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Preface

This book introduces the main ideas and the fundamental methods of the iso-differential
calculus for the iso-functions of several variables.

In Chapter 1 are discussed the structure of the iso-Euclidean spaces, the main concep-
tions for the iso-functions of the first, the second, the third, the fourth and the fifth kind
of n - variables, limits of the iso-real iso-valued iso-functions of several variables, the con-
tinuous iso-functions, the main ideas for the iso-partial derivatives of the first, the second,
the third, the fourth, the fifth, the sixth and the seventh kind of the iso-functions of several
variables, they are introduced the main approaches for the finding of the minima and the
maxima of the iso-functions of n variables.

In Chapter 2 are represented some of the most relevant results of the iso-integration
theory. The aim is to provide the reader with all that is needed to use the power of the
iso-integration.

In Chapter 3 we deal with the line and the surface iso-integrals.

Chapter 4 provides a sufficiently wide introduction to the theory of the iso-Fourier inte-
gral.

Chapter 5 is dedicated to some conceptions connected with the iso-Hilbert spaces. They
are defined some classes of iso-operators in the iso-Hilbert spaces and given some of their
properties.

In Chapter 6 is given a definition for the Santilli-Lie-isotopic power series and they are
deducted some of its properties.

I think, in fact, that it is useful for the reader to have a wide spectrum of context in
which these ideas play an important role and wherein even the technical and formal aspects
play a role. However, I have tried to keep the same spirit, always providing examples and
exercises to clarify the main presentation.

I will be very grateful to anybody who wants to inform me about errors or just
misprints, or wants to express criticism or other comments, to my e-mails svetlinge-
orgievl @gmail.com, sgg2000bg @yahoo.com.

Svetlin Georgiev
Paris, France
May 25, 2014






Chapter 1

Real-Valued Iso-Functions of Several
Variables

1.1. Structure of Fi-

LetTi:R— R, 7:R" —s Rbe positive functions and I = Ti] i= % With F we will

denote the space of the iso-real iso-numbers @ = =%

Ti(a)’
the space Fi are studied in "Foundations of Iso-Differential Calculus”, Vol. I, [1]. In this
chapter we study the iso-functions defined on subsets of the iso-real n - dimensional space

Fign, which consists of all ordered n-tuples

a € R. Some of the properties of

o PN o X1 X2 Xn
x:(Xl,XQ,...,Xn):( )>7

T(xl,xz,...,x,,)’ T(xl,xz?...,xn)’m7 T(xl,xz,...,xn

of iso-real iso-numbers, called the iso-coordinates or the iso-components of X. Here x =
(x1,X2,...,%,) € R". This space sometimes is called iso-Euclidean space.

In this section we introduce an algebraic structure of Fir». We also consider its topolog-
ical properties, that is, properties that can be described in terms of a special class of subsets,
the iso-neighborhood in Fpn.

Definition 1.1.1. The iso-vector sum of
X = (%1,%,...,%,) and ¥ =1,92,...,9)

is

ADX+Y = (&1 491,82+ 92, Zn+In)-



If & is an iso-real iso-number; the iso-scalar multiple of X by 4 is

axX = Z2-Ti(a)X = aX = a(%1,%2,...,%,)

—a x1 x X
T (x1 %2500 0%) T (X122, T (X1 ,X2 )
A2) — M ) _Xn
( ) aT(X:,Xz ,,,,, xn)’aT(xlx,me;xn)’”.7aT(xl-,x2 ..... Xn)
_ a T X1 a_ X a 5 X
= = a)=—1—— 4L Ti(a)=—2>——,..., = Ti(a)=—2—— )
( 1 (a) 1( )T(X1~,X2,---7X:1)’T1(d) 1( )T(Xl,xz ----- X)) Ti(a) 1( )T(Xl,xz ----- Xn)
= (A%R1,a% %0, ..., A% %)

Note that "+ stands for the newly defined addition of members of Fg: and, in the right
”+”, for addition of iso-real iso-numbers. However, this can never lead to confusion, since
the meaning of ’+” can always be deducted from the symbols on either side of it. A similar
comment applies to the use of juxtaposition to indicate iso-scalar multiplication on the left
of (A2) and iso-multiplication of iso-real iso-numbers on the right.

Example 1.1.2. In Fys, let T'(x) = x3 +x3+3x3, x = (x1,2%2,%3) €R3, T1(y) =y* + 1, y € R.
Let also,
X =(-1,2,3), Y =(2,0,4).

Then

and from here

PN 1 1 1 3 1 7 1 7
247 = (-5 3616+ 05+ 13) = (“ a1 16 476 )

(361616

Exercise 1.1.3. In Fio, let T (x) =x3 4+ 1, x= (x1,0) €R%, T1(y) =y*+ L,y e R, X = (1,2),
Y = (=3,1). Find



Definition 1.1.4. If A is a real number, the iso-multiplication of X by . is defined as follows

N

m)?:m(x)izm(x)( X S )

T(x1,x0,00000) ° T (x1,%2,0000)

_ (xﬁ(x)xil,m (x)xiz,...,m(x)xin).

T(x1 X2,0) T (x1,%2,...%) T (x1,X2,....%n)

Example 1.1.5. In Fps, let T(x) =33 +3, x = (x1,%2,%3,%4) € RY Ty (y) = 1+y% y€R.
Let also, X = (1,—1,2,3). Then

O 3
- (h-bad)

93 % 2 1 113 1 113 15 15 45
3><X:3T1(3) (Za*17571> :30(17*17271) = (77*7,15,7).

_1
y T 40

N
=

Exercise 1.1.6. In Fy., let T(x) = x% —i—x% +1, x=(x1,x) € R2 T (y)=1 +y* y€R. Let
also, X = (1,0),Y = (—1,—1). Find

25X +3%Y.
Answer. (16,—1).

Definition 1.1.7. If A is an iso-real iso-number, the multiplication of X by A is defined as
follows

AV A v A X1 X X,
AX = Ti (X)X ) (T(x17x27~~7xn)’ T(x1,%2,00%0) 777 T(Xl,xz7~~,xn))
— A X1 A X A X

Ty () T(x1x2,en) T1(0) T (1 02,e0) 77 Ty (0) T 2,e0) )

Example 1.1.8. In Fys, let T(x) = x3 +x3 + 1, x = (x1,%2,%3,%4,x5) €R>, Ty (y) = 1 +y
yeR X =(1,-1,-1,0,1), ¥ = (1,0, 1,1, 1). We will find

’

We have

AV 2

X—ﬂm(

AL 3 ? 1 1 11 3 333

IXY = Tl(3)Tl(3)(§707§7§7§> = <§707§7§7§)7

3% (0%+357) =4 @) ((3.-2,-3.0.3) +(3.0.3.3.3))



Exercise 1.1.9. In Fs, let T'(x) = x3 + |xa| + 1, x = (x1,x2,x3) €R3, T1(y) = 1 +
X=(1,-1,-1),Y = (—1,—1,1). Find

v, yER,

2% (3X +4%Y).

77 83 77
Answer. (_Fv_F’F)'

Definition 1.1.10. If )\ is a real number; the multiplication of X by A is defined as follows

M:A(A TR S )
T (1%, %) " T (x1,X2,0%0) 7777 T(x1,X2,0000%0)

_ X y W) y N
T(x1,x2,00%0) " T (1, x0,000x) " T (X1 x2,500%0) )

Example 1.1.11. In Fpa, let T(x) = |x1| + |x2| + |x3] + x| +4, x = (x1,%2,%3,x4) € R,
Ti(y) =3+

y,yeR X =(1,-1,0,0), Y = (0,1,—1,1). We will find
A=2(4XY +3%X)+2¥
We have
X=(4-400),  7=(04-54).
457 =41i(4)(0,4,-5,4) = (0,4,-4,4),
AN — 3 7 11 (1 1
BXY_T1(3)T1<3)(€’_6’0’0> (2a zaoao)a
45\(?—’_3;\(}2: (0747 474)+ (%7_%707()) a <%7%7_474)7
59 _ 2 1 1 1Y_(p2 _2 2
2r = 11 (2) (0’77_777) - (0’ 357 35>35)
Then

A:(1’77_878)+(0 2 2 2>:( 247 282 282)'

’357 35735 357 35735

Exercise 1.1.12. In Fy2, let T (x) = |x1 |+ |x2| + 1, x = (x1,x2) € R%, Ty (y) = 1+2
X =(1,-1),Y =(1,1). Find

y,yER

(35K +49) — 247,

512 404
Answer. (ﬁ, ﬁ)

If 4 and b are elements of Fi then

A a . b ab
axb = —
Ti(a)




and

. b b
ba= 0 T(b) o =27
Ti(b) Ti(a) Ti(a)

In other words, when the isotopic element f’l does not coincide with some constant, the
iso-multiplication of the iso-real iso-numbers is not a commutative operation. Only in the
case when T} = const we have that the iso-multiplication of the iso-real iso-numbers is
commutative.

Below we will suppose that 77 is a positive constant.

The defined above operations have the following properties: let X, ¥, Z € Fgn, @ € Fg,
b€ Fp,a€R, beR, then

1. X +7¥ =¥ +X (the iso-vector addition is commutative),
2. X+ (Y4 2) = (X +7) +Z (the iso-vector addition is associative),
3. (X+Y)+Z =X+ (Y +2) (the iso-vector addition is distributive),

4. There is a unique vector 0 = 0= (0,0, ...,0), called the zero iso-vector, such that X +0 =
X,0=(0,0,...,0),

5. For each X € Fign there is a unique iso-vector —X such that X 4 (—X) = 0,

10. 4% (bxX) = (axb)xX,
11. ax(bX) =
12. a(hxX) =
13. a(bX) = (ab)X,
14. a(bxX) = (ab)xX,
15. a(bX) = (ab)X,
16. aX(bxX) = (axb) %X,
17. ax(

18. ax(
19. ax(bX) = (aXb)X,
20. a(b%X) = (ab) XX,

11



21. a(bX) = (ab)X,

22. a(bxX) = (ab) XX,

23. a(bX) = (ab)X,

24, (4+b)%X =akX+bxX,
25. (a+b)X =aX +bX,

26. (a+b)XX =aXX +b%X,
27. (a+b)X =aX +bX,

28. (A+Db)xX =axX +bxX,
29. (a+b)X = aX +bX,

30. (a+b)XX =akX +bXX,

31. (a+b)X =aX +bX.

We write

The iso-point 0 is called the iso-origin.

When we wish to emphasize that we are regarding a member of Fi as part of the
algebraic structure, we will speak of it as an iso-vector, otherwise, we will speak of it as an
iso-point.

Iso-Length, Iso-Distance and Inner Iso-Product

A

Definition 1.1.13. The iso-length of the iso-vector X = (£1,%2,...,%,) is

X1 /A \/2 5
= 1y, X = (x1,%2,...,%,), X[ /x2 a2 4. 142,
Tx) V! (22, am), X[y A+ 2

1X] =

The iso-distance between the iso-points X and ¥ is
X —71.

X| is the iso-distance between the iso-point X and the iso-origin 0. If |X| = I,
then the iso-vector X is an iso-unit iso-vector.

In particular,

12



Example 1.1.14. In Fgs, let T(x) = x> +2, x = (x1,x2,%x3,%3) € R}, T} = 3. Let also
X =(=1,2,1,-3), Y = (1,1,0,—1). Then

Exercise 1.1.15. In Fio, let T(x) = |x1 — 2| +2, x = (x1,x) €R%, ) =4, X = (—1,2),
Y =(1,-1), Find
2V5 V2 5413
Answer. 572, 55, 25,
Definition 1.1.16. The inner iso-product of X = (1,%2,...,%,) and ¥ = ($1,92,...,9,) is

A A

XY =R %P1 +Fa X Do+ -+ R %P

oo L T w0 LA

=
+

X:(xl,xz,...,xn), Y:(y1>y27"'>yn)'

Example 1.1.17. In Fgs, let T(x) = [x; +x2+x3| +3, x = (x1,x0,x3) €R3, T} =2, X =
(1,—1,2), Y = (2,—3,4). We will find X*Y. We have

2 A 2 —1~7-3 274 2 1 8§ __ 11
XY =520+ 3529 +526 =55 +5t 5= 15

=

Exercise 1.1.18. In Fyo, let T'(x) = |x1| + |x2| +4, x = (x1,x0) €R%, Ty =3, X = (1,—1),
Y = (2,2). Find
Xy.

Answer. 0.

From the definition of the inner iso-product it follows that it can be represented in the
form

XY .

XY =——1)

T(X)T(Y)

Lemma 1.1.19. (iso- Schwartz’s inequality) If X and ¥ are any two iso-vectors in Fgn, then
X°F| < XY,

with equality if and only if one of the iso-vectors is an iso-scalar iso-multiple of the other.

13



Proof. We have

(A3) |XY| =

T(X)T(y)

0P XYL | X Y| =R
271 < i = |7 i 7| = R
If X = XY for some 7 € Fg, then
N A X Y
X =tY or A =t—.
TX) T(Y)
From here and (A3) we obtain

oD YY| A4 Y2
(A4)|X°7| = ‘T’z(yl i = |t T‘z(‘y) 1.

On the other hand,

Il A ) DU S v ) Y
(ANIRIZI7| = 75T = ey = Wl T
From (A3) and (A4) we conclude that
(AS)|XP| = |X|X|P|.

Now we suppose (AS). Then
Xv| g |
rx)T(y) T(x) 1)
therefore
X-Y| = [X][r],
whereupon
X=tY
for some real number ¢. Consequently
X ot T, Y <tT(Y)
T(x) Tx) Ty T) \TX)
Let -
2 tT(Y
- ()
(X)
Then

o
I




Lemma 1.1.20. If X and ¥ are any two iso-vectors in Fgn, then
XY ] < X[ X|Y] = [X]x]Y],
with equality if and only if one of the iso-vectors is an iso-scalar iso-multiple of the other.

Proof. We have

D O, N O (I
91 = |7t TV = i T

Now we apply the Schwartz’s inequality and we get

‘o4l Xl 23 | x ¢l | 729l
2015 Ty =i | il [V = 1K1
- el -
Also, ) )
XY ] = |X|x|Y] =
XY |/T = |X|%|Y |V T =
XF| = X[%|¥]
if and only if one of the iso-vectors is an iso-scalar iso-multiple of the other. 0

Lemma 1.1.21. If X and ¥ are any two iso-vectors in Fgn, then
(XY < [X[[Y] = [X][Y],
with equality if and only if one of the iso-vectors is an iso-scalar iso-multiple of the other.

Proof. We have

¢.pT | X . Y | S XY/ XIY| /7
% 71=| 5 7| VT = mrm VI < A VT
x| | F =il = | 2| VE | = 1)
~ |75 |75 |V = 19T = | 2|V | | = 819
Also, ) .
(X-Y[=[X[Y]
X vy | /& _| x Y =
g Vi =gl AV =
X Y[ =[X][|Y]
if and only if there exists ¢ € R such that
X=tY =
X _ TG 14 v
IR ok N 1 N



o —

‘We note that (tTT(%) IS F’R O

Exercise 1.1.22. If X and Y are any two iso-vectors in Fn, then
(XY < |X][Y],
with equality if and only if one of the iso-vectors is an iso-scalar iso-multiple of the other.

Theorem 1.1.23. (Iso-Triangle Inequality) If X and ¥ are in Firn, then

with equality if and only if one of the iso-vectors is a nonegative iso-scalar iso-multiple of
the other.

Proof. We have

Also,
1X+7]=|X]+|7] —
X vy || x Y
7+ 7| = |7t | + |7
if and only if there exists r > 0 such that
X _ .Y
eI (O I
X _t4 ¥ -
TX) ~ hi'F()
X =7xy
We note that 7 € Fir and 7 > 0. O

Exercise 1.1.24. (Iso-Triangle Inequality) If X and Y are in Fgn, then
X+ 7] <IX]+[F],

with equality if and only if one of the iso-vectors is a nonegative iso-scalar iso-multiple of
the other.

Corollary 1.1.25. If X, ¥ and Z are in Fgn, then
| |
| |

>N
>N

IN

)

A"\ A’|\

—7]+|7 -

<>
IN

>3
~>

—7| —Y|+|Y -2

16



Corollary 1.1.26. If X and ¥ are in FRH, then
X =Y > [[X]-|¥]],

X =Y > [IX] - [7]l.
The next theorem lists some of the properties of the iso-length, the iso-distance, and the

inner iso-product that follow directly from their definitions. We leave its proof to the reader.

Theorem 1.1.27. If X, Y and 7 are members of Firn, and @ € F‘ R> then

1. [axX] =la|x|X] = |a]%|X],

2. |axX|=|a|x|X|,

3. |ax] = [a||%] = |al|X |

4. |aX| = |a||X],

5. axX]=l|a|%X|X],

6. laxX| = |a|%|X|,

7. aX] = |a||X],

8. |aX| = a||X],

9. |)A(T > 0, with equality if and only if X =0,

10. |X| > 0, with equality if and only if X =0,
11. |X — }A’T > 0, with equality if and only if X =Y,
12. |X —Y >0, with equality if and only if X =¥,

N Y e S e g e Y
S % ¥ XA N kW
o b e 3o
o~ F)

+
N ~ Y

&)
N

[\5] [ 5]
@ =
—~ — —~ —~ —~ —~ —~ —~
>
X>
~— ><)
S—

)
=

17



Iso-Line Segments in Fin

The equation of an iso-line through an iso-point Xo = (£9,%0,%0) in Fgs can be written
parametrically as

(A6)X:X()—|-f>,\<0, fEFR,

where U = (f1,02,03) and #, d,, and 3 are not all zero. We will write this in the iso-

coordinate form .
X1 =Xo+1xiy,

<

Xo = Yo +1Xil,

£3 =20 +1Xis,

or
X — X o
T(x1,x2,x3)  T(x0,50,20) T (uy,u2,u3)’
- X2 — Yo +t’\ up
T(xix2x3)  T(xoyo,z0) T (upupuz)’
X3 )] 4t u3 )
T(x1,x2,x3)  T(x0,50,20) T (w1 ,u2,u3)

We say that the iso-line is through X in the direction U.
There are many ways to represent a given iso-line parameterically. For example,

X =Xy +§xV, §€ Fi,
represents the same iso-line as (A6) if and only if V = aXU for some nonzero iso-real
iso-number 4.

To write the parametric equation of an iso-line through two iso-points Xy and X; in Fps,
we take U = X — Xy, which yields

X\':Yo—i-f;(()?l—)?o):f>A<X\'1—|-(IA1—f)>A<XQ, f e Ip.
The iso-line segment consists of those iso-points for which 0<7<li.

Example 1.1.28. Let T'(x) = |x;|+ 1, x = (x1,x0,x3) € R}, T} =2, Xo = (—1,3,1), U =

(2,—4,0). Then
20— ( 13 l) 0— (% 4 0)
0 — 2727 2 I - 37 37 .

The iso-line segment is
X=X+ f>A< U,

which we can rewrite in the form

X _ 1,42
T = 2 1t3h
X2 —i_it
|X1‘+1 -2 3%
_x o 1
[x1]+1 2°



1. case x; > 0. Then we have

1
X3 = —§(x1 + 1),
from where

_ =3+4
X =94

_(9-81)(15—41)
Xy = 36 )

_ 4t—15 39
X3 = o [E[z,z)

2. case x1 <O0. Then we have

whereupon we get

_ 43
X = 230

_ 9-8
2= T3

—__3 _33
X3 = " H13 te( 474}‘

Definition 1.1.29. Suppose that Xy and U are in Fgn and U # 0. Then the iso-line through
Xy in the direction of U is the set of all iso-points in Egn of the form

A N A

X:XO—F%&U, t € Fg.
A set of iso-points of the form
X:)A(0+f§<0, flgfgfz,

is called an iso-line segment. In particular, the iso-line segment from Xy to X is the set of
iso-points of the form

N

R = Ro+FX(R1 —Ro) = F3 %0 + (I —F) X Ro,

>

>
IN
IA

19



Iso-neighborhood and Iso-open sets in F»

Having defined iso-distance in Fg~, we are now able to say what we mean by an iso-
neighborhood of an iso-point in Fjn.

Definition 1.1.30. If& > 0, &-iso-neighborhood of an iso-point Xy in Fin is the set
Ng(}?()) = {X S F]Rn : ’X—Xg‘ < é}
In Fs it is the inside, but not the surface of the iso-sphere of iso-radius & about Xy.

Example 1.1.31. In Fps, let T(x) = |xi| + |x2| + [x3]| +2, x = (x1,%2,x3) € R3, Xp =
(—1,2,3), Ty =4, €= 3. Then

0 13
Xo = (_ 717§>7

ool —

A

X1 X2 X3
[t [+ +]x3|+27 [xq [+ |x3[+2 7 |xi [+ [xa|+|x3]4+2 )

From here

X -X)<e X-XP2<3 =

—
SR | BT | 2+ & 1 2_,_ x73_§2<2
P+l +xf+2 T 8 [xi[+ e+ xs+2 4 [xi |+ +lxs]+2 8 647

or

N

2
\ Xp) = X 3. 1
]Vg( 0) {( 17-x27-x3) ER . (m_i_g)

2 2
+Hermimm —4) + (et —3) <&
Definition 1.1.32. The iso-open n - ball of radius i about Xy is the set
By(%o) = {X : |X = Xo] < 7}
The iso-sphere S; (Yo) of radius 7 and iso-centre Xy is the set
Sp(Xo) = {X : |X —Xo| =7}

Lemma 1.1.33. If X| and X, are in B;(Xy) for some # > 0, then so is every iso-point on the
iso-line segment from X, to X,.

Proof. From X|, X, € B;(X;) it follows that

’)21 —X()T < f, ‘Xz —XoT < f,
o X X / X X /
Al —AO ’ T1<AL, ‘Aiz—Ao ’ T1<AL.
T(X) T(X) T T(X) T(X) T,

20



The iso-line segment is given by

X:fﬁ\(ﬁz—i-(i]—f);()?], ()<f< A]
o X X X
~ =1= 2 +(1*),\ ! )
T(X) T(X) T(Xy)

and from here

= () + 00 (- ) V7

T(X2) T(Xo)

Definition 1.1.34. A sequence of iso-points {Xl};ll in Fn converges to the limit X if

AN N

hm X, —X| =0.

In this case we will write

lim X; =X.

[—o0
Remark 1.1.35. Let X; = (141,14 2,...,1+n). Then the sequence {X;}7° , is not conver-
gent in R". Also, if T(x) = x3 + x5+ +x2+2, x = (x1,X2,...,X,) € R", then

A

Xl — I+1 142

((1+1)2+(1+2)2+~-+(1+n)2+2’ (I4+1)24+(14+2)2++(+n)>+2°

I+n
U (IHD)2+H(42)2 -+ (14n)2 42 )0

and the sequence {X;}7_, is convergent to (0,0,...,0).

If X; = (%7% 1), then the sequence {Xl}l | Is a convergent sequence in R" to

7
(0,0,...,0). Also, if T'(x) = = (x1,%2,...,%,) € R"\{(0,0,...,0)}, then

X = (1(12+ D (P +1),.. . (P + 1))
which is not a convergent sequence.
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A

Theorem 1.1.36. Let X; = (x1;,x,...,%n), X = (x1,X2,...,%,). Then

lim X; =X
[—>o0
if and only if
lim )ei[:XAi, i:1,2,...,n.
[—>o0
Proof. 1. Let
lim X; =X
[—c0

and € = T% > 0 be fixed. Then there exists L = L(€) such that for every / > L we have

’XI—X <€ or

. B G £
. 7 T1<T1 or

whereupon
X X 7 P
‘T(X,) T(X)‘VT’ i=1,2,...,n, or
|%i — %i] <&, i=1,2,...,n
2. Let now
lim XAil:)?,', i= 1,2,...,]1.
[—>o0

Let also, £ = T% > 0 be arbitrarily chosen. Then there exists L = L(€) > 0 such that
for every / > L we have

|)?il—33i|<%, i=1,2,...,n, or

T K [ < —&_ -
7(x)) T(X)‘\/ﬁ<fﬁ’ i=1,2,...,n,

n

2. 2
Xik X & -
<T(X[) T(X)) I < e i=1,2,...,n.

From here we obtain the following inequality

therefore
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Theorem 1.1.37. Let {X;}7° | be a convergent sequence in R" to the point Y, Y # 0, X; # 0
foreveryl=1,2,.... Let also, the sequence {YA"(XZ)}‘I"’:1 be a convergent sequence in R" to
the origin. Then the sequence {)A(l}}’"zl is not a convergent sequence in Fn.

Proof. Let us suppose that the sequence {)A(l}‘f’:l is a convergent sequence in F» to the
element X. We fix & > 0, & € F. Then there exists L = L(&) > 0 such that

1X;—X| <& for Vi>L or

‘AXz _”L‘\/ﬁ<% for Vi>L,

TX) TX)
whereupon
X X €
Bl ]—(—‘< — for VIS,
T(X;) T(X) T2
consequently
. X
(X)) > 1Xi] for  VI>L,
5+t
72 T(X)

[—o0
and
XS0 fr wsL
Sl + X ‘
72 T(x)
Therefore the sequence {Xl}le is not a convergent sequence in Fir. O

Theorem 1.1.38. Let {X;}7° | be a convergent sequence in R" to the point X € R", let also
{T(X;)}7., be a convergent sequence to B € R", B # 0. Then the sequence {X,}_, is a
convergent sequence and

oA X
Iim X; = —.
[—3o0 B
Proof. We have ]
X lim;_ e X; X

lim X; = lim — = — > ==,
[—o0 I—eT(X;) lim_,T(X;) B

O
Corollary 1.1.39. In addition, if T : R" — R is a continuous function, then B= T (X) and
lim X, = X.
[—o0

Next theorem lists some of the properties of the convergent sequences that follow di-
rectly from the definition for convergent sequences.

Theorem 1.1.40. Let lim;_ .. X; = Xo, lim;_,o. ¥} = ¥, then
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1. lim; o (X + 1)) = Xo + 1o,
limlﬂwﬁ(f()@ = a%ﬁo,
limleOL)A(Xl = (X§<}20,

lim[*m OQA(I = O(X(),

Nk wbd

limlim &Xl = O(X().

Exercise 1.1.41. In Fia, let T(x) = Y7, |xi|* +4, x = (x1,%2,...,X,) € R Investigate for
convergence the sequence {X;}7_,, where

L X =(,1—1,1—2,....1—n),

2. =(\/\/z+1\/1+2 VI+n),

3. X = (VI+T—VIL2(VI+1=VD),3(VI+T=VI),...,n(VI+1=V1)),
4. X, = (V2P+1-12(V2+1-0),3(V2+1-1),....n(~N2P+1-1)),
S.X,:<lm S ,2,11_2\3/1—13,...,%31—13).

Definition 1.1.42. A sequence {Yl}le of elements of Frn will be called a bounded se-
quence if there exists an iso-real iso-number M € Fg such that

X1<M  for VIeEN.

Theorem 1.1.43. Let {X;}7°, be a bounded sequence in R", let also the sequence
{T (X))}, is a bounded below sequence in R" by the positive constant P. Then the se-
quence {X;}7, is a bounded sequence.

Proof. There exists a positive constant M such that

|X;| <M.
Then
1 1
x <=
T(X;) P
and
‘ ‘ [ IXzI <M /i
_ < —\/Th.
P
Consequently, the sequence {Xl}}”: | is a bounded sequence in Fign. O

Theorem 1.1.44. Ler {X;}7° | be a bounded below sequence in R" by a positive constant,
let also the sequence {T(X;)}7., is a sequence in R" such that

lim 7(X;) = 0.

[—o0

Then the sequence {)?1}}”:1 is not a bounded sequence.
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Proof. Let us suppose that the sequence {Xl}le is a bounded sequence in F». There exist
a positive constant M € R and a positive iso-real iso-number P € £ such that

‘Xl’ >M and | A[}‘\ < ﬁ
Then
5 P X e MV
P— ~ Z | l| BN Tl Z S )
Ty T(X) T(X;)
whereupon
3
MT}
T(X) > —1
( Z) — P Y

which is a contradiction because the sequence {7'(X;)}? I~ isa convergent sequence to the
origin. Consequently, the sequence {X;} i~ is not a bounded sequence in Fign. O

Theorem 1.1.45. (Iso-Cauchy’s Convergence Criterion) A sequence {)A(l}}’"zl is convergent
if and only if for each & > 0, & € Fg, there exists L = L(§) > 0 such that

<& for Vs, > L.

Proof. We observe that

X -Xl<¢ =
X] _ XA €
)T(Xl) T(X,) < T% ’
|

Therefore the criterion follows immediately from the classical Cauchy’s convergence crite-

rion applied for the sequence { T&) };0:1 -

Definition 1.1.46. If S is a nonempty subset of Fin, then

A

d(S) =sup{|X -7

’|\ A A

X,¥eS}

—

will be called the iso-diameter of S. If d(S) < oo, then S will be called bounded, if d(S) =
S will be called unbounded.

Definition 1.1.47. A nonempty subset A of Firn will be called closed if every limit of every
sequence of elements of S is an element of S.

Remark 1.1.48. Since, if {X;}}", is a convergent sequence in R", there are cases such
that the corresponding lift {X’l}}x’: | is not a convergent sequence in Fin and the conversely.
Therefore, if S is a closed set in R", there are cases such that S is not a closed set in FRn and
the conversely.
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1.2. Iso-real Iso-valued Iso-Functions of n Variables

LetD CR"and T, f: D — R, T(x) > 0 for every x € D.
For x € D we introduce the following notations

A

T)(Cx) - <Tx(lx)’ T)Z) Tx(x))
and

xT (x) =T (x)x = (1T (x), T (x),...,x,T(x)).

Definition 1.2.1. We will say that in the set D is defined the iso-function of the first kind or
the iso-map of the first kind """ if

is a function(map) in the set D.

The element x € D will be called the argument or the iso-independent variable of the
iso-function of the first kind, and its iso-image $ = f" (%) will be called the iso-dependent
iso-variable or the iso-value of the iso-function of the first kind at the point x. The set

{7"(%):x €D}

will be called the iso-codomain of the iso-values of the iso-function of the first kind. The set

D will be called the domain of the iso-function of the first kind. The function % will be

called the iso-original of the iso-function of the first kind .

Example 1.2.2. Let D =R?, f(x) = x1x2, T(x) =22 +x3+ 1, x € D. Then

ey S xix
PO =50 = 2raer

Remark 1.2.3. We will note that if f is not a function in D, then there is a possibility f
to be a function in D and the conversely.

Example 1.2.4. Let D = R?,
X xp > 1Lx <1,

x1(x+1) x> 1,x>1,

x1(x+1) x <1lx <1,

(X1+1)(x2+1) x1 > 1x, > 1.

Then f is not a function because
fn=1,  f(,1)=2,  f(1,1)=3  f(1,1)=4
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Let

1 x> Lxy <1,
2 x>2lLx>l,
T(x)=
3 X1§1,XZ§1,
4 x1 <1l,x>1.
We have that T'is not a function in D since
T(1,1) =1, T(1,1)=2, T(1,1)=3, T(1,1
On the other hand,
X x> Lx <1,
x1(x2+1) >1 >1
ey L) o mebesh
x—‘()%”) x1 < lLxp <1,
| e sy
We have that
T(1,1)
and
X1 x> 1,
X >1,
f(xlvl) _ ! -
T(x,1) X x <1,
\ XITH x1217
(1 x <1,
X+l >
f(Lx) J 2 221,
T(1,x) sz+2 x <1,
o omsld

Therefore " is a function.
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Let now
fx)=xi+x3+1, xeD,
x%—i—l for xy <1, x; €R,
T(x) =
x%—i—x%—i—l for x> 1, x; €R.
Then f: D — R is a function. On other hand,

x%-&-x%-ﬁ-l

peam for x <1, x1 € R,
AN
re=q
x7+x5+1
P e, for x> 1, x1 €R
Since
2 2
AN xXi+2 AN xi+2
X = X = x1 €R
R A T ae ,
xp=1— xp=1+

then f" : D —s R is not a function.

Exercise 1.2.5. Let D = R3, T(x) = x3 +x3 + |x3| +2, f(x) =22 —2x100 + 13, x =
(x1,X2,X3) € D. Find f"(%).

2 2
X7 —2x1x2+x35

Answer. S-———-3,
X+ +|xl+2

Exercise 1.2.6. Let D =R, f(x) = |x1| —2|x2| +3x3 — 4,
(|x1 — x| +4 x; <2, x <1, x3 €R,
|X1’+3|X3|+4 x; <2, x> 1, x3 € R,

|x1| +5 x1 > 2, x <1, x3 € R,

x%+2x2—3x%+5 x] > 2, x> 1, x3 € R.
Check if (%) is a function.
Answer. No.

Definition 1.2.7. We will tell that in the set D is defined the iso-function of the second kind
or the iso-map of the second kind f" if xT(x) € D for every x € D and

, xeD,
x)

2 ST (x))
I

is a function(map) in D.
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The element x will be called the argument of the iso-function of the second kind or the
independent variable, and its iso-image $ = f" (x) will be called the iso-dependent iso-
variable or the iso-value of the iso-function of the second kind. The set

{/"(x):x€D}

will be called the iso-codomain of the iso-values of the iso-function of the second kind. The

set D will be called the domain of the iso-function of the second kind. The function %
will be called the iso-original of the iso-function of the second kind.
Example 1.2.8. Let D = {(x1,x2) € R? : x} +x3 < 1}, f(x) = x1 +x2, T(x) = x$+1x§+2,
x €D. Then

. . . 2,249 2,249

() = (a7 (), T (x)) = (xl(xl + x5+ ),xz(xl + x5+ ))7 eD.
10 10
Then
2 2 2 2 2 2 2 2 2 2 2 2 9
x%(xl"‘xz‘*‘ ) +x%(x1+x2+ )° (it x+2) (B 42) < —.
100 100 100 100

Consequently xT (x) € D and

() = L0T ()
f/\ (X) - T(x)

f( 10x] 10xy )
2,252, 2
— X5 +2 Xy +a542
X3 +x3+2
10

_ 10 ( 10y 4 105 >
- 2

BHo+2 \ 2 +5+2 | X +x5+2
_100(x14x2)
o (g2
Example 1.2.9. Let D = R?,
x| +x3+2 x <1, x €R,
fx) =
x1—|—2x%—|—1 xp > 1, x €R,

Then f : D — R is not a function. Let us take
2 x1 <1, x €R,

1 x1 > 1, x) € R.



For f"\(x) we have the representation

0T (0)+972(x)+2 <1 eR
A f6TW) _ [T @)l (x) " T o
fhx) = rx) T(x) - x14+2:3T2(x)+1

l# X1 Z 1, X € R?

x+23+1 X <1, x €R,
x+23+1  x>1, xmeR

We have that f" : D — R is a function.

Example 1.2.10. Let D =R?, f(x) = x; +x2+ 1, x= (x1,x2) € D. We have that f : D — R
is a function. Let us take

. x%+1 x; <1, x €R,
T(x)=
x%+2 x; > 1, x2 € R.
Then R X R
A FOT(x) _ fOaTx)xT (x))
PO =" =7
X1T(X)4T-)(C)ZC)T(X)+2 x>, X €R,
1
xl-i—)Cz-i-ﬁ x; <1, x €ER,
2
otz xp > 1, x €R.

We note that " : D —s R is not a function.

Exercise 1.2.11. Let D =R?, f(x) = x; —2x2 +3, T(x) =2 +x3 +2, x = (x1,x2) € D.
Find f"(x).
A _ 3
Answer. f (x) = X1 — 2x2 + W
Definition 1.2.12. We will tell that in the set D is defined the iso-function of the third kind
or the iso-map of the third kind f lfﬁ € D for every x € D and

)?::f(i):f(Ax>, x€D,

is a function(map) in D.
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The element x will be called the argument of the iso-function of the third kind or the in-
dependent variable, and its iso-image $ = f (%) will be called the iso-dependent iso-variable
or the iso-value of the iso-function of the third kind . The set

{/(%):x€D}

will be called the iso-codomain of the iso-values of the iso-function of the third kind. The

()

set D will be called the domain of the iso-function of the third kind. The function 0o

will be called the iso-original of the iso-function of the third kind .

Example 1.2.13. Let D = R?, f(x) = x% —i—x% +1, f(x)= x% +xp. Then

J(®) = =

) T

3
i
73(x)

T (x)

X2
T

X +x T2 (x)
T4(x)

_ x4n(dHd+1)?
o (atn?

Example 1.2.14. Let D = R3,

x%—i_x%—i_x% (X],)Cz) € Rz? X3 S 17

fx) =

1 (x1,x2) € R?, x3 > 1.

Then f : D — R is not a function. If we take

T(x) = {\/x%—l—x%—l—xg (x1,x2) € R?, x <11 (x1,x2) € R*,x3 > 1,

then
f(T*l 2 )
A (x) 7T (x) " T(x)
(&)= ()
2 2 2 )
x1+x2+x% + x%+x2+x% + x2+x2+x (X],Xz) eR ’ X3 < 1’
1 (X],XQ) € Rz? X3 > 17

whereupon f(£) = 1 for every (x1,x2,x3) € D and therefore f : D — R is a function.
Exercise 1.2.15. Let D =R?, f(x) =x3 —2x1x2, T (x) =x} + 1, x = (x1,x2) € D. Find f(%).

x%—lexz
(q+1)*

Answer.
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Exercise 1.2.16. Let D = R?, f(x) = x% —3x1x2 —1—4)6‘1L —I—xg, x = (x1,x2,x3) €D,

VA4 ()R x3<2,

1 2
2+ﬁ (X],XQ)ER, X322.

Check if f is a function.
Answer. No.
Definition 1.2.17. We will tell that in the set D is defined the iso-function of the fourth kind
or the iso-map of the fourth kind " if xT (x) € D for every x € D and
§i= 0 = f(xP (), xeD,

is a function(map) in D.

The element x will be called the argument of the iso-function of the fourth kind or the
independent variable, and its iso-image $ = f(x) will be called the iso-dependent iso-
variable or the iso-value of the iso-function of the fourth kind. The set

{f"(x) :x €D}

will be called the iso-codomain of the iso-values of the iso-function of the fourth kind. The
set D will be called the domain of the iso-function of the fourth kind. The function f (xT(x))
will be called the iso-original of the iso-function of the fourth kind.

Example 1.2.18. Let D = {x = (x|,x;) € R? :x}+x3 <1}, f(x) =x1 43, T(x) = 5 (3 +
x%—kl), x €D. Then forx € D

A . . 1 1
T2 (0) +2572(x) = ( +23) T2 (x) = 5 (T 5+ 1) +x3) < 5,
ie. xT(x) € D. Therefore the function f is well defined on D and

) =T () +572(x)
= (i +37 ()T (x)
= (0 + g+l +3+1)

it +axd -+ 1L ad xS xd a3 g +ad 4 10x3 +10x,
- 100 :

Example 1.2.19. Let D = R?, f(x) = x3 —x, x = (x1,x2) €D,
lx1|+ 1 x; €R, x <1,
T(x)=
x%—i—x%—i—l x; €R, xp > 1.
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Then f : D — R is a function. Also,

N N

frx) =T (x) = f(a T (x),0T (x) = f(a T (x),xT (x)
x|+ —x(xl+1)  xeR, xn<l,

B +a3+1) —x0(d+x+1) x; €R, x> 1.
Consequently f" : D — R is not a function.
Exercise 1.2.20. Let D = R?, f(x) =x; —x2, T(x) = |x1| + |x2| + 1, x = (x1,x2) € D. Find
fh ().
Answer. (x; —x2)(|x1| + |x2|+1).
Exercise 1.2.21. Let D =R2, T(x) = x2 +x3 +4, x = (x1,x2) € D,

x1—2xz+3x% x; €R, x <1,

flx) =

x1+4x% x1 €R, xy > 1.
Check if f and f" are functions.
Answer. No, No.
Definition 1.2.22. We will tell that in the set D is defined the iso-function of the fifth kind
or the iso-map of the fifth kind f" if xT (x) € D for every x € D and

=W =0 =1 (55) vEP

is a function(map) in D. We will use the notation .

