,

∫̂ 1

D
f̂∧(x)×̂d̂x̂,

∫̂ 1

D
f̂ (x̂)×̂d̂x̂,

∫̂ 1

D
f∧(x)×̂d̂x̂.

Problem 2.3.2. Let D = {x = (x1,x2) : 0≤ x1 ≤ 3−x2,0≤ x2 ≤ 1,0≤ x2}, T̂1 = 4, f (x) =
x2

1−2x1x2, T̂ (x) = x2
1 + x2

2 +2, x = (x1,x2) ∈ D. Compute

∫̂ 2

D
f̂∧(x̂)×̂dx̂,

∫̂ 2

D
f̂∧(x)×̂dx̂,

∫̂ 2

D
f̂ (x̂)×̂dx̂,

∫̂ 2

D
f∧(x)×̂dx̂.

Problem 2.3.3. Let D = {(x1,x2) : 0≤ x1 ≤ x2+1,0≤ x2 ≤ 2}, f (x) = x2
1−x2+2, T̂ (x) =

x2
1 + x2

2 +1, x = (x1,x2) ∈ D, T̂1 = 2. Compute

∫̂ 3

D
f (x̂)×̂d̂x,

∫̂ 3

D
f̂∧(x)×̂d̂x.

Problem 2.3.4. Let D = {(x1,x2) ∈ R2 : 0 ≤ x1 ≤ 4− x2,0 ≤ x2 ≤ 3}, f (x) = x1 + 2x1x2,
T̂ (x) = x1 + x2, x = (x1,x2) ∈ D, T̂1 = 3. Compute

∫̂ 6

D
f̂∧(x̂)×̂dx.

Problem 2.3.5. Let D = {(x1,x2) ∈ R2 : 0 ≤ x1 ≤ 3,0 ≤ x2 ≤ 16− x2
1}, f (x) = x1 + 3x2,

T̂ (x) = x1 + x2 +1, x = (x1,x2) ∈ D, T̂1 = 2. Compute

∫̂ 8

D
f̂ (x̂)dx.
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Problem 2.3.6. Let d = {(x1,x2) ∈R2 : 0≤ x1 ≤ 1−x2
2,0≤ x2 ≤ 1}, f (x) = x1−2x2

2 +x2
1,

T̂ (x) = 1+ x1 + x2, x = (x1,x2) ∈ D, T̂1 = 4. Compute

∫̂ 8

D
f̂∧(x)dx.

Problem 2.3.7. Let D= {(x1,x2)∈R:0≤ x1≤ 2x2+x2
2,0≤ x2≤ 1}, f (x)= x2

1+x2, T̂ (x)=
x1 + x2 +1, x = (x1,x2) ∈ D, T̂1 = 4. Compute∫ 9

D
f̂ (x̂)×̂d̂x̂.

Problem 2.3.8. Let D = {(x1,x2) ∈ R2 : 0 ≤ x1 ≤ 1,0 ≤ x2 ≤ x2
1 + 1}, f (x) = 2x1 + x2

2,
T̂ (x) = x2

1 + x2
2 +1, x = (x1,x2) ∈ D, T̂1 = 4. Compute∫ 10

D
f̂ (x̂)×̂dx̂,

∫ 10

D
f (x̂)×̂dx̂.

Problem 2.3.9. Let D= {(x1,x2)∈R2 : 0≤ x1≤ 3,0≤ x2≤ 2x1+5}, f (x) = x1−7x2−12,
T̂ (x) = x2

1 + x2
2 +1, x = (x1,x2) ∈ D, T̂1 = 4. Compute∫ 11

D
f̂∧(x)×̂d̂x.

Problem 2.3.10. Let D = {(x1,x2) ∈ R2 : 0 ≤ x4
1 + 2x1x2

2 ≤ 8}, f (x) = x4
1 + x2

2 + 2x1x2,
T̂ (x) = x2

1 + x2
2 +1, x = (x1,x2) ∈ D, T̂1 = 4. Compute

∫̂ 6

D
f̂ (x̂)×̂dx̂.

Problem 2.3.11. Let D = {(x1,x2) ∈ R2 : 0 ≤ x2
1 + 2x4

1x2
2 ≤ 8}, f (x) = x2

1 + x2
2 + 2x2

1x2,
T̂ (x) = x2

1 + x2
2 +1, x = (x1,x2) ∈ D, T̂1 = 4. Compute∫ 9

D
f̂∧(x̂)×̂d̂x̂.
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Chapter 3

Line and Surface Iso-Integrals

3.1. Definition of Line Iso-Integrals

Let T̂ : R −→ R be a positive continuously-differentiable function, C be a curve in R2,
parameterized by the equations

x1 = x1(t), x2 = x2(t), t ∈ [a,b].

Let also, f : R2 −→R be an integrable function and f̂ be its iso-lift as an iso-function of the
first, the second, the third, the fourth or the fifth kind. With s we will denote the arc length

s(t) =
∫ t

a

√
x′1(t)2 + x′2(t)2dt.

Definition 3.1.1. The line iso-integral of the first kind of f̂ along the curve C is defined as
follows

∫̂ 1

C
f̂ (x1,x2)×̂d̂ŝ∧∧ =

∫̂ 1b

a
f̂ (x1(t),x2(t))×̂d̂ŝ∧(t̂).

We can rewrite the line iso-integral of the first kind in the following way

∫̂ 1b
a f̂ (x)×̂d̂ŝ∧(t̂) =

∫ b
a f̂ (x1(t),x2(t))

s′(t)T̂ (t)−s(t)T̂ ′(t)
T̂ (t)

dt.

Example 3.1.2. Let C : x1(t) = r cos t, x2(t) = r sin t, T̂ (x) = t+1, t ∈ [0,2π], r≡ const > 0,
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f (x1,x2) = x1x2. Then

x′(t) =−r sin t, x′2(t) = r cos t,

s(t) =
∫ t

0

√
(−r sinu)2 +(r cosu)2du

= r
∫ t

0 du = rt,

s′(t) = r,

f∧(x1,x2) = f (x1(t)T̂ (t),x2(t)T̂ (t)) = x1(t)x2(t)T̂ 2(t)

= (r cos t)(r sin t)(t +1)2

= r2

2 (t +1)2 sin(2t),

s′(t)T̂ (t)−s(t)T̂ ′(t)
T̂ (t)

= r(t+1)−rt
t+1 = r

t+1 .

From here, ∫̂
C f∧(x1,x2)×̂d̂ŝ∧∧ =

∫ 2π

0
r2

2 (t +1)2 sin(2t) r
t+1 dt

= r3

2
∫ 2π

0 (t +1)sin(2t)dt

=− r3

4
∫ 2π

0 (t +1)d cos(2t)

=− r3

4 (t +1)cos(2t)
∣∣∣t=2π

t=0
+ r3

4
∫ 2π

0 cos(2t)dt

=− r3

2 π+ r3

8 sin(2t)
∣∣∣t=2π

t=0

=− r3

2 π.

Exercise 3.1.3. Let C : x1(t) = r sin t, x2(t) = r cos t, t ∈ [0,π], T̂ (t) = t2 + 1, f (x1,x2) =
x2

1 + x2
2. Compute ∫̂

L
f̂∧(x1x2)×̂d̂ŝ∧∧.

Definition 3.1.4. The line iso-integral of the second kind of f̂ along the curve C is defined
as follows ∫̂ 2

C
f̂ (x1,x2)×̂d̂ŝ∧ =

∫̂ 2b

a
f̂ (x1(t),x2(t))×̂d̂ŝ∧(t).

We can rewrite the line iso-integral of the second kind in the following way

∫̂ 2b
a f̂ (x)×̂d̂ŝ∧(t̂) =

∫ b
a f̂ (x1(t),x2(t))

s′(tT̂ (t))(T̂ (t)+tT̂ ′(t))T̂ (t)−s(tT̂ (t))T̂ ′(t)
T̂ (t)

dt.
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Example 3.1.5. Let C : x1(t) =
√

2t, x2(t) =
√

2t + 1, t ∈ [1,2], f (x1,x2) = x1x2, T̂ (t) =
t +1. Then

s(t) =
∫ t

1

√
x′1(u)2 + x′2(u)2du = 2

∫ t
1 du = 2t−2,

s(tT̂ (t)) = 2tT̂ (t)−2 = 2t(t +1)−2 = 2t2 +2t−2,

s′(t) = 2,

s′(tT̂ (t))(T̂ (t)+tT̂ ′(t))−s(tT̂ (t))T̂ ′(t)
T̂ (t)

= 2(t+1+t)−(2t2+2t−2)
t+1

= −2t2+2t+4
t+1 ,

f∧(x1,x2) = f (x1(t)T̂ (t),x2(t)T̂ (t)) = x1(t)x2(t)T̂ 2(t) =
√

2t(
√

2t +1)(t +1)2.

From here ∫̂ 2
L f∧(x1,x2)×̂d̂ŝ∧ =

∫ 2
1

√
2(
√

2t +1)(t +1)2−2t2+2t+1
t+1 dt

=
∫ 2

1 (2t2 +
√

2t)(t +1)(−2t2 +2t +1)dt

=
∫ 2

1 (−4t5−2
√

2t4 +6t3 +(2+3
√

2)t2 +
√

2t)dt

=
(
−2

3 t6− 2
√

2
5 t5 + 3

2 t4 + 2+3
√

2
3 t3 +

√
2

2

)∣∣∣t=2

t=1

=−89
6 −

39
10

√
2.

Exercise 3.1.6. Let C : x1(t) = 2
√

2t, x2(t) = 2
√

2t +1, t ∈ [1,2], f (x1,x2) = x1x2, T̂ (t) =
2t +1. Compute ∫̂ 2

C
f̂∧(x̂1, x̂2)×̂d̂ŝ∧.

Definition 3.1.7. The line iso-integral of the third kind of f̂ along the curve C is defined as
follows ∫̂ 3

C
f̂ (x1,x2)×̂d̂ ˆ̂s =

∫̂ 3b

a
f̂ (x1(t),x2(t))×̂d̂ŝ(t̂).

We can rewrite the line iso-integral of the third kind in the following way

∫̂ 3b
a f̂ (x)×̂d̂ŝ(t̂) =

∫ b
a f̂ (x1(t),x2(t))

s′
(

t
T̂ (t)

)
(T̂ (t)−tT̂ ′(t))T̂ (t)−s

(
t

T̂ (t)

)
T̂ ′(t)T̂ (t)

T̂ 2(t)
dt.

Example 3.1.8. Let C : x1(t) = 2t+1, x2(t) = 2t+2, t ∈ [1,2], f (x1,x2) = 2x1−x2, T̂ (t) =
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t +1. Then

f̂∧(x̂1, x̂2) =
f (x1(t),x2(t))

T̂ (t)
= 2x1(t)−x2(t)

T̂ (t)
= 2t

t+1 ,

s(t) =
∫ t

1

√
x′1(u)2 + x′2(u)2du = 2

√
2
∫ t

1 du = 2
√

2(t−1),

s′(t) = 2
√

2,

s
(

t
T̂ (t)

)
= 2
√

2
(

t
T̂ (t)
−1
)
= 2
√

2
(

t
t+1 −1

)
=−2

√
2

t+1 ,

s′
(

t
T̂ (t)

)
(T̂ (t)−tT̂ ′(t))T̂ (t)−s

(
t

T̂ (t)

)
T̂ ′(t)T̂ (t)

T̂ 2(t)
=

2
√

2(t+1−t)+ 2
√

2
t+1 (t+1)

(t+1)2

= 4
√

2
(t+1)2 .

From here, ∫̂ 3
C f̂∧(x̂c1, x̂2)×̂d̂ŝ(t̂) =

∫ 2
1

2t
t+1

4
√

2
(t+1)2 dt

=−4
√

2
∫ 2

1 td 1
(t+1)2

=−4
√

2 t
(t+1)2

∣∣∣t=2

t=1
+4
√

2
∫ 2

1
1

(t+1)2 dt

=
√

2
9 −4

√
2 1

t+1

∣∣∣t=2

t=1

= 7
√

2
9 .

Exercise 3.1.9. Let C : x1(t) = t2 +1, x2(t) = 2t +2, t ∈ [1,2], f (x1,x2) = x2
1− x2, T̂ (t) =

t +1. Compute ∫̂ 3

C
f̂∧(x1,x2)×̂d̂ŝ(t̂).

Definition 3.1.10. The line iso-integral of the fourth kind of f̂ along the curve C is defined
as follows ∫̂ 4

C
f̂ (x1,x2)×̂d̂s∧ =

∫̂ 4b

a
f̂ (x1(t),x2(t))×̂d̂s∧(t).

We can rewrite the line iso-integral of the fourth kind in the following way

∫̂ 4b
a f̂ (x)×̂d̂s∧(t) =

∫ b
a f̂ (x1(t),x2(t))T̂ (t)s′(tT̂ (t))(T̂ (t)+ tT̂ ′(t))dt.

Example 3.1.11. Let C : x1(t) = t2 +1, x2(t) = t2 +2, t ∈ [0,1], f (x1,x2) = x2
1 +x2

2, T̂ (t) =
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t +1. Then
f̂∧(x̂1(t), x̂2(t)) =

f (x1(t),x2(t))
T̂ (t)

=
x2

1(t)+x2
2(t)

T̂ (t)

= (t2+1)2+(t2+2)2

t+1

= 2t4+6t2+5
t+1 ,

s(t) =
∫ t

0

√
x′1(u)2 + x′2(u)2du

=
∫ t

0

√
4u2 +4u2du

= 2
√

2
∫ t

0 udu

=
√

2t2,

s′(t) = 2
√

2t,

s′(tT̂ (t)) = 2
√

2tT̂ (t) = 2
√

2t(t +1).

From here∫̂ 1
0 f̂∧(x̂1(t), x̂2(t))×̂d̂s∧(t) =

∫ 1
0

2t4+6t2+5
t+1 (t +1)2

√
2t(t +1)(t +1+ t)dt

= 2
√

2
∫ 1

0 (2t4 +6t2 +5)t(t +1)(2t +1)dt

= 2
√

2
∫ 1

0 (4t7 +6t6 +14t5 +18t4 +16t3 +15t2 +5t)dt

= 2
√

2
(

t8

2 + 6
7 t7 + 7

3 t6 + 18
5 t5 +4t4 +5t3 + 5

2 t2
)∣∣∣t=1

t=0

= 3946
√

2
105 .

Exercise 3.1.12. Let C : x1(t) = t +1, x2(t) = t2 +1, t ∈ [0,1], f (x1,x2) = x1 + x2
2, T̂ (t) =

t +1. Compute ∫̂ 4

C
f̂∧(x1,x2)×̂d̂s∧.

Definition 3.1.13. The line iso-integral of the fifth kind of f̂ along the curve C is defined
as follows ∫̂ 5

C
f̂ (x1,x2)×̂d̂s =

∫̂ 4b

a
f̂ (x1(t),x2(t))×̂d̂s(t̂).

We can rewrite the line iso-integral of the fifth kind in the following way∫̂ 5b
a f̂ (x)×̂d̂s(t̂) =

∫ b
a f̂ (x1(t),x2(t))s′

(
t

T̂ (t)

)
T̂ (t)−tT̂ ′(t)

T̂ (t)
dt.
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Example 3.1.14. Let C : x1(t) = t2 +2, x2(t) = t2, t ∈ [0,1], f (x) = x2
1 + x2

2, T̂ (t) = t +2.
Then

f∧(x1,x2) = f (x1(t)T̂ (t),x2(t)T̂ (t))

= x2
1(t)T̂

2(t)+ x2
2(t)T̂

2(t)

= (t2 +2)2(t +2)2 + t4(t +2)2

= 2(t4 +2t2 +2)(t +2)2,

s(t) =
∫ t

0

√
x′1(u)2 + x′2(u)2du

=
∫ t

0

√
4u2 +4u2du

= 2
√

2
∫ t

0 udu

=
√

2t2,

s′(t) = 2
√

2t,

s′
(

t
T̂ (t)

)
= 2
√

2 t
T̂ (t)

= 2
√

2 t
t+2 ,

T̂ (t)−T̂ ′(t)
T̂ (t)

= t+2−t
t+2 = 2

t+2 .

From here ∫̂ 5
C f∧(x1,x2)×̂d̂s∧ =

∫ 1
0 2(t4 +2t2 +2)(t +2)22

√
2 t

t+2
2

t+2 dt

= 8
√

2
∫ 1

0 t(t4 +2t2 +2)dt

= 8
√

2
∫ 1

0 (t
5 +2t3 +2t)dt

= 8
√

2
(

t6

6 + t4

2 + t2
)∣∣∣t=1

t=0

= 40
√

2
3 .

Let now, f1, f2 : R2 −→ R be integrable functions and f̂1, f̂2 be their iso-lifts as iso-
functions of the first, the second, the third, the fourth or the fifth kind . Let also, e1 = (1,0),
e2 = (0,1).