The element x will be called the argument or the independent variable of the iso-function
of the fifth kind , and its iso-image $ = f" (x) will be called the iso-dependent iso-variable
or the iso-value of the iso-function of the fifth kind. The set

{f'(x):xeD}

will be called the iso-codomain of the iso-values of the iso-function of the fifth kind . The
set D will be called the domain of the iso-function of the fifth kind

. The function f ( T?x)) will be called the iso-original of the iso-function of the fifth kind

Example 1.2.23. Let D = R?,

X1 +x2 x <1, X2 <2,

2x +1 x1 <1, Xy > 2,
flx) =

3X1+X2 x1>1, xy <2,

X7+ 2x1x2 x; > 1, Xy > 2,



T(x) =22 +x3+ 1, x(x1,x2) € D. Then

X X
T(x)+T(x) x1 <1, Xy <2,
2%4—1 x; <1, X > 2,
T >1 <2
o T = s
Ax% 4250 x1 > 1 Xy <2
20 " 700 TW) =5 2=2
X1+Xx2
B+ x1 <1, X2 < 2)
x)
2X%+X%+1+1 x1§1, x2227
B 3,84 % > 1 <2
K+a3+1 (2 +x5+1)2 Xz X2 >4
2
x7+2x1x0
s azlh w22

We have that f and f" are not functions.
Example 1.2.24. Let D = R?,

x% + 2x% + 3x§ + 6x1x2 x; <1, x €R,

fx) =

47 —3x} + 22§ + 733 x1>1, x €R,

6x% + 6x1x2 x1 <1, x €R,
T(x)=
x?+2xg+7x§ x> 1, x € R.

We have that f and T are not functions. On the other hand,

Y (x) = f(&) Zf(%’%)

(0 2. 438 4exom oy <l peR
T*(x) TZ(x) f‘Z(x) T(x) A(x) 1> 1, 2 ,
xS x4 xﬁ x2 x3
4’f‘5éx) - 3f"4Ex) +27A"62x) +7f~2Ex) TAGEJC)’ X1 Z 17 Xy € R’
3 2 3 2 6 A
XI+(2XI+;2(J;) ) x1 <1, x € R,
2o (4 iy ()34 T2 ) x1>1 x €R

\ 70 (x)



We have that f" is a function.
Exercise 1.2.25. Let D = {(x;,x2) € R:x; > 1,xp > 1},

X7+ 3x3xp + x1x] + X3 1<x1 <2, x €R,

fx) =

7 2 3
xp — Txixz +x1X3 xp > 2, x €R,

A

T(x) =x1, x= (x1,x) € D. Find f(x), x € D.
Answer.

1+3j—f+%+§ 1<x1 <2, xeR,
i) =

3
1—7%4—% x1>2, xy € R.
Exercise 1.2.26. Let D =R, f(x) = 2x1x2, T'(x) =x3 +x3+ 1, x = (x1,x2) € D. Find f" (x),

xeD.

X1X2

Answer. 2 m .

Exercise 1.2.27. Let D = R?,

x% + 3x1x3 + 6)6‘2L —dx1xp — 5)6196‘2L x; <1, x €R,
fx) =
x% + Sx%xz + 4x§ xp>1, x) €R,
x2S+ x3d +2 x1 <1, x €R,
T(x)=
A8+ Txdas + 6xx5 + 5x10 49 x> 1, x €R.

Check if fV is a function.
Answer. No.

Exercise 1.2.28. Let D = R3, f(x) = x} +x2 + 3x1x0x3 + x4, T(x) = x3 +x3 +x%, x =
(x1,x2,x3) € D. Check if f" is a function.

Answer. Yes.

Definition 1.2.29. Let f and § are iso-functions of the first, the second, the third, the fourth
or the fifth kind, f and g are their iso-originals, respectively. Let also, a € R and 4 = Ti.
We define

1. aA>A<fA:a~,
/\A_i'v

2. af—Tl A

3. axf=dlif
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Example 1.2.30. Let D+ R?, flx) = x% + 2x1x2, g(x) = x1 — X2, T(x) = x% —i—x% +1, x=
(x1,x2) € D,, Ty = 4. We will find

We have

M Xl X
= 7m PO
. x%+2x1xz
Ty
o x%+2x1x2
= @t
() )
f (X) T T
o x%+2x1x2
- X%+X%+1 ’
X X1 X
5(%) = g(m)) _ g(mwnx))
8 - T T T(x
o 2
— T(x)}\ T(x)
T (x)
X=X
12 (x)
__Xx1—X
(+x+1)2
N 3X1 - 3x2
3%8(%) = 2
(%) (3 +x3+1)2
2
SN2 — 9. 4. X7+2x1x2
2R =24
o 8x%+16x1xz
= e
_ 8X%+16x1x2 3x1—3x

25N (%) —3%4(%) = -

(Z+a3+1)2 (FHa3+1)2

o 8x%+16xm2—3x|+3x2
=T @
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A= x%+2x|xz ) ‘8x%+16x|x2—3x|+3x2
T (g’ (+x3+1)2

320+ 128x3x0 — 125 — 1252 x +24x
o (¥+x5+1)4 ’

Exercise 1.2.31. Let D =R?, f(x) = x| +x, T(x) =x3+x3+ 1, x = (x1,x2) € D. Find
AR +2%fNx), xeD.

Solution. We have

£(x)
T

@) =

— X1+x2
x%-‘,—x%—',—l ’

=X (x%—l—x%—i— 1) —i—xz(x% —i—x% +1)
= (x; —i—xz)(x%—i-x%—i- 1),

§§<fA(x) =2(x —l—xz)(x%—i-x%—l— 1),

FAR) 425X M x) = xgggil +2(x; +x2) (2 +x3+1)

_ (x1+x2) (142(xF4+x04+1)?)
x%+x%+l

Exercise 1.2.32. Let D=R? T} =4, T(x) = |x;| +2, f(x) =x2 +x3, x = (x1,x2) € D. Find

Answer.

307 +3x3 2 22 444 2.4 21, 144 4 4
ATy — 2 — 8|y |x7 — 8x7 — 4xjx5 — 48x7x5 — 16x7|xy x5 — 32x5 — 32|x1[x5.

Definition 1.2.33. Let f is an iso-function of the first, the second, the third, the fourth or
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the fifth kind, f is its iso-original. Then

P=pi=pi=p,

fn+1:f'\nf'\:fnf:fn+l’ neN.
Exercise 1.2.34. Let D=R? 11 =2, T(x) = | +|x2|, f(x) =x1 —x2, x = (x1,x2) € R. Find

2

A= (P®) -2 ()

Solution. We have

AA(3) = L)
f/\(x) - f(x)

N § )
1+[x2|?

(") = 02

_ XI—X X=X
1+|x2| © 1+]|x2|

(x1—x2)?

(1+]xal)?”

= (0 —x) () = (1+ ol (1 — ),
32 (11 )" =2/ @)
= 2(1+ |2 ])? (1 —x2).
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Consequently

001+ bl e 2

A=21 2
(14 |x2])

Exercise 1.2.35. Let D = R?, T =3, f(x) = x; +2x, T(x) =x3 + 1. Find
A 2 A 2
(r'®) = (rw)-
Answer. 2(x; +2x)%(1 +x7)2.

Definition 1.2.36. An iso-function h of the first, the second, the third, the fourth or the fifth
kind will be called an iso-injection, an iso-surjection or an iso-bijection if its iso-original h
is an injection, a surjection or a bijection, respectively.

1.3. Limits of Iso-Real Iso-Valued Iso-Functions of » Variables

Let D CR"and T : D — R, T(x) > 0 for every x € D, f : D — R is an iso-function of
the first, the second, the third, the fourth or the fifth kind and let f be its iso-original.

Definition 1.3.1. The real number a will be called the left limit of f at xo € D if it is the left
limit of f at xo.

Definition 1.3.2. The real number a will be called the right limit of f at xo € D if it is the
right limit of f at xo.

Definition 1.3.3. The real number a will be called the limit of f at xo € D if it is the limit

of f at xo.
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Example 1.3.4. Let D =R?, f(x) =1 —x3 —2x3, T(x) = 1 +x2 +x3, x = (x1,x2) € D. Then

7@ =7

_ 1=x-29
I e

() = L0T0) STt ()
0= =" e

_ 1 ()’ 25 (14 +43)?
1+x3+x3 ’

oy o)

T (x)

_ x4 2adad
e

N

= f(xlf(x),XZT(x))

=1—x}(1+x3+x3)* = 23 (1 + 22 +x3)%.

Then
lim 7MF) =1lim 125
x—(1,1) x—(1,1) [
- _2
=-2
: () — SGT ()
llmx‘)(l,l)f (x) = ()
1 1—x3 (1422 +x3)? = 2x5 (14223 +x3)?
=lim, 1) R
- _2
3

4 4 2 2.2
. YN . +x5+14+x7+2x7x
lim X) =lim R A T
x—)(l,l)f( ) x—(1,1) (112 +2)7

-2
-

lim, 1 1) £ () = Lm0 (1 =27 (142 +23)% =23 (1 +27 +33)?)
= -26.
Exercise 1.3.5. Let D =R?, f(x) =xt +x3+7, T(x) = 1 +2x3 +x3, x = (x1,x2) € D. Find
li FA(R).
im ] (£)
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Answer. 15—2

The theorem below follows immediately from the definition for the limit of an iso-
function, therefore we leave its proof to the reader.

Theorem 1.3.6. Let xg € D. Then there exists

li Fx) =
im_ f(x)=a

if and only if there exist f(xo+0), f(xo—0) and
f(xo—0) = f(x0+0) = a.

Definition 1.3.7. We will say that the number b € R is the limit of the iso-function f when
x — oo if it is the limit of its iso-original f when x — oo,

The proof of the following theorems repeats the steps of the proof in the case n = 1(see

[1D.

Theorem 1.3.8. Let the iso-function f has a limit a at the point xo € D. Then there exist
a neighbourhood U (xo) and a number b > 0 such that for every x € U(xp) N D, x # xo, we
have

[fx)] <b.
Theorem 1.3.9. Let lim, ,,, f(x) =b, b #0.

1. There exists a neighbourhood U (xy) such that for every x € U(xo) N D, x # xo, we

have
|b|

77
2. If b > O then there exists a neighbourhood U (xq) such that for every x € U(xy) N D,
X # xo, we have

F(x)] >

3. If b < 0 then there exists a neighbourhood U (xy) such that for every x € U(xo)ND,
X # xp, we have

S

~

flx) < =.

[\

Theorem 1.3.10. Let § : D — ¢(D) and lim, ., f(x) = a, lim, _,,, §(x) = b and f(x) <
O(x) for every x € D. Then a < b.

Theorem 1.3.11. Let ¢ : D — §(D), §: D — §(D) and

and

Then



The following theorem lists some of the properties of the limit of an iso-function of the
first, the second, the third, the fourth or the fifth kind. Its proof follows from the definition
for the limit of an iso-function of the first, the second, the third, the fourth or the fifth kind .

Theorem 1.3.12. Let g : D — $(D) and f has a limit at the iso-point xo € D. Then
+8(x)) = limyyy, () £ limyy f(x),

3(x)) = limy_,y, f (o) limy—,, 8(x),

(
2. limy— . (
3. limy— . (

(

)
) >A<g,\(x)) = 1imx—>xof(x) X 1imx—>x0§(x),
)
)

A 8(x)) = Timy .y () ATimy .y 8(x), if limy 8 (x) #0,

5. limyyy 29 = Il i g(x) 0,

gx) — limy ) &(x

A

6. if |f(x)| is bounded below and lim, ., g(x) = 0, we have that lim, . (f(x) <
8(x)) = oo,

7. iflim,_, f(x) = a and lim,__,, §(x) = oo, we have that lim,__,,(f(x) £g(x)) = 0.

Theorem 1.3.13. The limit lim,__,,, f (x) = a exists if and only if for every € > O there exists
a neighbourhood U (xq) such that for every x1,x; € U(xp), X1 7 Xo, X2 7# X0, we have

() = Fw)| <e.

Definition 1.3.14. We say that the iso-function f approaches oo as x approaches xq if its
iso-original approaches +o as x approaches x.

Exercise 1.3.15. Find lim,__, g ) f"(£), where

1 —cos(xix N
flx) = x2x(212) Tx) =P +3+1, x=(x,n)eD=R%.
12

Answer. 1.

Exercise 1.3.16. Find lim, o) /" (£), where

_ log(1+x1x2) .

fx) T(x)=x7+x3+1, x = (x1,02) € D=R%

X1X2
Answer. 1.
Exercise 1.3.17. Find lim,__, .. o) f" (&), where

1 .

flx)= T(x)=x7+x3+1, x = (x1,%2) € D=R2

=5,
X1 +x5
Answer. 0.
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Exercise 1.3.18. Find lim,__,.. f (&), where

X1 sinx N
f) =", T@=xd+3+1, x=(@x,n)eD=R~:
X +x2

Answer. 0.
Exercise 1.3.19. Find lim, . .. f"(£), where

A 1

= x1X2, T(x)=—5—F—, x=(x1,x) € D=R>
f(x) =x1x2 (x) P21 (x1,%2)

1.4. Continuous Iso-Real Iso-Valued Iso-Functions of » Vari-
ables

Let D CR"and T : D — R, T(x) > 0 for every x € D, f : D — R is an iso-function of
the first, the second, the third, the fourth or the fifth kind and let f be its iso-original.

Definition 1.4.1. The iso-function f will be called continuous at the point xo € D if its
iso-original is a continuous function at Xxy.

Definition 1.4.2. The iso-function f will be called continuous function in D if it is a con-
tinuous function at every point of D.

Example 1.4.3. Let D =R?, f(x) = x2 +x3, T(x) = 1 +x3 +x3. Then

= (7 +x3) (1 +x7 +x3),

) )
f(&) = = ——

T (x) T(x)

__x6+m
(143 +:3)3?

= (7 +3) (1 +xi +23)°.
The iso-functions f™\, f*, f and f" are continuous in D.
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Example 1.4.4. Let D =R?, f(x) =x} +x3+3, x= (x1,%2) € D, and
1 x; €R, x <1,
2 x; €R, x> 1.

Then f is a continuous function in D. Then

x?+x%+3 x1 €R, xn <1,

T(x 34
) % x1 €R, x> 1,

xf—i—x%—i—?) x; €R, xy <1,

fA(X) — A<x> = , X
W x1 € R, x; > 1,
A f(f@)) B+x+3  x €R, xn <l,
f®)=— 7=
) XH){?M xneR, — w=1,

x?+x%+3 x1 € R, x <1,

8x?+8x%—|—3 x1 €ERxp > 1.
Then the iso-functions f", f", f and f" are not continuous functions at (x1,1), x; € R.

Exercise 1.4.5. Let D = R?, f(x1,x) = 92 for (x;,x) # (0,0), £(0,0) =0, T'(x) =

— ,2.4,2
X7+x5
1+x2 +x3, x = (x1,x2) € D. Check if (%) is a continuous function in D.

Answer. Yes.

Exercise 1.4.6. Let D =R?, f(x) = (x; +x;)sin L sin éfor x1x2 #0, f(0,x2) = f(x1,0) =

x1
0, x1, x2 €R, T(x) =2+ |x1]| +x3, x = (x1,%2) € D. Check if (&) is a continuous function
inD.
Answer. f\ is not a continuous function at every point (x1,x;) for which x;x, = 0 and
x4+ x5 #0.
Below we list some of the properties of the continuous iso-functions of the first, the

second, the third, the fourth or the fifth kind. Their proofs repeat the proofs in the case
n=1.

Theorem 1.4.7. Let § : D —> §(D) and f are continuous at xo, xo € D. Then
1. f+ g is continuous at xo,
2. fXg is continuous at xo,

3. f& is continuous at xo,

44



4. f A is continuous at xo if §(xo) # 0,

~

5. % is continuous at xo if §(xo) # 0

oQ

Theorem 1.4.8. Let f is continuous at xo € D. Then

1. there exists a neighbourhood U (xg) such that for every x € U (xo)ND, x # xo, we have

~

|f (x0)|

71> R,

2. if f(x0) > 0, there exists a neighbourhood U (xo) such that for every x € U(xo)ND,
X # xo, we have

3. if f(xo) <O, there exists a neighbourhood U (xy) such that for every x € U(xq)ND,
x # xp, we have

Definition 1.4.9. The iso-function f of the first, the second, the third, the fourth or the fifth
kind will be called discontinuous at xo € D of the first kind if there exist

Ffxo—0), f(xo+0),

and

f(xo—0) # f(xo+0).

Definition 1.4.10. The iso-function f will be called discontinuous of the second kind at
X0 € D if one of the both of the limits

flxo—0), f(xo+0)
does not exist. Here are included the cases
Flxg—0) ==oo,  f(xg+0) = oo,

Theorem 1.4.11. Let K be a compact set in R" and f : K —s D be a continuous function
in K. Then f is bounded.

Definition 1.4.12. We will say that the iso-function f : D —s R is uniformly continuous in
D if for every & € Fi, & > 0, there exists 6 = 0(8)>0,0¢ Fi, such that

A

[f)—flx)] <&
whenever |x —x'] < §, x,x € D.

Theorem 1.4.13. If f is a continuous function on a compact set D C R" then f is an
uniformly continuous function on D.
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1.5. Iso-Partial Derivatives of Iso-Real Iso-Valued Iso-Functions
of n Variables

Let D CR"and 7 : D — R, T'(x) > 0 for every x € D. Here we suppose that f,7: D — R
are enough times differentiable functions with respect to their variables.

Definition 1.5.1. Let i € {1,2,...,n} be fixed. Then the iso-differential with respect to x;
we define as follows

95 () = T (x)3y,(-)dx:.
Using the above definition we can deduct the following iso-differentials.
1. The iso-differential with respect to x; of x;, i = 1,2,...,n,

Oy, (%) = T (x)3s, 7y

T (x)dx; —x;i0x; T (x)dx;
72(x)

=T(x)

T (x) ix,-axif'(x)
T(x)

dxi.

2. The iso-differential with respect to x; of x;, fori # j, i,j=1,2,...,n,

éxi (XAJ) = 7,\1()6)6)6[' %dxi

3. The iso-differential with respect to x; of an iso-function of the first kind

PA(E) — T SO gy
Xif/\(x) - T(x)axi f"(x) dxl

[«P)

dy; f(x)f“(x)dx,-ff(x)axi T (x)dx;
12(x)

=T(x)

_ 0 ST () ()3 T(x) ,
= i dx;.

4. The iso-differential with respect to x; of an iso-function of the second kind

0,/ (x) = T ()2, L5

O f(xT (x)) 0y, (xif‘(x))f’(x)dxiJrZ?:l.#i 8xjf(xf‘(x))xj8,(i T(x)dx;— f(xT (x))0x, T (x)dx;
720

=T (x)

34, (T () (P (x) xidi T ()T ()T 10, £ (T ()00, T () (T ()2, T ()

() dx,'.
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5. The iso-differential with respect to x; of an iso-function of the third kind

W f (%) = T (x)0,, ! <ﬁ>

T(x)

Q»

dx,-

_ a“ff<ﬁ)a”(ﬁ)T(x)dx’*m:hi#faﬁf(ﬁ)a)" o T ()i f(m )a"T( )
- T(x) Tz(x)

x ) T@-x05T(x) 9 T(x) x &
_ af(ﬁ)T 1,741 f( ) ST T(x)*f(m)aw”x)

= T®) dx;

ot () B0t s i (5 )t (25 ) Fa
70

6. The iso-differential with respect to x; of an iso-function of the fourth kind

3, () = T ()34, (F(T (),
— P ()3, (T ()3, (i () )y + T () + T () Ky s, (T ()
— ()3 T () (P (x) + 59T ()i + T () I 00, f T ()95, T (),

7. The iso-differential with respect to x; of an iso-function of the fifth kind

+T(x) X uaéza.ff(ﬁ)ax"ﬁc)dxi

x’T()

X T (x)—x; X,() n x Tri(x) .
i) TOE e (75 J i

=0uf (i) g s~ T (785 )0 i o

Definition 1.5.2. The first order iso-partial derivative of the first kind with respect to x;
will be defined as follows

(a7 =9 () /9 (80)-

Using the above definition we have

1. The first order iso-partial derivative of the first kind with respect to x; of an iso-function
of the first kind

Arenyle 1 ST ) —f(0)9 T ()
(f (x))x,- T Tw T()C)*xiaxif‘(x) '
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2. The first order iso-partial derivative of the first kind with respect x; of an iso-function of
the second kind

(f/\(x))K*) o LBxl.f(xf"(x))(T(x)#»x,@xiT(x))f‘(x)JrZ?:l.#iaxj.f(xf"(x))xjax,.f"(x)f(x)ff(xf“(x))ax’.f"(x)
X T T(x) T (x)—x;0x, T (x) ’

3. The first order iso-partial derivative of the first kind with respect to x; of an iso-function
of the third kind

(#)1® = L aXif(ﬁ)(T(x)*xianf(x))* _'f:AL./#ia»*‘jf<Aﬁ>xfﬁf(x)ff(ﬁx))T(x)ax‘j(x)
X T2 T (x)—xi0y, T (x) ’

4. The first order iso-partial derivative of the first kind with respect to x; of an iso-function
of the fourth kind

ot vy B T (P Exd P+, e, FOT ()54 P 0)
(f (x))x,- - T(x) T(x)fx,-axif(x) )

5. The first order iso-partial derivative of the first kind with respect to x; of an iso-function
of the fifth kind

10l (7)) (T =5 (0) = T e f (75 ) 5T )
T T (x) —xi0,, T (x) '

Example 1.5.3. Let D =R?, f(x) = x; +x, T(x) =x3 +x3 + 1, x = (x1,%2) € D. Then

i) _sirt)
f(.XA) o o) T0)'T®) ) xj4x

T
(x) T)  (fgt+)?’

A N

fHE) = FOT () = fnT (x), 0T (x) = (0 +x0) (@ +5+1)
:x:i’ +x1X3 + X1 + X7 —i—x% +x2.
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From here,

A R ~ ~ A 42 2 1
Oy, (£1) = T (x)9x, £1dx1 = T (x)0y, T(l)dxl (x1 +x2)0y, )ﬁd}q = X?J:%ff] dxi,

Ox, FA(R) = T (x)9y, F(£)dx; = (0} 43 + 1)y, Fydn = W‘zifffﬁldx

éxlfA (x) = T(x)0y, A (x)dx; = (x3 433+ 1)0y, (x1 +x2)dx; = (62 +x3 + 1)dxy,
éxlf( t) = ( )axlf( t)dx,

2.2
) + X1+x2 _ —3xi+as—4xixn+1
= (o + 0 (igip )dn = g,

éxlfA (x) = T (x)dy, f (x)dx; = (xF + 23+ 1)0y, (33 + 123 +x1 +x2%7 + X3 +x2)dx
= (3} +x3+ 1) (3x} +x3 + 2x1x2 + 1)dxy.

Using the above computations we get

AN S n I® 3x A (% B
(fA(X))x =0, fMNR) S0y, (R1) = 1) g 2on bl

1 O 3l dg i

f e 3 7 3 0 P (x X xs
(fA(x)> =0y, f(x) /Oy, (R1) = aflfA(): a1

X T (x) O, (%1) —x} a3 +17

@) = o, Fl 3 (¢ o f(2 3242 A x
(f(x)) :axlf(x/‘axl(xl): 1 A'lle): 3xi x5 —4x1x0+1

£1) (=x3+3+1) ((F+23+1)2°

e 0 3 £ a‘c f/\(x) x74x5+1) (3x7+x5+2x1x0+1
(fA(x)>x1 =0y, [N (x) S0y, (%)) = Tgx) a;(}q) (G +5+ Z()Clnglr o+l

Exercise 1.5.4. Let D = R?, f(x) =x} + x5, T(x) = x} +x3+3, x = (x1,x2) € D. Find

" 1®
(7@®)
X2
x‘l1 73x‘2‘74x%x%+3

Answer. .
(e +xd+3) (6 —3x3+3)

Definition 1.5.5. The second order iso-partial derivative of the first kind we define as fol-
lows

The third order iso-partial derivative of the first kind we define as follows

()7 ez
) x; ’ LI, K=1,4,...,1,
X Xk

and so on.

49



Definition 1.5.6. The first order iso-partial derivative of the second kind with respect to x;
will be defined as follows

A

()3 =05 () / dxi.
Using the above definition we have

1. The first order iso-partial derivative of the second kind with respect to x; of an iso-
function of the first kind

(f/\ (xA))2® _ axif(x)f(x)—f(x)axiT(x) .

2. The first order iso-partial derivative of the second kind with respect to x; of an iso-
function of the second kind

20 _ axl.f(xf(x))(f(x)—i-x,'axif(x))f"(x)-‘r):;f:l'#iaxjf(xf"(x))xﬁxiT(x)f(x)—f(xf"(x))axif"(x) ‘

(fA (X) )x; 72 (x)

3. The first order iso-partial derivative of the second kind with respect to x; of an iso-
function of the third kind

(f()?));‘;t@ _ &J(ﬁ) (T (%) —xi0x, T (x)) — '}1.#;?_(,}3(%)&@&)f(f("x))T(x)ax[T(x).

4. The first order iso-partial derivative of the second kind with respect to x; of an iso-
function of the fourth kind

(f(@))z7 = 0 f (T () (T (x) + 205 T (x)) + Ly 0, f (0T (x))2;05, T ().

5. The first order iso-partial derivative of the second kind with respect to x; of an iso-

function of the fifth kind
v 2@ =0, Ax T(X)A_xi’j;ci(x> B 5 0. Ax _’I}i(x)
(f ()C) )xl ,f( T x) ) 72 (X) j:;ﬁéi jf(T(x) )XJ 72 (X)

Remark 1.5.7. In fact,
U (/A (9) Adxi = (FA &)y 95 (%) S dxi = (7 (%))
U (F(9) Sdxi=(F®)s (" () S dxi = (" ()

Example 1.5.8. Let D = R?, f(x) = 2x1x2, T(x) = 1 +x3 +x3, x = (x1,x2) € D. Then

PA(R) = [
PO =10 = 2y

Ax) = f6T) 2x12 (1 +x7 +x3),

f(A) f({x))_z X1

T (x) (i +x3+1)37

A

FAx) = (T (x) = 20102 (1 +x3 +23).
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From here

A ~ R 2 3_3 2+

() 7 e =23 () = 2R

O, (A (X)) N dx; = 2%()61)@(1 +x3 +x3)) = 2x3 + 6313 + 2x1,

Aa ) 3_5 2+

Oy, (f(£)) dxy = 2@ ((nggi])s) = 2x(11+)%12c§)? ’

O, (fN (X)) N dxy = 28%2()61)62(1 +x3+x3)) =233 +x3 + 1) (3 + 5x123 +x1).
Exercise 1.5.9. Let D = R?, T(x) = x2 +x3 +3, f(x) = x; — 2x2, x = (x1,X2) € D. Find
(fA )R-

Answer. —2x3x; — 2x3 — 6x2 + 2% — 4x1x5.

Definition 1.5.10. The second order iso-partial derivative of the second kind we define as
follows

N\ 2®
(), i=12..n

X1
The third order iso-partial derivative of the second kind we define as follows

N\ 280 2®
() it

x; /7 xi
and so on.

Definition 1.5.11. The first order iso-partial derivative of the third kind with respect to x;
will be defined as follows

()37 =04 ()dxi 7 Oy, (f).
Using the above definition we have

1. The first order iso-partial derivative of the third kind with respect to x; of an iso-function
of the first kind

Xi T2(x) T(x) —xt'ax,»f(X)l

AN /A Oy f()T (x)= F(x)0y. T (x
(f/\(x))3® 1 O f()T(x)—f(x) ().

2. The first order iso-partial derivative of the third kind with respect to x; of an iso-function
of the second kind

(fAA (x))3® _ 1 O, f (T (0)) (T (%) 4,0, T (x)) T (x) + :}:17#1-axj]i(xT(x))xjaxiT(x)f'(x)ff(xf'(x))axif‘(x)
X; 2(x) T(x)—xi05, T (x ’

3. The first order iso-partial derivative of the third kind with respect to x; of an iso-function
of the third kind

(F(#)3® = L ax;f(ﬁ) (T (x)—x:05, T (x)) — 7:1.j¢iax_,-f<ﬁ)xjﬁ,- (X)ff(f'(fx)>f(x)axif(x)
Xi T 73(x) T(X)*Xiaxif(x) .
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4. The first order iso-partial derivative of the third kind with respect to x; of an iso-function
of the fourth kind

a O FOT () (T () 420, T (x))F X, iy O F(XT () %0 T (x)
A 3® i i J=1,J#1 X JY%x;
(P =T i -

5. The first order iso-partial derivative of the third kind with respect to x; of an iso-function

of the fifth kind
o1 () ) = ()~ E i f (7 )5 B ()
(f (x))xi _TZ(X) T(x)—xif}i(x) .

Example 1.5.12. Let D = {(x1,x2) € R? :x; > 1,x > 1}, f(x) = x1 —x2, T(x) = x1 +x2,
x = (x1,x2) € D. Then

T(x) X1+x2?
) = f(ﬁ(;)) _ f(xlf(;zgﬁ(x» _ xlﬂx)zx)zf( ),
f(A) _ f(f(x”‘)) _ f<fx(lx)’fx<%‘)) _ fk&)*;&') _ x—x
N=E"Tn T T e T e tn)

From here

X1+x2 xX1+x2 X1+x2

éxl ()?1) = T(x)ax] <x7])dX1 = (X] —‘er)( X2 )zd)q =2 a’x1,

3 (1) =3 (152) = 225,

axl (f/\(x)) = ax1 (xl _XZ) =1,

F(£)) = X1 —X _ —x1+3x
aXI (f(x)) - axl ((xll+x22)2> o (xll:xz)g’
O, (f(x)) = Oy, (x} —x3) = 2x1.
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Using the above computations we get

AN/ N3 AN A A . Ay, (f(x
(PN =00 (F(0) A0 (01) = s B = 2

~ Py ES A ax A X
(PR =3 () /18 (01) = 5 55 =

(f(xA)) —x1+3x2
1

A N Ay (" (x) 4 a X
(FAODET =3 (1) /0 (1) = s 20000, (o) =23,
Exercise 1.5.13. Let D = {(x1,x2) € R? :x; > L,xp > 1}, f(x) =22 +x3, T(x) =x1 +x2,
x = (x1,x2) € D. Find (f"(x))3?.

X1
(¥1+x2)2 (2x3+4x342x1x2) *

Answer.

Definition 1.5.14. The second order iso-partial derivative of the third kind we define as

follows
3®
((-)3®) o il=12....n

X;
i X

The third order iso-partial derivative of the third kind we define as follows

38N 3®
(((-)iﬁ‘/) ) o ilk=12,....n,
x / xg

and so on.

Definition 1.5.15. The first order iso-partial derivative of the fourth kind with respect to x;
will be defined as follows

NAe la,._
(0 = 720

Using the above definition we have

1. The first order iso-partial derivative of the fourth kind with respect to x; of an iso-function
of the first kind

YR O F(O)T ()= f(x)0y, T (x

2. The first order iso-partial derivative of the fourth kind with respect to x; of an iso-function
of the second kind

4 _ ST NP1 T WP LT 100, 16T 09504 TP ()07 ()2 7 (5)

() 2

3. The first order iso-partial derivative of the fourth kind with respect to x; of an iso-function
of the third kind

N axif( AXX )(f(x)—XiaxiT(X))—Z'}: J ,'ax-f( Axx
(f(x/\))4® _ T (x) J=1,0#1 X T(x)

i = 70
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4. The first order iso-partial derivative of the fourth kind with respect to x; of an iso-function

of the fourth kind
O, f (6T () (T () +26:0, T (x))+ X2 39, S (T (x))xj0,, T (x)
(f/\ (x))i@ — T(x)] Lj#i 7Y J )
5. The first order iso-partial derivative of the fourth kind with respect to x; of an iso-function
of fifth kind

N

e 9 (75) (P (x) il <x)T> 3—(5;_1#1. o1 (i)

Example 1.5.16. Let D = {(x1,x2) € R? 1 x; > 1,x > 1}, f(x) = 2x1 —x2, T'(x) = x1 +2x2,
x = (x1,x2) € D. Then

@) = g6 = 32

f/\(x) _ S6TR) _ faT@xnlE) 2x1f(x),fzf(x) B

T (x) T (x) T(x

g B} 2 x
f@@%ﬂ__ﬂrmm_nrn
T (x) T (x) T T ()

from here

00 (F(0) =90 (B5) = 2,

Oy (f (%)) = 9, (231 —x2) (%1 +x2)) = 4x1 +x2.

Using the above computations we get

(FAENE = 7500 (P (8) = 2%,

(PP = 5500 (P (0) = 25

(FE)% = L9, f(%) = -2utin

X1 T (x) (x14+x2)*
(PR = 510 (F () = S552.

Exercise 1.5.17. Let D = {(x1,x) € R? :x; > 1,00 > 1}, f(x) =x; —x2, T'(x) = x; +x2,
x = (x1,x2) € D. Find (fA(x))fCl@.
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2x1

Answer. P

Definition 1.5.18. The second order iso-partial derivative of the fourth kind we define as

follows
4®
()" =12

X
The third order iso-partial derivative of the fourth kind we define as follows
4@ 4®
() )" k=12
x; 7/ xy

and so on.

Definition 1.5.19. The first order iso-partial derivative of the fifth kind with respect to x;
will be defined as follows

From the definition it follows

(')5®_ aJCi(.) = T(x)axt() ax;‘(‘)

A~

0 (k)  TWau(k)  0u(&)
Using the above definition we have

1. The first order iso-partial derivative of the first kind with respect to x; of an iso-function
of the first kind

Ao\ 5® O f(0)T ()~ f(x)9 T (x)
(fA(-x))x,-O - T(X)*X,‘axifq(x) .

2. The first order iso-partial derivative of the fifth kind with respect to x; of an iso-function
of the second kind

A O, f (T () (T (%) 4,05, T (x)) T (x) + X2 i O F (T (x))x O, T ()T () — f (xT (x)) 9, T'(x)
()3 = Tr e e :

3. The first order iso-partial derivative of the fifth kind with respect to x; of an iso-function
of the third kind

G 3x,-f(ﬁ)(T(X)*Xfax,-f(X))* _';:.,_,#;ax,,.f(ﬁ)x,-mx)ff(fgx))T(x)ax,-fm
Xy = T T(0)—x0, 1 () :

4. The first order iso-partial derivative of the fifth kind with respect to x; of an iso-function
of the fourth kind

A Oy, fXT (X)) (T (x) 420y, T (%)) + X"+ O, f(XT(x))x0y, T (x)
A S5® _ 2 i i j=1,j#i 9Xj J%xi
(f (x))x,' =T (X) T () —xi0x, T (x) :

5. The first order iso-partial derivative of the fifth kind with respect to x; of an iso-function
of the fifth kind

A

0t (75 ) (0 =285, () = B i (755 ) 085 ()
7(x) — il () |

(f =
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Example 1.5.20. Let D = {(x1,x) € R? 1 x; > 1,x > 1}, f(x) =x1 — x2, T(x) = 3x; +x2,
x = (x1,x2) € D. Then we have

X 5 — —
5 I V5 R VO B
A(A) _ f<f?x>> _ f(;é‘) Tz)) _ X(L 7;&) _ _x—x
f8)=—5"= "7y )  Grtn)?

A _ )Cl
T 3x4x?

and from here

00, (@) =04 ($52) = 52,

axl (fA(x)) = axl (xl _x2) =1,

o0 (719) = (iziy ) = G
3, (fN(x)) = B, (1 —x2) (3x1 +x2)) = 6x1 — 22,

9 (81) =0 (0t ) = i

Using the above computations we get

=

(FrE)3e =2l Oy

Xy axl ()?1)

(Pr)3e = 5Ll = Gutm?

X ax]()?]) X2 ’

Arans® _ On f®)  _3x47
5@ +
(f(x) )xl* - axll (%1) xz(;)l1+;22) ’

oy fN(x 2(9x2—x2)(3x] +x
O e

Exercise 1.5.21. Let D = {(x1,x2) € R? 1 x; > 1,0 > 1}, f(x) = x1 — 5x3, T (x) = x1 +x2,
x = (x1,x2) € D. Find (f/\()?));]@
Answer. 6.

Definition 1.5.22. The second order iso-partial derivative of the fifth kind we define as

follows
5®
(()g?) ) Ll=1,2,...,n.
X



The third order iso-partial derivative of the fifth kind we define as follows

5®\ 5®
((037) ) k=12,

x; /Xy
and so on.

Definition 1.5.23. The first order iso-partial derivative of the sixth kind with respect to x;
will be defined as follows

o éx[(')
()2f = dx

‘We can rewrite it in the form

Using the above definition we have

1. The first order iso-partial derivative of the sixth kind with respect to x; of an iso-function
of the first kind

A evy6m _ D fT ()03, T ()
(1 (#))5 = 2T AT

2. The first order iso-partial derivative of the sixth kind with respect to x; of an iso-function
of the second kind

A 6o _ O S OT())(T () +x:0 T ()T () +X_y 30, f T (0))0, T ()T () = f (3T ()03, T (x)
(P ) = =t .

3. The first order iso-partial derivative of the sixth kind with respect to x; of an iso-function
of the third kind

T (x)=xi0, T (1) =Ly 0, f (ﬁ))ﬁﬁ; () =f (ﬁ) T(x)0y T (x)

2(x) ’

Gy - )

4. The first order iso-partial derivative of the sixth kind with respect to x; of an iso-function
of the fourth kind

(fA())3F =T (x)9 f (xT (x))(T (x) +x:0T (x))
+T (x) Z;?:L#iijf(xT(x))xjaxiT(x).

5. The first order iso-partial derivative of the sixth kind with respect to x; of an iso-function
of the fifth kind

A

Ot (755 ) () =285, ()) = B a0 f (755 ) 28 ()
() |

()" =
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Example 1.5.24. Let D = {(x1,x2) : x1 > 0,xp > 0}, f(x) = x% +2x0, T(x) =x1+x2+1,
x = (x1,x2) € D. Then

f/\()?) f) _ 420

T(x) — xtxtl’

= x; +x3x2 +x7 +2x2,

! 2
T/ Al EY)
’ f(T(ﬂ’T(X)) _ Tz(x)+2"f(x) _ x+20x0+2x342x
x) T (x) - T (x) - (x1+x+1)3 0

N A A

fh@x) = fOT(x) = faT (x), 07 (x) = T (x) + 207 (x)

= (x? —|—x%x2 —|—x%—|—2x2)(x1 +x+1),

whereupon

AN AV\6@ A AN 242 2 4+2x1200+2x1 —2
(PO =T 0090 () = (- 13, (55 ) = 2

(PG =T (09 (1" (x)) = (x1 22+ 1)9s, (] +x7x2 +27 +2x2)

= (x1+x2+ 1)(3x% + 2x1x3 4 2x1)

x%+2x1x2+2x%+2x2 )

(NS =T (904 (F(5)) = (1 + 3+ 19y, (LR 2

7x% 74x%72x1xz+2x1 —4x;
(x1+x241)3 ’

(f"(2))82 = T (x)0, (" (x)) = (x1 +x2 4 1)0, (1] + 2722 + 27 +2x2) (x1 + 22+ 1))
= (x1+x2+ 1)(4x? +6x%xz +6x% +2x1x% +4x1x3 4 2x7).

Exercise 1.5.25. Let D = {(x,x2) : x1 > 0,x, >0, f(x) = x? +2x1x0, T'(x) = x% +x+1,
x = (x1,x) € D. Find (f"(£))$%.

x?+2x1
Btx+l’

Answer.

Definition 1.5.26. The second order iso-partial derivative of the sixth kind we define as
follows

((-)6®)6® i1=1.2,...n
Xi 9 ) 9 ) .