Definition 3.1.15. The line iso-integral of the first kind of f̂1e1 + f̂2e2 along the curve C is
defined as follows∫̂ 1

C f̂1(x1,x2)×̂d̂x̂∧∧1 +
∫̂ 1

C f̂2(x1,x2)×̂d̂x̂∧∧2

=
∫̂ 1b

a f̂1(x1(t),x2(t))×̂d̂x̂∧1 (t̂)+
∫̂ 1b

a f̂2(x1(t),x2(t))×̂d̂x̂∧2 (t̂).
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We can rewrite the line iso-integral of the first kind in the following way∫̂ 1b
a f̂1(x)×̂d̂x̂∧1 (t̂)+

∫̂ 1b
a f̂2(x)×̂d̂x̂∧2 (t̂)

=
∫ b

a f̂1(x1(t),x2(t))
x′1(t)T̂ (t)−x1(t)T̂ ′(t)

T̂ (t)
dt +

∫ b
a f̂2(x1(t),x2(t))

x′2(t)T̂ (t)−x2(t)T̂ ′(t)
T̂ (t)

dt.

Exercise 3.1.16. Let C : x1(t) = t +1, x2(t) = t, t ∈ [0,1], f1(x1,x2) = x1− x2, f2(x1,x2) =
x1 + x2, T̂ (t) = t2 +1. Compute∫̂ 1

C
f̂1(x1,x2)×̂d̂x̂∧∧1 +

∫̂ 1

C
f̂2(x1,x2)×̂d̂x̂∧∧2 .

Definition 3.1.17. The line iso-integral of the second kind of f̂1e1 + f̂2e2 along the curve
C is defined as follows∫̂ 2

C f̂1(x1,x2)×̂d̂x̂∧1 +
∫̂ 2

C f̂2(x1,x2)×̂d̂x̂∧2

=
∫̂ 2b

a f̂1(x1(t),x2(t))×̂d̂x̂∧1 (t)+
∫̂ 2b

a f̂2(x1(t),x2(t))×̂d̂x̂∧2 (t).

We can rewrite the line iso-integral of the second kind in the following way∫̂ 2b
a f̂1(x)×̂d̂x̂∧1 (t̂)+

∫̂ 2b
a f̂2(x)×̂d̂x̂∧2 (t̂)

=
∫ b

a f̂1(x1(t),x2(t))
x′1(tT̂ (t))(T̂ (t)+tT̂ ′(t))T̂ (t)−x1(tT̂ (t))T̂ ′(t)

T̂ (t)
dt

+
∫ b

a f̂2(x1(t),x2(t))
x′2(tT̂ (t))(T̂ (t)+tT̂ ′(t))T̂ (t)−x2(tT̂ (t))T̂ ′(t)

T̂ (t)
dt.

Exercise 3.1.18. Let C : x1(t) = t +1, x2(t) = t, t ∈ [0,1], f1(x1,x2) = x1− x2
2, f2(x1,x2) =

x2
1 + x2, T̂ (t) = t2 +1. Compute∫̂ 2

C
f̂1(x1,x2)×̂d̂x̂∧1 +

∫̂ 2

C
f̂2(x1,x2)×̂d̂x̂∧2 .

Definition 3.1.19. The line iso-integral of the third kind of f̂1e1 + f̂ e2 along the curve C is
defined as follows∫̂ 3

C f̂1(x1,x2)×̂d̂ ˆ̂x1 +
∫̂ 3

C f̂2(x1,x2)×̂d̂ ˆ̂x2

=
∫̂ 3b

a f̂1(x1(t),x2(t))×̂d̂x̂1(t̂)+
∫̂ 3b

a f̂2(x1(t),x2(t))×̂d̂x̂2(t̂).

We can rewrite the line iso-integral of the third kind in the following way∫̂ 3b
a f̂1(x)×̂d̂x̂1(t̂)+

∫̂ 3b
a f̂2(x)×̂d̂x̂2(t̂)

=
∫ b

a f̂1(x1(t),x2(t))
x′1

(
t

T̂ (t)

)
(T̂ (t)−tT̂ ′(t))T̂ (t)−x1

(
t

T̂ (t)

)
T̂ ′(t)T̂ (t)

T̂ 2(t)
dt

+
∫ b

a f̂2(x1(t),x2(t))
x′2

(
t

T̂ (t)

)
(T̂ (t)−tT̂ ′(t))T̂ (t)−x2

(
t

T̂ (t)

)
T̂ ′(t)T̂ (t)

T̂ 2(t)
dt.
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Exercise 3.1.20. Let C : x1(t) = t +1, x2(t) = t +4, t ∈ [0,1], f1(x1,x2) = 2x1+3x1x2−x2
2,

f2(x1,x2) = x2
1 + x2, T̂ (t) = t2 +1. Compute∫̂ 3

C
f̂1(x1,x2)×̂d̂ ˆ̂x1 +

∫̂ 3

C
f̂2(x1,x2)×̂d̂ ˆ̂x2.

Definition 3.1.21. The line iso-integral of the fourth kind of f̂1e1 + f̂ e2 along the curve C
is defined as follows∫̂ 4

C f̂1(x1,x2)×̂d̂x1
∧+

∫̂ 4
C f̂2(x1,x2)×̂d̂x2

∧

=
∫̂ 4b

a f̂1(x1(t),x2(t))×̂d̂x1
∧(t)+

∫̂ 4b
a f̂2(x1(t),x2(t))×̂d̂x2

∧(t).

We can rewrite the line iso-integral of the fourth kind in the following way∫̂ 4b
a f̂1(x)×̂d̂x∧1 (t)+

∫̂ 4b
a f̂2(x)×̂d̂x∧2 (t)

=
∫ b

a f̂1(x1(t),x2(t))T̂ (t)x′1(tT̂ (t))(T̂ (t)+ tT̂ ′(t))dt

+
∫ b

a f̂2(x1(t),x2(t))T̂ (t)x′2(tT̂ (t))(T̂ (t)+ tT̂ ′(t))dt.

Exercise 3.1.22. Let C : x1(t) = t + 1, x2(t) = t + 4, t ∈ [0,1], f1(x1,x2) = x1 + 3x1x2,
f2(x1,x2) = x1 + x2, T̂ (t) = t2 +1. Compute∫̂ 4

C
f̂1(x1,x2)×̂d̂x1

∧+
∫̂ 4

C
f̂2(x1,x2)×̂d̂x2

∧.

Definition 3.1.23. The line iso-integral of the fifth kind of f̂ along the curve C is defined
as follows ∫̂ 5

C f̂1(x1,x2)×̂d̂x1 +
∫̂ 5

C f̂2(x1,x2)×̂d̂x2

=
∫̂ 4b

a f̂1(x1(t),x2(t))×̂d̂x1(t̂)+
∫̂ 4b

a f̂2(x1(t),x2(t))×̂d̂x2(t̂).

We can rewrite the line iso-integral of the fifth kind in the following way∫̂ 5b
a f̂1(x)×̂d̂x1(t̂)+

∫̂ 5b
a f̂2(x)×̂d̂x2(t̂)

=
∫ b

a f̂1(x1(t),x2(t))x′1
(

t
T̂ (t)

)
T̂ (t)−tT̂ ′(t)

T̂ (t)
dt

+
∫ b

a f̂2(x1(t),x2(t))x′2
(

t
T̂ (t)

)
T̂ (t)−tT̂ ′(t)

T̂ (t)
dt.

Exercise 3.1.24. Let C : x1(t) = t + 1, x2(t) = t + 4t2, t ∈ [0,1], f1(x1,x2) = x1x2,
f2(x1,x2) = x1 + x2, T̂ (t) = t2 +1. Compute∫̂ 5

C
f̂∧1 (x1,x2)×̂d̂x1 +

∫̂ 5

C
f̂∧2 (x1,x2)×̂d̂x2.

160



3.2. Properties of Line Iso-Integrals

With −C we will denote the curve x=x1(a+b− t), x2 = x2(a+b− t), t ∈ [a,b]. The curve
−C is traversed in the opposite direction.

Theorem 3.2.1. ∫̂ 1
−C f̂1(x1,x2)×̂d̂x̂∧∧1 +

∫̂ 1
−C f̂2(x1,x2)×̂d̂x̂∧∧2

=−
∫̂ 1

C f̂1(x1,x2)×̂d̂x̂∧∧1 −
∫̂ 1

C f̂2(x1,x2)×̂d̂x̂∧∧2

Proof.

∫̂ 1
−C f̂1(x1,x2)×̂d̂x̂∧∧1 +

∫̂ 1
−C f̂2(x1,x2)×̂d̂x̂∧∧2

=
∫ b

a f̂1(x1(a+b− t),x2(a+b− t))
d
dt x1(a+b−t)T̂ (a+b−t)−x1(a+b−t) d

dt T̂ (a+b−t)
T̂ (a+b−t)

dt

+
∫ b

a f̂2(x1(a+b− t),x2(a+b− t))
d
dt x2(a+b−t)T̂ (a+b−t)−x2(a+b−t) d

dt T̂ (a+b−t)
T̂ (a+b−t)

dt

=
∫ b

a f̂1(x1(a+b− t),x2(a+b− t))−x′1(a+b−t)T̂ (a+b−t)+x1(a+b−t)T̂ ′(a+b−t)
T̂ (a+b−t)

dt

+
∫ b

a f̂2(x1(a+b− t),x2(a+b− t))−x′2(a+b−t)T̂ (a+b−t)+x2(a+b−t)T̂ ′(a+b−t)
T̂ (a+b−t)

dt

a+b− t = u

=−
∫ a

b f̂1(x1(u),x2(u))
−x′1(u)T̂ (u)+x1(u)T̂ ′(u)

T̂ (u)
du−

∫ a
b f̂2(x1(u),x2(u))

−x′2(u)T̂ (u)+x2(u)T̂ ′(u)
T̂ (u)

du

=
∫ b

a f̂1(x1(u),x2(u))
−x′1(u)T̂ (u)+x1(u)T̂ ′(u)

T̂ (u)
du+

∫ b
a f̂2(x1(u),x2(u))

−x′2(u)T̂ (u)+x2(u)T̂ ′(u)
T̂ (u)

du

=−
∫̂ 1

C f̂1(x1,x2)×̂d̂x̂∧∧1 −
∫̂ 1

C f̂2(x1,x2)×̂d̂x̂∧∧2 .

Theorem 3.2.2. ∫̂ 2
−C f̂1(x1,x2)×̂d̂x̂∧1 +

∫̂ 2
−C f̂2(x1,x2)×̂d̂x̂∧2

6=−
∫̂ 2

C f̂1(x1,x2)×̂d̂x̂∧1 −
∫̂ 2

C f̂2(x1,x2)×̂d̂x̂∧2
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Proof.

∫̂ 2
−C f̂1(x1,x2)×̂d̂x̂∧1 +

∫̂ 2
−C f̂2(x1,x2)×̂d̂x̂∧2

=
∫ b

a f̂1(x1(a+b− t),x2(a+b− t))

d
dt x1((a+b−t)T̂ (a+b−t))(T̂ (a+b−t)+(a+b−t) d

dt T̂ (a+b−t))T̂ (a+b−t)−x1((a+b−t)T̂ (a+b−t)) d
dt T̂ (a+b−t)

T̂ (a+b−t)
dt

+
∫ b

a f̂2(x1(a+b− t),x2(a+b− t))

d
dt x2((a+b−t)T̂ (a+b−t))(T̂ (a+b−t)+(a+b−t) d

dt T̂ (a+b−t))T̂ (a+b−t)−x2((a+b−t)T̂ (a+b−t)) d
dt T̂ (a+b−t)

T̂ (a+b−t)
dt

=
∫ b

a f̂1(x1(a+b− t),x2(a+b− t))

−x′1((a+b−t)T̂ (a+b−t))(T̂ (a+b−t)−(a+b−t)T̂ ′(a+b−t))T̂ (a+b−t)+x1((a+b−t)T̂ (a+b−t))T̂ ′(a+b−t)
T̂ (a+b−t)

dt

+
∫ b

a f̂2(x1(a+b− t),x2(a+b− t))

−x′2((a+b−t)T̂ (a+b−t))(T̂ (a+b−t)−(a+b−t)T̂ ′(a+b−t))T̂ (a+b−t)+x2((a+b−t)T̂ (a+b−t))T̂ ′(a+b−t)
T̂ (a+b−t)

dt

a+b− t = u

=−
∫ a

b f̂1(x1(u),x2(u))
−x′1(uT̂ (u))(T̂ (u)−uT̂ (u))T̂ (u)+x1(uT̂ (u))T̂ ′(u)

T̂ (u)
dt

−
∫ a

b f̂2(x1(u),x2(u))
−x′2(uT̂ (u))(T̂ (u)−uT̂ ′(u))T̂ (u)+x2(uT̂ (u))T̂ ′(u)

T̂ (u)
dt

=
∫ b

a f̂1(x1(u),x2(u))
−x′1(uT̂ (u))(T̂ (u)−uT̂ (u))T̂ (u)+x1(uT̂ (u))T̂ ′(u)

T̂ (u)
dt

+
∫ b

a f̂2(x1(u),x2(u))
−x′2(uT̂ (u))(T̂ (u)−uT̂ ′(u))T̂ (u)+x2(uT̂ (u))T̂ ′(u)

T̂ (u)
dt

6=−
∫̂ 2

C f̂1(x1,x2)×̂d̂x̂∧1 −
∫̂ 2

C f̂2(x1,x2)×̂d̂x̂∧2

Theorem 3.2.3. ∫̂ 3
−C f̂1(x1,x2)×̂d̂ ˆ̂x1 +

∫̂ 3
−C f̂2(x1,x2)×̂d̂ ˆ̂x2

6=−
∫̂ 3

C f̂1(x1,x2)×̂d̂ ˆ̂x1−
∫̂ 3

C f̂2(x1,x2)×̂d̂ ˆ̂x2
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Proof.

∫̂ 3
−C f̂1(x1,x2)×̂d̂ ˆ̂x1 +

∫̂ 3
−C f̂2(x1,x2)×̂d̂ ˆ̂x2

=
∫ b

a f̂1(x1(a+b− t),x2(a+b− t))

d
dt x1((a+b−t)T̂ (a+b−t))(T̂ (a+b−t)+(a+b−t) d

dt T̂ (a+b−t))T̂ (a+b−t)−x1((a+b−t)T̂ (a+b−t)) d
dt T̂ (a+b−t)

T̂ (a+b−t)
dt

+
∫ b

a f̂2(x1(a+b− t),x2(a+b− t))

d
dt x2((as+b−t)T̂ (a+b−t))(T̂ (a+b−t)+(a+b−t) d

dt T̂ (a+b−t))T̂ (a+b−t)−x2((a+b−t)T̂ (a+b−t)) d
dt T̂ (a+b−t)

T̂ (a+b−t)
dt

=
∫ b

a f̂1(x1(a+b− t),x2(a+b− t))

−x′1((a+b−t)T̂ (a+b−t))(T̂ (a+b−t)−(a+b−t)T̂ ′(a+b−t))T̂ (a+b−t)+x1((a+b−t)T̂ (a+b−t))T̂ ′(a+b−t)
T̂ (a+b−t)

dt

+
∫ b

a f̂2(x1(a+b− t),x2(a+b− t))

−x′2((as+b−t)T̂ (a+b−t))(T̂ (a+b−t)−(a+b−t)T̂ ′(a+b−t))T̂ (a+b−t)+x2((a+b−t)T̂ (a+b−t))T̂ ′(a+b−t)
T̂ (a+b−t)

dt

a+b− t = u

=−
∫ a

b f̂1(x1(u),x2(u))
−x′1(uT̂ (u))(T̂ (u)−uT̂ ′(u))T̂ (u)+x1(uT̂ (u))T̂ ′(u)

T̂ (u)
du

−
∫ a

b f̂2(x1(u),x2(u))
−x′2(uT̂ (u))(T̂ (u)−uT̂ ′(u))T̂ (u)+x2(uT̂ (u))T̂ ′(u)

T̂ (u)
du

=
∫ b

a f̂1(x1(u),x2(u))
−x′1(uT̂ (u))(T̂ (u)−uT̂ ′(u))T̂ (u)+x1(uT̂ (u))T̂ ′(u)

T̂ (u)
du

+
∫ b

a f̂2(x1(u),x2(u))
−x′2(uT̂ (u))(T̂ (u)−uT̂ ′(u))T̂ (u)+x2(uT̂ (u))T̂ ′(u)

T̂ (u)
du

6=−
∫̂ 3

C f̂1(x1,x2)×̂d̂ ˆ̂x1−
∫̂ 3

C f̂2(x1,x2)×̂d̂ ˆ̂x2.

Theorem 3.2.4. ∫̂ 4
−C f̂1(x1,x2)×̂d̂x1

∧+
∫̂ 4
−C f̂2(x1,x2)×̂d̂x2

∧

6=−
∫̂ 4

C f̂1(x1,x2)×̂d̂x1
∧−

∫̂ 4
C f̂2(x1,x2)×̂d̂x2

∧.
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Proof.