X1

The third order iso-partial derivative of the sixth kind we define as follows

6@\ 6®
(((-)g@) ) . ilk=12,...n,
x; /7 xp

and so on.
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Definition 1.5.27. The first order iso-partial derivative of the seventh kind with respect to
x; will be defined as follows

Using the above definition we have

1. The first order iso-partial derivative of the seventh kind with respect to x; of an iso-
function of the first kind

AL e\ T@ Ay QST () — ()35, T (x)
()" =T(x) T (x)—xi0x, T (x)

2. The first order iso-partial derivative of the seventh kind with respect to x; of an iso-
function of the second kind

Ay f (6T () (7 () +:0 T ()T () + X1y s O LT ()0, T ()T () = f (5T ()9, T ()

A T® _
(f (x))xi - T()C) T (x)—x:0y, T (x)

3. The first order iso-partial derivative of the seventh kind with respect to x; of an iso-
function of the third kind

) = 120 af(ﬁ) (T(x)xiax,.m))z;;l(j,?,af.(f(f;))xjnxx)f(fg.)) P70

(f
4. The first order iso-partial derivative of the seventh kind with respect to x; of an iso-
function of the fourth kind

N O, (T (X)) (T (x) 40y, T (%)) + X"+ O, f(XT(x))x0y, T ()
A T® _ 93 i i J=1j# 7 S
(f (x))xi =T1°(x) T() =0, T (x) :

5. The first order iso-partial derivative of the seventh kind with respect to x; of an iso-
function of the fifth kind

= e 0 (it ) (P 0) —6Bs ) = Kyt (75
7(0) =i, ()

Example 1.5.28. Let D = {(x1,x2) €R%:x; > 0,x2 >0}, f(x) =x1 —x3, T(x) = 1 +x1 +x2,
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x = (x1,x2) € D. Then

Aoy — fO) _ xi—n
)= T(x) — 1+x1+2xz’

f/\(x) _ feTw) _ feaT@)l@) 1T (x) 2372 (x) —x _xlx% _x% _x%7

() T(x) T (x)

. 2

X B 9
f()?) o f(m)) f(T(X)’T(X)) o T(L-) 20 _ ¥ —x3+xix+l
T T (x) T(x) = (txntl)d

N A A

@) = fGT(x) = faT (x),%7T (x) =T (x) -5T(x)

=(x1+x2+1)(x fxlx% fx% fxg),

X X
T(r) — Trxtx?

X =

whereupon

2 2
PA(2)) — X1 —x _ l4x+x
8x1 (%) = axl (1+X1+2xz> - l+x1+x§’

O, (f (%)) = 0y, (31 —x133 =33 —x3) = 1 —x3,

22 2 2
2ravy Xy —x5+x1x0+1\ _ —xp+4as+2x +x—3
axl (f(x)) - axl ( (x14x2+1)3 - (141 +x2)4 ’

O, (" (x)) = 0, (1 421 42x2) (x1 — X153 — 53 —x3))
= —2x§ — 2x1x% — Zx% +2x1 +x 4+ 1,
Oy (£1) = Oy (R1)dx1 = [ 2srd.

Using the above computations we get

A anT@®  (Lx+x0)? (14 +a3)
(" (E)e? EEoam—

(PN = (1 =x)(1+x1 +x2),

X1

2 2
AraNT® _ —A g2+ -3
(&) = ity

(fA(x))7® _ (4 +x2)3(—2x%—12x1x%—2x%+2x1+x2+1)
X1 +x7

Exercise 1.5.29. Let D = {(x,x2) : x1 > 0,x2 > 0}, f(x) = 2x; +x3, T(x) = 1 +x1 +x2,
x = (x1,x2) € D. Find (fA()E))L@

(242x2 —x%)( 1+x14+x2)

Answer. =
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Definition 1.5.30. The second order iso-partial derivative of the seventh kind we define as

follows
T®
(1) " =12
X
The third order iso-partial derivative of the seventh kind we define as follows

TR\ T®
() )7 k=12 n,

X] Xk
and so on.

Remark 1.5.31. In the general case there is no equality between the mixed iso-partial
derivatives. We will consider the following example.

Example 1.5.32. Let D = {(x;,x, € R? : x; > %,xz > %,xl +x > 1}, f(x) =x1, T(x) =
x1+xp. Then

AN\ \1® 1 xi+xo—x1 1 _ 1
(f (x))xl Toxpt xpt—x; T xpta T x4

AN\ \1® 1 —X1 _ 1
(f (x))xz Toxitx xptxo—x; - xi+x?

1

ravnlonl® 1 (x1+x2)axzx +x, 1

(f (x))x] )xz T X4+x -*'1“’2*"’21 t= _xl(x1+x2)’
1%
R (x1+x2) L=
A\ V1®V1® 1 (rp+xp)= 1

((f (x))xz )xl T xi4x (x1+X2)X1:2);2 T x(xgtx)”

Consequently
(@) # (7 @)y
We note that the function f (%) is a continuously-differentiable function on D.

Definition 1.5.33. An iso-function of the first, the second, the third, the fourth or the fifth
kind will be called iso-differentiable of the first, third, fifth or seventh kind at the point
1% € D ifits iso-original is differentiable at the same point and

T(x") =09, T(x°)#0, for Vi=1,2,...,n.

Definition 1.5.34. An iso-function of the first, the second, the third, the fourth or the fifth
kind will be called iso-differentiable of the second, fourth or sixth kind at the point x° € D
if its iso-original is differentiable at the same point.

Definition 1.5.35. An iso-function of the first, the second, the third, the fourth or the fifth
kind will be called iso-differentiable of the first, the second, the third, the fourth, the fifth,
the sixth or the seventh kind on D if it is - iso-differentiable of the first, the second, the
third, the fourth, the fifth, the sixth or the seventh kind at every point of D.

Exercise 1.5.36. Let f,$ : D —> R be iso-functions of the first, the second, the third, the
fourth or the fifth kind, which are iso-differentiable of the first, the second, the third, the
fourth, the fifth, the sixth or the seventh kind at x € D. Let also, a € R, d € F. Prove
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AL R B
—
N}
x>
~»

(F)%g(0))" = (F()E %8 (x) + () % (8(x)
(F@EE)E = (DA 8(x) + F () (8 ()3
8. (f(x) fg(x))i[_@ = (@) 8(x) = F0 (20D ) &)
9, (ﬁ;)!o _ <f<x))i?Jg()ngg(x)(g(x))i? L=l 7i=l...n

Exercise 1.5.37. Let f : D — R be an iso-differentiable of the first, the second, the third,
the fourth, the fifth, the sixth or the seventh kind at x € D iso-function of the first, the second,
the third, the fourth or the fifth kind. Prove that it is continuous at Xx.

Definition 1.5.38. Let f be an iso-function of the first, the second, the third, the fourth or
the fifth kind, which is iso-differentiable of the first, the second, the third, the fourth, the
fifth, the sixth or the seventh kind at the point x° € D. With fx(? (x°) will be denoted the
iso-partial derivative of the first, the second, the third, the fourth, the fifth, the sixth or the
seventh kind of f at the point x°.

1. The total iso-differential of the first kind for an iso-differentiable of the i-th kind iso-
function of the j-th kind, i =1,2,3,4,5,6,7, j =1,2,3,4,5, is

dy f(x° Z fi®(x0) %dx;,

2. The total iso-differential of the second kind for an iso-differentiable of the i-th kind
iso-function of the j-th kind, i =1,2,3,4,5,6,7, j =1,2,3,4,5, is
df(x0) = T fiF (x0)%d,

3. The total iso-differential of the third kind for an iso-differentiable of the i-th kind iso-
function of the j-th,i=1,2,3,4,5,6,7, j =1,2,3,4,5, is

4. The total iso-differential of the fourth kind for an iso-differentiable of the i-th kind iso-
function of the j-th kind, i =1,2,3,4,5,6,7, j =1,2,3,4,5, is



The total iso-differential of the fifth kind for an iso-differentiable of the i-th kind iso-
function of the j-th,i=1,2,3,4,5,6,7, j=1,2,3,4)5, is

N

dsf(x) = f (%) %dxi,

m=

The total iso-differential of the sixth kind for an iso-differentiable of the i-th kind iso-
function of the j-th kind, i =1,2,3,4,5,6,7, j =1,2,3,4,5, is

7. The total iso-differential of the seventh kind for an iso-differentiable of the i-th kind
iso-function of the j-th kind, i =1,2,3,4,5,6,7, j =1,2,3,4,5, is

N

d7f( ) fAl@{( O)dxi>

£M=

The total iso-differential of the eighth kind for an iso-differentiable of the i-th kind iso-
function of the j-th kind, i =1,2,3,4,5,6,7, j =1,2,3,4,5, is

Z fl@

Now we will give the explicit expressions of the iso-differentials of the iso-functions
1. The total iso-differential of the first kind of the iso-differentiable of the first kind iso-
functions of the first kind is

ANy
(7M@) =Tk

The total iso-differential of the first kind of the iso-differentiable of the first kind iso-

n (a )T () — f(x)ax[f(x))dxi.

2.
functions of the second kind is

di (" (%)) = T 5 T (ax,-f(xf(x))(f(x) +2i05, T ()T (x)
+X 17#[axjf(xT(x))xjaxiT(x)T(x) — f(xT (x))

3. The total iso-differential of the first kind of the iso-differentiable of the first kind iso-

functions of the third kind is

(7)) = T T (30 (75 )

)x,TX, (x) — f(TE‘x)>T(x)axiT(x)>dx,-.

~
—
=
S~—
=
=
~»
—
=
S~—
S~—

~El 1 (7
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4. The total iso-differential of the first kind of the iso-differentiable of the first kind iso-
functions of the fourth kind is

di(f(x)) =TiXL, (ax,-f (xT (x))(T (x) + x;05, T (x))
X 20, (T (x))x05 T(x)) dx;.

5. The total iso-differential of the first kind of the iso-differentiable of the first kind iso-
functions of the fifth kind is

A

(1 () = T T (0uf (75 ) (F ) = w8, ()

~ X0 (75 )0t ) dxi

6. The total iso-differential of the first kind of the iso-differentiable of the second kind
1so-functions of the first kind is

AN /A (Ox X)0x, T () (T (x)—x;0,, T (x
(PNE) = 1 T, QL OTOSRT N0 )

7. The total iso-differential of the first kind of the iso-differentiable of the second kind
1so-functions of the second kind is

A N N

+ X1 O, f 0T ()20 T ()T (x) = F (T (x))0, T (x))(T () —xz'ax,T(X)))dxz'-

8. The total iso-differential of the first kind of the iso-differentiable of the second kind
iso-functions of the third kind is

i (78) = Ti s Ty (0 f (75 ) (F(6) =307 ()
il (75 )58 ) — £ (75) P00 () (7 () — 52 7 ()i

9. The total iso-differential of the first kind of the iso-differentiable of the second kind
1so-functions of the fourth kind is

(@) = Tk By (3 (67 () (7 () + 20, T ()
F L a0 PO ()00 T () (7 () — T () v
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10.

11.

12.

13.

14.

15.

16.

The total iso-differential of the first kind of the iso-differentiable of the second kind
iso-functions of the fifth kind is

(1 () = Ti g T (3 f (75 ) (7 (6) =3 ()

X f (75 )68 () (7 () = iy, ()i

The total iso-differential of the first kind of the iso-differentiable of the third kind iso-
functions of the first kind is

d(PM®) = Fi s Ty (3T () = £()9T (x) ) ;.

The total iso-differential of the first kind of the iso-differentiable of the third kind iso-
functions of the second kind is

i (" () = Ti g Ty (30 f (6 () (F () 30T () T ()

X100, f O ()2 T (T () = £ ()2, T (1) ) i

The total iso-differential of the first kind of the iso-differentiable of the third kind iso-
functions of the third kind is

d(F3) = T Ty (001 (75) (700 =327 (x))

~ X0 (75 )0t = £ (75 ) 10957 () ) i

The total iso-differential of the first kind of the iso-differentiable of the third kind iso-
functions of the fourth kind is

di(f"(x)) =T XL, (3x,~f (T (x))(T (x) +2x:0,, T ()

+Z’]1':17j75i axjf(XT(x) )xjax,-T(x)) dx;.

The total iso-differential of the first kind of the iso-differentiable of the third kind iso-
functions of the fifth kind is

A

d (1 () = Ty T (3 f (75 ) (7 () =3 ()

— X1 9y f (ﬁ)xﬁ}i (x)>dxi

The total iso-differential of the first kind of the iso-differentiable of the fourth kind
1so-functions of the first kind is

AN/ PO, (axif(x)f(x)—f(x)axif(x)> (f(x)—xlaxl.f(x))
di(f"(®)=T1X, ) dx;.
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17.

18.

19.

20.

21.

22,

23.

The total iso-differential of the first kind of the iso-differentiable of the fourth kind
iso-functions of the second kind is

di (/" (%) =Ti 75 (3x,f(xT( (T (x) +2xi05, T (x))T (x)

X1 00, F O ()50 ()T (x) = FOT ()2 7)) (7 () — 100 7 ()

The total iso-differential of the first kind of the iso-differentiable of the fourth kind
1so-functions of the third kind is

(7)) = T T (00 (75) (700 =32 (1)

-y 1,¢,ax,f( )it () = £ (5 ) 1000 T () ) .

The total iso-differential of the first kind of the iso-differentiable of the fourth kind
1so-functions of the fourth kind is

di(f"(x)) = Ti 55 T <3xl~f(xT(X))(T(X) +x0,,T (x))

+ X0k xjf(xf"(x))xjaxif"(x))(T(x)fxlaxif"(x))dxi.

The total iso-differential of the first kind of the iso-differentiable of the fourth kind
iso-functions of the fifth kind is

(1 () = Ti g T (3 f (75 ) (7 () =3 ()

—27:1,j¢iax,.f(ﬁ)x.,-f;,»<x>)<f"<x> —xTy, (x))dx:

The total iso-differential of the first kind of the iso-differentiable of the fifth kind iso-
functions of the first kind is

(7)) = i 55 Ty (S (T (x) = £33 (4) )

The total iso-differential of the first kind of the iso-differentiable of the fifth kind iso-
functions of the second kind is

di (" (%) =Ti75 (3x,f(xT( (T (x) +2xi05, T (x))T (x)

P FOT ()0 T ()T (3) — FGF ()27 () ) .

The total iso-differential of the first kind of the iso-differentiable of the fifth kind iso-
functions of the third kind is

(7)) = Ty Ty (0 (5 ) (F(0) =527 ()

X0 a0 f (5 )it — £ (55 ) T (027 () ) d.
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24.

25.

26.

27.

28.

29.

The total iso-differential of the first kind of the iso-differentiable of the fifth kind iso-
functions of the fourth kind is

di(f"(x)) =THhT(x) X, (ax,-f (T () (T (x) +x:9, T (x))
X0 f (T ()% T(x)) dx;.

The total iso-differential of the first kind of the iso-differentiable of the fifth kind iso-
functions of the fifth kind is

N

di(1 () = Tt T (3 f (75 ) (7 () 3T ()

o Z?zl,jyéi axjf(f?x) )ijx,« (X)>dx,-.

The total iso-differential of the first kind of the iso-differentiable of the sixth kind iso-
functions of the first kind is

AN PO, (axif(x)f<x)—f(x)ax,-f(x)> (f(x)—xlaxl.f(x))
di(f"(®)=T1X, ) dx;.

The total iso-differential of the first kind of the iso-differentiable of the fifth kind iso-
functions of the second kind is

di(f"x) = Ti 75 <9x,f(xT( (T (x) + 395, T (x)) T (x)
+ X1, O (T (0))x0 T ()T (x) — f (xT(X))ax;T(X)) (T (x) —x195, T (x))dx;.

The total iso-differential of the first kind of the iso-differentiable of the fifth kind iso-
functions of the third kind is

d(73) = T T (00 (75 ) (700 =307 (x))
~E a0 f (7 )0t = £ (75 ) T, 0) ) (7(x) ~ 302, T ()

The total iso-differential of the first kind of the iso-differentiable of the fifth kind iso-
functions of the fourth kind is

i (£ (x)) = Ty Ty (30 O () (T () + 0, T ()
X100 f O ()20, T () ) (T(2) =110, T ()
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30.

31.

32,

33.

34.

35.

36.

The total iso-differential of the first kind of the iso-differentiable of the sixth kind iso-
functions of the fourth kind is

(1 () = Ti s Ty (3 f (75 ) (F(6) = 5T ()

j=1.i# aXJ(ﬁ)%@ (X)> (T (x) =T, (x)).

The total iso-differential of the first kind of the iso-differentiable of the seventh kind
iso-functions of the first kind is

dl(fA/\()e)) TIZ Xl f)T (TZ(J;()XI ()dx,

The total iso-differential of the first kind of the iso-differentiable of the seventh kind
iso-functions of the second kind is

di (" (%) =Ti 55 (3x,f(xT( (T (x) +2xi05, T (x))T (x)

X1 a9 PO ()00 T (0T (6) = £ (6T ()3 (x) )i

The total iso-differential of the first kind of the iso-differentiable of the seventh kind
1so-functions of the third kind is

i (F#) = T () Ty 9 f (75 ) (F(0) =527 ()

1Ol (75 )5t ) = £(75) (96T ()i

The total iso-differential of the first kind of the iso-differentiable of the seventh kind
iso-functions of the fourth kind is

di(f"(x)) =i T*(x) T, (ax,-f (T (x))(T (x) +x:0,, T (x))

F X0 F T ()0, T () ) ;.

The total iso-differential of the first kind of the iso-differentiable of the seventh kind
iso-functions of the fifth kind is

ai(£(x) = Ty iy (3 f (75 ) (7 () =, ()
= Ye1j#i O (ﬁ)xﬂ} (x))dxi-

The total iso-differential of the second kind of the iso-differentiable of the first kind
1so-functions of the first kind is

o (F8) = Ty T (3 (07 () — ()7 () )i
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37.

38.

39.

40.

41.

42,

43.

The total iso-differential of the second kind of the iso-differentiable of the first kind
iso-functions of the second kind is

d(" () =T (ax,f(xT( (T (x) +2xi05, T (x))T (x)

X0 f T (0)x0 T () () — f(xf"(x))axif"(x)>dxi.

The total iso-differential of the second kind of the iso-differentiable of the first kind
1so-functions of the third kind is

(7)) = T T (30 (75) (700 =32 (1)

-y 1,¢,ax,f( )it () = £ (5 ) 1000 T () ) .

The total iso-differential of the second kind of the iso-differentiable of the first kind
1so-functions of the fourth kind is

() = Ti s Ty (30 ST () (F () + 0, T ()

F X0 F T ()0, 7 () ) ;.

The total iso-differential of the second kind of the iso-differentiable of the first kind
iso-functions of the fifth kind is

(1 () = Ti g T (3 f (75 ) (7 () =3 ()

~ X140 f (ﬁ)xﬁ}i(@)d&u

The total iso-differential of the second kind of the iso-differentiable of the second kind
1so-functions of the first kind is

N

da(F(%)) = Ty i K (9 f ()T () = £(6)3, T () ) (F () =019, () v

The total iso-differential of the second kind of the iso-differentiable of the second kind
iso-functions of the second kind is

d(f" (%)) = Ty T <3x,~f (T (x))(T (%) +2x:05, T (x))T (x)

N A

X1 0 f (T ()05 T (1) T (x) — f(xT(X))axiT(X)) (T (x) =107 (x) ) dx;.

The total iso-differential of the second kind of the iso-differentiable of the second kind
1so-functions of the third kind is

(7)) = T T (30 (75) (700 =32 T ()

Jlﬁélaxjf( )x,Tx,(x) f(%)f"(x)axif"(xw(f’(x)—xlaxif(x))dxi.
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44.

45.

46.

47.

48.

49.

50.

The total iso-differential of the second kind of the iso-differentiable of the second kind
iso-functions of the fourth kind is

d(f"(x) = Ti 7y K (E)x,»f (T (x))(T (x) +2:0,, T ()

X1 0 O ()2 () ) (F(0) = T )

The total iso-differential of the second kind of the iso-differentiable of the second kind
1so-functions of the fourth kind is

(£ (x)) = Ty s i (9 (755 ) (F () =T ()

— L1 axf‘f<ﬁ)xjf}i (x)) (T (x) =T, )dxi.

The total iso-differential of the second kind of the iso-differentiable of the third kind
1so-functions of the first kind is

() = Traty X (05 (0T (x) ~ F9 T () ) ;.

The total iso-differential of the second kind of the iso-differentiable of the third kind
1so-functions of the second kind is

(1" () =T 75 Li (ax,-f (T (0))(T (x) +2x:05, T (x))T (x)

+X Ox, f (xT (x))x;05, T (x) T (x) — f(xf"(x))axif"(x)> dx;.

The total iso-differential of the second kind of the iso-differentiable of the third kind
iso-functions of the third kind is

(7)) = Ty Ty (3 (7)) (F () — 20, ()

Lo i ()20 ) — £ (5) T @2 () )i

The total iso-differential of the second kind of the iso-differentiable of the third kind
iso-functions of the fourth kind is

d(f" (%) = Ti55 L1 (ax,-f (T (x))(T (x) +2x:0, T ()

X 9 f (T () jaxiT(x)>dx,'.

The total iso-differential of the second kind of the iso-differentiable of the third kind
iso-functions of the fifth kind is

do(£(x)) = Ty s Ko (9 (75 ) (7 () =5 ()
— Y129 (ﬁ)xﬂ}i (x))dxi-
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51.

52.

53.

54.

55.

56.

57.

The total iso-differential of the second kind of the iso-differentiable of the fourth kind
iso-functions of the first kind is

A

da(F(3) = Ti g Ty (3 ()T () = F()0 T () ) (7 () =19, () v

The total iso-differential of the second kind of the iso-differentiable of the fourth kind
iso-functions of the second kind is

(PAONE = i Ty (3 f T () (F () 420, T ()T ()

A A

—1—2';217#[-axjf(xf"(x))x.,-axif"(x)f‘(x) — f(xT(x))axiT(x)> (T (x) — x10,, T (x))dx;.

The total iso-differential of the second kind of the iso-differentiable of the fourth kind
iso-functions of the third kind is

(7)) = T T (0 (75 ) (F () —xid T ()

~E a0 f (75 )0t = £ (75 ) T 0) ) (7(x) =302, T ()

The total iso-differential of the second kind of the iso-differentiable of the fourth kind
1so-functions of the fourth kind is

da(f () = Ti iy Ty (3 67 () (F () 3,20 ()

N

+X 1H,élaxjf(xT( x))x;0 lT(x))(T(x)—xlaxif"(x))dx[.

The total iso-differential of the second kind of the iso-differentiable of the fourth kind
iso-functions of the fifth kind is

(1Y () = Ti s Ty (3 s (75 ) (7 (6) =85, ()

i f (75 )T (0) ) (7 (x) =285, ()i

The total iso-differential of the second kind of the iso-differentiable of the fifth kind
1so-functions of the first kind is

do(f(5) = Ty g iy (95 T () = ()3T () )

The total iso-differential of the second kind of the iso-differentiable of the fifth kind
1so-functions of the second kind is

d(f" () = Ti 755 Li (ax,-f (T (0))(T (x) +2x:05, T (x))T (x)

N

X1 ST ()00 T ()T (1) — (T ()94 7 (1) )
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58.

59.

60.

61.

62.

63.

64.

The total iso-differential of the second kind of the iso-differentiable of the fifth kind
iso-functions of the third kind is

(7)) = T T (00 (75) (700 — 32T ()

I 1,¢lax,f( 5 ) 0 = £ (75 ) T 0351 () )

The total iso-differential of the second kind of the iso-differentiable of the fifth kind
iso-functions of the fourth kind is

d(f"(x)) =T L, (axif (T (x))(T (x) +x:0,, T ()

+Z’}:17j7éi axjf(x’f(x) )xjaxiT(x)) dx;.

The total iso-differential of the second kind of the iso-differentiable of the fifth kind
1so-functions of the fifth kind is

(1 () = Ti g T (3 f (75 ) (7 (6) =3 ()

s (7t )i (o)

The total iso-differential of the second kind of the iso-differentiable of the sixth kind
iso-functions of the first kind is

A

(P (8)) = Ti s Xy (36 00T () = £ T () (F(0) = 319, T (1)l

The total iso-differential of the second kind of the iso-differentiable of the sixth kind
iso-functions of the second kind is

d(F" (%)) = T 55 Tie (ax,f (T () (T (x) + x0T ()T (x) = (6T (x))9, T (x)

F X100 ST ()2 T (T () ) (7(6) =010, T () i

The total iso-differential of the second kind of the iso-differentiable of the sixth kind
1so-functions of the third kind is

(7)) = T T (30 (75) (7100 =32 ()

-y lHélaxlf< )xﬂ},(x)—f(TE‘x))T(x)axiT(x)>(T(x)—xlaxiT(x))dxi.

The total iso-differential of the second kind of the iso-differentiable of the sixth kind
iso-functions of the fourth kind is

(1) = Ti s By (30 6 () (7 (6) 4+ 20, T ()
X100, T ()0 T () ) (T () — 3194 ()l
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65.

66.

67.

68.

69.

70.

71.

The total iso-differential of the second kind of the iso-differentiable of the sixth kind
iso-functions of the fourth kind is

(1Y () = i iy (O f (75 ) (7 (6) =85, ()

~ X1 0 (75 )T ) (F(0) x5, (x)) i

The total iso-differential of the second kind of the iso-differentiable of the seventh kind
1so-functions of the first kind is

da(F(8)) = Ti 7 Ty (36 S ()T () = (002, T (3) ) i

The total iso-differential of the second kind of the iso-differentiable of the seventh kind
iso-functions of the second kind is

(" (%)) = T 55 T 1<ax,f(xT( (T (x) + x0T (x)T (x)
Z;f:l’#iaxjf(xT(x))xjaxiT(x)T(x) — f(xT (x))0x, T (x) |bigr)dx;.

The total iso-differential of the second kind of the iso-differentiable of the seventh kind
1so-functions of the third kind is

() = Tk X (00 f (75

) (@) =207 ()

j= lj#laxjf< )xJsz(x) f(ﬁ)T(X)axiT(x))dxi.

The total iso-differential of the second kind of the iso-differentiable of the seventh kind
1so-functions of the fourth kind is

(£ () = T iy (30 ST () (T () + x4 T()

T X1 O, f (6T (x) )xjaxiT(x)) dx;.

The total iso-differential of the second kind of the iso-differentiable of the seventh kind
1so-functions of the fifth kind is

A

(1) = Ty ks By (3uf (75 ) (F0) =, ()

ffx) )xjfx,. (x)) dx;.

The total iso-differential of the third kind of the iso-differentiable of the first kind iso-
functions of the first kind is

5 (1) = 7 Tt (3 T () = F(03:7 () )

— X149 (
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72.

73.

74.

75.

76.

77.

78.

The total iso-differential of the third kind of the iso-differentiable of the first kind iso-
functions of the second kind is

d5(f" (%)) = 755 (3x,f(xT( (T (x) +2xi05, T (x))T (x)

+ X010 f T ()50 T ()T () = F(T ()0, (x) ) ;.

The total iso-differential of the third kind of the iso-differentiable of the first kind iso-
functions of the third kind is

d(7(3) = 7 T (s (75 ) (F () — x0T (1)

=¥ f (5 )2 ) = £ (725 ) T 0037 () )i

The total iso-differential of the third kind of the iso-differentiable of the first kind iso-
functions of the fourth kind is

ds(f"(x) = 75 Tis (ax,-f (T (x))(T (x) +x:0,,T (x))

F X100 T ()97 () ) i

The total iso-differential of the third kind of the iso-differentiable of the first kind iso-
functions of the fifth kind is

N

a3 (1 () = g Ty (0 f (75 ) (T () =Ty ()

L= 1J7élax1f( )xj T (x ))dxl

The total iso-differential of the third kind of the iso-differentiable of the second kind
iso-functions of the first kind is

A

a5 (7 (9) = 7 iy (30T () = £ () (F1(0) =319, T ().

The total iso-differential of the third kind of the iso-differentiable of the second kind
1so-functions of the second kind is

ds(f"(x)) = 7 L 1<3x,f(xT( (T (x) +2xi05, T (x))T (x)

A N

X1 0 f (T ()05 T ()T (x) — f(xT(X))BXiT(X)) (T (x) =197 (x) ) dx;.

The total iso-differential of the third kind of the iso-differentiable of the second kind
1so-functions of the third kind is

A

(7)) = 7 2 (0 (75) (F () 6, T (@)

A

s jdnf (5 )5 0) = £ (375 ) T 7 (6) ) (7 () 110, 7 (x) v
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79.

80.

81.

82,

83.

84.

85.

The total iso-differential of the third kind of the iso-differentiable of the second kind
iso-functions of the fourth kind is

ds(f" (%)) = 75 Ll (3x,-f (T (x))(T (x) +2x:0, T (x))

X1 a0 0T ()9 T () ) (7 () =T, s

The total iso-differential of the third kind of the iso-differentiable of the second kind
iso-functions of the fourth kind is

(M) = s T (9 (75 ) (F ) =i ()

Z] 1]7élaxjf< )xﬂ},( ))(T(x)_xifjv,-)dxb

The total iso-differential of the third kind of the iso-differentiable of the third kind
iso-functions of the first kind is

s (7)) = gl Tir (9 (T (6) — F ()3T () ) i

The total iso-differential of the third kind of the iso-differentiable of the third kind
1so-functions of the second kind is

d5(f" (%)) = 75 (3x,f(xT( (T (x) +2xi05, T (x))T (x)

F X1 0 SO ()2 T (T () = £(6T ()2 T (3) ) i

The total iso-differential of the third kind of the iso-differentiable of the third kind
iso-functions of the third kind is

(7)) = 7 T (0f (75 ) (F @) 6, T ()

7:1,]';&1' anf<ﬁ)ijxi (x) — f(ﬁ) T(x)axif(x))dxi~

The total iso-differential of the third kind of the iso-differentiable of the third kind
iso-functions of the fourth kind is

ds(f" (%)) = 705 Ll (%f (T (x))(T (x) +x:0,, T (x))

X0 f (T () jaxif"(x))dxi.

The total iso-differential of the third kind of the iso-differentiable of the third kind
iso-functions of the fifth kind is

A

d3(£(3)) = s i (3uf (75 ) (F0) = T, ()
—Xj- 1J¢,3x,f< )xj T (x )>dxt
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86.

87.

88.

89.

90.

91.

92,

The total iso-differential of the third kind of the iso-differentiable of the fourth kind
iso-functions of the first kind is

A

a5 (F(9) = 7 Ty (9 (O () = F(002 T () (7 () — 1197 ()i

The total iso-differential of the third kind of the iso-differentiable of the fourth kind
1so-functions of the second kind is

3 ()47 = g Ty (/6T () ( () + x5 T () T ()

A N

+ X1 00, f (0T ()05 T ()T (x) — f(xT(X))axfT(X)) (T (x) =210, T (x))dx;.

The total iso-differential of the third kind of the iso-differentiable of the fourth kind
1so-functions of the third kind is

A(7(3) = 7 T (s (75 ) (F ) — 12 T ()

" lHélax]f( )5t = £ (75) T 096 () (7(0) = 5197 (x) i

The total iso-differential of the third kind of the iso-differentiable of the fourth kind
1so-functions of the fourth kind is

ds(f"(x) = 755 L (ax,-f (T (x))(T (%) +x:0,,T ()

X i SO ()00, T (1) ) (F () = 110, T (1)) ;.

The total iso-differential of the third kind of the iso-differentiable of the fourth kind
iso-functions of the fifth kind is

31 () = s T (9 (75 ) (F(0) = ()

~>

j=1.57 %% (ﬁ)xﬁxi(@)( (x) =T, (x) ).

The total iso-differential of the third kind of the iso-differentiable of the fifth kind iso-
functions of the first kind is

a3(7 () = g Ty (3 S (T (6) = £()3, T (@) ) i

The total iso-differential of the third kind of the iso-differentiable of the fifth kind iso-
functions of the second kind is

ds(f" (%)) = 757 Lt (axif(xf(x))(f(x) +2i05, T ()T (x)
+Z;f:1’#iaxjf(xf"(x))xjaxif"(x)f"(x) ff(xf"(x))f)xl.f(x))dxi.
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93.

9.

9s.

96.

97.

98.

99.

The total iso-differential of the third kind of the iso-differentiable of the fifth kind iso-
functions of the third kind is

(7)) = 7 T (0f (75 ) (F @) 6, T ()

X1 (7 )0 = £ (75 ) T 0257 () ) i

The total iso-differential of the third kind of the iso-differentiable of the fifth kind iso-
functions of the fourth kind is

d3(f"(x)) = Li- 1(3x,f(xT( (T (x) +xi05 T (x))

Y0 f(xf"(x))xjaxl.f"(x))dxi.

The total iso-differential of the third kind of the iso-differentiable of the fifth kind iso-
functions of the fifth kind is

A

31 () = s T (9 (75 ) (F(0) =i ()

7:1,j7éiaxjf<r?))x1 T, (x)dx;.

The total iso-differential of the third kind of the iso-differentiable of the sixth kind
iso-functions of the first kind is

A

a5 (7 (9) = 7 Ty (3007 () = £(02 () (71(0) 3019, T (1)

The total iso-differential of the third kind of the iso-differentiable of the sixth kind
iso-functions of the second kind is

A A

a5 (7)) = s Xy (30 ST () (7 () + 2047 ()T () — £ (5T (), T (1)

F X100 f O ()2 T (T () ) (7(6) = 0104 () i

The total iso-differential of the third kind of the iso-differentiable of the sixth kind
1so-functions of the third kind is

(7)) = 7= T (00f (75) (F () 6, T ()

-y lHélaxlf< )xﬂ},(x)—f(TE‘x))T(x)axiT(x)>(T(x)—xlaxiT(x))dxi.

The total iso-differential of the third kind of the iso-differentiable of the sixth kind
iso-functions of the fourth kind is

ds(f"(x)) = 745 Li (3xif(xf(x))(f(x) +205,T (x))
+Z’}:17#iaxjf(xf"(x))xjaxj"(x)) (T (x) — x10,, T (x))dx;.
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100.

101.

102.

103.

104.

105.

106.

The total iso-differential of the third kind of the iso-differentiable of the sixth kind
iso-functions of the fourth kind is

(1)) = 7 Ty (S (75 ) (F(6) = 285, ()

7:1,j¢iaxjf<ﬁ)xjﬁ,«(ﬂ>(T( ) =T, (x))dx;.

The total iso-differential of the third kind of the iso-differentiable of the seventh kind
iso-functions of the first kind is

d(PM(R) = 7= B (3T (x) = £()9 T (x) ) ;.

The total iso-differential of the third kind of the iso-differentiable of the seventh kind
1so-functions of the second kind is

a5 (7)) = 75 Ty (0O () (7 () +-30, T () T ()

E_ 100, T ()30 T ()T () — F(6F ()2, T (3) ) i

The total iso-differential of the third kind of the iso-differentiable of the seventh kind
1so-functions of the third kind is

(7(8) = 7 T (s (775 ) (F @) — x0T ()

- u#ax/f( Vxit(0) — (75 ) P00, 7 () )

The total iso-differential of the third kind of the iso-differentiable of the seventh kind
1so-functions of the fourth kind is

ds3(f"(x)) = Ei- 1(3x,f(xT( N(T (x) +xi0, T (x))

+ ZJ L,j#i x/f(ﬁ(x))xjax,f(x)) dx;.

The total iso-differential of the third kind of the iso-differentiable of the seventh kind
iso-functions of the fifth kind is

(1 (x)) = 75 T (3 (75 ) (7 (6) = 28, ()

1, ki axjf< ) i(x))dxi.

The total iso-differential of the fourth kind of the iso-differentiable of the first kind
1so-functions of the first kind is

da(F () = s Ty (3 ST (3) — F(02, 7 () ) i
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107.

108.

109.

110.

111.

112.

113.

The total iso-differential of the fourth kind of the iso-differentiable of the first kind
iso-functions of the second kind is

s () = s Ty (9 T () (F )+, T ()T (1)

+Z’}:1’#iaxjf(xf"(x))xjaxl.f"(x)f"(x) —f(xf"(x))axif"(x))dxi.

The total iso-differential of the fourth kind of the iso-differentiable of the first kind
1so-functions of the third kind is

d(7(3) = 7 T (s (75 ) (F @) — x0T (1)

X i f (75 a0 — £ (75 ) T 00 T (@) ) .

The total iso-differential of the fourth kind of the iso-differentiable of the first kind
1so-functions of the fourth kind is

dy(f"(x)) = Eis (ax,-f (T () )(T (x) +2x:05, T (x)

dxi.

N~——~"

+ Z?:] JAi ax_;f(XT(x))xjax[T(x)

The total iso-differential of the fourth kind of the iso-differentiable of the first kind
iso-functions of the fifth kind is

da(1V () = s i (3 f (75 ) (F0) =T ()

ZJ lj#zax/f< )xj x,( ))dxz

The total iso-differential of the fourth kind of the iso-differentiable of the second kind
1so-functions of the first kind is

n O, f(x)T (x x)o.
(fA()) l(f()()f()

5, 1 () (T (x) —xi0,, T'(x)
T( dx,-.

)

The total iso-differential of the fourth kind of the iso-differentiable of the second kind
iso-functions of the second kind is

da(f" (%)) = 755 L ((axlf(xT( (T (x) +2x:05, T (x))T (x)

N

+ X1 O, f T ()00, T ()T (x) = f (T ()0, T (1) )(T () — xz'ax,T(X))) dx;.

The total iso-differential of the fourth kind of the iso-differentiable of the second kind
1so-functions of the third kind is

A

a(75) = 7= 5 (00f (75 ) (F @) 6, T ()

A

X f (75 )8 ) — £ (75 ) T@T () () = xid 7 () ;.
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114.

115.

116.

117.

118.

119.

120.

The total iso-differential of the fourth kind of the iso-differentiable of the second kind
iso-functions of the fourth kind is

da( () = 5 Tt (3 T ())(F () + 0, T (1))

L a9 O ()30 T () ) (7 () = 04 T () v

The total iso-differential of the fourth kind of the iso-differentiable of the second kind
1so-functions of the fifth kind is

(1Y () = s T (9 (75 ) (F(0) =i ()

~ X i (7 )3T ) (F() = T, ()i

The total iso-differential of the fourth kind of the iso-differentiable of the third kind
iso-functions of the first kind is

(7)) = ol Tir (9 (0T (6) — F ()3T () ) i

The total iso-differential of the fourth kind of the iso-differentiable of the third kind
1so-functions of the second kind is

da(f" (%)) = 75 (3x,f(xT( (T (x) +2xi05, T (x))T (x)

X1 4000, 0T ()95 T (0 (6) = F(T (0)), T () ) i

The total iso-differential of the fourth kind of the iso-differentiable of the third kind
iso-functions of the third kind is

a(78) = 7= 2 (00f (75) (F (@) x0T ()

7:1,]';&1' anf<ﬁ)ijxi (x) — f(ﬁ) T(x)axif(x))dxi~

The total iso-differential of the fourth kind of the iso-differentiable of the third kind
1so-functions of the fourth kind is

da(f"(x)) = Xis (3x,~f (T (x))(T (x) +2x:05, T ()

Y0 f(xf"(x))xjaxl.f"(x))dxi.

The total iso-differential of the fourth kind of the iso-differentiable of the third kind
iso-functions of the fifth kind is

A

a1 () = 7= X0 (9 (75 ) (F0) — 0Ty (1)
—Xj- 1J¢,3x,f< )xj T (x )>dxt
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121.

122.

123.

124.

125.

126.

127.

The total iso-differential of the fourth kind of the iso-differentiable of the fourth kind
iso-functions of the first kind is

(30070010270 ) )10, 710
(f/\( )) 1 1 T4(x) dx;.

The total iso-differential of the fourth kind of the iso-differentiable of the fourth kind
1so-functions of the second kind is

da(f" (%)) = 75 £l <3x,-f (T (x))(T (x) +2x:05, T (x))T (x)

N A

X1 00 f (T ()05 T ()T (x) — f(xT(X))axiT(X)) (T (x) =210 (x) ) dx;.

The total iso-differential of the fourth kind of the iso-differentiable of the fourth kind
1so-functions of the third kind is

d(7(3) = 7 T (s (75 ) (F@) x0T ()

il (75 3750 — 1 (75) 00T ()

The total iso-differential of the fourth kind of the iso-differentiable of the fourth kind
1so-functions of the fourth kind is

ds(£(0)) = s By (06 7 () (7 () + 30 7 ()

X i SO ()00, T (1) ) (F () = 110, T (1))

The total iso-differential of the fourth kind of the iso-differentiable of the fourth kind
iso-functions of the fifth kind is

N

da(f(x)) = 7 Ty (3 (75 ) (7 (6) =285, ()

~ X a0 (75 )T (0) (F(0) = ()i

The total iso-differential of the fourth kind of the iso-differentiable of the fifth kind
1so-functions of the first kind is

da(F(®) = g B (35S (T () — F(3 () )

The total iso-differential of the fourth kind of the iso-differentiable of the fifth kind
1so-functions of the second kind is

ds(F(0)) = 5 Ty (3 T () (F () + 04 T ()T (2)

+ T i f T ()50 T ()T () = £(T ()2, (x) ) ;.
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128.

129.

130.

131.

132.

133.

The total iso-differential of the fourth kind of the iso-differentiable of the fifth kind
iso-functions of the third kind is

ds(7(8) = 7= 2o (30 f (75 ) (T () — 52 ()

=1, axj-f(ﬁ)xjfxi (x) — f(ffx) > T(x)axif(x))dxi-

The total iso-differential of the fourth kind of the iso-differentiable of the fifth kind
1so-functions of the fourth kind is

da(f"(x)) =T(x) X1, <axif(xT(x))(T(x) + 3,0, T (%))
+Z”J%:l.,j#ia)ij(XT(X) )XjaxiT(X)>dx,-.

The total iso-differential of the fourth kind of the iso-differentiable of the fifth kind
1so-functions of the fifth kind is

da(f*(x)) = 75 Ty (3 (75 ) (F(6) = 28, ()
o Z?:I-,j#i axJ(ﬁ)xﬂA}i (x)) dx;.

The total iso-differential of the fourth kind of the iso-differentiable of the sixth kind
1so-functions of the first kind is

. (30007009270 ) (7)1 70
(f ( )) z 1 T2(x) dx;.

The total iso-differential of the fourth kind of the iso-differentiable of the fifth kind
1so-functions of the second kind is

da(F" (%)) = 75 Tl (axif(xf"(x))(f"(x)+x,~axif"(x))f"(x)
—I-Z?:L#iaxjf(xf"(x))xjaxif"(x)f"(x) — f(xT(x))axiT(x)> (T (x) — x10,, T (x))dx;.

The total iso-differential of the fourth kind of the iso-differentiable of the fifth kind
1so-functions of the third kind is

d(7(3) = 7 T (s (75 ) (F) — x0T ()

A

(R axjf( )0t — £ (55 T@AT () (T(2) 0197 () ;.
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134.

135.

136.

137.

138.

139.

140.

The total iso-differential of the fourth kind of the iso-differentiable of the fifth kind
iso-functions of the fourth kind is

da(f"(x)) = L (3x,-f (T (x))(T (x) +x:0,, T (x))

+Z’}:17#iaxjf(xf"(x))xjaxif"(x)) (T (x) — x10,, T (x))dx;.

The total iso-differential of the fourth kind of the iso-differentiable of the sixth kind
1so-functions of the fourth kind is

da(f¥(x)) = 2 Ty (S (75 ) (F(6) = 285, ()

~ X i f (g )58 0 (7 () T, ().
The total iso-differential of the fourth kind of the iso-differentiable of the seventh kind

1so-functions of the first kind is

a‘( Xj
Ay (5) = E LT ST

%)

The total iso-differential of the fourth kind of the iso-differentiable of the seventh kind
1so-functions of the second kind is

(7)) = 7 By (S 0T () (7 (x) 422, T ()T ()

X100, SO () T (T () = £ ()2 T (3) ) i

The total iso-differential of the fourth kind of the iso-differentiable of the seventh kind
iso-functions of the third kind is

a(7() = T () Ty 00 f (75 ) (T () 52T ()

1 idndf (75 )6t ) — £ (75 ) 1@ T (.

The total iso-differential of the fourth kind of the iso-differentiable of the seventh kind
iso-functions of the fourth kind is

day(f"(x)) =T (x) LI, (ax,-f (T (x))(T (x) +x:0,,T ()

F X100 0T ()07 () ) i

The total iso-differential of the fourth kind of the iso-differentiable of the seventh kind
iso-functions of the fifth kind is

ds(£(x)) = Ty (3 f (75 ) (7 () =, ()
X! (75 )T () ) dxi
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141.

142.

143.

144.

145.

146.

147.

The total iso-differential of the fifth kind of the iso-differentiable of the first kind
iso-functions of the first kind is

NS X, X x)0x
ds(F(@) = i g, GG gy,

The total iso-differential of the fifth kind of the iso-differentiable of the first kind
1so-functions of the second kind is

ds(f(x))

_ 7 ST () (T ()40, T )T () + Ly 0, f 6T ()05, T ()T () = (T (x)) 0, T ()
=ThYi T(x)—x0x, T (x)

dx,-.

The total iso-differential of the fifth kind of the iso-differentiable of the first kind
1so-functions of the third kind is

ds(f(%))

o, oS (ﬁ) (T () =xi95 T (1) =Xl 200, f (ﬁ)x’ﬂi -1 <ﬁ)f(x)a’xif(x)
= Tl Zi:l f‘(x)—x,-axl.f"(x) dXi‘

The total iso-differential of the fifth kind of the iso-differentiable of the first kind
iso-functions of the fourth kind is

ds(f"(x))

31, (T () (P () 12 T () H Ty 109, ST ()04, T (1)

= 1T2(x) i T (x)—x;9y, T (x)

dx,-.

The total iso-differential of the fifth kind of the iso-differentiable of the first kind
iso-functions of the fifth kind is

ds(f"(x))

s () 0w a0 m (5 )t
=Y, T (x)—x;05, T (x) ax;.

The total iso-differential of the fifth kind of the iso-differentiable of the second kind
1so-functions of the first kind is

AN/ A Oy; x)0y, T'(x
ds(7(8)) = Ty gy 2/ O LT g,

The total iso-differential of the fifth kind of the iso-differentiable of the second kind
1so-functions of the second kind is

ds(f(x))

fx [ (x)+x;0x, T ()T (x n Oy FT (0)x 0% T ()T (x)— f(xT ()0, T (x
_ TIZ FOT () (T () x93, T (x)) T ( )+Z_,,1_,_,?(x),f( T(x))xj0x, T (x)T (x) = f(xT (x)) 9y, T (. )dx,'.
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148.

149.

150.

151.

152.

153.

154.

The total iso-differential of the fifth kind of the iso-differentiable of the second kind
iso-functions of the third kind is

ds(f(2))

iy ax,,f(ﬁ)@(x)maxiﬂ )-Ei 1,¢IT2(,J;( )x,n,m f(fzx))f(x)BxiT(x)dXi.

The total iso-differential of the fifth kind of the iso-differentiable of the second kind
iso-functions of the fourth kind is

ds(f"(x))

=TT (x) Ty O f (6T () (T (x) +xi05, T (x)) + Ly iz O, f (T ()0, T ().

The total iso-differential of the fifth kind of the iso-differentiable of the second kind
1so-functions of the fifth kind is

ds(1 () = Ti 75 Ty (3 f (75 ) (7 () 3T ()

7:1=j#iaxjf<r?))xj T (x ))dxl

The total iso-differential of the fifth kind of the iso-differentiable of the third kind
iso-functions of the first kind is

AN/ A O F ()T ()= f(x)0y, T (x
ds(P(8) = Tty Eiy 2L e

The total iso-differential of the fifth kind of the iso-differentiable of the third kind
iso-functions of the second kind is

ds(f(x))

p 1 QST D T s ST (W2 T ()~ ()00

=NEli7 7020, T

dxi.

The total iso-differential of the fifth kind of the iso-differentiable of the third kind
iso-functions of the third kind is

ds(f(%))
_f ; axif(ﬁ) (T (x)—x;0x, T (x))— 120, (T(x))x/T’“z (x)— f(f%)f‘(x)axif(x)d .
= () Li=1 T(0) 90 T (x) Xi-

The total iso-differential of the fifth kind of the iso-differentiable of the third kind
1so-functions of the fourth kind is

ds(f"(x))

31, (T () (P () toxd, T () H Ty 319, £ ()04, T ()

T () —xids, T (x) dx;.

Tz(x) -
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155.

156.

157.

158.

159.

160.

161.

The total iso-differential of the fifth kind of the iso-differentiable of the third kind
iso-functions of the fifth kind is

ds(f"(x))

ax-f(%)(T(x)fxiﬂ.(x))f):".zl_. ,-ax.f(%)xjﬁ.(x)
1 A\ T i J=1j# 7%\ T (x) i .
=T7y i ()20 7 (¥) dx;.

The total iso-differential of the fifth kind of the iso-differentiable of the fourth kind
iso-functions of the first kind is

N[ A A oon O fOT () —f(x)0y T (x
ds(f(3) = Ty 2L Y g,

The total iso-differential of the fifth kind of the iso-differentiable of the fourth kind
1so-functions of the second kind is

ds(f"(x))
A A f (T () (T (x)+x:05. T (X)) T (x n Oy FT (0)x 0% T ()T (x)— f(xT ()0, T (x
Ty, - FOT () (T (x) 42305, T (x)) T ( HZFW;;(X;]C( T (x))xj0x, T (x)T (x) = f(xT (x)) 9, T (. )dx,'.

The total iso-differential of the fifth kind of the iso-differentiable of the fourth kind

iso-functions of the third kind is

ds(f (%))

. ax,.f( ) (P () —xi0 T (1) ~X" . .#,.ax.f( >x,~n-,. (x)—f( )ﬂx)ax,.f(x)
=T Z?:l o - fS(jx) o o dx;.

The total iso-differential of the fifth kind of the iso-differentiable of the fourth kind
iso-functions of the fourth kind is

ds(f" (x))
= Tl (D0 f T (0) (7 () 60 T () K, (6T ()2 T () ) i

The total iso-differential of the fifth kind of the iso-differentiable of the fourth kind
iso-functions of the fifth kind is

ds(f"(x))

A

= T T (3 (75 ) (P00 6T (00) = Xy i f (75 ) 07 () ) i

The total iso-differential of fifth kind of the iso-differentiable of the fifth kind iso-
functions of the first kind is

=
=
Nai
|
~
=
Rad)
Exg
~>
—~
)

AN /A PANPN n Onf(0)T
ds(7(8) = T () o, 2
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162.

163.

164.

165.

166.

167.

168.

The total iso-differential of the fifth kind of the iso-differentiable of the fifth kind
iso-functions of the second kind is

ds(f"(x))

Ay 2T 0 P B, (0250 1) )
=1 )C) i=1 f(X)—xiax,-T(x)

dxi.

The total iso-differential of the fifth kind of the iso-differentiable of the fifth kind
1so-functions of the third kind is

ds(f (%))

) ax,.f(ﬁ)@(x)—xiax,.f(x»f "y (ﬁ)wﬁ,—(@#(ﬁ)f(X)Bx,-T(X)

= Tl Zi:l f(x)—xiaxiT(X) dXi.

The total iso-differential of the fifth kind of the iso-differentiable of the fifth kind
1so-functions of the fourth kind is

ds(f"(x))

A A O, F(XT () (T (%) 42,05, T (%)) +X"_, 12 O, f (6T (x))x;0. T (x)
_ 3 n i i j=1,j#i TV
=TT (x) X, T(x)—x,-a,(:f'(),c) !

dx,'.

The total iso-differential of the fifth kind of the iso-differentiable of the fifth kind
1so-functions of the fifth kind is

ds(f"(x))

. . axl,f(ﬁ>(f(x)—xifri(x))— ?:1,j#iaxjf<sz))x-fT"i(x)
=TT(x)X, T (x)—x105,T (x) .

The total iso-differential of the fifth kind of the iso-differentiable of the sixth kind
1so-functions of the first kind is

ds(7(8) = T L (3 (T () = F(02, T (x) )i

The total iso-differential of fifth kind of the iso-differentiable of the sixth kind iso-
functions of the second kind is

ds(f"(x) =T Xy (3x,-f (T (x))(T (%) +2x:05, T (x))T (x)

+X axjf(xf"(x) )x;0x, T (x)T (x) — f(xT(x))&xif(x)) dx;.

The total iso-differential of the fifth kind of the iso-differentiable of the sixth kind
1so-functions of the third kind is

ds(f(%))

. a,\-,-f( ) (T (x) x0T () ~X1_ 2 O, f ( )ijxi (x)—f <—) T (x)0y, T (x)
=hy, — — = = dxi.
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169.

170.

171.

172.

173.

174.

175.

The total iso-differential of the fifth kind of the iso-differentiable of the sixth kind
iso-functions of the fourth kind is

ds(f"(x)) = hT*(x) £i, (ax,-f (T (0))(T (x) +2x:0, T ()

F X100 T ()97 () )

The total iso-differential of fifth kind of the iso-differentiable of the sixth kind iso-
functions of the fifth kind is

ds(f"(x))

= Ry (s (7 ) (P00 =5 () = E e (5 )50 (6) )

The total iso-differential of the fifth kind of the iso-differentiable of the seventh kind
1so-functions of the first kind is

AN /A A n A f ()T (x)— £ ()0 T (x
dS(f/\(x)) — HT(X) - ,f(A)(T( ) f( ) ,T( )dx,-.

The total iso-differential of fifth kind of the iso-differentiable of the seventh kind iso-
functions of the second kind is

ds(f"(x))

& n O fOT )T ()40 T ()T () = f(T ()9 T () + L)y i Oy (6T ()05 T ()T (x)
= lT(x) i=1 T(x)— X0y, T T(x) IR .

dxi.

The total iso-differential of the fifth kind of the iso-differentiable of the seventh kind
1so-functions of the third kind is

ds(f (%))

o0t () P xn )1t (5 )it (755 ) P00

=Ty’ (F()—xi05,7(x)) i

The total iso-differential of fifth kind of the iso-differentiable of the seventh kind iso-
functions of the fourth kind is

ds(f"(x))

Bxif(xf" (x))(f"(x)#»xiaxi T(x))+):’}: 1t axj F(xT () )% 0x; T (x)
T (x) —XiOx; T (x)

=NHT(x) L dx;.

The total iso-differential of the fifth kind of the iso-differentiable of the seventh kind
iso-functions of the fifth kind is

ds(f"(x))

ot () (P05 )5y (2 )T .
T (x)—x:0x, T (x) b

= ITZ(X) -

88



176.

177.

178.

179.

180.

181.

182.

The total iso-differential of the sixth kind of the iso-differentiable of the first kind
iso-functions of the first kind is

AN A A n O fOT (x)—f(x)3y, T (x
do(/" () = Ti 5 Ly f(f)(x>(—)xiaﬁf)<x> S

The total iso-differential of the sixth kind of the iso-differentiable of the first kind
1so-functions of the second kind is

ds(f"(x))

ST () (T () +26:05, T (0)) T () = f T ()0, T () + L]y 29, ST ()05, T (1) T ()

hEL ()9, T () dx;.

The total iso-differential of the sixth kind of the iso-differentiable of the first kind
1so-functions of the third kind is

ds(f (%))
a, f( )mx) g ()T iax-f<~i)X_/ﬁ-(X)—f(x* )f(x)ax.f(x)
_ 1 ayn 7(x) i J=1# 7N\ T (x) i () i
TT(X)TI Zz: T(X) _x’_aXiT(x) dx,'.

The total iso-differential of the sixth kind of the iso-differentiable of the first kind
iso-functions of the fourth kind is

de(f" (x))

A FOT () (F (@) 4210 T () + L1y 1500, £ (0T ()20, T ()
=TT XL L

The total iso-differential of the sixth kind of the iso-differentiable of the first kind
iso-functions of the fifth kind is

de(f" (x))

ax.f<3‘ )(T(x)—xifx.(x))—):’!:l. .ax.f(i‘
PO n i)\ T(x) i J=LiF X\ T(x)
=hirglia x0T dxi.

The total iso-differential of the sixth kind of the iso-differentiable of the second kind
1so-functions of the first kind is

AN /A Oy ['(x)—f(x)0y, T (x
dﬁ(f/\(x)) Tl Z , T(f?z(){)( ) ,T( )dxi.

The total iso-differential of the sixth kind of the iso-differentiable of the second kind
1so-functions of the second kind is

ds(f(x))

fx [(x)+x0x. T )T (X)X, -0 fXT(0))x;05 T ()T (x)— F(xT (x)) 0y, T (x
_ TIZ FOT () (T () x93, T (x)) T ( )):.,,1_.,?2(;)}[( T (x))xj0x, T (x)T (x) = f(xT (x)) 9, T (. )dx,'.
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183. The total iso-differential of the sixth kind of the iso-differentiable of the second kind
iso-functions of the third kind is

de(f (%))

_ 4 oy ELJ(%) (T (x)—xi05, T (x)) - X1 1#,:3(];( )x,Tx, (x)— f(f(xx))f(x)axiT(X) .

184. The total iso-differential of the sixth kind of the iso-differentiable of the second kind
iso-functions of the fourth kind is

ds(f"(x))

=T YL, (ax,-f (T () (T (x) + %02, (x)) + Ly j 21 O, f (6T (x))x;0,, T (x) ;.

185. The total iso-differential of the sixth kind of the iso-differentiable of the second kind
iso-functions of the fourth kind is

de(f" (%))
= Ty T (00 (35 ) (F0) =5 (0) = s 0, f (5 )5/ () ) i

186. The total iso-differential of the sixth kind of the iso-differentiable of the third kind
1so-functions of the first kind is

O f(X) T (x)—f(x)0,. T (x
do(f" (%)) = Tl): : T(x)(—)x,axl(T)()l W ;.

187. The total iso-differential of the sixth kind of the iso-differentiable of the third kind
iso-functions of the second kind is

ds(f"(x))

00, (T () (F (1) Fd, T )T ()45 00, 6T ()00, T (00T ()~ (T (), T ()

T‘ Y T(0)—x0,, () dx;.

188. The total iso-differential of the sixth kind of the iso-differentiable of the third kind
1so-functions of the third kind is

ds(f (%))

ﬁ) (T(x)fx,-axl.f"(x))f ;f:l,#injf(ﬁ)xﬂ}i (x)ff<%x)) T(x)axl.f‘(x)
T (x) =05, T (x)

e hYi, dx;.

189. The total iso-differential of the sixth kind of the iso-differentiable of the third kind
iso-functions of the fourth kind is

de(f"(x))

34, S (T () (7 (0) i, T () K10, £ (6T ()0, T ()

i=1 ()9, 7 (x) dx;.
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190.

191.

192.

193.

194.

195.

196.

The total iso-differential of the sixth kind of the iso-differentiable of the third kind
iso-functions of the fifth kind is

de(f"(x))
N ax,.f(ﬁ)(T(x)—xiﬁi(x))iﬁ-:l.,-#,-ax,f(ﬁ)xjﬁ,«x)
= Ty &i=l T (x)—xi0y, T (x) ;.

The total iso-differential of the sixth kind of the iso-differentiable of the fourth kind
1so-functions of the first kind is

AN /A O, f(X)T(x x)0y T (x
de(f(2) =T1 YL, = (T)g( )() ’ ()dxi.

The total iso-differential of the sixth kind of the iso-differentiable of the fourth kind
1so-functions of the second kind is

ds(f" (x))

fx f X0, T O T (x "m0 F T (00)x 0y T ()T (X)— f(xT (x)) 0. T
_ TIZ FOT () (T () x93, T (x)) T ( )+):_,,1._,;;(x§f(XT( x0T (X)T (x)—f(xT (x)) lT(x)dx,-.

The total iso-differential of the sixth kind of the iso-differentiable of the fourth kind
1so-functions of the third kind is

ds(f (%))

. ax,.f(ﬁfx)mx)—xiax,f( ) =Xy josi O f< ;
=T Z?:l d . T4(x) dx;.

The total iso-differential of the sixth kind of the iso-differentiable of the fourth kind
iso-functions of the fourth kind is

de(f" (%))

_ gy 2076 ))<f<x>+x.-ax,.T(x));(x)_';:.,#iax,.f<xf<x>>x,-ax,.f<x> i

The total iso-differential of the sixth kind of the iso-differentiable of the fourth kind
1so-functions of the fifth kind is

ds(f" (x))

N

=T Y (0 f (7)) (P = 5T (0) = By 0 f (75 )T () )i

The total iso-differential of the sixth kind of the iso-differentiable of the fifth kind
1so-functions of the first kind is

An s n Ao O X)7T(x)— xaxt.fx
ds(f " (X)) =T X, f(T)(x)(f)XiaifT)(x) : )dxi
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197.

198.

199.

200.

201.

202.

203.

The total iso-differential of the sixth kind of the iso-differentiable of the fifth kind
iso-functions of the second kind is

do(f" (x))

_ 7 FET )T ()05, T ()T (1) 4Ly 230, f (T ()20, T () T ()~ f (T (x)) 05, T (x)
=Ny T(x)—x0, 7 (%)

dx,-.

The total iso-differential of the sixth kind of the iso-differentiable of the fifth kind
1so-functions of the third kind is

ds(f(2))
.y axif(ﬁ;))(f"() —xidy T(x) JTI(JT,a f(T : )x, e (A?X)>7A"(x)axl.f(x)dxj'

The total iso-differential of the sixth kind of the iso-differentiable of the fifth kind
1so-functions of the fourth kind is

ds( "))
A oo O SO () (T () 400, T (0)) + Ly 20, (T (6));0x, T (x)
= 2T TL, D Lot O T g,

The total iso-differential of the sixth kind of the iso-differentiable of the fifth kind
1so-functions of the fifth kind is

do(f" (x))

ax,-f<ﬁ)(f(X)*xr-fx,(X))* ;“-zl,j#iax_,f(ﬁ)xffxi(x)

=T Z;l:] T (x)—x;0y, T (x) i

The total iso-differential of the sixth kind of the iso-differentiable of the sixth kind
iso-functions of the first kind is

do(7(8)) = i i, 2L ST,

x)

The total iso-differential of the sixth kind of the iso-differentiable of the sixth kind
iso-functions of the second kind is

ds(f(x))

iy SO >><T(x>+x,-ax,f<x>)f<x)+z_';:1__f?i(ix)jf'(xf<x>>x,-ax,.T(xmx)—f(xﬂx))axﬁ(x) .

The total iso-differential of the sixth kind of the iso-differentiable of the sixth kind
1so-functions of the third kind is

de(f (%))

” ax,-f( A,(r){)) (T(X)—X;ax,-f(X))—Z'LL#,-ax»f( Afx)>xj Axi(x)_f<T) T(x)a T( )
~ 7 Z?:l 7 j=1j Tz(/x) 7 T dx;.
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204.

205.

206.

207.

208.

209.

210.

The total iso-differential of the sixth kind of the iso-differentiable of the sixth kind
iso-functions of the fourth kind is

de(f"(x))

=TT Ty (96 T () (F () + 504 T (1) + Ky i, 0T ()70, T (1) )l

The total iso-differential of the sixth kind of the iso-differentiable of the sixth kind
iso-functions of the fifth kind is

ds(f" (x))
= Tt 0 (9 (75 ) (00 =i () = By s f (75 ) i () )i

The total iso-differential of the sixth kind of the iso-differentiable of the seventh kind
1so-functions of the first kind is

AN/ A O f(X)T (x x)0y, T'(x
do( (%)) = Ty Ty 2L IO g,

The total iso-differential of the sixth kind of the iso-differentiable of the seventh kind
1so-functions of the second kind is

do (/" (x))
om0 S O () (T (1) 4030y, T ()T ()X 40, f T (x))x05, T ()T (x) —f (3T (x))0x, T (x)
=TNYi, 7{():)]7;3;’ W dx;.

The total iso-differential of the sixth kind of the iso-differentiable of the seventh kind
1so-functions of the third kind is

ds(f(%))

() Aot s (5 )01 (515 ) P

=T Zi:l T)(T(x) x0T (x) dx;.

The total iso-differential of the sixth kind of the iso-differentiable of the seventh kind
1so-functions of the fourth kind is

de(f"(x))

5 FOT () (F () 42305, T ()L 39 f (T ()0, T (x)
=T%(x )TIZ T(x)—x,aAjTl(]T - ! dx;.

The total iso-differential of the sixth kind of the iso-differentiable of the seventh kind
iso-functions of the fourth kind is

ds(f" (x))

0t (725) <T(x>xi?2)<:)c>>)(ta s ot (725 )i "
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211.

212.

213.

214.

215.

216.

217.

The total iso-differential of the seventh kind of the iso-differentiable of the first kind
iso-functions of the first kind is

2 1 yn fOTW-WIT)
(P (®) = 75 Tims " i 4

The total iso-differential of the seventh kind of the iso-differentiable of the first kind
1so-functions of the second kind is

dr(f"(x))

L e O () P )T ()~ ()3 P+ Tt T ()2 T ()
T T(x) i=1 T(x)fx,-axif'(x)

dx,-.

The total iso-differential of seventh kind of the iso-differentiable of the first kind iso-
functions of the third kind is

d1(f(2))

g ; axlf(ﬁ)(f"() x,aXlT Yy 20 f( (‘ )x, T, (x (A‘(“'V)>7A"(x)axl.f(x)
T T2 (x) ~i=l T (x)—x;0x, T (x)

The total iso-differential of the seventh kind of the iso-differentiable of the first kind
iso-functions of the fourth kind is

d7(f"(x))

4 B4 (T () (7 () P+, ST ()50 )
( ) i=1 T (x)—x;0, T (x)

dxi.

The total iso-differential of the seventh kind of the iso-differentiable of the first kind
1so-functions of the fifth kind is

d7(f"(x))
R ) L B R Gt
— T &=l T (x)—x;0x, T (x) Li-

The total iso-differential of the seventh kind of the iso-differentiable of the second
kind iso-functions of the first kind is

A f(X)T (x)—f(x axt.f X
(f/\( )) z 1 [f( ) (j?Z(x)( ) ()dxi-

The total iso-differential of the seventh kind of the iso-differentiable of the second
kind iso-functions of the second kind is

dr(f"(x))

A fXT (T () 4+x:0x: TONT () X7y oy 0x, F (T (x))x0x. T ()T (x) = f (xT ()0, T (x
—yr ST () (T (x) 4203, T (x)) T (%) .,,1,.,?2(;)][( T (x))xj0x, T (x)T (x)— f(xT (x)) 9y, T ( )dx,'.
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218.

219.

220.

221.

222,

223.

224.

The total iso-differential of the seventh kind of the iso-differentiable of the second
kind iso-functions of the third kind is

d7(f(%))

e axl.f(ﬁ)(T(x)fx,-axif"(x))f _’;:L#iaxjf(ﬁ)xjf"xl.(x)ff<T@)T(x)axl.f“(x)
— L=l 73(x)

dx,-.

The total iso-differential of the seventh kind of the iso-differentiable of the second
kind iso-functions of the fourth kind is

d7(f"(x))

= 271 (O () (7 () + 2307 (0) 4 Ky 000, £ (6T ()10, T ()

The total iso-differential of the seventh kind of the iso-differentiable of the second
kind iso-functions of the fourth kind is

d7(f(x))

A

= i (0 (75) 0 =28 (0) = By 0 f (75 ) 01T () ) i

The total iso-differential of the seventh kind of the iso-differentiable of the third kind
1so-functions of the first kind is

Ay A ST ()= T(x)
dr(f"(%) = 20 Li-1 T ()10, 7 (x) dx;.
The total iso-differential of the seventh kind of the iso-differentiable of the third kind
iso-functions of the second kind is

dr(f"(x))

U en O S GT@)(P) bxdy ) (04T 10, £ ()22, T ()7 (6) — f (0T ()2, 7 ()
T2 (x) &i=1 T (x)—xi9,7 (x)

dxi.

The total iso-differential of the seventh kind of the iso-differentiable of the third kind
1so-functions of the third kind is

dr(f(%))
T3 (x) &1 T (x)—x;9y, T (x)

The total iso-differential of the seventh kind of the iso-differentiable of the third kind
iso-functions of the fourth kind is

d7(f"(x))

A f(T () (T () 426005, T (0)+ X2y 0, f (T (x))x;0, T (x)

()i, T (x) dx;.

= T(x) -
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225.

226.

227.

228.

229.

230.

231.

The total iso-differential of the seventh kind of the iso-differentiable of the third kind
iso-functions of the fifth kind is

d7(f"(x))

n

_ Al . ax,-f(ﬁ)(fq(x)*xif};(x))* ’;:Alﬁj#axjf( m)x/T‘,(x)d
72(x) &i=1 T (x)—xi05; T (x)

Xi.

The total iso-differential of the seventh kind of the iso-differentiable of the fourth kind
1so-functions of the first kind is

A f ()T (x)— f(x)0, T (x
dr(f1(2)) = Ty WL S Y g,

The total iso-differential of the seventh kind of the iso-differentiable of the fourth kind
1so-functions of the second kind is

dr (" (x))

JGT (x ))(T(x)+x,-ax,.f(x))f(x)+z_';:,#[axjf(xf(x))x_,-axif(x)f(x)—f(xf(x))axif(x)d
Z 73 (x) Xi-

The total iso-differential of the seventh kind of the iso-differentiable of the fourth kind
1so-functions of the third kind is

d1(f(2))

dxi.

The total iso-differential of the seventh kind of the iso-differentiable of the fourth kind
iso-functions of the fourth kind is

d7(f"(x))

—yr JOT (x ))(T(X)ert'ax,»T(X));(-x), 14 0x, T (0))x;0,, T (x) dx;.

The total iso-differential of the seventh kind of the iso-differentiable of the fourth kind
1so-functions of the fifth kind is

dy(fY (x))

= g T (0 (75 () =28, (0) = By (755 ) i () )

The total iso-differential of the seventh kind of the iso-differentiable of the fifth kind
1so-functions of the first kind is

~ n n a_,[[ X T axlT
() = i LTS g
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232.

233.

234.

235.

236.

237.

238.

The total iso-differential of the seventh kind of the iso-differentiable of the fifth kind
iso-functions of the second kind is

dr(f"(x))

on axif(xf'(x))(f'(x)+xiaxiT(x))T(x)JrZ;f:l‘#i ijf(xT(x))xjaxiT(x)T(x) —f(T (x))05, T (%)
T Li=1 T (x)—x;0y, T (x)

dx,-.

The total iso-differential of the seventh kind of the iso-differentiable of the fifth kind
1so-functions of the third kind is

d1(f (%))

1 . a&f(ﬁ) (f(x)—x,'axif(X))—Z;f:Lﬁgiaxjf<ﬁ))€_/fxi (x)—f(f(;))f'(x)axiT(x)

T (x) &~i=1 T (x) —X;0x; T (x)

The total iso-differential of the seventh kind of the iso-differentiable of the fifth kind
1so-functions of the fourth kind is

d7(f"(x))

axl.f(xf"(x))(f(x)—i—x,-axif"(x))—&-z;f:l"#iaxjf(xf(x))x,-axif"(x)
f(x) _xia)r,-T(x)

=T?(x)Yr, dx;.

The total iso-differential of the seventh kind of the iso-differentiable of the fifth kind
1so-functions of the fifth kind is

dy(f¥ (x))

a,qf(ﬁ) (T(x) =T, (x))*z'jl':l.#iaX.ff(ﬁ)xfﬁ'i (x)
= Z:l:] T(X)*xiaxif‘(x) dxl

The total iso-differential of the seventh kind of the iso-differentiable of the sixth kind
iso-functions of the first kind is

AN/ A n axl.fxf"x—fxaxifx
dr(f(0)) = iy SR

The total iso-differential of the seventh kind of the iso-differentiable of the sixth kind
iso-functions of the second kind is

dr (" (x))

_ vn axif(XT(x))<T(x)+xiax,-f(x))f(x)+z_’;:|,_/7&[axJ'f(XT(x))xjaxiT(x)f<x)_f(XT(x))axiT(x)d
- Zi:l T(x) Xi-

The total iso-differential of the seventh kind of the iso-differentiable of the sixth kind
1so-functions of the third kind is

d1(f (%))

; ag(%) (T (x)—x;0x, T (x))— 'J’-:l?j#iaxjf<ﬁ>x_/fvi (x)—f(i'(”x) ) T ()05, T (x)
=Xio 2(x)
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239.

240.

241.

242,

243.

244.

24s.

The total iso-differential of the seventh kind of the iso-differentiable of the sixth kind
iso-functions of the fourth kind is

d7(f"(x))

= P i (90 O () (7 () 604 T () + Kl 1000,/ (6 ()50 7 () ) ;.

The total iso-differential of the seventh kind of the iso-differentiable of the sixth kind
iso-functions of the fifth kind is

dq(fY (x))

= v (00 (75 ) (P00 = () = Ky e, f (75 )17 () ) v

The total iso-differential of the seventh kind of the iso-differentiable of the seventh
kind iso-functions of the first kind is

YUR 9, S ()T (0)=f(x)0, T (x)
d7(f/\(x)) =Xl ;(x)ix,-ax T(x ) dx;.
The total iso-differential of the seventh kind of the iso-differentiable of the seventh
kind iso-functions of the second kind is

dr (" (x))

ST @) (T ()0 T )T ()+ Ly e 0, S (6T (0)2j05 T ()T (6)—f (0T (x))9, T ()

=L T ()9, T () dx;.

The total iso-differential of the seventh kind of the iso-differentiable of the seventh
kind iso-functions of the third kind is

d7(f(%))

() F@ma @ i (5 Do (5 ) Pt

i=1 T (x)(T (x)—xi0x, T (x)) .

The total iso-differential of the seventh kind of the iso-differentiable of the seventh
kind iso-functions of the fourth kind is

d7(f"(x))

_ 72 a»[.f(xf‘(x))(T(X)er,-axiT(x))#»Z'}:l'j%,-ijf(xf’(x))xjaxif‘(x)
=T*(x) X, T (x)—x:0x, T (x)

dxl-.

The total iso-differential of the seventh kind of the iso-differentiable of the seventh
kind iso-functions of the fourth kind is

dy(f" (x))

) 0 f ( i ) (T () =Ty (1) =Xy 0 f <T) 5T ()
=T ()X, 70,700 i
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246.

247.

248.

249.

250.

251.

252.

The total iso-differential of the eighth kind of the iso-differentiable of the first kind
iso-functions of the first kind is

AN/ A n axi'xf"xf'xaxif'x
(N 8) = T, B ST

The total iso-differential of the eighth kind of the iso-differentiable of the first kind
iso-functions of the second kind is

ds(f"(x))

04,/ (T () (F ()40, T () () 4200, £ 6T ()30 T (T ()~ f (0T ()2, 7 ()

=Y T(0)—xi0x, T (x) .

The total iso-differential of the the eighth kind of the iso-differentiable of the first kind
iso-functions of the third kind is

ds(f (%))

Zn ax,f(ﬁ) (T(x)_xiax,-f(x))_ '}:Lﬁgiaxj‘f(ﬁ)xjfn(x)_f<kax))fw(x)ax,-f(x)
= Li=1

o)1) dx;.

The total iso-differential of the eighth kind of the iso-differentiable of the first kind
iso-functions of the fourth kind is

dg(f"(x))

34, S (T () (7 (0)Fxid, T ()T 10, £ (6 ()9, T ()

P2y
=T(x) Xi T w0, T ()

dx,-.

The total iso-differential of the eighth kind of the iso-differentiable of the first kind
iso-functions of the fifth kind is

dg(f"(x))

) ( . )(T(X)—xt'fxl- () =Xt 9x S < fo))x-" T ()
=Y T (x)—x;05, T (x)

N,
E

dxl-.

The total iso-differential of the eighth kind of the iso-differentiable of the second kind
iso-functions of the first kind is

AN/ A n o Oy xf"xffxa_xif’x
A (N0 = T, BT STO g

The total iso-differential of the eighth kind of the iso-differentiable of the second kind
iso-functions of the second kind is

ds(f"(x))

A f(xT (T (x)+xi0x. T ()T (x n 0y F T (0)x0x T ()T (x)— f(xT ()0 T (x
—yr ST () (T (x) 4205, T (x)) T (x)+ .,,|,.,7;,(x),f( T(x))xj0x; T (x)T (x) = f (xT (x))0, T ( )dx,'.
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253.

254.

255.

256.

257.

258.

259.

The total iso-differential of the eighth kind of the iso-differentiable of the second kind
iso-functions of the third kind is

ds(f(®)) = n lax,-f<ffx>>(f(x)x,-axif(x))Z_’}L_/#i(/‘)(r(x))x,nl(x) f<fz‘)>f(x)ax’j(x)dxi'

The total iso-differential of the eighth kind of the iso-differentiable of the second kind
iso-functions of the fourth kind is

dg(f" (x))
=T () Ty O f (6T () (T () 2305 T (x)) + Xy 0, f 0T (x)) ;05T (x)dxi.

The total iso-differential of the eighth kind of the iso-differentiable of the second kind
iso-functions of the fifth kind is

(1" () = 7 T (0 (75 ) (F () = 6Ty ()

)0 () ) ;.

The total iso-differential of the eighth kind of the iso-differentiable of the third kind
iso-functions of the first kind is

Z] L j#i ax/f(

A 1 vn 9T () —fx )3x,T() .
(f()) () i=1 T(x)— x0T T(x) dx;

The total iso-differential of the eighth kind of the iso-differentiable of the third kind
1so-functions of the second kind is

dg(f"(x))

L O () () T () P00, M ()32 T (0T ()67 ()2, (1)
)

= Lim1 7y (1) =20y, T (x dx;.

The total iso-differential of the eighth kind of the iso-differentiable of the third kind
iso-functions of the third kind is

ds(f (%))

n ax,f(ﬁ)(f( ) xtax,T ] 11#,8 f( { )ij:Vl (A’(‘X)>T(x)axif'(x)
o T

1
72 (x) &~i=1 T (x)—x;0 ;T (x)

The total iso-differential of the eighth kind of the iso-differentiable of the third kind
iso-functions of the fourth kind is

dg(f"(x))

34, (T () (F ()i, T () ATy 10, £ (6T ()9, T ()

()9, T (x) dx;.

= Tz(x) i
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260.

261.

262.

263.

264.

265.

266.

The total iso-differential of the eighth kind of the iso-differentiable of the third kind
iso-functions of the fifth kind is

dg(f"(x))

1 n ax,f(f-g)> (T(x)_xirrl‘ (x))_z;?:],jyéia)fjf(ﬁ)x_/ﬁ[(x) dx
i

T T(x) ~i=l T (x) —x;0x; T (x)

The total iso-differential of the eighth kind of the iso-differentiable of the fourth kind
iso-functions of the first kind is

AN/ A n Oy )T (x)— aniTx
ds(f (%)) = X0, S (T)Z(j:)() ()dx,-.

The total iso-differential of the eighth kind of the iso-differentiable of the fourth kind
iso-functions of the second kind is

ds(f"(x))

A f(xT VT (x)+x;05. T (X)) T (x n O F T (00)x 05 T ()T (x)— f(XT (x)) 0y T (x
—yr, ST () (T (%) 4205, T (x)) T ( )+Z,,|,,;;(x_),f( T (x))xj0x, T ()T (x)— f(xT (x)) 0, T (. )dx,-.

The total iso-differential of the eighth kind of the iso-differentiable of the fourth kind
iso-functions of the third kind is

ds(f (%))

dx,'.

n ax,f(ﬁ) (f(x)_xiax,-f(x))_ '}:Lﬁgiaxj‘f(ﬁ)xjfri(x)_f<f(xx))f(x)ax,-f(x)
=Xio 3(x)

The total iso-differential of the eighth kind of the iso-differentiable of the fourth kind
iso-functions of the fourth kind is

ds (" (x))
= X1 (3 0T () (7 () 4500 T () + Ty 2090 S O ()90 () ) i

The total iso-differential of the eighth kind of the iso-differentiable of the fourth kind
iso-functions of the fifth kind is

ds (1 (%))
= s T (0 f (75) () =28 (0) = By 0 f (75 ) 0T () )

The total iso-differential of the eighth kind of the iso-differentiable of the fifth kind
iso-functions of the first kind is

AN A n o Oy xfxﬁfxaxif‘x
ds(f () =T(x)¥X", / (T)(x)(f)x,«ax[.(f)(x) ® ax;.
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267.

268.

269.

270.

271.

272.