∫̂ 4
−C f̂1(x1,x2)×̂d̂x1

∧+
∫̂ 4
−C f̂2(x1,x2)×̂d̂x2

∧

=
∫ b

a f̂1(x1(a+b− t),x2(a+b− t))T̂ (a+b− t) d
dt x1((a+b− t)T̂ (a+b− t))(T̂ (a+b− t)

+(a+b− t) d
dt T̂ (a+b− t))dt

+
∫ b

a f̂2(x1(a+b− t),x2(a+b− t))T̂ (a+b− t) d
dt x2((a+b− t)T̂ (a+b− t))(T̂ (a+b− t)

+(a+b− t) d
dt T̂ (a+b− t))dt

=
∫ b

a f̂1(x1(a+b− t),x2(a+b− t))T̂ (a+b− t)(−x′1((a+b− t)T̂ (a+b− t))(T̂ (a+b− t)

−(a+b− t)T̂ ′(a+b− t))dt

+
∫ b

a f̂2(x1(a+b− t),x2(a+b− t))T̂ (a+b− t)x′2((a+b− t)T̂ (a+b− t))(T̂ (a+b− t)

−(a+b− t)T̂ ′(a+b− t))dt

a+b− t = u

=−
∫ a

b f̂1(x1(u),x2(u))T̂ (u)(−x′1(uT̂ (u))(T̂ (u)−uT̂ ′(u))dt

−
∫ a

b f̂2(x1(u),x2(u))T̂ (u)x′2(uT̂ (u))(T̂ (u)−uT̂ ′(u))dt

=
∫ b

a f̂1(x1(u),x2(u))T̂ (u)(−x′1(uT̂ (u))(T̂ (u)−uT̂ ′(u))dt

+
∫ b

a f̂2(x1(u),x2(u))T̂ (u)x′2(uT̂ (u))(T̂ (u)−uT̂ ′(u))dt

6=−
∫̂ 4

C f̂1(x1,x2)×̂d̂x1
∧−

∫̂ 4
C f̂2(x1,x2)×̂d̂x2

∧.

Theorem 3.2.5.

∫̂ 5
−C f̂1(x1,x2)×̂d̂x1 +

∫̂ 5
−C f̂2(x1,x2)×̂d̂x2

6=−
∫̂ 5

C f̂1(x1,x2)×̂d̂x1−
∫̂ 5

C f̂2(x1,x2)×̂d̂x2.
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Proof.∫̂ 5
−C f̂1(x1,x2)×̂d̂x1 +

∫̂ 5
−C f̂2(x1,x2)×̂d̂x2

=
∫ b

a f̂1(x1(a+b− t),x2(a+b− t)) d
dt x1

(
a+b−t

T̂ (a+b−t)

)
T̂ (a+b−t)−(a+b−t) d

dt T̂ (a+b−t)
T̂ (a+b−t)

dt

+
∫ b

a f̂2(x1(a+b− t),x2(a+b− t)) d
dt x2

(
a+b−t

T̂ (a+b−t)

)
T̂ (a+b−t)−(a+b−t) d

dt T̂ (a+b−t)
T̂ (a+b−t)

dt

=
∫ b

a f̂1(x1(a+b− t),x2(a+b− t))
(
−x′1

(
a+b−t

T̂ (a+b−t)

))
T̂ (a+b−t)+(a+b−t)T̂ ′(a+b−t)

T̂ (a+b−t)
dt

+
∫ b

a f̂2(x1(a+b− t),x2(a+b− t))
(
−x′2

(
a+b−t

T̂ (a+b−t)

))
T̂ (a+b−t)+(a+b−t)T̂ ′(a+b−t)

T̂ (a+b−t)
dt

a+b− t = u

=−
∫ a

b f̂1(x1(u),x2(u))
(
−x′1

(
u

T̂ (u)

))
T̂ (u)+uT̂ ′(u)

T̂ (u)
du

−
∫ a

b f̂2(x1(u),x2(u))
(
−x′2

(
u

T̂ (u)

))
T̂ (u)+uT̂ ′(u)

T̂ (u)
du

=
∫ b

a f̂1(x1(u),x2(u))
(
−x′1

(
u

T̂ (u)

))
T̂ (u)+uT̂ ′(u)

T̂ (u)
du

+
∫ b

a f̂2(x1(u),x2(u))
(
−x′2

(
u

T̂ (u)

))
T̂ (u)+uT̂ ′(u)

T̂ (u)
du

6=−
∫̂ 5

C f̂1(x1,x2)×̂d̂x1−
∫̂ 5

C f̂2(x1,x2)×̂d̂x2.

In the general case we can not formulate analogues of the Green’s theorems connected
with the line integrals because d̂x̂∧∧i , d̂x̂∧i , d̂x∧i , d̂x̂i and d̂x1, i = 1,2, depends on xi and t
and they are not invertible relation to t in the general case.

3.3. Surface Iso-Integrals

Let Σ be a surface in R3, parameterized by the equations

x1 = x1(u,v), x2 = x2(u,v), x3 = x3(u,v), (u,v) ∈ G, G|subsetR2.

We put the quantities

E = x1u(u,v)2 + x2u(u,v)2 + x3u(u,v)2,

F = x1u(u,v)x1v(u,v)+ x2u(u,v)x2v(u,v)+ x3u(u,v)x3v(u,v),

D = x1v(u,v)2 + x2v(u,v)2 + x3v(u,v)2.
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Suppose that f ,P,Q,R : Σ −→ R be continuous functions and T̂ : Σ −→ R be a positive
continuously-differentiable function. Let also, the iso-lifts of the first, the second, the third,
the fourth or the fifth kind of f , P, Q and R exist on Σ.

Definition 3.3.1. The surface iso-integral of the first kind of f̂ over Σ is defined as follows∫̂ ∫̂
Σ

f̂ (x1,x2,x3)d̂σ̂ =
∫ ∫

G
f̂ (x1(u,v),x2(u,v),x3(u,v))×̂

√
ED−F2×̂d̂ûd̂v̂.

Exercise 3.3.2. Let Σ : x1
2 + x2

3 + x3
4 = 1, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, f (x1,x2,x3) = x1 + x2 + x3,

T̂ (u,v) = u+ v+1, u≥ 0, v≥ 0. Compute∫̂ ∫̂
Σ

f̂∧(x1,x2,x3)d̂σ̂.

Exercise 3.3.3. Let Σ : x1
2+x2

2+x3
2 = 1, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, f (x1,x2,x3) = 2x1−x2+

x2
3, T̂ (u,v) = u+ v+1, u≥ 0, v≥ 0. Compute∫̂ ∫̂

Σ

f̂∧(x̂1, x̂2, x̂3)d̂σ̂.

Now we will define the quantities

A = x2ux3v− x3ux2v, B = x3ux1v− x3vx1u, C = x1ux2v− x2ux1v.

Definition 3.3.4. The surface iso-integral of the second kind is defined as follows∫̂ ∫̂
Σ
P̂×̂d̂x̂2d̂x̂3 + Q̂×̂d̂x̂3d̂x̂1 + R̂×̂d̂x̂1d̂x̂2

=
∫̂ ∫̂

Σ

(
P̂×̂ A√

A2+B2+C2 + Q̂×̂ B√
A2+B2+C2 + R̂×̂ C√

A2+B2+C2

)
×̂d̂x̂1d̂x̂2d̂x̂3.

Exercise 3.3.5. Let Σ : x1
2 + x2

2 + x3
2 = 1, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, P(x1,x2,x3) = 2x1−

x2 + x2
3, Q(x1,x2,x3) = x2 + x2

3, R(x1,x2,x3) = 2x1 + x3 T̂ (u,v) = u+ v+ 1, u ≥ 0, v ≥ 0.
Compute

∫̂ ∫̂
Σ

P̂(x̂1, x̂2, x̂3)×̂d̂x̂2d̂x̂3 + Q̂(x̂1, x̂2, x̂3)×̂d̂x̂3d̂x̂1 + R̂(x̂1, x̂2, x̂3)×̂d̂x̂1d̂x̂2.

3.4. Advanced practical exercises

Problem 3.4.1. Let C : x1(t) = r sin t, x2(t) = r cos t, t ∈ [0,π], T̂ (t) = t4 + 1, f (x1,x2) =
x2

1 +2x1x2. Compute ∫̂
L

f̂∧(x̂1x̂2)×̂d̂ŝ∧∧.

Problem 3.4.2. Let C : x1(t) = 2
√

2t +2, x2(t) = 2
√

2t +1, t ∈ [1,2], f (x1,x2) = x2
1x2+x1,

T̂ (t) = t +2. Compute ∫̂ 2

C
f̂ (x̂1, x̂2)×̂d̂ŝ∧.
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Problem 3.4.3. Let C : x1(t) = t +2t2, x2(t) = t +2, t ∈ [1,2], f (x1,x2) = x2
1− x2

2, T̂ (t) =
t +1. Compute ∫̂ 3

C
f∧(x1,x2)×̂d̂ŝ(t̂).

Problem 3.4.4. Let C : x1(t) = t + 1, x2(t) = t2 + 2t + 1, t ∈ [0,1], f (x1,x2) = x1 + x2
2,

T̂ (t) = t2 +1. Compute ∫̂ 4

C
f∧(x1,x2)×̂d̂s∧.

Problem 3.4.5. Let C : x1(t) = t2+2t+3, x2(t) = t2+ t+1, t ∈ [0,1], f (x1,x2) = x4
1+x4

2+
2x2

1x2
2, T̂ (t) = t2 +1. Compute ∫̂ 5

C
f̂∧(x̂1, x̂2)×̂d̂s∧.

Problem 3.4.6. Let C : x1(t) = t2+1, x2(t) = t2, t ∈ [0,1], f1(x1,x2) = x2
1−2x2, f2(x1,x2) =

2x1 + x2, T̂ (t) = t2 +1. Compute∫̂ 1

C
f̂1(x1,x2)×̂d̂x̂∧∧1 +

∫̂ 1

C
f̂2(x1,x2)×̂d̂x̂∧∧2 .

Problem 3.4.7. Let C : x1(t) = t2 + t + 1, x2(t) = t2, t ∈ [0,1], f1(x1,x2) = 2x1 + x2
2,

f2(x1,x2) = x1 +3x2, T̂ (t) = t2 + t +1. Compute∫̂ 2

C
f̂1(x1,x2)×̂d̂x̂∧1 +

∫̂ 2

C
f̂2(x1,x2)×̂d̂x̂∧2 .

Problem 3.4.8. Let C : x1(t) = t + 1, x2(t) = t + 4, t ∈ [0,1], f1(x1,x2) = 2x2
1 − x2

2,
f2(x1,x2) = x2

1 + x2 +2x1x2, T̂ (t) = t2 +1. Compute∫̂ 3

C
f̂1(x1,x2)×̂d̂ ˆ̂x1 +

∫̂ 3

C
f̂2(x1,x2)×̂d̂ ˆ̂x2.

Problem 3.4.9. Let C : x1(t) = t + 1, x2(t) = t + 4, t ∈ [0,1], f1(x1,x2) = x2
1 + x2

2 + 3x1x2,
f2(x1,x2) = x2

1 + x2
2, T̂ (t) = t +1. Compute∫̂ 4

C
f̂1(x1,x2)×̂d̂x1

∧+
∫̂ 4

C
f̂2(x1,x2)×̂d̂x2

∧.

Problem 3.4.10. Let C : x1(t) = t+1, x2(t) = t2, t ∈ [0,1], f1(x1,x2) = x1−x2, f2(x1,x2) =
x1− x2

2, T̂ (t) = t +1. Compute∫̂ 5

C
f̂1(x1,x2)×̂d̂x1 +

∫̂ 5

C
f̂2(x1,x2)×̂d̂x2.

Problem 3.4.11. Let C : x1(t) = t2 + 1, x2(t) = 2t2 + 2, t ∈ [0,1], f1(x1,x2) = 2x1− x2,
f2(x1,x2) = x1−2x2

2, T̂ (t) = t +1. Compute∫̂ 4

C
f̂1(x1,x2)×̂d̂x1 +

∫̂ 4

C
f̂2(x1,x2)×̂d̂x2.
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Problem 3.4.12. Let C : x1(t) = t2 + 1, x2(t) = 2t, t ∈ [0,1], f1(x1,x2) = 2x1 − x2,
f2(x1,x2) = x1−2x2, T̂ (t) = t +1. Compute

∫̂ 5

C
f̂1(x1,x2)×̂d̂x1 +

∫̂ 5

C
f̂2(x1,x2)×̂d̂x2.

Problem 3.4.13. Let C : x1(t) = t + 1, x2(t) = t + 2, t ∈ [0,1], f1(x1,x2) = 2x1 − 3x2,
f2(x1,x2) = 4x1−5x2, T̂ (t) = 2t +1. Compute

∫̂ 2

C
f̂1(x1,x2)×̂d̂x1 +

∫̂ 2

C
f̂2(x1,x2)×̂d̂x2.

Problem 3.4.14. Let Σ : x1
2 + 4x2

2 + x3
22 = 1, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0. f (x1,x2,x3) =

2x2
1− x2, T̂ (u,v) = u+ v+1, u≥ 0, v≥ 0. Compute∫̂ ∫̂

Σ

f̂∧(x̂1, x̂2, x̂3)d̂σ̂.

Problem 3.4.15. Let Σ : x1+x2+x3
2 = 1, x1≥ 0, x2≥ 0, x3≥ 0, P(x1,x2,x3) = x2

1−x2+x2
3,

Q(x1,x2,x3) = x2
3, R(x1,x2,x3) = 2x1, T̂ (u,v) = u+ v+1, u≥ 0, v≥ 0. Compute

∫̂ ∫̂
Σ

P̂(x̂1, x̂2, x̂3)×̂d̂x̂2d̂x̂3 + Q̂(x̂1, x̂2, x̂3)×̂d̂x̂3d̂x̂1 + R̂(x̂1, x̂2, x̂3)×̂d̂x̂1d̂x̂2.
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Chapter 4

The Iso-Fourier Iso- Integral

4.1. Definition of the Iso-Fourier Iso-Integral

We suppose that E is a measurable set in R, f : E −→R is defined and integrable on E. Let
also, T̂ : E −→ R is a positive continuously-differentiable function.

Definition 4.1.1. The iso-Fourier iso-integral is defined with∫
E

f (x)
(

1− x
T̂ ′(x)
T̂ (x)

)
dx.

4.2. Properties of the Iso-Fourier Iso-Integral

Here we will study some of the properties of the iso-Fourier iso-integral.

Theorem 4.2.1. Let { fn(x)}∞
n=1 be a sequence of bounded and measurable functions on

the measurable set E, which converges in measure to the measurable function F(x) on E.
Let also, T̂ (x) is a measurable function on E, its derivative T̂ ′(x) exists on E and it is
measurable on E, and

∣∣∣1− x T̂ ′(x)
T̂ (x)

∣∣∣≤ A for almost all x ∈ E, where A is a positive constant.
If | fn(x)| ≤ K for every x ∈ E, every n ∈ N and for some positive constant K, then

lim
n−→∞

∫
E

fn(x)
(

1− x
T̂ ′(x)
T̂ (x)

)
dx =

∫
E

F(x)
(

1− x
T̂ ′(x)
T̂ (x)

)
dx.

Proof. Since fn−→n−→∞ F in measure, by the Riesz’s Theorem it follows that there exists a
subsequence { fnk}∞

k=1 of the sequence { fn}∞
n=1 such that fnk −→k−→∞ F almost everywhere

in E. From here, using that | fnk(x)| ≤ K for every x ∈ E and every k ∈ N, we have that
|F(x)| ≤ K for almost all x ∈ E.

For n ∈ N and σ > 0, we define the sets

An(σ) = E(| fn−F | ≥ σ), Bn(σ) = E(| fn−F |< σ).

We have
An(σ)∪Bn(σ) = E, An(σ)∩Bn(σ) = Ø.
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Then ∫
E | fn(x)−F(x)|

∣∣∣1− x T̂ ′(x)
T̂ (x)

∣∣∣dx≤ A
∫

E | fn(x)−F(x)|dx

= A
∫

An(σ)∪Bn(σ)
| fn(x)−F(x)|dx

= A
∫

An(σ)
| fn(x)−F(x)|dx+A

∫
Bn(σ)
| fn(x)−F(x)|

≤ A
∫

E(| fn−F |≥σ) | fn(x)−F(x)|dx+AσµE(| fn−F |< σ)

≤ A
∫

E(| fn−F |≥σ) | fn(x)−F(x)|dx+AσµE

≤ A
∫

E(| fn−F |≥σ)(| fn(x)|+ |F(x)|)dx+AσµE,

now we use that | fn(x)| ≤ K for every x ∈ E and for every n ∈N, and |F(x)| ≤ K for almost
all x ∈ E, therefore

(A10)
∫

E | fn(x)−F(x)|
∣∣∣1− x T̂ ′(x)

T̂ (x)

∣∣∣dx≤ 2AKµE(| fn−F | ≥ σ)+AσµE

Let ε > 0 be arbitrarily chosen and fixed. From fn −→n−→∞ F in measure, we have

lim
n−→∞

µE(| fn−F | ≥ σ) = 0

for every σ≥ 0. Then there exists N1 = N1(ε) ∈ N such that for every n≥ N1 we have

µE(| fn−F | ≥ ε

2AµE
)<

ε

4AK
.

From here and from (A10), for σ = ε

2AµE ,

∫
E | fn(x)−F(x)|

∣∣∣1− x T̂ ′(x)
T̂ (x)

∣∣∣dx < 2AK ε

4AK +A ε

2AµE µE

= ε

2 +
ε

2

= ε.

Because ε > 0 was arbitrarily chosen, we conclude that

lim
n−→∞

∫
E
| fn(x)−F(x)|

∣∣∣1− x
T̂ ′(x)
T̂ (x)

∣∣∣dx = 0.

Using the last limit, we obtain that

limn−→∞

∣∣∣∫E fn(x)
(

1− x T̂ ′(x)
T̂ (x)

)
dx−

∫
E F(x)

(
1− x T̂ ′(x)

T̂ (x)

)
dx
∣∣∣

= limn−→∞

∣∣∣∫E( fn(x)−F(x))
(

1− x T̂ ′(x)
T̂ (x)

)
dx
∣∣∣

≤ limn−→∞

∫
E | fn(x)−F(x)|

∣∣∣1− x T̂ ′(x)
T̂ (x)

∣∣∣dx = 0,
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consequently

lim
n−→∞

∫
E

fn(x)
(

1− x
T̂ ′(x)
T̂ (x)

)
dx =

∫
E

F(x)
(

1− x
T̂ ′(x)
T̂ (x)

)
dx.

Corollary 4.2.2. Let { fn(x)}∞
n=1 be a sequence of bounded and measurable functions on

the measurable set E, which converges in measure to the measurable function F(x) on E.
Let also, T̂ (x) is a measurable function on E, its derivative T̂ ′(x) exists on E and it is
measurable on E, and

∣∣∣1− x T̂ ′(x)
T̂ (x)

∣∣∣ ≤ Ψ(x) for almost all x ∈ E, where Ψ(x) is a bounded
and measurable function on E. If | fn(x)| ≤ K for every x ∈ E, every n ∈ N and for some
positive constant K, then

lim
n−→∞

∫
E

fn(x)
(

1− x
T̂ ′(x)
T̂ (x)

)
dx =

∫
E

F(x)
(

1− x
T̂ ′(x)
T̂ (x)

)
dx.

Proof. Since Ψ(x) is a bounded and measurable function on E then there exists a positive
constant A such that ∣∣∣1− x

T̂ ′(x)
T̂ (x)

∣∣∣≤ A for ∀x ∈ E.

From here and by Theorem 4.2.1 it follows the assertion.

Corollary 4.2.3. Let { fn(x)}∞
n=1 be a sequence of bounded and measurable functions on

the measurable set E which converges in measure to the measurable function F(x) on E.
Let also, T̂ (x) is a measurable function on E, its derivative T̂ ′(x) exists on E and it is
measurable on E, and

∣∣∣1− x T̂ ′(x)
T̂ (x)

∣∣∣≤Ψ(x) for almost all x ∈ E, where Ψ(x) is a summable
and measurable function on E. If | fn(x)| ≤ K for every x ∈ E, every n ∈ N and for some
positive constant K, then

lim
n−→∞

∫
E

fn(x)
(

1− x
T̂ ′(x)
T̂ (x)

)
dx =

∫
E

F(x)
(

1− x
T̂ ′(x)
T̂ (x)

)
dx.

Proof. Since Ψ(x) is a summable and measurable function on E then there exists a positive
constant A such that ∣∣∣1− x

T̂ ′(x)
T̂ (x)

∣∣∣≤ A

for almost all x ∈ E. From here and by Theorem 4.2.1 it follows the assertion.

Theorem 4.2.4. Let { fn(x)}∞
n=1 be a sequence of bounded and measurable functions on

the measurable set E, which converges in measure to the measurable function F(x) on E.
Let also, T̂ (x) is a measurable function on E, its derivative T̂ ′(x) exists on E and it is
measurable on E, and

∣∣∣1− x T̂ ′(x)
T̂ (x)

∣∣∣≤ A for almost all x ∈ E, where A is a positive constant.
If | fn(x)| ≤Φ(x) for every x ∈ E, every n ∈N, for some measurable and summable function
Φ(x) on E, then

lim
n−→∞

∫
E

fn(x)
(

1− x
T̂ ′(x)
T̂ (x)

)
dx =

∫
E

F(x)
(

1− x
T̂ ′(x)
T̂ (x)

)
dx.
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Proof. Since fn −→n−→∞ F in measure, from the Riesz’s Theorem it follows that there
exists a subsequence { fnk}∞

k=1 of the sequence { fn}∞
n=1 such that fnk −→k−→∞ F almost

everywhere in E. From here, using that | fnk(x)| ≤ Φ(x) for every x ∈ E, every k ∈ N, we
conclude that |F(x)| ≤Φ(x) for almost all x ∈ E.

For n ∈ N and σ > 0, we define the sets

An(σ) = E(| fn−F | ≥ σ), Bn(σ) = E(| fn−F |< σ).

We have
An(σ)∪Bn(σ) = E, An(σ)∩Bn(σ) = Ø.

Then ∫
E | fn(x)−F(x)|

∣∣∣1− x T̂ ′(x)
T̂ (x)

∣∣∣dx≤ A
∫

E | fn(x)−F(x)|dx

= A
∫

An(σ)∪Bn(σ)
| fn(x)−F(x)|dx

= A
∫

An(σ)
| fn(x)−F(x)|dx+A

∫
Bn(σ)
| fn(x)−F(x)|

≤ A
∫

E(| fn−F |≥σ) | fn(x)−F(x)|dx+AσµE(| fn−F |< σ)

≤ A
∫

E(| fn−F |≥σ) | fn(x)−F(x)|dx+AσµE

≤ A
∫

E(| fn−F |≥σ)(| fn(x)|+ |F(x)|)dx+AσµE,

now we use that | fn(x)| ≤Φ(x) for every x ∈ E, every n ∈ N, and |F(x)| ≤Φ(x) for almost
all x ∈ E, therefore

(A11)
∫

E | fn(x)−F(x)|
∣∣∣1− x T̂ ′(x)

T̂ (x)

∣∣∣dx≤ 2A
∫

E(| fn−F |≥σ) Φ(x)dx+AσµE.

Let ε > 0 be arbitrarily chosen and fixed. From fn −→n−→∞ F in measure, we have

lim
n−→∞

µE(| fn−F | ≥ σ) = 0

for every σ≥ 0. Then there exists N1 = N1(ε) ∈ N such that

µE(| fn−F | ≥ ε

2AµE
)<

ε

4A

and ∫
E(| fn−F |≥σ)

Φ(x)dx <
ε

4A

for every n≥ N1. From here and from (A11), for σ = ε

2AµE ,

∫
E | fn(x)−F(x)|

∣∣∣1− x T̂ ′(x)
T̂ (x)

∣∣∣dx < 2A ε

4A +A ε

2AµE µE

= ε

2 +
ε

2

= ε.
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Because ε > 0 was arbitrarily chosen, we conclude that

lim
n−→∞

∫
E
| fn(x)−F(x)|

∣∣∣1− x
T̂ ′(x)
T̂ (x)

∣∣∣dx = 0.

From here,

limn−→∞

∣∣∣∫E fn(x)
(

1− x T̂ ′(x)
T̂ (x)

)
dx−

∫
E F(x)

(
1− x T̂ ′(x)

T̂ (x)

)
dx
∣∣∣

= limn−→∞

∣∣∣∫E( fn(x)−F(x))
(

1− x T̂ ′(x)
T̂ (x)

)
dx
∣∣∣

≤ limn−→∞

∫
E | fn(x)−F(x)|

∣∣∣1− x T̂ ′(x)
T̂ (x)

∣∣∣dx = 0,

consequently

lim
n−→∞

∫
E

fn(x)
(

1− x
T̂ ′(x)
T̂ (x)

)
dx =

∫
E

F(x)
(

1− x
T̂ ′(x)
T̂ (x)

)
dx.

Corollary 4.2.5. Let { fn(x)}∞
n=1 be a sequence of bounded and measurable functions on

the measurable set E, which converges in measure to the measurable function F(x) on E.
Let also, T̂ (x) is a measurable function on E, its derivative T̂ ′(x) exists on E and it is
measurable on E, and

∣∣∣1− x T̂ ′(x)
T̂ (x)

∣∣∣ ≤ Ψ(x) for almost all x ∈ E, where Ψ(x) is a bounded
and measurable function on E. If | fn(x)| ≤ Φ(x) for every x ∈ E, every n ∈ N, for some
measurable and bounded function Φ(x) on E, then

lim
n−→∞

∫
E

fn(x)
(

1− x
T̂ ′(x)
T̂ (x)

)
dx =

∫
E

F(x)
(

1− x
T̂ ′(x)
T̂ (x)

)
dx.

Proof. Since Ψ(x) is a bounded and measurable function on E, we have that there exists a
positive constant A such that ∣∣∣1− x

T̂ ′(x)
T̂ (x)

∣∣∣≤ A for ∀x ∈ E.

From here and the above Theorem 4.2.4 it follows the assertion.

Corollary 4.2.6. Let { fn(x)}∞
n=1 be a sequence of bounded and measurable functions on

the measurable set E, which converges in measure to the measurable function F(x) on E.
Let also, T̂ (x) is a measurable function on E, its derivative T̂ ′(x) exists on E and it is
measurable on E, and

∣∣∣1− T̂ ′(x)
T̂ (x)

∣∣∣ ≤ Ψ(x) for almost all x ∈ E, where Ψ(x) is a summable
and measurable function on E. If | fn(x)| ≤ Φ(x) for every x ∈ E, every n ∈ N, for some
measurable and summable function Φ(x) on E, then

lim
n−→∞

∫
E

fn(x)
(

1− x
T̂ ′(x)
T̂ (x)

)
dx =

∫
E

F(x)
(

1− x
T̂ ′(x)
T̂ (x)

)
dx.
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Proof. Since Ψ(x) is a summable and measurable function on E, we have that there exists
a positive constant A such that ∣∣∣1− x

T̂ ′(x)
T̂ (x)

∣∣∣≤ A

for almost all x ∈ E. From here and by Theorem 4.2.4 it follows the assertion.

Corollary 4.2.7. Under the hypotheses of the Theorem 4.2.4, if φ is a bounded measurable
function on E, we have

lim
n−→∞

∫
E

fn(x)φ(x)
(

1− x
T̂ ′(x)
T̂ (x)

)
dx =

∫
E

F(x)φ(x)
(

1− x
T̂ ′(x)
T̂ (x)

)
dx.

Proof. Since φ is a bounded measurable function on E, we have that there exists a positive
constant A1 such that

|φ(x)| ≤ A1 for ∀x ∈ E.

Then, for every σ≥ 0, we obtain that

(A12)E(| fnφ−Fφ| ≥ σ)⊂ E(| fn−F | ≥ σ

A1
).

Because fn −→n−→∞ F in measure, we have

lim
n−→∞

µE(| fn−F | ≥ σ

A1
) = 0.

From here and (A12), we conclude that

lim
n−→∞

µE(| fnφ−Fφ| ≥ σ) = 0

for every σ≥ 0. Therefore fnφ−→n−→∞ Fφ in measure. From the last limit and by Theorem
4.2.4, we obtain that

lim
n−→∞

∫
E

fn(x)φ(x)dx =
∫

E
F(x)φ(x)dx.

Corollary 4.2.8. Under the hypotheses of Corollary 4.2.5, if φ is a bounded measurable
function on E, we have

lim
n−→∞

∫
E

fn(x)φ(x)
(

1− x
T̂ ′(x)
T̂ (x)

)
dx =

∫
E

F(x)φ(x)
(

1− x
T̂ ′(x)
T̂ (x)

)
dx.

Corollary 4.2.9. Under the hypotheses of Corollary 4.2.6, if φ is a bounded measurable
function on E, we have

lim
n−→∞

∫
E

fn(x)φ(x)
(

1− x
T̂ ′(x)
T̂ (x)

)
dx =

∫
E

F(x)φ(x)
(

1− x
T̂ ′(x)
T̂ (x)

)
dx.
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Chapter 5

Elements of the Theory of Iso-Hilbert
Spaces

In this chapter we make a lift of the Hilbert spaces to the iso-Hilbert iso-spaces. They are
given the main definitions and the main conceptions for such iso-spaces and they are made
comparisons with the real or complex Hilbert spaces.

5.1. Definition of Iso-inner product and properties

Let H be a real or complex Hilbert space with an inner product (·, ·).
We suppose

(H1) T̂ ∈ L(H), T̂−1 exists and T̂−1 ∈ L(H) and T̂−1 is positive, i.e. T̂−1 : H −→ H is a
self-adjoint operator and (T̂−1x,x)> 0 for every x ∈ H.

We lift the Hilbert space H into the set

Ĥ := {T̂−1(x) := x̂ for x ∈ H}

and we define an iso-inner product as follows

(̂x̂, ŷ) := (T̂−1x, T̂−1y)
1
T̂1

for x̂, ŷ ∈ Ĥ.

Since T̂−1 ∈ L(H) then Ĥ is a linear space.

Remark 5.1.1. We note that the initial space H should be some Hilbert space because we
can define a positive definite operator only on some Hilbert space not on a linear space
with an inner product. One of the main assumption for the isotopic element T̂ is it to be a
positive definite operator on H.

Proposition 5.1.2. We suppose (H1). Then (̂·̂, ·̂) is an inner product.
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Proof. 1. Let x̂ ∈ Ĥ be arbitrarily chosen. We have

(̂x̂, x̂) = (T̂−1x, T̂−1x)
1
T̂1
≥ 0

because T̂1 > 0, T̂−1 : H −→ H, (·, ·) is an inner product in the Hilbert space H.

Also,
(̂x̂, x̂) = 0 ⇐⇒ (T̂−1x, T̂−1x) 1

T̂1
⇐⇒

(T̂−1x, T̂−1x) = 0 ⇐⇒ T̂−1x = 0 ⇐⇒ x = 0

because T̂−1 ∈ L(H).

2. Let λ̂ ∈ F̂C. Then, for x̂, ŷ ∈ Ĥ, we have

̂
(λ̂×̂x̂, ŷ) =

(
λ

1
T̂1

T1T̂−1x, T̂−1y
)

1
T̂1

= λ
1
T̂1

T̂1(T̂−1x, T̂ 1y) 1
T̂1

= λ̂×̂(̂x̂, ŷ),

and
̂

(x̂, λ̂×̂ŷ) =
(

T̂−1x,λ 1
T̂1

T̂1T̂−1y
)

1
T̂1

= λ
1
T̂1

T̂1(T̂−1x, T̂−1y) 1
T̂1

= λ(T̂−1x, T̂−1y) 1
T1

= λ
1
T̂1

T1(T̂−1x, T̂−1y) 1
T̂1

= λ̂×̂(̂x̂, ŷ).

3. For x̂, ŷ, ẑ ∈ Ĥ we have

̂(x̂+ ŷ, ẑ) = (T̂−1x+ T̂−1y, T̂−1z) 1
T̂1

= [(T̂−1x, T̂−1z)+(T̂−1y, T̂−1z)] 1
T̂1

= (T̂−1x, T̂−1z) 1
T̂1
+(T̂−1y, T̂−1z) 1

T̂1

= (̂x̂, ẑ)+ (̂ŷ, ẑ).
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Remark 5.1.3. We will note that not for any T̂ we can make a lift of a space with an inner
product in an iso-space with an iso - inner product.

Really, let us consider C ([1,2]) in which is defined an inner product as follows

( f ,g) =
∫ 2

1
f (x)g(x)dx for f ,g ∈ C ([1,2]).

If we make the lift, then the corresponding iso-inner product is

̂( f̂∧∧, ĝ∧∧) =
∫̂ 2

1 f̂∧(x̂)×̂ĝ∧(x̂)×̂d̂x̂

=
∫ 2

1 f (x)g(x)
(

1− x T̂ ′(x)
T̂ (x)

)
dx

and if f = g we have

̂( f̂∧∧, f̂∧∧) =
∫ 2

1
f 2(x)

(
1− x

T̂ ′(x)
T̂ (x)

)
dx.

If T̂ (x) = x+1, then T̂ (x)> 0 for every x ∈ [1,2] and we have

̂( f̂∧∧, f̂∧∧) =
∫ 2

1
f 2(x)

(
1− x

1
x+1

)
dx =

∫ 2

1
f 2(x)

1
x+1

dx≥ 0.

Also, if T̂ (x) = ex, x ∈ [1,2], then T̂ > 0 for every x ∈ [1,2], on the other hand,

̂( f̂∧∧, f̂∧∧) =
∫ 2

1
f 2(x)(1− x)dx≤ 0

because 1− x≤ 0 for every x ∈ [1,2].

Example 5.1.4. 1. Let us consider Rn and let T̂ = (T̂1, T̂2, . . . , T̂n), where T̂l , l = 1,2, . . . ,n
are positive real numbers. Then we lift Rn into the space R̂n in the following manner:
for given x = (x1,x2, . . . ,xn) ∈ Rn we set

x̂ =
(x1

T̂1
,

x2

T̂2
, . . . ,

xn

T̂n

)
,

which is the corresponding iso-lift of the element x, and for x̂, ŷ ∈ R̂n we define an
iso-inner iso-product as follows

(̂x̂, ŷ) = ∑
n
l=1 x̂l×̂ŷl = ∑

n
l=1 xl

1
T̂l

T̂lyl
1
T̂l
= ∑

n
l=1 xlyl

1
T̂l
.

2. The space l2 consists of all real sequences ξ = {ξl}∞
l=1 so that ∑

∞
l=1 ξ2

l < ∞. Let also,
T̂ = {T̂l}∞

l=1 to be a sequence of positive real numbers. We want to make a lift of l2
into l̂2 as follows

ξ−→ ξ̂ = {ξ̂l}∞
l=1 =

{
ξl

T̂l

}∞

l=1
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therefore we have a need of an additional condition for T̂ , namely the sequence
{T̂l}∞

l=1 to be bounded below by a positive real number a. In this way we have

1
T̂l
≤ 1

a
for ∀l = 1,2, . . .

and from ξ ∈ l2 it follows
∞

∑
l=1

ξ2
l

T̂ 2
l
≤ 1

a2

∞

∑
l=1

ξ
2
l < ∞.