273.

The total iso-differential of the eighth kind of the iso-differentiable of the fifth kind
iso-functions of the second kind is

dg(f"(x))

O, f (xT () (T (x)+x:0y, T(x))f"(x)#»)j}; 1t ij ST (x))xj0y, T (x)— £ (5T (x)) 9, T (x)
T (x)—x;0x, T (x)

=Tx)Yr, dx;.

The total iso-differential of the eighth kind of the iso-differentiable of the fifth kind
iso-functions of the third kind is

ds(f (%))

() st i (g o (5 ) Feoa T
= Lij=1 T (x)—x;0x, T (x)

dx,;

The total iso-differential of the eighth kind of the iso-differentiable of the fifth kind
iso-functions of the fourth kind is

dg(f"(x))

03,/ (7 (3)) (7 (5430, T () K10 5T ()2, T )
T (x) —x;0x; T (x)

= XL dx;.

The total iso-differential of the eighth kind of the iso-differentiable of the fifth kind
iso-functions of the fifth kind is

ds(f" (%))
oy af(ﬁ) (P () 6Ty () Ky 0, f (ﬁ)T )
=T(x) L, T()—x1057(x) -

The total iso-differential of the eighth kind of the iso-differentiable of the sixth kind
iso-functions of the first kind is

ds(7* () = iy (2 WT () = 1200, 7))

The total iso-differential of the eighth kind of the iso-differentiable of the sixth kind
iso-functions of the second kind is

ds(f"(x) = Eiy <8x,f (T (x))(T (x) + 2,05, T (x))T (x)

+X axjf(xf"(x) )x;0x, T ()T (x) — f(xT(x))&xif(x)) dx;.

The total iso-differential of the eighth kind of the iso-differentiable of the sixth kind
iso-functions of the third kind is

ds(f (%))

n ax,f(ﬁ) (f(X)—xz'ax,-f(X))—Z'}:l#i3xj«f(ﬁ))ﬁfx, (x)_f<ffx))f(x)ax,-f(x)
=Lio s
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274.

275.

276.

2717.

278.

279.

280.

The total iso-differential of the eighth kind of the iso-differentiable of the sixth kind
iso-functions of the fourth kind is

ds(f(x)) =T*(x) L, <8x,-f (T (0))(T (x) +x:0,,T ()

F X100, T ()07 () )
The total iso-differential of the eighth kind of the iso-differentiable of the sixth kind
iso-functions of the fifth kind is

dg(f"(x))

N

=301 (0uf (75) (T @) = 5T () = By 0, (5 )T ) ) i
The total iso-differential of the eighth kind of the iso-differentiable of the seventh kind

iso-functions of the first kind is

An g a A n O ST (x)—f(x)0y, T (x
ds (7 () = T (x) piy 2L G .

The total iso-differential of the eighth kind of the iso-differentiable of the seventh kind
iso-functions of the second kind is

ds(f"(x))

O, f (6T (X)) (T (x)+x;0x, T (X)) T (x) — £ (xT () ) Oy, T(X)+):?:1'j%,- axj ST (x))x;0,, T (x)T (x)
T (x)—x;0x, T (x)

=T(x) L dx;.

The total iso-differential of the eighth kind of the iso-differentiable of the seventh kind
iso-functions of the third kind is

ds(f(2))

() G g i (g )t (7 ) T

= )il (T (x)—xi0x, T (x)) i

The total iso-differential of the eighth kind of the iso-differentiable of the seventh kind
iso-functions of the fourth kind is

ds(f"(x))

O, £ (xT (x)) (T (x)+x;0x, T(x))+):’}: 1,j#i %) F&T (x))x;05, T (x)
T (x)—x;0x, T (x)

=T3*(x) YL, dx;.

The total iso-differential of the eighth kind of the iso-differentiable of the seventh kind
iso-functions of the fifth kind is

dg(f"(x))

axif(fl(tx)> (T(x)fxij}i (x)— 71,j¢iax_/f(fz;))xjﬁ;(x)d
T (x)—x;0x, T (x)

=T*(x) i, Xi-
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Definition 1.5.39. The second order total iso-differential of the (i, j)-kind of an iso-
function f is defined as follows

A A

di\(d;(f)) =di(Td;(f)), i,j=12,....8

The third order total iso-differential of the (1,1, j)-kind of an iso-function f is defined as
follows

dMd)(di(f)) = di(Tdi(Td;(f))),  Li,j=12,...,8

and so on.

Exercise 1.5.40. Let f,3 : D —> R be iso-functions of the first, the second, the third, the
fourth or the fifth kind, which are iso-differentiable at x € D of the first, the second, the
third, the fourth, the fifth, the sixth or the seventh kind. Let also, a € R, a € FR. Prove

L dj(f(X)ié(X)) = d;(F(x)) £d;(8(x))%;"

Remark 1.5.41. The iso- derivatives of the first, the second, the third, the fourth, the fifth,
the sixth or the seventh kind of the iso-composite iso-functions of the first, the second, the
third, the fourth or the fifth kind can be computed using the definition of the iso-composite
iso-functions, the iso-derivatives and the rules for computation of the derivatives of com-
posite functions.

Definition 1.5.42. Let f: D —s R be an iso-function of the first, the second, the third,
the fourth or the fifth kind, which is iso-differentiable of the first, the second, the third, the
fourth, the fifth, the sixth or the seventh kind at x € D. Let also, ¥ = ($1,92,---,9n) € Fin.
Then the directional iso-derivative of f is defined as follows

of(x) /0¥ =Y (f)E %9 or

0 N i@ n )
0y (FOMS, = 1,207
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Definition 1.5.43. Let f: D —» R be an iso-function of the first, the second, the third,
the fourth or the fifth kind, which is iso-differentiable of the first, the second, the third, the
fourth, the fifth, the sixth or the seventh kind at x € D. Then the iso-gradient of f of the j-th
kind, j =1,2,...7, is defined as follows

70 = (U (P2 (7).

Homogeneous iso-functions
Let D CR"and T : D — R, T(x) > 0 for every x € D.

Definition 1.5.44. An iso-function of the first, the second, the third, the fourth or the fifth
kind, defined on D C R", will be called a homogeneous iso-function of degree n at the point
10 € D ifits iso-original is a homogeneous function of degree n at the point x°.

Theorem 1.5.45. Let f\ is defined on D, f is homogeneous of degree n at the point x € D,
T is homogeneous of degree m at the point x € D. Then f"" is homogeneous of degree
n—m.

Proof. Let ¢ belongs to an enough small neighborhood of 1. Then

F05) W) )

~

T(x) T(x)  T(x)

O
Corollary 1.5.46. In addition, if f and T are differentiable at x, then we have the following
iso- Euler equality
n
Y xio, (M) =(n—m) {(X) )
i=1 T'(x)

Theorem 1.5.47. Let f/ is defined on D, f is homogeneous of degree n at the point x € D,
T is homogeneous of degree m at the point x € D. Then f" is homogeneous of degree
m(n—1)+n.

Proof. Let ¢ belongs to an enough small neighbourhood of 1. Then

A

flext () f@ 2T (x) o UFGT () min-1)enf OT ()

T i) e )

>

O

Corollary 1.5.48. In addition, if f and T are differentiable at x, then we have the following
iso- Euler equality




Theorem 1.5.49. Let f is defined on D, f is homogeneous of degree n at the point x €

D, T is homogeneous of degree m at the point x € D. Then f is homogeneous of degree
—(n+1)m+n.

Proof. Let ¢ belongs to an enough small neighbourhood of 1. Then

Hita) _Iatm) 0 "7a) _rtom 1(580) e (70).
(

T _ _ _ T
(tx) T (x) T (x) m T (x) ['(x)

O]

Corollary 1.5.50. In addition, if f and T are differentiable at x, then we have the following
iso- Euler equality
/(7t5)

T (x)

$ oo (f (3)
i=1

o ) = (=(n+ 1)m-+n)

Theorem 1.5.51. Let " is defined on D, f is homogeneous of degree n at the point x € D,
T is homogeneous of degree m at the point x € D. Then f" is homogeneous of degree
(m+1)n.

Proof. Let ¢ belongs to an enough small neighbourhood of 1. Then
FlxT(ex) = o (1) = £ (o ().
O

Corollary 1.5.52. In addition, if f and T are differentiable at x, then we have the following
iso- Euler equality

Y 50 (FGT (@) = (m+ Df (e ().

i=1

Theorem 1.5.53. Let f" is defined on D, f is homogeneous of degree n at the point x € D,
T is homogeneous of degree m at the point x € D. Then f" is homogeneous of degree
n(l—m).

Proof. Let ¢ belongs to an enough small neighbourhood of 1. Then

tx

H79) = Gr) =1 5) =" (75 )

O]

Corollary 1.5.54. In addition, if f and T are differentiable at x, then we have the following

iso- Euler equality
n

Faau(r(25)) =t -mr(i)

1
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1.6. Minima and Maxima of Iso-Functions of n Iso-Variables

Let D CR"and T : D — R, T'(x) > 0 for every x € D, and x° € D.
Definition 1.6.1. We will say that the iso-point % € Fgn is a local extreme iso-point of the
iso-function f of the first, the second, the third, the fourth or the fifth kind if the point x is a

local extreme point of its iso-original f.

For x € D we introduce the following quantities.

A) = 75 (AT () = F(0)2, T (),

N A

FX 1 i f 0T (), () = 0T ()0 T ()
Ci(x) = 7 (3 f (75 ) (F () =5y, ()

~ X1 (75 )0t = (75 ) 0T (),
Di(x) = 3y, (T (0)) (T () T, (x))

+ Z?:] NES) ax_;f<Xf<x> )xjaX;T(‘x)7
E() = 1 (3uf (75 ) (F0) =T, ()

—z;%:l,#,.axjf(ﬁ)xjﬁi(x)), i=1,2,....n.
In fact, we have
Ai(x) =0,/ (®),  Bi(x) =0,/ (x),  Glx) =d.f(R),
Di(x) =3, f'\(x),  E(x)=d.f'(x), «xeD, i=1.2,...n

Theorem 1.6.2. Let f,T : D — R be differentiable functions at x° € D and x° is a local
extreme point of f™". Then

fxi(xo)f"(xo) = f(xo)f}l.(xo), i=1,2,...,n.

0

Proof. Since x° is a local extreme point of /" then x¥ is a local extreme point of the
f(x)

function 4. Because f and T are differentiable at xo and 7'(x) > 0 for every x € D, then

T(x)"
JTCE’;; is a differentiable function at xo. From here, using that x° is a local extreme point of
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O]

Theorem 1.6.3. Let f,T : D — R be differentiable functions at x° and x°T (xq) € D, re-
spectively. Let also, x° is a local extreme point of f". Then

O, f (T (x))(T (x) + 2605, T ()T (x) + £y 130, f (T () ), T, ()
= f(xT (x))0, T (x), i=1,2,...,n.

is a local extreme point of f” then x° is a local extreme point of %

Because f is differentiable at x°7 (x°) and 7 is differentiable at x°, and 7'(x) > 0 for every

Proof. Since x°

x € D, then L6T) ¢ differentiable at x°. From here, using that x° is a local extreme point

] )
of %, we get

O]

Theorem 1.6.4. Let f,T : D — R be differentiable at x° and T)(Czo)’ respectively. Let also,

0

10 is a local extreme point of f. Then

00 f (75 ) (T ) =285, (0) = Z s 0 (75 ) 5780 ()

:f<f)(‘x)>axj(x)f"(x), i=1,2,...n

0

()
Tx) -~
and T is a differentiable function at x°, and

Proof. Since x° is a local extreme point of f then x° is a local extreme point of

)CO
T (x0)

Because f is a differentiable function at

(70

T(x%) > 0, then the function )

is a differentiable function at xo. Using that x is a

108



f( '<1>)

T(x)

G(x*) =0 =

local extreme point of

, we get

N

0 (75 ) (P00 =2, () = By i f (75 ) 085 (0

—f(ﬁ)axif"(x)f(x) =0, i=12,...n
O

Theorem 1.6.5. Let f,T : D — R be differentiable functions at x° and x"T (x°), respec-
tively. Let also x° is a local extreme point of . Then

O f (6T () (T (x) + iy, (x)) = = Ejy oz O, f (5T (4))x,05, T (),
i=1,2,...,n

Proof. Since x° is a local extreme point of f” then x° is a local extreme point of f(x7 (x)).
Therefore

D;(x°) =0 =
Oy f(xT (X)) (T (%) +x; T, (x)) +¥ lHélaxjf()cT( x))x;0y,T (x) =0, i=1,2,...,n.
O

Theorem 1.6.6. Let f,T : D — R be differentiable functions at x° and Tﬁo)’ respectively.

Let also x° is a local extreme point of f". Then

0uf (75 ) (T @) = 5T () = Xy i f (75 5T, i=1,2,000m

Proof. Since x° is a local extreme point of £ then x° is a local extreme point of f ( Txx) ) .
Therefore
E(x°) =0 =

axif<ﬁ)(f"(x)—x,-f}i(x)) ”]#lax]f( )x,rx,(x):o, i=1,2,....n.

O]

Remark 1.6.7. If f,T : D — R are twice differentiable function at x € D, we introduce
the following quantities

Al-j(x) = BX_/.Ai(x), Bl-j(x) = 8x_/.Bl~(x), C,'j(x) = E)ij,-(x),

Dl-j(x) = 8x_/.Dl~(x), E,-j(x) = ax/.El-(x), i,j = ],2, e, n.
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Using some basic facts concerning the local extreme of the real-valued functions one
can prove the following theorems.

Theorem 1.6.8. Let f,T : D —s R be twice continuously-differentiable functions at x° € D

and
fxl.(xo)f"(xo) = f(xo)f}i(xo), i=1,2,...,n.
If
) Aij () dxidx;
ij=1

is a positive(negative) definite quadratic form, then x° is a local minimum(maximum) point

of fM\.
Theorem 1.6.9. Let f,T : D — R be twice continuously-differentiable functions at x° and
xOT(xo) € D, respectively. Let also,

O f (W () (T (x) +x:05, T ()T (x) + Ejy 20, f (6T (x))x; 5, (x)

= f(xT(x))yT(x), i=1.2,....n

If

n
Y B (x%)dxdx;
ij=1

is a positive(negative) definite quadratic form, then x° is a local minimum(maximum) point
2N
of .

Theorem 1.6.10. Let f, 7 : D — R be twice continuously-differentiable at x° and T?;)")’

respectively. Let also,

A A

00 (755 ) (000 =T () ~ Xy 0 (75 ) v )

If
Z Cij(x")dxidx;

ij=1
is a positive(negative) definite quadratic form, then then x° is a local minimum(maximum)
point of .

Theorem 1.6.11. Let f,T : D — R be twice continuously-differentiable functions at x°
and xOT(xo), respectively. Let also,

O f (T (0)) (T (x) +26iT5, () = = Ejy 200, f (6T (x))05, T (),
i=12,...,n.
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If

Y Di; (x%)dxidx;
ij=1

is a positive(negative) definite quadratic form, then then x° is a local minimum(maximum)
point of f.

Theorem 1.6.12. Let f,T : D — R be twice continuously-differentiable functions at x°

and TZ‘EO), respectively. Let also,
0uf (75 ) (1 (6) =8 (0)) = Doy jdo f (755 Jufal), i=1.2,00m.
If

Z Eij (xo)dxidxj
ij=1

is a positive(negative) definite quadratic form, then then x° is a local minimum(maximum)
point of fV.

Now we will use the following notations x = (x1,%2,...,%), ¥ = (V1,Y2,,Vm) =
(X1 Xmi2s- -+, Xn), L +m = n. We fix a point (x°,y%) € D. We put

Di={(x,y) €D:x?—a; <x; <XV +a,

y9_bj§yj§y?+bja i:1,2,...,l,j:1,2,...,1’7’1},

where a;, bj,i=1,2,...,1, j=1,2,...,m are enough small positive constants.
We suppose that the iso-function f of the first, the second, the third, the fourth or the

fifth kind, and the functions G;, i = 1,2,...,m, are defined and continuously-differentiable
on D;. We introduce the set

Dy ={(x,y) €D1:Gi(x,y) =0, i=12,...,m}.

0 0 (xOF (40 10) OF (x0 70 X0 y° )
We assume that (x°,y"), (x"T'(x",y"),y°T (x°, hy")), <T(x0,y0)’ T(xo,hyo)) € D,, and

G;(x°,y°) =0, i=1,2,...,m,

aGl aGl . aGl
ay ay aylﬂ
(A7 261G ) oGy oG .. G
O\I1L,25e0m) dy; ay2 Nm 0.0
A(Y1,Y2,-+:Ym) det (x,»") #0.
Gy Gw ., IGu
Iy 92 Y

Let (x°,)°) is a local extreme point of f. We define the function

n

O(x,y) = f(x,)’) +Z}“iGi(x>Y)'

i=1

The iso- Lagrange multipliers are the constants A;, i = 1,2,...,m. Then the iso-Lagrange
multipliers can be determined by the following system
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1. (in the case when f is an iso-function of the first kind )

/ - 07,0T 0707 0707"“}(_ 07,0 .
e P L3 MG (100 =0, =12,

)_f( 07 ,0)7’"'“( 07 ,0) .
(xo,yo); e +ZZ1:1 }\‘kayj (xo’yO) =0, j=12,...

£, 60T (600
72

[ Gi(x°y)) =0 i=1.2,...,m

2. (in the case when f is an iso-function of the second kind )

o (007 (000) 30T (030) (P (12,5°) +2075,(62,0))
A0y i Lo (0T (2,30), 50T (60,0029, (10, y0) T (x0,)°)
0T (60,30) 3T ()0 T, (42,0°) )

+ X0 MGy, (3059 = 0,i = 1,2,...,1,

o (5 07 (60,000 30 (60,30)) (7 (x0,30) 3973, (x2,9))
A0y i fy (0T (2,30), 50T (60, Y0039y, (10, y0) T (x0,)°)
—FEOT (050,007 (00T, (0,3))

+ka:1 ;Vkay_,‘(xO,y ) :07.]: 1727"'7m7

G;(x°,y°) =0, i=1,2,...,m,
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3. (in the case when f is an iso-function of the third kind )

0

X0 | N A
f3(xl07y0) (fx[ (T(xo,yo) ) T()i()’y())) (T(xovyo) _X?Ei (XO?yO))

0 0 A N
= (e 7o ) TV (80°)

0 0 A
- ;%:1,j7éiij (7‘«(;5)7},0) > w)x(}]}i (xo’yO))
+ Y0 MG, (030) = 0,i = 1,2,...,1,

0

10 7 7
7@3(;0’),0) (fy, (f(xoyo) ’ f(xy()JO)) (T(XO’yO) _y?T;Ci (x07y0))

0 0 A A
1 (i i ) B (0O T (00)

0 )° 04 (.0 0
~ Ko (e e ) 000°))

+ Y0 MGy, (2000 =0,/ =1,2,...,m,

G;(x°,y") =0, i=1,2,....m,

4. (in the case when f is an iso-function of the fourth kind )

S (OT (60,59) 0T (60, )°)) (T (x2,)°) + 40T, (,5°))

X i Lo (GOT (10,0°) 00T (2, Y0 T (2°,50)

+ X1 MGy, (x0,50) = 0,

Sy GO (2,39, 0°T (20, yON (T (x,5°) + Y975, (x,5°))
FX o (GOT(0,50) 30T (20,5000, (22, 0)

+ZZ[:1 }\'kayj (xoayo) = 07




5. (in the case when f is an iso-function of the fifth kind )

fu 7 ) (T (10,59) x0T, (x0,5%))
s (e (7 7m)

0
_2] lﬁélfx]( ’W)xgni(xo’y0)>

+ Y0 MGy, (0% = 0,i = 1,2,...,1,

0 N N
(fy,( (x0,49) T(;)JO))(T(XOJO)—ygﬂci(xo,yo))

X »° 0F (40 0
e 7o )

+ X0 MGy, (20)0) =0, =1,2,...,m,

0
it (7

G;(x°,y") =0, i=1,2,...,m.

Now we will give some conditions for the existence of the constrained extreme values.
In addition, we suppose that f,G; : D1 — R, k= 1,2,...,m, are twice continuously-
differentiable functions. Since (A7), the system

) m
Z ijidx,‘ + Z Gjykd)’k =0
i=1 k=1

has an unique solution

m
dyp =Y odx;, k=1,2,....m.
i=1

Then

1. for the iso-functions of the first kind

ZAU 7y d-xdx]+ Z Al] 7y0)(ialidxl) (i(xljdxl>7
=1 =1

i,j=1 i,j=m+1

2. for the iso-functions of the second kind

ZB’J ay dde]—l- Z Bl] ay0)<z(xlidxl)(zaljdxl)v
=1 =1

i,j=1 i,j=m+1

3. for the iso-functions of the third kind

ZCU ,y dxdxj—"_ Z Clj 7)’0)<20€lidxl)<zaljdxl>’
=1 =1

i,j=1 i,j=m+1
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4. for the iso-functions of the fourth kind

ZDU x0,30)doxax + Z D;j(x J%(ZOWX;) (Zow,-dxz).
=1 =1

i,j=1 i,j=m+1

5. for the iso-functions of the fifth kind

m m
ZEU ay dxdx]+ Z EZJ ,yO)<Zocl,-dxl) (Z(ledxl>.
=1 =1

i,j=1 i,j=m+1

If d’¢(x°,y°) is a positive(negative) definite quadratic form, then (x°,y°) is a mini-
mum(maximum) point of the iso-function f.

Exercise 1.6.13. Let D =R?, f(x) =2 —2x} —x3, T'(x) =x2 +2, x = (x1,x2) € D. Find the
minima and the maxima of f" on the ellipse

20— 1)+ (2 — 1) =
Now we will formulate the mean value theorems for the iso-functions of n variables.
1. The mean value theorem for the iso-functions of the first kind

0\F (4,0
J’M(xf\) f/\ A2 fol ( ) f( )Txi(x )( 1 O)’

X, —X;
T2(x%)

1 1

2. The mean value theorem for the iso-functions of the second kind

P =) =T o (ax,f( T ()T (x%) +200 T ()T (x)
+ X O f (0T () T, (6°) = f(xOT(xo))ax,T(xo)) (x} —x7).

3. The mean value theorem for the iso-functions of the third kind

N

0 N 0 A
i (7 )T (00 = £ (755 ) 0T (T () ) (e = ).
4. The mean value theorem for the iso-functions of the fourth kind

PO = £002) = B (30T (60) (F(0) + 0, ()
X100, fOT (00, (00) ) (] = 22),
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5. The mean value theorem for the iso-functions of the fifth kind

L) =)

gt (3 (757 ) (F(60) = 0, (29))

40 A
] 1,j#i XJ ( )x 7}1 )x _x2)

where x° belongs to the line from x! to x? and x° # x', x>. Here x', x> € D are arbi-
trarily chosen.

Corollary 1.6.14. If f,T : D — R are differentiable functions and
Fo ()T (x) = £() T, (x) =0 for Vx €D, i=1,2,...,n,
then f"" is a constant in D.

Corollary 1.6.15. If f,T : D — R are differentiable functions, xT (x) € D for every x € D,
and

O f (6T () (T (x) + 50, T (x)) T ()

+Z;f:17#iaxjf(xf"(x))xjf}i(x) — f(xT (x))05,T(x) =0 for  VxeD, i=1,2,...,n,

then " is a constant in D.

Corollary 1.6.16. If f,T : D — R are differentiable functions, T?X) € D for every x € D,

and

A

0uf (75 ) (F(¥) —xiT, (x))

;:l#iaxjf(ﬁ)x,ﬂ,(x)—f(ﬁ)axj(x)f(x):o for VxeD, i=1,2,....n,

then f is a constant in D.

Corollary 1.6.17. If f,T : D — R are differentiable functions, xT (x) € D for every x € D,
and

O f (T (x)) (T (x) + 27T, (x))
+Z?:L#iaxjf(xf(x))xjaxif"(x) =0 for Vx € D, i=1,2,...,n,
then f is a constant in D.

Corollary 1.6.18. If f,T : D — R are differentiable functions, o

and

( € D for every x € D,

0uf (75 ) (F(0) = 5T () = By 0, (5 )15 (x) =0

for Vx € D, i=1,2,...,n,

then f" is a constant in D.
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Now we suppose that f is an iso-function of the first, the second, the third, the fourth or the
fifth kind, which iso-original is an enough times differentiable function in D. Then we can
formulate the iso-Taylor series for f as follows.

1. The iso-Taylor series of the first kind

R ~ A o~ n+l
o (B B /0 8%AR) ) F(O+BAY,  E€(0,1),

2. The iso-Taylor series of the second kind

Lo (v 0. A duiac))f
+T!X<Z?:1(BXi fdxl-xA)%,-)> 7&)

o~

2 (X By 2 dxag)) 7 ()

—
—

R 0 A o n+l
o % (B By S dxkar)) fO+BAY),  E€(0,1),
A-xAi:xAi_-fQ7 M:(MUMZV'WAXAH)'

]
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3. The iso-Taylor series of the third kind

F0) = F00) + 45 (S (dxidy, 70 5i5%a%) ) 7(a0)

+

~

1

2!

- 2,

>< (Z;’:l(dxiaxi ~ éxi)ﬁ,-%Aﬁ,-)) 7(:9)

_l’_

+

A& ~0
AX; = X; — X7

~

1
m!

(m

% (1 (dxdy, 7 0 ii5ad) ) ()

—

—

12 n A a2 0
L% (T (dxidy 7 0, 5%A%) ) F(x0 +EAv),

A% = (A%, Afy, ..., AR,).

1

4. The iso-Taylor series of the fourth kind

§€(0,1),

£€(0,1),



5. The iso-Taylor series of the fifth kind

o & (T (2 2a6)) T fe0 v e, ge 1),

6. The iso-Taylor series of the sixth kind

/\A " éx- N n
+mx< i=1 (Tgxmi)) f(P+EAY), €€ (0,1),
Afi=%—%), A= (AR, Ah,...,AR,).

1
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7. The iso-Taylor series of the seventh kind

ot (T (2 5a5) )" F0rEaY, ge(0,1),

Ml:fl—ﬁo M:(M17M27"'7MY!)'

1)

Definition 1.6.19. If {1, f>, ..., fm are iso-functions of the first, the second, the third, the
fourth or the fifth kind, then a vector iso-function is

Example 1.6.20. Let D =R?, T'(x) = 1 +x3 +x3, fi(x) = x3, fo(x) =x1 +x2, f(x) = x2,
x = (x1,x2) € D. Then

2
AN/ AN PA AN (A 1 2 2 X2
x), (%), f3 (X)) = ———=,(x1 +x2)(1 +x7+x ,7)
(fl()f2()f3()) <1+x%+x%(l 2)( 1 3) 1_’_)% x%

is a vector iso-function.

1.7. Advanced practical exercises

Problem 1.7.1. In Fya, let f"(x) = x% —&—xi, x = (x1,%2,X3,x4) € RY T; (y) = v +1,yeER,
X =(1,0,0,1), Y = (1,—2,—3,1). Find

Answer. % = (1,0,0,1), ¥ = (5,-1,-1.4), £+ 7 = (1,-1,-4,1), 3%F =
3 9 3 ALY v _ (3

(i,—3,—§,§),2XX+Y— 3

Problem 1.7.2. Let D =R,

x‘l1 +2x?xz +7x3 x; <1, x €R,

fx) =

x? —7x%xz —|—6x% xp > 1, x €R,

T (x) = x2, x = (x1,x2) € R. Find f"(x), x € D.
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Answer. . g
7+2F;+7 x; <1, x €R,

X

fw=¢
3-7346 x =1, xeR
2 2

Problem 1.7.3. In Fpo, let T(x) = x} +x3+2, x = (x1,00) €R%, T(y) = 1+)5 yeR,
=(1,1), Y = (=1,—1). Find
2%X +3%Y.
2185 2185
Answer. (—T,—T>

Problem 1.7.4. In Fyo, let T (x) = |x| + |x2| +2, x = (x1,x) € R%, T1(y) =
X=(2,-1),Y=(-1,2). Find

3%(2X +2%7).
Answer. (—%,%).

Problem 1.7.5. In Fyo, let T(x) =2 +x3+2, x = (x1,x) € R, T1(y) =
X=(1,-1),Y =(—1,1). Find

2X(3X +27)-3%(X-7).

25 25
Answer. (_T7T>'
Problem 1.7.6. In Fio, let T'(x) = |x1|+2, x = (x1,x) €R?%, Ty =4, X = (—2,3), Y = (3,4).
Find
1 .

7l X -7l

—)

Answer. *ﬁ , 2, 2\ﬁ

Problem 1.7.7. In Figs, let T(x) = x3 + 23+ 3, x = (x1,x2,x3) € R3, T} = 4, X(1,-1,2),
Y =(2,—1,3). Find

"<>

X:

9

Answer. 15-

Problem 1.7.8. In Fis, let T(x) = Y7 |xi|> + 1, x = (x1,%2,...,%,) € R Investigate for
convergence the sequence {X;}7_,, where

_ (1 =1 =2 =
L X = <§>T’Tv“"Tn>’

2. X, qJﬁW VI +n),

3. X, = (VI+ 1T+ VL2WT+H 1+ VD, 3(WVI+ 1+ VD), ... ,n(VT+ 1+ V1)),
4. X, = (VI2 lfl2(\/@*1),3(512+1—l),...,n(512+171)),

5. X :< VI+B3 3= 1\/1+l3’3n 2\/1*13 72n+1V1+l)
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Problem 1.7.9. Let D = R?, T'(x) = |x1]|4+4, f(x) =x1 —x2, x= (x1,X2) € R Find f"\(%).

X1 —=X2

Answer. nd-

Problem 1.7.10. Let D = R3, T'(x) = |x1| + |x2| + |x3] 43,

(X1 —x2 x; <1, x2 <1, x3 € R,
X%+X§+4 x1§1, ngl, X3€R,
flx) =
X%+2x3 leIa ngla X3€R,
2 _ x2 >1 > 1 R
X7 — X3 X1 =2 1, Xy 2 1, X3 € K.

Check if f'\(%) is a function.
Answer. No.

Problem 1.7.11. Let D = R?, f(x) = x3 4+ xa, T(x) =x3 + 1, x = (x1,x2) € D. Find f(x).
Answer. " (x) = x}x3 +2x3 + xa.

Problem 1.7.12. Let D = R?, f(x) = x} +2x, — 3x1x2,

x%+x%+4 x; €R, xy < 3,
T(x) =
|X1|+5‘XZ|+4 x; € R, xy > 3.

Check if f"\(x) is a function.
Answer. No.

Problem 1.7.13. Let D = R?, f(x) = x3 —xa, T'(x) = x} +2, x = (x1,x2) € D. Find f(%).

x% —x%xz —2x

Answer. Wr2p

Problem 1.7.14. Let D =R3, f(x) = x; — 2x, + 3x§, x=(x1,x2) €D,

X2 +2x3+3%3 +4 (x1,%2) € R?, x3 <1,

\Jxit g+ x4+ (x1,x2) € R?, x3 > 1.

T(x)=

Check if f is a function.
Answer. No.

Problem 1.7.15. Let D = R?, T(x) = x3 +x3 +3, f(x) = %2 +x2, x = (x1,x2) € D. Find
fh ().

Answer. (x3 4+ x3 +3) (x} +x2x3 +3x3 +x2).
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Problem 1.7.16. Let D =R?, f(x) = x} —x3, x = (x1,x2) € D. Let also
X2 +x3+3 x1 €R, x <1,
T(x)=
|X1‘—|—|X2‘—|—2 x; €R, xy > 1.
Check if f is a function.

Answer. No.

Problem 1.7.17. Let D = R?,

x‘lL + x1x0 —&—x]x% —x‘Z‘ —X1X2 —5x1x‘2t x; <1, x €R,
fx) =
X —|—X%X2+4x§ xp > 1, x €R,
x%+x%—|—x‘1‘+2x%x%+2 x; <1, x €R,
T(x) =
x?+x%x%+x‘llx‘2l+x?+9 xp>1, x € R.

Check if fV is a function.
Answer. No.

Problem 1.7.18. Let D = R?, f(x) = x3x3x3 +x2 +x1x00x3 + x5, T(x) = x7 +x3 +x3 +5,
x = (x1,x2,x3) € D. Check if " is a function.

Answer. Yes.
Problem 1.7.19. Let D =R?, Ty =4, T (x) =2+x3, f(x) = x3 —2x2, x = (x1,x2) € D. Find
DXFNR) — 4% fM ().
Answer.

2x% —4xy

5 + 6407 + 64x7x5 + 163713 — 64xy — 323
X5 +2

Problem 1.7.20. Let D =R% Ty =2, f(x) =x1 —2x, T(x) =22 +x3 +4, x = (x1,x2) € D.

Find A
A 3 A 3
(7)) = (rm)-
Answer. 3(x; —2x2)3 (x3 +x3 +4)3.
Problem 1.7.21. Let D =R T(x) = 1 +x{ +x3, T'(x) =} +23 +3, x = (x1,x2) € D. Find

li FNR).
xi??,l)f (£)

Answer. 2.

(95}
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Problem 1.7.22. Find lim,__, g g A (R), where
f(x):x%log(x%-i-x%), T(x):x%+x%+l, x = (x1,x2) €D =R>
Answer. 0.

Problem 1.7.23. Find lim, ;1) f"(£), where

e —1

N

1) = P =30 +3+1),  x=(nx)eD=F,

x%x% —1’
Answer. e.
Problem 1.7.24. Find lim__,.. f"\(£), where

- x%—l—x% A

f(x)=—5—"%, T(x):x%—{—x%—i—l, x:(xl,xz)ED:Rz.
X;+x;

Answer. 0.
Problem 1.7.25. Find lim, .. f"\(£), where
f@) =@ +3)e 0™ Px)=2+x5+1, x=(x;,x) eD=R>.
Answer.0.

Problem 1.7.26. Let D = {(x1,x2) €R?:x; >0, x2+x3#0}, T(x) =3+x7+x3,

B log <x1 + eXZ)

f(X) - I
\/x%—i-x%

Check if f™" is a continuous function in D.

x=(x1,x2) € D.

Answer. Yes.

Problem 1.7.27. Let D =R?, f(x) =x; —x3, T(x) =x2 +x3+ 1, x = (x1,x2) € D. Find
1®

(@), -

AnNSWer. (x% +x%+ 1) (x% 7x%+2x1xz+ 1)

2_2
xy—x5+1

Problem 1.7.28. Let D = R?, f(x) = 2xyx, T(x) =x3 +x3+ 1, x = (x1,x) € D. Find
()R-

xg — 3x%x2 +xp

Answer. 2 m .

Problem 1.7.29. Let D = {(xl,xz) c R? x> 1,x > 1}, f(X) :x% +x%’ T(x) =X+ X2,
x = (x1,%) € R Find (f(%))3%.
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—x3 a3 +2x10

Answer. )

Problem 1.7.30. Let D = {(x;,x2) € RZ :x; > 1,xo > 1}, f(x) =x; —x2, T(x) = x; +x2,
x = (x1,x2) € D. Find (fA(x))f;fB.

—2x)
Xptx2°

Answer.

Problem 1.7.31. Let D = {(x1,x2) € R?: x; > 2,x) >3}, f(x) =x1 — 5x2, T(x) = x1 +x3,
x = (x1,x2) € D. Find (]?A()?)))Scf9

Answer. —6.

Problem 1.7.32. Let D = {(x1,x2) € R%:x; >0,x2 > 0}, f(x) =x1 +2x3, T(x) =x2 +x3 +
1, x = (x1,x) € D. Find (f"(x))®.

Answer.
(x% +x§ + 1)(8x?x% + 8)61)521 + 8x1x% + 3x% +x§ +1).
Problem 1.7.33. Let D = {(x1,x2) : x1 > 0,x2 > 0}, f(x) =x; —x2, T(x) = 1 +x1 +x3,
x = (x1,x2) € D. Find (]M()G))Zcfa

(1420)(14x1+x)

Answer. T

Problem 1.7.34. Let D = R?, T(x) = x3 +x3 +x3 + 1, f(x) = x1x2x3. Find minima and
maxima of f, f*, f, f" on the sphere x3 +x3 +x3 = 1.
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Chapter 2

Multiple Iso-Integrals

Let D C R" be a bounded set, f : D — be an integrable on D function, T:D—Rbea
positive continuously-differentiable function such that

A

My <T(x) <My, M <|T(x)-xT,(x)| <My for VxeD,

(A8) |

xT (x) € D, T?x) eD for Vx €D, i=1,2,...,n,

for some positive constants M| and M.

2.1. Definition of Multiple Iso-Integrals

We suppose that f is an iso-function of the first, the second, the third, the fourth or the fifth
kind.

Definition 2.1.1. The multiple iso-integral of the first kind of the iso-function f over D is

defined as follows
~l

A

[ Fxds.

D

where o R
X =dxidX,...d%,,

T(x) —x,-f}i
T(x)

dt; = T(x)d = T(x)d(;g;)) - dv, i=12,....n.

We can rewrite the multiple iso-integral of the first kind in the following manner
P 7 7 T( )_ ;f}i( )

JpT(x)xdx= [p ﬁf(x)Tl [T, %dxi

=T fo(x)T(% 1 (T (x) = xiTy, (x) )dx, dx = dxidx; ...dx,.

n+1)(X) i

Since f is an integrable function and (A8) holds we have that every iso-functions FI A

£, /" and fV are integrable functions. From here, using that 7" satisfies (A8), we conclude
that the multiple iso-integral of the first kind of f over D exists.

127



Example 2.1.2. Let D = {(x,x) ER*:0<x; <2,0<x; <2—x1}, T1 =3, f(x) =x; +x2,

T(x) = e+, x = (x1,x2) € D. Then

&) = ACI j;]tfg = (x1 +xp)e" @)

T(x) —x1 Ty, (x) = €112 —xpe+2 = (1 —x;)e" 2,
T(x) —x2T, (x) = 172 —xp917%2 = (1 — xp) "1 2,
From here
1= Jpl @)%ds =3 [ JF7 (n +x2) (1 —2) (1 —x2)e 2572 dxpdny
=3 o f3T 1+ xp — 28— X3+ Xx 3103 — 2xpxp)e 2 T2) dxydx,y

-1
2 _ X2
= =3 [5 (1 +x0 —x3 =3+ xFxp +x103 — 2x1x0 )2 HR) de]
Xy =

+% f02 02—)(1 (1 - 2)C2 — 2x1 +x:1” _|._ 2x1X2)e_2(x1 +x2)dedxl
=—3¢7* J3(=2+4x; — 23)dx; + 3 J3 (e —x3)e 2 dx,
F3 ST (=220 — 21+ + 2x1x0)e 20 HR) dxadxg

=3 5 (x1 —1)%e *dxy + 3 5 (x1 —x3)e Hdx

+3 f02 027)61 (1 —2x2 — 2x1 + x5 + 2x1x2)e 2012 dxa iy .
Let
I = 3f()2(x1 —1)%e*dx; +3 foz(xl —x3)e Hidxy,
T =3 5 Je T (=200 — 2x1 3 + 2x100)e 201 2) dxpdx
Then

x1=2 X

=2
11 = 6_4(xl — 1)3 é(xl —x%)e_le . O_{_% f()z(l _2xl)e—2x1dxl
1=

X|:0 4

=3+ 35 (1 - 2m)e dm

x1=2
2
_0+%f0 e Mdx

X1
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Now we consider J,. For it we have

Ji= =3 J5(1—=2x0 — 2x1 +23 + 2x1xp)e 201 22)

+3 fO 2= x1( 2—|—2x1) (leer)dXdel

xXp=2—x]
dx1
x=0

= 4 0( 3"’4)51_)51) 4dx1+4f0(x —1) ~2dx,
X=2-x|
_4f( 14x1)e” 2(x1+x2) dx
x=0
—%f5<—1+x1>e*4dx1+%f5<—1+x1>e*2xldx1
:—4f( 4—|—5x1—x1) 4dx1+4f0( —x1)e Xdx,
3\ [X1=2 x1=2
=—je ( Axp + 3xf — x3'> i —ae |
x1=0 x1=0

—i—%foz(le — l)efledxl

=2
_ 1,4 3 CDe2ulT T3 2,20
= —je 15 (2x1 — 1)e :O—i-gfo e dx)

_ B4 3 3|07
16 16— 16 210
= —874.

Consequently,

Il gy = ety
= =—e —.
1 1 A 1

Exercise 2.1.3. Let D = {(x1,x) €ER?: 0<x; <3-21,0<xp <1}, T} =3, f(x) =

X2 —xy, T(x) = €%, x = (x1,x2) € D. Compute
~.1

1 (x) Xd3, f x) X dx.
D

Definition 2.1.4. The multiple iso-integral of the second kind of the iso-function f over D

is defined as follows
~2
| Fss
D

dx =dxdx;...d%,,

where

A L\ _ P-uty, .
dij=d(7=) =T hay, =12,

(x)
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We can rewrite the multiple iso-integral of the second kind in the following manner

L T VPR T e
pT(x)% x_fDT(x)f(x)T1Hi:1f27(x)dxl'

A

=T [, f(x) fmll(x) " (T (x) —x; Ty, (x))dx, dx =dxidx,...dx,.

Since f is an integrable function and (A8) holds we have that every iso-functions FIN A,

f , f/\ and f" are integrable functions. From here, using that 7" satisfies (A8), we conclude
that the multiple iso-integral of the second kind of f over D exists.

Example 2.1.5. Let D = {(x1,x) :0<x; < 1,0<x <2—x1}, f(x) =x1 +x2, T(x) =",
Ty =3, x= (x1,x2) € D. Then

From here and from the definition for the multiple iso-integral of the second kind we get
2 R _ _ .
T kde =3 f) f§7 (o +x)e U0 € dnydy
=3 fo S e 4 x2) (1 —xp )e M dxpdxy

= 3[01 x1(1—x1)(2—x1)e3N1dx +3f01(1 —xp)e M foz_x' Xadxodx;

xXp=2—x1

= 3f01 xi(1 —xl)(2—x1)e*3x'dx1 —|—%f01(1 —xl)e*3x‘x% dxi

x=0
= %fol (x] —x] —4x1 +4)e Hdx,

x':1+lf‘(3x2—2x —4)e34d
_o " 2J0\0M 1 € X1

=1} —x} —4x| +4)e 3
X1

X
=2—1(3x] —2x; —4)e 3"

—1
1704—%‘[01 (3x; — 1)e~*1dx,

X1

X1 =

1
_ 4 1 -3 1 —3x 1 pl —3x
= §+§e —§<3X1 —1)6 1 B +§f0 e 1dX1
x1=0
1, 5,3 1 -3q 07!
=35 +ge " —ge
9 T8 9 210
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Exercise 2.1.6. Let D = {(x1,x2) : 0 <x; <3—x,0 <xp <2}, f(x) =x3+x3, T(x) =e?,
x = (x1,x2) €D, T\ = 3. Compute

~2 ~2 ~2 ~2
/ ; FANR) %d3, / N N (x) %d3, / ; f(%)%d#x, / N N (x) Xd3.

Definition 2.1.7. The multiple iso-integral of the third kind of the iso-function f over D is
defined as follows

~3
/ f(x)%dx,
D

where
dx =dxidx;...dx,,

dx; = T (x)dx;, i=1,2,...,n.
We can rewrite the multiple iso-integral of the third kind in the following manner
Ipf(x) Kdx = Ip ﬁf(x)fl T”(x)dx =1 fo(x)T”_l (x)dx.

Since f is an integrable function and (A8) holds we have that every iso-functions FIN A,

f , f/ and f" are integrable functions. From here, using that 7" satisfies (A8), we conclude
that the multiple iso-integral of the third kind of f over D exists.

Example 2.1.8. Let D = {(x1,x) € R?:0<x; <2,0< 0 <2—x1}, f(x) = \/x%—i—sz,
T(x) = €2, x = (x1,x2) €D, Ty = 4. Then

o fX) X 42x / _
f/\(x) - T(-x) N lexz - x%—l—sze .

We will compute the iso-integral




For it we have

1= 4f02 027)” (x% +2xp)e 2dx1dx;

= 4f02x% fozixl e 2dxydx; + 8 f02 ozfxxze_“dxzdxl

xp=2—x]
)dxl
0

X2=

xp=2—

X
’ . ldx1+8f02<—xze*"2

X2=

4 fpde

+8 f02 Ozfx‘ e 2 dxodx;

— 425 (e)ﬂ—? - l)d)q +8 2(xy —2)e" 2dxy

2 x2:2—x1
+8 fo eix2 d.x]
Xp=
x1=2 x1=2
=422 431 8 [2xeM 2y
1 3| 0
x1=0 x1=0

X1=

2
+8(x; —2)e1 2 -8 2e’”*za’xl —8 2e)”*zdxl +8 2exl*zdxl —16
0 0 0 0

X1=

X
— 164 16072 —8xje 2|

X1

O+8 Jo €1 2dxy

x1=2

= —% +16e72 4 8¢"172

x1=0
= —% +8e72.

Exercise 2.1.9. Let D = {(x1,x) : 0<x; <3+ 1,0 <x <2}, f(x) =2 +x2, T(x) =
x%—l—x%—i— 1, x= (x1,x2) € D, Ty = 3. Compute

~3
/ f(®)%dx.
D

Definition 2.1.10. The multiple iso-integral of the fourth kind of the iso-function f over D
is defined as follows

A AN 2 n T X _xif:ri X
IpfRdx= [ 55 F 0TI, ()T)()dx

A

= Jp S () iy Ty (T (x) — i, (x) ) dx.
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Remark 2.1.11. In fact, we have

Therefore the multiple iso-integral of the fourth kind exists for every kind iso-functions f™",
N F " and £V

Definition 2.1.12. The multiple iso-integral of the fifth kind of the iso-function f over D is
defined as follows

5
/ f(x)dz.
D
We can rewrite the multiple iso-integral of the fifth kind in the following manner

A5 A ~ A n T(x)—x,—ff (x)
Spfx)di= [p f(lx)f(x) i=1 Tx)ldx

= Jp (@) gt = (T (x) — T, (x)) dx.

Remark 2.1.13. In fact, we have

Therefore the multiple iso-integral of the fifth kind exists for every iso-functions f™, f, f
N and £V

Definition 2.1.14. The multiple iso-integral of the sixth kind of the iso-function f over D
we define as follows

.6
/ f(x) %dx.
D
We can rewrite the multiple iso-integral of the sixth kind as follows
~ 6 1
/ fx)xdx =T / ——f(x)dx.
D b T(x)

Since f is an integrable function over D and T satisfies (A8) we conclude that the multiple

~
N

iso-integral of the sixth kind exists for every iso-functions ", f*, £, " and fV.

Example 2.1.15. Let D = {(x1,x2) : 0 <x; <4 —x,0 <x <2}, f(x) = x1 +4xp, T(x) =
e™, x = (x1,x) €D, T) = 2. We will compute

~6
I:/Df()e)xdx.

We have




and
I = 2[02 fé_xz et (Xl +4X2)€x1dX1de

= 2[02 gixleeh‘dxldxz +8 fozxz f(;‘fxz e dx dx,

x1=4—x2 B

= f02 (xlele - )dxz—foz f(;‘ 2 o2 1 dxy
x1=4—x,

+4 fozxzele dxy
x1=0

2 82 12 o [T
= Jo (4—x2)e* 2dxy — 5 [y e™ dx,
x1=0

+4 fozxzeS*Xdez — 4f02xzdxz

xp=2

= —%(4 —xp)ed 0 —% f02 2y,

x=0

1 (2 8-2 §—2x, |24
—5 Jo € dxy +1 = 2x2e°7 77

x=0

xp=2
+2 f02 22 dxy — 2x3

x=0

xp=2
=428 15— %68*2)‘2

x2=0
_ 34,58
=—3¢ +3e 15.

Exercise 2.1.16. Let D = {(x1,x2) €R?:0<x; <3,0<x <3—2x1}, f(x) :x% +2x1%2,
T (x) = x1 +x2, x = (x1,X2) € D, T = 4. Compute

~6
/ FN(x) %dx.
D

Definition 2.1.17. The multiple iso-integral of the seventh kind of the iso-function f over
D is defined as follows

A

/Df(x)cfx.

We can represent the multiple iso-integral of the seventh kind in the following way.

[ fwdi= [ 2 Feof ax= [ 771 (x) 7 (x)dx.
/ D /DT(x) /D

Remark 2.1.18. In fact, we have



Consequently the multiple iso-integral of the seventh kind exists for every iso-functions FIA,
JNF, f and V.

Definition 2.1.19. The multiple iso-integral of the eighth kind of the iso-function f over D
is defined as follows

]Zf(x)dx.

We can represent the multiple iso-integral of the eighth kind in the following way

~.8
A 1 4
x)dx = / = x)dx.
[ W= [ 57
Because f is an integrable function and 7' satisfies (A8) we have that the multiple iso-
integral of the eighth kind exists for every iso-functions /", f*, f, f" and fV.

Example 2.1.20. Let D = {(x;,x) €ER?: 0<x < 1,0<xr < 1—x1}, f(x) = Zx%—l—xz,
T(x) =2, x= (x1,x2) €D, Ty = 2. Then

A A

fAx) = F(xT(x) = fr T (x), 00T (x) = 23 T2 (x) + 02T (x) = 2x3€>2 + x€™.

From here
28 2 1 pl=x1 1 (n.2 2k
IpfxX)dx= [y Jo " 55 (2x7e™ +x2e™)dxadx

= fol Olfx‘ (2x3€% + X2 )dxadx

x=l-x 2
x2

xy=1—x1
2 )dxl
0

X
2|, =
X =

= fol (2’5%‘/’)6 ?

= 2f01 x2el ¥dx; + % fol(l —x1)%dx;

x1=1 3 1x1=1
_ _ -
= —2x2e! —4 [¢ x1e! Mdx, — (=x) é”)
x1=0 x1=0
_ 1y 1—x, |7 4 (Lolnyg
= —¢ +dxie —4[,e X1
x1=0
x1=1
= %—1—461*"1
x1=0
= % —4e.

Exercise 2.1.21. Let D = {(x1,x) € R?: 0 <x; <3,0 <xp <4—x3}, f(x) =x1 +3,
T (x) = x1 +x2, Ty = 3. Compute

~8
/ N (x)dx.
D
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Definition 2.1.22. The multiple iso-integral of the ninth kind of the iso-function f over D
is defined in the following manner

The multiple iso-integral of the ninth kind of the iso-function f over D can be repre-
sented as follows

A

~ Aa A Ao T —x,-f}i X
[575)di = fy FTi Ty PO g

=T Jp J () i TN (T (x) — i, ().

Because f is an integrable function over D and 7" satisfies (A8) then the multiple iso-integral
of the ninth kind exists for every iso-functions f**, f*, f, f" and fV.

Example 2.1.23. Let D = {()C],XQ) eR?:0 <x1 <1,0<xp <2x }, f(x) = 2x1 4+ 3xp,
T(x)=e", x= (x1,x2) €D, Ty = 3. Then

Ax) = f(xT (x) = fa T (x),xT (x)) = 20T (x) +3xT (x) = (2x] +3x2)e",

From here

f9DfA(x) Xde =3 fol 02x] (2x1 + 3x;)e" elln (1 —x1)e* dxadx;

= 3f01 Ole ((le - ZX%) +3x,(1 —M))e"ldxzdxl

X2=2x]

dxy

x2=0

2

=12 [y (3 —x})eMtdxy +9 fy (1—x1)en 2

x1=1
=12(x} —x3})en l O—|—6f01(—x1 +3x3) et dx
xX1=

1
I 0—6f01 (—1 +6)C1)exldX]

= 6(—x1 +3x})e"

1

=1
=12e—6(~1+6m)e"|  +36 I e rdxy

X
X1

x1=1

= —18e¢ — 6+ 36¢"

x1=0

= 18e —42.
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Exercise 2.1.24. Let D = {(x1,x) € R0 <x; <20+ 1,0 <x; < 1}, f(x) =x1 +x2,
T(x) =x1+x+1, x=(x1,x2) €D, T\ = 4. Compute

Definition 2.1.25. The multiple iso-integral of the tenth kind of the iso-function f is defined

as follows

The multiple iso-integral of the tenth kind can be represented in the form

2 A 1A 2 - n T(x)— if:'c
13 P %di = f PRI, “ e

Since f is an integrable function over D and 7" satisfies (A8) then the multiple iso-integral

of the tenth kind exists for all iso-functions f"\*, f/, f , f/ and fV.

A

Example 2.1.26. Let D = {(x;,x) € R?: 0<x; < 1,0 <x < x1}, f(x) =x1, T(x)
1 = (x1,X2) €D, Ty =2. Then

Tt X

7 _ 7 _ 1 X1 14 2x14+x
T()C) X1 T;Cl (.X) T I4x 4 + (I+x1+x2)2 — (14x1+x2)2°
7 1 X2 _ 14x+2x

T(X) _XZY}Z ('x) = 14+x14+x3 + (1+x1+xz)2 - (1+X1+x2)2.
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From here,

B FAE) KR =2 ) [ 0 (1 ) (13 43 HEREEDUEE20) 4, iy,

= 2f0 o0 X1 (14 x14+2x2) (14 2x1 +x2) (1 +x1 4+ 2x2)dxodx;

= 2f01 o (a1 + 4x3 + SX? + 2x})dxadx

+2 fo "(4xixp + llxlxz + 5x1x2 —+ 7x1xz + 2x1x2 + 7x1x2)dx2dx1
= 2f01 (x3 +4x3 + 5x7 4 27 )dx;

X2=X1

+ fo (4X1x2 + 11x33 + L x1x2 + 7323 + x5 + 14x%x3) dxy

Xp=l
x1=1

= <%x§ +2x} 4 2x] + %x?) ‘ .+ o (4xf + 84+ 38 S)dxl
xX1=

x1=1

_ 16 435,19 6
—7+<x1+15x1+3x1)

x1=0

— 509
— a5

Exercise 2.1.27. Let D = {(x1,x3) € R?: 0 <x; <2,0 <xp <3x1 + 1}, f(x) = x1 +x2,
T(x) =x2+x3+1, x= (x1,x2) € D, Ty = 4. Compute
10 .
fA( £) X dX, M) xdx
D
Definition 2.1.28. The multiple iso-integral of the eleventh kind of the iso-function f is
defined as follows
11
fx)xdx
D
The multiple iso-integral of the eleventh kind can be represented in the following man-

ner

A

1 A~ A A A A N A
Fsde= [ Fofit"(dx=1i [ f)7"()ds

Because f is an integrable function over D and 7" satisfies (A8) then the multiple iso-integral
of the eleventh kind exists for all iso-functions f**, f*, f, f" and fV.

Example 2.1.29. Let D = {(x,x) € R?: 0 < x; < 1,0 < xp < 2x1}, f(x) = x1 + Tx2,

A

T(x)=e""2, x=(x1,x2) € D, T) =2. Then

fx) = f(xT (x) = f(x1 T (x),xT (x)) :xlf"(x) +7X2T(x) = (x1 +7xp)e" 2.



From here,

fA( )%d fo 2 (x1 4 T )€1 T2 230H2) dxs
= 2f0 2x (x1 +7xz)e3(x‘+x2)dx2dx1
= 2f01 xpe fole e dxydx) + 14 fol e3n fozx' xpe2dxydx

=2x xp=2x]
IS BN P T 14 (13 3
_§f0xlexlex2x . dx) + 5 [y e xpe™?

dx|
2= x2:O
—13—4 fol e fole 2 dxydx,
1. 9 201, 3 14 (1 3y 30 2720
=10 [y x1e”dx1 — 5 [y x1e™dx) — 5 [y e e . dx;
Xp=

xX1=
__ 10 Ox 8 rl ox 3x 16 rl 3x
= gxie _ 3o e dxy — xle 1 +jfoe 1dx;

x1=1
_ 10,9 2.3 8 ol a

16 3X1
=5e —5e — e +
9 9 27 =0
29,103 8
=57¢ 7€ — 73

Exercise 2.1.30. Let D = {(x1,x) €R?:0<x; <2x+1,0<x < 1}, f(x) :x%—i-xz—i-l
T(x)=x2+x3+1, x= (x1,x2) € D, Ty = 12. Compute

11
F(®)%dx.
D

Definition 2.1.31. The multiple iso-integral of the twelfth kind of the iso-function f over D
is defined in the following manner
12
/ f(x)dz.

The multiple iso-integral of the twelfth kind of the iso-function f over D can be repre-
sented as follows

= Ipf ()7
Remark 2.1.32. In fact, we have

9

therefore the multiple iso-integral of the twelfth kind exists for all iso-functions f™, f* f
N and fV.
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Definition 2.1.33. The multiple iso-integral of the thirteenth kind of the iso-function f is
defined as follows
13
/f@ﬁ.

D

The multiple iso-integral of the thirteenth kind can be represented in the form

A A A n Txfx,-f"x X A n N A
5 P = Jp FO T, “ s dx = [ f0) ki T (F () =iy, (),

Remark 2.1.34. In fact, we have
10 R
D

13
fl)xdt =T f(x)dzx.
D
therefore the multiple iso-integral of the thirteenth kind exists for all iso-functions f™", ",
fofhand £V,

Definition 2.1.35. The multiple iso-integral of the fourteenth kind of the iso-function f
over D is defined as follows

f(x) %dx.
D

For the multiple iso-integral of the fourteenth kind we have the following representation

14
Flx)xdx =T / f(x)dx.
D D
Because f is an integrable function over D and T satisfies (A8) the multiple iso-integral of
the fourteenth kind exists for all iso-functions /", f*, f, " and fV.

Definition 2.1.36. The multiple iso-integral of the fifteenth kind of the iso-function f is
defined as follows

15
f(x)dx.
D
The multiple iso-integral of the fifteenth kind can be represented in the following man-
ner

15
f@ﬁ:/ﬂ@ﬁ@ﬂ.
D D
Remark 2.1.37. In fact, we have
M) kdx =11 [Y f(x)dx.
Below we will use the following notation

Pi(x) = T (x) —x;Ty, (), i=1,2,...,n,

P(x) =TI (T (x) =0T, (),

and the following notation for the multiple iso-integral of the j-th kind, j =1,2,...,15, for
the iso-function f over D

/Dif(x) ®' x.
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2.2. Properties of Multiple Iso-Integrals

Let g be an integrable function on D, & be a continuous function on D and ¢ € R.
We now list some of the properties of the multiple iso-integrals.

L [J(fx) +é(x) @ x= f)f(x) @ x+ [Hex) @ x,i=1,2,.

2. [Lexfx)@ix=eX [Lfx) @ x i=1,2,...,15.
3. [i,cA (x ®’x:6féf(x)®ix,i:1,2,...,15.
X)@x=cX [} fx)®x,i=1,2,...,15.

5. [lefx)@x=c [l f(x)@'x,i=1,2,...,15.

., 15.

6. If f(x) > g(x) for every x € D, then if P(x) > 0 for every x € D, we have

/f(x)@ixg/g(x)(@ix, i=12,...
D D

15.

7. If f(x) < g(x) for every x € D and P(x) < 0 for every x € D, then

/’;f(x)®ix2/l)i§(x)®x

fori=1,2,4,5,9,10,12,13, and

/;f(x)@ixﬁ/l)ig(x)@ix

fori=3,6,7,8,11,14,15.

8. |7/ () %ds| < T [ gk | P POl
9. | Tn i) %ds| < Ti [ ke | F ()P0l

10. /(0 %dx| < Fi [, T ()] ()l

x| <

1. | ] /()

< Jp 7y [/ (0)P(x) dx.

12. |75 f()dd] < fp gt |70 P()

13. | T/ %dx| < i fy 51 F )l
13. [T pf(0dx| < fo " (91 (x)lax

14. | [pf()dx= [T (x)|f (x)ldx.
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15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

5 F)dx| < fo ()| 7).
(the iso-integral form of the mean value theorem)

N

L0320 @ x=ht)x [ fo et

D D

for some xo € D,i=1,2,...,15.

(the iso-integral form of the mean value theorem)

[ifwstx=ito) [ foe'x

D

for somexo € D,i=1,2,...,15.

(the iso-integral form of the mean value theorem)

al
/f(x)§<32 TiP;(xo) f (xX)dx,  j=1,2,...
D

i=1, l;éj
for some xg € D.

(the iso-integral form of the mean value theorem)

o o !
| fdi=fipt) [ e .

for some x¢ € D.

(the iso-integral form of the mean value theorem)

/f dx =T = : / : f)P(x)dx, I=1,...

7(x0) Jo 171 (x)

for some xg € D.
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27.

28.

29.

30.

31.

32,

33.

(the iso-integral form of the mean value theorem)

~2
/Df(x)xd)?:T xo/f T2”+1

for some xg € D.

HP

Li#j

(the iso-integral form of the mean value theorem)

A2 R . ) R 1
/ J)kds = TiP(x) /D 70 i

for some xg € D.

(the iso-integral form of the mean value theorem)

/f Yxdx =T = (10)/Dfx

) iy

for some x¢ € D.

A 1

) P(x)dx,

(the iso-integral form of the mean value theorem)

~3
/ 7o) %dix = T (xo) / T () dx
D D

for some xg € D.

(the iso-integral form of the mean value theorem)

[ Fwdi=Py) [ fo ]

for some xy € D.

i= lz;éj

(the iso-integral form of the mean value theorem)

/f

for some x¢ € D.

. 1.
1= )/Djwrl(x)f(x)dx'

(the iso-integral form of the mean value theorem)

1

4 A
/Df(x) = fl(lxo) /D

for some xg € D.

f“n-l—l—l(x)
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34.

35.

36.

37.

38.

39.

40.

(the iso-integral form of the mean value theorem)

1 n

~5
/Df(x)d)E:Pj(xo)/Df(x)i 1 Pdx,  j=12,...

T2 (x) o iz
for some x¢ € D.

(the iso-integral form of the mean value theorem)

[y —_—

T2n+1 (x)
for some x¢ € D.

(the iso-integral form of the mean value theorem)

~.5
| A 1
/Df(x)dx:/Df(x)f‘Zn-H—l(x)P(x)dx’ l:1,2,...,2n—|—l,

T!(xo)
for some xg € D.

(the iso-integral form of the mean value theorem)

T e a1 [,
/Df(x)de:TIT(xo) /Df(x)dx,

for some xg € D.

(the iso-integral form of the mean value theorem)

~T
/ F0)dx = T (xo) / Pl fdx, =12, n—1,
D D
for some xg € D.
(the iso-integral form of the mean value theorem)

]if(x)dx— f’(ico) /Df(x)dx.

for some xg € D.

(the iso-integral form of the mean value theorem)

~9 1 n

/ F(x)%dt = TyP;(xo) /

p T (x) i=1,it]

for some xg € D.
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41.

42,

43.

44.

45.

46.

47.

48.

(the iso-integral form of the mean value theorem)

A A 1 .
xdxt =T — dx,
[ e - Pla) [ g @
for some xg € D.

(the iso-integral form of the mean value theorem)

/f dt =T = 1)/A1 f)P(x)dx, 1=1,2,...

T'(xo) /o T"~!(x)

for some x¢ € D.

(the iso-integral form of the mean value theorem)

10 . R R
Fosde=1ipx) [ 707

for some x¢ € D.

(the iso-integral form of the mean value theorem)

N A

"Jxae=Tipe) [ 70
for some xg € D.

(the iso-integral form of the mean value theorem)

f()

T2n l

for some x¢ € D.

(the iso-integral form of the mean value theorem)

11 R A R R
700 %dx = T 7 (xo) / POt wdx,  1=1,2,...
D D
for some xg € D.

(the iso—integral form of the mean value theorem)

f )i = Pi(xo) | Fo

for some x¢ € D.

(the iso-integral form of the mean value theorem)

12 Ode— /f

for some xg € D.
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49.

50.

51.

52,

53.

54.

5S.

56.

(the iso-integral form of the mean value theorem)

12 Al 1 R 1
i x:Tl(xO)/Df(x)Tn_l(x)P(x)dx, I=1.2,...n,

for some x¢ € D.

(the iso-integral form of the mean value theorem)

f xo/f lll#]'

for some x¢ € D.

(the iso-integral form of the mean value theorem)

13 /f

for some xg € D.

(the iso-integral form of the mean value theorem)

13 R 1 R 1
/D fw)di= g /D FO) i P 1=12,0002m

for some x¢ € D.

(the iso-integral form of the mean value theorem)

f Ydx xo/f VI (x 1=1,2,....n,

for some x¢ € D.

A
N

If D1, D, C D, D\ N\D, =@, FM, f*, f, ", fV are defined on D and D, then

[ fwe= [ foet [ fwe'x

DiUD» D D,

If the measure of D, u(D), is equal to zero then

[ iwex=

Let D; C D and fAA,fA,f, 7, fV are defined on Dy. Then if P(x) > 0 for every x € D

we have

(A9) fp fx)@x< [Hfx)@x,  i=1,2,...,15,

if P(x) <0 for every x € D, then we can not make the conclusion (A9) for i =

1,2,4,5,9,10,12,13.
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Definition 2.2.1. The iso-volume of the first kind of D is defined as follows

~l
/ 1 xdx.
D
Definition 2.2.2. The iso-volume of the second kind of D is defined as follows
2
/ 1 xdx.
D
Definition 2.2.3. The iso-volume of the third kind of D is defined as follows
~3
/ 1 xdx.
D
Definition 2.2.4. The iso-volume of the fourth kind of D is defined as follows
N
/ 1dx.
D
Definition 2.2.5. The iso-volume of the fifth kind of D is defined as follows
5
/ 1dx.
D
Definition 2.2.6. The iso-volume of the sixth kind of D is defined as follows
~.6
/ 1 xdx.
D
Definition 2.2.7. The iso-volume of the seventh kind of D is defined as follows
T
/ 1dx.
D
Definition 2.2.8. The iso-volume of the eighth kind of D is defined as follows
~.8
/ ldx.
D
Definition 2.2.9. The iso-volume of the ninth kind of D is defined as follows
9 A A
/ 1 xdx.
D

Definition 2.2.10. The iso-volume of the tenth kind of D is defined as follows

0
1 xdXx.
D

Definition 2.2.11. The iso-volume of the eleventh kind of D is defined as follows

no,
1xdx.
D
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Definition 2.2.12.

Definition 2.2.13.

Definition 2.2.14.

Definition 2.2.15.

Definition 2.2.16.

Definition 2.2.17.

Definition 2.2.18.

Definition 2.2.19.

Definition 2.2.20.

Definition 2.2.21.

Definition 2.2.22.

The iso-volume of the twelfth kind of D is defined as follows
12
1dx.
D
The iso-volume of the thirteenth kind of D is defined as follows
13
1dx.
D
The iso-volume of the fourteenth kind of D is defined as follows
4
1xdx.
D
The iso-volume of the fifteenth kind of D is defined as follows
15
1dx.
D
The iso-volume of the sixteenth kind of D is defined as follows

~.1

/ T (x) X d3.
D

The iso-volume of the seventeenth kind of D is defined as follows

The iso-volume of the eighteenth kind of D is defined as follows

~.3

A

/ T (x) dx.
D
The iso-volume of the nineteenth kind of D is defined as follows
n
/ T (x)ds.
D
The iso-volume of the twentieth kind of D is defined as follows
5
/ T (x)ds.
D
The iso-volume of the twenty-first kind of D is defined as follows
~6
/ T (x) X dx.
D
The iso-volume of the twenty-second kind of D is defined as follows
~T
/ T (x)dx.
D
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Definition 2.2.23. The iso-volume of the twenty-third kind of D is defined as follows
~.8

/ T (x)dx.
D
Definition 2.2.24. The iso-volume of the twenty-fourth kind of D is defined as follows

9
/ T (x) Xd.
D
Definition 2.2.25. The iso-volume of the twenty-fifth kind of D is defined as follows
0,
/ 7 (x) %ds.
D
Definition 2.2.26. The iso-volume of the twenty-sixth kind of D is defined as follows
o,
/ 7 (x) %dx.
D
Definition 2.2.27. The iso-volume of the twenty-seventh kind of D is defined as follows
2
/ T(x)ds.
D
Definition 2.2.28. The iso-volume of the twenty-eighth kind of D is defined as follows
13
/ T(x)ds.
D
Definition 2.2.29. The iso-volume of the twenty-ninth kind of D is defined as follows
4
/ T (x) Xdx.
D
Definition 2.2.30. The iso-volume of the thirtieth kind of D is defined as follows
15
T (x)dx.
D
Sometimes, after we reduce the multiple iso-integrals to the multiple integrals it is suit-
able to be made a change of the variables.
Example 2.2.31. Let D = {(x;,x2) € R?: 1 < X2 +x3 <4}, T(x) = /&2 +x5, f(x) =
x% —i—x%, x= (x1,x2) €D, Ty = 2. Then

M) = FOT () = fa T (x),0T (x) = 5T (x) + 6517 (x) = (x +33)*.
From here
~3
1= [ Fwxde=2 [ (342203 +d)tar=2 [ o +.3)fax
D D ;
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Now we make the following change of the variables
xy=pcosd, xp=psing, 1<p<2, 0<¢6<2m.

Then for I we have

p=2
1=2J7 [p%dodp = dn [P pSdp = an'f | = Fr.

Exercise 2.2.32. Let D = {(x1,x) € R?: 0 < x3 + 2x1x2 < 8}, f(x) =x{ +23, T(x) =
x% —i—x% +1, x= (x1,x2) € D, T = 4. Compute

/40 f(®)dx.

2.3. Advanced Practical Exercises

Problem 2.3.1. Let D = {x = (x1,x2) :x; + 12 < 1,—-1 <x; < 1,0< 0}, T =4, f(x) =
X2 —2x1xp, T(x) =x3 +x3+ 1, x = (x1,x2) € D. Compute
~l ~l Al

[ pwsie [ poza [ oz [ pwsds

Problem 2.3.2. LetD = {x = (x1,x2) :0<x; <3-2,0< 0 < 1,0< 0}, Ty =4, f(x) =
X2 —2x1xp, T'(x) = X2 +x3 42, x = (x1,x2) € D. Compute

~2 ~2 ~2 ~2
/ ; FANR) %d3, / ; N (x) %d3, / N f(x)%d#x, / N M (x) Rd£.

Problem 2.3.3. Let D = {(x1,x2) : 0 <x; <xp+ 1,0 <00 <2}, f(x) =22 — 22+ 2, T(x) =
x%—l—x%—i— 1, x= (x1,x) € D, T = 2. Compute

Problem 2.3.4. Let D = {(x1,x2) €R?: 0 <x; <4—x,0 <xp <3}, f(x) = x1 +2x1x2,
T(x) =x1 +x2, x = (x1,X2) € D, T = 3. Compute

~.6

/ FANR) %dx.
D

Problem 2.3.5. Let D = {(x1,x2) € R?:0<x; <3,0<x < 16—x%}, f(x) =x1 4+ 3x,
T(x) =x1+x2+1, x=(x1,x2) €D, T\ = 2. Compute

/i f(%)dx.
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Problem 2.3.6. Letd = {(x1,x) e R?:0<x; < 1 —x%,O <x <1}, f(x)=x —2x%+x%,
T(x) =1+x;+x, x=(x1,x2) €D, T\ = 4. Compute

~.8
/ N (x)dx.
D

Problem 2.3.7. Let D = {(x1,x2) € R0 <x; <20 +x3,0<x, < 1}, f(x) =x3 420, T(x) =
x1+x+1, x = (x1,x) € D, T| = 4. Compute

/ Z f (&) %dx.

Problem 2.3.8. Let D = {(x,x0) € R?: 0<x; < 1,0 <xp <x}+1}, f(x) = 2x; + 3,
T(x) =x}+x3+1, x = (x1,x2) € D, T} = 4. Compute

10 10
/ F(#)%ds, / F(R)%ds.
D D

Problem 2.3.9. Let D = {(x1,x) €ER?:0<x; <3,0<xp <2x;+5}, f(x) =x1 — T2 — 12,
T(x)=x2+x3+1, x= (x1,x2) € D, Ty = 4. Compute

11 )
M) Xdx.
D

Problem 2.3.10. Let D = {(x,x) € R?: 0 < x‘lt + 2x1x% <8}, f(x) = x‘lt —i—x% + 2x1x2,
T(x)=x2+x3+1, x= (x1,x2) € D, Ty = 4. Compute

~6
/ F(#)%ds.
D

Problem 2.3.11. Let D = {(x,x2) € R? : 0 < x} +2x}x3 < 8}, f(x) = x7 +x3 + 2xIxs,
T(x) =x2+x3+1, x= (x1,x2) € D, Ty = 4. Compute

9 A
/ FANR) %d3.
D

151



152



Chapter 3

Line and Surface Iso-Integrals

3.1. Definition of Line Iso-Integrals

Let 7 : R — R be a positive continuously-differentiable function, C be a curve in R?,
parameterized by the equations

x1=x1(t), xp=x(t), tE€]la,b].

Let also, f : R? — R be an integrable function and f be its iso-lift as an iso-function of the
first, the second, the third, the fourth or the fifth kind. With s we will denote the arc length

s(t) = / X ()7 (02,

Definition 3.1.1. The line iso-integral of the first kind of f along the curve C is defined as
follows

~.1 ~ R ~.1b R R
[ Fx)ds = [ fa(0.5000)%ds"0).

We can rewrite the line iso-integral of the first kind in the following way

Example 3.1.2. Let C: x| (t) = rcost, xo(t) = rsint, T(x) =t 41, t € [0,27], r = const > 0,
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f(x1,x2) = x1x2. Then

X'(t) = —rsint, x,(t) = rcost,

s(t) = [1/(—rsinu)? + (rcosu)’du

B ——

S(1) =,

1) = £ (0T (), (0 (1) = 21 ()0 (0)72(0)
= (rcost)(rsint)(t +1)?

— Z(t41)2sin(2),

SOT@O)—sOT'(1) _ re+D)—rt _ r

)—s
(1) +1 t+1°

From here,

A

Tef N, x) Rds™ = [ (14 1)?sin(21) L dt

t+1

3

:gfﬁa+mgmmwz

=- (t—l— 1)d cos(2t)

=2

= FZ(I + 1) cos(2¢) o

+4 Ja®cos(2t)dr

=21

= —gTH— g sin(2¢)

t=0

3

Exercise 3.1.3. Let C: x(t) = rsint, xo(t) = rcost, t € [0,m], T(t) = 1>+ 1, f(x1,x) =
x2 +x3. Compute

/ f/\ (xl)Cz) >A<dA§N\.
L

Definition 3.1.4. The line iso-integral of the second kind of f along the curve C is defined
as follows

~2 ~ R ~2b . R
/ Pt x0) %dis" = / Po0 (), x2(1)) %8N 1),
C a

We can rewrite the line iso-integral of the second kind in the following way

A2b A A AN A A s 7 ! I
77 F(x) %ds" (7) :fabf(xl(t),X2(t)) (T ()T ()+tT¥()t)) (O)=saTENT'(W) 4,
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A

Example 3.1.5. Let C: xi(t) = V2t, x2(t) = V2t + 1, t € [1,2], f(x1,x2) =x1x0, T(t) =
t+1. Then

s(t) =[] /x ()2 + x5 (u)2du =2 [{ du =2t -2,

A

s(T () =2T(t) —2=2t(t +1)—2 =22 +2t -2,

s/(tT(z))(T(t)-Hf’(t))—s(tT(z))T/(z) 2(t4-141)— (262 +2:-2)

() 1

=224 2144
- t+1 )

A Gx1x2) = FOa (O @), 02 (07 () = x1 (0% (072(0) = V2 (V24 1)1+ D2,

From here
ToP () %dsh = (2332 + 1)1+ 1) =222 gy
=[R2 V21) (e + 1) (=202 + 21+ 1)dr

= [H(—45 —2\/21* + 617 + (24 3V/2)12 +/21)dt

1=2
(A 23804 4)
N N t=1
89 39
—% " 10V2

Exercise 3.1.6. Let C: x1(t) = 2v/2t, x2(t) =2v2t + 1, t € [1,2], f(x1,x2) = x120, T(t) =
2t + 1. Compute

~2
/ FAR £ XdS".
C

Definition 3.1.7. The line iso-integral of the third kind of f along the curve C is defined as
follows

A3A = A3bA R
[ Fm)di= [ o)) xds),
c a

We can rewrite the line iso-integral of the third kind in the following way

~N Aia A S\ 7 (T(6)—tT" ()T (1)—s s 7'(1)F (1)
Ja F@)%ds(@) = f3 7 (0),2(1)) <m) 0 <m) dr.

Example 3.1.8. Let C:xi(t) =2t + 1, x2(t) =2t +2, t € [1,2], f(x1,x2) =2x1 —x2, T(t) =
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t+1. Then

f s % X 5X. 2x —X

s(1) = fi /% @) ywPdu =22 [ du=2v/2(t — 1),

s(7t5) =225t - 1) =22 (i 1) = -3,

S’(ﬁ)(T() fT()ﬁ()*S(ﬁ)T’(t)f(t) 22+ t)+—‘[(t+1)
(t+1)2

From here,

A3 A " n A 2
Jed (et 22)5ds(i) = [ 27 2.
4\ff1 td iy t+1

_4\@(

t+1)2

+4\[f1 z+1

N
\og
v

A

Exercise 3.1.9. Let C:xi(t) =12+ 1, xo(t) =2t +2, 1 € [1,2], f(x1,x2) =] —x, T(t) =
t+ 1. Compute
~3

/ e %d3().
C

Definition 3.1.10. The line iso-integral of the fourth kind of f along the curve C is defined
as follows

~ 4 . R ~ 4b R R
/ Pr1,x0) ds” = / Poer (), 2(1)) %ds™ (1),
C a

We can rewrite the line iso-integral of the fourth kind in the following way

ndb A

Ja Fe)%ds™ (1) = [} Fe1(6) 2 (0)T () (T () (F (1) + 7" (1) ).
Example 3.1.11. Let C:xi(t) =12+ 1, xo(t) =12 +2, t € [0,1], f(x1,%2) = 2% +x3,

T(r)=
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t+1. Then

(P12 (2 42)?
- t+1

_ 2446245
o

$(6) = Jo /% () + 5 ()2du

= [oV4u? + duldu

=22 [y udu

— V22,

s'(1) =2v/21,

$(eT(1)) = 2v2T (1) = 2v/21(e +1).

From here

Tof (), % () Rds" (1) = J 24045 (1 4 12/2 (e 4+ 1) (¢ 4 1 +1)dt
= 2V/2 [ (2* 612 4 5)1(r +1) (2t + 1)dr
= 2/2 [y (417 4610 + 145 +181* +161° 4 156> + 51 )dt

t=1

= Zﬁ(g + 87+ 110+ B part 50 + %ﬂ)

t=0

_ 3946\2
= 7105 -

Exercise 3.1.12. Let C:xi(t) =t + 1, xo(t) =12+ 1, € [0,1], f(x1,x2) = x1 +23, T(t) =
t+ 1. Compute

~.4

N

/ FNoxr,x2) Xds™.
c

Definition 3.1.13. The line iso-integral of the fifth kind of f along the curve C is defined
as follows

~5 ~ ~ ~.4b R R
/ Por1,x0) kdis = / P01 (), x2(0)) %ds ().
C a

We can rewrite the line iso-integral of the fifth kind in the following way
~5b

T2 P kds(d) = £ Faa(0),x2(0) (75 ) " L.
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Example 3.1.14. Let C:x1(t) = 1> +2, xa(t) =12, t € [0,1], f(x) =22 +x3, T(t) =1 +2.

Then . o
fAxr,x2) = fxa ()T (2),x2(2)T (1))
=x1(0)T2(1) +x3() T2 (1)
= (2422t +2)2 + 14t +2)?
=2(t* +224+2)(t +2)2,
s(t) = Jo /% ()2 4, (u)?du
= [y V4u? +4uldu
= Zﬂfé udu
=272,
s'(t) = 2V/2t,
TO-T0) _ o2t _ 2
T() T2 T 42
From here
Tef () Rds" = [ 2064 +22 +2) (1 +2)22V/2 45 2t
= 8v2 [y t(t* + 262 +2)dr
=82 [y (7 +207 +21)dr
6 4 1=1
=8v2(5+5+7)|
_ 40v2
= 2042

Let now, fi, f> : R> — R be integrable functions and f1, f» be their iso-lifts as iso-
functions of the first, the second, the third, the fourth or the fifth kind . Let also, e; = (1,0),
e =(0,1).