In this case we define an iso-inner iso-product in l̂2 in the following manner: for ξ̂,
η̂ ∈ l̂2

(̂ξ̂, η̂) =
∞

∑
l=1

ξ̂l×̂η̂l =
∞

∑
l=1

ξl
1
T̂l

T̂lηl
1
T̂l

=
∞

∑
l=1

ξlηl
1
T̂l
.

let now, ξ = {1
l }

∞
l=1 and T̂ = { 1√

l
}∞

l=1. Then

∞

∑
l=1

ξ
2
l =

∞

∑
l=1

1
l2 < ∞,

the sequence T̂ is not bounded below by a positive real number and

∞

∑
l=1

ξ2
l

T̂ 2
l
=

∞

∑
l=1

1
l2 l =

∞

∑
l=1

1
l
= ∞.

We obtain that if the positive sequence T̂ is bounded below by a positive real number
and ξ ∈ l2 then ξ̂ ∈ l̂2.

Let T̂ = {T̂l}∞
l=1 = {l}∞

l=1. Then T̂ is a bounded below sequence by1. Let also,

ξ = {ξl}∞
l=1 =

{
1√

l

}∞

l=1
. Then

∞

∑
l=1

ξ
2
l =

∞

∑
l=1

1
l
= ∞,

i.e. ξ /∈ l2. Also, for

ξ̂ =
{

ξl

T̂l

}∞

l=1
=
{ 1

l
3
2

}∞

l=1

we have
∞

∑
l=1

ξ̂
2
l =

∞

∑
l=1

1
l3 < ∞.

This example shows that we have ξ̂ ∈ l̂2 and ξ /∈ l2.

Now we will give a condition for the positive sequence T̂ such that from ξ̂ ∈ l̂2 it
follows ξ ∈ l2. We suppose that the positive sequence T̂ = {T̂l}∞

l=1 is bounded above

by a positive real number b. For ξ̂ =
{

ξl
T̂l

}∞

l=1
∈ l̂2 we have

1
b2

∞

∑
l=1

ξ
2
l =

∞

∑
l=1

ξ2
l

b2 ≤
∞

∑
l=1

ξ2
l

T̂ 2
l
< ∞
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and since b > 0 we conclude that
∞

∑
l=1

ξ
2
l < ∞,

i.e. ξ = {ξl}∞
l=1 ∈ l2.

If the positive sequence T̂ is bounded above by a positive real number b then from
ξ ∈ l2 it does not follow that ξ̂ ∈ l̂2. Really, let ξ =

{
1
l

}∞

l=1
. Then

∞

∑
l=1

ξ
2
l =

∞

∑
l=1

1
l2 < ∞,

i.e. ξ ∈ l2. Let now T̂ =
{

1√
l

}∞

l=1
. Then T̂ is a bounded above sequence and

∞

∑
l=1

ξ2
l

T̂ 2
l
=

∞

∑
l=1

1
l2

1
l

=
∞

∑
l=1

1
l
= ∞,

consequently ξ̂ =
{

ξl
T̂l

}∞

l=1
/∈ l̂2.

The sequence T̂ to be bounded above is too important. Indeed, let T̂ = {l2}∞
l=1 and

ξ = {
√

l}∞
l=1. Then T̂ is unbounded above and

∞

∑
l=1

ξ2
l

T̂ 2
l
=

∞

∑
l=1

l
l4 =

∞

∑
l=1

1
l3 < ∞,

in other words ξ̂ ∈ l̂2, and
∞

∑
l=1

ξ
2
l =

∞

∑
l=1

l = ∞,

consequently ξ /∈ l2.

If we suppose that the positive sequence T̂ is bounded below and above by some
positive real numbers a and b, respectively, then from ξ ∈ l2 it follows that ξ̂ ∈ l̂2 and
from ξ̂ ∈ l̂2 it follows that ξ ∈ l2, because

1
b2

∞

∑
l=1

ξ
2
l ≤

∞

∑
l=1

ξ2
l

T̂ 2
l
≤ 1

a2

∞

∑
l=1

ξ
2
l .

Remark 5.1.5. In the above example we saw that if T̂ = {T̂l}∞
l=1 is a bounded below positive

sequence by a positive real number then there exists ξ̂ ∈ l̂2 so that ξ /∈ l2. Now we will see
that if T̂ = {T̂l}∞

l=1 is a positive bounded below sequence by a positive real number then
there exists ξ̂ ∈ l̂2 such that ξ ∈ l2. Let

T̂ = {T̂l}∞
l=1 = {l}∞

l=1

which is bounded below by 1, and let

ξ = {ξl}∞
l=1 =

{ 1
l2

}∞

l=1
.
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Then
∞

∑
l=1

ξ2
l

T̂ 2
l
=

∞

∑
l=1

1
l4

l2 =
∞

∑
l=1

1
l6 < ∞, i.e. ξ̂ ∈ l̂2,

and
∞

∑
l=1

ξ
2
l =

∞

∑
l=1

1
l4 < ∞, i.e. ξ ∈ l2.

Remark 5.1.6. In the above example we saw that if T̂ = {T̂l}∞
l=1 is a positive bounded

above sequence then there exists ξ ∈ l2 so that ξ̂ /∈ l̂2. Now we will see that if T̂ = {T̂l}∞
l=1

is a positive bounded above sequence then there exists ξ ∈ l2 so that ξ̂ ∈ l̂2. Let

T̂ = {T̂l}∞
l=1 =

{ 1√
l

}∞

l=1

which is bounded above by 1, and let

ξ = {ξl}∞
l=1 =

{ 1
l4

}∞

l=1
.

Then
∞

∑
lk=1

ξ
2
l =

∞

∑
l=1

1
l8 < ∞, i.e. ξ ∈ l2,

∞

∑
l=1

ξ2
l

T̂ 2
l
=

∞

∑
l=1

1
l8

1
l

=
∞

∑
l=1

1
l7 < ∞, i.e. ξ̂ ∈ l̂2.

From the above examples and remarks it follows that there exists an iso-space which is
a generalization of the iso-space l̂2. Now we will construct it.

Definition 5.1.7. For given sequence T̂ = {T̂l}∞
l=1 of positive real numbers we define the

iso-space

l̂lT̂ =
{

ξl

T̂l
: ξl ∈ R+,

∞

∑
l=1

ξ2
l

T̂ 2
l
< ∞

}
.

With T̂ we will denote the set of all sequences of positive real numbers.

Definition 5.1.8. The set
l̂l2 = ∪T̂∈T̂ l̂lT̂

is called an iso-generalization of the iso-space l̂2.

From the above investigations we have the following inclusion.

Proposition 5.1.9. l̂2 ⊂ l̂l2 and l̂2 6= l̂l2.

Proposition 5.1.10. (iso-Cauchy inequality) We suppose (H1). For x̂, ŷ ∈ Ĥ we have

(̂x̂, ŷ)×̂(̂x̂, ŷ)≤ (̂x̂, x̂)×̂(̂ŷ, ŷ).
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Proof. Let λ̂ ∈ F̂C. Then

A := ̂
(x̂+ λ̂×̂ŷ, x̂+ λ̂×̂ŷ)

=
̂

(x̂, x̂+ λ̂×̂ŷ)+ ̂
(λ̂×̂ŷ, x̂+ λ̂×̂ŷ)

= (̂x̂, x̂)+ λ̂×̂(̂x̂, ŷ)+ λ̂×̂(̂ŷ, x̂)+ λ̂×̂λ̂×̂(̂ŷ, ŷ)≥ 0.

Let
λ̂ =−(̂x̂, ŷ)i (̂ŷ, ŷ).

Then
A = (̂x̂, x̂)− (̂x̂, ŷ)×̂(̂x̂, ŷ)i (̂ŷ, ŷ)− (̂x̂, ŷ)×̂(̂x̂, ŷ)i (̂ŷ, ŷ)

+(̂x̂, ŷ)×̂(̂x̂, ŷ)×̂(̂ŷ, ŷ)i ((̂ŷ, ŷ)×̂(̂ŷ, ŷ))
and since A≥ 0 we get

(̂x̂, ŷ)− (̂x̂, ŷ)×̂(̂x̂, ŷ)i (̂ŷ, ŷ)≥ 0.

Definition 5.1.11. Two elements x̂, ŷ ∈ Ĥ will be called iso-orthogonal if

(̂x̂, ŷ) = 0.

Remark 5.1.12. We will note that if two elements of the Hilbert space H are orthogonal
with respect to the inner product (·, ·) they are not iso-orthogonal iso-elements of the iso-
space Ĥ with respect to the iso-inner iso-product (̂·̂, ·̂) and the conversely. We will consider
an example for this.

Let H = C ([−1,1]) with an inner product

( f ,g) =
∫ 1

−1
f (x)g(x)dx.

Then x, x2, x3 ∈ H and

(x,x2) =
∫ 1

−1
x3dx =

x4

4

∣∣∣x=1

x=−1
=

1
4
− 1

4
= 0,

(x,x3) =
∫ 1

−1
x4dx =

x5

5

∣∣∣x=1

x=−1
=

1
5
+

1
5
=

2
5
.

Consequently x and x2 are orthogonal elements of C ([−1,1]) and x and x3 are not orthog-
onal elements of C ([−1,1]).

Let now
T̂ (x) = ex+ 7

10 x2
, x ∈ [−1,1].

Then
T̂ (x)≥ 0 for ∀x ∈ [−1,1]
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and
T̂ ′(x) =

(
1+ 7

5 x
)

ex+ 7
10 x2

,

T̂ ′(x)
T̂ (x)

=

(
1+ 7

5 x

)
ex+ 7

5 x2

ex+ 7
5 x2 = 1+ 7

5 x,

1− x T̂ ′(x)
T̂ (x)

= 1− x
(

1+ 7
5 x
)
= 1− x− 7

5 x2.

Now we consider Ĉ ([−1,1]) with the isotopic element T̂ (x), then the corresponding iso-
inner iso- product is

(̂ f̂ , ĝ) =
∫ 1

−1
f (x)g(x)

(
1− x

T̂ ′(x)
T̂ (x)

)
dx.

From here,

(̂x̂, x̂2) =
∫ 1
−1 x3

(
1− x− 7

5 x2
)

dx

=
∫ 1
−1 x3dx−

∫ 1
−1 x4dx− 7

5
∫ 1
−1 x5dx

= x4

4

∣∣∣x=1

x=−1
− x5

5

∣∣∣x=1

x=−1
− 7

5
x6

6

∣∣∣x=1

x=−1

=−2
5 6= 0,

and
(̂x̂, x̂3) =

∫ 1
−1 x4

(
1− x− 7

5 x2
)

dx

=
∫ 1
−1 x4dx−

∫ 1
−1 x5dx− 7

5
∫ 1
−1 x6dx

= x5

5

∣∣∣x=1

x=−1
− x6

6

∣∣∣x=1

x=−1
− 7

5
x7

7

∣∣∣x=1

x=−1

= 2
5 −

7
5

2
7 = 0.

Consequently x̂ and x̂2 are not iso-orthogonal in Ĉ ([−1,1]) and x̂ and x̂3 are iso-orthogonal
in Ĉ ([−1,1]).

Below we will give a condition for the isotopic element T̂ such that if x,y ∈ H are
orthogonal then x̂, ŷ ∈ Ĥ are iso-orthogonal and the conversely.

Proposition 5.1.13. We suppose (H1) and T̂ = T̂−1∗. If x,y ∈ H are orthogonal then x̂,
ŷ ∈ Ĥ are iso-orthogonal and the conversely.

Here with T̂−1∗ we denote the adjoint operator of the operator T̂−1. Since T̂−1 is posi-
tive definite then T̂−1 = T̂−1∗ and from here T̂ = T̂−1∗ is equivalent to T̂ 2 = I.

Proof. Below with I we will denote the identity operator in L(H).
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1. Let x,y ∈ H are orthogonal. Then

(A13)(x,y) = 0.

On the other hand, we have

= (̂x̂, ŷ) = (T̂−1x, T̂−1y)
1
T̂1

now we use that T̂−1∗ = T̂

(T̂−1∗T̂−1x,y)
1
T̂1

= (T̂ T̂−1x,y)
1
T̂1

= (x,y)
1
T̂1

,

and using (A13) we conclude that

(̂x̂, ŷ) = 0.

Consequently x̂ and ŷ are iso-orthogonal.

2. Let now x̂, ŷ ∈ Ĥ are iso-orthogonal. Then

(A14)(̂x̂, ŷ) = 0.

On the other hand, using (A14), we have

(x,y) 1
T̂1

= (Ix,y) 1
T̂1

= (T̂ T̂−1x,y) 1
T̂1

= (T̂−1∗T̂−1x,y) 1
T̂1

= (T̂−1x, T̂−1y) 1
T̂1

= 0.

Therefore x and y are orthogonal in H.

Proposition 5.1.14. We suppose (H1) and T̂−1∗ = T̂ . Then x̂1, x̂2, . . ., x̂n ∈ Ĥ is an iso-
orthogonal system then it is an iso-linear independent system.

Proof. Since T̂−1∗ = T̂ from the previous Proposition it follows that the system x1, x2, . . .,
xn ∈ H is an orthogonal system. From the properties of the linear spaces with an inner
product we conclude that x1, x2, . . ., xn is a linear independent system in H. From here and
since T̂ is a linear operator, we have

λ̂1×̂x̂1 + λ̂2×̂x̂2 + · · ·+ λ̂n×̂x̂n = 0 ⇐⇒

λ1T̂−1x1 +λ2T̂−1x2 + · · ·+λnT̂−1xn = 0 ⇐⇒

T̂ (λ1T̂−1x1 +λ2T̂−1x2 + · · ·+λnT̂−1xn) = T̂ 0 ⇐⇒

T̂ (λ1T̂−1x1)+ T̂ (λ2T̂−1x2)+ · · ·+ T̂ (λnT̂−1xn) = 0 ⇐⇒

λ1T̂ T̂−1x1 +λ2T̂ T̂−1x2 + · · ·+λnT̂ T̂−1xn = 0 ⇐⇒

λ1x1 +λ2x2 + · · ·+λnxn = 0,
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from where we conclude that the system x̂1, x̂2, . . ., x̂n is an iso-linear independent system.

Proposition 5.1.15. We suppose (H1). Let x̂, ŷ ∈ Ĥ are iso-orthogonal. Then

̂(x̂+ ŷ, x̂+ ŷ) = (̂x̂, x̂)+ (̂ŷ, ŷ).

Proof. Since x̂ and ŷ are iso-orthogonal then

(̂x̂, ŷ) = (̂ŷ, x̂) = 0.

From here
̂(x̂+ ŷ, x̂+ ŷ) = ̂(x̂, x̂+ ŷ)+ ̂(ŷ, x̂+ ŷ)

(̂x̂, x̂)+ (̂x̂, ŷ)+ (̂ŷ, x̂)+ (̂ŷ, ŷ)

= (̂x̂, x̂)+ (̂ŷ, ŷ).

Proposition 5.1.16. We suppose (H1). If x̂, ŷ ∈ Ĥ then

̂(x̂+ ŷ, x̂+ ŷ)+ ̂(x̂− ŷ, x̂− ŷ) = 2̂×̂(̂x̂, x̂)+ 2̂×̂(̂ŷ, ŷ).

Proof.
̂(x̂+ ŷ, x̂+ ŷ)+ ̂(x̂− ŷ, x̂− ŷ)

= ̂(x̂, x̂+ ŷ)+ ̂(ŷ, x̂+ ŷ)+ ̂(x̂, x̂− ŷ)− ̂(ŷ, x̂− ŷ)

= (̂x̂, x̂)+ (̂x̂, ŷ)+ (̂ŷ, x̂)+ (̂ŷ, ŷ)+ (̂x̂, x̂)− (̂x̂, ŷ)− (̂ŷ, x̂)+ (̂ŷ, ŷ)

= 2(̂x̂, x̂)+2(̂ŷ, ŷ)

= 2̂×̂(̂x̂, x̂)+ 2̂×̂(̂ŷ, ŷ).

Definition 5.1.17. We suppose (H1). We will say that the iso-sequence {x̂n}∞
n=1 of iso-

elements of Ĥ is convergent to x̂ ∈ Ĥ if

limn−→∞ (̂x̂n, x̂n) = limn−→∞(T̂−1xn, T̂−1xn)
1
T̂1

= (T̂−1x, T̂−1x) 1
T̂1

= (̂x̂, x̂).
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Remark 5.1.18. We suppose (H1). If xn ∈ H and limn−→∞ xn = x in H, since T̂−1 ∈ L(H),
we have that

lim
n−→∞

T̂−1xn = T̂−1x in H

or
lim

n−→∞
(T̂−1xn, T̂−1xn) = (T̂−1x, T̂−1x)

and from the definition above we obtain that

lim
n−→∞

(̂x̂n, x̂n) = (̂x̂, x̂).

If x̂n −→n−→∞ x̂, then from the definition above we have

T̂−1xn −→n−→∞ T̂−1x in H

and using that T̂−1 ∈ L(H) we conclude that xn −→n−→∞ x in H.
Consequently, under the assumption (H1), the convergence in H and Ĥ are equivalent.

Proposition 5.1.19. We suppose (H1). If x̂n,y ∈ Ĥ, limn−→∞ x̂n = x̂ ∈ Ĥ, then

lim
n−→∞

(̂x̂n, ŷ) = (̂x̂, ŷ).

Proof. Since the convergence in H and Ĥ are equivalent, then limn−→∞ xn = x. From T̂−1 ∈
L(H) we conclude that

lim
n−→∞

T̂−1xn = T̂−1x.

From here and since the inner product in H is continuous, we get

lim
n−→∞

(T̂−1xn, T̂−1y) = (T̂−1x, T̂−1y)

from where we conclude
lim

n−→∞
(̂x̂n,y) = (̂x̂, ŷ).

Definition 5.1.20. We suppose (H1). Let x̂n ∈ Ĥ is a convergent sequence in Ĥ to the
element x̂∈ Ĥ. Then, since the convergence in H and in Ĥ are equivalent, we have that xn is
a convergent sequence in H and x ∈H, because H is a Hilbert space. Because T̂−1 ∈ L(H)
we have that

T̂−1xn −→n−→∞ T̂−1x

and T̂−1x ∈ Ĥ. Therefore Ĥ is a complete space which will be called an iso-Hilbert iso-
space.

Definition 5.1.21. We suppose (H1). Then if M ⊂ H we will write M̂ ⊂ Ĥ.
Since T̂−1 ∈ L(H), then, if M is a closed subset of H, we have that M̂ is a closed subset

of Ĥ, and if M is a convex subset of H, then M̂ is a convex subset of Ĥ.
If M̂ is a subspace of the iso-Hilbert iso-space, then every x̂ ∈ Ĥ can be represented in

the form
x̂ = ŷ+ ẑ,
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where ŷ ∈ M̂ and (̂ẑ, p̂) = 0 for every p̂ ∈ M̂.
If M̂ ⊂ Ĥ is a linear manifold, then the iso-set of all iso-elements ẑ of Ĥ such that

(̂ẑ, p̂) = 0 for every p̂ ∈ M̂ will be called the iso-orthogonal supplement of M̂ and will be
denoted by M̂⊥.

5.2. Iso-operators in iso-Hilbert spaces

Definition 5.2.1. We suppose (H1).
Let A : H −→ H is a linear operator. The corresponding lift of A will be defined as

follows
Â = AT̂−1

and will be called an iso-operator.
The act of the iso-operator Â on the iso-element x̂ ∈ Ĥ will be defined as follows

Âx̂ := ÂT̂−1T̂ T̂−1x = ÂT̂−1x.

Because A and T̂−1 are linear operators in L(H) and since the composition of two linear
operators is a linear operator we have that Â is a linear operator.

The iso-norm of the iso-operator Â will be defined as follows

|̂|Â|| := ||AT̂−1|| 1
T̂1

=
1
T̂1

sup
x∈H:||x||≤1

||AT̂−1x||.

The iso-operator Â will be called iso-bounded if there exists ĉ ∈ F̂R, ĉ≥ 0, such that

|̂|Â|| ≤ ĉ.

Remark 5.2.2. If A : H −→H is a linear bounded operator, then Â is an iso-bounded linear
iso-operator. Really, since A, T̂−1 ∈ L(H ), then there exists a constant c > 0 such that

||A|| ≤ c, ||T−1|| ≤ c.

From here, it follows

|̂|Â||= ||AT̂−1|| 1
T̂1
≤ ||A||||T̂−1|| 1

T̂1
≤ c2

T̂1
< ∞.

Remark 5.2.3. If Â is an iso-bounded linear iso-operator, then there is a possibility A to be
an unbounded operator. To see this we will consider the following example.

Let C+([0,1]) to be the space of all nonnegative continuous functions on [0,1], endowed
with the standard maximum norm, and let

A f (t) =
∫ 1

0
1
s f (s)ds,

T̂−1 f (t) =
∫ t

0 s f (s)ds, t ∈ [0,1], f ∈ C ([0,1]).
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Then A is an unbounded operator, because when f ≡ 1 we have

A1 =
∫ 1

0
1
s ds =− ln0,

|A1|= | ln0|= ∞.

from where, since ||1|| = 1 and ||A|| = supx∈C+([0,1]),||x||≤1 ||Ax||, we conclude that A is an
unbounded operator.

Also, for some f ∈ C+([0,1]), we have

AT̂−1 f (x) =
∫ 1

0
1
s T̂−1 f (s)ds

=
∫ 1

0
1
s

∫ s
0 s1 f (s1)ds1ds.

From here,
|AT̂−1 f (x)|=

∣∣∣∫ 1
0

1
s

∫ s
0 s1 f (s1)ds1ds

∣∣∣
=

∫ 1
0

1
s

∫ s
0 s1 f (s1)ds1ds

≤ || f ||
∫ 1

0
1
s

∫ s
0 s1ds1ds

= || f ||12
∫ 1

0
1
s s2ds

= || f ||12
∫ 1

0 sds

= || f ||12
1
2 = 1

4 || f ||,
from where,

||AT̂−1 f || ≤ 1
4
|| f ||,

and therefore

||AT̂−1|| ≤ 1
4
,

and

||AT̂−1|| 1
T̂1
≤ 1

4
1
T̂1

⇐⇒ |̂|Â|| ≤ 1̂
4
,

i.e. Â is an iso-bounded iso-operator.

Definition 5.2.4. The linear iso-operator Â : Ĥ −→ Ĥ will be called iso-continuous iso-
operator at x̂0 ∈ Ĥ if whenever x̂n ∈ Ĥ and

̂||x̂n− x̂0|| −→n−→∞0,

we have
̂||Âx̂n− Âx̂0|| −→n−→∞0.

The linear iso-operator Â : Ĥ −→ Ĥ will be called iso-continuous in Ĥ if it is iso-continuous
at every iso-point of Ĥ.
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Theorem 5.2.5. If a linear iso-operator is bounded then it is continuous and the conversely.

Proof. Let Â : Ĥ −→ Ĥ be a linear iso-operator.

1. We suppose that Â is an iso-bounded iso-operator. Then there exists ĉ ∈ F̂R such that

|̂|Âx̂|| ≤ ĉ×̂|̂|x̂||.

Since Â is a linear iso-operator we have

̂||Â(x̂n− x̂)||= ̂||Âx̂n− Âx̂|| ≤ ĉ×̂ ̂||x̂n− x̂||,

therefore whenever
̂||x̂n− x̂|| −→n−→∞0

we have
̂||Âx̂n− Âx̂|| −→n−→∞0.

Consequently Â : Ĥ −→ Ĥ is an iso-continuous iso-operator.

2. We suppose that Â : Ĥ −→ Ĥ is iso-continuous and iso-unbounded. Therefore, from
x̂n ∈ Ĥ, ̂||x̂n|| ≤ Î, we have that

|̂|Âx̂n|| ≥ n̂.

If we put x̂′n = x̂n i n̂, then

(A15)|̂|Âx̂′n||= Î i n̂×̂|̂|Âx̂n|| ≥ Î

and ̂||x̂′n||= Î i n̂×̂̂||x̂n|| ≤ Î i n̂−→n−→0 0

and since Â is iso-continuous, then

|̂|Âx̂′n|| −→n−→∞ 0,

which contradicts of (A15).

Remark 5.2.6. Since, as we saw that if Â is an iso-bounded iso-operator, then in the general
case we have not that A is a bounded operator, and because the last theorem we conclude
that if Â is an iso-continuous iso-operator, then in the general case it does not follow that A
is a continuous operator.

Definition 5.2.7. The space of all linear iso-bounded iso-operators acting from Ĥ in Ĥ will
be denoted with L̂(Ĥ).
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Definition 5.2.8. If Â, B̂ ∈ L(Ĥ), then their composition is defined as follows

ÂB̂ = AT̂−1T̂ B̂T̂−1 = ABT̂−1,

and
Â2 = ÂÂ = AT̂−1T̂ AT̂−1 = A2T̂−1,

Â3 = ÂÂ2 = AT̂−1T̂ AT̂−1T̂ AT̂−1 = A3T̂−1

and soa on.

Definition 5.2.9. Let A ∈ L(H) and there exists A−1. The corresponding lift

Â−1 = A−1T̂−1

will be called an iso-inverse iso-operator of the iso-operator A.
From here it follows that, using the definition of composition of two iso-operators,

Â−1Â = A−1T̂−1T̂ AT̂−1 = A−1AT̂−1 = T̂−1 = Î,

ÂÂ−1 = AT̂−1T̂ A−1T̂−1 = AA−1T̂−1 = T̂−1 = Î.

Remark 5.2.10. If we define Â−1 as follows

Â−1 =
(

AT̂−1
)−1

,

then
Â−1 = T̂ A−1.

From here we obtain that
ÂÂ−1 = Î ⇐⇒

AT̂−1T̂ T̂ A−1 = T̂−1 ⇐⇒

AT̂ A−1 = T̂−1 ⇐⇒

T̂ AT̂ A−1 = I ⇐⇒

T̂ AT̂ = A,

and
Â−1Â = Î ⇐⇒

T̂ A−1T̂ AT̂−1 = T̂−1 ⇐⇒

T̂ A−1T̂ A = I ⇐⇒

A−1T̂ A = T̂−1 ⇐⇒

T̂ A = AT̂−1 ⇐⇒

T̂ AT̂ = A.
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Therefore, to be built a conception for an iso-inverse iso-operator, we have to have the
following relation between A and T̂ :

T̂ AT̂ = A.

Theorem 5.2.11. Let A, B ∈ L(H) and there exist A−1, B−1. Then

Â−1B̂−1 = B̂A
−1
.

Proof.

Â−1B̂−1 = A−1T̂−1T̂ B−1T̂−1 = A−1B−1T̂−1 = (BA)−1T̂−1 = B̂A
−1
.

Definition 5.2.12. Let A ∈ L(H) and A∗ is its adjoint operator. Then the lift

Â∗ = A∗T̂−1

will be called an iso-adjoint iso-operator of the iso-operator Â.
Here we use the word like ”iso-adjoint” because in the general case we have

(AT̂−1)∗ 6= A∗T̂−1.

Theorem 5.2.13.
Â∗B̂∗ = B̂A

∗
.

Proof.
Â∗B̂∗ = A∗T̂−1T̂ B∗T̂−1

= A∗B∗T̂−1

= (BA)∗T̂−1

= B̂A
∗
.

Definition 5.2.14. Let A ∈ L(H) be an operator of orthogonal projection. Then the lift

Â = AT̂−1

will be called an iso-operator of iso-orthogonal projection.

Theorem 5.2.15. Let Â be an iso-operator of iso-orthogonal projection. Then

1) Â2 = Â,

2) Â∗ = Â.
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Proof.
1) Â2 = ÂÂ = AT̂−1T̂ AT̂−1 = A2T̂−1 = AT̂−1 = Â,

2) Â∗ = A∗T̂−1 = AT̂−1 = Â.

In the last representations we use the definition for the iso-operator of iso-orthogonal pro-
jection and from it A∗ = A and A2 = A.

Let || · || is the norm determined by the inner product (·, ·) in H. The lift of this norm is

|̂|·̂||= || · || 1
T̂1

.

For x̂ ∈ Ĥ we have

(A16)

|̂|x̂||×̂|̂|x̂||= ||T̂−1x|| 1
T̂1

T̂1||||T̂−1x|| 1
T̂1

= ||T̂−1x||2 1
T̂1

= (T̂−1x, T̂−1x) 1
T̂1
,

and
(̂x̂, x̂) = (T̂−1x, T̂−1x)

1
T̂1

.

From here and (A16) it follows that

|̂|x̂||×̂|̂|x̂||= (̂x̂, x̂).

Definition 5.2.16. Let {T̂ n}∞
n=1 satisfy (H1). We will say that the iso-sequence {Ân}∞

n=1 of
iso-elements of L̂(Ĥ) is uniformly convergent to Â ∈ L̂(Ĥ) if

̂||Ân− Â|| −→n−→∞ 0.

Remark 5.2.17. We will note that if the sequence {Ân}∞
n=1 is uniformly convergent to Â

then it does not follow that the sequence {An}∞
n=1 is uniformly convergent to A and the

conversely. We will see this in the next examples.

Example 5.2.18. Let A,B, T̂−1,An, T̂−1n : H −→ H and for x ∈ H

Anx = n2+1
2n2+3 x, T̂−1nx = n+1

2n+1 x,

T̂−1x = 1
4 x, Ax = x, Bx = 1

2 x.

Then, for x ∈ H,

||Anx−Ax||=
∣∣∣∣∣∣ n2+1

2n2+3 x− x
∣∣∣∣∣∣= ∣∣∣∣∣∣( n2+1

2n2+3 −1
)

x
∣∣∣∣∣∣,

||An−A||= supx∈H,||x||≤1

∣∣∣1− n2+1
2n2+3

∣∣∣||x||
=
∣∣∣1− n2+1

2n2+3

∣∣∣,
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from here

lim
n−→∞

||An−A||= lim
n−→∞

∣∣∣1− n2 +1
2n2 +3

∣∣∣= 1− 1
2
=

1
2
,

consequently the sequence {An}∞
n=1 is not uniformly convergent to A.

Also, for x̂ ∈ Ĥ, we have

Ânx̂ = AnT̂−1nx = An

(
n+1
2n+3 x

)
= (n2+1)(n+1)

(2n2+3)(2n+1)x,

Âx̂ = AT̂−1x = A
(

1
4 x
)
= 1

4 x,

from where

̂||Ân− Â||= ||AnT̂−1nx−AT̂−1x|| 1
T1

=
∣∣∣∣∣∣ (n2+1)(n+1)

(2n2+1)(2n+1)x−
1
4 x
∣∣∣∣∣∣ 1

T1

=
∣∣∣∣∣∣( (n2+1)(n+1)

(2n2+1)(2n+1) −
1
4

)
x
∣∣∣∣∣∣ 1

T1

=
∣∣∣ (n2+1)(n+1)
(2n2+1)(2n+1) −

1
4

∣∣∣||x|| 1
T1
,

̂||Ân− Â||= ||AnT̂−1n−AT̂−1||

= supx∈H,||x||≤1

∣∣∣ (n2+1)(n+1)
(2n2+1)(2n+1) −

1
4

∣∣∣||x|| 1
T1

=
∣∣∣ (n2+1)(n+1)
(2n2+1)(2n+1) −

1
4

∣∣∣ 1
T1
,

and then

lim
n−→∞

̂||Ân− Â||= lim
n−→∞

∣∣∣ (n2 +1)(n+1)
(2n2 +1)(2n+1)

− 1
4

∣∣∣ 1
T1

= 0,

consequently the iso-sequence {Ân}∞
n=1 is uniformly convergent to Â.

For x̂ ∈ Ĥ we have

B̂x̂ = BT̂−1x = B
(

1
4 x
)
= 1

8 x,
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from where
̂||Ân− B̂||= ||AnT̂−1nx−BT̂−1x||

=
∣∣∣∣∣∣ (n2+1)(n+1)

(2n2+1)(2n+1)x−
1
8 x
∣∣∣∣∣∣ 1

T1

=
∣∣∣∣∣∣( (n2+1)(n+1)

(2n2+1)(2n+1) −
1
8

)
x
∣∣∣∣∣∣ 1

T1

=
∣∣∣ (n2+1)(n+1)
(2n2+1)(2n+1) −

1
8

∣∣∣ 1
T1
||x||,

̂||Ân− B̂||= ||AnT̂−1n−BT̂−1|| 1
T1

= supx∈H,||x||≤1

∣∣∣ (n2+1)(n+1)
(2n2+1)(2n+1) −

1
8

∣∣∣ 1
T1
||x||

=
∣∣∣ (n2+1)(n+1)
(2n2+1)(2n+1) −

1
8

∣∣∣ 1
T1
,

and then

lim
n−→∞

̂||Ân− Â||= lim
n−→∞

∣∣∣ (n2 +1)(n+1)
(2n2 +1)(2n+1)

− 1
8

∣∣∣ 1
T1
6= 0,

consequently the iso-sequence {Ân}∞
n=1 is not uniformly convergent to B̂.

On the other hand, for x ∈ H,

||Anx−Bx||=
∣∣∣∣∣∣ n2+1

2n2+3 x− 1
2 x
∣∣∣∣∣∣= ∣∣∣∣∣∣( n2+1

2n2+3 −
1
2

)
x
∣∣∣∣∣∣,

||An−B||= supx∈H,||x||≤1

∣∣∣1
2 −

n2+1
2n2+3

∣∣∣||x||
=
∣∣∣1

2 −
n2+1
2n2+3

∣∣∣
from here

lim
n−→∞

||An−B||= lim
n−→∞

∣∣∣1
2
− n2 +1

2n2 +3

∣∣∣= 0,

consequently the sequence {An}∞
n=1 is uniformly convergent to B.

Definition 5.2.19. Let {T̂ n}∞
n=1 satisfy (H1). We will say that the iso-sequence {Ân}∞

n=1 of
iso-elements of L̂(Ĥ) is strongly convergent to Â ∈ L̂(Ĥ) if

̂||Ânx̂− Âx̂|| −→n−→∞ 0

for every x̂ ∈ Ĥ.

Remark 5.2.20. From the above examples it follows that from the strongly convergence of
{Ân}∞

n=1 to Â it does not follow the strongly convergence of {An}∞
n=1 to A and the conversely.