Definition 3.1.15. The line iso-integral of the first kind of fie| + fres along the curve C is
defined as follows

flcfl(XbXZ);“iﬁ\/\+]lcf2(x1,x2)§<€iﬁ§\/\
= T A 1 () o () KRN D) + T2 (e (0), 32 (1)) %) ().
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We can rewrite the line iso-integral of the first kind in the following way
alb

To A@RARNE) + T, folx)%d2) ()

= [ il (0,02 SO HOT D g g2 1), 1)) 2T 2O 0 gy,

Exercise 3.1.16. Let C : x; (t) =tr+1, Xz(t) =t1tc [0, 1], fi (X] ,XQ) = X1 — X2, fz(X],Xz) =
x| +x, T(t) =12+ 1. Compute

~ 1 Al
/Cfl (xl,xz)ﬁd)?{m +/Cf2(x1,x2)§<d)€§\/\.

Definition 3.1.17. The line iso-integral of the second kind of fie| + frer along the curve
C is defined as follows

D . R D . .
Jefi(xi,x)Xdx) f fa(x1,x2) Xdx)

= T2 (1), (e) RdE (1) + T Folea (1), 02 (1)) R (1).

We can rewrite the line iso-integral of the second kind in the following way
A2b A

T A% @) + T, folx) %dz) ()

= fffl (xl(t),xz(z))Xll(’T(’))(T(’)“T/(I)%T(I)’xl(’T(t))T’(t)dl‘

+f,ff2(xl (t)7x2(t))X’z(’T(f))(T(ZHFT'(TI)(?)T(I)*M(ZT(’))T'(’)dt‘
Exercise 3.1.18. Let C:x;(t) =t+ 1, x(t) =¢,t € [0,1], fi(x1,x2) =x —x%, f(x1,x) =
X2 +xy, T(t) = 1>+ 1. Compute

A2 ~2
/Cfl (x1,X2) Xd&y —I—/sz(xl,xz)%a?)?é\.

Definition 3.1.19. The line iso-integral of the third kind of fie) + fe; along the curve C is
defined as follows

A

"3 A  oa .
Tefi(er,x)Xd%; + [ fa(x1,x0) Xd%s

~3b A N oan m A3b oA NS
= Ja Hix1(0),22(2)) Xd2\ () + [ 4 f2(x1 (1), x2(1)) XdRo (£).
We can rewrite the line iso-integral of the third kind in the following way
~3b A R "3b A, A

Ja fi@)Rdai (@) + [ f2(0) %da (F)

; 4 7l ) EO— )T 0 565 ) ' OT ()
= Jd haa0).x(0) () 0 (),

2 & ( 7 ) (O )T ) x| 7 ) 'O ()
17 Fala (0, 02(6)) () 0 G)rore,
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Exercise 3.1.20. Let C:x(t) =t+ 1, x2(t) =t +4, 1 €[0,1], fi(x1,%2) = 2x1 +3x102 — X3,
F(x1,%0) =22 +x3, T(t) =12+ 1. Compute

~3 ~3

/Cfl (x1,x2) Xdxy +/Cf2(X1,X2)>A<d)?2-

Definition 3.1.21. The line iso-integral of the fourth kind of fie| + fes along the curve C
is defined as follows

~d a A Ad A
Sehi(x,x)xdx ™ + [ o fa(xr,x2) Xdxo

= T A (e) (e R (1) + T (1), :2(8)) R (1),

We can rewrite the line iso-integral of the fourth kind in the following way

+ J PO (0), 2 (O) T @y (T () (F (1) +177 (1)) .

Exercise 3.1.22. Let C: x1(t) =1+ 1, xp(t) =t +4, 1 € [0,1], fi(x1,x2) = x1 + 3x1x,
fr(x1,x2) = x1 +x2, T(t) = 1> + 1. Compute

~d ad
[ CESE R W ACRSEY S

Definition 3.1.23. The line iso-integral of the fifth kind of f along the curve C is defined
as follows

A5 A A A ~S5 A A A
Jefi(xi,x2) xdxy + [ofa(x1,x2) Xdxp

= TV R (0), () R () + T Folxi (), (0)) kdxa ).

We can rewrite the line iso-integral of the fifth kind in the following way

T(0)—1T'(r)
Tdt.

+Ji Fala (1),32()),

Exercise 3.1.24. Let C : xl(t) =t+1, )Q(l‘) = l+4l‘2, t € [0,1}, fl(xl,xz) = X1X2,
fr(x1,%2) = x1 +x2, T(t) = 1>+ 1. Compute

~5 ~5
/Cfl/\(xth);(dxl +/Cf2A(X1,X2)>A<dx2.
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3.2. Properties of Line Iso-Integrals

With —C we will denote the curve x_x;(a+b—1t), x» =x2(a+b—1),t € [a,b]. The curve
—C is traversed in the opposite direction.

Theorem 3.2.1.

ST . Al "
J_chilxn,x) %dit™ + [_cfa(xr,x2) Xdg5"

Al A . R o
= —[chi(x,x2) xd#" — [ fa(x1,x2) xd#"
Proof.

~1 ~ AN A1 ~ A M
J_chile,x) xdit™ + [ o fa(xr, x0) Xd#5"

= f; fitxi(@a+b—1t),x2(a+b—t)) i (QHH)T(QH?(;);;,(;;M?’)’%T(Hb#) dt
+ 2 Bi(a+b—1),x(atb—1)) %"ﬂ““’*’”(“*’;}; )j;‘if”’*’)%ﬂ“b*’) di
= fab fitxi(a+b—1),x(a+b—1)) = (aHH)T(“Jr;z;rxt(fb_tﬁ/Wrb_l) dt
+fab fz (x1(atb—1),x(at+b—1)) fx’z(a+b—z)f(a+;z;l+bx_2t()a+b—z)f/(a+bfz)dt
a+b—t=u

= — [ e (u), 22 (1)) 5 (M)T(?(z;l(u)r(u) du— [ fo(x1 (), x2(u) =2 T(u) !

= J1 1 e () (0)) =TI @ 7o ey 1)y ) =L 20T gy

Al A A BA Al A LN
= _fcfl (xl,xz)xdxf/\ —fcfz(xl,xZ)deé\/\.

Theorem 3.2.2.

[\S)
>

T2 chixn,x) Rd&) + ]~ o folxr, x0) X dg)



Proof.

A,

2 4 NS A2 A NS
J_chia,x)%dif + [ cfa(x,x) xd%y
= [P fi(xi(a+b—1),x2(a+b—1))

4 xi((a+b—1)T (a+b—1)) (T (a+b—t)+(a+b—t) & T (a+b—1))T (a+b—t)—xi ((a+b—1) T (a+b—1)) L T (a+b—t) dt
T(a+b—t)

+ [P hxi(a+b—1),x2(a+b—1))

4 xo((a+b—1)T (a+b—1)) (T (a+b—t)+(a+b—t) LT (a+b—1))T (a+b—t)—x2((a+b—1)T (a+b—1)) LT (a+b—t)

T(athb1) dt

= [P fi(xi(a+b—1),x2(a+b—1))

x| ((a+b—1)T (a+b—1))(T (a+b—1)—(a+b—1)T' (a+b—1))T (a+b—t)+x1 (a-+b—1) T (a+b—1)) T (a+b—1) d

T(a+b—t) t

+ [P h(xi(a+b—1),x(a+b—1))

—xb ((a+b—1)T (a+b—1))(T (a+b—1)—(a+b—t)T' (a+b—1))T (a+b—t)+x2(a-+b—1) T (a+b—1)) T’ (a-+b—1) d

Tlatb—1) !

at+b—t=u

— — [ P (), (1)) =2 (MT(M))(T(u)fuf(ui))f(")ﬂ'("T(”))Tl(") dt

— e Poer (), x2(u) 55 (u () (1 ()~ ()T (1)+x (T () T" (w) dt

= 2 Falon (1), e (o)) LT GO

7 oo () e ) =TT (L)L) g

’\2 ~ A AL ’\2 ~ A AL
# — [ chi(x1,x2) Xd&) — [ cfa(x1,x2) Xd2y

Theorem 3.2.3.



Proof.

234 A A2 ~3 A A A2
J_cfilxr,x)Xdxi + [ fo(x1,x2) Xd%>

= [P A (xi(a+b—1),x2(a+b—1))

4 x1((a+b—1)T (a+b—1)) (T (a+b—t)+(a+b—1) LT (a+b—1))T (a+b—t)—xi ((a+b—1)T (a+b—1)) LT (a+b— [)dl
T(a+b—t)

+ [ foxi(a+b—1),xa(a+b—1))

%xz((aerbft)T(aerft))(f(a+b71)+(a+bft) %T(aqtbft))f’(mrbft)fxz((a+b7t)f’(a+b7t)) % T(a+b—t)
T(atb1) dt

= [P A (xi(a+b—1),x2(a+b—1))

x| ((a+b—1)T (a+b—1))(T (a+b—1)—(a+b—1)T' (a+b—1)) T (a+b—t)+xi (a+b—1) T (a+b—1)) T’ (a-+b— t)dt
T (a+b—t)

+ [ faxi(a+b—1),xa(a+b—1))

x5 ((as+b—0)T (a+b—1)) (T (a+b—1)—(a+b—1) T (a+b—1))T (a+b—t)+x2 ((a+b—1)T (a+b—1))T ’(a-‘rb—t)d

Tlatb1) !

a+b—t=u

_ fba fl (xl (u),xz (u)) —x (uf"(u))(T(u)fuT’(uZ)T(u)erl (uf"(u))f"’(u)d

) u

—Jg Po(er (), x2(u0)) —x5 (u (u)) (7 (w)—uf" () T ()52 (u () T (u) du

_ fab f"l (xl (Lt),)Q(M)) —x (uT () (T () —uT" (u )T(u)+x1(uf"(u))f"’(u)d

+ fab fz (x1 (1), x2 () —X/z(uf(u))(T(u)—Mf/(u))f(u)-*-xz(uf(u))f'(u)d

X>

i —foAl(wa)

Theorem 3.2.4.

"4 ~ A A ’\4 A A A

J_cfilxr,x)xda + [ cfa(x1,x2) Xdxp"
~d A A Ad A J

# —[chi(xr,x2)%dxy” = [cfa(x1,x2) Xdxo".
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Proof.

T ehimm)du’ + ] oo, ) kdn

= [P fila+b—1),x(a+b—1))T(a+b—1)Lxi((a+b—1)T(a+b—1))(T(a+b—1)
+(a+b—1)4T(a+b—1))dt

+ ) htala+b—1),x(a+b—1)T(a+b—1)4x((@+b—1)T(a+b—1))(T(a+b—1)
Hatb—0)LT(a+b—1))dt

= [ hitai(a+b—1),x(a+b—t)T(a+b-1)(—xi((a+b-0)T(a+b—1))(T(a+b—1)
—(a+b—t)T"(a+b—1))dt

+ [P hi(a+b—1),x(a+b—1)T(a+b—1)¥y((a+b—1)T(a+b—1))(T(a+b—1)
—(a+b—0)T"(a+b—1))dt

atb—t=u

= — Jy i (er ()2 () T ) (=, (T () (T () — T (1) )t

= Ji Faxr (u), 2 ()T () (uT (1)) (T () — T (1) )t

= Ji FrCer (), x2u)) T ) (=) (T (1)) (7 () — T ()t

S FaCon ()22 () T () (uT (1)) (F () — T () )

"4 A A A ’\4 A A A
# —[cfi(xi,x)xdx — [ o fa(x1,x0) Xdxp".

Theorem 3.2.5.
%5 ~ A A ~5 ~ A A
J_cfilxi,x) Xdxi + [ fo(x1,x2) Xdx2
25 A ~ A A5 A A
# —[cfi(x1,x2) Xdx) — [ fa(x1,22) Xdxs.

164



Proof.

A

5 ~ A D ’\5 ~ A B
J_cfilxi,x2) Xdxy + [ fa(x1,x2) Xdxa

atb—t )f(a+b7t)f(a+bfz)%T(a+b7t)d
)

a+b—t) !

:fabfl(x1<a+b_t),)€2(a+b—[))%xl

~|

t

atb—t )T(a+bft)7(a+bft)%T((H»bft)d
[ )

+ [ hxi(a+b—1),x(a+b—1))4x, atb—1)

|

(a+b—t)+(a+b—t)f"’(a+b—t)d

Tlatb—1) !

s
ik
7L
N—
N—
~>

:f:fl(xl(a+b—t),x2(a+b—t))(—x’l

(a+b—1t)+(a+b—1)T"(a+b—t) d

T (a+b—t) !

—_— =
Ik
o
Tl
=
~
~
~»

Iy e (a+b—t),x2(a+b—t))<—x’2

at+b—t=u

= 5 it w0, 520) (=4 (7)) e

— Ji (1 (u),x2 () (—x'z

(75)
- Edtntos (4(5))
+fff2(x1(u),X2(u))(—x’2( )

A5 A A A ~5 A A A
75 *fcfl (xl,xz)xdxl — fcfz(xl,xz)xdxz.
[

In the general case we can not formulate analogues of the Green’s theorems connected
with the line integrals because d£/", d£/, dx!", d%; and dx;, i = 1,2, depends on x; and ¢
and they are not invertible relation to ¢ in the general case.

3.3. Surface Iso-Integrals

Let X be a surface in R?, parameterized by the equations
x1=x1(u,v), x2=x2(u,v), x3=x3(u,v), (u,v)€G, GlsubsetR>.
We put the quantities
E = x1,,(tt,v)? + x2,, (4, V) + x3, (u,v)?,
F = x1,(u,v)x1, (1, v) + 0, (1, v) 2, (1, v) + 23, (1, v)x3, (1, v),
D = x1,(u,v)? +x2, (4, v)* + x3, (4, v) %
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Suppose that f,P,Q,R : ¥ — R be continuous functions and 7' : ¥ — R be a positive
continuously-differentiable function. Let also, the iso-lifts of the first, the second, the third,
the fourth or the fifth kind of f, P, Q and R exist on X.

Definition 3.3.1. The surface iso-integral of the first kind of f over ¥ is defined as follows

]]Ef(xl,XQ,X3)ci€$: //Gf(xl(u,v),xz(u,v),X3(u,v))>A<\/ED—F2>A< ladp.

Exercise 3.3.2. LetX: %3 +3 4+ 3 =1,x1 >0, x>0, x3 >0, f(x1,%,x3) = X1 +x2 413,
T(u,v) =u+v+1,u>0,v>0. Compute

// f/\(X1,X2,X3)dA(AT.
X

Exercise 3.3.3. Let £ : x12 +x2 +x32 =1, x>0, x2 > 0, x3 > 0, f(x1,%2,%3) = 2x1 — X2 +
x%, T(u,v) =u+v+1,u>0 v>0. Compute

//ZfA()el,fz,fg)ci&.
Now we will define the quantities
A = xouX30 — X3uX2p, B = X3uX1y — X30X 10, C = X1uXoy — X2uX1y-
Definition 3.3.4. The surface iso-integral of the second kind is defined as follows

A

ff2A>A< AXAQCI,'\XA3+Q>A< AXA3 AXA1+1,é>A< AxAl b o)

A, A A A A A B A A C ~ A A A
= X X RXx xXdxX1dX,dXs.
ffz( VA1 B 12 +0 VAZLB2+C2 + \/A2+B2+C2> 1642643

Exercise 3.3.5. Let £ : x> +x? +x32 =1, x; >0, x0 > 0, x3 > 0, P(x1,x2,x3) = 2x] —
X2 —i—x%, O(x1,x2,x3) = X2 —I—X%, R(x1,x2,x3) = 2x; +x3 T(u,v) =u+v+1, u>0,v>0.
Compute

//Eﬁ(ﬁl,fz,&)%cfﬁch)%+Q()€1,£2,)€3)§< A)?3 Aﬁl +k(£1,ﬁ2,f3)§< AxAl %>.

3.4. Advanced practical exercises

Problem 3.4.1. Let C: x{(t) = rsint, xo(t) = rcost, t € [0,7], T(t) = t*+ 1, f(x1,x0) =
x% + 2x1xp. Compute

/ FNR1E) RS
L

Problem 3.4.2. Let C: x1(t) =22t +2, x2(t) = 2v/2t + 1, t € [1,2], f(x1,%2) = x3x2 +x1,
T(t) =t +2. Compute

~A2
/ F(x1, %) %ds".
C
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A

Problem 3.4.3. Let C: xi(t) =t +21%, xa(t) =t +2,t € [1,2], f(x1,x02) =23 —x3, T(t) =
t+ 1. Compute

~3
/ PN, x0) %dS(E).
C

Problem 3.4.4. Let C:x1(t) =t +1, xo(t) =2+ 2t + 1, t € [0,1], f(x1,x2) = x1 +x3,
T(t) =t*>+ 1. Compute

~ b
/ o, x0) Xds™.
c

Problem 3.4.5. Let C:xi(t) =12 +2t+3, xo(t) =12+t + 1, t €[0,1], f(x1,x2) = x] +x5 +
2x2x3, T(t) = 1>+ 1. Compute

~.5
/ FAR, R Xds".
C

Problem 3.4.6. Let C:xi(t) =1>+1, x2(t) =12, t €0, 1], fi(x1,%2) =x} —2x2, fo(x1,%2) =
2x1 4 X2, T(t) =2+ 1. Compute

~ 1 A1
/Cfl (xl,xz)ﬁd)?{m +/Cf2(x1,x2)§<d)€§A.

Problem 3.4.7. Let C : xi(t) = 2 +t+ 1, xo(t) =13 t € [0,1], fi(x1,x2) = 2x1 +x3,
fr(x1,%2) = x1 +3xy, T(t) = 1>+t + 1. Compute

A2 ~2
/Cﬁ (xl,x2)§<d)?f —|—/Cf2(x1,x2)§<d)€§\.

Problem 3.4.8. Let C:xi(t) =t+1, xa2(t) =t+4, 1t €[0,1], fi(x1,x2) = 2x} — x3,
fa(x1,x2) :x%+x2+2x1xz, T(t) =>4 1. Compute

~3 ~3
/Cfl(xl,xz);< 3§1+/Cf2(x17x2);< fz-

Problem 3.4.9. Let C:xi(t) =t + 1, xo(t) =t +4, t €[0,1], fi(x1,%2) = x3 + x5 +3x1x2,
F(x1,x0) =22 +x3, T(t) =t+ 1. Compute

nd nd
/Cfl(X1,X2)>2dx1/\+/CfA2(X1,X2)>2dX2A.

Problem 3.4.10. Let C : x; (t) =t+1, XQ(t) = 1‘2, te [0, 1}, fi ()C],.xz) =X]— X2, fz(xl,XQ) =
x; —x3, T(t) =t+1. Compute

~5 ~.5
/Cfl(xl,xz)ﬁdxl +/CfA2(X1,X2)>A<de.

Problem 3.4.11. Let C: xi(t) = > + 1, x2(t) =22 +2, t € [0,1], fi(x1,%2) = 2x1 — x2,
fo(x1,x0) =x1 — Zx%, T(t) =t+1. Compute

~d ~ 4
/Cﬁ(xl,xz)?cfxl +/Cf2(x1,x2)§<afx2.
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Problem 3.4.12. Let C: x(t) = > + 1, x(t) = 2t, ¢t € [0,1], fi(x1,%2) = 2x1 — X2,
fa(x1,x2) = x1 — 2xp, T(t) =t+ 1. Compute

A5 ~5
/Cfl (X],)Cz))’\(dAxl +/CfA2<X1,X2)>A<a¢Xz.

Problem 3.4.13. Let C : x; (t) =t+1, )Cz(t) =t+2 t€ [0, 1], /i (xl,xz) = 2x1 — 3xy,
fa(x1,x2) = 4xy — 5x3, T'(t) = 2t + 1. Compute

A2 ~2
/Cfl (X],)Cz))’\(dAxl +/CfA2<X1,X2)>A<Cfo.

Problem 3.4.14. Let ¥ : x12 + 402 +x322 =1, x; >0, x2 > 0, x3 > 0. f(x1,%2,%3) =
2x% — X, T(u,v) =u+v+1,u>0v>0. Compute

//ZfA()el,)ez,)e3) 6.

Problem 3.4.15. Let X :x; +x+x32 =1, x; >0, x0 >0, x3 >0, P(x1,x2,%3) :x% — X2 +x%,
O(x1,x2,x3) :xg, R(x1,x2,x3) = 2x1, T(u,v) =u-+v+1,u>0,v>0. Compute

//213()?1,)?2,)?3)5< [t2dis + Q(%1,%, £3) Xdf3df1 + R(%1, %, %3) Xdf1d%s.
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Chapter 4

The Iso-Fourier Iso- Integral

4.1. Definition of the Iso-Fourier Iso-Integral

We suppose that E is a measurable set in R, f : E — R is defined and integrable on E. Let
also, T : E — R is a positive continuously-differentiable function.

Definition 4.1.1. The iso-Fourier iso-integral is defined with

/Ef(x) (1 —x?(t?)dx.

4.2. Properties of the Iso-Fourier Iso-Integral

Here we will study some of the properties of the iso-Fourier iso-integral.

Theorem 4.2.1. Let {f,(x)};7_, be a sequence of bounded and measurable functions on
the measurable set E, which converges in measure to the measurable function F(x) on E.

Let also, T(x) is a measurable function on E, its derivative T'(x) exists on E and it is
'(x)
T(x)
If | fu(x)| < K for every x € E, every n € N and for some positive constant K, then

lim Ef,,(x)(l—x?éX)dxz/EF(x)<1—x7:/(x)>dx.

e 7

1—x

measurable on E, and

< A for almost all x € E, where A is a positive constant.

Proof. Since f, —,_, F in measure, by the Riesz’s Theorem it follows that there exists a
subsequence { f;,, }7-_, of the sequence { f,};r_, such that f,, —;_,.. F almost everywhere
in E. From here, using that |f,, (x)| < K for every x € E and every k € N, we have that
|F(x)| <K for almost all x € E.

For n € N and ¢ > 0, we define the sets

An(0) =E(|fu—F| = 0), Bu(0)=E(fn—F|<o0).

We have
A,(0)UB,(0)=E, A,(6)NB,(c)=0.
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Then

Je 1) = F)l| 1 =T

dx <A [ |falx) = F(x)|dx

= A [, (0)uB, (o) [fu(x) — F (x)|dx

=A [4,0) 1fn(x) = F(x)|dx +A [ () | fa(x) = F (x)]

< A Je(f,-F|z0) Mfa(¥) = F (x)|dx + ASuE(| fu — F| < ©)
<A [g(f,-F|z0) lfa(x) — F(x)|dx+ AouE

<A Ju(1grizo) (£ ()] + [F (x))dx + AouE,

now we use that |f,(x)| < K for every x € E and for every n € N, and |F (x)| < K for almost
all x € E, therefore

(A10) ) — FCo)[1 ~ 5

Let € > 0 be arbitrarily chosen and fixed. From f,, —, .. F in measure, we have

dx < 2AKuE(|fy —F| > ©) + AGuE

lim uE(|f, —F| > 6) =0
n—-yoo

for every 6 > 0. Then there exists N; = N;(€) € N such that for every n > N; we have

€ )< €
2AuE’ " 4AK

HE(|fu—F| >

From here and from (A10), for o = ﬁ’

T/
[ 1) = Fo)|| 1 =52 dx < 24K g + A i

+

[\Sile]
[Sle]

=E&.

Because € > 0 was arbitrarily chosen, we conclude that

nthm/I; () —F(x)]’l —xy;,((;)) )dx —0.

Using the last limit, we obtain that

limnﬂw‘fEfn(x)O —fol((;)))dx—fEF(x) (1 —x?é)ff)dx‘

=t o)~ F () (1 =5 |

< limy oo [ | fo(x) — F ()] )1 —xFWax=o,
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consequently

lim f,,()(l— ) /F (x)>dx.

n—eo T(x) T (x)

O]

Corollary 4.2.2. Let {f,(x)};7_, be a sequence of bounded and measurable functions on
the measurable set E, which converges in measure to the measurable function F(x) on E.

Let also, T(x) is a measurable function on E, its derivative T'(x) exists on E and it is
1 —xTT/((;C)) ‘ < W¥(x) for almost all x € E, where ¥(x) is a bounded
and measurable function on E. If | f,(x)| < K for every x € E, every n € N and for some

positive constant K, then
T/
—/F(x)( xA(x))dx.
E T(x)

Proof. Since ¥(x) is a bounded and measurable function on E then there exists a positive
constant A such that

measurable on E, and

lim fn( )(

n— oo

Vx € E.

From here and by Theorem 4.2.1 it follows the assertion. O

Corollary 4.2.3. Let {f,(x)};7_, be a sequence of bounded and measurable functions on
the measurable set E which converges in measure to the measurable function F(x) on E.

Let also, T(x) is a measurable function on E, its derivative T'(x) exists on E and it is
(iG] ’ < YW(x) for almost all x € E, where ¥(x) is a summable

T(x)
and measurable function on E. If | f,(x)| < K for every x € E, every n € N and for some

positive constant K, then
f"’
= / F(x)(l —X—= (x)>dx.
E T (x)

Proof. Since ¥(x) is a summable and measurable function on E then there exists a positive
constant A such that

measurable on E, and ‘

lim f,,( )(

n—-y

7~/
) |l ‘ <A
T (x)
for almost all x € E. From here and by Theorem 4.2.1 it follows the assertion. O

Theorem 4.2.4. Let {f,(x)};_, be a sequence of bounded and measurable functions on
the measurable set E, which converges in measure to the measurable function F(x) on E.
Let also, T(x) is a measurable function on E, its derivative T'(x) exists on E and it is

' (x)
T(x)
If | fu(x)| < D(x) for every x € E, every n € N, for some measurable and summable function

®(x) on E, then
Jim [ G )(1— ; /F (j:)))dx.
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Proof. Since f, —,—, F in measure, from the Riesz’s Theorem it follows that there
exists a subsequence {fy, }_, of the sequence {f,};_, such that f,, — .. F almost
everywhere in E. From here, using that |f,, (x)| < ®(x) for every x € E, every k € N, we
conclude that |F(x)| < ®(x) for almost all x € E.

For n € N and 6 > 0, we define the sets

An(0) =E(|fu—F|=0), Bu(o)=E(fi—F|<o0).

We have
An(0)UBy(0) =E, A,(c)NB,(c)=0.

Then

e 1fa(x) —F(x)wl —X§((;))

dx < A fp|fulx) = F(x)ldx

=A [4,(6)UBa(0) n(x) = F (x)|dx

=A [1,0) lfa(x) = F(x)|dx +A [ () | fu(x) = F (x)]

<A Jp(f,-Flzo0) [fu(x) = F (x)|dx +ASpE(|f, — F| < 0)
<A [g(f,-Fz0) lfa(x) — F (x)|dx + AGuE

=4 fE(‘fn*F|26) (|fu(x)|+|F(x)])dx+ ACuE,

now we use that | f,(x)| < ®(x) for every x € E, every n € N, and |F (x)| < ®(x) for almost
all x € E, therefore

(A11) [ | fu(x) —F(XN‘l _xif,((j))

d.x S 2A fE(‘fn_F|ZG) qD(x)dx+AG,uE
Let € > 0 be arbitrarily chosen and fixed. From f,, —,__,. F in measure, we have
lim uE(|f,—F| >0)=0
n—-voo

for every ¢ > 0. Then there exists N; = N (€) € N such that

€ €

—F|>——)<—
|*2A‘uE)

HE (| fu I

and

€
O (x)dx < —
/E(szG) W< 3

for every n > Nj. From here and from (A11), for c = Tny,

Je 1fu(x) = F(x)] ‘1 —xg((;))

dx < 2A35 +A2A8#E,uE

_l’_

Slle)
(Sl
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Because € > 0 was arbitrarily chosen, we conclude that

lim /E\fn(x) —F(x)]’l —xf;(%) ’dx =0

n—>oo
From here,

. 1/ (x) 7' (x)
im0 (1 =) )= fi F ) (1= )
= timy e fp o (3) ~ F0) (1 -2 )|
<1y e f [fo(3) = F)I[1 =52 ax = 0,

consequently
'(x) x)
nhl>nw fn( )< Tx /F x)>dx.

O]

Corollary 4.2.5. Let {f,(x)};r_, be a sequence of bounded and measurable functions on
the measurable set E, which converges in measure to the measurable function F(x) on E.
Let also, T(x) is a measurable function on E, its derivative T'(x) exists on E and it is

1—x (( )) ‘ < W(x) for almost all x € E, where ¥(x) is a bounded

and measurable function on E. If | f,(x)| < ®(x) for every x € E, every n € N, for some
measurable and bounded function ®(x) on E, then

nl'&l}lﬁ)/f,, 1— (;C))>d —/E (x)(l—x?((j:)))dx.

Proof. Since ¥(x) is a bounded and measurable function on E, we have that there exists a
positive constant A such that

measurable on E, and

Vx€E.

From here and the above Theorem 4.2.4 it follows the assertion. OJ

Corollary 4.2.6. Let {f,(x)};7_, be a sequence of bounded and measurable functions on
the measurable set E, which converges in measure to the measurable function F(x) on E.
Let also, T(x) is a measurable function on E, its derivative T'(x) exists on E and it is

( )

measurable on E, and ’1

(x) for almost all x € E, where ¥ (x) is a summable

and measurable function on E. If ]fn( )| < ®(x) for every x € E, every n € N, for some
measurable and summable function ®(x) on E, then

tim [ £l )( x];((x))>dx:/EF(x)<1—xj:/(x)>dx.

n—eo x T(x)
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Proof. Since ¥(x) is a summable and measurable function on E, we have that there exists
a positive constant A such that

"
= ') <4
T(x)
for almost all x € E. From here and by Theorem 4.2.4 it follows the assertion. 0

Corollary 4.2.7. Under the hypotheses of the Theorem 4.2.4, if ¢ is a bounded measurable
function on E, we have

n@m Efn(x)q)(x)<1 —x?((;c)))dx: /EF(x)q)(x)(l —x?éﬁ)dx.

Proof. Since ¢ is a bounded measurable function on E, we have that there exists a positive
constant A such that
|o(x)] <A; for Vx€eE.

Then, for every ¢ > 0, we obtain that
(A12)E(|fu0—F¢| > 0) CE(|fu—F[ = £

Because f;, —,_. F in measure, we have
lim pE(|fy—F|> 2)=0
m (£ Z A71) =V
From here and (A12), we conclude that
lim pE(| 0~ Fo| > ) =0
n—-voo

for every 6 > 0. Therefore f, — ;. F'¢ in measure. From the last limit and by Theorem
4.2.4, we obtain that

n—->soo

lim Efn(x)q)(x)dx:/EF(x)q)(x)dx.
0

Corollary 4.2.8. Under the hypotheses of Corollary 4.2.5, if ¢ is a bounded measurable
function on E, we have

A

n@m Efn(x)q)(x)(l —xy;l((;c)))dx: /EF(x)(I)(x)(l —x?éﬁ)dx.

Corollary 4.2.9. Under the hypotheses of Corollary 4.2.6, if ¢ is a bounded measurable
function on E, we have

lim Efn(x)q)(x) (1 —x?((;c)))dx = /EF(x)q)(x) (1 —x?éﬁ)dx.

n—-soo
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Chapter 5

Elements of the Theory of Iso-Hilbert
Spaces

In this chapter we make a lift of the Hilbert spaces to the iso-Hilbert iso-spaces. They are
given the main definitions and the main conceptions for such iso-spaces and they are made
comparisons with the real or complex Hilbert spaces.

5.1. Definition of Iso-inner product and properties

Let H be a real or complex Hilbert space with an inner product (-, -).
We suppose

(H1) T € L(H), T~ " exists and T~' € L(H) and T~! is positive, i.e. T~': H — His a
self-adjoint operator and (7~ 'x,x) > 0 for every x € H.

We lift the Hilbert space H into the set
H:={T"'x):=% for xcH}

and we define an iso-inner product as follows

— . . 1
(%,9) ::(T_lx,T_ly)?l for %£,y€H.

Since 7! € L(H) then A is a linear space.

Remark 5.1.1. We note that the initial space H should be some Hilbert space because we
can define a positive definite operator only on some Hilbert space not on a linear space
with an inner product. One of the main assumption for the isotopic element T is it to be a
positive definite operator on H.

—

Proposition 5.1.2. We suppose (H1). Then (*,*) is an inner product.
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Proof. 1. Let £ € A be arbitrarily chosen. We have

—

(£,8) = (T 'x, 7" 'x)=— >0

_’ﬂ)‘ —_

because 7} >0, 7! : H — H, (-,-) is an inner product in the Hilbert space H.
Also,

because 7' € L(H).

2. LetA e F¢. Then, for X,y € H, we have

and

3. For £,9,% € H we have
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Remark 5.1.3. We will note that not for any T we can make a lift of a space with an inner
product in an iso-space with an iso - inner product.
Really, let us consider C([1,2]) in which is defined an inner product as follows

/f x)dx for f,ge€ C([1,2]).

If we make the lift, then the corresponding iso-inner product is

and if f = g we have

A 2 [ (x
FOTN = [P (1-a5

IfT(x) =x+1, then T (x) > 0 for every x € [1,2] and we have

— 2
AN FAAY — 2 _ — x>
TN = [P0 Jav= [0 o
Also, if T'(x) = e*, x € [1,2], then T > 0 for every x € [1,2], on the other hand,

— 2
(P f = [T - 2dx <0
1
because 1 —x < 0 for every x € [1,2].

Example 5.1.4. 1. Let us consider R" and let T = (T1,T>,...,T,), where T), | = 1,2,....n
are positive real numbers. Then we lift R" into the space R" in the following manner:
for given x = (x1,x2,...,%x,) € R" we set

o X1 X2 Xn
A=\l =rx=s =)
I T T,

which is the corresponding iso-lift of the element x, and for X, j € R" we define an
iso-inner iso-product as follows

—

ERIEDVRERSTED VRET Y N ED VREATL

2. The space I, consists of all real sequences & = {&;}77 | so that ¥;°| §12 < oo, Let also,
T = {f}};"z | to be a sequence of positive real numbers. We want to make a lift of I,
into b, as follows

s &= - {2}
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therefore we have a need of an additional condition for T, namely the sequence
{T;}2., to be bounded below by a positive real number a. In this way we have

for Vi=1,2,...

and from & € 1 it follows

In this case we define an iso-inner iso-product in l, in the following manner: for &,

ﬁefz

let now, & = {1}y, and T = {%}7’:1

= el
Y& =) 5 <
=1 =1

the sequence T is not bounded below by a positive real number and

S8 _wl
ZTZZ_ZIZ _: |

We obtain that if the positive sequence T is bounded below by a positive real number
and & € I? then € € .
Let T = {T;}7., = {I}7,. Then T is a bounded below sequence byl. Let also,

e={&r, = {3}, Then

e §¢ . Also, for

we have

iy |
~F k<
This example shows that we have é chand& ¢,

Now we will give a condition for the positive sequence T such that from é ebhit
follows & € I?. We suppose that the positive sequence T = {Tl}l‘x’:l is bounded above

by a positive real number b. Foré = {%}l | e [, we have

2
Z

AR
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and since b > 0 we conclude that
Y & <o,
=1

If the positive sequence T' is bounded above by a positive real number b then from
E € I? it does not follow thaté_, € bb. Really, let E= {%}171' Then

ie. Ecly. Letnow T = {i }l v Then T is a bounded above sequence and

l
w5 _vE vyl
Li=Li=Li==

consequently é = {%}7 1 ¢ by.

The sequence T to be bounded above is too important. Indeed, let T = {lz}f: | and
&= {V1}7,. Then T is unbounded above and

=8 ol ol
I

in other words & € fg, and

consequently & ¢ 1.

If we suppose that the positive sequence T is bounded below and above by some
positive real numbers a and b, respectively, then from € € 12 it follows thatij. €l and
from & € I it follows that & € L, because

%

Remark 5.1.5. In the above example we saw that if T = {f}}‘lx’zl is a bounded below positive
sequence by a positive real number then there exists & € I so that E ¢ I,. Now we will see
that if T = {Tl} -1 is a positive bounded below sequence by a positive real number then

there exists & € [ such that & € I. Let
T= {Tl}loozl = {l}}”:l
which is bounded below by 1, and let

e= & ={a}.
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Then
oo&lz_ool%_oo 1 ) n i
Zﬁ_Zﬁ_Zlg<m’ ie. Eely,
and

=1
Z&%:Zﬁ<oo, ie. &elb.

Remark 5.1.6. In the above example we saw that if T = {f}}le is a positive bounded
above sequence then there exists & € I so that § & L. Now we will see that if T = {T;}7*,
is a positive bounded above sequence then there exists & € I, so that § € I>. Let

. P 1y

T={T}, = {W}IZI
which is bounded above by 1, and let

1

e={eimi={a}
Then
1
?

L

From the above examples and remarks it follows that there exists an iso-space which is
a generalization of the iso-space /. Now we will construct it.

’ﬂ)‘d’“
I Mz

1 (o]
5 1 s A
T 27 0o, &6[2.
1 =1

Definition 5.1.7. For given sequence T = {Tl};":l of positive real numbers we define the
iso-space

flf = {&l ] € R* Z }
With T we will denote the set of all sequences of positive real numbers.

Definition 5.1.8. The set

A

[l = Uy 4115
is called an iso-generalization of the iso-space b.
From the above investigations we have the following inclusion.
Proposition 5.1.9. I cilyand I * il,.

Proposition 5.1.10. (iso-Cauchy inequality) We suppose (H1). For %, $ € H we have




Proof. Let A € F(C. Then

Let A —_— —_—
A =—(£9) £(9,9).
A=(E0) - ENXEI LG5 - EH*EI) £5.9)
+EDXENXG.9) A (F.9%6.9)
and since A > 0 we get
(£,9) — (£,9)x (£,9) £(9,9) 2 0

Definition 5.1.11. Two elements %, § € H will be called iso-orthogonal if

(£9) =0.

Remark 5.1.12. We will note that if two elements of the Hilbert space H are orthogonal
with respect to the inner product (-,-) they are not iso-orthogonal iso-elements of the iso-

space H with respect to the iso-inner iso-product (%,%) and the conversely. We will consider
an example for this.
Let H = C([—1,1]) with an inner product

(f.8) = /]1 f(x)g(x)dx.

Then x, x*, x> € H and

! dp=t 11
2 3 X
(x,27) /_1x T4l T2 s
1 5 x=1
\ T 11 2
= d = — = — - = —
(x,x7) /Ax x=75|__,=s5t5=5%
Consequently x and x* are orthogonal elements of C([—1,1]) and x and x* are not orthog-

onal elements of C([—1,1]).
Let now ),
T(x)=e" 1", xe[-1,1].

Then
T(x)>0 for Vxe[-1,1]
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and

T'x) _ 7.\ _ 7.2
l—xT(;) —1—x<1+§x> =1—x—£x%

Now we consider C([—1,1]) with the isotopic element T (x), then the corresponding iso-

inner iso- product is
— 1 "
o= reaeo(1-x5 )

T'(x)
From here,
(£,%%) = f_11x3<1 —x— %xz)dx
= [1 Pdx— 1 dx— T 1 POdx
:XiXZI _ﬁx:l _zﬁle
| —q 56|
_% 7&07
and

= fi1x4dx—filx5dx—%fi1x6dx

:xile _szl _Z£XZI
3 x=—1 6 x=-—1 57 x=—1

—2_12 _

-5 57_0'

Consequently £ and %2 are not iso-orthogonal in C([—1,1]) and % and > are iso-orthogonal

in C([-1,1]).

Below we will give a condition for the isotopic element 7" such that if x,y € H are
orthogonal then £, § € H are iso-orthogonal and the conversely.

Proposition 5.1.13. We suppose (H1) and T = T~". If x,y € H are orthogonal then %,
$ € H are iso-orthogonal and the conversely.

Here with 7~'* we denote the adjoint operator of the operator 7. Since 7! is posi-
tive definite then 7~! = 7~ and from here 7 = 7~'* is equivalent to 7% = 1.