Theorem 5.2.21. Let {T̂ n}∞
n=1 satisfy (H1) and {Ân}∞

n=1 is uniformly convergent to Â ∈
L̂(Ĥ). Then {Ân}∞

n=1 is strongly convergent to Â ∈ L̂(Ĥ).
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Proof. The proof follows from the following iso-inequality

̂||Ânx̂− Âx̂|| ≤ ̂||Ân− Â||×̂|̂|x̂||.

Definition 5.2.22. Every linear iso-operator L̂ : Ĥ −→ F̂R will be called a linear iso-
functional.

Definition 5.2.23. The iso-sequence {x̂n}∞
n=1 of iso-elements of Ĥ will be called weakly

convergent to x̂ ∈ Ĥ if
L̂(x̂n)−→n−→∞ L̂(x̂)

for every linear iso-functional L̂ defined on Ĥ.

If L̂ is a linear iso-functional on Ĥ, then for every x̂ ∈ Ĥ we have

|L̂(x̂)| ≤ |̂|L̂||×̂|̂|x̂||.

Theorem 5.2.24. Let {x̂n}∞
n=1 be a sequence of iso-elements of Ĥ which is strongly conver-

gent to x̂ ∈ Ĥ. Then it is weakly convergent.

Proof. Let L̂ be arbitrarily chosen a linear iso-functional on Ĥ. Then we have

(A16′) |L̂(x̂n)− L̂(x̂)|= |L̂(x̂n− x̂)| ≤ |̂|L̂|| ̂||x̂n− x̂||.

Since {x̂n}∞
n=1 is strongly convergent to x̂ we have

lim
n−→∞

̂||x̂n− x̂||= 0,

from here and (A16′), we conclude that

lim
n−→∞

|L̂(x̂n)− L̂(x̂)|= 0,

because L̂ was arbitrarily chosen, then {x̂n}∞
n=1 is weakly convergent to x̂.
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Chapter 6

Elements of Santilli-Lie-isotopic time
evolution theory

6.1. Definition of Santilli’s Lie isotopic power series

Let X and Y be complex Banach spaces. With L(X ,Y ) we will denote the space of all linear
bounded operators C : X −→ Y .

Let A, T and H ∈ L(X ,Y ) and

dA
dt

=−i(AT H−HTA).

Our aim here is to be investigated the series

(A17)A(0)+ dA
dt (0)w+ 1

2!
d2A
dt2 (0)w2 + · · · .

Definition 6.1.1. The series (A17) will be called the Santilli’s Lie isotopic power series.

Firstly, we will deduct the general term of (A17).
We have

d2A
dt2 = d

dt

(
dA
dt

)
=−i

(
dA
dt T H−HT dA

dt

)
=−i

(
−i(AT H−HTA)T H−HT (−i)(AT H−HTA)

)
= (−i)2((AT H−HTA)T H−HT (AT H−HTA)),
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d3A
dt3 = d

dt

(
d2A
dt2

)
=−i

(
d2A
dt2 T H−HT d2A

dt2

)
=−i((−i)2((AT H−HTA)T H−HT (AT H−HTA))T H

−HT (−i)2((AT H−HTA)T H−HT (AT H−HTA)))

= (−i)3((AT H−HTA)(T H)2−HT (AT H−HTA)T H

−HT (AT H−HTA)T H +(HT )2(AT H−HTA))

= (−i)3((AT H−HTA)(T H)2−2HT (AT H−HTA)T H

+(HT )2(AT H−HTA)),

d4A
dt4 = d

dt

(
d3A
dt3

)
=−i

(
d3A
dt3 T H−HT d3A

dt3

)
=−i((−i)3((AT H−HTA)(T H)2−2(HT )(AT H−HTA)T H

+(HT )2(AT H−HTA))T H− (−i)3(HT )((AT H−HTA)(T H)2

−2(HT )(AT H−HTA)T H +(HT )2(AT H−HTA)))

= (−i)4((AT H−HTA)(T H)3−2HT (AT H−HTA)(T H)2

+(HT )2(AT H−HTA)(T H)− (HT )(AT H−HTA)(T H)2

+2(HT )2(AT H−HTA)T H− (HT )3(AT H−HTA))

= (−i)4((AT H−HTA)(T H)3−3(HT )(AT H−HTA)(T H)2

+3(HT )2(AT H−HTA)(T H)− (HT )3(AT H−HTA))

= (−i)4
∑

3
k=0

(
3

3− k

)
(HT )k(AT H−HTA)(T H)3−k.

We suppose that for some natural number n we have

dnA
dtn

= (−i)n
∑

n−1
k=0

(
n−1

n−1− k

)
(−1)k(HT )k(AT H−HTA)(T H)n−1−k.
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We will prove that

dn+1A
dtn+1

= (−i)n+1
∑

n
k=0

(
n

n− k

)
(−1)k(HT )k(AT H−HTA)(T H)n−k.

Really,

dn+1A
dtn+1 = d

dt

(
dnA
dtn

)
=−i

(
dnA
dtn T H−HT dnA

dtn

)
=−i

(
(−i)n

∑
n−1
k=0(−1)k

(
n−1

n−1− k

)
(HT )k(AT H−HTA)(T H)n−1−k

−(−i)nHT ∑
n−1
k=0(−1)k

(
n−1

n−1− k

)
(HT )k(AT H−HTA)(T H)n−1−k

)
= (−i)n+1

(
((AT H−HTA)(T H)n−1− (HT )(AT H−HTA)(T H)n−2

+ · · ·+(−1)n−1(HT )n−1(AT H−HTA))T H

−HT ((AT H−HTA)(T H)n−1− (HT )(AT H−HTA)(T H)n−2 + · · ·

+(−1)n−1(HT )n−1(AT H−HTA))
)

= (−i)n+1
(
(AT H−HTA)(T H)n−

(
n

n−1

)
(HT )(AT H−HTA)(T H)n−1

+ · · ·+(−1)n(HT )n(AT H−HTA)
)

= (−i)n
∑

n
k=0(−1)k

(
n

n− k

)
(HT )k(AT H−HTA)(T H)n−k.

From here and the induction it follows that for every natural n we have

dnA
dtn = (−i)n

∑
n−1
k=0(−1)k

(
n−1

n−1− k

)
(HT )k(AT H−HTA)(T H)n−1−k.

Let

An = (−i)n

n! ∑
n−1
k=0(−1)k

(
n−1

n−1− k

)
(HT )k(AT H−HTA)(T H)n−1−k(0),

A0 = A(0)..

We note that when we write C(0) we have in mind that the operator C acts on the zero in X .
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6.2. Properties of Santilli’s Lie isotopic power series

Now we will investigate the series

(A18)g(w) = ∑
∞
n=0 Anwn,

where w is a complex variable. If |w| > 1 then we will make the change w1 = w− 1 and
therefore |w1|= |w−1| ≥ |w|−1 > 0.

Let Ω be the set of all w for which the series (A18) is convergent. The set Ω is not
empty because 0 ∈Ω.

For r > 0 and x0 ∈Ω we will denote with Sr(x0) the ball

Sr(x0) = {x ∈ C : |x− x0|< r}.

Theorem 6.2.1. Let w0 6= 0 and w0 ∈ Ω. Then S|w0|(0) ⊂ Ω and in every ball Sr(0), 0 <
r < |w0|, the series (A18) is absolutely and uniformly convergent.

Proof. Since w0 ∈ Ω then the series ∑
∞
n=0 Anwn

0 is convergent. From the properties of the
convergent series we have that limn−→∞ Anwn

0 = 0. From here we conclude that the sequence
{Anwn

0}∞
n=1 is bounded. Therefore there exists a constant M > 0 such that

||Anwn
0|| ≤M for ∀n ∈ N.

Let w ∈ S|w0|(0). Then |w|< |w0| and

||Anwn||=
∣∣∣∣∣∣Anwn

0
wn

wn
0

∣∣∣∣∣∣
=
∣∣∣ w

w0

∣∣∣n||Anwn
0|| ≤M

∣∣∣ w
w0

∣∣∣n
and from here

∞

∑
n=0
||Anwn|| ≤M

∞

∑
n=0

∣∣∣ w
w0

∣∣∣n < ∞.

If |w|< r
||Anwn||=

∣∣∣∣∣∣Anrn wn

rn

∣∣∣∣∣∣
= rn||An||

∣∣∣w
r

∣∣∣n
< |w0|n||An||

∣∣∣w
r

∣∣∣n
= ||Anwn

0||
∣∣∣w

r

∣∣∣n
≤M

∣∣∣w
r

∣∣∣n.
Consequently

∞

∑
n=0
||Anwn|| ≤M

∞

∑
n=0

∣∣∣w
r

∣∣∣n < ∞,

i.e. the series (A18) is absolutely and uniformly convergent.
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With R we will denote the radius of the convergence of (A18).
From the definition of the radius of the convergence of a power series we have

R = sup
w∈Ω

|w|.

Also,

1. If R = 0 then Ω = {0}.

2. If R = ∞ then the series (A18) is convergent in all complex plane.

3. From the Cauchy - Hadamard formula we have

R =
1

limn−→∞||An|| 1n
.

Theorem 6.2.2. Let A, T , H ∈ L(X ,y), ||T ||> 0, ||H||> 0. Then

R >
1

2||T ||||H||
.

Proof. We have

||An||=
∣∣∣∣∣∣(−i)n

∑
n−1
k=0

(
n−1

n−1− k

)
(−1)k(HT )kAT H−HTA)(T H)n−k−1

∣∣∣∣∣∣
≤ ∑

∞
k=0

(
n−1

n−1− k

)
||(HT )k(AT H−HTA)(T H)n−1−k||

≤ ∑
∞
k=0

(
n−1

n−1− k

)
||(HT )k(AT H−HTA)||||(T H)n−1−k||

≤ ∑
∞
k=0

(
n−1

n−1− k

)
||(HT )k(AT H−HTA)||||T H||n−1−k

≤ ∑
∞
k=0

(
n−1

n−1− k

)
||(HT )k||||AT H−HTA||||T H||n−1−k

∑
∞
k=0

(
n−1

n−1− k

)
||HT ||k(||AT H||+ ||T HA||)||T ||n−1−k||H||n−1−k

∑
∞
k=0

(
n−1

n−1− k

)
||H||k||T ||k(||A||||T ||||H||+ ||T ||||H||||A||)||H||n−1−k||T ||n−1−k

= 2||A||||T ||n||H||n ∑
∞
k=0

(
n−1

n−1− k

)
= 2n||A||||T ||n||H||n,
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i.e.
||An|| ≤ 2n||A||||T ||n||H||n,

from here
||An||

1
n ≤ 2||T ||||H||||A||

1
n ,

therefore
limn−→∞||An|| 1n

≤ 2||T ||||H||limn−→∞||A||
1
n = 2||T ||||H||.

From here and the Cauchy - Hadamard formulae we conclude that

R =
1

limn−→∞||An|| 1n
≥ 1

2||T ||||H||
.

Theorem 6.2.3. If there exist a positive constants M1 and l such that

||An|| ≤M1ln

then R≥ 1
l .

Proof. It is enough to be proved that the series (A18) is uniformly bounded for |w|< 1
l .

Let
|w|l = q < 1.

Then
||Anwn||= |w|n||An|| ≤ |w|nM1ln = M1qn,

therefore ∣∣∣∣∣∣∑∞
k=0 Akwk

∣∣∣∣∣∣≤ ∑
∞
k=0 ||Akwk||

≤M1 ∑
∞
k=0 qk = M1

1−q < ∞.

Theorem 6.2.4. Let

(A19)∑
∞
n=0 Anwn = ∑

∞
n=0 Ãnwn in SR(0).

Then
An = Ãn for ∀n ∈ N∪{0}.

Proof. Since w = 0 ∈Ω then, after we put w = 0 in (A19), we get

A0 = Ã0.

From here and (A19) we obtain

∞

∑
k=1

Akwk =
∞

∑
k=1

Ãkwk in SR(0),

200



from where

(A20)∑
∞
k=1 Akwk−1 = ∑

∞
k=1 Ãkwk−1 in SR(0).

We put w = 0 in the last equality and we have

A1 = Ã1.

From here and (A20)
∞

∑
k=2

Akwk−1 =
∞

∑
k=2

Ãkwk−1 in SR(0)

and etc.

Theorem 6.2.5. The function g is a continuous function in SR(0).

Proof. Let ρ ∈ (0,R) and w,w0 ∈ SR(0). Then

g(w)−g(w0) = ∑
∞
n=1 Anwn−∑

∞
n=1 Anwn

0

= ∑
∞
n=1 An(wn−wn

0)

= ∑
∞
n=1 An(w−w0)(wn−1 +wn−2w0 + · · ·+wn−1

0 ),

therefore

||g(w)−g(w0)||=
∣∣∣∣∣∣∑∞

n=1 An(w−w0)(wn−1 +wn−2w0 + · · ·+wn−1
0 )

∣∣∣∣∣∣
≤ ∑

∞
n=1 ||An(w−w0)(wn−1 +wn−2w0 + · · ·+wn−1

0 )||

= ∑
∞
n=1 ||An|||w−w0||wn−1 +wn−2w0 + · · ·+wn−1

0 |

≤ ∑
∞
n=1 ||An|||w−w0|(|w|n−1 + |w|n−2|w0|+ · · ·+ |w0|n−1)

≤ ∑
∞
n=1 ||An|||w−w0|(ρn−1 +ρn−2ρ+ · · ·+ρn−1)

= ∑
∞
n=1 nρn−1||An||,

i.e.

(A21)||g(w)−g(w0)|| ≤ ∑
∞
n=1 nρn−1||An|||w−w0|.

Now we will prove that the series ∑
∞
n=1 nρn−1An is uniformly convergent for every ρ ∈

(0,R). Let ρ ∈ (0,R) is arbitrarily chosen and fixed. Let also ρ̃ ∈ (ρ,R). Then, since
ρ̃ < R then the series ∑

∞
n=1 Anρ̃n is uniformly convergent, from where limn−→∞ Anρ̃n = 0

and therefore the sequence {ρ̃nAn}∞
n=1 is a bounded sequence. Consequently there exists a

positive constant M2 such that

||An||ρ̃n ≤M2 for ∀n ∈ N.
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From here

∑
∞
n=1 n||An||ρn−1 = ∑

∞
n=1 n||An||ρ̃n 1

ρ̃

(
ρ

ρ̃

)n−1

≤ M2
ρ̃

∑
∞
n=1 n

(
ρ

ρ̃

)n−1
.

Let q1 =
ρ

ρ̃
. Then q1 < 1 and∣∣∣∣∣∣∑∞

n=1 nAnρn−1
∣∣∣∣∣∣≤ ∑

∞
n=1 ||nAnρn−1||

≤ ∑
∞
n=1 n||An||ρn−1

≤ M2
ρ̃

∑
∞
n=1 n

(
ρ

ρ̃

)n−1

= M2
ρ̃

∑
∞
n=1 nqn−1

1 .

Let bk = kqk−1
1 . Then

limk−→∞
bk+1
bk

= limk−→∞

(k+1)qk
1

kqk−1
1

= limk−→∞
k+1

k q1 = q1 < 1.

Consequently the series ∑
∞
n=1 nqn−1

1 is convergent and then

c(ρ) :=
∞

∑
n=1

n||An||ρn−1 < ∞.

Since ρ ∈ SR(0) was arbitrarily chosen then the series ∑
∞
n=1 nAnρn−1 is uniformly con-

vergent for every ρ ∈ SR(0).
From (A21) we obtain

(A22)||g(w)−g(w0)|| ≤ c(ρ)|w−w0|.

Let ε > 0 be arbitrarily chosen and fixed. Let also δ = ε

1+c(ρ) . Then if |w−w0| < δ,
from (A22), we get

||g(w)−g(w0)|| ≤ c(ρ)|w−w0|< c(ρ)δ = c(ρ)
ε

1+ c(ρ)
< ε.

Since ε > 0 was arbitrarily chosen and for it we find δ = δ(ε) > 0 such that whenever
|w−w0| < δ we have ||g(w)−g(w0)|| < ε, we conclude that g is a continuous function at
w0.

Because w0 ∈ SR(0) was arbitrarily chosen then g is a continuous function in SR(0).

Corollary 6.2.6. The series
∞

∑
n=1

nAnwn−1

is a convergent series in SR(0).
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Proof. Let |w| < R and ρ ∈ (|w|,R). Then |w|
ρ

< 1 and from here and the proof of the
previous Theorem we have∣∣∣∣∣∣∑∞

n=1 nAnwn−1
∣∣∣∣∣∣≤ ∑

∞
n=1 ||nAnwn−1||

= ∑
∞
n=1 n||An|||w|n−1

= ∑
∞
n=1 n||An||ρn−1 |w|n−1

ρn−1

≤ ∑
∞
n=1 n||An||ρn−1 < ∞.

Because w ∈ SR(0) was arbitrarily chosen we conclude that ∑
∞
n=1 nAnwn−1 is convergent in

SR(0).

Theorem 6.2.7. The function g is a differentiable function in SR(0).

Proof. For w ∈ SR(0) we define the function

u(w) =
∞

∑
n=2

nAnwn−1.

For w,w1 ∈ SR(0) we have

g(w)−g(w1)
w−w1

−u(w1)

= 1
w−w1

(
∑

∞
n=2 Anwn−∑

∞
n=2 Anwn−1

)
−∑

∞
n=2 nAnwn−1

1

= 1
w−w1

∑
∞
n=2 An(wn−wn

1)−∑
∞
n=2 nAnwn−1

1

= ∑
∞
n=2 An wn−wn

1
w−w1

−∑
∞
n=2 nAnwn−1

1

= ∑
∞
n=2 An

(
wn−wn

1
w−w1

−nwn−1
1

)
,

i.e.