Proof. Below with I we will denote the identity operator in L(H).
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1. Letx,y € H are orthogonal. Then
(A13)(x,y) =0.

On the other hand, we have

— A1 oA 1
:()C,y):(T l-xaT ly)T
T
now we use that 7-* =T
A A 1 1

Consequently £ and y are iso-orthogonal.
2. Let now £, § € H are iso-orthogonal. Then

(A14)(%.5) = 0.

On the other hand, using (A14), we have

(v y)g; = (Uxy) g =TT xy) ¢

Therefore x and y are orthogonal in H.

., X, € H is an iso-

Proposition 5.1.14. We suppose (H1) and T~ = T. Then %y, %, ..

orthogonal system then it is an iso-linear independent system.

Proof. Since 7' = T from the previous Proposition it follows that the system xp, xp, ...,
X, € H is an orthogonal system. From the properties of the linear spaces with an inner
product we conclude that x1, xo, ..., x, is a linear independent system in H. From here and

since T is a linear operator, we have
7&1>A<)€1+7\,2>A<)CA2+~-'+7\.,,>A<)’C\”:0 <~

7\.1T_1)C1+7u2T_1xz+"‘+7\,nT_1xn =0 <=

T(?\,]T_lxl —l—?uzT_IXQ—I-"'—F?\.nT_lxn) =70 +«—

7\,]7’;7’;71)61 —|—7\,27’;7,\‘7le+"'+7\,an17an =0 <=

Axr +Aoxo + -+ Apx, =0,
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from where we conclude that the system %1, %3, ..., X, is an iso-linear independent system.
O

Proposition 5.1.15. We suppose (H1). Let %, $ € H are iso-orthogonal. Then

—

(£+9,8+9) = (£,2)+(9,9).

Proof. Since £ and j are iso-orthogonal then

From here

—

(£,%2) + (£,9)+ (5, 0) + (5,9)

Proof.

e~

—ED+EN+ED+0.9) +E®D - @) - 0D+ 5.9

O]

Definition 5.1.17. We suppose (H1). We will say that the iso-sequence {%,}7_, of iso-
elements of H is convergent to % € H if

o — ” ” 1

limy—en (fs ) = limy—so(T =10, 1) -

=(T"'xT %)

__ﬂ)‘ —
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Remark 5.1.18. We suppose (H1). Ifx, € H and lim,__,ox,, = x in H, since T~ € L(H),
we have that

lim 77'x,=7"'x in H
n—-woo

or
lim (7 'x,, 77 'x,) = (T7'x, 77 'x)

n—->oo
and from the definition above we obtain that

nliI)loc (xnaxn) = (x>x)'

If X, — 11— X, then from the definition above we have

N

T_lxn —>nﬂwf_1x in H

and using that T=' € L(H) we conclude that x, —,— e X in H.
Consequently, under the assumption (H1), the convergence in H and H are equivalent.

Proposition 5.1.19. We suppose (H1). If %,,y € H, lim,, .. %, = £ € H, then

nli_r?w (fna)?) = (an)A))
Proof. Since the convergence in H and H are equivalent, then lim,,_,. X, = x. From T-'e
L(H) we conclude that

lim Tﬁlxn =T %
n—-soo

From here and since the inner product in H is continuous, we get

A A

lim (7 'x,, T7'y) = (T~ x, 7" y)

n—-yoo

from where we conclude

—_—

lim (£,,y) = (£,9).

n—yoo

O]

Definition 5.1.20. We suppose (H1). Let %, € H is a convergent sequence in H to the
element % € H. Then, since the convergence in H and in H are equivalent, we have that x;, is
a convergent sequence in H and x € H, because H is a Hilbert space. Because T~' € L(H )
we have that

T_lxn — oo 7 'x
and T~ 'x € H. Therefore H is a complete space which will be called an iso-Hilbert iso-
space.

Definition 5.1.21. We suppose (H1). Then if M C H we will write M C H.
Since T 1 e L(H), then, if M is a closed subset of H, we have that M is a closed subset
of H, and if M is a convex subset of H, then M is a convex subset of H.
If M is a subspace of the iso-Hilbert iso-space, then every £ € H can be represented in
the form
X=9+z
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where § € M and (3, p) = 0 for every p € M.
If M C H is a linear manifold, then the iso-set of all iso-elements 3 of H such that

(z;) = 0 for every p € M will be called the iso-orthogonal supplement of M and will be
denoted by M.

5.2. Iso-operators in iso-Hilbert spaces

Definition 5.2.1. We suppose (H1).
Let A: H — H is a linear operator. The corresponding lift of A will be defined as
follows
A=AT""

and will be called an iso-operator.
The act of the iso-operator A on the iso-element £ € H will be defined as follows

At = AT 'TT 'x=AT"x.

Because A and T~ are linear operators in L(H) and since the composition of two linear
operators is a linear operator we have that A is a linear operator.
The iso-norm of the iso-operator A will be defined as follows

— . 1 1 f
Al = (AT | = = sup [[AT ).
i T oxem|ly|<

The iso-operator A will be called iso-bounded if there exists ¢ € Fr, ¢ > 0, such that

p——

4] <e.

Remark 5.2.2. IfA: H — H is a linear bounded operator, then A is an iso-bounded linear
iso-operator. Really, since A,T~" € L(H), then there exists a constant ¢ > 0 such that

Al <e, T <e.

From here, it follows

— 2

- NI <]
ANl = [IA7 | < ATl < 5 <o
Ti T~ T

Remark 5.2.3. If A is an iso-bounded linear iso-operator, then there is a possibility A to be
an unbounded operator. To see this we will consider the following example.

Let C* ([0, 1]) to be the space of all nonnegative continuous functions on [0, 1], endowed
with the standard maximum norm, and let

Af(t) = [y 1f(s)ds,
T f(t) = Josf(s)ds, 1€[0,1],f € C([0,1]).

186



Then A is an unbounded operator, because when f =1 we have

Al = [} Lds = —1n0,

IA1] = |In0| = oo.

, we conclude that A is an

from where, since |[1|| =1 and ||A[| = sup,cc+(jo,1)),1x|<1 ||AX
unbounded operator.
Also, for some f € C*([0,1]), we have

AT f(x) = [, 71 f(s)ds
= Jo L fy 51 (s1)dsids.

From here,

AT F ()| = | fo L Jo s1f(s1)dsids

= Jo L fy 51 (s1)dsds

<11 5 Jo srdsids

1
=1fl13 fo y5°d
1
=1f113 Jo sds
= [Ifll3z =3lIA1I;
Jfrom where,
Al 1
AT 711 < 1A
and therefore
R 1
AT < 5
and R
11 — 1
AT™! —< —||A|| < =
Atz < gx =A<y,

i.e. A is an iso-bounded iso—operator.
Definition 5.2.4. The linear iso-operator A : H —s H will be called iso-continuous iso-
operator at Xo € H if whenever X, € H and

—_—
| ’x\"l - ‘xA0| ‘ —>HH0007

we have

—

||A%, — Axo|| —n—see0.
The linear iso-operator A : H — H will be called iso-continuous in H if it is iso-continuous

at every iso-point of H.

187



Theorem 5.2.5. If a linear iso-operator is bounded then it is continuous and the conversely.
Proof. Let A : H — H be a linear iso-operator.

1. We suppose that A is an iso-bounded iso-operator. Then there exists & € F such that
— L
[AZ]| < éx]|%]].
Since A is a linear iso-operator we have
AT T N
JAG —2)|| = [|A%, — A%|| < ex|[£, — 2],
therefore whenever
~
% — £]] =100

we have
A o
[|AX, — AR|| —1—0.
Consequently A : H — H is an iso-continuous iso-operator.

2. We suppose that A : H —» H is iso-continuous and iso-unbounded. Therefore, from
£, €H, £l < I, we have that

o —

||A%,|| > A.
If we put £, = £, <7, then

—_—

(A15)||A% || =T KA x||A%,|| > T
and

81| = T KAX|[|£a]] ST AR —0—0 0
and since A is iso-continuous, then

—

1A%} || —1—se0 0,
which contradicts of (A15).

O]

Remark 5.2.6. Since, as we saw that if A is an iso-bounded iso-operator; then in the general
case we have not that A is a bounded operator, and because the last theorem we conclude
that if A is an iso-continuous iso-operator, then in the general case it does not follow that A
is a continuous operator.

Definition 5.2.7. The space of all linear iso-bounded iso-operators acting from H in H will
be denoted with L(H).
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Definition 5.2.8. IfA, B € L(H), then their composition is defined as follows

and

and soa on.
Definition 5.2.9. Let A € L(H) and there exists A~'. The corresponding lift
Al — A1t

will be called an iso-inverse iso-operator of the iso-operator A.
From here it follows that, using the definition of composition of two iso-operators,

ATTA=A"'"T'TAT ' =A AT ' =T =1,

A A

AATN = AT 1TA VT =AA T =T =1
Remark 5.2.10. If we define A=" as follows
R “ -1
ATt =(at7r)

then

A

A l=T7A""

From here we obtain that

and

~ N

ANA=] —
TA ' TAT ' =T —
TA ' TA=1 «—

A TA=T"! —
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Therefore, to be built a conception for an iso-inverse iso-operator, we have to have the
following relation between A and T':

TAT = A.
Theorem 5.2.11. Let A, B € L(H) and there exist A~!, B!, Then

f a1 ol
AT BT =BA .

Proof.

O
Definition 5.2.12. Let A € L(H) and A* is its adjoint operator. Then the lift
A* :A*Tfl
will be called an iso-adjoint iso-operator of the iso-operator A.
Here we use the word like "iso-adjoint” because in the general case we have
(AT~N)* £ A T~
Theorem 5.2.13.
A*B* = BA
Proof. o R
A B = AT 'TB*T!
— A*B* T71
= (BA)*T!
—~
=BA
O

Definition 5.2.14. Let A € L(H) be an operator of orthogonal projection. Then the lift
A=AT"!
will be called an iso-operator of iso-orthogonal projection.

Theorem 5.2.15. Let A be an iso-operator of iso-orthogonal projection. Then



Proof.

A

1) A2=AA=AT"'"TAT ' =A>T"' = AT =A,

2) A*=A"T'=AT"'=A.

In the last representations we use the definition for the iso-operator of iso-orthogonal pro-

jection and from it A* = A and A% = A. O
Let || -|| is the norm determined by the inner product (-,-) in H. The lift of this norm is
—~ 1
F =11 Hﬂ'

For £ € H we have

(#1121 = 1Tl AT 2l
_11—=1 21
(A16) = ||7 x|+
= (T_IX,T_]X)TALI,
and 1
(%,%) = (T7'%, T 'x)

Definition 5.2.16. Let {T"}>_, satisfy (H1). We will say that the iso-sequence {An};": L of
iso-elements of L(H) is uniformly convergent to A € L(H) if

[V Y p——}

Remark 5.2.17. We will note that if the sequence {An}:’:l is uniformly convergent to A
then it does not follow that the sequence {A,}7_, is uniformly convergent to A and the
conversely. We will see this in the next examples.

Example 5.2.18. LetA,B, T ', A,,T""":H — H and forx € H

A

2
_ n°+1 —1n,. _ n+l
Ap¥ = 3a3% T77x =505

X,

A1, _ 1 _ _ 1
T 'x=3x, Ax=x, Bx=;x

Then, for x € H,

[|Anx — Ax|| =

i

2 2
n“4+1 _ n“+1
223 xH = H(2n2+3 1>x

2
1An = A1l = 0Dy a1~ 55 I

— |1 _ n*+1
- 2n?+3

)
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from here

n*+1

A+l 1.1
2n2+3 -

lim ||A, —Al| = lim ‘1—
n—->o0 n—-jo 2 2

-1-

consequently the sequence {A, };-_, is not uniformly convergent to A.

Also, for x € H, we have

A A1 - +1 _ (n2+1)(n+1)
Ax=A,T n)C—An< 5 x) - (2n2+3)(2n+1)x’

from where

_ || 24Dt D) Ll
‘ @+ T)2nt ) Zx‘ ‘ T

= | (s — )%

(n2+1)(n+1) 1 1
@) Z’HXHTla

o —

1A, —Al| = [|4, 71" —AT 1]

_ (n?+1)(n+1) 1 1
= SqueH,qug‘m - 1)||x|\7l

1

T’

7’ (M+D)(n+l) 1
| @n2+1)(2n+1) 4

and then

P+ Dm+1) 1)1

lim ||A, —A||= lim
n—-yoo

consequently the iso-sequence {An};o:] is uniformly convergent to A.

For £ € H we have

1

n—>w‘(2n2+l)(2n—|—l) 4lT —

0,



from where

—

I|A, — B|| = ||A, T~ ""x — BT x|

(n2+1)(n+l) 1 1
= ‘ Qi) 2nr )Y §XHTI

_ (n*+1)(n+1) 1 1
= ’(m‘ﬁ)x”f

P+t 1
(2n2+1)(2n+1)

7 I,

o —

14— Bl| = |4, T~"" — BT || 1,

(n241)(n+1)
(2n2+1)(2n+1)

= SUPyep ||x||<1 g |70/ 1xl]

’ (P +1)(nt1) _1’L
|22+ (2n+1) T 8| T
and then

o —

241 1 11
tim |14, — Al = fim | (n+1)(n+1)
n—soo n—so0 (2n2+1)(2n+1) 8T

#0,

consequently the iso-sequence {An}:’:] is not uniformly convergent to B.
On the other hand, for x € H,

||Anx — Bx|| =

24+l 1 || 4+l 1
22:3% 28| T |\ 223 — 2 )]

2
g — Bl = sup, gy |5 — 225 1]

-Ji-53
|27 22243
from here
2
1
Tim |4, B[ = 1im ( s |=
2 2m2+43

consequently the sequence {A,};_, is uniformly convergent to B.

Definition 5.2.19. Let {T"}*_, satisfy (H1). We will say that the iso-sequence {A), of
iso-elements of L(H) is strongly convergent to A € L(H) if

—

|A% —AR|| — 13 0
forevery % € H.

Remark 5.2.20. From the above examples it follows that from the strongly convergence of
{A,}2_, to A it does not follow the strongly convergence of {A,}%_, to A and the conversely.

Theorem 5.2.21. Ler {T™Yy>_, satisfy (H1) and {A } >, is uniformly convergent to A €
L(A). Then {A,}_, is strongly convergent to A € L(H).
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Proof. The proof follows from the following iso-inequality

—_—
—

1A% — AS]| < [JA, =A% |2]].
O

Definition 5.2.22. Every linear iso-operator L : H — Fi will be called a linear iso-
functional.

Definition 5.2.23. The iso-sequence {%,};_, of iso-elements of H will be called weakly

convergent to % € H if
L(%,) —n—e0 L(X)

for every linear iso-functional L defined on H.

If L is a linear iso-functional on H, then for every X € H we have

—_

< JILJ[%[I3]]-

i |

IL(¥)

Theorem 5.2.24. Let {£,};7_, be a sequence of iso-elements of H which is strongly conver-
gent to £ € H. Then it is weakly convergent.

Proof. Let L be arbitrarily chosen a linear iso-functional on A. Then we have

A N

(AL16") |L(%) = L(%)] = |L(&n = &) < [IL]][1%, = £1]-
Since {£,};_, is strongly convergent to £ we have

—_—
lim ||£, —%|| =0,
n—yoo

from here and (A16), we conclude that

lim |L(%,) —L(%)| =0,

n—-voo

because L was arbitrarily chosen, then {%.}:2_, is weakly convergent to . O
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Chapter 6

Elements of Santilli-Lie-isotopic time
evolution theory

6.1. Definition of Santilli’s Lie isotopic power series
Let X and Y be complex Banach spaces. With £(X,Y) we will denote the space of all linear
bounded operators C: X — Y.

LetA, T and H € L(X,Y) and

dA
— = —i(ATH —HTA).
primial' )
Our aim here is to be investigated the series
2
(A17)A0) + 4 (0)w+ 2,22 (0)w? + -

Definition 6.1.1. The series (A17) will be called the Santilli’s Lie isotopic power series.

Firstly, we will deduct the general term of (A17).
We have

PA_ d (@)

dr2 T dr\ dt

——i(4TH - HT4)

- —i(—i(ATH—HTA)TH—HT(—i)(ATH—HTA))

= (—i)2((ATH — HTA)TH — HT (ATH — HTA)),
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We suppose t

——i(SATH - HT94)
= —i((~i)*((ATH — HTA)TH — HT (ATH — HTA))TH
—HT(—i)*((ATH — HTA)TH — HT (ATH — HTA)))
= (—i)3((ATH — HTA)(TH)*> — HT (ATH — HTA)TH
—~HT(ATH — HTA)TH + (HT)*(ATH — HTA))
= (—i)*((ATH — HTA)(TH)?> —2HT (ATH — HTA)TH
+(HT)*(ATH — HTA)),
=4(5)
——i(G4TH - HT 44
= —i((—i)*((ATH —HTA)(TH)* - 2(HT)(ATH — HTA)TH
+(HT)*(ATH — HTA))TH — (—i)*(HT)((ATH — HTA)(TH)?
—2(HT)(ATH — HTA)TH + (HT)*(ATH — HTA)))
= (—i)*((ATH — HTA)(TH)? —2HT(ATH — HTA)(TH)?
+(HT)*>(ATH —HTA)(TH) — (HT)(ATH — HTA)(TH)?
+2(HT)*(ATH — HTA)TH — (HT)*(ATH — HTA))
= (—i)*((ATH — HTA)(TH)? - 3(HT)(ATH — HTA)(TH)?
+3(HT)*(ATH — HTA)(TH) — (HT)*(ATH — HTA))

= (—i)4zz_o< Sik )(HT)k(ATH—HTA)(TH)”.

hat for some natural number n we have

(=i)"Eio < n Eik ) (—1)*(HT)X(ATH — HTA)(TH)"~'*.
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We will prove that

dn+1A
d+1

= ()" i, < ni . > (=1)*(HT)*(ATH — HTA)(TH)"*.

Really,

4 1A _d d"A
drtl T de \ drt

_ = dA d"A
——i(GATH - HT42)

- _i<(_i)nz;_5(_1)k( nf;ik )(HT)"(ATH—HTA)(TH)"II‘

n—1

—(*i)nHTZZ;é(*l)k < I ) (HT)k(ATH—HTA)(TH)”_l_k>

= (—i)"*! (((ATH —HTA)(TH)" ' — (HT)(ATH — HTA)(TH)" 2
+ (=) YHT)"""(ATH — HTA))TH
—HT((ATH —HTA)(TH)"~' — (HT)(ATH — HTA)(TH)" 2 4 - -

+(—1y""Y(HT)""'(ATH — HTA) ))

n

_ (=i ((ATH —HTA)(TH)" — < n—1

> (HT)(ATH — HTA)(TH)""!

Hoe (1) (HT)"(ATH —HTA))
= (=i)"Yr (=1 < ; ﬁ . ) (HT)*(ATH — HTA)(TH)"*.
From here and the induction it follows that for every natural n we have

Let

=Gt (1L, )@ tars -y o),

A" =A(0)..

We note that when we write C(0) we have in mind that the operator C acts on the zero in X.
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6.2. Properties of Santilli’s Lie isotopic power series

Now we will investigate the series

(A18)g(w) = LiloA"™W",
where w is a complex variable. If |w| > 1 then we will make the change w; = w — 1 and
therefore |wi| = [w—1| > [w|—1>0.

Let Q be the set of all w for which the series (A18) is convergent. The set € is not

empty because 0 € Q.
For r > 0 and xp € Q we will denote with S, (xp) the ball

Sr(x0) ={x € C:|x—xo| <r}.

Theorem 6.2.1. Let wy # 0 and wy € Q. Then S),,,(0) C Q and in every ball S,(0), 0 <
r < |wy|, the series (A18) is absolutely and uniformly convergent.

Proof. Since wy € Q then the series } 7 ,A"wj is convergent. From the properties of the
convergent series we have that lim,, .. A"w{; = 0. From here we conclude that the sequence
{A"w{}_, is bounded. Therefore there exists a constant M > 0 such that

[|A"wg|| <M for VneN.

Let w € Sj,,(0). Then |w| < [wp| and

] = |

M
Awj :ﬁ—g

n
[A"wgl| <M

w w
wo wo

and from here
oo o0 n
Yl <m Y| 2] <o,
n=0 n=0 wo

If lw <r

||AnwnH _ ’ A”r’”:—:

n

= r"||A"]

w
r

n

< |wo["[|A"]]

w
r

= ||A"w" "
= [|A"wg|

w
r

Consequently
Yl <m Y| % <o,
n=0 =0T
i.e. the series (A18) is absolutely and uniformly convergent. O
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With R we will denote the radius of the convergence of (A18).
From the definition of the radius of the convergence of a power series we have

R = sup |w|.
weQ

Also,
1. If R=0then Q = {0}.
2. If R = oo then the series (A18) is convergent in all complex plane.

3. From the Cauchy - Hadamard formula we have
1

- Timy el

Theorem 6.2.2. LetA, T, H € L(X,y),

T|| >0,

H|| > 0. Then

1

R> .
2[|T|[|H]]

Proof. We have

||A™[| = H(—i)”ZZ;(‘) ( nl > (—=DX(HT)*ATH — HTA)(TH)" %! H

< Xiso ( ni;ik ) \|(HT)X(ATH — HTA)(TH)"'~¥||

< Lico < nﬁik ) |(HT)*(ATH — HTA)||||(TH)" ||

- n—1 1
<xio ("L, ) IEmar - aray o

) nil _1—
<o ("7 Ly ) IaTs — HrAl A

oo n—1 e 1
w0 L ) UHTIGAT A THAI Tl

o n—1 - -
Zk_o< n_l_k>HH|I"IIT|"(|IAIIIIT|||HH+|!T||||HH||A||)IHII" 1V A K

n—1

" oo n—1
=2l (")

=2"[Al[[[T (1" H ",
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1.€.
[A™] < 2"[|A[[[|T[[*[|H[[",

from here 1 1
A" [= <2[|T||[|H[[||A]]",

therefore L 1
Tim,..||A" |
— 1
< 2[[T[[||H| [limy, oo |A[ |+ = 2[|T]]|H|].
From here and the Cauchy - Hadamard formulae we conclude that

__ 1 s 1
lim, .|lA7|[x — 2lIT||H]]

Theorem 6.2.3. If there exist a positive constants M| and | such that
A" < M, 1"
then R > %

Proof. It is enough to be proved that the series (A18) is uniformly bounded for |w| < %
Let
wll=¢q< 1.

Then
[[A"W*[| = [w|"[|[A"]| < |w[*M 1" = M1q",

therefore
[Zoakut|| < o llakwA

oo M
<MIYP g = T—g <o

Theorem 6.2.4. Let
(A19) Y AW = Z:ZOA”W” in  Sg(0).

Then
A"=A" for VneNU{0}.

Proof. Since w =0 € Q then, after we put w = 0 in (A19), we get
A% =A°.

From here and (A19) we obtain
Y AWk =Y AW in o Sg(0),
k=1 k=1
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from where
(A20) Y p Akwk—t =y AWkl in  Sg(0).

We put w = 0 in the last equality and we have

A=Al
From here and (A20)
Z’Akwk_1 = ZAkwk_l in  Sg(0)
k=2 k=2
and etc. ]

Theorem 6.2.5. The function g is a continuous function in Sg(0).

Proof. Letp € (0,R) and w,wp € Sg(0). Then
g(w) —g(wo) = X,m A" — X0 A"y
=L AW —wp)

= Z‘,;Z";IA"(W—wo)(w”*1 +w' o+ - +w8_1),

therefore
lg(w) = gOwo)l| = || Z A0 = wo) (w7 4w 2wg -y |
< T A" (w = wo) (W' W Pwg - |
= Yoy [JA"]|lw — wol [w"! + W' 2wg 4w |
<Yy [|AM[lw—wol (Jw[*~ !+ [w|"2|wo| 4+ + [wo|* 1)
<Yy [|AM[lw—wol(p" ' +p" 2p4---+p" )
—_ > n—=1j1An
Zn:]np || ”7
1.e.

(A21)[|g(w) —g(wo)[| < Xy np" " ||A™[[[w —wol.

Now we will prove that the series Y-, np" A" is uniformly convergent for every p €
(0,R). Let p € (0,R) is arbitrarily chosen and fixed. Let also p € (p,R). Then, since
p < R then the series ) ,_; A"p" is uniformly convergent, from where lim,_,,A"p" = 0
and therefore the sequence {p"A"};_, is a bounded sequence. Consequently there exists a
positive constant M, such that

[JA"|p" <M, for VneN.
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From here |
W
Yo nlAnlpn! = Xy a4 (2)
M - n—1
<My in(8)
Let g = % Then g; < 1 and

[ mampr=t]] < Eiy lnanp|

< Yoinllan|pm!

le”(%)nil

n—1

Y1 g

<

'01‘5

171‘5

Let by = kqll‘*l. Then
(k+1)q}
kq’l“l

imy e 250 = Timy oo
: k+1
=limg e g1 =q1 < 1.

o n—1 -

Consequently the series }” | ng]  is convergent and then
c(p) =Y nllA"|p" ! <.
n=1

Since p € Sg(0) was arbitrarily chosen then the series Yo, nA"p"~! is uniformly con-
vergent for every p € Sg(0).
From (A21) we obtain

(A22)[|g(w) — g(wo)|| < c(p)|w —wo.
Let € > 0 be arbitrarily chosen and fixed. Let also 6 = ﬁ(p). Then if |w —wp| < 9,
from (A22), we get

€
1+c(p)

[lg(w) — g(wo)l| < c(p)|w —wo| < c(p)d=c(p) <E.

Since € > 0 was arbitrarily chosen and for it we find § = 8(¢) > 0 such that whenever
|[w —wo| < & we have ||g(w) — g(wo)|| < &, we conclude that g is a continuous function at
wo.

Because wg € Sg(0) was arbitrarily chosen then g is a continuous function in Sg(0). [

Corollary 6.2.6. The series
Y n Ay
n=1

is a convergent series in Sg(0).
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[wl

Proof. Let |w| < R and p € (|w|,R). Then 5 <1 and from here and the proof of the

previous Theorem we have

= Lo nfAm|[jw]"!

Eo A || < g flnamw

n—1
= Lo ynljAn ot
< EoinlAr|lpr! <.

Because w € Sg(0) was arbitrarily chosen we conclude that >, nA"w" ! is convergent in
Sk(0). O

Theorem 6.2.7. The function g is a differentiable function in Sg(0).

Proof. For w € Sg(0) we define the function
u(w) = Z nA"w" L,
n=2
For w,w; € Sg(0) we have

S

w—wq

= i (T E A ) p

_ 1 oo n(y,N n oo n, m—1
- w—wi n:2A (W _Wl) - n:ZnA Wl

—_y® nW'—wi oo n, n—1
_Zn:2A w—wq _Zn:ZHA W]

el nf w-wi n—1
=Y ,A (Wiwl —nw; ,

1.€.

w—wj

(423) 80080 () = 37 A (22— ).

We will note that

(A24) Wiowy —nw ! =n(n— 1)(W—w1)f01(1 —0)((1—8)w; +6w)"2d6.

w—wy
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Really,

n(n—1)(w—wy) fo (1—0)((1—8)w +6w)"2de
=n(n—1)(w—wi) fy (1—=8)(wi +6(w—w))"2d0
=n(n—1) [ (1—8)(wi +0(w—w))"2d(w; +6(w—wy))

=n fy (1—8)d(wi +0(w—wi))""!

— (1= 0) (41 + 8w —wy))"~! ::1+nf01(w1+6(w—w1))”_]d6

=0
_ _nwrll—l
e Ja wi 480w —wi))" ' d (w1 +8(w —wi))
= —nw’f_1

0=1

+WJW1 (W] +9(W—W1))” 60

Now we apply (A24) in (A23) and we obtain

e
(A25)

= (w—wi) Ly n(n—1)A" 5 (1-8)((1—8)w; +6w)" .

Let p € (0,R) is arbitrarily chosen and fixed. Then for w,w; € S,(0) and from (A25) we
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have
HM—M(M)H

= H(w—m)ZZ":zn(n— DA" [ (1—8)((1—8)w, +9W)n72deH

< w—wi| Ty n(n— 1)‘ A" [N (1= 0)((1—8)wy +9w)"‘2d9H

= [w—w| Lo n(n—1)]|A"|

o (1=8)((1— 8wy -+ 6w)"2d|
< lw—wi| Ly n(n—1D)[|A"]| fo (1= 6)[((1—8)w: +6w)"2|d®
= |w—wi| Ly n(n = 1)]JA"] fy (1—)[(1—6)wi +6w|">d6
< |w—wi|Eran(n—1)[|A"]] o (1-6)((1—8)lwi|+8]w])" 26
< |w—wi| Ly n(n—1)[[A"]] o (1-6)((1 - 6)p +6p)"2d6
= |w—wi|E5 n(n—1)]|A"]| f5 (1-8)p" 26
< |w—wi| Ly n(n—1)]]A"]|p"2,

pe.

(=

(A26)

< [w—wi| Xy n(n—1)[|4"][p" 2.
Now we will prove that for every p € (0,R) the series Yo, n(n— 1)A"p"~? is a convergent
series. Really, let p € (0,R) is arbitrarily chosen and fixed. and let also p € (p,R). Since
0 < P < R then the series )~ ,A"p" is a convergent series. Therefore lim,_ ., A"p" =0
and from here the sequence {A"p"}_| is a convergent sequence. Consequently, there exists
a positive constant M3 so that

[|A"||p" <Mz for VneN.

Therefore
g5 inn— Dyanpn2|

< X3 [ln(n = Danp2|
= Tan(n— D] |2

o alian (P n72~2
= Tiantn- 1)l (§)" b

n—2
)

<M3R*YS ,n(n— 1)(

hellpe}
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1e.
(427) || Z5nln - 1)A"" 2| < MsRRE7 yn(n—1) O

We put

hellne)

q

Then, using (A27), we have ¢» < 1 and

<M3R*Y; ,n(n—1)gy 2.

Eran(n— 1A% 2|

Let
dn = I’l(l’l - l)qg_z'
Then 1
. T (n+1)ngy~
hmn*)oo d:I = 11mn—>oo W

:quimnHm% =q2 < 1.

Consequently Y2 ,n(n — 1)gh! is convergent and from (A27) it follows that the series
Yo ,n(n—1)A"p"2 is convergent. Because p € (0,R) was arbitrarily chosen then the
series Y°°_, n(n— 1)A"p" 2 is convergent for every p € (0,R). Therefore

oo

ci(p) =Y n(n—1)||A"[|p"* < e
n=2

for every p € (0,R). From (A26) it follows that

Hg(W) —g(w1)

L —u(w)|| < ea(p)w )

for every p € (0,R). Let € > 0 be arbitrarily chosen and fixed. Let also 8 = Then

from |[w—w;| < & we have

__ &
I4ci(p)”

HM_M(WI)H <ci(p)lw—wi| <ci(p)d

=C] (p)l—&-%(p) < €
for every p € (0,R). Because € > 0 was arbitrarily chosen and for it we found & = 6(¢) > 0

gw)—g(w1) u(wi)

o H < &, then the function g is a

so that whenever |w —w;| < & we have ‘ ‘

differentiable function at wy and g’(w;) = u(wy). Since w; € Sg(0) was arbitrarily chosen
then the function g is a differentiable function in Sg(0) and for every w € Sg(0) we have
¢/ (w) = u(w). =

Using the induction one can prove
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Corollary 6.2.8. g € C*(Sg(0)).

Theorem 6.2.9. Let ) > (A" be an absolutely convergent series to 0. Then

lim g(w)=0.
[1-w|

[1=w
w—1,w: Tl | <

[1—w|
1=[w]|

Proof. Without loss of generality we will consider the case when w — 1 and 0 <

oo,

<

Then |w| < 1 and there exists a positive constant M, such that

1—w
(A28)0 < {2 < M.

Let .
Pr=Y A" n=01.2,...
k=0

n=1

Then the sequence {P" is a convergent sequence.
AV =po Ak —prk_pl p=12,....

We put

sp(w) = Zn:Akwk.

k=0
Then

sp(w) = A0+ Alw + A2w? 4. L AT
:PO+(P1 _PO)W+(P2_Pl)w2+__.+(Pn_Pn71)Wn
= PO(1 —w) + P (w—w?) + P2 (W2 —w3) 4+ -+ PP (w11 — n=2) 4 pryyn
=Po1—w)+P'w(l —w) +P2w?(1 —w) +--- + P I 1 (1 —w) + P'w",
i.e.
(A29)s,(w) = (1 —w) Xr=} PEwk 4 P,

Since Y ,A" is an absolutely convergent series to O then for |w| < 1 we have
lim,, . P"w" = 0 and from (A29)

(A30)g(w) = limy e 5,(w) = (1 —w) Yo PAwk.

Let € > 0. Then there exists m € N such that ||P"|| < € for every n > m.
We choose w so that to satisfy (A28) and |1 —w| < €. From here

[z,

< Yon [P [l[w]"
(A31)

o

<eYyy . wlt= 1]y
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From (A28) we have
W[ =1 < [1—w| <My(1—w]),

from where
|w| < Mg(1—|w|)+1.

Since |w| < 1 then
w|™ < [w] < Ma(1—|w[) +1

:€M4—|—1%‘WI.

and from (A31) we obtain

B[R

From the last inequality we get

[p———

< 11— wl(eMy+ 5 )

[1=w|
1—[w|

:M4£|1—W|+8

< M48’1 —W‘ + Mye
=Mue(1+ 1|1 —wl|)
and from (A30)

el = [|(1=w) o Prwr

= || =) P (1= w) K, P

S

P[0 wgz P

< 1 —wl| [ P

+Mue(1+4 |1 —w|).
Because € > 0 was arbitrarily chosen

lim g(w) =0.

—w|
w| <eo

w—1,w:0< ‘117‘
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Index

€-iso-neighborhood, 20

bounded sequence, 24
bounded set, 25

closed set, 25

continuous iso-function, 43

convergence of sequence of iso-points, 21
convergent iso-sequence, 184

directional iso-derivative, 104

discontinuous of the first kind iso-function,
45

discontinuous of the second kind iso-
function, 45

first order iso-partial derivative of fifth kind

, 55

first order iso-partial derivative of the first
kind , 47

first order iso-partial derivative of the fourth
kind , 53

first order iso-partial derivative of the second
kind , 50

first order iso-partial derivative of the sev-
enth kind , 59

first order iso-partial derivative of the sixth
kind , 57

first order iso-partial derivative of the third
kind, 51

homogeneous iso-functions, 105

inner iso-product, 13

iso-adjoint iso-operator, 190
iso-bijection, 39

Iso-Cauchy’s Convergence Criterion, 25
iso-continuous iso-operator, 187
iso-diameter, 25

1so-differentiable iso-function, 61

iso-distance between iso-points, 12

iso-Euclidean space, 7

iso-Euler equality, 105

iso-Fourier iso-integral, 169

1so-function of the fifth kind , 33

iso-function of the first kind , 26

iso-function of the fourth kind , 32

1so-function of the second kind , 28

1so-function of the third kind , 30

iso-generalized iso-space, 180

iso-Hilbert iso-space, 185

iso-injection, 39

iso-inverse iso-operator, 189

iso-Lagrange multiplier, 111

iso-length of iso-vector, 12

iso-line, 19

iso-line segment, 19

iso-neighborhood, 7

iso-open 7 - ball, 20

iso-operator of iso-orthogonal projection,
190

iso-orthogonal elements, 181

iso-radius, 20

iso-scalar multiple, 8

iso-Schwartz inequality, 13

iso-sphere, 20

iso-surjection, 39

Iso-Taylor series of the fifth kind , 119

Iso-Taylor series of the first kind , 117

Iso-Taylor series of the fourth kind , 118

Iso-Taylor series of the second kind , 117

Iso-Taylor series of the seventh kind , 120

Iso-Taylor series of the sixth kind , 119

Iso-Taylor series of the third kind , 118

iso-triangle inequality, 16

1s0-unit iso-vector, 12
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iso-vector sum, 7

iso-volume of the eighteenth kind, 148
iso-volume of the eighth kind, 147
iso-volume of the eleventh kind, 147
iso-volume of the fifteenth kind, 148
iso-volume of the fifth kind , 147
iso-volume of the first kind , 147
1so-volume of the fourteenth kind, 148
iso-volume of the fourth kind , 147
iso-volume of the nineteenth kind, 148
iso-volume of the ninth kind, 147
iso-volume of the second kind , 147
iso-volume of the seventeenth kind, 148
iso-volume of the seventh kind , 147
1so-volume of the sixteenth kind, 148
iso-volume of the sixth kind , 147
iso-volume of the tenth kind, 147
1so-volume of the third kind , 147
1so-volume of the thirteenth kind, 148
iso-volume of the thirtieth kind, 149
iso-volume of the twelfth kind, 148
iso-volume of the twentieth kind, 148
iso-volume of the twenty eighth kind, 149
iso-volume of the twenty fifth kind , 149
iso-volume of the twenty first kind , 148
iso-volume of the twenty fourth kind , 149
iso-volume of the twenty ninth kind, 149
iso-volume of the twenty second kind , 148
iso-volume of the twenty seventh kind , 149
iso-volume of the twenty sixth kind, 149
iso-volume of the twenty third kind , 149

left limit of iso-function, 39

limit of iso-function, 39

line iso-integral of the fifth kind , 157, 160

line iso-integral of the first kind , 153, 158

line iso-integral of the fourth kind , 156, 160

line iso-integral of the second kind , 154,
159

line iso-integral of the third kind, 155

line iso-integral of the third kind , 159

linear iso-functional, 194

local extreme iso-point, 107

mean value theorem, 142-146

mean value theorem for iso-functions of the
fifth kind , 116

mean value theorem for iso-functions of the
first kind , 115

mean value theorem for iso-functions of the
fourth kind, 115

mean value theorem for iso-functions of the
second kind , 115

mean value theorem for iso-functions of the
third kind , 115

multiple iso-integral of eleventh kind, 138

multiple iso-integral of the eighth kind, 135

multiple iso-integral of the fifteenth kind,
140

multiple iso-integral of the fifth kind , 133

multiple iso-integral of the first kind , 127

multiple iso-integral of the fourteenth kind,
140

multiple iso-integral of the fourth kind , 132

multiple iso-integral of the ninth kind, 136

multiple iso-integral of the second kind , 129

multiple iso-integral of the seventh kind ,
134

multiple iso-integral of the sixth kind , 133

multiple iso-integral of the tenth kind, 137

multiple iso-integral of the third kind , 131

multiple iso-integral of the thirteenth kind,
140

multiple iso-integral of the twelfth kind, 139

right limit of iso-function, 39

Santilli’s Lie isotopic power series, 195

second order iso-partial derivative of the
fifth kind , 56

second order iso-partial derivative of the first
kind , 49

second order iso-partial derivative of the
fourth kind, 55

second order iso-partial derivative of the sec-
ond kind , 51

second order iso-partial derivative of the sev-
enth kind , 61

second order iso-partial derivative of the
sixth kind , 58
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second order iso-partial derivative of the
third kind , 53

second order total iso-differential, 104

surface iso-integral of the first kind , 166

surface iso-integral of the second kind, 166

third order iso-partial derivative of the fifth
kind , 57

third order iso-partial derivative of the first
kind , 49

third order iso-partial derivative of the fourth
kind , 55

third order iso-partial derivative of the sec-
ond kind , 51

third order iso-partial derivative of the sev-
enth kind , 61

third order iso-partial derivative of the sixth
kind, 58

third order iso-partial derivative of the third
kind , 53

third order total iso-differential, 104

total iso-differential of the eight kind, 63

total iso-differential of the fifth kind , 63

total iso-differential of the first kind , 62

total iso-differential of the fourth kind , 62

total iso-differential of the second kind , 62

total iso-differential of the seventh kind , 63

total iso-differential of the sixth kind, 63

total iso-differential of the third kind , 62

unbounded set, 25

uniformly continuous iso-function, 45

uniformly convergent iso-sequence of iso-
operators, 191

vector iso-functions, 120

weakly convergent iso-sequence, 194
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