(A23)g(w)−g(w1)
w−w1

−u(w1) = ∑
∞
n=2 An

(
wn−wn

1
w−w1

−nwn−1
1

)
.

We will note that

(A24) wn−wn
1

w−w1
−nwn−1

1 = n(n−1)(w−w1)
∫ 1

0 (1−θ)((1−θ)w1 +θw)n−2dθ.
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Really,

n(n−1)(w−w1)
∫ 1

0 (1−θ)((1−θ)w1 +θw)n−2dθ

= n(n−1)(w−w1)
∫ 1

0 (1−θ)(w1 +θ(w−w1))
n−2dθ

= n(n−1)
∫ 1

0 (1−θ)(w1 +θ(w−w1))
n−2d(w1 +θ(w−w1))

= n
∫ 1

0 (1−θ)d(w1 +θ(w−w1))
n−1

= n(1−θ)(w1 +θ(w−w1))
n−1
∣∣∣θ=1

θ=0
+n

∫ 1
0 (w1 +θ(w−w1))

n−1dθ

=−nwn−1
1

+ n
w−w1

∫ 1
0 (w1 +θ(w−w1))

n−1d(w1 +θ(w−w1))

=−nwn−1
1

+ 1
w−w1

(w1 +θ(w−w1))
n
∣∣∣θ=1

θ=0

=
wn−wn

1
w−w1

−nwn−1
1 .

Now we apply (A24) in (A23) and we obtain

(A25)

g(w)−g(w1)
w−w1

−u(w1)

= (w−w1)∑
∞
n=1 n(n−1)An ∫ 1

0 (1−θ)((1−θ)w1 +θw)n−2dθ.

Let ρ ∈ (0,R) is arbitrarily chosen and fixed. Then for w,w1 ∈ Sρ(0) and from (A25) we
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have ∣∣∣∣∣∣g(w)−g(w1)
w−w1

−u(w1)
∣∣∣∣∣∣

=
∣∣∣∣∣∣(w−w1)∑

∞
n=2 n(n−1)An ∫ 1

0 (1−θ)((1−θ)w1 +θw)n−2dθ

∣∣∣∣∣∣
≤ |w−w1|∑∞

n=2 n(n−1)
∣∣∣∣∣∣An ∫ 1

0 (1−θ)((1−θ)w1 +θw)n−2dθ

∣∣∣∣∣∣
= |w−w1|∑∞

n=2 n(n−1)||An||
∣∣∣∫ 1

0 (1−θ)((1−θ)w1 +θw)n−2dθ

∣∣∣
≤ |w−w1|∑∞

n=2 n(n−1)||An||
∫ 1

0 (1−θ)|((1−θ)w1 +θw)n−2|dθ

= |w−w1|∑∞
n=2 n(n−1)||An||

∫ 1
0 (1−θ)|(1−θ)w1 +θw|n−2dθ

≤ |w−w1|∑∞
n=2 n(n−1)||An||

∫ 1
0 (1−θ)((1−θ)|w1|+θ|w|)n−2dθ

≤ |w−w1|∑∞
n=2 n(n−1)||An||

∫ 1
0 (1−θ)((1−θ)ρ+θρ)n−2dθ

= |w−w1|∑∞
n=1 n(n−1)||An||

∫ 1
0 (1−θ)ρn−2dθ

≤ |w−w1|∑∞
n=1 n(n−1)||An||ρn−2,

i.e.

(A26)

∣∣∣∣∣∣g(w)−g(w1)
w−w1

−u(w1)
∣∣∣∣∣∣

≤ |w−w1|∑∞
n=1 n(n−1)||An||ρn−2.

Now we will prove that for every ρ ∈ (0,R) the series ∑
∞
n=2 n(n−1)Anρn−2 is a convergent

series. Really, let ρ ∈ (0,R) is arbitrarily chosen and fixed. and let also ρ̃ ∈ (ρ,R). Since
0 < ρ̃ < R then the series ∑

∞
n=2 Anρ̃n is a convergent series. Therefore limn−→∞ Anρ̃n = 0

and from here the sequence {Anρ̃n}∞
n=1 is a convergent sequence. Consequently, there exists

a positive constant M3 so that

||An||ρ̃n ≤M3 for ∀n ∈ N.

Therefore ∣∣∣∣∣∣∑∞
n=1 n(n−1)Anρn−2

∣∣∣∣∣∣
≤ ∑

∞
n=2 ||n(n−1)Anρn−2||

= ∑
∞
n=2 n(n−1)||An|||ρn−2

= ∑
∞
n=2 n(n−1)||An||ρ̃n

(
ρ

ρ̃

)n−2
ρ̃2

≤M3R2
∑

∞
n=2 n(n−1)

(
ρ

ρ̃

)n−2
,
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i.e.

(A27)
∣∣∣∣∣∣∑∞

n=2 n(n−1)Anρn−2
∣∣∣∣∣∣≤M3R2

∑
∞
n=2 n(n−1)

(
ρ

ρ̃

)n−2
.

We put
q2 =

ρ

ρ̃
.

Then, using (A27), we have q2 < 1 and∣∣∣∣∣∣∑∞
n=2 n(n−1)Anρn−2

∣∣∣∣∣∣
≤M3R2

∑
∞
n=2 n(n−1)qn−2

2 .

Let
dn = n(n−1)qn−2

2 .

Then
limn−→∞

dn+1
dn

= limn−→∞

(n+1)nqn−1
2

n(n−1)qn−2
2

= q2 limn−→∞
n+1
n−1 = q2 < 1.

Consequently ∑
∞
n=2 n(n− 1)qn−1

2 is convergent and from (A27) it follows that the series
∑

∞
n=2 n(n− 1)Anρn−2 is convergent. Because ρ ∈ (0,R) was arbitrarily chosen then the

series ∑
∞
n=2 n(n−1)Anρn−2 is convergent for every ρ ∈ (0,R). Therefore

c1(ρ) =
∞

∑
n=2

n(n−1)||An||ρn−2 < ∞

for every ρ ∈ (0,R). From (A26) it follows that∣∣∣∣∣∣g(w)−g(w1)

w−w1
−u(w1)

∣∣∣∣∣∣≤ c1(ρ)|w−w1|

for every ρ ∈ (0,R). Let ε > 0 be arbitrarily chosen and fixed. Let also δ = ε

1+c1(ρ)
. Then

from |w−w1|< δ we have∣∣∣∣∣∣g(w)−g(w1)
w−w1

−u(w1)
∣∣∣∣∣∣≤ c1(ρ)|w−w1|< c1(ρ)δ

= c1(ρ)
ε

1+c1(ρ)
< ε

for every ρ ∈ (0,R). Because ε > 0 was arbitrarily chosen and for it we found δ = δ(ε)> 0
so that whenever |w−w1| < δ we have

∣∣∣∣∣∣g(w)−g(w1)
w−w1

−u(w1)
∣∣∣∣∣∣ < ε, then the function g is a

differentiable function at w1 and g′(w1) = u(w1). Since w1 ∈ SR(0) was arbitrarily chosen
then the function g is a differentiable function in SR(0) and for every w ∈ SR(0) we have
g′(w) = u(w).

Using the induction one can prove

206



Corollary 6.2.8. g ∈ C ∞(SR(0)).

Theorem 6.2.9. Let ∑
∞
n=0 An be an absolutely convergent series to 0. Then

lim
w−→1,w:

∣∣∣ |1−w|
1−|w|

∣∣∣<∞

g(w) = 0.

Proof. Without loss of generality we will consider the case when w−→ 1 and 0 < |1−w|
1−|w| <

∞.
Then |w|< 1 and there exists a positive constant M4 such that

(A28)0 < |1−w|
1−|w| ≤M4.

Let

Pn =
n

∑
k=0

Ak, n = 0,1,2, . . . .

Then the sequence {Pn}∞
n=1 is a convergent sequence.

A0 = P0,Ak = Pk−Pk−1, k = 1,2, . . . .

We put

sn(w) =
n

∑
k=0

Akwk.

Then

sn(w) = A0 +A1w+A2w2 + · · ·+Anwn

= P0 +(P1−P0)w+(P2−P1)w2 + · · ·+(Pn−Pn−1)wn

= P0(1−w)+P1(w−w2)+P2(w2−w3)+ · · ·+Pn−1(wn−1−wn−2)+Pnwn

= P0(1−w)+P1w(1−w)+P2w2(1−w)+ · · ·+Pn−1wn−1(1−w)+Pnwn,

i.e.

(A29)sn(w) = (1−w)∑
n−1
k=0 Pkwk +Pnwn.

Since ∑
∞
k=0 An is an absolutely convergent series to 0 then for |w| < 1 we have

limn−→∞ Pnwn = 0 and from (A29)

(A30)g(w) = limn−→∞ sn(w) = (1−w)∑
∞
k=0 Pkwk.

Let ε > 0. Then there exists m ∈ N such that ||Pn||< ε for every n≥ m.
We choose w so that to satisfy (A28) and |1−w|< ε. From here

(A31)

∣∣∣∣∣∣∑∞
n=m Pnwn

∣∣∣∣∣∣≤ ∑
∞
n=m ||Pn|||w|n

< ε∑
∞
n=m |w|n = ε

|w|m
1−|w| .
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From (A28) we have
|w|−1≤ |1−w| ≤M4(1−|w|),

from where
|w| ≤M4(1−|w|)+1.

Since |w|< 1 then
|w|m ≤ |w| ≤M4(1−|w|)+1

and from (A31) we obtain ∣∣∣∣∣∣∑∞
n=m Pnwn

∣∣∣∣∣∣< ε
M4(1−|w|)+1

1−|w|

= εM4 +
ε

1−|w| .

From the last inequality we get ∣∣∣∣∣∣(1−w)∑
∞
n=m Pnwn

∣∣∣∣∣∣
≤ |1−w|

(
εM4 +

ε

1−|w|

)
= M4ε|1−w|+ ε

|1−w|
1−|w|

≤M4ε|1−w|+M4ε

= M4ε(1+ |1−w|)

and from (A30)

||g(w)||=
∣∣∣∣∣∣(1−w)∑

∞
n=0 Pnwn

∣∣∣∣∣∣
=
∣∣∣∣∣∣(1−w)∑

m−1
n=0 Pnwn +(1−w)∑

∞
n=m P6nwn

∣∣∣∣∣∣
≤ |1−w|

∣∣∣∣∣∣∑m−1
n=0 Pnwn

∣∣∣∣∣∣+ ∣∣∣∣∣∣(1−w)∑
∞
n=m Pnwn

∣∣∣∣∣∣
≤ |1−w|

∣∣∣∣∣∣∑m−1
n=0 Pnwn

∣∣∣∣∣∣+M4ε(1+ |1−w|).

Because ε > 0 was arbitrarily chosen

lim
w−→1,w:0< |1−w|

1−|w|<∞

g(w) = 0.
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ε̂-iso-neighborhood, 20

bounded sequence, 24
bounded set, 25

closed set, 25
continuous iso-function, 43
convergence of sequence of iso-points, 21
convergent iso-sequence, 184

directional iso-derivative, 104
discontinuous of the first kind iso-function,

45
discontinuous of the second kind iso-

function, 45

first order iso-partial derivative of fifth kind
, 55

first order iso-partial derivative of the first
kind , 47

first order iso-partial derivative of the fourth
kind , 53

first order iso-partial derivative of the second
kind , 50

first order iso-partial derivative of the sev-
enth kind , 59

first order iso-partial derivative of the sixth
kind , 57

first order iso-partial derivative of the third
kind, 51

homogeneous iso-functions, 105

inner iso-product, 13
iso-adjoint iso-operator, 190
iso-bijection, 39
Iso-Cauchy’s Convergence Criterion, 25
iso-continuous iso-operator, 187
iso-diameter, 25

iso-differentiable iso-function, 61
iso-distance between iso-points, 12
iso-Euclidean space, 7
iso-Euler equality, 105
iso-Fourier iso-integral, 169
iso-function of the fifth kind , 33
iso-function of the first kind , 26
iso-function of the fourth kind , 32
iso-function of the second kind , 28
iso-function of the third kind , 30
iso-generalized iso-space, 180
iso-Hilbert iso-space, 185
iso-injection, 39
iso-inverse iso-operator, 189
iso-Lagrange multiplier, 111
iso-length of iso-vector, 12
iso-line, 19
iso-line segment, 19
iso-neighborhood, 7
iso-open n - ball, 20
iso-operator of iso-orthogonal projection,

190
iso-orthogonal elements, 181
iso-radius, 20
iso-scalar multiple, 8
iso-Schwartz inequality, 13
iso-sphere, 20
iso-surjection, 39
Iso-Taylor series of the fifth kind , 119
Iso-Taylor series of the first kind , 117
Iso-Taylor series of the fourth kind , 118
Iso-Taylor series of the second kind , 117
Iso-Taylor series of the seventh kind , 120
Iso-Taylor series of the sixth kind , 119
Iso-Taylor series of the third kind , 118
iso-triangle inequality, 16
iso-unit iso-vector, 12
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iso-vector sum, 7
iso-volume of the eighteenth kind, 148
iso-volume of the eighth kind, 147
iso-volume of the eleventh kind, 147
iso-volume of the fifteenth kind, 148
iso-volume of the fifth kind , 147
iso-volume of the first kind , 147
iso-volume of the fourteenth kind, 148
iso-volume of the fourth kind , 147
iso-volume of the nineteenth kind, 148
iso-volume of the ninth kind, 147
iso-volume of the second kind , 147
iso-volume of the seventeenth kind, 148
iso-volume of the seventh kind , 147
iso-volume of the sixteenth kind, 148
iso-volume of the sixth kind , 147
iso-volume of the tenth kind, 147
iso-volume of the third kind , 147
iso-volume of the thirteenth kind, 148
iso-volume of the thirtieth kind, 149
iso-volume of the twelfth kind, 148
iso-volume of the twentieth kind, 148
iso-volume of the twenty eighth kind, 149
iso-volume of the twenty fifth kind , 149
iso-volume of the twenty first kind , 148
iso-volume of the twenty fourth kind , 149
iso-volume of the twenty ninth kind, 149
iso-volume of the twenty second kind , 148
iso-volume of the twenty seventh kind , 149
iso-volume of the twenty sixth kind, 149
iso-volume of the twenty third kind , 149

left limit of iso-function, 39
limit of iso-function, 39
line iso-integral of the fifth kind , 157, 160
line iso-integral of the first kind , 153, 158
line iso-integral of the fourth kind , 156, 160
line iso-integral of the second kind , 154,

159
line iso-integral of the third kind, 155
line iso-integral of the third kind , 159
linear iso-functional, 194
local extreme iso-point, 107

mean value theorem, 142–146

mean value theorem for iso-functions of the
fifth kind , 116

mean value theorem for iso-functions of the
first kind , 115

mean value theorem for iso-functions of the
fourth kind, 115

mean value theorem for iso-functions of the
second kind , 115

mean value theorem for iso-functions of the
third kind , 115

multiple iso-integral of eleventh kind, 138
multiple iso-integral of the eighth kind, 135
multiple iso-integral of the fifteenth kind,

140
multiple iso-integral of the fifth kind , 133
multiple iso-integral of the first kind , 127
multiple iso-integral of the fourteenth kind,

140
multiple iso-integral of the fourth kind , 132
multiple iso-integral of the ninth kind, 136
multiple iso-integral of the second kind , 129
multiple iso-integral of the seventh kind ,

134
multiple iso-integral of the sixth kind , 133
multiple iso-integral of the tenth kind, 137
multiple iso-integral of the third kind , 131
multiple iso-integral of the thirteenth kind,

140
multiple iso-integral of the twelfth kind, 139

right limit of iso-function, 39

Santilli’s Lie isotopic power series, 195
second order iso-partial derivative of the

fifth kind , 56
second order iso-partial derivative of the first

kind , 49
second order iso-partial derivative of the

fourth kind, 55
second order iso-partial derivative of the sec-

ond kind , 51
second order iso-partial derivative of the sev-

enth kind , 61
second order iso-partial derivative of the

sixth kind , 58
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second order iso-partial derivative of the
third kind , 53

second order total iso-differential, 104
surface iso-integral of the first kind , 166
surface iso-integral of the second kind, 166

third order iso-partial derivative of the fifth
kind , 57

third order iso-partial derivative of the first
kind , 49

third order iso-partial derivative of the fourth
kind , 55

third order iso-partial derivative of the sec-
ond kind , 51

third order iso-partial derivative of the sev-
enth kind , 61

third order iso-partial derivative of the sixth
kind , 58

third order iso-partial derivative of the third
kind , 53

third order total iso-differential, 104
total iso-differential of the eight kind, 63
total iso-differential of the fifth kind , 63
total iso-differential of the first kind , 62
total iso-differential of the fourth kind , 62
total iso-differential of the second kind , 62
total iso-differential of the seventh kind , 63
total iso-differential of the sixth kind, 63
total iso-differential of the third kind , 62

unbounded set, 25
uniformly continuous iso-function, 45
uniformly convergent iso-sequence of iso-

operators, 191

vector iso-functions, 120

weakly convergent iso-sequence, 194
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